REMEDIAL INVESTIGATION REPORT

5140 Site Yorkville, New York February 13, 2015

REMEDIAL INVESTIGATION REPORT 5140 Site Yorkville, New York

February 13, 2015

Client

5140 Commercial Drive, LLC P.O. Box 160 Syracuse, New York 13260-0160

Consultant

WSP 5 Sullivan Street Cazenovia, New York 13035 USA

Tel: (315) 655-3900 Fax: (315) 655-3903

www.wspenvironmental.com/usa

WSP Contacts

David P. Bouchard, Senior Project Director Dave.bouchard@wspgroup.com

Table of Contents

1 Introduction				
	1.1	Re	port Organization	1
2	В	ackgr	round	3
	2.1	De	evelopment and Operational History	3
	2.2	Pre	evious Investigations and Remediation	4
	2	.2.1	Remedial Activities	5
	2	.2.2	Follow-up Investigation	5
3	Α	pproa	ach and Investigations	7
	3.1	Ad	lditional Soil Investigation	8
	3	.1.1	Soil Sampling	9
	3.2	Ad	ditional Groundwater Investigation	9
	3	.2.1	Monitoring Well Installation	10
	3	.2.2	Well Gauging and Low Flow Groundwater Sampling.	11
	3.3	Va	por Intrusion Investigation	11
	3	.3.1	Indoor Air Investigation Methods	12
		3.3.1	.1 Probe Installation and Vapor Sample Collection .	12
	3.4	Uti	ility and Storm Water Drainage Assessment	13
	3	.4.1	Interim Findings	14
		3.4.1	.1 Onsite Utilities	14
		3.4.1	.2 Exterior Drainage	14
		3.4.1	.3 Sampling Approach and Methods	15
	3.5	Qu	ality Assurance/Quality Control Samples	16
	3.6	Sit	e Restoration and Survey	16
	3.7		contamination Procedures and Investigation-Derived	
4		-	gs	
	4.1		e Geology and Hydrogeology	
	4.2	So	il Analytical Results	18

	4.3	Groundwater Elevation Results	.18	
	4.4	Groundwater Quality Results	.19	
	4.5	Vapor Sampling Results	.19	
5	Co	nclusions and Recommendations	.20	
	5.1	Recommended Follow-up Remedial Action	.21	
	5.2	Reporting and Schedule	.21	
6	Acı	onyms	.22	
7	Re	References23		

Figures

- Figure 1 Site Location
- Sheet 2 Adjacent Properties
- Sheet 3 Site Layout with Historical PCB Wipe Sample Results
- Sheet 4 Historical Total PCB Concentrations in Soil (Pre-Interim Remedial Measure)
- Sheet 5 Total PCB Concentrations in Soil
- Sheet 6 Groundwater Elevation Map October 2014
- Sheet 7 Sub-Slab, Indoor Air, and Outdoor Air Sample Locations
- Sheet 8 Storm and Sanitary Sewer Layout with Runoff Flow Direction

Tables

- Table 1 Soil Sampling Results Polychlorinated Biphenyls and Pesticides
- Table 2 Soil Sampling Results Semivolatile Organic Compounds
- Table 3 Soil Sampling Results Metals
- Table 4 Soil Sampling Results Volatile Organic Compounds
- Table 5 Groundwater Elevations
- Table 6 Groundwater Results Polychlorinated Biphenyls
- Table 7 Sub-slab Soil Gas, Indoor Air and Ambient Air Sampling Results

Appendices

- Appendix A Soil Analytical Data
- Appendix B Soil Boring Logs
- Appendix C Groundwater Sampling Logs
- Appendix D Groundwater Analytical Data
- Appendix E Building Inspection and Inventory Form
- Appendix F Vapor Analytical Data
- Appendix G Environmental Data Resources Database
- Appendix H Interim Contaminant Migration Pathway Analysis Report
- Appendix I Data Validation Reports

1 Introduction

WSP, on behalf of 5140 Commercial Drive, LLC (5140), has prepared this Remedial Investigation (RI) Report for the property at 5140 Commercial Drive in Yorkville, New York. The investigation activities, which included soil, groundwater, and vapor sampling, were designed to complete the characterization of the site, as requested by the New York State Departments of Environmental Conservation (NYSDEC) and Health (NYSDOH). The request was part of the Departments' response to a strategy outlined in the March 2013 New York State Brownfield Cleanup Program (BCP) application for the site, which envisioned a direct-to-remediation approach to address polychlorinated biphenyl-impacted (PCB-impacted) soil near an exterior concrete loading dock (concrete pad). The remedial work was proposed as the final remedy based on the sampling and characterization results from investigations. The Departments reviewed the BCP application and identified data gaps in the site characterization, including the area beneath the main building, which would require further evaluation before proceeding to a final remedy¹. This report details the investigation activities designed to address the data gaps identified by the Departments.

All work detailed in this report was conducted under a Brownfield Cleanup Agreement (BCA Index No.:C633079-06-13), dated August 7, 2013, between 5140 and the NYSDEC. The work was performed in accordance with the approved *Revised Remedial Investigation Work Plan*, dated June 24, 2014, WSP's standard operating procedures (SOPs)², a site-specific health and safety plan, and the quality assurance procedures outlined below.

1.1 Report Organization

The content of this RI Report is based on the NYSDEC's *Technical Guidance for site Investigation and Remediation (DER-10),* dated May 2010, the *Brownfield Cleanup Program Guide*, dated May 2004, and NYSDOH's *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*, dated October 2006. The report is divided into six sections, including this introduction:

- Section 2 describes the site location and setting, the layout of the site facilities, and provides background on the previous investigations and remedial action
- Section 3 outlines the Departments' request for additional investigations and presents the scope of work designed to address those requests
- Section 4 details the investigation data
- Section 5 presents the conclusions and WSP's recommendations for additional work
- Section 6 lists the acronyms and abbreviations used throughout the report

It is important to note that this report builds on investigation and remediation work previously performed at the site by WSP and other consultants. The primary documents used for reference in preparing the background sections of this plan are:

- Soil Excavation Work Plan, dated August 1, 2011, prepared by the Palmerton Group Environmental Consulting Services of East Syracuse, New York
- Soil Excavation Summary Report and Request for Spill Closure (Spill Number 1107657), dated October 18, 2011, prepared by the Palmerton Group
- Interior PCB Cleaning and Encapsulation, dated October 28, 2011, prepared by the Palmerton Group

² Copies of the relevant SOPs used for the investigation are presented in the *Revised Remedial Investigation Work Plan*, dated June 24, 2014.

¹ The proposed remedial activities outlined in the BCP application were approved as an interim remedial measure (IRM), which was performed in February and March 2014. See the Construction Completion Report – Interim Remedial Measure, dated May 23, 2014, for additional information.

Additional Investigation Report, dated March 18, 2013, prepared by WSP

It is also important to note that an Interim Remedial Measure (IRM) was implemented at the site during February and March 2014. The activities, which included the demolition of the concrete pad, the removal of PCB-affected soil beneath and adjacent to the pad, and the removal of additional soil along the southern property line, are not summarized in this report except when necessary to provide context for the current investigation. A detailed description of the IRM activities was provided in the Construction Completion - Interim Remedial Measure, dated May 23, 2014.

2 Background

The 5140 site is situated on 1.9 acres in a commercial and industrial area along the Utica –Yorkville city limits in the eastern portion of Oneida County (Figure 1; Sheet 2). Prominent site features are illustrated in Sheet 3 and include:

- an 18,000-square-foot concrete block and sheet metal main warehouse-style building;
- an attached 5,000-square-foot single story concrete block office building (northeast corner); and
- a 50-foot-wide by 60-foot-long elevated concrete pad formerly located at the southeast corner of the main building (the concrete pad was removed as part of the IRM; see below).

A paved entranceway and parking area are present along the east side of the property with the paved drive extending around to the southern portion of the building to what was reportedly the loading dock and rail bay. The balance of the site is covered by grass and landscaped areas.

The site is located in a light industrial and commercially-zoned area and is adjoined to the west by Meelan's Carpet One Floor & Home, a residential flooring center (Sheet 2). To the east, the site is bordered by two narrow (approximately 50 feet wide) strips of vacant land owned by DI Highway Sign & Structure, Inc., (directly adjacent) and the 5150 Corporation (further east), and beyond those properties, by Yorkville Battery, a discount battery retailer. The site is abutted to the south³ and southwest by O.W. Hubbell & Sons, Inc., a metal galvanizer, and by DI Highway Sign & Structure. Portions of the Hubbell property also extend to the northwest fronting on commercial drive directly west of Meelan's Carpet. The site is bounded to the north by Commercial Drive and Route 5A and further to the north by Harbor Freight & Tools, a discount tool retailer. Sauquoit Creek, the nearest water body to the site, adjoins the Harbor Freight property to the north and west.

2.1 Development and Operational History

The site was originally constructed in 1957 for Westinghouse Electric Corporation for use as an electrical equipment repair facility. No first-hand information regarding the operations at the facility was available at the time of this report; however, a number of site plans were recovered from the current owner showing the general layout of the facility during Westinghouse's tenure. The majority of the operations appear to be associated with repairing, winding, and assembling coils for electrical transformers and other electrical equipment, most of which was performed in the northern and central portions of the production area of the building. The historical drawings also indicate testing facilities, a varnish and dip line, and two steam cleaning stations near sump pits 1 and 2 (Sheet 3). Other prominent internal features include a rail bay in the southwest corner of the facility (the spur from which formerly connected to the railroad tracks south of the site); above grade overhead doors, presumably used as shipping and receiving docks, along the south and east walls of the facility; and a 15-foot-deep transformer detanking pit. The detanking pit was equipped with an oil water separator and appears to have been connected (via buried pipelines) to three aboveground storage tanks (ASTs), two 6,000-gallon tanks used to store used or recycled transformer oil, and one 15,000-gallon tank used to store virgin transformer oil, that were formerly located south of the main building. The portion of the property where the tanks were formerly located was sold to the adjacent landowner, O.W. Hubbell & Sons, sometime before 2000.

Westinghouse operated at the facility for 29 years, after which it was sold in 1986 to Eastern Electric Apparatus Repair Company. Eastern Apparatus repaired electric motors at the facility for 12 years selling the site to the Grand Eagle Motor Repair Company in 1998, who then sold the property 4 years later to 5140 Commercial Drive, LLC. K.J. Electric operated at the property from 2002 through 2009 for electric motor repairs. No additional information was available regarding the specific operations at the facility during these years.

³ The property south of the site includes an unnamed 60-foot-wide parcel that was originally part of the 5140 Site, but was later sold to O. W. Hubbell & Sons, Inc.

Both the production and office space have been vacant since 2009. The property is currently under contract for sale to a light industrial company, who intends to use the site for warehousing and assembly operations.

2.2 Previous Investigations and Remediation

The 5140 site has been the subject of several environmental investigations focused on PCBs that date back to the mid-1990s, including:

- a 1995 Phase I Environmental Assessment performed by GaiaTech, Inc., of Chicago, Illinois (1995 Phase I);
- a 2010 Phase I Environmental Assessment by Sanborn, Head, & Associates (SHA) of Concord, New Hampshire (2010 Phase I);
- a 2010 Phase II Environmental site Investigation conducted by Geoscience Technical Services, Inc., of Clinton, New York (2010 Phase II); and
- a 2011 expanded Phase II investigation performed by the Palmerton Group, of East Syracuse, New York (2011 Phase II).

GaiaTech's initial evaluation identified PCBs as a potential concern at the site and, during a limited follow-up investigation south of the main building, confirmed that PCBs were present in four soil samples⁴ at concentrations ranging from 9 to 148 milligrams per kilogram (mg/kg) and in several wipe samples collected from the facility floor and other surfaces in the main building at concentrations between 19 and 162 micrograms per square centimeter (µg/cm²). The report also indicated that "a (PCB) cleanup had been performed at the site but no documentation was found" and that the site had reportedly been listed under the NYSDEC's inactive hazardous waste program for "suspected PCB contamination" in1986. However, neither GaiaTech nor successive investigators (including WSP) were able to confirm the NYSDEC listing. GaiaTech speculated that the PCB cleanup may have resolved the listing.

As part of a potential sale of the property, SHA performed the 2010 Phase I and Geoscience performed the subsequent 2010 Phase II. The 2010 Phase I indicated that the adjacent property owner, O.W. Hubbell & Sons, Inc., performed a remedial action in 2000 to address "widespread PCB contamination" on a narrow strip of land along the southern property line that was formerly part of the 5140 site. Hubbell reported that 232 tons⁵ of affected soil was removed from the purchased parcel and shipped offsite as hazardous waste for disposal at a permitted disposal facility.

The follow-up Geoscience Phase II investigation performed later that year confirmed PCBs were present in the soil in the southern portion of the site. The investigation included the installation of nine shallow (1.5 feet below ground surface [bgs]) soil borings, designated B-1 through B-9, south and east of the main building (Sheet 4). The highest concentrations of PCBs, up to 2,930 mg/kg, were detected in soil samples collected directly north and south of the concrete pad where evidence of a surface release (i.e., staining) was noted in recovered soil. Significantly lower concentrations of PCBs, up to 13 mg/kg, were detected in samples south of the main building (including areas adjacent to the former AST pipes) with only trace PCB concentrations detected in samples collected from locations east of the main building.

Geoscience's investigation also included the installation of four 1-inch-diameter shallow (15 feet bgs) groundwater monitoring wells: two along the southern property line (designated MW-1 and MW-2) and two along the northern property line (designated MW-3 and MW-4; Sheet 4). Purge water collected from one of the two southern wells reportedly contained evidence of petroleum (oil as a separate phase visible in the purge water) and one PCB

 ⁴ The results of the soil and wipe sampling conducted during the Gaia Tech investigation were reported in Appendix A of the Soil Excavation Work Plan, dated August 1, 2011, prepared by the Palmerton Group. The actual sample locations were not surveyed (the positions were shown in a hand sketch only) and, thus, are not shown on maps prepared for this report.
 ⁵ WSP reviewed the NYSDEC's Hazardous Waste Manifest Database and confirmed that, in 2000, O.W. Hubbell shipped 210,279 kilograms (232 tons) of soil classified as B007 – Other PCB wastes, including contaminated soil, solids, sludge, clothing, rags, and dredge material.

congener, Aroclor 1260, was detected at 141 micrograms per liter (µg/l) in a groundwater sample collected from well MW-2 (these results are considered a false positive; see WSP's *Additional Investigation Report* for additional information). No information was available on the sampling methodology or the groundwater flow direction.

The Phase II work performed by the Palmerton Group in March and September 2011 expanded on the 2010 Phase II results revealing PCB-affected soil in the subsurface directly adjacent the concrete pad. Sixteen soil borings⁶, designated GP-1 though GP-16, were installed to depths of up to 4 feet bgs north and south of the pad to delineate the extent of PCBs over the 25 mg/kg standard⁷ used for screening (Sheet 4). The sampling data showed total PCB concentrations in soil as high as 2,100 mg/kg near the south side of the pad. The results suggested that the extent of the impact was defined.

The Palmerton Group also collected a series of wipe samples within the main building to verify the interior surface sampling results reported during the previous investigations. The samples, designated Wipe 1 through Wipe 8, were collected in September from the floor and walls of sumps and pits in the facility (Sheet 3). The results confirmed concentrations of PCBs (12 to 83 μ g/100 cm²), the highest concentrations of which were found on the floor near the southeast corner of the main building.

2.2.1 Remedial Activities

In response to the wipe sample results, the Palmerton Group contacted the U.S. Environmental Protection Agency (EPA) in September 2011 and began floor remediation and encapsulation activities in accordance with EPA regulations⁸. All surfaces where surface staining was observed were scraped clean of debris and double-washed using the PCB clean-up solvent CAPSUR[®]. The building floor and the floor and walls of the cleaned pits and sumps were then encapsulated with two coats of contrasting color (red, then grey) Sikgard-62[®] solvent-free, solvent-resistant epoxy. A total of 17,628 square feet of the main building was cleaned and encapsulated. No evidence of a release to the environment was noted during the cleanup activities.

The Palmerton Group also performed a remedial soil excavation north and south of the concrete pad in 2011 to address the affected soils detected during the earlier investigations (Sheet 4). Although delineation was deemed complete following the extensive soil boring program completed in March, visibly-stained soil was discovered during the excavations that locally extended below 4 feet bgs. The stained area reportedly was restricted to relatively narrow (up to 3-feet wide) bands of soil directly adjacent to the north and south sidewalls of the pad. Additional PCB-affected soil was removed from both the northern and southern excavations, which eventually exposed the footers of the concrete pad at approximately 5.5 feet bgs. Confirmation soil samples collected from the floor of the excavations, and test pits subsequently excavated adjacent to the north and south sides of the pad, indicated that soils containing concentrations as high as 5,800 mg/kg were still present at depths of 6 to 8 feet bgs. The PCB-affected soils were left in place due to concerns about the structural integrity of the pad and the adjacent building foundations. These affected soils were the subject of the IRM activities.

2.2.2 Follow-up Investigation

The results of the 2010 and 2011 investigations and remedial work performed by SHA and the Palmerton Group indicated that PCBs remained a potential environmental concern east of the main building near the concrete pad. Soil containing PCB concentrations above the screening level were left in place around the footprint of the pad due

⁸ As defined in Continued Use of Porous Surfaces Contaminated with PCBs Regulated for Disposal by Spills of Liquid PCBs (40 Code of Federal Regulations 761.30(p) and Subpart S.

⁶ The locations of soil borings GP-1 through GP-16, most of which were within the subsequent remedial excavation bounds, were omitted from Sheet 4 for clarity. The test pit results performed during the remedial activities, and the follow-up soil investigation activities performed in 2012 are presented on the drawing. Additional information on the location of borings GP-1 through GP-16 is presented in *the Additional Investigation Report*.

⁷ The restricted use soil cleanup objectives (SCOs) contained in Title 6 of New York Codes, Rules, and Regulations (6 New York Codes, Rules, and Regulations [NYCRR]), Part 375, Table 375-6.8(b) was selected by Palmerton based on the intended future use of the property.

to structural concerns and, because of the way the investigation and remedial excavation unfolded, the residual soils were undefined both horizontally and vertically (i.e., the excavation and test pits depths of 5.5 feet and 8 feet bgs exceeded the depth of the surrounding delineation points at 4 feet bgs). Moreover, the pre-excavation sampling did not evaluate the soils beneath or directly east of the pad, or characterize the soil berms along the southern portion of the property.

To address these data gaps, WSP conducted a series of investigations at the site in the summer and fall of 2012 designed to complete the PCB delineation around the concrete pad, characterize the soil berm along the southern property line (identified as a potential concern by the owner), and assess the potential impacts to groundwater. The concrete pad investigation included the installation of 20 direct-push soil borings, designated SB-1 through SB-20, directly north and south of the pad where the highest concentrations of PCBs were detected, in the area directly east of the pad, and beneath the pad itself (Sheet 4). The results showed that the residual PCBs detected in soil at the base of the former remedial excavations near the pad were confined to a discrete interval within the soil profile (above the water table) and did not extend horizontally beyond the bounds of the excavation. These data were used to develop the IRM, which was designed to remove the remaining PCB-affected soil for offsite disposal.

The soil berm evaluation included the installation of four hand auger borings (HA-1 through HA-4) along the southern property line (Sheet 4). The sample locations were positioned near the top of the triangular-shaped piles at roughly equidistant points along the long axis of the berm. The results of the investigation indicated only trace levels to moderate levels of PCBs below the 25 mg/kg industrial use SCO used for the pad excavation work. The soil piles were removed from the site for offsite disposal as part of the IRM activities.

The groundwater investigation was performed in two phases. The first phase included an inspection of the existing groundwater monitoring wells (designated MW-1 through MW-4) installed by Geoscience in 2010 to verify their integrity and potential usefulness for assessing the water quality at the site (Sheet 4). The inspection results suggested that the wells were sufficient for determining the depth to groundwater, but were otherwise in poor condition (the annular space on one well, for example, was open to the surface). Moreover, the wells were not well positioned to evaluate the groundwater conditions near concrete pad area where a release was known to have occurred. These wells were surveyed and gauged using an interface meter (to determine if light non-aqueous phase liquid [LNAPL] was present) and subsequently abandoned. The results of the gauging indicated a generally southwest to northeast groundwater flow direction. No LNAPL was detected.

To evaluate the groundwater quality at the site, WSP installed four additional groundwater monitoring wells, designated MW-5 through MW-8 (Sheet 4). Two of the wells were installed directly adjacent to the remedial excavation bounds north (MW-5)⁹ and south (MW-6) of the concrete pad with a third well (MW-7) installed northeast of the pad to evaluate the downgradient water quality. The remaining well, MW-8, was installed adjacent to former well MW-2 to monitor for the potential presence of LNAPL and dissolved PCBs reported during the earlier investigations. Samples for the analysis of PCBs were collected from each of the new wells using low flow sampling techniques. The results of the investigation did not reveal evidence of LNAPL in any of the wells, including MW-8. The analytical results indicated no dissolved concentrations of PCBs were present in any of the well samples collected from the site.

⁹ Monitoring well MW-5, which was damaged during the IRM activities, was replaced as part of the scope of work for this investigation. See below.

3 Approach and Investigations

The results of the investigation and remedial activities performed at the site through 2012 indicated that the area around the concrete pad, and, to a lesser degree, the soil piles along the southern property line, were the only remaining environmental concerns at the site. Concentrations of PCBs in soil adjacent to the pad were two orders of magnitude above the industrial land use SCO of 25 mg/kg and, although they appeared to be restricted to a discrete interval in the soil profile above the water table, represented a potential source of PCBs to the underlying groundwater. The soil berms, although they contained concentrations below the industrial land use SCO, were a potential direct exposure risk and, because they encroached into the operational areas, were identified as an impediment to the redevelopment of the site.

The balance of the investigation data showed that the PCB impact to soil in areas outside of these two portions of the site was limited or otherwise mitigated. Samples collected from shallow soil borings installed south of the main building (i.e., outside the remedial excavation bounds) and east of the main building, for example, contained only trace to moderate (up to 13 mg/kg) concentrations of PCBs below the industrial land use SCO. The groundwater investigations indicated that there was no LNAPL or dissolved concentrations of PCBs and, while there were relatively low concentrations of PCBs on the concrete within the main building around the pits, these surface stains were removed and the entire floor was cleaned and encapsulated with epoxy coatings.

Based on these data, WSP proposed a remedial excavation of the residual PCB-affected soil adjacent to the concrete pad and removal of the soil piles along the southern property line. These activities, which were proposed as the final remedy for the site, were outlined under the direct-to-remediation approach in the March 2013 BCP application for the site. The Departments, during their review of the application, agreed with the proposed remedial approach, but only as an IRM and not as the final remedy. WSP implemented the IRM in February and March 2014 removing¹⁰ the concrete pad, southern berm, and select soils along the southern property line.

The Departments also requested that additional investigation activities be performed to complete the characterization in portions of the site outside of the concrete pad and soil berm areas. These activities, which were outlined in a letter¹¹ to 5140, dated July 22, 2013, and later discussed in a post-application meeting¹² in the NYSDEC's office in Albany, NY, included:

- Additional soil sampling around the exterior of the main building, including the analysis of other parameters in addition to PCBs
- An evaluation of the soil quality beneath the building
- Additional groundwater investigation, including the installation of additional wells and sampling of the new and existing wells
- A determination as to whether soil vapor intrusion is a concern at the site
- An evaluation of floor drains, sumps, utilities, and other subsurface structures within the building to determine the flow paths and drainage points (including sediment sampling, if necessary)
- An evaluation of the storm water drainage at the facility (including sediment sampling, if necessary)

¹² WSP and representatives from 5140 met with the NYSDEC at their headquarters in Albany, New York, on July 31, 2013, to discuss the application and the BCP process.

¹⁰ Approximately 829 tons of non-hazardous PCB-affected soil and 944 tons of Toxic Substances Control Act hazardous waste, including portions of the concrete pad itself, were excavated and removed for offsite disposal. See the *Construction Completion* - *Interim Remedial Measure* for additional information on the scope and extent of remedial activities performed during the IRM.

¹¹ The additional investigation activities requested by the Departments were reiterated in a second letter from the NYSDEC to 5140, dated September 12, 2013, which memorialized the subsequent meeting with the NYSDEC on July 31, 2013. There were no changes in the requested scope of work for the RI in the September 12 letter.

A visual inspection¹³ of the interior surfaces (floors, walls, railings, etc.) to identify stained areas where PCBs may potentially be present

The specific scope of work developed to address these requests and the investigation results are presented below.

3.1 Additional Soil Investigation

The additional soil quality evaluation included a request to conduct soil sampling both around and beneath the main building. For the exterior sample locations, the Departments requested sampling at two different depth intervals, 0 to 2 inches bgs and 0 to 12 inches bgs, in all compass directions around the main building. The request was designed to assess the potential for direct contact exposure to PCBs in the surface soils (i.e., 0 to 2 inches) and determine if the existing soil cover meets the applicable industrial land use SCO (for PCBs) discussed in the BCP application. For the interior sample locations, the Department requested that a sampling grid be established within the former production areas of the facility. The grid was to be weighted such that the highest density of borings were positioned near areas within the facility where releases were known (i.e., near the former concrete pad) or were more likely to have occurred (i.e., near sumps, pits, pipes, etc.). The Departments also requested that select samples from both the interior and exterior investigations be analyzed for other potential compounds of concern, in addition to PCBs, including volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, and metals.

To address these requests, WSP drilled and sampled 28 soil borings, designated SB-21 through SB-48, at select locations around the perimeter of (borings SB-21 through SB-33) and within (SB-34 through SB-48) the main building (Sheet 5). Exterior soil borings SB-21 through SB-23 were installed west of the main building to assess the soil quality between the facility and the adjacent Meelan's flooring center. Four additional exterior borings, SB-24 through SB-27, were installed in the landscaped areas north (SB-24 and SB-25) and east (SB-26 and SB-27) of the main building to evaluate the soils south of Commercial Drive and west of the paved entrance driveway, respectively. The balance¹⁴ of the exterior soil borings were installed south of the main building and were positioned to assess the soils south of the former rail bay (SB-29 and SB-30), the area near the former AST piping (SB-28 and SB-31), and the areas south of the former concrete pad area (SB-32 and SB-33). All of the soil samples were submitted for analysis of PCBs with borings SB-22, SB-25, SB-27, SB-28, SB-30, and SB-32 sampled for the additional compounds (VOCs, SVOCs, pesticides and metals) requested by the Departments.

The interior borings were installed in a split-density grid positioned within the former production areas of the facility. Borings SB-34 through SB-38 were installed in a relatively low density sampling grid to evaluate the northern and central areas of the production floor (Sheet 5). These areas of the facility were used for assembly and electrical equipment repair and do not include any sumps, pits, or other openings in the concrete floor that may have acted as a conduit to the subsurface. All of the borings within this portion of the sampling grid were sampled in the 0 to 2foot-deep interval (i.e., directly below the concrete floor) and from the 2-foot-thick depth interval directly above the water table (i.e., 13 to 15 feet bgs). The deeper samples were placed on hold with the analytical laboratory pending¹⁵ the results of the shallow samples unless visible staining is observed. WSP did not observe any significant staining during the drilling activities.

¹³ WSP, based on a follow-up phone call with Mr. Paul Patel of the NYSDEC on May 30, 2014, understands that the visual inspection requested is for siting the subsurface soil borings and not part of an investigation of the surfaces themselves. The building surfaces were addressed by the previous investigation and remediation (floor cleaning and encapsulation) activities performed at the site.

¹⁴ No additional borings were installed near the former concrete pad or along the southern property line (i.e., where the soil berm was formerly located). These areas of the site were the subject of extensive investigation and a high-density confirmation sampling program as part of the IRM activities. A detailed description of the confirmation sampling results is presented in the *Construction Completion Report – Interim Remedial Measure*.

¹⁵ No significant staining was observed during the drilling activities and none of the analytical results were sufficiently elevated to warrant the release of the deeper samples; however, due to a laboratory error, deep samples collected for VOC analysis were inadvertently analyzed. The data from these samples are included in the discussion of the analytical results below.

Borings SB-39 through SB-48 were installed in a somewhat higher density sampling grid to evaluate the soil near a number of subgrade structures and other areas of potential concern in the southern portion of the building. Boring SB-39, for example, was installed along the western wall of the building adjacent to sump pit #1, a four-foot-deep sump formerly used to capture fluids below a steam cleaning station. Likewise, borings SB-40, SB-41, and SB-42 were drilled in the eastern portion of the building to delineate the residual PCBs¹⁶ detected in samples collected adjacent to the building foundation during the IRM excavation activities. The balance of the borings were drilled to evaluate soil beneath the former rail bay (SB-43 and SB-46), near the former de-tanking pit (SB-44) and the associated AST piping (SB-47), and the near the former paint storage area (SB-45) and sump pit #2 (SB-48).

All of borings within the southern portion of the building were sampled directly below the concrete floor (i.e., between 0 and 2 feet bgs) and in the 2-foot-thick interval above the water table (i.e., 13 to 15 feet or, for borings SB-43 and SB-46, which are at ground level, 10-12 feet bgs). Additional samples were collected from the 4 to 6 foot bgs depth interval to evaluate the soil near the base of the sumps (SB-39 and SB-48) or directly adjacent the buried AST piping (SB-47). All of the soil samples were analyzed for PCBs with samples from borings SB-34, SB-36, SB-37, SB-39, SB-42, SB-44, SB-46, and SB-48 analyzed for the additional compounds (VOCs, SVOCs, pesticides, and metals) requested by the Departments. The specific procedures used during the investigation are presented below.

3.1.1 Soil Sampling

The soil borings were installed by Parratt Wolff, Inc., of East Syracuse, New York, using a vehicle-mounted directpush drill rig equipped with a 4-foot-long macro-core soil sampler. The sampler was advanced from the surface to a depth of approximately 2 feet bgs for exterior borings¹⁷ and up to 15 feet bgs for interior borings. The headspace of the recovered soil cores was screened using a photoionization detector (PID) with the samples for VOC analysis being selected based on the PID results or, if present, staining or odors observed within the designated sampling intervals. If no PID readings or other obvious signs of impact were observed, the discrete samples were collected from the midpoint of the sample intervals. The balance of the soil from each sample interval was then placed in a dedicated stainless steel bowl, composited using dedicated stainless steel implements, and then placed in the appropriate laboratory-supplied containers.

The soil samples were shipped to Pace Analytical Laboratories of Schenectady, New York, for analysis of Target Compound List (TCL) VOCs by EPA Method 8260, TCL SVOCs by EPA Method 8270, TCL pesticides by EPA Method 8081, PCBs by EPA Method 8082, and Target Analyte List (TAL) metals by EPA Method 6010/7000 series, as appropriate. All of the samples were handled and shipped in accordance with WSP's SOPs. Analytical laboratory reports for the soil sampling are presented in Appendix A.

3.2 Additional Groundwater Investigation

The request for additional groundwater investigation included installing two monitoring wells at the site: one well in the northwest corner of the property to aid in assessing the groundwater flow direction at the site; and a second, deeper well to evaluate the water quality below the upper few feet of the water-bearing zone. WSP, in response, installed the two requested wells, designated MW-9 and MW-10, along with a third well, designated MW-5R, to replace monitoring well MW-5, which was damaged during the IRM activities (Sheet 6). Well MW-10 was installed in the northwest corner of the property between the main building and Commercial Drive. The well was constructed similar to the wells constructed during the 2012 follow-up investigations with the well screen installed at a depth straddling the water table. The two remaining wells, MW-5R and MW-9, were installed as a co-located well pair

¹⁷ In paved areas, the 2-foot cores were measured from the bottom of the base material beneath the asphalt surface.

¹⁶ A confirmation soil sample collected from the western limit of the IRM excavation north of the concrete pad contained total PCB concentrations of 6,500 mg/kg. The affected soil, which is directly adjacent to the main building foundation, could not be removed for offsite disposal due to structural concerns. See the *Construction Completion - Interim Remedial Measure Report* for additional information.

northeast of the former concrete pad area to assess the water quality directly downgradient of the known release near the pad. Replacement well MW-5R was built consistent with the construction as MW-5 (i.e., with the screen set to straddle the water table) with well MW-9 completed below the groundwater interface to assess the deeper water quality.

Groundwater from the three new wells (and the existing wells) was sampled in October 2014 to provide a comprehensive snapshot of the water quality over the entire site. All of the samples were collected using low flow techniques; however, technical issues during sampling led to samples from wells MW-5R and MW-7 being collected outside of the low flow purge requirements. Turbidity readings measured in the purge water from well MW-7, for example, began at a level well above those of the surrounding wells (672 nephelometric units [NTUs]) and after nearly 3 hours of purging, did not stabilize below the 10 NTU threshold. Turbidity readings during the purge of well MW-5R, in contrast, were initially within the anticipated range, but quickly dropped to 0 NTUs, which is atypical and suggested an equipment malfunction. The analytical results from these two groundwater samples, both of which were collected despite not meeting the purging criteria, contained trace levels of PCBs (See Section 4 below).

WSP believes the detections were due to relatively high levels of suspended solids (PCBs are effectively immiscible and typically sorb to colloidal material), which can yield results that are not representative of the true mobile load within the water bearing unit (i.e., the detections are likely false positives due to the high turbidity). To verify these findings, 5140 elected to collect an additional round of groundwater samples from the wells at the site. The samples were collected using the same techniques as before, but with additional procedural steps taken to ensure representativeness. This included redeveloping both well MW-7, where the high initial turbidity suggested that the initial development was incomplete, and newly-installed well MW-5R, where the turbidity measurements were suspect. The modified procedure also included using a second, independent turbidity meter to corroborate the measurements made with primary water quality meter. The wells were redeveloped on December 19, 2014, and then allowed to stand three weeks before resampling on January 12, 2015. The specific procedures used for well installation, development, and sampling activities, along with the analytical results, are presented below.

3.2.1 Monitoring Well Installation

The monitoring well borings were installed by Parratt Wolff using a drill rig equipped with 4.25-inch inside-diameter (ID) hollow-stem augers (HSAs). The boreholes were advanced from the ground surface to a depth of 20 feet bgs (about 8 feet below the water table) for wells MW-5R and MW-10, to match the construction of the existing shallow monitoring wells installed at the site in 2012, and approximately 27 feet (about 15 feet below the groundwater interface) for deeper well MW-9. Continuous soil samples were collected ahead of the HSAs using a 2-foot-long split spoon sampler to accurately identify the groundwater interface. The soil color and texture were described in the field by a WSP geologist and recorded in the field notebook. Soil boring logs¹⁸ for the monitoring well boreholes are presented in Appendix B.

Once the soil logging was complete and the HSAs had been advanced to the target depth, each borehole was converted to a groundwater monitoring well by installing 10 feet of 2-inch ID 0.010-inch continuous-wrap polyvinyl chloride (PVC) screen fitted with a section of 2-inch ID PVC riser sufficient to reach the surface. The well screens for wells MW-5R and MW-10 were positioned in the borehole at 17 and 19 feet bgs, respectively, such that several feet of the screen extended above the water table to characterize the water quality at the groundwater interface. The casing for monitoring well MW-9 was screened between approximately 17 and 27 feet bgs (i.e., below the bottom of the screen for nearby well MW-5R) to evaluate the deeper water quality. The annulus surrounding the screened interval of each well was then be backfilled with appropriately-sized clean silica filter sand to a level approximately 2 feet above the top of the screen, sealed with hydrated bentonite pellets, and completed with a flush-mounted steel protective casing. Monitoring well construction details for all site wells are included in the soil boring logs (Appendix B).

¹⁸ Wells MW-5R and MW-9 were co-located and only the soils from the installation of the deeper well (MW-9) were logged.

The wells were developed¹⁹ a minimum of 24 hours after the seal was installed using surge blocks and submersible pumps. The water column was surged until it was relatively free of sediments and field measurements of the groundwater temperature, pH, and conductivity stabilized to within 10 percent of the previous measurements. The wells were allowed to stand undisturbed for a minimum of two weeks after well development to allow for equilibration with the surrounding formation.

3.2.2 Well Gauging and Low Flow Groundwater Sampling

All six groundwater monitoring wells²⁰ at the site, including newly installed wells MW-5R, MW-9 and MW-10, were sampled during the week of October 14, 2014 and again during the week of January 12, 2015. Prior to sampling, depth-to-groundwater measurements were collected from the wells to determine the groundwater elevation and flow direction. Each well was uncapped and allowed to stand for a minimum of 15 minutes (for equilibration) and then gauged to the nearest 0.01-foot using an electronic oil-water meter (to determine if LNAPL was present at the groundwater interface).

Groundwater analytical samples were collected after completing the gauging activities. Each well was sampled using low flow sampling techniques in accordance with the EPA's Low Flow (Minimal Drawdown) Groundwater Sampling Procedures (1996). The wells were purged using submersible bladder pumps (October sampling event) or peristaltic pumps (January sampling event) with the intakes positioned near the midpoint of each screened interval. Temperature, pH, specific conductance, dissolved oxygen (DO), turbidity, oxidation-reduction potential (ORP), and drawdown were monitored using a Horiba U-52 water quality meter equipped with a flow-through cell and an electronic water-level indicator. Samples collected during the January event were also monitored with a Lamotte portable turbidity meter, which was used to verify the turbidity readings obtained from the Horiba. Water samples were collected directly from the pump after these parameters stabilized (±10-percent for temperature, DO, and ORP; ±0.1 unit for pH; ± 3-percent for specific conductance; and ±0.3 feet variance for drawdown) and the turbidity readings were less than 10 NTUs. Groundwater sampling logs are included in Appendix C.

All of the samples were labeled, packed on ice, and shipped by overnight carrier to Pace Analytical Laboratories (October 2014) or Accutest Laboratories of Marlboro, Massachusetts (January 2015), for analysis of PCBs by EPA Method 8082. All of the samples were maintained and shipped in accordance with WSP's SOPs. Analytical laboratory reports from Pace and Accutest are provided in Appendix D.

3.3 Vapor Intrusion Investigation

The vapor intrusion investigation included collecting four co-located sub-slab soil gas and indoor air samples, designated SS-01/IA-01 through SS-04/IA-04, and one ambient (outdoor) air sample, designated OA-01 (Sheet 7). Sample point SS-01/IA-01 was located in the northeast corner of the facility to characterize the sub-slab soil gas and indoor air quality in the former office space. The balance of the sample points, SS-02/IA-02 through SS-04/IA-04, were installed along a line oriented along the north-south axis of the building. These samples were used to assess the sub-slab soil gas and indoor air quality associated with the former production workspace. The final sample, OA-01, was positioned outside of the main building and will be used to evaluate potential background sources for VOCs in the outdoor air. All of the samples were collected in accordance with the NYSDOH's *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*. The specific collection methods are detailed below.

²⁰ Monitoring well MW-8 was not sampled during the January 12, 2015 sampling event. Several feet of compacted snow and ice from snow plowing activities had been piled along the southern property line preventing location of and access to the well.

¹⁹ Wells MW-5R and MW-7 were redeveloped during the week of December 19, 2014, to ensure representative sampling during the second event in January 2015.

3.3.1 Indoor Air Investigation Methods

An inspection and comprehensive building inventory of the facility was performed in advance of the sample collection in accordance with the NYSDOH's guidance and WSP's. The facility inspection was performed to assess:

- construction characteristics, such as the condition of the concrete foundation and floors (i.e., presence of cracks) and penetrations or other openings that might serve as preferential pathways for vapor intrusion;
- any recent work or maintenance to the building that may have introduced volatile chemicals (e.g., paints, cleaners); and
- mechanical equipment that can affect the pressure gradient within the building (e.g., heating, ventilation and air conditioning [HVAC] systems, fume hoods)

The building inspection did not reveal any significant cracks or other openings in the floor of the office space or the production floor, except the concrete expansion gaps and three floor drains, two in the southern portion of the building near the former rail bay and the other in the northeast corner of the production space. There are several sumps and open pits within the facility; however, all appear to be lined with concrete (Sheet 3). No pipes, cracks or other opening were observed in the walls or floors of these subsurface structures. Nearly all the concrete surfaces within the former production areas (except the walls and base of the former detanking pit) have been encapsulated using Sikgard-62® solvent-free, solvent-resistant epoxy paint (applied as part of the remediation activities in 2011). WSP did not observe any significant openings to the outside, except the normal gaps between overhead doors and other points of access. Heat for the facility's office was supplied by a small furnace/boiler (office space) and by ceiling-mounted natural gas heaters (production space). The heaters were not operating during the sampling event.

WSP did not find any materials within the facility that could introduce volatile chemicals to the indoor air. The building has been vacant for several years an all of the equipment and office supplies have been removed from the premises. A copy of the building inspection and inventory form is included in Appendix E.

3.3.1.1 Probe Installation and Vapor Sample Collection

The sub-slab soil gas samples were collected at each of the locations using a probe constructed of 3/8-inch outside-diameter Teflon®-lined tubing, a silicone rubber stopper with a 3/8-inch ID perforation, and a seal consisting of a non-shrinking, non-volatile modeling clay. The probe was installed using an electric hammer drill to create a 1-inch-deep outer hole for the stopper and a 3/8-inch inner hole drilled through the remainder of the slab. A 3-foot-long section of the Teflon®-lined tubing was inserted into the stopper perforation and the assembly was installed in the drilled hole such that the tubing did not extend below the base of the slab (to prevent the tubing from being plugged). The stopper and tube assembly were sealed in the floor using modeling clay and the tube end temporarily clamped to prevent soil gas from entering the building.

Prior to sampling, a quality assurance/quality control tightness test was performed at each location to evaluate the integrity of the sub-slab soil gas sample point seals and ensure that the samples were not diluted by indoor air. A laboratory-supplied 18-inch-diameter stainless-steel dome equipped with two stainless-steel quick-lock fittings was placed over the sub-slab sample point. The Teflon®-lined tubing used for the sample point was fitted to the one of the quick-lock connectors on the inside of the dome allowing monitoring of the sub-slab soil gas outside of the dome using a laboratory-supplied electronic helium detector (a Restek-brand Electronic Leak Detector) and a short length of Teflon®-lined tubing. After the monitoring equipment was in place, the dome was charged with helium via the second quick-lock connector. The sample point was monitored for a period of 2 minutes to verify that the system was not short-circuiting to the helium atmosphere above the concrete slab. Results for the tracer gas testing were recorded in the field notebook. No short-circuiting was detecting during the sampling event.

All of the analytical vapor samples were collected using evacuated 1-liter Entech Instruments, Inc., canisters fitted with a dedicated flow controller that was preset by the laboratory to collect the soil gas sample over 8 hours. Subslab soil gas sample points were purged prior to sampling using a hand pump to remove dilution air. The purge removed one to three probe volumes of air from the line at a rate not exceeding 0.2 liter per minute. Purged vapor from the sub-slab samples was contained in Tedlar® bags to prevent the release of sub-slab soil gas into the indoor airspace. At the completion of the 8-hour period, the canister and controller were disconnected; the sample name, location, time and date of sample collection, sample regulator and canister number, and the analytical method were recorded on the chain-of-custody form and in the field logbook; and the sampling probe for the sub-slab soil gas samples was removed from the concrete floor. The sub-slab boreholes were later repaired with quickset concrete.

The sub-slab gas samples were transported by a courier under ambient conditions to Centek Laboratories, LLC, of Syracuse, New York. The samples were analyzed for VOCs by EPA Method TO-15 with a minimum detection limit of 0.25 microgram per cubic meter (μ g/m³) for trichloroethene and 1 μ g/m³ for all other VOCs. Analytical laboratory reports for the sub-slab sampling are presented in Appendix F.

3.4 Utility and Storm Water Drainage Assessment

WSP, in response to the Departments' request to evaluate the floor drains, sumps, utilities, and other subsurface structures within the facility, and the storm water drainage systems outside of the main building, performed a comprehensive contaminant migration pathway analysis of the site. The analysis included:

- a review of historical Sanborn fire insurance maps, topographic maps, and aerial photographs, which were
 used to track the site over time and identify outdoor features and activities (e.g., as tanks or storage areas) and
 potentially-important pre-existing natural drainage patterns
- a review of blueprints, as-built diagrams, and site plans recovered from the facility to identify sewers, drains, and other subsurface drainage structures
- a reconnaissance visit to verify the locations of manholes, floor drains, outfalls, and other drainage structures (including drainage ditches) identified at the site
- discussions and an onsite visit with the local department of public works personnel regarding the current and historical drainage systems, including the municipal storm and sanitary sewers
- a review of federal and state regulatory databases searches provided by Environmental Data Resources, Inc. (EDR) to look for discharge permits or notices of violation for accidental discharges of wastewater or other materials to the municipal systems

The purpose of the analysis was to identify (and sample, if necessary) any potential preferential pathways for constituents of concern (primarily PCBs) released via documented spills or poor housekeeping to be transported to offsite receptors. The historical documents and database review was performed concurrent with soil investigation activities with the onsite reconnaissance performed during the second (groundwater and vapor) sampling event. WSP also met with Mr. Sal Granado, the Whitestown Department of Public Works Superintendent, on November 4, 2014, to survey the storm and sanitary drainage systems leading from the site. Copies of the EDR database (including the aerial photographs, Sanborn and topographic maps) are included in Appendix G.

The results of the analysis were submitted to the Departments on November 25, 2014, in an informal (email-based) interim report. The report detailed the preliminary findings and the recommendations for additional soil sampling. The information presented in the interim report and the approved²¹ approach for additional soil sampling are presented below. The results of the soil sampling are presented in the rest of the analytical data in Section 4 of this report.

²¹ The NYSDEC and NYSDOH conditionally approved the sampling approach outlined in the November 25, 2014, interim report, provided that 5140 also sample the dry well at the northeast corner of the site, which was not included in WSP's original scope of work. The dry well was included in the final sampling scheme detailed below. A copy of the interim report and the conditional approval, dated December 5, 2014, are included in Appendix H.

3.4.1 Interim Findings

The review of historical aerial photographs and maps confirmed the history and development previously reported for the site. The 5140 site is situated in the Sauquoit Creek Valley directly south of the creek's confluence with the Mohawk River (Figure 1). The local relief at the site is nearly flat with a gentle slope to the north towards the Mohawk River parallel to the creek. Comparisons between the pre- and post-construction topography are consistent, with the majority of the site falling between 422 and 420 feet above mean sea level (amsl). WSP did not observe any evidence of significant reworking of the site, beyond the typical grading that would occur during construction. Aerial photographs and the historical topographic maps indicate that the site was, prior to 1949, adjacent a reservoir (located on what is now the Hubbell Galvanizing property), which used to power nearby mills; however, the review did not reveal any evidence of canals or natural drainage features (streams, creeks, etc.) that could act as preferential pathways for contaminant migration.

3.4.1.1 Onsite Utilities

A review of the 1957 building blueprints and as-built drawings identified the presence of a single, graduated 4 to 6inch diameter cast iron sanitary sewer trunk line underlying the building; the line is parallel to the long (north-south) axis of the main building (Sheet 8). Sanitary water from the office area and from one floor drain in the southern portion of the building (described below) discharge to the trunk line (via secondary pipes²²) flowing beneath the north wall of the main building and eventually draining into the municipal sewer line below Commercial Drive. WSP was able to confirm the location of the sewer line within the main building (by tracing the clean-outs inside the building and via a private utility locator outside of the structure) and verify the location of the municipal sewer beneath Commercial Drive. According to Mr. Granado, the sanitary water within the municipal sewer flows east eventually discharging to the Utica area publically-owned treatment works (POTW). A review of the environmental databases for the site did not reveal any accidental discharges to the sanitary sewer system.

The facility drawings review identified four floor drains in the former production space. Open (active) floor drains were noted in the former rail bay in the southwest corner of the building and along the south wall of the facility (Sheet 8). Both drains, based on facility blueprints and the site reconnaissance, appear to drain to the sanitary sewer. A third drain is shown on facility drawings within the former paint storage room directly adjacent to the former concrete pad area. WSP inspected the room and found that the drain had been sealed and subsequently coated with epoxy. The pipe leading from this drain, which passed beneath the former concrete pad and discharged to the ground surface, was removed as part of the IRM activities. The remaining floor drain is located in the northwest corner of the production space near the areas formerly used for assembly and electrical equipment repair. The facility blueprints showed that the drain is not connected to the sanitary sewer, but instead drains directly to the ground surface via a pipe that passes through the eastern foundation wall. WSP was able to locate the pipe during the site reconnaissance. No additional drains were noted in any of the subgrade sumps or pits within the production space of the main building

3.4.1.2 Exterior Drainage

The pre-construction drawings reviewed for the contaminant migration pathway analysis suggested that storm water at the site was intended to be partially managed through a series of four dry wells (infiltration basins). Three of the basins were mapped along the western property line with the remaining basin mapped in the landscaped area southeast of the facility offices (Sheet 8). All four of the infiltration basins were depicted as approximately 36-inch-wide vertical pipes covered with steel manhole covers. Piping diagrams indicate that water collected on the roof of the facility was to be directed to the infiltration basins via a series of downspouts along the interior walls of the building. WSP was able to identify the vertical downspouts for the roof drains on the interior of the building; however, none of the infiltration basins, including the one mapped within the landscaped area near the facility

²² Secondary sanitary sewer pipe lines, such as those leading from the restrooms within the office space, are not shown on Sheet 8, for clarity.

offices, could be located. WSP believes that the dry wells were planned, but ultimately not installed as part of the facility construction in 1957.

The balance of the exterior storm water is managed via overland flow: no storm sewers were located onsite. Runoff water north and west of the main building (including that from the roof) drains to the northwest corner of the site via a shallow drainage swale along the western property line and a sloped landscaped area north of the building (Sheet 8). The storm water eventually flows to a municipal storm sewer drain present in the right-of-way just near the northwest corner of the site. WSP, with the help of Mr. Granado, was able to trace the flow path of storm water entering the drain to a discharge point on Sauquoit Creek northeast of the site. The storm sewer was not dedicated to the 5140 site: the drain at the northwest corner of the site receives storm water from properties to the west, including Hubbell Galvanizing (via a direct line to the drain), and, through a series of other drains, water from Harbor Freight and runoff from Commercial Drive itself.

Runoff south of the building appears to pool (and infiltrate) along the southern property line or flow north along the paved surfaces (along with runoff from the east side of the main building) toward the northwest corner of the site (Sheet 8). During the site visit with Mr. Granado, a previously unknown subsurface drainage structure was identified at the northeast corner of the 5140 property. The structure, which consisted of a 24-inch iron storm water grate fitted to a 36-inch diameter concrete collar, was partially covered with leaves and other debris obscuring it from view during the earlier reconnaissance visit. An inspection of the structure revealed that the collar extended at least 6 feet bgs, did not contain any pipe penetrations (i.e., it was not connected to the nearby storm sewer system along Commercial Avenue), and, because it was bottomless, appeared to function as a dry well or infiltration basin. WSP believes, based on the onsite drainage pattern, that the dry well receives runoff from the southern and eastern portions of the site.

3.4.1.3 Sampling Approach and Methods

WSP, based on the results of the contaminant migration analysis, collected soil samples from two locations, designated SB-50 and SB-51 (Sheet 8). Soil boring SB-50 was drilled adjacent the main building to assess the soil directly beneath the floor drain outfall. The soil was sampled at the same depth intervals (0 to 2 inches and 0 to 12 inches bgs) and using the same equipment and techniques as those used for the soil investigation (see Section 3.1.1). Boring SB-50 was drilled through the dry well located at the northeast corner of the site to evaluate the soil at the base of the structure. The soil sampler was advanced into the base of the structure using a direct-push drill rig (operated by Parratt Wolff) with analytical samples collected from the native soil in the 0 to 2 foot depth interval (as measured from the base of the dry well below any debris that was present in the structure). Samples from both SB-50 and SB-51 were shipped to Accutest Laboratories for analysis of PCBs by EPA Method 8082. All of the samples were handled and shipped in accordance with WSP's SOPs. Analytical laboratory reports for the soil sampling are presented in Appendix A.

WSP did not sample the two additional floor drains noted in the facility. Small amounts of debris were noted beneath the floor drain covers; however, the volume is low and, given that both drain to the sanitary sewer, any compounds that were released to the drains are unlikely to have impacted the 5140 site or the surrounding properties. Similarly, WSP did not sample any of the offsite storm water drainage features. There is no evidence from the historical or newly collected soil samples that significant concentrations of PCBs are present in surface soil either to the north and west of the main building (these areas were away from the onsite activities that were focused in the southeastern portion of the site) or between the impacted area (i.e., around the former concrete pad) and the northeast corner of the property. Moreover, the structures receive runoff and sediment from a number of different properties and, thus, any compounds detected could not definitively be attributed to the 5140 site.

The results of the additional soil sampling are presented in Section 4.

3.5 Quality Assurance/Quality Control Samples

Field quality assurance/quality control (QA/QC) procedures for the RI included the collection and analysis of duplicate samples, matrix spike and matrix spike duplicates (MS/MSDs), equipment rinsate blanks, and trip blanks, as follows:

- Trip blanks were collected at a rate of 1 blank per shipment containing samples for VOC analysis.
- Field blanks were collected at a rate of 1 blank per 10 samples.
- Equipment blanks were collected at a rate of 1 blank per 10 samples.
- Blind duplicates were collected at a frequency of 1 blind duplicate per 10 samples.
- MS/MSD samples were collected at a rate of 1 MS/MSD sample per 20 samples.

Data validation was performed by ECT.CON, Inc., of Palm Coast, Florida, in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines. Data validation reports are included in Appendix I.

3.6 Site Restoration and Survey

Boreholes installed at the site for soil or vapor sampling were backfilled with native soil or clean sand and the surface material restored after completing the sampling activities. All of the sample locations were marked in the field with spray paint, wooden stakes, or other appropriate means. The locations were later surveyed, along with the newly installed monitoring wells, by Richard Rybinski, of Manlius, New York, a New York-licensed land surveyor. The horizontal locations were measured to the nearest 0.1 foot relative to the New York State Plane Coordinates, North American Datum of 1983 (NAD83), and vertical elevations were measured to the nearest 0.01 foot relative to the 1929 National Geodetic Vertical Datum.

3.7 Decontamination Procedures and Investigation-Derived Wastes

All downhole and non-dedicated equipment used for the investigation was decontaminated before work began, between each borehole, and at the end of the site activities using a steam jenny, non-phosphate soap and potable water, as appropriate, or other measures in accordance with WSP's SOPs. The decontamination rinsate, and other investigation-derived wastes (e.g., soil cuttings, purge water, etc.) were placed in Department of Transportation-compliant (DOT-compliant) 55-gallon drums and moved to a designated onsite storage area for later offsite disposal in accordance with state and federal regulations.

4 Findings

The RI soil analytical results for VOCs, SVOCs, metals, and pesticides were compared to the NYSDEC's *Restricted Use Soil Cleanup Objectives* (SCOs) for an industrial setting (no recreational component). These criteria are consistent with the local zoning and the projected future land use at the site. For PCBs, 5140 elected to adopt a more stringent site-specific SCO of 10 mg/kg (total PCBs). This SCO, which was the same site-specific value selected for the IRM activities, was chosen to provide an additional level of assurance that the areas targeted for remediation meet the relevant Part 375 criteria. All of the PCB soil sample results, including those from samples collected beneath the main building, were compared to this site-specific value. The soil analytical results are presented in Tables 1 through 4.

Groundwater data collected for the RI were compared to the *New York State Ambient Water Quality Standards or Guidance Values* for Class GA groundwater provided in the *New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1)*, dated June 1998. The groundwater results are presented in Table 6. Vapor data collected for the investigation were evaluated by comparing the relevant compounds (i.e., trichloroethene [TCE] and carbon tetrachloride in Matrix 1 and tetrachloroethene [PCE] and 1,1,1-trichloroethane [1,1,1-TCA] in Matrix 2) to the NYSDOH's *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*, dated October 2006. As requested by the NYSDEC, vapor samples were analyzed for the full TO-15 list. Table 7 presents all of the compounds detected in the indoor, outdoor, and sub-slab soil gas samples.

4.1 Site Geology and Hydrogeology

WSP drilled 33 borings at the 5140 site for the RI (including the three borings that were subsequently converted to groundwater monitoring wells) to depths ranging between a few inches and 27 feet bgs. Soil descriptions from the monitoring well borings and deeper interior borings were largely consistent with the previous findings indicating that the site is underlain by sand and gravel mixtures at the surface, a silt unit that extends as deep as 8 feet bgs, and an interval of gravelly silt or sand extending to a depth of between 15 and 18 feet bgs. The silt is typically light brown to brown, moderately dense, and appears to be locally reworked at the surface, particularly in those borings installed beneath the building (the floor of the facility is elevated above the surrounding grade and contains several feet of similar material as fill). The unit grades with depth to sandy silt, typically between 4 to 6 feet bgs. The underlying sandy gravel interval typically consists of brown fine to medium-grained sand and sub-rounded gravel with varying amounts of silt. The unit is medium-dense to dense. Groundwater was encountered within this interval at depths ranging between 11 and 14 feet bgs²³. Logs for the borings and monitoring wells installed at the site are provided in Appendix B.

In two of the well borings, deeper well MW-9 and well MW-10, a relatively thin (0.5 to 2 feet) interval of grey clay was encountered between 15 and 18 feet bgs (Appendix B). The clay was massive with medium to high plasticity and was underlain by poorly-sorted sand and gravel similar to that encountered above the clay. Groundwater was present both above and below the clay interval and the clay itself was wet. The clay layer appears to be laterally discontinuous: it was not observed in other nearby deep borings, such as boring SB-17 (drilled to a depth of 17 feet bgs²⁴) or the boring for well MW-6 (drilled during the previous investigation phase to a depth of 18 feet bgs), although it may be an artifact of low recoveries during sampling. Soil boring SB-17 and two other relatively deep boreholes (i.e., MW-7, MW-8) were marked by color changes and gradational transitions (to finer fractions) in the sand or silt content at approximately the same depth interval, which may be acting (along with the intervals containing clay) as a low permeability unit. The water levels in monitoring well MW-9, which is screened below the interval, are higher than those of co-located well MW-5R, suggesting an upward gradient (i.e., the lower unit is

²⁴ Boring SB-17, installed in July 2012 as part of the additional investigations performed in advance of the BCP application, was advanced through the former concrete pad, which was elevated approximately 3 feet above the surrounding grade. See the *Additional Investigation Report* for a detailed discussion of the geologic findings.

²³ Based on observations of the soil samples made during boring installation.

partially confined); however, the data are too few to determine the full extent of the hydraulic relationship. Moreover, deeper groundwater, if it is hydraulically distinct form the upper unit, does not appear to be (based on the analytical groundwater data) relevant to the environmental investigations at the site (i.e., no PCBs were detected in groundwater samples collected from the site; see below).

4.2 Soil Analytical Results

WSP collected soil samples from locations around the perimeter of the main building, within the building itself, and from two additional areas (the floor drain discharge line and dry well) of the site. The samples were analyzed for PCBs and, in select representative borings, VOCs, SVOCs, metals, and pesticides. The soil results revealed trace concentrations of PCBs in the majority of the soil samples collected at the site; however, only one, Arochlor 1260 (12.7 to 24.1 mg/kg)²⁵, was detected at concentrations above the site-specific SCO of 10 mg/kg (Table 1). The detections occurred in the shallow (0 to 0.17 foot bgs) soil collected from just two borings, SB-29 and SB-30, both of which are located in the southwest corner of the site (Sheet 5). Soil samples collected from the deeper interval (i.e., from 0 to 1 foot) in both borings did not contain PCBs at concentrations above the site-specific SCO, indicating a limited vertical extent. WSP believes these are likely the result of poor housekeeping (small spills and drips) possibly associated with equipment and materials (including dielectric fluids) transported on the former rail spur. PCBs were not detected at concentrations above the site-specific SCO in any soil samples collected from interior borings, including those installed adjacent to the sumps and pits, or in the floor drain discharge line or dry well sample locations.

The soil samples also revealed one SVOC, benzo(a)pyrene (1840 to 3150 mg/kg), and one metal, arsenic (18.7 mg/kg), at concentrations above their respective industrial land use SCOs of 1,100 mg/kg and 16 mg/kg (Tables 2 and 3, respectively). The SVOC was detected in the samples from several exterior borings along the paved areas directly east (SB-27) and south of the main building (SB-28, SB-30, and SB-32; Sheet 5). Benzo(a)pyrene is commonly associated with the petroleum compounds in asphalt. No SVOCs were detected above the evaluation criteria in the soil samples collected from beneath the main building. The arsenic was detected in a single soil sample from interior boring SB-40 in the southeast corner of the production area. Although slightly elevated, the concentration is within the typical range of background levels for the eastern United States (Shacklette and Boerngen, 1984). No other metals were detected at concentrations above the evaluation criteria at the site.

No VOCs or pesticides were detected at concentrations above the evaluation criteria in soil samples from any of the borings at the site (Tables 4 and 1, respectively).

4.3 Groundwater Elevation Results

The October 2014 groundwater elevations ranged from 413.51 feet amsl at well MW-8 in the southeast corner of the site to 413.01 feet amsl at well MW-7 along the eastern portion of the property (Sheet 6; Table 5). These elevations are between 2.08 and 2.45 feet lower than the groundwater elevations measured during the December 2012 gauging events performed in advance of the BCP application (i.e., those reported in the Additional Investigation Report included in the BCP application). WSP believes the difference in elevation likely represents the natural variability in the groundwater table due to seasonal precipitation. The site received nearly 4 inches of precipitation in the 30 days before the 2012 event, but only 2.26 inches of precipitation in the month before the October sampling event²⁶

Despite the fluctuations, groundwater elevation contours generated from the October 2014 data (excluding deep well MW-9, discussed below) indicate that flow across the site is to the northeast towards Sauguoit Creek and the Mohawk River beyond as previously reported. The groundwater hydraulic gradient, as measured between MW-8

²⁵ Aroclor 1260 was detected at a concentration of 24.1 mg/kg in sample SB-0914A (0 to 0.17), which was a duplicate of sample SB-30 (0 to 0.17). See Table 1. ²⁶ Based on National Weather Service records for the Utica, New York, area.

and MW7, is a relatively flat 0.004 feet/feet (Sheet 6). These findings are consistent with the flow direction and hydraulic gradient measured in 2012 and are generally comparable to elevation and flow directions indicated in the historical reports.

The elevation from deep well MW-9 was measured at 413.28, which is approximately 0.21 feet higher than the elevation measured in co-located monitoring well MW-5R (Sheet 6; Table 5). The higher elevation indicates an upward vertical gradient at the site.

4.4 Groundwater Quality Results

Groundwater samples for analysis of PCBs were collected from all six monitoring wells during the first sampling event October 2014. The results revealed PCBs in samples from two of the wells: Aroclor 1260 was detected in the sample from newly-installed well MW-5R (0.346 μ g/l) and Aroclor 1254 was detected in the sample from well MW-7 (0.211 μ g/l; Sheet 6; Table 6). Both detections were above the evaluation criterion of 0.09 μ g/l for total PCBs in groundwater; however, the concentrations were likely biased high by the presence of elevated turbidity in the samples and were considered false positive detections (see Section 3.2 above). The October 2014 samples from the other wells at the site, MW-6 and MW-8 through MW-10, all of which were collected in accordance with the low flow purge protocol, did not contain PCBs above the method detection limits. The follow-up samples collected in January 2015, which had measured NTUs within the specified low flow limits, did not contain detectable levels of PCBs.

These data are significant because they demonstrate that the PCBs released to the soil near the concrete pad area, some of which had concentrations greater than 5,000 mg/kg, did not result in an impact to groundwater. Based on these findings, the likelihood of future groundwater impact from the residual PCBs in soil at the site, all of which are orders of magnitude lower, is minimal.

4.5 Vapor Sampling Results

WSP collected four co-located sub-slab soil gas and indoor air samples from within the main building and one ambient (outdoor) air sample to evaluate the potential for impacts to the indoor air quality via vapor intrusion. Although trace concentrations from a number of compounds were present in the sample results (the sample analysis included the full TO-15 list), only the four chemical compounds with criteria established by the NYSDOH, PCE, TCE, 1,1,1-TCA, and carbon tetrachloride, were evaluated for the analysis. All four chemicals were detected either in the indoor air or sub-slab soil gas; however, only one, TCE, was detected at concentrations that, when compared to decision matrix, potentially warrant further action. Co-located sub-slab and indoor air samples SS-04/IA-04 contained 5.9 and 0.27 μ g/m³, respectively, of TCE which, when evaluated together yield a recommended action of "Monitor" (Sheet 7; Table 7).

It is important to note, however, that the evaluation criteria used to evaluate these results were developed to be protective of indoor air in private residences, and, thus may be inappropriately conservative for an industrial application. Moreover, none of the other soil gas or indoor air samples contained TCE above the criteria and TCE was not detected in any of the soil samples. WSP believes these findings indicate that the vapor intrusion of TCE is not a concern at the site and that continued monitoring is not warranted.

5 Conclusions and Recommendations

The RI revealed or confirmed the following:

- The site is underlain by unconsolidated materials (sand and silt with varying amounts of gravel) that extend to a depth of at least 27 feet bgs
- No evidence of buried stream channels, canals, or other preferential pathways at the site are present at the site based on a review of historical air photographs and topographic maps
- Storm water at the site is generally managed via overland flow: no municipal storm sewers are located onsite
- The facility's sanitary sewer line consists of a single main trunk line running the length of the building; flow in the trunk line is to the north towards a municipal sewer beneath Commercial Drive
- The production area is serviced by three active (open) floor drains, two of which are connected to the sanitary sewer with the third discharging to the ground surface via a drain pipe that exits the eastern building foundation; a fourth drain was formerly located in the paint storage room, but has since been sealed from the inside and the drain pipe (which appears to have discharge to the ground surface near the former concrete pad) was removed during the IRM
- Groundwater is present beneath the site at a depth of approximately 11 feet bgs; flow is to the northeast
 parallel with the flow direction of Sauquoit Creek towards the nearby Mohawk River
- The groundwater elevation has fluctuated over at least a 2 foot interval, most likely in response to varying amounts meteoric infiltration
- An upward gradient was noted in co-located wells MW-5R and MW-9
- No significant concentrations of PCBs were detected in the soil samples collected from beneath the main building
- No significant concentrations of PCBs were detected in soil samples collected outside of the main building, except in two surface samples in the southwest corner of the site; the extent of PCBs detected in these two samples appears to be limited horizontally and vertically
- No PCBs were detected in samples collected from the dry well at the northeast corner of the property or in the soil samples collected from the area beneath the floor drain discharge line where it exits the eastern building foundation
- No VOCs or pesticides were detected in soils at concentrations above the evaluation criteria
- One SVOC, benzo(a)pyrene, was detected in several shallow soil samples at a concentration above the industrial land use SCO; however, the compound was detected only in the paved areas of the site and is likely attributable to the asphalt rather than a petroleum release at the site
- One metal, arsenic, was detected in one soil sample at a concentration slightly above the industrial land use SCO; however, the levels are low (within the range of background in the eastern United States) and likely represent the naturally-occurring arsenic at the site rather than a release attributable to the historical activities at the site
- No PCBs were detected in the representative groundwater samples collected from the site
- Trace concentrations of TCE slightly above the NYSDOH's evaluation criteria were detected in co-located subslab soil gas and indoor air from one location within the former production areas of the facility, but do not appear to represent a vapor intrusion concern at the site.

The data clearly demonstrate that PCBs remain the primary environmental issue at the site: no significant release of organic compounds or metals was detected in any of the soil samples and vapor intrusion does not appear to be

a concern. The results also indicate that the extent of PCBs remaining at the site is very limited, they have not impacted the site groundwater (including the area downgradient of where the IRM was conducted), and there is no evidence of the potential for offsite migration. WSP believes that these findings complete the requested site characterization activities and meet the goals of the RI as defined under the BCP. Specifically, the RI has:

- Defined the nature and extent of contamination
- Identified contaminant source areas; and
- Produced data of sufficient quantity and quality to support the development of the final remedy

Completion of the RI typically leads to the remedial selection process and development of a remedial action plan; however, in the case of this site, the final remedy, with the exception of the recommendations below, has already been completed (i.e., as the IRM). Therefore, WSP is proposing to submit a work plan for the follow-up remedial action work to address the limited extent of PCB-affected surficial soil, which will be followed by a *Remedial Action Report* (RAR) that will serve as a companion to the already completed *Construction Completion Report – Interim Remedial Measure*. The RAR will provide a summary of the IRM and detail the follow-up remedial action proposed below. WSP will also submit an *Operation, Maintenance, and Monitoring Plan* (OM&M), which will include the soil management plan for the site, if necessary.

WSP's proposed follow-up remedial action and a tentative schedule for the activities and the reports are presented below.

5.1 Recommended Follow-up Remedial Action

WSP is proposing additional remedial action to address the remaining PCB-affected soil in the southwest corner of the site. Although the horizontal and vertical extent appears to be limited, the PCBs represent a potential health concern (via direct contact) for future employees at the site. The proposed remedial action will follow the same procedures as those used for the *ad-hoc* removal of PCB-affected soils detected beneath the southern soil berm when it was removed as part of the IRM. Soil will be removed over a 10-foot by 10-foot area surrounding each boring to a depth of 1 foot bgs, followed by confirmation sampling, and additional soil removal, if necessary, until the affected soil with PCB concentrations above the site-specific SCO have been removed. All of the excavation spoils will be removed for offsite disposal in an appropriate disposal facility.

WSP is also proposing to seal the interior floor drain that discharges to the ground surface. The drain not only represents a potential conduit to the environment for fluid wastes that could be released by future users of the facility, but it may require a State Pollution Discharge Elimination Permit. Moreover, drains that daylight and discharge to the ground surface are no longer consistent with the best practices for an industrial facility. WSP is proposing to remove the floor drain grate, plug the discharge line at the inlet and outlet with hydraulic cement, and backfill the drain opening with concrete consistent with the floor of the facility.

5.2 Reporting and Schedule

WSP will submit a work plan detailing the proposed soil remediation and drain sealing activities as part of a combined alternatives analysis and remedial action work plan document. The document will include, at a minimum, the proposed excavation bounds, the soil confirmation plan, and details regarding the offsite disposal of the excavation spoils, along with the remedy selection process. WSP is targeting early summer for the follow-up remediation activities.

6 Acronyms

AST	aboveground storage tank
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
bgs	below ground surface
DO	dissolved oxygen
DOT	Department of Transportation
EPA	U.S. Environmental Protection Agency
HSA	hollow stem auger
ID	inside diameter
IRM	interim remedial measure
LNAPL	light non-aqueous phase liquid
mg/kg	milligrams per kilogram
MS/MSD	matrix spike/matrix spike duplicate
NYCRR	New York Codes, Rules, and Regulations
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OM&M	Operations, Maintenance, and Monitoring
ORP	oxygen reduction potential
PCB	polychlorinated biphenyls
PID	photoionization detector
PVC	polyvinyl chloride
QA/QC	quality assurance/quality control
RAR	Remedial Action Report
RI	remedial investigation
SCO	soil cleanup objective
SOP	standard operating procedure
SVOC	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
µg/cm ²	micrograms per square centimeter
µg/m³	micrograms per cubic meter
µg/l	micrograms per liter
VOC	volatile organic compound

7 References

Shacklette, H.T., and Boerngen, J.G., 1984, Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270; 105p.

Figures

Tables

Appendix A – Soil Analytical Data

Appendix B – Soil Boring Logs

Appendix C – Groundwater Sampling Logs

Appendix D – Groundwater Analytical Data

Appendix E – Building Inspection and Inventory Form

Appendix F – Vapor Analytical Data

Appendix G – Environmental Data Resources Database

Appendix H – Interim Contaminant Migration Pathway Analysis Report Appendix I – Data Validation Reports

WSP

11190 Sunrise Valley Drive Suite 300 Reston, VA 20191 Tel: +1 703 709 6500 Fax: +1 703 709 8505 www.wspgroup.com/usa

Soil Sampling Results - Polychlorinated Biphenyls and Pesticides 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation Criteria	SB-21 (0-0.17)	SB-21 (0-1)	SB-22 (0-0.17)	SB-22 (0-1)	SB-23 (0-0.17)	SB-23 (0-1)	SB-24 (0-0.17)	SB-0914B Duplicate	SB-24 (0-1.0)	SB-25 (0-0.17)	SB-25 (0-1.0)	SB-26 (0-0.17)
Date:	(b)	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/15/14</u>	[SB-24 (0-0.17)]	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>
PCBs (mg/kg) Aroclor 1254 Aroclor 1260 Total PCBs	- - 10	0.0736 U 0.146 J 0.146 J	0.0585 U 0.111 J 0.111 J	0.0600 U 0.081 J 0.081 J	0.0596 U 0.0596 U 0.0596 U	0.0568 U 0.0376 J 0.0376 J	0.0576 U 0.0576 U 0.0576 U	0.0634 U 0.0971 J 0.0971 J	0.0654 U 0.108 J 0.108 J	0.0561 U 0.0561 U 0.0561 U	0.0627 U 0.0773 J 0.0773 J	0.0615 U 0.0820 J 0.0820 J	0.0646 U 0.112 J 0.112 J
Pesticides (mg/kg) Hexachlorobenzene p,p'-DDD P,P'-DDT Toxaphene	12 180 94 -	NA NA NA	NA NA NA NA	0.00290 U 0.00290 U 0.00290 U 0.290 U	0.00288 U 0.00288 U 0.00288 U 0.288 U	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	0.0032 UJ 0.0032 UJ 0.0032 UJ 0.32 UJ	0.00307 UJ 0.00307 UJ 0.00307 UJ 0.307 UJ	NA NA NA NA
Sample ID (Depth): Date:	Evaluation Criteria (b)	SB-26 (0-1.0) 9/15/14	SB-27 (0-0.17) 9/15/14	SB-27 (0-1.0) 9/15/14	SB-28 (0-0.17) 9/15/14	SB-28 (0-1.0) 9/15/14	SB-29 (0-0.17) 9/15/14	SB-29 (0-1.0) 9/15/14	SB-30 (0-0.17) 9/15/14	SB-0914A (0-0.17) <u>Duplicate</u> [SB-30 (0-0.17)]	SB-30 (0-1.0) 9/15/14	SB-31 (0-0.17) 9/15/14	SB-31 (0-1.0) 9/15/14
Sample ID (Depth): Date: PCBs (mg/kg) Aroclor 1254 Aroclor 1260 Total PCBs		SB-26 (0-1.0) <u>9/15/14</u> 0.0619 U 0.0721 J 0.0721 J	SB-27 (0-0.17) <u>9/15/14</u> 0.0626 U 0.539 J 0.539 J	SB-27 (0-1.0) <u>9/15/14</u> 0.0573 U 0.0895 J 0.0895 J	SB-28 (0-0.17) <u>9/15/14</u> 0.3190 U 2.87 J 2.87 J	SB-28 (0-1.0) <u>9/15/14</u> 0.0605 U 0.154 J 0.154 J	SB-29 (0-0.17) <u>9/15/14</u> 0.5430 U 12.7 J 12.7 J	SB-29 (0-1.0) <u>9/15/14</u> 0.3190 U 6.28 J 6.28 J	SB-30 (0-0.17) <u>9/15/14</u> 0.5480 U 15.1 J 15.1 J	``	SB-30 (0-1.0) <u>9/15/14</u> 0.1710 U 2.420 J 2.420 J	SB-31 (0-0.17) <u>9/15/14</u> 0.5370 U 8.43 J 8.43 J	SB-31 (0-1.0) <u>9/15/14</u> 0.1180 U 1.28 J 1.28 J

Soil Sampling Results - Polychlorinated Biphenyls and Pesticides 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation Criteria	SB-32 (0-0.17)	SB-32 (0-1.0)	SB-33 (0-0.17")	SB-33 (0-1.0)	SB-34 (1-3)	SB-35 (1-3)	SB-36 (1-3)	SB-37 (1-3)	SB-38 (1-3)	SB-39 (1-3)	SB-40 (4-6)	SB-40 (4-6)
Date:	(b)	9/15/14	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/18/14</u>	<u>9/16/14</u>	<u>9/16/14</u>
<i>PCBs (mg/kg)</i> Aroclor 1254 Aroclor 1260 Total PCBs	- - 10	0.1030 U 1.05 J 1.05 J	0.0610 U 0.0610 U 0.0610 U	0.2500 U 3.57 J 3.57 J	0.0563 U 0.0563 U 0.0563 U	0.0656 U 0.0656 U 0.0656 U	0.0507 U 0.0507 U 0.0507 U	0.0629 U 0.063 U 0.063 U	0.0500 U 0.050 U 0.050 U	0.0511 U 0.051 U 0.051 U	0.6590 J 0.394 J 1.053 J	0.0783 U 0.078 U 0.078 U	0.0783 U 0.078 U 0.078 U
<i>Pesticides (mg/kg)</i> Hexachlorobenzene p,p'-DDD P,P'-DDT Toxaphene	12 180 94 -	0.00253 U 0.00253 U 0.00253 U 0.253 U	0.00305 U 0.00125 J 0.00305 U 0.305 U	NA NA NA NA	NA NA NA	0.0033 U 0.0033 U 0.0033 U 0.33 U	NA NA NA	0.00312 U 0.00312 U 0.00312 U 0.312 U	0.00251 U 0.00251 U 0.00251 U 0.251 U	NA NA NA NA	0.00258 U 0.00258 U 0.00258 U 0.258 U	0.00389 U 0.00328 J 0.00389 U 0.389 U	NA NA NA NA
Sample ID (Depth): Date:	Evaluation Criteria (b)	SB-41 (2-4) <u>9/16/14</u>	SB-42 (2-4) <u>9/16/14</u>	SB-43 (2-4) <u>9/18/14</u>	SB-44 (1-3) <u>9/16/14</u>	SB-44 (10-14) <u>9/16/14</u>	SB-45 (2-4) <u>9/17/14</u>	SB-45 (12-14) <u>9/17/14</u>	SB-46 (2-4) <u>9/18/14</u>	SB-47 (2-4) <u>9/17/14</u>	SB-48 (2-4) <u>9/17/14</u>	SB-48 (5-7) <u>9/17/14</u>	SB-400 (5-7) <u>Duplicate</u> [SB-48 (5-7)]
	Criteria							. ,					<u>Duplicate</u>

Soil Sampling Results - Polychlorinated Biphenyls and Pesticides 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation Criteria	SB-50(0-0.17)	SB-150 Duplicate	SB-50 (0-1.0)	SB-51 (7.5-8)
Date:	(b)	<u>12/19/14</u>	[SB-50 (017)]	<u>12/19/14</u>	<u>12/19/14</u>
PCBs (mg/kg)					
Aroclor 1254	-	0.0440 U	0.0410 U	0.0450 U	0.0370 U
Aroclor 1260	-	1.970	0.620	2.010	0.2050 J
Total PCBs	10	1.970	0.620	2.010	0.2050

a\ PCBs = polychlorinated biphenyls ; U = analyte not detected above reporting limit; NA = not analyzed;

UJ = analyte not detected above reporting limit, quantitation limit may be inaccurate or imprecise.

J = reported value may not be accurate or precise.

b\ Analytes highlighted in bold text and gray shading exceed either the site-specifc soil cleanup objective (PCBs only; see text for explanation) or the New York State Department of Environmental Conservation's Restricted Use Soil Cleanup Objectives for Industrial Settings (6 NYCRR PART 375 - Table 375-6.8(b): Restricted Use Soil Cleanup Objectives).

Soil Sampling Results - Semivolatile Organic Compounds 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation Criteria	SB-22 (0-0.17)	SB-22 (0-1)	SB-25 (0-0.17)	SB-25 (0-1.0)	SB-27 (0-0.17)	SB-27 (0-1.0)	SB-28 (0-0.17)	SB-28 (0-1.0)	SB-30 (0-0.17)	SB-0914A (0-0.17)
Date:	(b)	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/15/14</u>	<u>Duplicate</u> [SB-30 (0-0.17)]						
SVOCs (µg/kg)											
2-Methylnaphthalene	-	83 J	399 U	212 U	208 U	418 U	192 U	716 U	203 U	748 U	760 U
Cresols, M & P	1,000	405 U	799 U	424 U	417 U	837 U	383 U	1,430 U	406 U	1,500 U	1,520 U
Acenaphthene	1,000,000	378	399 U	212 U	128 J	90 J	192 U	190 J	203 U	748 UJ	194 J
Acenaphthylene	1,000,000	203 U	399 U	212 U	208 U	161 J	192 U	716 U	203 U	192 J	308 J
Anthracene	-	545	98 J	43 J	127 J	406 J	192 U	417 J	203 U	470 J	760 J
Benzo(a)anthracene	11,000	1,360	341 J	184 J	416	2,380	71 J	1,960	149 J	2,330 J	3,260
Benzo(a)pyrene	1,100	1,010	319 J	158 J	336	2,250	65 J	1,840	131 J	2,420 J	3,150
Benzo(b)fluoranthene	11,000	947	335 J	141 J	336	1,960	59 J	1,770	126 J	2,190 J	2,850
Benzo(g,h,i)perylene	1,000,000	574	214 J	97 J	177 J	1,390	39 J	1,160	84 J	1,630 J	2,110
Benzo(k)fluoranthene	110,000	1,080	314 J	147 J	324	2,370	63 J	1,590	125 J	2,150 J	3,190
bis(2-Ethylhexyl) phthalate	-	316 J	567 J	424 U	803	837 U	1,550	1,430 U	406 U	461 J	1,520 U
Benzyl butyl phthalate	-	405 U	799 U	424 U	417 U	837 U	383 U	1,430 U	406 U	316 J	317 J
Carbazole	-	455	112 J	212 U	92 J	147 J	192 U	177 J	203 U	748 U	192 J
Chrysene	110,000	1,550	448	211 J	446	2,610	80 J	2,150	167 J	2,540 J	3,520
Dibenzofuran	1,000,000	210	399 U	212 U	208 U	418 U	192 U	716 U	203 U	748 U	760 U
Di-n-butyl phthalate	-	405 U	799 U	91 J	101 J	104 J	74 J	1,430 U	91 J	1,500 U	1,520 U
Fluoranthene	1,000,000	3,270	951	347	824	3,730	128 J	3,180	239	3,630 J	5,140
Fluorene	1,000,000	336	399 U	212 U	74 J	418 U	192 U	716 U	203 U	748 UJ	760 U
Indeno(1,2,3-c,d)pyrene	11,000	558	189 J	87 J	171 J	1,230	192 U	1,090	74 J	1,510 J	1,860
Naphthalene	1,000,000	109 J	399 U	212 U	208 U	418 U	192 U	716 U	203 U	748 U	760 U
Phenanthrene	1,000,000	3,010	742	182 J	561	1,390	71 J	1,480	128 J	1,240 J	1,840
Pyrene	1,000,000	2,520	719	349	771	3,880	129 J	2,860	241	3,490 J	4,980

Soil Sampling Results - Semivolatile Organic Compounds 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation	SB-30 (0-1.0)	SB-32 (0-0.17)	SB-32 (0-1.0)	SB-34 (1-3)	SB-36 (1-3)	SB-37 (1-3)	SB-39 (1-3)
Date:	Criteria (b)	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	9/17/14	<u>9/18/14</u>
SVOCs (µg/kg)								
2-Methylnaphthalene	-	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Cresols, M & P	1,000	390 U	343 U	1,630 U	435 U	425 U	349 U	349 U
Acenaphthene	1,000,000	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Acenaphthylene	1,000,000	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Anthracene	-	93 J	172 U	639 J	217 U	213 U	175 U	175 U
Benzo(a)anthracene	11,000	364	172 U	2,590	217 U	213 U	175 U	36 J
Benzo(a)pyrene	1,100	359	172 U	2,600	217 U	213 U	175 U	175 U
Benzo(b)fluoranthene	11,000	314	172 U	2,160	217 U	213 U	175 U	175 U
Benzo(g,h,i)perylene	1,000,000	223	172 U	1,650	217 U	213 U	175 U	175 U
Benzo(k)fluoranthene	110,000	322	172 U	2,330	217 U	213 U	175 U	175 U
bis(2-Ethylhexyl) phthalate	-	390 U	343 U	1,630 U	435 U	425 U	349 U	349 U
Benzyl butyl phthalate	-	390 U	343 U	1,630 U	435 U	425 U	349 U	349 U
Carbazole	-	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Chrysene	110,000	366	172 U	2,730	217 U	213 U	175 U	175 U
Dibenzofuran	1,000,000	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Di-n-butyl phthalate	-	81 J	66 J	1,630 U	119 J	98 J	78 J	349 U
Fluoranthene	1,000,000	555	172 U	4,130	217 U	213 U	175 U	65 J
Fluorene	1,000,000	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Indeno(1,2,3-c,d)pyrene	11,000	211	172 U	1,570	217 U	213 U	175 U	175 U
Naphthalene	1,000,000	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Phenanthrene	1,000,000	191 J	172 U	1,990	217 U	213 U	175 U	40 J
Pyrene	1,000,000	578	172 U	4,150	217 U	213 U	175 U	51 J

SB-40 (4-6)	SB-41 (2-4)
<u>9/16/14</u>	<u>9/16/14</u>
266 U	241 U
531 U	483 U
266 U	241 U
65 J	241 UJ
78 J	241 U
255 J	108 J
287	94 J
261 J	109 J
201 J 221 J 247 J	72 J 97 J
531 U	483 U
531 U	483 U
266 U	241 U
384	152 J
266 U	241 U
60 J	483 U
569	230 J
266 U	241 U
169 J	65 J
266 U	241 U
430	139 J
733	247

Soil Sampling Results - Semivolatile Organic Compounds 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Sample ID (Depth): Evaluation Criteria		SB-44 (1-3)	SB-44 (10-14)	SB-46 (2-4)	SB-48 (2-4)	SB-48 (5-7)
Date:	(b)	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/18/14</u>	<u>9/17/14</u>	<u>9/17/14</u>
SVOCs (µg/kg)							
2-Methylnaphthalene	-	204 U	175 U	179 U	214 U	190 U	210 U
Cresols, M & P	1,000	408 U	349 U	359 U	428 U	380 U	43 J
Acenaphthene	1,000,000	204 U	175 U	179 U	214 U	190 U	210 U
Acenaphthylene	1,000,000	204 UJ	175 UJ	179 UJ	214 U	190 U	210 U
Anthracene	-	204 U	175 U	179 U	214 U	190 U	210 U
Benzo(a)anthracene	11,000	204 U	175 U	179 U	214 U	190 U	210 U
Benzo(a)pyrene	1,100	204 U	175 U	179 U	214 U	190 U	210 U
Benzo(b)fluoranthene	11,000	204 U	175 U	179 U	214 U	190 U	210 U
Benzo(g,h,i)perylene	1,000,000	204 U	175 U	179 U	214 U	190 U	210 U
Benzo(k)fluoranthene	110,000	204 U	175 U	179 U	214 U	190 U	210 U
bis(2-Ethylhexyl) phthalate	-	408 U	349 U	359 U	428 U	380 U	420 U
Benzyl butyl phthalate	-	408 U	349 U	359 U	428 U	380 U	420 U
Carbazole	-	204 U	175 U	179 U	214 U	190 U	210 U
Chrysene	110,000	43 J	175 U	179 U	214 U	190 U	210 U
Dibenzofuran	1,000,000	204 U	175 U	179 U	214 U	190 U	210 U
Di-n-butyl phthalate	-	408 U	349 U	43 J	428 U	380 U	123 J
Fluoranthene	1,000,000	54 J	175 U	179 U	214 U	190 U	210 U
Fluorene	1,000,000	204 U	175 U	179 U	214 U	190 U	210 U
Indeno(1,2,3-c,d)pyrene	11,000	204 U	175 U	179 U	214 U	190 U	210 U
Naphthalene	1,000,000	204 U	175 U	179 U	214 U	190 U	210 U
Phenanthrene	1,000,000	204 U	175 U	179 U	214 U	190 UJ	210 U
Pyrene	1,000,000	66 J	175 U	179 U	214 U	190 U	210 U

a\ SVOCs = Semi-volatile organic compounds; NYSDEC = New York State Department of Environmental Conservation; SCO = soil cleanup objective; U = analyte not detected above reporting limit; UJ = analyte not detected above reporting limit, quantitation limit may be inaccurate or imprecise; J = reported value may not be accurate or precise; ug/kg = micrograms per kilogram.

b\ Analytes highlighted in bold text and gray shading exceed the NYSDEC's Restricted Use Soil Cleanup Objectives for Industrial Settings (6 NYCRR PART 375 - Table 375-6.8(b): Restricted Use Soil Cleanup Objectives).

SB-400 (5-7)
Duplicate [SB-48 (5-7)]
$\begin{array}{c} 210 \ U \\ 420 \ U \\ 210 \ U \\$

Soil Sampling Results - Metals 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation Criteria	SB-22 (0-0.17)	SB-22 (0-1)	SB-25 (0-0.17)	SB-25 (0-1.0)	SB-27 (0-0.17)	SB-27 (0-1.0)	SB-28 (0-0.17)
Date:	(b)	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>
Metals (mg/kg)								
Aluminum	-	8,730 J	8,090 J	11,400	11,500	10,300	10,600	5,610
Antimony	-	0.897 J	0.640 J	0.637 UJ	0.588 UJ	0.606 UJ	0.575 UJ	2.750 UJ
Arsenic	16	12.1 J	12.1 J	10.2 J	12.0 J	8.4 J	9.4 J	6.7 J
Barium	10000	78.4	73.1	84.1	101.0	85.7	88.4	93.3
Beryllium	2700	0.470 J	0.434 J	0.583	0.607	0.548	0.546	2.200 U
Cadmium	60	1.05	0.85	0.68	0.73	0.62	0.65	0.91 J
Calcium	-	22,400	86,600	6,430	4,100	11,500	2,760	195,000
Chromium, Total	6800	25.1	17.1	17.7	15.8	15.7	13.4	17.3
Cobalt	-	7.84	6.52	9.01	9.93	8.45	8.75	6.03
Copper	10000	122	70	47	57	40	23	105
Iron	-	22,100	19,100	24,900	28,400	23,300	27,400	13,700
Lead	3900	78.0	67.6 B	33.9	29.3	32.4	16.9	22.0
Magnesium	-	4,540	4,380	3,630	3,560	3,640	2,880	6,670
Manganese	10000	813	757	824	1,380	920	1,010	308
Nickel	10000	271	91	21	19	18	16	17
Potassium	-	1,320	1,160	1,770	1,450	1,500	1,160	1,100
Selenium	6800	1.23 U	1.18 U	0.96 J	0.90 J	0.97 J	1.74	5.51 U
Silver	6800	0.862 U	0.827 U	0.892 U	0.152 J	0.849 U	0.806 U	3.850 U
Sodium	-	38.8 J	192.0	63.7 U	58.8 U	62.2	57.5 U	275.0 U
Thallium	-	0.736 J	0.819 J	1.270 U	0.779 J	0.468 J	0.616 J	5.510 U
Vanadium	-	18.6	17.5	20.7	20.8	19.6	21.7	12.2
Zinc	10000	196	116	116	100	148	84	82
Mercury	6	0.0703 J	0.0693 J	0.0916	0.0986	0.0662	0.0676	0.0735
Chromium, Hexavalent	800	1.20 U	1.22 U	13.3	12.1	12.3	11.8	1.04 U

SB-28 (0-1.0)	SB-30 (0-0.17)
<u>9/15/14</u>	<u>9/15/14</u>
11,100	2,400 J
1.120 UJ	2.770 UJ
9.8 J	3.6 J
125.0	39.0 J
0.580 J	2.220 U
1.41	2.06 J
91,600	242,000
33.8	16.9
7.60	4.51
260	71 J
24,900	8,580 J
45.1	56.2 J
6,470	5,880 J
413	368 J
19	17
1,440	763 J
1.04 J	5.54 U
1.570 U	3.880 U
169.0	277.0 U
2.240 U	5.540 U
19.1	19.5
124	1,380 J
0.2310	0.0643
1.11 U	1.12 U

Soil Sampling Results - Metals 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation	SB-0914A (0-0.17)	SB-30 (0-1.0)	SB-32 (0-0.17)	SB-32 (0-1.0)	SB-34 (1-3)	SB-36 (1-3)	SB-37 (1-3)
	Criteria	Duplicate						
Date:	(b)	[SB-30 (0-0.17)]	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>
Metals (mg/kg)								
Aluminum	-	1,460	12,200	1,450	16,200	3,170	2,800	3,870
Antimony	-	5.430 UJ	0.548 UJ	2.460 UJ	0.572 UJ	0.928 UJ	0.620 UJ	0.531 U
Arsenic	16	3.0 J	8.3 J	2.6 J	5.5 J	1.8	1.2	2.7
Barium	10000	23.7	88.1	40.0	111.0	12.7	8.7	15.5
Beryllium	2700	4.350 U	0.673	1.970 U	0.941	0.137 J	0.148 J	0.165 J
Cadmium	60	1.17 J	0.51	0.27 J	0.69	0.13 J	0.10 J	0.19 J
Calcium	-	312,000	4,190	199,000	3,670	7,190	2,880	4,910
Chromium, Total	6800	10.9	15.1	4.4	20.5	3.9	3.3	5.0
Cobalt	-	2.78 J	10.70	3.25	11.90	2.63	2.14	3.31
Copper	10000	41	29	15	30	10	6	12
Iron	-	6,120	26,100	4,160	31,900	7,520	6,260	9,850
Lead	3900	35.7	13.2	9.0	14.3	1.9	1.4	2.4
Magnesium	-	23,300	3,530	4,920	5,180	2,360	1,630	2,270
Manganese	10000	327	549	291	266	259	212	357
Nickel	10000	11	18	8	27	6	5	7
Potassium	-	543 U	1,150	730	1,530	579	522	606
Selenium	6800	10.90 U	0.68 J	4.92 U	0.83 J	1.26 U	1.24 U	1.06 U
Silver	6800	7.610 U	0.767 U	3.440 U	0.801 U	0.879 U	0.868 U	0.743 U
Sodium	-	543.0 U	67.7	246.0 U	62.5	62.8 U	62.0 U	55.7
Thallium	-	10.900 U	0.402 J	4.920 U	0.481 J	1.260 U	1.240 U	0.346 J
Vanadium	-	11.5	19.6	4.3	26.3	5.6	4.9	7.3
Zinc	10000	1,570	105	41	79	18	12	24
Mercury	6	0.0505	0.0578	0.0162 J	0.0602	0.0460 U	0.0457 U	0.0384 U
Chromium, Hexavalent	800	5.62 U	1.16 U	1.02 U	1.08 U	1.00 U	1.00 U	1.04 U

SB-39 (1-3)	SB-40 (4-6)					
<u>9/18/14</u>	<u>9/16/14</u>					
3,030 J 0.529 UJ	12,500 4.340 J					
1.9 J 12.4	18.7 J 120.0					
0.137 J	0.742					
0.14 J	12.60					
7,030 3.8	63,000 217.0					
2.57	9.72					
9	2,310					
7,130 2.0	32,600 119.0					
2,390	5,920					
253	709					
5	40					
633 1.06 U	1,870 1.79					
0.741 U	3.790					
85.7	94.3					
1.060 U	0.575 J					
5.6 17	25.1 295					
0.0370 UJ	0.3350					
1.03 U	1.30 U					

Soil Sampling Results - Metals 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation	SB-41 (2-4)	SB-42 (2-4)	SB-44 (1-3)	SB-44 (10-14)	SB-46 (2-4)	SB-48 (2-4)	SB-48 (5-7)	SB-400 (5-7)
Date:	Criteria (b)	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/18/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>Duplicate</u> [SB-48 (5-7)]
Metals (mg/kg)									
Aluminum	-	11,800	10,500	2,910	8,390	9,550	2,810	11,600	12,100
Antimony	-	3.090 J	0.614 UJ	0.532 UJ	2.630 UJ	0.641 UJ	0.542 UJ	0.884 J	1.140 UJ
Arsenic	16	14.2 J	7.9 J	1.5 J	5.7 J	8.2	1.4 J	9.6	12.0
Barium	10000	137.0	64.5	9.8	45.4	75.5	10.2	99.4	97.7
Beryllium	2700	0.605	0.471 J	0.126 J	2.110 U	0.501 J	0.115 J	0.633	0.631 J
Cadmium	60	4.62	0.68	0.09 J	0.29 J	0.55	0.14 J	1.11	1.09
Calcium	-	57,600	4,080	3,770	117,000	3,170	4,790	25,200	31,800
Chromium, Total	6800	136.0	17.9	3.4	10.4	14.1	4.1	24.9	25.7
Cobalt	-	9.11	7.77	2.36	5.74	8.31	2.29	9.35	10.10
Copper	10000	1,610	56	7	38	23	20	138	102
Iron	-	38,600	29,700	6,670	25,500	24,500	6,480	27,800	30,100
Lead	3900	84.2	10.1	1.5	5.8	9.4	12.6	26.8	26.2
Magnesium	-	5,000	4,100	1,800	15,800	3,390	1,740	4,280	4,480
Manganese	10000	1,030	781	234	801	787	218 J	671	998
Nickel	10000	26	16	5	12	17	5	21	22
Potassium	-	1,720	1,050	550	876	1,270	564 J	1,480	1,640
Selenium	6800	1.18 J	1.23 U	1.06 U	5.26 U	1.28 U	0.54 J	1.22 U	2.28 U
Silver	6800	3.870	0.860 U	0.745 U	3.680 U	0.897 U	0.759 U	0.882	1.600 U
Sodium	-	191.0	61.4 U	53.2 U	263.0 U	155.0	61.6	1920.0	1760.0
Thallium	-	0.728 J	0.459 J	1.060 U	5.260 U	0.721 J	1.080 U	0.782 J	0.992 J
Vanadium	-	22.7	20.4	5.1	16.3	17.2	5.1	20.9	22.7
Zinc	10000	261	75	14	60	70	14	108	99
Mercury	6	0.9690	0.1040	0.0426 U	0.0420 U	0.0271 J	0.0413 U	0.1520	0.1430
Chromium, Hexavalent	800	21.9 J	1.21 U	1.03 U	1.04 U	1.14 U	1.21 U	1.24 U	1.28 U

a\ NYSDEC = New York State Department of Environmental Conservation; SCO = soil cleanup objective; U = analyte not detected above reporting limit; J = estimated concentration below reporting limit; B = analyte was detected in associated method blank; D = concentration is the result of a secondary dilution analysis; NA = not analyzed; mg/kg = milligrams per kilogram.

b\ Analytes highlighted in bold text and gray shading exceed the NYSDEC's Restricted Use Soil Cleanup Objectives for Industrial Settings (6 NYCRR PART 375 - Table 375-6.8(b): Restricted Use Soil Cleanup Objectives).

Soil Sampling Results - Volatile Organic Compounds 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation Criteria	SB-22 (0-0.17)	SB-22 (0-1)	SB-25 (0-0.17)	SB-25 (0-1.0)	SB-27 (0-1.0)	SB-27 (0-0.17)	SB-28 (0-0.17)	SB-28 (0-1.0)	SB-30 (0-0.17)	SB-0914A (0-0.17) Duplicate	SB-30 (0-1.0)
Date:	(b)	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	9/15/14	<u>9/15/14</u>	<u>9/15/14</u>	[SB-30 (0-0.17)]	<u>9/15/14</u>
VOCs (µg/kg)												
1,2,4-Trichlorobenzene	-	NA	NA	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
1,2,4-Trimethylbenzene	380,000	NA	NA	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
1,3,5-Trimethylbenzene	380,000	NA	NA	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
Acetone	1,000,000	13.0 UJL	12.0 UJL	13.5 UJL	14.1 UJL	13.7 UJL	13.7 UJL	12.0 UJL	13.2 UJL	12.1 UJL	22.6 UJL	35.4 UJL
Carbon Disulfide	-	13.0 UJL	12.0 UJL	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
Chloroform	700,000	2.0 UJL	2.0 J	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
Total Xylenes (c)	1,000,000	13.0 UJL	12.0 UJL	NA	NA							
Methyl ethyl ketone	1,000,000	13.0 UJL	12.0 UJL	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
Methylene Chloride	1,000,000	13.0 UJL	12.0 UJL	13.5 UJL	14.1 UJL	13.7 UJL	13.7 UJL	12.0 UJL	13.2 UJL	12.1 UJL	22.6 UJL	35.4 UJL
Naphthalene	-	NA	NA	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
Tetrachloroethene	300,000	13.0 UJL	12.0 UJL	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
Toluene	1,000,000	13.0 UJL	12.0 UJL	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL

Sample ID (Depth):	Evaluation Criteria	SB-32 (0-0.17)	SB-32 (0-1.0)	SB-34 (1-3)	SB-34 (10-12)	SB-36 (1-3)	SB-36 (10-12)	SB-37 (1-3)	SB-37 (10-12)	SB-39 (1-3)	SB-40 (4-6)	SB-41 (2-4)
Date:	(b)	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/18/14</u>	<u>9/16/14</u>	<u>9/16/14</u>
VOCs (µg/kg)												
1,2,4-Trichlorobenzene	-	2.2 UJL	2.6 UJL	5.2 UJL	5.6 UJL	5.1 UJL	5.2 UJL	5.3 UJL	5.6 UJL	NA	8.3 UJL	6.4 UJL
1,2,4-Trimethylbenzene	380,000	2.2 UJL	3.1 JL	NA								
1,3,5-Trimethylbenzene	380,000	2.2 UJL	1.7 JL	NA								
Acetone	1,000,000	11.1 UJL	13.1 UJL	5.9 JL	6.0 JL	51.0 UJL	6.8 JL	5.5 JL	6.5 JL	10.0 UJL	83.0 J	64.0 UJL
Carbon Disulfide	-	2.2 UJL	2.6 UJL	5.2 UJL	5.6 UJL	5.1 UJL	5.2 UJL	5.3 UJL	5.6 UJL	10.0 UJL	8.3 UJL	6.4 UJL
Chloroform	700,000	2.2 UJL	2.6 UJL	5.2 UJL	5.6 UJL	5.1 UJL	5.2 UJL	5.3 UJL	5.6 UJL	10.0 UJL	8.3 UJL	6.4 UJL
Total Xylenes (c)	1,000,000	NA	NA	5.2 UJL	5.6 UJL	5.1 UJL	5.2 UJL	5.3 UJL	5.6 UJL	10.0 UJL	8.3 UJL	6.4 UJL
Methyl ethyl ketone	1,000,000	2.2 UJL	2.6 UJL	31.0 UJL	33.0 UJL	30.0 UJL	31.0 UJL	32.0 UJL	33.0 UJL	10.0 UJL	50.0 UJL	38.0 UJL
Methylene Chloride	1,000,000	11.1 UJL	13.1 UJL	5.3 UJL	5.9 UJL	5.1 UJL	5.2 UJL	5.6 UJL	6.4 UJL	10.0 UJL	15.0 UJL	11.0 UJL
Naphthalene	-	2.2 UJL	7.0 JL	NA								
Tetrachloroethene	300,000	2.2 UJL	2.6 UJL	5.2 UJL	5.6 UJL	5.1 UJL	5.2 UJL	5.3 UJL	5.6 UJL	10.0 UJL	8.3 UJL	6.4 UJL
Toluene	1,000,000	2.2 UJL	2.6 UJL	5.2 UJL	5.6 UJL	5.1 UJL	5.2 UJL	5.3 UJL	5.6 UJL	10.0 UJL	8.3 UJL	6.4 UJL

Soil Sampling Results - Volatile Organic Compounds 5140 Site Yorkville, New York (a)

Sample ID (Depth):	SB-42 (11-14)	SB-42 (2-4)	SB-44 (1-3)	SB-44 (10-14)	SB-46 (2-4)	SB-48 (2-4)	SB-48 (5-7)	SB-400 (5-7)	SB-48 (13-15)
Date:	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/18/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>Duplicate</u> [SB-48 (5-7)]	<u>9/17/2015</u>
VOCs (µg/kg)									
1,2,4-Trichlorobenzene	5.3 UJL	6.8 UJL	5.3 UJL	5.4 UJL	NA	7.6 JL	6.3 UJL	6.4 UJL	5.4 UJL
1,2,4-Trimethylbenzene	NA	NA							
1,3,5-Trimethylbenzene	NA	NA							
Acetone	7.4 J	11.0 J	53.0 UJL	54.0 UJL	12.0 UJL	7.8 JL	56.0 JL	75.0 JL	54.0 UJL
Carbon Disulfide	5.3 UJL	6.8 UJL	5.3 UJL	5.4 UJL	12.0 UJL	6.3 UJL	2.5 JL	9.1 JL	5.4 UJL
Chloroform	5.3 UJL	6.8 UJL	5.3 UJL	5.4 UJL	12.0 UJL	6.3 UJL	6.3 UJL	6.4 UJL	5.4 UJL
Total Xylenes (c)	5.3 UJL	6.8 UJL	5.3 UJL	5.4 UJL	2.0 JL	6.3 UJL	6.3 UJL	6.4 UJL	5.4 UJL
Methyl ethyl ketone	32.0 UJL	41.0 UJL	32.0 UJL	33.0 UJL	12.0 UJL	38.0 UJL	12.0 JL	38.0 UJL	33.0 UJL
Methylene Chloride	5.5 UJL	8.7 UJL	5.3 UJL	5.4 UJL	12.0 UJL	6.3 UJL	6.3 UJL	8.5 UJL	5.4 UJL
Naphthalene	NA	NA							
Tetrachloroethene	5.3 UJL	6.8 UJL	5.3 UJL	5.4 UJL	12.0 UJL	6.3 UJL	6.3 UJL	6.4 UJL	1.8 JL
Toluene	5.3 UJL	6.8 UJL	5.3 UJL	5.4 UJL	12.0 UJL	2.5 JL	6.3 UJL	6.4 UJL	5.4 UJL

a\ VOCs = Volatile organic compounds; NYSDEC = New York State Department of Environmental Conservation; SCO = soil cleanup objective; U = analyte not detected above reporting limit; JL = estimated concentration with possible low bias; UJL = not detected, possible low bias; NA = not analyzed; ug/kg = micrograms per kilogram.

b\ Analytes highlighted in bold text and gray shading exceed the NYSDEC's Restricted Use Soil Cleanup Objectives for Industrial Settings (6 NYCRR PART 375 - Table 375-6.8(b):

c\ All samples were analyzed for m,p&o-xylenes, individually, which were non-detect throughout the data set, however, the samples analysed by Pace Long Island also reported Total Xylenes, of which there was a trace detectoin in one sample.

Groundwater Elevations 5140 Site Yorkville, New York (a)

	D	epth to Wate	r			Grou	Indwater Ele	vation	
		(ft bto	oc)			(ft al	/ISL)		
Well ID	<u>11/29/2012</u>	12/20/2012	<u>10/14/2014</u>	<u>1/12/2015</u>	<u>11/29/2012</u>	12/20/2012	10/14/2014	1/12/2015	Notes
MW-5	10.51	9.31	-		414.28	415.48	-	-	Destroyed
MW-5R	-	-	11.69	9.44	-	-	413.07	415.32	
MW-6	10.48	9.46	11.54	9.37	414.46	415.48	413.4	415.57	
MW-7	9.84	8.66	11.11	8.86	414.28	415.46	413.01	415.26	
MW-8	9.67	8.41	10.71	NM	414.55	415.81	413.51	NM	
MW-9	-	-	11.39	9.17	-	-	413.28	415.5	
MW-10	-	-	13.48	11.23	-	-	413.4	415.65	

a/ ft aMSL = feet above mean sea level; ft btoc = feet below top of casing; "-"= not applicable/not measured. b/ MW-8 was inaccessible on 1/12/15 due to snow and ice.

Groundwater Results - Polychlorinated Biphenyls 5140 Site Yorkville, New York (a)

Sample ID:	Evaluation		MW-5R			MW-6		MW	-7
Date Sampled:	Criteria (b)	10/14/14	1/12/15	1/12/15	10/14/14	10/14/14	1/12/15	10/14/14	1/12/15
				Duplicate (c)		Duplicate (e)			
PCBs (µg/l)									
Aroclor 1016	0.09	0.1 UJ	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.05 UJ	0.26 U
Aroclor 1221	0.09	0.1 UJ	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.05 UJ	0.26 U
Aroclor 1232	0.09	0.1 UJ	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.05 UJ	0.26 U
Aroclor 1242	0.09	0.1 UJ	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.05 UJ	0.26 U
Aroclor 1248	0.09	0.1 UJ	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.05 UJ	0.26 U
Aroclor 1254	0.09	0.1 UJ	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.211 J	0.26 U
Aroclor 1260	0.09	0.346 J	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.05 UJ	0.26 U
Sample ID:	Evaluation	MW-8	3 (e)	MW·	-9	MW-1	0		
Date Sampled:	Criteria (b)	10/14/14	10/14/14	10/14/14	1/12/15	10/14/14	1/12/15		
			(e)						
PCBs (µg/l)									
Aroclor 1016	0.09	0.05 UJ	NS	0.05 UJ	0.26 U	0.05 UJ	0.26 U		
Aroclor 1221	0.09	0.05 UJ	NS	0.05 UJ	0.26 U	0.05 UJ	0.26 U		
Aroclor 1232	0.09	0.05 UJ	NS	0.05 UJ	0.26 U	0.05 UJ	0.26 U		
Aroclor 1242	0.09	0.05 UJ	NS	0.05 UJ	0.26 U	0.05 UJ	0.26 U		
Aroclor 1248	0.09	0.05 UJ	NS	0.05 UJ	0.26 U	0.05 UJ	0.26 U		
Aroclor 1254	0.09	0.05 UJ	NS	0.05 UJ	0.26 U	0.05 UJ	0.26 U		

a/ PCBs = polychorinated biphenyls; µg/l = micrograms per liter; U = analyte not detected above laboratory detection limits. UJ = not detected, quantitation limit may be inaccurate or imprecise; J = reported value may not be accurate or precise.
 The October 14, 2014 samples from monitoring wells MW-5R and MW-7 were collected outside of the low flow purge stabilization criteria for nepthlometric units and are considered false positive detections. The data are included in this table for purposes of discussion only. See text for further explanation.

0.26 U

0.05 UJ

0.26 U

0.05 UJ

b/ Concentrations in bold text and gray shading exceed the New York State Ambient Water Quality Standards or Guidance Values for Class groundwater provided in the New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1), dated June 1998.

- c/ Blind duplicate of sample from MW-5R was designated MW-0115 in the field.
- d/ Blind duplicate of sample from MW-6 was designated MW-1014 in the field.

0.05 UJ

e/ Monitoring well MW-8 was inaccessible due to snow and ice cover present at the site on 1/12/15.

NS

0.09

Aroclor 1260

Sub-slab Soil Gas, Indoor Air and Ambient Air Sampling Results 5140 Site Yorkville, New York (a)

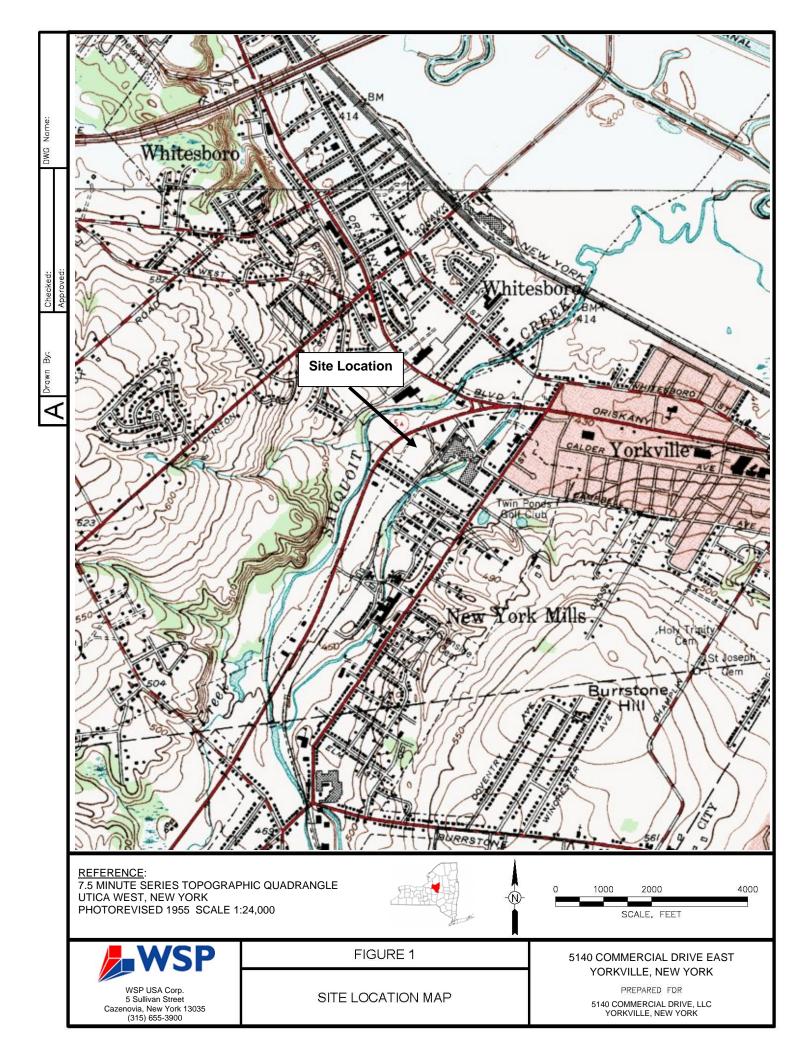
Sample ID (Depth):										
	SS-01	IA-01	SS-02	IA-02	SS-03	IA-03	SS-04	SS-1014	IA-04	OA-1
Sample Type:		Indoor		Indoor		Indoor		Subslab	Indoor	Outdoor
	Subslab	Air	Subslab	Air	Subslab	Air	Subslab	Duplicate (c)	Air	Air
Date:	<u>10/14/14</u>	10/14/14	<u>10/14/14</u>							
VOCs (µg/m³)										
1,1,1-Trichloroethane	0.55 J	0.15 U	1.8 J	0.15 U	7 J	0.15 U	13	13	0.15 U	0.15 U
1,2,4-Trichlorobenzene	0.15 U	0.15 U	6.3 J	0.15 U	1.1 J	0.15 U				
1,2,4-Trimethylbenzene	4.5 J	0.15 U	13	0.74	6.7 J	0.74	19 J	17	0.15 U	0.54 J
1,3,5-Trimethylbenzene	2 J	0.15 U	0.15 U	0.59 J	0.15 U	0.64 J	8.3 J	8.2 J	0.15 U	0.15 U
1,4-Dichlorobenzene	0.96 J	0.15 U	1.7 J	0.15 U						
2,2,4-trimethylpentane	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	2.1	2.2	0.15 U	0.15 U
4-ethyltoluene	1 J	0.15 U	1.7 J	0.15 U	0.93 J	0.15 U	6.7 J	6.3 J	0.15 U	0.15 U
Acetone	650	24	470	24	460	20	1,900	2,600	13	14
Benzene	2.8 J	0.42 J	3.6 J	0.42 J	3.6 J	0.45 J	11	11	0.38 J	0.15 U
Carbon disulfide	11	0.15 U	20	0.15 U	11	0.15 U	9	9	0.15 U	0.15 U
Carbon tetrachloride	0.15 U	0.57	0.15 U	0.63	0.15 U	0.04 U	0.15 U	0.15 U	0.63	0.63
Chlorobenzene	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.46 J	0.15 U	0.15 U	0.15 U	0.15 U
Chloroethane	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.47	0.42	0.15 U	0.15 U
Chloroform	2.2 J	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.63 J	0.73	0.15 U	0.15 U
Chloromethane	0.15 U	1.1	0.56	1.2	0.15 U	1	0.15 U	0.15 U	0.95	1.1
Cyclohexane	3.6 J	0.15 U	0.15 U	0.15 U	3.3 J	0.15 U	7.3	9.3	0.15 U	0.15 U
Ethyl acetate	0.25 U	0.25 U	0.61 J	0.25 U						
Ethylbenzene	3 J	0.15 U	19	0.15 U	5.8 J	0.15 U	8 J	7.7 J	0.15 U	0.15 U
Freon 11	1.9 J	1.9	42	1.9	390	1.9	15	15	1.7	1.6
Freon 113	0.15 U	0.15 U	1 J	0.15 U	5.3 J	0.15 U	0.15 U	0.77 J	0.15 U	0.15 U
Freon 12	3.4 J	2.9	6.4	2.8	2.9 J	2.8	2.5	2.3	2.7	2.5
Heptane	8.6	0.15 U	6.1	0.15 U	7.8	0.15 U	20	19	0.15 U	0.15 U
Hexane	14	0.15 U	6.7	0.15 U	9.5	0.15 U	20	18	0.15 U	0.15 U
Isopropyl alcohol	12	2.5	18	2.1	14	4.3	41	0.15 U	3.3	2.8
m&p-Xylene	13 J	1.2 J	62	1.3 J	12 J	1.4	23	22	1.1 J	0.43 J
Methyl Butyl Ketone	1.7 J	0.3 U	5.7 J	0.3 U	2.7 J	0.3 U	0.3 UJ	0.3 UJ	0.3 U	0.3 U
Methyl Ethyl Ketone	8.3 J	1	11	1.1	7.4 J	1.3	19	14	1	0.91
Methyl Isobutyl Ketone	2.5 J	0.3 U	3.6 J	0.3 U	1.9 J	0.3 U	6.8 J	6.7 J	0.3 U	0.3 U
Methyl tert-butyl ether	4.9 J	0.15 U	4.5	0.15 U	4.4 J	0.15 U	11	9.4	0.15 U	0.15 U
Methylene chloride	0.15 U	0.15 U	0.42 J	0.45 J	0.45 J	0.52	0.45 J	0.56	0.15 U	0.35 J
o-Xylene	2.9 J	0.15 U	11	0.56 J	4.2 J	0.52 J	5.5 J	5.5 J	0.15 U	0.15 U
Styrene	1.4 J	0.15 U	2.7 J	0.15 U	1.6 J	0.15 U	7.7	6.8	0.15 U	0.15 U
Tetrachloroethylene	0.81 J	0.15 U	8.3 J	0.15 U	45	0.15 U	74	69	0.15 U	0.15 U
Toluene	11	0.9	9	0.87	10	1.6	25	23	0.83	0.68
Trichloroethene	0.91 J	0.04 U	0.97 J	0.04 U	5.9 J	0.27	20	19	0.04 U	0.04 U

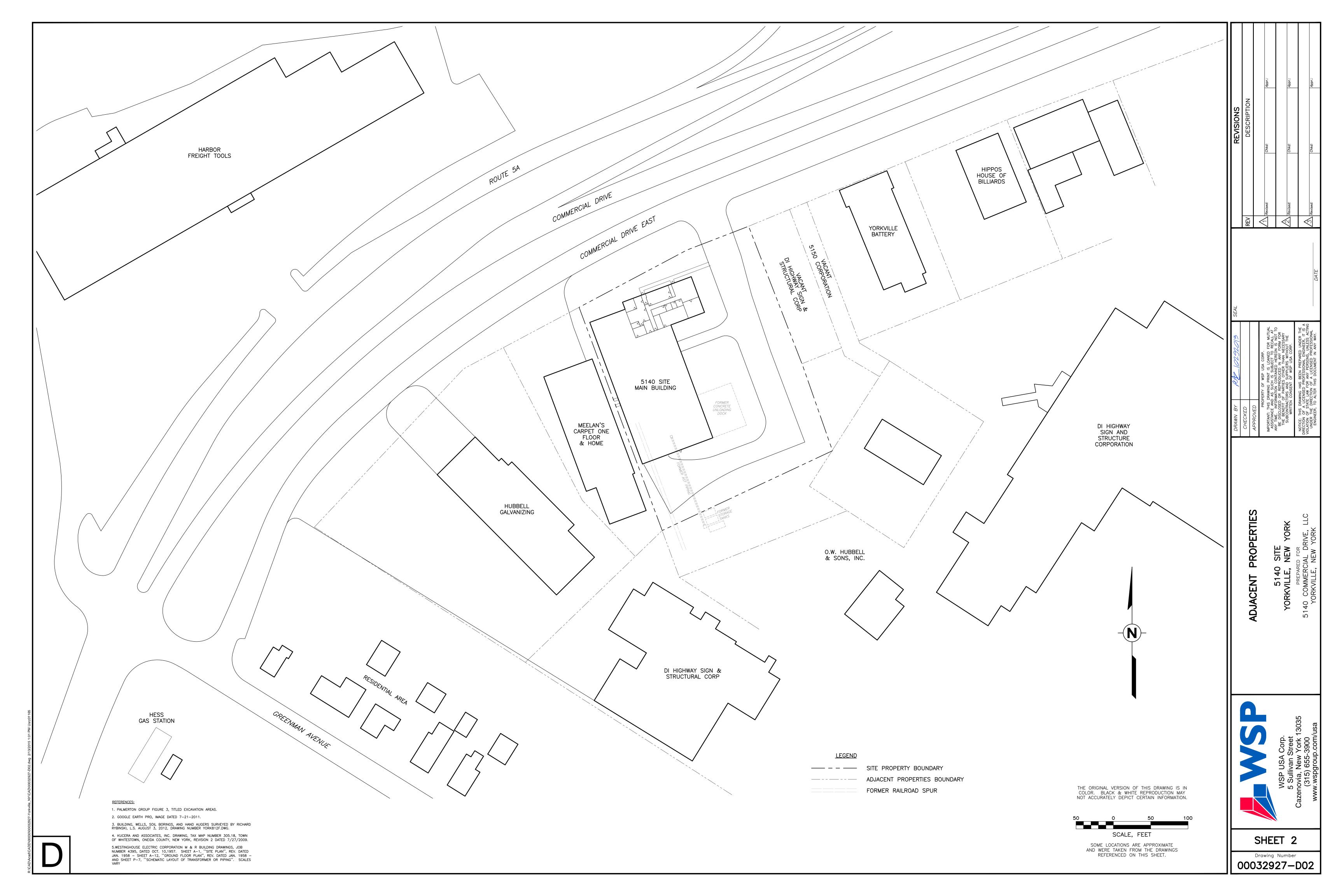
a/ VOCs = volatile organic compounds; U = compound not detected at or above the reporting limit; UJ = quantitation limit may be inaccurate or imprecise; J = estimated concentration; µg/m³ = micrograms per cubic meter.

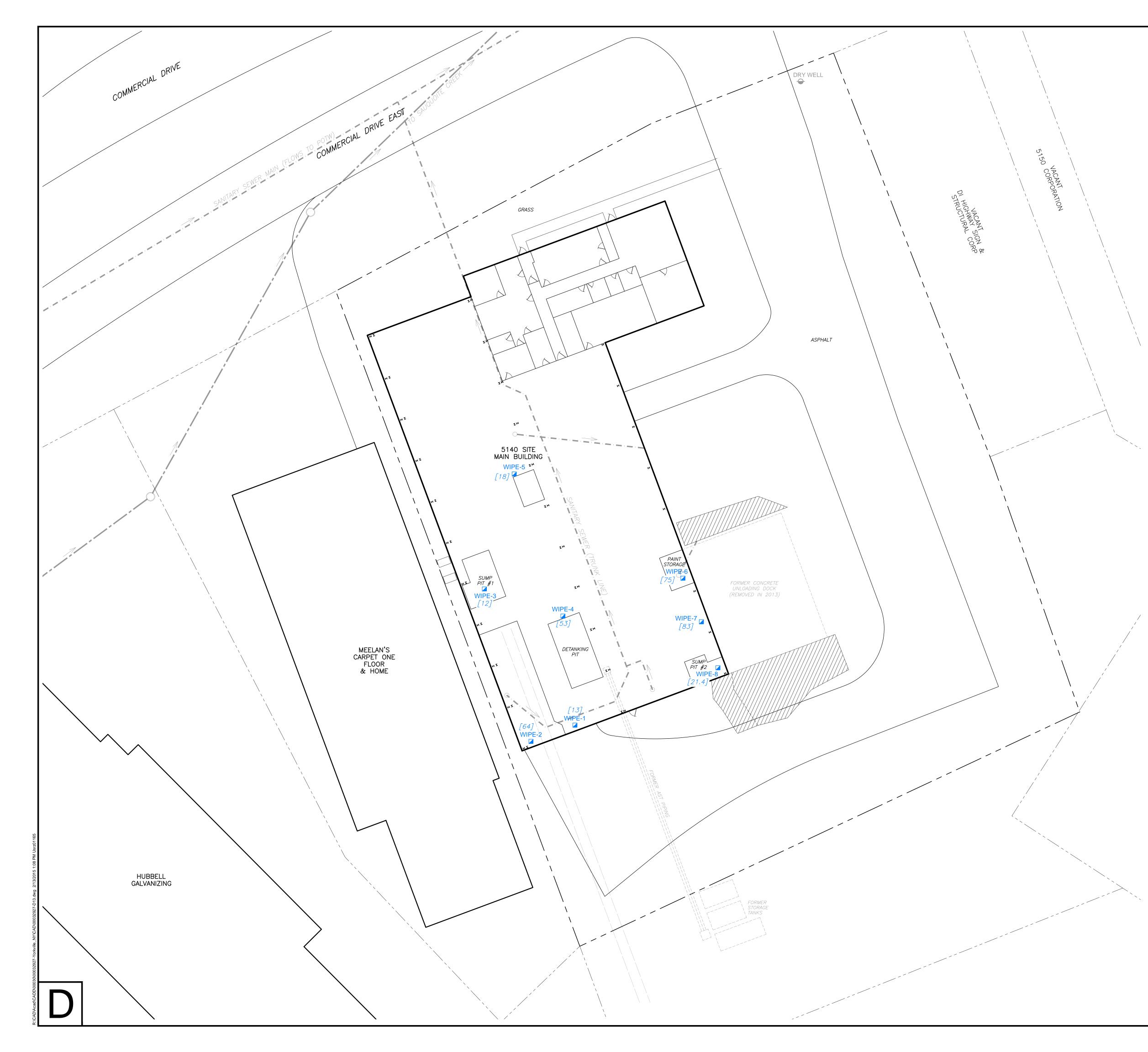
b/ Evaluation criteria are Soil Vapor/Indoor Air Matrices 1 and 2, as presented in the NYSDOH 's *Guidance for Evaluating Soil Vapor Intrusion in* the State of New York, dated October 2006.

c/ SS-1014 is a blind duplicate sample of SS-04.

Sub-slab Soil Gas, Indoor Air and Ambient Air Sampling Results 5140 Site Yorkville, New York (a)


Sample ID (Depth):										
,	SS-01	IA-01	SS-02	IA-02	SS-03	IA-03	SS-04	SS-1014	IA-04	OA-1
Sample Type:		Indoor		Indoor		Indoor		Subslab	Indoor	Outdoor
	Subslab	Air	Subslab	Air	Subslab	Air	Subslab	Duplicate (c)	Air	Air
Date:	<u>10/14/14</u>	10/14/14	<u>10/14/14</u>	10/14/14	<u>10/14/14</u>	10/14/14	<u>10/14/14</u>	<u>10/14/14</u>	10/14/14	<u>10/14/14</u>
VOCs (µg/m³)										
1,1,1-Trichloroethane	0.55 J	0.15 U	1.8 J	0.15 U	<mark>7 J</mark>	0.15 U	(13)	<mark>13</mark>	0.15 U	0.15 U
1,2,4-Trichlorobenzene	0.15 U	0.15 U	6.3 J	0.15 U	1.1 J	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
1,2,4-Trimethylbenzene	4.5 J	0.15 U	13	0.74	6.7 J	0.74	19 J	17	0.15 U	0.54 J
1,3,5-Trimethylbenzene	2 J	0.15 U	0.15 U	0.59 J	0.15 U	0.64 J	8.3 J	8.2 J	0.15 U	0.15 U
1,4-Dichlorobenzene	0.96 J	0.15 U	1.7 J	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
2,2,4-trimethylpentane	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	2.1	2.2	0.15 U	0.15 U
4-ethyltoluene	1 J	0.15 U	1.7 J	0.15 U	0.93 J	0.15 U	6.7 J	6.3 J	0.15 U	0.15 U
Acetone	650	24	470	24	460	20	1,900	2,600	13	14
Benzene	2.8 J	0.42 J	3.6 J	0.42 J	3.6 J	0.45 J	11	11	0.38 J	0.15 U
Carbon disulfide	11	0.15 U	20	0.15 U	11	0.15 U	9	9	0.15 U	0.15 U
Carbon tetrachloride	0.15 U	0.57	0.15 U	0.63	0.15 U	0.04 U	0.15 U	0.15 U	0.63	0.63
Chlorobenzene	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.46 J	0.15 U	0.15 U	0.15 U	0.15 U
Chloroethane	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.47	0.42	0.15 U	0.15 U
Chloroform	2.2 J	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.63 J	0.73	0.15 U	0.15 U
Chloromethane	0.15 U	1.1	0.56	1.2	0.15 U	1	0.15 U	0.15 U	0.95	1.1
Cyclohexane	3.6 J	0.15 U	0.15 U	0.15 U	3.3 J	0.15 U	7.3	9.3	0.15 U	0.15 U
Ethyl acetate	0.25 U	0.25 U	0.61 J	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Ethylbenzene	3 J	0.15 U	19	0.15 U	5.8 J	0.15 U	8 J	7.7 J	0.15 U	0.15 U
Freon 11	1.9 J	1.9	42	1.9	390	1.9	15	15	1.7	1.6
Freon 113	0.15 U	0.15 U	1 J	0.15 U	5.3 J	0.15 U	0.15 U	0.77 J	0.15 U	0.15 U
Freon 12	3.4 J	2.9	6.4	2.8	2.9 J	2.8	2.5	2.3	2.7	2.5
Heptane	8.6	0.15 U	6.1	0.15 U	7.8	0.15 U	20	19	0.15 U	0.15 U
Hexane	14	0.15 U	6.7	0.15 U	9.5	0.15 U	20	18	0.15 U	0.15 U
Isopropyl alcohol	12	2.5	18	2.1	14	4.3	41	0.15 U	3.3	2.8
m&p-Xylene	13 J	1.2 J	62	1.3 J	12 J	1.4	23	22	1.1 J	0.43 J
Methyl Butyl Ketone	1.7 J	0.3 U	5.7 J	0.3 U	2.7 J	0.3 U	0.3 UJ	0.3 UJ	0.3 U	0.3 U
Methyl Ethyl Ketone	8.3 J	1	11	1.1	7.4 J	1.3	19	14	1	0.91
Methyl Isobutyl Ketone	2.5 J	0.3 U	3.6 J	0.3 U	1.9 J	0.3 U	6.8 J	6.7 J	0.3 U	0.3 U
Methyl tert-butyl ether	4.9 J	0.15 U	4.5	0.15 U	4.4 J	0.15 U	11	9.4	0.15 U	0.15 U
Methylene chloride	0.15 U	0.15 U	0.42 J	0.45 J	0.45 J	0.52	0.45 J	0.56	0.15 U	0.35 J
o-Xylene	2.9 J	0.15 U	11	0.56 J	4.2 J	0.52 J	5.5 J	5.5 J	0.15 U	0.15 U
Styrene	1.4 J	0.15 U	2.7 J	0.15 U	1.6 J	0.15 U	7.7	6.8	0.15 U	0.15 U
Tetrachloroethylene	0.81 J	0.15 U	8.3 J	0.15 U	45	0.15 U	74	69	0.15 U	0.15 U
Toluene	11	0.9	9	0.87	10	1.6	25	23	0.83	0.68
Trichloroethene	0.91 J	0.04 U	0.97 J	0.04 U	<mark>5.9 J</mark>	0.27	20	<mark>19</mark>	0.04 U	0.04 U


a/ VOCs = volatile organic compounds; U = compound not detected at or above the reporting limit; UJ = quantitation limit may be


inaccurate or imprecise; J = estimated concentration; $\mu g/m^3 = micrograms$ per cubic meter.

b/ Evaluation criteria are Soil Vapor/Indoor Air Matrices 1 and 2, as presented in the NYSDOH 's *Guidance for Evaluating Soil Vapor Intrusion in* the State of New York, dated October 2006.

c/ SS-1014 is a blind duplicate sample of SS-04.

SCALE, FEET SOME LOCATIONS ARE APPROXIMATE AND WERE TAKEN FROM THE DRAWINGS REFERENCED ON THIS SHEET.

THE ORIGINAL VERSION OF THIS DRAWING IS IN COLOR. BLACK & WHITE REPRODUCTION MAY NOT ACCURATELY DEPICT CERTAIN INFORMATION.

2. GOOGLE EARTH PRO, IMAGE DATED 7-21-2011. 3. BUILDING, WELLS, SOIL BORINGS, AND HAND AUGERS SURVEYED BY RICHARD RYBINSKI, L.S. AUGUST 3, 2012, DRAWING NUMBER YORK812F.DWG. 4. KUCERA AND ASSOCIATES, INC. DRAWING, TAX MAP NUMBER 305.18, TOWN OF WHITESTOWN, ONEIDA COUNTY, NEW YORK, REVISION 2 DATED 7/27/2009. 5.WESTINGHOUSE ELECTRIC CORPORATION M & R BUILDING DRAWINGS, JOB NUMBER 4395, DATED OCT. 10,1957. SHEET A-1, "SITE PLAN", REV. DATED JAN. 1958 – SHEET A-12, "GROUND FLOOR PLAN", REV. DATED JAN. 1958 – AND SHEET P-7, "SCHEMATIC LAYOUT OF TRANSFORMER OR PIPING". SCALES VARY

1. PALMERTON GROUP FIGURE 3, TITLED EXCAVATION AREAS.

REFERENCES:

-------------------------STORM SEWER

DRY WELL FLOOR DRAIN STORM SEWER DRAIN \longrightarrow \longrightarrow FLOW DIRECTION WIPE-5 🛛 PCB WIPE SAMPLE (2011) [18] TOTAL PCB CONCENTRATION IN MICROGRAMS PER 100 SQUARE CENTIMETERS (μ g/cm²)

<u>LEGEND</u> ----- SITE PROPERTY BOUNDARY ----- ADJACENT PROPERTIES BOUNDARY FORMER RAILROAD SPUR 2011 REMEDIAL EXCAVATION LIMITS

 (\mathbf{N})

HISTORICAL E RESULTS LLC YORK IVП, ОRK T WITH F SITE NEW

ΨZ

COMM

04 X

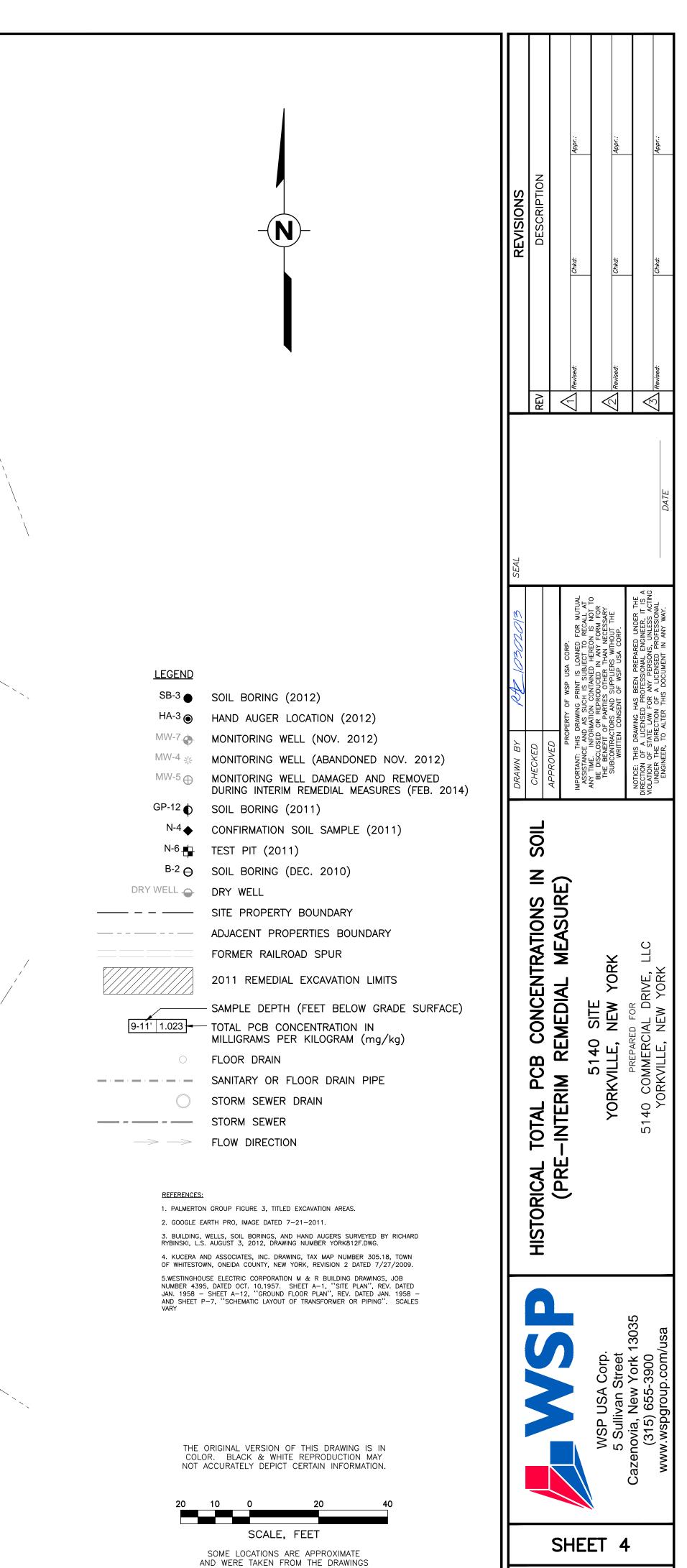
S

13035

S 10

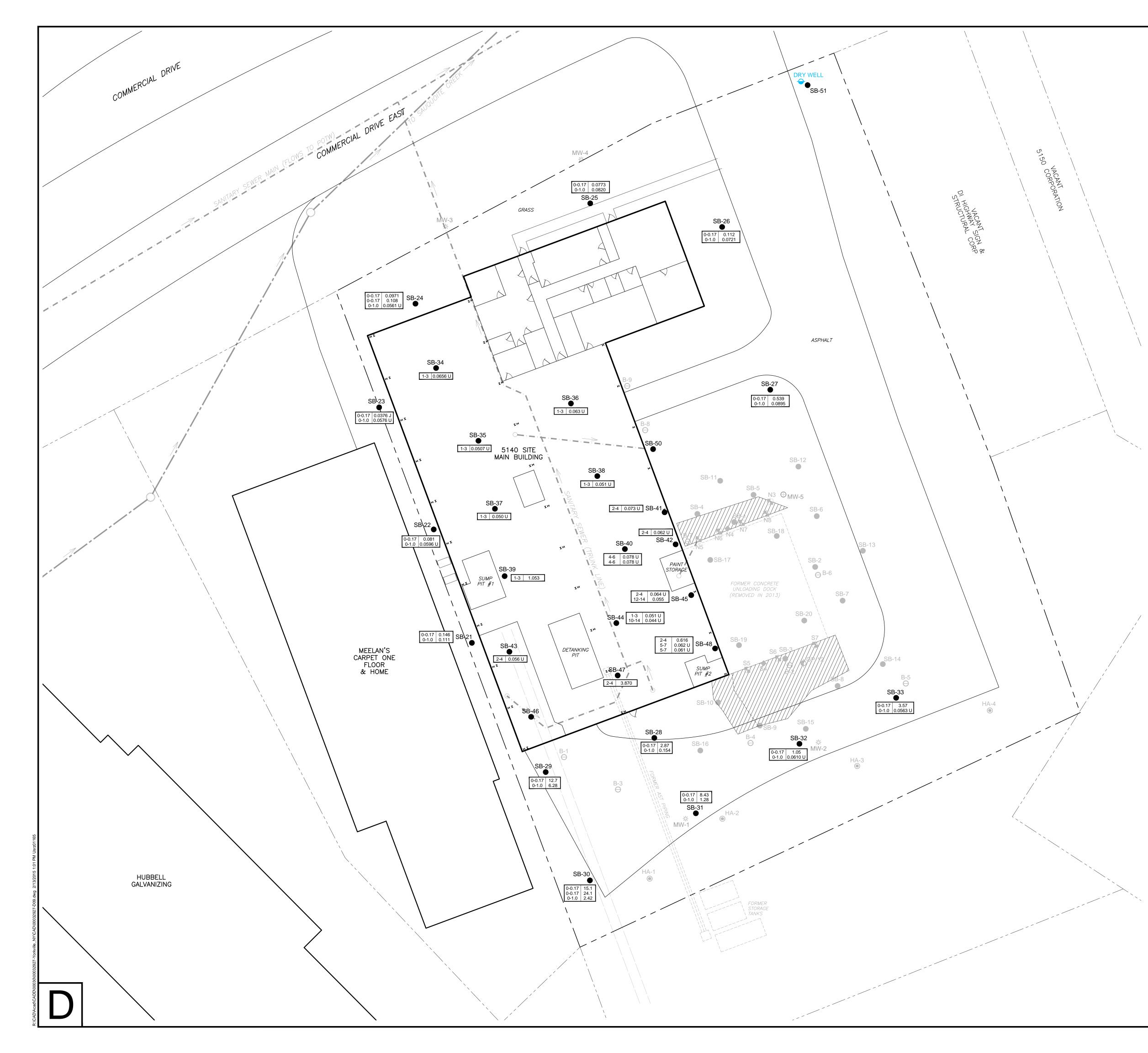
SHEET 3

Drawing Number 00032927-D13


C

5140 YORKVILLE,

LAYOUT WIPE S


SITE PCB

SO	ME	LO	CATION	S AF	RE .	APF	RO	XIMA	TE
ND	WEI	RE	TAKEN	FRO) M	THE	ΞD	RAW	ING
	REF	FER	ENCED	ON	ΤH	IS	SHE	ET.	

Drawing Number 00032927-D04

		REVISIONS	REV DESCRIPTION	Revised: Chkd: Appr.:	Appr.:	Appr.: Appr.:
LEGEND SB-21	SOIL BORING (2014)	SEAL				DATE
SB-3 ● HA-3 ● MW-4 ※ MW-5 ⊕ GP-12 ● N-4 ● N-6 ⊕ B-2 ⊖	SOIL BORING (2012) HAND AUGER LOCATION (2012) MONITORING WELL (ABANDONED NOV. 2012) MONITORING WELL DAMAGED AND REMOVED DURING INTERIM REMEDIAL MEASURES (FEB. 2014) SOIL BORING (2011) CONFIRMATION SOIL SAMPLE (2011) TEST PIT (2011) SOIL BORING (DEC. 2010) SITE PROPERTY BOUNDARY ADJACENT PROPERTIES BOUNDARY	DRAWN BY ROP 12152014	CHECKED	PROPERTY OF WSP USA CORP. PROPERTY OF WSP USA CORP. HIS DRAWING PRINT IS LOANED F. AND AS SUCH IS SUBJECT TO F.	ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS AND SUPPLIERS WITHOUT THE WRITTEN CONSENT OF WSP USA CORP.	NOTICE: THIS DRAWING HAS BEEN PREPARED UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, IT IS A VIOLATION OF STATE LAW FOR ANY PERSONS, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT IN ANY WAY.
	FORMER RAILROAD SPUR 2011 REMEDIAL EXCAVATION LIMITS DRY WELL FLOOR DRAIN SANITARY OR FLOOR DRAIN PIPE STORM SEWER DRAIN STORM SEWER FLOW DIRECTION - SAMPLE DEPTH (FEET BELOW GRADE SURFACE) TOTAL PCB CONCENTRATION IN MILLIGRAMS PER KILOGRAM (mg/kg)		CONCENTRATIONS IN SOIL		5140 SITE YORKVILLE, NEW YORK	PREPARED FOR O COMMERCIAL DRIVE, LLC YORKVILLE, NEW YORK
 2. GOOGLE E 3. BUILDING, RYBINSKI, L.S 4. KUCERA A OF WHITESTO 5.WESTINGHO NUMBER 439 JAN. 1958 - 	I N GROUP FIGURE 3, TITLED EXCAVATION AREAS. EARTH PRO, IMAGE DATED 7–21–2011. WELLS, SOIL BORINGS, AND HAND AUGERS SURVEYED BY RICHARD S. AUGUST 3, 2012, DRAWING NUMBER YORK812F.DWG. AND ASSOCIATES, INC. DRAWING, TAX MAP NUMBER 305.18, TOWN WN, ONEIDA COUNTY, NEW YORK, REVISION 2 DATED 7/27/2009. USE ELECTRIC CORPORATION M & R BUILDING DRAWINGS, JOB IS, DATED OCT. 10,1957. SHEET A–1, "SITE PLAN", REV. DATED – SHEET A–12, "GROUND FLOOR PLAN", REV. DATED DATED – SHEET A–12, "GROUND FLOOR PLAN", REV. DATED DATED ATED – SHEET A–12, "SCHEMATIC LAYOUT OF TRANSFORMER OR PIPING". SCALES) -	X	3035 5140 (5140 (Yol
COL	ORIGINAL VERSION OF THIS DRAWING IS IN OR. BLACK & WHITE REPRODUCTION MAY ACCURATELY DEPICT CERTAIN INFORMATION.				WSP USA Corp. 5 Sullivan Street	
	SCALE, FEET SOME LOCATIONS ARE APPROXIMATE	┢		SHE	ET 5	5
F	AND WERE TAKEN FROM THE DRAWINGS REFERENCED ON THIS SHEET.				Numbe	

00032927-D09

0-1.0 0.0563 U

— — — — SITE PROPERTY BO 🔶 DRY WELL ------ STORM SEWER \longrightarrow FLOW DIRECTION

SCALE, FEET SOME LOCATIONS ARE APPROXIMATE AND WERE TAKEN FROM THE DRAWINGS REFERENCED ON THIS SHEET.

THE ORIGINAL VERSION OF THIS DRAWING IS IN COLOR. BLACK & WHITE REPRODUCTION MAY NOT ACCURATELY DEPICT CERTAIN INFORMATION.

3. BUILDING, WELLS, SOIL BORINGS, AND HAND AUGERS SURVEYED BY RICHARD RYBINSKI, L.S. AUGUST 3, 2012, DRAWING NUMBER YORK812F.DWG. 4. KUCERA AND ASSOCIATES, INC. DRAWING, TAX MAP NUMBER 305.18, TOWN OF WHITESTOWN, ONEIDA COUNTY, NEW YORK, REVISION 2 DATED 7/27/2009. 5.WESTINGHOUSE ELECTRIC CORPORATION M & R BUILDING DRAWINGS, JOB NUMBER 4395, DATED OCT. 10,1957. SHEET A-1, "SITE PLAN", REV. DATED JAN. 1958 – SHEET A-12, "GROUND FLOOR PLAN", REV. DATED JAN. 1958 – AND SHEET P-7, "SCHEMATIC LAYOUT OF TRANSFORMER OR PIPING". SCALES VARY

REFERENCES: 1. PALMERTON GROUP FIGURE 3, TITLED EXCAVATION AREAS.

2. GOOGLE EARTH PRO, IMAGE DATED 7-21-2011.

THE GROUNDWATER ELEVATION FROM MW-9 WAS OMITTED FROM THE CONTOUR ANALYSIS. SEE TEXT FOR EXPLANATION.

------ STORM SEWER [413.51] GROUNDWATER ELEVATION

<u>NOTE:</u>

FORMER RAILROAD SPUR 2011 REMEDIAL EXCAVATION LIMITS MW-7 MONITORING WELL (NOV. 2012 & SEP. 2014) DRY WELL • FLOOR DRAIN STORM SEWER DRAIN

<u>LEGEND</u>

----- ADJACENT PROPERTIES BOUNDARY

(N)

MA

R ELEVATION SER 2014

UNDWATER OCTOBE

 \mathbf{O} GR O.

μ¥

ΨZ

04 ×0

51

13035

C

SHEET 6

Drawing Number 00032927-D10

YORK

SITE NEW

5140 YORKVILLE, 1

REVISIONS	REV DESCRIPTION		Revised: Chkd: Appr.:	Revised: Chka: Appr.:	Appr.: Appr.:
DRAWN BY RAF 12/52014 SEAL	CHECKED	APPROVED	PROPERTY OF WSP USA CORP. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT	WIT THE THE THE CONTANTION CONTANTION TO AN TOTAL THE THE DISCLOSED OR REPRODUCED IN ANY FORM THE BENELT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS AND SUPPLIERS WITHOUT THE WRITTEN CONSENT OF WSP USA CORP.	NOTICE: THIS DRAWING HAS BEEN PREPARED UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, IT IS A VIOLATION OF STATE LAW FOR ANY PERSONS, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT IN ANY WAY.
	SUB-SLAB, INDOOR AIR, AND			5140 SHE YORKVILLE, NEW YORK	PREPARED FOR 5140 COMMERCIAL DRIVE, LLC YORKVILLE, NEW YORK
			SHE	WSP USA Corp. 5 Sullivan Street	7

OA-01 _____ _____

<u>LEGEND</u>

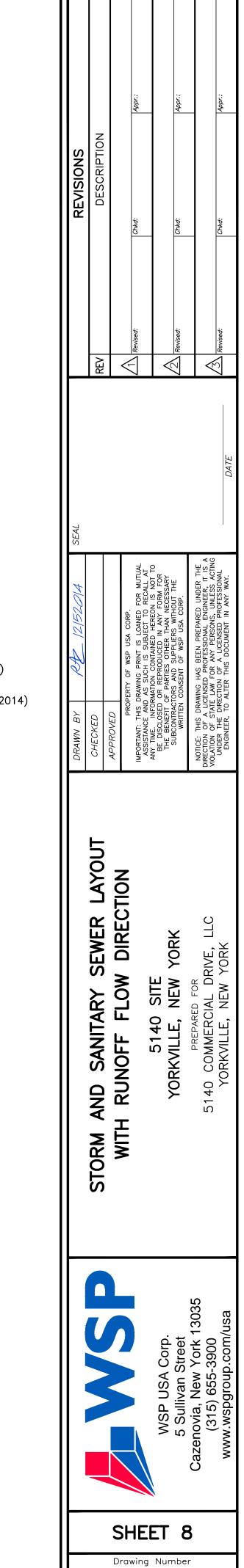
SS-04/IA-04 🔻	SUB-SLAB AND INDOOR AIR SAMPLE
OA-01	OUTDOOR AIR SAMPLE
	SITE PROPERTY BOUNDARY
	ADJACENT PROPERTIES BOUNDARY
	FORMER RAILROAD SPUR
	2011 REMEDIAL EXCAVATION LIMITS
MW-7_	MONITORING WELL (NOV. 2012 & SEP. 2014)
MW-7	MONITORING WELL (NOV. 2012 & SEP. 2014) DRY WELL
Ť	, , , , , , , , , , , , , , , , , , ,
Ť	DRY WELL
Ť	DRY WELL FLOOR DRAIN
Ť	DRY WELL FLOOR DRAIN SANITARY OR FLOOR DRAIN PIPE

-(N)

20

REFERENCES: 1. PALMERTON GROUP FIGURE 3, TITLED EXCAVATION AREAS.

2. GOOGLE EARTH PRO, IMAGE DATED 7-21-2011.


3. BUILDING, WELLS, SOIL BORINGS, AND HAND AUGERS SURVEYED BY RICHARD RYBINSKI, L.S. AUGUST 3, 2012, DRAWING NUMBER YORK812F.DWG. 4. KUCERA AND ASSOCIATES, INC. DRAWING, TAX MAP NUMBER 305.18, TOWN OF WHITESTOWN, ONEIDA COUNTY, NEW YORK, REVISION 2 DATED 7/27/2009.

5.WESTINGHOUSE ELECTRIC CORPORATION M & R BUILDING DRAWINGS, JOB NUMBER 4395, DATED OCT. 10,1957. SHEET A-1, "SITE PLAN", REV. DATED JAN. 1958 – SHEET A-12, "GROUND FLOOR PLAN", REV. DATED JAN. 1958 – AND SHEET P-7, "SCHEMATIC LAYOUT OF TRANSFORMER OR PIPING". SCALES VARY

THE ORIGINAL VERSION OF THIS DRAWING IS IN COLOR. BLACK & WHITE REPRODUCTION MAY NOT ACCURATELY DEPICT CERTAIN INFORMATION.

SCALE, FEET SOME LOCATIONS ARE APPROXIMATE AND WERE TAKEN FROM THE DRAWINGS REFERENCED ON THIS SHEET.

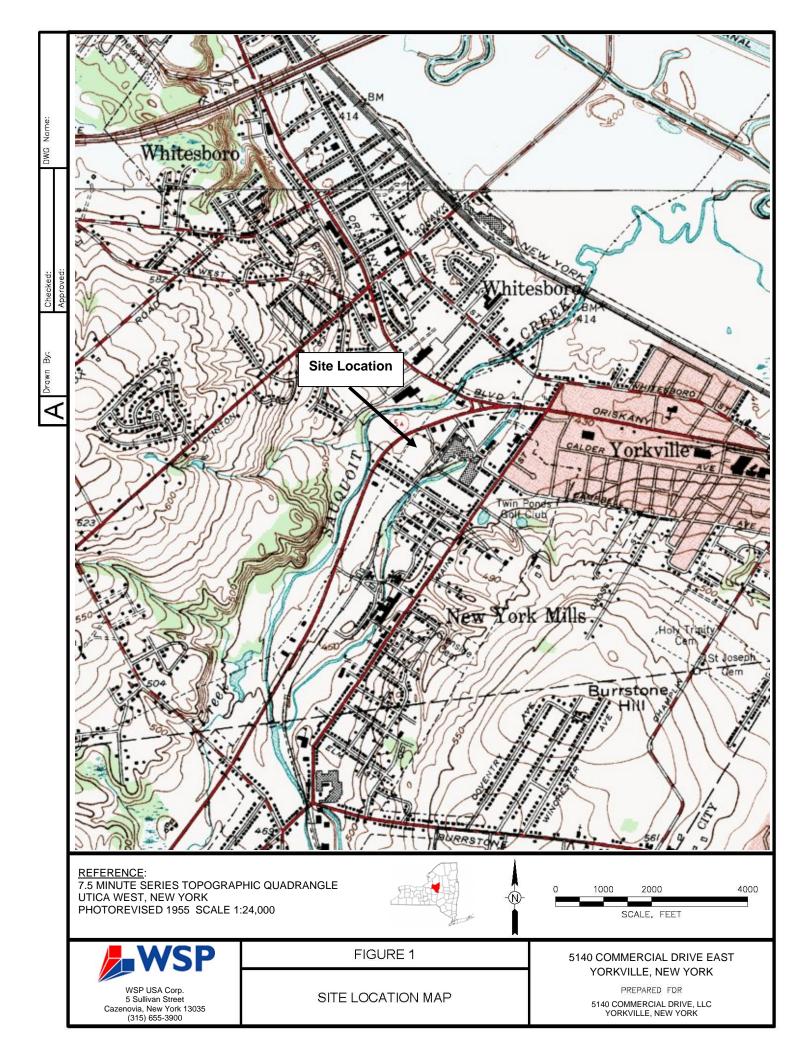
00032927-D12

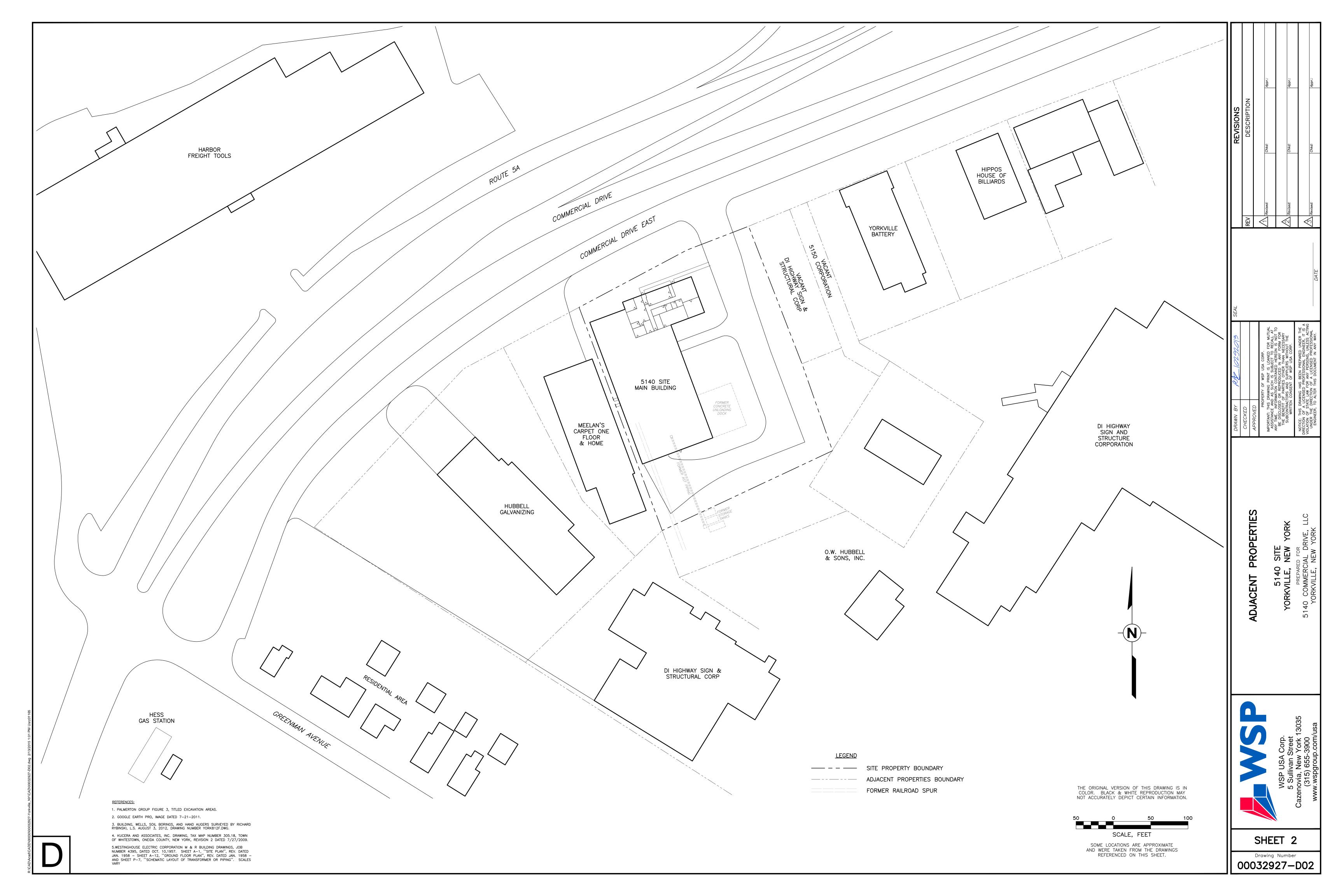
_____ _____ STORM SEWER

<u>LEGEND</u>

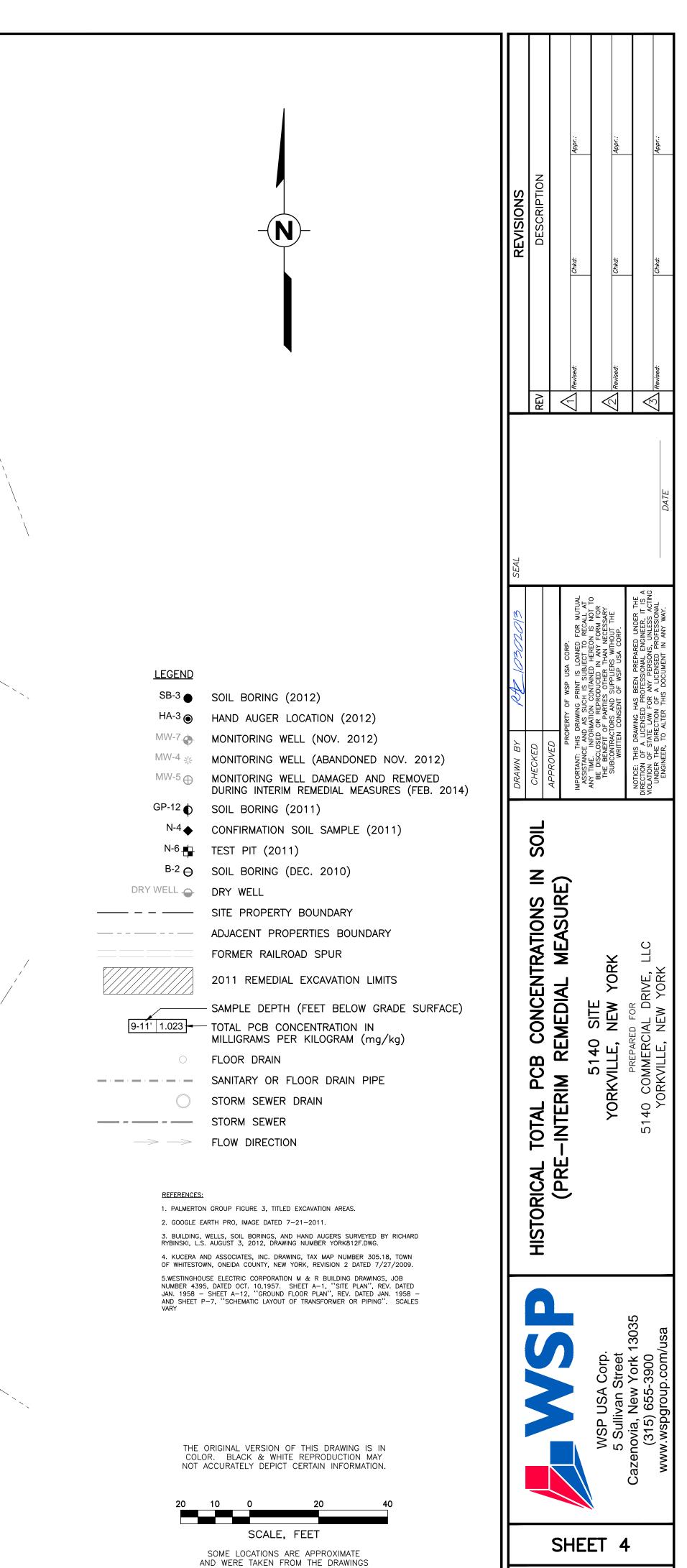
MW-9
PROPOSED MONITORING WELL $^{\text{MW-4}}$ % $\,$ monitoring well (abandoned nov. 2012) $^{\rm MW-5}\oplus$ MONITORING WELL DAMAGED AND REMOVED DURING INTERIM REMEDIAL MEASURES (FEB. 2014) SB-21 SOIL BORING (2014) ----- SITE PROPERTY BOUNDARY ADJACENT PROPERTIES BOUNDARY FORMER RAILROAD SPUR 2011 REMEDIAL EXCAVATION LIMITS DRY WELL O FLOOR DRAIN STORM SEWER DRAIN

 (\mathbf{N})

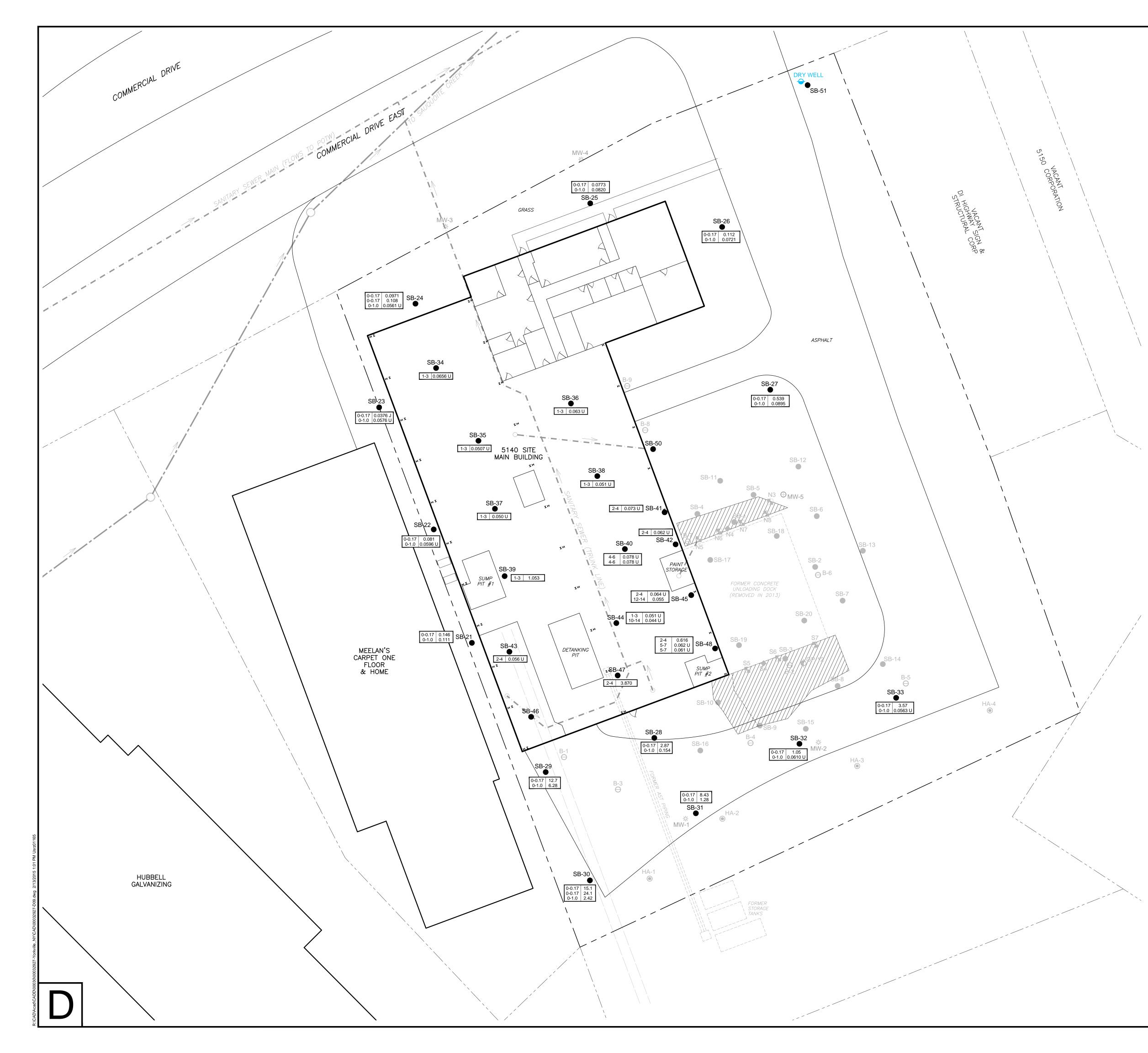

REFERENCES: 1. PALMERTON GROUP FIGURE 3, TITLED EXCAVATION AREAS. 2. GOOGLE EARTH PRO, IMAGE DATED 7-21-2011. 3. BUILDING, WELLS, SOIL BORINGS, AND HAND AUGERS SURVEYED BY RICHARD RYBINSKI, L.S. AUGUST 3, 2012, DRAWING NUMBER YORK812F.DWG.


RUNOFF DIRECTION

4. KUCERA AND ASSOCIATES, INC. DRAWING, TAX MAP NUMBER 305.18, TOWN OF WHITESTOWN, ONEIDA COUNTY, NEW YORK, REVISION 2 DATED 7/27/2009. 5.WESTINGHOUSE ELECTRIC CORPORATION M & R BUILDING DRAWINGS, JOB NUMBER 4395, DATED OCT. 10,1957. SHEET A-1, "SITE PLAN", REV. DATED JAN. 1958 – SHEET A-12, "GROUND FLOOR PLAN", REV. DATED JAN. 1958 – AND SHEET P-7, "SCHEMATIC LAYOUT OF TRANSFORMER OR PIPING". SCALES VARY


THE ORIGINAL VERSION OF THIS DRAWING IS IN COLOR. BLACK & WHITE REPRODUCTION MAY NOT ACCURATELY DEPICT CERTAIN INFORMATION.

SCALE, FEET SOME LOCATIONS ARE APPROXIMATE AND WERE TAKEN FROM THE DRAWINGS REFERENCED ON THIS SHEET.



SO	ME	LO	CATION	S AF	RE	APF	PRC	DXIM	ATE
ND	WE	RE	TAKEN	FRO	DM	TH	Εſ	DRAW	/ING
	REF	FER	ENCED	ON	ΤH	IS	SH	EET.	

Drawing Number 00032927-D04

		REVISIONS	REV DESCRIPTION	Revised: Chkd: Appr.:	Revised: Chkd:	Appr.: Appr.:
LEGEND SB-21	SOIL BORING (2014)	SEAL				DATE
SB-3 ● HA-3 ● MW-4 ※ MW-5 ⊕ GP-12 ● N-4 ● N-6 ⊕ B-2 ⊖	SOIL BORING (2012) HAND AUGER LOCATION (2012) MONITORING WELL (ABANDONED NOV. 2012) MONITORING WELL DAMAGED AND REMOVED DURING INTERIM REMEDIAL MEASURES (FEB. 2014) SOIL BORING (2011) CONFIRMATION SOIL SAMPLE (2011) TEST PIT (2011) SOIL BORING (DEC. 2010) SITE PROPERTY BOUNDARY ADJACENT PROPERTIES BOUNDARY FORMER RAILROAD SPUR	DRAWN BY ROP 12152014	CHECKED	APPROVED PROPERTY OF WSP USA CORP. PROPERTY OF WSP USA CORP. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT	ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS AND SUPPLIERS WITHOUT THE WRITTEN CONSENT OF WSP USA CORP.	NOTICE: THIS DRAWING HAS BEEN PREPARED UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, IT IS A VIOLATION OF STATE LAW FOR ANY PERSONS, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT IN ANY WAY.
0 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	2011 REMEDIAL EXCAVATION LIMITS DRY WELL FLOOR DRAIN SANITARY OR FLOOR DRAIN PIPE STORM SEWER DRAIN STORM SEWER FLOW DIRECTION - SAMPLE DEPTH (FEET BELOW GRADE SURFACE) - TOTAL PCB CONCENTRATION IN MILLIGRAMS PER KILOGRAM (mg/kg)		CONCENTRATIONS IN SOIL		5140 SITE YORKVILLE, NEW YORK	PREPARED FOR O COMMERCIAL DRIVE, LLC YORKVILLE, NEW YORK
 2. GOOGLE E 3. BUILDING, RYBINSKI, L.S 4. KUCERA A OF WHITESTO 5.WESTINGHO NUMBER 439 JAN. 1958 - 	N GROUP FIGURE 3, TITLED EXCAVATION AREAS. CARTH PRO, IMAGE DATED 7–21–2011. WELLS, SOIL BORINGS, AND HAND AUGERS SURVEYED BY RICHARD S. AUGUST 3, 2012, DRAWING NUMBER YORK812F.DWG. ND ASSOCIATES, INC. DRAWING, TAX MAP NUMBER 305.18, TOWN WN, ONEIDA COUNTY, NEW YORK, REVISION 2 DATED 7/27/2009. USE ELECTRIC CORPORATION M & R BUILDING DRAWINGS, JOB 5, DATED OCT. 10,1957. SHEET A–1, "SITE PLAN", REV. DATED - SHEET A–12, "GROUND FLOOR PLAN", REV. DATED JAN. 1958 – P–7, "SCHEMATIC LAYOUT OF TRANSFORMER OR PIPING". SCALES		TOTAL DCR) -		3035 5140 (5140 (Yol
COL	ORIGINAL VERSION OF THIS DRAWING IS IN OR. BLACK & WHITE REPRODUCTION MAY ACCURATELY DEPICT CERTAIN INFORMATION.				WSP USA Corp. 5 Sullivan Street	7 7
	SCALE, FEET SOME LOCATIONS ARE APPROXIMATE	╟		SHE	ET 5	5
F	AND WERE TAKEN FROM THE DRAWINGS REFERENCED ON THIS SHEET.				Numbe	

00032927-D09

0-1.0 0.0563 U

— — — — SITE PROPERTY BO 🔶 DRY WELL ------ STORM SEWER \longrightarrow FLOW DIRECTION

SCALE, FEET SOME LOCATIONS ARE APPROXIMATE AND WERE TAKEN FROM THE DRAWINGS REFERENCED ON THIS SHEET.

THE ORIGINAL VERSION OF THIS DRAWING IS IN COLOR. BLACK & WHITE REPRODUCTION MAY NOT ACCURATELY DEPICT CERTAIN INFORMATION.

3. BUILDING, WELLS, SOIL BORINGS, AND HAND AUGERS SURVEYED BY RICHARD RYBINSKI, L.S. AUGUST 3, 2012, DRAWING NUMBER YORK812F.DWG. 4. KUCERA AND ASSOCIATES, INC. DRAWING, TAX MAP NUMBER 305.18, TOWN OF WHITESTOWN, ONEIDA COUNTY, NEW YORK, REVISION 2 DATED 7/27/2009. 5.WESTINGHOUSE ELECTRIC CORPORATION M & R BUILDING DRAWINGS, JOB NUMBER 4395, DATED OCT. 10,1957. SHEET A-1, "SITE PLAN", REV. DATED JAN. 1958 – SHEET A-12, "GROUND FLOOR PLAN", REV. DATED JAN. 1958 – AND SHEET P-7, "SCHEMATIC LAYOUT OF TRANSFORMER OR PIPING". SCALES VARY

REFERENCES: 1. PALMERTON GROUP FIGURE 3, TITLED EXCAVATION AREAS.

2. GOOGLE EARTH PRO, IMAGE DATED 7-21-2011.

THE GROUNDWATER ELEVATION FROM MW-9 WAS OMITTED FROM THE CONTOUR ANALYSIS. SEE TEXT FOR EXPLANATION.

------ STORM SEWER [413.51] GROUNDWATER ELEVATION

<u>NOTE:</u>

FORMER RAILROAD SPUR 2011 REMEDIAL EXCAVATION LIMITS MW-7 MONITORING WELL (NOV. 2012 & SEP. 2014) DRY WELL • FLOOR DRAIN STORM SEWER DRAIN

<u>LEGEND</u>

----- ADJACENT PROPERTIES BOUNDARY

(N)

MA

R ELEVATION SER 2014

UNDWATER OCTOBE

 \mathbf{O} GR O.

μÅ

ΨZ

04 ×0

51

13035

C

SHEET 6

Drawing Number 00032927-D10

YORK

SITE NEW

5140 YORKVILLE, 1

REVISIONS	REV DESCRIPTION		Revised: Chkd: Appr.:	Apr.:	Appr.: Appr.:
DRAWN BY RAF 12/52014 SEAL	CHECKED	APPROVED	PROPERTY OF WSP USA CORP. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT	THE BE DISCLOSED ON REPRODUCED IN ANY FORM OF THE BE DISCLOSED ON REPRODUCED IN ANY FORM THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS AND SUPPLIERS WITHOUT THE WRITTEN CONSENT OF WSP USA CORP.	NOTICE: THIS DRAWING HAS BEEN PREPARED UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, IT IS A VIOLATION OF STATE LAW FOR ANY PERSONS, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT IN ANY WAY.
	SUB-SLAB, INDOOR AIR, AND			2140 SHE YORKVILLE, NEW YORK	PREPARED FOR 5140 COMMERCIAL DRIVE, LLC YORKVILLE, NEW YORK
			SHE	WSP USA Corp. 5 Sullivan Street	7

OA-01 _____ _____

<u>LEGEND</u>

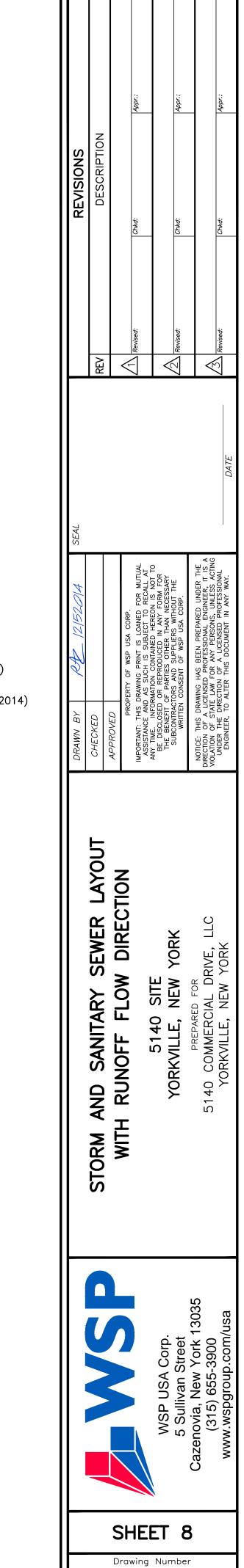
SS-04/IA-04 🔻	SUB-SLAB AND INDOOR AIR SAMPLE
OA-01	OUTDOOR AIR SAMPLE
	SITE PROPERTY BOUNDARY
	ADJACENT PROPERTIES BOUNDARY
	FORMER RAILROAD SPUR
	2011 REMEDIAL EXCAVATION LIMITS
MW-7_	MONITORING WELL (NOV. 2012 & SEP. 2014)
MW-7	MONITORING WELL (NOV. 2012 & SEP. 2014) DRY WELL
Ť	, , , , , , , , , , , , , , , , , , ,
Ť	DRY WELL
Ť	DRY WELL FLOOR DRAIN
Ť	DRY WELL FLOOR DRAIN SANITARY OR FLOOR DRAIN PIPE

-(N)

20

REFERENCES: 1. PALMERTON GROUP FIGURE 3, TITLED EXCAVATION AREAS.

2. GOOGLE EARTH PRO, IMAGE DATED 7-21-2011.


3. BUILDING, WELLS, SOIL BORINGS, AND HAND AUGERS SURVEYED BY RICHARD RYBINSKI, L.S. AUGUST 3, 2012, DRAWING NUMBER YORK812F.DWG. 4. KUCERA AND ASSOCIATES, INC. DRAWING, TAX MAP NUMBER 305.18, TOWN OF WHITESTOWN, ONEIDA COUNTY, NEW YORK, REVISION 2 DATED 7/27/2009.

5.WESTINGHOUSE ELECTRIC CORPORATION M & R BUILDING DRAWINGS, JOB NUMBER 4395, DATED OCT. 10,1957. SHEET A-1, "SITE PLAN", REV. DATED JAN. 1958 – SHEET A-12, "GROUND FLOOR PLAN", REV. DATED JAN. 1958 – AND SHEET P-7, "SCHEMATIC LAYOUT OF TRANSFORMER OR PIPING". SCALES VARY

THE ORIGINAL VERSION OF THIS DRAWING IS IN COLOR. BLACK & WHITE REPRODUCTION MAY NOT ACCURATELY DEPICT CERTAIN INFORMATION.

SCALE, FEET SOME LOCATIONS ARE APPROXIMATE AND WERE TAKEN FROM THE DRAWINGS REFERENCED ON THIS SHEET.

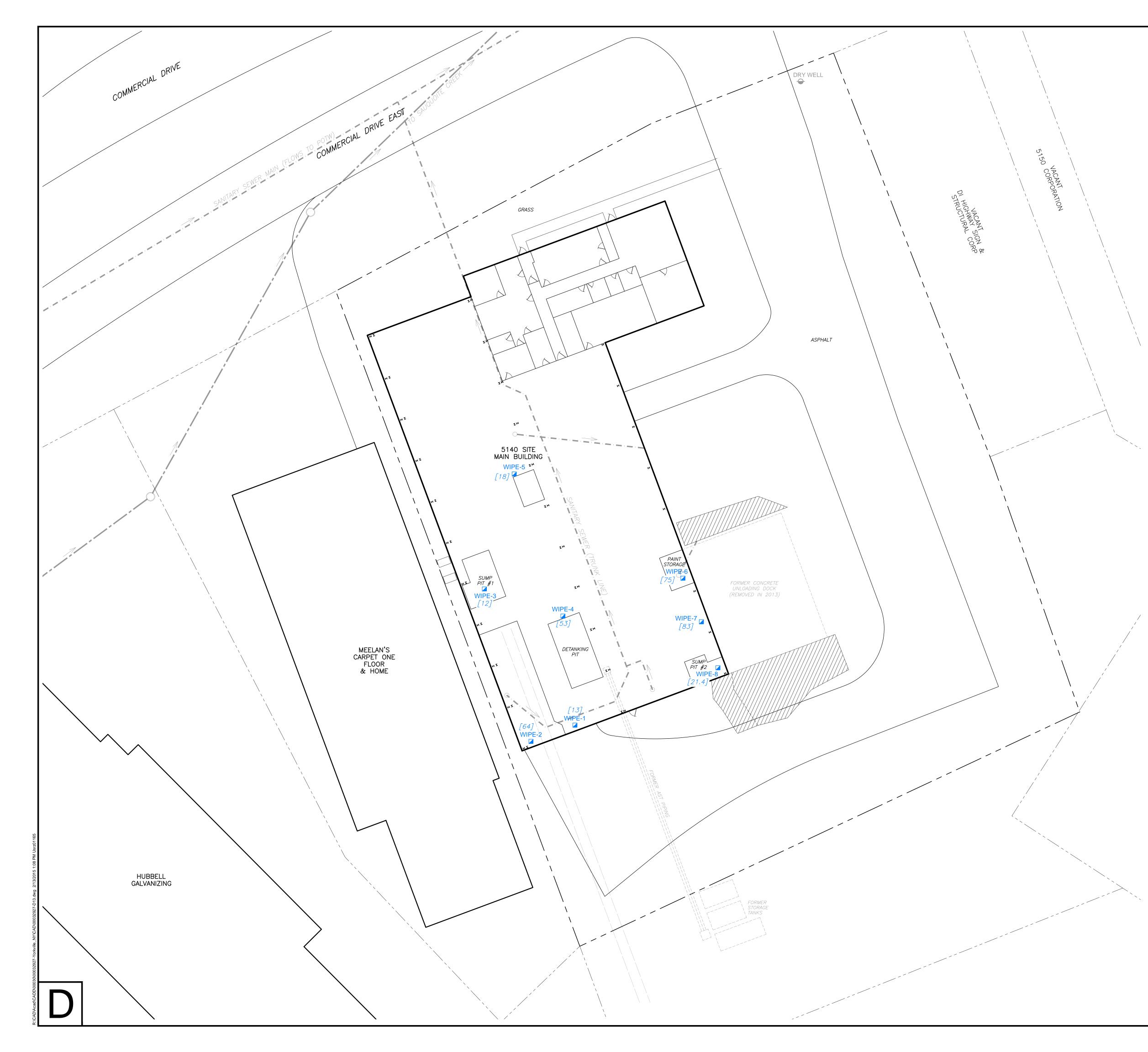
00032927-D12

_____ _____ STORM SEWER

<u>LEGEND</u>

MW-9
PROPOSED MONITORING WELL $^{\text{MW-4}}$ % $\,$ monitoring well (abandoned nov. 2012) $^{\rm MW-5}\oplus$ MONITORING WELL DAMAGED AND REMOVED DURING INTERIM REMEDIAL MEASURES (FEB. 2014) SB-21 SOIL BORING (2014) ----- SITE PROPERTY BOUNDARY ADJACENT PROPERTIES BOUNDARY FORMER RAILROAD SPUR 2011 REMEDIAL EXCAVATION LIMITS DRY WELL O FLOOR DRAIN STORM SEWER DRAIN

 (\mathbf{N})


REFERENCES: 1. PALMERTON GROUP FIGURE 3, TITLED EXCAVATION AREAS. 2. GOOGLE EARTH PRO, IMAGE DATED 7-21-2011. 3. BUILDING, WELLS, SOIL BORINGS, AND HAND AUGERS SURVEYED BY RICHARD RYBINSKI, L.S. AUGUST 3, 2012, DRAWING NUMBER YORK812F.DWG.

RUNOFF DIRECTION

4. KUCERA AND ASSOCIATES, INC. DRAWING, TAX MAP NUMBER 305.18, TOWN OF WHITESTOWN, ONEIDA COUNTY, NEW YORK, REVISION 2 DATED 7/27/2009. 5.WESTINGHOUSE ELECTRIC CORPORATION M & R BUILDING DRAWINGS, JOB NUMBER 4395, DATED OCT. 10,1957. SHEET A-1, "SITE PLAN", REV. DATED JAN. 1958 – SHEET A-12, "GROUND FLOOR PLAN", REV. DATED JAN. 1958 – AND SHEET P-7, "SCHEMATIC LAYOUT OF TRANSFORMER OR PIPING". SCALES VARY

THE ORIGINAL VERSION OF THIS DRAWING IS IN COLOR. BLACK & WHITE REPRODUCTION MAY NOT ACCURATELY DEPICT CERTAIN INFORMATION.

SCALE, FEET SOME LOCATIONS ARE APPROXIMATE AND WERE TAKEN FROM THE DRAWINGS REFERENCED ON THIS SHEET.

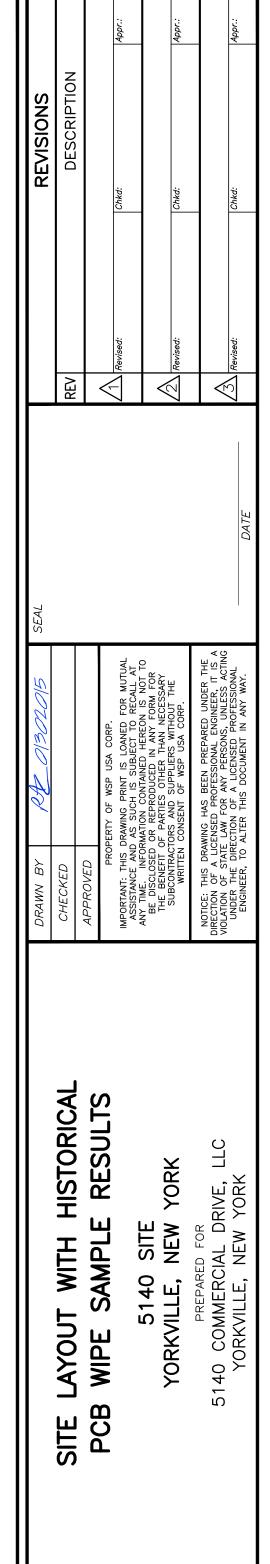
SCALE, FEET SOME LOCATIONS ARE APPROXIMATE AND WERE TAKEN FROM THE DRAWINGS REFERENCED ON THIS SHEET.

THE ORIGINAL VERSION OF THIS DRAWING IS IN COLOR. BLACK & WHITE REPRODUCTION MAY NOT ACCURATELY DEPICT CERTAIN INFORMATION.

2. GOOGLE EARTH PRO, IMAGE DATED 7-21-2011. 3. BUILDING, WELLS, SOIL BORINGS, AND HAND AUGERS SURVEYED BY RICHARD RYBINSKI, L.S. AUGUST 3, 2012, DRAWING NUMBER YORK812F.DWG. 4. KUCERA AND ASSOCIATES, INC. DRAWING, TAX MAP NUMBER 305.18, TOWN OF WHITESTOWN, ONEIDA COUNTY, NEW YORK, REVISION 2 DATED 7/27/2009. 5.WESTINGHOUSE ELECTRIC CORPORATION M & R BUILDING DRAWINGS, JOB NUMBER 4395, DATED OCT. 10,1957. SHEET A-1, "SITE PLAN", REV. DATED JAN. 1958 – SHEET A-12, "GROUND FLOOR PLAN", REV. DATED JAN. 1958 – AND SHEET P-7, "SCHEMATIC LAYOUT OF TRANSFORMER OR PIPING". SCALES VARY

1. PALMERTON GROUP FIGURE 3, TITLED EXCAVATION AREAS.

[18] TOTAL PCB CONCENTRATION IN MICROGRAMS PER 100 SQUARE CENTIMETERS (μ g/cm²)


REFERENCES:

----- SITE PROPERTY BOUNDARY ----- ADJACENT PROPERTIES BOUNDARY FORMER RAILROAD SPUR -------------------------STORM SEWER

2011 REMEDIAL EXCAVATION LIMITS DRY WELL FLOOR DRAIN STORM SEWER DRAIN \longrightarrow \longrightarrow FLOW DIRECTION WIPE-5 🛛 PCB WIPE SAMPLE (2011)

 (\mathbf{N})

<u>LEGEND</u>

00032927-D13

Soil Sampling Results - Polychlorinated Biphenyls and Pesticides 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation Criteria	SB-21 (0-0.17)	SB-21 (0-1)	SB-22 (0-0.17)	SB-22 (0-1)	SB-23 (0-0.17)	SB-23 (0-1)	SB-24 (0-0.17)	SB-0914B Duplicate	SB-24 (0-1.0)	SB-25 (0-0.17)	SB-25 (0-1.0)	SB-26 (0-0.17)
Date:	(b)	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/15/14</u>	[SB-24 (0-0.17)]	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>
PCBs (mg/kg) Aroclor 1254 Aroclor 1260 Total PCBs	- - 10	0.0736 U 0.146 J 0.146 J	0.0585 U 0.111 J 0.111 J	0.0600 U 0.081 J 0.081 J	0.0596 U 0.0596 U 0.0596 U	0.0568 U 0.0376 J 0.0376 J	0.0576 U 0.0576 U 0.0576 U	0.0634 U 0.0971 J 0.0971 J	0.0654 U 0.108 J 0.108 J	0.0561 U 0.0561 U 0.0561 U	0.0627 U 0.0773 J 0.0773 J	0.0615 U 0.0820 J 0.0820 J	0.0646 U 0.112 J 0.112 J
Pesticides (mg/kg) Hexachlorobenzene p,p'-DDD P,P'-DDT Toxaphene	12 180 94 -	NA NA NA	NA NA NA NA	0.00290 U 0.00290 U 0.00290 U 0.290 U	0.00288 U 0.00288 U 0.00288 U 0.288 U	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	0.0032 UJ 0.0032 UJ 0.0032 UJ 0.32 UJ	0.00307 UJ 0.00307 UJ 0.00307 UJ 0.307 UJ	NA NA NA NA
Sample ID (Depth): Date:	Evaluation Criteria (b)	SB-26 (0-1.0) 9/15/14	SB-27 (0-0.17) 9/15/14	SB-27 (0-1.0) 9/15/14	SB-28 (0-0.17) 9/15/14	SB-28 (0-1.0) 9/15/14	SB-29 (0-0.17) 9/15/14	SB-29 (0-1.0) 9/15/14	SB-30 (0-0.17) 9/15/14	SB-0914A (0-0.17) <u>Duplicate</u> [SB-30 (0-0.17)]	SB-30 (0-1.0) 9/15/14	SB-31 (0-0.17) 9/15/14	SB-31 (0-1.0) 9/15/14
Sample ID (Depth): Date: PCBs (mg/kg) Aroclor 1254 Aroclor 1260 Total PCBs		SB-26 (0-1.0) <u>9/15/14</u> 0.0619 U 0.0721 J 0.0721 J	SB-27 (0-0.17) <u>9/15/14</u> 0.0626 U 0.539 J 0.539 J	SB-27 (0-1.0) <u>9/15/14</u> 0.0573 U 0.0895 J 0.0895 J	SB-28 (0-0.17) <u>9/15/14</u> 0.3190 U 2.87 J 2.87 J	SB-28 (0-1.0) <u>9/15/14</u> 0.0605 U 0.154 J 0.154 J	SB-29 (0-0.17) <u>9/15/14</u> 0.5430 U 12.7 J 12.7 J	SB-29 (0-1.0) <u>9/15/14</u> 0.3190 U 6.28 J 6.28 J	SB-30 (0-0.17) <u>9/15/14</u> 0.5480 U 15.1 J 15.1 J	``	SB-30 (0-1.0) <u>9/15/14</u> 0.1710 U 2.420 J 2.420 J	SB-31 (0-0.17) <u>9/15/14</u> 0.5370 U 8.43 J 8.43 J	SB-31 (0-1.0) <u>9/15/14</u> 0.1180 U 1.28 J 1.28 J

Soil Sampling Results - Polychlorinated Biphenyls and Pesticides 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation Criteria	SB-32 (0-0.17)	SB-32 (0-1.0)	SB-33 (0-0.17")	SB-33 (0-1.0)	SB-34 (1-3)	SB-35 (1-3)	SB-36 (1-3)	SB-37 (1-3)	SB-38 (1-3)	SB-39 (1-3)	SB-40 (4-6)	SB-40 (4-6)
Date:	(b)	9/15/14	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/18/14</u>	<u>9/16/14</u>	<u>9/16/14</u>
PCBs (mg/kg) Aroclor 1254 Aroclor 1260 Total PCBs	- - 10	0.1030 U 1.05 J 1.05 J	0.0610 U 0.0610 U 0.0610 U	0.2500 U 3.57 J 3.57 J	0.0563 U 0.0563 U 0.0563 U	0.0656 U 0.0656 U 0.0656 U	0.0507 U 0.0507 U 0.0507 U	0.0629 U 0.063 U 0.063 U	0.0500 U 0.050 U 0.050 U	0.0511 U 0.051 U 0.051 U	0.6590 J 0.394 J 1.053 J	0.0783 U 0.078 U 0.078 U	0.0783 U 0.078 U 0.078 U
<i>Pesticides (mg/kg)</i> Hexachlorobenzene p,p'-DDD P,P'-DDT Toxaphene	12 180 94 -	0.00253 U 0.00253 U 0.00253 U 0.253 U	0.00305 U 0.00125 J 0.00305 U 0.305 U	NA NA NA NA	NA NA NA	0.0033 U 0.0033 U 0.0033 U 0.33 U	NA NA NA	0.00312 U 0.00312 U 0.00312 U 0.312 U	0.00251 U 0.00251 U 0.00251 U 0.251 U	NA NA NA NA	0.00258 U 0.00258 U 0.00258 U 0.258 U	0.00389 U 0.00328 J 0.00389 U 0.389 U	NA NA NA NA
Sample ID (Depth): Date:	Evaluation Criteria (b)	SB-41 (2-4) <u>9/16/14</u>	SB-42 (2-4) <u>9/16/14</u>	SB-43 (2-4) <u>9/18/14</u>	SB-44 (1-3) <u>9/16/14</u>	SB-44 (10-14) <u>9/16/14</u>	SB-45 (2-4) <u>9/17/14</u>	SB-45 (12-14) <u>9/17/14</u>	SB-46 (2-4) <u>9/18/14</u>	SB-47 (2-4) <u>9/17/14</u>	SB-48 (2-4) <u>9/17/14</u>	SB-48 (5-7) <u>9/17/14</u>	SB-400 (5-7) <u>Duplicate</u> [SB-48 (5-7)]
	Criteria							. ,					<u>Duplicate</u>

Soil Sampling Results - Polychlorinated Biphenyls and Pesticides 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation Criteria	SB-50(0-0.17)	SB-150 Duplicate	SB-50 (0-1.0)	SB-51 (7.5-8)
Date:	(b)	<u>12/19/14</u>	[SB-50 (017)]	<u>12/19/14</u>	<u>12/19/14</u>
PCBs (mg/kg)					
Aroclor 1254	-	0.0440 U	0.0410 U	0.0450 U	0.0370 U
Aroclor 1260	-	1.970	0.620	2.010	0.2050 J
Total PCBs	10	1.970	0.620	2.010	0.2050

a\ PCBs = polychlorinated biphenyls ; U = analyte not detected above reporting limit; NA = not analyzed;

UJ = analyte not detected above reporting limit, quantitation limit may be inaccurate or imprecise.

J = reported value may not be accurate or precise.

b\ Analytes highlighted in bold text and gray shading exceed either the site-specifc soil cleanup objective (PCBs only; see text for explanation) or the New York State Department of Environmental Conservation's Restricted Use Soil Cleanup Objectives for Industrial Settings (6 NYCRR PART 375 - Table 375-6.8(b): Restricted Use Soil Cleanup Objectives).

Soil Sampling Results - Semivolatile Organic Compounds 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation Criteria	SB-22 (0-0.17)	SB-22 (0-1)	SB-25 (0-0.17)	SB-25 (0-1.0)	SB-27 (0-0.17)	SB-27 (0-1.0)	SB-28 (0-0.17)	SB-28 (0-1.0)	SB-30 (0-0.17)	SB-0914A (0-0.17)
Date:	(b)	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/15/14</u>	<u>Duplicate</u> [SB-30 (0-0.17)]						
SVOCs (µg/kg)											
2-Methylnaphthalene	-	83 J	399 U	212 U	208 U	418 U	192 U	716 U	203 U	748 U	760 U
Cresols, M & P	1,000	405 U	799 U	424 U	417 U	837 U	383 U	1,430 U	406 U	1,500 U	1,520 U
Acenaphthene	1,000,000	378	399 U	212 U	128 J	90 J	192 U	190 J	203 U	748 UJ	194 J
Acenaphthylene	1,000,000	203 U	399 U	212 U	208 U	161 J	192 U	716 U	203 U	192 J	308 J
Anthracene	-	545	98 J	43 J	127 J	406 J	192 U	417 J	203 U	470 J	760 J
Benzo(a)anthracene	11,000	1,360	341 J	184 J	416	2,380	71 J	1,960	149 J	2,330 J	3,260
Benzo(a)pyrene	1,100	1,010	319 J	158 J	336	2,250	65 J	1,840	131 J	2,420 J	3,150
Benzo(b)fluoranthene	11,000	947	335 J	141 J	336	1,960	59 J	1,770	126 J	2,190 J	2,850
Benzo(g,h,i)perylene	1,000,000	574	214 J	97 J	177 J	1,390	39 J	1,160	84 J	1,630 J	2,110
Benzo(k)fluoranthene	110,000	1,080	314 J	147 J	324	2,370	63 J	1,590	125 J	2,150 J	3,190
bis(2-Ethylhexyl) phthalate	-	316 J	567 J	424 U	803	837 U	1,550	1,430 U	406 U	461 J	1,520 U
Benzyl butyl phthalate	-	405 U	799 U	424 U	417 U	837 U	383 U	1,430 U	406 U	316 J	317 J
Carbazole	-	455	112 J	212 U	92 J	147 J	192 U	177 J	203 U	748 U	192 J
Chrysene	110,000	1,550	448	211 J	446	2,610	80 J	2,150	167 J	2,540 J	3,520
Dibenzofuran	1,000,000	210	399 U	212 U	208 U	418 U	192 U	716 U	203 U	748 U	760 U
Di-n-butyl phthalate	-	405 U	799 U	91 J	101 J	104 J	74 J	1,430 U	91 J	1,500 U	1,520 U
Fluoranthene	1,000,000	3,270	951	347	824	3,730	128 J	3,180	239	3,630 J	5,140
Fluorene	1,000,000	336	399 U	212 U	74 J	418 U	192 U	716 U	203 U	748 UJ	760 U
Indeno(1,2,3-c,d)pyrene	11,000	558	189 J	87 J	171 J	1,230	192 U	1,090	74 J	1,510 J	1,860
Naphthalene	1,000,000	109 J	399 U	212 U	208 U	418 U	192 U	716 U	203 U	748 U	760 U
Phenanthrene	1,000,000	3,010	742	182 J	561	1,390	71 J	1,480	128 J	1,240 J	1,840
Pyrene	1,000,000	2,520	719	349	771	3,880	129 J	2,860	241	3,490 J	4,980

Soil Sampling Results - Semivolatile Organic Compounds 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation	SB-30 (0-1.0)	SB-32 (0-0.17)	SB-32 (0-1.0)	SB-34 (1-3)	SB-36 (1-3)	SB-37 (1-3)	SB-39 (1-3)
Date:	Criteria (b)	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	9/17/14	<u>9/18/14</u>
SVOCs (µg/kg)								
2-Methylnaphthalene	-	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Cresols, M & P	1,000	390 U	343 U	1,630 U	435 U	425 U	349 U	349 U
Acenaphthene	1,000,000	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Acenaphthylene	1,000,000	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Anthracene	-	93 J	172 U	639 J	217 U	213 U	175 U	175 U
Benzo(a)anthracene	11,000	364	172 U	2,590	217 U	213 U	175 U	36 J
Benzo(a)pyrene	1,100	359	172 U	2,600	217 U	213 U	175 U	175 U
Benzo(b)fluoranthene	11,000	314	172 U	2,160	217 U	213 U	175 U	175 U
Benzo(g,h,i)perylene	1,000,000	223	172 U	1,650	217 U	213 U	175 U	175 U
Benzo(k)fluoranthene	110,000	322	172 U	2,330	217 U	213 U	175 U	175 U
bis(2-Ethylhexyl) phthalate	-	390 U	343 U	1,630 U	435 U	425 U	349 U	349 U
Benzyl butyl phthalate	-	390 U	343 U	1,630 U	435 U	425 U	349 U	349 U
Carbazole	-	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Chrysene	110,000	366	172 U	2,730	217 U	213 U	175 U	175 U
Dibenzofuran	1,000,000	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Di-n-butyl phthalate	-	81 J	66 J	1,630 U	119 J	98 J	78 J	349 U
Fluoranthene	1,000,000	555	172 U	4,130	217 U	213 U	175 U	65 J
Fluorene	1,000,000	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Indeno(1,2,3-c,d)pyrene	11,000	211	172 U	1,570	217 U	213 U	175 U	175 U
Naphthalene	1,000,000	195 U	172 U	816 U	217 U	213 U	175 U	175 U
Phenanthrene	1,000,000	191 J	172 U	1,990	217 U	213 U	175 U	40 J
Pyrene	1,000,000	578	172 U	4,150	217 U	213 U	175 U	51 J

SB-40 (4-6)	SB-41 (2-4)
<u>9/16/14</u>	<u>9/16/14</u>
266 U	241 U
531 U	483 U
266 U	241 U
65 J	241 UJ
78 J	241 U
255 J	108 J
287	94 J
261 J	109 J
201 J 221 J 247 J	72 J 97 J
531 U	483 U
531 U	483 U
266 U	241 U
384	152 J
266 U	241 U
60 J	483 U
569	230 J
266 U	241 U
169 J	65 J
266 U	241 U
430	139 J
733	247

Soil Sampling Results - Semivolatile Organic Compounds 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Sample ID (Depth): Evaluation Criteria		SB-44 (1-3)	SB-44 (10-14)	SB-46 (2-4)	SB-48 (2-4)	SB-48 (5-7)
Date:	(b)	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/18/14</u>	<u>9/17/14</u>	<u>9/17/14</u>
SVOCs (µg/kg)							
2-Methylnaphthalene	-	204 U	175 U	179 U	214 U	190 U	210 U
Cresols, M & P	1,000	408 U	349 U	359 U	428 U	380 U	43 J
Acenaphthene	1,000,000	204 U	175 U	179 U	214 U	190 U	210 U
Acenaphthylene	1,000,000	204 UJ	175 UJ	179 UJ	214 U	190 U	210 U
Anthracene	-	204 U	175 U	179 U	214 U	190 U	210 U
Benzo(a)anthracene	11,000	204 U	175 U	179 U	214 U	190 U	210 U
Benzo(a)pyrene	1,100	204 U	175 U	179 U	214 U	190 U	210 U
Benzo(b)fluoranthene	11,000	204 U	175 U	179 U	214 U	190 U	210 U
Benzo(g,h,i)perylene	1,000,000	204 U	175 U	179 U	214 U	190 U	210 U
Benzo(k)fluoranthene	110,000	204 U	175 U	179 U	214 U	190 U	210 U
bis(2-Ethylhexyl) phthalate	-	408 U	349 U	359 U	428 U	380 U	420 U
Benzyl butyl phthalate	-	408 U	349 U	359 U	428 U	380 U	420 U
Carbazole	-	204 U	175 U	179 U	214 U	190 U	210 U
Chrysene	110,000	43 J	175 U	179 U	214 U	190 U	210 U
Dibenzofuran	1,000,000	204 U	175 U	179 U	214 U	190 U	210 U
Di-n-butyl phthalate	-	408 U	349 U	43 J	428 U	380 U	123 J
Fluoranthene	1,000,000	54 J	175 U	179 U	214 U	190 U	210 U
Fluorene	1,000,000	204 U	175 U	179 U	214 U	190 U	210 U
Indeno(1,2,3-c,d)pyrene	11,000	204 U	175 U	179 U	214 U	190 U	210 U
Naphthalene	1,000,000	204 U	175 U	179 U	214 U	190 U	210 U
Phenanthrene	1,000,000	204 U	175 U	179 U	214 U	190 UJ	210 U
Pyrene	1,000,000	66 J	175 U	179 U	214 U	190 U	210 U

a\ SVOCs = Semi-volatile organic compounds; NYSDEC = New York State Department of Environmental Conservation; SCO = soil cleanup objective; U = analyte not detected above reporting limit; UJ = analyte not detected above reporting limit, quantitation limit may be inaccurate or imprecise; J = reported value may not be accurate or precise; ug/kg = micrograms per kilogram.

b\ Analytes highlighted in bold text and gray shading exceed the NYSDEC's Restricted Use Soil Cleanup Objectives for Industrial Settings (6 NYCRR PART 375 - Table 375-6.8(b): Restricted Use Soil Cleanup Objectives).

SB-400 (5-7)
Duplicate [SB-48 (5-7)]
$\begin{array}{c} 210 \ U \\ 420 \ U \\ 210 \ U \\$

Soil Sampling Results - Metals 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation Criteria	SB-22 (0-0.17)	SB-22 (0-1)	SB-25 (0-0.17)	SB-25 (0-1.0)	SB-27 (0-0.17)	SB-27 (0-1.0)	SB-28 (0-0.17)
Date:	(b)	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>
Metals (mg/kg)								
Aluminum	-	8,730 J	8,090 J	11,400	11,500	10,300	10,600	5,610
Antimony	-	0.897 J	0.640 J	0.637 UJ	0.588 UJ	0.606 UJ	0.575 UJ	2.750 UJ
Arsenic	16	12.1 J	12.1 J	10.2 J	12.0 J	8.4 J	9.4 J	6.7 J
Barium	10000	78.4	73.1	84.1	101.0	85.7	88.4	93.3
Beryllium	2700	0.470 J	0.434 J	0.583	0.607	0.548	0.546	2.200 U
Cadmium	60	1.05	0.85	0.68	0.73	0.62	0.65	0.91 J
Calcium	-	22,400	86,600	6,430	4,100	11,500	2,760	195,000
Chromium, Total	6800	25.1	17.1	17.7	15.8	15.7	13.4	17.3
Cobalt	-	7.84	6.52	9.01	9.93	8.45	8.75	6.03
Copper	10000	122	70	47	57	40	23	105
Iron	-	22,100	19,100	24,900	28,400	23,300	27,400	13,700
Lead	3900	78.0	67.6 B	33.9	29.3	32.4	16.9	22.0
Magnesium	-	4,540	4,380	3,630	3,560	3,640	2,880	6,670
Manganese	10000	813	757	824	1,380	920	1,010	308
Nickel	10000	271	91	21	19	18	16	17
Potassium	-	1,320	1,160	1,770	1,450	1,500	1,160	1,100
Selenium	6800	1.23 U	1.18 U	0.96 J	0.90 J	0.97 J	1.74	5.51 U
Silver	6800	0.862 U	0.827 U	0.892 U	0.152 J	0.849 U	0.806 U	3.850 U
Sodium	-	38.8 J	192.0	63.7 U	58.8 U	62.2	57.5 U	275.0 U
Thallium	-	0.736 J	0.819 J	1.270 U	0.779 J	0.468 J	0.616 J	5.510 U
Vanadium	-	18.6	17.5	20.7	20.8	19.6	21.7	12.2
Zinc	10000	196	116	116	100	148	84	82
Mercury	6	0.0703 J	0.0693 J	0.0916	0.0986	0.0662	0.0676	0.0735
Chromium, Hexavalent	800	1.20 U	1.22 U	13.3	12.1	12.3	11.8	1.04 U

SB-28 (0-1.0)	SB-30 (0-0.17)
<u>9/15/14</u>	<u>9/15/14</u>
11,100	2,400 J
1.120 UJ	2.770 UJ
9.8 J	3.6 J
125.0	39.0 J
0.580 J	2.220 U
1.41	2.06 J
91,600	242,000
33.8	16.9
7.60	4.51
260	71 J
24,900	8,580 J
45.1	56.2 J
6,470	5,880 J
413	368 J
19	17
1,440	763 J
1.04 J	5.54 U
1.570 U	3.880 U
169.0	277.0 U
2.240 U	5.540 U
19.1	19.5
124	1,380 J
0.2310	0.0643
1.11 U	1.12 U

Soil Sampling Results - Metals 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation	SB-0914A (0-0.17)	SB-30 (0-1.0)	SB-32 (0-0.17)	SB-32 (0-1.0)	SB-34 (1-3)	SB-36 (1-3)	SB-37 (1-3)
	Criteria	Duplicate						
Date:	(b)	[SB-30 (0-0.17)]	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>
Metals (mg/kg)								
Aluminum	-	1,460	12,200	1,450	16,200	3,170	2,800	3,870
Antimony	-	5.430 UJ	0.548 UJ	2.460 UJ	0.572 UJ	0.928 UJ	0.620 UJ	0.531 U
Arsenic	16	3.0 J	8.3 J	2.6 J	5.5 J	1.8	1.2	2.7
Barium	10000	23.7	88.1	40.0	111.0	12.7	8.7	15.5
Beryllium	2700	4.350 U	0.673	1.970 U	0.941	0.137 J	0.148 J	0.165 J
Cadmium	60	1.17 J	0.51	0.27 J	0.69	0.13 J	0.10 J	0.19 J
Calcium	-	312,000	4,190	199,000	3,670	7,190	2,880	4,910
Chromium, Total	6800	10.9	15.1	4.4	20.5	3.9	3.3	5.0
Cobalt	-	2.78 J	10.70	3.25	11.90	2.63	2.14	3.31
Copper	10000	41	29	15	30	10	6	12
Iron	-	6,120	26,100	4,160	31,900	7,520	6,260	9,850
Lead	3900	35.7	13.2	9.0	14.3	1.9	1.4	2.4
Magnesium	-	23,300	3,530	4,920	5,180	2,360	1,630	2,270
Manganese	10000	327	549	291	266	259	212	357
Nickel	10000	11	18	8	27	6	5	7
Potassium	-	543 U	1,150	730	1,530	579	522	606
Selenium	6800	10.90 U	0.68 J	4.92 U	0.83 J	1.26 U	1.24 U	1.06 U
Silver	6800	7.610 U	0.767 U	3.440 U	0.801 U	0.879 U	0.868 U	0.743 U
Sodium	-	543.0 U	67.7	246.0 U	62.5	62.8 U	62.0 U	55.7
Thallium	-	10.900 U	0.402 J	4.920 U	0.481 J	1.260 U	1.240 U	0.346 J
Vanadium	-	11.5	19.6	4.3	26.3	5.6	4.9	7.3
Zinc	10000	1,570	105	41	79	18	12	24
Mercury	6	0.0505	0.0578	0.0162 J	0.0602	0.0460 U	0.0457 U	0.0384 U
Chromium, Hexavalent	800	5.62 U	1.16 U	1.02 U	1.08 U	1.00 U	1.00 U	1.04 U

SB-39 (1-3)	SB-40 (4-6)					
<u>9/18/14</u>	<u>9/16/14</u>					
3,030 J 0.529 UJ	12,500 4.340 J					
1.9 J 12.4	18.7 J 120.0					
0.137 J	0.742					
0.14 J	12.60					
7,030 3.8	63,000 217.0					
2.57	9.72					
9	2,310					
7,130 2.0	32,600 119.0					
2,390	5,920					
253	709					
5	40					
633 1.06 U	1,870 1.79					
0.741 U	3.790					
85.7	94.3					
1.060 U	0.575 J					
5.6 17	25.1 295					
0.0370 UJ	0.3350					
1.03 U	1.30 U					

Soil Sampling Results - Metals 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation	SB-41 (2-4)	SB-42 (2-4)	SB-44 (1-3)	SB-44 (10-14)	SB-46 (2-4)	SB-48 (2-4)	SB-48 (5-7)	SB-400 (5-7)
Date:	Criteria (b)	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/18/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>Duplicate</u> [SB-48 (5-7)]
Metals (mg/kg)									
Aluminum	-	11,800	10,500	2,910	8,390	9,550	2,810	11,600	12,100
Antimony	-	3.090 J	0.614 UJ	0.532 UJ	2.630 UJ	0.641 UJ	0.542 UJ	0.884 J	1.140 UJ
Arsenic	16	14.2 J	7.9 J	1.5 J	5.7 J	8.2	1.4 J	9.6	12.0
Barium	10000	137.0	64.5	9.8	45.4	75.5	10.2	99.4	97.7
Beryllium	2700	0.605	0.471 J	0.126 J	2.110 U	0.501 J	0.115 J	0.633	0.631 J
Cadmium	60	4.62	0.68	0.09 J	0.29 J	0.55	0.14 J	1.11	1.09
Calcium	-	57,600	4,080	3,770	117,000	3,170	4,790	25,200	31,800
Chromium, Total	6800	136.0	17.9	3.4	10.4	14.1	4.1	24.9	25.7
Cobalt	-	9.11	7.77	2.36	5.74	8.31	2.29	9.35	10.10
Copper	10000	1,610	56	7	38	23	20	138	102
Iron	-	38,600	29,700	6,670	25,500	24,500	6,480	27,800	30,100
Lead	3900	84.2	10.1	1.5	5.8	9.4	12.6	26.8	26.2
Magnesium	-	5,000	4,100	1,800	15,800	3,390	1,740	4,280	4,480
Manganese	10000	1,030	781	234	801	787	218 J	671	998
Nickel	10000	26	16	5	12	17	5	21	22
Potassium	-	1,720	1,050	550	876	1,270	564 J	1,480	1,640
Selenium	6800	1.18 J	1.23 U	1.06 U	5.26 U	1.28 U	0.54 J	1.22 U	2.28 U
Silver	6800	3.870	0.860 U	0.745 U	3.680 U	0.897 U	0.759 U	0.882	1.600 U
Sodium	-	191.0	61.4 U	53.2 U	263.0 U	155.0	61.6	1920.0	1760.0
Thallium	-	0.728 J	0.459 J	1.060 U	5.260 U	0.721 J	1.080 U	0.782 J	0.992 J
Vanadium	-	22.7	20.4	5.1	16.3	17.2	5.1	20.9	22.7
Zinc	10000	261	75	14	60	70	14	108	99
Mercury	6	0.9690	0.1040	0.0426 U	0.0420 U	0.0271 J	0.0413 U	0.1520	0.1430
Chromium, Hexavalent	800	21.9 J	1.21 U	1.03 U	1.04 U	1.14 U	1.21 U	1.24 U	1.28 U

a\ NYSDEC = New York State Department of Environmental Conservation; SCO = soil cleanup objective; U = analyte not detected above reporting limit; J = estimated concentration below reporting limit; B = analyte was detected in associated method blank; D = concentration is the result of a secondary dilution analysis; NA = not analyzed; mg/kg = milligrams per kilogram.

b\ Analytes highlighted in bold text and gray shading exceed the NYSDEC's Restricted Use Soil Cleanup Objectives for Industrial Settings (6 NYCRR PART 375 - Table 375-6.8(b): Restricted Use Soil Cleanup Objectives).

Soil Sampling Results - Volatile Organic Compounds 5140 Site Yorkville, New York (a)

Sample ID (Depth):	Evaluation Criteria	SB-22 (0-0.17)	SB-22 (0-1)	SB-25 (0-0.17)	SB-25 (0-1.0)	SB-27 (0-1.0)	SB-27 (0-0.17)	SB-28 (0-0.17)	SB-28 (0-1.0)	SB-30 (0-0.17)	SB-0914A (0-0.17) Duplicate	SB-30 (0-1.0)
Date:	(b)	<u>9/18/14</u>	<u>9/18/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/15/14</u>	9/15/14	<u>9/15/14</u>	<u>9/15/14</u>	[SB-30 (0-0.17)]	<u>9/15/14</u>
VOCs (µg/kg)												
1,2,4-Trichlorobenzene	-	NA	NA	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
1,2,4-Trimethylbenzene	380,000	NA	NA	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
1,3,5-Trimethylbenzene	380,000	NA	NA	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
Acetone	1,000,000	13.0 UJL	12.0 UJL	13.5 UJL	14.1 UJL	13.7 UJL	13.7 UJL	12.0 UJL	13.2 UJL	12.1 UJL	22.6 UJL	35.4 UJL
Carbon Disulfide	-	13.0 UJL	12.0 UJL	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
Chloroform	700,000	2.0 UJL	2.0 J	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
Total Xylenes (c)	1,000,000	13.0 UJL	12.0 UJL	NA	NA							
Methyl ethyl ketone	1,000,000	13.0 UJL	12.0 UJL	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
Methylene Chloride	1,000,000	13.0 UJL	12.0 UJL	13.5 UJL	14.1 UJL	13.7 UJL	13.7 UJL	12.0 UJL	13.2 UJL	12.1 UJL	22.6 UJL	35.4 UJL
Naphthalene	-	NA	NA	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
Tetrachloroethene	300,000	13.0 UJL	12.0 UJL	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL
Toluene	1,000,000	13.0 UJL	12.0 UJL	2.7 UJL	2.8 UJL	2.7 UJL	2.7 UJL	2.4 UJL	2.6 UJL	2.4 UJL	4.5 UJL	7.1 UJL

Sample ID (Depth):	Evaluation Criteria	SB-32 (0-0.17)	SB-32 (0-1.0)	SB-34 (1-3)	SB-34 (10-12)	SB-36 (1-3)	SB-36 (10-12)	SB-37 (1-3)	SB-37 (10-12)	SB-39 (1-3)	SB-40 (4-6)	SB-41 (2-4)
Date:	(b)	<u>9/15/14</u>	<u>9/15/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>9/18/14</u>	<u>9/16/14</u>	<u>9/16/14</u>
VOCs (µg/kg)												
1,2,4-Trichlorobenzene	-	2.2 UJL	2.6 UJL	5.2 UJL	5.6 UJL	5.1 UJL	5.2 UJL	5.3 UJL	5.6 UJL	NA	8.3 UJL	6.4 UJL
1,2,4-Trimethylbenzene	380,000	2.2 UJL	3.1 JL	NA								
1,3,5-Trimethylbenzene	380,000	2.2 UJL	1.7 JL	NA								
Acetone	1,000,000	11.1 UJL	13.1 UJL	5.9 JL	6.0 JL	51.0 UJL	6.8 JL	5.5 JL	6.5 JL	10.0 UJL	83.0 J	64.0 UJL
Carbon Disulfide	-	2.2 UJL	2.6 UJL	5.2 UJL	5.6 UJL	5.1 UJL	5.2 UJL	5.3 UJL	5.6 UJL	10.0 UJL	8.3 UJL	6.4 UJL
Chloroform	700,000	2.2 UJL	2.6 UJL	5.2 UJL	5.6 UJL	5.1 UJL	5.2 UJL	5.3 UJL	5.6 UJL	10.0 UJL	8.3 UJL	6.4 UJL
Total Xylenes (c)	1,000,000	NA	NA	5.2 UJL	5.6 UJL	5.1 UJL	5.2 UJL	5.3 UJL	5.6 UJL	10.0 UJL	8.3 UJL	6.4 UJL
Methyl ethyl ketone	1,000,000	2.2 UJL	2.6 UJL	31.0 UJL	33.0 UJL	30.0 UJL	31.0 UJL	32.0 UJL	33.0 UJL	10.0 UJL	50.0 UJL	38.0 UJL
Methylene Chloride	1,000,000	11.1 UJL	13.1 UJL	5.3 UJL	5.9 UJL	5.1 UJL	5.2 UJL	5.6 UJL	6.4 UJL	10.0 UJL	15.0 UJL	11.0 UJL
Naphthalene	-	2.2 UJL	7.0 JL	NA								
Tetrachloroethene	300,000	2.2 UJL	2.6 UJL	5.2 UJL	5.6 UJL	5.1 UJL	5.2 UJL	5.3 UJL	5.6 UJL	10.0 UJL	8.3 UJL	6.4 UJL
Toluene	1,000,000	2.2 UJL	2.6 UJL	5.2 UJL	5.6 UJL	5.1 UJL	5.2 UJL	5.3 UJL	5.6 UJL	10.0 UJL	8.3 UJL	6.4 UJL

Soil Sampling Results - Volatile Organic Compounds 5140 Site Yorkville, New York (a)

Sample ID (Depth):	SB-42 (11-14)	SB-42 (2-4)	SB-44 (1-3)	SB-44 (10-14)	SB-46 (2-4)	SB-48 (2-4)	SB-48 (5-7)	SB-400 (5-7)	SB-48 (13-15)
Date:	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/16/14</u>	<u>9/18/14</u>	<u>9/17/14</u>	<u>9/17/14</u>	<u>Duplicate</u> [SB-48 (5-7)]	<u>9/17/2015</u>
VOCs (µg/kg)									
1,2,4-Trichlorobenzene	5.3 UJL	6.8 UJL	5.3 UJL	5.4 UJL	NA	7.6 JL	6.3 UJL	6.4 UJL	5.4 UJL
1,2,4-Trimethylbenzene	NA	NA							
1,3,5-Trimethylbenzene	NA	NA							
Acetone	7.4 J	11.0 J	53.0 UJL	54.0 UJL	12.0 UJL	7.8 JL	56.0 JL	75.0 JL	54.0 UJL
Carbon Disulfide	5.3 UJL	6.8 UJL	5.3 UJL	5.4 UJL	12.0 UJL	6.3 UJL	2.5 JL	9.1 JL	5.4 UJL
Chloroform	5.3 UJL	6.8 UJL	5.3 UJL	5.4 UJL	12.0 UJL	6.3 UJL	6.3 UJL	6.4 UJL	5.4 UJL
Total Xylenes (c)	5.3 UJL	6.8 UJL	5.3 UJL	5.4 UJL	2.0 JL	6.3 UJL	6.3 UJL	6.4 UJL	5.4 UJL
Methyl ethyl ketone	32.0 UJL	41.0 UJL	32.0 UJL	33.0 UJL	12.0 UJL	38.0 UJL	12.0 JL	38.0 UJL	33.0 UJL
Methylene Chloride	5.5 UJL	8.7 UJL	5.3 UJL	5.4 UJL	12.0 UJL	6.3 UJL	6.3 UJL	8.5 UJL	5.4 UJL
Naphthalene	NA	NA							
Tetrachloroethene	5.3 UJL	6.8 UJL	5.3 UJL	5.4 UJL	12.0 UJL	6.3 UJL	6.3 UJL	6.4 UJL	1.8 JL
Toluene	5.3 UJL	6.8 UJL	5.3 UJL	5.4 UJL	12.0 UJL	2.5 JL	6.3 UJL	6.4 UJL	5.4 UJL

a\ VOCs = Volatile organic compounds; NYSDEC = New York State Department of Environmental Conservation; SCO = soil cleanup objective; U = analyte not detected above reporting limit; JL = estimated concentration with possible low bias; UJL = not detected, possible low bias; NA = not analyzed; ug/kg = micrograms per kilogram.

b\ Analytes highlighted in bold text and gray shading exceed the NYSDEC's Restricted Use Soil Cleanup Objectives for Industrial Settings (6 NYCRR PART 375 - Table 375-6.8(b):

c\ All samples were analyzed for m,p&o-xylenes, individually, which were non-detect throughout the data set, however, the samples analysed by Pace Long Island also reported Total Xylenes, of which there was a trace detectoin in one sample.

Groundwater Elevations 5140 Site Yorkville, New York (a)

	D	epth to Wate	r		Groundwater Elevation						
		(ft bto	oc)		(ft aMSL)						
Well ID	<u>11/29/2012</u>	12/20/2012	<u>10/14/2014</u>	<u>1/12/2015</u>	<u>11/29/2012</u>	12/20/2012	10/14/2014	1/12/2015	Notes		
MW-5	10.51	9.31	-		414.28	415.48	-	-	Destroyed		
MW-5R	-	-	11.69	9.44	-	-	413.07	415.32			
MW-6	10.48	9.46	11.54	9.37	414.46	415.48	413.4	415.57			
MW-7	9.84	8.66	11.11	8.86	414.28	415.46	413.01	415.26			
MW-8	9.67	8.41	10.71	NM	414.55	415.81	413.51	NM			
MW-9	-	-	11.39	9.17	-	-	413.28	415.5			
MW-10	-	-	13.48	11.23	-	-	413.4	415.65			

a/ ft aMSL = feet above mean sea level; ft btoc = feet below top of casing; "-"= not applicable/not measured. b/ MW-8 was inaccessible on 1/12/15 due to snow and ice.

Groundwater Results - Polychlorinated Biphenyls 5140 Site Yorkville, New York (a)

Sample ID:	Evaluation		MW-5R			MW-6		MW	-7
Date Sampled:	Criteria (b)	10/14/14	1/12/15	1/12/15	10/14/14	10/14/14	1/12/15	10/14/14	1/12/15
				Duplicate (c)		Duplicate (e)			
PCBs (µg/l)									
Aroclor 1016	0.09	0.1 UJ	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.05 UJ	0.26 U
Aroclor 1221	0.09	0.1 UJ	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.05 UJ	0.26 U
Aroclor 1232	0.09	0.1 UJ	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.05 UJ	0.26 U
Aroclor 1242	0.09	0.1 UJ	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.05 UJ	0.26 U
Aroclor 1248	0.09	0.1 UJ	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.05 UJ	0.26 U
Aroclor 1254	0.09	0.1 UJ	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.211 J	0.26 U
Aroclor 1260	0.09	0.346 J	0.26 U	0.28 U	0.05 UJ	0.05 UJ	0.26 U	0.05 UJ	0.26 U
Sample ID:	Evaluation	MW-8	3 (e)	MW·	-9	MW-1	0		
Date Sampled:	Criteria (b)	10/14/14	10/14/14	10/14/14	1/12/15	10/14/14	1/12/15		
			(e)						
PCBs (µg/l)									
Aroclor 1016	0.09	0.05 UJ	NS	0.05 UJ	0.26 U	0.05 UJ	0.26 U		
Aroclor 1221	0.09	0.05 UJ	NS	0.05 UJ	0.26 U	0.05 UJ	0.26 U		
Aroclor 1232	0.09	0.05 UJ	NS	0.05 UJ	0.26 U	0.05 UJ	0.26 U		
Aroclor 1242	0.09	0.05 UJ	NS	0.05 UJ	0.26 U	0.05 UJ	0.26 U		
Aroclor 1248	0.09	0.05 UJ	NS	0.05 UJ	0.26 U	0.05 UJ	0.26 U		
Aroclor 1254	0.09	0.05 UJ	NS	0.05 UJ	0.26 U	0.05 UJ	0.26 U		

a/ PCBs = polychorinated biphenyls; µg/l = micrograms per liter; U = analyte not detected above laboratory detection limits. UJ = not detected, quantitation limit may be inaccurate or imprecise; J = reported value may not be accurate or precise.
 The October 14, 2014 samples from monitoring wells MW-5R and MW-7 were collected outside of the low flow purge stabilization criteria for nepthlometric units and are considered false positive detections. The data are included in this table for purposes of discussion only. See text for further explanation.

0.26 U

0.05 UJ

0.26 U

0.05 UJ

b/ Concentrations in bold text and gray shading exceed the New York State Ambient Water Quality Standards or Guidance Values for Class groundwater provided in the New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1), dated June 1998.

- c/ Blind duplicate of sample from MW-5R was designated MW-0115 in the field.
- d/ Blind duplicate of sample from MW-6 was designated MW-1014 in the field.

0.05 UJ

e/ Monitoring well MW-8 was inaccessible due to snow and ice cover present at the site on 1/12/15.

NS

0.09

Aroclor 1260

Sub-slab Soil Gas, Indoor Air and Ambient Air Sampling Results 5140 Site Yorkville, New York (a)

Sample ID (Depth):										
	SS-01	IA-01	SS-02	IA-02	SS-03	IA-03	SS-04	SS-1014	IA-04	OA-1
Sample Type:		Indoor		Indoor		Indoor		Subslab	Indoor	Outdoor
	Subslab	Air	Subslab	Air	Subslab	Air	Subslab	Duplicate (c)	Air	Air
Date:	<u>10/14/14</u>	10/14/14	<u>10/14/14</u>							
VOCs (µg/m³)										
1,1,1-Trichloroethane	0.55 J	0.15 U	1.8 J	0.15 U	7 J	0.15 U	13	13	0.15 U	0.15 U
1,2,4-Trichlorobenzene	0.15 U	0.15 U	6.3 J	0.15 U	1.1 J	0.15 U				
1,2,4-Trimethylbenzene	4.5 J	0.15 U	13	0.74	6.7 J	0.74	19 J	17	0.15 U	0.54 J
1,3,5-Trimethylbenzene	2 J	0.15 U	0.15 U	0.59 J	0.15 U	0.64 J	8.3 J	8.2 J	0.15 U	0.15 U
1,4-Dichlorobenzene	0.96 J	0.15 U	1.7 J	0.15 U						
2,2,4-trimethylpentane	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	2.1	2.2	0.15 U	0.15 U
4-ethyltoluene	1 J	0.15 U	1.7 J	0.15 U	0.93 J	0.15 U	6.7 J	6.3 J	0.15 U	0.15 U
Acetone	650	24	470	24	460	20	1,900	2,600	13	14
Benzene	2.8 J	0.42 J	3.6 J	0.42 J	3.6 J	0.45 J	11	11	0.38 J	0.15 U
Carbon disulfide	11	0.15 U	20	0.15 U	11	0.15 U	9	9	0.15 U	0.15 U
Carbon tetrachloride	0.15 U	0.57	0.15 U	0.63	0.15 U	0.04 U	0.15 U	0.15 U	0.63	0.63
Chlorobenzene	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.46 J	0.15 U	0.15 U	0.15 U	0.15 U
Chloroethane	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.47	0.42	0.15 U	0.15 U
Chloroform	2.2 J	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.63 J	0.73	0.15 U	0.15 U
Chloromethane	0.15 U	1.1	0.56	1.2	0.15 U	1	0.15 U	0.15 U	0.95	1.1
Cyclohexane	3.6 J	0.15 U	0.15 U	0.15 U	3.3 J	0.15 U	7.3	9.3	0.15 U	0.15 U
Ethyl acetate	0.25 U	0.25 U	0.61 J	0.25 U						
Ethylbenzene	3 J	0.15 U	19	0.15 U	5.8 J	0.15 U	8 J	7.7 J	0.15 U	0.15 U
Freon 11	1.9 J	1.9	42	1.9	390	1.9	15	15	1.7	1.6
Freon 113	0.15 U	0.15 U	1 J	0.15 U	5.3 J	0.15 U	0.15 U	0.77 J	0.15 U	0.15 U
Freon 12	3.4 J	2.9	6.4	2.8	2.9 J	2.8	2.5	2.3	2.7	2.5
Heptane	8.6	0.15 U	6.1	0.15 U	7.8	0.15 U	20	19	0.15 U	0.15 U
Hexane	14	0.15 U	6.7	0.15 U	9.5	0.15 U	20	18	0.15 U	0.15 U
Isopropyl alcohol	12	2.5	18	2.1	14	4.3	41	0.15 U	3.3	2.8
m&p-Xylene	13 J	1.2 J	62	1.3 J	12 J	1.4	23	22	1.1 J	0.43 J
Methyl Butyl Ketone	1.7 J	0.3 U	5.7 J	0.3 U	2.7 J	0.3 U	0.3 UJ	0.3 UJ	0.3 U	0.3 U
Methyl Ethyl Ketone	8.3 J	1	11	1.1	7.4 J	1.3	19	14	1	0.91
Methyl Isobutyl Ketone	2.5 J	0.3 U	3.6 J	0.3 U	1.9 J	0.3 U	6.8 J	6.7 J	0.3 U	0.3 U
Methyl tert-butyl ether	4.9 J	0.15 U	4.5	0.15 U	4.4 J	0.15 U	11	9.4	0.15 U	0.15 U
Methylene chloride	0.15 U	0.15 U	0.42 J	0.45 J	0.45 J	0.52	0.45 J	0.56	0.15 U	0.35 J
o-Xylene	2.9 J	0.15 U	11	0.56 J	4.2 J	0.52 J	5.5 J	5.5 J	0.15 U	0.15 U
Styrene	1.4 J	0.15 U	2.7 J	0.15 U	1.6 J	0.15 U	7.7	6.8	0.15 U	0.15 U
Tetrachloroethylene	0.81 J	0.15 U	8.3 J	0.15 U	45	0.15 U	74	69	0.15 U	0.15 U
Toluene	11	0.9	9	0.87	10	1.6	25	23	0.83	0.68
Trichloroethene	0.91 J	0.04 U	0.97 J	0.04 U	5.9 J	0.27	20	19	0.04 U	0.04 U

a/ VOCs = volatile organic compounds; U = compound not detected at or above the reporting limit; UJ = quantitation limit may be inaccurate or imprecise; J = estimated concentration; µg/m³ = micrograms per cubic meter.

b/ Evaluation criteria are Soil Vapor/Indoor Air Matrices 1 and 2, as presented in the NYSDOH 's *Guidance for Evaluating Soil Vapor Intrusion in* the State of New York, dated October 2006.

c/ SS-1014 is a blind duplicate sample of SS-04.

Sub-slab Soil Gas, Indoor Air and Ambient Air Sampling Results 5140 Site Yorkville, New York (a)

Sample ID (Depth):										
,	SS-01	IA-01	SS-02	IA-02	SS-03	IA-03	SS-04	SS-1014	IA-04	OA-1
Sample Type:		Indoor		Indoor		Indoor		Subslab	Indoor	Outdoor
	Subslab	Air	Subslab	Air	Subslab	Air	Subslab	Duplicate (c)	Air	Air
Date:	<u>10/14/14</u>	10/14/14	<u>10/14/14</u>	10/14/14	<u>10/14/14</u>	10/14/14	<u>10/14/14</u>	<u>10/14/14</u>	10/14/14	<u>10/14/14</u>
VOCs (µg/m³)										
1,1,1-Trichloroethane	0.55 J	0.15 U	1.8 J	0.15 U	<mark>7 J</mark>	0.15 U	(13)	<mark>13</mark>	0.15 U	0.15 U
1,2,4-Trichlorobenzene	0.15 U	0.15 U	6.3 J	0.15 U	1.1 J	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
1,2,4-Trimethylbenzene	4.5 J	0.15 U	13	0.74	6.7 J	0.74	19 J	17	0.15 U	0.54 J
1,3,5-Trimethylbenzene	2 J	0.15 U	0.15 U	0.59 J	0.15 U	0.64 J	8.3 J	8.2 J	0.15 U	0.15 U
1,4-Dichlorobenzene	0.96 J	0.15 U	1.7 J	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
2,2,4-trimethylpentane	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	2.1	2.2	0.15 U	0.15 U
4-ethyltoluene	1 J	0.15 U	1.7 J	0.15 U	0.93 J	0.15 U	6.7 J	6.3 J	0.15 U	0.15 U
Acetone	650	24	470	24	460	20	1,900	2,600	13	14
Benzene	2.8 J	0.42 J	3.6 J	0.42 J	3.6 J	0.45 J	11	11	0.38 J	0.15 U
Carbon disulfide	11	0.15 U	20	0.15 U	11	0.15 U	9	9	0.15 U	0.15 U
Carbon tetrachloride	0.15 U	0.57	0.15 U	0.63	0.15 U	0.04 U	0.15 U	0.15 U	0.63	0.63
Chlorobenzene	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.46 J	0.15 U	0.15 U	0.15 U	0.15 U
Chloroethane	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.47	0.42	0.15 U	0.15 U
Chloroform	2.2 J	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.63 J	0.73	0.15 U	0.15 U
Chloromethane	0.15 U	1.1	0.56	1.2	0.15 U	1	0.15 U	0.15 U	0.95	1.1
Cyclohexane	3.6 J	0.15 U	0.15 U	0.15 U	3.3 J	0.15 U	7.3	9.3	0.15 U	0.15 U
Ethyl acetate	0.25 U	0.25 U	0.61 J	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Ethylbenzene	3 J	0.15 U	19	0.15 U	5.8 J	0.15 U	8 J	7.7 J	0.15 U	0.15 U
Freon 11	1.9 J	1.9	42	1.9	390	1.9	15	15	1.7	1.6
Freon 113	0.15 U	0.15 U	1 J	0.15 U	5.3 J	0.15 U	0.15 U	0.77 J	0.15 U	0.15 U
Freon 12	3.4 J	2.9	6.4	2.8	2.9 J	2.8	2.5	2.3	2.7	2.5
Heptane	8.6	0.15 U	6.1	0.15 U	7.8	0.15 U	20	19	0.15 U	0.15 U
Hexane	14	0.15 U	6.7	0.15 U	9.5	0.15 U	20	18	0.15 U	0.15 U
Isopropyl alcohol	12	2.5	18	2.1	14	4.3	41	0.15 U	3.3	2.8
m&p-Xylene	13 J	1.2 J	62	1.3 J	12 J	1.4	23	22	1.1 J	0.43 J
Methyl Butyl Ketone	1.7 J	0.3 U	5.7 J	0.3 U	2.7 J	0.3 U	0.3 UJ	0.3 UJ	0.3 U	0.3 U
Methyl Ethyl Ketone	8.3 J	1	11	1.1	7.4 J	1.3	19	14	1	0.91
Methyl Isobutyl Ketone	2.5 J	0.3 U	3.6 J	0.3 U	1.9 J	0.3 U	6.8 J	6.7 J	0.3 U	0.3 U
Methyl tert-butyl ether	4.9 J	0.15 U	4.5	0.15 U	4.4 J	0.15 U	11	9.4	0.15 U	0.15 U
Methylene chloride	0.15 U	0.15 U	0.42 J	0.45 J	0.45 J	0.52	0.45 J	0.56	0.15 U	0.35 J
o-Xylene	2.9 J	0.15 U	11	0.56 J	4.2 J	0.52 J	5.5 J	5.5 J	0.15 U	0.15 U
Styrene	1.4 J	0.15 U	2.7 J	0.15 U	1.6 J	0.15 U	7.7	6.8	0.15 U	0.15 U
Tetrachloroethylene	0.81 J	0.15 U	8.3 J	0.15 U	45	0.15 U	74	69	0.15 U	0.15 U
Toluene	11	0.9	9	0.87	10	1.6	25	23	0.83	0.68
Trichloroethene	0.91 J	0.04 U	0.97 J	0.04 U	<mark>5.9 J</mark>	0.27	20	<mark>19</mark>	0.04 U	0.04 U

a/ VOCs = volatile organic compounds; U = compound not detected at or above the reporting limit; UJ = quantitation limit may be

inaccurate or imprecise; J = estimated concentration; $\mu g/m^3 = micrograms$ per cubic meter.

b/ Evaluation criteria are Soil Vapor/Indoor Air Matrices 1 and 2, as presented in the NYSDOH 's *Guidance for Evaluating Soil Vapor Intrusion in* the State of New York, dated October 2006.

c/ SS-1014 is a blind duplicate sample of SS-04.

Boring Log: MW-5R

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 425

TOC Elevation (feet AMSL): 424.76

Total Depth (feet): 15.5

Completion Date: September 18, 2014

Borehole Diameter (inches): 2 *AMSL = Above Mean Sea Level

	Sa	mple	Data		Subsurface Profile					
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details			
2	1	1.2 (0-2), 1.2 (2-4)	- - -	75		Silty Sand (SM) Brown (7.5YR3/2) fine to medium-grained sand, some silt, some rootlets; dry; loose. Poorly-Graded Gravel (GP) Brown (7.5YR4/3) angular gravel (0.25 to 0.5 inch diameter); loose; dry.				
	2	1.0	- - -	50		 Silt (ML) Strong brown (7.5YR5/6) silt, little clay; medium dense; dry. Silty Gravel (GM) Strong brown (7.5YR5/6) sub-rounded gravel from 0.2 to 2.0 inches in diameter, and silt; medium dense; dry, becoming moist between 9.0 to 11.5 feet, becoming wet between 11.5 and 15.0 feet. 				
8 - - - 10 - - - - - - - 12	3	3.3	- - -	50						
14 — - - - -	4	NA	- - -	75						
16-						<i>Fat Clay (CH)</i> Reddish-gray (2.5YR5/1) clay, medium high to high plasticity; cohesive; soft; wet				
 18 — 						Bottom of Boring at 15.5 feet Refusal at 15.5 ft.				
20 —										

Geologist(s): Erik S. Reinert	WSP USA Corp.	
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street	
Driller/Operator: Wayne Nielson/Jolaan Price	Cazenovia, NY 13035	
Method: Direct Push/Hollow Stem Auger	(315) 655-3900	

Boring Log: MW-10

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 427.22

TOC Elevation (feet AMSL): 426.88

Total Depth (feet): 20

Completion Date: September 16, 2014

Borehole Diameter (inches): 2 *AMSL = Above Mean Sea Level

	Sa	ample	Data			Subsurface Profile	
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details
-	1	0.5	- - -	75		Silt with Sand (ML) Brown (7.5YR4/2) silt, little fine grained sand, trace rootlets; medium dense; dry. Poorly-Graded Gravel with Silt and Sand (GP-GM) Brown (7.5YR4/4) angular gravel, some silt and fine to	2, 22, 2 1, 1, 1 1,
5	2	0.9	- - -	100		medium-grained sand; medium dense; dry Silt (ML) Brown (7.5YR4/6) silt; stiff; dry.	
10-	3	0.2	- - -	75		Silt with Gravel (ML) Dark brown (7.5YR3/1) silt, little sub-angular gravel from 0.2 to 0.5 inches in diameter, little clay; stiff; dry.Poorly-Graded Gravel with Silt (GP-GM) Brown (7.5YR5/6) sub-angular gravel from 0.2 to 2.0 inches in diameter, little silt and sand; medium dense; dry, becoming moist between 14.5 to 15.5 feet.	
- - 15	4	0.7	- - -	50			
	5	NA	- - -	100		Poorly-Graded Gravel with Sand (GP) Reddish-yellow (7.5YR6/6) sub-rounded gravel from 0.1 to 2.0 inches in diameter, little fine to medium-grained sand; loose; wet. Lean Clay (CL) Reddish-gray (2.5YR5/1) clay; medium plasticity; cohesive; soft; wet.	
-						Poorly-Graded Gravel with Sand (GP) Dark reddish-gray (2.5YR4/1) sub-rounded gravel from 0.2 to 1.5 inches in diameter, little medium to coarse-grained sand; loose; wet.	
_ 25 —						Poorly-Graded Sand with Gravel (SP) Dark reddish-gray (2.5YR4/1) medium-grained sand, some sub-rounded gravel from 0.2 to 1.5 inch; loose; wet.	
						Bottom of Boring at 20 feet	

Geologist(s): Erik S. Reinert Subcontractor: Parratt Wolff, Inc. Driller/Operator: Wayne Nielson/Jolaan Price Method: Direct Push/Hollow Stem Auger WSP USA Corp. 5 Sullivan Street Cazenovia, NY 13035 (315) 655-3900

Boring Log: MW-9

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 425.08

TOC Elevation (feet AMSL): 424.67

Total Depth (feet): 27

Completion Date: September 18, 2014

Borehole Diameter (inches): 2 *AMSL = Above Mean Sea Level

	Sa	mple	Data			Subsurface Profile					
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details				
2	1	1.2 (0-2), 1.2 (2-4)	- - -	75		Silty Sand (SM) Brown (7.5YR3/2) fine to medium-grained sand, some silt, some rootlets; dry; loose. Poorly-Graded Gravel (GP) Brown (7.5YR4/3) angular gravel (0.25 to 0.5 inch diameter); loose; dry.					
	2	1.0	- - -	50		 Silt (ML) Strong brown (7.5YR5/6) silt, little clay; medium dense; dry. Silty Gravel (GM) Strong brown (7.5YR5/6) sub-rounded gravel from 0.2 to 2.0 inches in diameter, and silt; medium dense; dry, becoming moist between 9.0 to 11.5 feet, becoming wet between 11.5 and 15.0 feet. 					
- - - 10- - - - - - - - - - - - - - - -	3	3.3	- - -	50							
- - - 14 - -	4	NA	- - -	50							
16 — - - 18 — - -	5	NA	- - - -	75		Fat Clay (CH)Reddish-gray (2.5YR5/1) clay, medium high to high plasticity; cohesive; soft; wetPoorly-Graded Gravel with Clay and Sand (GP-GC)Gray (7.5YR5/1) sub-rounded gravel from 0.2 to 2 inches in diameter, some coarse grained sand, little clay; dense; wet.					
20-											

Geologist(s): Erik S. Reinert Subcontractor: Parratt Wolff, Inc. Driller/Operator: Wayne Nielson/Jolaan Price Method: Direct Push/Hollow Stem Auger WSP USA Corp. 5 Sullivan Street Cazenovia, NY 13035 (315) 655-3900

Boring Log: MW-9

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 425.08

TOC Elevation (feet AMSL): 424.67

Total Depth (feet): 27

Completion Date: September 18, 2014 Borehole

Borehole Diameter (inches): 2 *AMSL = Above Mean Sea Level

	Sample Data					Subsurface Profile	
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description	Well Details
22	6	NA	- - -	37.5		Poorly-Graded Gravel with Sand (GP) Gray (7.5YR5/1) sub-rounded gravel from 0.2 to 2 inches in diameter, some coarse-grained sand; dense, becoming very dense at 23.5 feet; wet. <i>(continued)</i>	
24						Bottom of Boring at 27 feet	
30							
32							
36							
38 — - - - 40 —							

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson/Jolaan Price	Cazenovia, NY 13035
Method: Direct Push/Hollow Stem Auger	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 425.5

Total Depth (feet): 1

Borehole Diameter (inches): 4

Completion Date: September 18, 2014

Sample Data						Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
-						Not logged - Hand Auger sample
2-						Bottom of Boring at 1 feet
-						
4						
6-						
-						
8-						
-						
10						
_ 12—						
14 —						
- - 16						
18-						
20 —						

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Hand Auger	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 425.56

Total Depth (feet): 1

Borehole Diameter (inches): 4

Completion Date: September 18, 2014

	Sa	mple	Data			Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
_						
						Not logged - Hand Auger sample
						Bottom of Boring at 1 feet
20 —						

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Hand Auger	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 425.54

Total Depth (feet): 1

Borehole Diameter (inches): 4

Completion Date: September 18, 2014

	Sample Data					Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
_						
_						Not logged - Hand Auger sample
2-						Bottom of Boring at 1 feet
_						
4						
6-						
_						
-						
8-						
-						
10-						
12-						
-						
14						
-						
16						
- 18						
- 10						
20 —						

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Hand Auger	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 427.61

Total Depth (feet): 1

Borehole Diameter (inches): 2

Completion Date: September 15, 2014

Sample Data	Subsurface Profile
Depth Sample/Interval PID/OVM (ppm) Blow Count % Recovery	Description Ground Surface
	Ground Surface Silt with Sand (ML) Very dark brown (7.5YR 2.5/3) silt, little sand, little organics and rootlets; loose; dry. Poorly-Graded Sand (SP) Strong brown (7.5YR 4/6) fine to medium-grained sand; loose; dry. Bottom of Boring at 1 feet
9	

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 427.44

Total Depth (feet): 1

Borehole Diameter (inches): 2

Completion Date: September 15, 2014

Sample Data						Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
	1	0.9	-	100		<i>Silt with Sand (ML)</i> Brown silt, trace to little sand, little organics and rootlets; loose; dry.
						Bottom of Boring at 1 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 425

Total Depth (feet): 1

Borehole Diameter (inches): 2

Completion Date: September 15, 2014

Sample Data						Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
-	1	0.6	-	100		Silt with Sand (ML) Dark brown silt, little sand, trace gravel, little organics and rootlets; loose; moist.
						Bottom of Boring at 1 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 424.73

Total Depth (feet): 1

Borehole Diameter (inches): 2

Completion Date: September 15, 2014

Image: Problem 1 Image: Problem 2 Image: Problem 2<	Sample Data					Subsurface Profile	
1 Imm 2 3 4 5 6 7 8 9	Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	
Bottom of Boring at 1 feet	-	1	0.6		100		Silt with Sand (ML) Black (7.5YR 2.5/1) to brown (7.5YR 4/4) silt, little fine to medium-grained sand, trace gravel, little rootlets and organics; loose; dry.

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 424.74

Total Depth (feet): 1

Borehole Diameter (inches): 2

Completion Date: September 15, 2014

Sample Data					Subsurface Profile	
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description
		1.6		100		Ground surface Poorly-Graded Gravel (GP) Gravel, little fine to coarse-grained sand, trace silt; loose; dry. Sitt (ML) Dark brown (7.5YR 3/3) silt, trace sand and gravel; stiff; dry. Poorly-Graded Sand with Sitt (SP-SM) Brown (7.5YR 4/4) fine to coarse-grained sand, little gravel and silt; very dense; dry. Bottom of Boring at 1 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 424.65

Total Depth (feet): 1

Borehole Diameter (inches): 2

Completion Date: September 15, 2014

Sample Data				Subsurface Profile
Depth Sample/Interval		% Recovery	Lithology	Description Ground Surface
				Poorly-Graded Sand with Silt and Gravel (SP-SM) Dark brown fine to coarse-grained sand, little silt, little gravel; loose; dry. Silt (ML) Dark brown silt; stiff; dry. Bottom of Boring at 1 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 424.81

Total Depth (feet): 1

Borehole Diameter (inches): 2

Completion Date: September 15, 2014

Sample Data					Subsurface Profile	
Depth	Sample/Interval	. (mdd) MVO/DIA	Blow Count	% Recovery	Lithology	Description
		0.6		100		Poorly-Graded Gravel (GP) Gravel, some fine to coarse-grained sand; loose; dry. Asphalt Silty Gravel (GM) Light gray angular gravel, little silt; medium dense; dry. Silt (ML) Yellowish-brown silt; stiff; dry. Bottom of Boring at 1 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 424.64

Total Depth (feet): 1

Borehole Diameter (inches): 2

Completion Date: September 15, 2014

utgod Hodog tut File An O O O O O O O O O O O O O O O O O O O		Sa	mple	Data			Subsurface Profile
1 0.4 1 100 Poorly-Graded Gravel with Silt and Sand (GP-GM) Angular gravel, little sand and silt; loose to medium dense; dry. Silt (ML) Dark brown (7.5YR 3/3) silt, very stiff; dry. Bottom of Boring at 1 feet 2	Depth				% Recovery	Lithology	
			0.4		100	6.0.1X	Poorly-Graded Gravel with Silt and Sand (GP-GM) Angular gravel, little sand and silt; loose to medium dense; dry. Silt (ML) Dark brown (7.5YR 3/3) silt, very stiff; dry.

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 424.69

Total Depth (feet): 1

Borehole Diameter (inches): 2

Completion Date: September 15, 2014

Sample Data					Subsurface Profile	
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
		1.2		100		Poorly-Graded Gravel with Silt and Sand (GP-GM) Dark gray (7.5YR 4/1) gravel, some sandy silt; loose; dry. Asphalt Silty Gravel (GM) Gravel, little silt; dense; dry. Silt (ML) Dark brown (7.5YR 3/3) silt, stiff to very stiff; dry. Bottom of Boring at 1 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 424.6

Total Depth (feet): 1

Borehole Diameter (inches): 2

Completion Date: September 15, 2014

Sample Data					Subsurface Profile
Depth Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
	1.3		100		Asphalt Poorly-Graded Gravel with Silt (GP-GM) Angular gravel, little sandy silt; medium dense; dry. Silt (ML) Dark brown (7.5YR 3/3) silt; hard; dry. Bottom of Boring at 1 feet Solution of Boring at 1 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.18

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 17, 2014

	Sample Data					Subsurface Profile			
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface			
2	1	(1-2) 0 (2-4) 0	- - -	75		<i>Poorly-Graded Sand (SP)</i> Brown (7.5YR4/4) fine-grained; loose; dry.			
4 — - 6 — -	2	(5-6) 0 (6-8) 0	- - -	75		<i>Gravelly Silt (ML)</i> Dark brown (7.5YR2.5/3) sandy silt, some sub-rounded gravel from 0.2 to 1.5 inches in diameter; medium hard; dry.			
8 — - - 10 — - - - - - - - -	3	(10-12) 0	- - -	50		<i>Silty Gravel with Sand (GM)</i> Coarse-grained sand with silt and gravel; medium dense; dry, becoming wet at 15.8 feet.			
14	4	(15-16) 0	- - -	25		▼			
						Bottom of Boring at 16 feet			

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.19

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 17, 2014

	Sample Data					Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description
2	1	(1-2) 0 (2-4) 0	- - -	75		Concrete Poorly-Graded Sand (SP) Brown (7.5YR4/4) fine-grained sand; loose; dry.
6	2	(6-8) 0	- - -	50		Lean Clay (CL) Dark brown (7.5YR3/4) silty clay; medium soft; dry.
8	3	(10-12) 0	- - -	50		Silty Sand with Gravel (SM) Brown (7.5YR3/4) silty sand with sub-rounded gravel from 0.2 to 0.5 inches in diameter; medium dense; dry. Poorly-Graded Sand (SP) Brown (7.5YR4/4) sand; fine to medium grained; loose; dry.
	4	-	- - -	12.5		Silty Gravel with Sand (GM) Brown (7.5YR3/4) sub-angular gravel, some coarse grained sand and silt; medium dense; dry, becoming wet between 15.5 and 16.0 feet. ▼
16						Bottom of Boring at 16 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.25

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 17, 2014

	Sample Data					Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
2	1	(1-2) 0 (2-4) 0	- - - -	75		Concrete Poorly-Graded Sand (SP) Brown (7.5YR4/4) fine-grained sand; loose; dry.
	2	(4-6) 0 (6-8) 0	- - -	100		Lean Clay (CL) Very dark gray (7.5YR3/1) silt clay; soft; dry. Silty Gravel with Sand (GM) Brown (7.5YR3/4) sub-angular gravel from 0.2 to 1.5 inches in diameter, little silt and sand; medium dense; dry becoming wet from 15.0 to 16.0 feet.
	3	(10-12) 0	- - -	50		
	4	0.0	- - -	25		Ţ
16						Bottom of Boring at 16 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.26

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 17, 2014

	Sample Data					Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
	1	(1-2) 0 (2-4) 0	- - -	75		Concrete Poorly-Graded Sand (SP) Brown (7.5YR4/4) fine-grained sand; loose; dry.
	2	(4-6) 0 (6-8) 0	- - -	100		Lean Clay (CL) Very dark gray (7.5YR3/1) clay; soft; dry. Lean Clay (CL) Brown (7.5YR3/4) clay, some silt; medium dense; dry.
	3	(9-10) 0 (10-12) 0	- - -	75		Silty Gravel with Sand (GM) Brown (7.5YR3/4) sub-rounded gravel from 0.2 to 0.5 inches in diameter, some fine to coarse-grained sand and silt, medium dense; dry, becoming wet between 15.0 to 16 feet.
- - 14 - -	4	(14-15) 0	- - -	50		Ţ
16 — 						Bottom of Boring at 16 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.2

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 17, 2014

	Sample Data					Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
	1	(1-2) 0 (2-4) 0	- - -	75		Concrete Poorly-Graded Sand (SP) Brown (7.5YR4/4) fine-grained sand; loose; dry.
4	2	(6-8) 0	- - -	50		Lean Clay (CL) Very dark brown (7.5YR3/1) clay, some silt; soft; dry.
8	3	(10-12)	- - -	50		Silt with Gravel (ML) Brown (7.5YR3/3) silt with sub-rounded gravel (1.0-2.0 inches), dry; medium hard. Silty Gravel with Sand (GM) Brown (7.5YR3/4) sub-rounded gravel from 0.2 to 1.5 inches in diameter; little medium-grained sand, some silt, medium dense; dry, becoming moist between 15.0 to 15.5 feet, becoming wet at 15.5 feet.
12	4	(14-15.5 0	-) - -	50		Ţ
						Bottom of Boring at 16 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.2

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 18, 2014

	Sample Data					Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
2-	1	(1-2) 0 (2-4) 0	- - -	75	<u> 4 5 4 5 6</u>	Concrete Poorly-Graded Sand (SP) Brown (7.5YR4/4) fine-grained sand; loose; dry.
	2	(4.5-6) 0 (6-8) 0	- - -	87.5		Poorly-Graded Sand with Gravel (SP) Dark brown (7.5YR3/4) fine to coarse-grained sand with sub-rounded gravel from 0.2 to 1.0 inches in diameter; moist; medium dense.
10	3	NR	- - -	0		Poorly-Graded Gravel with Silt and Sand (GP-GM) Dark brown (7.5YR3/4) sub-rounded gravel from 0.2 to 2.0 inches in diameter, some fine to medium-grained sand and silt; medium dense; dry, becoming wet at 15.0 feet.
	4	(14-15) 0	- - -	50		
16						Bottom of Boring at 16 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.23

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 16, 2014

	Sample Data					Subsurface Profile			
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface			
2	1	(0-2) 0.6 (2-4) 1.2	- - -	100		Sandy Silt with Gravel (ML) Brown (7.5YR3/3) sandy silt, some concrete rubble and angular gravel; medium dense; dry.			
	2	(4-6) 200 (6-8) 1.3	- - -	100		<i>Silt (ML)</i> Very dark gray (7.5YR3/1) silt, some clay; medium dense; dry; stained; strong petroleum-like odor between 5.5 and 7 feet. <i>Poorly-Graded Gravel with Silt and Sand (GP-GM)</i>			
8	3	(8-10) 0.2 (10-12) 1.5	- - -	50		Brown (7.5YR4/3) sub-rounded gravel from 0.2 - 0.5 inch inches, some sand and silt; medium dense; dry.			
12	4	(12-14) 0.6 (14-16) NA	- - -	75		Silty Sand (SM) Dark brown (7.5YR3/3) fine-grained sand, some silt; dry; soft. Silty Gravel with Sand (GM) Strong brown (7.5YR5/6) sub-rounded gravel, little sand, little silt; loose; moist, becoming wet at 14.0 to 16.0 feet.			
18 — - - - - - - - - - - - - - - - - - - -						Bottom of Boring at 16 feet			

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.08

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 16, 2014

	Sample Data					Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
2-	1	(0-2) 4.7 (2-4) 0.2	- - -	62.5		Poorly-Graded Sand (SP) Strong brown (7.5YR4/6) sand; fine; loose; dry.
	2	(6-8) 0.3	- - -	50	-	Sandy Silt with Gravel (ML) Brown (7.5YR4/2) to dark brown (7.5YR3/2) silt, some sand, few sub-angular gravel; soft; dry.
10	3	(10-12) 0.8	- - -	50		Poorly-Graded Gravel with Sand (GP) Brown (7.5YR4/3) sub-rounded gravel, some sand; medium dense, loose between 14.6 and 16 feet; dry, becoming loose between 14.6 and 16 feet.
12	4	(12-14) 0.2	- - -	75		Ţ
16						Bottom of Boring at 16 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.12

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 16, 2014

Sample Data					Subsurface Profile			
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface		
2-	1	(0-2) 5.8 (2-4) 8.7	- - -	100		Poorly-Graded Sand (SP) Brown (7.5YR4/6) fine-grained sand; loose; dry.		
4		0.7	-			Sandy Silt with Gravel (ML) Brown (7.5YR4/2) Sandy silt, some sub-rounded gravel from 0 5 to 2.0 inches in diameter; medium dense; dry.		
6-	2	(6-8) 7.9	- - -	50				
8	3	(11-12) 15.7	- - -	25		Poorly-Graded Gravel with Silt and Sand (GP-GM) Brown (7.5YR4/2) sub-rounded gravel with silt and sand; medium dense; dry, becoming moist at 15.0 feet, becoming wet at 15.5 feet.		
	4	NA	- - -	50		¥		
16						Bottom of Boring at 16 feet		

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 424.64

Total Depth (feet): 12

Borehole Diameter (inches): 2

Completion Date: September 18, 2014

Sample Data						Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
	1	0	- - -	100		Concrete Sandy Silt with Gravel (ML) Brown (7.5YR4/4) silt, little sub-rounded gravel from 0.2 to 1.5 inches in diameter, little sand; medium dense; dry.
	2	0	- - -	50		Poorly-Graded Gravel with Sand (GP) Brown (7.5YR4/4) sub-rounded gravel from 0.2 to 1.0 inches in diameter, some fine to coarse-grained sand; loose; moist, becoming wet at 10.5 feet.
- - - 10 - - -	3	7.1	- - -	62.5		∑ .
12						Bottom of Boring at 12 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.22

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 16, 2014

	S	ample	Data		Subsurface Profile		
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	
2	1	(0-2) 0.0 (2-4) 2.0	- - -	100		Poorly-Graded Sand (SP) Brown (7.5YR4/6) fine-grained sand; loose; dry.	
4	2	(4-6) 3.8 (6-8) 0.0	- - -	62.5		Silt with Sand (ML) Brown (7.5YR4/6) silt, some fine-grained sand; soft; dry. Lean Clay (CL) Gray (7.5YR3/1) clay; medium plasticity; soft; dry. Poorly-Graded Gravel with Silt and Sand (GP-GM) Brown (7.5YR4/4) sub-rounded gravel from 0.2 to 1.5 inches in diameter, some silt and sand; medium dense; dry, becoming wet at	
	3	(8-10) 3.8 (10-12) 4.2	- - -	75			
	4	(12-14) 4.6	- - -	75		▼ Poorly-Graded Gravel with Silt and Sand (GP-GM) Dark gray (7.5YR4/1) sub-rounded gravel from 0.2 to 1.5 inches in diameter, some silt and sand; loose; wet.	
16						Bottom of Boring at 16 feet	

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.29

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 17, 2014

	S	ample	Data		Subsurface Profile		
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	
	1	(2-4) 0	- - -	50		Poorly-Graded Sand (SP) Strong brown (7.5YR4/6) fine-grained sand; loose; dry.	
4	2	(6-8) 0.5		50		Gravelly Lean Clay with Sand (CL) Very dark gray (7.5YR3/1) to brown (7.5YR4/2) clay, little sub-rounded gravel from 0.1 to 0.4 inches in diameter, little medium to fine-grained sand; medium plasticity; soft; dry.	
8 — 8 — 10 — 12 —	3	(10-12)	- - -	50		Poorly-Graded Gravel with Silt (GP-GM) Brown (7.5YR3/4) sub-rounded gravel (0.2 to 2.0 inches) with coarse grained sand and silt; loose; dry, becoming wet at 15.0 feet.	
	4	(13-14) 1.8	- - -	75		T	
16						Bottom of Boring at 16 feet	
18 — 20 —							

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 424.67

Total Depth (feet): 11

Borehole Diameter (inches): 2

Completion Date: September 18, 2014

	Sa	ample	Data			Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
	3	(10-11) 6.8	- - -	50		Concrete Silt (ML) Brown (7.5YR 4/4) silt, medium dense; dry.
	1	(0-2) 0.0 (2-4) 7.8	- - -	75		Sandy Silt with Gravel (ML) Brown (7.5YR 4/4) sandy silt with sub-rounded gravel from 0.2 to 1.5 inches in diameter. Poorly-Graded Gravel with Silt and Sand (GP-GM) Brown (7.5YR 3/4) sub-rounded gravel from 0.2 to 2.0 inches in diameter, little silt, little sand; medium dense; dry, becoming wet at 11 feet.
	2	(6-8) 8.1	- - -	50		
						Bottom of Boring at 11 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.21

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 17, 2014

	S	ample	Data			Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Ground Surface
2	1	(2-4) 0	- - -	50	<u>-</u> <u></u>	Concrete Poorly-Graded Sand (SP) Brown (7.5YR4/4) fine grained sand; loose; dry.
	2	(6-8) 0	- - -	50		
8	3	(10-12)	- - -	50		Lean Clay (CL) Brown (7.5YR4/4) clay; medium soft; dry. Poorly-Graded Gravel with Silt and Sand (GP-GM) Brown (7.5YR3/4) sub-rounded gravel from 0.2 to 1.5 inches in diameter; loose; dry, moist from 14.0 to15.0 feet, becoming wet at 15.0 feet
12	4	(13-14) 0	- - -	75		Ţ
18						Bottom of Boring at 16 feet

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): 428.16

Total Depth (feet): 16

Borehole Diameter (inches): 2

Completion Date: September 17, 2014

	S	ample	Data		Subsurface Profile		
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	
2-	1	(2-4) 0	- - -	50		Concrete Poorly-Graded Sand (SP) Brown (7.5YR4/4) fine-grained sand; loose; dry.	
	2	(5-6) 0 (6-8) 0	- - -	75		Lean Clay (CL) Very dark gray (7.5YR3/1) silty clay; soft; moist. Sandy Silt with Gravel (ML) Dark brown (7.5YR3/4) silt, little sun-rounded gravel from 0.2 to 2.0 inches in	
8	3	(10-12) 1.4		50		diameter, little fine to medium-grained sand; medium dense; dry.	
	4	(13-14)	- - -	75		Sandy Silt (ML) Very dark gray (7.5YR3/1) silt, some coarse-grained sand; moist. Poorly-Graded Gravel with Silt and Sand (GP-GM) Brown (7.5YR3/4) sub-rounded gravel from 0.2 to 2.0 inches in diameter, little silt, little coarse-grained sand; medium dense; dry, becoming wet at 15 feet.	
16						Bottom of Boring at 16 feet	

Geologist(s): Erik S. Reinert	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator: Wayne Nielson	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): Not Determined

Total Depth (feet): 2

Borehole Diameter (inches): 2

Completion Date: December 19, 2014

Image: High of the system I	Sample Data	Subsurface Profile
1 1	Depth Sample/Interval PID/OVM (ppm) Blow Count % Recovery	Description Ground Surface
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Silt (ML) Dark brown (7.5YR 3/2) silt; soft; dry. Silt with Gravel (ML) Brown (7.5YR 4/4) silt with sub-rounded gravel from 0.1 to 1.0 inch in diameter; medium soft; dry.

Geologist(s): Nathaniel Winston	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator:	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Project: 5140 Site

Project No.:

Location: Yorkville, NY

Surface Elevation (feet AMSL*): Not Determined

Total Depth (feet): 12

Borehole Diameter (inches): 2

Completion Date: December 19, 2014

	Sa	ample	Data			Subsurface Profile
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface
2-						Dry Well
	1	0.3	- - -	75	*C*IX	Poorly-Graded Sand (SP) Gray (5YR 5/1) coarse-grained sand with organic debris; loose; moist. Poorly-Graded Gravel with Silt and Sand (GP-GM)
8	2	0.3	- - -	75		Dark gray (7.5YR 4/1) sub-angular gravel with silt and sand; medium hard; dry. Poorly-Graded Gravel with Silt and Sand (GP-GM) Brown (7.5YR 5/4) sub-angular gravel with silt and sand; loose; wet.
					<u>o (\°N \~</u>	Bottom of Boring at 12 feet
20-	[

Geologist(s): Nathaniel Winston	WSP USA Corp.
Subcontractor: Parratt Wolff, Inc.	5 Sullivan Street
Driller/Operator:	Cazenovia, NY 13035
Method: Direct Push	(315) 655-3900

Well ID		M	W-6	Site ID:	5140 Site			Sample Date:	10/14/2014					
Well Diar	meter	2	in	Sampling Ev	ent:	Remedial I	nvestigation	-						
Depth to	Water	11.54	ft				-							
Total We	ll Depth	17.8	ft	Samplers		ESR								
Screen L	ength	10	ft	Weather Con	Veather Conditions and Windy + Warm									
Pump Int	ake	15	ft	Flow Rate	ow Rate 350 mL/min									
Stabilized	l: ±10-perce	ent for temperat	ure, turbidity, DC), and ORP; ±0).1 unit for pH;	and ± 3-percen	t for specific con	ductance						
Instrument Calibration Information														
Horiba U	52 with flo	w-through cell	- Calibrated to	manufacturer	's specificatio	ons using auto	-calibration star	dard solution						
					We	II Purging I	nformation							
Air temp: 76 °F Start purge: 1118 End purge: 1218 Pump Type: QED Sample pro w/ MP-50 or MP-15 and CC														
Time	DTW	Purge Volume (L)	Т (°С)	рН	Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	D.O. (mg/l) *	Appearance of Purge Water	Flow Rate (mL/min)				
1118	118 11.70 0.50 17.4 7.50 1.3				1.38	1	240.0	7.8	slightly cloudy	350				
1123	11.70	2.25	16.38	7.23	1.26	14	224.0	2.7						
1128	11.70	4.00	16.33	7.23	1.20	30	94.0	2.91						
1133	11.70	5.75	16.31	7.21	1.19	42	29.3	3.13						
1138	11.70	7.50	16.3	7.16	1.19	50	15.4	3.27						
1143	11.70	9.25	16.2	7.12	1.19	55	8.7	3.34						
1148	11.70	11.00	16.27	7.10	1.19	59	4.8	3.42						
1153	11.70	12.75	16.3	7.08	1.19	61	6.8	3.43						
1158	11.70	14.50	16.31	7.08	1.19	62	1.2	3.45						
1203	11.70	16.25	16.39	7.08	1.19	63	0.0	3.47						
1208	11.70	18.00	16.44	7.05	1.18	64	0.0	3.48						
1213	11.70	19.75	16.51	7.04	1.18	64	0.0	3.49						
1218	11.70	21.50	16.53	7.03	1.18	64	0.0	3.49	clear					
1219	19 collected samples													
				1 <u>.</u>			is Informatio	-		•				
-	# of Bottles Sample ID Analytes					Preservative none	Bottle Type	Lab	Sample Time	Comments				
	1		MW-6		PCBs		1 Liter Amber	Pace	10/14/14 12:19					
	1 MW-1014 PCBs				CBS	none	1 Liter Amber	Pace	10/14/14 12:30	Blind Dupe				

Well ID		MW-7	(Page 1)	Site ID:	5140 Site			Sample Date:		10/14/2014			
Well Diar	neter	2		Sampling Ev	ent:	Remedial In	nvestigation						
Depth to	Water	11.11	ft	1			•						
Total We	ll Depth	17	ft	Samplers		NTW							
Screen L	ength	10	ft	Weather Cor	nditions and	Clear, 80F							
Pump Int	ake	14	ft	Flow Rate	Flow Rate 200.00								
Stabilized	: ±10-perce	ent for temperat	ure, turbidity, DC), and ORP; ±0	and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance								
Instrument Calibration Information													
Horiba U52 with flow-through cell - Calibrated to manufacturer's specifications using auto-calibration standard solution													
Well Purging Information													
Air temp: 80 °F Start purge: 1410 End purge: Pump Type: QED Sample pro w/ MP-50 or MP-15 a													
Time	DTW	Purge Volume (L)	T (ºC)	рН	Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	D.O. (mg/l) *	Appearance of Purge Water	Flow Rate (mL/min)			
1410	11.11	INT	17.8	7.02	1.24	111	672.0	6.20	light brown	200			
1415	11.11	1.00	16.43	7.00	1.20	116	371.0	2.67	light brown	250			
1425	11.11	2.25	16.22	6.94	1.18	116	234.0	2.04	light brown	200			
1430	11.11	3.25	16.03	6.90	1.18	116	135.0	1.72	light brown	200			
1435	11.12	4.25	15.75	6.93	1.18	122	99.3	1.50	light brown	200			
1440	11.11	5.25	15.61	6.93	1.18	120	81.3	2.85	light brown	200			
1445	11.11	6.25	15.6	6.92	1.18	120	92.0	3.45	clear	200			
1450	11.11	7.25	15.65	6.90	1.17	155	70.0	3.69	clear	200			
1455	11.11	8.25	15.65	6.88	1.19	121	86.0	2.49	clear	200			
1500	11.11	9.25	15.66	6.92	1.17	113	70.2	2.19	clear	200			
1505	11.11	10.25	15.74	6.85	1.18	88	65.1	1.94	clear	200			
1510	11.11	11.25	15.77	6.87	1.18	58	56.5	1.75	clear	200			
1515	11.11	12.25	15.82	6.85	1.18	58	38.3	1.60	clear	200			
1520	11.11	13.25	15.8	6.86	1.18	87	32.1	1.60	clear	200			
1525	1525 11.11 14.25 15.69 6.92 1.18				65	33.6	1.40	clear	200				
1530	530 11.11 15.25			6.87	1.18	91	37.1	1.31	clear	200			
				-	Labora	tory Analys	is Informatio	n	-				
# of E	Bottles	Sam	ple ID	Ana	lytes	Preservative	Bottle Type	Lab	Sample Time	Comments			

Well ID		MW-7	(Page 2)	Site ID:	5140 Site			Sample Date:		10/14/2014				
Well Diar	neter	2	in	Sampling Ev	ent:	Remedial In	nvestigation	-						
Depth to	Water	11.11	ft				_							
Total We	ll Depth	17	ft	Samplers		NTW								
Screen L	ength	10	ft	Weather Cor	nditions and	Clear Windy	/ 80F							
Pump Int	ake	14	ft	Flow Rate	200.00									
Stabilized	l: ±10-perce	ent for temperat	ure, turbidity, DC), and ORP; ±0	and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance									
					Instrum	ent Calibrat	ion Informati	on						
Horiba U52 with flow-through cell - Calibrated to manufacturer's specifications using auto-calibration standard solution														
Well Purging Information														
Air temp:		80	°F	Start purge:		End purge:	1650	Pump Type:	QED Sample pro w/ MP-50 or	MP-15 and CO ₂				
Time	DTW	Purge Volume (L)	T (ºC)	рН	Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	D.O. (mg/l) *	Appearance of Purge Water	Flow Rate (mL/min)				
1530				6.89	1.17	106	27.5	1.22	Clear	200				
1535	11.11	17.25	15.74	6.88	1.18	112	26.2	1.14	Clear	200				
1540	11.11	18.25	15.72	6.89	1.18	120	26.1	1.12	Clear	200				
1545	11.11	19.25	15.82	6.91	1.19	105	23.7	0.95	Clear	200				
1550	11.11	20.25	15.77	6.92	1.19	127	22.5	1.23	Clear	200				
1555	11.11	21.25	15.77	6.92	1.19	126	17.5	0.90	Clear	200				
1600	11.11	22.25	15.78	6.87	1.19	125	17.1	0.81	Clear	200				
1605	11.11	23.25	15.69	6.91	1.19	123	16.6	0.78	Clear	200				
1610	11.11	24.25	15.65	6.90	1.19	123	16.1	0.75	Clear	200				
1615	11.11	25.25	15.61	6.86	1.18	123	15.2	0.82	Clear	200				
1620	11.11	26.25	15.61	6.92	1.18	120	14.1	0.74	Clear	200				
1625	11.11	27.25	15.56	6.87	1.19	123	13.4	0.72	Clear	200				
1630	11.11	28.25	15.50	6.89	1.18	122	13.5	0.72	Clear	200				
1640	11.11	29.25	15.53	6.86	1.19	122	13.5	0.70	Clear	200				
1650						122	13.7	1.00	Clear	200				
1650		End of purge												
							is Informatio	1						
# of E	Bottles		ple ID		lytes	Preservative	Bottle Type	Lab	Sample Time	Comments				
	1 MW-7				-8082	N/A	1 Liter Amber	Pace	10/14/2014 1650					

Well ID)	M	N-8	Site ID:	5140 Site			Sample Date:		10/14/2014		
Well Dia	meter	2	in	Sampling Ev	ent:	Remedial In	nvestigation	-				
Depth to	Water	10.71	ft				-					
Total We	ell Depth	16.98	ft	Samplers		ESR						
Screen L	_ength	10	ft	Weather Conditions and Partly cloudy and windy								
Pump In	take	14	ft	Flow Rate						120.00		
Stabilized	d: ±10-perc	ent for temperat	ure, turbidity, DC	D, and ORP; ±0).1 unit for pH;	and ± 3-percen	t for specific con	ductance		· · · · · · · · · · · · · · · · · · ·		
					Instrum	ent Calibrat	ion Informati	on				
Horiba U52 with flow-through cell - Calibrated to manufacturer's specifications using auto-calibration standard solution												
Well Purging Information												
Air temp:												
Time				рН	Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	D.O. (mg/l) *	Appearance of Purge Water	Flow Rate (mL/min)		
1339	1339 10.75		22.56	7.04	2.07	75	321.0	1.59	slightly cloudy	120		
1344	4 10.75 1.70 20.52			7.00	2.13	74	229.0	1.39				
1349	10.75	2.30	19.92	6.99	2.01	73	173.0	1.31				
1354	10.75	2.90	19.18	6.78	1.86	72	94.6	1.27				
1407	10.75	3.50	18.48	6.95	1.61	69	0.0	1.27				
1412	10.75	4.10	18.40	6.95	1.56	68	0.0	1.28				
1417	10.75	4.70	18.32	6.94	1.54	67	0.0	1.27				
1418		End of Purge										
		↓										
		↓										
	D wit		1 15	<u> </u>			is Informatio	1				
	Bottles		ple ID		lytes	Preservative	Bottle Type	Lab	Sample Time	Comments		
	1	M	N-8	PCBs`		none	1 Liter Amber	Pace	11/14/2014 14:18:00 AM			
ļ												

Well ID		M	W-9	Site ID:	5140 Site			Sample Date:		10/14/2014		
Well Diar	meter	2	in	Sampling Ev	ent:	Remedial I	nvestigation					
Depth to	Water	11.39	ft				•					
Total We	ell Depth	26.65	ft	Samplers		NTW						
Screen L	.ength	10	ft	Weather Cor	nditions and	Sunny, Clea	nr, 75F					
Pump Int	take	19	ft	Flow Rate								
Stabilized	d: ±10-perce	cent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance										
	· ·				Instrum	ent Calibrat	ion Informati	on				
Horiba U	52 with flo	w-through cel	I - Calibrated to	manufacturer	's specificatio	ons using auto	-calibration stan	dard solution				
					We	II Purging I	nformation					
Air temp:												
Time	DTW	Purge Volume (L)	Т (°С)	рН	Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	D.O. (mg/l) *	Appearance of Purge Water	Flow Rate (mL/min)		
1015				7.57	4.13	-85.00	200.0	3.53	Clear	400		
1020	11.50	2.0	14.32	7.57	4.17	-107.00	167.0	2.81	Clear	300		
1025	11.52	3.5	14.27	7.53	4.19	-120.00	143.0	2.45	Clear	300		
1030	11.51	5.0	14.23	7.57	4.17	-129.00	70.0	2.10	Clear	300		
1035	11.51	6.5	14.12	7.57	4.14	-135.00	45.0	2.15	Clear	300		
1040	11.51	8.0	14.08	7.58	4.10	-138.00	41.3	1.72	Clear	300		
1045	11.52	9.5	14.04	7.57	4.07	-142.00	28.0	1.50	Clear	300		
1050	11.51	11.0	14.02	7.54	4.05	-142.00	23.5	1.40	Clear	300		
1055	11.51	12.5	14.07	7.52	4.02	-146.00	45.0	1.28	Clear	300		
1100	11.51	14.0	14.04	7.52	4.10	-146.00	23.2	1.28	Clear	300		
1105	11.51	15.5	14.06	7.51	4.01	-146.00	13.3	1.23	Clear	300		
1110	11.51	17.0	14.04	7.52	4.00	-146.00	9.4	1.50	Clear	300		
1115	11.51	18.5	14.04	7.51	3.98	-143.00	9.4	1.30	Clear	300		
							is Informatio	n				
# of I	Bottles		Sample ID		llytes	Preservative	Bottle Type	Lab	Sample Time	Comments		
	3	MW-9 ,MS/MSD		PCBs		none	1 Liter Amber	Pace	10/14/14 1115			

Well ID		M	W-9	Site ID:	5140 Site			Sample Date:		10/14/2014		
Well Dia	meter	2	in	Sampling Ev	ent:	Remedial I	nvestigation	-				
Depth to	Water	13.48	ft				-					
Total We	ell Depth	19.35	ft	Samplers		ESR						
Screen L	.ength	10	ft	Weather Cor	nditions and	Partly cloud	Partly cloudy and breezy					
Pump In	take	17.9	ft	Flow Rate								
Stabilized	d: ±10-perc	ent for temperat	ture, turbidity, DC	D, and ORP; ±	and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance							
					Instrum	ent Calibrat	ion Informati	on				
Horiba U	Horiba U52 with flow-through cell - Calibrated to manufacturer's specifications using auto-calibration standard solution											
					We	II Purging I	nformation					
Air temp:												
Time	DTW	Purge Volume (L)	T (⁰C)	рН	Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	D.O. (mg/l) *	Appearance of Purge Water	Flow Rate (mL/min)		
1503	13.48	1.3	18.05	7.42	2.87	-63.00	451.0	1.37	partially silty	250		
1508				7.23	2.86	-57.00	270.0	1.35				
1513	13.48	3.8	17.22	7.08	2.80	-41.00	190.0	1.30				
1518	13.48	5.0	16.84	7.00	2.77	-32.00	214.0	1.28				
1523	13.48	6.3	16.79	6.97	2.75	-28.00	207.0	1.25				
1528	13.48	7.5	16.73	6.95	2.72	-24.00	196.0	1.22				
1533	13.48	8.8	16.71	6.95	2.72	-22.00	193.0	1.20				
1535		Rins	e out flow-throug	h cell								
1542	13.48	11.3	17.05	6.97	2.70	-24.00	0.0	1.16	clear			
1547	13.48	12.8	17.14	6.94	2.69	-24.00	0.0	1.14				
1552	13.48	14.3	17.06	6.94	2.69	-24.00	0.0	1.14				
1553												
┣───┥		┨─────┤										
┣───┥												
					ا مام د			I				
	Bottles	Comple ID					is Informatio	1	Occurred a Time			
		Sample ID		Analytes		Preservative none	Bottle Type	Lab	Sample Time	Comments		
	1	M	MW-10		PCBs 8260		1 Liter Amber	Pace	10/14/14 1553			

Well ID		MV	V-5R	Site ID:	5140 Site			Sample Date:		1/12/2015			
Well Dia	meter	2	in	Sampling Ev	ent:	Groundwat	er Sampling						
Depth to	Water	9.35	ft				. 3						
Total We	ell Depth	15.5	ft	Samplers		NTW, ESR							
Screen L	.ength	10	ft	Weather Cor	nditions and	Snowing, 35	δF						
Pump Int	take	12.5	ft	Flow Rate	Flow Rate 300 mL/min								
Stabilized	d: ±10-perce	ent for temperat	ture, turbidity, DC), and ORP; ±0).1 unit for pH;	and ± 3-percen	t for specific con	ductance					
					Instrum	ent Calibrat	ion Informati	on					
Horiba U	52 with flo	w-through cell	I - Calibrated to	manufacturer	's specificatio	ons using auto	calibration stan	dard solution					
					We	II Purging Ir	nformation						
Air temp:		35	٥F	Start purge:	1320	End purge:	1348	Pump Type:	QED Sample pro w/ MP-50 or	MP-15 and CO ₂			
Time Purge Volume (L) T (°C) pH Conductivity (mS/cm) ORP (mV)							Turbidity (NTU)	D.O. (mg/l) *	Appearance of Purge Water	Flow Rate (mL/min)			
1320	9.35	INT	10.04	6.80	1.16	178							
1333	9.35	3.90	10.24	7.06	1.12	184	1.9	0.00	Clear	300			
1338	9.35	4.40	10.26	7.05	1.12	184	0.4	0.00	Clear	300			
1343	9.35	5.90	10.28	7.07	1.12	183	0.9	0.00	Clear	300			
1348	9.35	6.40	10.21	7.08	1.12	180	0.8	0.00	Clear	300			
					 b								
	Dettle			A			is Informatio	-	Occurred T	0			
			ple ID		lytes	Preservative	Bottle Type	Lab	Sample Time	Comments			
	2		N-5R		8082	None	1 Liter Amber	Accutest	1/12/15 13:49	-			
	4		MS/MSD	_	8083	None	2 Liter Amber	Accutest	1/12/15 13:49	-			
	2 MW-0115 PCB 808				None	3 Liter Amber	Accutest	1/12/15 13:50	Blind Dup.				
	2 MW-5R-F PCB 8085					None	4 Liter Amber	Accutest	1/12/15 14:00	Filtered			

Well II	D	M	W-6	Site ID:	5140 Site			Sample Date:		1/12/2015			
Well Dia	ameter	2	in	Sampling Ev	ent:	Groundwat	er Sampling	-					
Depth t	o Water	9.37	ft										
	ell Depth	17.8	ft	Samplers		ESR							
Screen	-	10			her Conditions and 37 F and snowing								
Pump li	ntake	13.5	ft	Flow Rate									
Stabilize	ed: ±10-perc	ent for temperat	ture, turbidity, DC), and ORP; ±0).1 unit for pH;	and ± 3-percen	t for specific con	ductance					
							ion Informati						
Horiba U52 with flow-through cell - Calibrated to manufacturer's specifications using auto-calibration standard solution													
					We	II Purging I	nformation						
Air temp: 37 °F Start purge: 1625 End purge: 1710 Pump Type: QED Sample pro w/ MP-50 or													
Time								Appearance of Purge Water	Flow Rate (mL/min)				
1635	9.35	INT	5.17	7.23	1.14	157	5.5	1.66	Clear	240			
1640	9.35	1.20	6.62	7.07	1.12	176	4.1	1.3	Clear	240			
1645	9.35	2.40	6.69	7.09	1.11	179	3.0	2.35	Clear	240			
1650	9.35	3.60	6.74	7.11	1.09	180	1.9	3.39	Clear	240			
1655	9.35	4.80	6.75	7.12	1.09	180	1.3	3.36	Clear	240			
1700	9.35	7.20	6.8	7.11	1.08	181	0.5	3.37	Clear	240			
1710	End of pure	ge after collectir	ng samples										
	<u> </u>			 									
					Lohora	tory Analys	is Informatio	n					
# 01	Bottlos					Preservative	1	Lab	Sample Time	Commonto			
# 0	# of Bottles Sample ID Analytes 2 MW-6 PCBs						Bottle Type		1/12/2015 17:01:00 PM	Comments			
						none	1 Liter Amber 1 Liter Amber	Accutest Accutest	1/12/2015 17:01:00 PM 1/12/2015 17:10:00 PM	Filtered			
	2	IVIV	V-0-F	FV	500	none	I LILEI AMDER	Acculest	1/12/2015 17:10:00 PM	Fillerea			

Well ID		M	W-7	Site ID:	5140 Site			Sample Date:		1/12/2015				
Well Diar	meter	2	in	Sampling Ev	ent:	Groundwat	er Sampling	-						
Depth to	Water	8.80	ft											
Total We	ll Depth	17	ft	Samplers		NTW								
Screen L	ength	10	ft	Weather Cor	nditions and	32F and sno	owing							
Pump Int	take	13	ft	Flow Rate	w Rate 200.00									
Stabilized	I: ±10-perce	ent for temperat	ure, turbidity, DC), and ORP; ±0).1 unit for pH;	and ± 3-percen	t for specific con	ductance						
Instrument Calibration Information														
Horiba U	52 with flo	w-through cell	- Calibrated to	manufacturer	's specificatio	ons using auto	-calibration stan	dard solution						
					We	II Purging I	nformation							
Air temp: 32 °F Start purge: 1440 End purge: 1545 Pump Type: QED Sample pro w/ MP-50 or MP-15 and CO2														
Time	DTW								Appearance of Purge Water	Flow Rate (mL/min)				
1448	8.80	3.0	8.21	7.25	0.966	176	7.36	6.02	clear	280				
1453	8.80	4.40	8.18	7.24	0.966	179	7.76	5.85	clear	280				
1458	8.80	5.80	8.51	7.23	0.964	181	6.75	5.55	clear	280				
1503	8.80	7.20	8.44	7.23	0.969	182	6.87	5.54	clear	280				
1508	8.80	8.60	8.46	7.22	0.969	183	4.80	5.51	clear	280				
1513	8.80	10.00	8.39	7.22	0.972	184	5.01	5.37	clear	280				
1518	8.80	11.40	8.44	7.22	0.971	184	4.17	5.20	clear	280				
1523	8.80	12.80	8.45	7.22	0.970	185	2.98	4.96	clear	280				
1528	8.80	14.20	8.54	7.21	0.974	185	2.17	4.90	clear	280				
1533	8.80	15.60	8.49	7.19	0.973	185	1.42	4.90	clear	280				
1538	8.80	17.00	8.5	7.20	0.974	184	1.76	4.90	clear	280				
					L			l						
		-		I é			is Informatio			-				
-	# of Bottles Sample ID Analytes				-	Preservative none	Bottle Type	Lab	Sample Time	Comments				
	2		MW-7		PCBs		1 Liter Amber	Accutest	3/24/04 0:00	-				
	2 MW-7-F PCBs			CBs	none	1 Liter Amber	Accutest	3/18/04 0:00	Filtered					

Well ID MW-9 Site ID: 5140 Site Sample Date: 1/12/2							1/12/2015							
Well Dia	meter	2	in	Sampling Ev	vent:	Groundwat	er Sampling							
Depth to	Water	9.22	ft											
Total We	II Depth	26.5	ft	Samplers		NTW								
Screen L	.ength	10	ft	Weather Cor	nditions and	32F, snowy								
Pump Intake 19 ft Flow Rate									150.00					
Stabilized: ±10-percent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance														
					Instrum	ent Calibrat	ion Informati	on						
Horiba U52 with flow-through cell - Calibrated to manufacturer's specifications using auto-calibration standard solution														
	Well Purging Information													
Air temp: 32 °F Start purge: 1305 End purge: 1455 Pump Type: QED Sample pro w/ MP-50 or MP-15 and CO ₂														
Time	DTW	Purge Volume (L)	т (°С)	рН	Conductivity (mS/cm)									
1305	9.22	INT	9.44	6.68	4.29	-46	832.0	2.17	cloudy	150				
1310	9.22	0.75	10.42	7.57	4.25	-50	742.0	1.95	cloudy	150				
1315	9.22	1.50	10.57	7.76	4.23	-84	664.0	1.70	cloudy	150				
1320	9.22	2.25	10.64	7.85	4.17	-106	421.0	1.65	slightly cloudy	150				
1325	9.22	3.00	10.7	7.85	4.15	-113	358.0	1.86	clear	150				
1330	9.22	3.75	10.59	7.86	4.14	-119	63.4	1.65	clear	150				
1335	9.22	4.50	10.64	7.89	4.11	-131	30.4	1.63	clear	150				
1340	9.22	5.25	10.62	7.89	4.10	-135	16.9	1.55	clear	150				
1345	9.22	6.00	10.76	7.90	4.07	-138	11.5	1.52	clear	150				
1350	9.22	6.75	10.82	7.91	4.06	-139	10.7	1.50	clear	150				
1355	9.22	7.50	10.69	7.93	4.07	-141	10.7	1.49	clear	150				
1400	9.22	8.25	10.73	7.93	4.05	-142	8.9	1.44	clear	150				
1405	9.22	9.00	10.68	7.93	4.05	-142	8.0	1.41	clear	150				
1410	9.22	9.75	10.67	7.93	4.05	-142	7.13	1.42	clear	150				
1415	9.22	10.50	10.54	7.95	4.04	-142	6.09	1.39	clear	150				
1420	9.22	11.25	10.59	7.96	4.03	-144	5.40	1.36	clear	150				
1425	9.22	12.00	10.55	7.99	4.03	-150	4.58	1.31	clear	150				
1435	9.22	13.50	10.45	7.99	4.03	-151 3.61 1.29 clear								
1445	9.22	15.00	10.52	7.99	4.03	-152 3.20 1.25 clear 150								
1455	9.22	16.50	10.44	7.99	4.03	-153	3.52	1.24	clear	150				
					Labora	tory Analys	is Informatio	n						
# of	Bottles	Sam	iple ID		alytes	Preservative	Bottle Type	Lab	Sample Time	Comments				
	2	MV	V-9-F	P	CBs	none	1 Liter Amber	Accutest	1/12/2015 15:00:00 AM	Filtered				
	2	M	W-9	PC	CBs	none	1 Liter Amber	Accutest	1/12/2015 15:10:00 AM	-				

Well ID		M	W-9	Site ID:	5140 Site			Sample Date:		1/12/2015						
Well Diar	neter	2	in	Sampling Ev	ent:	Groundwater Sampling										
Depth to	Water	11.23	ft													
Total We	-	19.25	ft	Samplers		NTW										
Screen Length 10 ft We					ditions and	Partly cloud	y and snowy,	30F								
Pump Int	ake	17.5	ft	Flow Rate						250.00						
Stabilized: ±10-percent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance																
Instrument Calibration Information																
Horiba U52 with flow-through cell - Calibrated to manufacturer's specifications using auto-calibration standard solution																
Well Purging Information																
Air temp:		30	°F	Start purge:	1620	End purge:	1715	Pump Type:	QED Sample pro w/ MP-50 or	· MP-15 and CO ₂						
Time	DTW	Purge Volume (L)	T (°C)	рН	Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	D.O. (mg/l) *	Appearance of Purge Water	Flow Rate (mL/min)						
1620	11.23	INT	10.02	7.32	2.38	80	2.38	1.78	Clear	250						
1625	11.23	1.25	10.01	7.28	2.32	56	2.32	1.33	Clear	250						
1630	11.23	2.50	9.73	7.26	2.27	39	2.27	1.19	Clear	250						
1635	11.23	3.75	9.53	7.26	2.25	34	2.25	1.16	Clear	250						
1640	11.23	5.00	9.27	7.25	2.23	29	2.23	1.13	Clear	250						
1645	11.23	6.25	9.33	7.25	2.21	30	2.21	1.11	Clear	250						
1650	11.23	7.50	9.36	7.25	2.20	30	2.20	1.09	Clear	250						
1655	11.23	8.75	9.32	7.24	2.20	30	2.20	1.09	Clear	250						
1700	11.23	10.00	9.31	7.24	2.20	29	2.20	1.07	Clear	250						
1705	11.23	11.25	9.27	7.23	2.19	28	2.19	1.07	Clear	250						
1710	11.23	12.50	9.18	7.23	2.19	26	2.19	1.07	Clear	250						
1715	11.23	13.75	9.19	7.23	2.20	26	2.20	1.06	250							
				· · ·			is Informatio	-		-						
-	Bottles		ple ID		lytes	Preservative	Bottle Type	Lab	Sample Time	Comments						
	2		V-10		Bs	none	1 Liter Amber	Accutest	1/12/15 1720							
	2	MW	-10-F	PC	CBs	none	1 Liter Amber	Accutest	1/12/15 1730	Filtered						

TO-15 Package Review Checklist										
Client <u>WSP</u>	Project Vor Kuilla	SDG,	C141005->							
		<u>YES</u>	<u>NO NA</u>							
		<u> </u>								
Analytical Results TICI's present	Present and Complete Present and Complete									
	Holding Times Met	2								
Comments:										
Chain-of-Custody	Present and Complete		···							
Surrogate Recovery	Present and Complete	<u>×</u>								
	Recoveries within limits	<u> </u>								
	Sample(s) reanalyzed		. 🛌							
internal Standards Recovery	Present and Complete	<u> </u>								
	Recoveries within limits		28							
	Sample(s) reanalyzed	~	···· ····							
Comments:	SEE CASE NARATIVE									
			··							
ab Control Sample (LCS)	Present and Complete	\geq								
·	Recovenes within limits		<u>></u>							
ab Control Sample Dope (LCSD)	Present and Complete	\sim								
	Recoveries within limits									
AS/MSD	Present and Complete		~							
· · · · · · · · · · · · · · · · · · ·	Recoveries within limits		<u>></u>							
lomments:	SEE CASE NARATIVE									
	- NO MO/MOP		····							
	••••••••••••••••••••••••••••••••••••••									
	Present and Complete	$\sim \dots$	····-							
ample Raw Data	· · · · ·									
ample Raw Data	Spectra present for all samples	<u> </u>	· ··· ·							
	Spectra present for all samples	<u> </u>	······							

 $Centek\ Laboratories,\ LUC$

Private and Confidential

Page 1 of 2

TO-15 Package Review Checklist										
Client: WSP	Project: Yor Krille	SDG:								
		yes <u>no na</u>								
Standards Data										
Initial Calibration Summary	Present and Complete Calibration(s) met criteria	· <u> </u>								
Continuing Calibration Summary	Present and Complete									
Community convenience and	Calibration(s) met criteria	<u>`</u>								
Standards Raw Data	Present and Complete	<u> </u>								
Comments:										
· ····································	······································	· · · · · · · · · · · · · · · · · · ·								
Raw Quality Control Data										
Tune Criteria Report	Present and Complete	<u> </u>								
Method Blank Data	MB Results <pql Associated results flagged "B"</pql 	— — —								
1 OS sumple data	Present and Complete									
LCS sample data LCSD sample data	Present and Complete									
MS/MSD sample data	Present and Complete	<u> </u>								
Comments:										
	·									
······································										
Logbooks		~								
Injection Log	Present and Complete									
Standards Log	Present and Complete	·····								
Can Cleaning Log	Present and Complete Raw Data Present									
Calculation sheet	Present and Complete									
IDL's	Present and Complete	\sum								
Bottle Order Form	Present and Complete	<u> </u>								
Sample Tracking Form	Present and Complete	<u>}</u>								
Additional Comments:										
ı										
Section Supervisor.	Slef With Delles 1									
QC Supervisor: 4054 D	Winkeny Date: _ /	<u>71 /87 /9</u>								
Centek Laboratories, LLC	Private and Confidential	Page 2 of 2								

NTEK LABORATORIES, LLC

 F13 Midler Park Drive * Synacuse, NY 13206

 Phone (315) 431/9730 * Emergency 24/7 (315) 416-2757

 NYSDOFI ELAP

 Certificate No. 11830

Analytical Report

Dave Bouchard WSP Environment and Energy 5 Sullivan Street Cazenovia, NY 13035 Thursday, October 23, 2014 Order No.: C1410057

TEL: (315) 655-3900 FAX: (315) 655-3907

RE: 5140 Site Yorkville, NY

Dear Dave Bouchard:

Centek Laboratories, LLC received 11 sample(s) on 10/16/2014 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designce, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination,

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

This report can not be reproduced except in its entirety, without prior written authorization.

Sincerely,

will Dell-

William Dobbin Lead Technical Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltohiene, ethyl acctate, propylene, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LUC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratorics may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratorics will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed

Page 4 of 467

within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200% Next business day TAT by Noon -- 150% Next business day TAT by 6:00pm = 100% Second business day TAT by 6:00pm = 75% Third business day TAT by 6:00pm = 50% Fourth business day TAT by 6:00pm = 35% Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

ASP CAT B DELIVERABLE PACKAGE Table of Contents

1. Package Review Check List

2. Case Narrative

- a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a. Form 1

7. Quality Control Summary

- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation
- 8. Sample Data
 - a, Form 1 (if requested) TIC's
 - b. Quantitation Report with Spectra

9. Standards Data

- a. Initial Calibration with Quant Report
- b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD

12. Log Books

- a. Injection Log Book
- b. Standards Log Book
- e. QC Canister Log Book

Date: 18-Nov-14

CLIENT:WSP Environment and EnergyProject:5140 Site Yorkville, NYLab Order:C1410057

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999 and Centek Laboratories, LLC SOP TS-80:

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28° of Hg ($\pm 2^{\circ}$, vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5° of Hg ($\pm 1^{\circ}$, vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5° of Hg, $\pm 1^{\circ}$. Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

See Corrective Action: [3096] IS did not meet criteria. See Corrective Action: [3097] IS did not meet criteria. See Corrective Action: [3090] LCS did not meet criteria. See Corrective Action: [3098] LCS did not meet criteria.

Corrective Action Report

Date Initiated:	17-Oct-14	Corrective Action Report ID: 3096
initiated By:	Russell Pellegrino	Dopartment: MSVOA
	Corre	ective Action Description
CAR Summary:	IS did not meet crite	ria.
Description of Nonconformant		not meet criteria for sample C1410057-007 & 008. Based on the dence, it appears that the contamination is from a high concentration unds
Description of Corrective Action		008 was analyzed further as dilutions with criteria being met. Sample analyzed further as dilutions with similar results. All sots of data
Performed By:	Russell Pellegrino	Completion Date: 21-Oct-14
Client Notificati	on Requircd: No	Client Notification Notified By:
Comment:		
	Qı	uality Assurance Review

Nonconformance Type: Deficiency

Further Action No further corrective action taken. All sets of data submitted. required by QA:

Technical Director /

Approval and Closure William Dobbin

Deputy Tech. Dir.:

QA Officer Approval:

Close Date. 21-Oct-14

QA Date: 21-Oct-14

Last Updated BY I russ

Updated:

18-Nov-2014 2:50 PM

Reported: 18-Nov-2014 2:50 PM

Page 8 of 467

Corrective Action Report

Date Initiated:	21-Oct-14	Corrective Action Report ID: 3097
Initiated By:	Russell Pettegrino	Department: MSVOA
	Corre	ctive Action Description
CAR Summary:	IS did not meet criter	a.
Description of Nonconformanc		not meet criteria for sample C1410057-002, 004 & 006. Based on the fence, it appears that the contamination is from a high concentration inds.
Description of Corrective Actic		ed further as dilutions with criteria being met. All sets of data
Performed By:	Russell Pellegrino	Completion Date: 23-Oct-14
		Client Notification
Client Notificati	on Required: No	Notified By:
Comment:		
	Ou	ality Assurance Review
		any hoodiance neview
Nonconformanc	e Type: Deficiency	
Further Action required by QA:	No further corrective a	action taken. All sets of data submitted.

Technical Director / Deputy Tech. Dir.:

QA Officer Approval:

Approval, and Closure Williany Bobs Williany Bobbin

Close Date: 24-Oct-14

QA Date: 24-Oct-14

Last Updated BY - russ

Updated:

Nick Scale

Corrective Action Report

Date Initiated:	20-Oct-14	Corrective Action Report ID: 3090
initiated By:	Russell Pellegrino	Department: MSVOA
	Correct	ive Action Description
CAR Summary:	LCS did not meet criter	ia.
Description of Nonconformant		not meet criteria for 1% recoveries for several compounds. All criteria. The LCS 6 Liter canister was independent of the 6 Liter anister.
Description of Corrective Action		anister was independent of the 6 Liter continuing calibration with analysis. If results continue outside established timits then sets of data submitted.
Performed By:	Russell Petlegrino	Completion Date: 21-Oct-14
		Client Notification
Client Notificati	on Required: No	Notified By:
Comment:		
	-	

Quality Assurance Review

Nonconformance Type: Deficiency

.

Further ActionMake new LCS standard and perform system calibration ASAP. A new LCS standard has
been ordered.required by QA:been ordered.

Technical Director / Deputy Tech. Dir.:

.

QA Officer Approval:

Approval and Closure with Dall

William Dobbi_f/

Close Date: 22-Oct-14

OA Date: 22-Oct-14

Last Updated BY - russ.

Updated:

Reported: 18-Nov-2014 2:54 PM

Page 10 of 467

Corrective Action Report

Date initiated:	21-Oct-14	Corrective Action Report ID: 3098
Initiated By:	Russell Pellegrino	Department: MSVOA
	Correc	ctive Action Description
CAR Summary:	LCS did not meet crite	eria.
Description of Nonconformant		d not most criteria for 1% recoveries for several compounds. All at criteria. The LCS 6 Liter canister was independent of the 6 Liter canister.
Description of Corrective Actio	pa; canister, then continu-	canister was independent of the 6 Liter continuing calibration e with analysis. If results continue outside established limits then I sets of data submitted.
Performed By:	Russell Pellegrino	Completion Date: 24-Oct-14
		Client Notification
Client Notificati	on Required: No	Notified By:
Comment:		
	· •	

Quality Assurance Review

Nonconformance Type: Deficiency

.

Further Action Make new LCS standard and perform system calibration ASAP. A new LCS standard has required by QA: been ordered.

Technical Director / Deputy Tech. Dir...

QA Officer Approval:

Approval and Closure William Pobbin Scala

Close Date: 25-Oct-14

QA Date: 25-Oct-14

Last Updated BY I russ

Updated.

Reported: 18-Nov-2014 2:55 PM

Page 11 of 467

			C	Centel	k La	aboi	rator	ies,	LL(ز														
Page t of /	N" (12693				Remarks	Ru # 259	Re. # 161	R. # 262	Rec: 265	Real II SH	<u>+</u>	Rc. 308		Rey: 295	Ren: 1170				/		Jan Sp	MCD Environment B. Enorate		Derver Office: 460: South Cliller. #930. Derver. CO 803377 TeF 303-850-9230 Mimeespolis Office. 12A North 3rd St., #828, Minneupolis, MN 554017 TeF 512, 343-0510 Beakerough Office. 1249 Mussinchusetts Ave. Boxtoorpugh, MA 017157716: 978-635-9500 Çazenovin Office: 5 Sultivan St., Cazenovie, NY 150357 TeF 315-655-3900
						C.1#102	C. # 154	Cin+460	Cc1. 158	C , 212	Curr 1186	324	٨٨	C. 4. 201	C.n. 328	CAN: 130		-					C/4/002	Ier. #930. Derver. CO 80237 and St., #838, Mirmergolis. Sinchusetts Ave., Boxhorzugh Li, Cazenovia, NY 15035 / Te
DY RECURD		(a) / / / /	~/////																	i Name: Fe/E	ocarion: こっチャーパブ	INumbers:	inpriments	Derver Olfice: 460 Minnezpolis Office. Baxbriough Office Cazenovia Office: 5
CHALV UP CUSTODY RECURD		۳				× 1-	I X I	X /	X	/ X	i k		1 ×	1 1	/ ×] X [Laboratory Name:	Laboratory Locarion:	Custody Seal Numbers	Method of Shipment	
LHAI	<u>Matrices:</u> 5 = Soit:	Aq=Wiler	A = All: Bu = Bulk W = Wipc Br = Roor	0W = Oth Ware 0 = Other	Time Malrix	H 5091	1615 A	1620 4	1625 4	1627 A	1635 A	k38 A	163c A	K45 A	1650 A	- 4				(Signative):	(Signature):	1a/5	45 12 94400	20191 / Tel: 203-70 220 / Tel: 412-604-1 9510 / Tel: 408-453 3 / Tel: 732-564-038
		Yurk ille NY	nail: cup. Cum		Depth Date	tu/tu/a		10/14	while	- 19/A1/4	+1/10/21	- Ichth	- 10/14/14	- while	三十				 	una Received by [Signature]: Joe Ime	A Received by (Senature)		I LE SALLE NUTCH	Dr. #300, Reslorf, VA 4:0. Prisburgh, PA 1: 4:41%, Sun Jose, CA e., Somesei, NJ 0887
1	Sile and Locat	4 N 15 5 1	Contact Name: Contact Ethail:	+-	Sample Identification:	IA-04	25-23	IN 03 IN-03	55-02	IA-02	55-0I	IA-01	55-1014	SS-04	04-1	Tie Black				Reimcussingle by (Sigmanure): $\frac{1}{1}\frac{1}{n}\frac{1}{n}\frac{1}{n}\frac{1}{n}\frac{1}{n}$	Relinquished by (Signature): 10-14-14	+	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	 Reston Office: 11190 Sumise Valley Dr., #300, Reston, VA 20191 / Tel: 703-709-6500 Prinsburgh Office: 750 Holiday Dr., #410, Prinsburgh, PA 152207/ Tel: 412-604-1040 Sun Jose Office: 325 Gateway Ploce, #415, Sun Jose, CA 95110 / Tel: 408-453-6100 New Jersey Office: 334 Elizabeth Ave., Someset, NJ 088737 / Tel: 713-564-0388

Page 12 of 467

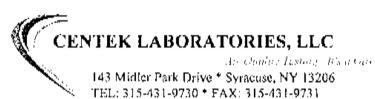
.

Date: 18-Nov-14

CLIEN Project: Lab On	:	WSP Environment and Energy 5140 Site Yorkville, NY C1410057	Ŷ	Work Order S:	mple Summary
Lab Sar C14100:	nple ID 57-001A	Client Sample ID IA-04	Tag Number 102,259	Collection Date 10/14/2014	Date Received 10/16/2014
C14100:	57-002A	SS-03	457,1161	10/14/2014	10/16/2014
C14100:	57-003A	IA-03	460,262	10/14/2014	10/16/2014
C14100;	57-004A	\$\$-02	158,265	10/14/2014	10/16/2014
C141005	57-005A	IA-02	205,1154	10/14/2014	10/16/2014
C141005	7- 0 06∧	SS-01	1186,405	10/14/2014	10/16/2014
C141005	7-007A	IA-01	324,308	10/14/2014	10/16/2014

CLIENT; Project: Lab Order:	WSP Environment and Energ 5140 Site Yorkville, NY C1410057	у	Work Order S	ample Summary
Lab Sample ID C1410057-008A	Client Sample 1D SS-1014	Tag Number 233	Collection Date 10/14/2014	Date Received 10/16/2014
C1410057-009A	SS-0 4	201,295	10/14/2014	10/16/2014
C1410057-010A	ΟΛ-Ι	328,1170	10/14/2014	10/16/2014
C1410057-011A	Trip Blank	130	10/14/2014	10/16/2014

	IES, LLC				Sample Reco	elpt Checklist
Client Name WSP - CAZENOVIA				Date and	Time Receive	10/15/2014
Work Order Numbe C1410057	_ // /	1	7	Received	JDS	
Checklist completed by Schature	Yril Dare	ີ		///~// Reviewe	6 - 7 9 by Colling Initials	5 10/16/14- Date
Matrix:	Carrier name: [FedE	x Grou	nd		
Shipping container/codier in good condition?	Y	Yen	~	No	Not Presen	
Custody seals intact on shippping container/conter	ר ק	Yes	4	No	Not Presen	
Custody seals infact on sample bottles?	Ň	Yes		No	Not Presen 🗠	/ .
Chain of custody present?	Y	Yes	×	No		
Chain of custody signed when relinquished and red	eived?	íes –	×	No		
Chain of costody agrees with sample labels?	٢	Yes	×	No		
Samples in proper container/bottle?	۲	ŕes	V :	No		
Sample containers intact?	Y	/cs	<u>.</u>	No .		
Sufficient sample volume for indicated test?	Y	/es	9	No		
All samples received within holding time?	۲	/cs	2	No		
Container/Temp Blank temperature in compliance?	Y Y	/es	v .	No .		
Water - VOA vials have zero headspace?	No VOA viais submitt	ted	✓	Yes	No	
Water - pH acceptable upon receipt?	Y	íes	;	No 🗸		
Ac	justed?			Checked by		


Any No and/or NA (not applicable) response must be detailed in the comments section be

		 · · · ·· · · ··· · · · · ·			
Client contacted		Date contacted:	Person contacto	ים .	
Contacted by:	·-	 Regarding.			
Comments:		 ·· · · · ··· - · ·			
Corrective Action		 			

.

Centek Lá	Centek Laboratories, LLC				16-Nov-14	
Lab Order:	C:410057	•:			!	·
Client: Project:	WSP Environment and Energy 5140 Site Yorkville, NY	Energy			DATES REPORT	
Sampte (1)	Client Sample ID	Collection Date	Alatrix	Test Name	TCLP Date Pron Date	kaslucie Date
C1410057-001A	IA-04	10/14/2014	Air	Lugin3 w/0.25 ag/M3 CT-TCE-VC		200781/0U
				legin3 w/0.25cg/X3 CT-TCE-VC		10/17/28:4
CH18057-002A	\$5.03			Tug-M3 by Method 7015		10212314
				Jug/M3 by Method 7015		1021201
				Lug/M3 by Method TO15		10212014
C341005740EA	(J-K)			lugal w/0.25µg/M2 CT-TCE-VC		10/172014
				highth w/0.251gMJ CTFICEVC		10/18/2014
CI410057-004A	SS-02			Lug/M3 by Method TOIS		10/22014
				lugMG by Method T015		10/21/2014
				leg/M3 by Miched 1015		16/22/2014
C1418057-005A	04-02			lug/m3 w/ 3.3%g/X3 C/LTCE-VC		13/18/2014
				Jugle3 w/0.250gM3 Cfr1CEAC		13/17/2014
C1400037-906A	SS-01			i ugʻM1 by Methad 7015		13/21/2014
				ling/M3 by Method TOTS		10222014
				Lug-M3 by Method TO15		21212014
C1410057-037A	IA-61			lugin3 w/0.25ng/M3 CT-TCE-VC		20/17/2034
				lugin3 w/ 0.25ug/M3 CT-TCE-VC		10/18/21114
C1410057-038A	SS-1014			lugM3 by Mahod TO15		1023/201
				lug/M3 by Method TO15		10/18/2014
				lug/M3 by Methed TO15		1021201
C1416057-609A	SS-05			iup/M3 by Method TO:5		10/17/2014
				Lug/M3 by Method TOES		10/18/2014
				i ug/M3 by Methed TOIS		10212314
C1420(57-0)0A	0V-I			1ug/m3/w70.15ug/M3/C1-1C6-VC		100172014
				Lught) w/0.25ug/MJ C7-7CE-VC		10/17/2014
CI410057-011A	Trip Blank			lisyin3 w/0.25iig/MJ_CT-TCE-VC		10/12/2014

SHIPPED TO:

CANISTER ORDER

4638

17-Nov-14

Company: Contact Address: Phone: Quote ID: Project PQ	WSP Environment and Energy Erik Reinert 5 Sullivan Street Cazenovia, NY 13035 (315) 655-3900 0	Submitted By: MadeBy: rjp Ship Date: 10/10/2014 VIA: Pick Up Oue Date: 10/10/2014	
Bottie Code	Bottle Type	TEST(5) Q	TY
MC1000CC	1L Mini-Can	1ug/M3 by Method TO15	13
Can / Reg ID	Description		
102 130 158 178 192 201 205 233 259 262 265 295 308 324 328 405 457 460 1152 1154 1152 1154 1161	1L Mini-Can - 1084 VI 1L Mini-Can - 1128 VI 1L Mini-Can - 1128 VI Time-Set Reg - 665 VI 1L Mini-Can - 1147 VI 1L Mini-Can - 1156 VI 1L Mini-Can - 1160 VI 1L Mini-Can - 1164 VI Time-Set Reg - 607 VI Time-Set Reg - 700 VI Time-Set Reg - 703 VI Time-Set Reg - 718 VI Time-Set Reg - 718 VI Time-Set Reg - 703 VI Time-Set Reg - 703 VI Time-Set Reg - 704 VI Time-Set Reg-0704 VI Time-Set Reg-0705 VI		

Comments: 11 @ Shis / dupe + TB + Full He setup + Belium + Clay and 20' tubing was 092314d-f, 092514 d-f

.

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 ANALYTICAL RESULTS

Centek La	boratorics, LLC				Date:	31-Oct	-14
CLIENT:	WSP Environment and	Energy		c	lient Sample 1D:	IA-04	
Lab Order:	C1410057				Tag Number:		9
Project:	5140 Site Yorkville, N	v			Collection Date:		
-		•			Matrix:		
Lab ID:	C1410057-001A				WELT X:	AIX	
Analyses		Result	**1.imit	Qua)	Units	DF	Date Analyzed
FIELD PARAME	TERS		F	LD			Analyst:
Lab Vacuum In		-2			"Hg		10/16/2014
Lab Vaccum Ou	L	-30			"Hg		10/16/2014
1UG/M3 W/ 0.25	UG/M3 CT-TCE-VC		τ¢	-15			Analyst: RJP
1,1,1-Trichloroet	hane	< 0.15	0.15		ррь∨	1	10/17/2014 5-20:00 PM
1,1,2,2-Tetrachic	proethang	< 0.15	0.15		ррбV	1	10/17/2014 5·20·00 PM
1,1,2-Trichloroet	hane	< 0.15	0.15		ρρύν	1	10/17/2014 5·20·00 PM
1,1-Dichloroetha	ne	< 0.15	0.15		ρρον	1	10/17/2014 5.20:00 PM
1,1-Dichloroethe	ne	< 0.15	0.35		ppbV	1	10/17/2014 5.20:00 PM
1,2,4-Trichlorobe	nzone	< 0.15	0.15		Vdqq	1	10/17/2014 5:20:00 PM
1,2,4-Trimethylbr	enzene	< 0.15	0.15		ppbV	1	10/17/2014 5:20:00 PM
1,2-Dibromoetha	ne	< 0.15	0.15		ppbV	1	10/17/2014 5:20:00 PM
1.2-Dichloroben2	tené	< 0.15	0.15		ρρυν	1	10/17/2014 5:20:00 PM
1.2-Dichloroetha	ne	< 0.16	0.15		ppbV	1	10/17/2014 5:20:00 PM
1,2-Dichloroprop	але	< 0.15	0.15		ppbV	1	10/17/2014 5:20:00 PM
1,3,5 Trimethylba	enzeno	< 0.15	0 15		Vđqq	1	10/17/2014 5:20:00 PM
1,3-butadiene		< 0.15	0.15		yddd	1	10/17/2014 5:20:00 PM
1,3-Dichlorobenz	ene	< 0.15	0.15		ррЬ∨	1	10/17/2014 5:20:00 PM
1.4-Dichlorobenz	ene	< 0.15	0.15		ρρύν	1	10/17/2014 5:20:00 FM
1,4-Dioxane		< 0.30	0.30		ppb∨	1	10/17/2014 5:20:00 PM
2,2,4 frimethylpe	ntane	< 0.15	0.15		ppbV	1	10/17/2014 5·20:00 PM
4-ethyltoluene		< 0.15	0 15		ppbV	1	10/17/2014 5:20:00 PM
Acetone		5.6	1.5		Vđạq	5	10/18/2014 12:19:00 AM
Aliyi chloride		< 0.15	0.15		pphV	1	10/17/2014 5:20:00 PM
Bonzone		0.12	0.15	J	рры∨	1	10/17/2014 5:20:00 PM
Benzyl chloride		< 0.15	0.15		ρρον	1	10/17/2014 5:20:00 PM
Bromodichtorame	ethano	< 0.15	0.15		ppb∀	1	10/17/2014 5:20:00 PM
Bromoform		• 0.15	0.15		ppb∀	1	10/17/2014 5.20 00 PM
Bromomethane		• 0.15	Q.15		ppbV	1	10/17/2014 5:20.00 PM
Carbon disulfide		< 0.15	0.15		ppbV	1	10/17/2014 5:20.00 PM
Carbon tetrachior	lde	0.10	0.040		рррЛ	1	10/17/2014 5:20:00 PM
Chlorobenzene		< 0.15	0.15		ρρυν	1	10/17/2014 5:20:00 PM
Chloroethane		< 0.15	0.15		ρρον	1	10/17/2014 5:20:00 PM
Chloroform		< 0.15	0.15		pp bV	1	10/17/2014 5·20:00 PM
Chloromethane		0.46	0.15		Vaqq	1	10/17/2014 5.20:00 PM
cls-1,2-Dichloroel		< 0.15	0.15		¢pb∀	1	10/17/2014 5:20:00 PM
cis-1,3-Dichloropi	rópène	< 0.15	0.15		ppb∨	1	10/17/2014 5:20:00 PM
Cyclohexane		< 0.15	0.15		ppbV	1	10/17/2014 5:20:00 PM
Dibromochlorome	sihane	< 0.15	0.15		ррьV	1	10/17/2014 5:20:00 PM
Ethyl adetate		< 0.25	0.25		ppbV	1	10/17/2014 5:20:00 PM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

.

Analyte detected at or below quantitation limits.

ND Not Detected at the Reporting Limit

^{**} Reporting Limit

Date: 37-Oct-14

CLIENT:WSP Environment and EnergyLab Order:Ci410057Project:5140 Site Yorkville, NYLab ID:Ci410057-001A

Client Sample ID: 1A-04 Tag Number: 102,259 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Límit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		τQ	-15			Analyst: RJP
Ethylbenzene	< 0.16	0.15		ppbV	1	10/17/2014 5:20:00 PM
Freen 11	0.30	0.15		Vdqq	1	10/17/2014 5:20:00 PM
Freen 113	< 0.15	0.15		ppbV	1	10/17/2014 5:20:00 PM
Freon 114	< 0.15	0.15		ppbV	1	10/17/2014 5:20:00 PM
Freon 12	0.54	0.15		pobV	1	10/17/2014 5:20:00 PM
Heptane	< 0.15	0.15		ppbV	t	10/17/2014 5:20.00 PM
Hexachloro-1,3 butadione	< 0.15	0.15		ppbV	1	10/17/2014 5:20:00 PM
Hoxane	< 0.15	0.15		Vdaa	1	10/17/2014 5:20:00 PM
Isopropyl alcohol	13	0.15		ppbV	1	10/17/2014 5:20:00 PM
m&p-Xylene	0.26	0.30		ppbV	1	10/17/2014 5:20:00 PM
Methyl Butyl Kotone	< 0.30	0.30		ppbV	1	1D/17/2014 5:20:00 PM
Melhyl Ethyl Ketone	0.35	0.30		ppbV	1	10/17/2014 5:20:00 PM
Methyl (sobuty) Ketone	< 0.30	0.30		ppbV	1	10/17/2014 5:20:00 PM
Mothyl tert-buty) ether	< 0.16	0.15		ppbV	1	10/17/2014 5:20.00 PM
Methylono chloride	< 0.15	0.15		ppbV	1	10/17/2014 5:20:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	10/17/2014 5:20:00 PM
Propylene	< 0.15	0.15		ppbV	- T	10/17/2014 5:20:00 PM
Styrene	< 0.15	0.15		ppbV	1	10/17/2014 5:20:00 PM
Totrachioroethylene	< 0.15	0 15		ppbV	1	10/17/2014 5:20:00 PM
Tetrahydrofuran	< 0.15	0.15		opbV	1	10/17/2014 5.20-00 PM
Toluene	0.22	0.15		Vdaa	1	10/17/2014 5:20.00 PM
trans-1,2-Dichloroothane	< 0.15	0.15		vpbV	1	10/17/2014 5:20:00 PM
trans-1,3-Dichluropropene	< 0.15	0.15		opbV	1	10/17/2014 5:20:00 PM
Trichloroethene	< 0.040	0.040	,	opbV	1	10/17/2014 5:20:00 PM
Vinyl acetate	< 0.15	0.15		opbV	1	10/17/2014 5 20:00 PM
Vinyl Bromide	~ 0.15	0.15		opbV		10/17/2014 5:20:00 PM
Vinyl chloride	< 0.040	0.040		optV	1	10/17/2014 5:20:00 PM
Surr: Bramafluorobenzene	85.0	70-130	-	%RFC	1	10/17/2014 5:20.00 PM

Ouslifiers;

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-rottine analyte, Quantitation estimated,
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected of or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

. . . .

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-001A

Client Sample ID: 1A-04 Tag Number: 102,259 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TC).15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	10/17/2014 5:20:00 PM
1.1.2.2-Tetrachloroethane	< 10	1.0	L	ug/m3	1	10/17/2014 5:20:00 PM
1.1,2-Trichloroethane	< 0.82	0.82	ι	ug/m3	1	10/17/2014 5:20:00 PM
1,1-Dicbloroethane	< 0.61	0.61	,	ug/m3	1	10/17/2014 5:20:00 PM
1,1 Dichloroethene	< 0.59	0.59	,	ug/m3	1	10/17/2014 5·20·00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	10/17/2014 5:20:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	L.	ug/m3	1	10/17/2014 5:20:00 PM
1,2-Dibromoethane	< 1.2	1.Z	ı	ug/m3	1	10/17/2014 5:20:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	t	ug/m3	1	10/17/2014 5.20.00 PM
1.2-Dichloroethane	< 0.61	0.61	L	ug/m3	1	10/17/2014 5:20.00 PM
1,2-Dichloropropano	- 0.69	0.69	L	ug/m3	1	10/17/2014 5:20:00 PM
1,3,5-Trimethylbenzene	< 0.74	D.74	L	ug/m3	1	10/17/2014 5:20:00 PM
1,3-butadiene	< 0.33	0.33	L	ug/m3	1	10/17/2014 5:20:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	L	⊿g/m3	1	10/17/2014 5:20:00 PM
t,4-Dichlorobenzene	< 0.90	0.90	L	Jg/m3	1	10/17/2014 5:20:00 PM
1.4-Dioxane	< 1,1	1,1	L	lg/m3	1	10/17/2014 5.20:00 PM
2,2,4 trimethylpontano	< 0.70	0.70	ι	ug/m3	1	10/17/2014 5:20:00 PM
4-ethyltoluene	< 0.74	0.74		ig/m3	1	10/17/2014 5:20:00 PM
Acetone	13	3.6	ι	.g/m3	5	10/18/2014 12:19:00 AM
Ally! chloride	< 0.47	0.47		Jg/m3	1	10/17/2014 5:20:00 PM
Benzene	0.38	0 49	Ju	ug/m3	1	10/17/2014 5.20:00 PM
Bénzyl chloride	< 0.86	0.86	L.	ig/m3	1	10/17/2014 5.20.00 PM
Bromodichloromethane	< 1.0	1.0	L.	ıg∕m3	1	10/17/2014 5:20:00 PM
Bromotorm	< 1.6	1.6	ι.	ig/m3	1	10/17/2014 5:20:00 PM
Bromomethane	< 0.58	0.58	L	£m/p	1	10/17/2014 5:20:00 PM
Carbon disulfide	< 0.47	0.47	Ĺ	ig/m3	1	10/17/2014 5:20:00 PM
Carbon tetrachloride	0.63	0.25	L L	ig/m3	1	10/17/2014 5.20:00 PM
Chlorobenzene	< 0.69	0.69	ι	ıg/m3	1	10/17/2014 5:20:00 PM
Chloroethane	< 0.40	0.40	L.	ig/m3	1	10/17/2014 5:20:00 PM
Chieroform	< 0.73	0.73	L	ig/m3	1	10/17/2014 5:20:00 PM
Chloromethane	0.95	0.31	L	ig/m3	1	10/17/2014 St20:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	L	ig/m3	1	10/17/2014 5:20:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	نا	ig/m3	1	10/17/2014 5:20:00 PM
Cyclohexane	< 0.52	0.52	L	ig/m3	1	10/17/2014 5.20:00 PM
Dibromochloromethano	< 1.3	1.3	u	ig/m3	1	10/17/2014 5:20.00 PM
Ethyl acetate	• 0.90	0.90	U.	ig/m3	1	40/17/2014 5:20:00 PM
Ethylbenzene	< 0.65	0.65	u	ig/m3	1	10/17/2014 5:20:00 PM
Freon 11	1.7	0.84	u	ig/m3	t	10/17/2014 5:20:00 PM
Freon 113	< 1.1	1.1	d	ig/m3	1	10/17/2014 5:20:00 PM
Freori 114	< 1.0	1.0	u	ig/m3	1	10/17/2014 5:20:00 PM

Qualifiers; ** Reporting Lunit

B Analyte detected in the associated Method Blank

11 Folding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S — Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-001A

Client Sample ID: 1A-04 Tag Number: 102,259 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то)-15			Analyst: RJP
Freon 12	2.7	0 74		ug/m3	1	10/17/2014 5·20:00 PM
Hoptane	< 0.51	0.61		ug/m3	1	10/17/2014 5.20:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.5		ug/m3	1	10/17/2014 5:20:00 PM
Hexane	< 0.53	0.53		ug/m3	1	10/17/2014 5:20:00 PM
isopropyl alcoho)	3.3	0.37		ug/m3	1	10/17/2014 5:20:00 PM
m&p-Xylene	11	1.3	Ъ	ug/m3	1	10/17/2014 5:20:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	10/17/2014 5:20:00 PM
Mathyl Ethyl Ketone	1.0	0.80		ug/m3	1	10/17/2014 5:20:00 PM
Methyl isobutyl Ketone	< 1.Z	1.2		ug/m3	1	10/17/2014 5·20·00 PM
Methyl tert butyl othor	< 0.64	0.54		ug/m3	1	10/17/2014 5.20.00 PM
Methylene chloride	< 0.52	0.52		ug/m3	1	10/17/2014 5:20.00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	10/17/2014 5:20:00 PM
Propylene	< 0.26	0.26		ug/m3	1	10/17/2014 5:20:00 PM
Styrene	< 0.64	0.64		ug/m3	1	10/17/2014 5:20:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	10/17/2014 5:20:00 PM
Telrahydrofuran	< 0.44	0.44		ug/m3	1	10/17/2014 5:20:00 PM
Loheve	0.83	0.57		ug/m3	1	10/17/2014 5:20:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	ĩ	10/17/2014 5.20:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/17/2014 5:20.00 PM
Trichloroethene	< 0.21	0,21		ug/m3	1	10/17/2014 5:20:00 PM
Vinyl acetato	< 0.53	0.53		ug/m3	1	10/17/2014 5:20:00 PM
Vinyt Brornide	< 0.66	0.66		ug/m3	1	10/17/2014 5:20:00 PM
Vinyl chloride	~ 0.10	0.10		ug/m3	1	10/17/2014 5:20:00 PM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-mutine analyte, Quantitation estimated
- S Spike Renovery outside accepted recovery limits

Results reported are not blank corrected

- [1] Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

_ _

CLIENT:WSP Environment and EnergyClient Sample ID:SS-03Lab Order:C1410057Tag Number:457,1161Project:5140 Site Yorkville, NYCollection Date:10/14/2014Lab ID:C1410057-002AMatrix:Alk

. .

- - - - -

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-2		"Hg		10/16/2014
Lab Vacuum Qu(-30		"Нд		10/16/2014
1UG/M3 BY METHOD TO15		TQ-15			Analyst: RJP
1,1,1-Trichloroothane	1.3	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,1,2,2 Tetrachioroethane	< 0.16	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,1,2-Trichloroelhang	< 0.15	0.15	ppbV	1	10/21/2014 3.34:00 AM
1,1-Dichloroethane	< 0.15	0.45	ρρυν	1	10/21/2014 3:34:00 AM
1, 1-Dichloroethene	< 0.15	0.15	ррЪ∨	1	10/21/2014 3:34:00 AM
1,2,4-Trichlorobenzene	0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,2,4 Trimethylbonzone	1.4	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	рры	1	10/21/2014 3:34:00 AM
1,2-Dichloroethane	< 0.15	0.15	Vdqq	1	10/21/2014 3:34:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,3,5-Trimothylbonzene	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,3-butadiene	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1.4-Dioxane	< 0.30	0.30	ppbV	1	10/21/2014 3:34:00 AM
2,2,4-trimothylpentane	< 0.15	0.15	opbV	1	10/21/2014 3:34 00 AM
4 ethyltoluene	0.19	0.15	ppbV	Ť	10/21/2014 3.34.00 AM
Acetone	200	48	ppbV	160	10/21/2014 11:40:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
Bonzone	11	0.15	ppbV	1	10/21/2014 3:34:00 AM
Benzyl chloride	< 0.15	0.15	рры∨	1	10/21/2014 3:34:00 AM
Bromodichloromethane	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
Bromolorm	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
Bromomethane	< 0.15	0.15	Vdqq	1	10/21/2014 3:34:00 AM
Carbon disulfide	3.6	1.5	ρρbV	10	10/21/2014 6:37:00 AM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
Chlorobenzene	< 0.15	0.15	ppb∨	1	10/21/2014 3.34:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	10/21/2014 3:34.00 AM
Chloroform	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
Chloromethane	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
cls-1,2-Dichloroethene	< 0.1 <i>5</i>	0.15	ppbV	1	10/21/2014 3:34:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15	ppb√	1	10/21/2014 3:34:00 AM
Cyclohexane	0.96	0.15	ррЬ∨	1	10/21/2014 3:34:00 AM
Dibromochloromethane	< 0.15	0.15	ρρον	1	10/21/2014 3:34:00 AM
Ethyl acctate	< 0.25	0.26	ppbV	1	10/21/2014 3:34.00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside necepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range

ND

- J Analyte detected at or below quantitation limits
 - Not Detected at the Reporting Limit

^{**} Reporting Limit

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy
Lab Order:	C1410057
Project:	5140 Site Yorkville, NY
Lab ID:	C1410057-002A

Client Sample ID: SS-03 Tag Number: 457,1161 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Quat	Units	ÐF	Date Analyzed
1UG/M3 BY METHOD TO15		та)- 1 5			Analyst; RJP
Ethylbonzene	1.3	0.15		ppbV	1	10/21/2014 3:34.00 AM
Freen 11	69	24		ppbV	160	10/21/2014 11:40.00 PM
Freon 113	0.69	0.15		ppbV	1	10/21/2014 3:34:00 AM
Freon 114	< 0.15	0.15		ppbV	1	10/21/2014 3:34:00 AM
Freon 12	0.58	0.15		ppb∨	1	10/21/2014 3:34:00 AM
Heptane	1.9	1.5		ppbV	10	10/21/2014 8:37:00 AM
Rexachloro-1,3-butadiene	< 0.15	0.15		ррым	1	10/21/2014 3:34:00 AM
Hexano	2.7	1.5		ppbV	10	10/21/2014 6:37.00 AM
Isopropyl alcohol	5.5	1.5		ppbV	10	10/21/2014 5:37.00 AM
m&p-Xylene	2.8	3.0	J	ppb∨	10	10/21/2014 6:37:00 AM
Methyl Bulyl Ketone	0.66	0.30		Vdqq	í	10/21/2014 3:34:00 AM
Methyl Ethyl Ketone	2.5	3.0	Э	ppbV	10	10/21/2014 6:37:00 AM
Mothyl isobutyl Ketone	0.47	0.30		ppbV	1	10/21/2014 3:34:00 AM
Methyl tert-butyl ether	1.2	0.15		ррь∨	1	10/21/2014 3:34:00 AM
Methylene chloride	0.13	0.15	J	ppbV	1	10/21/2014 3.34:00 AM
о-Хујеле	0.96	0.15		ppbV	1	10/21/2014 3:34:00 AM
Propylene	< 0.15	0.15		PpbV	1	10/21/2014 3:34:00 AM
Styreno	0.37	0.15		ppbV	1	10/21/2014 3:34:00 AM
Tetrachlorosthylene	66	1.5		ppb∀	10	10/21/2014 6:37:00 AM
Tetrahydrofuran	< 0.15	0.15		ppb∀	1	10/21/2014 3:34:00 AM
Toluene	2.7	15		ppbV	10	10/21/2014 6:37:00 AM
trans-1,2-Dichloroethone	< 0.15	0.15		ppbV	1	10/21/2014 3.34-00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	10/21/2014 3:34.00 AM
Trichlorosthene	1,1	0.15		ppbV	1	10/21/2014 3:34:00 AM
Vinyl adotate	< 0.15	0.15		ррб∨	1	10/21/2014 3:34:00 AM
Vinyl Bramide	< 0.15	0.15		ррыV	1	10/21/2014 3:34:00 AM
Vinyl chloride	< 0.15	0.15		ppbV	1	10/21/2014 3:34:00 AM
Surr: Bromofluorobenzene	111	70-130		%REC	1	10/21/2014 3:34:00 AM

Qualifiers:

- ** Reporting Lamit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CUENT:	WSP Environment and Energy
Lab Order:	C1410057
Project:	5140 Site Yorkville, NY
Lab ID;	C1410057-002A

Client Sample ID: SS-03 Tag Number: 457,1161 Collection Date: 10/14/2014 Matrix: AlR

Anatyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO	-15		Analyst: RJP
1,1,1-frichloroethane	7.0	0.82	ug/m3	1	10/21/2014 3:34:00 AM
1,1,2,2-Tetrachioroethane	< 1.0	1.0	ug/m3	1	10/21/2014 3:34:00 AM
1,1,2-Trichleroethane	< 0.82	0.82	ug/m3	1	10/21/2014 3:34:00 AM
1,1 Dichloroethane	< 0.61	0.61	ug/m3	1	10/21/2014 3:34:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	10/21/2014 3:34:00 AM
1,2,4-Trichlorobenzene	1.1	1.1	vg/m3	1	10/21/2014 3:34:00 AM
1,2,4-Tomethylbenzene	6.7	0.74	ug/m3	1	10/21/2014 3.34:00 AM
1,2-Dibromoothane	< 1.2	1.2	ug/m3	1	10/21/2014 3.34.00 AM
t.2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/21/2014 3.34.00 AM
1,2 Dichloraethane	< 0.61	0.61	ug/m3	1	10/21/2014 3:34:00 AM
1,2-Dichtoropropane	< 0.69	0.69	ug/m3	1	10/21/2014 3:34:09 AM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	10/21/2014 3:34:00 AM
1,3-butadiene	< 0.33	0.33	ug/m3	1	10/21/2014 3:34:00 AM
1.3-Dichlorobenzenc	< 0.90	0.90	ug/m3	1	10/21/2014 3.34.00 AM
1,4 Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/21/2014 3:34:00 AM
1,4-Dioxane	< 1.3	1.1	ug/m3	1	10/21/2014 3:34:00 AM
2,2.4-trimethylpentane	< 0.70	0.70	ug/m3	1	10/21/2014 3:34:00 AM
4-ethyltoluene	0.93	0 74	ug/m3	1	10/21/2014 3:34:00 AM
Acotone	460	110		160	10/21/2014 11:40:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	10/21/2014 3:34:00 AM
Benzene	3.6	0.48	ug/m3	1	10/21/2014 3:34:00 AM
Benzyl chloride	< 0.86	0.86	ug/m3	1	10/21/2014 3.34:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	10/21/2014 3:34:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	10/21/2014 3:34:00 AM
Bromomethane	< 0.58	0.58	ug/m3	1	10/21/2014 3:34:00 AM
Carbon disulfido	11	4.7	ug/m3	10	10/21/2014 6:37:00 AM
Carbon tetrachtoride	< 0.94	0.94	ug/m3	1	10/21/2014 3:34:00 AM
Chlorobenzene	< 0.69	0.69	ug/m3	1	10/21/2014 3:34:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	10/21/2014 3:34:00 AM
Chloroform	< 0.73	0.73	ug/m3	1	10/21/2014 3:34:00 AM
Chloromethano	< 0.31	0.31	ug/m3	1	10/21/2014 3:34:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/21/2014 3:34:00 AM
cis-1,3 Dichloropropene	< 0.68	0.68	ug/m3	1	10/21/2014 3:34:00 AM
Cyclohexane	3.3	0.52	ug/m3	1	10/21/2014 3:34.00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	10/21/2014 3:34:00 AM
Ethyl acetate	< 0.90	0.90	ug/m3	1	10/21/2014 3:34:00 AM
Ethylbenzene	5.8	0.65	ug/m3	1	10/21/2014 3:34:00 AM
Freen 11	380	130	ug/m3	160	10/21/2014 11:40:00 PM
Freen 113	5.3	1.1	ug/m3	1	10/21/2014 3:34:00 AM
Freon 114	< 1.0	1.0	ug/m3	1	10/21/2014 3.34:00 AM
• •			-9		

- Reporting Limit
 - B Analyte detected in the associated Method Blank
 - H Holding times for preparation or analysis exceeded
 - JN Non-routine analyte, Quantitation estimated.
 - S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Qualifiers:

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy	Client Sample ID:	SS-03
Lab Order:	C1410057	Tag Number:	457,1161
Project:	5140 Site Yorkville, NY	Collection Date:	10/14/2014
Lab ID:	C1410037-002A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то) <u>-</u> 15			Analyst: RJP
Freun 12	2.9	0.74		ug/m3	1	10/21/2014 3:34:00 AM
Heptene	78	61		vg/m3	10	10/21/2014 6:37:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		սց/m3	1	10/21/2014 3:34:00 AM
Hexane	9.5	5.3		ug/m3	10	10/21/2014 6:37:00 AM
Isopropyl alcohol	14	3.7		ug/m3	10	10/21/2014 6:37:00 AM
m&p-Xylene	12	13	J	ug/m3	10	1D/21/2014 6:37:00 AM
Methyl Butyl Ketone	2.7	1.2		ug/m3	1	10/21/2014 3.34:00 AM
Methyl Ethyl Ketone	7.4	8.8	J	ug/m3	10	10/21/2014 6:37.00 AM
Methyl isobutyl Ketone	1.9	1.2		ug/m3	ï	10/21/2014 3:34:00 AM
Methyl tert-butyl ether	4.4	0.54		ug/m3	1	10/21/2014 3:34:00 AM
Methylene chloride	0.45	0.52	Ы	ug/m3	1	10/21/2014 3:34:00 AM
o-Xylene	4.2	0.65		ug/m3	1	10/21/2014 3:34:00 AM
Propylene	< 0.26	0.26		ug/m3	1	10/21/2014 3:34:00 AM
Styrene	1.6	0.64		ug/m3	1	10/21/2014 3.34:00 AM
Tetrachloroethylene	45	10		ug/m3	10	10/21/2014 6:37:00 AM
Tetrahydrofuran	< 0.44	0.44		vg/m3	1	10/21/2014 3:34:00 AM
Toluene	10	5.7		em/gu	10	10/21/2014 6:37:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/21/2014 3:34:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/21/2014 3:34:00 AM
Trichtoroethene	5.9	0.81		ug/m3	1	10/21/2014 3:34.00 AM
Vinyl acetato	< 0.53	0.53		ug/m3	1	10/21/2014 3:34.00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/21/2014 3:34:00 AM
Vinyl chloride	< 0.38	0.38		ug/m3	1	10/21/2014 3:34:00 AM

Qualifiers:

++ Reporting Long

- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CUIENT:WSP EnvironmerLab Order:C1410057Project:5140 Site YorkviLab ID:C1410057-003A				Client Sample ID: Tag Number: Collection Date: Matrix:	460,262 10/14/2014	
Analyses		Result	**Limit Qua	l Units	DF	Date Analyzed
FIELD PARAM	ETERS		FLD			Analyst:
Lab Vacuum In		-11		"Но		10/16/2014
Lab Vacuum Oi	LIt	-30		"Hg		10/16/2014
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroe		< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
1.1,2,2-Tetrachi	loroethane	< 0.15	0.16	ppbV	1	10/17/2014 5:59:00 PM
1.1.2-Trichloroe	thane	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
1,1 Dichloroeth:	ало	< 0.15	0 15	pp6V	1	10/17/2014 5:59:00 PM
1,1-Dichloroethe	ene	< 0.15	0.15	ppb∨	1	10/17/2014 5:59:00 PM
1,2,4-Trichlorob	enzene	< 0.15	0.15	ppbV	1	10/17/2014 S:59:00 PM
1,2,4-Trimethylt	Denzene	0.15	0.15	ppbV	1	10/17/2014 5:59:00 (*M
1.2-Dibromoetha	ane	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
1,2 Dichloroben	zene	< 0.15	0.15	ppbV	1	10/17/2014 5.59:00 PM
1,2-Dichloroetha	ane	< 0.15	0.15	ppbV	1	10/17/2014 5:59.00 PM
1,2-Dichloroproj	oane	< 0.15	0.15	νσας	1	10/17/2014 5:59:00 PM
1,3,5-Yrimethylb	penzene	0.13	0.15 J	ppbV	1	10/17/2014 5:59:00 PM
1.3-butadiene		< 0.15	0.15	ррь∨	1	10/17/2014 5:59:00 PM
1,3-Dichtaraben	zona	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
1,4-Dichloroben	zene	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
1,4-Dioxane		< 0.30	0.30	Vdqq	1	10/17/2014 5:59:00 PM
2,2,4-tranethylpe	entane	< 0.15	0.15	ррbV	1	10/17/2014 5:59.00 PM
4-othyltoluene		< 0.15	0.15	ррbV	1	10/17/2014 5:59:00 PM
Acetene		8.4	1.5	ppbV	5	10/18/2014 12:55:00 AM
Allyl chloride		< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Benzene		0.14	0.15 J	ppbV	1	10/17/2014 5:59:00 PM
Benzyl chloride		< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Bromodichlorom	hethane	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Bromoform		< 0.15	0.15	ррbV	1	10/17/2014 5:59:00 PM
Bromomethane		S 0.15	0.15	ррьV	1	10/17/2014 5:59:00 PM
Carbon disulfide	•	< 0.15	0.15	ррыМ	1	10/17/2014 5:59:00 PM
Carbon tetrachic	orido	< 0.040	0.040	ppbV	1	10/17/2014 5:59:00 PM
Chlorobenzene		0 10	0.15 J	Vdqq	1	10/17/2014 5:59:00 PM
Chloroethane		< 0.15	0.15	Vdqq	1	10/17/2014 5:59:00 PM
Chloroform		< 0.15	0.15	ppbV	1	10/17/2014 5:59.00 PM
Chloromothane		0.49	0.15	ppbV	1	10/17/2014 5:59:00 PM
cis-1,2-Dichloroe	athene	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
cis-1,3 Dichlorop	propene	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Cyclohexane		< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Dibromochlorom	ethano	< 0.15	0.15	Vdqq	1	10/17/2014 5:59:00 PM
Ethyl acetate		< 0.25	0.25	ppbV	1	10/17/2014 5:59.00 PM

- Qualifiers:
- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- II Holding times for preparation or analysis exceeded
- JN Non-routine analyte Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank conceted

- E Value above quantitation range
- 3 Analyte detected nt or below quantum timits.
- ND Not Detected at the Reporting Limit

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-003A

Date: 31-Oct-14

Client Sample ID: 1A-03 Tag Number: 460,262 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Q	Qual Units	ĐF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP
Ethylbonzone	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Freon 11	0.33	0.15	ppbV	1	10/17/2014 5:59 00 PM
Freon 113	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Freon 114	< 0.15	Q 15	ppbV	1	10/17/2014 5:59.00 PM
Freon 12	0.57	0.15	DDDV	1	10/1//2014 5:59:00 PM
Heptane	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	Vdqq	1	10/17/2014 5:59:00 PM
Hexano	< 0.15	0.15	PPbV	1	10/17/2014 5:59:00 PM
Isopropyl alcohot	1.8	0.15	ppbV	1	10/17/2014 5:59:00 PM
m&p-Xylene	0.32	0.30	Vdqq	1	10/17/2014 5:59:00 PM
Methyl Butyl Ketono	< 0.30	0.30	ppbV	1	10/17/2014 5:59:00 PM
Methyl Ethyl Ketone	0.45	0.30	ppbV	1	10/17/2014 5.59.00 PM
Methyl Isobutyl Ketone	< 0.30	0.30	Vdqq	1	10/17/2014 5:59.00 PM
Methyl tort-butyl ether	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Methylene chloride	0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
o-Xylene	0.12	0 15	J ppbV	1	10/17/2014 5:59:00 PM
Propylene	< 0.15	0.15	ppbV	1	10/17/2014 5 59:00 PM
Styrene	< 0.15	0.15	vdqq	1	10/17/2014 5.59:00 PM
Tetrachlorosthylene	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Tetrahydrofuran	< 0.15	0.15	ppb∨	1	10/17/2014 5:59:00 PM
Toluene	0.42	0.15	ppbV	1	10/17/2014 5:59:00 PM
trans-1,2-Dichloronthene	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
trans-1.3-Dichloropropene	< 0.15	0.15	opb∨	1	10/17/2014 5:59:00 PM
Trichloroethene	0.050	0.040	ppbV	1	10/17/2014 5:59:00 PM
Vinyl anetate	< 0.15	0.15	Vdqq	1	10/17/2014 5:59.00 PM
Vinyl Bromide	< 0.15	0.15	Vdqq	1	10/17/2014 5:59:00 PM
Vinyl chloride	< 0.040	0.040	ppbV	1	10/17/2014 5:59:00 PM
Surr: Bromofluorobonzene	86.0	70-130	%REC	1	10/17/2014 5:59:00 PM

Qualifiers:

- ** Reporting Lunit
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy
Lab Order:	C1410057
Project:	5140 Site Yorkville, NY
Lab ID:	C1410057-003A

Client Sample ID: 1A-03 Tag Number: 460,262 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Lìmit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс)-15			Analyst: RJP
1,1.1-Trichloroethane	< 0.82	0.82		ug/m3	1	10/17/2014 5:59:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	10/17/2014 5:59:00 PM
1,1,2 Trichloroethane	< 0.82	0.82		ug/m3	1	10/17/2014 5:59:00 PM
t,1 Dichloroethane	< 0.61	0.61		ug/m3	1	10/17/2014 5:59 00 PM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 5:59.00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m 3	1	10/17/2014 5:59.00 PM
1,2,4-Trimethylbenzene	0.74	0.74		ug/m3	1	10/17/2014 5:59.00 PM
1.2-Dibromoothane	< 1.2	1,2		ug/m3	1	10/17/2014 5:59:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 S(59:00 PM
1,2 Dichloroethane	< 0.61	0.61		ug/m3	1	10/17/2014 5:59:00 PM
1,2-Dichloropropane	< 0.69	0.69		dg/m3	1	10/17/2014 5:59:00 PM
1,3,5-Trimethylbenzene	0.64	0.74	J	ug/m3	1	10/17/2014 5:59:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	10/17/2014 5.59.00 PM
1.3-Dichlorobenzone	< 0.90	0.90		ug/m3	Ŧ	10/17/2014 5:59:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 5:59:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	10/17/2014 5:59:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	10/17/2014 5:59:00 PM
4-sthyltoluene	< 0.74	0.74		ug/m3	1	10/17/2014 5:59:00 PM
Acetone	20	3.6		ug/m3	5	10/18/2014 12:55:00 AM
Allyl chloride	< 0.47	0 47		ug/m3	1	10/17/2014 5:59.00 PM
Benzene	0.45	0.48	ł,	ug/m3	1	10/17/2014 5:59:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	10/17/2014 5:59:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	10/17/2014 5:59:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	10/17/2014 5:59 00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	10/17/2014 5.59.00 PM
Carbon disulfide	< 0.47	0 47		ug/m3	1	10/17/2014 5.59:00 PM
Carbon tetrachloride	< 0.25	0.25		ug/m3	1	10/17/2014 5:59:00 PM
Chlorobenzene	0.46	0.69	Ч	ug/m3	1	10/17/2014 5:59:00 PM
Chloroelhane	< 0.40	0.40		ug/m3	1	10/17/2014 5:59:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	10/17/2014 5:59:00 PM
Chloromethane	1.0	0.31		ug/m3	1	10/17/2014 5:59:00 PM
cis-1.2-Dichlorosthene	< 0.59	0.59		ug/m3	1	10/17/2014 5:59:00 PM
cis-1,3-Dichloropropone	< 0.68	0.68		ug/m3	1	10/17/2014 5:59:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	10/17/2014 5:59:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	10/17/2014 5:59:00 PM
Ethyl acetate	< 0.90	0.90		ug/m3	1	10/17/2014 5:59:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	10/17/2014 5:59:00 PM
From 11	19	0.84		ug/m3	1	10/17/2014 5:59.00 PM
Freon 113	< 1.1	1.1		ug/m3	1	10/17/2014 5:59:00 PM
Freon 114	< 1.0	1.0		ug/m3	t	10/17/2014 5:59:00 PM

Qualifiers:

** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated,

8 Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

3 Analyte detected at or below quantitation limits

ND - Not Detected at the Reporting Limit

Date: 37-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-003A

Client Sample 1D: 1A-03 Tag Number: 460,262 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
Freon 12	2.8	0.74	ug/m3	1	10/17/2014 5.59:00 PM
Heptane	< 0.61	0.61	ug/m3	1	10/17/2014 5.59.00 PM
Hexachloro-1,3-butadiene	< 1.6	16	ug/m3	1	10/17/2014 5:59:00 PM
Hexane	< 0.53	0.53	ug/m3	1	10/17/2014 5:59:00 PM
(sopropy) alcohoi	4.3	0.37	vg/m3	1	10/17/2014 5:59:00 PM
m&p-Xylene	1.4	1.3	ug/m3	1	10/17/2014 5:59:00 PM
Methyl Butyl Ketono	< 1.2	1.2	ug/m3	1	10/17/2014 5:59:00 PM
Methyl Ethyl Ketono	1.3	0.88	ug/m3	1	10/17/2014 5:59:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	10/17/2014 5:59:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	10/17/2014 5.59.00 PM
Methylene chloride	0.52	0.52	ug/m3	1	10/17/2014 5:59:00 PM
o-Xylene	0.52	0.65 J	ug/m3	1	10/17/2014 6:59:00 PM
Propylene	< 0.26	0.26	ug/m3	1	10/17/2014 5:59:00 PM
Styrene	< 0.64	0.64	ug/m3	1	10/17/2014 5:59:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	10/17/2014 5:59:00 PM
Tetrahydrofuran	< 0 44	0.44	ug/m3	1	10/17/2014 5:59.00 PM
Toluche	1.6	0.67	ug/m3	1	10/17/2014 5:59.00 PM
trans-1,2-Dichloroethone	• 0.59	0.59	ug/m3	1	10/17/2014 5:59:00 PM
Irans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/17/2014 5:59:00 PM
1 richloroethene	0.27	0.21	ug/m3	1	10/17/2014 5:59:00 PM
Vinyl acetate	< 0.63	0.53	ug/m3	1	10/17/2014 5:59:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	10/17/2014 5.59.00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	10/17/2014 5.59.00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Value above quantitation range
- 3 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct 14

CLIENT: WSP Environment and Energy Client Sample ID: SS-02 C1410057 Lab Order: Tag Number: 158,265 Collection Date: 10/14/2014 Project: 5140 Site Yorkville, NY Lab ID: Matrix: AIR C1410057-004A

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FŁD			Analyst:
Lab Vacuum In	-2		"Hg		10/16/2014
Lab Vacuum Out	-30		"Hg		10/16/2014
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	0.33	0.15	ppbV	1	10/21/2014 4:12:00 AM
1.1,2.2-Tetrachloroethane	< 0.15	015	ppbV	1	10/21/2014 4:12:00 AM
1,1,2 Trichloroethane	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
1,1-Dichloroethene	< 0.15	0.15	ррЬ∨	1	10/21/2014 4:12:00 AM
1.2,4-Trichforobenzene	0.85	0.15	ppbV	1	10/21/2014 4:12:00 AM
1,2.4-Trimethylbenzene	2.6	1.5	ppbV	10	10/21/2014 7:12:00 AM
1,2-Dibromoothane	< 0.15	0.15	opb∨	1	10/21/2014 4:12:00 AM
1,2 Dichlorobenzene	< 0.15	0.15	ppb∨	1	10/21/2014 4.12 00 AM
1,2-Dichforoethane	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
1,2-Dichloropropane	÷ 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
1.3.5-Trimethylbenzene	< 0.15	0.15	ррыу	1	10/21/2014 4:12:00 AM
1.3-butadiene	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
1,3 Dichlorobenzene	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
1,4-Dichlorobenzene	0.29	0 15	ppbV	1	10/21/2014 4:12:00 AM
1,4-Dioxane	< 0.30	0.30	ppbV	1	10/21/2014 4.12.00 AM
2.2.4-trimethylpentane	< 0.15	0.15	ppb\/	1	10/21/2014 4:12:00 AM
4-ethyltoluene	0.34	0.15	Vdqq	1	10/21/2014 4:12:00 AM
Acetone	200	190	ppbV	640	10/22/2014 12:53:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	10/21/2014 4·12:00 AM
Benzene	1.1	0.15	vdqq	1	10/21/2014 4·12·00 AM
Benzyl chloride	< 0.15	0.15	ppbV	1	10/21/2014 4.12:00 AM
Bromodichloromethane	< 0.15	D.15	ppbV	1	10/21/2014 4:12:00 AM
Bromoform	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
Bromomethane	< 0.15	0.15	ρρογ	1	10/21/2014 4:12:00 AM
Carbon disulfide	6.4	15	ppb∨	1D	10/21/2014 7:12:00 AM
Carbon tetrachloride	< 0.15	0.15	ppb∨	1	10/21/2014 4:12:00 AM
Chlorobenzene	< 0.15	0.15	ppbV	1	10/21/2014 4:12.00 AM
Chloroethane	< 0.15	0.15	pphV	1	10/21/2014 4:12:00 AM
Chloroform	< 0.15	0.15	pphV	1	10/21/2014 4:12:00 AM
Chloromethane	0.27	0.15	ppbV	1	10/21/2014 4:12:00 AM
cis-1,2-Dichlorosthene	< 0.15	0.15	ppbV	1	10/21/2014 4·12:00 AM
cis 1.3-Dichloropropene	< 0.15	0.15	ρρον	1	10/21/2014 4:12:00 AM
Cyclohexane	< 0.15	015	ppb√	1	10/21/2014 4:12:00 AM
Dibromochloromethane	< 0.15	0.15	ppb√	1	10/21/2014 4:12.00 AM
Ethyl acelate	0.17	0.25 J	ppbV	1	10/21/2014 4:12:00 AM

Qualifiers:

•• Reporting Lunit

- В Analyte detected in the associated Method Blank
- !! Holding times for preparation or analysis exceeded
- JN. Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits

Results reported are not blank conjected .

R Value above quantitation range

- Analyte detected at or below quantitation limits J
- ND Not Detected at the Reporting Limit

Page 7 of 22

Date: 31-Oct-14

CLIENT	WSP Environment and Energy	Client Sample ID:	 SS-02
Lab Order:	C1410057	Tag Number:	158,265
Project:	5140 Site Yorkville, NY	Collection Date:	10/14/2014
Lab ID:	C1410057-004A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		τc)-15			Analyst: RJP
Ethylbenzene	43	1.5		ppbV	10	10/21/2014 7:12:00 AM
Freen 11	74	1.5		Vdqq	10	10/21/2014 7:12:00 AM
Froon 113	0.13	0.15	J	ppbV	1	10/21/2014 4:12:00 AM
Freon 114	< 0.15	0.15		ppbV	1	10/21/2014 4:12:00 AM
Freon 12	1.3	0.15		ppbV	1	10/21/2014 4:12:00 AM
Heptane	1.5	1.5		pptiV	10	10/21/2014 7:12:00 AM
Hexachloro-1,3-butadiene	< 0.45	0.15		ppbV	1	10/21/2014 4:12:00 AM
Нохале	τ.9	1.5		ppb∨	10	10/21/2014 7:12:00 AM
tsopropyl alcohol	7.4	1.5		ppb∀	10	10/21/2014 7:12:00 AM
m&p Xylene	14	3.0		ppbV	10	10/21/2014 7:12.00 AM
Methyl Butyl Kelone	1.4	3.0	J	ppbV	10	10/21/2014 7:12:00 AM
Methyl Ethyl Ketone	3.7	3.0		ppb∨	10	10/21/2014 7:12:00 AM
Methyl Isobutyl Ketone	0.89	0.30		ppbV	1	10/21/2014 4:12:00 AM
Mothyl tert-butyl ether	1.2	0.15		ppbV	1	10/21/2014 4:12:00 AM
Methyland chloride	0,12	0.15	J	ppbV	t	10/21/2014 4-12:00 AM
o-Xylene	2.6	15		ppbV	10	10/21/2014 7.12:00 AM
Propylene	< 0.15	0.15		ppbV	1	10/21/2014 4:12.00 AM
Styrene	0.64	0.15		ppbV	1	10/21/2014 4:12:00 AM
Totrachloroethylene	1.2	0.15		ppbV	1	10/21/2014 4:12:00 AM
Tetrahydrofuran	< 0.15	0.15		ppb∨	1	10/21/2014 4:12:00 AM
Toluene	2.4	1.5		ρρον	10	10/21/2014 7:12:00 AM
trans-1,2-Dichloroethene	< 0.15	0,15		ppbV	1	10/21/2014 4:12:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	10/21/2014 4:12.00 AM
Trichloroethene	0.18	0.15		рры	1	10/21/2014 4:12:00 AM
Vinyl acetate	< 0.15	0.15		ppbV	1	10/21/2014 4:12:00 AM
Vinyl Bromide	< 0.15	0.15		рръу	1	10/21/2014 4-12:00 AM
Vinyl chloride	< 0.15	0.15		PPDV	1	10/21/2014 4:12:00 AM
Sutt. Bramofluorobenzone	123	70-130		%REC	1	10/21/2014 4:12:00 AM

Qua	lifters	÷
-----	---------	---

** Reporting Limit

B Analyte detected in the associated Method Blank

11 Folding times for preparation or analysis exceeded.

JN Non-routine analyte, Quantitation estimated,

S — Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

B Value above quantitation range.

1 Annlyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Date: 31-Oct-14

	and the second	and the state of the		
CLIENT:	WSP Environment and Energy	Client Sample ID:	SS-02	
Lab Order:	C1410057	Tag Number:	158,265	
Project:	5140 Site Yorkville, NY	Collection Date:	10/14/2014	
Lab ID:	C1410057-004A	Matrix:	AIR	
Lab Order: Project:	C1410057 5140 Site Yorkville, NY	Tag Number: Collection Date:	158,265 10/14/2014	

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst; RJP
1.1.1-Trichloroothano	1.8	0.82		ug/m3	1	10/21/2014 4:12:00 AM
1,1,2,2-Tetrachloroothano	< 1.0	1.0		ug/m3	1	10/21/2014 4:12:00 AM
1,1,2-Trichforgethane	< 0.82	0.82		ug/m3	1	10/21/2014 4:12:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	10/21/2014 4:12:00 AM
1,1-Dichloroethene	< 0.59	0.69	,	ug/m3	1	10/21/2014 4:12:00 AM
1,2,4-Trichlorobenzene	63	11		ug/m3	1	10/21/2014 4:12:00 AM
1,2,4-Trimethylbonzene	13	7.4		սց/թո3	10	10/21/2014 7:12:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	10/21/2014 4:12:00 AM
1,2 Dichtorobenzene	< 0.90	0.90	t	ug/m3	1	10/21/2014 4:12.00 AM
1,2-Dichloroethane	< 0.61	0.61	ι	ug/m3	1	10/21/2014 4:12.00 AM
1,2-Dichloropropane	< 0.69	0.69	ι	ug/m3	1	10/21/2014 4:12:00 AM
1,3,6-frimethylbenzene	< 0.74	0.74	ų	ug/m3	1	10/21/2014 4:12:00 AM
1.3-butadiene	< 0.33	0.33	ų	ug/m3	1	10/21/2014 4:12:00 AM
1.3-Dichlorobenzene	- 0.90	0.90	L.	ug/m3	1	10/21/2014 4:12:00 AM
1,4-Dichlorobenzene	1.7	0.90		ug/m3	1	10/21/2014 4:12:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	10/21/2014 4:12:00 AM
2,2,4-tomethylpentane	< 0.70	0.70		ug/m3	1	10/21/2014 4:12.00 AM
4-ethyltoluene	17	074		ug/m3	1	10/21/2014 4:12:00 AM
Acctone	470	450		ug/m3	640	10/22/2014 12:53:00 AM
Allyt chloride	< 0.47	0.47	,	ug/m3	1	10/21/2014 4:12:00 AM
Benzene	3.6	0.48		ug/mi3	1	10/21/2014 4/02:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	10/21/2014 4:12:00 AM
Bromodichloromethane	< 1.0	1.0	L.	ug/m3	1	10/21/2014 4.12.00 AM
Bromoform	< 1.6	16		ug/m3	1	10/21/2014 4:12:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	10/21/2014 4:12:00 AM
Carbon disulfide	20	4.7	L	ug/m3	10	10/21/2014 7:12:00 AM
Carbon tetrachloride	< 0.94	0.94		ug/m3	1	10/21/2014 4:12:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	10/21/2014 4:12:00 AM
Chloroethane	< 0.40	0.40	L	ug/m3	1	10/21/2014 4.12:00 AM
Chloroform	< 0.73	073		vg/m3	1	10/21/2014 4:12:00 AM
Chloromethane	0.56	0.31	ા	ug/m3	1	10/21/2014 4:12:00 AM
cis-1,2-Dichloroetheng	< 0.59	0.59	ι	ug/m3	1	10/21/2014 4:12:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/21/2014 4:12:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	10/21/2014 4:12:00 AM
Dibromochloromethane	< 1.3	1.3	L.	ug/m3	1	10/21/2014 4:12:00 AM
Ethyl acetate	0.61	0.90		ug/mi3	1	10/21/2014 4:12.00 AM
Ethylbonzonc	19	65		ug/m3	10	10/21/2014 7:12.00 AM
Freon 11	42	6.4		ig/m3	10	10/21/2014 7:12:00 AM
Freon 113	1.0	1.1			1	10/21/2014 4:12:00 AM
Freon 114	< 1.0	1.0		.g/m3	1	10/21/2014 4:12:00 AM

Qualifiers: ** Reporting Limit

B Analyte detected in the associated Method Blank

11 Holding times for preparation or analysis exceeded.

JN Non-routine analyte. Onantitation estimated,

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

3 Analyte detected at or below quantitation limits

ND - Not Detected at the Reporting Limit-

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-004A

Client Sample 1D: SS-02 Tag Number: 158,265 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
Freon 12	6.4	0.74		ug/m3	1	10/21/2014 4.12:00 AM
Heptane	6.1	61		ug/m3	10	10/21/2014 7.12:00 AM
Hexachloro-1,3-butadiene	< 16	16		ug/m3	1	10/21/2014 4:12:00 AM
Hexane	6.7	5.3		ug/m3	10	30/21/2014 7:12:00 AM
Isopropyl alcohol	18	3.7		ug/m3	10	10/21/2014 7:12:00 AM
m&p-Xylene	62	13		ug/m3	10	10/21/2014 7:12:00 AM
Methyl Butyl Ketone	5.7	12	J	ug/m3	10	10/21/2014 7:12:00 AM
Methyl Ethyl Kotone	11	8.8		ug/m3	10	10/21/2014 7:12:00 AM
Methyl Isobutyl Ketone	3.6	1.2		ug/m3	1	10/21/2014 4:12:00 AM
Methyl tert butyl ether	4.5	0.54		ug/m3	1	10/21/2014 4:12:00 AM
Methylene chloride	0.42	0.52	Ы	ug/m3	1	10/21/2014 4:12:00 AM
o-Xylene	11	6.5		ug/m3	10	10/21/2014 7:12:00 AM
Propytene	< 0.26	0.26		ug/m3	1	10/21/2014 4:12:00 AM
Styrene	2.7	0.64		ug/m3	1	10/21/2014 4:12:00 AM
Tetrachloroethylens	83	1.0		ug/m3	1	10/21/2014 4:12:00 AM
Tetrahydrofuran	< 0.44	Ω 4 4		ug/m3	1	10/21/2014 4.12:00 AM
Toluene	9.0	5.7		ug/m3	10	10/21/2014 7:12:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/21/2014 4:12:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/21/2014 4:12:00 AM
Trichloroethene	0.97	0.81		ug/m3	1	10/21/2014 4:12:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	10/21/2014 4:12:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/21/2014 4.12:00 AM
Vinyl chloride	< 0.36	0.38		ug/m3	1	10/21/2014 4.12:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery ontside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- 3 Analyte detected at or below quantitation limits.
- ND Not Detected at the Reporting Limit

Date: 37-Oct-14

CL/ENT: Lab Order: Project: Lab ID:	l Energy Y		C	Client Sample ID Tag Number Collection Date Matrix	: 205,1 : 10/14	154	
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
	ETERS		म	LD			Analyst:
Lab Vacuum In		-8			"Ну		10/16/2014
Lab Vacuum Or	Ut	-30			"Hg		10/16/2014
1UG/M3 W/ 0.2	5ŬĠ/M3 ĊT+TĊE-VÇ		тс	0-15			Analyst: RJP
1,1.1-Trichloroe	thane	< 0.15	0.15		ppbV	t	10/17/2014 6:36:00 PM
1.1,2.2-Tetrachi	lorcethane	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
1,1,2-Trichloroe	thane	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
1,1-Dichloroeth:	áne	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
1,1-Dichloroeth	ene	< 0.15	0.15		Vdqq	1	10/17/2014 6:36:00 PM
1,2,4-Trichlorob	enzene	< 0.15	0 15		ppbV	1	10/17/2014 6:36:00 PM
1,2,4-Trimethylt	penzene	0.15	0.15		νθάλ	1	10/17/2014 6:36:00 PM
1.2-Dibromoeth	ane	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
1,2-Dichloroben	zene	< 0.15	0.15		ррв∨	1	10/17/2014 6:36:00 PM
1,2-Dichioroeth:	sne	< 0.15	0.15		¢¢¢¢	1	10/17/2014 6:36:00 PM
1,2-Dichteroprop	pane	< 0.15	0,15		opbV	1	10/17/2014 6:36:00 PM
1,3,5-Trimethy/b	релиеле	0.12	0.15	÷,	Vdqq	1	10/17/2014 6:36:00 PM
1.3-butadiene		< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
1,3-Dichloroben	zene	< 0.15	0.15		ppb∨	1	10/17/2014 6:38:00 PM
t,4-Dichloroben	zene	< 0.15	0.15		ррв∨	1	10/17/2014 6:36:00 PM
1,4-Dioxane		< 0.30	0.30		ppbV	1	10/17/2014 6:36:00 PM
2,2,4-trimethylp	entane	< 0.15	0.15		ppb∨	1	10/17/2014 6.36:00 PM
4-sthyltoluene		< 0.15	0.15		ррб∨	1	10/17/2014 6:36:00 PM
Acetone		10	1.5		ppbV	5	10/18/2014 1:32:00 AM
Allyi chloride		< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Benzene		0.13	0.15	J	ppbV	1	10/17/2014 6:36:00 PM
Benzyl chloride		< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Bromodichlorom	nethane	< 0.15	0.15		ppbV	1	10/17/2014 6.36:00 PM
Bromoform		< 0.15	0 15		ppbV	1	10/17/2014 6:36:00 PM
Bromomethane		< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Carbon disulfide	1	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Carbon tetrachic	oride	0.10	0.040		ppbV	1	10/17/2014 6.36:00 PM
Chlorobenzene		< 0.15	0.15		ppbV	1	10/17/2014 6.36:00 PM
Chloroethane		< 0.15	0.15		opb∨	1	10/17/2014 5:36:00 PM
Chloroform		< 0.15	0.15		Vdqq	1	10/17/2014 6:36:00 PM
Chloromothane		0.57	0.15		ppb∨	1	10/17/2014 6:36:00 PM
cis-1,2-Dichloroe	ethono	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
cis-1,3 Dichlorop		< 0.15	0.15		Vdqq	1	10/17/2014 6:36:00 PM
Cyclohexane	· -	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Dibromochlorom	hethane	< 0.15	0.15		ppbV	1	10/17/2014 5:36:00 PM
Ethyl acetate		< 0.25	0.25		ppbV	1	10/17/2014 6:36:00 PM
-							

Qualifiers:

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND - Not Detected at the Reporting Limit

^{**} Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Date: 37 Oct 14

.

WSP Environment and Energy
C1410057
5140 Site Yorkville, NY
C1410057-005A

Client Sample ID: 1A-02 Tag Number: 205,1154 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppb∨	1	10/17/2014 5:36.00 PM
Freon 11	0.33	0.15		ppbV	1	10/17/2014 5:36.00 PM
Freon 113	< 0.15	0.15		ррбV	1	10/17/2014 6:36:00 PM
Freon 114	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Freon 12	0.56	0.15		рры∨	1	10/17/2014 6:36:00 PM
Heptane	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Hoxachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Hexane	< 0.15	0.16		ppbV	1	10/17/2014 6:36:00 PM
Isopropyl alcohol	0.85	0 15		Vdqq	1	10/17/2014 6:35:00 PM
mäp-Xylene	0.29	0.30	ŀ.	ppb∀	1	10/17/2014 6:36:00 PM
Methyl Butyl Kelone	< 0.30	0.30		ppbV	1	10/17/2014 6:36:00 PM
Methyl Ethyl Ketone	0.38	0.30		ppbV	1	10/17/2014 6:36:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	10/17/2014 6:36:00 PM
Methyl terl-bulyl othor	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Methylene chloride	0.13	0.15	J	ppbV	1	10/17/2014 6:36:00 PM
o-Xylene	0.13	0.15	Ч	Vdqq	1	10/17/2014 6:36.00 PM
Propylene	< 0.15	0.15		ppb∀	1	10/17/2014 6:36:00 PM
Styrene	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Yoluene	0.23	0.15		ppbV	1	10/17/2014 6:36:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	10/17/2014 6.36:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		pphV	1	10/17/2014 6:36.00 PM
Trichloroethone	< 0.040	0.040		ppbV	1	10/17/2014 6:36:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Vinyl Bromide	< 0.15	0.15		Ppb∨	1	10/17/2014 8:36:00 PM
Vinyl chloride	< 0.040	0 040		ppb∨	1	10/17/2014 6:36:00 PM
Surr: Bromofluorobenzene	85.0	70 130		%REC	1	10/17/2014 6:36:00 PM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-005A

Client Sample ID: IA-02 Tag Number: 205,1154 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс	2-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	10/17/2014 6:36:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	10/17/2014 6:36:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	10/17/2014 6.36:00 PM
t,1-Dichloraethane	= 0.61	0.61		ug/m3	1	10/17/2014 6:36:00 PM
1,1-Dichloraethene	< 0.59	0.59		ug/m3	1	10/17/2014 6:36.00 PM
1,2,4 Trichlorobenzene	< 1.1	1.1		ug/m3	1	10/17/2014 6:36:00 PM
1,2,4-Trimethylbenzene	0.74	0.74		ug/m3	1	10/17/2014 6:36:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	10/17/2014 6:36:00 PM
1.2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 6:36:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	10/17/2014 6:36:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	10/17/2014 6:36.00 PM
1,3,5-Trimethylbenzene	0.59	0.74	Ч	ug/m3	1	10/17/2014 5:36:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	10/17/2014 6:36:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 6:36:00 PM
1,4-Dichlorobenzone	< 0.90	0.90		ug/m3	1	10/17/2014 6:36:00 PM
1,4-Dioxane	< 1 1	1.1		ug/m3	1	10/17/2014 6:36:00 PM
2,2,4-trimethylpentane	< 0.70	0 70		ug/m3	1	10/17/2014 6:36:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	10/17/2014 5:36.00 PM
Acetone	24	3.6		ug/m3	5	10/18/2014 1:32:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	10/17/2014 6:36:00 PM
Benzene	0.42	0.48	J	ug/m3	1	10/17/2014 6:36:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	10/17/2014 6:36:00 PM
Bromodichloromethane	< 10	10		ug/m3	1	10/17/2014 6:36:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	10/17/2014 6:36:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	10/17/2014 6:36:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	10/17/2014 5:36:00 PM
Carbon tetrachloride	0.63	0.25		ug/m3	1	10/17/2014 6:36:00 PM
Chiorobenzene	< 0.69	0.69		ug/m3	1	10/17/2014 6:36:00 PM
Chlorgethane	< 0.40	0.40		ug/m3	1	10/17/2014 6:36:00 PM
Chloraform	< 0.73	0.73		ug/m3	1	10/17/2014 5:36:00 PM
Chloromethane	1.2	0.31		ug/m3	1	10/17/2014 6:36:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 6:36:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/17/2014 6:36:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	10/17/2014 6:36:00 PM
Dibromochloromethane	< 1.3	1,3		ug/m3	1	10/17/2014 8:38:00 PM
Ethyl acetate	< 0.90	0.90		ug/m3	1	10/17/2014 6:36:00 PM
Ethylbenzene	< 0.85	0.65		ug/m3	1	10/17/2014 6:36:00 PM
Freon 11	1.9	0.84		ug/m3	1	10/17/2014 5:36:00 PM
Freon 113	< 1.1	3.1		ug/m3	1	10/17/2014 6:36:00 PM
Freen 114	< 1.0	1.0		ug/m3	1	10/17/2014 6:36:00 PM

** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value nhowe quantitation range

3 Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Qualifiers:

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-005Λ

Client Sample 1D: 1A-02 Tag Number: 205,1154 Collection Date: 10/14/2014 Mateix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Freon 12	2.8	0.74		ug/m3	1	10/17/2014 6:36.00 PM
Heptane	< 0.61	0.61		ug/m3	1	10/17/2014 6:36:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	10/17/2014 6:36:00 PM
Hexane	< 0.53	0.53		ug/m3	1	10/17/2014 6:36:00 PM
Isopropył alcohol	2.1	0.37		ug/m3	9	10/17/2014 6:36:00 PM
m&p-Xylene	1.3	1.3	J	ug/m3	1	10/17/2014 6:36:00 PM
Methyl Butyl Kelone	< 1.2	1.2		ug/m3	ŧ	10/17/2014 \$:36:00 PM
Methyl Ethyl Kelone	1.1	0.88		ug/m3	1	10/17/2014 6:36.00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	10/17/2014 6.36:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	10/17/2014 6:36:00 PM
Methylene chloride	D.45	0.52	J	ug/m3	1	10/17/2014 5:36:00 PM
a-Xylene	0.56	0.65	J	ug/m3	1	10/17/2014 6:36:00 PM
Propylene	< 0.26	0.26		ug/m3)	10/17/2014 6:36:00 PM
Styrene	< 0.64	0.64		ug/m3	1	10/17/2014 6:36:00 PM
i etrachioroethylene	< 1.0	1.0		ug/m3	1	10/17/2014 6:36.00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	i	10/17/2014 6:36:00 PM
Toluene	0.87	0.57		ug/m3	1	10/17/2014 6:36:00 PM
trans-1,2 Dichloroethene	< 0.59	0.69		ug/m3	1	20/17/2014 6:36:00 PM
trans-1,3-Dichloropropene	< 0.69	0.68		ug/m3	1	10/17/2014 6:36:00 PM
Trichloroethene	< 0.21	0.21		ug/m3	1	10/17/2014 6:36.00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	10/17/2014 6:36:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/17/2014 6:36:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	10/17/2014 6:36:00 PM

Qualifiers

- ** Reporting Land
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- 3 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 37-Oci-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-006A

Client Sample ID: SS-01 Tag Number: 1186,405 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst.
Lab Vacuum In	-7		"Hg		10/16/2014
Lab Vacuum Out	-30		"filg		10/16/2014
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1, 1, 1-Trichloroethane	0.10	0.15 J	vdqq	1	10/21/2014 4:50:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	า	10/21/2014 4:50:00 AM
1,1,2-Trichloroethane	< 0.15	0.15	ppb∨	1	10/21/2014 4:50:00 AM
1,3-Dichloroethane	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
1.1-Dichloroethene	< 0.15	0.15	ρρυν	1	10/21/2014 4:50:00 AM
1.2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
1,2,4 Trimethylbenzene	0.92	0.15	ppbV	1	10/21/2014 4:50:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	Vdqq	1	10/21/2014 4:50:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppb∨	1	10/21/2014 4:50:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
1,3,5 Trimethylbenzene	0.40	0.15	ppb∨	1	10/21/2014 4:50:00 AM
1,3-butadiene	< 0.15	0.15	ρρογ	1	10/21/2014 4:50:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
1.4-Oichlorobenzene	0.16	0.15	ppbV	1	10/21/2014 4:50:00 AM
1.4-Dioxane	< 0.30	0.30	ppbV	1	10/21/2014 4:50:00 AM
2.2.4-trimethylpentane	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
4-ethyltoluene	0.21	0.15	ppbV	1	10/21/2014 4:50:00 AM
Acetone	280	190	Vaqq	640	10/22/2014 1:29:00 AM
Aliyi chloride	< 0.15	0,15	Vdqq	1	10/21/2014 4:50:00 AM
Benzene	0.87	0.15	ppbV	1	10/21/2014 4:50:00 AM
Benzyl chlorida	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
Bromodichloromethane	< 0.15	0.15	ррьу	1	10/21/2014 4:50:00 AM
Bromoform	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
Bromomelhane	< 0.15	0.15	ppbV	1	10/21/2014 4.50:00 AM
Carbon disulfide	3.6	1.5	ppbV	10	10/21/2014 7.48:00 AM
Garbon tetrachloride	< 0.15	0 15	Vdqq	}	10/21/2014 4:50:00 AM
Chlorobenzene	< 0.15	0.15	Vđaq	1	10/21/2014 4:50:00 AM
Chloroothane	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
Chloroform	0.45	0.15	ppbV	1	10/21/2014 4:50:00 AM
Chloromethane	< 0.15	0.15	ppbV	1	10/21/2014 4.50:00 AM
cls-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
cis-1,3-Olchloropropene	< 0.15	0.15	ppb∨	1	10/21/2014 4:50:00 AM
Cyclohexane	1.1	0.15	ppbV	1	10/21/2014 4:50:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
Ethyl acetate	< 0.25	0.25	Vdqq	1	10/21/2014 4:50:00 AM

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Elolding times for preparation or analysis exceeded
- JN Non-rouble analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected.

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy
Lab Order:	C1410057
Project:	5140 Site Yorkville, NY
Lab ID:	C1410057-006A

Client Sample 1D: SS-04 Tag Number: 1186,405 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Ünits	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO	-15			Analyst: RJP
Ethylbenzene	0.68	O 15		ppbV	1	10/21/2014 4:50:00 AM
Freon 11	0.33	0.15		ppbV	1	10/21/2014 4:50:00 AM
Freon 113	< 0.15	0.15		ppb∀	1	10/21/2014 4:50:00 AM
Freen 114	< 0.15	0.15		ppbV	1	10/21/2014 4:50:00 AM
Froon 12	0.69	0.15		ppbV	1	10/21/2014 4:50.00 AM
fleptane	2.1	1.5		ppbV	10	10/21/2014 7:48:00 AM
Hexachloro-1,3-butadiene	< 0.15	0 15		ppbV	1	10/21/2014 4:50:00 AM
Hexane	4.0	1.5		ppbV	10	10/21/2014 7:48:00 AM
isopropyl alcohol	4.7	1.5		ppb∀	10	10/21/2014 7:48:00 AM
m&p-Xylene	30	0.30		vdqq	1	10/21/2014 4:50:00 AM
Mothyl Butyl Ketone	0.42	0.30		ppbV	1	10/21/2014 4 50:00 AM
Methyl Fithyl Ketone	2.8	3.0	L	ρρον	10	10/21/2014 7:48:00 AM
Methyl Isobutyl Kotone	0.60	0.30		opbV	1	10/21/2014 4:50:00 AM
Methyl tert-butyl ethor	1.4	0.15		ppb∨	1	10/21/2014 4:50:00 AM
Methylene chloride	< 0.15	0.15		ppbV	1	10/21/2014 4:50.00 AM
o-Xylone	0.66	0.15		Vdqq	1	10/21/2014 4:50:00 AM
Propylene	< 0.15	0.15		ppbV	1	10/21/2014 4:50:00 AM
Styrene	0.33	0.15		opbV	1	10/21/2014 4:50:00 AM
) etrachioroethylene	0.12	0 15		ppbV	1	10/21/2014 4:50:00 AM
Tetrahydroturan	< 0.15	0.15		ppbV	1	10/21/2014 4:50:00 AM
Tolueno	2.8	1.5		ppbV	10	10/21/2014 7:48.00 AM
trans-1.2-Dichloroethene	< 0.15	0.15		ppbV	1	10/21/2014 4:50:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	10/21/2014 4:50:00 AM
Trichlordethene	0.17	0.15		עמקק	1	10/21/2014 4:50:00 AM
Vinyi acetate	< 0.15	0.15		ppbV	1	10/21/2014 4.50:00 AM
Vinyi Bromide	< 0.15	0.15		ppbV	1	10/21/2014 4:50.00 AM
Viny) chloride	< 0.15	0.15		Vdqq	1	10/21/2014 4:50:00 AM
Surr Bromofluorobenzene	107	/0-130		%REC	1	10/21/2014 4:50:00 AM

Qualitiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Octo14

CLIENT:	WSP Environment and Energy	Client Sample ID: SS-01	
Lab Order:	C1410057	Tag Number: 1186,4	105
Project:	5140 Site Yorkville, NY	Collection Date: 10/14/	2014
Lab ID:	C1410057-006A	Matrix: AIR	

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1.1.1-Trichloroethane	0.55	0.82 J	ug/m3	1	10/21/2014 4:50:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	10/21/2014 4:50:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ug∕m3	1	10/21/2014 4:50:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	10/21/2014 4.50.00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	10/21/2014 4.50.00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	10/21/2014 4:50.00 AM
2,2,4-Trimethylbenzene	4.5	0.74	ug/m3	Ή	10/21/2014 4:50:00 AM
1,2-Dibromoethane	< 1.Z	1.2	ug/m3	1	10/21/2014 4:50:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/21/2014 4:50:00 AM
1,2-Dichioroethane	< 0.61	0.61	ug/m3	1	10/21/2014 4:50:00 AM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	10/21/2014 4·50 00 AM
1,3,5-Trimethylbenzene	2.0	0.74	ug/m3	í	10/21/2014 4.50.00 AM
1.3-butadiene	< 0.33	0.33	ug/m3	1	10/21/2014 4:50:00 AM
1.3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/21/2014 4:50:00 AM
1,4-Dichlorobenzene	0.96	0.90	ug/m3	1	10/21/2014 4:50:00 AM
1,4-Dioxane	< 11	1.1	ug/m3	ĩ	10/21/2014 4:50:00 AM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	10/21/2014 4:50-00 AM
4-ethyitoluene	1.0	0.74	ug/m3	ť	10/21/2014 4.50.00 AM
Anetone	650	450	ug/n13	640	10/22/2014 1:29:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	10/21/2014 4:50:00 AM
Benzene	2.8	0.48	ug/m3	1	10/21/2014 4:50:00 AM
Benzyl chloride	< 0.86	0.86	ug/m3	1	10/21/2014 4:50:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	10/21/2014 4:50:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	10/21/2014 4.50.00 AM
Bromomethane	< 0.58	0.58	ug/m3	1	10/21/2014 4:50:00 AM
Carbon disulfide	11	4.7	ug/m3	10	10/21/2014 7:48:00 AM
Carbon tetrachloride	< 0.94	0.94	ug/m3	1	10/21/2014 4:50:00 AM
Chlorobenzene	< 0.69	0.69	ug/m3	1	10/21/2014 4:50:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	10/21/2014 4:50:00 AM
Chloroform	2.2	0.73	ug/m3	1	10/21/2014 4:50:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	10/21/2014 4:50:00 AM
cis-1,2-Dichloraethene	< 0.59	0.59	ug/m3	1	10/23/2014 4:50:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/21/2014 4:50:00 AM
Cyclohexane	36	0.52	ug/m3	1	10/21/2014 4:50:00 AM
Dibromochloromethane	< 1.3	13	vg/m3	1	10/21/2014 4:50:00 AM
Ethył acetate	< 0.90	0.90	ug/m3	1	10/21/2014 4:50:00 AM
Ethylbenzene	3.0	0.65	ug/m3	1	10/21/2014 4.50.00 AM
Froon 11	1.9	0.84	ug/m3	1	10/21/2014 4:50.00 AM
Freon 113	s 1.1	1.1	ug/m3	1	10/21/2014 4:50:00 AM
Freon 114	< 1.0	10	ug/m3	1	10/21/2014 4:50:00 AM

- Qualifiers: ** Reporting Limit
 - B Analyte detected in the associated Method Blank
 - H Holding times for preparation or analysis exceeded.
 - JN Non-routine analyte, Quantitation estimated.
 - S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT: WSP Environment and Energy Client Sample ID: SS-01 Lab Order: C1410057 Tag Number: 1186,405 Collection Date: 10/14/2014 Project: 5140 Site Yorkville, NY Matrix: AIR Lab ID: C1410057-006A

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-1 5			Analyst: RJP
Ргеол 12	3.4	0.74		ug/m3	1	10/21/2014 4:50:00 AM
Heptane	8.6	61		ug/m3	10	10/21/2014 7:48:00 AM
Hoxachloro-1.3-butadiene	< 1.6	16		vg/m3	1	10/21/2014 4:50:00 AM
Hexane	14	5.3		ug/m3	10	10/21/2014 7:48:00 AM
isopropyl alcohol	12	3.7		ug/m3	10	10/21/2014 7:48:00 AM
m&p-Xylene	13	1.3		ug/m3	1	10/21/2014 4:50:00 AM
Methyl Bulyl Ketone	1.7	1.2		ug/m3	1	10/21/2014 4 50·00 AM
Methyl Ethyl Ketone	8.3	8.8	J	ug/m3	10	10/21/2014 7.48.00 AM
Methyl (sobutyl Ketone	2.5	1.2		ug/m3	1	10/21/2014 4:50.00 AM
Methyl tert-butyl other	4.9	0.54		ug/m3	1	10/21/2014 4:50:00 AM
Methylene chloride	< 0.52	0.52		ug/m3	1	10/21/2014 4:50:00 AM
o-Xylene	2.9	0.65		ug/m3	1	10/21/2014 4:50:00 AM
Propylene	< 0.26	0.25		ug/m3	1	10/21/2014 4:50:00 AM
Styrene	1.4	0.64		ug/m3	1	10/21/2014 4·50:00 AM
Tetrachloroothylene	0.81	1.0	J	ug/m3	1	10/21/2014 4:50:00 AM
Tetrahydrofuran	< 0.44	0 44		ug/m3	1	10/21/2014 4:50:00 AM
Toluene	11	5.7		ug/m3	10	10/21/2014 7:48:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/21/2014 4:50:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/21/2014 4:50:00 AM
Trichloroethene	0.91	0.81		ug/m3	1	10/21/2014 4·50:00 AM
Viny! acetate	< 0.53	0.53		ug/m3	1	10/21/2014 4:50:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/21/2014 4:50.00 AM
Vinyl chloride	< 0.38	0.38		ug/m3	1	10/21/2014 4:50:00 AM

Qualifiers:

- ** Reporting Limit
- в Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- \mathbf{S} Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E. Value above quantitation range
- l Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit NÐ

Centek La	boratories, LLC				Dater	31-00	:1-1-4
CLIENT:	WSP Environment and	I Energy		c	lient Sample ID:	IA-01	
Lab Order:	C1410057				Tag Number:	324,30	80
Project:	5140 Site Yorkville, N	IV.			Collection Date:	10/14/	/2014
Lah ID:					Matrix:		
1.30 117	C1410057-007A				Willia.	7 III	
Analyses	, _ _, _ , _ _, _ , _ , _ _, _ , _ _, _ , _ _, _	Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		F١	D			Analyst:
Lab Vacuum In		-2			"Hg		10/16/2014
Lab Vacuum Or	Lt.	-30			"Нд		10/16/2014
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
1.1,1-Trichtoroe	sthand	< 0-15	015		ppb∨	1	10/17/2014 7:13:00 PM
1.1.2.2-Tetrach	loraethane	< 0.15	0.15		ppb∨	1	10/17/2014 7:13:00 PM
1,1,2-Trichloroe	thane	< 0.15	0.15		ррьу	1	10/17/2014 7:13:00 PM
1,1-Dichloroeth:	ane	< 0.15	0.15		ρρον	1	10/17/2014 7:13:00 PM
1,1-Dichloroeth	6N9	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
1,2.4-Trichlorob	enzene	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
1.2.4-Trimethyll	benzenc	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
1,2-Dibromoeth	ane	< 0.15	0,15		ррҌѴ	1	10/17/2014 7:13.00 PM
1,2 Dichlorober	izene	< 0.15	0.15		ppb∨	1	10/17/2014 7:13:00 PM
1,2-Dichloroeth	ane	< 0.15	0.15		ppb∨	1	10/17/2014 7:13:00 PM
1,2-Dichloropro	pane	< 0.15	0.15		ppb∨	1	10/17/2014 7:13:00 PM
1,3.5-Trimethylk	bonzono	< 0.15	0.15		ррб∨	1	10/17/2014 7:13:00 PM
1,3-butadiene		< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
1,3 Dichloroben	izene	< 0.15	0.15		ppbV	1	10/17/2014 7.13.00 PM
1,4-Dichloroben	zene	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
1,4-Dioxane		< 0.30	0.30		ppb∨	1	10/17/2014 7:13:00 PM
2,2,4-trimethylp	entane	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
4-ethyltoluene		< 0.15	0.15		ррб∨	1	10/17/2014 7:13:00 PM
Acetone		10	1.5		ppbV	5	10/18/2014 2:08:00 AM
Allyl chloride		< 0.15	0.15		ррьУ	1	10/17/2014 7:13:00 PM
Benzene		0.13	0.15	J	ppbV	1	10/17/2014 7:13:00 PM
Benzyl chloride		< 0.15	0.15		ρpb∨	1	10/17/2014 7:13:00 PM
Bromodichlaran	nethane	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Bromoform		< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Bromomethane		< 0.15	0.15		Vdqq	1	10/17/2014 7:13:00 PM
Carbon disuffide	2	< 0.15	0.15		рры∨	1	10/17/2014 7:13.00 PM
Carbon tetrachic	onde	0.090	0.040		ppb∨	1	10/17/2014 7:13:00 PM
Chlorobenzone		< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Chloroethano		< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Chloroform		< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Chloromethane		0.54	0.15		ppbV	1	10/17/2014 7:13:00 PM
cis-1,2-Dichloro	ethene	< 0.15	0.15		ppbV	1	10/17/2014 7.13:00 PM
cis-1,3-Dichloro	propèné	< 0.15	0.15		ррыV	1	10/17/2014 7:13.00 PM
Cyclohexane		< 0.15	0.15		ррь∨	1	10/17/2014 7:13:00 PM
Dibromochloron	nethane	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
A 144 - 1						-	-01-700447-0002344

Qualifiers:

Ethyl acetate

B Analyte detected in the associated Method Blank

< 0.25

0.25

ppbV

- [4] Holding trocs for proparation or analysis exceeded.
- JN Non-routine analyte. Quantitation estimated,
- 8 Spike Recovery outside accepted recovery limits

Results reported are not blank corrected. .

1

E. Value above quantitation range

- Analyte detected at or below quantitation limits. J.
- ND Not Detected at the Reporting Limit
- Page 13 of 22

10/17/2014 7:13:00 PM

^{**} Reporting Limit

Date: 31-Oct-14

CLIENT: WSP Environment and Energy Lab Order: C1410057 5140 Site Yorkville, NY **Project:** Lah ID: C1410057-007A

Client Sample ID: 1A-01 Tag Number: 324,308 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Ëthylbenzene	< 0.15	0.15		ppb∨	1	10/17/2014 7:13:00 PM
Freen 11	0.33	0.15		ррbV	1	10/17/2014 7:13:00 PM
Froon 113	< 0.15	0.15		ρρυν	1	10/17/2014 7:13:00 PM
Freon 114	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Freon 12	0.58	0.15		ppbV	1	10/17/2014 7:13:00 PM
Heptane	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Hexane	< 0.15	015		ppbV	1	10/17/2014 7:13:00 PM
Isopropyl alcohol	1.0	0.15		ppbV	1	10/17/2014 7:13:00 PM
m&p-Xylene	0.27	0.30	J	ppb∨	1	10/17/2014 7:13:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppb∨	1	10/17/2014 7.13:00 PM
Methyl Ethyl Ketone	0.34	0.30		ppb∨	1	10/17/2014 7:13:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppb∀	1	10/17/2014 7:13:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Methylene chloride	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
o Xylene	< 0.15	0.15		ppbV	1	10/17/2014 7 13:00 PM
Propylene	< 0.15	0.15		ppbV	1	10/17/2014 7.13·00 PM
Styrene	< 0.15	0.15		ppbV	1	10/17/2014 7.13:00 PM
Tetrachloroethylene	< 0.15	0 15		Vdqq	1	10/17/2014 7:13:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Toluene	0.24	0.15		ррьV	1	10/17/2014 7:13:00 PM
trans 1,2 Dichloroetheng	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	10/17/2014 7.13:00 PM
Trichioroethene	< 0.040	0.040		ppbV	1	10/17/2014 7:13:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Vinyl chloride	< 0.040	0.040		ppb∀	1	10/17/2014 7:13:00 PM
Surr. Biomofluorobenzene	83.0	70-130		%REC	1	10/17/2014 7:13:00 PM

Qna	li	ſi	c	115	2
-----	----	----	---	-----	---

- ** Reporting Limit
- в Analyte detected in the associated Method Blank
- R Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- 5 Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected. .

Е Value above quantitation range

ND

- J Analyte detected at or below quantitation limits
 - Not Detected at the Reporting Limit

Date: 31-Oci-14

CLIENT: WSP Environment and Energy Client Sample ID: 1A-01 C1410057 Tag Number: 324,308 Lab Order: Collection Date: 10/14/2014 Project: 5140 Site Yorkville, NY Matrix: AIR Lab ID: C1410057-007A

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Irichloroethane	< 0.82	0.82	ug/m3	1	10/17/2014 7-13:00 PM
1.1.2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	10/17/2014 7:13:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	10/17/2014 7:13:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	10/17/2014 7:13:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	10/17/2014 7:13:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	10/17/2014 7:13:00 PM
1,2,4-1 amethylbenzene	< 0.74	0.74	ug/m3	1	10/17/2014 7:13:00 PM
1,2-Dibromoethane	< 1.Z	1.2	ug/m3	1	10/17/2014 7:13:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/17/2014 7:13:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	10/17/2014 7.13.00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	10/17/2014 7:13:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	10/17/2014 7:13:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	10/17/2014 7:13:00 PM
1,3-Dichtorobenzene	< 0.90	0.90	ug/m3	1	10/17/2014 7:13:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/17/2014 7:13:00 PM
1,4-Dioxane	< 1.1	1,1	ug/m3	1	10/17/2014 7:13.00 PM
2,2,4-trimethy/pentane	< 0.70	0.70	ug/m3	1	10/17/2014 7.13.00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	10/17/2014 7:13:00 PM
Acetone	24	3.6	ug/m3	5	10/18/2014 2:08:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	10/17/2014 7:13:00 PM
Benzene	0.42	0.48	J ug/m3	1	10/17/2014 7:13:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	10/17/2014 7.13.00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	10/17/2014 7:13.00 PM
Bromoform	< 1.6	1.6	ug/m3	1	10/17/2014 7:13:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	10/17/2014 7:13:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	10/17/2014 7:13:00 PM
Carbon tetrachloride	0.57	0 25	ug/m3	1	10/17/2014 7:13:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	10/17/2014 7:13:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	10/17/2014 7:13:00 PM
Chiarotorm	< 0.73	0.73	ug/m3	1	10/17/2014 7:13:00 PM
Chloromethane	1.1	0.31	ug/m3	1	10/17/2014 7:13:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/17/2014 7:13:00 PM
cis-1.3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/17/2014 7:13:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	10/17/2014 7:13.00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	10/17/2014 7:13:00 PM
Ethyl acetate	< 0.90	0.90	ug/m3	1	10/17/2014 7:13:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	10/17/2014 7:13:00 PM
Freon 11	1.9	0.84	ug/m3	1	10/17/2014 7:13:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	10/17/2014 7:13:00 PM
Freon 114	< 1.U	10	ug/m3	1	10/17/2014 7:13:00 PM

Qualifiers: **

Reporting Limit в

Analyte detected in the resociated Method Blank

FE Holding times for preparation or analysis exceeded

JN. Non-routine analyte. Quantitation estimated.

s Spike Recovery outside accepted recovery limits

Results reported are not blank corrected. .

Value above quantitation range E.

J Analyte detected at or below quantitation limits.

ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLJENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-007A

Client Sample ID: 1A-01 Tag Number: 324,308 Collection Date: 10/14/2014 Matrix: AlR

Analyses	Result	**Limit	Qual	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс)-15			Analyst: RJP
Freon 12	2.9	0 74		ug/m3	I.	10/17/2014 7:13:00 PM
Heptane	< 0.61	0.61		vg/m3	1	10/17/2014 7:13:00 PM
Hexachloro-1.3-butadiono	< 1.6	1.6		ug/m3	1	10/17/2014 7:13:00 PM
Hexane	< 0.53	0.53		ug/m3	1	10/17/2014 7:13:00 PM
Isopropyl Alcohol	2.5	0.37		ug/m3	1	10/17/2014 7:13:00 PM
m&p-Xylene	1.2	1.3	J	ug/m3	1	10/17/2014 7:13:00 PM
Methyl Butyl Ketone	< 12	1.2		ug/m3	1	10/17/2014 7:13.00 PM
Methyl Ethyl Ketone	1.0	0.88		ug/m3	1	10/17/2014 7:13:00 PM
Methyt Isobutyl Ketone	< 1.2	12		ug/m3	1	10/17/2014 7:13:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	10/17/2014 7:13:00 PM
Methylene chloride	< 0.52	0.52		ug/m3	1	10/17/2014 7:13:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	10/17/2014 7:13:00 PM
Propylene	< 0.26	0.26		ug/m3	1	10/17/2014 7:13:00 PM
Styrene	< 0.64	0.64		ug/m3	1	10/17/2014 7:13:00 PM
Tetrachioroethylene	< 1.0	1.0		vg/m3	1	10/17/2014 7:13:00 PM
Telrahydrofuran	< 0.44	0.44		ug/m3	1	10/17/2014 7:13:00 PM
Totuene	0.90	0.57		ug/m3	1	10/17/2014 7:13:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 7:13:00 PM
trans-1.3-Dichloropropene	< 0.68	0.68		ug/m3	t	10/17/2014 7·13·00 PM
Trichloroethene	< 0.21	0.21		ug/m3	1	10/17/2014 7.13:00 PM
Vioyl acetate	< 0.53	0.53		ug/m3	ł	10/17/2014 7:13:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/17/2014 7:13:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	10/17/2014 7:13:00 PM
				-		

Qualifiers:

** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

3 Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy	Client Sample ID: 88-1014	
Lab Order:	C1410057	Tag Number: 233	
Project:	5140 Site Yorkville, NY	Collection Date: 10/14/2014	
Lab ID:	C1410057-008A	Matrix: AfR	

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-2		"Hg		10/16/2014
Lab Vacuum Out	-30		"Hạ		10/16/2014
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	2.4	1.5	ρρυν	10	10/18/2014 4:45:00 AM
1,1,2,2 Teirachloroethane	< 0.15	0.15	ppbV	1	10/17/2014 9:50.00 PM
1,1,2-Trichioroethane	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
1,1-Dichloroethane	< 0.15	0.15	Vdqq	1	10/17/2014 0:50:00 PM
1.1-Dichloroothene	< 0.15	0.15	ppb∨	1	10/17/2014 9:50:00 PM
1.2.4-Trichlorabenzene	< 0.15	0.15	ppb∨	1	10/17/2014 9:50:00 PM
1,2,4 Trimethylbeozene	3.4	1.5	ρρύ∨	10	10/18/2014 4:45:00 AM
1,2-Dibromoethane	< 0.15	0.15	ρρύν	1	10/17/2014 9.50:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 9:50.00 PM
1,2-Dichloroethane	< 0.15	0.15	ppb∀	1	10/17/2014 9:50:00 PM
1.2-Dichloropropane	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
1,3,5 Trimelbylbonzene	1.7	0.15	ppbV	1	10/17/2014 9:50:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
1.3-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	10/17/2014 9:50:00 PM
2.2.4-trimothylpontane	0.47	0.15	ppbV	}	10/17/2014 9:50:00 PM
4-ethyltoluone	1.3	0 15	ppbV	1	10/17/2014 9:50:00 PM
Acetone	1100	240	vdqq	810	10/21/2014 5:26:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
Benzene	34	1.5	opbV	10	10/18/2014 4:45.00 AM
Benzyl chloride	< 0.15	0.15	ppb∨	1	10/17/2014 9:50:00 PM
Bromodichtoromethane	< 0.15	0.15	ppbV	1	10/17/2014 9:50.00 PM
Bromoform	< 0.15	0.15	ppb∀	1	10/17/2014 9:50:00 PM
Bromomethane	< 0.15	0.15	ррб∨	1	10/17/2014 9:50:00 PM
Carbon disulfide	2.9	1.5	ppbV	10	10/18/2014 4:45:00 AM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	10/17/2014 9:50.00 PM
Chlorobenzene	< 0.15	0.15	Vdqq	1	10/17/2014 9:50:00 PM
Chloroethane	G.16	0.15	ppbV	1	10/17/2014 9:50:00 PM
Chloroform	0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	10/17/2014 9 50:00 PM
cls-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/17/2014 9.50:00 PM
Cyclohexane	27	1.5	opbV	10	10/18/2014 4:45:00 AM
Dibromochloromethane	< 0.15	0.15	Vdqq	1	10/17/2014 9:50:00 PM
Ethyl acetate	< 0.25	0.25	Vdqq	1	10/17/2014 9:50:00 PM

- Qualifiers:
- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

.

- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-008A

Client Sample ID: SS-1014 Tag Number: 233 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
Ethylbenzene	1.8	0.15		ррь∨	1	10/17/2014 9.50:00 PM
Freen 11	2.6	1.5		ррв∨	10	10/18/2014 4.45:00 AM
Froon 113	0.10	0.15	J	ppb∨	1	10/17/2014 9.50.00 PM
Freen 114	< 0.15	0.15		ρρον	1	10/17/2014 9:50:00 PM
Freon 12	0.46	0.15		ppb∨	1	10/17/2014 9:50:00 PM
Heptane	46	1.5		ppbV	10	10/18/2014 4:45:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	10/17/2014 9:50:00 PM
Hexane	5.1	1.5		ppbV	10	10/18/2014 4:45:00 AM
Isopropyl alcohol	< 0.15	0.15		ppbV	\$	10/17/2014 9:50:00 PM
m&p-Xylene	5.0	3.0		ppbV	10	10/18/2014 4:45 00 AM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	10/17/2014 9.50:00 PM
Methyl Ethyl Ketone	4.7	3.0		ppbV	10	10/18/2014 4:45:00 AM
Methyl Isobutyl Ketone	16	0.30		Vdqq)	10/17/2014 9:60:00 PM
Methyl tert-butyl other	2.6	1.5		ррБV	10	10/18/2014 4:45:00 AM
Methylene chloride	0.16	0.15		ppbV	1	10/17/2014 9:50:00 PM
o-Xylene	1.3	0.15		ppbV	1	10/17/2014 9:50.00 PM
Propylene	< 0.15	0.15		ppbV	1	10/17/2014 9:50:00 PM
Styrene	1.6	1.5		ppbV	10	10/18/2014 4:45:00 AM
l etrachloroethylene	10	15		ppbV	10	10/18/2014 4:45:00 AM
Tetrahydrofuran	< 0.15	0.15		ρpbV	1	10/17/2014 9:50:00 PM
Toluene	6.Z	1.5		ppbV	10	10/18/2014 4:45:00 AM
trans 1,2-Dichloroethene	< 0.15	0.15		ppb∨	1	10/17/2014 9:50:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		opbV	1	10/17/2014 9:50:00 PM
Trichioroethene	3.6	1.5		ppbV	10	10/18/2014 4:45:00 AM
Vinyl acetate	< 0.15	0.15		ppbV	1	10/17/2014 9:50:00 PM
Vinyl Bromide	< 0.15	0 15		ppbV	1	10/17/2014 9:50:00 PM
Vinyl chlorido	< 0.15	0.15		ppbV	1	10/17/2014 9:50:00 PM
Surr: Bromofluorobanzano	98.0	70-130		%REC	1	10/17/2014 9:50:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected.
- E Value above quantitation range
- 3 Analyte detected at or below quantitation limits
- ND Not Detected in the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyClient Sample ID: SS-1014Lab Order:C1410057Tag Number: 233Project:5140 Site Yorkville, NYCollection Date: 10/14/2014Lab ID:C1410057-008AMatrix: AIR

Analyses	Result	**Limit	Qual L	Jnits	DF	Date Analyzed
1UG/M3 BY METHOD TO15		το.	-15			Analyst: RJP
1,1,1-lachloroethane	13	8.2	u	g/m3	10	10/18/2014 4:45:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	u	g/m3	1	10/17/2014 9:50:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	u	g/m3	1	10/17/2014 9:50:00 PM
1,1 Dichloroetbane	< 0.61	0.61	ų	g/m3	1	10/17/2014 9:50:00 PM
1,1-Dichloroethene	< 0.59	0.59	Li Li	g/m3	1	10/17/2014 9:50:00 PM
1,2,4-Trichlorobenzene	< 1.1	11	L L	g/m3	1	10/17/2014 9.50.00 PM
1,2,4-Trimethylbenzene	17	7.4	L	g/m3	10	10/18/2014 4:45:00 AM
1,2-Dibromoethene	< 1.2	1.2	L	g/m3	1	10/17/2014 9:50:00 PM
1.2-Dichlorobenzene	< 0.90	0.90	u	g/m3	1	10/17/2014 9:50:00 PM
1,2-Dichloroethane	< 0.61	0.61	U	g/m3	1	10/17/2014 9:50:00 PM
1,2-Dichloropropane	< 0.69	0.69	u	g/m3	1	10/17/2014 9:50:00 PM
1,3.5-1 rimethylbenzene	8.2	0.74	u	g/m3	1	10/17/2014 9:50:00 PM
1,3-butadiene	< 0.33	0.33	L	g/m3	1	10/17/2014 9:50:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	U	g/m3	1	10/17/2014 9:50:00 PM
1.4-Dichlorobenzene	< 0.90	0.90	U	g/m3	1	10/17/2014 9:50:00 PM
1,4 Dioxane	< 1.1	1.1		g/m3	1	10/17/2014 9:50:00 PM
2,2,4-inmethylpentane	2.2	0.70	ι	g/m3	1	10/17/2014 9:50:00 PM
4-ethyltoluene	6.3	0.74			1	10/17/2014 9:50:00 PM
Acetone	2600	570		g/m3	810	10/21/2014 5:26.00 AM
Allyl chloride	< 0.47	0.47		- g/m3	1	10/17/2014 9:50:00 PM
Benzene	11	4.8		g/m3	10	10/18/2014 4:45:00 AM
Benzyl chloride	< 0.8G	0.86		 g/m3	1	10/17/2014 9:50:00 PM
Bromodichloromethane	< 1.0	1.0		 g/m3	1	10/17/2014 9:50:00 PM
Bromoform	< 1.6	1.6	u	- g/m3	1	10/17/2014 9:50:00 PM
Bromoniethane	< 0.58	0.58		y/m3	1	10/17/2014 9:50:00 PM
Carbon disulfide	9.0	4.7		g/m3	10	10/18/2014 4:45:00 AM
Carbon (etrachloride	< 0.94	0.94		g/m3	1	10/17/2014 9:50:00 (PM
Chlorobenzene	< 0.69	0.69		g/m3	٦	10/17/2014 9:50:00 PM
Chloroethane	0.42	0.40		 g/m3	t	10/17/2014 9:50:00 PM
Chloroform	0.73	0.73		g/m3	1	10/17/2014 9 50:00 PM
Chloromethane	< 0.31	0.31		g/m3	1	10/17/2014 9.50:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		g/m3	1	10/17/2014 9.50.00 PM
cis-1,3-Dichloropropend	< 0.68	0.68		g/m3	1	10/17/2014 9:50:00 PM
Cyclohéxarie	93	52		g/m3	10	10/18/2014 4:45:00 AM
Dibromochloromethane	< 1.3	1.3		g/m3	1	10/17/2014 9:50:00 PM
Ethyl acetale	< 0.90	0.90		g/m3	1	10/17/2014 9.50 DO PM
Ethylbenzene	7.7	0.65		g/m3	1	10/17/2014 9 50.00 PM
Freen 11	15	8.4		g/m3	10	10/18/2014 4.45.00 AM
Freen 113	0.77	1.1		g/m3	1	10/17/2014 9:50:00 PM
Freon 114	< 1.0	1.0		g/m3	1	10/17/2014 9:50:00 PM

Qualifiers: ** Reporting Limit

- D Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not hinnk corrected

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:S140 Site Yorkville, NYLab ID:C1410057-008A

Client Sample ID: SS-1014 Tag Number: 233 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Qua	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	TO-15			Analyst: RJP	
Freon 12	23	0 74	ug/m3	1	10/17/2014 9:50:00 PM
Heptane	19	61	ug/m3	10	10/18/2014 4:45:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	10/17/2014 9:50.00 PM
Hexane	18	5.3	ug/m3	10	10/18/2014 4:45:00 AM
(sopropy) alcohoi	< 0.37	0.37	ug/m3	1	10/17/2014 9:50:00 PM
m&p-Xylone	22	13	ug/m3	10	10/18/2014 4:45:00 AM
Methyl Bulyl Ketone	< 1.2	1.2	ug/m3	1	10/17/2014 9:50:00 PM
Methyl Ethyl Ketone	14	8.8	ug/m3	10	10/18/2014 4:45:00 AM
Methyl Isobutyl Kelone	67	1.2	ug/m3	1	10/17/2014 9:50:00 PM
Methyl tert-butyl ether	94	5.4	ug/m3	10	10/18/2014 4·45·00 AM
Methylene chloride	0.56	0.52	ug/m3	1	10/17/2014 9:50:00 PM
o-Xylana	5.5	0.65	ug/m3	1	10/17/2014 9.50.00 PM
Propylene	< 0.26	0.26	ug/m3	1	10/17/2014 9:50.00 PM
Styrene	68	6.4	ug/m3	10	10/18/2014 4:45:00 AM
Tetrachforoethylene	69	10	ug/m3	10	10/18/2014 4:45:00 AM
Totrahydrofuran	< 0.44	0.44	ug/m3	1	10/17/2014 9:50:00 PM
Toluene	23	5.7	ug/m3	10	10/18/2014 4.45.00 AM
trans 1,2 Dichloroetheng	< 0.59	0.59	ug/m3	1	10/17/2014 9.50.00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/17/2014 9:50:00 PM
Frichloroethene	19	8.1	ug/m3	10	10/18/2014 4:45:00 AM
Vinyl acetate	< 0.53	0 53	ug/m3	1	10/17/2014 9:50:00 PM
Vinyl Bramide	< 0.66	0.66	ug/m3	1	10/17/2014 9:50:00 PM
Vinyt chloride	< 0.38	0.38	ug/m3	1	10/17/2014 9:50:00 PM

Qualifiers:

- Reporting Limit.
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery ouncide accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:	WSP Environment and Enorgy	Client Sample ID: SS-04
Lab Order:	C1410057	Tag Number: 201,295
Project:	5140 Site Yorkville, NY	Collection Date: 10/14/2014
Lab ID:	C1410057-009A	Matrix: AIR

Analyses	Result	"*Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum (n	-2		"Hg		10/16/2014
Lab Vacuum Out	-30		"Hg		10/16/2014
1UG/M3 BY METROD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	2.4	1.5	ppbV	10	10/18/2014 5:57:00 AM
1,1,2,2-i etrachloroethane	< 0.15	0.15	pphV	1	10/17/2014 10:30:00 PM
1,1.2-Trichloroethane	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
1.4-Dichloroethano	< 0.15	0.15	рры∨	1	10/17/2014 10.30.00 PM
1,1-Oichloraethene	< 0.15	0.15	ppbV	1	10/17/2014 10:30.00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	n	10/17/2014 10:30:00 PM
1,2,4-Trimethylbenzene	3.8	1.5	ppbV	10	10/18/2014 5:57:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppb∨	1	10/17/2014 10:30:00 PM
1.2-Dichloroothane	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
1.2-Dichloropropane	< 0.15	0.15	ppbV	1	10/17/2014 10:30.00 PM
1,3,5-Trimethylbenzene	1.7	0.15	ppbV	1	10/17/2014 10:30.00 PM
1,3-butadiene	< 0.15	0.15	vdqq	1	10/17/2014 10:30:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
1,4-Dichlorabenzene	< 0.15	0.15	ppb∨	1	10/17/2014 10:30:00 PM
1,4-Dioxane	< 0.30	0.30	Vdqq	1	10/17/2014 10:30:00 PM
2,2,4 trimethylpentane	0.44	0.15	ppb∨	1	10/17/2014 10:30:00 PM
4-ethyltoluene	1.4	0.45	ppb∨	1	10/17/2014 10:30:00 PM
Acetone	810	240	ppbV	610	10/21/2014 6:01:00 AM
Allyt chloride	< 0.15	0.15	vdqq	1	10/17/2014 10:30:00 PM
Benzene	3.5	1.5	ррЬ∨	10	10/18/2014 5:57:00 AM
Benzyl chloride	< 0.15	0.15	ρρον	1	10/17/2014 10:30:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
Bromoform	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
Carbon disulfide	2.9	1.5	ppbV	10	10/18/2014 5:57:00 AM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
Chlorobenzene	< 0.15	0.15	ррьV	1	10/17/2014 10:30:00 PM
Chloroethane	0.18	0.15	ppbV	1	10/17/2014 10:30:00 PM
Chtoroform	013	0.15 J	ppbV	1	10/17/2014 10:30.00 PM
Chloromethane	< 0.15	0.15	ppbV	ĩ	10/17/2014 t0:30:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
Cyclohexane	2.1	0.15	ppbV	1	10/17/2014 10:30:00 PM
Dibromochloromethane	< 0.15	0.15	рры∨	1	10/17/2014 10:30:00 PM
Ethyl acetate	< 0.25	0.25	ррв∨	1	10/17/2014 10:30.00 PM

- Qualifiers:
- ** Reporting Louit
- B Analyte detected in the associated Method Blank
- 1) Holding times for preparation or analysis exceeded
- 3N Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

.

- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy
Lab Order:	C1410057
Project:	5140 Site Yorkville, NY
Lab ID:	C1410057-009A

Client Sample ID: SS-04 Tag Number: 201,295 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit (Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Ethylbenzene	1.8	0.16	Vdqq	1	10/17/2014 10:30:00 PM
Freon 11	2.6	15	ppb∨	10	10/18/2014 5:57:00 AM
Freod 113	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
Freon 114	< 0.15	0.15	ppbV	1	10/17/2014 10:30.00 PM
Freon 12	0.50	0.15	ppbV	1	10/17/2014 10:30.00 PM
Heptane	4.9	1.5	ррь∨	10	10/18/2014 5:57:00 AM
Hexachloro-1,3-butadieno	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
Hexane	5.8	1.5	ppbV	10	10/18/2014 5:57:00 AM
Isopropyl sloohof	17	1.5	ppbV	10	10/18/2014 5:57:00 AM
m&p-Xylene	52	30	Vdqq	10	10/18/2014 5:57:00 AM
Methyl Bulyl Ketone	< 0.30	0.30	ppbV	1	10/17/2014 10:30:00 PM
Methyl Ethyl Ketone	6.5	3.0	ρρυν	10	10/18/2014 5.57:00 AM
Methyl (sobuty) Ketone	1.6	0.30	ppbV	1	10/17/2014 10:30:00 PM
Methyl tert-butyl ether	3.0	1.5	ppbV	10	10/18/2014 5:57:00 AM
Methylene chloride	0.13	0.15	J ppbV	1	10/17/2014 10:30:00 PM
o-Xylene	13	0.15	Vdqq	1	10/17/2014 10:30:00 PM
Propylene	< 0.15	0.15	ρрђ∨	1	10/17/2014 10:30:00 PM
Styrene	1.8	1.5	ppb∨	10	10/18/2014 5:57:00 AM
Tetrachloroethylone	11	1.5	ppb∨	10	10/18/2014 5:57.00 AM
Tetrahydrofuran	< 0.15	0.15	ppb∨	1	10/17/2014 10:30:00 PM
Toluene	6.6	1.5	ppb∨	10	40/18/2014 5:57:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
Trichloreethene	3.7	1.5	ppbV	10	10/18/2014 5.57:00 AM
Vinyl acetate	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
Vinyl Bromide	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM
Vinyl chloride	< 0.15	0.15	vdqq	1	10/17/2014 10:30:00 PM
Surr: Bromolluorobenzene	100	70-130	%REC	1	10/17/2014 10:30:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy	Client Sample ID: SS-04
Lab Order:	C1410057	Tag Number: 201,295
Project:	5140 Site Yorkville, NY	Collection Date: 10/14/2014
Lab ID:	C1410057-009A	Matrix: AIR

. .

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
1,1,1-Trichloroethane	13	8.2		ug/m3	10	10/18/2014 5:57.00 AM
1,1.2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	10/17/2014 10:30:00 PM
1,1.2-Trichloroethano	< 0.82	0.82		ug/m3	1	10/17/2014 10:30:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	10/17/2014 10:30:00 PM
1,1-Dichloraethene	< 0.59	0.59		ug/m3	1	10/17/2014 10:30:00 PM
1,2,4-Trichlorobenzene	< 1,1	1.1		ug/m3	1	10/17/2014 10:30:00 PM
1,2,4-Trimethylbenzene	19	7.4		ug/m3	10	10/18/2014 5:57:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	10/17/2014 10:30:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 10:30:00 PM
1.2-Dichloroethane	< 0.61	0.61		ug/m3	1	10/17/2014 10:30:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	10/17/2014 10:30:00 PM
1,3,5-Trimethylbenzene	8.3	0.74		ug/m3	1	10/17/2014 10:30:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	10/17/2014 10:30:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 10:30:00 PM
1.4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 10:30:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	10/17/2014 10:30:00 PM
2,2,4 trimethylpentane	2.1	0.70		ug/m3	1	10/17/2014 10:30:00 PM
4-ethyltoluene	6.7	0.74		ug/m3	1	10/17/2014 10:30:00 PM
Acelone	1900	570		ug/m3	810	10/21/2014 6:01:00 AM
Ally! chloride	< 0.47	0.47		ug/m3	1	10/17/2014 10:30:00 PM
Benzene	11	4.8		ug/m3	10	10/18/2014 5:57:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	10/17/2014 10:30:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	10/17/2014 10:30:00 PM
Bromotorm	< 1.6	1.6		ug/m3	1	10/17/2014 10:30:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	10/17/2014 10:30:00 PM
Carbon disulfide	9.0	4.7		ug/m3	10	10/18/2014 5:57:00 AM
Carbon fetrachloride	< 0.94	0.94		ug/m3	1	10/17/2014 10:30:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	10/17/2014 10:30:00 PM
Chloroethane	0.47	0.40		ug/m3	1	10/17/2014 10:30:00 PM
Chloroform	0.63	0.73	J	ug/m3	1	10/17/2014 10:30:00 PM
Chloromethane	< 0.31	0.31	č	ug/m3	1	10/17/2014 10:30:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 10:30:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/17/2014 10:30:00 PM
Gyclohexane	7.3	0.52		ug/m3	1	10/17/2014 10.30.00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	,	10/17/2014 10:30:00 PM
Elhyl acetate	< 0.90	0.90		ug/m3	1	10/17/2014 10:30:00 PM
Elhyibenzene	6,0	0.00		ug/m3	1	10/17/2014 10:30:00 PM
Freon 11	15	8.4		ug/m3	10	10/18/2014 5:57:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	10/17/2014 10:30:00 PM
Froon 114	< 1.0	1.0		ug/m3	1	10/17/2014 10:30:00 PM

- Qualifiers: ** Reporting Limit
 - в Analyte detected in the associated Method Blank
 - Ы Holding times for preparation or analysis exceeded
 - JN Non-routine analyte. Quantitation estimated.
 - s Spike Recovery outside accepted recovery limits

Results reported are not blank corrected .

- \mathbf{E} Value above quantitation range.
- Analyte detected at or below quantitation limits J
- ND. Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-009A

Client Sample ID: SS-04 Tag Number: 201,295 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
Freon 12	2.5	0.74	ug/m3	1	10/17/2014 10:30:00 PM
Heplane	20	6.1	ug/m3	10	10/18/2014 5:57.00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	10/17/2014 10:30:00 PM
Hexane	20	5.3	ug/ni3	10	10/18/2014 5:57:00 AM
Isopropyl alcohol	41	3.7	ug/m3	10	10/18/2014 5:57:00 AM
m&p-Xylone	Z3	13	ug/m3	10	10/18/2014 5:57:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	10/17/2014 10:30:00 PM
Methyl Ethyl Ketone	19	8.8	ug/m3	10	10/18/2014 5:57:00 AM
Methyl (sobuty) Ketone	6.8	12	ug/m3	1	10/17/2014 10:30.00 PM
Methyl tert-butyl ether	11	5.4	ug/m3	10	10/18/2014 5:57:00 AM
Methylene chloride	0.45	0.52	J ug/m3	1	10/17/2014 10:30:00 PM
o-Xylene	5.5	0.65	ug/m3	1	10/17/2014 10:30:00 PM
Propylene	< 0.26	0.26	ug/m3	1	10/17/2014 10:30:00 PM
Styrene	7,7	6.4	ug/m3	10	10/18/2014 5:57:00 AM
Tetrachloroethylene	74	10	ug/m3	10	10/18/2014 5:57:00 AM
Tetrahydroforan	< 0.44	0.44	ug/m3	1	10/17/2014 10.30:00 PM
Toluena	25	5.7	ug/m3	10	10/18/2014 5:57:00 AM
trans-1.2-Dichloroothene	< 0.59	0.59	ug/m3	1	10/17/2014 10:30:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/17/2014 10:30:00 PM
Trichloroethene	20	91	ug/m3	10	10/18/2014 5 57:00 AM
Vinyl acetale	< 0.53	0.53	ug/m3	1	10/17/2014 10:30:00 PM
Vinyt Bromide	< 0.66	0.66	ug/m3	1	10/17/2014 10:30.00 PM
Vinyl chlorido	< 0.38	0.38	ug/m3	1	10/17/2014 10:30:00 PM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- 91 Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- [1] Value above quantitation range
- 3 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

. • . • • .. •.

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-010A

Client Sample 1D: OA-1 Tag Number: 328,1170 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Qua	al Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst;
Lab Vacuum to	-2		"Flg		10/16/2014
Lab Vacuam Out	-30		"Hg		10/16/2014
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1, 1, 1-Trichloroethane	< 0.15	0.15	ррҌ∨	1	10/17/2014 4:42:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	10/17/2014 4.42:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ррБУ	1	10/17/2014 4.42:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
1.2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
1,2,4 Trimethylbenzene	0.11	0.16 J	Vdqq	1	10/17/2014 4:42:00 PM
1,2-Dibromoethane	< 0.15	0,15	Vdqq	1	10/17/2014 4;42:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
1.2-Dichloropropane	< 0.15	0.15	рры∨	1	10/17/2014 4:42:00 PM
1.3.5-Trimethylbenzone	< 0.15	0.15	ppb∨	1	10/17/2014 4:42:00 PM
1,3 butadiene	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	Vaga	1	10/17/2014 4:42:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
1.4-Dioxane	< 0.30	0.30	ppbV	1	10/17/2014 4:42:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	10/17/2014 4.42:00 PM
4-ethyftoluene	< 0.15	0.15	pobV	1	10/17/2014 4:42.00 PM
Acetone	6.8	1.5	ppbV	6	10/17/2014 11:42:00 PM
Allyi chloride	< 0 15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Benzene	< 0.15	0.15	Vơga	1	10/17/2014 4:42:00 PM
Benzyl chloride	< 0.15	0.15	opbV	1	10/17/2014 4:42:00 PM
Bromodichloromothane	< 0.15	0.15	vdqq	1	10/17/2014 4:42.00 PM
Bromoform	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Carbon tetrachloride	0.10	0 040	ppbV	1	10/17/2014 4:42:00 PM
Chlorobenzene	< 0.15	0.15	ррьу	1	10/17/2014 4:42 00 PM
Chloroethane	< 0.15	0.15	ρρον	1	10/17/2014 4:42.00 PM
Chloroform	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Chloromethane	0.51	0 15	pobV	1	10/17/2014 4:42:00 PM
cis-1,2-Dichloroethene	< 0.15	0 15	ppbV	1	10/17/2014 4:42:00 PM
cis-1,3-Dichloropropene	< 0.15	0 15	ppbV	1	10/17/2014 4:42:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	10/17/2014 4 42:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	10/17/2014 4.42:00 PM
Ethyl acotate	< 0.25	0.25	ppbV	1	10/17/2014 4.42:00 PM

Qualifiers:

- Reporting Limit
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded.
- JN Non-rottine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

• *

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:S140 Site Yorkville, NYLab ID:C1410057-010A

Client Sample ID: OA-1 Tag Number: 328,1170 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Quat	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		та	⊱ 15			Analyst: RJP
Ethylbenzene	< 0 15	0 15		ρρbV	1	10/17/2014 4:42:00 PM
Freen 11	Q.29	0.15		ppbV	r	10/17/2014 4:42:00 PM
Freen 113	< 0.15	0.15		ppbV	1	10/17/2014 4:42:00 PM
Freon 114	< 0.15	0.15		ррб∨	1	10/17/2014 4·42·00 PM
Freon 12	0.51	0.15		ppbV	1	10/17/2014 4·42·00 PM
Heptane	< 0.15	0.15		ρρυν	1	10/17/2014 4.42:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	10/17/2014 4:42:00 PM
Hexane	< 0.15	0.15		ppbV	1	10/17/2014 4:42:00 PM
Isopropyl alcohol	1.1	0.15		ppbV	1	10/17/2014 4:42:00 PM
m&p Xylene	0.10	0.30	Ч	ppbV	1	10/17/2014 4:42:00 PM
Methyl Bulyl Kelone	< 0.30	0.3D		ррБV	1	10/17/2014 4:42:00 PM
Methyl Ethyl Ketone	0.31	0.30		ρρυν	t	10/17/2014 4:42:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		opb∨	1	10/17/2014 4:42:00 PM
Methyl tort-butyl ether	< 0.15	0.15		ρpb∨	1	10/17/2014 4.42.00 PM
Methylene chloride	0.10	0.15	L.	ppbV	1	10/17/2014 4:42:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	10/17/2014 4:42:00 PM
Propylene	< 0.15	0.15		ppbV	1	10/17/2014 4:42:00 PM
Styrene	< 0.15	0.15		ppbV	1	10/17/2014 4:42:00 PM
Tetrachloroothylene	< 0.15	0.15		ppbV	t	10/17/2014 4·42:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	10/17/2014 4:42:00 PM
Toluene	0.18	0.15		ppbV	1	10/17/2014 4:42.00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	10/17/2014 4:42:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		optiV	1	10/17/2014 4:4Z:00 PM
Trichloroethene	< 0.040	0.040		 opb∨	1	10/17/2014 4:42:00 PM
Vinyt acetate	< 0.15	0.15		ppb∨	1	10/17/2014 4:42:00 PM
Vinyl Bromide	< 0.15	0.15		ρρον	1	10/17/2014 4·42·00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	10/17/2014 4.42:00 PM
Sur. Bromofluorobenzone	85.0	70-130		%REC	1	10/17/2014 4:42.00 PM

Qualifiers:

- ** Reporting Lumit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

•••

- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range

ND

- 3 Analyte detected at or below quantitation limits.
 - Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy	Client Sample 10: OA-1
Lab Order:	C1410057	Tag Number: 328,1170
Project:	5140 Site Yorkville, NY	Collection Date: 10/14/2014
Lab ID:	C1410057-010A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	/C TO-15				Analyst; RJP	
1.1.1-Trichloroethane	< 0.82	0.82		ug/m3	1	10/17/2014 4.42.00 PM
1,1,2,2-Tetrachioroethane	< 1.0	1.0		ug/m3	1	10/17/2014 4:42.00 PM
1,1,2-Trichloroethane	s 0.82	0.82		ug/m3	1	10/17/2014 4:42:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	10/17/2014 4:42:00 PM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 4:42:00 PM
1,2.4-Trichlorobenzene	< 1.1	11		ug/m3	1	10/17/2014 4:42:00 PM
1,2,4-Trimethylbenzene	0.54	0.74	_3	ug/m3	1	10/17/2014 4:42:00 PM
1,2-Dibromoethane	< 1.Z	1.2		ug/m3	1	10/17/2014 4·42:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 4 42.00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	1D/17/2014 4.42.00 PM
1.2-Dichloropropane	< 0.69	0.69		ug/m3	1	10/17/2014 4:42.00 PM
1.3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	3	10/17/2014 4:42:00 PM
1,3-hutadinno	< 0.33	0.33		ug/m3	1	10/17/2014 4:42:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 4:42:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 4:42:00 PM
1,4-Dioxane	< 1 1	1.1		ug/m3	1	10/17/2014 4.42:00 PM
2,2,4-trimothy/pentane	< 0.70	0.70		ug/m3	1	10/17/2014 4:42.00 PM
4-ethyltoluono	< 0.74	0.74		ug/m3	1	10/17/2014 4:42:00 PM
Acetone	14	3.6		ug/m3	5	10/17/2014 11:42:00 PM
Allyt chloride	< 0.47	0.47		ug/m3	1	10/17/2014 4:42:00 PM
Benzene	< 0.48	0.48		ug/m3	1	10/17/2014 4:42:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	10/17/2014 4·42·00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	10/17/2014 4.42.00 PM
Bromoform	< 1.6	1.6		ug/m3	1	10/17/2014 4:42:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	10/17/2014 4:42:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	ï	10/17/2014 4:42:00 PM
Carbon tetrachloride	0.63	0.25		ug/m3	1	10/17/2014 4·42:00 PM
Chlorobenzene	< 0.69	0.69		ц <u>а</u> /m3	1	10/17/2014 4:42:00 PM
Chloroethane	< 0.40	0.40		ug/m3	ľ	10/17/2014 4.42:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	10/17/2014 4:42:00 PM
Chloromethane	1.1	0.31		ug/m3	1	10/17/2014 4:42:00 PM
cls-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 4:42:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/17/2014 4:42:00 PM
Cyclohexane	< 0.62	0.52		ug/m3	1	10/17/2014 4:42:00 PM
Dibromochloromethane	- 13	1.3		ug/m3	1	10/17/2014 4.42:00 PM
Ethyl acotate	< 0.90	0.90		ug/m3	1	10/17/2014 4:42:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	10/17/2014 4:42:00 PM
Freun 11	1.6	0.84		ug/m3	1	10/17/2014 4:42:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	10/17/2014 4:42:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	10/17/2014 4:42:00 PM

Qualifiers:

- ** Reporting Limit
 - B Analyte detected in the associated Method Blank
 - FI Holding times for preparation or analysis exceeded
 - JN Non-routine analyte, Quantitation estimated,
 - S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-010∧

Client Sample 1D: OA-1 Tag Number: 328,1170 Collection Date: 10/14/2014 Matrix: AlR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP	
Freon 12	2.5	0.74		ug/m3	1	10/17/2014 4:42:00 PM
Heptane	< 0.61	0.61		ug/m3	1	10/17/2014 4:42:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	10/17/2014 4:42:00 PM
Hexane	< 0.63	0.53		ug/m3	1	10/17/2014 4·42:00 PM
Isopropyl alcohol	2.8	0.37		ug/m3	1	10/17/2014 4·42:00 PM
m&p-Xylene	0.43	1.3	J	ug/m3	1	10/17/2014 4·42·00 PM
Methyl Butyl Ketone	~ 1.2	12		ug/m3	1	10/17/2014 4:42:00 PM
Methyl Ethyl Ketone	0.91	0.66		ug/m3	1	10/17/2014 4.42:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	t0/17/2014 4:42:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	10/17/2014 4:42:00 PM
Methylene chloride	0.36	0.52	J	ug/m3	1	10/17/2014 4·42:00 PM
o Xylene	< 0.65	0.65		ug/m3	1	10/17/2014 4:42:00 PM
Propylene	< 0.26	0.26		vg/m3	1	10/17/2014 4:42:00 PM
Styrene	< 0.64	0.64		ug/m3	1	10/17/2014 4.42:00 PM
't etrachtoroethylene	< 1.0	1.0		ug/m3	1	10/17/2014 4:42:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	10/17/2014 4:42:00 /PM
Toluene	0.68	0.57		ug/m3	1	10/17/2014 4:42:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 4:42:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/17/2014 4 42:00 PM
Trichloroethene	< 0.21	0.21		ug/m3	1	10/17/2014 4:42:00 PM
Viny) acetate	< 0.53	0.53		ug/m3	1	10/17/2014 4:42:00 PM
Vinyl Bromide	< 0.65	0.66		ug/m3	1	10/17/2014 4:42:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	10/17/2014 4:42:00 PM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

ND

- J Analyte detected at or below quantitation limits
 - Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT: Lab Order: Project: Lab ID:	WSP Environment and C1410057 5140 Site Yorkville, N C1410057-011A		(Client Sample ID: Tag Number: Collection Date: Matrix:	130 10/14/2014		
Analyses		Result	**Limit Qual	Units	DF	Date Analyzed	
FIELD PARAM	ETERS		FLD			Analyst:	
Lab Vacuum In		+30		"Hg		10/16/2014	
Lab Vacuum Or	ut	*30		"Hg		10/16/2014	
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		TQ-15			Analyst: RJP	
1,1,1-Trichloroe	thane	< 0.15	0.15	Vdqq	1	10/17/2014 4.05.00 PM	
1.1,2,2-Tetrachi	loroethane	< 0.15	0.15	ρpb∨	1	10/17/2014 4:05.00 PM	
1.1,2-Trichtoroc	thanc	< 0.15	0.15	ρρον	1	10/17/2014 4:05:00 PM	
1,1-Dichloroetha	anc	s 0.15	0.15	ρρον	1	10/17/2014 4:05:00 PM	
1,1-Dichloroethe	ene	< 0.15	0.15	ρρογ	1	10/17/2014 4:05:00 PM	
1,2,4-Trichlorob	enzené	< 0.15	0.15	ррфМ	1	10/17/2014 4:05:00 PM	
1,2,4-1/imethylt	penzene	< 0.15	0.15	ppbV	1	10/17/2014 4 05:00 PM	
3,2-Dibromoeth	апе	< 0.15	0.15	opb∨	1	10/17/2014 4.05:00 PM	
1,2 Dichloroben	zene	< 0.15	0.15	ppb∨	1	10/17/2014 4:05:00 PM	
1,2-Dichloroetha	ane	< 0.15	0.15	ррб∨	1	10/17/2014 4:05:00 PM	
1,2-Dichloroproj	pane	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM	
1,3,5-Trimethylt	benzene	< 0.15	0 15	ppbV	1	10/17/2014 4:05:00 PM	
1.3-butadiene		< 0.15	0.15	ррь∨	1	10/17/2014 4·05·00 PM	
1.3-Dichloroben	zənə	< 0.15	0.15	ρρύν	1	10/17/2014 4:05:00 PM	
1,4-Dichlaroben	zene	< 0.15	0.15	ppbV	1	10/17/2014 4:05.00 PM	
1,4-Dioxane		< 0.30	0.30	ppbV	1	10/17/2014 4:05:00 PM	
2,2,4-trimethylp	entane	< 0.15	015	ppbV	1	10/17/2014 4:05:00 PM	
4-ethyltoluene		< 0.15	0 15	ррbV	1	10/17/2014 4:05:00 PM	
Acetone		< 0.30	0.30	ррbV	1	10/17/2014 4.05:00 PM	
Ally chloride		< 0.15	0.15	ppbV	1	10/17/2014 4.05:00 PM	
Benzene		< 0.15	0.15	ррвV	1	10/17/2014 4.05:00 PM	
Benzyl chloride		< 0.15	0.15	рръ∨	1	10/17/2014 4:05:00 PM	
Bromodichloron	nethane	< 0.15	0.15	Vdqq	1	10/17/2014 4:05:00 PM	
Bromoform		< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM	
Bromomethane		< 0.15	0.15	ррБV	1	10/17/2014 4:05:00 PM	
Carbon disulfide		< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM	
Carbon tetrachk	pride	< 0.040	0.040	ррв∨	1	10/17/2014 4.05:00 PM	
Chlorobenzene		< 0.15	0.15	ρ ρ b∨	1	10/17/2014 4:05:00 PM	
Chloroethane		< 0.15	0.15	ρρb∨	1	10/17/2014 4:05:00 PM	
Chloroform		< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM	
Chloromethane		< 0.15	0.15	ррЬ∨	1	10/17/2014 4:05:00 PM	
cis-1,2-Dichleror		< 0.15	0.15	ρρον	1	10/17/2014 4.05:00 PM	
cis-1,3-Dichloro	propone	< 0.15	0.15	Vdqq	1	10/17/2014 4:05:00 PM	
Cyclohexane		< 0.16	0.16	ppbV	1	10/17/2014 4:05:00 PM	
Dibromochlorom	ethan e	< 0.15	0.16	ppbV	1	10/17/2014 4:05:00 PM	
Ethyl acelate		< 0.25	0.25	ppbV	1	10/17/2014 4:05:00 PM	

Qualifiers:

- B Analyte detected in the associated Method Plank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated
- S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected.

- E Value above quantitation range
- 3 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

^{**} Reporting Limit

.

. .

CLIENT:	WSP Environment and Energy
Lab Order:	C1410057
Project:	5140 Site Yorkville, NY
Lah ID:	C1410057-011A

Client Sample ID:	Trip Blank
Tag Number:	130
Collection Date:	10/14/2014
Matrix:	AIR

Analyses	Result	**Umit (Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то-	15		Apalyst: RJP
Ethylbenzene	< 0.15	0.15	ppbV	1	10/17/2014 4.05:00 PM
Freon 11	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Freon 113	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Freon 114	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Freon 12	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Heptane	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Rexachloro-1,3-butadiene	< 0.15	0.15	ppb∨	1	10/17/2014 4:05:00 PM
Hexane	< 0.15	0.15	pphV	1	10/17/2014 4:05:00 PM
Isopropyl alcohol	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
m&p-Xylene	< 0.30	0.30	Vdqq	1	10/17/2014 4:05:00 PM
Methyl Butyl Kelone	< 0.30	0.30	ρρον	1	10/17/2014 4 05:00 PM
Methyl Ethyl Ketone	< 0.30	0.30	ρρον	1	10/17/2014 4.05:00 PM
Methyi Isobutyi Ketone	< 0.30	0.30	ppb∨	1	10/17/2014 4:05.00 PM
Methyi teri butyi ether	0.15	0.15	ppb∨	1	10/17/2014 4:05:00 PM
Methylene chloride	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
o-Xylene	< 0.15	0.15	ppbV	í	10/17/2014 4:05:00 PM
Propylene	< 0.15	0.16	ppbV	t	10/17/2014 4.05:00 PM
Styrene	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Tetrachioroethylone	< 0.15	0.15	Vdqq	1	10/17/2014 4:05:00 PM
Tetrahydrofuran	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Toluene	< 0.15	0.15	ppb∨	1	10/17/2014 4:05:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	γαρυγ	1	10/17/2014 4:05:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ρρb∨	1	10/17/2014 4:05:00 PM
Trichloroethene	< 0.040	0 040	ppb∨	1	10/17/2014 4.05.00 PM
Vinyl acetate	< 0.15	0.15	ppbV	4	10/17/2014 4.05.00 PM
Vinyl Bromide	< 0.15	0.15	ppbV	1	10/17/2014 4.05:00 PM
Vinyl chloride	< 0.040	0.040	ррьV	t	10/17/2014 4:05:00 PM
Surr: Bromofluorobenzene	76.0	70-130	%REC	1	10/17/2014 4:05:00 PM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-rootine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- 3 Analyte detected at or below quantitation limits.
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy
Lab Order:	C1410057
Project:	5140 Site Yorkville, NY
Lab ID:	C1410057-011A

Client Sample ID:	Trip Blank
Tag Number:	130
Collection Date:	10/14/2014
Matrix:	AIR

Analyses	Result	**Limit	Qual U	nits	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс)-15		Analyst: RJP	
1,1,1-Trichloroethane	< 0.82	0.82	ug.	/n13	1	10/17/2014 4:05:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug.	/m3	1	10/17/2014 4:05:00 PM
1,1,2-Trichloroethane	< 0.62	0.82	ug/	/m3	1	10/17/2014 4:05:00 PM
1,1-Dichloroethane	< 0.61	0.61	បត្ត	/m3	1	10/17/2014 4:05:00 PM
1,1-Dichleroethene	< 0.69	0.59	UQ.	/m3	1	10/17/2014 4:05:00 PM
t,2,4-Trichlorobenzene	≺ 1.1	11	V9	/m3	1	10/17/2014 4.05.00 PM
1,2,4 Trimethylbenzene	< 0.74	0.74	ug.	/m3	1	10/17/2014 4:05.00 PM
1,2-Dibromoethane	< 1.2	1.2	ugi	/m3	1	10/17/2014 4:05:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug.	/m3	1	10/17/2014 4:05:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug	/m3	1	10/17/2014 4:05:00 PM
1.2-Dichloropropane	< 0.69	0.69	ug	/m3	1	10/17/2014 4:05:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	បច្ច	/m3	1	10/17/2014 4.05 00 PM
1,3-butadiene	< 0.33	0.33	na	/m3	1	10/17/2014 4.05.00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug.	/m3	1	10/17/2014 4:05:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug.	/m3	1	10/17/2014 4:05:00 PM
1.4-Dioxano	< 1.1	1.1	ug	/m3	7	10/17/2014 4:05:00 PM
2,2,4 trimethylpentane	< 0.70	070	បច្ចរ	/m3	t	10/17/2014 4:05:00 PM
4-ethyltoluene	< 0.74	0.74	មុច្ចរ	/m3	1	10/17/2014 4.05:00 PM
Acetone	< 0.71	0.71	ug.	/m3	1	10/17/2014 4.05.00 PM
Allyl chloride	•: 0.47	0.47	ц <u>р</u> .	/m3	1	10/17/2014 4:05.00 PM
Benzene	< 0.48	0.48	ug.	/m3	ĩ	10/17/2014 4:05:00 PM
Benzyl chlorido	< 0.86	0.86	ug,	/m3	1	10/17/2014 4:05:00 PM
Bromodichloromethane	< 10	10	ugi	/m3	1	10/17/2014 4:05:00 PM
Bromolarm	< 1.6	16	ыg	/m3	1	10/17/2014 4.05.00 PM
Bromomethane	< 0.56	0.58	цġ	/m3	1	10/17/2014 4:05.00 PM
Carbon disulfide	< 0.47	0.47	ьg,	/m3	1	10/17/2014 4:05:00 PM
Carbon tetrachloride	< 0.25	0.25	ug,	/m3	1	10/17/2014 4:05:00 PM
Chlorobenzene	< 0.69	0.69	ugi	/m3	1	10/17/2014 4:05:00 PM
Chloroethane	< 0.40	0.40	បញ្ជូរ	/m3	1	10/17/2014 4:05:00 PM
Chloroform	< 0.73	0.73	ug.	/m3	1	10/17/2014 4:05:00 PM
Chloromethane	< 0.31	0.31	ug.	/m3	1	10/17/2014 4.05:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	Liĝi	/m3	1	10/17/2014 4:05:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug,	/m3	1	10/17/2014 4:05:00 PM
Cyclohexane	< 0.52	0.52	ug,	/m3	1	10/17/2014 4:05:00 PM
Dibromochloromethane	< 1.3	1.3	Ug/	/m3	1	10/17/2014 4:05:00 PM
Ethyl acetate	< 0.90	0.90	ugi	/m3	1	10/17/2014 4:05:00 PM
Ethylbenzene	< 0.65	0.65	ug	/m3	1	10/17/2014 4.05:00 PM
Freon 11	- 0.84	0.84	цĝ	/m3	1	10/17/2014 4:05:00 PM
Freon 113	< 1.1	1.1	ug,	/m3	1	10/17/2014 4:05:00 PM
Freen 114	< 1.0	1.0	ug,	/m3	1	10/17/2014 4:05:00 PM

Qualifiers: ** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or onnlysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range.

ND

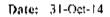
- J Analyte detected at or below quantitation limits
 - Not Detected at the Reporting Limit Page 21 of 22

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-011A

Client Sample ID: Trip Blank Tag Number: 130 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Qu	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	G/M3 W/ 0.25UG/M3 CT-TCE-VC TO-15			Analyst: RJP	
Freen 12	< 0.74	0.74	ug/m3	1	10/17/2014 4:05:00 PM
Heptane	< 0.61	0.61	ug/m3	1	10/17/2014 4:05:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	10/17/2014 4:05:00 PM
Hexane	< 0.53	0.53	ug/m3	1	10/17/2014 4:05:00 PM
isopropyi alcohol	= 0.37	0.37	ug/m3	1	10/17/2014 4.05:00 PM
m&p-Xylene	< 1.3	13	ug/m3	1	10/17/2014 4:05:00 PM
Methyl Butyl Ketone	< 1.2	12	ug/m3	1	10/17/2014 4:05:00 PM
Methyl Ethyl Ketone	< 0.88	0.88	ug/m3	1	10/17/2014 4:05:00 PM
Methyl Isobulyl Ketone	< 1.2	1.2	ug/m3	1	10/17/2014 4:05:00 PM
Methyi teri-bulyi ether	< 0.54	0.54	ug/m3	1	10/17/2014 4:05:00 PM
Methylene chloride	< 0.62	0.52	ug/m3	1	10/17/2014 4:05:00 PM
o-Xylene	< 0.65	0.65	ug/m3	1	10/17/2014 4:05:00 PM
Propylene	< 0.26	0.26	ug/m3	1	10/17/2014 4.05.00 PM
Styrene	< 0.64	0.64	ug/m3	7	10/17/2014 4:05:00 PM
Tetrachtoroethylene	~ 1.0	1.0	vg/m3	1	10/17/2014 4:05:00 PM
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	10/17/2014 4:05:00 PM
Toluene	< 0.57	0.57	ug/m3	1	10/17/2014 4:05:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/17/2014 4:05:00 PM
trans-1,3-Dirthloropropene	< 0.68	0.68	ug/m3	1	10/17/2014 4:05.00 PM
Trichloroethene	< 0.21	0.21	ug/m3	1	10/17/2014 4:05:00 PM
Vinyi acetale	< 0.53	0.53	ug/m3	1	10/17/2014 4:05:00 PM
Vinyi Bromide	< 0.66	0.66	ug/m3	1	10/17/2014 4:05:00 PM
Viny! chloride	< 0.10	0.10	ug/m3	1	10/17/2014 4:05:00 PM


Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit-

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 QUALITY CONTROL SUMMARY

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT: WSP Environment and Energy												
Work Order:	C1410057	C1410057										
Projecti	5140 Site Yorkville	, NY										
Test No:	TO-15	Matrix: A										
Sample ID	BR4FBZ							,·				
ALCSIUG-10171-	106						:					
ALCS1UG-10201/	98.0				:	:	:					
ALCS1UG-102114	105		:		i		:					
ALCS1UGD-1017	14 96.0											
ALCS1UGD-1020	14 - 106											
ALCS1UGD-1021	14 109					;						
AMB1UG-101714	74.0						•					
AMB1UG-102014	74,0		·									
AMB1UG-102114	74.0	1	·			:		• •				
C1410057-001A	85.0	· · · ·		:		:	• •					
C1410057-002A	111					:						
.C1410057-003A	86.0			1	•							
(C1410057-004A	123	· •										
C1410057-005A	85.0					•						
C1410057-006A	107		1			•						
C1410057-007A	83.0	• •	:	:			1					
C1410057-008A	98.0											
C1410057-009A	100											
C1410057-010A			1	:		•	1					
C1410057-011A	26.0											

. Acronym. Surrogate BR4FBZ

= Bromofluorobenzene

QC Limits : 70-130

• •

* Surrogate recovery outside acceptance limits

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AL101703.D Tune Time : 17 Oct 2014 12:16 pm

Daily Calibration File : C:\HPCHEM\1\DATA\AL101703.D

-						
		(BFB))	(IS1) 35912	(IS2) 153181	(IS3) 127402
			orrogale Recovery %		Standard	Responses
AL101705.D AM		74		29706	113235	88126
AL101707.D A	LCS1UG-101714	106	5	41546	159752	135891
AL101708.D CJ	.410057-011A	. 76		33173	129857	96897
AL101709.D CI	1410057-010A	85		30735	115933	93422
AL101710.D C	1410057-0017	85		31300	114437	99124
AL101711.D C1	L410057.003A	86		31.11.0	119965	91050
ЛL101712.D CI	1410057-005A	85		30085	115607	104055
AL101713.D CI	1410057-007A	83		31264	119374	98492
AL101717.D C3	1410057-008A	98		38887	156257	187168*
AL101718.D C1	1410057-009A	100		47864	198113	212292*
ALA 01719.D AL	LCS1UGD-10171	4	96	50384*	19787	5 186154*
AL101720.D C1	410057-010A	SX	74	32123	12259	5 89916
AL101721.D C1	L410057-001A	5X	73	29505	10723	4 76346*
AL101722.D C1	1410057-003A	5X	76	27620	9730	4 64946*
AI.101723.D CL	410057-005A	5X	75	28159	10432	5 78854
AL101724,D Cl	410057-007A	ьx	76	26548	9899	5 72669*
AL101728.D C1	410057-008A	10X	92	30784	12632)	5 110041
AL101730.D C1	410057-009A	10X	96	32218	13078	5 108472
t fails	24hr time cl	heok	• • fails criteria			

Created: Fri Oct 31 14:27:50 2014 | MSD #1/

Tune File : C:\HPCHEM\J\DATA\AL102003.D Tune Time : 20 Oct 2014 l0:11 am

Daily Calibration File : C:\HPCHEM\1\DATA\AL102003.D

			(BFE)		(IS1) 34568	(IS2) 152011	(IS3) 110766
File	Sample	ы	Surrogate	Recovery *	Internal St	andard Resp	onses
AL102004.1	D ALCEIUG-1020)14	98		40425	149098	129611
AL102005.1) AMB1UG-10201	.4	74		31940	119669	80473
AT-102021.1	ALCSIUGD-102	014	106		32834	143304	117910
AL102030.J	0 01410057-002	A	111		49244*	222659*	208775*
AL102031.1	0 01410057-004	A.	123		46572	216342*	223738*
AL102032.1	0 01410057-006	λ.	107		56769*	249938*	248098*
AL-102033.E	C1410057-008	N 810X	83		39301	166313	133451
AL102034.U	C1410057 009	A 810X	70	••••••	32924	130172	92441
AL102035.0	C1410057-002	A 10X	77		30940	126373	94130
AT.102036.1	0 01410057-004	A LOX	90		27702	107339	92306
AL-102037.E	C1410057-006	η ιοχ	78		31018	127739	94990
t - fa	ils 24hr time	check	* - fail	ls criteria			

.

Created: Fri Oct 31 14:29:31 2014 | MSD #1/

Centek Laboratories, LLC GC/MS_QA-QC_Check_Report

Fune File : C:\HPCHEM\1\DATA2\AL102106.D
Fune Time : 21 Oct 2014 1:59 pm

Daily Calibration File : C:\HPCHEM\1\DATA2\AL102106.D

		(.	BFB)			(IS)) 35315	(JS2) 146040	(183) 113898	
	—	DL	Surrogate	Recovery	₩	Internal	Standard	Responses	
AL102110.D	ALCS1UC-10211	4	105			39509	152889	123865	
AL102111.D	AMB100-102114		74			29710	113022	74410	
AL102119.D	C1410057-002A	160X	76				158063	125869	
ALJ 02120.D	C1410057-002A	640X	72			33015	132790	91137	
VI.) 02121.D	C1410057-004A	640X	72			30831	118878	85772	
AL102122.D	C1410057-006A	640X	73			30013	115866	79979	
AL102130.D	ALCSIUGD 1021	14	109			31407	131283	105490	
t · fa	ils 24hr time	check	* - fail:	o criteria					

Created: Mon Nov 17 15:13:04 2014 MSD #1/

CENTER 1 18		<u> </u>						Date: 17-Nov-14
CENTER LAF	ULATEN LABUKATURIES, LLU	ſ			- « [;	NALY	LICAL QC SUX	ANALYTICAL QC SUMMARY REPORT
CLIENT: WSP Eavi Work Order: C141(9057	WSP Environment and Energy C1410057	· · · · · · · · · · · · · · · · · · ·	:					
	5140 Site Yorkville, NY						TestCode: 4	0.25CT-TCE-VC
- Sample ID ALCS1UG-101714	SampType: LCS	TeslCode:	TesiCode: 0.25CT+TCE+	Unils: ppbV		Frep Date		RunNo: 8946
Clien: 1D: 22222	Batch ID: R8946	TestNo: TO-15	T0-15		-1	Analysis Date:	: 10/17/2014	SeqNo: 106373
Aralyte	Result	ğ	SPK vaiue - SPK	SPK Ref Va:	%REC	l limitwo:	HighLimit RPD Ref Val	%RPD RPDumit Quai
1,1,1-Trichlorgethane	170	0.15	-	e(34	217	C2	130	
1,1,2.2-Tetrachioroethane	1.200	0.15	-	43	120	10	130	
1,1,2-Trichlorcethane	1,050	0.15	-	¢	60'.	G2	130	
1,1-Dichlorcethane	0.950	0.15	÷	o	96.0	70	130	
1,1-Dichlorcethene	1,000	0.15	-	¢	107	20	130	
1,2,4-Triciilorocenzere	090.1	0.15	÷	o	<u>(</u>	C2	130	
1,2.4-Tamethylöenzen∈	1 120	0.15	-	Ç3	112	22	:30	
1,2-Dibrorr cethane	0.070	0.15	-	o	107	20	0E1	
1,2-Dichlorobenzere	1.230	0.15	-	G	123	62	:30	
1,2-Dicitlorbethane	3:050	0.15	F	G	15	20	O£,	
1,2-Dichloropropane	040.0	0.15	-	G	ğ	20	Ū£,	
1.3 5-Trimethylbenzene	0.243	0.15	-	٥	124	02	06,	
1.3-buladiene	1,163	0.15	-	٥	1-3	02	. 30	
1.3-D ch protenzene	1.240	0.15	-	٥	124	20	130	
1.4-Dich crobenzene	1.250	0.15	-	0	126	2	000	
1.4-Dicyane	1.230	0.30	-	0	12	2	130	
2 2,4-trimethylpeatane	1.110	5; D			1	۶ f	130 130	
4-erry (bluene Andere	1071 1 220	2 Q			<u>a</u> t	2 2		
A foi chloride	1.230	0.45			123	2.02	2 12	
Benzene	1.090	0.15	• ••		109	70	130	
Benzyl chloride	1.650	2.15	•••	0	165	Dź	133	ŋ
Bremedichloremethane	1.180	0.15	••	0	116	R	3	
B'amaicrm	1.210	0.15	-	0	125	02	130	
B-omomethan e	1.170	0.15	F	0	117	20	130	
Quadifierts: Results rep	Results reported are not bashk corrected		E Value zbere	 value abeve quantization range 	5 <u>8</u>		II Holding times for	
	Aualyte detected at or below quantitation limits	siir	ND Not Detector	Not Detected at the Reporting Limit	g Limit		R RPD cutside next	RPD cutside accepted recovery temits
S Spike Reco	Spike Recovery outside accepted recovery limits	im its						Page Lof 8

Centek Laboratories, LLC

Work Order: C1410057 Project: 5140 Site Y	C14100 <i>57</i> 5340 Site Yockville, NY						TestCode: (TestCode: 0.25CT-TCE-VC	
Sample D ALCS1UG-101714	SampType: LCS	Tes;Coce	Tes;Coce: 0.25CT-TCE-	Units: ppbV		Prep Dale:		Rur No. 8946	1
Cient ID: 22222	Batch ID: R8946	TeslAp	TesMo: TO-15			Analys s Date:	10/17/2014	Sec.No. 106373	
Analyle	Resut	Ъd	SPK value SP	SPX Ref Val	%REC	iowlani y	HighLimit RPD Ref Val	%RPD RPC:imt Qua:	
Carbor disulfide	1.630	0.15	.	D	103	70	130		1
Carbon letrach gride	1.160	0.045	,	0	116	70	130		
Chiorobenzene	1.060	0.15	••	0	106	D/	130		
Chiorosthate	1.210	0.15	•	0	121	20	130		
Cit'arafarr:	C 9700	0.15		0	97.0	70	130		
Ch oromethan s	1.150	0.15	、	0	; 15	70	130		
cis-1,2-Dicrloroethene	0.3200	0.15	.	D	92.0	20	130		
cis-1,3-Dicriarecropere	1.CBD	0.15	••	0	108	5	130		
Cyclohexane	1.060	0.15	۹.	0	106	D/	130		
Dibremoch kromelhane	1.C80	0.15	•.	0	50B	8	130		
Ethyl acetate	1.230	0.25	۰.	υ	\$23	5 ⁷	130		
Ethylbenzene	0.9900	0.15	•	0	98.0	70	130		
Frech 11	1.:60	0.15	۷	U	116	70	130		
Fresh 113	1.130	0.15	Ļ	v	1:3	<u>7</u> 0	130		
Freon 1:4	0.9500	0.15	-	¢	98.0	70	130		
Freon 12	0.9700	0.15	۲	0	0.78	22	130		
Heptane	1.340	0.15	-	¢	1:4	2	130		
Hexachloro-1,3-budatione	1 230	0.15	F	0	123	្ព	130		
Hexane	0.9200	0.15	-	G	92.C	2	130		
Isop:opyl aiochol	1 260	0.15	-	0	126	C2	0E;		
mSp-Xylene	2.360	0:30	2	٥	1:0	2	:30		
Methy, Butyl Ketone	1 580	0:30	-	0	15	70	08,	S	
Metayi Elinyi Ketone	06Z -	0:30	-	٥	8	20	061		
Metryi Isobutyi Kelone	1.255	0:30	-	0	125	02	130		
Methyi tert-bulyi elher	0.9200	0.5	÷	0	C 76	70	130		
Methylene chicride	1.172	10 10	-	0	117	20	130		
c-Xylene	1.150	0.15	F	0	115	20	130		
Propylere	0.9400	0.15	-	0	9	20	130		
Styrene	1.160	0.15	-	0	116	20	130		
Tetrachbroethylene	1.040	0.5	-	0	ġ	02	120		
Tetranydrofurar	1 240	0.2	-	0	124	02	130		
Qualifiers: Results repor	Results reported are not biank corrected		E Value abov	Value above quantitation range	3 51			Flolding tieres for preparation or analysis exceeded	
J Analyte deter	Analyte detected at or below quantitation ätraits	nits	ND Net Detect	Net Detected at the Reporting Limit	ıg Limit		R RPD autside abo	RPD autside abtepted recovery lýmits	
S Spike Recove	Spille Recovery outside accepted recovery limits	mils						Page 2 of 8	of 8

Page 69 of 467

÷

1

:

:

CLIENT: WSP Environment and Energy

					:					:
	WSP Environment and Energy									
Work Order: C1410057										
Project: 5140 Site 3	5140 Site Yorkvijle, NY						TestCode:	TestCode: 0.25CT-TCE-VC	E-VC	
Sample (D ALCS1UG-101714	SampType. LCS	TeslCo	TeslCode: 0.25CT-TCE-	- Unts: ppbV		Prep Date:		RunNo: 8946		
Clent ID: 22222	Batch ID: R8946	Test	TestNo: TO-15		-	Analysis Date	Analysis Date: 10/17/2014	SeqNo: 106373	6373	
Analyte	Result	PQ	SPK value SPK Ref Val	iPK Ref Val	%REC	LewLint	%SEC LowLine: HighLine: RPD Ref Val		%RPD RPDLimil	Qual
Totuene	1.040	0.15	-	0	154	20	0E,			
crans-1,2-Dichloroethene	1.000	0.15	-	0	100	70	.30			
trans-1.3-Dich propropere	1.050	0.15	-	0	5	20	130			
Trichloroethere	0.9600	0.040	-	0	96.C	02	130			
Vinyl acetale	1.015	0.15	-	0	101	02	:30			
Vinyl Bromide	1.060	0.15	-	0	ţ,	20	:30			
Vinyl chloride	1.090	0 M 0	÷	0	103	02	06:			
Surr: Sromofuorstenzene	1.050	U	-	0	16	70	130			

Page 70 of 467

Page 3 of 8

Holding times for preparation or analysis evoceded RPD outside accepted recovery limits

Ξď

:

Not Detected of the Reporting Limit Value above quantitation range - 92

• • • •

Analyte detected at an below quentitation longle Results reperted are not blank currected

Qualifiers:

Spike Recovery colside accepted recovery limits

CLIENT: WSP Envir Work Order: C1410057 Project: 5140 Site Y	WSP Environment and Energy C1410057 5140 Site Yorkville, NY			:	:	:	TestCode:		lugM3_T015	
Sample D ALCS13G-102014	SampType: LCS	TestCode:	ode: 1ugM3_T015	Večs: ppbV		Prep Date:		ŭ	Runha: 8960	
Cient ID: ZZZZ	Batch ID: R6960	TesiNa: TO-15	TO-15		4	Analysis Dale:	10/20/2014	ŭ	SeqNo: 106728	
Anatyle	Resull	PGL Ş	SPK value - SPK	SPK Ref Val	%REC	Lousim : H	HighLimit RPD Ref Val	ef Val	%RPD RPCLimit	Quel
1, 1, 1+Trichleroethane	1.230	0.*5		0	123	02	130			
1,1,2,2-Telrachlo:oelhan s	1.200	0.5	•	0	120	0.2	133			
1, <,2-Trichloroethane	1.200	5:0		0	123	02	130			
1,1-Dichkroethare	1.090	0.55	•	0	109	20	133			
1.1-Dichkroethene	1.182	0.65	•	0	115	20	130			
1 2,4-Trichlorobenzene	0.9800	C 15	••	0	98.0	P.	130			
1.2,4-Trimethylbenz e ne	1.100	0.15	,	0	110	02	130			
1,2-Dipromoethare	1.060	C 15	•	0	105	22	133			
 2-Dichlorobenzene 	1.220	0.15	.	D	122	02	130			
1,2-Dichloscelhare	1.240	0.15	÷	0	124	2	135			
1,2-Dichloropro,cane	1.230	0.15	¥-	0	123	02	130			
1,3,5- rimelhy ⁻ benzene	1.220	0.15	F	0	122	02 2	130			
1.3-butadiene	1.220	0.15	۲	U	:22	20	130			
1,3-Dichlorabenzene	1.220	0.15	+	0	:22	70	13D			
1,4-Dicylorobenzene	1.260	0.15	۲	0	126	2	130			
1,4-Dioxane	0 2300	0:30	£	¢	23.0	22	130			SL
2,2,4-Ir methylpentane	1.260	0.15	۲	¢,	126	X	130			
4-ethyltoluene	1.270	0.15	-	o	127	2	130			
Acetone	1 270	0:30	-	G	127	2	130			
Allyl chlodde	1 250	0.15	-	a	135	22	130			
Benzere	1 250	0.15	-	٥	125	2	130			
Benzyl chloride	1.1220	0.15	-	0	152	22	130			s
Bromodichlo:omethane	. 250	0.15	÷	0	125	70	130			
Bromoform	1.230	0.15	-	٥	ដ	R	06,			
Bromomethane	1,250	0.15	•	0	13	02	130			
Carbon disulfide	0.9700	5. D	•	0	01.0	02	3 30			
Carbon tetrachknide	1.220	97 D	•	0	122	2	130			
Chlorabenzene	1.060	0.15	•	0	108	02	130			
Chlotoelhane	1.280	0.15	۴	0	126	Q.2	<u>5</u>			
Chleroform	1.120	510	•••	0	112	02	130			
Chloromethane	1.250	0.55	•	0	125	02	130			
Qualifiers: Results repor	Results reported are not him k corrected		2 Value show	Value showe quantitation range	: :		il Hoʻding ti	mes for prop	klokting times for preparation or analysis exceeded	ded
-	Analyte detected at or below quantitation limits		ND Not Detecte	Not Descred at the Reporting Limit	g Limit		R RPD auts	de acocided	RPD autside accepted recovery limits	
S Spike Recove	Spike Recovery outside accepted recovery limits	ntils.								Page 4 of 8
										I

Strept II, Strapting LS3 Text/Oxide Leg/ML Feed/Oxide Leg/ML Text/Oxide Leg/ML Text/Oxide Regionality Series Series Series Series Series Serie	CLIENT: WS? Envir Work Order: C1410057 Project: 5140 Site V	WSP Environment and Energy C1410057 5140 Site Yorkville, NY		· :				TestCode:		1¤gM3_T015	'i
Expet: Indust: Indust: <thindust:< th=""> <thindust:< th=""> <thin< th=""><th></th><th>Serr pType: LCS</th><th>TestCod</th><th>e: tugM3_T015</th><th>Units: ppbV</th><th></th><th>Frep Date</th><th></th><th></th><th></th><th></th></thin<></thindust:<></thindust:<>		Serr pType: LCS	TestCod	e: tugM3_T015	Units: ppbV		Frep Date				
And Control Name Nam Name Name			TestN	o: TO-15		-	ƙralysis Dati			SeqNo: 106728	
(150) (15) (1 2 (15) (2) (2) (150) (15) (1 2 (16) 7 20 (150) (15) (1 2 (16) 7 20 (150) (15) (1 2 (16) 7 20 (150) (15) (1 2 (10) 7 20 (150) (15) (1 2 (10) 7 20 (150) (15) (1 0 (10) 7 20 (100) (15) (1 0 (10) 7 20 (110) (15) (1 0 (10) 7 20 (110) (15) (1 0 (10) 7 20 (110) (15) (1 0 (10) 7 20 (110) (15) (10) (10) (10) 10 10 (111) (10)	÷nalyte	Result	PQi		K Ref Vai	%REC	LowLimit	RPD	Ge ^r Val		Qual
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	cis-1.2-Cich croethene	1.050	0.15	۲	n	ŝ	2	130			
	cis-1,3-Dict teropropere	1.:60	0.15	Ļ	ć	316	2	130			
1 0 15 7 30 1 0 0.5 1 0 10 7 30 1 0 0.5 1 0 70 7 30 1 0 0.5 1 0 70 7 30 1 1 0 1 0 10 7 30 1 1 0 1 0 11 7 30 1 0 1 0 11 7 30 30 1 1 0 1 0 11 7 30 1 1 0 1 0 11 7 30 1 0 1 0 11 7 30 30 1 1 0 1 1 1 1 7 30 1 1 0 1 1 1 1 1 <t< td=""><td>Cycloriexana</td><td>1.230</td><td>0.15</td><td>۴</td><td>G</td><td>123</td><td>C2</td><td>130</td><td></td><td></td><td></td></t<>	Cycloriexan a	1.230	0.15	۴	G	123	C2	130			
	Dibrorr ochicromethane	1.150	0.15	-	c	115	2	:30			
1:00 015 1 0 10 00 10 00 1	Elhyl acetale	1.430	0.25	-	ñ	118	22	0E‡			
1260 0.15 1 0 726 70 100 11.00 0.15 1 0 110 70 100 11.100 0.15 1 0 111 70 100 11.100 0.15 1 0 111 70 100 11.200 0.15 1 0 112 70 100 11.200 0.15 1 0 122 70 100 11.200 0.15 1 0 122 70 100 11.200 0.15 1 0 122 70 120 11.200 0.35 1 0 122 70 120 0.3600 0.35 1 0 120 70 120 0.3600 0.35 1 0 122 70 120 0.3600 1 1 0 120 70 120 0.3600 1 1 <td>Ethylber.ze.ne</td> <td>1, 100</td> <td>0.15</td> <td>-</td> <td>c</td> <td>110</td> <td>67</td> <td>:30</td> <td></td> <td></td> <td></td>	Ethylber. ze .ne	1, 100	0.15	-	c	110	67	:30			
1.250 0.15 1 0 125 70 50 50 1.100 0.15 1 0 111 7 5 90 1.100 0.15 1 0 111 7 5 90 1.120 0.15 1 0 111 7 5 90 1.1200 0.15 1 0 121 7 5 90 1.1200 0.15 1 0 122 70 30 90 2.590 0.35 2 0 122 70 30 90 2.590 0.35 1 0 122 70 130 90 2.590 0.35 1 0 132 70 130 90 2.550 0.35 1 0 130 70 130 70 130 2.550 1.50 1 0 112 0 130 130 130	Freon 1:	1.260	0.15	-	c	126	Q2	130			
1:00 015 1 0 110 70 20 1:10 015 1 0 111 70 20 1:200 015 1 0 123 70 20 1:200 015 1 0 123 70 20 1:200 015 1 0 126 70 20 1:200 025 1 0 126 70 20 2:590 026 1 0 126 70 20 2:500 026 1 0 126 70 20 2:500 026 1 0 126 70 20 1:500 035 1 0 126 70 20 1:100 015 1 0 126 70 120 1:110 015 1 0 127 70 126 1:120 015 1 0	Freen 113	1.250	0.15	-	G	125	62	:30			
110 015 1 0 111 70 70 70 1220 015 1 0 12 70 70 70 1500 015 1 0 12 70 70 70 1600 015 1 0 12 70 70 70 2500 025 1 0 122 70 70 70 2500 035 1 0 122 70 70 70 2500 035 1 0 122 70 70 70 1050 035 1 0 122 70 70 70 1150 015 1 0 112 70 120 70 1150 015 1 0 120 70 120 70 1150 015 1 0 120 70 120 70 1150 1	Freen 114	1.100	0.15	F	ō	1:0	52	130			
1.200 0.15 1 0 122 70 30 1.180 0.15 1 0 123 70 30 1.180 0.55 1 0 123 70 30 2.590 0.35 1 0 122 70 30 0.5000 0.35 1 0 122 70 30 0.5000 0.35 0 132 70 30 0.5000 0.35 1 0 122 70 130 0.5000 0.35 1 0 132 70 130 0.1000 0.15 1 0 100 70 130 1.1170 0.15 1 0 111 70 132 1.1200 0.15 1 0 130 132 1.1200 0.15 1 0 130 132 1.1200 0.15 1 0 130 132 <td>Frees 12</td> <td>1.110</td> <td>0.15</td> <td>-</td> <td>٥</td> <td>1:1</td> <td>22</td> <td>06,</td> <td></td> <td></td> <td></td>	Frees 12	1.110	0.15	-	٥	1:1	22	06,			
1 + 80 0 + 13 70 30 1 + 60 0.15 1 0 126 70 30 2 + 50 0.35 0.35 1 0 126 70 30 2 + 50 0.35 0.35 0.50 70 130 70 130 2 + 50 0.35 0.35 0.12 70 130 70 130 1 + 50 0.500 0.35 0.12 70 130 70 130 1 + 50 1 0 105 7 130 70 130 1 + 15 0.15 1 0 112 70 130 70 130 1 + 15 0.15 1 0 112 70 132 70 132 1 + 120 0.15 1 0 112 70 132 70 132 1 + 170 0.15 1 0 112 70 132 70 132	Heplane	1.220	Q.15	-	٩	122	G2	0£,			
ind 1200 0.15 1 0 121 20 20 Shold 2.560 0.15 1 0 122 70 30 Kenne 2.560 0.25 1 0 122 70 30 Kenne 0.5050 0.32 1 0 102 70 130 Kenne 0.5050 0.32 1 0 102 70 130 Kenne 0.5050 0.32 1 0 102 70 130 Kenne 0.3500 0.32 1 0 112 70 120 Noide 1175 0.15 1 0 112 70 120 Attivene 1.170 0.15 1 0 121 70 132 Attivene 1.170 0.15 1 0 127 70 132 Attivene 1.170 0.15 1 0 127 70 <th< td=""><td>Pezachloro-1.3-bulaciene</td><td>1 180</td><td>0.15</td><td>-</td><td>٥</td><td>1:3</td><td>65</td><td>06:</td><td></td><td></td><td></td></th<>	Pezachloro-1.3-bulaciene	1 180	0.15	-	٥	1:3	65	06:			
Ohol 1 0 10 13 30	Hexane	1 010	0.15	-	0	101	02	130			
Kerone 2.530 0.32 2 0 132 70 130 Kerone 0.500 0.30 1 0 500 70 130 Kerone 0.500 0.30 1 0 500 70 130 Kerone 0.500 0.35 1 0 100 70 130 Kerone 0.500 0.35 1 0 100 70 130 Kerone 0.350 0.35 1 0 100 70 130 Kerone 1.160 0.15 1 0 112 70 130 Kriffelone 1.170 0.15 1 0 112 70 130 All 1.170 0.15 1 0 112 70 130 All 1.170 0.15 1 0 132 70 130 Kriffelone 1.170 0.15 1 0 130 130	Isopropyl a cohol	, DEO	5, D	-	٥	136	20	083			
Unly Retaine 0.5000 0.20 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.20000 0.20000 0.20000 0.20000 0.200000 $0.200000000000000000000000000000000000$	måp-Xylene	2.530	0.30	~	0	132	02	130			s
Inf Ketone 1.000 0.33 1 0 120 130 130 exblyfketone 0.3303 0.33 0 1 0 130 130 130 exblyfketone 0.3303 0.35 0 1 0 130 130 exblyfketone 1 1 0 112 70 130 exblyfketone 1 1 0 117 70 132 e 1 1 0 117 70 132 octehybre 1 1 0 117 70 132 octehybre 1 1 0 117 70 132 octehybre 1 1 0 117 70 132 fichlorestnene 1 1 0 127 70 133 fichlorestnene 1 1 0 127 70 133 fichlorestnene 1 1 0 <td>Vethyl Bulyi Kerone</td> <td>0.5020</td> <td>0.30</td> <td>-</td> <td>0</td> <td>50.C</td> <td>20</td> <td>130</td> <td></td> <td></td> <td>S</td>	Vethyl Bulyi Kerone	0.5020	0.30	-	0	50.C	20	130			S
oblight Ketome 0.3332 0.34 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03 0.11 70 1.99 e 1.172 0.15 1 0 1.12 70 1.20 100 100 120 100 120 100 120 100 120 100 120 100 120 100 120 100 12	Wethyl Ethyl Ketone	1,000	030	-	0	100	0.2	130			
ertburkleter 1.0C 515 1 0 100 70 130 130 ertburkleter 1.162 2.15 1 0 113 20 132 ertburkleter 1.172 2.15 1 0 113 70 132 ertburkleter 1.172 0.15 1 0 113 70 132 orcethylene 1.120 0.15 1 0 112 70 132 ficulan 1.170 0.15 1 0 112 70 133 ficulan 1.170 0.15 1 0 112 70 133 ficulan 1.170 0.15 1 0 112 70 133 ficulan 1.170 0.15 1 0 133 133 ficulan 1.170 0.15 1 0 130 133 ficulan 1.170 0.15 1 0 130 133 ficulan 1.170 0.15 1 0 130 133 <td>Methyl Isobutyl Kelone</td> <td>0.3320</td> <td>0.30</td> <td>-</td> <td>0</td> <td>33.0</td> <td>02</td> <td>130</td> <td></td> <td></td> <td>ŝ</td>	Methyl Isobutyl Kelone	0.3320	0.30	-	0	33.0	02	130			ŝ
ie chloside 1.162 0.15 1 0 124 20 124 e 1.172 0.15 1 0 117 0 125 0 126 e 1.172 0.15 1 0 117 0 125 0 135 orcetnykne 1.120 0.15 1 0 112 70 135 orcetnykne 1.120 0.15 1 0 112 70 135 orcetnykne 1.170 0.15 1 0 112 70 135 orcetnykne 1.170 0.15 1 0 137 70 135 Obchloreethene 1.110 0.15 1 70 135 70 135 Obchloreethene 1.170 0.15 1 70 136 70 130 Obchloreethene 1.170 0.15 1 70 130 70 130 ethenene	Methyl let-bulyl elher	1.000	0.15	-	0	100	02	13 0			
-1.172 2.15 1 0 112 70 32 $$	Methylene chloside	1.163	2.15	-	0	118	20	12			
e 1020 0.15 1 0 130 0.15 1 0 130 0.15 130 0.15 130 0.15 130 0.15 130 0.15 130 130 0.15 130 130 0.15 130 <t< td=""><td>p-Xylere</td><td>1.170</td><td>0.15</td><td>-</td><td>0</td><td>117</td><td>02</td><td>130</td><td></td><td></td><td></td></t<>	p-Xylere	1.170	0.15	-	0	117	02	130			
1130 0.15 1 0 13 70 15 oncethykne 1.120 0.15 1 0 13 70 13 for furan 1.170 0.15 1 0 13 70 13 E-Dichloreschiene 1.170 0.15 1 0 13 70 13 E-Dichloreschiene 1.170 0.15 1 0 130 130 E-Dichloreschiene 1.170 0.15 1 0 130 130 ethere 1.170 0.15 1 0 130 130 130 stribe 1.170 0.15 1 0 130 130 130 stribe 1.170 0.15 1 0 130 130 130 stribe 1.170 0.15 1 0 130	F:opylere	1.020	0.15	-	0	102	20	133			
1.120 0.15 1 0 130 1.270 0.15 1 0 130 1.170 0.15 1 0 130 1.170 0.15 1 1 10 130 1.170 0.15 1 0 130 130 1.170 0.15 1 0 130 130 1.150 0.15 1 0 130 130 1.170 0.15 1 0 130 130 1.170 0.15 1 0 130 130 1.170 0.15 1 0 130 130 1.1220 0.15 1 0 130 130 1.1220 0.15 1 70 130 130 I.1220 0.15 1 70 130 130 I.1220 0.15 1 70 130 130 I.220 0.15 1 70 130 130 I.220 1 1 1 130	Siyrera	1.130	0.15	-	0	113	D2	150			
1.270 0.15 1 70 130 1.170 0.15 1 70 130 1.170 0.15 1 70 130 1.170 0.15 1 70 130 1.170 0.15 1 0 130 1.170 0.15 1 0 130 1.150 0.15 1 0 130 1.170 0.15 1 0 130 1.170 0.15 1 0 130 1.120 0.15 1 0 130 1.220 0.15 1 122 70 130 I.220 0.15 1 130 130 130 I.220 0.15 1 1 130 130 I.220 0.10 130 130 130<	^T elrachlorcetny/kne	1.120	0.15	 -	D	112	2	130			
1.170 0.15 117 70 130 1.110 0.15 11 70 130 1.150 0.15 1 0 130 1.150 0.15 1 0 130 1.170 0.15 1 0 130 1.170 0.15 1 0 130 1.170 0.15 1 0 130 1.170 0.15 5 0 130 1.120 0.15 5 7 130 1.220 0.15 - 122 70 130 I.220 0.15 - 130 130 130 I.220 0.15 - 122 70 130 I.220 0.150 - 10	Teirahydiofulan	1.270	0.15	•.1	0	127	D/2	130			
1.110 0.15 1 C 11 70 130 1.250 0.15 1 0 :25 70 130 1.150 0.15 1 0 :15 70 130 1.170 0.15 5 0 117 70 130 1.170 0.15 5 0 117 70 130 1.120 0.15 5 0 122 70 130 Is eported are not blank corrected F Value above quartitation range H Eoléing times for preparation corrarbisis crocs Is écocrect al or below quartitation limits ND Noi Decocred at the Reperting Limit: R R R R R D outside accepted recovery limits	Toluene	1.170	0.15	• *	D	117	20	130			
1.250 0.15 1 0 :26 70 130 1.150 0.15 1 0 15 70 130 1.170 0.15 5 0 117 70 130 1.170 0.15 5 0 117 70 130 1.220 0.15 5 0 122 70 130 is reported are not blank corrected F Value above quartitation range H fiolding times for preparation or analysis even is decored at or below quartitation limits ND Not Decored at the Reperting Limit: R R R R 0001side accepted recovery limits	I:ans-1,2-Dichlorcethene	1.110	0.15	.	0	÷	<u>D/</u>	130			
e 1.150 0.15 1 0 15 70 130 1.170 0.15 1 0 117 70 130 1.220 0.15 1 0 122 70 130 1 Analytic detocreted are not blank corrected E Value above quantitation range H Eolding times for preparation or analysis errors 1 Analytic detocreted are not blank corrected E Value above quantitation framge H Eolding times for preparation or analysis errors 5 Spike Recovery outside accepted recovery limits ND Not Detocreted at the Reporting Limit: R R/PD ontside accepted recovery limits	trans-1,3-Dicaloropropene	1.250	0.15	-	o	:25	2	130			
1.170 0.15 5 0 117 70 130 1.220 0.15 - 0 122 70 130 1.200 0.15 - 0 122 70 130 1.200 0.15 - 0 122 70 130 1.200 0.15 - - 0 130 1.200 0.15 - - 122 70 130 1.200 0.15 - - - 122 70 130 1.200 0.15 - - - - 122 70 130 2.201 Analyte descored at or below quantitation limits ND Not Descred at the Reporting Limit R R/PD ontside accepted networky limits 5 Spike Recovery outside accepted networky limits Spike Recovery outside accepted networky limits R R R/PD ontside accepted networky limits	Trichloroethene	1.150	0.15	-	0	SI.	Q2	130			
1.220 0.15 C 122 70 130 Results reported are not blank corrected E Value above quartitation trange H Ealding times for preparation or strabysis evected J Analyte deecored at or below quartitation limits ND Not Detected at the Repecting Lumit R R/PD outside accupted recovery limits S Spike Recovery autside accepted recovery limits ND Not Detected at the Repecting Lumit R R/PD outside accepted recovery limits	Virg/ acetate	1.170	0.15	.	0	117	52	130			
Results reported are not blank corrected E. Value above quartitation range H. Eolding times for preparation to arabists expecting 1.mit J. Analyte decored at or below quantitation limits ND Not Detocred at the Reporting 1.mit; R. R.FD outside accupied recovery limits S. Spike Recovery outside accepted recovery limits ND Not Detocred at the Reporting 1.mit; R. R.FD outside accupied recovery limits	Vinyl Brartise	1.220	0.15	•	U	122	8	130			
 J Analyte detected at or below quantitation limits ND Not Detocted at the Repecting Limit. R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits 		ried are not blank corrected	:		ve quartitalson ran	. නු			times for p	eparation or analysis evoce	deri,
Spike Recovery outside excepted recovery limits	-	oted at or below quantitation li	mits		ed at the Repectin	ş Lımi:			Iside accept	où reuvery limits	
		kiawaan batdaasa abistio kia:	imils							ĺ	مموم فالرائج

rter:	WSP Environment and Energy C1410057									•	
Project: 014U S	DI4U DICE YORAVILLE, NY						i estude:		ciui_ciwgui		
Sample ID ALCS1UG-102014	114 Sampi ype: LCS	TeslCed	TesiCede: 1ugM3_1015	i Units: ppbV		Prep Oate:	نة	æ	RunNo: 8960		
Client ID: ZZZZ	Balch ID: R8960	TestN	TestNo: IO-15		-	Aralysis Date:	e: 10/20/2014	ίΩ.	SeqNo: 106728	82	
Aralyte	Resul	PQL	S of vs Je S	SPK Ref Val	XREC	LowLimt	Highümt RPD Ref Val	ef Val	н Саяж	RPDLinil	Gual
Viryl citloride	1.160	<u>0.15</u>	-	•	1:8	20	0E;				
Sum Bromoflucrobenzene	e 0.9800	D	-	0	58.0	6	00.				
Sample ID ALCS1UG-102114	114 SampType: LCS	TestCod	TestCode: 1ugM3_1015	i L'aits: ppbV		Prep Date:	ä	ά	RunNo: 8968		
Client ID. ZZZZ	Balct: ID: R8968	TestN	TestNo: TO-15		-	Araiysis Dale:	e: 10/21/2014	ίΩ.	SeqNo: 107658	28	
Anaryle	Result	POL	SPK velue - SI	SPK Rei Val	%REC	LowLin:	HighLime RPD Ref Val	ef Val	H C43%	RPDLinil	Q:Jal
1,1,1-Tichloroechane	1.270	0.15	-	0	127	02	130				
1,1 2,2-Tetrachicroethare	1.250	0.15	-	٥	125	20	0 <u>7</u>				
1,1.2-Trichiorpethane	1.110	0.15	-	0	11	02	130				
1,1-Cichlorosthane	1.020	0.15	-	•	122	70	130				
1.*-Dichioroethene	1.210	0.:5	-	0	121	2	130				
1.2,4-Trichkrobenzene	1.200	0:5	-	•	8	02	130				
1 2.4-Trimethylbenzene	1.160	0.15	-	0	15	Q.	13:1				
1.2-DEromoethane	1.160	9 9 9	-	0	116	20	130				
1.2-Okhkrobenzene	1.290	50	-	D	129	20	5 2				
", 2-Dichicrosthane	1.190	\$? 0	-	0	119	R	130				
 2-Dichloropicpare 	1.090	C.15	•	D	109	8	130				
1,3,5-Trimethylbeczene	1.280	с 15 С	••	0	126	70	133				
1,3-suladiere	1.230	0.15	•	v	128	2	130				
1,3-Dichlorobeazane	1.230	0.15	•	0	123	21	130				
1,4-Dichlorobenzene	1.290	0.15	, ,	0,	67 ¥	2 4	130				L
1,4-Uloxane	UC2.1	0.00	- •	5	6 5	2 8	1001				'n
∠,∠,4-talmetteytpeniane A zebaliohioneo		0.15 0.15		-	C 1	2 6	130				
4-51 initiation inc. A softeme		020) (î	ŝ	62	130				
Allal et Serida	120	0.15	- -		11	2 12	130				
Reczene	, 150 ,	0.15	·	- a	1:5	22	130				
Berzyl chioride	2.090	0.15	-	0	209	20	130				S
Bromedichloromethane	1 230	0.15	Ŧ	a	123	02	130				
	Results reported are not blank corrected			Vislue above quaniciation range				inter for prep	Halding Lines for preparation or analysis exceeded	ທີ່ຈະດີ ແລະ ເປັນເຊື່	S
J Analytic S Section 2	Abalyte defected at an below quantitation fimits South Turners and ide accessed association finite	m:ts invite	ND Not Deta	Nat Detected at the Reporting Limit	ויש:"ן פֿו		STOCIA &	idt socepted	RPD outside seepped recovery limits		
	אוונא ערפאנאני אנגיאני אנגאני אונאנא אוונא	3161								2	Puge 6 nf 8

Work Order: C1410057	3										
Project: 5140 Site >	5140 Site Yorkville, NY						TestCode:		lugM3_T015		
Sample ID ALCS10G-102114	SampType: LCS	TestCod	TestCade: 1ugM3_T015_1	Urits: ppbV		Prep Date:			SunNo: 8968		
Client ID: 22222	Batch ID: RB968	Testh	TestNo: 70-\$5			Ana ysis Dale:	010/21/2044		SeqNo: 107658	58	
Analyte	Result	PG:	SPX value - SPK	SoK Ref Val	%REC	LowLinit	HighLirr.it RPD :	RPD Ref Val	e cang	RPDLimil	Gual
Brerr oform	1.223	0.5	-	0	122	02	130				
Bromomelhare	1.230	0.15	-	0	123	20	130				
Carbon disuñide	0.9623	0.15	-	0	с. 95	02	13.0				
Carbon tetrachloride	1.250	G. D	÷	0	125	02	130				
Chloratenzene	1.120	0.5	-	0	112	02	130				
Chlorcethane	1.200	0.5	-	0	120	02	130				
Chloroforr-	1.050	6.0	-	0	105	02	130				
Chloro T.ethane	1.230	ç,	F	0	123	70	130				
cs-1,2-Dichlorethene	1.030	22	-	0	103	20	130				
cs-1,3-Dichlorcpropene	1.130	9-0 1	-	0	113	70	133				
Cyclohexane	C11.1	0.12	-	0	111	67	130				
D&romochlorom ethage	1.200	970	-	0	120	20	130				
Ethyl acetate	1.270	0.25	-	0	127	22	51				
Ethylbenzene	1.045	310	-	0	104	20	130				
Frean 11	1.220	9 19 19		0	122	Ę,	130				
Freen 115	1.220	3.15		0	122	02	130				
Frean 114	1.090	0.15	•	0	109	2	13.0				
Frech 12	1.060	0.15	••	0	105	02	130				
Hectare	1.170	0.15	•"	0	112	<u>50</u>	130				
Hexachioro-1,3-5utadiene	1.760	0.15	、	0	:76	70	130				Ś
Hexane	0.5500	D.15		0	99.0	D/	135				
isopropyi alcoho:	1.230	0.15	-	J	,23	22	130				
m&p-Xyene	2.430	0:30	2	¢	22	2	130				
Methyl Butyl Ketore	4,310	0.30	F	¢	164	70	130				ŝ
Melhyl Ethyl Kelon e	1.010	0:30	-	c	101	20	130				
Methyl Ischuly: Ketone	2 220	0:30	-	o	22	22	130				S
Melhyl tert-bulyl ether	1.200	0.15	-	a	5	62	130				
Methyane chloride	1 240	0.15	-	0	124	02	130				
o-Xylene	1 210	0.15	-	٥	121	02	130				
Propyene	0.9500	0.15		ō	39 .0	70	130				
Slytene	1.210	0.15	-	0	121	92	130				
	Kesulis reparted are not blank corrected			Value above quantitation range	jā			t têmes for p	lfolding times for preparation or analysis exce rded	presto stavi	R
	Assilyte detected at or below quantitation limits	siu	ND Nat Detected	Nat Detected at the Reporting Limit	g Cámál		RPD 09	Iside accept	RPD outside accepted recovery limits		
S Spike Keen	арка керлегу сакае арофиса терелегу лилиз	51162								e.	Page 7 6(8

:

!

.

.

1

.

WSP Environment and Energy

CLIENT:

Page 74 of 467

CLJENT: Work Order: Project:	WSP Envir C1410057 5340 Site Y	WSP Environment and Energy C1416057 5340 Site Yorkville, NY	3					TestCode:	TestCode: lugM3_T015	15	
Sample ID ALCS1UG-102114	UG-102114	SampType: LCS	TestCo	TestCode: 1ugM3_TO15 Units. ppbV	Vinds. ppbY		Prep Date:	äi	RunNo: 8968	83	
Client ID. 22222		Batch iD: R8568	Test	TesiNo: TO-15			Analysis Dale	Analysis Date: 10/21/2014	SeqNo: 107658	7658	
Anshe		Result	PQE	SPK value SPK Ref Val	ok Ref Val	KREC	LowLimt	KREC Lowlint Highlimit RPD Ref Val	%RPD	RPDLinil	ler 0
Tetrach croethylene		1.190	0.15	-	-	118	02	130			
Tetrahydrofuran		1.200	0.15	-	0	120	02	06:			
Toluere		1.100	0.15	-	٥	111	6	130			
trans-1,2-Cich croethere	here	1.1.0	0.15	-	0	1:1	70	130			
trans-1,3-Dichtoroproperte	euado	1.130	G.15	-	0	1:0	92	130			
Trichiproethere		1.010	0.15	-	0	151	02	130			
Vinyl acetate		1.050	0.15	-	•	2	22	130			
Vinyl Bromide		(,230	0.15	-	0	12	02	130			
Vinyl ch:cride		1.190	0.15	-	٩	158	02	130			
Surr. Bromolluprobenzene	benzene	1.050	0	-	0	105	02	130			

, ,

ŀ

:

! :

÷

:

.....

1.

CLIENT:

Page 75 of 467

Page 8 of 8

,

:

.

Helding times for preparation or analysis exceeded RPD autside screpted recovery littils <u>ъ</u> ×

E Value above quantifation range
 ND Not Detected at the Reporting Limit

Analyte detected at or below quantitation limits Results reported are not blank corrected - 0 . Qualifiers:

Spike Recevery outside accepted recovery limits

CENTEK LABORATORIES, LLC

. The second s

ANALYTICAL QC SUMMARY REPORT : •

WSP Environment and Energy C1410057 Work Order: CLIENT: Project:

5140 Site Yorkville, NY

TestCode: 0.25CT-TCE-VC

Sampa ID ALCS1UGD-101714	SampType: LCSD	TestCod	TestCode: 0.25CT-TCE-	CE- Units: ppbV		Prep Date			Rur.No. 8946	ور	
Client (D: ZZZZ	Balch ID: RB346	TestN	TestNo: T0-15			Analyss Date:	10,17/2014	014	SecNo 106374	374	
Analyte	Result	PQL	SPK value	 SPK Ref Va! 	%REC	L ow Lmil	HighLimil	RPD Ref Val	0da%	SPD;im≷	Quei
1,1,1-Trichlorcethane	1 080	0.15		0	8 <u>7</u> ,	ε	133	1:37	8.CO	R	
1,1,2,2-Tetrachioroethane	0.9900	0.15	F	n	0.66	5	13	1.2	19.2	30	
1,1,2-Trichloreethane	1,000	0.15		Ċ	00,	70	130	6 71	a .61	99	
1,1-Dichlorcethans	0.9700	0.15		•:•	97.0	22	130	9:90 19:00	1.04	Ð	
1,1-Dichlorcethene	1 370	0.15	~	\$	101	Я	135	1.07	0	30	
1,2,4.7richlorobenzeræ	1.220	0.15	v	f 3	-22	70	130	1.03	12.2	ĐĐ	
1,2,4-Trimethylcenzene	1.050	0.15	¢	Ċ	:05	22	133	1.'2	6.45	8	
1,2-Dibrameethane	0.9900	0.15		r1)	0.99.0	2	135	1.07	77.7	8	
1,2-Dichlorabenzere	1,130	0.15	£	¢	:13	20	130	1.23	8.47	0 0	
1,2-Dichlorcethane	1.010	0.15	-	r])	:01	70	130	1.05	3.38	8	
1.2-Dicrioropropane	0.9900	0.15	¥	0	99.0	30	130	1.04	4,93	30	
1,3,5- ^T rimethylcenzene	1 360	0.15		¢	;C6	20	130	1.24	15.7	0£	
1,3-butadiene	1.260	0.15	•-	ð	92,	37	153	1.13	6.56	90	
1,3-Dicriorstenzene	1 310	D.15	~	0	:11	8	3	124	11.1	R	
1.4-Dicrlorstenzere	1.110	0.15	, -	0	11,	<u>7</u>	130	1.26	12.7	30	
1,4-Dioxare	0.4300	0.30	-	¢",>	43.0	2	133	1.23	96.4	99	SR
2,2,4-trimethylpentane	ŝ 110	0.15	<u>~</u>	ņ	н,	20	130	12.1	D	30	
4-ethylloluene	: 110	0.15	-	0	11:	70	130	1 25	11.9	30	
Acetore	150	0.30	-	t_3	÷19	2	130	121	6.50	30	
Allyl chloride	1 210	0.15	•	c	121	22	130	នុ	1 <u>9</u> 1	90	
Berzere	1.060	0.15	-		106	G2	130	90 F	2.79	90	
Berzyl chloride	, 290	0.15	-	0	128	12	130	39°;	25.3	30	
Bromodichlistomethane	. 050	0.15	F	0	5	62	130	J.,	11.7	8	
Bremotorn	0.9900	0.15	¥	r'a	98.0	62	130	5	21.0	8	
Bromomelhare	1.240	D.15	•"	Ċ	:24	8	130	1.17	5.81	30	
Qualifiers: Results repert	Resalts reperted are not blank corrected		ni c v S	Value above quantitation targe	11		Ŧ	Holding trates for preparation or analysis exceeded	preparation or al	na bysis exector	হ
 Analyte detect 	Analyte detected at or below quantitation limits	115	ND Not	Not Detected at the Reporting Limit	ç Limit		2	RPD carside accepted recovery limits	pied recevery žin	nits	
S Spike Recore	Spike Recovery outside accepted recovery limits	r ils								9	Page I of 8

:

. : :

wSP Environment and Energy CLIENT:

:

C1410057 51 × 0 835 V3 Work Order:

1

Sample ID ALCS100D-101714	4 SampType: LCSD	TestCode:	TesiCode: 1.25CT-TCE-	E- Laits: ppbV		Prep Dale:			RuaNo: 8945	æ	
. Cliest (D: ZZZZ	Batch ID: R8946	TestNo: T0-15	T0-15			Analysis Cate	10/17/2014	014	SeqNo: 106374	\$374	
Analyte	Resut	POL	SPK value	SPK Ref Va:	%REC	LowLinii H	ghLimil	RPD Ref Val	%RPD	RPDLimil	Gual
Carbon disulfide	D.5700	0.15	e-	<'s	87.0	2	ā	12	15.8	8	
Carbon teirachlor de	1.030	0.040	•	o	103	02	130	1.16	11.9	30	
Chicrobenzene	0056 0	0.15	•	o	0°36	70	130	1.06	6.83	30	
Chicroethare	1.240	0.15		0	124	70	130	1.21	2.45	30	
Chicroform	0.5400	2.15	•-	D	8	70	130	76.0	3.14	33	
Chloromethane	1.180	C 15	-	0	115	20	0 <u>61</u>	1.15	2.58	30	
cis-1,2-Dichioroethene	0.8500	C 15	•	0	95.0	0,2	130	0.92	3.21	33	
cis-1,3-Dichloropropene	1.010	5 5		0	10	20	0 <u>5</u>)	1.08	5.70	33	
Oydohecase	1.080	C. 35	-	0	109	02	DE,	1.06	1.87	33	
Distamachlanomelhane	0.5200	0.15	-	0	9 7 6	0/	06,	1.08	16.0	30	
Ethyl acetate	1.190	0.25	-	0	115	02	130	1.23	3.31	33	
Ethylbenzene	1.240	0.5	-	0	124	02	061	0.98	23.4	30	
Freen 11	1.060	C5	-	0	5	70	130	1.16	7,14	33	
Freen 113	1.060	0. 5	-	0	109	70	0E;	1.13	4.52	33	
Frean 114	1.050	0.15	-	0	105	20	;30	0.98	5.90	35	
Freon 12	1.070	0.15	-	0	157	Q.	130	0.97	9.80	8	
Heptane	1.100	Q.:5	-	0	1'0	02	:30	1.14	3.57	30	
Hexachiano-1,3-cutadiene	1,130	0.15	-	0	1.3	02	130	1.23	6.47	8	
i-lejcane	0.9800	0.15	-	0	53.C	70	130	0.92	5.32	30	
isopr a pyr alcohol	0.9200	Q. 15	-	0	\$2.0	Q2	000	1.26	32	30	e:
π &s-Xyler∉	2.450	0:30	2	0	120	70	060	2.36	1.66	33	
Veshyl Bulyl Ketor e	0.7800	0:30	-	0	78.0	02	;30	1.58	67.B	30	ar.
Vechyl Elity: Ketore	1.020	0:30	-	0	132	70	000	1.26	21.1	39	
Vethyl isoburyl Ketone	0.6020	0:30	-	0	60.0	02	06,	1.25	70.3	30	Ц
M a chyl t a t-butyl ether	0.9600	0.15	-	0	96.C	70	60	0.92	4.26	30	
Methylene chloride	1.120	Q.15	-	0	110	02	067	1.17	6.17	80	
c-Xylene	1.000	0.15	-	0	130	02	90) 130	1.16	14.8	30	
^o ropylere	1,150	0.15	-	0	1.5	02	1 <u>30</u>	0.54	20.1	8	
Styrece	1.050	0.15	-	0	105	02	00;	1.16	9.95	30	
Tetracht sroe lhyien e	0.9300	0.15	-	٥	93.0	02	0E,	1.04	11.2	30	
Tetrahydrofurar.	170	0.15	-	٥	17	C2	130	1.24	5.81	30	
Qualifiers: Results repo	Results reperted are not blank contacted		F. Value a	Value above quantilation range	. ສ.		H	Holding times for proparation or analysis exceeded	proparation or a	nalysis excer	ed
J Analyze deto	Analyte detected at or below quantitation limits		ND Not De	Not Detected at the Reporting Limit	Lunit		M	RPD autside accepted recovery limits	pod recovery lin	nits	
5 Sarke Record	Varies Bornant at trida naccatad zactori findic	a ite									

•	
CLIENT:	WSP Environment and Energy
Work Order:	C1410057

:

:

5140 Site Yorkville, NY

Page 78 of 467

:

:...

, ١,

.

.

Project: 5140 Site Y	5140 Site Yorkville, NY						F	TestCode: 0.25CT-TCE-VC	25CT-TCI	E-VC	
Sample ID: ALCS1UGD-101714 Sample: LCSD Clien: ID: 22222 Batch ID: RJ945	SampType: LCSD Batch ID: RJ946	TestCo Test	IstCode: 0.25CT-TCI TestNo: T0-15	TestCode: 0.25CT-TCE- Units: ppbV TestNo: T0-15		Prep Dale: Analysis Cale: 10/17/2014	e: t0/17/2	014	Runiko: 8946 SeqNo: 106374	46 1374	
, Analyse	Resul	201	SPK value	SPK value - SPK Ref Val	%REC	Low: mi	P'ghLimil	%REC Lowenti Pightimit RPC Ref Val	093%	%RPD RPDLimit Qual	Qual
Toluane	C. 3600	0.15	•••	0	698	2	5	1.04	8.00	30	
trans-1,2-Dichlorcethene	1.050	2.15	•	D	105	70	130	-	4.88	8	
trans-1,3-Dichloroprocene	1.040	0.15	.	0	104	02	130	1.06	1.90	30	
Trichlordethens	0.5300	0.040	•	0	0.69	02	130	0.96	3.17	8	
Vinyl acelate	1.090	0.15		0	100	10	130	10.1	7.62	30	
Viryl Bromide	1.140	\$\$ \$	v	0	114	0.2	130	1.06	7.27	33	
Vinyl chlorde	1.140	0.040		0	114	02	9 <u>61</u>	1.09	4,48	30	

E Value above quantitation range ND Not Detected at the Reporting Limit ; Spillse Recovery calside accepted recovery amils Analyte detected at or below quantitation limits : Results reported are not black corrected Qualifiers:

Page 3 of 8

H. Holding times for proparation or analysis exceeded
 R.P.D outside accepted recommendation

Centek Laboratories, LLC

!

WSP Environment and Energy C1410057 Work Order: CLIENT: . . .

. . •

Project: 5140 Site Y	5140 Site Yorkville, NY						F	TestCode: 1	lugM3_T015	5		
Sample ID ALCS1UGD-102014	SampTyce: LCSD	TestCode:	1ugM3	TO15 Urits: ppbV		Prep Date.			RunNo: 8960		i]
Cliem ID. 22222	Balch (D): R8960	TesiNo: JO-45	30-45			Aralysis Date:	10/20/2014	014	SeqNo: 106729	1729		
Analyie A	Result	ΡΩ	аг,⊧х ха;ле	e SpK Ref Val	%REC	LewLimit F	HighLimit	RPD Ref Val	%R2D	tmi_C9Я	Quai	
1,1,1-Trichloroethane	1.230	0.15		0	123	2	130	: 23	0	8]
1,1,2 2-Tetrachloroethare	0,140	0.15	F	0	114	2	130	1.2	E. 9	8		
1,1,2-Trichloroethane	0/0 ;	0.15	-	0	107	70	130	1.2	11.5	30		
1,1-Dichloroethane	: 130	0.15	F	0	513	22	130	50 i	3.60	30		
1,1-Dichloroethene	1.310	0.15	<i>–</i>	0	:3 1	2	130	1.18	10.4	30	ŝ	
1,2,4-Triciilorotenzene	0.9700	0.15	F	0	97.0	у.	130	80	1.53	30		
1,2,4-Trimethylbenzene	0.8200	0.15	<u>, -</u>		82.0	5	130	1.1	29.2	30		
1,2-Dibrort bethane	; 280	0.15	F	•	109	72	130	1 26	2.73	30		
1,2-DichloroSenzere	1.160	0.15	-	•	116	2	150	1.22	50	30		
1,2-Dichlorsethane	1.260	0.15	-	•	126	70	130	1 24	1.60	30		
1,2-Dichlorocropane	090.1	0.15	•	¢.,2	105	22	130	: 23	15.8	30		
1,3,5-Trimethylbenzene	1.040	0.15	-	•	104	R	130	122	15.9	30		
1,3-butad ene	1.540	0.15	~	r.(a	154	70	130	1.22	23.2	30	ŵ	
1,3-Dichlorosenzene	140	0.15	Ţ	•	114	5	130	1 22	67.9	30		
1,4-Dichlorocenzeræ	1 120	0.15	F	0	112	3	130	1.26	11.8	30		
1,4-Dioxare	0.6200	0:30	-	0	62.0	70	130	0.23	91.8	30	SR	
2,2,4-tritrefftylpentare	: 120	0.15	ŗ	0	112	Ж	130	1.26	B.11.	8		
4-echylloluere	1.050	0.15	-	¢,5	105	22	130	1.27	19.0	30		
Apetone	1.420	0.30	-	£ ⁷ ,3	148	5	130	1.27	15.3	30	S	
Allyl chloride	1.450	0.15	~	•	149	70	130	: 03	34,6	90	SR	
Berzene	1110	0.15	F	0	111	52	130	1,25	51.5	30		
Berzyl chloride	: 270	0.15	Ţ	0	27	2	130	162	35.6	8	æ	
Bromodichlerometrians	1 200	0.15	-	0	520	22	130	1.25	48	0E		
Bromoform	. 240	0.15	~	0	124	20	130	1,23	0.810	30		
Bromomelhan s	1.480	0.15	-	0	148	22	130	1.25	: 9:	30	ŝ	
Carbon disulfide	5.140	0.15	~	0	117	2	130	0.97	ie.;	30		
Carbor letrachioride	1.200	0.15	-	0	120	C1	130	1.22	:.65	30		
Chiorobenzene	05010	0.15	Ţ	-	129	22	130	1.05	0.922	30		
Chioroethane	1.620	0.15	-	0	162	10	0E,	1.28	23.4	8	n	
Chloroform	1150	0.15	-	•	515	22	130	1.12	2 G	æ		
Chloremethare	1.490	0.15	•	•	149	2	130	1 25	313	8	ŝ	
Qualificers: Results reports	Results reported are not blank corrected Anot to detected or or britanic corrected		E Valu Kalu	Value above quantitation range Kot Deserved of the Domestical trait	2. 7	:	 ດ	Halding lines for preparation of analysis exemded DDA ministra success resource lisation	reparation or a	nalysis exerxe sise	3	
	Spike Recavery reciside accorded neuronal timits	mits									Puter J of 8	6/8
										•		s Sr

WSP Environment and Energy

CLIENT:

5140 Site Yorkville, NY C1410057 Work Order:

.

Project: 5140 Sise Y	5140 Sise Yorkviäle, NY							TestCode:]	lugM3_T015	15		
Sample ID ALCS1UGD-102014	Samp:Type: LCSD	Tesico	de: 1ugM3_FO	TeslCode: 1ugM3_F045_Units: ppbV		Prep Oata			Runtic 8960		l	
Clien: ID: ZZZZ	Balct: ID: R8960	⁷ est	^z estNo: 10-15			Analysis Date	e 10/20/2014	M14	Seq Vo: 106729	6729		
Analy:e	Result	PQL	SPK value	SPK Ref Val	%REC	CowLimit	HighLimit	Ref Val	%RPD	RPCLink	Qua	
cis-1,2-Dicit proethene	: 000	0.15	-	c	106	22	13.5	90 ;	0 548]
cis-1,3-Dichioropropere	1.540	0.15	·-	¢	104	70	130	1 26	10.9	30		
Cyclohexare	1 0/0	0.15	•	сı	107	22	130	EZ.1	15.9	8		
Dibromach ioromethane	1.150	0.15	,	¢	115	2	130	<u> </u>	0	30		
Ethyl acetate	1,110	0.25	•	C,J	111	22	130	1.18	6.1 1	8		
Ethylbenze.re	0:9500	0.15	,	0	95.0	ž	5	1.1	14.6	30		
Freon 11	1.420	0.15	•	J	142	52	130	1.26	11.9	8	w	
Freon 113	1 260	0.15	•	0	135	ž	133	1.25	8.43	30	ני <u>ט</u>	
Frees '14	1.200	0.15	•.	U	120	Ж	130	1.1	8.70	8		
Freon 12	1.*30	0.15	•	0	116	8	130	1.1	6.11	30		
Heptare	1.130	0.15	•.	c	113	22	130	1.22	7.66	30		
Hexachloro-1,3-butadiene	02.1	0.15	••	c	117	2	31	1:8	0.851	30		
Hexare	1.030	0.15	•	IJ	103	5	130	1.01	1.96	30		
Isocropyl alcohol	1,140	0.15	••	0	114	ដ	Ş	18	7.27	8		
ានឧp-Xy ene	2.250	0:30	2	0	112	52	133	2.63	15.6	90		
Methyl Butyl Kelone	0.6700	0:30	, .	U	67.D	8	130	0.5	29.1	30	ŝ	
Methyl Ethyl Kelone	0.9500	0:30	•.	0	80	22	130	-	4.08	8		
Methyl Iscbuly Ketore	0.8200	0.30	`	0	62.0	2	130	C.33	85.2	8	e:	
Melhyl tert-butyl ether	0.6800	0.15	•.	c,	68.D	52	130	-	12.8	8		
Melhylene chloride	1.390	0.15	`	U	139	2	33	80.1	15.3	8	ŝ	
o-Xy ene	1 130	0.15	• •	¢	113	5	130	1.47	3.48	30		
Progyene	050";	0.15	×.	0	109	2	130	1.02	6.64	30		
Styrene	0901	0.15	۰.	0	109	61	130	: 13	3.60	30		
Tetrach prosthylene	050"%	0.15	÷	¢	109	2	130	1.12	2.71	30		
Tetrahydrofuran	,140	0.15	-	<i>د</i> ،	114	2	130	12',	10.8	30		
Toluere	1.D2()	0.15	-	0	103	22	150	1.17	12.7	90		
trans-1,2-Dichleroethene	1.130	0.15	-	n	113	62	135	1:	1.79	8		
trans-1,3-Dichloropropene	1.020	0.15	-	n	<u>1</u> 02	22	130	1.25	20.3	90		
Trich groethene	1.0-0	0.15	-	G	10;	70	130	1.15	13.0	30		
Vinyl acetate	060'4	0.15	÷	Ċ	109	2	130	: 17	7.08	8		
Vinyl Bro⊤si≾€	\$ 310	0.15	•	¢	131	2	130	2	1172	30	ŝ	
Qualifiers: Results report	Results reported are rol black corrected	•	E Valiica	value abeve quantitation range		•		Holding times for preystatics or analysis evce eded	préparation or a	Balysis eve ro		
			200 - A 100 - A				,	CC	2			

RPD couside accepted recenery Bimits

œ

ND Not Detected at the Reporting Limit

Spike Recovery autside accepted neavery limits Analyte detected at an below quantitation limits

- s

WSP Exvironment and Energy C1410057 CELENT:

Work Order:

Project: 5140 Site V	or≠10007 5140 Site Vorkviže, NY						F	TestCode:]	iugMD_TO15	15	
Sampe ID ALCS FUGD-102014	SampType: LCSD	TestCor	le: tugM3_T(TestCode: 1ugM3_T015 Units: ppbV		Frep Cate	is.		Runko: 8960	3	
Client : D: ZZZZ	Batch ID: R8960	Testh	TestNo: T0-15			Analysis Date	e 10/20/2014	N14	SecNo: 106729	5729	
Analyte	Result	FGL	SPK value	SPK Ref Va:	%REC	ւտակում	rlig ٦Limıt	RPD Ref Val	%RPD	RPCLimit	Que:
V ny chloride	006.1	0.15	+	• •	:30	D/	132	1:18	9.68	8	
Sample ID ALCS10GD-102114	SampType: LCSD	TestCor	TestCode 1ugM3_T015	015 Units: ppbV		Prep Dale:			Runha: 8968		
Clieat ID: ZZZZ	Salch ID. Rages	Testh	TestNo: TO-15			A talysis Date:	e £0/22/2014	014	SeqNo: 106740	6740	
Analyte	Real	FQL	SPK value	SPK Ref val	%REC	LowLmi	kighLimit	Ref Val	Q4A%	RPCLimit	Qua:
*,1,1-Trichloroethane	1.390	0.15		D	139	02	133	1.27	9.02	8	ر م
 1,2,2-Tetracharoethene 	1,210	0.15	•	0	121	0/	135	1.25	3.25	30	
 1,2-Trichlorcethane 	1.1.80	0.15	- **	0	118	<u>70</u>	130	11.1	6.11	8	
1,1-Dichlo:detrane	1.160	0.15	•	0	116	<u>0</u> 2	130	1.12	3.51	80	
1.1.Dichloreelhene	1.360	D.15	ť	0	136	02	130	1.33	2.23	30	Ś
1,2,4-Trichlorctenzere	0.021 0	0.15	•	0	79.0	2	130	1.32	50.2	30	u:
1,2,4-7rimethylcenzere	0,6900	0.15	•	0	69.0	20	35	1.16	50.8	30	SR
1,2-Dibromcethane	1.220	0.15	*	0	122	22	130	1.16	5.04	8	
1,2-Dichlorchenzere	1.040	0.15	•	0	104	02	132	1.35	25.9	30	
1,2-Dichlorcethane	1.360	0.15	•.	0	136	02	133	1.31	3.75	80	w
1,2-Dichloropropane	1.140	0.15	٠	D	114	02	132	1.09	4.48	8	
1,3,5-TrimeInylsenzene	1.020	0.15	•**	0	102	02	130	1.37	29.3	8	
1,3-butadiene	1 200	0.15	•	0	160	20	130	1.52	5.13	30	s
1,3-Dichlorchenzere	1.140	0.15	• '	0	114	22	8	1.32	14.6	30	
1,4-Dichlorstenzere	1 030	0.15	•	0	108	70	130	1.35	22.2	30	
1,4-Dioxane	0.1400	0:30	¥	0	14.0	22	130	1.35	0	30	ЗĻ
2,2,4-trmethylpentane	1.210	0.15	·-	0	:21	22	130	1.15	5.08	30	
4-ethylioluene	0.9500	0.15	۲	0	95.0	2	130	141	39.0	30	œ
Acelone	: 170	0:30	-		21,	22	130	1.37	15.7	8	
Allyl charide	: 490	0.15	-	U	66,	2	130	1.5	0.659	30	s
Benzene	1, 200	0.15	-	¢, a	.20	2	130	1.15	4,26	8	
Benzyl chioride	0.7500	0.15	-	0	75.0	2	130	2.55	34.4	DE	œ
Bromodich bromelhan s	: 320	0.15	-	¢,	.32	72	130	1 23	2.06	90	ŝ
Brancolorm	1.430	0.15	-	U	143	2	130	1.3	9.52	30	S
Ouvlifiere: Revuls reacto	Realis reacted are not blank corrected		 Maine	- Value shove quantizitoù ranse	: 3	:					
	Analytic detected at or below augustification limits	1115	_	Vol Derected al the Reporting Limit	e Limit			R.PD catside accepted recovery invits	aled records fin	nits	ł
S Shike Recover	Spike Resovery cutside accented resovery linvits	avire			6						
]									A new first of the

Page 81 of 467

. .. .

:

. . .

:

• • • •

.

ł

ļ

8 Spike Repovery cutside accepted repovery limits

i . .

: .;

;

WSP Eavironment and Energy C1410057 CLIENT: Work Order:

:

Page 82 of 467

Project: 5140 Site Y	5140 Site Yorkville, NY						Ē	TestCode:]	fugM3_TOIS	lS	
Sample ID ALCS10GD-102114	SampType: LCSD	TestCo	le. 1ugM3_T(TestCode. 14gM3_T015 Units: ppbV		Prep Dale:			Runfor 8968		
Client ID: ZZZZ	Batch ID· R8968	Test	TestNo: TO-15		-	Analys s Cale [.]	10/22/2014	014	Seq.No: 106740	5740	
Analyte A	Result	Ŋ	SPK value	SPK Ref V3:	%REC	LowLard S	HighLeri	RPC Ref Val	%RPD	RPDLimit	Cual
Bromomethane	1.550	0.15		0	155	20	130	1.45	6.67	98] ~
Carbon disulf.de	1.060	0.15		0	105	70	130	1.06	0	30	
Carbon letrachicride	1.330	0.15	-	0	156	70	130	1.25	9.89	30	Ś
Chiorobenzene	1.170	0.15	-	0	117	70	080	1.12	4.37	30	
Ct: arrethare	1.580	0.15	-	0	156	70	130	1.58	0	30	s
Cl: oroform	1.230	22.22	-	0	123	70	0 <u>0</u> 0	1.16	5.86	30	
Ch aromelhane	1.480	0.15	-	0	148	02	0E);	1.46	1.35	65	ŝ
cis-1,2-Dichlorbethene	1.130	er C	-	0	113	70	0£,	1.13	0	30	
cis-1,3-Dichlorocropene	1.040	0.15	-	0	17 27	20	OE,	1.13	6.29	33	
Cyclohexs.re	1.120	0.5	-	0	112	70	08,	1.11	768.0	33	
Distomochioromethane	1.310	0.5	-	0	13:	02	0£;	1.2	B.75	i);	s
Ethyl acetate	0.7000	0.25	-	0	70.0	20	0E,	1.67	6:9	33	œ
Ethylbenzene	1.020	5; D	F	0	13	Q2	0£;	1.04	1 .9	33	
Frean 11	1.510	0.15	-	0	15:	02	0£,	1.43	5.44	30	w
Frean 113	1.430	0.15	F	0	5	0,2	130	1.35	5.75	33	ŝ
Freen 114	1.225	0.45	-	Ō	122	02	00;	1.2	1.65	33	
Frean 12	1.220	0.15	-	0	122	70	:30	1.17	4.16	35	
Heatane	1.170	0.15	-	0	1.7	70	:30	1.17	0	2	
Hexachioro-1,3-cutadiene	0.7500	0.15	÷	0	75.0	70	130	1.76	BC 5	33	œ
Нехале	C072.0	0.15	-	0	97.C	70	0£;	1.09	1: 7	3	
isopropyl akoho!	0.6400	0.15	-	0	84.0	02	:30	1.55	615	30	SR
тыдр-Хуlere	2.450	0.30	2	0	12	02	060	2.43	a	35	
Methyl Bulyl Kelore	0.4200	0:30	-	0	42.C	92	00;	4.31	ά	30	SR
Mechyl Ethyl Ketone	0.4600	0:3C	-	0	46.0	02	06,	1.5	105	30	SR
Methyl sobutyl Ketore	0.1300	0:30	-	0	13.0	02	06.	2.22	•	50	s,
Methyl terr-butyl ether	0.8000	0.'5	-	0	80.0	20	061	1.1	31.5	30	Ľ
Methylene chloride	1.410	0.2	-	0	14:	02	00; ,	1.37	2.88	30	ŝ
o-Xylere	1.210	5, D	-	0	12:	20	130	1.21	0	30	
Picpylere	0.\$200	0.15	-	0	92.0	02	3 <u>3</u> 0	1.09	15.9	30	
Styrene	1.130	0.15	-	0	1:5	70	00 130	1.21	5. B 4	30	
Teirachtstoethyiene	1.232	0.15	-	٥	123	02	130	1.18	4.15	33	
Qualifiers Results report	Results reported are not blank concerted		E Váluc	Value above quantilaties range	ĒČ		н	lalding tinxs fàr	Halding tinxs far preparation of analysis eweeded	nalysis excerd	E
	Analyte detected at or below guantitation limits	mils	QIEN CN	Nai Detected at the Reporting Linch	ę Linci		eri Pri	PD outside acce	RPD outside accepted recovery limits	tils	
5 Spake Record	Spike Recordry outside accepted recovery fimits	imits								۹,	Puge 7 of 8

WSP Environment and Energy C1410057 Work Order: CLIENT:

.

. '

.....

Project: 5140 Site Y	5140 Site Yorkväte, NY							TestCode: lugMD_T015	ugMD_TO	15	
Sample ID ALCS1UGD-102114 SampType: 1CSD Client ID: ZZZZ Salch ID: R8968	SampType: 1CSD Salch IC: R8968	TestCo	siCode: 1ugM3_10 TestNo: TO-15	TestCode: 1ugM3_TO15 Units: ppbV TestNo: TO-15		^o rep Dale: Analysis Cale: 10/22/2014	e: \$0/22/2	014	RunVo: 8968 SegNo: 106740	53 1740	
Analyte	Resut.	JÖd	SPK value	SPK value – SPK Ref Vai	%REC	LowUmit	h ghlimi	%REC LowLinit highLimit RPC Ref Val	%RPD	%RPD RPDLimit Qual	QLal
Telrahydrofuran	0.6500	0.15	-	0	65.0	20	130	1.46	51.7	8	ſX;
Tollene	1.150	0.15	۴.	0	115	20	130	1.11	3.54	30	
trans-1,2-Dichloroelhen e	0211	0.15	•"	0	117	02	130	1.23	5.00	8	
trans-1,3-Dichloroprocene	1.100	0.15	•	0	110	20	130	1.1	a	30	
Trichloretsens	1.110	0.15	•	0	111	02	130	1.01	9.43	8	
Vinyl scelate	1.050	0.15	••••	0	105	02	130	1.2	13.3	30	
Veryl Bromide	1.290	1) 1, 1	•	0	129	02	130	1.35	4.55	30	
Viziyî chloride	1.300	6.3 42		0	130	02	130	1.3	0	30	

Value above quantitation range : . , ш Q : Analytic detected at or below quantitation limits . Results reported are not hlack curructud

Spike Recovery outside accepted recovery limits

.

Qualifiers:

Net Detected at the Reporting C imit

Helding times for preparation or analysis exceeded
 R PD outside catepted recovery im/ls

ANALYTICAL QC SUMMARY REPORT CLIN: WS Finiment and Energy CLIN: WS Finiment and Energy Mode in Electronic and Electro	CENTER LAB	T CENTEK LABORATORIES, LLC	رد رد			Date: 31-Oci-14																																																																																																																							
WSP Environment and Enlergy TestCode: 0.35CT-TCE-VC Circl 10057 5140 Sav Varckville, NV TestCode: 0.35CT-TCE-VC EUC-11057 Earch D: R9se TestCode: 0.35CT-TCE-VC EUC-11057 Earch D: R9se TestCode: 0.35CT-TCE-VC EUC-11074 SamoType: MBLK TestCode: 0.35CT-TCE-VC EUC-11075 Earch D: R9se TestCode: 0.35CT-TCE-VC EUC-11076 Earch D: R9se TestCode: 0.35CT-TCE-VC EUC-11076 Earch D: R9se TestCode: 0.35CT-TCE-VC Euclo : 0.15 VC Arabis Date: 0.172044 Memaler 0.15 VC Vector Val Xrelo Earch Memaler 0.15 VC Vector Val Xrelo Earch Xrelo Earch Memaler 0.15 0.15 VC Vector Val Xrelo Earch Xrelo Earch Memaler 0.15 0.15 VC Vector Val Xrelo Earch Xrelo Earch Memaler 0.15 0.15 VC Vector Val Xrelo Earch <t< th=""><th></th><th>×</th><th></th><th></th><th>ANALYTICAL QC SU</th><th>VIMARY REPORT</th></t<>		×			ANALYTICAL QC SU	VIMARY REPORT																																																																																																																							
AMB1UG-60174 Samp/yee MBLK TestCode: OZGC11CE- Just spb/ Pap. 2acc. Romote Sector Romote Romote Sector Romote			1			1.35CT-TCE-VC																																																																																																																							
MBIUG-60174 Samplyze Texloc.cc. 0.56C+T/CE Jars phys Perg Jars: Immoo 846 ZZZZ Barth/D Ferdol. 0.45C+T/CE Jars phy Aralyza Jars: Marka 100.8332 ZZZZ Barth/D Ferdol. 0.45C+T/CE Jars phy Aralyza Jars: Marka 100.8345 ZADOLATI POL SY value SPC 46*Val 3-3C. Louint Hyrint: RPD Rat Val 3-9P.0 Zathoorane < 0.15 3-3 0.15 SPC 46*Val 3-3C. Louint: Hyrint: RPD Rat Val 3-9P.0 S-9P.0 RPD.0.1 Conferance < 0.15 0.15 3-3 1-3 S-9P.0																																																																																																																													
22222 Bath 10, R5046 Tenlo: 10-15 Analysis Date Ion 11 Serplo: 05022 1::::::::::::::::::::::::::::::::::::	Sample ID AMB1UG-101714	SampType: MBLK	TeslCode: (Prep Dete:	RunNo. 8946																																																																																																																							
Result PQL Syrveture SPC total SPC tot		Batch (D: R8946	TesiNo:	IO-15		SeqNo: 106372																																																																																																																							
<	Anaķie	Result			LewLimit HighLim?	RPDLmi																																																																																																																							
me <215 015 < < 15	1.1 P-Trottorethene	< 0.15	0.15																																																																																																																										
< 0.15	1.1.2.2.Tetrachloroethane	< 0.15	0.15																																																																																																																										
< C15	1,1 2-Trichtorethane	< 0.15	0.15																																																																																																																										
- -	1,1-Cictherosthane	< 0.15	0.15																																																																																																																										
e <.0.15	1.1-Dichlaroethene	< 0.15	0.15																																																																																																																										
a c. 15 0.15 c. 0.15 0.15 0.15 c. 0.15 0.26 0.26 c. 0	1.2.4-Trichiorobenzene	< 0.15	0.15																																																																																																																										
< 0.15	1.2.4-Trimethylberzene	< 2.15	0.15																																																																																																																										
< 0.15	1 2-D2romoethese	< 0.15	0.15																																																																																																																										
< 0.15	1 2-Oldhorbenzene	< 0.15	015																																																																																																																										
< 0.15 0.15 <	1.2-C ct/croethane	< 0.15	0.15																																																																																																																										
a < 0.15	1 2-Orchicropicpane	< 0.15	0.15				< 0.15 0.5 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 <td>i 3,5-Trimethylberzene</td> <td>< 0.15</td> <td>0.15</td> <td></td> <td></td> <td></td>	i 3,5-Trimethylberzene	< 0.15	0.15				< 0.15	3-buladiene	< 0.15	0.15				< 0.150.150.15< 0.15	1.3-Dichlorobenzane	< 0.15	0.15				 6.30 030 6.15 0.15 6.15 0.15 7.16 6.15 0.15 7.15 7.16 7.16 7.16 7.15 7.16 7.16 7.16 7.16 7.17 7.18 7.19 7.10 7.15 7.15 7.15 7.15 7.15 7.16 7.17 7.16 7.16 7.16 7.16 7.17 7.16 7.16 7.16 7.16 7.16 7.16 7.16 7.16 <l< td=""><td> 4-Dichlorobeszene </td><td>< 0.15</td><td>0.15</td><td></td><td></td><td></td></l<>	 4-Dichlorobeszene 	< 0.15	0.15				< 0.15	*_4-Dioxane	< 0.30	030				$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2,2,4-trimethy pendans	< 0.15	97 - 5 - 5				 v u.30 v 0.30 v 0.15 v 0.1	4-etrysoluene	6.0 >	9. 9 5 4				 <ul< td=""><td>Als Londoniae Als Londoniae</td><td>0.0 2</td><td></td><td></td><td></td><td></td></ul<>	Als Londoniae Als Londoniae	0.0 2					 c. 13 c. 15 c. 16 c. 17 c. 18 c. 18 c. 19 c. 19 c. 19 c. 19 c. 19 <lic. 10<="" li=""> c. 17 c. 17 c. 17 <l< td=""><td></td><td></td><td>) -</td><td></td><td></td><td></td></l<></lic.>) -				 c. 15 c. 15 d. 16 <lid. 16<="" li=""> d. 16 <lid. 16<="" li=""> <lid. 16<="" li=""> d. 16 d. 16 <</lid.></lid.></lid.>	De 12ene	0.12	2 4				 0.15 0.15		61.0 ×					hane < 0.15 0.15 Results reported are not blank corrected E Value above quantitation range I Analyte detected at or below quantitation limits ND S Spike Recovery auriside accepted recovery limits ND	biometrum Biometrum	ci.u.s < 0.15	9 40 2 40				 Name Assults reported are not blank corrected E Value above quantitation range Must lyte detacted at or below quantitation limits ND Not Detected at the Reparting Limit R RPD survide accepted recovery limits Spike Recovery survide accepted recovery limits 							3esults reported are not blank corrected E Value above quantitation range H Elekting times for proparation or analysis event 1 Availyte detected at or helew quantitation limits ND Nor Detected at the Reporting Limit R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits ND Nor Detected at the Reporting Limit R RPD outside accepted recovery limits	Bromomethane	< 0.15					Aralyke detacted at or below quartitation firmits ND . Not Detected at the Reparting Limit R . RPD autistic apopted recovery limits. Spike Recovery autistic accepted recovery Limits		rted are not blank corrected			Н	r preparation or analysis eveceded	Spike Recovery autside accepted recovery limits		sted at or below quartitation fir			~	spied recovery linuits			ery autside socepted recovery D	m'is			Fage 1 of 3
1 2-Orchicropicpane	< 0.15	0.15																																																																																																																											
< 0.15 0.5 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 < 0.15 0.2 <td>i 3,5-Trimethylberzene</td> <td>< 0.15</td> <td>0.15</td> <td></td> <td></td> <td></td>	i 3,5-Trimethylberzene	< 0.15	0.15																																																																																																																										
< 0.15	3-buladiene	< 0.15	0.15																																																																																																																										
< 0.150.150.15< 0.15	1.3-Dichlorobenzane	< 0.15	0.15																																																																																																																										
 6.30 030 6.15 0.15 6.15 0.15 7.16 6.15 0.15 7.15 7.16 7.16 7.16 7.15 7.16 7.16 7.16 7.16 7.17 7.18 7.19 7.10 7.15 7.15 7.15 7.15 7.15 7.16 7.17 7.16 7.16 7.16 7.16 7.17 7.16 7.16 7.16 7.16 7.16 7.16 7.16 7.16 <l< td=""><td> 4-Dichlorobeszene </td><td>< 0.15</td><td>0.15</td><td></td><td></td><td></td></l<>	 4-Dichlorobeszene 	< 0.15	0.15																																																																																																																										
< 0.15	*_4-Dioxane	< 0.30	030																																																																																																																										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2,2,4-trimethy pendans	< 0.15	97 - 5 - 5																																																																																																																										
 v u.30 v 0.30 v 0.15 v 0.1	4-etrysoluene	6.0 >	9. 9 5 4																																																																																																																										
 <ul< td=""><td>Als Londoniae Als Londoniae</td><td>0.0 2</td><td></td><td></td><td></td><td></td></ul<>	Als Londoniae Als Londoniae	0.0 2																																																																																																																											
 c. 13 c. 15 c. 16 c. 17 c. 18 c. 18 c. 19 c. 19 c. 19 c. 19 c. 19 <lic. 10<="" li=""> c. 17 c. 17 c. 17 <l< td=""><td></td><td></td><td>) -</td><td></td><td></td><td></td></l<></lic.>) -																																																																																																																										
 c. 15 c. 15 d. 16 <lid. 16<="" li=""> d. 16 <lid. 16<="" li=""> <lid. 16<="" li=""> d. 16 d. 16 <</lid.></lid.></lid.>	De 12ene	0.12	2 4																																																																																																																										
 0.15 0.15		61.0 ×																																																																																																																											
hane < 0.15 0.15 Results reported are not blank corrected E Value above quantitation range I Analyte detected at or below quantitation limits ND S Spike Recovery auriside accepted recovery limits ND	biometrum Biometrum	ci.u.s < 0.15	9 40 2 40																																																																																																																										
 Name Assults reported are not blank corrected E Value above quantitation range Must lyte detacted at or below quantitation limits ND Not Detected at the Reparting Limit R RPD survide accepted recovery limits Spike Recovery survide accepted recovery limits 																																																																																																																													
3esults reported are not blank corrected E Value above quantitation range H Elekting times for proparation or analysis event 1 Availyte detected at or helew quantitation limits ND Nor Detected at the Reporting Limit R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits ND Nor Detected at the Reporting Limit R RPD outside accepted recovery limits	Bromomethane	< 0.15																																																																																																																											
Aralyke detacted at or below quartitation firmits ND . Not Detected at the Reparting Limit R . RPD autistic apopted recovery limits. Spike Recovery autistic accepted recovery Limits		rted are not blank corrected			Н	r preparation or analysis eveceded																																																																																																																							
Spike Recovery autside accepted recovery limits		sted at or below quartitation fir			~	spied recovery linuits																																																																																																																							
		ery autside socepted recovery D	m'is			Fage 1 of 3																																																																																																																							

Page 84 of 467

WSP Environment and Encropy CJ 410057 5140 Site Yorkville, NY 5140 Site Yorkville, NY Batch ID: R8946 Batch ID: R8946 Batch ID: R8946 Batch ID: R8946 C040 C040 C040 C040 C040 C040 C040 C0	Y TestCode: 0.35CT-TCE-VC INBLK TestCode: 0.45C INDLK PPD-0 SeqNo: INDLK PPD-1 SeqNo: INDLK PPD-2 SeqNo:		
		< 0.15 0.15	

	WSP Environment and Energy									
Work Order: C1410057 Project: 5140 Site Y	C1410057 5140 Site Yorkville. NY					E -m	TestCode: 0.25CT-TCE-VC	25CT-TCI	E-VC	
Sample (D AMB1UG-101714	SampType: MBLK	TestCo	CestCode: 0.25CT-TCE- Units: ppbV	pp bY	Prep Date:	i i i i i i i i i i i i i i i i i i i		RunNo: 8946	2	
Client ID: ZZZZ	Batch⊫D; R8946	Tesh	TestNc. TO-15		Anarysis Da	Analysis Dale: 10/17/2014	014	SeqNo: 106372	372	
Analyte	Result	PCL	SPK value - SPK Ref Val		LowLine	HighLimő	%REC LewLink HighLimö RPD Ref Val	Саяж	RPDLimil	Qual
Toluene	< 0.15	0.15								
trans-1.2-Oichkroethere	< 0.15	G. 15								
trans-1,3-Dichteropropene	< 0.15	0.25								
Trichlosoethere	< 0.040	0.040								
Vinyi acelate	< 0.15	0.15								
Vinyl Biomide	< 0.15	22								
Vinyl chlor de	< 0.040	0.040								

Analyte detected at or below quantitation limits Results reported are not blank corrected

... Qualifiers:

Spike Recovery autside accepted zecovery limits

ч Ÿ

: n e Not Detected at the Reporting Limit

.

Value abeve quantitation sange

Page 3 of 8

RPD entside accepted recovery limits

TestCode: 1aeM3 T015	Preo Dale: RunNo: 8960	Analysis Dale: 10/20/2014 SeqNo. 106727	LowLime HighLimit RPC Ref Val %RPD RPDLimit Gual																																 Holding times for increasition or analysis eveneded 		Page 4 of 8
	TestCode TugM3_T015 Units: ppbV	TestNo TO-15 Anal	^a QL SPK yalue SPK RefiVal %REC Lo	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.30	0.15	0.15	0.30	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	E Value aboye puerination corpe	Q	
WSP Environment and Energy C.3410057 S140 Site Yorkville, NY	SampType, MBLK	Batch ID: R8960	Resuit	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.30	< 0.15	< 0.15	< 0.30	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	Russils renarted are not blank corrected	Analyte defected at an below geamhalian in mits	Spike Repovery existide acorpted repovery limits
CLIENT: WSP Enviro Work Order: Ci410057 Project: 5140 Sie Yo	Sample ID AMB1UG-102014	Client ID: ZZZZ	વે, 13 પ્રે, 13 પ્રે, 14 પ્	1,1-Trichlorcethane	1,2,2-Tetrachloroethane	1,1,2-Trichlorcethane	1Dichloroelnane	 1-Dichloroelhene 	2.4-Trichlordberzene	2,4-TrimeIny3erzese	 2-Discompetinane 	1.2-Dichloroberzene	1,2-Dichlordefnane	 2-Dichloroprocane 	1,3,5-TrimeIny Senzere	1,3-outadiene	1,3-Dichlorcberzene	1,4-Dichlorchenzene	1,4-Dioxane	2,2,4-trimethylpenlane	4-ethyffoluene	A,celone	Allyl chtoride	Genzene	Benzyl chlaride	Bromodich oromethane	Bromoform	Bromonhare	Carbon disuificie	Carbon tetrachloride	Chlorocenzeræ	Chloroethane	Chloroform	Chloromethane	Dualifiert: Resolis reparte	_	S Spike Repover

15 Ur.is: ppbV Prep Date: Rurkle: 4960 Anarysis Date: 10/20/2014 Seelve: 10777 SPK Rat" Val 36PC IowLinit HighLinit RPD Ref Val 36PC PP-Junit Que: Marce quantilation range H Helding times für proparation of challysis exceeded Recent aut & RPD entiside koregrad record i covery fimits	Ur.s. ppbV Prep Date: Nu20/2014 Seq/No: 106727 Ararysis Date: 10/20/2014 Seq/No: 106727 K Rar'Val %RPC LowLinit Higr.imt RPD Ref Val %RPD 3P2/imt Que Seq/No: 106727 Ararysis Date: 10/20/2014 Seq/No: 106727 Ararysis Date: 10/20/2014 Seq/No: 106727 Ararysis Date: 10/2015 Seq/No: 10/201	WSP Environment and Energy C1410057 5140 Site Yorkville, NY
Genetication LowLinit RPD Ref. Val SRPD SRPD Distribution Ref. Maintain Maintain Maintain Maintain Maintain Ref. Hedding times for propertion or analysis exceeded R RPD outside accepted tocovery formits Maintain	SPK Ret Val MRC Lowlinit High-Linkt RPD Ret Val MRD RPD Init Ret Ret Marine Bere Val Marine Marine Marine Marine Marine	SampTyper MBLK TestCode: 1ug/M3_T015 Batch ID: R6960 TestNo: T0-15
Hedding times for preparation or analysis exceeded R. RPD outside accepted tecovery itamis	 Helding times für preparation or abblysie exce- inti R RPD outside secepted recovery timits 	Result PQ. SPK vs:ue
 Heiding tickes für proparation of analysis exceeded RPD outside accepted recovery limits 	 Helding times for preparation or atablysis excet RPD outside accepted recovery limits 	< 0.15 0.15
 Heidneg tienes für preparation or analysis exceeded RPD outside accepted recovery limits 	 Hetdreg tirers får proparation or abslysis excet R.P.D.outside accepted recovery timits 	< 0.15 0.15
 Heidneg tirzes für preparation or analysis exceeded R PP outside accepted festorery famils 	 Hedme tires far preparation or analysis excertinity RPD outside accepted recovery limits 	< 0.15 0.15
 Heidneg tickes får preparation or ataljysie exceeded R RPD outside æccepted ferovery itmits 	 Hedme tiers for preparation or analysis excertinity RPD outside accepted recovery limits 	 < 0.15 0.15 < 0.35 < 0.45
 Hitlag ticks för preparation or analysis exceeded R RPD autside accepted recovery termis 	 Holding times for preparation or analysis excet R RPD outside accepted recovery limits 	
 Heiding tirres får preparation or atalysis exceeded R PPD outside kreepted recovery limits 	inci R RPD outside accepted recovery limits	
 Heldreg tirers für preparation or analysis exceeded R PD outside accepted recovery timits 	 Heiding times für proparation or ataliysis excer R PD outside accepted recovery limits 	< 0.15 0.15
 Heldreg tires für preparation or analysis exceeded R PD outside accepted recovery timits 	 Heiding times får preparation or atalysis excet R PD outside accepted recovery limits 	< 015 0.15
 Hetdreg ticres for preparation or abelysis exceeded R. R.D. outside accepted recovery limits 	 Hetding times får preparation or abblysis exceluiti R PD outside accepted recovery limits 	< 0 15 0.15
 Hetdrag ticres far preparation or aatelysis exceeded R. R.D. outside accepted recovery limits 	inci R. RPD outside accepted recovery limits	< 0.15 0.15
 B. Hetding times for preparation or atablysis exceeded B. RPD outside accepted recovery limits 	inci R. RPD outside accepted recovery limits	
 Helding times für preparation or atablysis exceeded R PD outside accepted recovery limits 	inci R. RPD outside accepted recovery limits	
 Helding times für preparation or abalysis exceeded R PD outside accepted recovery limits 	inces for proparation or abalysis exce R RPD outside accepted recovery limits	< 0.15
 Hetding times für preparation or atablysis exceeded R PD outside accepted recovery limits 	inces for proparation or analysis exce R RPD outside accepted recovery limits	000 800×
 Helding times for preparation or analysis exceeded R PD outside accepted recovery limits 	inces for proparation or abalysis exce R RPD outside accepted recovery limits	0:0 0:0 >
 Hetding times for preparation or abilisis exceeded R PD outside accepted recovery limits 	 Helding times für preparation or abalysis exceluiri R PD outside accepted recovery limits 	< 0.30 0.30
 Helding times für preparation or analysis exceeded R PD outside accepted recovery limits 	 Heiding times für proparation or analysis exceliniti R PD outside accepted recovery limits 	
 Helding times für preparation or analysis exceeded R PD outside accepted recovery limits 	 Heiding times far proparation or analysis excerincia R PD outside accepted recovery limits 	
 Helding times für preparation or analysis exceeded R PPD outside accepted recovery limits 	 Heidneg times für proparation or abalysis excer intil R PD outside accepted recovery limits 	
 Helding times for preparation or abalysis exceeded R RPD outside accepted recovery limits 	H Heidneg times für proparation or abalysis exce intil R RPD outside accepted recovery limits	
 Heiding times für preparation or analysis exceeded R PPD outside accepted recovery limits 	H He!dieg ti nes far preparation or analysis exce intil R RPD outside accepted recovery limits	
 Helding times für preparation or analysis exceeded R PPD outside accepted recovery limits 	H Heiding times für proparation or analysis exce initi	
 Helding times für preparation or analysis exceeded R RPD outside accepted recovery limits 	H Heiding Lines für proparation or abalysis exce intil R RPD outside accepted recovery limits	
 Helding times for preparation or analysis exceeded R RPD outside accepted recovery limits 	H Heidneg tines für proparation or abalysis exce intil R RPD outside accepted recovery limits	
 Helding times for proparation or analysis exceeded R RPD outside accepted recovery limits 	H Heidneg tines für proparation or abalysis exce intil R RPD outside accepted recovery limits	
 Helding times for proparation or analysis exceeded R PD outside accepted recovery limits 	H Heidneg times får proparation or abalysis exce intål R PD outside accepted recovery limits	< 0.15 0.15
 Helding times for preparation of analysis exceeded R PD outside accepted recovery limits 	El Helding tinnes fár proparation or analysis exce intél R. RPD outside accepted recovery limits	< 0.15 0.15
 Helding times for preparation or analysis exceeded RPD outside accepted recovery limits 	El Hetdreg ti cks for proparation or analysis excer initian RPD outside accepted recovery limits	< 0.15 0.15
 Helding ticks für preparation or analysis exceeded R RPD outside accepted recovery limits 	H Helding times for proparation or analysis excer- incit R PD outside accepted recovery limits	< 0.15 0.15
inii R	initian and a subside accepted recovery limits	Rasilfs reported are not blank corrected E Va
		a lincits ND

CLIENT: WSP Envir Work Order: Ci410057	WSP Environment and Energy C3410057			.: .:				:		
Project: 5140 Site Y	S140 Site Yerkville, NY						TestCode:		1ugM3_T015	
Sample ID AMB1UG-102014	SarpType: MBLK	TestCoce.	ie. 1ugM3_TD15	015 Unils: ppbV		Preo Dale:			RunNo: 8960	
Cient ID: ZZZZ	Batch ID: R8960	Tesha: TO-15	TO-15		4	Analysis Date:	10/20/2014		S a qNo: 106727	.
Analyle	Resut	° TÖr	SPK value	SPK Ref Val	%REC	Low_imit H	HighLimit RPD Ref Val	tef Val	%RPD RPDLimil	Gual
Vinyl chlorde	< 0.15	0.15								
Sample D AMB1UG-102114	SampType MBLK	TestCode:	1ugM3_T(le: 1ugM3_TO15 Unils ppbV		Prec Date:			RunNo: 8968	
Cient ID: ZZZZ	Batch (D: R8968	TesING:	la: TO-15		æ	Aneiysis Dale:	10/21/2014		SeqNo: 106738	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	Lowinne H	HighLmiti RPD R€f Val	tef Val	%RPD RPDLimil	Qual
1.1.1.1 Trichlorcetrane	< 0.15	50 C]
1.5,2,2-Tetrachlorbethane	< 0.15	5; C								
1 1,2-TrichlorceLhane	< 0.15	015								
1 5-Dichloroelhane	< 0.15	0.15								
1.1-Dichicroelhere	< 0.15	¢								
1 2.4-Trichloroberzeae	< 0.15	5.5								
i Z,4-1 nmetrydenzere	< 0.15	2								
1 2-Disromoethane	< 0.15	3.15								
1 Z-Uchlordberzene 1 3 Dicklorationa	< 0.15 2.045	20 C								
· · 2. Dicklammana - · ·	40.1040.46									
. z-olonio:dprojane 135.Trimelari/henvere	0.151.15	2 2 2 2 2								
.S-outadiene	< 0.15 < 0.15	2.15								
1,3-Dichlorcberzene	< 0.15	0.15								
1.4-Dichlorctenzene	< 0.15	0.15								
1,4-Dioxane	< 0.30	0.30								
2.2,4-Limethylpenlane	< 0.15	0.15								
4-ethylioluene	< 0.15	0.15								
Acelone	< 0.30	0.30								
Allylich oride	< 0.15	0.15								
Berzene	< 0.15	0.15								
Benzyl of ioride	< 0.15	0.15								
Brompolich tromethare	< 0.15	0.15								
Branoforn	< 0.15	0.15								
Qualifiers; Results report	Results regioned געי הסו blank corrected.		E Vatue	Vasue shove quantization cange			E Holding	ticnics for p	Holding trates for arsystation or analysis everyded	
-	Analyte detected at or below quantitation litmits		ND Not Di	Not Detected at the Reporting Limit	Limit		R RPD cell	side accept	RPD celside accepted recevery timits	
S Spike Rusaw	Spike Recovery extistic accepted recovery timits	si							4	Page 6 uf 8

	TestCode: lugM3_TOIS	RUniXo 8968 60/21/2014 Seq Vol. 106738	I RPD Refival %RPD RPDLImit Qual																																Tiolofic⊉ tintes for preparation or analysis exceeded	RPD outside accepted recovery limits	Pare 7 of 8
		Frep Cate: Analysis Cate 60/21	%REC LowLinit កន្លែhLimit																																H		
·. :		TestCode: fugM3_T015 Units: ppbV TestNo: T0-15	SPK value – SPK Ref Va																																 Vislue above quantilation range 		
		TesiCade: fugM3 TestNo: TO-15	no ²	0.15	0.15	D.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.25	0.15	D.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0:30	0:30	0:30	0E.0	0.15	0.15	0.15	0.15	0.15	0.15			
WSP Eavironment and Eaergy C1410057	5140 Site Yorkv≦ie, NY	SampType: MBLK Balch ID. R8968	Result	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.25	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< C.13	< 6.30	< 0.30	<0.30 ×	< C.30	<0.5	< 0.15	<0.15	< 0.15	<0.5	< 0.15	Results repeated are not hlank compared	Analyte detected at or below quantitation limits	Spike Repreny outside accepted repryory timits
CLIENT: WSP Eavie Work Order: C1410057	Project: 5140 Site Y	Sample ID ANB1UG-102114 Cliert ID: ZZZZ	. Aralyte	Biomortiethane	Carton diseñce	Carbon tetrachloride	Chlorcberzere	Chlordetrane	Chloreform	Chloremethane	cis-1.2-Dichkroethere	cis-1.3-Dichloropropene	Cyclonexane	Dibromochlowmethane	Eltryl acetale	Eliytherzere	Freon 1:	Freor 113	Freor.1.4	Freen 12	Heplane	Hexachloro-1.3-buladiene	Hexane	sopropy aconcl	måg-Xylere	Vethyl Buly: Kesone	Wethyl Elhyi Ketore	Vethyl Isobatyl Ketone	Vethyl led-butyl ether	Methylene chloride	c-Xylere	Propylene	Shyrene	Tetrachicroethylene	Outlifiers Results repeat	-	

	wor diivituusen anu diidigy Attionen									
5140 Site Yorkville, NY	kville, NY							[estCode:]	TestCode: lugM3_T015	
Sample ID AMB1UG-F02114 S	SampType, MBLK	TestOx	le: 1ugM3_	TestCode: 1ug M3_T015 Ur ts. ppbV		Prep Date:			RunNo: 8968	
	Batch (D: R6968	Testh	TestNo: TO-15		_	Analysis Dete: 10/21/2014	te: 10/21	2014	SeqNo: 106738	
	Result	PQ,	SPK value	SoK te ^r Val	Xaec	LowLimil	Hi g h'.Jmit	KREC LowLimit HighLimit RPD Ref Val	MRPD RPOLMIC	mr, Quai
Tetranydrofurar	< 0.15	0.15								
	< 0.15	0.15								
trans-1.2-Oichicroethene	< 0.15	0.15								
trans-1.3-Oxt-scroptopene	<015	0.15								
Trichloroethere	31 € >	0.15								
	<015	0.15								
	< 0.15	0.15								
	< 0.15	0.15								

!

E Value attrace quantification range
 ND Not Detected at the Roperting Lieni;

Analyte detected at or below quantitation lichns Results reperted are not blank corrected

Qualifiers: :

н. *с*л

Spike Recovery cetside accepted recovery hinkits

Page & 0/ §

· · · · · · · ·

.....

· · · · · · · · · · · ·

IDL Stucy					Č Februa	February 2014						nits=pp;
Compound	Amt	IDL #1	DL	IDL #3	DL #	IDL #5	9 # 10	IDL#7	AVG	StdDev	%Rec	
Freon 22	0.15	0.17	0.17	0.7	0 17	0.17	0.18	6	0.17	0.00	115.2%	0.015
Propylene -	0.15	0.15		0.15		0.16	0.15	0.15	0.15	0.00	104.9%	0.015
F'eon 12 0	0.15	0.18	0.17	0.17	8; Ü	0.16	0.18	0.18	0.17	0.01	116.2%	0.025
Chloromethane	0.15	0.15	0.15	0.17	0.7	0.15	0.17	0.17	C.16	0.01	138.6%	0.030
F/ESN 134	0.15	0.17	0.17	0.18	0.18	0.17	0.17	0.17	0.17	00.0	115.2%	0.015
Viryl Chlorde	0.15	0.16	0.15	0.15	0.15	0.16	0.13	0.16	C.16	00.0	134 8%	0.015
Eulane	0.15	C.19	G.18	0.17	0.19	0.18	0.19	0.17	C.13	0.01	121 0%	0.028
1,3-butadiene	C .15	C.16	C.15	0.15	0.17	0.16	0.14	0.16	0.16	0.01	103 ô%	6.331
Bromomethane	<u>0.15</u>	G.19	C.15	D.18	0.17	C.19	0.13	0.19	0.18	0.01	122.9%	0.325
Chlorcethane	0.15	0.17	0.16	C.17	0.16	C.15	0.18	C.17	0.17	000	110.5%	0.031
Ethanol	0 15	0 18	3.15	C.16	0.18	0.12	0.19	C.13	0.17	0.02	110.5%	0.377
Acrolein	015	02	0.15	6.19	D.15	0.14	0.17	C.15	0.16	0.02	109.5%	D.372
Viny! Bromide	0.15	0.18	0.17	0.16	0.17	0.17	0.16	1-1-C	0.17	0.01	112.4%	0.022
Freon 11	0 15	0 17	0.18	6.17	0.18	0.1°	0.18	0.18	0.16	0.01	1:7.1%	2-0.0
Acetone	0 15	017	0.16	0.18	0.16	0.16	0.15	0.14	0 16	0.01	106.7%	3.04:
Pentane	0.15	0.17	0.18	0.17	0.17	0.16	0.16	0.16	0.17	0.01	111,4%	3.024
isopropyl alcohol	0 15	0.17	0.15	0.17	0.16	0.15	0.16	0.16	0.16	0.01	105.7%	3.026
1.1-d.chlorcethene	0.5	0.38	0.18	0.16	<u>0.15</u>	0.15	0.18	0.18	0.47	0.01	1.5.2%	0.039
Freor 113	9,0	0.18	0.18	0.17	0.17	0.17	0.18	0.18	9.0	0.01	2117 2113	7.0.0
t-Buty: acohol	0.15	0.16	0.15	0.17	0.13	0.13	0.15	0.13	0.5	0.02	97.1%	0.051
Methylene chloride	0.15	0.18	0.18	0.18	0.17	0.18	0.17	0.17	0.18	0.01	217.1% 2017	0.017
Al yl chloride	0.15	0.17	0.17	0.17	0.17	0.17	0.16	0.19	0.7	0.01	1.4.3%	3.028
Carbon disulfide	0.16	0.:8	0.19	0 16	0.18	0.19	0.19	0.19	0.18	0.01	121.6%	3.035
trans-1.2-dichlorcethene	ŝ, O	0.7	016	0.16	0.17	0.18	0.17	0.17	27, 0	0.01	1.2.4%	0.022
methyl tert-butyl ether	0,2	0.17	0.15	0.17	0.16	0.16	0.17	0.16	0.16	0.01	108.6%	3.024
1 '-d'orlorcemane	0.'5	017	0.17	0.17	0.17	0.17	0.17	3.16	0.17	0.00	1.2.4%	0.012
V nyi acetate	д; 0	0.17	0.13	0.17	0.17	6.17	3.16	0.16	0.16	0.01	107.6%	0.046
Methyl Ethyl Ketone	0.15	0.14	0.14	0.14	0.14	C.13	0.14	0.14	014	0.00	92.4%	2:012
cis-1,2-cichtoroethene	0.15	0.16	0.17	0.16	<u>0.16</u>	0.17	0.17	0.16	0.16	0.01	109.6%	C.017
Hexane	0.5	0.15	0.15	C.15	0.14	0.15	0.15	C.16	0.15	0.01	100.0%	0.018
Ethyl acetate	0.15	018	0.14	0.15	0.1B	0.17	0.18	-1-3 -1-3	0.17	0 02	111.4%	C.350
Chloroform	0.15	0.17	0.16	0.17	0.17	0.17	0.17	0.16	J.17	00.00	111.4%	C.215
ifetrah yono unan	0.:5	0.14	0 14	0.14	0.13	6.14	0.14	0.15	0.14	0.01	93.3%	0.018
. 2-dich:croethane	0.15	0.13	9,0	0.16	0.16	0.17	0 16	0.15	0.16	0.01	105.7%	3,0,2
i,1,1-trichlorceinane	0.15	0.17	0.17		3.18	0.18	0.18	23.0	0.18	0.01	21.7.1%	2.00
Cyclohexane	0.15	0.17	0.17		0.17	0.17			0.17	0.01	113.3%	300
Carbon terrachloride	0.15	0.17	0.18	0.18	0.18	0.18	0 17		0.18	0.03		3 0 t E
Benzene	0,15	0.17	0.18	0.3	0.18	0.16	0.18	0.18	0.18	0.31	317.1%	0.025
Centek Labs Confidential	dential				2:18(2/18/2014						Pege 1
												1

Method TO-15

1ug/m3 Detection Limit February 2014

Certek Laps IDL Stuck

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20000000000000000000000000000000000000		2014 2016 2016 2017		018 019 019 019 019 019 019 019 019		AVG 0.17 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	StdDe 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		DL 0.046 0.046 0.015 0.035 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.046
013 014 <th>20000000000000000000000000000000000000</th> <th></th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>20000000000000000000000000000000000000</th> <th>20000000000000000000000000000000000000</th> <th>းငုဂ္ဂ္ဂ္ဂ္ဂ္ဂ္ဂ ဂုန္ကုန္းရွားရွားရွားရွားရွားရွားရွားရွားရွားရွာ</th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>22222222222222222222222222222222222222</th> <th>15.2% 111.4% 111.4% 122.6% 122.6% 122.6% 123.0% 122.6</th> <th>0.036 0.046 0.046 0.025 0.039 0.039 0.031 0.032 0.033 0.032 0.033 0.033 0.032 0.033 0.033 0.032 0.032 0.033 0.022 0.022 0.036 0.036 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.025 0000000000</th>	20000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0	20000000000000000000000000000000000000	20000000000000000000000000000000000000	းငုဂ္ဂ္ဂ္ဂ္ဂ္ဂ္ဂ ဂုန္ကုန္းရွားရွားရွားရွားရွားရွားရွားရွားရွားရွာ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22222222222222222222222222222222222222	15.2% 111.4% 111.4% 122.6% 122.6% 122.6% 123.0% 122.6	0.036 0.046 0.046 0.025 0.039 0.039 0.031 0.032 0.033 0.032 0.033 0.033 0.032 0.033 0.033 0.032 0.032 0.033 0.022 0.022 0.036 0.036 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.025 0000000000
0/7 0/7 <td>00000000000000000000000000000000000000</td> <td></td> <td>20000000000000000000000000000000000000</td> <td>00000000000000000000000000000000000000</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>20000000000000000000000000000000000000</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>285999995555555555555555555555555555555</td> <td>97.1% 97.1% 111.4% 111.4% 102.0% 111.4% 102.0% 98.1% 98.1% 98.1% 98.1% 98.1% 98.1% 98.1% 98.1%</td> <td>0.040 0.015 0.025 0.025 0.022 0.036 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.036 0.046</td>	00000000000000000000000000000000000000		20000000000000000000000000000000000000	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	285999995555555555555555555555555555555	97.1% 97.1% 111.4% 111.4% 102.0% 111.4% 102.0% 98.1% 98.1% 98.1% 98.1% 98.1% 98.1% 98.1% 98.1%	0.040 0.015 0.025 0.025 0.022 0.036 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.036 0.046
014 014 015 014 112 016 016 114 015 011 114 015 011 114 015 011 114 015 011 114 016 016 016 116 017 1016 016 1016 016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016	00000000000000000000000000000000000000		00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	20000000000000000000000000000000000000	8899999998889999 8899999888889999	1116.2% 96.15.9% 102.0% 114.3% 102.0% 114.3% 102.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%	0.075 0.025 0.025 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.022 0.022
017 0.15 0.15 0.16	20000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.000000000000000000000000000000000000	0.12 0.13 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	00000000000000000000000000000000000000	116.2% 111.4% 111.4% 102.0% 114.4% 102.6% 114.4% 102.6% 103.8% 104.1% 105.6%	0.025 0.036 0.036 0.031 0.031 0.032 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.0350 0.035 0.0350 0.0350 0.0350000000000
UIB UIB <thub< th=""> <thub< th=""> <thub< th=""></thub<></thub<></thub<>	20000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0.13\\ 0.12\\$	0.19 0.119 0	0.000018 0.1000018 0.1000010 0.10000000000	0.18 0.17 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	88888888888888888888888888888888888888	12, 5% 11,4% 11,4% 10,3% 98,1% 98,1% 98,1% 98,1% 98,1%	0.039 0.0000000000
U.B U.B <thu.b< th=""> <thu.b< th=""> <thu.b< th=""></thu.b<></thu.b<></thu.b<>	20000000000000000000000000000000000000		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0000013 19 19 19 19 19	0.13 0.17 0.16 0.16 0.15 0.15 0.15	55555555555555555555555555555555555555	20.3% 111.4% 120.0% 98.1% 98.1% 98.1% 98.1%	0.039 0.039 0.031 0.031 0.031 0.031 0.0320000000000
0.17 0.13 0.14 0.15 0.16 0.14 0.15 0.16 0.14 0.15 0.16 0.14 0.15 0.16 0.14 0.15 0.16 0.14 0.15 0.17 0.01 122.9% 0.02 0.17 0.18 0.19 0.19 0.14 0.14 0.15 0.17 0.13 0.13 0.14 0.15 0.02 0.02 0.03 0.01 122.9% 0.02 0.17 0.18 0.17 0.16 0.17 0.13 0.17 0	20000000000000000000000000000000000000		0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$	0.18 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.18 0.16 0.16 0.15 0.19 0.19	0.17 0.17 0.16 0.15 0.15 0.15	555555555555 5555555555555555555555555	:114% 1143% 98.1% 98.1% 98.1%	0.039 0.039 0.031 0.031 0.031 0.0320000000000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.16 0.12 0.13 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	0,17 0,17 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13	0,18 0,00 0,15 0,15 0,13	0.17 0.16 0.15 0.15 0.15	5000000 500000000000000000000000000000	114.3% 120.0% 98.1% 98.1% 98.1% 98.1%	0.022 0.018 0.031 0.031 0.022 0.025
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0.18 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0.15 0.15 0.15	0.16 0.15 0.13 0.15	00000000000000000000000000000000000000	120.0% 103.8% 98.1% 98.1% 98.1%	0.018 0.031 0.024 0.025
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0.16\\ 0.12\\$	0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0.16 0.15 0.19	0.16 0.15 0.15 0.15	000 000 000 000 000 000	103.8% 98.1% 98.1% 98.1% 123.8%	0.031 0.024 0.025 0.025
U14 U15 U16 U14 U15 U16 U14 U15 U16 U14 U15 U16 U17 U16 U17 U16 U17 U16 U17 U16 U17 U17 <thu17< th=""> <thu17< th=""> <thu17< th=""></thu17<></thu17<></thu17<>			0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0.15 0.13 0.13 0.19 0.19 0.19 0.19 0.19 0.19	0.15 0.19	0.15 0.15 0.15	0.0 0.02 0.02	98.1% 122.9% 98.1% 123.8%	0.024 0.025 0.025
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20000000000000000000000000000000000000		0.0 0.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	$\begin{array}{c} 0.16\\ 0.16\\ 0.16\\ 0.12\\$	0.13 0.13 0.13 0.16 0.16 0.16 0.16	0.19 [[]	0.15 0.15	0.01 0.02 0.07	122.8% 98.1% 123.8%	0.025 2.025
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.12 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	0,13 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19		0.15	0.02 0.01	98.1% 123.8%	
0.17 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.11 0.12 0.01 0.11 0.12 0.01 0.11 0.12 0.01 0.11 0.12 0.01 0.11 0.12 0.01 0.11 0.12 0.01 0.11 0.12 0.01 0.11 0.12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <th0.01< th=""> 0.01 0.01 <th0< td=""><td>20000000000000000000000000000000000000</td><td></td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>0.18 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18</td><td>0.19 0.17 0.18 0.19 0.15</td><td>0.16</td><td></td><td>0.01</td><td>:23.8% **7 *67</td><td>0 U62</td></th0<></th0.01<>	20000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	0.19 0.17 0.18 0.19 0.15	0.16		0.01	:23.8% **7 *67	0 U62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.17 0.19 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	0.18 0.17 0.12 0.12 0.12 0.12 0.12	0.17 0.19 0.15 0.15	0.19	0.19		100 C 8 5	2.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00000000000000000000000000000000000000		0.17 0.19 0.12 0.12 0.12 12 12 12 12	0.17 0.14 0.12 0.14	0.18 0.19 0.15	0 18	0.58	0.01		0.017
UIB 0.19 0.19 0.19 0.19 0.19 0.17 0.19 0.17 0.19 0.17 0.19 0.17 0.19 0.17 0.19 0.17 0.19 0.17 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.01 1.7.1% 0.23 0.02 0.17 0.17 0.18 0.17 0.13 0.13 0.13 0.13 0	00000000000000000000000000000000000000		0.19 0.15 0.12 0.12 0.12 0.12 0.12	0.17 0.15 0.15 0.15	0.19 0.15 0.3	0.17	0.17	0.00	115.2%	0.015
U15 0.14 0.15 0.14 0.75 0.14 0.75 0.14 0.75 0.14 0.75 0.14 0.75 0.14 0.75 0.14 0.75 <th0< td=""><td>00000000000000000000000000000000000000</td><td></td><td>0.0 0.12 0.12 0.12 0.12</td><td>0.14 0.3 0.12 0.12</td><td>0.15 0.3</td><td>0.19</td><td>0.19</td><td>0.01</td><td>123.8%</td><td>0.025</td></th0<>	00000000000000000000000000000000000000		0.0 0.12 0.12 0.12 0.12	0.14 0.3 0.12 0.12	0.15 0.3	0.19	0.19	0.01	123.8%	0.025
0.28 0.27 0.3 0.29 0.3 0.29 0.3 0.29 0.3 0.29 0.3 0.29 0.3 0.29 0.3 0.29 0.3 0.29 0.3 0.29 0.3 0.29 0.3 0.29 0.3 0.29 0.3 0.29 0.3 0.29 0.01 0.013 0.112 0.112 0.112 0.113 0.112 0.113 0.011 0.013 0.021 0.013 0.021 0.021 0.013 0.021 0.013 0.021 0.013 0.021 0.011 0.011	00000000000000000000000000000000000000	00000	0.26 0.12 0.12	0.3 0.12 0.12	0.3	0.15	0.15	0.01	%. <u>7</u> 6	0.017
311 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.12 0.14 0.13 0.01 80.0% 0.01 80.0% 0.01 80.0% 0.00	50000000000000000000000000000000000000		0.12 0.12 18	0.12 0.14		0.29	C:29	:00	193.3%	0.036
0.12 0.12 0.13 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.11 0.11 0.01 10.17 10.13 0.01 10.17 0.01 10.13 0.01 10.14 0.01 10.14 0.01 10.14 0.01 10.14 0.01 10.14 0.01 10.14 0.01 10.14 0.01 10.14 0.01 10	20000000000000000000000000000000000000		0.12 0.18	t t c	0.12	0.13	0.12	0.01	80.C%	0.318
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50000000000000000000000000000000000000		0.18	<u>د</u> ا	0.12	0.12	0.12	0.01	80.0%	C.318
0.12 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.01 87.53 0.02 84.8% 0.03 0.17 0.17 0.17 0.17 0.17 0.17 0.13 0.13 0.01 87.55 0.03 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.01 87.55 0.03 0.13 0.16 0.16 0.16 0.15 0.14 0.17 0.01 87.7% 0.03 0.15 0.16 0.16 0.15 0.16 0.15 0.17 0.01 85.7% 0.02 0.11 0.12 0.13 0.12 0.11 0.11 0.11 0.01 75.9% 0.01 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.01 75.9% 0.01 0.11 0.12 0.12 0.11 0.11 0.12 0.13 0.12 0.01 75.9% 0.01 0.12 0.12 0.12	50000000000000000000000000000000000000			¢.16	3.15	C.18	0.18	0.01	1:7.1%	0.025
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00000000000000000000000000000000000000		C.14	0.14	0.14	0.12	013	0.01	67.63%	3.034
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	00000000000000000000000000000000000000		0.13	0.13	0.13	0.13	0.13	0.00	84.8%	0.015
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000000000000000000000000000000000000		0.85	0.83	0.86	0.83	0.84	0.01	84.1%	0.034
0.13 0.12 0.14 0.13 0.12 0.14 0.13 0.13 0.01 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.01 10.38% 0.01 0.17 0.17 0.16 0.15 0.16 0.15 0.16 0.16 0.01 10.38% 0.01 0.11 0.12 0.11 0.11 0.11 0.11 0.12 0.01 76.5% 0.00 0.11 0.12 0.11 0.11 0.12 0.13 0.12 0.01 76.5% 0.00 0.12 0.11 0.11 0.12 0.12 0.13 0.12 0.01 76.5% 0.01 0.12 0.13 0.12 0.12 0.13 0.12 0.13 0.02 6.01 76.5% 0.01 0.12 0.13 0.12 0.12 0.13 0.13 0.12 0.01 76.5% 0.01 0.12 0.13 0.13 0.13 0.13 0.12 0.01 6.01 6.01 6.01 6.01 6.01	00000000000000000000000000000000000000		0.18	0.17	0 18	0 18	0.7	0.01	116.2%	0.017
0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.01 0.11 0.12 0.11 0.11 0.11 0.11 0.11 10.12 10.11 75.5% 0.01 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.01 75.5% 0.01 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.01 76.2% 0.01 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.01 76.2% 0.01 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.01 76.2% 0.01 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.01 76.2% 0.01 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.01 76.2% 0.01 0.12 0.13 0.12 0.12 0.12 0.12 0.12 0.01 76.2% 0.01 0.13	00000000000000000000000000000000000000		0.12	0 (4	0.14	0.13	0.3	0.31	83.7%	0.025
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00000000000000000000000000000000000000		0.16	0.15	0, 6	0.56	0.15	C.01	103 8%	2:00
0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.01 76.2% 0.001 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.01 82.9% 0.001 0.12 0.12 0.12 0.12 0.12 0.13 0.12 0.13 0.01 0.12 0.12 0.12 0.12 0.12 0.13 0.12 0.01 82.9% 0.01 0.12 0.12 0.12 0.12 0.12 0.13 0.12 0.01 82.9% 0.01 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.01 82.9% 0.01 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.02 93.3% 0.01 0.13 0.13 0.12 0.12 0.12 0.12 0.01 86.7% 0.01 0.13 0.13 0.13 0.13 0.12 0.11 0.02 93.3% 0.01 0.13 0.13 0.13 0.13 0.13	9.0.0.0.0.0 1.0.0.0.0.0 1.0.0.0.0.0 1.0.0.0.0		0.32	0.1	0.12	0.13	0.12	0.01	%0 62	0.028
0.12 0.12 0.12 0.12 0.12 0.13 0.12 0.13 0.11	2000000 200000000000000000000000000000		0.11	0.11	0.12	0.12	0.11	0.01	76.2%	0.017
0.12 0.02 $93.3%$ 0.24 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.01 0.02 $93.3%$ 0.24 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01	0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13		0.12	0.12	0.13	0.13	0.12	0.05	52.9%	0.017
0.12 0.15 0.15 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.12 0.02 95.3% 0.22 0.13 0.12 0.12 0.12 0.12 0.13 0.12 0.13 0.01 80.3% 0.22 0.13 0.13 0.12 0.12 0.12 0.13 0.12 0.13 0.01 86.7% 0.01 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.01 86.7% 0.01 0.12 0.13 0.12 0.13 0.12 0.12 0.12 0.01 86.7% 0.01 0.14 0.15 0.13 0.12 0.13 0.12 0.13 0.12 0.01 0.15 0.16 0.13 0.12 0.13 0.13 0.13 0.14 0.03 0.15 0.16 0.13 0.13 0.13 0.13 0.14 0.03 0.15 0.15 0.14 0.13 0.13 0.14 0.03 0.15 0.15 0.13 0.13 0.14 0.03 0.15 0.15 0.13 0.13 0.14 0.	0.0 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.12	0.12	0.12	0.13	0.12	0.00	81.9%	0.015
0.1 ⁵ 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.12 0.01 E0.3% 0.01 0.13 0.13 0.13 0.14 0.12 0.13 0.13 0.13 0.11 EE.7% 0.019 0.12 0.12 0.12 0.13 0.13 0.12 0.12 0.12 0.00 B19% 0.019 0.16 0.15 0.15 0.13 0.14 0.13 0.14 0.12 0.01 96.2% 0.036 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.01 96.2% 0.036 0.15 0.15 0.15 0.13 0.14 0.13 0.14 0.030 1.14 0.02 0.15 0.15 0.15 0.16 0.13 0.14 0.12 0.13 0.01 99.6% 0.022 0.15 0.15 0.15 0.16 0.13 0.14 0.15 0.15 0.13 0.01 99.6% 0.022	0 0 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14		0.15	0.14	0.14	0.16	0.14	0.02	93.3%	0.248
0.13 0.13 0.13 0.14 0.12 0.13 0.13 0.11 86.7% 0.018 0.12 0.12 0.12 0.13 0.11 86.7% 0.019 0.12 0.12 0.12 0.019 96.7% 0.019 0.12 0.12 0.12 0.019 96.2% 0.019 0.13 0.14 0.13 0.14 0.13 0.14 0.022 0.023 0.13 0.14 0.13 0.14 0.12 0.022 0.022 0.022 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.13 0.12 0.15		0.12	0 12	0.12	0.13	0.12	0.01	80.3%	0.018
0.12 0.12 0.12 0.13 0.13 0.13 0.12 0.12 0.12 0.00 919% 0.015 0.16 0.15 0.15 0.14 0.13 0.13 0.14 0.01 96.2% 0.036 0.13 0.14 0.14 0.13 0.14 0.13 0.03 88.6% 0.022 0.15 0.15 0.15 0.16 0.13 0.14 0.15 0.11 0.13 0.01 99.6% 0.022 0.15 0.15 0.15 0.16 0.13 0.15 0.15 0.01 99.6% 0.022	0.12 C.16		0.14	0.12	0.53	0.13	0.53	0.01	86,7%	3,00
C.16 0.15 0.15 0.14 0.13 0.14 3.01 36.2% 0.036 0.13 0.13 0.14 0.13 0.13 3.01 36.2% 0.036 0.15 0.14 0.13 0.14 0.13 0.13 3.01 36.5% 0.036 0.15 0.15 0.15 0.15 0.11 99.6% 0.328 0.15 0.15 0.15 0.15 0.11 99.6% 0.328 0.15 0.15 0.15 0.15 0.11 99.6% 0.328	C 16		0.13	0.13	0.12	0.12	0.12	00.0	B1 9%	0.015
0.13 0.13 0.14 0.13 0.13 0.14 0.13 0.14 0.13 0.02 0.15 0.15 0.16 0.13 0.15 0.15 0.01 99.0% 0.02 2182014	2		0.15	0.14	0.13	0.13	0.14	3.01	36.2%	0.035
0.15 0.15 0.15 0.16 0.13 0.15 0.15 0.01 99.0% 0.328	0.13	(7)	0.14	0.13	0.14	0.12	0.13	0.04	38.6%	0.024
	0.15	0.15 C.15	0.16	0.13	0.15	0.15	0.15	0.01	%0.69	0.328
	ential		DCIBING	14						

Page 93 of 467

Centek Laboratones :DL Study				1ug	lug/m3 Detection Limit February 2014	cion Limit 2014					Metho	Method TO-15 Un`ts≂ppb
Compound	Amt	IDI. #1	IDL #2	101, #3		iDL #5	9# 101	IDE #7	AVG	StdDev	0, Dor	Ē
viny. Unlocide	0.5	<u>c.</u> 1	0.1	0.11	0.12		0.11	0.1	1:0	100	125 700	2 05E
1, 1-dichlorcethere	0	<u>c.</u> 1	0.12	0.12	0.11		0.12	0.12	0.11	500	114 5%	0.006 0.006
Methy ene chlonde	0.1	0.11	0.33	0.1	0.11		0.13	0 13	0.12	50	118.6%	0 038
Utaris-1,2-dicitiorce(hene 4,4 ±*± ±**	0.1	011	0.11	0.12	0.12		0.12	0.11	C.11	0.31	114.3%	0.047
1,1-Cich proethane	<u>.</u>	0.1	0.11	0.12	0.12		0.12	0.11	5.11	10.3	%6 <u>6</u> 1.	6.00A
CIS+3, 2-dicPioroethene 4 0 arceiteana	ت	0.1	G.11	0.1	0.11	0.11	0.12	0.11	0.15	0.0	108.6%	0.022
1.2-dichio/oethane		0.1	<u>.</u> 11	0.1	0.11		0.11	0.11	0.11	000	107.1%	20.5
	0.1	<u>0</u> .11	0.12	0.12	0.13		0.12	0.12	0.12	0.01	120 0%	0.018
UZIOON (Etrachionde Triabh	0	G.11	0.12	0.13	0.13		C.13	0.12	0.12	0.01	122.9%	0.024
I richiordeinene	0	0.1	0.5	0.11	0.12		C.11	0.11	0.11	0.01	110.0%	0.018
1, 1, 2-tritonostnane 1, 1, diamana - 20	0.1	0.11	0.11	01	0.12		0.11	0.12	G.11	0.01	1.1.4%	0.022
1,2-dipromoetnane	<u>C</u> .1	0.41	0.12	0.1	0.13		0 12	0.12	0.12	0.01	1.7.1%	0.034
l erechlorcetrylene	0.1	0.1	0.12	0.11	0.12		0 12	0.11	3.1'	0.01	:11 2%	0.528
1,1 1.2-tetrachlorcethane	C.1	0.12	0.13	0.13	0.13		0.13	0.13f	0.13	00.0	128.6%	0.010
1,12,2-te:rachloroe:hane	<u>,</u>	0.11	3.12	0.11	0.12		0.12	0.12	0.12	0.0	115.7%	2,0.0

2/18/2014

Centek Laboratones #DL Study

GC/MS Whole Air Calculations

Relative Response Factor (RRF)

$$R.RF = \frac{Ax * Cis}{Ais * Cx}$$

where: Ax = area of the characteristic ion for the compound being measured
 Ais ** area of the characteristic ion for the specific internal standard of the compound being measured
 Cx = concentration of the compound being measured (ppbv)
 Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

% RSD = <u>Standard deviation of RRF values</u> * 100 mean RRF

Percent Difference (%D)

% D == <u>(RRFc - mean RRFi) * 100</u> mean RRFi

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

$$ppbv = \underline{Ax + Is + Df}$$
Ais * RRF

where: Ax = area of the characteristic ion for the compound being measured
 Ais = area of the characteristic ion for the specific internal standard of the compound being measured
 is = Concentration of the internal standard injected (ppbv)
 RRF= relative response factor for the compound being measured
 Df = Dilution factor

Page 95 of 467

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

SAMPLE DATA

Page 96 of 467

Date: 31 Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID;C1410057-001A

Client Sample ID: 1A-04 Tag Number: 102,259 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Q	uat Uni	ts DF	Date Analyzed
FIELD PARAMETERS	n	FLD			Analyst:
Lab Vacuum In	-2		"Hg		10/16/2014
i,ab Vacuum Out	-30		"Hg		10/16/2014
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP
1,1,1-Trichioroethane	< 0.15	0.15	ppb	v 1	10/17/2014 5:20:00 PM
1.1,2,2-Tetrachloroethane	< 0.15	0.15	ppb	/ 1	10/17/2014 5:20:00 PM
1.1.2-Trichloroothane	< 0.15	0.15	/מממ	/ 1	10/17/2014 5:20:00 PM
1,1 Dichloroethane	< 0.15	0.15	hbp,	/ 1	10/17/2014 5:20:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppb	/ 1	10/17/2014 5:20:00 PM
1,2,4-Trichlorobenzene	s 0.15	0.15	ppb	/ 1	10/17/2014 5:20:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	ppby	Z 1	10/17/2014 5.20:00 PM
1,2-Dibromoothane	< 0.15	0.15	/dag	/ 1	10/17/2014 5:20:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	/dqq	/ 1	10/17/2014 5:20:00 PM
1,2-Dichloroethane	< 0.15	0.15	/dag		10/17/2014 5:20:00 PM
1,2-Dichloropropane	< 0.15	D.15	ppb		10/17/2014 5:20:00 PM
1.3,5-Trimethylbenzene	< 0.15	0.15	μουν		10/17/2014 5:20:00 PM
1,3-butadiene	< 0.15	0.15	ppb\		10/17/2014 5 20:00 PM
1,3-Dichlorobenzene	< 0.15	0 15	/dqq		10/17/2014 5.20.00 PM
1,4-Dichlorobenzene	< 0.15	0.15	/dqq		10/17/2014 5:20.00 PM
1,4-Dioxane	< 0.30	0.30	ррь/		10/17/2014 5:20.00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ρρ6Λ		10/17/2014 5:20:00 PM
4-ethyltoluena	< 0.15	0.15	 ppb\		10/17/2014 5:20:00 PM
Acelone	56	1.5	/600		10/18/2014 12:19:00 AM
Aliyi chloride	< 0.15	0.15	ppb\		10/17/2014 5:20:00 PM
Benzene	0.12	0.15	J ppb/		10/17/2014 5:20.00 PM
Benzyl chloride	< 0.15	0.15	ppb\		10/17/2014 5:20:00 PM
Bromodichtoromethane	< 0.15	0.15	ρρύλ		10/17/2014 5:20:00 PM
Bramoform	< 0.15	0.15	pp6/		10/17/2014 5:20:00 PM
Bromomethane	< 0.15	0.15	ppb\		10/17/2014 5:20:00 PM
Carbon disolfide	< 0.15	0.15	ppb\		10/17/2014 5·20:00 PM
Carbon letrachloride	0.10	0.040	/dag		10/17/2014 5.20:00 PM
Chlorobenzene	< 0.15	0.15	,000 V		10/17/2014 5:20:00 PM
Chloroethane	< 0.15	0.15	/dqq		10/17/2014 5:20:00 PM
Chloroform	< 0.15	0.15	/dqq		10/17/2014 5:20:00 PM
Chloromethane	0.46	0.15	ροι ρουν		10/17/2014 5:20:00 PM
cis-1,2-Dichloroothene	< 0.15	0.15	ppb/		10/17/2014 5:20:00 PM
cis 1,3 Dichloropropene	< 0.15	0,15	ppb/		10/17/2014 5:20 00 PM
Cyclohexane	< 0.15	0.15	2004 2004		10/17/2014 5:20.00 PM
Dibromochloromethane	< 0.15	0.15	իրու		10/17/2014 5:20:00 PM
Ethyl acetate	< 0.15	0.15	ρρον ρροί	•	10/17/2014 5:20:00 PM

Qualifiers:

Reporting Limit.

- B Analyte denoted in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte Quantitution estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 22

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyClient Sample ID: JA-04Lab Order:C1410057Tag Number: 102.259Project:5140 Site Yorkville, NYCollection Date: 10/14/2014Lab ID:C1410057-001AMatrix: AIR

Analyses	Result	**Limit Q	aal Units	ÐF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP
Ethylbenzene	< 0.15	0.15	ρρον	1	10/17/2014 5:20:00 PM
Freen 11	0.30	0.15	ppbV	1	10/17/2014 5:20:00 PM
Freon 113	< 0.15	0.15	ppbV	1	10/17/2014 5:20:00 PM
Freon 114	< 0.15	0.15	ррьV	1	10/17/2014 5:20:00 PM
Freon 12	0.54	0.15	ppbV	1	10/17/2014 5:20:00 PM
Heptane	< 0.15	0.15	ррЬV	1	10/17/2014 5:20.00 PM
Hoxachloro-1.3-butadiene	< 0.15	0.15	ррыV	1	10/17/2014 5:20.00 PM
Hexane	< 0.15	0.15	ppbV	1	10/17/2014 5:20.00 PM
isopropyl alcohol	1.3	0.15	ppbV	1	10/17/2014 5:20:00 /PM
m&p-Xylene	0.26	0.30	J ppbV	1	10/17/2014 5:20:00 PM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	10/17/2014 5:20:00 PM
Mothyl Ethyl Ketone	0.35	0.30	ppbV	1	10/17/2014 5:20:00 PM
Methyl Isobutyl Kolone	< 0.30	0.30	ppbV	1	10/17/2014 5.20:00 PM
Methyl tert butyl ether	< 0.15	0.15	ppbV	1	10/17/2014 5:20.00 PM
Methylene chloride	< 0.15	0.15	ρρόν	1	10/17/2014 5.20.00 PM
o-Xylene	< 0.15	0.15	ppbV	1	10/17/2014 5:20:00 PM
Propylene	< 0.15	0.15	γdqq	1	10/17/2014 5:20:00 PM
Styrene	< 0.15	0.15	ppbV	1	10/17/2014 5·20·00 PM
Tetrachloroethylene	< 0.15	0.15	Vdqq	1	10/17/2014 5 20:00 PM
Tetrahydrofuran	< 0.15	0.15	ppbV	1	10/17/2014 5.20.00 PM
loluene	0.22	0.15	ppbV	1	10/17/2014 5:20.00 PM
trans-1,2-Dichloroethene	< 0.15	015	Vdqq	1	10/17/2014 5:20:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/17/2014 5:20:00 PM
Trichloroethene	< 0.040	0.040	ppbV	1	10/17/2014 5:20:00 PM
Vinyl acetale	< 0.15	0.15	ppbV	t	10/17/2014 5:20:00 PM
Vinyl Bromide	< 0.15	0.15	ppbV	1	10/17/2014 5:20:00 PM
Vinyl chloride	< 0.040	0.040	Vdqq	1	10/17/2014 5:20:00 PM
Surr: Bromofluorobenzene	85.0	70-130	%REC	1	10/17/2014 5:20:00 PM

Qualifierst

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- II Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-001A

Client Sample ID: 4A-04 Tag Number: 102,259 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit (Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		۳O+	15		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	U 82	ug/m3	1	10/17/2014 5.20.00 PM
1,1,2,2-Tetrachloroethane	s 1.0	1.0	ug/m3	1	10/17/2014 5.20:00 PM
1.1.2-Trichloroethane	< 0.82	0.62	ug/m3	1	10/17/2014 5:20:00 PM
1.1-Dichlomethane	< 0.61	0.61	ug/m3	1	10/17/2014 5:20:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	10/17/2014 5:20:00 PM
1,2,4 Trichlorobenzene	< 1.1	1.1	ug/m3	1	10/17/2014 5:20:00 PM
1,2,4-Trimelhylbenzene	< 0.74	0.74	ug/m3	1	10/17/2014 5:20:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	10/17/2014 5:20:00 PM
1.2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/17/2014 5:20:00 PM
1.2-Dichloroethane	< 0.61	0.61	ug/m3	1	10/17/2014 5:20:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	10/17/2014 5:20:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	10/17/2014 5:20:00 PM
1,3-butadiene	• 0.33	0.33	ug/m3	1	10/17/2014 5:20:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/17/2014 5:20:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/17/2014 5:20:00 PM
1,4-Dioxano	< 1.1	11	ug/m3	1	10/17/2014 5:20:00 PM
2,2,4 (rimethylpentane	< 0.70	070	ug/m3	1	10/17/2014 5:20:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	10/17/2014 5:20:00 PM
Acetone	13	3.6	ug/m3	5	10/18/2014 12:19:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	10/17/2014 5:20:00 PM
Benzene	0.38	0.48	J ug/m3	1	10/17/2014 5:20:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	10/17/2014 5.20:00 PM
Bromodichloromethane	< 1 Q	1.0	ug/m3	1	10/17/2014 5:20:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	10/17/2014 5:20:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	10/17/2014 5:20:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	10/17/2014 5:20:00 PM
Carbon tetrachloride	0.63	0.25	ug/m3	1	10/17/2014 5:20:00 PM
Chlorobenzene	< 0.69	0 69	ug/m3	1	10/17/2014 5:20.00 PM
Chloroethane	< 0.40	0.40	ug/m3	t	10/17/2014 5:20:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	10/17/2014 5:20:00 PM
Chloromethane	0.95	0.31	ug/m3	1	10/17/2014 5:20:00 PM
cis-1,2-Dichloroothene	< 0.59	0.59	ug/m3	1	10/17/2014 5:20:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/17/2014 5:20:00 PM
Cyclohexane	~ 0.52	0.52	ug/m3	1	10/17/2014 5.20:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	ï	10/17/2014 5:20:00 PM
Ethyl acetate	< 0.90	0.90	ug/m3	1	10/17/2014 5:20:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	10/17/2014 5:20:00 PM
Freon 11	1.7	0.84	ug/m3	1	10/17/2014 5:20:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	10/17/2014 5 [,] 20;00 PM
Freon 114	< 1.0	1.0	ug/m3	1	10/17/2014 5.20:00 PM

Qualifiers: ** Reporting Limit

B Analyte detected in the associated Method Blank

11 Holding times for preparation or analysis exceeded

JN - Non-rontine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

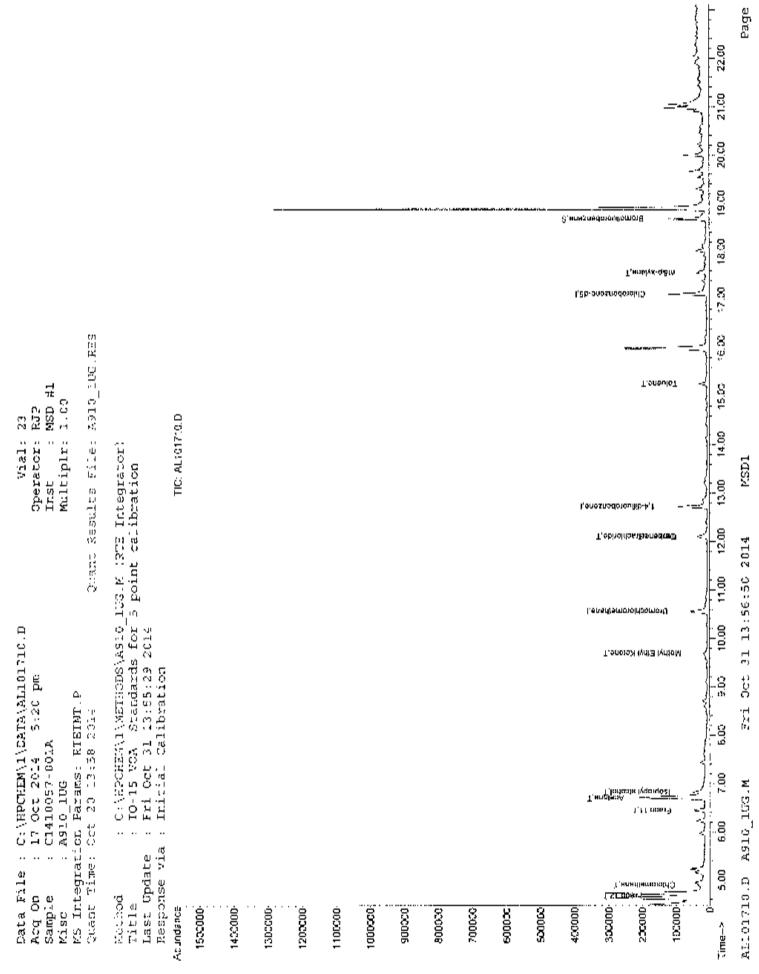
 $E_{\rm c}$. Value above quantitation range

ND.

3 Analyte detected at or below quantitation limits

Not Detected at the Reporting Limit

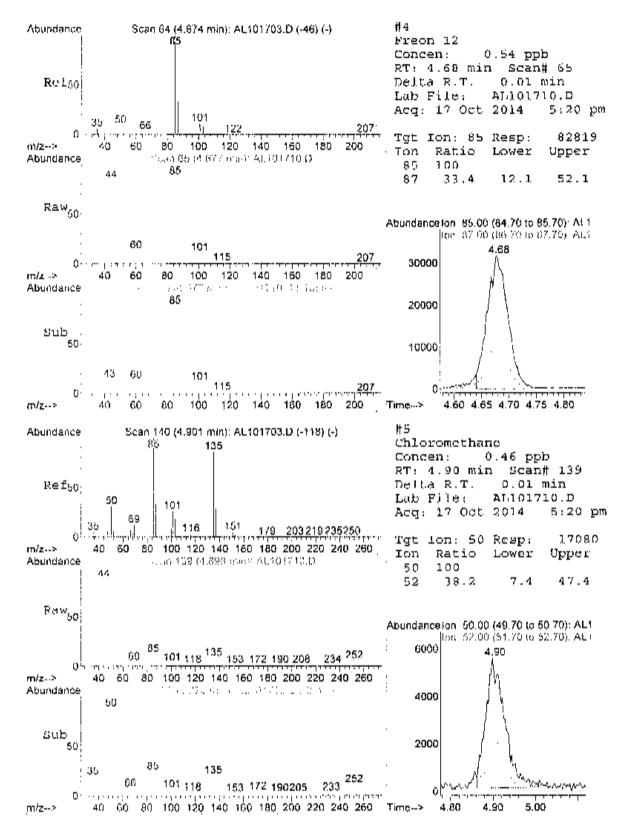
CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-001A


Client Sample ID: 1A-04 Tag Number: 102,259 Collection Date: 10/14/2014 Matrix: AIR

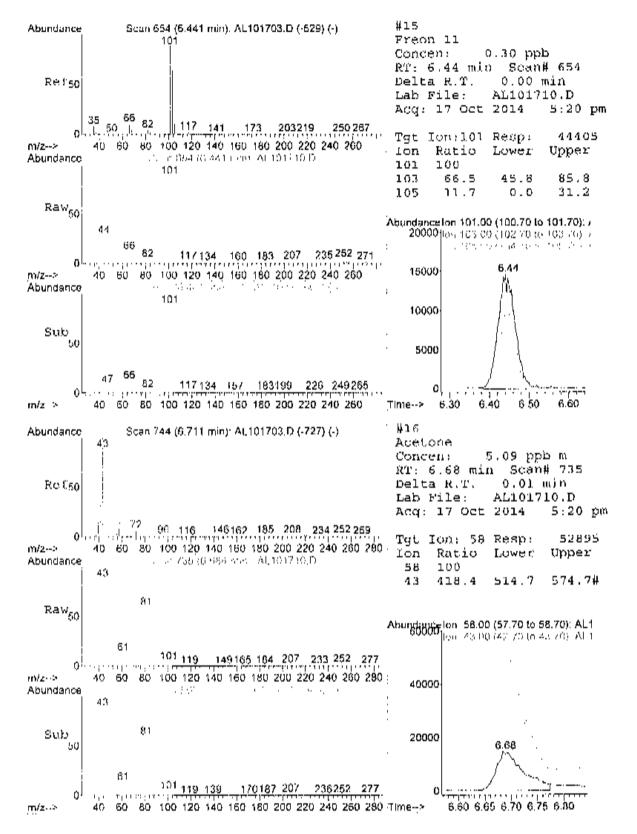
Analyses	Result	**Linit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то)- 1 5			Analyst: RJP
Freen 12	2.7	0.74		սց/m3	1	10/17/2014 5:20:00 PM
Heplane	< 0.61	0.61		ug/m3	1	10/17/2014 5:20.00 PM
Hexachtoro-1,3-butadiene	< 1.6	16		ug/m3	1	10/17/2014 5:20:00 PM
Hexane	< 0.53	0.53		ug/m3	1	10/17/2034 5:20:00 PM
isopropyl alcohol	3.3	0.37		ug/m3	1	10/17/2014 5:20:00 PM
m&p-Xylene	1.1	1.3	J	ug/m3	1	10/17/2014 5:20:00 PM
Methył Butyl Ketone	s 1.2	1.2		ug/m3	1	10/17/2014 5:20:00 PM
Methyl Ethyl Ketone	1.0	0.98		ug/m3	1	10/17/2014 5:20:00 PM
Methyl Isobutyl Ketone	< 1.2	12		ug/m3	1	10/17/2014 5:20:00 PM
Methyl tert-bulyl ether	< 0.54	0.54		ug/m3	1	10/17/2014 5:20:00 PM
Methylene chloride	< 0.52	0.52		ug/m3	1	10/17/2014 5:20:00 PM
o-Xytene	< 0.65	0.65		ug/m3	1	10/17/2014 5:20:00 PM
Propylene	< 0.26	0.26		ug/m3	1	10/17/2014 5:20:00 PM
Styrene	~ 0.64	0.64		ug/m3	1	10/17/2014 5:20:00 PM
Fetrachioroethylene	< 1.0	1.0		ug/m3	1	10/17/2014 5:20:00 PM
Tetrahydrofuran	< 0.44	0 44		ug/m3	1	10/17/2014 5:20:00 PM
Toluene	0.83	0.57		ug/m3	1	10/17/2014 5:20:00 PM
trans-1.2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 5:20:00 PM
trans-1,3 Dichloropropene	< 0.68	0.68		ug/m3	1	10/17/2014 5:20:00 PM
Trichloroethene	< 0.21	0.21		ug/m3	1	10/17/2014 5:20:00 PM
Vinyl acetate	< 0.53	0.53		vg/m3	1	10/17/2014 5(20·00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/17/2014 5:20:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	10/17/2014 5:20.00 PM

Qualifiers

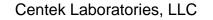
- ** Reporting Lunit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded.
- JN Non-routine analyte. Quantitation estimated
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- 3 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

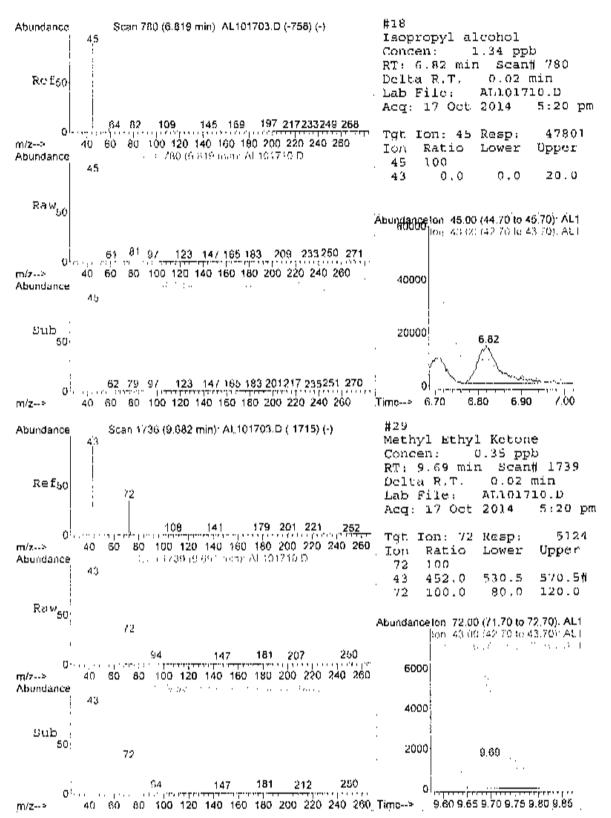

Centek Laboratories, Ll	_C					
	Quantitati	ion Reg	port (QT	Review	ved)	
Data File : C:\HPCHEM\1\DATA\ Acq On : 17 Oct 2014 5:2 Sample : C1410057-001A Mise : A910 10C MS Integration Params: RTEINT Quant Time: Oct 17 21:57:12 2	0 pm .P	Qua	Inst Mult	Vial: rator: : : tiplr: File;	RJP MSD 1.00	
Quant Method : C:\HPCHEM\l\ME Title : TO-15 VOA Sta Last Update : Mon Oct 06 12: Response via : Initial Calibr DataAcq Meth : 1UG_RUN	ndards for 31:36 2014 ation	lug.m 5 poli	(RTE Integn nt calibrat:	rator) ion		
Taternal Standards	R.T.	OION	Response (
	10 55	120				
36) 1 4 difluorobenzene	10.00	114	114437	1 00	101010	0.00
 Browochloromethane 1,4 difluorobenzene Chlorobenzene-d5 	17.12	117	99124	1.00	ppb	0,00
System Monitoring Compounds 67) Bromofluorobenzene Spiked Amount 1.000	18.67	95 130	S9331 Recovery	0.85 Y -	ppb 85.	0.00 ೧୦%
Target. Compounds						Ovalue
4) $\mathbf{Free} \approx 12$	4.68	85	82819	0.54	daa	98
5) Chioromothane	4,90	50	17080	0.46	ppb	79
15) Freen 11	6,44	101	44405	0.30	ppb	99
16) Acetone	6.68	58	52895m ·	5,09	ppb	
18) Isopropyl alcohol	6.82	45	47801	1.34	ppb	# 100
 4) Free: 12 5) Chloromethane 15) Free: 11 16) Acetone 18) Isopropyl alcohol 29) Methyl Ethyl Ketone 	9.69	72	5124	0.35	$\mathbf{p}\mathbf{p}\mathbf{p}$	# 72
39) Carbon tetrachioride	12.09	117	10871	0.10	aqq	94
40) Benzene	12,08	78	13882	0.12	ppb	92 99
52) Tolucne 61) m&p-xylene	19.27	9X 91	15129 30042	0.22	ppb	99 94
or, map-syrene	T), 20	<u> </u>	20070		6-2-2-2	22

2

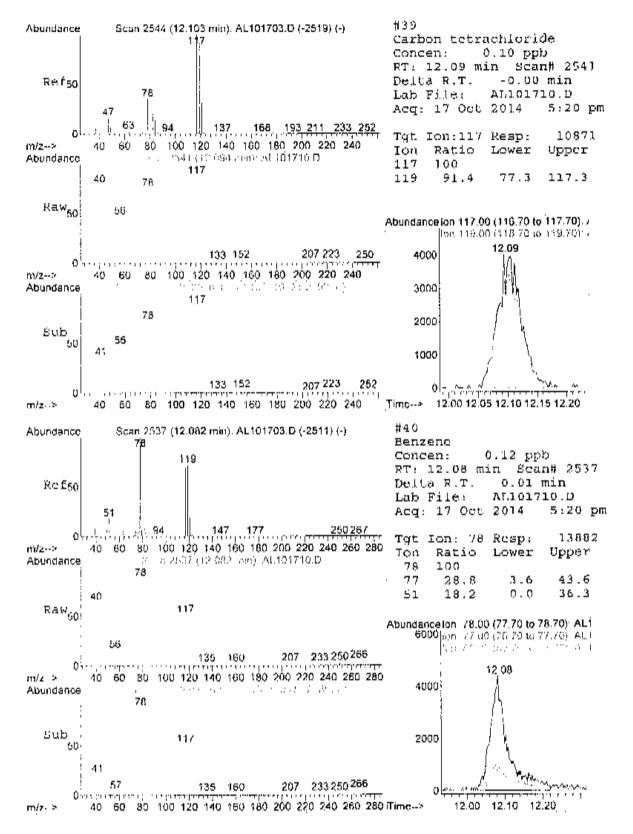

Centek Laboratories, LLC

Page 102 of 467

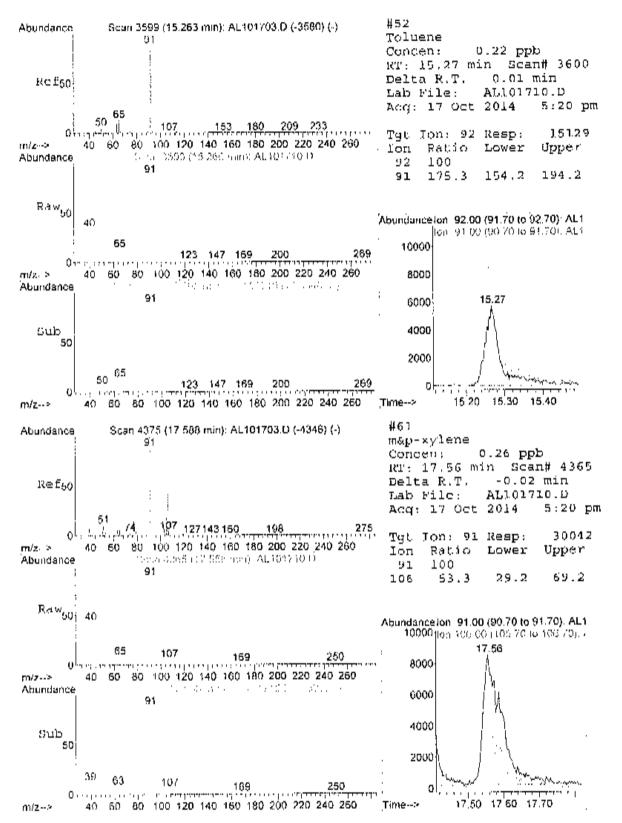

AL101710.D A910 10G.M


Page 103 of 467

ALIO1710.D A910 LUC.M

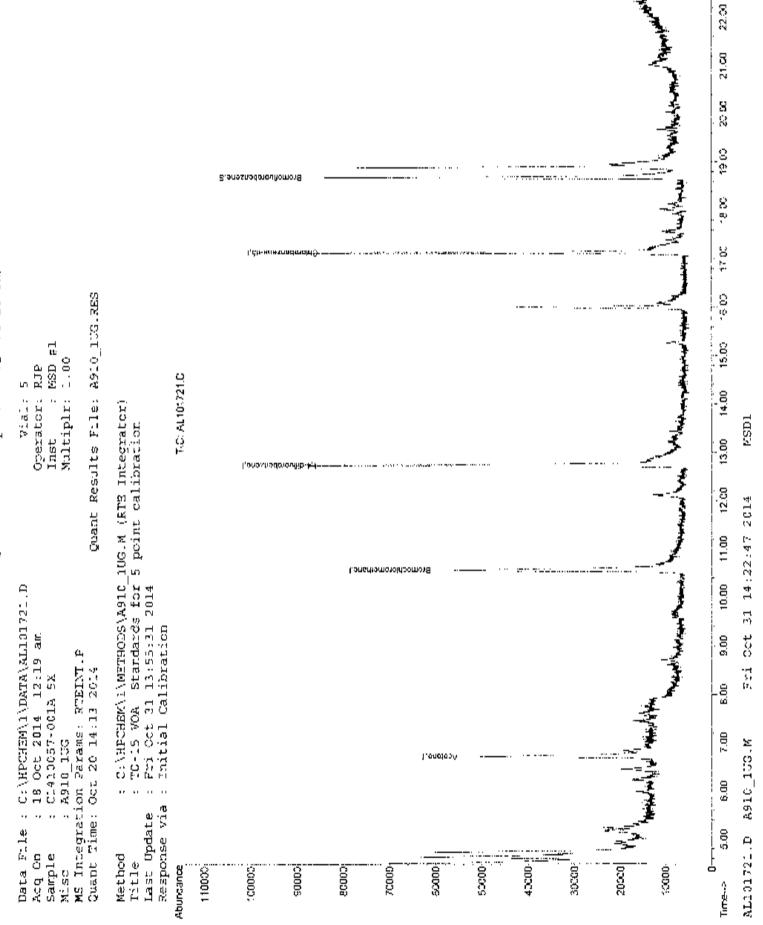

Page 104 of 467


AL101710.D A910 10G.M

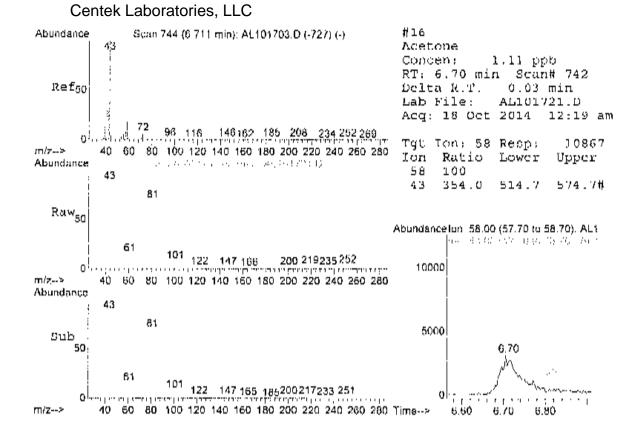

Page 105 of 467

ALIOIVIO.D A910 LUC.M

Page 106 of 467



AL101710.D A910 LUC.M


Page 107 of 467

Centek Laboratories, LL	Quantitat:	ion Rej	port (V	r Review	ved)	
Data File : C:\HPCHEM\1\DATA\: Acq On : 18 Oct 2014 12:1 Sample : C1410057-001A 5X Misc : A910_1UG MS Integration Params: RTEINT Quant Time: Oct 18 07:21:55 2	AL103721.D 9 am .P		Op: In:	Vial: crator: st : ltiplr:	5 RJP MSD 1.00	
Quant Method : C:\HPCHEM\1\ME Title : TO-15 VOA Sta Last Update : Mon Oct 06 12; Response via : Initial Calibra DataAcq Meth : IUG_RUN	ndards for 31:36 2014	јUС.М 5 ројј	(RTE Integ nt calibrat	grator) tion		
ínternal Standards	R.T.	QIon	Response	Cone Ur	nits	Dev(Min)
1) Bromochloromethane 36) 1,4-dilluorobenzene 51) Chlorobenzene d5	10.55 12.73 17.13	128 114 117	29505 107234 76346	1.00 1.00 1.00	dqq bbp qdd	0.01 0.01 0.00
System Monitoring Compounds 67) Bromofluorobenzene Spiked Amount. 1.000	18.68 Range 70	95 - 130	39707 Recove:	0.73 CY -	ppb 73.	0.02 00%
Target Compounds 16) Acctone	6.70	58	10867	1.11	ppb	Qvalue # 35

Page 2

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyClient Sample ID: SS-03Lab Order:C1410057Tag Number: 457,1161Project:5140 Site Yorkville, NYCollection Date: 10/14/2014Lab ID:C1410057-002AMatrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-2		"Hg		10/16/2014
Lab Vacuum Our	-30		"Ну		10/16/2014
1UG/M3 BY METHOD TO15		TO-15	i		Analyst: RJP
1,1,1-Trichloroethane	1.3	0,15	ррб∨	1	10/21/2014 3:34:00 AM
1,1,2,2 Tetrachloroethang	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
₹,1-Dichloroethane	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,1-Dichloroothone	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,2,4 Trichlorobenzene	0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,2,4-Trimethylbenzene	1.4	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	ρρόν	1	10/21/2014 3:34:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppb∨	1	10/21/2014 3:34:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
1,3,5 Trimelbylbenzone	< 0.15	0.15	ppbV	1	10/21/2014 3·34:00 AM
1,3-butadiene	< 0.15	0.15	ppbV	1	1D/21/2014 3:34:00 AM
1,3-Dłohlorobenzene	< 0.15	0.15	vdqq	1	10/21/2014 3 34:00 AM
1,4-Dichlorobenzene	\$ 0.15	0.15	Vdqq	1	10/21/2014 3.34:00 AM
1,4-Dioxane	< 0.30	0.30	ppbV	1	10/21/2014 3:34.00 AM
2,2,4-trimethylpontane	< 0.15	0.15	ρρυν	1	10/21/2014 3:34:00 AM
4-ethylfoluene	019	0.25	ppbV	1	10/21/2014 3:34:00 AM
Acetone	200	48	ppbV	16D	10/21/2014 11:40:00 PM
Ally! chloride	< 0.15	0.15	Vdqq	1	10/21/2014 3:34:00 AM
Волголо	1.1	0.15	ppbV	,	10/21/2014 3:34.00 AM
Benzyl chloride	< 0.15	0.15	ppbV	1	10/21/2014 3:34.00 AM
Bromodichloromothane	< 0.15	0.15	ррв∨	1	10/21/2014 3:34:00 AM
Bromoform	< 0.15	0.15	ppbV	1	10/21/2014 3·34:00 AM
Bromomethane	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
Carbon disulfide	3.6	1.5	ppb∨	10	10/21/2014 6.37:00 AM
Carbon totrachloride	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
Chlorobenzeno	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	10/21/2014 3:34:00 AM
Chlaroform	< 0.15	0 15	ppbV	1	10/21/2014 3:34:00 AM
Chloromethane	< 0.15	0 15	ppbV	ĩ	10/21/2014 3:34:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	10/21/2014 3/34:00 AM
cls-1,3-Dichloropropene	< 0.15	0.15	Vđạq	1	10/21/2014 3.34:00 AM
Cyclohexane	0.96	0.15	ppb∨	1	10/21/2014 3:34:00 AM
Dibromochloromethane	< 0.16	0.15	ppb∨	1	10/21/2014 3:34:00 AM
Ethy) acetate	< 0.25	0.25	ppbV	1	10/21/2014 3:34:00 AM

Qualifiers:

- B Analyte detected in the associated Mothod Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated
- 8 Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

 $E_{\rm e}$ = Value above quantitation range

- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 22

^{**} Reporting Limit

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy		Client Sample ID:	SS-03
Lab Order:	C1410057		Tag Number:	457,1161
Project:	5140 Site Yorkville, NY		Collection Date:	10/14/2014
Lab ID:	C1410057-002A		Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15		1	Analyst: RJP
Elhylbenzene	1.3	0.15		ppbV	1	10/21/2014 3:34:00 AM
Freon 11	69	24		Vđqq	160	10/21/2014 11:40:00 PM
Freen 113	0.69	0.15		vdqq	1	10/21/2014 3·34:00 AM
Freon 114	< 0.15	0.15		ppb∨	1	1D/21/2014 3:34:00 AM
Freon 12	0.58	0.15		ppbV	1	10/21/2014 3:34:00 AM
Heptane	1.9	1,5		ppbV	10	10/21/2014 6:37:00 AM
Rexachlero 1,3 butadiene	< 0.15	0.15		Vdqq	1	10/21/2014 3:34.00 AM
Hexane	2.7	1.5		ррб∨	10	10/21/2014 5:37.00 AM
Isopropyl alcohol	5.5	1.5		ppbV	10	10/21/2014 6:37.00 AM
m&p-Xylene	2.8	3.0	Г	ρρbV	10	10/21/2014 6:37:00 AM
Methyl Butyl Ketone	0.68	0.30		ρρυν	1	10/21/2014 3:34:00 AM
Methyl Ethyl Ketone	2.5	3.0	J	ppb∨	10	10/21/2014 6·37;00 AM
Methyl Isobułyl Ketone	0.47	0.30		ppbV	1	10/21/2014 3:34:00 AM
Methyl tert-butyl ether	1.2	0.15		ppbV	1	10/21/2014 3:34.00 AM
Methylene chloride	0.13	0.15	J	рры∨	1	10/21/2014 3:34.00 AM
o-Xylene	0.96	0.15		ppbV	1	10/21/2014 3:34.00 AM
Propylene	< 0.15	0.15		ppbV	1	10/21/2014 3:34:00 AM
Styrene	0.37	0.15		ppbV	1	10/21/2014 3:34:00 AM
Totrachloroethylene	5.6	1.5		ppbV	10	10/21/2014 6:37:00 AM
Tetrahydrofuran	< 0.15	0.15		ppb∨	1	10/21/2014 3:34:00 AM
Toluene	2.7	1.5		ppbV	10	10/21/2014 6.37:00 AM
trams-1,2-Dichloroothene	< 0.15	0.15		ppbV	1	10/21/2014 3:34.00 AM
trans 1,3 Dichloropropone	< O 15	0.15		ppbV	1	10/21/2014 3:34.00 AM
Trichloroethene	1.1	0.15		ppbV	1	10/21/2014 3:34:00 AM
Vinyl acetate	< 0.15	0.15		ppbV	1	10/21/2014 3:34:00 AM
Vinyl Bromide	< 0.15	0.15		ppbV	1	10/21/2014 3:34:00 AM
Vinyl chloride	< 0.15	0.15		ppb∨	1	10/21/2014 3:34:00 AM
Surr. Bromafluorabenzene	111	70-130		%REC	1	10/21/2014 3:34:00 AM

Oualifier	s	2
-----------	---	---

٠. Reporting Limit

- Analyte detected in the associated Method Blank в
- ١I Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- 5 Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .
- 15 Value above quantitation range
- J. Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit-

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab 1D:C1410057-002A

Client Sample ID: SS-03 Tag Number: 457,1161 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15		Analyst: RJP
1, 1, 1-Trichloroethane	7.0	0.82	ug/m3	1	10/21/2014 3:34:00 AM
1,1,2,2 Tetrachloroethane	< 1.0	10	ug/m3	t	10/21/2014 3:34:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	10/21/2014 3:34.00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	10/21/2014 3:34:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	10/21/2014 3:34:00 AM
1,2,4-Trichlorobenzene	1.1	1.1	ug/m3	1	10/21/2014 3:34:00 AM
1.2.4-Trimethylbenzene	6.7	0.74	ug/m3	1	10/21/2014 3:34:00 AM
1,2-Dibromoethane	s 1.2	1.2	ug/m3	1	10/21/2014 3:34:00 AM
1,2 Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/21/2014 3:34:00 AM
1,2-Dichloroethane	< 0.61	061	ug/m3	1	10/21/2014 3:34:00 AM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	10/21/2014 3:34.00 AM
1,3,5-Trimethylbenzone	< 0.74	0.74	ug/m3	1	10/21/2014 3:34:00 AM
1,3-butadiene	< 0.33	0.33	ug/m3	1	10/23/2014 3:34:00 AM
1,3 Dichlorobenzene	~ 0.90	0.90	ug/m3	1	10/21/2014 3:34:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/21/2014 3:34:00 AM
1,4-Dioxane	< 1.1	1.1	vg/m3	1	10/21/2014 3:34:00 AM
2.2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	10/21/2014 3:34.00 AM
4-ethyltoluene	0.93	0.74	ug/m3	1	10/23/2014 3:34:00 AM
Acetone	460	110	ug/m3	160	10/21/2014 11:40:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	10/21/2014 3:34:00 AM
Benzene	36	0.48	ug/m3	1	10/21/2014 3:34:00 AM
Benzyl chloride	< 0.86	0.86	ug/m3	1	10/21/2014 3/34:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	10/21/2014 3:34:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	10/21/2014 3:34.00 AM
Bromomethane	< 0.58	0.58	ug/m3	1	10/21/2014 3:34:00 AM
Carbon disulfide	11	4.7	ug/m3	10	10/21/2014 6:37:00 AM
Carbon tetrachloride	< 0.94	0.94	ug/m3	1	10/21/2014 3:34:00 AM
Chlorobenzene	< 0.69	0.69	ug/m3	1	10/21/2014 3:34:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	10/21/2014 3 34 00 AM
Chleroform	< 0.73	0.73	ug/m3	1	10/21/2014 3.34.00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	10/21/2014 3:34:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/21/2014 3:34:00 AM
cis-1,3-Dichloropropene	< 0.68	0.69	ug/m3	1	10/21/2014 3:34:00 AM
Cyclohexane	3.3	0.52	ug/m3	t	10/21/2014 3/34/00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	10/21/2014 3.34:00 AM
Ethyl acetate	< 0.90	0.90	ug/m3	1	10/21/2014 3.34.00 AM
Ethylbenzene	5.8	0.65	ug/m3	1	10/21/2014 3:34:00 AM
Freen 11	390	130	ug/m3	160	10/21/2014 11:40:00 PM
Freon 113	5.3	1,1	ug/m3	1	10/21/2014 3:34:00 AM
Freon 114	< 10	10	ug/m3	1	10/21/2014 3:34:00 AM

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery ontside accepted recovery limits

Results reported are not blank corrected

- E Value above quantitation range
- 3 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Onalifiers:

Date: 31-Oct-14

CLUENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-002A

Client Sample ID: SS-03 Tag Number: 457,1161 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	G/M3 BY METHOD TO15 TO-15			Analyst: RJP		
Freon 12	2.9	0.74		ug/m3	1	10/21/2014 3:34 00 AM
Heptane	7.8	6.1		ug/m3	10	10/21/2014 6:37:00 AM
Hexachloro-1,3-butadiene	< 1.6	1,6		ug/m3	1	10/21/2014 3:34:00 AM
Hexane	9.5	5.3		ug/m3	10	10/21/2014 6:37:00 AM
Isopropyl alcohol	14	3.7		ug/m3	10	10/21/2014 6:37:00 AM
m&p-Xylene	12	13	Ъ	ug/m3	10	10/21/2014 6:37:00 AM
Methyl Butyl Ketone	2.7	1.2		ug/m3	1	10/21/2014 3:34:00 AM
Methyl Ethyl Ketone	7.4	8.8	Г	ug/m3	10	10/21/2014 6:37:00 AM
Methyl Isobutyl Ketone	1.9	1.2		ug/m3	1	10/21/2014 3:34:00 AM
Mothyl tert-butyl ether	4 4	0.54		ug/m3	1	10/21/2014 3:34:00 AM
Methylene chloride	0.45	0.52	J	ug/m3	1	10/21/2014 3:34:00 AM
o-Xylene	4.2	0.65		ug/m3	1	10/21/2014 3:34:00 AM
Propylene	< 0.26	0.26		ug/m3	1	10/21/2014 3:34:00 AM
Styrene	1.6	0.64		ug/m3	1	10/21/2014 3:34;00 AM
Tetrachloroothylene	45	10		ug/m3	10	10/21/2014 6.37.00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	10/21/2014 3.34:00 AM
Toluene	10	5.7		սց/m3	‡0	10/21/2014 6:37:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/21/2014 3:34:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/21/2014 3:34:00 AM
Trichloroethene	5.9	0.81		ug/m3	1	10/21/2014 3:34:00 AM
Vinyl acetato	< 0.53	0.53		ug/m3	1	10/21/2014 3:34:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/21/2014 3:34:00 AM
Vinyt chloride	< 0.38	0.38		ug/m3	1	10/21/2014 3:34:00 AM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- 11 Holding times for proparation or analysis exceeded
- JN Non-routine analyte. Quantization estimated
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AL102030.D Acq On : 21 Oct 2014 3:34 am Vial: 27 Operator: RJP Sample : C1410057-002A Misc : A910_10G MS Integration Params: RTEINT.P Quant Time: Oct 21 04:20:27 2014 Inst : MSD #1 Multiplr: 1.00 Quant Results File: A910 AUG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QIon Response Conc Units Dev(Min)
 1) Bromochloromethane
 10.54
 128
 49244
 1.00 ppb
 0.00

 36) 1.4-difluorobenzene
 12.71
 114
 22659
 1.00 ppb
 -0.01

 51) Chlorobenzene-d5
 17.11
 117
 208775
 1.00 ppb
 0.00
 System Monitoring Compounds 67) Bromofluorobenzene 18.66 95 163375 1.11 ppb Spiked Amount 1.000 Range 70 - 130 Recovery - 11).00% 0.00

 Target Compounds
 Ovalue

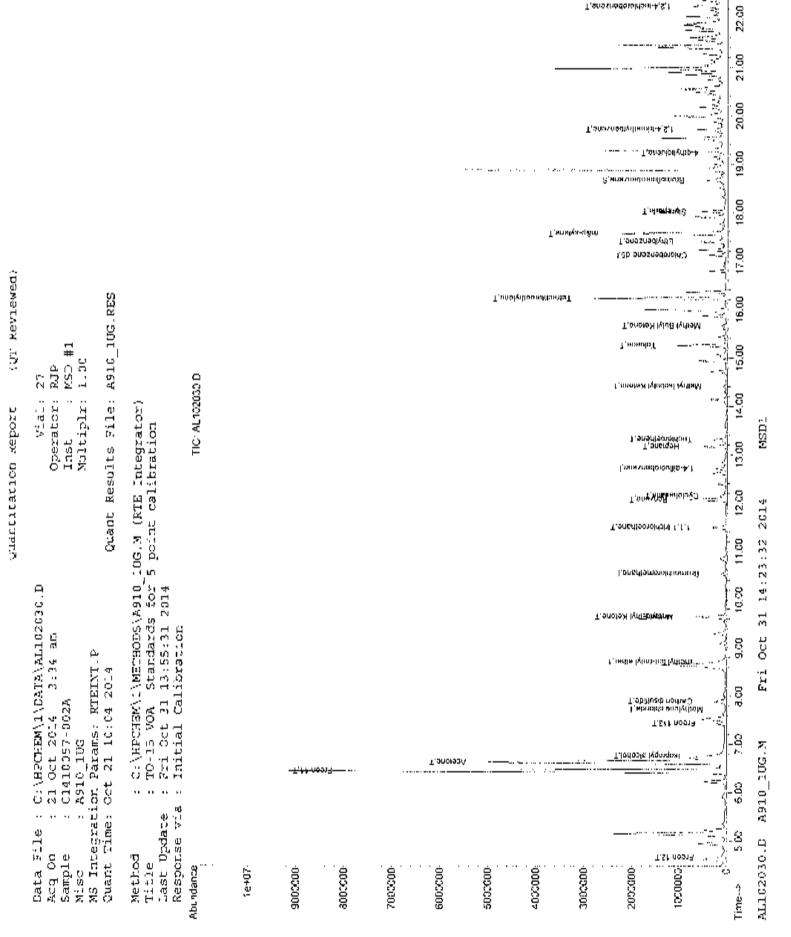
 4) Freen 12
 4.67
 85
 140499
 0.58
 ppb
 98

 15) Freen 11
 6.44
 101
 12562552
 54.74
 ppb
 100

 16) Acctone
 6.62
 58
 3239433
 198.24
 ppb
 4
 0

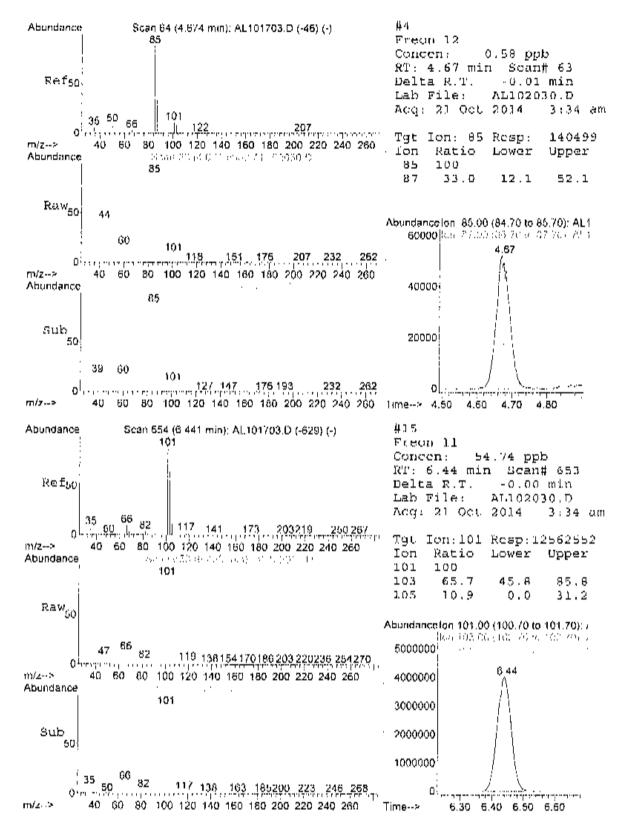
 18) Isopropyl alcohol
 6.76
 45
 351213
 6.28
 ppb
 4
 0

 20) Freen 113
 7.43
 101
 104338
 0.69
 ppb
 4
 0

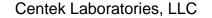

 21) Mathylene chloride
 7.73
 84
 5459
 0.13
 ppb
 4
 72

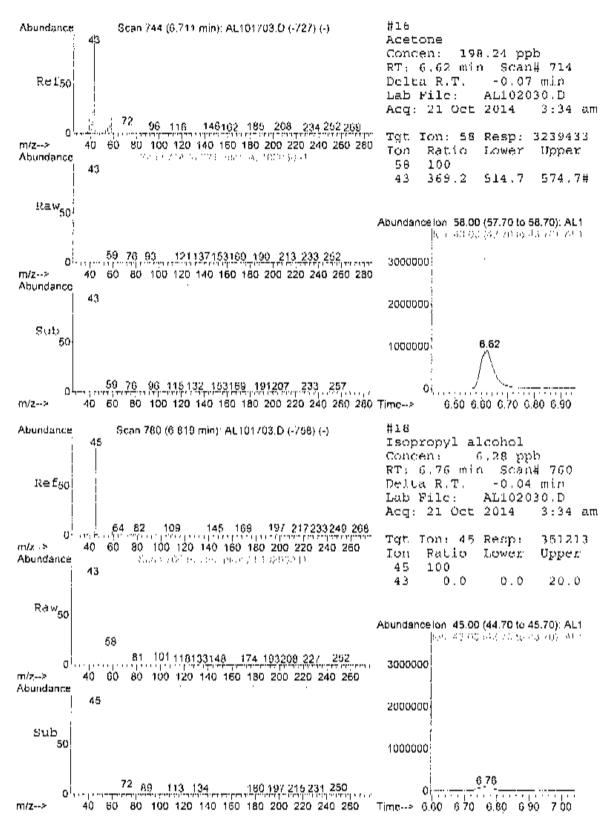
 22) Mathylene chloride
 7.73
 84
 5459
 0.13
 ppb
 4
 72

 23) Methyl Etrt-butyl ether
 8.71
 73
 186120
 1.21
 ppb
 4
 72


 231) Hexane
 9.64
 57
 363113
 3.85
 ppb
 98
 93
 71
 1.1.1-trichloroethane
 11.49
 97
 232511
 1.28
 ppb
 93

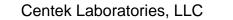
 34) Hexane
 12.07
 78
 248397
 1.49
 ppb
 93< Target Compounds Ovalue

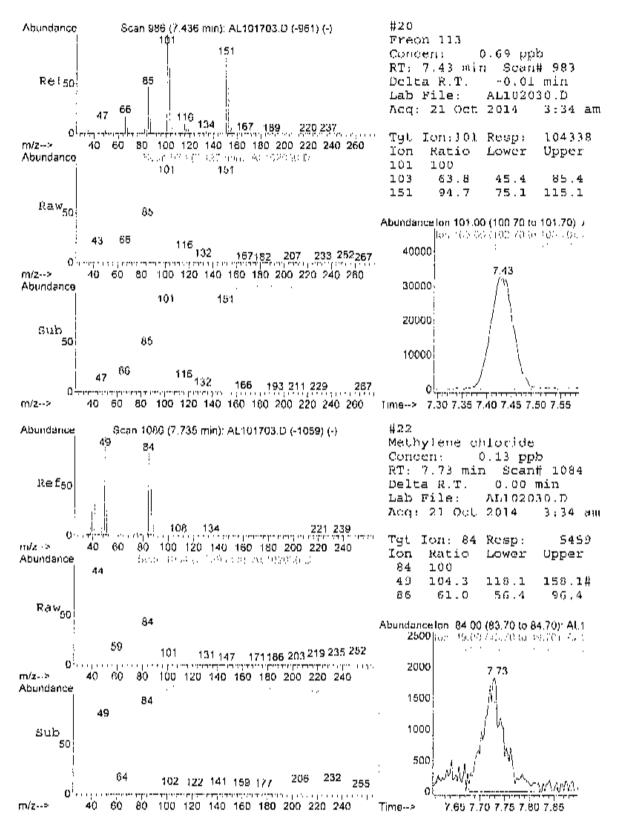

1


T, and shado to Moint-4, S, I

AT.102030.D A910_1UG.M

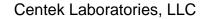
MSD1

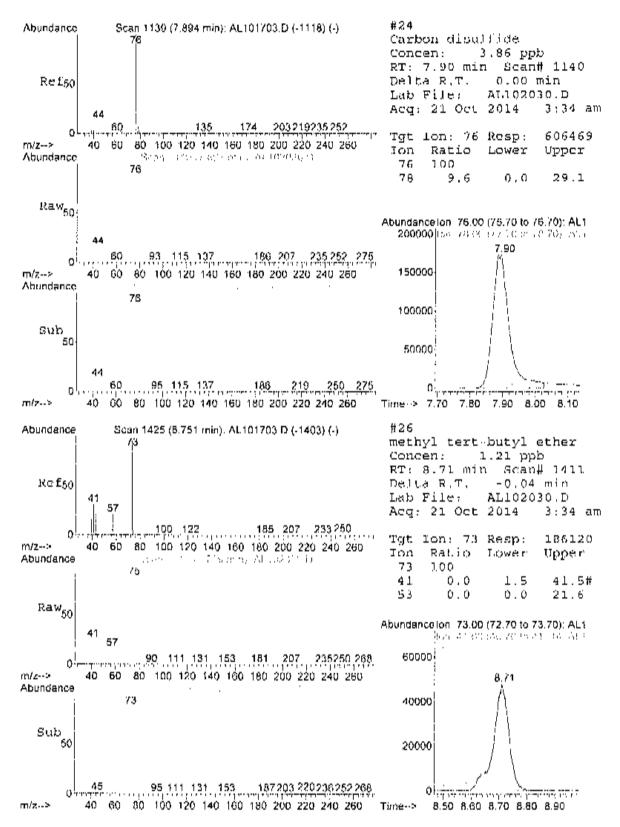




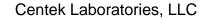
AL102030.D A910 10G.M

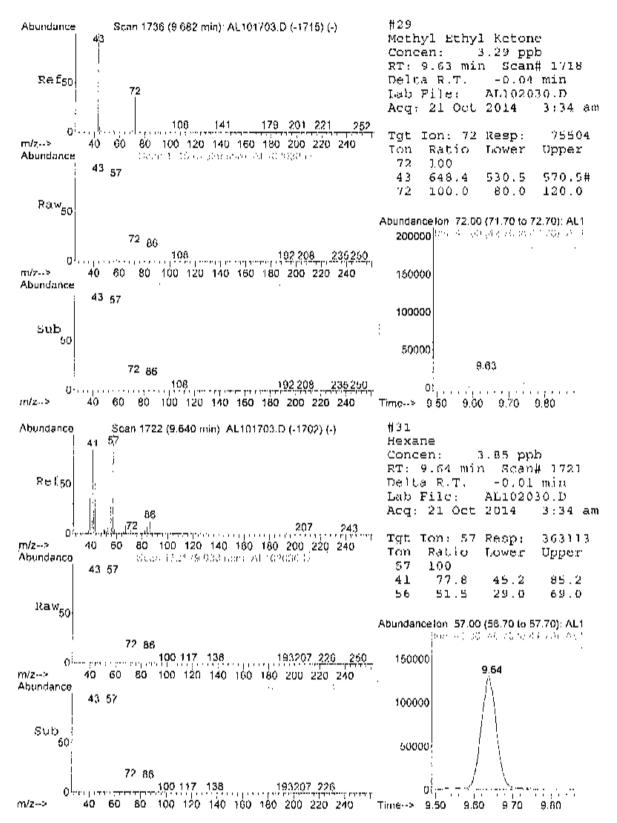
Page 4


Page 118 of 467



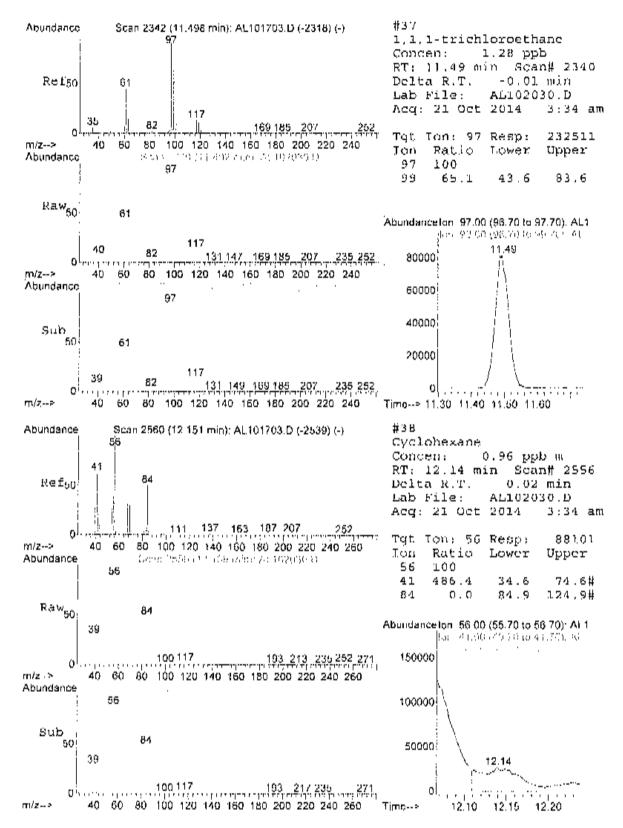
AL102030.D A910 1UG.M


Page 119 of 467

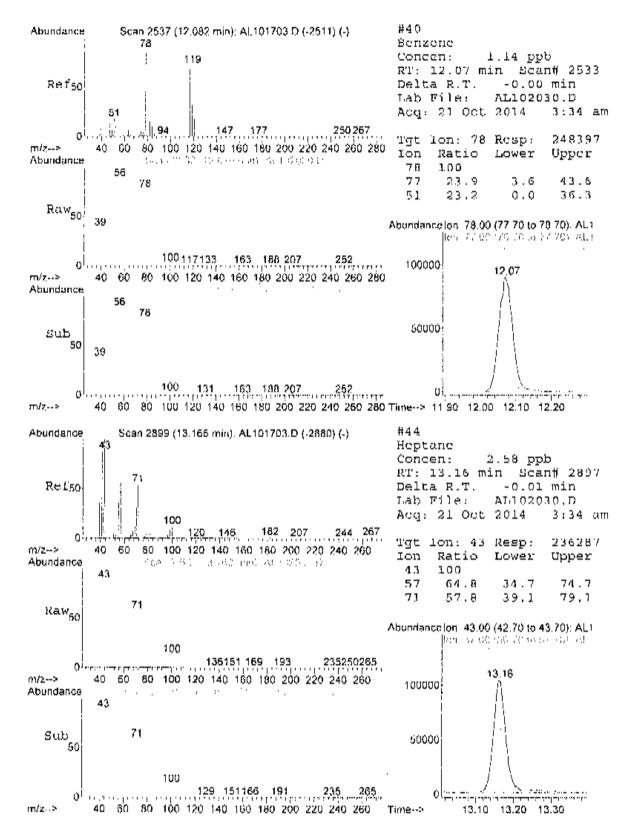


AL102030.D A910 1UG.M

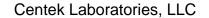
Page 6

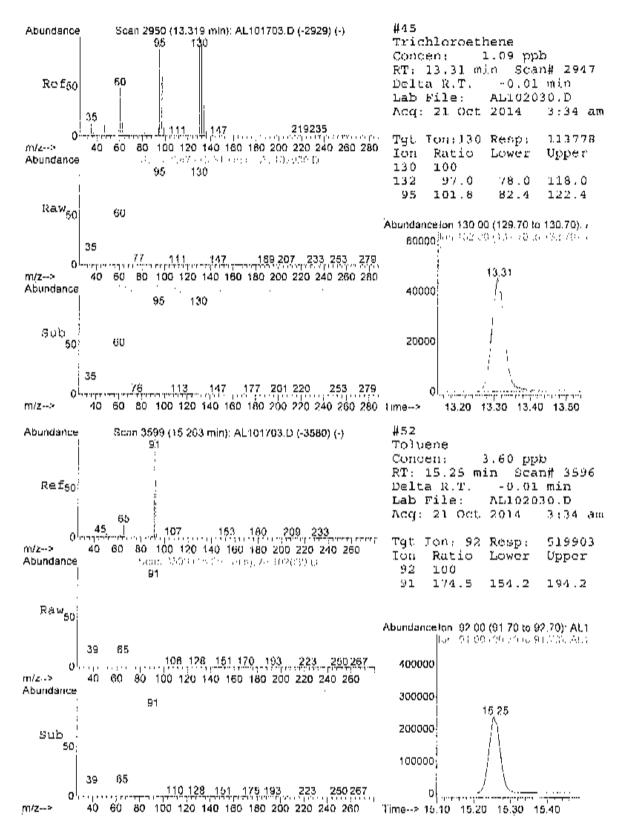


AL102030.D A910 10C.M

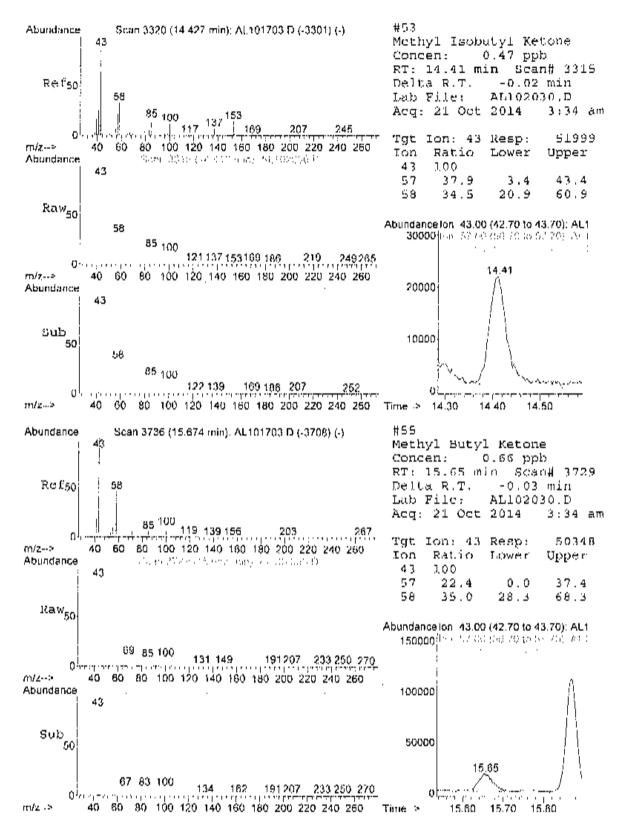

Page 7

Page 121 of 467

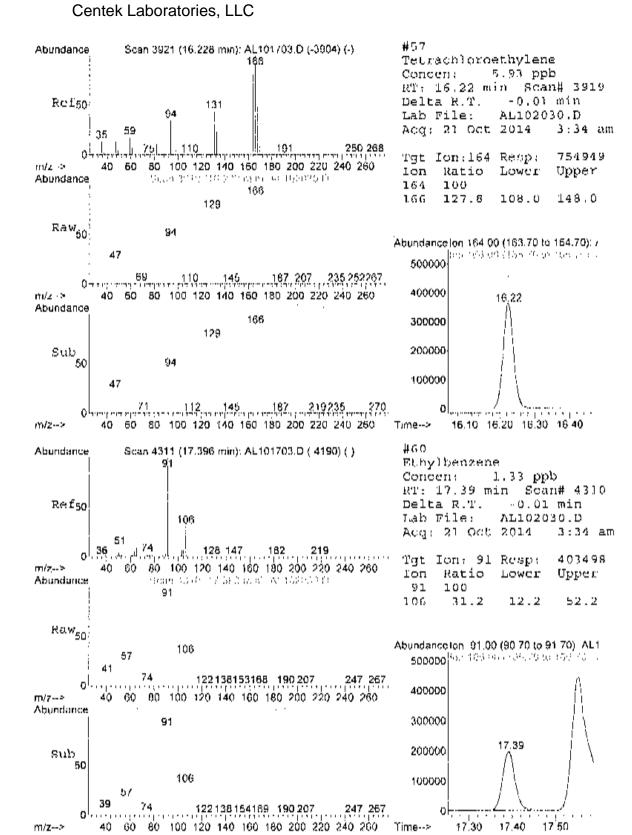

AL102030.D A910_10G.M


Page 122 of 467

AL102030.D A910 1UC.M

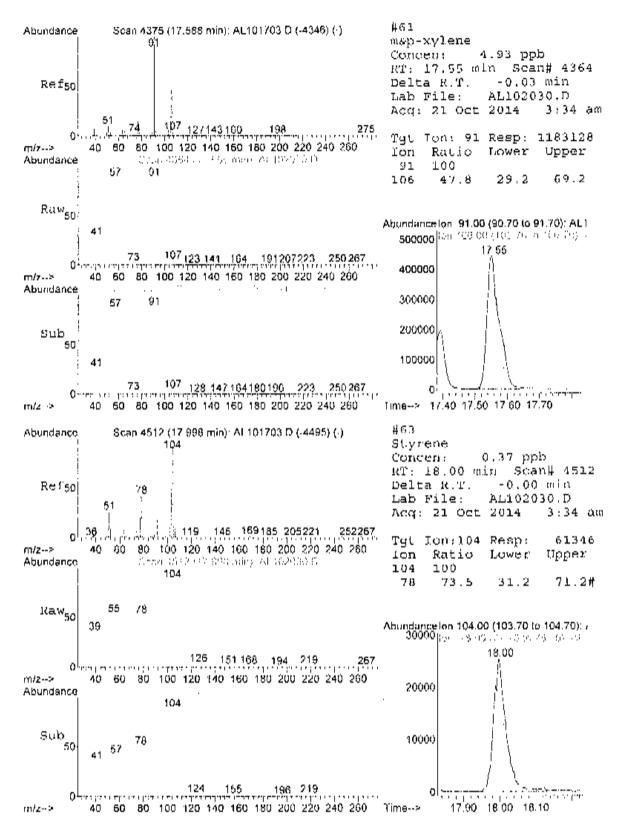

Page 123 of 467

AL102030.D A910 10G.M


Page 124 of 467

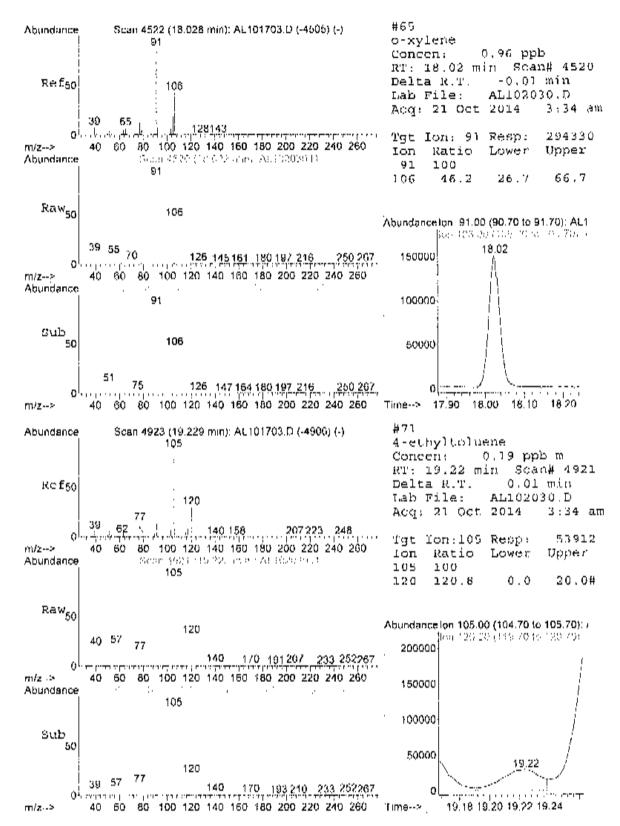
AL102030.D A910 1UC.M

Page 11

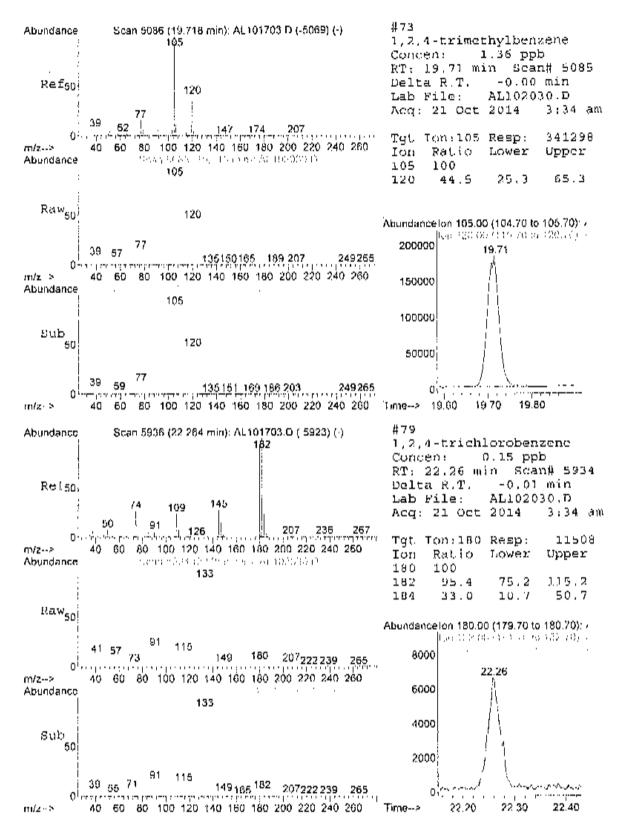

Page 125 of 467

AL102030.D A910 1UG.M

Page 12

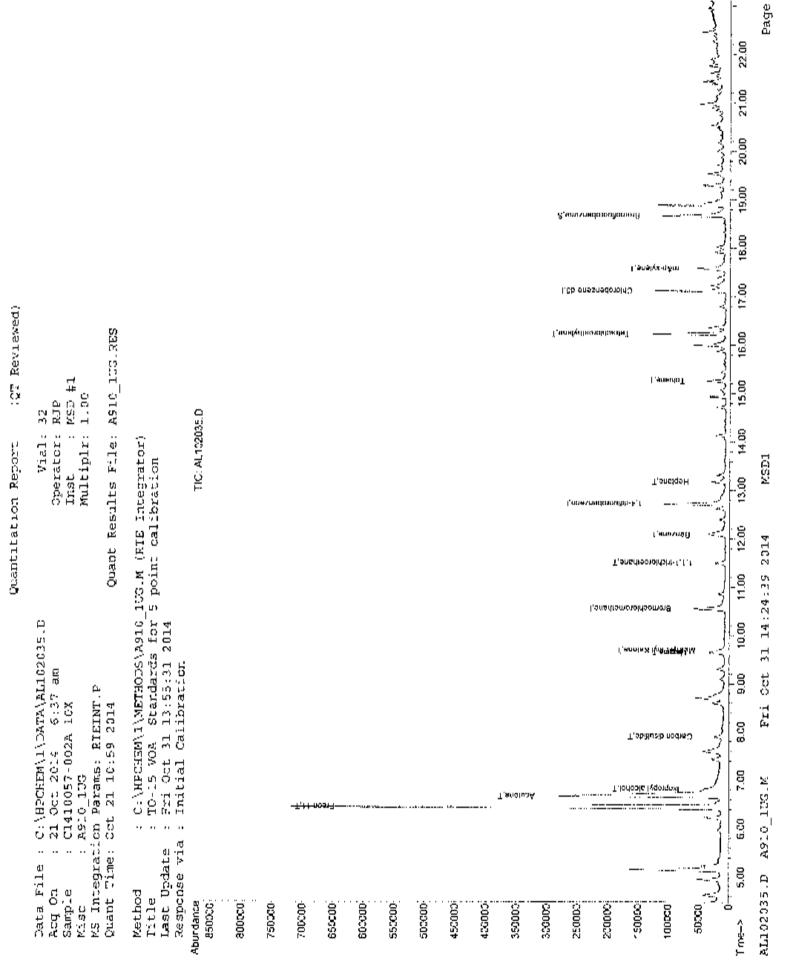

Page 126 of 467

AL102030.D A910 1UG.M

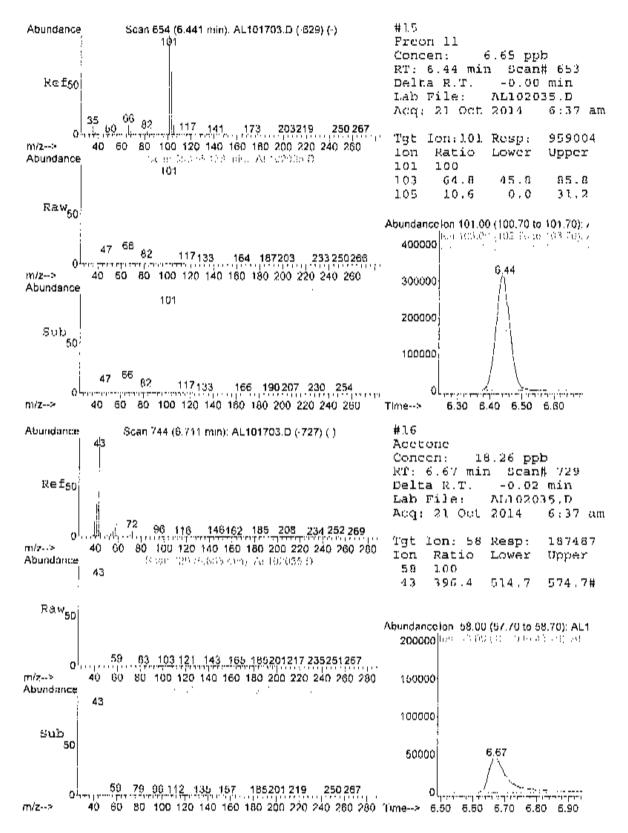

Page 13

Page 127 of 467

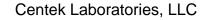
AL102030,D A910 10G.M

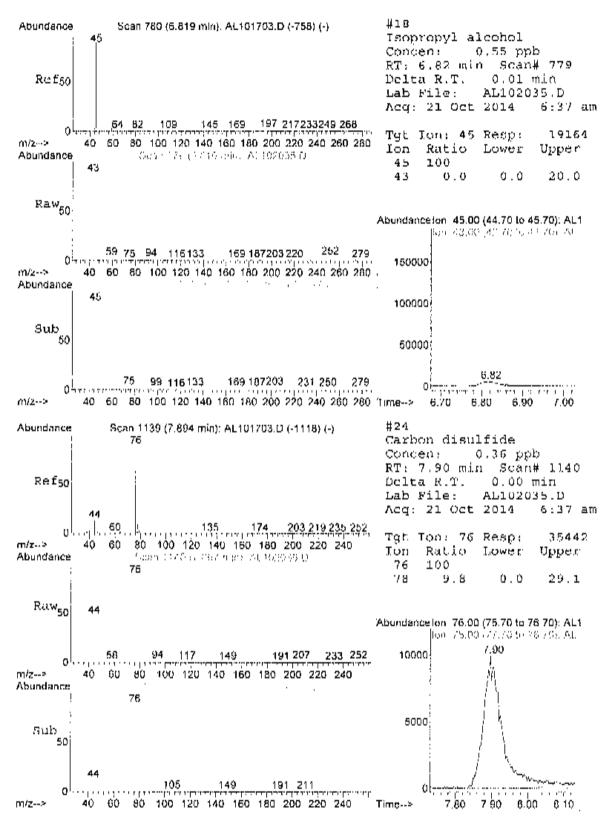

Page 14

AL102030.D A910 IUG.M

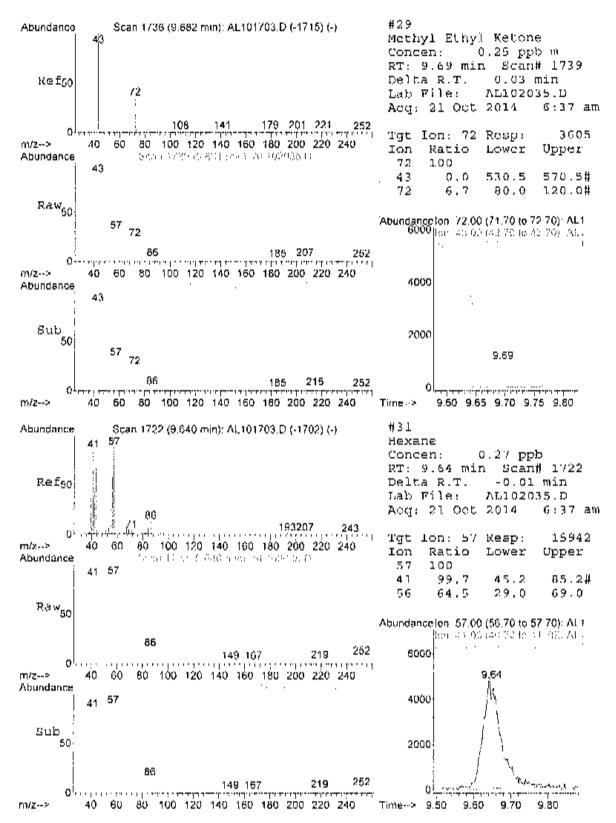

Page 129 of 467

Centek Laboratories, LLC							
	Quantitat	ion Reg	port (Q	T Review	ed)		
Data File : C:\HPCHEM\1\DATA\A Acq On : 21 Oct 2014 6:37 Sample : C1410057-002A 10X Misc : A910_1UG MS Integration Parama; RTEINT. Quant Time; Oct 21 10:50:24 20	7 am P		Mu'	st :) ltiplr:	MSD #1 1.00	JC.RES	
Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : 1UG RUN							
Ínternal Standards	R.T.	QION	Response	Cone Un	its Dev	/(Min)	
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	10.55 12.72 17.11	128 114 117	30940 126373 94130	1.00 1.00 1.00	 ppb ppb	0.00 0.00 0.00	
System Monitoring Compounds 67) Bromofluorobenzene Spiked Amount 1.000	1.8.67	95 - 130	51261 Recove:	0.77 ĽY ~	ppb 77.00%	0.00	
Target Compounds 15) Freon 11 16) Acctonc 18) isopropyl alcohol	6.07 6.87	45	19164	18.26	ppb ppb #	value 99 49 100	
24) Carbon disulfide 29) Methyl Ethyl Ketone 31) Hexane 37) 1.1.1-trichJoroethane 40) Benzece 44) Benzece	7,90 9,69 9,64	76 72 57	35442 3605m / 15942	0.36 1 0.25 0.27	dqq dqq th dqq	98 65	
37) 1,1,1-trichJoroethane 40) Benzece 44) Heptane	11.49 12.07 13.17 15.26	97 78 43	15522 13572 9616	0.15) 0.11) 0.19)	ppb pph ppb	99 83 89	
52) Toluene 57) Tetrachloroethylene 61) m&p-xylene	15.26 16.23 17.56	92 164 91	17812 37834 30503	0.27) 0.66) 0.28)	מקק מקק מקק	9 8 99 97	

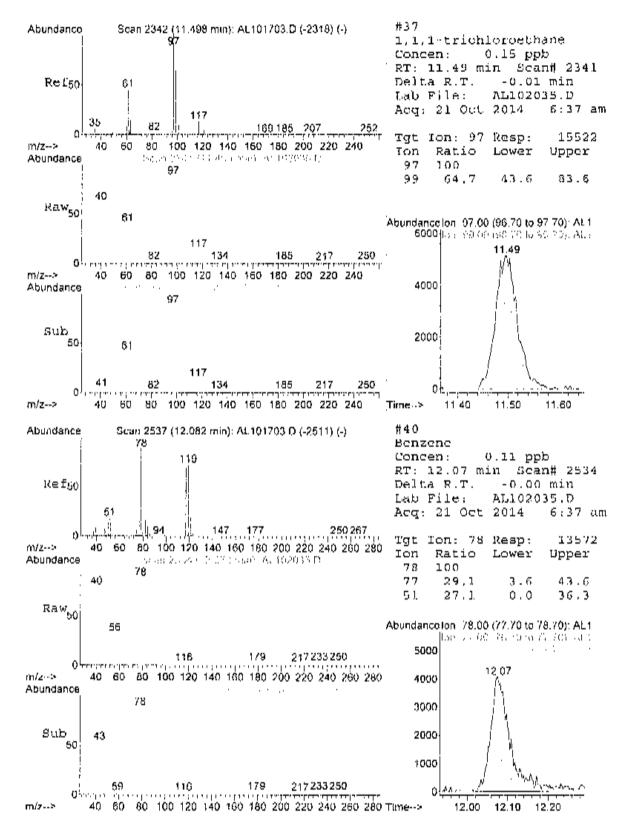

Page 2


Page 131 of 467

AL102035.D A910 1UG.M


Page 132 of 467

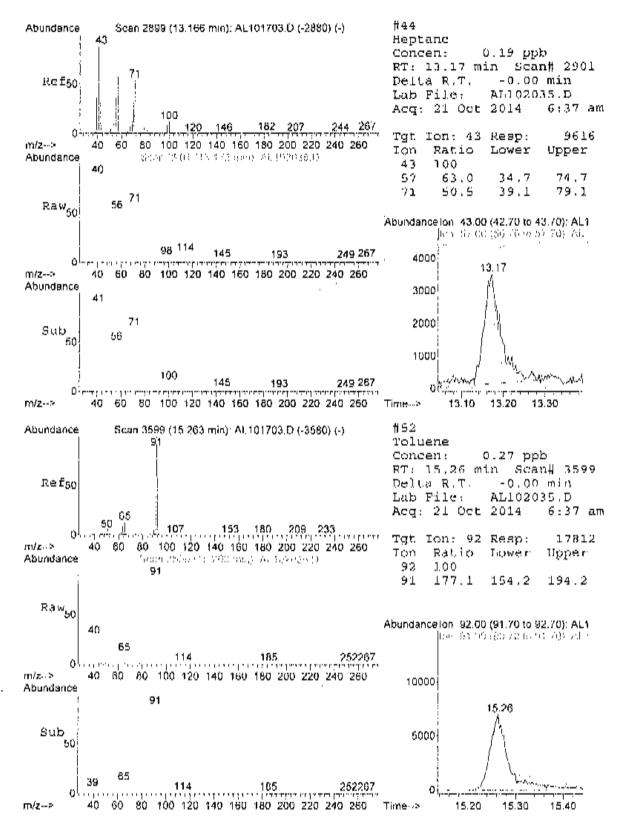
AL102035.D A910_10G.M



AL102035.D A910 1UG.M

MSD1

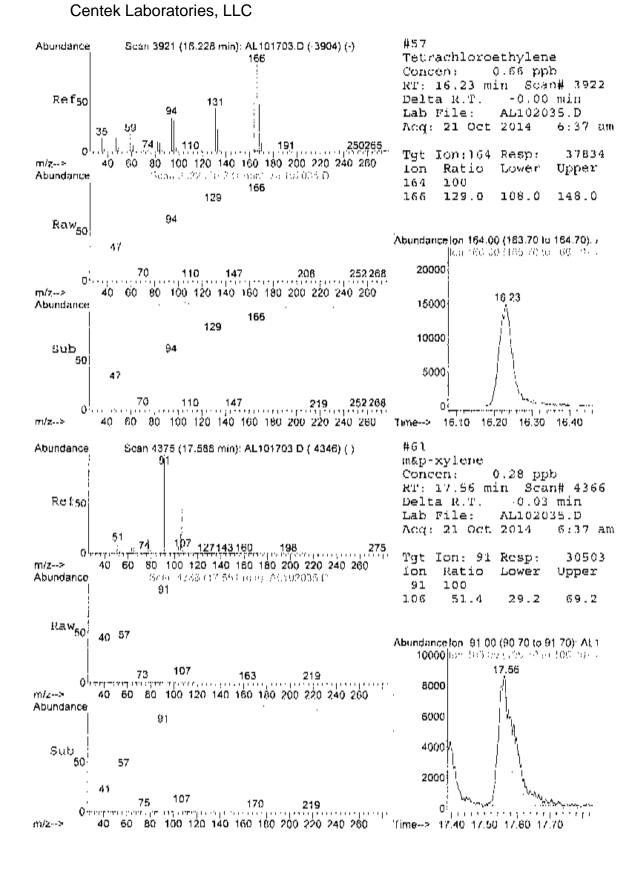
Page 134 of 467



AL102035.D A910 1UG.M

0 lUG.M Fri Oct 31 14:24:44 2014 MSD1

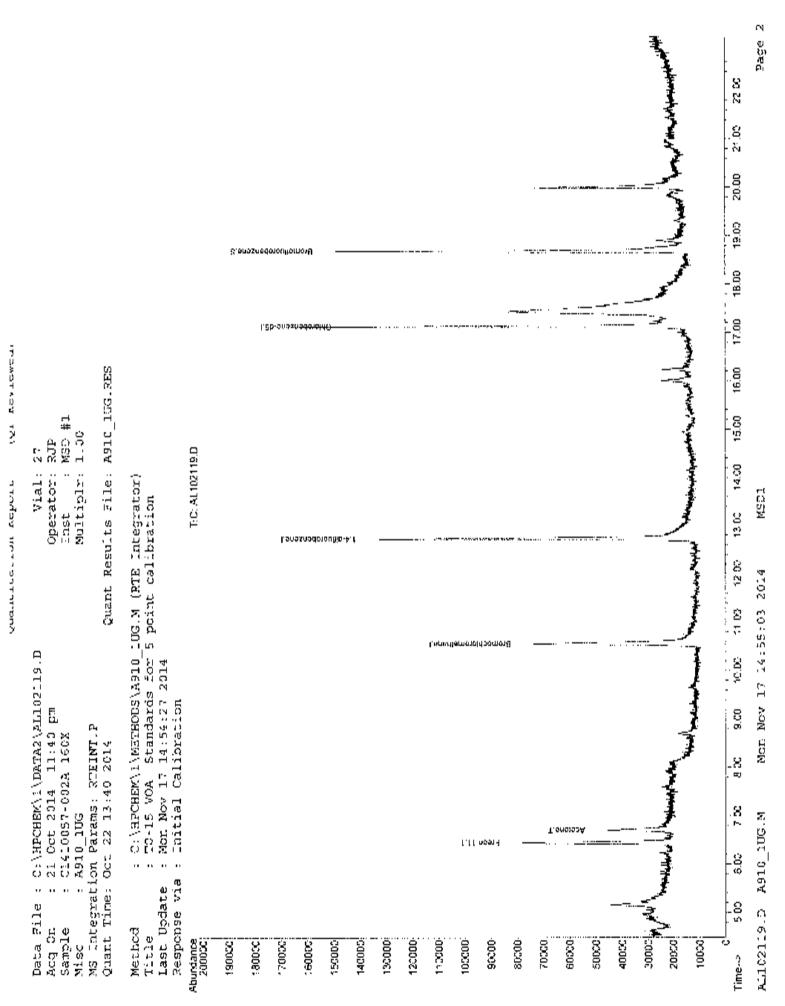
Page 6


Page 135 of 467

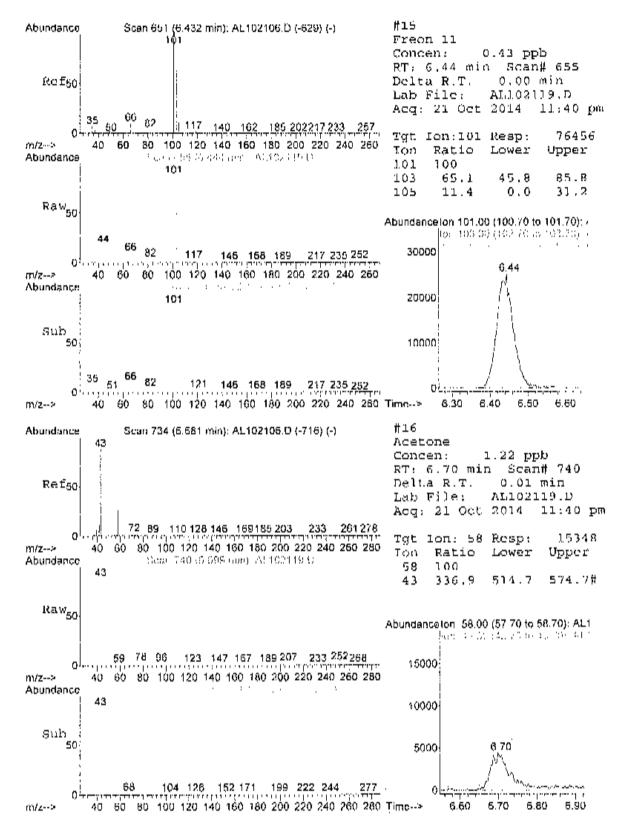
AL102035.D A910 1UG.M

M Fri Oct 31 14:24:45 2014 MSD1

Page 136 of 467



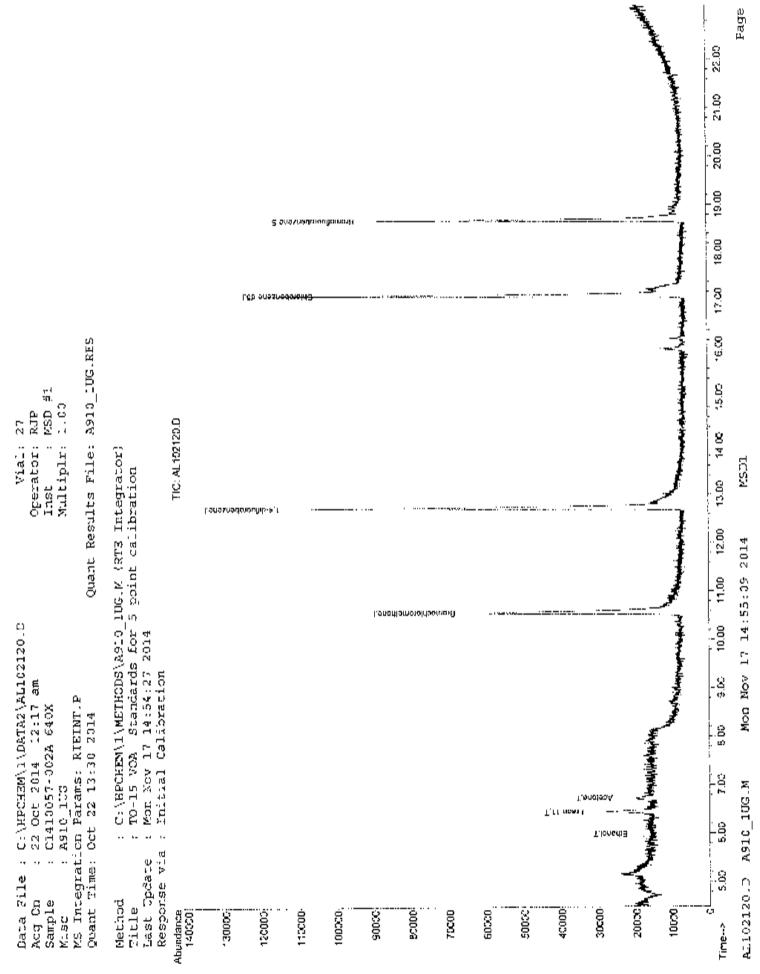
AL102035.D A910 1UC.M


Page 8

Page 137 of 467

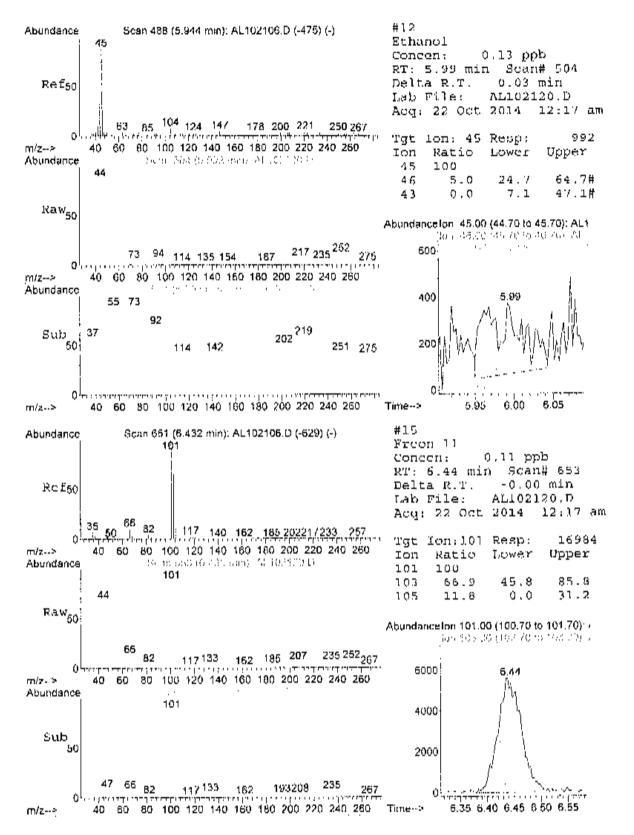
Centek Laboratories, LL	С						
	Quantitati	on Rep	port (QT	Review	ved}		
Data Pile : C:\HPCHEM\l\DATA2 Aog On : 21 Oct 2014 11:40 Sample : C1410057 002A 160X Misc : A910_lUG MS Integration Params: RTEINT. Quant Time: Oct 22 14:30:09 20				iplr:	1.00)	
Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 ll:33:09 2014 Response via : Thitial Calibration DataAcq Meth : 1UC_RUN							
Internal Standards	\mathbf{R} , \mathbf{T} ,	Qĩon	Response (
 Bromochloromethane J,4-difluorobenzene Chiorobenzene-d5 	12.73	11,4	37848 158063	1.00	ppb ppb	0.00 0.00	
System Monitoring Compounds 67) Bromofluorobenzene Spiked Amount. 1,000							
Target Compounds 15) Freen 11 16) Acetone		101 58	76456 15348			Qvalue 99 # 29	

Page 139 of 467

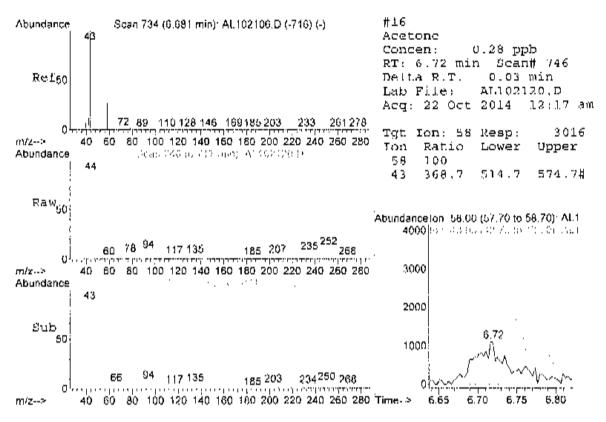


AL102119.D A910 10G.M

Page 140 of 467


Centek Laboratories, LL	C				
	Quantitatà	on Rep	ort (No), Reviewed)	I
Data File : C:\HPCHEM\1\DATA2\ Acq On : 22 Oct 2014 12:17 Sample : C1410057-002A 640X Micc : A910_JUG MS Integration Params; RTEINT. Quant Time: Oct 22 14:30:43 20	9 9 0		ברוד בנוא	Vial: 27 Frator: RJP st : MSD tiplr: 1.00 ; File: A910	ה ה
Quant Method : C:\HPCHEM\1\MET Title : TO-15 VOA Stan Last Update : Mon Oct 06 11:3 Response via : Initial Calibra DataAcq Meth : LUG_RUN	dards for 3:09 2014 tion	5 poir	it calibrat	ion	Dev(Min)
Internal Standards					
1) Bromachloromethane 36) 1,4-difluarobenzene 51) Chlorobenzene-d5	10 56	128	33015	000 00.L	0.02
System Monitoring Compounds 67) Bromofluorobonzene Spiked Amount 1.000	18.68 Range 70	95 - 1.30	41933 Recove)	0.65 ppb ry = 65	ប.00 .ពព%#
Target Compounds 12) Ethanol 15) Freen 11 16) Acctone	5.99 6.44 6.72	45 101 58	992 16984 3016	0.13 ppb 0.11 ppb 0.28 ppb	Qva)ນe † 42 99 4 40




ĊV.

Page 142 of 467

AL102120,D A910_1UG.M

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy	Client Sample 1D:	IA-03
Lab Order:	C1410057	Tag Number:	460,262
Project:	5140 Site Yorkville, NY	Collection Date:	10/14/2014
Lab ID;	C1410057-003A	Matrix:	AIR

Analyses	Result	**Limít (Qual U	Inits	DF	Date Analyzed
FIELD PARAMETERS	-	FLC	ç			Analyst:
Lab Vacuum In	-3 T		"H	ig l		10/18/2014
Lab Vacuum Out	-30		۳ ۲	łg		10/16/2014
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TQ-1	15			Analyst, RJP
1,1,1-Tachloroethane	< 0.15	0.15	ρı	obV	1	10/17/2014 5:59:00 PM
1,1,2.2-) etrachloroethane	s 0.15	0.15	ρţ	obV	1	10/17/2014 5:59:00 PM
1.1.2-Trichloroethane	< 0.15	0.15	P	obV	1	10/17/2014 5:59:00 PM
1,1-Dichloroe(hand	< 0.15	0.15	PI	obV	1	10/17/2014 5:59:00 PM
1,1-Dichloroethene	< 0.15	0.15	99	obV	1	10/17/2014 5:59:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	pp	obV	1	10/17/2014 5:59:00 PM
t,2.4-Trimothylbenzene	0.15	0.15	14	ъb∨	1	10/17/2014 \$:59:00 PM
1.2-Dibromocthane	< 0.15	0.15	PI	Vák	1	10/17/2014 5:59:00 PM
1.2-Dichlorobenzene	< 0.15	0.15	PK	obV	1	10/17/2014 5:59:00 PM
1,2-Dichloroethane	< 0.15	0.15	pr	obV	1	10/17/2014 5:59:00 PM
1,Z-Dichloropropane	< 0.15	0.15	19	νdσ	1	10/17/2014 5:59:00 PM
1,3,5-Trimethylbenzene	0.13	0.15		νaν	1	10/17/2014 5:59.00 PM
1,3-butadiene	< 0.15	0.15	é,	Vdu	1	10/17/2014 5:59:00 PM
1,3-Dichlorobenzono	< 0.15	0.15		νdα	1	10/17/2014 5:59:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	pp	Vdo	1	10/17/2014 5:59:00 PM
1,4-Dioxane	< 0.30	0 30	pp	νdv	1	10/17/2014 5:59:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	pp	νdσ	1	10/17/2014 5 59:00 PM
4-othyitoluene	< 0.15	0.15	PR	bV	1	10/17/2014 5.59:00 PM
Acetone	8.4	1.5	PP	ъъV	5	10/18/2014 12:55.00 AM
Allyl chloride	< 0.15	0.15	ρp	bbV	1	10/17/2014 5:59:00 PM
Benzene	D. 1 4	0.15		vdo	1	10/17/2014 5:59:00 PM
Benzyl chloride	< 0.15	0.15	PP	vo∨	1	10/17/2014 5:59:00 PM
Bromodichloromethane	< 0.15	0.15	PP	юV	1	10/17/2014 5:50:00 PM
Bromotorm	< 0.15	0.15	pp	bV	1	10/17/2014 5:59:00 PM
Bromomethane	< 0.15	0.15	PP	ьv	1	10/17/2014 5.59:00 PM
Carbon disulfide	< 0.15	0.15	pp	ьV	1	10/17/2014 5:59.00 PM
Carbon tetrachloride	< 0.040	0.040	pp	bV	1	10/17/2014 5:59:00 PM
Chlorobenzene	0.10	0 15		νoν	1	10/17/2014 5:59:00 PM
Chloroethane	< 0.15	0.15	PD	ьV	1	10/17/2014 5:59:00 PM
Chloroform	< 0.15	0.15	qq	ьv	1	10/17/2014 5.59:00 PM
Chloromethano	0.49	0.15	ρμ	ъV	1	10/17/2014 5:59:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	μp	bV	1	10/17/2014 5:59:00 PM
cis 1,3 Dichloropropone	< 0.15	0.15	pp	bν	1	10/17/2014 5:59:00 PM
Cyclohexane	< 0.15	0.15		bV	1	10/17/2014 5:59:00 PM
Dibromochloromethane	< 0.15	0.15	qq	ьv	7	10/17/2014 5:59:00 PM
Ethyl acetate	< 0.25	0.25	pp	Ьν	1	10/17/2014 5.59:00 PM

Qualifiers:

** Reporting Linux

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine mulyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

F. Value above quantitation range

- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit Page 5 of 22

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-003A

Client Sample ID: 1A-03 Tag Number: 460,262 Collection Date: 10/14/2014 Matrix: AJR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-	15		Analyst: RJP
Ethylbenzene	< 0.15	0.15	0 00√	1	10/17/2014 5:59.00 PM
From 11	0.33	0.15	ρρον	1	10/17/2014 5:59:00 PM
Freen 113	< 0.15	0.15	ррб∨	1	10/17/2014 5:59:00 PM
Freon 114	< 0.15	0.15	ррь∨	1	10/17/2014 5:59:00 PM
Freon 12	0.57	0.15	ppbV	1	10/17/2014 5:59:00 PM
Heptane	< 0.15	0.15	ррbV	1	10/17/2014 5:59:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	ррыV	1	10/17/2014 5:59:00 PM
Hexane	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Isopropyl alcohol	1.8	0.15	ppbV	1	10/17/2014 5:59:00 PM
m&p-Xylene	0.32	0 30	ppbV	1	10/17/2014 5:59:00 PM
Methyl Butyl Ketone	< 0.30	0.30	Pddd	1	10/17/2014 5:59:00 PM
Methyl Ethyl Kelone	0.45	0.30	ppbV	t	10/17/2014 5:59:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30	ppb∨	1	10/17/2014 5:69:00 PM
Methyl tort-butyl ether	< 0.15	0.15	ppb∨	1	10/17/2014 5:59:00 PM
Methylene chlorido	0.15	0.15	ppbV	1	10/17/2014 5.59·00 PM
o-Xylene	0.12	0.15	J ppbV	1	10/17/2014 5:59:00 PM
Propylene	< 0.15	0.15	ppb∨	r	10/17/2014 5.59.00 PM
Styrona	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Tetrachloroethylene	< 0,15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Tetrahydrofuran	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Toluene	0.42	0 15	ррб∨	1	10/17/2014 5:59:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/17/2014 5:59.00 PM
Trichloroothene	0.050	0.040	ppbV	1	10/17/2014 5:59.00 PM
Vinyl acetate	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Vinyl Bromide	< 0.15	0.15	ppbV	1	10/17/2014 5:59:00 PM
Vinyl chloride	< 0.040	0.040	vdqq	1	10/17/2014 5:59:00 PM
Surr: Bromofluorobenzene	86.0	70-130	%REC	1	10/17/2014 5.59 00 PM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routing analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery (imits
- . Results reported are not blank corrected
- E Value above quantitation mage
- J Analyte detected at or helow quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-003A

Client Sample ID: 1A-03 Tag Number: 460,262 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	10/17/2014 5:59:00 PM
1.1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	ĩ	10/17/2014 5:59:00 PM
1.1,2-Trichloroethane	< 0.82	0.82		ug/m3	٦	10/17/2014 5:59:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	10/17/2014 5:59:00 PM
1.1-Dicbloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 5:59:00 PM
1,2,4-Trichtorobenzene	< 1.1	1,1		ug/m3	1	10/17/2014 5:59.00 PM
1,2,4 Trimethylbenzene	0 74	0.74		ug/m3	1	10/17/2014 5.59:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	10/17/2014 5:59:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 5:59:00 PM
1,2-Dichloroothano	< 0.61	0.61		ug/m3	1	10/17/2014 5:59:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	10/17/2014 5 59 00 PM
1,3,5-Trimethylbenzene	0.64	0.74	J	vg/m3	1	10/17/2014 5.59;00 PM
1,3 butadiene	< 0.33	0.33		ug/m3	1	10/17/2014 5 59:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 5:59.00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 5:59:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	10/17/2014 5:59:00 PM
2,2,4-(rimethylpentane	< 0.70	0.70		ug/m3	1	10/17/2014 5:59:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	10/17/2014 5:59:00 PM
Acetone	20	3.6		ug/m3	5	10/18/2014 12:55:00 AM
Ally! chloride	< 0.47	0.47		ug/m3	1	10/17/2014 5:59:00 PM
Benzene	0.45	0.48	J	ug/m3	1	10/17/2014 5:59:00 PM
Benzyl chlorido	< 0.86	0.86		ug/m3	1	10/17/2014 5:59:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	10/17/2014 5:59:00 PM
Bramoform	< 16	16		ug/m3	t	10/17/2014 5:59:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	10/17/2014 5.59.00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	10/17/2014 5:59:00 PM
Carbon tetrachloride	< 0.25	0.25		ug/m3	1	10/17/2014 5:59:00 PM
Chlorobonzono	0.46	0.69	Ł	ug/m3	î	10/17/2014 5:59:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	10/17/2014 5·59:00 PM
Chlaroform	< 0.73	0.73		ug/m3	1	10/17/2014 5:59:00 PM
Chioromethane	1.0	0.31		ug/m3	1	10/17/2014 5:59:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 5.59:00 PM
os-1,3-Dichloropropene	< D.68	0.68		ug/m3	1	10/17/2014 5:59:00 PM
Cyclohexanc	< 0.5Z	0.52		ug/m3	1	10/17/2014 5:59:00 PM
Dibromochloromothane	< 1.3	1.3		ug/m3	1	10/17/2014 5:59:00 PM
Ethyl acetale	< 0.90	0.90		ug/m3	1	10/17/2014 5:59:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	i	10/17/2014 5:59:00 PM
Frean 11	1.9	0.84		ug/m3	1	10/17/2014 5.59:00 PM
Freen 113	< 1.1	1.1		ug/m3	1	10/17/2014 5:59:00 PM
Froon 114	< 1.0	1.0		ug/m3	1	10/17/2014 5:59:00 PM

Qualifiers: ** Reporting Limit

- B Analyte detected in the associated Method Blank.
- 11 Folding times for preparation or analysis exceeded.
- JN Non-routine analyte. Quantitation estimated
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- Fig. Value above quantitation range
- 3 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

.

Date: 31-Oct-14

. .

_

CLJENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-003A

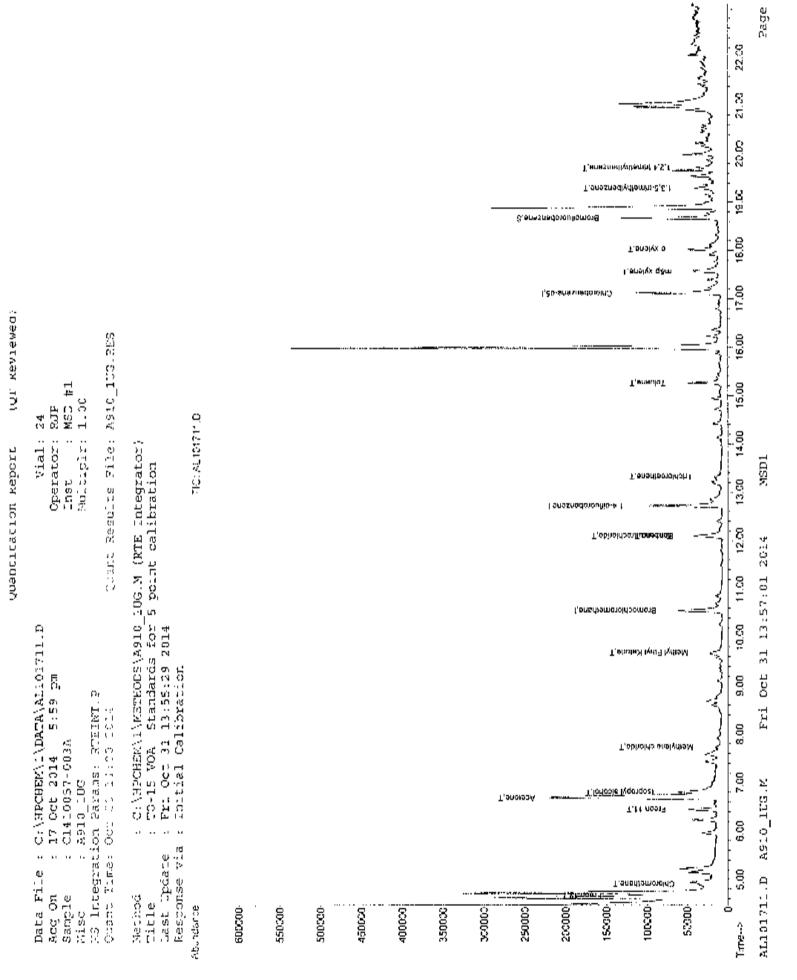
Client Sample ID: 1A-03 Tag Number: 460,262 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed	
		тс)-15		Analyst: RJP		
Freen 12	2.8	0.74		ug/m3	1	10/17/2014 5:59:00 PM	
Pleptane	< 0.61	0.61		ug/m3	1	10/17/2014 5:59:00 PM	
Hexachloro, 1,3-butadiene	< 1.6	1.6		ug/m3	1	10/17/2014 5:59:00 PM	
Hexane	< 0.53	0.63		ug/m3	1	10/17/2014 5:59:00 PM	
isopropyl alcohol	4.3	0.37		ug/m3	1	10/17/2014 5:59:00 PM	
m&p-Xylene	1.4	13		ug/m3	1	10/17/2014 5:59:00 PM	
Methyl Butyl Ketone	- 1.2	1.2		ug/m3	1	10/17/2014 5.59:00 PM	
Methyl Ethyl Ketono	1.3	0.88		ug/m3	1	10/17/2014 5:59:00 PM	
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	10/17/2014 5:59:00 PM	
Methyl (er) butyl ether	= 0.54	0.64		ug/m3	1	10/17/2014 5:59:00 PM	
Methylene chloride	0.52	0.62		ug/m3	1	10/17/2014 5:59:00 PM	
o-Xyiene	0.52	0.65	J	ug/m3	1	10/17/2014 5:59:00 PM	
Propylene	< 0.26	0.26		ug/m3	1	10/17/2014 5:59:00 PM	
Styrene	< 0.64	0.64		ug/m3	1	10/17/2014 5:59:00 PM	
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	10/17/2014 5:59:00 PM	
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	10/17/2014 5:59:00 PM	
Toluene	16	0.57		ug/m3	1	10/17/2014 5:59:00 PM	
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 5:59:00 PM	
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/17/2014 5:59:00 PM	
Trichloroethene	0.27	0.21		ug/m3	1	10/17/2014 5:59:00 PM	
Vinyl acetate	< 0.53	0.53		ug/m3	1	10/17/2014 5:59:00 PM	
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/17/2014 5:59:00 PM	
Vinyl chloride	< 0.10	0.10		vg/m3	1	10/17/2014 5:59:00 PM	

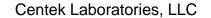
....

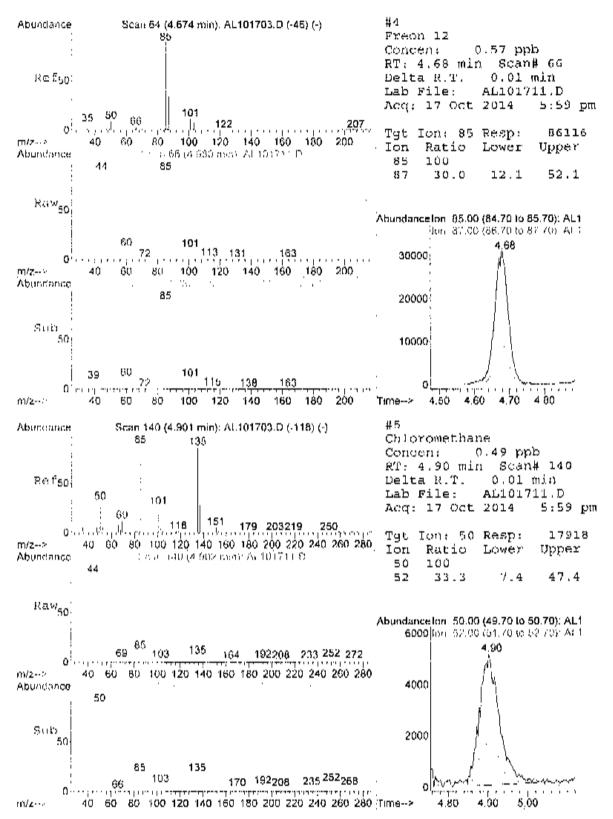
.

Qualifiers:

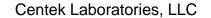

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery ontside accepted recovery limits

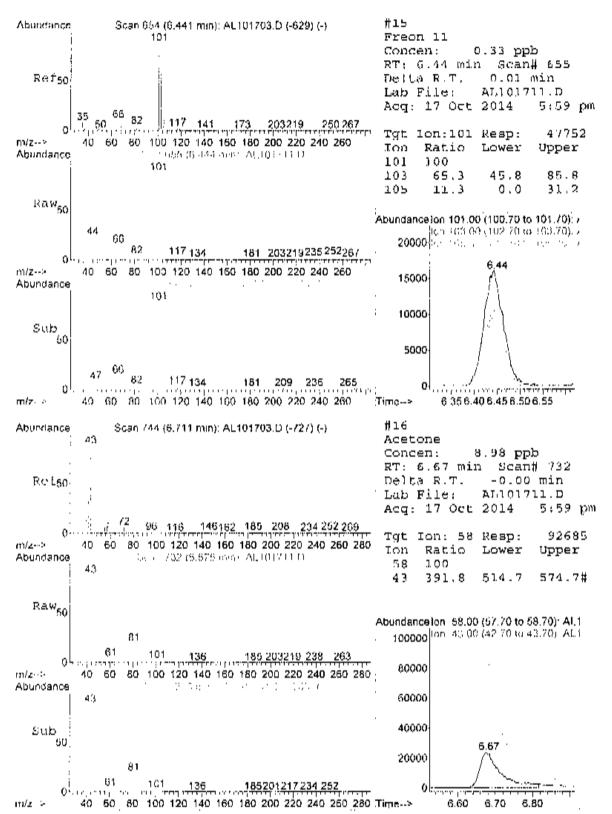
Rusults reported are not blank corrected


- F Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit


Centek Laboratories, LL	_C						
	Quantitat:	lon Rep	ort (QT	Review	ved)		
Data File : C:\HPCHEM\1\DATA\ Acq On : 17 Oct 2014 5:5 Sample : C1410057-003A Misc : A910_10G MS Integration Params: RTEINT Quant Time: Oct 17 21:57:13 2	9 pm	Quia	Oper Inst Mult	Vial: ator: iplr: File:	RЛР MSD 1.0()	.RES
Quant Method : C:\HPCHEM\1\METHODS\A910 1UG.M (RTE Integrator) Title : TO 15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 12:31:36 2014 Response via : Initial Calibration DataAcq Meth : 1UG_RUN							
Internal Standards	R.T.	QIon	Response C	lone Ur	nits	Dev	(Min)
1) Bromochloromethane 36) 1.4-difluorobenzene 51) Chlorobenzene-d5	10.55 12.72 17.12	128 114 117	31110 119965 91050	1.00 1.00 1.00	dqq dqq dqq		0.00 0,00 0.00
System Monitoring Compounds 67) Bromofluorobenzene Spiked Amount 1.000	18.67 Range 70	95 - 130	55472 Recovery	0.86 / =	ррь ве,	.00%	0.00
Target Compounds						Qva	alue
 Freen 12 	4.68	85	86116	0,57	ppb		96
5) Chloromethane	4.90				ppb		89
15) Freon 11	6.44	101	47752	0.33	ppp		99
16) Acetone	6.67	58	92685 62202	8.98	ppb	#	48
<pre>18) Teopropyl alcohol 22) Methylene chloride</pre>	6.80	45	62202	1./0	ppo	Π	$\frac{100}{82}$
22) Methyl Ethyl Ketone	(./J 0 C0	84 70	6010 6469m (0.10	ppp		04
39) Carbon tetrachloride	12 10	117	11271	0.10	oph		96
40) Benzene	12.08	-14	16188	0.14	000		93
45) Trichloroethene	13.33	130	2984m/	0.05	ממם		
52) Talmene	15.26	92	26207	0.42	ppb		100
61) map-xylene	17.55	91.	33003	0.32	ppb		97
65) o xylène	18.03	91	62202 4016 6469m 11271 16188 2984m/ 26207 33003 15513 19976m/	0.12	ppb		98
72) 1,3,5 trimethylbenzene	19.30	105	19976m/+ 16368	0,13	ppb		
73) 1,2,4 trimethylbenzene	19.72	105	16368	0.15	ррь		98

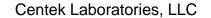
.

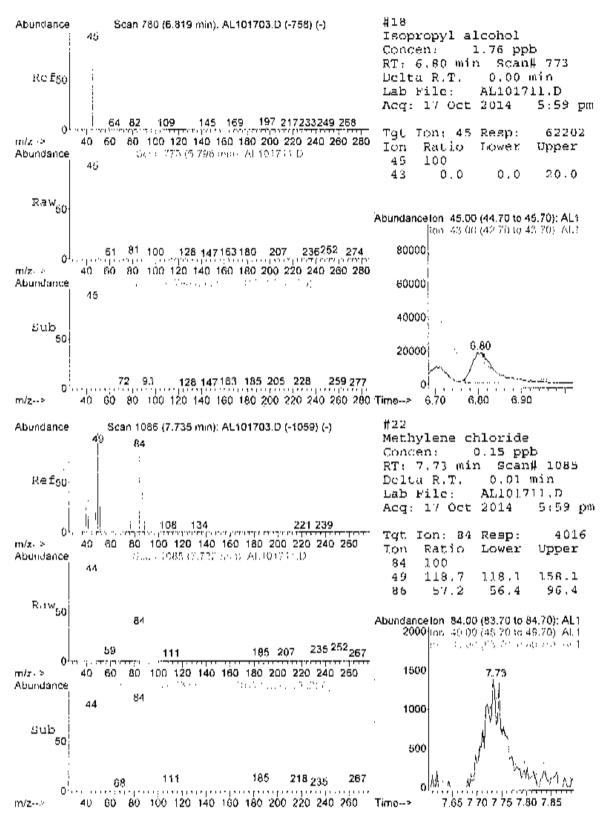

Ω.



AL101711.D A910_10G.M

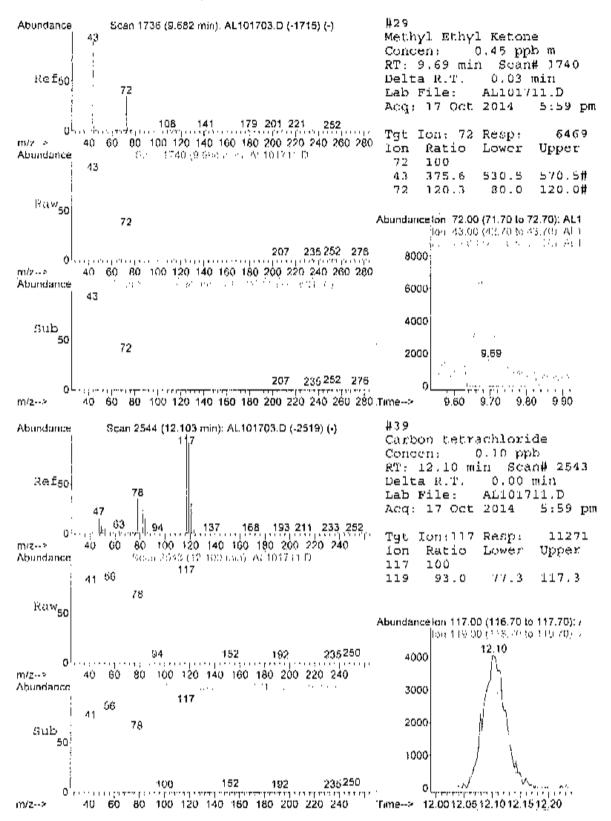
Page 151 of 467



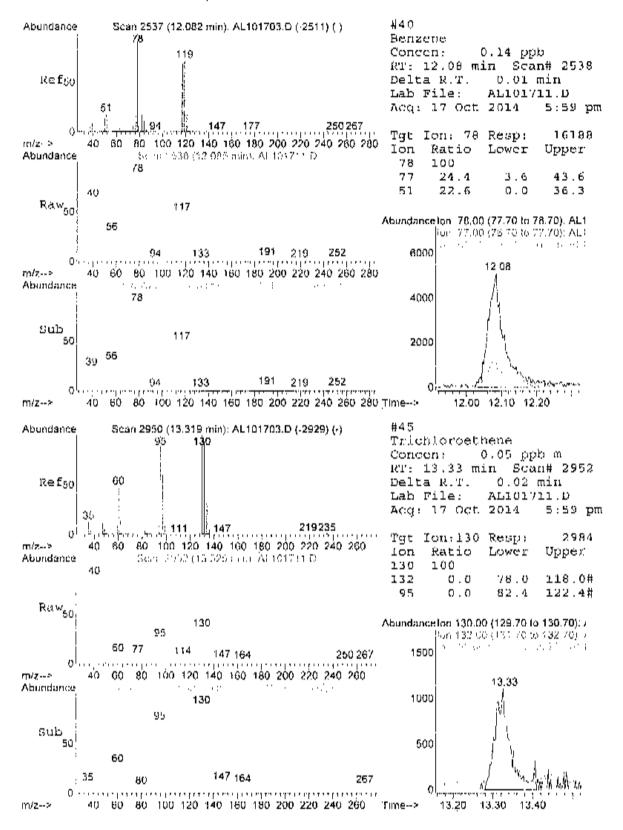


AL101711.D A910 1UC.M

Page 4

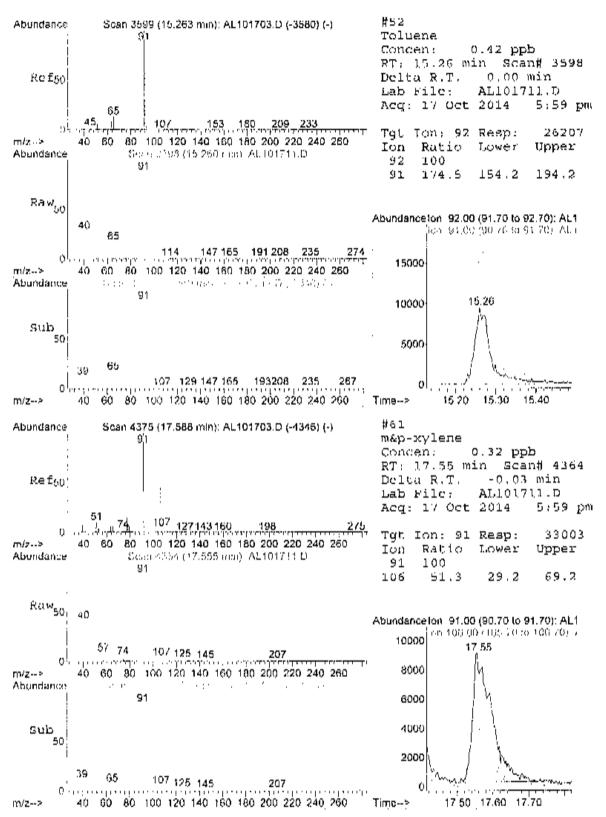

Page 152 of 467

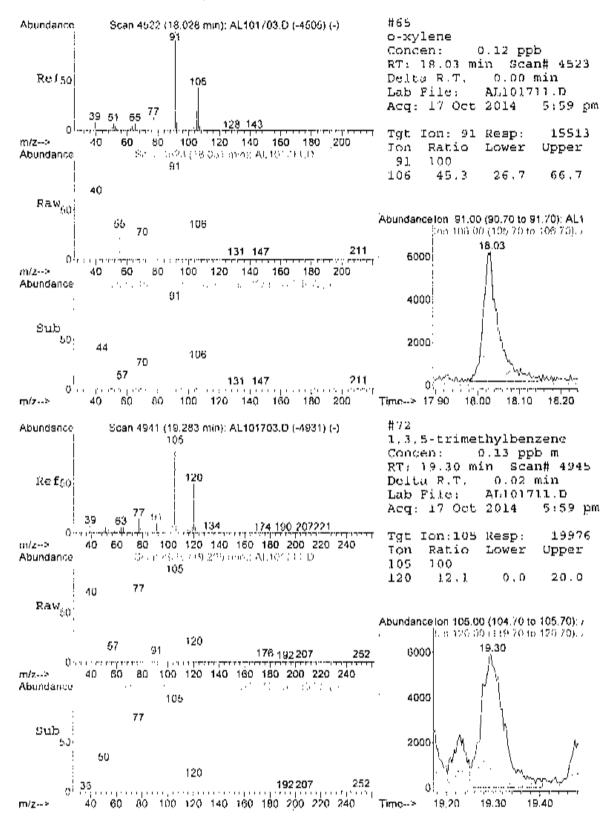
Page 5


Page 153 of 467

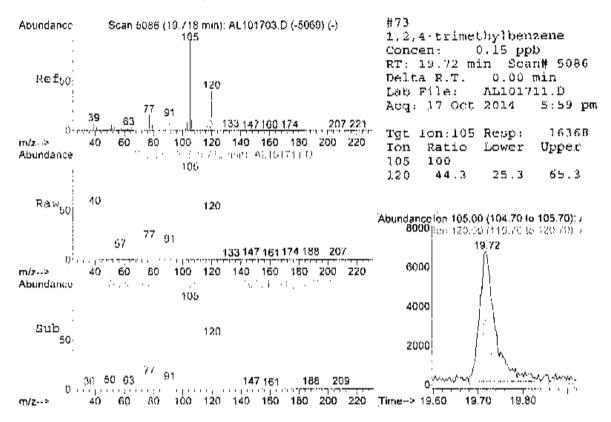
AL101711.D A910_1UG.M

Page 6

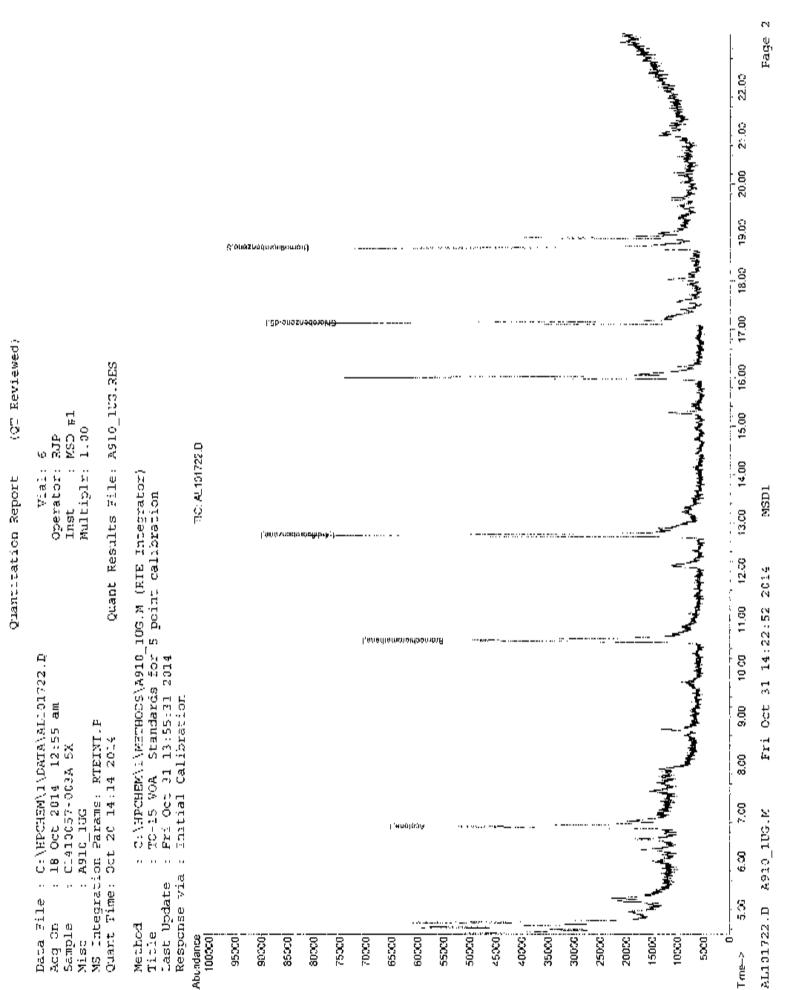

Page 154 of 467


AL101711.D A910_10G.M

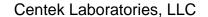
Page 7

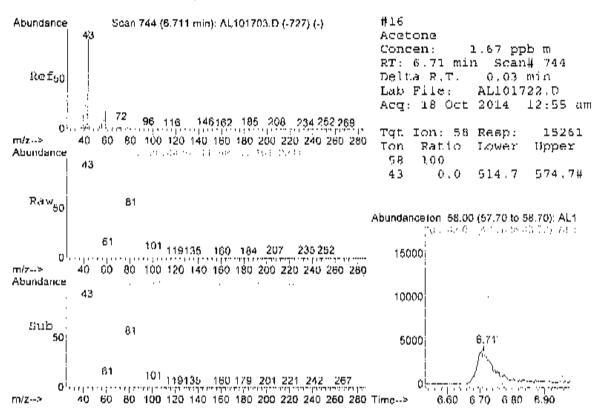


Page 156 of 467



AL101711.0 A910_100.M


Page 157 of 467



Centek Laboratories, LLC (QT Reviewed) Quantitation Report Data File : C:\HPCHEM\1\DATA\AL101722.D Vial: 6 Acq On : 18 Oct 2014 12:55 am Operator: RJP Sample : C1410057-003A 5X Misc : A910_1UG Inst : MSD #1 Multiply: 1.00 MS Integration Params: RTEINT, P Ouant Time: Oct 18 07:21:56 2014 Quant Results File: A910 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 12:31:36 2014 Response via : Initial Calibration DataAcq Meth : 1UC_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane10.55128276201.00ppb0.0036) 1,4-difluorobenzene12.73114973041.00ppb0.0251) Chlorobenzene-d517.13117649461.00ppb0.00 System Monitoring Compounds 57) Bromofluorobenzene 18.68 95 35108 0.76 ppb 0.02 Spiked Amount 1.000 Range 70 - 130 Recovery - 76.00% 67) Bromofluorobenzene Target Compounds Ovalue 6.71 58 15261m 1.67 ppb 16) Acetone

Page 160 of 467

Page 161 of 467

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057:004A

Client Sample ID: SS-02 Tag Number: 158,265 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Qua	al Units	DF	Date Analyzed
FIELD PARAMETERS	FLD				Analyst:
Lab Vacuum In	-2		"Hg		10/16/2014
Lab Vacuum Out	··30		"Hg		10/16/2014
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1.1,1-Trichloroethane	0.33	0.15	ppbV	1	10/21/2014 4.12:00 AM
1.1.2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
1, 1, 2-Trichloroothane	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
1,2,4-Trichlorobenzene	0.85	0.15	ppbV	1	10/21/2014 4:12:00 AM
1.2.4-Trimothylbenzene	2.6	1.5	ppbV	10	10/21/2014 7:12:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	10/21/2014 4·12·00 AM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/21/2014 4 12 00 AM
1,2-Dichloroethane	< D.15	0.15	ppb∀	1	10/21/2014 4.12:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	10/21/2014 4.12.00 AM
1.3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
1,3-butadiene	< 0.15	0.15	ppbV	í	10/21/2014 4:12:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/21/2014 4·12:00 AM
1,4-Dichlorobenzene	0.29	0.15	Vdqq	1	10/21/2014 4:12:00 AM
1,4-Dioxane	< 0.30	0.30	vdqq	1	10/21/2014 4:12.00 AM
2.2,4-trimethylpentane	< 0.15	0.15	ррь∨	1	10/21/2014 4:12.00 AM
4-sthyltoluone	0.34	0.15	ррь∨	1	10/21/2014 4:12:00 AM
Acetone	200	190	Vaqq	640	10/22/2014 12:53:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	10/21/2014 4·12:00 AM
Benzene	1.1	0 15	Vdqq	1	10/21/2014 4:12:00 AM
Bonzyl chloride	< 0.15	0.15	ppbV	n	10/21/2014 4:12.00 AM
Bromodichloromethane	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
Bromoform	< 0.15	0.15	pobV	1	10/21/2014 4:12:00 AM
Bromome(base	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
Carbon disuffide	6.4	1.5	ppbV	10	10/21/2014 7:12:00 AM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
Chlorobenzene	< 0.15	0.15	Vdqq	1	10/21/2014 4:12:00 AM
Chloroethane	< 0.15	0.15	pptiV	1	10/23/2014 4:12:00 AM
Chloroform	< 0.15	0.15	ppbV	1	10/21/2014 4:12:00 AM
Chloromethane	0 27	0.15	ppbV	t	10/21/2014 4:12:00 AM
cis-1,2-Dichloraothone	< 0.15	0.15	ppbV	1	10/21/2014 4 12:00 AM
cis-1,3 Dichloropropono	< 0.15	0.15	opbV	1	10/21/2014 4 12:00 AM
Cyclohexane	< 0.15	0,15	ppbV	1	10/21/2014 4:12:00 AM
Dibromochloromethane	< 0.15	0.15	ррб∨	1	10/21/2014 4:12:00 AM
Ethyl acetate	0.17	0.25 J	ppbV	1	10/21/2014 4:12:00 AM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-rotatine analyte. Quantilution estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation moge

ND

- J Analyte detected at or below quantitation limits
 - Not Detected at the Reporting Limit Page 7 of 22

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-004A

Client Sample ID: SS-02 Tag Number: 158,265 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
Ethylbenzene	4.3	15		ppbV	10	10/21/2014 7-12:00 AM
Freen 11	7.4	1.5		ppbV	10	10/21/2014 7:12:00 AM
Freen 113	0.13	0.15	L	ррбV	1	10/21/2014 4 12:00 AM
Freon 114	< 0.15	0.15		ρρυν	1	10/21/2014 4.12:00 AM
Freon 12	1.3	0.15		ppb∨	1	10/21/2014 4.12.00 AM
Heptane	15	1.5		ррб∨	10	10/21/2014 7:12:00 AM
Hoxachloro-1,3-butadiene	< 0.15	0.15		ppb∀	1	10/21/2014 4:12:00 AM
Hexane	1.9	1.5		ppbV	10	10/21/2014 7:12:00 AM
Isopropyl alcohol	7.4	1.5		ppbV	10	10/21/2014 7:12:00 AM
m&p-Xylene	14	3.0		ррь∨	10	10/21/2014 7:12:00 AM
Methyl Butyl Ketone	1.4	3.0	J	ppbV	10	10/21/2014 7:12:00 AM
Methyl Ethyl Ketone	3.7	3.0		рръ∨	10	10/21/2014 7:12:00 AM
Methyl Isobutyl Ketone	0.89	0 30		ppbV	1	10/21/2014 4.12:00 AM
Methyl tert-butyl othor	1.2	015		ppbV	1	10/21/2014 4:12:00 AM
Methylene chloride	0.12	0.15	t.	ppbV	1	10/21/2014 4:12:00 AM
o-Xylene	2.5	1.5		ppbV	10	10/21/2014 2:12:00 AM
Propylene	< 0.15	0.15		ppbV	1	10/21/2014 4:12:00 AM
Styreno	0.64	0.15		ppb∨	1	10/21/2014 4:12:00 AM
Tetrachloraethylene	1.2	0.15		ррб∨	1	10/21/2014 4 12:00 AM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	10/21/2014 4.12.00 AM
Toluene	2.4	1.5		ppbV	10	10/21/2014 7:12:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	10/21/2014 4:12:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		рръУ	1	10/21/2014 4·12:00 AM
Trichloroethene	0.18	0.15		ppbV	1	10/21/2014 4:12:00 AM
Vinyl acetate	< 0.15	0.15		ppbV	1	10/21/2014 4:12:00 AM
Vlay! Bromide	< 0.15	0.15		Vdqq	1	10/21/2014 4:12:00 AM
Vinyl chloride	< 0.15	0.15		ppbV	1	10/21/2014 4:12:00 AM
Surr: Bromofluorobenzene	123	70-130		%REC	1	10/21/2014 4:12:00 AM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-rotatine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- Analyte detected at or below quantitation limits.
- ND Not Detected at the Reporting Limit

Page 8 of 22

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-004A

Client Sample ID: SS-02 Tag Number: 158,265 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Uinit	Qual I	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		Analyst: RJP				
1,1,1-Trichloroethane	1.8	0.82	t.	.g/m3	1	10/21/2014 4:12:00 AM
1,1.2,2-Tetrachloroethane	< 1.0	1.0		ig/m3	1	10/21/2014 4:12:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ι	ig/m3	1	10/21/2014 4:12:00 AM
1,1-Dichloroethane	< 0.61	0.61	ι	ig/m3	1	10/21/2014 4:12:00 AM
1,1-Dichloroethene	< 0.59	0.59	ι	/m3	1	10/21/2014 4(12)00 AM
1,2,4-Trichlorobenzene	6.3	11	Ļ	ıg/m3	1	10/21/2014 4:12:00 AM
1,2,4-Trimethylbenzene	13	7.4	ι.	ig/m3	10	10/21/2014 7:12.00 AM
1,2-Dibromoethane	< 1.2	1.2	L	⊿g/m3	1	10/21/2014 4:12:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	L L	ig/m3	1	10/21/2014 4:12:00 AM
3,2-Dichlorosthane	< 0.61	0.61	L	ig/m3	1	10/21/2014 4:12:00 AM
1,2-Dichloropropane	< 0.69	0.69	U	ig/m3	1	10/21/2014 4:12:00 AM
1,3,5 Trimethylbenzene	< 0.74	0 74	L,	/m3	1	10/21/2014 4:12:00 AM
1,3-butadiene	< 0.33	0.33	L.	ag/m3	1	10/21/2014 4:12:00 AM
1.3-Dichlorobenzene	< 0.90	0.90	L	/m3	1	10/21/2014 4:12:00 AM
1,4-Dichlorobonzene	1.7	0.90	L	ig/m3	1	10/21/2014 4:12:00 AM
1.4-Dioxano	< 1.1	1.1	L	ig/m3	1	10/21/2014 4:12:00 AM
2.2.4-trimethylpentane	< 0.70	0.70	U	ig/m3	1	10/21/2014 4:12:00 AM
4 ethylioluene	1,7	0.74	U	ig/m3	1	10/21/2014 4:12:00 AM
Acetone	470	450	L.	ig/m3	640	10/22/2014 12:53:00 AM
Allyl chloride	< 0.47	0.47	L	ig/m3	1	10/21/2014 4.12:00 AM
Benzene	3.6	0.48	L	ig/m3	1	10/21/2014 4:12:00 AM
Benzyl chloride	< 0.86	0.86		ig/m3	1	10/21/2014 4:12:00 AM
Bromodichloromethane	< 1.0	1.0	U	ig/m3	1	10/21/2014 4:12:00 AM
Bromotorm	< 1.6	1.6	U	ig/m3	1	10/21/2014 4:12:00 AM
Bromomethane	< 0.58	0.58	ų	ig/m3	1	10/21/2014 4:12:00 AM
Carbon disulfide	20	4.7	L	ig/m3	10	10/21/2014 7:12:00 AM
Carbon tetrachloride	< 0.94	0.94		ig/m3	1	10/21/2014 4:12:00 AM
Chlorobenzene	< 0.69	0.69		.g/m3	1	10/21/2014 4:12:00 AM
Chlomethane	< 0.40	0.40		ig/m3	1	10/21/2014 4:12:00 AM
Chloroform	< 0.73	0.73		ig/m3	1	10/21/2014 4:12:00 AM
Chloromelhane	0.56	0.31	u	ig/m3	1	10/21/2014 4:12:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59		ig/m3	1	10/21/2014 4.12.00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		- .g/m3	1	10/21/2014 4:12:00 AM
Cyclohexane	< 0.62	0.52		ig/m3	1	10/21/2014 4:12:00 AM
Dibromochloromethane	< 13	1.3		ig/m3	1	10/21/2014 4:12:00 AM
Ethy) acetate	0.61	0.90		ig/m3	1	10/21/2014 4:12:00 AM
Ethylbenzene	19	6.5		ig/m3	10	10/21/2014 7.12.00 AM
Freon 11	42	8.4		.g/m3	10	10/21/2014 7:12.00 AM
Freon 113	1.0	1.1		ig/m3	1	10/21/2014 4:12.00 AM
Freon 114	< 1.0	1.0		ig/m3	1	10/21/2014 4:12:00 AM

Qualifiers: ** Reporting Limit

- H Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected.

- E Value above quintitation range
- 3 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-004A

Client Sample ID: SS-02 Tag Number: 158,265 Collection Date: 10/14/2014 Matrix: A{R

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	ΤΟ-15					Analyst: RJP
Freon 12	6.4	0.74		ug/m3	1	10/21/2014 4:12:00 AM
Heptane	6.1	6.1		ug/m3	10	10/21/2014 7:12:00 AM
Rexachloro 1,3-butadiene	< 1.6	16		ug/m3	1	10/21/2014 4·12·00 AM
Hexane	6.7	53		ug/m3	10	10/21/2014 7:12:00 AM
isopropyl alcohol	18	3.7		ug/m3	10	10/21/2014 7:12:00 AM
m&p-Xylene	62	13		ug/m3	10	10/21/2014 7.12.00 AM
Mathyl Butyl Ketone	5.7	12	Г	ug/m3	10	10/21/2014 7:12:00 AM
Methyl Ethyl Kelone	11	8.8		ug/m3	10	10/21/2014 7:12:00 AM
Methyl (sobutyl Ketone	3.6	1.2		vg/m3	1	10/21/2014 4-12:00 AM
Methyl tert-butyl ether	45	0.54		ug/m3	1	10/21/2014 4:12:00 AM
Methylene chloride	0.42	0.52	Г	ug/m3	1	10/21/2014 4.12:00 AM
o-Xylone	11	6.5		ug/m3	10	10/21/2014 7.12.00 AM
Propylenc	< 0.26	0.26		ug/m3	1	10/21/2014 4:12.00 AM
Styrene	2.7	0.64		ug/m3	1	10/21/2014 4:12:00 AM
Tetrachloroethylene	6.3	1.0		ug/m3	1	10/21/2014 4:12:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	10/21/2014 4·12·00 AM
Toluene	9.0	5.7		ug/m3	10	10/21/2014 7·12:00 AM
trans-1,2-Dichloroothone	< 0.59	0.59		ug/m3	1	10/21/2014 4.12:00 AM
trans-1.3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/21/2014 4:12:00 AM
Trichloroethene	0.97	0.81		ug/m3	1	10/21/2014 4:12:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	10/21/2014 4:12:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/21/2014 4:12:00 AM
Vinyl chloride	< 0.38	0.38		ug/m3	1	10/21/2014 4·12·00 AM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AL102031.D Acq On : 21 Oct 2014 4:12 am Vial: 28 Operator: RJP Sample : C1410057-004A Misc : A910_10G That : MSD #1 Multiplr: 1.00 Misc : A910_1UG Multiplr: 1.00 MS Integration Parame; RTEINT,P Quant Time: Oct 21 10:14:06 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : LUC RUN R.T. Qion Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.53128465721.00 ppb-0.0136) 1.4-difluorobenzene12.711142163421.00 ppb0.0151) Chlorobenzene-d517.111172237381.00 ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.66 95 194235 1.23 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 123.00%

 Target Compounds
 Qvalue

 4) Freon 12
 4.67 85 295041
 1.30 ppb
 9

 5) Chloromethane
 4.90 50 1503R 0.27 ppb
 83

 15) Freon 11
 6.44 101 674019
 4.03 ppb
 99

 16) Acetone
 6.62 58 3029663 196.06 ppb
 138

 18) Isopropyl alcohol
 6.75 45 365352
 6.90 ppb
 138

 18) Isopropyl alcohol
 6.77 42 101 18228 0.13 ppb
 96

 20) Freen 113
 7.42 101 18228 0.13 ppb
 96

 21) Methylene chloride
 7.73 84 4675 0.12 ppb
 76

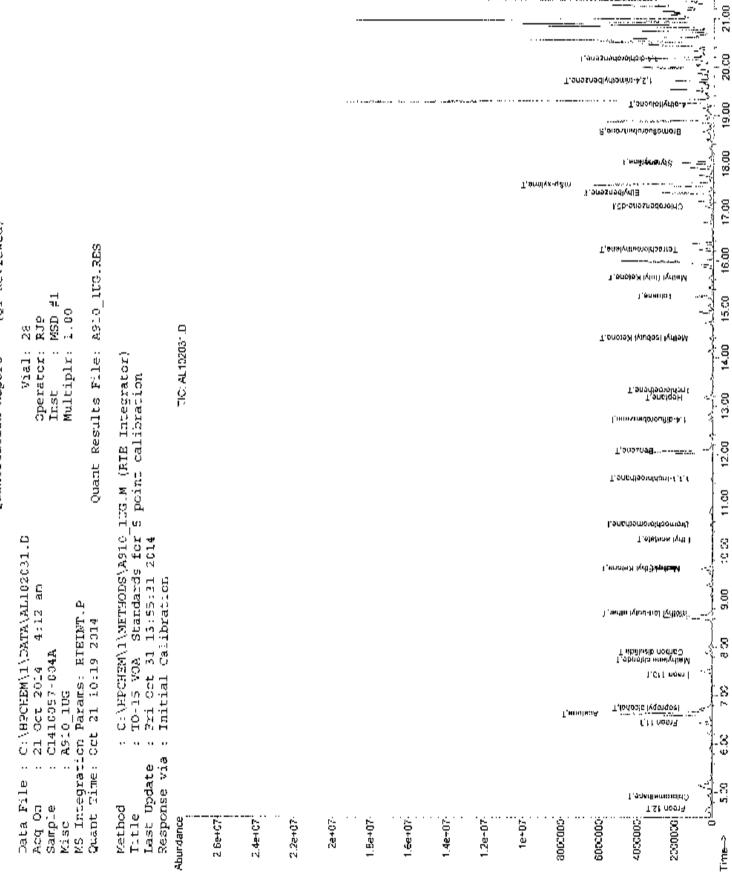
 24) Carbon dioultide
 7.89 76 941658 6.34 ppb
 99

 26) methyl tert-butyl ether
 8.71 73 179578m
 1.24 ppb

 29) Mothyl Ethyl Ketone
 9.62 72 154059m
 7.10 ppb

 31) Hexane
 9.64 57 286415m
 3.21 ppb

 32) Ethyl acetate
 10.22 43 13855 0.17 ppb # 75


 37) 1.1.1-trichloroethane
 11.49 97 58409 0.33 ppb
 99

 43) Trichloroethene
 13.31 130 1.2910 0.18 ppb # 32

 53) Teltone
 15.25 92 500207 3.23 ppb 100

 54) Methyl Isobutyl Ketone
 15.64 43 183166 2.25 ppb # 32

 55) Tetrachloroethylene
 15.64 43 183166 2.25 ppb 93
 </ Target Compounds Ovalue

Page 2

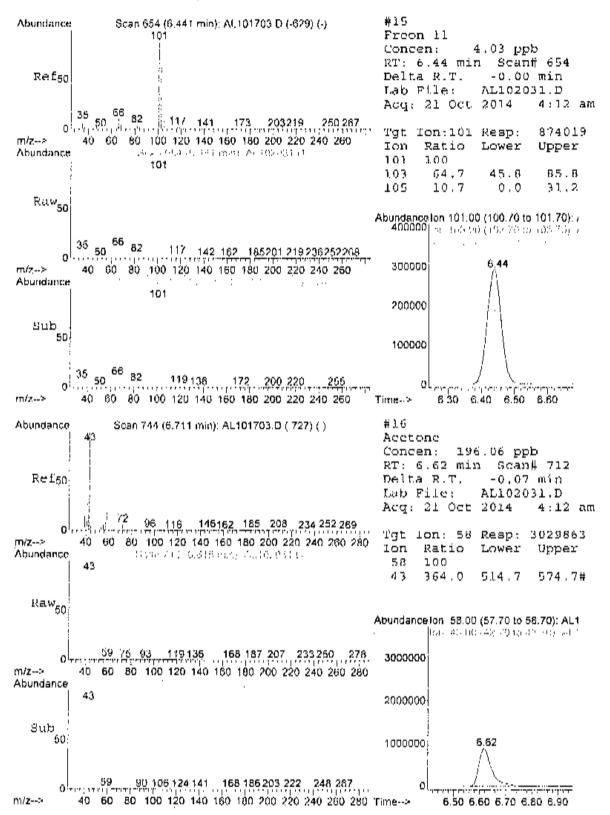
NSD1

Fri Oct 31 14:23:50 2014

AL102031.D A910 10G.M

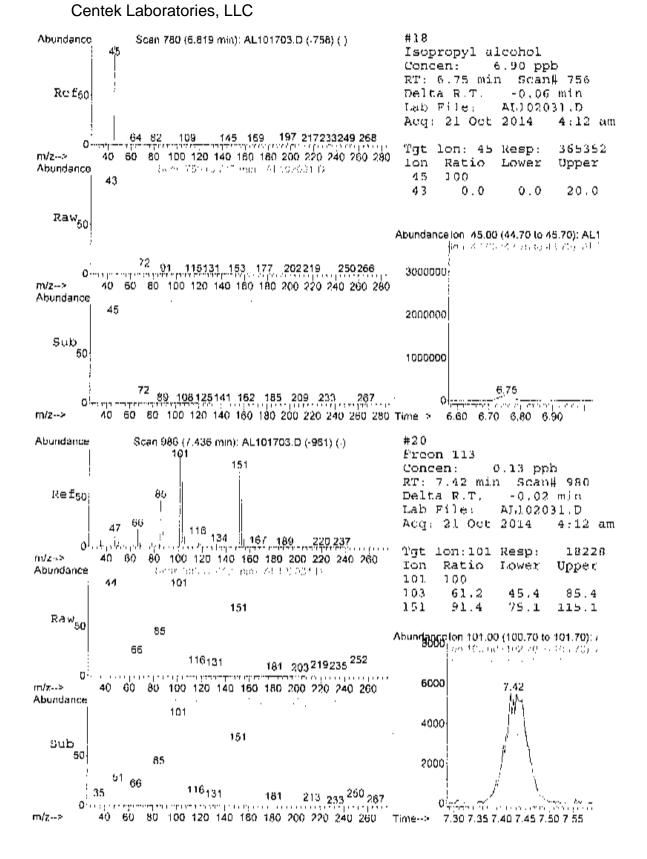
22.C0

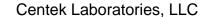
T.prosnadoro/doni+4-5,1

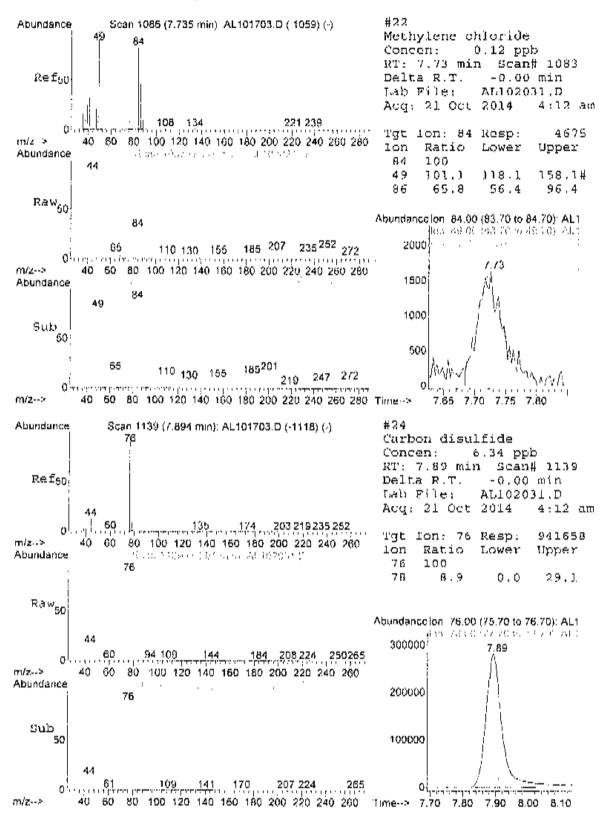


AL102031.D A910 1UG.M

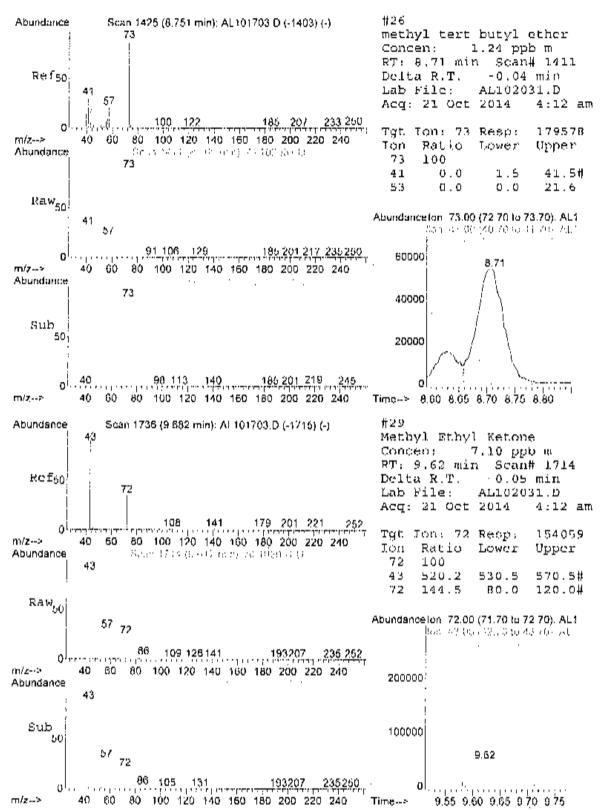
MSD1


Page 3

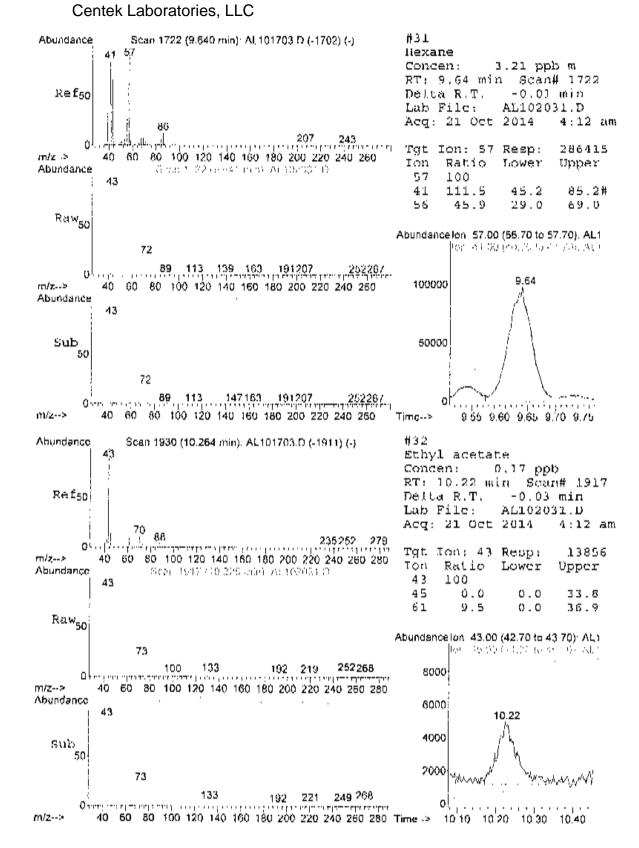

AL102031.D A910_1UG.M


Page 4

MSD1


Page 170 of 467

Page 171 of 467

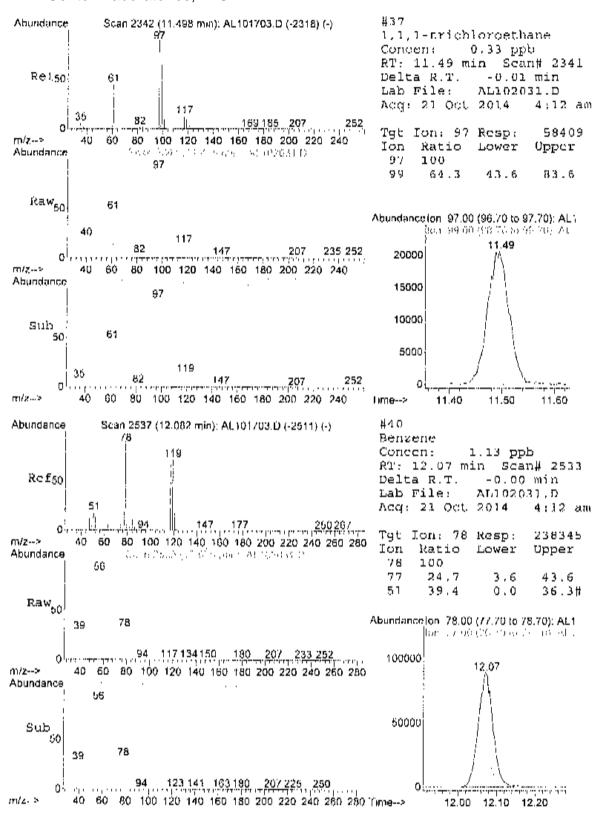


AL102031.D A910 1UG.M

MSD1

Page 7

Page 172 of 467

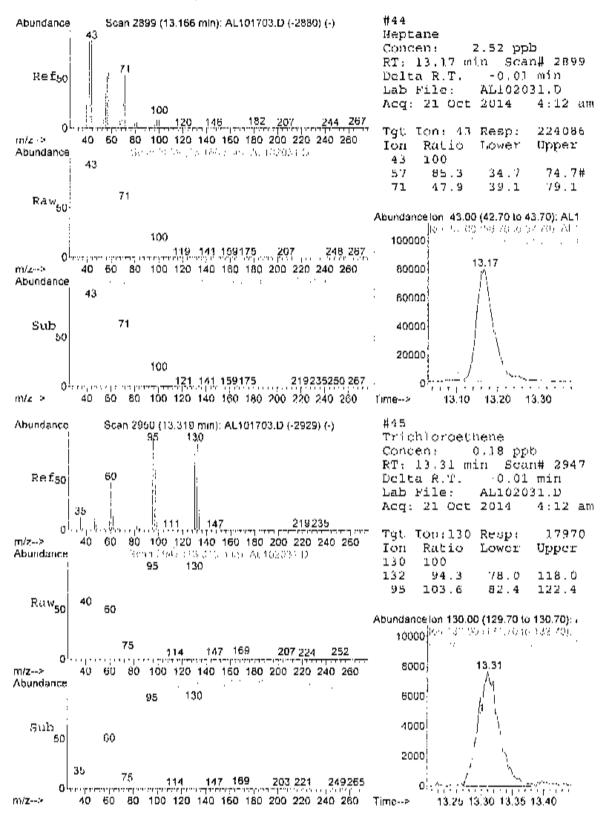


ALIO2031.0 A910 1UG.M

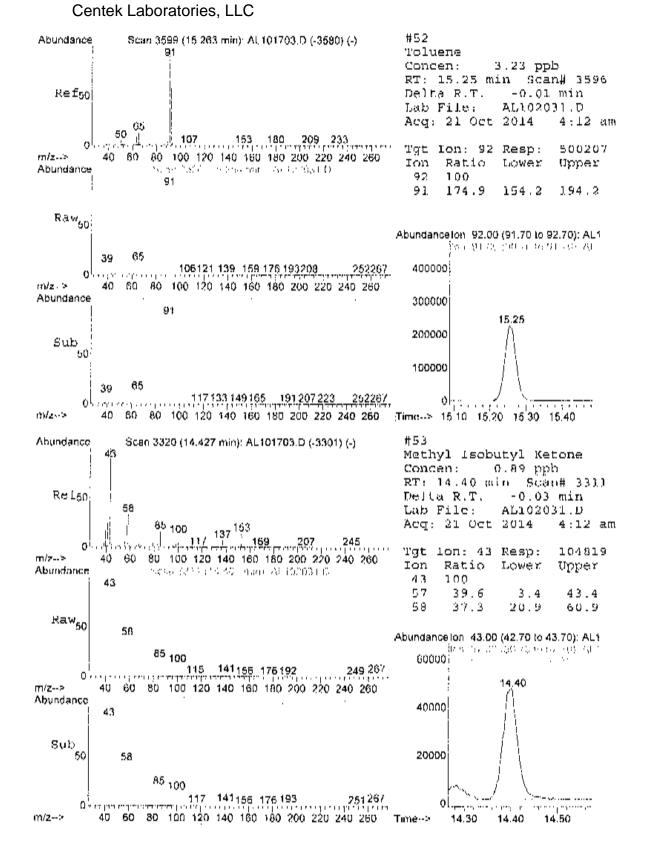
MSD1

Page 8

Page 173 of 467

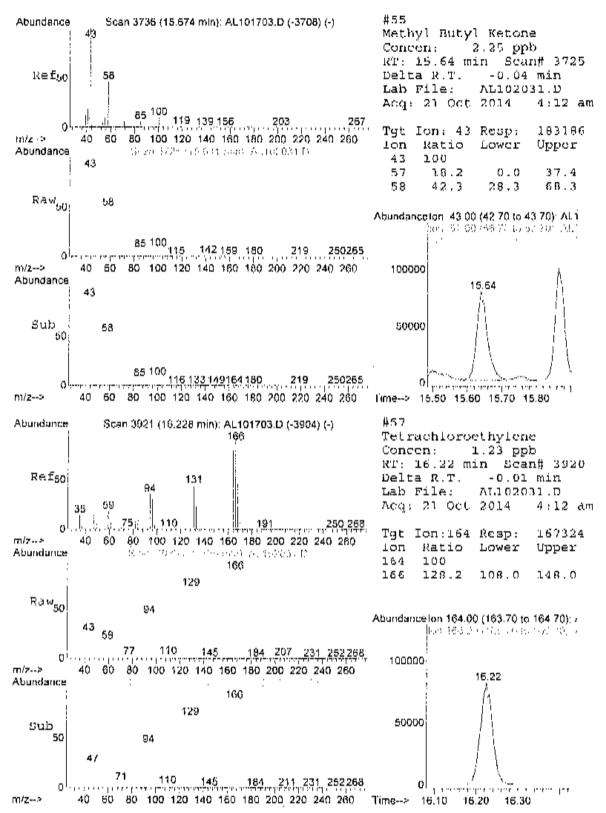


AL102031.D A930 1UG.M Fri

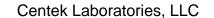

MSD1

Page 174 of 467

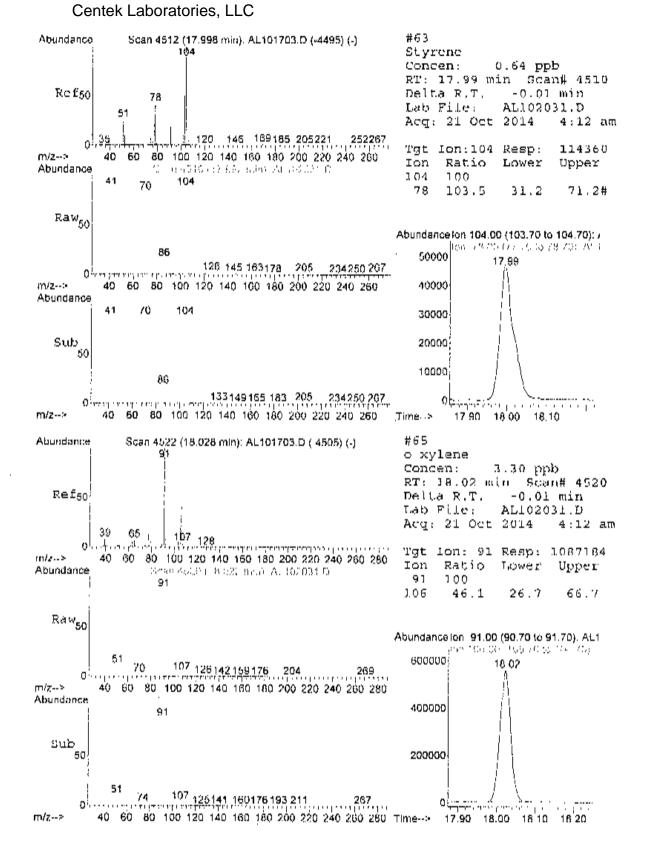
Page 175 of 467



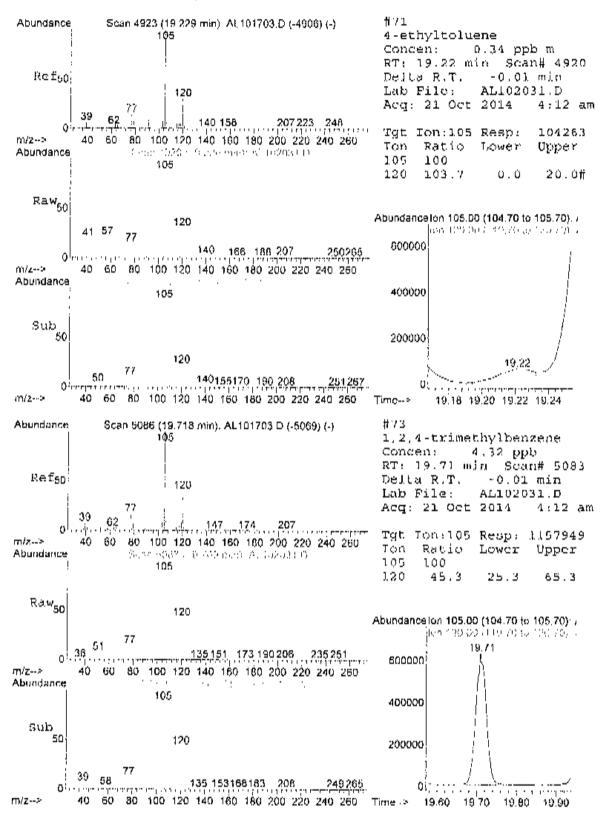
AL102031.D A910_1UG,M


Page 11

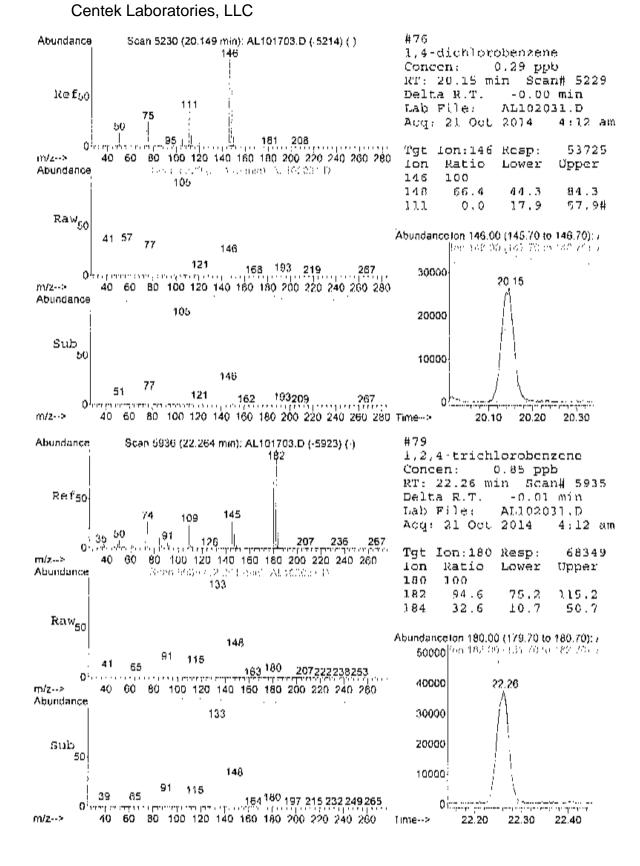

Page 176 of 467


Page 177 of 467

AL102031.D A910_10G.M


Page 13

Page 14


Page 179 of 467

AL102031.D A910_10G.M

Page 180 of 467

AL102031.0 A910 LUG.M Fri

MSD1

Page 181 of 467

Centek Laboratories, LLC Quantitation Report (OT Reviewed) Data File : C:\HPCHEM\1\DATA\AL102036.D Vial: 33 Acq On : 21 Oct 2014 7:12 am Operator, RJP Sample : C1410057-004A JOX Misc : A910_1UC MS Integration Params: RTEINT.P Quant Time: Oct 21 11:01:27 2014 inst : MSD #1 Multiplr: 1.00 Quant Results File: A910 JUG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QIon Response Cone Units Dev(Min)
 I) Bromochloromethane
 10.55
 128
 27702
 1.00
 ppb
 0.00

 36)
 1,4-dittuorobenzene
 12.72
 114
 107339
 1.00
 ppb
 0.00

 51)
 Chiocobenzene-d5
 17.11
 117
 92306
 1.00
 ppb
 0.00
 System Monitoring Compounds 67) Bromofluorobenzene 18.67 95 58547 0.90 ppb 0.00 Spiked Amount 1.000 Range 70 130 Recovery = 90.00% Target CompoundsQvalue4) Freen 124.67 85 174150.13 ppb9815) Freen 116.44 101960200.74 ppb9916) Acctone6.67 58 21888123.81 ppb# 4218) Isopropyl alcohol6.82 45231720.74 ppb# 10024) Carbon disulfide7.9176560630.64 ppb9826) methyl text-butyl other8.757395450.11 ppb6529) Methyl EChyl Ketone9.687247630.37 ppb# 131) Hexane9.6557100620.19 ppb# 3740) Benzene12.0778130660.12 ppb# 6952) Toluene15.2692156310.24 ppb9455) Methyl Butyl Ketone15.68434858m//10.14 ppb57/ Tetrachloroethytene16.2316497750.17 ppb9760) Ethylbenzene17.4091584050.43 ppb9961) m&p-xylene17.55911516201.43 ppb10065) o-xylene18.0391346710.26 ppb9773) 1, 2, 4-trimethylbenzene19.72105291250.26 ppb99 Target Compounds Ovalue

Page 182 of 467

ասաշտազինգրուսո 8.eneznodorouttomorU (Teoe)Azerbgui T. Snoznadiym J. Chlorobenzene-d5,1 (QT Reviewed) Quant Results File: A910 106.3ES TetrachiorowityPerter: LanoteX (grant (grant) 1.enendoT NSD F1 1.00 $\mathbb{R}^{1,2}$ ŝ TIC: AL 102056 D Cperator: Vial: Multiplr: C:\HPCHEM\1\METHODS\A910_10G.M_(RT8_Integrator) Quantitation Report TO-15 VOA Standards for 5 point calibration Fri Cot 31 13:55:31 2014 Insc T.onstgel1 Lensznedozowilih-h T.anoznaB Lanarbomoroldoomon8 C:\HFCHEM\1\DACA\AL102036.D Concerns tyrif Hilly Back Initial Calibraticn 7:12 au Misc : A910_10G MS Integration Params: RTBINT.P Τροπίο (γιμά πω) (γάθωσι C1410057-004A 10X Quant Time: Oct 21 11:20 2014 T, while allo nodre O 21 Oct 2014 HOUODIE (Administ Т, намерал I't comy ... Response via •• .. Last Update Data File Acq Or Sample Nethod T,St noorA Title 9000000 800000 70000 500000 4000C0 300000 0000 Misc Abundanpe >2C00002+ 1100020 1000001 SCOODS 200000

Fage 2

22.00

21.00

20.00

19:00

]| 8 }F₽

17,00

15.00

15.00

14.00

13.00

12.00

11.00

10.00

9.00

6.00 9

00.7

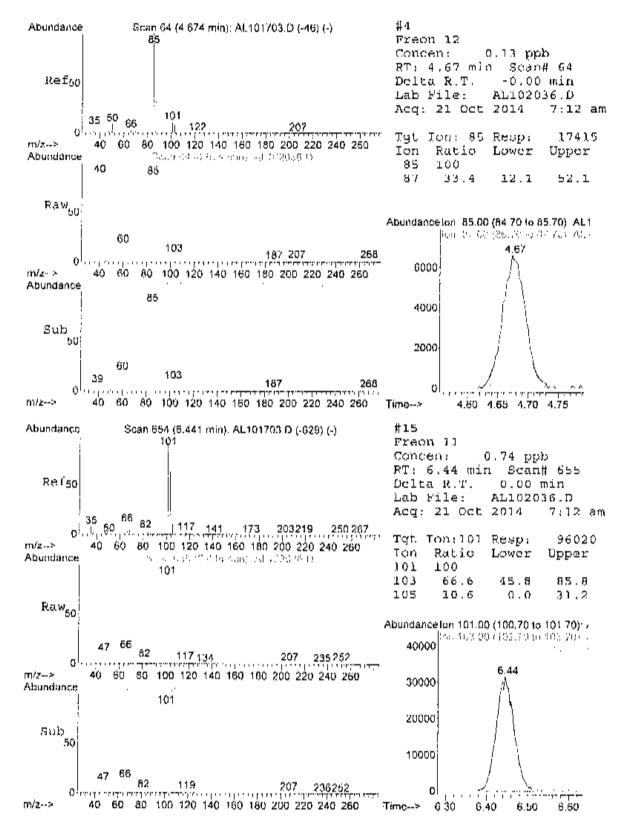
8.8

3-8 3, 8

Trme-->

9

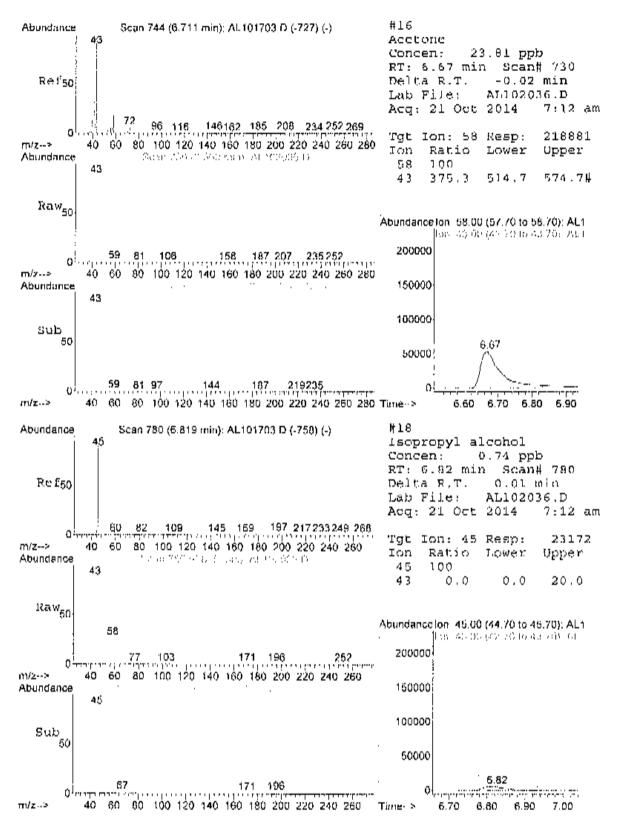
AL102036.D A910_1UG.M


ICSM

Fri Oct 31 14:24:51 2014

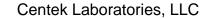
5

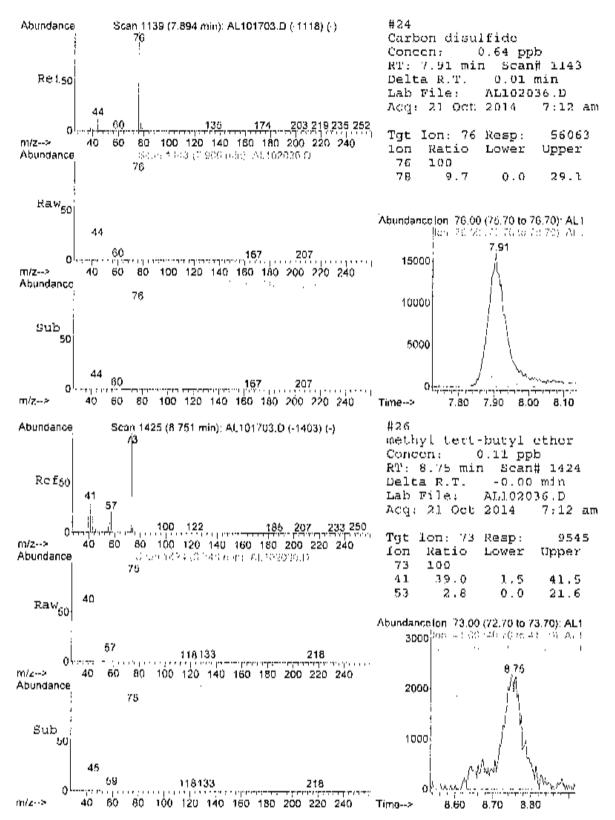
S. Just


- =

AL102036, D A910_1UG, M

Page 184 of 467

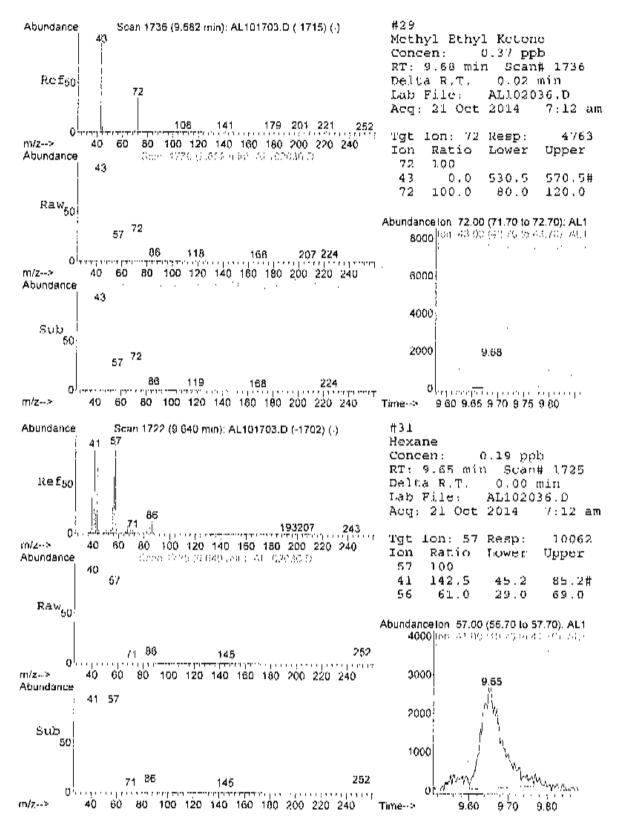




AD102036.D A910 LUG.M

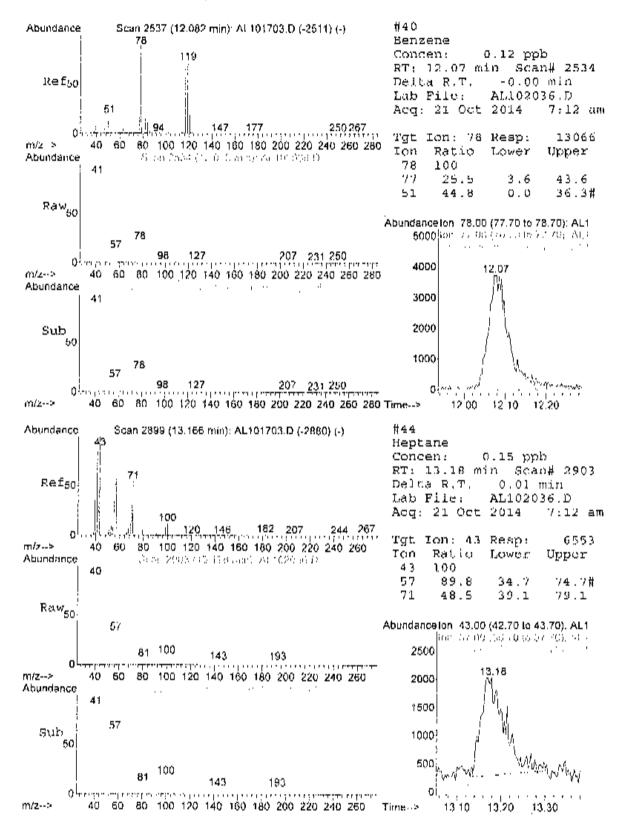
Page 185 of 467

MSD1

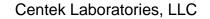


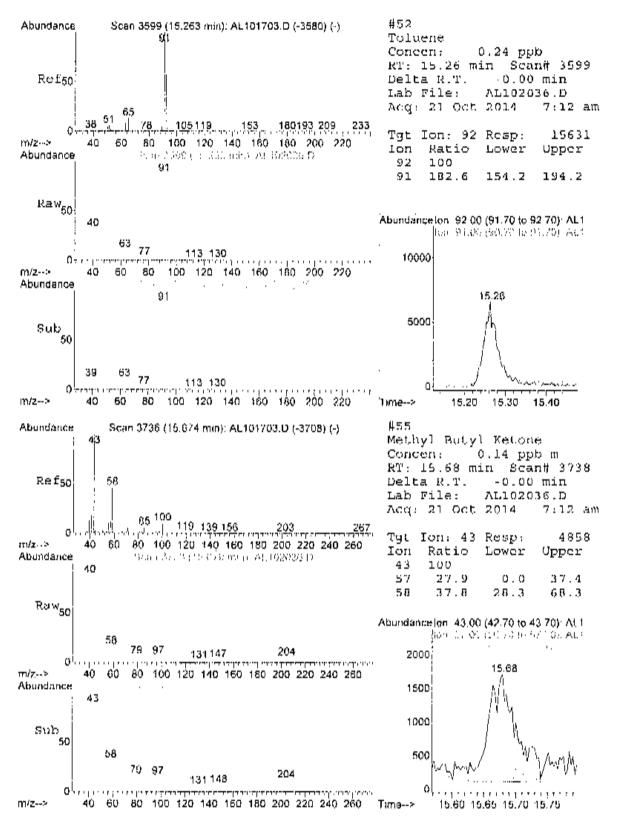
AL102036.D A910 1UG.M

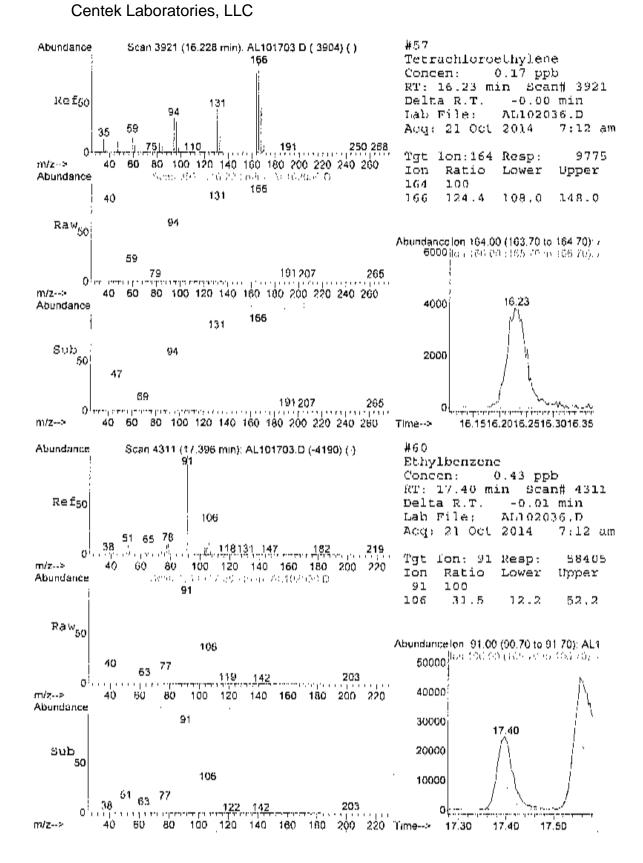
Page 5


Page 186 of 467

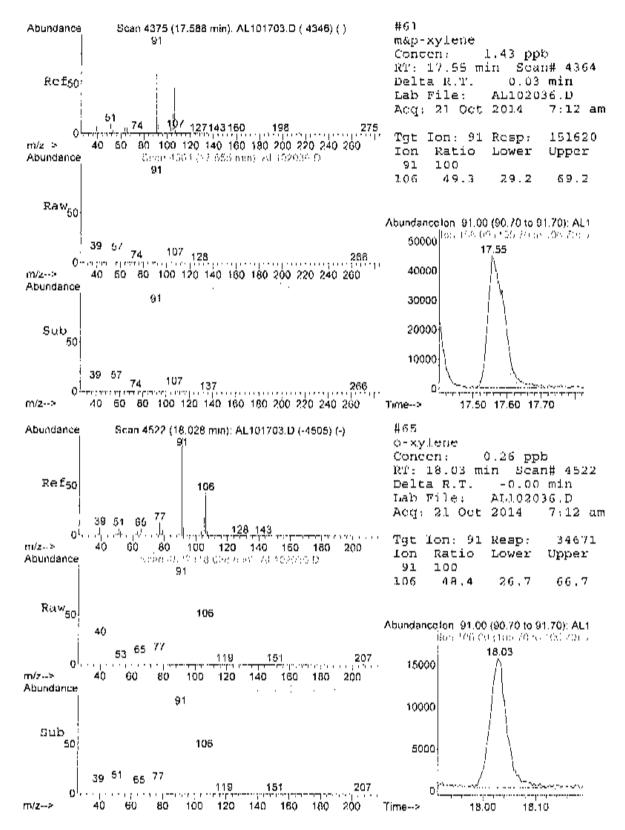
AL102036.D A910 10G.M


Page 6

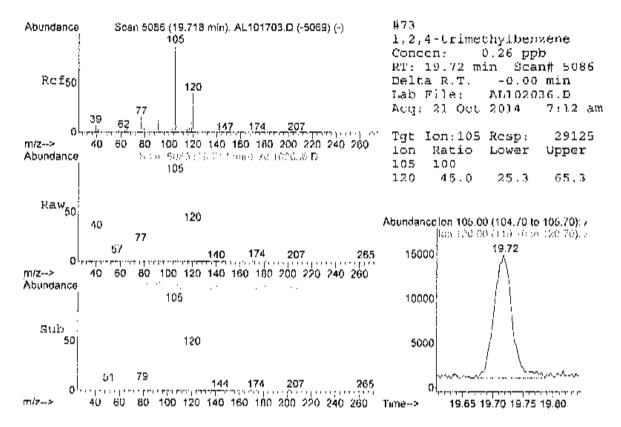

Page 187 of 467


AL102036.D A910_10G,M

Page 188 of 467

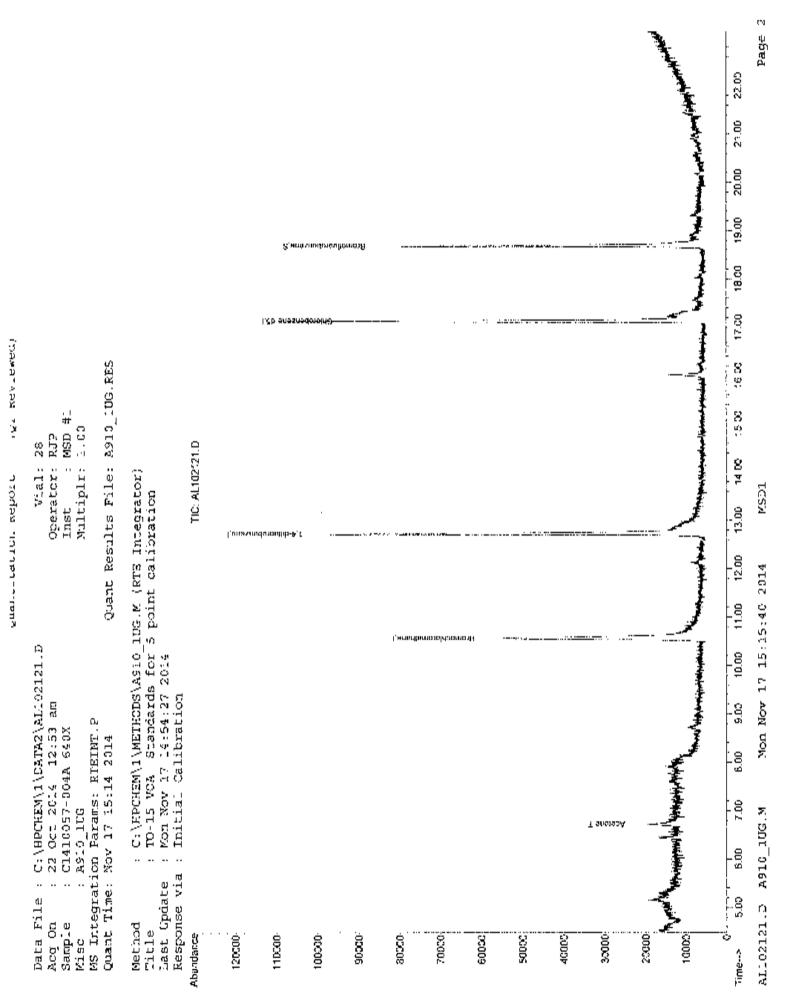


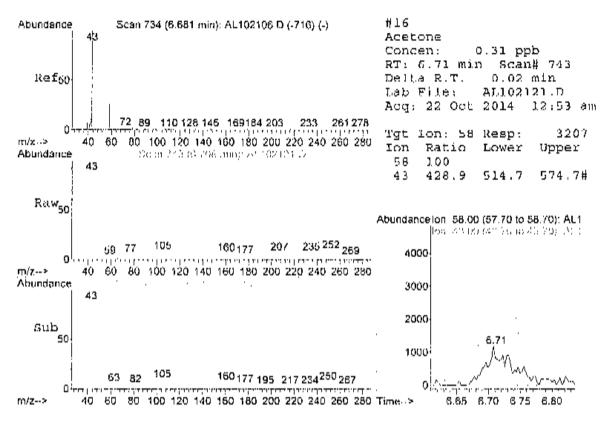
AL102036.D A910 10G.M


AL102036.D A910_10G.M

Page 190 of 467

AL102036.D A910_1UG.M


Page 191 of 467


Centek Laboratories, LLC Quantitation Report (OT Reviewed) Data File : C:\HPCHEM\1\DATA2\AL102121.D Vial: 28 Aug On : 22 Oct 2014 12:53 am Operator: RJP Sample : C1410057-004A-640X Misc : A910_1UG Inst : MSD #1 Multiplr: 1.00 MS integration Params; RTEINT,P Quant Time: Oct 22 14:31:03 2014 Quant Results File: A910 10G.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards (or 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QTon Response Conc Units Dev(Min) Internal Standards -----
 1) Bromochloromethane
 10.56
 i28
 30831
 1.00
 ppb
 0.01

 36) 1,4-diffuorobenzene
 12.73
 114
 118878
 1.00
 ppb
 0.00

 51) Chlorobenzene
 17.12
 117
 85772
 1.00
 ppb
 0.00
 System Monitoring Compounds 43582m N 0.72 ppb 0.00 Spiked Amount. 1.000 Range 70 - 130 Recovery = 72.00% Target Compounds Ovalue 0.31 ppb # 60 16) Acetone 6.71 58 3207

Page 194 of 467

Page 195 of 467

MSD1

Date: 31-Oct-14

CLIENT: WSP Environme Lab Order: CI410057 Project: 5140 Site Yorky		-114		Ċ	lient Sample ID Tag Number Collection Date	: 205,1	205,1154	
Lab ID:	5140 Site Yorkville, N C1410057-005A	I			Matrix		12(11)	
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed	
FIELD PARAME	ETERS		F	LD			Analyst:	
Cab Vacuum In		-8			"Hg		10/16/2014	
Lab Vacuum Ou	it	-30			"Hg		10/18/2014	
1UG/M3 W/ 0.26	5UG/M3 CT-TCE-VC		та	.15			Analyst: RJP	
1,1.1-Trichtorost	thane	< 0.15	0.15		ppbV	1	10/17/2014 6:35:00 PM	
1,1,2,2-Tetrachie	proethane	< 0.15	0.15		ppb∨	1	10/17/2014 6:36:00 PM	
1,1,2 Trichloroet	hane	< 0.15	0.15		ppb∨	1	10/17/2014 6:36:00 PM	
1,1-Dichloroetha	ine	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
1.1-Dichloroethe	ne	< 0.15	0.15		Vdqq	1	10/17/2014 6:36:00 PM	
1,2.4-Trichlorobe	enzene	< 0.15	0.15		νσαα	1	10/17/2014 6:36:00 PM	
1,2,4-Trimethylb	enzene	0.15	0.15		ppbV	1	10/17/2014 6:36.00 PM	
1,2-Dibromoe(ha	ne	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
1,2-Dichlorobenz	zene	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
1,2-Dichloroetha	ne	< 0.15	0.15		ρpb∨	1	10/17/2014 6:36:00 PM	
1,2-Dichloroprop	ane	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
1,3.5-Trimethylb		0.12	0.15	J	ppbV	1	10/17/2014 6:36:00 PM	
1,3-butadiene		< 0.15	0.15	•	ppbV	1	10/17/2014 6:36:00 PM	
1,3-Dichlorobenz	rene	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
1,4-Dichlorobenz	ene	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
1.4-Dioxane		< 0.30	0.30		ppbV	1	10/17/2014 5:35:00 PM	
2,2.4-trimethylpe	ntane	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
4-cthyltoluene		< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
Acelone		10	1.5		ppbV	5	10/18/2014 1:32:00 AM	
Alfyl chforide		< 0.15	0.15		ррьу	1	10/17/2014 6:36:00 PM	
Benzene		0.13	0.15	L	ρρύν	1	10/17/2014 6.36.00 PM	
Benzyl chloride		< 0.15	0 15	-	ppbV	1	10/17/2014 6:36:00 PM	
Bromodichlorome	ethane	< 0.15	0.15		ppo√	1	10/17/2014 8:36:00 PM	
Bromotorm		< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
Bromomethane		< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
Carbon disulfide		< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
Carbon tetrachlor	ride	0.10	0.040		ppbV	1	10/17/2014 6:38.00 PM	
Chlorobenzene		< 0.15	0.15		ppbV	1	10/17/2014 6:35:00 PM	
Chloroethane		< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
Chloroform		< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
Chloromethane		0.57	0.15		ppbV	1	10/17/2014 6:36:00 PM	
cis 1,2-Dichloroel	thene	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM	
cis-1,3-Dichloropi		< 0.15	0.15		ppbV	1	10/17/2014 6:36.00 PM	
Cyclohexane	,	< 0.15	0.15		ppbV	i	10/17/2014 6:35:00 PM	
Dibromochlorome	ethane	< 0.15	0.15		ppov ppov	1	10/17/2014 6:36:00 PM	
Ethyl acetate		< 0.25	0.15		ppbV	1	10/17/2014 6:36:00 PM	

Qualifiers: *

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

- 3 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit -

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy
Lab Order:	C1410057
Project:	5140 Site Yorkville, NY
Lab ID:	C1410057-005A

.

Client Sample ID: 1A-02 Tag Number: 205,1154 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	το-15					Analyst: RJP
Ethylbonzone	< 0.15	0.15		ррbV	1	10/17/2014 6:36:00 PM
Freon 11	0.33	0.15		ppbV	1	10/17/2014 6:36:00 PM
Freon 113	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Freon 114	< 0.15	0.15		ρρ6∨	1	10/17/2014 6:36:00 PM
Freon 12	0.56	0.15		ppbV	1	10/17/2014 6:36:00 PM
Hoptane	< 0.15	0.15		ppb∨	1	10/17/2014 6:36:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	10/17/2014 6.36.00 PM
Hexane	< 0.15	0.15		ppbV	1	10/17/2014 6:36.00 PM
Isopropyl alcohol	0,85	0.15		ppbV	1	10/17/2014 6:36:00 PM
m&p-Xylene	0.29	0.30	J	ppbV	1	10/17/2014 6:36:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	10/17/2014 6:36:00 PM
Mothyl Ethyl Ketone	0.38	0.30		ppbV	1	10/17/2014 6:36:00 PM
Methyl Isobutyl Kotone	< 0.30	0.30		Vdqq	1	10/17/2014 6·36·00 PM
Methyl tert-bulyl ether	< 0.15	0.15		ррbV	1	10/17/2014 6.36-00 PM
Methylene chloride	0.13	0.15	J	ppbV	1	10/17/2014 6:36.00 PM
o-Xylone	0.13	0.15	J	ppbV	1	10/17/2014 6:36:00 PM
Propylene	< 0.15	0.15		ppb∨	1	10/17/2014 6:36:00 PM
Styrene	< 0.15	0.15		ppb∨	1	10/17/2014 6:36:00 PM
Tetrachloroethylono	< 0.15	0.15		ppbV	1	10/17/2014 6:35:00 PM
Tetrahydrofuran	< 0.15	0.15		Vdqq	1	10/17/2014 6:36:00 PM
Toluene	0.23	0.15		ррьу	1	10/17/2014 8:36:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		opbV	1	10/17/2014 6:36:00 PM
trans-1.3-Dichloropropene	< 0.15	0.15		PPDV	1	10/17/2014 5:35:00 PM
Trichloroethene	< 0.040	0.040		ppbV	1	10/17/2014 6:36:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	10/17/2014 6:36:00 PM
Vinyl Bramide	< 0.15	0.15		Vdqq	1	10/17/2014 6:36:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	10/17/2014 6:36:00 PM
Surr: Bromotluorobenzene	85.0	70-130		%REC	1	10/17/2014 5.36.00 PM

lifiers:	

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery timits.
- Results reported are not blank corrected
- \mathcal{E} Value above quantitation range
- 3 Analyte detected at or below quantitation limits.
- ND Not Detected at the Reporting Limit

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-005A

Date: 31-Oct-14

Client Sample ID: 1A-02 Tag Number: 205,1154 Collection Date: 10/14/2014 Matrix: AIR

Anatyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
1,1,1-Trichloroethane	- 0.82	0.82		ug/m3	1	10/17/2014 6:36:00 PM
1,1,2,2-Tetrachloroelhane	< 1.0	10		ug/m3	1	10/17/2014 6:38:00 PM
1,1.2-Trichloroethane	< 0.82	0.82		ug/m3	1	10/17/2014 6:36:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	10/17/2014 6:36.00 PM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 6:36:00 PM
1,2,4 Trichlorobenzeee	< 1.1	1.1		ug/m3	1	10/17/2014 6:36.00 PM
1,2,4 Trimethylbenzono	0,74	0.74		ug/m3	1	10/37/2014 5:35:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	10/17/2014 6:36:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 6:36:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	10/17/2014 8:36:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	10/17/2014 6·36·00 PM
1,3,5-Trimethylbenzene	0.59	0.74	J	ug/m3	Ŧ	10/17/2014 6.36:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	10/17/2014 5:35:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 6:36:00 PM
1.4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 6:36:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	10/17/2014 6:36:00 PM
2,2,4 trimethylpontane	< 0.70	0.70		ug/m3	1	10/17/2014 6:36:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	10/17/2014 6:38:00 PM
Acetone	24	3.6		ug/m3	5	10/18/2014 1.32.00 AM
Allyl chlonde	< 0.47	0.47		ug/m3	1	10/17/2014 6:36:00 PM
Benzene	0.42	0.48	J	ug/m3	1	10/17/2014 6:36:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	10/17/2014 6:36:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	10/17/2014 6:36:00 PM
Bromoform	< 16	1.5		ug/m3	1	1D/17/2014 6:36:00 PM
Bromomelhane	< 0.58	0.58		ug/m3	3	10/17/2014 6.36:00 PM
Carbon disultide	< 0.47	0.47		ug/m3	1	10/17/2014 6.36:00 PM
Carbon tetrachloride	0.63	0.25		ug/m3	1	10/17/2014 6:36:00 PM
Chlorobenzeno	< 0.69	0.69		ug/m3	1	10/17/2014 6:36:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	10/17/2014 6:38:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	10/17/2014 6:36:00 PM
Chloromethane	12	0.31		ug/m3	1	10/17/2014 6.38:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 6:36.00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/17/2014 6:36.00 PM
Cyclohoxane	< 0.5Z	0.52		ug/m3	1	10/17/2014 6:36:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	10/17/2014 6:36:00 PM
Ethyl acetate	< 0.90	0.90		ug/m3	, 1	10/17/2014 6:36:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	,	10/17/2014 6.36.00 PM
Freon 11	19	0.84		ug/m3	, 1	10/17/2014 6:36.00 PM
Freon 113	< 1.1	1.1		ug/m3	, ,	10/17/2014 6:36:00 PM
Freon 1)4	< 1.0	1.0		ug/m3	1	10/17/2014 6:36:00 PM

Quatifiers:

8: ** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded.

IN Non-routine analyte. Quantitation estimated,

S Spike Recovery outside accepted recovery limits

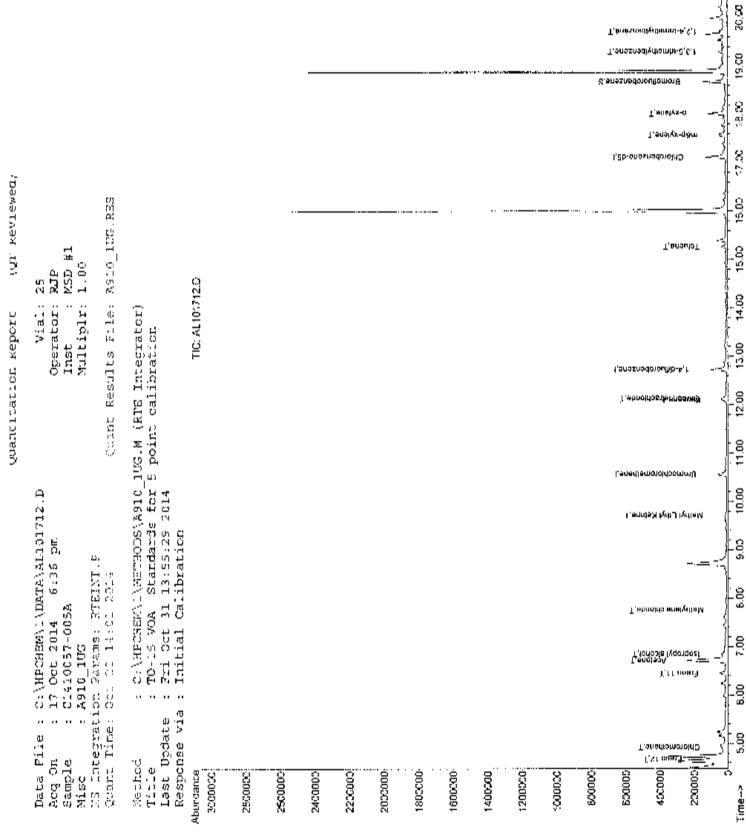
Results reported are not blank corrected

- H Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

.

CLIENT:	WSP Environment and Energy
Lab Order:	C1410057
Project:	5140 Site Yorkville, NY
Lab ID:	C1410057-005A

	· · · ·
Client Sample ID:	IA-02
Tag Numher:	205,1154
Collection Date:	10/14/2014
Matrix:	AIR


Anatyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то)-15		Analyst: RJP	
Freon 12	2.8	0.74		ug/m3	1	10/17/2014 6:36:00 PM
Heptanc	< 0.61	0.61		ug/m3	1	10/17/2014 6:36:00 PM
Hexachloro-1,3 butadiene	< 1.6	1.6		ug/m3	1	10/17/2014 6:36:00 PM
Mexanie	< 0.53	0.53		ug/m3	1	10/17/2014 6:36:00 PM
Isopropyl atochol	2.1	0.37		ug/m3	1	10/17/2014 6:36:00 PM
m&p-Xylene	1.3	1.3	J	ug/m3	1	10/17/2014 6;36:00 PM
Methyl Butyl Kelone	< 1.2	1.2		ug/m3	1	10/17/2014 6:36:00 PM
Methyl Ethyl Ketone	1,1	0.88		ug/m3	1	10/17/2014 6:36:00 PM
Methyl Isobutyl Ketone	< 1.2	12		ug/m3	1	10/17/2014 6:36:00 PM
Mothyl tert-butyl ether	< 0.54	0.54		ug/m3	1	10/17/2014 6:36:00 PM
Methylene chloride	0.45	0.52	J	ug/m3	1	10/17/2014 6:36:00 PM
o-Xylene	0.56	0.65	J	ug/m3	1	10/17/2014 6:36:00 PM
Propylene	< 0.26	0.26		ug/m3	1	10/17/2014 6:36:00 PM
Styrene	< 0.64	0.64		ug/m3	1	10/17/2014 6:36:00 PM
Tetrachloraethylene	< 1.0	10		ug/m3	1	10/17/2014 6.36:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	10/17/2014 6:36:00 PM
Totuene	0.87	0.57		ug/m3	1	10/17/2014 6:36:00 PM
trans-1,2-Dichloroethene	< 0.59	0.69		ug/m3	1	10/17/2014 6:36:00 PM
trans-1.3-Dichloropropone	< 0.68	0.68		ug/m3	1	10/17/2014 6.36.00 PM
Trichtoraethene	< 0.21	0.21		ug/m3	1	10/17/2014 6.36.00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	10/17/2014 6.36.00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/17/2014 6:36:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	n	10/17/2014 6:36:00 PM

Qualifiers:

Reporting Limit

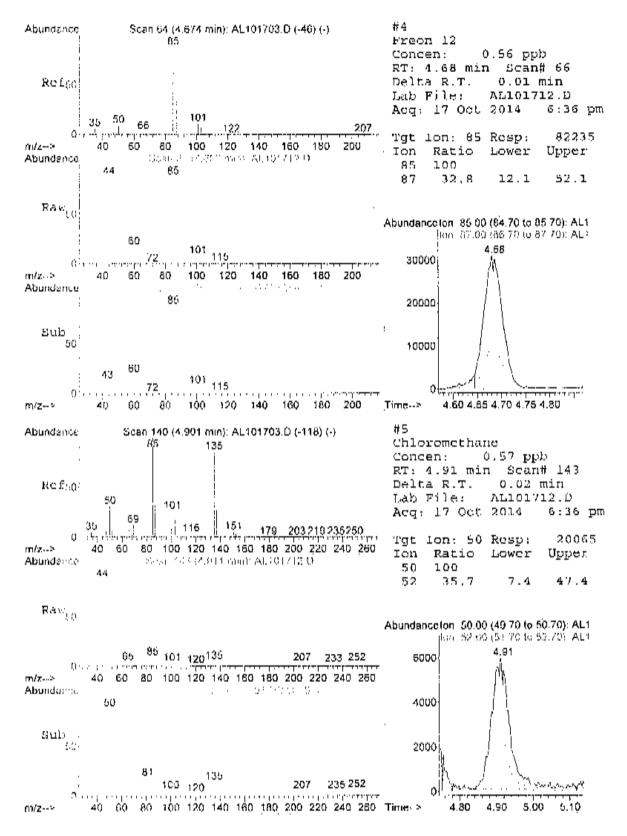
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded.
- JN Non-rotatine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Centek Laboratories, Ll	C						
	Quantitat:	ion Rep	port (Or)	Reviewed	}		
Data Fl)e : C:\HPCHEM\l\DATA\ Acq On : 17 Oct 2014 6:3 Sample : C1410057 005A Misc : A910_10G MS Integration Params: RTEINT Quant Time: Oct 17 21:57:14 2	6 pm	Qua	Oper Inst Mult	Vial: 25 ator: RJ : MS iplr: 1. File: A9	ף ה #ו 00	G.RES	
Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 12:31:36 2014 Response via : Initial Calibration DataAcq Meth : 1UC RUN							
Internal Standards				one Unit	s Dev	(Min)	
 Bromochloromethane 1,4-dilluorobenzene Chlorobenzene-d5 System Monitoring Compounds 	10.56 12.72 17.12	128	30085 115607 104055	1.00 pp 1.00 pp 1.00 pp	ь b b	0.02 0.00 0.00	
67) Bromofluorobenzene	18.67	95	62969	0.85 pp	b	0,00	
Spiked Amount 1.000	Range 70	- 130	Recovery	= 8	5.00%		
Target Compounds 4) Freon 12 5) Chloromethane 15) Freon 11	4.68 4.91 6.44	85 50 101	82235 20065 45860	0.56 pp 0.57 pp 0.33 pp	<u>ი</u> _	alue 99 84 99	
5) Chloromethane 15) Freon 11 16) Acetone 18) Isopropyl Alcohol 22) Methylene chloride	G.G9 6.84 7.75	58 45 84	75207 29065m /] 3366	7.53 pp 0.85 pp 0.13 pp	ს # ს ს	44 91	
29) Methyl Ethyl Ketone 39) Carbon tetrachloride 40) Benzene	9.71 12.11 12.08	72 117 78	5261 11172 14612	aq 88.0 qq 01.0 aq 11.0	հ # Ծ Ե	37 97 89 99	
<pre>52) Toloone 61) m&p sylene 65) o-sylene 72) 1,3,5-trimethylbenzene</pre>	15,27 17.56 18.03 19.30	9× 91 91 105	16740 35067 19742 20743m	0.23 pp 0.29 pp 0.13 pp 0.12 pp	מממ	96 92	
73) 1,2.4-trimethylbonzene	19.72	105	18082	0.15 pp	b	98	

Page 2

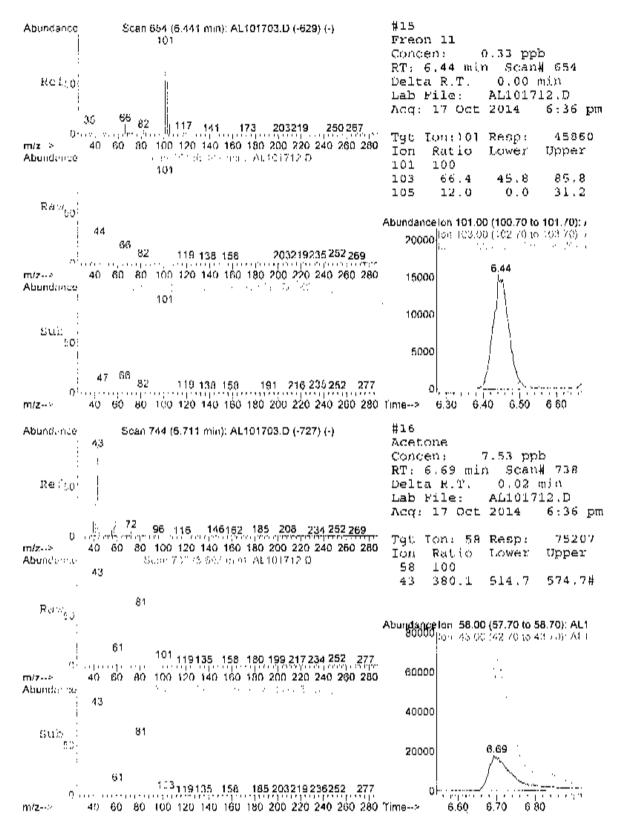
NSD1

Fri Cet 31 13:57:16 2014

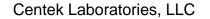

ALI01712.D A910 100.M

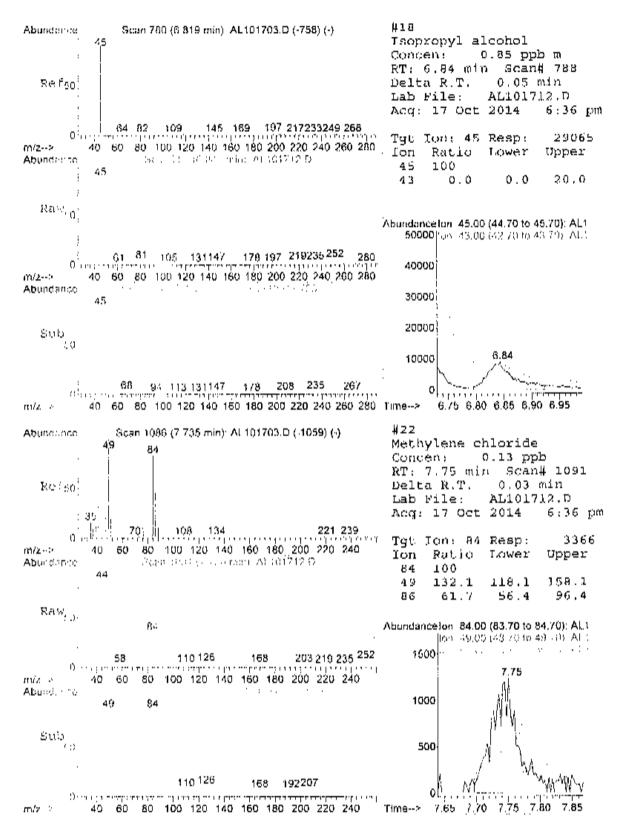
22.00


20


Centek Laboratories, LLC

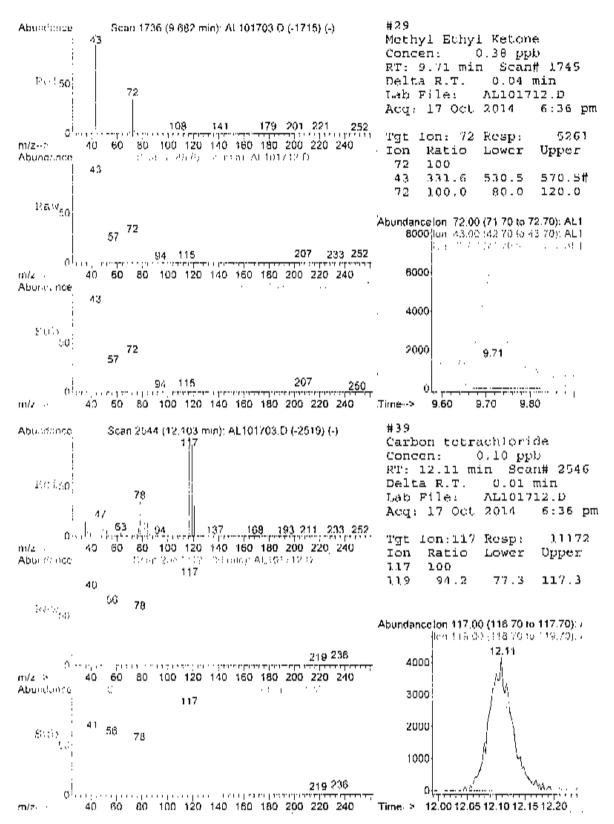
Page 201 of 467


AL101712.0 A910 10G.M



AL101713.0 A910 TUG.M

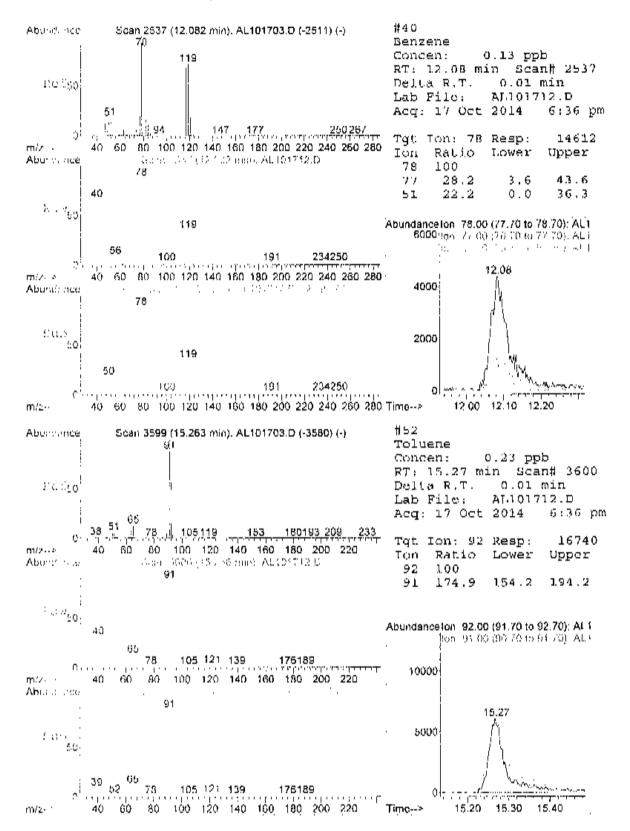
Page 203 of 467



ALIOIVIE.D A910 NUC.M.

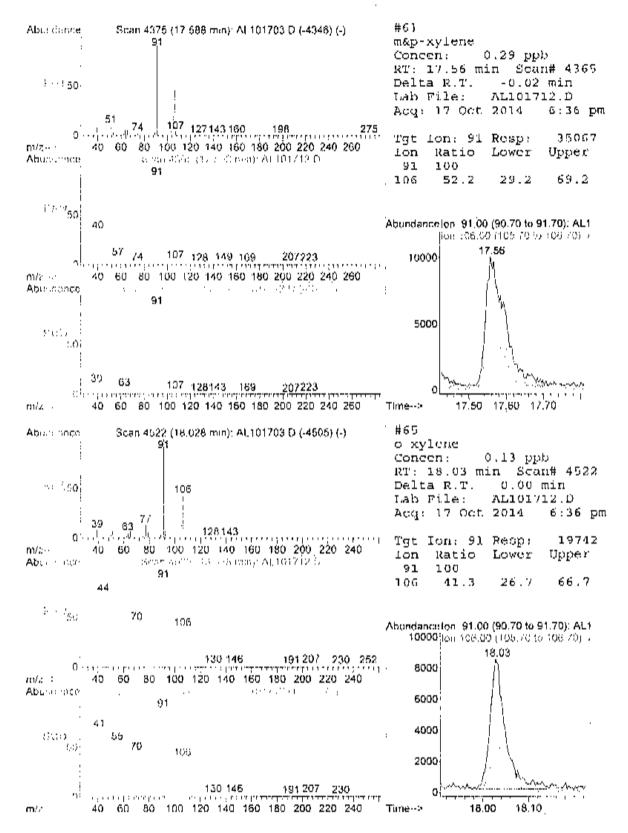
Page 5

Page 204 of 467

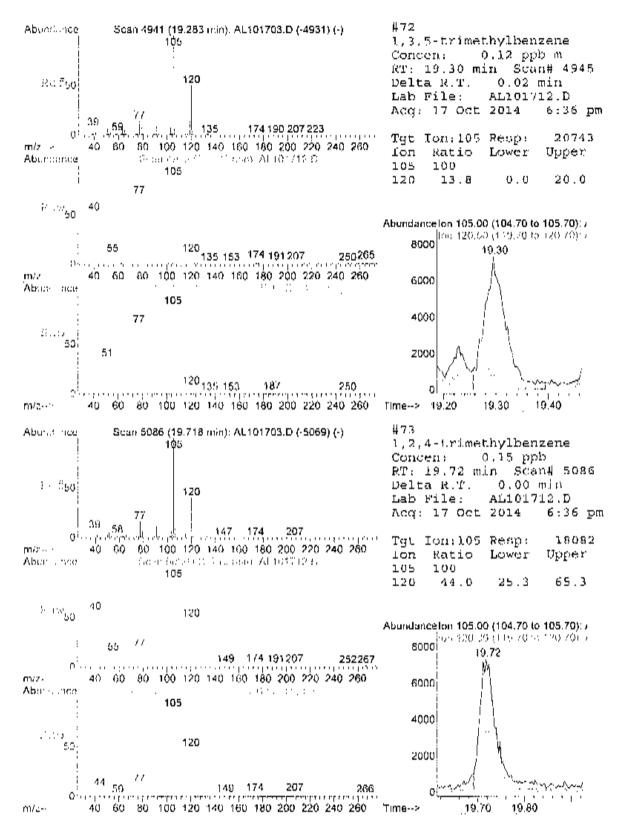


ALBOITIC.D ABIO_LUG.M

MSD1


Page 6

Page 205 of 467

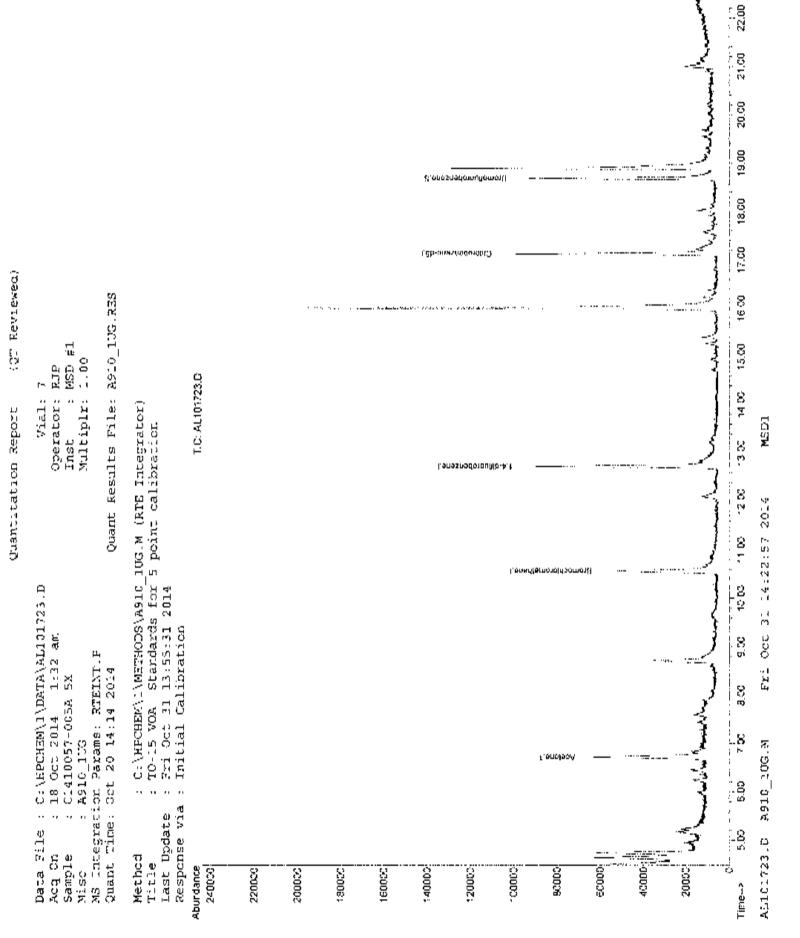

AL101010.0 A910 LUG.M

Page 206 of 467

AL102700.0 A910_10G.M

Page 207 of 467

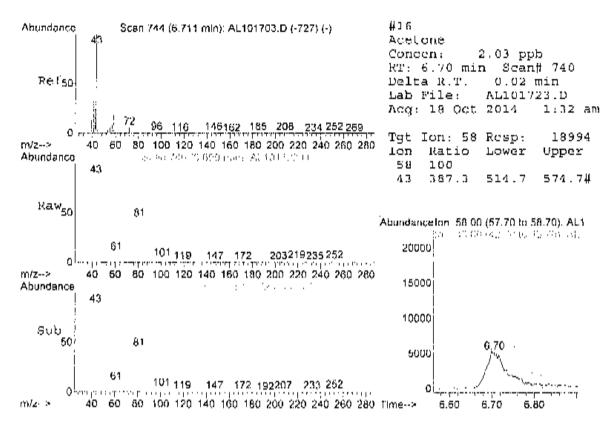
ALIOIN COD A910 HUG.M.


Page 9

Page 208 of 467

Centek Laboratories, LLC Quantitation Report (OT Reviewed) Data File : C:\HPCHEM\1\DATA\ALJ01723.D Vial: 7 Acq On : 18 Oct 2014 1:32 am Operator: RJP Sample : C1410057-005A 5X Misc : A910_10G Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 18 07:21:57 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910 1UC.M (RTE Integrator) Title : TO 15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 12:31:36 2014 Response via : Initial Calibration DataAcq Meth : 1UG RUN R.T. Qion Response Conc Units Dev(Min) Internal Standards
 1) Bromochloromethane
 10.55
 128
 28159
 1.00 ppb
 0.00

 36) 1,4-difluorobenzene
 12.73
 114
 104326
 1.00 ppb
 0.01


 51) Chlorobenzene-d5
 17.13
 117
 78854
 1.00 ppb
 0.00
 System Monitoring Compounds 18.68 95 41739 0.75 ppb 67) Bromofluorobenzene 0,01 Spiked Amount 1.000 Range 70 - 130 Recovery = 75.00% Target Compounds Ovalue 6.70 58 18994 2.03 ppb # 46 16) Acetone

Page 2

.....

Page 210 of 467

Page 211 of 467

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy	Client Sample ID: SS-01	
Lab Order:	C1410057	Tag Number: 1186,405	
Project:	5140 Site Yorkville, NY	Collection Date: 10/14/2014	4
Lab 1D:	C1410057-006A	Matrix: AIR	

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLÐ			Analyst:
Lab Vaçuum In	-7		"Hg		10/16/2014
Lab Vacuum Out	-30		"Hg		10/16/2014
UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	0.10	0.15 J	ррб∨	1	10/21/2014 4:50:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppb∀	1	10/21/2014 4:50:00 AM
1,1,2-ì richloroethane	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
1,1-Dichloroethane	< 0.15	0.15	ррьУ	1	10/21/2014 4:50:00 AM
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	10/21/2014 4:50.00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	ρρον	1	10/21/2014 4.50:00 AM
1,2,4-Tomethylbenzene	0.92	0.15	ppbV	1	10/21/2014 4:50:00 AM
1,2-O/bromoethane	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
1.2-Dichlorobonzene	< 0.15	0.15	ρρφν	1	10/21/2014 4·50:00 AM
1,2-Dichloroethano	< 0.15	0.15	рры∨	1	10/21/2014 4:50:00 AM
1,2-Dichleropropane	< 0.15	0.15	ppbV	1	10/21/2014 4;50·00 AM
1,3,5-Trimethylbenzene	0.40	0.15	ppbV	1	10/21/2014 4.50:00 AM
1,3-butadiene	< 0.15	0.15	ppbV	1	10/21/2014 4:50.00 AM
1,3-Dichlorobonzene	< 0.15	0 15	ppbV	1	10/21/2014 4:50:00 AM
1,4-Dichtorobenzene	0.16	0.15	ρpb∨	1	10/21/2014 4:50:00 AM
1,4-Dioxane	< 0.30	0.30	ppb∨	1	10/21/2014 4:50:00 AM
2,2,4-trimethylpentane	< 0.15	0.15	Vđợc	1	10/21/2014 4:50:00 AM
4-ethylloluene	0.21	0.15	ppbV	1	10/21/2014 4·50·00 AM
Acetone	260	190	ppbV	640	10/22/2014 1:29:00 AM
Ally! chloride	< 0.15	0.15	ppbV	1	10/21/2014 4:50.00 AM
Велгеве	0.87	0.15	Vdqq	1	10/21/2014 4:50:00 AM
Benzyl chloride	< 0.15	0.15	PpbV	1	10/21/2014 4:50:00 AM
Bromodichloromethane	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
Bromotorm	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
Bromomelhane	< 0.15	0.15	ppbV	ľ	10/21/2014 4.50:00 AM
Carbon disulfide	35	1.5	ppbV	10	10/21/2014 7:48:00 AM
Carbon totrachioride	< 0.15	0.15	ppbV	7	10/21/2014 4:50:00 AM
Chlorobenzene	< 0.15	0.15	pptV	1	10/21/2014 4:50:00 AM
Chloroethane	< 0.15	0.15	ppb∨	1	10/21/2014 4:50:00 AM
Chloroform	0.45	0.15	ppbV	1	10/21/2014 4:50:00 AM
Chloromethane	< 0.15	015	ppbV	1	10/21/2014 4:50.00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
Cyclohexane	1.1	0.15	рры	1	10/21/2014 4:50:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	10/21/2014 4:50:00 AM
Ethyl acetate	< 0.25	0.25	ppbV	1	10/21/2014 4 50:00 AM

- Qualifiers:
- • Reporting Limit
- $\mathbf{B}=-\Delta nalyte$ detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded.
- JN Non-routine analyte Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Resalts reported are not blank corrected
- Ы Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-006A

Client Sample ID: SS-01 Tag Number: 1186,405 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 BY METHOD TO15	TO-15					Analyst: RJP
Ethylbenzene	0.68	0.15		ррб∨	1	10/21/2014 4-50:00 AM
Freon 11	0.33	0 15		ррб∨	1	10/21/2014 4·50·00 AM
Freon 113	< 0.15	0.15		ррб∨	1	10/21/2014 4 50:00 AM
Freon 114	< 0.15	0.15		ppb∀	1	10/21/2014 4.50 00 AM
Freen 12	0.69	0.15		ppbV	1	10/21/2014 4·50:00 AM
Hoptane	2.1	1.5		ppb∨	10	10/21/2014 7 48:00 AM
Hexachtoro-1,3-butadienc	< 0.15	0.15		ррв∨	í	10/21/2014 4.50.00 AM
Hexane	4.0	1.5		ppbV	10	10/21/2014 7:48:00 AM
Isopropyl alcohoł	4,7	1.5		ppbV	10	10/21/2014 7:48:00 AM
m&p-Xylene	3.0	0.30		ppbV)	10/21/2014 4:50:00 AM
Methyl Butyl Ketone	0.42	0.30		ppbV	1	10/21/2014 4:50:00 AM
Methyl Ethyl Ketone	2.8	3.0	J	Vdqq	10	10/21/2014 7:48:00 AM
Methyi Isobatyi Ketone	0.60	0.30		ррыМ	ť	10/21/2014 4:50:00 AM
Methyl ted-bulyl ether	1,4	0.15		ppbV	1	10/21/2014 4.50:00 AM
Methylene chloride	< 0.15	0.15		ppbV	1	10/21/2014 4:50:00 AM
o-Xylene	0.66	0.15		ppbV	1	10/21/2014 4:50:00 AM
Propytene	< 0.15	0.15		PpbV	1	10/21/2014 4:50:00 AM
Styrene	0.33	0.15		ppb∨	1	10/21/2014 4:50:00 AM
Tetrachloroethylene	0.12	0.15	J	עמקק	1	10/21/2014 4:50:00 AM
Tetrahydrofuran	< 0.45	0.15		ρρδγ	1	10/21/2014 4·50·00 AM
Tolucne	2.8	1.5		ppb∨	10	10/21/2014 7:48.00 AM
trans-1.2-Dichloroethone	< 0.15	0.15		ppbV	1	10/21/2014 4:50.00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ррыV	1	10/21/2014 4:50:00 AM
Trichloroethene	0.17	0.15		ppbV	1	10/21/2014 4·50:00 AM
Vinyl acetate	< 0.16	0.15		ppbV	1	10/21/2014 4:50:00 AM
Vinyl Bromide	< 0.15	0.15		ppbV	1	1D/21/2014 4:50:00 AM
Vinyt chloride	< 0.15	0.15		ppbV	1	10/21/2014 4.50:00 AM
Surr: Bromofluorobenzene	107	70-130		%REC	1	10/21/2014 4:50:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy	Client Sa
Lab Order:	C1410057	Tag J
Project:	5140 Site Yorkville, NY	Collecti
Lab ID:	C1410057-006A	

lient Sample ID: SS-01 Tag Number: 1186,405 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		τ¢	.15			Analyst: RJP
1,1,1-Trichloroethane	0.55	0.82	J	ug/m3	1	10/21/2014 4:50:00 AM
1.1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	10/21/2014 4.50.00 AM
1,1,2-1 richloroethane	< 0.82	0.82		ug/m3	1	10/21/2014 4:50:00 AM
1,1-Dichloroethano	< 0.61	0.61		ug/m3	1	10/21/2014 4:50:00 AM
1.1-Dichloroethene	< 0.69	0.59		ug/m3	1	10/21/2014 4:50:00 AM
1.2.4-Trichlorobenzene	< 1 1	1.1		ug/m3	1	10/21/2014 4:50:00 AM
1,2,4-Trimethylbenzene	4.5	0.74		ug/m3	1	10/21/2014 4:50:00 AM
1.2-Dibromoethane	< 1.2	1.2		ug/m3	1	10/21/2014 4:50:00 AM
1.2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/21/2014 4·50.00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	10/21/2014 4.50.00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	10/21/2014 4:50:00 AM
1,3,5-Trimethylbenzene	2.0	0.74		ug/m3	1	10/21/2014 4:50:00 AM
1,3 butadiene	< 0.33	D.33		ug/m3	1	10/21/2014 4:50:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	.1	10/21/2014 4:50:00 AM
1,4-Dichlorobenzene	0.96	0.90		ug/m3	1	10/21/2014 4:50:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	10/21/2014 4:50:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	10/21/2014 4:50.00 AM
4-cthyltoluene	10	0.74		ug/m3	1	10/21/2014 4:50:00 AM
Acetone	650	450		ug/m3	640	10/22/2014 1:29:00 AM
Aliyi chloride	< 0.47	0.47		ug/m3	1	10/21/2014 4:50:00 AM
Benzene	2.8	0.48		ug/m3	1	10/21/2014 4:50:00 AM
Benzyt chloride	< 0.86	0.86		ug/m3	1	10/21/2014 4:50:00 AM
Bromodichloromethane	< 10	1.0		ug/m3	1	10/21/2014 4:50:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	10/21/2014 4:50:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	10/21/2014 4:50:00 AM
Carbon disulfide	11	4.7		ug/m3	10	10/21/2014 7:48:00 AM
Carbon tetrachloride	< 0.94	0.94		ug/m3	1	10/21/2014 4:50:00 AM
Chlorobonzone	< 0.69	0.69		ug/m3	1	10/21/2014 4:50:00 AM
Chloroethane	= 0.40	0.40		ug/m3	1	10/21/2014 4.50:00 AM
Chloroform	2.2	0.73		ug/m3	1	10/21/2014 4:50:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	10/21/2014 4:50:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/21/2014 4:50:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/21/2014 4:50:00 AM
Cyclohexane	3.6	0.52		ug/m3	1	10/21/2014 4:50;00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	10/21/2014 4:50:00 AM
Ethyl acclate	< 0.90	0.90		ug/m3	1	10/21/2014 4:50:00 AM
Fthylbenzene	3.0	0.65		ug/m3	1	10/21/2014 4:50:00 AM
Freen 11	1.9	0.84		ug/m3	1	10/21/2014 4:50:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	10/21/2014 4:50:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	10/21/2014 4:50:00 AM

Qualifiers: 1

- Reporting Limit
 - $\boldsymbol{\beta} = Analyte detected in the associated Method Blank$
 - H Holding times for preparation or analysis exceeded
 - JN Non-routine analyte. Quantitation estimated.
 - S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Value above quantitation range
- J Analyte detected at or below quantitation lumits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy	Client Sample ID:	SS-01
Lab Order:	C1410057	Tag Number:	1186,405
Project:	5140 Site Yorkville, NY	Collection Date:	10/14/2014
Lab ID:	C1410057-006A	Matrix:	AIR

Analyses	Result	**Límit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		тс)-15			Analyst: RJP
Freen 12	3.4	0.74		ug/m3	1	10/21/2014 4:50:00 AM
Heptane	8.6	6.1		ug/m3	10	10/21/2014 7:48:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		vg/m3	1	10/21/2014 4·50·00 AM
Нехала	14	5.3		ug/m3	10	10/21/2014 7:48:00 AM
Isopropyi alcoho!	12	3.7		ug/m3	10	10/21/2014 7:49:00 AM
m&p-Xylene	13	1.3		ug/m3	1	10/21/2014 4·50:00 AM
Methyl Butyl Ketone	1.7	1.2		ug/m3	1	10/21/2014 4.50:00 AM
Methyl Ethyl Ketone	8.3	8.8	J	ug/m3	10	10/21/2014 7.48:00 AM
Methyl Isobutyl Ketone	2.5	1.2		ug/m3	1	10/21/2014 4:50:00 AM
Methyl tert-butyl ether	49	0.54		ug/m3	1	10/21/2014 4:50:00 AM
Methylene chloride	< 0.52	0.52		ug/m3	1	10/21/2014 4·50:00 AM
o-Xyleno	2.9	0.65		ug/m3	1	10/21/2014 4·50:00 AM
Propylana	< 0.26	0.26		ug/m3	1	10/21/2014 4:50:00 AM
Styrene	1.4	0.64		ug/m3	t	10/21/2014 4.50:00 AM
Tetrachloroethylene	0.81	1.0	J	ug/m3	1	10/21/2014 4:50:00 AM
Tetrahydrofuran	< 0.44	0 44		ug/m3	1	10/21/2014 4:50:00 AM
Toluene	11	57		ug/m3	10	10/21/2014 7:48:00 AM
trans-1,2-Dichloroethone	< 0.59	0.59		ug/m3	1	10/21/2014 4:50:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/21/2014 4·50:00 AM
Trichloroethene	0.91	0.81		ug/m3	1	10/21/2014 4:50:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	10/21/2014 4:50.00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/21/2014 4:50:00 AM
Vinyl chloride	< 0.38	0.38		ug/m3	1	10/21/2014 4:50:00 AM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Centek Laboratories, LLC Quantitation Report (OT Reviewed)

 Data File : C:\HPCHEM\1\DATA\AL102032.D
 Vial: 29

 Acq On : 21 Oct 2014 4:50 am
 Operator: RJP

 Sample : C1410057-006A
 Inst : MSD #J

 Misc : A910_UUG
 Multiplr: 1.00

 MS Integration Params: RTEINT.P
 Quant Time: Oct 21 10:28:26 2014

 Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcg Meth : 10G RUN Internal Standards R.T. QTon Response Conc Units Dev(Min)
 1) Bromochloromethane
 10.54
 128
 56769
 1.00 ppb
 0.00

 36) 1.4-difluorobenzene
 12.72
 114
 249938
 1.00 ppb
 0.00

 51) Chlorobenzene-d5
 17.11
 117
 248098
 1.00 ppb
 0.00
 System Monitoring Compounds 67) Bromofluorobenzene 18.67 95 187931 1.07 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 107.00%

 Target Compounds
 Ovalue

 4) Freen 12
 4.67
 85
 192781
 0.69
 ppb
 99

 15) Freen 11
 6.45
 101
 08104
 0.33
 ppb
 100

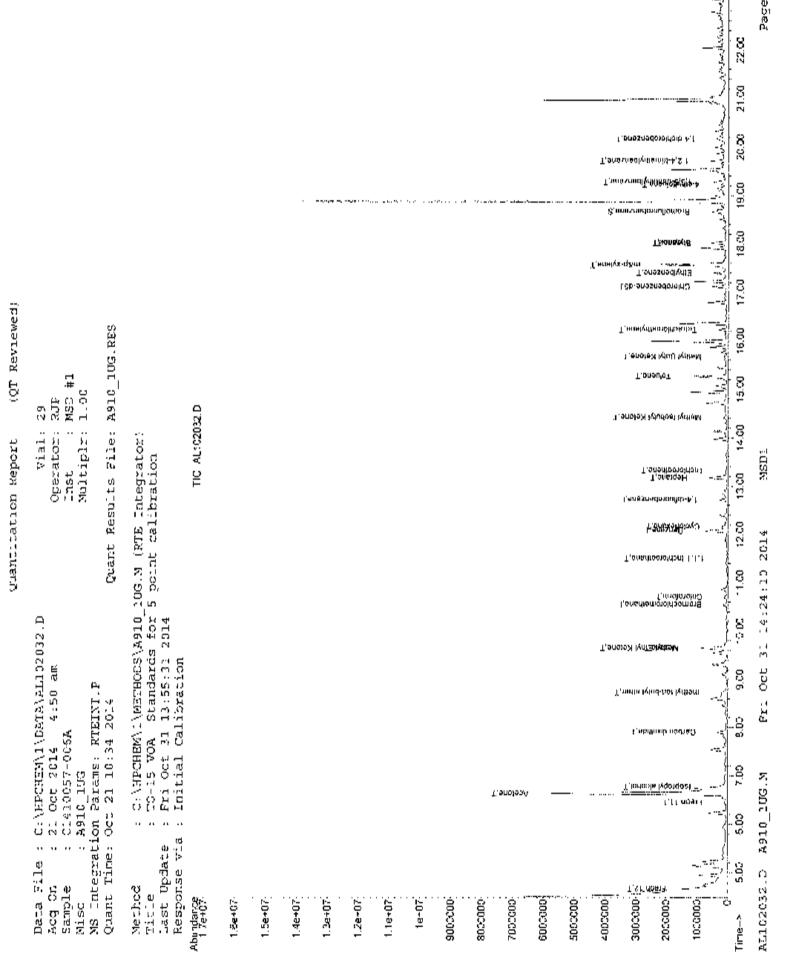
 16) Acetone
 6.63
 58
 3806152
 202.05
 ppb
 #
 30

 18) Isopropyl alcohol
 6.77
 45
 282691
 4.38
 ppb
 100

 24) Carbon disulfide
 7.90
 76
 684642
 3.78
 ppb
 100

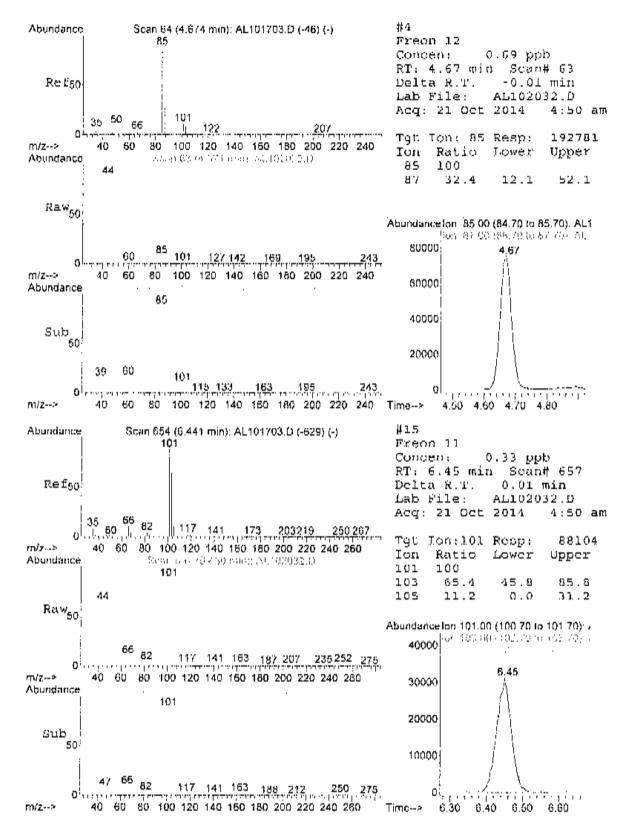
 26) methyl tert-butyl other
 8.72
 73
 240285
 1.36
 ppb
 #
 59

 31) Hexane
 9.64
 57
 518338
 4.77
 ppb
 #
 60

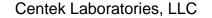

 33) Chloroform
 10.69
 83
 9209
 0.45
 ppb
 98

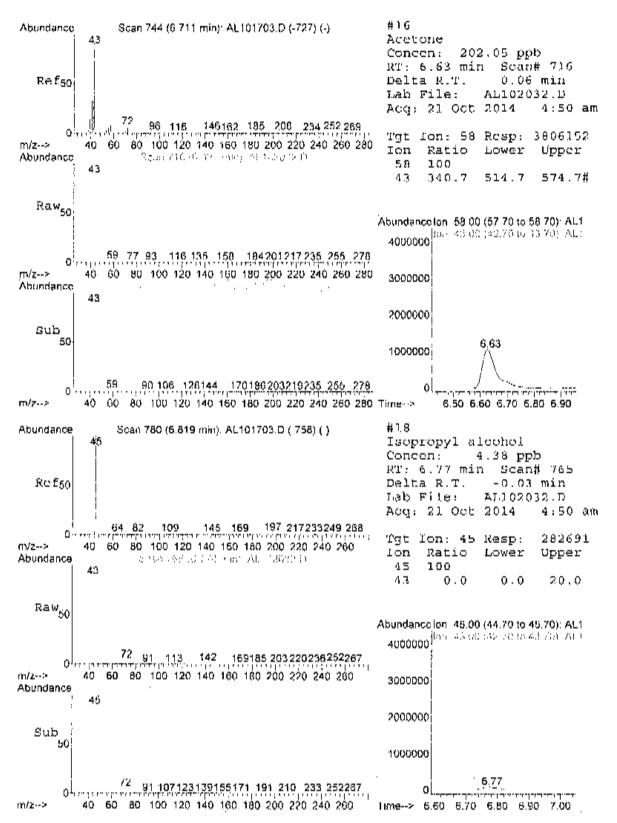
 37) 1.1.1-trichloroethane
 11.50
 97
 21418
 0.10
 ppb
 98

 38) Cyclohexane
 12.15
 56
 110054m pl
 1.66
 pb
 457

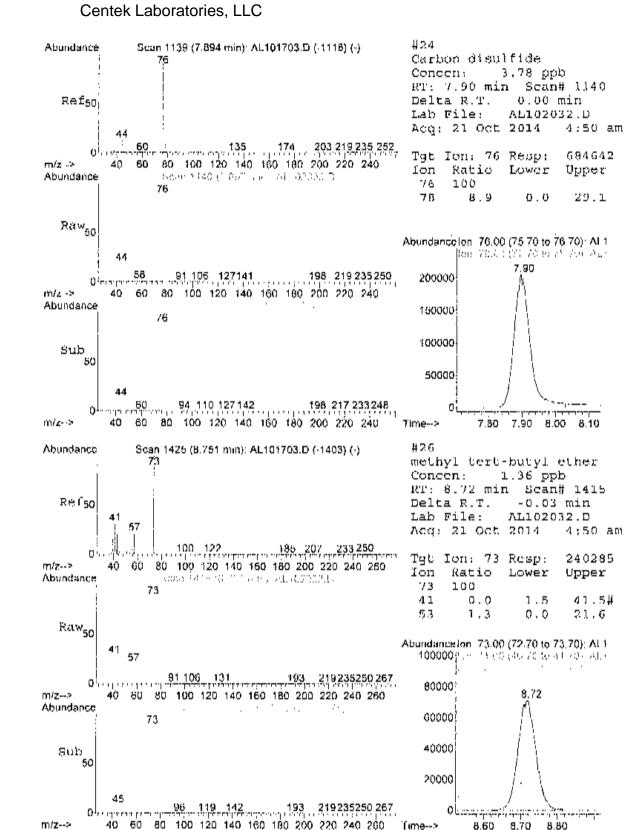

 40) Benzene
 13.17
 43
 285551
 3.78
 ppb
 932

 414 Heptane
 13. Target Compounds Ovalue

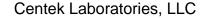

c) Page

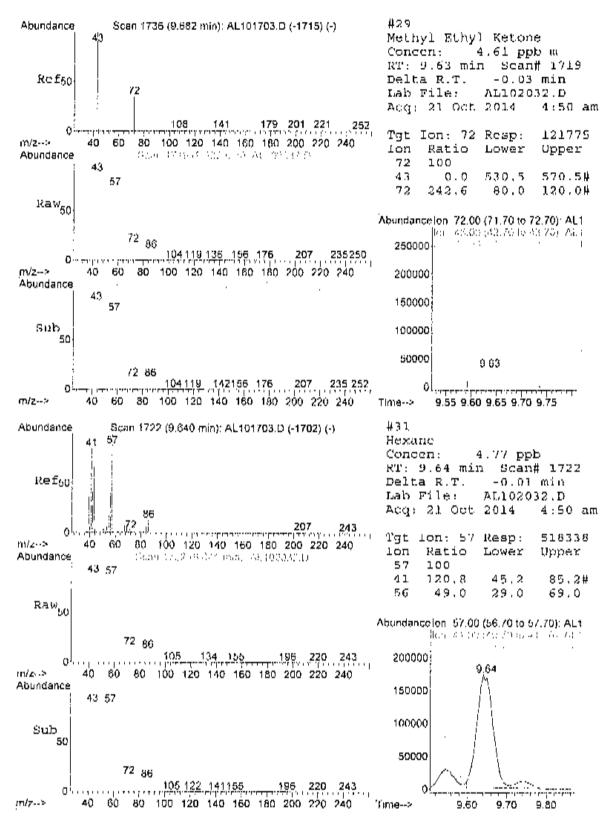

22.82

AL102032.0 A910 10G.M


Page 218 of 467

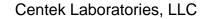
AL102032.D A910_1UC.M

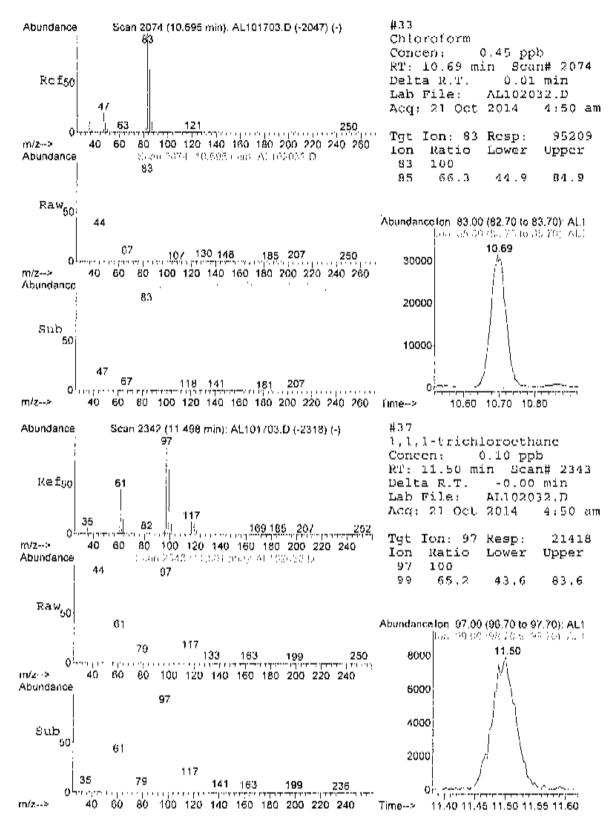

Page 4



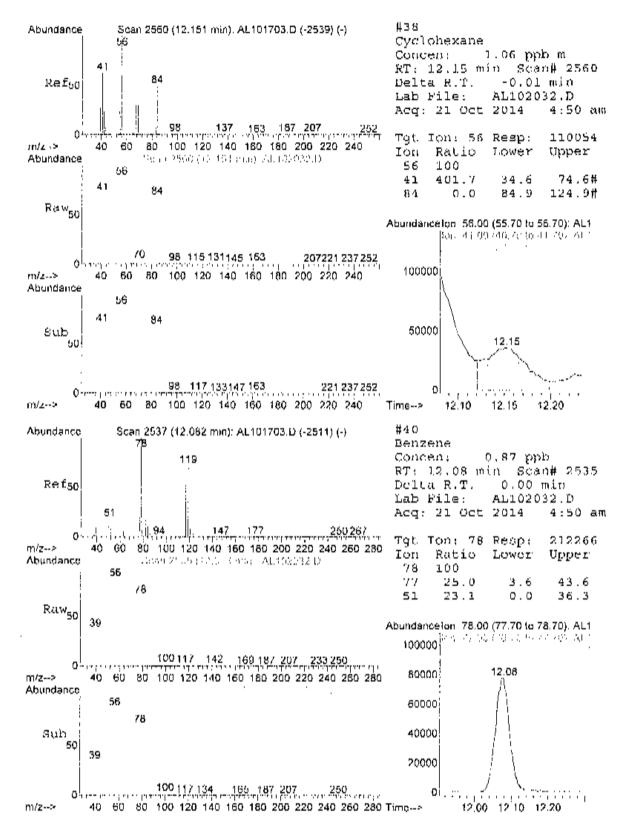
AL102032.D A910_1UG.M

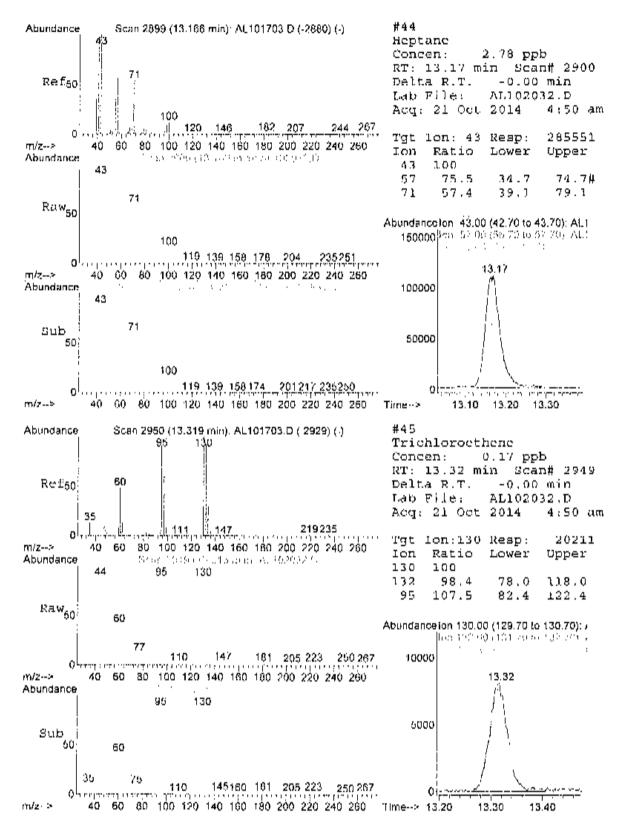
Page 5


Page 220 of 467



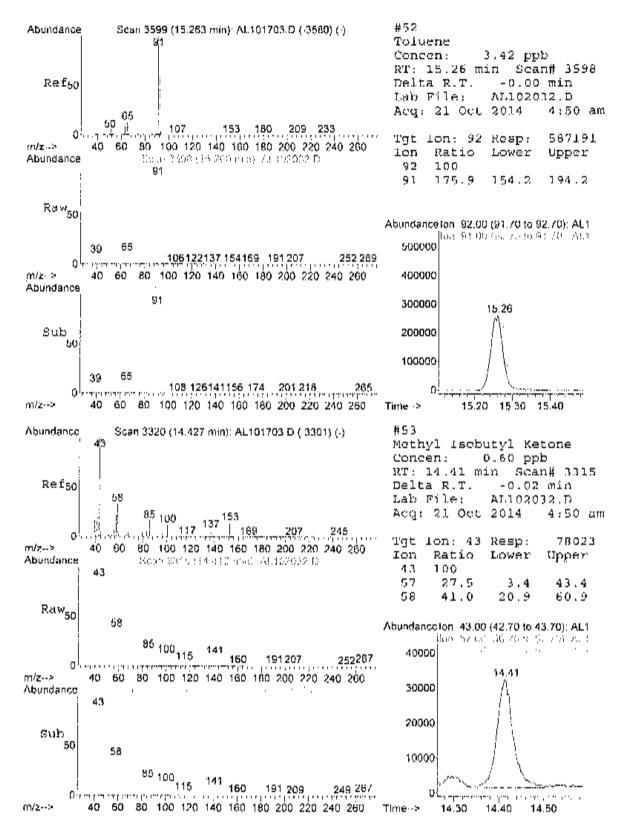
AL102032.D A910 1UG.M


Page 221 of 467

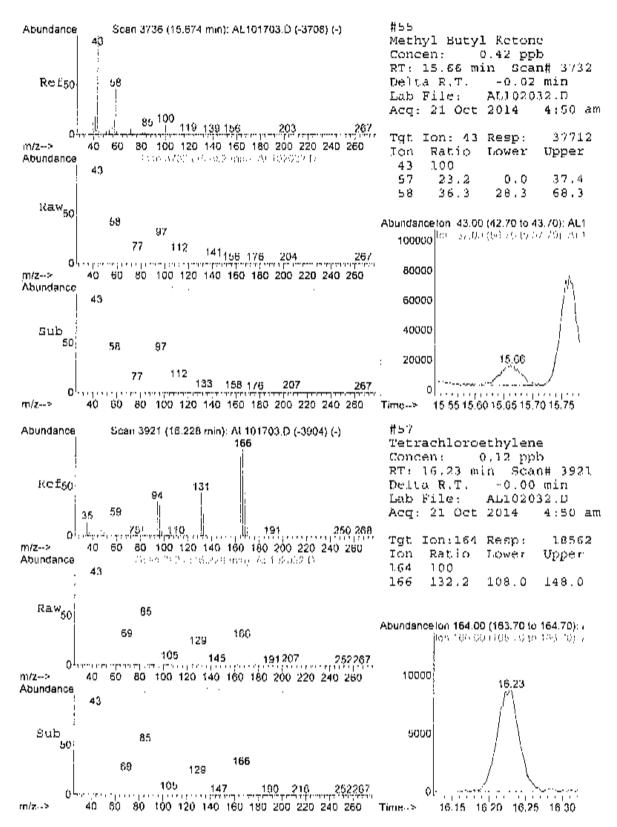

ALJ02032.D A910 10G.M

Page 222 of 467

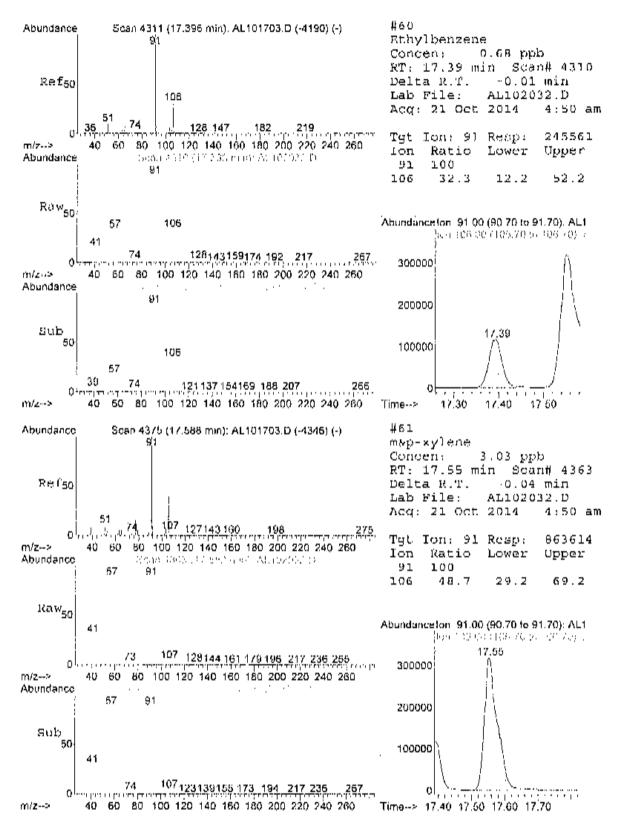
AL102032.D A910 10G.M


Page 8

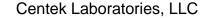
AL102032.D A910 1UG.M

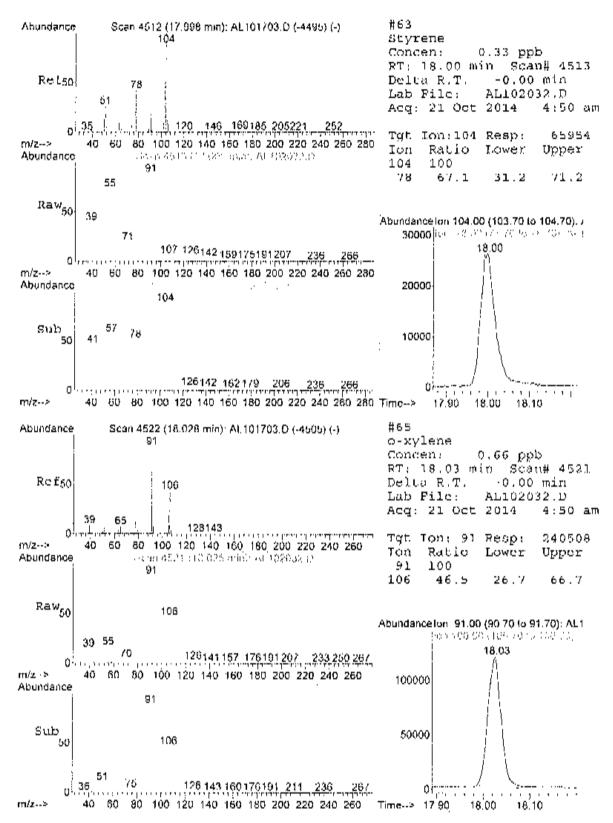

Page 9

Page 224 of 467

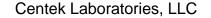

AL102032.D A910 1UG.M

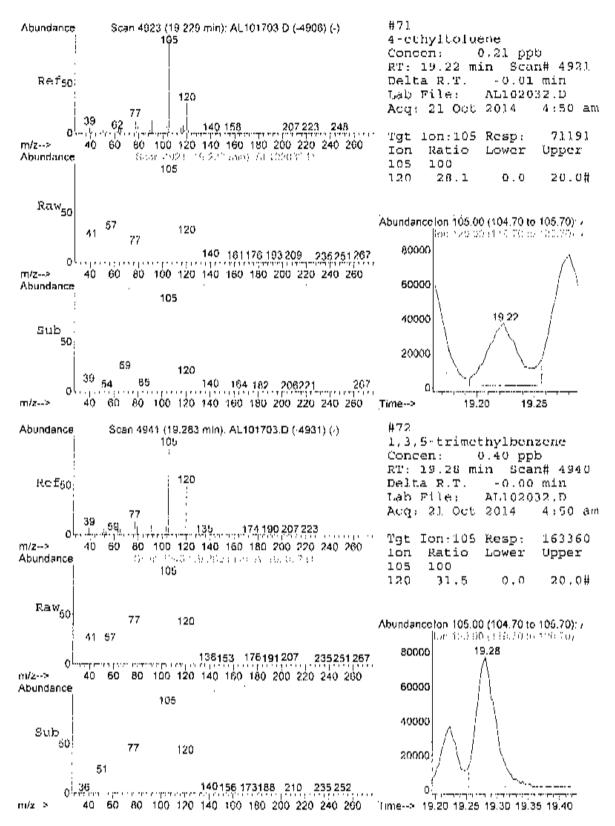
Page 225 of 467


AL102032.D A910_10C.M

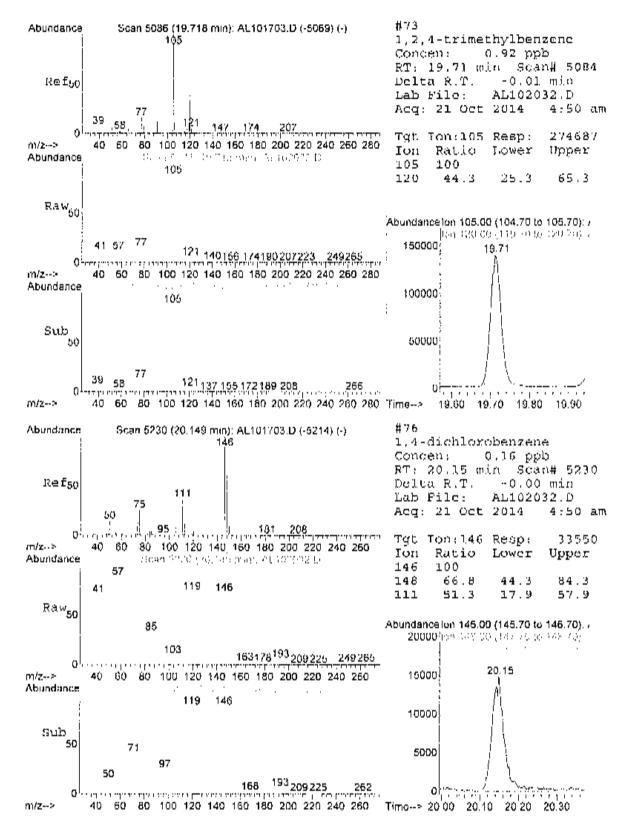

Page 11

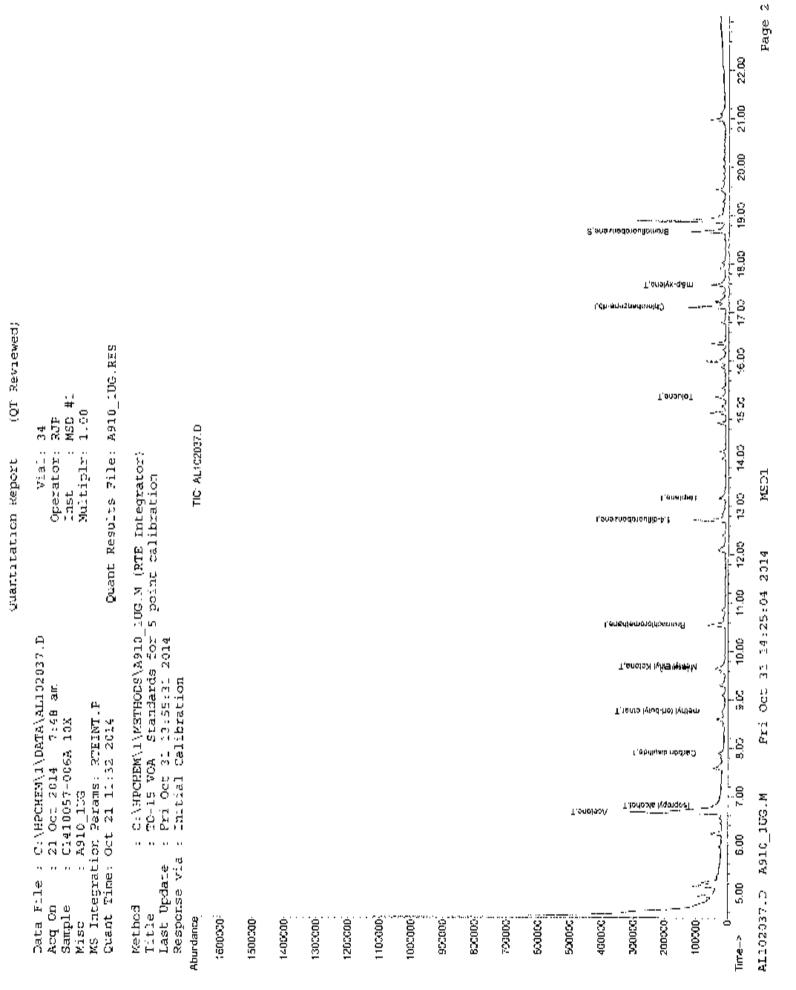
AL102032.D A910_1UG.M

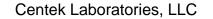

Page 227 of 467

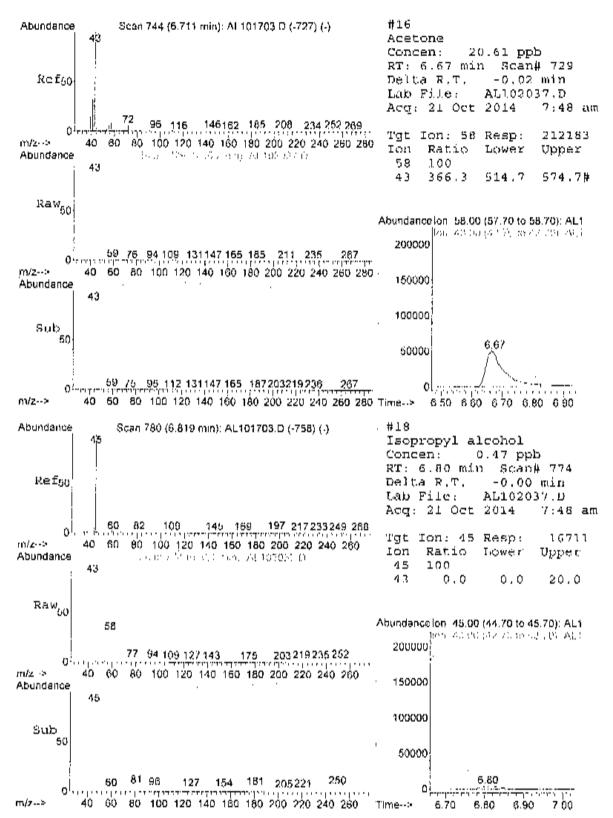


AL102032.D A910_1UG.M

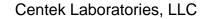

Page 228 of 467

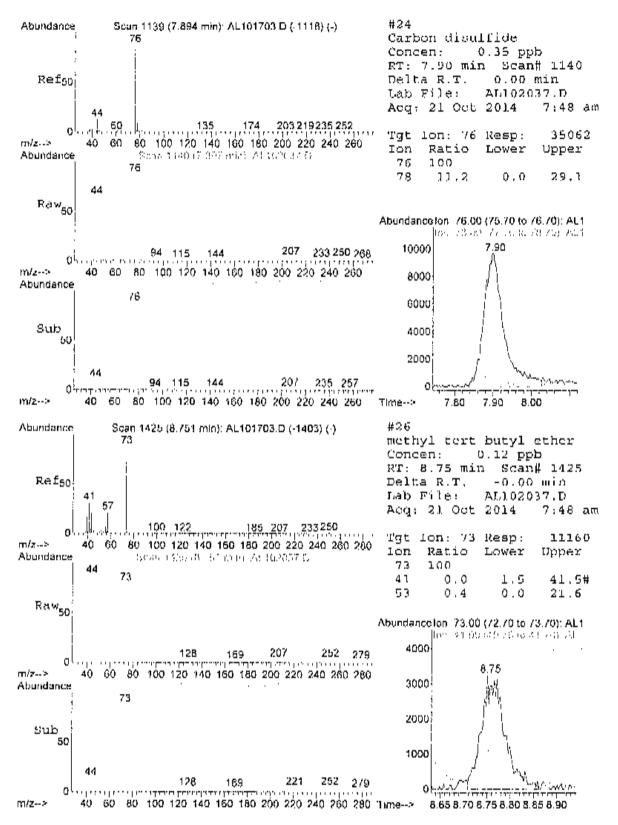

AL102032.D A910 LUC.M

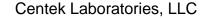

Page 14

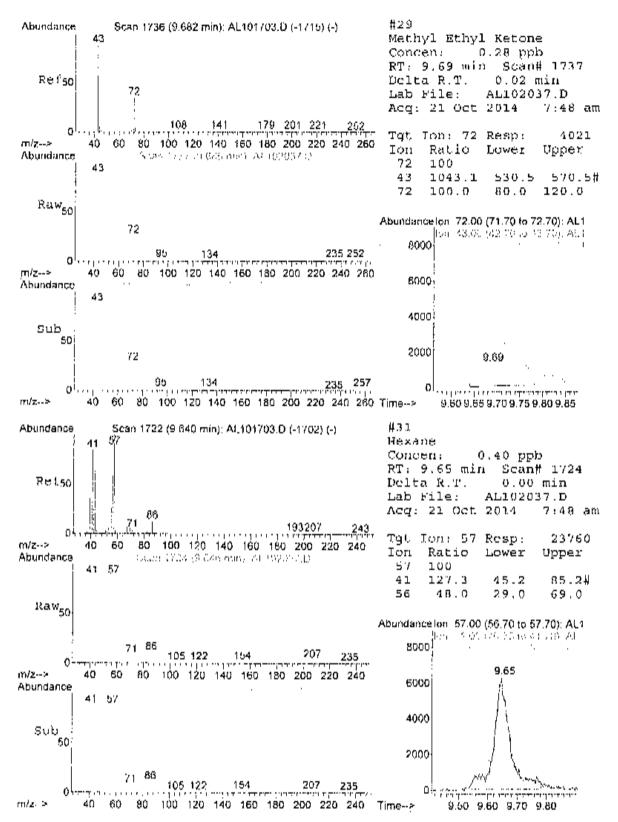


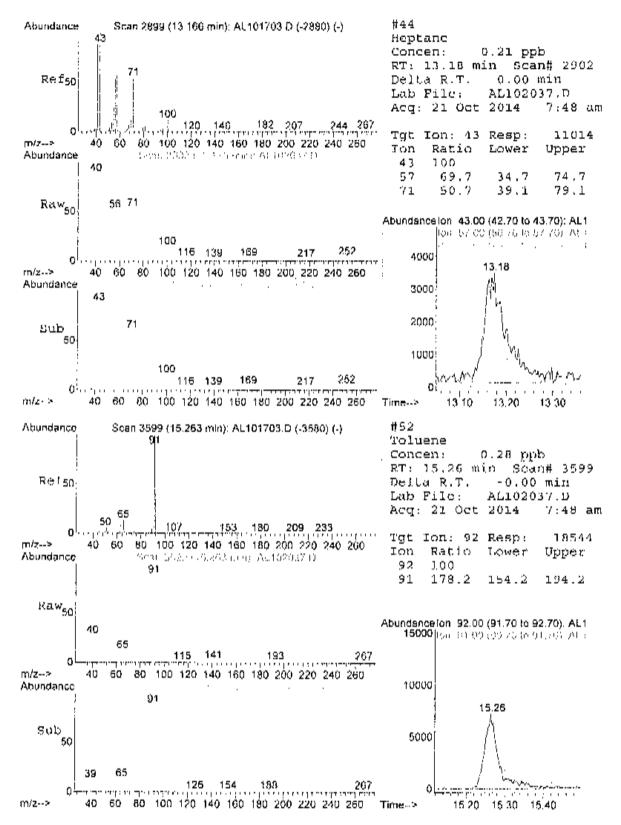
Page 230 of 467

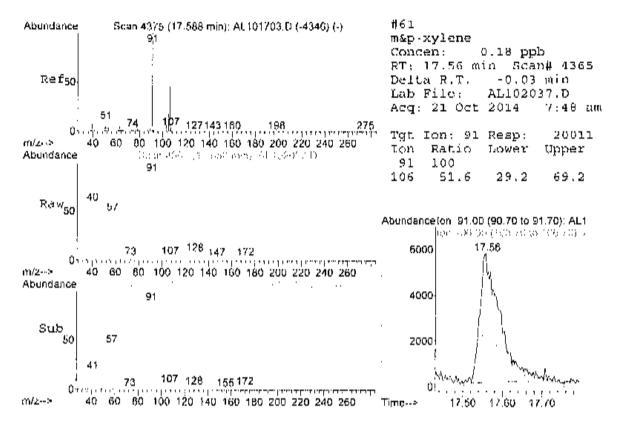

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\NPCNEM\l\DATA\AL102037.D Vial: 34 Acq On : 21 Oct 2014 7:48 am Operator: RJP Sample : Cl410057-006A 10X Misc : A910_1UG MS Integration Params; RTEINT.P Quant Time: Oct 21 11:30:05 2014 Tost. : MSD #1 Multiplr: 1.00 Quant Results File: A910 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Totegrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response vis : Initial Calibration DataAcq Meth : 10G RUN Internal Standards R.T. QION Response Conc Units Dev(Min) internar beanaged 1) Bromochloromethane10.54128310181.00 ppb0.0036) 1,4-diffuorobenzene12.721141277391.00 ppb0.0051) Chlorobenzene-d517.12117949901.00 ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.67 95 52685 0.78 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 78.00% 0.00 Target Compounds Ovalue. 16) Acetone6.675821218320.61ppb#3918) Isopropyl alcohol6.8045167110.47ppb#10024) Carbon disulfide7.9076350620.35ppb9426) methyl tert-butyl ether8.7573111600.12ppb#5729) Methyl Ethyl Ketone9.697240210.28ppb#131) Hexane9.6557237600.40ppb#5544) Heptane13.1843110140.21ppb8452) Toluene15.2692185440.28ppb9761) møp-xylene17.5691200110.18ppb96 16) Acetone 6.67 58 212183 20,61 ppb # 39






AL102037.D A910 1UG.M

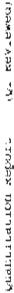

AL102037.D A910 1UG.M

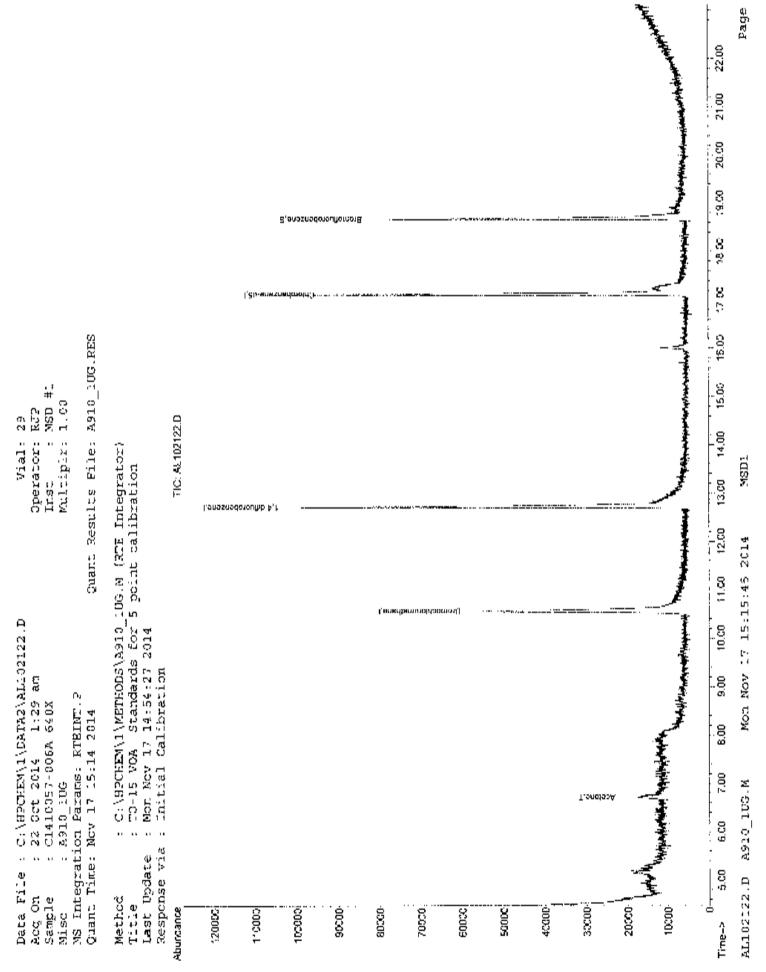

AL102037.D A910 10G.M

Page 235 of 467

Page 6

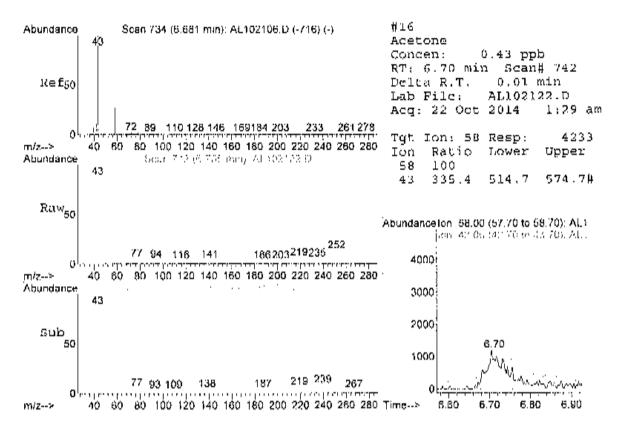
Page 236 of 467




Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AL102122.D Vial: 29 Acq On : 22 Oct 2014 1:29 am Operator: RJP Sample : C1410057 006A 640X Misc : A910_10G Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 22 14:31:23 2014 Quant Results File: A910_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A910 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : LUG_RUN
 Internal Standards
 R.T. QIon
 Response
 Conc Units Dev(Min)

 1) Bromochloromethane
 10.56
 128
 30013
 1.00
 ppb
 0.01

 36) 1,4-difluorobenzene
 12.72
 114
 115866
 1.00
 ppb
 0.00


 51) Chlorobenzene-d5
 17.12
 137
 79979
 1.00
 ppb
 0.00
 System Monitoring Compounds 67) Bromofluorobenzene 18.68 95 41278m 0.73 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 73.00% 0.00 Target Compounds Qvalue 6.70 58 4233 0.43 ppb # 28 16) Acetone

٢N

Page 239 of 467

MSD1

Page 3

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyClient Sample ID:IA-01Lab Order:C1410057Tag Number:324,308Project:5140 Site Yorkville, NYCollection Date:10/14/2014Lab ID:C1410057-007AMatrix:AIR

Analyses	Result	**Limit Qua	Units	ЭС	Date Analyzed
FIELD PARAMETERS		۴LD			Analyst:
Lab Vacuum In	-2		"Hg		10/16/2014
Lab Vacuum Out	-30		"Hg		10/16/2014
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroelhane	< 0.15	0.15	ρpb∨	1	10/17/2014 7:13:00 PM
1.1,2.2-Tetrachloroethane	< 0.15	0.15	ppbV	1	10/17/2014 7.13.00 PM
1,1,2-Trichloroethane	< 0.15	0.15	Vaqq	1	10/17/2014 7:13:00 PM
1.1-Dichloroethane	< 0.15	0 15	ppbV	1	10/17/2014 7:13:00 PM
1,1 Oichloroethene	< 0.15	0.15	vdqq	1	10/17/2014 7:13:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	νddά	1	10/17/2014 7:13:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	ррв∨	1	10/17/2014 7:13:00 PM
1.2-Dibromoethane	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
1,2-Dichlorobenzone	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
1,2-Dictiloroethane	< 0.15	0 15	ρpbV	1	10/17/2014 7.13:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
1,4 Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
1,4-Dioxane	< 0.30	0.30	Vdqq	ł	10/17/2014 7.13 00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	10/17/2014 7:13.00 PM
4-ethyltoluene	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
Acctone	10	1.5	ppbV	5	10/18/2014 2:08:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
Benzene	0.13	0.15 J	ppbV	1	10/17/2014 7:13:00 PM
Benzyl chloride	< 0.15	0.15	Vdqq	1	10/17/2014 7.13:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	, i	10/17/2014 7:13:00 PM
Bromoform	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
Bromomethane	< 0.15	0.15	Vdqq	1	10/17/2014 7:13:00 PM
Carbon disulfido	< 0,15	0.15	DODV	1	10/17/2014 7:13:00 PM
Carbon tetrachloride	0.090	0.040		1	10/17/2014 7:13:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 7.13:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	10/17/2014 7.13:00 PM
Chloroform	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
Chloromothane	0.54	0.15	ppbV	1	10/17/2014 7:13:00 PM
cis-1,2-Dichloroøthene	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	10/17/2014 7:13:00 PM
Dibromochloromethane	< 0.15	0.15	ppbv ppbV	, 1	10/17/2014 7:13:00 PM
Ethyl acetate	< 0.25	0.15	ppov ppbV	, 1	10/17/2014 7:13.00 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- II Holding times for preparation or analysis exceeded
- JN Non-rontine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected.

E Value above quantitation range

ND

- J Analyte detected at or below quantitation limits
 - Not Detected at the Reporting Limit

^{**} Reporting Limit

Date: 31 Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-007A

Client Sample ID: 1A-01 Tag Number: 324,308 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		ΤĊ	-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ρρον	1	10/17/2014 7.13:00 PM
Freon 11	0.33	0.15		ρpb∨	1	10/17/2014 7:13:00 PM
Freen 113	< 0.15	0.15		Vdqq	1	10/17/2014 7:13:00 PM
Freen 114	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Freon 12	0.58	0.15		ppbV	1	10/17/2014 7:13:00 PM
Heptane	< 0.15	0.15		βυρΛ	1	10/17/2014 7:13:00 PM
Hexachtoro 1,3 butadiene	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Hexane	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Isopropyl alcohol	10	0.15		ppbV	1	10/17/2014 7:13.00 PM
m&p-Xylene	0.27	0.30	J	ppbV	1	10/17/2014 7:13:00 PM
Methyl Butyl Ketone	< 0.30	0.30		Vdqq	1	10/17/2014 7:13:00 PM
Methyl Ethyl Kelone	0.34	0.30		ppb∨	1	10/17/2014 7:13:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	10/17/2014 7:13:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ррЬ∨	1	10/17/2014 7:13:00 PM
Mothylene chloride	< 0.15	0.15		ppb∨	1	10/17/2014 7:13:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	10/17/2014 7.13:00 PM
Propylene	< 0.15	0.15		ppbV	1	10/17/2014 7:13.00 PM
Styrene	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Tetrachloroethylene	< 0.15	0.15		ррьV	1	10/17/2014 7:13:00 PM
Tetrahydrofuran	< 0.15	0.15		ρρυν	1	10/17/2014 7:13:00 PM
Toluene	0.24	0.15		ppbV	1	10/17/2014 7:13:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
trans-1,3 Dichloropropene	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Trichloroethene	< 0.040	0.040		ppbV	1	10/17/2014 7:13:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	10/17/2014 7:13:00 PM
Vinyl chlorido	< 0.040	0.040		ppbV	1	10/17/2014 7:13:00 PM
Surr: Bromofluorobonzone	83 0	70-130		%REC	1	10/17/2014 7:13:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-romine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery hunts

Results reported are not blank corrected

- E Value above quantitation range
- J Analyte detected at or below quantitation limits.
- ND Not Detected at the Reporting Limit

Page 14 of 22

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-007A

Client Sample ID: 1A-01 Tag Number: 324,308 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual U	nits	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	13	g/m3	1	10/17/2014 7:13:00 PM
1,1,2,2 Tetrachloroethane	< 1.0	t.D	ц	g/m3	1	10/17/2014 7:13:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	Lig	g/m3	1	10/17/2014 7:13:00 PM
1,1-Oichloroethane	< 0.61	0.61	U g	g/m3	1	10/17/2014 7:13:00 PM
1,1-Dichloroethene	< 0.59	0.59	U)	g/m3	1	10/17/2014 7:13:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	U;	g/m3	1	10/17/2014 7:13:00 PM
1.2.4-Trimethylbonzone	< 0.74	0.74	U.	g/m3	1	10/17/2014 7:13:00 PM
1,2-Dibromoethane	< 1.2	1.2	L)	g/m3	1	10/17/2014 7:13:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	Li și	g/m3	1	10/17/2014 7:13:00 PM
1,2-Dichloroethane	< 0.61	0.61	Ц	g/m3	1	10/17/2014 7:13:00 PM
1,2-Dichloropropane	< 0.69	0.69	U.	g/m3	1	10/17/2014 7:13:00 PM
1,3.5-Trimothylbenzone	< 0.74	0.74	U,	g/m3	1	10/17/2014 7:13:00 PM
1.3-butadiene	< 0.33	0.33	U,	g/m3	1	10/17/2014 7:13:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	139	g/m3	1	10/17/2014 7:13.00 PM
1,4-Dichlorobenzene	< 0.90	0.90	Ц	g/m3	1	10/17/2014 7:13:00 PM
1,4-Dioxane	\$ 1.1	1.1	U;	g/m3	1	10/17/2014 7:13:00 PM
2,2.4-trimethylpontene	< 0.70	0.70	U,	g/m3	1	10/17/2014 7:13:00 PM
4-ethyltoluene	< 0.74	0.74	U.	g/m3	1	10/17/2014 7:13:00 PM
Acetone	24	3.6	C.	g/m3	5	10/18/2014 2.08:00 AM
Allyl chloride	< 0.47	0.47	ц	g/m3	1	10/17/2014 7.13.00 PM
Benzene	0.42	0.48	Ju	g/m3	t	10/17/2014 7.13:00 PM
Benzyl chloride	• 0.86	0.86	Li,	g/m3	1	10/17/2014 7:13:00 PM
Bromodichloromethane	< 1.0	1.0	U	g/m3	1	10/17/2014 7:13:00 PM
Bramoform	< 1.6	1.6	U.	g/m3	1	10/17/2014 7:13:00 PM
Bromomethane	< 0.58	0.58		g/m3	i	10/17/2014 7:13:00 PM
Carbon disulfide	< 0.47	0 47	ų	g/rn3	1	10/17/2014 7.13:00 PM
Carbon letrachloride	0.57	0 25	Li e	g/m3	1	10/17/2014 7:13:00 PM
Chlorobenzene	< 0.69	0.69	ել	g/m3	1	10/17/2014 7:13:00 PM
Chloroethane	< 0.40	0.40	U;	g/m3	1	10/17/2014 7:13:00 PM
Chloraform	< 0.73	0.73	U	g/m3	1	10/17/2014 7:13:00 PM
Chloromethane	11	0.31	ц	g/m3	1	10/17/2014 7:13:00 PM
cis+1,2-Dichloroethene	< 0.59	0.59	ц	g/m3	1	10/17/2014 7.13:00 PM
cls-1,3-Dichloropropene	< 0.68	0.68	Li,	9/m3	1	10/17/2014 7:13:00 PM
Cyclohexane	< 0.52	0.52	Цq	g/m3	1	10/17/2014 7:13:00 PM
Olbromochloromethane	< 1.3	1.3	U g	ą∕m3	1	10/17/2014 7:13:00 PM
Ethyl acolaio	< 0.90	0.90	Uģ	g/m3	1	10/17/2014 7:13:00 PM
Ethylbenzene	< 0.65	0.65	uş	g/m3	1	10/17/2014 7:13:00 PM
Freon 11	1.9	0.84	ų	g/m3	1	10/17/2014 7:13:00 PM
Freon 113	< 1.1	1.1	ц	g/m3	1	10/17/2014 7:13:00 PM
Freon 114	< 1.0	1.0	υş	g/m3	1	10/17/2014 7:13:00 PM

- Qualifiers: ** Reporting Limit
 - B Analyte detected in the associated Method Blank
 - H Holding times for preparation or analysis exceeded.
 - JN Non-routine analyte. Quantitation estimated
 - S Spike Recovery outside accepted recovery limits

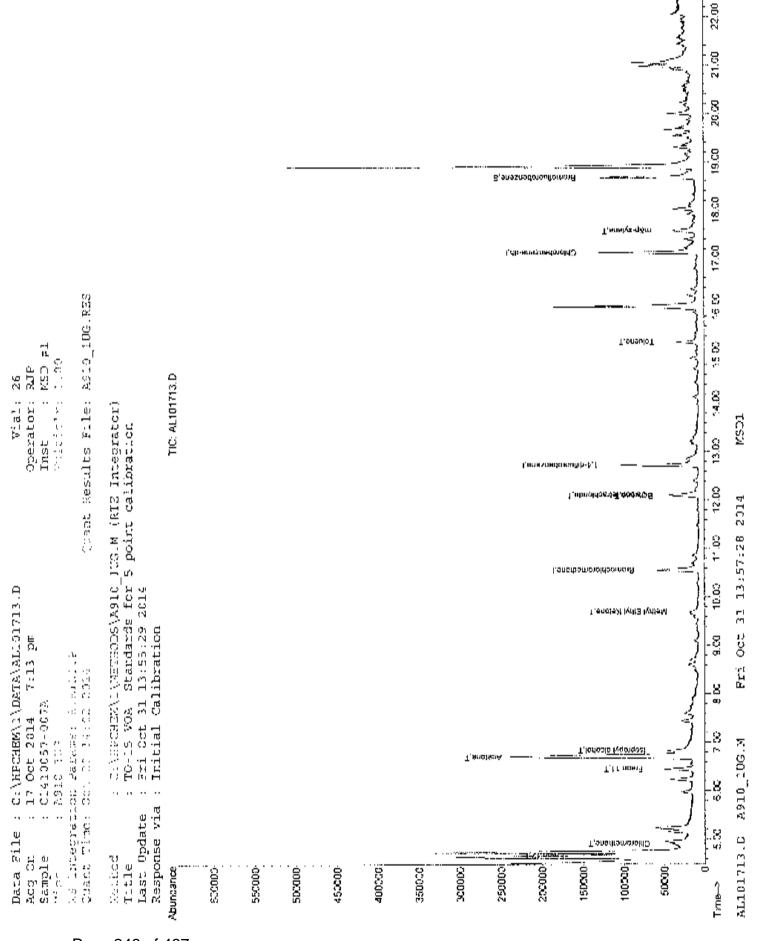
. Results reported are not blank corrected

E Value above quantitation range

- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

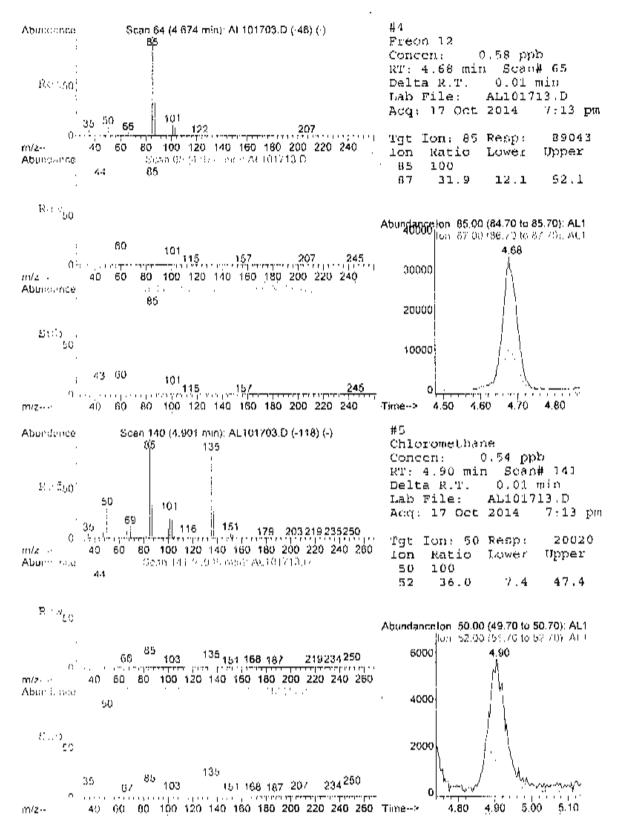
Date: 31-Oct-14

CLIENT: WS	SP Environment and Energy	Client Sample ID:	IA-01
	410057	Tag Number:	
Project: 514	40 Site Yorkville, NY	Collection Date:	10/14/2014
Lab ID: C1	410057-007A	Matrix:	AIR


Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		та	-15			Analyst: RJP
Freon 12	2.9	0 74		ug/m3	1	10/17/2014 7-13:00 PM
Heptane	< 0.61	0.61		ug/m3	1	10/17/2014 7:13:00 PM
Hexachioro-1,3-butadiene	< 1.6	1.6		ug/m3	1	10/17/2014 7.13.00 PM
Hexane	< 0.53	0.53		ug/m3	1	10/17/2014 7:13:00 PM
Isopropyl alcohol	2.5	0.37		ug/m3	1	10/17/2014 7.13:00 PM
m&p Xylene	1.2	1.3	J	ug/m3	1	10/17/2014 7:13:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	10/17/2014 7:13:00 PM
Methyl Ethyl Ketone	10	0.86		ug/m3	1	10/17/2014 7:13:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	10/17/2014 7:13:00 PM
Mathyl tert-butyl ether	< 0.54	0.54		ug/m3	1	10/17/2014 7:13:00 PM
Methylene chloride	< 0.52	0.52		ug/m3	1	10/17/2014 7:13:00 PM
o-Xylene	= 0.65	0.65		ug/m3	1	10/17/2014 7:13:00 PM
Propylene	< 0.26	0.26		ug/m3	1	10/17/2014 7:13:00 PM
Styrene	< 0.64	0.64		ug/m3	1	10/17/2014 7:13:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	10/17/2014 7:13:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	10/17/2014 7:13:00 PM
Toluene	0.90	0.57		ug/m3	1	10/17/2014 7:13:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 7:13.00 PM
trans-1.3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/17/2014 7:13:00 PM
Trichlereethene	< 0.21	0.21		ug/m3	1	10/17/2014 7:13:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	10/17/2014 7:13:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/17/2014 7:13:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	t0/17/2014 7:13:00 PM

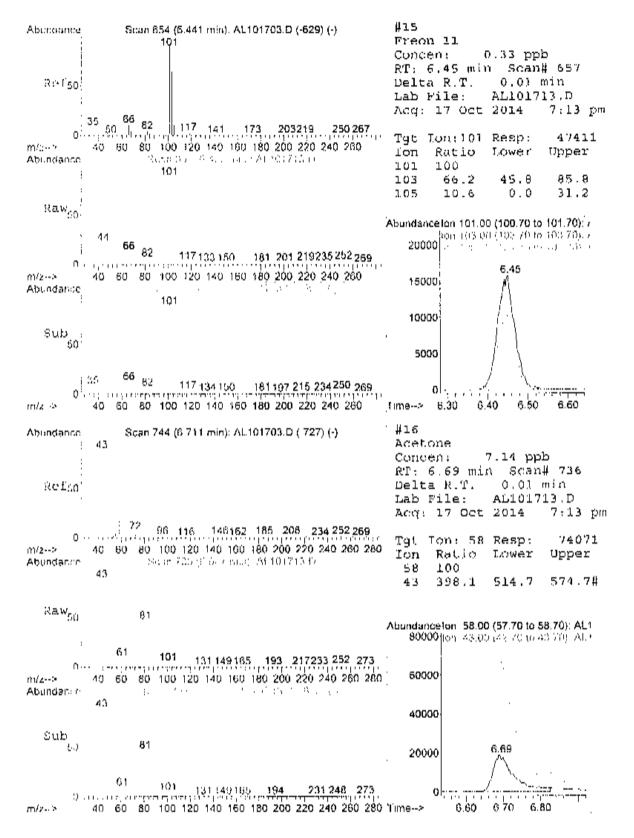
Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit


Centek Laboratories, LL	C					
	Quantinata	on Rep	ort (OT	Review	(ca)	
Data Filt: C:\HPCHEM\1\DATA\A Acq On : 17 Oct 2014 7:13 Sample : C1410057-007A Misc : A910_1UG MS Intervation Params: FTEINT, Quant T Ac: Oct 17 21:57:15 20	mq v		Tinst Mult	; iplr:	MSD 1.00	
Quant F thod : C:\HPCHEM\l\MET Title : TO-15 VOA Stan Last Upaate : Mon Oct 06 12:3 Responde via : Initial Calibra DataAcq Math : LUG_RUN	dards for 1:36 2014 tion	5 poin	t calibrati	on		
Internet Standards	R.T.	Qlon	Response C	one Ur	uits	Dev(Min)
<pre>Internel Standards 1) Bromochloromethane 36) 1.1-difluorobenzene 51) Cliorobenzene-d5</pre>						
System Jonitoring Compounds 67) Bromofluorobenzene Spik Amount 1.000	18.67 Range 70	95 - 130	58094 Recovery	0,83	ррђ 83.	0.00 800
<pre>Target 'ompounds 4) % on 12 5) C.toromethane 15) C.toromethane 16) % trone 18) % trone 19) % trone 10) % tron</pre>	4.90 6.45 6.69 6.83 9.70 12.10 12.08 15,27	50 101 58 45 72 117 78 92	89043 20020 47411 74071 35924 4932 10823 15372 16276 30387	0.54 0.33 7.14 1.01 0.34 0.09 0.13 0.24	600 600 600 600 600 600 600 600 600 600	84 99 # 50 # 100 # 78 90 91 97

Page 2

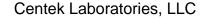
Page 246 of 467

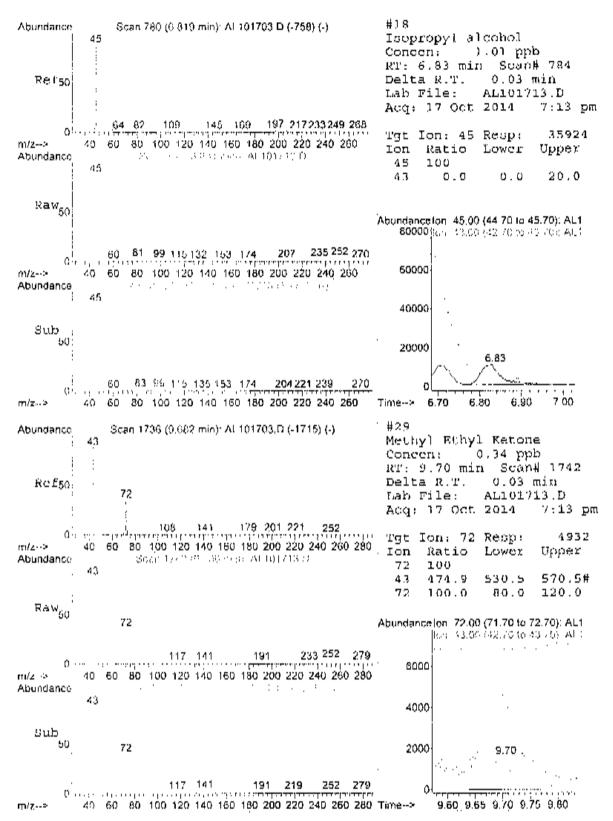


AL1017 3.0 A910_1UG.M

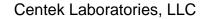
_1UG.M Fri Oct 31 13:57:29 2014 MSD1

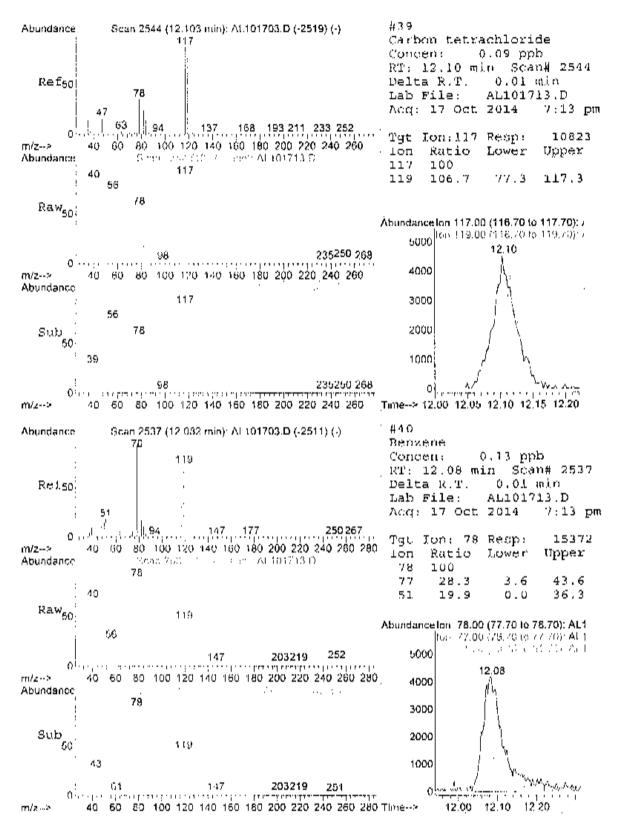
Page 3

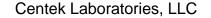

Page 247 of 467

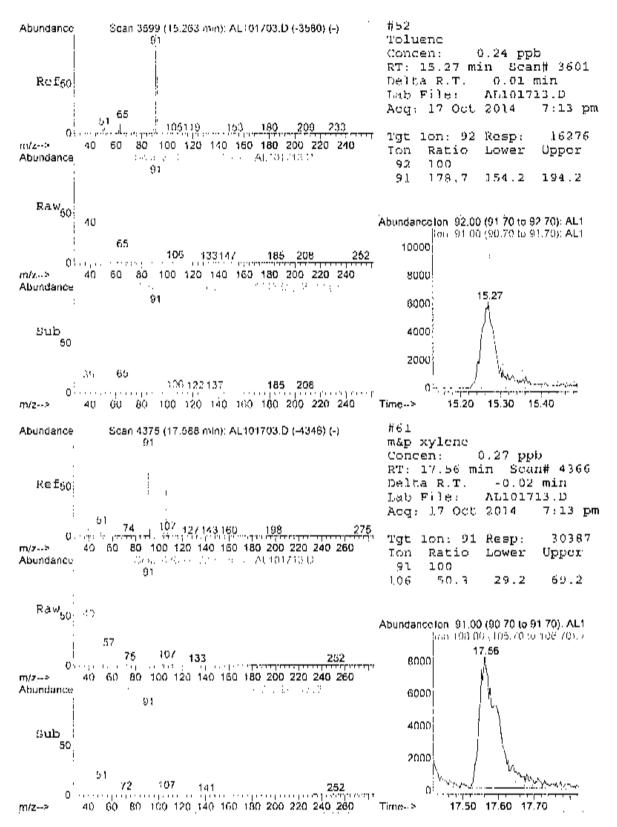


AL101713.0 A910_1UG.M


Page 248 of 467

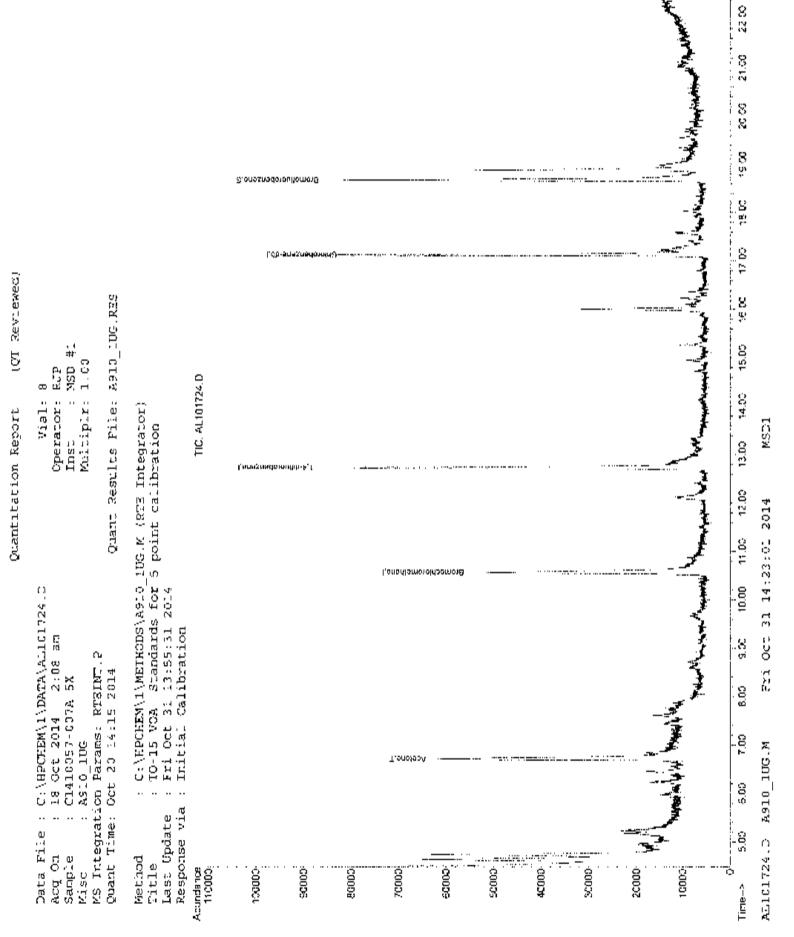

MSD1


AL101713.D A910 LUG.M



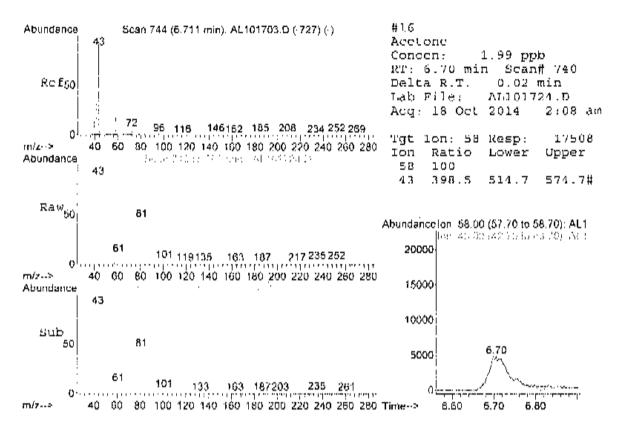
AL101713.0 A910_1UG.M

Page 250 of 467



AL101713.0 A910 10G.M

Page 251 of 467


Centek Laboratories, LLC Quantitation Report (OT Reviewed) Data File : C:\HPCHEM\3\DATA\AL101724.D Vial: 8 Acq On : 18 Oct 2014 2:08 am Operator: RJP Sample : C1410057-007A 5x Misc : A910 1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Parama: RTEINT.P Quant Time: Oct 18 07:21:58 2014 Quant Results File: A910 10G.RES Quant Method : C:\HPCHEM\1\METHODS\A910_3UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 12:31:36 2014 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) ------1) Bromochloromethane10.56128265481.00ppb0.0136) 1.4-difluorobenzene12.73114989961.00ppb0.0151) Chlorobenzene-d517.12117726691.00ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.68 95 39141m / 0.76 ppb 0.01 Spiked Amount 1.000 Range 70 - 130 Recovery - 76.00% Target Compounds Qvalue 6.70 58 17508 1.99 ppb # 50 16) Acetone

Page 2

Centek Laboratories, LLC

Page 253 of 467

Page 254 of 467

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy	Client Sample ID: SS-1014
Lab Order:	C1410057	Tag Number: 233
Project:	5140 Site Yorkville, NY	Collection Date: 10/14/2014
Lab ID:	C1410057-008A	Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-2		"Hg		10/16/2014
Lab Vacuum Out	-30		"Hg		10/16/2014
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	2.4	1.5	ppbV	10	10/18/2014 4:45:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	10/17/2014 9.50.00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ррЬ∨	1	10/17/2014 9:50:00 PM
1,1-Dichloroethane	< D.15	0.15	ppb∨	1	10/17/2014 9:50:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppb∨	1	10/17/2014 9:50:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ррб∨	1	10/17/2014 9:50:00 PM
1,2,4-Trimethylbenzene	3.4	1.5	ppb∨	10	10/18/2014 4:45:00 AM
1.2-Dibromoothane	< 0.15	0.15	ррб∨	1	10/17/2014 9:50:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 9.50:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	10/17/2014 9.50.00 PM
1,2-Dichloropropane	< 0.15	0.15	рры	1	10/17/2014 9:50:00 PM
1.3,5-Trimethylbenzene	1.7	0.15	ppbV	1	10/17/2014 9:50:00 PM
1.3-butadiene	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
1,4 Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	10/17/2014 9.50-00 PM
2,2,4-trimethylpentane	0.47	0.15	ppbV	1	10/17/2014 9.50:00 PM
4-ethyltoluene	1.3	0.15	ppbV	t	10/17/2014 9.50.00 PM
Acetone	1100	240	ppbV	810	10/21/2014 5:26:00 AM
Ally chloride	< 0.15	0.15	ppbV	τ	10/17/2014 9:50:00 PM
Benzene	3.4	1.6	Vdqq	10	10/18/2014 4:45:00 AM
Benzyl chloride	< 0.15	0.15	ppbV	1	10/17/2014 9 50:00 PM
Bromodichioromethane	< 0.15	0.15	ppbV	1	10/17/2014 9.50:00 PM
Bromoform	< 0.15	0.15	ppbV	1	10/17/2014 9.50:00 PM
Bromomethane	< 0.15	0.15	ppbV	3	10/17/2014 9:50:00 PM
Carbon disulfide	2.9	1.5	Vdqq	10	10/18/2014 4:45:00 AM
Carbon tetrachloride	< 0.15	0 15	Vdqq	1	10/17/2014 9:50:00 PM
Chlorobenzene	< 0.15	0.15	ррbV	1	10/17/2014 9.50:00 PM
Chloroethane	0.16	0.15	ρρυν	1	10/17/2014 9.50.00 PM
Chloroform	0.15	0.15	ppbV	1	10/17/2014 9.50:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
çis 1,3 Dichloropropene	< 0.15	0.15	ppbV	1	10/17/2014 9 50:00 PM
Cyclohexane	2.7	1.5	ppbV	10	10/18/2014 4.45:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	10/17/2014 9.50:00 PM
Ethyl acetate	< 0.25	0.25	ppbV	1	10/17/2014 9.50:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S — Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

.

J Analyte detected at or below quantitation limits

...

ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyClientLab Order:C14100577Project:5140 Site Yorkville, NYCoLab ID:C1410057-008A

Client Sample ID: SS-1014 Tag Number: 233 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
Ethylbenzene	18	0.15	ppb∀	1	10/17/2014 9:50:00 PM
Freon 11	26	15	ppb∨	10	10/18/2014 4:45:00 AM
Freon 113	0.10	0.15	J ppbV	1	10/17/2014 9:50:00 PM
Freon 114	< 0.15	0.15	ppb∨	1	10/17/2014 9.50.00 PM
Freon 12	0.46	0.15	ppbV	1	10/17/2014 9:50.00 PM
Heptane	4.6	1.5	ppbV	10	10/18/2014 4.45.00 AM
Hexachtoro-1,3-butadiene	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
Hexane	5.1	1.5	ppbV	10	10/18/2014 4:45:00 AM
isopropyl alcohol	< 0.15	0 15	ppb∨	1	10/17/2014 9:50:00 PM
m&p-Xylene	5.0	3.0	ppbV	10	10/18/2014 4:45-00 AM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	10/17/2014 9:50:00 PM
Methyl Ethyl Ketone	4.7	3.0	ppbV	10	10/18/2014 4.45:00 AM
Methyl Isobutyl Kelone	1.6	0.30	ppbV	1	10/17/2014 9.50:00 PM
Methyl lert-butyl ether	2.6	1.5	ppbV	10	10/18/2014 4:45:00 AM
Methylene chloride	0.16	0.15	Vdqq	1	10/17/2014 9:50:00 PM
o-Xylone	1.3	0.15	ррbV	1	10/17/2014 9:50:00 PM
Propylene	< 0.15	0.15	ррbV	1	10/17/2014 9:50:00 PM
Styrene	1.6	1.5	ppb∨	10	10/18/2014 4:45:00 AM
Tetrachtoroethylene	10	1.5	ppb∨	10	10/18/2014 4.45:00 AM
Tetrahydrofuran	< 0.15	0.15	ppb∨	1	10/17/2014 9:50.00 PM
Toluene	6.2	1.5	ppbV	10	10/18/2014 4:45:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	10/17/2014 9:50:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/17/2014 9:50:00 PM
Trichloroethene	3.6	1.5	ppbV	10	10/18/2014 4:45:00 AM
Vinyl acetate	< 0.15	0.15	ppbV	1	10/17/2014 9 50:00 PM
Vinyl Bromide	< 0,15	0.15	ppbV	ï	10/17/2014 9.50.00 PM
Vinyl chloride	< 0.15	0.15	ppb∨	1	10/17/2014 9.50:00 PM
Surr: Bromofluorobenzene	9 8 0	70-130	%REC	1	10/17/2014 9:50:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- 3 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Out-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-008A

Client Sample ID: SS-1014 Tag Number: 233 Collection Date: 10/14/2014 Matrix: AiR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
1.1.1-Trichloroethans	13	62		ug/m3	10	10/18/2014 4:45:00 AM
1,1,2,2-Tetrachioroethane	< 1.0	1.O		ug/m3	1	10/17/2014 9·50:00 PM
1,1,2 Trichloroethane	< 0.82	0.82		ug/m3	1	10/17/2014 9:50:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	10/17/2014 9;50:00 PM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 9:50:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	10/17/2014 9.50:00 PM
1,2,4-1 rimethy/benzene	17	7.4		ug/m3	10	10/18/2014 4:45.00 AM
1.2-Dibromoethane	< 1.2	1.2		ug/m3	1	10/17/2014 9:50:00 PM
1,2-Dichlorobenzene	= 0.90	0.90		ug/m3	ſ	10/17/2014 9:50:00 PM
1,2 Dichloroethane	< 0.61	0.61		ug/m3	1	10/17/2014 9:50:00 PM
1,2-Dichloropropane	< 0.59	0.69		ug/m3	1	10/17/2014 9:50:00 PM
1,3,5-Trimethylbenzene	8.2	0.74		ug/m3	1	10/17/2014 9:50:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	10/17/2014 9.50:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 9:50:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 9:50:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	10/17/2014 9:50:00 PM
2,2,4-trimethylpentane	2.2	0.70		ug/m3	1	10/17/2014 9·50 00 PM
4-othyltoluene	6.3	0.74		ug/m3	1	10/17/2014 9.50:00 PM
Acetone	2600	570		ug/m3	810	10/21/2014 5.26.00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	10/17/2014 9.50:00 PM
Benzene	11	4.0		ug/m3	10	10/18/2014 4:45:00 AM
Benzyi chloride	< 0.86	0.86		ug/m3	ť	10/17/2014 9:50:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	10/17/2014 9:50:00 PM
Bromoform	< 16	1.6		ug/m3	1	10/17/2014 9.50:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	10/17/2014 9:50:00 PM
Carbon disulfide	9.0	47		vg/m3	10	10/18/2014 4:45:00 AM
Carbon (etrachloride	< 0.94	0.94		ug/m3	1	10/17/2014 9:50:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	10/17/2014 9:50:00 PM
Chloroethane	0.42	0.40		ug/m3	1	10/17/2014 9:50:00 PM
Chloroform	0.73	0.73		ug/m3	1	10/17/2014 9:50:00 PM
Chloromethane	< 0.31	0.31		ug/m3	1	10/17/2014 9.50.00 PM
cis-1,2-Dichloroothene	< 0.59	0 59		ug/m3	1	10/17/2014 9:50.00 PM
cis-1,3-Dichleropropene	< 0.68	0.68		ug/m3	1	10/17/2014 9:50:00 PM
Cyclohexane	9.3	5.2		ug/m3	10	10/19/2014 4:45:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	10/17/2014 9:50:00 PM
Ethyi acetate	< 0.90	0.90		ug/m3	1	10/17/2014 9:50:00 PM
Elhyibenzene	7.7	0.65		ug/m3	1	10/17/2014 9.50:00 PM
Freen 11	15	8.4		ug/m3	10	10/18/2014 4:45:00 AM
Freen 113	0.77	1.1		ug/m3	1	10/17/2014 9:50:00 PM
Freen 114	< 1.0	1.0	•	ug/m3	1	10/17/2014 9:50:00 PM

Qualifiers: ** Repo

- Reporting Limit
- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated
- S Spike Recovery outside accepted recovery limits

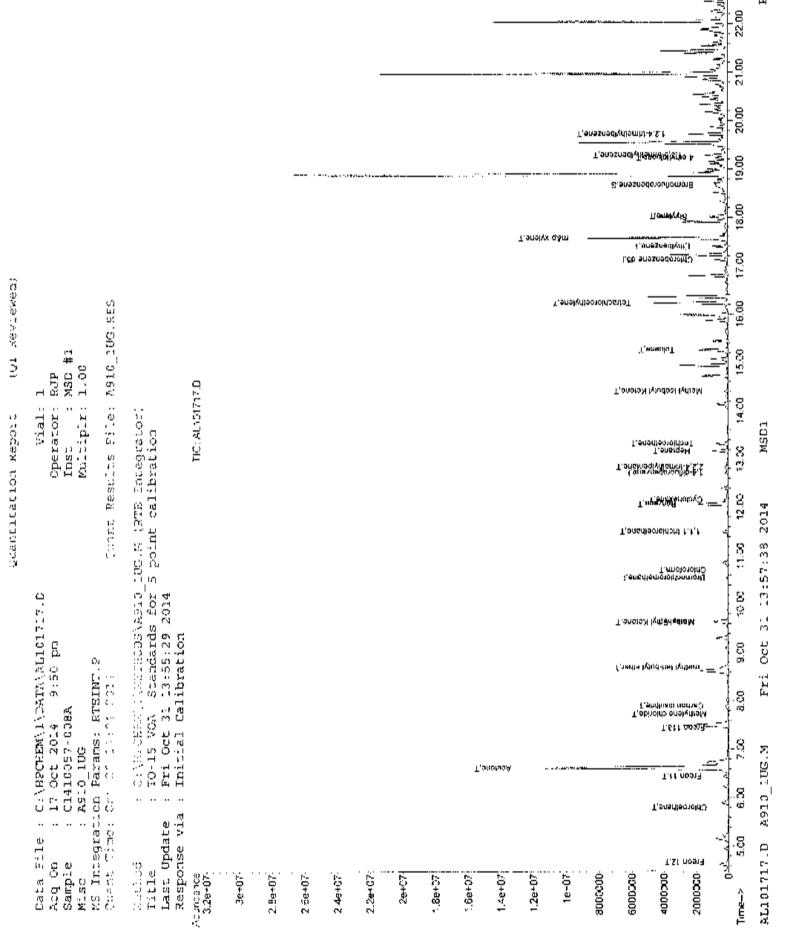
. Results reported are not blank corrected

- E Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

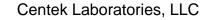
Date: 31-Oct-14

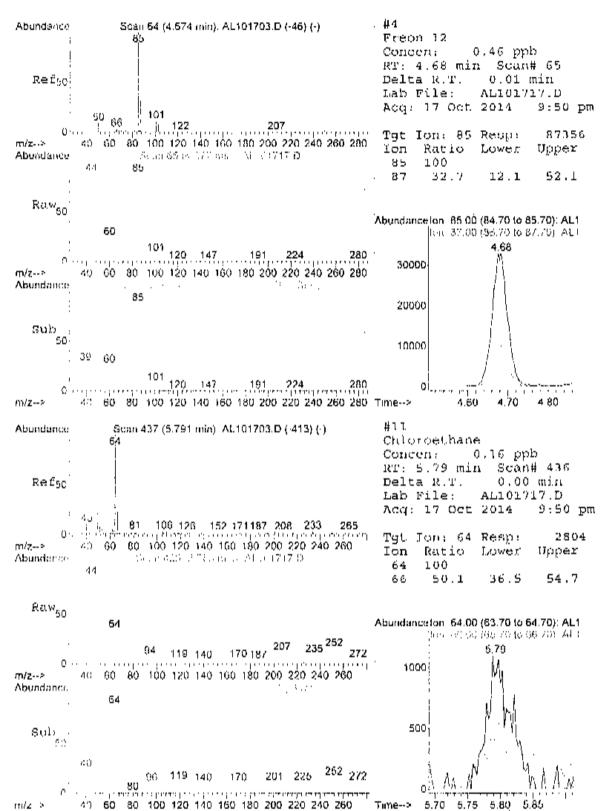
CLIENT:	WSP Environment and Energy	Client Sample ID:	SS-1014
Lab Order:	C1410057	Tag Number:	233
Project:	5140 Site Yorkville, NY	Collection Date:	10/14/2014
Lab ID:	C1410057-008A	Matrix	AIR

Analyses	Result	**Limit	Qual I	Inits	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то)-15			Analyst: RJP
Freen 12	2.3	0.74	L	ig/m3	1	10/17/2014 9:50:00 PM
Reptane	19	6.1	L	ig/m3	10	10/18/2014 4:45:00 AM
Hexachloro 1,3-butadiene	< 1.6	1.6	u	ig/m3	1	10/17/2014 9:50:00 PM
Hexane	18	5.3	L.	ig/m3	10	10/18/2014 4:45:00 AM
isopropyl alcohol	< 0.37	0.37	L.	ig/m3	1	10/17/2014 9:50:00 PM
m&p-Xylene	22	13	Ļ	ig/m3	10	10/18/2014 4:45:00 AM
Methyl Butyl Ketone	< 1,2	12	u	ig/m3	1	10/17/2014 9:50:00 PM
Methyl Ethyl Ketone	14	8.8	L	ig/m3	10	10/18/2014 4:45:00 AM
Methyl Isobulyl Ketone	6.7	1.2	L	ig/m3	1	10/17/2014 9:50:00 PM
Methyl tert-butyl ether	9.4	5.4	L.	ig/n13	10	10/18/2014 4:45:00 AM
Methylene chloride	0.56	0.52	L.	ig/m3	1	10/17/2014 9:50:00 PM
o-Xylene	5.5	0.65	ι	ig/m3	1	10/17/2014 9.50:00 PM
Propylene	< 0.26	0.26		ig/m3	1	10/17/2014 9:50:00 PM
Styrene	6.8	6.4		ig/m3	10	10/18/2014 4:45:00 AM
Tetrachloroethylene	69	10	L L	ig/m3	10	10/16/2014 4:45:00 AM
Tetrahydrofuran	< 0.44	0.44	ι	ig/m3	1	10/17/2014 9:50:00 PM
loluene	23	5.7	ι	ig/m3	10	10/18/2014 4:45:00 AM
trans-1,2-Dichloroethene	< 0.59	0.69	L.	ig/m3	1	10/17/2014 9:50:00 PM
(rans-1,3-Dichloropropene	< 0.68	0.68	L	ig/m3	1	10/17/2014 9.50:00 PM
Trichloroethene	19	8.1	L.	ig/m3	10	10/18/2014 4:45:00 AM
Vinyl acetate	< 0.53	0.53		ig/m3	1	10/17/2014 9:60:00 PM
Vinyl Bromide	< 0.66	0.66	L	ig/m3	1	10/17/2014 9:50:00 PM
Vinyl chlorido	< 0.38	0.38	L	ig/m3	1	10/17/2014 9:50:00 PM

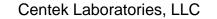

Qualifierst

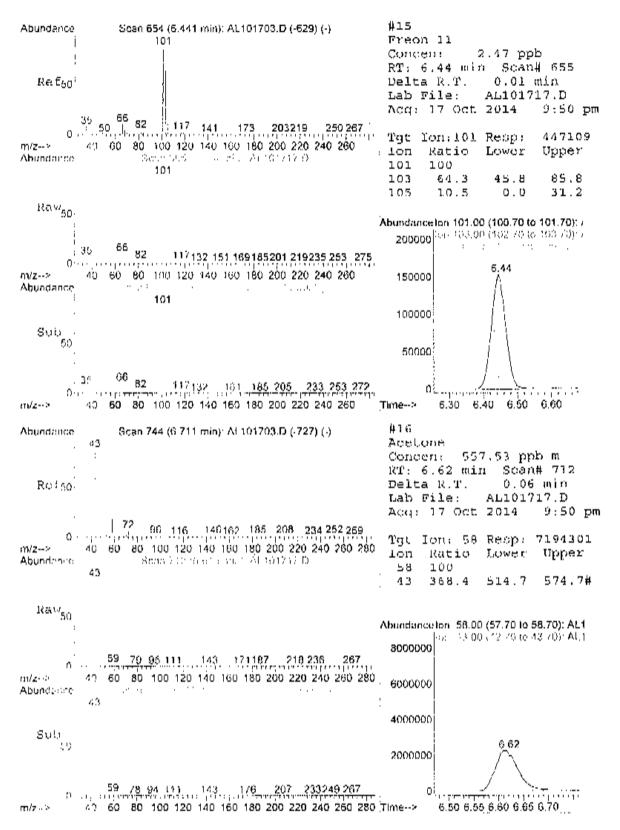
** Reporting Limit


- B Analyte detooled in the associated Method Blank
- B Holding times for preparation or analysis exceeded
- JN Non-routine analyte Quantitation estimated
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

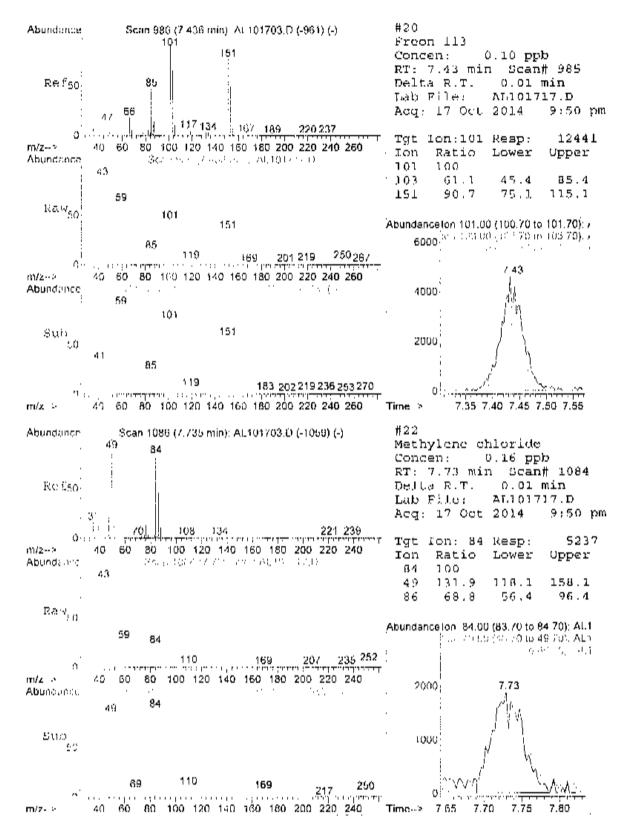

Centek Laboratories, LLC						
Quantitation Report (QT Reviewed)						
Data File : C:\HPCHEM\1\DATA\. Acq On : 17 Oct 2014 9:5 Sample : C1410057-008A Misc : A910_1UG MS Integration Params: RTEINT Quant Time: Oct 18 07:21:51 2	mq 0	Qua	Ins Mu	Vial; erator; st ; ltiplr; s File;	RJP MSD (
Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 32:31:36 2014 Response via : Initial Calibration DataAcq Meth : IUG_RUN						
Internal Standards	R.T.	QION	Response	Cone Ur	lits H	Dev(Min)
1) Browschlesconethane	10 54	128	38887	ם ה	nnb	0 00
1) Bromochloromethane 36) 1,4 difluorobenzene 51) Chlorobenzene db	12 71	114	156257	1.00	ppb	0.00
51) Chlorobanzene da	17.11	117	187168	1,00	DUD	0.00
System Monitoring Compounds 67) Bromotleorobenzone Spiked Account 1.000						
67) Bromotluorobenzene	18.67	95	129783	0.98	ppb	0.00
Spiked Account 1.000	Range 70	- 130	Recover	ry –	<u>98.</u>	00%
-	-			-		
Target Compounds						Qvalue
4) Free: 12	4.68	85	87356	0.46	ppb	99
11) Childroothane	5,79	64	2804	0.16	ppb	93
15) Freet 11	6.44	101	447109	2.47	ppb	98
16) Acctone 20) Freon 113 22) Methylene chloride	6.62	58	71943010	557.53	dqq	
20) Freon 213	7.43	101	12441	0.10	ppp	95
22) Methylene chloride	7.73	84	5237	0.16	bbp	94
24) Carbon Choulfide	7.89	76	419603	3.39	ddd	
26) methyl Lort-Dutyl ethor	8,70	73	423577	3.50	ppb	TI 57
29) Metnya sunyi sotone	9,62	72	144870	8.00	ppp	H 04
31) HEXXIII	9.64	57 66	549051 01010	0.15	DDD -	89
<pre>22) Methylene chloride 24) Carbon disulfide 26) methyl Lort-butyl ether 29) Methyl Ethyl Vetone 31) Hexans 33) Chloreform 37) 1,1,1-trichloroethane 38) Cyclobecane 40) Benzess 43) 2,2 deteimethylpontana</pre>	10.70	0.7	21510	0,10	P.P.C.	99
18) Cuchebe came	12.50	56	146696m	2,51	ppo ppb	
	12 09	20	505854	3 97	ppb	92
43) 2,2,4*: imethylpentane	12,84	57	93067	0.47	ppb	# 1
44) Heptan	13,17	43	437011	6,81		" 89
45) Trichleroethene	13.31	130	320714	4,36		99
52) Tolucco	15.26	92	945927	7.30		99
53) Methy! Isobutyl Ketone	14.40	43	160104	1.63		91
57) Tetrachloroethyland	16,23	164	1105854	9.69		100
60) Ethy [®] bonzene	17.39	91	485830	1.78		98
61) m&p wylene	17.55	91	1126614	5,24	ppb	98
63) Styreico	18.00	104	356295	2.40	ppb	100
65) a-xylena	18.03	91	348051	1.26		97
71) 4-ethylioluene	19,22	105	335359	1.29		H 100
72) 1,3,5 trimethy benzere	19.28	105	519748	1.67		# 100
73) 1,2,4 trimethylbenzene	19.71	105	1346564	6.00	ррь	99

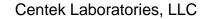
Page 259 of 467

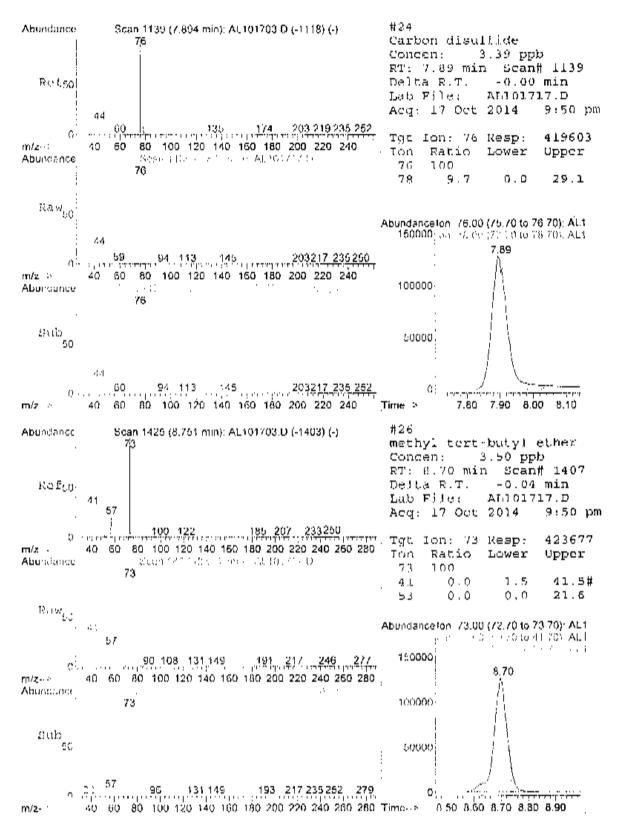

Page 2



ALIO1717.0 A910 1UG.M

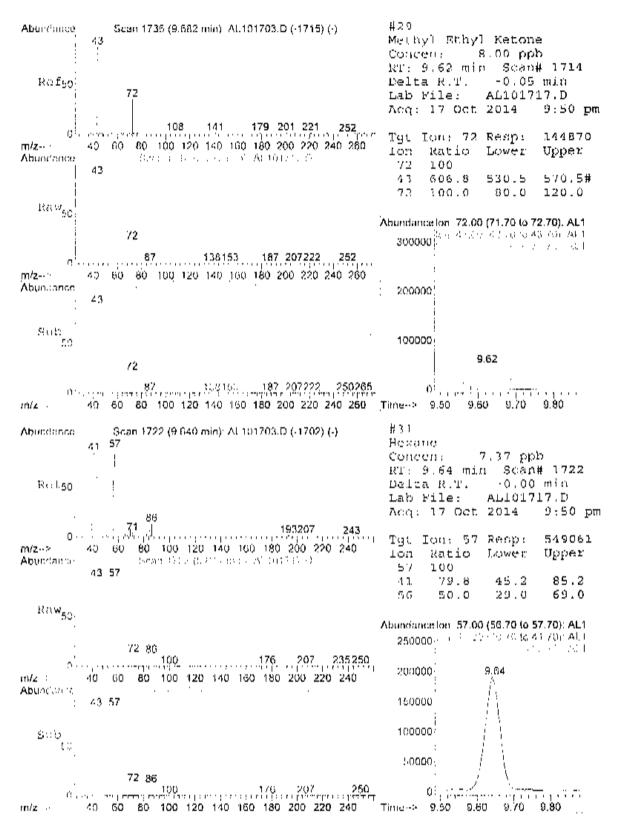

Page 261 of 467


AL101717.D A910_10G.M

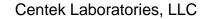

Page 262 of 467

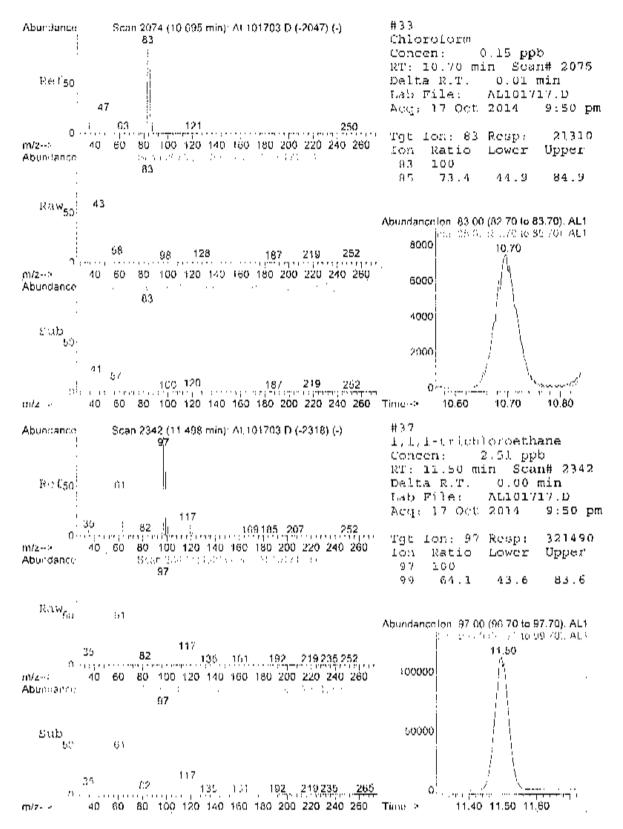
ATA 01717.5 A910_10G.M


Page 263 of 467



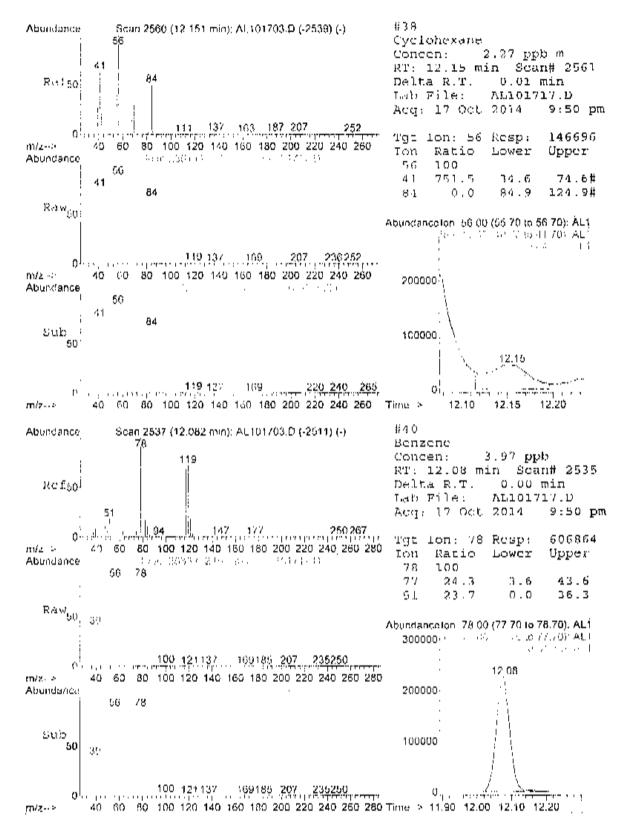
AL1015:7.0 A910_1UG.M


Page 264 of 467



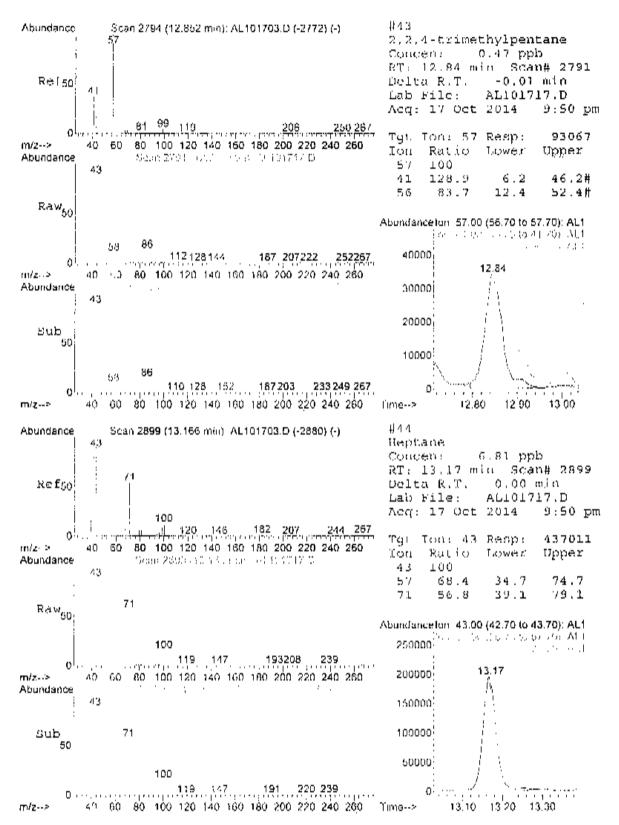
AL1017.7.D A910_10G.M

Page 265 of 467



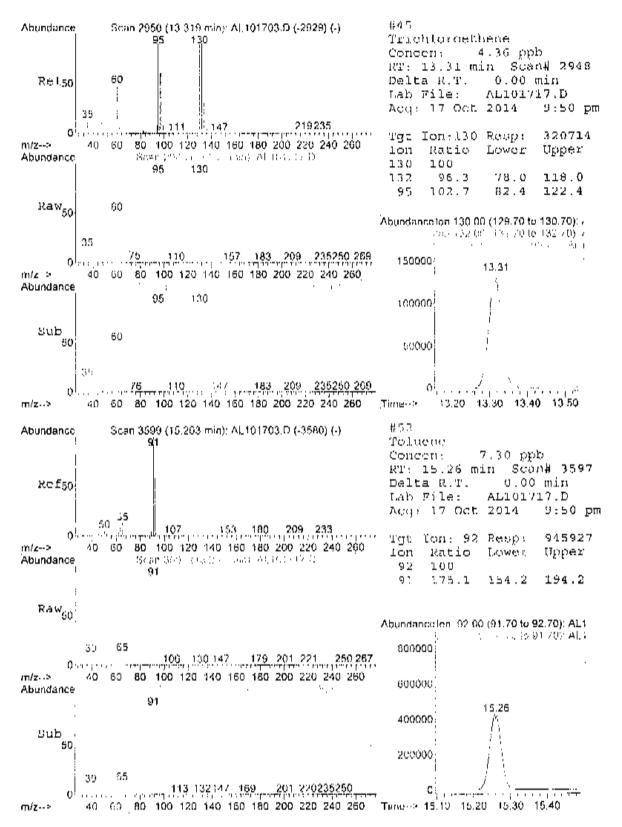
ALIOI717.1: A910 100.M E:


Page 8

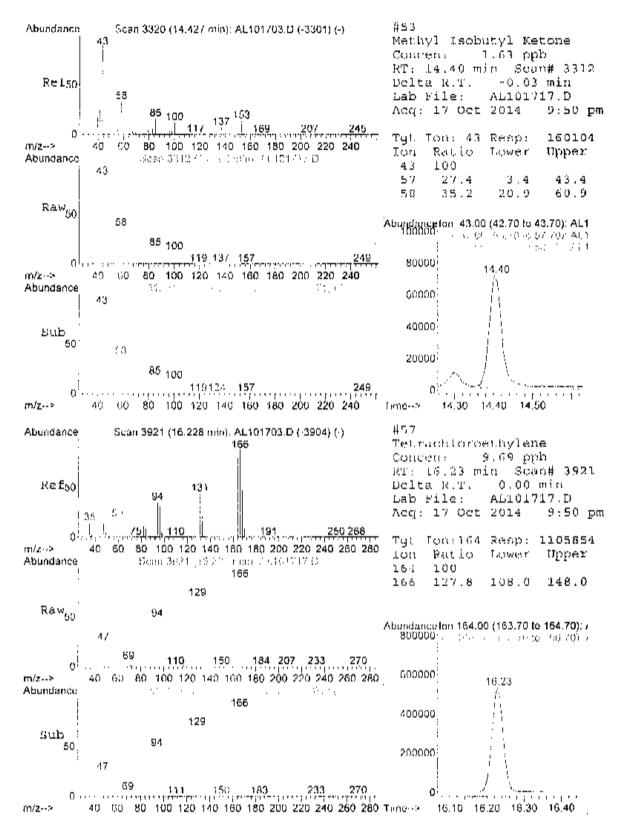

Page 266 of 467

AL101717.0 A910 10G.M

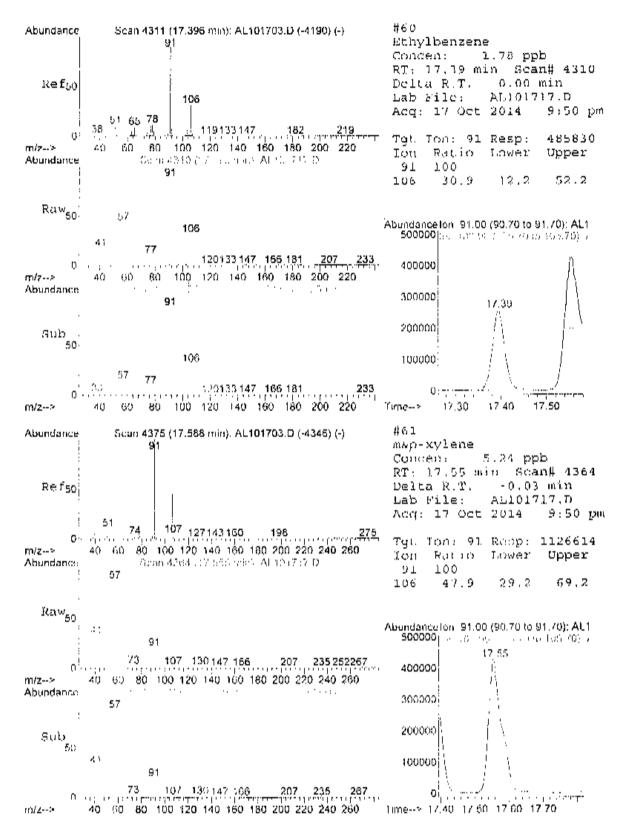

Page 267 of 467

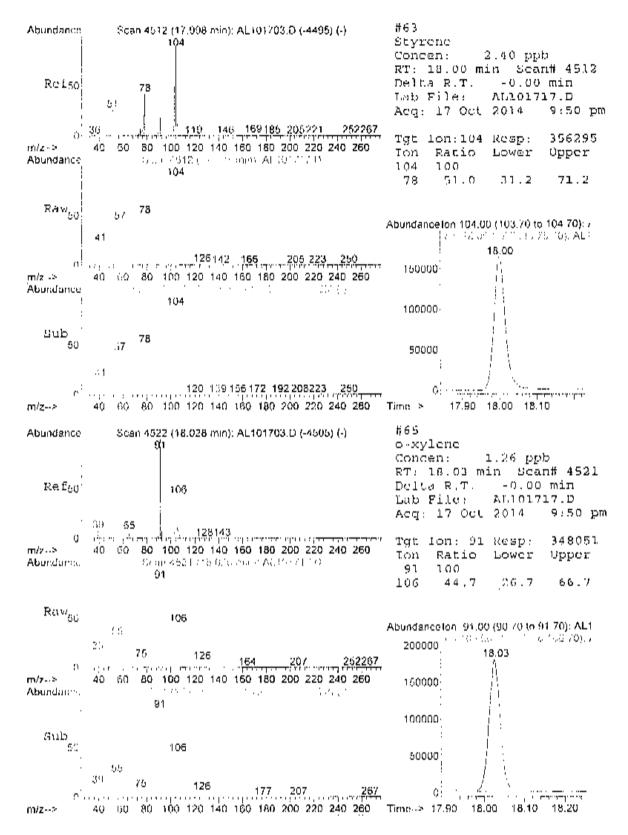


ALTOTTIC ASSO LUG.M.


Page 268 of 467

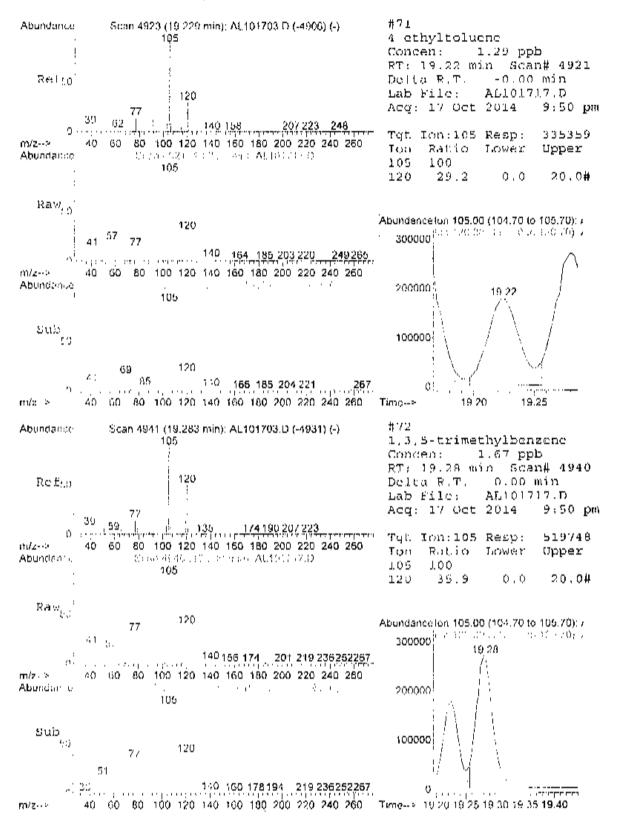
AU101717.D A010 10G.M


Page 269 of 467

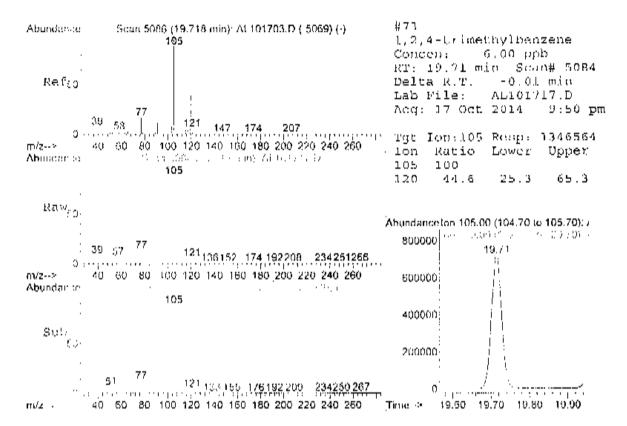

AL101717.D ASIO_1UG.M

Page 12

Page 270 of 467

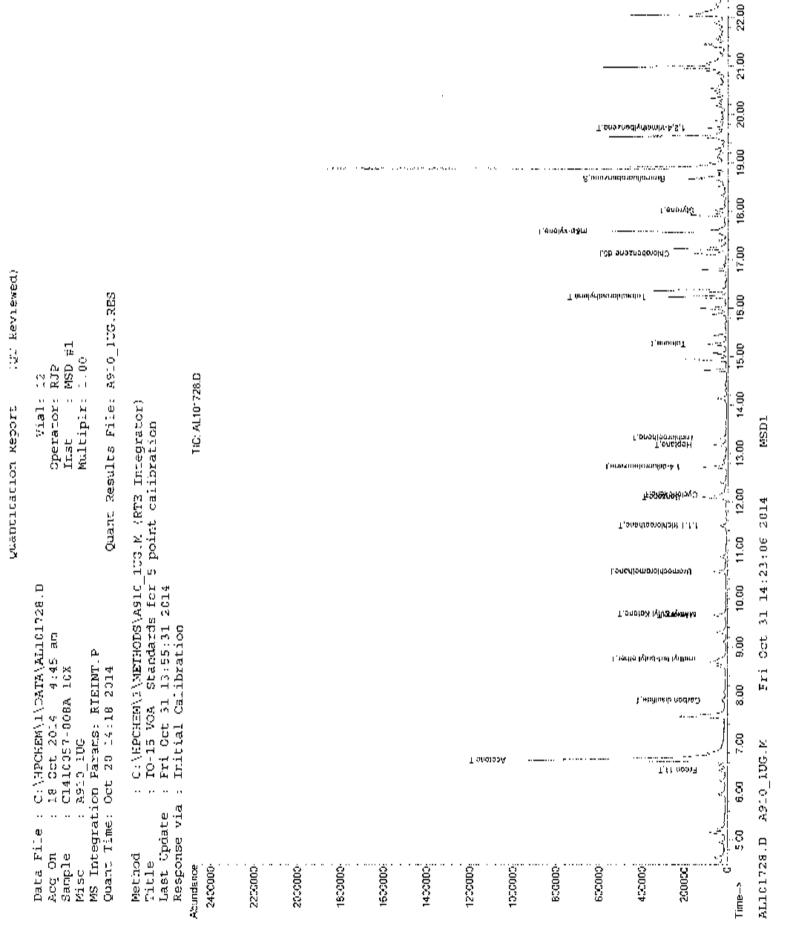


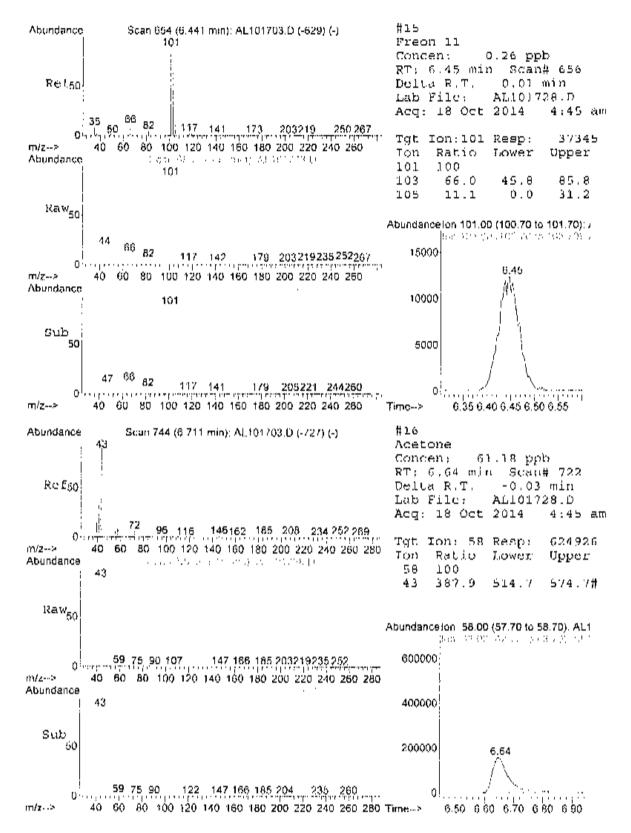
ALIOIVIV.D A910_LUC.M



ALIOI7)7.0 ASTO_UUG.M

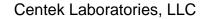
Page 272 of 467

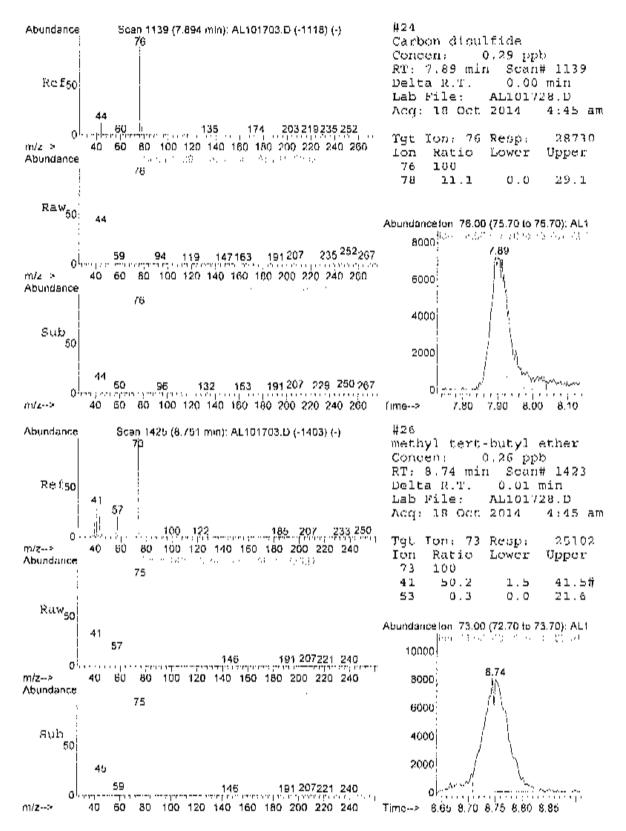

AL101717.0: A910_10G.M


Page 274 of 467

Centek Laboratories, LL	C						
	Quantitat	ion Rep	port (OT	Review	ed)		
Data File : C:\HPCHEM\1\DATA\2 Acq On : 18 Oct 2014 4:49 Sample : C1410057-008A 10X Misc : A910_10G MS Integration Params: RTEINT Quant Time: Oct 18 07:22:02 20	5 am.		līns Mul	Vial: rator: t : tiplr: File:	RJP MSD 1.00	,	9.12ES
Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 12:31:36 2014 Response via : Initial Calibration DataAcq Meth :)UG_RUN							
Internal Standards	\mathbf{R} , \mathbf{T} ,	Qion	Response		its	De∨(Min)
 Bromochloromethane 1.4-difluorobenzene Chlorobenzene-d5 	10.55 12,72 17,12	128 114 117			qqq dqq		0.00 0.00 0.00
System Monitoring Compounds 67) Bromofluorobenzene Spiked Amount 1.000	18.67	95 - 130	71487 Recover	0.92 Y =	ррЪ 92.	00%	0.00
<pre>Target Compounds 15) Freen 11 16) Acetone 24) Carbon disulfide 26) methyl tert-butyl ether 29) Methyl Ethyl Ketone 31) Hexane 37) 1,1,1-trichtoroethane 38) Cyclohexane 40) Benzene 40) Benzene 44) Heptane 45) Trichloroethene 52) Toluene 57) Tetrachloroethylene 61) m&p-xylene 63) Styrene</pre>	8.74 9.68 9.65 11.50 12.14 12.08 13.17 13.32 15.27	73 72 97 56 78 43 130 92	37345 624926 28730 25102 6772 30147 24598 13939m 42156 23754 21637 47541 68134 63454m 14314m	0.26 0.47 0.51 0.24 0.27 0.34 0.46 0.36 0.62	bbp bbp bbp bbp bbp bbp bbp bbp bbp bbp	# # #	000 100 46 95 43 59 68 98 98 97 99 98 99
73) 1,2,4 trimethylbenzene	19.72	104	45032	0.34			97

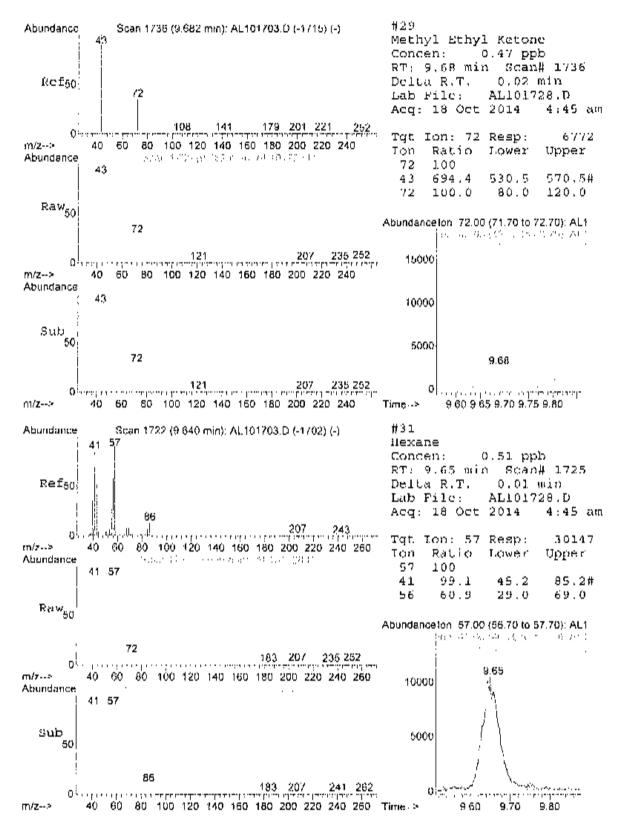
(#) - qualifier out of range (m) - manual integration (+) - signals summed AL101728.D A910_10G.M Fri Oct 31 14:23:05 2014 MSD1




Page 2

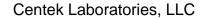
AL101728,D A910 1UC,M

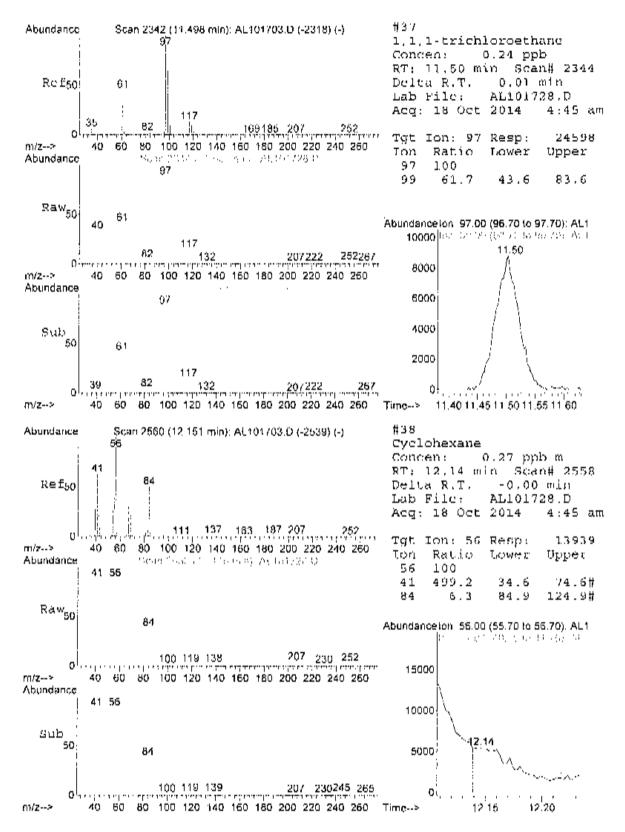
Page 3



AL101728.D A910 10G.M

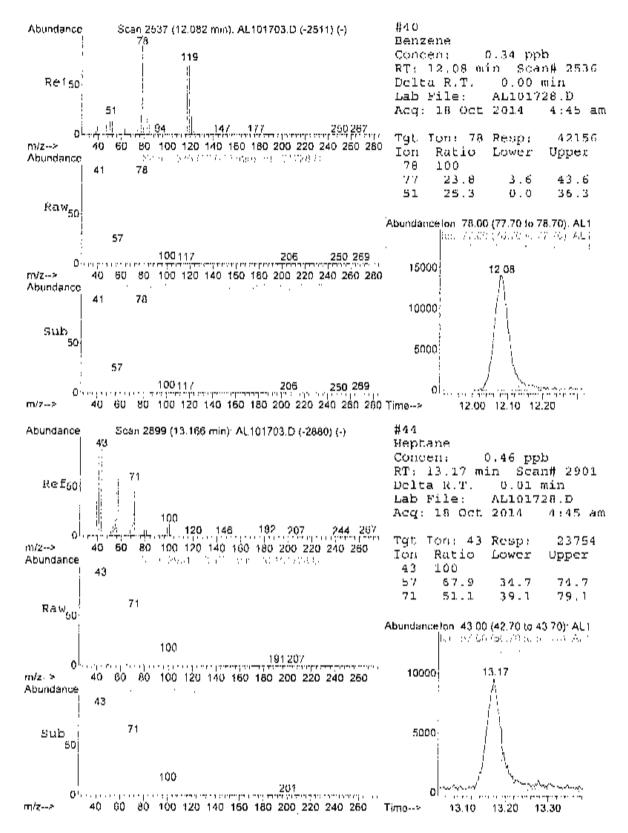
Page 278 of 467

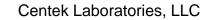


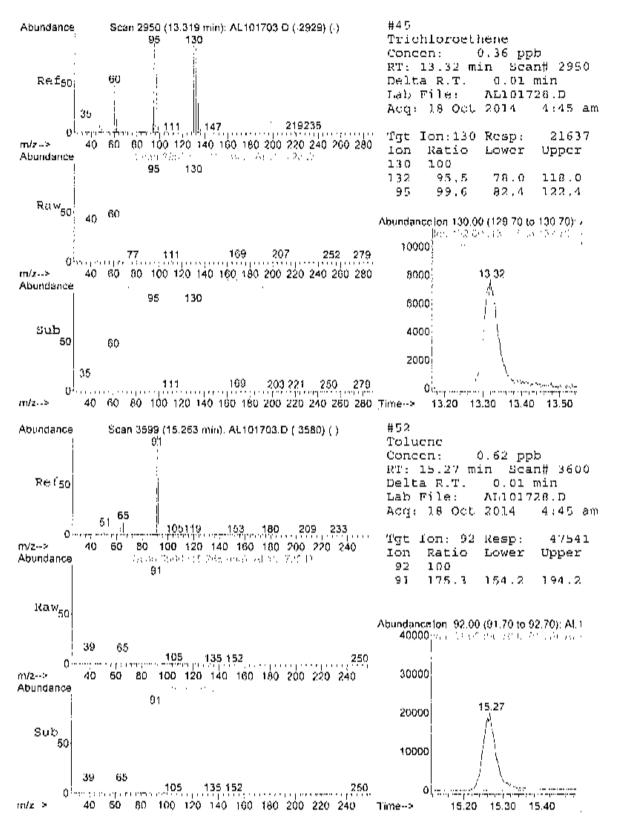


AL101728.D A910 10G.M

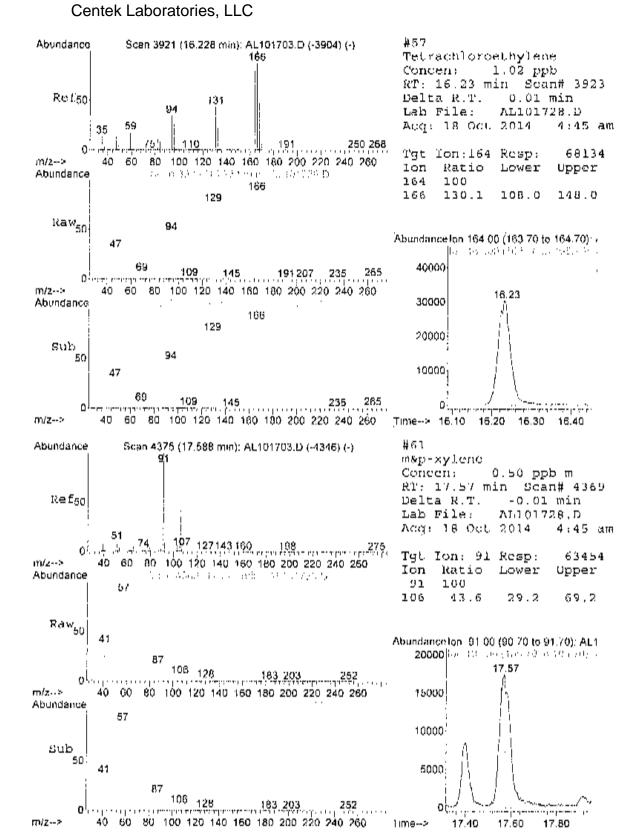
Page 5

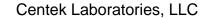

Page 279 of 467

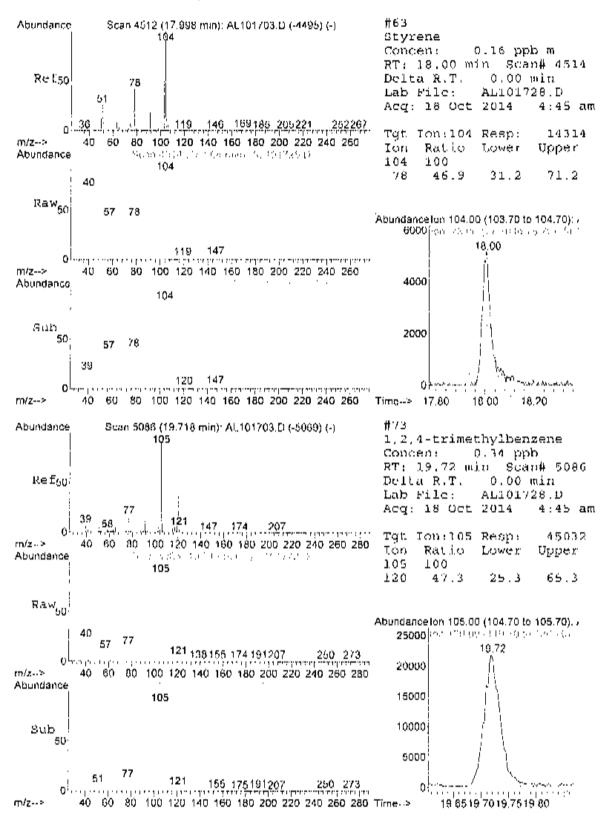

AL101728.D A910 10G.M


Page 280 of 467

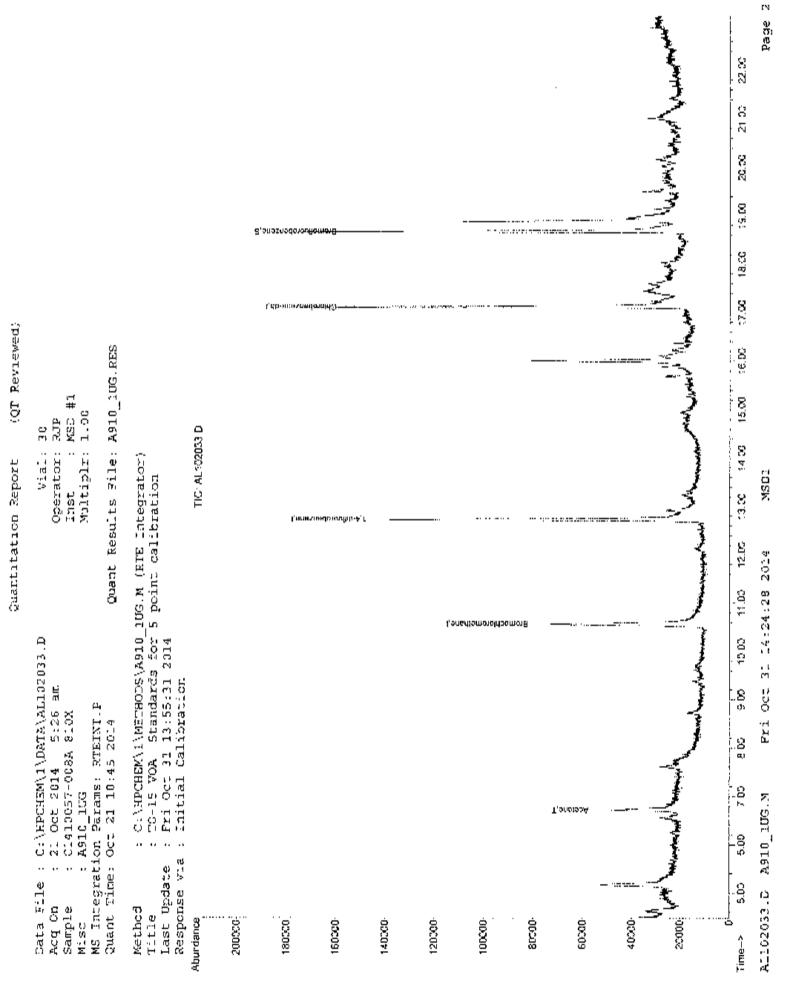
MSD1

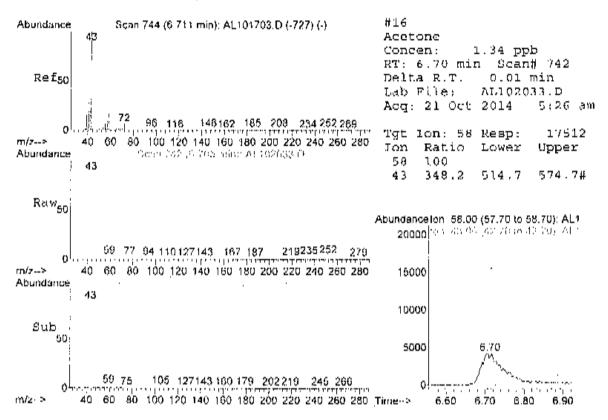

Page 7


AL101728.D A910_1UG.M


Page 282 of 467

Page 9


Page 283 of 467



AL101728.D A910 1UG.M

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AL102033.D Vial: 30 Acq On : 21 Oct 2014 5:26 am Operator: RJP Sample : C1410057-008A 810X Misc : A910 1UG TASE : MSD #1 Multiple: 1.00 M3 Integration Params: RTEINT.P Quant Time: Oct 21 10:43:57 2014 Quant Results File: A910 10G.RES Quant Method : C:\HPCHEM\l\METHODS\A910_lUG.MT(RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : 10G_RUN Internal Standards R,T. QTon Response Conc Units Dev(Min) 1) Bromochloromethane10.55128393011.00 ppb0.0036) 1,4-difluorobenzene12.721141663131.00 ppb0.0051) Chlorobenzene17.121171334511.00 ppb0.00 System Monitoring Compounds 57) Bromofluorobenzene 18.68 95 78435 0.83 ppb Spiked Amount. 1.000 Range 70 130 Recovery = 63.00% 67) Bromofluorobenzene 0,00 Target Compounds Ovalue 6.70 58 17512 1.34 ppb # 33 16) Acetone

Page 286 of 467

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy	Client Sample 1D:	SS-04
Lab Order:	C1410057	Tag Number:	201,295
Project:	5140 Site Yorkville, NY	Collection Date:	10/14/2014
Lab ID:	C1410057-009A	Matrix:	AIR

Analyses	Result	**Limít Qu	al Units	DF	Date Analyzed		
FIELD PARAMETERS	FLD				Analyst:		
Lab Vacoum In	-2		"Hg		10/16/2014		
Lab Vacuum Out	-30		"Но		10/16/2014		
1UG/M3 BY METHOD TO15		TO-15			Analyst, RJP		
1,1,1-Trichloroe(hand	2.4	1.5	ррыV	10	10/18/2014 5:57:00 AM		
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM		
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM		
t.1-Dichloroethane	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM		
1,1-Dichloroetheno	< 0.15	015	vdqq	1	10/17/2014 10:30:00 PM		
1.2.4 Trichtorobenzone	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM		
1,2,4-Trimethylbenzene	3.8	1.5	ррь∨	10	10/18/2014 5:57:00 AM		
1,2-Dibromoethane	< 0.15	0.15	ррь∨	1	10/17/2014 10:30:00 PM		
1,2-Dichlorobenzene	< 0.15	0.15	ρρυ∨	1	10/17/2014 10:30:00 PM		
1.2-Dichloroethane	< 0.15	0.15	ppb∨	1	10/17/2014 10.30:00 PM		
1,2 Dichloropropane	< 0.15	0.15	ppbV	1	10/17/2014 10:30.00 PM		
1.3,5-Trimethylbenzene	1.7	0.15	ррbV	1	10/17/2014 10:30:00 PM		
1,3-butadiene	< 0.15	0.15	ppbV	ĭ	10/17/2014 10:30:00 PM		
1,3-Dichlorobenzene	< 0.15	0.15	ρρον	1	10/17/2014 10:30:00 PM		
1.4-Dichlorobenzone	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM		
1,4-Diexane	< 0.30	0.30	opb∨	1	10/17/2014 10:30:00 PM		
2,2,4-trime(hylpentane	0.44	0.15	ppb∨	1	10/17/2014 10:30:00 PM		
4-ethyltoluene	1.4	0.15	ppbV	1	10/17/2014 10:30:00 PM		
Acetone	810	240	ррь	810	10/21/2014 6:01:00 AM		
Ally! chloride	< 0.16	0.15	рры∨	1	10/17/2014 10:30:00 PM		
Bonzene	3.5	1.5	ppbV	10	10/18/2014 5:57:00 AM		
Genzyl chloride	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM		
Bromodichioromethano	< 0.15	0.15	vøqq	1	10/17/2014 10:30:00 PM		
Bromoform	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM		
Bromomethane	< 0.15	0.15	ppb∀	1	10/17/2014 10:30.00 PM		
Carbon disulfide	2.9	1.5	ppbV	10	10/18/2014 5:57:00 AM		
Carbon tetrachioride	< 0.15	0.15	ppb∨	1	10/17/2014 10:30:00 PM		
Chlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM		
Chloroethane	0.18	0.15	ppbV	1	10/17/2014 10:30:00 PM		
Chloroform	0.13	0.15 J		1	10/17/2014 10:30:00 PM		
Chloromethane	< 0.15	0.15	pphV	1	10/17/2014 10:30:00 PM		
cis-1,2-Dichloroethene	< 0.15	0.15	рры∨	1	10/17/2014 10:30:00 PM		
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/17/2014 10:30:00 PM		
Cyclohexane	2,1	0.15	ρρον	1	10/17/2014 10:30:00 PM		
Dibromochloromethane	< 0.15	0,15	ppbV	1	10/17/2014 10:30:00 PM		
Ethyl acetale	< 0.25	0.25	ppbV	1	10/17/2014 10.30.00 PM		

Qualifiers: **

* Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

- ${\rm E}_{\rm e}$. Value above quantitation range
- 3 Analyte detected at or below quantitation limits.
- ND Not Detected at the Reporting Limit-

Date: 31-Oct-14

CLIENT:	WSP Environment and Energy
Lab Order:	C1410057
Project:	5140 Site Yorkville, NY
Lab ID:	C1410057-009A

Client Sample ID: SS-04 Tag Number: 201,295 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual A	Juits	DF	Date Analyzed	
1UG/M3 BY METHOD TO15	TO-15			Analyst: RJP			
Ethylbenzene	18	0.15	P	vdq	1	10/17/2014 10:30:00 PM	
Freen 11	2.6	15	p	vdq	30	10/18/2014 5:57:00 AM	
Freen 113	< 0.15	0.15	P	рbV	1	10/17/2014 10:30:00 PM	
Freon 114	< 0.15	0.15	μ	рbV	1	10/17/2014 10:30:00 PM	
Freon 12	0.50	0.15	μ	рbV	1	10/17/2014 10:30:00 PM	
Heptane	4.9	1.5	ρ	pbV	10	10/18/2014 5:57:00 AM	
Hexachloro-1,3-butadiene	< 0.15	0.15	p	pbV	1	10/17/2014 10:30:00 PM	
Hexane	5.8	1.5	p	pbV	10	10/18/2014 5:57.00 AM	
isopropyi alcohol	17	1.5	p	νdq	10	10/18/2014 5:57:00 AM	
m&p-Xylene	5.2	3.0	ą	Vđq	10	10/18/2014 5:57:00 AM	
Methyl Butyl Kelone	< 0.30	0.30	p	pbV	1	10/17/2014 10:30:00 FM	
Methyl Ethyl Kelone	6.5	3.0		рbV	10	t0/18/2014 5:57:00 AM	
Methyl Isobutyl Ketone	1.6	0.30	p	рbV	1	10/17/2014 10:30:00 PM	
Methyi tert-butyi ether	3.0	1.5	p	ρbV	10	10/18/2014 5:57:00 AM	
Methylene chloride	0.13	0.15	Jр	pbV	1	10/17/2014 10:30:00 PM	
o-Xylene	1.3	0.15	P	vdq	1	10/17/2014 10:30:00 PM	
Propylene	< 0.15	0.15	Р	phV	1	10/17/2014 10:30:00 PM	
Styrene	1.8	1.5	ρ	pbV	10	10/18/2014 5:57:00 AM	
Tetrachioroethylene	11	1.5	P	pbV	10	10/18/2014 5:57:00 AM	
Tetrahydrofuran	< 0.15	0.15	p	pbV	1	10/17/2014 10:30:00 PM	
Toluene	6.6	1.5	p	ρbV	10	10/18/2014 5.57:00 AM	
trans-1,2-Dichlornethene	< 0.15	0.15	P	ρbV	1	10/17/2014 10:30.00 PM	
trans-1,3-Dichloropropene	< 0.15	0.15	P	pbV	1	10/17/2014 10:30.00 PM	
l'richloroethene	3.7	1.5	р	рbV	10	10/18/2014 5:57:00 AM	
Vinyl acetate	< 0.15	0.15	p	pbV	1	10/17/2014 10:30:00 PM	
Vinyl Bromide	< 0.15	0.15	p	pbV	1	10/17/2014 10:30:00 PM	
Vinyl chloride	< 0.15	0 15	P	pbV	1	10/17/2014 10:30:00 PM	
Sur. Bromofluorobenzene	100	70-130	74	6REC	1	10/17/2014 10:30:00 PM	

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31. Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-009A

Client Sample ID: SS-04 Tag Number: 201,295 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed	
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP	
1,1,1-Trichloroethane	13	8.2	ug/m3	10	10/18/2014 5:57:00 AM	
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	10/17/2014 10:30:00 PM	
1,1,2 Trichloroethane	< 0.82	0.82	ug/m3	1	10/17/2014 10:30:00 PM	
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	10/17/2014 10:30 00 PM	
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	10/17/2014 10:30:00 PM	
1,2,4-Trichlorobenzene	s 1.1	1.3	ug/m3	t	10/17/2014 10:30:00 PM	
1,2,4-1r/methylbenzono	19	7.4	ug/m3	10	10/18/2014 5:57:00 AM	
1.2-Dibromoethane	< 1.2	1.2	ug/m3	1	10/17/2014 10:30:00 PM	
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	ĩ	10/17/2014 10:30:00 PM	
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	10/17/2014 10:30:00 PM	
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	10/17/2014 10:30:00 PM	
1,3,5-1 mmethylbenzene	8.3	0.74	ug/m3	1	10/17/2014 10.30.00 PM	
1,3-butadieno	< 0.33	0.33	vg/m3	1	10/17/2014 10:30:00 PM	
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/17/2014 10:30:00 (°M	
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/17/2014 10:30:00 PM	
1,4-Dioxane	< 1.1	1.1	ug/m3	1	10/17/2014 10:30:00 PM	
2,2,4-trimethy/pentage	2.1	0.70	ug/m3	1	10/17/2014 10:30:00 PM	
4-ethyltoluene	6.7	0.74	ug/m3	1	10/17/2014 10:30:00 PM	
Acelone	1900	570	vg/m3	610	10/21/2014 6.01.00 AM	
Ally chloride	< 0.47	0 47	ug/m3	1	10/17/2014 10:30:00 PM	
Benzene	11	4.8	ug/m3	10	10/18/2014 5:57:00 AM	
Benzyi chloride	< 0.86	0.86	ug/m3	1	10/17/2014 10:30:00 PM	
Bromodichloromethane	< 1.0	1.0	ug/m3	1	10/17/2014 10:30:00 PM	
Bromoform	< 1.6	1.6	ug/m3	1	10/17/2014 10:30:00 PM	
Bromomethane	< 0.58	0.58	ug/m3	1	10/17/2014 10:30:00 PM	
Carbon disoffide	9.0	4.7	ug/m3	10	10/18/2014 5:57:00 AM	
Carbon tetrachloride	< 0.94	0.94	ug/m3	1	10/17/2014 10:30:00 PM	
Chlorobenzene	< 0.69	0.69	ug/m3	1	10/17/2014 10:30:00 PM	
Chloroethane	0.47	0.40	ug/m3	1	10/17/2014 10:30:00 PM	
Chloroform	0.63	0.73	J ug/m3	1	10/17/2014 10:30:00 PM	
Chloromethane	< 0.31	0.31	ug/m3	1	10/17/2014 10:30:00 PM	
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/17/2014 10:30:00 PM	
cis 1,3 Dichloropropene	< 0.68	0.68	ug/m3	1	10/17/2014 10:30:00 PM	
Cyclohexane	7.3	0.52	ug/m3	1	10/17/2014 10:30:00 PM	
Dibromochloromethane	< 1.3	1.3	ug/m3	1	10/17/2014 10:30:00 PM	
Ethyl acetate	< 0.90	0.90	ug/m3	1	10/17/2014 10:30:00 PM	
thylbenzenc	8.0	0.65	ug/m3	1	10/17/2014 10:30.00 PM	
Freen 11	15	8.4	ug/m3	10	10/18/2014 5:57:00 AM	
Freen 113	< 1.1	1.1	ug/m3	1	10/17/2014 10:30:00 PM	
Freen 114	< 1.0	1.0	ug/m3	1	10/17/2014 10:30:00 PM	

- Qualifiers: ** Reporting Limit
 - B Analyte detected in the associated Method Blank
 - 11 Holding times for preparation or analysis exceeded
 - JN Non-routine analyte. Quantitation estimated
 - S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

- 3 Applyte detected at or helow quantitation limits
- ND Not Detected at the Reporting Limit

Centek Laboratories, LLC

Date: 31-Oct-14

...

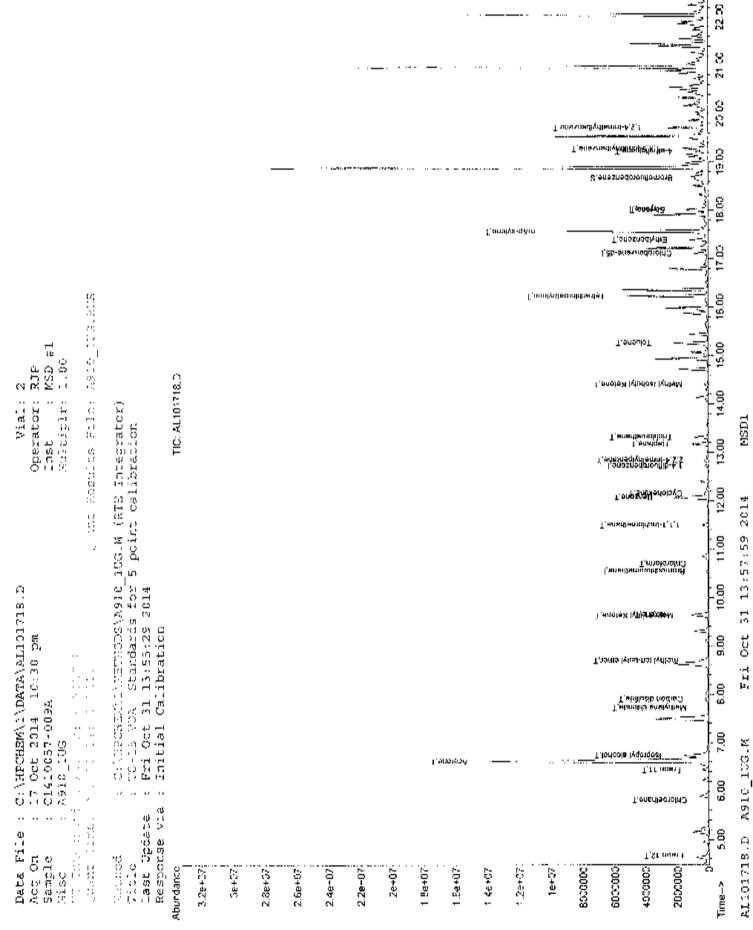
CLIENT:	WSP Environment and Energy
Lab Order:	C1410057
Project:	5140 Site Yorkville, NY
Lab 1D:	C1410057-009A

.. .

. .

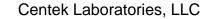
Client Sample 1D: SS-04 Tag Number: 201,295 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP	
Freon 12	2.5	0.74		ug/m3	1	10/17/2014 10:30:00 PM
Нертале	20	6.1		ug/m3	10	10/18/2014 5:57.00 AM
Hexachloro-1,3-butadiene	< 1.6	1.5		ug/m3	1	10/17/2014 10:30:00 PM
Нехале	20	5.3		ug/m3	10	10/18/2014 5:57:00 AM
isopropy! alcoho!	41	3.7		ug/m3	10	10/18/2014 5:57:00 AM
m&p-Xylene	23	13		ug/m3	10	10/18/2014 5:57:00 AM
Methyl Butyl Kelone	< 1.2	1.2		ug/m3	1	10/17/2014 10:30:00 PM
Methyl Ethyl Ketone	19	8.8		ug/m3	10	10/18/2014 5:57.00 AM
Methyi Isobutyi Ketone	6.8	1.2		ug/m3	í	10/17/2014 10:30:00 PM
Methyl tert-butyl ether	11	5.4		ug/m3	10	10/18/2014 5:57:00 AM
Methylene chloride	0.45	0.52	J	ug/m3	1	10/17/2014 10:30:00 PM
a-Xylene	5.5	0.65		ug/m3	1	10/17/2014 10:30:00 PM
Propylené	< 0.26	0.26		ug/m3	1	10/17/2014 10:30:00 PM
Styrene	7.7	6.4		ug/m3	10	10/18/2014 5:57.00 AM
Tetrachloroethylene	74	10		ug/m3	10	10/18/2014 5:57:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	10/17/2014 10:30:00 PM
Toluene	25	5.7		ug/m3	10	10/18/2014 5:57:00 AM
trans-1,2-Dichloroethene	< 0.59	0.69		ug/m3	1	10/17/2014 10:30:00 PM
trans 1,3 Dichloropropene	< 0.68	0.68		ug/m3	1	10/17/2014 10:30:00 PM
Trichtoroethene	20	8.1		ug/m3	10	10/18/2014 5:57.00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	i	10/17/2014 10:30:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	ì	10/17/2014 10:30:00 PM
Vinyl chloride	< 0.38	0.38		ug/m3	1	10/17/2014 10:30:00 PM


Qualifiers:

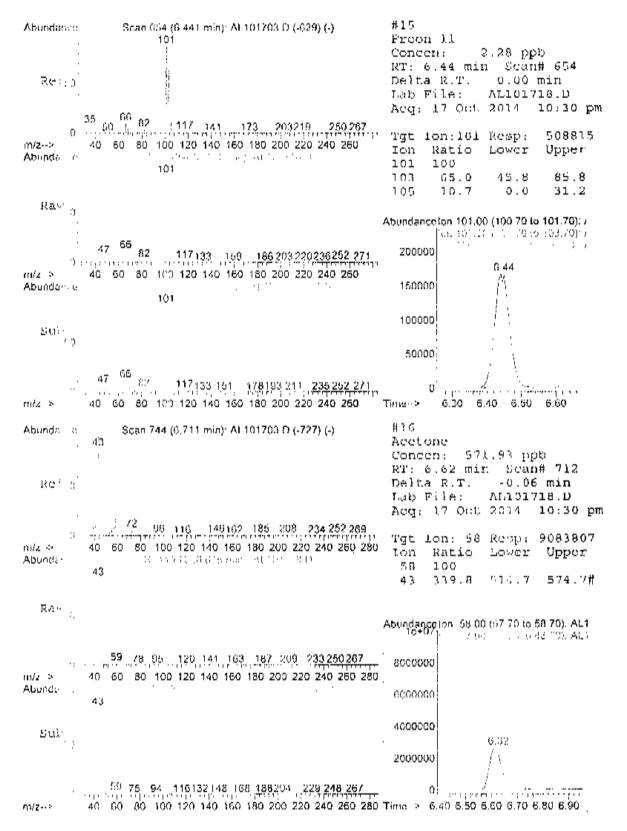
** Reporting Limit

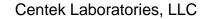
- 13 Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- ЛĽ Non-routine analyte. Quantitation estimated.
- 5 Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- Analyte detected at or below quantitation limits. 1.
- ND Not Detected at the Reporting Limit

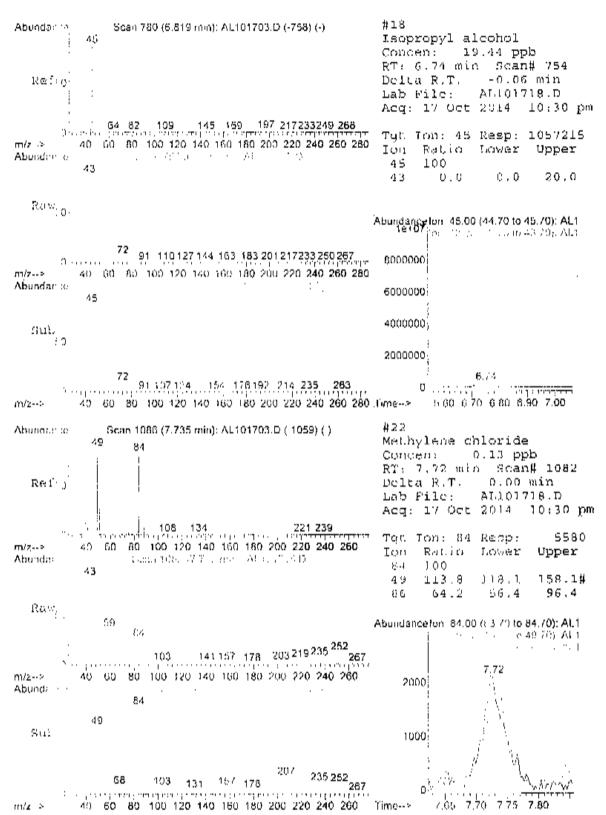

Centek Laboratories, LL	.C						
	Quantitat:	ion Rej	port (Q	T Review	aead y		
Data File : C:\HPCHEM\1\DATA\. Acq On : 17 Oct 2014 10:3 Sample : C1410057-009A Misc : A910 1UG MS Integration Params: RTEINT Quant Time: Oct 18 07:21:52 2	. mcj 0	Qui	Μu	L. Dr.	1.00		
Quant Nerbod : C:\HPCHEM\1\METHODS\A910_LUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 12:31:36 2014 Response via : Initial Calibration DataAcq Meth : LUG_RUN							
Internai Standards	R.T.	QION	Response	Cone Ur	its #	Dev(Min)	
1) Bacach Longmet bare	10 54	128	47864	3.00	000	0.00	
36) 1, 1 difluorobenzene	12.71	114	198113	1.00	fatara -	0.00	
 Brenechloromethane 1, 1 difluorobenzene 51) Chlorobenzene-d5 	17.11	117	212292	1.00	ddd	0.00	
System (E-minoring Compounds 67) Report Luorobeszene Spiled Amount 1.000							
Target Copounds						Qvalue	
4) Free 12	4.68	85	116759	0.50	dqq	100	
11) Characthure	5,8)	64	3935	0.18	dqq	# 39	
TO ¹ CONTO TO	6.44	101	508815 9083807 1057215	2.28	dad	99	
16) Additione	6.62	58	9083807	571,93	Errop	# 30	
16) Advised 18) Istropyl alcohol 22) Methylene chloride		• •	L L 4 1	ZX 11 1		# 02	
22) Mechylene chioride 24) Carron displfide	7.72	84	515079	0.13	ppo	17 BA	
26) motioni tort-butyl other	8.70	23	548370	3.68	dere	# 81	
29) Merini Sthvi Ketone	9.61	72	177702	7.97	oph	4 89	
31) Horiste	9.64	57	665128	7.26	ppb	91	
33) Childrento Scienci	10.70	83	23342	0.13	ppb	86	
37) 1,1,1,trichloroethane	11.50	97	367611	2.27	ppb	98	
 24) Methylane Chloride 24) Carron disulfide 26) methyl tert-butyl ether 29) Methyl Ethyl Ketone 31) Horston 33) Chickedorm 37) 1.1.1-trichlorosthane 38) Cyslebecone 40) Records 	12.15	56	174356m	n 2.13	ppb		
40) Restrict My	12,08	78 57	710956	0.44	101010	94 # 1	
43) 3.1.4 Unimethylpentane 44) Regimme	$12.85 \\ 13.17$	57 43	109966 516260	6,34	Prises.	# 1 89	
45) Tri bloccathene	13.31	130	373100	4.00		98	
52) Toleras	15.26	92	1083212	7.37		100	
53) Herry! Trobuty: Ketone	14.41	43	183691	1.65		92	
57) ffer schloraethylene	16.23	164	1230370	9150	dqq	100	
60) Still Benzene	17.39	91	570678	1.85		97	
61) may willone	17.55	91	1271373	5,21		98	
63) //the endo	18.00	104	424708	2.52		97 97	
65) of Chine 71) Anno Chileolueon	18.03 19,22	91 105	397140 399231	1.27 1.36		# 100	
72) 1, 4.1 to imethy benzene	19.28	105	595993	1.69		# 100	
73) 1,1.4 crimethylbenzene	19.71	105	1518334	5,97		99	

Page 2

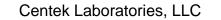
Page 293 of 467

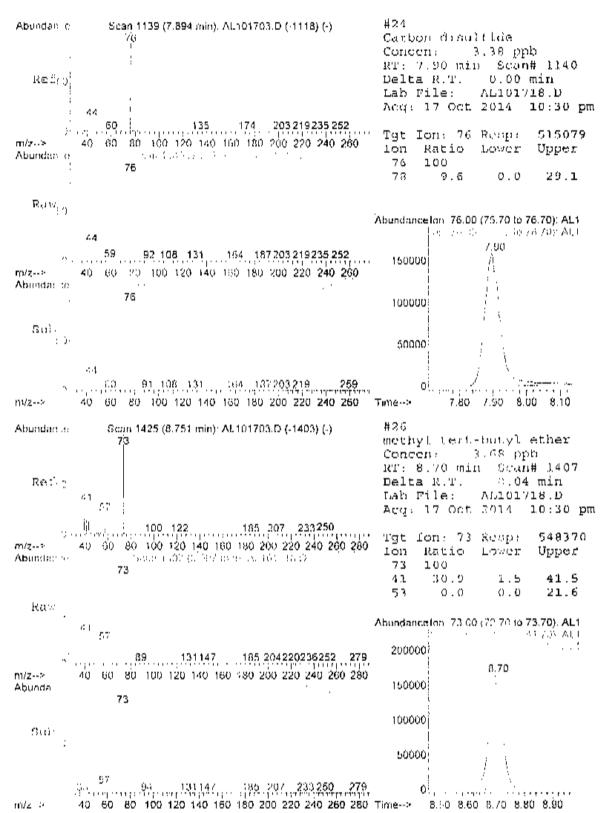


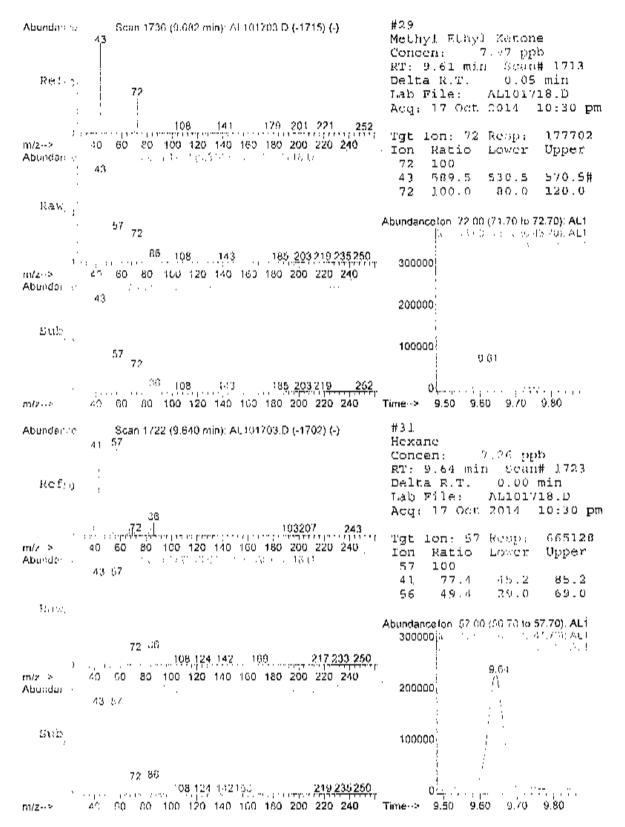

ALIOI71: 0 7910 100.M

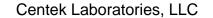

.

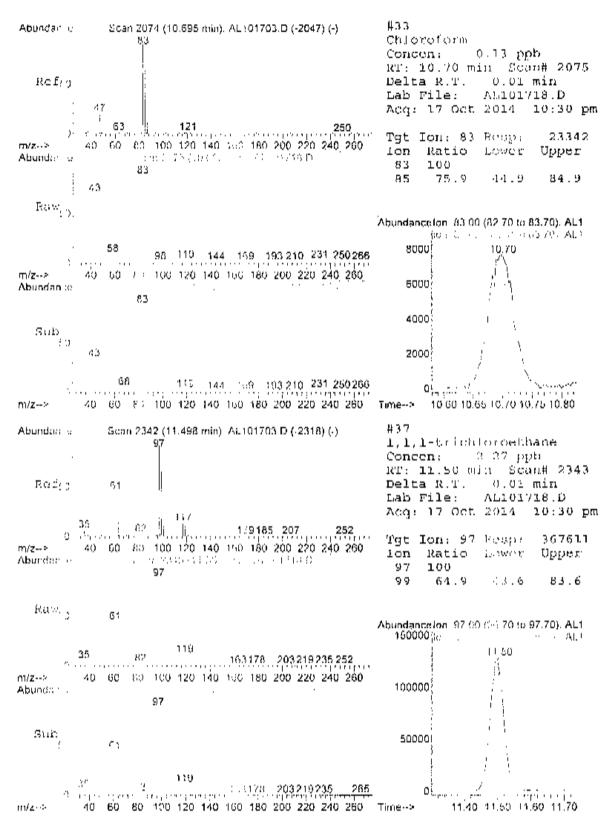
Page 294 of 467




AT.101718.10 A910 LUC.M

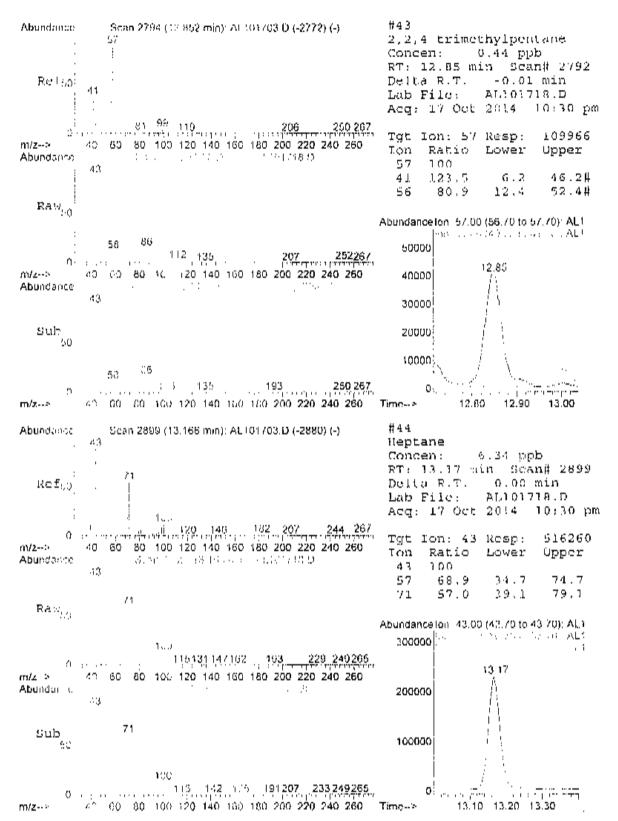

ALIOIVIS N. ADIO DUCLM

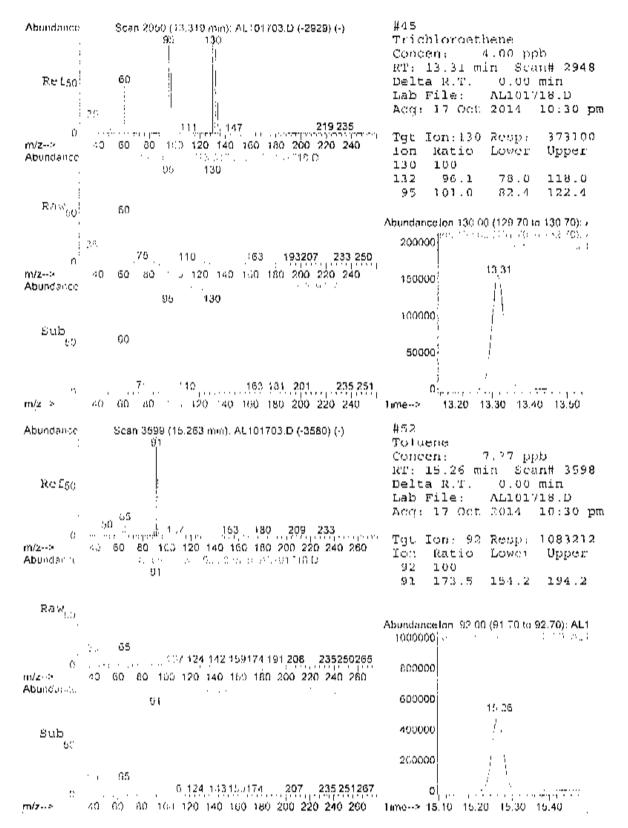

ALIOIVER :: A910 LUC.M

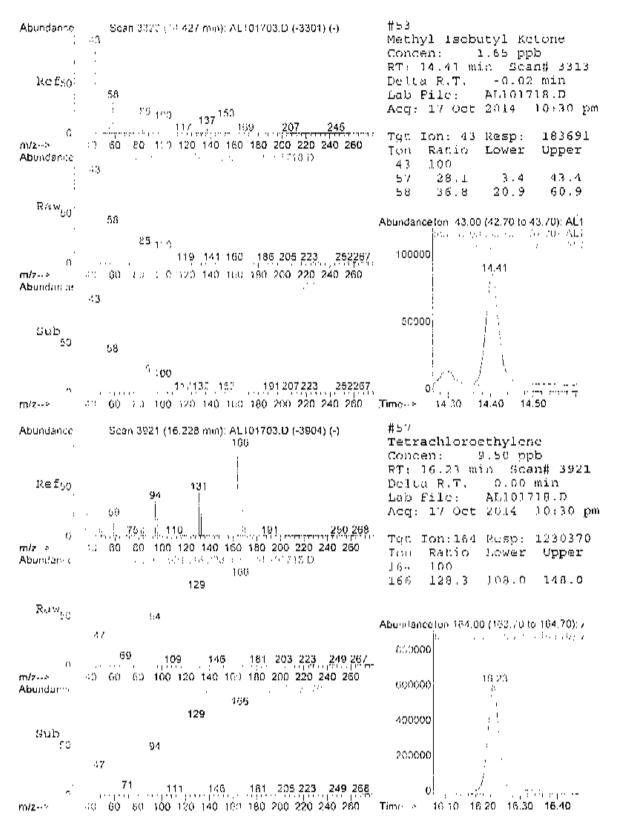

Page 297 of 467

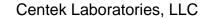
ALIGITIE DE ASIO_LUGIM - FI

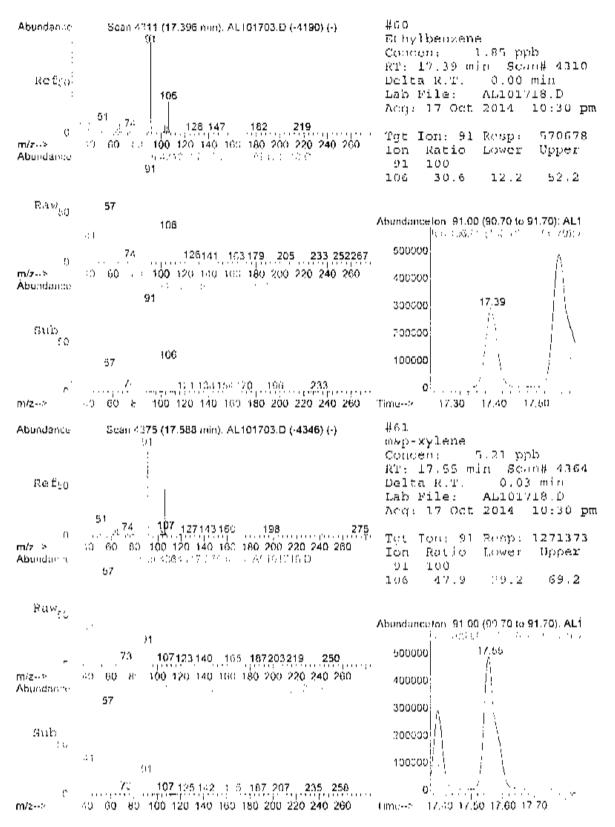
Page 298 of 467

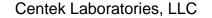


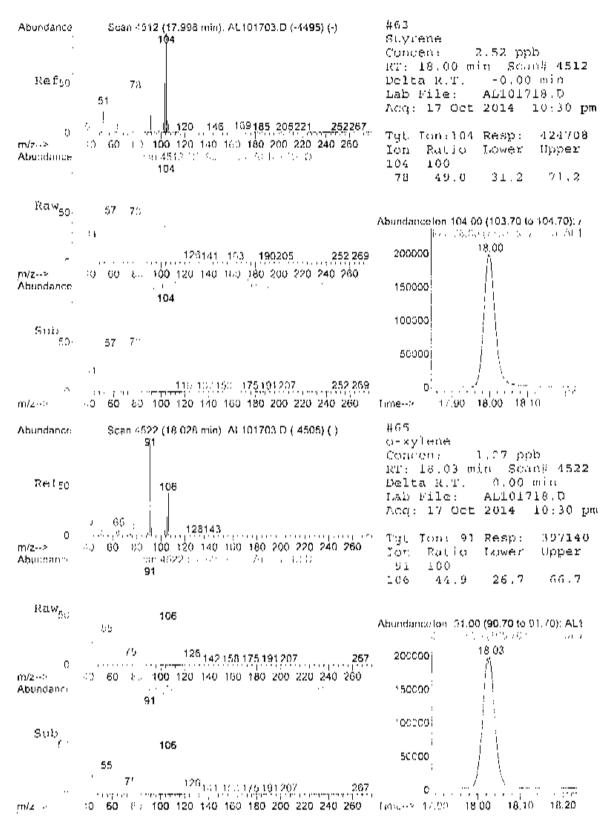

ALI01718 : A910 190.00 Fri Oct 31 13:58:06 2014 MSD1


Page 299 of 467

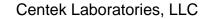


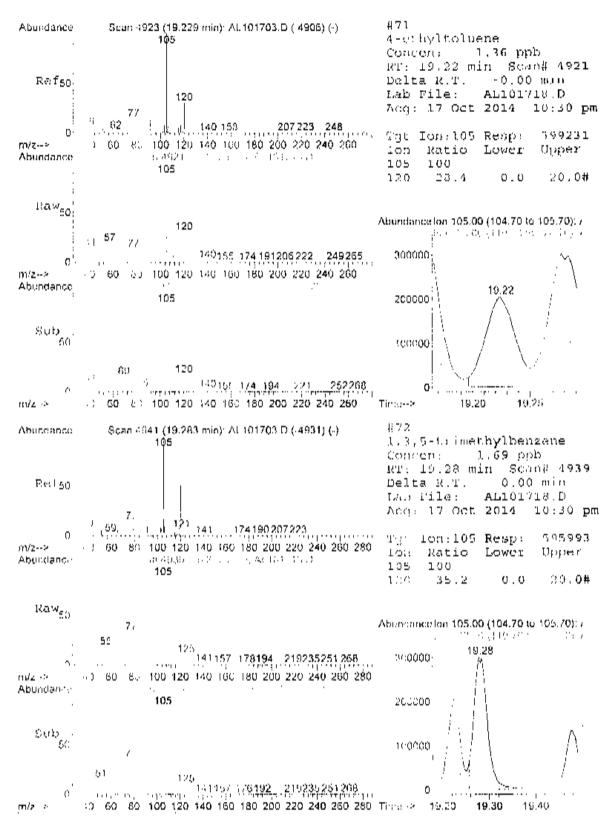

Page 301 of 467





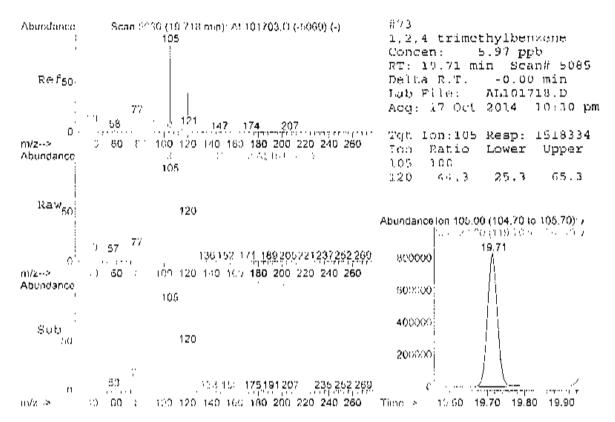
Page 303 of 467



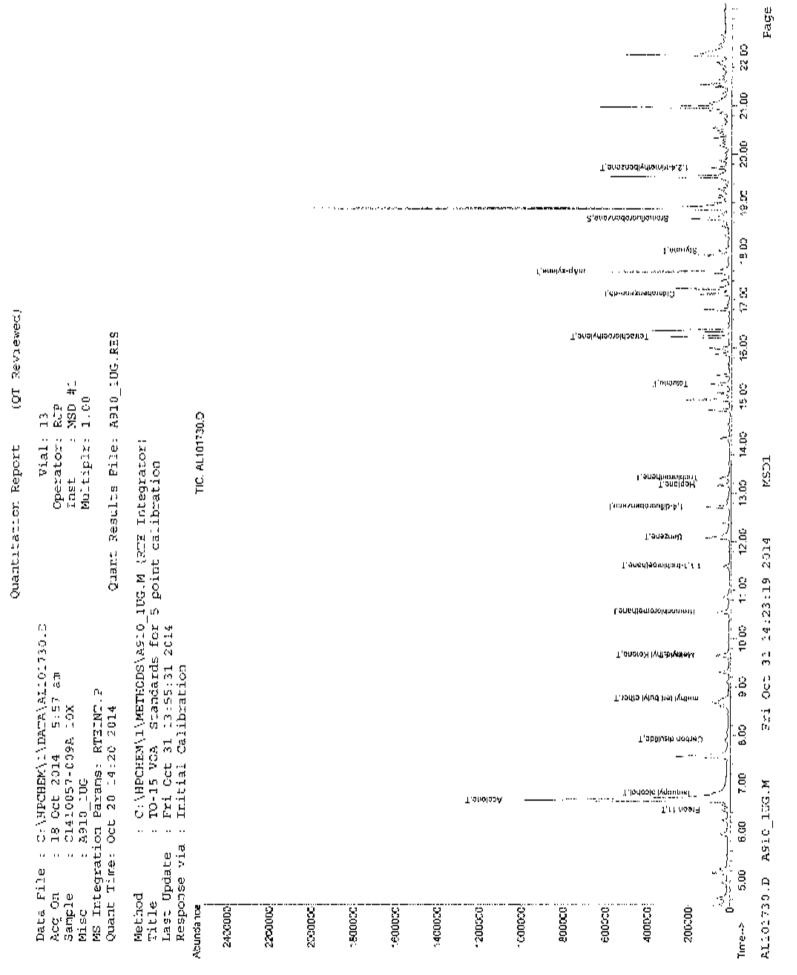


AL101718.) A910 .CC.M Fri Oct 31 13:58:13 2020 MSD1 Page 14

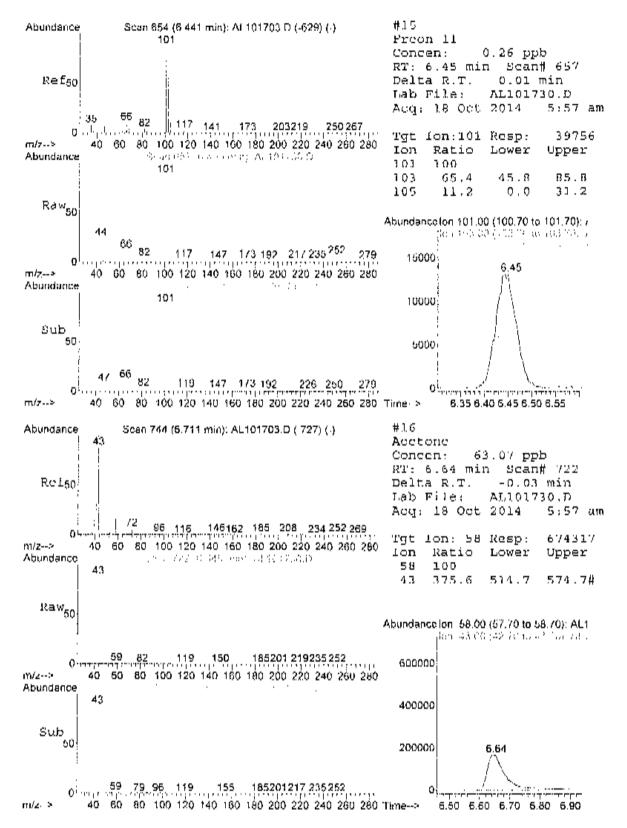
Page 305 of 467



AL101718.0 A910 UG.M Fei Oct 31 13:58:14 2014

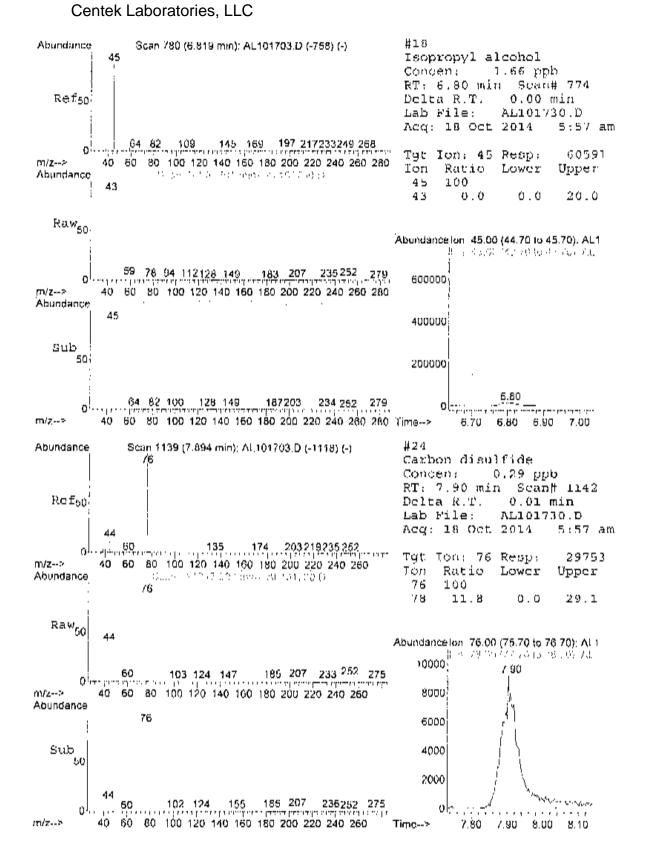

MSD1

Page 306 of 467



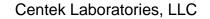
Page 307 of 467

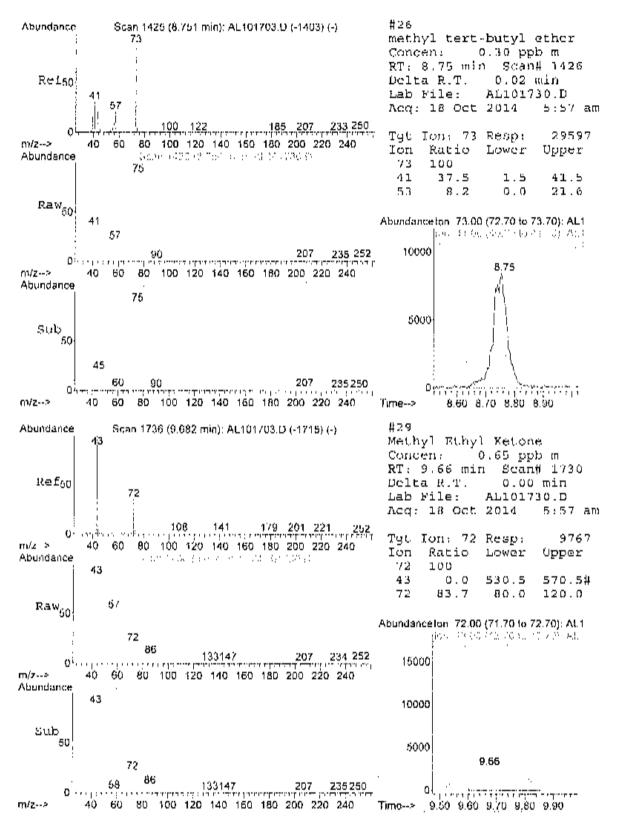
Centek Laboratories, LL	С					
	Quantitat:	ion Rej	port (QT	Review	red)	
Data File : C:\HPCHEM\1\DATA\/ Acq On : 18 Oct 2014 5:57 Sample : C1410057-009A 10X Misc : A910_10G MS Integration Params: RTEINT. Quant Time: Oct 18 07:22:04 20	7 a.m . 12		Th: Mul	Vial: mator: tiptr: File:	RJP MSD #1 1,00	
Quant Method : C:\HPCHEM\1\MET Title : TO-15 VOA Star Last Update : Mon Oct 06 12:5 Response via : Initial Calibra DataAcq Meth : 100_RUN	ndards for 31:36 2014	_1UG.M 5 poi:	(RTE Integ nt calibrat	rator) ion		
Internal Standards	R.T.	QTon	Response	Cong Un	its D	ev(Min)
 Bromochloromethane 1,4-diiluorobenzene Chlorobenzene d5 	12.72	114	32218 130786 108472	1.00	ppb ppb	0.00
System Monitoring Compounds 67) Bromofluorobenzene Spiked Amount 1,000	18.67 Range 70	95 - 130	74009 Recover	0,96 Y =	ррь 96.04	0,00 0%
<pre>Target Compounds 15) Freen 11 16) Acctone 18) Isopropyl alcohol 24) Carbon disulfide 26) methyl tert-butyl ether 29) Methyl Ethyl Ketone 31) Hexane 37) 1,1,1-trichloroethane 40) Benzene 44) Heptane</pre>	6.64 6,80 7,90 8,75 9.66 9.65 11.51 12.08	58 45 76 72 57 97 80	39756 674317 60591 29753 29597m 9767m 35540m 25843 44359 26518m 23061m	63.07 1.66 0.29 0.30 0.65 0.58 0.24	ppb ppb ppb ppb ppb ppb ppb	0 value 100 # 42 # 100 93 .00 90
<pre>45) Trichloroethene 52) Toluene 57) Tetrachloroethylene 61) map-xylene 63) Styrene 73) 1,2,4 trimethylbenzene</pre>	15.27 16.23 17.57 18.00	92 164 91 104	23061m 49893 72354 65055m 15220m 49554	0.66 1.09 0.52	ppp dqq dqq dqq	99 99 98


۲N

AL101730.D A910 1UC.M

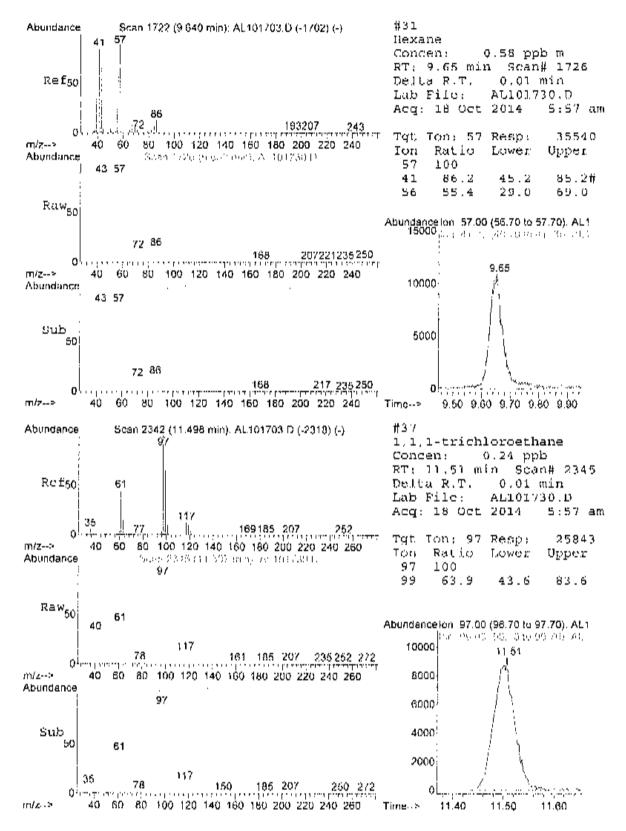
Page 3


Page 310 of 467

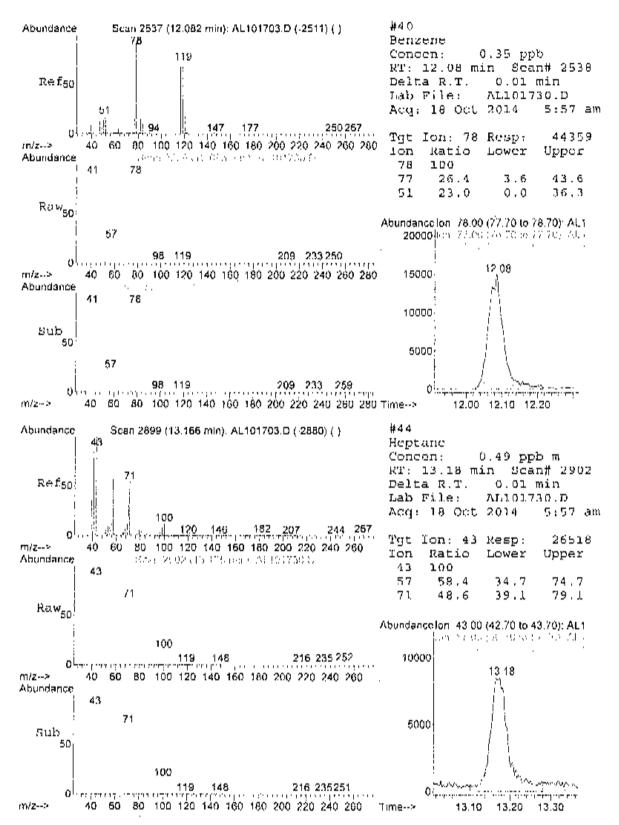


AT.101730.D A910 100.M

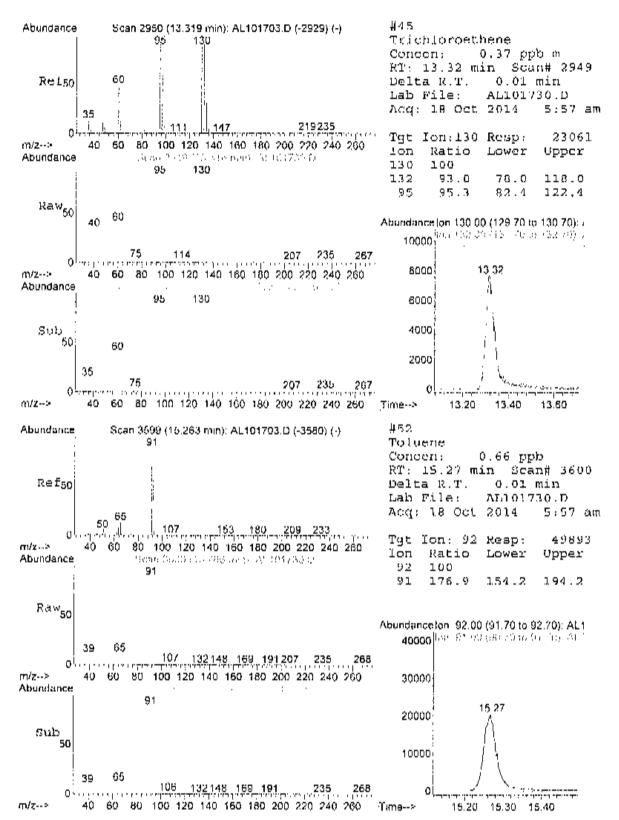
Page 4


Page 311 of 467

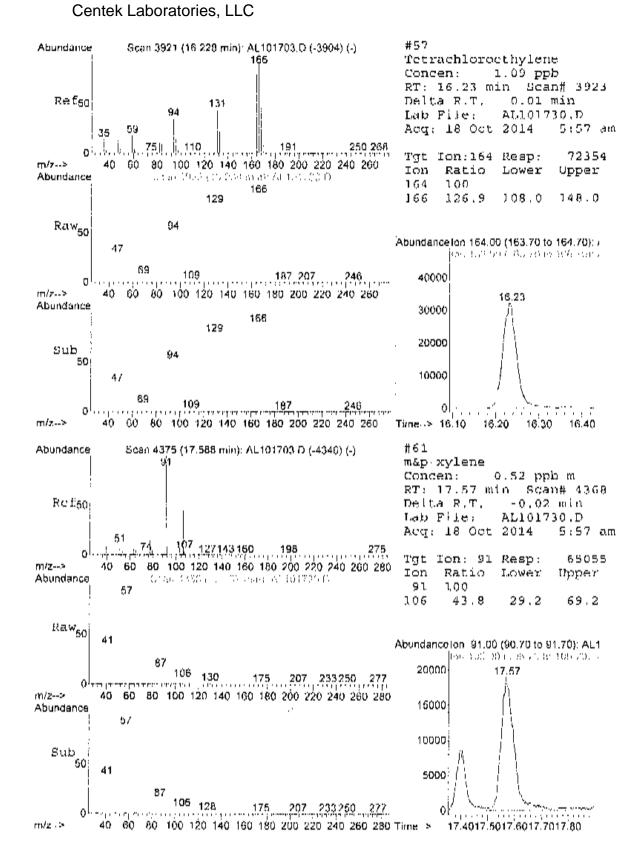



AL101730.D A910_1UG.M

Page 312 of 467

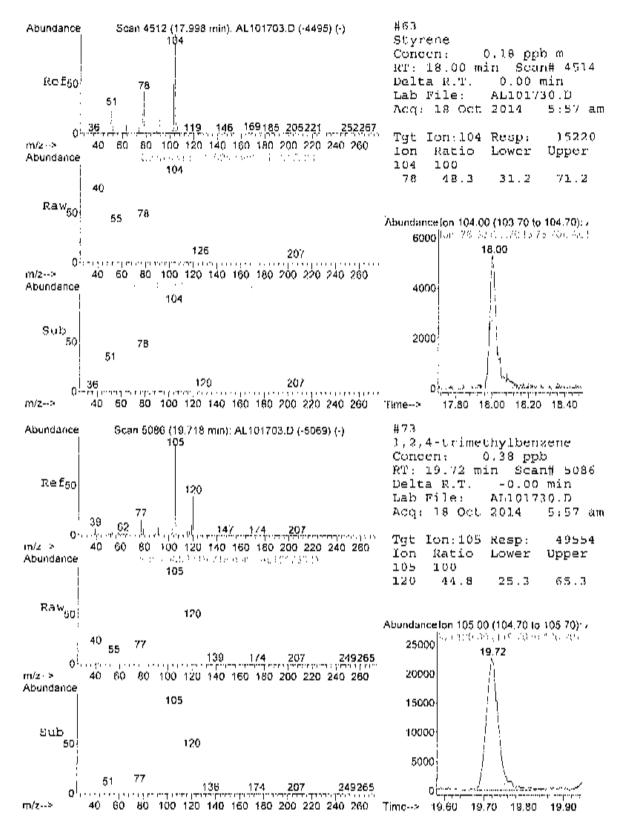


AL101730.D A910_10G.M



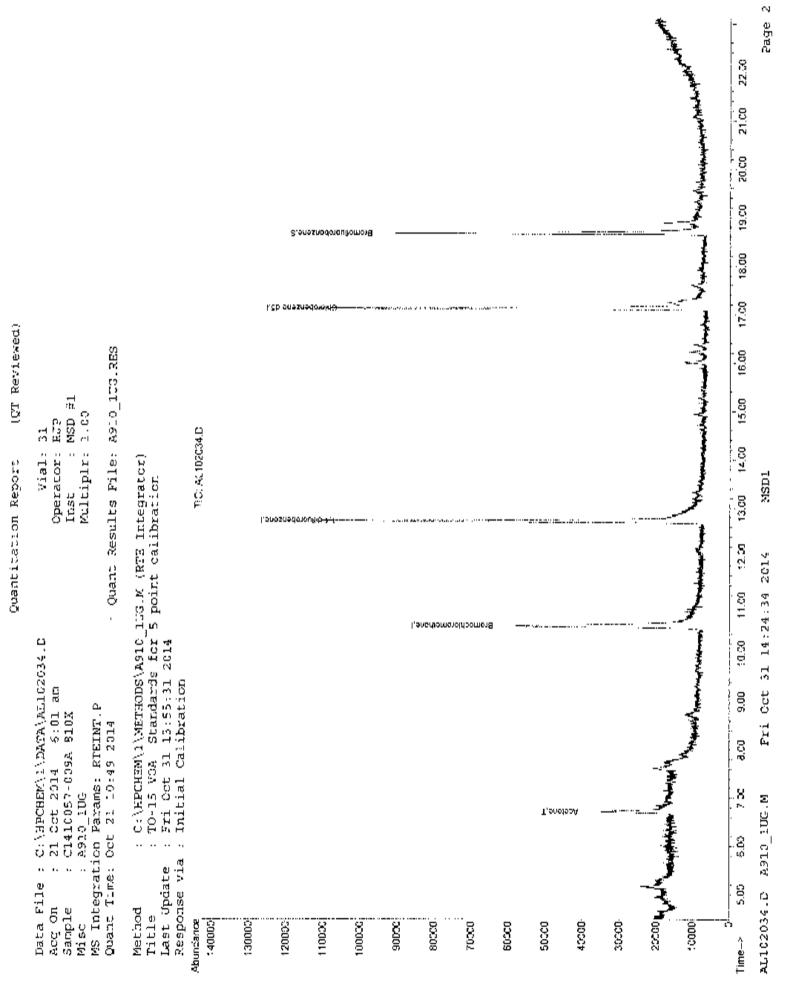
AL101730.D A910_10G.M

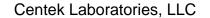
.UG.M Fri Oct 31 14:23:26 2014 MSD1

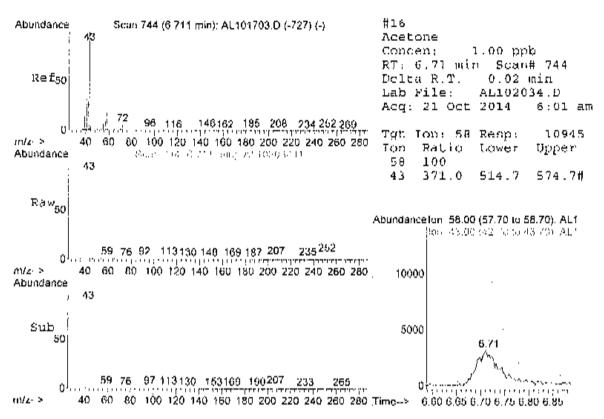

Page 315 of 467

A1.101730,D A910_10C,M

Page 9


Page 316 of 467


AL101730.D A910_10G.M


Page 317 of 467

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AL\02034.D Vial: 31 Acq On : 21 Oct 2014 6:01 am Sample : C14J0057~009A 810X Misc : A910_10G Operator: RJP inst : MSD #1 Multiplr: 1.00 MS integration Params: RTEINT.P Quant Time: Oct 21 10:46:49 2014 Quant Results File: A910_lUG.RES Quant Method : C:\HPCHEM\1\METHODS\A910 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : 10G_RUN Toternal Standards R.T. Qion Response Conc Units Dev(Min) 1) Bromochloromethane10.55128329241.00 ppb0.0036) 1,4-difluorobenzene12.721141301721.00 ppb0.0051) Chlorobenzene-d517.12117924411.00 ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.67 95 45837m $\not P$ 0.70 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery - 70.00% Target Compounds Qvalue 6.71 58 10945 1.00 ppb # 41 16) Acetone

Page 319 of 467

Page 320 of 467

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyClient Sample ID:OA-1Lab Order:C1410057Tag Number:328,1170Project:5140 Site Yorkville, NYCollection Date:10/14/2014Lab ID:C1410057-010AMatrix:AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD		•	Analyst:
Lab Vacuum In	-2		"Hg		10/16/2014
Lab Vacuum Out	30		"Hg		10/16/2014
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichtoroethane	< 0.15	0.15	ррб∨	1	10/17/2014 4·42:00 PM
1,1,2,2-Tetrachtoroethane	< 0.15	0.15	ppbV	1	10/17/2014 4:42·00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ррь∨	1	10/17/2014 4.42.00 PM
1,1-Dichloroethane	< 0.15	0.15	ррБ∨	1	10/17/2014 4:42:00 PM
1,1-Dichloroethene	< 0.16	0.15	ppbV	1	10/17/2014 4:42:00 PM
1,2,4-Trichlorobenzene	< 0 .15	0.15	ppbV	1	10/17/2014 4:42:00 PM
1,2,4 Trimethylbenzene	0.11	0.15 J	ррб∨	1	10/17/2014 4:42:00 PM
1,2-Dibromoethane	< 0.15	0,15	ppbV	1	10/17/2014 4·42:00 PM
1,2-Dichlorobenzene	< D.15	0.15	ppbV	1	10/17/2014 4 42:00 PM
1,2-Dichtoroethane	< 0.15	0.15	рµв∨	1	10/17/2014 4.42:00 PM
1.2-Dichloropropane	< 0.15	0.15	ррь∨	1	10/17/2014 4.42.00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 4·42:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	pphV	t	10/17/2014 4·42·00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	10/17/2014 4:42:00 PM
2.2.4-trimethylpentane	< 0.15	0.15	ρρον	t	10/17/2014 4:42.00 PM
4 ethyltoluene	< 0.15	0.16	ppbV	1	10/17/2014 4:42:00 PM
Acetone	58	1.5	ppbV	5	10/17/2014 11:42:00 PM
Alfyl chloride	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Benzene	< 0.15	0.15	ρρυν	1	10/17/2014 4:42:00 PM
Benzyl chlorida	< 0.15	0.15	ρρον	1	10/17/2014 4:42:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	10/17/2014 4:42.00 PM
Bromoform	< 0.15	0.15	9pbV	1	10/17/2014 4:42:00 PM
Bromomethane	< 0.15	0.15	ррв∨	1	10/17/2014 4:42:00 PM
Carbon disuifide	< 0.15	0.15	ppb∨	1	10/17/2014 4:42:00 PM
Carbon tetrachloride	0.10	0.040	ppb∨	1	10/17/2014 4:42:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 4:42.00 PM
Chloroethane	< 0.15	0.15	ρpb∨	1	10/17/2014 4:42:00 PM
Chloroform	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Chlorometbane	0.51	0.15	ppbV	1	10/17/2014 4:42:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	10/17/2014 4:42:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	Vdqq	1	10/17/2014 4:42:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Dibromochloromethane	< 0.15	0.15	opb∨	1	10/17/2014 4.42.00 PM
Ethyl acetate	< 0.25	0.25	ppbV	1	10/17/2014 4:42:00 PM

Qualifiers: **

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded.

JN Non-romme analyte. Quantitation estimated.

S — Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Octooled in the Reporting Limit

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-010A

Client Sample ID: OA-1 Tag Number: 328,1170 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Qua	il Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
Elhylbenzene	< 0.15	0.15	ррьV	1	10/17/2014 4:42:00 PM
Freon 11	0.29	0.15	ρρυν	1	10/17/2014 4:42:00 PM
Freen 113	< 0.15	0.45	ρρυν	1	10/17/2014 4:42:00 PM
Freon 114	< 0.15	0.15	ppb∨	1	10/17/2014 4.42:00 PM
Freon 12	0.51	0.15	ppbV	ĩ	10/17/2014 4.42.00 PM
Heptane	< 0.15	0.15	ppbV	1	10/17/2014 4:42.00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Нехале	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Isopropyi alcohoł	1.1	0.15	ppbV	1	10/17/2014 4:42:00 PM
m&p-Xylenc	0.10	0.30 J	ppbV	1	10/17/2014 4:42:00 PM
Methyl Butyl Kelone	< 0.30	0.30	PDDV	1	10/17/2014 4:42:00 PM
Methyl Ethyl Kelone	0.31	0.30	ppbV	1	10/17/2014 4.42:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30	Vdqq	1	10/17/2014 4:42.00 PM
Mathyl tort-butyl ether	< 0.15	0.15	ppbV	1	10/17/2014 4:42.00 PM
Methylene chloride	0.10	0.15 J	ppbV	1	10/17/2014 4:42:00 PM
o-Xylene	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Propylene	< 0.15	0.16	ppbV	1	10/17/2014 4:42:00 PM
Styrene	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Tetrachloroethylene	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Tetrahydrofuran	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Toluene	0.18	0.15	Vdqq	1	10/17/2014 4.42.00 PM
trans-1,2-Dichloronthene	< 0.15	0.15	עממס	1	10/17/2014 4:42:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/17/2014 4:42:00 PM
Trichloroethene	< 0.040	0.040		1	10/17/2014 4:42:00 PM
Vinyl acetate	< 0.15	0.15	Vdqq	1	10/17/2014 4:42:00 PM
Vinyl Bromide	< 0.15	0.15	ppb∀	1	10/17/2014 4.42:00 PM
Vinyl chloride	< 0.040	0.040	Vdqq	1	10/17/2014 4:42:00 PM
Surr: Bromofluorobenzone	85.0	70-130	%REC	1	10/17/2014 4:42:00 PM
	r -			-	

Qualifiers:

- ** Reporting Limit
 - B Analyte detected in the associated Method Blink
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected

E Value above quantitation range

- Analyte detected at or below quantitation limits.
- ND Nor Detected at the Reporting Limit

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-010A

Client Sample ID: OA-1 Tag Number: 328,1170 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс)-15			Analyst; RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	10/17/2014 4.42:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	10/17/2014 4:42:00 PM
1.1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	10/17/2014 4:42:00 PM
1.1-Dichloroethane	< 0.61	0.61		ug/m3	1	10/37/2014 4:42:00 PM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 4:42:00 PM
1,2,4 Trichlorobenzene	< 1.1	1.1		ug/m3	1	10/17/2014 4:42:00 PM
1,2,4 Trimethylbenzene	0.54	0 74	J	vg/m3	1	10/17/2014 4:42:00 PM
1,2-Dibromoethane	< 1.2	1 2		ug/m3	1	10/17/2014 4:42:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 4:42.00 PM
1,2-Dichloroothano	< 0.61	0.61		ug/m3	1	10/17/2014 4:42:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	10/37/2014 4:42:00 PM
1,3,5 Trimethylbenzene	< 0.74	0.74		ug/m3	1	10/17/2014 4:42:00 PM
1,3-buladiene	< 0.33	0 33		ug/m3	1	10/17/2014 4:42:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/in3	1	10/17/2014 4:42:00 PM
1,4-Dichtorobenzene	< 0.90	0.90		ug/m3	1	10/17/2014 4:42.00 PM
1.4-Dioxane	< 1.1	1.1		ug/m3	1	10/17/2014 4:42:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	10/)7/2014 4:42:00 PM
4-ethyltoluene	< 0.74	074		ug/m3	1	10/17/2014 4:42:00 PM
Acetone	14	3.6		ug/m3	5	10/17/2014 11 42:00 PM
Aliyi chioride	< 0.47	0.47		ug/m3	1	10/17/2014 4:42:00 PM
Benzene	< 0.48	0.48		ug/m3	1	10/17/2014 4.42.00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	10/17/2014 4:42.00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	10/37/2014 4:42:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	10/17/2014 4:42:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	10/17/2014 4 42:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	10/17/2014 4.42.00 PM
Carbon tetrachloride	0.63	0.25		ug/m3	1	10/17/2014 4 .42 .00 PM
Chlorobenzono	< 0.69	0.69		ug/m3	1	10/17/2014 4:42.00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	10/17/2014 4:42:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	10/17/2014 4:42:00 PM
Chloromethane	11	0.31		ug/m3	1	10/17/2014 4:42:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/17/2014 4 42:00 PM
cis-1,3-Nichloropropane	< 0.6B	0.68		ug/m3	1	10/17/2014 4:42.00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	10/17/2014 4:42:00 PM
Dibramachloromethane	< 1.3	1.3		ug/m3	1	10/17/2014 4:42:00 PM
Ethyl acetate	< 0.90	0.90		ug/m3	1	10/17/2014 4:42:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	10/17/2014 4·42:00 PM
Freon 11	1.6	0.84		ug/m3	1	10/17/2014 4:42:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	10/17/2014 4:42.00 PM
Freen 114	< 1.0	1.0		ug/m3	1	10/17/2014 4:42:00 PM

Qualifiers:

s: ** Reporting Limit

B — Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated,

5 Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

F Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

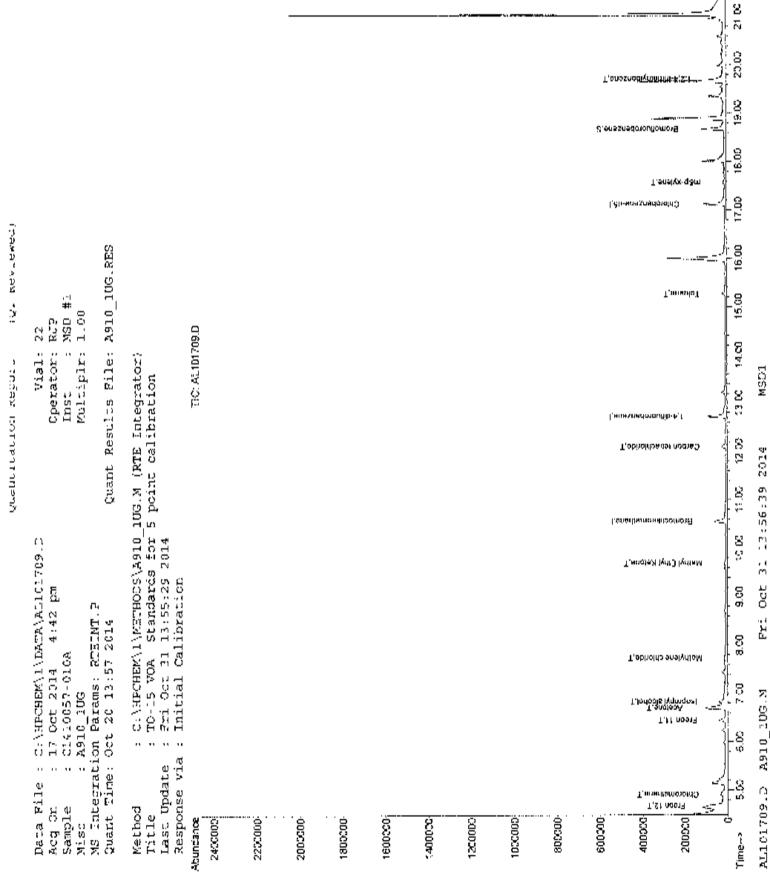
Page 19 of 22

Date: 31-Oct.14

CLIENT:	WSP Environment and Energy	Client Sample 1D: OA-1
Lab Order:	C1410057	Tag Number: 328,4170
Project:	5140 Site Yorkville, NY	Collection Date: 10/14/2014
Lab ID:	C1410057-010A	Matrix: AIR

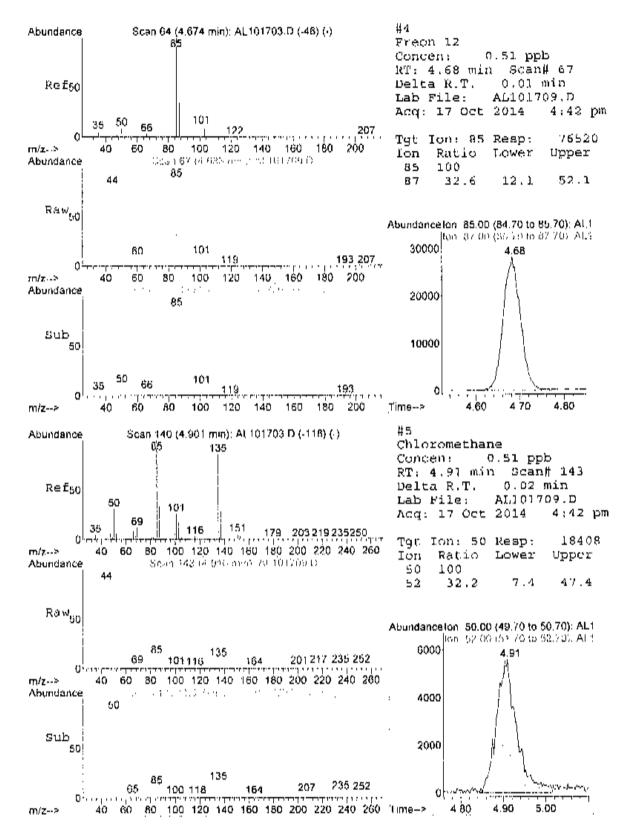
Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс)-15			Analyst: RJP
Freen 12	2.5	0.74		ug/m3	1	10/17/2014 4:42:00 PM
Heptane	< 0.61	0.61		ug/m3	1	10/17/2014 4:42:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	10/17/2014 4.42:00 PM
Hexane	< 0.53	0.53		ug/m3	1	10/17/2014 4:42:00 PM
tsopropyl alcohol	2.8	0.37		ug/m3	1	10/17/2014 4:42:00 PM
m&p-Xylene	0.43	1.3	J	ug/m3	1	10/17/2014 4:42:00 PM
Methyl Butyl Ketone	< 1.2	12		ug/m3	1	10/17/2014 4:42:00 PM
Methyl Ethyl Ketone	0.91	0.88		ug/m3	1	10/17/2014 4:42:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	10/17/2014 4:42:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	10/17/2014 4.42:00 PM
Methylene chloride	0.35	0.52	J	ug/m3	1	10/17/2014 4.42.00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	10/17/2014 4:42.00 PM
Propylene	< 0.26	0.26		ug/m3	1	10/17/2014 4:42:00 PM
Styrene	< 0.64	0.64		ug/m3	1	10/17/2014 4:42:00 PM
Tetrachioroethylene	< 1.0	1.0		ug/m3	1	10/17/2014 4:42:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	10/17/2014 4.42:00 PM
Toluene	0.68	0.57		ug/m3	1	10/17/2014 4:42:00 PM
trans-1,2-Dichloroethenø	< 0.69	0.59		ug/m3	1	10/17/2014 4:42:00 PM
trans-1,3-Dichloropropene	< 0.68	0.66		ug/m3	1	10/17/2014 4:42:00 PM
Trichloroethene	< 0.21	0.21		ug/m3	1	10/17/2014 4:42:00 PM
Vinyl acetate	< 0.53	D.53		ug/m3	1	10/17/2014 4:42:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	10/17/2014 4.42:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	10/17/2014 4:42:00 PM

Qualifiers:

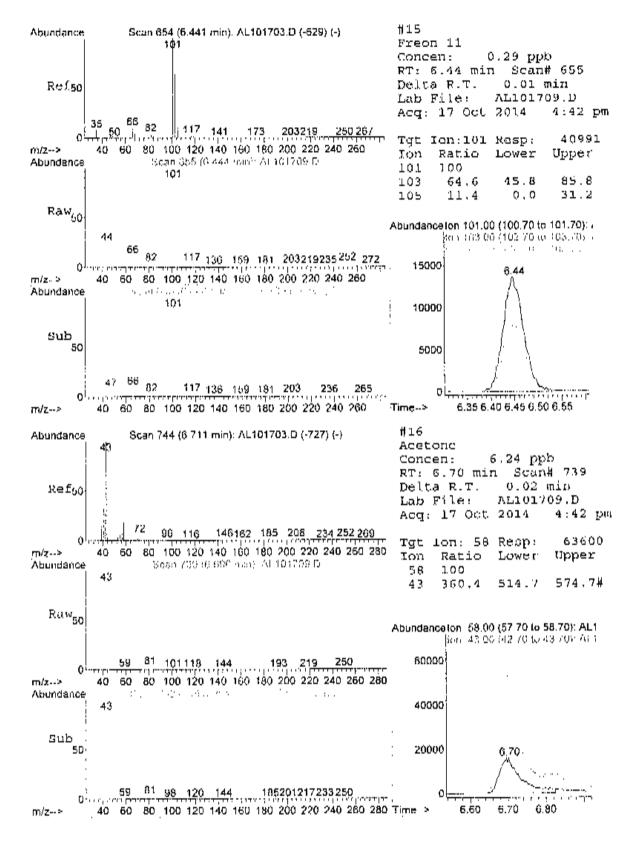

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded.
- JN Non-rootine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

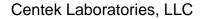

- E Value above quantitation range
- 1 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

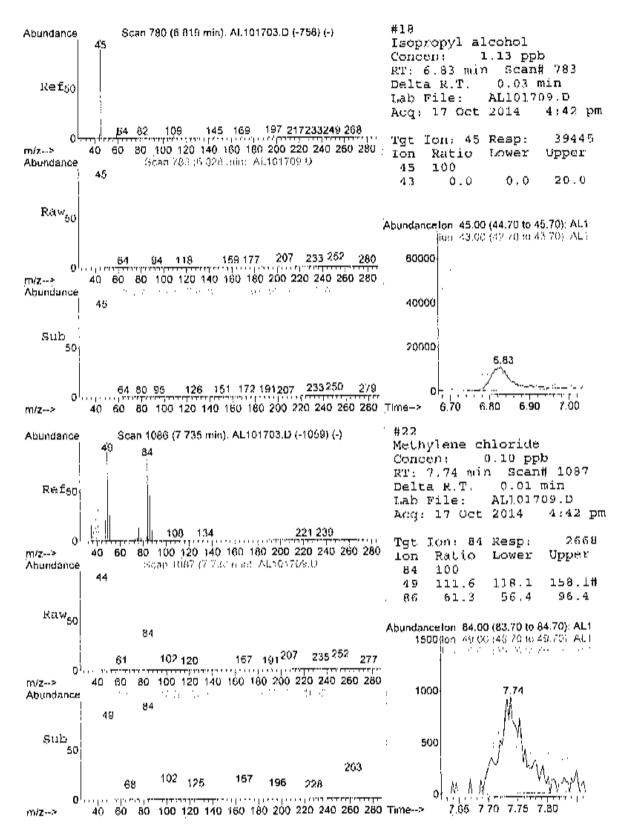
Centek Laboratories, Ll	LC						
	Quantitati	on Rep	ort (QT	Review	ved)		
Data File : C:\HPCHEM\1\DATA\ Acq On : 17 Oct 2014 4:4 Sample : C1410057-010A Misc : A910_10G MS Integration Params: RTEINT Quant Time: Oct 17 21:57:11 2	P		Mult	iplr;	1.00)	, res
Quant Method : C:\HPCHEM\1\ME Title : TO-15 VOA Sta Last Update : Mon Oct 06 12: Response via : Initial Calibr DataAcq Meth : 1UG RUN Internal Standards	ndards for 31:36 2014 ation	5 poir	ıt calibrati	on	nits	Dev (i	Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	10.55	128	30735	1,00	ppp		0.01
51) (blocobenzene	17 19	117	113333	1 00	ppb		0.00
51/ Chiolobenzene do	17,10		<i></i>	1.00	PPO		
System Monitoring Compounds							
67) Bromo()uorobenzene	18.67	95	56107	0.85	ppb		0.00
67) Bromofluorobenzene Spiked Amount 1,000	Range 70	- 130	Recovery	=	85.	00%	
Target Compounds						Óvea	lue
Target Compounds 4) Freen 12 5) Chloromethane 15) Freen 11 16) Acetone 18) Isopropyl alcohol 20) Mathematica	4 68	85	76520	0.51	dad	4.0	99
5) Chlorowethane	4.91	50	18408	0.51	ada		91
15) Freen 11	6.44	101	40991	0.29	ppb		99
16) Acctone	6.70	58	63600	6.24	dqq	H	37
18) Isopropyl alcohol	6.83	45	39445	1.13	ddd	#	1.00
22) Methylene chloride	7.74	84	2668	0.10	ppb	Ħ	80
29) Methyl Ethyl Ketone	9.70	72	4365m 🔊	0.31	ppb		
22) Methylene chloride 29) Methyl Ethyl Ketone 39) Carbon Letrachloride	12.11	117	11166	0,10	ppb		99
52) Toluene	15.26	92	11354	0,18	ppp		97
52) Toluene 61) m&p xylene 73) 1,2,4 trimethylbenzene	17.56	91	11354 11219 12052	0.10	ppb		85
73) 1,2,4 trimethylbenzene	19,72	105	12052	0.11	ppp		99



Page 2

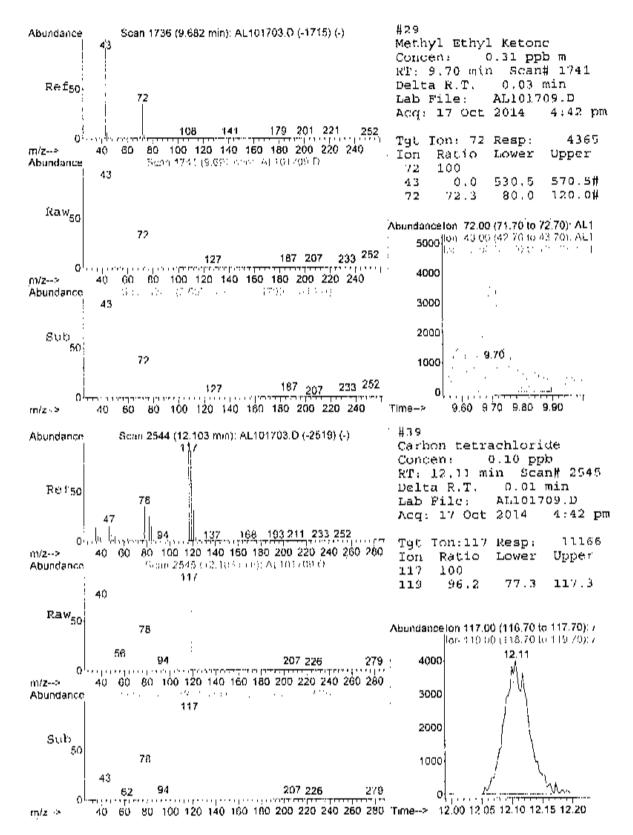
22.CO



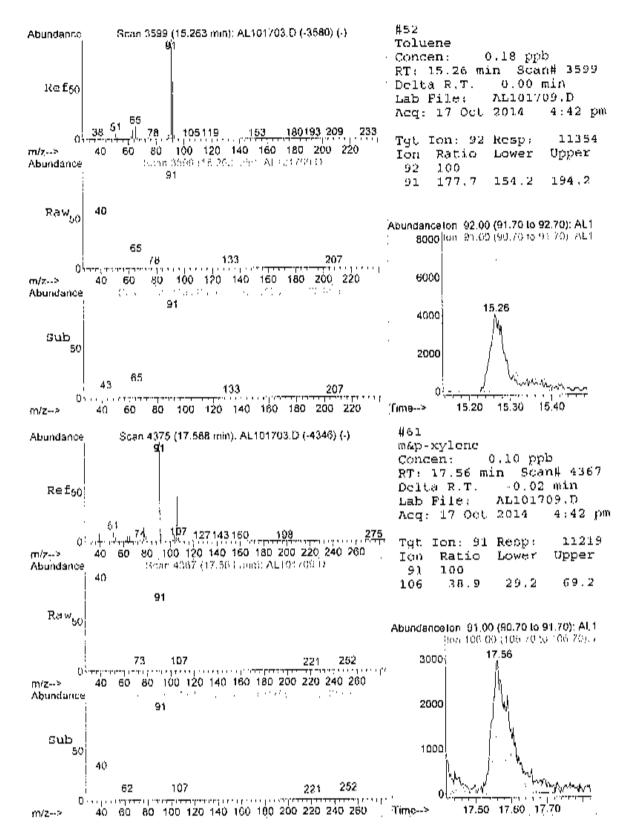

AL101709.D A910_1UG.M

AL101709.D A910 UUG.M

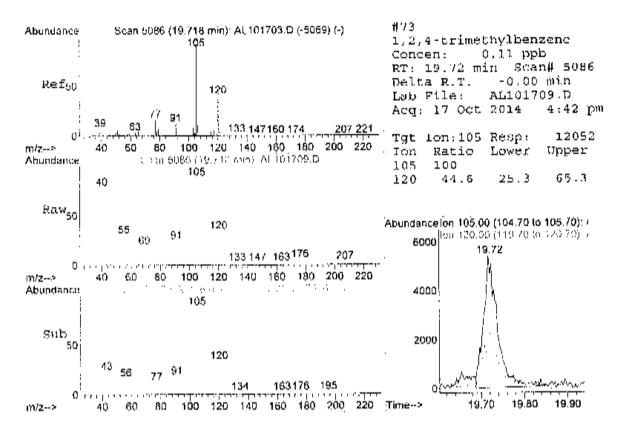
Page 328 of 467



AL101709.D A910 1UG.M


Fri Oct 31 13:56:43 2014 MSD1

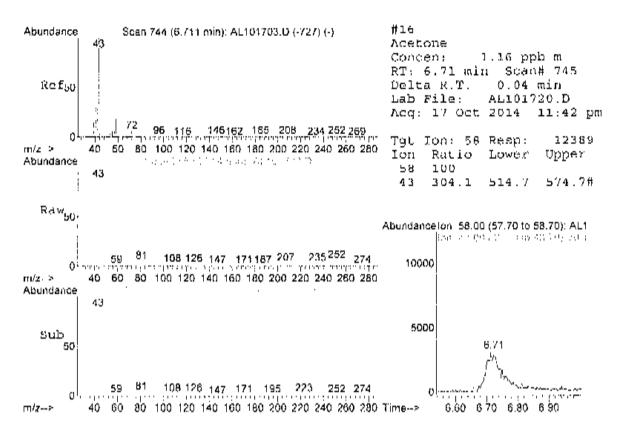
Page 329 of 467


AL101709,D A910 10G.M

Page 330 of 467

AL101709.D A910 1UG.M

Page 331 of 467



Page 332 of 467

Centek Laboratories, LL	.C				
	Quantitato	on Rep	port (Q'	r Review	ed)
Data File : C:\HPCHEM\1\DATA\. Acq On : 17 Oct 2014 11:4 Sample : C1410057-010A 5X Misc : A910_1UG MS Integration Params: RTEINT Quant Time: Oct 18 07:21:54 2	2 pm .P		Mul	erator: st : ltiplr;	RJP MSD #1
Ouant Method : C:\HPCHEM\1\ME Title : TO-15 VOA Star Lagt Update : Mon Oct 06 12: Response via : Thitial Calibr DataAcq Meth : LUC_RUN	ndards for ["] 31:36 2014	100.M 5 poir	(RTE Integ at calibra)	grator) Lion	
Internal Standards	R.T.	QIon	Response	Cone Un	its Dev(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	10.55 12,72 17.13	128 114 117	32123 122595 89916	1.00 1.00 1.00	0.01 0.01 0.00 0.00 00.0 dqq
System Monitoring Compounds 67) Bromofluorobenzene Spiked Amount 1.000	18.68 Range 70	95 - 130	46792 Recove:	0.74 ry =	996 0.01 74.00%
Target Compounds 16) Acetone	6.71	58	12389m 🌶	V 1.16	Qvalue ppb

Page 334 of 467

Page 335 of 467

Date: 31-Oct-14

CLIENT:WSP Environment and EnergyLab Order:C1410057Project:5140 Site Yorkville, NYLab ID:C1410057-011A

Client Sample ID: Trip Blank Tag Number: 130 Collection Date: 10/14/2014 Matrix: AlR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	+30		"Hg		10/16/2014
Lab Vacuum Out	+30		ïHg		10/15/2014
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vdqq	1	10/17/2014 4:05:00 PM
1.1,2.2-fetrachloroethane	< 0.15	0.15	ρρον	1	10/17/2014 4:05:00 PM
1.1.2-Trichloroethane	< 0.15	0.16	ρρον	1	10/17/2014 4.05:00 PM
1,1 Dichloroethane	< 0.15	0.15	ррб∨	1	10/17/2014 4.05:00 PM
1,1-Dichioraethene	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ррьу	1	10/17/2014 4:05:00 PM
1.2.4-Trimothylbenzene	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
1,2-Dibromoethane	< 0.15	0.16	ppbV	1	10/17/2014 4·05·00 PM
1,2 Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
1,2-Dichloroethane	< 0.15	0.15	Vđqq	1	10/17/2014 4:05:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
1,3,5-1 rimethylbenzene	< 0.15	0.15	ррь∨	1	10/17/2014 4:05:00 PM
1,3-butadione	< 0.15	0.15	opbV	1	10/17/2014 4:05:00 PM
1,3 Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
1,4-Dioxane	• 0.30	0.30	ppbV	1	10/17/2014 4:05:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	10/17/2014 4.05-00 PM
4-sthyltoluene	< 0.15	0.15	μμργ	2	10/17/2014 4.05.00 PM
Acetone	< 0.30	0.30	ррБV	1	10/17/2014 4:05.00 PM
Ally! chloride	< 0.15	0.15	opbV	1	10/17/2014 4:05:00 PM
Benzene	< 0.15	0.15	עמקק 🗸	1	10/17/2014 4:05:00 PM
Benzyl chloride	< 0.15	0,15	ppb∨	1	10/17/2014 4:05:00 PM
Bromodichloromelhane	< 0.15	0.15	ppb∨	1	10/17/2014 4:05:00 PM
Bromoform	< 0.15	0.15	Vdqq	1	10/17/2014 4.05.00 PM
Bromomethane	< 0.15	0.15	ppbV	1	10/17/2014 4:05.00 PM
Carbon disulfide	< 0.15	0.15	Vdqq	1	10/17/2014 4:05:00 FM
Carbon tetrachloride	< 0.040	0.040	ppbV	1	10/17/2014 4:05:00 PM
Chlorobenzene	< 0.15	0,15	νσαα	1	10/17/2014 4:05:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	10/17/2014 4.05:00 PM
Chloroform	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Chloromethane	< 0.16	0.15	ppbV	1	10/17/2014 4:05:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
cis-1.3-Dichloropropene	< 0,15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Dibromochluromethane	< 0.15	0 15	ppbV	1	10/17/2014 4:05:00 PM
Ethyl acetate	< 0.25	0.25	ppbV	1	10/17/2014 4:05:00 PM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E. Value above quantitation range
- J Analyte detected of or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 31-Oct-14

CLIENT: WSP Environment and Energy Lab Order: C1410057 Project: 5140 Site Yorkville, NY Lab ID: C1410057-011A

Client Sample ID: Trip Blank Tag Number: 130 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
Ethylbenzone	< 0.15	0.15	ppbV	i	10/17/2014 4 05 00 PM
Freon 11	< 0.15	0.15	ррbV	1	10/17/2014 4:05:00 PM
Freon 113	< 0.15	0.15	ppbV	1	10/17/2014 4.05:00 PM
Freon 114	< 0.15	0.15	ppbV	1	10/17/2014 4:05.00 PM
Freon 12	< 0.15	0.15	ppbV	1	10/17/2014 4.05.00 PM
Heptane	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Hexane	< 0.15	0.15	ррbV	1	10/17/2014 4:05:00 PM
Isopropyl alcohol	< 0.15	0.15	ррbV	1	10/17/2014 4:05:00 PM
m&p-Xylene	< 0.30	0.30	ppbV	1	10/17/2014 4:05:00 PM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	10/17/2014 4:05:00 PM
Methyl Ethyl Kelone	< 0.30	0.30	opb∨	1	10/17/2014 4.05:00 PM
Methyi Isabutyi Ketone	< 0.30	0.30	ppbV	1	10/17/2014 4:05:00 PM
Methyl tert-bulyl ether	< 0.15	0.15	ррЬ∨	1	10/17/2014 4:05:00 PM
Methylene chloride	< 0.15	0.15	рръV	1	10/17/2014 4:05:00 PM
o-Xylene	< 0.15	0.15	ρρον	1	10/17/2014 4:05:00 PM
Propylone	< 0.15	0.15	ppb∨	1	10/17/2014 4 05:00 PM
Styrend	< 0.15	0.15	ppbV	1	10/17/2014 4.05:00 PM
Tetrachloroethyleng	< 0.15	0.15	ppb∨	1	10/17/2014 4.05.00 PM
Tetrahydrofuran	< 0.15	0.15	pptv	١	10/17/2014 4:05:00 PM
l otuene	< 0.15	0.15	Vdqq	1	10/17/2014 4:05:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	opb∨	1	10/17/2014 4:05:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppb∨	1	10/17/2014 4:05:00 PM
Trichtoraethene	< 0.040	0.040	ppbV	1	10/17/2014 4:05:00 PM
Vinyl anetate	< 0.15	0.15	ppbV	1	10/17/2014 4:05:00 PM
Vinyl Bromide	< 0.15	0.15	ppbV	·1	10/17/2014 4:05:00 PM
Vinyl chloride	< 0.040	0.040	рры∨	1	10/17/2014 4:05:00 PM
Surr: Bromoffuorobenzene	76.0	70-130	%REC	1	10/17/2014 4:05:00 PM

Qualifiers:

- •• Reporting Limit
- в Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN. Non-routine analyte, Quantitation estimated,
- \$ Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .
- К Value above quantitation range
- 1 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CUIENT:	WSP Environment and Energy
Lab Order:	C1410057
Project:	5140 Site Yorkville, NY
Lab ID:	C1410057-011A

Date: 31-Oct-14

Client Sample ID: Trip Blaak Tag Number: 130 Collection Date: 10/14/2014 Matrix: AIR

Analyses	Result	**Limit	Qual Units	\mathbf{DF}	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс)-15		Analyst: RJP
1,1,1-Trichloroethane	• 0.82	0.82	ug/m3	1	10/17/2014 4.05.00 PM
1,1,2,2-Tetrachloroothane	< 1.0	1.0	ug/m3	1	10/17/2014 4:05:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	10/17/2014 4:05:00 PM
1,1-Dichloroethane	< 0.61	0.61	vg/m3	1	10/17/2014 4:05:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	10/17/2014 4:05:00 PM
1,2,4-Trichlorobenzene	< 1.1	11	vg/m3	1	10/17/2014 4:05:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	10/17/2014 4.05.00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	10/17/2014 4.05:00 PM
1.2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/17/2014 4:05:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	10/17/2014 4:05:00 PM
1,2 Dichloropropane	< 0.69	0.69	ug/m3	1	10/17/2014 4:05:00 PM
1,3,5 Trimethylbenzene	< 0.74	0.74	vg/m3	1	10/17/2014 4:05:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	10/17/2014 4:05:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/17/2014 4.05.00 PM
I,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/17/2014 4.05:00 PM
1.4-Dioxane	< 1.1	1.1	ug/m3	1	10/17/2014 4:05:00 PM
2,2,4 trimethylpentane	< 0.70	0.70	ug/m3	1	10/17/2014 4:05:00 PM
4-ethyltoluene	< 0.74	0,74	ug/m3	1	10/17/2014 4:05:00 PM
Acetone	< 0.71	0.71	ug/m3	1	10/17/2014 4.05.00 PM
Ally) chloride	< 0.47	0.47	ug/m3	1	10/17/2014 4.05:00 PM
Benzene	< 0.48	0.48	ug/m3	1	10/17/2014 4:05:00 PM
Benzyi chloride	< 0.86	0.86	ug/m3	1	10/17/2014 4:05:00 PM
Biomodichloromethane	< 1.0	1.0	ug/m3	1	10/17/2014 4:05:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	10/17/2014 4:05:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	10/17/2014 4:05:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	10/17/2014 4:05:00 PM
Carbon tetrachloride	< 0.25	0.25	ug/m3	1	10/17/2014 4:05:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	10/17/2014 4:05:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	10/17/2014 4:05:00 PM
Chloroform	< 0.73	073	ug/m3	1	10/17/2014 4:05:00 PM
Chloromethane	< 0.31	0.31	ug/m3	í	10/17/2014 4:05:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/17/2014 4.05.00 PM
cis-1,3-Dichtoropropene	< 0.68	0.68	ug/m3	1	10/17/2014 4.05:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	10/17/2014 4:05:00 PM
Ditromochloromethane	< 1.3	1.3	ug/m3	1	10/17/2014 4:05:00 PM
Elhyl acetale	< 0.90	0.90	ug/m3	ı	10/17/2014 4:05:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	10/17/2014 4:05:00 PM
Freon 11	< 0.84	0.84	ug/m3	1	10/17/2014 4:05.00 PM
Freon 113	< 1.1	1.1	ug/m3	1	10/17/2014 4:05.00 PM
Freen 114	< 1.0	1.0	ug/m3	1	10/17/2014 4:05:00 PM

Qualifiers:

** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- F Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

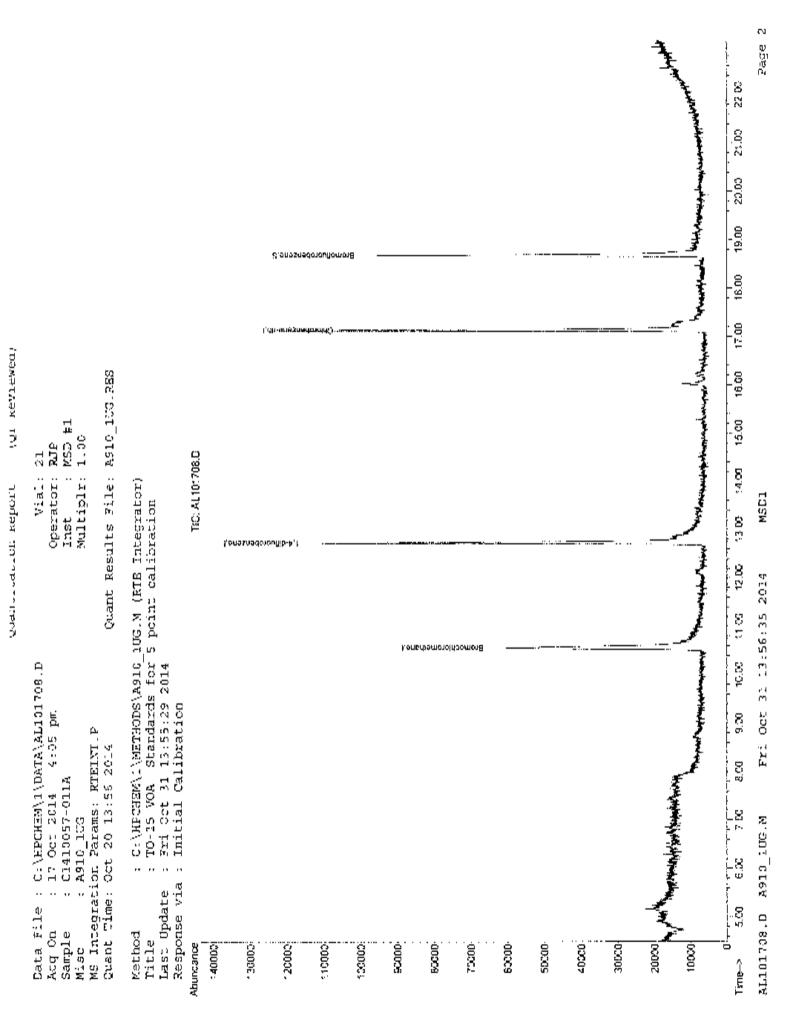
Date: 31-Oct-14

130

AIR

Trip Blank

10/14/2014


CLIENT:	WSP Environment and Energy	Client Sample ID:
Lab Order:	C1410057	•
		Tag Number:
Projecti	5140 Site Yorkville, NY	Collection Date:
Lab ID:	C1410057-011A	Matrix:

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed	
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	UG/M3 W/ 0.25UG/M3 CT-TCE-VC TO-15				Analyst: RJP	
Freen 12	< 0.74	0.74	ug/m3	1	10/17/2014 4:05:00 PM	
Heptane	< 0.61	0.61	ug/m3	1	10/17/2014 4:05:00 PM	
Hexachioro-1,3-butadiene	< 1.6	16	ug/m3	1	10/17/2014 4:05:00 PM	
Hexane	< 0.53	0.53	ug/m3	1	10/17/2014 4.05:00 PM	
isopropyi alcohol	< 0.37	0.37	ug/m3	1	10/17/2014 4:05.00 PM	
m&p-Xylene	< 1.3	13	ug/m3	1	10/17/2014 4:05:00 PM	
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	10/17/2014 4:05:00 PM	
Methyl Ethyl Ketone	< 0.88	0.88	ug/m3	1	10/17/2014 4:05:00 PM	
Methyi Isobutyi Ketone	< 1.2	1.2	ug/m3	1	10/17/2014 4:05:00 PM	
Methyl tert-bulyl ether	< 0.54	0.54	ug/m3	1	10/17/2014 4:05:00 PM	
Methylene chloride	< 0.52	0.52	ug/m3	1	10/17/2014 4:05:00 PM	
о-Хујеле	< 0.65	0.65	ug/m3	1	10/17/2014 4:05:00 PM	
Propylane	< 0.26	0.26	ug/m3	1	10/17/2014 4:05:00 PM	
Styrene	< 0.64	0.64	ug/m3	1	10/17/2014 4:05:00 PM	
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	10/17/2014 4:05:00 PM	
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	10/17/2014 4:05:00 PM	
Totuene	< 0.57	0.57	ug/m3	1	10/17/2014 4:05:00 PM	
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/17/2014 4:05:00 PM	
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/17/2014 4:05:00 PM	
Trichloroethene	< 0.21	0.21	ug/m3	1	10/17/2014 4:05:00 PM	
Vinyl acetate	< 0.53	0.53	ug/m3	1	10/17/2014 4:05:00 PM	
Vinyi Bromide	< 0.66	0.66	ug/m3	1	10/17/2014 4:05:00 PM	
Vinyl chloride	< 0.10	0.10	ug/m3	1	10/17/2014 4:05:00 PM	

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 11 Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Centek Laboratories, LLC (QT Reviewed) Quantitation Report Data File : C:\HPCHEM\1\DATA\AL101708.D Vial: 21 Acq On : 17 Oct 2014 4:05 pm Operator: RJP Sample : C1410057-011A Misc : A910 10C That : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 17 21:57:10 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 12:31:36 2014 Response via : Initial Calibration DataAcq Meth : 10G_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane10.56128331731.00ppb0.0136) 1,4 difluorobenzene12.721141298571.00ppb0.0051) Chlorobenzene-d517.12117968971.00ppb0.00 System Monitoring Compounds 67) Bromolluorobenzene 18.68 95 51873m /⁰ 0.76 ppb 0.01 Spiked Amount 1.000 Range 70 - 130 Recovery = 76.00% Target Compounds Qvalue

Page 341 of 467

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

STANDARDS DATA

Page 342 of 467

.

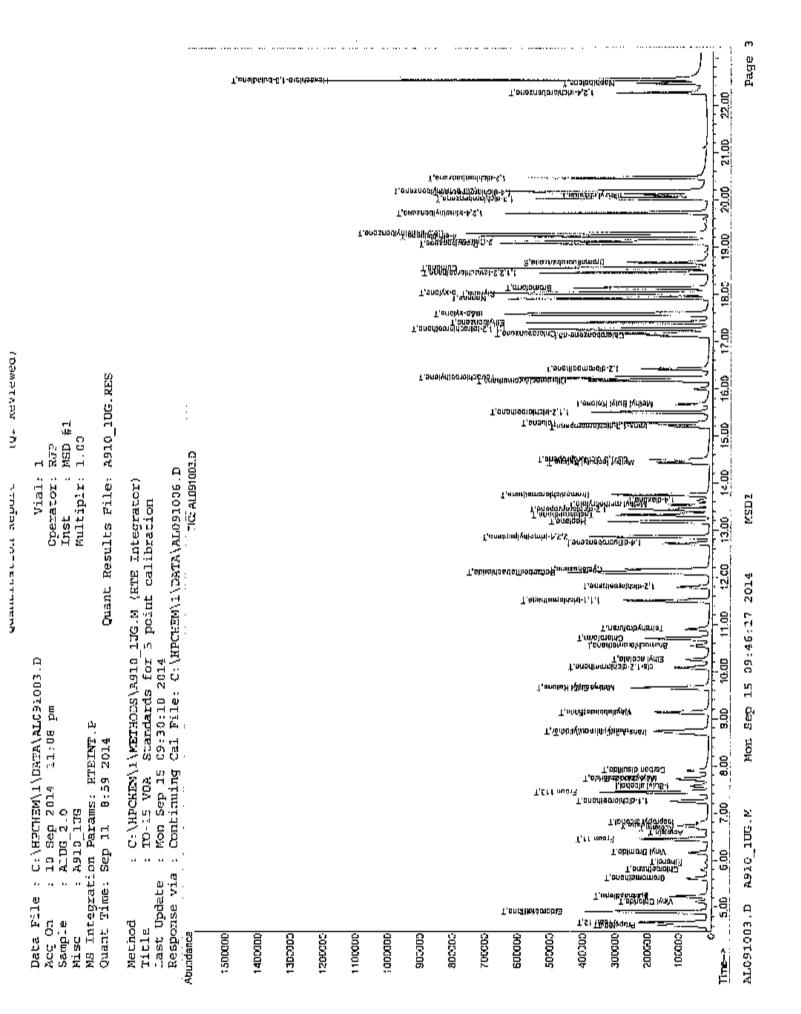
.

GC/MS VOLATILES-WHOLE AIR

.

METHOD TO-15 INITIAL CALIBRATION

Lasi	nod : C:\HPo .e : TO-15 : Update : Mon S: ponse via : Initia	CHEM\1\METHODS VOA Standard p 15 09;30;10	3\A910_ 15 for 1 2014		eport MSD FE Integra calibratio	
Cal: 0.04 0.30	bration Files = AL091012.D = AL091009.D	0.10 =AL090 0.50 =AL090	1011.D	0.15 0.75	=A1091010 =A1091007	.р .р
	Compound	0.04 0.10	0.05	0.30 0	,50 0,75	Avg &RSD
17777777777777777777777777777777777777	Bromochlorometha Freon 22 Propylenc Freon 12 Chloromethane Freon 114 Vinyl Chloride Butane 1,3-butadiene Bromomethane Chloroethane Ethanol Acrolein Vinyl Bromide Freon 11 Acetone Pentane Isopropyl alcoh 1,1-dichloroeth Freon 113 t-Butyl alcohol Methylene chlor Allyl chloride Carbon disulfid trans-1,2-dichl Methyl tert-but 1,1-dichloroeth Vinyl acetate Methyl Ethyl Ke cis-1,2-dichlor Hexane Ethyl acetate Chloroform	1ne	2.594 1.094 5.238 1.303 3.984 1.338 1.046 1.338 1.046 1.338 1.046 1.338 1.409 0.314 0.235 1.189 0.376 1.169 1.293 1.293 1.293 1.386 1.552 0.616 3.012 1.588 0.445 1.588 0.445 1.692	$\begin{array}{c} 1 \text{STD} \\ 2.612 & 2 \\ 1.092 & 1 \\ 5.144 & 5 \\ 1.355 & 1 \\ 4.099 & 3 \\ 1.252 & 1 \\ 0.960 & 0 \\ 1.252 & 1 \\ 0.960 & 0 \\ 1.408 & 1 \\ 0.493 & 0 \\ 0.241 & 0 \\ 0.202 & 0 \\ 1.252 & 1 \\ 0.320 & 0 \\ 1.252 & 1 \\ 0.320 & 0 \\ 1.252 & 1 \\ 0.320 & 0 \\ 1.252 & 1 \\ 0.320 & 0 \\ 1.252 & 1 \\ 0.320 & 0 \\ 1.252 & 1 \\ 0.320 & 0 \\ 1.252 & 1 \\ 0.320 & 0 \\ 1.252 & 1 \\ 0.320 & 0 \\ 1.252 & 1 \\ 0.320 & 0 \\ 1.252 & 1 \\ 0.320 & 0 \\ 1.252 & 1 \\ 0.320 & 0 \\ 1.252 & 1 \\ 0.430 & 1 \\ 0.430 & 1 \\ 0.430 & 1 \\ 1.685 & 1 \\ 0.430 & 1$	391 2.389 .013 1.021 .021 4.904 .185 1.203 .991 3.943 .017 0.975 .202 1.233 .891 3.943 .017 0.975 .202 1.233 .827 0.850 .226 1.169 .461 0.432 .187 0.176 .162 1.156 .806 4.709 .337 0.324 .849 0.857 .198 1.132 .238 1.186 .137 3.024 .537 1.852 .880 0.912 .570 0.924 .6617 1.599 .067 3.217 .999 2.949 .519 1.707 .442 0.442 .633 1.6454	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3G) J	1,6-difiluorobenz	ene		ISTD~~		
43) T 44) T 45) T	1,4-dioxane 2,2,4-trimethyl Heptane Trichloroethene	1.449 1.083	0,496 1,069 1,119 0,235 0,128 1,469 0,469 0,531	0.419 D. 0.961 U. 1.032 O. 0.168 O. 0.134 O. 1.271 T. 0.404 O. 0.453 O.	409 0.401 919 0.879 987 0.956 165 0.178 124 0.111 264 1.266 275 0.404 439 0.419	0.978 6.82 0.200 13.54 0.119 7.30 1.276 6.29 0.411 6.41 0.470 17.90
48) 'T 49) T 50) T	1,2-dichloropro Bromodichlorome cis-1,3-dichlor trans-1,3-dichl 1,1,2-trichloro Chlorobenzene-d5		1.027 0.441 0.356 0.465	0.856 0. 0.387 0. 0.326 0. 0.474 0.	397 0.391 308 0.314 470 0.462	0.844 9.12 0.411 4.67 0.321 5.38 0.459 2.24
	t of Range ### N A910,1UG.M	umber of cali	bration	1 levels	exceeded	


.

	Quantitat	ion Rej	port (QT	Reviewe	-()	
Data File : C:\MPCHEM\1\DATA\A Acq On : 10 Sep 2014 11:00 Sample : AlUG_2.0 Misc : A910_10G MS Integration Params: RTEINT. Quant Time: Sep 11 08:57:08 20	i pm		Oper Inst Mult	Vial: 1 ator: R : : M :iplr: 1 Filc: A	11 UU .00	ic.res
Quant Method : C:\HPCHEM\1\MET Title : TO-15 VOA Star Last Update : Thu Sep 11 08:5 Response via : Continuing Cal DataAcq Meth : 100_KON	dards for 65:46 2014 File: C:\)	5 poi:	nt galibrati	on		
Interna) Standards	R.T.	QIon	Response (one Uni	ts Dev	(Min)
1) Bromochlorowsthaws	10 54	128		1 00 m	 •}•	0 00
 Bromochlaromethane 1,4-difluorobenzene Chlorobenzene-d5 	10.04	134	35112 167235 152966	1.00 p	~~ ~~	0,00
50, 1,4-diffeorebenzene 51) Chlorobonzene-d5	10,70		167633	1 00 10		0.00
517 CHIGIODenzene-d5	1/.12	T + 1	101900	r'oo bi	113	0.00
System Monitoring Compounds						
67) Bromofluorobenzene	70 67	62		2 03 5		0.00
Spiked Amount 1.000	10.07	33	115652	т.us рр		
Spiked Amount 1.000	Range 70	- 130	Recovery	r = 10	3.00%	
						-
Target Compounds		C				alue
2) Freon 22	4.62	51	155335	1.92 pi	מכ	98
3) Propylene	4.62 4,67	41 85	66783	2.00 PH	כלק	92
4) Freen 12	4,67	85	323138	1,96 (0)	מכ	99
5) Chloromethane	4.90	50	74387	1,94 p	215	96
G) Freeze 114	4.90	85	248147	1.97 p	מכ	95
7) Vinyl Chloride 8) Butane	5.11	62	63658	1.97 p	מכ	9 B
9) 1,3-butadiene	5.25	43	75424	1.94 py	p o	97
10) Bromomethang	5.23	29	53517 76804 29936	1.95 pj		86
11) Chlorocthane	0.01	54	76804	1.94 pj 1.98 pj	20	90
12) Etbanol	5,95	64	15340	1,90 pi		87 83
13) Acoulein	5.57	43	15340 11841m P 75067	2.03 pr 2.02 pr		63
14) Vinyl Bromide	6.15	105	75067	2.00 pr	5	99
15) Freon 11	6.44	101	304055	2.00 pr	 - h	
l6) Acetone	6.67	-58	23175	2.12 0	р ъ #	53
17) Pentane	6.73	42	23175 54369 76655m Ø 78926	1.90 01	b "	83
1θ) fsopropyl alcohol	6,80	45	76655m 🖡	2.02 50	do do	
19) 1,1-dichloroethene	7.24	96	78926	2.04 pp	cto	99
20) Frend 113	7 4 4	101	202022	2 00 00	.	00
21) t-Butyl alcohol 22) Methylene chloride 23) Allyl chloride 24) Carbon disulfide	7.57	59	95645	1.95 pr	ft cto	95
22) Methylene chloride	7.73	84	56034	1.95 p _E	ъ н	77
23) Allyl chloride	ב7.ל	41	44831	2.09 pp	de	98
24) Carbon disulfide	7.90	76	44831 206147m b	1,82 pp	מנ	
25) trans-1,2-dichloroethene	8.69	61				97
26) metnyi tert-butyi ecner	8,73	73	226516	2.05 pp		90
27) 1,1-dichiordethane	9.13	63	187292	1.98 pr		99 99 20
20; Vinyi acelate 29) Methyl Pthyl Ketone	9.13	43	113130	2.1/ PE		20
<pre>26) methyl tert-butyl ether 27) 1,1-dichloroethane 28) Vinyl acetate 29) Methyl Ethyl Ketone 30) cis-1,2-dichloroethene 11) Herry</pre>	מט,ק פת תר	/2 51	110459	2 00 m)L)	22
31) Hexane	9.65	57	127822	2.13 02	710 171	92
32) Ethyl Acetate	10.25	43	136377	-2.23 Df	ska	97
33) Chloroform	10.70	83	247856	1.96 00	ĥ	99
34) Tetrahydrofuran	10.90	42	65300	2.06 00	ъ	89
35) 1,2-dichloroethane	11.79	62	140217	1.99 00	ъ	98
37) 1,1,1-trichloroethane	1.3.,50	97	251291	1.92 pp	ъ	98
38) Cyclohexane	12.16	56	132637	2.02 pp	ъ	88
 30) cis-1,2-dichloroethene 31) Hexane 32) Ethyl Acetate 33) Chloroform 34) Tetrahydrofuran 35) 1,2-dichloroethane 37) 1,1,1-trichloroethane 38) Cyclohexane 39) Carbon tetrachloride 40) Benzene 	12.10	3.3 7	202853	1.96 pp	b	100
40) Benzene	3.2.08	78	310727	1.97 pp	b	97
 Methyl methacrylate 	13.53	41.	75611	2,30 pp	at y	93,
42) 1,4-dioxane	13.63	88	39466	2,14 pp	00	97
43) 2,2,4°Crimetnylpentane	12,85	57	414005	2,01 PF		97
 38) Cyclonexane 39) Carbon tetrachloride 40) Benzene 41) Methyl methacrylate 42) 1,4-dioxane 43) 2,2,4-trimethylpentane 44) Heptane 45) Trichlorocthene 	13.17	43	730510	2.04 pp) 	94
45) Trichloroethene	13.32	130	140774	T DA DE		33
(#) = qualifier out of range AL051003.D A910_1UG.M Ma	(m) = manu	al int	egration			/ "

(OT Reviewed)

Data File : C:\HPCHEM\1\DATA\AL091003.D Acq On : 10 Scp 2014 11:08 pm Vial; 1 Operator: RJP Sample ; A1UG_2.0 Misc : A910_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT, P Quant Time: Sep 11 08:57:08 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHOD\$\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 3.1 08:56:46 2014 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AL091006.D DataAcy Meth ; 100_RUN CompoundR.T. GION ResponseCone UnitQvalue46)1,2-dichloropropane13.43631186471.94 pph9947)Bromodichloromethane13.74832686061.99pph9948)cis-1,3-dichloropropene14.49751431132.12pph9749)trans-1,3-dichloropropene15.19751103802.17pph9350)1,1,2-trichloroethane15.50971502962.00pph10053)MethylIsobutyl Ketone14.42431593552.09ppb54)Dibromochloromethane16.17129266787m1.91ppb55)MethylButyl Ketone16.231641687061.93pph56)1,2-dibromocthane17.171133004402.01pph9557)Tetrachloroethane17.261311850711.87pph9661)mdp-xylene17.56917916334.32pph9962)Nonane17.91432199382.11pph9663)Styrene18.141732655071.96pph9564)Bromoform18.1417326551372.05pph9565)C.xylene19.231055226642.28pph9570)2-cherachloroethane19.72105525050m2.35pph2.35pph</t R.T. Qion Response Cone Unit Qvalue Compound

(#) = qualifier out of range (m) = manual integration (+) = wighals summed AL091003.D A910_100.M Mon Scp 15 09:46:16 2014 MSDL

Quantitation Report (QT Reviewed)

 Data File : C:\WFCHEM\1\DATA\AL091004.D
 Vial: 2

 Acg On : 10 Sep 2014 11:48 pm
 Operator: RJP

 Sample : AlUG_1.50
 Inst : MSD #1

 Misc : A910_lUG
 Multiplr: 1.00

 Misc : A910_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Sep 11. 08:57:09 2014 Quant Results Pile; A910_1UG.RES Ouant Method : C:\HPCHEM\1\METHOD9\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 08:56:46 2014 Response via : Continuing Cal File; C:\HPCHEM\1\DATA\AL091006.D DataAcq Meth : 10G RUN Internal Standards R.T. Qion Response Conc Unita Dov(Min)
 1) Bromochloromethane
 10.54
 128
 33998
 1.00 ppb
 0.00

 36) 1,4-difluorohenzene
 12.71
 114
 165326
 1.00 ppb
 0.00

 51) Chlorohenzene-d5
 17.11
 117
 143463
 1.00 ppb
 0.00
 System Monitoring Compounds 67) Bromofluorobenzene 18.67 95 110678 1.06 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 106.00%

 67)
 Bromofluorobenzene
 18.67
 95
 110778
 1.06 ppb
 0.00

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 106.004

 Target Compounds
 0value
 0value
 0value
 0value

 21
 Freon 12
 4.61
 41
 49633
 1.53 ppb
 93

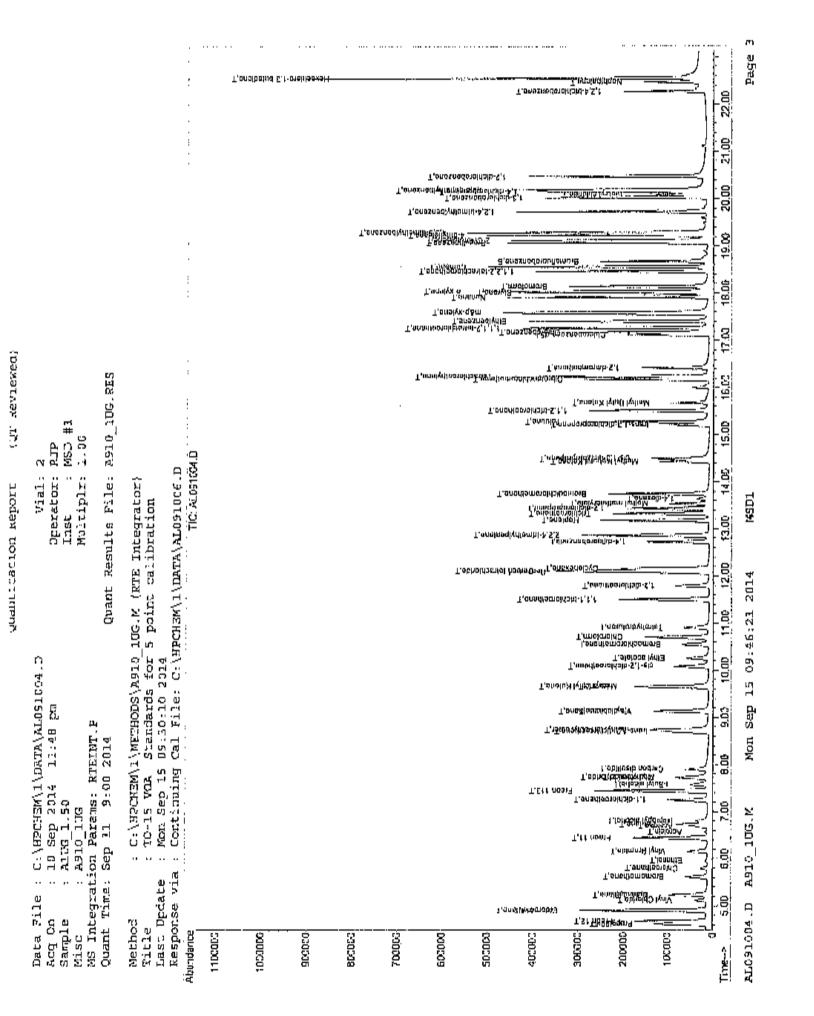
 31
 Propylene
 4.61
 41
 49633
 1.54 ppb
 95

 51
 Chloromethane
 4.63
 50
 57072
 1.54 ppb
 95

 61
 Freon 124
 4.67
 05
 518470
 1.53 ppb
 95

 61
 Freon 114
 4.00
 05
 18470
 1.54 ppb
 94

 91
 1.54 ppb
 94
 94
 1.53 ppb
 95
 10
 Encommethane
 5.23
 39
 40651
 1.53 ppb
 95


 10
 Bromethane
 5.79
 64
 21344
 1.52 ppb
 95
 11
 Chloromethane
 6.73
 62
 81397
 1.55 ppb
 100

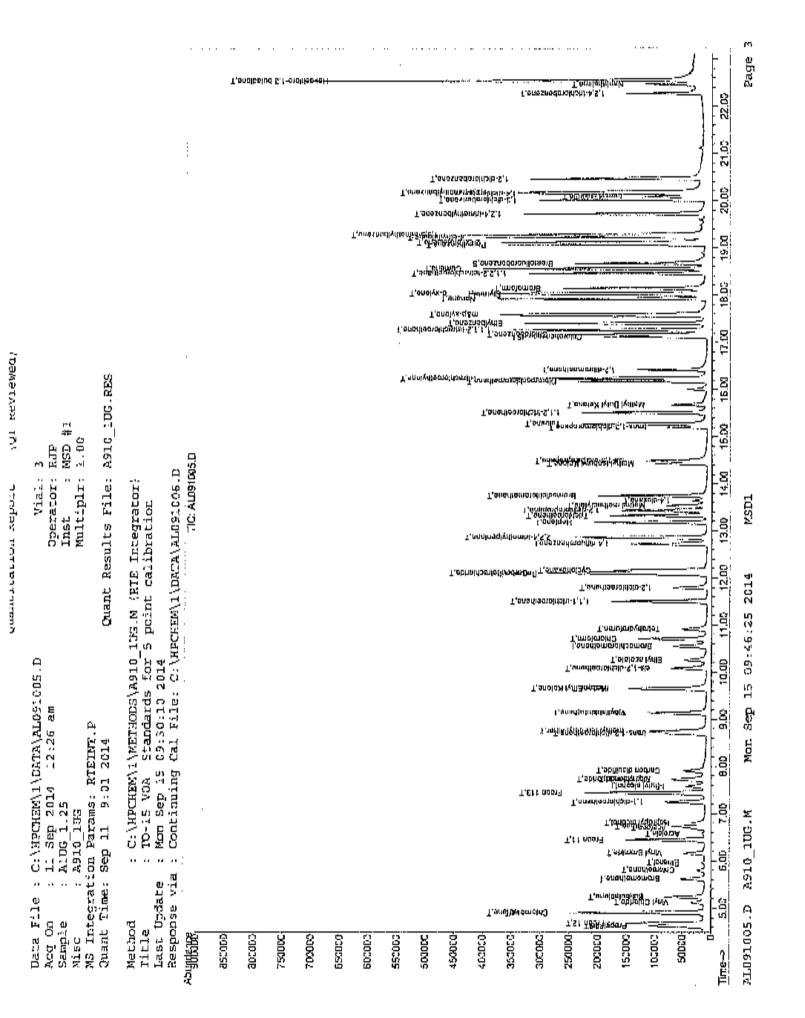
 11
 Archoine
 6.68
 56
 17105
 1.61 ppb
 (#) - qualifier out of range (m) = manual integration ALO91004.D A910_10G.M Mon Sep 15 05:46:20 2014 MSD1

(QT Reviewed)

Data File : C:\NPCHEM\1\DATA\AL091004.D Acq On : 10 Sep 2014 11:48 pm Vial: 2 Operator: RJP Sample : A100_1.50 Misc : A910_100 Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Sep 11 06:57:09 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 08:56:46 2014 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AL091006.D DataAcq Meth / 1UG_RUN CompoundR.T. QION Response Conc Unit Qvalue46)1,2-dichloropropane13.4363863751.43ppb9947)Bromodichloromothane13.74831958521.46ppb10048)cis-1,3-dichloropropene16.74831958521.66ppb9849)trast,3,3-dichloropropene15.2075805991.60ppb9950)1,1,2-trichloropthane15.20971109071.49ppb9953)Methyl Isobutyl Ketone16.471231535041.58ppb9654)Dibromochloromethane16.17129196396m1.50ppb9555)1,2-dibromocthane16.411071452331.51ppb9556)1,2-dibromocthane16.411071452331.53ppb9758)1,1,2-tetrachloroethylene16.231641257551.54ppb10058)Chlorobeuzene17.711122141121.52ppb9551)1,1,2-tetrachloroethane17.5591570843.32ppb9561)mdo_rwylene17.5591570843.32ppb9563)Noranc17.91431550231.55ppb9964)moorform18.131731933111.52ppb9965)0-xylene18.00141948551.66ppb R.T. QION Response Conc Unit Qvalue Compound -----

(4) - qualifier out of range (m) - manual integration (+) = signals summed AL091004.D A910_1UG,M Mon Sep 15 09:46:20 2014 MSD1

Quan	titat:	ion Rej	port (QT	Reviewed)	
Data File : C:\HPCHEM\1\DATA\AL091 Acq On : 11 Scp 2014 12:26 am Sample : AlUG_1.25 Mise : A910_106 MS Integration Params: RTEINT,P Quant Time: Sep 11 08:57:10 2014			Trot Mult	Vial: 3 rator: RJP t : MSD #1 tiplr: 1.00 File: A910 10	g.res
Quant Method : C:\RPCHEM\1\METHODS Title : TO-15 VOA Standard Last.Update : Thu Sep 11 08:56:46 Response Via : Continuing Cal File DataAcq Meth : LUG_RUN	ls for 2014	5 poir	nt calibrat:	ion	
Internal Standards	R.T.	OION	Response (Conc Units Dev	(Min)
)) Bromochloromethane 36) 1,4-difluorobenzene 51) Chlorobenzene-d5	10.54 12.72 17.11	128	34466	1 00 ppb	0.00
System Monitoring Compounds 67) Bromofluorobenzene Spiked Amount 1.000 Rang	18.67 e 70	95 - 130	106744 Recovery	1.01 ppb Y ≈ 101.00%	0.00
<pre>4) Freen 12 5) Chloromethane 6) Freen 114 7) Vinyl Chloride 9) 3.3-botadiene 10) Bromomethane 11) Chloroethane 12) Ethanol 13) Acrolein 14) Vinyl Bromide 15) Freen 11 16) Acetone 17) Pentane 18) Isopropyl alechel 19) 1.1-dichloroethene 20) Freen 113 21) t-Butyl alechel 23) Allyl chloride 24) Carbon disulfide 25) trans-1.2-dichloroethene 26) methyl tett-butyl ether 27) 1.1-dichloroethane 26) Vinyl acetate 29) Methyl Ethyl Ketone 30) cis-1.2-dichloroethene 31) Hexane 32) Ethyl acetate 33) Chloroform 34) Tetrahydrofuran 35) 1.2-dichloroethane 39) Carbon tetrachloride</pre>	4445555556666667777778889909000011222233205764920447210943367559090518345	8585439645661825619416133321733227678187 505239445661825619416133321733227678187	202763 40047 156678 39864 46147 31879 49084 18331 9999 7317m 48199 193442 14530 35828m 48901m 48269 126618 61306 35545 26245 1293618 61306 35545 26245 129361m 66085 139108 116368 77106 153395 35545 20831 65056 82814 77106 153395 35549 158596 81005 174800 190244 43708 23974	1.23 ppb 1.27 ppb 1.25 ppb 1.27 ppb 1.27 ppb 1.27 ppb 1.26 ppb 1.26 ppb 1.26 ppb 1.26 ppb 1.26 ppb 1.27 ppb 1.29 ppb 1.35 ppb 1.35 ppb 1.35 ppb 1.32 ppb 1.34 ppb 1.24 ppb 1.24 ppb 1.25 ppb 1.35 ppb 1.35 ppb 1.39 ppb 1.36 ppb 1.39 ppb	100 94 96 100 96 93 92 86 82 96 95 53


(#) - qualifier out of range (m) = manual integration AL091005.D A910_1UG.M Mon Sep 15 0.9:46:24 2014

MSDl

(QT Reviewed)

Data File : C:\HPCHEM\l\DATA\AL091005.D Vial: 3 Acq On : 11 Sep 2014 12:26 am Sample : AlUG 1.25 Misc : A910_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Sep 11 08:57:10 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910 1UG.M (RTF Interpator) Title : TO-15 VOA Standards For 5 point calibration Last Update : Thu Sep 11 08:56:46 2014 Response via : Continuing Cal File: C:\MPCNEM\1\DATA\AL091006.D DataAcg Meth : 1UG RUN CompoundR.T. QION ResponseConc UnitQvalue46)1,2-dichloropropane13.4363740461.24 ppb10047)Brownodichloromethame13.7463740461.24 ppb9948)cis-1,3-dichloropropane14.4975852181.29 ppb9449)trans-1,3-dichloropropane15.2075626541.26 ppb9150)1,1,2 trichloroethame15.5097934231.28 ppb9953)MethylIsobutyl Ketone14.4343972011.35 ppb9754)Dibromochloromethane16.17129167248m1.27 ppb10055)MethylButyl Ketone15.6743674411.38 ppb9756)1,2-dibromowethane16.421071219511.28 ppb9757)Tetrachloroethylene17.271121775711.25 ppb9759)1,1,2-tetrachloroethane17.261311140731.21 ppb9860)Ethylbenzene17.59914582822.64 ppb10063)Monane17.91431277231.30 ppb9764)Bromoform18.141731606371.25 ppb9865)Cumene18.03913018051.44 ppb9270)2-chlorobenzene19.0791305467m1.32 ppb9971)4-ethyltbluene19.2291305467m1.3 R.T. Qion Response Conc. Unit Qvalue Compound

(i) = qualifier out of range (m) = manual integration (+) - signals summed AL091005.D A910_10G.M Mon Sep 15 09:46:24 2014 MSD1

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AL091006.DVial: 4Acq On : 11 Sep 2014 1:04 amOperator: RJPSample : Alug 1.0Inst : MSDMisc : A910_10GMultiplr: 1.00 Inst : MSD #1 Multiplr: 1.00 Misc : ASIO_IDG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Sep 11 08:57:11 2014 Ouant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\l\METHODS\A910 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 08:56:46 2014 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AL091006.D DataAcq Meth : 1UG_RUN Internal Standards R.T. Olon Response Conc Units Dev(Min) 1) Bromochloromethane10.54128345571.00 ppb0.0036) 1,4-difluorobenzene12.72141623121.00 ppb0.0051) Chlorobenzene-d517.121171424071.00 ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.67 95 104547 1.01 pph Spiked Amount 1.000 Range 70 - 130 Recovery = 101.00% 0.00

 Spiked Amount
 1,000
 Range
 70 - 130
 Recovery
 = 101.00%

 Target Compounds
 Qvaluc

 2) Freen 22
 4.61
 S1
 79555
 1.00 ppb
 95

 4) Freen 12
 4.67
 B5
 162395
 1.00 ppb
 93

 5) Chloromethave
 4.90
 S1
 21986
 1.00 ppb
 93

 6) Freen 114
 4.90
 S1
 231968
 1.00 ppb
 93

 6) Freen 114
 5.12
 62
 31968
 1.00 ppb
 96

 7) Vinyl Chloride
 5.12
 43
 39254
 1.00 ppb
 94

 1.3.butadiene
 5.22
 33
 27005
 1.00 ppb
 92

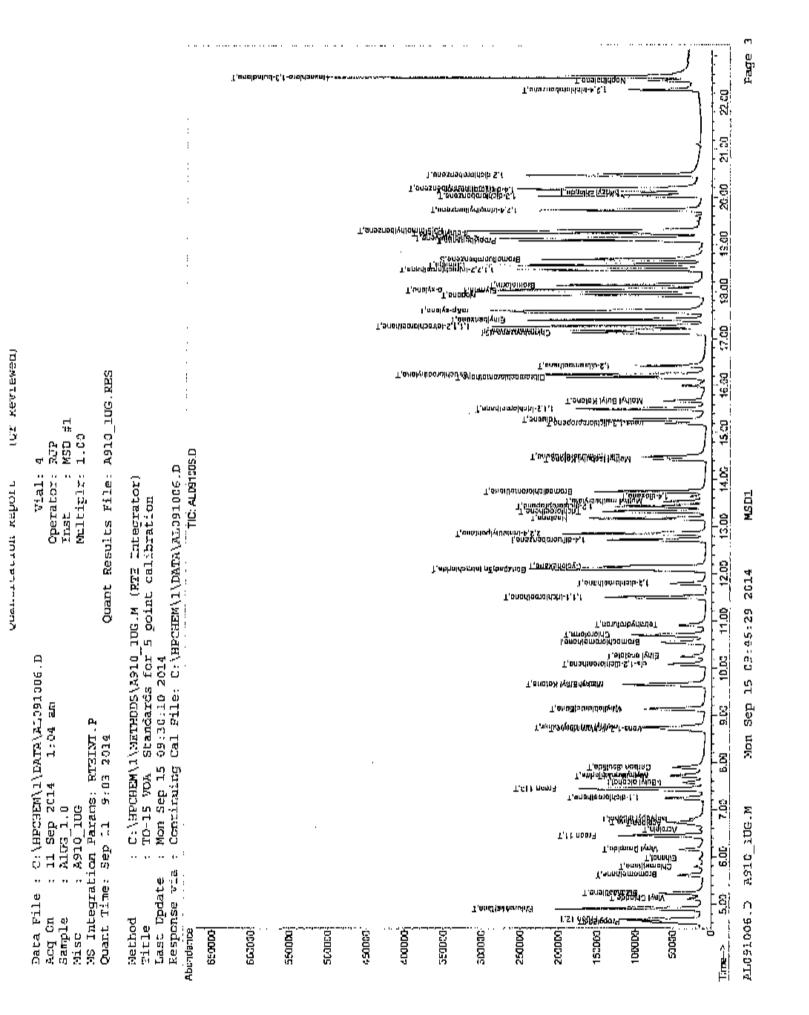
 11) Chlorocthane
 5.79
 64
 14900
 1.00 ppb
 92

 12) Rthanol
 6.95
 56
 5786
 1.00 ppb
 92

 13) Acroluin
 6.16
 106
 37867
 1.00 ppb
 92

 14) Vinyl Bromide
 6.16
 106
 37867
 1.00 ppb
 92

 15) Freen 11
 6.44
 101
 149844
 1.00 ppb
 92



(#) = qualifier out of range (m) = manual integration ALG91006.D A910_10G.M Mon Sep 15 09:46:28 2014 MSD1

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AL091006.D Acq On : 11 Sep 2014 1:04 am Sample : AlUG_1.0 Misc : A910_1UG vial: 4 Operator: RJP TASE : MSD #1 Multiplr: 1.00 Multiple: : Aylo_100 MS Integration Params: RTEINT,P Quant Time: Sep 11 08:57:11 2014 Quant Results File: Aylo_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A910 lUG.M (RTE Integrator) Title : TO 15 VOA Standards for 5 point calibration Last Opdate : Thu Scp 11 08:56:46 2014 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AL091006.D DataAcq Meth : LUC_RUN CompoundR.T. GIONResponseConc UnitQvalue46)1,2-dichloropropane13,4363590521.00ppb10047)Bromodichloromethane13,4463590521.00ppb9948)cis-1,3-dichloroperpene12,74831308671.00ppb9549)trans-1,3-dichloroperpene15,2075491741.00ppb9050)1,1,2-trichloroethane15,5097726681.00ppb9853)MethylSubtromethane16.17129970051.01ppb10054)Dibromechloromethane16.2792970051.01ppb9655)MethylButyl Ketone15.6743478271.00ppb9856)1,2-dibromechane16.42107949421.01ppb10058)Chlorobenzene17.171121397771.00ppb9859)1,1,2-tetrachloroethane17.924397331.01ppb9850)Ethylbenzene17.9243973551.01ppb10058)Konane17.9243973551.01ppb10060)Ethylbenzene17.9243973551.01ppb10061)Styrene18.141731266461.01ppb9962)Bromoform18.141731266461.01</ R.T. Olon Response Conc Unit Ovalue Compound

(#) = qualifier out of range (m) = manual integration (+) = signals summed AL091006.D A910_1UG.M Mon Sep 15 09:46:28 2014 MSD1

Quantitation Report (QT Reviewed)

 Data File : C:\HPCHEM\1\DATA\AL091007.D
 Vial: 5

 Acq On : 11 Sup 2014 1:42 am
 Operator: RJP

 Sample : AlUG_0.75
 Inst : MSD

 Misc : A910_100
 Multiplr: 1.00

 Inst : MSD #1 Multiplr: 1.00 Muttipir: 1.00 MS Integration Farams: RTEINT.P Quant Time: Sep 11 08:57:12 2014 Quant Results File: A910 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 08:56:46 2014 Response via : Continuing Cal File: C:\HPCHEM\l\DATA\AL091005.D DataAcq Meth : 10G RUN Internal Standards R.T. QION Response Conc Units Dev(Min)

 1) Bromochloromethane
 10.55
 128
 32693
 1.00 ppb
 0.00

 36) 1,4-difluorobenzene
 12.72
 114
 158511
 1.00 ppb
 0.00

 51) Chlorobenzene-d5
 17.12
 117
 135676
 1.00 ppb
 0.00

 System Monitoring Compounds 67) Bromofluorobenzene 18,67 95 97192 0.98 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 98.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 28.00%

 Turget Compounds
 Qvalue

 2)
 Freen 12
 4.61
 51
 58567
 0.75 ppb
 98

 3)
 Propylene
 4.61
 41
 25029
 0.80 ppb
 95

 4)
 Freen 12
 4.67
 65
 120244
 0.78 ppb
 92

 5)
 Choromethane
 4.90
 52
 23903
 0.82 ppb
 92

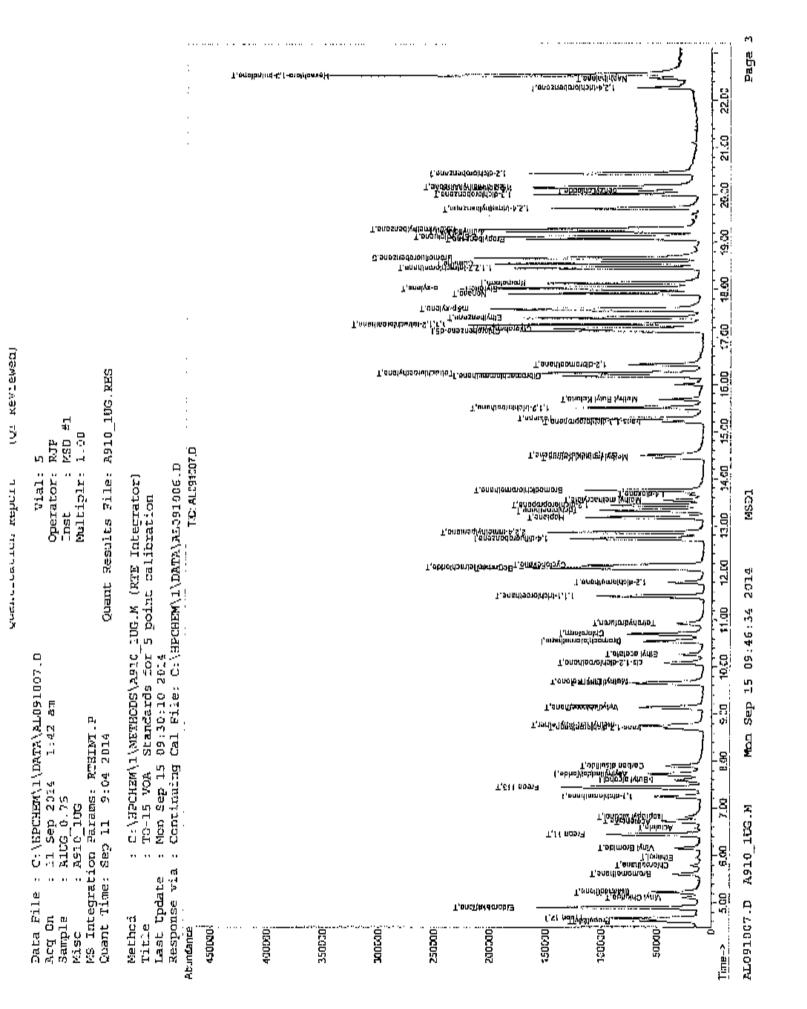
 6)
 Parcon 114
 4.90
 51
 26
 23903
 0.82 ppb
 98

 6)
 Butanc
 5.22
 43
 30236
 0.82 ppb
 98

 10)
 Accomethane
 5.23
 39
 20851m
 0.78 ppb
 88

 11)
 Chizoaethane
 5.79
 64
 10594
 0.79 ppb
 87

 12)
 Ethanol
 5.96
 4312m
 0.79 ppb
 98
 0.79 ppb
 98


 13)
 Accolone
 6.15
 106
 23937
 0.79 ppb Turget Compounds

(#) - qualifier out of range (m) - manual integration AL091007.D A910_1UG.M Mon Sep 15 09:46:33 2014 MSD1

(QT Reviewed)

Data File : C:\HPCNEM\l\DATA\AL091007.D Acq On : 11 Sep 2014 1:42 am Sample : AlUG_0.75 Misc : A910_100 Vial: 5 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Sep 10 00:57:12 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHOD\$\A910 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 08:56:46 2014 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AL091006.D DataAcq Moth : 10G RUN CompoundR.T. Qion Response Conc UnitQvalue46)1,2-dichloropropane13.4463439940.76 ppb10047)Bromodichloromothane13.7483992480.77 ppb10048)cis-1,3-dichloropropene14.4975465300.73 ppb9549)trans-1,3-dichloropropene15.2075373710.77 pph9550)1,1,2-trichloroethane15.5197549230.74 pph9653)MethylIsobutyl Ketone15.2792677930.74 pph9654)Dibromochloromethane16.1712993611m0.76 pph9655)MethylButyl Ketone15.6843335820.74 pph9656)1,2-dibromochloromethane16.1712993611m0.76 pph56)1,1,2-tetrachloroethane17.26131682030.77 pph9760)Ethylbenzene17.59912365731.45 pph9851)mep-xylene17.9143672500.73 pph9361)mep-xylene18.14173922250.77 pph9963)Styrene18.001444070.76 pph9964)Bromoform18.14173922250.77 pph9365)Cumene19.0791163221m0.75 pph9966)Cumene19.0791163221m0.75 pph9967)< R.T. Qion Response Conc Unit Qvalue Compound

(#) = malifier out of range (m) - manual integration (+) = signals summed AL091007.D A910_10G.M Mon Sep 15 09:46:33 2014 MSD1

Quantitation Report (OT Reviewed) Data File : C:\HPCHEM\1\DATA\AL091008.D Acg On : 11 Sep 2014 2:19 am Sample : AlUG_0.50 Misc : A910_1UG Vial: 6 Operator: RJP Tist : MSD #1 Multiple: 1,00 Misc : A910_10G Multiplr: 1,00 MS Integration Params: RTEINT.P Quant Time: Sep 11 08:57:13 2014 Ouant Results File: A910_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A910 10G.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 08:56:46 2014 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AL091006.D DataAcq Meth: : 1UG RUN Internal Standards R.T. QIon Response Conc Units Dev(Min)
 1) Bromochloromethane
 10.55
 128
 32245
 1.00
 ppb
 0.00

 36) 1,4-difluorobenzene
 12.72
 114
 151166
 1.00
 ppb
 0.00

 51) Chlurobenzene-d5
 17.12
 117
 125046
 1.00
 ppb
 0.00
 . System Monitoring Compounds 67) Bromofluorobenzene 18,67 95 87973 0.93 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery ~ 93.00%

 67)
 Bromofluorobenzene
 18,67
 95
 8773
 0.93
 ppb
 0.00

 Spiked Amount
 1.000
 Range 70 - 130
 Recovery
 93.004

 Turget Compounds
 0value

 2)
 Freon 22
 4.62
 51
 38550
 0.52
 ppb
 96

 3)
 Propylene
 4.62
 41
 16327
 0.53
 ppb
 90

 4)
 Freon 124
 4.68
 85
 0.9111
 0.54
 ppb
 96

 5)
 Chloromethane
 4.89
 55
 19111
 0.54
 ppb
 98

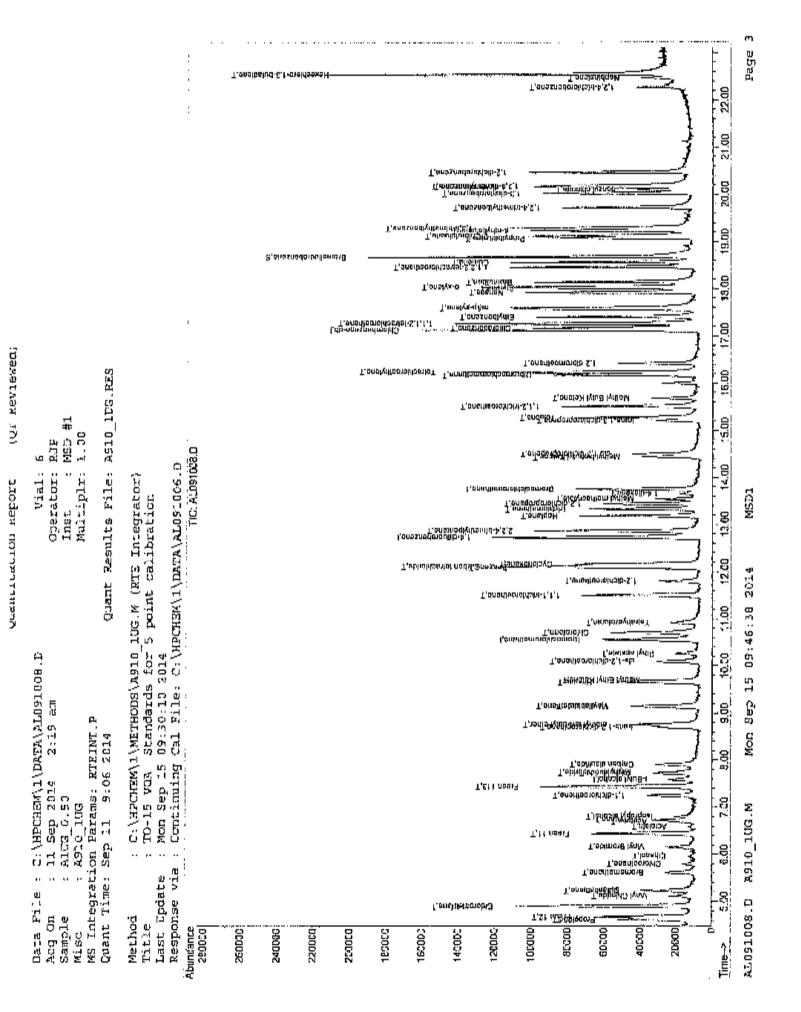
 6)
 Natono
 5.23
 39
 13339
 0.54
 ppb
 90

 10)
 Bromomethane
 5.80
 64
 7467
 0.54
 ppb
 96

 11)
 Chloromethane
 5.80
 64
 7467
 0.54
 ppb
 96

 12)
 Ethanol
 5.96
 45
 3447m
 0.50
 ppb
 77

 13)
 Acrolein
 6.69
 58
 54007
 0.56
 ppb
 77


 <

(#) = qualifier out of range (m) + manual integration AL091008.D A910_1UG.M Mon Sep 15 09:46:37 2014 MSD1

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AL091008.D Acq On : 11 Sep 2014 2:19 am Sample : A1UC 0.50 Misc : A910_1UG Vial: 6 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Sep 11 09:57:13 2014 Quant Results File: A910_JUG.RES Quant Method : C:\HPCHEM\1\METHODS\A910 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 08:56:46 2014 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AL091006.D DataAcq Meth : 10G RDN CompoundR.T. GION Response Conc UnitOvelue46)1,2-dichloropropane13.4463281810.51 pph10047)Bromodichloromethane13.7483630770.52 pph9948)0is-1.3-dichloropropene14.4975300410.49 pph9349)trane-1.3-dichloropropene15.2075232570.51 pph9050)1,1.2-trichloroethane15.5177355170.52 pph9352)Toluene15.2792426270.49 pph10053)Methyl Butyl Ketone14.4343323030.50 pph9754)Dibromochloromethane16.1712962097m0.53 pph10053)Methyl Butyl Ketone15.6843217250.50 pph9956)1.2-dibromochane16.23164393780.53 pph10058)Chiorohenzene17.17112617530.46 pph9859)1.1.2-tetrachloroethane17.2613143660.52 pph9850)Ethylbenzene17.5991133510.86 pph9861)mép-xylene18.0391945140.51 pph9162)Wonane17.9143373660.43 pph9963)Styrene18.0391945140.51 pph9163)Styrene18.0391945140.51 pph9164)Durotarm<td R.T. Qion Response Cone Unit Ovalue Compound -----

(#) = qualifier out of range (m) = manual integration (+) - signals summed AL091008.D A910 100.M Mon Sep 15 09:46:37 2014 MSDL

Quantitation Report (QT Reviewed)

 Data File : C:\HPCHEM\1\DATA\AL091009.D
 Vial: 7

 Acq On : D. Sep 2014 2:55 am
 Operator: RJP

 Sample : AlUG_0.30
 Inst : MSD

 Misc : A91D_1UG
 Multiplr: 1.0

 Inst : MSD #1 Multiplr: 1.00 MS Integration Parama: RTEINT.P Quant Time: Sep 11 08:57:14 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : The Sep 11 08:56:46 2014 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AL091006.D DataAcq Meth : 1UG RUN Internal Standards Internal Standards R.T. QION Response Conc Units Dov(Min)
 1) Bromochloromethane
 10.55
 126
 31360
 1.00
 ppb
 0.00

 36}
 1.4-difluorobenzene
 12.72
 114
 147463
 1.00
 ppb
 0.00

 51) Chlorobenzene-d5
 17.12
 117
 122437
 1.00
 ppb
 0.00
 System Monitoring Compounds 67) Bromofluorobenzene 18.67 95 B4167m 0.94 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 94.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 94.00%

 Target Compounds
 Qvalue

 2)
 Freen 22
 4.61
 51
 24569
 0.34 ppb
 99

 3)
 Freen 12
 4.62
 41
 10173
 0.34 ppb
 94

 4)
 Freen 12
 4.68
 85
 48394
 0.33 ppb
 98

 5)
 Chloromethane
 4.90
 65
 39560
 0.34 ppb
 94

 7)
 Vinyl Chloride
 5.11
 62
 9699
 0.34 ppb
 94

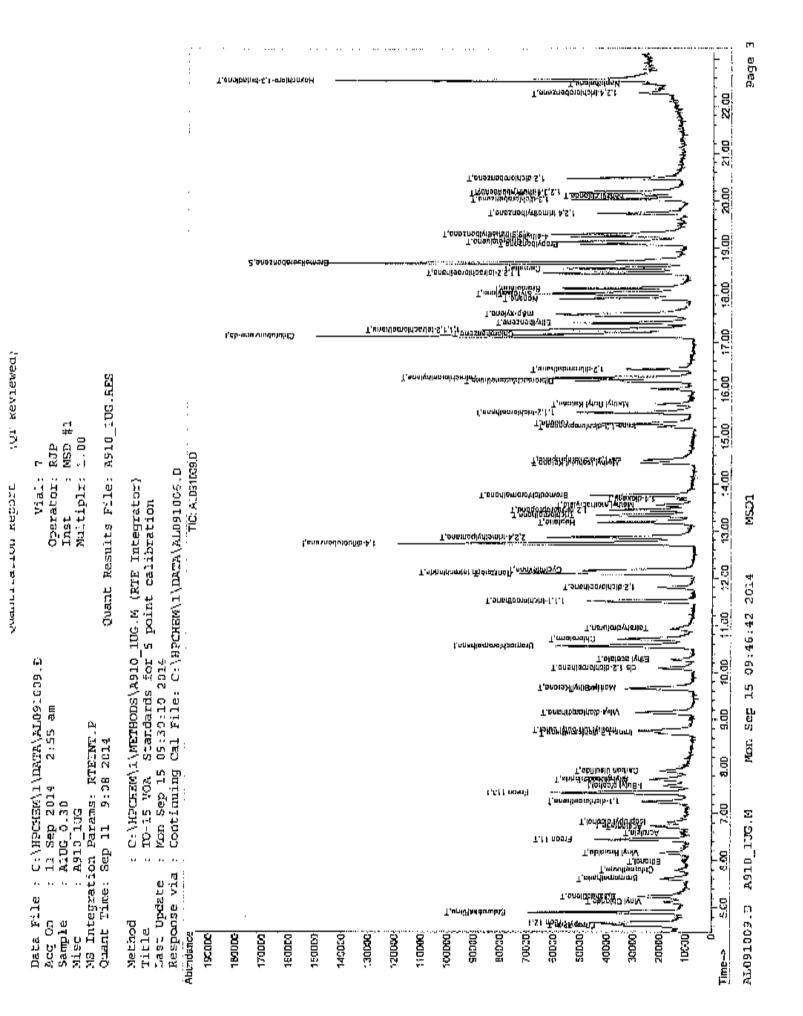
 1..3-butudiene
 5.22
 43
 11775
 0.34 ppb
 94

 1..3-butudiene
 5.23
 39
 9330
 0.37 ppb
 93

 1.3 Acrolein
 6.64
 4634
 0.34 ppb
 94

 1.9
 Kenote
 5.70
 42
 0.35 ppb
 96

 1.9
 Kenote
 6.70
 58
 3015m0
 0.35 ppb
 96


 1.9
 Pothane
 6.72
 42 Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration AL091009.D A910_1UG.M Mon Sep 15 09:46:41 2014 MSDL

(QT Reviewed)

Date File : C:\HPCHEM\L\DATA\AL091009.D Acq On : 11 Sep 2014 2:55 Am Vial: 7 Operator: RJP Inst : MSD #1 Sample : A1UG_0.30 Misc : A910_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time; Sep 11 08:57:14 2014 Quant Results File: A910_10G.RES Quant Method : C:\HFCHEM\1\METHODS\A910 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 08:56:46 2014 Response vis : Continuing Cal File: C:\HPCHEM\1\DATA\AL091006.D DataAcq Meth ; 100 RUN CompoundR.T. QionResponseCont OnitQvalue46)1,2-dichloropropane13.4363174710.32 ppb9647)Bromodichtoromethame13.7463376520.32 ppb9848)dis-1,3-dichloropropene14.5075171400.29 ppb9549)trans-1,3-dichloropropene15.2075144160.32 ppb9950)1,1,2-trichloroethame15.5097209560.32 ppb9951)Methyl Isobutyl Ketone14.4343200980.33 ppb9753)Methyl Butyl Ketome16.42107253350.32 ppb9657)Tetrachloroethane16.42107253350.32 ppb9958)Chlorobenzene17.1712376470.31 ppb9959)1,1,2-tetrachloroethame17.26131262040.32 ppb9958)Chlorobenzene17.4091466970.26 ppb10061)még-xylene17.5891666700.45 ppb9562)Nonane17.914321904m0.26 ppb9963)Styreno18.14173336460.31 ppb9964)Bromoform18.14173336460.31 ppb9965)Chuene18.5510545487m0.22 ppb9766)Chuene19.079143737m0.22 ppb9765)Chuene Compound R.T. Qion Response Conc Unit Qvalue

(#) • qualifier out of range (m) = manual integration (+) - signals summed AL091009.D ASIO_1UG.M Mon Sep 15 09:46:41 2014 MSD1

Quantitation Report (OT Reviewed) Data File : C:\HPCHEM\1\DATA\AL091010.D Acq On : 11 Sep 2014 3:32 am Sample : A1UG_0.15 Mise : A910_1UG Vial: 8 Operator: RJP Inst : MSD Multiplr: 1.0 Inst : MSD #1 Multiply: 1.00
 MS Integration Parama: RTEINT.P
 Multiplr: 1.00

 Quant Time: Sep 11 08:57:15 2014
 Quant Results File: A910_10G.RES
 Quant Method : C:\MPCHEM\1\METHODS\A910 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 08:56:46 2014 Response via / Continuing Cal File: C:\HPCHEM\1\DATA\AL091006.D DataAcq Meth : LUC_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards

 1) Bromochloromethane
 10.55
 128
 34179m
 1.00 ppb
 0.00

 36) 1.4×difluorobenzene
 12.73
 114
 139700
 1.00 ppb
 0.00

 51) Chlorobenzene
 17.12
 117
 113057
 1.00 ppb
 0.00

 System Monitoring Compounds 67) Bromofluorobenzene 18.68 95 77927m 0.94 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery - 94.00%

 \$7)
 Bromeefluorabenzene
 18.68
 95
 77927m
 0.94
 ppb
 0.00

 Target Compounds
 Ovalue
 2
 94.00%
 94.00%

 2)
 Fracon 22
 4.51
 51
 13229
 0.17
 ppb
 98

 3)
 Propylame
 4.61
 41
 5607
 0.17
 ppb
 96

 4)
 Fracon 124
 4.67
 85
 26884
 0.17
 ppb
 98

 5)
 Chloromethane
 4.90
 50
 6682
 0.18
 pph
 97

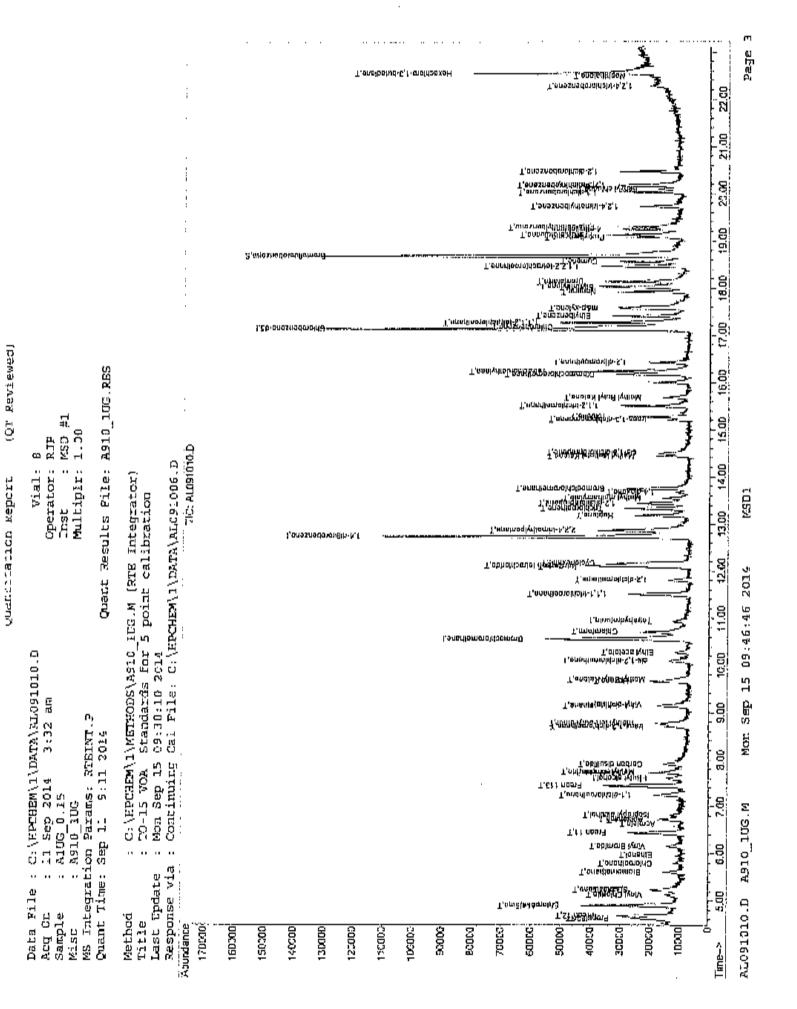
 7)
 Vinyl Chloride
 5.12
 62
 5166
 0.17
 pph
 99

 8)
 Butane
 5.23
 39
 5166
 0.19
 pph
 99

 10)
 Bromomethane
 5.79
 64
 2455
 0.17
 pph
 71

 12)
 Bthanol
 5.96
 45
 1609m
 0.21
 pph
 93

 13)
 Accolation
 6.71
 42
 5005
 0.18
 pph
 94

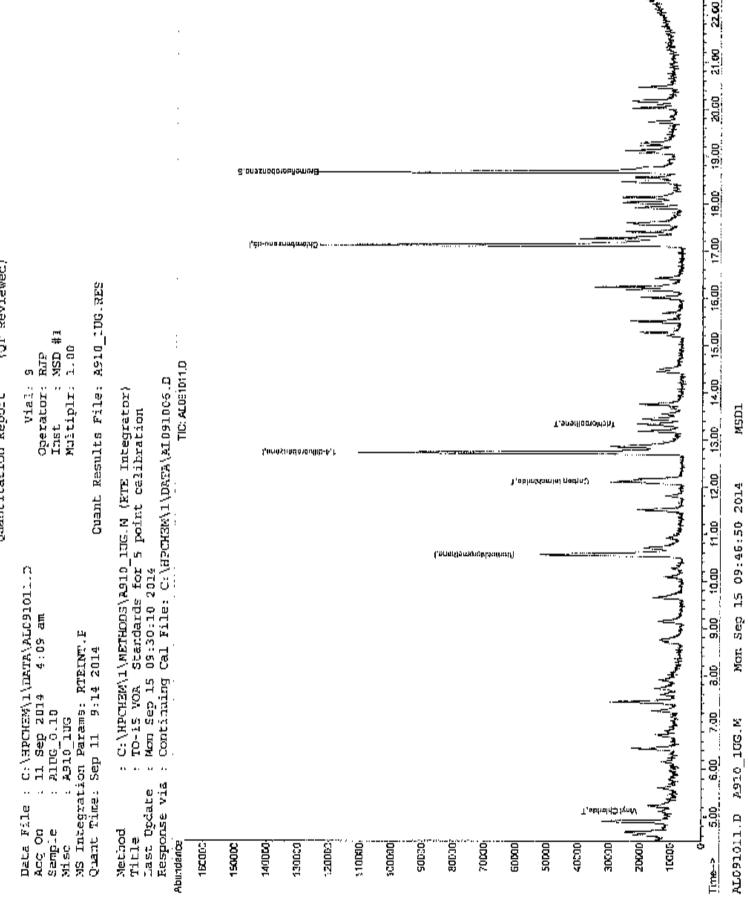

 14)
 Vinyl Exonide
 6.70
 58

(#) = qualifier out of range (m) = manual integration AL091010.D A910_1UG.M Mon Sep 15 09:46:44 2014 MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\ALD91010.D Vial: 8 Acq On : 11 Sep 2014 3:32 am Operator: RJP Sample : A1UG_0.15 Misc : A910_1UC Inst : MSD #1 Multiplr: 1.00 MS Integration Perame: RTEINT.P Quant Time: Sep 11 08:57:15 2014 Quant Results File: A910_JUG.RES Quant Method : C:\HPCHEM\1\METHODS\A910 10G.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 08:56:46 2014 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AL091006.D DataAcq Meth : lUG_RUN CompoundR.T. QION ResponseConc UnitQvalue46)1,2-dichloropropane13.436399040.19 ppb9747)Bromodichloromethane13.748321.190.19 ppb9848)cis-1,3-dichloropropene14.507592480.16 ppb9449)trans-1,3-dichloropropene15.207574550.18 ppb9850)1,1,2-trichloroethane15.219797530.16 ppb8351)Methyl Isobutyl Ketone14.44439496m0.17 ppb9954)Dibromochloromethane16.1712919253m0.19 ppb0056)1,2-dibromocthane16.42107138900.19 ppb10057)Tetrachloroethylene17.17112193240.17 ppb9058)Chlorobergene17.4091242290.15 ppb9659)1,1,2-tetrachloroethane17.5691335010.25 ppb9961)m&p-xylene17.924310736m0.14 ppb62)Kyrene18.0110412202m0.13 ppb9463)Styrene18.0391238470.15 ppb9563)Styrene18.66105212630.17 ppb9964)Browoforn18.14173165980.17 ppb9565)Oragene18.0391238470.15 ppb9766)Cumene19.23 R.T. QION Response Cone Unit Qvalue Compound

_______ (#) = qualifier out of range (m) = manual integration (+) = signals summed AL091010.D A910_10G.M Mon Sep 15 09:46:45 2014 MSD1



Quantitation Report (OT Reviewed)

Data File : C:\HPCHEM\l\DATA\ Acq On : 11 Sep 2014 4:0 Sample : A1UG_0.10 Misc : A910_1UG MS Integration Paramo: RTEINT Quant Time; Sep 11 08:57:16 2	9 am . P		Inst Mult	iplr:	MSD #) 1.00	G.RES
Quant Method : C:\HPCHEM\1\ME Title : TO:15 VOA Sta Last Update : Thu Sep 11 08; Response via : Continuing Cal DataAcq Meth : 1UG_RUN	ndards for 56:46 2014	5 poir	nt calibrati	on	þ	
Internal Standards	R.T.	QION	Response C	one Ur	ils Dev	(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	12.72	114	33719m D 138704 110681	1.00	ppb	0.00
System Monitoring Compounds 67) Bromofluorobenzene Spiked Amount 1,000						
Target Compounds 7) Vinyl Chloride 39) Carbon tetrachloride 45) Trichloroethene	5.11 12.11 13.33	117	3711 15016 6706	0.13		<u>98</u>

. -----(#) = qualifier out of range (m) = manual integration (+) = signals summed AL091011.D A910 1UG.M Mon Sep 15 09:46:49 2014 MSD1

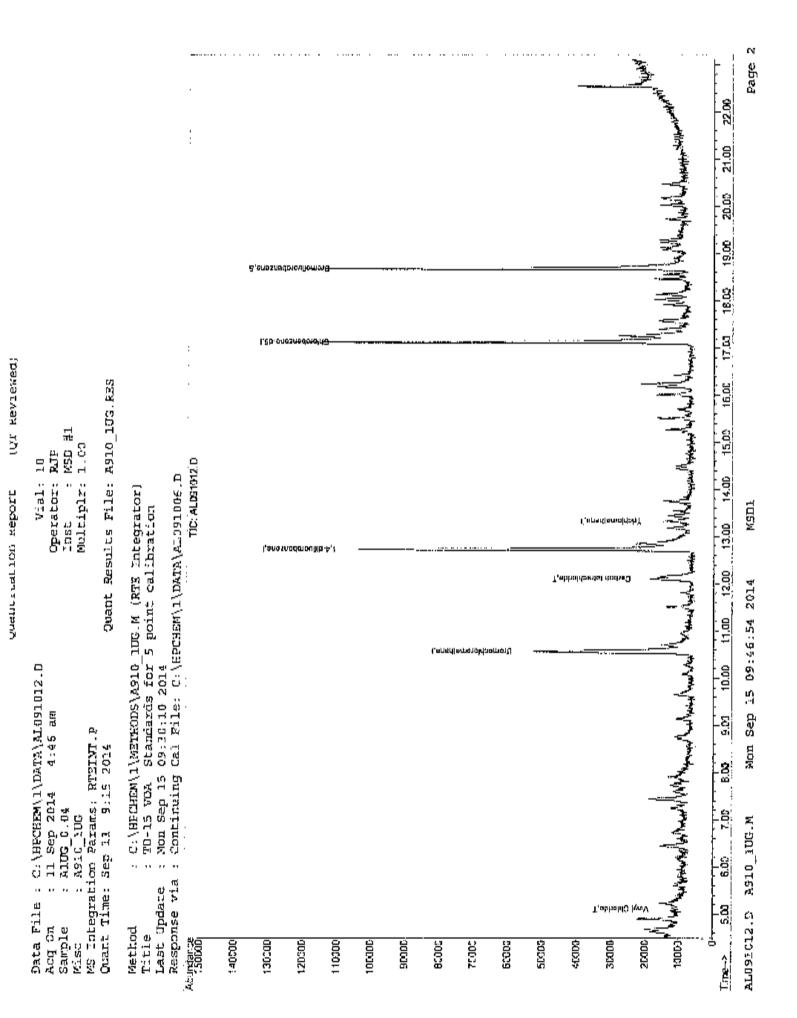
.

.

. . .

.

.


Page 2

Quantitation Report (QT Reviewed)

	u	,				
Data File : C:\HPCHEM\1\DATA\ Acq On : 11 Sep 2014 4:4 Sample : AlUG_0.04 Miso : A910_1UG MS Integration Params: RTEINT Quant Time: Sep 11 09:57:17 2	5 am		Mil.), f, :	iplr:	MSD ∦1 1.00	C.RES
Quant Method : C:\HPCHEM\1\ME Title : TO-15 VOA Sta Last Update : Thu Sep 11 08: Response via : Continuing Cal DataAcq Meth : LUG_RUN	ndards for 56:46 2014	5 poir	nt calibratio	on	D	
Internal Standards	R.T.	QION	Response Co	one Ur	nits Dev	(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene d5 	10.56 12.72 17.12	128 114 117	32913m/ ⁹ 135271 104137	1.00 1.00 1.00	לקק לקק לקק	0.02 0,00 0,00
System Monitoring Compounds 67) Bromofiliorobenzene Spiked Amount 1.000	19,67 Range 70	95 - 130	68437m A Recovery	0.90 =	ក្រុង២ ១០.០០៖	0.00
Target Compounds 7) Vinyl Chloride 39) Carbon tetrachloride 45) Trichloroethene	12.11	117	1983 7838 3717	0.07	dqq	99

- -- -- --(#) = qualifier out of range (m) = manual integration (+) = signals summed AL091012.D A910 10G.M Mon Sep 15 09:46:53 2014 MSD1

-

Centek Laboratories, LLC

.

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 CALIBRATION VERIFICATION

Page 374 of 467

Centek Laboratories, LLC Evaluate	Continui	.ng Calibra	tion Report	
Data File : C:\HPCHEM\1\DATA\AL10 Acq On : 17 Oct 2014 12:16 pm Sample : A1UG_1.0 Mise : A910_1UG MS Integration Params; RTEINT.P)1703.ບັ າ		Vial: Operator: Inst : Multiplr;	RJP MSD #1
Method : C:\HPCHEM\l\METHOD Title : TO 15 VOA Standar Last Update : Fri Oct 31 13:55:3 Response via : Multiple Level Cal	DS\A910_1 rds for 5 81 2014 Libration	.ug.m (RTE 5 point cal 1	Integrator) ibration	
Min. RRF : 0,000 Min. Rel. Max. RRF Dev : 30% Max. Rel.	Area : Area :	50% Max. 150%	R.T. Dev O	.33min
Compound		CCRF	%Dev Area	% Dev(min)
1 I Bromochloromethane	1.000	1.000	0.0 104	0.00
2 T Freon 22 3 T Propylene 4 T Freon 12 5 T Chloromethane 6 T Freon 114	2.384	2.355	1.2 106 16.9 91 16.0 91	0.00
4 T Freen 12	4.890	4.308	16.0 91	ŏ,ŏŏ
5 T Chloromethane	1.179	1,240	-5.2 118	0.00
6 T Freon 114 7 T Vinyl Chloride	3,785	3.526 0.965	6.8 102 7.2 108	0.00 0.00
8 T Butane	1.170	1.291	-10.3 121	0.00
9 T 1,3-butadiene	0.841	0.898 1.092 0.461	-6.8 119	0.00
9 T 1,3-butadiene 10 T Bromomethane 11 T Chloroethane	1.220	1.092	10.5 100	0.00
12 T Ethanol	0.448	0.461 0.274	-2.9 111 16.1 136	
13 T Acrolein	0,185	0.190	-2.7 118	
14 T Vinyl Bromide	1.147	0,190 1,069 4,678	6.8 102	0,00
15 T Freen 11 16 T Acetone	4.661	4.678	-0.4 112	
	0.332	0.397	-19.6 132 -10.4 120	
18 T Isopropyl alcohol	1,136	1.356	-19.4 132	0 00
19 T 1.1-dichloroethene	1.201	1.203	-0.2 113	0.00
20 T Freen 113 21 f. t-Butyl alcohol	3.081	3.206	-4.1 113	0.00
22 T Methylene chloride	1.530	1.692	-10.0 126	0.00 0.00
23 T Allyl chloride	0.657	0.818	-0.2 113 -4.1 113 -10.0 126 -12.8 125 24.5 127	0.00
24 T Carpon disullide	3.187	2.883	9.5 93	0.00
25 T trans-1,2-dichloroethene 26 T methyl tort-butyl ether 27 T 1,1 dichloroethane	1,556	1.275	18.1 86	
27 T 1,1 dichloroethane	2.859	2.378	18,7 83 16,8 91	0.00 0.00
28 1 Vinyi acetate	1.634	1,239	24.2 82	0.00
	0.466	0.449	3.6 102	0.00
30 T cis-1,2-dichlorocthene 31 T Rexame	1.604	1.213	24.4 81 23.4 83	0.00
32 T Ethyl acetate	1.765	1.882	-6.6 112	0.00 0.00
30 T Cis-1,2-dich,orocthene 31 T Hexane 32 T Bthyl acetate 33 T Chloroform 34 T Tetrahydrofuran	3.739	3.079		
33 T Chloroform 34 T Tetrahydrofuran 35 T 1,2-dichloroethane			17.7 89 7.5 97	
			13.7 91	0.00
36 I 1,4-difluorobenzene	٥٥٥.١	1.000	0.0 94	0.00
37 T 1,1,1-trichloroethane 38 T Cyclohexane	0.818	0.739	9.7 89	0.00
	0.414	0.326	21.3 79 11.3 95	0.00
40 T Benzene	0.978	0.867 0.809	11.3 95 17.3 81	
	0.200	0.200	0.0 96	
42 T 1,4-dioxane	0.119	0.139	-16.8 120	
Ad fill Hantana	⊥.⊻76 0.411	0.990 0.324	22.4 76 21.2 75	~ ~ ~
45 T Trichloroethene	0.470	0,347	26.2 77	0.00
46 T 1,2-dichloropropane	0.380	0.296	22.1 77	0.00
47 f Bromodichioromethane 48 ° ciel 3-dichloromethane	0.844	0.727	13.9 85	0.00
49 T trans-1,3-dichloropropene	0.321	0.321	22.1 78	0.00
<pre>45 T Trichloroethene 45 T Trichloroethene 46 T 1,2-dichloropropane 47 T Bromodichloromethane 48 T cis-1,3-dichloropropene 49 T trans-1,3-dichloropropene 50 T 1,1,2-trichloroethane</pre>	0,459	0,380	17.2 80	0.00
(#) = Out of Range				
AL101703.D A910_1UG,M Fri Oct	31 14:20	6:50 2014	MGDI	

Centek Laboratories, LLC Evaluate Continuing Calibration Report Data File : C:\HPCHEM\l\DATA\AL101703.D Vial: 3 Acq On ; 17 Oct 2014 12:16 pm Operator: RJP Sample : AlUC 1.0 Misc : A910 1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A910 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Fri Oct 31 13:55:31 2014 Rosponse via : Multiple Level Calibration Min. RRF : 0.000 Min, Rel, Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% Compound AvgRF CCRF %Dev Area% Dev(min)

(#) = Out of Range SPCC's out = 0 CCC's out = 0 ALJ01703.D A910_1UG.M Fri Oct 31 1.4:26:50.2014 MSD1

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AL101703.D Vial: 3 Acq On : 17 Oct 2014 12:16 pm Operator: RJP Sample : A10G_1.0 Inst : MSD #1 Misc : A910_10G Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 17 13:25:54 2014 Quant Results File: A910 1UC.RES Quant Method : C:\HPCHEM\1\METHODS\A910 lUG.M (RTE Integrator) Title : TO 15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 12:31:36 2014 Response via : Initial Calibration DataAcq Meth : 10G RUN Thternal Standards R.T. Qion Response Cond Units Dev(Min) 1) Bromochloromethane10.55128359121.00ppb0.0036) 1.4-difluorobenzene12.721141531811.00ppb0.0051) Chlorobenzene-d517.121171274021.00ppb0.00 System Monitoring Compounds 67) BromofJuotobenzene 18.67 95 93154 1.03 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 103.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 103.00%

 Target Compounds
 0value

 2) Preen 22
 4.62
 51
 84564
 0.99 ppb
 97

 3) Preon 12
 4.67
 85
 147532
 0.84 ppb
 98

 5) Chloromethane
 4.90
 85
 126632
 0.93 ppb
 99

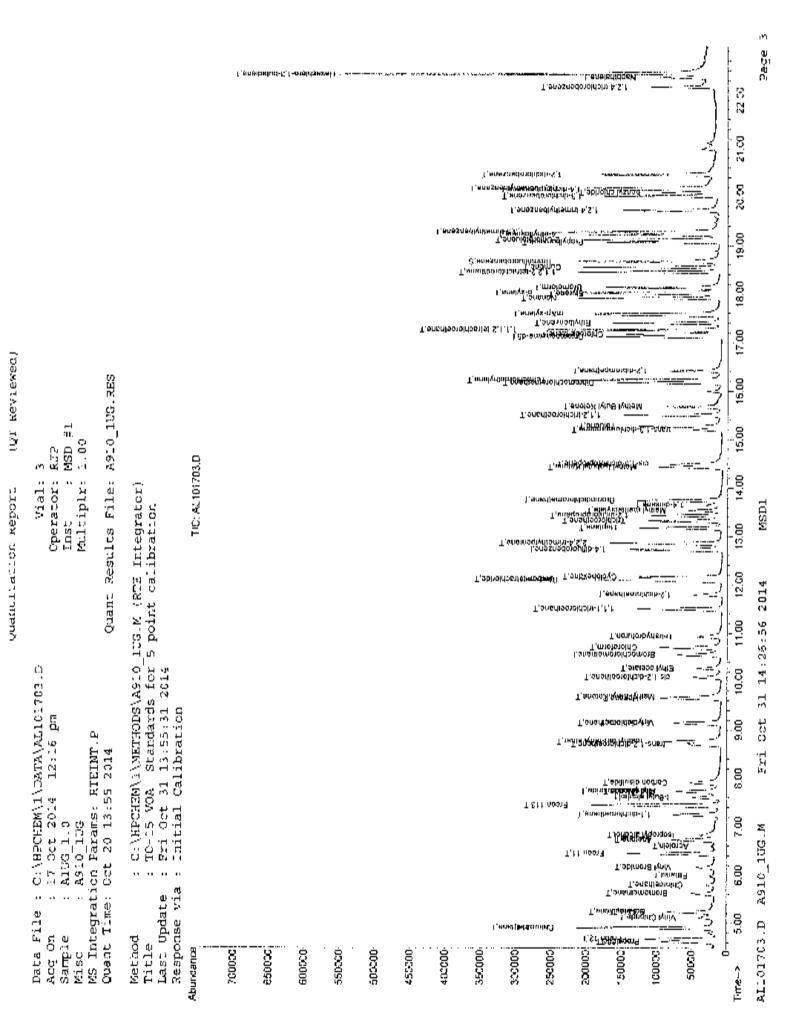
 7) Vinyl Chloride
 5.11
 62
 346347
 1.10 ppb
 87

 9) 1.3-butadiene
 5.22
 43
 46347
 1.10 ppb
 87

 9) 1.3-butadiene
 5.23
 39
 32252
 7.07 ppb
 79

 10) Broomethane
 5.64
 9844m/
 1.16 ppb
 133
 Acolein
 6.61
 96
 8830m/
 1.03 ppb
 41

 11) Chloroethane
 5.79
 64
 16558
 1.00 ppb
 100


 12) Rthonal
 6.61
 16
 8830m/
 1.00 ppb
 41

 12) Wity Bromide
 6.161
 16.782
 43700
 119 ppb
 100

 Target Compounds

(#) = qualifier out of range (m) - manual integration ALI01703.D A910 1UG.M Pri Oct 31 14:26:55 2014 MSD1

Centek Laboratories, LLC					
	antitat	ion Re	port (Q	T Reviewed)	
Data File : C:\HPCHEM\1\DATA\AL1 Acq On : 17 Oct 2014 12:16 p Sample : AlUG_1.0 Misc : A910_1UG MS Integration Params: RTEINT.P Quant Time: Oct 17 13:25:54 2014	m		Tn Mu	Vial: 3 erator: RJP st. : MSD ((ip)r: 1,00 s File: A910	ິ
Quant Method : C:\HPCHEM\1\METHO: Title : TO-15 VOA Standa: Last Update : Mon Oct 06 12:31; Response via : Thittal Calibratic DataAcq Meth : LUG RUN	rds for 36 2014				
Compound	R.T.	QIon	Response	Conc Unit	Qvalue
<pre>46) 1,2-dichloropropane 47) Bromodichloromethane 48) cis-1,3-dichloropropene 49) trans 1,3-dichloropropene 50) 1,1,2-trichloroethane 52) Toluene 53) Methyl Isobutyl Ketone 54) Dibromochloromethane 55) Methyl Butyl Ketone 56) 1,2-dibromocthane 57) Tetrachloroethylene 58) Chlorobenzene 59) 1,1,1,2-tetrachloroethane 60) Ethylbenzene 61) m&p-xylene 63) Styrene 64) Bromoform 65) o xylene 66) Cumene</pre>	13,43 13,74 14,49 15,19 15,26 14,43 16,17 15,67 16,23 17,17	83 75 97 43 129 43 107 164 131 131 131 131 173 173 173	49101 38281 58173 64395 81591 102356m 55293m 70108 63321 94616 84556 139361m 225753 67683 78887 101194 147259	1.22 ppb 0.85 ppb 1.20 ppb 0.79 ppb 0.81 ppb 0.74 ppb 0.97 ppb	99 98 93
<pre>68) 1,1,2,2-tetrachloroethane 69) Propylbenzene 70) 2-Chlorotoluene 71) 4-ethyltoluene 72) 1,3,5-trimethylbenzene 73) 1,2,4-trimethylbenzene 74) 1,3-dichlorobenzene 75) benzy) chloride 76) 1,4-dichlorobenzene 77) 1,2,3 trimethylbenzene 78) 1,2-dichlorobenzene 79) 1,2,4-trichlorobenzene 80) Naphthalene</pre>		83	126175	0.86 ppb 0.75 ppb 0.72 ppb 0.86 ppb 0.86 ppb 0.86 ppb 0.75 ppb 0.83 ppb	H 97 1.00 98 98 98 98 98 98 98 98 98 98 98 98
 Hexachloro-1,3-butadiene 	22.54	225	044394	1.13 ppb	97

	Centek Laboratories, LLC			
			-	tion Report
Samp Misc	File : C:\HPCHEM\1\DATA\AL1 On : 20 Oct 2014 10:11 at le : Alug_1.0 : A910_1UC Ategration Params: RTEINT.P	02003.D m		Vial: 4 Operator: RJP Inst: : MSD #1 Multiplr: 1.00
Last	od : C:\HPCHEM\1\METHO e : TO-15 VOA Standa: Update : Fri Oct 31 13:55: onse via : Multiple Level Ca	31 2014	1	Integrator) ibration
Min. Max.	RRF : 0.000 Min. Rel RRF Dev : 30% Max. Rel	. Area : . Area :	50% Max. 150%	R.T. Dev 0.33min
	Compound	AvgRF	CCRF	<pre>\$Dev Area\$ Dev(min)</pre>
234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123454567890123456789001234567890123456789012344567890123445678901234456789012345678901234567890123456789012345678901234567890123444444444444444444444444444444444444	Bromochloromethane Freon 22 Propylene Freon 12 Chloromethane Freon 114 Vinyl Chloride Butane 1,3-butadiene Bromomethane Chloroethane Sthanol Acrolein Vinyl Bromide Freon 11 Acetone Pentane Isopropyl alcohol 1,1 dichloroethene Freon 113 t-Butyl alcohol Methylene Chloride Allyl chloride Carbon disulfide trans 1,2-dichloroethene methyl tert-butyl ether 1,1-dichloroethane Vinyl acetate Methyl Ethyl Ketone cis 1,2 dichloroethene Hexane Ethyl acetate Chloroform Tetrahydrofuran 1,2-dichloroethane 1,1-trichloroethane 1,1-trichloroethane Cyclohexane Carbon tetrachloride Benzene Methyl methacrylate	1.000 2.384 1.008 4.890 1.179 3.785 1.040 1.170 0.841 1.220 0.448 0.236 0.185 1.147 4.661 0.332 0.850 1.147 4.661 0.332 0.850 1.201 3.081 1.536 1.201 3.081 1.536 1.1857 1.556 3.187 1.556 3.1859 1.634 0.466 1.604 1.765 3.739 0.909 2.053 1.000 0.818 0.200 0.818 0.978 0.200	$\begin{array}{c} 1.000\\ 2.119\\ 0.719\\ 3.738\\ 1.087\\ 3.223\\ 0.895\\ 1.211\\ 0.811\\ 1.041\\ 0.436\\ 0.288\\ 0.184\\ 1.006\\ 4.316\\ 0.408\\ 0.931\\ 1.208\\ 1.112\\ 2.831\\ 1.591\\ 0.900\\ 0.689\\ 2.541\\ 1.167\\ 2.235\\ 2.190\\ 1.202\\ 0.385\\ 1.152\\ 1.352\\ 1.695\\ 2.915\\ 0.764\\ 1.717\\ 1.000\\ 0.666\\ 0.310\\ 0.775\\ 0.714\\ 0.155\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
43 T 44 T	1,4-dioxane 2,2,4-trimethylpentane Heptane	$0.119 \\ 1.276 \\ 0.411$	0.915 0.314	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
46 T 47 T 48 T 49 T	1,2-dichloropropane Bromodichloromethane cis-),3-dichloropropene trans 1,3-dichloropropene	0.380 0.844 0.411 0.321	0.248	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
(#) - C	1,1,2-trichloroethane out of Range 3.D A910 1UG.M Fri Oct			

AL102003.D A910_10G.M Fri Oct 31 14:28:45 2014

Centek Laboratories, LLC Evaluate Continuing Calibration Report Data File : C:\HPCHEM\l\DATA\AL102003.D Vial: 4 Acg On : 20 Oct 2014 10:11 am Operator: RJP Sample : AlUG 1.0 Misc : A910 1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Parama: RTEINT.P Method : C:\HPCHEM\1\METHODS\A910_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Fcl Oct 31 13:55:31 2014 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max, R.T. Dev 0.33min Max. RRF Dev : 30% Max, Rel. Area : 150% CompoundAvgRFCCRF\$Dev Area\$ Dev (min51 IChlorobenzene ds1.0001.0000.0780.0052 TToluene0.6930.50826.758-0.0153 TMethyl Isobutyl Ketone0.6930.50826.758-0.0154 TDibromochloromethane0.9470.79216.4690.0055 TMethyl Butyl Ketone0.3630.948-161.2#2194-0.0256 T1.2-dibromoethane0.6930.53023.5620.0057 TTetrachloroethylene0.6100.47023.0640.0060 TEthylbenzene1.4571.05527.656-6.0161 Tmdp-xylene1.4571.05527.656-6.0062 TNonane0.6630.49624.9570.0063 TStyrene0.7950.56728.7540.0064 TBromoform0.9230.77316.3680.0065 To-xylene1.4721.08626.2580.0065 Tc-xylene1.5341.19622.0600.0070 T2-chlorotoluene1.5441.0612.2.750-0.0168 T1.1.2.2-tetrachloroethane1.5341.19622.2620.0071 T4-ethyltoluene1.5341.19622.2600.0072 T7.3.5-trimethylbenzene1.6311.375 Compound AvgRF CCRF %Dev Area% Dev(min)

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AL102003.D Acq On : 20 Oct 2014 l0:ll am Operator: RJP Sample : AlUG_1.0 Inst : MSD #1 Misc : A910 10G Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 20 10:53:23 2014 Ouant Results File: A910_1UG.RES Ouant Method : C:\HPCHEM\1\METHODS\A910_1UC.M (RTF Integrator) Title : TO-15 VOA Standards for 5 point calibration Tast Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : IUG RUN Internal Standards R.T. QTon Response Cone Units Dev(Min)
 1) Bromochloromethane
 10.54
 128
 34568
 1.00 ppb
 0.00

 36) 1,4-difluorobenzene
 12.70
 114
 152011
 1.00 ppb
 -0.02

 51) Chlorobenzene-d5
 17.11
 117
 110766
 1,00 ppb
 0.00
 System Monitoring Compounds 67) Bromofluorobenzene 18.66 95 78808 1.01 ppb -0.01 Spiked Amount 1.000 Range 70 -130 Recovery = 101.00%

 Spiked Amount
 1.000
 Range 70
 130
 Recovery
 = 101.008

 Target Compounds
 Qvalue

 2) Freen 12
 4.60
 51
 73235
 0.89 ppb
 98

 3) Freen 12
 4.60
 41
 24861
 0.71 ppb
 92

 4) Freen 12
 4.66
 85
 129211
 0.76 ppb
 99

 5) Chloromethane
 4.89
 50
 17405
 0.85 ppb
 99

 7) Vinyl Chloride
 5.10
 62
 30940
 0.86 ppb
 98

 80 Butane
 5.22
 43
 41852
 1.04 ppb
 98

 11) Chloromethane
 5.78
 64
 15076
 0.97 ppb
 91

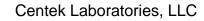
 12) Ethanol
 5.94
 45
 93427
 1.22 ppb
 88

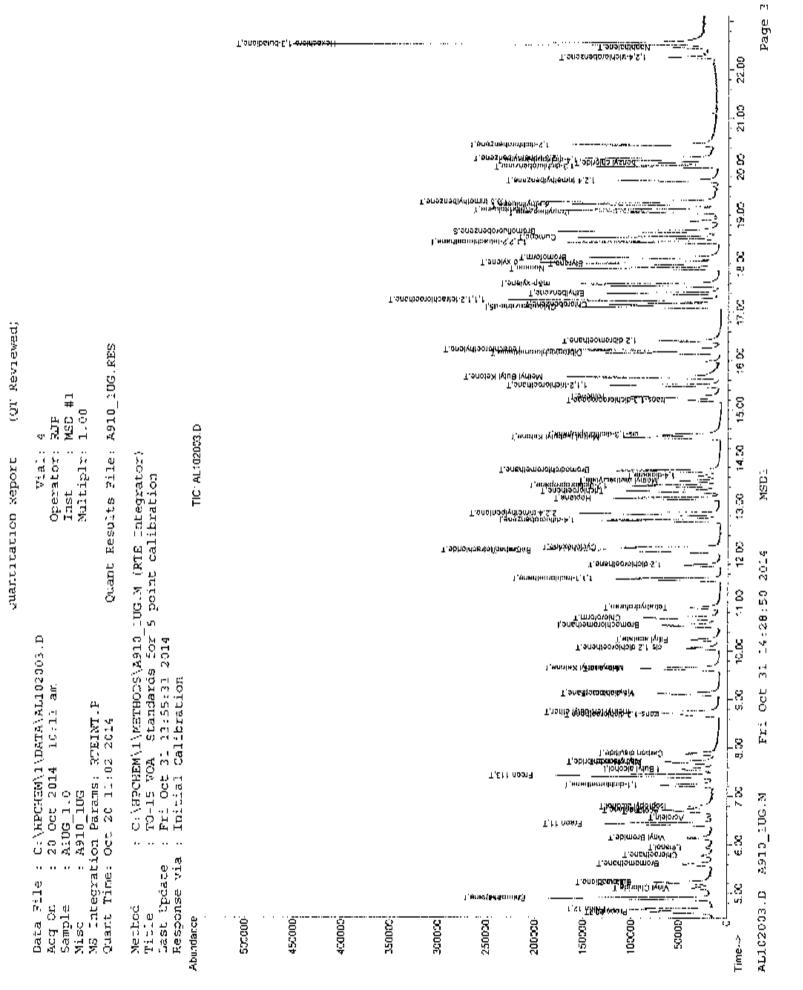
 11) Chloroethane
 5.78
 64
 15076
 0.97 ppb
 91

 12) Sthanol
 6.43
 101
 149206
 0.93 ppb
 100

 12) Vinyl Dronide
 6.171
 42
 32314
 1.00 pb#
 59

 13) Accolein
 6.67
 58
 1.11
 1.23 ppb
 59


 <


(#) = qualifier out of range (m) = manual integration AL102003.D A910_1UG.M Fri Oct 31 14:28:49 2014 MSD)

Centek Laboratories, LLCQuantitation Report(QT Reviewed)Data File : C:\HPCHEM\1\DATA\AL102003.DVial: 4Acq On : 20 Oct 2014 10:11 amOperator: RJPSample : AlUG_1.0Inst : MSD #1Misc : A91D_1UGMultiplr: 1.00MS Integration Parame; RTEINT,PQuant Results File: A910 1UC.RESQuant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator)Title : TO-15 VOA Standards for 5 point calibrationLast Update : Mon Oct 06 11:33:09 2014Response via : Initial CalibrationDataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Cone Unit	Qvalue
46)	1,2-dichloropropane	13,42	63	42810	0.74 ppb	99
47)	• •	13.73	83	102570	dqq 08.0	99
48)	cis-1,3-dichloropropene	14.48		48120m 🖉	0.77 ppb	
49)		15.18		37705m]	0.77 ppb	
50)	1,1,2-trichlorocthane	15.48	97	51679m 🖡	0.74 ppb	
52)	Toluenc	15.25	92	56282m	0.73 ppb	
53)	Methyl Isobutyl Ketone	14,41	43	81734m J	1.40 ppb	
54)	Dibromochloromethane	16.16	129	8775im	0.84 ppb	
55)		15.66	43	104959mrl	2.61 ppb	
	1,2-dibromoethane	16.40	107	58721	0,77 ppb	97
57)	Tetrachloroethylene	16.22	3.64	52036	0.77 ppb	3,00
58)	Chlorobenzene	17.15	112	81042	0.73 ppb	98
59)	1,1,1,2 tetrachloroethane	17.25	131	72235	0.96 ppb	100
60)	Ethylbenzene	17.38	91	$=$ 116894m I_{\perp}^{0}	0.72 ppb	
61)	m&p-xylene	17.58	91	194069m /	1.52 ppb	
62)	Nonane	17.91	43	55168m 💭	0.75 ppb	
63)	Styrene	17.99	104	62825	0.71 ppb	89
	Bromoform	18.13	173	85626	0.84 ppb	100
65)	o-xylene	18.02	9)	120279	0.74 ppb	97
66)	Cumenc	18,55	105	106184	0.65 ppb	# 97
68)	1,1,2,2 tetrachloroethane	18.45	83	106325 _Z	0.83 ppb	1.00
69)	Propylbenzene	19.06	91	132432m //	0.78 ppb	
70)	2-Chlorotoluene	19.11	9 1	131416m {	0.77 ppb	
71.)	4-ethyltoluene	19.22		120809m (0.79 ppb	
72)	1,3,5 trimethylbenzene	19.27		رل 152291m	0.83 ppb	
73)	1,2,4 trimethylbenzene	19.71	105	102556m 🎽	0.77 ppb	
74)	1,3-dichlorobenzene	20.01	146	75683	0.76 pph	99
	benzyl chloride	20.08	91	52970	1.05 ppb	97
	1,4-dichlorobenzene	20.14	146	69013	0.74 ppb	98
	1,2,3-trimethylbenzene	20.18	105	92366	0.74 ppb	99
	1,2-dichlorobenzene	20.45	146	87010	0.86 ppb	97
	1,2,4 trichlorobenzene	22.26	180	39353m 🌈	0.99 ppb	
80)	Naphthalene	22.46	128	68620m 🔏	1.01 ppb	
61)	Hexachloro-1,3-butadiene	22.54	225	110968 9	1.00 ppb	97

(#) = qualifier out of range (m) = manual integration (+) = signals summed AL102003.D A910_10G.M = Pri Oct 31 14:28:49 2014 = MSD1

Centek Laboratories, LLC Evaluate Continuing Calibration Report

 Data File : C:\HPCHEM\1\DATA2\AL102106.D
 Vial: 6

 Acq On : 21 Oct 2014 1:59 pm
 Operator: RJP

 Sample : Alug_1.0
 Inst : MSD #1

 Misc : A910_1UG
 Multiplr: 1.00

 MS Integration Paramo: RTEINT.P Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Nov 17 14:54:27 2014 Response via : Multiple Level Calibration Min. RRF 7 0.000 Min. Rol. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rol. Area : 150%

 Min. RRF
 :
 0.000
 Min. Rcl. Area : 50%
 Max. R.T. Dev
 0.33min

 Max. RRF Dev :
 30%
 Max. Rcl. Area : 150%
 SDev Area% Dev(min)

 Compound
 Avgur
 CCRF
 SDev Area% Dev(min)

 1
 Bromochloromethane
 1.000
 1.000
 0.0
 102
 0.00

 2 T
 Freon 12
 2.364
 2.146
 10.0
 95.0
 0.00

 3 T
 Propylene
 1.006
 0.708
 29.8
 76
 0.00

 4 T
 Preon 12
 4.890
 3.755
 23.1
 B2
 0.00

 5 T
 Chloromethane
 1.179
 1.100
 6.7
 103
 0.00

 6 T
 Freon 114
 3.785
 3.313
 12.2
 101
 0.00

 7 T
 Vinyl Chloride
 0.448
 0.430
 4.0
 10.23
 97
 0.00

 1 T
 Butane
 1.220
 1.070
 12.3
 97
 0.00

 1 T
 Chlorocthane
 0.448
 0.430
 4.0
 10.2
 0.00

 1 T
 Chlorocthane
 0.20
 1.01

 36 T
 1,4-difluorobenzene
 1,000
 1,000
 0.0
 90
 0.00

 37 T
 1,1,1-trichloroethane
 0.818
 0.696
 14.9
 80
 0.00

 38 T
 Cyclohexane
 0.414
 0.290
 30.0
 67
 0.00

 39 T
 Carbon tetrachloride
 0.978
 0.814
 16.8
 85
 0.00

 40 T
 Benzene
 0.978
 0.747
 23.6
 72
 0.00

 41 T
 Methyl methacrylate
 0.200
 0.164
 18.0
 75
 0.00

 42 T
 1,4-dioxane
 0.119
 0.121
 -1.7
 100
 0.00

 43 T
 2,2,4-trimethylpentane
 1.276
 0.875
 31.4#
 64
 0.00

 44 T
 Heptane
 0.411
 0.286
 30.4#
 63
 0.00

 45 T
 Trichloroethene
 0.470
 0.343
 27.0
 73
 0.00

 46 T
 1,2-dichloropropane
 0.380
 0.272
 28.4
 67
 0.00

 47 T
 Bromodichloromethane
 0.844
 0.667
 21.0
 74
 0

(#) = Out of Range

Centek Laboratories, LLC Evaluate Continuing Calibration Report Data File : C:\HPCHEM\1\DATA2\AL102106.D Vial: 6 Operator: RJP Inst : MSD #1 Acg On : 21 Oct 2014 1:59 pm Sample : AlUG_1.0 Misc : A910_lUG Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Nov 17 14:54:27 2014 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% Compound CompoundAvgRFCCRF% Dev Area* Dev (min51 IChlorobenzene-d51.0001.0000.0800.0052 TToluene0.6930.49628.4580.0053 TMethyl Isobutyl Ketone0.5260.656-24.71050.0054 TDibromochloromethane0.9470.75820.0680.0055 T1.2 dibromocthane0.6930.52624.1630.0056 T1.2 dibromocthane0.66100.45225.9630.0057 TTetrachloroethlene1.0070.71129.4580.0059 T1.1.1.2-tetrachloroethane0.6620.6406.2780.0060 TEthylbenzene1.4570.94135.4#510.0061 TMapen1.1490.80330.1#530.0062 TNonane0.6630.47528.4560.0063 TStyrene0.7950.57128.2560.0064 TBrowofarm0.9230.72921.0660.0065 T0-xylene1.4721.20418.2660.0065 T0-xylene1.4520.92319.9650.0065 T0-xylene1.4660.91937.3#49#0.0066 TCumenc1.3871.01926.5560.0070 T2.chlorobenzene0.7950.6771.6760.00</t AvgRF CCRF %Dev Area* Dev(min)

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AL102106.D Vial: 6 Acq On : 21 Oct 2014 1:59 pm Operator: RJP Sample : AlUC_1.0 Inst : MSD #1 Mise : A910_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 21 14:29:43 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : 10G RUN Internal Standards R.T. QTon Response Conc Units Dev(Min)
 1) Bromochloromethane
 10.54
 128
 35315
 1.00 ppb
 0.00

 36) 1.4-difluorobenzene
 12.72
 114
 146040
 1.00 ppb
 0.00

 51) Chlorobenzene-d5
 17.12
 117
 113898
 1.00 ppb
 0.00
 System Monitoring Compounds 67) Bromofluorobenzene 18,66 95 79420 0.99 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery - 99.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 2
 93.00%

 Target Compounds
 Qvalue

 2)
 Freen 12
 4.61
 51
 75784
 0.90
 ppb
 99

 4)
 Freen 12
 4.67
 85
 1.32745
 0.70
 ppb
 99

 5)
 Chloromethane
 4.69
 50
 38834
 0.93
 ppb
 99

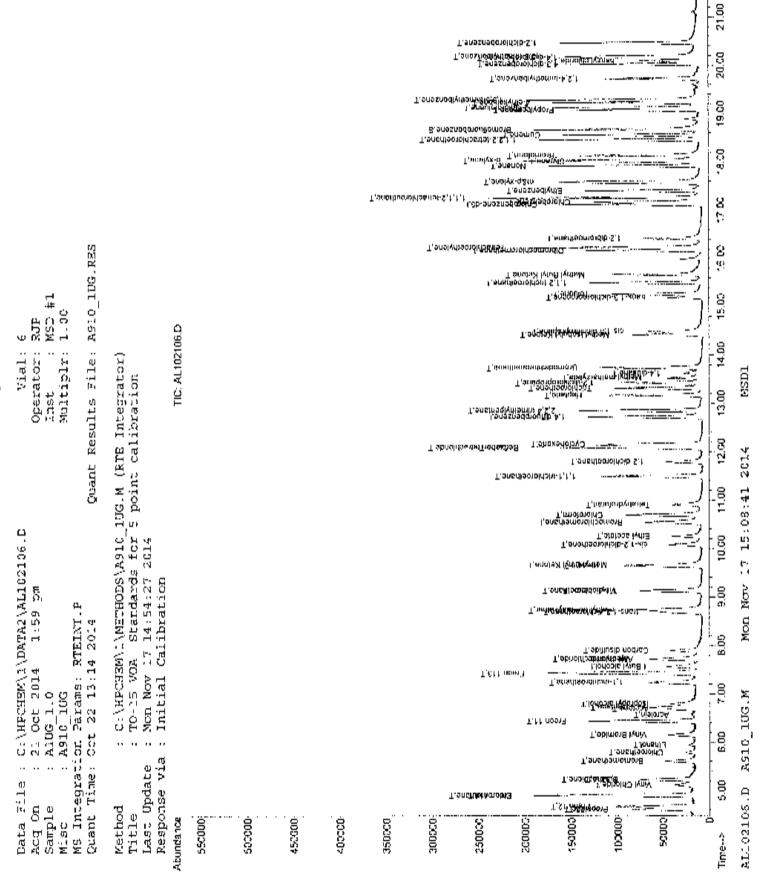
 6)
 Freen 114
 4.69
 85
 16589
 0.68
 ppb
 90

 7)
 Vinyl Chloride
 5.12
 43
 38809
 0.94
 ppb
 90

 9)
 1.3-butadiene
 5.22
 43
 38809
 0.94
 ppb
 90

 10
 Droomethane
 5.22
 39
 2911
 1.01
 ppb
 92

 11
 Chloroethane
 5.79
 64
 15191
 0.92
 ppb
 94


 12
 Sthanol
 5.79
 64
 15196
 92
 94
 155

(#) = qualifier out of range (m) ~ manual integration ALA02106.D A910_1UG.M Mon Nov)7 15:08:40 2014 MSD1

Page 387 of 467

intitat:	ion Re	port (Q	T Reviewed)	
1		Гл Мц	st : MSD ltiplr: 1.00	
de for 9 2014				
R.T.				Qvalue
13,74 14.49 15.19 15.50 15,26 14.42 16.16 15.66 16.41 16.23	63 75 75 97 43 129 43 107 164	39725 97456 42395 33235 48768 56474m 74765 86343m 92808 59883 51498	0.72 ppb 0.79 ppb 0.71 ppb 0.71 ppb 0.73 ppb 0.72 ppb 1.25 ppb 1.25 ppb 2.24 ppb 0.76 ppb 0.74 ppb	97
17.40 17.58 17.91 18.00 18.13 18.03 18.6	91 91 43 104 173 91 105	107198 182935 54143 65078 83043 137167 104721	0.65 ppb 1.40 ppb 0.72 ppb 0.72 ppb 0.79 ppb 0.82 ppb 0.63 ppb	# 97
19.07 19.12 19.23 19.28 19.72 20.02 20.09 20.15 20.18 20.46 22.27 22.46	91 105 105 146 91 146 105 146 180 128	123667m/ 123235m 116056m 146719m/ 83346 75290 53675 70199 95655 83560 29304 56251	0.71 ppb 0.70 ppb 0.73 ppb 0.77 ppb 0.61 ppb 0.74 ppb 1.04 ppb 0.74 ppb 0.74 ppb 0.74 ppb 0.74 ppb 0.74 ppb 0.80 ppb 0.80 ppb	99 96 99 100 97 99 90 100 95 97
	02106.) 02106.) 05\A910 05\A910 09 2014 09 2014 09 2014 13.43 13.43 13.74 14.49 15.19 15.26 14.42 15.50 15.26 14.42 15.50 15.26 14.42 15.50 15.26 14.42 15.50 15.26 14.42 15.50 15.26 14.42 15.50 15.26 14.42 15.50 15.26 14.42 15.50 15.26 16.41 16.23 17.27 17.26 17.36 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 19.12 19.23 19.22 20.02 20.02 20.15 20.16 20.16 20.15 20.16 18.46 19.07 19.12 19.23 19.24 20.02 20.05 20.16 20.15 20.16 20.24 20.02 20	$\begin{array}{c} 02106.D\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$.02106.D Quant Result Quant Result OS\A910_10G.M (RTE Inte ds for 5 point calibra 09 2014 20 R.T. Qlon Response 13.43 63 39725 13.74 83 97456 14.49 75 42395 15.19 75 33235 15.50 97 48768 15.26 92 56474m 14.42 43 74765 16.16 129 96343m 15.66 43 92808 16.41 107 59883 16.23 164 51498 17.17 112 81029 17.26 131 72898 17.40 91 107198 17.58 91 182935 17.91 43 54143 18.00 104 65078 18.13 173 83043 18.03 91 137167 18.56 105 104721 18.46 83 105124 19.07 91 123667m7 19.12 91 123235m 19.23 105 116056m 19.23 105 116056m 19.24 105 95655 20.15 146 70199 20.16 105 95655 20.46 146 83560 22.27 180 29304 22.46 128 56251	Operator: RJP Inst MSD Multiplr: 1.00 Quant Results File: A910 OS\A910_10G.M (RTE Integrator) rds for S point calibration 09 2014 00 R.T. Qion Response Conc Unit 13.43 63 13.74 83 97456 0.79 ppb 14.49 75 15.19 75 15.50 97 15.26 92 15.26 92 16.16 129 16.36 1.25 ppb 16.16 129 17.17 112 12.29 0.71 ppb 15.66 43 92808 2.24 ppb 16.16 107 17.17 112 107198 0.65 16.23 164 107198 0.65 17.58 91 18.00 104 13.73 83043 15.66 105 16.3 107198 <t< td=""></t<>

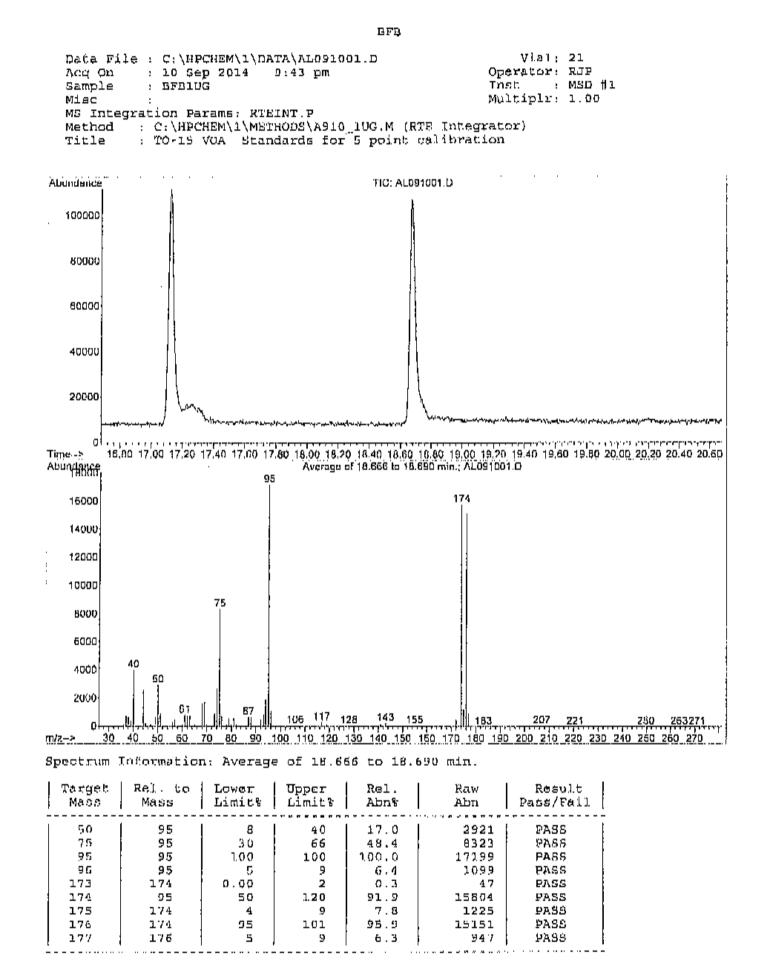
Fage 3

22.00

Τ.απικληματοιήτοιή-Α.ς.τ Τ.οροίατοίαμο

Lensibelud 5.1-molecular

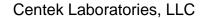
Centek Laboratories, LLC

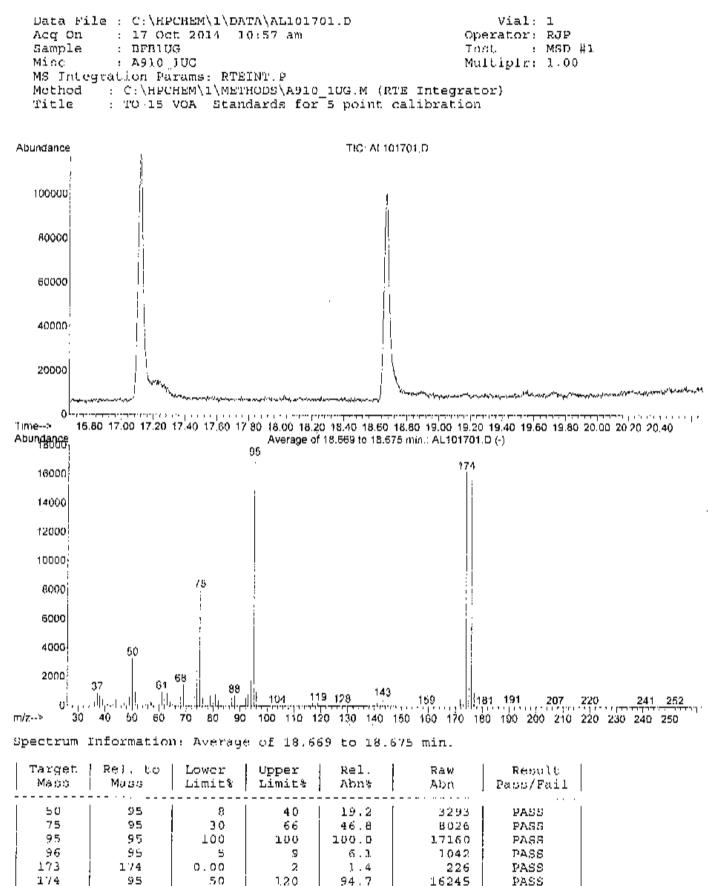

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

RAW DATA

i.


Centek Laboratories, LLC



AL091001.D A910_1UG.M

Mon Sep 15 09:45:31 2014 MSD1

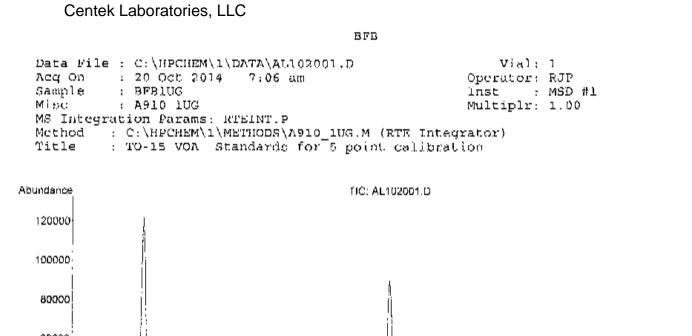
Page 391 of 467

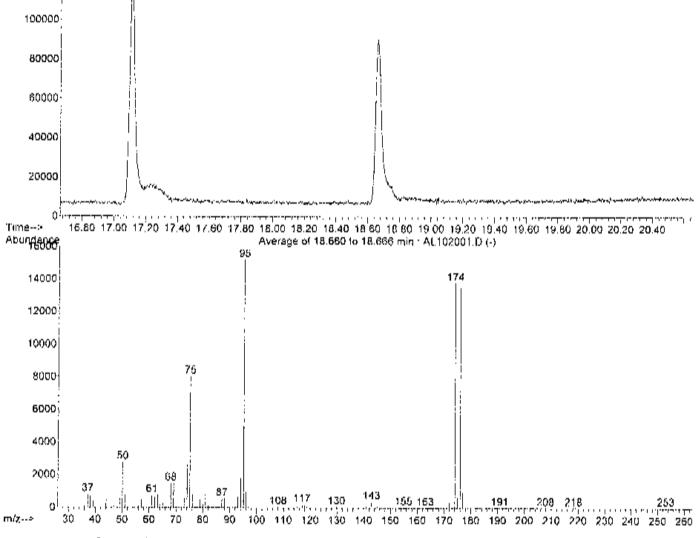
ALI01701.D A910 LUC.M Fri Oct 31 14:26:43 2014 MSD1

8.0

б.4

99.2

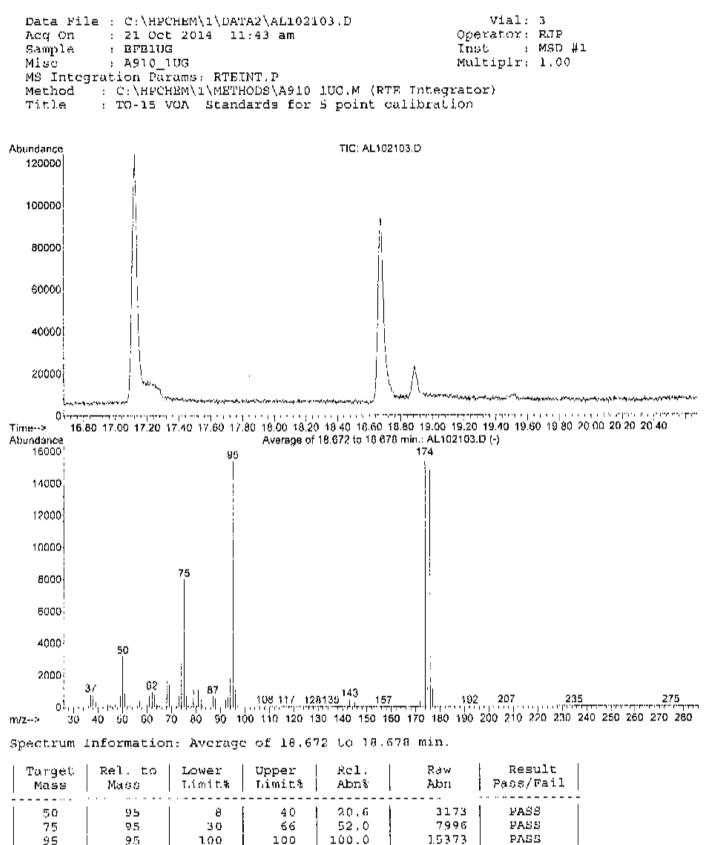

PASS


PASS

PASS

Page 392 of 467

BFB


Spectrum Information:	Average	of	18.660	to	18.666	min.
-----------------------	---------	----	--------	----	--------	------

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit\$	Rel. Abn%	Kaw Abn	Result Pass/Fail
50	95	8	40	18.5	2812	PASS
75	95	30	66	52.9	8069	PASS
95	95	100	100	100.0	15241	PASS
96	95	5	9	6.5	997	PASS
173	174	0,00	2	0.7	92	PASS
174	95	50	120	90.8	13842	PASS
175	174	4	9	4.8	568	PASS
176	174	95	101	97.8	13536	PASS
177	176	5	9	7.2	971	PASS

AL102001.D A910_1UG.M

Fri Oct 31 14:28:35 2014 MSD1

Page 393 of 467

PASS

PASS

PASS PASS

PASS

PASS

1113

15530

1222

1131

186

Page 394 of 467

AL102103.D A910_1UG.M

95

95

174

174

174

176

96

173 174

175

176

177

-5

50

4

95

-5

0.00

9

2

9

9

120

101

7.2

1.2

7.9

7.6

95.4

Mon Nov 17 15:08:27 2034 MSD1

101.0

BFB

Centek Laboratories, LLC

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 RAW QC DATA

Page 395 of 467

CENTE	SK LAB	CENTEK LABORATORIES, LLC	ГC				
1					ANALYTICAL	ANALYTICAL QC SUMMARY REPORT	PORT
CLIENT: Work Order:	WSP Envir C1410057	WSP Environment and Energy C1410057	.:	:		· · ·	
Project:	5 40 Site 1	5140 Site Yorkville, NY			Tes	TestCode: 0.25CT-TCE-VC	C
Sample ID AMB1U	AMB1UG-101714	SampType: MBLK	TestCod	TestCode: 0.25CT-TCE- Units: ppbV	Prep Cale	Rur No: 3946	
Clien; ID: 22272		Balch ID: R8946	Tes:N	Tes:No: T0-15	Analysis Date 10/17/2014	4 SegNo: 106372	
. Analyte		Resut	Ŗ	SPK value SPK Ref Va.	%REC LowLinit HighLimit R	RPD Ref Val %RPD R	RPCLimit Qual
1.1,1-Trichlorcethane	Je	< 0.15	0.15				
1,1,2.2-Tetrachicroethane	elhane	< 0.15	0.15				
1,1,2-Trichlorbethane	Je	< 0.15	0.15				
1,1-Dichlorcethane		< 0.15	0.15				
1,1-Dichlorcethene		< 0.15	D.15				
1,2,4-7/ichlorocenzere	tere	< 0.15	0.15				
1,2.4- ⁷ rimethylbenzene	zene	< 0.15	0.15				
1,2-Dibrompethane		< 0.15	0.15				
1,2-Dichlorcbenzene	e S	< 0,15	0.15				
1,2-Dichlorcelhane		< 0.15	0.15				
1,2-Dichlorcpropane	ē	< 0.15	0.15				
1,3,5-Trimethylcenzene	zere	< 0.15	0.15				
1,3-butadiene		< 0.15	0.15				
1,3-Dichlorctenzere	ə	< 0.15	0.15				
1,4-Dichlorchenzere	e	< 0.15	0.15				
1,4-Dioxare		< 0.30	0.30				
2,2,4-trimethylpentane	are	< 0.15	0.15				
4-echylloluene		< 0.15	0.15				
Acetone		< 0.30	0.30				
Allyl ch:orids		< 0.15	0.15				
Berzeite		< 0.15	0.15				
Berzylich knide		< 0.15	0.15				
Bromosi of Icromelaare	lare	< 0.15	0.15				
Brom oform		< 0.15	0.15				
Biomortiethage		< 0.15	0.15				
Qualifiers:	Results report	Results reported are not blank corrected			ж.	Holding times for preparition or analysis executed	is exactled
- 00	Analyte ueoo Spike Rotow	Arziyre actorica ar or nerwy quantizzhou arzite Spike Recovery autside zecepted recovery famity		NU - NG ORIGIGA SI JIA KEDULUB PILIN	×	Ar™ calside accepted recevery Jiraits	0 1 <i>20</i> 0
							Loge Layo

Page 396 of 467

K

9

Project: 5140 Site Yorkville, NY	kville, NY			Test	TestCode: 0.25CT-TCE-VC	
Sample -D AMB1UG-101714 S Clent ID: 22222	SampType: MBLK Batch ID: R8948	TestCode: TestVo	fee(Code: 0.25CT-TCE- Units: ppbV TestVo TO-15	Pres Date: Anațysis Gale: 10/17/2014	RunNo: 8946 SeqNo: 106372	
ភិកនៅអ្វាខ្	Resut) Юd	SPK value SPK Ref Val	%REC Low⊡mit HighLimit RPC	RPC Ref Val KRP. RPDLimit	Gual
Carbon disulfide	< 0.15	0.15				
Carbon tetrach forid e	< 0.040	0.040				
Chisro te nzene	< 0.15	2.15				
Chicroethane	< 0.15	0.15				
Chlaroferm	< 0.15	0.15				
Chloromethane	< 0.15	0.15				
cis-1,2-Dichlorcethene	< 0.15	316				
cis-1,3-Dicialoropropene	< 0.15	0.15				
Cyclohexane	< 0.15	0.15				
Dibromoch oromethare	< 0.15	0.15				
Ethyl acetate	< 0.25	0.25				
Ethylbenzene	< 0.15	0.15				
Freon (1	< 0.15	0.15				
Freon 113	< 0.15	0.15				
Freon 114	< 0.15	0.15				
Freon 12	< 0.15	0.15				
Heplare	< 0.15	0.15				
Hexachloro-1,3-butadiene	< 0.15	0.15				
Hexare	< 0.15	0.15				
isopropyl alcohoi	< 0.15	0.15				
m&p-Xyiane	< 0.30	0:30				
Metry! Butyl Kelone	< 0.00	0:30				
Methył Ethyl Xelone	NC :0 >	0:30				
Methyl Isobuly: Ketore	<0.3	0:30				
Methyl tert-buryt ether	< 0.5	0.15				
Metrylene chlorice	< 0.15	0.15				
o-Xylene	< 0.15	0.15				
^a ropylene	<0.5€ <	0.15				
Styrene	< 0.15	0.15				
Tetrachioroeshylene	< C. 5	0.15				
Tetrahydrofuran	< 0.15	0.15				
Qualificers: Results reported	Results reported are not blank corrected	:	 Value above quaratalitation target 	. т. т	Halding times for preparation or analysis exceeded	ł:
J Analyte detected at an below quantifation limits	or an head rushing the head of the		NC his Determination the Reportion 1 and		いいしゅう 御台 ション・アードン 開いたい ションション 日本 日本 日本 日本	

	•	•	· · · · · · · · · · · · · · · · · · ·	
CLIENT: WSP Envir Work Order: C1410057 Project: 5140 Site 3	WSP Environment and Energy C1410057 S140 Site Yorkville, NY		TestCode: 0	TestCode: 0.25CT-TCE-VC
Sample ID AMB1UG-601714	SampType: MBLK	TestOrde: 0.25CF-FCE- Unixs: ppbV	Prep Date:	Rur No: 8946
Cienl IC ZZZZ	Batch . D: R6946	TestNo: JO-15	Aneiysis Date: 10/17/2014	SeqNo: 106372
Aneiyle	Result	PCL SP⊀value SPK Ref Val	%REC LowLimit HighLimt RPD Ref Val	%RPD RPDim? Quai
Toiuene	< 0.15	516		
trans-1,2-0%ch croethene	< 0.15	0.15		
trans-1.3-Ckch knopropere	< 0.15	0.15		
Trahkraethere	< 0.040	0.040		
Vinyl acetale	< D.15	0.15		
Vinyi Brom-de	< 0.15	015		
Vinyl chloride	CP0.0 >	0.040		

 Value above guartation range
 ND Not Detected at the Reporting Chinit Analyte detected at or helow quantitation litrais Results reported are not black corrected n v

Qualifiers

л *«*

HeMing lines for preparation or analysis exceeded RPD autside zoegyed recovery limits

. :

:

,

.

:

:.

: . .

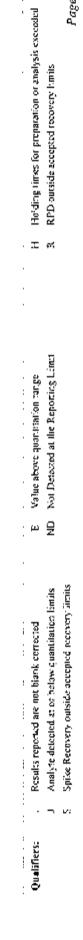
¦,

ı!

Vork Order: C1412057	WSP Environment and Energy C1418057				
Project: 5140 Site Y	5140 Site Yorkville, NY			TestCode:	lugM3_T01S
Sample D AMB1UG-£02014	SampType: MBLK	TeslCode:	TestCode: 1ug M3_T015 Urits: ppbV	Prep Cate:	Runho: 8960
Client ID: 22222	Batch ID: R8960	TesiNo: JO-15		Arcalysis Date: 10/20/2014	SeqNo: £06727
Analyte	Resull	ğ	SPK value – SPK Ref Val	SREC LowLimit HighLims RPD Ref Vai	ta: %RPD RPDUmi Qual
cs-1,2-Dichlorcethene	< 15 < 15	0.15			
cs-1,3-Dichloroprocene	< G. 15	0.15			
Cyclohexane	< C.15	0.15			
Dibromochloremethane	< 0.15	0.15			
Elhyl acelate	< 0.25	0.25			
Ethylsenzene	<0.55	0.15			
ř eon 11	<0.5	0.15			
Freon 113	< 0.15	0.15			
Frean 114	< 0.15	0.15			
Freon 12	S: 0 >	0.15			
heptane	<0.15 <	0.15			
riexachioro-1,3-buladiene	< 0.45	0.15			
riexane	< 0.15	0.15			
isoprocy! alcoho!	<0.15	0.15			
m&p-Xylere	< 0.30	0:30			
Vethyl Bulyi Ketone	< 0.30	0:30			
Vethyl Ethyl Ketone	< 6.30	0:30			
Methyl sobutyl Ketone	< 0.30	0:30			
Wethyl ten-butyl elher	< 0.15	0.15			
Wethylere chloride	< 0.15	0.15			
c-Xylere	< 0.15	0.15			
Propylene	< 0.15	0.15			
Styrene	< 0.15	0.15			
Telrachlorcethyene	< 0.15	G.15			
Telrahydrofuran	< 0.15	0.15			
Toluene	< 0.15	0.15			
Irans-1,2-Dichlorcethene	< 0.15	C 15			
trans-1,3-Dichloroprocene	< 0.15	C 15			
Trichloroethene	< 0.15	015			
Vinyl acelat e	< 0.15	C. 75			
Vinyl Bromipe	< 0.15	G. 5			
Qualifiers: Results report	Readits reported are new blank corrected	:	E Value above quantilation range	E	Heiding tinys for preparation or analysis exceeded
J Analyte deter	Anaiyte detected al or below quantitation limits		ND Not Detected at the Reporting Limit	×	RPD austide socepted recovery limits
C Culled Descent	Sulla Distance former Sister control of the				

- 1 - -- - -

;


CLIENT: WSP Envir Work Order: C1410057	WSP Environment and Energy C1410057	÷	:				:
Project: 5:40 Site V	5140 Site Yorkville, NY				TestCode: 1	JugM3_T015	
Sample ID AMB1UG-£02014	SampType: MBLK	TestCo	TestCode: 1ugM3_TO15_Ur.ts. ppbV		Prep Date:	Rur No: 8960	
Cient ID: 2222	Batch ID: R8960	Test	TestNo: TO-15	ÅR.	Analysis Date: 10/20/2014	SeqNo: 106727	
Analyle	Result	ដ	SPK value – SPK Ret Val	%REC L	LowLimit HighLimit RPD Ref Val	%RPD_RFDUm)_Qua:	
Vinyl chlande	< 0.15	0.15					
Sample ID AMB1UG-f021f4	SampType: MBLK	TeskCod	TestCode: 1ug#13_T015 Units: ppbV		Prep Date:	RunNo: \$968	
Clent ID: ZZZZ	Batch ID: R8558	Tesl	TesiNc: TO-15	μ.	Analysis Dete: 10/25/2014	Sepho: 106738	
Analyle	Resull	PCL	SPK value – SPK Ref Val	WREC L	LewLimit HighLimit RPD Ref Val	SRPDLimit Ousi	
1.1.1-Trichkroelhare	< 0.15	57.7]
1 1,2,2-Tetrachlorcethane	< 0.15	0.45					
1,2-Trichlordelhane	< 0.15	0.15					
1,1-Dichloroethare	< 0.15	510					
1,1-Dichiaraethere	< 0.15						
1.2,4-Trichloroberzere	< 0.15	0.15					
1,∠,4-1 rimeiny.gerzere 1 2-Ditvomoetbar e	< 0.15 < 0.15	0 15 0 15					
1.2-Dichlerobenzene	< 0.15	0.15					
1,2-Dichlottelhane	< 0.15	0.15					
1,2-Dichloroprocane	< 0.15	0.15					
1,3,5-Trimethyicenzene	< 0.15	0.15					
1,3-butadiene	< 0.15	0.15					
1,3-Dichlorcbenzene	< 0.15	0.15					
1,4-Dichlorchenzere	< 0.15	0.15					
1,4-Dioxane	< 0.30	0.30					
2,2,4-terrethylpentane	c1.U >	c1.0					
4-efhylloluene	< 0.15	0.15					
Acetare	06:0 >	0.30					
Allyl chlorde	0.10	כויה					
Benzene	<.C.5	0.15					
Benzyl chloride	<0.5	0.15					
Bromodichleromethane	< C : 5	0.15					
3romofor m	< C.15	0.15					
Qualifiers: Results reper	 Results reported are not bluck corrected	,	E Value above quantilation range	5.	H Holding times for	Holding times for preparation or analysis exected	
J Analyze dolo	Analyze detected at an below quantitation limits	nils	ND Not Detected at the Reporting Lond	g Lemet	R RPD on Brids acre	RPD outside accepted recovery lemits	
S Spite Recov	Spike Recovery curside accepted recovery limits	imits				Page 6 of 8	of 8

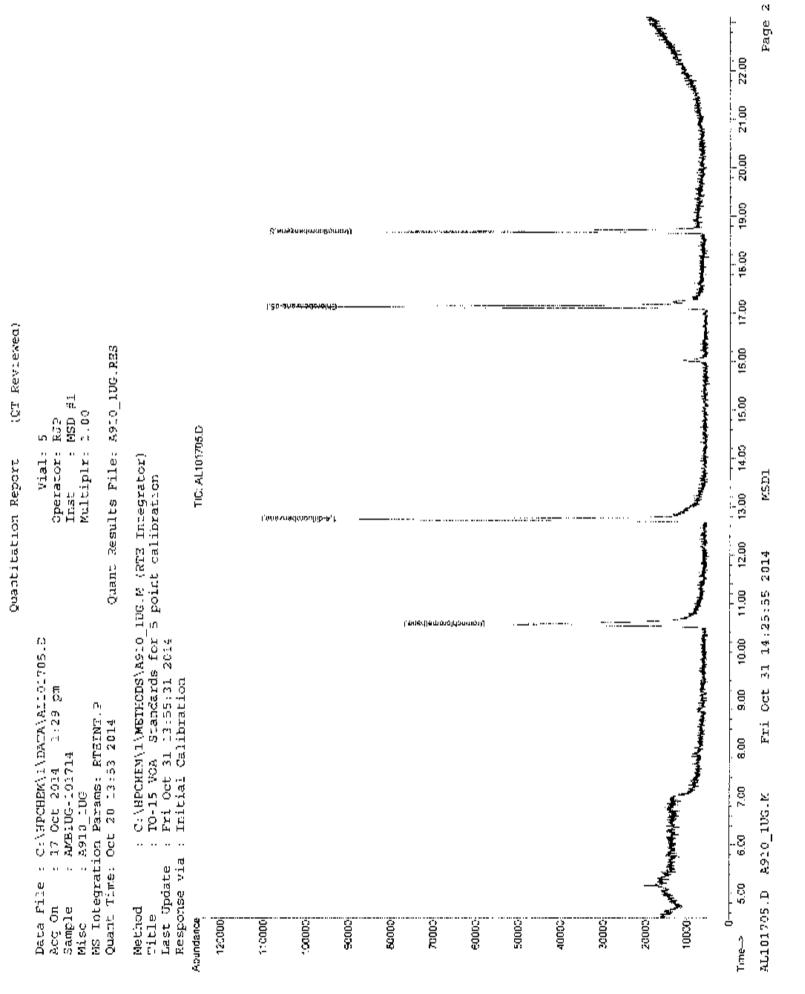
Fright: 3140 Siles YorkullsY TestCode: 1eg/33_TOIS Fright: 3140 Siles YorkullsY TestCode: 1eg/33_TOIS Sample: Damitic: Sample: TestCode: 1eg/33_TOIS Sample: Damitic: Sample: TestCode: TestCode: TestCode: TestCode: Sample: TestCode: Sample: Samp	Work Order: Cl410057						
Mat1U5-10214 Sam UK Teach Fach		Yorkvilje, NY			TestCode:		
223 Bachl): Reads. Tends. Total Arsysts Dere: Data Gents. Total Gents.		SampType: MBLK	TestCode:	11	Prep Date:	RunNo: 8968	
Reading PC: Syn Contact March		Batch ID: R8968	TestNo:	TO-15		SeqNo: 1067 38	
* 5.15 5.5 003 < 2.15 5.5 013 5.15 5.5 014 < 2.15 5.5 < 0.15 5.5 < 0.15 5.5 < 0.15 5.5 0.15 5.5 0.15 5.5 0.15 5.5 0.15 5.5 ordene <0.15 5.5 0.15 5.5 ordene <0.15 5.5 0.15 5.5 0.15 5.5 0.15 5.5 0.15 5.5 0.15 5.5 0.15 5.5 0.15 5.5 0.15 5.5 0.15 5.5 0.15 5.5 0.15 5.5	4naiyle	Result			LewLimit Highume	XRPD RPDLm8	Qual
** <:>0.16 C: 5 016 : : : <:0.15	Sromomethane	< 0.15	0.15				
< C15 C23 <	Carbon disulfide	< 0.15	ç.5				
< 0.15	Carbor letrachloride	< 2.15	G. 15				
< 015	Caiorobenzen e	< 0.15	G.'5				
< 0.15	Chioroethane	< 0.15	C.15				
< 0.15	Cationoform	< 0.15	G.5				
< 0.15	Chioromethare	< 0.15	5.9 5				
< 0.15	cis-1,2-Dichlorcethene	< 0.15	5.15				
< 015 C 35 continante < 0.15	cis-1,3-Dichlorcaropene	< 0.15	5:0				
< 0.15	Oyo chexare	< 0.15	6.35				
< 0.25	Dibromochioromethane	< 0.15	0.15				
< 0.15	Sthyl acetate	< 0.25	5.25				
< 0.15	Ethylbenzene	< 0.15	0.15				
< 0.15	reon 11	< 0.15	0.16				
< 0.15 0.15 ene <	Freon 113	< 0.15	0.15				
< 0.15	reon 114	< 0.15	D.15				
< 0.15 0.15 ene < 0.15 0.15 < 0.15 0.15 0.15 < 0.15 0.15 0.15 < 0.15 0.15 0.16 < 0.15 0.16 < 0.15 0.16 < 0.20 0.30 < 0.20 0.30 < 0.20 0.30 < 0.20 0.30 < 0.20 0.30 < 0.15 0.15 <	repr. 12	< 0.15	0.15				
ene < 0.15 0.15 < 0.15	teplan≎	< 0.15	0.15				
< 0.15	Hexachloro-1,3-butadiene	< 0.15	0.15				
 	lexane	< 0.15	0.15				
 < 0.30 < 0.15 < 0.15	sopropyl stochol	< 0.15	0.15				
< 0.30	m&p-Xylene	< 0.30	0:30				
< 0.30 0.30 < 0.15	Kethyl Bufyl Kelone	< 0.30	0:30				
 < 0.30 < 0.15 < 0.15	Vetryl Eibyl Kelzne	< C.30	0:30				
 < 0.15 0.15 0.15 < 0.15	Vethyl Isobutyl Kelor e	< 0.30	0:30				
ce chícride < 0.15	Wethyl tethough ether	< 0.15	0.15				
e < 0.15	wethylere chicride	< 0.15	0.15				
e < 0.15	c-Xylere	< 0.15	Q.15				
 < 0.15 0.15 0.15 orcelhylene < 0.15 0.15 Southylene < 0.15 0.15 Analyte detected are net black corrected E Value above quantitation range 31 Helding times for preparation or actalysis excended and the Reporting Limbition Ender the Report Report Reporting Limbition Ender the Report Rep	P.opylere	< 0.15	0.15				
celhylere < 0.15 0.15 Results reported are net black corrected E Value above quantitation range E J Analyte detected at efficient fittiles ND Net Detected at the Reporting Limit R S Source end recovery limits ND Net Detected at the Reporting Limit R RPD outside accepted recovery limits	Styrene	< 0.15	0.15				
Results reported are net black condeted E Value above quantitation range E I Helding times for preparation or analysis excet J Analyte detected at et below quantitation aimits ND Not Detreted at the Reporting Limit R RPD outside accepted recovery tracits S Surfer Reviews outside accepted recovery tracits	Tetrachlorcethylene	< 0.15	0.13				
ливује всиска: в страја ципланон анија — "ХО – гил решана и их мероније дири. Спот Revizen outside accented recovery limits		orted are net black connected			 4	s for preparation or analysis exceede control received hubb	-
		corde al et delare qualitatement al ventificité accented recovery			2		

.

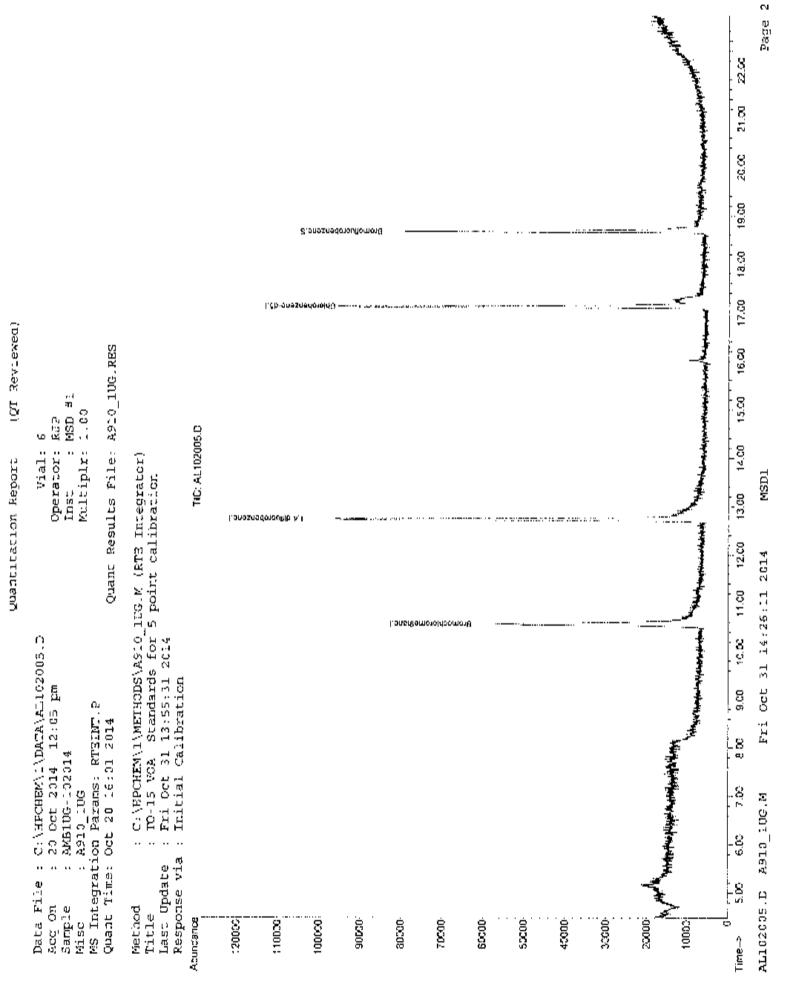
:

					:			:				:	:
CEIENT: Work Order:	WSP Ervir C1410057	WSP Environment and Energy C1410057	ទោះ										
Project:	5140 Site Y	5140 Site Yorkville, NY								TestCode: lugM3_T015	lugM3_TO	15	
Sampe ID AMB10G-102114	JG-102114	SampTyse: MBLK		[estCode	1 EMgult	TestCode: 1ugM3_1015 Units: ppbV		Frep Cale:			RunNo: 8968	68	
. Client (D: 22222		3alch ID: R8968	8968	TestNo	TestNo: TO-15			Analysis Cale 10:21:2014	e 10 12	21/2014	SeqNo: 106738	6738	
Analyte		Ŀ	Result	PQL	SPK value	SPK Ref Va'	%REC	cowLimit HighLimit	HighLin	nit RPD Ref Val	043%	RPDLimit	QLal
Tetrahydrofuran			< 0.15	0.15									
Toleane		v	< 0.15	0.15									
trans-1,2-Dichlorcethene	thene	v	< 0.15	0.15									
Irans-1,3-Dichloropropene	ropene	v	< 0.15	0.15									
Trichlorcethene		v	< 0.15	0.15									
Viry! acelate		v	< 0.15	0.15									
Viryl Bromise		v	< 0.15	0.15									
Visyl crioride		v	< 0.15	0.15									

Page 8 of 8


.....

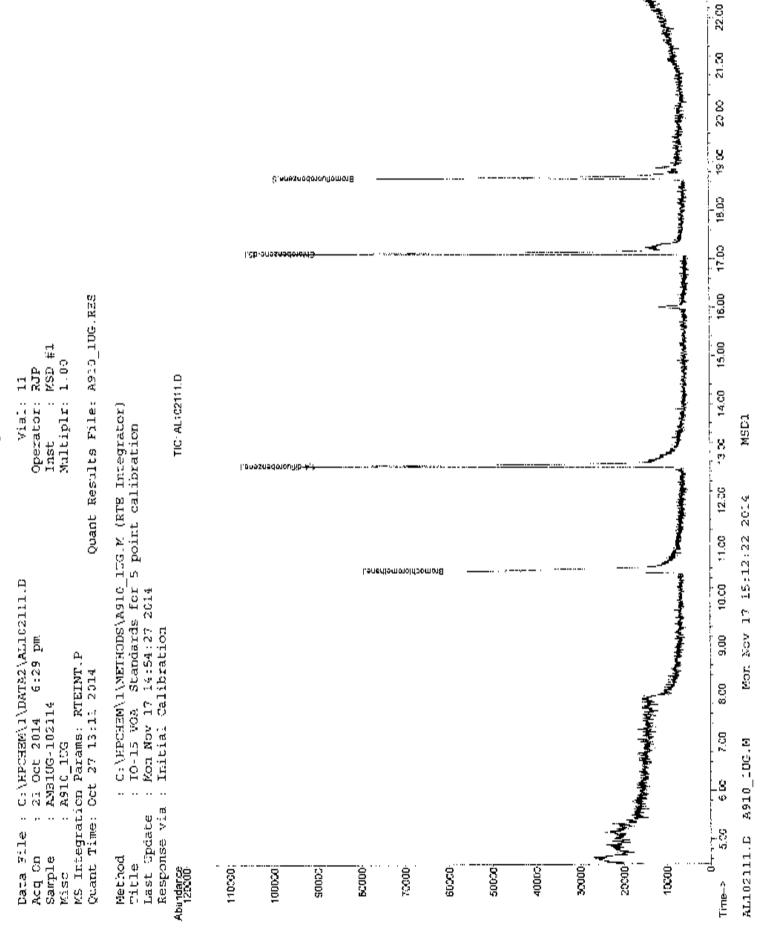
Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AL101705.D Acq On : 17 Oct 2014 1:29 pm Sample : AMB10G-101714 Misc : A910_10G Vial: 5 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 17 21:57:08 2014 Quant Repulto File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910 1UG.M (RTE Integrator) Title : TO 15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 12:31:36 2014 Response via : Initial Calibration DataAcq Meth : 10G RUN
 Toternal Standards
 R.T. QIon Response Conc Units Dev(Min)


 1) Bromochloromethane
 10.56
 128
 29706
 1.00
 ppb
 0.01

 36) 1.4-difluorobenzene
 12.73
 114
 113235
 1.00
 ppb
 0.02

 51) Chlorobenzene-d5
 17.12
 117
 88126
 1.00
 ppb
 0.00
 System Monitoring Compounds 67) Bromolluorobenzene 18.68 95 46053m 0.74 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 74.00% 0.02 Target Compounds Qvalue

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AL102005.D Vial: 6 Acq On : 20 Oct 2014 12:05 pm Sample : AMBIUG-102014 Misc : A910_1UG Operator: RJP That : MSD #1 Multiplr: 1.00 MS Integration Params; RTEINT,P Quant Time: Oct 20 15:50:21 2014 Quant Results File: A910 LUC.RES Quant Method : C:\HPCHEM\1\METHODS\A910 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Toternal Standards R.T. Qion Response Conc Units Dev(Min) 1) Bromochloromethane10.55128319401.00 ppb0.0036) 1.4-difluorobenzene12.721.41196691.00 ppb0.0051) Chlorobenzene-d517.12117804731.00 ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.67 95 42120m 0.74 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery - 74.00% Target Compounds Ovalue



Centek Laboratories, LLC

Page 407 of 467

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C;\HPCHEM\1\DATA2\AL102111.D Vial: 11 Acq On : 21 Oct 2014 6:29 pm Sample : AMB1UG-102114 Misc : A910_1UG Operator: RJP Inst ; MSD #1 Multiplr: 1,00 MS Integration Params: RTEINT.P Quant Time: Oct 23 09:28:42 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth ; 10G RUN Internal Standards Internal Standards R.T. QIon Response Cone Units Dev(Min) R.T. Qion Response Cone Units Dev(Min) 1) Bromochloromethane10.56128297101.00 ppb0.0136) 1,4 difluorobenzene12.72134130221.00 ppb0.0051) Chlorobenzene d517.1211774430m f1.00 ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.68 95 38786m $\hat{\lambda}$ 0.74 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 74.00% 0.00 Ovalue Target Compounds

Page 2

Page 409 of 467

1					*4	(TYALYT)	ICAL QC SUM	ANALYTICAL QC SUMMARY REPORT	
CLIENT: WSP Envir Work Order: C1410057	WSP Environment and Energy C1410057	:							11
	5140 Sise Yorkville, NY						TestCode: {	0.25CT-TCE-VC	
Sample ID ALCS10G-101714	SampTyse: LCS	TestCode:	TestCode: 0.25CT-TCE-	Units: ppbV	:	Prep Date:		RunNo: 8946	
Client ID: ZZZZ	Batch (D: R8946	TestNo: TO-15	TO- 15		-	Ana ysis Date:	10/17/2014	SeqNo: 106373	
Ana yle	Result	S 104	sPK value I SP	SPK Ref Val	%REC	LowLimt Hig	HighLimit RPD Ref Val	KRPO RPDLimil Qual	
1,1.5-Tech croethane	1.170	5: 0	-	0	117	20	ង		
1,1.2,2-Tetrachloroelhane	1.200	0.15	÷	0	120	20	130		
1,1 2-Trchismethane	1.090	2.15	-	0	109	70	130		
1.1-Cich crosthate	0.9600	0 15 2	-	0	0.96	20	130		
1.1-C.ch.coethene	C10.1	2.15	-	0	107	20	133		
1.2,4-Trichlorobenzene	1.080	0.15	•-	0	106	02	130		
1 2,4-Trimethylberzene	1.120	0.15		D	112	20	130		
t.2-Optomoethane	1.070	0.15	•	0	107	02	150		
1, 2-Dichlorobenzene	1.230	D.15	•.	0	123	20	13.3		
5.2-Dichloraelňane	1.050	0.15	•''	0	105	0ź	130		
1,2-Dichloroprogane	1.040	0.15	ų	0	104	70	130		
1.3,5-Trimetnyttenzere	1.240	0.15	÷	v	:27	70	130		
1,3-butadiene	1 130	0.15	-	0	118	22	130		
1,3-Dichlorcbenzene	1.240	0.15	-	¢	124	<u>70</u>	130		
1,4-Dichlorobenzere	1.260	0.15	-	cı	126	22	130		
1,4-Dioxane	1 230	0.30	F	G	123	£	130		
2,2.4-trime/hylpentane	: 1:0	0.15	-	0	151	2	130		
4-ethyliciuene	1.250	0.15	-	ð	125	22	130		
Acetone	1.270	0.30	-	٥	127	70	OE,		
Allyl chloride	1.235	0.15	-	0	123	02	130		
Berzere	1.090	0.15	-	0	109	20	130		
Benzyl chloride	1.650	0.15	-	0	165	02	130	S	
Bromodichloremethane	1.180	0.15	-	o	116	70	133		
Bromoferm	1.210	0.15	-	0	121	70	130		
Bromomethane	1.170	0.15	-	0	117	02	130		
Qualifiers: Results topo	Results reported are not biank correled	•	E Value abo	Value above quantitation range	: มู่ไ		H Holding times for	Holding times for preparation or analysis executed	:
J Analyte dete	Analyte detected at or below quantitation limits		ND Not Detect	Not Celected at the Reporting Limit	g Limit		R 3PD autside acce	3PD actside accepted recovery limits	
S Spike Recov	Spike Recevery autside accepted recovery limits	sinis						baller 1 ides	0j 8

CENTEK LABORATORIES, LLC

CLIENT: Work Order: Project:	WSP Environi C1410057 5140 Site Yor	nent and Energy kville, NY						TestCode:	.1	0.25CT-TCE-VC	
Sample ID ALCS	ALCSFUG-105714	SampType: LCS	TeslCod	TeslCode: 0.25CT-TCE-	Lnits: ppbY		Prep Date		RunMo	RunNo: 8946	
Client ID: ZZZZZ		Balch ID: RB346	Testh	TestNo: TO-15		~	Araiysis Date:	10/12/2014	SeqNo	SeqNo: 106373	
Analyie		Result	Ŋ	SPK value - SP	SPK Re ⁴ Val	%REC	LowLimit H	Hightimt - RPD Ref Val		KRPO RPDUimil	Q.Jal
Carbon disuiti d e		1.030	0.15	-	•	ដ	20	130			
Carbon tetrachloride	e.	1.150	0.040	-	0	1':6	07	0C+			
Chlorobenzene		1.050	0.15	-	0	136	02	06,			
Chlorcethane		1.210	0.15	-	0	121	02	:30			
Chloroform		0.970.0	0.15	-	٥	57.0	70	:30			
Coloromethane		1.153	0.15	-	0	115	02	06.			
cis-1,2-Dichlorcethene	ene	0.9200	0.15	-	0	\$2.C	20	06.			
cis-1,3-Dichloropropene	bene	1.060	0.15	-	0	5	02	30			
Cyclohexane		1.062	57 D	-	D	106	70	130			
Disromochloro methane	hare	1.060	97 O	-	0	105	02	130			
Ethyl acetate		1.230	0.25	-	0	123	70	130			
Ethylbenzene		0.\$800	0.15	-	0	8	02	130			
Freen 11		1.160	0.4E	-	0	115	20	130			
Frech 113		1.130	0.15	. -	Ð	113	20	130			
Frean :14		0.5600	0.15		v	0.99	D./	130			
Freor 12		00000	0.15	••	o	970	20	130			
Heptare		1.140	0.15	•.	0	114	70	130			
Hexachlord-1,3-butadiane	taciene	1.230	0.15	*- -	t	123	70	150			
Hexare		0.9200	0.15	-	ō	92.0	2C	130			
isopropyl alochol		1.260	0.15	۲	G	,26	22	130			
m&p-Xylane		2 360	0:30	2	0	:18	92	130			
Melhy/ Butyl Ketone	ē	: 530	0:30	-	٥	£58	70	130			s
Methyl Elhyl Ketore	je	1.260	0:30	-	0	126	Q2	130			
Meloyi İsobulyi Kelone	lone	5.250	0:30	.	0	125	70	130			
Vethyl tert-butyl elher	her	0.9200	0.15	-	0	92.0	02	130			
Methylene chloride		1.170	0.15	-	0	117	20	130			
⇔Xylene		1.160	<u>9</u> .0	-	0	116	20	:30			
Propylene		0:5400	6,2	-	D	X 0	70	DE:			
Styrene		1.160	97. D	÷	0	116	20	130			
Tetrachloroelhyiene	le	1.040	6.5	-	0	ā	20	00,			
Tetrahydrofuran		1.240		÷	D	124	2	130			
Oualifiers:	Results report	Results reported are not bitch corrected	•	ш	Valte above quantitation range	uge	I	Helding ti	mes for preparation	Helding times for preparation or analysis exceeded	Icd
_	Analytic detec	Arable detected at or below quantication limits	inits	_	Not Detected at the Reporting Limit	ng Linuit		R RPD exts	RPD actside accepted repovery limits	rery limits	
~ ~ ~	Spike Record	Spike Recovery outside accepted recovery limits	limits			I					Price 2 of 8
	•									-	uga z vy v

CLIENT: WSP Eavi Work Order: C1410057	WSP Eavironment and Eatergy C1410057										
Project: 5140 Site	5140 Site Yorkville, NY						Г	TestCode: 0.25CT-TCE-VC).25CT-TC]	E-VC	
Sample ID ALCS1UG-101714	SampType: LCS	TeslCol	TeslCode: 0.25CT-TCE-	5- Units: ppbV		Prep Dale	a		RunNo: 8946	16	
Gient ID ZZZZ	Balct: ID: R8946	Test	Tes:No: FO-65			Analysis Date:	te: 10/17/2014	2014	SeqNo: 106373	5373	
Anaiyte	Result	Щ. СС	SPK value	SPK Ref Val	XREC	LowLimil	High', im.t	RPD Ref Val	Od's %	RPDLani	Qual
Totuene	1 040	0.15	-	•	12	70	130				
trans-1.2-Dich proschene	1.023	0.15	-	٥	13	70	9C;				
trans-1.2-0 cf kroptopere	1.060	0.15	-	٥	136	22	0E,				
Trichlorgethere	0.9603	0.040	F	0	56.C	62	06,				
Vinyl acetale	1.010	0.15	-	0	101	62	:30				
Vinyi Bromide	1.060	0.15	F	0	106	02	.30				
Viny chloride	1.090	0.040	-	0	<u>10</u>	02	0E)				
Surr. Bromofisionotienzene	1.050	¢	F	0	106	70	1 <u>3</u> 0				

Page 3 of 8

Holding times for preparation or analysis exceeded RPD outside accepted recovery linits

Ξœ

:

Mat Detected at the Reperting Lumit

9

Spike Recovery setside accepted recovery limits Analyte detected at or below quantitation limits Results reparted are not blank corrected

- 0

ļ

Qualifiers:

E Value above quantitation range

:

Centek Laboratories, LLC

CLIENT: WSP Envi Work Order: C1410057 Project: 5140 Sie	WSP Erwironment and Energy C1410057 5140 Site Yorkville, NY			· · ·	• • • •		TestCoule:	lugM3_T015	
Sample (D ALCS10G-102014	t SampType: LCS	TestCo	CestCode: 1ugM3_T015	15 Units: ppbV		Prep Dale		RunNa: 8950	
C:ent (D: 2222	Batch (D: R6960	Test	TesiNo: TO-15			Analysis Dale:	:: 10/20/2014	SeqNo: 106728	,,
Analyle	Result	Ъ0 БОГ	SPK value	SPX Ref Val	%REC	Lowumi	HighLimit RPD Ref Val	I %RPD RPDLimit	Qual
1, ',1-Trichloroelhare	1.230	0.15	•	0	123	02	130		
1.1.2.2-Tetrachlorcethane	1.200	0.15	••	0	120	20	130		
1.4.2-Trichlorgelhare	1.200	0.15	•	0	120	Q	130		
 1-Dichloroelhare 	1.090	0.15	•.	0	109	70	130		
1 1-Dichloroethere	1.180	0.15	•	0	115	2	130		
1.2,4-Trichloroberzene	0.5800	0.15	•.	0	99.D	D2	130		
 2.4-Trimelhylberzene 	1.100	0.15	×.	0	110	D2	13D		
1.2-Dioronoethane	1.060	0.15	.	0	105	22	130		
 2-Dichlorobenzane 	1.220	0.15	-	0	122	8	130		
 2-Dichloroelinane 	1.240	0.15	٢	0	124	70	130		
1,2-Dichloroprocans	1.230	0.15	-	0	123	8	130		
1,3,5-Trimeläyttenzene	1.220	0.15	-	U	:22	70	130		
1,3-butadiene	1.220	0.15	-	U	.22	Ð2	130		
1,3-Dichlorobenzene	1.220	0.15	-	o	:22	2	130		
1,4-Dichlorzbenzene	1.260	0.15	-	¢	:26	22	130		
1,¢-Dioxare	0.2300	0:30	-	0	23.0	2	130		ŝ
2,2,4-tritr ethylpentane	1.260	0.15	-	0	126	£	130		
4-ethyliciuene	: 270	0.15	-	c	127	02	:30		
Acetone	1:270	0:30	-	6	127	02	06.		
Allyl chloride	02011	0.15	F	0	155	02	30		
Serzere	1.252	0.15	-	0	125	02	190 190		
Benzyl chloride	1.825	0:5	-	0	15	6	130		s
Bromodichloromethane	1.250	C.5	F	0	125	02	130		
Bromoferm	1.230	0.15	-	0	12	0,	130		
Bromomethane	1.260	0.15	-	0	<u>₩</u>	0.2	133		
Carton disulfide	0026.0	2.15	•.	•	97.0	0,	130		
Carpon tetrachicride	1.220	0.15	,	0	122	02	130		
Chio:cbenzene	1.030	D.15	r	0	106	ίς	130		
Chlorcel tare	1.280	0.15	-	0	128	20	130		
Chicatern	1.120	0.15	•	0	112	D7	150		
Chloromethane	1.250	0.15	. .	•	125	DZ	18 :		
Qualifiers: Results rep	Results reported are not biank corrected		E Values	Value sheve quantization range	154		E Holding times	Holding times for preparation or analysis exceeded	ded
J Analytic de	Analyte detected at or below quartitation limits		ND Not Det	Not Detected at the Reporting Limit	g Limit		R RPD cosside a	RPD conside accepted recovery limits	
S Spike Rec	Spike Recovery outside accepted recevery limits	imits							Page 4 of 8

Project: 2.140 Site	o 140 otte Y orkville, NY						····	
Sample D ALCS1UG-102014	SampType. LCS	TestCose	e: 1ugM3_T015 Units: ppbV	A	^D rep Date		Runvic. 8960	
Clent ID: Z222	Batch ID: R8950	Tesh	c: TO-15		Analys s Date:	r t0/20/2014	Sea Nor 106728	
Analyte	Result	PQL	SPK value SPX Ref Val	%REC	LowLind	HighLimit RFD Ref Val	%RPC RPD.im's	Qual
cis-1,2-Dicnloroethene	1.050	0.15	1	105	35	130		
cis-1,3-Dichloropropene	1.160	0.15		116	22	130		
Cyclohexane	1.230	0.15		123	2	130		
Dibramach ioromel/rane	1.150	0.15		115	£	130		
Ethyl acetate	1.130	0.25		118	2	130		
Ethylbenzene	1.:00	0.15	v v	110	22	130		
Frech 11	1.260	0.15	4- -	126	2	130		
Freon 113	1.250	0.15	-	i25	2	130		
Freon 1:4	1:00	0.15	1	110	2	130		
Freon 12	1 110	0.15	1 0	1:1	C2	130		
Heptans	1 220	0.15	1 3	122	10	130		
Hexachloro-1.3-bulaciene	1.180	0.15	1	1:8	62	130		
Herane	0.0.	0 15	1 D	121	C1	130		
Isopropylia conol	1,050	0.15	-	106	02	06,		
måp-Xylene	2.530	0.30	2 0	12	70	06,		s
Methyl Buiyi Ketone	0.5000	0.30	-	50.0	Q2	130		n
Wethyl Einy. Ketone	000.1	20	1	100	02	130		
Wathyl (sobutyl Kelone	COEE:0	0.30	-	33.0	20	130		s
Wethyl tett-sulyl ether	1.002	0.15	-	100	02	021		
Methyleae chloóde	1.160	0.15	1 0	118	70	130		
∿Xylere	1.170	0.15	•	117	8	130		
P.copyleræ	1.020	0.15	0 ,:	102	02	130		
Styrene	1.130	0.15		113	8	133		
čelrachloroettrykme	1.120	0.15		112	D.C	130		
Tetrahydrofuran	1.270	0.15	-	72,	ę	130		
Toluene	1.170	0.15	-	2112	22	130		
trans-1.2-Dicirlor pethene	1.410	0.15	1	1:1	2	130		
trans-1,3-Cichloropropene	1 250	0.15	-	125	22	130		
Trichteroethene	5,150	C.15	1	155	02	130		
Viryl acetate	1.170	0.15	-	1117	22	130		
Viryl Bromide	1.220	0.15	1	122	02	130		
Qualifiers: . Results rep	Results reperted are not blank corrected		E Vialue above quabilitation tange	Dărct di		H Rulding times for	Holding lines for preparation or analysis excorded	R
7 Analyte du	Analyte detected at at below quantitation limits	ncils	ND Nat Detected at the Reporting Limit	soring Limit		RPD outside according a	RPD outside accepted recovery limits	

۰,

:

!

WSP Environment and Energy

CLIENT:

Page 414 of 467

CLIENT: WSP Envi Work Order: C3410057	WSP Environment and Exergy C3410057								
	5140 Site Yorkville, NY						TestCode:	lugM3_T015	
Sample ID ALCS1UG-102014	SampType: LCS	TestCoc	TestCode: 1ugM3_T015	i Units: ppbV		Prep Cate		RunNo: 8960	
Client (D: ZZZZ	Batch ID. RB960	Testh	TestNo: 70-15		-	Analysis Dater	e 10/20/2014	SeqNo: 116728	
Analyte	Result	PQL	SPK value SI	SPK Ref Vai	%REC	Jimi Jwa.	HighLimit RPD Ref Val	%RPD RPDLmi	Qual
Viayl chloride Surr: Bronicthorobenzene	0.960 0038.0	0.15 0		00	118 96.0	22	130 130		
Sampe IC ALCS1UG-102114	SampType: LCS	TeslCoc	TeslCode: 1µgM3_T0:5	i Units: ppbV		Prep Cata		RunNo: B968	
Clien: ID: ZZZZ	Balch IC. R8968	Testh	TestNo: TQ-15			Analysis Date.	e. 10/21/2014	SeqNo: 107658	
Aralyte	Result	POL	SPK value - SI	SPK Ref Val	034%	LawLimit	Hightimit RPD Ref Val	KRPD RPDLmi	Qual
1,1,1-Trichloroethane	D/2 ;	0.15	-	0	127	02	130		
1,1,2.2-Tetrachisroethare	1,250	0.15	÷	0	125	02	130		
1,1,2-Trichloroethane	1.1-0	0.15	-	0	1:1	70	130		
1,1-Dichloroethane	2203	0.15	-	0	122	02	130		
1,1-Dicaloro ethan e	1.250	0.15	-	0	121	02	0E:		
1,2.4-Trich krobenzene	1.200	0.15	-	0	120	02	06,		
1.2 4-Trmethylbenzene	1.152	0.15	-	0	116	2	30		
1,2-Cibromoethare	1.150	0.15	-	0	116	2	06,		
1.2-Cichiorobenzene	1.290	0.15	-	0	123	20	067		
1.2-Dichleroethare	1.190	Ϋ́, Ο	-	0	115	0.	<u>1</u> 00		
1 2-Oich/bropicpare	1.090	32	-	0	109	5	130		
 3,5-Trimelhylberzene 	1.280	0.15	-	0	128	02	130		
d "3-buladiene	1.280	0.15	-	0	126	20	130		
 S-Dichlorobenzere 	1.230	0.15	•		123	2	133		
1,4-Dichlorobenzene	1.290	0.15	•	0	129	02	51		
1,4-Dioxane	1.550	0.30	•′	0	195	D.:	13		S
2,2,4-trimethylpenlane	1.150	0.15	•	o	115	22	ង		
4-ethylioluene	1.270	0.15	-	ņ	127	£	150		
Acelone	1 240	0:30	-	0	:54	2	130		
Allylich toride	1 120	0.15	-	0	:12	22	130		
Benzene	: 150	0.15	÷	٥	115	02	130		
Benzylict öride	2.030	0.15	-	0	209	02	130		s
Bromodich: oromelhane	1 230	0.15	۴	G	624	2	130		
Chustificers: Results renu	Results counted are not blank contexted	:	E Value als	value above geambiation rased	1 State			léolóine, Limes lor memaration et analysis excerced	
.	Analyte detected at or below quentitation hmats	and S		Not Detected at the Reporting Limit	e Limil		R RPD outside ad	RPD outside accepted recovery limits	
S Spike Record	Syrke Recovery existel accopted recovery timits	imits						Pag	Page 6 of 8
								,	•

;

1

÷

:

1

D ALCSIND-10714 Samp' per: Los Test/Color Light/Torl Parp Date: R. Alor Res R. Alor R. Alor	CLIENT: WSP Erwir Work Order: C1410057 Project: 5140 Site 3	WSP Environment and Energy C1410057 5140 She Yorkviële, NY			:			TestCode:	a lugM3 TOI5	:
Amount yee: Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>			1		- 11				D. Mill. Bred	[
1000000000000000000000000000000000000	Sample IU ALCSTUG-102114	Samp yee: LUS	Testucide	droi_t torb		•	Prep Uate		MLANGE 6560	<u> </u>
Result PCL SPK value SPK Ref Val SREC Low Line High Line cm 1226 0.5 0.5 0.6 0.6 0.6 deficition 1226 0.5 0.6 0.2 0.6 0.6 exame 1226 0.5 0.6 0.6 0.6 0.6 exame 1226 0.5 0.6 0.6 0.6 0.6 0.6 exame 11200 0.15 0.16 0.6 0.6 0.6 0.6 0.6 exame 1100 0.15 0.16 0.6 <		Earch I.J.: KB368	Iesino:	\$t-01		-	alen sisten.			· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Analyte	Result			× Ref Val	%REC				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Bromoferm	1.220	G.'5	-,	0	122	02	133		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Bromometiane	1.230	0.5	•	0	123	02	130		
1250 C15 1 0 125 7 12 1120 215 1 0 12 7 12 1120 215 1 0 12 7 12 1120 215 1 0 12 7 12 1120 215 1 0 12 7 12 1120 215 1 0 12 7 12 1110 1110 11 0 12 7 12 1110 1110 11 0 12 7 12 1110 11 1 1 1 1 1 1 1110 11 1	Carbon disulf.de	0.9600	0.15 C	•.	0	696	02	130		
1.120 C 15 - 0 112 70 12 effene 1.200 2.15 - 0 103 70 12 effene 1.200 2.15 1 0 123 70 123 effene 1.130 0.15 1 0 123 70 123 poppere 1.130 0.15 1 0 123 70 123 poppere 1.130 0.15 1 0 123 70 123 poppere 1.130 0.15 1 0 123 70 130 effene 1.270 0.25 1 0 123 70 130 effene 1.270 0.25 1 0 122 70 130 effene 1.270 0.15 1 0 123 70 130 effene 1.270 0.15 1 0 123 70 130 <td>Carbon tetrach cride</td> <td>1.250</td> <td>C.15</td> <td>•.</td> <td>D</td> <td>125</td> <td>22</td> <td>130</td> <td></td> <td></td>	Carbon tetrach cride	1.250	C.15	•.	D	125	22	130		
1200 215 1 0 120 215 1 0 123 70 135 effene 1 1 0 115 1 0 123 70 135 popere 1 1 0 0.15 1 0 123 70 135 popere 1 1 0 0.15 1 0 135 70 135 popere 1 10 0.15 1 0 135 75 130 popere 1 10 0.15 1 0 135 75 130 enthe 1.200 0.15 1 0 122 75 130 utble 1.220 0.15 1 0 123 75 130 utble 1.220 0.15 1 0 123 75 130 utble 1.220 0.15 1 0 123 75 <th< td=""><td>Chicrobenzene</td><td>1.120</td><td>0.15</td><td>•</td><td>0</td><td>112</td><td>70</td><td>132</td><td></td><td></td></th<>	Chicrobenzene	1.120	0.15	•	0	112	70	132		
1050 215 1 0 105 27 70 125 ethene 1200 215 1 0 105 70 125 70 125 popere 1110 0.15 1 0 123 70 125 125 popere 1110 0.15 1 0 123 75 135 nelthane 1200 0.15 1 0 123 75 135 nelthane 1200 0.15 1 0 122 75 136 nelthane 1200 0.15 1 0 122 75 130 nelthane 1200 0.15 1 0 122 75 130 ether 1.200 0.15 1 0 122 75 130 ether 1.220 0.15 1 0 123 75 130 ether 1.220 0.15 1 0	Chicroelhare	1.200	2.15	۰.	0	120	70	130		
Interface 1230 2.15 1 0 123 7 133 133	Chloroform	1.050	0.15	ر	0	105	D2	150		
1030 0.15 1 0 103 76 130 1110 0.15 1 0 113 76 130 1110 0.15 1 0 113 76 130 1220 0.15 1 0 113 76 130 1220 0.15 1 0 122 70 130 1220 0.15 1 0 122 70 130 1220 0.15 1 0 122 70 130 1220 0.15 1 0 122 70 130 1220 0.15 1 0 122 70 130 1220 0.15 1 0 123 70 130 1170 0.15 1 0 123 70 130 1230 0.15 1 0 123 70 130 1231 0.15 1 0 </td <td>Chloromethane</td> <td>1.230</td> <td>0.15</td> <td>-</td> <td>D</td> <td>123</td> <td>20</td> <td>130</td> <td></td> <td></td>	Chloromethane	1.230	0.15	-	D	123	20	130		
1130 0.15 1 0 113 76 130 1110 0.15 1 0 111 7 130 130 11270 0.25 1 0 15 1 0 130 1270 0.25 1 0 122 70 130 1220 0.15 1 0 122 70 130 1220 0.15 1 0 122 70 130 1220 0.15 1 0 123 70 130 1220 0.15 1 0 123 70 130 1230 0.15 1 0 176 70 130 1220 0.15 1 0 176 70 130 1230 0.15 1 0 176 70 130 1231 0.15 1 0 176 70 130 124 0	cis-1.2-0° chioroethane	1.030	0.15	٦	0	103	<u>70</u>	130		
$ \begin{array}{c ccccc} 1,110 & 0.15 & 1 & 0 & (11 & 75 & 120 \\ 1,200 & 0.15 & 1 & 0 & 22 & 72 & 75 & 130 \\ 1,220 & 0.15 & 1 & 0 & 122 & 75 & 130 \\ 1,220 & 0.15 & 1 & 0 & 122 & 75 & 130 \\ 1,220 & 0.15 & 1 & 0 & 122 & 75 & 130 \\ 1,220 & 0.15 & 1 & 0 & 177 & 75 & 730 & 130 \\ 1,170 & 0.15 & 1 & 0 & 176 & 70 & 730 \\ 1,170 & 0.15 & 1 & 0 & 176 & 70 & 730 \\ 1,170 & 0.15 & 1 & 0 & 176 & 70 & 730 \\ 1,170 & 0.15 & 1 & 0 & 176 & 70 & 730 \\ 1,170 & 0.15 & 1 & 0 & 176 & 70 & 730 \\ 1,170 & 0.15 & 1 & 0 & 176 & 70 & 730 \\ 1,170 & 0.15 & 1 & 0 & 176 & 70 & 730 \\ 1,170 & 0.15 & 1 & 0 & 176 & 70 & 730 \\ 1,240 & 0.15 & 1 & 0 & 122 & 70 & 130 \\ 1,240 & 0.15 & 1 & 0 & 121 & 70 & 130 \\ 1,240 & 0.15 & 1 & 0 & 70 & 70 & 130 \\ 1,240 & 0.15 & 1 & 0 & 70 & 70 & 70 & 130 \\ 1,240 & 0.15 & 1 & 0 & 70 & 70 & 70 & 70 & 70 \\ 1,240 & 0.15 & 1 & 0 & 70 & 70 & 70 & 70 & 70 \\ 1,2$	cis-1 3-Dichicropropese	1.130	0.15	-	0	113	20	130		
1200 0.15 1 C 120 $7C$ 130 1270 0.25 1 C 127 7 7 130 1270 0.15 1 C 122 7 7 130 1220 0.15 1 C 122 7 7 130 1220 0.15 1 D 122 7 7 130 1220 0.15 1 D 172 7 7 130 1220 0.15 1 D 172 7 7 130 130 1.175 0.15 1 D 17 7 7 130 131 0.15 1 D 17 7 7 130 123 0.15 1 D 17 7 7 130 123 0.15 1 D 17 7 130 1 123 1	Cyclonexane	1.110	0.15	-	Ü	11	E	130		
1.270 0.25 1 c 27 $7c$ 130 1.270 0.15 1 c 122 72 75 130 1.220 0.15 1 c 122 72 75 130 1.220 0.15 1 c 122 72 73 130 1.250 0.15 1 0 172 72 73 130 1.750 0.15 1 0 175 70 130 0.1900 0.15 1 0 175 70 130 0.1900 0.15 1 0 175 70 130 0.100 0.15 1 0 1 0 120 70 130 0.100 0.15 1 0 1 0 130 100 100 100 100 100 100	Dibromochlotomethane	1.200	0.15	-	ö	120	Я	130		
ref 1.040 0.15 1 2 7.2 7.5 130 1.220 0.15 1 0 122 7.5 130 1.220 0.15 1 0 122 7.5 130 1.320 0.15 1 0 172 7.5 130 1.172 0.15 1 0 173 7.7 7.0 130 1.172 0.15 1 0 175 7 7 7 7 1.172 0.15 1 0 17 7 7 7 7 1.172 0.15 1 0 17 7 7 7 7 1.172 0.15 1 0 17 7 <td>Elhy[,] acelale</td> <td>1.270</td> <td>0.25</td> <td>-</td> <td>¢,</td> <td>127</td> <td>2</td> <td>130</td> <td></td> <td></td>	Elhy [,] acelale	1.270	0.25	-	¢,	127	2	130		
1.220 0.15 1 2 70 130 1.220 0.15 1 0 122 70 130 1.220 0.15 1 0 122 70 130 1.250 0.15 1 0 126 70 130 1.170 0.15 1 0 176 70 130 1.170 0.15 1 0 176 70 130 $0.160hcit 1.765 0.15 1 0 176 70 130 0.160hcit 1.765 0.15 1 0 176 70 130 0.160hcit 1.253 0.15 1 0 176 70 130 0.160hcit 1.253 0.15 1 0 126 70 130 0.160hcit 1.253 0.15 1 0 127 70 130 0.160hcit 1.253 0.15 1 0 127 70 130 0.160hcit 1.2220 0.1$	Ehybenzere	1.040	0.15	-	a	104	£	130		
1 220 0.15 1 0 122 70 130 1.32 Utadiene 1.170 0.15 1 0 106 70 30 1.170 0.15 1 0 106 70 30 1.170 0.15 1 0 117 70 30 1.170 0.15 0.15 1 0 117 70 30 0.135 0.15 1 0 176 70 70 70 70 0.9905 0.15 1 0 122 70 70 70 70 $0.400ce$ 1.230 0.15 1 0 123 70 70 70 70 $0.160ce$ 1.230 0.33 1 0 123 70 130 $0.15ce$ 1.1 0 123 0 123 70 130 $0.160ce$ 1.1 0 121 0 130 122 70 130 $0.160ce$ 1.1 0 0.33 0.35 </td <td>Freon 11</td> <td>1.220</td> <td>0.15</td> <td>-</td> <td>a</td> <td>122</td> <td>2</td> <td>130</td> <td></td> <td></td>	Freon 11	1.220	0.15	-	a	122	2	130		
4 1 0 0 10 126 70 30 -0.52 0.15 1 0 105 70 30 -0.132 0.15 1 0 117 70 30 -0.132 0.15 1 0 176 70 30 -0.132 0.15 1 0 117 70 30 0.0900 0.55 0.55 1 0 176 70 30 0.016 1.75 0.55 1.75 0.75 70 10	Freen 113	1 220	0.15	-	٥	122	2	130		
: 0.60 0.15 1 0 106 70 30 $: 0.13$ cutadiene 1.75 0.15 1 0 117 70 30 $: 0.13$ cutadiene 1.75 0.15 1 0 176 70 30 $: 0.13$ cutadiene 1.75 0.15 1 0 176 70 30 $: 0.3900$ 0.50 0.5 0 1 0 176 70 130 $: 0.900$ 0.50 0.50 0.50 1 0 123 70 130 $: 0.900$ 0.50 0.50 1 0 123 70 130 $: 0.900$ 0.50 0.50 1 0 122 70 130 $: 0.900$ 0.50 0.50 1 0 123 70 130 $: 0.900$ 0.50 0.50 1 0 120 130 $: 0.900$ 0.50 0.50 1 0 120 130 $: 0.900$ 0.50 1 0 1	Freon 114	1 250	0.15	-	٥	133	20	:30		
$v_1 V_2$ 0.15 1 0 17 0 0.20	Freon 12	1 060	0.15	-	0	<u>5</u>	Q2	00.		
xo-1,3-butadiene 1.762 0.15 1 0 176 70 30 1 altohot: 0.9905 0.15 1 0 93 70 130 1 altohot: 1.250 0.55 1 0 93 70 130 1 altohot: 1.250 0.55 1 0 122 70 130 1 wy Ketone 2.450 0.50 1 0 122 70 130 thy Ketone 1.010 0.50 1 0 122 70 130 thy Ketone 2.450 0.50 1 0 127 70 130 thy Ketone 2.220 0.50 1 0 170 70 130 thuby ether 1.010 0.50 1 0 127 70 130 e 1.200 0.15 1 0 11 7 1 1 1 1 1 1 1 1	Hestane	1,170	0.15	-	0	117	70	130		
1 alcohol 0.990.0 0.5 1 0 93.0 70 130 ene 2.430 0.30 2 0 122 70 130 atyl kelone 4.310 0.30 3.30 1 0 421 70 130 atyl kelone 4.310 0.30 1 0 421 70 130 atyl kelone 1.010 0.30 1 0 421 70 130 chuly kelone 1.010 0.30 1 0 421 70 130 chuly kelone 1.010 0.30 1 0 10 421 70 130 chuly kelone 2.220 0.30 1 0 10 10 10 130 chuly kelone 2.220 0.350 1 0 130 10 130 ethouly ether 1.210 0.15 1 0 121 70 130 e 1.210 0.15 1 0 121 70 130 130 130 130<	Herechkro-1,3-butadiene	1.752	0.15	 .	0	176	02	0 60	ŝ	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hexane	0.9900	5: D	•••	0	6	2	130		
ene 2.430 3.33 2 0 122 70 135 thyl Kelone 1.010 0.33 1 0 431 70 135 thyl Kelone 1.010 0.33 1 0 431 70 135 chuly Kerone 1.010 0.33 1 0 431 70 135 chuly Kerone 2.220 0.30 1 0 101 20 130 chuly Kerone 2.220 0.30 1 0 121 70 130 chuly reher 1.200 0.15 1 0 121 70 130 chuly reher 1.210 0.15 1 0 121 70 130 e 1.210 0.15 1 0 121 70 130 70 130 e Results reported are rot islaw corrected E Value abree quarticitic range 121 70 130 e Analyse detrected at or below quan	Isopropy! alcoho!	1.230	\$¥0	•.	0	123	22	130		
altyl Ketore 4.310 3.30 1 0 4.31 7.0 135 thyl Ketore 1.010 3.30 1 0 4.31 7.0 135 c-buly Kerone 2.220 0.30 1 0 101 70 135 c-buly effect 2.220 0.30 1 0 101 70 135 c-buly effect 1.200 0.15 1 0 122 70 135 et chiorize 1.240 0.15 1 0 121 70 130 et chiorize 1.210 0.15 1 0 121 70 130 et Kasuls reported are not islank corrected E Value above quantifation range 1 70 130 et Splike Recovery outsitules accepted are below quantifation famils ND No: Detected at the Reporting Limit 1 s Splike Recovery outsitie accepted recovery limits ND No: Detected at the Reporting Limit 1 s Splike Recovery outside accepted recovery limits ND ND ND ND ND	m&p-Xy ene	2.450	3.35	en en	0	122	2	130		
thyl Kelone 1.010 3.30 1 0 101 20 130 c:bulyl Kerone 2.220 0.30 1 C 222 70 130 c:bulyr erber 1.000 0.15 1 C 222 70 130 erbulyr erber 1.240 0.15 1 C 120 70 130 erbulyr erber 1.210 0.15 1 C 124 70 130 erbulyr erber 1.210 0.15 1 D 124 70 130 erbulyr erber 1.210 0.15 1 D 121 70 130 erbulyr erber 1.210 0.15 1 D 121 70 130 erbulyr erber 1.210 0.15 1 D 130 76 130 erbulyr erber 1.210 0.15 1 D 70 130 erbulyr erber 1.210 0.15 1 D 711 70 130 erbulyr erberred arerbolow quantisticen Ermis ND </td <td>Methyl Batyl Ketone</td> <td>4.310</td> <td>0.50</td> <td>۴</td> <td>0</td> <td>431</td> <td>70</td> <td>130</td> <td>N</td> <td></td>	Methyl Batyl Ketone	4.310	0.50	۴	0	431	70	130	N	
chuly Kerone 2.220 0.30 1 C 222 70 150 cr/budy effer 1.000 0.15 1 C 100 70 130 re chorize 1.240 0.15 1 C 124 70 130 re chorize 1.210 0.15 1 D 124 70 130 re 1.210 0.15 1 D 124 70 130 re 2.3500 0.15 1 D 121 70 130 re Results reported are col itlank contected 1.210 0.15 1 D 121 70 130 re Results reported are col itlank contected E Value above quantifation range 130 76 130 re Analyte detected at or below quantifation limits ND Nor Detected at the Reporting Limit 1 3 s Spike Recovery suiside accepted recovery limits ND Nor Detected at the Reporting Limit 3 1 3	Methyt Ethyl Ketone	1.010	0.30	-	0	101	2	130		
ort-burky ether 1.000 0.15 1 0 100 70 130 is chioride 1.240 0.15 1 0 124 70 130 is chioride 1.240 0.15 1 0 124 70 130 is chioride 1.210 0.15 1 0 121 70 130 ie 2.9300 0.15 1 0 121 70 130 ie Assults reported are col islank corrected 1 0 121 70 130 is Assults reported are of blank corrected E Value above quantifation range 1 <t< td=""><td>Methyl Isobulyi Kerone</td><td>2.220</td><td>0.30</td><td>-</td><td>υ</td><td>222</td><td>22</td><td>150</td><td>ŝ</td><td></td></t<>	Methyl Isobulyi Kerone	2.220	0.30	-	υ	222	22	150	ŝ	
Image: choicide 1.240 0.15 1 0 124 70 130 ie 1.210 0.15 1 0 121 70 130 ie 0.15 1 0 121 70 130 ie 1.210 0.15 1 0 71 70 130 ie 1.210 0.15 1 0 71 70 130 ie Kasults reported are not inlank corrected 1 0 121 70 130 is Analyce detected as or below quantitation timits ND Nor Detected at the Reporting Limit 1 3 5< Spike Recovery outside accepted recovery limits	Methyl lert-buly, ether	1.000	0.15	-	o	100	2	130		
Image: second at a	Methylane chioride	1.240	0.15			124	22	130		
e C.3500 0.15 1 5 99.0 76 130 rs 1.210 0.15 1 0 121 70 130 rs Results reported are not islank corrected E Value above quantitation range 1 1 J Analyte detected at or below quantitation limits ND No: Detected at the Reporting Limit 1 S Spike Recovery suiside accepted recovery limits ND No: Detected at the Reporting Limit 3	o-Xylene	1.210	0.15	-	٥	121	2	130		
1.210 0.15 1 0 121 70 130 rs Results reported are rol blank corrected E Value above quantitation range 11 1 Analyse detected at or below quantitation firmits ND Not Detected at the Reporting Limit) 3 5 Spike Receivery suiside accepted recevery limits ND Not Detected at the Reporting Limit) 3	Propylene	0.9900	0.15	-	ņ	99.0	2	130		
 Results reported are not islank connected Results reported are not islank connected Amalyte detected at or below quantitation limits ND Net Detected at the Reporting Limit Spike Recovery unside accepted recovery limits 	Slyrene	1.210	0.15	-	¢	121	2	130		
Analyse detected at or below quantitation limits ND Net Detected at the Reporting Limit 3. Spike Recovery uniside accepted recovery limits		thed are not blank corrected			ve quanklatiens rac	 JĜc			es for preparation or analysis exceeded	
	-	cted at or below quantitation En	nis		ied at the Reportin	ig ≟imil			e secepted recovery litatits	
		en, uutside accepted recevery li	cits						Page 7 of 8	8 jo :

Page 416 of 467

CLIENT: W: Work Order: CI	WSP Envir CI410057	WSP Environment and Energy CI 410057										
Project: 51	40 Sile Y	5140 Site Yorkville, NY						T	TestCode: lugM3_T015	ugM3_TO	15	
Sample ID ALCS1UG-102164	102154	SampType: LCS	TestCoc	는 1ugM3_T	Tes:Cobe 1ugM3_T015 Units. ppbV		Prep Dale:	نة		RunNo. 8968	88	:
Client ID: ZZZZZ		Batch ID: Ragsa	Test	TestNo TO-15		-	Analysis Cale: 10/21/2014	ie: 10/21/2	014	SecNo: 107658	r658	
Analyte		Resut	POL	SPK value	SPK Ref val	%REC	LowLanit	∹ghLimit	RPD Ref Val	%RPC	RPCLimit	Qual
^T eirachlorcethylene		1.130	0.15		0	118	R	130				
⁻ ekahydroiuran		1.200	0.15	••	U	120	92	130				
Toluene		1.110	0.15	•	D	111	2	130				
Lans-1,2-Dichloraethene	٦Ę	1.:10	0.15	÷	ø	111	F.	130				
Lans-1,3-Dichlorcpropene	sne	1.00	0.15	·-	o	110	g	130				
Tricolorcethene		1.010	0.15	-	¢3	<u>101</u>	R	130				
Viryl acetat e		1 350	0.15	٢	¢	109	70	130				
Viryi Bromide		1.230	0.15	-	0	123	70	130				
Vinyl ch'aric e		1,180	0.15	F	o	18	22	130				
Surr Bromolluorobenzene	nzene	1 260	0	-	G	\$0¢	2	130				

Ealding hirtes for preparation or analysis recorded RFD outside accepted recovery limits т oć :

Poge 8 of 8

Value above quantitation sarge
 ND Not Detected at the Reporting Limit

Spike Recovery reaside accepted recovery limits

Analyte detected at er below grantitation limits

Results reported are not blank corrected

.

Qualifiers:

~ ~

Centek Laboratories, LLC

:

. .

۰.

1

1

Page 417 of 467

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AL101707.DVial: 7Acq On : 17 Oct 2014 3:30 pmOperator: RJPSample : ALCS1UG-101734Inst : MSD #)Misc : A910_1UGMultip1r: 1.00MS Integration Params: RTEINT.PQuant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 12:31:36 2014 Response via : Initial Calibration DataAcq Meth : JUG RUN Internal Standards R.T. QTon Response Conc Units Dev(Min)
 1) Bromochloromethane
 10.53
 128
 41546m
 1.00 ppb
 0.00

 36) 1,4-difluorobenzene
 12.71
 114
 159752
 1.00 ppb
 0.00

 51) Chlorobenzene-d5
 17.11
 117
 135893
 1.00 ppb
 0.00
 System Monitoring Compounds 67) Bromofluorobenzene 18.66 95 101719 1.06 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 106.00% 0.00

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 106.00%

 Target Compounds
 Qvalue

 3) Propylene
 4.62
 41
 39205
 0.94 ppb
 88

 4) Freen 12
 4.67
 85
 197715
 0.97 ppb
 99

 5) Chloromethane
 4.90
 65
 154772
 0.98 ppb
 99

 7) Vinyl Chloride
 5.11
 62
 47125
 1.09 ppb
 100

 8) Butane
 5.23
 43
 57470
 1.09 ppb
 80

 9) 1.3-butadiene
 5.23
 43
 57474
 1.17 ppb
 83

 10) Bromomethane
 5.61
 94
 225768
 1.22 ppb
 11
 610creathane
 12
 100
 1.13 ppb
 79

 12) Ethanol
 5.95
 45
 1000
 1.13 ppb
 79

 13) Acrolain
 6.68
 56
 77476m
 1.27 ppb
 100

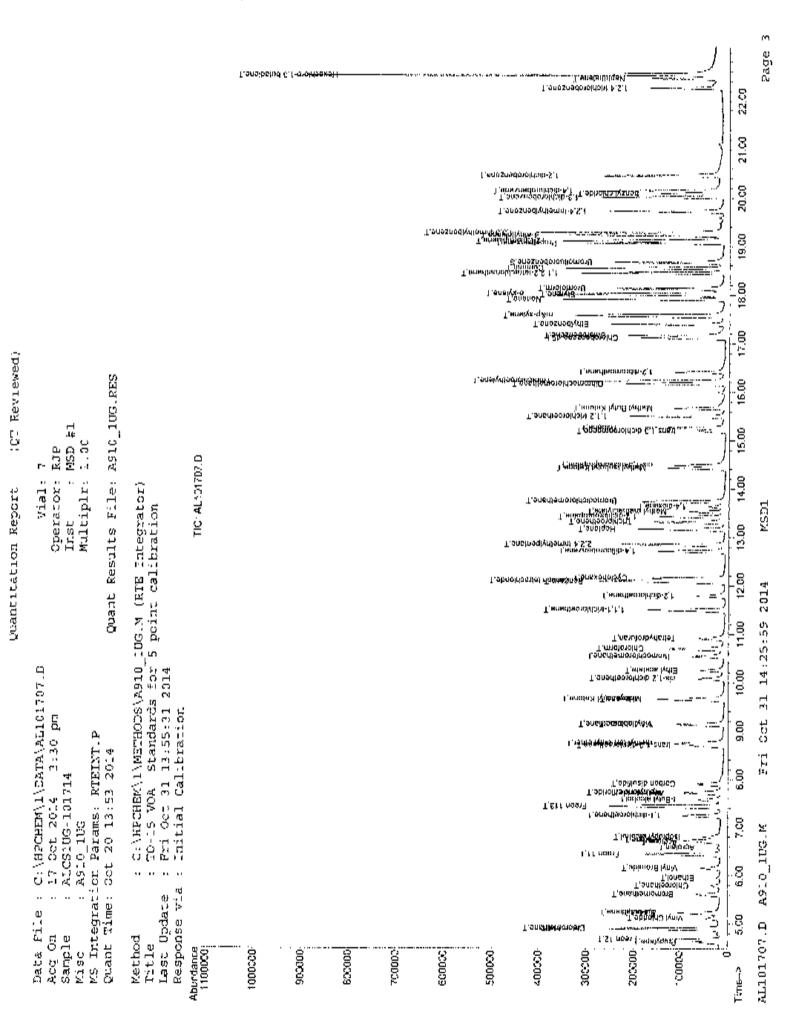
 14) Vinyl Bromide
 6.73
 42
 2299m
 1.20 ppb
 100

 16) Toppropyl alcohol
 6.79
 45
 59455
 1.26 ppb
 400

 17) Pentane (#) - qualifier out of range (m) = manual integration AL101707.D A910_10G.M Fri Oct 31 14:25:58 2014 MSD1

Page 418 of 467

Page 1


Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AL101707.D Vial: 7
 Acq On
 :
 17 Oct 2014
 3:30 pm

 Sample
 :
 ALCS1UG-101714

 Misc
 :
 λ910_1UG
 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 17 21:57:09 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 12:31:36 2014 Response via : Initial Calibration DataAcq Meth : 100 RUN Compound R.T. QIon Response Conc Unit Qvalue -. . .

47)	Bromodichloromethane	13.74	83	158451	1.18 ppb	100
48)	cis-1,3-dichloropropene	14.48	75	70655	1,08 ppb	94
49)	trans-1,3-dichloropropene	15.19	75	54232	1.06 ppb	94
50)	l, l, 2-trichloroethane	15.49	97	80196	1.09 ppb	97
52)	Toluene	15,26	92	97558 .	1.04 ppb	100
53)	Methyl Isobutyl Ketone	14.42	43	89359m /	1.25 ppb	
54)	Dibromochloromethane	16.17	129	139277m (1.08 ppb	
55)	Methyl Butyl Ketone	15.66	43	78113m 😽	1,58 ppb	
56)	1,2-dibromoethane	16.41	107	100371	1.07 ppb	99
57)	Tetrachloroethylene	16.23	1 G 4	86068	1.04 ppb	99
58)	Chlorobenzene	17.16	112	144513	1.06 ppb	96
60)	Ethylbenzene	17.39	91	194812	0.98 ppb	99
61)	m&p xylene	17.58	91	368778	2.36 ppb	97
62)	Nonane	17.91	43	115973	1.29 ppb	94
63)	Styrene	18.00	104	124837	1.16 ppb	92
64)	Bromoform	18.13	1,73	152230	1.21 ppb	99
65)	o-xylene	18.03	91	232822	1.16 ppb	98
66)	Comerce	10,55	105	237269	1.19 ppb	H 98
68)	J,1,2,2-tetrachloroethane	18.45	83	187174	1.20 ppb	99
69)	Propylbenzene	19.07	91	255042m ,	1.22 ppb	
· - r	2 Chlorotoluene	19.11	91	247276m ¹	1.18 ppb	
71)	4 ethyltoluene	19.22	105	235273m	1.25 ppb	
72)	1,3,5-trimethylbenzene	19.28	105	279142m	1.24 ppb	
73)	1,2,4-trimcthylbenzene	19,72	105	182838	1.12 ppb	99
74)	l,3-dichlorobenzene	20.01	146	150751	1.24 ppb	100
	benzyl chloride	20.09	91	102098m	1.65 ppb	
	1,4-dichlorobenzene	20.15	146	143625	1.26 ppb	98
78)	1,2-dichlorobenzenc	20.46	146	153071m	1.23 ppb	
79)	1,2,4-Urichlorobenzene	22.26	180	52319m	1.08 ppb	
BO)	Naphthalene	22.46	128	134562m	1.62 ppb	
81)	Hexachloro-1,3-butadiene	22.54	225	168377m .	1,23 ppb	
					1.1	

(#) = qualifier out of range (m) = manual integration (+) = signals summed AL101707.D A910_lUG.M Fri Oct 31 14:25:58 2014 MSD1

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AL102004.DVial: 5Acq On : 20 Oct 2014 11:30 amOperator: RJPSample : ALCS1UC-102014Tost : MSD #JMisc : A910_10GMultiplr: 1.00MS Integration Parame: RTEINT.PQuant Time: Oct 20 15:50:20 2014 Quant Method : C:\HPCHEM\1\METHODS\A910 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : 10G RUN
 Internal Standards
 R.T. Qion Response Conc Units Dev(Min)

 1) Bromochloromethane
 10.53 128 40425m 1.00 ppb -0.02

 36) 1,4-difluorobenzene
 12.70 114 149098 1.00 ppb -0.02

 51) Chlorobenzene-d5
 17.11 117 129611m 1.00 ppb 0.00
 System Monitoring Compounds67) Bromofluorobenzene18.6695898570.98ppb0.00Spiked Amount1.000Range70 - 130Recovery=98.00%

 Spiked Amount
 1.000
 Range 70 - 130
 Recovery = 98.003

 Target Compounds
 Qvalue

 3) Propylene
 4.60
 41 41716
 1.02 ppb
 89

 4) Proon 12
 4.66
 95 520107
 1.11 ppb
 99

 5) Chioromethane
 4.89
 95 167860
 1.10 ppb
 98

 7) Vinyl Chioride
 5.21
 43
 98850m
 1.27 ppb

 8) Rulare
 5.22
 39
 41464m
 1.22 ppb
 97

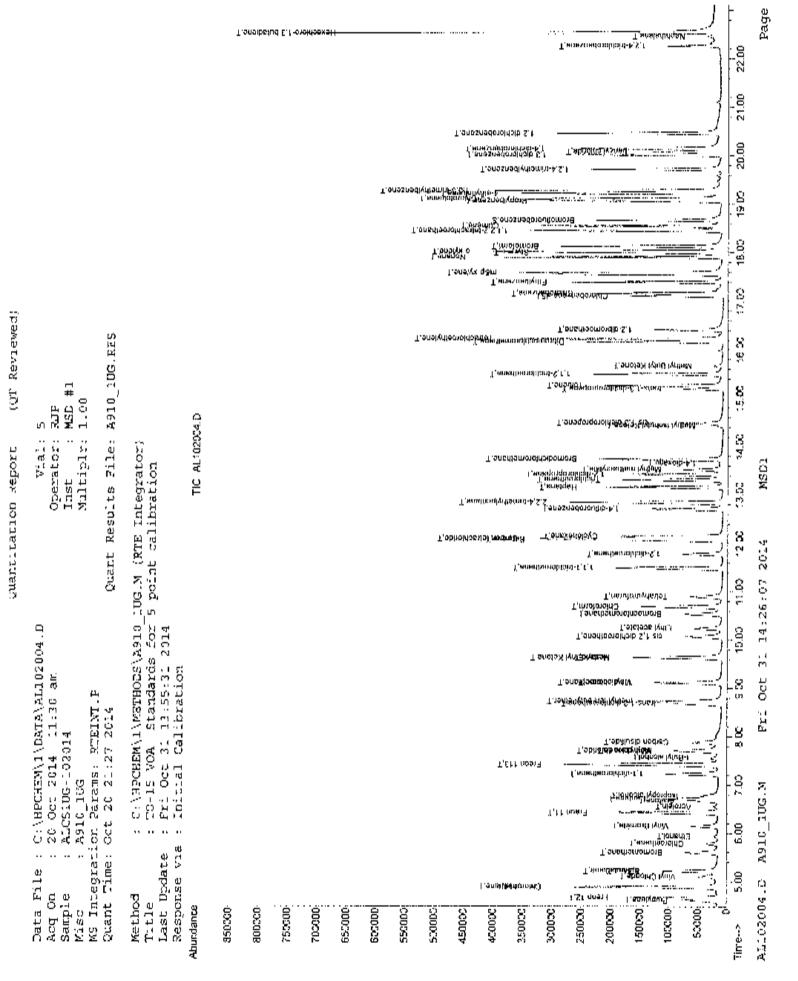
 9) 1.3-butadiene
 5.22
 39
 41464m
 1.22 ppb
 97

 10) Bromorechane
 5.78
 64
 23154m
 1.28 ppb

 12) Ethanol
 5.93
 45
 10640m
 1.12 ppb

 13) Acrolein
 6.56
 56
 8919m
 1.15 ppb

 14) Vinyl Rromide
 6.14
 106
 5402
 1.22 ppb
 15


 15) Fraon 11
 6.42
 101
 128105m
 1.26 ppb
 16

 16) Acetone
 6.66
 58
 17026m
 1.32 ppb
 45

 16) Isopropyl alcohol
 6.77
 44673
 1.06 ppb
 4
 100</

Centek Laboratories, LLC					
	antitat	ion Re	port (Q	T Reviewed)	
Data File : C:\HPCHEM\1\DATA\AL1 Acq On : 20 Oct 2014 11:30 an Sample : ALCS1UG 102014 Mice : A910 1UG MS Integration Params: RTEINT.P Quant Time: Oct 20 15:50:20 2014	m		תו שע	Vial: 5 erator: RJP st : MSD ltiplr: 1.00 s File: A910	
Quant Method : C:\HPCHEM\1\METHO Title : TO-15 VOA Standa: Last Update : Mon Oct 06 11:33: Response via : Initial Calibratic DataAcq Meth : LUG_RUN	rds for 09 2014	_10G.M 5 poi	{ (RTE Inte nt calibra	grator) tion	
Compound	R.T.	QION	Response	Conc Unit	Qvalue
47) Bromodichloromethane	13.73	83	1.56737m / 70894	1.25 ppb	95
<pre>48) cis 1,3 dichloropropene 49) trans-1,3 dichloropropene 50) 1,1,2 trichloroethane 52) Toluene 53) Methyl Tochubul Vatara</pre>	15.19	75	60031	1.16 ppp 1.25 ppb	95
50) 1,1,2-trichloroethage	15.49	97	82187m	1.20 ppb	
52) Toluene	15.25	92	104942	1.17 ppb	98
53) Methyl Toobutyl Ketone 54) Dibromochloromethane 55) Methyl Butyl Ketone	14.42	43	22715m	0.33 ppb	
54) Dibromochloromethane	16.16	129	140814m	1.15 ppb	
55) Methyl Butyl Ketone	15,66	43	23554m	0.50 ppb	
56) 1,2 dibromoethane	16 41	100	0 H 7 O 7 H) 1 OC much	
57) Tetrachloroethylene	16.22	164	881.94m	1.12 ppb 1.08 ppb	
58) Chlorobenzene 60) Ethylbenzene	17.16	112	140682m	1.08 ppb	
61) m&p-xylene	17.39		208512	1.10 ppb 2.48 ppb 1.42 ppb 1.13 ppb 1.23 ppb 1.17 ppb	97
62) Nonane	17.58	91	369227m	2.48 ppb	
63) Styrene	17,91 18,00	104	121075	· 1.42 ppb	96
64) Bromoform	18.13		147193m	1.13 ppb	
65) o xylene	18.03		223049m	1.17 ppb	
			22304,50	: 1.25 ppb	98
66) Cumene 68) 1.1.2.2-tetrachloroethane	18.45	83	179661m	1.25 ppb 1.20 ppb	20
69) Propylbenzenc	19.07	91	212669m	1.20 ppb 1.07 ppb 1.22 ppb	
70) 2-Chlorotolucne	19,11	91	243785m	1.22 ppb	
71) 4-ethyltoluene	19.22	105	227912m	1.27 ppb	
72) 1,3,5 trimethylbenzene		105	263783m	1.27 ppb 1.22 ppb	
73) 1,2,4 trimethylbenzene	19.72	105	170712	1.10 ppb	97
74) 1,3-dichlorobeozene	20.01	1.4 G	343762m 🔅	1.22 ppb	
75) benzyl chloride	20,08	9).	106975 .	1.82 ppb	97
76) l,4-dichlorobenzene	20.14	146	136911m -		
78) 1,2 dichlorobenzene	20.46	146	144938m (1.22 ppb	
79) 1,2,4-trichlorobenzene	22.27	180	45239	0.98 ppb	99
80) Naphthalene	22.46	1.2.8	28227m	0.36 ppb	
81) Hexachloro-1,3-butadiene	22.54	225	153581m	1.18 ppb	

(#) ~ qualifier out of range (m) = manual integration (+) - signals summed AL102004.D A910_1UG.M Fri Oct 31 14:26:06 2014 MSD1

ന

Centek Laboratories, LLC Quantitation Report (OT Reviewed) Data File : C:\HPCHEM\1\DATA2\AL102110.D Acq On : 21 Oct 2014 5:13 pm Operator: RJP Sample : ALCSLUG-102114 Inst : MSD #1 Misc : A910 1UG Multiple: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 21 17:38:14 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_lUG.M (RTF Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : 10G RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.5412839509m1.00ppb0.0036) 1.4-difluorobenzene12.711141528891.00ppb-0.0151) Chlorobenzene-d517.111171238651.00ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.66 95 92130 1.05 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery - 105.00%

 Spiked Amount
 1.000
 Nange
 70 - 130
 Recovery
 - 105.00%

 Target: Compounds
 Qvalue

 3)
 Propylene
 4.61
 41
 39341
 0.99
 ppb
 99

 4)
 Frecon 12
 4.66
 85
 204766
 1.06
 ppb
 99

 5)
 Chloromethane
 4.89
 85
 163456
 1.09
 ppb
 91

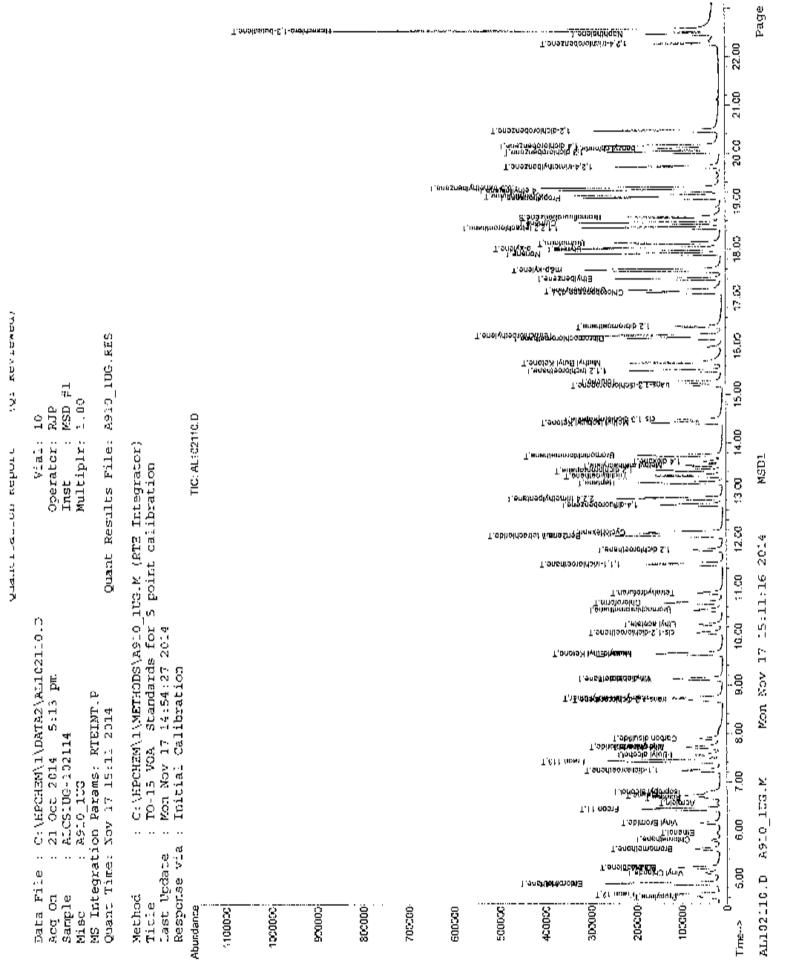
 6)
 Frecon 114
 4.89
 85
 163456
 1.09
 ppb
 92

 7)
 Vinyl Chloride
 5.11
 62
 48547
 1.18
 ppb
 92

 9)
 1.3
 butadiene
 5.22
 43
 58108m
 1.12
 ppb

 9)
 1.3
 butadiene
 5.22
 43
 5212266
 1.32
 ppb

 11)
 Chloroethane
 5.99
 64
 21292m
 1.23
 ppb
 92


 12)
 Ethanol
 5.99
 64
 21292m
 1.23
 ppb
 92

 14)
 Marpholde
 6.72
 42
 47324
 1.19
 pp
 93
 Ovalue. Target: Compounds

ntitat:	ion Re	port (O	T Reviewed)	
02110.1	5	Op In Mu	st : MŠD ltiplr: 1.00)
ds for 9 2014				
R.T.	Qion	Response	Conc Unit	Qvalue
15.50 15.26 14.41 16.17 15.66 16.41 16.22 17.16 17.40 17.58 17.91 18.00 18.13 18.03 18.55	97 92 43 129 43 107 164 112 91 43 104 173 91 105	78015 94921 144440 140391m 194037 99642 88784 140066 186822 346451 99699m 118974 139372m 219974 217902	1.11 ppb 1.11 ppb 2.22 ppb 1.20 ppb 4.31 ppb 1.16 ppb 1.18 ppb 1.12 ppb 1.04 ppb 1.21 ppb 1.21 ppb 1.22 ppb 1.22 ppb 1.22 ppb 1.22 ppb 1.22 ppb	100 97 95 98 98 98 98 98 98 98 98
19.07 19.12 19.23 19.28 19.72 20.02 20.09 20.15 20.45 22.27 22.46	91 91 105 105 146 91 146 146 180 128	178342 245738m 243282m 217731m 263275m 171830 136191m 117667 133972m 146163m 53274m 151329m	1.25 ppb 1.29 ppb 1.27 ppb 1.27 ppb 1.28 ppb 1.28 ppb 1.28 ppb 1.23 ppb 2.09 ppb 1.29 ppb 1.29 ppb 1.20 ppb 2.00 ppb	100 99 97 97
	02110.1 0210.1 0210.1 0210.1 0210.1 0210.1 0210.1 0210.1 0210.1 020.1 020.1 020.1	Qua SA910_10G.M As for 5 poi 9 2014 1 R.T. Qion 13.74 83 14.48 75 15.19 75 15.50 97 15.26 92 14.41 43 16.17 129 15.66 43 16.41 107 16.22 164 17.40 91 17.58 91	02110.D Op In Mu Quant Report S\A910_10G.M (RTE Inte- ds for 5 point calibra 9 2014 14 R.T. Qion Response 13.74 83 158242 14.48 75 70848 15.19 75 54010 15.50 97 78015 15.26 92 94921 14.41 43 144440 16.17 129 140391m 15.66 43 194037 16.41 107 99642 16.22 164 88784 17.16 112 140066 17.40 91 186822 17.58 91 346451 17.91 43 99699m 18.00 104 118974 18.13 173 139372m 18.03 91 219974 18.55 105 217902 18.45 83 178342 19.07 91 245738m 19.22 105 263275m 19.72 105 171830 20.02 146 136191m 20.09 91 117667 20.15 146 133972m 22.46 128 151329m	02110.D Vial: 10 Operator: RJF Inst :MSD Multiplr: 1.00 Quant Resolts File: A910 SA910_1UG.M (RTE Integrator) fs for 5 point calibration 9 2014 A R.T. Qion Response Conc Unit 13.74 83 15.19 75 15.19 75 15.19 75 15.19 75 15.26 92 16.17 129 16.17 129 16.22 164 17.16 112 17.16 112 17.16 112 17.16 112 17.17 139372m 17.20 ppb 17.31 139372m 1.21 ppb 18.00 104 118974 1.21 18.03 91 19.12 129774 12.2 ppb 18.03 91 19.24 1.25 19.25 105

(#) - qualifier out of range (m) = manual integration (+) = signals summed AL102110.D A910 LUC.M Mon Nov 17 15:11:15 2014 MSD1

.

61

71
÷.
2
~÷-
-m-
<u> </u>
Ħ
Ä.
_

ANALYTICAL QC SUMMARY REPORT

· .

i

. ..

ł

,

ï

!

:

CENTEK LABORATORIES, LLC

Page 427 of 467

:

										0.4201-10270	
Sample ID ALCS10GD-101714 San	SampType: LCSD	TestCode:	E: 0.25CT-TCE-	Unils: ppbV		Prep Date			Runivo: 8946	1 6	
Client : D: ZZZZ B:	Batch ID R8945	TestNo ⁻	o [.] TO-15		~	Analysis Dale:	: 10/17/2014	_	SeqNo: 106374	6374	
÷1/12/17	Result	, or	SPK value SPK	SPK Ref Val	%REC	LowLimit	HighLimil RP	RPD Ref Val	048%	RPDLimit	Qual
1,1,1-Trichloroethane	1.030	0.15	-	Ð	106	02	5	1.17	8.00	30	
1,1,2.2-Tetrachicroethane	0056 😳	0.15	e .	0	066	02	130	1.2	19.2	ខ	
1,1,2-Trichloroethane	1.000	0.15	۹	0	105	20	133	1.09	8.61	30	
1,1-Dichlorcethane	0079 0	0.15	•	U	97.0	70	130	0:56	1.04	8	
1,1-Dichlorcethene	1.070	0.15	•	c	107	02	133	1.07	0	30	
1,2,4-Trichlorocenzen a	1.220	D.15	•	0	122	02	133	1.63	12.2	30	
1,2,4- ^T rimethylcenzene	1.050	0.15	•"	0	105	02	135	1.2	6.45	30	
1,2-Dibrompethane	0.9500	0.15	.	¢,	066	02	130	1:01	22.7	30	
1,2-Dichlorocenzene	1.130	0.15	÷	Ċ	113	02	133	1.23	8.47	8	
1,2-Dicalorectane	1.010	0.15	- -	¢	101	20	133	1.05	3.88	30	
1,2-Dichlorogropane	006610	0.15	٢	t,	0.69	70	130	3	¢.53	30	
1,3.5-Trimethylbenzene	: 260	0.15	۲	ډ, ه	106	2	130	1.24	15.7	30	
1,3-butadiene	1.260	0.15	-	¢'3	126	70	130	÷ 18	6.56	30	
1,3-Dicalorotenzene	1 110	0.15	ſ	0	111	5	130	: 24	11.1	30	
1.4-Dichlorobenzens	1.110	0.15	-	c ⁻ 1	111	С1 С	130	8	12.7	30	
1.4-Cioxane	0.4300	0:30	٢	o	43.0	2	130	.23	56.4	30	S. Ч
2.2.4-trimethytpertare	1:1:0	0.15	-	G	11	21 1	130	:L •	0	8	
4-elhylioluer .c	1,110	0.15	-	٥	11	2	130	1.25	11.9	30	
Actione	1.160	0:30	-	0	61,	62	130	1.27	3.0	ŝ	
Ally chlorde	1.2.0	0.15	-	ت	121	22	130	1.23	2	8	
Benzene	1.050	0.'5	-	٥	106	02	130	1.09	2.79	3	
Benzyi chlorde	1.250	0.55	-	0	123	02	130	1.65	25.3	8	
Bromodichloremethane	1.050	0.15	-	٥	135	02	06;	1.16	11.7	33	
Bromoform	0.9800	0.15	-	٥	93.0	02	130	1.21	21.0	8	
Bromomethane	1,240	0.15	-	٥	77:	G2	130	1.17	5.85	8	
Qualifiers . Results reported and	Results repetted are not blank comotted		E Value above	Value above quantitation range	: 2	:	H Held	ling times for ₁	Beldine times for preparation or analysis exceeded	Inalysis excext	ः विष्
ſ	er h e ktwicuantibitition br		MD Mat Dataste	d or the Denomin	- I imme						
				iver indicated of the relative county called				houtside accep	Kirit) autside accepted recovery limits	SILLIN	

. WSP Environment and Energy C1410057 CUENT:

. . . .

÷

Work Order:

Page 428 of 467

Project: 5140 Site Y	5140 Site Yorkville, NY						Ĩ	TestCode: 0	0.25CT-TCE-VC	S-VC	
Sample ID ALCS106D-101714	SampType: LCSD	TesiCed	TeslCode: 0.25CT-TCE-	Laits: ppbV		Frep Date			RunNo. 8946	5	
Citent IC ZZZZ	Batch ID: R6946	TestN	TestNo: TO- t5		-	Aralysis Date:	: 10/17/2014	014	SeqNo: 106374	374	
Anayle	Result	PQ.	SPK velue - SP	SPK Ref Vaj	%REC	LowLimit	HighLimit	RPD Ref Val	жерс	3POLMC	Quai
Carbon distrifice	0.8700	0.15	-	0	87.0	75	130	1.03	16.8	8	
Carbon tetrachloride	1.032	0.040	-	Ċ	103	2	130	1.16	11.9	R	
Chlorocenzere	0.9900	0.15	F	Ċ	<u> 99.0</u>	52	130	106	6.83	90	
Chloraethane	1.240	0.15	-	¢	124	02	130	27	2.45	30	
Chloreforn:	0.9400	0.15	.	¢,5	94.0	22 22	130	0.82	3.14	30	
Chloromethane	181	0.15	-	0	:18	22	130	1 15	2.58	8	
cs-1,2-Dichloroethere	0.9520	0.15	-	¢	95.0	5	150	0.65	3.21	99	
cs-1,3-Dichlaropropene	0.0.	0.15	-	¢	<u>5</u>	22	130	1 D9	6.70	30	
Cyclohexane	0801	0.15	-	U	:08	R	130	91	1.87	0E	
Cibro:ho:hlo:amethane	0.9200	0.15	-	o	92.0	2	130	1 09	16.0	30	
Einy aceiale	1:150	0.25	-	U	119	22	135	1 23	3.31	30	
Elay tenzere	: 240	0.15	-	0	124	2	130	86 O	23.4	30	
Fiteon 11	1.080	0.15	-	U	108	2	135	1.16	7.14	30	
Figon 113	, DBC	0.15	-	0	108	2	133	1 (3	4.52	99	
F.eon 114	, 050	0.15	-	o	105	22	135	0.99	6.90	8	
Ereon 12	020 ;	0.15	-	0	101	2	130	(8)	9.80	30	
Heplane	00110	0.15	F	0	110	Ж	135	1,14	3.57	8	
Herachloro-1,3-butaciene	130	0.15	۲	U	113	5	130	121	8.47	30	
Hexane	0.9600	0.15	-	0	96.0	2	135	C.92	6.32	30	
Isoprapyl aicchol	0.9200	0.15	-	o	92.0	Ċ2	130	81	31.2	30	œ
тар-Хуівле	2.400	0:30	2	63	:20	70	130	2.36	1.68	30	
Methyl Butyl Kelone	0.7852	0:30	-	0	78.0	2	130	1.58	67.8	90	œ
Methyl Elhyl Ketone	1.020	0:30	-	r)a	.02	22	130	97°;	21.1	30	
Methyl Isocutyl Kelore	0.6030	0:30	-	\$	60.0	22	130	: 25	70.3	30	ŞR
Methyl tert-buly, ether	0.9620	0.15	-	0	96.0	20	130	0.92	4.26	30	
Methylene chloride	1,180	0.15	.	o	110	2	130	11.17	6.1	30	
o-Xylene	1.000	0.15	-	0	100	G2	130	15	14.ð	33	
aualidou <i>c</i> :	1.150	0.15	-	c,	1:5	2	130	0.94	20.1	22	
Styrene	1.050	0.15	-	G	105	70	130	1 IS	5.05	30	
Tetrach:croethylene	0.9300	0.15	-	0	93.0	2	130	н. Н	11.2	ŝ	
Tetrahydrofuran	1,170	0.15	-	o	117	2	130	: 24	5.81	8	
Qualifiers: Results reporte	Regults reperted are not blank corrected		E Value aber	Value above quantitation cange			. H	Holding Limes for preparation or analyses excorded	ргерага;іот ся а	abyası exerede	Ð
-	Analyte detected at or below quantitation limits	nis	ND Not Detect	Not Devoted at the Reporting Limit	e Limit		ас	R.PD cutside accepted recovery limits	pted recovery lin	aits	
S Spike Recover	Spike Recovery existide accepted recevery limits	slice								5	טיין יי

Centek Laboratories, LLC

	2.	
	WSP Environment and Energy	
: .	WSP Envin	CI410057
.:	CLIENT:	Work Order:

Page 429 of 467

. .

}--

I .

:

Project: 5140 S	5140 Site Yorkville, NY						im.	TestCode: 0.25CT-TCE-VC	125CT-TCI	E-VC	
Sample ID ALCS1UGD-101714 SampType: LCSD Crent ID ZZZZZ Batch ID: R8946	1734 SampType: LCSD Batch ID: R8946	Test	istCode: 0.25CT-TC TestNo: TO-15	EstCode: 0.25CT-TCE- Units. ppb/ TestWc: TO-15		Prep Date: Ana ysis Dete: 10/17/2014	e: 1017/2	014	RunNo: 8946 SecNo: 106374	46 5374	
Anziyle	Result	PCL	SPK value	SPK value - SPK Ref Val	MREC	LowLimit	Highimc	%REC LowLinit HighLime RPD Ref Va	0c8%	%RPD RPOLimit Qual	Qual
Tciuere	0.9600	6.5	-	0	56.0	02	105 105	8	008	8	
trans-1,2-Cict: croethene	1.050	0.'5	-	0	105	62	130		4.88	8	
trans-1,3-Dichioropropene	1.040	0.5	-	0	2	C2	130	3	1 50	90	
Trichlarbethene	0.9300	0 040	-	0	53.0	2	130	50.5	3.17	8	
Vinyl acetate	1.090	0.15	÷	٥	126	2	130	8, ,	7.62	30	
Vinyl Bromide	1.140	0.15	-	٥	1:4	2	130	90°,	72.7	8	
Vinyl of kride	1,140	0.040	÷-	٥	4:4	2	130	30.0	448	30	

Results reported are not black corrected Qualifiers:

E Value above quartitation cange
 ND Not Detected at the Reporting Limit

- Hulding times for preparation or analysis exceeded
 RPD outside accepted recovery limits RPD outside accepted recovery limits
- Page 3 of 8

Centek Laboratories, LLC

WSP Environment and Energy

CLIENT: •

:

C1410057 Work Order:

.

:

. 1

÷

Project: 5140 Site Y	5140 Site Yorkville, NY						Ē	TestCode: 1	fugMJ_T015	15		
Sample ID ALCS1UGD-102014	SampType: LCSD	TestCade	TestCode: tugM3_T015	TO15 Units: ppbV	:	Prep Cale			Runho 8960			
Client .D: ZZZZ	Satch ID: R8960	TestNo	TestMo: 70-15			Analysis Date:	10/20/2014]14	Sec.Vor 106729	6223		
Analyte Analyte	Result	PQL	SPK value	 SPK Ref Va. 	%REC	LowLinil H	Higalimil	Ref Val	QAA%	(mi.'Oc.R	QUa	
1.1,1-Trichlorcettane	.230	0.15	,	0	:23	22	130	1.23	0	30]
1,1,2,2-Tetrach kmelhare	140	0.15	•	ې ۲	14	5	31	1.2	5.13	30		
1,1,2-Trichloroethane	1,570	0.15	•	c(3	10;	70	130	1.2	11.5	90		
1,1-Dichlorcethane	1 130	0.15	•	ے ۲	113	5	130	1.03	3.60	30		
1,1-Dichlorcethene	: 3:0	0.15	•	÷	۲¢;	70	133	1.18	10.4	30	Ś	
1.2,4-Trichlorogenzene	0.9700	D.15	,	ہ ۔	97.0	70	130	6.5 8	1.03	30		
1,2,4-Trimethylbenzene	0.8200	0.15	,	·	32.0	R	8	1.1	29.2	30		
1,2-Dibromoethane	050".	0.15	•	۰ -	60;	5	13	1.06	2.79	30		
1,2-Dichlorošenzene	. 160	0.15	,	0	91;	70	130	1.22	5.04	30		
1,2-Dichlorbethane	- 260	0.15	•	¢	:26	5	150	124	1.60	30		
1,2-Dichloropropane	. 050	0.15	,	с) -	, 05	72	130	1.21	15.8	30		
1,3,5-Trimethylbenzene	040.1	D.15	•	ن -	-04	5	\$	1.22	15.9	30		
1,3-butad ene	540 *	0.15	•	- -	Ъ,	70	130	1.22	23.2	30	S	
1,3-Dicitlorocenzene	÷ 140	0.15	1	0	,14	2	130	1.22	6.78	96		
1,4-Dichlorocenzene	1 120	0.15	,	- -	:12	Ê	135	72 	11.8	30		
1,4-Dioxane	0.6200	0:30		с, Г	62.0	22	135	C 23	91.8	30	SR	œ
2,2.4-trimethylpertace	1.120	0.15	•	- -	112	C2	130	8 	11.8	30		
4-ethyltoluere	1.050	0.15	,	0	105	2	130	1.27	19.0	30		
Acetone	1.450	0:30	,	1	9 48	22	130	1.27	15.3	30	S	
Allyi chlorde	1,480	0.15	,	0	(4 9	2	130	- DS	34.6	55	SR	æ
Benzerz	1.110	0.15		0 1	1:1	C2	130	\$3 ·	11.9	33		
Benzyl chlorde	1.270	0.15		- -	127	22	130	:.82	35.6	ន	œ	
Bromodichlorgmethane	1.200	0.15		1 D	120	02	130	1.25	4 09	3		
Bromafarm	1.245	0.15		-	124	0.2	е,	1.23	0.813	30		
Bromomethane	1.480	0.15		0	143	02	;30	1.25	:9.	30	4D	
Carbon disulf de	1.140	0.15		0	114	70	061	76.0	· 9.	8		
Carbon tetrachisride	1.200	0.5		1 0	123	02	130	1.22	1.65	30		
Chlorobenzene	1.090	5: D		1	105	70	100	1.08	0.922	8		
Chloroelhare	1.620	0.15		0	162	02	(<u>3</u> 0	1.28	23.4	30	ŝ	
Chloroferm	1.150	0.15		•	115	20	<u>6</u>	1.12	2.64	8		
Chicrometrane	1,490	0.15		•	149	02	02;	1.25	5.5	30	ŝ	
Qualifiers: Results report	 Kesulis reported are not blank corrected		E Valt	Value above quantilation range	JÊC		т т	Holding times for preparation or analysis exceeded	preparation or a	analysis excer	ded .	:
J Analyle Getect	Analyte detected at or below quantitation limits	utils	ND NG	Net Detected at the Reporting Limit	ng 1 incil		R H	RPD outside accepted recovery limits	sted recovery life	nits		
S Spike Recover	Spike Recovery outside accepted recovery limits	itints									, aga	Page 4 of 8
											;	ì

: 1 . ·

> WSP Environment and Energy ; CLIENT: Work Order: Project

C1410057 S140 Site Yorizoille NY

Page 431 of 467

•

;

!

:

Sample ID ALCS1UGD-102014	SampType: LCSD	TestCode: 1ugM3_T015	1 ughl3_1	CO15 Units: ppbV		^a rep Dale:			Rur Vo 8960	뭈	
Cliert D: ZZZZ	Saich ID- Auge0	TestNo: TO-15	T0-15			Analys s Cale:	£0/20/2014	D14	SecNo: 106729	5729	
Analyte	Result	POL	SPK valuê	SPK Ref Val	%REC	towLani ≻	≻ ghLinil	RPD Ref Val	OAN%	RPDLimit	Que
cis-1.2-Dichicroethene	1.060	0.15	-	0	90;	70	133	1.05	0.948	30	
cis-1.3-C.ct./cropropere	1.040	0.15	ŗ	0	104	02	130	1.16	10.9	80	
Cyclohexane	1.070	0.15	* -	0	107	20	51	1.23	13.9	30	
Dibrert pohloromethane	1.150	0.15	÷.	0	115	02	5	1.15	0	30	
Ethyl acetale	1.110	0.25	ę.	U	111	70	5	1.13	6.11	30	
Ethylberzene	0 9600	0.15	Ť	Ð	95.0	02	130	1.1	14.6	30	
Freen 1'	1.420	0.15	¢	U	142	20	130	1.26	11.9	30	ŝ
Freon 1:3	1 360	0.15	4	0	136	20	133	1.25	3.43	8	Ċ
Freon 1'4	1.200	0.15	ſ	Ð	120	20	133	1.1	8.70	30	
Freon 12	1.:80	0.15	v-	0	118	02	133	1.11	6.11	8	
Heplane	1.130	0.15	ŕ	0	113	70	130	1.22	7.66	8	
Hexachloro-1,3-butaciene	1.170	0.15	•	0	117	0/	130	1.18	0.651	30	
Hexane	1.C30	0.15	.	0	103	Dź	130	1.01	1.56	80	
Isopropyl alochol	1.140	0.15	ſ	υ	114	02	130	1.06	7.27	30	
m&p-Xylene	2.250	0:30	~	0	112	20	130	2.63	15.6	80	
MeDry, Buryl Ketone	0.5700	0.30	ŕ	0	67.0	20	130	0.5	29.1	30	S
Meiny: Ethyl Ketone	0.9600	0:30	ſ	0	96.0	20	150	-	84	90	
Metnyi Isobulyi Ketore	0.6200	0.30	F	0	82.0	70	130	23	85.2	8	œ
Methy: lert-buly! ether	0.6900	0.15	-	0	85.0	20	130	-	12.8	ខ	
Methylene chioride	1.390	0.15	-	0	600	70	130	1.18	16.3	90	S
o-Xylene	1,130	0.15	F	0	113	70	130	1.17	3.48	8	
Propyleae	0601	D.15	-	•	109	22	130	1.02	6.84	99	
Styrene	1.550	0.15	-	0	109	70	130	, 13 ,	3 50	8	
Terrachioroethylen s	050:	0.15	÷	0	109	2	130	1,12	2.71	30	
Tetrahydrofuran	140	0.15	-	G	1:4	22	130	12.	3.0.8	ŝ	
Towers	0001	0.15	-	G	133	2	130	2173	:2.7	ŝ	
frans-1, 2-Dichloraethene	1.130	0.15	F	0	51 133	52	130	11.7	3.79	22	
stans-1.3-Dichloroptopere	1.020	0.15	-	G	35	2	130	1.25	20.3	8	
Trichlorgethere	0:0:0	0.15	-	6	101	2	130	1.15	13.0	66	
Vinyl acetale	1 250	0.15	-	0	109	2	130	217	7.05	30	
Vinyl Bromide	1.310	0.15	÷	0	131	8	130	27	7.11	30	S
Qualifiers: Results report	Results reported are not blank corrocted	•	E Valu	Value above quantitation range	5		H	Hadding times for preparation or analysis exceeded	preparation or a	aalysis exces	18
J Analyze detect	Analyte detected at er bekow grazititation livnils		ND Nat I	Not Detected at the Reporting Lowd	ş Lemil		œ.	RPD outside accepted recovery lengts	pted recovery ha	1.15	
		,									

 WSP Environment and Eaergy	C1410057
 CLIENT:	Work Order:

i

Page 432 of 467

.

:

i

Project: 5140 Site Y	5140 Site Yorkville, NY						F	TestCode: 1	lugM3_TOIS	15	
Sample :D ALCS1UGD-102014	SampType: LCSD	Tes:Cod	Tes:Code tugM3_T015 1	Units: ppbV		Prec Date			RunNo: 8960	9	
Client ID: ZZZZ	Betch ID: R8964	Tesly	Ve. T0-15		-	Analysis Dale:	10/20/2014	014	SeqNo: 105729	5729	
Analyte	Result	POL	SPK value SPK	SPK Ref Val	%REC	LowLimis	HighLmi	RPC Ref Val	Cd3%	RPDLimil	Qual
Vînyi chipide	1.300	0.15		0	13.0	20	130	1.18	9.66	30	
Sample D ALCS1UGD-102114	SamcType LCSD	TestCoc	TestCoce. 1ugM3_TO15 1	Units: ppbV		Prep Date:			RunNo: 8968	88	
Client ID: 22222	Batch iD: R8968	TeslV	No: TO-15		-	Anaiysis Dale:	e: 10(22)2014	D14	SeqNo: 106740	5740	
Analyte	Result	POL	SPK value SPX	SPX Ref Val	X REC	LowLinit	HighLinii	RPC Ref Val	GdX%	RPDLimil	C.Jal
1,1,1-Trichlordelhane	1.390	C.15	-	0	133	20	130	1.27	9.02	8	S
 1.2,2-Telrachloroethane 	1.215	0.15	-	0	121	02	51	1.25	3.25	33	
1,1,2-Trichloroethane	1.185	0.15	÷	0	118	20	5 6	11.1	6.11	30	
1,1-Dichlcroethare	1,160	C 15	-	0	116	02	130	1.12	3.51	30	
0.1-Dichicroethere	1.360	0.15	-	0	Ä	65	130	1.33	2.23	30	ņ
1,2,4-Trichlorcbenzene	005210	C 15	-	0	79.0	02	130	1.32	50.2	30	œ
1.2.4.TrimeDyibenzere	0.6900	0.15	-	0	669	02	130	1.16	50.8	30	Ч
1,2-Dibromgelhane	1.220	0.15	-	0	122	02	130	1.16	5.04	8	
1,2-Dichlorobenzene	1.040	0.15	-	0	Ē	20	5	1.35	25.9	30	
1,2-Dichlorgelhane	1.360	C 15	-	0	138	02	130	1.31	3.75	99	S
1,2-Dichlo:opro⊂ane	1.14D	0.15	-	0	114	20	2	1.09	4.48	30	
1,3,5- ¹ rimelay tenzene	1.020	0.15	-	0	102	02	130	1.37	29.3	8	
1,3-butadieræ	1.600	0.15		0	160	R	3	1.52	5.13	30	s
1,3-Dichlorcbenzene	1.140	2.15	-	0	114	02	130	1.32	14.6	8	
1,4-Dichlorchenzene	1.080	0.15	-	0	109	2	18	1.35	22.2	8	
1,4-Dioxane	0.1400	0.30		Ð	14.0	02	130	1 36	0	8	ъ
2,2,4-himethylpenlane	1.210	0.15	•	0	121	2	130	15	5.C8	30	
4- 2. thyllolu s 16	0.9500	D.15	•	D	95.D	52	130	141	39.0	30	œ
Acelone	0211	0:30	•"	o	117	2	130	1.37	15.7	30	
Allyl charide	1.490	D.15	••	o	149	52	130	15	0.669	30	s
Berzehe	1 200	0.15	•	¢	120	ų	130	1,15	4 26	30	
Berzyl ch.ande	0 7500	0.15	.	¢	75.0	22	130	2.09	94 A	DE	œ
Bromodichiloromelhane	1.320	0.15	•	o	132	£	130	1.23	7.06	22	s
Brorn oform	1.430	0.15		0	143	22	130	1.3	3.52	æ	s
	:										
Qualifiers: Results report	Results reported are not blank corrected		-	Value above quantization range	2.0		Ŧ	Haléing times for preparation or analysis exceeded	preparation or a	nalysis excex	3
J Analyte detect	Analyte detected at or below quantitation limits	ni(5	ND Not Detected	Not Detected at the Reporting Limit	g Limit		~	RPD outside accupted recovery limits	pieć istevery lo	hith:	

Centek Laboratories, LLC

Analyte detected at or below quasification limits
 Spike Recovery outside accepted recovery limits

WSP Environment and Energy C1410057

CLIENT: Work Order:

:

. .

·. : :

Project: 5140 Site Yorkville, NY	orkville <u>,</u> NY							TestCode: 1	lugM3_T015	15	
Sample ID ALCS1UGD-102114	SampType: LCSD	TestCod	TestCode: 1ug K3_T015	Jn≹S: ppbY		Prep Date			RunNo: 8968	68	
Cient IC ZZZZ	Batch (D; R6968	TestN	TeslNo: TO-15		-	Aralysis Date:	10/22/2014	014	SeqNo: 106740	6740	
Ansiyle	Resull	PQL	SPK value - SPK	SoK Ref Val	WREC	LawLimit H	Highuimic	RPD Ref Va:	Qc N%	RPOUND	Qual
Bromomethane	1.550	G. 15	-	6	155	62	9 <u>0</u> ;	1.45	667	66	S
Carbor pisulide	1.050	C.C	-	0	5	02	:30	90°	U	30	
Carbor letrachloritie	1.380	G: 5	F	o	178	C1	00;	1,25	3.6	DF:	s
Chlorobenzene	1.170	0.5	-	D	1:7	2	06;	1.12	4 37	30	
Chlorosthate	1.560	C.5	÷	a	3 1	0.1	00) ()	1.56	O	8	Ś
Chiar af orm	1.230	C -5	-	٥	123	02	08.	1.15	5.65	8	
Chiarometraria	1.480	5,5	÷	٥	148	20	130	1.45	1.35	55	ŝ
cis-1,2-Dichlorcethene	1.130	0.15	-	0	ţ	02	130	1.15	0	ŝ	
cis-1,3-Dicriorogropene	1.040	5	-	0	ž	70	<u>1</u>	1.13	6.29	33	
Cycohexane	1.120	5 C	F	0	112	02	130	1.11	0.897	8	
Disramachlarpmethane	1.310	<u>е</u> С	F	٥	131	02	P: F	1.2	6.75	8	s
Ethyl acetate	0.7000	0.25	-	٥	70.0	Q2	ម្ម	1.67	619	30	œ
Ethylbenzene	1.020	51.5		٥	102	70	130	1.04	1 .9	33	
Freon 11	1.510	C 15	-	0	15:	02	130	1,43	5.44	30	ŋ
Freen 113	1.430	0.15	、	0	143	20	130	1.35	5.75	50	s
Freon 114	1.220	0.15	•	0	122	70	130	1.2	1.65	30	
Freon 12	1.220	0.15	•	0	122	20	133	1.17	4.16	30	
Heptane	1.170	0.15	. .	0	117	20	130	1.17	0	30	
Hexachlorc-1,3-butadienê	0.7500	0.15	•	0	75 O	02	133	1.76	80.5	8	ar.
Hexane	0.9700	0.15	•.	0	97.0	Dź	130	1.03	11.7	80	
isopropyi aleehoi	0.6400	0.15	·-	0	64.0	70	130	156	33.6	30	SR
m&p.XyBre	2.430	0:30	۶N	0	122	70	130	2.43	0	99	
Methy: Butyl Ketone	0.4200	0:30	۲	0	42.0	20	130	4 21	164	99	SR
Metnyi Ethyl Kelone	0.4500	0:30	۲	υ	46.0	5	130	1.5	106	30	SR
Metayi Isobutyi Ketore	0.1300	0:30	۲	0	13.0	22	130	2.22	0	30	ŝ
Methyl lert-bulyl ether	0.8000	0.15	-	Ċ	80.0	2	130	1.1	31.6	8	æ
Methylene chloride	0.4%	0.15	-	0	141	12	0C;	1.37	3.68	Ú.	s
o-Xylene		0.15	÷	0	121	ŝ	00;	1.21	¢	8	
Propylene	0.9223	0.15	-	0	92.0	62	00) (1.09	16.9	33	
Styrene	1 130	0.15	-	0	113	2	130	1.21	5 В	8	
Tetrachicroethylene	1 230	0.15	-	e	123	2	130	1.16	4.15	8	
Qualifiers: Results reporte	Rusults reported are not blank corrocted		15 Válue abov:	Value above quartitation zarge	ອາ		. – 	Hulding times for peeparation or analysis exceeded	preparation or a	unalysis exeep	dcJ
	Analyse detected as or below quantitation linuits	ntils	ND Nat Detecto	Nat Detected at the Reporting Limit	ן:יווי:		4	RPD outside accepted recovery lenets	ptod recovery la	тиs	
5 Spike Recover	Spike Recevery cutside accepted recovery itmits	ichits									Page 7 of 8

WSP Environment and Energy I : CLIENT: • :.

C1410057 Work Order:

:

. •

:

.

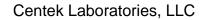
Project: 5140 S	5140 Site Yorkväle, NY						Τ	TestCode: lugM3_T015	ugM3_TO:	5	
Sample ID: ALCS1UGD-102114 Sampfiype: LCSD Client :D: ZZZZ Batch ID: R8968	2114 Sampîype: LCSD Balch ID: R8968	TestCo Test	TestCode: fugM3_T015 Units: apbV FestNo. T0-15	Units: pobV		⁻⁷ rep Cale:	e: 10/22/2/	014	RunNo: 8968 SeqNo: 106740	1740	
ษ์กล่าระธ	Result	POL	SPK value – SPK Ref Vai	×K Ref Vai	%REC	LowLarid	h ghLimil	%REC LowLand HighLimit RPD Ref Val	Q43%	%RPD RPDLimit Gual	ler.0
Telrahydicit can	0.8500	0.15	•.	Ð	85.0	02	130	1.46	5:7	8	£
Toluene	1.450	0.15	.	0	115	02	5	1.11	3.54	8	
Lans-1,2-Dichlorcethene	1.170	D.15	•••	D	117	02	<u>15</u>	1.23	5.00	35	
Irans-1,3-Dichloropropene	1.500	0.15		0	110	02	130	1.1	0	33	
7richlorcethene	1.110	0.15	•-	D	111	70	130	1.01	9.43	8	
Viry! acetale	1.050	0.15	-	0	105	70	5	1.2	13.5	8	
Visyl Brompe	1 290	0.15		0	129	70	130	1.35	4.55	30	
Viryl chloride	1,300	0.15		0	130	02	130	1.3	٥	35	

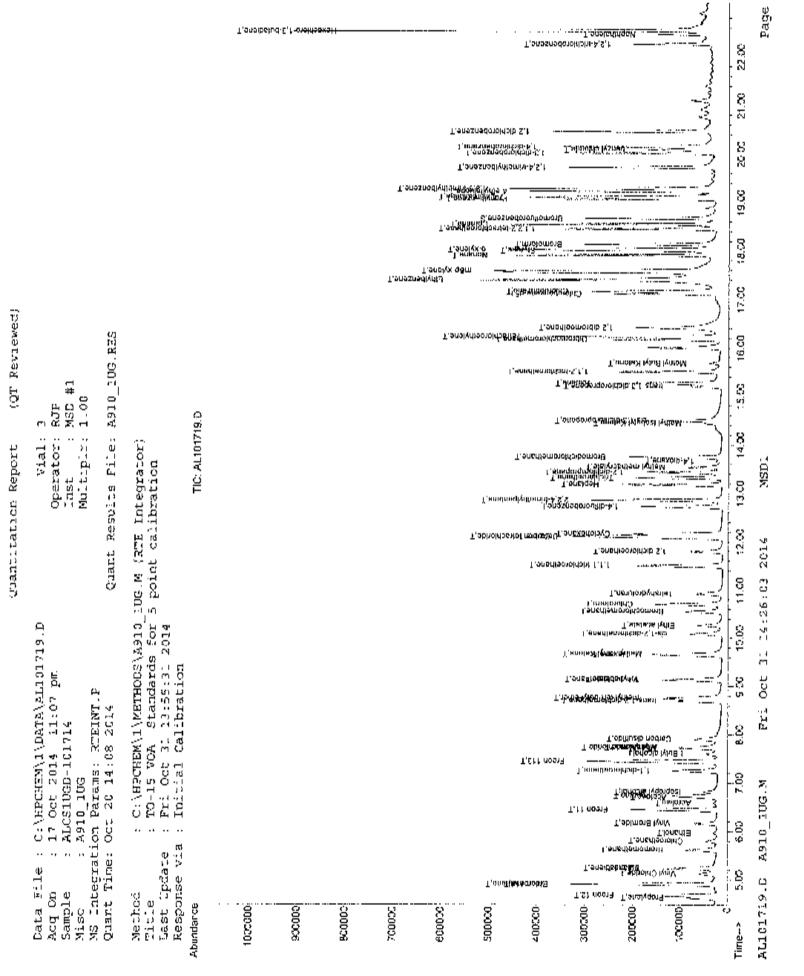
Ilolding Lines for preparation or analysis exceeded
 R.P.D outside accepted recovery limits

.

: .

RPD outside accepted recercty limits


Centek Laboratories, LLC


Centek Laboratories, LL	С						
		ion Rej	port (QT	Review	wed)		
Data File : C:\HPCHEM\1\DATA\ Acq On : 17 Oct 2014 11:0 Sample : ALCS1UGD-101714 Misc : A910_1UG MS Integration Params: RTEINT Quant Time: Oct 18 07:21:53 2	АЛ.101719.D 7 рип .Р		Opc ins Mul	Vial; rator; st : .tiplr:	3 RJP MSD 1.00)	3.RES
Quant Method : C:\HPCHEM\1\ME Title : TO-15 VOA Stat Last Update : Mon Oct 06 12:. Response via : fnitial Calibr DataAcq Meth : 1UG_RUN	ndards for 31:36 2014						
Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
 Bromochloromethane 1,4 difluorobenzene Chlorobenzene-d5 	10.55 12.72 17.12	128 114 117	50384m ^{**} 197875 186154	3.00 1,00 1,00	dqq bbp qdd		0.00 0.00 0.00
System Monitoring Compounds 67) Bromofluorobenzene Spiked Amount 1.000	18.67 Range 70	95 - 130	126280 Recover	0.96 V -	ррb 96,	00%	0.00
Target Compounds						Qva	ıluœ
3) Propylene 4) Freon 12 5) Chloromethane 6) Freon 114	4.69	85	58449m 262825 70090m 199801 59967 77055	1 07	ppb		99 97
7) Vloyl Chloride	5.13	62	59967	1.14	ppb		éé
 8) Bulanc 9) 1,3 butadiene 10) Bromomethane 11) Chloroethane 	5,24 5,62	39 94	53365 75984m	1.26	ppb		98 85
12) Ethanol 13) Acrolein	5.97 6.59	45 56	28001m 14318 11352m 65740 253633	$1.20 \\ 1.22$	ppb		88
14) Vinyl Bromide	6.16	106	65740	1.14	ppb		97
15) Frecon 11 16) Acetone	6.44 6,70	101 58	253633 19894m	1.08 / 1.19	ppb		98
17) Pentane	6.73	42	55861	1.30	dqq		87
18) isopropyl alcohol 19) 1,1-dichloroethene	6.81 7.24	45 96	52729 64762	0.92 3.07	ppb	Ħ	$100 \\ 92$
20) Freon 113	7.44	101		1.08			99
21) t-Butyl alcohol 22) Mashulana ablamida	7.60	59	44156	0.57	ppb	Ť.	80
22) Methylenc chloride 23) Allyl chloride	7,74 7,72	84 41	47961 40185	1.10 1.21		4	81 99
24) Carbon disulfide	7.91	76	138907	0,87	ppb		1.00
25) trans-1,2-dichlorocthene 26) methyl tert-butyl ether		61 77	82213	1,05	ppp		97
27) 1,1-dichloroethane	8.75 9.13	73 63	149885 139342	0,96 0,97			79 99
28) Vinyl acetate	9.14	43	89853	1.09	ppb		98
29) Methyl Ethyl Ketone 30) cis-1,2-dichloroethene	9.68 10.08	72 61	23980 76573	1.02		#	84
31) Hexane	9.65		94211	0.95 0.98	ppo dgg		91 86
32) Ethyl acetate	10.26 10.71	43	105789	1.19	$_{\rm dqq}$		97
33) Chloroform 34) Tetrahydrofuran	10.71 10.91	83	176427	0.94			100
35) 1,2-dichloroethane			53416 104312	1.17 1.01			100 99
37) 1,1,1-brichtoroethane	11.50	97	175498	1,08	ErExp.		99
38) Cyclobexanc 39) Carbon tetrachloride	12.16			1.08	dqq		87
40) Benzene	12,10 12,08		200121 205234	1.03 1.06			99 93
41) Methyl methacrylate	13.53	41	49472	1.25	ppb		92
42) 1,4-dioxane 43) 2,2,4-trimuthulpoptare	13.66			0.43	ppb		0.7
43) 2,2,4-trimethylpentane 44) Heptane	12.85 13.17	43	280587 89766	1.11 1.10	ppn pph		93 98
45) Trichloroethene	13,32	130	89766 86771 74275	0.93	ppb		99
46) 1,2-dichloropropane	13.43	63	74275	0.99	ppb		99
(#) = qualifier out of range	(m) = manu	al int	egration				

(#) = qualifier out of range (m) = manual integration AL101719.D A910_1UG.M Fri Oct 31 14:26:01 2014 MSD1

Centek Laboratories, LLC					
	untitat:	ion Re	port (Q)	(Reviewed)	
Data File : C:\HPCHEM\1\DATA\ALLO Acq On : 17 Oct 2014 11:07 pm Sample : ALCS1UGD-1017)4 Misc : A910_1UG MS Totegration Params: RTEINT.P Quant Time: Oct 18 07:21:53 2014	n	Qu	Ina Mu3	Vial: 3 erator: RJP st : MSD ltiplr: 1.00 s File: A910	
Quant Method : C:\HPCHEM\1\METHOD Title : TO-15 VOA Standar Last Update : Mon Oct 06 12:31:3 Response via : Initial Calibratic DataAcq Meth : LUC RUN	nds for 36 2014				
Compound	R.T.	QTon	Response	Conc Unit	Qvalue
<pre>47) Bromodichloromethane 48) cis-1,3-dichloropropenc 49) Urans-1,3-dichloropropene 50) 1,1,2-trichloroethane 52) Toluene 53) Methyl Isobutyl Ketone 54) Dibromochloromethane 55) Methyl Butyl Ketone 56) 1,2-dibromoethane 57) Tetrachloroethylene 58) Chlorobenzene 60) Ethylbenzene 61) m&p-xylene 62) Nonane 63) Styrene 64) Bromoform 65) o-xylene 66) Cumene 68) 1,1,2,2 tetrachloroethane 69) Propylbenzene 70) 2-Chlorotoluene 71) 4-ethyltoluene 72) 1,3,5-trimethylbenzene</pre>	13.74 14.49 15.20 15.20 15.26 14.43 16.17 15.68 16.42 16.23 17.17 17.40 17.59 17.91 18.00 18.14 18.03 18.55	75 97 92 439 429 107 164 91 43 107 105 105 91 105 91 105	123444 58354m 162339m 128208 128208 105348 185299 334956 513539 149818 155136 168436 273924 306684 211536 324069m 296058m	1,04 ppb 1,00 ppb 0.96 ppb 0.92 ppb 0.92 ppb 0.99 ppb 0.99 ppb 1.24 ppb 1.24 ppb 1.21 ppb 1.21 ppb 1.05 ppb 1.05 ppb 1.00 ppb 1.12 ppb 1.12 ppb 1.12 ppb 1.12 ppb 1.13 ppb 1.03 ppb 1.11 ppb	98 97 97 98 100 99 100 97 98 98 98 91 100 97 98 91 100 97 98
 73) 1,2,4-trimethylbenzene 74) 1,3-dichlorobenzene 75) benzyl chloride 76) 1,4-dichlorobenzene 78) 1,2-dichlorobenzene 79) 1,2,4-trichlorobenzene 80) Naphthalene 81) Hexachloro-1,3-butadiene 	19,72 20,02 20,09 20,15 20,46 22,27 22,46 22,55	105 146 91 146 146 146 180 128 225	234035 185310 108185m 172302 192214 81124 131328 213916	1.06 ppb 1.05 ppb 1.11 ppb 1.28 ppb 1.13 ppb 1.22 ppb 1.22 ppb 1.15 ppb 1.13 ppb	100 99 97 100 94 98

(#) = qualifier out of range (m) - manual integration (+) = signals summed AL101719.D A910_1UC.M Fri Oct 31 14:26:02 2014 MGD1

ŝ

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AL102021.D Acq On : 20 Oct 2014 9:56 pm Operator: RJP Sample : ALCS1UGD-102014 Inst : MSD #1 Mise : A910_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Ouant Time: Oct 21 04:20:18 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards For 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : 10G RUN
 Internal Standards
 R.T. QIon
 Response
 Conc Units Dev(Min)

 1) Bromochloromethane
 10.54
 128
 32834
 1.00 ppb
 0.00

 36) 1,4-difluorobenzene
 12.71
 114
 143304
 1.00 ppb
 0.00

 51) Chlorobenzene
 17.11
 117
 117910
 1.00 ppb
 0.00
 System Monitoring Compounds67) Bromofluorobenzene18.6795886151.06 ppb0.00Spiked Amount1.000Range70 - 130Recovery=106.00%

 Spliked Amount
 1.000
 Range 70 - 130
 Recovery
 = 106.00%

 Turget Compounds
 Qvalue

 3) Propylene
 4.62
 41
 36015
 1.09 ppb
 86

 4) Freen 12
 4.66
 85
 189219
 1.18 ppb
 100

 5) Chloromethane
 4.90
 50
 57630m⁻⁷
 1.49 ppb
 90

 6) Freen 114
 4.90
 85
 10425
 1.20 ppb
 99

 7) Vinyl Chloride
 5.11
 62
 44456mi
 1.30 ppb
 91

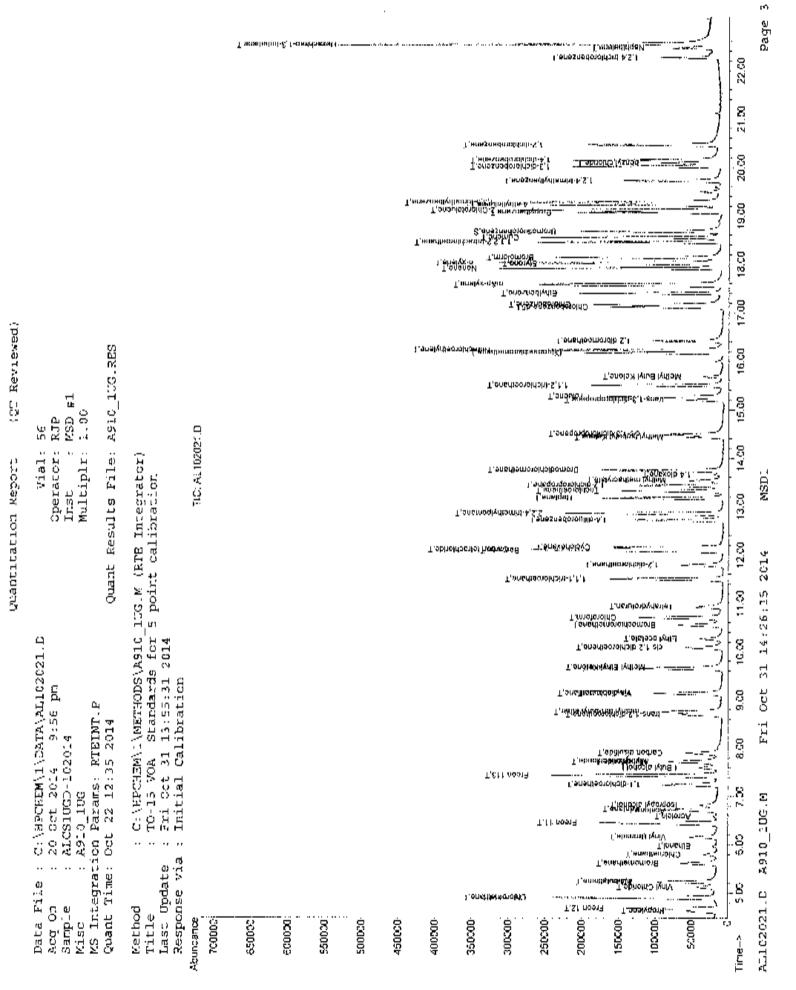
 8) Butanc
 5.23
 39
 42561
 1.47 ppb
 96

 10) Bromomethane
 5.61
 94
 5915
 1.48 ppb
 91

 110 Coroethane
 5.97
 45
 8745
 1.31 ppb
 95

 13A crolein
 6.59
 56
 16022
 1.41 ppb
 90

 12) Promide
 6.16
 106
 42394m /
 1.41 ppb
 96


 13) Acrolein
 6.49
 58
 1.6092
 1.41 ppb
 100

 13) Acrolein
 6.49
 58
 1.6092
 1.41 ppb
 96

(#) = qualifier out of range (m) = manual integration AL102021.D A910_1UG.M Fri Oct 31 14:26:13 2014 MSD1

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\l\DATA\AL102021.D Vial: 56 Acq On : 20 Oct 2014 9:56 pm Operator: RJP Sample : ALCS1UGD-102014 Misc : A910 1UG Sample : ALCSLUGD-102014 Misc : A910 LUG MS Integration Params: RTEINT.P Quant Time: Oct 21 04:20:18 2014 Tost : MSD #1 Multiplr: 1.00 Quant Results File: A910_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Oct 06 11:33:09 2014 Response via : Initial Calibration DataAcq Meth : 10G RUN CompoundR.T. QionResponseConc UnitQvalue47)Bromodichloromethane13.74831446381.20ppb10048)cis 1.3dichloropropene14.4975611681.04ppb9549)trans-1.3-dichloropropene15.1975470141.02ppb94501.1.2-trichloroethane15.5097704531.07ppb9751MethylTabutyl Ketone14.4343507250.82ppb9453)MethylButyl Ketone15.681328771m1.09ppb9954)Dibromochloromethane16.17129128287m1.15ppb9555)Methyl Butyl Ketone15.681328771m1.09ppb9956)1.2-dibromochloromethane16.41107893451.09ppb9957)Tetrachloroethylene16.23164780671.09ppb9958)Chlorobenzene17.471121296161.09ppb9660)Ethylbenzene17.58913046452.25ppb9961)map-xylene17.54911349161.24ppb9863)Styrenc18.001041022461.09ppb9964)Bromoform18.131731349161.24ppb9863)1.1, 2.2-tetrachloroethane19.07<td Compound R.T. QION Response Conc Unit Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed $\Delta J_1 \log 2021$, D $\Delta 910$ 1UG, M Pri Oct 31 14:26:14 2014 MSD1

GC/MS VOLATILES-WHOLE AIR

.

METHOD TO-15 INJECTION LOG

Page 441 of 467

		Centek	Laborator	ies, LLC			
ine)irectory: FileName	C:\}{PChem\ Multiplier	1\data SampleName	Injection Log	un Bracific (M. Farrer all a Dar you an tract o age track (C. C Misc Înfő ^{r el f}	
276	1 2	Al101701.d Al101702 d	1.	BFB1UG A1UG		A910_1UC A910_1UC	17 Oct 2014 10:57 17 Oct 2014 11:38
278 279	3	AI101703.d AI101704.d	1.	A1UG_1.0 No MS or GC data pre-	Court	A910_1UC	17 Oct 2014 12:18
280 281 282 283 283 284	5 6 7 21 22	Al101705.d Al101705.d Al101706.d Al101707.d Al101708.d Al101709.d Al101710.d	1. 1. 1. 1. 1.	AMB1UG-101714 ALCS1UG ALCS1UG-101714 C1410057-011A C1410057-010A	32111	A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG	17 Oct 2014 13:29 17 Oct 2014 14:52 17 Oct 2014 15:30 17 Oct 2014 16:05 17 Oct 2014 16:42 17 Oct 2014 16:42
285 286 287 288 289 290 291 292 293 294 295	23 24 26 27 28 29 1 2 3 4	Al101711.d Al101712.d Al101713.d Al101714.d Al101715.d Al101716.d Al101716.d Al101717.d Al101719.d Al101720.d	1. 1. 1. 1. 1. 1. 1. 1. 1.	C1410057-001A C1410057-003A C1410057-005A C1410057-007A C1410057 C1410057 C1410057 C1410057-008A C1410057-009A ALCS1UGD-101714 C1410057-010A 5X		A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG	17 Oct 2014 17:59 17 Oct 2014 18:36 17 Oct 2014 19:13 17 Oct 2014 19:13 17 Oct 2014 20:33 17 Oct 2014 21:13 17 Oct 2014 21:13 17 Oct 2014 21:50 17 Oct 2014 22:30 17 Oct 2014 23:07 17 Oct 2014 23:42
296 297 298 300 301 302 303 304 305	5 6 7 8 9 10 11 12 13	Al101721.d Al101722.d Al101723.d Al101725.d Al101725.d Al101726.d Al101727.d Al101728.d Al101728.d Al101729.d Al101730.d	1. 1. 1. 1. 1. 1. 1.	C1410057-001A 5X C1410057-003A 5X C1410057-005A 5X C1410057-007A 5X C1410057 C1410057 C1410057 C1410057 C1410057-008A 10X C1410057 C1410057-009A 10X		A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG	18 Oct 2014 00:19 18 Oct 2014 00:55 18 Oct 2014 01:32 18 Oct 2014 02:08 18 Oct 2014 02:08 18 Oct 2014 02:48 18 Oct 2014 03:29 18 Oct 2014 04:09 18 Oct 2014 04:45 18 Oct 2014 05:21 18 Oct 2014 05:57
306 307	14	AI101731.d AI101732.d	1 1	C1410057 No MS or GC data pre	sent	A910_1UG 009A 40X	18 Oct 2014 06:33
	1 3 4 5 6 41 42 43	Al102001.d Al102002.d Al102003.d Al102004.d Al102005.d Al102005.d Al102006.d Al102007.d Al102008.d		BFB1UG A1UG_1.0 A1UG_1.0 ALCS1UG-102014 AMB1UG-102014 C1410064-001A C1410064-003A C1410064-006A		A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG	20 Oct 2014 07:06 20 Oct 2014 09:33 20 Oct 2014 10:11 20 Oct 2014 11:30 20 Oct 2014 12:05 20 Oct 2014 12:41 20 Oct 2014 13:18 20 Oct 2014 13:57
 316 317 318 319 320 321 322 323 324 325 	44 45 46 47 48 49 50 51 52 53	Al102009.d Al102010.d Al102012.d Al102012.d Al102013.d Al102014.d Al102015.d Al102016.d Al102016.d Al102018.d	1. 1. 1. 1. 1. 1. 1. 1.	C1410064-002A C1410064-005A C1410064-004A C1410064-007A C1410064-005A 10X C1410064-005A 243X C1410064-005A 2430 C1410064-005A 10X C1410064-005A 5X C1410064-006A 90X		A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG	20 Oct 2014 14:35 20 Oct 2014 15:13 20 Oct 2014 15:50 20 Oct 2014 16:28 20 Oct 2014 17:04 20 Oct 2014 17:04 20 Oct 2014 17:42 20 Oct 2014 18:18 20 Oct 2014 18:53 20 Oct 2014 19:29 20 Oct 2014 20:04
)26)27)28)29)30	54 55 56 48 49	Al102019.d Al102020.d Al102021.d Al102022.d Al102023.d	1. 1. 1. 1.	C1410064-002A 5X ALCS1UGD ALCS1UGD 102014 C1410063-008A C1410063-001A		A910_1UG A910_1UG A910_1UG A910_1UG A910_1UG	20 Oct 2014 20:40 20 Oct 2014 21:18 20 Oct 2014 21:56 20 Oct 2014 22:31 20 Oct 2014 23:09

	Centek Laboratories, LLC							
					Injection Log	,	t	
	C	Directory:	C:\HPChern\	1\data		the Market and Salah	(A0471	
	_					than any constant of	A0402	
						The standard second	A0473	
ine	Vial	FileName	Multiplier	SampleName		Mise Info	Injected	
331	21	Al102024.d		C1410063-002A		A910_1UG	20 Oct 2014 23:48	
332	22	Al102025.d	1.	C1410063-003A		A910_1UG	21 Oct 2014 00:26	
133	23	Al102026.d		C1410063-004A		A910_1UG	21 Oct 2014 01:04	
134	24	AI102027.d		C1410063-005A		A910_1UG	21 Oct 2014 01:42	
335	25	AI102028.d		C1410063-006A		A910_1UG	21 Oct 2014 02:19	
136	26	Al102029.d		C1410063-007A		A910_1UG	21 Oct 2014 02:57	
337	27	AI102030.d	1.	C1410057-002A		A910_1UG	21 Oct 2014 03:34	
138	28	Al102031.d	1.	C1410057-004A		A910_1UG	21 Oct 2014 04:12	
139	29	Al102032.d		C1410057-006A		A910_1UG	21 Oct 2014 04:50	
340	30	AI102033.d	1.	C1410057-008A 810X		A910_1UC	21 Oct 2014 05:26	
341	31	Al102034.d	1.	C1410057-009A 810X		A910_1UC	21 Oct 2014 06:01	
42	32	AI102035.d	1.	C1410057-002A 10X		A910_1UG	21 Oct 2014 06:37	
\$43	33	AI102036.d	1.	C1410057-004A 10X		A910_1UG	21 Oct 2014 07:12	
:44	34	Al102037.d		C1410057-006A 10X		A910_1UG	21 Oct 2014 07:48	
:45	1	AH02101.d		BFB1UG		A910_1UG	21 Ocl 2014 09:40	
346	2	AI102102.d		BFB1UG		A910_1UG	21 Oct 2014 10:30	
47	3	AI102103 d		8FB1UG		A910_1UG	21 Oct 2014 11:43	
i48	4	Ai102104.d		A1UG_2.0		A910_1UG	21 Oct 2014 12:34	
149	5	AI102105.d		A1UG		A910_1UG	21 Oct 2014 13:11	
150	6	Al102106.d	1	A1UG_1.0		A910_1UG	21 Oct 2014 13:59	
151	7	Al102107.d	1.	ALCS		A910_1UG	21 Oct 2014 14:57	
152	8	Al102108.d	1.	ALCS		A910 1UG	21 Oct 2014 15:44	
:53	9	Al102109.d	1.	ALCS		A910_1UG	21 Oct 2014 16:28	
154	10	Al102110.d		ALCS1UG-102114		A910_1UG	21 Oct 2014 17:13	
155	11	Al102111.d		AMB1UG-102114		A910_1UG	21 Oct 2014 18:29	
556	49	Al102112.d	1.	C1410063-001A RE		A910_1UG_Sample		
357	21	A)102113.d		C1410063-002A RE		A910_1UG_Sample		
356	22	A[102114.d		C1410063 003A RE		A910_1UG_Sample		
:59	23	AH02115.d		C1410063-004A RE		A910_1UG_Sample		
60	24	AI102116.d	1.	C1410063-005A RE		A910_1UG_Sample	21 Oct 2014 21:47	
61	25	Al102117.d	1.	C1410063-006A RE		A910_1UG_Sample	21 Oct 2014 22:26	
62		AI102118.d		C1410063-007A RE		A910_1UG_Sample	21 Oct 2014 23:04	
363	27	AI102119 d		C1410057-002A 160X		A910_1UG	21 Oct 2014 23:40	
164	27	Al102120.d		C1410057-002A 640X		A910_1UG	22 Oct 2014 00.17	
165	28	Al102121.d	1	C1410057-004A 640X		A910_1UG	22 Oct 2014 00:53	
466	29	AI102122.d		C1410057-006A 640X	•	A910_1UG	22 Oct 2014 01 29	
:67	31	Al102123.d	1.	C1410069-001A		A910_1UG	22 Oct 2014 02:07	
368	31	AI102124.d	1.	C1410069-001A 10X		A910_1UG	22 Oct 2014 02:43	
:69	31	Al102125.d		C1410069-001A 40X		A910_1UG	22 Oct 2014 03:19	
:70	32	Al102126.d	1.	C1410065-001A 10X		A910_1UG	22 Oct 2014 03:54	
371	33	AI102127.d	1.	C1410065-002A 10X		A910_1UG	22 Oct 2014 04:30	
:72	34	AI102128.d	1.	C1410065-003A 10X		A910_1UG	22 Oct 2014 05:06	
:73	35	AI102129.d	1.	C1410065-004A 10X		A910_1UG	22 Oct 2014 05:42	
:74	36	AI102130.d	1.	ALCS1UGD-102114		A910_1UG	22 Oct 2014 06.19	
175	32	AI102131.d		C1410065-001A		A910_1UG	22 Oct 2014 06:57	
:76	33	AI102132.d	1	C1410065-002A		A910_1UG	22 Oct 2014 07:34	
:77	34	Al102133 d	1.	C1410065-003A		A910_1UG	22 Oct 2014 08:12	
:78	35	Al102134.d	1.	C1410065-004A		A910_1UG	22 Oct 2014 08:50	
:79	36	Al102135.d	1.	Blank		A010_1UG	22 Oct 2014 09;25 22 Oct 2014 10:01	
:80	37	AI102136.d	1.	Blank		A910_1UG	22 Oct 2014 10:01	
:81	38	Al102137.d	1.	Bfank		A910_1UG	22 Oct 2014 10:36	
-82	1	AI102401.d	1.	BFB1UG		A024_1UG	24 Oct 2014 13:01	
-83	2	Al102402.d	1.	BFB1UG		A024_1UG	24 Oct 2014 13:48	
-84	3	Al102403.d	1.	BFB1UG		A024_1UG	24 Oct 2014 14:32	
-85	15	Al102415.d	1.	A1UG_2.0		A024_1UG_INIT_CAL	24 Oct 2014 22:15	

۰.

.

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 STANDARDS LOG

Page 444 of 467

Logbook	
Standards	
alibration (
GC/MS C	

Centek Laboratories, LLC

Page 445 of 467

Chkc by																		:			
Prep by	يلۇ قەلى	ڊ. ـ	Ser .	· ••••		۲۰ ۲۰	بهز بەلى							->	Ę			γ-4 }-6	به ۲۰	→	74 74
Final consteptiv	50ppb	50000			->	5 mh	Scheb.	-		->	CODM	I	_'	Sclub			~	1 5 och	E Jopm	50pph	DE GAS
finial voi	30psiA	3.00016 3CoSiA	L TESUA		->	3.00010 300014	30psub			\rightarrow	Donic	Aleast disaccol	Sosic 302	3.00sid 30psid	150514		>	3.0 cs. 16: 30 c5.1	200056	AISO 3001	IEDDAR L'INDE
Initial vol	فالكركنا	3.00001	C.9 osid		\rightarrow			, , , ,		Ŷ	be lital	0.2305	الكمكيل		0,9psig		-)		LOCUSE	1,5psil	
Stock conc Initial vol	leom	500 pah	5000b	_ _	->)	SOPP	DOM	15			37% in the 1.1 with 5000	l lopem		500.0b	5000	• - -	>	50.00b	33	Ippm	1217 Ippm
Stock #	كانابهم	9482	9546	9547	<u>34č</u> p	9549	9253	9082/9125	E972	4 PCH 9519	4537		7libb		9.558	sm19559	LCS 9560	1956	CLT NO	9570	AX AB-1
Description	TOIS SULF	4 SILX	TOISIVE IS	i STD	یا ل	TOIS YRU SON 9549	TOIS IS	570	Υ. Γ	HPCH	FORM	FORM.	170S	XIIX 1	TOIS NGTS 9558	ULS. I	t LCS	TOIS 4RH Smh 4561	This STD	1015 51D	TOLS LCS MAX AB- 1920
Cate exp	<u>רן נול כוו</u> ה	- -			\uparrow	אן נולכוע	- 122/13	· · · · ·						>	4/22/13		~>	4/22/13	4/12/14		~ [11]
Date Prep	ן נולסויין	- 34	فبلكمك الخالخ العا		- `	tels h	21/21/2	2						-	41:51.3	-	 	415/12 4/22/13	4/17/13	Hittil	
S:d#	9552	9553	9559	9555	95156	9557	9558	9 555	9560	956	9562	9963	956H	9565	9501	4567	9567	9,5/9	9570	9571	9572

Page # (6]

Centek Laboratories, LLC

\odot
JTT
сj.
nes,
E
0
'at(
×.
ğ
Ð
5
فرجا
Ģ,
ente
jej -
\sim

Page 446 of 467

GC/MS Calibration Standards Logbook

										— T	····]	· •··-		T		-		T			
Crikd by							1									,,,,-					
Prep by	<u>م</u> ر مح	/Y	··· • •		Pd 19-14-										(IN)	-+					>
finial vol Final conception	1 ppm	ر الم ت تهميات			-4	14401		المالية الم				luih Luih	. 1		Sugge	<u>.</u>		\geq	500	50 000	-
	GAS 2200816	و المحالية الحالية المحالية محالية محالية				ا تروكو لو		1 ² , 1 ⁶ , 10-1		_		10 July (17	 ~		30 psil		,1	ý	30psild	6.9 ppm 0.25 mg HS pull	4 30 2still
Initial vol		1.5 P.S.A			<u>-</u>	30.66	17.5	2.25.00	2,5.6	1.6.66	, '	15000			1,5,2516			->	30,2614	-25.0	30.050
Stock conc Initial vol	LINDE	1444			-,4	1. J. 1. 1.			5 20.05	1001	1) () () () () () () () () () () () () (i livk-fr.	, , , ,	;				$\langle \rangle$	50.02		·
Stock #	FF-	555	5: inferio		ייי <i>ר</i> [ار در در در		511		4 m 5	(1)15	(ece face	1551	SS(1.1	9867	450	9572	9519	1 99.04	4520	958Y
Description		ゴム	Sil	577	(4)-(1)-	4		- + - +	514.0	-4_	- <u>-</u> Ľ	1.1 1.1]`´	10	SI S	Str)	LCS	чрсң	Heyl (Sub)	S S S S	Xaris
Des	ード	5	<u> </u>							 		1			Ē			·	 		\geq
Čate exp	10/29/14	a de la de	·							 	 			_ <u>}</u> .	11/18/13					 	\geq
Date Prep	111 1133 10129/14	a été a												ļ ;	11/11/13				 	 	7
Sto#	Г г~				· ·					-	 L L			- - - - -	000	2060	9903	9004	2965	9996	9907

7

age #

Centek Laboratories, LLC

Centek Laboratorites, LLC Std # Date Prep Date Exp Descr A 5462 (0/20/11 10/21/14 TO/5 A 0462 (0/20/11 10/21/14 TO/5 A 0467 A 0421 A 0/20/11 10/21/14 TO/5 A 0467 A 0470 A 0
Description Stock # TO/5 LJ Stock # JO/5 LJ Stock # JO/5 LJ Stock # L LL Stock # Stock # Aogeneine Stock # L LL Stock # Jour Stock # Aogeneine Stock # Aogeneine Stock # L LL Aogeneine Stoch # Aogeneine Stock # L LL Aogeneine L LL Aogeneine L LL Aogeneine LL Stock # Aogeneine L LL Aogeneine L LL Aogeneine L Stock # Stock # L LL Aogeneine L Stock #
Description Stock # TO/5 LJ Stock # JO/5 LJ Stock # JO/5 LJ Stock # L LL Stock # Stock # Aogeneine Stock # L LL Stock # Jour Stock # Aogeneine Stock # Aogeneine Stock # L LL Aogeneine Stoch # Aogeneine Stock # L LL Aogeneine L LL Aogeneine L LL Aogeneine LL Stock # Aogeneine L LL Aogeneine L LL Aogeneine L Stock # Stock # L LL Aogeneine L Stock #
Description 70/5 510 70/5 510 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

GC/MS Calibration Standards Logbook

l

Í

ĺ

2

·// •:

÷^

1

1777

KC.

5 5

Centek Laboratories, LLC

Page 447 of 467

FORM 153

3 Page#_

Centek Laboratories, LLC

GC/MS Calibration Standards Logbook

L

-

Chkd by																					
Prep by Chkd by	7.7	それ	ł										⇒	2.7	[- 3						\rightarrow
Stock Conc [Initial Vol (psig] Finial Vol (psia) Final Conc (ppb)	т	50	Ļ		•	Ŋ	50		•	500	- -4	_	->	1 ppm	50			\rightarrow	را	50	~
Finíal Vol (psia)	45	30	_		Ŷ	9 0	чы	30		→	45	_	•	E 2000 psig	30			Ŷ	30	μς	30
Initial Vol (psig)	0,9	1,5	4		→	3.0	0.25		1.5	Ť	0.99516	1	->	R LIQUIDE	1.5	4	-	ት	3.0	0.25	
Stock Conc	50 och		I -			50 pp	S. Goom	500 pph		to pom			•	TS1 AIR) com			->	50 00	8 gopm	500 m
Stock #	A0076	9887	9570/A000	9572/9385	1519		9520	9	9446	9667	A DO Ste	STD A0087	ACOSS	H	Toront A	Roord	457%385	9519	Aoloz	9520	asrt
Description	TOIS ING LCS	ts	STh S		ЧРСН	4 PCHS	FORMED	SILOX	รงเคร	HaS	TDIS NG IS	STD	รา	2/13/15 STOCK TOIS STD	SI			-	1	FERMSO	
Desc		tois								$\dot{\gamma}$	TDIS	ţ.	→	stock	Tو ت	- 4		 _			
Date Exp	2 12744	2/21/29								-			J.	2/13/15	3 3 14					-	
Date Prep Date Exp	2/20/24	2/17/24	- -	.	-								*	2/19/14	ะไรษูไป						Ā
# p:S	A- 0085	A. 0086 2/17/14 2/24/24	A-0087	A- 00 58	A- 00 69	A- 0090	A- 0091	A- 0092	A-0093	A- 0094	A- 0095	A- 00%	A- 0097	A- 0098	A-0099	A-0100	4-010	4-0102	A-0103	A-OloH	

Page 448 of 467

FORM 153

Ŋ

Page #__

Centek Laboratories, LLC

GC/MS VOLATTLES-WHOLE AIR

METHOD TO-15 CANISTER CLEANING LOG

Leak Test 24hr (psig stristp)	00 +	+	+	+	+	+	-	+	+			+/	+	+	+	+	+	+				+	. +	
Leak Test	+ (*)	+	+	+	+	+	 -++	 +	4	+	+	+	 +	 -+	 -+	 -+	 -+	 -+	 	 		\ → 	 + 	
A D A Mumber Detection Limits	0ate 00:6atol NUMBER 0.15	\square				145 14021-1 12					V - 2000 Vor													Form C151
Instrument: Entech 3100	Cycles	<u> 316 30 4</u>					000			220			+-				146 111				- 			Cleared by.

Centek Laboratories, LLV

Page 450 of 467

Ľ
ries,
orato
(Lab
entel

QC Canister Cleaning Logbook

8
31
atech
Ш Ц
men
Instru

Page 451 of 467

Canister Number	OC Can Number	Number of Cycles	Date	OC Batch Number	Detection Limite	the Tool Vool	
$\int_{C^{+}}$	τιη	07	વે. પૈકું છે.	1 12 0000 4411			₽.
129					ing moth is		0 7
35.7						+	+
1.76						+	
						+	+
it i 	1145			11 0402 M		(+	+
353						. +	
550						· · ·	+ +
5 L C V						+	+
52	0.11					+	+
	5211			MCCG33H X			-+
						+	+
<u>2 7</u> 2 - 6					T	+	+
			 			+	+
	1				+	+	+
	202			1915093311 F		+	+
						+	+
202 		-	•		. +		+
200					+		+
				•	+		+
					v <u>+</u>		+
					+		+
						· +	
					+	_+	
					_+	+	
Cleaned by:			Form C151	۵.	Page #		

LLC	
ries,	
Ę	
ora	
ğ	I
Ľ.	
ntek	
Cen	
U.	,

QC Canister Cleaning Logbook

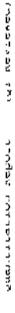
IJ Ļ	
ries, I	
ratori	
Ж К	
Ë	

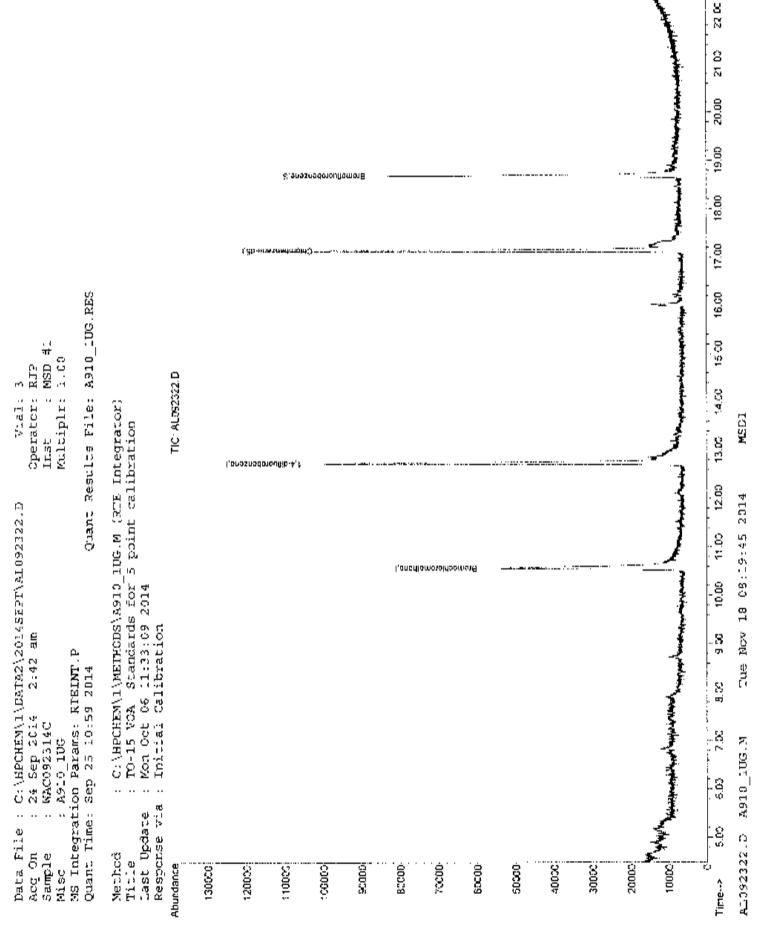
Instrument: Entech 3100

Leak Test 24hr (psig str/stp)	0 (% +) +	+	-1	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4	+	+
Leak Test	C C L) +		. <u>1</u> .	ŀ	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	ť	+	+
Detection Limits	1.12 + (). 25																								
QC Batch Number	N.R.CO935H B					MALUMENTRY					<u> </u>					WRZ 042CH 0					MRZ UTISHIE				
Date	9.25 4															-									
QC Can Number Number of Cycles	R																								
QC Can Number	130					\$]					459					ੁੀ					377				
Canister Number	139	<u> </u>	367	550	T. C.L	1191	335	SBS	1188	[~ ~	333	553	545	318	i,58	324	ίΩ	325	130	136)[]4(<u>~</u>		32.7

Page #_

Form C151

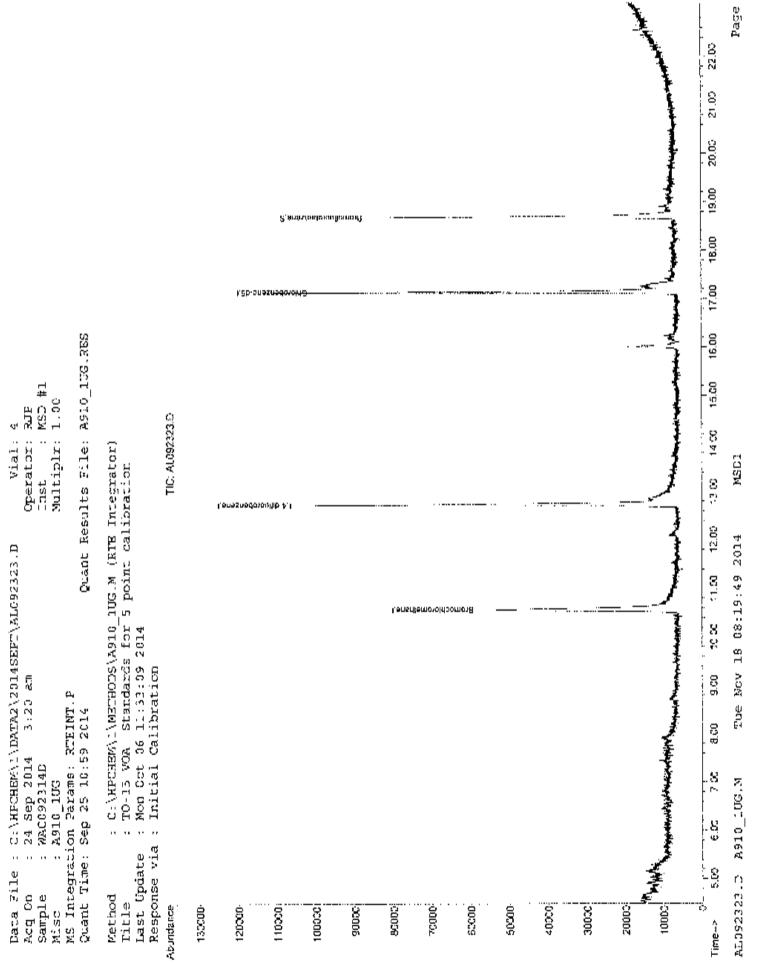

Cleaned by: _


Huddan winds ur yood 36 년 1년 2013년년 11년 2013년 11년 2015 11년 2015 110 110 110 110 110 110 110 110 110		000	Number of Curles	E Safe	OC Batch Number	Detection Limits	Leak Test 24h	Leak Test 24hr (psig str/stp)
Contraction 20 日にに、「155」 Contraction 2011に、「155」 Contraction 2011に、「155] Contraction 2011 Contraction 20	Canister Number	QC Can Number					36	0 () ()
	2012		80	HKEH		CT DI CWED		
	1 1 2						+	
	λΛ ΓΛ Γ.Υ							
	240						+	
	14	 					1	
		G			<u>10.9.2.09.3514 6</u>		+	•
		- - - - -					+	+
	⇒ 7 4						+	+
Form C151								+
	 [+	
	5	:154			THE CONSINT		 <u>+</u> -	
Formation of the second	- - -			 			 +	 +
Form C151							+	 -
Form C151	524						+	+
Form C151	ک ۲ ک		-+-				- <u>+</u>	
Form C151							+	+
Form C151							 +	+
Form C151							+	+
Form C151				 			+	+
Form C151							<u>t.</u>	+
Form C151				-		 	+	+
Form C151				 			+	+
Form C151 Page #		+					+	4
Form C151							+	+
				Form C151		Page #		1

Cieaned by: _

Page 453 of 467

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File / C:\HPCHEM\1\DATA2\2014SEPT\AL092322.D Vial: 3 Acq On + 24 Sep 2014 2:42 am Operator: RJP Sample ; WAC092314C Misc : A910_1UG Tnst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Sep 24 08:20:53 2014 Quant Results File: A910 1UG.RES Quant Method : C:\HPCHEM\l\METHODS\A910_LUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 09:20:57 2014 Response via : Initial Calibration DataAcq Meth : LUG RUN R.T. QTon Response Conc Units Dev(Min) Internal Standards Internal Standards R.F. Qion Response Conconnes Dev (Min) 1) Bromochloromethane10.56128328481.00ppb0.0236) 1,4-difluorobenzene12.731141320821.00ppb0.0051) Chlorobenzene-d517.13117945521.00ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.68 95 48472m 0.72 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery - 72.00% Qvalue Target Compounds

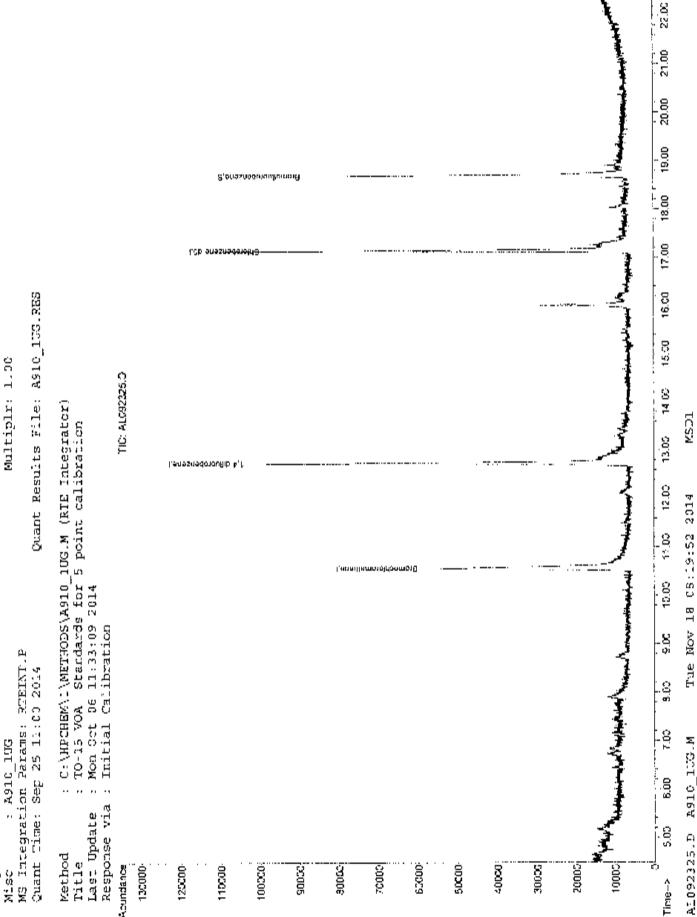


Page 2

Page 455 of 467

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\NPCHEM\1\DATA2\2014SEPT\AL092323.D Vial: 4 Acg On : 24 Sep 2014 3:20 am Operator: RJP Sample : WAC092314D Misc : A910 1UG Inst : MSD #1 Multiplr: 1.00 Misc : AFLO LOG MS Integration Params: RTEINT.P Quant Time: Sep 24 08:20:54 2014 Quant Results File: A910 10G.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 09:20:57 2014 Response via : Initial Calibration DataAcg Meth : 1UG_RUN R.T. QION Response Cond Units Dev(Min) Internal Standards 1) Bromochloromethane10.56128321091.00 ppb0.0236) 1.4 difluorobenzene12.731141307781.00 ppb0.0051) Chlorobenzene d517.13117933571.00 ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18,68 95 48319m 0.73 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 73.00% 0.00 Target Compounds Qvalue

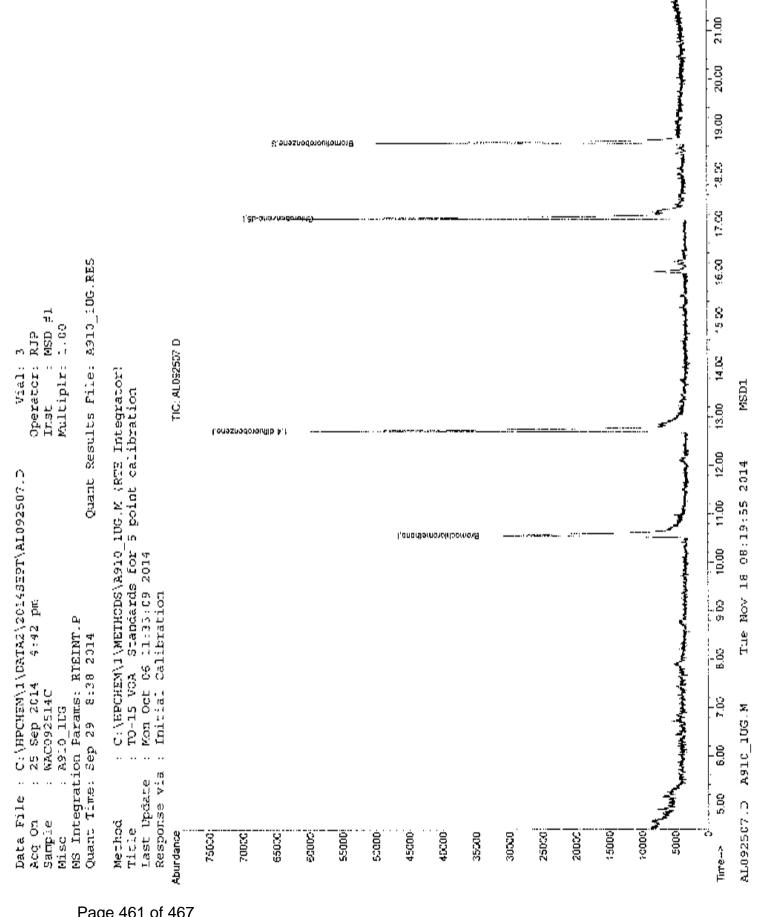




 \sim

Page 457 of 467

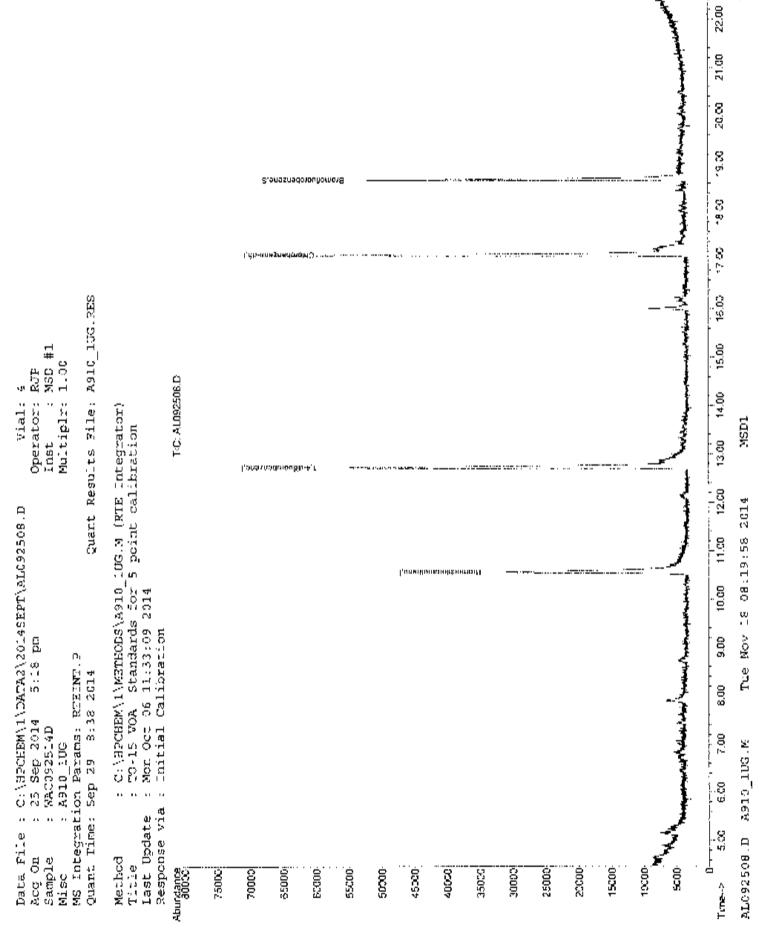
Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\J\DATA2\2014SEPT\AL092325.D Vial: 6 Acq On : 24 Sep 2014 4:35 am Sample : WAC092314F Misc : A910_10G Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Sep 24 08:20:56 2014 Quant Results File: A910 1UC.RES Quant Method : C:\HPCHEM\1\METHODS\A910 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 09:20:57 2014 Response via : Thitial Calibration DataAcq Meth : 1UG RUN R.T. QION Response Cond Units Dev(Min) Internal Standards 1) Bromochloromethane10.56128317441.00ppb0.0236) 1,4-difloorobenzene12.731141292141.00ppb0.0151) Chlorobenzene-d517.13117948831.00ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.68 95 50747m 0.76 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 76.00% Qvalue Target Compounds



ŝ

Page

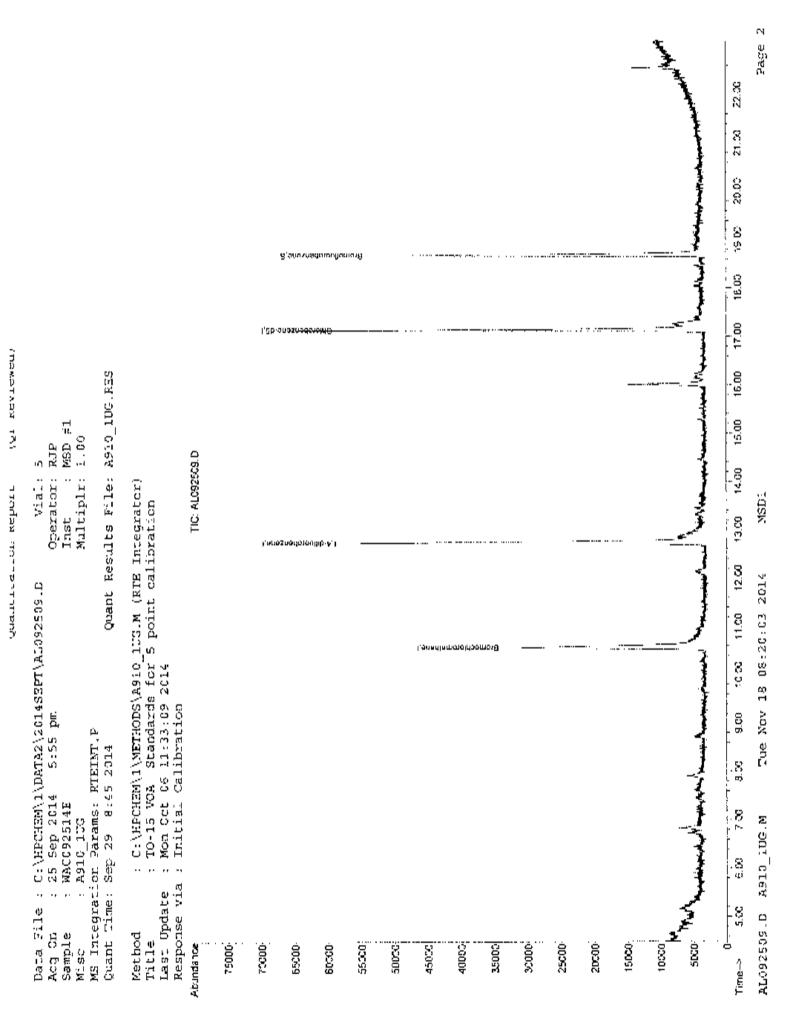
Centek Laboratories, LLC Quantitation Report. (OT Reviewed) Data File : C:\HPCHEM\1\DATA2\2014SEPT\AL092507.D Vial: 3 Acg On : 25 Sep 2014 4:42 pm Operator: RJP Sample : WAC092514C Misc : A910_1UG Inst : MSD #1 Multiplr, 1.00 MS integration Params: RTEINT,P Quant Time: Sep 25 22:08:46 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 09:20:57 2014 Response via : Initial Calibration DataAcq Meth : lUG_RUN R.T. Qion Response Cond Units Dev(Min) Internal Standards 1) Bromochloromethane10.56128201161.00ppb0.0236) 1.4-difluorobenzene12.72114798451.00ppb0.0051) Chlorobenzene-d517.12117575491.00ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.67 95 30305m 0.74 pph Spiked Amount 1.000 Range 70 - 130 Recovery = 74.00% 0.00 **Ovalue** Target Compounds


Page 2

22.00

Centek Laboratories, LLC

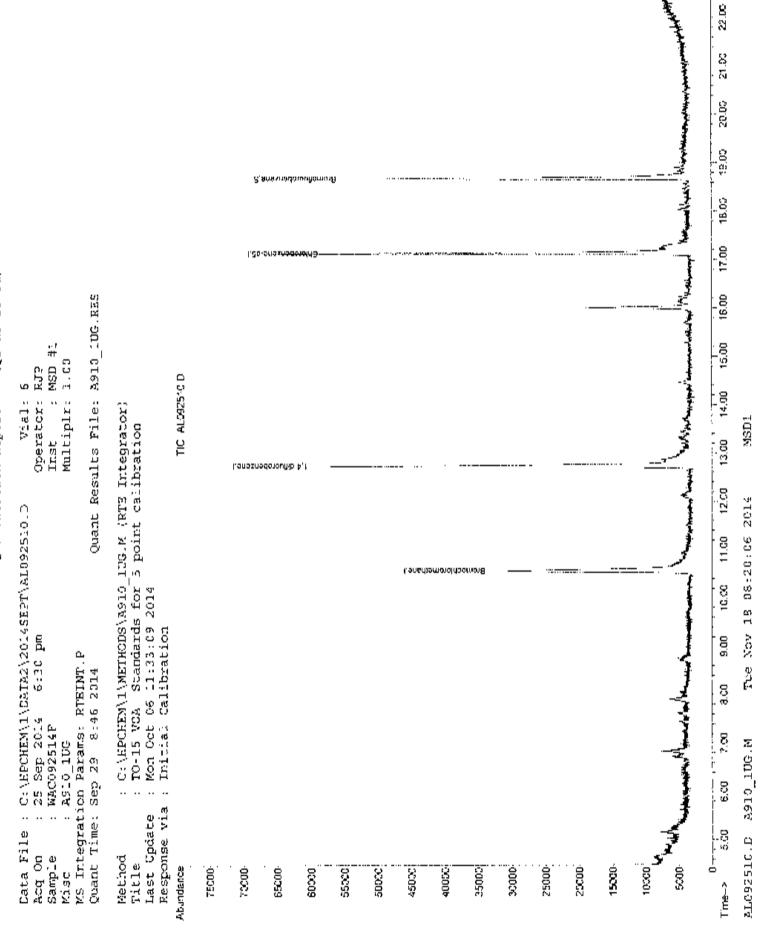
Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2014SEPT\AL092508.D Vial: 4 Acg On : 25 Sep 2014 5:18 pm Operator: RJP Sample : WAC0925140 Misc : A910 100 Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Sep 25 22:08:47 2014 Quant Results File: A910_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards (or 5 point calibration Last Update : Thu Sep 11 09:20:57 2014 Response via : Initial Calibration DataAcq Meth : 10G RUN R.T. Qion Response Conc Units Dev(Min) Internal Standards 1 Standards R.T. Qion Response Conc Units Deviced of 1) Bromochloromethane10.56128206631.00 ppb0.0236) 1,4-difluorobenzene12.73114800861.00 ppb0.0151) Chlorobenzene-d517.13117595151.00 ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.68 95 30329m 0.72 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 72.00% 0.00 Qvalue Target Compounds



Page 2

dati sud

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2014SEPT\AL092S09.D Vial: 5 Acq On : 25 Sep 2014 5:55 pm Operator: RJP Sample : WAC092514E Misc : A910_10G Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A910 10G.RES Quant Time: Sep 25 22:08:48 2014 Quant Method : C:\HPCHEM\]\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards (or 5 point calibration Last Update : Thu Sep 11 09:20:57 2014 Response via : Initial Calibration DataAcq Meth : lUG_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane10.56128202691.00 ppb0.0236) 1,4-difluorobenzene12.73114791001,00 ppb0.0151) Chlorobenzene-d517.13117582261.00 ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.68 95 30566m 0.74 ppb Spiked Amount 1.000 Range 70 - 130 Recovery - 74.00% 0.00 Target Compounds Qvalue


Centek Laboratories, LLC

Page 465 of 467

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2014SEPT\AL092510.D Vial: 6 Acq On : 25 Sep 2014 6:30 pm Operator: RJP Sample : WAC092514F Misc : A910_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A910 1UG.RES Quant Time: Sep 25 22:08:49 2014 Quant Method : C:\HPCHEM\1\METHODS\A910_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Sep 11 09:20:57 2014 Response via : Initial Calibration DataAcq Meth : 10G_RUN Internal Standards R.T. Olon Response Conc Units Dev(Min) 1) Bromochloromethane10.56128199571.00 ppb0.0236) 1.4-difluorobenzene12.731.14802921.00 ppb0.0051) Chlorobenzene-d517.12117573101.00 ppb0.00 System Monitoring Compounds 67) Bromofluorobenzene 18.68 95 29577m 0.73 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 73.00% 0.00 Qvalue Target Compounds

Page 466 of 467

Page 2

Page 467 of 467