FINAL REMEDIAL INVESTIGATION REPORT

Marshall Transformer Site (633019) Oneida County, Town of Marshall, New York

Prepared for:

New York State Department of Environmental Conservation Division of Environmental Remediation

Prepared by:

EA ENGINEERING, P.C. and Its Affiliate EA SCIENCE and TECHNOLOGY

May 2010

Marshall Transformer Site (633019) Remedial Investigation Report Town of Marshall, New York

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211 (315) 431-4610

> May 2010 Revision: FINAL EA Project No.: 14368.17

Marshall Transformer Site (633019) Remedial Investigation Report Town of Marshall, New York

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211 (315) 431-4610

Christopher J. Canonica, P.E., Program Manager

Date

EA Engineering, P.C.

Robert S. Casey, Project Manager Date

EA Science and Technology

May 2010 Revision: FINAL

EA Project No.: 14368.17

CONTENTS

		<u>Pa</u>	ige
		F FIGURES F TABLES	
1.	INT	RODUCTION	1
	1.1 1.2 1.3	Project Background	1
2.	FIE	LD ACTIVITIES	3
	2.1 2.2 2.3 2.4 2.5	Site Grubbing Activities and Subsurface Anomalies Survey Surface Soil Sampling Test Pit Installation Soil Boring Installation Monitoring Well Installation	4 5 6
		2.5.1 Monitoring Well Development	7
	2.6 2.7	Groundwater Sampling	
3.	FIE	LD SAMPLING RESULTS	10
	3.1	Geology	11
		3.1.1 Surficial and Overburden	
		Hydrology Surface Soil Sample Results Subsurface Soil Results	12
		3.4.1 Test Pit Sample Results3.4.2 Soil Boring Sample Results	
	3.5 3.6	Groundwater Sample Results Data Validation	

4.	SUN	MARY	OF FINDINGS AND CONCLUSIONS	16
	4.1	Summa	ary of Impacts at Marshall Transformer Site	16
	4.2	Polych	lorinated Biphenyls in Surface and Subsurface Soils	16
		4.2.1	Surface Soil	16
		4.2.2	Subsurface Soil	17
	4.3	Ground	lwater Quality	17
	4.4	Conclu	sions	18
Αŀ	PPEN	DIX A:	DAILY FIELD REPORTS	
Αŀ	PPEN	DIX B:	SURFACE SOIL SAMPLE LOGS	
Αŀ	PPEN	DIX C:	TEST PIT LOGS	
Αŀ	PPEN	DIX D:	SOIL BORING/WELL LOGS	
Αŀ	PPEN	DIX E:	WELL DEVELOPMENT FORMS	
Αŀ	PPEN	DIX F:	GROUNDWATER PURGING/SAMPLING FORMS	
Αŀ	PPEN	DIX G:	SITE SURVEY MAP	
Αŀ	PPEN	DIX H:	DATA USABILITY SUMMARY REPORT – Provided on CD	
Αŀ	PPEN	DIX I:	LABORATORY ANALYTICAL DATA – Provided on CD	
Αŀ	PPEN	DIX J:	GIS DATA – Provide on CD	

LIST OF FIGURES

Number	<u>Title</u>	
1	Site Location Map	
2	Site Sampling Locations	
3	Interpreted Groundwater Elevation Surface Map	
4	Summary of Detected Constituents above 6 NYCRR Part 375 Unrestricted SCOs in Surface Soil	
5	Summary of Detected Constituents above 6 NYCRR Part 375 Unrestricted SCOs in Subsurface Soil	
6	Total Petroleum Hydrocarbons Sampling Results	
7	Estimated Extent of Olfactory and PID Soil Impacts	
8	Estimated Extent of Total PCB Concentrations in Surface Soil	
9	Estimated Extent of Total PCB Concentrations in Subsurface Soil	
10	Estimated Extent of Total Petroleum Hydrocarbon Impacts	

LIST OF TABLES

<u>No.</u>	<u>Title</u>
1	Groundwater Elevation Data, November 2007
2	Detected Constituents Surface Soil Analytical Data
3	Detected Constituents Test Pit Analytical Data
4	Detected Constituents Soil Boring Analytical Data
5	Detected Constituents Groundwater Analytical Data
6	Summary of Impact from Contaminants of Concern
7	Comparison of Analytical and Observational Data for Test Pits
8	Comparison of Analytical and Observational Data for Soil Borings

EA Project No.: 14368.17 Revision: FINAL Page 1 of 18 May 2010

1. INTRODUCTION

1.1 PROJECT BACKGROUND

The New York State Department of Environmental Conservation (NYSDEC) tasked EA Engineering, P.C., and its affiliate EA Science and Technology (EA) to perform a remedial investigation (RI) at the Former Marshall Transformer Site (NYSDEC Site No. 6-33-019). The site is located in the Town of Marshall, Oneida County, New York (Figure 1).

The work assignment is being conducted under the NYSDEC State Superfund Standby Contract (Work Assignment No. D004438-17). EA performed initial field investigation activities between August and November 2007 and supplemental field investigation activities in December 2008.

1.2 OBJECTIVES

The purpose of the remedial investigation at the site was to characterize surface soil, subsurface soil, and groundwater conditions through observation and laboratory analysis. Remedial investigation activities included the collection of surface soil samples, exploratory test pits with subsurface soil sampling, the advancement of soil borings with subsurface soil sampling, the installation groundwater monitoring wells and groundwater sample collection. Figure 2 illustrates the locations of the test pits, monitoring wells, surface soil and soil boring sampling locations.

This remedial investigation report was completed to discuss the field investigation activities and summarize the analytical results.

1.3 REPORT ORGANIZATION

Section 2 provides a summary of the procedures and techniques used to complete the field investigation program. Section 3 presents a discussion of the findings of the remedial investigation. Section 4 presents a summary and conclusions of the remedial investigation based on the available data collected. Analytical results from the environmental sampling are summarized in table format.

The following are provided as appendices:

- Appendix A: Daily Field Reports
- Appendix B: Surface Soil Sample Logs
- Appendix C: Test Pit Logs
- Appendix D: Soil Boring/Well Logs
- Appendix E: Well Development Forms
- Appendix F: Groundwater Purging/Sampling Forms
- Appendix G: Site Survey Map
- Appendix H: Data Usability Summary Report

EA Project No.: 14368.17

Revision: FINAL Page 2 of 18 May 2010

EA Engineering, P.C. and Its Affiliate EA Science and Technology

• Appendix I: Laboratory Analytical Data - Form Is.

• Appendix J: GIS Database

Page 3 of 18 May 2010

2. FIELD ACTIVITIES

This section presents the field investigation activities that were performed to meet the goals and objectives of the RI. EA's approach to implementing the RI included field sampling activities designed to evaluate the presence or absence of contaminants of concern (COC) at the site, and to summarize the concentrations of potential COC through laboratory analysis. This report also presents observational data recorded during the field investigation program in conjunction with analytical data.

An initial field investigation program was performed between August and November 2007. A supplemental field investigation was conducted in December 2008. Field investigations included the following:

- Site Grubbing and Subsurface Anomalies Survey-Clearing and grubbing to provide access to all areas of concern, and a subsurface survey using a Schonstedt GA72 CD Magnetometer to locate any surface and/or subsurface anomalies was completed prior to mobilizing the drilling contractor.
- *Surface Soil Sampling*—Collection and analysis of 29 surface soil samples located throughout the targeted area.
- *Exploratory Test Pits*—Excavation of 18 test pits and collection and analysis of subsurface soil samples from within the test pit locations.
- *Soil Borings*—Advancement of 21 soil borings with subsurface soil sample collection and analysis.
- *Monitoring Well Installation*—Installation and development of three groundwater monitoring wells.
- *Groundwater Sampling*—Collection and analysis of groundwater samples from three groundwater monitoring wells.
- *Site Survey*—Survey of site topography, monitoring wells, test pits, surface soil sample locations, and soil boring locations for the preparation of a basemap.

Copies of the daily field reports are provided in Appendix A. Site sampling locations are shown in Figure 2.

Page 4 of 18 May 2010

2.1 SITE GRUBBING ACTIVITIES AND SUBSURFACE ANOMALIES SURVEY

In order to complete the field investigation activities, site grubbing and clearing was required to allow for access to areas of concern at the site. The access route to the site traverses a private landowner's property; therefore, special considerations were made to limit the impact on the property. The access route to the site was trimmed and cleared to allow for access of drill rigs and excavation equipment. In addition, overgrown areas where surficial transformer disposal was evident, clearing was performed to permit access of the excavation equipment and completion of exploratory test pits. These areas are illustrated on Figure 2. Upon completion of the field investigation activities any noticeable impacts (i.e. ruts, equipment and vehicle tracks) were regraded and seeded.

In addition to grubbing and clearing activities, a surface and subsurface magnetic survey was performed using a Schonstedt GA72 CD Magnetometer to locate any anomalies within the targeted area. Numerous anomalies were detected throughout the open gravel pit area of the site due to the presence of small metal shards and other debris in the near surface soil. The presence of this debris interfered with the identification of subsurface magnetic anomalies.

2.2 SURFACE SOIL SAMPLING

Surface soil samples were collected on 18 September 2007 from the 0-2-in. interval using a stainless steel spoon. The soil samples were visually inspected and described according to the Unified Soil Classification System. Surface soil sampling logs are included in Appendix B. Twenty five surface soil samples were collected throughout the target area in September 2007 (Figure 2). Surface soil samples were selected based on visual inspection of the surface area, results of the magnetometer survey, field screening with a photo ionization detector (PID), and as directed by the NYSDEC Project Manager. Site screening for anomalies was performed on 17 September 2007. Once the sampling locations were determined a discrete surface soil sample was collected from the selected location. Four additional surface soil samples were collected on 11 December 2008 as a follow-up to the initial investigation activities.

To avoid cross-contamination of samples, all non-dedicated sampling equipment was cleaned initially and prior to being reused. The following decontamination procedures were performed between surface soil sampling locations:

- Wash and scrub with low phosphate laboratory grade detergent
- Rinse with deionized water
- Rinse with HNO₃
- Rinse with deionized water
- Rinse with isopropyl alcohol
- Rinse with deionized water
- Air dry
- Wrap in aluminum for transport.

EA Project No.: 14368.17 Revision: FINAL Page 5 of 18

May 2010

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Surface soil samples SS-01 through SS-25 were submitted to Life Science Laboratories (LSL), in East Syracuse, New York and analyzed for PCBs by USEPA Method 8082. Four surface soil samples (SS-05, SS-07, SS-14, and SS-22) were submitted for full Target Compound List (TCL) suite using the USEPA Contract Laboratory Program (CLP) OLM04.2. Additionally, three samples (SS-23, SS-24 and SS-25) were submitted for VOCs, SVOCs and Total Petroleum Hydrocarbon (TPH) by USEPA Methods 8260B, 8270C and NY310.13 respectively.

During the supplemental field investigation activities conducted in December 2008, surface soil samples SS-26 through SS-29 were submitted to Mitkem Laboratories (Mitkem) and analyzed for PCB s by USEPA Method 8082 and TPH by USEPA Method 8015B.

2.3 TEST PIT INSTALLATION

Exploratory test pits were excavated on 18-20 September 2007. A total of 18 exploratory test pits were excavated by Parratt Wolff Inc. to approximately 10-ft long, 4-ft wide and up to 22-ft deep for the purpose of characterizing and sampling the subsurface soil. Exploratory test pits locations were staked out before excavations began by the NYSDEC and EA. Figure 2 shows the locations of the exploratory test pits. During test pit excavation, soil was removed in 2-ft lifts and placed on plastic sheeting. Potentially impacted soil (i.e., oils, staining, odors) were separated from non-impacted soil. If no visual evidence (transformer parts) or elevated PID readings were encountered between 8-10 ft bgs the test pit excavation was terminated. If visual impact was encountered at 10-ft bgs, the test pit was then taken to a depth at which no impacts were detected (visual, PID readings).

During excavation activities, soil samples were classified and logged according to the Unified Soil Classification System. Field screening using a PID and field observations were recorded during excavation. A field record of soil types, classification, sampling intervals, PID readings, and other field observations were recorded on the test pit log forms provided in Appendix C. During test pit installation, a minimum of one soil sample was collected at a shallow interval (1-4 ft) and one sample at the base of the test pit in order to delineate soil characteristics and the vertical extent of potential impacts in the subsurface soil. If several distinct geologic formations or potentially impacted intervals were encountered during test pit installation, a soil sample was collected from each interval. A total of 49 soil samples were collected from the exploratory test pits.

Soil samples collected from the test pits were sent to LSL and analyzed for PCBs by U.S. Environmental Protection Agency (USEPA) Method 8082. Additionally, five samples were collected from test pits TP-03, TP-07, TP-09, TP-13 and TP-17 and analyzed for a full Target Compound List (TCL) suite using USEPA Contract Laboratory Program (CLP) OLM04.2. Analyses included VOCs (Method 8260B), SVOCs (Method 8270C), pesticides (Method 8081A), Target Analyte List (TAL) metals and mercury (Method 6010/7470).

The soil spoils generated during the exploratory test pit activities were placed back into the originating test pit.

EA Project No.: 14368.17 Revision: FINAL Page 6 of 18

May 2010

EA Engineering, P.C. and Its Affiliate EA Science and Technology

2.4 SOIL BORING INSTALLATION

The purpose of the direct-push/geoprobe overburden evaluation at the site was to further define the nature and extent of potential impacts at the perimeter of the test pit limits. Soil borings were advanced under a separate mobilization effort on 25-26 October 2007 by Parratt Wolff Inc. Based on preliminary analytical results from the surface and subsurface soil samples collected from the test pits and the surface soil, a total of 12 soil borings were advanced from depths ranging from 2 to 12 ft bgs. During the supplemental investigation activities in December 2008 an additional nine soil borings were advanced in areas of concern as determined by an evaluation of analytical, visual, and olfactory data collected during the initial field investigation activities.

EA worked in conjunction with the NYSDEC Project Manager to determine the locations of the soil borings. Soil boring locations are shown on Figure 2.

During the direct-push drilling program, subsurface soil samples were collected continuously from each of the soil borings. Soil borings were screened with a PID and classified and logged according to the Unified Soil Classification System. Up to two soil samples were collected from each soil boring based on field PID screening and in conjunction with visual and olfactory observations. A field record of each soil boring, classification, sampling intervals, PID readings (SB-13 through SB-21), and other field observations were recorded on the soil boring log form provided in Attachment D.

Soil samples collected from soil boring SB-01 through SB-12 during the October 2007 field investigation were submitted to LSL for PCB analysis using USEPA Method 8082. Additionally, several samples were collected for VOC, SVOC and TPH by USEPA Methods 8260B, 8270C and 310.13 respectively, (see Appendix D for detail). The soil samples were collected from the most contaminated interval, (i.e., highest PID reading, visually impacted, strong odor) or, if no contamination was evident, a soil sample was collected from the bottom of the soil boring.

Soil samples collected from soil borings SB-13 through SB-21 during the December 2008 field investigation were submitted to Mitkem for analysis of PCBs by USEPA Method 8082 and TPH by USEPA Method 8015B.

In total, 36 soil samples were collected from the twenty-one soil boring locations. Upon completion of sampling activities, soil borings were backfilled with bentonite chips to prevent contamination of clean soil as necessary.

2.5 MONITORING WELL INSTALLATION

Three monitoring wells were installed (MW01 through MW03) on 23-25 October, 2007 (Figure 2). Monitoring wells were installed using a 4.25-in inner diameter (ID) Hollow-Stem Auger (HSA). Each borehole was over drilled at least 1.0 ft beyond the anticipated bottom of the monitoring well and backfilled with Morie # 0 sand. The total depths of the monitoring wells were largely determined by the water table conditions encountered during drilling, such that the well screen would intercept the water-table interface, approximately 20-30 feet bgs. The bottom

EA Project No.: 14368.17 Revision: FINAL Page 7 of 18

May 2010

EA Engineering, P.C. and Its Affiliate EA Science and Technology

of each well screen was fitted with a new 2-inch well cap. All monitoring wells were constructed with 10 to 20-ft of new 2-inch ID threaded, flush-joint Schedule 40 PVC machine-slotted (slot size 0.010 inch) well screen and appropriate amount of new 2-inch ID PVC riser pipe to grade.

After each well screen and riser pipe was positioned at the desired depth, the annular space between the borehole and the PVC screen piping was packed with clean Morie #0 sand. The augers were raised while the filter pack was set, and the depth to the sand pack inside the augers was measured continuously to ensure that no air pockets or bridging formed. The top of the filter packs extended approximately 2-ft above the top of the screen. A 2-ft bentonite chip seal was set above the filter pack and hydrated. The remaining annular space was backfilled with a grout/bentonite mixture to grade. The well was finished with a protective steel stick-up casing. Well construction logs are provided in Appendix D. Monitoring well locations are illustrated on Figure 2.

2.5.1 Monitoring Well Development

Monitoring wells were developed no sooner than 24 hours following installation. The monitoring wells were developed using surging and pumping techniques. Well development was to be considered complete when temperature, conductivity, and pH had stabilized and a turbidity of less than 50 nephelometric turbidity units (NTU) was achieved, or the well was pumped dry.

During monitoring well development it was noted that the groundwater within the well casing was extremely turbid and was described as muddy. Development of the monitoring wells became inhibited by both turbidity and slow recharge rates observed during development. Groundwater recharge rates for the monitoring wells ranged from less than 0.25 to 0.50 gallons per minute (gpm). Low volumes of groundwater were removed from the monitoring wells during the development process. Development water purged from the monitoring wells was discharged to the ground surface away from the monitoring well. No non-aqueous phase liquid (NAPL) or odor was observed during monitoring well development. Monitoring well development logs are provided in Appendix E.

2.6 GROUNDWATER SAMPLING

Three groundwater samples were collected from the monitoring wells on 15 November 2007 using a dedicated polyethylene bailer. Prior to sampling, monitoring wells were gauged for depth to water in order to obtain groundwater elevation. The monitoring wells were purged until groundwater parameters (pH, conductivity, oxygen reduction potential, temperature, dissolved oxygen and turbidity) stabilized or the monitoring well was purged dry, whichever occurred first. It was noted during monitoring well purging that monitoring wells MW-01 and MW-02 were heavily turbid. Monitoring wells MW-01 and MW-03 were purged until stabilization of groundwater parameters occurred, except for turbidity at monitoring well MW-01 where elevated readings for turbidity persisted throughout the purging process. Purging using a peristaltic pump at monitoring well MW-02 was prohibited due to very silty conditions within the monitoring well casing, therefore the monitoring well was purged using a dedicated bailer, allowed to recharge

EA Project No.: 14368.17 Revision: FINAL Page 8 of 18

May 2010

EA Engineering, P.C. and Its Affiliate EA Science and Technology

and then sampled. Monitoring wells were allowed to recharge and settle prior to collecting groundwater samples. Groundwater purging and sampling forms are provided in Appendix F.

Groundwater samples were sent to LSL, East Syracuse, New York and analyzed for PCBs and TPH by USEPA Method 8082 and 8100, respectively. The groundwater sample collected from MW-01 was also submitted for full TCL suite using USEPA CLP OLM04.2. Analyses included VOCs (Method 8260), SVOCs (Method 8270), pesticides (Method 8081A), and TAL metals and mercury (Method 6010/7470) in accordance with the NYSDEC Analytical Services Protocol. LSL is an approved New York State Department of Health Environmental Laboratories Approval Program (ELAP)-certified laboratory for full TCL suite analysis and in accordance with the NYSDEC Analytical Services Protocol (ASP).

2.7 SITE SURVEY

The site monitoring wells, test pits, surface soil, and soil boring locations completed during the first phase of the remedial investigation program were surveyed upon completion by Popli Consulting Engineers and Surveyors, Penfield, New York (a New York State licensed surveyor) on 15 November 2007. Horizontal and vertical coordinates for each location were integrated onto the site basemap. The surveyor established elevations with respect to benchmarks currently installed at the site. The elevations for all monitoring well locations were established both for land surface and for the top of casing at a measuring point notch. All vertical measurements were referenced to the National Geodetic Vertical Datum of 1988 and reported to the nearest 0.01 ft. A copy of the survey map is provided as Appendix G.

Horizontal control was established by traverse runs to establish location with respect to the New York State planar horizontal coordinate grid system and provided in New York State planar and UTM coordinates (NAD83). Horizontal traverses were tied into established permanent benchmarks. Horizontal traverse runs were tied back to initial control points as a check for closure, and error of closure was recorded. The horizontal location of wells was reported to within 0.1 ft.

The site survey basemap was imported into ArcGIS® 9.2 and geo-referenced based on the coordinate system used to develop the basemap. Figures presented in this RI were developed utilizing ArcGIS® 9.2 software and are overlain with site basemap features including prominent site feature surface features such as surface contours and tree lines.

Several test pit, surface soil, and soil boring locations were not surveyed. Surface soil locations SS-1, SS-5, SS-7, SS-9, SS-15, SS-16, and SS-20 and test pit locations TP-15 and TP-18 were not surveyed because the flags indicating these locations were either missing or had been moved at the time of the survey. Supplemental surface soil locations SS-26 through SS-29 and supplemental soil boring locations SB-13 through SB-21 were not surveyed because samples were collected after the survey was completed.

The locations of all sampling points were recorded using a high precision Global Positioning System (GPS) receiver at the time of sampling. For sampling locations that were not surveyed,

EA Project No.: 14368.17

Revision: FINAL Page 9 of 18 May 2010

EA Engineering, P.C. and Its Affiliate EA Science and Technology

GPS measurements are presented instead on all figures and the Site Survey. Electronic versions of all survey and GPS data collected during the Remedial Investigation are provided in Appendix J.

EA Project No.: 14368.17 Revision: FINAL Page 10 of 18 May 2010

3. FIELD SAMPLING RESULTS

This section presents the findings of the field sampling activities conducted during the remedial investigation. Aqueous and non-aqueous samples were analyzed for VOCs, SVOCs, pesticide/PCBs, TAL metals, mercury, and Total Petroleum Hydrocarbons. Analytical methods were performed by Environmental Laboratory Approval Program (ELAP)-certified laboratories. In addition, the laboratory followed the quality assurance/quality control (QA/QC), holding time and reporting requirements as defined in the NYSDEC Analytical Services Protocol of June 2000. Aqueous and non-aqueous analyses of samples collected during the initial field investigation (August through November 2007) were performed by Life Science Laboratories Inc., of East Syracuse, New York. Non-aqueous analyses of samples collected during the supplemental field investigation (December 2008) were performed by Mitkem Laboratories, of Warwick, Rhode Island. Laboratory analytical data were reported using Category B deliverables and the standard electronic data deliverable.

During the first phase of the remedial investigation program non-aqueous analytical samples were submitted to Life Science Laboratories for analysis of PCBs. Surface soil samples SS-01 through SS-25, subsurface soil samples from soil borings SB-01 through SB-12, and subsurface soil samples from test pits TP-01 through TP-18 and the associated quality assurance/quality control samples were submitted under sample delivery groups (SDGs) 0709089, 0709103, and 0709108. These samples were analyzed utilizing method detection limits (MDLs) higher than the respective 6 New York Code of Rule and Regulations (NYCRR) Part 375 Soil Cleanup Objective for Unrestricted Use (0.1 ppm). Therefore, at the direction of the NYSDEC, EA was instructed to evaluate the entire RI analytical group in the following manor:

- Surface soil analytical results reported only detections of Aroclor 1254 and Aroclor 1260, while subsurface soil (test pits and soil borings) analytical results reported only detections of Aroclor 1248, Aroclor 1254, and Aroclor 1260 above their respective MDLs.
- Where non-detect values were reported for an Aroclor identified above, ½ the MDL concentration value was used for determining the total Aroclor concentration value.
- The surface and subsurface soil tables and figures contained within this RI that denote concentration values for total Aroclor have been determined using the quantification method described.

The quantification method was utilized to demonstrate that while elevated MDLs were used during the analytical process, the analytical results of the entire data set indicated low level concentrations of PCBs.

Analytical data collected during the remedial investigation were validated by Environmental Data Services, Inc. an independent third party. Analytical data was reviewed for completeness; field and laboratory QC sample results were evaluated; significant laboratory control problems were assessed; and data qualifiers were assigned. The Data Usability Summary Reports (DUSRs) are presented in Appendix H.

May 2010

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Standards, criteria and guidance (SCGs) are promulgated requirements and non-promulgated guidance which govern activities that may affect the environment and are widely used at different stages of an investigation and remediation of a site. The SCGs applicable for the data set collected during this remedial investigation are 6 NYCRR Subpart 375-6 Soil Cleanup Objectives (unrestricted-use), and Division of Water Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1).

3.1 GEOLOGY

3.1.1 Surficial and Overburden

During the subsurface investigation, surficial geology was classified and logged according to the Unified Soil Classification System. The surficial geology was classified on-site as topsoil and sand with silts. On-site overburden material was defined as till material and was generally of variable texture (boulders to silt), and usually consisted of large amounts of poorly sorted sand, rock fragments, with trace amounts of silt.

With the exception of test pits TP-01 and TP-03 most of the test pits were excavated to a depth of approximately 10 ft bgs. Test pit logs documented on-site overburden material as till with sandy-silt and containing many cobbles and rock fragments throughout the pits. Similarly, the soil boring logs identified overburden material as mainly till material with sand and silt. Soil borings were advanced to an approximate depth of 8-10 ft bgs on-site.

3.1.2 Bedrock

Bedrock was not encountered during the monitoring well installation program conducted during this remedial investigation. Monitoring wells were installed to a depth of approximately 36 ft bgs. According to the U.S. Geologic Survey (USGS), the Marshall Transformer Site lies within two geologic groups; the Helderberg and the Colbeskill Limestone and Salina Group. The Helderberg group consists of the Alsen, Becroft, New Scotland, Kalkberg, Coeymans and Manulis Limestones, as well as the Rondout Dolstone. The Cobleskill Limestone consists of parts of the Bertie, Camillus and Syracuse Limestone formations, as well as the Brayman Shale, and Dolstone.

3.2 HYDROLOGY

As part of this remedial investigation, three monitoring wells were installed with the purpose of examining groundwater quality and providing groundwater level information for evaluating local groundwater flow direction on-site. The screened intervals for each monitoring well are provided on the monitoring well installation logs contained in Appendix D. Groundwater level measurements were taken prior to the initiation of the groundwater sampling event in November 2007. Groundwater measurements were taken from the top of the inner PVC casing using an oil/water interface probe. Groundwater was encountered from 23.33 (MW-1) to 31.62 (MW-2) ft bgs on 15 November 2007. Table 1 shows the depth to groundwater recorded at each monitoring

EA Project No.: 14368.17 Revision: FINAL Page 12 of 18 May 2010

well location during the gauging event. The groundwater flow direction based on the groundwater level measurements indicates that groundwater flow is generally in a westward direction with a hydraulic gradient of 0.050. An interpreted groundwater elevation surface map illustrating the direction of groundwater flow for the gauging event is shown in Figure 3.

3.3 SURFACE SOIL SAMPLE RESULTS

PCBs were detected above the 6 NYCRR Part 375 Soil Cleanup Objective Unrestricted Use (0.1 ppm) in 10 of 29 surface soil sampling locations. Aroclor 1254 was the most prevalent PCB detected, 9 of 29 surface samples were above the SCG for this compound. Aroclor 1260 was detected above the SCG in two of the surface soil samples. Aroclor 1254 detection results ranged from 0.120 ppm to 6.80 ppm, and Aroclor 1260 was reported at 0.14 ppm and 0.41 ppm. The total Aroclor concentration range for the surface soil samples above SCG was 0.26 ppm and 6.80 ppm, this concentration range includes ½ MDL concentration values for Aroclors (1254 or 1260) that were non-detect within the same sample. The surface soil samples detected above SCGs were generally located within two areas located in central portion of the site.

As presented in the introduction to this section, surface soil samples that reported non-detections of PCBs were evaluated utilizing ½ the MDL concentration values to quantify total Aroclor concentrations. Based on this evaluation, surface soil samples that were non-detect were assumed to be likely less than the 0.1 ppm SCG. The concentration range for non-detect surface soil samples including the ½ MDL concentration values was 0.005 ppm to 0.151 ppm.

One metal, mercury, was detected above the SCG in surface soil sample SS-05. In addition, elevated concentrations were reported for aluminum, calcium, iron, magnesium, manganese, and potassium in each surface soil sample collected and analyzed for TAL metals.

No VOC's or SVOC's were detected above SCGs. However, TPH was detected is surface soil samples SS-27, SS-28, and SS-29 ranging in concentration from 41 ppm to 110 ppm.

A summary of all detected analytes in surface soil samples is provided in Table 2. Figure 4 illustrates a summary of PCB and metal detections above SCGs for surface soil samples. Laboratory analytical Form Is are provided in Appendix I.

3.4 SUBSURFACE SOIL RESULTS

3.4.1 Test Pit Sample Results

PCBs were detected above the 6 NYCRR Part 375 Soil Cleanup Objective (0.1 ppm) in 9 of the 49 test pit subsurface soil samples. The nine test pit subsurface soil samples above SCGs were collected from 5 of the 18 test pits. The test pit subsurface soil samples detected above SCGs were collected from test pits TP-04, TP-05, TP-10, TP-16, and TP-17. Aroclor 1248 was detected in 2 of 49 test pit subsurface soil samples, Aroclor 1254 was detected in 4 of 49 test pit subsurface soil samples. One of the test pit subsurface soil samples (TP-16-10') detected both Aroclor 1254 and

EA Project No.: 14368.17 Revision: FINAL Page 13 of 18

May 2010

EA Engineering, P.C. and Its Affiliate EA Science and Technology

1260. The total Aroclor concentration range for the nine subsurface soil samples above SCG was 0.343 ppm to 3.40 ppm, this concentration range includes ½ MDL concentration values for Aroclors (1248, 1254 or 1260) that were non-detect within the same sample.

Four of the nine test pit subsurface soil samples above the SCG were collected in the 0-2 foot sampling interval, three of nine were from the 4-6 foot sampling interval and two of nine were from the 9-10 ft sampling interval. Test pits TP-16 and TP-17 which reported the most subsurface soil samples above SCGs were located adjacent to one another in the northwest portion of the site. Test pits TP-04 and TP-05 were also located in close proximity to each other but in the southeast portion of the site while test pit TP-10 was located in the central portion of the site.

As previously mentioned, test pit subsurface soil samples that reported non-detections of PCBs were evaluated utilizing ½ the MDL concentration values to quantify total Aroclor concentrations. Based on this evaluation, test pit subsurface soil samples that were non-detect were assumed to be likely less than the 0.1 ppm SCG. The concentration range for non-detect test pit subsurface soil samples including the ½ MDL concentration values was 0.161 ppm to 0.194 ppm.

Acetone was the only VOC detected above the SCG in test pit subsurface soil sample TP-03-8'. Concentrations of zinc and copper slightly exceeded unrestricted soil cleanup objectives at TP-3 and TP-7 respectively. No SVOCs were above SCGs in subsurface soil samples collected from the test pits.

Pesticides dieldrin and 4,4'-DDT were detected above the SCGs in 3 of the 49 test pit subsurface soil samples. Dieldrin was detected at a concentration of 0.019 ppm in test pit subsurface soil sample TP17 - 1.5'. 4,4'-DDT was also detected above its SCG of 0.0033 ppm in TP-03-8'at a concentration of 0.01 ppm and at an estimated concentration of 0.0033 ppm in TP-09-7'.

A summary of all detected analytes from the test pit subsurface soil samples are provided in Table 3. Figure 5 illustrates the test pit subsurface soil sampling results that were reported above the SCGs. Laboratory analytical Form Is are provided in Appendix I.

3.4.2 Soil Boring Sample Results

PCBs were detected above the 6 NYCRR Part 375 Soil Cleanup Objectives (0.1 ppm) in 6 of the 36 soil boring soil samples collected from twenty-one soil borings advanced during the remedial investigation. Subsurface soil samples collected from soil borings SB-04, SB-08, SB-16, SB-17, and SB-19 were above the SCG. Three detections of Aroclor 1260 were reported at concentrations ranging from 0.120 ppm to 0.379 ppm and three detections of Aroclor 1254 were reported at concentrations ranging from 0.140 ppm to 1.20 ppm, respectively. Soil boring SB-04 with PCB detection in the 4-6' sampling depth interval was located in the northwest portion of the site which is in the same general area as test pits TP-16 and TP-17 where test pit subsurface soil samples were reported above SCG for PCBs as well. The PCB detection at soil boring SB-08 was located in the southeast portion of the site just east of test pit TP-05. Similarly test pit

EA Project No.: 14368.17 Revision: FINAL Page 14 of 18

May 2010

EA Engineering, P.C. and Its Affiliate EA Science and Technology

subsurface soil sampling at TP-05 reported concentrations of PCBs above the SCG as well. Soil borings SB-16, SB-17, and SB-19 were located in the central portion of the site surrounding test pit TP-10 where a duplicate sample (DUP03) reported concentrations of PCBs above the SCG as well. Total Aroclor concentrations for the soil borings subsurface soil samples detected above the PCB SCG were 0.124 ppm to 1.21 ppm and included ½ MDL concentration values for Aroclors (1248, 1254 or 1260) that were non-detect within the same sample.

Soil boring subsurface soil samples that reported non-detections of PCBs were evaluated utilizing ½ the MDL concentration values to quantify total Aroclor concentrations. Based on this evaluation, soil boring subsurface soil samples that were non-detect were assumed to be likely less than the 0.1 ppm SCG. The concentration range for non-detect soil boring subsurface soil samples including the ½ MDL concentration values was 0.007 ppm to 0.184 ppm.

Acetone was the only VOC detected above the SCG. No SVOCs were above SCGs in the soil boring soil samples collected from the test pits.

TPH was detected in 11 of 28 soil boring soil samples. TPH concentrations in soil boring soil samples ranged from 130 ppm to 7,000 ppm. Currently there is no applicable SCG for TPH. TPH is a common term for an extensive group of chemical compounds that originate from crude oil. Soil boring samples (SB-01 through SB-08, SB-10, and SB-11) submitted to LSL for TPH analysis identified the TPH concentrations as No. 6 fuel oil. No. 6 fuel is commonly referred to as a heavy oil or residual oil, as it is what remains of crude oil after gasoline and the distillate fuel oils are extracted through the distillation process. No 6 fuel oil is very persistent and does not degrade readily in the environment; it was typically used in power plants and industrial facilities during the first part of the 20th century. However, soil boring samples (SB-13 through SB-21) submitted to Mitkem for TPH analysis identified the TPH concentrations as transformer oil. Transformer oil is a highly-refined mineral oil that is stable at high temperatures and good electrical insulating properties. Transformer oil is commonly used in high voltage transformers as a cooling agent.

A summary of all detected analytes in the test soil borings are provided in Table 4. Figure 5 illustrates the soil boring soil sampling locations that were detected above the SCGs. Laboratory analytical Form Is are provided in Appendix I.

3.5 GROUNDWATER SAMPLE RESULTS

For comparing the groundwater results to appropriate SCGs, all groundwater results were compared to New York State Departments of Environmental Conservation Ambient Water Quality Standards (NYSDEC AWQS) for Class GA waters. Groundwater grab samples were collected from each monitoring well during the groundwater sampling event conducted on 15 November 2007. The monitoring wells were installed so that the screened interval intercepted the groundwater table within the overburden unit. When discussing groundwater quality, this remedial investigation report is referring to the water bearing zone at depths ranging from approximately 21 to 31 feet bgs.

EA Project No.: 14368.17 Revision: FINAL Page 15 of 18

May 2010

EA Engineering, P.C. and Its Affiliate EA Science and Technology

No PCBs, TPHs, VOCs, SVOCs, or pesticides were reported above the SCGs for groundwater water. No groundwater quality impacts appear to be occurring from the low level concentrations of PCBs, VOCs, pesticides, and TPHs observed in the overlying soil.

Several TAL metals were detected above their respective AWQS standards in monitoring well MW-1. The elevated concentrations of calcium, iron, magnesium, manganese, and potassium detected in the groundwater sample and associated duplicate sample were also detected at elevated concentrations in the surface and subsurface soil at the site.

A summary of detected analytes in the groundwater samples is provided in Table 5. Because no detections of TPH compounds were reported, no summary table is provide for TPH groundwater results. Laboratory analytical Form Is are provided in Appendix I.

3.6 DATA VALIDATION

Analytical data results were submitted to Environmental Data Services, Inc. for validation. This validation included a review of pertinent QA/QC data such as sample extraction and analysis, holding times, calibration, a review of laboratory blanks and QA/QC sample results, and a review of the analytical case narrative. A Data Usability Summary Report (DUSR) was prepared which includes a compliance chart, a list of samples included in each sample delivery group and recalculations of sample results. Nonconforming QA/QC results were evaluated with respect to their implications for data reliability and usability, and data results were flagged accordingly on the results sheets. These qualifiers were entered into the site-specific database and appear in the summary tables presented in this report. Data summary and usability reports for the analytical data packages are provided in Appendix H.

EA Project No.: 14368.17 Revision: FINAL Page 16 of 18 May 2010

4. SUMMARY OF FINDINGS AND CONCLUSIONS

This chapter provides a summary of the conditions at the Marshall Transformer Site, as determined by the completion of the remedial investigation activities.

4.1 SUMMARY OF IMPACTS AT MARSHALL TRANSFORMER SITE

The following sections summarize the environmental impacts at the Marshall Transformer Site. This section is organized by areas of potential concern for the site. Areas of concern and the impacts associated with the environmental media are based on analytical results and their comparison with appropriate and applicable SCGs. Table 6 summarizes the degree of impacts of the Contaminants of Concern (COCs), and compares the data with SCGs for the site.

4.2 POLYCHLORINATED BIPHENYLS IN SURFACE AND SUBSURFACE SOIL

Analytical results from the surface and subsurface soil samples collected during this remedial investigation reveal that concentrations of PCBs above unrestricted use SCGs exist in both the surface and subsurface soil. The surface soil reported a higher percentage, 34 percent, of PCB detections above SCGs than did the subsurface soil which reported 18 percent above SCGs. Additionally, of the 18 percent of subsurface soil samples above SCG, 6 percent of those samples were collected in the 0 to 2 ft bgs sampling interval which likely included surface soil.

In addition to the laboratory analytical data reported in Section 3 of this report, both olfactory and PID readings recorded during the test pitting and soil boring activities were used to develop a delineation of impacts associated with subsurface soil. Tables 7 and 8 compare the analytical data results with field observations recorded during the remedial investigation. While there is not definitive correlation between these data sets it should be noted that olfactory evidence and intermittent PID readings did indicate a potential for subsurface contamination. Figure 7 depicts the observational data and suggests that the former gravel pit in the center of the site contains the limits of the olfactory delineation. This area of the site also correlates with the both the PCB and TPH analytical data collected during the RI.

4.2.1 Surface Soil

Surface soil impacts appear to be confined to the central portion of the site into two general areas. Figure 8 depicts theses two areas with concentration contours for 1 ppm and 0.1 ppm based on an interpolation of the surface soil analytical results. It should be noted that surface soil samples that were processed at elevated MDLs but resulted in non-detect concentrations are likely less than the 0.1 ppm SCG and were therefore not included within the 0.1 ppm contours.

The impacted surface soil at the site presents the most potential threat and possible exposure pathway to human populations. However, the concentrations observed in the surface soil are very low and only two samples (SS-11 and SS-28) were reported above the 6 NYCRR Part 375 Soil Cleanup Objective for residential use, which is 1 ppm. Based on the SCG threshold contour lines

EA Project No.: 14368.17 Revision: FINAL Page 17 of 18

May 2010

EA Engineering, P.C. and Its Affiliate EA Science and Technology

illustrated in Figure 8, approximately 331 cubic yards of surface soil are above SCG for unrestricted use at the site. This estimate is based on an excavation area down to one foot below ground surface.

4.2.2 Subsurface Soil

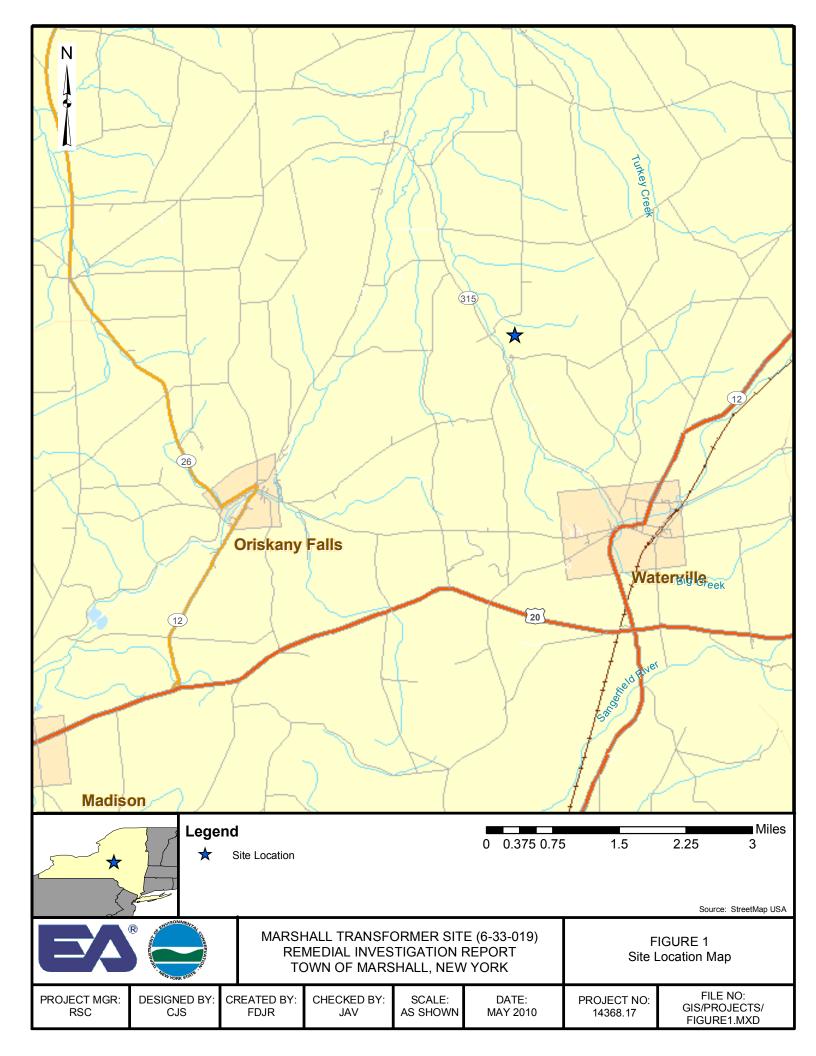
Subsurface soil impacts identified at the site were intermittent, making it difficult to delineate both vertically and horizontally across the site. PCB detections above SCG were identified in four areas of the site; the northwestern portion of the former gravel pit in test pits TP-16 and TP-17 as well as soil boring SB-04; the central portion of the former gravel pit in test pits TP-04 and TP-10 and soil boring SB-17; at soil boring SB-16; and in the southeastern portion of the former gravel pit in test pit TP-05 and soil boring SB-08. Figure 9 depicts the PCB concentration contours based on an interpolation of the subsurface soil analytical results. Approximately 2,316 cubic yards of subsurface soil are above SCG for unrestricted use at the site. This estimate is based on an excavation down to ten feet below ground surface within the 0.1 ppm contour line depicted in Figure 9.

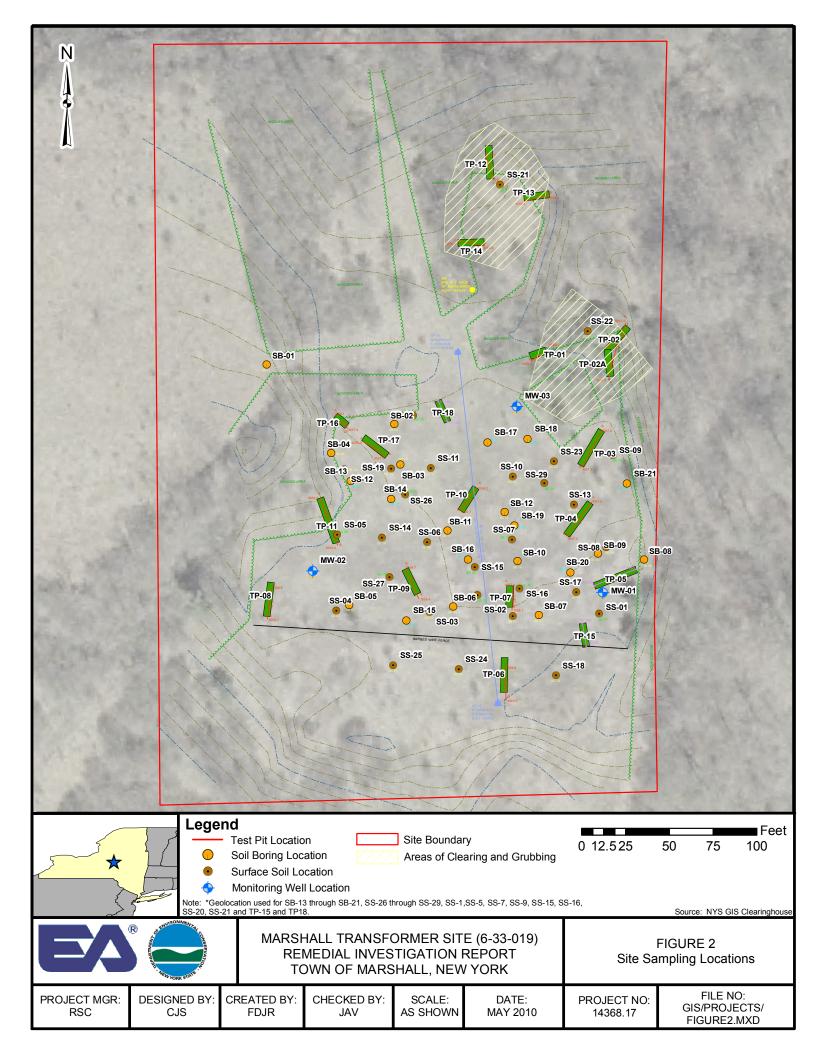
Analogous with the surface soil, the concentrations observed in the subsurface soil are very low and only four samples (TP-16-2', TP-16-10', TP-17-4', and SB-16-2-4') were reported above the 6 NYCRR Part 375 Soil Cleanup Objective for residential use, which is 1 ppm. In addition, the subsurface soil does not present an immediate or potential exposure risk to either human health or the environment.

In addition to the PCB impacts, subsurface soils revealed concentrations of TPH in a number of samples collected during the RI. TPH concentrations were typically encountered in the western portion of the former gravel pit area with higher concentrations observed in the southwestern portion of the site. Currently, there are no applicable SCGs for TPH under 6 NYCRR Part 375. Figure 10 illustrates the estimated limits of impacts of TPH in subsurface soil. Analytical results for TPH identified the chemical compounds detected as transformer oil which is consistent with historical operations and use of the site as a transformer disposal area.

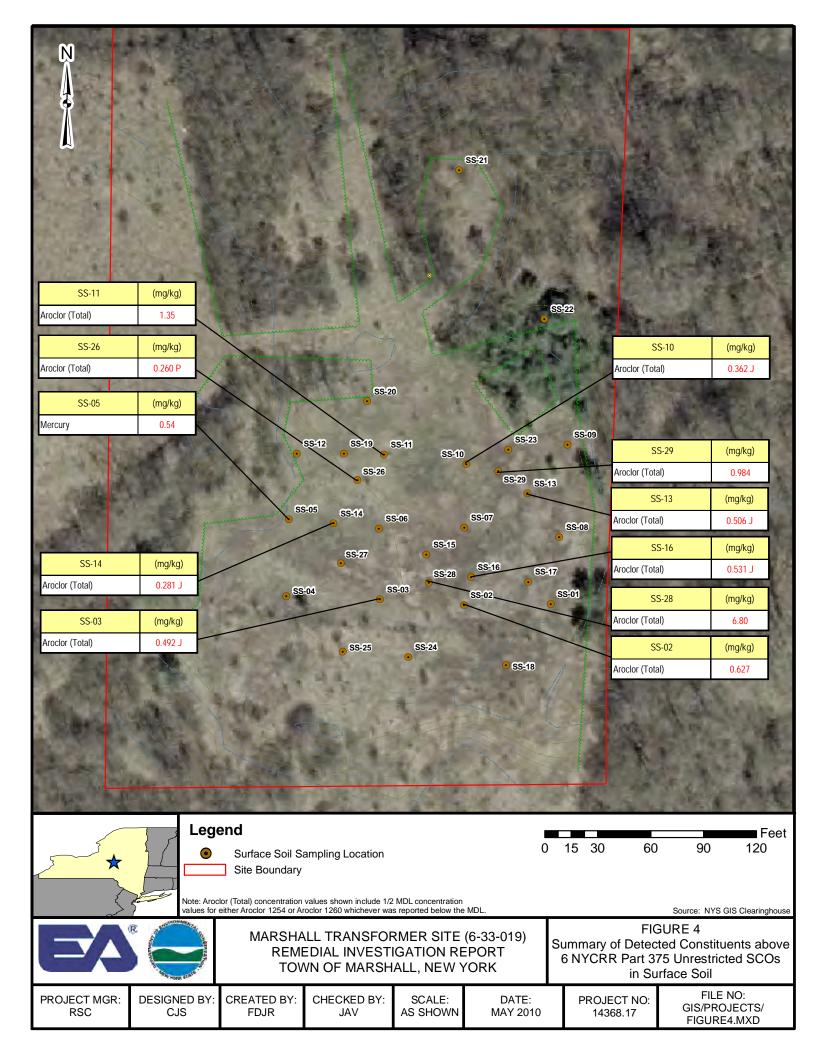
4.3 GROUNDWATER QUALITY

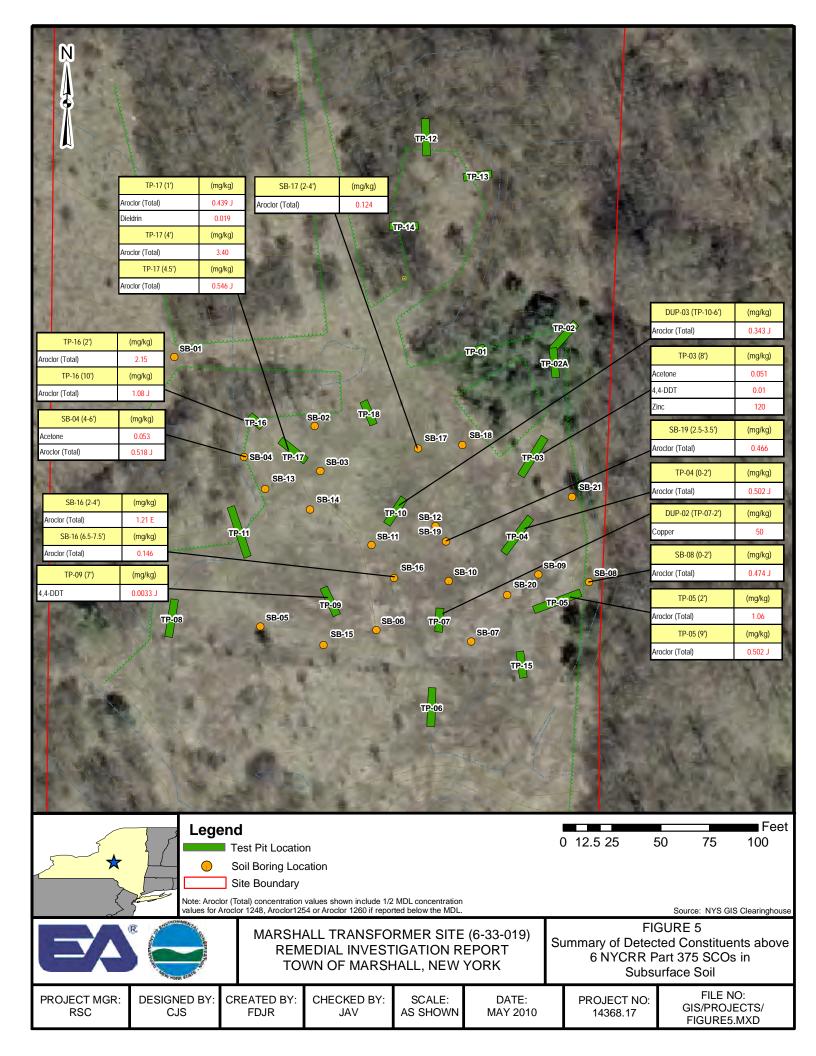
Analytical results from the groundwater sampling program completed under this remedial investigation revealed concentrations of TAL metals above SCGs were present in groundwater at monitoring well MW-01. No other monitoring well was sampled or analyzed for TAL metals during the remedial investigation. TAL metals reported at the highest concentrations in monitoring well MW-01 included calcium, iron, magnesium, manganese, and potassium, and are considered naturally occurring metals. However, several Resource Conservation and Recovery Act (RCRA) metals were also above the SCGs. Surface and subsurface soil samples collected from the site did indicate that elevated concentrations of the same TAL metals observed in groundwater were present in the overburden unit which indicates that groundwater concentration are likely associated with the geochemistry observed in overlying soil. Additional groundwater sampling and analysis would be required to further identify groundwater impacts from metals.

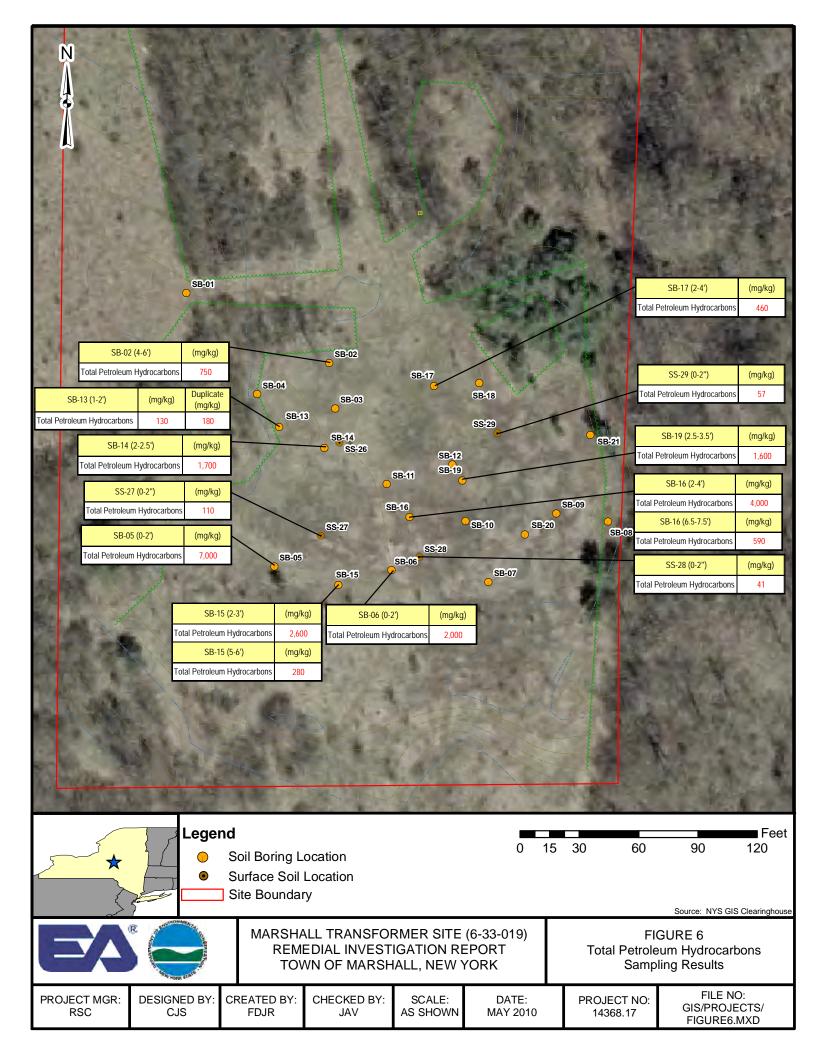

May 2010

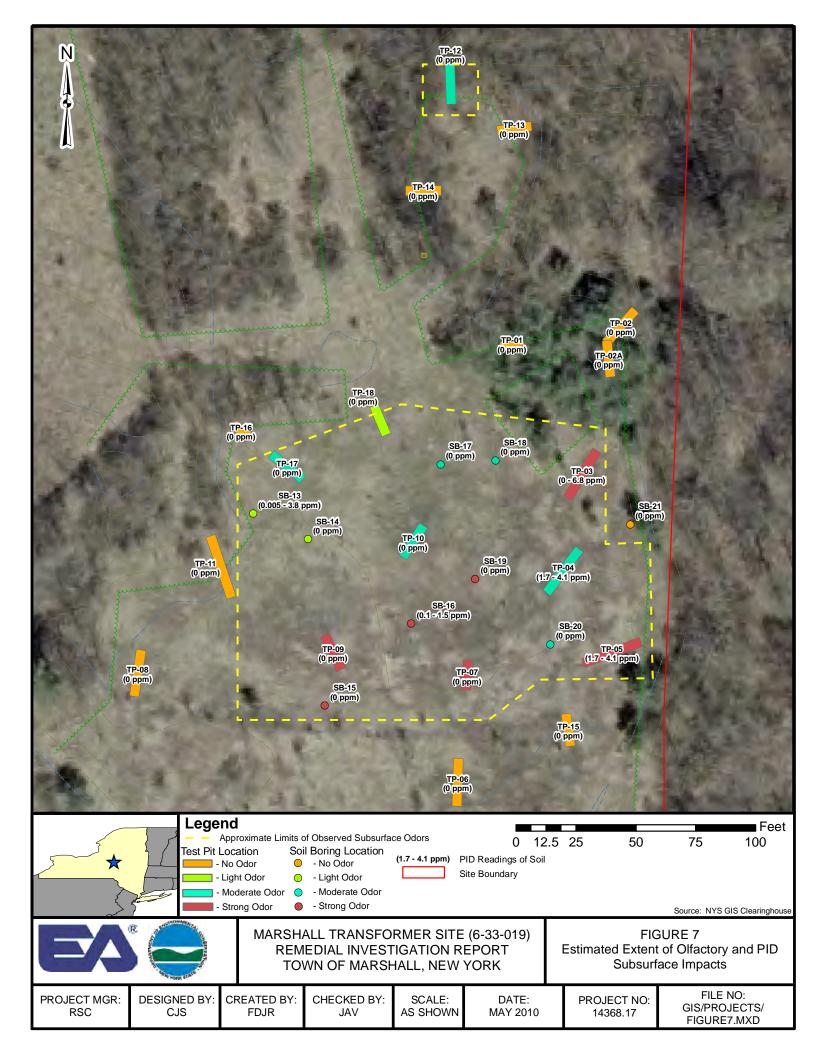

No other impacts were observed or reported for the groundwater samples collected at the site.

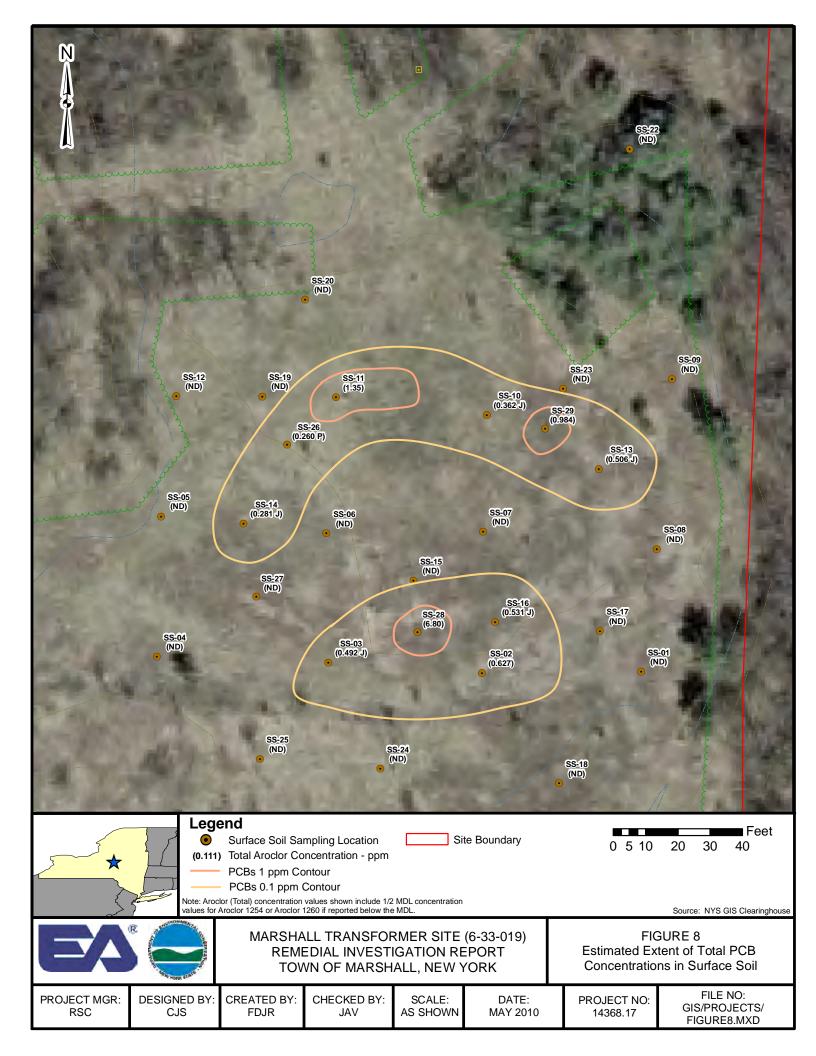
4.4 CONCLUSIONS

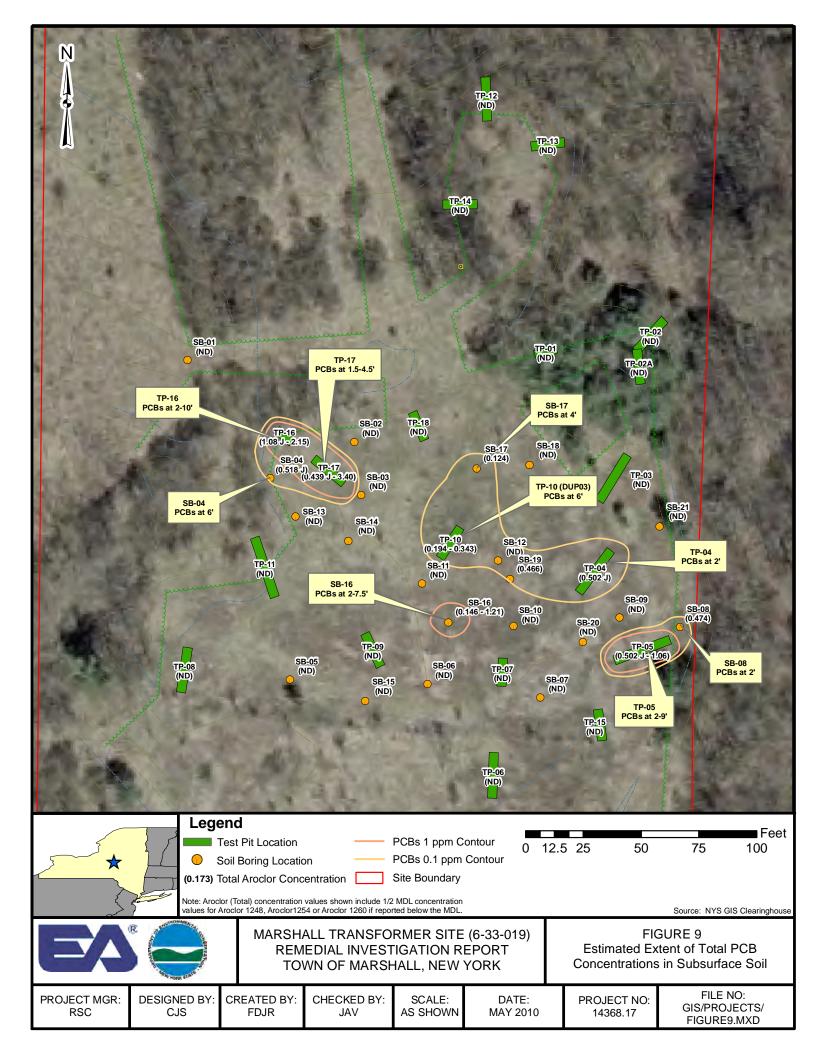

Based on the site data collected during this remedial investigation, EA concludes the following:

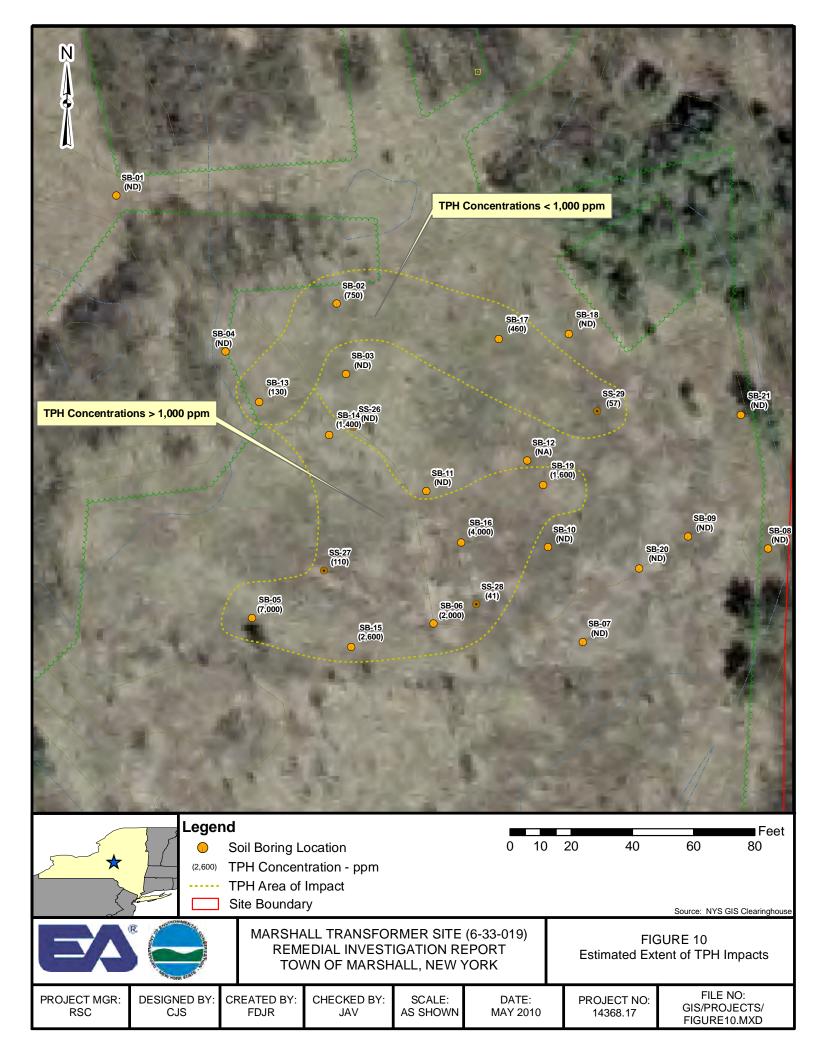

- PCBs were detected in 10 of 29 surface soil samples above soil cleanup objective SCGs for unrestricted-use (0.1 ppm) and in 2 of 29 surface soil samples above soil cleanup objective SCGs for residential-use (1 ppm). Exceedence of unrestricted-use SCGs was delineated to two general areas of concern located in the central portion of the site.
- PCBs were detected intermittently in subsurface soil samples collected from test pits and soil borings located across the site. Four general areas of concern were characterized both horizontally and vertically within the site boundary and the former gravel pit area. The sporadic nature and low-level concentrations of PCB contamination in subsurface soil inhibits a definitive delineation of PCB concentrations to the unrestricted-use SCGs (0.1 ppm).
- TPH concentrations were detected in a number of subsurface soil borings. The detections
 of TPH were typically encountered in the western portion of the former gravel pit area
 with the highest concentrations being reported in the southwestern portion of the site.
 Unlike PCB concentrations in soil and based on the supplemental field investigation, TPH
 concentrations appear to decrease with depth and are likely the result of surface discharge.
 Subsurface soil TPH concentrations are not subject to evaluation based on current 6
 NYCRR Part 375 Soil Cleanup Objectives.
- The subsurface soil within the former gravel pit area of the site revealed widespread olfactory evidence, relatively low and intermittent PID detections above 1 ppm, and significant TPH concentrations predominantly in the western and southwestern portions of the former gravel pit. Observational, PID, and TPH subsurface soil evidence of contamination does not correlate spatially with PCB detections.
- This RI generated no analytical data identifying on-site soil classifiable as hazardous waste.











Project No.: 14368.17 Revision: FINAL Table 1, Page 1 of 1 May 2010

TABLE 1 GROUNDWATER ELEVATION DATA, NOVEMBER 2007

Monitoring Well Identification	Top of Riser Elevation (ft AMSL)	Depth to Groundwater (ft btoc)	Groundwater Table Elevation (ft AMSL) 15 November 2007				
6-33-019-MW01	1060.78	25.38	1035.40				
6-33-019-MW02	1061.26	33.42	1027.84				
6-33-019-MW03	1060.11	26.16	1033.95				
NOTES: ft AMSL = feet above mean sea level ft btoc = feet below top of PVC casing							

Project No.: 14368.17 Revision: FINAL Table 2, Page 1 of 6 May 2010

TABLE 2 DETECTED POLYCHLORINATED BIPHENYLS SURFACE SOIL ANALYTICAL DATA

	Sample ID	633019-SS01-	0-2"	633019-SS02-0)-2"	633019-SS03-0)-2"	633019-SS04-0)-2"	
Parameter List	Lab ID	0709089-001	Α	0709089-004	A	0709089-008	A	0709089-011	A	6 NYCRR Part 375
EPA Method 8082	Sample Type	Surface Soi	1	Surface Soil	1	Surface Soil		Surface Soil	1	Unrestricted Use (mg/kg)
	Sample Date	9/18/2007		9/18/2007		9/18/2007		9/18/2007		
Aroclor 1254	(mg/kg)	(<0.158)	U	0.594		(<0.163)	U	(<0.163)	U	NA
Aroclor 1260	(mg/kg)	(<0.0668)	U	(<0.0654)	U	0.41	J	(<0.0687)	U	NA
Aroclor (Total)	(mg/kg)	0.112		0.627		0.492	J	0.116		0.1

	Sample ID	633019-SS05-0)-2"	633019-SS06-0	-2"	633019-SS07-0)-2"	633019-SS08-0)-2"	
Parameter List	Lab ID	0709089-012	В	0709089-009	A	0709089-006	В	0709089-022	A	6 NYCRR Part 375
EPA Method 8082	Sample Type	Surface Soil		Surface Soil		Surface Soil		Surface Soil	l	Unrestricted Use (mg/kg)
	Sample Date	9/18/2007		9/18/2007		9/18/2007		9/18/2007		
Aroclor 1254	(mg/kg)	(<0.0837)	U	(<0.156)	U	(<0.163)	U	(<0.156)	U	NA
Aroclor 1260	(mg/kg)	(<0.198)	U	(<0.0658)	U	(<0.069)	U	(<0.0656)	U	NA
Aroclor (Total)	(mg/kg)	0.141		0.111		0.116		0.111		0.1

	Sample ID	633019-SS09-0)-2"	633019-SS10-0)-2"	633019-SS11-0)-2"	633019-SS12-0)-2"		
Parameter List	Lab ID	0709089-021	A	0709089-018	A	0709089-019A		0709089-013A		6 NYCRR Part 375	
EPA Method 8082	Sample Type	Surface Soi	I	Surface Soil		Surface Soil		Surface Soi	1	Unrestricted Use (mg/kg)	
	Sample Date	9/18/2007		9/18/2007		9/18/2007		9/18/2007			
Aroclor 1254	(mg/kg)	(<0.156)	U	0.328	J	1.31		(<0.186)	U	NA	
Aroclor 1260	(mg/kg)	(<0.0723)	U	(<0.0683)	U	(<0.0743)	U	(<0.0786)	U	NA	
Aroclor (Total)	(mg/kg)	0.114		0.362	J	1.35		0.132		0.1	

	Sample ID	633019-SS13-0)-2"	633019-SS14-0)-2"	633019-SS15-0)-2"	633019-SS16-0	0-2"	
Parameter List	Lab ID	0709089-020	A	0709103-032	В	0709089-007.	A	0709089-005	Α	6 NYCRR Part 375 Unrestricted Use
EPA Method 8082	Sample Type	Surface Soi	1	Surface Soil		Surface Soil		Surface Soi	1	(mg/kg)
	Sample Date	9/18/2007		9/18/2007		9/18/2007		9/18/2007		
Aroclor 1254	(mg/kg)	0.473	J	0.25	J	(<0.16)	U	0.497	J	NA
Aroclor 1260	(mg/kg)	(<0.0667)	U	(<0.0618)	U	(<0.0677)	U	(<0.0677)	U	NA
Aroclor (Total)	(mg/kg)	0.506	J	0.281	J	0.114		0.531	J	0.1

	Sample ID	633019-SS17-0)-2"	633019-SS18-0)-2"	633019-SS19-0)-2"	633019-SS20-0)-2"	
Parameter List	Lab ID	0709089-002.	A	0709089-003	A	0709089-014	A	0709089-015	A	6 NYCRR Part 375
EPA Method 8082	Sample Type	Surface Soil	Į	Surface Soil	Į	Surface Soil		Surface Soil	Į	Unrestricted Use (mg/kg)
	Sample Date	9/18/2007		9/18/2007		9/18/2007		9/18/2007		
Aroclor 1254	(mg/kg)	(<0.155)	U	(<0.157)	U	(<0.167)	U	(<0.154)	U	NA
Aroclor 1260	(mg/kg)	(<0.0654)	U	(<0.0662)	U	(<0.0707)	U	(<0.0649)	U	NA
Aroclor (Total)	(mg/kg)	0.110		0.112		0.119		0.109		0.1

NOTE: Analytical data results provided by Life Science Laboratories, Inc. and Mitkem Laboratories. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

mg/kg = Milligrams per kilograms = Parts Per Million (ppm)

Only Aroclors with at least one detection are shown; Method detection limits for individual Aroclors in surface soil samples SS-01 through SS-25 were above site SCGs, therefore one-half of the MDL value was used to determine Total Aroclor concentration values. These concentration values are highlighted in the table. In addition, surface soil samples that had at least one Aroclor detection above the MDL, one-half of a non-detect MDL was added to the detected concentration value to determine the Total Aroclor concentration value.

Project No.: 14368.17 Revision: FINAL Table 2, Page 2 of 6 May 2010

TABLE 2 DETECTED POLYCHLORINATED BIPHENYLS SURFACE SOIL ANALYTICAL DATA

	Sample ID	633019-SS21-0	0-2"	633019-SS22-0)-2"	633019-SS23-0	0-2"	633019-SS24-0	0-2"	
Parameter List	Lab ID	0709089-017	'A	0709089-016	В	0710178-019	Α	0710178-020	Α	6 NYCRR Part 375
EPA Method 8082	Sample Type	Surface Soi	1	Surface Soil		Surface Soil	1	Surface Soi	1	Unrestricted Use (mg/kg)
	Sample Date	9/18/2007		9/18/2007		10/26/2007		10/26/2007		
Aroclor 1254	(mg/kg)	(<0.213)	U	(<0.181)	U	(<0.180)	U	(<0.174)	U	NA
Aroclor 1260	(mg/kg)	(<0.0897)	U	(<0.0763)	U	(<0.0761)	U	(<0.0734)	U	NA
Aroclor (Total)	(mg/kg)	0.151		0.129		0.128		0.124		0.1

	Sample ID	633019-SS25-0)-2"	633019-SS26-0	-2"	633019-SS27-0)-2"	633019-SS28-0	-2"	
Parameter List	Lab ID	0710178-021	A							6 NYCRR Part 375
EPA Method 8082	Sample Type	Surface Soil		Surface Soil		Surface Soil	l	Surface Soi	l	Unrestricted Use (mg/kg)
	Sample Date	10/26/2007		12/11/2008		12/11/2008		12/11/2008		
Aroclor 1254	(mg/kg)	(<0.169)	U	0.120	P	(<0.0023)	U	6.80		NA
Aroclor 1260	(mg/kg)	(<0.0715)	U	0.140		(<0.0072)	U	(<0.0072)	U	NA
Aroclor (Total)	(mg/kg)	0.120		0.260	P	0.005		6.80		0.1

	Sample ID	633019-SS29-0)-2"	633019-DUP	01	633019-DUP	04	633019-Rinsate0	1-SS	
Parameter List	Lab ID			0709089-023	A	0710178-025	Α	0709089-024	A	6 NYCRR Part 375
EPA Method 8082	Sample Type	Surface Soil	1	Duplicate/QA0	QC	Duplicate/QA	QC	Rinse Blank/QA	AQC	Unrestricted Use (mg/kg)
	Sample Date	12/11/2008		9/18/2007		10/26/2007				
Aroclor 1254	(mg/kg)	0.98		(<0.154)	U	(<0.179)	U	(<0.142)	U	NA
Aroclor 1260	(mg/kg)	(<0.0085)	U	(<0.0651)	U	(<0.0756)	U	(<0.017)	U	NA
Aroclor (Total)	(mg/kg)	0.984		0.109		0.127		0.080	U	0.1

NOTE: Analytical data results provided by Life Science Laboratories, Inc. and Mitkem Laboratories. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

mg/kg = Milligrams per kilograms = Parts Per Million (ppm)

633019-DUP01 was collected at 633019-SS15-0-2"

633019-DUP04 was collected at 633019-SS23-0-2"

Only Aroclors with at least one detection are shown; Method detection limits for individual Aroclors in surface soil samples SS-01 through SS-25 were above site SCGs, therefore one-half of the MDL value was used to determine Total Aroclor concentration values. These concentration values are highlighted bind in the table. In addition, surface soil samples that had at least one Aroclor detection above the MDL, one-half of a non-detect MDL was added to the detected concentration value to determine the Total Aroclor concentration value.

Project No.: 14368.17 Revision: FINAL Table 2, Page 3 of 6 May 2010

TABLE 2 DETECTED VOLATILE ORGANIC COMPOUNDS SURFACE SOIL ANALYTICAL DATA

	Sample ID	633019-SS05-0-2"	633019-SS07-0-2"	633019-SS14-0-2"	633019-SS22-0-2"	
Parameter List	Lab ID	0709089-012A	0709089-006A	0709103-032A	0709089-016A	6 NYCRR Part 375
EPA Method 8260B	Sample Type	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Unrestricted Use (mg/kg)
	Sample Date	9/18/2007	9/18/2007	9/18/2007	9/18/2007	
Acetone	(mg/kg)	U	U	0.00075 J	U	0.05
1,2,4-Trichlorobenzene	(mg/kg)	U	U	U	U	NA

	Sample ID	633019-SS23-0-	-2"	633019-SS24-0-2	633019-SS24-0-2"		633019-Rinsate0	1-SS	
Parameter List	Lab ID	0710178-020E	3	0710178-020B		0710178-021B	0709089-024	A	6 NYCRR Part 375
EPA Method 8260B	Sample Type	Surface Soil		Surface Soil		Surface Soil	Rinsate Blank/Q	AQC	Unrestricted Use (mg/kg)
	Sample Date	10/26/2007		10/26/2007		10/26/2007	9/18/2007		
Acetone	(mg/kg)		U	Ţ	U	U	0.0052		0.05
1,2,4-Trichlorobenzene	(mg/kg)	0.009	J	J	U	U		U	NA
NOTE: Analytical data results provided by	TE: Analytical data results provided by Life Science Laborat					ronmental Data Servi	ces, Inc.		

Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

= Milligrams per kilograms = Parts Per Million (ppm)

Project No.: 14368.17 Revision: FINAL Table 2, Page 4 of 6 May 2010

TABLE 2 DETECTED SEMIVOLATILE ORGANIC COMPOUNDS SURFACE SOIL ANALYTICAL DATA

	Sample ID	633019-SS05-0)-2"	633019-SS07-0	-2"	633019-SS14-0-2"	633019-SS22	-0-2"	
Parameter List	Lab ID	0709089-012	A	0709089-006	A	0709103-032A	0709089-01	6A	6 NYCRR Part 375
EPA Method 8270C	Sample Type	Surface Soil	l	Surface Soil		Surface Soil	Surface So	oil	Unrestricted Use (mg/kg)
	Sample Date	9/18/2007		9/18/2007		9/18/2007	9/18/200	7	
Benzaldehyde	(mg/kg)	0.51			U	U	1.3		NA
Benzo(a)anthracene	(mg/kg)		U		U	U		U	1
Benzo(a)pyrene	(mg/kg)		U		U	U		U	1
Benzo(b)fluoroanthene	(mg/kg)		U		U	U		U	1
Benzo(k)fluoroanthene	(mg/kg)		U		U	U		U	0.8
bis(2 - Ethylhexyl)phthalate	(mg/kg)		U		U	U	0.043	J	NA
Chrysene	(mg/kg)		U		U	U		U	1
Diethyl Phthalate	(mg/kg)		U		U	U		U	NA
Fluoranthene	(mg/kg)	0.047	J		U	U		U	100
Pyrene	(mg/kg)		U		U	U		U	100

	Sample ID	633019-SS23-0)-2"	633019-SS24-0	-2"	633019-SS25-0	-2"	633019-Rinsate01-SS	
Parameter List	Lab ID	0710178-020	В	0710178-020	В	0710178-021	В	0709089-024A	6 NYCRR Part 375
EPA Method 8270C	Sample Type	Surface Soil	l	Surface Soil		Surface Soil		Rinsate Blank/QAQC	Unrestricted Use (mg/kg)
	Sample Date	10/26/2007		10/26/2007		10/26/2007		10/26/2007	
Benzaldehyde	(mg/kg)	0.11	J	0.06	J	0.11	J	U	NA
Benzo(a)anthracene	(mg/kg)	0.056	J		U		U	U	1
Benzo(a)pyrene	(mg/kg)	0.086	J		U		U	U	1
Benzo(b)fluoroanthene	(mg/kg)	0.16	J		U		U	U	1
Benzo(k)fluoroanthene	(mg/kg)	0.063	J		U		U	U	0.8
bis(2 - Ethylhexyl)phthalate	(mg/kg)		U		U	0.1	J	U	NA
Chrysene	(mg/kg)	0.076	J		U		U	U	1
Diethyl Phthalate	(mg/kg)	0.046	J	0.044	J	0.042	J	U	NA
Fluoranthene	(mg/kg)	0.071	J		U		U	U	100
Pyrene	(mg/kg)	0.083	J		U		U	U	100

NOTE: Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

mg/kg = Milligrams per kilograms = Parts Per Million (ppm)

Project No.: 14368.17 Revision: FINAL Table 2, Page 5 of 6 May 2010

TABLE 2 DETECTED TARGET ANALYTE METALS SURFACE SOIL ANALYTICAL DATA

	Sample ID	633019-SS05-0	-2"	633019-SS07-0	-2"	633019-SS14-0	-2"	633019-SS22-0)-2"	
Parameter List	Lab ID	0709089-012	В	0709089-006	В	0709103-032	В	0709089-016	В	6 NYCRR Part 375
EPA Method 6010B/7470A	Sample Type	Surface Soil		Surface Soil		Surface Soil		Surface Soil	l	Unrestricted Use (mg/kg)
	Sample Date	9/18/2007		9/18/2007		9/18/2007		9/18/2007		
Aluminum	(mg/kg)	9,400		6,400		7,300		11,000		NA
Antimony	(mg/kg)	0.27	J	0.38	J	0.21	J	0.36	J	NA
Arsenic	(mg/kg)	7.8		5.5		6		7.4		NA
Barium	(mg/kg)	52		32		51		65		350
Beryllium	(mg/kg)	0.47	J	0.32	J	0.35	J	0.52	J	7.2
Calcium	(mg/kg)	18,000		42,000		70,000		2,900		NA
Chromium	(mg/kg)	15		10		11		15		NA
Cobalt	(mg/kg)	9.2		6.8		7.1		9.7		NA
Copper	(mg/kg)	47		38		30		33		50
Iron	(mg/kg)	24,000		18,000		20,000		26,000		NA
Lead	(mg/kg)	20		13		8.6		15		63
Magnesium	(mg/kg)	11,000		17,000		21,000		4,600		NA
Manganese	(mg/kg)	870		600		700		1,200		1,600
Mercury	(mg/kg)	0.54		0.011	J	0.0089	J	0.071	J	0.18
Nickel	(mg/kg)	18		15		16		19		30
Potassium	(mg/kg)	1,800		1,300		1,200		1,400		NA
Selenium	(mg/kg)	1.2	J	0.81		0.82		1.6		3.9
Sodium	(mg/kg)	41	J	62		75		25	J	NA
Thallium	(mg/kg)		U					0.8	J	NA
Vandium	(mg/kg)	18		12		14		19		NA
Zinc	(mg/kg)	81		58		68		77		109

	Sample ID	633019-Rinsate0	1-SS			
Parameter List	Lab ID	0709089-024	В			6 NYCRR Part 375
EPA Method 6010B/7470A	Sample Type	Rinsate Blank/Q	AQC			Unrestricted Use (mg/kg)
	Sample Date	9/18/2007				
Aluminum	(mg/kg)	0.075	J			NA
Antimony	(mg/kg)		U			NA
Arsenic	(mg/kg)		U			NA
Barium	(mg/kg)	0.0028	J			350
Beryllium	(mg/kg)		U			7.2
Calcium	(mg/kg)	0.55	J			NA
Chromium	(mg/kg)		U			NA
Cobalt	(mg/kg)		U			NA
Copper	(mg/kg)		U			50
Iron	(mg/kg)		U			NA
Lead	(mg/kg)		U			63
Magnesium	(mg/kg)		U			NA
Manganese	(mg/kg)		U			1,600
Mercury	(mg/kg)		U			0.18
Nickel	(mg/kg)		U			30
Potassium	(mg/kg)		U			NA
Selenium	(mg/kg)		U			3.9
Sodium	(mg/kg)	0.79	J			NA
Thallium	(mg/kg)		U			NA
Vandium	(mg/kg)		U			NA
Zinc	(mg/kg)	0.035				109

NOTE: Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

mg/kg = Milligrams per kilograms = Parts Per Million (ppm)

Project No.: 14368.17 Revision: FINAL Table 2, Page 6 of 6 May 2010

TABLE 2 DETECTED TOTAL PETROLEUM HYDROCARBONS SURFACE SOIL ANALYTICAL DATA

	Sample ID	633019-SS26	633019-SS27	633019-SS28	633019-SS29	
Parameter List	Lab ID	G2349-20	G2349-27	G2349-22	G2349-29	6 NYCRR Part 375
EPA Method 8260B	Sample Type	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Unrestricted Use (mg/kg)
	Sample Date	12/11/2008	12/11/2008	12/11/2008	12/11/2008	
Total Petroleum Hydrocarbons	(mg/kg)	U	110	41	57	NA

NOTE: Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

 The analyte was analyzed for, but was not detected above the sample reporting limit.
 Milligrams per kilograms = Parts Per Million (ppm) U

mg/kg

TABLE 3 DETECTED POLYCHLORINATED BIPHYNELS TEST PIT ANALYTICAL DATA

	Sample ID	633019-TP01-	0-2'	633019-TP01-6	5-8'	633019-TP02-	0-2'	633019-TP02-8	3-10'	
Parameter List	Lab ID	0709089-025	Α	0709089-026	A	0709089-027	'A	0709089-028	Α	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface S	oil	Subsurface So	oil	Subsurface S	oil	Subsurface So	oil	Unrestricted Use (mg/kg)
	Sample Date	9/18/2007		9/18/2007		9/18/2007		9/18/2007		
Aroclor 1248	(mg/kg)	(<0.115)	U	(<0.111)	U	(<0.111)	U	(<0.111)	U	NA
Aroclor 1254	(mg/kg)	(<0.153)	U	(<0.148)	U	(<0.148)	U	(<0.148)	U	NA
Aroclor 1260	(mg/kg)	(<0.0646)	U	(<0.0622)	U	(<0.0622)	U	(<0.0624)	U	NA
Aroclor (Total)	(mg/kg)	0.166		0.161		0.161		0.161		0.1

	Sample ID	633019-TP02A-	-0-2'	633019-TP03-	-2'	633019-TP03	-6'	633019-TP03	-8'	
Parameter List	Lab ID	0709089-029	A	0709103-001	A	0709103-002	A	0709103-003	В	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	oil	Subsurface So	oil	Subsurface So	oil	Subsurface So	oil	Unrestricted Use (mg/kg)
	Sample Date	9/18/2007		9/19/2007		9/19/2007		9/19/2007		
Aroclor 1248	(mg/kg)	(<0.12)	U	(<0.132)	U	(<0.116)	U	(<0.116)	U	NA
Aroclor 1254	(mg/kg)	(<0.16)	U	(<0.176)	U	(<0.154)	U	(<0.154)	U	NA
Aroclor 1260	(mg/kg)	(<0.0674)	U	(<0.0741)	U	(<0.0649)	U	(<0.0651)	U	NA
Aroclor (Total)	(mg/kg)	0.174		0.191		0.167		0.168		0.1

	Sample ID	633019-TP03-	16'	633019-TP04-	-2'	633019-TP04	-9'	633019-TP04-	12'	
Parameter List	Lab ID	0709103-004	A	0709103-005	A	0709103-006	A	0709103-007	A	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	oil	Unrestricted Use (mg/kg)						
	Sample Date	9/19/2007		9/19/2007		9/19/2007		9/19/2007		
Aroclor 1248	(mg/kg)	(<0.131)	U	0.392	J	(<0.113)	U	(<0.116)	U	NA
Aroclor 1254	(mg/kg)	(<0.173)	U	(<0.155)	U	(<0.149)	U	(<0.154)	U	NA
71100101 1254										
Aroclor 1260	(mg/kg)	(<0.0732)	U	(<0.0654)	U	(<0.063)	U	(<0.065)	U	NA

	Sample ID	633019-TP05	-2'	633019-TP05-	.9'	633019-TP05-1	2.5'	633019-TP06	-2'	
Parameter List	Lab ID	0709103-008	A	0709103-009	A	0709103-010	A	0709103-013	A	6 NYCRR Part 375 Unrestricted Use
EPA Method 8082	Sample Type	Subsurface So	oil	Subsurface So	oil	Subsurface So	oil	Subsurface So	oil	(mg/kg)
	Sample Date	9/19/2007		9/19/2007		9/19/2007		9/19/2007		
Aroclor 1248	(mg/kg)	(<0.113)	U	0.388	J	(<0.126)	U	(<0.113)	U	NA
Aroclor 1254	(mg/kg)	(<0.151)	U	(<0.16)	U	(<0.168)	U	(<0.149)	U	NA
Aroclor 1260	(mg/kg)	0.932		(<0.0673)	U	(<0.0708)	U	(<0.063)	U	NA
Aroclor (Total)	(mg/kg)	1.06		0.502	J	0.182		0.163		0.1

	Sample ID	633019-TP06-	10'	633019-TP07-	-2'	633019-TP07-	-6'	633019-TP07	-9'	
Parameter List	Lab ID	0709103-014	A	0709103-015	A	0709103-016	A	0709103-017	A	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	oil	Unrestricted Use (mg/kg)						
	Sample Date	9/19/2007		9/19/2007		9/19/2007		9/19/2007		
Aroclor 1248	(mg/kg)	(<0.12)	U	(<0.112)	U	(<0.111)	U	(<0.129)	U	NA
Aroclor 1254	(mg/kg)	(<0.159)	U	(<0.148)	U	(<0.148)	U	(<0.171)	U	NA
Aroclor 1260	(mg/kg)	(<0.067)	U	(<0.0626)	U	(<0.0622)	U	(<0.0722)	U	NA
Aroclor (Total)	(mg/kg)	0.173		0.161		0.161		0.186		0.1

	Sample ID	633019-TP08	-2'	633019-TP08-	-9'	633019-TP09	-2'	633019-TP09	-4'	
Parameter List	Lab ID	0709103-018	A	0709103-019	A	0709103-020	A	0709103-021	В	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	oil	Unrestricted Use (mg/kg)						
	Sample Date	9/19/2007		9/19/2007		9/19/2007		9/19/2007		
Aroclor 1248	(mg/kg)	(<0.115)	U	(<0.13)	U	(<0.118)	U	(<0.12)	U	NA
Aroclor 1254	(mg/kg)	(<0.153)	U	(<0.172)	U	(<0.156)	U	(<0.16)	U	NA
Aroclor 1260	(mg/kg)	(<0.0645)	U	(<0.0727)	U	(<0.066)	U	(<0.0675)	U	NA
Aroclor (Total)	(mg/kg)	0.166		0.187		0.170		0.174		0.1

NOTE: Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

mg/kg = Milligrams per kilograms = Parts Per Million (ppm)

Only Aroclors with at least one detection are shown; Method detection limits for individual Aroclors in test pit soil samples TP-01 through TP-18 were above site SCGs, therefore one-half of the MDL value was used to determine Total Aroclor concentration values. These concentration values are highlighted in **bold** in the table. In addition, surface soil samples that had at least one Aroclor detection above the MDL, one-half of a non-detect MDL was added to the detected concentration value to determine the Total Aroclor concentration value.

TABLE 3 DETECTED POLYCHLORINATED BIPHYNELS TEST PIT ANALYTICAL DATA

	Sample ID	633019-TP09	9-7'	633019-TP09-	-11'	633019-TP10-	3.5'	633019-TP10)-6'	
Parameter List	Lab ID	0709103-022	2B	0709103-023	Α	0709103-025	iΑ	0709103-020	óΑ	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface S	oil	Subsurface So	oil	Subsurface So	oil	Subsurface S	oil	Unrestricted Use (mg/kg)
	Sample Date	9/19/2007		9/19/2007		9/19/2007		9/19/2007		
Aroclor 1248	(mg/kg)	(<0.128)	U	(<0.12)	U	(<0.129)	U	(<0.121)	U	NA
Aroclor 1254	(mg/kg)	(<0.169)	U	(<0.159)	U	(<0.171)	U	(<0.161)	U	NA
Aroclor 1260	(mg/kg)	(<0.0714)	U	(<0.0671)	U	(<0.0721)	U	(<0.0678)	U	NA
Aroclor (Total)	(mg/kg)	0.184		0.173		0.186		0.175		0.1

	Sample ID	633019-TP10	-9'	633019-TP11A	A-2'	633019-TP11A	-10'	633019-TP11E	3-5'	
Parameter List	Lab ID	0709103-027	Ά	0709103-028	A	0709103-029	A	0709103-030	A	6 NYCRR Part 375 Unrestricted Use
EPA Method 8082	Sample Type	Subsurface So	oil	Subsurface So	oil	Subsurface So	il	Subsurface So	oil	(mg/kg)
	Sample Date	9/19/2007		9/19/2007		9/19/2007		9/19/2007		
Aroclor 1248	(mg/kg)	(<0.134)	U	(<0.116)	U	(<0.12)	U	(<0.112)	U	NA
Aroclor 1254	(mg/kg)	(<0.178)	U	(<0.154)	U	(<0.159)	U	(<0.149)	U	NA
Aroclor 1260	(mg/kg)	(<0.075)	U	(<0.0649)	U	(<0.0672)	U	(<0.0627)	U	NA
Aroclor (Total)	(mg/kg)	0.194		0.167		0.173		0.162		0.1

	Sample ID	633019-TP11B	8-10'	633019-TP12	-2'	633019-TP12-	10'	633019-TP13	3-2'	
Parameter List	Lab ID	0709103-031	Α	0709108-001	A	0709108-002	Α	0709108-003	BB	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	oil	Subsurface So	il	Subsurface So	oil	Subsurface So	lic	Unrestricted Use (mg/kg)
	Sample Date	9/19/2007		9/20/2007		9/20/2007		9/20/2007		
Aroclor 1248	(mg/kg)	(<0.12)	U	(<0.123)	U	(<0.114)	U	(<0.114)	U	NA
Aroclor 1254	(mg/kg)	(<0.16)	U	(<0.164)	U	(<0.152)	U	(<0.152)	U	NA
Aroclor 1260	(mg/kg)	(<0.0675)	U	(<0.069)	U	(<0.064)	U	(<0.064)	U	NA
Aroclor (Total)	(mg/kg)	0.174		0.178		0.165		0.165		0.1

	Sample ID	633019-TP13-	8.5'	633019-TP14	-2'	633019-TP14	-9'	633019-TP15	-1'	
Parameter List	Lab ID	0709108-004	·A	0709108-005	A	0709108-006	iΑ	0709108-007	A	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	oil	Subsurface So	il	Subsurface So	oil	Subsurface So	oil	Unrestricted Use (mg/kg)
	Sample Date	9/20/2007		9/20/2007		9/20/2007		9/20/2007		
Aroclor 1248	(mg/kg)	(<0.112)	U	(<0.121)	U	(<0.122)	U	(<0.113)	U	NA
Aroclor 1254	(mg/kg)	(<0.148)	U	(<0.16)	U	(<0.162)	U	(<0.15)	U	NA
Aroclor 1260	(mg/kg)	(<0.0626)	U	(<0.0676)	U	(<0.0685)	U	(<0.0631)	U	NA
Aroclor (Total)	(mg/kg)	0.161		0.174		0.176		0.163		0.1

	Sample ID	633019-TP15-	2.5'	633019-TP16	-2'	633019-TP16-	10'	633019-TP17-	1.5'	
Parameter List	Lab ID	0709108-008	A	0709108-009	A	0709108-010	A	0709108-012	В	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	oil	Subsurface So	il	Subsurface So	oil	Subsurface So	oil	Unrestricted Use (mg/kg)
	Sample Date	9/20/2007		9/20/2007		9/20/2007		9/20/2007		
Aroclor 1248	(mg/kg)	(<0.119)	U	(<0.113)	U	(<0.113)	U	(<0.117)	U	NA
Aroclor 1254	(mg/kg)	(<0.159)	U	(<0.15)	U	0.651		(<0.155)	U	NA
Aroclor 1260	(mg/kg)	(<0.0669)	U	2.02		0.375	J	0.303	J	NA
Aroclor (Total)	(mg/kg)	0.172		2.15		1.08	J	0.439	J	0.1

	Sample ID	633019-TP17	-4'	633019-TP17-	4.5'	633019-TP18	-2'	633019-TP18	-6'	
Parameter List	Lab ID	0709108-013	Α	0709108-014	A	0709108-015	A	0709108-016	iΑ	6 NYCRR Part 375 Unrestricted Use
EPA Method 8082	Sample Type	Subsurface So	oil	Subsurface So	oil	Subsurface So	oil	Subsurface So	oil	(mg/kg)
	Sample Date	9/20/2007		9/20/2007		9/20/2007		9/20/2007		
Aroclor 1248	(mg/kg)	(<0.113)	U	(<0.127)	U	(<0.123)	U	(<0.113)	U	NA
Aroclor 1254	(mg/kg)	3.31		0.447	J	(<0.163)	U	(<0.15)	U	NA
Aroclor 1260	(mg/kg)	(<0.063)	U	(<0.0713)	U	(<0.0688)	U	(<0.0631)	U	NA
Aroclor (Total)	(mg/kg)	3.40		0.546	J	0.177		0.163		0.1

NOTE: Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc. Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

= Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

The analyte was analyzed for, but was not detected above the sample reporting limit.

 Milligrams per kilograms = Parts Per Million (ppm)

mg/kg

Only Aroclors with at least one detection are shown; Method detection limits for individual Aroclors in test pit soil samples TP-01 through TP-18 were above site SCGs, therefore one-half of the MDL value was used to determine Total Aroclor concentration values. These concentration values are highlighted in bold in the table. In addition, surface soil samples that had at least Aroclor detection above the MDL, one-half of a non-detect MDL was added to the detected concentration value to determine the Total Aroclor concentration value

TABLE 3 DETECTED POLYCHLORINATED BIPHYNELS TEST PIT ANALYTICAL DATA

	Sample ID	633019-TP18-	-8'	633019-Duplica	te#1	633019-Duplica	te#2	633019-DUP)3	
Parameter List	Lab ID	0709108-017	A	0709103-012	A	0709103-011	В	0709103-033	A	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	oil	Duplicate/QA0	QC	Duplicate/QA0	QС	Duplicate/QA	QC	Unrestricted Use (mg/kg)
	Sample Date	9/20/2007		9/20/2007		9/20/2007		9/20/2007		
Aroclor 1248	(mg/kg)	(<0.117)	U	(<0.116)	U	(<0.112)	U	(<0.113)	U	NA
Aroclor 1254	(mg/kg)	(<0.155)	U	(<0.154)	U	(<0.148)	U	0.255	J	NA
Aroclor 1260	(mg/kg)	(<0.0654)	U	(<0.065)	U	(<0.0626)	U	(<0.0634)	U	NA
Aroclor (Total)	(mg/kg)	0.169		0.168		0.161		0.343	J	0.1

	Sample ID	633019-Rinsate	e01	633019-Rinsate	#2	633019-Rinsate	e03		
Parameter List	Lab ID	0709089-030	A	0709103-024	С	0709108-011	A		6 NYCRR Part 375
EPA Method 8082	Sample Type	Rinsate Blank/QAQ0	2	Rinsate Blank/QAQO	7	Rinsate Blank/QAQ	2		Unrestricted Use (mg/kg)
	Sample Date	9/20/2007		9/20/2007		9/20/2007			
Aroclor 1248	(µg/L)	(<0.13)	U	(<0.134)	U	(<0.019)	U		NA
Aroclor 1254	(μg/L)	(<0.141)	U	(<0.145)	U	(<0.159)	U		NA
Aroclor 1260	(µg/L)	(<0.016)	U	(<0.017)	U	(<0.019)	U		NA
Aroclor (Total)	(µg/L)	0.144		0.148		0.099			0.1

NOTE: Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

= Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

= The analyte was analyzed for, but was not detected above the sample reporting limit.

= Milligrams per kilograms = Parts Per Million (ppm)

633019-Duplicate#1 collected at 633019-TP03-6' 633019-Duplicate#2 collected at 633019-TP07-2

633019-DUP03 collected at 633019-TP10-6'

Only Aroclors with at least one detection are shown; Method detection limits for individual Aroclors in test pit soil samples TP-01 through TP-18 were above site SCGs, therefore onehalf of the MDL value was used to determine Total Aroclor concentration values. These concentration values are highlighted in **bold** in the table. In addition, surface soil samples that had at least one Aroclor detection above the MDL, one-half of a non-detect MDL was added to the detected concentration value to determine the Total Aroclor concentration value.

TABLE 3 DETECTED VOLATILE ORGANIC COMPOUNDS TEST PIT ANALYTICAL DATA

	Sample ID	633019-TP03	-8'	633019-TP07-2	2'	633019-TP09-4	4'	633019-TP09-	-7'	
Parameter List	Lab ID	0709103-003	A	0709103-015A	A	0709103-021A	1	0709103-022	A	6 NYCRR Part 375
EPA Method 8260B	Sample Type	Subsurface So	oil	Subsurface So	il	Subsurface Soi	il	Subsurface So	oil	Unrestricted Use (mg/kg)
	Sample Date	9/19/2007		9/19/2007		9/19/2007		9/19/2007		
Acetone	(mg/kg)	0.051			U		U		U	0.05
2- Butanone	(mg/kg)	0.0075	J		U		U		U	NA
Carbon Disulfide	(mg/kg)	0.0011	J		U		U		U	NA
Methylene Chloride	(mg/kg)		U		U		U		U	0.05
1,2,4- Trichlorobenzene	(mg/kg)		U		U		U	0.0076	J	NA

	Sample ID	633019-TP13-	2'	633019-TP17-1	1.5'	633019-Duplica	te#2	633019-Rinsate#	‡2 ^(a)	
Parameter List	Lab ID	0709108-0032	A	0709108-012	A	0709103-011	A	0709103-024	A	6 NYCRR Part 375
EPA Method 8260B	Sample Type	Subsurface So	il	Subsurface So	oil	Duplicate/QA	QC	Rinsate Blank/QAQC	7	Unrestricted Use (mg/kg)
	Sample Date	9/20/2007		9/20/2007		9/20/2007		9/20/2007		
Acetone	(mg/kg)		U	0.0049	J	0.0048	J		U	0.05
2- Butanone	(mg/kg)		U		U		U		U	NA
Carbon Disulfide	(mg/kg)		U		U		U		U	NA
Methylene Chloride	(mg/kg)		U		U		U	0.0065		0.05
1,2,4- Trichlorobenzene	(mg/kg)		U		U		U		U	NA

NOTE: Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

mg/kg = Milligrams per kilograms = Parts Per Million (ppm)

(a) Rinsate Blank results are in μ g/L = parts per billion

633019-Duplicate#2 collected at 633019-TP07-2'

TABLE 3 DETECTED TARGET ANALYTE METALS TEST PIT ANALYTICAL DATA

	Sample ID	633019-TP03-	-8'	633019-TP07	-2'	633019-TP09-	-4'	633019-TP09	-7'	
Parameter List	Lab ID	0709103-003	В	0709103-015	В	0709103-021	В	0709103-022	В	6 NYCRR Part 375
EPA Method 6010B/7470A	Sample Type	Subsurface So	oil	Unrestricted Use (mg/kg)						
	Sample Date	9/19/2007		9/19/2007		9/19/2007		9/19/2007		
Aluminum	(mg/kg)	7,900		5,000		4,500		4,900		NA
Antimony	(mg/kg)		U		U		U		U	NA
Arsenic	(mg/kg)	5.8		4.8		4.8		5.7		NA
Barium	(mg/kg)	51		57		21		26		350
Beryllium	(mg/kg)	0.34	J	0.27	J	0.26	J	0.27	J	7.2
Calcium	(mg/kg)	61,000		64,000		54,000		47,000		NA
Chromium	(mg/kg)	11		8.1		7.5		8		NA
Cobalt	(mg/kg)	6.9		5.4		5	J	5.6	J	NA
Copper	(mg/kg)	34		27		26		32		50
Iron	(mg/kg)	21,000		15,000		14,000		17,000		NA
Lead	(mg/kg)	7.4		5.2		5.2		6.2		63
Magnesium	(mg/kg)	24,000		18,000		15,000		22,000		NA
Manganese	(mg/kg)	820		540		430		720		1,600
Mercury	(mg/kg)	0.012	J	0.0086		0.0086	J		J	0.18
Nickel	(mg/kg)	17		12		11		12		30
Potassium	(mg/kg)	1,100		1,200		1,100		1,100		NA
Selenium	(mg/kg)	0.85	J	0.51	J	0.43	J	0.75	J	3.9
Sodium	(mg/kg)	69	J	72	J	63	J	69	J	NA
Vandium	(mg/kg)	13		9.6		9.4		11		NA
Zinc	(mg/kg)	120		44		39		41		109

	Sample ID	633019-TP13	-2'	633019-TP17-	1.5'	633019-Duplica	te#2	633019-Rinsate#	‡2 ^(a)	
Parameter List	Lab ID	0709108-003	В	0709108-012	В	0709103-011	В	0709103-024	В	6 NYCRR Part 375
EPA Method 6010B/7470A	Sample Type	Subsurface So	oil	Subsurface So	oil	Duplicate/QA0	QС	Rinsate Blank/QAQO	7	Unrestricted Use (mg/kg)
	Sample Date	9/20/2007		9/20/2007		9/20/2007		9/20/2007		
Aluminum	(mg/kg)	7,600		6,700		4,900			U	NA
Antimony	(mg/kg)	0.19	J		U		U		U	NA
Arsenic	(mg/kg)	7.9		6.4		4.9			U	NA
Barium	(mg/kg)	34		29		59			U	350
Beryllium	(mg/kg)	0.34	J	0.35	J	0.28	J		U	7.2
Calcium	(mg/kg)	82,000		53,000		67,000		0.22	J	NA
Chromium	(mg/kg)	11		10		7.9			U	NA
Cobalt	(mg/kg)	7.9		6.9		5.1	J		U	NA
Copper	(mg/kg)	48		32		50			U	50
Iron	(mg/kg)	21,000		22,000		15,000			U	NA
Lead	(mg/kg)	10		7.5		6			U	63
Magnesium	(mg/kg)	27,000		20,000		18,000			U	NA
Manganese	(mg/kg)	740		900		470			U	1,600
Mercury	(mg/kg)	0.017	J	0.0093	J	0.0088	J		U	0.18
Nickel	(mg/kg)	16		15		12			U	30
Potassium	(mg/kg)	1,600		1,200		1,100			U	NA
Selenium	(mg/kg)	0.75	J	1.1		0.51	J		U	3.9
Sodium	(mg/kg)	92	J	62	J	68	J	0.5	J	NA
Vandium	(mg/kg)	13		13		9.6			U	NA
Zinc	(mg/kg)	84		95		47		0.019	J	109

Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc. NOTE:

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

EPA = Environmental Protection Agency NYCRR = New York Code of Rules and Regulation

NYCR = New Tork Code of Rules and Regulation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

mg/kg = Milligrams per kilograms = Parts Per Million (ppm)

(a) Rinsate Blank results are in µg/L = parts per billion

633019-Duplicate#2 collected at 633019-TP07-2'

TABLE 3 DETECTED PESTICIDES TEST PIT ANALYTICAL DATA

	Sample ID	633019-TP03	-8'	633019-TP07-	-2'	633019-TP09-4	,	633019-TP09-	-7'	
Parameter List	Lab ID	0709103-003	ВВ	0709103-015	В	0709103-021B		0709103-022	В	6 NYCRR Part 375
EPA Method 8081A	Sample Type	Subsurface S	oil	Subsurface So	oil	Subsurface Soil	1	Subsurface So	oil	Unrestricted Use (mg/kg)
	Sample Date	9/19/2007		9/19/2007		9/19/2007		9/19/2007		
4,4'-DDT	(mg/kg)	0.01		0.00038	J		U	0.0033	J	0.0033
Aldrin	(mg/kg)		U		U		U	0.00079	J	0.005
alpha-Chlordane	(mg/kg)		U		U		U	0.001	J	0.094
Dieldrin	(mg/kg)		U		U		U	0.0042		0.005
Endosulfan II	(mg/kg)		U		U		U	0.00021	J	2.4
Endrin	(mg/kg)		U		U		U	0.0021	J	0.014
Endrin aldehyde	(mg/kg)		U		U		U	0.001	J	NA
gamma-BHC	(mg/kg)	0.047	J		U		U	0.00028	J	NA
Methoxychlor	(mg/kg)		U		U		U		U	NA

	Sample ID	633019-TP13	-2'	633019-TP17-	1.5'	633019-Duplica	te#2	633019-Rinsate#2	2 ^(a)	
Parameter List	Lab ID	0709108-003	В	0709108-012	В	0709103-011	В	0709103-024B		6 NYCRR Part 375
EPA Method 8081A	Sample Type	Subsurface So	oil	Subsurface So	oil	Duplicate/QA	QC	Rinsate Blank/QAQC		Unrestricted Use (mg/kg)
	Sample Date	9/20/2007		9/20/2007		9/20/2007		9/20/2007		
4,4'-DDT	(mg/kg)		U		U	0.00025	J		U	0.0033
Aldrin	(mg/kg)		U		U		U		U	0.005
alpha-Chlordane	(mg/kg)		U		U		U		U	0.094
Dieldrin	(mg/kg)	0.00046	J	0.019			U		U	0.005
Endosulfan II	(mg/kg)		U	0.0022	J		U		U	2.4
Endrin	(mg/kg)		U	0.0055			U		U	0.014
Endrin aldehyde	(mg/kg)		U		U		U		U	NA
gamma-BHC	(mg/kg)		U		U		U		U	NA
Methoxychlor	(mg/kg)		U	0.061	J		U		U	NA

Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

EPA = Environmental Protection Agency

EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

mg/kg = Milligrams per kilograms = Parts Per Million (ppm)

(a) Rinsate Blank results are in μg/L = parts per billion

633019-Duplicate#2 collected at 633019-TP07-2'

Project No.: 14368.17 Revision: FINAL Table 4, Page 1 of 5 May 2010

TABLE 4 DETECTED POLYCHLORINATED BIPHENLYS SUBSURFACE SOIL ANALYTICAL DATA

	Sample ID	633019-SB01-	4-6'	633019-SB02-	4-6'	633019-SB02-8	3-10'	633019-SB03-	4-6'	
Parameter List	Lab ID	0710178-001	Α	0710178-002	A	0710178-003	Α	0710178-004	ŀΑ	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface S	oil	Subsurface So	oil	Subsurface So	oil	Subsurface S	oil	Unrestricted Use (mg/kg)
	Sample Date	10/25/2007	,	10/25/2007		10/25/2007		10/25/2007	,	
Aroclor 1248	(mg/kg)	(<0.119)	U	(<0.118)	U	(<0.117)	U	(<0.12)	U	NA
Aroclor 1254	(mg/kg)	(<0.158)	U	(<0.157)	U	(<0.155)	U	(<0.16)	U	NA
Aroclor 1260	(mg/kg)	(<0.0665)	U	(<0.0664)	U	(<0.0654)	U	(<0.0673)	U	NA
Aroclor (Total)	(mg/kg)	0.172		0.171		0.169		0.174		0.1

	Sample ID	633019-SB03-8	-9.5'	633019-SB04-	4-6'	633019-SB04-8	-10'	633019-SB05-	0-2'	
Parameter List	Lab ID	0710178-005	A	0710178-006	A	0710178-007	A	0710178-008	A	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	oil	Subsurface So	oil	Subsurface So	oil	Subsurface So	oil	Unrestricted Use (mg/kg)
	Sample Date	10/25/2007		10/25/2007		10/25/2007		10/25/2007		
Aroclor 1248	(mg/kg)	(<0.113)	U	(<0.119)	U	(<0.115)	U	(<0.114)	U	NA
Aroclor 1254	(mg/kg)	(<0.15)	U	(<0.158)	U	(<0.153)	U	(<0.151)	U	NA
Aroclor 1260	(mg/kg)	(<0.0634)	U	0.379	J	(<0.0644)	U	(<0.0637)	U	NA
Aroclor (Total)	(mg/kg)	0.163		0.518	J	0.166		0.164		0.1

	Sample ID	633019-SB06-0	0-2'	633019-SB07-0	0-2'	633019-SB08-	0-2'	633019-SB08-8	3-10'	
Parameter List	Lab ID	0710178-009	A	0710178-010	A	0710178-011	0710178-011A		A	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface Soil		Subsurface So	Subsurface Soil		Subsurface Soil		oil	Unrestricted Use (mg/kg)
	Sample Date	10/25/2007		10/25/2007		10/25/2007		10/25/2007		
Aroclor 1248	(mg/kg)	(<0.115)	U	(<0.122)	U	(<0.117)	U	(<0.112)	U	NA
Aroclor 1254	(mg/kg)	(<0.152)	U	(<0.163)	U	(<0.156)	U	(<0.149)	U	NA
Aroclor 1260	(mg/kg)	(<0.0642)	U	(<0.0686)	U	0.337	J	(<0.063)	U	NA
Aroclor (Total)	(mg/kg)	0.166		0.177		0.474	J	0.162		0.1

	Sample ID	633019-SB09	-2'	633019-SB09-8	-9.5'	633019-SB10-2	2-4'	633019-SB10-1	0-12'	_
Parameter List	Lab ID	0710178-013	A	0710178-014	A	0710178-015	A	0710178-016A		6 NYCRR Part 375 Unrestricted Use
EPA Method 8082	Sample Type	Subsurface Soil		Subsurface So	Subsurface Soil		Subsurface Soil		oil	(mg/kg)
	Sample Date	9/19/2007		10/25/2007		10/25/2007		10/25/2007		
Aroclor 1248	(mg/kg)	(<0.12)	U	(<0.125)	U	(<0.112)	U	(<0.127)	U	NA
Aroclor 1254	(mg/kg)	(<0.159)	U	(<0.166)	U	(<0.148)	U	(<0.169)	U	NA
Aroclor 1260	(mg/kg)	(<0.067)	U	(<0.0699)	U	(<0.0625)	U	(<0.0713)	U	NA
Aroclor (Total)	(mg/kg)	0.173		0.180		0.161		0.184		0.1

	Sample ID	633019-SB11-	0-2'	633019-SB12-	6-8'	633019-SB13-1-2'		633019-SB13-4	.5-5'	
Parameter List	Lab ID	0710178-017	'A	0710178-018	A	G2349-03A		G2349-01A		6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	oil	Subsurface So	oil	Subsurface So	oil	Subsurface S	oil	Unrestricted Use (mg/kg)
	Sample Date	10/25/2007	'	10/25/2007		12/11/2008		12/11/2008		
Aroclor 1248	(mg/kg)	(<0.116)	U	(<0.118)	U	(<0.0054)	U	(<0.0055)	U	NA
Aroclor 1254	(mg/kg)	(<0.154)	U	(<0.156)	U	(<0.0022)	U	(<0.0022)	U	NA
Aroclor 1260	(mg/kg)	(<0.0649)	U	(<0.0659)	U	(<0.0069)	U	(<0.0069)	U	NA
Aroclor (Total)	(mg/kg)	0.167		0.170		0.007		0.007		0.1

NOTE: Analytical data results provided by Life Science Laboratories, Inc. and Mitkem Laboratories. Data validation completed by Environmental Data Services, Inc. Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

 $mg/kg \qquad = Milligrams \ per \ kilograms = Parts \ Per \ Million \ (ppm)$

Only Aroclors with at least one detection are shown; Method detection limits for individual Aroclors in subsurface soil samples SB-01 through SB-12 were above site SCGs, therefore one-half of the MDL value was used to determine Total Aroclor concentration values. These concentration values are highlighted in the table. In addition, subsurface soil samples that had at least one Aroclor detection above the MDL, one-half of a non-detect MDL was added to the detected concentration value to determine the Total Aroclor concentration value.

Project No.: 14368.17 Revision: FINAL Table 4, Page 2 of 5 May 2010

TABLE 4 DETECTED POLYCHLORINATED BIPHENLYS SUBSURFACE SOIL ANALYTICAL DATA

	Sample ID	633019-SB14-2	2-2.5'	633019-SB14-7-8'		633019-SB15-2-3'		633019-SB15-5-6'		
Parameter List	Lab ID	G2349-05A	G2349-05A		G2349-06A		G2349-07A		A	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface S	oil	Subsurface So	oil	Subsurface S	oil	Subsurface S	oil	Unrestricted Use (mg/kg)
	Sample Date	12/11/2008		12/11/2008		12/11/2008	3	12/11/2008	3	
Aroclor 1248	(mg/kg)	(<0.0055)	U	(<0.0057)	U	(<0.0051)	U	(<0.0055)	U	NA
Aroclor 1254	(mg/kg)	(<0.0022)	U	(<0.0023)	U	(<0.0021)	U	(<0.0022)	U	NA
Aroclor 1260	(mg/kg)	(<0.0069)	U	(<0.0072)	U	(<0.0064)	U	(<0.0069)	U	NA
Aroclor (Total)	(mg/kg)	0.007		0.008		0.007		0.007		0.1

	Sample ID	633019-SB16-	2-4'	633019-SB16-6.	5-7.5	633019-SB17-	2-4'	633019-SB17-5-6	'
Parameter List	Lab ID	G2349-01A		G2349-04A		G2349-09A		G2349-10A	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	oil	Subsurface So	oil	Subsurface So	oil	Subsurface Soil	Unrestricted Use (mg/kg)
	Sample Date	12/11/2008		12/11/2008		12/11/2008		12/11/2008	
Aroclor 1248	(mg/kg)	(<0.0052)	U	(<0.0055)	U	(<0.0052)	U	(<0.0051)	NA
Aroclor 1254	(mg/kg)	1.20	Е	0.140		(<0.0021)	U	(<0.0021)	NA
Aroclor 1260	(mg/kg)	(<0.0066)	U	(<0.0069)	U	0.120		(<0.0064)	NA
Aroclor (Total)	(mg/kg)	1.21	Е	0.146		0.124		0.007	0.1

	Sample ID	633019-SB18-2.	5-3.5	633019-SB18-	5-6'	633019-SB19-2.	5-3.5	633019-SB19-	7-8'	
Parameter List	Lab ID	G2349-11A		G2349-12A		G2349-13A		G2349-14A		6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	ıbsurface Soil		Subsurface Soil		Subsurface Soil		oil	Unrestricted Use (mg/kg)
	Sample Date	12/11/2008	12/11/2008		12/11/2008		12/11/2008			
Aroclor 1248	(mg/kg)	(<0.0053)	U	(<0.0051)	U	(<0.0055)	U	(<0.0057)	U	NA
Aroclor 1254	(mg/kg)	(<0.0022)	U	(<0.0021)	U	0.460		(<0.0023)	U	NA
Aroclor 1260	(mg/kg)	(<0.0067)	U	(<0.0064)	U	(<0.0069)	U	(<0.0072)	U	NA
Aroclor (Total)	(mg/kg)	0.007		0.007		0.466		0.008		0.1

	Sample ID	633019-SB20-	3-4'	633019-SB20-	5-6'	633019-SB21-	1-2'	633019-SB21-	5-6'	
Parameter List	Lab ID	G2349-15A		G2349-16A		G2349-17A		G2349-18A	1	6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface So	oil	Subsurface So	oil	Subsurface So	oil	Subsurface S	oil	Unrestricted Use (mg/kg)
	Sample Date	12/11/2008		12/11/2008		12/11/2008		12/11/2008	3	
Aroclor 1248	(mg/kg)	(<0.0052)	U	(<0.0051)	U	(<0.0053)	U	(<0.0057)	U	NA
Aroclor 1254	(mg/kg)	(<0.0021)	U	(<0.0021)	U	(<0.0022)	U	(<0.0023)	U	NA
Aroclor 1260	(mg/kg)	(<0.0065)	U	(<0.0064)	U	(<0.0067)	U	(<0.0073)	U	NA
Aroclor (Total)	(mg/kg)	0.007		0.007		0.007		0.008		0.1

	Sample ID	633019-DUP01	1			
Parameter List	Lab ID	0710178-022A				6 NYCRR Part 375
EPA Method 8082	Sample Type	Subsurface Soi	1			Unrestricted Use (mg/kg)
	Sample Date	10/25/2007				
Aroclor 1248	(mg/kg)	(<0.115)	U			NA
Aroclor 1254	(mg/kg)	(<0.153)	U			NA
Aroclor 1260	(mg/kg)	(<0.0644)	U			NA
Aroclor (Total)	(mg/kg)	0.166				0.1

NOTE: Analytical data results provided by Life Science Laboratories, Inc. and Mitkem Laboratories. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective. EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

mg/kg = Milligrams per kilograms = Parts Per Million (ppm)

633019-DUP01 was collected at 633019-SB-03-4-6'

Only Aroclors with at least one detection are shown; Method detection limits for individual Aroclors in subsurface soil samples SB-01 through SB-12 were above site SCGs, therefore one-half of the MDL value was used to determine Total Aroclor concentration values. These concentration values are highlighted in the table. In addition, subsurface soil samples that had at least one Aroclor detection above the MDL, one-half of a non-detect MDL was added to the detected concentration value to determine the Total Aroclor concentration value.

Project No.: 14368.17 Revision: FINAL Table 4, Page 3 of 5 May 2010

TABLE 4 DETECTED VOLATILE ORGANIC COMPOUNDS SUBSURFACE SOIL ANALYTICAL DATA

	Sample ID	633019-SB03-4-6'	633019-SB04-4-6'	633019-SB05-0-2'	633019-SB08-0-2'	
Parameter List	Lab ID	0710178-004B	0710178-006B	0710178-008B	0710178-011B	6 NYCRR Part 375
EPA Method 8260B	Sample Type	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil	Unrestricted Use (mg/kg)
	Sample Date	10/25/2007	10/25/2007	10/25/2007	10/25/2007	
Acetone	(mg/kg)	0.01 J	0.053	0.0098 J	0.041	0.05

		Sample ID	633019-SB10-10-1	12'	633019-SB12-6-8'	633019-DUP0	2		
	Parameter List	Lab ID	0710178-016B		0710178-018B	0710178-023	4		6 NYCRR Part 375
	EPA Method 8260B	Sample Type	Subsurface Soil		Subsurface Soil	Subsurface So	il		Unrestricted Use (mg/kg)
		Sample Date	10/25/2007		10/25/2007	10/25/2007			
	Acetone	(mg/kg)	0.011	J	0.02	0.011	J		0.05
NOTE:	Analytical data results provided by	Life Science Labora	tories, Inc Data va	lida	tion completed by En	vironmental Data S	Servi	ces, Inc.	

Analytical data results provided by Life Science Laboratories, Inc.. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

= Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

= The analyte was analyzed for, but was not detected above the sample reporting limit. U

= Milligrams per kilograms = Parts Per Million (ppm) mg/kg

633019-DUP02 was collected at 633019-SB05-0-2'

Project No.: 14368.17 Revision: FINAL Table 4, Page 4 of 5 May 2010

TABLE 4 DETECTED SEMIVOLATILE ORGANIC COMPOUNDS SUBSURFACE SOIL ANALYTICAL DATA

	Sample ID	633019-SB03-8-	-9.5'	633019-SB04-8	-10'	633019-SB05-0	-2'	633019-SB10-	2-4'	
Parameter List	Lab ID	0710178-005	A	0710178-007	A	0710178-008 <i>A</i>	A	0710178-015	Α	6 NYCRR Part 375
EPA Method 8270C	Sample Type	pe Subsurface Soil Subsurface Soil Subsurface		Subsurface Soil		Subsurface S	oil	Unrestricted Use (mg/kg)		
	Sample Date			10/25/2007		10/25/2007				
bis(2 - Ethylhexyl)phthalate	(mg/kg)	0.15	J	0.17	J	0.21	J	0.28	J	NA
Diethyl Phthalate	(mg/kg)	0.043	J	0.041	J		U	0.04	J	NA

	Sample ID	633019-SB10-10	-12'	633019-SB11-0)-2'	633019-DUP	03				
Parameter List	Lab ID	0710178-016 <i>A</i>	A	0710178-017	A	0710178-024	A			6 NYCRR Part 375	
EPA Method 8270C	Sample Type	Subsurface So	il	Subsurface So	oil	Subsurface S	oil			Unrestricted Use (mg/kg)	
	Sample Date	10/25/2007		10/25/2007		10/25/2007	1				
bis(2 - Ethylhexyl)phthalate	(mg/kg)	0.072	J	0.061	J	0.19	J			NA	
Diethyl Phthalate	(mg/kg)	0.045	J	0.042	J		U			NA	

NOTE: Analytical data results provided by Life Science Laboratories, Inc.. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in gray indicate the concentration was above the 6 NYRCC Part 375 Soil Cleanup Objective.

EPA = Environmental Protection Agency

NYCRR = New York Code of Rules and Regulation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

mg/kg = Milligrams per kilograms = Parts Per Million (ppm)

633019-DUP03 was collected at 633019-SB10-10-12'

TABLE 4 DETECTED TOTAL PETROLEUM HYDROCARBON SUBSURFACE SOIL ANALYTICAL DATA

Parameter List Method NY310.13/SW846 8015B	Lab ID	0710178-001A	0710178-002A	0710178-005A	0710178-007A	Unrestricted Use	
Method N 1 310.13/5 W 840 8013B	Sample Type	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil	(mg/kg)	
	Sample Date	10/25/2007	10/25/2007	10/25/2007	10/25/2007		
Total Petroleum Hydrocarbons	(mg/kg)	U	750	U	U	NA	
	Sample ID	633019-SB05-0-2'	633019-SB06-0-2'	633019-SB07-0-2'	633019-SB08-8-10'		
Downward Lint	Lab ID	0710178-008A	0710178-009A	0710178-010A	0710178-012A	6 NYCRR Part 375	
Parameter List Method NY310.13/SW846 8015B	Sample Type	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil	Unrestricted Use (mg/kg)	
	Sample Date	10/25/2007	10/25/2007	10/25/2007	10/25/2007		
Total Petroleum Hydrocarbons	(mg/kg)	7,000	2,000	U	U	NA	
		1	ı	ı			
	Sample ID	633019-SB10-10-12'	633019-SB11-0-2'	633019-SB13-1-2'	633019-SB13-4.5-5'		
Parameter List	Lab ID	0710178-016A	0710178-017A	G2349-03	G2349-01	6 NYCRR Part 375 Unrestricted Use	
Method NY310.13/SW846 8015B	Sample Type	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil	(mg/kg)	
	Sample Date	10/25/2007	10/25/2007	12/11/2008	12/11/2008		
Total Petroleum Hydrocarbons	(mg/kg)	U	U	130	U	NA	
	Sample ID	633019-SB14-2-2.5'	633019-SB14-7-8'	633019-SB15-2-3'	633019-SB15-5-6'		
Parameter List Method NY310.13/SW846 8015B	Lab ID	G2349-05	G2349-06	G2349-07	G2349-08	6 NYCRR Part 375	
	Sample Type	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil	Unrestricted Use (mg/kg)	
	Sample Date	12/11/2008	12/11/2008	12/11/2008	12/11/2008		
Total Petroleum Hydrocarbons	(mg/kg)	1,700	U	2,600	280	NA	
		T	T	T			
	Sample ID	633019-SB16-2-4'	633019-SB16-6.5-7.5'	633019-SB17-2-4'	633019-SB17-5-6'		
Parameter List	Lab ID	G2349-01	G2349-04	G2349-09	G2349-10	6 NYCRR Part 375 Unrestricted Use (mg/kg)	
Method NY310.13/SW846 8015B	Sample Type	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil		
	Sample Date	12/11/2008	12/11/2008	12/11/2008	12/11/2008		
Total Petroleum Hydrocarbons	(mg/kg)	4,000	590	460	U	NA NA	
	Sample ID	633019-SB18-2.5-3.5'	633019-SB18-5-6'	633019-SB19-2.5-3.5'	633019-SB19-7-8'		
Parameter List	Lab ID	G2349-11	G2349-12	G2349-13	G2349-14	6 NYCRR Part 375	
Method NY310.13/SW846 8015B	Sample Type	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil	Unrestricted Use (mg/kg)	
	Sample Date	12/11/2008	12/11/2008	12/11/2008	12/11/2008		
Total Petroleum Hydrocarbons	(mg/kg)	U	U	1,600	U	NA	
	T	1					
	Sample ID	633019-SB20-3-4'	633019-SB20-5-6'	633019-SB21-1-2'	633019-SB21-5-6'	CANAGODO D. 1955	
Parameter List Method NY310.13/SW846 8015B	Lab ID	G2349-15	G2349-16	G2349-17	G2349-18	6 NYCRR Part 375 Unrestricted Use	
	Sample Type	Subsurface Soil	Subsurface Soil	Subsurface Soil 12/11/2008	Subsurface Soil 12/11/2008	(mg/kg)	
	Sampla Data	12/11/2008			12/11/2000		
Total Petroleum Hydrocarbons	Sample Date (mg/kg)	12/11/2008 U	12/11/2008 U	U	U	NA	
Total Petroleum Hydrocarbons	Sample Date (mg/kg)				U	NA	
Total Petroleum Hydrocarbons					U	NA	
Total Petroleum Hydrocarbons Parameter List	(mg/kg)	U	U		U	6 NYCRR Part 375	
	(mg/kg) Sample ID	633019-DUP03	633019-SBDUP-01		U		
Parameter List	(mg/kg) Sample ID Lab ID	633019-DUP03 0710178-024A	633019-SBDUP-01 G2349-19		U	6 NYCRR Part 375 Unrestricted Use	

Analytical data results provided by Life Science Laboratories, Inc. and Mitkem Laboratories. Data EPA = Environmental Protection Agency
NYCRR = New York Code of Rules and Regulation
U = The analyte was analyzed for, but was not detected above the sample reporting limit. mg/kg = Milligrams per kilograms = Parts Per Million (ppm)
633019-DUP03 collected at 633019-SB10-10-12'
633019-SBDUP01 collected at 633019-SB13-1-2'

Project No.: 14368.17 Revision: FINAL Table 5, Page 1 of 4 May 2010

TABLE 5 DETECTED TARGET ANALYTE METALS GROUNDWATER ANALYTICAL DATA

	Sample ID	633019-MW-	01	633019-DUP	01	
Parameter List	Lab ID	0711114-001	В	0711114-004	В	NYSDEC Ambient Water
EPA Method 6010B/7470A	Sample Type	Groundwate	Groundwater		QC	Quality Standard (μg/L)
	Sample Date	11/15/2007		11/15/2007		
Aluminum	(µg/L)	0.5		470,000		100 (s)
Antimony	(μg/L)	16	J	9.2	J	3 (s)
Arsenic	(µg/L)	330		310		25 (s)
Barium	(µg/L)	3,900		3,600		1,000 (s)
Beryllium	(µg/L)	21	J	20	J	3 (g)
Calcium	(µg/L)	4,600,000		4,000,000		NA
Chromium	(µg/L)	770		730		50 (s)
Cobalt	(µg/L)	570		520		NA
Copper	(µg/L)	1,400		1,200		200 (s)
Iron	(µg/L)	1,100,000		1,000,000		300 (s)
Lead	(μg/L)	530		480		25 (s)
Magnesium	(µg/L)	2,100,000		1,800,000		35,000 (g)
Manganese	(µg/L)	36,000		32,000		300 (s)
Mercury	(µg/L)	1.4		1.3		0.7(s)
Nickel	(µg/L)	1,200		1,100		100 (s)
Potassium	(µg/L)	73,000		73,000		NA
Selenium	(μg/L)	20 J		25	J	10 (s)
Sodium	(µg/L)	9,500		8,800		20,000 (s)
Vandium	(μg/L)	670		620		NA
Zinc	(μg/L)	2,700		2,500		2,000 (s)

NOTE: Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in **bold** indicate the concentration was above the NYSDEC AWQS.

EPA = Environmental Protection Agency

NYSDEC = New York State Department of Environmental Conservation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

(g) = Value is listed as a guidance value.

(s) = Value is listed as a standard value.

 μ g/L = Micrograms per liter = Parts Per Billion (ppb)

Project No.: 14368.17 Revision: FINAL Table 5, Page 2 of 4 May 2010

TABLE 5 DETECTED VOLATILE ORGANIC COMPOUNDS GROUNDWATER ANALYTICAL DATA

	Sample ID	633019-MW-0	01	Trip Blank		633019-DUP)1		
Parameter List	Lab ID	0711114-001B		0711114-007A		0711114-004B		NYSDEC Ambient Water	
EPA Method 8260B	Sample Type	Groundwater Trip Blank/QA/QC Du		Duplicate/QAQC		Quality Standard (µg/L)			
	Sample Date	11/15/2007	/15/2007 11/15/2007		11/15/2007				
Acetone	(µg/L)	7.07	J		U	6.54	J	50 (g)	
Carbon Disulfide	(µg/L)	0.66			U	0.67		NA	
Methylene Chloride	(µg/L)		U	0.14	J		U	5 (g)	

NOTE: Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in **bold** indicate the concentration was above the NYSDEC AWQS.

EPA = Environmental Protection Agency

NYSDEC = New York State Department of Environmental Conservation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

(g) = Value is listed as a guidance value.

(s) = Value is listed as a standard value.

μg/L = Micrograms per liter = Parts Per Billion (ppb)

TABLE 5 DETECTED SEMIVOLATILE ORGANIC COMPOUNDS GROUNDWATER ANALYTICAL DATA

	Sample ID	633019-MW-0	l	633019-DUP01	[
Parameter List	Lab ID	0711114-001B		0711114-004B		NYSDEC Ambient
EPA Method 8270C	Sample Type	Groundwater Duplicate/QAQC		С	Water Quality Standard (μg/L)	
	Sample Date	11/15/2007	2007 11/15/2007			
Acetone	(µg/L)	7.07	J	6.54	J	50 (g)
Carbon Disulfide	(µg/L)	0.66		0.67		NA

NOTE: Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc. Concentration values highlighted in **bold** indicate the concentration was above the NYSDEC AWQS.

EPA = Environmental Protection Agency

NYSDEC = New York State Department of Environmental Conservation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

(g) = Value is listed as a guidance value.
 (s) = Value is listed as a standard value.

 $\mu g/L$ = Micrograms per liter = Parts Per Billion (ppb)

Project No.: 14368.17 Revision: FINAL Table 5, Page 4 of 4 May 2010

TABLE 5 DETECTED PESTICIDES GROUNDWATER ANALYTICAL DATA

	Sample ID	633019-MW-01		633019-DUP01		NYSDEC Ambient	
Parameter List	Lab ID	0711114-001B		0711114-004B			
EPA Method 8081A	Sample Type	Groundwater		Duplicate/QAQC		Water Quality Standard (µg/L)	
Sample Date		11/15/2007		11/15/2007			
gamma- Chlordane	(µg/L)	0.012	J		U	0.05(s)	

NOTE: Analytical data results provided by Life Science Laboratories, Inc. Data validation completed by Environmental Data Services, Inc.

Concentration values highlighted in **bold** indicate the concentration was above the NYSDEC AWQS.

EPA = Environmental Protection Agency

NYSDEC = New York State Department of Environmental Conservation

J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

(g) = Value is listed as a guidance value.

(s) = Value is listed as a standard value.

 μ g/L = Micrograms per liter = Parts Per Billion (ppb)

Project No.: 14368.17 Revision: FINAL Table 6, Page 1 of 1 May 2010

TABLE 6 SUMMARY OF DEGREE OF IMPACT FROM CONTAMINANTS OF CONCERN

Surface Soil	Contaminants of Concern	Concentration Range Detected (ppm) ^a	SCG ^b (ppm) ^a	Frequency of Exceeding SCG
PCBs	Aroclor (Total)	0.260 - 6.80	0.1	10/29
Metals	Mercury	0.54	0.18	1/4

Subsurface Soil	Contaminants of Concern	Concentration Range Detected (ppm) ^a	SCG ^b (ppm) ^a	Frequency of Exceeding SCG
PCBs	Aroclor (Total)	0.124 - 3.40	0.1	14/85
VOCs	Acetone	0.051 - 0.053	0.05	2/12
Metals	Copper	50	50	1/6
Wietais	Zinc	120	109	1/6
Pesticides	4,4'-DDT	0.0033 - 0.01	0.0033	2/6
1 esucides	Dieldrin	0.019	0.005	1/6

Notes:

a ppm = parts per million, which is equivalent to milligrams per kilogram, mg/kg, in soil

SCG = standards, criteria, and guidance values; 6 NYCRR Part 375, NYSDEC Technical Guidance for Unrestricted Soil Cleanup Objectives

PCB = polychlorinated biphenyls

VOC = volatile organic compounds

Project No.: 14368.17 Revision: FINAL Table 7, Page 1 of 1 May 2010

TABLE 7 COMPARISON OF ANALYTICAL AND OBSERVATIONAL DATA FOR TEST PITS

Test Pit Identifcation	PID > 1 ppm (PID range/depth)	Odor	Odor Strength	(No) I	PCBs (Yes)	(No) T	PH (Yes)	Test Pit Total Depth (ft bgs)	Test Pit Depth to Till (ft bgs)
633019-TP01	No	No		0-8'		X	X	22'	12'
633019-TP02	No	No		0-10'		X	X	10'	2'
633019-TP02A	No	No		0-2'		X	X	2'	
633019-TP03	Yes (0-6.8/2-16')	Yes	Strong	2-16'		X	X	16'	2'
633019-TP04	Yes (1.7-4.1/0-12')	Yes	Moderate	9-12'	2'	X	X	12'	0.5'
633019-TP05	Yes (1.7-4.1/0-12.5')	to 12.5'	Strong	12.5'	2-9'	X	X	12.5'	5'
633019-TP06	No	No		2-10'		X	X	10'	0.5'
633019-TP07	No	to 9'	Strong	2-9'		X	X	9.5'	4'
633019-TP08	No	No		2-9'		X	X	9.5'	0'
633019-TP09	No	to 11'	Strong	2-11'		X	X	11'	
633019-TP10	No	to 9.5'	Moderate	3.5', 9'	6'	X	X	9.5'	4.5'
633019-TP11A	No	No		2-10'		X	X	10'	0.5'
633019-TP11B	No	to 10'	Moderate	5-10'		X	X	10'	0.5'
633019-TP12	No	No		2-10'		X	X	10'	0.5'
633019-TP13	No	No		2-8.5'		X	X	10'	0.5'
633019-TP14	No	No		2-9'		X	X	9'	2.5'
633019-TP15	No	No		1-2.5'		X	X	10.5'	4'
633019-TP16	No	No			2-10'	X	X	10'	2.5'
633019-TP17	No	to 4'	Moderate		1.5-4.5'	X	X	8'	3'
633019-TP18	No	to 6'	Light	2-8'		X	X	8'	3'

NOTE: Observational data collected during test pit excavation activities and recorded on test pit log forms (Appendix C).

ft bgs = feet below ground surface PID = photoionization detector

PID = photoionization detector ppm = parts per million

X = indicates no data

= not applicable

TABLE 8 COMPARISON OF ANALYTICAL AND OBSERVATIONAL DATA FOR SOIL BORINGS

Soil Boring Identifcation	PID > 1 ppm (PID depth)	Odor	Odor Strength	(No) Po	CBs (Yes)	(No) T	PH (Yes)	Soil Boring Total Depth (ft bgs)	Soil Boring Depth to Till (ft bgs)
633019-SB01	X	X	X	4-6'		4-6'		6'	1'
633019-SB02	X	X	X	4-10'			4-6'	10'	0.5'
633019-SB03	X	X	X	4-9.5'		8-9.5'		9.5'	1'
633019-SB04	X	X	X	8-10'	4-6'	8-10'		10'	0.5'
633019-SB05	X	X	X	0-2'			0-2'	2'	0.5'
633019-SB06	X	X	X	0-2'			0-2'	2'	1'
633019-SB07	X	X	X	0-2'		0-2'		2'	X
633019-SB08	X	X	X	8-10'	0-2'	8-10'		10'	4.5'
633019-SB09	X	X	X	2-9.5'		X	X	10'	0'
633019-SB10	X	X	X	2-12'		10-12'		12'	0.5'
633019-SB11	X	X	X	0-2'		0-2'		6'	2.5'
633019-SB12	X	X	X	6-8'		X	X	8'	1'
633019-SB13	Yes (2-5')	1-5'	Light	1-5'		4.5-5'	1-2'	7'	0'
633019-SB14	No	2-5'	Light	2-8'		2-2.5'	7-8'	8'	X
633019-SB15	No	2.5-6'	Strong	2-6'			2-6'	8'	X
633019-SB16	Yes (5-6')	2-7.5'	Strong		2-7.5'		2-7.5'	7.5'	X
633019-SB17	No	1-5'	Moderate	5-6'	2-4'	5-6'	2-4'	9'	X
633019-SB18	No	2-7.5'	Moderate	2.5-6'		2.5-6'		7.5'	X
633019-SB19	No	1-3.5'	Strong	7-8'	2.5-2.5'	7-8'	2.5-3.5'	11'	X
633019-SB20	No	1-5'	Moderate	3-6'		3-6'		7.5'	X
633019-SB21	No	No		1-6'		1-6'		7'	X

NOTE: Observational data collected during advancement and screening of soil borings and recorded on soil boring log forms (Appendix D).

ft bgs = feet below ground surface

PID = photoionization detector (ppbRae instrument utilized during the second phase of field investigation activities)

ppb = parts per billion X = indicates no data --- = not applicable

Appendix A Daily Field Reports

DAILY FIELD REPORT

NYSDEC

Temperature: (F)

Day: 2

Weather:

55

(am)

75 (pm)

Date: August 18, 2007

2 W

Wind Direction:

2 W (am)

(pm)

Project Name

Marshall Transformer Site NYSDEC Site # 6-33-019

Location: Marshall, New York

(pm) Sunny

(am) Sunny

Arrive at site

0630 (am)

Leave site:

1700 (pm)

HEALTH & SAFETY:

Contract #

Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)

Yes () No (x)

Are monitoring results at acceptable levels?

Soil Waters Yes (x) n/a () n/a () Yes (x)

* No () * No ()

Air

Yes (x) n/a () * No ()

If No, provide comments

OTHER ITEMS:

Site Sketch Attached: Photos Taken:

Yes (No(X) Yes (X) No ()

DESCRIPTION OF DAILY WORK PERFORMED:

Excavator from Parratt-Wolf arrived onsite at 750 (Belt-Link 210). Continued to clear more room on the access road. Walked the excavator down with Mr. Silliman (land-owner). Mr. Silliman approved all removal, and asked for some additional removal for his own benefit. Used the excavator to remove all the down trees from the work area, pilled the trees up in an area that was out of the way. Set up decon pad for the excavator. Collected all 22 surface soil samples prior to allowing excavator to track across the site. Dug two test pits (TP01-TP02). Excavated TP01 to a depth of 22 feet in order to view geology, and determine if ground water or bedrock would be encountered with a geoprobe during piezometer installation. Bedrock, or groundwater was not encountered.

SAMPLING (Soil/Water/Air) Collected

Contractor Sample ID:

Α	NAL	.YSIS

Description:

633019-TP01-0-2'
633019-TP01-6-8'
633019-TP02-0-2'
633019-TP02-8-10'
633019-TP02A-2'
633019-SS01
633019-SS02
633019-SS03
633019-SS04
633019-SS05
633019-SS06
633019-SS07
633019-SS08

PCB
PCB

SOIL SAMPLE FROM TEST PIT-1 SHALLOW
SOIL SAMPLE FROM TEST PIT-1 DEEP
SOIL SAMPLE FROM TEST PIT-2 SHALLOW
SOIL SAMPLE FROM TEST PIT-2-DEEP
SOIL SAMPLE FROM TEST PIT-2A SHALLOW
SOIL SAMPLE FROM Surface Soil Number-01
SOIL SAMPLE FROM Surface Soil Number-02
SOIL SAMPLE FROM Surface Soil Number-03
SOIL SAMPLE FROM Surface Soil Number-04
SOIL SAMPLE FROM Surface Soil Number-05
SOIL SAMPLE FROM Surface Soil Number-06
SOIL SAMPLE FROM Surface Soil Number-07
SOIL SAMPLE FROM Surface Soil Number-08

Daily Field Report Page 1 of 3

DAILY FIELD REPORT

633019-SS09
633019-SS10
633019-SS11
633019-SS12
633019-SS13
633019-SS14
633019-SS15
633019-SS16
633019-SS17
633019-SS18
633019-SS19
633019-SS20
633019-SS21
633019-SS22
633019-RINSATE 1

PCB
PCB
PCB
PCB
PCB
FULL TCL SUITE
PCB
PCB
FULL TCL SUITE
PCB

SOIL SAMPLE FROM Surface Soil Number-09
SOIL SAMPLE FROM Surface Soil Number-10
SOIL SAMPLE FROM Surface Soil Number-11
SOIL SAMPLE FROM Surface Soil Number-12
SOIL SAMPLE FROM Surface Soil Number-13
SOIL SAMPLE FROM Surface Soil Number-14
SOIL SAMPLE FROM Surface Soil Number-15 (DUP 1)
SOIL SAMPLE FROM Surface Soil Number-16
SOIL SAMPLE FROM Surface Soil Number-17
SOIL SAMPLE FROM Surface Soil Number-18
SOIL SAMPLE FROM Surface Soil Number-19
SOIL SAMPLE FROM Surface Soil Number-20 (MS/MSD)
SOIL SAMPLE FROM Surface Soil Number-21
SOIL SAMPLE FROM Surface Soil Number-22
RINSATE BLANK FOR DAY 1

Date: August 18, 2007

Day: 2

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: Parratt-Wolf, Inc. (Name of Subcontractor) personnel: Brad Palmer

(Name of contractor) equipment:

(*Indicates active equipment)
Other Subcontractors: None

VISITORS TO SITE:

1. NYSDEC Personnel: Dave Crosby

PROJECT SCHEDULE ISSUES:

None.

PROJECT BUDGET ISSUES:

None.

ITEMS OF CONCERN:

With no groundwater or bedrock encountered, large amounts of till it is unlikely that a geoprobe would be adequate to collect soil samples and install piezometers. Discussed with Dave Crosby about getting a drill rig onsite to install 4 2-inch wells to collect water samples.

COMMENTS:

Daily Field Report Page 2 of 3

Day: 2

Date: August 18, 2007

None

ATTACHMENT(S) TO THIS REPORT:

<u>SITE REPRESENTATIVE:</u> Joseph Von Uderitz-Geologist EA Engineering, Science, Tech.

Megan Scott-

Name: (signature)

cc:

DAILY PHOTOLOG

Daily Field Report Page 3 of 3

DAILY FIELD REPORT

Temperature: (F) 55 **NYSDEC** (am) 75 (pm)

Day: 3

Wind Direction: 2 W (am) 2 W (pm)

Date: August 19, 2007

Project Name Marshall Transformer Site NYSDEC Site # 6-33-019

Weather: (am) Sunny (pm) Sunny

Contract # Arrive at site 0700 (am) Location: Marshall, New York Leave site: 1730 (pm)

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan? Yes () No (x)(If yes, list the deviation under items for concern)

Are monitoring results at acceptable levels? Soil Yes (x) * No () n/a ()

n/a () * No () Waters Yes (x) Air Yes (x) n/a () * No ()

OTHER ITEMS: If No, provide comments

Site Sketch Attached: Yes (No(X)Photos Taken: Yes (X) No ()

DESCRIPTION OF DAILY WORK PERFORMED:

Dug excavations TP03 through TP11. Deconned in between each location. Did not find a large amount of debris, did encounter potent odors. No volatile readings recorded on the PID.

SAMPLING (Soil/Water/Air) Collected

Contractor Sample ID:

633019-TP03-2'
633019-TP03-6'
633019-TP03-8'
633019-TP03-16'
633019-TP04-2
633019-TP04-9'
633019-TP04-12'
633019-TP05-2'
633019-TP05-9'
633019-TP05-12.5'
633019-TP06-2'
633019-TP06-10'

633019-TP07-2' 633019-TP07-6' 633019-TP07-9'

PCB
PCB
FULL TCL SUITE
PCB
РСВ
PCB
РСВ
РСВ
FULL TCL SUITE
РСВ
PCB

ANALYSIS

Description:

2000.15110111
SOIL SAMPLE FROM TEST PIT-3 SHALLOW (MS/MSD SAMPLE COLLECTED)
SOIL SAMPLE FROM TEST PIT-3 INTERMIDENT(DUPLICATE SAMPLE 1)
SOIL SAMPLE FROM TEST PIT-3 INTERMIDENT
SOIL SAMPLE FROM TEST PIT-3-DEEP-16'
SOIL SAMPLE FROM TEST PIT-4 SHALLOW
SOIL SAMPLE FROM TEST PIT-4 INTERMIDENT
SOIL SAMPLE FROM TEST PIT-4 DEEP
SOIL SAMPLE FROM TEST PIT-5 SHALLOW
SOIL SAMPLE FROM TEST PIT-5 INTERMIDENT
SOIL SAMPLE FROM TEST PIT-5 DEEP
SOIL SAMPLE FROM TEST PIT-6 SHALLOW
SOIL SAMPLE FROM TEST PIT-6 DEEP
SOIL SAMPLE FROM TEST PIT-7 SHALLOW (DUPLICATE SAMPLE 2)
SOIL SAMPLE FROM TEST PIT-7 INTERMIDENT
SOIL SAMPLE FROM TEST PIT-7 DEEP

Daily Field Report Page 1 of 3

DAILY FIELD REPORT

633019-TP08-2'
633019-TP08-9'
633019-TP09-2'
633019-TP09-4'
633019-TP09-7'
633019-TP09-11'
633019-TP10-3.5'
633019-TP10-6'
633019-TP10-9'
633019-TP11A-2'
633019-TP11A-10'
633019-TP11B-5'
633019-TP11B-10'
633019-TB-RINSTATE 2

РСВ
PCB
FULL TCL SUITE

SOIL SAMPLE FROM TEST PIT-8 SHALLOW
SOIL SAMPLE FROM TEST PIT-8 DEEP
SOIL SAMPLE FROM TEST PIT-9 SHALLOW
SOIL SAMPLE FROM TEST PIT-9 INTERMIDENT
SOIL SAMPLE FROM TEST PIT-9 INTERMIDENT
SOIL SAMPLE FROM TEST PIT-9 DEEP
SOIL SAMPLE FROM TEST PIT-10 SHALLOW
SOIL SAMPLE FROM TEST PIT-10 INTERMIDENT (DUPLICATE SAMPLE NUMBER 3)
SOIL SAMPLE FROM TEST PIT-10 DEEP
SOIL SAMPLE FROM TEST PIT-11A SHALLOW
SOIL SAMPLE FROM TEST PIT-11A DEEP
SOIL SAMPLE FROM TEST PIT-11B SHALLOW
SOIL SAMPLE FROM TEST PIT-11B DEEP
RINSATE SAMPLE FOR TCL SUITE-DAY 2

Date: August 19, 2007

Day: 3

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: Parratt-Wolf, Inc. (Name of Subcontractor) personnel: Brad Palmer

(Name of contractor) equipment:

(*Indicates active equipment)
Other Subcontractors: None

VISITORS TO SITE:

1. NYSDEC Personnel: Bill Bennet

PROJECT SCHEDULE ISSUES:

None.

PROJECT BUDGET ISSUES:

None.

ITEMS OF CONCERN:

None

COMMENTS:

None

Daily Field Report Page 2 of 3

Day: 3

Date: August 19, 2007

ATTACHMENT(S) TO THIS REPORT:

<u>SITE REPRESENTATIVE:</u> Joseph Von Uderitz-Geologist EA Engineering, Science, Tech.

Megan Scott- Engineer-EA Engineering, Science, Tech.

Name: (signature)

cc:

DAILY PHOTOLOG

Daily Field Report Page 3 of 3

DAILY FIELD REPORT

NYSDEC Temperature: (F) 55 (am) 80

Day: 4

Wind Direction: 2 W (am) 2 W (pm)

Date: August 20, 2007

(pm)

Project Name
Marshall Transformer Site
NYSDEC Site # 6-33-019

Weather: (am) Sunny

(pm) Sunny

Contract # Arrive at site 0700 (am)
Location: Marshall, New York Leave site: 1630 (pm)

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan? Yes () No (x) (If yes, list the deviation under items for concern)

Are monitoring results at acceptable levels? Soil Yes (x) n/a() * No ()

Waters Yes (x) n/a () * No () Air Yes (x) n/a () * No ()

OTHER ITEMS:

• If No, provide comments

Site Sketch Attached: Yes () No (X)
Photos Taken: Yes (X) No ()

DESCRIPTION OF DAILY WORK PERFORMED:

Dug test pits TP12 to TP18. Backfilled all test pits and graded the site to minimize visual disturbances. Deconned all equipment used onsite. Deconn water had visible sheen, therefore we discharged the water to the surface. Regraded access road on the way to for future use.

SAMPLING (Soil/Water/Air) Collected

Contractor Sample ID:

633019-TP12-2'
633019-TP12-10'
633019-TP13-2'
633019-TP13-8.5'
633019-TP14-2'
633019-TP14-9'
633019-TP15-1'
633019-TP15-2.5'
633019-TP16-2'
633019-TP16-10'
633019-TP17-1.5'
633019-TP17-4"

633019-TP17-4.5' 633019-TP18-2'

ANALIOIO							
РСВ							
PCB							
FULL TCL SUITE							
РСВ							
PCB							
PCB							
PCB							
PCB							
PCB							
PCB							
PCB							
PCB							
PCB							
PCB							

ANALYSIS

Description:

Description:
SOIL SAMPLE FROM TEST PIT-12 SHALLOW (MS/MSD SAMPLE COLLECTED)
SOIL SAMPLE FROM TEST PIT-12 DEEP (MS/MSD SAMPLE COLLECTED)
SOIL SAMPLE FROM TEST PIT-13 SHALLOW (MS/MSD SAMPLE COLLECTED)
SOIL SAMPLE FROM TEST PIT-13-DEEP
SOIL SAMPLE FROM TEST PIT-14 SHALLOW
SOIL SAMPLE FROM TEST PIT-14 DEEP
SOIL SAMPLE FROM TEST PIT-15 SHALLOW
SOIL SAMPLE FROM TEST PIT-15 DEEP
SOIL SAMPLE FROM TEST PIT-16 SHALLOW
SOIL SAMPLE FROM TEST PIT-16 DEEP
SOIL SAMPLE FROM TEST PIT-17 SHALLOW
SOIL SAMPLE FROM TEST PIT-17 INTERMIDENT
SOIL SAMPLE FROM TEST PIT-17 DEEP
SOIL SAMPLE FROM TEST PIT-18 SHALLOW

Daily Field Report Page 1 of 3

DAILY FIELD REPORT

633019-TP18-6'
633019-TP18-8'
633019-TP RINSATE 3

РСВ
РСВ
РСВ

SOIL SAMPLE FROM TEST PIT-7 INTERMIDENT
SOIL SAMPLE FROM TEST PIT-8 DEEP
RINSATE SAMPLE FOR DAY 3

Date: August 20, 2007

Day: 4

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: Parratt-Wolf, Inc. (Name of Subcontractor) personnel: Brad Palmer

(Name of contractor) equipment:

(*Indicates active equipment)
Other Subcontractors: None

VISITORS TO SITE:

1. NYSDEC Personnel: Bill Bennet

PROJECT SCHEDULE ISSUES:

None.

PROJECT BUDGET ISSUES:

None.

ITEMS OF CONCERN:

None

COMMENTS:

None

ATTACHMENT(S) TO THIS REPORT:

<u>SITE REPRESENTATIVE:</u> Joseph Von Uderitz-Geologist EA Engineering, Science, Tech.

Megan Scott- Engineer-EA Engineering, Science, Tech.

Name: (signature)

CC:

DAILY PHOTOLOG

Daily Field Report Page 2 of 3

Day: 4

Date: August 20, 2007

Daily Field Report Page 3 of 3

DAILY FIELD REPORT			Day:1	Tuesday	Date:_	10/23/07
®	NYSDEC		Temperature: (F)	45	(am) 6	65 (pm)
			Wind Direction:	none	(am)	(pm)
Project Name	N*4 -		Weather:	(am) rain	1	
Marshall Transformer S NYSDEC Site # 6-33-01	· · · ·			(pm) rain	n(total > 2")	
Contract # 1436817			Arrive at site	800	(am)	
Marshall, New York			Leave site:	1545	(pm)	
HEALTH & SAFETY:						
Are there any changes to the (If yes, list the deviation unde	Yes ()	No (x)				
Are monitoring results at acce	eptable levels?	Soil	Yes ()	n/a (x)	* No ()
		Waters	` ,	. ,	* No(,
OTHER ITEMS:		Air	Yes ()	,	* No(ide comments	,
Site Sketch Attached: Photos Taken:	` ,	(x) (x)				

DESCRIPTION OF DAILY WORK PERFORMED:

Arrived on site at 8am. Parratt Wolff drillers Brad and Steve arrived at 900.

Rain slowed down work. Drill rig was brought onto site through Mr. Mike Silliman's yard. Many ruts were made and will need to be fixed. We drove EA's Ford F150 onto the site but had to be pulled in by the drill rig both on the way in and on the way out. The vehicle will not be able to be brought onto site for the remainder of the week due to the rough, muddy access road. A Bobcat is to be delivered tomorrow morning around 8:30am so that tools and water can be brought onto and off of the site.

Monitoring Well One (MW01) was drilled at the southeast corner of the site. Left augers in at 40' bgs overnight to make sure the groundwater table had been reached. The well could not be completed because all the necessary parts (sand, water, etc.) could not be brought onto the site. Augers were covered to not let any rain into the boring.

The NYSDEC Project Manager William Bennett arrived onsite around 1530, after the drilling had been completed. The locations of the other two MW's were confirmed: MW02 at the southwest corner of the site, and MW03 near the north-central portion of the site. Exact location (ie, to the east or west of the access road entrance) of MW03 is still to be determined. All MW's are to be installed as permanent wells.

All left the site around 1545.

P	R	O	J	Ε	C.	T	T	O	Т	Ά	ιL	S	:
---	---	---	---	---	----	---	---	---	---	---	----	---	---

SAMPLING (Soil/Water/Air)

Contractor Sample ID: DEC Sample ID: Description:

Daily Field Report Page 1 of 3

DAILY FIELD REPORT

Day:Tuesday	_ Date:_	_10/23/07
-------------	----------	-----------

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: (Parratt Wolff) Brad and Steve
(Name of Subcontractor) personnel: (EA Engineering) Megan Scott, Joe VonUderitz
(Name of contractor) equipment:

Track mounted direct push drill rig
(*Indicates active equipment)
Other Subcontractors:

VISITORS TO SITE:

1. William Bennett (NYSDEC PM)

PROJECT SCHEDULE ISSUES:

Rain slowed down work and prevented necessary equipment from being brought onsite

PROJECT BUDGET ISSUES:

Bobcat had to be rented for remainder of week.

ITEMS OF CONCERN:

COMMENTS:

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: Megan Scott

CC:

Daily Field Report Page 2 of 3

Day:Tuesday	/ Date:	10/23/07
-------------	---------	----------

Photolog

Daily Field Report Page 3 of 3

DAILY FIELD REPORT Day:____Wednesday____ Date:__10/24/07_ Temperature: (F) 45 65 (am) (pm) NYSDEC Wind Direction: none (am) (pm) **Project Name** Weather: (am) rain **Marshall Transformer Site** (pm) rain(total > 2") NYSDEC Site # 6-33-019 Contract # 1436817 Arrive at site 800 (am) Leave site: 1545 Marshall, New York (pm) **HEALTH & SAFETY:** Are there any changes to the Health & Safety Plan? Yes () No (x)(If yes, list the deviation under items for concern) Are monitoring results at acceptable levels? Soil Yes () n/a (x) * No () Waters Yes () n/a (x) * No () Air Yes () n/a (x) * No () OTHER ITEMS: If No, provide comments Site Sketch Attached: No(x)Yes (Photos Taken: Yes (No(x)**DESCRIPTION OF DAILY WORK PERFORMED:** Arrived on site at 800. Parratt Wolff was already there. Completed MW01 at 1130. MW01 is 38' bgs. There was 18' of water, so 20' of 10 slot screen was used. More will have to be brought out to finish the third well. The well was installed as a permanent well, with sand, bentonite, and grout.

Began drilling MW02 at 1130 and completed it at 1645. MW02 is 35 feet bgs with 10' of 10 slot screen.

Bill (NYSDEC) arrived onsite at 1300. Took GPS points and discussed locations of soil borings and further surface soil sampling. He mentioned that he'd prefer the Bobcat go onsite as little as possible, so as not to contaminate the access road.

Cleaned up site and all left at 1730.

PROJECT TOTALS:

SAMPLING (Soil/Water/Air)

Contractor Sample ID: DEC Sample ID: Description:

Daily Field Report Page 1 of 3

DAILY FIELD REPORT Day:___Wednesday____ Date:__10/24/07___ CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE: (Name of contractor) personnel: (Parratt Wolff) Brad and Steve (Name of Subcontractor) personnel: (EA Engineering) Megan Scott, Joe VonUderitz (Name of contractor) equipment: Track mounted direct push drill rig (*Indicates active equipment) Other Subcontractors: VISITORS TO SITE:

1. William Bennett (NYSDEC PM)

PROJECT SCHEDULE ISSUES:

PROJECT BUDGET ISSUES:

ITEMS OF CONCERN:

COMMENTS:

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: Megan Scott

CC:

Daily Field Report Page 2 of 3

Photolog

Photo 1: Installation of MW01

Photo 1

Daily Field Report Page 3 of 3

DAILY FIELD REPORT Day:___Thursday___ Date:__10/25/07_ Temperature: (F) 50 58 (am) (pm) **NYSDEC** Wind Direction: none (am) (pm) **Project Name** Weather: (am) light clouds **Marshall Transformer Site** (pm) clouds NYSDEC Site # 6-33-019 Contract # Arrive at site 700 (am) Marshall, New York Leave site: 1730 (pm) **HEALTH & SAFETY:** Are there any changes to the Health & Safety Plan? Yes () No (x)(If yes, list the deviation under items for concern) * No () Are monitoring results at acceptable levels? Soil Yes () n/a (x) Yes () Waters n/a(x)* No () Yes () Air n/a (x) * No () **OTHER ITEMS:** If No, provide comments Site Sketch Attached: Yes () No(x)Photos Taken: Yes(x) No ()

DESCRIPTION OF DAILY WORK PERFORMED:

Arrived onsite at 700. Brad and Steve from Parratt Wolff were there already. Started on MW03 at 800. MW03 was installed at 30 feet below ground surface at 930. Started on soil borings at 1040 and stopped work at 1630. Collected soil samples from all soil borings

All left the site around 1730.

PROJECT TOTALS:

SAMPLING (Soil, grab sample) Contractor Sample ID:	DEC Sample ID:	Description:
633019-SB01-4-6'		PCB, TPH
633019-SB02-4-6'		PCB, TPH
633019-SB02-8-10'		PCB
633019-SB03-4-6'		PCB, VOC
633019-SB03-8-9.5'		PCB, TPH/SVOC
633019-SB04-4-6'		PCB,VOC
633019-SB04-8-10'		РСВ,ТРН
633019-SB05-0-2'		PCB, TPH/SVOC, VOC
633019-SB06-0-2'		PCB, TPH
633019-SB07-0-2'		PCB, TPH
633019-SB08-0-2'		PCB, VOC
633019-SB08-8-10'		PCB, TPH

Daily Field Report Page 1 of 4

DAILY FIELD REPORT	Day:Thursday Date:10/25/07
633019-SB09-2'	PCB
633019-SB09-8-10'	PCB
633019-SB10-2-4'	PCB, SVOC
633019-SB10-10-12'	PCB,TPH/SVOC, VOC
633019-DUP01	PCB (SB03)
633019-DUP02	VOC (SB05)
633019-DUP03	TPH/SVOC (SB10)
633019-SB04-8-10' (MS/MSD)	TPH/SVOC
633019-SB06-0-2' (MS/MSD)	PCB

Daily Field Report Page 2 of 4

DAILY FIELD REPORT

Day:	Thursday	Date:	10/25/07	

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: (Parratt Wolff) Steve and Brad

(Name of Subcontractor) personnel: (EA Engineering) Megan Scott and Joe VonUderitz

(Name of contractor) equipment: Bobcat, CME 850 drill rig on tracks

(*Indicates active equipment)

Other Subcontractors:

VISITORS TO SITE:

1

PROJECT SCHEDULE ISSUES:

none

PROJECT BUDGET ISSUES:

none

ITEMS OF CONCERN:

COMMENTS:

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: Megan Scott

cc:

Daily Field Report Page 3 of 4

Day:	Thursday	Date:_	_10/25/07

Photolog

Daily Field Report Page 4 of 4

DAILY OBSERVATION	REPORT	Day:	_Friday	Date:	10/26/07	
®	NYSDEC		Temperature: (F)	50	(am)	58 (pm)
			Wind Direction:	none	(am)	(pm)
Project Name Marshall Transformer S NYSDEC Site # 6-33-01			Weather:	(am) ligh (pm) clou		
Contract #			Arrive at site 700 (am)			
Marshall, New York		Leave site:	1730	(pm)		
HEALTH & SAFETY:						
Are there any changes to the (If yes, list the deviation unde	•		Yes ()	No (x)		
Are monitoring results at acco	eptable levels?	Soil	Yes ()	n/a (x)	* No ()
OTHER ITEMS:		Waters Air	Yes () Yes ()	n/a (x) n/a (x)	* No(* No(ide comment)
			•	ii ivo, provi	de comment	3
Site Sketch Attached: Photos Taken:	Yes() Yes(x)	No (x) No ()				

DESCRIPTION OF DAILY WORK PERFORMED:

Arrived onsite at 800. Brad and Steve from Parratt Wolff were there already. Finished soil borings SB11 and 12 and collected three surface soil samples.

Bill (NYSDEC) arrived onsite at 1200. He took the rest of the GPS points (Soil borings and surface soil locations). I finished up paperwork and left the site at 1400.

Brad, Steve, and Joe VonUderitz remained onsite to decon equipment, regrade access road, and pack up.

PROJECT TOTALS:

SAMPLING (Soil, grab sample) Contractor Sample ID:	DEC Sample ID:	Description:
633019-SB11-0-2'		PCB, TPH/SVOC
633019-SB12-6-8'		PCB, VOC
633019-SS23-0-2"		PCB, TPH/SVOC, VOC
633019-SS24-0-2"		PCB, TPH/SVOC,VOC
633019-SS25-0-2"		PCB, TPH/SVOC,VOC
DUP04		PCB (SS23)
633019-SB12-6-8' (MS/MSD)		voc
633019-SS24-0-2" (MS/MSD)		PCB

Daily Observation Report Page 1 of 6

DAILY OBSERVATION REPORT

Day:	_Friday	Date:	10/26/07

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: (Parratt Wolff) Steve and Brad

(Name of Subcontractor) personnel: (EA Engineering) Megan Scott and Joe VonUderitz

(Name of contractor) equipment: Bobcat, CME 850 drill rig on tracks

(*Indicates active equipment)

Other Subcontractors:

VISITORS TO SITE:

1. William Bennett (NYSDEC)

PROJECT SCHEDULE ISSUES:

none

PROJECT BUDGET ISSUES:

none

ITEMS OF CONCERN:

COMMENTS:

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: Megan Scott

cc:

Daily Observation Report Page 2 of 6

Photolog

Photo 1: Access road

Photo 2: Site looking from entrance to SW corner

Photo 3: MW02

Photo 4: Foreground: MW03 Background: MW01

Photo 5: MW01

Photo 6: Soil stockpile from well drilling

Photo 7: Cleared space for SB01, located just north

of site.

Photo 8: Access road

Photo 9: Access road at creek crossing Photo 10: Access road at creek crossing

Photo 11: Access road through Silliman property

Photo 12: Access road through Silliman property

Photo 13: Access road through Silliman property

Photo 1

Photo 2

Photo 3

Photo 4

DAILY OBSERVATION REPORT

Photo 5 Photo 6

Photo 8

Daily Observation Report Page 4 of 6

DAILY OBSERVATION REPORT

Photo 9 Photo10

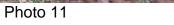


Photo 12

Daily Observation Report Page 5 of 6

Photo 13

DAILY FIELD REPORT				Day:	_Friday	Dat	te:	11/02/07		
®	NYSDEC		Temperature: (F)		35	(am)	50	(pm)		
			Wind Di	irection:	none	(am)		(pm)		
Project Name Marshall Transformer S NYSDEC Site # 6-33-01		Weather: (am) clear (pm) clear								
Contract #			Arrive	at site	830	(am)				
Marshall, New York			Leave	site:	1130					
HEALTH & SAFETY:										
Are there any changes to the (If yes, list the deviation unde	1?		Yes ()	No (x)						
Are monitoring results at acce	eptable levels?	Soil		Yes ()	n/a (x)	* No	. ,			
		Waters Air		Yes () Yes ()	n/a (x) n/a (x)	* No * No	` '			
OTHER ITEMS:				•	If No, prov					
Site Sketch Attached: Photos Taken:		(x)								
DESCRIPTION OF DAILY WORK PERFORMED: Arrived onsite at 830. Brad and Dick from Parratt Wolff were there already. Parratt Wolff brought 1 cy of topsoil, a bag of seed and two bales of hay. All the topsoil was used and half the bag of seed. Both bales of hay were used but not all the seed was covered. All the seed on the slope was covered, so we decided, along with Mr. Silliman, that it would be ok. We seeded from the road to the edge of the bushes. Past the bushes is a road used by Mr. Silliman with his tractor and 4-wheeler, so there was no need to plant seed there. Mr. Silliman was there the whole time, though he didn't state any preferences as to how the work was done. He did help carry soil with his tractor.										
All left the site at 1130.										
PROJECT TOTALS:										
SAMPLING (Soil, grab sample ID:	<u>ole)</u> DEC Samp	le ID:			Des	cription:	:			

Daily Field Report Page 1 of 4

DAILY FIELD REPORT Day:___Friday___ Date:__11/02/07___ CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE: (Name of contractor) personnel: (Parratt Wolff) Steve and Dick

(Name of contractor) personnel: (Parratt Wolff) Steve and Dick (Name of Subcontractor) personnel: (EA Engineering) Megan Scott (Name of contractor) equipment: Rakes and shovels (*Indicates active equipment)
Other Subcontractors:

VISITORS TO SITE:

PROJECT SCHEDULE ISSUES:

none

PROJECT BUDGET ISSUES:

none

ITEMS OF CONCERN:

COMMENTS:

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: Megan Scott

cc:

Daily Field Report Page 2 of 4

Photolog

Photo 1: Tracks in Mr. Silliman's yard

Photo 2: Tracks

Photo 3: Tracks

Photo 4: End of tracks to be filled in (to bushes)

Photo 5: Closeup of track filled in and seeded

Photo 6: Tracks filled in and seeded

Photo 7: Tracks filled in and seeded

Photo 8: Tracks filled in, seeded, and covered with

hay

Photo 2

Photo3

Photo 4

Daily Field Report Page 3 of 4

Photo 5 Photo 6

Photo 7 Photo 8

Daily Field Report Page 4 of 4

DAILY FIELD REPORT Day: Thursday Date: 11/15/07 Temperature: (F) 40 (am) 25 (pm) NYSDEC Wind Direction: none (am) none (pm) **Project Name** Weather: (am) light to heavy rain **Marshall Transformer Site** (pm) light to heavy rain NYSDEC Site # 6-33-019 Contract # D004438.17 Arrive at site 820 (am) Leave site: 1300 Marshall, New York **HEALTH & SAFETY:** Are there any changes to the Health & Safety Plan? Yes () No (x)(If yes, list the deviation under items for concern) Are monitoring results at acceptable levels? Soil Yes () n/a (x) * No () Yes(x) * No () Waters n/a () Yes () Air n/a (x) * No ()

DESCRIPTION OF DAILY WORK PERFORMED:

Yes (

Yes (

Arrive onsite 820. Purged and sampled 3 monitoring wells onsite. In general utilized low flow techniques to purge until water quality stabilized, and collected samples with dedicated bailers. MW02 would not pump and was purged with bailer till dry, allowed to recharge and then collected sample. Decontaminated water level indicator between wells (Rinsate Blank collected at end of sampling).

No(x)

No(x)

If No, provide comments

All Left site 1300

OTHER ITEMS:

Photos Taken:

Site Sketch Attached:

PROJECT TOTALS:

SAMPLING (Soil, grab sample) Contractor Sample ID:	DEC Sample ID:	Description:
6-33-019-MW-01		Full TCL Suite and TPH
6-33-019-MW-02		TPH/PCB
6-33-019-MW-03		TPH/PCB (MS/MSD)

Daily Field Report Page 1 of 2

Day: Thursday Date: 11/15/07

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: (EA Engineering) David Crandall/John Clark (Name of Subcontractor) personnel:

(Name of contractor) equipment: Geopump, YSI Water Quality Meter, Bailers

(*Indicates active equipment)
Other Subcontractors:

VISITORS TO SITE:

1

PROJECT SCHEDULE ISSUES:

none

PROJECT BUDGET ISSUES:

none

ITEMS OF CONCERN:

COMMENTS:

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: David Crandall

cc:

Daily Field Report Page 2 of 2

Appendix B Surface Soil Sampling Logs

Surface Soil Sampling Log Forms

	EA Engineering, P.C. EA Science and Technology LOG OF SURFACE SOIL								Job. No. Client: NYSDEC 14368.17 Sampling Method:			Marshall Sample	Location Marshall Transformer Sample Location:: SS0-1	
Coordin	ates:				7	5°24'5.849"W	42°57'45.29"N			GRA	B SAMPLE	Sheet	1 of 1	
Surface	Surface Elevation:							•					mpling	
								=	Weather Cond	litions:		Start	Finish	
	ce Elevation ce Descrip								Clear, mild 65	deg		1015	1017	
Sample	Feet	PID		21.42.2				USCS	Surface Cond		Topsoil			
Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Weather:	clear	05 de			
	Recvrd	HNu							Temperature:		65 deg			
0-2"	NA						Х		B-MS-T-S L/N	C rock fragme	ents			
Logged by:				Megan Scott			_	Date:	12-Oct-07					
Sample	Interval	:					0-2"		-	Time:	1330			

EA Engineering, P.C. EA Science and Technolog	g)
LOG OF SURFACE SOIL	
Coordinates:	
Surface Elevation:	_
	_
Reference Elevation:	

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC	_	Loc	cation
14368.17				Marshall	Transformer
Sampling Met	hod:			Sample	Location::
				S	S02
	GRAB SAMPLE				
				Sar	mpling
Weather Cond	ditions:			Start	Finish
Clear, mild 65	deg			1101	1104

12-Oct-07

1330

Date:

Time:

Comple	Feet	PID						USCS	Surface Conditions: Topsoil
Sample Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Weather: clear
intorval	Recvrd	HNu							Temperature: 65 deg
0-2"	NA						Х		B-MS-T-S L/NC

Megan Scott

0-2"

75°24'6.537"W 42°57'45.303"N

	EA Engineering, P.C. EA Science and Technology
	LOG OF SURFACE SOIL
Coordinates:	
Surface Elevation:	_

Reference Elevation: Reference Description:

Sample Interval:

	Transformer
Sample	
	Location::
Sheet	1 of 1
Sar	mpling
Start	Finish
1219	1227
	Sheet San Start

1330

Time:

Sample	Feet	PID						USCS	Surface Conditions: Topsoil
Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Weather: clear
intorval	Recvrd	HNu							Temperature: 65 deg
0-2"	NA						Х		B-MS-T-S L/NC many fine roots
Logged	by:	-				M	legan Scott		Date: 12-Oct-07

0-2"

75°24'7.199"W 42°57'45.321"N

EA Engineering, P.C. EA Science and Technolog
LOG OF SURFACE SOIL
Coordinates:
Surface Elevation:
Reference Elevation:

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC		Loc	cation
14368.17				Marshall	Transformer
Sampling Met	thod:			Sample	Location::
				S	S04
	GRAB SAMPLE				
				Sar	mpling
Weather Cond	ditions:			Start	Finish
Clear, warm 7	5 deg			1411	1417

12-Oct-07

1330

Date:

Time:

Sample Interval	Feet Drvn/Ft.		VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Surface Conditions: Topsoil Weather: clear
	Recvrd	HNu							Temperature: 75 deg
0-2"	NA						X		
									B-MS-T-S L/NC

Megan Scott

0-2"

75°24'7.861"W 42°57'45.346"N

EA Engineering, P.C. EA Science and Technology
 0F 0UDE4 0F 00U

Sample Interval:

EA Engineering, P.C.								14368.17			Marshall	Transformer		
EA Science and Technology									Sampling Method:			Sample Location SS05		
Coordin	ates:	LOG (OF SURFACE SC	DIL	7	5°24'7.853"W 4	12°57'45.756"N			GRAB SAMPLI	Ē	Sheet 1		
Surface	Elevation:							_				Sampling		
									Weather Cond	litions:		Start	Finish	
	ce Elevatio ce Descrip							_	Clear, mild 65 o	deg		1430	1435	
Comple	Feet	PID						USCS	Surface Cond	itions: Topsoi	I			
Sample Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Weather:	clear				
	Recvrd	HNu							Temperature:	65 deg				
0-2"	NA		Х	х	Х	х	Х		B-MS-T-S L/N	C many fine roots				
Logged	d by:	<u>I</u>				M	legan Scott	-1	_	Date:	12-Oct-07			

0-2"

Client:

Time:

Job. No.

NYSDEC

1330

Location

EA Engineering, P.C. EA Science and Technology
LOG OF SURFACE SOIL
Coordinates:
Surface Elevation:

Reference Elevation: Reference Description:

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC		Location				
14368.17				Marshall Transform				
Sampling Met	hod:			Sample	Location::			
				SS06				
	GRAB SAMPLE							
				Sar	mpling			
Weather Cond	ditions:			Start	Finish			
Clear, mild 65	deg			1237	1241			

12-Oct-07

1330

Date:

Time:

	Feet	PID						USCS	Surface Conditions: Topsoil
Sample Interval			VOCs	SVOCs	Metals	Pesticides	PCBs		Weather: clear
interval	Recvrd	HNu							Temperature: 65 deg
0-2"	NA	0					Х		
									B-MS-T-S L/NC
							<u> </u>		•

Megan Scott

0-2"

75°24'7.169"W 42°57'45.745"N

R EA Engineering, P.C. EA Science and Technology

Sample Interval:

_			EA Engineer	ing, P.C.					14368.17			Marshall	Transformer
			EA Science a	and Technolo	gy				Sampling Met	hod:			Location::
Coordin		LOG C	F SURFACE SO	OIL	7	5°24'6.509"W 4	2°57'45.718"N			GRAB SAMPL	.E		1 of 1
Surface	Surface Elevation:											Sa	mpling
									Weather Cond	ditions:		Start	Finish
	Reference Elevation: Reference Description:							_	Clear, mild 65	deg		1142	1151
Commis	Feet	PID						USCS	Surface Cond	itions: Topso	il		
Sample Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Weather:	clear			
torva.	Recvrd	HNu							Temperature:	65 deg			
0-2"	NA	0	Х	х		Х	X	SP	B-MS-T-S L/N	С			
Logged	d by:					N	legan Scott	•	_	Date:	12-Oct-07		

0-2"

Client:

Time:

Job. No.

NYSDEC

1330

Location

EA Engineering, P.C. EA Science and Technology
LOG OF SURFACE SOIL
Coordinates:
Surface Elevation:
_
Reference Flevation:

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC	Loc	cation
14368.17			Marshall	Transformer
Sampling Met	hod:		Sample	Location::
			S	S08
	GF	RAB SAMPLE	Sheet	1 of 1
			Sar	mpling
Weather Cond	ditions:	•	Start	Finish
Clear, mild 65	deg		1600	1603

12-Oct-07

1330

Date:

Time:

Sample Interval	Feet Drvn/Ft. Recvrd	PID (ppm) HNu	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Surface Conditions: Topsoil Weather: clear Temperature: 65 deg
0-2"	NA	HINU					х		
									B-MS-T-S L/NC

Megan Scott

0-2"

75°24'5.782"W 42°57'45.677"N

EA Engineering, P.C. EA Science and Technolog
LOG OF SURFACE SOIL
Coordinates:
Surface Elevation:

Reference Elevation: Reference Description:

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC		Loc	cation
14368.17				Marshall	Transformer
Sampling Met	hod:			Sample	Location::
				S	S09
	GR	AB SAMPLE		Sheet	1 of 1
				Sar	mpling
Weather Cond	ditions:	•	•	Start	Finish
Clear, mild 65	deg			1539	1541

12-Oct-07

1330

Date:

Time:

Commile	Feet	PID						USCS	Surface Conditions: Topsoil
Sample Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Weather: clear
intorval	Recvrd	HNu							Temperature: 65 deg
0-2"	NA	0					Х		B-MS-T-S L/NC
			_				_		
	-								

Megan Scott

0-2"

75°24'5.723"W 42°57'46.182"N

EA Engineering, P.C. EA Science and Technolog
LOG OF SURFACE SOIL
Coordinates:
Surface Elevation:

Reference Elevation: Reference Description:

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC	Loc	cation
14368.17			Marshall [*]	Transformer
Sampling Met	thod:		Sample	Location::
			S	S10
	GR	AB SAMPLE	Sheet	1 of 1
			Sar	mpling
Weather Con-	ditions:	•	Start	Finish
Clear, mild 65	deg		1530	1532

12-Oct-07

1330

Date:

Time:

0	Feet	PID						USCS	Surface Conditions: Topsoil
Sample Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Weather: clear
interval	Recvrd	HNu							Temperature: 70 deg
0-2"	NA						Х		B-MS-T-S L/NC

Megan Scott

0-2"

75°24'6.478"W 42°57'46.109"N

R EA Engineering, P.C. EA Science and Technolog
LOG OF SURFACE SOIL
Coordinates:
Surface Elevation:
Reference Elevation:

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC		Loc	cation	
14368.17				Marshall	Transformer	
Sampling Met	thod:			Sample	Location::	
				S	S11	
	GRAB SAMPLE					
				Sar	mpling	
Weather Cond	ditions:	•	•	Start	Finish	
Clear, mild 65	deg			1532	1535	

12-Oct-07

1330

Date:

Time:

Sample Interval	Feet Drvn/Ft. Recvrd	PID (ppm) HNu	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Surface Conditions: Topsoil Weather: clear Topposeture: 65 dog
0-2"	NA	HINU					Х		Temperature: 65 deg
									B-MS-T-S L/NC

Megan Scott

0-2"

75°24'7.115"W 42°57'46.147"N

EA Engineering, P.C. EA Science and Technology
LOG OF SURFACE SOIL
Coordinates:
Surface Elevation:
_
Reference Elevation:

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC		Loc	cation		
14368.17				Marshall	Transformer		
Sampling Met	hod:			Sample	Location::		
				S	S12		
	GRAB SAMPLE						
				Sar	mpling		
Weather Cond	ditions:			Start	Finish		
Clear, mild 65	deg			1458	1503		

12-Oct-07

1330

Date:

Time:

Sample	Feet	PID	1/00-	01/00-	NA-4-I-	Dartisis	DOD-		Surface Conditions: Topsoil
Interval	Drvn/Ft.		VOCs	SVOCs	ivietais	Pesticides	PCBs	Log	Weather: clear
	Recvrd	HNu							Temperature: 70 deg
0-2"	NA						Х		B-MS-T-S L/NC with many fine roots

Megan Scott

0-2"

75°24'7.793"W 42°57'46.149"N

	EA Engineering, P.C. EA Science and Technology
	LOG OF SURFACE SOIL
Coordinates:	
Surface Eleva	ation:
	-
Reference Ele	evation:

Logged by:

Sample Interval:

Job. No.	Client:	nt: NYSDEC Location					
14368.17				Marshall	Transformer		
Sampling Met	Sampling Method:						
				S	S13		
	GRAB SAMPLE						
				Sar	mpling		
Weather Cond	ditions:			Start	Finish		
Clear, mild 65	deg			1536	1538		

12-Oct-07

1330

Date:

Time:

Sample Interval	Feet Drvn/Ft. Recvrd	PID (ppm) HNu	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Surface Conditions: Topsoil Weather: clear Temperature: 65 deg
0-2"	NA	0					х		B-MS-T-S L/NC
									B-WS-1-5 LINC

Megan Scott

0-2"

75°24'6.042"W 42°57'45.973"N

	EA Engineering, P.C. EA Science and Technology
LOG	OF SURFACE SOIL

Sample Interval:

EA Engineering, P.C.								14368.17		Marsha	II Transformer	
									Sampling Method:			le Location::
LOG OF SURFACE SOIL Coordinates: 75°24'7.522"W 42°57'45.759"N									GRAB SAMPLE	Shee	Sheet 1 of 1	
Surface	Elevation:							_				ampling
ļ ,								_	Weather Condition	S:	Start	Finish
	ce Elevatio ce Descrip								Clear, mild 65 deg		1252	1257
								_				
	Feet	PID						USCS	Surface Conditions	s: Topsoil		
Sample Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Weather: clea	r		
miorvai	Recvrd	HNu							Temperature:	65 deg		
0-2"	NA	0	х	х	×		х	SP	B-MS-T-S L/NC roo	ck fragments		
									TOOK RINSATE E	BLANK AFTER SAMPLE		
Logge	d by:			•		· N	legan Scott	•	Dat	te: 12-Oct-07		

0-2"

Client:

Time:

Job. No.

NYSDEC

1330

Location

	EA Engineering, P.C. EA Science and Technology
LOG	OF SURFACE SOIL

EA Engineering, P.C. EA Science and Technology									14368.17			Marshall	Transformer
									Sampling Method:			Sample Location::	
LOG OF SURFACE SOIL													
Coordinates: Surface Elevation:					75°24'6.809"W 42°57'45.558"N			GRAB SAMPLE			Sheet 1 of 1		
								_					mpling
									Weather Cond	litions:		Start	Finish
Reference Elevation: Reference Description:						<u> </u>			Clear, mild 65 deg			1207	1211
								_		-		•	
Sample Interval	Feet	PID	VOCs	SVOCs	Metals	Pesticides	PCBs	USCS	Surface Cond	itions:	Topsoil		
	Drvn/Ft.	(ppm)						Log	Weather: clear				
	Recvrd	HNu							Temperature:	65 deg			
0-2"	NA						x		B-MS-T-S L/N	С			
0-2"	NA						х	SP	B-MS-T-S L/N	С	**DUP 01**		
Logged by:						Megan Scott				Date:	12-Oct-07	_	
Sample Interval:						0-2"				Time:	1330		

Client:

Job. No.

NYSDEC

Location

EA Engineering, P.C. EA Science and Technolog
LOG OF SURFACE SOIL
Coordinates:
Surface Elevation:
Perence Flevation

Reference Description:

Job. No.	Client:	NYSDEC		Loc	cation
14368.17				Marshall	Transformer
Sampling Met	hod:			Sample	Location::
				S	S16
	GRAB SAMPLE				
				Sar	mpling
Weather Cond	ditions:			Start	Finish
Clear, mild 65	dea			1118	1123

Sample	Feet	PID						USCS	Surface Conditions: Topsoil
Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Weather: clear
interval	Recvrd	HNu							Temperature: 65 deg
0-2"	NA						Х		B-MS-T-S L/NC

 Logged by:
 Megan Scott
 Date:
 12-Oct-07

 Sample Interval:
 0-2"
 Time:
 1330

75°24'6.453"W 42°57'45.44"N

EA Engineering, P.C. EA Science and Technology
LOG OF SURFACE SOIL
Coordinates:
Surface Elevation:
_
Reference Elevation:
Reference Description:

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC		Loc	cation	
14368.17				Marshall	Transformer	
Sampling Met	thod:			Sample	Location::	
				S	S17	
	GRAB SAMPLE					
				Sar	mpling	
Weather Cond	ditions:			Start	Finish	
Clear, mild 65	deg			1030	1032	

12-Oct-07

1330

Date:

Time:

Sample	Feet	PID	1/00-	01/00-	NA-4-I-	Dartisis	DOD-		Surface Conditions: Topsoil
Interval	Drvn/Ft.		VOCs	SVOCs	ivietais	Pesticides	PCBs	Log	Weather: clear
	Recvrd	HNu							Temperature: 65 deg
0-2"	NA						Х		B-MS-T-S L/NC rock fragments

Megan Scott

0-2"

75°24'6.03"W 42°57'45.459"N

	EA Engineering, P.C. EA Science and Technology
LOG O	F SURFACE SOIL
Coordinates:	
Surface Elevation:	_
	_
Reference Elevation:	
Reference Description:	_

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC		Loc	cation	
14368.17				Marshall	Transformer	
Sampling Met	hod:			Sample	Location::	
				s	S18	
	GRAB SAMPLE					
				Sar	mpling	
Weather Cond	ditions:	•		Start	Finish	
Clear, mild 65	deg			1042	1046	

12-Oct-07

1330

Date:

Time:

Sample	Feet Drvn/Ft.	PID (ppm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Surface Conditions: Topsoil Weather: clear
o.ru	Recvrd	HNu							Temperature: 65 deg
0-2"	NA						Х		B-MS-T-S L/NC rock fragments

Megan Scott

0-2"

75°24'6.192"W 42°57'44.99"N

R EA Engineering, P.C. EA Science and Technolog
LOG OF SURFACE SOIL
Coordinates:
Surface Elevation:
Reference Flevation

Reference Description:

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC		Loc	cation	
14368.17				Marshall	Transformer	
Sampling Met	thod:				Location::	
				S	S19	
	GRAB SAMPLE					
				Sar	mpling	
Weather Cond	ditions:			Start	Finish	
Clear, mild 65	deg			1504	1506	

12-Oct-07

1330

Date:

Time:

Sample Interval	Feet Drvn/Ft.		VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Surface Conditions: Topsoil Weather: clear
	Recvrd	HNu							Temperature: 65 deg
0-2"	NA						X		
									B-MS-T-S L/NC

Megan Scott

0-2"

75°24'7.449"W 42°57'46.185"N

EA Engineering, P.C. EA Science and Technolog
LOG OF SURFACE SOIL
Coordinates:
Surface Elevation:

Reference Elevation: Reference Description:

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC		Loc	cation
14368.17				Marshall	Transformer
Sampling Met	hod:			Sample	Location::
				S	S20
	GR	AB SAMPLE		Sheet	1 of 1
				Sar	mpling
Weather Cond	ditions:		•	Start	Finish
Clear, mild 65	deg			1507	1510

12-Oct-07

1330

Date:

Time:

Commile	Feet	PID						USCS	Surface Conditions: Topsoil
Sample Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Weather: clear
intorval	Recvrd	HNu							Temperature: 65 deg
0-2"	NA						Х		B-MS-T-S L/NC rock fragments
MS/MSD)						x	SP	B-MS-T-S L/NC rock fragments
MS/MSD)						x	SP	B-MS-T-S L/NC rock fragments

Megan Scott

0-2"

75°24'7.258"W 42°57'46.41"N

	EA Engineering, P.C. EA Science and Technology
LOG	OF SURFACE SOIL
Coordinates:	
Surface Elevation:	-
	-
Reference Elevation:	_

Reference Description:

Logged by:

Sample Interval:

Job. No.	Client:	NYSDEC	Loc	cation
14368.17			Marshall	Transformer
Sampling Met	hod:		Sample	Location::
			S	S21
	C	GRAB SAMPLE	Sheet	1 of 1
			Sar	mpling
Weather Cond	ditions:		Start	Finish
Clear, mild 65	deg		1520	1525

12-Oct-07

1330

Date:

Time:

Sample	Feet Drvn/Ft.	PID (nnm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Surface Conditions: Topsoil Weather: clear
Interval	Recvrd	(ppm) HNu	VOCS	37003	IVICIAIS	i esticides	1 003	Temperature: 65 deg
0-2"	NA						Х	B-MS-T-S L/NC many roots

Megan Scott

0-2"

75°24'5.973"W 42°57'46.873"N

Sample Interval:

			EA Science a	and Technolo)gy				Sampling Method:			Location::
Coordin		LOG (OF SURFACE SO	DIL	7	5°24'5.975"W 4	2°57'46.868"N		GRAI	3 SAMPLE	Sheet	1 of 1
Surface	Elevation:										Sar	mpling
								<u></u>	Weather Conditions:		Start	Finish
	ce Elevatio ce Descrip							_	Clear, mild 65 deg		1515	1517
Sample	Feet	PID						USCS	Surface Conditions:	Topsoil		
Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	Metals	Pesticides	PCBs	Log	Weather: clear			
	Recvrd	HNu							Temperature:	65 deg		
0-2"	NA	0	Х	х	х	х	X	sp	B-MS-T-S L/NC			
Logged	d by:		1			N	legan Scott	-1	Date:	12-Oct-07		

0-2"

Client:

Time:

Job. No.

14368.17

NYSDEC

1330

Location

Marshall Transformer

		R		ing BC						Client:	NYSDEC		ocation
			EA Engineer	ing, P.C. and Technolo	~ 1/				14368.17				l Transforme
			EA Science a	ana recimolo	gy				Sampling Meth	nod:			le Location:: SS23
		LOG	OF SURFACE SO	OIL						GF	RAB SAMPLE	Sheet	1 of 1
Coordin								_					
Surface	Elevation:							_	Weather Cond	lala man		Start	ampling Finish
Poforon	ce Elevatio	n.						_	weather Cond	itions:		Start	FINISN
	ce Descrip							_	Cool, 60 deg			957	958
								_					
Commis	Feet	PID						USCS	Surface Condi	tions:	Topsoil		
Sample Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	TPH	Pesticides	PCBs	Log	Weather:	clear			
	Recvrd	HNu							Temperature:	65 deg			
0-2"	NA	0					2						
0 2	14/4	Ü					2		Sand with trace	silt, dry, loo	se **PCB DUP		
0.0"													
0-2"	NA	0			1				Sand with trace	silt. drv. loo	se		
										, , , , , ,			
0-2"	NA	0	1						Sand with trace	silt day loo	80		
									Caria with trace	, 3iit, dry, 100	30		
0-2"	NA	0		1									
	-				1	-			Sand with trace	silt, dry, loo	se		
	-	•	8			-	•		-				

Megan Scott

0-2"

Date:

Time:

26-Oct-07

957

Logged by:

Sample Interval:

=	y ,	®	EA Engineeri	ing, P.C. and Technolog	gy				Job. No. Client: 14368.17 Sampling Method:	NYSDEC	Marshall	rcation Transforme Location::		
Occupiin		LOG (OF SURFACE SO						GRAI	3 SAMPLE		Sheet 1 of 1		
Coordina Surface	ates: Elevation:							=			Sa	mpling		
								- -	Weather Conditions:		Start	Finish		
	ce Elevation ce Descrip							-	Cool, 60 deg		1002	1003		
Sample	Feet	PID						USCS	Surface Conditions:	Topsoil				
Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	TPH	Pesticides	PCBs	Log	Weather: clear					
	Recvrd	HNu							Temperature: 65 deg					
0-2"	NA	0					3		topsoil **PCB (MS/MSE	0)				
0-2"	NA	0			1				topsoil					
									topsoii					
0-2"	NA	0	1						topsoil					
0-2"	NA	0		1					topsoil					
	<u> </u>	<u> </u>	<u>J</u>	<u> </u>		<u>I</u>	<u> </u>	<u> </u>	l					

Megan Scott

0-2"

Date:

Time:

26-Oct-07

1002

Logged by:

Sample Interval:

	V		EA Engineer	ing, P.C.					Job. No. 14368.17	Client:	NYSDEC		Transformer
				and Technolo	gy				Sampling Met	hod:			e Location:: SS25
Coordin	ates:	LOG C	OF SURFACE SO	DIL						GRAE	SAMPLE	Sheet	1 of 1
	Elevation:				-			_				Sa	ampling
									Weather Cond	litions:		Start	Finish
	ce Elevatio ce Descrip							_	Cool, 60 deg			1008	1009
Sample	Feet	PID		0) (0.0	TD		202	USCS	Surface Cond		Topsoil		
Interval	Drvn/Ft.	(ppm)	VOCs	SVOCs	TPH	Pesticides	PCBs	Log	Weather:	clear			
	Recvrd	HNu							Temperature:	65 deg			
0-2"	NA	0					1		Topsoil				
0-2"	NA	0			1				topsoil				
0-2"	NA	0	1						topsoil				
0-2"	NA	0		1					topsoil				
									·				
Logged	l by:					M	legan Scott	•	_	Date:	26-Oct-07		
Sample	Interva	l:					0-2"			Time:	1008		

- -

 Appendix C

Test Pit Logs

EA Engineering P.C. and Its Affiliate, EA Science and Technology

Test Pit Log											
Project: Marshall Transformer Site (6-33-019)	Date: 18 August 2007										
Drilling Company: Parratt-Wolf Inc.	Driller: Brad	d Palmer		Geologist/Scientist: Jo Scott	oe Von Uderitz/Megan						
Size and Types of Drilling and Sampling Eq 210 Link-Belt Excavator	quipment:		Hole ID: T	Test Pit 01							
Date Started: 18 August 2007		Date Comp	leted: 18 Aı	ugust 2007							
Groundwater Encountered (ft bgs): Not Enc	countered	Depth to Bedrock (ft bgs): Not Encountered									
Total Depth of Hole (ft bgs): 22			Disposition	Disposition of Hole: Backfilled to grade							

Depth (ft)	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth (ft)
0-1	16.2	Top Soil	PCB-8082	0-2
1-5	0	Light brown medium SAND with trace SILT. Many Small Cobbles	NONE	
5-12	0	Brown fine to medium SAND with trace SILT, loose, non-cohesive	NONE	
12-22	0	TILL-SANDY SILT with many Cobbles and Rock Fragements	PCB-8082	22

Comments and Notes: Lots of Cobbles and Rocks, Clean, No Staining or parts encountered

EA Engineering P.C. and Its Affiliate, EA Science and Technology

						- 61014 -	
Test Pit Log							
Project: Ma (6-33-019)	arshall Transformer Site	Site Location	Site Location: Town of Marshall, Oneida County, NY Date: 18 August 2			Date: 18 August 2007	
Drilling Co	mpany: Parratt-Wolf Inc	Driller: Bra	Driller: Brad Palmer Geologist/Scientist: Joe Von Scott			Von Uderitz/Megan	
Size and Types of Drilling and Sampling Equipment: 210 Link-Belt Excavator			Hole ID: T	est Pit 02			
Date Started	d: 18 August 2007		Date Compl	leted: 18 Au	gust 2007		
Groundwater Encountered (ft bgs): Not Encountered			Depth to Bedrock (ft bgs): Not Encountered				
Total Depth of Hole (ft bgs): 10		Disposition of Hole: Backfilled to grade					
Depth PID Reading (ppm) Description of Material			Samples Collected	Sample Depth			

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-0.5	0	Top Soil	PCB-8082	0-2
0.5-2	0	Light gray medium SAND with trace SILT. Some debris encountered (barb wire, bottles, grill, washer parts)		
2-10	0	TILL-SANDY SILT with many Cobbles and Rock Fragements	PCB-8082	8-10

Comments and Notes: Some debris encountred during drill (old garbage dump for farmer?)

EA Engineering P.C. and Its Affiliate, EA Science and Technology

New YORK O'N								
Test Pit Log								
Project: Ma (6-33-019)	urshall Transformer Site	?		Site Location: Town of Marshall, Oneida County, NY				
			Driller: Brad Palmer		Geologist/Scientist: Jo Scott	e Von Uderitz/Megan		
	pes of Drilling and Samp elt Excavator	pling Equip	ment:	Hole ID: T				
Date Started	d: 18 August 2007		Date Comp	leted: 18 Au	igust 2007			
	er Encountered (ft bgs):	Not Encoun	itered		edrock (ft bgs): Not End			
Total Depth	of Hole (ft bgs): 2			Disposition	of Hole: Backfilled to g	rade		
Depth	PID Reading (ppm)		Description of Material	!	Samples Collected	Sample Depth		
0-0.5	0		Top Soil		PCB-8082	2		
0.5-2	0	amount of through, sh	Brown medium SAND with trace SILT. Large amount of debris. 1-55 gallon drum (rusted hrough, sheet metal, barb wire, fence post, glass bottles, light bulbs, part of a stove, grill, bedspring					
Comments o	und Notes: Some debris	encountred	during drill (old garbage	e dump for fa	rmer ?)	,		

EA Engineering P.C. and Its Affiliate, EA Science and Technology

Test Pit Log							
Project: Marshall Transformer Site (6-33-019)	Site Location: Town of Marshall, Oneida County, NY Date: 19 Augu			Date: 19 August 2007			
Drilling Company: Parratt-Wolf Inc.	Driller: Bro	ad Palmer		Geologist/Scientist: J Scott	oe Von Uderitz/Megan		
Size and Types of Drilling and Sampling Equipment: 210 Link-Belt Excavator			Hole ID:	Test Pit 03			
Date Started: 19 August 2007 Date Comp		upleted: 19 August 2007					
Groundwater Encountered (ft bgs): Not Encountered			Depth to Bedrock (ft bgs): Not Encountered				
Total Denth of Hole (ft has): 16		Disposition of Hole: Rackfilled to grade					

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-0.5	5.3	Top Soil		
0.5-2	2.6	Light gray fine SAND and SILT	PCB-8082 (MS/MSD)	2
2-16	6.8	TILL-SANDY SILT with many Cobbles and Rock Fragements	PCB-8082(duplicate) TCL-FULL SUITE	6 and 8
16	0	Red SILTY CLAY, tight, cohesive, moist	PCB-8082	16

Comments and Notes: Collected a total of 4 samples, strong non pungent odor. Silty Clay labyer apperas to of acted as a confining layer for the dowwnward migration of the contamination

EA Engineering P.C. and Its Affiliate, EA Science and Technology

Test Pit Log							
Project: Marshall Transformer Site (6-33-019)	Site Location: Town of Marshall, Oneida County, NY Date: 19 August 200						
Drilling Company: Parratt-Wolf Inc.	Driller: Brad Palmer	Geolo Scott	gist/Scientist: Joe	v Von Uderitz/Megan			
Size and Types of Drilling and Sampling Equipment: 210 Link-Belt Excavator		Hole ID: Test Pit	04				
Date Started: 19 August 2007	Date Com	pleted: 19 August 20	007				

Groundwater Encountered (ft bgs): Not Encountered

Total Depth of Hole (ft bgs): 16

Depth to Bedrock (ft bgs): Not Encountered

Disposition of Hole: Backfilled to grade

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-0.5	3.6	Top Soil		
0.5-2	1.7	TILL-SANDY SILT with many Cobbles and Rock Fragements	PCB-8082	2
2-6	2.1	Brown very fine SAND and SILT. Tight, non- cohesive		
6-9	4.1	TILL-SANDY SILT with many Cobbles and Rock Fragements	PCB-8082	9
9-12	3.9	Gray brown fine to medium SAND, light ,non-cohesive.	PCB-8082	12

Comments and Notes: Odor not as strong as TP03

EA Engineering P.C. and Its Affiliate, EA Science and Technology

Test Pit Log						
Project: Marshall Transformer Site (6-33-019)	Site Locatio	Site Location: Town of Marshall, Oneida County, NY Date: 19 August 2007			Date: 19 August 2007	
Drilling Company: Parratt-Wolf Inc.	Driller: Bra	d Palmer		Geologist/Scientist: Jo Scott	oe Von Uderitz/Megan	
Size and Types of Drilling and Sampling Equipment: 210 Link-Belt Excavator		Hole ID:	Test Pit 05			
Date Started: 19 August 2007 Date Compl		pleted: 19 August 2007				
Groundwater Encountered (ft bgs): Not Encountered		Depth to B	edrock (ft bgs): Not End	countered		
Total Denth of Hole (ft has): 125		Disposition of Hole: Rackfilled to grade				

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-0.5	3.6	Top Soil		
0.5-2	1.7	Light gray medium SAND to coarse SAND. Trace Gravel	PCB-8082	2
2-5	2.1	Light brown very fine SAND with some SILT, tight, non-cohesive.		
5-12.5	4.1	TILL-SANDY SILT with many Cobbles and Rock Fragements	PCB-8082	9
12.5	3.9	Light brown very fine SANDY SILT, tight, non-cohesive.	PCB-8082	12.5

EA Engineering P.C. and Its Affiliate, EA Science and Technology

Test Pit Log						
Project: Marshall Transformer Site (6-33-019)	Site Locatio	Site Location: Town of Marshall, Oneida County, NY Date: 19 August 2007			Date: 19 August 2007	
Drilling Company: Parratt-Wolf Inc.	Driller: Bra	d Palmer		Geologist/Scientist: Jo Scott	oe Von Uderitz/Megan	
Size and Types of Drilling and Sampling Equipment: 210 Link-Belt Excavator		Hole ID:	Test Pit 06			
Date Started: 19 August 2007 Date Compl		pleted: 19 August 2007				
Groundwater Encountered (ft bgs): Not Encountered		Depth to B	edrock (ft bgs): Not End	countered		
Total Denth of Hole (ft has): 10		Disposition of Hole: Rackfilled to grade				

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-0.5	0	Top Soil		
0.5-1.5	0	TILL-SANDY SILT with many Cobbles and Rock Fragements	PCB-8082	2
1.5-3	0	Light brown fine SAND with some SILT. Loose, non-cohesive		
3-10	0	Light brown fine SANDY SILT, tight, non- cohesive.	PCB-8082	10

Comments and Notes: No Odors, located just south of the fence line.

EA Engineering P.C. and Its Affiliate, EA Science and Technology

Test Pit Log							
Project: Marshall Transformer Site (6-33-019)	Site Location	on: Town o	Oneida County, NY	Date: 19 August 2007			
Drilling Company: Parratt-Wolf Inc.	Driller: Bro	ad Palmer		Geologist/Scientist: J Scott	oe Von Uderitz/Megan		
Size and Types of Drilling and Sampling Equipment: 210 Link-Belt Excavator			Hole ID:	Test Pit 07			
Date Started: 19 August 2007		Date Comp	leted: 19 A	ugust 2007			
Groundwater Encountered (ft bgs): Not Encountered		Depth to B	edrock (ft bgs): Not En	countered			
Total Denth of Hole (ft has): 95		Disposition of Hole: Rackfilled to grade					

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-0.5	0	Top Soil		
0.5-4	0	Gray medium SAND	TCL FULL SUITE- 8082 (DUPLICATE TCL)	2
4-9	0	TILL-SANDY SILT with many Cobbles and Rock Fragements	PCB-8082	6
9-9.5	0	Brown SILT. Tight, semi-cohesive	PCB-8082	9

Comments and Notes: Very punget odors from 0.5-9'

EA Engineering P.C. and Its Affiliate, EA Science and Technology

						ad. New YORK STATE . DO
			Test Pit L	og		
Project: Marshall Transformer Site Site Location: Town of			Marshall, O	neida County, NY	Date: 19 August 2007	
(6-33-019) Drilling Cor	mpany: Parratt-Wolf In	<u>c.</u>	Driller: Brad Palmer		Geologist/Scientist: Joe	Von Uderitz/Megan
					Scott	
	pes of Drilling and Samp elt Excavator	oling Equipn	rent:	Hole ID: T	est Pit 08	
	d: 19 August 2007			leted: 19 Au		
	er Encountered (ft bgs):	Not Encoun	tered		drock (ft bgs): Not Enco	
	of Hole (ft bgs): 9.5	Ī	D 1 1 1 1 1 1 1		of Hole: Backfilled to gr	
Depth	PID Reading (ppm)		Description of Material		Samples Collected	Sample Depth
0-3	0	TILL-SA	NDY SILT with many Co Rock Fragements	obbles and	PCB-8082	2
3-8.5	0	Light brown	n very fine SANDY SILT cohesive	. Tight, non-		
8.5-9.5	0	Brown SI	LTY CLAY, tight, cohes:	ive, damp.	PCB-8082	9
Comments o	and Notes:					

EA Engineering P.C. and Its Affiliate, **EA Science and Technology**

Test Pit Log							
Project: Marshall Transformer Site (6-33-019)	Site Location: Town of Marshall, Oneida County, NY Date: 19 August 200						
Drilling Company: Parratt-Wolf Inc.	Driller: Brad Palmer Geologist/Scientist: Joe Von Uderitz/Megan Scott				oe Von Uderitz/Megan		
Size and Types of Drilling and Sampling Equipment: 210 Link-Belt Excavator			Hole ID: T	est Pit 09			
Date Started: 19 August 2007 Date Com		Date Comp	npleted: 19 August 2007				
Groundwater Encountered (ft bgs): Not Encountered		Depth to Bedrock (ft bgs): Not Encountered					
Total Depth of Hole (ft bgs): 9.5		Disposition of Hole: Backfilled to grade					

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-0.5	0	Topsoil		
0.5-2.5	0	Brown very fine SANDY SILT. Tight, non-cohesive.	PCB-8082	2
2.5-4.5	0	Gray medium SAND	PCB-8082	4
4.5-10	0	Brown very fine SANDY SILT. Tight, non-cohesive.	PCB-8082 TCL FULL SUITE	7
10-11	0	Brown SILTY CLAY, tight, cohesive, damp.	PCB-8082	11

Comments and Notes: Collected four samples from the four distinct litology layers

EA Engineering P.C. and Its Affiliate, EA Science and Technology

Test Pit Log							
Project: Marshall Transformer Site (6-33-019)	Site Location	Site Location: Town of Marshall, Oneida County, NY Date: 19 August 2007					
Drilling Company: Parratt-Wolf Inc.	Driller: Brad Palmer Geologist/Scientist: Joe Von Uderitz/Megan Scott				oe Von Uderitz/Megan		
Size and Types of Drilling and Sampling Equipment: 210 Link-Belt Excavator			Hole ID: T	Test Pit 10			
Date Started: 19 August 2007 Date Com		Date Comp	pleted: 19 August 2007				
Groundwater Encountered (ft bgs): Not Encountered			Depth to Bedrock (ft bgs): Not Encountered				
Total Depth of Hole (ft bgs): 9.5			Disposition of Hole: Backfilled to grade				

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-0.5	0	Topsoil		
0.5-4.5	0	Brown very fine SANDY SILT. Tight, non-cohesive.	PCB-8082	3.5
4.5-9	0	TILL-SANDY SILT with many Cobbles and Rock Fragements	PCB-8082 (Duplicate #3)	6
9-9.5	0	Red brown SILTY CLAY, tight, cohesive, dry.	PCB-8082	9

Comments and Notes: No odors until 3-ft deep.

EA Engineering P.C. and Its Affiliate, EA Science and Technology

Test Pit Log						
Project: Marshall Transformer Site (6-33-019)	Site Location: Town of Marshall, Oneida County, NY Date: 19 August 2007					
Drilling Company: Parratt-Wolf Inc.	Driller: Brad Palmer Geologist/So Scott		Geologist/Scientist: Jo Scott	oe Von Uderitz/Megan		
Size and Types of Drilling and Sampling Equ 210 Link-Belt Excavator	tipment:		Hole ID: T	Test Pit 11		
Date Started: 19 August 2007 Date Comp			leted: 19 Aı	ugust 2007		
Groundwater Encountered (ft bgs): Not Encountered		Depth to Bedrock (ft bgs): Not Encountered				
Total Depth of Hole (ft bgs): 10			Disposition of Hole: Backfilled to grade			

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-0.5	0	Topsoil		
0.5-4	0	TILL-SANDY SILT with many Cobbles and Rock Fragements	PCB-8082	2-north side
4-7	0	Light brown fine SANDY SILT, tight, non- cohesive(north side of trench) South side of trench-Till	PCB-8082	5-south side
7-9.5	0	TILL-SANDY SILT with many Cobbles and Rock Fragements		
9.5-10	0	Red brown SILTY CLAY with some SAND, tight, cohesive, dry.	PCB-8082	10-north side 10-south side

EA Engineering P.C. and Its Affiliate, EA Science and Technology

					NEW YORK STATE . PO
		Test Pit	t Log		
Project: Ma (6-33-019)	arshall Transformer Site	Site Location: Town	of Marshall, (Oneida County, NY	Date: 20 August 2007
	mpany: Parratt-Wolf Ind	c. Driller: Brad Palme	r	Geologist/Scientist: Jo Scott	e Von Uderitz/Megan
	pes of Drilling and Samp elt Excavator	oling Equipment:	Hole ID:		
	d: 20 August 2007		mpleted: 20 A		
	er Encountered (ft bgs): I	Not Encountered		Redrock (ft bgs): Not Enc	
Total Depth	of Hole (ft bgs): 10			n of Hole: Backfilled to g	T
Depth	PID Reading (ppm)	Description of Mater	rial	Samples Collected	Sample Depth
0-0.5	0	Topsoil			
0.5-10	0	TILL-SANDY SILT with many Rock Fragements		PCB-8082 PCB-8082 (MS/MSD)	2 10
Comments of	und Notes:				

EA Engineering P.C. and Its Affiliate, EA Science and Technology

						YORK STA	
Test Pit Log							
Project: Ma (6-33-019)	arshall Transformer Site	Site Location:	Site Location: Town of Marshall, Oneida County, NY Date: 20 August 20			Date: 20 August 2007	
Drilling Con	mpany: Parratt-Wolf Inc	c. Driller: Brad F	Driller: Brad Palmer			Geologist/Scientist: Joe Von Uderitz/Megan Scott	
Size and Types of Drilling and Sampling Equipment: 210 Link-Belt Excavator				Hole ID: To	est Pit 13		
Date Startea	d: 20 August 2007	Da	ite Compl	eted: 20 Au	gust 2007		
Groundwater Encountered (ft bgs): Not Encountered				Depth to Bedrock (ft bgs): Not Encountered			
Total Depth of Hole (ft bgs): 10				Disposition of Hole: Backfilled to grade			
Depth PID Reading (ppm) Description of Material			Samples Collected	Sample Depth			

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-0.5	0	Topsoil		
0.5-5	0	TILL-SANDY SILT with many Cobbles and Rock Fragements	PCB-8082 (MS/MSD) FULL TCL SUITE (MS/SMD)	2
5-6	0	Light brown very fine SANDY SILT. Tight, non- cohesive		
6-8.5	0	TILL-SANDY SILT with many Cobbles and Rock Fragements	PCB - 8082	8.5

Comments a	and Notes:		

EA Engineering P.C. and Its Affiliate, EA Science and Technology

Test Pit Log										
Project: Marshall Transformer Site (6-33-019)	Site Location	n: Town o	: Town of Marshall, Oneida County, NY Date: 20 August 200							
Drilling Company: Parratt-Wolf Inc.	Driller: Bra	d Palmer		Geologist/Scientist: Joe Von Uderitz/Megan Scott						
Size and Types of Drilling and Sampling Eq 210 Link-Belt Excavator	quipment:		Hole ID: Test Pit 14							
Date Started: 20 August 2007		Date Comp	Completed: 20 August 2007							
Groundwater Encountered (ft bgs): Not Enc	countered		Depth to Bedrock (ft bgs): Not Encountered							
Total Denth of Hole (ft has): 9		Disposition of Hole: Rackfilled to grade								

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-1	0	Topsoil		
1-2.5	0	Light brown very fine SANDY SILT. Tight, non- cohesive	PCB-8082	2
2.5-3.5	0	TILL-SANDY SILT with many Cobbles and Rock Fragements		
3.5-8.5	0	TILL-SANDY SILT with More Cobbles and Rock Fragements		
8.5-9	0	Light brown SILTY CLAY, tight, cohesive	PCB-8082	9

EA Engineering P.C. and Its Affiliate, EA Science and Technology

						NEW YORK STATE			
			Test Pit L	og					
Project: Ma (6-33-019)	arshall Transformer Site	Sit	te Location: Town of	of Marshall, Oneida County, NY Date: 20 August 200					
	mpany: Parratt-Wolf In	c. Di	riller: Brad Palmer	Geologist/Scientist: Joe Scott	Von Uderitz/Megan				
	pes of Drilling and Samp elt Excavator	pling Equipmen	t:	Hole ID: To	est Pit 15				
	d: 20 August 2007		Date Compl						
	er Encountered (ft bgs):	Not Encounter		_	drock (ft bgs): Not Enco				
Total Depth	of Hole (ft bgs): 10.5			Disposition	of Hole: Backfilled to gr	rade			
Depth	PID Reading (ppm)	De	escription of Material		Samples Collected	Sample Depth			
0-0.5	0		Topsoil						
0.5-2	0	Light brown S	ANDY SILT, loose, no	on-cohesive	PCB-8082	1			
2-4	0	Light brown	SILTY CLAY, tight,	cohesive.	PCB-8082	2.5			
4-10.5	0	TILL-SAND	OY SILT with More Co Rock Fragements	obbles and					
Comments d	und Notes:	<u> </u>				1			

EA Engineering P.C. and Its Affiliate, EA Science and Technology

Test Pit Log										
Project: Marshall Transformer Site (6-33-019)	Site Location	f Marshall, Oneida County, NY Date: 20 August 2								
Drilling Company: Parratt-Wolf Inc.	Driller: Brad	l Palmer		Geologist/Scientist: Joe Scott	Von Uderitz/Megan					
Size and Types of Drilling and Sampling Equipn 210 Link-Belt Excavator	nent:		Hole ID: Test Pit 16							
Date Started: 20 August 2007		Date Comp	oleted: 20 August 2007							
Groundwater Encountered (ft bgs): Not Encount	tered		Depth to Bedrock (ft bgs): Not Encountered							
Total Depth of Hole (ft bgs): 10		_	Disposition of Hole: Backfilled to grade							

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-1	0	Topsoil		
1-2.5	0	Light brown very fine SANDY SILT, loose, non-cohesive.	PCB-8082	2
2.5-8.5	0	TILL-SANDY SILT with many Cobbles and Rock Fragements		
8.5-10	0	Light brown SANDY SILT, very fine SAND. Loose, non-cohesive	PCB-8082	10

EA Engineering P.C. and Its Affiliate, EA Science and Technology

Test Pit Log										
Project: Marshall Transformer Site (6-33-019)	Date: 20 August 2007									
Drilling Company: Parratt-Wolf Inc.	Driller: Brad	d Palmer		Geologist/Scientist: Joe Von Uderitz/Megan Scott						
Size and Types of Drilling and Sampling Eq. 210 Link-Belt Excavator	uipment:		Hole ID: T	Fest Pit 17						
Date Started: 20 August 2007		Date Comp	pleted: 20 August 2007							
Groundwater Encountered (ft bgs): Not Enc	ountered		Depth to Bedrock (ft bgs): Not Encountered							
Total Denth of Hole (ft. bgs): 4.5		Disposition of Hole: Backfilled to grade								

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-0.5	0	Topsoil		
0.5-3	0	Light brown SANDY SILT. Loose, non- cohesive	PCB-8082 TCL FULL SUITE	1.5
3-6	0	TILL-SANDY SILT with More Cobbles and Rock Fragements	PCB-8082	4
6-7	0	Light brown SANDY SILT. Loose, non- cohesive		
7-8	0	Light brown Very fine SANDY SILT, tight, semi- cohesive.	PCB-8082	8

EA Engineering P.C. and Its Affiliate, EA Science and Technology

Test Pit Log											
Project: Marshall Transformer Site	Site Location: Town of	of Marshall, Oneida County, NY	Date: 20 August 2007								
(6-33-019)											
Drilling Company: Parratt-Wolf Inc.	Driller: Brad Palmer	Geologist/Scientist: Joe	e Von Uderitz/Megan								
		Scott									
Size and Types of Drilling and Sampling Equipn	nent:	Hole ID: Test Pit 18									
210 Link-Belt Excavator											
Date Started: 20 August 2007	Date Comp	Date Completed: 20 August 2007									

Groundwater Encountered (ft bgs): Not Encountered

Total Depth of Hole (ft bgs): 8

Depth to Bedrock (ft bgs): Not Encountered

Disposition of Hole: Backfilled to grade

Depth	PID Reading (ppm)	Description of Material	Samples Collected	Sample Depth
0-0.5	0	Topsoil		
0.5-3	0	Light brown SANDY SILT. Loose, non- cohesive	PCB-8082	2
3-6	0	TILL-SANDY SILT with More Cobbles and Rock Fragements	PCB-8082	6
6-7	0	Light brown SANDY SILT. Loose, non- cohesive		
7-8	0	Light brown Very fine SANDY SILT, tight, semi- cohesive.	PCB-8082	8

Appendix D
Soil Boring/Well Logs

EA Engineering, P.C. EA Science and Technology			14368.17	Environmental Conservation			Location: Marshall, NY - Marshall Transformer							
_		EA Scie	ence and	Techr	olo	ogy	Drilling Method: Hollow Stem Augers						Soil Boring Number: SB01	
		LOG OF SOIL	BORING				Sampling Method: Split spoons - 5 ft. rods						Sheet 1 of 1	
Coordir	nates: Elevatio								Split spo	ons -	5 ft. rods			
	Elevatio Below St						Water Lev.		1				Start	rilling Finish
Referen	ce Eleva	tion:					Time						Start	1 111311
	ce Descr												1040	1050
Blow	Feet		PID	Depth			Surface Cor	l nditions:						
Counts	Drvn/Ft.	Well	(ppm)	in		USCS	Weather:							
	Recvrd	Diagram	HNu	Feet		Log	Temperatur							
				0			Topsoil- brown	n, moist						
				1		ML	Sandy silt, med	d-tight, semi col	hesive, moist	(1-4)				
							,		.,					
				2										
			-	2										
				3										
				4										
				5		SM	Sandy silt, tigh Rock- shale, gr	nt, semi cohesive	e, moist (4-5.	5')				
				6			Rock- snaie, gi	ray, (5.5-6)						
				7										
				0										
				0										
				9										
				10										
				11										
				12										
				13										
				13										
				14										
				15										
				16										
				17										
				18										
				16										
				19										
				20										
Logged	by:		N	MS/JV				Date:		10/25	5/07			
	Contract	or:		t-Wolff	Inc.		=	Driller:			Steve			
		OLLECTED Y Collected for		/ <u>PCB</u>		TPF	l SV	OC	VOC		DUPLICAT	<u>E</u>	MS/MSD	

Sample Depth: <u>4-6'</u> Sample Time: <u>1050</u> Sample Date: <u>25 October 2007</u>

R EA Engineering, P.C.							_				Location:			
-							14368.17			Environmental Conservation			Marshall, NY - Marshall Transformer	
		EA Scien	nce and	Techn	olog	3y	Drilling Method: Hollow Stem Augers						Soil Boring Number: SB02	
		LOG OF SOIL I	BORING				Sampling M	lethod:					ĺ	
Coordi	nates:						, U		Split sp	oons -	5 ft. rods			1 of 1
	Elevatio							1						rilling
	Below Su nce Eleva						Water Lev.						Start	Finish
	ice Eleva ice Descr						Time						1100	1130
	2 5561	r											1	1100
Blow	Feet	Well	PID	Depth			Surface Con	nditions:					-	
Counts	Drvn/Ft.	Diagram	(ppm)	in	_		Weather:							
(140-lb)	Recvrd		HNu	Feet		Log	Temperatur	re:						
7 45				0		GM	Topsoil	le, angular, dry,	come cand	loose N	NC (0.5-4')			
50/.4				1	${}$	Civi	NOCKY IIII- SIIdi	ic, angulai, ury,	some Sanu,	, 1005€, 1	· • · (0.0-±)			
				2				-						
			-		\sqcup									
				3	\vdash									
				4	\vdash		Rock-shale (4-4	4.5')						
					†	SM		silt, dry, loose, N	IC (4.5-6')					
				5			,							
				6	\dashv	GM	_ ,	ular with silt an		, NC (6-	-6.5')			
			1	7	\vdash	SM ML		e, loose, dry, NC It with trace fine		semi-co	hesive (7-9')			
					\vdash	14117	210 WILLISH SH	min nace mile	ouriu, ury,	J. 1111-CO	110110 (1-7)			
				8										
				9	$\sqcup \downarrow$		Angular till (9-							
			-	10	\dashv		Rock- shale (9.	5-10')						
				10	\vdash									
	1			11	†									
				12	ЦŢ					-				
			-	12	\dashv									
				13	\vdash									
				14	\vdash									
]													
]			15					-	-		-		
			<u> </u>	1.6	$\vdash \vdash$									
	1			16	\vdash									
	1			17	\forall									
			L											
]			18										
					\square									
				19	$\vdash \vdash$									
	1		-	20	\dashv									
					†									
Logged	by:	<u> </u>		MS/JV			-	Date:		10/25	5/07		Note: Same odor	as test pits
	Contrac	tor:		t-Wolff	Inc		-	Driller:		Brad/				•
_					1110.		=	2111101.		Diau/	DIEVE			
SOIL SA		COLLECTED YI s Collected for		/ PCB		ТРН	I SV	OC	VOC		DUPLICAT	E	MS/MSD	
		Sample Depth:	4-6'		S	ample	Time: 1115		Sample	Date:	: 25 October 2	2007		

SOIL SAMPLE COLLECTED YES / NO

		R EA Engi		· D.C			Job. No. Client: New York State Department of			Location:					
							14368.17 Environmental Conservation			Marshall, NY - Marshall Transformer					
EA Science and Technology							Drilling Method: Hollow Stem Augers				Soil Boring Number: SB03				
LOG OF SOIL BORING								Sampling Method:							
Coordi									Split spoons -	· 5 ft. rods		Sheet 1 of 1			
Surface	Elevatio	n:										Ι	Drilling		
Casing	Below St	ırface:					Water Lev.					Start	Finish		
	ice Eleva						Time								
Referen	ice Descr	iption:										1245	1315		
	Feet		PID	Depth			Surface Con	ditions							
Blow Counts	Drvn/Ft.	Well	(ppm)	in		USCS	Weather:	iditions.							
(140-lb)	Recvrd	Diagram	HNu	Feet		Log	Temperature:								
14				0		Ü	Topsoil (0-1')								
11	1														
10				1		GM	Till- angular ro	ock fragments (1-2	2')						
	7														
6 5	ł			2	\vdash	ML	prown silt with	Brown silt with fine sand- dry, tight, semi cohesive (2-3')							
7	l		-	3		ML	Brown silt with	n fine sand- moist	tight, semi cohe	sive (3-4')					
5	1						5 OHE 1710		, . ₀ , conc	(* -)					
6								ith silt, fine sand,	loose, dry, NC (4	-5')					
7	7							· · · · · · · · · · · · · · · · · · ·							
								Brown silt with trace vf sand, tight, dry, semi cohesive (5-6')							
12	12							Brown silt with some gravel and sand- loose, dry, NC (6-7')							
22	ł			6		GM	Brown silt with	n some gravel and	i sand- loose, dry	, NC (6-7')					
31	i			7		GM	Till w/ brown	fine sand, loose,	drv. NC (7-8')						
26	İ						,		,, (,						
14				8		SM	Brown silt with sand, some small gravel, loose, dry, semi-cohesive (8-9.5')								
48]														
50/.4				9											
				10											
	ł			10											
	i			11											
	İ														
				12											
				13											
				1.4											
	ł		1	14											
	1			15											
	L_		L												
				16			_								
	1		<u> </u>	<u> </u>											
	I			17	$\vdash \vdash$										
	I			18	\vdash										
	l		1	10											
	1			19											
	1														
				20	Ш										
Logged by: MS/JV								Date:	10/2	5/07					
Drilling Contractor: Parratt-Wolff Inc.						•	Driller:			-					
SOIL SAMPLE COLLECTED YES / NO															
Samples Collected for <u>V PCB</u> TPH SVOC <u>VOC</u> <u>DUPLICATE-PCB</u> <u>MS/MSD</u>															
Sample Depth: 4-6' Sar						Sample	Time: <u>1050</u>		Sample Date	: <u>25 October</u>	2007				

SOIL SAMPLE COLLECTED YES / NO

Reference Elevation: Reference Description: Blow Feet Ounts Drvn/Ft. Diagram PID Depth Surface Conditions: (ppm) in USCS Weather:									
LOG OF SOIL BORING Coordinates: Surface Elevation: Casing Below Surface: Reference Elevation: Reference Description: Blow Feet Orounts Drivn/Ft. Diagram PID Depth Surface Conditions: (ppm) in USCS Weather:	Finish								
Coordinates: Surface Elevation: Casing Below Surface: Reference Elevation: Reference Description: Blow Counts Drivn/Ft. Diagram PID Depth Surface Conditions: (ppm) in USCS Weather:	Finish								
Casing Below Surface: Reference Elevation: Reference Description: Blow Feet Orunts Drvn/Ft. Diagram Water Lev. Time 1320 Start Time 1320									
Reference Elevation: Reference Description: Blow Feet Ounts Drvn/Ft. Diagram PID Depth Surface Conditions: (ppm) in USCS Weather:									
Reference Description: Blow Feet Well Drvn/Ft. Diagram PID Depth Surface Conditions: (ppm) in USCS Weather:	1350								
Blow Feet Well Drvn/Ft. Diagram in USCS Weather:									
Counts Drvn/Ft. Diagram (ppm) in USCS Weather:									
Counts Drvn/Ft. Diagram (ppm) in USCS Weather:									
Tital Teet 206 Temperature	Temperature: Topsoil								
8 GM Angular till with some fine sand, moist, loose, NC (0.5-6')									
14									
14									
26 2 2 14 2 2 2 2 2 2 2 2 2									
25 3									
20									
12 4									
16 17 5									
17 17									
19 6 GM Sandy till, brown, angular, loose, dry, NC (6-7.5')									
12									
18 7									
18 ML Silt with trace fine sand, very tight, semi cohesive, dry (7.5-10') 14 8									
15									
17 9 9									
19									
13									
14									
16									
17									
18									
19									
Logged by:MS/JV									
Drilling Contractor: Parratt-Wolff Inc. Driller: Brad/Steve									
SOIL SAMPLE COLLECTED YES / NO Samples Collected for YES TPH SVOC VOC DUPLICATE MS/MSD									

Sample Depth: <u>4-6'</u> Sample Time: <u>1330</u> Sample Date: <u>25 October 2007</u>

® EA Engineering, P.C.							Job. No. Client: New York State Department of				Location:				
							14368.17 Environmental Conservation			ion	Marshall, NY - Marshall Transformer				
EA Science and Technology							Drilling Method: Hollow Stem Augers					Soil Boring Number: SB05			
		LOG OF SOI	L BORING				Sampling N	lethod:							
Coordi	nates:	_							Split spoons -	- 5 ft. rods			1 of 1		
	Elevatio												rilling		
Casing	Below St	urface:					Water Lev.					Start	Finish		
	nce Eleva nce Descr						Time		-			1405	1.415		
Keierer	ice Desci											1405	1415		
Blow	Feet		PID	Depth			Surface Cor	nditions:	<u> </u>						
Counts	Drvn/Ft.		(ppm) in USCS					Weather:							
(140-lb)	Recvrd	Diagram	HNu	Feet	Lo	g	Temperature:								
3				0			Topsoil								
4					GM	Sandy till, dry, small gravel, NC (0.5-2')									
4				1											
4				2											
				F											
	1			3											
												-	-		
				4											
				5											
				6											
				-											
				7											
				8											
				0											
				9											
				10											
				11											
				12											
				13											
				13											
	1			14											
]														
				15											
				16											
				17											
	1														
				18											
				19	lacksquare										
				20	\vdash										
				20											
Logged	by:	1	١ .	AC /TV				Date:	10/0	5 /07					
Logged by: MS/JV							-		10/2						
Drilling Contractor: Parratt-Wolff Inc.							-	Driller:	Brad/	Steve	-				
SOIL SAMPLE COLLECTED YES / NO															

Samples Collected for

<u>V PCB</u>

TPH

SVOC

VOC

DUPLICATE-VOC

MS/MSD

		®					Job. No.	Client:	New York Sta				ocation:
- Val			gineering			L	14368.17		Environment		ion		Marshall Transformer
		EA Sci	ience and	Techi	ology	1	Drilling Me	thod:	Hollow Stem	Augers			ing Number: SB06
		LOG OF SOI	L BORING			9	Sampling M	lethod:					
Coordi	nates:								Split spoons -	5 ft. rods			1 of 1
	Elevatio												rilling
Casing	Below S	urface:					Water Lev.					Start	Finish
	nce Eleva nce Descr					Ĺ	Time					1.410	1.405
Kelelel	ice Desci					ŀ						1418	1425
Blow	Feet		PID	Depth		9	Surface Cor	nditions:					
Counts	Drvn/Ft.	Well	(ppm)	in	US		Weather:						
(140-lb)	Recvrd	Diagram	HNu	Feet	Log	5	Temperatur	e:					
2				0		1	ГорѕоіІ						
2													
5 8				1	G.	M I	Brown sandy t	ill- small rock fr	agments, loose, dr	y, NC			
- 0				2									
	1			F		\dashv							
	1			3		1							
	<u> </u>												
				4						•		·	
				5		-							
				(-							
				ь									
	•			7		1							
	1												
				8									
				9									
						-							
				10	-	-							
				11		1							
	•			11		1							
				12									
				13									
				14		_							
	1			15	$\vdash \vdash$	\dashv							
	1			10		1							
				16		1							
]												
]			17			_			-			
						_							
				18		_							
				19	\vdash	\dashv							
	1			17		\dashv							
	1			20		1							
Logged	bv:		,	/IS/JV		-		Date:	10/2				
					_						_		
Drilling	Contrac	tor:	Parrat	t-Wolff	Inc.			Driller:	Brad/	Steve	-		
SOIL S	AMPLE (COLLECTED	YES / NO										

Samples Collected for

<u>V PCB</u>

TPH

SVOC

VOC

DUPLICATE

MS/MSD-PCB

_	Y	R EA Eng	gineering	z. P.C.			Job. No. 14368.17	Client:		tate Departmen			ocation: Marshall Transformer
			ence and		ıolo	gy	Drilling Me	thod:	Hollow Sten				ing Number:
						0,							SB07
C 1:		LOG OF SOII	BORING				Sampling M	lethod:	C 1''	F (t 1		Sheet	1 of 1
Coordi	nates: Elevatio								Split spoons	- 5 ft. rods	-	D	rilling
	Below S						Water Lev.					Start	Finish
Referer	nce Eleva	tion:					Time						
Referer	nce Descr	iption:										1445	1450
	Feet		PID	Depth	1		Surface Cor	ditione:					
Blow Counts	Drvn/Ft.	Well	(ppm)	in		USCS	Weather:	iditions.					
(140-lb)	Recvrd	Diagram	HNu	Feet	_	Log	Temperatui	re:					
				0			Brown sandy s	silt, loose, semi o	ohesive (0-1')				
						07.17	D 0		-0				
				1		SW	Brown fine sar	nd, loose, NC (1-	2')				
				2									
				3		-							
				4	H		<u> </u>						
				4									
				5									
				6									
				7									
				/									
				8									
				9									
				10									
	1			10									
				11									
				12									
	1			13									
	1												
				14									
				15									
				15									
				16									
				17									
				18									
				19									
				20									
				20	\vdash								
		<u> </u>					<u> </u>	D. (
Logged			N	MS/JV			-	Date:	10/2	25/07			
Drilling	Contrac	tor:	Parrat	t-Wolff	Inc.		-	Driller:	Brad	/Steve			
SOIL S	AMPLE (COLLECTED	YES / NO										
-		s Collected for		PCB		TPH	ı sv	OC	VOC	DUPLICATE		MS/MSD	

		R						Client:	New York Sta			Lo	ocation:
-		EA Engi					14368.17		Environment	al Conservati	ion	Marshall, NY - N	Marshall Transformer
1 - T	-/	EA Scie	nce and	Techn	olo	gy	Drilling Me	thod:	Hollow Stem	Augers			ing Number:
													SB08
C 1:		LOG OF SOIL I	BORING				Sampling M	lethod:	C 111	T () 1		Sheet	1 of 1
Coordi	nates: Elevatio	n·							Split spoons -	5 ft. roas		D	rilling
	Below St						Water Lev.					Start	Finish
	ice Eleva						Time					Start	THIST
Referen	ice Descr	iption:										1455	1518
Blow	Feet	Well	PID	Depth		110.00	Surface Con	nditions:					
Counts (140-lb)	Drvn/Ft. Recvrd	Diagram	(ppm) HNu	in Feet		USCS Log	Weather: Temperatur	101					
(/	Recviu		IIINU	0		Log	Topsoil	.е.					
				0			торзоп						
				1		SW	Fine sand, loos	se, dry, NC (1-3')					
				2									
							011		4.50				
				3		ML	Silt, semi cohes	sive, tight, wet (3-	-4.5')				
				4									
						GM	Till- angular st	one, loose, dry, N	IC (4.5-8')				
				5									
49				6									
49 49				-									
38				/									
42				8		GM	Sandy till, ang	ular stone, loose,	drv. NC (8-10')				
41				_					,,,,,,,,				
21				9									
20													
				10									
				11									
				11									
				12									
				13									
				14									
				15									
				10									
				16									
				17									
			-	18									
			1	10									
				19									
			L										
				20									
				1									
Logged	by:		N	MS/JV			_	Date:	10/25	5/07	_	Note: Slight odor	
Drilling	Contrac	tor:	Parrat	tt-Wolff	Inc.		_	Driller:	Brad/	Steve	_		
SOII S	√WDI ⊏ (COLLECTED Y	ES / NO	_	-								
JUIL 3/		s Collected for		/ PCB		TPH	I SV	ОС	voc	DUPLICAT	Έ	MS/MSD	
		Sample Depth: (0-2'		5	Sample	Time: <u>1500</u>		Sample Date	: 25 October	2007		

SOIL SAMPLE COLLECTED YES / NO

V		® EA E	•	n.c			Client:		rk State Departr			ocation:
11			gineering		_	14368.17			mental Conserva	ation		Marshall Transformer
		EA Scie	ence and	Techi	nology	Drilling Me	ethod:	Hollow	Stem Augers			ring Number: SB09
		LOG OF SOIL	BORING	ŀ		Sampling N	Method:				Classi	t 1 of 1
Coordi								Split spc	ons - 5 ft. rods			
	Elevatio											Prilling
	Below S					Water Lev.					Start	Finish
	nce Eleva					Time						
Referer	nce Descr	ription:									1530	1549
	г.		DID	Donath	г г	Surface Co	- ditions.					
Blow Counts	Feet Drvn/Ft.	Well	PID (ppm)	Depth in		Surface Co. Sweather:	namons:					
	Recvrd	Diagram	HNu	Feet	Log	Temperatu	re·					
	Recviu		IIIVu	0	GM			angular rocks	tight, moist (0-5')			
				0	Givi	Till With Site S	seini conesive,	, angulai rocks,	tigitt, moist (0-3)			
				1		1						
				2		1						
							-	-	-			
				3								
					$\sqcup \bot$	1						
				4	\vdash	1						
			-	5	- C.	Conductit NG	looss de f	: 10'\				
				5	GM	Sandy till- NC	., loose, ary (5)-10°)				
				6		+						
				0		+						
				7		1						
				8		1						
				9								
						1						
				10								
			-			-						
				11	-	+						
				12	+	+						
				12		+						
				13		1						
				14								
				15	igwdown	1						
					igwdow	1						
				16	\vdash	1						
			-	17	\vdash	+						
				1,		+						
				18		1						
						1						
				19								
											<u> </u>	
				20								
Logged	by:		N	/IS/JV			Date:		10/25/07			
	Contrac	tor:		t-Wolff	Inc.	_	Driller:		rad/Steve			
						_			,	_		
SOIL S		COLLECTED \			_	N	100	1/00	B	A.T.C.		
	Sample	s Collected for	7	PCB	TF	<u>'H S\</u>	/OC	VOC	DUPLIC	АГЕ	MS/MSD	
		Sample Death	2'		Samala	Time: 1F24		Sample D	ata: 25 October	2007		
		Sample Depth:	<u>~</u>		Sample	Time: <u>1534</u>		Sample D	ate: 25 October	<u> 2001</u>		
SOIL S	AMPLE (COLLECTED	YES / NO)								
		s Collected for		PCB	TF	PH SV	/OC	VOC	DUPLIC	ATE	MS/MSD	

_	Y		ineering				Job. No. 14368.17	Client:		ate Department of tal Conservation		ocation: Marshall Transformer
· ·		EA Scie	ence and	Techr	olo	gy	Drilling Me	thod:	Hollow Stem	ı Augers		ing Number: SB10
		LOG OF SOIL	BORING				Sampling M	lethod:			Sheet	1 of 1
Coordi						-			Split spoons	- 5 ft. rods		
	Elevatio					-	Water Lev.	ı	1		Start	Prilling Finish
Referen	Below Su ice Eleva	tion:				-	Time				Start	rinish
	ice Descr					-					1608	1630
Blow	Feet	Well	PID	Depth		TICCC	Surface Con	ditions:				
Counts (140-lb)	Drvn/Ft. Recvrd	Diagram	(ppm) HNu	in Feet		USCS Log	Weather: Temperatur	·o·				
,	Recviu		IIIVu	0		Log	Temperatur					
						GM	Sandy till- few	rocks, loos, dry	, NC (0.5-10')			
				1								
				2								
				3								
			L									
				4								
				5								
				6								
				7								
				8								
				9								
				10		GM	Silt- tight, dry,	semi cohesive ((10-12')			
				11								
				12								
				12								
				13								
				14								
				15								
				15								
				16								
				17								
				18								
				19								
				20	<u> </u>							
Logged	by:	<u> </u>	<u> </u>	MS/JV	<u> </u>	<u> </u>	<u> </u>	Date:	10/2	25/07		
	Contrac				T+		-	Driller:				
				tt-Wolff	111C.		=	Dimei.	brad/	/Steve		
SOIL SA		COLLECTED Y S Collected for		/ PCB		TPH	ı sv	ос	VOC	DUPLICATE	MS/MSD	
		Sample Depth:	2-4'		5	Sample	Time: <u>1610</u>		Sample Date	e: <u>25 October 2007</u>		

SOIL SAMPLE COLLECTED YES / NO

	Y	R EA En	gineering	z. P.C.			Job. No. 14368.17	Client:		State Departm ntal Conserva			ocation: Marshall Transformer
_			ence and		olo	gν	Drilling Me	thod:	Hollow Ste				ing Number:
						6)	0 1 1			. 6			SB11
		LOG OF SOII	L BORING				Sampling M	lethod:				Sheet	1 of 1
Coordi									Split spoon	s - 5 ft. rods			
	Elevatio						Water Lev.		1		1	Start	Prilling Finish
Referen	Below Sa nce Eleva	tion:					Time					Start	FIIIISII
	ice Descr											850	907
Blow	Feet	Well	PID	Depth	7		Surface Cor	nditions:					
	Drvn/Ft. Recvrd	Diagram	(ppm) HNu	in Feet		USCS Log	Weather: Temperatur	·e·					
	Recviu		11114	0		506	Topsoil						
				1					se sand, semi co	hesive (1-1.5')			
				2		SW	Sand with trac	e silt, loose, NC	(1.5-2.5')				
				2	\vdash	ML	Silt with trace	sand, loose sem	i cohesive (2.5-3	.5')			
				3	H	1711.	one man nace:	Juliu, 1005C, 5EII	concorve (2.0-0	,			
						GM	Sandy till (3.5-	5')					
				4									
				E		CM	T:11 /E E E!\						
				5		GM	Till (5-5.5') 2" silt, 2" till, 2'	silt (to 6')					
				6			_ =====================================	****(** *)					
				7									
				Q									
				0									
				9									
				10									
				11									
				12									
				13	\vdash								
				14	\vdash								
				15	П					· · · · · · · · · · · · · · · · · · ·			
				16	$\vdash \vdash$								
				16	\vdash								
				17	\forall								
				18	$\vdash \vdash$								
				19	\vdash								
				17	$\vdash \vdash$								
				20									
Logged	by:		N	MS/JV				Date:	10/	26/07	_		
	Contrac	tor:		t-Wolff	Inc.			Driller:		l/Steve	- -		
		COLLECTED s Collected for		/ PCB		TPH	sv	ос	VOC	DUPLICA	ιΤΕ	MS/MSD	

	V	R EA East	noori	, D.C		Job. No.	Client:	New York St				ocation:		
-		EA Engi			1	14368.17	(1 1	Environment		ion		Marshall Transformer		
		EA Scien	nce and	Lechn	iology	Drilling Me	ethod:	Hollow Stem	1 Augers			ring Number: SB12		
		LOG OF SOIL	BORING			Sampling N	1ethod:				Sheet	t 1 of 1		
Coordi								Split spoons	- 5 ft. rods					
	Elevatio					TAT . T		1		1		Drilling Errich		
	Below Sa nce Eleva					Water Lev. Time		-			Start	Finish		
	nce Descr					Time					921	938		
ricici	2 0001										721	700		
Blow	Feet	TA7 - 11	PID	Depth		Surface Cor	nditions:	·	l					
Counts	Drvn/Ft.	Well Diagram	(ppm)	in	USCS	Weather:								
(140-lb)	Recvrd	Diagram	HNu	Feet	Log	Temperatu								
				0		Topsoil- moist								
				1.	ML		ht, semi cohesiv	e (0.5-1')						
				1	GM	Till- angular, 1	ocky (1-2')							
	1		-	2	ML	Silt with trace	VE sand comic	ohesive, tight, dry	(2-3.51)					
	1				WIL	on with trace	, i oana, senii (oncorve, ugin, ury	(= 0.0)					
	1			3										
	1		1		SM	Sand with silt,	loose, dry, NC	(faint odor) (3.5-5'))					
				4										
	5 ML Silt with trace VF sand, tight, SC (faint odor) (5-5.5')													
				5	ML	_		. , ,	5.5')					
					1.5		stone (faint odd							
				6	ML	Silt with some	till (faint odor)	(6-7')						
				7	SM	Sandy silt loo	co comi cohocir	re (faint odor) (7-8)	`					
					3111	Sandy Sitt- 100	se, semi conesiv	e (failt odor) (7-8)					
				8										
				9										
				10										
				44										
				11										
				12										
				12										
				13										
				14										
	4			15										
			-	16										
				16										
				17										
]			18										
]													
			1	19										
			<u> </u>	20										
	1			20										
T - '	1		1	10 /===	<u> </u>	1	Det							
Logged				MS/JV		_	Date:	10/2		-				
_	Contrac	tor:		tt-Wolff	Inc.	_	Driller:	Brad/	/Steve	-				

Samples Collected for <u>V PCB TPH SVOC VOC DUPLICATE MS/MSD-VOC</u>

		R				Job. No.	Client:		State Departm		Lo	ocation:
-		EA Eng				14368.17		Environme	ental Conserva	tion	Marshall, NY - N	Marshall Transformer
n - T	-//	EA Scie	nce and	Techr	ology	Drilling M	lethod:	Tractor mo	ounted Geopro	be		ing Number:
VC.											!	SB-13
o 1:		LOG OF SOIL	BORING			Sampling	Method:	D: -	1 46 1		Sheet	1 of 1
Coordi	nates: Elevatio								h - 4 ft. rods acetate sleeves			Prilling
	Below S					Water Lev	,	dedicated	acetate sieeves	1	Start	Finish
	ice Eleva					Time	•				Start	1 1111311
	ce Descr										12/11/2008	12/11/2008
	Feet	Well	PID	Depth	***	Surface Co	onditions:					
	Drvn/Ft. Recvrd	Diagram	(ppb) HNu	in Feet		CS Weather:	1401					
(110 10)	Kecvra	_	пии	reet	Log	Temperati		SANDV SII T vari	th candetone rock	fragments	Loose, non-cohesive.	
				0		0-3	Moist at 2-ft.	JANDI JILI WI	ui saitustoile tock	magments.	Loose, non-conesive.	
				1			1-2 Slight Odo	rs				
	3/4											
	J/ 1		2539	2								
			1	2								
			3739	3		+						
			25/5	4		4-4.5	Brown very fir	ne SANDY SILT	. Tight, non-cohes	sive. Moist		
			2565			4.5-5			ace SILT. Loose, 1		e. Moist	
			25	5		5-7	Brown SILT.	Γight, semi-cohe	sive, trace sandsto	one rock frag	gements. Dry	
	3/3											
			203	6								
				7								
			58									
				8								
				9								
				10								
				10								
				11								
				12								
				12								
			1	13		1						
				14								
			1	15								
			-	16								
			1	16		+						
				17								
				18				-				
			<u> </u>	10								
			1	19								
				20								
Logged	by:			JAV			Date:	12	/11/08			
	Contrac	tor:		t-Wolff	Inc.	_	Driller:		d/Steve	_		
Ü		COLLECTED Y								_		
		s Collected for		PCB		TPH S	VOC	VOC	DUPLICA	TE	MS/MSD-VC	<u>DC</u>

Sample Depth: <u>1-2'</u> Sample Time: <u>940</u> Sample Date: <u>11 December 2008</u>

_		R EA Eng	ineering	z. P.C.		Job. No. 14368,17	Client:		k State Departn nental Conserva			cation: Marshall Transformer
is a		EA Scie			ology	Drilling Me	ethod:		nounted Geopre			ing Number:
											S	SB-14
C 1:		LOG OF SOIL	BORING			Sampling N	Method:	D: 1	1 46 1		Sheet	1 of 1
Coordi	nates: Elevatio								ish - 4 ft. rods I acetate sleeves		D	millim o
	Below St					Water Lev.		dedicated	acetate sieeves	,	Start	rilling Finish
	ice Eleva					Time					Start	riiusii
	ice Eleva ice Descr					Time					12/11/2008	12/11/2008
recerci	ice Descr										12/11/2000	12/11/2000
Blow	Feet		PID	Depth		Surface Co	nditions:			- E		
Counts	Drvn/Ft.	Well	(ppb)	in	USCS	Weather:						
(140-lb)	Recvrd	Diagram	HNu	Feet	Log	Temperatu	re:					
				0		0-1	Brown SAND	Y SILT with sa	ndstone rock fragm	ents. Tight,	non-cohesive. Dry.	
			137	1		1-1.5	Coarse black S					
	4/4		-			1.5-2			SILT. Loose, non-			
	·		92	2		24			1 with medium sa	nd lenses inte	erbedded throughout.	
				3		1	Tight, non-col	iesive, Dry.				
			102			 						
				4		45	Coarse mediu	m orange-brov	vn SAND. Loose, n	on-cohesive.	Moist.	
			250			58			very fine SAND. T			
			110	5							•	
	4/4		110									
	4/4		98	6								
			270	7		1						
				0		1						
			0	0		1						
				9								
						1						
				10								
				11								
				12								
				10								
				13		1						
				14		+						
						1						
				15		1						
				16								
				1		1						
				17		1						
				10		1						
				18		1						
				19		 						
						 						
				20								
Logged	by			T A 37			Date:	-	2/11/00			
	-			JAV		_		1	2/11/08	_		
Drilling	Contract	or:	Parrat	t-Wolff	Inc.	_	Driller:	Br	ad/Steve	_		
90II 9	MDI E C	OLLECTED Y	ES / NO	1								
JOIL 3/		Collected for	_O / NO	PCB	TP	H SV	OC	VOC	DUPLICA	ATE	MS/MSD-VC	OC .

Sample Depth: 2-2.5 Sample Time: 957 Sample Date: 11 December 2008

		R					Client:	New York St	_		Lo	ocation:	
Con-		EA Engi				14368.17		Environmen	tal Conserva	tion	Marshall, NY - N	Marshall Transformer	
		EA Scie	nce and	Techr	ology	Drilling Me	thod:	Tractor mou	nted Geoprol	oe		ing Number:	
		-	DODES:			C 1: 1	f (1 1				5	SB-15	
Coordi		LOG OF SOIL	BORING			Sampling M	1ethod:	Direct reset	1 ft #2.32		Sheet	1 of 1	
	nates: Elevatio	n·				-		Direct-push dedicated ac			I)	rilling	
	Below Si					Water Lev.		acuicaieu de	ciate sieeves		Start	Finish	
	ice Eleva					Time					Jiari	1 111011	
	ice Eleva ice Descr										12/11/2008	12/11/2008	
					<u> </u>						1	<u> </u>	
Blow	Feet	Well	PID	Depth		Surface Cor	nditions:						
Counts	Drvn/Ft.	Diagram	(ppb)	in		Weather:							
(140-lb)	Recvrd	2 ingruin	HNu	Feet	Log	Temperatur							
				0		025 .255	Topsoil	CAND	on aghi				
				1		.575		SAND. Loose, n n SANDY SILT.					
			515	1		.75-3.5	-	m SAND: Loose,	_				
	4/4			2		., 0 0.0	Januar to mediu		concoive. I	y.			
			0										
			0	3									
			U			3.5-4		n SANDY SILT. T					
			0	4		45		n SANDY SILT.		-			
4.5-6 Medium brown SAND. Loose, non-cohesive. Wet.													
			600	5									
	3/4			6		6-7.5	Very find brow	n SANDY SILT.	Tight, semi-cohe	sive.			
			55	_		1	. Cry mice brow.		bin, semi-cone				
				7									
			44			7.5-8	Same as above	with sandstone ro	ock fragments.				
			214	8									
			214										
				9									
				40									
				10									
				11									
				11									
				12									
				13			•	•				•	
				14		_							
				15		1							
				10		1							
				16									
]			17									
											-		
				18									
						1							
				19		1							
				20		-							
				20									
						<u> </u>							
Logged	by:			JAV		_	Date:	12/1	1/08	=			
Drilling	Contract	tor:	Parrat	t-Wolff	Inc.		Driller:	Brad	/Steve				
										=			
SOIL S		OLLECTED Y	ES / NO		T -	u оч	·00	VOC	י טו וטו וס י	TE	NAC/NACD \ (C	00	
	Samples	Collected for		PCB	TP	п 5∨	OC	VOC	DUPLICA	1 =	MS/MSD-VC	<u>)C</u>	

Sample Depth: 2-3' Sample Time: 1015 Sample Date: 11 December 2008

		®				_	Client:		tate Departme		Lo	ocation:
0		EA Engi				14368.17		Environmen	tal Conservat	ion	Marshall, NY - N	Marshall Transformer
		EA Scie	nce and	Techr	ology	Drilling Me	thod:	Tractor mou	nted Geoprol	pe		ing Number: SB-16
		LOG OF SOIL	BORING			Sampling N	lethod:					
Coordi						1 6-		Direct-push			Sheet	1 of 1
	Elevatio								etate sleeves		D	rilling
	Below St					Water Lev.					Start	Finish
	ice Eleva					Time						
Referer	nce Descr	iption:							1		12/11/2008	12/11/2008
	г .		DID	Donath		Cumbo ao Con	ditions.					
Blow Counts	Feet Drvn/Ft.	Well	PID (ppb)	Depth in	TISCS	Surface Cor Weather:	nattions:					
(140-lb)	Recvrd	Diagram	HNu	Feet	Log	Temperatur	re:					
				0		0-1		SILT. Tight, nor	-cohesive. Dry.			
			L			1		0 , 42				
			112	1		1-2.5	Medium gray/	brown SAND. Lo	oose, non-cohesiv	e. Dry.		
	3.5/4		112									
	, -		98	2		25.6	v 0		*			
				2		2.5-4	Large SAND w	ith some cobbles.	Loose, non-coh	esive. Dry		
			144	3								
				4		1						
			172									
	3.5/3.5		1537			5.5-6	Coarse to medi	um grey brown S	AND. Loose, no	n-cohesive.		
	3.5/ 3.5		0	6		67 7-7.5	Fine brown SAl Gravel with coa	NDY SILT. Tight	, semi-cohesive.	Wet.		
			0	7		1	Cli-let - d th-		1			
				8			Refusal at 7.5'	ough whole inter	vai.			
				0			Kelusai at 7.5					
				9								
				10								
				11		1						
				12		1						
				12								
				13		†						
						<u> </u>						
]			14								
									·			
				15		1						
			-	17		1						
				16		1						
	1			17		1						
						<u> </u>						
				18		1						
-				19								
				20		<u> </u>						
				20		1						
				<u> </u>		<u> </u>						
Logged	by:			JAV		_	Date:	12/1	11/08	_		
Drillinø	Contract	tor:	Parrat	t-Wolff	Inc.		Driller:	Brad	/Steve			
Ü						_		Didd	,	-		
SOIL S		OLLECTED Y	ES / NO					\/OC	DUDU : 2 · ·			
	Samples	Collected for		PCB	TP	n SV	OC	VOC	DUPLICA	I E	MS/MSD-V	<u>)C</u>

Sample Depth: 2-4! Sample Time: 1030 Sample Date: 11 December 2008

		R EA Eng	inooris	, p.C		Job. No. 14368.17	Client:		State Departme			ocation:
					. 1				ntal Conservat			Marshall Transformer
-		EA Scie	nce and	Techr	ology	Drilling Me	ethod:	Tractor mou	ınted Geoprol	oe		ing Number: 5B-17
		LOG OF SOIL	BORING			Sampling N	Method:					
Coordi		01 30IL	10					Direct-push	- 4 ft. rods		Sheet	1 of 1
	Elevatio	n:							cetate sleeves		D	rilling
	Below St					Water Lev.			3,00,00		Start	Finish
	ice Eleva					Time					Surt	
	ice Eleva ice Descr								1		12/11/2008	12/11/2008
									1		1 / /	, , ====
Blow	Feet	*	PID	Depth		Surface Co	nditions:	I	1	I		
	Drvn/Ft.	Well	(ppb)	in	USCS	Weather:						
(140-lb)	Recvrd	Diagram	HNu	Feet	Log	Temperatu	re:					
				0	Ŭ	0-1		SILT. Tight, ser	ni-cohesive.			
			L									
			25	1		13	Till. Tight, nor	n-cohesive. Odor	'S.			
	4/4		23									
	T/ T		0	2								
			0	3		34	Coarse grey/b	rown SAND and	GRAVEL. Odors	S		
			<u> </u>									
			0	4		47	Medium to lar	ge SAND with so	me SILT. Loose,	non-cohesiv	e. Odors	
				1		1						
			87	5								
	4/4					+						
			0	6		+						
				7		7.0	V C: 1: 1:	h	CAND	T: -L.	:hi 3.f : -	
			0	/		78	very tine light	brown very fine	SAND With SILT	. 11ght, sem	i-cohesive. Moist.	
			-	8		8-8.5	SAND and GR	ΔVEI				
			0	O		8.5-9			Tight, semi-cohe	sive Wat		
				9		0.5-7	THE HAIR DION	THUMINUT SILL.	11g111, SeIIII-CONE	oive. Wel.		
			0			+	Odors present	throughout inter	val.			
	1/1			10		1	Refusal at 9'	oub.lout litter				
						1						
				11		1						
						1						
				12		1						
				13								
			_	14								
				15								
				16								
				1								
				17								
				10		+						
				18								
			-	19		-						
				19		+						
				20		1						
				20		1						
						<u> </u>						
Logged	by:			JAV			Date:	12/	11/08	_		
Drilling	Contract	tor:	Parrat	tt-Wolff	Inc		Driller:	Read	/Steve			
- riiiiiig	Commac		r arra	it-vvOIII	IIIC.	_	Dimer.	Drac	y sieve	-		
SOIL SA	AMPLE C	OLLECTED Y	ES / NO									
		Collected for		PCB	TP	H SV	OC	VOC	DUPLICA	TE	MS/MSD-VC	<u>oc</u>

Sample Depth: 2-4! Sample Time: 1115 Sample Date: 11 December 2008

		R					Job. No.	Client:	New York Sta	ate Departme	ent of	Lo	ocation:		
-		EA Engi	ineering	g, P.C.			14368.17		Environment	al Conservat	ion	Marshall, NY - N	Marshall Transformer		
8 Y	_/ _	EA Scie	nce and	Techi	nolog	5 y	Drilling Me	thod:	Tractor mour	nted Geoprob	e	Soil Bor	ing Number:		
1								,				!	SB-18		
<i>c</i>		LOG OF SOIL	BORING				Sampling M	lethod:	D:	4.6		Sheet	1 of 1		
Coordi	nates: :Elevatio								Direct-push - dedicated ace						
	Below St						Water Lev.	I	dedicated ace	etate sieeves		Start	Prilling Finish		
	ice Eleva						Time					Start	1 1111311		
	ice Descr											12/11/2008	12/11/2008		
	Feet	Well	PID	Depth		10.00	Surface Cor	nditions:							
Counts (140-lb)	Drvn/Ft. Recvrd	Diagram	(ppb) HNu	in Feet		og	Weather: Temperatur	·o·							
	Recviu		IIIVu	0		og	_	Fine brown SAN	ND AND SILT.						
			885	1			12	GRAVEL with s	some SAND						
	4/4			<u> </u>											
			43	2	╂┼		23	Same as above v	vith fine SANDY	SILT. Loose, no	n-cohesive.				
				3			34	Large SAND an	d small GRAVEL	. Odors					
			48												
13 4 4-4.5 GRAVEL 4.5-5.5 Very fine light brown SANDY SILT. Tight, semi-cohesive. Moist.															
	4.5-5.5 Very fine light brown SANDY SILT. Tight, semi-cohesive. Moist. 5 1 5 Crow source SAND, Lease pan solveite. Dry.														
	5														
	E E C E Curry gooding CAMD, I good man acharity Dury														
			265				6.5-7	Very fine light b	orown SANDY SII	LT. Tight, semi-	cohesive. M	oist.			
			161	7			7-7.5	GRAVEL							
				0											
			196	0											
				9											
				10											
				11											
				-											
				12											
				13											
				14											
				15				·							
				16	\vdash										
				16											
				17											
				18											
				19											
				17											
				20											
Logged	by:			JAV				Date:	12/1	1/08					
	Contrac	tor:		t-Wolff	Inc		-	Driller:	Brad/		•				
					ик.		-	~1111C1.	brau/	JIE V E					
SOIL SA		COLLECTED Y Collected for	ES / NO	PCB		TPH	I SV	OC	VOC	DUPLICA	ΓF	MS/MSD-V	nc.		

Sample Depth: 2.5-3.5 Sample Time: 1135 Sample Date: 11 December 2008

						Iola Nio	Client:	New York Sta	ata Danautua	nat of	T.	ocation:			
		R English		- D.C			Chefft.		_						
() Tex		EA Engi				14368.17	<u> </u>	Environment			•	Marshall Transformer			
-		EA Scie	nce and	Techr	ology	Drilling Me	ethod:	Tractor mour	nted Geoprol	pe		ing Number:			
											5	SB-19			
c 1:		LOG OF SOIL	BORING			Sampling N	1ethod:	D: 1 1	4.01		Sheet	1 of 1			
Coordi								Direct-push -				*111*			
	Elevatio					TA7 - 1 T	_	dedicated ace	etate sleeves			rilling			
	Below Si ce Eleva					Water Lev.					Start	Finish			
	ce Eleva ce Descr					Time				-	12/11/2008	12/11/2008			
recreren	ice Desci										12/11/2000	12/11/2000			
Blow	Feet		PID	Depth		Surface Cor	nditions:	<u> </u>		<u> </u>					
	Drvn/Ft.	Well	(ppb)	in	USCS										
(140-lb)	Recvrd	Diagram	HNu	Feet	Log	Temperatur	re:								
				0		0-1	Brown SANDY	SILT. Tight, non-	-cohesive.						
			68	1		1-2.75	Large SAND an	d GRAVEL, with	some SILT. Loc	ose, non-coh	esive. Dry. Odors				
	4/4														
	ŕ		115	2		2.75.2.5	xx	CANTON OUT TO		. 01					
				2		2.75-3.5	Very fine browi	SANDY SILT. T	ight, semi-cohes	sive. Odors					
			147	3		3.5-5	Medium brown	SAND Loose no	on-cohesive Dr	v Odors					
	0 4-4.1 Very fine brown SANDY SILT. Tight, semi-cohesive. Odors 4.1-4.5 Medium grey SAND. Loose, non-cohesive. Dry. Odors														
	4.1-4.5 Medium grey SAND. Loose, non-cohesive. Dry. Odors 5 Very fine brown SANDY SILT. Tight, semi-cohesive. Dry. Odors														
	4.1-4.5 Medium grey SAND. Loose, non-cohesive. Dry. Odors 5 4.5-5 Very fine brown SANDY SILT. Tight, semi-cohesive. Dry. Odors														
	4.1-4.5 Medium grey SAND. Loose, non-cohesive. Dry. Odors 5 4.5-5 Very fine brown SANDY SILT. Tight, semi-cohesive. Dry. Odors 5.5.5 Sandstone sock fragements, some brown SITT.														
	5 4.5-5 Very fine brown SANDY SILT. Tight, semi-cohesive. Dry. Odors														
			36												
			78	7											
			119	8		8-8.5	Same as above								
				0		8.5-9		TY CLAY. Tight,							
			251	9		911	Brown SIL1 Wit	h very fine SAND). Tight, non-col	nesive. vvet					
	3/3			10											
			0	10											
				11											
			0												
				12											
				13											
				14											
				15											
			1	10	-	 									
				16											
			1												
				17											
				18											
				19		ļ									
				20		1									
				20											
			1	<u> </u>		<u> </u>									
Logged	by:			JAV		_	Date:	12/1	1/08	_					
Drilling	Contrac	or:	Parrat	t-Wolff	Inc.		Driller:	Brad/	'Steve						
Ü						=				-					
SOIL SA		OLLECTED Y	ES / NO				100	V00	DUE: 10 ··	TE	140/1400	20			
	Samples	Collected for		PCB	TPI	<u>1 SV</u>	OC .	VOC	DUPLICA [*]	IE	MS/MSD-VC	<u>)C</u>			

Sample Depth: 2.5-3.5 Sample Time: 1045 Sample Date: 11 December 2008

-		R EA Eng	ineerine	, P C		Job. No. 14368.17	Client:		State Departm ental Conserva			ocation: Marshall Transformer		
					ology	-	the ords							
(·		EA Scie	nce and	recnr	ioiogy	Drilling Me	etnoa:	1 ractor mo	ounted Geopro	be		ing Number: SB-20		
		LOG OF SOIL	BORING			Sampling N	/lethod:							
Coordi									h - 4 ft. rods			1 of 1		
	Elevatio							dedicated	acetate sleeves			rilling		
	Below St					Water Lev.					Start	Finish		
	ice Eleva					Time								
Referen	ice Descr	iption:									12/11/2008	12/11/2008		
	<u> </u>		DID	Б и		6 6 6	1							
	Feet	Well	PID	Depth	TICCO	Surface Cor Weather:	nditions:							
Counts (140-lb)	Drvn/Ft. Recvrd	Diagram	(ppb) HNu	in Feet	Log	Temperatu	ro							
(/	Recviu		IIINU	0	Log	0-1		SILT with CO	RRI EC					
				0		0-1	DIOWII SAIND I	SILI WIIII CO.	DDLES.					
				1		12	GRAVEL and	COBBLES.						
	2/4		151											
	3/4		0	2		23	Medium to lar	ge grey/brown	SAND.					
			U					-	<u> </u>					
			0	3										
0 4 4-4.5 Same as above 4.5-7 Medium to large grey SAND. Loose, non-cohesive. Dry.														
4.5-7 Medium to large grey SAND. Loose, non-cohesive. Dry.														
0 5														
3.5/4														
			0											
			0	7		7-7.5	Very fine brow	n SANDY SILT	Tight, semi-cohe	sive. Dry.				
			0				,							
				8										
				9										
				10										
				10										
				11										
				11										
				12										
				13										
				14										
			-	15										
				15		+								
			-	16										
				10										
				17										
				18										
				19										
			-	20										
				20										
				<u> </u>										
Logged	by:			JAV		_	Date:	12	/11/08	_				
Drilling	Contract	or.	Parra	tt-Wolff	Inc		Driller:	Rea	d/Steve					
- 1 ming	Commun		1 01110	it-vvOIII		_	2111101.	DIa	a, sieve	_				
SOIL SA		OLLECTED Y	ES / NO											
	Samples	Collected for		PCB	TP	H SV	OC .	VOC	DUPLICA	TE	MS/MSD-VC	<u>)C</u>		

Sample Depth: 3-4 Sample Time: 1202 Sample Date: 11 December 2008

		R					Client:		tate Departme		Lo	cation:		
11.		EA Eng				14368.17		Environmen	tal Conservat	ion	Marshall, NY - N	Marshall Transformer		
		EA Scie	nce and	Techn	ology	Drilling Me	thod:	Tractor mou	nted Geoprol	pe		ing Number: SB-21		
		LOG OF SOIL	BORING			Sampling M	lethod:							
Coordi			,0			-unipinio iv		Direct-push	- 4 ft. rods		Sheet	1 of 1		
	Elevatio	n:							etate sleeves		D	rilling		
Casing	Below St	ırface:				Water Lev.					Start	Finish		
Referer	ice Eleva	tion:				Time								
Referer	ice Descr	iption:	-		_						12/11/2008	12/11/2008		
	Feet	Well	PID	Depth		Surface Cor	nditions:							
Counts (140-lb)	Drvn/Ft.	Diagram	(ppb)	in		Weather:								
(140 10)	Recvrd		HNu	Feet	Log	Temperatur		ND LOUT :	1 1 1 1 6					
				0		0-1.5	Iill. Brown SA	ND and SILT wit	h shale rock frag	ments.				
				1										
			0	1		1.5-2	Coarse brown S	SAND. Loose, no	n-cohesive. Dry.					
	3/4			2		23		LT with some ver			hesive. Moist			
			0						-					
			0	3					•			_		
			Ü											
			0	4		44.5	Till.							
4.5-4.75 Fine light brown SAND and SILT. Tight, semi-cohesive. Moist 5 4.75-7 Till.														
3/3 6 Refusal at 7'														
Kettisal at /														
			0											
				8										
				9										
				10										
				11										
				11										
				12										
				13										
							-	-		-				
			1	14										
			-	4.5										
				15	-									
				16										
				10										
				17										
			L											
				18								-		
-														
				19										
				20										
				20										
						<u> </u>								
Logged	by:			JAV		_	Date:	12/2	11/08	_				
Drillino	Contract	tor:	Parrat	t-Wolff	Inc		Driller:		/Steve					
_						-		Diau	JUVE	-				
SOIL SA		OLLECTED Y	ES / NO											
	Samples	Collected for		PCB	TPI	H SV	OC	VOC	DUPLICA	TE	MS/MSD-VC	<u>DC</u>		

Sample Depth: 1-2' Sample Time: 1150 Sample Date: 11 December 2008

_	y	7	EA S	Scien	neering ce and ORING	Techr	ology	Job. No. 14368.17 Drilling Me			ate Department al Conservation auger		Marshall, NY - M Soil Borii M	eation: arshall Transformer ng Number: W01	
Coordi			01 0					Sumpling	Tetriou.	split spoon				1 of 2	
	Elevatio							TA7 1 T	20 7011	22 5711	1			illing	
	Below S ice Eleva		:					Water Lev. Time		23.57' bgs 11/2/2007			Start	Finish	
	ice Eieva ice Desci							Time	10/26/07 1000	1010			10/23/2007 1009	10/23/07	
Kelelel	ice Desci	триог	ι.						1000	1010			10/ 23/ 2007 1009	1130	
DI	Feet				PID	Depth		Surface Co	nditions:						
Blow Counts	Drvn/Ft.		Well		(ppm)	in	USCS		riarions.						
	Recvrd	Г	Diagrai	m	HNu	Feet	Log	Temperatu	re:						
	neerra				11110	0	Log			rial, a lot of moists	re due to heavy ra	ins (0-14')			
								Sume us 11 oc	distarbed mate.	ina, a lot of moiste	are due to neavy ru	(0 11)			
						1									
								1							
	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4														
	4														
5 6															
						7									
						8									
						9									
14						10	GM	Till- sandston	e, dolostone, dry	/loose (10-12')					
50/0.4									· · · · ·	, , ,					
,						11									
						12									
						13		Ī							
								Ī							
10						14	SM	Brown fine sa	nd with silt, tigh	t, NC, moist (14-16	j')				
8									. 0	,	-				
8						15									
18															
						16		Ī							
						17									
						18									
						19	SW	Brown sand-	coarse, NC, mois	t, with trace silt					
					<u> </u>										
3						20	ML	Brown clayey	silt- tight, fine, c	ohesive, moist					
4									-						
Logged	by:				Me	gan Scot	t		Date:	10/23/07 -	10/24/07				
Drilling	Contrac	tor:			Pari	ratt Wol	ff		Driller:	Brad P	almer				

WELL SPECIFICATIONS:

Drilling Contractor:

Driller:

		R		, .		D.C.				Client:	New York Sta				cation:
_					neering				14368.17	<u> </u>	Environment		ion		Iarshall Transformer
			EA S	Scien	ce and	Techn	ology		Drilling Me	ethod:	Hollow stem	auger		Soil Bori	ng Number:
		LOG	OF SO	OIL B	ORING				Sampling M	lethod:				Ch t	2 of 2
Coordi	nates:										Split spoon				2 of 2
	Elevatio								***	22 501	20 551				rilling
	Below Si ice Eleva		2:						Water Lev. Time	23.70' bgs 10/26/07	23.57' bgs 11/2/2007			Start	Finish
	ice Eieva ice Descr		ո։						тше	10/26/07	1010			10/23/2007 1009	10/23/07
		r												, :, ::: ::::::::::::::::::::::::::::::	1130
Blow	Feet		Well		PID	Depth			Surface Cor	nditions:					
	Drvn/Ft. Recvrd	Г	Diagrai	m	(ppm) HNu	in Feet	US		Weather:	***					
8	Recvra				пічи	reet 21	Log	3	Temperatur	re:					
11															
						22									
						23	G	M	Till- 23' drilling	g became harder					
9						24			No Recovery (2	24-26')					
8									,						
	14 26 27 27 2 27 2 27 2 27 2 27 2 27 2 27														
14	14 26 26														
	11														
	27														
	28														
	28														
6	28 29 SM Brown silt with trace of fine sand, tight, semi cohesive, moist (29-31')														
9	6 29 SM Brown silt with trace of fine sand, tight, semi cohesive, moist (29-31')														
14	6 29 SM Brown silt with trace of fine sand, tight, semi cohesive, moist (29-31')														
5						31	+								
						-	+								
						32									
						22	_								
						33	-								
9						34	Sl	M	Brown silt witl	h trace of very fi	ne sand, tight, sem	i cohesive, near	wet (34-36')		
8						35			-				· · · · · · · · · · · · · · · · · · ·		
11															
						36							-		
						37									
						-									
						38			(Bottom of wel	ll-38 ft bgs)					
2						39	-								
2															
4						40	\perp								
6						41	-								
						41									
Logged	by:	_			Me	gan Scot	t			Date:	10/23/07-	10/24/07		Note: 11 bags sand	d
Drilling	Contrac	tor:			Parı	ratt Wol	ff			Driller:	Brad P	almer			
WEI	LL SPEC	IFICA	ATION	S:											

Diam. of casing: 2" Screen Interval: 18-38 ft 0.01" Slot Sand Pack 16-39 ft #0 Sand Grout: 0-14 ft

		®	г		n c			-	Client:						
1.										Environment	al Conservati	on			
, .		EA	Scien	ce and	Techr	ology	,	Drilling Me	ethod:						
	LAS A Science and Technology LAS A Science and Technology LAS A Science and Technology LAS A Science and Technology Las A Science and Technology														
	FA Engineering P.C. EA Science and Technology EA Comment EA Co														
	Hollow stem auger														
	Split Spoon														
Casing	Below S	ırface:											Start	Finish	
								Time					10/01/00071106	10/24/07	
Referer	ice Desci	iption:							800	1115	1005		10/24/2007 1136		
	E			DID	Donth			Curtaca Car	ditiona						
			П			LIS	CS		iuiuons.						
(140-lb)		Diagr	am	HNu					re:						
					0		0	- r							
	1														
					1										
					2										
					_										
					3										
					4										
	4 5 5 6 7 7 7 7 7 7 7 7 7														
	4 5 5 6 7 7 7 7 7 7 7 7 7														
	4 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7														
	4														
	5 6 7 7 8														
	5 6 6 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8														
					8										
					0										
					9										
8					10	G	М	Till- loose, dry	, angular rock. N	JC (10-12')					
17	1							, , ,	, . 6 ,	,					
16	1				11										
13															
					12										
					13										
					14										
					14										
5					15	G	M	Till- tight with	silt, damp, sem	i cohesive, oval pe	bbles (15-15.5')				
6	1							_							
9					16										
14															
					17										
					18										
					19										
					17										
2					20	S	W	Very fine sand	l, brown, loose, o	dry, NC (20-22')					
6															
Logged	by:			Meg	gan Scot	t			Date:	10/24	4/07	_			
00	,							•		-					
Drilling	Contrac	tor:		Parr	att Wol	ff			Driller:	Brad P	Palmer				
WF	LL SPEC	IFICATIO	NS:												
			2"	Caraa	n Intor	al. 26	-36	ft 0 01" Slot	Cand Daals	24.5	27 ft	Grout	,)-22 ft	
טומווו. 0	f casing:			Scree	ii iiilerv	ai. 20	-30	11.0.01 3101	Sand Pack	24-3	<i>) i</i> Il	Grout:		J-22 Il	

Section Face	i -								T .	1 .					
Coordinates			R			_				Client:					
Field with stem auger	-								14368.17		Environment	tal Conservati	on	Marshall, NY - N	Marshall Transformer
Field with stem auger	D 200			EA S	cien	ce and	Techn	ology	Drilling Me	ethod:				Soil Bor	ing Number:
Confunition Confunition	Ve .		1								Hollow stem	auger			_
Split spoon			LOG	OF SC	OIL B	ORING			Sampling N	Method:		-		CI ·	2 -(2
Surface Elevation: Reference Description: Mater Lev. 31 bys 33.29 bys 33.31 bys Start Finish	Coordi	nates:												Sheet	2 of 2
Casing Pelew Surface Reference Description: Feet	Surface	Elevatio	n:	-						1 1				D	rilling
Reference Elevarion: Filter 10/25/07 10/26/2007 11/2/2007 10/24/07 136 10/24				-					Water Lev.	31' bgs	33.29' bgs	33.31' bgs			
Sect Sect				-						10/25/07					
Note				: -										10/24/07 1136	
Course Description Diagram D			•	-										1 ' '	1645
Courts Drow/File Color Diagram File Diagram	Blow	Feet		TA7 11		PID	Depth		Surface Co	nditions:	•			•	
HNu Feet Log Temperature:	Counts	Drvn/Ft.				(ppm)		USCS	Weather:						
14	(140-lb)	Recvrd	Dı	ıagrar			Feet	Log	Temperatu	re:					
22	12						21								
23	14	1													
9							22								
9															
9 8 12 16 16 17 18 19 28 19 29 30 30 30 30 30 30 30 30 30 30 30 30 30							23								
9 8 12 16 16 17 18 19 28 19 29 30 30 30 30 30 30 30 30 30 30 30 30 30														· ·	
S							24								
S															
12							25								
16															
27							26								
28 29 30 GM Sandy till, porous water bearing zone 30 30 GM Sandy till, porous water bearing zone 31 32 32 33 34 34 35 36 (Bottom of well 36-ft below ground surface) 37 38 39 39 39 39 39 39 39	16							SW	Fine brown sa	nd, NC, less tigh	nt (26.5-27')				
29							27		<u> </u>						
29									<u> </u>						
37 50/0.2 31 32 33 34 34 35 35 36 (Bottom of well 36-ft below ground surface) 37 38 38 39 39 40 40 40 41 41 41 41 41 41 41 41 41 41 41 41 41							28								
37 50/0.2 31 32 33 34 34 35 35 36 (Bottom of well 36-ft below ground surface) 37 38 38 39 39 40 40 40 41 41 41 41 41 41 41 41 41 41 41 41 41															
50/0.2 31 32 33 33 34 35 36 (Bottom of well 36-ft below ground surface) 37 38 38 40 40 41 41 41 Logged by: Megan Scott Date: 10/24/07 Note: 7 bags of sand used							29		1						
50/0.2 31 32 33 33 34 35 36 (Bottom of well 36-ft below ground surface) 37 38 38 40 40 41 41 41 Logged by: Megan Scott Date: 10/24/07 Note: 7 bags of sand used	27						20	CM	C						
31 32 32 33 34 34 34 35 35 36 36 (Bottom of well 36-ft below ground surface) 36 (Bottom of well 36-ft below ground surface) 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39							30	GIVI	Sandy till, por	ous water bearii	ig zone				
32 33 34 34 35 36 (Bottom of well 36-ft below ground surface) 37 38 39 39 39 39 39 39 39	30/ 0.2						21								
33 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							51								
33 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							32								
34 35 35 36 (Bottom of well 36-ft below ground surface) 37 38 39 39 39 40 41 41 41 41 41 41 41															
34 35 35 36 (Bottom of well 36-ft below ground surface) 37 38 39 39 39 40 41 41 41 41 41 41 41							33								
35 36 (Bottom of well 36-ft below ground surface) 37 38 39 39 40 41 41 41 41 41 41 41															
36 (Bottom of well 36 -ft below ground surface) 37 38 38 39 40 40 40 41 41 41 41 41 41 41 41 41 41 41 41 41							34								
36 (Bottom of well 36 -ft below ground surface) 37 38 38 39 40 40 40 41 41 41 41 41 41 41 41 41 41 41 41 41		1													
37 38 39 39 40 41 41 41 41 41 41 41							35								
37 38 39 39 40 41 41 41 41 41 41 41															
38							36		(Bottom of we	ll 36 -ft below gr	ound surface)				
38															
39							37								
39															
Logged by: Megan Scott Date: 10/24/07 Note: 7 bags of sand used							38								
Logged by: Megan Scott Date: 10/24/07 Note: 7 bags of sand used							<u> </u>								
Logged by: Megan Scott Date: 10/24/07 Note: 7 bags of sand used							39		ļ						
Logged by: Megan Scott Date: 10/24/07 Note: 7 bags of sand used	 	ł					10	-	1						
Logged by: Megan Scott Date: 10/24/07 Note: 7 bags of sand used		-					40		1						
Logged by: Megan Scott Date: 10/24/07 Note: 7 bags of sand used	 						41	-	<u> </u>						
		1					41		1						
	<u> </u>	<u> </u>				<u> </u>	<u>. </u>		<u> </u>						
Drilling Contractor: Parratt Wolff Driller: Brad Palmer	Logged	by:		-		Me	gan Scot	t	_	Date:	10/2	4/07		Note: 7 bags of sa	nd used
	Drilling	Contrac	tor:			Pari	ratt Wolf	f		Driller:	Brad I	Palmer			

WELL SPECIFICATIONS:

_		R	EAE	nain	eering	D C		14368.17	Client:		ate Departmen al Conservatio		famahall I		cation:
							1		.1 1	Environment	ai Conservatio	on IV			arshall Transformer
(·			EA S	cieno	ce ana	1 ecnr	ology	Drilling M	ethod:	Hallovy Choma	A		Sc		ng Number:
		LOC	OF SC	MI RA	ORING			Sampling l	Mothod:	Hollow Stem	Auger			IVI	W03
Coordi	nates:	LOG	OF 3C	IL DO	KING			Samping	vietioa.	Split Spoon				Sheet	1 of 2
		n:	-							эриг эроон				Dr	illing
			<u>-</u>					Water Lev	. 26.27' bgs	26.22' bgs			Start		
			-					Time	10/26/07	11/2/2007					
Referen	nce Descr	riptior	ı:						1130	1001		10/	25/07	800	
	Split Spoon Sheet 1 or 2														
Blow	Feer Time 10/26/07 11/2/2007 11/2/2007 10/25/07 800 10/25/2007 930 10														
		D	Diagran						re.						
, ,	Recviu				IIIVu	0	Log	remperate	ire.						
	i					0									
	1					1									
	1														
	3 4 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6														
	3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5														
	3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5														
	3 4 5 6 7 8														
	4														
	4														
	4														
				-		8									
	i					0									
	1			-		9									
]														
15						10	GM				gments, dry, NC (1	10-10.5')			
50/0.4				-				Rock- shale, g		, ,					
	ł					11			/ Coarse till- re	ddish brown, loos	e, dry with sand-	angular fragme	ents (10.75-1	10.9')	
				-		12	-								
	1														
	1					13									
						14									
						15	CM	Tr. 1 1	wn, SC (15-15.4')						
11 9						15	GM SM		vith silt, loose, dr	v NC (15 4-17')					
14						16	5111	DIOWII Suite V	viai siit, loose, ar	(10.1 17)					
12]														
						17									
				-											
						18									
	ł			_		19		+							
						17									
5	İ			-		20	SM	Brown fine sa	ndy silt, loose, dr	y, SC (20-21')					
10									-						
Logged	by:		_		Meg	gan Scot	:t	_	Date:	10/25	5/07			-	
D	C- 1				Pare	att Wol	ff		D.::II	Brad P	almer				
שgחוווזים	Contrac	tor:	-		1 011	an vv Ol		_	Driller:	Diau I	u1111C1				
\/\/EII	SPECIFIC	∩ل⊤∆ث	NIC.												
					_										
Diam. o	f casing:		2'		Scree	n Interv	al: 20-30) ft 0.01" Slo	Sand Pack	18-31 ft a	#U Sand	Grout:		0-	16 ft

_		R	EAE	nain	eering	D C		14368.17	Client:		ate Departmen al Conservatio			Cation:	
							1		.1 1	Environment	ai Conservatio	n Mars		Marshall Transformer	
(·			EA S	cieno	ce ana	1 ecnr	nology	Drilling M	ethod:	Hallovy Choma	A			ring Number:	
		LOC	OF SC	NI RC	ORING			Sampling l	Mothod:	Hollow Stem	Auger			MW03	
Coordi	nates:	LOG	Or 5C	IL DC	KING			Samping	vietriou.	Split Spoon			Sheet	1 of 2	
		n:	-							эриг эроон			Г	rilling	
			: -					Water Lev	. 26.27' bgs	26.22' bgs		9			
			_					Time	10/26/07	11/2/2007					
Referen	nce Descr	riptior	ı:						1130	1001		10/25/	/07 800		
	Spit Spoon Spi														
Blow	Feer Time 10/26/07 11/2/2007 11/2/2007 10/25/07 800 10/25/2007 930 10														
		D	Diagran						ire.						
, ,	Recviu				IIIVu	0	Log	Temperate	iie.						
	i					0									
	1					1									
	2 3 3 4 4 5 5 5														
	3 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6														
	3 4 5 6 7														
	3														
	3 4 5 6 7 8														
	4														
	4														
	4														
				-		8									
	i					0									
	1					9									
	1														
15						10	GM	_			gments, dry, NC (1	0-10.5')			
50/0.4								Rock- shale, g		, ,					
	ł					11			/ Coarse till- re	ddish brown, loos	e, dry with sand- a	angular fragments (10.75-10.9')		
				-		12									
	1														
	1					13									
						14									
						4.5	67.4	m: 1 . :1. 1	00 (45 45 4)						
11 9						15	GM SM		wn, SC (15-15.4') with silt, loose, dry	v NC (15 4-17')					
14				H		16	Sivi	210ii Suita V		,, (10.11)					
12	1														
						17									
				-											
						18									
	ł			-		19									
						17									
5	İ			-		20	SM	Brown fine sa	andy silt, loose, dr	y, SC (20-21')					
10									-						
Logged	by:		_		Meg	gan Scot	tt	_	Date:	10/25	5/07				
D	C- 1				Pare	att Wol	ff		D:11	Brad P	almer				
שgחוווזים	Contrac	tor:	-		1 011	an vv Ol		_	Driller:	Diau I	u1111C1				
\/\/EII	SPECIFIC	∩ل⊤∆ث	NIC.												
					_										
Diam. o	f casing:		2'	·	Scree	n Interv	al: 20-3) ft 0.01" Slo	t Sand Pack	18-31 ft a	#U Sand	Grout:	(0-16 ft	

855		®				Job. No.	Client:	New York Sta	_			ocation:		
11		EA Engi				14368.17		Environment	al Conserva	tion		Marshall Transformer		
		EA Scie	nce and	Techno	ology	Drilling Me	ethod:	** 11 0:			_	ing Number:		
		100 05 001	DODING			C 1:)	<i>t</i> .1 1	Hollow Stem	Auger		1	MW03		
Coordi		LOG OF SOIL	BORING	•		Sampling N	/letnod:	Split Spoon			Sheet	2 of 2		
II	e Elevatio	n:						эриг эроон			Г	Prilling		
II	Below St					Water Lev.	26.27' bgs	26.22' bgs			Start	Finish		
	nce Eleva				_	Time	10/26/07	11/2/2007						
Referen	nce Descr	iption:					1130	1001			10/25/07 800	10/25/2007 930		
												750		
Blow	Feet	Well	PID	Depth	LICCO	Surface Con	nditions:							
Counts (140-lb)	Drvn/Ft. Recvrd	Diagram	(ppm) HNu	in Feet	USCS	4	***							
14	Recviu		IIINU	21	Log	Temperatu:		et madium tight (C (21 221)					
14	1			21	Sivi	DIOWII SIIL WIL	II IIIle Salid, IIIOE	st, medium tight, S	5C (21-22)					
- 11	1			22										
				23										
				24										
				<u> </u>										
1	1			25	ML	Brown silt wit	h trace fine sand	, wet, tight, SC (25	5-26.5')					
	1			26										
	1			20	GM	Till with trace	silt, loose, wet, N	NC (26.5-27')						
				27			. , , ,	,						
	28													
]			28										
				29										
ļ	_			20		(D	# 00 6 L L							
-	1			30		(Bottom of we	ll 30-ft below gro	ound surface)						
	1			31										
	-			51										
	1			32										
	1													
				33										
				34										
-	-			0.5										
1	-			35										
	1			36										
	1					1								
				37										
]													
	<u>.</u>			38					-					
	4													
	4			39										
1	-			40		1								
 	-			40		1								
1	1			41		1								
	1													
Logged	by:		Me	gan Scott			Date:	10/2	5/07		Note: 6 bags of sa	and used		
						-				_	INOIC. U Dags Of Sa	and used		
Drilling	g Contrac	tor:	Pari	ratt Wolff		=	Driller:	Brad F	aimer	_				
		CATIONS:												
	of casing:	2"		en Interv <u>a</u>	l: 20-30	ft 0.01" Slot		18-31 ft		_ Grout:		0-16 ft		
BOH:		31ft	Riser	Interval:		0-20 ft	Bentonite:	16-1	18 ft	Cover	: 3-ft St	eel Stick-up		

Appendix E Well Development Forms

Very turbid, well pumped dry several times

EA Engineering PC and its Affliate, EA Science and Technology

MONITORING WELL DEVELOPMENT PURGE FORM

Well I.D.:			EA Personi	nel:		Client:			
	MW01		JAV/MES				NYSDEC		
Location:	MW01 on: f Marshall, New York ing Method: WLI p/Down (ft): Stick up Date: ct-07 Method: hersible Depth (ft): 39.62 th to Water (ft): 23.7 hid Depth (ft) (A-B): 15.92		Well Condi	tion:		Weather:			
Town of Mar	rshall, New Yo	ork		Good			50-cloudy		
Sounding M			Gauge Date			Measurement	Ref:		
			26-Oct-07				top of casing		
Stick Up/Do			Gauge Time			Well Diameter			
	Stick up			1000		<u> </u>	2"		
Purge Date:					Purge Tin	10·			
26-Oct-07					l dige iii	1059-1109			
Purge Meth					Field Tech	nnician:			
2" submersil					Megan Sc	ott/ Joe VonUdei	itz		
				Well	Volume				
A. Well Dep	th (ft):		D. Well Vol	ume (ft):		Depth/Height of	of Top of PVC:		
				0.16532			2'		
B. Depth to	, ,		E. Well Vol	ume (gal) C*l	D):	Pump Type:	_		
			:	2.6318944	I) (Ee)		Grunfos		
C. Liquid Do):	F. Five Wel	I Volumes (g 13.159472	al) (E3):	Pump Designa	ition:		
	13.32		<u>. </u>	13.133472					
			V	Vater Qual	ity Paran	neters			
Time	DTW	Volume	Rate	рН	ORP	Temperature	Conductivity	DO	Turbidity
(hrs)			(Lpm)	(pH units)	(mV)	(oC)	(S/m)	(mg/L)	(ntu)
` '		` '						<u> </u>	
<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
Total Quant	tity of Water	Removed (ral)·			Sampling Time	۵۰		
Samplers:	ity of water	itemovea (ş	jui).		•	Split Sample V			
Sampling D	ate:				•	Sample Type:	_		
					•		_		
COMMENTS	S AND OBSE	RVATIONS	:	Well very m	uddy- does	n't produce much	n water, recharge	e < 0.5 GPN	Л

MONITORING WELL DEVELOPMENT PURGE FORM

Well I.D.:	MW02		EA Personi JAV/MES	nel:		Client:	NYSDEC		
Location:					Weather:	NISDEC			
	rshall, New Y	′ork	Well Collai	uon:		weather:	50, cloudy		
Sounding N			Gauge Date	9:		Measurement			
	WLI		26-Oct-07				top of casing		
Stick Up/Do	own (ft):		Gauge Time	e:		Well Diameter	(in):		
	Stick up			1115			2"		
Purge Date	:				Purge Tin	ne:			
26-Oct-07						1125-1127			
Purge Meth					Field Tecl				
2" submersi	ble				Megan Sc	ott/ Joe VonUde	eritz		
				Well	Volume				
A. Well Dep	oth (ft):		D. Well Vol	ume (ft):		Depth/Height	of Top of PVC:		
	36.41			0.16532			2'		
B. Depth to	٠,		E. Well Volume (gal) C*D):		Pump Type:				
	33.29		0.5157984			Grunfos			
C. Liquid D	epth (ft) (A-E	3):	F. Five Well Volumes (gal) (E3):		Pump Designa	ation:			
3.12			2.578992						
			W	/ater Qual	ity Paran	notors			
Time	DTW	Volume	Rate	рН	ORP	Temperature	Conductivity	DO	Turbidity
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(S/m)	(mg/L)	(ntu)
((10 2000)	()	(=	(()	(30)	(0,)	(g/ =/	(,
<u> </u>						<u> </u>			
Total Quan	tity of Water	Removed (ual).			Sampling Tim	e.		
Samplers:	ing of maio		.ga.,.		•	Split Sample \			
Sampling D	Date:				•	Sample Type:			
					•		•		
COMMENT	S AND OBSI	ERVATIONS	3 :	Well very m	uddy- does	sn't produce mud	ch water, rechar	ge < 0.25 G	PM

MONITORING WELL DEVELOPMENT PURGE FORM

Well I.D.:			EA Personi	nel:		Client:				
MW03		JAV/MES		NYSDEC						
Location:			Well Condi	tion:		Weather:				
	rshall, New Y	ork	<u> </u>				50, cloudy			
Sounding N			Gauge Date			Measurement				
	WLI		26-Oct-07				top of casing			
Stick Up/Do			Gauge Tim			Well Diameter				
	Stick up			1130			2"			
Purge Date	:				Purge Tin	ne:				
26-Oct-07						1131-1143				
Purge Meth	od:				Field Tecl	nnician:				
2" submersi	ble				Megan Sc	ott/ Joe VonUde	ritz			
			_		Volume					
A. Well Dep	. ,		D. Well Vol			Depth/Height	of Top of PVC:			
	33.36		0.16532			2'				
B. Depth to			E. Well Volume (gal) C*D):			Pump Type:				
0 11 110	26.27	••	4.3429564				Grunfos			
C. Liquid D	epth (ft) (A-E	3):	F. Five Well Volumes (gal) (E3): 21.714782			Pump Designa	ation:			
7.09			21.714702							
			V	/ater Qual	ity Paran	neters				
Time	DTW	Volume	Rate	рН	ORP	Temperature	Conductivity	DO	Turbidity	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(S/m)	(mg/L)	(ntu)	
			ļ	ļ						
Total Quant	tity of Water	Removed (aal).			Sampling Time	e.			
Samplers:	iny or water	rtomovou (gui).		•	Split Sample \				
Sampling D	ate:				•	Sample Type:				
					•		•			
COMMENT	S AND OBS	ERVATIONS	S :	Well very m	uddy- does	n't produce muc	ch water, rechar	ge = 0.25 G	PM	

Appendix F

Groundwater Purging/ Sampling Forms

GROUNDWATER SAMPLING PURGE FORM

			1						
Well I.D.:	NAV04		EA Person		1-	Client:	NIVODEO		
MW01				lall/John Clarl	K	144 41	NYSDEC		
Location:						Weather:			
	rshall, New Yo	ork	Good				40 - Rain		
Sounding N			Gauge Date			Measurement	Ref:		
	WLI		15-Nov-07				top of casing		
Stick Up/Do			Gauge Tim			Well Diameter	• •		
	Stick up		1040)			2"		
Purge Date					Purge Tin				
15-Nov-07						1045			
Purge Meth	od:				Field Tec				
Peristaltic					Dave Crar	ndall/John Clark			
				Well	Volume	!			
A. Well Dep	th (ft):		D. Well Vol	ume (ft):		Depth/Height of	of Top of PVC:		
	39.62			0.16532			2'		
B. Depth to	Water (ft):		E. Well Vol	ume (gal) C*	D):	Pump Type:			
	25.38		2.3541568			Geopump			
C. Liquid D	epth (ft) (A-B	i):	F. Five Well Volumes (gal) (E3):			Pump Designation:			
	14.24		11.770784						
			1	Nater Qua	lity Para	meters			
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(S/m)	(mg/L)	(ntu)
1045	23.58	-	0.5	7.53	115.2	9.34	0.425	6.93	157
1049	25.26	2	0.5	7.47	117.2	9.67	0.432	6.59	95
1053	26.75	4	0.5	7.44	120.3	9.63	0.434	6.58	261
1057	27.70	6	0.5	7.41	123	9.57	0.434	6.54	1072
1101	28.29	8	0.5	7.41	127	9.3	0.433	6.53	1442
Total Quan	tity of Water	Removed (gal):	2	_	Sampling Time	e:	1105	
Samplers:				DC/JC	- -	Split Sample V	Vith:		
Sampling D	ate:			15-Nov-07	_	Sample Type:		GW	
							•		
CONMENT		D1/4 TIGNIG							1.14
COMINENT	S AND OBSE	RVATIONS	•	Very Muddy	/silty water	, turn pump dowr	n to try and get le	ess turbid an	d it
would not p		RVATIONS	-	Very Muddy	/silty water	, turn pump dowr	to try and get le	ess turbid an	d it

GROUNDWATER SAMPLING PURGE FORM

Well I.D.:			EA Person			Client:			
	MW02		1	dall/John Clar	k		NYSDEC		
Location:			Well Condition:		Weather:				
	arshall, New Y	ork	Good				40 - Rain		
Sounding I			Gauge Dat			Measurement			
	WLI		15-Nov-07				top of casing		
Stick Up/D	own (ft):		Gauge Tim	ie:		Well Diameter	(in):		
	Stick up		1112	2			2"		
Purge Date	e :				Purge Tin	ne:			
15-Nov-07	7				1140)			
Purge Metl	hod:				Field Tec	hnician:			
geopump/b	ailer				Dave Crar	ndall/John Clark			
				Well	Volume				
A. Well De	nth (ft):		D. Well Vo				of Top of PVC:		
A. Well De	36.41		D. Well Vo	0.16532		Depthyricight	2'		
B. Depth to			F Well Vo			Pump Type:			
B. Deptii te	33.42		E. Well Volume (gal) C*D): 0.4943068			i dilip Type.	geopump/bailei	•	
C. Liquid D	Depth (ft) (A-I		F. Five Well Volumes (gal) (E3):			Pump Designa	<u> </u>		
O. Liquiu L	2.99	-	l' · · · · · · · · · · ·	2.471534		l ump besign			
	2.00			2.17 100 1					
			\	Vater Qua	lity Para	meters			
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(S/m)	(mg/L)	(ntu)
1150	33.42	-	-	7.64	57.3	9.67	6.502	5.46	1340
			1	1					
			1	1					
			1	1					
			1	1					
<u> </u>	•	•	•	•	•	•			•
Total Quan	tity of Water	Removed	(gal):	0.5		Sampling Time	e:	1230)
Samplers:	•		,	DC/JC	-	Split Sample \			
Sampling I	Date:			15-Nov-07		Sample Type: GW			
. 3						,,,,,,,	•		
COMMENT	S AND OBS	ERVATIONS	S:	Well very m	udy, would	not pump, hand	I bailed dry, ther	sampled u	pon
				recharge		1 1/			

GROUNDWATER SAMPLING PURGE FORM

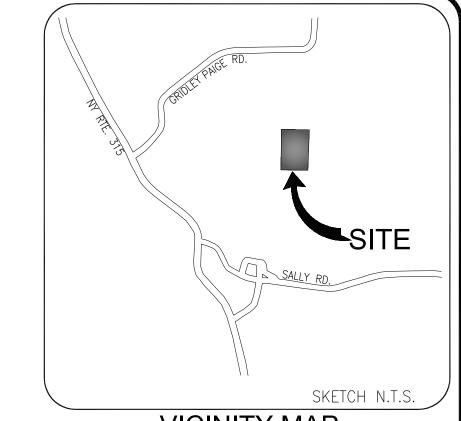
Well I.D.:		EA Personnel:		Client: NYSDEC Weather:					
MW03 Location:			Dave Crandall/John Clark Well Condition:						
								Town of Ma	rshall, New Y
Sounding I	Method:		Gauge Dat	e:		Measurement	Ref:		
	WLI		15-Nov-07	7			top of casing		
Stick Up/Do	own (ft):		Gauge Tim	ie:		Well Diameter	(in):		
	Stick up		900)			2"		
Purge Date	:				Purge Tir	ne:			
15-Nov-07	•				922	2			
Purge Meth	nod:				Field Tec	hnician:			
Peristaltic					Dave Cra	ndall/John Clark			
				Well	Volume	!			
A. Well Dep	oth (ft):		D. Well Vo	lume (ft):		Depth/Height	of Top of PVC:		
	33.36			0.16532		2'			
B. Depth to	Water (ft):					Pump Type:			
	26.16		1.190304				Geopump2		
C. Liquid Depth (ft) (A-B):			F. Five We	II Volumes (gal) (E3):	Pump Designation:			
	7.2		5.95152						
			1	Nater Qua	lity Para	meters			
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(S/m)	(mg/L)	(ntu)
922	26.16	-	-	7.95	52	9.36	0.659	4.90	1443
926	26.51	2	0.5	7.56	64	9.39	0.653	3.90	1439
930	26.49	4	0.5	7.53	74.1	9.42	0.656	2.86	1099
934	26.12	6	0.5	7.54	82	9.41	0.655	2.84	53
938	26.48	8	0.5	7.45	81.7	9.43	0.650	2.76	20.8
				-					
				1					
Total Ouen	tity of Water	Domovod ((aal).	2		Compling Tim	••	1030	
Samplers:	tity of Water	Kemovea	(gai):	DC/JC	-	Sampling Tim Split Sample \	_	1030	
Sampling [Jate.			15-Nov-07	-	Sample Type:	· · · · · · · · · · · · · · · · · · ·	GW	
Jamping L	oult.			10-1107-07	-	Sample Type.	-	GVV	
COMMENT	S AND OBSE	ERVATIONS	S:	DUP-03 for	Pesticides	and MS/MSD co	ollected at MW03	3	

Appendix G
Site Survey Map

WOODED AREA WOODED AREA WOODED AREA CP-20 N 15606213.436 E 1532873.297 ELEV 1058.80' WOODED AREA WOODED AREA yautututu WOODED AREA SS 10 **€** SS 14 **€** SS 25 **€** SS 24 CP-10 N 15606012.451 E 1532892.355 ELEV 1059.82'

MARSHALL TRANSFORMER SITE

WELL AND SAMPLE TABLE


	UTM ZC	ONE 18	NAVD88	
ID	NORTHING	EASTING	ELEVATION	DESC.
			1058.73	GROUND
MVV-1	15606074.8	1532953.5	1060.94	CASING
			1060.78	RISER
MW-2	15606089.8	1532788.1	1059.46 1061.5	GROUND CASING
IVI V V-Z	13606069.6	1552766.1	1061.26	RISER
			1057.49	GROUND
MVV-3	15606181.6	1532906.3	1060.26	CASING
			1060.11	RISER
SB 01	15606208.4	1532764.0	1066.7	GROUND
SB 02	15606173.1	1532836.2	1057.5	GROUND
SB 03	15606150.3	1532839.2	1057.6	GROUND
SB 04	15606157.5	1532800.0	1058.5	GROUND
SB 05	15606070.6	1532808.4	1058.7	GROUND
SB 06	15606068.2	1532867.9	1058.0	GROUND
SB 07 SB 08	15606062.5 15606093.0	1532917.0 1532977.2	1058.6 1057.7	GROUND GROUND
SB 09	15606093.0	1532977.2	1057.7	GROUND
SB 10	15606093.4	1532905.5	1057.0	GROUND
SB 11	15606112.0	1532865.3	1057.7	GROUND
SB 12	15606121.9	1532898.4	1056.9	GROUND
SS 02	15606062.6	1532902.0	1058.0	GROUND
SS 03	15606065.6	1532854.5	1058.2	GROUND
SS 04	15606067.3	1532801.1	1058.7	GROUND
SS 06	15606105.7	1532853.6	1058.6	GROUND
SS 08	15606100.7	1532956.2	1058.3	GROUND
SS 10	15606142.3	1532903.4	1056.9	GROUND
SS 11	15606147.3	1532856.8	1057.0	GROUND
SS 12	15606147.9	1532807.1	1058.8	GROUND
SS 13	15606125.6	1532937.9	1057.2	GROUND
SS 14 SS 17	15606108.5 15606075.3	1532828.0 1532938.8	1058.8 1058.4	GROUND GROUND
SS 18	15606073.3	1532935.9	1060.4	GROUND
SS 19	15606148.0	1532834.2	1057.7	GROUND
SS 22	15606224.4	1532947.6	1060.4	GROUND
SS 23	15606150.4	1532927.1	1056.9	GROUND
SS 24	15606032.7	1532870.6	1058.1	GROUND
SS 25	15606035.4	1532833.3	1058.2	GROUND
TP-1	15606215.4	1532925.4	1060.0	Α
11 -1	15606207.6	1532914.8	1059.3	В
	15606228.6	1532969.7	1063.4	Α
TP-2 / 2A	15606215.4	1532964.2	1060.6	В
	15606196.1	1532958.9	1059.9	С
TP-3	15606166.9	1532954.5	1057.2	<u>A</u>
	15606146.8 15606126.4	1532942.9 1532947.7	1057.1	<u>B</u>
TP-4	15606126.4	1532933.5	1057.6 1057.3	<u>А</u> В
	15606033.6	1532896.7	1059.0	<u>В</u>
TP-6	15606014.3	1532897.0	1060.0	
	15606078.8	1532901.8	1057.4	A
TP-7	15606065.5	1532901.4	1058.1	В
TD 0	15606080.9	1532764.3	1059.8	Α
TP-8	15606063.1	1532761.5	1059.7	В
TP-9	15606090.0	1532840.9	1058.7	Α
11-9	15606073.2	1532848.3	1058.4	В
TP-10	15606136.1	1532882.6	1056.2	Α
11 10	15606123.2	1532872.7	1056.7	В
TP-11	15606131.0	1532793.1	1064.3	A
	15606104.7	1532802.5	1059.6	В
TP-12	15606325.3	1532891.5	1057.0	<u>A</u>
	15606312.2	1532894.6	1055.7	B
TP-13	15606299.2	1532913.0	1056.4	A
	15606302.3	1532927.4 1532873.9	1058.2	<u>В</u>
TP-14	15606276.9 15606274.3	1532873.9 1532889.7	1056.5 1056.9	<u>А</u> В
	+	1532803.3	1058.1	
TP-16	15606177.0			A
	15606171.2	1532809.4	1057.9	<u>B</u>
TP-17	15606163.3	1532818.8	1057.9	A
1	15606154.8	1532831.5	1057.7	В

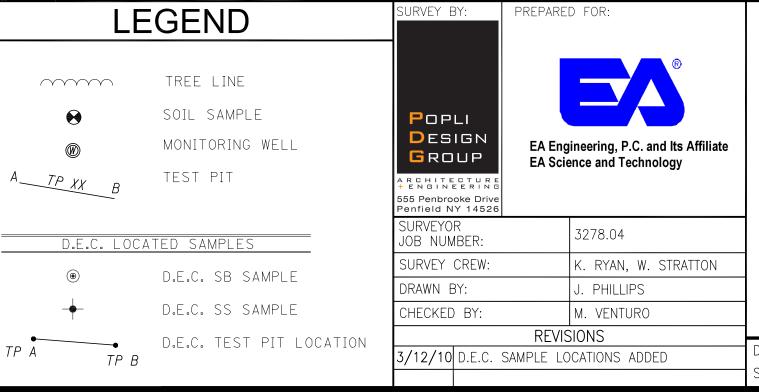
MARSHALL TRANSFORMER SITE

SAMPLE LOCATIONS PROVIDED BY D.E.C.

	UTM Z	ONE 18
LOCATION ID	NORTHING	EASTING
SB 13	15606141.032	1532810.812
SB 14	15606130.310	1532833.713
SB 15	15606060.979	1532840.865
SB 16	15606095.133	1532876.987
SB 17	15606161.570	1532889.355
SB 18	15606163.243	1532912.059
SB 19	15606113.899	1532903.660
SB 20	15606086.603	1532934.959
SB 21	15606136.603	1532968.489
TP 05A	15606087.653	1532972.754
TP 05B	15606078.663	1532948.804
SS 26	15606132.994	1532841.521
SS 27	15606085.881	1532831.875
SS 28	15606074.956	1532881.744
SS 29	15606137.981	1532921.344
SS 05	15606110.651	1532802.348
SS 07	15606106.124	1532902.118
SS 09	15606153.302	1532960.582
SS 16	15606078.040	1532905.858
SS 20	15606177.876	1532847.000
SS 01	15606062.587	1532950.937
SS 15	15606090.802	1532880.497
SS 21	15606308.814	1532899.034
TP 15A	15606057.371	1532941.455
TP 15B	15606043.788	1532943.424
TP 18A	15606186.078	1532861.304
TP 18B	15606174.037	1532866.554

*THE COORDINATES ABOVE WERE PROVIDED BY THE N.Y.S. D.E.C.; POPLI DESIGN GROUP SURVEY PERSONNEL DID NOT FIELD VERIFY THE LOCATION OF THESE SAMPLES.

VICINITY MAP


(SURVEY NOTES)

- 1.) MAPPING HEREON IS REFERENCED TO NAD 83/96 UTM ZONE 18.
- 2.) ELEVATIONS HEREON ARE REFERENCED TO NAVD 88.
- 3.) PROJECT UNITS ARE U.S. SURVEY FEET.
- 4.) THE CONTOUR INTERVAL IS ONE (1) FOOT.

(CERTIFICATION)

WE, POPLI, ARCHITECTURE + ENGINEERING & L.S., P.C., HEREBY CERTIFY THAT THIS SURVEY AND MAP WAS PREPARED UNDER THE DIRECTION OF A LICENSED LAND SURVEYOR, FROM THE NOTES OF AN INSTRUMENT SURVEY COMPLETED NOVEMBER 12, 2007.

TOPOGRAPHIC MAP

FOR THE NEW YORK STATE D.E.C.

MARSHALL TRANSFORMER SITE

SITE NO. 6-33-019

Town of Marshall, County of Oneida, State of New York

DATE: JANUARY 20, 2010 SCALE: 1" = 20'

WOODED AREA WOODED AREA WOODED AREA WOODED AREA CP-20 N 1081809.37 E 1136435.01 ELEV 1058.80' WOODED AREA \ WOODED AREA SS 10 WOODED AREA SS 14 SB 10 TP 15A SS 01 SB 07 **€** SS 25 SS 24

MARSHALL TRANSFORMER SITE

WELL AND SAMPLE TABLE

	NYSPCS-CE	NTRAL ZONE	NAVD88	
ID	NORTHING	EASTING	ELEVATION	DESC.
			1058.73	GROUND
MVV-1	1081672.2	1136517.8	1060.94	CASING
			1060.78	RISER
			1059.46	GROUND
MW-2	1081684.1	1136352.1	1061.5	CASING
			1061.26	RISER
			1057.49	GROUND
MW-3	1081778.1	1136468.7	1060.26	CASING
	1001000	4400005.0	1060.11	RISER
SB 01	1081802.2	1136325.8	1066.7	GROUND
SB 02	1081768.3 1081745.6	1136398.7	1057.5	GROUND
SB 03 SB 04	1081745.6	1136402.1 1136362.7	1057.6 1058.5	GROUND GROUND
SB 04 SB 05	1081752.0	1136362.7	1058.5	GROUND
SB 05	1081664.0	1136432.4	1058.7	GROUND
SB 06	1081659.3	1136432.4	1058.6	GROUND
SB 08	1081690.8	1136541.3	1057.7	GROUND
SB 09	1081694.2	1136514.9	1058.0	GROUND
SB 10	1081689.9	1136469.5	1057.0	GROUND
SB 11	1081707.7	1136428.9	1057.7	GROUND
SB 12	1081718.3	1136461.9	1056.9	GROUND
SS 02	1081659.0	1136466.6	1058.0	GROUND
SS 03	1081661.1	1136419.0	1058.2	GROUND
SS 04	1081661.9	1136365.6	1058.7	GROUND
SS 06	1081701.3	1136417.3	1058.6	GROUND
SS 08	1081698.2	1136520.0	1058.3	GROUND
SS 10	1081738.8	1136466.4	1056.9	GROUND
SS 11	1081742.9	1136419.8	1057.0	GROUND
SS 12	1081742.6	1136370.0	1058.8	GROUND
SS 13	1081722.8	1136501.3	1057.2	GROUND
SS 14	1081703.5	1136391.7	1058.8	GROUND
SS 17	1081672.5	1136503.1	1058.4	GROUND
SS 18	1081625.0	1136491.1	1060.4	GROUND
SS 19	1081743.2	1136397.1	1057.7	GROUND
SS 22	1081821.8	1136509.1	1060.4	GROUND
SS 23	1081747.3	1136490.1	1056.9	GROUND
SS 24	1081628.6	1136435.7	1058.1	GROUND
SS 25	1081630.6	1136398.3	1058.2	GROUND
TP-1	1081812.3	1136487.1	1060.0	A
	1081804.3	1136476.6	1059.3	В
TD 0 / 04	1081826.3	1136531.1	1063.4	A
TP-2 / 2A	1081813.1	1136525.9	1060.6	В
	1081793.7	1136521.0	1059.9	С
TP-3	1081764.4 1081744.0	1136517.1 1136505.9	1057.2 1057.1	A B
	1081744.0	1136505.9	1057.1	
TP-4	1081723.8	1136497.2	1057.8	A B
	1081704.5	1136461.8	1057.3	A
TP-6	1081610.6	1136462.4	1060.0	B
	1081675.2	1136466.0	1057.4	A
TP-7	1081662.0	1136465.9	1057.4	B
	1081674.7	1136328.4	1059.8	A
TP-8	1081656.9	1136326.1	1059.7	
	1081685.3	1136404.9	1058.7	A
TP-9	1081668.6	1136412.7	1058.4	В
	1081732.2	1136445.8	1056.2	A
TP-10	1081732.2	1136436.1	1056.7	B
	1081719.1	1136356.3	1064.3	A
TP-11	1081699.3	1136366.2	1059.6	B
	1081999.5	1136451.1	1059.0	A
TP-12	1081921.6	1136454.5	1057.0	B
	1081895.9	1136474.5	1056.4	A
TP-13	1081899.3	1136487.4	1058.2	B
	1081899.3	1136434.4	1056.5	A A
TP-14	1081870.5	1136454.4	1056.5	B A
	1081770.5	1136365.6	1058.1	
TP-16				A
	1081765.9	1136371.9	1057.9	В

1136381.4

1136394.3

1081750.0

1057.9

1057.7

MARSHALL TRANSFORMER SITE

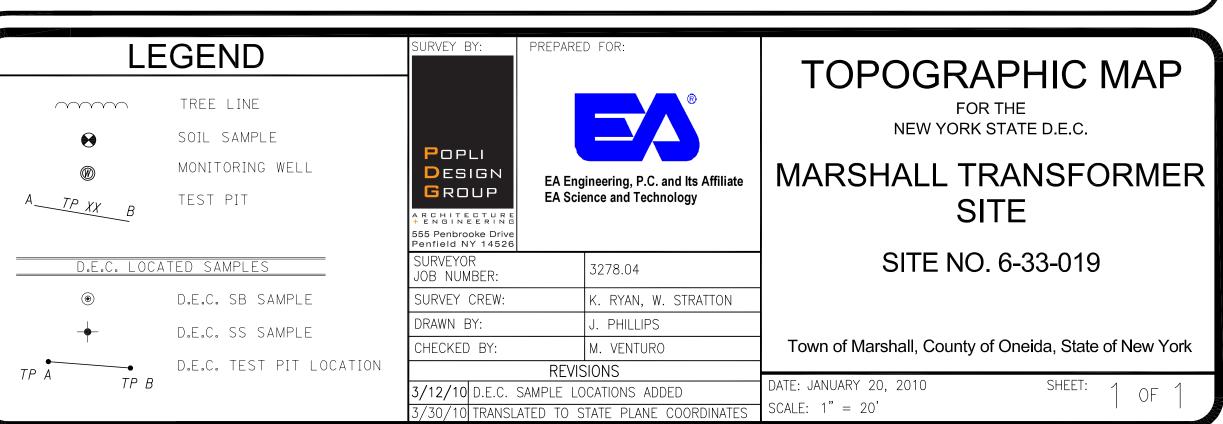
SAMPLE LOCATIONS PROVIDED BY D.E.C.

	NYSPCS-CENTRAL ZONE				
LOCATION ID	NORTHING	EASTING			
SB 13	1081735.8	1136373.9			
SB 14	1081725.5	1136397.0			
SB 15	1081656.3	1136405.4			
SB 16	1081691.1	1136440.9			
SB 17	1081757.8	1136452.0			
SB 18	1081759.9	1136474.7			
SB 19	1081710.4	1136467.3			
SB 20	1081683.7	1136499.1			
SB 21	1081734.3	1136531.7			
TP 05A	1081685.4	1136536.9			
TP 05B	1081676.0	1136513.1			
SS 26	1081728.3	1136404.7			
SS 27	1081681.0	1136396.0			
SS 28	1081671.0	1136446.1			
SS 29	1081734.8	1136484.5			
SS 05	1081705.2	1136366.0			
SS 07	1081702.6	1136465.9			
SS 09	1081750.9	1136523.5			
SS 16	1081674.6	1136470.1			
SS 20	1081773.3	1136409.4			
SS 01	1081659.9	1136515.5			
SS 15	1081686.8	1136444.5			
SS 21	1081905.3	1136459.0			
TP 15A	1081654.6	1136506.1			
TP 15B	1081641.0	1136508.4			
TP 18A	1081781.8	1136423.5			
TP 18B	1081769.8	1136429.0			

*THE COORDINATES ABOVE WERE PROVIDED BY THE N.Y.S. D.E.C.; POPLI DESIGN GROUP SURVEY PERSONNEL DID NOT FIELD VERIFY THE LOCATION OF THESE SAMPLES.

SKETCH N.T.S.

VICINITY MAP


(SURVEY NOTES)

- 1.) MAPPING HEREON IS REFERENCED TO NAD 83/96 NEW YORK STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE.
- 2.) ELEVATIONS HEREON ARE REFERENCED TO NAVD 88.
- 3.) PROJECT UNITS ARE U.S. SURVEY FEET.
- 4.) THE CONTOUR INTERVAL IS ONE (1) FOOT.

(CERTIFICATION)

WE, POPLI, ARCHITECTURE + ENGINEERING & L.S., P.C., HEREBY CERTIFY THAT THIS SURVEY AND MAP WAS PREPARED UNDER THE DIRECTION OF A LICENSED LAND SURVEYOR, FROM THE NOTES OF AN INSTRUMENT SURVEY COMPLETED NOVEMBER 12, 2007.

Appendix H

Data Usability Summary Report – Provided on CD

Appendix I

Laboratory Analytical Data – Provided on CD

Appendix J GIS Data – Provided on CD