Final April 2015 Long-Term Monitoring Data Summary Report

AOC 9 (SD-62) Former Griffiss Air Force Base Rome, New York

Contract No. W912DQ-09-D-3013

December 2015

Prepared for:

U.S. ARMY CORPS OF ENGINEERS

Kansas City District 601 East 12th Street Kansas City, Missouri 64106

Prepared by:

ECOLOGY AND ENVIRONMENT ENGINEERING, P.C. 368 Pleasant View Drive Lancaster, New York 14086

Under Contract to:

PARSONS GOVERNMENT SERVICES, INC.

301 Plainfield Road, Suite 360 Syracuse, New York 13212

©2015 Ecology and Environment Engineering, P.C.

Certificate of Compliance

Final April 2015 Long-Term Monitoring Data Summary Report AOC 9 Former Griffiss Air Force Base, Rome, New York.

December 2015

On behalf of Ecology and Environment Engineering, P.C. (EEEPC), the undersigned certify that the attached document(s) were developed in conformance with EEEPC's Scope of Work, contract requirements, and EEEPC's Quality Control Plan.

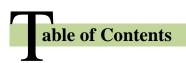
Marcia M. Galloway

Quality Control Manager (or designee)

Thomas Radenin

Program Manager (or designee)

Robert a Meyon


Project Manager (or designee)

<u>9/9/15</u> Date

9/9/15

Date

9/4/15 Date

Section

Page

1	Intr	oduction1-1
	1.1	Purpose of Investigation
	1.2	AOC 9 Site Description
	1.3	AOC 9 Previous Investigation Background
	1.4	AOC 9 Remedial Design and Monitoring Summary 1-7
2	AO	C 9 Long-Term Monitoring Activities2-1
	2.1	Scope of Work
		2.1.1 Groundwater Sampling
		2.1.2 Surface Water Sampling
		2.1.3 Groundwater Elevation Measurements
		2.1.4 Well Inspections and Maintenance
	2.2	Equipment Decontamination
	2.3	Investigation Derived Waste
	2.4	Quality Assurance/Quality Control
	2.5	Work Plan Deviations
	2.6	PermeOx Injection Pre-Design Sampling Summary
3	AO	C 9 Long-Term Monitoring Findings
	3.1	April 2015 Long-Term Monitoring
		3.1.1 Groundwater Sampling Results
		3.1.2 Surface Water Sampling Results
		3.1.3 Trend Analysis
		3.1.4 MAROS Evaluation
		3.1.5 April 2015 Summary
	3.2	PermeOx® Injection Summary
4	Eff	ectiveness of Remedy4-1
	4.1	Recommendations
5	Ref	ferences5-1

Appendix

Α	Final Performance Monitoring Data Summary Report Figures
В	Daily Activity FormsB-1
С	Sampling Forms C-1
D	PhotologD-1
E	Well Status Log and Maintenance Summary E-1
F	Analytical DataF-1
G	Data Usability Summary ReportG-1
н	MAROSH-1

ist of Tables

Table	F	Page
1-1	AOC 9 Groundwater Cleanup Goals/Remedial Action Objectives	1-8
2-1	AOC 9 Long-Term Monitoring, Groundwater and Surface Water Sample Summary, Former Griffiss Air Force Base, Rome, New York	2-5
2-2	AOC 9 Long-Term Monitoring Groundwater Elevation Data, Former Griffiss Air Force Base, Rome, New York	2-6
2-3	PermeOx Injection Pre-Design Sampling Results	2-7
3-1	AOC 9 April 2015 Long-Term Monitoring, Summary of Positive Results for Groundwater Samples	.3-12
3-2	AOC 9 April 2015 Long-Term Monitoring, Summary of Positive Results for Surface Water Samples	.3-14
3-3	AOC 9 Historic Groundwater Sample Results	3-15
3-4	AOC 9 Historic Surface Water Sample Results	. 3-35

ist of Figures

Figure		Page
1-1	AOC 9, Former Griffiss Air Force Base, Rome, New York	1-9
2-1	Long-Term Monitoring Sample Location Map	2-9
2-2	AOC 9: Groundwater Contour Map - April 6, 2015	2-11
3-1	April 2015 Long-Term Monitoring Total Volatile Organic Compound Concentrations in Groundwater and Surface Water	3-37
3-2a	AOC9 Remedial Monitoring, Chlorobenzene Plume (July 2010 through April 2012)	3-39
3-2b	AOC 9 Remedial Monitoring, Chlorobenzene Plume (September 2012 through April 2015)	3-41
3-3a	AOC 9 Remedial Monitoring, TCE Plume (July 2010 through April 2012)	3-43
3-3b	AOC 9 Remedial Monitoring, TCE Plume (September 2012 through April 2015)	3-45
3-4a	AOC 9 Remedial Monitoring, Total DCB Plume (July 2010 through April 2012)	3-47
3-4b	AOC 9 Remedial Monitoring, Total DCB Plume (September 2012 through April 2015)	3-49
3-5	G009-MW01 Trend Analysis	3-51
3-6	G009-MW02 Trend Analysis	3-52
3-7	AOC9-MW06 Trend Analysis	3-53
3-8	AOC9-MW14 Trend Analysis	3-54
3-9	AOC9-MW15 Trend Analysis	3-55
3-10	AOC9-MW17 Trend Analysis	3-56
3-11	AOC9-MW18 Trend Analysis	3-57
3-12	AOC9-MW19 Trend Analysis	3-58

ist of Abbreviations and Acronyms

AFCEC	Air Force Civil Engineering Center			
AOC 9	Area of Concern 9			
BGS	below ground surface			
BTEX	benzene, toluene, ethylbenzene, and xylene			
CD	compact disk			
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act			
COC	contaminant of concern			
DCB	dichlorobenzene			
DCE	dichloroethylene			
DO	dissolved oxygen			
DUSR	Data Usability Summary Report			
EEEPC	Ecology and Environment Engineering, P.C.			
EPA	(United States) Environmental Protection Agency			
ERPIMS	Environmental Restoration Program Information Management System			
ESI	Expanded Site Investigation			
FID	flame ionization detector			
Griffiss AFB	former Griffiss Air Force Base			
MAROS	Monitoring and Remediation Optimization System Software Version 2.2			
MCL	maximum contaminant level			
μg/L	micrograms per liter			
mg/kg	milligrams per kilogram			
MW	monitoring well			

List of Abbreviations and Acronyms (cont.)

NYSDEC	NYSDEC New York State Department of Environmental Conservation				
ORP	oxidation reduction potential				
Parsons	Parsons Government Services, Inc.				
PCE	tetrachloroethylene				
PDI	Predesign Investigation				
PDI 2	second predesign investigation				
PID	photoionization detector				
QA	quality assurance				
QC	quality control				
RAO	remedial action objective				
SI	Supplemental Investigation				
SW	surface water				
TCE	trichloroethylene				
USACE	U.S. Army Corps of Engineers				
VOC	volatile organic compound				
WSA	Weapons Storage Area				

1

Introduction

Ecology and Environment Engineering, P.C. (EEEPC), under contract to Parsons Government Services, Inc. (Parsons), which is under contract to the U.S. Army Corps of Engineers (USACE) Kansas City District (Contract No. W912DQ-09-D-3013) performed the third round of long-term groundwater and surface water monitoring at Area of Concern 9 (AOC 9) of the former Griffiss Air Force Base (Griffiss AFB) in Rome, New York, on April 6 to 8, 2015 (see Figure 1-1). Two previous rounds of long-term groundwater and surface water monitoring and four previous rounds of performance groundwater and surface water monitoring were provided under separate cover in the Final May 2011 and October 2011 Performance Monitoring Data Summary Report, the Final April and September 2012 Performance Monitoring Data Summary Report, the Final April 2013 Long-Term Monitoring Data Summary Report, and the Final April 2014 Long-Term Monitoring Data Summary Report (EEEPC 2013a, 2013b, 2014, and 2015). The field activities for the third round of long-term monitoring are described in Section 2. The results of the third round of long-term monitoring data are presented in Section 3 and the effectiveness of the remedy is presented in Section 4. In addition, figures from the first and second rounds of long-term groundwater and surface water monitoring, and four rounds of performance monitoring sampling are provided in Appendix A for comparison purposes.

1.1 Purpose of Investigation

The three-phased groundwater monitoring program consists of baseline, performance, and long-term monitoring of volatile organic compound (VOC) levels in the groundwater and in Six Mile Creek. A phased approach is consistent with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) response action process. Monitoring well data are screened against the most stringent of either the New York State Department of Environmental Conservation (NYSDEC) Class GA groundwater criteria or the United States Environmental Protection Agency (EPA) maximum contaminant levels (MCLs) (NYSDEC 2009; EPA 2006), which also represent the remedial action objectives (RAOs) established in the *Final Record of Decision* for this site (EEEPC 2010a). For the contaminants of concern (COCs) at AOC 9, the NYSDEC Class GA criteria for groundwater are the more stringent of the screening criteria (see Table 1-1). Surface water samples are screened against the NYSDEC Class GA groundwater criteria (NYSDEC 2009). The baseline sampling conducted from July 27 to 29, 2010 consisted of groundwater sampling of eight monitoring wells (G009-MW01, G009-MW02, AOC9-MW05, MW06, MW14, MW15, MW17, and MW18) and surface water sampling of three locations (AOC9-SW01, SW02, and SW03). These groundwater and surface water samples were analyzed to establish baseline VOC concentrations in the groundwater plume and Six Mile Creek before remediation began (EEEPC 2010c).

The performance monitoring was conducted to evaluate the short-term effectiveness of the remediation efforts with a total of four sampling events over two years (May 2011, October 2011, April 2012, and September 2012). The performance monitoring consisted of groundwater sampling of five monitoring wells (AOC9-MW06, MW14, MW15, MW17, and MW19) and surface water sampling of three locations (AOC9-SW01, SW02, and SW03).

The long-term effectiveness of the remediation efforts is monitored during the first three years of annual long-term monitoring with annual sampling events. The long-term monitoring consists of groundwater sampling of nine monitoring wells (G009-MW01, G009-MW02, AOC9-MW05, MW06, MW14, MW15, MW17, MW18, and MW19) and surface water sampling of three locations (AOC9-SW01, SW02, and SW03). This third sampling event is identified as the April 2015 long-term monitoring. Sampling events for the first and second long-term monitoring events were performed in April 2013 and April 2014, respectively.

Following the first three years of annual long-term monitoring, it is anticipated that monitoring will continue on an every-other-year basis, with the next longterm monitoring event to occur in April 2017, until concentrations of hazardous substances in groundwater are below the RAOs. Once the RAOs have been achieved, monitoring will continue until three consecutive rounds of sampling indicate that the concentrations of groundwater contaminants remain below RAOs (for a total of four consecutive sampling rounds). At that point, the Air Force will petition the regulatory agencies for no further action. Modeling performed during evaluation of the remedial alternatives for AOC 9 indicated that the total duration of the remedial action would likely span 11 years beginning in November 2013 with the completion of the remedial action (EEEPC 2010d). While the Monitoring and Remediation Optimization System Software Version 2.2 (MAROS) trends indicate that the remedy is operating successfully, insufficient data is available to determine if RAOs will be met in 11 years (i.e., only two datasets are available since the injection occurred). However, an approximate 98% reduction in total VOC concentration for all wells has been seen since baseline sampling. Total VOC concentration from temporary well TW39 was included as MW19, since MW19 was installed in the location of TW39 and the screened interval for MW19 targets the previously screened interval by TW39.

1.2 AOC 9 Site Description

AOC 9 is a grass-covered area approximately 1,500 feet long and 650 feet wide located in the southwest portion of the inactive Weapons Storage Area (WSA; see Figure 1-1). The site is part of a strip of land that lies between an airplane runway to the southwest and extends into the WSA to the northeast. Perimeter Road runs through the site and Six Mile Creek borders the southwestern edge of the site.

The area comprising AOC 9 was originally farmland in the 1930s before the base was constructed. In the 1940s and 1950s, the first landfill for the base was established beneath the northern portion of the WSA extending south between Perimeter Road and Six Mile Creek. Aerial photographs show that the landfill was active between 1943 and 1957 but no later than 1960. The type of material buried at this site is unknown; however, it is reported that large quantities of the landfill material were removed during construction of the WSA.

Two munitions storage bunkers were erected between Perimeter Road and Six Mile Creek in the early 1950s. One of the bunkers (also referred to as igloos) was removed in the late 1970s or early 1980s (before 1981), and the other bunker was removed in 1992. Although the bunkers were initially used for munitions storage, they were later used to store hazardous materials.

The site's status was changed from "Area of Interest" to "Area of Concern" in 1998 when groundwater samples collected during the Expanded Site Investigation (ESI) were found to contain chlorinated solvents at concentrations exceeding NYSDEC Class GA standards and EPA MCLs (EPA 2006; NYSDEC 2009).

AOC 9 is currently inactive and access is somewhat restricted by Perimeter Road Gates 4 and 11. The southern portion of this area is expected to remain vacant in the future, acting as a buffer zone between the runway and future development in adjacent areas. The northern portion of the site extends into the former WSA boundary and is expected to be zoned as a nonresidential, industrial area.

The ground surface at AOC 9 slopes gently downward toward Six Mile Creek. Groundwater flows southwest toward the creek. Depth to groundwater is approximately 10 to 12 feet but is closer to the ground surface between Perimeter Road and Six Mile Creek. There are several locations in this area where shallow groundwater discharges to the surface. Three intermittent drainageways that discharge to Six Mile Creek exist on the southern portion of the site.

Debris (e.g., glass, slag, bricks, ceramics, cinderblocks, asphalt, concrete, wire, and metal) encountered during test pit excavations in the southern portion of the former landfill (south of the WSA) accounted for less than 1% by volume of excavated material. The lack of waste materials observed from the test pit excavations support reports that the contents of the former WSA landfill had been removed before the WSA was built.

Prior to excavation of the contaminant source area, a contaminated groundwater plume (chlorobenzene, trichloroethylene [TCE], dichloroethylene [DCE]) extended downgradient from AOC 9 for approximately 1,500 feet and covered approximately 14.6 acres. The lateral extent of the plume was approximately 400 feet and the vertical extent range was from ground surface to approximately 20 feet below ground surface (BGS). The leading edge of the plume had reached Six Mile Creek.

The contaminated aquifer is composed of silty-fine to medium-grained sands with little coarse sand with discontinuous gravel seams. North of Perimeter Road, the aquifer is found in an interval from approximately 3 to 28 feet BGS. South of Perimeter Road there is less overburden and the aquifer extends from 1 to 18 feet BGS. A thin till layer above the Utica Shale bedrock underlies the aquifer, but contamination has not been detected in the bedrock.

1.3 AOC 9 Previous Investigation Background

In 1997, an ESI was performed (E & E 1998). The main objective of the ESI was to investigate the nature and extent of environmental contamination from historical releases at the site in order to determine whether any remedial action was necessary to prevent potential threats to human health and the environment arising from exposure to site conditions.

The ESI included the installation and sampling of four permanent monitoring wells. Analytical results indicated the presence of benzene, chlorobenzene, cis-1,2-DCE, 1,2-dichlorobenzene (DCB), 1,3-DCB, 1,4-DCB, tetrachloroethylene (PCE), and TCE in one or more wells in concentrations that exceeded screening criteria. Several metals, including aluminum, iron, manganese, and potassium, were also detected in concentrations that exceeded screening criteria in one or more wells.

In 2000, a Supplemental Investigation (SI) was performed. A total of 88 Geoprobe and six Hydropunch groundwater screening samples were collected from 45 locations. Twenty-six of the 45 locations were vertically profiled (i.e., up to three samples were collected from different depths at the same location). In addition, four new monitoring wells were installed and sampled, and four existing monitoring wells were resampled. Analytical results for the Geoprobe/samples indicated the presence of 16 VOCs at levels exceeding the most stringent criteria. Analytical results for the monitoring wells indicated the presence of 14 VOCs and five metals at concentrations exceeding the most stringent screening criteria.

In 2002, a second SI was performed to collect additional data to further delineate the chlorinated hydrocarbon plume and determine if petroleum hydrocarbons were present within the groundwater. A total of 56 Geoprobe groundwater screening samples were collected from 14 locations. Eleven of the 14 locations were vertically profiled (i.e., up to five samples were collected from different depths at the same location). Analytical results for the Geoprobe samples indicated the presence of 15 VOCs at levels that exceeded the most stringent screening criteria.

Based on these results, the overall shape of the contaminant plume at that time appeared to be linear and oriented northeast/southwest (approximately 850 feet long) with a relatively narrow center. The downgradient portion appeared to be the widest due to natural dispersion and the change in direction of groundwater flow in proximity to the creeks. Subsequent investigations provided additional data to better define the entire plume.

During the SI, five test pits were excavated to the water table and groundwater samples were collected to determine if petroleum hydrocarbons were present within the groundwater. Analytical results indicated that there was no significant petroleum hydrocarbon contamination in the test pit samples.

During the first predesign investigation (PDI) conducted in September through November 2006 by EEEPC, four additional groundwater monitoring wells (MWs; AOC9-MW14 through MW17) were installed at the site. Twenty-three different VOCs were detected in at least one of the groundwater samples collected during this investigation. The highest concentrations of total VOCs (1,2-DCB, 1,4-DCB, chlorobenzene, and benzene) were detected in presumed upgradient wells MW14 and MW15 at 2,082 micrograms per liter (μ g/L) and 1,989 μ g/L, respectively. These concentrations at presumed upgradient wells prompted further investigation and a potential source of groundwater contamination was found in the soil upgradient of Six Mile Creek and Perimeter Road. Two additional PDIs were conducted to determine the extent and nature of this source.

The second predesign investigation (PDI 2) was performed in February through April 2007. This study included the installation of 25 temporary monitoring wells and identified areas containing significantly higher levels of chlorobenzene and related compounds east of Building 913. Monitoring wells TW39 and TW32 had chlorobenzene concentrations of 14,400 μ g/L and 8,580 μ g/L, respectively. These concentrations were five to 10 times higher than the highest concentrations historically detected at AOC 9.

A third predesign investigation (Additional PDI) was performed in June through October 2007 to better define the plume and further identify the potential soil contaminant source area. During this investigation, a total of 56 new temporary monitoring wells were installed around the site. Twenty-two different VOCs were detected in the groundwater samples collected from the temporary monitoring wells at concentrations exceeding the groundwater standards. The highest total VOC concentrations were detected in groundwater samples collected from temporary wells TW45 (3,100 μ g/L), TW71 (3,300 μ g/L), and TW100 (3,400 μ g/L). In addition, 42 boreholes were installed in the soil and soil cores were screened continuously with a photoionization detector and flame ionization detector (PID/FID) from ground surface to refusal (in the glacial till layer, approximately between 20 and 30 feet BGS). Samples were taken at depth intervals where the highest

PID/FID readings were measured. Twelve VOCs (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 1,2-DCB, 1,3-DCB, 1,4-DCB, chlorobenzene, ethylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, sec-butylbenzene, and toluene) were detected at concentrations exceeding screening criteria in the soil samples collected from the 42 soil borings. The highest total VOC concentrations were detected in soil samples collected from boreholes SB01 (1,100 milli-grams/kilogram [mg/kg]) and SB12 (1,600 mg/kg) with chlorobenzenes representing the largest fraction of VOCs. The sample results and field observations indicated that there was a 6-foot-thick gray-to-black smear zone of contamination at the top of the saturated zone, which is located at depths ranging from 8 to 17 feet BGS.

Based on the above PDIs, the soil east of Building 913 was identified as the source of the AOC 9 groundwater contamination.

Baseline sampling was conducted at AOC 9 from July 27 to July 29, 2010, to establish baseline VOC concentrations in the groundwater plume and Six Mile Creek, before the remedial action (source excavation) began on September 1, 2010 and are presented in the *Final Baseline Monitoring Data Summary Report*, *AOC 9 Former Griffiss Air Force Base, Rome, New York* (EEEPC 2010c). Baseline sampling consisted of sampling eight monitoring wells (G009-MW01, G009-MW02, AOC9-MW05, MW06, MW14, MW15, MW17, and MW18) and three surface water (SW) locations (AOC9-SW01, SW02, and SW03). Groundwater and surface water samples were analyzed for VOCs (EPA Method SW8260B).

Twenty-one VOCs, including chlorobenzene; 1,2-DCB; 1,4-DCB; TCE; PCE; and several petroleum compounds including benzene, toluene, ethylbenzene, and xylene (BTEX) were detected in the groundwater samples collected. Eleven of the contaminants were detected in at least one sample at concentrations exceeding NYSDEC Class GA Groundwater standards. The highest total VOC concentrations were detected in monitoring wells MW14 (2,100 μ g/L), MW15 (1,700 μ g/L), and MW17 (890 μ g/L). Monitoring wells MW14, MW15, and MW17 are located in the center of the plume downgradient of the contaminant source area (see Figure 1-2 in Appendix A).

A comparison of baseline analytical results to the historical analytical results indicated that the AOC 9 groundwater plume had, in general, remained relatively stable. Based on the analytical results obtained from monitoring wells MW01 and MW02, the plume did not appear to have widened south of Perimeter Road, nor does the leading edge of the plume appear to have continued to advance based on the analytical results obtained from monitoring wells MW05 and MW06. Surface water sample results obtained from sample locations SW01, SW02, and SW03 have also been relatively consistent. The upstream location (SW01) has had total VOC concentrations ranging from non-detect to $1.78 \mu g/L$. The location where the center of the groundwater contaminant plume intersects Six Mile Creek (SW02) has had total VOC concentrations ranging from non-detect to $5 \mu g/L$, and sample location SW03, at the downstream edge of the groundwater plume's intersection with Six Mile Creek has had total VOC concentrations ranging from non-detect to $4\,\mu\text{g/L}.$

1.4 AOC 9 Remedial Design and Monitoring Summary

The remedial design included removal of the source area through excavation of contaminated soil, which was completed in December 2010, treatment of contaminated groundwater using chemical oxidation, which was completed in November 2013, and land use controls (EEEPC 2010d). Additionally, three groundwater and surface water monitoring phases, baseline sampling, performance monitoring, and long-term monitoring, will be performed in conjunction with the remedial action as described in the Final Work Plan Baseline, Performance, and Long-Term Monitoring at AOC 9 (EEEPC 2010e). Baseline sampling was conducted to provide a snapshot of the groundwater contaminant levels prior to implementation of the remedial action for comparison to the groundwater monitoring, which will be performed after the remedial action. The May 2011, October 2011, April 2012, and September 2012 performance monitoring events were performed to evaluate the short-term effectiveness of the remediation efforts; by confirming the downward trend during the first two years following excavation, and determining which of the RAOs have been or have not been achieved, for each monitoring well sampled. The long-term monitoring will be performed to monitor the long-term effectiveness of the remediation efforts. The first and second long-term monitoring events were completed in April 2013 and April 2014, respectively.

As described in the work plan for the current contract, a total of eight sampling events are currently planned: one baseline sampling, four biannual performance monitoring, and three annual long-term monitoring. However, following the first three years of annual long-term monitoring, it is anticipated that monitoring will continue on an every-other-year basis by a new contractor until concentrations of hazardous substances in groundwater are below RAOs. After reaching the RAOs, the monitoring will again be performed until three consecutive rounds of sampling indicate that the concentrations of groundwater contaminants remain below the RAOs (for a total of four consecutive sampling rounds), allowing for unrestricted use of the site (EEEPC 2010e). If an increasing trend in contaminants of concern concentration is identified in any monitoring well or surface water sampling location (e.g., three consecutive monitoring events showing a statistically increasing trend), the Air Force will propose to the EPA and NYSDEC that additional action be performed. Additional oxidant injections or additional excavations may be executed without requiring either an Explanation of Significant Differences or Record of Decision amendment (EEEPC 2010a).

Additional activities at this site included installation and development of two new permanent monitoring wells (AOC9-MW18 and MW19). Monitoring well MW18 was installed by Parsons, prior to the baseline sampling, east of the treatment area and serves as an upgradient well (see Figure 2-1 for well locations). Total VOC concentration during baseline sampling in MW18 was $3.2 \mu g/L$. The remedial action at AOC 9 was conducted following the installation of MW18. Well MW19 was installed in the spring 2011, prior to the May 2011 performance

sampling, following the remedial excavation in the eastern portion of the groundwater contaminant source area at the location of former temporary well TW39, to function as a former source area well (see Figure 2-1 for well locations). The screened interval in MW19 targets the interval previously screened by temporary well TW39 (9.3 to 19.3 feet BGS), which contained a total VOC concentration of 21,610 μ g/L. MW19 was constructed with a 10-foot (0.01-inch slot) PVC screen in accordance with USACE protocols.

All existing monitoring wells were surveyed by the subcontractor, LaFave White & McGivern, during previous investigations to obtain horizontal locations and vertical elevations of each monitoring well. The surveys utilized the existing benchmarks located on Griffiss AFB and are in the New York Central North American Datum 83 State Plane coordinate system. Horizontal measurements and vertical measurements were obtained to accuracy of 0.001 foot and 0.01 foot, respectively.

Groundwater					
Contaminants of Concern ^a	Cleanup Goal ^ь (µg/L)				
1,2-Dichlorobenzene	3				
1,2-Dichloroethane	0.6				
1,2,4-Trimethylbenzene	5				
1,3,5-Trimethylbenzene	5				
1,3-Dichlorobenzene	3				
1,4-Dichlorobenzene	3				
Acetone	50				
Benzene	1				
Chlorobenzene	5				
cis-1,2-Dichloroethylene	5				
Ethylbenzene	5				
Isopropylbenzene	5				
Methylene Chloride	5				
Naphthalene	10				
n-Butylbenzene	5				
n-Propylbenzene	5				
o-Xylene	5				
sec-Butylbenzene	5				
Trichloroethylene	5				
tert-Butylbenzene	5				
Tetrachloroethylene	5				
Vinyl Chloride	2				
Xylene (Total)	5				

Notes:

^a From the Final Record of Decision for Area of Concern 9 (SD-62) (EEEPC 2010a).

^b New York State Department of Environmental Conservation (NYSDEC 2009) Class GA groundwater standard.

1 Introduction

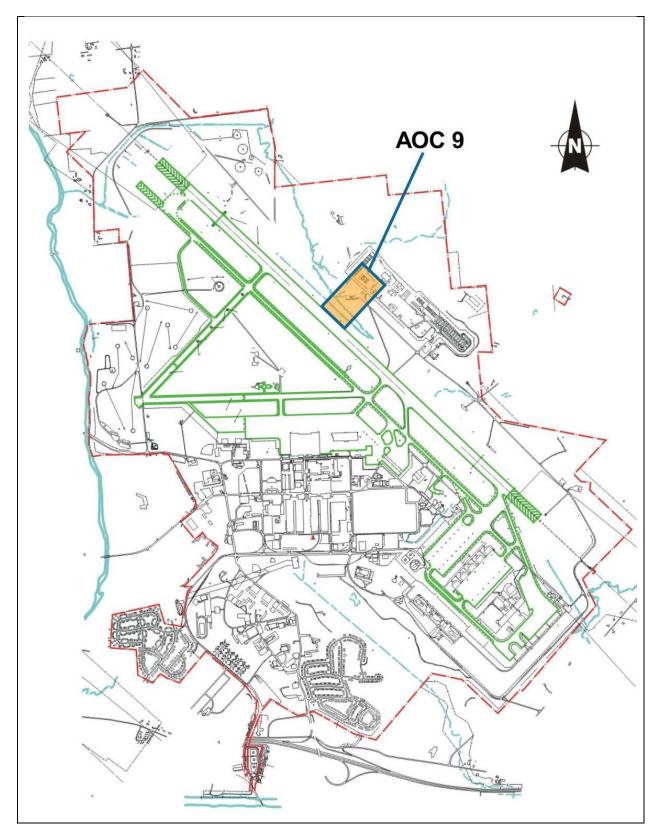


Figure 1-1 AOC 9, Former Griffiss Air Force Base, Rome, New York

AOC 9 Long-Term Monitoring Activities

This section presents the field activities performed during the AOC 9 April 2015 long-term monitoring (see Appendix B, Daily Activity Forms). The work performed at AOC 9 described in this report was performed in accordance with the work plan (EEEPC 2010e), with minor deviations from the work plan described in Section 2.5.

2.1 Scope of Work

April 2015 long-term sampling was conducted at AOC 9 in accordance with the work plan as described in Section 1.4 (EEEPC 2010e). Long-term sampling consisted of sampling nine monitoring wells (G009-MW01, MW02, AOC9-MW05, MW06, MW14, MW15, MW17, MW18, and MW19) and three surface water locations (AOC9-SW01, SW02, and SW03; see Figure 2-1):

- Wells MW01 and MW02 were sampled to monitor the width of the contaminant plume and the effectiveness of the remedial action in the lateral portions of the plume.
- Wells MW05 and MW06 were sampled as sentinel wells to evaluate the stability of the leading edge of the contaminant plume and to monitor the effectiveness of the remedial action in the area downgradient of the remedial action treatment area.
- Wells MW14, MW15, and MW17 were sampled to monitor the effectiveness of the remedial action in the center of the plume in the area being treated during the remedial action and downgradient of the treatment area.
- Well MW18 was sampled to monitor contaminant concentrations upgradient of the groundwater plume.
- Well MW19 was sampled to monitor the effectiveness of the remedial action in the center of the former source area, following completion of the source area excavation.
- Surface water sample locations SW01 through SW03 were sampled to monitor contaminant concentrations within Six Mile Creek.

April 2015 long-term sampling results, in conjunction with the results from the previous four performance monitoring and first (April 2013) and second (April

2014) long-term sampling events will be used to continue to evaluate the effectiveness of the remediation efforts. Sampling was conducted from April 6 to 8, 2015.

2.1.1 Groundwater Sampling

Groundwater samples were collected from MW01, MW02, MW05, MW06, MW14, MW15, MW17, MW18, and MW19 and analyzed by Katahdin Analytical Services, located in Scarborough, Maine. Groundwater samples were analyzed for VOCs (EPA Method SW8260B), in accordance with the Final Work Plan, Baseline, Performance, and Long-Term Monitoring at AOC 9 (EEEPC 2010e). Prior to collection of the groundwater samples, a minimum of three well volumes of groundwater was purged from each well using EPA low-flow procedures. The wells were purged and sampled with a pump/controller and dedicated bladder pumps and associated tubing. Field parameters (i.e., turbidity, pH, temperature, conductivity, oxidation reduction potential [ORP], and dissolved oxygen [DO]) were collected and recorded on groundwater sampling forms during purging. The completed groundwater sampling forms are provided in Appendix C and a complete list of samples collected is provided in Table 2-1. Static water levels were also measured and recorded for each monitoring well listed on Table 2-2 to create a current groundwater contour map (see Figure 2-2). A photograph of each groundwater sample collected is provided in Appendix D in accordance with USACE protocols.

2.1.2 Surface Water Sampling

Surface water samples were collected from SW01 through SW03, and analyzed by Katahdin Analytical Services. Surface water samples were analyzed for VOCs (EPA Method SW8260B), in accordance with the work plan (EEEPC 2010e). The samples were collected by filling a dedicated sample jar with water directly from Six Mile Creek, then transferring the creek water to pre-preserved approved sample containers, leaving no head space. Field parameters (i.e., turbidity, pH, temperature, conductivity, ORP, and DO) were collected and recorded during sampling. The completed surface water sampling forms are provided in Appendix C and a complete list of samples collected is provided in Table 2-1.

2.1.3 Groundwater Elevation Measurements

Groundwater elevations were collected in accordance with the work plan (EEEPC 2010e) by measuring the depth to water at 16 locations (see Table 2-2) using an electronic water level indicator to measure the static water levels from the top of the casing at each location. These measurements were used to create groundwater contour maps for each event (see Figure 2-2).

2.1.4 Well Inspections and Maintenance

During groundwater elevation measurements, inspections were performed at each permanent well location and recorded on the well status log (see Appendix E). Any necessary well maintenance activities were completed by Parsons on September 30 to October 1, 2015. A summary of all work completed is provided in Appendix E.

2.2 Equipment Decontamination

Equipment decontamination was performed in accordance with the work plan (EEEPC 2010e).

Groundwater and surface water field testing instruments were decontaminated by rinsing the water level indicator, flow-through cell and pH, temperature, conductivity, DO, and ORP probes with deionized water between each use.

2.3 Investigation Derived Waste

Investigation-derived water was handled in accordance with the work plan (EEEPC 2010e). Purge water generated during groundwater sampling was collected in 5-gallon buckets and field-screened with a PID to evaluate if it was contaminated. PID readings were taken directly from the surface of the collected purge water. No PID readings above zero parts per million were detected from the field screening of the purge water; therefore, water was discharged to the ground adjacent to the sampled well.

2.4 Quality Assurance/Quality Control

Quality assurance/quality control (QA/QC) samples were collected in accordance with the work plan (EEEPC 2010e). Analytical data have been validated for samples collected as part of this investigation. Raw data and the Data Usability Summary Report (DUSR) are presented in Appendices F and G, respectively.

Field QC samples included two groundwater duplicates and one trip blank during the April 2015 sampling event. Duplicate samples provide insight as to the homogeneity of the sample matrix and establish a degree of confidence that the sample represents site conditions. Field duplicates were collected at the rate of one duplicate per 10 original samples (10%); therefore, two duplicates were collected for the nine groundwater and three surface water samples collected. The field duplicate collected during April 2015 showed good precision.

A trip blank was collected to establish that the transport of sample containers to and from the field did not result in the contamination of the sample from external sources. No compounds were detected in the trip blank for the April 2015 sampling event.

A few sample results were qualified "J" as estimated because of minor calibration deviations, laboratory control sample recovery and matrix spike recoveries. Some results that are deemed to be estimated are reported to be above the site clean-up goals, therefore, no significant impact of data usability is deemed to have occurred. Other results that are in the range of site clean-up goals could impact usability of the results to evaluate whether concentrations exceed site clean-up goals. The results should be usable with supporting data, trend analysis, and evaluation of laboratory error.

2 AOC 9 Long-Term Monitoring Activities

2.5 Work Plan Deviations

For the April 2015 sampling event, groundwater measurements were only collected from the 16 permanent monitoring wells on site. Measurements were not taken at temporary wells or piezometers as called for in the work plan, as many of them were removed during the remedial excavation. Approval for this change was received from the USACE prior to the start of the previous performance monitoring sampling rounds; therefore, a field adjustment form was not generated. There were no other deviations to the work plan during the April 2015 sampling event.

2.6 PermeOx Injection Pre-Design Sampling Summary

Prior to the PermeOx injections, pre-design sampling was conducted by Parsons. Pre-design sampling was completed in May 2013 for use by Parsons in designing the injection mixture. Groundwater samples were collected from MW-14 and MW-19 and a soil sample was collected near MW-14. Results of this sampling are presented in Table 2-3.

Based on these results, Parsons determined that PermeOx injected within the 100parts-per-billion total VOC contour immediately downgradient of the source area would be the preferred treatment method. The PermeOx injection was used for two reasons: it creates an oxygen-rich environment, which allows for chlorobenzene reduction through aerobic microbe degradation; and it is more persistent, allowing it to treat the site over a one-year period. The injection was completed November 5 to 18, 2013. Information describing the PermeOx injections can be found in Appendices I and J of the April 2014 LTM Report (EEEPC 2015).

AOC 9 Long-Term Monitoring Activities 2

Table 2-1 AOC 9 Long-Term Monitoring, Groundwater and Surface Water Sample Summary, Former Griffiss Air Force Base, Rome, New York

TOIR						
Monitorii	Analyses					
	TCL VOCs –					
Sample Number	(feet BGS)	Comment	SW8260B			
April 2015 Long-Term Monitorin	ng					
G009-MW01LTM040715	4.0-9.0		Х			
G009-MW02LTM040715	4.0-9.0		Х			
AOC9-MW05LTM040615	4.0-14.0		Х			
AOC9-MW06LTM040715	4.2-14.2		Х			
AOC9-MW14LTM040815	14.0-24.0		Х			
AOC9-MW15LTM040715	9.0-14.0		Х			
AOC9-MW15/DLTM040715	9.0-14.0	Duplicate	Х			
AOC9-MW17LTM040715	9.0-14.0		Х			
AOC9-MW17/DLTM040715	9.0-14.0	Duplicate	Х			
AOC9-MW18LTM040815	9.0-19.0	MS/MSD	Х			
AOC9-MW19LTM040815	9.0-19.0		Х			
AOC9-SW01LTM040615	-		Х			
AOC9-SW02LTM040615	-		Х			
AOC9-SW03LTM040615	-		Х			
AOC9-TB1-040615	-	Trip Blank	Х			
Kev:						

Key:

AOC = area of concern

BGS = below ground surface

- /D = duplicate
- MS/MSD = matrix spike/matrix spike duplicate
 - TB = trip blank
 - TCL = target compound list VOC = volatile organic compound

	Ī	Ground	Weter.	Water Level	
Monitoring Well ID	Date	Surface Elevation (feet AMSL)	Water Level (feet bgs)	Elevation (feet AMSL)	Comments
April 2015 Long-					
G009-MW01	4/6/2015	492.67	-0.36	493.03	Negative value indicates water was above ground surface.
G009-MW02	4/6/2015	494.54	4.24	490.30	
G009-MW03	4/6/2015	485.10	0.89	484.21	
G009-MW04	4/6/2015	483.97	7.61	476.36	
AOC9-MW05	4/6/2015	482.72	3.17	479.55	
AOC9-MW06	4/6/2015	482.57	4.85	477.72	
AOC9-MW07	4/6/2015	483.25	3.12	480.13	
AOC9-MW08	4/6/2015	514.28	8.53	505.75	
AOC9-MW12	4/6/2015	509.09	4.20	504.89	
AOC9-MW13	4/6/2015	508.53	3.41	505.12	
AOC9-MW14	4/6/2015	519.05	12.14	506.91	
AOC9-MW15	4/6/2015	500.04	1.05	498.99	
AOC9-MW16	4/6/2015	497.31	1.42	495.89	
AOC9-MW17	4/6/2015	487.51	1.74	485.77	
AOC9-MW18	4/6/2015	527.84	12.48	515.36	
AOC9-MW19	4/6/2015	523.38	9.73	513.65	

Table 2-2 AOC 9 Long-Term Monitoring Groundwater Elevation Data, Former Griffiss Air Force Base, Rome, New York

2-6

Key:

AMSL = above mean sea level

AOC = area of concern

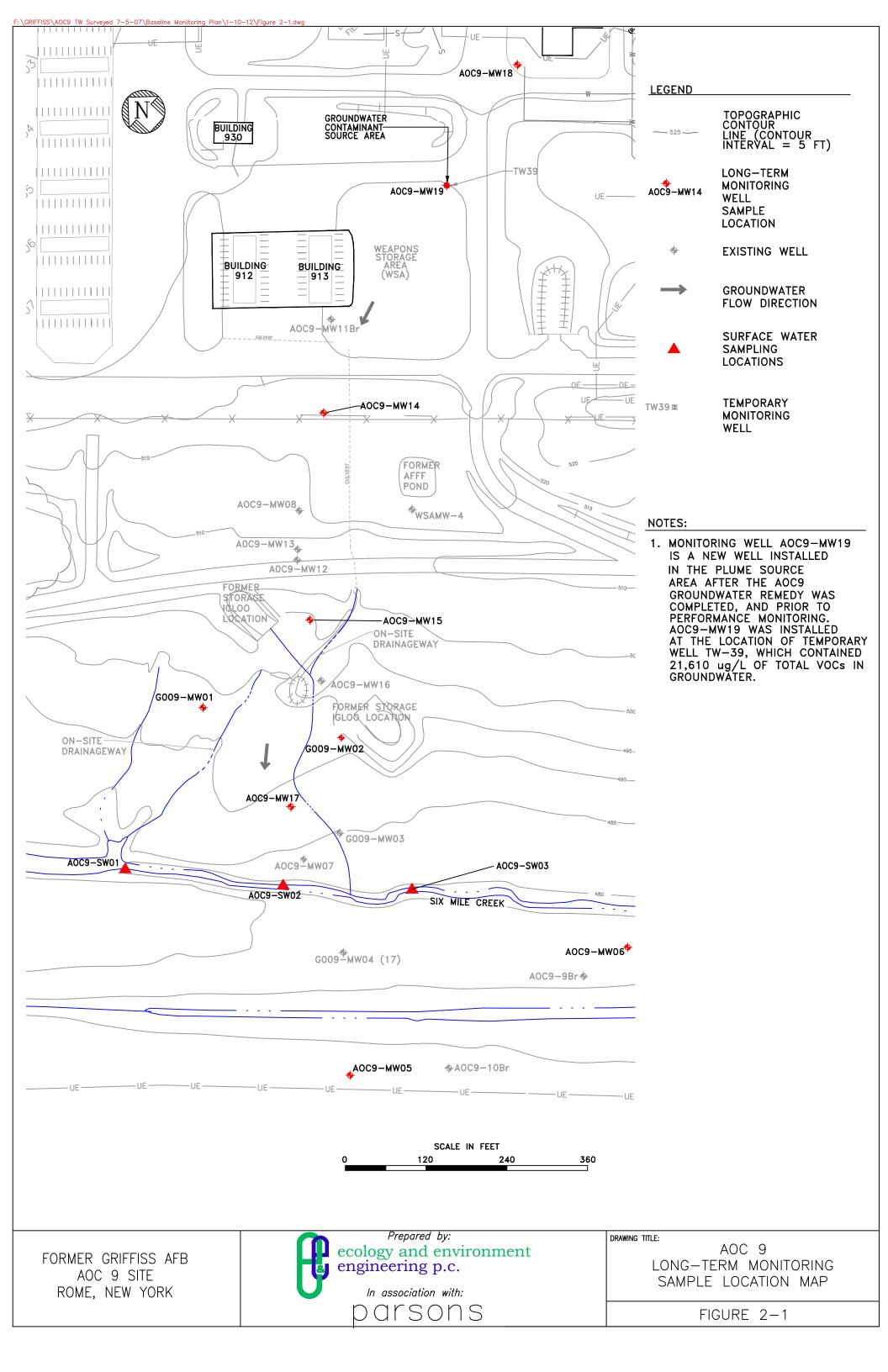
BGS = below ground surface MW = monitoring well

2 AOC 9 Long-Term Monitoring Activities

		AOC9-MW14	AOC9-MW19	GAFB-AOC9-SS001
Parameter	Units	05/02/13	05/02/13	05/02/13
Alkalinity	mg/L	220	300	-
Chemical Oxygen Demand	mg/L	10 U	10 U	-
Dissolved Oxygen	mg/L	6.6	7.4	-
Ferrous Iron	mg/L	0.053 J	0.05 U	-
Hardness	mg/L	200	180	-
Oxidation-Reduction Poten-	mV	241	276	-
tial (ORP)				
Total Biochemical Oxygen	mg/L	20.71	0.81 J	-
Demand	_			
Total Organic Carbon (TOC)	mg/L	2.6	3.2	-
pH (laboratory)	pН	7.7	7.4	-
TOC in Soil	µg/gdrywt	-	-	910
Total Solids	%	-	-	95

Table 2-3 PermeOx Injection Pre-Design Sampling Results

Key:


- = not applicable

% = percent

J = estimated value

mg/L = milligram per liter mV = millivolt U = non-detect

 $\mu g/gdrywt = microgram per gram dry weight$

This section presents the results from the April 2015 long-term monitoring conducted at AOC 9 at the former Griffiss AFB in Rome, New York, as described in Section 2.

The AOC 9 April 2015 long-term monitoring was intended to evaluate the longterm effectiveness of the remediation efforts on VOC concentrations in the groundwater and Six Mile Creek. The AOC 9 April 2015 long-term monitoring groundwater data are screened against the most stringent of either the NYSDEC Class GA groundwater criteria or the EPA MCLs. For groundwater COCs at AOC 9, the NYSDEC Class GA criteria are the more stringent of the screening criteria. Surface water data is screened against the NYSDEC Class GA groundwater criteria. Data collected during the AOC 9 April 2015 long-term monitoring have been provided by the laboratory in Environmental Restoration Program Information Management System (ERPIMS)-compatible format. The April 2015 long-term monitoring data was added to the Air Force database (ERPIMS) in June 2015.

3.1 April 2015 Long-Term Monitoring 3.1.1 Groundwater Sampling Results

Eleven groundwater samples (includes two duplicate samples) were collected from nine monitoring wells and analyzed for VOCs (EPA Method SW8260B) by Katahdin Analytical Services. The purpose of the groundwater sampling was to evaluate VOC concentrations within the contaminant plume following the remedial excavation activities and subsequent PermeOx injection. The groundwater samples were collected between April 6 and 8, 2015.

Groundwater samples were collected from monitoring wells screened predominately in very fine- to medium-grained sand at depths ranging from 4 to 24 feet BGS and constructed with either a 5-foot or a 10-foot (2-inch diameter, 0.01-inch slot) PVC screen. Each sample was analyzed for VOCs (EPA Method SW8260B) as described in Section 2. A summary of the positive analytical results for April 2015 long-term groundwater samples is presented in Table 3-1. Historical groundwater sampling results are presented in Table 3-3. Figure 2-1 shows the locations of the monitoring wells.

The completed groundwater sampling forms are provided in Appendix C; the complete analytical data are included on compact disk (CD) in Appendix F; a complete list of samples collected is provided in Table 2-1; and Figure 3-1 shows the locations of the monitoring wells with total VOC contaminant concentrations.

The primary COCs for AOC 9 include; chlorobenzene, 1,2-DCB, 1,4-DCB, and TCE, which constitute approximately 97% of the total VOCs detected on site within the center line of the plume. Figure 3-1 illustrates the total VOC concentrations in groundwater based on the analytical data obtained during the April 2015 long-term monitoring event and the historical Geoprobe data that was used to generate the non-detect contour lines.

Source Area Well (MW19)

Seven VOCs were detected in the groundwater sample collected at MW19. However, only chlorobenzene (33 μ g/L) exceeded NYSDEC Class GA groundwater standards.

Upgradient Well (MW18)

One VOC, chlorobenzene was detected in the groundwater samples collected at MW18 at a concentration of 0.25 μ g/L, which is below the screening criteria of 5 μ g/L.

Center Line of Plume (Downgradient of Source Area) Wells (MW14, MW15, and MW17)

Twelve VOCs, including the four primary COCs, chlorobenzene, TCE, and 1,2-DCB, and 1,4-DCB were detected in the groundwater samples collected. Six of the contaminants exceeded the NYSDEC Class GA groundwater standards. Chlorobenzene, 1,2-DCB, and 1,4-DCB exceeded the screening criteria in all three monitoring wells. TCE (18 μ g/L) only exceeded the screening criteria in MW17. Benzene (2.9 and 1.3 μ g/L, respectively) exceeded the screening criteria in both MW14 and MW15. The highest total VOC concentrations were detected in monitoring wells MW17 (210 μ g/L), MW14 (170 μ g/L), and MW15 (150 μ g/L) during this April 2015 sampling event.

Sentinel (Downgradient) Wells (MW05 and MW06)

Three contaminants were detected in the sentinel groundwater samples collected at MW05 and MW06 including one primary COC. TCE ($0.76 \mu g/L$), a primary COC, was only detected at MW06, however, it did not exceed the screening criteria. Carbon disulfide and cis-1,2-DCE were detected in both MW05 and MW06. No contaminant exceeded the screening criteria.

Lateral Wells (MW01 and MW02)

One contaminant, TCE, was detected in both MW01 (0.40 μ g/L) and MW02 (0.29 μ g/L). TCE is a primary COC; however, concentrations detected do not exceed the screening criteria. No other contaminants were detected in the lateral wells.

Groundwater Elevation Measurements

Groundwater elevations were collected in accordance with the work plan by measuring the depth to water at 16 locations (see Table 2-2) using a water level indicator to measure the static water levels from the top of the casing at each location. These measurements were used to create a groundwater contour map (see Figure 2-2).

Based on these data, the groundwater on the site flows generally to the southwest from the vicinity of Building 917, through the AOC 9 contaminant source area, and ultimately towards Six Mile Creek. The depth to groundwater and direction of groundwater flow has remained consistent following the excavation and back-fill of the contaminant source area, while exhibiting typical seasonal variations.

3.1.2 Surface Water Sampling Results

Three surface water samples were collected from Six Mile Creek (SW01, SW02, SW03) and analyzed for VOCs (EPA Method SW8260B) by Katahdin Analytical Services. The purpose of the surface water samples collected was to establish April 2015 long-term monitoring VOC concentrations within Six Mile Creek following the remedial excavation activities. The surface water samples were collected on April 6, 2015.

Figure 2-1 shows the location of the surface water sampling locations and Figure 3-1 shows the total VOC contaminants in surface water based on analytical data obtained from this sampling event.

Three VOCs were detected in the surface water samples collected during this investigation (see Table 3-2). Chlorobenzene was detected in surface water samples SW02 and SW03 (0.40 μ g/L and 0.61 μ g/L, respectively). Acetone was also detected in samples SW02 and SW03 (4.3 μ g/L and 3.4 μ g/L, respectively). Carbon disulfide was detected in surface water sample SW03 (0.36 μ g/L). There is no screening criterion for carbon disulfide. Chlorobenzene and acetone were detected at concentrations below the screening criteria.

The completed surface water sampling forms are provided in Appendix C, the complete analytical data are included on CD in Appendix F, a complete list of samples collected is provided in Table 2-1, a summary of the positive analytical results for the surface water samples is presented in Table 3-2, and Figure 3-1 shows the locations of the surface water sample locations with total VOC concentrations.

3.1.3 Trend Analysis

Available historic data collected from monitoring wells MW01, MW02, MW05, MW06, MW014, MW15, MW17, MW18, and MW19 and surface water sample locations SW01, SW02, and SW03 are provided in Tables 3-3 and 3-4, respectively. Data collected in 2003 during the groundwater treatability study, during which Fenton's reagent was injected into the groundwater in the vicinity of moni-

toring well MW08, have not been included in the historical data summary tables as the analytical results were impacted by the treatability study.

However, available data for each sample location, excluding MW05 as it has historically been non-detect until this sampling event, have been plotted on trend graphs and are provided in Figures 3-5 through 3-12. Data from the earliest sampling event identified on Table 3-3 to the current sampling event is provided for all wells. MW19 was first sampled during the May 2011 performance monitoring event, although data from TW39 (temporary well previously at the same location and screened over the same depth BGS as the current permanent monitoring well) is provided on Table 3-3 under the 2006 sampling event. The trend graphs show total VOC concentration for each sampling event and a discussion of the changes observed is described below.

Source Area Well (MW19)

Initial high contaminant concentrations detected at this location, prior to the remedial excavation, dropped significantly after excavation was completed and total VOCs have stabilized at less than 100 μ g/L. MW19, installed following the remedial excavation, was first sampled during the first performance monitoring event. The total VOC concentration detected during that first performance sampling in May 2011 was 31 μ g/L. The total VOC concentration in MW19 increased during both the second and third rounds of performance monitoring, 42 μ g/L and 57 μ g/L, respectively, before showing a slight decrease in total VOC concentration (43 μ g/L) during the fourth round of performance monitoring in September 2012. During the first round of long-term monitoring, MW19 had an increase in total VOC concentrations (69 μ g/L). During the second round of long-term monitoring, MW19 decreased in total VOC concentrations (36 μ g/L). During this third round of long-term monitoring, MW19 remained relatively stable in total VOC concentrations (39 μ g/L) (see Figure 3-12).

Upgradient Well (MW18)

MW18, installed prior to the remedial excavation and baseline sampling, was first sampled during the baseline event. MW18 was not sampled as part of the performance monitoring program. The total VOC concentration detected during the baseline event in July 2010 was $3.2 \ \mu g/L$. During the first and second rounds of long-term monitoring, MW18 total VOC concentrations had decreased and remained non-detect. During this third round of long-term monitoring, total VOC concentrations increased to $0.25 \ \mu g/L$ (see Figure 3-11).

Center Line of Plume (Downgradient of Source Area) Wells (MW14, MW15, and MW17)

Initial high contaminant concentrations in MW14 dropped significantly following the remedial excavation and continued to drop to a total VOC concentration of less than 50 μ g/L, following the PermeOx injections performed in November 2013. During this sampling round, MW14 showed an increase in concentration, primarily due to an increase in the concentration of chlorobenzene. Since baseline sampling at MW14 in July 2010; chlorobenzene has decreased in concentra-

tion from 1,400 to 150 μ g/L, 1,2-DCB has decreased from 130 to 10 μ g/L, 1,4-DCB has decreased from 87 to 8.9 μ g/L, and TCE has decreased from 28 to nondetect. The total VOC concentration in MW14 decreased from 2,100 μ g/L during baseline sampling to 170 μ g/L during this third long-term monitoring sampling event.

Three primary COCs (chlorobenzene, 1,2-DCB, and 1,4-DCB) exceeded the screening criteria during this April 2015 performance monitoring event for MW-14. However, they have all decreased in concentration from the first long-term monitoring to the third long-term monitoring sampling event, but have shown an increase from the second long-term monitoring to the third long-term monitoring sampling event (chlorobenzene 31 μ g/L to 150 μ g/L; 1,2-DCB 4.8 μ g/L to 10 μ g/L; and 1,4-DCB 4.7 μ g/L to 8.9 μ g/L) (see Figure 3-8).

MW15 has shown a decrease in concentration in three of the primary COCs since baseline sampling. Chlorobenzene has decreased in concentration from 1,300 to 120 μ g/L, 1,4-DCB has decreased from 64 to 14 μ g/L, and 1,2-DCB decreased from 55 to 16 μ g/L. TCE also decreased in concentration since baseline sampling from 2.0 to 0.28 μ g/L. The total VOC concentrations at MW15 decreased from 1,700 μ g/L, during baseline sampling, to 150 μ g/L during this third long-term monitoring sampling event (see Figure 3-9).

MW15 increased in concentration in all of the primary COCs from the fourth performance monitoring sampling event to the first long-term monitoring event. However, the concentrations of the primary COCs (and total VOC concentrations) have continued to decrease from the first long-term monitoring event to this third long-term monitoring event.

MW15 has shown a decrease in concentration in three of the primary COCs, with all three exceeding the screening criteria since the first long-term monitoring event in April 2013. Chlorobenzene has decreased in concentration from 380 to 120 μ g/L, 1,4-DCB has decreased from 24 to 14 μ g/L, and 1,2-DCB has decreased from 73 to 16 μ g/L. TCE has also decreased from the second long-term monitoring to this third long-term monitoring sampling event (0.83 to 0.28 μ g/L, respectively). At the same time, total VOC concentrations at MW15 decreased from 490 to 150 μ g/L (see Figure 3-9).

MW17 has shown a decrease in concentration in three of the primary COCs since baseline sampling in July 2010. Chlorobenzene has decreased in concentration from 760 to 130 μ g/L, 1,4-DCB has decreased from 38 to 8.9 μ g/L, and 1,2-DCB has decreased from 50 to 44 μ g/L. TCE has shown fluctuations in concentration since baseline sampling. Over the same time period, total VOC concentrations at MW17 decreased from 890 to 210 μ g/L.

MW17 has shown a decrease in concentration in three of the primary COCs, with all three exceeding the screening criteria since the first long-term monitoring event in April 2013. Chlorobenzene has decreased in concentration from 180 to

130 μ g/L, 1,4-DCB has decreased from 12 to 8.9 μ g/L, and 1,2-DCB has decreased from 60 to 44 μ g/L. However, TCE has increased slightly from 15 to 18 μ g/L. At the same time, total VOC concentrations at MW17 decreased from 270 to 210 μ g/L. Historically, total VOC concentrations in MW17 have fluctuated, but there has been an overall decrease since baseline sampling in July 2010 (see Figure 3-10).

Sentinel (Downgradient) Wells (MW05 and MW06)

Total VOC concentrations have remained non-detect in MW05 for all sampling events through the second long-term monitoring event. During this third long-term monitoring event, total VOCs were detected at 1.4 μ g/L.

Total VOC concentrations detected at MW06 were 1.0 μ g/L during the baseline sampling. Total VOC concentrations have fluctuated within MW06 during the performance monitoring sampling rounds, from a high of 6.9 μ g/L detected during the second performance monitoring event to non-detect during the third performance monitoring event. Since the first long-term monitoring event, total VOC concentrations have decreased from 1.2 μ g/L to 0.77 μ g/L, and then increase during this third long-term monitoring event to 2.0 μ g/L (see Figure 3-7).

Lateral Wells (MW01 and MW02)

MW01 and MW02 were sampled during the baseline sampling performed in July 2010, although they were not included in the performance monitoring sampling performed from May 2011 through September 2012. Sampling of MW01 and MW02 resumed in April 2013 as part of the long-term monitoring program.

MW01 has shown a decrease in total VOC concentration since baseline sampling, 1.4 to $0.40 \mu g/L$. Historically, an overall decrease in total VOC concentrations can be observed since the initial sampling at MW01 in 1997 (see Figure 3-5).

MW02 has shown a decrease in total VOC concentration since baseline sampling through the second long-term monitoring event, $0.70 \ \mu g/L$ to non-detect. Historically, total VOC concentrations in MW02 have shown slight fluctuations, but an overall decrease can be observed since sampling from 2004 to 2014. During this third long-term monitoring event, total VOC concentrations increased from non-detect to 0.29 $\mu g/L$ (see Figure 3-6).

Surface Water (SW01, SW02, and SW03)

Total VOC concentrations detected during baseline sampling at surface water locations SW01, SW02, and SW03 were non-detect, $5.2 \mu g/L$, and $3.6 \mu g/L$, respectively. During the performance monitoring events surface water sample results showed fluctuations in total VOC concentrations (see Table 3-4). During the first and second long-term monitoring events surface water sample results increased from non-detect to $3.4 \mu g/L$ at SW01 and non-detect to $2.6 \mu g/L$ at SW02. SW03 showed a decrease in concentration from $0.81 \mu g/L$ to non-detect. During this third long-term monitoring event, total VOCs were non-detect at SW01, but increased from 2.6 to $4.7 \mu g/L$ at SW02, and increased from non-detect to $4.0 \mu g/L$

at SW03. The increase in total VOCs at SW02 and SW03 were mainly due to the detection of acetone at each location, $4.3 \ \mu g/L$ and $3.4 \ \mu g/L$, respectively. The only primary COC to exceed the screening criteria in surface water was chlorobenzene (9.0 $\mu g/L$), detected at SW02 during the second performance monitoring event.

Trend Analysis Summary

Overall, the April 2015 long-term monitoring analytical results indicate that the AOC 9 total VOC concentration is decreasing in comparison to the 2010 baseline sampling, performance monitoring results, and April 2013 long-term monitoring results. Slight increases in total VOC concentrations relative to the 2014 long-term monitoring results were identified in monitoring wells MW02, MW05, MW06, MW18, and MW19, and a more significant increase was identified in MW14. The increase in MW14 is likely due to a rebound effect following the November 2013 PermeOx injection in that portion of the plume, while the slight increases in MW02, MW05, MW06, MW18, and MW19, MW06, MW18, and MW19 could be attributed to low levels of residual contamination present within the AOC 9 boundaries, natural fluctuations in precipitation and groundwater flow, and the associated contaminant transport.

The plume appears to have remained stable in size compared to the second longterm monitoring event results. There was a slight increase in size within the 100 μ g/L contour due to increases in concentrations during this third long-term monitoring event downgradient of the source area, primarily in MW14. The chlorobenzene plume overall, has decreased in size and concentration since baseline sampling, but shows a small increase in size from the 2014 long-term monitoring event (see Figure 3-2). The TCE plume size has remained relatively stable since the first performance monitoring event (see Figure 3-3), although concentrations have decreased in wells that historically contained low levels of TCE (MW01, MW02, MW06, MW14, MW15, and MW19 [MW05 and MW18 do not contain TCE]) and continue to fluctuate in MW17, which is the only well that contains concentrations of TCE above the screening criteria. The total DCB plume has also decreased in overall total VOC concentration and size of the plume (see Figure 3-4). Based on the concentrations of contaminants detected at monitoring wells MW05 and MW06, excluding carbon disulfide as it is not a site-related contaminant, the leading edge of the plume has remained stable.

The analytical results from monitoring wells, MW01 and MW02 show that the plume has not expanded laterally. The analytical results from MW18 indicated a low detection of chlorobenzene ($0.25 \mu g/L$); this well was previously non-detect through performance monitoring and the first two rounds of long-term monitoring. The contaminant concentrations in MW19 remain relatively stable and may be attributed to residual contamination within the excavation area reaching the vicinity of the well. Additional historical data are tabulated and trend graphs are provided in Section 3.3. Although the plume remained relatively stable during this sampling event, a comparison of April 2015 long-term analytical results to the baseline, performance monitoring, long-term monitoring, and historical ana-

lytical results indicates that the AOC 9 groundwater plume has generally continued to show a decrease in total VOC concentration and size. The plume has decreased in size from 14.6 acres at baseline sampling to 9.9 acres during this sampling round. Figures 3-2 through 3-4 show the changes in plume size based on the concentrations of the primary COCs.

3.1.4 MAROS Evaluation

The historical and long-term sampling results collected at AOC 9 were analyzed for statistical trend analyses using the Air Force Civil Engineering Center (AFCEC's) MAROS program to assess trends in contaminant concentrations along the observed plume and evaluate the effectiveness of the remedy implemented at the site (see Appendix H). Currently, long-term monitoring at the site consists of sampling for VOCs at nine wells along the center line and edges of the plume. These wells include: MW01, MW02, MW05, MW06, MW14, MW15, MW17, MW18, and MW19. Additional well data was added to the program for MW01, MW02, and MW05 as necessitated by the program to fully perform plume computations; MAROS requires input of data for a minimum of six well locations with at least four sampling events to perform several of the analyses. These three additional well data sets will also provide historical reference of the plume concentrations and further delineate the plume in MAROS. Figures 3-5 through 3-12 are trend graphs for wells MW01, MW02, MW06, MW14, MW15, MW17, MW18, and MW19. A trend graph was not completed for MW05, as total VOC concentration has historically been non-detect, prior to this sampling event.

Model input required by MAROS included analytical results for each sampling event as observed at individual well locations, coordinates of each well, estimates of current plume geometry (e.g., length and width), aquifer characteristics (e.g., seepage velocity, porosity, and thickness) and the type of treatment implemented at the source location.

Several trend analyses were performed in the model for the primary COCs: 1,2-DCB, 1,4-DCB, chlorobenzene, and TCE. Output results from the MAROS evaluations are attached (see Appendix H), showing the Mann-Kendall statistics, linear regression, statistical trend, spatial moment analysis and plume analysis summaries. Mann-Kendall will be the analysis used for evaluating the treatment effectiveness for AOC 9; this is the most common statistical approach in the MAROS program used for groundwater assessment applications as it is a nonparametric analysis that accounts for the assumptions made for the plume geometry and aquifer characteristics and does not assume a statistical distribution (i.e., normal distribution) of the groundwater data. Most groundwater data is not distributed normally, due to the problem of left censoring (no values recorded below the detection limit) and the occasional very high concentration, orders of magnitude above the detection limit.

The statistical analysis performed using the Mann-Kendall model indicates that concentrations of chlorobenzene and 1,4-DCB are decreasing within the wells (MW14, MW15, and MW17) downgradient of the former source area. 1,2-DCB

also shows a decreasing trend in MW14 and a stable trend in MW15 and MW17 (see Appendix H). Concentration trends in the former source area MW19 are decreasing for 1,2-DCB and are stable for 1,4-DCB. Concentration trends were nondetect for PCE in all wells except MW17 in the center line of the plume, which was stable. TCE trends are decreasing in wells MW01 and MW15 and are stable in MW06. Overall, the Mann-Kendall model indicates a downward trend within the contaminant plume immediately downgradient of the groundwater remediation area, and does not indicate any increasing trends for the primary COCs at any well.

Additionally, a spatial moment analysis was conducted; however, there was insufficient data to determine trends for the first and second moments. The zeroth moment or the total mass of the plume indicates that all contaminants are decreasing (see Appendix H). Further long-term monitoring of the site is necessary to fully examine the effectiveness of the AOC 9 remedial action and to further evaluate potential migration of contaminants.

3.1.5 April 2015 Summary

The April 2015 long-term sampling conducted at AOC 9 consists of groundwater and surface water sampling and analysis to evaluate the VOC concentrations in the groundwater plume and Six Mile Creek following the remedial excavation and injection activities.

Eleven groundwater (including two duplicates) and three surface water samples were collected from the nine monitoring wells and Six Mile Creek, and analyzed for VOCs (EPA Method SW8260B) by Katahdin Analytical Services. Figure 2-1 shows the sampling locations and Figure 3-1 shows the total VOC contaminant concentrations in groundwater and surface water based on the analytical data obtained during this monitoring event.

A comparison of April 2015 long-term analytical results to the baseline and historical analytical results indicates that the AOC 9 VOC concentrations have generally continued to decrease, although contaminant concentrations in MW14 increased slightly during this sampling round (see Table 3-3). Based on the analytical results obtained from monitoring wells MW05 and MW06, excluding carbon disulfide, the leading edge of the plume has remained stable. Monitoring wells MW01 and MW02 indicated that the plume has not expanded laterally. MW19 results indicate the plume has remained stable in concentration within the vicinity of the source area for total DCBs, chlorobenzene, and TCE. The results obtained from MW15 and MW17 indicate that total VOC concentrations within the plume have continued to decrease in VOC concentrations farther downgradient from the source area.

Surface water sample results obtained from sample location SW01 were nondetect for all VOCs. SW02 and SW03 contained low levels of chlorobenzene and acetone during this long-term sampling. Carbon disulfide was also detected in surface water sample SW03. No contaminants were detected above the screening levels during this April 2015 long-term monitoring event. Overall, wells MW01 and MW02 have shown contaminant concentrations that have decreased since the baseline sampling. Well MW05 has historically been non-detect since the baseline sampling, although a minor concentration increase was noted during this sampling event. MW18 showed a slight increase in concentration, although it remains significantly decreased from the baseline levels. MW15 and MW17 have shown contaminant concentrations that have decreased since the baseline sampling. MW14 has shown a decrease in contaminant concentrations; however, an increase was noted during this event. Additionally, MW06 and MW19 also showed slight increases in contaminant concentration.

Per the work plan, the next round of sampling (biennial sampling) will take place in the spring of 2017, to continue monitoring the long-term effectiveness of the remedial efforts. No changes to the approved long-term monitoring plan are proposed at this time.

3.2 PermeOx® Injection Summary

PermeOx® Injection Summary

Based on the results of the PermeOx injection pre-design sampling described in Section 2.6, it was determined that PermeOx injected within the 100 parts per billion total VOC contour immediately downgradient of the source area would be the preferred treatment method. A total of 9,981 pounds of PermeOx® Plus was mixed with 5,971 gallons of water and injected via 53 temporary injection points installed to a depth of approximately 15 to 25 feet within the treatment area between November 5 and November 18, 2013, to enhance aerobic bioremediation of the contaminated groundwater plume. The slurry was injected at each location using a grout pump located on a Geoprobe rig. The complete details of the PermeOx injection are provided as a separate document, Final April 2014 Long-Term Monitoring Data Summary Report (EEEPC 2015). The injection targeted the area immediately downgradient of the former source area to ensure that the downward trend in groundwater contaminants continues. PermeOx® Plus is a time-release grade of calcium peroxide made by FMC Corporation that adds oxygen to the groundwater. Injections were performed in general accordance with the Remedial Action Work Plan Addendum (Parsons 2013).

Prior to installing the temporary injection points on July 30, 2013, Parsons prepared an Inventory of Injection Wells form on behalf of the United States Air Force Real Property Agency and submitted it to the EPA Region 2, Office of Groundwater and Drinking Water as part of the Underground Injection Control Program. A copy of the submittal is presented as Appendix I in the April 2014 LTM report (EEEPC 2015).

The injections were performed in the south western portion of the remedial excavation area immediately downgradient of the former source area and located between MW-14 and MW-19 using a standard Geoprobe rig. A figure depicting the injection areas from the Remedial Action Work Plan Addendum and a summary of the PermeOx® injections and quantities are presented in Appendix J of the

3 AOC 9 Long-Term Monitoring Findings

April 2014 LTM report (EEEPC 2015). In addition, the efficacy of the injections will be documented in the *Demonstration of Remedial Actions Operating Properly and Successfully at AOC 9 Report* (EEEPC forthcoming).

Table 3-1 AOC 9 April 2015 Long-Term Monitoring, Summary of Positive Results for Groundwater Samples Former Griffiss Air Force Base, Rome, NY

Analyte	Sample ID: Date: Screening Criteria ⁽¹⁾	G009- MW01LTM040715 04/07/15	G009- MW02LTM040715 04/07/15	AOC9- MW05LTM040615 04/06/15	AOC9- MW06LTM040715 04/07/15	AOC9- MW14LTM040815 04/08/15	AOC9- MW15LTM040715 04/07/15
VOCs by Method SW8260B (µg/L)						10	14
1,2-DICHLOROBENZENE	3	U	U	U	U	10	16
1,3-DICHLOROBENZENE	3	U	U	U	U	0.64 J	0.92 J
1,4-DICHLOROBENZENE	3	U	U	U	U	8.9	14
1,2-DICHLOROETHANE	0.6	U	U	U	U	U	U
BENZENE	1	U	U	U	U	2.9	1.3
CARBON DISULFIDE	NA	U	U	0.51 J	0.47 J	U	U
CHLOROBENZENE	5	U	U	U	U	150	120
CIS-1,2-DICHLOROETHYLENE	5	U	U	0.84 J	0.75 J	0.50 J	U
ISOPROPYLBENZENE	5	U	U	U	U	U	0.68 J
SEC-BUTYLBENZENE	5	U	U	U	U	U	0.66 J
TETRACHLOROETHYLENE	5	U	U	U	U	U	U
TRICHLOROETHYLENE	5	0.40 J	0.29 J	U	0.76 J	U	U
VINYL CHLORIDE	2	UJ	UJ	U	U	U	0.40 J
TOTAL VOCs	NA	0.40 J	0.29 J	1.4 J	2.0 J	170 J	150 J
Groundwater Field Parameters							
рН	NA	7.75	6.93	6.43	7.22	7.14	7.29
Temperature (°C)	NA	6.3	3.8	6.0	5.9	8.4	6.6
Conductivity (µs/cm)	NA	352.1	398.1	117.5	343.9	411.6	460.0
Turbidity (NTU)	NA	0.08	2.09	4.59	1.68	6.3	1.43
Dissolved Oxygen (mg/L)	NA	0.11	2.05	9.98	2.41	1.68	0.09
ORP (mV)	NA	69.4	32.4	197.1	170.1	-32.7	-100.5
Key: J = Estimated value U = Not detected UJ = Not detected/estimated detection limit μg/L = Micrograms per liter	ORP = Oxidation-F °C = Degrees Celsi μs/cm = Microsiem NTU = Nephelome	us en per centimeter	·	·	·		·

VOCs = Volatile organic compounds mg/L = Milligram per liter

mV = Millivolt

NA = Guidance value not available

* Designates field duplicate sample

Notes:

1. New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Shaded cells exceed the screening value.

3. Bold values denote positive hits.

Table 3-1 AOC 9 April 2015 Long-Term Monitoring, Summary of Positive Results for Groundwater Samples Former Griffiss Air Force Base, Rome, NY

Analyte	Sample ID: Date: Screening Criteria ⁽¹⁾	AOC9- MW15/DLTM040715 * 04/07/15	AOC9- MW17LTM040715 04/07/15	AOC9- MW17/DLTM040715 * 04/07/15	AOC9- MW18LTM040815 04/08/15	AOC9- MW19LTM040815 04/08/15
VOCs by Method SW8260B (µg/L)						
1,2-DICHLOROBENZENE	3	16	44	43	U	0.97 J
1,3-DICHLOROBENZENE	3	0.99 J	0.70 J	0.70 J	U	U
1,4-DICHLOROBENZENE	3	14	8.9	8.6	U	1.4
1,2-DICHLOROETHANE	0.6	U	0.48 J	0.64 J	U	U
BENZENE	1	1.2	0.79 J	0.84 J	U	0.52 J
CARBON DISULFIDE	NA	U	U	U	U	U
CHLOROBENZENE	5	120	130	130	0.25 J	33
CIS-1,2-DICHLOROETHYLENE	5	U	2.6	2.6	U	1.9
ISOPROPYLBENZENE	5	0.64 J	U	U	U	U
SEC-BUTYLBENZENE	5	0.68 J	U	U	U	U
TETRACHLOROETHYLENE	5	U	1.8	1.9	U	U
TRICHLOROETHYLENE	5	0.28 J	16	18	U	0.37 J
VINYL CHLORIDE	2	0.27 J	1.1 J	1.1 J	U	0.74 J
TOTAL VOCs	NA	150 J	210 J	210 J	0.25 J	39 J
Groundwater Field Parameters						
рН	NA	7.29	7.66	7.66	7.22	7.07
Temperature (°C)	NA	6.6	6.7	6.7	7.9	6.8
Conductivity (µs/cm)	NA	460.0	365.5	365.5	257.0	527.1
Turbidity (NTU)	NA	1.43	10.9	10.9	7.79	11.7
Dissolved Oxygen (mg/L)	NA	0.09	0.04	0.04	1.19	4.90
ORP (mV)	NA	-100.5	-94.4	-94.4	98.6	13.1
Key:	-					
J = Estimated value	ORP = Oxidation-F	3				
U = Not detected	°C = Degrees Celsi	1				

U = Not detected	°C = Degrees Celsi
UJ = Not detected/estimated detection limit	μ s/cm = Microsiem
$\mu g/L = Micrograms$ per liter	NTU = Nephelome
VOCs = Volatile organic compounds	mg/L = Milligram I
NA = Guidance value not available	mV = Millivolt

* Designates field duplicate sample

Notes:

1. New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Shaded cells exceed the screening value.

3. Bold values denote positive hits.

Table 3-2 AOC 9 April 2015 Long-Term Monitoring; Summary of Positive Results for Surface Water Samples Former Griffiss Air Force Base; Rome, NY

Analyte	Sample ID: Date: Screening Criteria ⁽¹⁾	AOC9- SW01LTM040615 04/06/15	AOC9- SW02LTM040615 04/06/15	AOC9- SW03LTM040615 04/06/15
VOCs by Method SW8260B (µg/L)				
ACETONE	50	U	4.3 J	3.4 J
CARBON DISULFIDE	NA	U	U	0.36 J
CHLOROBENZENE	5	U	0.40 J	0.61 J
TOTAL VOCs	NA	ND	4.7 J	4.4 J
Surface Water Field Parameters				
рН	NA	7.49	7.36	7.57
Temperature (°C)	NA	10.3	10.3	10.6
Conductivity (µs/cm)	NA	142.6	159.5	160.0
Turbidity (NTU)	NA	3.59	3.88	2.90
Dissolved Oxygen (mg/L)	NA	NA	NA	NA
ORP (mV)	NA	126.3	163.3	122.5

Key:

J = Estimated value

U = Not detected

 $\mu g/L = Micrograms per liter$

VOCs = Volatile organic compounds

NA = Guidance value not available mV = Millivolt

 $^{\circ}C = Degrees Celsius$

mg/L = Milligram per liter

 μ s/cm = Microsiemen per centimeter

NTU = Nephelometric turbidity unit

ORP = Oxidation-Reduction Potential

Notes:

1. New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Shaded cells exceed the screening value.

3. Bold values denote positive hits.

			12/19/97	5/25/00	9/9/04	11/13/06	7/29/10	5/18/11	10/25/11	4/17/12	9/26/12	4/10/13	4/3/14	4/8/15
Well Number	Screening Criteria ¹	Parameter	Ref 1	Ref 2	Ref 3	Ref 4	E & E 2010 AOC 9 Baseline Sampling	E & E 2011 AOC 9 Performance Sampling Event 1	E & E 2011 AOC 9 Performance Sampling Event 2	Performance	E & E 2012 AOC 9 Performance Sampling Event 4	E & E 2013 AOC 9 Long-Term Sampling Event 1	E & E 2014 AOC 9 Long-Term Sampling Event 2	Long-Term
	5	1,1-Dichloroethene	U	U	U	-	U	-	-	-	-	UJ	UJ	U
	3	1,2-Dichlorobenzene	U	0.36	0.6	-	0.80 J	-	-	-	-	0.42 J	0.44 J	U
	0.6	1,2-Dichloroethane	U	U	U	-	U	-	-	-	-	U	U	U
	5	1,2,4-Trimethylbenzene	NA	U	U	-	U	-	-	-	-	U	U	U
	5	1,3,5-Trimethylbenzene	NA	U	U	-	U	-	-	-	-	U	U	U
	3	1,3-Dichlorobenzene	NA	U	U	-	U	-	-	-	-	U	U	U
	3	1,4-Dichlorobenzene	U	U	U	-	U	-	-	-	-	U	U	U
	5	4-Chlorotoluene	NA	U	U	-	NA	-	-	-	-	U	U	U
	1	Benzene	U	U	U	-	U	-	-	-	-	U	U	U
	5	Chlorobenzene	U	U	U	-	U	-	-	-	-	U	U	U
	5	cis-1,2-Dichloroethylene	U	U	0.123	-	U	-	-	-	-	UJ	U	U
	NA	Cyclohexane	NA	NA	NA	-	U	-	-	-	-	U	U	U
	5	Ethylbenzene	U	U	U	-	U	-	-	-	-	U	U	U
	5	Isopropylbenzene (Cumene)	NA	U	U	-	U	-	-	-	-	U	U	U
	NA	Methylcyclohexane	NA	NA	NA	-	U	-	-	-	-	U	U	U
G009-MW01	5	Methylene Chloride	U	U	U	-	U	-	-	-	-	U	U	U
	NA	m-p-Xylene	NA	U	U	-	U	-	-	-	-	U	U	U
	10	Naphthalene	NA	U	U	-	U	-	-	-	-	U	UJ	U
	5	n-Butylbenzene	NA	U	U	-	U	-	-	-	-	U	U	U
	5	n-Propylbenzene	NA	U	U	-	U	-	-	-	-	U	U	U
	5	o-Xylene (1,2-Dimethylbenzene)	NA	U	U	-	U	-	-	-	-	U	U	U
	5	p-Isopropyltoluene	NA	NA	NA	-	U	-	-	-	-	U	U	U
	5	sec-Butylbenzene	NA	U	U	-	U	-	-	-	-	U	U	U
	5	Styrene	U	U	U	-	U	-	-	-	-	U	U	U
	5	t-Butylbenzene	NA	U	U	-	U	-	-	-	-	U	U	U
	5	Tetrachloroethylene (PCE)	U	U	U	-	U	-	-	-	-	U	U	U
	5	Toluene	U	U	U	-	U	-	-	-	-	U	U	U
	5	Trans-1,2-Dichloroethene	NA	U	U	-	U	-	-	-	-	U	U	U
	5	Trichloroethylene (TCE)	U	0.87	0.88	-	0.60 J	-	-	-	-	0.46 J	0.34 J	0.40 J
	2	Vinyl Chloride	U	U	U	-	U	-	-	-	-	U	U	U
	NA	Total VOCs	0	1.2	1.6	-	1.4	-	-	-	-	0.88	0.78	0.40

			12/19/97	5/25/00	9/9/04	11/13/06	7/29/10	5/18/11	10/25/11	4/17/12	9/26/12	4/10/13	4/3/14	4/8/15
Well Number	Screening Criteria ¹	Parameter	Ref 1	Ref 2	Ref 3	Ref 4	E & E 2010 AOC 9 Baseline Sampling	E & E 2011 AOC 9 Performance Sampling Event 1	E & E 2011 AOC 9 Performance Sampling Event 2	Performance	E & E 2012 AOC 9 Performance Sampling Event 4	E & E 2013 AOC 9 Long-Term Sampling Event 1	E & E 2014 AOC 9 Long-Term Sampling Event 2	Long-Term
	5	1,1-Dichloroethene	U	U	U	U	U	-	-	-	-	UJ	U	U
	3	1,2-Dichlorobenzene	U	U	U	U	U	-	-	-	-	U	U	U
	0.6	1,2-Dichloroethane	U	U	U	U	U	-	-	-	-	U	U	U
	5	1,2,4-Trimethylbenzene	NA	U	U	U	U	-	-	-	-	U	U	U
	5	1,3,5-Trimethylbenzene	NA	U	U	U	U	-	-	-	-	U	U	U
	3	1,3-Dichlorobenzene	NA	U	U	U	U	-	-	-	-	U	U	U
	3	1,4-Dichlorobenzene	U	U	U	U	U	-	-	-	-	U	U	U
	5	4-Chlorotoluene	NA	U	U	U	NA	-	-	-	-	U	U	U
	1	Benzene	U	U	U	U	U	-	-	-	-	U	U	U
	5	Chlorobenzene	U	U	U	U	U	-	-	-	-	U	U	U
	5	cis-1,2-Dichloroethylene	U	U	U	U	U	-	-	-	-	UJ	U	U
	NA	Cyclohexane	NA	NA	NA	NA	U	-	-	-	-	U	U	U
	5	Ethylbenzene	U	U	U	U	U	-	-	-	-	U	U	U
	5	Isopropylbenzene (Cumene)	NA	U	U	U	U	-	-	-	-	U	U	U
	NA	Methylcyclohexane	NA	NA	NA	NA	U	-	-	-	-	U	U	U
G009-MW02	5	Methylene Chloride	U	U	U	U	U	-	-	-	-	U	U	U
	NA	m-p-Xylene	NA	U	U	U	U	-	-	-	-	U	U	U
	10	Naphthalene	NA	U	U	U	U	-	-	-	-	U	UJ	U
	5	n-Butylbenzene	NA	U	U	U	U	-	-	-	-	U	U	U
	5	n-Propylbenzene	NA	U	U	U	U	-	-	-	-	U	U	U
	5	o-Xylene (1,2-Dimethylbenzene)	NA	U	U	U	U	-	-	-	-	U	U	U
	5	p-Isopropyltoluene	NA	NA	NA	U	U	-	-	-	-	U	U	U
	5	sec-Butylbenzene	NA	U	U	U	U	-	-	-	-	U	U	U
	5	Styrene	U	U	U	U	U	-	-	-	-	U	U	U
	5	t-Butylbenzene	NA	U	U	U	U	-	-	-	-	U	U	U
	5	Tetrachloroethylene (PCE)	U	U	U	U	U	-	-	-	-	U	U	U
	5	Toluene	U	U	U	U	U	-	-	-	-	U	U	U
	5	Trans-1,2-Dichloroethene	NA	U	U	U	U	-	-	-	-	U	U	U
	5	Trichloroethylene (TCE)	U	0.89	1.8	0.61 J	0.70 J	-	-	-	-	0.36 J	U	0.29 J
	2	Vinyl Chloride	U	U	U	U	U	-	-	-	-	U	U	U
	NA	Total VOCs	0	0.89	1.8	0.61	0.70	-	-	-	-	0.36	0	0.29

			12/19/97	5/25/00	9/9/04	11/13/06	7/29/10	5/18/11	10/25/11	4/17/12	9/26/12	4/10/13	4/3/14	4/8/15
Well Number	Screening Criteria ¹	Parameter	Ref 1	Ref 2	Ref 3	Ref 4	E & E 2010 AOC 9 Baseline Sampling	E & E 2011 AOC 9 Performance Sampling Event 1	E & E 2011 AOC 9 Performance Sampling Event 2	Performance	Performance	E & E 2013 AOC 9 Long-Term Sampling Event 1	Long-Term	Long-Term
	5	1,1-Dichloroethene		U	U	U	U					UJ		
	3	1,2-Dichlorobenzene	-	U	U	U	U	-	-	-	-	U	U	U
	0.6	1,2-Dichloroethane	-	U	U U	U	U					U	U	U
	5	1,2,4-Trimethylbenzene		U	U	U	U					U	U	U
	5	1,3,5-Trimethylbenzene	-	U	U	U	U	-	-		-	U	U	U U
	3	1,3-Dichlorobenzene	-	U	U	U	U	-	-		-	U	U	U
	3	1,4-Dichlorobenzene		U	U	U	U		-			U	U	U
	5	4-Chlorotoluene	-	U	U	U	NA	-	-		-	U	U	U
	1	Benzene		U	U	U	U	-	-		-	U	U	U
	NA I	Carbon Disulfide	-	U	U	U	U	-		-	-	U	U	0.51 J
	5	Chlorobenzene	-	U	U	U	U	-	-	-	-	U	U	U.51 J
	5	cis-1,2-Dichloroethylene	-	U	U	U	U		-		-	UJ	U	0.84 J
	NA	Cyclohexane	-	NA	NA	NA	U	-	-	-	-	U	U	U.04 J U
	5	Ethylbenzene	-	U	U	U	U	-	-		-	U	U	U
	5	Isopropylbenzene (Cumene)	-	U	U	U	U	-	-	-	-	U	U	U
	NA	Methylcyclohexane	-	NA	NA	NA	U	-	-		-	U	U	U
AOC9-MW05	5	Methylene Chloride	-	U	U	U	U	-	-		-	U	U	U
	NA	m-p-Xylene		U	U	U	U					U	U	U
	10	Naphthalene	-	U	U	U	U	-	-		-	U	UJ	U
	5	n-Butylbenzene	-	U	U	U	U	-	-		-	U	U	U
	5	n-Propylbenzene	-	U	U	U	U	-	-		-	U	U	U
	5	o-Xylene (1,2-Dimethylbenzene)		U	U	U	U					U	U	U
	5	p-Isopropyltoluene	-	NA	NA	U	U					U	U	U
	5	sec-Butylbenzene	-	U	U	U	U					U	U	U
	5	Styrene	-	U	U	U	U	-	-	-	-	U	U	U
	5	t-Butylbenzene		U	U	U	U					U	U	U
	5	Tetrachloroethylene (PCE)	-	U	U	U	U	-	-		-	U	U	U
	5	Toluene	-	U	U	U	U	-	-		-	U	U	U
	5	Trans-1,2-Dichloroethene		U	U	U	U					U	U	U
	5	Trichloroethylene (TCE)		U	U	U	U	-	-		-	U	U	U U
	2	Vinyl Chloride	-	U	U	U	U	-	-	-	-	U	U	U
	NA	Total VOCs		0	0	0	0		-	-	-	0	0	1.4
	INA	Total VUCs	-	U	0	0	0	-	-	-	-	0	0	1.4

			12/19/97	5/25/00	9/9/04	11/13/06	7/29/10	5/18/11	10/25/11	4/17/12	9/26/12	4/10/13	4/3/14	4/8/15
Well Number	Screening Criteria ¹	Parameter	Ref 1	Ref 2	Ref 3	Ref 4	E & E 2010 AOC 9 Baseline Sampling	E & E 2011 AOC 9 Performance Sampling Event 1	E & E 2011 AOC 9 Performance Sampling Event 2	Performance	Performance	E & E 2013 AOC 9 Long-Term Sampling Event 1	E & E 2014 AOC 9 Long-Term Sampling Event 2	E & E 2015 AOC 9 Long-Term Sampling Event 3
	5	1,1-Dichloroethene	-	U	U	-	U	U	U	U	U	UJ	U	U
	3	1,2-Dichlorobenzene	-	U	U	-	U	U	U	U	U	U	U	U
	0.6	1,2-Dichloroethane	-	U	U	-	U	U	U	U	U	U	U	U
	5	1,2,4-Trimethylbenzene		U	U	-	U	U	U	U	U	U	U	U
	5	1,3,5-Trimethylbenzene	-	U	U	-	U	U	U	U	U	U	U	U
	3	1,3-Dichlorobenzene	-	U	U	-	U	U	U	U	U	U	U	U
	3	1,4-Dichlorobenzene	-	U	U	-	U	U	U	U	U	U	U	U
	5	4-Chlorotoluene	-	U	U	-	NA	U	U	U	U	U	U	U
	1	Benzene	-	U	U	-	U	U	U	U	U	U	U	U
	NA	Carbon Disulfide	-	U	U	-	U	U	U	U	U	U	U	0.47 J
	5	Chlorobenzene	-	U	U	-	U	UJ	0.90 J	U	U	U	U	U
	5	cis-1,2-Dichloroethylene	-	U	U	-	U	U	U	U	U	UJ	U	0.75 J
	NA	Cyclohexane	-	NA	NA	-	U	U	U	U	U	U	U	U
	5	Ethylbenzene	-	U	U	-	U	U	U	U	U	U	U	U
	5	Isopropylbenzene (Cumene)	-	U	U	-	U	U	U	U	U	U	U	U
	NA	Methylcyclohexane	-	NA	NA	-	U	U	U	U	U	U	U	U
AOC9-MW06	5	Methylene Chloride	-	U	U	-	U	U	U	U	U	U	U	U
	NA	m-p-Xylene	-	U	U	_	U	U	U	U	U	U	U	U
	10	Naphthalene	_	U	U	_	U	U	3.0	U	U	U	UJ	U
-	5	n-Butylbenzene	-	U	U	-	U	U	U	U	U	U	U	U
-	5	n-Propylbenzene	-	U	U	-	U	U	2.0	U	U	U	U	U
-	5	o-Xylene (1,2-Dimethylbenzene	-	U	U	-	U	U	U	U	U	U	U	U
-	5	p-Isopropyltoluene	_	NA	NA	-	U	U	U	U	U	U	U	U
-	5	sec-Butylbenzene	_	U	U	-	U	U	U	U	U	U	U	U
-	5	Styrene	_	U	U	-	U	U	U	U	U	U	U	U
-	5	t-Butylbenzene	_	U	U	-	U	U	U	U	U	U	U	U
-	5	Tetrachloroethylene (PCE)	_	U	U	-	U	U	U	U	U	U	U	U
-	5	Toluene	_	U	U		U	U	U	U	U	U	U	U
	5	Trans-1,2-Dichloroethene	-	U	U		U	U	U	U	U	U	U	U
-	5	Trichloroethylene (TCE)	-	0.85	1.8	-	1.0	1.0	1.0	U	1.4	1.2	0.77 J	0.76 J
-	2	Vinyl Chloride		U.85	1.0 U		U 1.0	U	U	U	1.4 U	U 1.2	U	U.70 J
-	 NA	Total VOCs	-	0.85	1.8	-	1.0	1.0	6.9	0	1.4	1.2	0.77	2.0

			12/19/97	5/25/00	9/9/04	11/13/06	7/29/10	5/18/11	10/25/11	4/17/12	9/26/12	4/10/13	4/3/14	4/8/15
Well Number	Screening Criteria ¹	Parameter	Ref 1	Ref 2	Ref 3	Ref 4	E & E 2010 AOC 9 Baseline Sampling	E & E 2011 AOC 9 Performance Sampling Event 1	E & E 2011 AOC 9 Performance Sampling Event 2	Performance	E & E 2012 AOC 9 Performance Sampling Event 4	E & E 2013 AOC 9 Long-Term Sampling Event 1	E & E 2014 AOC 9 Long-Term Sampling Event 2	E & E 2015 AOC 9 Long-Term Sampling Event 3
	5	1,1-Dichloroethene	-	-	-	U	0.70 J	U	U	U	U	UJ	U	U
	3	1,2-Dichlorobenzene	-	-	-	170	130	76	40	22 J	24	26	4.8	10
	0.6	1,2-Dichloroethane	-	-	-	U	U	U	U	U	U	U	U	U
	5	1,2,4-Trimethylbenzene	-	-	-	220	180	15	1.0	U	U	4.0	U	U
	5	1,3,5-Trimethylbenzene	-	-	-	79	64	U	U	U	U	U	U	U
	3	1,3-Dichlorobenzene	-	-	-	7.6	6.0	4.0	2.0	1.1	1.3	1.5	0.34 J	0.64 J
	3	1,4-Dichlorobenzene	-	-	-	110	87	53	34	20	21	22	4.7	8.9
	5	4-Chlorotoluene	-	-	-	0.33 J	NA	U	U	U	U	U	U	U
	1	Benzene	-	-	-	3.5	19	1.0	1.0	0.43 J	0.94 J	0.99 J	U	2.9
	5	Chlorobenzene	-	-	-	1700	1400	950 J	350	200	190	250 J	31	150
	5	cis-1,2-Dichloroethylene	-	-	-	2.7	23	2.0	2.0	1.6	2.4	1.4 J	0.23 J	0.50 J
	NA	Cyclohexane	-	-	-	NA	22	12	1.0	U	0.55 J	2.4	U	U
	5	Ethylbenzene	-	-	-	21	10	7.0	1.0	0.28 J	0.37 J	1.5	U	U
	5	Isopropylbenzene (Cumene)	-	-	-	17	14	11	3.0	0.58 J	0.93 J	3.3	U	U
	NA	Methylcyclohexane	-	-	-	NA	46 J	17	2.0	0.55 J	1.3	4.5	U	U
AOC9-MW14	5	Methylene Chloride	-	-	-	U	NA	U	U	U	U	U	U	U
	NA	m-p-Xylene	-	-	-	68	50	11	0.70 J	U	U	U	U	U
	10	Naphthalene	-	-	-	51	27	4.0	U	U	U	U	UJ	U
	5	n-Butylbenzene	-	-	-	4.3	4.0	2.0	2.0 J	0.33 J	0.46 J	1.4	U	U
	5	n-Propylbenzene	-	-	-	15	14	8.0	3.0	0.70 J	1.0	2.6	U	U
	5	o-Xylene (1,2-Dimethylbenzene	-	-	-	5.9	5.0	0.30 J	U	U	U	0.27 J	U	U
	5	p-Isopropyltoluene	-	-	-	5.5	5.0	U	U	U	U	U	U	U
	5	sec-Butylbenzene	-	-	-	8.3	7.0	4.0	3.0	0.75 J	1.0	1.9	U	U
	5	Styrene	-	-	-	U	U	U	U	U	U	U	U	U
	5	t-Butylbenzene	-	-	-	3.2	2.0	2.0	1.0	U	0.32 J	0.73 J	U	U
	5	Tetrachloroethylene (PCE)	-	-	-	U	UJ	U	U	U	U	U	U	U
	5	Toluene	-	-	-	0.75 J	3.0	U	U	U	U	U	U	U
	5	Trans-1,2-Dichloroethene	-	-	-	U	2.0	U	U	U	U	UJ	U	U
	5	Trichloroethylene (TCE)	-	-	-	4.8	28	2.0	2.0	U	1.2	1.0	U	U
	2	Vinyl Chloride	-	-	-	1.6	17	1.0 J	1.0 J	U	0.83 J	U	U	U
	NA	Total VOCs	-	-	-	2500	2100	1200	450	250	250	330	41	170

			12/19/97	5/25/00	9/9/04	11/13/06	7/29/10	5/18/11	10/25/11	4/17/12	9/26/12	4/10/13	4/3/14	4/8/15
Well Number	Screening Criteria ¹	Parameter	Ref 1	Ref 2	Ref 3	Ref 4	E & E 2010 AOC 9 Baseline Sampling	E & E 2011 AOC 9 Performance Sampling Event 1	E & E 2011 AOC 9 Performance Sampling Event 2	Performance	Performance	E & E 2013 AOC 9 Long-Term Sampling Event 1	E & E 2014 AOC 9 Long-Term Sampling Event 2	E & E 2015 AOC 9 Long-Term Sampling Event 3
	5	1,1-Dichloroethene	-	-	-	U	0.40 J	U	U	U	U	UJ	U	U
	3	1,2-Dichlorobenzene	-	-	-	60 J	55	74	26	19	31	73	40	16
	0.6	1,2-Dichloroethane	-	-	-	U	U	U	U	U	U	U	U	U
	5	1,2,4-Trimethylbenzene	-	-	-	8.0 J	35	0.90 J	U	U	U	U	U	U
	5	1,3,5-Trimethylbenzene	-	-	-	10 J	18	U	U	U	U	U	U	U
	3	1,3-Dichlorobenzene	-	-	-	8.0 J	6.0	5.0	2.0	1.3	1.8	2.4	1.6	0.99 J
	3	1,4-Dichlorobenzene	-	-	-	110	64	58	28	17	19	24	19	14
	5	4-Chlorotoluene	-	-	-	U	NA	U	U	U	U	U	U	U
	1	Benzene	-	-	-	12 J	26	1.0	2.0	1.4	2.8	0.94 J	1.5	1.3
	5	Chlorobenzene	-	-	-	1900	1300	990 J	390	320	290	380 J	270	120
	5	cis-1,2-Dichloroethylene	-	-	-	U	10	2.0	0.40 J	0.80	0.65 J	0.63 J	0.75 J	U
	NA	Cyclohexane	-	-	-	NA	50	2.0	0.60 J	U	0.67 J	U	U	U
	5	Ethylbenzene	-	-	-	U	12	3.0	0.70 J	U	UJ	U	U	U
	5	Isopropylbenzene (Cumene)	-	-	-	12 J	22	7.0	2.0	1.4	2.0 J	2.0	1.6	0.68 J
	NA	Methylcyclohexane	-	-	-	NA	40 J	6.0	0.60 J	U	U	U	U	U
AOC9-MW15	5	Methylene Chloride	-	-	-	87	U	U	U	U	U	U	U	U
	NA	m-p-Xylene	-	-	-	U	11	0.70 J	U	U	U	U	U	U
	10	Naphthalene	-	-	-	U	U	0.40 J	U	U	U	U	UJ	U
	5	n-Butylbenzene	-	-	-	U	3.0	2.0	0.50 J	U	0.23 J	1.2	U	U
	5	n-Propylbenzene	-	-	-	U	8.0	5.0	U	U	U	U	U	U
	5	o-Xylene (1,2-Dimethylbenzene	-	-	-	U	2.0	U	U	U	U	U	U	U
	5	p-isopropyltoluene	-	-	-	U	0.70 J	U	U	U	U	U	U	U
	5	sec-Butylbenzene	-	-	-	U	7.0	6.0	2.0	1.1	1.5	2.1	1.3	0.68 J
	5	Styrene	-	-	-	U	2.0	U	U	U	U	U	U	U
	5	t-Butylbenzene	-	-	-	U	3.0	1.0	1.0	0.42 J	0.53 J	0.58 J	0.39 J	U
	5	Tetrachloroethylene (PCE)	-	-	-	U	UJ	U	U	U	U	U	U	U
	5	Toluene	-	-	-	U	2.0	0.30 J	U	U	U	U	U	U
	5	Trans-1,2-Dichloroethene	-	-	-	U	0.30 J	U	U	U	U	U	U	U
	5	Trichloroethylene (TCE)	-	-	-	U	2.0	2.0	0.40 J	U	0.34 J	0.78 J	0.83 J	0.28 J
	2	Vinyl Chloride	-	-	-	U	14	0.50 J	0.70 J	1.6 J	2.5	U	0.74 J	0.40 J
	NA	Total VOCs	-	-	-	2200	1700	1100	460	360	350	490	340	150

			12/19/97	5/25/00	9/9/04	11/13/06	7/29/10	5/18/11	10/25/11	4/17/12	9/26/12	4/10/13	4/3/14	4/8/15
Well Number	Screening Criteria ¹	Parameter	Ref 1	Ref 2	Ref 3	Ref 4	E & E 2010 AOC 9 Baseline Sampling	E & E 2011 AOC 9 Performance Sampling Event 1	E & E 2011 AOC 9 Performance Sampling Event 2	Performance	Performance	E & E 2013 AOC 9 Long-Term Sampling Event 1	E & E 2014 AOC 9 Long-Term Sampling Event 2	E & E 2015 AOC 9 Long-Term Sampling Event 3
	5	1,1-Dichloroethene	-	-	-	U	U	U	U	U	U	UJ	U	U
	3	1,2-Dichlorobenzene	-	-	-	66	50	44	69	67	91	60	49	44
	0.6	1,2-Dichloroethane	-	-	-	0.68	0.40 J	U	0.40 J	U	U	U	U	0.64 J
	5	1,2,4-Trimethylbenzene	-	-	-	U	U	U	U	U	U	U	U	U
	5	1,3,5-Trimethylbenzene	-	-	-	U	U	U	U	U	U	U	U	U
	3	1,3-Dichlorobenzene	-	-	-	1.5	3.0	2.0	2.0	0.91 J	1.7	1.1	0.79 J	0.70 J
	3	1,4-Dichlorobenzene	-	-	-	17	38	24	26	15	22	12	10	8.9
	5	4-Chlorotoluene	-	-	-	U	NA	U	U	U	U	U	U	U
	1	Benzene	-	-	-	2.6	4.0	5.0	6.0 J	1.6	1.6	0.94 J	0.77 J	0.84 J
	5	Chlorobenzene	-	-	-	250	760	450 J	540	270	300	180	150	130
	5	cis-1,2-Dichloroethylene	-	-	-	12	5.0	5.0	4.0	3.9	5.2	3.0 J	2.7	2.6
	NA	Cyclohexane	-	-	-	NA	2.0	3.0	0.70 J	U	U	U	U	U
	5	Ethylbenzene	-	-	-	U	0.80 J	0.40 J	1.0 J	U	U	U	U	U
	5	Isopropylbenzene (Cumene)	-	-	-	0.25 J	2.0	2.0 J	2.0 J	U	U	U	U	U
	NA	Methylcyclohexane	-	-	-	NA	0.60 J	1.0	U	U	U	U	U	U
AOC9-MW17	5	Methylene Chloride	-	-	-	U	U	U	U	U	U	U	U	U
	NA	m-p-Xylene	-	-	-	U	U	U	U	U	U	U	U	U
	10	Naphthalene	-	-	-	U	U	U	3.0	U	U	U	UJ	U
	5	n-Butylbenzene	-	-	-	U	U	U	U	U	U	U	U	U
	5	n-Propylbenzene	-	-	-	U	U	U	2.0	U	U	U	U	U
	5	o-Xylene (1,2-Dimethylbenzene	-	-	-	U	U	U	U	U	U	U	U	U
	5	p-Isopropyltoluene	-	-	-	U	U	U	U	U	U	U	U	U
	5	sec-Butylbenzene	-	-	-	0.33 J	1.0 J	0.80 J	0.60 J	U	U	U	U	U
	5	Styrene	-	-	-	U	U	U	U	U	U	U	U	U
	5	t-Butylbenzene	-	-	-	0.26 J	0.60 J	0.50 J	U	U	U	U	U	U
	5	Tetrachloroethylene (PCE)	-	-	-	3.0	2.0 J	0.90 J	2.0	4	2.2	1.8	1.8	1.9
	5	Toluene	-	-	-	0.39 J	U	U	U	U	U	U	U	U
	5	Trans-1,2-Dichloroethene	-	-	-	U	0.90 J	1.0	U	U	0.62 J	U	U	U
	5	Trichloroethylene (TCE)	-	-	-	19	14	12	14	20	19	15	16	18
	2	Vinyl Chloride	-	-	-	0.92 J	4.0	4.0	3.0	1.2 J	2.5 J	U	1.0 J	1.1 J
	NA	Total VOCs	-	-	-	370	890	560	680	380	450	270	230	210

			12/19/97	5/25/00	9/9/04	11/13/06	7/29/10	5/18/11	10/25/11	4/17/12	9/26/12	4/10/13	4/3/14	4/8/15
Well Number	Screening Criteria ¹	Parameter	Ref 1	Ref 2	Ref 3	Ref 4	E & E 2010 AOC 9 Baseline Sampling	E & E 2011 AOC 9 Performance Sampling Event 1	E & E 2011 AOC 9 Performance Sampling Event 2	E & E 2012 AOC 9 Performance Sampling Event 3	Performance	E & E 2013 AOC 9 Long-Term Sampling Event 1	E & E 2014 AOC 9 Long-Term Sampling Event 2	E & E 2015 AOC 9 Long-Term Sampling Event 3
	5	1,1-Dichloroethene	-	-	-	-	U	-	-	-	-	UJ	U	U
	3	1,2-Dichlorobenzene	-	-	-	-	0.20 J	-	-	-	-	U	U	U
	0.6	1,2-Dichloroethane	-	-	-	-	U	-	-	-	-	U	U	U
	5	1,2,4-Trimethylbenzene	-	-	-	-	U	-	-	-	-	U	U	U
	5	1,3,5-Trimethylbenzene	-	-	-	-	U	-	-	-	-	U	U	U
	3	1,3-Dichlorobenzene	-	-	-	-	U	-	-	-	-	U	U	U
	3	1,4-Dichlorobenzene	-	-	-	-	U	-	-	-	-	U	U	U
	5	4-Chlorotoluene	-	-	-	-	NA	-	-	-	-	U	U	U
	1	Benzene	-	-	-	-	U	-	-	-	-	U	U	U
-	5	Chlorobenzene	-	-	-	-	3.0	-	-	-	-	U	U	0.25 J
	5	cis-1,2-Dichloroethylene	-	-	-	-	U	-	-	-	-	UJ	U	U
	NA	Cyclohexane	-	-	-	-	U	-	-	-	-	U	U	U
	5	Ethylbenzene	-	-	-	-	U	-	-	-	-	U	U	U
	5	Isopropylbenzene (Cumene)	-	-	-	-	U	-	-	-	-	U	U	U
	NA	Methylcyclohexane	-	-	-	-	UJ	-	-	-	-	U	U	U
AOC9-MW18	5	Methylene Chloride	-	-	-	-	U	-	-	-	-	U	U	U
-	NA	m-p-Xylene	-	-	-	-	U	-	-	-	-	U	U	U
-	10	Naphthalene	-	-	-	-	U	-	-	-	-	U	UJ	U
-	5	n-Butylbenzene	-	-	-	-	U	-	-	-	-	U	U	U
-	5	n-Propylbenzene	-	-	-	-	U	-	-	-	-	U	U	U
-	5	o-Xylene (1,2-Dimethylbenzene	-	-	-	-	U	-	-	-	-	U	U	U
-	5	p-Isopropyltoluene	-	-	-	-	U	-	-	-	-	U	U	U
-	5	sec-Butylbenzene	-	-	-	_	U	_	_	_	_	U	U	U
-	5	Styrene	-	-	-	_	U	_	_	_	_	U	U	U
-	5	t-Butylbenzene	-	-	-	_	U	_	_	_	_	U	U	U
	5	Tetrachloroethylene (PCE)	-	-	-	_	UJ	_	_	_	_	U	U	U
	5	Toluene	-	-	-	_	U	_	_	_	_	U	U	U
	5	Trans-1,2-Dichloroethene	-	-	-	_	U	_	_	_	_	UJ	U	U
	5	Trichloroethylene (TCE)	-	_	-	_	U	_	_	_	_	U	U	U
	2	Vinyl Chloride	_	_	_	_	U	-		_	-	U	U	U
	NA	Total VOCs	_	_	_		3.2				_	0	0	0.25

			12/19/97	5/25/00	9/9/04	11/13/06	7/29/10	5/18/11	10/25/11	4/17/12	9/26/12	4/10/13	4/3/14	4/8/15
Well Number	Screening Criteria ¹	Parameter	Ref 1	Ref 2	Ref 3	Ref 4	E & E 2010 AOC 9 Baseline Sampling	E & E 2011 AOC 9 Performance Sampling Event 1	E & E 2011 AOC 9 Performance Sampling Event 2	Performance	Performance	E & E 2013 AOC 9 Long-Term Sampling Event 1	E & E 2014 AOC 9 Long-Term Sampling Event 2	E & E 2015 AOC 9 Long-Term Sampling Event 3
	5	1,1-Dichloroethene	-	-	-	-	-	U	U	U	U	UJ	U	U
	3	1,2-Dichlorobenzene	-	-	-	4930	-	6.0	6.0	3.8	5.4	2.1	1.3	0.97 J
	0.6	1,2-Dichloroethane	-	-	-	-	-	U	U	U	U	U	U	U
	5	1,2,4-Trimethylbenzene	-	-	-	170	-	U	U	U	U	U	U	U
	5	1,3,5-Trimethylbenzene	-	-	-	90	-	U	U	U	U	U	U	U
	3	1,3-Dichlorobenzene	-	-	-	100	-	U	U	U	U	U	U	U
	3	1,4-Dichlorobenzene	-	-	-	1380	-	3.0	4.0	4.5 J	4.4	3.0	1.7	1.4
	5	4-Chlorotoluene	-	-	-	U	-	U	U	U	U	U	U	U
	1	Benzene	-	-	-	90	-	U	0.40 J	0.90 J	U	2.0	0.65 J	0.52 J
AOC9-MW19 ²	5	Chlorobenzene	-	-	-	14400	-	18 J	14	33	31	58	29	33
	5	cis-1,2-Dichloroethylene	-	-	-	U	-	3.0	15	12	1.4	3.2 J	2.1	1.9
	NA	Cyclohexane	-	-	-	-	-	U	U	U	U	U	U	U
	5	Ethylbenzene	-	-	-	U	-	U	U	U	UJ	U	U	U
	5	Isopropylbenzene (Cumene)	-	-	-	U	-	U	U	U	UJ	U	U	U
	NA	Methylcyclohexane	-	-	-	-	-	U	U	U	U	U	U	U
	5	Methylene Chloride	-	-	-	U	-	U	U	U	U	U	U	U
	NA	m-p-Xylene	-	-	-	85	-	U	U	U	U	U	U	U
	10	Naphthalene	-	-	-	230	-	U	U	U	U	U	UJ	U
	5	n-Butylbenzene	-	-	-	U	-	U	U	U	U	U	U	U
	5	n-Propylbenzene	-	-	-	U	-	U	U	U	U	U	U	U
	5	o-Xylene (1,2-Dimethylbenzene	-	-	-	75	-	U	U	U	U	U	U	U
	5	p-Isopropyltoluene	-	-	-	U	-	U	U	U	U	U	U	U
	5	sec-Butylbenzene	-	-	-	U	-	U	U	U	U	U	U	U
-	5	Styrene	-	-	-	-	-	U	U	U	U	U	U	U
	5	t-Butylbenzene	-	-	-	U	-	U	U	U	U	U	U	U
	5	Tetrachloroethylene (PCE)	-	-	-	U	-	U	U	U	U	U	U	U
	5	Toluene	-	-	-	60	-	U	U	U	U	U	U	U
	5	Trans-1,2-Dichloroethene	-	-	-	U	-	U	U	U	U	UJ	U	U
	5	Trichloroethylene (TCE)	-	-	-	U	-	0.50 J	0.50 J	U	0.30 J	0.55 J	0.29 J	0.37 J
	2	Vinyl Chloride	-	-	-	U	-	0.60 J	2.0	2.9	U	U	0.80 J	0.74 J
	NA	Total VOCs	-	-	-	21610	-	31	42	57	43	69	36	39

			12/19/97	5/25/00	9/9/04	11/13/06	7/29/10	5/18/11	10/25/11	4/17/12	9/26/12	4/10/13	4/3/14	4/8/15
							E & E 2010							
							AOC 9	E & E 2011 AOC 9	E & E 2011 AOC 9	E & E 2012 AOC 9	E & E 2012 AOC 9	E & E 2013 AOC 9	E & E 2014 AOC 9	E & E 2015 AOC 9
	Screening						Baseline	Performance	Performance	Performance	Performance	Long-Term	Long-Term	Long-Term
Well Number	r Criteria ¹	Parameter	Ref 1	Ref 2	Ref 3	Ref 4	Sampling	Sampling Event 1	Sampling Event 2	Sampling Event 3	Sampling Event 4	Sampling Event 1	Sampling Event 2	Sampling Event 3
Kev:														

J = Estimated concentration.

U = Analyte not detected.

mg/L = Micrograms per liter.

- = Well was not Sampled

NA = Not Applicable.

 0.411 J
 Bolded values denote positive hits (detections).

 14.9
 Shaded values denote hits exceeding the NYSDEC standard.

Note:

¹ New York State Department of Environmental Conservation, Class GA Groundwater Standards and Guidance Values.

² Data presented under Reference 4 for MW19 is the most recent sampling data for TW39, which was in the same location as MW19. These results are presented for comparison.

References:

(1) E & E. July 1998. Draft Report for Expanded Site Investigation and Confirmatory Sampling of Areas of Interest and Drywell/Wastewater-Related Systems

(2) E & E. August 2001. AOC 9: Weapons Storage Area (WSA) Landfill Supplemental Investigation Final data Summary Report.

(3) FPM Group. February 2005. Groundwater Monitoring Report.

(4) FPM Group. August 2007. Baseline and PDI2 Sampling Final Monitoring Report.

Table 3-4 AOC 9 Historic Surface Water Sample Results

			Analytical Results by Sample Date(s) (μg/L)											
			11/4/97	5/10/00	11/13/06	7/27/10	5/17/11	10/24/11	4/16/12	9/25/12	4/8/2013	4/1/2014	4/8/2015	
		-									E & E 2013 AOC	E & E 2014 AOC	E & E 2015 AOC	
							E & E 2011 AOC 9	E & E 2011 AOC 9	E & E 2012 AOC 9	E & E 2012 AOC 9	9 Long-Term	9 Long-Term	9 Long-Term	
Surface Water	Screening					E & E 2010 AOC 9	Performance Sampling	Performance Sampling	Performance	Performance	Sampling Event	Sampling Event	Sampling Event	
Sample Number	Criteria ¹	Parameter	Ref 1	Ref 2	Ref 3	Baseline Sampling	Event 1	Event 2	Sampling Event 3	Sampling Event 4	1	2	3	
	5	Chlorobenzene	U	0.85 J	U	U	0.60 J	U	U	U	U	U	U	
	3	1,2-DCB	NA	U	U	U	U	U	U	U	U	U	U	
	3	1,4-DCB	NA	U	U	U	U	U	U	U	U	U	U	
	NA	Total DCB	NA	U	U	U	U	U	U	U	U	U	U	
SW01 ²	50	Acetone	U	NA	1.8 J	U	U	U	2.5 J	U	U	3.4 J	U	
	5	cis-1,2-Dichloroethene	U	U	U	U	U	0.40 J	U	U	UJ	U	U	
	5	Tetrachloroethene	U	U	U	U	U	1.0 J	U	U	U	U	U	
	5	Trichloroethene	U	U	U	U	U	0.70 J	U	U	U	U	U	
	NA	Total VOCs	0	0.85	1.8	0	0.60 J	2.1 J	2.5 J	0	0	3.4 J	0	
	5	Chlorobenzene	U	0.84	4.0	3.0	2.0 J	9.0	U	U	U	U	0.40 J	
	3	1,2-DCB	NA	0.41 J	0.29 J	0.20 J	U	0.30 J	U	U	U	U	U	
SW02 ³	3	1,4-DCB	NA	U	0.26 J	U	U	0.40 J	U	U	U	U	U	
5002	NA	Total DCB	NA	0.41 J	0.55 J	0.20 J	U	0.70 J	U	U	U	U	U	
	50	Acetone	U	NA	1.8 J	2.0 J	U	U	3.2 J	2.4 J	U	2.6 J	4.3 J	
	NA	Total VOCs	0	1.3	4.5	5.2	2.0 J	9.7 J	3.2 J	2.4 J	0	2.6 J	4.7 J	
	5	Chlorobenzene	U	0.24 J	1.2	3.0	2.0 J	2.0	U	U	U	U	0.61 J	
	3	1,2-DCB	NA	U	0.12 J	0.30 J	0.20 J	0.20 J	U	U	0.45 J	U	U	
	3	1,4-DCB	NA	U	U	0.30 J	U	U	U	U	U	U	U	
SW03 ⁴	NA	Total DCB	NA	U	0.12 J	0.60 J	0.20 J	0.20 J	U	U	U	U	U	
5 11 13	50	Acetone	U	NA	1.9 J	U	U	U	2.9 J	U	U	U	3.4 J	
	NA	Carbon Disulfide	U	U	U	U	U	U	U	U	U	U	0.36 J	
	10	Naphthalene	U	U	U	U	U	U	U	U	0.36 J	U	U	
	NA	Total VOCs	0	0.24	1.3	3.6	2.2 J	2.2 J	2.9 J	0	0.81 J	0	4.4 J	

Key:

J = Estimated concentration.

U = Analyte not detected.

mg/L = Micrograms per liter.

NA = Not Applicable.

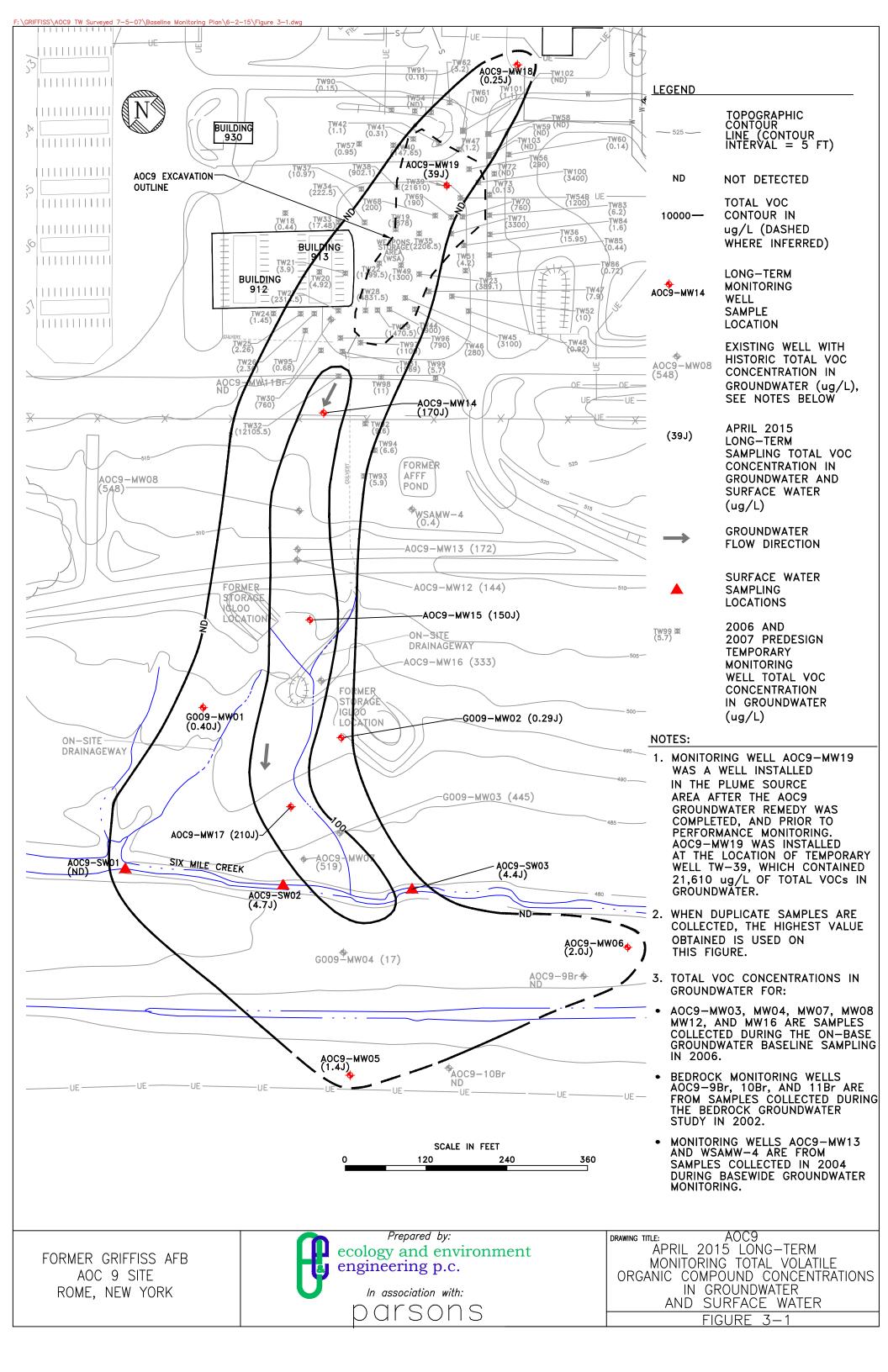
0.411 J

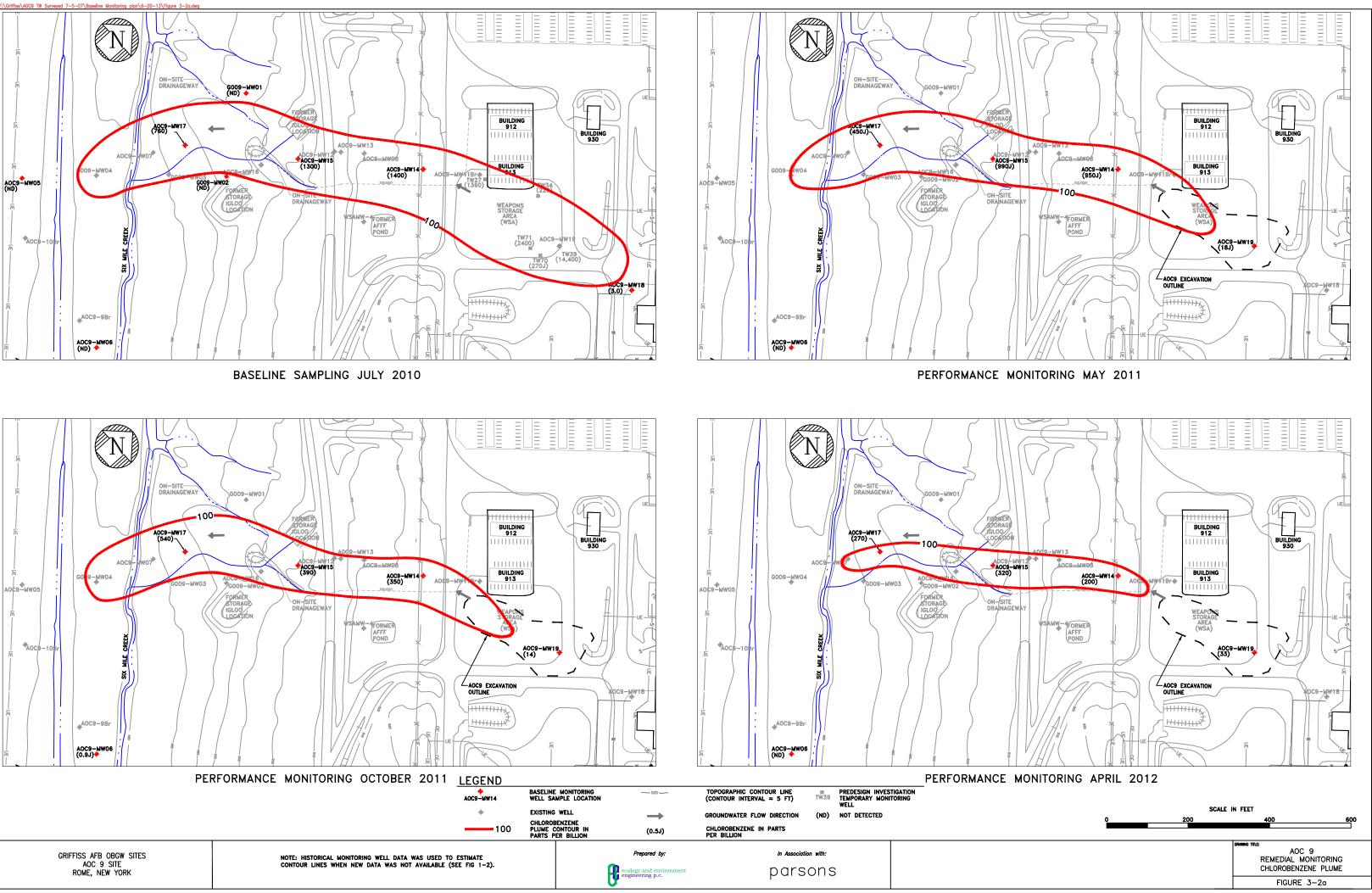
Bolded values denote positive hits (detections). 14.9 Shaded values denote hits exceeding the NYSDEC standard.

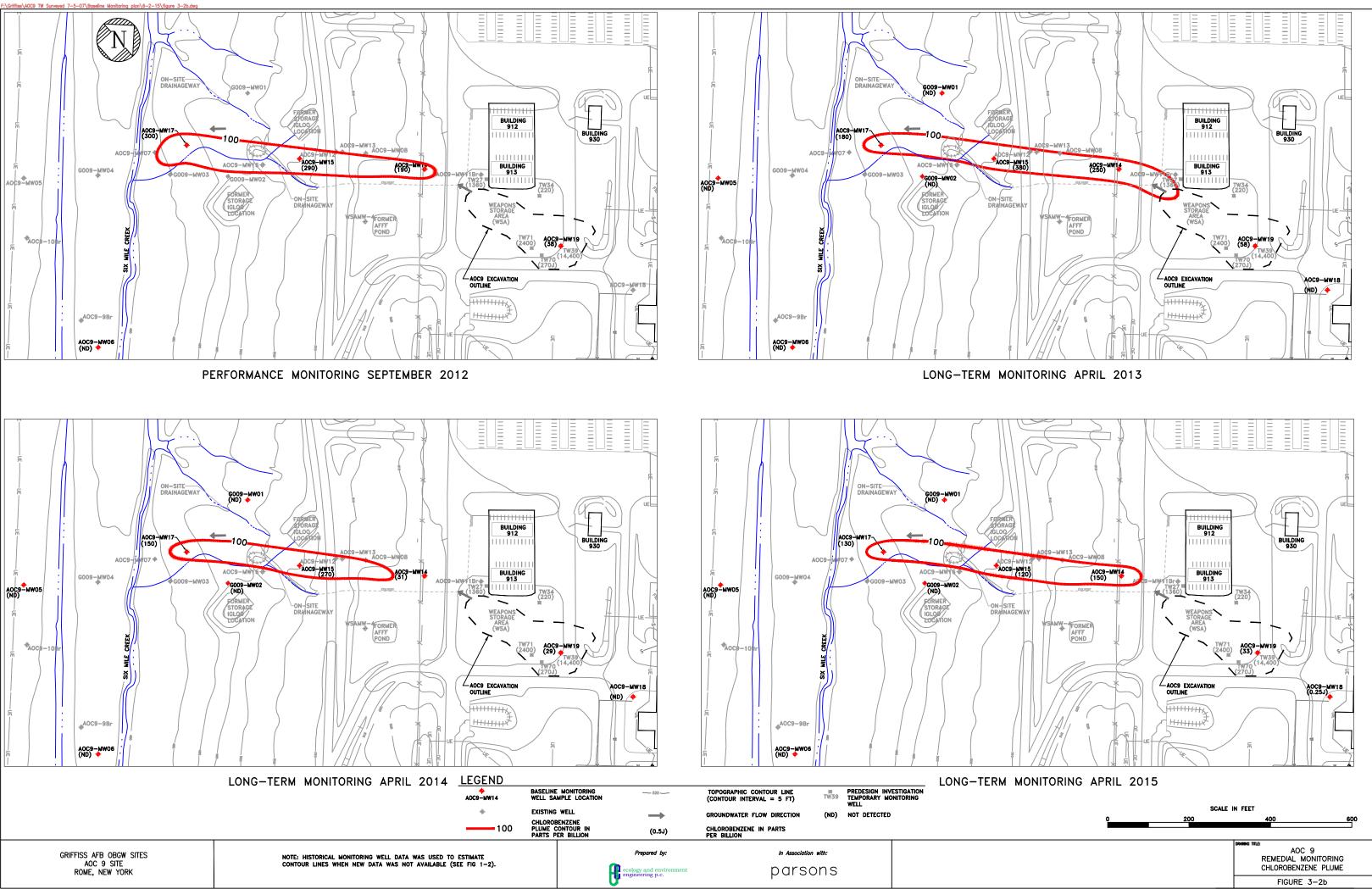
Note:

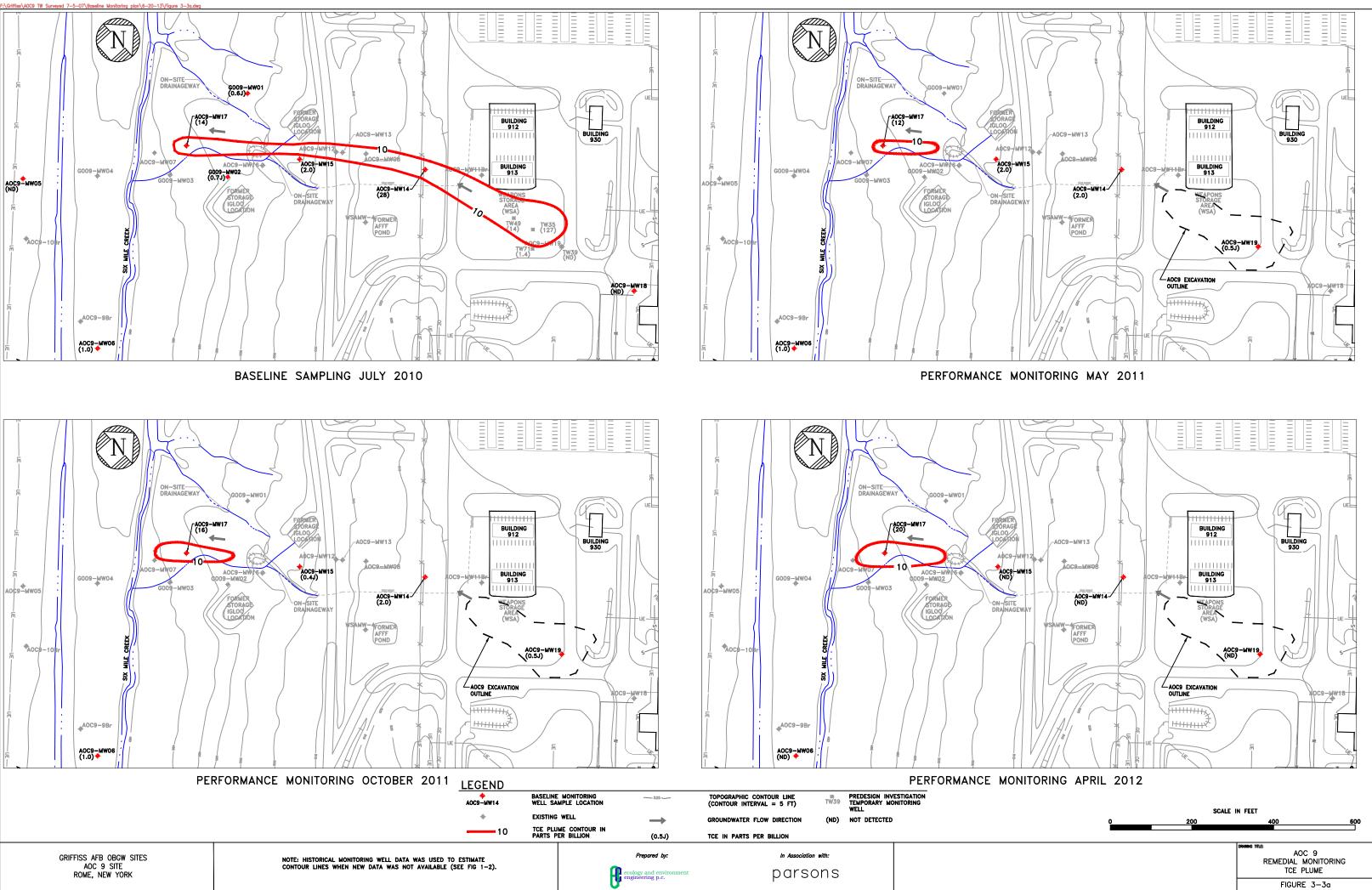
¹New York State Department of Environmental Conservation, Class GA Groundwater Standards and Guidance Values.

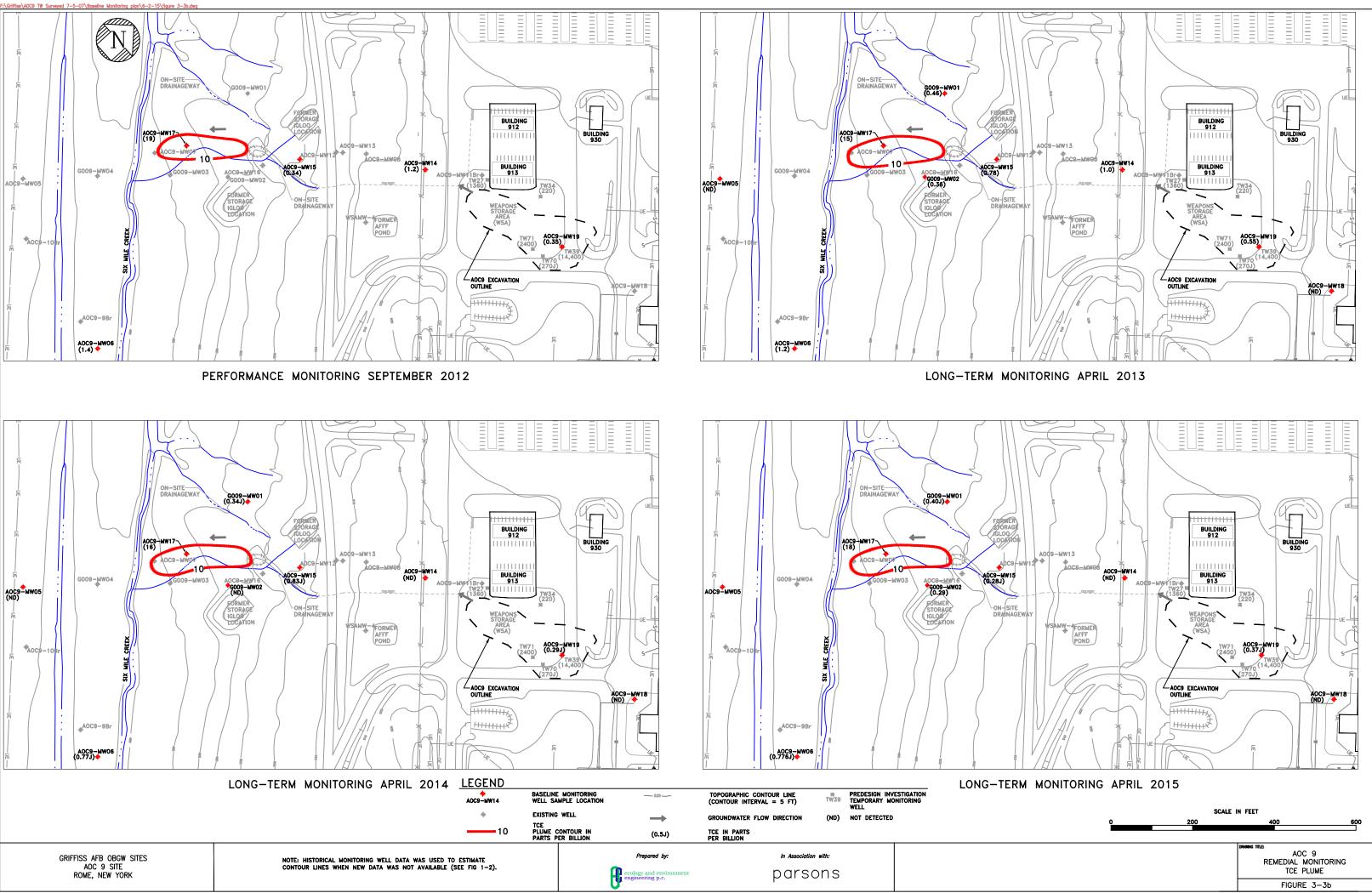
²SW01 is labeled as SW05 in Reference 1; SW01 is labeled as SW09 in Reference 2

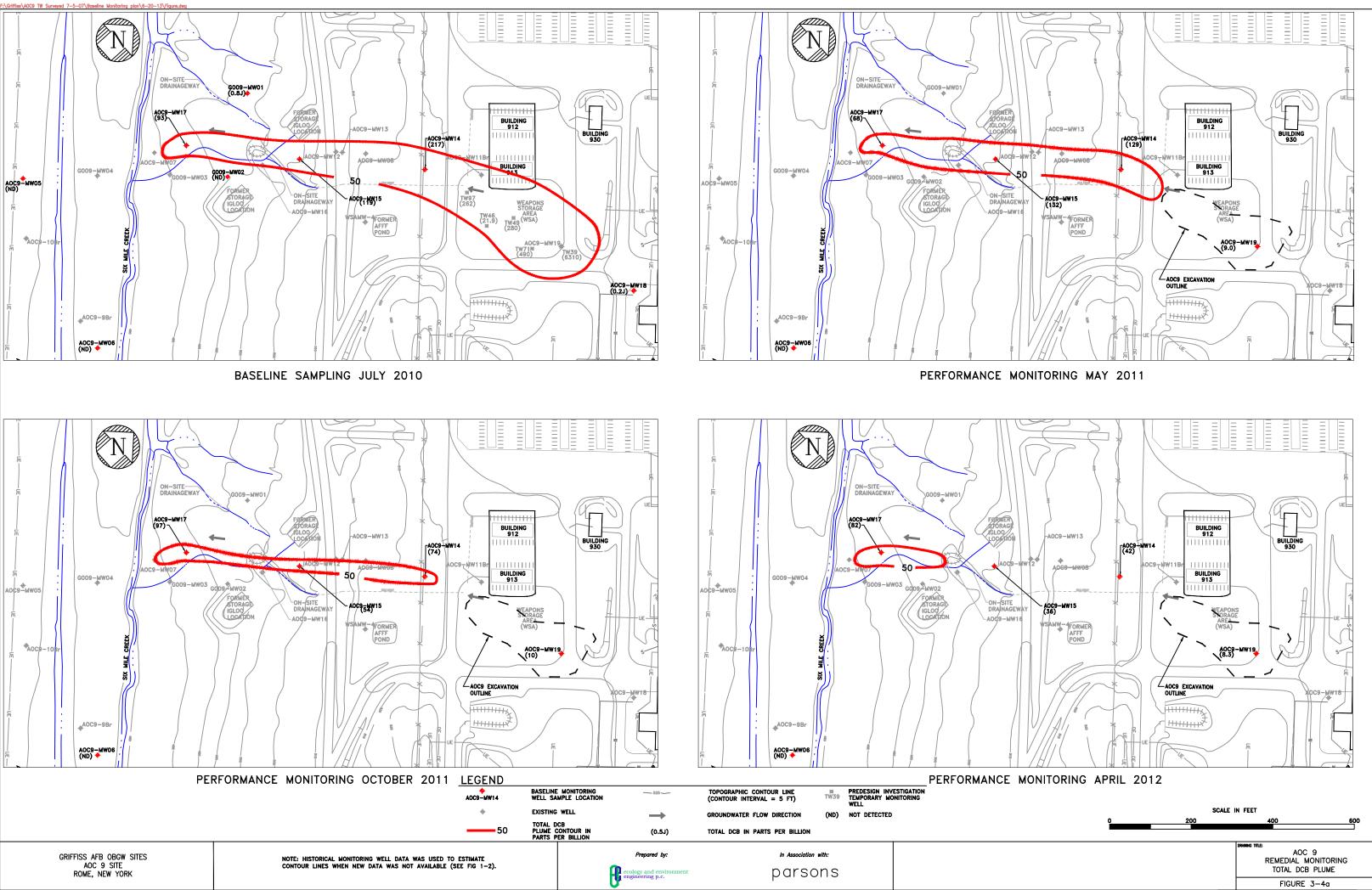

³SW02 is labeled as SW07 in Reference 1; SW02 is labeled as SW10 in Reference 2


⁴ SW03 is labeled as SW06 in Reference 1; SW03 is labeled as SW11 in Reference 2


References:


E & E. July 1998. Draft Report for Expanded Site Investigation and Confirmatory Sampling of Areas of Interest and Drywell/Wastewater-Related Systems
 E & E. August 2001. AOC 9: Weapons Storage Area (WSA) Landfill Supplemental Investigation Final data Summary Report.


(3) FPM Group. August 2007. Baseline and PDI2 Sampling Final Monitoring Report.



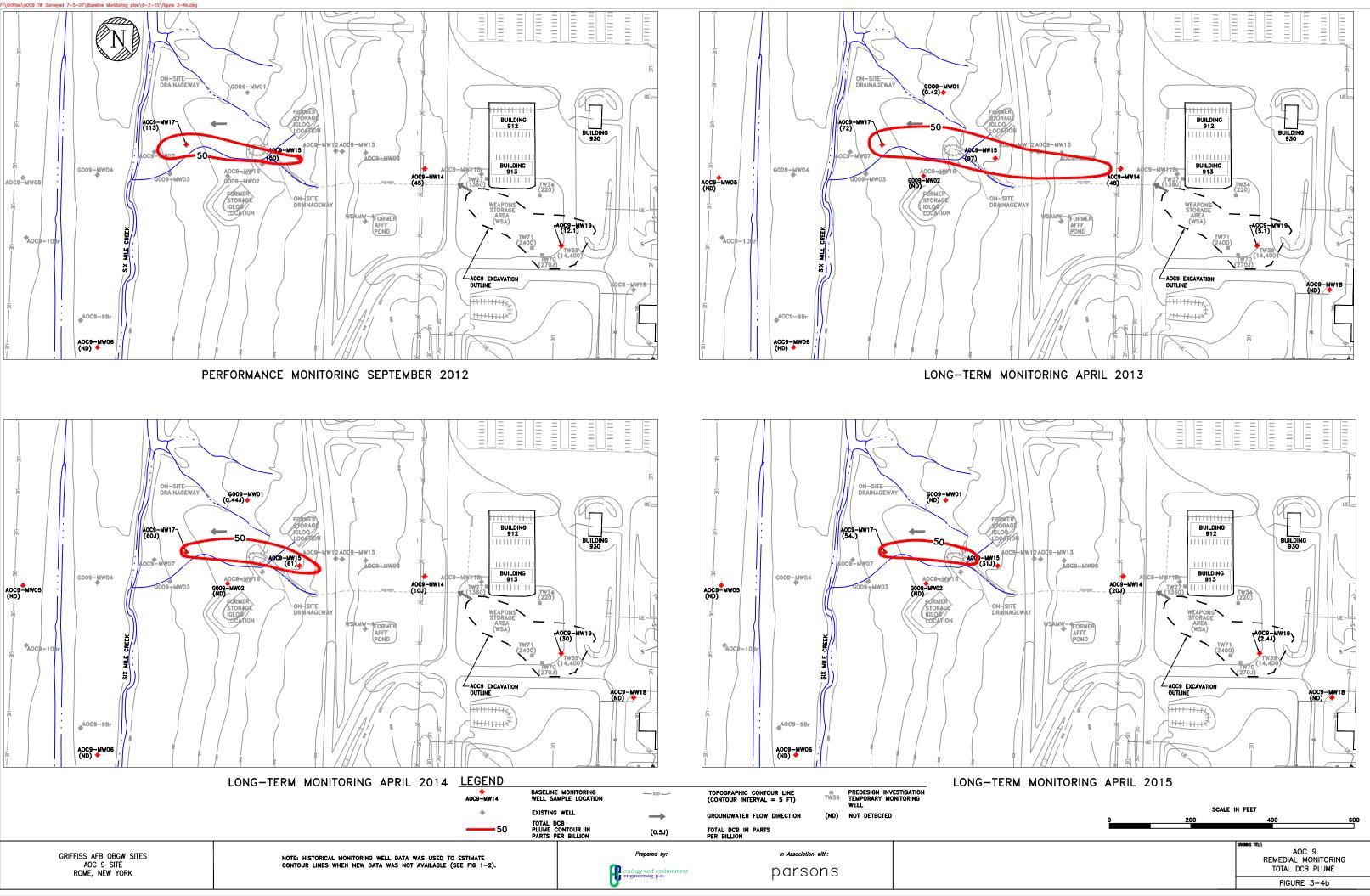


Figure 3-5 G009-MW01 Trend Analysis

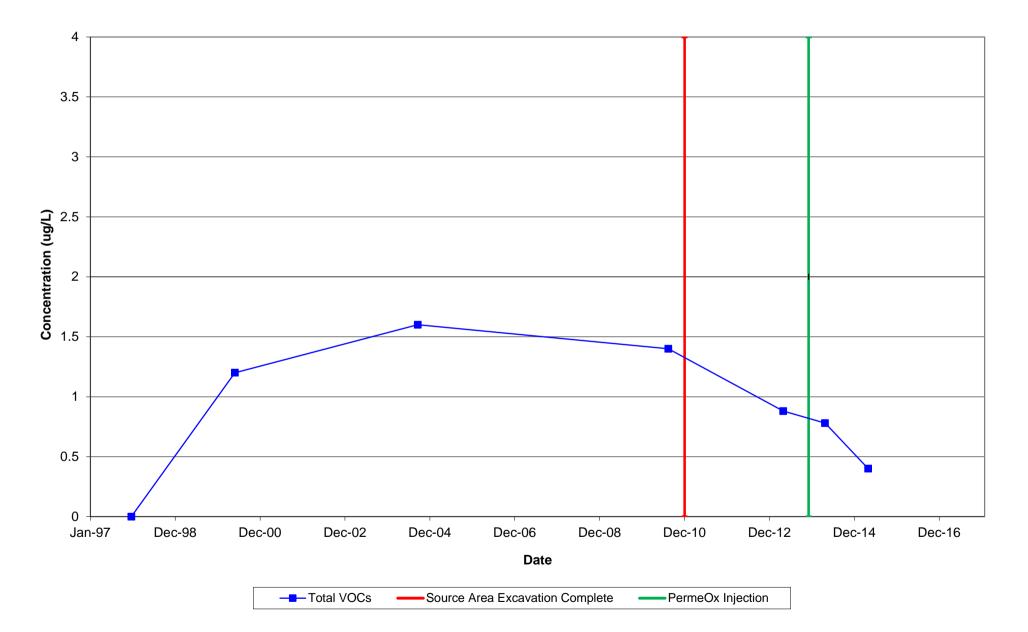
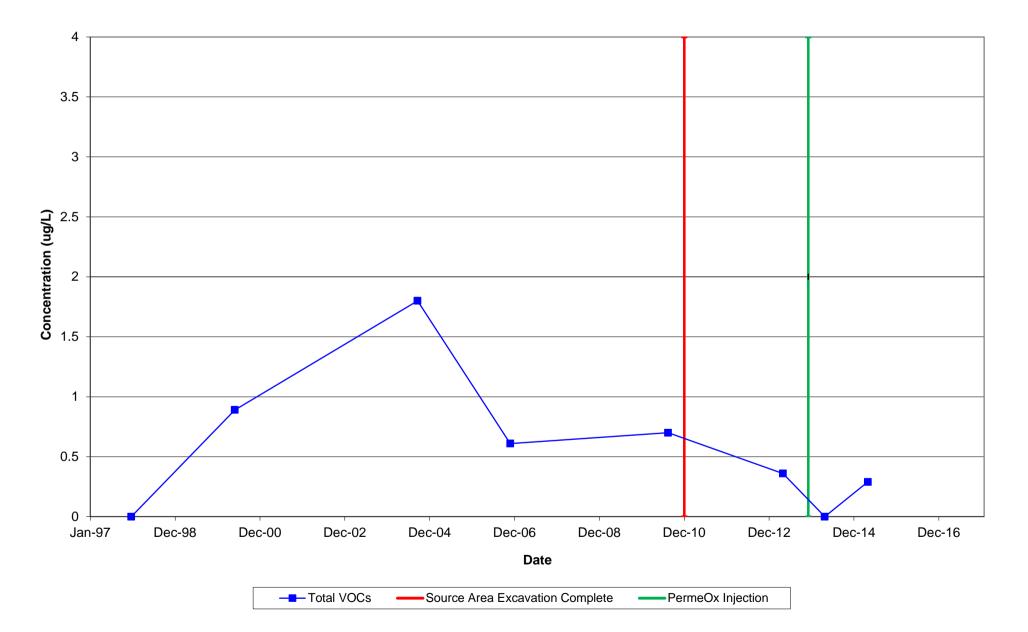
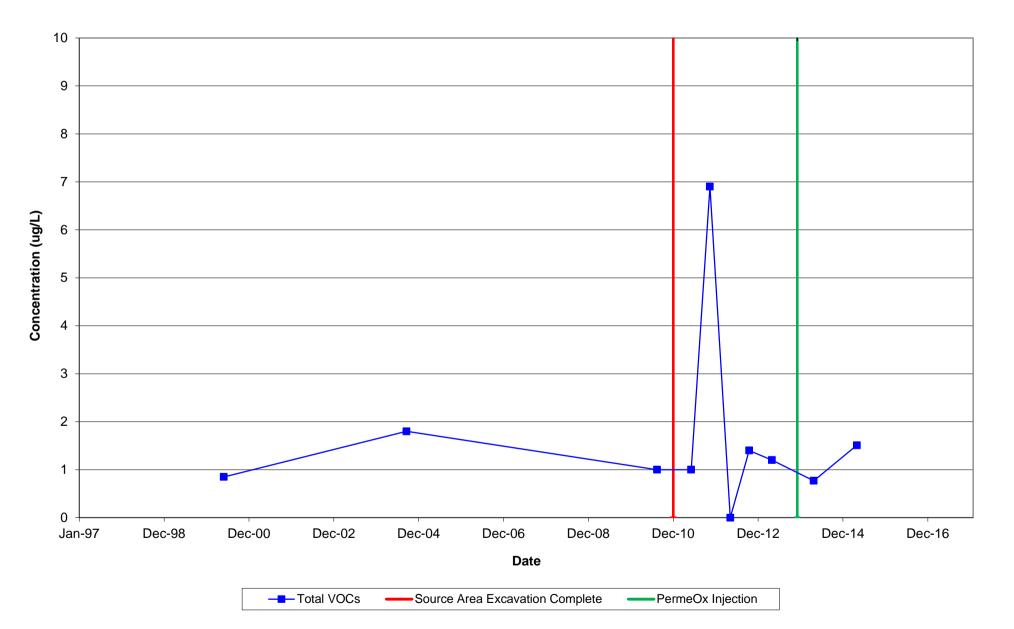




Figure 3-6 G009-MW02 Trend Analysis

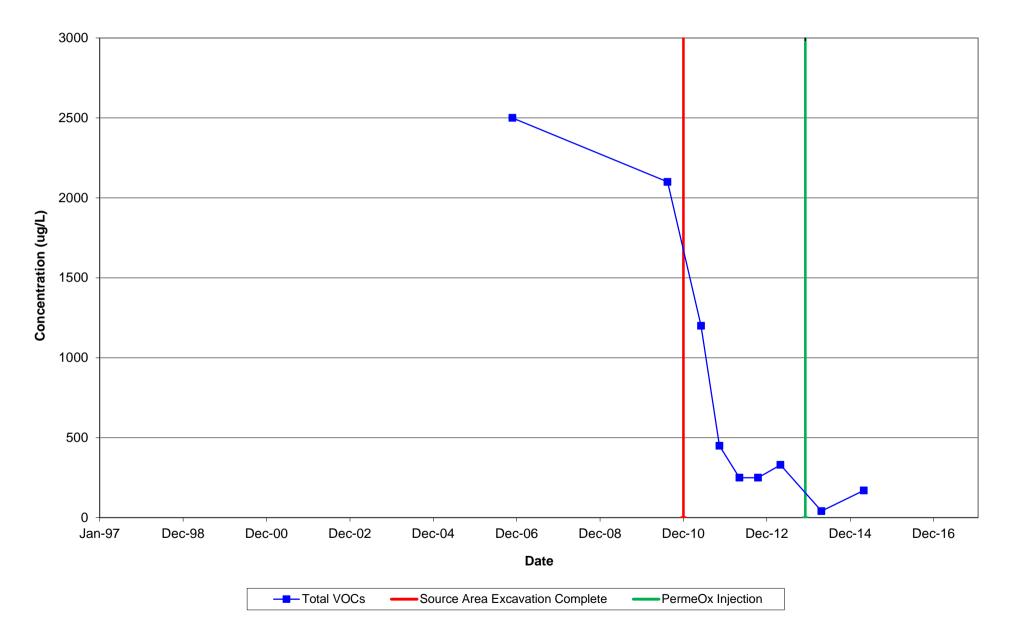


Figure 3-9 AOC9-MW15 Trend Analysis

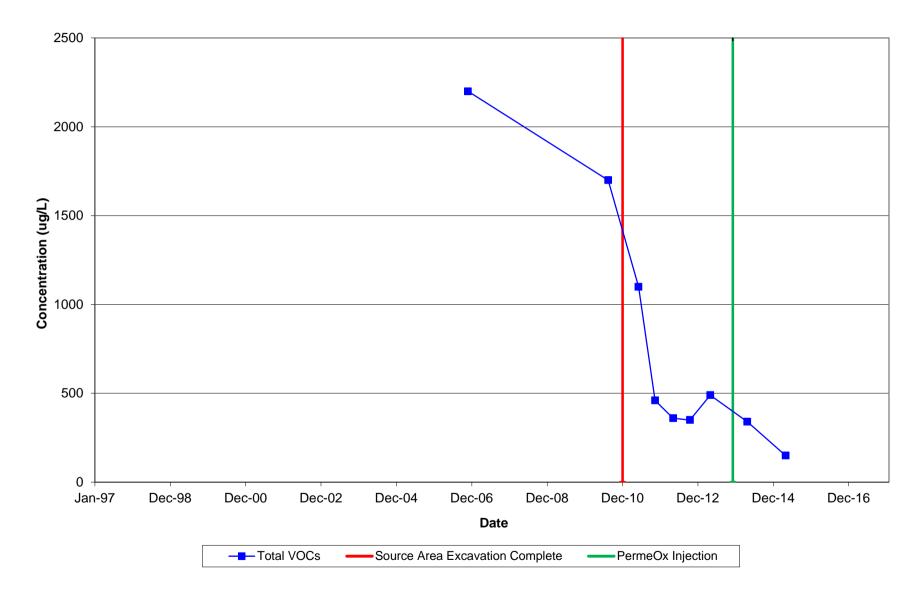
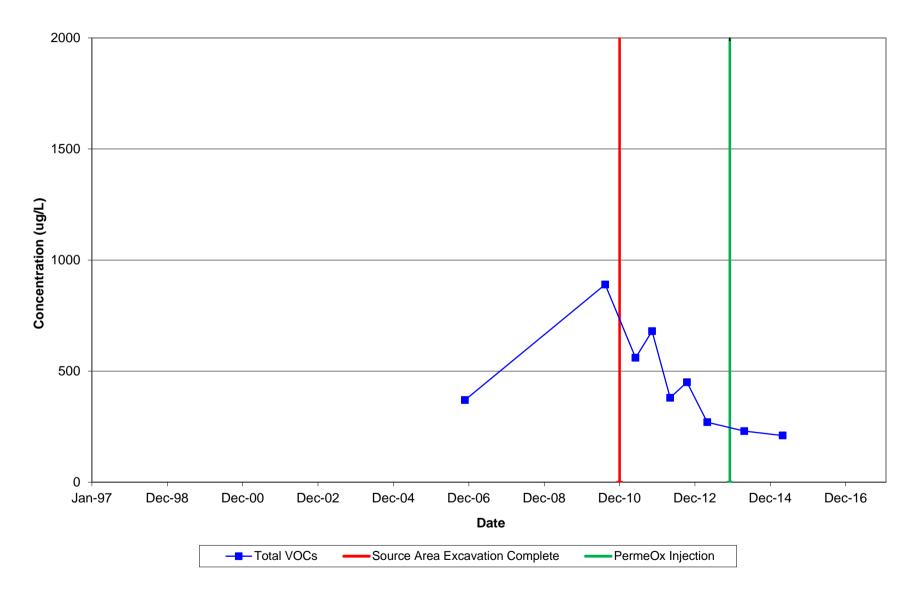
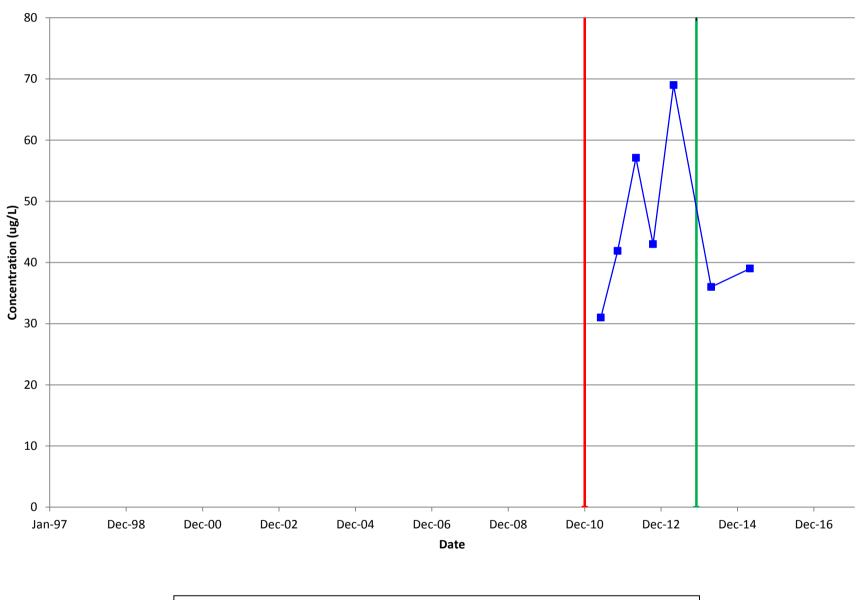




Figure 3-10 AOC9-MW17 Trend Analysis

4 3.5 3 Concentration (ug/L) 2.5 2 1.5 1 0.5 0 Jan-97 Dec-98 Dec-00 Dec-02 Dec-04 Dec-06 Dec-08 Dec-10 Dec-12 Dec-16 Dec-14 Date -PermeOx Injection -Source Area Excavation Complete

Figure 3-11 AOC9-MW18 Trend Analysis

Figure 3-12 AOC9-MW19 Trend Analysis

---- Total VOCs ----- Source Area Excavation Complete ----- PermeOx Injection

4

Effectiveness of Remedy

Since baseline sampling, the center line of plume monitoring wells (MW14, MW15, and MW17) have seen a significant reduction in total VOC contamination concentration with only some slight seasonal variations and rebounding following the PermeOx injection at MW14. Downgradient wells MW05 and MW06 continue to be below RAOs. The lateral wells, MW01 and MW02, and the upgradient well, MW18, have shown a decrease in concentration since baseline sampling. The source area concentrations have decreased since the excavation and continue to show some seasonal variation with concentrations remaining less than 100 μ g/L at MW19.

Based on the significant reductions seen in VOC concentrations in source area well MW19 and within the centerline of the contaminant plume in comparison to sample data collected prior to the remedial excavation, and the stability of the leading edge of the plume as indicated by the VOC concentrations obtained from MW06, the AOC 9 groundwater remedy has been effective during this long-term monitoring period.

The performance of the remedy will continue to be monitored through biennial monitoring to evaluate the groundwater chemistry and contamination biodegradation and/or migration. Monitoring will be ongoing according to the following schedules:

- Long-term monitoring is planned for the spring of 2017. Nine wells (MW-01, MW-02, MW-05, MW-06, MW-14, MW-15, MW-17, MW-18, and MW-19) and three surface water locations (SW-01, SW-02, and SW-03) will be sampled as part of long-term monitoring.
- No quarterly sampling is planned for 2015 to monitor the performance of the PermeOx injections.

In accordance with the Record of Decision, monitoring of the groundwater plume and treatment performance will be performed by the Air Force until RAOs are achieved, i.e., until four consecutive sampling rounds are below the remediation goals listed in Table 2-1. It is anticipated that a report will be prepared in late 2015 supporting a recommendation that the site has met operating properly and successfully criteria. A CERCLA five-year review of the site will be completed in 2015.

4.1 Recommendations

No changes to the approved long-term monitoring plan sampling protocols or locations are proposed at this time.

References

Ecology and Environment Engineering, P.C. (EEEPC). Forthcoming. Demonstration of Remedial Actions Operating Properly and Successfully at AOC 9 Former Griffiss Air Force Base, Rome, New York.

_____. 2015. Final April 2014 Long-Term Monitoring Data Summary Report AOC 9 Former Griffiss Air Force Base, Rome, New York.

_____. 2014. Final April 2013 Long-Term Monitoring Data Summary Report AOC 9 Former Griffiss Air Force Base, Rome, New York.

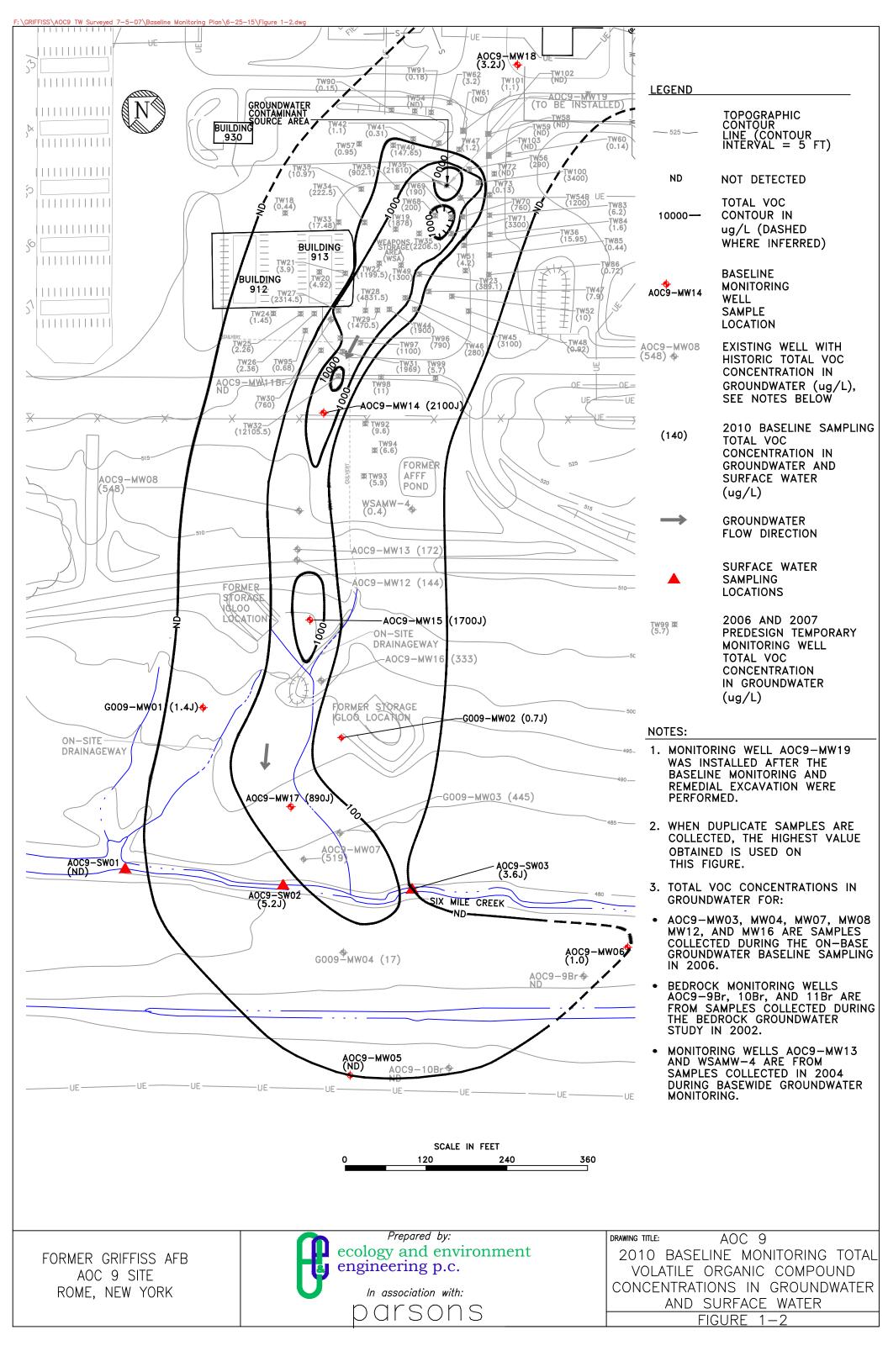
_____. 2013a. Final May 2011 and October 2011 Performance Monitoring Data Summary Report AOC 9 Former Griffiss Air Force Base, Rome, New York. April 2013.

_____. 2013b. Final April and September 2012 Performance Monitoring Data Summary Report AOC 9 Former Griffiss Air Force Base, Rome, New York. August 2013.

_____. 2010a. Final Record of Decision for Area of Concern 9 (SD-62) at the Former Griffiss Air Force Base, Rome, New York. July 2010.

_____. 2010b. Final Area of Concern (AOC) 9 Feasibility Study Addendum, Former Griffiss Air Force Base, Rome, New York. March 2010.

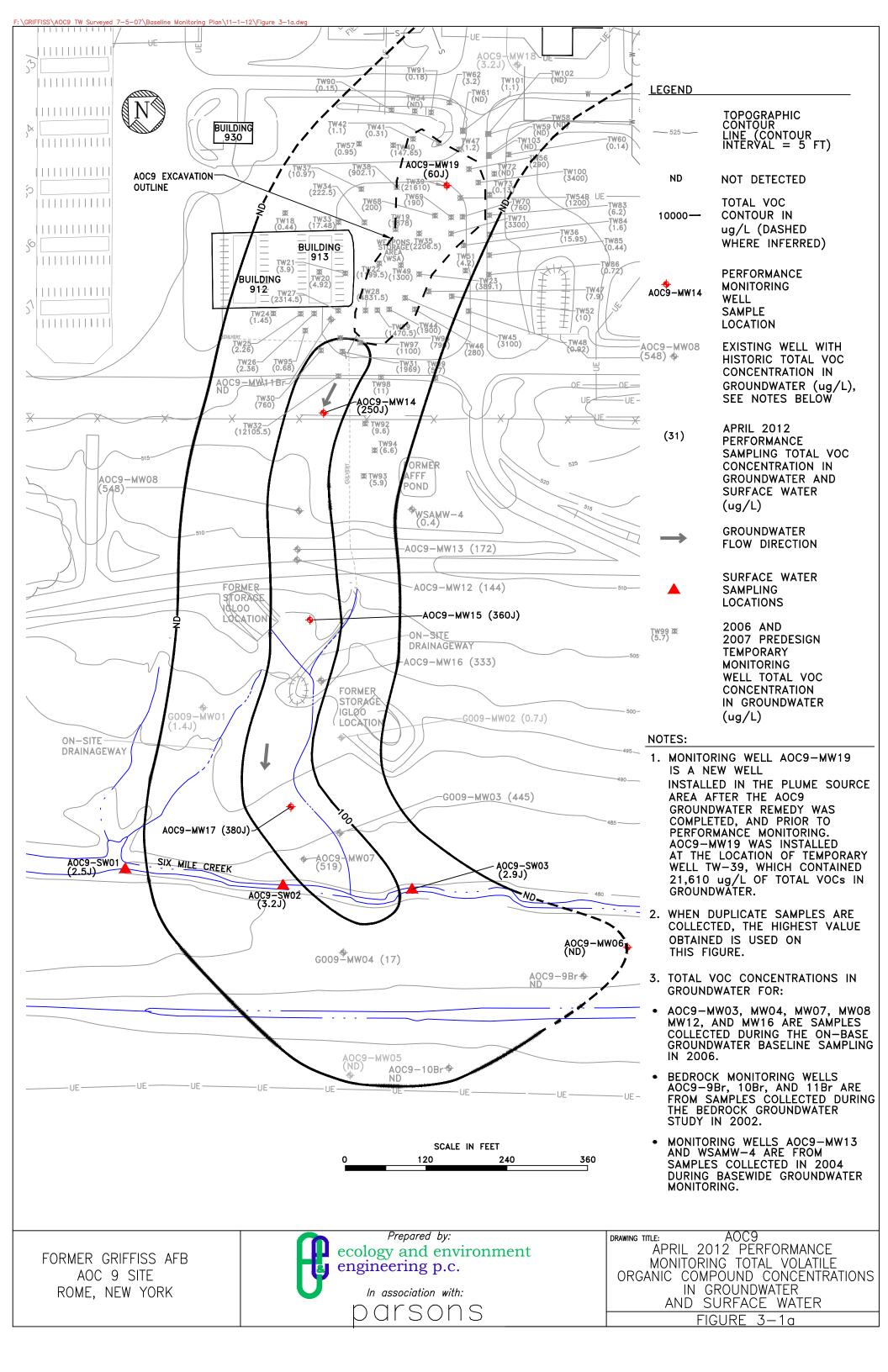
_____. 2010c. Final Baseline Monitoring Data Summary Report, AOC 9 Former Griffiss Air Force Base, Rome, New York. November 2010.

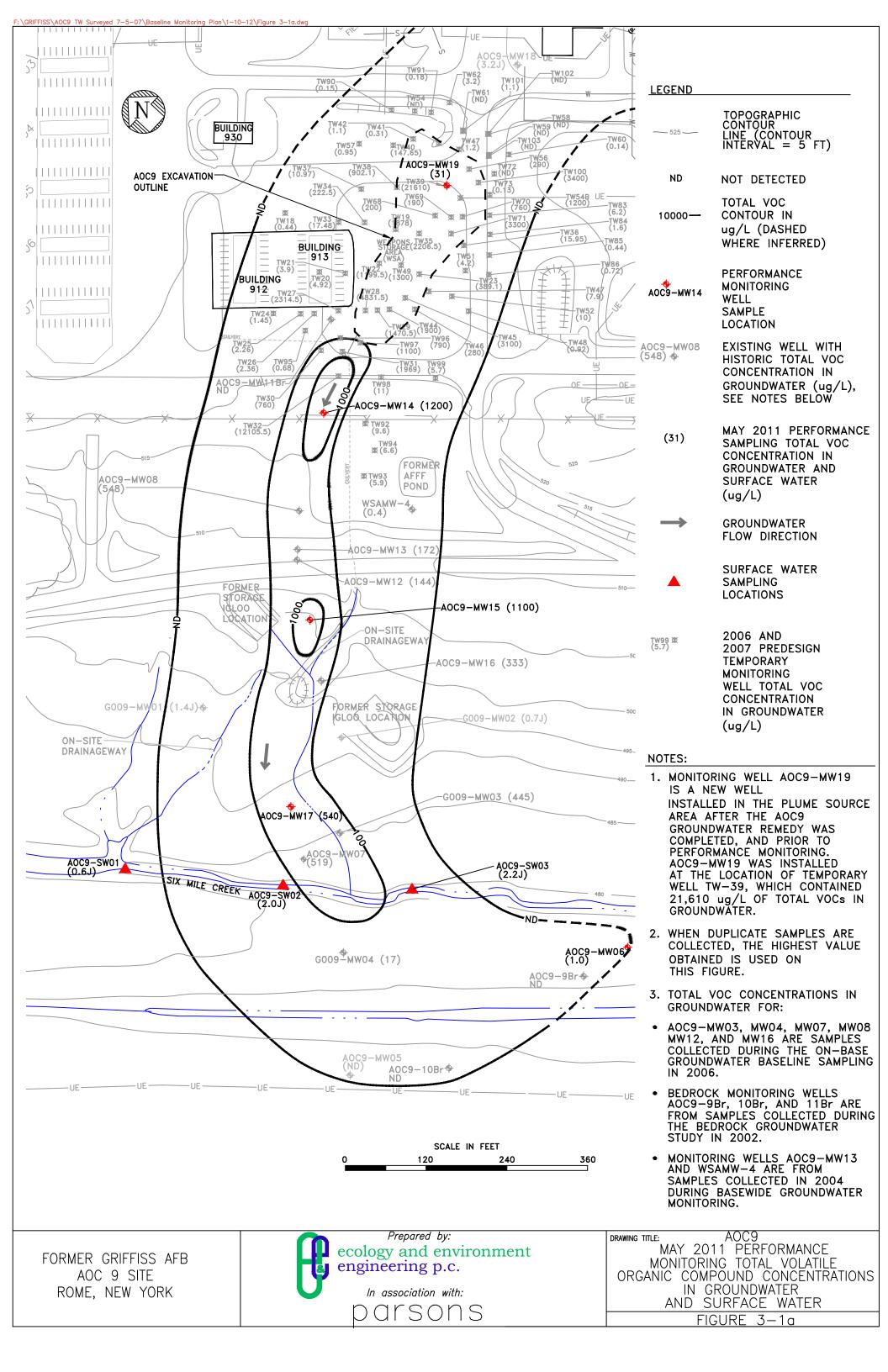

_____. 2010d. Final Remedial Design Work Plan and Construction Drawings for Area of Concern (AOC) 9 Former Griffiss Air Force Base, Rome, New York, September 2010.

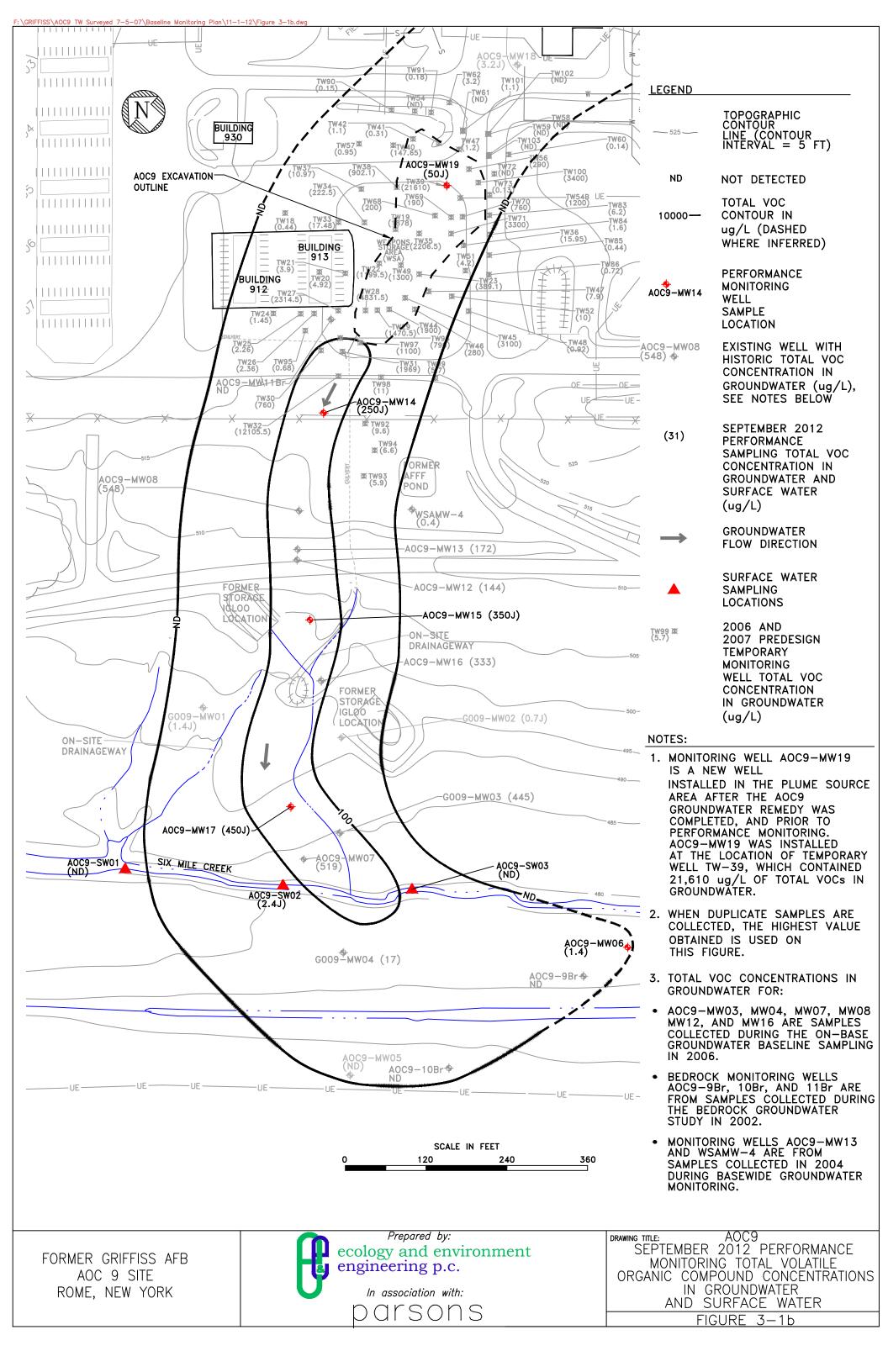
_____. 2010e. Final Work Plan Baseline, Performance, and Long-Term Monitoring at AOC 9 Former Griffiss Air Force Base, Rome, New York. June 2010.

Ecology and Environment, Inc. (E & E). 1998. Draft Report for Expanded Site Investigation and Confirmatory Sampling of Areas of Interest and Drywell/Wastewater-Related Systems, Former Griffiss Air Force Base, Rome, New York. July 1998.

- New York State Department of Environmental Conservation (NYSDEC). 2009. Draft DER-10 Technical Guidance for Site Investigation and Remediation. November.
- Parsons. 2013. Remedial Action Work Plan Addendum Area of Concern 9 Injection Former Griffiss Air Force Base, Rome, New York. August 2013.
- United States Environmental Protection Agency (EPA). 2006. National Primary Drinking Water Standards. January 23, 2006 update.







Decology and environment engineering, p.c.

ģ

.

3. Field Methodology

	u	Daily Act	ivity Summary		······				
Date: Monda	N April	6.2015	Report No.:	001					
	OC 9 Baselin	e, Performance, a							
Personnel			Personnel		A ffill-fi				
	Hrs.	Affiliation	Personnei	Hrs.	Affiliation				
M.Fronckowia	4	EEEPC							
L. Roedl	12	ETTER							
· · · · ·	·	· · · · · · · · · · · · · · · · · · ·							
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
		·	· · ·						
	•	·			-				
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•					
· · ·		• •	·	Į	· · · ·				
		· .							
•	-								
-			· ·						
	,			,	·				
	<u> </u>								
			,		,				
· ·									
			. •		-				
• •		Summary	of Activities						
Equipm	ent	AOC/Task	Acti	vities Perform	ed				
Water leveling		mater levels,	-measure de	oth to Wat	er in wells				
PID		SUFFACE	-screen wells	before lat	ter opening,				
		water	Surren pun						
YSI waterque	ality meter		-measure pt	temp. 1	and. DO. DRP				
1		gurge and	of groundy		, , , , , , , , , , , , , , , , , , , ,				
		sample	measure p	H temp. 1	old DRP				
		groundwater	of surface	water					
La Motte 2020we-	herbidineter	~ 1	- measure -	hipidita.	ofamund				
Municip or on the	<u>19-19-401010</u>		and surface	In the for					
Geolontrol		T.	-lontrel flor		Jadder oum?				
GRUCENTE		¥		<u>107(01</u>	planaer pring				
				•					
		· · · · · · · · · · · · · · · · · · ·							
		•							
•	· · · · · · · · · · · · · · · · · · ·								
				· · · · · · · · · · · · · · · · · · ·	· ····-				
•									

Figure 3-5 Daily Activity Summary Form

Page 1 of 2

Cecology and environment cogineering, p.c.

 $\mathcal{A}_{i}^{(i)}$

÷

3. Field Methodology

Ľ

þ

Ę,

Ľ.

Ľ.

1

1

ہے۔ بع

G

Daily Activity S	limmary
Date: Monday, 4/6/15	Report No.: D() Weather: Image: Constraint of the second
Project Name: AOC 9 Baseline, Performance, and Long-Term Monitoring, Former Griffiss AFB	See onlie
Field Tests Performed (Sampling, Field Screening, C	
	3) Sampled surface
well MWOS. Measured DH. tem	
all samples and a mar water. Measu	
Work Delays (Due to Weather, Maintenance, Breakdo	
None.	
	· · · ·
· · · · · · · · · · · · · · · · · · ·	
Problems Encountered and Deviations From Work P	an
No denations. or problemsMF	
LOCK At MW-16 was jammed, ab	le to eventually open, but
should be changed out	· / ·
,	
Written and Verbal Instruction by the Government	
None.	
Safety Issues	· · · ·
None.	
Planned Activities for Next Work Day	
continue with purging and sam	
Wells (& location left to same	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Demoder Alleiters Completion of Field Mark et an A	
Remarks: (Visitors, Completion of Field Work at an A	
Water levels and surfaceWater	- sampling complete.
· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·
MAD AND	
Site Manager Add Date	4/0/15
Figure 3-5 Daily Activity Summary Form	Page 2 of 2
· · · · · · · · · · · · · · · · · · ·	

Gecology and environment engineering, p.c.

Ì

3. Field Methodology

	<u></u>	Daily Acti	vitv Summ	arv				
Datass	1				000			
Date: TUESC	<u>124 /121</u>	<u>117,2015</u>	Kepi	ther: ()		· · · · · · · · · · · · · · · · · · ·		
I ong-Term Mon	itoring Forme	r Griffige AFR		ی دهند. ماما م	ionay, 50	r bel high 52°F		
			Person		Hre	Affiliation		
			Feison	1161		Animation		
	1	the second se						
L.K.Dear	11.52	teer	<u> </u>		•			
			· · · · ·					
· · ·		•	-		· · · · · · · · · · · · · · · · · · ·			
· · ·						· · · ·		
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·			
·		-				·····		
·		· · ·		<u> </u>		· · · · · · · · · · · · · · · · · · ·		
					·			
•	· · ·	· · · · · · · · · · · · · · · · · · ·			•			
			· · ·			·····		
	· · ·							
· · · ·					,			
·		· · · · · · · · · · · · · · · · · · ·	· · · ·					
			· · · · · ·			·		
·			·					
· · · · ·						·		
· .		Summary	of Activities	5				
Equipm	ent	AOC/Task						
Waterlevel in	aterievel indicator purper and -measure depth to water in wells D Sample -screen wells upon opening, groundwater screen purpe water Twater quality meter - measure ptl, temp, cond., po, UNP of groundwater Holle 2020we turbidimeter -measure turbidity of groundwater	-measure depth to water in wells						
PID		CAWOLD	-CIVAPIA	innell	s block or	renim.		
		aroundwater	SURP	n ou	mp wate	er.		
YSIWateraua	lity micher		-Measu	reott	temp, co	nd. DO		
	-		OKP of	andu	sdwater			
LAMOHE 2020Ne	eturbidime	ter	-measu	Petu	bidity of	munduater		
GeoControl		₩.	-Centrol	flow	rate of 61	adder oump		
						1 7		
	•							
					•			
			•					
				• •				
	····				· · ·			
					•			

Figure 3-5 Daily Activity Summary Form

Page 1 of 2

Cecology and environment engineering, p.c.

3. Field Methodology

.::

Date: TURSday, 4 7/15 Report No.: 002
Project Name: AOC 9 Baseline, Performance, and Weather:
Long-Term Monitoring, Former Griffiss AFB
Field Tests Performed (Sampling, Field Screening, Chemical Testing, etc.)
Screen wells and purge water with PIP. Sampled permanent wells, Minole, MNO2, MNOI, MNI7, and MNIS.
heasured pH, temp, cond. turbidity, DO, and ORP of
all samples and burge water.
Nork Delays (Due to Weather, Maintenance, Breakdowns, Waiting for Decisions)
at hr delay due to dead battery on Geo Control system.
New battery purchased.
~15 min delay due toproblems at MW15 (see below).
Problems Encountered and Deviations From Work Plan
MW15 was not functioning properly at start up. No water
sking purged due to stuck check valve ball Pulled pump
ip and rapped to release. Air line to bladder pump was
Vitten and Verbal Instruction by the Government
None
afety Issues
NOME.
Ianned Activities for Next Work Day
Continue purging and sampling of permanent wells
13 locations left to sample). Ship samples to lab
Via FedEX.
temarks: (Visitors, Completion of Field Work at an AOC, etc.)
None
ite Manager MAMMCAUtter Date 417 15
igure 3-5 Daily Activity Summary Form Page 2 of 2

Ľ

Ľ

é

Ю.

É L

E E E

ū

Ì

3. Field Methodology

		Daily Act	ivity Summ	nary		
Date: Wedne	esday. A	10ril 8,201	S Rei	ort No.:	003	
		le, Performance, a	nd We	ather: A	loudy, 36	F
Long-Term Mon	itoring, Forme	r Griffiss AFB	h	ainr	ossible	· .
Personnel	Hrs.	Affiliation	Perso		Hrs.	Affiliation
M. Fronckowic	KO	TETERC				
L.Roed1	6	ELEPC				
-						
· · ·						
, , , , , , , , , , , , , , , , , , ,	•					
•		• •	1			
		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
	·	· · · ·				
			<u> </u>			
	· · ·					
				· · · · · ·	,	
			· · · ·			
						·
			· · · ·			
· · ·		Summar	/ of Activitie	l s		
Equipm	ont	AOC/Task		Activ	vities Perform	ed
Waterleveli	ndicator	Pune and	-measur		to Water	
PID		simple		1	upon ope	-
<u> </u>	. .	gnuntwater			- Water	<u>,</u>
YSI Waterqu	alibunioter		Mergu	a with	ema (DV	, DO, ORP
13. Worrigu	all y measure		of appu	h divit	-er	
LaMolle 2020we	be didinate		- WADD CU	ro tu	childity of	groundwater
Beo Control	I KI VILLINGIN	V	- Count	PioIN	vote of bi	adder pump
OCCURTY DI		¥	· <u>ovnirivi</u>	<u>+100-</u>		when pump:
·						-
· · · · · · · · · · · · · · · · · · ·						
			<u>_</u>		••••••••••••••••••••••••••••••••••••••	
		·				
	· · · ·	· · ·				
				<u> </u>		
· · · · · · · · · · · · · · · · · · ·						
	•		· · · · · · · · · · · · · · · · · · ·		•	
· · · · · · · · · · · · · · · · · · ·			10 100 111		· · · · · · · · · · · · ·	

Figure 3-5 Daily Activity Summary Form

Page 1 of 2

Geology and environment engineering, p.c.

3. Field Methodology

Daily Activity Su	mmary
Date: Wednesday, 4/8/15	Report No.: 003
Project Name: AOC 9 Baseline, Performance, and	Weather:
Long-Term Monitoring, Former Griffiss AFB	See page
Field Tests Performed (Sampling, Field Screening, Ch	
Screen wells and purple water w	
DIRMOMENT INTELLS MAINIE, MINIE, A	nd MN19 Meatured off
temp, cond, turbidity, DO, and c	ORP of all samples and
purae water.	•
Work Délays (Due to Weather, Maintenance, Breakdow	wns, Waiting for Decisions)
None	·
Problems Encountered and Deviations From Work Pla	in
None	
Written and Verbal Instruction by the Government	· · · · · · · · · · · · · · · · · · ·
None.	
· · · · · · · · · · · · · · · · · · ·	
Safety Issues	
	·
None.	· ·
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
Planned Activities for Next Work Day	· · · ·
N Me.	
	· · · · · · · · · · · · · · · · · · ·
	· · · ·
Remarks: (Visitors, Completion of Field Work at an AO	
All sampling complete: Sample	es shipped to
Katahdin Lab Via Erdex.	
· · · · · · · · · · · · · · · · · · ·	
(Mlan Anna I	
Site Manager Date	41815
Figure 3-5 Daily Activity Summary Form	1 1

Page 2 of 2

۱ ۲

Ę

с Ч

þ,

,			•		· ·	•		•••••			
	-	· · · · · · · · · · · · · · · · · · ·	<u>````````````````````````````````</u>		·		·				7
Groundwa	ter Sampl	ing Form		_*		* ,	- ,	•			
Project: AOĆ	9 Baseline,	Performance, Con	g Term Manitoring)		,	C MA	مدينة والجانية ف	is - in-			
Site: AOC 9-	Former Grif	fiss Air Force Bas	e Harris and the angle of the angle of the	*	_ Sample ID: _ _ Sample Time		MWOLLTMO	10 115	······································	· · · ·	
Sample Date:	- 41-1	15	•	· · · · · · · · · · · · · · · · · · ·	Sample Tubi	ng: OED tefl	on-lined polvethyl	епе			2
Sampling Dev Well Depth (f	ice: QED T	1200 bladder pun 9.0	ip	·	Sample Turb Initial Water	idity (NTUs): Level (Feet I	<u> </u>	, <u>, , , ,</u> , , , ,	· <u>·······</u> ····························		
Screen Interva	l (feet BGS):4-9			Final Water I	Level (feet TO		5		·	
Casing Inner I Initial PID Re	Diameter (ip	iches): <u> </u>		····, ···	<u>.</u> Casing Type	: PVC	· · · · · · · · · · · · · · · · · · ·		l 		
THE PART AND A CO	arres (Philip								Purce		
		Temperature:	Conductivity	Turbicity	100	ORP (water Level	Flow Rate	volume		
						MERGER XXX				ading (Fliw ra	الله الله ار حور ا
1205 -	2.74	6.3 1	352.2	0:35	1.07	73.00	2.55	200m Umin		hdraudowin -a	
	7.75	6.5	352.5	D.19	0,63	72.4	3.53	11 J	0.9 -	to adjust	
	175	6.4	352.8	0.04	0,28	71.2	2.53	1/	\$1.3		
	7.75	6.6	351.7	0.13	0.17	69.7	2:53	· // 9	1.7	· · · · · · · · · · · · · · · · · · ·	
	7.15	6.4	353.7	0.12	0.14	68.8	2.53	il	2.1		
1230	<u>7.75</u> 7.75	6.4	<u>-252.2</u>	0.16	0.12	68.9	2,53	17	2.9	·,	
1240	7,15	6.3	.352,0	0.17	0.12	69.2	2,53	n .	3.3		
1245	7.75	6.3	352.1	0.08	D.11	69,4	2.53	*	3,7		
			· · ·	· · · ·		· · · ·	<u> · · -</u>		, ;	· · ·	
	· · ·		(···· ,	-			↓ 	· · · · ·	•
		- T.	اد								
·					•					· · ·	
	· · · · · · · · · · · · · · · · · · ·			· ······	•		· · · · · · · · · · · · · · · · · · ·		10 minut	2 1	
		· · ·	1.					· · · · · · · · · · · · · · · · · · ·		and y/1	
· · · · ·		1		••••••••••••••••••••••••••••••••••••••			, , , ,			1-14/1	
Key: ℃ ≖ E	egrees cent	igrade	meЛ	– Milligrams p	er liter	۰	ORP = Redox	potențial			
BGS - F	elow groun	d surface.	mS/cm	= microSiemer	is per centimeter		ppm = Parts pe	er million	 k. k		
	issolved O iters per mi		NTU NTU	 Nephelomet Nephelomet 	ric turbidity unit ric turbidity unit	•		yl chloride. inner (PVC) casi	ng.	-	
	<u> </u>	<u> </u>	laat . 124. 1	a state to a state of		- March California		- 1 1.35 T -		i	•
Figure 3	4 Gro	undwater Sa	mpling Eorm			· · · · ·		9.0			
	tan sabab	and the second sec		,	·	•			:)	Page 1	of 2
							-	-1.90	5 . (1 b)		
• •	• •	., .		4 * 146			-	7.10 x . 163	×3 =3	. יוס	•

		· · ·	•		,	•		·· .		
		_			• •			I		
										· · · · · · · · · · · · · · · · · · ·
	tor Parra					• •	-	•		
		ling Form			•					
Project: AOC	2 9 Baseline, Former Gri	, Performance, 4 or ffiss Air Force Ba	ne Term Manitoring	•	Sample ID:	Ame	6-009-MA	102LTM04	0715	
Nell-No.:	MWC	Q.2	and a second state of the second second	· · · · · · · · · · · · · · · · · · ·	Samplo Time	:/	140			
ample Date	:		····	······································	Sample Tubi Sample Turb	ag: <u>OED tefle</u> Idity (NTUs)	n-lined polyethyl	ene	I	
Sampling De Vell Depth ((feet TOIC):	T1200 bladder pur 9.0		··· _ ···	Initial Water	Level (Feet T	<u>2,09</u> 0IC): <u>4.56</u>	n = 5.84		
Screen Interv	val (feet BG	s): <u>4-9</u>					IC): 5.80	····· · · · · · · · · · · · · · · · ·	•	<u>.</u>
Casing Inner	s Diameter (i cading (ppn	pches): $\frac{2}{U, Q}$			<u>.</u> Casing Type	PVC	•			
	COUNTR (PPI)								Purce	
		Temperature	Conductivity.	TURBICITY	Tedo: T	ORP	WateriLevel	Flow Rate	Volume	
Time	-Septil Sec		题整理(US/OTT))和18	RATUS) AR	ing/L)	(FTY)	de (ff) (ff) (OlC)	EXECUTION	(gallons)	<u>Comments</u>
105	7.19	3.9	319.5	18.4	. 4.37	143.7	5.84	300 milmin		
1110	4.92	3.9 1		17.8	2.24	58.0	5,80	250 milhuis	0,3	
1115	6.93	3.8	385,6	7.41	1.95	44.9	5.80 5.80	E ^t	.4	
1120	6.93	3.8	388.7	5.08	2,18	37.8	5.80		1.2	
1125	6.93	3.8 3.8	397.0	2.57	2.09	33.5	5.80	4	1.5	
1135	6.93	3.5	398.1	2.09	2.05	32.4	5.80	i(1.8	
					· · · ·			•		<u> · </u>
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·					·	
	[]		<u> </u>	·	· ·	· ·			<u> </u>	
		·			· · · · · · · · · · · · · · · · · · ·	· · ·			<u> </u>	•
	<u> </u>				+- <u>··</u> ·	 			· · · · ·	
. <u>'</u>			· · · · · ·						·	· · · ·
		1					,			
		· · · · · · · · · · · · · · · · · · ·		ļ <u>.</u>		<u> </u>			A LETAS	
·	<u> </u>			· · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>			44.1.
Key:	<u> </u>			<u> </u>	4 <u>, ., .</u>	<u> </u>	1	· · · · · · · · · · · · · · · · · · ·	, <u></u>	the
_ °C ==	Degrees cen	tigrade.	mg/L	= Milligrams J	per liter :		ORP = Redox j		۰.	
, BGS -	Below grou	nd surface.	, mS/cn NTU	microSieme	ns per centimete tric turbidity unit	[er million. 191 chloride.		
	Dissolved C Liters per m		NTU	- Nephelomet	tric turbidity unit		roic = Top of	inner (PVC) casin	g	
	1. <u>(1993)</u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·	<u>yi i kender sert</u>		<u>مراجع معروم معروم المحمد معروم المحمد المحمد</u>	- 1 F.	and inspection and a second	
Figure	3-4 Gr	oundwater S	ampling Form			· · · ·		9.0		
		a Blanch Barling She and			,	•	• •	5.84	, 0, 52 =1 X 3	Page 1 of 2
· * * *			•				· _	3.16 × 163 =	. 0.52 = 1	vol .
• • •		•	•				-,	3.16 × 1163 -	X3	• • •
						· · · · · · · · · · · · · · · · · · ·				

		;		<u> </u>			•	•		· · · · · · · · · · · · · · · · · · ·
Groundwa	ter Sampl	ling Form	-	-				,		
Project: AOC	9 Baseline,	Performance Long	g Term Manitoring	•	Concelle TDe	Adra-	MWDSLIT	M040615		
Site: <u>AOC 9</u> ; Well-No	Former Grit	tiss Air Force Hase	ater and attractions of the	,	Sample Time	: 174	HO		4	
Samule Date:	HIDL	5	•	,,	Sample Tubi	ng: OED tefle	n-lined polvethyl	ene i		
Sampling De [.] Well Depth ()	vice: <u>OED 1</u>	1200 bladder pum	<u>p;`</u>	· · · · · · · · · · · · · · · · · · ·	_ Sample Turb Initial Water	ldity (NTUs): Level (Feet T	OIC): 4.54			······································
Screen Interv	al (feet BGS):4-14	• •		_ Final Water I	Level (feet TO		2	·	·
Casing Innes Initial PID: Re	Diameter (in adiag (nam)	D_{1}	<u>.</u>		Casing Type:	· FVC	·		·	
								FICSA STORAGE AND A STORAGE	- Purge	
		remperature	Concuctivity	TUIBIOUV	Too T		Water Level	FlowRate	Volume	
	PH R		题》(但S/OID),有限				HINTELENNI H.SC	400mymin		Initial draw-
1645	6.57	4.3	105:3	16.9	14,15	177.2	5.81	400 my min	0.5	downatiset up
1655	6.43	4.4	112.7	11.75	10.85	185.5	6.05	۶. ۲	1.0	areater than
1100	6,43	<u> </u>	113,1	7,50	10.94	186.2	6.01	IF ,	1.5 .	0.3.74.
1705	6.44	4.5	113.6	10,01	10.70	1887	6,09	11	2.0	
1710	6.44	4.6	114.7-	5.38	10.68	191.0	6.09	H N	2.5	
1115	6.48	5.8	115.4	4.40	10,31	190.5	5.86	н <u>і</u>	3.5	
1720	6.45	5.9	114.8	4.55	10.13	195.7	5,81		4.0	•
1730	6.45	5,9	117.3	4.51	10.05	194.3	5.81	4	4.5	· · · · · · · · · · · · · · · · · · ·
1735	6.43	. (.0	117.5	4.59	9.98	1971.1	5.81	<u>u</u> .	5.0	
					· · · ·					
	· · · · · · · · · · · · · · · · · · ·			· · · · · ·			- · · ·	· · · ·		
	F	· · ·					· · · · · · · · · · · · · · · · · · ·			· ·
					ļ <u>.</u>			<u> </u>	\bigwedge	
·		·····	: ·		<u> </u>				HARA	Xin A.
Key:			· · · · · · · · · · · · · · · · · · ·	<u> </u>	J <u>,</u>	.L	<u> </u>		The second second	4/1/1-
°C ==]	Degrees cent	igrade.	mg/L	= Milligrams p	er liter		ORP = Redox j ppm = Parts pe	potential er million	$\sim \mathcal{O}$	2440
BGS = 1 DO = 1	Below groun Dissolved Or	d surface.	, mS/cn NTU	n = microSiemer = Nephelomet	ric turbidity unit		PVC - Polyvin	iyl chloride.	· .	
	Liters per mi		NTU	- Nephelomet	ric turbidity unit			inner (PVC) casin		·
<u> </u>	1. <u>649</u>	· · · · · · · · · · · · · · · · · · ·	Lat 1997	- spectree is all N	, , <u>, , , , , , , , , , , , , , , , , </u>		<u> </u>	r the same of the second	<u>, 1985, 1997</u> 184	
Figure 3	-4 Gro	undwater Sa	maling Form				· ·		• • •	Page 1 of 2
۰ <u>د</u>	÷ .					•	5 a		• •	14601012
• • •				- 1 						

	· ·			. `		• · · · •		
						1		-
				- ,		······	•	
Groundwater Sampling								
Project: AOC 9 Baseline, Perfo Site: <u>AOC 9-Former Griffiss A</u>	rmance, Long Term Monitorin	<u> </u>	_ Sample ID:	A.069-1	UNDG LTI	4040715		
Welling: MW-Dig	a tank a figuration of the state of	· · · · · · · · · · · · · · · · · · ·	Sample Tim	c: /C	130		4	· · · · · · · · · · · · · · · · · · ·
Sample Date: <u>1116</u> Sampling Device: <u>QED T1200</u>	blådder nutur		Sample Tup Sample Turt	idity (NTUs):	n-lined polvethy			
Well Depth (feet TOIC):	14.2		Initial Water	Level (Feet T	0IC): 6.3	4	· · · · ·	· · · · · · · · · · · · · · · · · · ·
Screen Interval (feet BGS): Casing Inner Diameter (inches)			_ Final Water ∴ Casing:Type		IC): (1.38		· · · · · · · · · · · · · · · · · · ·	·
nițial PID Reading (ppm):	0_0	ی در بادی برمانی در بادی برمانی بر ایر د	_ • . • •	•	•	1		
							Purger	
	perature: (Conductivity (C)::::::::::::::::::::::::::::::::::::		TDO Trial			Flow Rate	Volume Ioalions)	. Somments
	.6 1 277.9	12.28	5.48	\$32.7	6,34	300 m 1/000		2000 2000 2000 2000 2000 2000 2000 200
	.6 1 304.0	7.68	3.13	215.4	6.54	11	0.4	
0945 10.98 5	.ip 318.8	.j.93	3,10	203.5	6.55	44	0.8	· · ···
0950 203 5	7 325.7	5.00	2.89	198.5	4.55	i1 - ; i	1.2	
0955 2.09 5	<u>9</u> 331.7 3 335.8	3.98	2.70	191,8	6.55		1.6	· · · ·
1000 7.13 5	<u>.3</u> <u>335.8</u> .9 <u>338.9</u>	3,54	2.50 2.50	187.5	6.55	11	2.4	· · · · · · · · · · · · · · · · · · ·
	.9 340.7	2:80	2.47	128.4	6.55		2.8	-
1015 7.20 5	5.9 342.4	2.58	2,44	174.6	10.55	16 · · · · · ·	3.2	
	343:2	2.14	242	172.2	6.55	*	3.6	· · · · · · · · · · · · · · · · · · ·
1025 7.22 5	5.9 343.9	1.68	2.41	170.1	6.55		4.0	
		· · ·	··· .		· ···		· · · · · · · · · · · · · · · · · · ·	· · · ·
	1							
			· · · · · · · · · · · · · · · · · · ·				Stf.	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		Altar	Die Marie
			<u> </u>	· · · · · · · · · · · · · · · · · · ·	1			the forthe
					• • •			
Key:	· · · · · · · · · · · · · · · · · · ·	/L – Milligrams p	er liter		ORP = Redox	potential		
°C = Degrees centigrad BGS = Below ground sur		cm = microSiemen	s per centimete	Γ	ppm = Parts p	er million	·.	
DO - Dissolved Oxygen	l NI	U = Nephelomen U = Nephelomen	ic turbidity uni	t. t	PVC = Polyvi fOIC = Top of	nyl chloride. Finner (PVC) casin	e.	-
LPM - Liters per minute	LAL		ic montry un				<u>en hetter konstans</u>	- i
	water Sampling Form					14.2		· · ·
Figure 3-4 Ground	r Ale Charles al an contract the incorded for the second	". <u></u> !		•	, .	. 11	·)	Page 1 of 2
м	· ·	,			' 4	- 4.34 7.56 X.11	. 10	= 1 10)
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	•	. 6 552			~	7.86 X.1	311.50	· · ·
			•			()) +	¥2	i

		· ·			,	4		•••		•
		. ·			·			1		
		· · · · · · · · · · · · · · · · · · ·	·····				•.	<u></u>		
Groundwa	ater Samp	ling Form		•		• •		•		
Project: AOC	5 9 Baseline	, Performance Lon	g Term Monitoring		•	A SCALL	und man	inai -		
Site: AOC 9	-Former Gri	iffiss Air Force Bas	<u>8</u>	·····	Sample ID: Sample Time		-WHLTMOL	rusis.	4	· · · ·
Well No.: Sample Date	<u>. MW-14</u> . 41011	<u>Serrie de la composición de</u>	agent waar of the and a		Sample Tubi		n-lined nolvethyle	ne	······································	
Sampling De	vice: <u>QED</u>	T1200 blådder pun	1p	· · · · · · · · · · · · · · · · · · ·	_ Sample Turb	idity (NTUs):	0.25		<u> </u>	· · ·
Well Depth (Screen Interv				· · · · · ·	Initial Water Final Water	Level (Feet T Level (feet TO			•••••	· · · · · · · · · · · · · · · · · · ·
Casing Inner	Diameter (i	inches): <u>20</u>			Casing Type		· · · · · · · · · · · · · · · · · · ·	1		
Inițial PID R	cading (ppp	a): <u>0.0</u>		ار ور این				איז	TANK THE CONTRACTOR OF THE CONTRACTOR OF THE OWNER OF THE O	ระบรรณสมัยชิญญารารกระระบาทกร้างกับเรียงกระบรรณ
									Purge	
		Temperature	Conductivity St(us/cm)				Wateri Level	TIOW Kape	i (callons)	Comments
US25	7.25	マ・3	415.5	>1000		8.5	13.98	50 m/min		on no in the second
0830	7.14	8,4 1	422.8	190	1.44	-12.7	13.98	èv ,	0.7	
0835	7.12	8.4	420.5	64.0	1.57	-15.0	13.98	<u>)</u> (1,4	
0840	7.13	8.4	414.D	40.6	1.72	-21.0	13.98		2.1	· · · ·
08-13	7.13	8.7	413.60	· 32.0	1.60	-24.8	13.98	- 4r	2.8	
0850	7,13	8.4	413.2	23.5	1.70	-25.4	13,98	in	3.5	
0855	7.13	8,4	414.3	12.7	1.60		13.98		4.9	
<u>0905</u> 0905	7.15	<u> </u>	412.2	7.12	1.60	-31.5	13.98	21	5.6	
0910	7.14	5,4	+09:6	8,20	المارا	-317	13.98	14	6.3	
0915	7.14	· <u>8</u> ,4 ;	411.6	6.25	1.08	-32.7	13,98	u,	7.0	
										· · · · · · · · · · · · · · · · · · ·
			· · ·		··· .		ļ	·	<u> </u>	· · · · · · · · · · · · · · · · · · ·
•						· · · · · ·	ļ	·		
	[<u> </u>	· · · · · ·	· · · · · ·		, et +			+1	AL	
			<u> </u>	· · · · · · · · · · · · · · · · · · ·		- 			Altra	
			······					1	market	Dirt.1
· · · ·	<u> </u>		· · · · ·	n • • • •	· · ·	· · · · · · · · · · · · · · · · · · ·			,	Por 1/8/1-
Key:	······································					•	ORP = Redox p	otential	· ·	
	Degrees cen Below grou		mg/L . mS/cn	1 = microSiemen	s per centimete	r ·	ppm = Parts pe	r million	i ', 1	
DO =	Dissolved C)xygen	NTU	- Nephelometr	ic turbidity unit	t.	PVC = Polyvin	yl chloride.		•
LPM =	Liters per m	inute	NTU	▲	ic turbidity unit	,	TOIC = Top of i	nner (PVC) casi	₩G- _ p., kaper pagato	
	<u>, , , , , , , , , , , , , , , , , , , </u>	بالتعنيب يعني التعني	Back - 200 - 1	n in the second se	<u>, i utuliri 20, 2</u>	<u> </u>		***** <u></u>		
Figure 3	3-4 Gr	oundwater Sa	mpling Form	45		· · · ·	24		· · ·	Page 1 of
4	:		, - , , , , , , , , , , , , , , , , , ,			•	-13.98			
		·	,					x.103=1.	103 = (VOI	•
		•				•	10.02	X, 100 / 1		•

	•	· · ·			•	4		•••••			
							•				
Groundwate	er Sampl	ing Form		•	•	н <u>р</u>	- ,	•	•		
	-	—	Term Monitoring		•	•				,	_
Site: AOC 9-F	ormer Grif	fiss Air Force Base	3		_ Sample ID:	A0(9-1	NWISLTM (140715 / AI	269-MW15/	DUTMOHO	215
Well-No.	$MW - 1 \leq$	A CALL AND A CALL	utu yala uti yana s	· · · · · · · · · · · · · · · · · · ·	_ Sample Time	: <u>1730</u>	m-lined polvethy		······		
Sample Date:	<u>417 [15</u>	1200 blådder pum		· · · · · · · · · · · · · · · · · · ·	Sample Turb	Idity (NTUs):	1.43				
Well Depth (fee	t TOIC):	<u>14.0 '</u>			Initial Water	Level (Feet T	0IC): <u>3.0</u>				۰.
Screen Interval	(feet BGS): <u> </u>			Final Water: Casing Type	Level (feet TO	IC): <u>3.0</u>			·	
Casing Inner D Initial PID Rea	iameter (ir ding (nom)				_ channe, rypc	· · · · ·	·				
	THE REAL PROPERTY IN THE REAL PROPERTY INTO THE REAL PROP								Puroe		
		Semperature	Conductivity	Turbidity	Tidos T	ORP :		Flow Rate	Volume.		
Time	DH N		Saturs/cm)			CELONIAL	And Statistics Statistics Constrained Constrained Constrained	MERCURNO A		is Comm	ints
	7,30	6.5	455.8	10.62	1:93	-75.7	3.01	350 mymin			
1635 7	.27	6.5 1	461.D	7.60	0.19	-87.6	3.01.	in	0.5	ļ , <u> </u>	•
	1.27	6.5	462.3	5.20	0.12	-91.8	3.01	L)	1.0		
	1,27	6.5	4630	3.78	<u></u>	-93.8	3:01 · 3:01	4i	1.5		
1650 7	<u>, "\Q</u>	6.6	461.8	3.23	0.10	-95.2	3.01	11	2.5	· · · · ·	<u>.</u>
1655		6.6	460.4	3.49	0.13	-97.1	3.01		3.0	1	
	7.28	6.6	461.8	2,79	0.09	-98.3	3.01		3.0 3.5	· .	
	7.28	6.6	460.8	2.26	0.09	-98.8	.3.01	Ц.,	4.0		
	7.28	6.6	460.7	2.49	0.08	-99.4	3.01	٧٧	4.5		
	7.29	· 6.6 :	459.8	1.70	0,09	-100.1	3.01	ti ,	5.0		
	7.29	. 6.6 1	460,0	. 1.43	:D.09"	-100.5	3.DI	<u> </u>	5.5		· · · · ·
		[*]							•	· · · · · · · · · · · · · · · · · · ·	
			·····	·		·		· ·	<u>i </u>		.
,			· · · · · · · · · · · · · · · · · · ·	· · · ·						Ά	•
	·			6.0m					ANV-		
			· ·	· · · · · · · · ·	<u> </u>	· . ·		1	HALLAS		/
· · · · · · · · · · · · · · · · · · ·	, , , , , 		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						HUCK	il-le-
Key:	<u>. </u>		·L.,		······································	<u> </u>			· (\bigcirc	4415
°C −De	grees cent		mg/L mS/cm				ORP = Redox ppm = Parts p	er million.	1 · · ·		
BGS = Br DO = Di	low groun ssolved O:	a suriace. Xvecn	NTU	= Nephelometr	ic turbidity uni	t.	PVC = Polyví	nyl chloride.		-	
LPM -Li	ters per mi	nute	NTU	- Nephelometr	ric turbidity uni	t ' '	TOIC	inner (PVC) casi	lg.		
	<u></u>			E The Barry & Lotter Barry	<u>, i dar i dar i dar</u>	ter and the second s	<u> </u>	<u> </u>	1		
Figure 3-	4 Gre	undwater Sa	mpling Form	· · · · · · · · · · · · · · · · · · ·	•	14:0				· · · ·	Dogo 1
	· · · ·				,	-3.01	· ·		· · · ·		Page 1 of :
, u ,		•	, ,					19 = (voj · 3			
· · · ·	·. · ·	-				10.99 >	· · 163 = 1 x	19 - 1 11	,÷		• •

		•		• •	•		·· .		
						· · ·			
Groundwater Sampl	ing Eorm		•		· ,	-	•	•	
		The second secon	\$, ,				_	1
Project: AOC 9 Baseline, I Site: <u>AOC 9-Former Grif</u>	fiss Air Force Hase	r Term Monitoring	•	_ Sample ID:	ADC9-	MWITLIMO	40715 / AO	<u>C9-MWI</u>	7/DLT/1040715
Well No.: MW-15	ter and the state of the state	and with attractions of	*	Sample Time	e: 10	00			· · · · · · · · · · · · · · · · · · ·
Sample Date: 417115	-		· · · · · · · · · · · · · · · · · · ·	Sample Tubi	ng: OED teflo	n-lined polyethyle	ne .	I	,
Sampling Device: QED I	1200 blådder pum 14. O	p		_ Sample Ture	idity (NTUs): Level (Feet T			· · · · · · · · · · · · · · · · · · ·	· · ·
Well Depth (feet TOIC): Screen Interval (feet BGS)					Level (feet TO				.i
Casing Inner Diameter (in	ches): 2		···· ·	Casing Type		· · · · · · · · · · · · · · · · · · ·			<u> </u>
Initial PID Reading (ppm)	« <u>(,D</u>		<u></u>		*	ายาางระแบนหาแมนหร้อง นี่สายแปะประมาณระนักแบบเห	លក្នុងស្នាក់ស្នាភាក់ស្ងាក	Contractor State (2018) Contractor State	STREAMER REPORT OF STREAMER AND A ST
								Purge	
	emperature	Conductivity	Turbjaity	*EO (mg/L)	ORE	WaterLevel	the low have	Volume	
				<u> </u>	113.8	3.43	150 mi/min	niaansusu V	
1425 7.80		345.0	12.4	0.33	-18.1	3,93.	130 14 1411	. 2	
1420 7.70	615	351.1	14.2	0.49	-34.0	4.42	250 milain		· · · · · · · · · · · · · · · · · · ·
1435 7.69	6.3	352,0	13:3	0.22	-49.0	- <u>4.46</u> 		. 7	
1440 7.69	6.4	352,9	15,0	0.13	-68:5	4.45	. ** -	1.0	
1445 7.70	6.5	351.8	13,7	0.07	-73.9	4.45	1 1	1.3	
1455 7.71	6.6	351.2	12.4	0.0%	-80.4	4.45	23	j, 6	
1500 7.71	6.6	350.7	12.4	0,07	-84.1	4.45	· c1	19	
1505 7.71	6.6	350.6	12.30	0.07	-86.3	. 4.45	1	2.2	
1510 7.71	07	351.4	11.07	0.07	-87.7	4.45	U.	2.5	
1515 7.70	· 4.7 :	352.2	H.2	0.06	-59.5	4.45	50	2.8	
1520 7.71	6.7	352.6	. 11.0	0.06	-89.6	4,45	. 1(3-1	· · · · · · · · · · · · · · · · · · ·
1525 7.70	6:7	354.6	12.99	0.05	-89.7	4,45	11	3.4	· · · ·
1530. 7.69	6.6	357.5	11.05	0.05	-90.6	4.45	<u> </u>	3.1	
1535 7.68	6.6	360.4	9.61	0.05	-91.7	4.45	i ii	4.0	· · ·
1540 7.68	6.7	362.4	8.23	0.04	-92.3	4.45	it i	4.3	·
1545 7.67	6.6	365.0	9.83	0.04	-93,9	4.45	i+ : 24	4.6	· · · · · · · · · · · · · · · · · · ·
1550 7.66	6.7	365.1	10.7	0.04	-94.3	4.45	4 4 ····	5.2	· ·
1555 7.66	6.7	3(5.5	10,9	0.04	-94.4	4.45		1 <u>5. /</u>	adams a able
Key: °C = Degrees cent	ierade.	me/L	= Milligrams p	er liter :		ORP = Redox p		MAGU	terror TIIIS
BGS - Below groun	d surface.	. mS/cm	= microSiemen	is per centimete	ar i	ppm = Parts pe			U
DO = Dissolved Ox	tygen	NTU NTU	= Nephelometr	ic turbidity unit	t. + ``	PVC - Polyvin FOIC - Top of i	yl chloride. nner (PVC) casin	ũ.	•
LPM - Liters per mi	DUTC	NIU NIU	- Nephelomeu		t. 			an ingerentienen.	
	۲. ۱ <u>- ا</u> د د د د د د د د د د د د د د						····		· · · · · · · · · · · · · · · · · · ·
Figure 3-4 Gro	undwater Sa	mpling Form		***		. 14.0		· . ')	Page 1 of 2
					•		.4		1 450 1 01 2
						-31			• •
					· · ·	- 1A 3	310 x .163 =	= 1.19 = 1.	$v_{0} $ $\overline{z}_{1}=3v_{0} $

		· · · · · · · · · · · · · · · · · · ·								······································
Groundwa	ater Samp	ling Form	•	•	· ·		- ,	•		
Project: AOC	9 Baseline	, Performance, Lor	ig Term Monitoring	> .		NOCA A	101 11 11	DEIL-	TACHACS	contacted .
Site: <u>AOC 9</u>	Former Gri	iffiss Air Force Ba	se ended white of the many sector	4	_ Sample ID: _ _ Sample Time		<u>NWIBLTMOU</u> 35	46/015	MIS/MISD .	collected
Sample Date	418	1/5	entrite kinks of the Mission	•	Sample Tubi	ng: OED tefle	on-lined polvethyle	ene		
Sampling De	vice: <u>QED</u>	T1200 bladder pur	np	•	Sample Turb	idity (NTUs):	7,29			
Well Depth (Screen Interv					Initial Water Final Water 1	Level (Feet T Level (feet TO			•	
Casing Inner	Diameter (i	inches): $\frac{1}{2}$		99, s. et	Casing Type:		·		<u> </u>	
Inițial PID R	cading (ppn	a): <u>0,0</u>						ານເວົ້າການບ່າວອາເວັນວາກັນທີ່ການຄາດເວລີາ		สายและการออกกลับกระระจะสุดสารประวัติแต่น แต่กระบบระบบการป
		Temperature	Cencuctivity		T DO. T	ORP	Water Level	FlowIRate	Purge Volume	
0950	the second se	7.8	259,1	<i>ii,02</i>	3.04	70.7	14. 入之	250 M/min		
N955	7,45	7.8 1	358 0	7.30	1,30	27.6	14.23	a source in	0.3	
1000	1,38	1,8	257.1	6.52	1:04	81.8	14.23	÷3	0.6	
1005	2.25	7.8	256.9	7.52	1.00	86.3	14,23	11	0.9	
1010	7.24	8.0	256.9	9.04	1.15	89:3	14.23	- 47	1.2	
1015	1.22	7.9	257.4	9.89	.1.15	92.2	14.23	11 ;	1.5	. ,
1020	7.22	8.0	257.0	8.33	1-17	94.5	14,23	A H	1.8	
1025	7.22	. 8.0	256.8	6.75	1.15	96.6	14.23		2,1	· · ·
1030	7.22	2.9	257.0	7,79	1.19	98,6	. 14,23	A	2.4	
				1	·		,			
		-		· · · · · · · · · · · · · · · · · · ·				<u> </u>	•	
•					·····					· · · · ·
···· ····		·	а. 4 ~	·	· · ·	· ·				
					· ·			1 11	$\frac{1}{2}$	
	· · ·		· · · · · ·			·	1		\rightarrow	
· = /	[2		ļ			1 14	f Mart	
· · ·		· · · · · · · · · · · · · · · · · · ·	· · · · ·		ļ				$+$ $\times 6$	ASIL 4/8/1-
Key:	<u> </u>	:	<u> </u>	I	1 <u></u>	_L	- <u></u>	<u>·</u> ·		
°C = BGS = DO =	Degrees cen Below grou Dissolved O Liters per m	nd surface.)xygen	mg/L mS/cm NTU NTU	= microSiemen = Nephelometr	s per centimeter ic turbidity unit ic turbidity unit		ORP = Redox p ppm = Parts pe PVC = Polyvin TOIC = Top of i	r million.	g. g. matterie	, and
Figure 3	1-4 Gro	oundwater Sa	impling Form		<u>, is also in 201, is</u>	2014 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	19.0	<u></u>		Page 1 of
	·	· · · ·	× 1				14.22	x. 1637	.78= 1V	0

						- ,	·,	·		<u>, ,, , , , , , , , , , , , , , , , , ,</u>
	-	ling Form			• •		* •			
Project: AOC	9 Baseline, Former Cri	Performance, Cor ffiss Air Force Bay	ig Term Monitoring	•	Sample ID.	ADCA	- MW19LT	m040815		
Well No.:	MW-1	from the liter	agin and third age of the		Sample Time	: //57)			· · · · · · · · · · · · · · · · · · ·
Sample Date	- <u>+ </u> \$1	75			Sample Tubi	ng: <u>OED tefl</u> idity (NTUs):	on-lined polvethyle	ene	<u> </u>	
Sampling De Well Depth (vice: <u>OED</u> feet TOIC):	<u>T1200 blådder pur</u> 19.0	np		_ Sample Turb Initial Water	Level (Feet T	OIC): 9.32			· · · · ·
Screen Interv	al (feet BGS	(3): 9-19			_ Final Water]	Level (feet TC	$(C): \underline{9,3}(\ell)$			·
Casing Inner Initial PID R	Diameter (i eading (ppu	nches): 20		<u>. به این اور اور اور اور اور اور اور اور اور اور</u>	Casing Type	PVC	x			
	CACINE (Prin		THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE							
		nem de alture :	r Conductivity.	i Trinana iv	TDO	ORP	Water Level	Flow Rate		
Time			BERRING/OTHER				(ft TOLC)		(gallons)	Comments
10:55	6.75	6,5 1	983	71000	1-97 :	15.4	9.32	450 m/s	0	· · · · · · · · · · · · · · · · · · ·
1100	6.78	1 6.0	833	iele.0	2.82	10,7	9.36	<i>n</i>	0.6	
1105	6.82	6.6	753.6	43.3	3:40	12.9	9.36	11 .	1.2	
1110	6.91	6.7	635.4	21.3	4.17	11.4	9,36	<i>u</i>	1.8	
1115	6.91	6.8	587.1	20.5	4.22	10.7 10.9	9,36		3.0	
1125	6.97	<u>6.8</u>	584.8	12.7	4,52	10.1	9.36	1)	3.6	· · · · ·
1130	6.99	6.8	565.7	11:0	4.66	11:4	9,36	11	4.2	•
1135	7.03	6.8	540,3	11.9	4.76	12.2	. 9,36	11	4.8	
1140	1.07	· 6.7	527.0	11.5	4.93	13.3	9.36	11	5,4	
1145	7.07	6.8	527.1	11.7.	4.90	13.1	9.36		6.0	
				·	+	·	l			,
		· · · ·			· · · · · · · · · · · · · · · · · · ·			ł	ļ	
· · · · · ·									· · ·	· · · · · · · · · · · · · · · · · · ·
			· · · · · · ·							11 ()
··· ···				· · · · · · · · · · · · · · · · · · ·					M	A Fin >
· · ·								·		CELLOLA 41
		1			<u> </u>		<u>ļ.</u>		<u> </u>	
Key:	Degrees cen	tionade	mo/f	= Milligrams p	er liter		ORP = Redox p	otential	•	
BGS 🔫	Below ground	id surface.	. mS/cn	1 = microSiemer	is per centimeter		ppm = Parts pe	r million.	•	
	Dissolved O Liters per m		NTU NTU		ric turbidity unit ric turbidity unit		PVC = Polyvin FOIC = Top of i		g.	· -
<u>эрст</u> ая (****	Litters per m		nio			I - Constantin Pro-			n	
Eiguro 7		undurator C	impling Form				Station in			
Figure 3	-4 (9 60	ienciyyaten Se	richten Saker	-	•	•	19.0		· · · · ·	Page 1 of
			•				9,32		• ·	
			,					8 x - 163=	i = 1	

+		<u>· · · · · · · · · · · · · · · · · · · </u>	• 		· ·		····	\$	
Surfacewater S	ampling Form			,	· · ·				
Project: AOC 9 Ba Site: <u>AOC 9-Form</u> Well No.: NA Sample Date: <u>A</u> Sampling Device: Well Depth (feet T Screen Interval (fee Casing Inner Diam Initial PID Reading	blean jar by hand DIC): NA t BGS): NA ter (inches):NA	ng Term Monitoring	<u> </u>	Sample ID: A0C9 - SINDIUTIU 040615 Sample Tiping: NA Istantial Water Level (Feet TOIC):NA Initial Water Level (Feet TOIC):NA Final Water Level (feet TOIC):NA Casing Type: NA Sample Tupic NA					
Time	Temperature	.Conductivity. (US/cm)	Turbiany (NTUS)	(me/L)	ORP.	Water Level (ff Tölc)	Flow Rate	Purge Volume (gallons)	Comments
1548 7.4		142.6	3:59	ŇA	124.3	NA	NA	. NA	<u>15888219997784346298325783525783</u> =2222299319192
				~~~~~~		· ·	· ·	. ,	·
			•				· .		
			- ,			<u>.</u>			
			,				•		
				•	·				
	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· ·			
					<u> </u>				· · · · · · · · · · · · · · · · · · ·
							•	· ·	· · · · · · · · · · · · · · · · · · ·
			,			-	· ·		
· · · · · · · · · · · · · · · · · · ·	· · · · ·	·····		· · · · ·	· ·			LA I	
	·····				· .		· · ·	- AH	· · · · · · · · · · · · · · · · · · ·
			·	····· , · '		· ·		MA	· · · · · · · · · · · · · · · · · · ·
					· · · · ·	•	· · · · · · · · · · · · · · · · · · ·	<b>`</b> `	Con 1-
·				· · · ·	· · ·				- Cont-
									- Hola
BGS = Below	s cențigrade. gound surface. ed Oxygen er minute	mS/cm	= Milligrams pe = mioroSiemens = Nephelometri = Nephelometri	a per centimeter c turbidity unit.	• • •	ORP = Redox p ppm = Parts per PVC = Polyviny OIC = Top of i	million.		

Figure 3-4 Surfacewater Sampling Form

Page 1 of 1

4

. . .

Surfacew	ater San	npling For	m	•	· · ·	•		,	<u> </u>		10 10 10 14 1 11 1			
Project: AO Site: AOO	C 9 Baselin 9-Former G	ie, Performan riffiss Air Fo		ng Term Mon se	itoring		Sample ID:	ADC9	-SWOZLT	M040615				
Well No .: 1	NA	1			•		Sample Time	Sample ID: <u>A009 - SW02LTM040615</u> Sample Time: <u>1535</u>						
Sample Dat	Sample Date: 4 15 Sampling Device: clean jar by hand						_ Sample Tubi	ing: NA						
Sampling D	levice: <u>clea</u>	<u>n jar by hand</u>		,			Sample Turb	idity (NTUs)	<u></u>					
Well Depth Screen Inter	(feet TUIC	): <u>NA</u>			<u></u>	<u> </u>	_ Initial Water	Level (Feet	FOIC):NA					
Casing Inge	Thiameter	(inches):NA		., ,	1	,	Casing Type	Level (feet T(	JIC):NA	•				
Initial PID 1						······································		· NA	• • • • • • • • • • • • • • • • • • •	•	· <u>······</u> ·····			
Time	ъН	Tempera (°Ci)				Turbicity (NTUS)		ORP	Water, Level (ff TOIC)	Flow Rate	Purge Volume	Comments		
1535	7.30	10,3	General De Connecto Anie	159.5		3.88	NA	163.3	NA	NA	NA			
							, , , , , , , , , , , , , , , , ,			· · · · · · · · · · · · · · · · · · ·	1123			
		<del></del>						,		•		·····		
		<u> </u>			•	· .			}					
	•			;						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
		· · ·			<u>.</u>		······	· · ·	· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·		·		·;		· · · ·		•.		· ·	1			
	ļ	· · · · ·	· · · ·		,				· · · · · · · · · · · · · · · · · · ·			·		
~														
								•						
		· .	·		: :				•		• •			
	• • •	• • •	,				·							
	<b>.</b> .		• •		:									
4			•		<u>،</u>							· · · · · · · · · · · · · · · · · · ·		
		i -		[ · · ·	e				<u> </u>	× (\$				
•							· · · · · · · · · · · · · · · · · · ·					· · · · ·		
				· · · ·	1		·······	· ·			FR Z	·		
					7			· · · ·				1		
•	i	· · · · ·		· · ·	<u>.</u>		• •							
· · ·			1		2			· · ·	· · · · ·	<u>, , , , , , , , , , , , , , , , , , , </u>		X46/		
	J	<u>i .</u>		<u>ا</u> ــــــــــــــــــــــــــــــــــــ	· · · · · · · · · · · · · · · · · · ·	I	· · · · · · · · · · · · · · · · · · ·	l				1 1×2		
BGS = DO =	Degrees cer Belaw grou Dissolved C Liters per n	nd surface. )xygen	· · ·		NTU	<ul> <li>Milligrams pe</li> <li>microSiemens</li> <li>Nephelometri</li> <li>Nephelometri</li> </ul>	s per centimeter c turbidity unit.		ORP = Redox p ppm = Parts per PVC = Polyviny fOIC = Top of in	million.	r.			
	nicis her u		· · · · · ·	· .		Trobuotomotti								

Figure 3-4 Surfacewater Sampling Form

Page 1 of 1

,

	· · · · ·	· · · · · · · · · · · · · · · · · · ·	1									
		pling Form			~ .		. '					
Project: AC	C 9 Baselin	ie, Performance,	Long Term Mo	nitoring	S		1010 4	and in the	N. C. Comment			
Well No.:	<u>9-Former G</u>	riffiss Air Force	Base	· · · ·	· •	Sample ID:	Sample ID: <u>A009 - SW03LTM040615</u> Sample Time: <u>1605</u>					
Sample Dat	Sample Date: 4015						e: <u>140</u> ing: NA				· · · · · · · · · · · · · · · · · · ·	
Sampling I	levice: clea	n jar by hand	• .	l'	· · · · · ·	Sample Turb	idity (NTUs)	2.20	·····			
Well Depth	(feet TOIC	). NA			··········	_ Initial Water	Level (Feet 7	IOIC):NA		· · · · · · · · · · · · · · · · · · ·		
Screen Inte	rval (feet BO	35). NA	· · ·	, ī	*	_ Final Water	Level (feet T	DIC):NA				
Casing line	er Diameter Reading (pp	(inches):NA		<u>a</u> .		_ Casing Type	: NA	4 · · ·	•	·		
	reading (bb		गमामना कि रजन्म संविद्यत्वाल के प्रान्धान्व 20		a an							
										Purge		
		Temperatur			Turbidity.	DO	ORP.	Water Level	Flow Rate	Volume		
Time	0.57	(°G)		m) Marke	3.90	<u></u>		KK(HTOIC)			Comments	
1605	1.24	10.6.	100	4	A.70	NA	122.5	NA _	NA	NA		
				:		· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·			· · ·	
			· .	· ·								
			<u>.                                    </u>			· · · · · · · · · · · · · · · · · · ·						
4		·····		<u>.</u>			· ,					
							• .		·			
								,		•		
				<u> </u>		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		•		
	· · ·		· .					<u> </u>				
ļ									•	•		
	, .	· · · · ·	<u>`</u>		· · ·				•			
				<u>:</u>		· · ·			,			
			· · · · · · · · · · · · · · · · · · ·	· ·			м. Нас					
	<u> </u>		•	:					$\sim$	-		
	1			ь } }			•			I Inn	2	
				1				·				
				× .			•				Har IS	
				4			· · · .	· · ·	· ·	•	SUIN 1	
			1								O Cente	
Key:				;								
	Degrees cer		•		= Milligrams pe			ORP = Redox p			· / K	
BGS =	Below grou Dissolved C	nu surface.		mS/cm NTU		s per centimeter	•	ppm = Parts per PVC = Polyviny	million. I chloride			
	Liters per n		,	NTU	<ul> <li>Nephelometri</li> </ul>	ic turbidity unit.	· ·	OIC - Top of i				
	· · · ·				-							
						•						

Δ.

Figure 3-4 Surfacewater Sampling Form

Page 1 of 1

- -



1 11 L Sample ID: GOOg-MWOILTMO40715 Date: 4/1/15 Time: 1250 NTU: 0.08 Quartet **Description:** Sample: G009-MW01LTM040715 Time Collected: 12:50 Photo No.: 0526 4/7/15 Date: M. Fronckowiak Photographer:

San	nde ID: G009-MW0	2[7]11040713
D	ate: 4/7/15	
Ti	me: 1140	
1	NTU: 2.09	
		arter
Photo No.:	0525	Description:
Date:	4/7/15	Sample: G009-MW02LTM040715
Photographer	: M. Fronckowiak	Time Collected: 11:40

**Photographer:** 

M. Fronckowiak

Sample ID: AOC9-MWO5LTMOt0615 Date: 4/6/15 Time: 1740 NTU: 4.61 Photo No.: 0516 **Description:** Sample: AOC9-MW05LTM040615 Date: 4/6/15 Time Collected: 17:40 M. Fronckowiak **Photographer:** 

				The Party of the second se
	Y		Same and the	
	Sample	ID: ADC9- MW	106 LTM	1040715
	Date :	4/7/15		
	Time :	1030		
	NTU =	1.68		
Photo	• No.:	0523		Description:
Date:		4/7/15		Sample: AOC9-MW06LTM040715
Photo	grapher:	M. Fronckowiak		Time Collected: 10:30

Sample	ID :: AOC9- MW14L	TM040815
	4/8/15	
Time:	0920	
NT4:	6.25	
	(	
The		
Photo No.: Date:	0533 4/8/15	Description: Sample: AOC9-MW14LTM040815
Photographer:	M. Fronckowiak	Time Collected: 09:20

	mple ID: ADC9-MWIS	5LTM040715
	te: 4/7/15	
Tin	ne: 1730	
NT	u: 1.43	
Photo No.:	0529	Description:
Date:	4/7/15	Sample: AOC9-MW15LTM040715
Photographer:	M. Fronckowiak	Time Collected: 17:30

Sample 12: ADC9-MWL7LTM040715 Date: 4/1/15 Time: 1600 NTU: 10.9 0528 **Description:** Photo No.: Sample: AOC9-MW17LTM040715 Date: 4/7/15 Time Collected: 16:00 Photographer: M. Fronckowiak

7	Sample ID: A009-M Date : 4/8/15 Time: 1035 NTU = 7.99	WIBLTMO408/5
Photo No.:	0535	Description:
Date:	4/8/15	Sample: AOC9-MW18LTM040815
Photographer:	M. Fronckowiak	Time Collected: 10:35

Sample ID: ADC9-MW/9LTM040815 Date: 4/8/15 Time: 1150 NTU: 11.7 Quartet Photo No.: 0537 **Description:** Sample: AOC9-MW19LTM040815 Date: 4/8/15 Time Collected: 11:50 M. Fronckowiak Photographer:

	Date Time	le ID: AOC9-SW : 4/6/15 : 1548 : 3.59	OILTMO406/5
Photo No	.:	0513	Description:
Date:		4/6/15	Sample: AOC9-SW01LTM040615
Photogra	pher:	M. Fronckowiak	Time Collected: 15:48

- 21 Sample 1D: ADC9-SW02LTM040615 Date: 4/6/15 Time: 1535 NTU: 3.88 Photo No.: 0511 **Description:** Sample: AOC9-SW02LTM040615 Date: 4/6/15 M. Fronckowiak Time Collected: 15:35 Photographer:

	Sample I.D.: A0C9- Date: 4)6/15 Time: 1605	SW03LTM 040615
	NTU: 2.90	Durter
Photo No.:	0514	Description:
Date:	4/6/15	Sample: AOC9-SW03LTM040615
Photographer	: M. Fronckowiak	Time Collected: 16:05



# **E** Well Status Log and Maintenance Summary

#### **GRIFFISS AFB AOC 9 NETWORK WELLS** STATUS APRIL 2015

AOC 9		T		T							Date:	4/6/2015
		Screened	6 <b>1</b>		1	V	Vell Cond	lition			-	
Well Name	Well Type	Groundwater Zone	Screen Interval (ft bgs)	Bollards or flush mount, Condition	Well Plate / Well Identification	Pad Condition	Lock	Well Cap	Dedicated Pump Condition	Clarification	Comments	Actions Completed / Date
G009-MW01	Stick Up	Shallow	4.0-9.0 ft bgs	bollards	Painted on stick up	Good	Yes	Yes	Good	-	Well tag inside well also. Casing needs painting.	Well protective casing painted. / September 30, 2015
G009-MW02	Stick Up	Shallow	4.0-9.0 ft bgs	bollards	Painted on stick up	Good	Yes	Yes	Good	-	Well tag inside well also. Casing needs painting.	Well protective casing painted. / September 30, 2015
G009-MW03	Stick Up	Shallow	4.0-9.0 ft bgs	bollards	Painted on stick up	Good	Yes	Yes	NA	Pump not used. Pad covered by debris.	Well tag inside well also. 2 of 3 bollards knocked over.	Bollards replaced and painted. / September 30, 20
G009-MW04	Stick Up	Shallow	6.7-16.7 ft bgs	bollards	ID tag inside casing	Good	Yes	Yes	NA	Pump not used.	Lock stiff. Area around pad could be filled with more dirt.	Protective casing repaired and painted. Area arou well cleared and holes filled. / September 30, 2015
AOC9-MW05	Flush Mount	Shallow	4.0-14.0 ft bgs	flush mount	None	Good	No	Yes	Good	No lock. No well tag or identification.	Can't add lock or well lid won't close.	New lock installed. / September 30, 2015
AOC9-MW06	Stick Up	Shallow	4.2-14.2 ft bgs	bollards	Painted on cap	Good	Yes	Yes	Good	-	Well tag inside well also.	None at this time.
AOC9-MW07	Stick Up	Shallow	4.2-9.2 ft bgs	bollards	Painted on stick up	Good	Yes	Yes	NA	Pump not used.	Well tag inside well also. One bollard knocked over.	Bollard replaced and painted. / September 30, 201
AOC9-MW08	Stick Up	Shallow	15.4-20.4 ft bgs	bollards	Painted on stick up	Good	Yes	Yes	NA	Pump not used.	Well tag inside well also.	None at this time.
AOC9-MW12	Flush Mount	Shallow	10.0-20.0 ft bgs	flush mount	Stamped on cover	Good	Yes	Yes	NA	Pump not used.	Well tag inside well also.	None at this time.
AOC9-MW13	Stick Up	Shallow	10.0-20.0 ft bgs	bollards	Painted on stick up	Good	Yes	Yes	NA	Pump not used.	Well tag inside well also.	None at this time.
AOC9-MW14	Stick Up	Shallow	14.0-24.0 ft bgs	bollards	None	Good	Yes	Yes	Good	No well tag or identification.	Needs well identification.	Installed brass identification tag and labeled exteri of well. / October 1, 2015
AOC9-MW15	Stick Up	Shallow	9.0-14.0 ft bgs	bollards	None	Good	Yes	Yes	Good	No well tag or identification.	Needs well identification.	Installed brass identification tag and labeled exteri of well. / October 1, 2015
AOC9-MW16	Stick Up	Shallow	9.0-14.0 ft bgs	bollards	Written on inside of cap	Good	Yes	Yes	NA	Lock was jammed, did unjam, but new lock needed.	Something jamming lock. Lock needs to be replaced.	Lock was oiled and labeled exterior of well. / October 1, 2015
AOC9-MW17	Stick Up	Shallow	9.0-14.0 ft bgs	bollards	None	Good	Yes	Yes	Good	No well tag or identification.	Needs well identification.	Installed brass identification tag and labeled exteri of well. / October 1, 2015
AOC9-MW18	Stick Up	Shallow	9.0-19.0 ft bgs	bollards	None	Good	Yes	Yes	Good	No well tag or identification.	Needs well identification.	Installed brass identification tag and labeled exteri of well. / October 1, 2015
AOC9-MW19	Flush Mount	Shallow	9.0-19.0 ft bgs	flush mount	Stamped on cover	Good	Yes	Yes	Good	Well cap lock is broken.	Water in annulus. Ice in sampling tubing, able to clear out.	None at this time.
urface Water												
AOC9-SW01					None					Stake missing	Replaced stake with orange marking pole.	Installed new sign. / October 1, 2015
AOC9-SW02					Good					-	Replaced stake with orange marking pole.	Installed new sign. / October 1, 2015
AOC9-SW03					None					Stake missing	Replaced stake with orange marking pole.	Installed new sign. / October 1, 2015

bgs = below ground surface TBD = To Be Determined. Regarding pump condition, well has not been sampled in over two years. Regarding Pad Condition, pads are overgrown by vegetation and will be inspected next sampling round. F = Fair

G = Good

NA = Not applicable

P = Poor

Signature: Marcoulah

Date: 4/6/2015

Installed new sign. / October 1, 2015

# F Analytical Data

The analytical data are provided on the attached CD.



Data Usability Summary Report	Project: Griffiss AFB Long-Term Monitoring		
Date Completed: May 07, 2015	Completed by: Lynne Kalmbach		

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per NYSDEC Division of Environmental Remediation Guidance for the Development of DUSRs (June 1999). Specific criteria for QC limits were obtained from the Department of Defense (DoD) Quality Systems Manual for Environmental Laboratories Version 5.0. Compliance with the project QA program is indicated on the in the checklist and tables. Any major or minor concerns affected data usability are summarized listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory Report	
10C3186.0001.07	SI2201	Katahdin Analytical Services	

Lab Sample ID	Client Sample ID	Matrix	Sample Date	MS/MSD	ID Corrections
SI2201-1	AOC9-TB1040615	WQ	4/06/15		
SI2201-2	AOC9-SW02LTM040615	WS	4/06/15		
SI2201-3	AOC9-SW01LTM040615	WS	4/06/15		
SI2201-4	AOC9-SW03LTM040615	WS	4/06/15		
SI2201-5	AOC9-MW05LTM040615	WG	4/06/15		
SI2201-6	AOC9-MW06LTM040715	WG	4/07/15		
SI2201-7	G009-MW02LTM040715	WG	4/07/15		
SI2201-8	G009-MW01LTM0040715	WG	4/07/15		
SI2201-9	AOC9-MW17LTM040715	WG	4/07/15		
SI2201-10	AOC9-MW17DLTM040715	WG	4/07/15		AOC9-MW17/DLTM040715
SI2201-11	AOC9-MW15LTM040715	WG	4/07/15		
SI2201-12	AOC9-MW15DLTM040715	WG	4/07/15		AOC9-MW15/DLTM040715
SI2201-13	AOC9-MW14LTM040815	WG	4/08/15		
SI2201-14	AOC9-MW18LTM040815	WG	4/08/15	MS/MSD	
SI2201-15	AOC9-MW19LTM040815	WG	4/08/15		

## Table 1 – Sample Listing Summary

## Table 1A – Sample Test Summary

Lab Work Orders	Matrix	Test Method	Test Name	Number of Samples
SI2201	WQ	SW8260B	VOCs – by GC/MS	1
SI2201	WS	SW8260B	VOCs – by GC/MS	3
SI2201	WG	SW8260B	VOCs – by GC/MS	11

Data Usability Summary Report	Project: Griffiss AFB Long-Term Monitoring		
Date Completed: May 07, 2015	Completed by: Lynne Kalmbach		

General Sample Information			
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes Note: Some of the client IDs on the Chain of Custody exceeded the 19-character limit of the Katahdin Analytical Information Management System. Therefore, the middle character "/" in the client IDs for SI2201-10 and -12 were omitted on all forms.		
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	No. The cooler arrived at a temperature of 1.3°C. It was noted that the samples were received in good condition and with no indication of freezing.		
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	Yes 1 Trip Blank 2 Field Duplicates 1 MS/MSD Equipment Blank Not Required		
Case narrative present and complete?	Yes		
Any holding time violations (See table below)?	No		

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria.

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Data Usability Summary Report	Project: Griffiss AFB Long-Term Monitoring		
Date Completed: May 07, 2015	Completed by: Lynne Kalmbach		

Volatile Organics by GC/MS	
Description	Notes and Qualifiers
Any compounds present in method, trip and field blanks (see Table 2)?	No
For samples, if results are <5 times the blank or < 10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs.	No results qualified.
Surrogate for method blanks and LCS within limits?	Yes
Surrogate for samples and MS/MSD within limits? (See Table 3). All samples should be re-analyzed for VOCs? Matrix effects should be established.	Yes
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes
MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then J flag positive data in original sample due to matrix?	No. See Table 4. Sample AOC9-MW18LTM040815 was submitted for MS/MSD analysis. Carbon tetrachloride, 4-methyl-2-pentanone, o- xylene, bromodichloromethane, styrene, and 1,3- dichlorobenzene were recovered high in the MS and/or MSD. The results were non-detect in the sample; therefore, no qualification of the data was made. Chlorobenzene was recovered high in the MS. The results were already qualified J as estimated; therefore, no action was taken. 1,4-Dioxane exhibited poor precision between the MS and MSD recoveries. The individual recoveries were acceptable; therefore, no qualification of the data was made.
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	No. See Table 5. Chloromethane, vinyl chloride, and bromomethane were recovered low in LCS WG161248-1. Carbon disulfide was recovered low in LCS WG161286-1, and 4-methyl-2- pentanone was recovered high in LCS WG161476-1. Positive detections for vinyl chloride were already qualified J as estimated, and non-detect results were qualified UJ as estimated non-detect. Carbon disulfide, chloromethane, and 4-methyl-2-pentanone are poor performing analytes in a multi-parameter spike. The analytes were not detected in the samples and no qualification of the data was made. The associated results for bromomethane were non-detect.
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Yes

<b>Data Usability Su</b>	mmary Report
Date Completed:	May 07, 2015

# Project: Griffiss AFB Long-Term Monitoring Completed by: Lynne Kalmbach

Volatile Organics by GC/MS	
Description	Notes and Qualifiers
Is initial calibration for target compounds <20 %RSD or curve fit?	1,4-Dioxane failed initial calibration with a %RSD of 52%. The analyte is a poor performing compound in a multi-parameter spike. The sample results were non-detect, and the analyte is not a contaminant of concern. The results were qualified UJ as estimated non-detect.
Is continuing calibration for target compounds < 20.5%D.	No Chloroethane and 1,4-dioxane exceeded the DoD QSM acceptance limits criteria in CV WG161195- 4. Chloroethane and 1,4-dioxane are poor performing analytes. Chloroethane was not detected in the associated samples; therefore, no qualification of the data was made. 1,4-Dioxane results were already qualified for initial calibration failures.
	Bromomethane and 1,4-dioxane exceeded the DoD QSM acceptance limits criteria in CV WG161248-4, WG161286-4, and WG161476-4. Bromomethane was not detected in the associated samples; therefore, the results were UJ qualified as estimated. 1,4-Dioxane results were already qualified for initial calibration failures.
Were any samples re-analyzed or diluted (see Table 6)? For any sample re-analysis and dilutions is only one reportable result by flagged?	No.
For TICs are there any system related compounds that should not be reported?	N/A
Do field duplicate results show good precision for all compounds except TICs (see Table 7)?	Yes.

Data Usability Summary Report	Project: Griffiss AFB Long-Term Monitoring		
Date Completed: May 07, 2015	Completed by: Lynne Kalmbach		

## Summary of Concerns

- 1,4-Dioxane failed the initial calibration and several continuing calibrations. The analyte is a known poor performing compound. The results were qualified UJ as estimated non-detect. There is no impact to data usability.
- There were several failures in the LCS's. Chloromethane, 4-methyl-2-pentanone, and carbon disulfide are poor performing compounds. The associated results were non-detect; therefore, no qualification of the data was made. The associated results for bromomethane were non-detect and qualified UJ as estimated non-detect. One positive detection for vinyl chloride was already qualified J; however, the non-detect results were qualified UJ as estimated non-detect. There is no impact to data usability.
- Several analytes failed recovery high in the MS and MSD. All of the analytes were non-detect in the parent sample except for chlorobenzene. Chlorobenzene was already qualified J; therefore, no further action was required. The other analytes were not qualified. There is no impact to data usability.

Data Usability Summary Report	Project: Griffiss AFB Long-Term Monitoring
Date Completed: May 07, 2015	Completed by: Lynne Kalmbach

 Table 2 - List of Positive Results for Blank Samples

 None

 Table 2A - List of Samples Qualified for Method Blank Contamination

 None

 Table 2B - List of Samples Qualified for Field Blank Contamination

 None

 Table 3 - List of Samples with Surrogates outside Control Limits

 None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits	S
------------------------------------------------------------------	---

Method	Parent Sample	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac	Low Limit	High Limit	Sample Qual.
SW8260B	AOC9-MW18LTM040815	MS	CARBON TETRACHLORIDE	ND	67.3	135	1	87	126	None
SW8260B	AOC9-MW18LTM040815	MSD	CARBON TETRACHLORIDE	ND	64.0	128	1	87	126	None
SW8260B	AOC9-MW18LTM040815	MS	BROMODICHLOROMETHANE	ND	61.8	124	1	85	122	None
SW8260B	AOC9-MW18LTM040815	MS	4-METHYL-2-PENTANONE	ND	63.2	126	1	83	122	None
SW8260B	AOC9-MW18LTM040815	MSD	4-METHYL-2-PENTANONE	ND	61.9	124	1	83	122	None
SW8260B	AOC9-MW18LTM040815	MS	CHLOROBENZENE	0.25 J	58.5	116	1	89	113	J Flag
SW8260B	AOC9-MW18LTM040815	MS	O-XYLENE	ND	63.0	126	1	90	116	None
SW8260B	AOC9-MW18LTM040815	MSD	O-XYLENE	ND	60.9	122	1	90	116	None
SW8260B	AOC9-MW18LTM040815	MS	STYRENE	ND	59.3	119	1	88	117	None
SW8260B	AOC9-MW18LTM040815	MS	1,3-DICHLOROBENZENE	ND	55.3	111	1	86	110	None

Method	Parent Sample	Analyte	Dil Fac	Unit	RPD	<b>RPD Limit</b>	Qualifier	Sample Type
SW8260B	AOC9-MW18LTM040815	1,4-DIOXANE	1	μg/L	25	20	None	MS/MSD

Data Usability Summary Report	Project: Griffiss AFB Long-Term Monitoring
Date Completed: May 07, 2015	Completed by: Lynne Kalmbach

# Table 5 - List LCS Recoveries outside Control Limits

Sample ID	Analyte	Method	Rec.	Low Limit	High Limit	No. of Affected Samples	Sample Qual
WG161248-1	CHLOROMETHANE	SW8260B	48.0	59	123	5	None: Poor performer
WG161248-1	VINYL CHLORIDE	SW8260B	62.6	64	131	5	J/UJ Flag
WG161248-1	BROMOMETHANE	SW8260B	51.8	57	135	5	UJ Flag
WG161286-1	CARBON DISULFIDE	SW8260B	66.6	71	129	6	None: Poor performer
WG161476-1	4-METHYL-2-PENTANONE	SW8260B	123	83	122	1	None: High & ND

# Table 6 –Samples that were Reanalyzed

None

## Table 7 – Summary of Field Duplicate Results

Method	Analyte	Unit	Matrix	PQL	Anal Type	AOC9- MW15LTM040715	AOC9- MW15/DLTM040715	RPD	RPD Rating	Sample Qual
SW8260B	1,2-DICHLOROBENZENE	ug/L	Water	1.0	Α	16	16	0.0%	Good	None
SW8260B	1,3-DICHLOROBENZENE	ug/L	Water	1.0	Α	0.92	0.99	7.3%	Good	None
SW8260B	1,4-DICHLOROBENZENE	ug/L	Water	1.0	Α	14	14	0.0%	Good	None
SW8260B	BENZENE	ug/L	Water	1.0	Α	1.3	1.2	8.0%	Good	None
SW8260B	CHLOROBENZENE	ug/L	Water	1.0	Α	120	120	0.0%	Good	None
SW8260B	ISOPROPYLBENZENE	ug/L	Water	1.0	Α	0.68	0.64	6.1%	Good	None
SW8260B	SEC-BUTYLBENZENE	ug/L	Water	1.0	Α	0.66	0.68	3.0%	Good	None
SW8260B	TRICHLOROETHYLENE	ug/L	Water	1.0	Α	ND	0.28	NC		
SW8260B	VINYL CHLORIDE	ug/L	Water	2.0	А	0.4	0.27	38.8%	Good	None

Method	Analyte	Unit	Matrix	PQL	Anal Type	AOC9- MW15LTM040715	AOC9- MW15/DLTM040715	RPD	RPD Rating	Sample Qual
SW8260B	1,2-DICHLOROBENZENE	ug/L	Water	1.0	А	44	43	2.3%	Good	None
SW8260B	1,3-DICHLOROBENZENE	ug/L	Water	1.0	Α	0.7	0.7	0.0%	Good	None
SW8260B	1,4-DICHLOROBENZENE	ug/L	Water	1.0	Α	8.9	8.6	3.4%	Good	None

Data Usability Summary Report	Project: Griffiss AFB Long-Term Monitoring
Date Completed: May 07, 2015	Completed by: Lynne Kalmbach

Method	Analyte	Unit	Matrix	PQL	Anal Type	AOC9- MW15LTM040715	AOC9- MW15/DLTM040715	RPD	RPD Rating	Sample Qual
SW8260B	1,2-DICHLOROETHANE	ug/L	Water	1.0	Α	0.48	0.64	28.6%	Good	None
SW8260B	BENZENE	ug/L	Water	1.0	Α	0.79	0.84	6.1%	Good	None
SW8260B	CHLOROBENZENE	ug/L	Water	1.0	Α	130	130	0.0%	Good	None
SW8260B	CIS-1,2-DICHLOROETHYLENE	ug/L	Water	1.0	Α	2.6	2.6	0.0%	Good	None
SW8260B	TETRACHLOROETHYLENE	ug/L	Water	1.0	Α	1.8	1.9	5.4%	Good	None
SW8260B	TRICHLOROETHYLENE	ug/L	Water	1.0	Α	16	18	11.8%	Good	None
SW8260B	VINYL CHLORIDE	ug/L	Water	2.0	Α	1.1	1.1	0.0%	Good	None

Key:

A = Analyte

NC = Not Calculated

ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

TIC = Tentatively Identified Compound



# **MAROS Site Results**

**Project:** Former GAFB AOC 9

Location: Rome

### User Defined Site and Data Assumptions:

User Name: Mfronckowiak

State: New York

Hydrogeology and Plume Information:	Down-gradient Information:
Groundwater	Distance from Edge of Tail to Nearest:
Seepage Velocity: 87.5 ft/yr	Down-gradient receptor: 1 ft
Current Plume Length: 1140 ft	Down-gradient property: 1 ft
Current Plume Width 400 ft Number of Tail Wells: 7	Distance from Source to Nearest:
Number of Tail Wells: 7 Number of Source Wells: 1	Down-gradient receptor: 1140 ft
Source Information:	Down-gradient property: 1140 ft

NAPL is not observed at this site.

#### Data Consolidation Assumptions:

Time Period: 12/18/1997 to 4/8/2015 Consolidation Period: No Time Consolidation Consolidation Type: Median Duplicate Consolidation: Average ND Values: Detection Limit J Flag Values : Actual Value

#### Plume Information Weighting Assumptions:

Consolidation Step 1. Weight Plume Information by Chemical

Summary Weighting: Weighting Applied to All Chemicals Equally

Consolidation Step 2. Weight Well Information by Chemical

Well Weighting: No Weighting of Wells was Applied.

Chemical Weighting: No Weighting of Chemicals was Applied.

Note: These assumptions were made when consolidating the historical montoring data and lumping the Wells and COCs.

# **1. Compliance Monitoring/Remediation Optimization Results:**

Preliminary Monitoring System Optimization Results: Based on site classification, source treatment and Monitoring System Category the following suggestions are made for site Sampling Frequency, Duration of Sampling before reassessment, and Well Density. These criteria take into consideration: Plume Stability, Type of Plume, and Groundwater Velocity.

Tail Stability	Source Stability	Level of Effort	Sampling Duration	Sampling Frequency	Sampling Density
PD	D	L	Continue remediation mechanism unitl reach stable trend or	No Recommendation	27
ND	PD		Continue remediation mechanism unitl reach stable trend or	No Recommendation	27
D	NT	М	Remove treatment system if previously reducing concentation	No Recommendation	27
ND	ND		-	No Recommendation	27
PD	NT	М	Remove treatment system if previously reducing concentation	No Recommendation	27
	Stability PD ND D ND	StabilityStabilityPDDNDPDDNTNDND	StabilityStabilityEffortPDDLNDPD	StabilityStabilityEffortDurationPDDLContinue remediation mechanism unitl reach stable trend orNDPDContinue remediation mechanism unitl reach stable trend orNDPDContinue remediation mechanism unitl reach stable trend orDNTMDNTMPDNDPDNTMRemove treatment system if previously reducing concentationPDNTMPDNTMRemove treatment system if previously	StabilityStabilityEffortDurationFrequencyPDDLContinue remediation mechanism unitl reach stable trend orNo RecommendationNDPDContinue remediation mechanism unitl reach stable trend orNo RecommendationNDPDContinue remediation mechanism unitl reach stable trend orNo RecommendationDNTMRemove treatment system if previously reducing concentationNo RecommendationNDNDNDNo RecommendationPDNTMRemove treatment system if previously reducing concentationNo Recommendation

#### Note:

 Plume Status:
 (I) Increasing; (PI)Probably Increasing; (S) Stable; (NT) No Trend; (PD) Probably Decreasing; (D) Decreasing

 Design Categories:
 (E) Extensive; (M) Moderate; (L) Limited
 (N/A) Not Applicable, Insufficient Data Available

Level of Monitoring Effort Indicated by Analysi Moderate

# 2. Spatial Moment Analysis Results:

Moment Type	Constituent	Coefficient of Variation	Mann-Kendall S Statistic	Confidence in Trend	Moment Trend
Zeroth Moment:	Mass				
	1,2-DICHLOROBENZENE	3.00	-3	52.7%	NT
	1,4-DICHLOROBENZENE	3.06	-3	52.7%	NT
	CHLOROBENZENE	3.19	-3	52.7%	NT
	TETRACHLOROETHYLENE(PCE)	3.05	-1	50.0%	NT
	TRICHLOROETHYLENE (TCE)	3.02	-1	50.0%	NT
1st Moment: Dis	stance to Source				
	1,2-DICHLOROBENZENE	0.00	0	0.0%	N/A
	1,4-DICHLOROBENZENE	0.00	0	0.0%	N/A
	CHLOROBENZENE	0.00	0	0.0%	N/A
	TETRACHLOROETHYLENE(PCE)	0.00	0	0.0%	N/A
	TRICHLOROETHYLENE (TCE)	0.00	0	0.0%	N/A
2nd Moment: Sig	gma XX				
	1,2-DICHLOROBENZENE	0.00	0	0.0%	N/A
	1,4-DICHLOROBENZENE	0.00	0	0.0%	N/A
	CHLOROBENZENE	0.00	0	0.0%	N/A
	TETRACHLOROETHYLENE(PCE)	0.00	0	0.0%	N/A
	TRICHLOROETHYLENE (TCE)	0.00	0	0.0%	N/A
2nd Moment: Sig	gma YY				
	1,2-DICHLOROBENZENE	0.00	0	0.0%	N/A
	1,4-DICHLOROBENZENE	0.00	0	0.0%	N/A
	CHLOROBENZENE	0.00	0	0.0%	N/A
	TETRACHLOROETHYLENE(PCE)	0.00	0	0.0%	N/A
	TRICHLOROETHYLENE (TCE)	0.00	0	0.0%	N/A

Note: The following assumptions were applied for the calculation of the Zeroth Moment:

Porosity: 0.40 Saturated Thickness: Uniform: 20 ft

Mann-Kendall Trend test performed on all sample events for each constituent. Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events).

# MAROS Linear Regression Statistics Summary

Project: Former GAFB AOC 9

Location: Rome

## User Name: Mfronckowiak

State: New York

Time Period: 12/18/1997 to 4/8/2015 Consolidation Period: No Time Consolidation Consolidation Type: Median Duplicate Consolidation: Average ND Values: Detection Limit

J Flag Values : Actual Value

Well	Source/ Tail	Average Conc (mg/L)	Median Conc (mg/L)	Standard Deviation	All Samples "ND" ?	Ln Slope	Coefficient of Variation	Confidence in Trend	Concentratior Trend
I,2-DICHLOROBENZE	INE								
AOC9-MW05	Т	2.5E-01	3.0E-03	5.0E-01	Yes	4.8E-04	1.98	71.3%	ND
AOC9-MW06	т	1.0E-01	3.0E-03	3.2E-01	Yes	3.8E-04	3.07	84.0%	ND
AOC9-MW14	т	5.6E-02	2.6E-02	5.8E-02	No	-1.2E-03	1.04	99.9%	D
AOC9-MW15	т	4.4E-02	4.1E-02	2.2E-02	No	-3.1E-04	0.51	90.8%	PD
AOC9-MW17	т	6.0E-02	6.0E-02	1.5E-02	No	-6.9E-05	0.25	74.2%	S
AOC9-MW19	S	3.9E-03	3.8E-03	2.4E-03	No	-1.4E-03	0.63	99.8%	D
G009-MW01	т	1.4E-01	5.7E-04	3.8E-01	No	3.5E-04	2.63	75.6%	NT
G009-MW02	т	1.3E-01	3.0E-03	3.5E-01	Yes	3.9E-04	2.76	87.2%	ND
,4-DICHLOROBENZE	INE								
AOC9-MW05	т	2.5E-01	3.0E-03	5.0E-01	Yes	4.8E-04	1.98	71.3%	ND
AOC9-MW06	т	1.0E-01	3.0E-03	3.2E-01	Yes	3.8E-04	3.07	84.0%	ND
AOC9-MW14	т	4.0E-02	2.2E-02	3.6E-02	No	-1.0E-03	0.91	99.9%	D
AOC9-MW15	т	3.9E-02	2.4E-02	3.2E-02	No	-7.3E-04	0.82	100.0%	D
AOC9-MW17	т	1.9E-02	1.7E-02	9.3E-03	No	-2.9E-04	0.49	93.4%	PD
AOC9-MW19	S	3.3E-03	3.0E-03	1.4E-03	No	-7.7E-04	0.44	98.2%	D
G009-MW01	т	1.5E-01	3.0E-03	3.8E-01	Yes	3.9E-04	2.59	84.6%	ND
G009-MW02	т	1.3E-01	3.0E-03	3.5E-01	Yes	3.9E-04	2.76	87.2%	ND
CHLOROBENZENE									
AOC9-MW05	Т	2.5E-01	5.0E-03	5.0E-01	Yes	4.4E-04	1.96	71.3%	ND
AOC9-MW06	т	1.0E-01	5.0E-03	3.1E-01	No	3.2E-04	3.02	79.8%	NT
AOC9-MW14	т	5.8E-01	2.5E-01	6.1E-01	No	-1.2E-03	1.06	99.6%	D
AOC9-MW15	т	6.6E-01	3.8E-01	6.0E-01	No	-9.0E-04	0.91	100.0%	D
AOC9-MW17	т	3.4E-01	2.7E-01	2.1E-01	No	-3.3E-04	0.62	91.1%	PD
AOC9-MW19	S	3.2E-02	3.3E-02	1.4E-02	No	4.7E-04	0.45	87.4%	NT
G009-MW01	т	1.5E-01	5.0E-03	3.8E-01	Yes	3.5E-04	2.56	84.6%	ND
G009-MW02	т	1.3E-01	5.0E-03	3.5E-01	Yes	3.6E-04	2.72	87.2%	ND
TETRACHLOROETHY	LENE(PCE)	)							
AOC9-MW05	Т	2.5E-01	5.0E-03	5.0E-01	Yes	4.4E-04	1.96	71.3%	ND
AOC9-MW06	Т	1.0E-01	5.0E-03	3.1E-01	Yes	3.5E-04	3.01	84.0%	ND
AOC9-MW14	Т	1.2E-01	5.0E-03	3.3E-01	Yes	9.9E-04	2.87	91.4%	ND
AOC9-MW15	Т	1.2E-01	5.0E-03	3.3E-01	Yes	9.9E-04	2.87	91.3%	ND
AOC9-MW17	Т	2.2E-03	2.0E-03	8.7E-04	No	-1.1E-04	0.40	73.0%	S
AOC9-MW19	S	1.5E-01	5.0E-03	3.8E-01	Yes	2.9E-03	2.56	96.7%	ND
G009-MW01	Т	1.5E-01	5.0E-03	3.8E-01	Yes	3.5E-04	2.56	84.6%	ND
G009-MW02	т	1.3E-01	5.0E-03	3.5E-01	Yes	3.6E-04	2.72	87.2%	ND

## **Project:** Former GAFB AOC 9

User Name: Mfronckowiak

#### Location: Rome

State: New York

Well	Source/ Tail	Average Conc (mg/L)	Median Conc (mg/L)	Standard Deviation	All Samples "ND" ?	Ln Slope	Coefficient of Variation	Confidence in Trend	Concentration Trend
FRICHLOROETHYLEN	E (TCE)								
TRICHLOROETHYLEN	E (TCE)								
AOC9-MW05	т	2.5E-01	5.0E-03	5.0E-01	Yes	4.4E-04	1.96	71.3%	ND
AOC9-MW06	т	1.5E-03	1.0E-03	1.3E-03	No	-2.8E-06	0.87	100.0%	D
AOC9-MW14	Т	1.2E-01	4.8E-03	3.3E-01	No	7.3E-04	2.84	78.6%	NT
AOC9-MW15	т	1.8E-03	8.3E-04	1.9E-03	No	-8.6E-04	1.03	98.0%	D
AOC9-MW17	Т	1.6E-02	1.6E-02	2.8E-03	No	-6.6E-10	0.17	100.0%	D
AOC9-MW19	S	1.1E-03	5.0E-04	1.7E-03	No	-6.9E-04	1.60	78.5%	NT
G009-MW01	Т	1.2E-03	6.0E-04	1.7E-03	No	-3.1E-04	1.38	99.5%	D
G009-MW02	Т	1.8E-03	7.9E-04	2.0E-03	No	-2.0E-04	1.10	85.8%	NT

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Non-detect (ND); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); COV = Coefficient of Variation

# MAROS Mann-Kendall Statistics Summary

Project: Former GAFB AOC 9

Location: Rome

# User Name: Mfronckowiak

State: New York

Time Period: 12/18/1997 to 4/8/2015 Consolidation Period: No Time Consolidation Consolidation Type: Median Duplicate Consolidation: Average ND Values: Detection Limit

J Flag Values : Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
1,2-DICHLOROBENZE	NE							
AOC9-MW05	т	4	0	1.98	3	72.9%	Yes	ND
AOC9-MW06	Т	10	0	3.07	9	75.8%	Yes	ND
AOC9-MW14	Т	9	9	1.04	-28	99.9%	No	D
AOC9-MW15	Т	9	9	0.51	-12	87.0%	No	S
AOC9-MW17	Т	9	9	0.25	-7	72.8%	No	S
AOC9-MW19	S	7	7	0.63	-14	97.5%	No	D
G009-MW01	Т	7	5	2.63	3	61.4%	No	NT
G009-MW02	Т	8	0	2.76	7	76.4%	Yes	ND
1,4-DICHLOROBENZE	NE							
AOC9-MW05	Т	4	0	1.98	3	72.9%	Yes	ND
AOC9-MW06	т	10	0	3.07	9	75.8%	Yes	ND
AOC9-MW14	Т	9	9	0.91	-28	99.9%	No	D
AOC9-MW15	Т	9	9	0.82	-27	99.8%	No	D
AOC9-MW17	Т	9	9	0.49	-24	99.4%	No	D
AOC9-MW19	S	7	7	0.44	-8	84.5%	No	S
G009-MW01	Т	7	0	2.59	6	76.4%	Yes	ND
G009-MW02	т	8	0	2.76	7	76.4%	Yes	ND
CHLOROBENZENE								
AOC9-MW05	т	4	0	1.96	3	72.9%	Yes	ND
AOC9-MW06	Т	10	1	3.02	9	75.8%	No	NT
AOC9-MW14	Т	9	9	1.06	-30	100.0%	No	D
AOC9-MW15	Т	9	9	0.91	-32	100.0%	No	D
AOC9-MW17	Т	9	9	0.62	-22	98.8%	No	D
AOC9-MW19	S	7	7	0.45	8	84.5%	No	NT
G009-MW01	Т	7	0	2.56	6	76.4%	Yes	ND
G009-MW02	т	8	0	2.72	7	76.4%	Yes	ND
TETRACHLOROETHYL	_ENE(PCE)	1						
AOC9-MW05	т	4	0	1.96	3	72.9%	Yes	ND
AOC9-MW06	т	10	0	3.01	9	75.8%	Yes	ND
AOC9-MW14	т	9	0	2.87	8	76.2%	Yes	ND
AOC9-MW15	т	9	0	2.87	8	76.2%	Yes	ND
AOC9-MW17	т	9	9	0.40	-8	76.2%	No	S
AOC9-MW19	S	7	0	2.56	6	76.4%	Yes	ND
G009-MW01	т	7	0	2.56	6	76.4%	Yes	ND
G009-MW02	т	8	0	2.72	7	76.4%	Yes	ND

# **Project:** Former GAFB AOC 9

#### **User Name:** Mfronckowiak

Location: Rome

## State: New York

							All	
Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	Samples "ND" ?	Concentration Trend
TRICHLOROETHYLENE	E (TCE)							
TRICHLOROETHYLEN	E (TCE)							
AOC9-MW05	т	4	0	1.96	3	72.9%	Yes	ND
AOC9-MW06	т	10	9	0.87	-8	72.9%	No	S
AOC9-MW14	т	9	6	2.84	0	46.0%	No	NT
AOC9-MW15	т	9	7	1.03	-18	96.2%	No	D
AOC9-MW17	т	9	9	0.17	6	69.4%	No	NT
AOC9-MW19	S	7	6	1.60	-6	76.4%	No	NT
G009-MW01	Т	7	6	1.38	-17	99.5%	No	D
G009-MW02	Т	8	6	1.10	-13	92.9%	No	PD

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events); Source/Tail (S/T)

The Number of Samples and Number of Detects shown above are post-consolidation values.

# MAROS Spatial Moment Analysis Summary

# Project: Former GAFB AOC 9

Location: Rome

# User Name: Mfronckowiak

State: New York

9	Oth Moment	<u>1st M</u>	oment (Cente	er of Mass)	2nd Moment	t (Spread)	
Effective Date	Estimated Mass (Kg)	Xc (ft)	Yc (ft)	Source Distance (ft)	Sigma XX (sq ft)	Sigma YY (sq ft)	Number of Wells
1,2-DICHLOROBENZENE							
12/18/1997	0.0E+00						2
5/15/2000	0.0E+00						4
9/5/2004	0.0E+00						1
9/7/2004	0.0E+00						2
11/1/2006	0.0E+00						4
7/28/2010	7.2E-01	1,133,840	1,181,559	727	4,246	10,747	6
5/17/2011	0.0E+00						5
10/24/2011	0.0E+00						5
4/16/2012	0.0E+00						1
4/17/2012	0.0E+00						4
9/25/2012	0.0E+00						1
9/26/2012	0.0E+00						4
4/9/2013	6.9E-01	1,133,765	1,181,466	845	15,215	24,385	7
4/10/2013	0.0E+00						1
4/2/2014	0.0E+00						5
4/3/2014	0.0E+00						3
4/6/2015	0.0E+00						1
4/7/2015	0.0E+00						5
4/8/2015	0.0E+00						2
,4-DICHLOROBENZENE							
12/18/1997	0.0E+00						2
5/15/2000	0.0E+00						4
9/5/2004	0.0E+00						1
9/7/2004	0.0E+00						2
11/1/2006	0.0E+00						4
7/28/2010	7.4E-01	1,133,833	1,181,574	723	4,604	12,803	6
5/17/2011	0.0E+00						5
10/24/2011	0.0E+00						5
4/16/2012	0.0E+00						1
4/17/2012	0.0E+00						4
9/25/2012	0.0E+00						1
9/26/2012	0.0E+00						4
4/9/2013	4.9E-01	1,133,764	1,181,496	826	14,671	26,895	7
4/10/2013	0.0E+00	·,·,·•·	.,,	020	,	_0,000	1
4/2/2014	0.0E+00						5
4/3/2014	0.0E+00						3
4/6/2015	0.0E+00						1
4/7/2015	0.0E+00						5
4/7/2013	0.02+00						J

<pre>bject: Former GAFB cation: Rome</pre>	AUL Y				State: N	e: Mfronckowia ew York	ĸ
	<u>0th Moment</u>	<u>1st M</u>	oment (Cent	er of Mass)	2nd Momer	it (Spread)	
Effective Date	Estimated Mass (kg)	Xc (ft)	Yc (ft)	Source Distance (ft)	Sigma XX (sq ft)	Sigma YY (sq ft)	Number of Wells
4-DICHLOROBENZENE	E						
4/8/2015	0.0E+00						2
CHLOROBENZENE							
12/18/1997	0.0E+00						2
5/15/2000	0.0E+00						4
9/5/2004	0.0E+00						1
9/7/2004	0.0E+00						2
11/1/2006	0.0E+00						4
7/28/2010	5.3E+00	1,133,847	1,181,587	703	3,117	11,265	6
5/17/2011	0.0E+00	,,	,		-,	,===	5
10/24/2011	0.0E+00						5
4/16/2012	0.0E+00						1
4/17/2012	0.0E+00						4
9/25/2012	0.0E+00						1
9/26/2012	0.0E+00						4
4/9/2013	2.6E+00	1,133,797	1,181,531	778	12,273	23,492	7
4/10/2013	0.0E+00	1,100,797	1,101,001	110	12,275	23,432	, 1
4/2/2014	0.0E+00						5
4/3/2014	0.0E+00						3
4/6/2015	0.0E+00						1
4/7/2015	0.0E+00						5
4/7/2015							2
4/8/2015 TETRACHLOROETHYLE	0.0E+00						2
12/18/1997	0.0E+00						2
5/15/2000	0.0E+00						4
9/5/2004	0.0E+00						1
9/7/2004	0.0E+00						2
11/1/2006	0.0E+00						4
7/28/2010	2.0E-01	1,133,801	1,181,546	765	6,282	14,803	6
5/17/2011	0.0E+00						5
10/24/2011	0.0E+00						5
4/16/2012	0.0E+00						1
4/17/2012	0.0E+00						4
9/25/2012	0.0E+00						1
9/26/2012	0.0E+00						4
4/9/2013	2.9E-01	1,133,735	1,181,465	867	14,728	27,543	7
4/10/2013	0.0E+00						1
4/2/2014	0.0E+00						5
4/3/2014	0.0E+00						3
4/6/2015	0.0E+00						1
4/7/2015	0.0E+00						5
							-

4/8/2015

0.0E+00

## **Project:** Former GAFB AOC 9

Location: Rome

_

## **User Name:** Mfronckowiak

State: New York

	Oth Moment	<u>1st M</u>	oment (Cen	ter of Mass)	2nd Momen	t (Spread)	
Effective Date	Estimated Mass (kg)	Xc (ft)	Yc (ft)	Source Distance (ft)	Sigma XX (sq ft)	Sigma YY (sq ft)	Number of Wells

## TRICHLOROETHYLENE (TCE)

## TRICHLOROETHYLENE (TCE)

12/18/1997	0.0E+00						2
5/15/2000	0.0E+00						4
9/5/2004	0.0E+00						1
9/7/2004	0.0E+00						2
11/1/2006	0.0E+00						4
7/28/2010	1.2E-01	1,133,822	1,181,554	743	5,937	13,616	6
5/17/2011	0.0E+00						5
10/24/2011	0.0E+00						5
4/16/2012	0.0E+00						1
4/17/2012	0.0E+00						4
9/25/2012	0.0E+00						1
9/26/2012	0.0E+00						4
4/9/2013	1.5E-01	1,133,644	1,181,341	1,018	10,706	20,407	7
4/10/2013	0.0E+00						1
4/2/2014	0.0E+00						5
4/3/2014	0.0E+00						3
4/6/2015	0.0E+00						1
4/7/2015	0.0E+00						5
4/8/2015	0.0E+00						2

# Project: Former GAFB AOC 9

Location: Rome

#### **User Name:** Mfronckowiak

State: New York

Moment Type	Constituent	Coefficient of Variation	Mann-Kendall S Statistic	Confidence in Trend	Moment Trend
Zeroth Moment:	Mass				
	1,2-DICHLOROBENZENE	3.00	-3	52.7%	NT
	1,4-DICHLOROBENZENE	3.06	-3	52.7%	NT
	CHLOROBENZENE	3.19	-3	52.7%	NT
	TETRACHLOROETHYLENE(PCE)	3.05	-1	50.0%	NT
	TRICHLOROETHYLENE (TCE)	3.02	-1	50.0%	NT
1st Moment: Dis	tance to Source				
	1,2-DICHLOROBENZENE	0.00	0	0.0%	N/A
	1,4-DICHLOROBENZENE	0.00	0	0.0%	N/A
	CHLOROBENZENE	0.00	0	0.0%	N/A
	TETRACHLOROETHYLENE(PCE)	0.00	0	0.0%	N/A
	TRICHLOROETHYLENE (TCE)	0.00	0	0.0%	N/A
2nd Moment: Sig	gma XX				
	1,2-DICHLOROBENZENE	0.00	0	0.0%	N/A
	1,4-DICHLOROBENZENE	0.00	0	0.0%	N/A
	CHLOROBENZENE	0.00	0	0.0%	N/A
	TETRACHLOROETHYLENE(PCE)	0.00	0	0.0%	N/A
	TRICHLOROETHYLENE (TCE)	0.00	0	0.0%	N/A
2nd Moment: Sig	gma YY				
	1,2-DICHLOROBENZENE	0.00	0	0.0%	N/A
	1,4-DICHLOROBENZENE	0.00	0	0.0%	N/A
	CHLOROBENZENE	0.00	0	0.0%	N/A
	TETRACHLOROETHYLENE(PCE)	0.00	0	0.0%	N/A
	TRICHLOROETHYLENE (TCE)	0.00	0	0.0%	N/A

Note: The following assumptions were applied for the calculation of the Zeroth Moment:

Porosity: 0.40 Saturated Thickness: Uniform: 20 ft

Mann-Kendall Trend test performed on all sample events for each constituent. Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events).

Note: The Sigma XX and Sigma YY components are estimated using the given field coordinate system and then rotated to align with the estimated groundwater flow direction. Moments are not calculated for sample events with less than 6 wells.

# MAROS Statistical Trend Analysis Summary

Project: Former GAFB AOC 9

Location: Rome

User Name: Mfronckowiak

State: New York

Time Period: 12/18/1997 to 4/8/2015 Consolidation Period: No Time Consolidation Consolidation Type: Median Duplicate Consolidation: Average ND Values: Detection Limit J Flag Values : Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
1,2-DICHLOROBENZENE								
AOC9-MW05	Т	4	0	2.5E-01	3.0E-03	Yes	ND	ND
AOC9-MW06	т	10	0	1.0E-01	3.0E-03	Yes	ND	ND
AOC9-MW14	Т	9	9	5.6E-02	2.6E-02	No	D	D
AOC9-MW15	Т	9	9	4.4E-02	4.1E-02	No	S	PD
AOC9-MW17	Т	9	9	6.0E-02	6.0E-02	No	S	S
AOC9-MW19	S	7	7	3.9E-03	3.8E-03	No	D	D
G009-MW01	Т	7	5	1.4E-01	5.7E-04	No	NT	NT
G009-MW02	Т	8	0	1.3E-01	3.0E-03	Yes	ND	ND
1,4-DICHLOROBENZENE								
AOC9-MW05	т	4	0	2.5E-01	3.0E-03	Yes	ND	ND
AOC9-MW06	Т	10	0	1.0E-01	3.0E-03	Yes	ND	ND
AOC9-MW14	Т	9	9	4.0E-02	2.2E-02	No	D	D
AOC9-MW15	т	9	9	3.9E-02	2.4E-02	No	D	D
AOC9-MW17	Т	9	9	1.9E-02	1.7E-02	No	D	PD
AOC9-MW19	S	7	7	3.3E-03	3.0E-03	No	S	D
G009-MW01	т	7	0	1.5E-01	3.0E-03	Yes	ND	ND
G009-MW02	Т	8	0	1.3E-01	3.0E-03	Yes	ND	ND
CHLOROBENZENE								
AOC9-MW05	Т	4	0	2.5E-01	5.0E-03	Yes	ND	ND
AOC9-MW06	т	10	1	1.0E-01	5.0E-03	No	NT	NT
AOC9-MW14	Т	9	9	5.8E-01	2.5E-01	No	D	D
AOC9-MW15	т	9	9	6.6E-01	3.8E-01	No	D	D
AOC9-MW17	т	9	9	3.4E-01	2.7E-01	No	D	PD
AOC9-MW19	S	7	7	3.2E-02	3.3E-02	No	NT	NT
G009-MW01	Т	7	0	1.5E-01	5.0E-03	Yes	ND	ND
G009-MW02	Т	8	0	1.3E-01	5.0E-03	Yes	ND	ND
TETRACHLOROETHYLEN	E(PCE)							
AOC9-MW05	т	4	0	2.5E-01	5.0E-03	Yes	ND	ND
AOC9-MW06	Т	10	0	1.0E-01	5.0E-03	Yes	ND	ND
AOC9-MW14	т	9	0	1.2E-01	5.0E-03	Yes	ND	ND
AOC9-MW15	т	9	0	1.2E-01	5.0E-03	Yes	ND	ND
AOC9-MW17	Т	9	9	2.2E-03	2.0E-03	No	S	S

# MAROS Statistical Trend Analysis Summary

Well	Source/ Tail	Number of Samples	Number of Detects	Average Conc. (mg/L)	Median Conc. (mg/L)	All Samples "ND" ?	Mann- Kendall Trend	Linear Regression Trend
TETRACHLOROETHYLE	ENE(PCE)							
AOC9-MW19	S	7	0	1.5E-01	5.0E-03	Yes	ND	ND
G009-MW01	т	7	0	1.5E-01	5.0E-03	Yes	ND	ND
G009-MW02	т	8	0	1.3E-01	5.0E-03	Yes	ND	ND
TRICHLOROETHYLENE	(TCE)							
AOC9-MW05	т	4	0	2.5E-01	5.0E-03	Yes	ND	ND
AOC9-MW06	т	10	9	1.5E-03	1.0E-03	No	S	D
AOC9-MW14	Т	9	6	1.2E-01	4.8E-03	No	NT	NT
AOC9-MW15	Т	9	7	1.8E-03	8.3E-04	No	D	D
AOC9-MW17	Т	9	9	1.6E-02	1.6E-02	No	NT	D
AOC9-MW19	S	7	6	1.1E-03	5.0E-04	No	NT	NT
G009-MW01	Т	7	6	1.2E-03	6.0E-04	No	D	D
G009-MW02	Т	8	6	1.8E-03	7.9E-04	No	PD	NT

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); No Detectable Concentration (NDC)

The Number of Samples and Number of Detects shown above are post-consolidation values.

# MAROS Plume Analysis Summary

Project: Former GAFB AOC 9

Location: Rome

Time Period:12/18/1997to4/8/2015Consolidation Period:No Time ConsolidationConsolidation Type:MedianDuplicate Consolidation:Average

ND Values: Detection Limit

J Flag Values : Actual Value

User Name: Mfronckowiak

State: New York

Constituent	Well	Source/ Tail	Number of Samples	Number of Detects	Average (mg/L)	Median (mg/L)	All Samples "ND" ?	Mann- Kendall	Linear Regression	Modeling	Empirical
1,2-DICHLOROB	ENZENE										
	AOC9-MW05	Т	4	0	2.5E-01	3.0E-03	Yes	ND	ND	N/A	N/A
	AOC9-MW06	т	10	0	1.0E-01	3.0E-03	Yes	ND	ND	N/A	N/A
	AOC9-MW14	т	9	9	5.6E-02	2.6E-02	No	D	D	N/A	N/A
	AOC9-MW15	т	9	9	4.4E-02	4.1E-02	No	S	PD	N/A	N/A
	AOC9-MW17	т	9	9	6.0E-02	6.0E-02	No	S	S	N/A	N/A
	AOC9-MW19	S	7	7	3.9E-03	3.8E-03	No	D	D	N/A	N/A
	G009-MW01	т	7	5	1.4E-01	5.7E-04	No	NT	NT	N/A	N/A
	G009-MW02	т	8	0	1.3E-01	3.0E-03	Yes	ND	ND	N/A	N/A
1,4-DICHLOROB	ENZENE										
	AOC9-MW05	Т	4	0	2.5E-01	3.0E-03	Yes	ND	ND	N/A	N/A
	AOC9-MW06	т	10	0	1.0E-01	3.0E-03	Yes	ND	ND	N/A	N/A
	AOC9-MW14	т	9	9	4.0E-02	2.2E-02	No	D	D	N/A	N/A
	AOC9-MW15	т	9	9	3.9E-02	2.4E-02	No	D	D	N/A	N/A
	AOC9-MW17	т	9	9	1.9E-02	1.7E-02	No	D	PD	N/A	N/A
	AOC9-MW19	S	7	7	3.3E-03	3.0E-03	No	S	D	N/A	N/A
	G009-MW01	т	7	0	1.5E-01	3.0E-03	Yes	ND	ND	N/A	N/A
	G009-MW02	т	8	0	1.3E-01	3.0E-03	Yes	ND	ND	N/A	N/A
CHLOROBENZE	NE										
	AOC9-MW05	Т	4	0	2.5E-01	5.0E-03	Yes	ND	ND	N/A	N/A
	AOC9-MW06	т	10	1	1.0E-01	5.0E-03	No	NT	NT	N/A	N/A
	AOC9-MW14	т	9	9	5.8E-01	2.5E-01	No	D	D	N/A	N/A

Project: Former GAFB AOC 9	User Name: Mfronckowiak
Location: Rome	State: New York

Constituent	Well	Source/ Tail	Number of Samples	Number of Detects	Average (mg/L)	Median (mg/L)	All Samples "ND" ?	Mann- Kendall	Linear Regression	Modeling	Empirical
CHLOROBENZE	INE										
	AOC9-MW15	Т	9	9	6.6E-01	3.8E-01	No	D	D	N/A	N/A
	AOC9-MW17	Т	9	9	3.4E-01	2.7E-01	No	D	PD	N/A	N/A
	AOC9-MW19	S	7	7	3.2E-02	3.3E-02	No	NT	NT	N/A	N/A
	G009-MW01	Т	7	0	1.5E-01	5.0E-03	Yes	ND	ND	N/A	N/A
	G009-MW02	Т	8	0	1.3E-01	5.0E-03	Yes	ND	ND	N/A	N/A
TETRACHLORO	ETHYLENE(PCE)										
	AOC9-MW05	Т	4	0	2.5E-01	5.0E-03	Yes	ND	ND	N/A	N/A
	AOC9-MW06	Т	10	0	1.0E-01	5.0E-03	Yes	ND	ND	N/A	N/A
	AOC9-MW14	т	9	0	1.2E-01	5.0E-03	Yes	ND	ND	N/A	N/A
	AOC9-MW15	т	9	0	1.2E-01	5.0E-03	Yes	ND	ND	N/A	N/A
	AOC9-MW17	Т	9	9	2.2E-03	2.0E-03	No	S	S	N/A	N/A
	AOC9-MW19	S	7	0	1.5E-01	5.0E-03	Yes	ND	ND	N/A	N/A
	G009-MW01	т	7	0	1.5E-01	5.0E-03	Yes	ND	ND	N/A	N/A
	G009-MW02	Т	8	0	1.3E-01	5.0E-03	Yes	ND	ND	N/A	N/A
TRICHLOROET	HYLENE (TCE)										
	AOC9-MW05	Т	4	0	2.5E-01	5.0E-03	Yes	ND	ND	N/A	N/A
	AOC9-MW06	т	10	9	1.5E-03	1.0E-03	No	S	D	N/A	N/A
	AOC9-MW14	т	9	6	1.2E-01	4.8E-03	No	NT	NT	N/A	N/A
	AOC9-MW15	т	9	7	1.8E-03	8.3E-04	No	D	D	N/A	N/A
	AOC9-MW17	т	9	9	1.6E-02	1.6E-02	No	NT	D	N/A	N/A
	AOC9-MW19	S	7	6	1.1E-03	5.0E-04	No	NT	NT	N/A	N/A
	G009-MW01	т	7	6	1.2E-03	6.0E-04	No	D	D	N/A	N/A
	G009-MW02	т	8	6	1.8E-03	7.9E-04	No	PD	NT	N/A	N/A

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); Source/Tail (S/T)

The Number of Samples and Number of Detects shown above are post-consolidation values.