
Final Soil Vapor Intrusion Survey Data Summary Report for Apron 2, Building 817/WSA, Building 775, and AOC 9

Former Griffiss Air Force Base Rome, New York

October 2007

Section

Page

1 Introduct	tion	1-1
1.1	Purpose of Investigation	1-1
1.2		
	1.2.1 Apron 2 Chlorinated Plume	
	1.2.2 Building 817/Weapons Storage Area	
	1.2.3 AOC 9 1-5	
	1.2.4 Building 775/Pumphouse 3	1-6
2 Soil Vapo	or Intrusion (SVI) Survey	2-1
2.1	Pre-sample Planning	
2.2		
2.3		
	2.3.1 Apron 2 Chlorinated Plume	
	2.3.2 Building 817/WSA	
	2.3.3 AOC 9 2-6	
	2.3.4 Building 775/Pumphouse 3	
2.4		
2.5	1 1	
2.6	8	
2.7		
2.8		
3 Survey F	indings	3-1
3.1	Apron 2 Chlorinated Plume	
	3.1.1 Sub-Slab Vapor Results	
	3.1.2 Indoor/Outdoor Air Results	
	3.1.3 Site Inventory Observations	
3.2		
	3.2.1 Sub-Slab Vapor Results	
	3.2.2 Indoor/Outdoor Air Results	
	3.2.3 Site Inventory Observation	
3.3	•	
	3.3.1 Soil Vapor Results	
3.4		
	3.4.1 Soil Vapor Results	

Table of Contents (cont.)

Section

Page

	3.4.2 Sub-Slab Results	
	3.4.3 Indoor/Outdoor Air Results	
	3.4.4 Site Inventory Observations	
3.5	Quality Assurance/Quality Control	
4 Conclusio	ons and Recommendations	4-1
4.1	Apron 2 Chlorinated Plume	
4.1 4.2	Apron 2 Chlorinated Plume Building 817/WSA	
	Apron 2 Chlorinated Plume Building 817/WSA AOC 9	
4.2	Building 817/WSA	
4.2 4.3	Building 817/WSA AOC 9	

All appendices are provided on the attached CD. Appendix G is also provided in a printed version.

A Photo LogA-1
B Field Adjustment FormsB-1
C Indoor Air Quality Questionnaire and Building Inventory Forms C-1
D Air Sample FormsD-1
E Analytical Data E-1
F Data Usability Summary ReportF-1
G Assumptions and Screening Levels for Soil Vapor Intrusion Evaluation Industrial/Commercial ScenarioG-1

ist of Tables

Table	Page
2-1	Listing of All Samples Collected During Soil Vapor Intrusion Sampling, Former Griffiss AFB, October-December 2006
2-2	Summary of Sample Containers, Amounts, Preservation, and Holding Times for Vapor Samples, Former Griffiss Air Force Base, Rome, NY
3-1	Summary of Results for Sub-Slab Soil Vapor at Former GAFB
3-2	Summary of Results for Indoor and Outdoor Air Samples at Former GAFB
3-3	Summary of Results for Soil Vapor at Former GAFB

ist of Figures

Figure	Page
1-1	OBGW AOC Locations, Former Griffiss Air Force Base, Rome, New York 1-3
3-1	Apron 2 Groundwater Plume and SVI Survey Sample Location Map
3-2	Building 817/WSA Groundwater Plume and SVI Survey Sample Location Map 3-15
3-3	AOC 9 Groundwater Plume and SVI Survey Sample Location Map
3-4	Building 775 Groundwater Plume and SVI Survey Sample Location Map

ist of Abbreviations and Acronyms

AFIOH	Air Force Institute for Operational Health
AFRPA	Air Force Real Property Agency
AOC	area of concern
ASP	Analytical Services Protocol
bgs	below ground surface
CB	chlorobenzene
COC	Contaminant of Concern
DCB	dichlorobenzene
DCE	dichloroethylene
DER	Division of Environmental Remediation
DUSR	Data Usability Summary Report
EEEPC	Ecology and Environment Engineering, P.C.
ELAP	Environmental Laboratory Accreditation Program
ERDC	(United States Army) Engineer Research and Development Center
FPM	FPM Group Ltd.
Griffiss Al	FB former Griffiss Air Force Base
GS/MS	gas chromatography/mass spectrometry
hp	horsepower
IDW	investigation-derived waste
IRIS	Integrated Risk Information System
LIMS	Laboratory Information Management System

List of Abbreviations and Acronyms (cont.)

. 3		
μg/m [°]	miorogram	s per cubic meter
ug/m	Inncrograms	
1.0		

- MS/MSD matrix spike/matrix spike duplicate
- MTBE methyl tert-butyl ether
- NELAP National Environmental Laboratory Accreditation Program
- NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

OBGW on-base groundwater

- PCE perchloroethene (tetrachloroethene)
- PID photoionization detector
- ppb parts per billion
- PPE personal protective equipment
- ppm parts per million
- QA quality assurance
- QAPP Quality Assurance Project Plan
- QC quality control
- SOP standard operating procedure
- STL Severn-Trent Laboratories
- SVI soil vapor intrusion
- TAGM Technical and Administrative Guidance Memorandum
- TCA trichloroethane
- TCE trichloroethylene
- TCL target compound list
- TCLP toxicity characteristic leaching procedure
- USACE United States Army Corps of Engineers
- USEPA United States Environmental Protection Agency
- VC vinyl chloride

List of Abbreviations and Acronyms (cont.)

- VOC volatile organic compound
- WSA Weapons Storage Area

Introduction

A soil vapor intrusion (SVI) survey was performed at the following on-base groundwater (OBGW) areas of concern (AOCs) at the former Griffiss Air Force Base (Griffiss AFB) in Rome, New York: Apron 2 chlorinated plume, Building 817/Weapons Storage Area (WSA), AOC 9, and Building 775/Pumphouse 3 (see Figure 1-1). The future use of these sites will be restricted to industrial/ commercial use. This study was recommended, as described in the *Final Work Plan for Soil Vapor Intrusion Survey at Apron 2, Building 817/WSA, Building 775, and AOC 9, Griffiss Air Force Base, Rome, New York* (EEEPC September 2006), because of existing groundwater contamination at these sites.

A SVI survey at the Landfill 6 OBGW AOC was not included in this study because future development at this location is not expected to occur: The northern portion of the site contains a capped landfill and the southern portion contains wetlands that are designated to remain as open space.

1.1 Purpose of Investigation

SVI surveys were conducted at these four sites to determine if soil vapor is migrating into existing buildings or is present in areas that may be used as building sites in the future. The surveys included sub-slab vapor sampling in existing buildings where soil vapor intrusion may be an issue due to the presence of contaminated groundwater beneath the building and soil vapor sampling in areas with contaminated groundwater that may be used as future building sites. In addition, indoor/outdoor air sampling was performed during this survey because initial soil vapors detected during this study exceeded screening levels (see Section 2.8). All samples were collected in accordance with the *Final Work Plan for Soil Vapor Intrusion Survey at Apron 2, Building 817/WSA, Building 775, and AOC 9, Griffiss Air Force Base, Rome, New York* (EEEPC September 2006).

1.2 Site Descriptions and Groundwater Contamination Summary

1.2.1 Apron 2 Chlorinated Plume

The chlorinated volatile organic compound (VOC) contamination associated with the Apron 2 chlorinated plume site is present in two plumes, referred to as the southern and northern plumes (see Figure 3-1 in Section 3). The southern plume is approximately 2,800 feet long and 500 feet wide and appears to originate in the

area of the nosedock wash water system near Building 786. The northern plume is smaller (480 feet long) and appears to originate along the sewer system north of Building 782. Chlorinated solvent probably was used in all nosedock facilities, and multiple small sources could exist along floor drains, sewer lines, and oil water separators.

There are three primary contaminants of concern (COCs) in the plumes that exceed New York State Department of Environmental Conservation (NYSDEC) Class GA Groundwater Standards: trichloroethylene (TCE) and its breakdown products cis-1, 2 dichloroethylene (DCE) and vinyl chloride (VC). The southern plume is commingled with several petroleum fuel plumes originating from the Apron 2 fueling system. At locations where TCE and fuel contaminants are commingled, significant reductive dechlorination is occurring and TCE is almost totally degraded to cis-1, 2 DCE and VC. In April 2005, the maximum TCE concentration was 24 parts per billion (ppb), detected in the northern plume at well 782VMW97. The level of TCE has been steadily decreasing in both plumes and it appears that no significant source of TCE remains at the site. In April 2005, the maximum cis-1,2 DCE concentration was 54 ppb in well 782MW10, located in the southern plume in an area with commingled fuel contamination. The maximum VC concentration was 130 ppb at well 782MW-96, which is also located in the center of fuel-contaminated groundwater. The commingled fuel plume is providing significant reductions in TCE and cis-1, 2 DCE through welldocumented reductive dechlorination processes. At many locations, methyl tertbutyl ether (MTBE) and benzene are also present at levels exceeding NYSDEC Class GA Groundwater Standards (FPM Group February 2005).

The contaminated aquifer is located at 9 to 25 feet below ground surface (bgs), with the shallow depth occurring in the vicinity of Six Mile Creek. The aquifer is composed of several well-defined layers, including a silty-sand layer in the upper 5 feet, a 5- to 15 foot-thick coarse sand and gravel layer in the middle of the aquifer, and a 15- to 20-foot thick layer of till composed of fine sand, silt, and gravel resting on the shale bedrock. The total aquifer thickness ranges from 45 feet in the source areas to less than 20 feet in the downgradient areas near Six Mile Creek. Although the site has a relatively flat gradient, the high hydraulic conductivity of gravel layers has produced an estimated average groundwater velocity of 106 feet per year. This velocity seems reasonable, given the 2,800 feet the VOC plume has migrated (FPM Group February 2005).

Insert Figure **1-1** OBGW AOC Locations, Former Griffiss Air Force Base, Rome, New York 11 x 17 page 1 of 2

1. Introduction

Figure 1-1 page 2 of 2

Five buildings (Building 782, 783, 784, 785, and 786) at Apron 2 are located above the areas showing significantly elevated levels of VOCs in the groundwater. More than two-thirds of the ground surface in the vicinity of Apron 2 is covered by structures or impermeable pavements (FPM Group April 2004), which could limit the likelihood of soil vapor being released to the atmosphere. A bioventing system has been installed and has been operating at Apron 2 since 2003. Bioventing, as employed at Apron 2, is the forced injection of ambient air into contaminated soil to provide an oxygen-rich environment in order to stimulate indigenous soil bacteria and enhance the in situ degradation of hydrocarbons. Two blower units are employed to inject air into the soil beneath Apron 2. The blowers installed at Apron 2 consist of a 3-horsepower (hp) blower located adjacent to Building 783 on the western side of the apron, and a 5-hp blower located on the eastern side of the apron (Parsons April 2004).

1.2.2 Building 817/Weapons Storage Area

The Building 817/WSA site is located on the north side of the main runway between Building 817 and the culverted section of Six Mile Creek south of the former WSA. Building 817 was used at one time for electronics parts maintenance, and TCE and perchloroethene (PCE) were solvents used in small quantities at this location. The COCs exceeding NYSDEC Class GA Groundwater Standards are TCE and PCE. In September 2004, the maximum TCE concentration was 90 ppb and the maximum PCE concentration was 72 ppb. Site groundwater flows south under Perimeter Road and toward the culverted section of Six Mile Creek. The contaminated aquifer is composed of relatively uniform fine sands that begin at 5 feet bgs and extend to shale bedrock at approximately 20 to 25 feet bgs. Contamination is not found in the bedrock. Groundwater velocities at this site have been estimated as high as 110 feet per year. In September 2004, a TCE concentration of 90 ppb was detected in downgradient well WSAVMW17. Although there is no indication that the plume has migrated to Six Mile Creek, the level of contamination at WSAVMW17 does indicate the potential for additional migration. Figure 3-2 (see Section 3) illustrates the September 2004 total volatile organic levels in groundwater. The TCE/PCE plume does not contain other petroleum-based organics to stimulate reductive dechlorination. There is no significant cis-1, 2-DCE in the plume, indicating that reductive dechlorination is not occurring.

One building (Building 817) is present at the Building 817/WSA site. The potential also exists for future development of the areas above the contaminant plume, immediately north and south of Perimeter Road.

1.2.3 AOC 9

AOC 9 is a grass-covered area located on the north side of the main runway between the former WSA and Six Mile Creek. From 1943 to 1957, this area was used as a base landfill. Much of the landfill material was removed from the area in the 1950s as the WSA was constructed. The primary COC exceeding NYSDEC Class GA Groundwater Standards at this site is chlorobenzene (CB),

with 1,2-dichlorobenzene (DCB), 1,4-dichlorobenzene, PCE, TCE, DCE, and VC also exceeding Class GA Groundwater Standards by at least one order of magnitude. The presence of cis-1, 2-DCE and VC at increasing concentrations in the downgradient portion of the plume indicates that some reductive dechlorination of PCE and/or TCE is occurring. In September 2004, the maximum CB concentration of 1,320 ppb was recorded in Geoprobe® well GP44S2, which is located approximately 100 feet north of Perimeter Road. The source of VOC contamination remains unknown. Contaminated groundwater at the site flows southwest from the corner of the WSA and toward an open section of Six Mile Creek. Samples from groundwater monitoring wells installed on either side of Six Mile Creek indicate that some of the CB-contaminated groundwater is discharging to the creek and also has migrated beneath the creek. Because CB is highly soluble and mobile in groundwater, this compound is the most widespread COC at the site. Figure 3-3 (see Section 3) illustrates the September 2004 CB levels in groundwater.

The contaminated aquifer north of Perimeter Road is composed of silty-fine sands and coarse sands with discontinuous gravel seams. North of Perimeter Road, the aquifer is found in an interval from 10 to 25 feet bgs. South of Perimeter Road there is less overburden and the aquifer extends from 1 to 18 feet bgs. Shale bedrock underlies the aquifer, but contamination has not been detected in the bedrock. Groundwater velocities at this site have been estimated at 3,000 to 5,100 feet per year. Although the source of CB contamination at this site has never been identified, it is likely that a source exists in the unsaturated and/or saturated zone north of Perimeter Road. This would explain why CB concentrations remain above 1,000 ppb in an aquifer that is flowing so rapidly through sands and gravels.

No buildings at AOC 9 are located above the areas with significantly elevated levels of VOCs in the groundwater. However, the potential exists for future development of the areas above the contaminant plume, immediately north of Perimeter Road. No sampling is proposed for the areas above the contaminant plume located south of Perimeter Road because of the presence of wetlands in this area and the proximity to the existing runway. Future development should not occur in this area.

1.2.4 Building 775/Pumphouse 3

The Building 775 plume is located downgradient and south of former maintenance facilities in Building 774 and 776 and former fuel pump house Building 775. Although the source has not been identified, solvent use in Building 775 is thought to be a primary source of TCE contamination. Solvent use was widespread in these facilities in the 1950s, 1960s, and early 1970s. Figure 3-4 (see Section 3) illustrates the extent of VOC contamination downgradient of this maintenance area. The primary COC exceeding NYSDEC Class GA Groundwater Standards is TCE, with minor detections of 1, 1, 1trichloroethane (TCA) and PCE. Monitoring well 775VMW5, located near the

1. Introduction

corner of Building 776, is the only well in the maintenance area that contains significant levels of TCE (99 ppb in September 2004). Most of the Building 775 plume appears to have migrated south toward Landfill 6. In September 2004, the maximum TCE concentration was 134 ppb (detected at well 775MW20, located near the leading edge of the plume near Perimeter Road); however, TCE was detected at a concentration of 673 ppb in the Hydropunch sample at 117 feet bgs in well 775 VMW20 during the 2000 Landfill 6 and Building 775 Groundwater Study (E & E August 2000). TCE was detected at 132 ppb in well 775VMW10, which is also located near the leading edge of the plume near Perimeter Road. TCE in both of these wells was detected in the bottom half of the sandy aquifer in screened intervals from 88 to 120 feet bgs. Nearby well LF6MW1 is screened in the upper 10 feet of the aquifer and does not have detectable concentrations of TCE. Based on the current TCE distribution, it appears that the TCE was likely spilled in the upgradient maintenance area and has migrated southward and downward in the aquifer.

The contaminated aquifer comprises silty sands with an average thickness extending from 60 feet bgs to 120 feet bgs, where shale bedrock is encountered. Due to a relatively flat gradient, average groundwater velocities at this site are slow and have been estimated at approximately 10 feet per year. Higher velocities may exist in discontinuous seams of coarse sand and gravel. Contamination is not found in the bedrock. Groundwater studies at the nearby Landfill 6 TCE site found relatively aerobic conditions and low dissolved organic carbon concentrations. The general absence of cis-1, 2 DCE in the Building 775 plume confirms that reductive dechlorination is not occurring.

Two buildings (Buildings 774 and 776) lie within the elevated VOC plume boundary associated with the Building 775 site. The potential also exists for future development within this area north of Perimeter Road.

2

Soil Vapor Intrusion (SVI) Survey

This section of the data summary report discusses the field methodologies and activities performed during this investigation.

2.1 Pre-sample Planning

Coordination and communication with property owners and tenants was conducted before the initiation of this sampling. Available record drawings/ as-builts were reviewed for buildings in which samples were collected. The buildings are slab-on-grade construction consisting of steel-reinforced concrete ranging from 8- to 14-inches thick. Proposed sampling locations were adjusted in the field based on site walkthroughs or chemical inventories performed before indoor air sampling. Changes to the proposed sampling included not collecting soil vapor samples in the Apron 2 chlorinated plume and Building 817/WSA plume because of the highly saturated nature of the soil and the addition of indoor/outdoor air sampling at Buildings 774 and 776, Buildings 785 and 786 of Apron 2, and Building 817/WSA, due to screening levels exceedances of several analytes detected in sub-slab samples. Deviations from the methodologies described in the Final Work Plan for the Soil Vapor Intrusion Survey at Apron 2, Building 817/WSA, Building 775, and AOC 9, Griffiss Air Force Base, Rome, New York (EEEPC September 2006) were documented on Field Adjustment Forms and are presented in this report (see Appendix B).

2.2 Pre-sampling Inspection

A pre-sampling inspection was conducted at each structure prior to sampling in order to identify conditions that may have affected or interfered with the proposed testing. The inspection included the type of structure, floor layout, physical conditions, and airflows of the building. The pre-sampling inspection was conducted the same day that the sampling devices were placed unless it was clear that recent activities might have affected evaluation of the analytical data (e.g., walls were painted recently, solvents/wood strippers were recently used, etc.). In all cases, sampling did not have to be delayed.

A product inventory was also conducted prior to indoor air sampling in order to identify potential sources of chemicals in indoor air by characterizing the occurrence and use of chemicals and products containing VOCs throughout the building, keeping in mind the goal of the investigation and site-specific COCs.

The building inspections and product inventories were recorded on New York State Department of Health (NYSDOH) Indoor Air Quality Questionnaire and Building Inventory forms (NYSDOH February 2005), with modifications to incorporate additional information. Photographs of the sample locations and products found in the structures were also collected. Completed Indoor Air Quality Questionnaire and Building Inventory forms for each structure sampled are provided in Appendix C of this report. Photographs are located in Appendix A.

2.3 SVI Sampling

The four sites investigated contain chlorinated organic compound plumes in the overburden. Therefore, an SVI survey was performed at each site.

Soil vapor sampling was attempted at all four sites. However, the weather conditions the week prior to and during soil vapor sampling consisted of intermittent showers and light rain, resulting in soil conditions at Building 817 and Apron 2 too saturated to collect samples. The well drained sandy soil conditions at AOC 9 and Building 775 allowed for the collection of the soil vapor samples. Although increased soil moisture could potentially reduce soil vapor migration in finer grained soils, the uniform porous sand present at both Building 775 and AOC 9, along with strict adherence to sampling protocols, allowed for the collection of representative soil vapor samples.

Sub-slab sampling was also performed in all buildings on each site (AOC 9 does not contain any buildings). Based on the evaluation of the sub-slab sampling results (presented in this report), indoor and outdoor (ambient) air sampling was also conducted at Buildings 774, 776, 785, 786 and 817. The SVI surveys were performed during October and December 2006. The survey approach was designed in consideration of with the NYSDEC's Division of Environmental Remediation (DER) Draft DER-10 Technical Guidance for Site Investigation and Remediation (December 2002); NYSDOH's Guidance for Evaluating Soil Vapor Intrusion in the State of New York, Public Comment Draft (February 2005); NYSDEC's Evaluating the Potential for Vapor Intrusion at Past, Current, and *Future Sites* (November 2004); the United States Environmental Protection Agency's (USEPA's) OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), EPA530-D-02-004 (November 2002); and the United States Air Force Institute for Operational Health (AFIOH) Guide for the Assessment of the Vapor Intrusion Pathway (June 2006).

Table 2-1 presents a summary of all samples collected at these four sites. Samples were collected in 6L SUMMA[®] canisters. Soil vapor samples were collected for a duration of 1 hour. Indoor air, outdoor air, and sub-slab air samples were collected for a duration of 8 hours. Table 2-2 provides a summary of the sample containers, amounts, and holding times.

2. Soil Vapor Intrusion (SVI) Survey

Sampling, Former Griffiss AFB, October-December 2006							
Sample Location	Sample ID	Date	Sample Type	Туре			
Apron 2 Chlorinated	d Plume						
Building 782	B782-SSV1	10/24/2006	Sub-Slab Vapor	Ν			
	B782-SSV1/D	10/24/2006	Sub-Slab Vapor	FD			
	B782-SSV2	10/24/2006	Sub-Slab Vapor	Ν			
Building 783	B783-SSV1	10/24/2006	Sub-Slab Vapor	Ν			
-	B783-SSV2	10/24/2006	Sub-Slab Vapor	Ν			
Building 784	B784-SSV1	10/24/2006	Sub-Slab Vapor	Ν			
-	B784-SSV2	10/24/2006	Sub-Slab Vapor	Ν			
Building 785	B785-SSV1	10/24/2006	Sub-Slab Vapor	Ν			
C	B785-SSV2	10/24/2006	Sub-Slab Vapor	Ν			
	785-IA1	12/20/2006	Indoor Air	Ν			
	785-IA2	12/20/2006	Indoor Air	Ν			
Building 786	B786-SSV1	10/24/2006	Sub-Slab Vapor	N			
	B786-SSV2	10/24/2006	Sub-Slab Vapor	N			
	B786-SSV2/D	10/24/2006	Sub-Slab Vapor	FD			
	786-IA1	12/20/2006	Indoor Air	N			
	786-IA2	12/20/2006	Indoor Air	N			
	786-IA2/D	12/20/2006	Indoor Air	FD			
	786-OA1	12/20/2006	Outdoor Air	N			
Building 817/WSA	700 0111	12/20/2000	outdoor mi	11			
	WSA-SSV1	10/24/2006	Sub-Slab Vapor	Ν			
	WSA-SSV1/D	10/24/2006	Sub-Slab Vapor	FD			
	WSA-IA1	12/20/2006	Indoor Air	N			
	WSA-OA1	12/20/2006	Outdoor Air	N			
AOC 9		12/20/2000	outdoor mi	11			
	AOC9-SV-01	10/18/2006	Soil Vapor 5-8 ft BGS	Ν			
	AOC9-SV-02	10/18/2006	Soil Vapor 5-8 ft BGS	N			
	AOC9-SV-03	10/18/2006	Soil Vapor 5-8 ft BGS	N			
	AOC9-SV-04	10/18/2006	Soil Vapor 5-8 ft BGS	N			
	AOC9-SV-05	10/18/2006	Soil Vapor 5-8 ft BGS	N			
	AOC9-SV-06	10/18/2006	Soil Vapor 5-8 ft BGS	N			
Building 775/Pumpl		10/10/2000		11			
Building 774	774-SSV1	10/24/2006	Sub-Slab Vapor	Ν			
	774-SSV2	10/24/2006	Sub-Slab Vapor	N			
	774-IA1	12/20/2006	Indoor Air	N			
	774-IA2	12/20/2006	Indoor Air	N			
	774-IA2/D	12/20/2006	Indoor Air	FD			
	774-OA1	12/20/2006	Outdoor Air	N			
Building 775	775-SV-01	10/18/2006	Soil Vapor 5-8 ft BGS	N			
zanang 110	775-SV-02	10/18/2006	Soil Vapor 5-8 ft BGS	N			
	775-SV-02	10/18/2006	Soil Vapor 5-8 ft BGS	N			
	775-SV-04	10/18/2006	Soil Vapor 5-8 ft BGS	N			
	115-51-04	10/10/2000		IN			

Table 2-1 Listing of All Samples Collected During Soil Vapor Intrusion Sampling, Former Griffiss AFB, October-December 2006

2. Soil Vapor Intrusion (SVI) Survey

Sampling, Former Grimss AFB, October-December 2006									
Sample Location	Sample ID	Date	Sample Type	Туре					
Building 776	775-SV-04/D	10/18/2006	Soil Vapor 5-8 ft BGS	FD					
	776-SSV1	10/24/2006	Sub-Slab Vapor	Ν					
	776-SSV2	10/24/2006	Sub-Slab Vapor	Ν					
	776-IA1	12/20/2006	Indoor Air	Ν					
	776-IA2	12/20/2006	Indoor Air	Ν					
All Areas									
	OBGWV-TB1	10/24/2006	_	TB					
	TB-20-10-06	10/20/2006	-	TB					
	OBGWV-TB3	12/20/2006	_	TB					

Table 2-1 Listing of All Samples Collected During Soil Vapor Intrusion Sampling, Former Griffiss AFB, October-December 2006

Key:

D = Duplicate.

AOC 9 = Area of Concern 9.B775 = Building 775.

 $B_{173} = Building 773.$ B187 = Building 817.

BGS = Below ground surface.

FD = Field duplicate.

ft = Feet.

IA = Indoor air.

N = Original sample.

OA = Outdoor air.

SSV = Sub-slab vapor. SV = Soil vapor.

TB = Trip blank.

WSA = Weapons Storage Area.

The following subsections describe the type and purpose of work performed at each site.

2.3.1 Apron 2 Chlorinated Plume

In order to determine if soil vapor is migrating into the existing buildings at the Apron 2 chlorinated plume site or is present in the areas that may be used as future building sites, the following samples plus appropriate quality assurance/quality control (QA/QC) samples were collected. Sample locations are shown on Figure 3-1 (see Section 3).

SVI Survey Sampling:

No soil vapor samples were collected in October 2006 from this area because the soil was saturated from ground surface to more than 8 feet bgs and NYSDOH guidelines suggest that no sample be collected under these conditions.

Table 2-2 Summary of Sample Containers, Amounts, Preservation, and Holding Times for Vapor Samples, Former Griffiss Air Force Base, Rome, NY

					Holding Time ^b	
Method	Parameter	Sample Container ^a	Amount	Preservation	Extraction	Analysis
Vapor Samples						
EPA TO-15	Volatile organics	6L SUMMA [®] Canister	Full	None	NA	30 days
NT /						

Notes:

Samples chosen for quality assurance analysis require double the number of containers indicated. All numbers of days are from date of collection. а

b

Key:

EPA = United States Environmental Protection Agency, "Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air," EPA 625/R-96-010a, June 1999.

NA = Not applicable.

- Ten sub-slab vapor samples and two duplicates were collected in October 2006. Two samples from each building were collected from beneath the concrete floors of Buildings 782, 783, 784, 785, and 786. (Two samples were collected due to the large size of each of the buildings.) The samples were centrally located within the buildings because the center of a building typically exhibits the highest levels of sub-slab soil vapor.
- Four indoor air samples, two from Building 785 and two from 786, and one duplicate were collected in December 2006 after evaluation of the sub-slab sampling results. The indoor air samples were collected in the same locations as the sub-slab samples previously collected.
- One outdoor air sample (ambient) was collected from between Buildings 785 and 786 during December 2006, after evaluation of the sub-slab sampling results. The outdoor sample location was approximately 70 feet from Building 785 and 30 feet from Building 786, where good air flow between the buildings exists.

2.3.2 Building 817/WSA

In order to determine if soil vapor is migrating into the existing Building 817 or is present in the areas that may be used as building sites in the future, the following samples plus appropriate QA/QC samples were collected. Sample locations are shown on Figure 3-2 (see Section 3).

SVI Survey Sampling:

- No soil vapor samples were collected in October 2006 from this area because the soil was saturated from ground surface to more than 8 feet bgs and NYSDOH guidelines suggest that no sample be collected under these conditions.
- One sub-slab vapor sample and one duplicate sample were collected in October 2006 from beneath the concrete floor of Building 817, centrally located within the building.
- One indoor air sample was collected in December 2006 from the same location as the sub-slab samples previously collected, after evaluation of the sub-slab sampling results.
- One outdoor air sample was collected during December 2006, after evaluation of the sub-slab sampling results.

2.3.3 AOC 9

No buildings are present at AOC 9. In order to determine whether soil vapor is present in the areas that may be used as future building sites at AOC 9, the

following samples plus appropriate QA/QC samples were collected. Sample locations are indicated on Figure 3-3 (see Section 3).

SVI Survey Sampling:

 In October 2006, six soil vapor samples from the areas with the highest levels of groundwater contamination were collected from between 4 and 8 feet bgs using direct push methods.

2.3.4 Building 775/Pumphouse 3

In order to determine if soil vapor is migrating into the existing buildings at the Building 775 site or is present in the areas that may be used as building sites in the future, the following samples plus appropriate QA/QC samples were collected. Sample locations are shown on Figure 3-4 (see Section 3).

SVI Survey Sampling:

- In October 2006 four soil vapor samples and one duplicate sample were collected from between 5 and 8 feet bgs using direct push methods in the area with the highest levels of groundwater contamination. The samples were collected from the open grassy areas south of Buildings 774 and 776.
- A total of four sub-slab vapor samples, two from Building 774 and two from 776, were collected in October 2006. Two sub-slab samples were collected from each building due to the large size of the buildings.
- A total of four indoor air samples were collected in December after evaluation of the sub-slab sampling results, two from within Building 774 and two from Building 776.
- One outdoor air sample was collected from between Buildings 774 and 776 during December 2006, after evaluation of the sub-slab sampling results. The outdoor sample was collected where good air flow between the buildings exists.

2.4 Equipment Decontamination

The Geoprobe® rig and all appurtenances were decontaminated with highpressure steam prior to arrival at the site. All equipment was decontaminated again upon arrival at the site in accordance with the *Final Work Plan for Soil Vapor Intrusion Survey at Apron 2, Building 817/WSA, Building 775, and AOC 9, Griffiss Air Force Base, Rome, New York* (EEEPC September 2006).

All downhole equipment was decontaminated before and after each use. Once clean, no equipment was allowed to touch the ground prior to use. The equipment was stored on the drill rig, support truck, or on plastic sheeting.

2.5 Investigation-Derived Waste

The following types of investigation-derived waste (IDW) were generated during this investigation: decontamination water, disposable polyethylene tubing, and spent personal protection equipment (PPE). Decontamination water generated from sampling was field-screened for organic vapors with a photoionization detector (PID) and visually inspected to determine whether the water was potentially contaminated. No organic vapors or unusual odors/colors were detected. Therefore, all water was discharged to the surface near the sample location from which it was generated. All PPE and disposable polyethylene tubing and bailers were disposed of as non-regulated solid waste.

2.6 Sample Analysis

All original samples and QC samples, including duplicates and trip blanks, were sent to Severn-Trent Laboratories (STL)-Burlington for standard turnaround analyses. All the samples collected were analyzed using USEPA Method TO-15 (Determination of Volatile Organic Compounds [VOCs] in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry [GC/MS]). There is no target compound list (TCL) for Method TO-15; therefore, a USACE list of 43 compounds was initially used for soil vapor and sub-slab samples. For subsequent indoor/outdoor air sampling, a list of nine compounds was selected based on the results of the soil vapor and sub-slab samples. The indoor/outdoor air analyte list includes chlorinated VOCs as well as petroleum and fuel-related products that were detected at concentrations above or near the sub-slab screening levels in at least one sub-slab sample and/or at an elevated concentration in at least one soil vapor sample (m- and p-xylene isomers are reported in sum due to co-elution and are considered one analyte for the purpose of this discussion). Laboratory reports were consistent with NYSDEC Analytical Services Protocol (ASP) Category B deliverable requirements. Analyses were performed by STL, a laboratory approved by both the New York State Environmental Laboratory Accreditation Program (ELAP) air toxics program for this analytical method and the National Environmental Laboratory Approval Program (NELAP). A reporting limit of approximately 1 microgram per cubic meter ($\mu g/m^3$) was used for all compounds, with the exception of trichloroethene. In New York State, a reporting limit of $0.25 \ \mu g/m^3$ must be met for trichloroethene in indoor and outdoor air samples. Full laboratory reports are provided in Appendix E.

2.7 Data Validation

All laboratory deliverables were reviewed in accordance with the Quality Assurance Project Plan (QAPP) contained within the *Final Work Plan for Soil Vapor Intrusion Survey at Apron 2, Building 817/WSA, Building 775, and AOC 9, Griffiss Air Force Base, Rome, New York* (EEEPC September 2006) and appropriate air sampling methods and general reporting requirements from NYSDEC's ASP (June 2000). The data were qualified following general guidelines in the USEPA CLP National Functional Guidelines for Organic Data *Review, EPA 540/R-99-008* (October 1999). Data Usability Summary Reports

2. Soil Vapor Intrusion (SVI) Survey

(DUSRS) were prepared for each laboratory report (based on sample delivery group) as specified in NYSDEC's *Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports* (July 1999). The data review included an evaluation of the following:

- Holding times;
- Initial and continuing calibration;
- Reporting limits;
- Laboratory blanks;
- Field blanks;
- Laboratory control samples;
- Field duplicates;
- Sample result verification; and
- Method-specific QC samples (e.g., GC/MS tunes).

2.8 Screening Levels

Four types of samples were collected during this SVI survey: sub-slab vapor samples, soil vapor samples, indoor, and outdoor samples. For each sampling type, screening levels were calculated for an industrial/commercial scenario. Full details including assumptions, calculations, and tables with toxicity values, source information ad calculated screening levels, can be found in Appendix G.

Survey Findings

This section identifies the analytical data for all samples collected for this SVI survey. A summary of the analytical results for each sub-slab vapor sample is provided in Table 3-1, a summary for indoor and outdoor sample results is provided in Table 3-2, and for soil vapor sample results in Table 3-3. Screening levels used in these tables were derived for an industrial/commercial exposure scenario as described in Appendix G. The risk-based screening levels were compared against the sample results in order to determine the potential risk of the compound detected. Field duplicate sample results are included in the tables adjacent to the corresponding original sample. Complete analytical data are provided in Appendix E.

3.1 Apron 2 Chlorinated Plume 3.1.1 Sub-Slab Vapor Results

No exceedances were reported for the sub-slab samples collected at Buildings 782, 783, and 784. Building 785 results showed two COCs which exceeded the screening levels; chloroform, detected at levels of 32 and 190 μ g/m³, and TCE, detected at levels of 2,300 and 11,000 μ g/m³. TCE exceedances were also reported for Building 786 at concentrations of 700 J and 81,000 μ g/m³ (J indicates an estimated result). A PCE exceedance was also reported for Building 786 at 2,200 μ g/m³. Results for all sub-slab samples are located in Table 3-1. Sampling locations are shown on Figure 3-1.

3.1.2 Indoor/Outdoor Air Results

No exceedances were reported for indoor and outdoor air samples collected at Buildings 785 and 786. Benzene was the only chemical detected in both indoor at outdoor samples from Buildings 785 and 786 (1.1 -1.2 μ g/m³), but the concentrations were approximately two orders of magnitude lower that the screening criterion (88 μ g/m³). The detection in the outdoor sample (0.96 μ g/m³) was of the same magnitude as the indoor detections. One TCE detection was reported for Building 786, but the concentration (0.43 J μ g/m³) was two orders of magnitude lower than the screening criterion (41 μ g/m³). Results for all indoor and outdoor air samples are located in Table 3-2. Sampling locations are shown on Figure 3-1.

Table 3-1 Summary of Results 1	Sub-slab Vapor						
	Screening						
	Concentration						B782-
Analyte	(µg/m³) ¹	774-SSV1	774-SSV2	776-SSV1	776-SSV2	B782-SSV1	SSV1/D
Volatiles TO-15 (ug/m ³)							
1,1,1-trichloroethane	146,000	55 J	28 J	33 J	15 J	1.1 UJ	1.1 UJ
1,1,2,2-tetrachloroethane	NA	14 U	6.9 U	41 U	7.6 U	1.4 U	1.4 U
1,1,2-trichloroethane	NA	11 U	5.5 U	32 U	6.0 U	1.1 U	1.1 U
1,1-dichloroethane	NA	8.1 U	4.0 U	24 U	81 U	0.81 U	0.81 U
1,1-dichloroethene	NA	7.9 U	4.0 U	23 U	79 U	0.79 U	0.79 U
1,2-dibromoethane (ethylene dibromide)	NA	15 U	7.7 U	45 U	8.5 U	1.5 U	1.5 U
1,2-dichloroethane	31	8.1 UJ	4.0 UJ	24 UJ	81 UJ	0.81 UJ	0.81 UJ
1,2-dichloropropane	NA	9.2 U	4.6 U	27 U	92 U	0.92 U	0.92 U
1,2-dichlorotetrafluoroethane	NA	14 U	7.0 U	41 U	7.7 U	1.4 U	1.4 U
1,3,5-trimethylbenzene (mesitylene)	175	9.8 U	4.9 U	29 U	98 U	1.5	1.2
1,3-butadiene	NA	11 U	5.5 U	33 U	6.0 U	1.1 U	1.1 U
2,2,4-trimethylpentane	NA	9.3 U	4.7 U	28 U	93 U	0.93 U	0.93 U
4-ethyltoluene	NA	9.8 U	4.9 U	29 U	98 U	1.4	1.5
allyl chloride (3-chloropropene)	29	16 U	7.8 U	47 U	8.5 U	1.6 U	1.6 U
benzene	105	9.6	3.8	19 U	64 U	3.1	3.2
bromodichloromethane	NA	13 U	6.7 U	40 U	7.4 U	1.3 U	1.3 U
bromoform	NA	21 U	10 U	61 U	210 U	2.1 U	2.1 U
bromomethane	NA	7.8 U	3.9 U	23 U	78 U	0.78 U	0.78 U
carbon tetrachloride	55	13 UJ	6.3 UJ	37 UJ	6.9 UJ	1.3 UJ	1.3 UJ
chloroethane	NA	5.3 U	2.6 U	16 U	53 U	0.53 U	0.53 U
chloroform	36	20	4.9 U	54	98 U	0.98 U	0.98 U
cis-1,2-dichloroethylene	1,022	7.9 U	4.0 U	23 U	79 U	0.79 U	0.79 U
cis-1,3-dichloropropene	NA	9.1 U	4.5 U	27 U	91 U	0.91 U	0.91 U
cyclohexane	175,200	15	3.4 U	20 U	9.6	3.3	2.9
dibromochloromethane	NA	17 U	8.5 U	50 U	9.4 U	1.7 U	1.7 U
dichlorodifluoromethane	5,840	25 U	12 U	74 U	8900 U	2.9 U	2.8 U
ethylbenzene	743	8.7 U	4.3 U	26 U	87 U	13	13
m,p-xylene (sum of isomers)	2,920	22 U	11 U	65 U	220 U	4.8	4.8
n-heptane	NA	34	9.4	24 U	82 U	7.4	6.6
n-hexane	20,440	42	9.9	53 U	19	8.1	8.5
o-xylene (1,2-dimethylbenzene)	2,920	8.7 U	4.3 U	26 U	87 U	2.0	2.1
tert-butyl methyl ether	87,600	18 U	9.0 U	54 U	9.7 U	1.8 U	1.8 U
tetrachloroethylene (pce)	139	14 U	6.8 U	40 U	31	16	17
toluene	146,000	23	11	22 U	8.3	8.7	9.0

Table 3-1 Summary of Results for Sub-Slab Soil Vapor at Griffiss AFB

	Sub-slab Vapor Screening	r October 24, 2006					
Analyte	Concentration (μg/m ³) ¹	774-SSV1	774-SSV2	776-SSV1	776-SSV2	B782-SSV1	B782- SSV1/D
total 1,2-dichloroethene	1,022	7.9 U	4.0 U	23 U	79 U	0.79 U	0.79 U
trans-1,2-dichloroethene	NA	7.9 U	4.0 U	23 U	79 U	0.79 U	0.79 U
trans-1,3-dichloropropene	NA	9.1 U	4.5 U	27 U	91 U	0.91 U	0.91 U
trichloroethylene (tce)	409	1700	810	3000	700	1.1 U	1.1 U
trichlorofluoromethane	20,440	360	79	4200	13	1.5	1.7
vinyl bromide (bromoethene)	NA	8.7 U	4.4 U	26 U	87 U	0.87 U	0.87 U
vinyl chloride	186	5.1 U	2.6 U	15 U	51 U	0.51 U	0.51 U
xylenes, total	2,920	8.7 U	4.3 U	26 U	87 U	6.9	6.9

Table 3-1 Summary of Results for Sub-Slab Soil Vapor at Griffiss AFB

Table 3-1 Summary of Results 1	Sub-slab Vapor				24, 2006		
	Screening	-	•	•			-
	Concentration						
Analyte	(µg/m³) ¹	B782-SSV2	B783-SSV1	B783-SSV2	B784-SSV1	B784-SSV2	B785-SSV1
Volatiles TO-15 (ug/m ³)	116.000						- <
1,1,1-trichloroethane	146,000	16 J	1.7 J	1.1 UJ	11 J	13 J	76 UJ
1,1,2,2-tetrachloroethane	NA	1.4 U	96 U				
1,1,2-trichloroethane	NA	1.1 U	76 U				
1,1-dichloroethane	NA	0.81 U	57 U				
1,1-dichloroethene	NA	0.79 U	56 U				
1,2-dibromoethane (ethylene dibromide)	NA	1.5 U	110 U				
1,2-dichloroethane	31	0.81 UJ	57 UJ				
1,2-dichloropropane	NA	0.92 U	65 U				
1,2-dichlorotetrafluoroethane	NA	1.4 U	98 U				
1,3,5-trimethylbenzene (mesitylene)	175	1.4	0.98 U	2.0	7.9	2.0	69 U
1,3-butadiene	NA	1.1 U	77 U				
2,2,4-trimethylpentane	NA	0.93 U	0.93 U	0.93	0.93 U	0.93 U	65 U
4-ethyltoluene	NA	1.6	0.98 U	2.0	5.4	1.5	69 U
allyl chloride (3-chloropropene)	29	1.6 U	110 U				
benzene	105	2.0	19	8.0	11	12	45 U
bromodichloromethane	NA	1.3 U	94 U				
bromoform	NA	2.1 U	140 U				
bromomethane	NA	0.78 U	54 U				
carbon tetrachloride	55	1.3 UJ	88 UJ				
chloroethane	NA	0.53 U	37 U				
chloroform	36	0.98 U	3.6	0.98 U	0.98 U	0.98 U	190
cis-1,2-dichloroethylene	1,022	0.79 U	75				
cis-1,3-dichloropropene	NA	0.91 U	64 U				
cyclohexane	175,200	2.6	38	23	14	25	86
dibromochloromethane	NA	1.7 U	120 U				
dichlorodifluoromethane	5,840	3.5 U	2.7 U	2.9 U	3.1 U	3.1 U	250 U
ethylbenzene	743	13	0.87 U	4.3	13	9.6	61 U
m,p-xylene (sum of isomers)	2,920	4.1	2.2 U	13	15	13	150 U
n-heptane	NA	6.1	15	17	45	49	90
n-hexane	20,440	8.1	60	27	42	67	230
o-xylene (1,2-dimethylbenzene)	2,920	1.5	0.87 U	5.6	5.2	3.9	61 U
tert-butyl methyl ether	87,600	1.8 U	1.8 U	1.8 U	1.8 U	1.9	130 U
tetrachloroethylene (pce)	139	1.4 U	95 U				
toluene	146,000	7.2	6.4	11	23	34	60

Table 3-1 Summary of Results for Sub-Slab Soil Vapor at Griffiss AFB

	Sub-slab Vapor Screening								
Analyte	(µg/m ³) ¹	B782-SSV2	B783-SSV1	B783-SSV2	B784-SSV1	B784-SSV2	B785-SSV1		
total 1,2-dichloroethene	1,022	0.79 U	75						
trans-1,2-dichloroethene	NA	0.79 U	56 U						
trans-1,3-dichloropropene	NA	0.91 U	64 U						
trichloroethylene (tce)	409	1.1 U	11000						
trichlorofluoromethane	20,440	1.8	1.3	1.5	1.6	2.0	79 U		
vinyl bromide (bromoethene)	NA	0.87 U	61 U						
vinyl chloride	186	0.51 U	36 U						
xylenes, total	2,920	5.6	0.87 U	19	20	17	61 U		

Table 3-1 Summary of Results for Sub-Slab Soil Vapor at Griffiss AFB

Table 3-1 Summary of Results	Sub-slab Vapor				ctober 24, 2	006		
	Screening							h
	Concentration				B786-	WSA-		
Analyte	(µg/m ³) ¹	B785-SSV2	B786-SSV1	B786-SSV2	SSV2/D	SSV1/D	WSA-SSV1	OBGWV-TB1
Volatiles TO-15 (ug/m ³)								
1,1,1-trichloroethane	146,000	35	430 U	33 U	5.5 U	2.3	2.2	1.1 U
1,1,2,2-tetrachloroethane	NA	21 U	540 U	41 U	6.9 U	1.4 U	1.4 U	1.4 U
1,1,2-trichloroethane	NA	16 U	430 U	33 U	5.5 U	1.1 U	1.1 U	1.1 U
1,1-dichloroethane	NA	12 U	320 U	24 U	4.0 U	0.81 U	0.81 U	0.81 U
1,1-dichloroethene	NA	12 U	310 U	24 U	4.0 U	0.79 U	0.79 U	0.79 U
1,2-dibromoethane (ethylene dibromide)	NA	23 U	600 U	46 U	7.7 U	1.5 U	1.5 U	1.5 U
1,2-dichloroethane	31	12 U	320 U	24 U	4.0 U	0.81 U	0.81 U	0.81 U
1,2-dichloropropane	NA	14 U	360 U	28 U	4.6 U	0.92 U	0.92 U	0.92 U
1,2-dichlorotetrafluoroethane	NA	21 U	550 U	42 U	7.0 U	1.4 U	1.4 U	1.4 U
1,3,5-trimethylbenzene (mesitylene)	175	15 U	380 U	29 U	4.9 U	0.98	0.98 U	0.98 U
1,3-butadiene	NA	17 U	440 U	33 U	5.5 U	1.1 U	1.1 U	1.1 U
2,2,4-trimethylpentane	NA	14 U	360 U	28 U	4.7 U	0.93 U	0.93 U	0.93 U
4-ethyltoluene	NA	15 U	380 U	29 U	4.9 U	0.98 U	0.98 U	0.98 U
allyl chloride (3-chloropropene)	29	23 U	630 U	47 U	7.8 U	1.6 U	1.6 U	1.6 U
benzene	105	15	250 U	24 J	8.9 J	3.5	3.5	0.64 U
bromodichloromethane	NA	20 U	520 U	40 U	6.7 U	1.3 U	1.3 U	1.3 U
bromoform	NA	31 U	810 U	62 U	10 U	2.1 U	2.1 U	2.1 U
bromomethane	NA	12 U	300 U	23 U	3.9 U	0.78 U	0.78 U	0.78 U
carbon tetrachloride	55	19 U	490 U	38 U	6.3 U	1.3 U	1.3 U	1.3 U
chloroethane	NA	7.9 U	210 U	16 U	2.6 U	0.53 U	0.53 U	0.53 U
chloroform	36	32	380 U	29 U	4.9 U	120	140	0.98 U
cis-1,2-dichloroethylene	1,022	12 U	480	24 U	4.0 U	0.79 U	0.79 U	0.79 U
cis-1,3-dichloropropene	NA	14 U	350 U	27 U	4.5 U	0.91 U	0.91 U	0.91 U
cyclohexane	175,200	20	270 U	31 J	9.6 J	4.1	4.1	0.69 U
dibromochloromethane	NA	26 U	660 U	51 U	8.5 U	1.7 U	1.7 U	1.7 U
dichlorodifluoromethane	5,840	37 U	1900 U	130 U	12 U	34 U	36 U	40 U
ethylbenzene	743	13 U	340 U	26 U	4.3 U	0.87 U	0.87 U	0.87 U
m,p-xylene (sum of isomers)	2,920	33 U	870 U	65 U	11 U	2.2 U	2.2 U	2.2 U
n-heptane	NA	18	320 U	41 J	8.6 J	4.9	4.5	0.82 U
n-hexane	20,440	49	700 U	88 J	23 J	11	11	1.8 U
o-xylene (1,2-dimethylbenzene)	2,920	13 U	340 U	26 U	4.3 U	0.87 U	0.87 U	0.87 U
tert-butyl methyl ether	87,600	27 U	720 U	54 U	9.0 U	1.8 U	1.8 U	1.8 U
tetrachloroethylene (pce)	139	20 U	2200	41 U	6.8 U	1.4 U	1.4 U	1.4 U
toluene	146,000	13	290 U	23 U	12	12	11	0.75 U

Table 3-1 Summary of Results for Sub-Slab Soil Vapor at Griffiss AFB

Table 3-1 Summary of Results for Sub-Slab Soil Vapor at Griffiss AFB

	Sub-slab Vapor	or October 24, 2006									
Analyte	Screening Concentration (µg/m³) ¹	B785-SSV2	B786-SSV1	B786-SSV2	B786- SSV2/D	WSA- SSV1/D	WSA-SSV1	OBGWV-TB1			
total 1,2-dichloroethene	1,022	12 U	480	24 U	4.0 U	0.79 U	0.79 U	0.79 U			
trans-1,2-dichloroethene	NA	12 U	310 U	24 U	4.0 U	0.79 U	0.79 U	0.79 U			
trans-1,3-dichloropropene	NA	14 U	350 U	27 U	4.5 U	0.91 U	0.91 U	0.91 U			
trichloroethylene (tce)	409	2300	81000	4700 J	700 J	130	130	1.1 U			
trichlorofluoromethane	20,440	17 U	440 U	34 U	5.6 U	7.3	7.3	1.1 U			
vinyl bromide (bromoethene)	NA	13 U	340 U	26 U	4.4 U	0.87 U	0.87 U	0.87 U			
vinyl chloride	186	7.7 U	200 U	15 U	2.6 U	0.51 U	0.51 U	0.51 U			
xylenes, total	2,920	13 U	340 U	26 U	4.3 U	0.87 U	0.87 U	0.87 U			

Notes:

¹ See Appendix G for sub-slab vapor screening level calculations.

Black numbers indicate detections.

Indicates exceedance of the screening concentration.

 $J_{\text{min}} = \text{Estimated.}$ $\mu g/m^3 = \text{Micrograms per cubic meter.}$ NA .. = No value was available to calculate.

U = Not detected.

	Indoor Air		December 20, 2006									
Analyte	Screening Concentration (µg/m ³) ¹	774-IA1	774-IA2	774-IA2/D	774-OA1	776-IA1	776-IA2	785-IA1				
TO-15 (μg/m³)			-									
1,1-dichloroethene	NA	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U				
benzene	88	1.3	1.5	1.3	1.2	1.3	1.2	1.1				
chloroform	36	0.20 U	0.20 U	0.20 U	0.20 U	1.0	0.83	0.20 U				
cis-1,2-dichloroethylene	102	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U				
tetrachloroethylene (pce)	102	0.27 U	0.27 U	0.27 U	0.27 U	0.75	0.61	0.27 U				
total 1,2-dichloroethene	102	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U				
trans-1,2-dichloroethene	102	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U				
trichloroethylene (tce)	41	2.4	3.4	3.0	0.21 U	4.4	2.9	0.21 U				
vinyl chloride	186	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U				

Table 3-2 Summary of Results for Former Griffiss Air Force Base Indoor Air Samples

	Indoor Air				Decembe	r 20, 2006	·	·	
Analyte	Screening Concentration (µg/m ³) ¹	785-IA2	786-IA1	786-IA2	786-IA2/D	786-OA1	WSA-IA1	WSA-OA1	OBGWV- TB3
TO-15 (μg/m³)									
1,1-dichloroethene	NA	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
benzene	88	1.1	1.2	1.2	1.2	0.96	0.86	0.83	0.13 U
chloroform	36	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
cis-1,2-dichloroethylene	102	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
tetrachloroethylene(pce)	102	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
total 1,2-dichloroethene	102	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
trans-1,2-dichloroethene	102	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
trichloroethylene (tce)	41	0.21 U	0.43 J	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
vinyl chloride	186	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U

Table 3-2 Summary of Results for Former Griffiss Air Force Base Indoor Air Samples

Notes:

See Appendix G for indoor air and sub-slab vapor screening level calculations.

Black numbers indicate detections.

J..... = Estimated.

 $\mu g/m^3 \dots = Micrograms per cubic meter.$ NA..... = No value was available to calculate.

U = Not detected.

Table 3-3 Summary of Results for Soil Vapor at Griffiss AFB

Table 3-3 Summary of Results for Sol	Soil Vapor										
Analyte	Screening Concentration (µg/m ³) ¹	775-SV-01	775-SV-02	775-SV-03	775-SV-04	775-SV-04/D	AOC9-SV-01				
Volatiles TO-15 (µg/m3)			-				-				
1,1,1-trichloroethane	1,460,000	1.1 U	22	55	1.3	1.2	3.3 U				
1,1,2,2-tetrachloroethane	NA	1.4 U	4.1 U								
1,1,2-trichloro-1,2,2-trifluoroethane (freon TF)	NA	1.5 U	2.9	1.5 U	1.5 U	1.5 U	4.6 U				
1,1,2-trichloroethane	NA	1.1 U	3.3 U								
1,1-dichloroethane	NA	0.81 U	2.4 U								
1,1-dichloroethene	NA	0.79 U	2.4 U								
1,2,4-trichlorobenzene	NA	3.7 U	11 U								
1,2,4-trimethylbenzene	1,752	4.2	3.1	4.8	3.6	3.3	5.4				
1,2-dibromoethane (ethylene dibromide)	NA	1.5 U	4.6 U								
1,2-dichlorobenzene	NA	1.2 U	3.6 U								
1,2-dichloroethane	314	0.81 U	2.4 U								
1,2-dichloropropane	NA	0.92 U	2.8 U								
1,2-dichlorotetrafluoroethane	NA	1.4 U	4.2 U								
1,3,5-trimethylbenzene (mesitylene)	1,752	1.1	0.98 U	1.4	0.98 U	0.98 U	2.9 U				
1,3-butadiene	NA	2.1	2.7	3.8	1.4	1.3	11				
1,3-dichlorobenzene	32,120	1.2 U	3.6 U								
1,4-dichlorobenzene	233,600	1.2 U	1.2 U	1.6	1.2 U	1.2 U	3.6 U				
1,4-dioxane (p-dioxane)	NA	18 UJ	18 U	18 U	18 UJ	18 UJ	54 UJ				
2,2,4-trimethylpentane	NA	0.93 U	2.8 U								
2-chlorotoluene	NA	1.0 U	3.1 U								
2-hexanone (methyl butyl ketone)	NA	3.9	2.3	7.4	2.8	2.4	6.1 U				
4-ethyltoluene	NA	0.98 U	0.98 U	0.98 U	2.0	1.3	3.9				
acetone	NA	13	24	43	16	19	69				
allyl chloride (3-chloropropene)	NA	1.6 U	4.7 U								
benzene	1,048	0.70	1.1	2.3	0.64 U	0.64 U	12				
bromodichloromethane	NA	1.3 U	4.0 U								
bromoform	NA	2.1 U	6.2 U								
bromomethane	NA	0.78 U	2.3 U								
carbon disulfide	204,400	11	4.4	19	4.4 J	2.4 J	6.5				
carbon tetrachloride	545	1.3 U	1.3 U	1.7	1.3 U	1.3 U	3.8 U				
chlorobenzene	NA	0.92 U	2.8 U								
chloroethane	NA	1.3 U	4.0 U								
chloroform	355	0.98 U	3.5	0.98 U	0.98 U	0.98 U	2.9 U				
chloromethane	8,176	1.0 U	3.1 U								

Table 3-3 Summary of Results for Soil Vapor at Griffiss AFB

Table 3-3 Summary of Results for Sol	Soil Vapor			October ²	18, 2006		
	Screening Concentration						·
Analyte	(µg/m³) ¹	775-SV-01	775-SV-02	775-SV-03	775-SV-04	775-SV-04/D	AOC9-SV-01
cis-1,2-dichloroethylene	10,220	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	19
cis-1,3-dichloropropene	NA	0.91 U	0.91 U	0.91 U	0.91 U	0.91 U	2.7 U
cyclohexane	1,752,000	0.69 U	0.79	2.7	0.69 U	0.69 U	15
dibromochloromethane	NA	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	5.1 U
dichlorodifluoromethane	58,400	3.8 U	4.2 U	3.7 U	3.3 U	3.4 U	7.4 U
ethylbenzene	7,433	3.0	2.3	4.8	1.8	1.6	4.8
hexachlorobutadiene	NA	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	6.4 U
isopropanol	NA	12 U	12 U	12 U	12 U	12 U	37 U
m,p-xylene (sum of isomers)	29,200	10	7.4	15	6.1	5.6	14
methyl ethyl ketone (2-butanone)	1,460,000	27	14	41	19	19	35
methyl isobutyl ketone (4-methyl-2-pentanone)	876,000	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.1 U
methyl methacrylate	NA	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.1 U
methylene chloride	17,396	1.7 U	1.7 U	3.8	1.7 U	1.7 U	5.2 U
naphthalene	NA	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	7.9 U
n-heptane	NA	2.3	2.4	7.8	1.5	1.4	23
n-hexane	204,400	2.6	2.7	9.5	2.0	2.0	35
o-xylene (1,2-dimethylbenzene)	29,200	2.6	2.1	4.0	1.7	1.5	3.9
styrene	292,000	4.7	3.2	5.5	3.0	2.7	7.2
tert-butyl alcohol	NA	15 U	15 U	15 U	15 U	15 U	45 U
tert-butyl methyl ether	876,000	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	5.4 U
tetrachloroethylene(pce)	1386	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	610
tetrahydrofuran	NA	15 U	15 UJ	15 UJ	15 U	15 U	44 U
toluene	1,460,000	9.8	8.3	18	7.2	6.8	19
total 1,2-dichloroethene	10,220	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	19
trans-1,2-dichloroethene	10,220	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	2.4 U
trans-1,3-dichloropropene	NA	0.91 U	0.91 U	0.91 U	0.91 U	0.91 U	2.7 U
trichloroethylene (tce)	4088	1.1 U	1.1 U	70	1.1 U	1.1 U	17
trichlorofluoromethane	204,400	10	3.8	12	9.6	9.0	3.4 U
vinyl bromide (bromoethene)	NA	0.87 U	0.87 U	0.87 U	0.87 U	0.87 U	2.6 U
vinyl chloride	1858	0.51 U	0.51 U	0.51 U	0.51 U	0.51 U	1.5 U
xylenes, total	29,200	13	9.6	20	7.8	6.9	18

Table 3-3 Summary of Results for Soil Vapor at Griffiss AFB

Table 3-3 Summary of Results for Soil	Soil Vapor			18-Oct	t-2006		
	Screening						
	Concentration						
Analyte	(µg/m³) ¹	AOC9-SV-02	AOC9-SV-03	AOC9-SV-04	AOC9-SV-05	AOC9-SV-06	TB-20-10-06
Volatiles TO-15 (μg/m3) 1,1,1-trichloroethane	1,460,000	2.2 U	6511	2.2.11	161	1.1 U	1.1 U
, , ,	, ,		6.5 U	3.3 U	1.6 U		
1,1,2,2-tetrachloroethane	NA	2.7 U	8.2 U	4.1 U	2.1 U	1.4 U	1.4 U
1,1,2-trichloro-1,2,2-trifluoroethane (freon TF)	NA	3.1 U	9.2 U	4.6 U	2.3 U	1.5 U	1.5 U
1,1,2-trichloroethane	NA	2.2 U	6.5 U	3.3 U	1.6 U	1.1 U	1.1 U
1,1-dichloroethane	NA	1.6 U	4.9 U	2.4 U	1.2 U	0.81 U	0.81 U
1,1-dichloroethene	NA	1.6 U	4.8 U	2.4 U	1.2 U	0.79 U	0.79 U
1,2,4-trichlorobenzene	NA	7.4 U	22 U	11 U	5.6 U	3.7 U	3.7 U
1,2,4-trimethylbenzene	1,752	2.7	5.9 U	3.0	3.9	3.3	0.98 U
1,2-dibromoethane (ethylene dibromide)	NA	3.1 U	9.2 U	4.6 U	2.3 U	1.5 U	1.5 U
1,2-dichlorobenzene	NA	2.4 U	7.2 U	3.6 U	1.8 U	1.2 U	1.2 U
1,2-dichloroethane	314	1.6 U	4.9 U	2.4 U	1.2 U	0.81 U	0.81 U
1,2-dichloropropane	NA	1.8 U	5.5 U	2.8 U	1.4 U	0.92 U	0.92 U
1,2-dichlorotetrafluoroethane	NA	2.8 U	8.4 U	4.2 U	2.1 U	1.4 U	1.4 U
1,3,5-trimethylbenzene (mesitylene)	1,752	2.0 U	5.9 U	2.9 U	1.5 U	0.98 U	0.98 U
1,3-butadiene	NA	4.4	6.6 U	3.3 U	10	6.4	1.1 U
1,3-dichlorobenzene	32,120	2.4 U	7.2 U	3.6 U	1.8 U	1.2 U	1.2 U
1,4-dichlorobenzene	233,600	2.4 U	7.2 U	3.6 U	1.8 U	1.2 U	1.2 U
1,4-dioxane (p-dioxane)	NA	36 UJ	110 UJ	54 UJ	27 UJ	18 UJ	18 U
2,2,4-trimethylpentane	NA	1.9 U	5.6 U	2.8 U	1.4 U	0.93 U	0.93 U
2-chlorotoluene	NA	2.1 U	6.2 U	3.1 U	1.6 U	1.0 U	1.0 U
2-hexanone (methyl butyl ketone)	NA	4.1 U	12 U	22	6.1	11	2.0 U
4-ethyltoluene	NA	2.0 U	5.9 U	2.9 U	2.7	2.1	0.98 U
acetone	NA	48	71 U	36 U	62	55	12 U
allyl chloride (3-chloropropene)	NA	3.1 U	9.4 U	4.7 U	2.3 U	1.6 U	1.6 U
benzene	1,048	1.7	3.8 U	1.9 U	3.5	3.0	0.64 U
bromodichloromethane	NA	2.7 U	8.0 U	4.0 U	2.0 U	1.3 U	1.3 U
bromoform	NA	4.1 U	12 U	6.2 U	3.1 U	2.1 U	2.1 U
bromomethane	NA	1.6 U	4.7 U	2.3 U	1.2 U	0.78 U	0.78 U
carbon disulfide	204,400	5.3	9.3 U	4.7 U	3.4	5.3	1.6 U
carbon tetrachloride	545	2.5 U	7.5 U	3.8 U	1.9 U	1.3 U	1.3 U
chlorobenzene	NA	1.8 U	5.5 U	2.8 U	1.4 U	1.4	0.92 U
chloroethane	NA	2.6 U	7.9 U	4.0 U	2.0 U	1.3 U	1.3 U
chloroform	355	2.0 U	5.9 U	2.9 U	1.5 U	0.98 U	0.98 U
chloromethane	8,176	2.1 U	6.2 U	3.1 U	1.5 U	1.0 U	1.0 U

Table 3-3 Summary of Results for Soil Vapor at Griffiss AFB

Soil Vapor			18-Oct	-2006		
Screening Concentration						
						TB-20-10-06
·						0.79 U
						0.91 U
						0.69 U
						1.7 U
,						33 U
						0.87 U
NA	4.3 U	13 U	6.4 U	3.2 U	2.1 U	2.1 U
NA	25 U	74 U	37 U	18 U	12 U	12 U
29,200	8.7		7.4	13	6.9	2.2 U
1,460,000	18	47	150	44	94	1.5 U
876,000	4.1 U	12 U	6.1 U	3.1 U	2.0 U	2.0 U
NA	4.1 U	12 U	6.1 U	3.1 U	2.0 U	2.0 U
17,396	3.5 U	10 U	5.2 U	2.6 U	1.7 U	1.7 U
NA	5.2 U	16 U	7.9 U	3.9 U	2.6 U	2.6 U
NA	2.7	4.9 U	2.5 U	4.5	7.4	0.82 U
204,400	5.3	11 U	5.3 U	6.3	13	1.8 U
29,200	2.3	5.2 U	2.6 U	3.7	2.0	0.87 U
292,000	4.2	5.1 U	3.9	4.7	3.5	0.85 U
NA	30 U	91 U	45 U	23 U	15 U	15 U
876,000	3.6 U	11 U	5.4 U	2.7 U	1.8 U	1.8 U
1386	170	460	250	190	130	1.4 U
NA	29 U	88 U	44 U	22 U	15 U	15 UJ
1,460,000	12	15	14	17	8.7	0.75 U
10,220	15	4.8 U	2.4 U	1.2 U	0.79 U	0.79 U
10,220	1.6 U	4.8 U	2.4 U	1.2 U	0.79 U	0.79 U
NA	1.8 U	5.4 U	2.7 U	1.4 U	0.91 U	0.91 U
4088	270	810	440	180	27	1.1 U
204,400	2.2 U	6.7 U	3.4 U	1.7 U		1.1 U
/						0.87 U
1858						0.51 U
						0.87 U
	Soil Vapor Screening Concentration (µg/m ³) ¹ 10,220 NA 1,752,000 NA 58,400 7,433 NA NA 29,200 1,460,000 876,000 NA 17,396 NA 17,396 NA 17,396 NA 204,400 29,200 292,000 NA 876,000 NA 876,000 1386 NA 1,460,000 1386 NA 1,460,000 10,220 10,220 NA 4088 204,400 NA	Soil Vapor Screening Concentration $(\mu g/m^3)^1$ AOC9-SV-0210,22015NA1.8 U1,752,0001.4 UNA3.4 U58,4004.9 U7,4333.0NA4.3 UNA25 U29,2008.71,460,00018876,0004.1 UNA5.2 UNA5.2 UNA5.2 UNA5.2 UNA2.7204,4005.329,2002.3292,0004.2NA30 U876,0003.6 U1386170NA29 U1,460,0001210,2201.6 UNA1.8 U4088270204,4002.2 UNA1.7 U18581.0 U	Soil Vapor Screening Concentration $(\mu g/m^3)^1$ AOC9-SV-02AOC9-SV-0310,220154.8 UNA1.8 U5.4 U1,752,0001.4 U4.1 UNA3.4 U10 U58,4004.9 U15 U7,4333.05.2 UNA4.3 U13 UNA25 U74 U29,2008.713 U1,460,0001847876,0004.1 U12 UNA4.3 U10 UNA5.2 U16 UNA2.74.9 U204,4005.311 U29,2002.35.2 U292,0004.25.1 UNA30 U91 U876,0003.6 U11 U1386170460NA29 U88 U1,460,000121510,220154.8 U1,460,000121510,2201.6 U4.8 UNA1.8 U5.4 U4088270810204,4002.2 U6.7 UNA1.7 U5.2 U18581.0 U3.1 U	Soil Vapor Screening Concentration (µg/m³) ¹ AOC9-SV-02 AOC9-SV-03 AOC9-SV-04 10,220 15 4.8 U 2.4 U NA 1.8 U 5.4 U 2.7 U 1,752,000 1.4 U 4.1 U 2.1 U NA 3.4 U 10 U 5.1 U 58,400 4.9 U 15 U 7.4 U 7,433 3.0 5.2 U 2.6 U NA 4.3 U 13 U 6.4 U NA 25 U 74 U 37 U 29,200 8.7 13 U 7.4 1,460,000 18 47 150 876,000 4.1 U 12 U 6.1 U NA 5.2 U 16 U 7.9 U NA 5.2 U 16 U 7.9 U NA 2.7 4.9 U 2.5 U 204,400 5.3 11 U 5.3 U 29,200 2.3 5.2 U 2.6 U 29,200 2.3 5.2 U 2.6 U 29,200 <td>Soil Vapor Screening (ug/m³)¹ AOC9-SV-02 AOC9-SV-03 AOC9-SV-04 AOC9-SV-05 10,220 15 4.8 U 2.4 U 1.2 U NA 1.8 U 5.4 U 2.7 U 1.4 U 1,752,000 1.4 U 4.1 U 2.1 U 1.0 U NA 3.4 U 10 U 5.1 U 2.6 U 58,400 4.9 U 15 U 7.4 U 3.7 U 7,433 3.0 5.2 U 2.6 U 3.5 NA 4.3 U 13 U 6.4 U 3.2 U NA 4.3 U 13 U 7.4 13 1,460,000 18 47 150 44 876,000 4.1 U 12 U 6.1 U 3.1 U NA 5.2 U 16 U 7.9 U 3.9 U NA 5.2 U 16 U 7.9 U 3.9 U NA 5.2 U 16 U 7.9 U 3.9 U NA 2.7 4.9 U 2.5 U 4.5 204,400</td> <td>Soil Vapor Screening Concentration (µg/m³)¹ AOC9-SV-02 AOC9-SV-03 AOC9-SV-04 AOC9-SV-05 AOC9-SV-06 10,220 15 4.8 U 2.4 U 1.2 U 0.79 U NA 1.8 U 5.4 U 2.7 U 1.4 U 0.91 U 1,752,000 1.4 U 4.1 U 2.1 U 1.0 U 2.2 NA 3.4 U 10 U 5.1 U 2.6 U 1.7 U 58,400 4.9 U 15 U 7.4 U 3.7 U 3.0 U 7,433 3.0 5.2 U 2.6 U 3.5 2.3 NA 4.3 U 13 U 6.4 U 3.2 U 2.1 U NA 25 U 74 U 37 U 18 U 12 U 29,200 8.7 13 U 7.4 13 6.9 1,460,000 18 47 150 44 94 876,000 4.1 U 12 U 6.1 U 3.1 U 2.0 U NA 2.7 4.9 U 2.5 U 2.6 U 1.7 U</td>	Soil Vapor Screening (ug/m ³) ¹ AOC9-SV-02 AOC9-SV-03 AOC9-SV-04 AOC9-SV-05 10,220 15 4.8 U 2.4 U 1.2 U NA 1.8 U 5.4 U 2.7 U 1.4 U 1,752,000 1.4 U 4.1 U 2.1 U 1.0 U NA 3.4 U 10 U 5.1 U 2.6 U 58,400 4.9 U 15 U 7.4 U 3.7 U 7,433 3.0 5.2 U 2.6 U 3.5 NA 4.3 U 13 U 6.4 U 3.2 U NA 4.3 U 13 U 7.4 13 1,460,000 18 47 150 44 876,000 4.1 U 12 U 6.1 U 3.1 U NA 5.2 U 16 U 7.9 U 3.9 U NA 5.2 U 16 U 7.9 U 3.9 U NA 5.2 U 16 U 7.9 U 3.9 U NA 2.7 4.9 U 2.5 U 4.5 204,400	Soil Vapor Screening Concentration (µg/m³) ¹ AOC9-SV-02 AOC9-SV-03 AOC9-SV-04 AOC9-SV-05 AOC9-SV-06 10,220 15 4.8 U 2.4 U 1.2 U 0.79 U NA 1.8 U 5.4 U 2.7 U 1.4 U 0.91 U 1,752,000 1.4 U 4.1 U 2.1 U 1.0 U 2.2 NA 3.4 U 10 U 5.1 U 2.6 U 1.7 U 58,400 4.9 U 15 U 7.4 U 3.7 U 3.0 U 7,433 3.0 5.2 U 2.6 U 3.5 2.3 NA 4.3 U 13 U 6.4 U 3.2 U 2.1 U NA 25 U 74 U 37 U 18 U 12 U 29,200 8.7 13 U 7.4 13 6.9 1,460,000 18 47 150 44 94 876,000 4.1 U 12 U 6.1 U 3.1 U 2.0 U NA 2.7 4.9 U 2.5 U 2.6 U 1.7 U

3-13

Notes: ¹ See Appendix G for soil vapor screening level calculations. Black numbers indicate detections.

U = Not detected.

3.1.3 Site Inventory Observations

Site inspections and product inventories were conducted for Buildings 785 and 786 to check the quality of indoor air and identify potential sources/products that might affect indoor air sample results. The building inspections and product inventories were recorded on NYSDOH Indoor Air Quality Questionnaire and Building Inventory Forms (NYSDOH February 2005), with modifications to incorporate additional information. Photographs of the sample locations and products found in the structures were also collected. Completed Indoor Air Quality Questionnaire and Building Inventory Forms for each structure sampled are provided in Appendix C of this report. Photographs are located in Appendix A. A ppb RAE meter was used to measure the total VOC concentrations at different locations. The contaminant concentrations in Building 785 and 786 were detected at levels ranging from 0 to 2,800 ppb and the highest concentration was detected in the general holding area for motor oil drums and paint cans in Building 785 (see Appendix A, Photo No. 58). No potential sources of the COCs present in the Apron 2 groundwater plume (i.e., PCE, TCE, DCE, or VC) were observed during the inventories of Building 785 or 786.

3.2 Building 817/WSA

3.2.1 Sub-Slab Vapor Results

Chloroform was detected in the Building 817/WSA sub-slab samples at levels exceeding the screening levels. Chloroform was detected in the sub-slab vapor samples at levels of 120 and 140 μ g/m³. TCE was also detected at 130 μ g/m³, which is below the screening levels of 409 μ g/m³. Results for all sub-slab samples are located in Table 3-1. Sample locations are shown on Figure 3-2.

3.2.2 Indoor/Outdoor Air Results

No exceedances of the screening levels were reported for the indoor and outdoor air samples at Building 817/WSA. Only benzene was detected $(0.86 \ \mu g/m^3)$ which is two orders of magnitude lower than the screening criterion $(88 \ \mu g/m^3)$. It should be noted that benzene was detected at a virtually identical level in the outdoor air sample $(0.83 \ \mu g/m^3)$, which was collected near the northeast corner of the building. Results for all samples are located in Table 3-2. Sample locations are shown on Figure 3-2.

3.2.3 Site Inventory Observation

A site inspection and product inventory was conducted for Building 817 to check the quality of indoor air and identify potential sources/products that might affect indoor air sample results. The building inspections and product inventories were recorded on NYSDOH Indoor Air Quality Questionnaire and Building Inventory Forms (NYSDOH February 2005), with modifications to incorporate additional information. Photographs of the sample locations and products found in the structures were also collected. Completed Indoor Air Quality Questionnaire and Building Inventory Forms for each structure sampled are provided in Appendix C Insert Figure page 1 of 2 **3-1** Apron 2 Groundwater Plume and SVI Survey Sample Location Map

3. Field Methodology

Figure 3-1 page 2 of 2

Insert Figure page 1 of 2 3-2 Building 817/WSA Groundwater Plume and SVI Survey Sample Location Map

3. Field Methodology

Figure 3-2 page 2 of 2

of this report. Photographs are located in Appendix A. A ppb RAE meter was used to measure the total VOC concentrations at different locations. No contaminant sources were detected in the building and a reading of 0 ppb was measured at all the locations.

3.3 AOC 9

3.3.1 Soil Vapor Results

Six soil vapor samples (from 5 to 8 feet bgs) were collected at AOC9. The results and the screening levels to which these results are compared, are located in Table 3-3. The soil vapor screening levels were calculated as described in Appendix G. PCE and TCE were detected in all six soil vapor samples collected and all detections were below the screening levels. PCE was detected at levels ranging from 130 to 610 μ g/m³. TCE was detected at levels ranging from 17 to 810 μ g/m³. Chlorobenzene was detected in only one sample at a concentration of 1.4 μ g/m³. Sample locations are shown on Figure 3-3.

3.4 Building 775/Pumphouse 3

3.4.1 Soil Vapor Results

Four soil vapor samples were collected at the Building 775 site. The results and the screening levels to which these results are compared, are located in Table 3-3. The soil vapor screening levels were calculated as described in Appendix G. PCE was not detected in any of the soil vapor samples collected at the Building 775 site. TCE and chloroform were each detected in one sample at concentrations of 70 μ g/m³ and 3.5 μ g/m³, respectively. Sample locations are shown on Figure 3-4.

3.4.2 Sub-Slab Results

Chloroform and TCE exceedances were reported for the sub-slab vapor samples from the Building 775 site. TCE exceedances in the sub-slab vapor samples under Building 774 (810 - 1,700 μ g/m³) and Building 776 (700 - 3,000 μ g/m³) all exceeded the screening levels. Only one chloroform exceedance was reported at the Building 775 site: one sub-slab sample at Building 776 had a chloroform detection of 54 μ g/m³, which exceeded the screening level of 36 μ g/m³. Results for all samples are located in Table 3-1. Sample locations are shown on Figure 3-4.

3.4.3 Indoor/Outdoor Air Results

No exceedances of the screening levels were reported for indoor and outdoor air samples collected at Buildings 774 and 776. Four chemicals were detected in the indoor air samples: benzene, chloroform, PCE and TCE. Chloroform and TCE detections were one order of magnitude lower than the screening levels and benzene and PCE detections were generally two orders of magnitude lower than the screening levels. Benzene was the only chemical detected in the outdoor air sample at generally the same detection as in the indoor air. Results for all samples are located in Table 3-2. Sample locations are shown on Figure 3-4.

3.4.4 Site Inventory Observations

Site inspections and product inventories were conducted for Buildings 774 and 776 to check the quality of indoor air and identify potential sources/products that might affect indoor air sample results in the vicinity of Building 775. The building inspections and product inventories were recorded on NYSDOH Indoor Air Quality Questionnaire and Building Inventory Forms (NYSDOH February 2005), with modifications to incorporate additional information. Photographs of the sample locations and products found in the structures were also collected. Completed Indoor Air Quality Questionnaire and Building Inventory Forms for each structure sampled are provided in Appendix C of this report. Photographs are located in Appendix A. A ppb RAE meter was used to measure the total VOC concentrations throughout the buildings. Total VOC concentrations in the breathing zones ranged from 15 to 45 ppb in Building 774 and from 0 to 96 ppb in Building 776. Higher total VOC concentrations were detected from products in the janitor's closets and from floor drains within the buildings (see Appendix C). No potential sources of the COCs present in the Building 775 groundwater plume were observed during the inventories of Buildings 774 and 776.

3.5 Quality Assurance/Quality Control

Field QC samples included six duplicates and three trip blanks. Duplicate samples provide insight as to the homogeneity of the sample matrix and establish a degree of confidence that the sample represents site conditions. Field duplicates were collected at the rate of one duplicate per ten original samples (10%). Soil vapor and sub-slab field duplicates were collected by installing an in-line "tee," which split the flow coming from the sample tubing penetrating the floor to two identically prepared canisters set up next to each other, each collecting vapors at identical flow rates. Ambient air duplicates were set up with two canisters next to one another. A review of the duplicate sample results may be found in the DUSRs provided in Appendix F. In general, the field duplicates showed good precision. One set of duplicates, B786-SSV2 and B786-SSV2/D, showed poor precision and the results were flagged "J" as estimated. The analytical results did not indicate a problem at the laboratory. The variability indicates potential limitations on the data when comparing the data with screening levels. Because the other field duplicates showed good precision, there does not appear to be an overall impact on data usability associated with the field duplicate sample results.

Trip blanks were collected to establish that the transport of sample canisters to and from the field did not result in the contamination of the sample from external sources. One trip blank, consisting of an unopened canister shipped to and from the field with the sample collection canisters, was sent with each sample shipment. Three trip blanks were analyzed. Trip blank results are discussed in the DUSRs in Appendix F. There were no impacts on data usability associated with the trip blank sample results. The laboratory had a contamination problem with dichlorodifluoromethane that resulted in trip blank contamination at Insert Figure page 1 of 2 **3-3** AOC 9 Groundwater Plume and SVI Survey Sample Location Map

3. Field Methodology

Figure 3-3 page 2 of 2

Insert Figure page 1 of 2 **3-4 Building 775 Groundwater Plume and SVI Survey Sample** Location Map

3. Field Methodology

Figure 3-4 page 2 of 2

concentrations above those detected in samples. The dichlorodifluoromethane was introduced to the sample with the "laboratory zero air." All the samples that were diluted or brought to pressure with laboratory zero air also showed contamination. The results for dichlorodifluoromethane are all flagged "U" as non-detect with elevated reporting limits. The results for dichlorodifluoromethane are not usable for evaluating site contamination. Since this compound is not a compound of concern at the site, there is no overall impact on data usability.

DUSRs were prepared for all of the laboratory reports by the project chemist. All DUSRs were reviewed by the Quality Assurance Director. DUSRs for the laboratory reports are provided in Appendix F. Any deviations from acceptable QC specifications are discussed in the DUSRs. Qualifiers were added to the data, if appropriate, to indicate potential concerns with data usability and these qualifiers were transferred to the data summary tables. There were no significant impacts on data usability.

4

Conclusions and Recommendations

This section summarizes the sampling results of the SVI survey and provides conclusions and recommendations.

4.1 Apron 2 Chlorinated Plume

The Apron 2 Chlorinated Plume site consists of a large, 14-inch thick, concrete apron flanked by five large (appr. 28,000 sq. ft.), poorly-maintained, permeable, unoccupied, and unheated Nosedocks (Buildings 782 - 786).

Sub-slab vapor sampling: Sub-slab sampling at Buildings 782, 783, and 784 shows detections below the screening levels. Therefore, the risks appear within the acceptable range and no further action or evaluation of SVI is required for these three buildings. Sub-slab sampling at Buildings 785 and 786 indicates TCE (700 J to 81,000 μ g/m³) exceeding screening levels in the sub-slab vapor beneath Buildings 785 and 786, chloroform (190 μ g/m³) exceeding screening levels beneath Building 785 only, and PCE (2,200 μ g/m³) exceeding screening levels beneath Building 786 only. These detections are above screening levels and thus indoor air sampling was conducted in the respective buildings.

Indoor and outdoor air sampling: Indoor air sampling shows only one TCE detection of 0.43 μ g/m³ in Building 786 and fairly uniform benzene detections of 1.1 μ g/m³ in both buildings, but all concentrations are below screening levels. Indoor and outdoor air samples are below the screening levels and thus indicate acceptable risk.

Conclusions: The sub-slab vapor samples from Building 785 and 786 are above screening levels. However, the indoor air samples show an acceptable risk thus indicating that the concrete slab at these buildings (13.5 to 14-inch thick) provides an adequate SVI barrier. TCE exceedances have been reported in groundwater samples from wells at this site.

Recommendations: Because the Building 785 and 786 indoor air levels indicate acceptable risk and due to the quality of the vapor barrier provided by the building foundation, no further action is recommended for control of SVI into indoor air. However, the sub-slab levels are higher than expected. The Air Force will resample the buildings in the winter of 2007-2008 to confirm the findings reported in this report. If the higher than expected sub-slab levels are confirmed,

the Air Force will consider whether mitigation is needed for potential contamination below the building. Institutional controls concerning future construction and concerning maintenance of slab integrity will be implemented at the site.

4.2 Building 817/WSA

One one-story, unheated, unoccupied, appr. 8,250 sq. ft. building is located on the northern extent of the site. One road crosses the site and all other surface area is vegetated.

Sub-slab vapor sampling: Chloroform exceedances (120 and 140 μ g/m³) of the screening level (36 μ g/m³) are reported in the sub-slab samples from Building 817. TCE is also present, but at concentrations below the screening levels.

Indoor and outdoor air sampling: No exceedances are reported in the indoor and outdoor air samples. Indoor and outdoor air samples are below the screening levels and thus indicate acceptable risk.

Conclusions: The sib-slab vapor levels for chloroform are above the screening levels, but the levels are within one order of magnitude. Chloroform has been detected in groundwater samples collected at the site. Chloroform is found in drinking water and its presence in groundwater is generally attributable to infiltrating drinking water from leaking water lines. Therefore, chloroform is not believed to be a site-specific COC.

Recommendations: The only detection above screening levels is for chloroform in the sub-slab, and its presence can likely be attributed to infiltrating drinking water and it is not believed to be a site-specific COC. Therefore, the risks appear within the acceptable range and no further action or evaluation of SVI is required at this site.

4.3 AOC 9

The AOC 9 site is a vegetation-covered area with an increasing slope towards the southern extent of the site. No buildings exist on the site. One road crosses the site at the northern extent.

Soil vapor sampling: Soil vapor sampling in AOC 9 indicates that low levels of several contaminants and elevated PCE and TCE detections are present within the soil vapor above the groundwater plume. None of the detected vapor concentrations were above the screening levels.

Conclusions: The soil vapor levels were all below the screening levels.

Recommendations: All detections in the soil vapor samples collected at the AOC 9 site are below screening levels and they are indicative of acceptable risk. Therefore, no further action or evaluation of SVI is required at the AOC 9 site.

4.4 Building 775/Pumphouse 3

This site consists of a parking lot, roads, and is flanked on the northern extent by two large (appr. 19,000 [Building 774] and 27,000 sq. ft. [Building 776]), one-story office buildings. The southern extent of the site is mowed grass land.

Sub-slab vapor sampling: Sub-slab sampling at the Building 775/Pumphouse 3 site indicates TCE (700 - 3,000 μ g/m³) exceeding screening levels in the sub-slab vapor beneath Buildings 774 and 776 and chloroform (54 μ g/m³) exceeding screening levels beneath Building 776 only. These detections are above screening levels, and indoor air sampling was conducted in the respective buildings.

Indoor and outdoor air sampling: Indoor air sampling results show low TCE and chloroform detections, but at concentrations below the screening levels.

Conclusions: TCE detections in the sub-slab vapor samples from Buildings 774 and 776 were above screening levels. However, the indoor air samples results are below screening levels and indicate acceptable risk. This provides evidence that the concrete slabs at these buildings (3.5 to 8-inch thick) provide an adequate SVI barrier.

Recommendations: Because the indoor air levels indicate acceptable risk and due to the quality of the vapor barrier provided by the building foundation, no further action is recommended for control of SVI into indoor air. However, the sub-slab levels are higher than expected. The Air Force will resample the buildings in the winter of 2007-2008 to confirm the findings reported in this report. If the higher than expected sub-slab levels are confirmed, the Air Force will consider whether mitigation is needed for potential contamination below the building. Institutional controls concerning future construction and concerning maintenance of slab integrity will be implemented at the site.

References

Department of the Air Force. July 14, 2006. Memorandum for all MAJCOM/A7/CEV. "Toxicity Values for Use in Risk Assessments and Establishing Risk-Based Cleanup Levels." Washington, D.C.

Ecology and Environment, Inc. (E & E). August 2000. Landfill 6 and Building 775 Areas of Concern Groundwater Study, Technical Memorandum No. 1: Field Investigation Conducted in Spring 2000, Former Griffiss Air Force Base, Rome, New York, Vol. 1. Prepared for the U. S. Army Corps of Engineers, Kansas City District.

Ecology and Environment Engineering, P.C. (EEEPC). September 2006. Final Work Plan for the Soil Vapor Intrusion Survey at Apron 2, Building 817/WSA, Building 775, and AOC 9, Griffiss Air Force Base, Rome, New York.

_____. June 2006. Ecology and Environment Engineering P.C. Soil Vapor Intrusion Investigation Standard Operating Procedure.

FPM Group. April 2004. Final Remedial Investigation Report, Nosedocks/Apron 2 Chlorinated Plume, Former Griffiss Air Force Base, Rome New York, Revision 1.0.

. February 2005. Groundwater Monitoring Report for On-Base Groundwater TCE Sites, Landfill 6, Building 775 AOC, Building 817/WSA, and AOC 9, August/September Sampling Event, Former Griffiss Air Force Base, Rome, New York.

New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation (DER). December 2002. Draft DER-10 Technical Guidance for Site Investigation and Remediation.

_____. November 2004. *Evaluating the Potential for Vapor Intrusion at Past, Current, and Future Sites.*

- New York State Department of Health (NYSDOH). February 2005. *Guidance* for Evaluating Soil Vapor Intrusion in the State of New York, Public Comment Draft.
- Parsons. April 2004. Operation, Maintenance and Monitoring Plan for Bioventing Systems at Apron 2 Project No. JREZ-2003-6010, Griffiss Air Force Base, New York.

_____. February 2006. On-Base Groundwater Remediation Proposal, Griffiss Air Force Base, Rome, New York, Solicitation No. W912DQ-05-R-0042.

United States Air Force Institute for Operational Health (AFIOH). February 2006. *Final Guide for the Assessment of the Vapor Intrusion Pathway*.

United States Environmental Protection Agency (EPA). January 1999. *Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)*. Cincinnati, Ohio: Center for Environmental Research Information, Office of Research and Development.

. November 2002. OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). EPA530-D-02-004.

			AFB Fieldwork Photos	
Date	Photo/Frame No.:	Site	Description	Photographer
10/24/2006	SubSlab Vapor – 1	817	Canisters set at WSA-SSV1,	AH
			WSA-SSV1/D and WSA-SSV/S	
10/24/2009	SubSlab Vapor – 2	817	Canisters set at WSA-SSV1,	AH
			WSA-SSV1/D and WSA-SSV/S	
10/24/2006	SubSlab Vapor – 3	817	Canisters set at B785-SSV1	AH
10/24/2006	SubSlab Vapor – 4	817	Canisters set at B785-SSV2	AH
10/24/2006	SubSlab Vapor – 5	817	Canisters set at B784-SSV1	AH
10/24/2006	SubSlab Vapor – 6	817	Canisters set at B784-SSV2	AH
10/25/2006	SubSlab Vapor – 7	817	Canisters set at B786-SSV1	AH
10/25/2006	SubSlab Vapor – 8	817	Canisters set at B786-SSV2	AH
10/25/2006	SubSlab Vapor – 9	817	Canisters set at B783-SSV1	AH
10/25/2006	SubSlab Vapor – 10	817	Canisters set at B783-SSV2	AH
10/25/2006	SubSlab Vapor – 11	817	Canisters set at B782-SSV1	AH
10/25/2006	SubSlab Vapor – 12	817	Canisters set at B782-SSV2	AH
10/18/2006	Soil Vapor – 1	AOC9	Attaching tubing to probe	BC
10/18/2006	Soil Vapor – 1	AOC9	PID Scan	BC
10/18/2006	Soil Vapor – 3	AOC9	PID Reading	BC
10/18/2006	Soil Vapor – 4	AOC9	Releasing probe	BC
10/18/2006	Soil Vapor – 5	AOC9	Soil Gas	BC
10/18/2006	Soil Vapor – 6	AOC9	Soil Gas – 2	BC
10/18/2006	Soil Vapor – 7	AOC9	Soil Gas – 3	BC
10/18/2006	Soil Vapor – 8	AOC9	Area for soil vapor investigation.	BC
10/18/2006	Soil Vapor – 9	AOC9	Collection of soil vapor sample	BC
10/18/2006	Soil Vapor – 10	AOC9	Collection of soil vapor sample	BC
10/18/2006	Soil Vapor – 11	AOC9	Checking Pressure in Canister	BC
10/18/2006	Soil Vapor – 12	AOC9	Checking Helium in the Bucket	BC
10/19/2006	Soil Vapor – 13	AOC9	Decontamination of Equipment	BC
10/19/2006	Soil Vapor – 14	AOC9	Decontamination of Equipment	BC
10/19/2006	Soil Vapor – 15	AOC9	Soil Vapor Push	BC
10/19/2006	Soil Vapor – 16	AOC9	Soil Vapor Rod and Plug	BC
10/18/2006	Soil Vapor – 17		Griffiss Stone Environmental	BC
	-		Push Rig	
10/18/2006	Soil Vapor – 18		Griffiss Stone Environmental	BC
	-		Push Rig	
10/18/2006	Soil Vapor – 19		Adding Helium for Leak test	BC
10/18/2006	Soil Vapor – 20		Checking Helium in Bucket	BC
10/18/2006	Soil Vapor – 21		Soil Vapor Ground Seal to	BC
	_		prevent leaks	
10/18/2006	Soil Vapor – 22	WSA	Water in tubing	BC
12/20/2006	Soil Vapor – 23	Apron 2	SVI Sampling – Building 786	RM
	_	-	IA1 location	
12/20/2006	Soil Vapor – 24	Apron 2	SVI Sampling – Building 786	RM
			IA2 (+ dupe) location	

Former Griffiss AFB Fieldwork Photos

_	Former Griffiss AFB Fieldwork Photos						
Date	Photo/Frame No.:	Site	Description	Photographer			
12/20/2006	Soil Vapor – 25	Apron 2	SVI Sampling – Building 786 OA1 location	RM			
12/20/2006	Soil Vapor – 26	Apron 2	SVI Sampling – Building 785 IA1 location	RM			
12/20/2006	Soil Vapor – 26	Apron 2	SVI Sampling – Building 785 IA2 location	RM			
12/20/2006	Soil Vapor – 28	775	Janitors closet in Building 776	RM			
12/20/2006	Soil Vapor – 29	775	Storage in Xerox room in Building 776	RM			
12/20/2006	Soil Vapor – 30	Apron 2	SVI Sampling – Building 786 IA1 sample location	RM			
12/20/2006	Soil Vapor – 31	Apron 2	SVI Sampling – Building 786 hose entering floor in center of the building	RM			
12/20/2006	Soil Vapor – 32	Apron 2	Cracks in Building 786 floor	RM			
12/20/2006	Soil Vapor – 33	Apron 2	Repaired cracks in Building 786 floor	RM			
12/20/2006	Soil Vapor – 34	Apron 2	Compressed gas cylinder	RM			
12/20/2006	Soil Vapor – 35	Apron 2	Inside Building 786, facing N	RM			
12/20/2006	Soil Vapor – 36	Apron 2	Inside Building 786, facing S	RM			
12/20/2006	Soil Vapor – 37	Apron 2	Inside Building 786, facing W	RM			
12/20/2006	Soil Vapor – 38	Apron 2	Steam pipe trench along back of Building 786	RM			
12/20/2006	Soil Vapor – 39	Apron 2	Concrete vault adjacent to steam pipe trench approx 1.5' by 6'; appears to have solid concrete bottom approx 1' deep	RM			
12/20/2006	Soil Vapor – 40		steam pipe trench "sump" contains rusty water; unable to open/remove the grate	RM			
12/20/2006	Soil Vapor – 41		steam pipe trench "sump" contains rusty water; unable to open/remove the grate	RM			
12/20/2006	Soil Vapor – 42		SVI Sampling – Building 774 IA1 location	RM			
12/20/2006	Soil Vapor – 43		SVI Sampling – Building 774 IA2 (+dupe) location	RM			
12/20/2006	Soil Vapor – 44		Building 774 janitors closet with floor drain and soap	RM			
12/20/2006	Soil Vapor – 45		Building 774 janitors closet with misc cleaners	RM			
12/20/2006	Soil Vapor – 46		SVI Sampling – WSA-IA1 location	RM			
12/20/2006	Soil Vapor – 47		SVI Sampling – WSA-OA1 location	RM			

Former Griffiss AFB Fieldwork Photos

Date	Photo/Frame No.:	Site	Description	Photographer
12/20/2006	Soil Vapor – 48		SVI Sampling – 774-OA1 location (outside facing Building 776)	RM
12/21/2006	Soil Vapor – 49		Front of Building 817	RM
12/21/2006	Soil Vapor – 50		NW side of Bldg 817 (with electric and AC)	RM
12/21/2006	Soil Vapor – 51		Building 817 Lamotte combination soil test kit	RM
12/21/2006	Soil Vapor – 52		Jim Mays taking ppb readings of soil test kit and groundwater (pH/temp/conductivity) solutions	RM
12/21/2006	Soil Vapor – 53		Building 817 bedrock core samples	RM
12/21/2006	Soil Vapor – 54		Building 817 poly tank storage room at center of building	RM
12/21/2006	Soil Vapor – 55		Building 786, exterior	RM
12/21/2006	Soil Vapor – 56		Building 785 Exterior, front/side	RM
12/21/2006	Soil Vapor – 57		Building 785 concrete sealer drum and used morot oil filter	RM
12/21/2006	Soil Vapor – 58		Building 785 drums (used oil), paint cans, 5 gal bucket of adhesive, sealer, etc	RM
12/21/2006	Soil Vapor – 59		Building 785 main room floor, repaired cracks	RM
12/21/2006	Soil Vapor – 60		Back of Building 785 with shed containing compressor for air injection system currently in operation (FPM operating)	RM
12/21/2006	Soil Vapor – 61		Back of Building 786	RM

Former Griffiss AFB Fieldwork Photos

Photo/Frame No.:	SubSlab Vapor - 1	Description:
Date/Time:	10/24/06	Canisters set at WSA-SSV1, WSA-SSV1/D
Photographer:	AH	and WSA-SSV/S

Photo/Frame No.:	SubSlab Vapor - 2	Description:
Date/Time:	10/24/06	Canisters set at WSA-SSV1, WSA-SSV1/D
Photographer:	AH	and WSA-SSV/S

Photo/Frame No.:	SubSlab Vapor - 3	Description:
Date/Time:	10/24/06	Canisters set at B785-SSV1
Photographer:	AH	

Photo/Frame No.:	SubSlab Vapor - 4	Description:
Date/Time:	10/24/06	Canisters set at B785-SSV2
Photographer:	AH	

Photo/Frame No.:	SubSlab Vapor - 5	Description:
Date/Time:	10/24/06	Canisters set at B784-SSV1
Photographer:	AH	

Photo/Frame No.:	SubSlab Vapor - 6	Description:
Date/Time:	10/24/06	Canisters set at B784-SSV2
Photographer:	AH	

Photo/Frame No.:	SubSlab Vapor - 7	Description:
Date/Time:	10/25/06	Canisters set at B786-SSV1
Photographer:	AH	

Photo/Frame No.:	SubSlab Vapor - 8	Description:
Date/Time:	10/25/06	Canisters set at B786-SSV2
Photographer:	AH	

Photo/Frame No.:	SubSlab Vapor - 9	Description:
Date/Time:	10/25/06	Canisters set at B783-SSV1
Photographer:	AH	

Photo/Frame No.:	SubSlab Vapor - 10	Description:
Date/Time:	10/25/06	Canisters set at B783-SSV2
Photographer:	AH	

Photo/Frame No.:	SubSlab Vapor - 11	Description:
Date/Time:	10/25/06	Canisters set at B782-SSV1
Photographer:	AH	

Photo/Frame No.:	SubSlab Vapor - 12	Description:
Date/Time:	10/25/06	Canisters set at B782-SSV2
Photographer:	AH	

Photo/Frame No.:	Soil Vapor - 1	Description:
Date/Time:	10/18/06	AOC9 – Attaching tubing to probe
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 2	Description:
Date/Time:	10/18/06	AOC9 PID Scan
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 3	Description:
Date/Time:	10/18/06	AOC9 – PID Reading
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 4	Description:
Date/Time:	10/18/06	AOC9 – Releasing probe
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 5	Description:
Date/Time:	10/18/06	AOC9 Soil Gas
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 6	Description:
Date/Time:	10/18/06	AOC9 Soil Gas – 2
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 7	Description:
Date/Time:	10/18/06	AOC9 Soil Gas - 3
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 8	Description:
Date/Time:	10/18/06	AOC9 area for soil vapor investigation.
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 9	Description:
Date/Time:	10/18/06	AOC9 Collection of soil vapor sample
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 10	Description:
Date/Time:	10/18/06	AOC9 Collection of soil vapor sample
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 11	Description:
Date/Time:	10/18/06	Checking Pressure in Canister
Photographer:	BC	

Photo/Frame No.:	Soil V	Description:
Date/Time:	10/18/06	AOC9 – Checking Helium in the Bucket
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 13	Description:
Date/Time:	10/19/06	AOC9 – Decontamination of Equipment
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 14	Description:
Date/Time:	10/19/06	AOC9 – Decontamination of Equipment
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 15	Description:
Date/Time:	10/19/06	AOC9 – Soil Vapor Push
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 16	Description:
Date/Time:	10/19/06	AOC9 – Soil Vapor Rod and Plug
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 17	Description:
Date/Time:	10/18/06	Griffiss Stone Environmental Push Rig
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 18	Description:
Date/Time:	10/18/06	Griffiss Stone Environmental Push Rig
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 19	Description:
Date/Time:	10/18/06	Adding Helium for Leak test
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 20	Description:
Date/Time:	10/18/06	Checking Helium in Bucket
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 21	Description:
Date/Time:	10/18/06	Soil Vapor Ground Seal to prevent leaks
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 22	Description:
Date/Time:	10/18/06	WSA – Water in tubing
Photographer:	BC	

Photo/Frame No.:	Soil Vapor - 23	Description:
Date/Time:	12/20/06	SVI Sampling - Building 786 IA1 location
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 24	Description:
Date/Time:	12/20/06	SVI Sampling - Building 786 IA2 (+ dupe)
Photographer:	RM	location.

Photo/Frame No.:	Soil Vapor - 25	Description:
Date/Time:	12/20/06	SVI Sampling - Building 786 OA1 location
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 26	Description:
Date/Time:	12/20/06	SVI Sampling - Building 785 IA1 location
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 27	Description:
Date/Time:	12/20/06	SVI Sampling - Building 785 IA2 location
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 28	Description:
Date/Time:	12/20/06	Janitors closet in Building 776
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 29	Description:
Date/Time:	12/20/06	Storage in Xerox room in Building 776
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 30	Description:
Date/Time:	12/20/06	SVI Sampling - Building 786 IA1 sample
Photographer:	RM	location

Photo/Frame No.:	Soil Vapor - 31	Description:
Date/Time:	12/20/06	SVI Sampling - Building 786 hose entering
Photographer:	RM	floor in center of the building.

Photo/Frame No.:	Soil Vapor - 32	Description:
Date/Time:	12/20/06	Cracks in Building 786 floor.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 33	Description:
Date/Time:	12/20/06	Repaired cracks in Building 786 floor.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 34	Description:
Date/Time:	12/20/06	Compressed gas cylinder.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 35	Description:
Date/Time:	12/20/06	Inside Building 786, facing N.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 36	Description:
Date/Time:	12/20/06	Inside Building 786, facing S.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 37	Description:
Date/Time:	12/20/06	Inside Building 786, facing W.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 38	Description:
Date/Time:	12/20/06	Steam pipe trench along back of Building
Photographer:	RM	786.

Photo/Frame No.:	Soil Vapor - 39	Description:
Date/Time:	12/20/06	Concrete vault adjacent to steam pipe trench
Photographer:	RM	approx 1.5' by 6'; appears to have solid
		concrete bottom approx 1' deep.

Photo/Frame No.:	Soil Vapor - 40	Description:
Date/Time:	12/20/06	Steam pipe trench "sump" contains rusty
Photographer:	RM	water; unable to open/remove the grate.

Photo/Frame No.:	Soil Vapor - 41	Description:
Date/Time:	12/20/06	Steam pipe trench "sump" contains rusty
Photographer:	RM	water; unable to open/remove the grate.

Photo/Frame No.:	Soil Vapor - 42	Description:
Date/Time:	12/20/06	SVI Sampling - Building 774 IA1 location.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 43	Description:
Date/Time:	12/20/06	SVI Sampling - Building 774 IA2 (+dupe)
Photographer:	RM	location.

Photo/Frame No.:	Soil Vapor - 44	Description:
Date/Time:	12/20/06	Building 774 janitors closet with floor drain
Photographer:	RM	and soap.

Photo/Frame No.:	Soil Vapor - 45	Description:
Date/Time:	12/20/06	Building 774 janitors closet with
Photographer:	RM	miscellaneous cleaners.

Photo/Frame No.:	Soil Vapor - 46	Description:
Date/Time:	12/20/06	SVI Sampling - WSA-IA1 location.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 47	Description:
Date/Time:	12/20/06	SVI Sampling - WSA-OA1 location.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 48	Description:
Date/Time:	12/20/06	SVI Sampling - 774-OA1 location (outside
Photographer:	RM	facing Building 776).

Photo/Frame No.:	Soil Vapor - 49	Description:
Date/Time:	12/21/06	Front of Building 817.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 50	Description:
Date/Time:	12/21/06	NW side of Bldg 817 (with electric and
Photographer:	RM	AC).

Photo/Frame No.:	Soil Vapor - 51	Description:
Date/Time:	12/21/06	Building 817 Lamotte combination soil test
Photographer:	RM	kit.

Photo/Frame No.:	Soil Vapor - 52	Description:
Date/Time:	12/21/06	Jim Mays taking ppb readings of soil test kit
Photographer:	RM	and groundwater (pH/temp/conductivity)
		solutions.

Photo/Frame No.:	Soil Vapor - 53	Description:
Date/Time:	12/21/06	Building 817 bedrock core samples.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 54	Description:
Date/Time:	12/21/06	Building 817 poly tank storage room at
Photographer:	RM	center of building.

Photo/Frame No.:	Soil Vapor - 55	Description:
Date/Time:	12/21/06	Building 786, exterior.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 56	Description:
Date/Time:	12/21/06	Building 785 Exterior, front/side.
Photographer:	RM	

Photo/Frame No.:	Soil Vapor - 57	Description:
Date/Time:	12/21/06	Building 785 concrete sealer drum and used
Photographer:	RM	motor oil filter.

Photo/Frame No.:	Soil Vapor - 58	Description:
Date/Time:	12/21/06	Building 785 drums (used oil), paint cans, 5
Photographer:	RM	gal bucket of adhesive, sealer, etc.

Photo/Frame No.:	Soil Vapor - 59	Description:
Date/Time:	12/21/06	Building 785 main room floor, repaired
Photographer:	RM	cracks.

Photo/Frame No.:	Soil Vapor - 60	Description:
Date/Time:	12/21/06	Back of Building 785 with shed containing
Photographer:	RM	compressor for air injection system
		currently in operation (FPM operating).

Photo/Frame No.:	Soil Vapor - 61	Description:
Date/Time:	12/21/06	Back of Building 786.
Photographer:	RM	

ecology and environment engineering, p.c.

3. Field Methodology

Field Adjustment Form No. 5VI-1 **Former Griffiss AFB** To: Mr. Douglas M. Pocze Ms. Heather Bishop NYSDEC Division of Environmental Remediation 625 Broadway, 11th floor USEPA - Region 2 Federal Facilities Section Albany, New York 12233-7015 290 Broadway (518) 402-9022 New York, New York 10007 Fax: Fax: (212) 637-3256 Office: (518) 402-9692 Office: (212 637-4432 From: Mr. Michael McDermott Date: 10-23-06 AFBCA 153 Brooks Road Time: 1500 Rome, NY 13441-4105 (315) 330-4062 Fax: Office: (315) 330-2275 Site: Aprola 24 Building 817 Work Plan Section: App A Page: Need for Field Adjustment • On 10/19/06 EEEPC attempted to collect soil vapor samples @ Building BIT and Apron 2 from the 5'-8' depth interval as described in the work plan. However, & BBIT the water table was less than 3 feet be low ground surface (Bos) and at Apron 2 the water table was at or very near ground surface. Therefore, NO SV Samples were collected at these sites "At AOC9 one SV sample was collected from 4 feet B6-5 (above the planned 5'-B'interval), because the water table was approximately 4.5 B65 at that location. Additional care was taken to seal the sampling rods/tubing at the ground surface by excavating a small cavity (24"deep) around the rods and filling it with hydrated bentom te to prevent in filtration of ambient air. Collecting this sample (AOC9-5VO6) from within one foot of the water table is in accordance with NYSDOH guidance. * Subslab SV Sampling will be conducted at each of the sites as planned between 10/23/06 and 10/27/06. Robert a Muger Prepared by: Organization Date: Killing Pros EEEPC Approved by: Org: Date: USACE Field Adjustment Form

Figure 3-1

	Fiel	ld Adjustment Form No. 2	· ·
		Former Griffiss AFB	
To:	Mr. Douglas M. Pocze USEPA - Region 2 Federal Facilities Section 290 Broadway New York, New York 10007 Fax: (212) 637-3256 Office: (212 637-4432	Ms. Heather Bishop NYSDEC Division of 625 Broadway, 11 th Albany, New York 12 Fax: (518) 402-9 Office: (518) 402-9	2233- 7015 022
From:	Mr. Michael McDermott AFBCA 153 Brooks Road Rome, NY 13441-4105 Fax: (315) 330-4062 Office: (315) 330-2275	Date: 12-18-06 Time: 11:00 AM	
Site:	B775, Apron 2 and WSA/	B817 Work Plan Sec	tion: 3 Page: 3-5
	Nee	ed for Field Adjustment	
786. as su (subs door/ danc spec	/ambient air samples will I Subslab analytical results ummarized on the attached slab to indoor air) was use /ambient air samples will I e with the existing work p ifically analyze for the cor chment – Table	were screened against U d table. A conservative at ed in the screening proces be collected from each of lan; however, the list of a	SEPA risk based criteria tenuation factor of 10X ss. Indoor and out- the buildings in accor- nalytes will be tailored to
	Prepared by: Robert Meyers	Organization	Date: 12-18-06
	Approved by:	Org:	Date:
مىر. بر	an have	USACE	12-19-06

Field Adjustment Form

CONFIDENTIAL

B774

OSR - 3,4 (EEEPC Revision 2)

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Bob Meyers Date/Time Prepared 12-20-06/19	500
Preparer's Affiliation <u>EXETUC</u> Phone No. <u>716-684-8060</u>	
Purpose of Investigation Check Indoor Air Quality	
Property Address: Building 774 (428 Phoenix Dr) Rome NY 13441. Former	GAFB
Location/Sample ID: 8774, 774-IA1, 774-IAZ + 774-IA2/I	
	e .
1. OCCUPANT: Interviewed: YN	n de la companya de l La companya de la comp
Last Name: Perella First Name: Dave	
Address: 428 Phoenix Drive	•
County: Oneida	
Home Phone: Office Phone: 315-838-2112	· ·
Typical Number of Occupants/persons at this location $\frac{245}{5}$	
Approximate Age of Occupants $35 - 45$	
Typical hours of occupancy: From $\underline{\mathcal{G}}$ To $\underline{\mathcal{5}}$	
2. OWNER OR LANDLORD: (Check if same as occupant) Interviewed: Y/N	•
Last Name:First Name:	·
Address:	
County:	
Home Phone: Office Phone:	• •
3. BUILDING CHARACTERISTICS - Type of Building: (Circle appropriate response)	
Residential School Commercial Multi-use	
Industrial Church Municipal / Government	

Location ID: 6774

ъ.,

If multiple units, how many? <u>NA</u>	
If the property is commercial, type?	, ,
Business Type(s) <u>Security</u>	·
Does it include residences (i.e., multi-use)?	Y(N) If yes, how many?
Other Building Characteristics: Renovated	2000
Number of floors	Approx. building age $\underline{145}$ $\underline{73}$
Is the building insulated? Y N	How air tight Tight Average / Not Tight
4. AIRFLOW Qualitatively describe:	
NA	
Airflow near source Slab on grade 36 air Mandlers	20% turnover constanty
Outdoor air infiltration Z0% through 1 dools	fir handlers, New windows of
Infiltration into air ducts NA, cuits all in and to Cooling to	ceiling Go to air handlers

Confidential .

,

Location ID:	B	7	74

÷

a. Above grade construction: full concrete stone brick other	a. Above grade construction: wood frame concrete stone brick other	
c. Basement floor: $f(x) = f(x) = f($		
d. Basement floor:) 10^{-07} uncovered covered covered with <u>Carpert</u> e. Concrete floor: unsealed sealed with <u>Carpert</u> f. Foundation walls: poured block stone other	b. Basement type: full crawlspace slab other	
b. Insection 101.7 and 2017 a	c. Basement floor: $\left< \int_{-\infty}^{2} \int_{-\infty}^{2} \left< concrete \right> dirt stone other$	
f. Foundation walls: poured block stone other	d. Basement floor: How uncovered covered with <u>Carper</u>	_ • .
g. Foundation walls: unsealed sealed sealed with	e. Concrete floor: unsealed sealed with <u>Carper</u>	- ,
h. The basement is: NA wet damp dry moldy i. The basement is: NA finished unfinished partially finished j. Sump present? Y/N/ K. Water in sump? Y/N/ K. Water in sump? Y/N/ i. Sump covered/sealed? Y/N/ i. Perimeter trench drains present? NA c. Indoor claterns/crywell? Y/N NA p. Laundry chute to 1 st or 2 nd Floors? Y/NNA Basement/Lowest level depth below grade:(feet) Identify and describe potential soil vapor entry points and approximate size (e.g., floor cracks, utility ports, floor drains, wall cracks, weeps, or indoor wells) $\frac{Y - Floor}{V - Floor} - Crack5 repaired + Stillect during + total removiations in 2000: Other Comments: 6. HEA TING, VENTING and AIR CONDITIONING (Circle all that apply) Type of beating system(s) used in this building: (circle all that apply – note primary) Hot air circulation Heat pump Hot water baseboard Space Heaters Stream radiation Radiant floor Electric baseboard Wood stove Outdoor wood boiler Other Stream Approximate age of heating system(s): Matural Gas Fuel Oil From Solar Wood Solar Domestic hot water tank fueled by: Level for the stream fueled by: Domestic hot water tank fueled by: Domestic hot water tank fueled by: The primary type of fuel used is:$	f. Foundation walls: poured block stone other	
i. The basement is: NA i. The basement is: NA i. Sump present? K. Water in sump? Y. N. NA basement is: NA N. NA basement is: NA N. NA basement is: NA N. NA basement is: NA basement is: NA c. indoor claims present? N. NA c. indoor claims present? N. NA c. indoor claims drywell? Y. M. NA c. indoor claims drywell? N. NA c. indoor claims drywell? Y. M. NA c. indoor claims drywell? Y. M. NA Basement is: NA c. indoor claims drywell? Y. M. NA Basement is: NA c. indoor claims describe potential soil vapor entry points and approximate size (e.g., floor cracks, utility ports, floor drains, weeps, or indoor wells) Y. Clair is: Nature is: Nature is: Natural Gas Electric baseboard Natural Gas Electric is of the is: Natural Gas Electric is of the is: Natural Gas Electric is wood Natural Gas Electric is of the is: Natural Gas Electric is of the is of the is of the is of	g. Foundation walls: unsealed sealed sealed with	• • • •
j. Sump present? Y/ O k. Water in sump? Y/ O k. Water in sump? Y/ O h. Sump covered/sealed? Y/ N / O n. Floor drains present? Y/ O NA o. Indoor claterns/drywell? Y/ O NA o. Indoor claterns/drywell? Y/ O NA b. Laundry chute to 1 st or 2 nd Floors? Y/ O NA b. Laundry chute to 1 st or 2 nd Floors? Y/ O NA Basement/Lowest level depth below grade: (foct) Identify and describe potential soil vapor entry points and approximate size (e.g., floor cracks, utility ports, floor drains, well cracks, weeps, or indoor wells) <u>Y - Floor</u> $d faw'3$ <u>Y - Floor</u> $d faw'3$ <u>Y - Older</u> $d faw'3$ <u>Y - Older</u> $d faw'3$ <u>Y - Older</u> $d faw'3$ <u>Y - Other Comments:</u>	h. The basement is: NA wet damp dry moldy	
j. Sump present? Y/ O k. Water in sump? Y/ O h. Sump covered/sealed? Y/ N / O n. Floor drains present? Y/ O NA o. Indoor claterns/drywell? Y/ O NA o. Indoor claterns/drywell? Y/ O NA b. Laundry chute to 1 st or 2 ^{md} Floors? Y/ O NA b. Laundry chute to 1 st or 2 ^{md} Floors? Y/ O NA Basement/Lowest level depth below grade: (foct) Identify and describe potential soil vapor entry points and approximate size (e.g., floor cracks, utility ports, floor drains, wall cracks, weeps, or indoor wells) <u>Hereford drains</u> / <u>Cracks repaired 4 Stilled during total removes the size of the system(s) used in this building: (circle all that apply – note primary) Hot are circulation Heat pump Hot water baseboard Space Heaters Stream radiation Radiant floor Ditter Comments:</u>	i. The basement is: NA finished unfinished partially finished	
k. Water in sump? Y/N/KA l. Sump covered/sealed? Y/N/KA n. Floor drains present? (N N NA <i>Bathrood's & Sq.mifors clost</i> + <i>Boilter Room</i> n. Perimeter trench drains present? (N NA o. indoor cisterns/drywell? Y/N NA p. Laundry chute to 1 st or 2 nd Floors? Y/N NA Basement/Lowest level depth below grade: (feet) Identify and describe potential soil vapor entry points and approximate size (e.g., floor cracks, utility ports, floor drains, wall cracks, weeps, or indoor wells) -4 - Floor drains? $4 - Cloor drains? (cracks repaired + Stilled during + dotal removations in 2000. Other Comments: (Cool y - Cool y$		
 1. Sump covered/sealed? Y/N/KA m. Floor drains present? N/N/KA Gathroods & Sq. nitors closed, Boiller Room n. Perimeter trench drains present? Y/N/KA n. Perimeter trench drains present? Y/N/KA h. Indoor cisterne/drywell? Y/N/KA p. Laundry chute to 1st or 2nd Floors? Y/N/KA Basement/Lowest level depth below grade: (fect) Identify and describe potential soil vapor entry points and approximate size (e.g., floor cracks, utility ports, floor drains, wall cracks, weeps, or indoor wells) <u>H + Floor drains / Cracks repaired & Filled during total removations</u> in 2000 · 6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply) Type of heating system(s) used in this building: (circle all that apply – note primary) Hot air circulation Heat pump Hot water baseboard Space Heaters Stream radiation Radiant floor Duter Context System(s):	k. Water in sump? Y/N/NA)	
n. Perimeter trench drains present? $\sqrt{0}$ NA o. Indoor cisterns/drywell? Y (D) NA p. Laundry chute to 1 st or 2 nd Floors? Y (D) NA Basement/Lowest level depth below grade: (fect) Identify and describe potential soil vapor entry points and approximate size (e.g., floor cracks, utility ports, floor drains, wall cracks, weeps, or indoor wells) <u>4</u> Floor drains/ <i>Cracks</i> repaired 4 Filled during total removations in 2000: Other Comments: 6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply) Type of heating system(s) used in this building: (circle all that apply – note primary) Hot air circulation Heat pump Hot water baseboard Space Heaters Stream radiation Radiant floor Electric baseboard Wood stove Outdoor wood boiler ther <u>Steemen</u> Approximate age of heating system(s): Fuel Oil Stream Radiant floor Coal Stream Star Natural Gas Propane Stream Star Wood Coal Stream Star Natural Gas Fuel Oil Stream Star Wood Coal Stream Star Domestic hot water tank fueled by:	i. Sump covered/sealed? Y / N /NA	-0 .
n. Perimeter trench drains present? $\sqrt{0}$ NA o. Indoor cisterms/dryweil? Y (D) NA p. Laundry chute to 1 st or 2 nd Floors? Y (D) NA Basement/Lowest level depth below grade: (fect) Identify and describe potential soil vapor entry points and approximate size (e.g., floor cracks, utility ports, floor drains, wall cracks, weeps, or indoor wells) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removations) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removation) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removation) <u>Y Clacy drains</u> (Cracks repaired of Silled during total removation) <u>Y Clacy drains</u> (Cracks removation) <u>Y Clacy drains</u> (C	m. Floor drains present? (Y) N/NA Bathrooms & Samitors closet, Boiler	ROOM
p. Laundry chute to 1 st or 2 nd Floors? Y/DNA Basement/Lowest level depth below grade:(feet) Identify and describe potential soil vapor entry points and approximate size (e.g., floor cracks, utility ports, floor drains, wall cracks, weeps, or indoor wells) <u>4 Floor drains/5</u> <u>4 Older drains/7</u> <u>4 Older drains/7</u> <u>5 Older drains/7</u> <u>5 Older drains/7</u> <u>6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply) Type of heating system(s) used in this building: (circle all that apply - note primary) Hot air circulation Heat pump Hot water baseboard Space Heaters Stream radiation Radiant floor Electric baseboard Wood stove Outdoor wood boiler Cherry Stream wood Approximate age of heating system(s): 5 yr 5. The primary type of fuel used is: Natural Gas Fuel Oil Coal Stream Kerosene Wood Coal Stream Y 0 0</u>	n. Perimeter trench drains present? Y/(N) NA	
Basement/Lowest level depth below grade:		
Identify and describe potential soil vapor entry points and approximate size (e.g., floor cracks, utility ports, floor drains, wall cracks, weeps, or indoor wells) 4 - Floor draws. 4 - Older draws. 4 - Ooling Tower. 4 - Oling Tower. 4 -	p. Laundry chute to 1 st or 2 nd Floors? Y/NNA	
Identify and describe potential soil vapor entry points and approximate size (e.g., floor cracks, utility ports, floor drains, wall cracks, weeps, or indoor wells) 4 - Floor draws. $4 - Older draws.4 - Older draws.5 - Other Comments:5 - Other Comments:Hot air circulation Heat pump Hot water baseboardSpace Heaters Stream radiation Radiant floorElectric baseboard Wood stove Outdoor wood boiler Other Schements:Natural Gas Fuel Oil From SolarNatural Gas Fuel Oil From SolarNatural Gas Fuel Oil Solar4 - Oonestic hot water tank fueled by: Electric 4 - Oonestic hot water tank fueled by: Electric 4 - Oonestic hot water tank fueled by: Electric 4 - Oonestic hot water tank fueled by: Electric 4 - Onestic hot water tank fueled by: Coelectric Order Comments - Onestic hot water tank fueled by: Coelectric Order Comments - Onestic hot water tank fueled by: Coelectric Order Comments - Onestic hot water tank fueled by: Coelectric Order Comments - Onestic hot water tank fueled by: Coelectric Order - Onestic hot water tank fueled by: Coelectric Order - Onestic hot water tank fueled by: Coelectric Order - Onestic hot water tank fueled by: Coelectric Order - Onestic hot water tank fueled by: Coelectric Order - Onestic hot water tank fueled by: Coelectric Order - Onestic hot water tank fueled by: Coelectric Order - Onestic hot water tank fueled by: Coelectric Order - Onestic hot water tank fueled by: Coelectric Order - Other -$	Recomment/I awagt level don'th helew grades (feet)	
floor drains, wall cracks, weeps, or indoor wells) 4-Floor drains, $\frac{4}{2}$ Floor drains, $\frac{4}{2}$	Dusement Lowest rever depth below grade(1001)	
5. HEATING, VENTING and AIR CONDITIONING (Circle all that apply) Type of heating system(s) used in his building: (circle all that apply – note primary) Hot air circulation Heat pump Hot water baseboard Space Heaters Stream radiation Radiant floor Electric baseboard Wood stove Outdoor wood boiler Other Steam Approximate age of heating system(s): 5×16 . Che primary type of fuel used is: Natural Gas Fuel Oil Electric Wood Electric Coal Heat Solar Natural Gas Fuel Oil Electric Coal Heat Solar Nomestic hot water tank fueled by: $\underline{Electric}$		
this building: (circle all that apply – note primary) Hot air circulation Heat pump Hot water baseboard Space Heaters Stream radiation Radiant floor Electric baseboard Wood stove Outdoor wood boiler $free for free for free for free for free for free for free for for for for for for for for for for$		·····
this building: (circle all that apply – note primary) Hot air circulation Heat pump Hot water baseboard Space Heaters Stream radiation Radiant floor Electric baseboard Wood stove Outdoor wood boiler $free for free for free for free for free for free for free for for for for for for for for for for$		<u></u>
this building: (circle all that apply – note primary) Hot air circulation Heat pump Hot water baseboard Space Heaters Stream radiation Radiant floor Electric baseboard Wood stove Outdoor wood boiler Outdoor wood boiler Approximate age of heating system(s): <u>5 yrs</u> . The primary type of fuel used is: Natural Gas Fuel Oil Electric Propane The Mean Solar Wood Coal Heat of the former of t		
The primary type of fuel used is: Natural Gas Electric Wood Domestic hot water tank fueled by:	this building: (circle all that apply – note primary)Hot primary)Hot water baseboardHot air circulationHeat pumpHot water baseboardSpace HeatersStream radiationRadiant floor	
Natural Gas Electric Wood Domestic hot water tank fueled by: <u>Electric</u> Natural Gas Propane Solar Electric Vod Solar	Approximate age of heating system(s): $5 \gamma \beta$.	beard
Electric Wood Domestic hot water tank fueled by: <u>Electric</u>	The primary type of fuel used is:	÷
x)		
Fuel oil storage location/condition/size, if applicable:NonC	Electric Propane Spar Solar	
	Electric Propane Of Solar Wood Coal Steam Solar	
	Electric Wood Domestic hot water tank fueled by: $\underline{\underline{Coal}}$ \underline{Coal} $\underline{\underline{Coal}}$ \underline{Coal} $$	

~			
Co	nfid	ent	ial

Basement

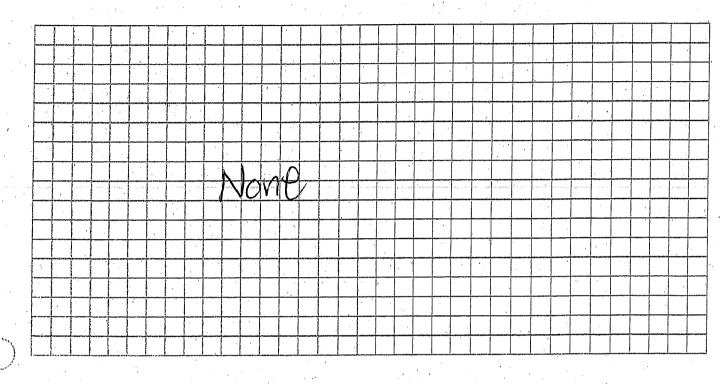
Confidential				Location ID: <u>B774</u>
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other Coal Plant
Storage wood or coal: NA	Basement	Outdoors	Main Floor	Other
Fireplace(s) located in: $\mathcal{N}\mathcal{A}$	Basement	Main Floor	Other	
Air conditioning: Cooliny Towerp	Central Air	Window ur	its Open Wind	ows None
Dehumidification:	Stand alone uni		d on central air syste	
Are there air distribution duc	ts present?	(Y) N Br	etween drop c	oiling 4 Root
Describe the supply and cold a a cold air return and the tight All New (2000)	ness of duct join	vork, and its co nts. Indicate th	ndition where visibl e locations on the flo	e, including whether there is oor plan diagram.
••••••				
			<u>.</u>	
7. OCCUPANCY Is basement	/lowest level occ	cupied?	ime Occasionall Bhrs./day	y Seldom Almost Never
Level General Use of	f Each Floor (e.	g., family room	, bedroom, laundry	, workshop, storage)

1 Floor	offices		
2 nd Floor	NA		
3 rd Floor			
4 th Floor	V	 	

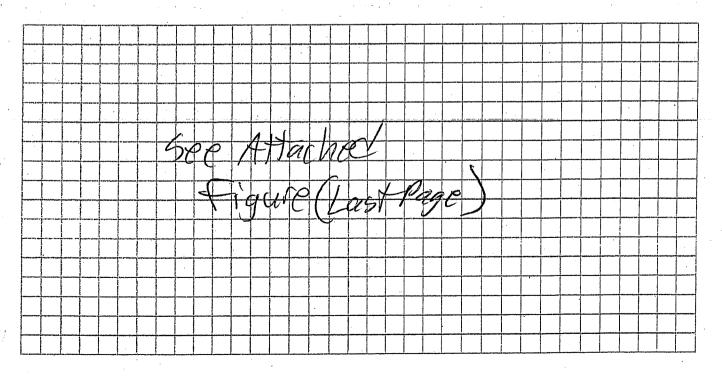
8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a.	Is there an attached garage?	YN
b.	Does the garage have a separate heating unit?	Y/N/NA
.	Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car, boat)	Y / N /NA Please specify
d.	Has the building ever had a fire?	Y / N When?
e.	Is a kerosene or unvented gas space heater present?	Y /N Where?

Confidential	Location ID: <u>B774</u>
f. Is there a workshop or hobby/craft area? NA	Y / N Where & Type?
g. Is there smoking in the building?	Y (N) How frequently?
h. Have cleaning products been used recently?	(Y) N When & Type? Daily office BR Cleaning
i. Have cosmetic products been used recently?	YN When & Type? Daily
j. Has painting/staining been done in the last 6 months?	
k. Is there new carpet, drapes or other textiles?	Y / (N) Where & When?
1. Have air fresheners been used recently?	(Y) N When & Type? in Restroom & daily
m. Is there a kitchen exhaust fan?	Y (N) If yes, where vented?
n. Is there a bathroom exhaust fan? Basement First floor	Y N If yes, where vented? <u>Outside</u>
o. Is there a clothes dryer?	Y/N If yes, is it vented outside? Y/N
p. Has there been a pesticide application?	Y /N When & Type?
q. Basement windows? Type: Casement Awning Gla	U III
 r. Are there exterior doors in the basement (e.g. "Bilco") Are there odors in the building? If yes, please describe: 	Y/N/KA) Y/N
Do any of the building occupants use solvents at work? auto mechanic or auto body shop, painting, fuel oil deliver cosmetologist)	Y /Ne.g., chemical manufacturing or laboratory, y, boiler mechanic, pesticide application,
If yes, what types of solvents are used?	
If yes, are their clothes washed at work? Y / N	
Do any of the building occupants regularly use or work at a d	Iry-cleaning service? (Circle appropriate
response) Yes, use dry-cleaning regularly (weekly)	No
Yes, use dry-cleaning infrequently (monthly or less)	Unknown
Yes, work at a dry-cleaning service	
Is there a radon mitigation system for the building/structure?	Y / N Date of Installation:
Is the system active or passive? Active/Passive	

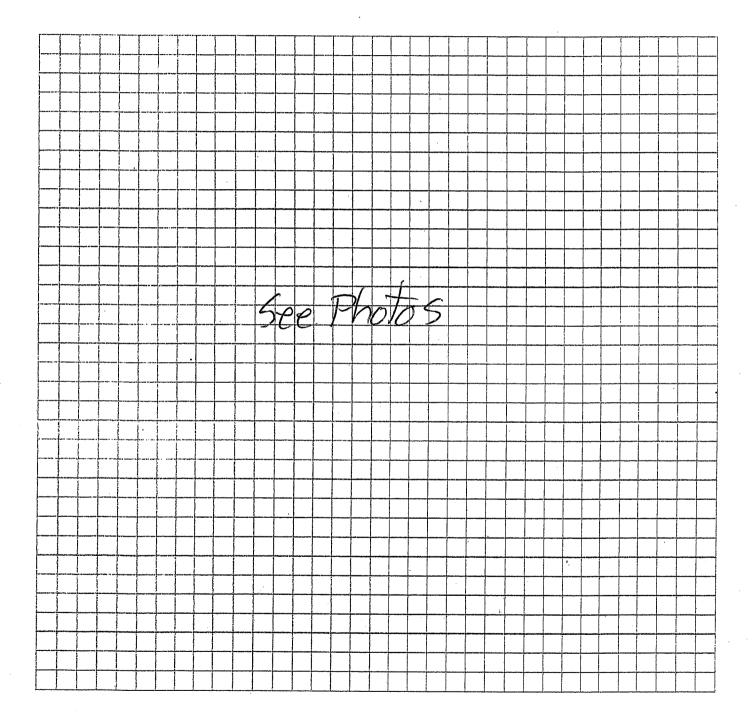

Confidential	Confidential Location ID: <u>B774</u>					
9. WATER AND SEWAGE			,			
Water Supply: Public Water Drilled Well	Driven Well	Dug Well	Other:			
Sewage Disposal: Public Sewer Septic Tank	Leach Field	Dry Well	Other:			
10. RELOCATION INFORMATION (for oil spill residenti	al emergency) N(DT USED				
11. OTHER ENVIRONMENTAL HAZARDS OBSERVED Note factors that may impact vapor mitigation system installation	on or other constru	ction activities:				
A. Asbestos: Yes No Suspected 1. Location & Estimated Quantity:						
2. General Condition: Good Fair Poor 3. Other Comments:						
B: Lead Paint: Yes No Suspected 1. Location & Estimated Quantity:						
2. General Condition: Good Fair Poor 3. Other Comments:			<u>.</u>			

Confidential


12. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note. Include compass orientation or reference to street or front of house.

Basement:


First Floor:

13. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Confidential

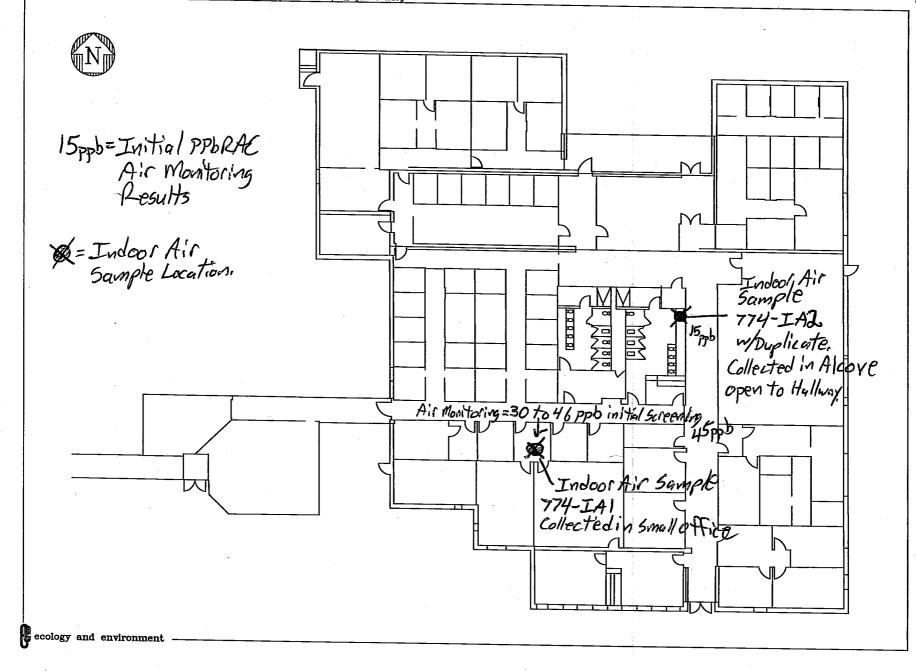
Location ID:

Page

14. PRODUCT INVENTORY FORM

Make & Model of field instrument used: ________

List specific products found in the residence that have the potential to affect indoor air quality.


* Note ALL items are currently in USP

-							
,	Location	Product Description	Size (units)	Condition *	Chemical Ingredients	Field Instrument Reading (units)	Photo Y/N **
	Janitor	Soft Soap - Hand Soap	16al	1/2 Full	Tricloson-15%	0	У
		Dial Handsoup-liquid	1Gal	1/2 Full	<i>µ</i>	0) Y
	n	Dial Handsogp-liquid Pracket-Duster Plus Dusting & Cleanning Spray	170Z Aerosol	35411	Light Naphthenic distallate, 130 paraffinic Hydrocarbon	25.6 ppm	₩.
					501/10/17. 150paratinic(64742-49-9)		
	11	Softscrub w/bleach	Z15402 (Z)	1= U0 1= U		0	
	p	5 Virex 256 one step Germicidal Cleaner	Yz gal	U	5ep M5D5	0	
		and develorant				•	
	1	General Purpose Cleaner (Sonnoon)	IQT 1/3 Full	U		\bigcirc	
	ıt	Endust - Dusting	15.50z	U	Naphtha, light Paraffinic Propane, 2-mothyl, Propany	\mathcal{O}	
		• 1					
				с.			
	· .					· ·	
	1						
			· .				

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

Photographs of the **front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

F:\Griffiss\Parsons Figures 6-2-06\Revised 6-7-06\SV 8.5 x 11 Figure 1-11-07\SV_Figure-1-1.dwg

BUILDING 774 FLOOR PLAN FORMER GRIFFISS AFB

B774

Buckeye International, Inc. 2700 Wagner Place Maryland Heights, MO 63043 314/291-1900

Material Safety Data

N.F.P.A.
4= Extreme
3= High
2= Moderate
1= Slight
0= Insignificant
•

HEALTH	0
FIRE FIRE	0
REACTIVITY	0

4 Hour	Emergency Telephon		800-228-563	5 Exte	nsion: 076	· · ·
OITORS	N I - IDENTIFIC	ATION				
RODUCTNA	Æ	CKEYE STAR SPI	RAY		DATE PREPAR January	ы 1,1993
		CKETE STAN ST			CODE ·	
HEMICAL FA	MILY	ady To Use Glass C	leaner. Water	r Based	5403	
		ady to dad clade o				
ROPER D.O.' HIPPING NAI	г. ИЕ Со	mpound, Cleaning,	Liquid			an an tha an a tha far tha tha an an a tha an
D.O.T. HAZAF						
LASSIFICA'I	NON NO	ne	ENTITY	INFOR	MATION	
	<u>N II - INGREDIE</u>		ERIII	PEL	T.L.V.	C.A.S. NO.
BY WEIGHT		MATERIAL		NE	100 ppm	107-98-2
3.0	Propylene Glycol Methyl			NE	NE	NE
>96.0	Soft Water	<u>د</u> مربعہ ا	D/	NA	NA	NA
<1.0	Perfume Coloring and Ad	dditives less than 1	%			
						1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997
	· · · · · · · · · · · · · · · · · · ·					
TTT (C) (ADV	ED * ARE SARA TITLE III SEC 313	REPORTABLES				
SECTIC						
	0.	12°F		pH (CONC.)		8.8±0.2
BOILING POIN	1 1	finite		PH (USE DI		8.8±0.2
SCALUBILITY I	V WATER	9.0			ON RATE (Wale=1)	1.0
% VOLATILE I	SY WEIGHT	.99		LIQUE	POWDER PAS	TE AEROSOL
SPECIFIC GRA	VIIY	loral, Clear Light B	lue/Green So	olution		•
AIPEARANCE	AND OLOR TO FAN	D EXPLOSIO	N DATA			
SECTIO	<u>)NIV-FIRE AN</u> (TEST METHOD)	ag Closed Cup: Nor			FLAMMA	BLE LIMITS
FLASHFOINT		ay closed cop. no.	r-1 ·		UPPER	LOWER
יאדריייי	NG MEDIA NA 00,	DRY CHEN	AICAL WAT		HER N/A	N/A
	FIGHTING PROCEDURES		None			<u>.</u>
SPECIAL PIRE						
					·	
· 'XII (CI 14 L	E AND EXPLOSION HAZARDS		Products of	of combust	ion.	
CNUSUAL PIK			Oxides of	And a second		
CECTI	<u>DN V - REACTIV</u>	TTY DATA				
SECII		CONDITIONS TO A VOID	None Kno	wn		
STABILITY						
INCOMPATIB			Do not mi	x with chlo	orine bleach.	
	DECOMPOSITION PRODUCTS	1	None Kno			
	DECOMPOSITION PRODUCTS	1	WILLOCCUI		WILL NOT OC	CUR

HAZARDOUS POLYMERIZATION

ECTION V	VI - HEALTH HAZARD DATA
UTE(S) OF ENTRY:	INHALA'ITON7 INO SKIN7 TUS INGESTIGIN
ALTH HAZARDS (A	Acute and Chronic)
May cause eye	e and skin irritation.
	USHA REGULATED? NO
ARCINCOENICITY:	NTPI NO LARC MONCOGRAPHIS? NO OSHA REGULATEDY NO
INS AND SYMPTON	NIS OF EXPOSURE
Hur Skin: Red	thess of skin or a warming sensation. For Eyes: Redness or burning sensation.
CAL CONDEIDO	NS
ISSERALLY AGORA	VATED BY EXIX SURF
None Known	the tests in the first time of the second seco
	IRST'ALD PROCEDURES For Eyes: Flush with cool water for 15 min. If irritation
persisits, see	physician. For Skin: Flush with water for 15 min. If irritation persists, see
physician Ec	or Indestion: Give two large glasses of water. Do Not incode terminal
	which he mouth to an unconscious deison.
SECTION	VII - SPILL OR LEAK PROCEDURES
Loor to dry be WASTEDISPOSAL	mop, wet/dry vac or absorbent material. Rinse area with clear water and allow efore allowing traffic. Dilute with water and flush to sanitary sewer, or send to
Lour to dry be wastedisposat. Settion	ofore allowing traffic. Dilute with water and flush to sanitary sewer, or send to
E.cur to dry be wastedisposal. Memod	ofore allowing traffic. Dilute with water and flush to sanitary sewer, or send to
i.cur to dry be wastebisiosal semico sanitary lanc SECTION	ofore allowing traffic. Dilute with water and flush to sanitary sewer, or send to dfill, following local, state and federal laws. VIII - SPECIAL PROTECTION INFORMATION
Ecor to dry be wastedisposal Memoo sanitary lanc SECTION	ofore allowing traffic. Dilute with water and flush to sanitary sewer, or send to fill, following local, state and federal laws. <u>VIII - SPECIAL PROTECTION INFORMATION</u> When eye contact may occur, VENTILATION
Sanitary lance Sanitary lance SECTION Wear safety g	offore allowing traffic. Dilute with water and flush to sanitary sewer, or send to fill, following local, state and federal laws. <u>VIII - SPECIAL PROTECTION INFORMATION</u> When eye contact may occur, <u>VENTLATION</u> When eye contact may occur, <u>VENTLATION</u> glasses or chemical splash goggles. Normal room ventilation. Respiratory
Astribusion to dry be wastribusiosal Minico sanitary lance SECTION EVEPROTECTION wear safety g SXIN	billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to
f.cur to dry be wastebisfosal sanitary lanc SECTION FYEPROTECTION wear safety g SKIN PROTECTION	affore allowing traffic. Dilute with water and flush to sanitary sewer, or send to affill, following local, state and federal laws. VIII - SPECIAL PROTECTION INFORMATION When eye contact may occur, VENTILATION glasses or chemical splash goggles. Normal room ventilation. Rubber gloves or other RESPIRATORY impervious gloves. None Required.
f.cur to dry be wastebisfosal. Mittioo sanitary lanc SECTION EVEPROTECTION wear safety g SKIN PROTECTION OTHER	efore allowing traffic. Dilute with water and flush to sanitary sewer, or send to fill, following local, state and federal laws. VIII - SPECIAL PROTECTION INFORMATION When eye contact may occur, VENTLATION When eye contact may occur, VENTLATION glasses or chemical splash goggles. Rubber gloves or other impervious gloves. None Required.
ECUTIO dry be waste DISPOSAL METHOD sanitary lanc SECTION EVEPROTECTION wear safety g SKIN PROTECTION	billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush billute with water and
ECUTIO dry be waste Disposal. METHOD sanitary lance SECTION Wear safety g SKIN PROTECTION OTHER	billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush to sanitary sewer, or send to billute with water and flush billute with water and
ficor to dry be wastedisposal. Memoo sanitary lanc SECTION Pro Protection wear safety g skin Protection on Lea Protection	
Ecor to dry be waste Disposal. Mitmoo sanitary land SECTION Wear safety g SKIN PROTECTION OTHER PROTECTION SECTION	billute with water and flush to sanitary sewer, or send to Ifill, following local, state and federal laws. VIII - SPECIAL PROTECTION INFORMATION When eye contact may occur, VENTILATION glasses or chemical splash goggles. Normal room ventilation. Rubber gloves or other RESPIRATORY impervious gloves. PROTECTION None Required. Follow good personal hygiene practices, * Needed for clean up of spill or for possible prolonged skin contact. IX - SPECIAL PRECAUTIONS
ECTION SECTION SECTION SECTION Wear safety of SEIN PROTECTION OTHER PROTECTION SECTION	afore allowing traffic. Dilute with water and flush to sanitary sewer, or send to dfill, following local, state and federal laws. VIII - SPECIAL PROTECTION INFORMATION When eye contact may occur, VENTLATION glasses or chemical splash goggles. Normal room ventilation. Rubber gloves or other RESPIRATORY impervious gloves. Follow good personal hygiene practices. None Required. Follow good personal hygiene practices. 'Needed for clean up of spill or for possible prolonged skin contact. IX - SPECIAL PRECAUTIONS
ficor to dry be wastedishosal Minico sanitary land SECTION Wear safety g SKIN PROTECTION OTHER PROTECTION SECTION	Dilute with water and flush to sanitary sewer, or send to fill, following local, state and federal laws. VIII - SPECIAL PROTECTION INFORMATION When eye contact may occur, VENTELATION When eye contact may occur, VENTELATION glasses or chemical splash goggles. Normal room ventilation. Rubber gloves or other RESPIRATORY protection None Required. None Required. Follow good personal hygiene practices. Needed for clean up of spill or for possible prolonged skin contact. IX - SPECIAL PRECAUTIONS NEEP OUT OF REACH OF CHILDREN!
ECTION SECTION SECTION SECTION Wear safety of SKIN PROTECTION ONER PROTECTION SECTION	Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to diffil, following local, state and federal laws. VIII - SPECIAL PROTECTION INFORMATION When eye contact may occur, VENTELATION When eye contact may occur, VENTELATION glasses or chemical splash goggles. Rubber gloves or other mpervious gloves.* Normal room véntilation. None Required. Follow good personal hygiene practices. None Required. Follow good personal hygiene practices. Needed for clean up of spill or for possible prolonged skin contact. IX - SPECIAL PRECAUTIONS KEEP OUT OF REACH OF CHILDRENI Keep container closed when not in use. Dilute with water and flush to sanitary sewer, or send to
ECTION SECTION SECTION SECTION WEAR SAFETION WEAR SAFETION OTHER PROTECTION SECTION SECTION SECTION PROTECTION SECTION	Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to dill, following local, state and federal laws. VIII - SPECIAL PROTECTION INFORMATION When eye contact may occur, ventLation glasses or chemical splash goggles. Normal room ventilation. Rubber gloves or other impervious gloves. None Required. None Required. Follow good personal hygiene practices. Needed for clean up of spill or for possible prolonged skin contact. IX - SPECIAL PRECAUTIONS KEEP OUT OF REACH OF CHILDRENI Keep container closed when not in use. Store at room temperature. This product is not regulated under CERCLA or RCRA.
ficor to dry be wastedisposal. Memoo SECTION Preparation wear safety g skin PROTECTION OTHER PROTECTION SECTION SECTION PRECAUTIONS IN HANIXING AND ST	Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to dill, following local, state and federal laws. VIII - SPECIAL PROTECTION INFORMATION When eye contact may occur, ventLation glasses or chemical splash goggles. Normal room ventilation. Rubber gloves or other impervious gloves. None Required. None Required. Follow good personal hygiene practices. Needed for clean up of spill or for possible prolonged skin contact. IX - SPECIAL PRECAUTIONS KEEP OUT OF REACH OF CHILDRENI Keep container closed when not in use. Store at room temperature. This product is not regulated under CERCLA or RCRA.
ECTION SECTION SECTION Wear safety of SKIN PROTECTION ONER PROTECTION SECTION SECTION PROTECTION SECTION	Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to diffil, following local, state and federal laws. VIII - SPECIAL PROTECTION INFORMATION When eye contact may occur, VENTELATION When eye contact may occur, VENTELATION glasses or chemical splash goggles. Rubber gloves or other mpervious gloves.* Normal room véntilation. None Required. Follow good personal hygiene practices. None Required. Follow good personal hygiene practices. Needed for clean up of spill or for possible prolonged skin contact. IX - SPECIAL PRECAUTIONS KEEP OUT OF REACH OF CHILDRENI Keep container closed when not in use. Dilute with water and flush to sanitary sewer, or send to
ELECTION SECTION SECTION SECTION PROTECTION WEAR SAFETY C SMIN PROTECTION ON ER PROTECTION SECTION SECTION PRECAUTIONS IN HANDLING AND ST	Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to When eye contains procure, ventuality of the self. None Required. None Required. Follow good personal hygiene practices. None Required. Follow good personal hygiene practices. None Required. None Required. Follow good personal hygiene practices. None Required. KEEP OUT OF REACH OF CHILDRENI Keep container closed when not in use. Store at room temperature. This product is not regulated under CERCLA or RCRA. Not reportable under SARA Title III Section 311/312.
ELECTION SANTEDISPOSAL MENICO SANTEDISPOSAL MENICO SANTECHON WEAR SAFELY C SKIN PROTECTION ON ER PROTECTION SECTION SECTION PRECAUTIONS IN HANDLING AND ST CHEDA PRECAUTIONS NE=Not Est	bilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to dill, following local, state and federal laws. VIII - SPECIAL PROTECTION INFORMATION When eye contact may occur, VENTILATION glasses or chemical splash goggles. Normal room véntilation. Rubber gloves or other RESPIRATORY PROTECTION None Required. Follow good personal hygiene practices. None Required. Follow good personal hygiene practices. None Required. Follow good personal hygiene practices. None Required. KEEP OUT OF REACH OF CHILDRENI Keep container closed when not in use. Store at room temperature. This product is not regulated under CERCLA or RCRA. Not reportable under SARA Title III Section 311/312. lablished NA=Not Applicable
ELECTION SANE DISPOSAL MINICO SANE DISPOSAL MINICO SECTION Wear safety g SKIN PROTECTION OTHER PROTECTION SECUTIONS IN HANDLING AND ST DIMES PRECAUTIONS IN HANDLING AND ST DIMES PRECAUTIONS IN PRECAUTIONS NE=Not Est PREPARED	bilute with water and flush to sanitary sewer, or send to Dilute with water and flush to sanitary sewer, or send to dill, following local, state and federal laws. VIII - SPECIAL PROTECTION INFORMATION When eye contact may occur, VENTILATION glasses or chemical splash goggles. Normal room véntilation. Rubber gloves or other RESPIRATORY PROTECTION None Required. Follow good personal hygiene practices. None Required. Follow good personal hygiene practices. None Required. Follow good personal hygiene practices. None Required. KEEP OUT OF REACH OF CHILDRENI Keep container closed when not in use. Store at room temperature. This product is not regulated under CERCLA or RCRA. Not reportable under SARA Title III Section 311/312. lablished NA=Not Applicable

Material Safety Data Sheet

WHMIS (Pietogram	ns) WHMIS (Classification)		BICS		
	Not controlled under WHMIS (Canada).			fritating substance.	
Section 1. Chem	ical Product and Company Identification				
Product Name/ Trade	Push	Code	nada dan karing dan karing di Santa Sa	133	
Synonym	Liquid Bacteria / Digester/Spotter	CAS	#	Not applicable.	
Chemical Family	Not available.	Valid	ation Date	2/8/2001	
Chemical Formula	Not applicable.	Print		2/12/2001	
Manufacturer	Betco Corporation 1001 Brown Avenue Toledo, Ohio 43607 (419) 241-2156	Emere		hemtrec (800) 424-9300	
TSCA	TSCA Inventory: All components listed or are exempt from listing.				
DSL	DSL : All components listed unless noted elsewhere on this MSDS		7	Trotective Clothing	

Name	CAS#	% by Weight	Exposure Limits	LC56/LD50
 Water Live Bacteria Dispersion Isopropyl Alcohol 	7732-18-5 N/A 67-63-0	0-100 5-10 0-5	Not available. Not available. TWA: 400 (ppm) TWA: 400 (ppm) from OSHA (PEL) [United States] STEL: 500 (ppm)	Not available. Not available. Not available.
4) Tetrasodium salt of ethylendiaminetetraacetic acid	64-02-8	0-5	Not available.	ORAL (LD50): Acute: 3030 mg/kg (Rat).
5) Nonionic Surfactant	9016-45-9	0-5	Not available.	Not available.
6) Acrylic Emulsion	25085-34-1	0-5	Nót available.	Not available.
7) Propylene Glycol	57-55-6	0-5	Not available.	ORAL (LD50): Acute: 5000 mg/kg [Rat].
8) Nonionic Surfactant	61788-90-7	0-5	Not available.	ORAĽ (LD50): Acute: 4610 mg/kg (Rat).
9) Perfume Oil	\$007-02-1	<1	Not available.	Not available.

Section 3. Hazards Identification

Potential Acute Health Effects This product is an eye irritant. EYE CONTACT MAY RESULT IN INFECTION.

Potential Chronic Health There is no known effect from chronic exposure to this product.

Carcinogenic Effects

Effects

There is no known encorn on onone exposure to this proosed.

Not classified or listed by IARC, NTP, OSHA, EU and ACGIH.

*	
Section 4. First	t Aid Measures
Eye Contact	May Infect Eyes.Check for and remove any contact lenses. DO NOT use an eye ointment. Seek medical attention.
Skin Contact	Avoid contact with skin and eyes. Irritant. May infect open wounds Rinse with plenty of running water. Seek medical attention.
Inhalation	Allow the victim to rest in a well ventilated area. Seek immediate medical attention.
Ingestion	May be irritating to gastrointestinal system, mouth, throat, and esophagus. Vomiting and diarrhea expected with large doses. Have conscious person drink several glasses of water or milk. Seek medical attention.

Section 5. Fire Fighting Measures		
Products of Combustion	Not available.	
Fire Fighting Media and Instructions	DO NOT use water jet. Use DRY chemicals, CO2, water spray or foam.	
Special Remarks on Fire Hazards	No additional remark.	
Special Remarks on Explosion Hazards	No additional remark.	

Section 6. Accidental Release Measures		
Small Spill and Leak	Absorb with an inert material and put the spilled material in an appropriate waste disposal.	
Large Spill and Leak	Absorb with an inert material and put the spilled material in an appropriate waste disposal.	
Personal Protection in Case of a Large Spill	Splash goggles. Full suit, Boots, Gloves, Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.	

Section 7. Handling and Storage		
Precautions	DO NOT ingest. Do not breathe gas, fumes, vapor or spray. Wear suitable protective clothing. If ingested, seek medical advice immediately and show the container or the label.	
Incompatibility	Do not use in the presence of disinfectants or bleach,	
Storage	Keep out of reach of children. Keep container tightly closed. Not for use or storage in or around the home.	

Section 8. Exposur	e Controls/Personal Protection
Engineering Controls	Good general ventilation should be sufficient to control airborne levels.
Personal Protection	ives Splash goggles.
B	ady Long Pants and Long Sleeves to avoid skin cotact.
Respirat	by: Wear appropriate respirator when ventilation is inadequate.
Ha	nds Gloves.
Protective Clothing (Pictograms)	

10H/1210/ 64666 E9X:212-522-4502 W94 6 5005 IV:52 6 02

. . . Exposure Limits ۴

٠.,

ŧ

• . .

Isopropyl Aicchol TWA: 400 (ppm) TWA: 400 (ppm) from OSHA (PEL) STEL: 500 (ppm)

Consult local authorities for acceptable exposure limits.

Section 9. Physical a	nd Chemical Properties		
Physical State and Appearance	Liquid.	Odor	Pleasant.
Molecular Weight	Not applicable.	Taste	Not available.
рН	7 to 8 [Basic.]	Coior	White.
Boiling/Condensation Point	100°C (212°F)	*******	
Melting/Freezing Point	Not available.		
Critical Temperature	Not available.		
Instability Temperature	Not available.		
Specific Gravity	1 (Water = 1)		
Vapor Pressure	20 mm of Hg (@ 20°C)		
Vapor Density	>1 (Air = 1)		
Volatility	Not available.		
VOC	2.5% By Weight		
Evaporation Rate	<1 compared to Water		
Odor Threshold	Not available.		
Log K	Not available.		
Ionicity (in Water)	Not available.		
Dispersion Properties	Not available.		
Solubility	Not available.	an i den sen an an	
The Product is:	Non-flammable.		
Auto-ignition Temperature	Not available.		
Flash Points	CLOSED CUP: >98.889°C (210'F).		
Flammable Limits	Not available.		
Fire Hazards in Presence of Various Substances	No specific information is available in our presence of various materials.	database	regarding the flammability of this product in
Explosion Hazards in Presence of Various Substances	Drums Heated By Fire Can explode		

Section 10. Stability a	and Reactivity Data		
Stability	The product is stable.		
Incompatibility with Various Substances	Do not use in the presence of disinfectants or bleach.		
Hazardous Decomposition Products	Not available.		

-

Section 11. Toxicolog	
Routes of Entry	Absorbed through skin. Eye contact. Inhalation.
Toxicity to Animals	Acute oral toxicity (LD50): 4610 mg/kg [Rat]. (Nonionic Surfactant).
Acute Effects on Humans	
Eyes	Hazardous in case of eye contact (irritant). This product may infect eyes.
Skin	Slightly hazardous in case of skin contact (irritant, sensitizer). Skin inflammation is characterized by itching, scaling, reddening, or, occasionally, blistering. May infect open wounds.
Inhalution	Hazardous in case of inhalation.
Ingestion	Hazardous in case of ingestion. Irritating to mouth, throat and stomach.
Chronic Effects on Humans	There is no known effect from chronic exposure to this product.
Special Remarks on Toxicity to Animals	No additional remark.
Special Remarks on Chronic Effects on Humans	No additional remark.

Section 12, Ecological Information				
Ecotoxicity	Not available.			
BOD5 and COD	Will not occur			
Products of Biodegradation	Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.			
Toxicity of the Products of Biodegradation	Not available.			
Special Remarks on the Products of Biodegradation	No additional remark.			

Section 13. Dispo	osal Considerations
Waste Information	Waste must be disposed of in accordance with federal, state and local environmental control regulations.
Waste Stream	Not available.

Section 14. Transpo	ort Information	
DOT (U.S.A) (Pictograms)	\bigotimes	
TDG Classification	Not controlled under TDG (Canada).	
PIN UN, Proper Shipping Name, PG	Not applicable.	
Maritime Transportation	Not available.	
Special Provisions for Transport	Not applicable.	

WHMIS (Classification)	Not controlled under WHMIS (Canada).				
Regulatory Lists	No products were found.				
Other Regulations	The following ingredients are NOT listed on he Canadian Domestic Substances List (DSL): Liv Bacteria Dispersion				
Other Classifications	HCS (U.S.A.)	HCS Class: Irritating substance.			
	USA Regulatory Lists	No components listed on California Prop	65		
		SARA 311/312: Isopropyl Alcohol; Bacte SARA 313: No components found	eria Dispersion		
	DSD (EEC)	This product is not classified according	to the EU regulations.		
	International Regulations Lists	No products were found.			
Hazardous Material Information System (U.S.A.)	Health Flanmability Resctivity Personal Protoction	1 National Fire 0 Protection Association (U.S.A.) B	Flammabillty Health Specific Hazard		
Section 16. Other li	nformation				
Validated by CRushton o	n 2/8/2001.	Verified by CRushton. Printed 2/12/2001.			
1	Betco Corporation (001 Brown Avenue Foledo, Ohio 43607				
Notice to Reader	a a a a ann an Martin, ann a ann a Chrainn an Ann an An	n an	an na ann an Anna an An		
To the best of our knowledge, the for the accuracy or complements	of the information contained	n is accurate. However, neither the above named supplier harain. esoponsibility of the user. All materials may present unkn these ure the only hugards that exist.			

Validated on 2/8/2001.

...

Push

Page: 5/5

Continued on Next Page

		MATERIAL SAFET	Y DATA SHEET	
	Page 1		MSDS # 114331001	
	VIREX* II 256		114551001	
	Date Issued: 24Jun1999		Supersedes: 01May1996	
	US MANDFACTURER: S.C. Johnson Commerc S.C. Johnson Profess 6310 16th Street Sturtevant, Wisconsj Phone: (600) 725-673 MSDS Internet Addres	sional in 53177-0902 7 ss:	CANADIAN MANUFACTURER: S.C. Johnson Professional, Inc. Phone: (519) 756-7900 1 Webster Street, Suite 100 Brantford, Ontario NAT 5R1 TransPortation Emergency:	
	www.scjprofessional. Emergency Phone: (80	0) 851-7145	CAMUTEC {collect} (613) 996-6666 Emergency Phone: (800) 851-7145	
	4-Very High 3-High 2-Moderate 1-Slight 0-Insignificant	0 Flammability 0 0 Reactivity 0 Special	S.C. Johnson Professional, Inc. Phone: (519) 758-6611 I Webster Street, Suite 100 Brantford, Ontario N3T 5R1	
			N	
	PRODUCT USE	 Section 2. Section 3. S. 8. Section 13. Section 3. Industrial/Institutional 	l: Disinfectants.	
	SECTION 2 -	INGREDIENT INFORMATIO)N	
	TNO	REDIENT		
			EIGHT& EXPOSURE LIMIT/TOXICITY	
		ium Chloride	3.190 NOT ESTABLISHED LD50: 500 mg/kg (oral-male rat) ; 2,000 mg/kg (dermal-rabbit) 1.704 NOT ESTABLISHED	
		HEALTH HAZARDS MENT	FICATION (Also See Section 11)	
	ROUTE (S) OF ENTRY	Eve contact Chin same	FICATION (Also See Section 11)	-
	EYE.	URE:		 () () (注意)注 () () () () () () () () () () () () () (
	INHALATION	. May cause irritation or	corrosive effects to nose, throat and	
	MEDICAL CONDITIONS	. Corrosive and may cause ;	permanent damage to mouth, throat and	
	GENERALLY RECOGNIZED AS BEING AGGRAVATED BY EXPOSORE	chronic bronchitis, emph irritating effects.	respiratory disorders such as asthma, ysema, etc., may be more susceptible to	1 1 1 1
	SECTION 4 - 2	FIRST AID MEASURES	ه در این می اور در این می اور در این از این می	
		Flush immediately with pl	lowby of union 5	
	SKIN CONTACT	Flush immediately with pl minutes. Get medical atte	lenty of water for at least 15 to 20 antion immediately. Remove contaminated	
	INHALATION	Remove to fresh air. If h	Dreathing is affected, get medical	
	INGESTION	Do not induce vomiting! I or milk. Do not administe	mmediately drink 1-2 glasses of water r anything by mouth to an unconscious	I Production
	FEOMONI # - T	to accenter accent	icion immediately.	
			RMATION	
	FLASH POINT FLAMMABLE LIMITS AUTOIGNITION TEMPERATURE	Not applicable. Not applicable.		
	EXTINGUISHING MEDIA SPECIAL FIREFIGHTING PROCEDURES	Foam. CO2. Dry chemical. Normal fire fighting proc	edure may be used.	
	UNUSUAL FIRE AND EXPLOSION HAZARDS	Container may melt and le		
	SECTION 6 - P	REVENTIVE RELEASE MEA	SURES	
	STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED	Wear/use appropriate prote earth or other inert mate: containerize. Rinse affect	ective equipment. Absorb with fuller's rials. Sweep or scrape up and ted area thoroughly with water. Do not - terial enter watercourse. May be toxic	
	SECTION 7 - H			
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
	OTHER HANDLING AND	taste or swallow. Avoid br OF REACH OF CHILDREN FOR	EYE AND SKIN BURNS. Avoid contact with JARMFUL OR FATAL IF SWALLOWED. Do not reathing spray mist or vapors. KEEP OUT	
	STORAGE CONDITIONS	clothing before reuse. Kee dry place with adequate ve residue may remain on / in a	p container closed. Store in a cool, p container closed. Store in a cool, multilation. Keep from freezing. Product mpty containers. All precautions for be used in handling the empty	
	SECTION 8 - SI		RMATION	
	RESPIRATORY PROTECTION.	If mists/vapors are not ad		
· · ·	VENTILATION	General room ventilation i amounts of mists/vapors ca ventilation or respirate	s normally adequate. Substantial	
	PROTECTIVE GLOVES	Lono rubber alours	protection.	1.001.012

MATERIAL SAFETY DATA SHEET

VIREX* II 256

Date Issued: 24Jun1999

Supersedes: 01May1996

SECTION 9 - P	HYSICAL AND CHEMICAL PROPERTIES
COLOR PRODUCT STATE ODOR	Liquid.
PH ODOR THRESHOLD SOLUBILITY IN WATER SPECIFIC GRAVITY	10.0-10.5 Not available. Complete 1.0
(H2O=1) VAPOR DENSITY (AIR=1) EVAPORATION RATE (BUTYL	Not available. Not applicable.
ACETATE=1) VAPOR PRESSURE (num HG). BOILING POINT FREEZING POINT	> 200°F (> 93°C) < 32°F (< 0°C)
COEFFICIENT OF WATER/OIL PERCENT VOLATILE BY	NCC available.
VOLUME (%) VOLATILE ORGANIC	Ethanol.
COMPOUND (VOC) THEORETICAL VOC.	
(LB/GAL)	
	STABILITY AND REACTIVITY
STABILITY. STABILITY - CONDITIONS. TO AVOID	
PRODUCTS	Strong acids (eg., muriatic acid). When exposed to fire: Produces normal products of combustion.
HAZARDOUS POLYMERIZATION	
HAZARDOUS	None known.
SECTION 11 - 1	OXICOLOGY INFORMATION (Also See Section 3)
LD50 (ACUTE ORAL TOX) LD50 (ACUTE DERMAL TOX) LC50 (ACUTE INHALATION.	Estimated to be between 1000 and 2500 mg/kg (rats). Between 2,000-20,000 mg/kg (rabbit). 0.48 mg/L
TOX) EFFECTS OF CHRONIC EXPOSURE	None known.
SENSITIZATION CARCINOGENICITY REPRODUCTIVE TOXICITY	None known,
TERATOGENICITY	None known,
SECTION 12 - E	COLOGICAL INFORMATION
ENVIRONMENTAL DATA SECTION 13 - I	Not available. DISPOSAL CONSIDERATIONS
WASTE DISPOSAL	PESTICIDAL WASTE - Observe all applicable Federal/ Provincial/ State regulations and Local/ Municipal ordinances regarding disposal of pesticide wastes.
SECTION 14 - 7	RANSPORTATION INFORMATION
US DOT INFORMATION	Corrosive liquids, Basic, Inorganic, N.O.S. (Quaternary Ammonium Compounds, Tetrasodium Salt of EDTA), 8, UN 3266, PG III, Ltd. Gty.
CANADIAN SHIPPING NAME. TDG CLASSIFICATION PIN/NIP	Not applicable. Not applicable. Not applicable
PACKING GROUP EXEMPTION NAME	Not applicable. Not applicable.
SECTION 15 - I	EGULATORY INFORMATION
WHMIS CLASSIFICATION	
Control Control Acc (1	roduct are listed or are excluded from listing on the U.S. Toxic SCA) Chemical Substance Inventory.
ander the canadian Enviro	roduct comply with the New Substances Notification requirements amental Protection Act (CEPA).
	ct to the reporting requirements under California's Proposition 6
	DTHER INFORMATION
ADDITIONAL INFORMATION. EPA REGISTRATION #	the use of gastrig lawage lice as dimeted
	INFORMATION
,	Manufacturer's Technical Support Department. Refer to page 1 (Manufacturer) for contact information.
	•••••• Vi

1) MSDS # 114701001

à

	1
	!
GLANCE	HC

Fecha Emitada: 11Sep1996				Reel	nplaza: Nueva
FABRICANTE (ESTADOS UNI 8.C. Johnson & Sch, In Teléfono: (800) 725-67 Racine, Wisconsin 5340 Teléfono de Emergencia (800) 851-7145	c. 37 3-2236			S.C. i Teléfo l Webs Branti Emerge CANO	WTE (CANADIENSE) Johnson and Son, Limited Johnson: (\$19) 756-7900 Itar Street Jord, Ontario NJT SR1 macia Durante el Transporte: JTEC (por cobrar) (\$11) 956-6666 JTEC (por cobrar) (\$11) 951-7145
HAZARD RATING HM 4-Muy Alta 3-Alta 2-Moderada 1-Ligera 0-Insignificance	3 Sa 0 Fl 0 Re			DISTRI	DUIDO EN CANADA POR:
	DENTI	FICACIÓN D	EL PRI	UCTO ·	
NOMERE DEL PRODUCTO	GLANC Nuevo Indus	E.HC trial/Institu	cional	: Produc	stos de limpieza para el hogar. Mar diluído antes de usarse.
					RICANA PRESENTACIÓN CANADIENSE 2.5 L
SECCIÓN 2 - I	NFOR	MACIÓN DE I	ngrei	DIENTE	S
INGRED	T FNTF		,	2250 b	LÍMITE DE EXPOSICIÓN/TOXICIDA

					NO ESTABLECIDO LD50: 2000 mg/kg (oral-rata) NO ESTABLECIDO LD50: 1,288 mg/kg
[PA NJ MA] Hidróxido de					(oral-rata)
(CAS# 1336-21-6) {PA NJ MA SARA} 2-Butox					ACGIH/OBHA STEL LDSO: 350 mg/kg (oral-rata) 25 ppm ACGIH/OBHA TWA (PIEL) LDSO:
				,	550-3,000 mg/kg (oral-rata) LC50: 500 ppm (inhalación-rata) 4 hrs.
Agua (CAS# 7732-18-5)				35-45 IS & Y A	NO ESTABLECIDO SALUD(Véase tambien Sección 11)
RUTA (S) DE ENTRADA					
EFFECTOS POR EXPOSICIÓN J CJOS	AGUDA Gorro:	sivo y puede	-		ermanente incluyendo ceguera.
PIEL INHALACIÓN	Puede	ación severa. ocasionar ir nta y las vía	ritació	ón o efe	otos corrosivos en la nariz, la
INGESTIÓN	Corro	sive y puede tómago.	CAUBAT	daño pe	ermanente a la boca, la garanta y
CONDICIONES MÉDICAS QUE	Person		ienes p sfecto	re-exis s irrit	tentes de la piel pueden ser más antes.
· · · · ·	ŒDID	AS DE PRIME	ROS A		S
					dante agua durante 15-20 minutos.
CONTACTO CON LA FIEL	Obten Enjua	er atención m gar inmediata:	édica i mente c	nmediat on abun	amente, dante agua durante 15-20 minutos.
INHALACIÓN	Si la atenc: ¡No in admin:	ión médica inu nduzca el vóm:	está af mediata Ltol Be c vía c	ectada, mente. ber 1-2 ral a u	amente. llevar el aire fresco. Obtener vasos de agua o leche. No le na persons inconsciente. Obtener
SECCIÓN 5 - 11					OSIÓN
PUNTO DE INPLAMACIÓN LÍMITES DE PLAMABILIDAD TEMPERATURA DE	No ap	licable. Licable,			
AUTOIGNICIÓN MEDIO DE EXTINCIÓN PROCEDIMIENTOS	Espum Pueder	a. CO2. Produ n utilizarse p	oto quí procedi	mico se mientos	co. Niebla de agua. : normales para combatir fuegos.
ESPECIALES PARA COMBATIR PUEGOS PELIGROS DE PUEGO Y EXPLOSIÓN NO USUALES					
	ædid	AS PREVENT	IVAS		
PASOS À TOMÀR EN CASO,. De que el material se pugue o derrame	derran vida : inert	nado entre en acuática. Abs	corrie orba co rra o 1	ntes de m oil-d recoja y	mita que el material fugado o : agua, Puede ser tóxico para la iri (polvo absorbente) o material / coloque en contenedores. iado.
SECCIÓN 7 - N	ANEJ	O Y ALMACE	NAJE -		***************************************
PRECAUCIONES	OJOS ropa. Evita LOS N	E IRRITACIÓN PERJUDICIAL r la respirac IÑOS. PARA US	de la 1 O Fatal 16n del O INDUS	SIEL, EN SI SE Vapor. STRIAL (DO OCASIONA QUEMADURAS DE LOS Altar contacto con piel, ojos y TRAGA. No probar ni tragar. MANTEMASE FUERA DEL ALCANCE DE NICAMENTE. Banejo. Limpiar las calzado y la
ALMACENAJE O MANEJO	ropa	meticulosamen	te ante	ts de vo	salver a usarlas. Mantener el En ventilación adecuada,
SECCIÓN 8 - I	NFOR	MACIÓN SOB	RE PR	OTECCI	ONES ESPECIALES
PROTECCIÓN RESPIRATORIA	Si la	ventilación	no con	trola 1	os vahos/vapores adecuadamente,
	Venti subst extra	lación genera anciales de r ctores locale	l del ieblas	lugar en /vaporen	Espirador para vapores orgánicos. 5 normalmente adocuada. Cantidades 5 pueden ser controladas con Sción respiratoria.
GUANTES PROTECTORES PROTECCIÓN DE OJOS OTRAS MEDIDAS PROTECTORAS	Neopz	eno.			

OLOR.	HYSICAL AND CHEMICAL PROPERTIES	۰. ۲۰ ۲
RODUCT STATE	Annonis-like	
DCR THRESHOLD	Not available.	
OLUBILITY IN WATER	COMD 1 # Ce	
(HIO=1) APOR DENSITY (AIR=1) VAPORATION RATE (BUTYL	Not applicable. Not applicable.	•*
ACETATE-1) APOR PRESSURE (mm HG). OILING POINT	Not applicable.	
REEZING POINT	< 32'P (< 0'C) Not available.	
WATER/OIL ERCENT VOLATILE BY		
VOLUME. (1) OLATILE ORGANIC	2-Butoxysthanol	
COMPOUND (VOC) HEORETICAL VOC, (L8/GAL)	Not available.	,
	STABILITY AND REACTIVITY	
TABILITY	Stable	$(1,1,2,\dots,2) \in \mathbb{R}^{n}$
TABILITY - CONDITIONS. TO AVOID	Mana know	
NCOMPATIBILITY AZARDOUS DECOMPOSITION PRODUCTS	When exposed to fire: Produces normal pro	oducts of combustion.
AZARDOUS		
AZARDOUS	None known,	
	TOXICOLOGY INFORMATION (Also See Sec	etion 3)
DSO (ACUTE ORAL TOX) DSO (ACUTE DERMAL TOX)	Corrosive Not available.	
EXPECTS OF CHRONIC	Nons known.	
THE REAL PRIME AND A CALL	None known. None known.	
ARCINOGENICITY.	None known. None known.	
AUTAGENICITY		
	ECOLOGICAL INFORMATION	
	Contains ammonia. May be toxic to aquati #	
	DISPOSAL CONSIDERATIONS	
ASTE DISPOSAL	Disposal of undiluted product is regulate and transportation laws as a corrosive ve	ed under environmental aste.
	TRANSPORTATION INFORMATION	
US DOT INFORMATION	please refer to the Bill of Lading/receipup-to-date shipping information.	ving documents for
CANADIAN SHIPPING NAME. FOG CLASSIFICATION PIN/NIP. ACKING GROUP EXEMPTION NAME	GLANCE HC Non-regulated. Not applicable.	•
	REGULATORY INFORMATION	
WHIS CLASSIFICATION		
Substances Control Act	product are listed or are excluded from 1 TSCA) Chemical Substance Inventory.	
under the Canadian Envi:	product comply with the New Substances No conmental Protection Act (CZPA).	
	ject to the reporting requirements under C Section 2 are subject to the following rep	alifornia's Proposition 65. Forting requirements:
MA - The Massachusetts SARA - The Superfund Am CPR Part 372	nt to Know Hazardous Substance List Hazardous Substance List andments and Reauthorization Act of 1986 T	
SECTION 16	OTHER INFORMATION	
ADDITIONAL INFORMATION. EPA REGISTRATION #	Not applicable. Not applicable.	
	IN INFORMATION	* 2 %
	Manufacturer's Technical Support Departs (Manufacturer) for contact information.	ment. Refer to page 1

.

!

ŝ

PRINT DATE: 10Mar1997

.

j, j

÷

-

[288937] (847) 647-0534 01/03/A0 12:36 4 of 7

Page 3 of 4

MATERIAL SAFETY DATA SHEET - 126027

Product Name: DUSTER PLUS DUSTING AND CLEANING SPRAY Serial No: 1 Preparation Date: 07/29/94 Sug Supersedas: 02/21/94

SECTION	9 -	PEYSICAL AN	THEORETICAL VOC	PROPERTI	Not	available,	1
VOLATILE DROANIC COMPOUND (VOC):	Hy pr	drocarbon opellant oparaffinic	TRECRETICAL		-		

SECTION 10 - STABILITY AND REACTIVITY

STABILITY: Stable

STABILITY - CONDITIONS TO AVOID, NOT applicable.

INCOMPATIBILITY: No special requirements.

No special requirements. HARARDOUS DECONPOSITION PRODUCTS:

hydrocarbon.

WILL NOT OCCULT.

Not applicable. WARANDOUS POLYMERIZATION - CONDITIONS TO AVOID:

BECTION 11 - TOXICOLOGICAL INFORMATION (ALSO SEE SECTION 3) TOX: Acute oral LD50 is astimated to be greater than 5000 mg/kg LDES (ACUTE ORAL TOX) :

(rats). LDES (ACUTE DEBUAL TOX) . NOT applicable.

Not applicable. LCES (ACUTE INHALATION TOX) :

None known. EFFECTS OF CHACMIC EXPOSURE:

None known. SEMEITIZATION:

CARCINOGENICITY, NORE KROWTI.

REPRODUCTIVE TOXICITY: NONE Known.

TERATOGENICITY: NORS KNOWN,

MUTAGENICITY, NONE KNOWN.

SECTION 12 - ECOLOGICAL INFORMATION

ENVIRONMENTAL DATA, NOT AVELLADIE.

THE REPORT CONSTRUCTIONS
SECTION 13 - DIEPOSAL CONSIDERATIONS
SECTION 13 - DIEPOSAL CONSIDERATIONS MATE DISPOSAL INFORMATION. If possible, recycle empty aerosol can to nearest steel recycling center. Use up package or give to someone who can.
TRANSPORTATION INFORMATION
US DOT INFORMATION: ASIOSOIS, 2.1 , UN 1950 , MCL. CO.
CHADING SHIPPING HARE: AEROSOLS, Limited Quantity
TOG CLASSIFICATION: 2.1
PIN/NIP: UN 1950

[288937] (847) 647-0534

01/03/A0 12:36 5 of 7

Page 4 of 4

MATERIAL SAFETY DATA SHEET - 126027

Product Name: DUSTER PLUS DUSTING AND CLEANING SPRAY Serial No. 1 Preparation Date: 07/29/94 Supersedes: 02/21/94

SECTION 14 - TRANSPORTATION INFORMATION (cont.)

PACKING GROUP :

MONIS CLASSIFICATION :

Limited Quantity EXEMPTION NAME :

A; 8,5;

X

SECTION 15 - REGULATORY INFORMATION

CAS + NOT applicable.

All ingredients of this product are listed or are excluded from listing on the U.S. Toxic Substances Control Act (TSCA) Chemical Substance Inventory.

All ingredients in this product comply with the New Substances Notification requirements under the Canadian Environmental Protection Act (CEPA),

This product is not subject to the reporting requirements under California's Proposition 55.

These ingredients from Section 2 are subject to the following reporting requirements:

MA - The Massachusetts Hazardous Substance List

- The New Jersey Right to Know Hazardous Substance List NJ

- The Pennsylvania Hazardous Substance List PA

SECTION 16 - OTHER INFORMATION NFPA 308 Level 2 Aerosol.

ADDITIONAL INFORMATION:

TPA REGISTRATION #: NOT applicable

PREPARATION INFORMATION

PERMED BY Manufacturer's Technical Support Department. Refer to page 1 (Manufacturer) for contact information.

This document has been prepared using data from sources considered technically reliable. It does not constitute a verranty, express of implied, as to the accuracy of the information contained herein. Actual conditions of use and Handling are beyond the seller's control. User is responsible to evaluate all available information when using product for any particular use and to comply with all Federal, State, Provincial and Local laws and regulations. 2-HAY-95 R-106 (Rev 8 - 3/93)

[288937] (847) 647-0534

17,173 77,67

DR-752

MATERIAL SAFETY DATA SHEET - 12002/

Serial No: 1

Preparation Date: 07/29/94 Super

Supersedes: 02/21/94

US MANUFACTURER Drackett Professional A Division of S.C. Johnson & Son, Inc. Phone: (800) 725-6737 Racine, Wisconsin 53403-5011 Emergency Phone: (800) 851-7145

Hamard Rating 4-Very Kigb J-High 2-Moderate 1-Slight 6-Instmificant

HMIS	N	FPA
I	Health	
4	Flammability	14
0	Reactivity	. 0)
	Special	1

SECTION 1 - PRODUCT IDENTIFICATION

REASON FOR GLANDE, SECTION 7.

FRODUCT VSS. Industrial/Institutional: Furniture care

PTETENDED COOD COOR 94752

BOUTE (S) OF ENTRY :

SECTION 2	- INGREDI	ENT INFORMATION
INGREDIENTS	WI &	EXFOSURE LIMIT/TOXICITY
(CAS #64741-44-2)	10-20	5 mg/m3 ACGIH TLV-TWA\OSHA PEL
Isoparaffinic Hydrocarbon Solvent (CAS #64742-48-9)	7-12	300 ppm (Supplier Recommended)
[PA,NJ,MA] Propane (CAS #74-98-6)	1-3	1000 PPM ACGIH\OSHA TWA
[PA,NJ,MA] Isobutane (CAS #75-28-5)	5-10	NOT ESTABLISHED
Water (CAS #7732-18-5)	55-65	NOT ESTABLISHED
See Regulatory Information (Section 15) for explanation of bracketed information.		

SECTION 3 - HEALTH HAZARDS IDENTIFICATION Eye contact. Skin contact.

STYRCTS OF ACUTE EXPOSURE - EVE, NORE KNOWN.

Frices of Acoust Exposition - SKIN: Prolonged or repeated contact may cause: Mild skin

EFFECTS OF ACUTE EXPOSURE - INVALATION: NOTE KNOWN.

APPECTS OF ACUTE EXPOSITES - INDEFTICE: APPETITION INTO THE LUNGS MAY CAUSE SEVER: health eflects. Applical compitions dimenally recommend as sains accounted by exposure: None Known.

SECTION 4 - FIRST AID MEASURES FIRST AID - STE CONTACT: Rinse with plenty of water. FIRST AID - SKIR CONTACT: Wash Contaminated area with water and scap. FIRST AID - INMALATION: Remove to fresh air. FIRST AID - INMALATION: DO not induce vomiting! Seek immediate medical attention. [288937] (847) 647-0534

Page 2 of 4

MATERIAL SAFETY DATA SHEET - 126027

Product Name: DUSTER PLUS DUSTING AND CLEANING SPRAY Serial No: 1 Preparation Date: 07/29/94 Sug Supersedes: 02/21/94

SECTION 5 - FIRE AND EXPLOSION INFORMATION FLASH POINT: <20°F (<-7°C) (TCC) (propellant)

FLUMABLE LIMITS. NOT available.

AUTO-IGNITION TEMPERATURE Not available.

Foam. CO2. Dry chemical. Water tog. EXTINUUISHING MEDIA:

FIGHT FIREFIGHTING PROCEDURES. Fight fire from maximum distance or protected area. Cool and use caution when approaching or handling fire-exposed containers. Fire fighters should wear self-contained breathing apparatus and protective clothing.

UNUSUAL FIRE AND EXPLOSION WARARDS . Aerosol product - Containers may rocket or explode in heat of fire.

SECTION 6 - PREVENTIVE RELEASE MEASURES STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASE OR SPILLED, Eliminate all ignition sources. Absorb with oil-dri or similar inert material. Sweep or scrape up and containerize. Rinse affected area thoroughly with water.

SECTION 7 - HANDLING AND STORAGE PLECAUTIONARY INFORMATION: DANGER: May be: Harmful or fatal if swallowed. PLAMMABLE: Contains: petroleum distillate. Contents under pressure, Do not use near open fire, flames or heat. Do not store at temperatures above 120 °F (50 °C). Do not puncture or incinerate. Keep out of reach of children. OMER RANDLING AND STORAGE CONDITIONS: Store in a cool, dry place with adequate Ventilation. Keep from freezing ventilation. Keep from freezing,

SECTION 8 - SPECIAL PROTECTION INFORMATION RESPIRATORY PROTECTION: No special requirements under normal use conditions.

vermanner. General room ventilation is normally adequate. Substantial amounts of mists/vapors can be controlled with local exhaust ventilation or respiratory protection. Monacrive diaves: No special requirements under normal use conditions.

in momental No special requirements under normal use conditions.

OTHER PROTECTIVE MEASURES; No special requirements.

SECTION 9 - PHYSICAL	AND CHEMICAL PROPERTIES
COLDR, OII-White	PRODUCT STATE: Dispensed as a spray mist.
coox: Characteristic	pu, Not applicable.
COOR THREESOLD: NOT EVELLEDIE.	ACADELLITY IN NATER, DISPERSIBLE
SPECIFIC GRAVITY: 0.9	VAPOR DEMETTY (ALE-1); NOT AVAILABLE.
EVAPORATION RATE (BUTYL ACTATE-1); NOT available.	VAPOR FRESHERE (HO): NOT AVAILADLE.
sours comme Not applicable.	REELING POINT: NOT applicable.
COSPFICIENT OF WATER/OIL: NOT AVAILABLE.	PERCENT VOLATILE SY VOLCHE (%): NOT available.

	MATERIAL SAFETY DATA SHEET	
	MSDS # 114518001 GP FORWARD SC	
23	Date Issued: 11Sen1004	
	US MANUFACTURED,	
	Phone: (800) 725-6737	
	Racine, Wisconsin 53403-2236 Emergency Phone: (800) 851-7145 Brantford, Ontario N3T SR1	
	Emergency Phone: (800) 851-7145 Brantford, Ontario N3T SRI Transportation Emergency: CANUTEC (collect) (613) 99676565::22994	
	HAZARD RATING HMIS HAZARD NPDA DISTRUCTION IN CALLS IN STATUS	
	4-Very High 3 Health 3 Phone (519) 758-6611	
	2-Alga O Plammability O 1 Webster Street 2-Moderate O Reactivity O Brantford, Ontario N3T 5R1	
2	0-Insignificant	· · · · · · · · · · · · · · · · · · ·
- Quint	SECTION 1 - PRODUCT IDENTIFICATION	
and a second	PRODUCT NAME	
	PRODUCT USE the Literian Industrial / Institutional / Ploor core This Product Use intended to as a second s	
. .	REASON FOR CHANGE	
1	INGESDIENT WEIGHT EXPOSURE LIMIT/TOXICITY	
	Tetrasodium Salt of EDTA (CAS# 64-02-8) 1-3 NOT ESTABLISHED LD50: 300 mg/kg	
	(oral-rat) LC50; >5,000 mg/kg (dermal-rabbit) Octanoic Acid (CRS# 124207-2) 426, 2007-2) J-5. NOT ESTABLISHED	
	Alconol Ethoxylates (CAS# 66439-46-3). 3-7 NOT ESTABLISHED LD50; 1,400 mg/kg	
	Sodium Xylene Sulfonate (CAS# 1300-72-7) 3-7 NOT ESTABLISHE LDS0 2007 1000 1000 1000 1000 1000 1000 100	
	(oral-rat) [PA NJ MA] Sodium Hydroxide (CAS# 1310-73-2) 3-7 2 mg/m* ACGULANCELLING 1050 140-340 mg/kg (oral-rat) LCL 1051 1051 1051	
	sodium Silicate (CAS# 1344-09-8) 10-15 NOT ESTABLISHED LD50(,2,150,05/197	
	(oral-rat), (oral-	
a la companya da companya d	ROUTE(S) OF ENTRY Eye contact. Skin contact. EFFECTS OF ACUTE EXPOSURE:	
- Cara	EYE Corrosive and may cause permanent damage including blindness. SKIN Corrosive and may cause permanent damage.	
0	MALLATION MAY cause irritation or corrosive effects to nose, throat and the management of the second	
	DRESTION Corresive and may cause, permanent, damage to mouth, throat and Bench and the second second A second	E
	SECTION 4 - FIRST AID MEASURES	
	BYE CONTACT	
	INFALATION	
	attention immediately. INGESTION	
	milk. Do not administer anything by mouth to an unconscious person. Get medical attention immediately.	
	SECTION 5 - FIRE AND EXPLOSION INFORMATION	
	YLASH POINT	
	SPECIAL FIREFIGHTING., 14 Normal fire fighting procedure may be used a cool and the statution was	
	When approaching or handling itsee Social Containers in the social is and its interesting itsee Social Containers in the social is and its interesting itsee Social Containers in the social is and its interesting itsee Social Containers in the social containers in t	
1		
	STEPS TO BE TAKEN IN., Absorb With oil drifor similar inart material Sweep or Scrape up the state of the stat	
:	RELEASED OR SPILLED Wear/use appropriate protective equipment of list and mathematical association as a second sec	
	PRECAUTIONARY	
	INFORMATION Contact with skin, eyes and clothing. HARMFUL OR PATAL IF SWALLOWED. Do not taste or swallow, Avoid breathing vapor. XEEP	
	OUT OF REACH OF CHILDREN, FOR HINDERTIAL USE CNLY. OTHER HANDLING AND	
	adaquate ventilation. I subject starts for a subject set of the subjec	•
	RESPIRATORY PROTECTION. If mists/vapors are not:adequately controlled by ventilation, use: NIOSH/OSHA approved Dust/mist respirator. General room ventilation is normally adequate. Substantial	
	amounts of mists/vapors can be controlled with local exhaust ventilation or respiratory protection.	:
	PROTECTIVE GLOVES Neoprene. EVE PROTECTION Chemical splash-proof goggles.	
•	OTHER PROTECTIVE Protective footwear.	
	stand Strate Strate State	
:	r .	

:

.

	•	and the second	alation design		
		HYSICAL AND CHEMICAL	PROPERTIES	-	
	COLOR	Clear Green			•
	PRODUCT STATE	Liquid.	the state of the s		
	DDOR THRESHOLD	12.5 Min. Not available,	ی از میشوند. ۲۰۰۰ - معقور با باین از این		-
	SOLUBILITY IN WATER SPECIFIC GRAVITY	Complete	and the second		÷
	(H2O=1) VAPOR DENSITY (AIR=1)"	Not systiable.	in a start of the		
	EVAPORATION RATE (BUTYL	Not available.	with a case is some of the second		ł.
	VAPOR PRESSURE (mm HG). BOILING POINT	Not available;			٤,
	PREEZING POINT	32 7 (0.0)	·····································		÷
	WATER/OIL PERCENT VOLATILE BY	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
	VOLUME (*) VOLATILE ORGANIC	Not available,	interviewe in the second s		
	COMPOUND (VOC) THRORETICAL VOC		A CALL AND A		•
	(LB/GAL)	CTADII ITY AND DRACTIVI	TY		
				87 Electronistic	, .
	STABILITY - CONDITIONS.	None known.	SALE STATE	an aware	
	TO AVOID INCOMPATIBILITY	Strong acids (eg., muriati	ic add. Strong exiditing materials roid contact with: Non ferrous matals.		
			such compact with non terebustion.	i.	
	PRODUCTS	1.			
	HAZARDOUS POLYMERIZATION			\$ }.	
	POLYMERIZATION -	No special requirements.	, 1,65 ^{- 15}		
	SECTION 11	TOXICOLOGY INFORMATI	ON (Also See Section 3)		
	LD50 (ACUTE ORAL TOX)	Corrosive			
	LDS0 (ACUTE DERMAL TOX)		A CARTER OF ALL AND		
	EFFECTS OF CHRONIC	None known.	ligen en e		
	SENSITIZATION	None known. None known.	ting and the second		
	REPRODUCTIVE TOXICITY	None known.			÷
	TERATOGENICITY	None known.	CITATAR LT 14 18	-N. S. BERRY	
	SECTION 12	ECOLOGICAL INFORMATI	ON HISTORY NOT	—	
	ENVIRONMENTAL DATA	Not available.			
	an anappanzie of the	The second second second			
a a stad or sa	SECTION 13	DISPOSAL CONSIDERATIO	10 July i I		
ن. المتغلق المتعادية الم	WASTE DISPOSAL	and transportation laws as	duct is regulated under environmental		
		TRANSPORTATION INFOR			
	US DOT INFORMATION	Corrosive liquids N.O.S. 8. UN 1760, PG III, (Ltd.	(Sodium Hydroxids, Sodium Silicate); Oty, for Packaging under 33.05;/1		
	CANADIAN SHIPPING NAME	liter)	<pre>(sodium Bydroxide, Sodium Silicate),</pre>		6
	TDG CLASSIFICATION PIN/NIP	8	TRACE ADDATES STREET	単語学校会社 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	
	PACKING GROUP	Limited Quantity, for Dec	Refering them 1, 8 litres in 'compliance		
	9	, with section 5:2 of the T			
	SECTION 15	REGULATORY INFORMAT	kages less than 1.8 the star compliance DOR in the star star star star star star star star		•
**	WHMIS CLASSIFICATION	D,28; E	પ્લયત્વ પ્લેશ (કુલ્પેશ) પિત્ર કે વિદ્યુ વિદ્યુ		: '
	All ingredients of this Substances Control Act	product are listed or are (TSCA) Chemical Substance I	excluded from/listing on the U.S. Toxic nventory.		
	All ingredients in this	product comply with the Ne	w Substances Notification requirements		
	under the Canadian Envi	ronmental Protection Act (C	EPA).	-	
	This product is not sub These ingredients from	ject to the reporting requi Section 2 are subject to th	rements under California's Proposition (e following reporting requirements:	55.	
	PA - The Pennsylvania H	azardous Substance List			
	NJ - The New Jarsey Rig MA - The Massachusetts	ht to Know Hazardous Substa Hazardous Substance List	nce List		
	SECTION 16	OTHER INFORMATION	• • • • • • • • • • • • • • • • • • •		
	ADDITIONAL INFORMATION.	Use as directed.			
	EFA REGISTRATION #	Not applicable.	, and the the second second second second second		
	PREPARATIO	ON INFORMATION	ar heine ei de a de a na de a de a de a de a de a d	F 163 (M)	
	PREPARED BY	(Manufacturer) for contac			
		· · · · · · · · · · · · · · · · · · ·			
		prepared using data from so	DILUGB COURICELED CECUNICATIA LEITANIE'		
	It does not constitute	a warranty, express or 1mp.	lied, as to the accuracy of the		
	It does not constitute information contained h	erein. Actual conditions of which to evaluate all avail	lied, as to the accuracy of the f use and handling are beyond seller's lable information when using product for	;	
	It does not constitute information contained A control. User is respon any particular use and regulations.	erein. Actual conditions of which to evaluate all avail	lied, as to the accuracy of the f use and handling are beyond seller's lable information when using product for , State, Provincial and Local laws and "Security of the security of the securi	:	
	It does not constitute information contained h control. User is respon any particular use and	erein. Actual conditions of which to evaluate all avail	<pre>iied, as to the accuracy of the f use and handling are beyond seller's lable information when using product for , State, Provincial and Local laws and "Non-distance" """""""""""""""""""""""""""""""""""</pre>		
	It does not constitute information contained A control. User is respon any particular use and regulations.	erein. Actual conditions of which to evaluate all avail	<pre>iied, as to the accuracy of the f use and handling are beyond seller's lable information when using product for , State, Provincial and Local laws and</pre>	:	
	It does not constitute information contained A control. User is respon any particular use and regulations.	erein. Actual conditions of which to evaluate all avail	<pre>iied, as to the accuracy of the f use and handling are beyond seller's lable information when using product for , State, Provincial and Local laws and "Non-distance" """""""""""""""""""""""""""""""""""</pre>	:	
	It does not constitute information contained A control. User is respon any particular use and regulations.	erein. Actual conditions of which to evaluate all avail	<pre>iied, as to the accuracy of the i use and handling are beyond seller's lable information when using product for , State, Provincial and Local laws and</pre>		

and the second second second

ł ţ

ł

MATERIAL SAFETY DATA SHEET

ļ

		MSDS # 113909002	
CITRUS STRIDI	∃ [©] SC	Alternative second	
Date Issued: 25Mar1994		Supersedes: 16Apr1991	
US MANUFACTURER: S.C. Johnson & Scn. : Phone: (800) 725-673 Racine, Wisconsin 53- Emergency Phone: (800 International Emergency Phone: (612	Inc. 7 403-2236 0) 228-5635 Ext 092 2) 221-3999 Ext 092	CANADIAN MANUFACTURER: S.C. JOAnson and Son, Limited Phone: (53) 756-7900 1 Mebster Street Brantford, Ontario NNT SRI SchultzC. (collect) (513) 996-6566 ¹³³ Polaco Control: (800) 228-5535 from DISTRIBUTED IN CANDA, BY S.C. JOAnson and Sen, Limited	4. 54.5 94.5 94.5 94.5 94.5 94.5 94.5 94
HAZARD RATING 4-Very High 3-High 2-Moderate 1-Slight 0-Insignificant	HMIS HAZARD NPPA 1 Health 1 0 Planmability 0 0 Reactivity 0 Special	DISTRIBUTED IN CANDA, BY S.C. JOHNSON and Sea, Limited Facne: (519) 758-6611 1 Webster Street Brantford, Ontario N3T 5R1	
	PRODUCT IDENTIFICATIO	N	
PRODUCT NAME REASON FOR CHANGE PRODUCT USE	CITRUS STRIDE [®] SC New format, Industrial/Institutional		
UPC SCJ	CODE QUANTITY US	SIZE CANADIAN SIZE	
46500 04315 431 46500 03909 390	.5 4 64 0 9 6 32 0	2Z 1.89 L 2Z 946 ML	
SECTION 2 -	INGREDIENT INFORMATIO	N	
		and the second	
ING	REDIENT WE	IGHTY EXPOSURE LIMIT/TOXICITY	
Sodium Citrate (CAS# 6 Citric Acid (CAS# 77-9	8-04-2)	1-2 NOT ESTABLISHED 1-2 NOT ESTABLISHED LD50: 11,700 mg,	/kg
		(oral-rat) 0-15 NOT ESTABLISHED LD50: >1,200 mg, (oral-rat) ; >2,000 mg/kg	
Water (CAS# 7732-16-5)		(dermal-rabbit)	
SECTION 3 -	HEALTH HAZARDS IDENTI	FICATION (Also See Section 11)	
EFFECTS OF ACTURE EXPOSIT	May cause: Mild eye irrit None,known. None known. None known.		
SECTION 4 -	FIRST AID MEASURES		
SKIN CONTACT	Flush immediately with wa permists, get medical att Wash contaminated area wi Remove to fresh air. Immediately drink 1-2 gla	th water and soap.	
SECTION 5 - 1	FIRE AND EXPLOSION INFO	RMATION	
SPECIAL FIREFIGHTING PROCEDURES UNUSUAL FIRE AND	Not applicable. Not applicable. Not applicable. Poam. CO2. Dry chemical. Normal fire fighting proc No special hazards known.	Water fog. edure may be uged.	
EXPLOSION HAZARDS	PREVENTIVE RELEASE ME	ASTRES	
STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED	Absorb with oil-dri or sid	milar inert material. Sweep or scrape u ffected area thoroughly with water.	ıp
SECTION 7 - 1	HANDLING AND STORAGE		
PRECAUTIONARY INFORMATION OTHER HANDLING AND	occurs, flush immediately irritation persists, seek Store in a cool, dry place	e with adequate ventilation. Wash	
STORAGE CONDITIONS		. Keep out of reach of children.	
SECTION 8 - 5	SPECIAL PROTECTION INFO	UKMATION	
RESPIRATORY PROTECTION. VENTILATION. PROTECTIVE GLOVES BYE PROTECTION. OTHER PROTECTIVE MEASURES	General room ventilation a No special requirements un No special requirements un	nder label recommanded use directions. Adequate. Adequate. Ader normal use conditions. Ader normal use conditions. Ader normal use conditions. Ader normal use appropriate	2

- SECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES -÷ ., . Orange COLOR Liquid. Citrus 4.0-4.8 Not available. 小った業 11. 12. j L. L. L. Minney . Sec. 11. 2312 STABILITY...... Stable STABILITY - CONDITIONS. No special requirements. TO AVOID TO AVOID INCOMPATIBILITY...... Do not mix with any other chemicals or products unless specified by label. HAZARDOUS DECOMPOSITION Produces normal products of combustion. PRODUCTS HAZARDOUS...... Will not occur. POLYMERIZATION FOLIMERIZATION HAZARDOUS...... No special requirements. POLYMERIZATION -CONDITIONS TO AVOID ------ SECTION 11 - TOXICOLOGY INFORMATION (Also See Section 3) -LD50 (ACUTE ORAL TOX).. Acute oral LD50 is estimated to be greater than 5000 mg/kg (rate). LD50 (ACUTE DERMAL TOX) Not available. TOX) Not available. TOX) TOX) EFFECTS OF CHRONIC.... None known. EXPOSURE SENSITIZATION..... Note known. CARCINOGENICITY..... Note known. FERATOGENICITY..... None known. MUTAGENICITY...... None known. 14 ENVIRONMENTAL DATA.... Not available. ---- SECTION 13 - DISPOSAL CONSIDERATIONS ----WASTE DISPOSAL....... No special method. Observe all applicable Federal/ Provincial/ INFORMATION State regulations and Local/ Municipal ordinances regarding disposal of non-hazardous materials. US DOT INFORMATION..... Cleaning, scouring or washing compounds, N.O.I., Liquids CANADIAN SHIPPING NAME. CLEANING, SCORING, SCORI - SECTION 15 - REGULATORY INFORMATION ---WHMIS CLASSIFICATION ... Non-regulated. All ingredients of this product are listed or are excluded from listing on the U.S. Toxic Substances Control Act (TSCA) Chemical Substance Inventory. All ingredients in this product comply with the New Substances Notification requirements under the Canadian Environmental Protection Act (C2PA). This product is not subject to the reporting requirements under California's Proposition 65. ---- SECTION 16 - OTHER INFORMATION --ADDITIONAL INFORMATION. Use as directed. EPA REGISTRATION #..... Not applicable. - PREPARATION INFORMATION ---PREPARED BY...... Manufacturer's Technical Support Department. Refer to page 1 (Manufacturer) for contact information. This document has been prepared using data from sources considered technically reliable. It does not constitute a warrancy, express or implied, as to the accuracy of the information contained herein. Actual conditions of use and handling are beyond seller's control. User is responsible to evaluate all available information when using product for any particular use and to comply with all Pederal, State, Provincial and Local laws and regulations. PRINT DATE: 135ep1996

		<u>ь</u>	JULF	FY DATA SHEET					
	Required under USDL Safety and Health Regulations for Ship Repairing,								
	Shipbullaing, a	Shipbuilding, and Shipbreaking (29 CFR 1915, 1916, 1917)							
ili an Iom	(ferre) - 4 	•	SECT						
	MANUFACTURER'S NAME	of I	lid-Yorl	Products Inc. (315)697 9					
- T	ADDRESS (Number, Street, City, State, and ZIP Co				-				
	CHENICAL MANE AND ENNONVAR			TRADE NAME AND SYNONY	MS				
	CHEMICAL FAMILY Alkaline deterge	allı int	ie lilear	FORMULA Blended detergent					
				nan spenda kirupa elektrista tarihitta sa para karaka pada karaka spendara na ang pada pada karaka pada pada pa Nana dara menjang menjang menjang menjang karaka pada pada pada pada pada pada pada p		nin in state state and the state of the stat			
	SECTION	11 •		DOUS INGREDIENTS		11.41.42			
	PAINTS, PRESERVATIVES, & SOLVENTS	×.	TLV [Unite]	ALLOYS AND METALLIC COATIN	GS X	(Units)			
	PIGMENTS			BASE METAL		T CLAR			
ler.	CATALYST			ALLOYS					
1	VEHICLE			METALLIC COATINGS					
	SOLVENTS Ethylene glycol-butyl			PLUS COATING OR CORE FLUX					
1	ADDITIVES Contains less than		50ppm		4 (1)	10318			
	OTHERS Note: Ethylene glycol-bu				Ln (wear	THLY			
	HAZARDOUS MIXTURE			uids, solids, or cases ntains less than	0.2	(United			
-						37782-44			
I.	Sod-meta Silicate (Alkali	ne	dleria.	L) Contains less than	L_0	に上記時代			

5-					ann ambachtigen i drugen affendi				
		TIO	NIII - P	HYSICAL DATA					
ſ	-BOILING POINT (°F.) Approx.		212°F	SPECIFIC GRAVITY (H20=1)		.020			
	WAPOR PRESSURE (mm Hg.)			PERCENT, VOLATILE BY VOLUME (%) EVAPORATION RATE		19484			
	VAPOR DENSITY (AIR=1)			(_water=1)					
	SOLUBILITY IN WATER		omplete	la count aday					
	ARPEARANCE AND ODOR COLOFIESS 1	-qui	u-intta]	oleasant odor					
新	SECTION IV -	FIR	E AND E	EXPLOSION HAZARD DATA					
	ELASH POINT (Method used) NOne	de Carpenier (e la	1000000-1412-2012-201200000-1444		Lei				
2	EXTINGUISHING MEDIA N.A.			n yan da bara da wa ana ana ana ana da ang kan na ang kan ang kan ang kan da ana ang kan ang kan ang kan ang k					
	SPECIAL FIRE FIGHTING PROCEDURES	N.A				. Sheiti			
15	A Garden V and								
	HANNELAL FIRE AND EXPLOSION HAZARDS		N						
	PAGE (1)	(Con	tinued on	reverse side)	Form	OSHA			
						they 78			

	\$	SECTION V - HEALTH HAZARD DATA					
THRESHOLD LIN	INT AYENE		1				
FREECTS OF OVE	rroat		a Alkaline clean	er and is irritat.	ing to skin and the		
eyes. Ma	y cause eye bur	ms if	splashed into eye	8.	A PARTY OF A PARTY OF A PARTY OF		
EMERGENCY AN	D FIRST AID PROCEPL	IRES		ġ <u>ĊŦŦŎĂ</u> ĊĊŢŎĸĊŢŎŦŎĊŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ	in the second s		
wild wate.	r. For uyu comp	uct-fl	ush with water fo	kin contact. Mush r 15 miniues. Con:	skin with sono		
	ŊĊŎġĊĸŎĸĸĸĸĸĸĸŎĸĸĊŎĸĸĊĸġŎĸŶĊĸŶĊĊŎŢĊĬŎġĊŶŎĸĸĊŢŎŎŎŎŎŎŎĸŎŎŎŎĸŎŎŎŎĸ	⁹⁹⁹⁹⁶⁶ 899999999999999999999999999999			Marc Invariant		
9 9 4	۵۹۹۵ میلیم میلیم میلیم کرد. میلیم میلیم میلیم میلیم کرد کرد میلیم کرد کرد کرد میلیم کرد میلیم کرد. میلیم کرد کرد میلیم کرد	۵۰٬۰۰۰ ۱۰۰۰ ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰			1.2.2.2.2.2.2.3.2.4.4.4.2.2.1.1.4.4.4.4.4.4.4.4.4.4.4.4		
nallan dan ar ne menerati		SECTIO	ON VI - PEACTIVIT	Y DATA	T LA TR		
TANLITY	UNSTABLE		CONDITIONS TO AVOID				
na a suite Brann Charles (Carlos a San Anna Anna Anna Anna Anna Anna Ann	STABLE	XX	None	анаралан канаралан тараар бар файруу на орбануу калар карар бар арагы канар карар карар карар карар карар карар			
MCOMPATABILIT	V (Materials 10 evoid)		Construction of the second statement of the second sta				
HAZARDQUS DEC	OMPOSITION PRODUC	CTS		٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ١٩٠٠ - ١٩٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ - ٢٠٠٠ -			
HAZARDOUS	MAY OCCUP	3	CONDITIO	STO AVOID	الم		
MAN SHE BIZATIO	N WILL NOT O	CCUR		₽₩₽₩₽₽₩₽₽₩₽₽₩₽₽₩₽₽₩₽₽₩₽₽₩₽₽₩₽₽₩₽₽₩₽₽₩₽₽	A - C - A - C		
		Mindol and an		⁴ ************************************			
					A Contraction of the second		
	SECT	ION VI	· SPILL OR LEAK	PROCEDURE6	111003的分为		
TERS TO BE TAK			EASED OR SPILLED				
			•	· · ·	111111		
Arge large	spill-ubsorb a	on sund	saw dust. etc.	and dianose of in	Contidant		
Smillarge	spill-ubsorb (on sand	, saw dust; etc.	and dispose of in	container. For		
Smill spi	ll flush down w	with wa	ter. Product is b	iodegradable.			
Small spi	ll flush down ש METHOD	with wa	ter. Product is b formity with app	iodegradable. licable enviromen			
Small spi	ll flush down ש METHOD	with wa	ter. Product is b formity with app	iodegradable.			
Small spi	ll flush down ש METHOD	with wa	ter. Product is b formity with app	iodegradable. licable enviromen			
Small spi	ll flush down w METHOO ASSU rea.	with wa ure con	ter. Product is b formity with app	iodegradable. licable enviromen			
Small spi Small spi in your a	ll flush down w METHOO ASSU rea.	vith wa 1re con VIII • S	ter. Product is b formity with app	iodegradable. licable enviromen			
Small spi Small spi 10 Your a Small Spiral 10 Your a 10 Your a 10 Your a 10 Your a	ll flush down ש שנדאסם האסט האסט האסט האסט האסט האסט האסט האסט	vith wa 1re con VIII • S	ter. Product is b formity with app	iodegradable. licable enviromen			
Small spi MART OHEPSAL In 10 YOUR A MARTINE MA	ון flush down ש אדדאסם האגני גני אני אני אני אני אני אני אני אני אני א	vith wa <u>ire con</u> VIII • S pej	ter. Product is b formity with app	iodegradable. licable enviromen DN INFORMATION			
Small spi MARTE OFFPEAL THE TO YOUR A MARTER TORY PR MARTILATION MARE	Il flush down w METHOD ASSU FEL. SECTION (Specify by) LOCAL EXHAUST MECHANICAL (Gen VES	vith wa <u>ire con</u> VIII • S pej	ter. Product is b formity with app PECIAL PROTECTIO	iodegradable. licable enviromen DN INFORMATION	tal regulations		
Small spi MART PIRPEAL THE ID YOUR A HEATORY PR MARTILATION NOVE	Il flush down w METHOD ASSU FGU. SECTION (Specify by) LOCAL EXHAUST MECHANICAL (Gen VES YES	vith wa <u>ire con</u> VIII • S pej	ter. Product is b formity with app PECIAL PROTECTIO	iodegradable. licable enviromen DN INFORMATION	tal regulations		
Small spi MARTE OISPOSAL ID YOUR A MARTENTIATION MARTENTIATION MARTENTIATION MARTENTIATION MARTENTIATION MARTENTIATION	Il flush down w METHOD ASSU FGU. SECTION (Specify by) LOCAL EXHAUST MECHANICAL (Gen VES YES	vith wa <u>ire con</u> VIII • S pej	ter. Product is b formity with app PECIAL PROTECTIO	iodegradable. licable enviromen DN INFORMATION	tal regulations		
Small spi MARTE OISPOSAL ID YOUR A MARTENTIATION MARTENTIATION MARTENTIATION MARTENTIATION MARTENTIATION MARTENTIATION	Il flush down w METHOD ASSU FEL. SECTION V OTECTION (Specify IV) LOCAL EXHAUST MECHANICAL (Gen VES YES YE EQUIPMENT	vith Wa <u>Pre con</u> VIII • S eralj	ter. Product is b formity with app PECIAL PROTECTIC	DN INFORMATION	tal regulations		
Small spi MARTE OISPOSAL ID YOUR A MARTENTION MARTENTION MARTENTION MARTENTION MARTENTION MARTENTION MARTENTION MARTENTION	Il flush down w METHOD ASSU FEL. SECTION V OTECTION (Specify IV) LOCAL EXHAUST MECHANICAL (Gen VES YES YE EQUIPMENT	with wa <u>pre con</u> VIII - S pej eraly CTION	ter. Product is b formity with app PECIAL PROTECTION EYE PROTE	DN INFORMATION	tal regulations		
Small spi MATT PIEPEAL ID YOUR A MATT PIEPEAL ID YOUR A MATT PIEPEAL MATT PIEPEAL M	Il flush down w METHOD ASSU REA. SECTION (Specify ly) LOCAL EXHAUST MECHANICAL (Gen VES YE EQUIPMENT SE	with wa <u>pre con</u> VIII - S pej eraly CTION	ter. Product is b formity with app PECIAL PROTECTION EYE PROTE	DN INFORMATION	tal regulations		
Small spi MART PIEPEAL In Your a MART PAUR MARTINATION MONE NOTECTIVE GLO THER PROTECTIVE	Il flush down w METHOD ASSU FEL. SECTION (Specify ty) LOCAL EXHAUST MECHANICAL (Gen VES YES VE EQUIPMENT SE BE TAKEN IN HANDL	vith wa <u>ure con</u> VIII • S pej cray CTION -ING ANO	ter. Product is b formity with app PECIAL PROTECTION EYE PROTE IX - SPECIAL PREC STORING	DN INFORMATION SPECIAL OTHER CTION USE Splash go	tal regulations		
Small spi MART PHOPSAL ID YOUR A MART PHOPSAL IN THE PHOPSAL IN THE PHOPSAL	Il flush down w METHOD ASSU FEA. SECTION (Specify by LOCAL EXHAUST MECHANICAL (Gen VES YE EQUIPMENT SE BE TAKEN IN HANDL DNS AVOID COM	vith wa <u>ure con</u> VIII • S pej cray CTION -ING ANO	ter. Product is b formity with app PECIAL PROTECTION EYE PROTE IX - SPECIAL PREC STORING	DN INFORMATION	tal regulations		
Small spi	Il flush down w METHOD ASSU FEA. SECTION (Specify by LOCAL EXHAUST MECHANICAL (Gen VES YE EQUIPMENT SE BE TAKEN IN HANDL DNS AVOID COM	vith wa <u>ure con</u> VIII • S pej cray CTION -ING ANO	ter. Product is b formity with app PECIAL PROTECTION EYE PROTE IX - SPECIAL PREC STORING	DN INFORMATION SPECIAL OTHER CTION Use splash go AUTIONS	tal regulations tal regulations ggles (will cause ave burns) re. Is a Alkalin		
Small spi MART PHEPSAL IN 10 YOUR A MART PHEPSAL IN 10 YOUR A MARTINATION MARTINATION MARTINATION MARTINATION MARTINATIONS TO THES PRECAUTIONS	Il flush down w METHOD ASSU FEA. SECTION (Specify by LOCAL EXHAUST MECHANICAL (Gen VES YE EQUIPMENT SE BE TAKEN IN HANDL DNS AVOID COM	vith wa <u>ure con</u> VIII • S pej cray CTION -ING ANO	ter. Product is b formity with app PECIAL PROTECTION EYE PROTE IX - SPECIAL PREC STORING	DN INFORMATION SPECIAL OTHER CTION USE Splash go CAUTIONS	tal regulations		
Small spi MART PHEPSAL HILLS	Il flush down w METHOD ASSU FEA. SECTION (Specify by LOCAL EXHAUST MECHANICAL (Gen VES YE EQUIPMENT SE BE TAKEN IN HANDL DNS AVOID COM	vith wa <u>ure con</u> VIII • S pej cray CTION -ING ANO	ter. Product is b formity with app PECIAL PROTECTION EYE PROTE IX - SPECIAL PREC STORING	DN INFORMATION SPECIAL OTHER CTION Use splash go AUTIONS	tal regulations		
Small spi MARE PREPAL IN TO YOUR A MARE PROTON PR MARE PROTECTION PROTECTIVE GLO PROFESSIONS TO THER PRECAUTION	Il flush down w METHOD ASSU FEA. SECTION (Specify by LOCAL EXHAUST MECHANICAL (Gen VES YE EQUIPMENT SE BE TAKEN IN HANDL DNS AVOID COM	vith wa <u>ure con</u> VIII • S pej cray CTION -ING ANO	ter. Product is b formity with app PECIAL PROTECTION EYE PROTE IX - SPECIAL PREC STORING	DN INFORMATION SPECIAL OTHER CTION USE Splash go CAUTIONS	tal regulations tal regulations oggles (will cause ave burns) re. Is a Alkalin Form OSHA.20		
MART PROTECTIVE GLO THER PROTECTIVE MARTINATIONS TO THER PRECAUTIONS AGE (2) AGE (2) AGE (2)	Il flush down w METHOD ASSU FEA. SECTION (Specify by LOCAL EXHAUST MECHANICAL (Gen VES YE EQUIPMENT SE BE TAKEN IN HANDL DNS AVOID COM	vith wa <u>ure con</u> VIII • S pej cray CTION -ING ANO	ter. Product is b formity with app PECIAL PROTECTION EYE PROTE IX - SPECIAL PREC STORING	DN INFORMATION SPECIAL OTHER CTION USE Splash go CAUTIONS	tal regulations tal regulations oggles (will cause ave burns) re. Is a Alkalin Form OSHA.20		

•

•

FROM :		PH	ONE NO.	* •	and a statement of the state		Ju	un. 28 199	9 01:14A	1 P1
Harlindour Matorial Spills: NYE Department Environmental Conservation :		MATERI.	AL SAF	ety	data s	HEET				
226-2666(607) 324-6506			DS DATE:	12/3				Exergency	CHECKTREC: Tels 9: (BOO)	424-9304
REI	LIABLE PRODUC		1 24		NEW YOF	uk 1341	1 (315			
I. PRODUCT IDENTI		alahat ang						363-9202		- William -
Product Name: Spray CL	and the second	1999 (1999)	7		Name of the State	····				
II. Hazardous Ingg	cdients / Id	entity Info.	Cut	NO.:	:	KU,		icips Mu.;	200-م	3
Caranteria Constanting Same risto			the second second holds	1						
Coustic Soda (CAS No. 1310-75							~ GEGI . DET.	APOTE 21.4	OWNE	IC.W
and the second design of the s				- Chipatha da coda bio		l	245/10	irritant-on	Limits	<2,6
Sodium meta Bilioste (GAS No.	Contrast of the second se						2007/243	irritant-ca		<1,0
Ethylene glysel butyl etter (CAB No. 111-76-2)		701-110-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		*****		340 ppa			<5,0
	-D-4,456,987,624									
III. Physical Data		710712			······································					
	212 deg F		······				-	······		
	ND				\$pecific G		tar-1): 1.0	1		
	ND				Evaporation	Meiting				~~~~~
solubility in Wator:	complate	"/Watchatchate						er, this liquid,	and have a state	
					-1			ar, e., a 114110,	alta ocor	
V. Fire and Explos	ion Data									
lash Point (Nathod Used):	none	Charles an ann an Anna Anna an]	Fla	unatle Lis	ates:	171	Lectore sources Ter	
Ktizgujshing Hedia:	ND							bCk.	0	*
nusual Fire and Explosion Nam	ardo: ND		Spacial ri	ro Fighti	vy Procedures					
. Reactivity Data	<u></u>					L				
Scand 21ty										
	and a second	ditions to Avoid:	none kaowa					**************************************		
Stable X Unstable	Mate	orials to Avoid;	none known							A
an and any construction go go before a second										August -
Harites (Iot subress)	Base Haze	ardous Decomposition	or Byproducts		des of nitro	oren and d			· · · · · · · · · · · · · · · · · · ·	
May Occur Not Occu	- x	sitions to Avoid:		Ŕ				1000000 ⁰ 0	with the second s	
I. Health Hazard D	- 4					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			and a later of the second s	
		Participation		File	-					
wates of Entrys Indelet	tion: X	Skin: X	Ingentio	n: X	1. X.Y.L #1	ĸ				
lealth Hazards (Acute and Chro	nic):									
Nay Cause severe eys burn. M may recult in vomiting - aspi	by irritate skin. ration into lungs :	ligh vapor concentra mint be avoided.	tion may date	o irritit	ios to nove,	throat an	d respirator	y trict. ingest	.011	
arcinegenicity: NTP:	۲	IARC Monogr	aplis: N	10	an a	OSHA RO	gulated:	NO	÷'	
rdus fung Sambfonds 0; Syboanse	1	Irritation as noted						1979 - J		whith an entry of the
edical Conditions Aggravated 1	by Exponings:	Pre-oxisting skin di	sorders nay h	o further	Aggravated	by exuosine	a to this m	oduct		
	• • •									
margancy and Tirst Aid Process	UL49:	Nym/Skin Contact: FJ not induce vomiting.	. Seek medic:	st least 11 attenti	on inneciete:	зыах ттыры ly.	diato modica	a actuation. Ing	stion: Do	
11. Precautions for	Safe Fandlin	o and Use			· W VILDINAL STREET	Maana , in 1999 and 1999			10.000 million from 19.00 pt al	
rocodures in Case of Spill or										
Large Spill: Dike and contain	and the second	absorbant (eg. diet)	. Guall spil	lt rinse	to sever.			<u>وار و و پې د د ده. و و باده ته مطلقات س</u>		
	•			_	, ·					
n and a second			Wolden and a second second							1993-1993-1994
aste Cisposal Mathod(s):	Meler to Yed., Sta	to, and local regulat	.) 6h.k	Nand	ling and Stor	ring Proce	ations:	Avaid Teleaso of public with	r. Avoid ay	
ther frecautions: Keep in	closed containers	when not in use.] '	or excessive ski	a concaci	
MIII. Control Measur					P MANDAL AND DESCRIPTION			1		
espiratory Protection (Specif	у туре): МО	***				Protect	ive Cloves:	chomical rosis	LAAL	
we Protection: Safety glas	ses or goggles	Cther Pr	notective Clo	thing or "	aupment:		••••••••••••••••••••••••••••••••••••••			
Lacol States and Lacol	Exhaust:	x	Special:		Vock (87	da De je (W.		ter using this pr		
No. No.	chanical:		Othes:	** te le	J North Syn	CHORE ST.		7 after contact w		

MATERIAL SAFETY DATA SHEET

Page 1 of 4 **CREW NA BOWL CLEANER**

Date Issued: 12Apr1996

US MANUFACTURER:

S.C. Johnson Commercial Markets, Inc. S.C. Johnson Professional 8310 16th Street Sturtevant, Wisconsin 53177-0902 Phone: (800) 725-6737 MSDS Internet Address: www.scjprofessional.com Emergency Phone: (800) 851-7145

MSDS # 114570006

Supersedes: 12,Jul1995

CANADIAN MANUFACTURER: S.C. Johnson Professional, Inc. Phone: (519) 756-7900 1 Webster Street, Suite 100 Brantford, Ontario N3T 5R1 Transportation Emergency: CANUTEC (collect) (613) 996-6666 Emergency Phone: (800) 851-7145

HAZARD RATING	HMIS	HAZARD	NFPA	DISTRIBUTED IN CANADA BY: S.C. Johnson Professional, Inc.
4-Very High		Health	1	Phone: (519) 758-6611
3-High	õ	Flammability	0	1 Webster Street, Suite 100
2-Moderate .	0	Reactivity	0	Brantford, Ontario N3T 5R1
1-Slight		Special		
0-Insignificant				

----- SECTION 1 - PRODUCT IDENTIFICATION -----

PRODUCT NAME	CREW NA BOWL CLEANER	
REASON FOR CHANGE	No significant changes.	
PRODUCT USE	Industrial/Institutional:	Cleaning product

----- SECTION 2 - INGREDIENT INFORMATION -----

EXPOSURE LIMIT/TOXICITY WEIGHT% INGREDIENT -----

------ SECTION 3 - HEALTH HAZARDS IDENTIFICATION (Also See Section 11) ------

ROUTE(S) OF ENTRY	Skin	contact
EFFECTS OF ACUTE EXPOSURE	2:	
ЕҮЕ	None	known.
SKIN	None	known.
INHALATION	None	known.
INGESTION	None	known.
MEDICAL CONDITIONS	None	known.
GENERALLY RECOGNIZED		
AS BEING AGGRAVATED		
BY EXPOSURE		

------ SECTION 4 - FIRST AID MEASURES ------

EYE CONTACT..... Flush immediately with plenty of water for at least 15 to 20 minutes. If irritation persists, get medical attention. Wash contaminated area with water and soap. SKIN CONTACT..... INHALATION Remove to fresh air. Immediately drink 1-2 glasses of water or milk. Do not administer INGESTION..... anything by mouth to an unconscious person.

----- SECTION 5 - FIRE AND EXPLOSION INFORMATION -----

FLASH POINT..... Not applicable.

MATERIAL	SAFETY	DATA	SHEET
----------	--------	------	-------

MSDS # 114570006

Page 2 of 4 CREW NA BOWL CLEANER

Date Issued: 12Apr1996

Supersedes: 12Jul1995

SECTION 5 - F	FIRE AND EXPLOSION INFORMATION (continued)
FLAMMABLE LIMITS AUTOIGNITION TEMPERATURE	Not applicable. Not applicable.
EXTINGUISHING MEDIA SPECIAL FIREFIGHTING PROCEDURES	Foam. CO2. Dry chemical. Water fog. Normal fire fighting procedure may be used.
UNUSUAL FIRE AND EXPLOSION HAZARDS	No special requirements.
SECTION 6 - 1	PREVENTIVE RELEASE MEASURES
STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED	Absorb with oil-dri or similar inert material. Sweep or scrape up and containerize. Rinse affected area thoroughly with water.
SECTION 7 - 1	HANDLING AND STORAGE
	CAUTION: Keep out of reach of children.
PRECAUTIONARY	
STORAGE CONDITIONS	Keep from freezing. Wash thoroughly after handling.
SECTION 8 - 8	SPECIAL PROTECTION INFORMATION
RESPIRATORY PROTECTION. VENTILATION PROTECTIVE GLOVES	No special requirements under label recommended use directions. General room ventilation adequate. No special requirements under normal use conditions. If prolonged or repeated contact is possible: Any impervious material.
EYE PROTECTION OTHER PROTECTIVE MEASURES	No special requirements under normal use conditions. If major exposure is possible to eyes/skin, wear/use appropriate protective equipment.
SECTION 9 -	PHYSICAL AND CHEMICAL PROPERTIES
COLOR	Blue
PRODUCT STATE	Liquid.
ODOR	Floral
pH ODOR THRESHOLD	
SOLUBILITY IN WATER	
SPECIFIC GRAVITY	
(H2O=1) VAPOR DENSITY (AIR=1)	Same as water.
EVAPOR DENSITY (AIR-1) EVAPORATION RATE (BUTYL ACETATE=1)	
VAPOR PRESSURE (mm HG).	Same as water.
BOILING POINT	> 200°F (> 93°C)
FREEZING POINT	. ~ 32°F (~ 0°C) . Not available.
WATER/OIL	
PERCENT VOLATILE BY VOLUME (%)	
VOLATILE ORGANIC COMPOUND (VOC)	. NOT available.

B776

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name JEFFREY NELLENBACK Date/Time Prepared 12/19/06 9:00
Preparer's Affiliation DOLPHIN TECHNOLOGY INC. Phone No. 315-838-7045
Purpose of Investigation Indoor Air Quality in Vicinity of 7755ite
Property Address: 474 PHOENIX DRIVE ROME NY 13441
Location/Sample ID: Building 776. Samples 776-IAI+IAZ
1. OCCUPANT: Interviewed: (P) N Last Name: <u>Nellenberck</u> First Name: <u>Settrey G.</u> Address: <u>474 Phoenix Dr Rome M 13441</u> County: <u>Oneida</u> Home Phone: <u>315-838-7045</u>
Typical Number of Occupants/persons at this location
Approximate Age of Occupants 37
Typical hours of occupancy: From 7:00 Am To 6:00 Pm
2. OWNER OR LANDLORD: (Check if same as occupant) Interviewed: $Y(N)$
Last Name:First Name:
Address:
County:
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS - Type of Building: (Circle appropriate response)
Residential School Commercial/Multi-use
Industrial Church Municipal / Government
Other (Describe): * offices

÷

If multiple units, how many? <u>NA</u>		
If the property is commercial, type?	•	
Business Type(s) <u>SOFTWARE</u> DEVELOPM	ENT	
Does it include residences (i.e., multi-use)?	Y (N	If yes, how many?
Other Building Characteristics:		
Number of floors	Approx. bui	ilding age
Is the building insulated (Y) N	How air tig	ht? Tight (Average) Not Tight
4. AIRFLOW Qualitatively describe:		
Airflow between floors NA		
	•	
Airflow near source		
		· · · · · · · · · · · · · · · · · · ·
Outdoor air infiltration Vig Heat Pump 5 (24yrs old) and u	(43 Heat i bystem, W Vindows do	indows & Doors all newer
Infiltration into air ducts See aboyp		

Confidential

Location ID:

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone (brick	other	
b. Basement type:	full	crawlspace	slab	other		#12"Thick
c. Basement floor:	concrete	dirt	stone	other	<u>.</u>	
d. Basement floor:	uncovered	covered	covered wit	th		
e. Concrete floor:	unsealed	sealed	sealed with			<u> </u>
f. Foundation walls:	poured	block	stone	other		
g. Foundation walls:	unsealed	sealed	sealed with			<u> </u>
h. The basement is:	wet	damp	dry 1	moldy		*
i. The basement is:	finished	unfinished	partially fin	ished		
j. Sump present?	Y / 🕅					
k. Water in sump?	Y/N/NA					
I. Sump covered/sealed?	Y/N (NA)					
m. Floor drains present?	MN/NA I	n bathroo	2002			
n. Perimeter trench drains present?	Y / 🕅 NA					
o. Indoor cisterns/drywell?	Y /(Ŋ/ NA	· .	•			
p. Laundry chute to 1 st or 2 nd Floors?	Y/N/NA					
	٨					

Basement/Lowest level depth below grade: <u>NA</u> (feet)

Identify and describe potential soil vapor entry points and approximate size (e.g., floor cracks, utility ports, floor drains, wall cracks, weeps, or indoor wells)

One Grack in Concrete floor, near building 100 & Main Conf. Room ø Pumps on Root, circulate outside air constant Other Comments: Heat

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply) Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation	(Heat pump)	Hot water baseboard
Space Heaters	Stream radiation	Radiant floor
Electric baseboard	Wood stove	Outdoor wood boiler Other
Approximate age of heating syst	tem(s): <u>4 Yrs</u>	· _ · _ ·
The primary type of fuel used	is: STEAM	
Natural Gas	Fuel Oil	Kerosene
Electric	Propane	Solar
Wood	Coal	
Domestic hot water tank fuele	d by: ELECTRIC	
Fuel oil storage location/cond	ition/size, if applicable:	NA
02:000699_NV29_04_00-B1781	3	

Confidential

	1-77/
Location ID:	B776

			•			
Boiler/furnace loca	ted in:	Basement	Outdoors	Main Floor	Other Heat R	mpson Roof
Storage wood or co	al: NA	Basement	Outdoors	Main Floor	Other	
Fireplace(s) located	in: NA	Basement	Main Floor	Other	and trib	
Air conditioning:		Central Air	Window	99 W/Cooling to units Open V	Vindows Non	ie
Dehumidification:		Stand alone	unit Loca	ted on central air s	ystem	
Are there air distri	bution duc	ets present?	(Ý/ N			· · ·
					isible, including whe ie floor plan diagram	
	-	•		· /	s void space	,
<u> </u>		muicita s	Hand L	an touch	ngers.	
Cering	anc	<u>exi917</u>	<u>rniougn v</u>	<u>IEGI EXZIJAN</u>	iger in	<u> </u>
<u> </u>			<u></u>			
						<u></u>
7. OCCUPANCY I	s basemen	t/lowest level	occupied? Fu	ll-time Occasio	onally Seldom	Almost Never
Level <u>Ger</u>	eral Use o	f Each Floor	(e.g., family roo	om, bedroom, lau	ndry, workshop, stor	rage)
Basement <u>N</u>	/n		. ,			
1 Floor	FFICES		·	<u></u>		
2 nd Floor						
3 Floor						

វា	
4	Floor

,

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

а.	Is there an attached garage?	Y / 🕅
b.	Does the garage have a separate heating unit?	Y/N/NA
c.	Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car, boat)	Y / N (NA) Please specify
d.	Has the building ever had a fire?	Y / N When?
e.	Is a kerosene or unvented gas space heater present?	Y / (N) Where?

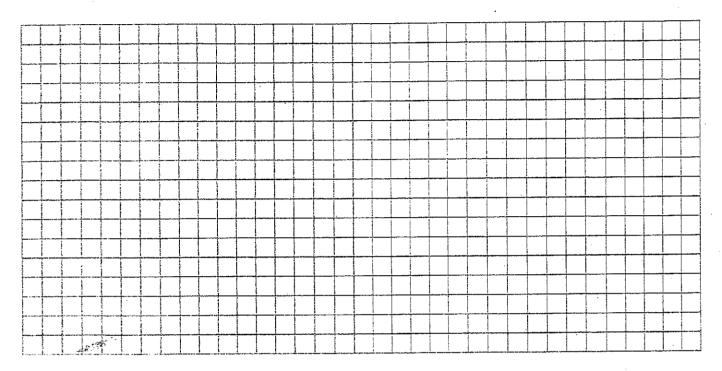
Confidential			Location ID:				
f. Is there a workshop or hobl	oy/craft area?	Y 🕅	Where & Type?				
g. Is there smoking in the buil	ding?	Y 🕅	How frequently?				
h. Have cleaning products bee	n used recently?	🐑 N	When & Type? <u>TUES</u> THUR, SUN.				
i. Have cosmetic products bee	en used recently?	Y/N	When & Type?				
j. Has painting/staining been	done in the last 6 months	? Y/N	Where & When?				
k. Is there new carpet, drapes	or other textiles?	Y /(N)	Where & When?				
1. Have air fresheners been us	ed recently?		When & Type?				
m. Is there a kitchen exhaust fa	an?	(Y)/ N	If yes, where vented? <u>Outpowers</u>				
n. Is there a bathroom exhaus	t fan? ⊡ Basement ⊠ First floor	Ý) N	If yes, where vented? <u>Our Dooks</u>				
o. Is there a clothes dryer?	🗆 Gas 🛛 Electric	Y / 🕅	If yes, is it vented outside? Y / N				
p. Has there been a pesticide a	pplication?	(Ŷ/ N	When & Type? July ANTS				
q. Basement windows?	: Casement Awning G	ilass bloci	k Condition:				
r. Are there exterior doors in			Y/N/NA				
Are there odors in the buildi If yes, please describe:		Y /Ø					
Do any of the building occupants use solvents at work? Y $/ \widehat{\mathbb{W}}$ (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)							
If yes, what types of solvents are	used?		·				
If yes, are their clothes washed at	work? Y/N	Ď					
Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate							
response)			,				
Yes, use dry-cleaning regul	arly (weekly)		No BO People Unknown Working.				
Yes, use dry-cleaning infred	quently (monthly or less)		Unknown Working.				
Yes, work at a dry-cleaning		• • •					
Is there a radon mitigation system		re? Y	(N) Date of Installation:				
Is the system active or passive? NA Active/Passive							

- 5

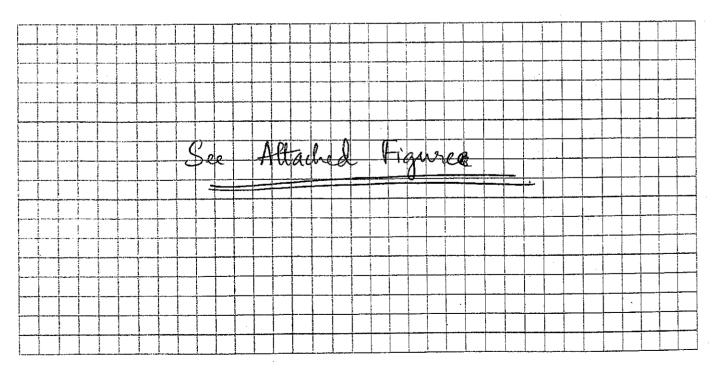
Confidential		Location ID:				
9. WATER AND S	EWAGE	•				•
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:	
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:	
10. RELOCATION	I INFORMATION (fe	or oil spill residen	tial emergency) N	OT USED		
	DNMENTAL HAZARD: ay impact vapor mitigati No Suspected stimated Quantity:		tion or other constr ng Gutted	uction activities: 4 yrs. Ag	0.	
1. Location & Es	stimated Quantity:	None Know	WN			
2. General Con		Fair Poor			· · · · · · · · · · · · · · · · · · ·	
B: Lead Paint: 1. Location & E	Yes No Suspe		spected			
2. General Con 3. Other Comm	dition: Good	Fair Poor				
	·					

,

,

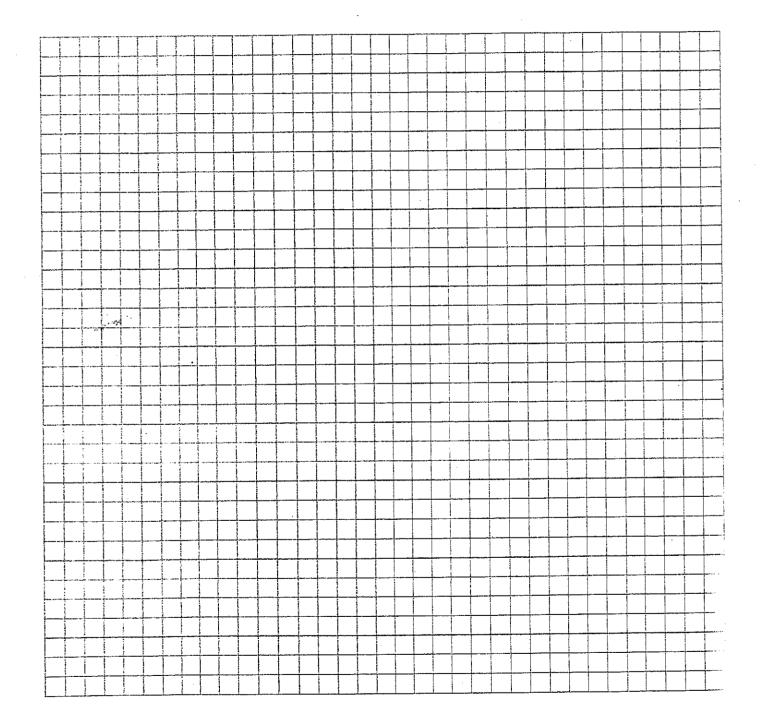

ł

Confidential


12. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note. Include compass orientation or reference to street or front of house.

Basement:


First Floor:

13. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Confidential

576 B716 Location ID:

14. PRODUCT INVENTORY FORM

Page ____ of ____

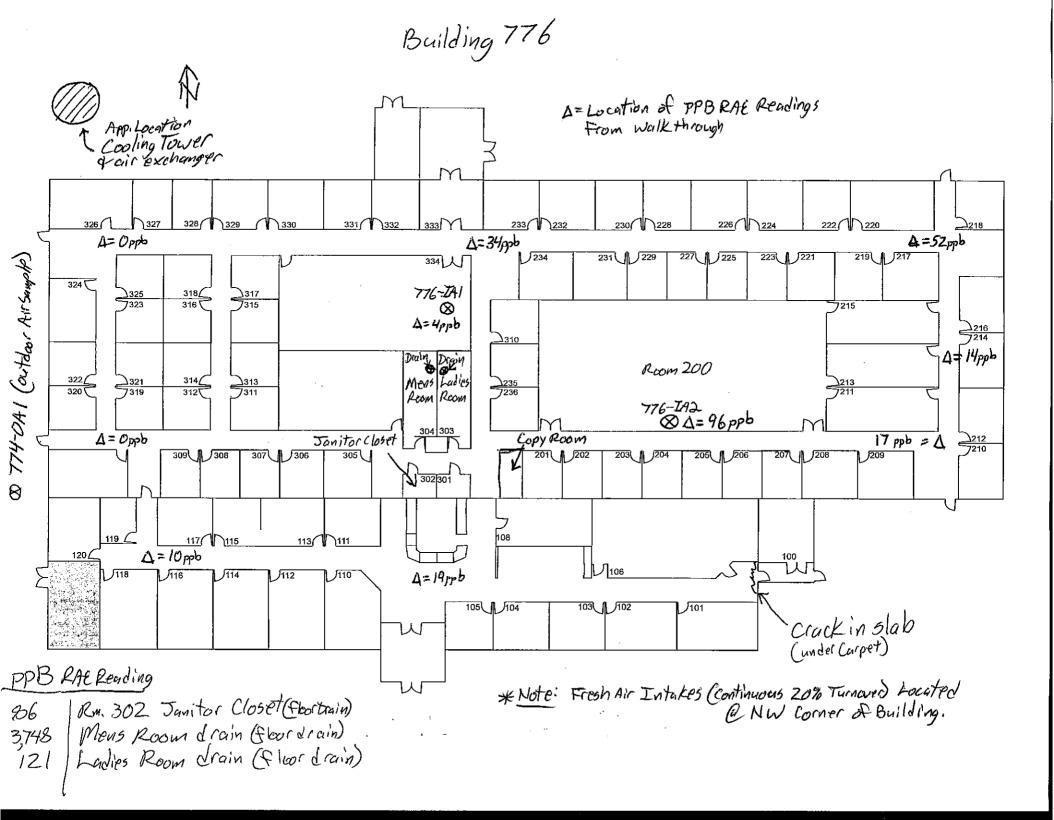
List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition *	Chemical Ingredients	Field Instrument Reading (units)	Photo
RM 302 Jenitor dot	Quickie Professional Glass Cleaner	Qt	in use	Various Sep MSDS"	36 pp Floor Opp St Che	#6
(Oppost Che	ss mers
()	Enviro-Solutions Deod, Lotton Bogp #50	Ibal	4		~7000	
lt	Enviro-Solutions Deod, Lotion Bogp #50 Enviro-Solutions Limp Remover & Descaler#57	IGal	11	· .	3/ppb	
<i>J</i> (Suigh- Winter Flogs	4- Yz Gals	it		-9,000	
Copy Room Rm 109	Sanford Expo White board Cleaner	1641	in use,	2-Butox Cthonol/Acetak isopropyl Alcohol	535	#7
					- -	- -
	and the second	i				
· · · · · · · · · · · · · · · · · · ·	· · · ·					

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Building 776


DOLPHIN TECHNOLOGY INC. MSDS LISTING

SHEET #	DESCRIPTION
A-1	ANSUL FE-36 FIRE EXTINGUISHER
A-2	ANSUL FORAY DRY CHEMICAL FIRE EXTINGUISHER
C-1	CLAIRE STAINLESS STEEL POLISH & CLEANER
C-2	CLOROX BLEACH
C-3	CLOROX BLEACH PEN
C-4	COMPUCESSORY CLEANING WIPES
D-1	DAWN LIQUID DISHWASHING DETERGENT
D-2	DURACELL PROCELL ALKALINE BATTERY
D-3	DUST-OFF ANTI-STATIC MONITOR WIPES
D-4	DUST-OFF AIR DUSTER
E-1	ELMER'S GLUE-ALL
E-2	ENDUST FURNITURE POLISH
E-3	ENVIRO-SOLUTIONS NATURAL DISINFECTANT CONCENTRATE #256C
E-4	ENVIRO-SOLUTIONS PAINT STRIPPER & GRAFFITI REMOVER
E-5	1621 ENVIRO-SOLUTIONS DEODORANT LOTION SOAP #50- Opp b closed, 2 7000 open
E-6	EXPO CLEANER FOR DRY ERASE SURFACES
E-7	J σ_{a} (ENVIRO-SOLUTIONS LIME REMOVER AND DESCALER #57 – 31 Ppb
E-8	EXPO DRY ERASE MARKERS
G-1	GLAREKLEEN CLEANING WIPES
H-1	HP INKJET CARTRIDGE 51629 - # 29
H-2	HP INKJET CARTRIDGE 51645 - # 45
H-3	HP INKJET CARTRIDGE C6578 - # 78
H-4	HP INKJET CARTRIDGE C8727A - # 27
H-5	HP INKJET CARTRIDGE C8728A - # 28
H-6	HP PRINT CARTRIDGE C4127A/X
H-7	HP PRINT CARTRIDGE C4182X
H-8	HP PRINT CARTRIDGE C8061A/X
H-9	HP PRINT CARTRIDGE C9720A
H-10	HP PRINT CARTRIDGE C9721A
H-11	HP PRINT CARTRIDGE C9722A
H-12	HP PRINT CARTRIDGE C9723A
H-13	HP PRINT CARTRIDGE Q1338A
H-14	HP PRINT CARTRIDGE Q2670A
H-15	HP PRINT CARTRIDGE Q2671A
H-16	HP PRINT CARTRIDGE Q2672A
H-17	HP PRINT CARTRIDGE Q2673A
H-18	HP PRINT CARTRIDGE Q2681A

Building 776

DOLPHIN TECHNOLOGY INC. MSDS LISTING

H-19	HP PRINT CARTRIDGE Q2682A
H-20	HP PRINT CARTRIDGE Q2683A
H-21	HOOVER BARE FLOOR CLEANER
K-1	KENSINGTON DUSTER II
K-2	KENSINGTON SCREEN GUARDIAN
M-1	MR. CLEAN MAGIC ERASER
P-1	PAPER MATE LIQUID PAPER FAST DRYING CORRECTION FLUID
P-2	PENTEL CORRECTION PEN
P-3	PROPANE
P-4	PAPER MATE LIQUID PAPER ALL PURPOSE CORRECTION PEN
R-1	RESOLVE FABRIC & UPHOLSTERY CLEANER
R-2	RAYOVAC ALKALINE BATTERIES
S-1	SCHULTZ ORCHID FOOD
S-2	SWISH A-323 LEMON OIL FURNITURE POLISH
S-3	SWISH CLEAN-IT COFFEE STAIN REMOVER
S-4	SWISH DEFOAMER
S-5	SWISH DURATION URETHANE FORTIFIED FINISH
S-6	SWISH FULL PRESS NO RINSE STRIPPER CONCENTRATE
S-7	SWISH LIBERTY
S-8	SWISH QUATO 15
S-9	SWISH SUNBEAM NATURAL CLEANER
S-10	SWISH SPARKLE GLASS CLEANER
S-11	SWISH WINTERINSE FLOOR CLEANER CONCENTRATE
S-12 -	STAIN EXTINGUSHER FABRIC SPOTTER
S-13	SWISH POWERHOUSE
S-14	STOKO REFRESH MOISTURIZING FOAM SOAP
S-15	SCRUBBING BUBBLES BATHROOM CLEANER
S-16	SWIFFER DUSTER
S-17	SANFORD SHARPIE PERMANENT MARKER
U-1	URINAL SCREENS WITH DEODORIZING BLOCK
W-1	WILSON JONES PAPER SHREDDER OIL
W-2	WINDEX BLUE

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Bob Meyers Date/Time Prepared 12/21/06
Preparer's Affiliation 1500 4 + ENVIRONMENT Phone No. 716 684-8060
Preparer's Alfination <u>(20018) 9 + Coveres</u> Thome Re.
Purpose of Investigation Check Guality of Indoor Alm
Property Address: Building 785 @ Aprin & Former GAFB
Purpose of Investigation <u>Check Quality of Indoor Alph</u> Property Address: <u>Building 785 D Apron 2 Former GAFB</u> Location/Sample ID: <u>785-IA1 + 785-IA2</u>
1. OCCUPANT: Interviewed: Y/N
Last Name: First Name:
Address:
County:
Home Phone: Office Phone:
Typical Number of Occupants/persons at this location $_ \oint$
Approximate Age of Occupants
Typical hours of occupancy: From To
2. OWNER OR LANDLORD: (Check if same as occupant) Interviewed Y N
Last Name: JERRARY First Name: CAThy & AFRPA
Address: 153 Brooks Rd. Rome Ny
County: Onercla
Home Phone: <u>315-330-3371</u> Office Phone:
3. BUILDING CHARACTERISTICS - Type of Building: (Circle appropriate response)
Residential School Commercial / Multi-use
Industrial Church Municipal Government
Other (Describe): <u>Airplane Hangar</u>

CONFIDENTIAL

B785

If multiple units, how many?
If the property is commercial, type? VACANT. AIRPLANE Hanger
Business Type(s) NoNLS
Does it include residences (i.e., multi-use)? Y N If yes, how many?
Other Building Characteristics: Not Currently Heated, was steam heated
Number of floors PRIMARILY W/2 Floor Approx. building age
Number of floors <u><u>Rimarily</u> $W/2$ Floor Approx. building age Is the building insulated? Y(N) instale How air tight? Tight / Average (Not Tight)</u>
4. AIRFLOW Qualitatively describe:
Airflow between floors Open doors, No heat, open windows
Airflow near source Source is GW Plume Cracks in floor were repaired & Pain ted
Outdoor air infiltration Building is NOT AME TIGHT, CAN See Light Through GAPSO in WAlls / HANGAR DOORS:
Infiltration into air ducts NA, No heating/cooling

	Location ID:_	
5. BASEMENT AND CONSTRU	JCTION CHARACTERISTICS (Circle all that apply)	
a. Above grade construction:	wood frame concrete stone brick oth	her METAL
b. Basement type:	full crawlspace slab other	
c. Basement floor:	concrete dirt stone other	<u></u>
d. Basement floor:	uncovered covered with	
e. Concrete floor: Were Paint	$\sqrt{\text{unsealed}}$ sealed sealed with	
f. Foundation walls:	poured block stone other	
g. Foundation walls:	unsealed sealed sealed with	
h. The basement is:	wet damp dry moldy	
i. The basement is:	finished unfinished partially finished	
j. Sump present?	Y /	
k. Water in sump?	Y/N/NA	
/ I. Sump covered/sealed?	Y/N/NA	ated translas
m. Floor drains present?	VININA Along Front & back door (con	CEC IVENCAR
n. Perimeter trench drains prese	nt? (YJN/NA See Phore	
o. Indoor cisterns/drywell?	Y (N) NA	
p. Laundry chute to 1 st or 2 nd Flo	ors? Y/N (NA)	•
Basement/Lowest level depth below	grade:(feet)	· .
2-Monitoring Wells i Cracks (Previously Re Other Comments: Building		
2-Monitoring Wells i Cracks (Previously Re	n Building paired in Floor	· · · · · · · · · · · · · · · · · · ·
2-Monitoring Wells i Cracks (Previously Re Other Comments: Building 5. HEATING, VENTING and AIR (his building: (circle all that apply – Hot air circulation H Space Heaters	n Building paired in Floor Not Currently Occupied of Weater CONDITIONING (Circle all that apply) Type of heating syst note primary) Not Currently breated Heat pump Hot water baseboard Design disting	
2-Monitoring Wells in Cracks (Previously Rep Other Comments: Building 5. HEATING, VENTING and AIR (his building: (circle all that apply – Hot air circulation H Space Heaters Electric baseboard	n Building paired in Floor Not Currently Occupied of Weater CONDITIONING (Circle all that apply) Type of heating syst note primary) Not Currently breated Heat pump Hot water baseboard Design disting	em(s) used in
2-Monitoring Wells in Cracks (Previously Rep Other Comments: Building 5. HEATING, VENTING and AIR (his building: (circle all that apply – Hot air circulation H Space Heaters Electric baseboard	n Building paired in Floor Not Currently Occupied of Weater CONDITIONING (Circle all that apply) Type of heating syst note primary) Not Currently breated Heat pump Hot water baseboard Radiant floor Vood stove Outdoor wood boiler Other	
2 - Monitoring Wells in Cracks (Previously Rep Other Comments: Building 5. HEATING, VENTING and AIR (his building: (circle all that apply - Hot air circulation I Space Heaters Electric baseboard Supproximate age of heating system(s): The primary type of fuel used is: Natural Gas F	n Building paired) in Floor Not Currently Occupied of Weater CONDITIONING (Circle all that apply) Type of heating syst note primary) Not Currently breated Heat pump Hot water baseboard Radiant floor Nood stove Out of Service - WAS Steam Fuel Oil Kerosene	
2-Monitoring Wells in Cracks (Previously Rep Other Comments: Building Ther Comments: Building Heating: (circle all that apply – Hot air circulation H Space Heaters Electric baseboard Approximate age of heating system(s): The primary type of fuel used is: Natural Gas H Electric H	n Building paired in Floor Not currently Occupied or Weater Not currently Occupied or Weater CONDITIONING (Circle all that apply) Type of heating syst note primary) Not Currently breater Heat pump Hot water baseboard Heat main Radiant floor Nood stove Out of Service - WAS Steam Solar	
2-Monitoring Wells in Cracks (Previously Rep other Comments: Building Heat TING, VENTING and AIR (his building: (circle all that apply – Hot air circulation H Space Heaters Electric baseboard pproximate age of heating system(s): The primary type of fuel used is: Natural Gas H Electric H	n Building paired) in Floor Not Currently Occupied of Weater CONDITIONING (Circle all that apply) Type of heating syst note primary) Not Currently breated Heat pump Hot water baseboard Radiant floor Nood stove Out of Service - WAS Steam Fuel Oil Kerosene	Nowe
2-Monitoring Wells in Cracks (Previously Rep other Comments: Building Heat TING, VENTING and AIR (his building: (circle all that apply – Hot air circulation H Space Heaters Electric baseboard pproximate age of heating system(s): The primary type of fuel used is: Natural Gas H Electric H	n Building paired in Floor Not currently Occupied or Wester Not currently Occupied or Wester CONDITIONING (Circle all that apply) Type of heating syst note primary) Not Currently becated leat pump Hot water baseboard Radiant floor Out of Service - WAS Steam Solar Dal Solar	Nowe

02:000699_NV29_04_00-B1781
Indoor Air Quality Questionnaire Ene Rev 3.Doc-6/16/2006
······································

Confidential				Location	id: <u>13785</u>	
		_		·		L
Boiler/furnace located in:		Outdoors	Main Floor	Other <u>S7</u>	EAM Piped	NU
Storage wood or coal: MA	Basement (Outdoors	Main Floor	Other _		<u> </u>
Fireplace(s) located in: NA	Basement N	Main Floor	Other			
Air conditioning: NA	Central Air	Window u	nits Open W	'indows	None	
Dehumidification:	Stand alone unit	Locate	d on central air sy	rstem		
are there air distribution due	ets present?	YN B	out out c	of Senia	ce.	
Describe the supply and cold	air return ductwo	ork, and its co	ndition where vis	sible, including	y whether there is	;
cold air return and the tigh	tness of duct joint:	s. Indicate th	e locations on the	e floor plan dia	agram.	
System	is old	run cle	own 40	u of S	Service	
	· · · · · · · · · · · · · · · · · · ·					_
						_
	<u> </u>		<u> </u>			
						- ver
		$\mathcal{N}_{\mathcal{O}}$				- ver
evel <u>General Use o</u>		$\mathcal{N}_{\mathcal{O}}$				- ver
asement	f Each Floor (e.g.	$\mathcal{N}_{\mathcal{O}}$				- ver
evel <u>General Use o</u> asement <u></u>		$\mathcal{N}_{\mathcal{O}}$				- ver
evel <u>General Use o</u> asement <u></u>	f Each Floor (e.g.	$\mathcal{N}_{\mathcal{O}}$				ver
evel <u>General Use o</u> asement <u></u> ^t Floor <u>V</u> ^d Floor	f Each Floor (e.g.	$\mathcal{N}_{\mathcal{O}}$				- ver
evel <u>General Use o</u> asement <u></u> ^t Floor <u></u> ^d Floor <u></u> ^d Floor <u></u>	f Each Floor (e.g.	$\mathcal{N}_{\mathcal{O}}$				- ver
evel <u>General Use o</u> asement <u></u>	f Each Floor (e.g.	$\mathcal{N}_{\mathcal{O}}$				- ver
evel <u>General Use o</u> asement <u></u> ^t Floor <u></u> ^d Floor <u></u> ^f Floor <u></u>	fEach Floor (e.g.	, family room	a, bedroom, launc			- ver
evel <u>General Use o</u> asement <u></u> ^t Floor <u></u> ^d Floor <u></u> ^f Floor <u></u> ^f Floor <u></u>	FLUENCE INDO	, family room	a, bedroom, launc			- ver
evel General Use of asement asement	FLUENCE INDO	, family room	ALITY			- ver
evel General Use of asement asement Image: Construction of the second of th	FLUENCE INDO)OR AIR QU	ALITY YN YN	lry, workshop,		- ver
evel General Use of asement asement	f Each Floor (e.g. Image? Separate heating to a converting to a conveconverte converting to a converte converte converte co	, family room	ALITY	A A		ver
evel General Use of asement asement Image: Construction of the second of th	f Each Floor (e.g. I CANT I CANT FLUENCE INDO rage? separate heating u I machines or vehing u g., lawnmower, atv,	, family room	ALITY Y N Y N Y / N /(N Y / N /(N	A A		ver

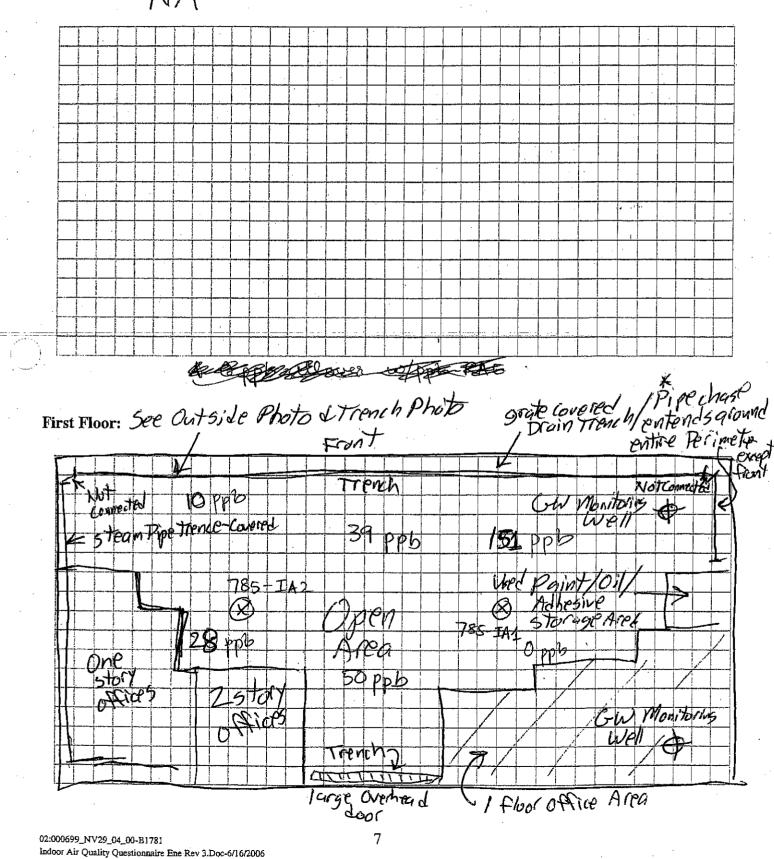
02:000699_NV29_04_00-B1781 Indoor Air Quality Questionnaire Ene Rev 3.Doc-6/16/2006 -----

,

 Confidential f. Is there a workshop or bobby/craft area? g. Is there smoking in the building? h. Have cleaning products been used recently? 	Location ID: <u>8785</u> Y (N) Where & Type?
g. Is there smoking in the building? h. Have cleaning products been used recently?	
h. Have cleaning products been used recently?	
	Y (N) How frequently?
	Y 🔊 When & Type?
i. Have cosmetic products been used recently?	Y (N) When & Type?
j. Has painting/staining been done in the last 6 months	
k. Is there new carpet, drapes or other textiles?	Y (N) Where & When?
1. Have air fresheners been used recently?	Y When & Type?
m. Is there a kitchen exhaust fan?	Y(N) If yes, where vented?
n. Is there a bathroom exhaust fan? Basement First floor	Y N If yes, where vented?
o. Is there a clothes dryer?	Y(N)If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y(N) When & Type?
r. Are there exterior doors in the basement (e.g. "Bilco") Are there odors in the building? If yes, please describe: $except Near or c$. (?)
Do any of the building occupants use solvents at work? auto mechanic or auto body shop, painting, fuel oil deliver cosmetologist)	Y (N(e.g., chemical manufacturing or laborato
If yes, what types of solvents are used?	· ·
If yes, are their clothes washed at work? MA Y/N	
	dry-cleaning service? (Circle appropriate N/
Do any of the building occupants regularly use or work at a	
Do any of the building occupants regularly use or work at a response)	No
Do any of the building occupants regularly use or work at a response) Yes, use dry-cleaning regularly (weekly)	No Unknown
Do any of the building occupants regularly use or work at a response) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less)	No Unknown
Do any of the building occupants regularly use or work at a response) Yes, use dry-cleaning regularly (weekly)	Unknown

02:000699_NV29_04_00-B1781 Indoor Air Quality Questionnaire Ene Rev 3.Doc-6/16/2006

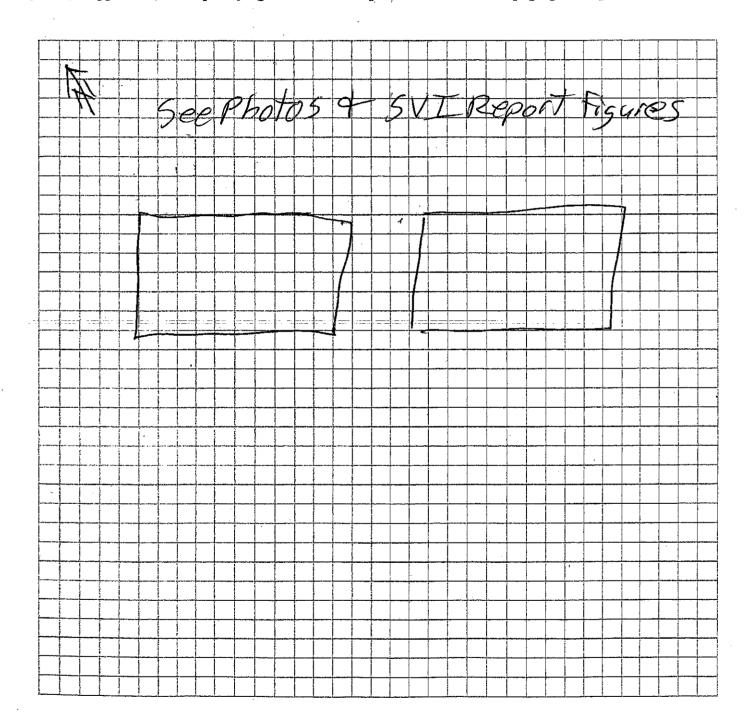
Confidential			Location	ID: B785	·····
9. WATER AND SEWAGE					•
Water Supply: NONE Public Water	Drilled Well	Driven Well	Dug Well	Other:	- ·
Sewage Disposal: MA (Public Sewer)	Septic Tank	Leach Field	Dry Well	Other:	<u> </u>
10. RELOCATION INFORMATION (is Vacan for oil spill residen	T tial emergency) N	OT USED		
11. OTHER ENVIRONMENTAL HAZARI Note factors that may impact vapor mitiga A. Asbestos: Yes No Suspecte 1. Location & Estimated Quantity:	tion system installat	tion or other construction			
2. General Condition: Good 3. Other Comments:	Fair Poor		······		
B: Lead Paint: Yes No Susp 1. Location & Estimated Quantity:	ected Exteri	on/tr	Terion	of Build	lir
2. General Condition: Good 3. Other Comments:	Fair Poor			·	


,

Location ID: <u>B785</u>

12. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note. Include compass orientation or reference to street or front of house.


Basement:

13. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

(

14. PRODUCT INVENTORY FORM

PORAE

Make & Model of field instrument used: List specific products found in the residence that have the potential to affect indoor air quality.

	Location	Product Description	Size (units)	Condition *	Chemical Ingredients	Field Instrument Reading (units)	Photo Y / N **
	Main Room	5-6-allon bucket	5901	U	Unkoun - 1/3 Full liquid	87ppb	N
	jt -	Empty 55-gallon Plustic Drum-Ashford formula	55941	·U	Cureciete - Concrete Traitment	Oppb	\mathcal{V}
	и И	Motor Oil & Filter	~ Kat	J	Used motor 0:1 Filter and Container (Gily) for changing oil	77ppb	Y
20	}(Enamel Paint	1641	U		0	Y.
N)	jt i	Truco Eterna-Seal Seam Sealt (7141	564	U	Petroleum Distillats	1027pp5	У
Sing & They	b b	Firestone-Ultraply Bonding Adhesive	5601	U	Acetone, to luene, Xylene + Techtile Spirits	27,9 ррМ	X
S	p	Air Products Surfynol 440 Surfinda	5691	U	Ethoxylated Tetra Methydecyned (Gal4-35-1) Hydraulic Oll - Open	liol 194	Y
Y	1L	Hydioil	5594	U	Hydraulic oil - open	2459 Apb	Х
	5 N	Motor oil-Use C	55g4	U	Motor Oil	2799, ppb	X/
-	11	BSgoldvum /2 Full USEd oil Filters	55941	U	Used oil filter open	50ppb	Y
	Ц.	3 drum, 2=55991 1=35941	Varian S	U	used Pigment	30ppb	N
	31	stevens EP Seam	1991	\mathcal{N}^{-}	Xylene	2934,ppb	N
)) -	DOW Corning Antiform	55gal	U	Polydimethysiloxane Chycerices, Sulfuric Acid	209pp5	N
		·			· · ·		

Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) *

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

OSR – 3 (EEEPC Revision 2)

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

CONFIDENTIAL

B786

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Bob	Meyers	Date/Time Prepared 12-20-06/1320
Preparer's Affiliation _ Ecol	ogy tEnvironment.	FM. Phone No. 716-684-8060
Purpose of Investigation	heck Quality of	Judoor Air
Property Address: Build	ing 786 @ Apo	Tom 2 Former GAF13
Location/Sample ID:	786-IA14;	786-IAZ Plus duplicate
		• • • • • • • • • • • • • • • • • • • •
1. OCCUPANT: Interviewe	d: YN Vacanti	Building / Airplane Hangar
Last Name:		•
Address:		
County:		
Home Phone:	Office Phone:	· · · · · · · · · · · · · · · · · · ·
Typical Number of Occupants	persons at this location	<u>0</u>
Approximate Age of Occupan		
Typical hours of occupancy	·	
2. OWNER OR LANDLORI	D: (Check if same as occup	ant) Interviewed: Y)N
and the second sec		Cathy < AFRPA
Address: 153 Brook		
County: Oneida		
Home Phone: 315-330-33	371 Office Phone:	
3. BUILDING CHARACTE	RISTICS -Type of Buildin	ng: (Circle appropriate response)
Residential	School	Commercial / Multi-use
Industrial	Church	Municipal Government
Other (Describe): <u>A</u>	ispland Hanggr	

If multiple units, how many?	
If the property is commercial, type? Vacan \mathcal{T}	Hisplane Haugar
Business Type(s) None	
Does it include residences (i.e., multi-use)?	Y /N If yes, how many?
Other Building Characteristics:	
Number of floors 1 Primarily w/2 floor	Approx. building age
Is the building insulated? Y (N)	How air tight? Tight / Average Not Tight
4. AIRFLOW Qualitatively describe:	
Airflow between floors Open 20015, NO	heat
Airflow near source Flour in good Con Cracks present but	dition 10-14"Thick Concrete repaired previously
Outdoor air infiltration Building is not a Gaps in Walls/Hung	istight, can see light through ar Joors.
Infiltration into air ducts NA, No heating/	Cooling.

X

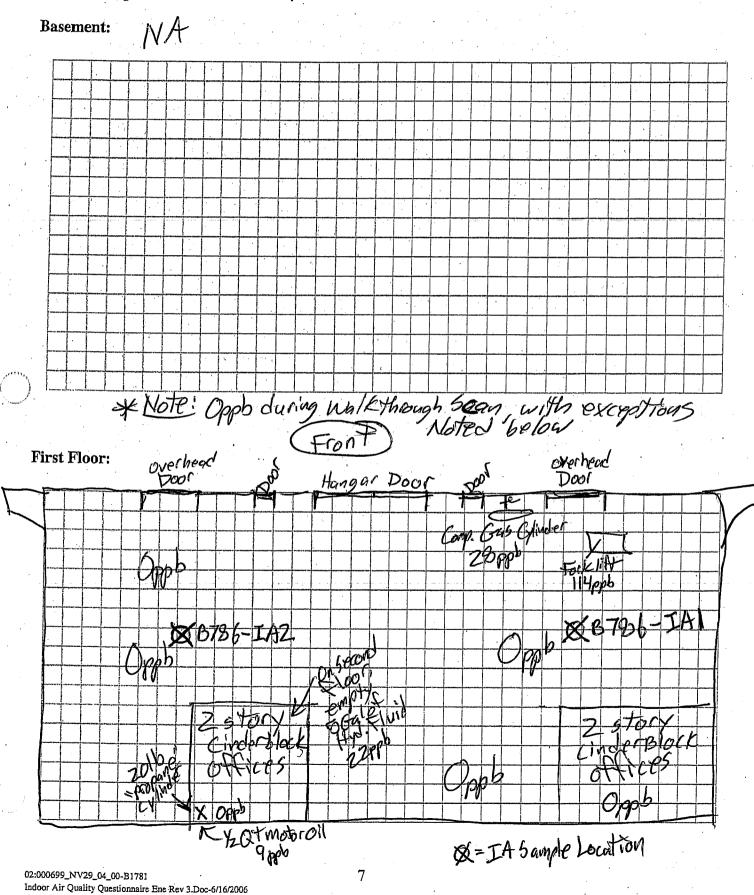
Location ID: B786

. BASEMENT AND CON						· J _
a. Above grade constructi	on: wood frame	concrete	stone	brick	other 1/2	?Ta
b. Basement type:	full	crawlspace	slab	other	· · · ·	
c. Basement floor:	concrete	dirt	stone	other	<u> </u>	
d. Basement floor:	uncovered	covered	covered w	vith		-
e. Concrete floor:	unsealed	sealed	sealed wit	h		
f. Foundation walls:	poured	block	stone	other	· .	
g. Foundation walls:	unsealed	sealed	sealed wit	h	· .	
h. The basement is:	wet	damp	dry .	moldy	•	
i. The basement is:	finished	unfinished	partially fi	nished		
j. Sump present?	YN PIPE	VAULT				
k. Water in sump?	Ø/N/NA :	STEAM PIL	pe Tren	ch Ru	inter WAT	
i. Sump covered/sealed?	(Y/N/NA Ca	overed b	4 (mint	с.	3.7.	ß.
m. Floor drains present?	Y NA		101-41	۳.,	~	
m. Floor drains present? n. Perimeter trench drains	present? (YN/NA ()	id/water sep	arator 2	HO Off	front	
o. Indoor cisterns/drywell?	Y /(N)/ NA		•			
p. Laundry chute to 1 st or 2	[™] Floors? Y / N (NA)		• *	· ·		
asement/Lowest level depth l	pelow grade: (fe	-4)			n en	
r drains, wall cracks, weep omp <u>Cracles (Repaire</u>	s, or indoor wells)			Squart		~
or drains, wall cracks, weep ome <u>Cracks (Repaired</u> with 1.5 "dia. hose end	s, or indoor wells)	notrepaire		Squart		~
bor drains, wall cracks, weep <u>Som & Cracles (Repaired</u> with 1.5 "dia. hose end ther Comments:	s, or indoor wells) (2) in floor, other in tering /Attached (4)	notrepaine opb in hole)	See Phot	bywart 5 Disk	4 #9.	<u>Fle</u>
Hentify and describe potentia oor drains, wall cracks, weep <u>Some Cracks (Repaire</u> with 1.5 dia. hose end ther Comments: HEATING, VENTING and a is building: (circle all that ap	s, or indoor wells) () in floor, other in fering /Attached (4) AIR CONDITIONING (0	notrepaine opb in hole)	See Phot	bywart 5 Disk	4 #9.	<u>Pla</u>
bor drains, wall cracks, weep <u>Some Cracks (Repaire</u> with 1.5 "dia. hose end ther Comments: HEATING, VENTING and	s, or indoor wells) () in floor, other in fering /Attached (4) AIR CONDITIONING (C ply - note primary)	not repaire opb in hole) Circle all that app	<u>See Phot</u> ly) Type of	bywart 5 Disk	4 #9.	<u>Pic</u>
bor drains, wall cracks, weep <u>Some Cracks (Repaired</u> <u>vith 1.5 "dia. hose end</u> her Comments: HEATING, VENTING and a s building: (circle all that ap Hot air circulation	s, or indoor wells) () in floor, other in fering /Attached (4) AIR CONDITIONING (0	not repaire opb in hole) Circle all that app Hot water	<u>See Phot</u> ly) Type of baseboard	bywart 5 Disk	system(s) us	ed i
bor drains, wall cracks, weep <u>Some Cracks (Repaire</u> <u>with 1.5 "dia. hose end</u> her Comments: HEATING, VENTING and . s building: (circle all that ap Hot air circulation Space Heaters	s, or indoor wells)) in floor, other foring /Attached (4) AIR CONDITIONING (0 ply – note primary) Heat pump Stream radiation	Circle all that app Hot water Radiant fl	<u>See Phot</u> ly) Type of baseboard	bging re	system(s) us	ed i
bor drains, wall cracks, weep <u>Some Cracks (Repaire</u> , with 1.5 "dia. hore end ther Comments: HEATING, VENTING and a is building: (circle all that ap Hot air circulation Space Heaters Electric baseboard	AIR CONDITIONING (C ply – note primary) Heat pump Stream radiation Wood stove	not repaire opb in hole) Circle all that app Hot water Radiant fle Outdoor w	See Photo ly) Type of baseboard por rood boiler	bging re	4 #9.	ed i
or drains, wall cracks, weep <u>bomp</u> <u>Cracks</u> (<u>Repaire</u> , <u>with 1.5 "dia</u> , <u>hose enir</u> her Comments: Her Comments: Her Comments: Her Comments: Her Comments: Electric baseboard	AIR CONDITIONING (C ply – note primary) Heat pump Stream radiation Wood stove	Circle all that app Hot water Radiant fl	See Photo ly) Type of baseboard por rood boiler	bging re	system(s) us	ed i
bor drains, wall cracks, weep <u>Some Cracks (Repaire</u> , with 1.5 dia. hore end ther Comments: HEATING, VENTING and a is building: (circle all that ap Hot air circulation Space Heaters Electric baseboard proximate age of heating syste	AIR CONDITIONING (C ply – note primary) Heat pump Stream radiation Wood stove em(s): <u>Out of Serv</u>	not repaire opb in hole) Circle all that app Hot water Radiant fle Outdoor w	See Photo ly) Type of baseboard por rood boiler	bging re	system(s) us	ed i
oor drains, wall cracks, weep <u>Som 9 Cracks (Repaired</u> with 1.5 dia. hose end ther Comments: HEATING, VENTING and a is building: (circle all that ap Hot air circulation Space Heaters	AIR CONDITIONING (C ply – note primary) Heat pump Stream radiation Wood stove em(s): <u>Out of Serv</u>	not repaire opb in hole) Circle all that app Hot water Radiant fle Outdoor w	See Photo ly) Type of baseboard por rood boiler	bging re	system(s) us	ed i
oor drains, wall cracks, weep Som Y Cracles (Repaired) with 115 dia. hore end with 115 dia. hore end ther Comments:	AIR CONDITIONING (C ply – note primary) Heat pump Stream radiation Wood stove em(s): <u>Out of Serv</u> S: Fuel Oil Propane	Circle all that app Hot water Radiant fle Outdoor w <u>icc</u> - Was S Kerosene Solar	See Photo ly) Type of baseboard boor rood boiler <i>Feam</i>	heating	system(s) us	ed i
bor drains, wall cracks, weep <u>Some Cracles (Repaired</u> with 115 dia. hose end ther Comments: HEATING, VENTING and A is building: (circle all that ap Hot air circulation Space Heaters Electric baseboard proximate age of heating syste are primary type of fuel used in Natural Gas	AIR CONDITIONING (C ply – note primary) Heat pump Stream radiation Wood stove em(s): <u>Out of Serv</u> S: Fuel Oil Propane	Circle all that app Hot water Radiant fle Outdoor w <u>icc</u> - Was S Kerosene Solar	See Photo ly) Type of baseboard boor rood boiler <i>Feam</i>	heating	system(s) us	ed i
oor drains, wall cracks, weep <u>Some Cracles (Repaired</u> with 1.5 dia. hore end ther Comments: HEATING, VENTING and A is building: (circle all that ap Hot air circulation Space Heaters Electric baseboard proximate age of heating syste the primary type of fuel used in Natural Gas Electric Wood	AIR CONDITIONING (C ply – note primary) Heat pump Stream radiation Wood stove em(s): $Out of Gerv$ s: Fuel Oil Propane Coal \leftarrow historical	Circle all that app Hot water Radiant flo Outdoor w <u>icc</u> - Was S Kerosene Solar	See Photo ly) Type of baseboard boor rood boiler <i>Feam</i>	heating	system(s) us	ed i
bor drains, wall cracks, weep <u>Some Cracks (Repaired</u> with 115 "dia. hore end ther Comments: HEATING, VENTING and dis building: (circle all that ap Hot air circulation Space Heaters Electric baseboard proximate age of heating syste e primary type of fuel used in Natural Gas Electric	AIR CONDITIONING (C ply – note primary) Heat pump Stream radiation Wood stove em(s): $Out of Gerv$ s: Fuel Oil Propane Coal \leftarrow historical	Circle all that app Hot water Radiant flo Outdoor w <u>icc</u> - Was S Kerosene Solar	See Photo ly) Type of baseboard boor rood boiler <i>Feam</i>	heating	system(s) us	ed i

3

Confidential			Location ID:
Boiler/furnace located in:	Basement Outdoors	Main Floor	Other Steam Piped In
Storage wood or coal: ///	Basement Outdoors	Main Floor	Other
Fireplace(s) located in: M^A	Basement Main Floor	Other	
Air conditioning: NA	Central Air Window	units Open Windo	ows None
Dehumidification: NA S	Stand alone unit Loca	ted on central air syster	n
Are there air distribution ducts	s present?	, But out of 5	iervic ^p
Describe the supply and cold ai a cold air return and the tightn	ess of duct joints. Indicate	the locations on the flo	oor plan diagram.
System is old,	rundown + C	ut of Service	d D
	•		
······			
7. OCCUPANCY Is basement/	lowest level occupied? Fu	ll-time Occasionall	y Seldom Almost Never
Level General Use of	NC Each Floor (e.g., family ro	om, bedroom, laundry	, workshop, storage)
Basement	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1 st Floor Vacan	+	<u></u>	<u> </u>
2 nd Floor			
rd Floor	· · · · · · · · · · · · · · · · · · ·	· · · ·	
		al and the definition of the second secon	<u>+</u>
4 Floor			
8. FACTORS THAT MAY INF	FLUENCE INDOOR AIR (QUALITY	
a. Is there an attached gara	age?	Y/N	
b. Does the garage have a s	separate heating unit?	Y/N/NA	
c. Are petroleum-powered stored in the garage (e.g.	machines or vehicles ., lawnmower, atv, car, boat)	Y / N /NA Please speci	fy
d. Has the building ever ha	ıd a fire?	Y/N W	7hen?

Confidential	Location ID:
f. Is there a workshop or hobby/craft area?	Y IN Where & Type?
g. Is there smoking in the building?	Y N How frequently?
h. Have cleaning products been used recently?	Y (N) When & Type?
i. Have cosmetic products been used recently?	Y (N) When & Type?
j. Has painting/staining been done in the last 6 month	us? Y /N Where & When?
k. Is there new carpet, drapes or other textiles?	Y /N Where & When?
l. Have air fresheners been used recently?	Y /N When & Type?
m. Is there a kitchen exhaust fan?	Y (N) If yes, where vented?
n. Is there a bathroom exhaust fan? 🛛 🗆 Basement	Y (N) If yes, where vented?
□ First floor	an anangana 👷 angananangan panganananggan ata ata apa sa ta
o. Is there a clothes dryer? \Box Gas \Box Electric	Y (N) If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y (N) When & Type?
 q. Basement windows? Type: Casement Awning Control of the second and the	Blass block Condition:
q. Basement windows? Type: Casement Awning G NA r. Are there exterior doors in the basement (e.g. "Bilco Are there odors in the building? If yes, please describe: <u>Slight Petroleur</u>	Glass block Condition:
 q. Basement windows? Type: Casement Awning ONA r. Are there exterior doors in the basement (e.g. "Bilco / Are there odors in the building? / If yes, please describe: <u>Slight Petroleur</u> Do any of the building occupants use solvents at work uto mechanic or auto body shop, painting, fuel oil delivered 	Glass block Condition: Y / N /NA Y / N /NA Y / N/NA Y / N/te.g., chemical manufacturing or laboratory
 q. Basement windows? Type: Casement Awning ONA r. Are there exterior doors in the basement (e.g. "Bilco Are there odors in the building? If yes, please describe: <u>5/1ght Petoleur</u> Do any of the building occupants use solvents at work uto mechanic or auto body shop, painting, fuel oil deliverosmetologist) 	Glass block Condition: Y / N / NA Y / N / NA Y Y / N/ NA Y Y / N/ NA Y Y / N/ NA Y Y / N/ NA Y Y Y / N/ NA Y Y Y Y / N/ NA Y Y Y Y Y Y Y Y Y Y Y Y Y
 q. Basement windows? Type: Casement Awning GNA r. Are there exterior doors in the basement (e.g. "Bilco Are there odors in the building? If yes, please describe: <u>5/1ght Petoleur</u> Do any of the building occupants use solvents at work uto mechanic or auto body shop, painting, fuel oil deliverosmetologist) 	Glass block Condition: Y/N/NA
q. Basement windows? Type: Casement Awning G. NA r. Are there exterior doors in the basement (e.g. "Bilco Are there odors in the building? If yes, please describe: <u>Slight Petroleur</u> Do any of the building occupants use solvents at work? uto mechanic or auto body shop, painting, fuel oil deliver osmetologist) If yes, what types of solvents are used? If yes, are their clothes washed at work? NA Y/N Do any of the building occupants regularly use or work at a solvent of the building occupants regularly use or work at a solvent of the building occupant.	Glass block Condition: Y / N / NA Y / N / NA Y Y / N/ NA Y Y / N/ NA Y Y / N/ NA Y Y / N/ NA Y Y Y / N/ NA Y Y Y / N/ NA Y Y Y Y / N/ NA Y Y Y Y Y Y Y Y N Y Y Y Y Y Y N Y Y Y Y N Y Y Y N Y Y Y N Y Y Y N Y Y Y N Y Y Y N Y N Y Y N Y Y N Y N Y Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N N N N N N N N N N N N N
q. Basement windows? Type: Casement Awning G. NA r. Are there exterior doors in the basement (e.g. "Bilco Are there odors in the building? If yes, please describe: <u>Slight Petroleur</u> Do any of the building occupants use solvents at work uto mechanic or auto body shop, painting, fuel oil deliver osmetologist) If yes, what types of solvents are used?	Glass block Condition: Y / N / NA Y / N / NA Y Y / N/ NA Y Y / N/ NA Y Y / N/ NA Y Y Y / N/ NA Y Y Y / N/ NA Y Y Y Y Y Y Y Y Y Y Y Y Y
 q. Basement windows? Type: Casement Awning G. NA r. Are there exterior doors in the basement (e.g. "Bilco Are there odors in the building? If yes, please describe: <u>Slight Petroleur</u> Do any of the building occupants use solvents at work? Uto mechanic or auto body shop, painting, fuel oil delivered osmetologist) If yes, what types of solvents are used? <u>Y</u>/N Do any of the building occupants regularly use or work at a sponse) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) 	Glass block Condition: Y/N/NA
 q. Basement windows? Type: Casement Awning G. NA r. Are there exterior doors in the basement (e.g. "Bilco Are there odors in the building? If yes, please describe: <u>Slight Retalector</u> Do any of the building occupants use solvents at work uto mechanic or auto body shop, painting, fuel oil deliverosmetologist) If yes, what types of solvents are used? <u>Y</u>/N Fo any of the building occupants regularly use or work at a exponse) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service 	Alass block Condition: Y/N/A Y/N/A Y/N/A Y/N/A Y/N/A Y/N/A Y/O e.g., chemical manufacturing or laboratory ery, boiler mechanic, pesticide application, A dry-cleaning service? (Circle appropriate N/A No Unknown
 q. Basement windows? Type: Casement Awning G. NA r. Are there exterior doors in the basement (e.g. "Bilco / Are there odors in the building? If yes, please describe: <u>Slight Retaleur</u> Do any of the building occupants use solvents at work but o mechanic or auto body shop, painting, fuel oil delivered to mechanic or auto body shop, painting, fuel oil delivered to mechanic or solvents are used? If yes, what types of solvents are used? <u>Y</u>/N Do any of the building occupants regularly use or work at a esponse) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) 	Alass block Condition: Y/N/A Y/N/A Y/N/A Y/N/A Y/N/A Y/N/A Y/A No Unknown


02:000699_NV29_04_00-B1781 Indoor Air Quality Questionnaire Ene Rev 3.Doc-6/16/2006

Confidential			Location I	D:
9. WATER AND SEWAGE				
Water Supply: Non & Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal: NA Public Sewer	Septic Tank	Leach Field	Dry Well	Other:
* Building 15 10. RELOCATION INFORMATION (V <i>acan</i> Y for oil spill residen	tial emergency) N	OT USED	
11. OTHER ENVIRONMENTAL HAZARE Note factors that may impact vapor mitiga A. Asbestos: Yes No Suspecte 1. Location & Estimated Quantity:	tion system installat		uction activities:	
<u> </u>	Fair Poor			
B: Lead Paint: Yes No Susp 1. Location & Estimated Quantity:		terior of B	uilding	
2. General Condition: Good 3. Other Comments:	Fair Poor			

÷

12. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note. Include compass orientation or reference to street or front of house.

÷.,

13. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Location ID: <u>B786</u> Page <u>1</u> of <u>1</u>

14. PRODUCT INVENTORY FORM

PPBRAF Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo
Front Wall	Compressed Gas Cylinder	4'	Good	Unknown	28	disk B #3
Front	Fork 1,4+	·	Gad	NA	114	
Buck 2001	C stairway to Upstalis 2016 propring Tank	2016		Probable Propane	0	
Back	MotoRoid	1 at	1/2 Full	Probable Propane IUNAD Motor oil	9	
upstairs in office	Hydralic Fluid	5g4l	empty	Hydraulic Fluid	ZZ	<u> </u>
		· ·		· · · · · · · · · · · · · · · · · · ·		
			•			
	···· ···· · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	······································		
		· · · · · · · · · · · · · · · · · · ·				
						·,

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

OSR – 3 (EEEPC Revision 2)

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

CONFIDENTIAL B 817-

N

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Bob Meyers Date/Time Prepared 12/21/06/0900
Preparer's Affiliation <u>EqEInc.</u> Phone No. 716 684-8060
Purpose of Investigation Check Inclose Aire Quality
Property Address: 13 Por BUDG BIZ Former GRUFFiss AFB Come
Location/Sample ID: BB17 WSA-JA1, WSA-OA1
1. OCCUPANT: Interviewed: YN Un Occupied
Last Name: First Name:
Address:
) County:
Home Phone: Office Phone:
Typical Number of Occupants/persons at this location
Approximate Age of OccupantsNA
Typical hours of occupancy: From To
2. OWNER OR LANDLORD: (Check if same as occupant) Interviewed: Y/N
Last Name: JERRARCI First Name: CATHY EAFRPA
Address: 153 Brooks Rd Rome NY
County: <u>OneidA</u>
Home Phone: 315-330-337 Office Phone:
3. BUILDING CHARACTERISTICS - Type of Building: (Circle appropriate response)
Residential School Commercial / Multi-use
Industrial Church Municipal (Government)
Other (Describe): Vacant Building Currently used For storage by Various Env. Firms/AFR PA
for storage by Various Env. Firms/AFR PA

.

If multiple units, how many? <u>NA</u>	
If the property is commercial, type?	
Business Type(s) Military Electronics	Kommunications.
Does it include residences (i.e., multi-use)?	Y N If yes, how many?
Other Building Characteristics: * Currently No	it heated
Number of floors	Approx. building age 255 yrs.
Is the building insulated? YY N	How air tight? Tight / Average / Not Tight
4. AIRFLOW Qualitatively describe:	
Airflow between floors NA	
Airflow near source 5 lab on grade Constr	inction (source is bu Plume)
Outdoor air infiltration through edges of	doors told windows.
Infiltration into air ducts NA - 5 team base lines run in (See Photo)	board heat (currently Not operational) trenches throughout Floor of Building

Confidential	have to C	t +	Location ID:_	B317
5. BASEMENT AND CONSTRUC	b on g <i>rade Cov</i> TION CHARACTE			
		-	le all that apply)	
a. Above grade construction:		oncrete stone		ner
b. Basement type:		awlspace slab		
c. Basement floor:	concrete dir			· <u>.</u>
d. Basement floor:			red with	······································
		2	d with	· · ·
f. Foundation walls:	•	ock stone		
g. Foundation walls:	in the second		d with	<u> </u>
h. The basement is:		mp dry	moldy	
i. The basement is:	finished uni	finished partie	ally finished	
j. Sump present?	(Y) N			
k. Water in sump?	Y (N) NA	1 6/1 %	and the	to
i. Sump covered/sealed?	() N/NA Cover () N/NA IN E	ed with of	pen mekil gr	a R
m. Floor drains present?		soth pathracans	" Y Janitor Clo	5£1
n. Perimeter trench drains present o. Indoor cisterns/drywell? Vau/†		pINL'VR'	Bileso day w	12 miles
p. Laundry chute to 1 st or 2 nd Floors	2 V/N INA			JUMP IN COM
			•	· ·
Basement/Lowest level depth below gr	ade: $O_{(feet)} \in$	except elect	rice / Van M	
Identify and describe potential soil vaj floor drains, wall cracks, weeps, or ind	oor wells) 3 Floor	drains (Bo	th bathrooms	+ Janitor
WELLY IN 14 11	closet) all read	Oppb w/PPb	RAE
* Electrical Vault w/Sun	<u>1p, \$10075146</u>	in good con	ndition	<u> </u>
Other Comments:				
		· · ·		
· · · · · · · · · · · · · · · · · · ·			•	· · · · · · · · · · · · · · · · · · ·
6. HEATING, VENTING and AIR CO this building: (circle all that apply – no	NDITIONING (Circle te primary) Not C	all that apply) Ty Currently 9	pe of heating syste Derational	em(s) used in
Hot air circulation Hea	t pump	Hot water baseb	oard	
Space Heaters Ste	am radiation	Radiant floor		
Electric baseboard Wo	od stove	Outdoor wood b	oiler Other	
Approximate age of heating system(s):	-55yr3,		+ ind i	. ' Л·
The primary type of fuel used is:	Note	138/1 has steam	plant, and gam is piped	
Natural Gas Fue Electric Prop Wood Coa	bane	Kerosene Solar		
Domestic hot water tank fueled by: \underline{X}	1A			. ч
Fuel oil storage location/condition/size	if applicable: <u>N/</u>	4		. <u></u>
2.202/00 20/00 0/ 00	2	, [.]	· · · · ·	

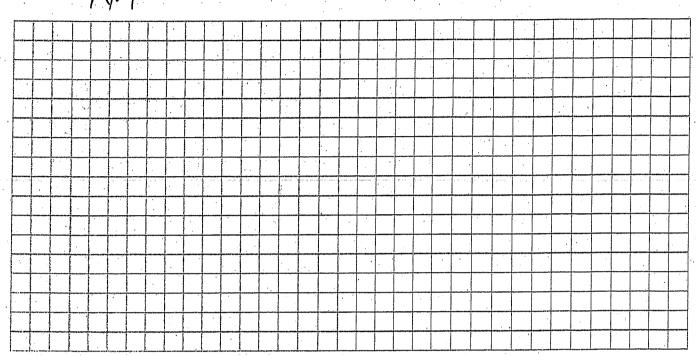
Sugar.

Confidential		,		Location ID	<u>. B317</u>
Boiler/furnace located in: Storage wood or coal: Fireplace(s) located in:	Basement Basement Basement	Outdoors Outdoors Main Floor	Main Floor Main Floor Other	Other <u>Stee</u>	an Plant Costeam Plant
			-		
Air conditioning:	Central Air	Window u	nits Open	Windows	None
Dehumidification: NA	Stand alone un	it Locate	d on central air	system	
Are there air distribution duc	ts present?	Y N			, •
Describe the supply and cold a cold air return and the tight NA		-			
,, _,				<u></u>	· · · · · · · · · · · · · · · · · · ·
				<u></u>	
7. OCCUPANCY Is basemen <u>Level</u> <u>General Use o</u> A J A		^ .		sionally Seldor undry, workshop,	
Basement N/F 1 st Floor $MOCC$ 2 nd Floor NA	upied-	Currently	u Usedf	or storage	2
3^{rd} Floor \underline{NA}		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
4 th Floor					- .
8. FACTORS THAT MAY IN	FLUENCE IN	DOOR AIR QU	JALITY	~	
a. Is there an attached ga	rage?		YN	2	
b. Does the garage have a	separate heatin	ng unit?	Y / N	NA	
c. Are petroleum-powere stored in the garage (e.			Y N Please	/NA e specify <u>Occasio</u>	ully-Generators
d. Has the building ever h	ad a fire?		Y /	> When?	· ·
e. Is a kerosene or unven	ted gas space he	ater present?	Y /K	Where?	

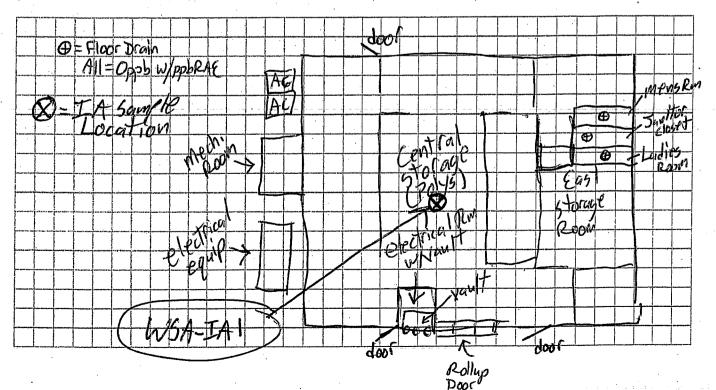
,

Confidential	Location ID: B817
f. Is there a workshop or hobby/craft area?	Y N Where & Type?
g. Is there smoking in the building?	Y N How frequently?
h. Have cleaning products been used recently?	Y (N) When & Type?
i. Have cosmetic products been used recently?	Y N When & Type?
j. Has painting/staining been done in the last 6 months	
k. Is there new carpet, drapes or other textiles?	Y N Where & When?
 Have air fresheners been used recently? 	Y N When & Type?
m. Is there a kitchen exhaust fan?	Y /N If yes, where vented?
n. Is there a bathroom exhaust fan? NA Basement First floor	Y/N If yes, where vented?
	X (A) X
o. Is there a clothes dryer? □ Gas □ Electric	Y(N) If yes, is it vented outside? Y/N
p. Has there been a pesticide application?	Y N When & Type?
q. Basement windows? Type: Casement Awning GI	\sim
r. Are there exterior doors in the basement (e.g. "Bilco")) $M = \frac{Y}{N} \left(\frac{NA'}{NA'} \right)$
Are there odors in the building? If yes, please describe:	YN
Do any of the building occupants use solvents at work? auto mechanic or auto body shop, painting, fuel oil delive cosmetologist)	
If yes, what types of solvents are used?	
If yes, are their clothes washed at work? NA Y/N	· · · · · · · · · · · · · · · · · · ·
Do any of the building occupants regularly use or work at a response) $NO OCCupant5$	dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly)	No
Yes, use dry-cleaning infrequently (monthly or less)	Unknown
Yes, work at a dry-cleaning service	
Is there a radon mitigation system for the building/structure	? Y /N Date of Installation:
Is the system active or passive? NA Active/Passive	
	· · · ·

, and


Confidential				Location I	D: <u>B817</u>
9. WATER AND SI	EWAGE	• •			
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field) Dry Well	Other:
10. RELOCATION	INFORMATION (f	or oil spill residen	tial emergency) N()T USED	
Note factors that may A. Asbestos: Yes		tion system installat	N	,	
2. General Condi 3. Other Comme	ition: Good	Fair Poor			
	Yes No Suspe	Possibly ex	NOWN RTERION PON	nt on di	0015
2. General Cond 3. Other Comme		Fair Poor			
· · · · · · · · · · · · · · · · · · ·					
			· .		

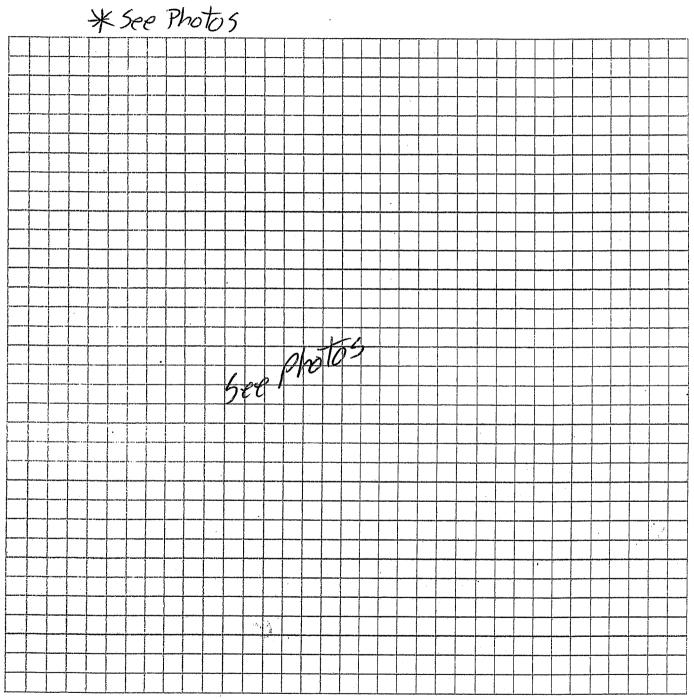
12. FLOOR PLANS


- 1- 1- 1- 1-

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note. Include compass orientation or reference to street or front of house.

Basement:

First Floor:



7

13. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

14. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

PPBRA

Location	Product Description	Size (units)	Condition *	Chemical Ingredients	Field Instrument Reading (units)	Photo Y / N **
Scattered	PH/Econductivity	loz to Boz	U.	=No Volutiles	Oppla	W
	Calibration Solutions		•			
East Side Storage RM	Fire Extinguishes	Various	U.C. (old)	= 19 of Various Sizes	Oppla	N
	Sidler Quality Test	Various	1 1	La Motte Combination	Oppb	Y
	Kit Containing!			La Motte Com Bination Soil Kit Model STH-14 Containing Reagents, Auids, Bases Acetic Acic (32 12 Full) Sodium Acetate (36 12 Full)	Disk F/	hits#7
· · · ·	Universal Extracting Solution	250ml	U	Acetic Acic (32/2Full) Sodium Acetate (3c/2Full)	Oppla	
-	Bedrock Core Sumples		••••••••••••••••••••••••••••••••••••		Opp	X
5						
						· · · · ·
			•.			
	-		·			
					· .	
	···· · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
		· .			· .	
				•		

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

D Air Sample Forms

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Soil Gas Sampling Data Collection Form

Site	Site Name: Former Griffiss Air Force Base Project No.: 002275.PT04.09									
Same	Samplellocation/Information									
	ct Location	N		iassen fan dittelakstikk fan Andreasterationality (A	n an	nen om forstand finnen an konstantingen og for				
Proje	Project Task: Soil Vapor Intrusion Sugrey									
Sam	Sampler Names (Print): Brian Cervi , Jim Mayes									
Orga	nic Vapor l	Meter Used:		Model: TVA-11	100 (#R790	22)	•			
	ım Detecto	······································	2002 Mult		(# R'723'	h	· · · · · · · · · · · · · · · · · · ·			
Samp	le ID	ACC9-SV03	Acc?-SV04	AOC9-SV05	Acen-suos	Acc9-SV02	Acc9-SU01			
Depth	ı (ft bgs)	8'	8'	8	" <i>4</i> '	8.'	81			
Canis	ter No.	2722 5756 BC	2567	3543	3473	2901	3635			
Regul	ator No.	3766	2796	4195	2916	4007	3/03			
pail (p		41.8%	45.7%	45.28	43.5%	44.9%	41.2%			
sampl	lle conc. in e (ppm)	Oppm	Opp	Oppon	Opp	Opm	Opp			
Final) pail (p	He conc. in pm)	40.7%	45.2%	43.9%	42.68	43.4%	40.1%			
оум	(ppm)	O.3ppn	O. 2ppn	O.Ipp	O. Ippm	1.2 pm	0.1pm-			
Purge	Vol. (L)	12	12	11	12	12	12			
Durati	ion (hours)	thr	1hr	1hr	1hr	1hr	1hr			
· ·	Date	10/18/06	10/18/05	10/18/05	10/18/05	10/18/05	10/18/06			
Start	Time	1031	H29 1252	1240	1605	1654	1730			
	Pressure	-30	-29	-29.5	-30	-29.5	-29.5			
	Date	10/18/05	10/18/05	10/18/05	10/18/05	10/18/05	10/18/06			
End	Time	1140	1348	1342	1701	1834	1831			
	Pressure	-3	-2.5	-1.0	-2.0	- 9	-4			
Qualit	y Control						t i			
Analys	is Method	TO-15	TO-15	TO-15	To-15	.TO-15	TO-15			
Labora	atory:	STL		· · · · · · · · · · · · · · · · · · ·	Date Shipped to Lab:	10/20/00	-			

Associated Trip Blank Sample ID:

Comments:

Key:

bgs = below ground surface FID = flame-ionization detector

ft = feet

He = Helium

- OVM = organic vapor meter
- PID = photo-ionization detector
- ppb = parts per billion

ppm = parts per million

Canister pressure measured in inches of mercury; gauge (in Hg)

BUFFALO: CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Soil Gas Sampling Data Collection Form

				• •	· · · · · · · · · · · · · · · · · · ·		
Site 1	Name:	Former Griffiss	Air Force Base	Project No.: 002275.PT04.09			
Samp	lellocatio	n Information				ning televisioning	
Proje	ct Location	1001.0011			· · ·		
Proje	ct Task:	Soil Vapor	- Intrusion	Survey			
		<u> </u>				<u></u>	
Samp	ler Names	(Print): Bring	n Consi,	Jim Mays		<u> </u>	
Organ	nic Vapor I	Meter Used:				<u>R7922)</u>	
Heliu	m Detecto	or Used: MGD	-2002 Mul	tigns Meter	(# R72.	31)	
Sampl	le ID	WSA-SV-01	WSA-SU-04	WSA-SU-04/D	775-SV-04	775-50-04/0	775-50-01
Depth	ı (ft bgs)	4'	4'	41	81	8'	s'
Canist	ter No.	2855	3006	2884	3333751	4001	3886
Regula	ator No.	3978	4193	3062	3753	3613	4192
Start F pail (p	He conc. in opm)	42.8%	38.3 %	38.3%	39.8%	39.8%	42.48
	He conc. in e (ppm)	Oppon	Opp	Opp	Opm	Opp	Opp
Final l pail (p	He conc. in pm)	41.8%	36.98	3G.9%	38.92	38.98	40.7
ovm	(ppm)	O.Ippm	Ollegen	Oilpon	1.1 pm	1.1pp-	
Purge	Vol. (L)	12	11	12	11	14	12
Durati	ion (hours)	1hr	1hr	1hr	1hr	1hr	1hr
	Date	10/19/06	10/19/05	10/19/06	10/19/05	10/19/06	10/19/05
Start	Time ,	0952	1140	1140	1506	1506	15-39
. t	Pressure	-30	-30	-28	-29	-30	-28.5
	Date	10/19/06	10/19/06	10/19/05	Lo/19/06	10/12/05	10/19/05
End	Time	(10)	NO	No	1619	1619	1636
	Pressure	Sample !	Sayle (Single)	-3	-4	-3
Qualit	y Control					Dup	
Analys	sis Method	TO-15	TO-15	T0-15	·TO-15	TO15	70-15
			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	

Date Shipped to Lab: 10/20/06 Laboratory: STL TB-20-10-06 Associated Trip Blank Sample ID: Comments: We were unable to collect the WSA-SV-01 being bas Smole a Decause ides LATAS Sucked who the sample tube. We war also unable, to collect a si due to from 524 water bein sucked 4' Sull both at 3 2 inte the Canister pressure measured in inches of mercury, Key: bgs = below ground surface OVM = organic vapor meter FID = flame-ionization detector PID = photo-ionization detector gauge (in Hg) ft = feet ppb = parts per billion

ppm = parts per million

He = Helium

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Soil Gas Sampling Data Collection Form

Site Name: Former Grúffiss Air Force Base				Project No.: 002275.PT04.09			
Samp	le Locatioi	Information		Networkstation and the			
Projec	t Location	: Rome, 1	JY	· · · · · · · · · · · · · · · · · · ·			
Projec	t Task:	Soil Vapor	- Intrusion	Survey			
Sampl	ler Names	(Print): Bria	n Censi, J	im Mays	·	· · · · · · · · · · · · · · · · · · ·	<u> </u>
	<u></u>						
		Aeter Used:		Model: TVA -	1000 (# R	7922)	
Heliu	m Detecto	r Used: ///6[>-2002 Mu	Higas Meter	(# R7237)		
Sampl	e ID	775-51-03	775-SV-02	TB-20-10-06			
Depth	(ft bgs)	8'	8'	NA	й К С		5.,
Canist	er No.	3874	3000	2546			
Regulz	tor No.	4051	4189	NA			
Start I pail (p	Ie conc. in pm)	40.92	44.1%	NA	······································		
	He conc. in e (ppm)	Opp	Opp	NA	······································		
Final I pail (p	He conc. in pm)	403	41.2%	NA			
OVM	(ppm)	0.3 pm	0.2pm	NA			
Purge	Vol. (L)	12	11	ALNA	12	14	11
Durati	on (hours)	Thr	1hr	IK-NA	1hr	1hr	.1hr
	Date	10/19/05	10/20/05	NA			
Start	Time	1626	0749	NA			
	Pressure	-30	-29	NA			
	Date	10/19/06	10/20/06	NA			
End	Time	1741	0832	NA			
	Pressure	-6	-1	NA			· · · ·
Qualit	y Control	1		Trip Black			
Analys	is Method	TO-15	TO-15	TO-15	TO-15	TO-15	70-15

20 105 STL Laboratory: 10 Date Shipped to Lab: TB-20-10-05 Associated Trip Blank Sample ID: Comments:

Key:

- bgs = below ground surface FID = flame-ionization detector
 - ft = feetHe = Helium

- OVM = organic vapor meter
- PID = photo-ionization detector
- ppb = parts per billion
- ppm = parts per million

Canister pressure measured in inches of mercury, gauge (in Hg)

International Specialists in the Environment

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Soil Vapor Sampling Data Collection Form

	~	
	• • • • • • • • • • • • • • • • • • •	
Site Name: Former Griffiss Air Force Base		Project No.: 002275.PT04.09

SamplefBocationInformation

Project Task: Soil Vapor Intrusion Survey

Sampler Names (Print): Larry Roedl/ Alec Humann									
Organic Vapor Meter Used: 19, PID FID Model: Mini Rac 200-0 110-005047									
Helium Detector Used: Not used during indoor Sampling									
Sampl	e ID	WSA-55VI	WSA-SSNI/D	WSA-SSUVS	B785-55VI	B785-5542	B784-55VI	B784-5512	
Depth	(ft bgs)	9.0"	9.0"	9.0"	16.0"	15.5	14.0"	14.5"	
Canister No.		2747	2593	1009	Silel	3645	3428	2956	
Regulator No.		3821	3859	K093	3776	3363	4207	4202	
Start He conc. In pail (ppm)			·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
F inal Ho -conc. In <u>pail (pp</u> m)		1.4 ppm.	1.4 ppm	1.4 ppm	1-3 ppm	O.6 ppm	0.3 ppm	0.8 ppm	
Purge Vol. (L)		60 mls.	Léo mis,	60 mls.	Leo mils.	60 m/s.	60 mls.	Leo mis.	
Durati	on (hours)	8	q	8	S	8	S	8	
	Date	10/24/06	10/24/06	10/24/06	10/24/06	10/24/06	10/24/06	10/24/00	
Start	Time	1021	1021	1021	1147	1219	1240	1250	
	Pressure	-29	- 30	-ઝ૧	-30	- 30	- 30	-29	
	Date	10/24/06	10/24/04	10/24/06	10/24/06	10/24/06	10/24/06	10/24/020	
End	Time	1820	1820	1820	1940	2015	2032	2046	
	Pressure	-02	-03	- 02	-01	- 01	- 02	-01	
Quality	Control	orig	Duplicate	Split	Orig	Orly	Orig	Orig	
Analysi	is Method	TO-15	T0-15	TD-15	TO-15	T0-15	TO-15	TO-15	

		•		
Laboratory: STL Colchester, VT	Date Shipped to Lab: 10 26 06			
Associated Trip Blank Sample ID:		· · · ·		
Comments:				
	· · · · · · · · · · · · · · · · · · ·			

Key:

bgs = below ground surface FID = flame-ionization detector

ft = feet

He = Helium

OVM = organic vapor meter PID = photo-ionization detector ppb = parts per billion

Canister pressure measured in inches of mercury, gauge (in Hg)

International Specialists in the Environment

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Soil Vapor Sampling Data Collection Form

·							4.1				
Site	Name:	Former Grí	ffiss Air Forc	e Base		Project No.:	002275.PT	04.09			
Sam	Samplell2ocation:Information										
Proje	Project Task: Soil Vapor Intrusion Survey										
	ampler Names (Print): Larry Roedl / Alec Humann										
Samp	ler Names	s (Print): Lav	ry Koedi	Alec H	JWaw	· · · · ·					
0	Irrania Vance Mater Heads Store Vedat While' Or a store of the										
	Drganic Vapor Meter Used: Apro Fib Model: Mini Rac 2003 110-005047										
Fient	Helium Detector Used: Not used during indoor sampling										
Samp	le ID	OBGWN-TBI	B786-5541	B786-55NY5	B786-55N2	B786-55N2/D	B783-55VI	B783-55VZ			
Depth	(ft bgs)		15.5	15.5"	16.0"	16.0"	17.0"	17.5"			
Canist	ter No.	2883	2858	0120	3233	4138	2514	3761			
Regul	ator No.		3754	K220	3607	2995	2832	3238			
Start I pail (p	le conc. In pm)										
Final-l pail-(p	He conc. In pm)		0.1ppm	Oilppm	O ppm	0 ppm	O. I prm	O.1 ppm			
Purge	Vol. (L)		60 mis	60 mls	60 mls	60 mils	60 mils	60mls			
Durati	on (hours)		8	8	8	8	8	8			
	Date	10/24/04	10/25/06	10/25/06	10/25/06	10/25/06	10/25/06	10/25/06			
Start	Time	1527	0812	0812	0832	0832	0855	0910			
	Pressure	- 30.2	- 30	- 30	- 30	-30	-30	-28			
	Date		10/25/04	10/25/06	10/25/06	10/25/06	10/25/06	10/25/06			
End	Time		1610	1610	1629	₩ 1629	1652	1709			
	Pressure		-01	- 01	- 02	-01	- 02	- 01			
Qualiț	y Control	Trip Blank	Orig	split	Orig	Dupe	Drig	Orig			
Analys	is Method	TO-15	70-15	T0-15	T0-15	TD-15	T0-15	T0-15			

Colchester, VT 10/20/06 Laboratory: STL Date Shipped to Lab: OBGWV- TBI , Associated Trip Blank Sample ID: Comments:

bgs = below ground surface FID = flame-ionization detector

ft = feet

He = Helium

OVM = organic vapor meter PID = photo-ionization detector ppb = parts per billion

Canister pressure measured in inches of mercury, gauge (in Hg)

Key:

ecology and environment engineering, p.c.

International Specialists in the Environment

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Soil Vapor Sampling Data Collection Form

Site]	Name:	Former Grí	ffíss Aír Forc	e Base		Project No.	: 002275.PT(04.09
Samp	leiLocatio	ndnformation				a karangan managangan		新展的 达的复数形式
Proje	ct Task:	Soil Vapor	Intrusion Su	uvey		۲.		
			0 11	/ 0)			·····	
Samp	ler Names	s (Print): Lav	ry Roedl	/ Alec.	Homann			
Orgai	nic Vapor	Meter Used:		Model: 🏠	.Rac 7000	110-005	n.647	······
Heliu	m Detecto	or Used: Not			w samplin			
Sampl	eID	B782-55NI	B782-5541/5	B782-55N2	6782-5542/5	6458-78-	774-551	774-551
Depth	(ft bgs)	17.04	17.0"	17-04	17.0"		10.0"	10.0**
Canist	er No.	3282	3413	3550	1495	1520	3272	3274
Regula	ator No.	3133	3985	3747	K133		3027	2997
pail (p				<u> </u>				
F inal I pail-(p	le conc. I n pm)	0.8 ppm.	0.8 ppm	0.3 ppm	0.3 ppm		O.1 ppm	1.0 ppm
Purge	Vol. (L)	60 m/s.	60 mls.	Leo mis.	60 mls.		60 mls.	60 mls.
Durati	on (hours)	8	8	8	8		8	No.
	Date	10/25/06	10/25/06	10/25/00	10/25/06	10/26/06	10/26/06	10/20/00
Start	Time	0944	0944	1003	1003	0800	0858	0918
	Pressure	- 30	- 30	- 30	- 30	- 30	- 30	~ 30
	Date	10/25/04	10/25/04	10/25/06	10/25/06		10/26/06	10/26/00
End	Time	1741	1741	1800	1800		1655	1716
	Pressure	- 02	- 02	-01	-02		- 01	- 04
Quality	or Control	Orig	Dupe	Orig	Split	USACE Trip Blank	Orig	Orig
Analysi	is Method	T0-15	T0-15	70-15	T0-15	T0-15	T0-15	T0-15

QIQ reading

Colchester, NT Laboratory: STI

10/26/06 Date Shipped to Lab:

Associated Trip Blank Sample ID:

Comments:

Key:

bgs = below ground surface

FID = flame-ionization detector ft = feet

He = Helium

OVM = organic vapor meter .PID = photo-ionization detector ppb = parts per billion

Canister pressure measured in inches of mercury, gauge (in Hg)

ģ	e	6	2	0		0	2	F	V	a	I	1	C	e	١	V	ľ	0	NIC.	n	ľ	11	e	T	e 1	t.	e	ŋ	¢	FÌ	ħ	e	e	ľ	m		UT.	D	ſ	ļ
1.1					4					 		· . ·													1.4.4.4	1 * 1 * *					 				 	11.7			 	

International Specialists in the Environment

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Soil Vapor Sampling Data Collection Form

	Samo	Ice Rocatio	numerion		and the second	C-L-SU-IC SCHENGER STREET, SOMEONE			No statu oc St Salaria
		et Task:		IntrusioniSu			nation and the second second		的是非可以可以不
Ľ			3000 100001		# VEy				
. 2	Samp	ler Names	(Print):	My Roedl	/ Alec.	1/ maging		······································	
					-/ 1.1.52	(10000000000			
C	Orgat	ic Vapor I	Meter Used:		Model: M	iniflae 2000	0 110-005	5047	
I	leliu	m Detecto	r Üsed: Not			idoor samp			
s	ample	= ID	776-5511		<u> </u>				1
-				776-5542					
-		(ft bgs)	5.0"	8.5"					
. 0	Canisto	er No.	4892	2659					
_		tor No.	aulu	3850					
	tart H ail (p	e conc. In pm)		Cut					
E P	inal-I ail_(pj	I c cone. I n əm)	2.1 ppm	2.0 ppm					
ノロ		Vol. (L)	60 m/s.	60 mls.		· · ·			
r	Duratio	on (hours)	8	8	* •				
Γ		Date	10/26/06	10/20/06					
S	tart	Time	0940	0957					
		Pressure	- 30	-29	· · ·				
	· · · · · ·	Date	10/210/010	10/26/06					
E	nd	Time	1737	\155					
		Pressure	- 01	- 02				· · · · ·	
Q	uality	Control	Orig	Orig			······································		
A	nalysi	s Method	TO-15	70-15					
				·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•

Comments:

.

Key:

bgs = below ground surface

FID = flame-ionization detector

ft = feet

He = Helium

OVM = organic vapor meter PID = photo-ionization detector ppb = parts per billion Canister pressure measured in inches of mercury, gauge (in Hg)

e	C	0	1()8	V	r	a	n	C	e	Π	N)	I	e	n	l	. (e	I	Ø	n	e	e	ľ	1	n	Q	4	Ĩ).	C	

International Specialists in the Environment

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Soil Vapor Sampling Data Collection Form Site Name: Former Griffiss Air Force Base Project No.: 002275.PT04.09 SampleBlocationInformation States and a second state and a second state and a second state and a second state a Project Task: Soil Vapor Intrusion Survey Bob Mayers. Mays Jim Sampler Names (Print): Organic Vapor Meter Used: 🛛 PID FID Model: PPB RAE Monitor Helium Detector Used: -1414-"in Sample ID WSA-IA1 WSA-OA1 0BGWV-765 786- IA1 786-IA2 786-IA2/D 786-0A1 Depth (ft bgs) 3033 Canister No. 2670 2602 2961 4166 2593 4324 2731 Regulator No. 3075 2811 3123 2836 3993 Start He conc. In pail (ppm) Final He conc. In pail (ppm) Purge Vol. (L) Duration (hours) Date 12/201 06 12/20/06 12/20/06 12/20/06 12/20/06/12/20/06 Start Time 1024 1027 0819 6820 0820 6826 Pressure -30 - 30 -29.8 - 30 -28-30 30 Date 12/20/06 12/20/06 12/20/06 12/20/06 -----2120106 Time End 1824 1827 1619 -1620 1620 1626 Pressure - 10 -12.5 -6 - 4 -2.0 -5.9 Quality Control Analysis Method TO-15 TO -15 TO-15 TO-15 T0-15 10-15 TO-15

-Burlington STL Laboratory: 12/20/06 Date Shipped to Lab: Associated Trip Blank Sample ID: Comments: Key: bgs = below ground surface OVM = organic vapor meter Canister pressure measured in inches of FID = flame-ionization detector PID = photo-ionization detector mercury, gauge (in Hg) ft = feet ppb = parts per billion

He = Helium

ecology and environment engineering, p.c.

International Specialists in the Environment

A-PID

K FID

Model:

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Soil Vapor Sampling Data Collection Form

Site Name:	Former Griffiss Air Force Base	Project No.: 002275.PT04.09
Samplellocati	onlinformation	
Project Task:	Soil Vapor Intrusion Survey	
·		· · · · · · · · · · · · · · · · · · ·
Sampler Name	es (Print): Bob Meyers, Jun Ma	rys

Organic Vapor Meter Used:

RAE Monitor PPB

Helium Detector Used:

Sample ID 785-IA1 785-IA2 776-JA1 776-IA2 774–IA1 774-JA2 774-JA2 Depth (ft bgs) Canister No. 3144 352 3885 3412 2574 3005 2509 Regulator No. 3936 2916 3180 3954 3062 3978 4066 Start He conc. In pail (ppm) ____ -----_ <u>____</u> Final He conc. In --------~ pail (ppm) Purge Vol. (L) ~ ____ ~ -Duration (hours) \sim Date 12 20 06 12/20/06 12/20/06 12/20/06 12/20/06 12/20/06 12/20/06 Start Time 0948 0844 0909 0843 0915 0956 0950 - 30 Pressure -28 -30 - 30 -29.8 -29.8 30 Date 12/20/06 12/20/06 12/20/06 12/20/06 12/20/06 12/20/06 12 20/06 End Time 1754 1643 1748 1709 1750 1750 1715 Pressure -15 -3 -z -3 -4 Quality Control TO-15 Analysis Method TO -15 TO -15 TO -15 TO -15 TO-15 TO-15

aboratory: STL-Burlington	Date Shipped to Lab: 12	-120/06
associated Trip Blank Sample ID:		
Comments:		
Ley: bgs = below ground surface	OVM = organic vapor meter	Canister pressure measured in inches of

ft = feet

He = Helium

- ,PID = photo-ionization detector
- ppb = parts per billion

mercury, gauge (in Hg)

ecology and environment engineering, p.c.

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Soil Vapor Sampling Data Collection Form

Site	Name:	Former Grí	ffiss Air Forc	e Base		Project No	.: 002275.PT	04.09
Sam	lceleocatio	nunformation	NO RICO SI CACONIDA				的现代学校会体现全体的学	出版也不必可以可是
Proje	ct Task:		Intrusion Si		· .			
Samp	ler Names	(Print): BC	b Meyers	Jun	r Mays	······································		· · · · · · · · · · · · · · · · · · ·
Orga	nic Vapor I	Meter Used:		Model: TP	PB RAE I	Monistor "	1. 	
Heliu	m Detecto	or Used:	а. у		P	». و هما همی این این این این این این این این این ای		
Sampl	e ID	774-0A	1					
Depth	(ft bgs)							
Canist	er No.	4109						
Regul	ator No.	3930						
pail (p								
Final I pail (p	He conc. In pm)							
Purge	Vol. (L)	-						
Durati	on (hours)							
	Date	12/20/06						
Start	Time	1003			. *			
	Pressure	-30						
	Date	12/20/06		· ·				
End	Time	1746						
	Pressure	- 5.6						
Qualit	7 Control				· · · · · · · · · · · · · · · · · · ·			
Analys	is Method	TO-15		· · · · · · · · · · · · · · · · · · ·				
Labora	tory:	STL-Bus	lington		Date Shipped to La	ub: $12/20$	06	
		ank Sample ID:		***		•	· · · · · · · · · · · · · · · · · · ·	
Comm	ents:			ſ				
Key:	FID = ft =	below ground surfac flame-ionization dete feet Helium	e :ctor	.PID =	organic vapor meter photo-ionization det parts per billion	ector	Canister pressure m mercury, gauge (in I	easured in inches of Ig)

TO-14/15 Result Summary

Т

Т

Т

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Г

Sample Matrix: AIR

AOC9-SV-01

Lab Sample No.: 688437

Date Analyzed: 11/01/06

Date Received: 10/21/06

J

Т

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	1.5	U	1.5	7.4	U	7.4
1,2-Dichlorotetrafluoroethane	76-14-2	0.60	U	0.60	4.2	U	4.2
Chloromethane	74-87-3	1.5	U	1.5	3.1	U	3.1
Vinyl Chloride	75-01-4	0.60	U	0.60	1.5	U	1.5
1,3-Butadiene	106-99-0	4.8		1.5	11		3.3
Bromomethane	74-83-9	0.60	U	0.60	2.3	U	2.3
Chloroethane	75-00-3	1.5	U	1.5	4.0	U	4.0
Bromoethene	593-60-2	0.60	U	0.60	2.6	U	2.6
Trichlorofluoromethane	75-69-4	0.60	U	0.60	3.4	U	3.4
Freon TF	76-1 3-1	0.60	U	0.60	4.6	U	4.6
1,1-Dichloroethene	75-35-4	0.60	U	0.60	2.4	U	2.4
Acetone	67-64-1	29		15	69	1	36
Isopropyl Alcohol	67-63-0	15	U	15	37	U	37
Carbon Disulfide	75-15-0	2.1		1.5	6.5		4.7
3-Chloropropene	107-05-1	1.5	U	1.5	4.7	U	4.7
Methylene Chloride	75-09-2	1.5	U	1.5	5.2	U	5.2
tert-Butyl Alcohol	75-65-0	15	U	15	45	υ	45
Methyl tert-Butyl Ether	1634-04-4	1.5	U	1.5	5.4	U	5.4
trans-1,2-Dichloroethene	156-60-5	0.60	U	0.60	2.4	U	2.4
n-Hexane	110-54-3	10	1	1.5	35		5.3
1,1-Dichloroethane	75-34-3	0.60	U	0.60	2.4	U	2.4
1,2-Dichloroethene (total)	540-59-0	4.7		0.60	19		2.4
Methyl Ethyl Ketone	78-93-3	12		1.5	35		4.4
cis-1,2-Dichloroethene	156-59-2	4.7		0.60	19		2.4
Tetrahydrofuran	10 9- 99-9	15	U	15	44	U	44
Chloroform	67 -66-3	0.60	U	0.60	2.9	U	2.9
1,1,1-Trichloroethane	71-55-6	0.60	U	0.60	3 .3	U	3.3
Cyclohexane	110-82-7	. 4.4		0.60	15		2.1
Carbon Tetrachloride	56-23-5	0.6 0	U	0.60	3.8	U	3.8
2,2,4-Trimethylpentane	540-84-1	0.60	U	0.60	2.8	U	2.8
Benzene	71-43-2	3.8		0.60	12		1.9
1,2-Dichloroethane	107-06-2	0.60	U	0.60	2.4	U	2.4
n-Heptane	142-82-5	5.5		0.60	23		2.5

TO-14/15 **Result Summary**

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

AOC9-SV-01

Lab Sample No.: 688437

Date Analyzed: 11/01/06

Date Received: 10/21/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	a	RL in ug/m3
Trichloroethene	79-01-6	3.1		0.60	17	<u> </u>	3.2
Methyl Methacrylate	80-62-6	1.5	U	1.5	6.1	U	6.1
1,2-Dichloropropane	78-87-5	0.60	U	0.60	2.8	U	2.8
1,4-Dioxane	123-91-1	15	U	15	54	U	54
Bromodichloromethane	75-27-4	0.60	U	0.60	4.0	U	4.0
cis-1,3-Dichloropropene	10061-01-5	0.60	U	0.60	2.7	U	2.7
Methyl Isobutyl Ketone	108-10-1	1.5	U	1.5	6.1	U	6.1
Toluene	108-88-3	5.1		0.60	19		2.3
trans-1,3-Dichloropropene	10061-02-6	0.60	U	0.60	2.7	U	2.7
1,1,2-Trichloroethane	79-00-5	0.60	υ	0.60	3.3	U	3.3
Tetrachloroethene	127-18-4	90	2	0.60	610		4.1
Methyl Butyl Ketone	591-78-6	1.5	U	1.5	6.1	U	6.1
Dibromochloromethane	124-48-1	0.60	U	0.60	5.1	U	5.1
1,2-Dibromoethane	106-93-4	0.60	υ	0.60	4.6	U	4.6
Chlorobenzene	108-90-7	0.60	U	0.60	2.8	υ	2.8
Ethylbenzene	100-41-4	1.1		0.60	4.8		2.6
Xylene (m,p)	1330-20-7	3.2		1.5	14	1	6.5
Xylene (o)	95-47-6	0.90		0.60	3.9		2.6
Xylene (total)	1330-20-7	4.1		0.60	18		2.6
Styrene	100-42-5	1.7		0.60	7.2		2.6
Bromoform	75-25-2	0.60	υ	0.60	6.2	υ	6.2
1,1,2,2-Tetrachloroethane	79-34-5	0.60	υ	0.60	4.1	U	4.1
4-Ethyltoluene	622-96-8	0.79		0.60	3.9		2.9
1,3,5-Trimethylbenzene	108-67-8	0.60	U	0.60	2.9	υ	2.9
2-Chlorotoluene	95-49-8	0.60	U	0.60	3.1	U	3.1
1,2,4-Trimethylbenzene	95-63-6	1.1		0.60	5.4		2.9
1,3-Dichlorobenzene	541-73-1	0.60	U	0.60	3.6	U	3.6
1,4-Dichlorobenzene	106-46-7	0.60	U	0.60	3.6	U	3.6
1,2-Dichlorobenzene	95-50-1	0.60	U	0.60	3.6	U	3.6
1,2,4-Trichlorobenzene	120-82-1	1.5	υ	1.5	11	U	11
Hexachlorobutadiene	87-68-3	0.60	U	0.60	6.4	υ	6.4
Naphthalene	91-20-3	1.5	υ	1.5	7.9	U	7.9

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

AOC9-SV-02

Lab Sample No.: 688438

Date Analyzed: 11/01/06

Date Received: 10/21/06

			Τ		<u> </u>		
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	1.0	U	1.0	4.9	U	4.9
1,2-Dichlorotetrafluoroethane	76-14-2	0.40	U	0.40	2.8	U	2.8
Chloromethane	74-87-3	1.0	U	1.0	2.1	U	2.1
Vinyl Chloride	75-01-4	0.40	U	0.40	1.0	U	1.0
1,3-Butadiene	106-99-0	2.0		1.0	4.4		2.2
Bromomethane	74-83-9	0.40	U	0.40	1.6	U	1.6
Chloroethane	75-00-3	1.0	U	1.0	2.6	U	2.6
Bromoethene	593-60-2	0.40	U	0.40	1.7	U	1.7
Trichlorofluoromethane	75-69-4	0.40	U	0.40	2.2	U	2.2
Freon TF	76-13-1	0.40	U	0.40	3.1	U	3.1
1,1-Dichloroethene	75-35-4	0.40	U	0.40	1.6	U	1.6
Acetone	67-64-1	20	-	10	48		24
Isopropyl Alcohol	67-63-0	10	U	10	25	U	25
Carbon Disulfide	75-15-0	1.7		1.0	5.3		3.1
3-Chloropropene	107-05-1	1.0	U	1.0	3.1	U	3.1
Methylene Chloride	75-09-2	1.0	U	1.0	3.5	U	3 .5
tert-Butyl Alcohol	75-65-0	10	U	10	30	U	30
Methyl tert-Butyl Ether	1634-04-4	1.0	υ	1.0	3.6	U	3.6
trans-1,2-Dichloroethene	156-60-5	0.40	U	0.40	1.6	U	1.6
n-Hexane	110-54-3	1.5		1.0	5.3		3.5
1,1-Dichloroethane	75-34-3	0.40	υ	0.40	1.6	U	1.6
1,2-Dichloroethene (total)	540-59-0	3.8		0.40	15		1.6
Methyl Ethyl Ketone	78-93-3	6.2		1.0	18		2.9
cis-1,2-Dichloroethene	156-59-2	3.8		0.40	15		1.6
Tetrahydrofuran	109-99-9	10	U	10	29	U	29
Chloroform	67-66-3	0.40	U	0.40	2.0	U	2.0
1,1,1-Trichloroethane	71-55-6	0.40	U	0.40	2.2	U	2.2
Cyclohexane	110-82-7	0.40	U	0.40	1.4	U	1.4
Carbon Tetrachloride	56-23-5	0.40	U	0.40	2.5	U	2.5
2,2,4-Trimethylpentane	540-84-1	0.40	υ	0.40	1.9	U	1.9
Benzene	71-43-2	0.54		0.40	1.7		1.3
1,2-Dichloroethane	107-06-2	0.40	U	0.40	1.6	U	1.6
n-Heptane	142-82-5	0.66		0.40	2.7		1.6

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

AOC9-SV-02

Lab Sample No.: 688438

Date Analyzed: 11/01/06

Date Received: 10/21/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	٩	RL In ug/m3
Trichloroethene	79-01-6	51		0.40	270		2.1
Methyl Methacrylate	80-62-6	1.0	U	1.0	4.1	U	4.1
1,2-Dichloropropane	78-87-5	0.40	U	0.40	1.8	U	1.8
1,4-Dioxane	123-91-1	10	U	10	36	U	36
Bromodichloromethane	75-27-4	0.40	υ	0.40	2.7	U	2.7
cis-1,3-Dichloropropene	10061-01-5	0.40	υ	0.40	1.8	U	1.8
Methyl Isobutyl Ketone	108-10-1	1.0	U	1.0	4.1	U	4.1
Toluene	108-88-3	3.3		0.40	12		1.5
trans-1,3-Dichloropropene	10061-02-6	0.40	U	0.40	1.8	U	1.8
1,1,2-Trichloroethane	7 9-00 - 5	0.40	U	0.40	2.2	U	2.2
Tetrachloroethene	127-18-4	25		0.40	170		2.7
Methyl Butyl Ketone	591-78-6	1.0	U	1.0	4.1	U	4.1
Dibromochloromethane	124-48-1	0.40	U	0.40	3.4	U	3.4
1,2-Dibromoethane	106-93-4	0.40	U	0.40	3.1	U	3.1
Chlorobenzene	108-90 - 7	0.40	U	0.40	1.8	U	1.8
Ethylbenzene	100-41-4	0.69	· · · · · · · · · · · · · · · · · · ·	0.40	3.0		1.7
Xylene (m,p)	1330-20-7	2.0		1.0	8.7		4.3
Xylene (o)	95 -47 -6	0.54		0.40	2.3		1.7
Xylene (total)	1330-20-7	2.6	-	0.40	11		1.7
Styrene	100-42-5	0.98		0.40	4.2		1.7
Bromoform	75-25-2	0.40	υ	0.40	4.1	U	4.1
1,1,2,2-Tetrachloroethane	79-34-5	0.40	U	0.40	2.7	U	2.7
4-Ethyltoluene	622-96-8	0.40	U	0.40	2.0	U	2.0
1,3,5-Trimethylbenzene	108-67-8	0.40	U	0.40	2.0	U	2.0
2-Chlorotoluene	95-49-8	0.40	U	0.40	2.1	U	2.1
1,2,4-Trimethylbenzene	95-63-6	0.55		0.40	2.7		2.0
1,3-Dichlorobenzene	541-73-1	0.40	υ	0.40	2.4	U	2.4
1,4-Dichlorobenzene	106-46-7	0.40	U	0.40	2.4	υ	2.4
1,2-Dichlorobenzene	95-50-1	0.40	U	0.40	2.4	U	2.4
1,2,4-Trichlorobenzene	120-82-1	1.0	U	1.0	7.4	U	7.4
Hexachlorobutadiene	87-68-3	0.40	U	0.40	4.3	U	4.3
Naphthalene	91-20-3	1.0	U	1.0	5.2	υ	5.2

TO-14/15 **Result Summary**

STL Burlington Lab Name:

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

AOC9-SV-03

Lab Sample No.: 688439

Date Analyzed: 11/0**1**/06

Date Received: 10/21/06

Target Compound	CAS Number	Results In ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	3.0	U	3.0	15	U	
1,2-Dichlorotetrafluoroethane	76-14-2	1.2	υ	1.2	8.4	U	8.4
Chloromethane	74-87-3	3.0	U	3.0	6.2	U	6.2
Vinyl Chloride	75-01-4	1.2	U	1.2	3.1	U	3.1
1,3-Butadiene	106-99-0	3.0	U	3.0	6.6	U	6.6
Bromomethane	74-83-9	1.2	U	1.2	4.7	U	4.7
Chloroethane	75-00-3	3.0	U	3.0	7.9	U	7.9
Bromoethene	593-60-2	1.2	U	1.2	5.2	U	5.2
Trichlorofluoromethane	75-69-4	1.2	U	1.2	6.7	U	6.7
Freon TF	76-13-1	1.2	U	1.2	9.2	U	9.2
1,1-Dichloroethene	75-35-4	1.2	U	1.2	4.8	U	4.8
Acetone	67-64-1	30	U	30	71	U	71
Isopropyl Alcohol	67-63-0	30	U	30	74	υ	74
Carbon Disulfide	75-15-0	3.0	U	3.0	9.3	U	9.3
3-Chloropropene	107-05-1	3.0	U	3.0	9.4	υ	9.4
Methylene Chloride	75-09-2	3.0	U	3.0	10	U	10
tert-Butyl Alcohol	75-65-0	30	U	30	91	U	91
Methyl tert-Butyl Ether	1634-04-4	3.0	υ	3.0	11	U	11
trans-1,2-Dichloroethene	156-60-5	1.2	U	1.2	4.8	U	4.8
n-Hexane	110-54-3	3.0	U	3.0	11	υ	11
1,1-Dichloroethane	75-34-3	1.2	U	1.2	4.9	U	4.9
1,2-Dichloroethene (total)	540-59-0	1.2	U	1.2	4.8	U	4.8
Methyl Ethyl Ketone	78-93-3	16		3.0	47		8.8
cis-1,2-Dichloroethene	156-59-2	1.2	υ	1.2	4.8	U	4.8
Tetrahydrofuran	109-99-9	30	U	30	88	U	88
Chloroform	67-66-3	1.2	U	1.2	5.9	U	5.9
1,1,1-Trichloroethane	71-55-6	1.2	U	1.2	6.5	U	6.5
Cyclohexane	110-82-7	1.2	υ	1.2	4.1	U	4.1
Carbon Tetrachloride	56-23-5	1.2	U	1.2	7.5	U	7.5
2,2,4-Trimethylpentane	540-84-1	1.2	U	1.2	5.6	υ	5.6
Benzene	71-43-2	1.2	υ	1.2	3.8	U	3.8
1,2-Dichloroethane	107-06-2	1.2	U	1.2	4.9	U	4.9
n-Heptane	142-82-5	1.2	U	1.2	4.9	U	4.9

CLIENT SAMPLE NO.

STL Burlington Lab Name:

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

AOC9-SV-03

Lab Sample No.: 688439

Date Analyzed: 11/01/06

Date Received: 10/21/06

					1	<u> </u>	<u> </u>
Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	150		1.2	810		6.4
Methyl Methacrylate	80-62-6	3.0	U	3.0	12	U	12
1,2-Dichloropropane	78-87-5	1.2	U	1.2	5.5	U	5.5
1,4-Dioxane	123-91-1	30	U	30	110	U	110
Bromodichloromethane	75-27-4	1.2	U	1.2	8.0	U	8.0
cis-1,3-Dichloropropene	10061-01-5	1.2	υ	1.2	5.4	U	5.4
Methyl Isobutyl Ketone	108-10-1	3.0	U	3.0	12	U	12
Toluene	108-88-3	4.1		1.2	15		4.5
trans-1,3-Dichloropropene	10061-02-6	1.2	U	1.2	5.4	U	5.4
1,1,2-Trichloroethane	79-00-5	1.2	U	1.2	6.5	U	6.5
Tetrachloroethene	127-18-4	68		1.2	460		8.1
Methyl Butyl Ketone	591-78-6	3.0	U	3.0	12	U	12
Dibromochloromethane	124-48-1	1.2	U	1.2	10	U	10
1,2-Dibromoethane	106-93-4	1.2	U	1.2	9.2	U	9.2
Chlorobenzene	108-90-7	1.2	U	1.2	5.5	U	5.5
Ethylbenzene	100-41-4	1.2	U	1.2	5.2	υ	5.2
Xylene (m,p)	1330-20-7	3.0	U	3.0	13	U	13
Xylene (o)	95-47-6	1.2	U	1.2	5.2	U	5.2
Xylene (total)	1330-20-7	1.2	U	1.2	5.2	U	5.2
Styrene	100-42-5	1.2	U	1.2	5.1	U	5.1
Bromoform	75-25-2	1.2	U	1.2	12	U	12
1,1,2,2-Tetrachloroethane	79-34-5	1.2	U	1.2	8.2	U	8.2
4-Ethyltoluene	622-96-8	1.2	U	1.2	5.9	U	5.9
1,3,5-Trimethylbenzene	108-67-8	1.2	U	1.2	5.9	U	5.9
2-Chlorotoluene	95-49-8	1.2	U	1.2	6.2	U	6.2
1,2,4-Trimethylbenzene	95-63-6	1.2	U	1.2	5.9	U	5.9
1,3-Dichlorobenzene	541-73-1	1.2	U	1.2	7.2	U	7.2
1,4-Dichlorobenzene	106-46-7	1.2	U U	1.2	7.2	U	7.2
1,2-Dichlorobenzene	95-50-1	1.2	U	1.2	7.2	U	7.2
1,2,4-Trichlorobenzene	120-82-1	3.0	U	3.0	22	U	22
Hexachlorobutadiene	87-68-3	1.2	U	1.2	13	U	13
Naphthalene	91-20-3	3.0	U	3.0	16	U	16

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

AOC9-SV-04

Lab Sample No.: 688440

Date Analyzed: 11/01/06

Date Received: 10/21/06

			1		<u> </u>	1 -	
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
Dichlorodifluoromethane	75-71-8	1.5	U	1.5	7.4	U	7.4
1,2-Dichlorotetrafluoroethane	76-14-2	0.60	U	0.60	4.2	U	4.2
Chloromethane	74-87-3	1.5	U	1.5	3.1	U	3.1
Vinyl Chloride	75-01-4	0.60	U	0.60	1.5	U	1.5
1,3-Butadiene	106-99-0	1.5	U	1.5	3.3	U	3.3
Bromomethane	74-83-9	0.60	U	0.60	2.3	U	2.3
Chloroethane	75-00-3	1.5	U	1.5	4.0	U	4.0
Bromoethene	593-60-2	0.60	U	0.60	2.6	U	2.6
Trichlorofluoromethane	75-69-4	0.60	U	0.60	3.4	U	3.4
Freon TF	76-13-1	0.60	U	0.60	4.6	U	4.6
1,1-Dichloroethene	75-35-4	0.60	U	0.60	2.4	U	2.4
Acetone	67-64-1	15	U	15	36	U	36
Isopropyl Alcohol	67-63-0	15	U	15	37	U	37
Carbon Disulfide	7 5- 15-0	1.5	U	1.5	4.7	U	4.7
3-Chloropropene	107-05-1	1.5	U	1.5	4.7	U	4.7
Methylene Chloride	75-09-2	1.5	U	1.5	5.2	U	5.2
tert-Butyl Alcohol	75-65-0	15	U	15	45	U	45
Methyl tert-Butyl Ether	1634-04-4	1.5	U	1.5	5.4	U	5.4
trans-1,2-Dichloroethene	156-60-5	0.60	U	0.60	2.4	U	2.4
n-Hexane	110-54-3	1.5	U	1.5	5.3	U	5.3
1,1-Dichloroethane	75-34-3	0.60	U	0.60	2.4	U	2.4
1,2-Dichloroethene (total)	540-59-0	0.60	U	0.60	2.4	U	2.4
Methyl Ethyl Ketone	78-93-3	50		1.5	150		4.4
cis-1,2-Dichloroethene	156-59-2	0.60	U	0.60	2.4	U	2.4
Tetrahydrofuran	109-99-9	15	U	15	44	U	44
Chloroform	67-66-3	0.60	U	0.60	2.9	U	2.9
1,1,1-Trichloroethane	71-55-6	0.60	U	0.60	3.3	U	3.3
Cyclohexane	110-82-7	0.60	U	0.60	2.1	U	2.1
Carbon Tetrachloride	56-23-5	0.60	U	0.60	3.8	U	3.8
2,2,4-Trimethylpentane	540-84-1	0.60	U	0.60	2.8	U	2.8
Benzene	71-43-2	0.60	U	0.60	1.9	U	1.9
1,2-Dichloroethane	107-06-2	0.60	U	0.60	2.4	U	2.4
n-Heptane	142-82- 5	0.60	U	0.60	2.5	U	2. 5

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

AOC9-SV-04

Lab Sample No.: 688440

Date Analyzed: 11/01/06

Date Received: 10**/21**/06

Target Compound	CAS Number	Results in ppbv	٩	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	81		0.60	440		3.2
Methyl Methacrylate	80-62-6	1.5	U	1.5	6.1	U	6.1
1,2-Dichloropropane	78-87 - 5	0.60	U	0.60	2.8	U	2.8
1,4-Dioxane	123-91-1	15	U	15	54	U	54
Bromodichloromethane	75-27-4	0.60	U	0.60	4.0	U	4.0
cis-1,3-Dichloropropene	10061-01-5	0.60	U	0.60	2.7	U	2.7
Methyl Isobutyl Ketone	108-10-1	1.5	U	1.5	6.1	U	6.1
Toluene	108-88-3	3.8		0.60	14		2.3
trans-1,3-Dichloropropene	10061-02-6	0.60	U	0.60	2.7	U	2.7
1,1,2-Trichloroethane	79-00-5	0.60	U	0.60	3.3	U	3.3
Tetrachloroethene	127-18-4	37		0.60	250		4.1
Methyl Butyl Ketone	591-78-6	5.4		1.5	22		6.1
Dibromochloromethane	124-48-1	0.60	U	0.60	5.1	U	5.1
1,2-Dibromoethane	106-93-4	0.60	U	0.60	4.6	U	4.6
Chlorobenzene	108-90-7	0.60	U	0.60	2.8	υ	2.8
Ethylbenzene	100-41-4	0.60	U	0.60	2.6	U	2.6
Xylene (m,p)	1330-20-7	1.7		1.5	7.4		6.5
Xylene (o)	95-47-6	0.60	U	0.60	2.6	U	2.6
Xylene (total)	1330-20-7	1.7		0.60	7.4		2.6
Styrene	100-42-5	0.91		0.60	3.9		2.6
Bromoform	75 -2 5-2	0.60	U	0.60	6.2	U	6.2
1,1,2,2-Tetrachloroethane	79-34-5	0.60	U	0.60	4.1	U	4.1
4-Ethyltoluene	622-96-8	0.60	U	0.60	2.9	U	2.9
1,3,5-Trimethylbenzene	108-67-8	0.60	U	0.60	2.9	U	2.9
2-Chlorotoluene	95-49-8	0.60	U	0.60	3.1	U	3.1
1,2,4-Trimethylbenzene	95-63-6	0.61		0.60	3.0		2.9
1,3-Dichlorobenzene	541-73-1	0.60	U	0.60	3.6	U	3.6
1,4-Dichlorobenzene	106-46-7	0.60	υ	0.60	3.6	U	3.6
1,2-Dichlorobenzene	95-50-1	0.60	U	0.60	3.6	U	3.6
1,2,4-Trichlorobenzene	120-82-1	1.5	U	1.5	11	U	11
Hexachlorobutadiene	87-68-3	0.60	U	0.60	6.4	U	6.4
Naphthalene	91-20-3	1.5	U	1.5	7.9	υ	7.9

.

CLIENT SAMPLE NO.

STL Burlington Lab Name:

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

AOC9-SV-05

Lab Sample No.: 688441

Date Analyzed: 11/01/06

Date Received: 10/21/06

					1		
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.75	U	0.75	3.7	U	3.7
1,2-Dichlorotetrafluoroethane	76-14-2	0.30	U	0.30	2.1	U	2.1
Chloromethane	74-87-3	0.75	U	0.75	1.5	U	1.5
Vinyl Chloride	75-01-4	0.30	U	0.30	0.77	U	0.77
1,3-Butadiene	106-99-0	4.6		0.75	10		1.7
Bromomethane	74-83-9	0.30	U	0.30	1.2	U	1.2
Chloroethane	75-00-3	0.75	U	0.75	2.0	U	2.0
Bromoethene	593-60-2	0.30	U	0.30	1.3	U	1.3
Trichlorofluoromethane	75-69-4	0.30	U	0.30	1.7	U	1.7
Freon TF	76-13-1	0.30	U	0.30	2.3	U	2.3
1,1-Dichloroethene	75-35-4	0.30	U	0.30	1.2	U	1.2
Acetone	67-64-1	26		7.5	62		18
Isopropyl Alcohol	67-63-0	7.5	U	7.5	18	U	18
Carbon Disulfide	75-15-0	1.1		0.75	3.4		2.3
3-Chloropropene	107-05-1	0.75	U	0.75	2.3	U	2.3
Methylene Chloride	75-09-2	0.75	U	0.75	2.6	U	2.6
tert-Butyl Alcohol	75-65-0	7.5	U	7.5	23	U	23
Methyl tert-Butyl Ether	1634-04-4	0.75	U	0.75	2.7	U	2.7
trans-1,2-Dichloroethene	156-60-5	0.30	U	0.30	1.2	U	1.2
n-Hexane	110-54-3	1.8		0.75	6.3		2.6
1,1-Dichloroethane	75-34-3	0.30	U	0.30	1.2	U	1.2
1,2-Dichloroethene (total)	540-59-0	0.30	U	0.30	1.2	U	1.2
Methyl Ethyl Ketone	78-93-3	15	-	0.75	44		2.2
cis-1,2-Dichloroethene	156-59-2	0.30	U	0.30	1.2	U	1.2
Tetrahydrofuran	109-99-9	7.5	U	7.5	22	U	22
Chloroform	67-66-3	0.30	υ	0.30	1.5	U	1.5
1,1,1-Trichloroethane	71-55-6	0.30	U	0.30	1.6	U	1.6
Cyclohexane	110-82-7	0.30	U	0.30	1.0	U	1.0
Carbon Tetrachloride	56-23-5	0.30	U	0.30	1.9	U	1.9
2,2,4-Trimethylpentane	540-84-1	0.30	U	0.30	1.4	U	1.4
Benzene	71-43-2	1.1		0.30	3.5		0.96
1,2-Dichloroethane	107-06-2	0.30	U	0.30	1.2	U	1.2
n-Heptane	142-82-5	1.1		0.30	4.5		1.2

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Г

Sample Matrix: AIR

AOC9-SV-05

Lab Sample No.: 688441

Date Analyzed: 11/01/06

Date Received: 10/21/06

Target Compound	CAS Number	Results in ppbv	٩	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
Trichloroethene	79-01-6	33	1	0.30	180		1.6
Methyl Methacrylate	80-62-6	0.75	U	0.75	3.1	U	3.1
1,2-Dichloropropane	78-87-5	0.30	U	0.30	1.4	U	1.4
1,4-Dioxane	123-91-1	7.5	U	7.5	27	U	27
Bromodichloromethane	75-27-4	0.30	U	0.30	2.0	U	2.0
cis-1,3-Dichloropropene	10061-01-5	0.30	U	0.30	1.4	U	1.4
Methyl Isobutyl Ketone	108-10-1	0.75	U	0.75	3.1	U	3.1
Toluene	108-88-3	4.5		0.30	17		1.1
trans-1,3-Dichloropropene	10061-02-6	0.30	U	0.30	1.4	U	1.4
1,1,2-Trichloroethane	79-00-5	0.30	U	0.30	1.6	U	1.6
Tetrachloroethene	127-18-4	28		0.30	190		2.0
Methyl Butyl Ketone	591-78-6	1.5		0.75	6.1		3.1
Dibromochloromethane	124-48-1	0.30	U	0.30	2.6	U	2.6
1,2-Dibromoethane	106-93-4	0.30	U	0.30	2.3	U	2.3
Chlorobenzene	108-90-7	0.30	U	0.30	1.4	U	1.4
Ethylbenzene	100-41-4	0.81		0.30	3.5		1.3
Xylene (m,p)	1330-20-7	2.9		0.75	13		3.3
Xylene (o)	95-47-6	0.85		0.30	3.7		1.3
Xylene (total)	1330-20-7	3.8		0.30	17		1.3
Styrene	100-42-5	1.1		0.30	4.7		1.3
Bromoform	75-25-2	0.30	U	0.30	3.1	U	3.1
1,1,2,2-Tetrachloroethane	79-34-5	0.30	U	0.30	2.1	U	2.1
4-Ethyltoluene	622-96-8	0.54	·	0.30	2.7		1.5
1,3,5-Trimethylbenzene	108-67-8	0.30	U	0.30	1.5	U	1.5
2-Chlorotoluene	95-49-8	0.30	U	0.30	1.6	U	1.6
1,2,4-Trimethylbenzene	95-63-6	0.79		0.30	3.9		1.5
1,3-Dichlorobenzene	541-73-1	0.30	U	0.30	1.8	U	1.8
1,4-Dichlorobenzene	106-46-7	0.30	U	0.30	1.8	U	1.8
1,2-Dichlorobenzene	95-50-1	0.30	U	0.30	1.8	U	1.8
1,2,4-Trichlorobenzene	120-82-1	0.75	U	0.75	5.6	U	5.6
Hexachlorobutadiene	87-68-3	0.30	U	0.30	3.2	U	3.2
Naphthalene	91-20-3	0.75	U	0.75	3.9	U	3.9

Т

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

AOC9-SV-06

Lab Sample No.: 688442

Date Analyzed: 11/01/06

Date Received: 10/21/06

Т

П

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.60		0.50	3.0		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	2.9		0.50	6.4		1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.26		0.20	1.5		1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Acetone	67-64-1	23		5.0	55		12
Isopropyl Alcohol	67-63-0	5.0	U	5.0	12	U	12
Carbon Disulfide	75-15-0	1.7		0.50	5.3		1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene Chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	υ	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	3.8	_	0.50	13		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	32		0.50	94		1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Tetrahydrofuran	109-99-9	5.0	U	5.0	15	U	15
Chloroform	67-66-3	0.20	υ	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.63		0.20	2.2		0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.93		0.20	3.0		0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	1.8		0.20	7.4		0.82

TO-14/15 **Result Summary**

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

AOC9-SV-06

Lab Sample No.: 688442

Date Analyzed: 11/01/06

Date Received: 10/21/06

			1 -		1	T	
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	٩	RL In ug/m3
Trichloroethene	79-01-6	5.0	-	0.20	27	 	1.1
Methyl Methacrylate	80-62-6	0.50	U	0.50	2.0	U	2.0
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5.0	U	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	2.3		0.20	8.7		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	19		0.20	130		1.4
Methyl Butyl Ketone	591-78-6	2.7		0.50	11		2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.31		0.20	1.4		0.92
Ethylbenzene	100-41-4	0.52		0.20	2.3		0.87
Xylene (m,p)	1330-20-7	1.6		0.50	6.9		2.2
Xylene (o)	95 -4 7-6	0.45		0.20	2.0		0.87
Xylene (total)	1330-20-7	2.1		0.20	9.1		0.87
Styrene	100-42-5	0.83		0.20	3.5		0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.43		0.20	2.1		0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.67		0.20	3.3		0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1
Naphthalene	91-20-3	0.50	U	0.50	2.6	U	2.6

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

775-SV-04

Lab Sample No.: 688443

Date Analyzed: 11/01/06

Date Received: 10/21/06

				1	<u> </u>		
Target Compound	CAS Number	Results in ppbv	۵	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.67		0.50	3.3		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.62		0.50	1.4		1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	1.7		0.20	9.6		1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Acetone	67-64-1	6.8		5.0	16		12
Isopropyl Alcohol	67-63-0	5.0	U	5.0	12	U	12
Carbon Disulfide	75-15-0	1.4		0.50	4.4		1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene Chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	υ	0.79
n-Hexane	110-54-3	0.58		0.50	2.0		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	6.5		0.50	19		1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Tetrahydrofuran	109-99-9	5.0	U	5.0	15	U	15
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.24		0.20	1.3		1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon Tetrachloride	56- 23 -5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.37		0.20	1.5		0.82

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Г

Sample Matrix: AIR

775-SV-04

Lab Sample No.: 688443

Date Analyzed: 11/01/06

Date Received: 10/21/06

Target Compound	CAS Number	Results in ppbv	٩	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
Methyl Methacrylate	80-62-6	0.50	U	0.50	2.0	U	2.0
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5.0	U	5.0	18	U	18
Bromodichioromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	1.9		0.20	7.2		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Methyl Butyl Ketone	591-78 - 6	0.69		0.50	2.8		2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	JU	0.92
Ethylbenzene	100-41-4	0.41		0.20	1.8		0.87
Xylene (m,p)	1330-20-7	1.4		0.50	6.1		2.2
Xylene (o)	95-47-6	0.39		0.20	1.7		0.87
Xylene (total)	1330-20-7	1.8		0.20	7.8		0.87
Styrene	100-42-5	0.71		0.20	3.0		0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.41		0.20	2.0		0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.73		0.20	3.6		0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1
Naphthalene	91-20-3	0.50	U	0.50	2.6	U	2.6

T

Т

Т

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Г

Sample Matrix: AIR

775-SV-04 D

Lab Sample No.: 688444

Date Analyzed: 11/01/06

Date Received: 10/21/06

Т

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.69		0.50	3.4		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.60		0.50	1.3		1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60 - 2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	1.6		0.20	9.0		1.1
Freon TF	76-13-1	0.20	υ	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	υ	0.20	0.79	U	0.79
Acetone	67-64-1	8.0		5.0	19		12
Isopropyl Alcohol	67-63-0	5.0	υ	5.0	12	U	12
Carbon Disulfide	75-15-0	0.78		0.50	2.4		1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene Chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	υ	5.0	15	υ	15
Methyl tert-Butyl Ether	1634-04-4	0.50	υ	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.57		0.50	2.0		1.8
1,1-Dichloroethane	75-34-3	0.20	υ	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	υ	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	6.6		0.50	19		1.5
cis-1,2-Dichloroethene	156-59-2	0.20	υ	0.20	0.79	υ	0.79
Tetrahydrofuran	109-99-9	5.0	υ	5.0	15	υ	15
Chloroform	67-66-3	0.20	U	0.20	0.98	υ	0.98
1,1,1-Trichloroethane	71-55-6	0.22		0.20	1.2		1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	υ	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	υ	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.34		0.20	1.4		0.82

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

775-SV-04 D

Lab Sample No.: 688444

Date Analyzed: 11/01/06

Date Received: 10/21/06

							
Target Compound	CAS Number	Results in ppbv	Q	RL ín ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.20		0.20	1.1	U	1.1
Methyl Methacrylate	80-62-6	0.50	U	0.50	2.0	U	2.0
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5.0	U	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	1.8	**************************************	0.20	6.8		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Methyl Butyl Ketone	591-78-6	0.58		0.50	2.4		2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.37		0.20	1.6		0.87
Xylene (m,p)	1330-20-7	1.3		0.50	5.6		2.2
Xylene (o)	95-4 7 -6	0.35		0.20	1.5		0.87
Xylene (total)	1330-20-7	1.6		0.20	6.9		0.87
Styrene	100-42-5	0.63		0.20	2.7		0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.27		0.20	1.3		0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63- 6	0.67		0.20	3.3		0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1
Naphthalene	91-20-3	0.50	U	0.50	2.6	U	2.6

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

775-SV-01

Lab Sample No.: 688445

Date Analyzed: 11/01/06

Date Received: 10/21/06

					1	1 -	
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.77		0.50	3.8		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.93		0.50	2.1		1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	1.8		0.20	10		1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Acetone	67-64-1	5.5		5.0	13		12
Isopropyl Alcohol	67-63-0	5.0	U	5.0	12	U	12
Carbon Disulfide	75-15-0	3.5		0.50	11		1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene Chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.73		0.50	2.6		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	9.1		0.50	27		1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Tetrahydrofuran	109-99-9	5.0	U	5.0	15	U	15
Chloroform	67-66-3	0.20	υ	0.20	0.98	υ	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	υ	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	υ	0.20	0.93	υ	0.93
Benzene	71-43-2	0.22		0.20	0.70		0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.56		0.20	2.3		0.82

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

775-SV-01

Lab Sample No.: 688445

Date Analyzed: 11/01/06

Date Received: 10/21/06

Т

Т

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
Methyl Methacrylate	80-62-6	0.50	U	0.50	2.0	U	2.0
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5.0	υ	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	2.6		0.20	9.8		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Methyl Butyl Ketone	591-78-6	0.94		0.50	3.9		2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.68		0.20	3.0		0.87
Xylene (m,p)	1330-20-7	2.4		0.50	10		2.2
Xylene (o)	95-47-6	0.59		0.20	2.6		0.87
Xylene (total)	1330-20-7	3.0		0.20	13		0.87
Styrene	100-42-5	1.1		0.20	4.7		0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.22		0.20	1.1		0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63 -6	0.86		0.20	4.2		0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1
Naphthalene	91-20-3	0.50	U	0.50	2.6	U	2.6

TO-14/15 **Result Summary**

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

775-SV-03

Lab Sample No.: 688446

Date Analyzed: 11/01/06

Date Received: 10/21/06

			1		1		
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL In ug/m3
Dichlorodifluoromethane	75-71-8	0.74		0.50	3.7		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	1.7		0.50	3.8		1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	2.1		0.20	12		1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Acetone	67-64-1	18		5.0	43		12
Isopropyl Alcohol	67-63-0	5.0	U	5.0	12	U	12
Carbon Disulfide	75-15-0	6.2		0.50	19		1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene Chloride	75-09-2	1.1	in a second s	0.50	3.8		1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	2.7		0.50	9.5		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	υ	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	υ	0.79
Methyl Ethyl Ketone	78-93-3	14		0.50	41		1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Tetrahydrofuran	109-99-9	5.0	U	5.0	15	U	15
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	10	1	0.20	55		1.1
Cyclohexane	110-82-7	0.78		0.20	2.7		0.69
Carbon Tetrachloride	56-23-5	0.27		0.20	1.7		1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.71		0.20	2.3		0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	1.9		0.20	7.8		0.82

TO-14/15 **Result Summary**

STL Burlington Lab Name:

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

775-SV-03

Lab Sample No.: 688446

Date Analyzed: 11/01/06

Date Received: 10/21/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	13		0.20	70		1.1
Methyl Methacrylate	80-62-6	0.50	U	0.50	2.0	U	2.0
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxanə	123-91-1	5.0	U	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	υ	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	4.9		0.20	18		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Methyl Butyl Ketone	591-78-6	1.8		0.50	7.4		2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	1.1		0.20	4.8		0.87
Xylene (m,p)	1330-20-7	3.5		0.50	15		2.2
Xylene (o)	95-47-6	0.92		0.20	4.0		0.87
Xylene (total)	1330-20-7	4.5		0.20	20		0.87
Styrene	100-42-5	1.3		0.20	5.5		0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.28		0.20	1.4		0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.98		0.20	4.8		0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.26		0.20	1.6		1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1
Naphthalene	91-20-3	0.50	U	0.50	2.6	U	2.6

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Г

Sample Matrix: AIR

775-SV-02

Lab Sample No.: 688447

Date Analyzed: 11/01/06

Date Received: 10/21/06

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.84		0.50	4.2		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	1,2		0.50	2.7		1.1
Bromomethane	74-83-9	0.20	υ	0.20	0.78	υ	0.78
Chloroethane	75-00-3	0.50	υ	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.67		0.20	3.8		1.1
Freon TF	76-13-1	0.38		0.20	2.9		1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	υ	0.79
Acetone	67-64-1	10		5.0	24		12
Isopropyl Alcohol	67-63-0	5.0	U	5.0	12	U	12
Carbon Disulfide	75-15-0	1.4		0.50	4.4		1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	υ	1.6
Methylene Chloride	75-09-2	0.50	υ	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	υ	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	υ	0.20	0.79	υ	0.79
n-Hexane	110-54-3	0.76		0.50	2.7		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	4.8		0.50	14		1.5
cis-1,2-Dichloroethene	156-59-2	0.20	υ	0.20	0.79	U	0.79
Tetrahydrofuran	109-99-9	5.0	υ	5.0	15	U	15
Chloroform	67-66-3	0.71		0.20	3.5		0.98
1,1,1-Trichloroethane	71-55-6	4.1		0.20	22		1.1
Cyclohexane	110-82-7	0.23		0.20	0.79		0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	υ	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	υ	0.20	0.93	U	0.93
Benzene	71-43-2	0.35		0.20	1.1		0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.58		0.20	2.4		0.82

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

775-SV-02

Lab Sample No.: 688447

Date Analyzed: 11/01/06

Date Received: 10/21/06

			1		1	1	1
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL In ug/m3
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
Methyl Methacrylate	80-62-6	0.50	U	0.50	2.0	U	2.0
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5.0	υ	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	2.2	i aggregation and the matching	0.20	8.3		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Methyl Butyl Ketone	591-78-6	0.56		0.50	2.3		2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.53		0.20	2.3		0.87
Xylene (m,p)	1330-20-7	1.7		0.50	7.4		2.2
Xylene (o)	9 5- 47 -6	0.48		0.20	2.1		0.87
Xylene (total)	1330-20-7	2.2		0.20	9.6		0.87
Styrenø	100-42-5	0.74		0.20	3.2		0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.63		0.20	3.1		0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1,2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1
Naphthalene	91-20-3	0.50	U	0.50	2.6	U	2.6

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

TB-20-10-06

Lab Sample No.: 688448

Date Analyzed: 11/01/06

Date Received: 10/21/06

					n — —		
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
Dichlorodifluoromethane	75-71-8	6.6		0.50	33		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	υ	0.50	1.1	υ	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	υ	0.50	1.3	υ	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.20	U	0.20	1.1	υ	1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	υ	0.20	0.79	υ	0.79
Acetone	67-64-1	5.0	υ	5.0	12	υ	12
Isopropyl Alcohol	67-63-0	5.0	U	5.0	12	υ	12
Carbon Disulfide	75-15-0	0.50	U	0.50	1.6	U	1.6
3-Chloropropene	107-05-1	0.50	υ	0.50	1.6	υ	1.6
Methylene Chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	υ	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	υ	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	υ	0.50	1.8	U	1.8
1,1-Dichloroethane	75-34-3	0.20	υ	0.20	0.81	υ	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	υ	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	0.50	U	0.50	1.5	υ	1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0 .20	0.79	U	0.79
Tetrahydrofuran	109-99-9	5.0	U	5.0	15	U	15
Chloroform	67 -66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	υ	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	υ	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	υ	0.81
n-Heptane	142-82-5	0.20	υ	0.20	0.82	υ	0.82

TO-14/15 **Result Summary**

STL Burlington Lab Name:

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

TB-20-10-06

Lab Sample No.: 688448

Date Analyzed: 11/01/06

Date Received: 10/21/06

			1		I	-	
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
Methyl Methacrylate	80-62-6	0.50	U	0.50	2.0	U	2.0
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5.0	U	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	0.20	U	0.20	0.75	U	0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79 -00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Methyl Butyl Ketone	591-78-6	0.50	U	0.50	2.0	U	2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	υ	0.92
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.50	U	0.50	2.2	U	2.2
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Xylene (total)	1330-20-7	0.20	U	0.20	0.87	U	0.87
Styrene	100-42-5	0.20	U	0.20	0.85	U	0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0 .20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.20	U	0.20	0.98	U	0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1
Naphthalene	91-20-3	0.50	U	0.50	2.6	U	2.6

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

CA103106LCS

Lab Sample No.: CA103106

Date Analyzed: 10/31/06

Date Received: / /

т

Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	8.4		0.50	42		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	8.3		0.20	58		1.4
Chloromethane	74-87-3	8.0		0.50	17		1.0
Vinyl Chloride	75-01-4	8.5		0.20	22		0.51
1,3-Butadiene	106-99-0	8.3		0.50	18		1.1
Bromomethane	74-83-9	9.2		0.20	36		0.78
Chloroethane	75-00-3	9.0		0.50	24		1.3
Bromoethene	593-60-2	8.8		0.20	38		0.87
Trichlorofluoromethane	75-69-4	8.9		0.20	50		1.1
Freon TF	76-13-1	8.5		0.20	65		1.5
1,1-Dichloroethene	75-35-4	8.0		0.20	32		0.79
Acetone	67-64-1	8.6		5.0	20		12
Isopropyl Alcohol	67-63-0	7.1		5.0	17		12
Carbon Disulfide	75-15-0	8.6		0.50	27		1.6
3-Chloropropene	107-05-1	8.2		0.50	26		1.6
Methylene Chloride	75-09-2	7.6		0.50	26	And a Vinte	1.7
tert-Butyl Alcohol	75-65-0	7.7		5.0	23		15
Methyl tert-Butyl Ether	1634-04-4	8.5		0.50	31		1.8
trans-1,2-Dichloroethene	156-60-5	8.2		0.20	33		0.79
n-Hexane	110-54-3	8.4		0.50	30		1.8
1,1-Dichloroethane	75-34 - 3	8.4		0.20	34		0.81
1,2-Dichloroethene (total)	540-59-0	16		0.20	63		0.79
Methyl Ethyl Ketone	78-93-3	7.4		0.50	22		1.5
cis-1,2-Dichloroethene	156-59-2	8.2		0.20	33		0.79
Tetrahydrofuran	109-99-9	7.5		5.0	22		15
Chloroform	67-66-3	8.4		0.20	41		0.98
1,1,1-Trichloroethane	71-55-6	8.4		0.20	46		1.1
Cyclohexane	110-82-7	8.5		0.20	29		0.69
Carbon Tetrachloride	56-23-5	8.7		0.20	55		1.3
2,2,4-Trimethylpentane	540-84-1	8.3		0.20	39		0.93
Benzene	71-43-2	8.2		0.20	26		0.64
1,2-Dichloroethane	107-06-2	8.0		0.20	32		0.81
n-Heptane	142-82-5	7.8		0.20	32		0.82

TO-14/15 Result Summary

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Г

Sample Matrix: AIR

CA103106LCS

Lab Sample No.: CA103106

Date Analyzed: 10/31/06

7

Date Received: / /

Т

π

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	8.3		0.20	45		1.1
Methyl Methacrylate	80-62-6	7.8		0.50	32		2.0
1,2-Dichloropropane	78-87-5	8.0		0.20	37		0.92
1,4-Dioxane	123-91-1	6.8		5.0	25		18
Bromodichloromethane	75-27-4	8.1		0.20	54		1.3
cis-1,3-Dichloropropene	10061-01-5	8.2		0.20	37		0.91
Methyl Isobutyl Ketone	108-10-1	7.7		0.50	32		2.0
Toluene	108-88-3	8.4		0.20	32		0.75
trans-1,3-Dichloropropene	10061-02-6	8.3		0.20	38		0.91
1,1,2-Trichloroethane	79-00-5	8.7		0.20	47		1.1
Tetrachloroethene	127-18-4	8.9		0.20	60		1.4
Methyl Butyl Ketone	591-78-6	7.6		0.50	31		2.0
Dibromochloromethane	124-48-1	8.9	· · · · · · · · · · · · · · · · · · ·	0.20	76	- <u> </u>	1.7
1,2-Dibromoethane	106-93-4	8.8		0.20	68		1.5
Chlorobenzene	108-90-7	8.7		0.20	40		0.92
Ethylbenzene	100-41-4	8.3		0.20	36		0.87
Xylene (m,p)	1330-20-7	17		0.50	74		2.2
Xylene (o)	95-47-6	8.5		0.20	37		0.87
Xylene (total)	1330-20-7	26		0.20	110		0.87
Styrene	100-42-5	8.3		0.20	35		0.85
Bromoform	75-25-2	9.0		0.20	93		2.1
1,1,2,2-Tetrachloroethane	79-34-5	8.4		0.20	58		1.4
4-Ethyltoluene	622-96-8	8.3		0.20	41		0.98
1,3,5-Trimethylbenzene	108-67-8	8.7		0.20	43		0.98
2-Chlorotoluene	95-49-8	8.5		0.20	44		1.0
1,2,4-Trimethylbenzene	95-63-6	8.5		0.20	42		0.98
1,3-Dichlorobenzene	541-73-1	9.3		0.20	56		1.2
1,4-Dichlorobenzene	106-46-7	9.1	Γ	0.20	55		1.2
1,2-Dichlorobenzene	95-50-1	9.5		0.20	57		1.2
1,2,4-Trichlorobenzene	120-82-1	8.6		0.50	64		3.7
Hexachlorobutadiene	87-68-3	8.9		0.20	95		2.1
Naphthalene	91-20-3	7.9		0.50	41		2.6

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

CA103106LCSD

Lab Sample No.: CA103106

Date Analyzed: 10/31/06

Date Received: 11

				T	i	<u> </u>	
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL In ug/m3
Dichlorodifluoromethane	75-71-8	9.3		0.50	46		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	9.2		0.20	64		1.4
Chloromethane	74-87-3	8.9		0.50	18		1.0
Vinyl Chloride	75-01-4	9.4		0.20	24		0.51
1,3-Butadiene	106-99-0	9.3	1	0.50	21		1.1
Bromomethane	74-83-9	10		0.20	39		0.78
Chloroethane	75-00-3	9.9		0.50	26		1.3
Bromoethene	593-60-2	9.7	***	0.20	42	A	0.87
Trichlorofluoromethane	75-69-4	9.9		0.20	56		1.1
Freon TF	76-13-1	9.3		0.20	71		1.5
1,1-Dichloroethene	75-35-4	8.8		0.20	35		0.79
Acetone	67-64-1	8.1		5.0	19		12
Isopropyl Alcohol	67-63-0	7.9		5.0	19		12
Carbon Disulfide	75-15-0	9.6		0.50	30	·	1.6
3-Chloropropene	107-05-1	8.5		0.50	27		1.6
Methylene Chloride	75-09-2	8.2		0.50	28		1.7
tert-Butyl Alcohol	75-65-0	8.7		5.0	26		15
Methyl tert-Butyl Ether	1634-04-4	8.0	1	0.50	29		1.8
trans-1,2-Dichloroethene	156-60-5	8.9		0.20	35		0.79
n-Hexane	110-54-3	8.8		0.50	31		1.8
1,1-Dichloroethane	75-34-3	8.7		0.20	35		0.81
1,2-Dichloroethene (total)	540-59-0	17		0.20	67		0.79
Methyl Ethyl Ketone	78-93-3	7.6		0.50	22		1.5
cis-1,2-Dichloroethene	156-59-2	8.5	1	0.20	34		0.79
Tetrahydrofuran	109-99-9	7.2		5.0	21		15
Chloroform	67 - 66- 3	8.7		0.20	42		0.98
1,1,1-Trichloroethane	71-55-6	8.9		0.20	49		1.1
Cyclohexane	110-82-7	9.3		0.20	32		0.69
Carbon Tetrachloride	56-23-5	9.4		0.20	59		1.3
2,2,4-Trimethylpentane	540-84-1	8.8	1	0.20	41		0.93
Benzene	71-43-2	8.5		0.20	27		0.64
1,2-Dichloroethane	107-06-2	8.2		0.20	33		0.81
n-Heptane	142-82-5	8.1		0.20	33		0.82

TO-14/15 Result Summary

STL Burlington Lab Name:

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

CA103106LCSD

Lab Sample No.: CA103106

Date Analyzed: 10/31/06

Date Received: 11

Target Compound	CAS	Results in	Q	RL	Results	q	RL in
	Number	ppbv		ppbv	ug/m3		ug/m3
Trichloroethene	79-01-6	8.7		0.20	47		1.1
Methyl Methacrylate	80-62-6	7.7		0.50	32		2.0
1,2-Dichloropropane	78-87-5	8.3		0.20	38		0.92
1,4-Dioxane	123-91-1	7.5		5.0	27		18
Bromodichloromethane	75-27-4	8.4		0.20	56		1.3
cis-1,3-Dichloropropene	10061-01-5	8.6		0.20	39		0.91
Methyl Isobutyl Ketone	108-10-1	8.9		0.50	36		2.0
Toluene	108-88-3	8.6		0.20	32		0.75
trans-1,3-Dichloropropene	10061-02-6	8.7		0.20	39		0.91
1,1,2-Trichloroethane	79-00-5	9.0		0.20	49		1,1
Tetrachloroethene	127-18-4	9.4		0.20	64		1.4
Methyl Butyl Ketone	591-78-6	8.7		0.50	36		2.0
Dibromochloromethane	124-48-1	9.4	-	0.20	80		1.7
1,2-Dibromoethane	106-93-4	9.3		0.20	71		1.5
Chlorobenzene	108-90-7	9.2		0.20	42		0.92
Ethylbenzene	100-41-4	8.5		0.20	37		0.87
Xylene (m,p)	1330-20-7	18		0.50	78		2.2
Xylene (o)	95-47-6	8.8		0.20	38		0.87
Xylene (total)	1330-20-7	26		0.20	110		0.87
Styrene	100-42-5	8.8		0.20	37		0.85
Bromoform	75-25-2	9.6		0.20	99		2.1
1,1,2,2-Tetrachloroethane	79-34-5	8.8		0.20	60		1.4
4-Ethyltoluene	622-96-8	8.9	-	0.20	44		0.98
1,3,5-Trimethylbenzene	108-67-8	8.4		0.20	41		0.98
2-Chlorotoluene	95-49-8	8.9		0.20	46		1.0
1,2,4-Trimethylbenzene	95-63-6	8.5		0.20	42		0.98
1,3-Dichlorobenzene	541-73-1	10		0.20	60		1.2
1,4-Dichlorobenzene	106-46-7	10		0.20	60		1.2
1,2-Dichlorobenzene	95-50-1	10		0.20	60		1.2
1,2,4-Trichlorobenzene	120-82-1	9.8		0.50	73		3.7
Hexachlorobutadiene	87-68-3	9.6		0.20	100		2.1
Naphthalene	91-20-3	8.8		0.50	46		2.6

CLIENT SAMPLE NO.

STL Burlington

SDG Number: NY117081

Case Number:

Lab Name:

Sample Matrix: AIR

CA110106LCS

Lab Sample No.: CA110106

Date Analyzed: 11/01/06

Date Received: 11

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	9.8		0.50	48		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	9.6		0.20	67		1.4
Chloromethane	74-87-3	9.0		0.50	19		1.0
Vinyl Chloride	75-01-4	9.7	· · · · · · · · · · · · · · · · · · ·	0.20	25		0.51
1,3-Butadiene	106-99-0	9.6		0.50	21		1.1
Bromomethane	74-83-9	11		0.20	43	1	0.78
Chloroethane	75-00-3	10		0.50	26		1.3
Bromoethene	593-60-2	10		0.20	44		0.87
Trichlorofluoromethane	75-69-4	11		0.20	62		1.1
Freon TF	76-13-1	9.5		0.20	73		1.5
1,1-Dichloroethene	75-35-4	8.9		0.20	35		0.79
Acetone	67-64-1	8.5		5.0	20		12
Isopropyl Alcohol	67-63-0	8.4		5.0	21		12
Carbon Disulfide	75-15-0	9.5		0.50	30		1.6
3-Chloropropene	107-05-1	8.7		0.50	27		1.6
Methylene Chloride	75-09-2	8.4		0.50	29		1.7
tert-Butyl Alcohol	75-65-0	9.0		5.0	27		15
Methyl tert-Butyl Ether	1634-04-4	8.0		0.50	29		1.8
trans-1,2-Dichloroethene	156-60-5	8.9		0.20	35		0.79
n-Hexane	110-54-3	8.9		0.50	31		1.8
1,1-Dichloroethane	75-34-3	8.7		0.20	35		0.81
1,2-Dichloroethene (total)	540-59-0	17		0.20	67		0.79
Methyl Ethyl Ketone	78-93-3	7.6		0.50	22		1.5
cis-1,2-Dichloroethene	156-59-2	8.5		0.20	34		0.79
Tetrahydrofuran	109-99-9	7.2		5.0	21		15
Chloroform	67-66-3	8.9		0.20	43		0.98
1,1,1-Trichloroethane	71-55-6	9.1		0.20	50		1.1
Cyclohexane	110-82 - 7	9.0		0.20	31		0.69
Carbon Tetrachloride	56-23-5	9.7		0.20	61		1.3
2,2,4-Trimethylpentane	540-84-1	8.7		0.20	41		0.93
Benzene	71-43-2	8.2		0.20	26		0.64
1,2-Dichloroethane	107-06-2	8.4		0.20	34		0.81
n-Heptane	142-82-5	8.2		0.20	34		0.82

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

CA110106LCS

Lab Sample No.: CA110106

Date Analyzed: 11/01/06

Date Received: 11

Target Compound	CAS Number	Results in ppbv	٩	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	8.8		0.20	47		1.1
Methyl Methacrylate	80-62-6	7.7		0.50	32		2.0
1,2-Dichloropropane	78-87-5	8.0		0.20	37		0.92
1,4-Dioxane	123-91-1	7.3		5.0	26		18
Bromodichloromethane	75-27-4	8.4		0.20	56		1.3
cis-1,3-Dichloropropene	10061-01-5	8.4		0.20	38		0.91
Methyl Isobutyl Ketone	108-10-1	9.1		0.50	37		2.0
Toluene	108-88-3	8.5		0.20	32		0.75
trans-1,3-Dichloropropene	10061-02-6	8.6		0.20	39		0.91
1,1,2-Trichloroethane	79-00-5	8.8		0.20	48		1.1
Tetrachloroethene	127-18-4	9.1		0.20	62		1.4
Methyl Butyl Ketone	591-78-6	8.8		0.50	36		2.0
Dibromochloromethane	124-48-1	9.5		0.20	81		1.7
1,2-Dibromoethane	106-93-4	9.1		0.20	70		1.5
Chlorobenzene	108-90-7	9.1	-	0.20	42		0.92
Ethylbenzene	100-41-4	8.4		0.20	36		0.87
Xylene (m,p)	1330-20-7	17		0.50	74		2.2
Xylene (o)	95-47-6	8.5		0.20	37		0.87
Xylene (total)	1330-20-7	26		0.20	110		0.87
Styrene	100-42-5	8.6		0.20	37		0.85
Bromoform	75-25-2	9.4		0.20	97		2.1
1,1,2,2-Tetrachloroethane	79-34-5	8.4		0.20	58		1.4
4-Ethyltoluene	622-96-8	8.5		0.20	42		0.98
1,3,5-Trimethylbenzene	108-67-8	8.1		0.20	40		0.98
2-Chlorotoluene	95-49-8	8.8		0.20	46		1.0
1,2,4-Trimethylbenzene	95-63-6	8.3		0.20	41		0.98
1,3-Dichlorobenzene	541-73-1	10		0.20	60		1.2
1,4-Dichlorobenzene	106- 46-7	10		0.20	60		1.2
1,2-Dichlorobenzene	95-50-1	10		0.20	60		1.2
1,2,4-Trichlorobenzene	120-82-1	9.4	1	0.50	70		3.7
Hexachlorobutadiene	87-68-3	9.2		0.20	98		2.1
Naphthalene	91-20-3	8.7		0.50	46		2.6

CLIENT SAMPLE NO.

TO-14/15 **Result Summary**

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

CA110106LCSD

Lab Sample No.: CA110106

Date Analyzed: 11/01/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	9.6	<u> </u>	0.50	47		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	9.4		0.20	66		1.4
Chloromethane	74-87-3	8.8		0.50	18		1.0
Vinyl Chloride	75-01-4	9.4		0.20	24		0.51
1,3-Butadiene	106-99-0	9.4		0.50	21		1.1
Bromomethane	74-83-9	10		0.20	39		0.78
Chloroethane	75-00-3	10		0.50	26		1.3
Bromoethene	593-60-2	9.8		0.20	43		0.87
Trichlorofluoromethane	75-69-4	10		0.20	56		1.1
Freon TF	76-13-1	9.3		0.20	71		1.5
1,1-Dichloroethene	75-35-4	8.7		0.20	34		0.79
Acetone	67-64-1	8.2		5.0	19		12
Isopropyl Alcohol	67-63-0	8.1		5.0	20		12
Carbon Disulfide	75-15-0	9.3		0.50	29		1.6
3-Chloropropene	107-05-1	8.5		0.50	27		1.6
Methylene Chloride	75-09-2	8.3		0.50	29		1.7
tert-Butyl Alcohol	75-65- 0	8.7		5.0	26		15
Methyl tert-Butyl Ether	1634-04-4	7.7		0.50	28		1.8
trans-1,2-Dichloroethene	156-60-5	8.9		0.20	35		0.79
n-Hexane	110-54-3	8.8		0.50	31		1.8
1,1-Dichloroethane	75-34-3	8.6		0.20	35		0.81
1,2-Dichloroethene (total)	540-59-0	17		0.20	67		0.79
Methyl Ethyl Ketone	78-93-3	7.4		0.50	22		1.5
cis-1,2-Dichloroethene	156-59-2	8.4		0.20	33		0.79
Tetrahydrofuran	109-99-9	6.9		5.0	20		15
Chloroform	67-66-3	8.7		0.20	42		0.98
1,1,1-Trichloroethane	71-55-6	8.8		0.20	48		1.1
Cyclohexane	110-82-7	8.9		0.20	31		0.69
Carbon Tetrachloride	56- 23- 5	9.6		0.20	60		1.3
2,2,4-Trimethylpentane	540-84-1	8.5		0.20	40		0.93
Benzene	71-43-2	7.9		0.20	25		0.64
1,2-Dichloroethane	107-06-2	8.2		0.20	33		0.81
n-Heptane	142-82-5	7.9		0.20	32		0.82

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

CA110106LCSD

Lab Sample No.: CA110106

Date Analyzed: 11/01/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	8.4		0.20	45		1.1
Methyl Methacrylate	80-62-6	7.4		0.50	30		2.0
1,2-Dichloropropane	78-87-5	7.8		0.20	36		0.92
1,4-Dioxane	123-91-1	7.0		5.0	25		18
Bromodichloromethane	75-27-4	8.2		0.20	55		1.3
cis-1,3-Dichloropropene	10061-01-5	8.2		0.20	37		0.91
Methyl Isobutyl Ketone	108-10-1	8.8	1	0.50	36		2.0
Toluene	108-88-3	8.0		0.20	30	Hr	0.75
trans-1,3-Dichloropropene	10061-02-6	8.4		0.20	38		0.91
1,1,2-Trichloroethane	79-00-5	8.3		0.20	45		1.1
Tetrachloroethene	127-18-4	8.7		0.20	59		1.4
Methyl Butyl Ketone	591-78- 6	8.4		0.50	34		2.0
Dibromochloromethane	124-48-1	8.9		0.20	76		1.7
1,2-Dibromoethane	106-93-4	8.7		0.20	67		1.5
Chlorobenzene	108-90-7	8.6		0.20	40		0.92
Ethylbenzene	100-41 -4	8.0		0.20	35		0.87
Xylene (m,p)	1330-20-7	16		0.50	69		2.2
Xylene (o)	95-47-6	8.1		0.20	35		0.87
Xylene (total)	1330-20-7	24		0.20	100		0.87
Styrene	100-42-5	8.2		0.20	35		0.85
Bromoform	75 - 25-2	8.9		0.20	92		2.1
1,1,2,2-Tetrachloroethane	79-34-5	8.0		0.20	55		1.4
4-Ethyltoluene	622-96-8	7.9		0.20	39		0.98
1,3,5-Trimethylbenzene	108-67-8	7.8		0.20	38		0.98
2-Chiorotoluene	95-49-8	8.3		0.20	43		1.0
1,2,4-Trimethylbenzene	95-63-6	7.9		0.20	39		0.98
1,3-Dichlorobenzene	541-73-1	9.7		0.20	58		1.2
1,4-Dichlorobenzene	106-46-7	9.5		0.20	57		1.2
1,2-Dichlorobenzene	95-50-1	9. 6		0.20	58		1.2
1,2,4-Trichlorobenzene	120-82-1	9.0		0.50	67		3.7
Hexachlorobutadiene	87-68-3	8.8		0.20	94		2.1
Naphthalene	91-20-3	8.3		0.50	44		2.6

CLIENT SAMPLE NO.

TO-14/15 **Result Summary**

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

MBLK103106CA

Lab Sample No.: MBLK1031

Date Analyzed: 10/31/06

			<u> </u>	<u> </u>	1	<u> </u>	
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	υ	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	υ	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.20	U	0.20	1.1	U	1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Acetone	67-64-1	5.0	U	5.0	12	U	12
Isopropyl Alcohol	67-63-0	5.0	U	5.0	12	U	12
Carbon Disulfide	75-15-0	0.50	U	0.50	1.6	U	1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene Chloride	75-09-2	0.50	υ	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0.50	1.8	υ	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	0.50	υ	0.50	1.5	U	1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Tetrahydrofuran	109-99-9	5.0	U	5.0	15	U	15
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.2 0	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	υ	0.20	0.69	U	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0.82

CLIENT SAMPLE NO.

MBLK103106CA

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

Lab Sample No.: MBLK1031

Date Analyzed: 10/31/06

					I — —		
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
Methyl Methacrylate	80-6 2- 6	0.50	U	0.50	2.0	U	2.0
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5.0	U	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	0.20	U	0.20	0.75	U	0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Methyl Butyl Ketone	591-78-6	0.50	U	0.50	2.0	U	2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.50	U	0.50	2.2	U	2.2
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Xylene (total)	1330-20-7	0.20	U	0.20	0.87	U	0.87
Styrene	100-42-5	0.20	U	0.20	0.85	U	0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1,4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63 - 6	0.20	U	0.20	0.98	U	0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1
Naphthalene	91-20-3	0.50	U	0.50	2.6	U	2.6

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

MBLK110106CA

Lab Sample No.: MBLK1101

Date Analyzed: 11/01/06

						<u> </u>	
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.20	U	0.20	1.1	U	1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Acetone	67-64-1	5.0	U	5.0	12	U	12
Isopropyl Alcohol	67-63-0	5.0	U	5.0	12	U	12
Carbon Disulfide	75-15-0	0.50	U	0.50	1.6	U	1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene Chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0. 20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0.50	1.8	U	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	0.50	U	0.50	1.5	U	1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Tetrahydrofuran	109-99-9	5.0	U	5.0	15	U	15
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	υ	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0.82

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117081

Case Number:

Sample Matrix: AIR

MBLK110106CA

Lab Sample No.: MBLK1101

Date Analyzed: 11/01/06

Date Received: 11

			1		1		1
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
Methyl Methacrylate	80-62-6	0.50	U	0.50	2.0	U	2.0
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5.0	U	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	0.20	U	0.20	0.75	U	0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	υ	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Methyl Butyl Ketone	591-78-6	0.50	U	0.50	2.0	U	2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.50	U	0.50	2.2	U	2.2
Xylene (o)	95-47 - 6	0.20	U	0.20	0.87	U	0.87
Xylene (total)	1330-20-7	0.20	U	0.20	0.87	U	0.87
Styrene	100-42-5	0.20	U	0.20	0.85	U	0.85
Bromoform	75-25 - 2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.20	U	0.20	0.98	U	0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1
Naphthalene	91-20-3	0.50	U	0.50	2.6	U	2.6

CLIENT SAMPLE NO.

WSA-SSV1

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689152

Date Analyzed: 11/02/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	7.3	1	0.50	36		2.5
1,2-Dichlorotetrafluoroethane	76 -1 4-2	0.20	U	0.20	1.4	U	1.4
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.20	U	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	1.3		0.20	7.3		1.1
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	3.0		0.50	11		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Chloroform	67-66-3	28		0.20	140		0.98
1,1,1-Trichloroethane	71-55-6	0.40		0.20	2.2		1.1
Cyclohexane	110-82-7	1.2		0.20	4.1		0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	1.1		0.20	3.5		0.64
1,2-Dichloroethane	107 - 06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	1.1		0.20	4.5		0.82
Trichloroethene	79-01-6	24		0.20	130		1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	3.0		0.20	11		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	υ	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

WSA-SSV1

Lab Sample No.: 689152

Date Analyzed: 11/02/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.50	U	0.50	2.2	U	2.2
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Xylene (total)	1330-20-7	0.20	U	0.20	0.87	U	0.87
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

WSA-SSV1/D

Lab Sample No.: 689153

Date Analyzed: 11/02/2006

Date Received: 10/27/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	6.9		0.50	34		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.20	U	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	1.3		0.20	7.3		1.1
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	υ	0.79
n-Hexane	110-54-3	3.0		0.50	11	-	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	υ	0.81
1,2-Dichioroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	υ	0.79
Chloroform	67-66-3	25		0.20	120		0.98
1,1,1-Trichloroethane	71-55-6	0.43		0.20	2.3		1.1
Cyclohexane	110-82-7	1.2		0.20	4.1		0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	1.1		0.20	3.5		0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	1.2		0.20	4.9		0.82
Trichloroethene	79-01-6	24		0.20	130		1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	3.1		0.20	12		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

WSA-SSV1/D

Lab Sample No.: 689153

Date Analyzed: 11/02/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.50	U	0.50	2.2	U	2.2
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Xylene (total)	1330-20-7	0.20	U	0.20	0.87	U	0.87
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0,98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20		0.20	0.98		0.98

CLIENT SAMPLE NO.

B785-SSV1

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689154

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	51		35	250		170
1,2-Dichlorotetrafluoroethane	76-14-2	14	U	14	98	U	98
Vinyl Chloride	75-01-4	14	U	14	36	U	36
1,3-Butadiene	106-99-0	35	U	35	77	U	77
Bromomethane	74-83-9	14	U	14	54	U	54
Chloroethane	75-00-3	14	U	14	37	U	37
Bromoethene	593-60-2	14	U	14	61	U	61
Trichlorofluoromethane	75-69-4	14	U	14	79	U	79
1,1-Dichloroethene	75-35-4	14	U	14	56	U	56
3-Chloropropene	107-05-1	35	U	35	110	U	110
Methyl tert-Butyl Ether	1634-04-4	35	U	35	130	U	130
trans-1,2-Dichloroethene	156-60-5	14	U	14	56	U	56
n-Hexane	110-54-3	64		35	230		120
1,1-Dichloroethane	75-34-3	14	U	14	57	U	57
1,2-Dichloroethene (total)	540-59-0	19		14	75		56
cis-1,2-Dichloroethene	156-59-2	19		14	75		56
Chloroform	67-66-3	38		14	190		68
1,1,1-Trichloroethane	71-55-6	14	U	14	76	U	76
Cyclohexane	110-82-7	25		14	86		48
Carbon Tetrachloride	56-23-5	14	U	14	88	U	88
2,2,4-Trimethylpentane	540-84-1	14	U	14	65	U	65
Benzene	71-43-2	14	U	14	45	U	45
1,2-Dichloroethane	107-06-2	14	U	14	57	U	57
n-Heptane	142-82-5	22		14	90		57
Trichloroethene	79-01-6	2100		14	11000		75
1,2-Dichloropropane	78-87-5	14	U	14	65	U	65
Bromodichloromethane	75-27-4	14	U	14	94	U	94
cis-1,3-Dichloropropene	10061-01-5	14	U	14	64	U	64
Toluene	108-88-3	16		14	60		53
trans-1,3-Dichloropropene	10061-02-6	14	U	14	64	υ	64
1,1,2-Trichloroethane	79-00-5	14	U	14	76	U	76
Tetrachloroethene	127-18-4	14	U	14	95	U	95
Dibromochloromethane	124-48-1	14	U	14	120	U	120

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B785-SSV1

Lab Sample No.: 689154

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	۵	RL in ug/m3
1,2-Dibromoethane	106-93-4	14	U	14	110	U	110
Ethylbenzene	100-41-4	14	U	14	61	U	61
Xylene (m,p)	1330-20-7	35	U	35	150	U	150
Xylene (o)	95-47 - 6	14	U	14	61	U	61
Xylene (total)	1330-20-7	14	U	14	61	U	61
Bromoform	75-25-2	14	U	14	140	U	140
1,1,2,2-Tetrachloroethane	79-34-5	14	U	14	96	U	96
4-Ethyltoluene	622-96-8	14	U	14	69	U	69
1,3,5-Trimethylbenzene	108-67-8	14	U	14	69	U	69

CLIENT SAMPLE NO.

B785-SSV2

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689155

Date Analyzed: 11/02/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	7.5	U	7.5	37	U	37
1,2-Dichlorotetrafluoroethane	76-14-2	3.0	U	3.0	21	U	21
Vinyl Chloride	75-01-4	3.0	U	3.0	7.7	U	7.7
1,3-Butadiene	106-99-0	7.5	U	7.5	17	U	17
Bromomethane	74-83-9	3.0	U	3.0	12	U	12
Chloroethane	75-00-3	3.0	U	3.0	7.9	U	7.9
Bromoethene	593-60-2	3.0	U	3.0	13	U	13
Trichlorofluoromethane	75-69-4	3.0	U	3.0	17	U	17
1,1-Dichloroethene	75-35-4	3.0	U	3.0	12	U	12
3-Chloropropene	107-05-1	7.5	U	7.5	23	U	23
Methyl tert-Butyl Ether	1634-04-4	7.5	U	7.5	27	U	27
trans-1,2-Dichloroethene	156-60-5	3.0	U	3.0	12	U	[.] 12
n-Hexane	110-54-3	14		7.5	49	· · · · · · · · · · · · · · · · · · ·	26
1,1-Dichloroethane	75-34-3	3.0	U	3.0	12	U	12
1,2-Dichloroethene (total)	540-59-0	3.0	U	3.0	12	U	12
cis-1,2-Dichloroethene	156-59-2	3.0	U	3.0	12	U	12
Chloroform	67-66-3	6.5		3.0	32		15
1,1,1-Trichloroethane	71-55-6	6.4		3.0	35		16
Cyclohexane	110-82-7	5.9		3.0	20		10
Carbon Tetrachloride	56-23-5	3.0	U	3.0	19	U	19
2,2,4-Trimethylpentane	540-84-1	3.0	U	3.0	14	U	14
Benzene	71-43-2	4.6		3.0	15		9.6
1,2-Dichloroethane	107-06-2	3.0	U	3.0	12	U	12
n-Heptane	142-82-5	4.5		3.0	18		12
Trichloroethene	79-01-6	430		3.0	2300		16
1,2-Dichloropropane	78-87-5	3.0	U	3.0	14	U	14
Bromodichloromethane	75-27-4	3.0	U	3.0	20	U	20
cis-1,3-Dichloropropene	10061-01-5	3.0	U	3.0	14	U	14
Toluene	108-88-3	3.4		3.0	13		11
trans-1,3-Dichloropropene	10061-02-6	3.0	U	3.0	14	U	14
1,1,2-Trichloroethane	79-00-5	3.0	U	3.0	16	U	16
Tetrachloroethene	127-18-4	3.0	U	3.0	20	U	20
Dibromochloromethane	124-48-1	3.0	U	3.0	26	U	26

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B785-SSV2

Lab Sample No.: 689155

Date Analyzed: 11/02/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	3.0	U	3.0	23	U	23
Ethylbenzene	100-41-4	3.0	U	3.0	13	U	13
Xylene (m,p)	1330-20-7	7.5	U	7.5	33	U	33
Xylene (o)	95-47-6	3.0	U	3.0	13	U	13
Xylene (total)	1330-20-7	3.0	U	3.0	13	U	13
Bromoform	75-25-2	3.0	U	3.0	31	U	31
1,1,2,2-Tetrachloroethane	79-34-5	3.0	U	3.0	21	U	21
4-Ethyltoluene	622-96-8	3.0	U	3.0	15	U	15
1,3,5-Trimethylbenzene	108-67-8	3.0	U	3.0	15	U	15

CLIENT SAMPLE NO.

B784-SSV1

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689156

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.62		0.50	3.1		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.20	U	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.28		0.20	1.6		1.1
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	12		0.50	42		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	2.1		0.20	11		1.1
Cyclohexane	110-82-7	4.0		0.20	14		0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	3.5		0.20	11		0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	11		0.20	45		0.82
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	υ	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	6.0		0.20	23		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B784-SSV1

Lab Sample No.: 689156

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	υ	1.5
Ethylbenzene	100-41-4	2.9		0.20	13		0.87
Xylene (m,p)	1330-20-7	3.4		0.50	15		2.2
Xylene (o)	95-47-6	1.2		0.20	5.2		0.87
Xylene (total)	1330-20-7	4.7		0.20	20		0.87
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	1.1		0.20	5.4		0.98
1,3,5-Trimethylbenzene	108-67-8	1.6		0.20	7.9		0.98

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B784-SSV2

Lab Sample No.: 689157

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.62		0.50	3.1		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	υ	0.78
Chloroethane	75-00-3	0.20	υ	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.35		0.20	2.0		1.1
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methyl tert-Butyl Ether	1634-04-4	0.54		0.50	1.9		1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	19		0.50	67		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	2.3		0.20	13		1.1
Cyclohexane	110-82-7	7.4		0.20	25		0.69
Carbon Tetrachloride	56-23-5	0.20	υ	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	3.9		0.20	12		0.64
1,2-Dichloroethane	107-06-2	0.20	υ	0.20	0.81	U	0.81
n-Heptane	142-82-5	12		0.20	49		0.82
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	9.0		0.20	34		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B784-SSV2

Lab Sample No.: 689157

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results In ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Ethylbenzene	100-41-4	2.2		0.20	9.6		0.87
Xylene (m,p)	1330-20-7	3.1		0.50	13		2.2
Xylene (o)	9 5-4 7- 6	0.90		0.20	3.9		0.87
Xylene (total)	1330-20-7	4.0		0.20	17		0.87
Bromoform	75-25-2	0.20	U	0.20	2.1	υ	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.30		0.20	1.5		0.98
1,3,5-Trimethylbenzene	108-67-8	0.40		0.20	2.0		0.98

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

OBGWV-TB1

Lab Sample No.: 689158

Date Analyzed: 11/03/2006

			T		11		1
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	8.0		0.50	40		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.20	U	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.20	U	0.20	1.1	U	1.1
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0.50	1.8	U	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Chloroform	67-66-3	0.20	U	0.20	0.98	υ	0.98
1,1,1-Trichloroethane	71-55-6	0.20	υ	0.20	1.1	υ	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	υ	0.20	0.81	υ	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0.82
Trichloroethene	79-01-6	0.20	υ	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	0.20	U	0.20	0.75	U	0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	υ	0.91
1,1,2-Trichloroethane	7 9 -00-5	0.20	υ	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

OBGWV-TB1

Lab Sample No.: 689158

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	٩	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.50	U	0.50	2.2	U	2.2
Xylene (o)	95-47-6	0.20	υ	0.20	0.87	U	0.87
Xylene (total)	1330-20-7	0.20	U	0.20	0.87	U	0.87
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	υ	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98

CLIENT SAMPLE NO.

B786-SSV1

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689159

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	390	<u>+</u>	200	1900	<u> </u>	990
1,2-Dichlorotetrafluoroethane	76-14-2	78	U	78	550	U	550
Vinyl Chloride	75-01-4	78	U	78	200	U	200
1,3-Butadiene	106-99-0	200	U	200	440	U	440
Bromomethane	74-83-9	78	U	78	300	U	300
Chloroethane	75-00-3	78	U	78	210	U	210
Bromoethene	593-60-2	78	U	78	340	U	340
Trichlorofluoromethane	75-69-4	78	U	78	440	U	440
1,1-Dichloroethene	75-35-4	78	U	78	310	U	310
3-Chloropropene	107-05-1	200	U	200	630	υ	630
Methyl tert-Butyl Ether	1634-04-4	200	U	200	720	U	720
trans-1,2-Dichloroethene	156-60-5	78	U	78	310	U	310
n-Hexane	110-54-3	200	U	200	700	U	700
1,1-Dichloroethane	75-34-3	78	U	78	320	U	320
1,2-Dichloroethene (total)	540-59-0	120		78	480		310
cis-1,2-Dichloroethene	156-59-2	120		78	480		310
Chloroform	67-66-3	78	U	78	380	U	380
1,1,1-Trichloroethane	71-55-6	78	U	78	430	U	430
Cyclohexane	110-82-7	78	U	78	270	U	270
Carbon Tetrachloride	56-23-5	78	U	78	490	U	490
2,2,4-Trimethylpentane	540-84-1	78	U	78	360	U	360
Benzene	71-43-2	78	U	78	250	U	250
1,2-Dichloroethane	107-06-2	78	U	78	320	U	320
n-Heptane	142-82-5	78	U	78	320	U	320
Trichloroethene	79-01-6	15000		78	81000		420
1,2-Dichloropropane	78-87-5	78	U	78	360	U	360
Bromodichloromethane	75-27-4	78	U	78	520	U	520
cis-1,3-Dichloropropene	10061-01-5	78	U	78	350	U	350
Toluene	108-88-3	78	U	78	290	U	290
trans-1,3-Dichloropropene	10061-02-6	78	U	78	350	U	350
1,1,2-Trichloroethane	79-00-5	78	U	78	430	U	430
Tetrachloroethene	127-18-4	320		78	2200		530
Dibromochloromethane	124-48-1	78	U	78	660	U	660

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B786-SSV1

Lab Sample No.: 689159

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	78	U	78	600	U	600
Ethylbenzene	100-41-4	78	U	78	340	υ	340
Xylene (m,p)	1330-20-7	200	U	200	870	U	870
Xylene (o)	95-47-6	78	U	78	340	U	340
Xylene (total)	1330-20-7	78	U	78	340	U	340
Bromoform	75-25-2	78	U	78	810	U	810
1,1,2,2-Tetrachloroethane	79-34-5	78	U	78	540	υ	540
4-Ethyltoluene	622-96-8	78	U	78	380	U	380
1,3,5-Trimethylbenzene	108-67-8	78	U	78	380	U	380

CLIENT SAMPLE NO.

B786-SSV2

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689160

Date Analyzed: 11/03/2006

Date Received: 10/27/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	26		15	130		74
1,2-Dichlorotetrafluoroethane	76-14-2	6.0	U	6.0	42	U	42
Vinyl Chloride	75-01-4	6.0	U	6.0	15	U	15
1,3-Butadiene	106-99-0	15	U	15	33	U	33
Bromomethane	74-83-9	6.0	U	6.0	23	U	23
Chloroethane	75-00-3	6.0	U	6.0	16	U	16
Bromoethene	593-60-2	6.0	U	6.0	26	U	26
Trichlorofluoromethane	75-69-4	6.0	U	6.0	34	U	34
1,1-Dichloroethene	75-35-4	6.0	U	6.0	24	U	24
3-Chloropropene	107-05-1	15	U	15	47	U	47
Methyl tert-Butyl Ether	1634-04-4	15	U	15	54	U	54
trans-1,2-Dichloroethene	156-60-5	6.0	U	6.0	24	U	24
n-Hexane	110-54-3	25		15	88		53
1,1-Dichloroethane	75-34-3	6.0	U	6.0	24	U	24
1,2-Dichloroethene (total)	540-59-0	6.0	U	6.0	24	U	24
cis-1,2-Dichloroethene	156-59-2	6.0	U	6.0	24	U	24
Chloroform	67-66-3	6.0	U	6.0	29	U	29
1,1,1-Trichloroethane	71-55-6	6.0	U	6.0	33	U	33
Cyclohexane	110-82-7	8.9	1	6.0	31		21
Carbon Tetrachloride	56-23-5	6.0	U	6.0	38	U	38
2,2,4-Trimethylpentane	540-84-1	6.0	U	6.0	28	U	28
Benzene	71-43-2	7.4		6.0	24		19
1,2-Dichloroethane	107-06-2	6.0	U	6.0	24	U	24
n-Heptane	142-82-5	10		6.0	41		25
Trichloroethene	79-01-6	880		6.0	4700		32
1,2-Dichloropropane	78-87-5	6.0	U	6.0	28	U	28
Bromodichloromethane	75-27-4	6.0	U	6.0	40	U	40
cis-1,3-Dichloropropene	10061-01-5	6.0	U	6.0	27	U	27
Toluene	108-88-3	6.0	U	6.0	23	U	23
trans-1,3-Dichloropropene	10061-02-6	6.0	U	6.0	27	U	27
1,1,2-Trichloroethane	79-00-5	6.0	U	6.0	33	U	33
Tetrachloroethene	127-18-4	6.0	U	6.0	41	U	41
Dibromochloromethane	124-48-1	6.0	U	6.0	51	U	51

Page 1 of 2

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B786-SSV2

Lab Sample No.: 689160

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	۵	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	6.0	U	6.0	46	U	46
Ethylbenzene	100-41-4	6.0	U	6.0	26	U	26
Xylene (m,p)	1330-20-7	15	U	15	65	U	65
Xylene (o)	95-47-6	6.0	U	6.0	26	U	26
Xylene (total)	1330-20-7	6.0	U	6.0	26	U	26
Bromoform	75-25-2	6.0	U	6.0	62	U	62
1,1,2,2-Tetrachloroethane	79-34-5	6.0	U	6.0	41	U	41
4-Ethyltoluene	622-96-8	6.0	U	6.0	29	U	29
1,3,5-Trimethylbenzene	108-67-8	6.0	U	6.0	29	U	29

CLIENT SAMPLE NO.

B786-SSV2/D

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Г

Sample Matrix: AIR

Lab Sample No.: 689161

Date Analyzed: 11/03/2006

Date Received: 10/27/2006

-17

-

-11

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	a	RL in ug/m3
Dichlorodifluoromethane	75-71-8	2.5	U	2.5	12	U	12
1,2-Dichlorotetrafluoroethane	76-14-2	1.0	U	1.0	7.0	U	7.0
Vinyl Chloride	75-01-4	1.0	U	1.0	2.6	U	2.6
1,3-Butadiene	106-99-0	2.5	U	2.5	5.5	U	5.5
Bromomethane	74-83-9	1.0	U	1.0	3.9	U	3.9
Chloroethane	75-00-3	1.0	U	1.0	2.6	U	2.6
Bromoethene	593-60-2	1.0	υ	1.0	4.4	U	4.4
Trichlorofluoromethane	75-69-4	1.0	U	1.0	5.6	U	5.6
1,1-Dichloroethene	75-35-4	1.0	U	1.0	4.0	U	4.0
3-Chloropropene	107-05-1	2.5	U	2.5	7.8	U	7.8
Methyl tert-Butyl Ether	1634-04-4	2.5	υ	2.5	9.0	U	9.0
trans-1,2-Dichloroethene	156-60-5	1.0	U	1.0	4.0	U	4.0
n-Hexane	110-54-3	6.4		2.5	23		8.8
1,1-Dichloroethane	75-34-3	1.0	U	1.0	4.0	U	4.0
1,2-Dichloroethene (total)	540-59-0	1.0	U	1.0	4.0	U	4.0
cis-1,2-Dichloroethene	156-59-2	1.0	U	1.0	4.0	U	4.0
Chloroform	67-66-3	1.0	U	1.0	4.9	U	4.9
1,1,1-Trichloroethane	71-55-6	1.0	U	1.0	5.5	U	5.5
Cyclohexane	110-82-7	2.8		1.0	9.6		3.4
Carbon Tetrachloride	56-23-5	1.0	U	1.0	6.3	U	6.3
2,2,4-Trimethylpentane	540-84-1	1.0	U	1.0	4.7	U	4.7
Benzene	71-43-2	2.8		1.0	8.9		3.2
1,2-Dichloroethane	107-06-2	1.0	U	1.0	4.0	U	4.0
n-Heptane	142-82-5	2.1		1.0	8.6		4.1
Trichloroethene	79-01-6	130		1.0	700		5.4
1,2-Dichloropropane	78-87-5	1.0	U	1.0	4.6	U	4.6
Bromodichioromethane	75-27-4	1.0	U	1.0	6.7	U	6.7
cis-1,3-Dichloropropene	10061-01-5	1.0	U	1.0	4.5	U	4.5
Toluene	108-88-3	3.1		1.0	12		3.8
trans-1,3-Dichloropropene	10061-02-6	1.0	U	1.0	4.5	U	4.5
1,1,2-Trichloroethane	79-00-5	1.0	U	1.0	5.5	υ	5.5
Tetrachloroethene	127-18-4	1.0	U	1.0	6.8	U	6.8
Dibromochloromethane	124-48-1	1.0	U	1.0	8.5	U	8.5

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B786-SSV2/D

Lab Sample No.: 689161

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	1.0	U	1.0	7.7	U	7.7
Ethylbenzene	100-41-4	1.0	U	1.0	4.3	U	4.3
Xylene (m,p)	1330-20-7	2.5	U	2.5	11	U	11
Xylene (o)	95-47-6	1.0	U	1.0	4.3	U	4.3
Xylene (total)	1330-20-7	1.0	U	1.0	4.3	U	4.3
Bromoform	75-25-2	1.0	U	1.0	10	U	10
1,1,2,2-Tetrachloroethane	79-34-5	1.0	U	1.0	6.9	U	6.9
4-Ethyltoluene	622-96-8	1.0	U	1.0	4.9	U	4.9
1,3,5-Trimethylbenzene	108-67-8	1.0	υ	1.0	4.9	U	4.9

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B783-SSV1

Lab Sample No.: 689162

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	a	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.54		0.50	2.7		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.20	U	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.23		0.20	1.3		1.1
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	υ	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	17		0.50	60		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	υ	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Chloroform	67-66-3	0.74		0.20	3.6		0.98
1,1,1-Trichloroethane	71-55-6	0.31		0.20	1.7		1.1
Cyclohexane	110-82-7	11		0.20	38		0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	6.0		0.20	19		0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	3.6		0.20	15		0.82
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1 .1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	1.7		0.20	6.4		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	υ	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	υ	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7

CLIENT SAMPLE NO.

B783-SSV1

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689162

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.50	U	0.50	2.2	U	2.2
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Xylene (total)	1330-20-7	0.20	U	0.20	0.87	U	0.87
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B783-SSV2

Lab Sample No.: 689163

Date Analyzed: 11/03/2006

Date Received: 10/27/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.58		0.50	2.9	—	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	υ	0.20	1.4	U	1.4
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.20	U	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.26		0.20	1.5		1.1
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	υ	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	7.8		0.50	27		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	υ	0.20	0.79	υ	0.79
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	υ	0.20	1.1	U	1.1
Cyclohexane	110-82-7	6.8	1	0.20	23		0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20		0.20	0.93		0.93
Benzene	71-43-2	2.5		0.20	8.0		0,64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	4.1		0.20	17		0.82
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	2.8		0.20	11		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	υ	1.7

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B783-SSV2

Lab Sample No.: 689163

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	۵	RL in ug/m3
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Ethylbenzene	100-41-4	1.0		0.20	4.3		0.87
Xylene (m,p)	1330-20-7	3.0		0.50	13		2.2
Xylene (o)	95-47-6	1.3		0.20	5.6		0.87
Xylene (total)	1330-20-7	4.3		0.20	19		0.87
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.40		0.20	2.0		0.98
1,3,5-Trimethylbenzene	108-67-8	0.40		0.20	2.0		0.98

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B782-SSV1

Lab Sample No.: 689164

Date Analyzed: 11/03/2006

Date Received: 10/27/2006

			1 -	<u> </u>	1		
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.58		0.50	2.9		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.20	U	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.27		0.20	1.5		1.1
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	2.3		0.50	8.1		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.95		0.20	3.3		0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.97		0.20	3.1		0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	1.8		0.20	7.4		0.82
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	2.3		0.20	8.7		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	2.4		0.20	16		1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7

CLIENT SAMPLE NO.

B782-SSV1

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689164

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Ethylbenzene	100-41-4	2.9		0.20	13		0.87
Xylene (m,p)	1330-20-7	1.1		0.50	4.8		2.2
Xylene (o)	95-47-6	0.46		0.20	2.0		0.87
Xylene (total)	1330-20-7	1.6		0.20	6.9		0.87
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.29		0.20	1.4		0.98
1,3,5-Trimethylbenzene	108-67-8	0.31		0.20	1.5		0.98

CLIENT SAMPLE NO.

B782-SSV1/D

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689165

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.56		0.50	2.8		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	υ	0.78
Chloroethane	75-00-3	0.20	U	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.30		0.20	1.7		1.1
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	2.4		0.50	8.5		. 1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.83		0.20	2.9		0.69
Carbon Tetrachloride	56-23-5	0.20	υ	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	1.0		0.20	3.2		0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	1.6		0.20	6.6		0.82
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	2.4		0.20	9.0		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	2.5		0.20	17		1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

B782-SSV1/D

Lab Sample No.: 689165

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Ethylbenzene	100-41-4	2.9		0.20	13		0.87
Xylene (m,p)	1330-20-7	1.1		0.50	4.8		2.2
Xylene (o)	95-47-6	0.49		0.20	2.1		0.87
Xylene (total)	1330-20-7	1.6		0.20	6.9		0.87
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.31		0.20	1.5		0.98
1,3,5-Trimethylbenzene	108-67-8	0.25		0.20	1.2		0.98

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Г

Sample Matrix: AIR

B782-SSV2

Lab Sample No.: 689166

Date Analyzed: 11/03/2006

Date Received: 10/27/2006

Т

Т

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.70		0.50	3.5		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.20	U	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.32		0.20	1.8		1.1
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	υ	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	2.3		0.50	8.1		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	3.0		0.20	16		1.1
Cyclohexane	110-82-7	0.76		0.20	2.6		0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.63		0.20	2.0		0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	1.5		0.20	6.1		0.82
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	1.9		0.20	7.2		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7

CLIENT SAMPLE NO.

B782-SSV2

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689166

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Ethylbenzene	100-41-4	3.0		0.20	13		0.87
Xylene (m,p)	1330-20-7	0.94		0.50	4.1		2.2
Xylene (o)	95-47-6	0.35		0.20	1.5		0.87
Xylene (total)	1330-20-7	1.3		0.20	5.6		0.87
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.33		0.20	1.6		0.98
1,3,5-Trimethylbenzene	108-67-8	0.29		0.20	1.4		0.98

CLIENT SAMPLE NO.

774-SSV1

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689167

Date Analyzed: 11/03/2006

Date Received: 10/27/2006

					1 -		
Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	5.0	U	5.0	25	U	25
1,2-Dichlorotetrafluoroethane	76-14-2	2.0	U	2.0	14	U	14
Vinyl Chloride	75-01-4	2.0	U	2.0	5.1	U	5.1
1,3-Butadiene	106-99-0	5.0	U	5.0	11	U	11
Bromomethane	74-83-9	2.0	U	2.0	7.8	U	7.8
Chloroethane	75-00-3	2.0	U	2.0	5.3	U	5.3
Bromoethene	593-60-2	2.0	U	2.0	8.7	U	8.7
Trichlorofluoromethane	75-69-4	64		2.0	360		11
1,1-Dichloroethene	75-35-4	2.0	υ	2.0	7.9	U	7.9
3-Chloropropene	107-05-1	5.0	U	5.0	16	υ	16
Methyl tert-Butyl Ether	1634-04-4	5.0	U	5.0	18	U	18
trans-1,2-Dichloroethene	156-60-5	2.0	U	2.0	7.9	U	7.9
n-Hexane	110-54-3	12		5.0	42		18
1,1-Dichloroethane	75-34-3	2.0	U	2.0	8.1	U	8.1
1,2-Dichloroethene (total)	540-59-0	2.0	U	2.0	7.9	U	7.9
cis-1,2-Dichloroethene	156-59-2	2.0	U	2.0	7.9	U	7.9
Chloroform	67-66-3	4.0		2.0	20		9.8
1,1,1-Trichloroethane	71-55-6	10		2.0	55		11
Cyclohexane	110-82-7	4.3		2.0	15		6.9
Carbon Tetrachloride	56-23-5	2.0	U	2.0	13	U	13
2,2,4-Trimethylpentane	540-84-1	2.0	U	2.0	9.3	U	9.3
Benzene	71-43-2	3.0	······	2.0	9.6		6.4
1,2-Dichloroethane	107-06-2	2.0	U	2.0	8.1	U	8.1
n-Heptane	142-82-5	8.4		2.0	34		8.2
Trichloroethene	79-01-6	310		2.0	1700		11
1,2-Dichloropropane	78-87-5	2.0	U	2.0	9.2	U	9.2
Bromodichloromethane	75-27-4	2.0	U	2.0	13	U	13
cis-1,3-Dichloropropene	10061-01-5	2.0	U	2.0	9.1	U	9.1
Toluene	108-88-3	6.2		2.0	23		7.5
trans-1,3-Dichloropropene	10061-02-6	2.0	U	2.0	9.1	U	9.1
1,1,2-Trichloroethane	79-00-5	2.0	U	2.0	11	U	11
Tetrachloroethene	127-18-4	2.0	U	2.0	14	U	14
Dibromochloromethane	124-48-1	2.0	U	2.0	17	U	17

CLIENT SAMPLE NO.

774-SSV1

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689167

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	2.0	U	2.0	15	U	15
Ethylbenzene	100-41-4	2.0	U	2.0	8.7	U	8.7
Xylene (m,p)	1330-20-7	5.0	U	5.0	22	U	22
Xylene (o)	95-47-6	2.0	U	2.0	8.7	υ	8.7
Xylene (total)	1330-20-7	2.0	U	2.0	8.7	U	8.7
Bromoform	75-25-2	2.0	U	2.0	21	U	21
1,1,2,2-Tetrachloroethane	79-34-5	2.0	U	2.0	14	U	14
4-Ethyltoluene	622-96-8	2.0	υ	2.0	9.8	U	9.8
1,3,5-Trimethylbenzene	108-67-8	2.0	U	2.0	9.8	U	9.8

CLIENT SAMPLE NO.

774-SSV2

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689168

Date Analyzed: 11/03/2006

Date Received: 10/27/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	a	RL in ug/m3
Dichlorodifluoromethane	75-71-8	2.5	U	2.5	12	U	12
1,2-Dichlorotetrafluoroethane	76-14-2	1.0	U	1.0	7.0	U	7.0
Vinyl Chloride	75-01-4	1.0	U	1.0	2.6	U	2.6
1,3-Butadiene	106-99-0	2.5	υ	2.5	5.5	U	5.5
Bromomethane	74-83-9	1.0	U	1.0	3.9	U	3.9
Chloroethane	75-00-3	1.0	U	1.0	2.6	U	2.6
Bromoethene	593-60-2	1.0	U	1.0	4.4	U	4.4
Trichlorofluoromethane	75-69-4	14		1.0	79		5.6
1,1-Dichloroethene	75-35-4	1.0	υ	1.0	4.0	U	4.0
3-Chloropropene	107-05-1	2.5	U	2.5	7.8	υ	7.8
Methyl tert-Butyl Ether	1634-04-4	2.5	U	2.5	9.0	U	9.0
trans-1,2-Dichloroethene	156-60-5	1.0	U	1.0	4.0	υ	4.0
n-Hexane	110-54-3	2.8		2.5	9.9		. 8.8
1,1-Dichloroethane	75-34-3	1.0	U	1.0	4.0	U	4.0
1,2-Dichloroethene (total)	540-59-0	1.0	U	1.0	4.0	U	4.0
cis-1,2-Dichloroethene	156-59-2	1.0	U	1.0	4.0	U	4.0
Chloroform	67-66-3	1.0	U	1.0	4.9	U	4.9
1,1,1-Trichloroethane	71-55-6	5.2		1.0	28		5.5
Cyclohexane	110-82-7	1.0	U	1.0	3.4	U	3.4
Carbon Tetrachloride	56-23-5	1.0	U	1.0	6.3	U	6.3
2,2,4-Trimethylpentane	540-84-1	1.0	U	1.0	4.7	U	4.7
Benzene	71-43-2	1.2		1.0	3.8		3.2
1,2-Dichloroethane	107-06-2	1.0	U	1.0	4.0	U	4.0
n-Heptane	142-82-5	2.3		1.0	9.4		4.1
Trichloroethene	79-01-6	150		1.0	810		5.4
1,2-Dichloropropane	78-87-5	1.0	U	1.0	4.6	U	4.6
Bromodichloromethane	75-27-4	1.0	U	1.0	6.7	U	6.7
cis-1,3-Dichloropropene	10061-01-5	1.0	U	1.0	4.5	U	4.5
Toluene	108-88-3	3.0		1.0	11		3.8
trans-1,3-Dichloropropene	10061-02-6	1.0	U	1.0	4.5	U	4.5
1,1,2-Trichloroethane	79-00-5	1.0	υ	1.0	5.5	U	5.5
Tetrachloroethene	127-18-4	1.0	U	1.0	6.8	U	6.8
Dibromochloromethane	124-48-1	1.0	U	1.0	8.5	U	8.5

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

774-SSV2

Lab Sample No.: 689168

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	1.0	U	1.0	7.7	U	7.7
Ethylbenzene	100-41-4	1.0	U	1.0	4.3	U	4.3
Xylene (m,p)	1330-20-7	2.5	U	2.5	11	U	11
Xylene (o)	95-47-6	1.0	U	1.0	4.3	U	4.3
Xylene (total)	1330-20-7	1.0	U	1.0	4.3	U	4.3
Bromoform	75-25-2	1.0	U	1.0	10	υ	10
1,1,2,2-Tetrachloroethane	79-34-5	1.0	U	1.0	6.9	υ	6.9
4-Ethyltoluene	622-96-8	1.0	U	1.0	4.9	υ	4.9
1,3,5-Trimethylbenzene	108-67-8	1.0	U	1.0	4.9	υ	4.9

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

776-SSV1

Lab Sample No.: 689169

Date Analyzed: 11/04/2006

Date Received: 10/27/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	15	U	15	74	υ	74
1,2-Dichlorotetrafluoroethane	76-14-2	5.9	U	5.9	41	U	41
Vinyl Chloride	75-01-4	5.9	U	5.9	15	U	15
1,3-Butadiene	106-99 - 0	15	U	15	33	U	33
Bromomethane	74-83-9	5.9	U	5.9	23	U	23
Chloroethane	75-00-3	5.9	U	5.9	16	U	16
Bromoethene	593-60-2	5.9	U	5.9	26	U	26
Trichlorofluoromethane	75-69-4	740		5.9	4200		33
1,1-Dichloroethene	75-35-4	5.9	U	5.9	23	U	23
3-Chloropropene	107-05-1	15	υ	15	47	U	47
Methyl tert-Butyl Ether	1634-04-4	15	U	15	54	U	54
trans-1,2-Dichloroethene	156-60-5	5.9	U	5.9	23	U	23
n-Hexane	110-54-3	15	U	15	53	U	53
1,1-Dichloroethane	75-34-3	5.9	U	5.9	24	U	24
1,2-Dichloroethene (total)	540-59-0	5.9	U	5.9	23	U	23
cis-1,2-Dichloroethene	156-59-2	5.9	U	5.9	23	U	23
Chloroform	67-66-3	11		5.9	54		29
1,1,1-Trichloroethane	71-55-6	6.1		5.9	33		32
Cyclohexane	110-82-7	5.9	U	5.9	20	U	20
Carbon Tetrachloride	56-23-5	5.9	U	5.9	37	U	37
2,2,4-Trimethylpentane	540-84-1	5.9	U	5.9	28	υ	28
Benzene	71-43-2	5.9	U	5.9	19	U	19
1,2-Dichloroethane	107-06-2	5.9	U	5.9	24	U	24
n-Heptane	142-82-5	5.9	U	5.9	24	U	24
Trichloroethene	79-01-6	560		5.9	3000		32
1,2-Dichloropropane	78-87-5	5.9	U	5.9	27	U	27
Bromodichloromethane	75-27-4	5.9	U	5.9	40	U	40
cis-1,3-Dichloropropene	10061-01-5	5.9	υ	5.9	27	U	27
Toluene	108-88-3	5.9	U	5.9	22	U	22
trans-1,3-Dichloropropene	10061-02-6	5.9	U	5.9	27	U	27
1,1,2-Trichloroethane	79-00-5	5.9	U	5.9	32	U	32
Tetrachloroethene	127-18-4	5.9	U	5.9	40	U	40
Dibromochloromethane	124-48-1	5.9	U	5.9	50	U	50

Page 1 of 2

CLIENT SAMPLE NO.

776-SSV1

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689169

Date Analyzed: 11/04/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	5.9	U	5.9	45	Ū	45
Ethylbenzene	100-41-4	5.9	U	5.9	26	U	26
Xylene (m,p)	1330-20-7	15	U	15	65	U	65
Xylene (o)	95-47-6	5.9	U	5.9	26	U	26
Xylene (total)	1330-20-7	5.9	U	5.9	26	U	26
Bromoform	75-25-2	5.9	U	5.9	61	U	61
1,1,2,2-Tetrachloroethane	79-34-5	5.9	U	5.9	41	U	41
4-Ethyltoluene	622-96-8	5.9	U	5.9	29	U	29
1,3,5-Trimethylbenzene	108-67-8	5.9	U	5.9	29	U	29

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

-

Sample Matrix: AIR

776-SSV2

Lab Sample No.: 689170

Date Analyzed: 11/04/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	750	E	2.7	3700	E	13
1,2-Dichlorotetrafluoroethane	76-14-2	1.1	U	1.1	7.7	U	7.7
Vinyl Chloride	75-01-4	1.1	U	1.1	2.8	U	2.8
1,3-Butadiene	106-99-0	2.7	U	2.7	6.0	U	6.0
Bromomethane	74-83-9	1.1	U	1.1	4.3	υ	4.3
Chloroethane	75-00-3	1.1	U	1.1	2.9	U	2.9
Bromoethene	593-60-2	1.1	U	1.1	4.8	U	4.8
Trichlorofluoromethane	75-69-4	2.4		1.1	13		6.2
1,1-Dichloroethene	75-35-4	1.1	U	1.1	4.4	U	4.4
3-Chloropropene	107-05-1	2.7	υ	2.7	8.5	U	8.5
Methyl tert-Butyl Ether	1634-04-4	2.7	U	2.7	9.7	U	9.7
trans-1,2-Dichloroethene	156-60-5	1.1	U	1.1	4.4	U	4.4
n-Hexane	110-54-3	5.4		2.7	19		9.5
1,1-Dichloroethane	75-34-3	1.1	U	1.1	4.5	U	4.5
1,2-Dichloroethene (total)	540-59-0	1.1	U	1.1	4.4	U	4.4
cis-1,2-Dichloroethene	156-59-2	1.1	U	1.1	4.4	U	4.4
Chloroform	67-66-3	1.1	U	1.1	5.4	U	5.4
1,1,1-Trichloroethane	71-55-6	2.8		1.1	15		6.0
Cyclohexane	110-82-7	2.8		1.1	9.6		3.8
Carbon Tetrachloride	56-23-5	1.1	U	1.1	6.9	U	6.9
2,2,4-Trimethylpentane	540-84-1	1.1	U	1.1	5.1	U	5.1
Benzene	71-43-2	1.6		1.1	5.1		3.5
1,2-Dichloroethane	107-06-2	1.1	U	1.1	4.5	U	4.5
n-Heptane	142-82-5	1.3		1.1	5.3		4.5
Trichloroethene	79-01-6	120		1.1	640		5.9
1,2-Dichloropropane	78-87-5	1.1	U	1.1	5.1	U	5.1
Bromodichloromethane	75-27-4	1.1	U	1.1	7.4	U	7.4
cis-1,3-Dichloropropene	10061-01-5	1.1	U	1.1	5.0	U	5.0
Toluene	108-88-3	2.2		1.1	8.3		4.1
trans-1,3-Dichloropropene	10061-02-6	1.1	U	1.1	5.0	U	5.0
1,1,2-Trichloroethane	79-00-5	1.1	U	1.1	6.0	U	6.0
Tetrachloroethene	127-18-4	4.6		1.1	31	4.1	7.5
Dibromochloromethane	124-48-1	1.1	U	1.1	9.4	U	9.4

CLIENT SAMPLE NO.

776-SSV2

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689170

Date Analyzed: 11/04/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	1.1	U	1.1	8.5	U	8.5
Ethylbenzene	100-41-4	1.1	U	1.1	4.8	U	4.8
Xylene (m,p)	1330-20-7	2.7	U	2.7	12	U	12
Xylene (o)	95-47-6	1.1	U	1.1	4.8	U	4.8
Xylene (total)	1330-20-7	1.1	U	1.1	4.8	U	4.8
Bromoform	75-25-2	1.1	U	1.1	11	U	11
1,1,2,2-Tetrachloroethane	79-34-5	1.1	U	1.1	7.6	U	7.6
4-Ethyltoluene	622-96-8	1.1	U	1.1	5.4	U	5.4
1,3,5-Trimethylbenzene	108-67-8	1.1	U	1.1	5.4	U	5.4

CLIENT SAMPLE NO.

776-SSV2DL

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: 689170D1

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	1800	D	50	8900	D	250
1,2-Dichlorotetrafluoroethane	76-14-2	20	U	20	140	U	140
Vinyl Chloride	75-01-4	20	U	20	51	U	51
1,3-Butadiene	106-99-0	50	U	50	110	U	110
Bromomethane	74-83-9	20	U	20	78	U	78
Chloroethane	75-00-3	20	U	20	53	U	53
Bromoethene	593-60-2	20	U	20	87	U	87
Trichlorofluoromethane	75-69-4	20	U	20	110	U	110
1,1-Dichloroethene	75-35-4	20	U	20	79	U	79
3-Chloropropene	107-05-1	50	U	50	160	U	160
Methyl tert-Butyl Ether	1634-04-4	50	υ	50	180	U	180
trans-1,2-Dichloroethene	156-60-5	20	U	20	79	U	79
n-Hexane	110-54-3	50	U	50	180	U	180
1,1-Dichloroethane	75-34-3	20	U	20	81	U	81
1,2-Dichloroethene (total)	540-59-0	20	U	20	79	U	79
cis-1,2-Dichloroethene	156-59-2	20	U	20	79	U	79
Chloroform	67-66-3	20	υ	20	98	U	98
1,1,1-Trichloroethane	71-55-6	20	U	20	110	U	1 1 0
Cyclohexane	110-82-7	20	U	20	69	U	69
Carbon Tetrachloride	56-23-5	20	U	20	130	U	130
2,2,4-Trimethylpentane	540-84-1	20	U	20	93	U	93
Benzene	71-43-2	20	U	20	64	U	64
1,2-Dichloroethane	107-06-2	20	U	20	81	U	81
n-Heptane	142-82-5	20	U	20	82	U	82
Trichloroethene	7 9-01-6	130	D	20	700	D	110
1,2-Dichloropropane	78-87-5	20	U	20	92	U	92
Bromodichloromethane	75-27-4	20	U	20	130	U	130
cis-1,3-Dichloropropene	10061-01-5	20	U	20	91	U	91
Toluene	108-88-3	20	U	20	75	U	75
trans-1,3-Dichloropropene	10061-02-6	20	U	20	91	U	91
1,1,2-Trichloroethane	79-00-5	20	U	20	110	U	110
Tetrachloroethene	127-18-4	20	U	20	140	U	140
Dibromochloromethane	124-48-1	20	U	20	170	U	170

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

776-SSV2DL

Lab Sample No.: 689170D1

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	20	U	20	150	U	150
Ethylbenzene	100-41-4	20	U	20	87	U	87
Xylene (m,p)	1330-20-7	50	U	50	220	U	220
Xylene (o)	95-47-6	20	U	20	87	U	87
Xylene (total)	1330-20-7	20	U	20	87	U	87
Bromoform	75-25-2	20	U	20	210	U	210
1,1,2,2-Tetrachloroethane	79-34-5	20	U	20	140	U	140
4-Ethyltoluene	622-96-8	20	U	20	98	U	98
1,3,5-Trimethylbenzene	108-67-8	20	U	20	98	U	98

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

MBLK110206VA

Lab Sample No.: MBLK1102

Date Analyzed: 11/02/2006

		_			<u> </u>		
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.20	U	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.20	U	0.20	1.1	U	1.1
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	υ	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0.50	1.8	U	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0.82
Trichloroethene	79-01-6	0.20	U	0.20	1.1	υ	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	0.20	U	0.20	0.75	U	0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	υ	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

MBLK110206VA

Lab Sample No.: MBLK1102

Date Analyzed: 11/02/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.50	U	0.50	2.2	U	2.2
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Xylene (total)	1330-20-7	0.20	U	0.20	0.87	U	0.87
Bromoform	75-25-2	0.20	υ	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	υ	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

MBLK110306VA

Lab Sample No.: MBLK1103

Date Analyzed: 11/03/2006

Date Received: 11

				I	II	T	T
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.20	U	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.20	U	0.20	1.1	U	1.1
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0.50	1.8	U	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0.82
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	0.20	U	0.20	0.75	U	0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

MBLK110306VA

Lab Sample No.: MBLK1103

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	۵	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.50	U	0.50	2.2	U	2.2
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Xylene (total)	1330-20-7	0.20	U	0.20	0.87	U	0.87
Bromoform	75-25-2	0.20	υ	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98

CLIENT SAMPLE NO.

VA110206LCS

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: VA110206

Date Analyzed: 11/02/2006

Date Received: 11

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	9.4		0.50	46	-	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	9.6		0.20	67		1.4
Vinyl Chloride	75-01-4	10		0.20	26		0.51
1,3-Butadiene	106-99-0	10		0.50	22		1.1
Bromomethane	74-83-9	9.5		0.20	37		0.78
Chloroethane	75-00-3	10		0.20	26		0.53
Bromoethene	593-60-2	9.3		0.20	41		0.87
Trichlorofluoromethane	75-69-4	11		0.20	62		1.1
1,1-Dichloroethene	75-35-4	8.6		0.20	34		0.79
3-Chloropropene	107-05-1	9.5		0.50	30		1.6
Methyl tert-Butyl Ether	1634-04-4	9.9		0.50	36		1.8
trans-1,2-Dichloroethene	156-60-5	9.8		0.20	39		0.79
n-Hexane	110-54-3	10		0.50	35		1.8
1,1-Dichloroethane	75-34-3	9.8		0.20	40		0.81
1,2-Dichloroethene (total)	540-59-0	19		0.20	75		0.79
cis-1,2-Dichloroethene	156-59-2	9.0		0.20	36		0.79
Chloroform	67-66-3	9.8		0.20	48		0.98
1,1,1-Trichloroethane	71-55-6	10		0.20	55		1.1
Cyclohexane	110-82-7	9.6		0.20	33		0.69
Carbon Tetrachloride	56-23-5	11		0.20	69		1.3
2,2,4-Trimethylpentane	540-84-1	10		0.20	47		0.93
Benzene	71-43-2	9.3		0.20	30		0.64
1,2-Dichloroethane	107-06-2	10		0.20	40		0.81
n-Heptane	142-82-5	11		0.20	45		0.82
Trichloroethene	79-01-6	9.7		0.20	52		1.1
1,2-Dichloropropane	78-87-5	10		0.20	46		0.92
Bromodichloromethane	75-27-4	9.9		0.20	66		1.3
cis-1,3-Dichloropropene	10061-01-5	10		0.20	45		0.91
Toluene	108-88-3	9.4		0.20	35		0.75
trans-1,3-Dichloropropene	10061-02-6	10		0.20	45		0.91
1,1,2-Trichloroethane	79-00-5	10	1	0.20	55	-	1.1
Tetrachloroethene	127-18-4	10		0.20	68		1.4
Dibromochloromethane	124-48-1	11		0.20	94		1.7

CLIENT SAMPLE NO.

VA110206LCS

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: VA110206

Date Analyzed: 11/02/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	10		0.20	77		1.5
Ethylbenzene	100-41-4	9.6		0.20	42		0.87
Xylene (m,p)	1330-20-7	21		0.50	91		2.2
Xylene (o)	95-47-6	10		0.20	43		0.87
Xylene (total)	1330-20-7	31		0.20	130		0.87
Bromoform	75-25-2	11		0.20	110		2.1
1,1,2,2-Tetrachloroethane	79-34-5	10		0.20	69		1.4
4-Ethyltoluene	622-96-8	11		0.20	54	**************************************	0.98
1,3,5-Trimethylbenzene	108-67-8	9.0		0.20	44		0.98

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

VA110206LCSD

Lab Sample No.: VA110206

Date Analyzed: 11/02/2006

Date Received: 11

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	9.1		0.50	45		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	9.8		0.20	69		1.4
Vinyl Chloride	75-01-4	10		0.20	26		0.51
1,3-Butadiene	106-99-0	10		0.50	22		1.1
Bromomethane	74-83-9	9.7		0.20	38		0.78
Chloroethane	75-00-3	10		0.20	26		0.53
Bromoethene	593-60-2	9.4		0.20	41		0.87
Trichlorofluoromethane	75-69-4	11	-	0.20	62		1.1
1,1-Dichloroethene	75-35-4	8.8		0.20	35		0.79
3-Chloropropene	107-05-1	8.8		0.50	28		1.6
Methyl tert-Butyl Ether	1634-04-4	10		0.50	36		1.8
trans-1,2-Dichloroethene	156-60-5	9.9		0.20	39		0.79
n-Hexane	110-54-3	9.6		0.50	34		1.8
1,1-Dichloroethane	75-34-3	10		0.20	40		0.81
1,2-Dichloroethene (total)	540-59-0	19		0.20	75		0.79
cis-1,2-Dichloroethene	156-59-2	9.0		0.20	36		0.79
Chloroform	67-66-3	9.6		0.20	47		0.98
1,1,1-Trichloroethane	71-55-6	10	-	0.20	55		1. 1
Cyclohexane	110-82-7	9.8		0.20	34		0.69
Carbon Tetrachloride	56-23-5	11		0.20	69		1.3
2,2,4-Trimethylpentane	540-84-1	10		0.20	47		0.93
Benzene	71-43-2	9.7		0.20	31		0.64
1,2-Dichloroethane	107-06-2	10		0.20	40		0.81
n-Heptane	142-82-5	11		0.20	45		0.82
Trichloroethene	79-01-6	9.8		0.20	53		1.1
1,2-Dichloropropane	78-87-5	10		0.20	46		0.92
Bromodichloromethane	75-27-4	10		0.20	67		1.3
cis-1,3-Dichloropropene	10061-01-5	10		0.20	45		0.91
Toluene	108-88-3	9.7		0.20	37		0.75
trans-1,3-Dichloropropene	10061-02-6	11		0.20	50		0.91
1,1,2-Trichloroethane	79-00-5	11		0.20	60		1.1
Tetrachloroethene	127-18-4	10	1	0.20	68		1.4
Dibromochloromethane	124-48-1	11		0.20	94		1.7

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

_

Sample Matrix: AIR

VA110206LCSD

Lab Sample No.: VA110206

Date Analyzed: 11/02/2006

Target Compound	CAS Number	Results in ppbv	۵	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	10		0.20	77		1.5
Ethylbenzene	100-41-4	9.8		0.20	43		0.87
Xylene (m.p)	1330-20-7	21		0.50	91		2.2
Xylene (o)	95-47-6	11		0.20	48		0.87
Xylene (total)	1330-20-7	32		0.20	140		0.87
Bromoform	75-25-2	11		0.20	110		2.1
1,1,2,2-Tetrachloroethane	79-34-5	10		0.20	69		1.4
4-Ethyltoluene	622-96-8	11		0.20	54		0.98
1,3,5-Trimethylbenzene	108-67-8	9.1		0.20	45		0.98

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

VA110306LCS

Lab Sample No.: VA110306

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	10		0.50	49		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	10	1	0.20	70		1.4
Vinyl Chloride	75-01-4	10		0.20	26		0.51
1,3-Butadiene	106-99-0	10		0.50	22		1.1
Bromomethane	74-83-9	9.9		0.20	38		0.78
Chloroethane	75-00-3	10		0.20	26		0.53
Bromoethene	593-60-2	9.7		0.20	42		0.87
Trichlorofluoromethane	75-69-4	13		0.20	73		1.1
1,1-Dichloroethene	75-35-4	8.1		0.20	32		0.79
3-Chloropropene	107-05-1	9.3		0.50	29		1.6
Methyl tert-Butyl Ether	1634-04-4	11		0.50	40		1.8
trans-1,2-Dichloroethene	156-60-5	10		0.20	40		0.79
n-Hexane	110-54-3	10		0.50	35		1.8
1,1-Dichloroethane	75-34-3	10		0.20	40		0.81
1,2-Dichloroethene (total)	540-59-0	19		0.20	75		0.79
cis-1,2-Dichloroethene	156-59-2	8.9		0.20	35		0.79
Chloroform	67-66-3	11		0.20	54		0.98
1,1,1-Trichloroethane	71-55-6	13		0.20	71		1.1
Cyclohexane	110-82-7	9.8		0.20	34		0.69
Carbon Tetrachloride	56-23-5	14		0.20	88		1.3
2,2,4-Trimethylpentane	540-84-1	11		0.20	51		0.93
Benzene	71-43-2	9.7		0.20	31		0.64
1,2-Dichloroethane	107-06-2	13		0.20	53		0.81
n-Heptane	142-82-5	11		0.20	45		0.82
Trichloroethene	79-01-6	11		0.20	59		1.1
1,2-Dichloropropane	78-87-5	10		0.20	46		0.92
Bromodichloromethane	75-27-4	12		0.20	80		1.3
cis-1,3-Dichloropropene	10061-01-5	11		0.20	50		0.91
Toluene	108-88-3	10		0.20	38		0.75
trans-1,3-Dichloropropene	10061-02-6	12		0.20	54		0.91
1,1,2-Trichloroethane	79-00-5	11		0.20	60		1.1
Tetrachloroethene	127-18-4	10		0.20	68		1.4
Dibromochloromethane	124-48-1	13		0.20	110		1.7

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

VA110306LCS

Lab Sample No.: VA110306

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	11		0.20	85		1.5
Ethylbenzene	100-41-4	10		0.20	43		0.87
Xylene (m,p)	1330-20-7	21		0.50	91		2.2
Xylene (o)	95-47-6	9.9		0.20	43		0.87
Xylene (total)	1330-20-7	31		0.20	130		0.87
Bromoform	75-25 - 2	12		0.20	120		2.1
1,1,2,2-Tetrachloroethane	79-34-5	10		0.20	69		1,4
4-Ethyltoluene	622-96-8	7.2		0.20	35		0.98
1,3,5-Trimethylbenzene	108-67-8	9.4		0.20	46		0.98

CLIENT SAMPLE NO.

VA110306LCSD

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

Lab Sample No.: VA110306

Date Analyzed: 11/03/2006

Date Received: 11

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	10		0.50	49		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	10		0.20	70		1.4
Vinyl Chloride	75-01-4	10		0.20	26		0.51
1,3-Butadiene	106-99-0	10		0.50	22		1.1
Bromomethane	74-83-9	9.9		0.20	38		0.78
Chloroethane	75-00-3	10		0.20	26		0.53
Bromoethene	593-60-2	9.4		0.20	41		0.87
Trichlorofluoromethane	75-69-4	13		0.20	73		1.1
1,1-Dichloroethene	75-35-4	8.4		0.20	33		0.79
3-Chloropropene	107-05-1	9.7		0.50	30		1.6
Methyl tert-Butyl Ether	1634-04-4	11		0.50	40		1.8
trans-1,2-Dichloroethene	156-60-5	10		0.20	40		0.79
n-Hexane	110-54-3	10		0.50	35		1.8
1,1-Dichloroethane	75-34-3	10		0.20	40		0.81
1,2-Dichloroethene (total)	540-59-0	19		0.20	75		0.79
cis-1,2-Dichloroethene	156-59-2	8.5		0.20	34		0.79
Chloroform	67-66-3	11		0.20	54		0.98
1,1,1-Trichloroethane	71-55-6	12		0.20	65		1.1
Cyclohexane	110-82-7	10		0.20	34		0.69
Carbon Tetrachloride	56-23-5	13		0.20	82		1.3
2,2,4-Trimethylpentane	540-84-1	10		0.20	47		0.93
Benzene	71-43-2	9.5		0.20	30		0.64
1,2-Dichloroethane	107-06-2	12		0.20	49		0.81
n-Heptane	142-82-5	11		0.20	45		0.82
Trichloroethene	79-01-6	11		0.20	59		1.1
1,2-Dichloropropane	78-87-5	10		0.20	46		0.92
Bromodichloromethane	75-27-4	12		0.20	80		1.3
cis-1,3-Dichloropropene	10061-01-5	11		0.20	50		0.91
Toluene	108-88-3	10		0.20	38		0.75
trans-1,3-Dichloropropene	10061-02-6	12		0.20	54		0.91
1,1,2-Trichloroethane	79-00-5	11		0.20	60		1.1
Tetrachloroethene	127-18-4	11		0.20	75		1.4
Dibromochloromethane	124-48-1	12		0.20	100		1.7

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY117175

Case Number:

Sample Matrix: AIR

VA110306LCSD

Lab Sample No.: VA110306

Date Analyzed: 11/03/2006

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,2-Dibromoethane	106-93-4	11		0.20	85		1.5
Ethylbenzene	100-41-4	9.9		0.20	43		0.87
Xylene (m,p)	1330-20-7	21		0.50	91		2.2
Xylene (o)	95-47-6	10		0.20	43		0.87
Xylene (total)	1330-20-7	31		0.20	130		0.87
Bromoform	75-25-2	11		0.20	110		2.1
1,1,2,2-Tetrachloroethane	79-34-5	11		0.20	76		1.4
4-Ethyltoluene	622-96-8	7.9		0.20	39		0.98
1,3,5-Trimethylbenzene	108-67-8	10		0.20	49		0.98

CLIENT SAMPLE NO.

774-IA1

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

Lab Sample No.: 695798

Date Analyzed: 12/27/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080		0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	υ	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	U	0.040	0.20	U	0.20
Benzene	71-43-2	0.40		0.040	1.3		0.13
Trichloroethene	79-01-6	0.44		0.040	2.4		0.21
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27

CLIENT SAMPLE NO.

785-IA1

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

Lab Sample No.: 695799

Date Analyzed: 12/27/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	۵	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	U	0.040	0.20	U	0.20
Benzene	71-43-2	0.34		0.040	1.1		0.13
Trichloroethene	79-01-6	0.040	U	0.040	0.21	U	0.21
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

OBGWV-TB3

Lab Sample No.: 695800

Date Analyzed: 12/27/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	U	0.040	0.20	U	0.20
Benzene	71-43-2	0.040	U	0.040	0.13	U	0.13
Trichloroethene	79-01-6	0.040	U	0.040	0.21	U	0.21
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27

CLIENT SAMPLE NO.

786-IA1

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

Lab Sample No.: 695801

Date Analyzed: 12/27/06

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	υ	0.040	0.20	U	0.20
Benzene	71-43-2	0.36		0.040	1.2		0.13
Trichloroethene	79-01-6	0.080		0.040	0.43		0.21
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	υ	0.27

CLIENT SAMPLE NO.

786-IA2

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

Lab Sample No.: 695802

Date Analyzed: 12/28/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	U	0.040	0.20	U	0.20
Benzene	71-43-2	0.38	te constanting and a set of a set	0.040	1.2	· ··· ··· ··· · · · · · · · · · · · ·	0.13
Trichloroethene	79-01-6	0.040	U	0.040	0.21	U	0.21
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

786-IA2 D

Lab Sample No.: 695803

Date Analyzed: 12/28/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	υ	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	U	0.040	0.20	U	0.20
Benzene	71-43-2	0.37		0.040	1.2		0.13
Trichloroethene	79-01-6	0.040	U	0.040	0.21	U	0.21
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

786-OA1

Lab Sample No.: 695804

Date Analyzed: 12/28/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	U	0.040	0.20	U	0.20
Benzene	71-43-2	0.30	and they have been added and a	0.040	0.96		0.13
Trichloroethene	79-01-6	0.040	U	0.040	0.21	U	0.21
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

WSA-OA1

Lab Sample No.: 695805

Date Analyzed: 12/28/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	υ	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	υ	0.16
Chloroform	67-66-3	0.040	υ	0.040	0.20	υ	0.20
Benzene	71-43-2	0.26		0.040	0.83		0.13
Trichloroethene	79-01-6	0.040	U	0.040	0.21	U	0.21
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

774-IA2 D

Lab Sample No.: 695806

Date Analyzed: 12/28/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	υ	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	υ	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	U	0.040	0.20	U	0.20
Benzene	71-43-2	0.41		0.040	1.3		0.13
Trichloroethene	79-01-6	0.56		0.040	3.0		0.21
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27

CLIENT SAMPLE NO.

STL Burlington

SDG Number: NY118083

Case Number:

Lab Name:

Sample Matrix: AIR

774-|A2

Lab Sample No.: 695807

Date Analyzed: 12/28/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0,16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	U	0.040	0.20	U	0.20
Benzene	71-43-2	0.48		0.040	1.5		0.13
Trichloroethene	79-01-6	0.64		0.040	3.4		0.21
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

WSA-IA1

Lab Sample No.: 695808

Date Analyzed: 12/28/06

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	U	0.040	0.20	U	0.20
Benzene	71-43-2	0.27		0.040	0.86	a a transmission condition on the first of t	0.13
Trichloroethene	79-01-6	0.040	U	0.040	0.21	U	0.21
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

776-IA1

Lab Sample No.: 695809

Date Analyzed: 12/28/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	U	0.16
Chloroform	67-66-3	0.21		0.040	1.0	A	0.20
Benzene	71-43-2	0.40		0.040	1.3		0.13
Trichloroethene	79-01-6	0.82	8. det. 66. 66. 66	0.040	4.4		0.21
Tetrachloroethene	127-18-4	0.11		0.040	0.75		0.27

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

776-IA2

Lab Sample No.: 695810

Date Analyzed: 12/28/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	U	0.16
Chloroform	67-66-3	0.17		0.040	0.83		0.20
Benzene	71-43-2	0.39		0.040	1.2		0.13
Trichloroethene	79-01-6	0.54		0.040	2.9		0.21
Tetrachloroethene	127-18-4	0.090		0.040	0.61		0.27

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

774-OA1

Lab Sample No.: 695811

Date Analyzed: 12/28/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	υ	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	υ	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	υ	0.040	0.20	U	0.20
Benzene	71-43-2	0.38		0.040	1.2	an an an Andrew Shine - Andrew	0.13
Trichloroethene	79-01-6	0.040	U	0.040	0.21	υ	0.21
Tetrachloroethene	127-18-4	0.040	υ	0.040	0.27	U	0.27

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

785-IA2

Lab Sample No.: 695812

Date Analyzed: 12/28/06

Date Received: 12/21/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	٩	RL in ug/m3
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	U	0.040	0.20	U	0.20
Benzene	71-43-2	0.34		0.040	1.1		0.13
Trichloroethene	79-01-6	0.040	U	0.040	0.21	U	0.21
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

EA122706LCS

Lab Sample No.: EA122706

Date Analyzed: 12/27/06

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.14		0.020	0.36		0.051
1,1-Dichloroethene	75-35-4	0.089		0.010	0.35		0.040
trans-1,2-Dichloroethene	156-60-5	0,10		0.010	0.40		0.040
1,2-Dichloroethene (total)	540-59-0	0.22		0.010	0.87		0.040
cis-1,2-Dichloroethene	156-59-2	0.12		0.010	0.48		0.040
Chloroform	67-66-3	0.095		0.010	0.46		0.049
Benzene	71-43-2	0.10		0.010	0.32		0.032
Trichloroethene	79-01-6	0.12		0.010	0.64		0.054
Tetrachloroethene	127-18-4	0.089		0.010	0.60		0.068

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

EA122706LCSD

Lab Sample No.: EA122706

Date Analyzed: 12/27/06

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.14		0.020	0.36		0.051
1,1-Dichloroethene	75-35-4	0.095		0.010	0.38		0.040
trans-1,2-Dichloroethene	156-60-5	0.11		0.010	0.44		0.040
1,2-Dichloroethene (total)	540-59-0	0.21		0.010	0.83		0.040
cis-1,2-Dichloroethene	156-59-2	0.10		0.010	0.40		0.040
Chloroform	67-66-3	0.1 0		0.010	0.49		0.049
Benzene	71-43-2	0.10		0.010	0.32	a nakaman na kata na kita kuto na ta	0.032
Trichloroethene	79-01-6	0.10		0.010	0.54		0.054
Tetrachloroethene	127-18-4	0.092		0.010	0.62		0.068

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: NY118083

Case Number:

Sample Matrix: AIR

MBLK122706EA

Lab Sample No.: MBLK1227

Date Analyzed: 12/27/06

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.020	U	0.020	0.051	U	0.051
1,1-Dichloroethene	75-35-4	0.010	U	0.010	0.040	U	0.040
trans-1,2-Dichloroethene	156-60-5	0.010	U	0.010	0.040	U	0.040
1,2-Dichloroethene (total)	540-59-0	0.010	U	0.010	0.040	U	0.040
cis-1,2-Dichloroethene	156-59-2	0.010	U	0.0 1 0	0.040	U	0.040
Chloroform	67-66-3	0.010	U	0.010	0.049	U	0.049
Benzene	71-43-2	0.010	U	0.010	0.032	U	0.032
Trichloroethene	79-01-6	0.010	U	0.010	0.054	U	0.054
Tetrachloroethene	127-18-4	0.010	U	0.010	0.068	U	0.068

F Data Usability Summary Report

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117081
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

The samples and analytical methods included in this sample delivery group (SDG) are documented in Table 1 Sample Summary. The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) Guidance for the Development of Data Usability Summary Reports (DUSRs), June 1999. The data review involved looking at the electronic data deliverables (EDDs) and comparing the sample results and laboratory quality control (QC) samples versus the data quality objectives (DQO). Any major or minor concerns affected data usability also are summarized listed below. The representativeness and comparability of the data are evaluated to determine how data usability may be impacted.

Completeness Review	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	NA - the air samples were delivered at ambient temperature.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples. Trip Blank - 1/20 samples. Equipment Blank - 1/ set of samples per day.	Yes – Trip blank and field duplicate collected and included in this SDG.
Laboratory QC frequency correct? Method blank with each batch and one set of MS/MSD and LCS per 20 samples?	Yes – MS/MSD not required.
All forms and raw data complete?	Yes.
Case narrative present and complete?	Yes.
Target analyte list and reporting limits match QAPP?	Yes Full TO-15 compound list reported.
Were any samples re-analyzed or diluted?	Yes
For any sample re-analysis and dilutions ensure that only one result per sample and analyte is flagged as reportable.	
Were the canisters for air samples received with a vacuum pressure of between -10 and zero inches of Hg?	No – Final pressure for sample AOC9-SV-06 at +0.2.

Compliance Review					
Description	Notes and Qualifiers				
Any holding time violations?	No.				
Any compounds present in method, trip and field blanks?	Yes – Dichlorodifluoromethane detected in trip blank.				

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117081
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Compliance Review					
Description	Notes and Qualifiers				
Were any analytes flagged for blank contamination? For samples, if results are <5 times the blank or <10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs reported with GC/MS.	Yes – Dichlorodifluoromethane results for samples qualified "U" based on trip blank result. Dichlorodifluoromethane suspected as being present in laboratory zero air.				
Surrogate for method blanks and LCS within limits?	NA				
Surrogate for samples and MS/MSD within limits?	NA				
Were appropriate samples re-analyzed? All samples should be re-analyzed for VOCs.					
MS/MSD within QC criteria?	NA				
If out and LCS is compliant, then J flag positive data in original sample due to matrix.					
LCS within QC criteria? If out, and the recovery high with no positive values, then no data qualification is required. Positive results are "J" flagged and non-detects are "J" flagged if low. Reject data with recovery <10%.	No – 1,4-dioxane low for 10/31 LCS and tetrahydrofuran low for 11/1 LCS				
Were any samples re-analyzed or diluted?	Yes				
For any sample re-analysis and dilutions ensure that only one result per sample and analyte is flagged as reportable.					
Do field duplicate results show good precision for all compounds except TICs?	No				

Compliar	Compliance Review by Method						
Method	Description	Notes and Qualifiers					
GC/MS	Do internal standards areas and retention time meet criteria?	Yes					
	Samples should be re-analyzed to establish matrix effects or chromatograms documenting matrix effects provided.						
GC/MS	Does initial calibration meet criteria for all positive target compounds? (%RSD≤30) Note that two compounds can have less than 40%.	Yes.					

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117081
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Compliar	Compliance Review by Method					
Method	Description	Notes and Qualifiers				
	Is the minimum response factor must be met for all compounds? (≤0.05)	Yes.				
GC/MS	Does continuing calibration meet criteria for all positive target compounds? (%D ± 30%)	Yes.				
	Is the minimum response factor must be met for all compounds? (≤0.05)	Yes.				

Summary of Potential Impacts on Data Usability

Major Concerns

None

Minor Concerns

Dichlorodilfluoromethane detected in trip blank at concentrations above those detected in samples. Sample results qualified "U".

1,4-dioxane and tetrahydrofuran results qualified "UJ" based on low LCS recovery.

Key:

- CCV = Continuing calibration verification
- COC = Chain-of-custody
- GC/MS = Gas Chromatography/Mass Spectrometry
 - NA = Not Applicable
 - LCS = Laboratory Control Sample
- MS/MSD = Matrix Spike/Matrix Spike Duplicate
 - QAPP = Quality Assurance Project Plan
 - QC = Quality Control
 - TIC = Tentatively Identified Compound
 - VOCs = Volatile Organic Compounds

Table 1 Sample Listing

Lab Sample ID	Client Sample ID	Matrix	Sample Date	Method	ID Corrections
688437	AOC9-SV-01	Air	10/18/2006	Method TO15	
688438	AOC9-SV-02	Air	10/18/2006	Method TO15	
688439	AOC9-SV-03	Air	10/18/2006	Method TO15	
688440	AOC9-SV-04	Air	10/18/2006	Method TO15	

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117081
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Lab Sample ID	Client Sample ID	Matrix	Sample Date	Method	ID Corrections
688441	AOC9-SV-05	Air	10/18/2006	Method TO15	
688442	AOC9-SV-06	Air	10/18/2006	Method TO15	
688443	775-SV-04	Air	10/19/2006	Method TO15	
688444	775-SV-04/D	Air	10/19/2006	Method TO15	
688445	775-SV-01	Air	10/19/2006	Method TO15	
688446	775-SV-03	Air	10/19/2006	Method TO15	
688447	775-SV-02	Air	10/20/2006	Method TO15	
688448	TB-20-10-06	Air	10/20/2006	Method TO15	

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117081
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Table 2 Summary of Qualified Data

Lab Sample ID	CLIENT SAMPLE ID	Analyte	Lab QUAL	Reported Result	units	Metho d	Matrix	Data Validation Qualifier	Reason
AOC9-SV-06	688442	Dichlorodifluoromethan e		3.0 U	ug/m 3	TO-15	Air	U	Detected in trip blank
775-SV-04	688443	Dichlorodifluoromethan e		3.3 U	ug/m 3	TO-15	Air	U	Detected in trip blank
775-SV-04/D	688444	Dichlorodifluoromethan e		3.4 U	ug/m 3	TO-15	Air	U	Detected in trip blank
775-SV-01	688445	Dichlorodifluoromethan e		3.8 U	ug/m 3	TO-15	Air	U	Detected in trip blank
775-SV-03	688446	Dichlorodifluoromethan e		3.7 U	ug/m 3	TO-15	Air	U	Detected in trip blank
775-SV-02	688447	Dichlorodifluoromethan e		4.2 U	ug/m 3	TO-15	Air	U	Detected in trip blank
AOC9-SV-01	688437	1,4-Dioxane	U	54	ug/m 3	TO-15	Air	UJ	Low LCS Recovery
AOC9-SV-02	688438	1,4-Dioxane	U	36	ug/m 3	TO-15	Air	UJ	Low LCS Recovery
AOC9-SV-03	688439	1,4-Dioxane	U	110	ug/m 3	TO-15	Air	UJ	Low LCS Recovery
AOC9-SV-04	688440	1,4-Dioxane	U	54	ug/m 3	TO-15	Air	UJ	Low LCS Recovery
AOC9-SV-05	688441	1,4-Dioxane	U	27	ug/m 3	TO-15	Air	UJ	Low LCS Recovery
AOC9-SV-06	688442	1,4-Dioxane	U	18	ug/m 3	TO-15	Air	UJ	Low LCS Recovery
775-SV-04	688443	1,4-Dioxane	U	18	ug/m 3	TO-15	Air	UJ	Low LCS Recovery
775-SV-04/D	688444	1,4-Dioxane	U	18	ug/m 3	TO-15	Air	UJ	Low LCS Recovery
775-SV-01	688445	1,4-Dioxane	U	18	ug/m 3	TO-15	Air	UJ	Low LCS Recovery
775-SV-03	688446	Tetrahydrofuran	U	15	ug/m 3	TO-15	Air	UJ	Low LCS Recovery
775-SV-02	688447	Tetrahydrofuran	U	15	ug/m 3	TO-15	Air	UJ	Low LCS Recovery
Tb-20-10-06	688448	Tetrahydrofuran	U	15	ug/m 3	TO-15	Air	UJ	Low LCS Recovery
775-SV-04	688443	Carbon disulfide		4.4	ug/m 3	TO-15	Air	J	Field Dup RPD
775-SV-04/D	688444	Carbon disulfide		2.4	ug/m 3	TO-15	Air	J	Field Dup RPD

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117081
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Table 3 Field Duplicate Results

Analyte	Units	PQL	775-SV-04	775-SV-04/D	RPD	RPD Rating
1,3-Butadiene	ug/m3	1.1	1.4	1.3	7.4	Good
Trichlorofluoromethane	ug/m3	1.1	9.6	9.0	6.4	Good
Acetone	ug/m3	12	16	19	17.1	Good
Carbon disulfide	ug/m3	1.6	4.4	2.4	58.8	Poor
n-Hexane	ug/m3	1.8	2.0	2.0	0.0	Good
Methyl Ethyl Ketone	ug/m3	1.5	19	19	0.0	Good
1,1,1-Trichloroethane	ug/m3	1.1	1.3	1.2	8.0	Good
n-Heptane	ug/m3	0.82	1.5	1.4	6.9	Good
Toluene	ug/m3	0.75	7.2	6.8	5.7	Good
Methyl Butyl Ketone	ug/m3	2.0	2.8	2.4	15.4	Good
Ethylbenzene	ug/m3	0.87	1.8	1.6	11.8	Good
m&p-Xylene	ug/m3	2.2	6.1	5.6	8.5	Good
o-Xylene	ug/m3	0.87	1.7	1.5	12.5	Good
Styrene	ug/m3	0.85	3.0	2.7	10.5	Good
4-Ethyltoluene	ug/m3	0.98	2.0	1.3	42.4	Good
1,2,4-Trimethylbenzene	ug/m3	0.98	3.6	3.3	8.7	Good

Key:

FD = Field Duplicate

NC = Not Calculated

ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117175
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

The samples and analytical methods included in this sample delivery group (SDG) are documented in Table 1 Sample Summary. The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) Guidance for the Development of Data Usability Summary Reports (DUSRs), June 1999. The data review involved looking at the electronic data deliverables (EDDs) and comparing the sample results and laboratory quality control (QC) samples versus the data quality objectives (DQO). Any major or minor concerns affected data usability also are summarized listed below. The representativeness and comparability of the data are evaluated to determine how data usability may be impacted.

Completeness Review	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	NA - the air samples were delivered at ambient temperature.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples. Trip Blank - 1/20 samples. Equipment Blank - 1/ set of samples per day.	Yes – Trip blank and field duplicates collected and included in this SDG.
Laboratory QC frequency correct? Method blank with each batch and one set of MS/MSD and LCS per 20 samples?	Yes – MS/MSD not required.
All forms and raw data complete?	Yes.
Case narrative present and complete?	Yes.
Target analyte list and reporting limits match QAPP?	Yes Low Level TO-15 list reported.
Were any samples re-analyzed or diluted?	Yes
For any sample re-analysis and dilutions ensure that only one result per sample and analyte is flagged as reportable.	
Were the canisters for air samples received with a vacuum pressure of between -10 and zero inches of Hg?	No – Final pressure for sample B785-SSV1 at +0.2, B785-SSV2 at +0.3, B784-SSV2 at +0.7, B786-SSV1 at +0.3, and B786-SSV2/D at +0.5.

Compliance Review		
Description	Notes and Qualifiers	
Any holding time violations?	No.	
Any compounds present in method, trip and field blanks?	Yes – Dichlorodifluoromethane detected in trip blank.	

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117175
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Compliance Review				
Description	Notes and Qualifiers			
Were any analytes flagged for blank contamination? For samples, if results are <5 times the blank or <10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs reported with GC/MS.	Yes – Dichlorodifluoromethane results for samples qualified "U" at the reported concentration.			
Surrogate for method blanks and LCS within limits?	NA			
Surrogate for samples and MS/MSD within limits?	NA			
Were appropriate samples re-analyzed? All samples should be re-analyzed for VOCs.				
MS/MSD within QC criteria?	NA			
If out and LCS is compliant, then J flag positive data in original sample due to matrix.				
LCS within QC criteria? If out, and the recovery high with no positive values, then no data qualification is required. Positive results are "J" flagged and non-detects are "J" flagged if low. Reject data with recovery <10%.	No – Carbon tetrachloride recovery high at 140% for 110306LCS. Not detected in associated samples. No results qualified.			
Were any samples re-analyzed or diluted?	Yes			
For any sample re-analysis and dilutions ensure that only one result per sample and analyte is flagged as reportable.				
Do field duplicate results show good precision for all compounds except TICs?	No. B786-SSV2 and B786-SSV2/D showed poor precision. Sample SSV2 was analyzed a dilution and SSV2/D was not analyzed without dilution. The raw data and initial screens were reviewed and found to be comparable. Results are flagged "J" as estimated.			

Compliance Review by Method					
Method	Description	Notes and Qualifiers			
GC/MS	Do internal standards areas and retention time meet criteria? Samples should be re-analyzed to establish matrix effects or chromatograms documenting matrix effects provided.	Yes			

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117175
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Complian	Compliance Review by Method					
Method	Description	Notes and Qualifiers				
GC/MS	Does initial calibration meet criteria for all positive target compounds? (%RSD≤30) Note that two compounds can have less than 40%.	Yes.				
	Is the minimum response factor must be met for all compounds? (≤0.05)	Yes.				
GC/MS	Does continuing calibration meet criteria for all positive target compounds? (%D ± 30%)	No - %D >30% for 1,1,1-trichloroethane, carbon tetrachloride and 1,2-dichloroethane in 11/3 CCV. Results qualified "UJ/J".				
	Is the minimum response factor must be met for all compounds? (≤0.05)	Yes.				

Summary of Potential Impacts on Data Usability

Major Concerns

None

Minor Concerns

Dichlorodilfluoromethane detected in trip blank at concentrations above those detected in samples. Sample results qualified "U". Dichlorodifluoromethane is suspected to have been introduced to the sample with the "laboratory zero air".

1,1,1-Trichloroethane, carbon tetrachloride and 1,2-dichloroethane calibration criteria not met for samples B785-SSV1, B784-SSV1, B784-SSV2, B783-SSV1, B783-SSV2, B782-SSV1, B782-SSV1, B782-SSV2, 774-SSV1, 774-SSV2, 776-SSV2, 776-SSV2DL, and 776-SSV1.

Field duplicates B786-SSV2 and B786-SSV2/D showed poor precision and the results are flagged "J" as estimated. The analytical results did not indicate a problem at the laboratory. The variability indicates potential limitations on the data when comparing to screening criteria.

Key:

CCV	=	Continuing calibration verification
COC	=	Chain-of-custody
GC/MS	=	Gas Chromatography/Mass Spectrometry
NA	=	Not Applicable
LCS	=	Laboratory Control Sample
MS/MSD	=	Matrix Spike/Matrix Spike Duplicate
QAPP	=	Quality Assurance Project Plan
QC	=	Quality Control
TIC	=	Tentatively Identified Compound
VOCs	=	Volatile Organic Compounds

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117175
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Table 1 Sample Listing

Lab Sample ID	Client Sample ID	Matrix	Sample Date	Method	ID Corrections
689152	WSA-SSV1	Air	10/24/2006	Method TO15	
689153	WSA-SSV1/D	Air	10/24/2006	Method TO15	
689154	B785-SSV1	Air	10/24/2006	Method TO15	
689155	B785-SSV2	Air	10/24/2006	Method TO15	
689156	B784-SSV1	Air	10/24/2006	Method TO15	
689157	B784-SSV2	Air	10/24/2006	Method TO15	
689158	OBGWV-TB1	Air	10/24/2006	Method TO15	
689159	B786-SSV1	Air	10/25/2006	Method TO15	
689160	B786-SSV2	Air	10/25/2006	Method TO15	
689161	B786-SSV/D	Air	10/25/2006	Method TO15	
689162	B783-SSV1	Air	10/25/2006	Method TO15	
689163	B783-SSV2	Air	10/25/2006	Method TO15	
689164	B782-SSV1	Air	10/25/2006	Method TO15	
689165	B782-SSV1/D	Air	10/25/2006	Method TO15	
689166	B782-SSV2	Air	10/25/2006	Method TO15	
689167	774-SSV1	Air	10/26/2006	Method TO15	
689168	774-SSV2	Air	10/26/2006	Method TO15	
689169	776-SSV1	Air	10/26/2006	Method TO15	
689170	776-SSV2	Air	10/26/2006	Method TO15	

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117175
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Table 2 Summary of Qualified Data

Lab	CLIENT SAMPLE ID	Analyte	Lab QU AL	Reported Result	units	Method	Matri x	Data Validation Qualifier	Reason
WSA- SSV1	689152	Dichlorodifluoromethane		36 U	ug/m ³	TO-15	Air	U	Detected in trip blank
WSA- SSV1/D	689153	Dichlorodifluoromethane		34 U	ug/m ³	TO-15	Air	U	Detected in trip blank
B785- SSV1	689154	Dichlorodifluoromethane		250 J	ug/m ³	TO-15	Air	U	Detected in trip blank
B784- SSV1	689156	Dichlorodifluoromethane		3.1 U	ug/m ³	TO-15	Air	U	Detected in trip blank
B784- SSV2	689156	Dichlorodifluoromethane		3.1 U	ug/m ³	TO-15	Air	U	Detected in trip blank
B786- SSV1	689159	Dichlorodifluoromethane		1900 J	ug/m ³	TO-15	Air	U	Detected in trip blank
B786- SSV2	689160	Dichlorodifluoromethane		130 J	ug/m ³	TO-15	Air	UJ	Detected in trip blank
B783- SSV1	689162	Dichlorodifluoromethane		2.7 U	ug/m ³	TO-15	Air	UJ	Detected in trip blank
B783- SSV2	689163	Dichlorodifluoromethane		2.9 U	ug/m ³	TO-15	Air	UJ	Detected in trip blank
B782- SSV1	689164	Dichlorodifluoromethane		2.9 U	ug/m ³	TO-15	Air	UJ	Detected in trip blank
B782- SSV1/D	689165	Dichlorodifluoromethane		2.8 U	ug/m ³	TO-15	Air	UJ	Detected in trip blank
B782- SSV2	689166	Dichlorodifluoromethane		3.5 U	ug/m ³	TO-15	Air	UJ	Detected in trip blank
776- SSV2	689170	Dichlorodifluoromethane		8900 J	ug/m ³	TO-15	Air	UJ	Detected in trip blank
B785- SSV1	689154	Carbon Tetrachloride	U	88	ug/m ³	TO-15	Air	UJ	CCV %D
B784- SSV1	689156	Carbon Tetrachloride	U	1.3	ug/m ³	TO-15	Air	UJ	CCV %D
B784- SSV2	689157	Carbon Tetrachloride	U	1.3	ug/m ³	TO-15	Air	UJ	CCV %D
B783-	689162	Carbon Tetrachloride	U	1.3	ug/m ³	TO-15	Air	UJ	CCV %D

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117175
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Lab Sample ID	CLIENT SAMPLE ID	Analyte	Lab QU AL	Reported Result	units	Method	Matri x	Data Validation Qualifier	Reason
SSV1									
B783- SSV2	689163	Carbon Tetrachloride	U	1.3	ug/m³	TO-15	Air	UJ	CCV %D
B782- SSV1	689164	Carbon Tetrachloride	U	1.3	ug/m ³	TO-15	Air	UJ	CCV %D
B782- SSV1/D	689165	Carbon Tetrachloride	U	1.3	ug/m ³	TO-15	Air	UJ	CCV %D
B782- SSV2	689166	Carbon Tetrachloride	U	1.3	ug/m ³	TO-15	Air	UJ	CCV %D
774- SSV1	689167	Carbon Tetrachloride	U	13	ug/m ³	TO-15	Air	UJ	CCV %D
774- SSV2	689168	Carbon Tetrachloride	U	6.3	ug/m ³	TO-15	Air	UJ	CCV %D
776- SSV2DL	689170	Carbon Tetrachloride	U	130	ug/m³	TO-15	Air	UJ	CCV %D
776- SSV2	689170	Carbon Tetrachloride	U	6.9	ug/m ³	TO-15	Air	UJ	CCV %D
776- SSV1	689169	Carbon Tetrachloride	U	37	ug/m³	TO-15	Air	UJ	CCV %D
B785- SSV1	689154	1,1,1-Trichloroethane	U	76	ug/m³	TO-15	Air	UJ	CCV %D
B784- SSV1	689156	1,1,1-Trichloroethane		11	ug/m³	TO-15	Air	J	CCV %D
B784- SSV2	689157	1,1,1-Trichloroethane		13	ug/m ³	TO-15	Air	J	CCV %D
B783- SSV1	689162	1,1,1-Trichloroethane		1.7	ug/m³	TO-15	Air	J	CCV %D
B783- SSV2	689163	1,1,1-Trichloroethane	U	1.1	ug/m ³	TO-15	Air	UJ	CCV %D
B782- SSV1	689164	1,1,1-Trichloroethane	U	1.1	ug/m³	TO-15	Air	UJ	CCV %D
B782- SSV1/D	689165	1,1,1-Trichloroethane	U	1.1	ug/m³	TO-15	Air	UJ	CCV %D
B782- SSV2	689166	1,1,1-Trichloroethane		1.6	ug/m³	TO-15	Air	J	CCV %D
774- SSV1	689167	1,1,1-Trichloroethane		55	ug/m ³	TO-15	Air	J	CCV %D
774- SSV2	689168	1,1,1-Trichloroethane		28	ug/m³	TO-15	Air	J	CCV %D
776- SSV2DL	689170	1,1,1-Trichloroethane	U	110	ug/m³	TO-15	Air	UJ	CCV %D
776- SSV2	689170	1,1,1-Trichloroethane		15	ug/m³	TO-15	Air	J	CCV %D
776- SSV1	689169	1,1,1-Trichloroethane		33	ug/m ³	TO-15	Air	J	CCV %D

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117175
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Lab Sample ID	CLIENT SAMPLE ID	Analyte	Lab QU AL	Reported Result	units	Method	Matri x	Data Validation Qualifier	Reason
B785- SSV1	689154	1,2-dichloroethane	U	57	ug/m ³	TO-15	Air	UJ	CCV %D
B784- SSV1	689156	1,2-dichloroethane	U	0.81	ug/m³	TO-15	Air	UJ	CCV %D
B784- SSV2	689157	1,2-dichloroethane	U	0.81	ug/m³	TO-15	Air	UJ	CCV %D
B783- SSV1	689162	1,2-dichloroethane	U	0.81	ug/m³	TO-15	Air	UJ	CCV %D
B783- SSV2	689163	1,2-dichloroethane	U	0.81	ug/m ³	TO-15	Air	UJ	CCV %D
B782- SSV1	689164	1,2-dichloroethane	U	0.81	ug/m ³	TO-15	Air	UJ	CCV %D
B782- SSV1/D	689165	1,2-dichloroethane	U	0.81	ug/m³	TO-15	Air	UJ	CCV %D
B782- SSV2	689166	1,2-dichloroethane	U	0.81	ug/m ³	TO-15	Air	UJ	CCV %D
774- SSV1	689167	1,2-dichloroethane	U	8.1	ug/m ³	TO-15	Air	UJ	CCV %D
774- SSV2	689168	1,2-dichloroethane	U	4.0	ug/m³	TO-15	Air	UJ	CCV %D
776- SSV2DL	689170	1,2-dichloroethane	U	81	ug/m³	TO-15	Air	UJ	CCV %D
776- SSV2	689170	1,2-dichloroethane	U	4.5	ug/m³	TO-15	Air	UJ	CCV %D
776- SSV1	689169	1,2-dichloroethane	U	24	ug/m³	TO-15	Air	UJ	CCV %D
B786- SSV2	689160	n-Hexane		88	ug/m³	TO-15	Air	J	Field Dup RPD
B786- SSV2	689160	Cyclohexane		31	ug/m³	TO-15	Air	J	Field Dup RPD
B786- SSV2	689160	Benzene		24	ug/m³	TO-15	Air	J	Field Dup RPD
B786- SSV2	689160	n-Heptane		41	ug/m ³	TO-15	Air	J	Field Dup RPD
B786- SSV2	689160	Trichloroethene		4700	ug/m ³	TO-15	Air	J	Field Dup RPD
B786- SSV2/D	689161	n-Hexane		23	ug/m³	TO-15	Air	J	Field Dup RPD
B786- SSV2/D	689161	Cyclohexane		9.6	ug/m³	TO-15	Air	J	Field Dup

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117175
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Lab Sample ID	CLIENT SAMPLE ID	Analyte	Lab QU AL	Reported Result	units	Method	Matri x	Data Validation Qualifier	Reason
									RPD
B786- SSV2/D	689161	Benzene		8.9	ug/m³	TO-15	Air	J	Field Dup RPD
B786- SSV2/D	689161	n-Heptane		8.6	ug/m³	TO-15	Air	J	Field Dup RPD
B786- SSV2/D	689161	Trichloroethene		700	ug/m³	TO-15	Air	J	Field Dup RPD

Table 3 Field Duplicate Results

				WSA-		RPD
Analyte	Units	PQL	WSA-SSV1	SSV1/D	RPD	Rating
Trichlorofluoromethane	ug/m3	1.1	7.3	7.3	0.0	Good
n-Hexane	ug/m3	1.8	11	11	0.0	Good
Chloroform	ug/m3	0.96	140	120	15.4	Good
1,1,1-Trichloroethane	ug/m3	1.1	2.2	2.3	4.4	Good
Cyclohexane	ug/m3	0.69	4.1	4.1	0.0	Good
Benzene	ug/m3	0.64	3.5	3.5	0.0	Good
n-Heptane	ug/m3	0.82	4.5	4.9	8.5	Good
Trichloroethene	ug/m3	1.1	130	130	0.0	Good
Toluene	ug/m3	0.75	11	12	8.7	Good
1,3,5-Trimethylbenzene	ug/m3	0.98	ND	0.98	NC	Good

Analyte	Units	PQL	B786-SSV2	B786- SSV2/D	RPD	RPD Rating
n-Hexane	ug/m3	8.8	88	23	117	Poor
Cyclohexane	ug/m3	3.4	31	9.6	105	Poor
Benzene	ug/m3	2.8	24	8.9	91.8	Poor
n-Heptane	ug/m3	2.1	41	8.6	131	Poor
Trichloroethene	ug/m3	5.4	4700	700	148	Poor
Toluene	ug/m3	3.8	ND	12	NC	Good

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY117175
Date Completed: Nov 22, 2006	Data Validation Chemist: B. Krajewski

Analyte	Units	PQL	B782-SSV1	I	B782- SSV1/D	RPD	RPD Rating
Trichlorofluoromethane	ug/m3	1.1	1.5		1.7	1.2	Good
n-Hexane	ug/m3	1.8	8.1		8.5	4.8	Good
Cyclohexane	ug/m3	0.69	3.3		2.9	12.9	Good
Benzene	ug/m3	0.64	3.1		3.2	3.2	Good
n-Heptane	ug/m3	0.82	7.4		6.6	11.4	Good
Toluene	ug/m3	0.75	8.7		9.0	3.4	Good
Tetrachloroethene	ug/m3	1.4	16		17	6.1	Good
Ethylbenzene	ug/m3	0.87	13		13	0.0	Good
m&p-Xylene	ug/m3	2.2	4.8		4.8	0.0	Good
o-Xylene	ug/m3	0.87	2.0		2.1	4.9	Good
4-Ethyltoluene	ug/m3	0.98	1.4		1.5	6.9	Good
1,3,5-Trimethylbenzene	ug/m3	0.98	1.5		1.2	22.2	Good

Key:

FD = Field Duplicate

NC = Not Calculated

ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY18083
Date Completed: January 15, 2007	Data Validation Chemist: B. Krajewski

The samples and analytical methods included in this sample delivery group (SDG) are documented in Table 1 Sample Summary. The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) Guidance for the Development of Data Usability Summary Reports (DUSRs), June 1999. The data review involved looking at the electronic data deliverables (EDDs) and comparing the sample results and laboratory quality control (QC) samples versus the data quality objectives (DQO). Any major or minor concerns affected data usability also are summarized listed below. The representativeness and comparability of the data are evaluated to determine how data usability may be impacted.

Completeness Review	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	NA - the air samples were delivered at ambient temperature.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples. Trip Blank - 1/20 samples. Equipment Blank - 1/ set of samples per day.	Yes – Trip blank and field duplicates collected and included in this SDG.
Laboratory QC frequency correct? Method blank with each batch and one set of MS/MSD and LCS per 20 samples?	Yes – MS/MSD not required.
All forms and raw data complete?	Yes.
Case narrative present and complete?	Yes.
Target analyte list and reporting limits match QAPP?	Yes
Were any samples re-analyzed or diluted?	Yes
For any sample re-analysis and dilutions ensure that only one result per sample and analyte is flagged as reportable.	
Were the canisters for air samples received with a vacuum pressure of between -10 and zero inches of Hg?	No – Final pressure for sample 785-IA1 at -11.3 and 786-IA2/D at -10.8.

Compliance Review				
Description	Notes and Qualifiers			
Any holding time violations?	No.			
Any compounds present in method, trip and field blanks?	No			

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY18083
Date Completed: January 15, 2007	Data Validation Chemist: B. Krajewski

Compliance Review	
Description	Notes and Qualifiers
Were any analytes flagged for blank contamination? For samples, if results are <5 times the blank or <10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs reported with GC/MS.	No
Surrogate for method blanks and LCS within limits?	NA
Surrogate for samples and MS/MSD within limits?	NA
Were appropriate samples re-analyzed? All samples should be re-analyzed for VOCs.	
MS/MSD within QC criteria?	NA
If out and LCS is compliant, then J flag positive data in original sample due to matrix.	
LCS within QC criteria? If out, and the recovery high with no positive values, then no data qualification is required. Positive results are "J" flagged and non-detects are "J" flagged if low. Reject data with recovery <10%.	No – Vinyl chloride recovery high at 140% for EA122706LCS. Not detected in associated samples. No results qualified.
Were any samples re-analyzed or diluted? For any sample re-analysis and dilutions ensure that only one result per sample and analyte is flagged as reportable.	Yes – Purge volume of 125 mL used for all samples (denoted as 4x dilution)
Do field duplicate results show good precision for all compounds except TICs?	Yes

Compliar	Compliance Review by Method					
Method	Description	Notes and Qualifiers				
GC/MS	Do internal standards areas and retention time meet criteria?	Yes				
	Samples should be re-analyzed to establish matrix effects or chromatograms documenting matrix effects provided.					
GC/MS	Does initial calibration meet criteria for all positive target compounds? (%RSD≤30) Note that two compounds can have less than 40%.	Yes.				

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY18083
Date Completed: January 15, 2007	Data Validation Chemist: B. Krajewski

Compliar	Compliance Review by Method					
Method	Description	Notes and Qualifiers				
	Is the minimum response factor must be met for all compounds? (≤0.05)	Yes.				
GC/MS	Does continuing calibration meet criteria for all positive target compounds? (%D ± 30%)	Yes				
	Is the minimum response factor must be met for all compounds? (≤0.05)	Yes.				

Summary of Potential Impacts on Data Usability
Major Concerns
None
Minor Concerns
None

Key:

-)		
CCV	=	Continuing calibration verification
COC	=	Chain-of-custody
GC/MS	=	Gas Chromatography/Mass Spectrometry
NA	=	Not Applicable
LCS	=	Laboratory Control Sample
MS/MSD	=	Matrix Spike/Matrix Spike Duplicate
QAPP	=	Quality Assurance Project Plan
QC	=	Quality Control
TIC	=	Tentatively Identified Compound

VOCs = Volatile Organic Compounds

Table 1 Sample Listing

Lab Sample ID	Client Sample ID	Matrix	Sample Date	Method	ID Corrections
695798	774-IA1	Air	12/20/2006	Method TO15	
695799	785-IA1	Air	12/20/2006	Method TO15	
695800	OBGWV-TB3	Air	12/20/2006	Method TO15	
695801	786-IA1	Air	12/20/2006	Method TO15	
695802	786-IA2	Air	12/20/2006	Method TO15	
695803	786-IA2/D	Air	12/20/2006	Method	

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY18083
Date Completed: January 15, 2007	Data Validation Chemist: B. Krajewski

Lab Sample ID	Client Sample ID	Matrix	Sample Date	Method	ID Corrections
				TO15	
695804	786-OA1	Air	12/20/2006	Method TO15	
695805	WSA-OA1	Air	12/20/2006	Method TO15	
695806	774-IA2/D	Air	12/20/2006	Method TO15	
695807	774-IA2	Air	12/20/2006	Method TO15	
695808	WSA-IA1	Air	12/20/2006	Method TO15	
695809	776-IA1	Air	12/20/2006	Method TO15	
695810	776-IA2	Air	12/20/2006	Method TO15	
695811	774-OA1	Air	12/20/2006	Method TO15	
695812	785-IA2	Air	12/20/2006	Method TO15	

Data Usability Summary Report	Project: Griffiss AFB
Laboratory: STL-Burlington	LAB SDG ID: NY18083
Date Completed: January 15, 2007	Data Validation Chemist: B. Krajewski

Table 2 Summary of Qualified Data

None

Table 3 Field Duplicate Results

						RPD
Analyte	Units	PQL	786-IA2	786-IA2/D	RPD	Rating
Benzene	ug/m3	0.13	1.2	1.2	0.0	Good

Analyte	Units	PQL	774-IA2	774-IA2/D	RPD	RPD Rating
Benzene	ug/m3	0.13	1.5	1.3	14.3	Good
Trichloroethene	ug/m3	0.21	3.4	3.0	12.5	Good

Key:

FD = Field Duplicate

NC = Not Calculated

ND = Not Detected

- PQL = Practical Quantitation Limit
- RPD = Relative Percent Difference

G Assumptions and Screening Levels for Soil Vapor Intrusion Evaluation Industrial/Commercial Scenario

Assumptions and Screening Levels for Soil Vapor Intrusion Evaluation

Industrial/Commercial Scenario

Prepared for: Air Force Real Property Agency

> Prepared by: FPM Group 153 Brooks Road Rome, NY 13441

Contract F41624-03-D-8601-0045

Revision 0.1

October 2007

AFRPA Soil Vapor Intrusion Evaluation – Industrial Scenario FPM Group Contract F41624-03-D-8601-0045 Revision 0.1 October 2007

This page is intentionally left blank.

TABLE OF CONTENTS

1	INT	RODUCTION	1
2	EXI	POSURE ASSUMPTIONS	1
3	TO	XICITY DATA	2
4	RIS	K-BASED SCREENING LEVEL FOR INDOOR AIR	3
	4.1	Cancer screening value calculations	3
	4.2	Non-cancer screening value calculations	4
	4.3	Indoor Air Screening Levels	5
5	SOI	L GAS SCREENING LEVELS	5
	5.1	Sub-Slab Vapor Screening Levels	5
	5.2	Soil Vapor Screening Levels	6

LIST OF TABLES

TABLE

- 1 Indoor Air Screening Levels, Industrial/Commercial Scenario
- 2 Soil Gas Screening Levels, Industrial/Commercial Scenario

LIST OF EXHIBITS

EXHIBIT

- A Indoor Air Screening Levels Exposure Assumptions And Adjustment Factors, Industrial/Commercial Scenario
- **B** Soil Vapor Screening Levels Exposure Assumptions And Adjustment Factors, Industrial/Commercial Scenario

AFRPA Soil Vapor Intrusion Evaluation – Industrial Scenario FPM Group Contract F41624-03-D-8601-0045 Revision 0.1 October 2007

This page is intentionally left blank.

LIST OF ACRONYMS AND ABBREVIATIONS

AFIOH	Air Force Institute of Operational Health
AFRPA	Air Force Real Property Agency
AT _c	Averaging Time for Carcinogens
AT _{nc}	Averaging Time for Noncarcinogens
ATSDR	Agency for Toxic Substances and Disease Registry
BW	Body Weight
Cal EPA	California Environmental Protection Agency
Cindoor air	indoor air concentration
Csoil vapor	Soil vapor screening level concentration
Csub-slab vapor	Sub-slab vapor screening level concentration
CSF	cancer slope factor
ED	Exposure Duration
EF	Exposure Frequency
EPA	U.S. Environmental Protection Agency
HEAST	Health Effects Assessment Summary Tables
HEAST-A	HEAST-Alternative
IR	Inhalation Rate
IRIS	Integrated Risk Information System
MRL	Minimal Risk Level
NCEA	National Center for Environmental Assessment
OSWER	Office of Solid Waste and Emergency Response
PPRTVs	Provisional Deer Deviewed Toxisity Values
PRG	Provisional Peer Reviewed Toxicity Values Preliminary Remediation Goal
ſĸĠ	Fremmary Remediation Goar
RBSL airNC	non-cancer risk-based screening levels for indoor air
RBSL _{airC}	cancer risk-based screening level for indoor air
RfC1	reference concentration
RfCi	inhalation reference concentration
RfCi adjustment	RfCi adjustment factor
RfD	reference dose
SFi	inhalation slope factor
STSC	Superfund Health Risk Technical Support Center

AFRPA Soil Vapor Intrusion Evaluation – Industrial Scenario FPM Group Contract F41624-03-D-8601-0045 Revision 0.1 October 2007

SVI	Soil Vapor Intrusion
TCE	trichloroethene
THQ	Target Hazard Quotient
TR	Target Risk
URF	Unit Risk Factor
URF _{adjustment}	URF adjustment factor
URF _i	Inhalation Unit Risk Factor
α _{soil vapor}	Soil Vapor-to-Indoor Attenuation Factor
α _{sub-slab vapor}	Sub-slab Vapor-to-Indoor Attenuation Factor

1 INTRODUCTION

The Air Force Real Property Agency (AFRPA) is assessing the potential for soil vapor intrusion (SVI) at property with ongoing or planned industrial/commercial use. This document lays out the baseline assumptions and calculations for SVI evaluations that have been performed in New York by AFRPA. AFRPA contracted FPM Group, Ltd., to prepare this document in coordination with the Air Force Institute of Operational Health (AFIOH). This basis for evaluation has been prepared to document the methodology for calculating human health risk-based concentrations for inhalation of indoor air and for soil vapor under an industrial/commercial scenario.

The risk-based concentrations established in this guideline (screening values) utilize conservative assumptions that are intended for SVI screening analysis. The AFRPA industrial/commercial SVI screening levels are not intended to replace a more formal human health risk analysis process that incorporates site-specific risk management considerations. The following sections document the exposure assumptions, toxicity data, risk-based calculations for indoor air, and risk-based calculations for sub-slab vapor and soil vapor utilized in developing the AFRPA Industrial/Commercial SVI Screening Levels.

2 EXPOSURE ASSUMPTIONS

Under an industrial/commercial scenario, adult workers' exposure has been assumed in accordance with the U.S. Environmental Protection Agency's (EPA) Office of Solid Waste and Emergency Response (OSWER). In some cases, AFRPA's assumptions are more conservative. The assumptions are as follows:

- Inhalation Rate (IR) of 10 m³/day. The rate is derived from the daily (24 hours/day) residential inhalation rate of 20 m³/day (OSWER Directive [EPA 1991]) adjusted to an industrial/commercial exposure of 12 hours/day.
- Exposure Frequency (EF) of 250 days/year (representing 2 weeks for vacations, holidays, and sick-time). It should be noted that is assumption is more conservative than 225 days/year assumed in the OSWER Directive (EPA 1991).
- Exposure Duration (ED) of 25 years (OSWER Directive [EPA 1991]).
- Averaging Time for Carcinogens (AT_c) of 365 days/year and 70 years (EPA 1989, 1991)
- Averaging Time for Noncarcinogens (AT_{nc}) of 365 days/year and 25 years (EPA 1989, 1991)
- ✤ Adult Body Weight (BW) = 70 kg (EPA 1991)

3 TOXICITY DATA

In accordance with OSWER Directive 9285.7-53 (EPA, 2003) and Air Force policy issued as the Air Force Toxicity Values for Use in Risk Assessments and Establishing Risk-Based Cleanup Levels (AF 2006), toxicity values were selected in accordance with the following hierarchy:

Tier 1- EPA's Integrated Risk Information System (IRIS)

Tier 2- EPA's Provisional Peer Reviewed Toxicity Values (PPRTVs) – The Office of Research and Development/National Center for Environmental Assessment (NCEA)/Superfund Health Risk Technical Support Center (STSC) develops PPRTVs on a chemical specific basis when requested by EPA's Superfund program.

Tier 3- Other Toxicity Values – Tier 3 includes additional EPA and non-EPA sources of toxicity information. Priority should be given to those sources of information that are the most current, the basis for which is transparent and publicly available, and which have been peer reviewed.

IRIS remains in the first tier of the recommended hierarchy as the generally preferred source of human health toxicity values. IRIS generally contains reference doses (RfDs), reference concentrations (RfCs), cancer slope factors (CSFs), drinking water unit risk values, and inhalation Unit Risk Factors (URFs) that have gone through a peer review and EPA consensus review process. IRIS normally represents the official EPA scientific position regarding the toxicity of the chemicals based on the data available at the time of the review.

The second tier is EPA's PPRTVs. Generally, PPRTVs are derived for one of two reasons. First, the STSC is conducting a batch wise review of the toxicity values in Superfund Health Effects Assessment Summary Tables (HEAST), now a Tier 3 source. As such reviews are completed, those toxicity values will be removed from HEAST, and any new toxicity value developed in such a review will be a PPRTV and placed in the PPRTV database. Secondly, Regional Superfund Offices may request a PPRTV for contaminants lacking a relevant IRIS value. The STSC uses the same methodologies to derive PPRTVs for both.

The third tier includes other sources of information. Priority should be given to sources that provide toxicity information based on similar methods and procedures as those used for Tier I and Tier II, contain values which are peer reviewed, are available to the public, and are transparent about the methods and processes used to develop the values.

Additional sources may be identified for Tier 3. Toxicity values that fall within the third tier in the hierarchy include, but need not be limited to, the following sources:

- The California Environmental Protection Agency (Cal EPA) toxicity values are peer reviewed and address both cancer and non-cancer effects. Cal EPA toxicity values are available on the Cal EPA internet website at <u>http://www.oehha.ca.gov/risk/chemicalDB//index.asp</u>.
- The Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs) are estimates of the daily human exposure to a hazardous substance that is likely to be without appreciable risk of adverse non-cancer health effects over a specified duration of exposure. The ATSDR MRLs are peer reviewed and are available at <u>http://www.atsdr.cdc.gov/mrls.html</u> on the ATSDR website.
- HEAST toxicity values are Tier 3 values. As noted above, the STSC is conducting a batch wise review of HEAST toxicity values. The toxicity values remaining in HEAST are considered Tier 3 values. The HEAST values on chemical contaminants are not currently available on an EPA internet site. They may be obtained by contacting a Superfund risk assessor. For this evaluation, referenced HEAST toxicity values were obtained from EPA's OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), EPA 530-D-02-2004, November 2002 containing HEAST, EPA-NCEA, and HEAST Alternate (HEAST-A) values.

4 RISK-BASED SCREENING LEVEL FOR INDOOR AIR

4.1 Cancer screening value calculations

The cancer screening values were calculated from Inhalation URF (URF_i) values. These URF values were researched and applied in the order described in Section 3. The URF is the estimated probability of a person contracting cancer as a result of constant exposure to an ambient concentration of one microgram per cubic meter of a substance over a 70 year lifetime.

URF, which is risk per unit concentration, is converted to risk per unit dose or an inhalation slope factor (SF_i) assuming a body weight of 70 kg and a daily (24 hours) inhalation rate of 20 m³ (see Formula 1, adopted from EPA, 2004a).

$$SF_{i} = \frac{URF\left(\frac{m^{3}}{\mu g}\right) \times 10^{3}\left(\frac{\mu g}{mg}\right) \times 70(kg)}{20\left(\frac{m^{3}}{day}\right)}$$
(1)

The cancer risk-based screening level for indoor air (RBSL_{airC}) is calculated by first calculating the URF adjustment factor (URF_{adjustment}) to adjust for the industrial/commercial scenario exposure assumptions (see Formula 2). The adjustments account for a 12 hour-daily exposure or an inhalation rate of 10 m³/day instead of 20 m³/day; exposure duration of 25 years instead of 70 years; and exposure frequency of 250 days/year instead of 365 days/year.

$$URF_{adjustment} = \frac{IR}{20} X \frac{ED}{AT_c} X \frac{EF}{365}$$
(2)

Once the URF adjustment factor is calculated, the $RBSL_{airC}$ is calculated using the Target Risk (TR) as shown in Formula 3. The TR assumed for calculating the $RBSL_{airC}$ values was 1 X 10⁻⁴ for all chemicals, except trichloroethene (TCE). For TCE, a TR of 1 X 10⁻⁵ was utilized to account for uncertainty associated with the TCE URF value. The selected target risk values are within EPA's acceptable excess cancer risk range of one in ten thousand and one in one million (1 x 10⁻⁴ to 1 x 10⁻⁶).

$$RBSL_{airC} = \frac{TR}{URF \times URF_{adjustment}}$$
(3)

Exhibit A summarizes all exposure assumptions, target risk values, and the abovedescribed calculations required to adjust the URF for the assumed industrial/commercial scenario. Table 1 identifies the values and source of the URFs utilized as well as the resulting cancer risk-based concentrations.

4.2 Non-cancer screening value calculations

The non-cancer risk-based screening levels for indoor air (RBSL_{airNC}) were calculated by adjusting the Reference Concentrations for Inhalation (RfCi) to the assumed industrial/commercial scenario. RfCi is an estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime.

RBSL_{airNC} is calculated by first calculating the RfCi adjustment factor (RfCi_{adjustment}) to adjust for the industrial/commercial scenario exposure assumptions (see Formula 4). The adjustments account for 12 hour daily exposure or an inhalation rate of 10 m³/day instead of 20 m³/day and exposure frequency of 250 days/year instead of 365 days/year.

$$RfCi_{adjustment} = \frac{IR}{20} X \frac{EF}{365}$$
(4)

Once the RfCi adjustment factor is calculated, the $RBSL_{airNC}$ was calculated using the Target Hazard Quotient (THQ) as shown in Formula 5. The THQ assumed for calculating the $RBSL_{airNC}$ values was 1 for all compounds.

$$RBSL_{airNC} = \frac{THQ \ X \ RfCi}{RfCi \ adjustment}$$
(5)

Exhibit A summarizes all exposure assumptions, target hazard quotient value, and the above-described calculations required to adjust the RfCi for the assumed industrial/commercial scenario. Table 1 identifies the values and source of all RfCi values utilized as well as the resulting non-cancer risk-based concentrations.

4.3 Indoor Air Screening Levels

To identify the indoor air screening levels, the lower of cancer risk-based concentrations or non-cancer risk-based concentrations were selected as shown in Table 1.

5 SOIL GAS SCREENING LEVELS

To facilitate evaluation of the potential for SVI, soil gas is typically evaluated in two forms of samples: sub-slab vapor samples and soil vapor samples. Sub-slab vapor samples are soil gas samples collected immediately beneath a foundation or slab of a building. Sub-slab vapor samples are generally collected at a depth of two inches in the sub-base material through a hole drilled in the foundation or slab. Soil vapor samples are defined as soil gas samples not beneath the foundation or slab of a building. These are generally collected from 5 feet below ground surfaces or deeper.

5.1 Sub-Slab Vapor Screening Levels

For sub-slab vapor samples, screening levels were derived using risk-based indoor air concentrations. The exposure assumptions and methodology for developing the risk-based indoor air concentrations followed Sections 2 though 4, with the exception of using a cancer Target Risk value of 1×10^{-5} for all chemicals.

The sub-slab vapor screening level concentration (Csub-slab vapor) corresponding to a chemical's indoor air screening level (lower of cancer and con-cancer risk-based concentrations) was calculated by dividing the indoor air screening level by a conservatively assumed sub-slab vapor-to-indoor air attenuation factor as shown in Formula 6.

$$Csub - slabvapor = \frac{Cindoor \ air}{\alpha_{sub - slab}}$$
(6)

The Sub-slab Vapor-to-Indoor Attenuation Factor ($\alpha_{sub-slab}$) represents the factor by which

sub-slab vapor concentrations migrating into indoor air spaces are reduced due to diffusive, advective, and/or other attenuating mechanisms. α represents the ratio of the indoor air concentration measured in a structure (Cindoor air) to the vapor concentrations measured in the subsurface materials underlying the structure (Csub-slab vapor). A 10% value for α was conservatively selected and represents that 10% or less of the indoor air originates from the sub-slab vapor (USEPA, 2002).

Exhibit B summarizes all exposure assumptions, target risk value, target hazard quotient, sub-slab vapor-to-gas attenuation factor and the above-described calculations required to calculate the risk-based indoor air concentrations and subsequent sub-slab vapor screening level for the assumed industrial/commercial scenario. Table 2 identifies the values and source of the URFs and RfCis; the resulting cancer risk-based concentrations; and the derived sub-slab vapor screening levels.

5.2 Soil Vapor Screening Levels

For soil vapor samples, screening levels were derived using risk-based indoor air concentrations following the same methodology identified for sub-slab vapor screening levels. However, in accordance with EPA guidance applicable to soil vapor or deep soil gas (e.g., soil gas samples taken at depths greater than approximately 5 feet below the foundation level), a $\alpha_{soil vapor}$ value of 1% was conservatively assumed to calculate the soil vapor screening levels (USEPA, 2002).

As a result, the soil vapor screening level concentration (Csoil vapor) corresponding to a chemical's indoor air screening level (lower of cancer and con-cancer risk-based concentrations) was calculated by dividing the indoor air screening level by a conservatively assumed soil vapor-to-indoor air attenuation factor as shown in Formula 7.

$$Csoilvapor = \frac{Cindoor \ air}{\alpha_{soilvapor}}$$
(7)

Exhibit B summarizes all exposure assumptions, target risk value, target hazard quotient, soil vapor-to-gas attenuation factor and the above-described calculations required to calculate the risk-based indoor air concentrations and subsequent soil vapor screening level for the assumed industrial/commercial scenario. Table 2 identifies the values and source of the URFs and RfCis; the resulting cancer risk-based concentrations; and the derived soil vapor screening levels.

REFERENCES

- AF, 2006. Air Force Toxicity Values for Use in Risk Assessments and Establishing Risk-Based Cleanup Levels, July 14th, 2006.
- U.S. EPA. 1989. Exposure Factors Handbook. Office of Research and Development, Washington, DC. EPA/600/8-89/043.
- U.S. EPA. 1991. Risk Assessment Guidance for Superfund (RAGS) Volume I: Human Health Evaluation Manual (HHEM) (Part C, Risk Evaluation of Remedial Alternatives). Interim. Office of Emergency and Remedial Response, Washington, DC. EPA/540/R-92/004. OSWER Directive 9285.7-01C. NTIS PB92-963334.
- U.S. EPA, 2002. Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), EPA 530-D-02-2004, November 2002.
- U.S. EPA, 2003. OSWER Directive 9285.7-53 53, Memorandum on Human Health Toxicity Values in Superfund Risk Assessments, EPA, December 5th, 2003.
- U.S. EPA, 2004a. Users Guide and Background Technical Document for USEPA Region 9's Preliminary Remediation Goals (PRG) Table.
- U.S. EPA, 2004b. User's Guide for Evaluating Subsurface Vapor Intrusion Guidance, February 22, 2004.

AFRPA Soil Vapor Intrusion Evaluation – Industrial/Commercial Scenario FPM Group Contract F41624-03-D-8601-0045 Revision 0.1 October 2007

This page is intentionally left blank.

AIR FORCE REAL PROPERTY AGENCY SOIL VAPOR INTRUSION EVALUATION

		EXHIBIT	A	
INDOOR AIR SCREENING LEVELS - EXPO			∽ AND ADJUSTMENT FACTORS, INDUSTRIAL/CO	MMERCIAL SCENARIO
Averaging Time for Cancer (AT _c)=	70	vears	Target Risk (TR)=	1.0E-04
Exposure Duration (ED)=	25	years	Target Risk for TCE (TR _{tre})=	1.0E-05
Exposure Frequency (EF)=	250	days/year	Target Hazard Quotient (THQ)=	1
Inhalation Rate (IR)=	10	m ³ /day	Cancer Exposure Adjustment Factor ¹ =	0.122
Daily Exposure Duration=	12	hours	Non-Cancer Exposure Adjustment Factor ² =	0.342
Body Weight (BW)=	70	kg		0.042
		Ū		
Notes:				
1. Cancer Exposure Adjustment Factor represen	nts the var	iation of the ind	ustrial scenario from the standard residential assum	nptions.
It is the product of the following ratios of indu	strial to re	sidential assum	ptions: 12/24 hr/day x 250/365 day/yr x 25/70 yr/life	time
Target Cancer Concentration = (TR)/(URF*C	ancer Adj	ustment Factor)		
			e industrial scenario from the standard residential as	ssumptions.
It is the product of the following ratios of indu				
Target Non-Cancer Concentration = (THQ * F	RfCi)/(Non	i-cancer Adjustr	nent Factor)	
UDE Unit Diak Fastar, UDE is the estimated ar	obobility o	f a naman aant	racting concer as a result of constant synaptyre to a	n amhiant
		•	racting cancer as a result of constant exposure to a year lifetime. URF, which is risk per unit concentra	
o .			70 kg and a daily (24 hours) inhalation rate of 20 m	
converted norm risk per unit dose (slope factor) a	ssunning a	a body weight of		1.
RfCi - Reference Concentration for Inhalation is a	an estimat	te (with uncertai	nty spanning perhaps an order of magnitude) of a c	ontinuous
	luding ser	nsitive subgroup	os) that is likely to be without an appreciable risk of	deleterious
effects during a lifetime.				

AIR FORCE REAL PROPERTY AGENCY SOIL VAPOR INTRUSION EVALUATION

Analyte	Unit Risk Factor Source ¹	Inhalation Unit Risk Factor (URF) (µg/m ³) ⁻¹	Cancer Indoor Air Risk Based Concentration ² (µg/m ³)	Reference Concentration Source ¹	Inhalation Reference Concentration (RfCi) (mg/m ³)	Non-Cancer Indoor Air Risk Based Concentration ³ (µg/m ³)	Indoor Air Screening Concentration ⁴ (μg/m ³)
benzene	IRIS	7.80E-06	105	IRIS	0.030	88	88
carbon disulfide	-	-	-	IRIS	0.700	2,044	2,044
carbon tetrachloride	IRIS	1.50E-05	55	-	-	-	55
chloroform	IRIS	2.30E-05	36	-	-	-	36
chloromethane (methyl chloride)	EPA-NCEA	1.00E-06	818	IRIS	0.090	263	263
allyl chloride (3-chloropropene)	-	-	-	IRIS	0.001	3	3
cyclohexane	-	-	-	IRIS	6.000	17,520	17,520
1,3-dichlorobenzene	-	-	-	EPA-NCEA	0.110	321	321
1,4-dichlorobenzene	-	-	-	IRIS	0.800	2,336	2,336
1,2-dichloroethane	IRIS	2.60E-05	31	-	-	-	31
cis-1,2-dichloroethylene	-	-	-	HEAST	0.035	102	102
ethyl acetate	-	-	-	EPA-NCEA	3.200	9,344	9,344
ethylbenzene	EPA-NCEA	1.10E-06	743	IRIS	1.000	2,920	743
n-hexane	-	-	-	IRIS	0.700	2,044	2,044
freon 11 (trichlorofluoromethane)	-	-	-	HEAST-A	0.700	2,044	2,044
freon 113 (1,1,2-trichlorotrifluoroethane)	-	-	-	HEAST	30.000	87,600	87,600
freon 12 (dichlorodifluoromethane)	-	-	-	HEAST	0.200	584	584
methyl ethyl ketone	-	-	-	IRIS	5.000	14,600	14,600
methyl isobutyl ketone	-	-	-	IRIS	3.000	8,760	8,760
methyl tert-butyl ether (MTBE)	-	-	-	IRIS	3.000	8,760	8,760
methylene chloride (dichloromethane)	IRIS	4.70E-07	1740	HEAST	3.000	8,760	1,740
styrene	-	-	-	IRIS	1.000	2,920	2,920
tetrachloroethylene (pce)	CalEPA	5.90E-06	139	CalEPA	0.035	102	102
toluene	-	-	-	IRIS	5.000	14,600	14,600
1,1,1-trichloroethane	-	-	-	IRIS	5.000	14,600	14,600
trichloroethene (tce)	CalEPA	2.00E-06	41	CalEPA	0.600	1,752	41
1,2,4-trimethylbenzene	-	-	-	EPA-NCEA	0.006	18	18
1,3,5-trimethylbenzene (mesitylene)	-	-	-	EPA-NCEA	0.006	18	18
Vinyl chloride	IRIS	4.40E-06	186	IRIS	0.100	292	186
xylenes, total	-	-	-	IRIS	0.100	292	292

TABLE 1: INDOOR AIR SCREENING LEVELS, INDUSTRIAL/COMMERCIAL SCENARIO

Notes:

" - " Means no value was available to calculate cancer risk based concentrations or non-cancer risk values for this analyte in indoor air.

1. Unit Risk Factors and Reference Concentrations used to calculate target concentrations based on industrial exposure were taken from:

CalEPA - California Environmental Protection Agency Air Toxics Hot Spots Program. Unit Risk Factors obtained from http://www.oehha.ca.gov/air/hot_spots/pdf/TSDNov2002.pdf. Reference
Concentrations obtained from http://www.oehha.ca.gov/air/chronic_rels/AllChrels.html

EPA-OSWER - United States Environmental Protection Agency (USEPA), OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), EPA 530-D-02-2004, November 2002 containing Superfund Health Effects Assessment Summary Tables (HEAST), EPA-National Center for Environmental Assessment (NCEA), and HEAST Alternate (HEAST-A) values.

• IRIS - USEPA Integrated Risk Information System (IRIS), Database for Risk Assessment, accessed October 5, 2007 at http://www.epa.gov/iris/

2. Target indoor air cancer concentrations calculated based 1 x 10⁴ Target Risk (1 x 10⁵ for TCE). Industrial exposure assumptions utilized to adjust Unit Risk Factors include an averaging time of 70 years; exposure frequency of 250 days/year; exposure duration of 25 years; and daily inhalation rate of 10 m³/day (or 12 hours/day exposure).

3. Target indoor air non-cancer concentrations calculated based a Target Hazard Quotient of 1. Industrial exposure assumptions utilized to adjust Reference Concentrations include an exposure frequency of 250 days/year and daily inhalation rate of 10 m³/day (or 12 hours/day exposure).

4. Indoor Air Screening concentrations are based on the lowest of the cancer or non-cancer risk-based concentrations.

AIR FORCE REAL PROPERTY SOIL VAPOR INTRUSION EVALUATION

			EXHIBIT B	
SOIL GAS SCREENING LEVELS - EA	AP030	RE ASSUMPTION	S AND ADJUSTMENT FACTORS, INDUSTRIAL/COMMERCIAL SCENAF	10
Averaging Time for Cancer (AT _c)=	70	years	Target Risk (TR)=	1.0E-05
Exposure Duration (ED)=	25	years	Target Risk for TCE (TR _{tce})=	1.0E-05
Exposure Frequency (EF)=	250	days/year	Target Hazard Quotient (THQ)=	1
Inhalation Rate (IR)=	10	m³/day	Cancer Exposure Adjustment Factor ¹ =	0.122
Daily Exposure Duration=	12	hours	Non-Cancer Exposure Adjustment Factor ² =	0.342
Body Weight (BW)=	70	kg	Sub-slab vapor-to-Indoor Air Attenuation Factor ³ ($\alpha_{sub \ slab}$)=	0.1
			Soil vapor-to-Indoor Air Attenuation Factor ⁴ (α _{soil vapor})=	0.01
otes:				
It is the product of the following ratios of indu Target Non-Cancer Concentration = (THQ * F Sub-slab Vapor-to-Indoor attenuation Factor (to the sub-slab vapor concentrations measure $C_{sub-slab vapor} = C_{indoor air} / \alpha_{sub slab}$	resents t strial to RfCi)/(Ν (α _{sub slab}) ed in the	he variation of the residential assump on-cancer Adjustm represents the rational e subsurface mater	tent Factor) io of the indoor air concentration measured in a structure ($C_{indoor air}$) rials immediately underlying the structure ($C_{sub-slab vapor}$).	
. Soil Vapor-to-Indoor attenuation Factor ($\alpha_{soil va}$	apor) repi	esents the ratio of	the indoor air concentration measured in a structure (Cindoor air)	
to the soil vapor concentrations measured in	the sub	surface materials a	approximately 5 feet below ground surface (C _{soil vapor}).	
$C_{soil \ vapor} = C_{indoor \ air} / \alpha_{soil \ vapor}$				
mbient concentration of one microgram per cub	ic meter	of a substance ov	acting cancer as a result of constant exposure to an er a 70 year lifetime. URF, which is risk per unit a body weight of 70 kg and a daily (24 hours) inhalation	
		,	ity spanning perhaps an order of magnitude) of a e subgroups) that is likely to be without an appreciable	

AIR FORCE REAL PROPERTY SOIL VAPOR INTRUSION EVALUATION

TABLE 2: SOIL GAS SCREENING LEVELS, INDUSTRIAL/COMMERCIAL SCENARIO

Analyte	Unit Risk Factor Source ¹	Inhalation Unit Risk Factor (URF) (µg/m ³) ⁻¹	Cancer Indoor Air Risk Based Concentration ² (µg/m ³)	Source ¹	Inhalation Reference Concentration (RfCi) (mg/m ³)	Non-Cancer Indoor Air Risk Based Concentration ³ (µg/m ³)	Sub-slab Vapor Screening Concentration ⁴ (µg/m ³)	Soil Vapor Screening Concentration ⁵ (µg/m ³)
benzene	IRIS	7.80E-06	10	IRIS	0.030	88	105	1,048
carbon disulfide	-	-	-	IRIS	0.700	2,044	20,440	204,400
carbon tetrachloride	IRIS	1.50E-05	5	-	-	-	55	545
chloroform	IRIS	2.30E-05	4	-	-	-	36	355
chloromethane (methyl chloride)	EPA-NCEA	1.00E-06	82	IRIS	0.090	263	818	8,176
allyl chloride (3-chloropropene)	-	-	-	IRIS	0.001	3	29	292
cyclohexane	-	-	-	IRIS	6.000	17,520	175,200	1,752,000
1,3-dichlorobenzene	-	-	-	EPA-NCEA	0.110	321	3,212	32,120
1,4-dichlorobenzene	-	-	-	IRIS	0.800	2,336	23,360	233,600
1,2-dichloroethane	IRIS	2.60E-05	3	-	-	-	31	314
cis-1,2-dichloroethylene	-	-	-	HEAST	0.035	102	1,022	10,220
ethyl acetate	-	-	-	EPA-NCEA	3.200	9,344	93,440	934,400
ethylbenzene	EPA-NCEA	1.10E-06	74	IRIS	1.000	2,920	743	7,433
n-hexane	-	-	-	IRIS	0.700	2,044	20,440	204,400
freon 11 (trichlorofluoromethane)	-	-	-	HEAST-A	0.700	2,044	20,440	204,400
freon 113 (1,1,2-trichlorotrifluoroethane)	-	-	-	HEAST	30.000	87,600	876,000	8,760,000
freon 12 (dichlorodifluoromethane)	-	-	-	HEAST	0.200	584	5,840	58,400
methyl ethyl ketone	-	-	-	IRIS	5.000	14,600	146,000	1,460,000
methyl isobutyl ketone	-	-	-	IRIS	3.000	8,760	87,600	876,000
methyl tert-butyl ether (MTBE)	-	-	-	IRIS	3.000	8,760	87,600	876,000
methylene chloride (dichloromethane)	IRIS	4.70E-07	174	HEAST	3.000	8,760	1,740	17,396
styrene	-	-	-	IRIS	1.000	2,920	29,200	292,000
tetrachloroethylene (pce)	CalEPA	5.90E-06	14	CalEPA	0.035	102	139	1,386
toluene	-	-	-	IRIS	5.000	14,600	146,000	1,460,000
1,1,1-trichloroethane	-	-	-	IRIS	5.000	14,600	146,000	1,460,000
trichloroethene (tce)	CalEPA	2.00E-06	41	CalEPA	0.600	1,752	409	4,088
1,2,4-trimethylbenzene	-	-	-	EPA-NCEA	0.006	18	175	1,752
1,3,5-trimethylbenzene (mesitylene)	-	-	-	EPA-NCEA	0.006	18	175	1,752
Vinyl chloride	IRIS	4.40E-06	19	IRIS	0.100	292	186	1,858
xylenes, total	-	-	-	IRIS	0.100	292	2,920	29,200

Notes:

" - " Means no value was available to calculate cancer risk based concentrations or non-cancer risk values for this analyte in indoor air.

1. Unit Risk Factors and Reference Concentrations used to calculate target concentrations based on industrial exposure were taken from:

CalEPA - California Environmental Protection Agency Air Toxics Hot Spots Program. Unit Risk Factors obtained from http://www.oehha.ca.gov/air/hot_spots/pdf/TSDNov2002.pdf. Reference
Concentrations obtained from http://www.oehha.ca.gov/air/chronic_rels/AllChrels.html

EPA-OSWER - United States Environmental Protection Agency (USEPA), OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), EPA 530-D-02-2004, November 2002 containing Superfund Health Effects Assessment Summary Tables (HEAST), EPA-National Center for Environmental Assessment (NCEA), and HEAST Alternate (HEAST-A) values.

• IRIS - USEPA Integrated Risk Information System (IRIS), Database for Risk Assessment, accessed October 5, 2007 at http://www.epa.gov/iris/

2. Target indoor air cancer concentrations are calculated based 1 x 10⁵ Target Risk. Industrial exposure assumptions utilized to adjust Unit Risk Factors include an averaging time of 70 years; exposure frequency of 250 days/year; exposure duration of 25 years; and daily inhalation rate of 10 m³/day (or 12 hours/day exposure).

3. Target indoor air non-cancer concentrations calculated based a **Target Hazard Quotient of 1**. Industrial exposure assumptions utilized to adjust Reference Concentrations include an exposure frequency of 250 days/year and daily inhalation rate of 10 m³/day (or 12 hours/day exposure).

4. Sub-slab Vapor Screening concentrations are based on the lowest of the cancer (1 x 10⁻⁵ Target Risk) or non-cancer risk (Target Hazard Quotient of 1), adjusted a Sub-slab vapor-to-Indoor Air Attenuation Factor of 10%.

5. Soil Vapor Screening concentrations are based on the lowest of the cancer (1 x 10⁻⁵ Target Risk) or non-cancer risk (Target Hazard Quotient of 1), adjusted a Soil vapor-to-Indoor Air Attenuation Factor of 1%.