Petroleum Source Removal Areas of Concern Former Griffiss Air Force Base Rome, New York

## LONG-TERM MONITORING REPORT

## (Fall 2006)



Contract No. F41624-03-D-8601

Revision 0.0 August 2007



## LONG TERM MONITORING REPORT (FALL 2006)

## PETROLEUM SOURCE REMOVAL AREAS of CONCERN

**Prepared for:** 

Air Force Real Property Agency Former Griffiss Air Force Base Rome, New York

through

The Air Force Center for Engineering and the Environment 3300 Sydney Brooks Brooks City Base, TX 78235-5112

**Prepared by:** 

FPM Group, Ltd. 153 Brooks Road Rome, NY 13441

Contract No. F41624-03-D-8601 Delivery Order No. 0027

> Revision 0.0 August 2007

Long-Term Monitoring Report Petroleum SRA LTM Former Griffiss AFB Contract No. F41624-03-D-8601/Delivery Order No. 0027 Revision 0.0 August 2007 Page ii

This page is intentionally left blank.

#### TABLE OF CONTENTS

| 1 | INTRODUCTION                                                           | 1-1  |
|---|------------------------------------------------------------------------|------|
|   | 1.1 Long-Term Monitoring Approach                                      | 1-3  |
|   | 1.1.1 Long-Term Monitoring Background                                  |      |
|   | 1.1.2 Purpose of LTM Program                                           | 1-4  |
| 2 | ENVIRONMENTAL SETTING                                                  |      |
|   | 2.1 Physiography and Topography                                        | 2-1  |
|   | 2.2 Geology                                                            | 2-1  |
|   | 2.3 Hydrogeology                                                       | 2-1  |
|   | 2.4 Climate                                                            | 2-3  |
|   | 2.5 Biology                                                            | 2-3  |
|   | 2.6 Applicable or Relevant and Appropriate Requirements Identification |      |
| 3 | TANK FARMS 1 AND 3 SRA (IRP SITE SS-20, NYSDEC SPILL #9111733)         | 3-1  |
|   | 3.1 Site Location and History                                          | 3-1  |
|   | 3.2 Description of Previous Sampling and Investigations                |      |
|   | 3.3 LTM Plan                                                           | 3-6  |
|   | 3.4 Results                                                            | 3-7  |
|   | 3.5 Conclusions and Recommendations                                    | 3-36 |
| 4 | REFERENCES                                                             | 4-1  |
|   |                                                                        |      |

#### LIST OF FIGURES

| Figure 1-1 | Petroleum Source Removal Areas Location Map                         | 1-2    |
|------------|---------------------------------------------------------------------|--------|
| Figure 2-1 | Base Location Map                                                   | 2-2    |
| Figure 3-1 | Tank Farms 1 and 3 SRA Site Layout Map                              | 3-3    |
| Figure 3-2 | Tank Farms 1 and 3 SRA Sample Location Map                          |        |
| Figure 3-3 | Tank Farms 1 and 3 SRA VOC Concentrations and Groundwater Elevation |        |
|            | Trends                                                              | . 3-25 |
| Figure 3-4 | Tank Farms 1 and 3 SRA VOC Concentrations and Groundwater Elevation |        |
| -          | Trends                                                              | . 3-26 |

#### LIST OF TABLES

| Table 3-1 | Tank Farms 1 and 3 Quarterly Sampling Analysis Summary |  |
|-----------|--------------------------------------------------------|--|
| Table 3-2 | Tank Farms 1 and 3 Detected Analytical Results         |  |
| Table 3-3 | Tank Farms 1 and 3 Proposed Future LTM Sampling        |  |

Long-Term Monitoring Report Petroleum SRA LTM Former Griffiss AFB Contract No. F41624-03-D-8601/Delivery Order No. 0027 Revision 0.0 August 2007 Page iv

#### **APPENDICES**

(All appendices are located on a CD in the back of this binder.)

- Appendix A Sampling Forms, Soil Disposal Documentation, ORC<sup>®</sup> Calculations
- Appendix B Validated Lab Data
- Appendix C Raw Lab Data

#### LIST OF ACRONYMS AND ABBREVIATIONS

| AFB        | Air Force Base                                                        |
|------------|-----------------------------------------------------------------------|
| AFCEE      | Air Force Center for Environmental Excellence                         |
| AOI        | Area of Interest                                                      |
| ARAR       | Applicable or Relevant and Appropriate Requirements                   |
| AST        | aboveground storage tank                                              |
| AVGAS      | aviation gasoline                                                     |
| bgs        | below ground surface                                                  |
| BTEX       | benzene, toluene, ethylbenzene, xylene                                |
| BTOIC      | below top of inner casing                                             |
| COC        | contaminant of concern                                                |
| CSM        | Conceptual Site Model                                                 |
| c.y.       | cubic yard                                                            |
| DO         | dissolved oxygen                                                      |
| EBS        | Environmental Baseline Survey                                         |
| E&E        | Ecology and Environmental, Inc.                                       |
| ESI        | Expanded Site Investigation                                           |
| FID        | flame ionization detector                                             |
| FPM        | FPM Group, Ltd.                                                       |
| FSP        | field sampling plan                                                   |
| JP-4       | jet propulsion fuel grade 4                                           |
| LAW<br>LTM | Law Engineering and Environmental Services, Inc. long-term monitoring |
| MOGAS      | automotive gasoline                                                   |
| MSL        | mean sea level                                                        |
| NYS        | New York State                                                        |
| NYSBC      | New York State Barge Canal                                            |
| NYSDEC     | New York State Department of Environmental Conservation               |
| ORC®       | Oxygen Release Compound <sup>®</sup>                                  |
| ррт        | parts per million                                                     |
| QAPP       | Quality Assurance Project Plan                                        |
| RI         | Remedial Investigation                                                |

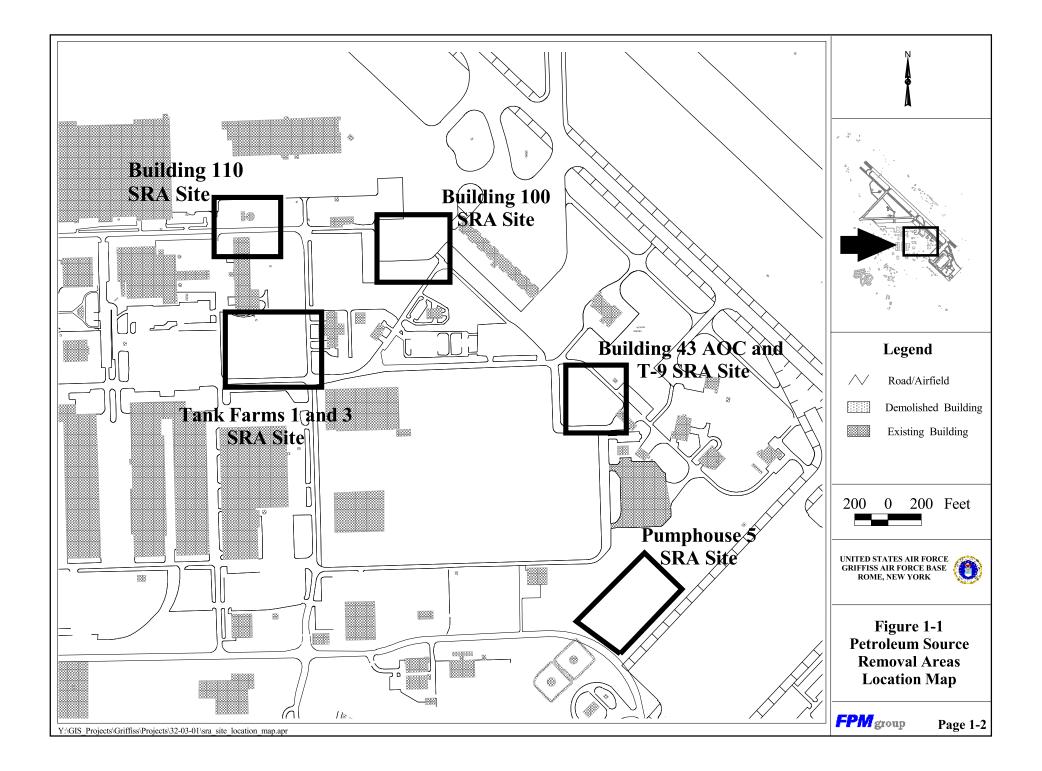
Long-Term Monitoring Report Petroleum SRA LTM Former Griffiss AFB Contract No. F41624-03-D-8601/Delivery Order No. 0027 Revision 0.0 August 2007 Page vi

| SAP   | sampling and analysis plan                       |
|-------|--------------------------------------------------|
| SI    | site investigation                               |
| SRA   | source removal area of concern                   |
| STARS | Spill Technology and Remediation Series          |
| SVOC  | semi-volatile organic compound                   |
| TAGM  | Technical and Administrative Guidance Memorandum |
| TPH   | Total Petroleum Hydrocarbon                      |
| USEPA | United States Environmental Protection Agency    |
| UST   | underground storage tank                         |
| VOC   | volatile organic compound                        |
| μg/L  | micrograms per liter                             |

#### **1 INTRODUCTION**

FPM Group Ltd. (FPM) has been contracted by the Air Force Center for Engineering and the Environment (AFCEE), to conduct a long-term monitoring (LTM) program for groundwater at the Tank Farms 1&3 Petroleum Source Removal Area of Concern (SRA) at the former Griffiss Air Force Base (AFB), New York. The LTM program was conducted in accordance with provisions of the Basic Contract No. F41624-03-D-8601 Delivery Order No. 0027. The purpose of the LTM program is to monitor the presence of contaminants of concern (COCs), assess the potential for migration of the COCs, statistically identify groundwater trends for the COCs, and establish an early warning system for assuring compliance with potential COC receptors.

Data evaluation and report preparation for the LTM program includes semi-annual summary updates and a more detailed annual report. The LTM program will also be reviewed periodically to revise sampling locations and/or sampling frequencies for optimal functioning. This semi-annual LTM report includes collection, analysis, and reporting of COCs for the following SRA from June 2002 through March 2006:


• Tank Farm 1 and 3 SRA SS-20 (New York State Department of Environmental Conservation [NYSDEC] Spill #9111733)

The locations of the Petroleum SRA can be reviewed in Figure 1-1. LTM was recommended by FPM and approved by NYSDEC by their approval of site-specific workplans and groundwater monitoring reports for Tank Farms 1 and 3 (FPM, November 2001).

As part of the performance based contract, it should be noted that the following sites were previously sampled under LTM, and were closed or proposed for closure.

- Building T-9 SRA SS-25 (NYSDEC Spill #9702173). Spill closed September 24, 2004
- Building 43 SRA ST-26 (NYSDEC Spill #9204543 and #9313076) proposed for closure, March 2005
- Building 110 SRA ST-36 (NYSDEC Spill #8603763). Spill closed September 29, 2004
- Building 771/Pumphouse 5 SRA ST-37 (NYSDEC Spill #8903144). Site closed October 20, 2004
- Building 100 SRA ST-51 (NYSDEC Spill #9704490). Spill closed September 29, 2004

Groundwater samples were collected from each of the sites listed and analyzed for the respective COCs as identified during previous investigations (e.g., volatile organic compounds [VOCs] and semivolatile organic compounds [SVOCs]). Both existing data and information from new sampling rounds are utilized for overall performance evaluation.



Groundwater samples were collected and analyzed at as many existing monitoring wells as possible to adequately locate and track the migration of the COC plume(s).

New wells were installed according to the protocol as described in the Field Sampling Plan (FSP) (FPM, August 2003). Reference is also made to the AFCEE Quality Assurance Project Plan (QAPP) Version 3.1 (AFCEE, 2001), prior to June 2006 and Version 4.0 (AFCEE, 2005) is used currently, with project-specific variances. The QAPP together with the FSP form the Sampling and Analysis Plan (SAP).

#### 1.1 Long-Term Monitoring Approach

#### 1.1.1 Long-Term Monitoring Background

To illustrate how this LTM Program will operate, the following highlights the overall objectives, components, and constraints of the groundwater LTM Program.

The objectives of LTM are:

- To continue refining the conceptual site model (CSM) for groundwater flow so that the predictions regarding the fate and transport of COCs are accurate;
- To establish an early warning monitoring system for the protection of potential receptors prior to completion of exposure pathways;
- To evaluate COC degradation due to remedial action or natural attenuation processes; and
- To collect data that support attainment of spill closure.

Typical components of a groundwater LTM system include:

- One or more upgradient well(s) representative of background conditions; and
- LTM wells that track the COC migration or degradation trend.

Constraints associated with a groundwater LTM system include:

- All monitoring wells must be screened in the same hydrogeologic unit as the COC plume or known/probable groundwater pathway from a potential source; and
- Downgradient LTM wells must be located to detect unexpected variations in groundwater quality as efficiently as possible (i.e., with respect to groundwater migration rates and downgradient flow direction).

Given the above objectives and constraints the design of an LTM system considers the following tasks:

- 1. Selecting water-level observation wells and water quality monitoring wells from existing monitoring wells and piezometers, or selecting locations for new wells, depending on the evaluation of existing data (i.e., well logs, water-level measurements, proximity to natural flow boundaries, trends and uncertainties in the existing data) and the specific intended and distinct role of that monitoring point;
- 2. Providing a statistical evaluation of water-level elevation data for groundwater flow direction, existing COC concentrations, and groundwater chemistry to predict long-term trends;
- 3. Identifying performance evaluation criteria (e.g., statistical tests), including appropriate analysis methods for evaluating data variations or closure attainment;
- 4. Identifying water quality sampling frequency at each monitoring point both for
  - a) understanding the trends of COCs and/or their indicator analytes, and
  - b) minimizing the costs and maximizing the benefits of the program;
- 5. Identifying physical and chemical parameters (e.g., transport and attenuation properties) for the COCs; and
- 6. Periodically assessing the LTM monitoring well network for addition of new monitoring wells or possible decommissioning of monitoring wells from the LTM program.

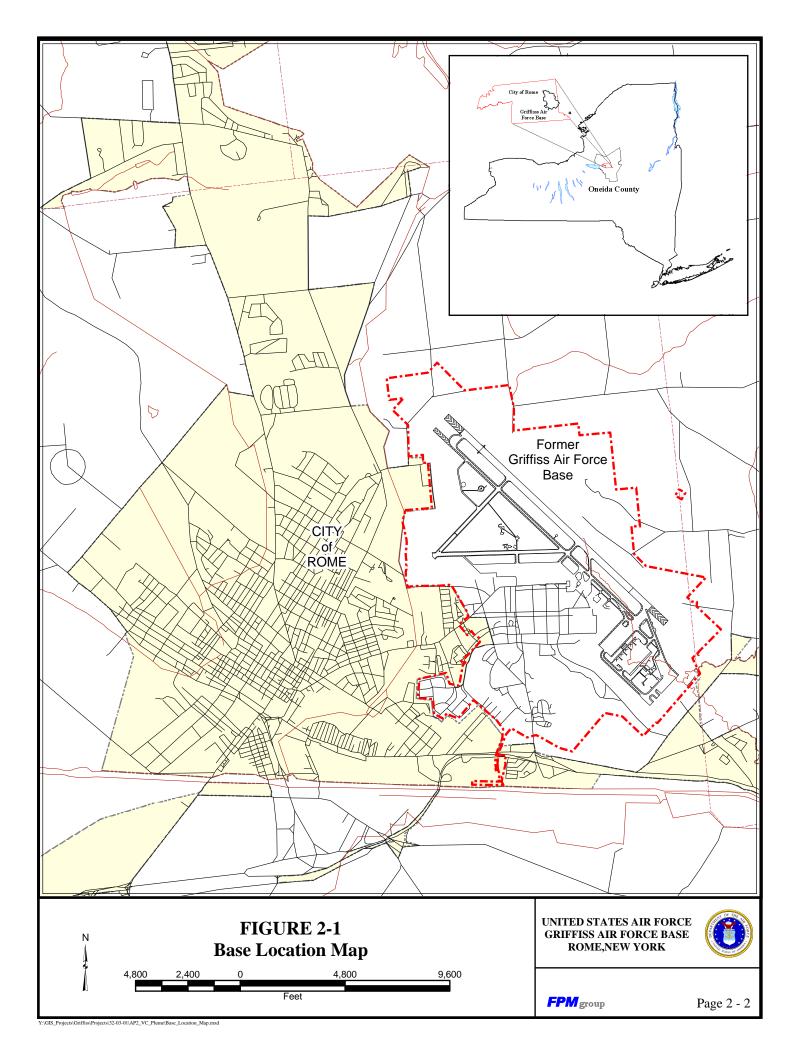
## 1.1.2 Purpose of LTM Program

Each site-specific LTM Work Plan has identified monitoring points that will best detect groundwater COCs that are known to exist at the Petroleum SRA, and track their transport over time to support a decision for either continued monitoring, remedial measures (i.e., free product recovery in those cases where free product is encountered), or spill closure. The LTM Program will use historic data and new information from annual and quarterly sampling rounds at specified existing and new monitoring wells.

#### 2 ENVIRONMENTAL SETTING

#### 2.1 PHYSIOGRAPHY AND TOPOGRAPHY

The former Griffiss AFB is located in the city of Rome in Oneida County, New York (refer to Figure 2-1). The former Base lies within the Mohawk Valley between the Appalachian plateau and the Adirondack Mountains. A rolling plateau northeast of the former Base reaches an elevation of 1300 feet above mean sea level (MSL). The New York State Barge Canal (NYSBC) and the Mohawk River valley south of the former Base lie below 430 feet above MSL. The topography across the former Base is relatively flat with elevations ranging from 435 feet above MSL in the southwest portion to 595 feet above MSL in the northwest portion of the former Base.


#### 2.2 GEOLOGY

Unconsolidated sediments at the former Griffiss AFB consist primarily of glacial till with minor quantities of clay and sand and significant quantities of silt and gravel. The thickness of these sediments range from 12 feet in the northeast portion to more than 130 feet in the southern portion of the former Base. The average thickness of the unconsolidated sediments is 25 to 50 feet in the central portion and 100 to 130 feet in the south and southwest portions of the former Base. The bedrock beneath the former AFB generally dips from the northeast to the southwest and consists of Utica Shale, a gray and black carbonaceous unit with a high/medium organic content (Remedial Investigation (RI), Law Engineering and Environmental Services, Inc. (LAW), December 1996).

#### 2.3 HYDROGEOLOGY

The shallow water table aquifer lies within the unconsolidated sediments, where depth to groundwater, during the December 1998 synoptic Base-wide water-level measurement of wells, ranged from just below the ground surface to approximately 57 feet below ground surface (bgs) in the southwest portion of the base and to 63 feet bgs in the northeast portion of the former Base (FPM, September 2000). Several surface water creeks act as discharge areas for shallow groundwater, and drainage culverts and sewers intercept surface water runoff.

A comprehensive description of regional and local geology, hydrogeology, lithology, and hydrology for the former Griffiss AFB was given in the RI (LAW, December 1996), and in the Supplemental Investigation (SI) prepared by Ecology and Environment, Inc. (E&E, July 1998). Detailed site descriptions and the hydrology for each Petroleum Source Removal Area are presented with each site-specific section.



Long-Term Monitoring Report Petroleum SRA LTM Former Griffiss AFB Contract No. F41624-03-D-8601/Delivery Order No. 0027 Revision 0.0 August 2007 Page 2-3

#### 2.4 CLIMATE

The former Griffiss AFB experiences a continental climate characterized by warm, humid, moderately wet summers and cold winters with moderately heavy snowfalls. The mean annual precipitation is 45.6 inches, which includes the mean annual snowfall of 107 inches. The annual evapotranspiration rate is 23 inches. The average temperature during the winter season is 20 degrees Fahrenheit; temperatures during the spring, summer, and fall vary from 31 to 81 degrees Fahrenheit. The prevailing winds are from the southwest, with an average wind speed of 5 knots.

The former Griffiss AFB is located in a region prone to acid precipitation; the annual average pH of precipitation recorded for 1992 at the three closest stations ranged from 4.25 to 4.28. Fluctuations in pH have an inverse correlation to precipitation, such that lower pH levels correlate with higher amounts of precipitation (LAW, December 1996).

#### 2.5 BIOLOGY

The former Griffiss AFB, covering 3,552 acres of property within the Erie-Ontario ecozone of the Great Lakes Physiographic Province, has been heavily disturbed from an ecological perspective. Although there are a few undisturbed communities within the former Base's boundary, the 1993 Inventory of Rare Plant Species and Significant Natural Communities identified six significant habitats of special concern occurring on the former Base (New York Natural Heritage Program, January 1994). None of these habitats occur adjacent to the Petroleum Source Removal Areas described in this report.

# 2.6 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS IDENTIFICATION

At the Petroleum SRA to be monitored under the LTM Program, the Applicable or Relevant and Appropriate Requirements (ARARs) and other criteria and guidelines to be considered include the NYSDEC Spill Technology and Remediation Series (STARS), Technical and Administrative Guidance Memorandum (TAGM): Determination of Soil Cleanup Objectives and Cleanup Levels, January 1994, NYSDEC Interim Procedures for Inactivation of Petroleum-Impacted Sites, January 1997, and NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.

Long-Term Monitoring Report Petroleum SRA LTM Former Griffiss AFB Contract No. F41624-03-D-8601/Delivery Order No. 0027 Revision 0.0 August 2007 Page 2-4

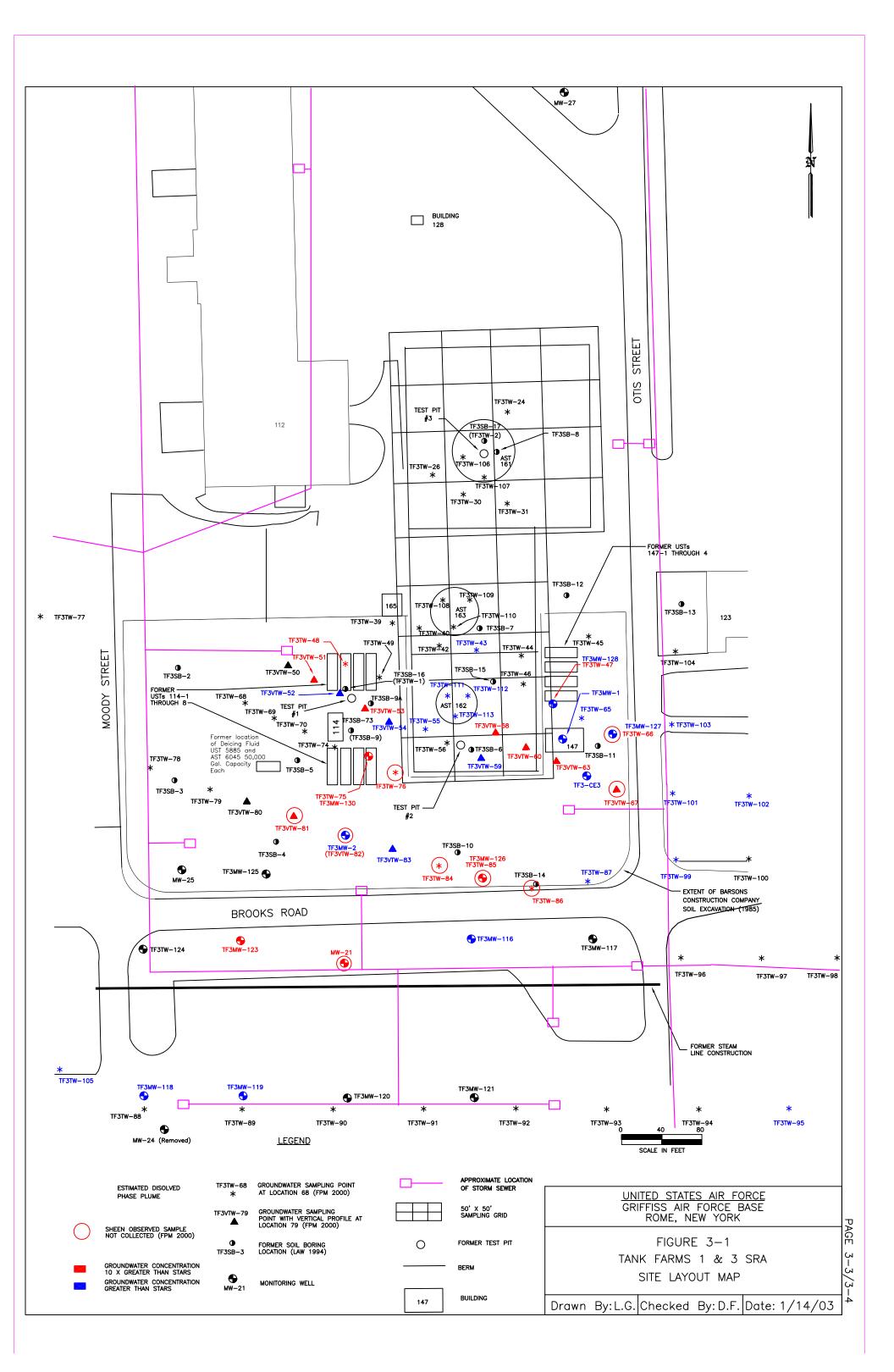
This page is intentionally left blank.

#### 3 TANK FARMS 1 AND 3 SRA (IRP SITE SS-20, NYSDEC SPILL #9111733)

#### 3.1 SITE LOCATION AND HISTORY

The Tank Farms 1 and 3 SRA is located in the central portion of the former Griffiss AFB, as shown in Figure 1-1. The site is a grass-covered area that is located southeast of Building 112 and is bounded by Brooks Road to the south, Otis Street to the east, and Moody Street to the west. The SRA encompasses the former fuel storage facilities for the following products: aviation gasoline (AVGAS), jet propulsion fuel grade 4 (JP-4), automotive gasoline (MOGAS), diesel fuel, fuel oil, and deicing fluid. The Tank Farms 1 and 3 site layout is shown in Figure 3-1.

Tank Farm 1 is the former location of eight 25,000-gallon underground storage tanks (USTs). The USTs are numerically identified as UST 114-1 through UST 114-8. The tanks originally contained AVGAS, then were used for diesel fuel, MOGAS, and finally fuel oil. Other former facilities associated with Tank Farm 1 include one 50,000-gallon aboveground storage tank (AST) for deicing fluid (AST 6045), one underground 50,000-gallon deicing fluid tank (UST 5885), one pumphouse (Building 114), one pump pit, separator tanks, and one water separator pit. The pumphouse was connected to a railroad car unloading stand with three outlets used to off-load fuel from railroad cars into the tanks (Tetra Tech, September 1994; E&E, December 1997). Open NYSDEC Spill #9111733 is associated with former USTs 114-1 through 114-8.


Tank Farm 3 is the former location of four 25,000-gallon USTs (UST 147-1 through -4) that contained JP-4. Other former facilities associated with Tank Farm 3 include two pumphouses (Buildings 147 and 165), one pump pit, separator tanks, one water separator pit, and three aboveground bulk fuel storage tanks (ASTs 161, 162, and 163). The former bulk fuel ASTs originally contained JP-4 but were later used to store fuel oil. Former AST 161 was 840,000 gallons in capacity and former ASTs 162 and 163 were both 420,000 gallons in capacity. Each bulk fuel AST was surrounded by a soil berm.

#### 3.2 DESCRIPTION OF PREVIOUS SAMPLING AND INVESTIGATIONS

In November 1981, Base Fuels verified that 2 to 3 gallons per day of JP-4 leaked from eight valves at Tank Farm 3 for an indefinite period (LAW, February 1995).

In the fall of 1982, investigative soil borings associated with the construction of a steam line were installed to the south of Brooks Road and former Tank Farm 1, where free product was found floating above the water table in the area.

This page is intentionally left blank.



In October 1983, the Base Civil Engineering Department installed and sampled well TF3-CE3, shown in Figure 3-1. The well was found to contain free product. When monitoring well TF3-CE3 was sampled again during the summer of 1984, no free product was detected.

In the summer of 1984, Roy F. Weston, Inc. installed 33 temporary wells and eight permanent wells. The Weston report hypothesized that the source of the fuel in the groundwater was potentially contributed by two sources: (1) numerous small spills and leaks from the Tank Farms, and (2) from a former truck maintenance shed that was located north of Building 3, where base personnel informed Weston that waste fuels were discharged to the subsurface via a drywell (Weston, November 1985). Review of the 1994 Environmental Baseline Survey (EBS) did not confirm information on drywells or a truck maintenance shed north of Building 3, prior to 1985. The Expanded Site Investigation (ESI) of Area of Interest (AOI) Site 58/101 detected minor SVOCs in surficial soils north of Building 3; however, the groundwater was not impacted (Tetra Tech, September 1994).

In November 1985, all ASTs and USTs associated with Tank Farms 1 and 3 were removed, with the exception of the bulk fuel ASTs (AST 161, 162, and 163). While underground piping was being cut and capped at Tank Farm 1, a 4-inch pipe was found to be full of AVGAS. While a similar action was being performed at Tank Farm 3, the contractor discovered 3 inches of fuel on the floor of Building 147 (Tank Farm 3 pumphouse) and fuel in a header pipe. Industrial Tank and Oil Company subsequently removed the fuel (1,200 gallons). There is no indication in the administrative records that endpoint sampling was performed following the removal of the ASTs and USTs.

In December 1985, Barsons Construction Company removed 60,000 cubic yards (c.y.) of contaminated soil and replaced it with clean fill.

In 1988, the bulk fuel ASTs (AST 161, 162, and 163) and associated underground facilities were removed, along with any contaminated soils. The soil berms surrounding the bulk fuel ASTs were used to fill the excavated area previously occupied by the removed contaminated soil and underground facilities. Additional cover soil was placed on top of the former berm material to bring the excavated area to grade.

In 1993 and 1994, monitoring wells TF3MW-21, -25, -27 and TF3-CE3 were sampled as part of the quarterly sampling program. The analytical results indicated no VOC or SVOC exceedances of the New York State (NYS) Groundwater Standards. No VOC, SVOC, or metal data were found to exist for wells TF3MW-22, -23, -24, -26, and -28. Based on the October 1998 well/piezometer inventory (E&E, January 1999), and visual inspection, these additional wells do not exist at the present time.

Groundwater observation wells TF3TW-1 and -2 were placed as close as practical to boring locations TF3SB-16 and -17, respectively, to identify the presence of free product. No free

product was observed in either temporary well. However, the boring logs and field notes from TF3TW-1 indicated flame ionization detector (FID) readings as high as 1,000 parts per million (ppm) near the surface of the water table (14 ft bgs) and sheen on all split-spoon samples. The field notes for TF3TW-2 indicated a maximum FID reading of 100 ppm at an interval from 4 to 6 ft bgs (vadose zone) and a slight sheen on all split-spoon samples, except the interval from 0 to 2 ft bgs.

In 1999 and 2000, FPM completed a Supplemental Study to fill data gaps and fully delineate groundwater contamination at the site (FPM, September 2000). A total of 96 soil borings were installed with 72 groundwater samples collected and analyzed using United States Environmental Protection Agency (USEPA) methods 8021 for VOCs and 8270 for SVOCs. In addition, groundwater samples were collected from existing monitoring wells TF3MW-1, TF3-CE3, and TF3MW-21 and newly installed TF3MW-2. These locations are shown in Figure 3-1.

In general, groundwater sample analysis showed numerous exceedances downgradient of USTs 114-1 through -8 (NYSDEC open Spill #9111733) and USTs 147-1 through -4. Except for minor exceedances at TF3TW-43 and -55, groundwater samples immediately downgradient from former Building 165, bulk fuel storage ASTs 161, 163, and 6045, and UST 5885 showed no groundwater exceedances.

In November 2001, monitoring wells TF3MW-116, -117, -118, -119, -120, -121, -123, -124, -125, -126, -127, -128, -129, and -130 were installed and developed prior to sampling. A source removal action in Fall 2002, at the Tank Farms 1 and 3 site, removed residual soil contamination that was identified during the previous soil boring activities and not removed during the Barson's excavation in 1985. Approximately 12,800 c.y. of soil was excavated from locations within the former bermed area and vicinity including the former building 147 footprint at Tank Farms site. Removal of the residual soil contamination continued into the saturated zone where contamination was located and stopped any additional leaching of contamination to groundwater from the vadose zone (Parsons, December 2003).

In summary, separate petroleum plumes may have originated from three locations including, USTs 114-1 through -8 and USTs 147-1 through -4, as well as the former truck maintenance shed north of Building 3, possibly in the vicinity of TF3MW-123 or -125. The dissolved groundwater plume appears to be well defined and to be naturally attenuating. Based on observations at the site and based on the size and stability of the dissolved plume, residual free product has not been identified (FPM, February 2004).

#### 3.3 LTM PLAN

Table 3-1 summarizes the original LTM sampling and analysis plan. The objectives of the Tank Farm 1 and 3 LTM program include the following:

• Monitor the groundwater to track plume migration.

• Monitor natural attenuation parameters including pH, temperature, alkalinity, redox potential, nitrate, ferrous iron, sulfate, sulfide and dissolved oxygen to assess the potential for natural attenuation of the petroleum plume.

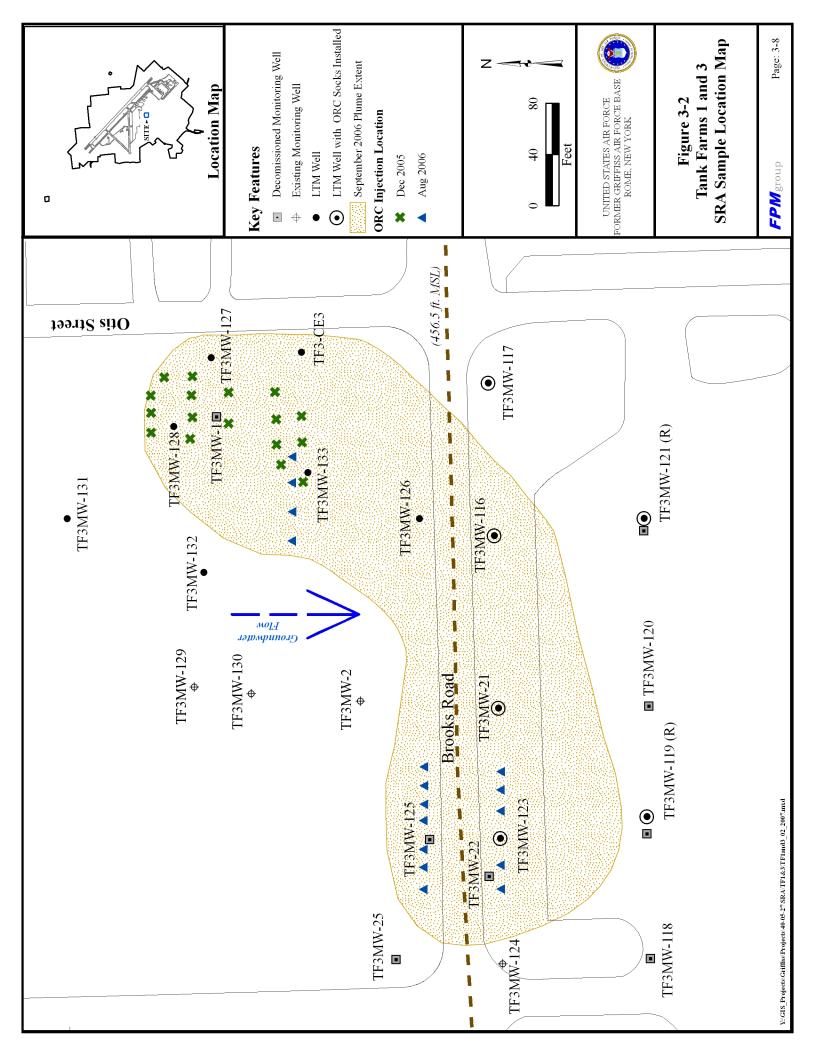

| Site/     | Screen    | Sampling Rationale         | Target Analytes/              | Sampling  |
|-----------|-----------|----------------------------|-------------------------------|-----------|
| Sampling  | Interval  |                            | <b>USEPA Method Numbers</b>   | Frequency |
| Locations | (ft. MSL) |                            |                               |           |
| TF3-CE3   | 442-457   | Downgradient, within plume | VOCs 8260 AFCEE QAPP          |           |
| TF3MW-2   | 450-460   | Downgradient, within plume | 3.1 List                      | Quarterly |
| TF3MW-21  | 445-465   | Downgradient within plume  |                               |           |
| TF3MW-25  | 444-464   | Crossgradient              | SVOCs 8270                    |           |
| TF3MW-116 | 449-459   | Downgradient within plume  |                               |           |
| TF3MW-117 | 448-458   | Crossgradient from plume   | * Natural attenuation         |           |
| TF3MW-123 | 449-459   | Downgradient within plume  | parameters pH, temperature,   |           |
| TF3MW-124 | 449-459   | Crossgradient from plume   | redox potential, ferrous      |           |
| TF3MW-125 | 449-459   | Downgradient               | iron, and dissolved oxygen    |           |
| TF3MW-126 | 449-459   | Downgradient within plume  | will be measured in the       |           |
| TF3MW-127 | 450-460   | Upgradient within plume    | field.                        |           |
| TF3MW-128 | 451-461   | Upgradient within plume    |                               |           |
| TF3MW-129 | 451-461   | Upgradient from plume      | Alkalinity, nitrate, sulfate, |           |
| TF3MW-130 | 451-461   | Upgradient within plume    | sulfide                       |           |
|           |           |                            |                               |           |

 Table 3-1

 Tank Farms 1 and 3 Quarterly Sampling Analysis Summary

### 3.4 **RESULTS**

Seventeen sampling rounds were conducted at the Tank Farm 1 and 3 SRA site in: December 2001; February, June, September and December 2002; March, June, September and December 2003, and March, June, September, and December 2004, March 2005, and March, June and September 2006. Sampling locations are identified on Figure 3-2. The detected groundwater analytical results are shown in Table 3-2, and total VOC detections and groundwater elevations are illustrated in Figures 3-3 and 3-4. Groundwater flow is to the south-southeast. VOC- and SVOC-contaminated groundwater plumes are shown on Figure 3-2. Two plumes from two source areas have stabilized and are attenuating. The plume located near monitoring wells TF3MW-127, -128, and -133 is associated with former UST 147-1 through 4, while the second plume is located in the vicinity of TF3MW-21, -116, -123 and decommissioned well TF3MW-125, where the source was most likely former USTs 114-1 through -8 and the former truck maintenance shed that was located north of Building 3 (possibly near TF3MW-123 and -125).



| Table 3-2                                      |
|------------------------------------------------|
| Tank Farms 1 and 3 Detected Analytical Results |

| Monitoring Well ID                | NYSDEC    |            |            |            |            |            |            |            | Т          | F3-CE3     |            |            |            |            |            |            |            |
|-----------------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sample ID                         | GW        | TF3CE313AA | TF3CE312BB | TF3CE313CA | TF3CE312DA | TF3CE312EA | TF3CE313FA | TF3CE313GB | TF3CE313HB | TF3CE312IB | TF3CE313JB | TF3CE313KB | TF3CE313LB | TF3CE313MA | TF3CE312NA | TF3CE313OA | TF3CE313PA |
| Date of Collection                | Standards | 2/19/02    | 6/19/02    | 9/13/02    | 12/12/02   | 3/12/03    | 6/20/03    | 9/12/03    | 12/12/2003 | 3/17/2004  | 6/17/2004  | 9/16/2004  | 1/3/2005   | 3/29/2005  | 3/28/2006  | 6/20/2006  | 9/26/2006  |
| Sample Depth (ft)                 | (µg/L)    | 13         | 12         | 13         | 12         | 12         | 13         | 13         | 13         | 12         | 13         | 13         | 13         | 13         | 12         | 13         | 13         |
| VOCs (ug/L)                       |           |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 1,1,1-trichloroethane             | 5         | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          |
| 1,2,4-trimethylbenzene            | 5         | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          |
| n - butylbenzene                  | 5         | 1.1        | 1.1        | U          | U          | U          | U          | U          | U          | 2.7        | 0.85 F     | 8.6        | 0.37 F     | 1.4        | 0.46 F     | 1.1        | 1.31       |
| sec-butylbenzene                  | 5         | 4.4        | 4.8        | 8.1        | 3.4 ♦      | 1.9        | 1.6        | 1.7        | 6.0        | 6.0        | 5.0        | 5.8        | 2.9        | 4.7        | 2.8        | 3.7        | 4.06       |
| t-butylbenzene                    | 5         | 0.85       | 1.1        | 1.2        | 0.83 ♦     | 0.39 F     | U          | 0.34 F     | 0.79 F     | 0.71 F     | 0.69 F     | 0.78 F     | 0.46 F     | 0.7 F      | 0.50 F     | 0.59 F     | 0.85       |
| chloroethane                      | 5         | U          | U          | 0.21 F     | U          | U          | U          | U          | U          | U          | U          | U          | U          | 0.22 F     | U          | 0.29 F     | U          |
| chloroform                        | 7         | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          |
| chloromethane                     | 5         | U          | U          | 0.24 F     | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          |
| ethylbenzene                      | 5         | 0.21 F     | U          | 0.37 F     | U          | U          | U          | U          | U          | 0.28 F     | U          | 0.22 F     | U          | U          | U          | U          | U          |
| isopropylbenzene                  | 5         | 6.9        | 7.6        | 13         | 5.1 ♦      | 2.1        | 3.1        | 3.6        | 9.8        | 11         | 7.8        | 8.7        | 3.4        | 7.3        | 3.2        | 5.2        | 6.4        |
| methyl ethyl ketone               | 5         | U          | U          | U          | U          | 1.6 UJ     | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          |
| naphthalene                       | 10        | U          | 1.3        | 5.2        | 2 J        | 0.72 F     | 0.78 F     | 0.81 F     | 2.6        | 3.8        | 2.0        | 2.2        | 0.71 F     | 2.2        | 0.81 F     | 1.6 B      | 2.33       |
| n-propylbenzene                   | 5         | 8.1        | 5.8        | 11         | 4.8 ♦      | 2          | 2.3        | 2.1        | 10         | 13         | 8.4        | U          | 3.4        | 8.6        | 3.4        | 5.8        | 6.68       |
| trichloroethylene                 | 5         | 1.7        | 0.98       | 1          | 2          | 2          | 1.4        | 3          | 1.6        | 1.3        | 1.1        | 1.2        | 1.7        | 0.95 F     | 1.7        | 1          | 1.13       |
| m,p-xylene                        | 5         | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          | U          |
| Total VOCs                        |           | 22.16      | 21.58      | 40.32      | 18.13      | 9.11       | 9.18       | 11.55      | 30.79      | 38.79      | 25.84      | 27.5       | 12.94      | 26.07      | 12.87      | 19.28      | 22.76      |
| SVOCs (µg/L)                      |           |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 2-methylnaphthalene               |           | 6 F        | U          | U          | U          | U          | 2 F        | 4 F        | 3 F        | U          | N/S        |
| di-n-butyl phthalate              | 50        | 4 F        | U          | U          | U          | U          | U          | U          | U          | U          | N/S        |
| Wet Chemistry Data (mg/L)         |           |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| nitrate                           | 10,000    | 0.36       | 0.087      | 0.32       | N/A        | 0.38       | 0.71       | 0.60       | 0.56       | 0.63       | 0.46       | 0.52       | 0.17       | 0.4        | N/S        | N/S        | N/S        |
| sulfate                           | 250,000   | 17.3       | 11.4 B     | 17.4       | 6.4        | 10.7 B     | 15         | 20.3       | 11.6       | 14.2       | N/S        |
| sulfide                           |           | U          | U          | U          | U          | U          | U          | U          | U          | 0.077 F    | N/S        |
| total alkalinity                  |           | 242        | 217        | 342        | 174        | 189        | 202        | 211        | 412        | 179 B      | 243        | 197        | 210        | 230        | N/S        | 192        | 250        |
| Field Parameters                  |           |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| dissolved iron (mg/L)             |           | 3.5        | N/A        | 5.5        | 2.8        | 2.9        | 2.8        | 2.5        | 3.4        | 2.4        | 3          | 3          | 3.4        | 2.8        | 3          | 4          | 3.6        |
| pH                                |           | 7.11       | 7.88       | 6.68       | 7.12       | 7.09       | 7.29       | 7.32       | 6.61       | 7.32       | 7.22       | 7.74       | 7.93       | 7.01       | 6.84       | 7.46       | 7.29       |
| specific conductance (µS/cm)      |           | 469        | 550        | 658        | 534        | 497        | 342        | 515        | 589        | 66         | 66         | 67         | 62         | 64         | 96.3       | 0.11       | 78.7       |
| temperature (degrees C)           |           | 9.8        | 10.3       | 12.8       | 11.8       | 9.33       | 9.76       | 12.35      | 11.42      | 8.68       | 9.7        | 12         | 10.7       | 9.1        | 9.41       | 10.8       | 12.8       |
| dissolved oxygen (mg/L)           |           | 4.23       | 1.05       | 1.62       | 2.78       | 4.62       | 3.12       | 6          | 2.95       | 3.3        | 3.5        | 4.03       | 5.6        | 6.41       | 2.49       | 6.05       | 4.77       |
| oxidation reduction potential (mV | )         | -103       | -127       | -3         | -114       | -27        | -122       | -141       | -110       | -79        | -108       | -107       | -88        | 50         | -107       | 29         | -26        |
| Notes:                            |           |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

Notes:

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

-- Indicates no NYS GA Groundwater Standard

Indicates higher value detected in the sample duplicate or during the dilution phase.
 B - The analyte was also detected in a blank.

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

N/A - Analyte was not analyzed during sampling

1997 - Yanayi e was not aming an any zet during sampling NS- Analyte was not sampled.
R - The data is unusable due to deficiences in the ability to analyze the sample and meet QC criteria.
U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
U - The analyte was not detected above the RL. However the quantitation is an approximation.

|                                    |                        |                   | Tank              | Farms 1 and 3 D   | Detected Analytica | Table 3-2<br>I Results (contin | ued)       |            |                   |            | gust 200<br>Page 3-1                     |
|------------------------------------|------------------------|-------------------|-------------------|-------------------|--------------------|--------------------------------|------------|------------|-------------------|------------|------------------------------------------|
| Monitoring Well ID                 | NYSDEC                 |                   |                   |                   | jj                 | TF3MW-2                        |            |            |                   |            | 1                                        |
| Sample ID                          | GW                     | <b>TF3M0214AA</b> | <b>TF3M0214BB</b> | <b>TF3M0219CA</b> | TF3M0214DA         | <b>TF3M0214EA</b>              | TF3M0214FA | TF3M0215GB | <b>TF3M0214HB</b> | TF3M0214IB | -                                        |
| Date of Collection                 | Standards <sup>1</sup> | 2/26/02           | 6/19/02           | 9/13/02           | 12/12/02           | 3/12/03                        | 6/23/03    | 9/12/03    | 12/12/2003        | 3/18/2004  | 1                                        |
| Sample Depth (ft)                  | (µg/L)                 | 14                | 14                | 19                | 14                 | 14                             | 14         | 15         | 14                | 14         |                                          |
| VOCs (ug/L)                        |                        |                   |                   |                   |                    |                                |            |            |                   |            |                                          |
| 1,1,1-trichloroethane              | 5                      | U                 | 0.68              | 0.31 F            | 0.41 F             | 0.54                           | 0.35 F     | U          | U                 | U          |                                          |
| 1,2,4-trimethylbenzene             | 5                      | 0.71              | U                 | U                 | 0.24 F             | U                              | 0.24 F     | 0.39 F     | U                 | U          |                                          |
| acetone                            | 50                     | U                 | U                 | U                 | U                  | U                              | U          | U          | 4.1 F             | U          |                                          |
| chloroform                         | 7                      | 1.8               | 2                 | 0.77              | 1.3                | 2.1                            | 0.92       | 0.83       | 1.1 B             | 1          | 04                                       |
| ethylbenzene                       | 5                      | 0.54              | 0.3 F             | 0.24 F            | 0.21 F             | U                              | 0.3 F      | U          | U                 | U          | Well was not sampled after March 2004    |
| isopropylbenzene                   | 5                      | 0.66              | U                 | 0.58              | 0.38 F             | U                              | 0.29 F     | 0.29 F     | 0.43 F            | U          | rch                                      |
| methyl ethyl ketone                | 5                      | U                 | U                 | U                 | U                  | 1.6 UJ                         | U          | U          | U                 | U          | Mai                                      |
| n-propylbenzene                    | 5                      | 0.39 F            | U                 | 0.31 F            | 0.23 F             | U                              | 0.23 F     | U          | U                 | U          | er ]                                     |
| trichloroethylene                  | 5                      | 0.91              | 1                 | 0.51              | 0.62               | 0.95                           | 0.52 F     | 0.75 F     | 0.9 F             | 0.68 F     | afte                                     |
| m,p-xylene                         | 5                      | 0.45 F            | U                 | U                 | U                  | U                              | U          | U          | U                 | U          | ed :                                     |
| Total VOCs                         |                        | 5.46              | 3.98              | 2.72              | 3.39               | 3.59                           | 2.85       | 0.83       | 5.43              | 1.68       | lq                                       |
| SVOCs (µg/L)                       |                        |                   |                   |                   |                    |                                |            |            |                   |            | an a |
| Total SVOCs                        |                        | 0                 | 0                 | 0                 | 0                  | 0                              | 0          | 0          | 0                 | 0          | ote                                      |
| Wet Chemistry Data (mg/L)          |                        |                   |                   |                   |                    |                                |            |            |                   |            | s                                        |
| nitrate                            | 10,000                 | 1.3               | 1.1               | 1.5               | N/A                | 1.3                            | 0.8        | 0.94       | 1                 | 1.3        | wa                                       |
| sulfate                            | 250,000                | 27.2              | 17 B              | 13.1              | 9.1                | 17.6 B                         | 16.5       | 15.7       | 15.3              | 18.1       | ell                                      |
| sulfide                            |                        | U                 | U                 | U                 | U                  | U                              | U          | U          | U                 | U          | M                                        |
| total alkalinity                   |                        | 144               | 120               | 148               | 87.2               | 132                            | 148        | 158        | 222               | 218        |                                          |
| Field Parameters                   |                        |                   |                   |                   |                    |                                |            |            |                   |            |                                          |
| dissolved iron (mg/L)              |                        | 0.3               | N/A               | 0.8               | 0.8                | 0                              | 0          | 0          | 0.4               | 0          |                                          |
| pH                                 |                        | 7.35              | 7.58              | 7.26              | 7.17               | 7.49                           | 7.26       | 7.42       | 6.44              | 7.4        |                                          |
| specific conductance (µS/cm)       |                        | 326               | 360               | 544               | 469                | 277                            | 287        | 426        | 459               | 48         | _                                        |
| temperature (degrees C)            |                        | 10.3              | 10.4              | 12.7              | 12.5               | 9.96                           | 10.49      | 12.13      | 12.44             | 9.41       | _                                        |
| dissolved oxygen (mg/L)            |                        | 5.65              | 3.92              | 3.79              | 6.19               | 6.8                            | 5.56       | 6.26       | 4.97              | 6.7        | _                                        |
| oxidation reduction potential (mV) |                        | -47               | -19               | -19               | -35                | 226                            | -11        | -73        | 78                | 52         |                                          |

Notes:

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

-- Indicates no NYS GA Groundwater Standard

+ - Indicates higher value detected in the sample duplicate or during the dilution phase.

B - The analyte was also detected in a blank.

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

N/A - Analyte was not analyzed during sampling

R - The data is unusable due to deficiences in the ability to analyze the sample and meet QC criteria.

U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

UJ - The analyte was not detected above the RL. However the quantitation is an approximation.

|                             |           |            |            |            |            |            |                  | Table 3-2  |                      |            |            |            |            |            |            |            | Page 3-1   |
|-----------------------------|-----------|------------|------------|------------|------------|------------|------------------|------------|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                             |           |            |            |            |            |            | Tank Farms 1 and |            | ical Results (contin | ued)       |            |            |            |            |            |            | -          |
| Monitoring Well ID          | NYSDEC    |            |            |            |            |            |                  |            | TF3N                 | 4W-21      |            |            |            |            |            |            |            |
| Sample ID                   | GW        | TF3M2114AA | TF3M2114BB | TF3M2115CA | TF3M2113DA | TF3M2114EA | TF3M2114FA       | TF3M2114GB | TF3M2114HB           | TF3M2114IB | TF3M2114JB | TF3M2114KB | TF3M2114LB | TF3M2114MA | TF3M2114NA | TF3M2114OA | TF3M2114PA |
| Date of Collection          | Standards | 2/27/02    | 6/19/02    | 9/13/02    | 12/12/2002 | 3/12/2003  | 6/23/2003        | 9/11/2003  | 12/12/2003           | 3/18/2004  | 6/17/2004  | 9/13/2004  | 12/30/2004 | 3/29/2005  | 3/28/2006  | 6/20/2006  | 9/26/2006  |
| Sample Depth (ft)           | (µg/L)    | 14         | 14         | 15         | 13         | 14         | 14               | 14         | 14                   | 14         | 14         | 14         | 14         | 14         | 14         | 14         | 14         |
| VOCs (ug/L)                 |           |            |            |            |            |            |                  |            |                      |            |            |            |            |            |            |            |            |
| 1,1-dichloroethane          | 5         | 0.33 F     | 0.25 F     | U          | 0.23 F     | 0.24 F     | U                | U          | U                    | U          | U          | U          | U          | U          | U          | U          | U          |
| 1.1.2.2-tetrachloroethane   | 5         | U          | 1.9        | U          | U          | 0.16 UJ    | U                | U          | U                    | U          | U          | U          | U          | U          | U          | U          | U          |
| 1,2-dibromo-3-chloropropane | 0.04      | U          | U          | 2.1 J 🔶    | U          | 0.25 UJ    | U                | U          | U                    | U          | U          | U          | U          | U          | U          | U          | U          |
| 1,2,3-trichloropropane      | 0.04      | U          | 1.1        | U          | U          | 0.16 UJ    | U                | U          | U                    | U          | U          | U          | U          | U          | U          | U          | U          |
| 1,2,4-trimethylbenzene      | 5         | 3.3        | 2.4 •      | 11         | 0.41 F     | 2.2 J 🔶    | 0.9 F            | 9.6        | 1.8                  | U          | 1.9 F      | U          | U          | U          | 0.56 F     | U          | 1.04 ♦     |
| 1,3,5-trimethylbenzene      | 5         | 1.3        | U          | 0.4 F      | U          | 0.5 J ♦    | U                | 2.6        | U                    | U          | U          | U          | U          | U          | U          | U          | U          |
| benzene                     | 1         | 0.75       | 0.55       | 0.56 ♦     | U          | 0.15 UJ    | U                | U          | U                    | U          | U          | U          | U          | U          | U          | U          | 0.23       |
| n - butylbenzene            | 5         | 5.1        | 4.4        | 6.9 J ♦    | 4.3        | 0.22 UJ    | U                | 8.1        | U                    | 3.8 F      | 3 F        | 2.5 F      | 1.8 F      | 2.2 F      | 2          | 4 ♦        | 3.2 ♦      |
| sec-butylbenzene            | 5         | 6.4        | 6.4        | 9.8        | 4.8        | 4.7 J ♦    | Ŭ                | 7.2        | 6.4                  | 2.9 F      | 5.4        | 5.3        | 3.8 F      | 3.3 F      | 4.6        | 5.3 J      | 5.1        |
| t-butylbenzene              | 5         | 1.8        | 1.6        | 2.3        | 1.2        | 1.3 J ♦    | 1.2 J            | 2          | U                    | U          | 0.69 F     | 1.5 F      | U          | U          | 1.2        | 1.4 J      | 1.84 ♦     |
| chloroethane                | 5         | U          | U          | 0.82 J 🔶   | 0.55       | 0.16 UJ    | 0.44 F           | U          | U                    | U          | U          | U          | U          | U          | U          | 1.3 J      | U          |
| chloromethane               | 5         | U          | U          | 0.85 ♦     | 0.33 F     | 0.26 J ♦   | 0.28 F           | U          | U                    | U          | U          | U          | U          | U          | U          | IJ         | U          |
| ethylbenzene                | 5         | U          | 0.28 F     | U          | U          | 0.18 UJ    | 0.71 F           | 3.5        | U                    | U          | U          | U          | U          | U          | U          | U          | U          |
| Hexachlorobutadiene         | 0.5       | U          | U          | U          | U          | U          | U                | U          | Ŭ                    | U          | 1.4 F      | U          | U          | U          | U          | U          | U          |
| isopropylbenzene            | 5         | 34         | 28         | 50         | 36         | 25 J ♦     | 32 J             | 71         | 63                   | 23         | 30         | 41         | 29         | 24         | 48 ♦       | 54 ♦       | 64         |
| p-isopropyltoluene          | 5         | 8.9        | 7          | 10 ♦       | 4          | 4.4 J ♦    | 3.5 J            | 7.6        | 63                   | 2.4 F      | 4.4 F      | 4.1 F      | 4 F        | 3.8 F      | 3.8        | 3.2 F +    | 4.1 •      |
| methylene chloride          | 5         | U          | U          | U          | U          | U          | U                | U          | U                    | 2.6 F      | U          | U          | U          | U          | U          | U          | U          |
| naphthalene                 | 10        | U          | U          | 1.6 J ♦    | 0.78 J     | 0.21 UJ    | 0.7 F            | 2.2        | 2                    | U          | 1.1 F      | 1.2 F      | 1.2 F      | 1.6 F      | 2          | 1.8 J      | 3.26 +     |
| n-propylbenzene             | 5         | 7.8        | 6.7        | 10         | 6.9        | 5.2 J 🔶    | 5.2 J            | 12         | 11                   | 4.2        | 6.7        | 8.8        | 6.7        | 5.4        | 8.4        | 8.1 •      | 10.8       |
| tetrachloroethylene         | 5         | U          | U          | U          | U          | 0.18 UJ    | U                | U          | U                    | U          | U          | U          | U          | U          | U          | U          | U          |
| trichloroethylene           | 5         | U          | U          | Ŭ          | Ŭ          | 0.17 UJ    | Ŭ                | Ŭ          | Ŭ                    | Ŭ          | Ŭ          | Ŭ          | Ŭ          | Ŭ          | Ŭ          | Ŭ          | Ŭ          |
| toluene                     | 5         | 0.31 F     | Ŭ          | 0.48 F     | Ŭ          | 0.16 UJ    | Ŭ                | Ŭ          | Ŭ                    | Ŭ          | Ŭ          | 2 F        | Ŭ          | Ŭ          | Ŭ          | Ŭ          | 0.24       |
| m,p-xylene                  | 5         | 4.4        | 4.5        | 8.2        | 1.2        | 1.9 J +    | 2.3 J            | 18         | 5.2                  | 2 F        | 3.7 F      | 2.4 F      | 2.8 F      | 3.2 F      | 4.2        | 1.1 F      | 1.18       |
| Total VOCs                  |           | 74.39      | 65.08      | 108.11     | 60.7       | 40.5       | 42.03            | 143.8      | 95.7                 | 40.9       | 58.29      | 68.8       | 49.3       | 43.5       | 74.76      | 81.2       | 94.99      |
| SVOCs (µg/L)                |           |            |            |            |            |            |                  |            |                      |            |            |            |            |            |            |            |            |
| 2-methylnaphthalene         |           | 5 F        | U          | 6          | U          | U          | 3 F              | 4 F        | 4 F                  | U          | N/S        |
| acenapthene                 |           | U          | U          | U          | U          | U          | U                | U          | 2 F                  | U          | N/S        |
| benzoic acid                |           | Ŭ          | Ŭ          | Ŭ          | Ŭ          | 13 UJ      | 17 R             | 18 R       | U                    | Ŭ          | N/S        |
| phenanthrene                |           | Ŭ          | Ŭ          | Ũ          | Ŭ          | U          | U                | U          | 2 F                  | Ŭ          | N/S        |
| di-n-butyl phthalate        | 50        | 3 F        | U          | 3          | U          | U          | U                | U          | U                    | U          | N/S        |
| 2.4.5-trichlorophenol       | 1*        | U          | 3 M        | Ŭ          | Ŭ          | Ŭ          | Ŭ                | Ŭ          | Ŭ                    | Ŭ          | N/S        |
| 2.4.6 - trichlorophenol     | 1*        | Ŭ          | 4 M        | Ŭ          | Ŭ          | Ŭ          | Ŭ                | Ŭ          | Ŭ                    | Ŭ          | N/S        |
| 2,4-dichlorophenol          | 1*        | Ŭ          | 5 M        | Ŭ          | Ŭ          | Ŭ          | Ŭ                | Ŭ          | Ŭ                    | Ŭ          | N/S        |
| 2,4-dinitrophenol           | 1*        | Ŭ          | 13 M       | Ŭ          | Ŭ          | 11 UJ      | Ŭ                | Ŭ          | Ŭ                    | Ŭ          | N/S        |
| 4.6-dinitro-2-methylphenol  | 1*        | U          | 18 M       | U          | U          | U          | U                | Ŭ          | U                    | U          | N/S        |
| 4 - nitrophenol             | 1*        | Ŭ          | 4 M        | Ŭ          | Ŭ          | Ŭ          | Ŭ                | Ŭ          | Ŭ                    | Ŭ          | N/S        |
| Total SVOCs                 |           | 8 F        | 0          | 9          | 0          | 0          | 3F               | 4 F        | 8 F                  | 0          | N/S        | N/S        | N/S        | N/S        | 0          | 0          | 0          |
| Wet Chemistry Data (mg/L)   |           |            | 0          | , í        |            |            | 51               |            | 5.                   |            | .05        |            |            |            |            | 0          | Ū          |
| nitroto                     | 10000     | II.        | IJ         | U          | L.         | U          |                  | L.         | T.                   | U          | II         | U.         | U.         | T.         | N/S        | N/S        | NI/C       |

U

U

6.9

456

2.4

8.99

979

12.79

8.13

-144

U

10.9

U

16

7.41

62 10.11

4.1

-90

U

N/S

N/S 210

2.4

6.92

60

2.4 -95

U

N/S

187

6.98

60 13.2

5.2 -107

U

N/S 174

3.6

6.73

68 12.5

8.19

-133

N/S

N/S

166

3.6

7.83

92.8 10.7

7.06

-90

N/S

N/S

N/S N/S

3.8

7.58

114

11.1

3.66

-27

N/S

N/S

N/S 147

7.26

89.2 11.4

7.68 -97

N/S

N/S

240

2.8

0.12

3.34

-116

specific conductance (µS/cm) temperature (degrees C) dissolved oxygen (mg/L)

total alkalinity Field Parameters dissolved iron

oxidation reduction potential (mV) Notes

pН

nitrate

sulfate

sulfide

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

10000

250000

U

4

U

3.8

7.26

591

10.5

3.26 -130

U

U

185

N/A

8.19

665

1.08

-139

10.5

U

4.5

U

158

7.09

524 12.3

6.99

-101

3.7 B

U

210 ♦

3.2

6.92

940

12.8

1.54

108

U

U

10.5 B 🔶

178

19

9.95

443

10.1

4.24

U

34.9

U

182

19

7.36

749

10.4

4.28

-156

U

8.4

U

221

16

7.43

898 12.05

4 35

-149

\* - Sum of total phenolic compounds may not exceed 1 ppm.
 • - Indicates higher value detected in the sample duplicate or during the dilution phase.

(mg/L)

-- Indidcates no NYS GA Groundwater Standard B - The analyte was also detected in a blank.

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

M - Matrix effect present

N/A - Analyte was not analyzed during sampling

N/S- Analyte was not sampled.

R - The data is unusable due to deficiences in the ability to analyze the sample and meet QC criteria.

August 2007 Page 3-12

| Tank Farms 1 and 3 Detected Analytical Results (continued)                                                                                                                                          |                        |            |            |            |            |            |            |            |                                                     |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|------------|------------|------------|------------|------------|------------|-----------------------------------------------------|--|--|--|--|
| Monitoring Well ID         NYSDEC         TF3MW-25           Sample ID         GW         TF3M2513AA         TF3M2513BB         TF3M2514CA         TF3M2512DA         TF3M2513FA         TF3M2513GB |                        |            |            |            |            |            |            |            |                                                     |  |  |  |  |
| Sample ID                                                                                                                                                                                           | GW                     | TF3M2513AA | TF3M2513BB | TF3M2514CA | TF3M2512DA | TF3M2513EA | TF3M2513FA | TF3M2513GB |                                                     |  |  |  |  |
| Date of Collection                                                                                                                                                                                  | Standards <sup>1</sup> | 2/26/02    | 6/19/02    | 9/13/02    | 12/12/2002 | 3/12/2003  | 6/20/2003  | 9/11/2003  |                                                     |  |  |  |  |
| Sample Depth (ft)                                                                                                                                                                                   | (µg/L)                 | 13         | 13         | 14         | 12         | 13         | 13         | 14         |                                                     |  |  |  |  |
| VOCs (ug/L)                                                                                                                                                                                         |                        |            |            |            |            |            |            |            |                                                     |  |  |  |  |
| acetone                                                                                                                                                                                             | 50                     | U          | U          | U          | U          | U          | U          | 2.4 F      |                                                     |  |  |  |  |
| t-butylbenzene                                                                                                                                                                                      | 5                      | 1.8        | U          | U          | U          | U          | U          | U          |                                                     |  |  |  |  |
| bromomethane                                                                                                                                                                                        | 5                      | U          | U          | U          | U          | 0.19 UJ    | U          | U          | 03                                                  |  |  |  |  |
| chloroform                                                                                                                                                                                          | 7                      | 1.2        | 1.2        | 1.1        | 0.97       | 1.1        | 0.61       | 0.63       | - 20                                                |  |  |  |  |
| ethylbenzene                                                                                                                                                                                        | 5                      | 0.23 F     | U          | U          | U          | U          | U          | U          | ber                                                 |  |  |  |  |
| tetrachloroethylene                                                                                                                                                                                 | 5                      | 0.29 F     | 0.27 F     | 0.33 F     | 0.28 F     | 0.31 F     | U          | 0.29 F     | eml                                                 |  |  |  |  |
| trichloroethylene                                                                                                                                                                                   | 5                      | 0.4 F      | 0.35 F     | 0.38 F     | 0.38 F     | 0.35 F     | U          | 0.31 F     | epte                                                |  |  |  |  |
| toluene                                                                                                                                                                                             | 5                      | U          | U          | U          | U          | U          | U          | U          | Š                                                   |  |  |  |  |
| m,p-xylene                                                                                                                                                                                          | 5                      | U          | U          | U          | U          | U          | U          | U          | fter                                                |  |  |  |  |
| Total VOCs                                                                                                                                                                                          |                        | 3          | 1.2        | 1.1        | 0.97       | 1.1        | 0.61       | 3.94       | l ai                                                |  |  |  |  |
| SVOCs (µg/L)                                                                                                                                                                                        |                        |            |            |            |            |            |            |            | ple                                                 |  |  |  |  |
| benzoic acid                                                                                                                                                                                        |                        | U          | U          | U          | U          | 13 UJ      | 17 R       | 18 R       | lm                                                  |  |  |  |  |
| isophorone                                                                                                                                                                                          | 50                     | U          | U          | U          | U          | U          | 1 R        | U          | t sa                                                |  |  |  |  |
| 2,4-dinitrophenol                                                                                                                                                                                   | 1*                     | U          | U          | U          | U          | 11 UJ      | U          | U          | ou                                                  |  |  |  |  |
| Total SVOCs                                                                                                                                                                                         |                        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | ell                                                 |  |  |  |  |
| Wet Chemistry Data (mg/L)                                                                                                                                                                           |                        |            |            |            |            |            |            |            | d w                                                 |  |  |  |  |
| nitrate                                                                                                                                                                                             | 10000                  | 1          | 0.83       | 0.85       | N/A        | 1.5        | 0.92       | 0.7        | nee                                                 |  |  |  |  |
| sulfate                                                                                                                                                                                             | 250000                 | 27.9       | 17.9 B     | 178 B      | 7.7        | 16.1 B     | 17.9       | 17.4       | ssio                                                |  |  |  |  |
| sulfide                                                                                                                                                                                             |                        | U          | U          | U          | U          | U          | U          | U          | mis                                                 |  |  |  |  |
| total alkalinity                                                                                                                                                                                    |                        | 160        | 122        | 148        | 106        | 131        | 140        | 139        | Decomissioned well not sampled after September 2003 |  |  |  |  |
| Field Parameters                                                                                                                                                                                    |                        |            |            |            |            |            |            |            | Ď                                                   |  |  |  |  |
| Dissolved Iron (mg/L)                                                                                                                                                                               |                        | 0.5        | N/A        | 0.6        | 0.8        | 0.1        | 1.8        | N/S        |                                                     |  |  |  |  |
| pH                                                                                                                                                                                                  |                        | 7.38       | 7.94       | 7.1        | 7.1        | 7.06       | 7.28       | N/S        |                                                     |  |  |  |  |
| Specific Conductance (µS/cm)                                                                                                                                                                        |                        | 483        | 573        | 876        | 506        | 385        | 503        | N/S        |                                                     |  |  |  |  |
| Temperature (degrees C)                                                                                                                                                                             |                        | 10.3       | 10.4       | 13.2       | 12.5       | 10.14      | 10.15      | N/S        |                                                     |  |  |  |  |
| Dissolved Oxygen (mg/L)                                                                                                                                                                             |                        | 4.35       | 2.76       | 3.12       | 3.89       | 9.07       | 4.45       | N/S        |                                                     |  |  |  |  |
| Oxidation Reduction Potential (mV)                                                                                                                                                                  |                        | -77        | -101       | -22        | -88        | 235        | -108       | N/S        |                                                     |  |  |  |  |

 Table 3-2

 Tank Farms 1 and 3 Detected Analytical Results (continued)

Notes:

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

\* - Sum of total phenolic compounds may not exceed 1 ppm.

+ - Indicates higher value detected in the sample duplicate or during the dilution phase.

-- Indidcates no NYS GA Groundwater Standard

B - The analyte was also detected in a blank.

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

M - Matrix effect present

N/A - Analyte was not analyzed during sampling

R - The data is unusable due to deficiences in the ability to analyze the sample and meet QC criteria.

#### Table 3-2 Tank Farms 1 and 3 Detected Analytical Results (continued)

| Monitoring Well ID                 | Tank Farms 1 and 3 Detected Analytical Results (continued)  NYSDEC  F3MU1613Aa/F3MU1613Aa/F3MU1613BB/F3MU1614CA/F3MU1613BA/F3MU1613BA/F3MU1613BA/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BA/F3MU1613BA/F3MU1613BA/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BA/F3MU1613BA/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3MU1613BB/F3B/F3B/F3B/F3B/F3B/F3B/F3B/F3B/F3B/ |             |              |             |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TE2M11612AA | TE2M11612A A | FE2M11612DE | TE2M11614CA | TE2M11612DA | TE2M11612EA | TE2M11612EA | TE2M11614CP |            |           | TE2M116121D | TF3M11613KB | TF3M11613LB | TE2M11612MA | TF3M11613NA | TF3M11614OA | TE2M11614DA |
| Date of Collection                 | Standards <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/13/01    | 2/27/02      | 6/18/02     | 9/13/02     | 12/19/02    | 3/12/03     | 6/23/03     | 9/12/2003   | 12/12/2003 | 3/17/2004 | 6/17/2004   | 9/13/2004   | 12/30/2004  | 3/29/2005   | 3/28/2006   | 6/20/2006   | 9/26/2006   |
| Sample Depth (ft)                  | (µg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/13/01    | 13           | 13          | 14          | 13          | 13          | 13          | 3/12/2003   | 13         | 13        | 13          | 16          | 12/30/2004  | 13          | 13          | 14          | 14          |
| VOCs (ug/L)                        | (µg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15          | 15           | 15          | 14          | 15          | 15          | 15          |             | 15         | 15        | 15          | 10          | 15          | 15          | 15          | 14          | 14          |
| 1.2.4-trimethylbenzene             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U           | U            | U           | U           | U           | U           | U           | U           | U          | U         | 0.26 F      | UM          | U           | U           | U           | U           | U           |
| 1,2-dichloropropane                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ŭ           | 0.82         | U           | U           | U           | U           | Ŭ           | Ŭ           | U          | U         | U           | U           | U           | U           | U           | U           | U           |
| p-isopropyltoluene                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U           | U            | U           | 0.65        | 0.38 F      | 0.22 F      | Ŭ           | Ŭ           | Ŭ          | U         | U           | U           | U           | U           | U           | U           | U           |
| sec-butylbenzene                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10          | 8.1 ♦        | 7.3         | 10          | 10          | 4.1         | 7.9         | 3.1 •       | 3.5 +      | 4.9 ♦     | 6.5         | 13 M        | 14          | 8 M         | 8.7         | 4.5         | 4.03        |
| t-butylbenzene                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1         | 1.5 +        | 2.2         | 2.1         | 2.1         | 1.2         | 1.7 J       | 0.86 ♦      | 1.2 •      | 1.8 •     | 1.9         | 2.8 M       | 2.3         | 1.8 J       | 1.6         | 1.5         | 1.54        |
| cis-1.2-dichloroethylene           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U           | 0.26 F       | U           | U           | U           | U           | U           | U           | 0.24 F     | U         | U           | U           | U           | U           | U           | U           | U           |
| chloroethane                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ŭ           | U.201        | Ŭ           | Ŭ           | U           | Ŭ           | Ŭ           | Ŭ           | U          | Ŭ         | Ŭ           | Ŭ           | U           | 0.36 F      | U           | 0.54 F      | Ŭ           |
| ethylbenzene                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ŭ           | Ŭ            | Ŭ           | Ŭ           | U           | Ŭ           | Ŭ           | Ŭ           | Ŭ          | Ŭ         | 0.24 F      | Ŭ           | 0.21 F      | U           | U           | U           | Ŭ           |
| isopropylbenzene                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15          | 7.9 ♦        | 12          | 6.3         | 14          | 4.9         | 9           | 2.8 ♦       | 5.8 ♦      | 9.4 ♦     | 14          | 22          | 18          | 9.4 M       | 9.9         | 5.8         | 7.44        |
| n - butylbenzene                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.8         | 3.6          | 4.4         | 7.8         | 3.8         | U           | 3.1 J       | 2 •         | 1.5 +      | 1.8 ♦     | 1.5         | 3.6 M       | 3.8         | 3.3 J       | 4.2         | 2           | 1.8         |
| methyl ethyl ketone                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U           | U            | U           | U           | U           | 1.6 UJ      | U           | U           | U          | U         | U           |             |             | U           | U           | Ū           | U           |
| n-propylbenzene                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.3         | 10 ♦         | 11          | 9.5         | 6.8         | 4.6         | 9.4         | 2.7 ♦       | 3.7 ♦      | 6 ♦       | 6.8         | 16          | 18          | 9.3 M       | 4.4         | 4.4         | 4.18        |
| toluene                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U           | U            | U           | 0.22 F      | U           | U           | U           | U           | U          | U         | U           | U           | U           | U           | U           | U           | U           |
| 1,2 - dichloropropane              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U           | U            | U           | U           | U           | U           | U           | U           | U          | U         | U           | U           | U           | U           | U           | U           | U           |
| napthalene                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U           | U            | U           | U           | U           | U           | U           | U           | U          | U         | U           | U           | U           | 0.21 F      | U           | U           | U           |
| Total VOCs                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.2        | 32.18        | 36.9        | 36.57       | 37.08       | 15.02       | 31.1        | 11.46       | 15.94      | 23.9      | 31.2        | 57.6        | 56.31       | 32.37       | 33.2        | 18.79       | 18.99       |
| SVOCs (µg/L)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |             |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
| 2-methylnaphthalene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8           | 10           | 11          | 4           | 11          | 10          | 3           | 10          | 7 F ♦      | 6 F 🔶     | N/S         |
| 2,4-dichlorophenol                 | 1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U           | U            | 5 M         | U           | U           | U           | U           | U           | U          | U         | N/S         |
| 2,4-dinitrophenol                  | 1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U           | U            | 13 M        | U           | U           | 11 UJ       | U           | U           | U          | U         | N/S         |
| 2,4,5-trichlorophenol              | 1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U           | U            | 3 M         | U           | U           | U           | U           | U           | U          | U         | N/S         |
| 4,6-dinitro-2-methylphenol         | 1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U           | U            | 18 M        | U           | U           | U           | U           | U           | U          | U         | N/S         |
| 4-nitrophenol                      | 1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U           | U            | 4 M         | U           | U           | U           | U           | U           | U          | U         | N/S         |
| 2,4,6-trichlorophenol              | 1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U           | U            | 4 M         | U           | U           | U           | U           | U           | U          | U         | N/S         |
| napthalene                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U           | U            | U           | U           | U           | U           | 4           | U           | U          | U         | N/S         |
| phenanthrene                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U           | U            | U           | U           | U           | U           | 2           | U           | U          | U         | N/S         |
| pyrene                             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U           | U            | U           | U           | U           | U           | 2           | U           | U          | U         | N/S         |
| di-n-octyl phthalate               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U           | U            | 3 F         | U           | U           | U           | U           | U           | U          | U         | N/S         |
| Total SVOCs                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8           | 10           | 14          | 4           | 11          | 10          | 11          | 10          | 7          | 6         | N/S         |
| Wet Chemistry Data (mg/L)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |             |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
| nitrate                            | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A         | U            | U           | U           | U           | 0.056       | U           | U           | U          | 0.1 ♦     | 0.052       | U           | 0.31        | U           | N/S         | N/S         | N/S         |
| sulfate                            | 250000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A         | U            | 11.1        | 2.9 B       | 7.9         | 11.4 B      | U           | 13.2        | 21.6 ♦     | 10.1      | N/S         |
| sulfide                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A         | U            | U           | U           | U           | U           | U           | U           | U          | 0.091 F ♦ | N/S         |
| total alkalinity                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A         | 232 ♦        | 215         | 252         | 181         | 260         | 252         | 227 ♦       | 487        | 161 B 🔶   | 222         | 191         | 224 ♦       | 201         | N/S         | 178         | 250         |
| Field Parameters                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |             |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
| dissolved iron (mg/L)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A         | 6            | N/A         | 6.8         | 3.5         | 2.4         | 5.6         | 2.8         | N/A        | 4.4       | 5           | 5           | 4.2         | 1.8         | 3.2         | 4.5         | 3.2         |
| pH                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.5         | 7.05         | 7.96        | 6.91        | 6.92        | 9.9         | 7.09        | 6.85        | 8.78       | 6.74      | 6.8         | 6.65        | 6.49        | 8           | 7.4         | 7.02        | 7.3         |
| specific conductance (µS/cm)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1020        | 437          | 668         | 821         | 674         | 471         | 519         | 582         | 767        | 66        | 83          | 79          | 63          | 90          | 86.7        | 0.169       | 140         |
| temperature (degrees C)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.91       | 10.5         | 10.7        | 13.1        | 12.5        | 10.3        | 10.78       | 12.22       | 12.9       | 9.38      | 10.4        | 13.1        | 12.2        | 10.2        | 10.6        | 11          | 14.1        |
| dissolved oxygen (mg/L)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.06        | 3.55         | 0.62        | 1.16        | 5.55        | 3.71        | 4.46        | 5.24        | 4.36       | 3.5       | 3.9         | 2.65        | 7.29        | 6.78        | 3.19        | 6.82        | 0.7         |
| oxidation reduction potential (mV) | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -124        | -117         | -135        | -16         | -105        | -120        | -142        | -136        | -135       | -63       | -99         | -106        | -131        | -113        | -72         | -92         | -122        |

Notes:

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

+ - Indicates higher value detected in the sample duplicate or during the dilution phase.

\* - Sum of total phenolic compounds may not exceed 1 ppm.

-- Indidcates no NYS GA Groundwater Standard B - The analyte was also detected in a blank.

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

M - Matrix effect present

N/A - Analyte was not analyzed during sampling

N/S- Analyte was not sampled.

R - The data is unusable due to deficiences in the ability to analyze the sample and meet QC criteria.

#### Table 3-2 Tank Farms 1 and 3 Detected Analytical Results (continued)

|                                    |           | Tank Farms 1 and 3 Detected Analytical Results (continued) |         |         |         |            |         |         |           |            |           |             |           |            |           |           |           |           |
|------------------------------------|-----------|------------------------------------------------------------|---------|---------|---------|------------|---------|---------|-----------|------------|-----------|-------------|-----------|------------|-----------|-----------|-----------|-----------|
| Monitoring Well ID                 | NYSDEC    |                                                            |         |         |         | r          | r       |         | r         | TF3MW-1    |           |             |           |            |           |           |           |           |
| Sample ID                          | GW        |                                                            |         |         |         |            |         |         |           |            |           | TF3M11713JB |           |            |           |           |           |           |
| Date of Collection                 | Standards | 12/13/01                                                   | 2/27/02 | 6/18/02 | 9/13/02 | 12/12/2002 | 3/12/03 | 6/20/03 | 9/12/2003 | 12/12/2003 | 3/18/2004 | 6/17/2004   | 9/13/2004 | 12/30/2004 | 3/29/2005 | 3/28/2006 | 6/20/2006 | 9/26/2006 |
| Sample Depth (ft)                  | (µg/L)    | 13                                                         | 13      | 13      | 13      | 12         | 13      | 13      | 13        | 13         | 13        | 13          | 13        | 13         | 13        | 13        | 13        | 14        |
| VOCs (ug/L)                        |           |                                                            |         |         |         |            |         |         |           |            |           |             |           |            |           |           |           |           |
| 1,1,2 -trichloroethane             | 1         | U                                                          | U       | 0.42 M  | U       | U          | U       | U       | U         | U          | U         | U           | U         | U          | U         | U         | U         | U         |
| 1,2-dibromo-3-chloropropane        | 5         | U                                                          | U       | U       | U       | U          | 0.25 UJ | U       | U         | U          | U         | U           | U         | U          | U         | U         | U         | U         |
| benzene                            | 1         | 0.29 F                                                     | 0.35 F  | U       | 0.28 F  | 0.31 F     | U       | 0.28    | 0.24 F    | U          | 0.26 F    | U           | U         | U          | U         | U         | U         | 0.12      |
| bromomethane                       | 5         | U                                                          | U       | U       | U       | U          | 0.19 UJ | U       | U         | U          | U         | U           | U         | U          | U         | U         | U         | U         |
| chloroethane                       | 5         | U                                                          | U       | U       | U       | U          | U       | U       | U         | U          | U         | U           | U         | U          | 0.38 F    | U         | 0.41 F    | U         |
| chloromethane                      | 5         | U                                                          | U       | U       | U       | 0.21 F     | U       | U       | U         | U          | U         | U           | U         | U          | 0.49 F    | U         | 0.4 F     | U         |
| sec-butylbenzene                   | 5         | 1.9                                                        | 1.6     | 1.4     | 2.8     | 1.9        | U       | 6.1     | 2.4       | 5.6        | 2.1       | 4.8         | 6.4       | U          | U         | 0.95 F    | 0.86 F    | 0.55      |
| t-butylbenzene                     | 5         | 1                                                          | 2.5     | 2.6     | 2       | 2.1        | 2.2     | 2       | 2.7       | 1.9        | 2.8       | 2.9         | 2.8       | U          | 2         | 2.2       | 1.8       | 1.36      |
| cis-1,2-dichloroethylene           | 5         | 0.4 F                                                      | 0.29 F  | U       | U       | U          | 0.36 F  | 0.22 F  | U         | 0.48 F     | 0.33 F    | U           | U         | U          | U         | U         | 0.34 F    | 0.2       |
| isopropylbenzene                   | 5         | 2                                                          | 0.52    | 1.1     | 4.7     | 1.1        | 0.8     | 7.7     | 2.9       | 6.1        | 2.9       | 6.4         | 12        | 5.9        | 3.9       | 1.1       | 0.73 F    | 0.15      |
| p-isopropyltoluene                 | 5         | 1.8                                                        | 4.5     | U       | U       | U          | 3.8     | U       | 5.5       | U          | 5.2       | 6           | 5.5       | U          | U         | U         | U         | U         |
| n-butylbenzene                     | 5         | U                                                          | U       | U       | U       | U          | U       | U       | U         | U          | U         | U           | U         | 0.48 F     | U         | U         | U         | U         |
| n-propylbenzene                    | 5         | 0.32 F                                                     | U       | U       | 0.52    | U          | U       | 0.83 F  | 0.37 F    | 2.5        | 0.39 F    | 2.5         | 5.2       | 3.7        | 0.66 F    | U         | U         | U         |
| Total VOCs                         |           | 7.71                                                       | 9.76    | 5.1     | 10.3    | 5.62       | 7.16    | 17.13   | 14.11     | 16.58      | 13.98     | 22.6        | 31.9      | 10.08      | 7.43      | 4.25      | 4.95      | 2.38      |
| SVOCs (µg/L)                       |           |                                                            |         |         |         |            |         |         |           |            |           |             |           |            |           |           |           |           |
| 2,4-dichlorophenol                 | 1*        | U                                                          | U       | 4 M     | U       | U          | U       | U       | U         | U          | U         | N/S         | N/S       | N/S        | N/S       | N/S       | N/S       | N/S       |
| 2,4-dinitrophenol                  | 1*        | U                                                          | U       | 12 M    | U       | U          | 11UJ    | U       | U         | U          | U         | N/S         | N/S       | N/S        | N/S       | N/S       | N/S       | N/S       |
| 2,4,5-trichlorophenol              | 1*        | U                                                          | U       | 3 M     | U       | U          | U       | U       | U         | U          | U         | N/S         | N/S       | N/S        | N/S       | N/S       | N/S       | N/S       |
| 4,6-dinitro-2-methylphenol         | 1*        | U                                                          | U       | 16 M    | U       | U          | U       | U       | U         | U          | U         | N/S         | N/S       | N/S        | N/S       | N/S       | N/S       | N/S       |
| 4-nitrophenol                      | 1*        | U                                                          | U       | 3 M     | U       | U          | U       | U       | U         | U          | U         | N/S         | N/S       | N/S        | N/S       | N/S       | N/S       | N/S       |
| 2,4,6-trichlorophenol              | 1*        | U                                                          | U       | 4 M     | U       | U          | U       | U       | U         | U          | U         | N/S         | N/S       | N/S        | N/S       | N/S       | N/S       | N/S       |
| benzoic acid                       |           | U                                                          | U       | U       | U       | U          | 13 UJ   | 17 R    | 7 R       | U          | U         | N/S         | N/S       | N/S        | N/S       | N/S       | N/S       | N/S       |
| Wet Chemistry Data (mg/L)          |           |                                                            |         |         |         |            |         |         |           |            |           |             |           |            |           |           |           |           |
| nitrate                            | 10000     | N/A                                                        | 0.064   | U       | U       | U          | U       | U       | U         | 0.061      | 0.11      | 0.069       | 2.5       | 0.67       | 0.29      | N/S       | N/S       | N/S       |
| sulfate                            | 250000    | N/A                                                        | U       | 7.7     | 6.2 B   | 3.2        | 5.8 B   | 83.4    | U         | 6.3        | 1.3       | N/S         | N/S       | N/S        | N/S       | N/S       | N/S       | N/S       |
| sulfide                            |           | N/A                                                        | U       | U       | U       | U          | U       | U       | U         | U          | U         | N/S         | N/S       | N/S        | N/S       | N/S       | N/S       | N/S       |
| total alkalinity                   |           | N/A                                                        | 298     | 274     | 312     | 206        | 251     | 264     | 307       | 445        | 336       | 316         | 269       | 244        | 237       | N/S       | 224       | 280       |
| Field Parameters                   |           |                                                            |         |         |         |            |         |         |           |            |           |             |           |            |           |           |           |           |
| dissolved iron (mg/L)              |           | N/A                                                        | 6       | N/A     | 6.2     | 5.6        | 4.6     | 4.9     | 4         | 3.3        | 4.2       | 4.4         | 3.6       | 3.2        | 3.5       | 3         | 4.2       | 4         |
| pH                                 |           | 7.57                                                       | 6.87    | 7.82    | 6.92    | 6.84       | 9.58    | 6.93    | 6.98      | 8.63       | 6.82      | 6.64        | 6.78      | 6.45       | 7.87      | 7.41      | 7.06      | 7.14      |
| specific conductance (µS/cm)       |           | 1340                                                       | 1190    | 1840    | 1620    | 1330       | 158     | 209     | 180       | 179        | 13        | 95          | 82        | 80         | 98        | 133       | 14        | 16        |
| temperature (degrees C)            |           | 13.71                                                      | 10      | 11      | 14.8    | 13.4       | 9.5     | 10.72   | 14.03     | 13.88      | 8.81      | 10.7        | 15        | 12         | 8.8       | 9.5       | 11.7      | 15.7      |
| dissolved oxygen (mg/L)            |           | 4.31                                                       | 4.19    | 6.93    | 1.39    | 3.55       | 5.35    | 4.13    | 5.53      | 6.71       | 4.9       | 2.5         | 4.42      | 9.22       | 5.46      | 4.78      | 7.47      | 0.51      |
| oxidation reduction potential (mV) |           | -93                                                        | -98     | -123    | 88      | -102       | -102    | -119    | -141      | -112       | -68       | -53         | -97       | -122       | -94       | -10       | -85       | -113      |
| Notes:                             |           |                                                            |         |         |         |            |         |         |           |            |           |             |           |            |           |           |           |           |

Notes: 1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

-- Indidcates no NYS GA Groundwater Standard

\* - Sum of total phenolic compounds may not exceed 1 ppm. B - The analyte was also detected in a blank.

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

N/A - Analyte was not analyzed during sampling

N/S- Analyte was not sampled. M - Matrix effect present

R - The data is unsable due to deficiences in the ability to analyze the sample and meet QC criteria.
U - The nalyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

UJ - The analyte was not detected above the RL. However the quantitation is an approximation.

Table 3-2 Tank Farms 1 and 3 Detected Analytical Results (continued)

|                                                                | NVSDEC           |                      |                         |                                                                                                                                                |             |            | Tank Farnes 1 and 3 Detected Analytical Results (continued) Decommissioned Monitoring Webls (November 2004). |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
|----------------------------------------------------------------|------------------|----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|--------------------------------------------------------------------------------------------------------------|-----------|--------------|-----------|-----------|----------|---------|---|--------|-------------|-----------|------------|--------------|-----------|-----------|------------|
|                                                                |                  |                      |                         |                                                                                                                                                |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
|                                                                |                  |                      |                         |                                                                                                                                                |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
| ample ID                                                       |                  |                      | TF3M11810AA             |                                                                                                                                                | TF3M11913AA |            |                                                                                                              |           | TF3M119R12NA |           |           |          |         |   |        | TF3M12110AA |           |            | TF3M121R12MA |           |           |            |
|                                                                | Standards        | 12/13/01             | 2/27/02                 | 12/13/01                                                                                                                                       | 2/27/02     | 9/13/2004  | 12/30/2004                                                                                                   | 3/29/2005 | 3/28/2006    | 6/20/2006 | 9/26/2006 | 12/13/01 | 2/27/02 |   | /20/01 | 2/27/02     | 9/13/2004 | 12/30/2004 | 3/29/2005    | 3/28/2006 | 6/20/2006 | 9/26/2006  |
| ample Depth (ft)                                               | (µg/L)           | 10                   | 10                      | 13                                                                                                                                             | 13          | 12         | 12                                                                                                           | 13        | 12           | 12        | 12        | 11       | 11      |   | 11     | 11          | 12        | 12         | 12           | 12        | 12        | 12         |
| OCs (ug/L)                                                     |                  |                      |                         |                                                                                                                                                |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
| 1-dichloroethane                                               | 5                | U                    | U                       | U                                                                                                                                              | U           | U          | U                                                                                                            | U         | U            | U         | U         | U        | U       |   | U      | 0.23 F      | U         | U          | U            | U         | U         | U          |
| 2,4-trimethylbenzene                                           | 5                | U                    | U                       | U                                                                                                                                              | U           | U          | U                                                                                                            | U         | U            | U         | U         | 4.1      | U       |   | U      | 1.4         | U         | U          | U            | U         | U         | U          |
| 3,5-trimethylbenzene                                           | 5                | U                    | U                       | U                                                                                                                                              | U           | U          | U                                                                                                            | U         | U            | U         | U         | 1.2      | U       |   | U      | 0.54        | U         | U          | U            | U         | U         | U          |
| butylbenzene                                                   | 5                | 0.6 F                | 0.54                    | 1.2                                                                                                                                            | 0.41 F      | 1.4 F      | U                                                                                                            | U         | 0.5 F 🔶      | 0.5 F 🔶   | U         | 0.3 F    | U       |   | U      | 0.43 F      | U         | U          | U            | U         | U         | U          |
| hylbenzene                                                     | 5                | U                    | U                       | U                                                                                                                                              | U           | U          | U                                                                                                            | U         | U            | U         | U         | 0.56 F   | U       |   | U      | U           | U         | U          | U            | U         | U         | U          |
| opropylbenzene                                                 | 5                | 6.8                  | 0.21 F                  | 2.3                                                                                                                                            | 8.5         | 6.3        | U                                                                                                            | U         | U            | U         | U         | U        | U       |   | U      | U           | U         | U          | U            | U         | U         | U          |
| -butylbenzene                                                  | 5                | U                    | U                       | 0.53 F                                                                                                                                         | U           | U          | U                                                                                                            | U         | U            | U         | U         | U        | U       |   | U      | U           | U         | U          | U            | U         | U         | U          |
| ec-butylbenzene                                                | 5                | 0.36 F               | 0.28 F                  | 1.4                                                                                                                                            | 0.43 F      | 1.9 F      | U                                                                                                            | U         | U            | U         | U         | U        | U       |   | U      | U           | U         | U          | U            | U         | U         | U          |
| propylbenzene                                                  | 5                | 0.33 F               | U                       | 0.24 F                                                                                                                                         | 0.57        | U          | U                                                                                                            | U         | U            | U         | U         | 0.24 F   | U       |   | U      | U           | U         | U          | U            | U         | U         | U          |
| aphthalene                                                     | 10               | U                    | U                       | U                                                                                                                                              | U           | U          | U                                                                                                            | U         | U            | 0.2 F 🔶   | U         | U        | U       |   | U      | U           | U         | U          | U            | U         | U         | U          |
| cetone                                                         | 50               | U                    | U                       | U                                                                                                                                              | U           | U          | U                                                                                                            | U         | 30 B         | U         | U         | U        | U       |   | U      | U           | 5.1 F     | U          | U            | U         | U         | U          |
| alorobenzene                                                   | 5                | U                    | U                       | U                                                                                                                                              | U           | 1.8 F      | U                                                                                                            | U         | U            | U         | U         | U        | U       |   | U      | U           | U         | U          | U            | U         | U         | U          |
| hloroethane                                                    | 5                | U                    | U                       | U                                                                                                                                              | U           | U          | U                                                                                                            | U         | U            | 0.7 F     | U         | U        | U       |   | U      | U           | U         | U          | U            | U         | U         | U          |
| hloroform                                                      | 5                | Ŭ                    | Ŭ                       | N U                                                                                                                                            | Ŭ N         | Ŭ          | Ŭ                                                                                                            | Ŭ         | Ŭ            | U         | Ŭ         | Ŭ        | 0.29 F  |   | .49 F  | Ŭ           | 0.29 F    | Ŭ          | Ŭ            | Ŭ         | Ŭ         | Ŭ          |
| is-1,2-dichloroethylene                                        | 5                | Ŭ                    | Ŭ                       | 8 U                                                                                                                                            | U S         | 2.9 F      | Ŭ                                                                                                            | Ũ         | Ŭ            | Ŭ         | Ŭ         | Ŭ        | U       |   | U      | Ŭ           | e u       | Ŭ          | Ŭ            | Ŭ         | Ŭ         | Ŭ          |
| luene                                                          | 5                | Ű                    | Ŭ                       | A U                                                                                                                                            | U 4         | U          | Ŭ                                                                                                            | U         | U            | U         | U         | 3.8      |         |   | U      |             | 4 U       | U          | U            | U         | U         | U          |
| ichloroethylene                                                | 5                | U                    | 0.44 F                  | 0.31 F                                                                                                                                         | U           | U          | Ŭ                                                                                                            | U         | 0.38 F       | 0.26 F    | 1.2       | U        | 2.8     |   | 2.5    | U           | 2.6       | 1.8        | 1.6          | 1.5       | 1.6       | 1.2        |
| -xylene                                                        | 5                | Ŭ                    | U                       | W U                                                                                                                                            | U 2         | U          | U                                                                                                            | U         | U.38 F       | U.201     | U         | 2.1      | Ш       | Z | U.5    | U           | Z U       | U.         | II.          | U         | U         | U          |
| i,p,-xylene                                                    | 5                | Ŭ                    | Ŭ                       | <u>a</u> <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | Ŭ ŝ         | U          | Ŭ                                                                                                            | Ŭ         | Ŭ            | Ŭ         | Ŭ         | 3.8      | U :     |   | U      | 0.46 F      |           | U          | Ŭ            | Ŭ         | Ŭ         | U          |
| otal VOCs                                                      | 2                | 8.09                 | 1.47                    | 5.98                                                                                                                                           | 9.91        | 14.3       | 0                                                                                                            | 0         | Ŭ            | 1.67      | 1.2       | 16.1     | 3.09    |   | 2.99   | 3.06        | 7.99      | 1.8        | 1.6          | 1.5       | 1.6       | 1.2        |
| VOCs (µg/L)                                                    |                  | 0.07                 | 1.47                    | 012                                                                                                                                            | 2.21        | 14.5       | 0                                                                                                            | 0         | U            | 1.07      | 1.2       | 10.1     | 3.07    |   | £.//   | 5.00        |           | 1.0        | 1.0          | 1.0       | 1.0       | 1.2        |
| -nitrophenol                                                   |                  | IJ                   | U                       | Ξ U                                                                                                                                            | U 2         | U          | U                                                                                                            | U         | U            | U         | U         | U        | U ·     | š | U      | U           | N/S       | N/S        | U            | U         | U         | U          |
| nthracene                                                      | 50               | U                    | U                       | 0 7J                                                                                                                                           | U 8         | N/S        | N/S                                                                                                          | U         | U            | U         | U         | U        | U       |   | U      | U           | N/S       | N/S        | U            | U         | U         | U          |
| zenapthene                                                     | 20               | U                    | U                       | - 1<br>U                                                                                                                                       | U           | U          | U                                                                                                            | U         | U            | U         | 0.56      | U        | U       |   | U      | U           | P N/S     | N/S        | U            | U         | U         | U          |
| is (2-chloroisopropyl) ether                                   | 1.0              | U                    | U                       |                                                                                                                                                | U           | N/S        | N/S                                                                                                          | U         | U            | U         | 0.50      | U        | U       |   | U      | U           | N/S       | N/S        | U            | U         | U         | U          |
| is (2-ethylhexyl)phthalate                                     | 5                | U                    | 2                       | # 8J                                                                                                                                           | 5 8         | N/S        | N/S                                                                                                          | U         | U            | U         | 0.82      | U        | U       |   | U      | U           | # N/S     | N/S        | U            | U         | U         | 0.824      |
| i-n-octyl phthalate                                            |                  | 8                    | 2<br>U                  |                                                                                                                                                |             | N/S        | N/S                                                                                                          | U         | U            | U         | 0.82      | U        | U .     |   | U      | U           | N/S       | N/S        | U            | U         | U         | 0.824<br>U |
| r-n-octyr phinalate                                            | 0.002            | Ů                    | U                       | -1 8J                                                                                                                                          | 3           | N/S        | N/S                                                                                                          | U         | U            | U         | U         | U        | U :     | 2 | U      | U           | N/S       | N/S        | U            | U         | U         | U          |
| enzo(a)anthracene                                              | 0.002            | U                    | U                       | 8J                                                                                                                                             | 3           | N/S        | N/S                                                                                                          | U         | U            | U         | U         | U        | U       |   | U      |             |           | N/S        | U            | U         | U         | U          |
| enzo(a)antniacene<br>enzo(b)fluoranthene                       | 0.002            | U                    | U                       | 7 7 7 7                                                                                                                                        | <u> </u>    | N/S        | N/S                                                                                                          | U         | U            | U         | U         | U        | U ;     |   | U      | U           | N/S N/S   | N/S        | U            | U         | U         | U          |
|                                                                | 0.002            | U                    |                         |                                                                                                                                                | 0           |            |                                                                                                              | U         | U            | U         | U         | U        | U       |   | U      | U           | N/S       |            | U            | U         | U         | U          |
| enzo(a)pyrene                                                  | 50               | U                    | U                       | 6 J<br>8 J                                                                                                                                     | 8           | N/S<br>N/S | N/S<br>N/S                                                                                                   | U         | U            | 0.6 F     | 0.7       | U        | U       |   | U      | U           | N/S       | N/S<br>N/S | U            | U         | U         | U          |
| ouranthene                                                     | 50               | U                    |                         | 7 J                                                                                                                                            | 8<br>U      | N/S        | N/S                                                                                                          | U         |              | 0.6 F     | 0.7       | U        | U       |   | U      |             | N/S       | N/S        | U            | U         | U         | U          |
| henanthrene                                                    |                  | U                    | U                       |                                                                                                                                                |             |            |                                                                                                              | U         | U            | 0.7 F     | 0.66      |          | U       |   | U      | U           |           |            | U            | U         | U         | U          |
| yrene                                                          | 50               |                      | U                       | 7 J                                                                                                                                            | 8 26        | N/S<br>N/S | N/S<br>N/S                                                                                                   |           |              | 0.7F      | 4.12      | U        |         |   |        | U           | N/S       | N/S<br>N/S |              |           |           | 0.57       |
| otal SVOCs                                                     |                  | 8                    | 2                       | 0                                                                                                                                              | 26          | N/S        | N/S                                                                                                          | 0         | 0            | 1.5       | 4.12      | 0        | 0       |   | 0      | 0           | N/S       | N/S        | 0            | 0         | 0         | 0.57       |
| Vet Chemistry Data (mg/L)                                      |                  |                      |                         |                                                                                                                                                |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
| itrate                                                         | 10000            | N/S                  | 0.16                    | N/S                                                                                                                                            | U           | U          | U                                                                                                            | U         | N/S          | N/S       | N/S       | N/S      | 0.37    |   | N/S    | 0.054       | 1.2       | 1.4        | 1            | N/S       | N/S       | N/S        |
| ulfate                                                         | 250000           | N/S                  | U                       | N/S                                                                                                                                            | U           | U          | N/S                                                                                                          | N/S       | N/S          | N/S       | N/S       | N/S      | U       |   | N/S    | U           | N/S       | N/S        | N/S          | N/S       | N/S       | N/S        |
| ılfide                                                         |                  | N/S                  |                         | N/S                                                                                                                                            |             | U          | N/S                                                                                                          | N/S       | N/S          | N/S       | N/S       | N/S      | U       |   | N/S    | U           | N/S       | N/S        | N/S          | N/S       | N/S       | N/S        |
| tal alkalinity                                                 |                  | N/S                  | 90.8                    | N/S                                                                                                                                            | 176         | 127        | 97.7                                                                                                         | 163       | N/S          | 159       | 210       | N/S      | 233     | 1 | N/S    | 232         | 156       | 202        | 144          | N/S       | 203       | 0          |
| ield Parameters                                                |                  |                      |                         |                                                                                                                                                |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
| issolved iron (mg/L)                                           |                  | N/A                  | 0                       | N/A                                                                                                                                            | 2           | 0          | 1.2                                                                                                          | 2.5       | 0            | 0.7       | 0.6       | N/A      | 0       |   | N/A    | 0           | 0         | 0          | 0            | 0         | 0.8       | 0          |
| 1                                                              |                  | 6.79                 | 6.61                    | 7.64                                                                                                                                           | 7.12        | 7.14       | 6.74                                                                                                         | 7.65      | 6.82         | 7.33      | 6.52      | 7.76     | 7.13    |   | 7.71   | 7.12        | 6.95      | 6.61       | 7.25         | 7.34      | 7.34      | 7.06       |
| pecific conductance (µS/cm)                                    |                  | 242                  | 1520                    | 815                                                                                                                                            | 794         | 0.14 *     | 0.18 *                                                                                                       | 0.2 *     | 149          | 0.133 *   | 0.120 *   | 1030     | 601     |   | 819    | 743         | 0.13 *    | 0.13 *     | 97.5         | 154       | 0.134 *   | 0.13 *     |
| mperature (degrees C)                                          |                  | 14.62                | 7.4                     | 14.88                                                                                                                                          | 11.3        | 16         | 13.9                                                                                                         | 10.1      | 11.1         | 14.1      | 16.8      | 15.5     | 12      |   | 6.07   | 12.6        | 15.7      | 14         | 11.6         | 12.3      | 17.6      | 18.4       |
| issolved oxygen (mg/L)                                         |                  | 6.71                 | 4.44                    | 6.09                                                                                                                                           | 3.34        | 5.6        | 6.9                                                                                                          | 4.13      | 3.7          | 9.19      | 1.65      | 3.6      | 3.2     |   | 5.62   | 4.02        | 4.78      | 8.29       | 4.31         | 5.78      | 5.17      | 0          |
| xidation reduction potential (mV)                              |                  | -79                  | -40                     | -87                                                                                                                                            | -94         | 47         | -95                                                                                                          | -46       | 299          | -53       | -22       | -62      | -94     | 1 | 179    | 83          | 101       | 64         | 128          | 290       | 63        | 29         |
| otes:                                                          |                  |                      |                         |                                                                                                                                                |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
| - Groundwater Standards are from Technical                     | al and Operation | al Guidance Series   | (TOGS) 1.1.1, June 1    | 998. Amended in April                                                                                                                          | 2000        |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
| - specific conductance is measured in S/m.                     |                  |                      |                         |                                                                                                                                                |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
| Indidcates no NYS GA Groundwater Standa                        | lard             |                      |                         |                                                                                                                                                |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
| - Ananlyte was positively identified but the                   |                  | erical value is belo | w the reporting limit   |                                                                                                                                                |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
| The analyte was positively identified, the q                   |                  |                      |                         | sample                                                                                                                                         |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
| /A - Analyte was not analyzed during sampli                    |                  |                      |                         |                                                                                                                                                |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
| /S- Analyte was not sampled.                                   | -                |                      |                         |                                                                                                                                                |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |
| <ul> <li>The analyte was analyzed for, but not dete</li> </ul> | ected. The asso  | ciated numerical va  | alue is at or below the | method detection limit.                                                                                                                        |             |            |                                                                                                              |           |              |           |           |          |         |   |        |             |           |            |              |           |           |            |

Table 3-2 Tank Farms 1 and 3 Detected Analytical Results (continued)

| Monitoring Well ID                 | NYSDEC                 |             |             |             |             |             |             |             |                     | TF3MW-123   |             |              |             |             |             |             |             |             |
|------------------------------------|------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                          | GW                     | TF3M12313AA | TF3M12313AA | TF3M12313BB | TF3M12313CA | TF3M12313DA | TF3M12313EA | TF3M12313FA | TF3M12313GB         | TF3M12313HB | TF3M12313IB | TF3MW12313JB | TF3M12313KB | TF3M12313LB | TF3M12313MA | TF3M12313NB | TF3M12314OA | TF3M12314PA |
| Date of Collection                 | Standards <sup>1</sup> | 12/13/01    | 2/26/02     | 6/19/02     | 9/13/02     | 12/12/02    | 3/12/03     | 6/23/03     | 9/12/2003           | 12/12/2003  | 3/18/2004   | 6/17/2004    | 9/13/2004   | 12/30/2004  | 3/29/2005   | 3/28/2006   | 6/20/2006   | 9/26/2006   |
| Sample Depth (ft)                  | (µg/L)                 | 13          | 13          | 13          | 13          | 13          | 13          | 13          | 13                  | 13          | 13          | 13           | 13          | 13          | 13          | 13          | 14          | 14          |
| VOCs (ug/L)                        |                        |             |             |             |             |             |             |             |                     |             |             |              |             |             |             |             |             |             |
| 1,2,3-trichlorobenzene             | 5                      | U           | U           | U           | 0.9 M       | U           | U           | U           | U                   | U           | U           | U            | U           | U           | U           | U           | U           | U           |
| 1,2,4-trimethylbenzene             | 5                      | 350 ♦       | 88 🔶        | 46 ♦        | 78 M♦       | 28          | 31 ♦        | 60          | 72                  | 37          | 54          | 45           | 66          | 28          | 19          | 8.1         | 5.5 ♦       | 22.5        |
| 1,1,2-trichloroethylene            | 5                      | U           | U           | U           | 2.6         | U           | U           | U           | U                   | U           | U           | U            | U           | U           | U           | U           | U           | U           |
| 1,3,5-trimethylbenzene             | 5                      | 26 ♦        | 10          | 6.1 ♦       | 12          | 4           | 4.1         | 8.9         | 9.9                 | 4.9         | 7.1         | 7            | 10          | 4.4         | 2.7 F       | 1.5 F       | 0.88 F      | 3.88        |
| 1,2-dibromo-3-chloropropane        | 0.04                   | 5.6         | U           | 1.4 ♦       | U           | .5 UJ       | 0.5 UJ      | U           | U                   | U           | U           | U            | U           | U           | U           | U           | U           | U           |
| 1,1-dichloroethene                 | 5                      | U           | U           | U           | U           | U           | U           | U           | U                   | U           | U           | U            | U           | U           | U           | U           | 0.37 F      | U           |
| benzene                            | 1                      | 0.38 F      | 0.32 F      | U           | U           | 0.25 F      | U           | U           | U                   | U           | U           | U            | U           | U           | U           | U           | U           | U           |
| bromomethane                       | 5                      | U           | U           | U           | U           | U           | 0.38 UJ     | U           | U                   | U           | U           | U            | U           | U           | U           | U           | U           | U           |
| chloroethane                       | 5                      | U           | U           | U           | U           | 0.29 F      | U           | U           | U                   | U           | U           | U            | U           | U           | U           | 0.72 F      | 0.69 F      | U           |
| chloromethane                      | 5                      | U           | U           | U           | U           | U           | U           | U           | U                   | U           | U           | U            | U           | U           | U           | U           | 0.68 F      | U           |
| t-butylbenzene                     | 5                      | 8.2 ♦       | 2.5         | 1.4         | 3.9 M       | 1.3         | 1.2 ♦       | U           | 2.2                 | U           | U           | 1.5 F        | 2.1 F       | 1 F         | 0.96 F      | 0.89 F      | 0.77 F      | 1.42        |
| isopropylbenzene                   | 5                      | 480 ♦       | 140 ♦       | 73 ♦        | 130 M♦      | 53          | 62 J 🔶      | 120         | 130                 | 63          | 110         | 85           | 120         | 56          | 51          | 62          | 41 J        | 67.9        |
| n-butylbenzene                     | 5                      | 20 ♦        | 4.7         | 2.1 ♦       | U           | U           | U           | U           | 5.2                 | U           | U           | 1.4 F        | 1.9 F       | 0.9 F       | 1.2 F       | U           | U           | 1.44        |
| ethylbenzene                       | 5                      | 2.4         | 1.7         | 0.95 ♦      | U           | 0.33 F      | U           | U           | U                   | U           | U           | U            | U           | U           | U           | U           | U           | 0.17        |
| methylene chloride                 | 5                      | U           | U           | U           | U           | U           | U           | 6.5 B       | U                   | 3 B         | U           | U            | U           | U           | U           | U           | U           | U           |
| n-propylbenzene                    | 5                      | 63 ♦        | 16 ♦        | 10 ♦        | 15          | U           | 6.4 J ♦     | 11          | U                   | U           | U           | 11           | U           | U           | 6.2         | U           | U           | U           |
| p-isopropyltoluene                 | 5                      | 21 ♦        | 6.4         | 3 ♦         | 5 ♦         | 2.4         | 1.9 ♦       | U           | 4.6                 | 1.2         | U           | 2.6 F        | 3.7 F       | 1.6 F       | 1.4 F       | 0.84 F      | 0.46 F      | 1.82        |
| sec-butylbenzene                   | 5                      | 22 ♦        | 6.1         | 2.7 ♦       | 5 ♦         | 2.5         | 2 ♦         | 2.7         | 4.8                 | 1.4         | U           | 2.8 F        | 4.3         | 2 F         | 1.6 F       | 1.2 F       | 0.79 F      | 1.52        |
| n-propylbenzene                    | 5                      | U           | 23          | U           | 26          | 9.1         | U           | U           | 16                  | 7           | 11          | 11           | 15          | 7.1         | 6.2         | 7.1         | 4.1 J       | 7.35        |
| naphthalene                        | 10                     | U           | U           | 2.2 ♦       | 3.4         | U           | U           | U           | U                   | U           | U           | U            | U           | U           | U           | U           | U           | U           |
| toluene                            | 5                      | 1.1         | 0.27 F      | U           | 2           | U           | U           | U           | U                   | U           | U           | U            | 1 F         | U           | U           | U           | U           | U           |
| m,p-xylene                         | 5                      | 22 ♦        | 7           | 2.5 ♦       | 4.3         | 1.8         | 1.2         | U           | U                   | 1.3 F       | U           | 1.4 F        | 1.4 F       | U           | U           | U           | U           | 0.34        |
| Total VOCs                         |                        | 1021.3      | 305.99      | 151.35      | 288.1       | 102.97      | 109.8       | 209.1       | 244.7               | 118.8       | 182.1       | 168.7        | 225.4       | 101         | 84.06       | 82.35       | 54.19       | 107.03      |
| SVOCs (µg/L)                       |                        |             |             |             |             |             |             |             |                     |             |             |              |             |             |             |             |             |             |
|                                    |                        |             |             |             |             |             |             | not sample  | ed at this location |             |             |              |             |             |             |             |             |             |
| Wet Chemistry Data (mg/L)          |                        |             |             |             |             |             |             |             |                     |             |             |              |             |             |             |             |             |             |
| nitrate                            | 10000                  | N/A         | 0.8         | U           | U           | U           | 0.063       | U           | U                   | 0.29        | 0.06        | U            | 0.12        | 0.04 F      | U           | N/S         | N/S         | N/S         |
| sulfate                            | 250000                 | N/A         | U           | 11          | 4.7 B       | 4           | 9.3 B       | 25.5        | 17                  | 6.3         | 4.4         | N/S          | N/S         | N/S         | N/S         | N/S         | N/S         | N/S         |
| sulfide                            |                        | N/A         | U           | U           | U           | U           | U           | U           | U                   | U           | 0.06 F      | N/S          | N/S         | N/S         | N/S         | N/S         | N/S         | N/S         |
| total alkalinity                   |                        | N/A         | 202         | 156         | 204         | 150         | 160         | 159         | 167                 | 352         | 222         | 202          | 186         | 205         | 188         | N/S         | 156         | 200         |
| Field Parameters                   |                        |             |             |             |             |             |             |             |                     |             |             |              |             |             |             |             |             |             |
| dissolved iron (mg/L)              |                        | N/A         | 4           | N/A         | 3           | 2.8         | 1.9         | 2.8         | 2.2                 | NA          | 1.8         | 1            | 3           | N/A         | 1.4         | 2.4         | 3.6         | 3           |
| pH                                 |                        | 7.75        | 6.94        | 7.89        | 7.14        | 6.73        | 9.9         | 7.03        | 7.16                | 8.76        | 7.12        | 6.99         | 6.57        | 6.6         | 7.81        | 7.46        | 7.26        | 7.33        |
| specific conductance (µS/cm)       |                        | 721         | 751         | 686         | 615         | 594         | 531         | 590         | 600                 | 830         | 64          | 77           | 90          | 88          | 98          | 94.3        | 74.3        | 81          |
| temperature (degrees C)            |                        | 12.48       | 9.1         | 10.8        | 14.4        | 11.8        | 9           | 11.56       | 13.38               | 13.82       | 8.5         | 11.1         | 14.2        | 11.9        | 8.9         | 9.4         | 11.5        | 14.4        |
| dissolved oxygen (mg/L)            |                        | 3.98        | 3.29        | 0.86        | 1.05        | 4.02        | 4.24        | 3.89        | 4.8                 | 4.58        | 2.3         | 4.8          | 7.32        | 8.02        | 4.99        | 4.36        | 6.08        | 3.09        |
| oxidation reduction potential (mV) |                        | -99         | -84         | -118        | -19         | -65         | -109        | -130        | -128                | -113        | -67         | -84          | -71         | -111        | -90         | 176         | -99         | -108        |

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

Croundwater Standards are from Technical and Operational Guidance Series (TGGS) 1.1.1, June 1998. Amended in April 2000
 When the guidance value or standard is below the method detection limit, ahiving the method detection limit is considered acceptable for meeting the guidance value or standard
 Concentrations are from duplicate sample, which was greater than the original sample.
 Indideases no XYS GA Groundwater Standard
 The analyte was also detected in a blank.
 F - Analyte was positively identified but the associated numerical value is below the reporting limit

J - Analyte was positively identified, quantitation is an approximation

M - Matrix effect present N/A - Analyte was not analyzed during sampling

N/S- Analyte was not sampled.

R - The data is unusable due to deficiences in the ability to analyze the sample and meet QC criteria.

U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit. UJ - The analyte was not detected above the RL, however the quantitation is an approximation.

Page 3-17

| Monitoring Well ID                 | NYSDEC                 |             |             |             |             | TF3         | MW-124      |             |             |             |             |
|------------------------------------|------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                          | GW                     | TF3M12413AA | TF3M12413AA | TF3M12413BB | TF3M12414CA | TF3M12412DA | TF3M12413EA | TF3M12413HA | TF3M12413GB | TF3M12413HB | TF3M12413IB |
| Date of Collection                 | Standards <sup>1</sup> | 12/13/01    | 2/25/02     | 6/18/02     | 9/13/02     | 12/12/2002  | 3/12/2003   | 6/19/2003   | 9/12/2003   | 12/12/2003  | 3/17/2004   |
| Sample Depth (ft)                  | (µg/L)                 | 13          | 13          | 13          | 14          | 12          | 13          | 13          | 13          | 13          | 13          |
| VOCs (ug/L)                        |                        |             |             |             |             |             |             |             |             |             |             |
| 1,2-dibromo-3-chloropropane        | 0.04                   | U           | U           | U           | U           | U           | 0.25 UJ     | U           | U           | U           | U           |
| acetone                            | 50                     | U           | U           | U           | U           | U           | U           | U           | U           | 4.4 F       | 3.3 F       |
| benzene                            | 1                      | 0.76 F      | 0.76        | 0.43 F      | 0.5         | U           | U           | U           | U           | U           | U           |
| 1-chlorohexane                     |                        | U           | U           | U           | U           | U           | U           | 0.14 M      | 0.14 M      | U           | U           |
| 1,2,3-trichloropropane             | 5                      | U           | U           | U           | U           | U           | U           | 0.21 M      | U           | U           | U           |
| 1,2,4-trimethylbenzene             | 5                      | U           | U           | U           | U           | U           | U           | 0.23 M      | U           | U           | U           |
| 1,3,5-trimethylbenzene             | 5                      | U           | U           | U           | U           | U           | U           | 0.25 M      | U           | U           | U           |
| chloromethane                      | 5                      | U           | U           | U           | U           | 0.22 F      | U           | U           | U           | U           | U           |
| t-butylbenzene                     | 5                      | 0.45 F      | 0.3 F       | Ŭ           | Ŭ           | U           | Ŭ           | U           | Ŭ           | U           | Ŭ           |
| bromodichloromethane               | 50                     | U           | U           | U           | Ŭ           | U           | U           | 0.11 M      | U           | U           | U           |
| bromomethane                       | 5                      | U           | U           | U           | U           | U           | 0.19 UJ     | U           | 0.13 M      | U           | U           |
| isopropylbenzene                   | 5                      | 2.3         | 0.23 F      | U           | U           | U           | U           | U           | U           | U           | U           |
| p - isopropyltoluene               | 5                      | 0.21 F      | U           | U           | U           | U           | U           | U           | U           | U           | U           |
| sec - butylbenzene                 | 5                      | 0.47 F      | U           | U           | U           | U           | U           | U           | U           | U           | U           |
| m,p-xylene                         | 5                      | U           | U           | U           | U           | U           | U           | 0.34 M      | U           | U           | U           |
| 2-hexanone                         |                        | U           | U           | 11          | U           | U           | U           | U           | U           | U           | U           |
| toluene                            | 5                      | U           | U           | U           | U           | U           | U           | 0.17 M      | U           | U           | U           |
| trichloroethylene                  | 5                      | 0.52 F      | 0.57        | 0.59        | 0.61        | 0.48 F      | 0.62 J      | 0.33 F      | U           | 0.6 F       | 0.55 F      |
| styrene                            | 5                      | U           | U           | U           | U           | U           | U           | 0.12 M      | U           | U           | U           |
| tetrachloroethylene                | 5                      | U           | U           | U           | U           | U           | U           | U           | 0.18 M      | U           | U           |
| trichlorofluoromethane             | 5                      | U           | U           | U           | U           | U           | U           | U           | 0.14 M      | U           | U           |
| Total VOCs                         |                        | 4.71        | 1.86        | 12.02       | 1.11        | 0.7         | 0.62        | 1.9         | 0.59        | 5 F         | 3.85 F      |
| SVOCs (µg/L)                       |                        |             |             |             |             |             |             |             |             |             |             |
| 2,4,5-trichlorophenol              | 1*                     | U           | U           | 3 M         | U           | U           | 3 UJ        | U           | U           | U           | U           |
| 2,4,6-trichlorophenol              | 1*                     | U           | U           | 4 M         | U           | U           | 4 UJ        | U           | U           | U           | U           |
| 2,4-dichlorophenol                 | 1*                     | U           | U           | 5 M         | U           | U           | 4 UJ        | U           | U           | U           | U           |
| 2,4-dinitrophenol                  | 1*                     | U           | U           | 12 M        | UJ          | U           | 11 UJ       | U           | U           | U           | U           |
| 4,6-dinitro-2-methylphenol         | 1*                     | Ŭ           | U           | 16 M        | U           | Ŭ           | 15 UJ       | U           | Ŭ           | U           | Ŭ           |
| 4-nitrophenol                      | 1*                     | Ŭ           | U           | 4 M         | U           | Ŭ           | 3 UJ        | U           | Ŭ           | U           | Ŭ           |
| benzoic acid                       |                        | Ŭ           | U           | U           | U           | Ŭ           | 13 UJ       | 17 R        | 17 R        | U           | Ŭ           |
| isophorone                         | 50                     | Ū           | Ũ           | Ŭ           | Ŭ           | Ŭ           | 5 UJ        | R           | U           | Ũ           | Ũ           |
| benzo(a)anthracene                 | 1*                     | Ū           | Ũ           | Ŭ           | Ŭ           | Ŭ           | 2 UJ        | 3 M         | Ŭ           | Ũ           | Ũ           |
| Wet Chemistry Data (mg/L)          |                        | -           |             | -           |             | -           |             |             | -           |             | -           |
| nitrate                            | 10000                  | N/A         | U           | U           | U           | U           | 0.12        | 0.056       | U           | U           | U           |
| sulfate                            | 250000                 | N/A         | Ũ           | 27.9        | 22 B        | 24.3        | 28.8 B      | 198         | 35.5        | 114         | 33.1 M      |
| sulfide                            |                        | N/A         | Ũ           | U           | U           | U           | U           | U           | U           | U           | 0.049 M     |
| total alkalinity                   |                        | N/A         | 165         | 132         | 160         | 116         | 150         | 129         | 148         | 154         | 167         |
| Field Parameters                   |                        |             |             |             |             |             |             |             |             |             |             |
| dissolved iron (mg/L)              |                        | N/A         | 1.4         | N/A         | 1.5         | 1.3         | 0.2         | 2.5         | 2           | 0.6         | 3.2         |
| nH                                 | 1 1                    | 7.98        | 7.31        | 7.96        | 7.12        | 6.79        | 10.15       | 7.17        | 7.29        | 7.2         | 7.19        |
| specific conductance (µS/cm)       |                        | 867         | 581         | 799         | 856         | 658         | 526         | 700         | 937         | 880         | 240         |
| temperature (degrees C)            |                        | 13.68       | 10.4        | 11.6        | 15.6        | 13.3        | 9.6         | 11.52       | 14.95       | 14.1        | 8.63        |
| dissolved oxygen (mg/L)            |                        | 3.88        | 3.35        | 0.63        | 1.56        | 3.98        | 4.61        | 3.9         | 5.52        | 8.17        | 2.6         |
| oxidation reduction potential (mV) |                        | -73         | -90         | -129        | 4           | -39         | -107        | -110        | -128        | -106        | -10         |

Notes:

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

2 - When the guidance value or standard is below the method detection limit, ahieving the method detection limit is considered acceptable

for meeting the guidance value or standard

\* - Sum of total phenolic compounds may not exceed 1 ppm.

+ - Indicates higher value detected in the sample duplicate or during the dilution phase.

-- Indidcates no NYS GA Groundwater Standard

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

M - Matrix effect present

N/A - Analyte was not analyzed during sampling

N/S- Analyte was not sampled.

U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

UJ - The analyte was not detected above the RL, however the quantitation is an approximation.

| r                                  |           | Tank Fa | rms I and 3 Dete | cted Analytical I |             | l)        |             |             |                                            |
|------------------------------------|-----------|---------|------------------|-------------------|-------------|-----------|-------------|-------------|--------------------------------------------|
| Monitoring Well ID                 | NYSDEC    |         |                  | 1                 | TF3MW-125   |           |             |             |                                            |
| Sample ID                          | GW        |         |                  |                   | TF3M12513DA |           | TF3M12513FA | TF3M12514GB |                                            |
| Date of Collection                 | Standards | 2/12/02 | 6/19/02          | 9/13/02           | 12/20/2002  | 3/12/2003 | 6/23/2003   | 9/2/2003    |                                            |
| Sample Depth (ft)                  | (µg/L)    | 13      | 13               | 14                | 13          | 13        | 13          | 14          |                                            |
| VOCs (ug/L)                        |           |         |                  |                   |             |           |             |             |                                            |
| 1,2-dichloropropane                | 1         | U       | U                | U                 | U           | .32 UJ    | U           | U           |                                            |
| 1,2,4-trimethylbenzene             | 5         | 81 ♦    | 48 ♦             | 56 ♦              | 29          | 28        | 23          | 36          |                                            |
| 1,3,5-trimethylbenzene             | 5         | 33 ♦    | 19               | 21 ♦              | 14          | 10 M      | 8.3         | 13          |                                            |
| benzene                            | 1         | 0.36 F  | U                | U                 | U           | 0.30 UJ   | U           | U           |                                            |
| n-butylbenzene                     | 5         | U       | 2.3              | 3 J               | U           | 0.44 UJ   | U           | U           |                                            |
| sec-butylbenzene                   | 5         | 2.7 ♦   | 2                | 2.6 ♦             | 1.4         | 1.8 M     | U           | U           |                                            |
| t-butylbenzene                     | 5         | 1.6 ♦   | 0.98             | 1.3 ♦             | 0.9         | 0.92 J    | U           | U           |                                            |
| chloroethane                       | 5         | U       | U                | 0.63              | U           | 0.32 UJ   | U           | U           |                                            |
| chloromethane                      | 5         | U       | U                | 0.66              | U           | 0.28 UJ   | U           | U           |                                            |
| ethylbenzene                       | 5         | 94 ♦    | 82 ♦             | 90 ♦              | 53          | 61 M      | 51          | 62          | 2003                                       |
| isopropylbenzene                   | 5         | 80 ♦    | 62 ♦             | 85 ♦              | 40          | 50 M      | 37          | 43          |                                            |
| p-isopropyltoluene                 | 5         | 4.2 ♦   | 2.9 ♦            | 3.6               | U           | 2.1 M     | U           | U           | er                                         |
| methylene chloride                 | 5         | U       | U                | U                 | U           | 0.5       | 7 B         | 8.5         | qu                                         |
| methyl ethyl ketone                | 5         | U       | U                | U                 | U           | 3.1 UJ    | U           | U           | pte                                        |
| n-propylbenzene                    | 5         | 14      | 15               | 18 ♦              | 9.5         | 11 M      | 7.8         | 11          | Sel                                        |
| naphthalene                        | 10        | U       | 11               | 14 ♦              | 7.8         | 10 J      | 6.8         | 9.1         | в.                                         |
| toluene                            | 5         | 1.1 ♦   | 0.86             | 1.1 ♦             | U           | 0.54 M    | U           | U           | led                                        |
| o-xylene                           | 5         | 2.5     | 1.1              | 1.4 ♦             | 0.87        | 0.78 M    | U           | U           | ion                                        |
| m,p-xylene                         | 5         | 89 ♦    | 47 ♦             | 42 ♦              | 26          | 28 J      | 26          | 37          | issi                                       |
| Total VOCs                         |           | 403.46  | 294.14           | 337.29            | 182.47      | 204.64    | 159.9       | 219.6       | NO.                                        |
| SVOCs (µg/L)                       |           |         |                  |                   |             |           |             |             | dec                                        |
| bis-(2-ethylhexyl) phthalate       | 5         | 5 F     | U                | U                 | U           | U         | U           | U           | ell                                        |
| benzoic acid                       |           | U       | U                | U                 | U           | U         | 17 R        | 18 R        | ×                                          |
| naphthalene                        | 10        | 4 F     | U                | U                 | 6 F         | 6 F       | 4 F         | 6 F         | ĨĮ.                                        |
| phenanthrene                       | 50        | U       | U                | U                 | U           | 3 F       | U           | U           | tor                                        |
| pyrene                             | 50        | 3 F     | U                | U                 | U           | U         | U           | U           | Monitoring well decomissioned in September |
| 2-methylnaphthalene                |           | U       | U                | U                 | U           | 5 F       | 2 F         | 2 F         | Σ                                          |
| bis (2-etylhexyl) phthalate        | 5         | U       | U                | U                 | U           | 4 M       | U           | U           |                                            |
| Total SVOCs                        |           | 12      | 0                | 0                 | 6           | 18        | 6           | 8           |                                            |
| Wet Chemistry Data (mg/L)          |           |         |                  |                   |             |           |             |             |                                            |
| nitrate                            | 10000     | U       | U                | U                 | N/A         | U         | U           | U           |                                            |
| sulfate                            | 250000    | U       | 5.4              | 5.2 B             | 2.7         | 10.9 B    | 39.7        | 4.3         |                                            |
| sulfide                            |           | U       | U                | U                 | U           | 1 M       | U           | U           |                                            |
| total alkalinity                   |           | 106     | 97.6             | 137               | 96.3        | 143       | 116         | 116         |                                            |
| Field Parameters                   |           |         |                  |                   |             |           |             |             |                                            |
| dissolved iron (mg/L)              |           | 3.5     | N/A              | 5.6               | 4.4         | 2.8       | 3.5         | N/S         |                                            |
| рН                                 |           | 6.64    | 6.55             | 6.9               | 6.87        | 6.84      | 6.8         | N/S         |                                            |
| specific conductance (µS/cm)       |           | 380     | 403              | 422               | 481         | 391       | 228         | N/S         |                                            |
| temperature (degrees C)            |           | 9.6     | 9.9              | 13                | 12.8        | 9.38      | 9.99        | N/S         |                                            |
| dissolved oxygen (mg/L)            |           | 4.90    | 3.87             | 1.09              | 2.88        | 4.51      | 3.56        | N/S         |                                            |
| oxidation reduction potential (mV) |           | -50     | -83              | -22               | -112        | -3        | -132        | N/S         |                                            |

Table 3-2

Tank Farms 1 and 3 Detected Analytical Results (continued)

Notes:

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

2 - When the guidance value or standard is below the method detection limit, ahieving the method detection limit is considered acceptable

for meeting the guidance value or standard

+ - Indicates higher value detected in the sample duplicate or during the dilution phase.

-- Indidcates no NYS GA Groundwater Standard

B - The analyte was also detected in a blank.

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

J - Analyte was positively identified, quantitation is an approximation

N/A - Analyte was not analyzed during sampling

N/S- Analyte was not sampled.

U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

UJ - The analyte was not detected above the RL. However the quantitation is an approximation.

#### Table 3-2 Tank Farms 1 and 3 Detected Analytical Results (continued)

| Monitoring Well ID                 | NYSDEC                 |              |              |             |             |             |             |             | TF3MV       |           |             |             |             |           |             |             |           |
|------------------------------------|------------------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|-------------|-------------|-------------|-----------|-------------|-------------|-----------|
| Sample ID                          | GW                     | TF3M112613AA | TF3M112613BB | TF3M12614CA | TF3M12612DA | TF3M12613EA | TF3M12613FA | TF3M12614GB | TF3M12612HB |           | TF3M12613JB | TF3M12613KB | TF3M12613LB |           | TF3M12613NA | TF3M12614OA |           |
| Date of Collection                 | Standards <sup>1</sup> | 2/12/02      | 6/19/02      | 9/13/02     | 12/20/2002  | 3/12/03     | 6/20/03     | 9/12/2003   | 12/12/2003  | 3/18/2004 | 6/17/2004   | 9/13/2004   | 1/3/2005    | 3/29/2005 | 3/28/2006   | 6/20/2006   | 9/26/2006 |
| Sample Depth (ft)                  | (µg/L)                 | 13           | 13           | 14          | 12          | 13          | 13          | 14          | 12          | 13        | 13          | 13          | 13          | 13        | 13          | 14          | 14        |
| VOCs (ug/L)                        |                        |              |              |             |             |             |             |             |             |           |             |             |             |           |             |             |           |
| 1,2-dichloropropane                | 1                      | U            | U            | 0.42 F      | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| 1-2-dichloroethane                 | 5                      | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | 0.26 F    | U           | U           | U         |
| 1,2,4-trimethylbenzene             | 5                      | 0.55         | U            | 1.6         | U           | U           | U           | U           | U           | U         | 0.39 F      | U           | U           | U         | U           | U           | U         |
| 1,3,5-trimethylbenzene             | 5                      | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| acetone                            | 50                     | U            | U            | U           | U           | U           | U           | U           | 5.7 F       | U         | U           | U           | U           | U         | U           | U           | U         |
| benzene                            | 1                      | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| n-butylbenzene                     | 5                      | 7.8          | 4.7          | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| sec-butylbenzene                   | 5                      | 11           | 6.5          | 6           | 2.4         | 2.4         | 1.9 J ♦     | 1.8         | 1.1         | 1.4       | 2           | 1.2         | 0.77 F      | U         | 2.4         | 4.4         | 5.33      |
| Trichloroethylene                  |                        | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| t-butylbenzene                     | 5                      | 2.5          | 1.5          | 1.5         | 1.4         | 0.88        | 0.6 F 🔶     | 1.2         | 1.4         | 1.1       | 1.6         | 1.5         | 0.96 F      | 0.87 F    | 1.4         | 2.4         | 1.58      |
| Tetrachloroethylene                | 5                      | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| chloroethane                       | 5                      | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| chloroform                         | 5                      | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| chloroethane                       | 5                      | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | 0.29 F    | U           | 0.62 F      | U         |
| chloromethane                      | 5                      | U            | U            | U           | 0.26 F      | U           | U           | U           | U           | U         | U           | U           | U           | 0.33 F    | U           | 0.69 F      | U         |
| ethylbenzene                       | 5                      | U            | 0.37 F       | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| isopropylbenzene                   | 5                      | 11           | 4.2          | 8.1         | 3.1         | U           | 0.35 F 🔶    | 1.6         | 1           | 1.1       | 3           | 0.39 F      | 1           | 0.86 F    | 0.31 F      | 9.6         | 6.28      |
| p-isopropyltoluene                 | 5                      | 1            | 0.38 F       | 0.31 F      | 0.3 F       | U           | U           | U           | U           | 2.5       | U           | 3.2         | U           | U         | U           | U           | U         |
| methylene chloride                 | 5                      | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| methyl ethyl ketone                | 5                      | U            | U            | U           | U           | 1.6 UJ      | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| n-propylbenzene                    | 5                      | 18           | 2.9          | 6.9         | 1           | 0.99        | 0.33 F 🔶    | 0.77 F      | 0.49 F      | 0.83 F    | 0.8 F       | U           | U           | 0.25 F    | U           | 1.4         | 5.81      |
| naphthalene                        | 10                     | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | 0.22 F      | U         |
| toluene                            | 5                      | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| o-xylene                           | 5                      | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| m,p-xylene                         | 5                      | U            | U            | U           | U           | U           | U           | U           | U           | U         | U           | U           | U           | U         | U           | U           | U         |
| Total VOCs                         |                        | 51.85        | 20.55        | 24.41       | 8.46        | 4.27        | 3.18        | 5.37        | 9.69        | 6.93      | 7.79        | 6.29        | 2.73        | 2.86      | 4.11        | 19.33       | 19        |
| SVOCs (µg/L)                       |                        |              |              |             |             |             |             |             |             |           |             |             |             |           |             |             |           |
| benzoic acid                       |                        | U            | U            | U           | U           | U           | 17 R        | 17 R        | U           | U         | N/S         | N/S         | N/S         | N/S       | N/S         | N/S         | N/S       |
| 2-methylnaphthalene                |                        | 12           | U            | 10          | U           | U           | U           | U           | U           | U         | N/S         | N/S         | N/S         | N/S       | N/S         | N/S         | N/S       |
| Wet Chemistry Data (mg/L)          |                        |              |              |             |             |             |             |             |             |           |             |             |             |           |             |             |           |
| nitrate                            | 10000                  | U            | U            | U           | N/A         | U           | U           | U           | U           | 0.58      | 0.18        | 0.065       | 0.67        | U         | N/S         | N/S         | N/S       |
| sulfate                            | 250000                 | U            | 13.8         | 4.9 B       | 8.9         | 16.8 B      | 50          | 9.2         | 35.4        | 22.7      | N/S         | N/S         | N/S         | N/S       | N/S         | N/S         | N/S       |
| sulfide                            |                        | U            | U            | U           | U           | U           | U           | U           | U           | U         | N/S         | N/S         | N/S         | N/S       | N/S         | N/S         | N/S       |
| total alkalinity                   |                        | 267          | 220          | 233         | 182         | 233         | 241         | 243         | 400         | 308       | 275         | 218         | 271         | 243       | N/S         | 217         | 260       |
| Field Parameters                   |                        |              |              |             |             |             |             |             |             |           |             |             |             |           |             |             |           |
| dissolved iron (mg/L)              |                        | 3.5          | N/A          | 5.4         | 6           | 3.4         | 4.4         | 2.5         | 1.8         | 2         | 3.2         | 4.8         | 2.3         | 2.8       | 3.5         | 4.8         | 2.6       |
| pH                                 |                        | 7.12         | 6.64         | 6.74        | 6.94        | 6.9         | 7.15        | 7.17        | 6.7         | 6.95      | 7.11        | 6.88        | 7.48        | 7.65      | 7.18        | 7.5         | 7.28      |
| specific conductance (µS/cm)       |                        | 451          | 479          | 660         | 590         | 509         | 414         | 581         | 686         | 68        | 58          | 59          | 65.8        | 70.4      | 99          | 88          | 87        |
| temperature (degrees C)            |                        | 10           | 9.8          | 13.2        | 12.7        | 9.6         | 10.11       | 13.32       | 12.52       | 8.5       | 9.9         | 13.4        | 11.3        | 9.3       | 8.77        | 10.4        | 14.4      |
| dissolved oxygen (mg/L)            |                        | 5.18         | 3.51         | 1.13        | 2.18        | 4.5         | 3.75        | 3.54        | 0.9         | 4.8       | 2.9         | 6.08        | 8.82        | 4.44      | 3.33        | 2.92        | 3         |
| oxidation reduction potential (mV) |                        | -84          | -91          | -8          | -118        | -30         | -125        | -152        | -122        | -70       | -104        | -100        | -10         | -102      | -122        | -57         | -121      |

Notes:

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

2 - When the guidance value or standard is below the method detection limit, ahieving the method detection limit is considered acceptable

for meeting the guidance value or standard

+ - Indicates higher value detected in the sample duplicate or during the dilution phase.

-- Indidcates no NYS GA Groundwater Standard B - The analyte was also detected in a blank.

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

J - Analyte was positively identified, quantitation is an approximation

N/A - Analyte was not analyzed during sampling

N/S- Analyte was not sampled.

U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

UJ - The analyte was not detected above the RL. However the quantitation is an approximation.

#### Table 3-2 Tank Farms 1 and 3 Detected Analytical Results (continued)

| Sampe Date of all of the second se | Monitoring Well ID                 | NYSDEC    |            |              |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------|------------|--------------|-------------|-------------|-------------|-------------|-------------|------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <table-container>          bard         &lt;</table-container>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |           | TF3M12713A | ATF3M12713BB | FF3M12714CA | TF3M12712DA | TF3M12713EA | TF3M12713FA | TF3M12713GB |            |           | TF3M12713JB | TF3M12713KB | TF3M12713LB | TF3M12713MA | TF3M12713NA | TF3M12713OA | TF3M12713PA |
| VOX cup1         Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | Standards | 2/12/02    | 6/19/02      | 9/13/02     | 12/20/2002  | 3/12/2003   | 6/20/2003   | 9/12/2003   | 12/12/2003 | 3/17/2004 | 6/17/2004   | 9/13/2004   | 12/30/2004  | 3/29/2005   | 3/28/2006   | 6/20/2006   | 9/26/2006   |
| VOC ough         image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Depth (ft)                  | (µg/L)    | 13         | 13           | 14          | 12          | 13          | 13          | 13          | 13         | 13        | 13          | 13          | 13          | 13          | 13          | 13          | 13          |
| 1.5.5       66.6       6.6       7.4       7.9       6.3       2.5       9.0       2.0       7.1       0.8.1F       1.3       U       2.9       9.2       U       U         hshythkrane       5       9       1.2       U       U       U       3.5       U       0.8       0.4F       0.4       0.4F       0.4       0.4F       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VOCs (ug/L)                        |           |            |              |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
| barran         1         2.6         0.94         5.7         1.3         0.54         2.2         5.2         2.1         2.9         4.2         3.3         2.2         0.97         1.7         1.4         3.05           bardylbezne         5         1.2         2.1         1.5         2.7         1.5         1.3         6.7         5.1         2.7         1.7         0.44         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45 <td< td=""><td>1,2,4-trimethylbenzene</td><td>5</td><td>180 ♦</td><td>16</td><td>190 ♦</td><td>14</td><td>15</td><td>5.6</td><td>56 J</td><td>56</td><td>21</td><td>72</td><td>43</td><td>70</td><td>6.2</td><td>28</td><td>15</td><td>101</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2,4-trimethylbenzene             | 5         | 180 ♦      | 16           | 190 ♦       | 14          | 15          | 5.6         | 56 J        | 56         | 21        | 72          | 43          | 70          | 6.2         | 28          | 15          | 101         |
| shuphbarme         5         9         1.2         U         U         U         0.87F         0.64F         0.64F         0.49F         0.1F         0.26F         U         1.5           schuphbarme         5         1.7         0.24F         1.7+         0.34F         U         U         0.87F         0.26F         0.87F         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,3,5-trimethylbenzene             | 5         | 66 ♦       | 6.6          | 74 ♦        | 7.9         | 6.3         | 2.5         | 30          | 20         | 7.1       | 0.83 F      | 13          | U           | 2.9         | 9.2         | U           | U           |
| sec-barylbezone         5         12         21         15         27         13         6.7         51         27         32         27         1.7F         1.2         0.87F         1.4         37.9           chloresthane         5         U         U         0.34F         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | benzene                            | 1         | 2.6        | 0.94         | 5.7         | 1.3         | 0.54        | 2.2         | 5.2         | 2.1        | 2.9       | 4.2         | 3.3         | 2.2         | 0.97        | 1.7         | 1.4         | 3.05        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n-butylbenzene                     | 5         | 9          | 1.2          | U           | U           | U           | U           | 3.5         | U          | U         | 0.87 F      | 0.64 F      | 0.49 F      | 0.41 F      | 0.26 F      | U           | 1.56        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sec-butylbenzene                   | 5         | 12         | 2.1          | 15 ♦        | 2.7         | 1.5         | 1.3         | 6.7         | 5.1        | 2.7       | 3.2         | 2.7         | 1.7 F       | 1.2         | 0.87 F      | 1.4         | 3.7 ♦       |
| shorewhane         5         U         U         0.47F         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         ATA           disproylhence         5         14         13         11         12         0.56         U         2.5         1.7         0.48F         1.17         0.89F         0.74F         0.34F         0.60F         0.66F         3.9         0.67         0.67         0.67         0.67         0.67         0.67         0.66F         0.99         2.55         0.7         0.88F         0.77         0.9         11         10         3.9         6.5         9.8         2.75         0.8         2.25         10         U         U         U         U         U         0.26         7.7         19         11         10         3.9         6.5         9.8         2.55         12         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t-butylbenzene                     | 5         | 1.7        | 0.24 F       | 1.7 ♦       | 0.34 F      | U           | U           | 0.87 F      | 0.52 F     | 0.26 F    | 0.87 F      | U           | U           | U           | U           | U           | U           |
| shylemane         5         81         15         120 B         20         35         12         41 J         47         25         50         26         30         52         16         17         478           psoppolpuzere         5         37         5.9         67+         8.7         7.6         3.1         24         18         8.6         18         10         10         3.6         6.5         9.9         255           pisopophouzer         5         14         1.3         11         1.2         0.56         U         2.5         1.7         0.48 F         1.7 F         0.89 F         0.47 F         0.44 F         0.47 F         0.46 F         3.9           pipophouzer         5         4.8         7.3         8.0         9.6         7.1         3.1         2.8         2.0         7.7         19         11         10         3.9         6.5         9.8         2.75         pipophouzer         5.4         5.4         7.4         8.5         2.2         2.2         10         8.4         1.4         2.4         2.7         11         8.3         31.6           pipophouzer         5         4.5         7.4 <t< td=""><td>chloroethane</td><td>5</td><td>U</td><td>U</td><td>0.44 F</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | chloroethane                       | 5         | U          | U            | 0.44 F      | U           | U           | U           | U           | U          | U         | U           | U           | U           | U           | U           | U           | U           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | chloromethane                      | 5         | U          | U            | 0.47 F      | U           | U           | U           | U           | U          | U         | U           | U           | U           | U           | U           | 0.22 F      | U           |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ethylbenzene                       | 5         | 81         | 15           | 120 B       | 20          | 35          | 12          | 41 J        | 47         | 25        | 50          | 26          | 30          | 5.2         | 16          | 17          | 47.8        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | isopropylbenzene                   | 5         | 37         | 5.9          | 67 ♦        | 8.7         | 7.6         | 3.1         | 24          |            | 8.6       | 18          | 10          | 10          | 3.6         | 6.5         | 9.9         | 25.5        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p-isopropyltoluene                 | 5         | 14         | 1.3          | 11          | 1.2         | 0.56        | U           | 2.5         | 1.7        | 0.48 F    | 1.7 F       | 0.89 F      | 0.74 F      | 0.34 F      | 0.60 F      | 0.66 F      | 3.9 ♦       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | methyl ethyl ketone                | 5         | U          | U            | U           | U           | 1.6 UJ      | U           | U           | U          | U         | U           | U           | U           | U           | U           | U           | U           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n-propylbenzene                    | 5         | 48         | 7.3          | 80 ♦        | 9.6         | 7.1         | 3.1         | 28          | 20         | 7.7       | 19          | 11          | 10          | 3.9         | 6.5         | 9.8         | 27.5        |
| np-sylene         5         45         7         49         7,7         20         4.6         45         40         18         41         24         25         2.7         11         8.3         31.6           methylene chloride         5         U         U         U         U         U         U         U         U         0.8F         U         2.2         0.53F         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | 10        |            |              |             | 7.6 J       |             | 2.2         |             | 19         | 8.2       | 19          | 12          | 12          | 2.6         |             | 7.9 B       | 25.8        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trichloroethylene                  | 5         | 0.54       | 0.44 F       | 0.26 F      | 0.49 F      | 0.43 F      | U           | 0.23 F      | U          | U         | U           | U           | U           | U           | 0.28 F      | U           |             |
| Intal VOCs         451.84         62.12         659.77         73.83         82.53         36.6         220         230.22         101.94         230.67         147.06         162.13         30.02         77.11         71.5         271.41           SVOCs (ggL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | 5         | 45         | 7            | 49          | 7.7         | 20          | 4.6         | 45          | 40         | 18        | 41          |             | 25          | 2.7         | 11          | 8.3         | 31.6        |
| SVOCs (ugL)         MCL <sup>2</sup> Image: March and the state of the                |                                    | 5         | U          |              |             | U           |             | U           |             |            | U         | 2.2         | 0.53 F      | U           | U           |             |             | U           |
| 2-methylnaphthalene          35         23         140         9F         8F         3F         9F         2F         U         NS         NS         NS         NS         NS         NS         NS           Wet Chemistry Data (mg/L)         0         0         0         0         0         0         0         0         0         0         NS         NS         NS         NS         NS           uitrate         10000         0.11         U         U         NA         U         0.055         U         0.15         0.83         0.36         0.13         0.36         0.24         NS         NS         NS         NS         suffac           sulfate         250000         U         24.8         14.8         11.5         10.6 B         14.2         21         21.6         24.8         NS         NS <td></td> <td></td> <td>451.84</td> <td>62.12</td> <td>659.77</td> <td>73.83</td> <td>82.53</td> <td>36.6</td> <td>220</td> <td>230.22</td> <td>101.94</td> <td>230.67</td> <td>147.06</td> <td>162.13</td> <td>30.02</td> <td>77.11</td> <td>71.5</td> <td>271.41</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |           | 451.84     | 62.12        | 659.77      | 73.83       | 82.53       | 36.6        | 220         | 230.22     | 101.94    | 230.67      | 147.06      | 162.13      | 30.02       | 77.11       | 71.5        | 271.41      |
| Wet Chemistry Data (mg/L)         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |           |            |              |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
| nitrate         10000         0.11         U         U         NA         U         0.055         U         0.15         0.83         0.36         0.13         0.36         0.24         NS         NS         NS           sulfate         25000         U         24.8         14.8         11.5         10.6 B         14.2         21         21.6         24.8         NS         NS <td< td=""><td></td><td></td><td>35</td><td>23</td><td>140</td><td>9 F</td><td>8 F</td><td>3 F</td><td>9 F</td><td>2 F</td><td>U</td><td>N/S</td><td>N/S</td><td>N/S</td><td>N/S</td><td>N/S</td><td>N/S</td><td>N/S</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |           | 35         | 23           | 140         | 9 F         | 8 F         | 3 F         | 9 F         | 2 F        | U         | N/S         |
| salfate         25000         U         24.8         14.8         11.5         10.6 B         14.2         21         21.6         24.8         N/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wet Chemistry Data (mg/L)          |           |            |              |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
| sulfide         i         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         0.061 F         NS         NS <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |           |            |              |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
| total alkalinity          284         218         268         214         252         253         231         389         233 B         341         246         314         298         N/S         217         380           Field Parameters <t< td=""><td></td><td>250000</td><td></td><td></td><td></td><td></td><td>10.6 B</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | 250000    |            |              |             |             | 10.6 B      |             |             |            |           |             |             |             |             |             |             |             |
| Field Parameters         NA         6.5         3.5         2         1.8         4         2.5         2         2.8         1         2         1.8         0.5         3.7         4.2           dissolved rion (mg/L)         3.2         N/A         6.5         3.5         2         1.8         4         2.5         2         2.8         1         2         1.8         0.5         3.7         4.2           pH         6.81         7.85         6.56         7.03         7.08         7.15         7.07         6.44         7.07         6.99         7.59         6.24         6.82         6.93         7.15         7.27           specific conductance (µS/cm)         524         752         839         566         451         353         517         543         76         81         68.8         71         74         95.6         112         82           temperature (dgrees C)         9.6         10.2         13.3         11.5         8.3         9.37         13.22         11.69         7.79         9.9         13.2         10.4         8.4         8.57         10.6         13.5           dissolved oxygen (mg/L)         3.55         0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |           |            |              |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |           | 284        | 218          | 268         | 214         | 252         | 253         | 231         | 389        | 233 B     | 341         | 246         | 314         | 298         | N/S         | 217         | 380         |
| pH         6.81         7.85         6.56         7.03         7.08         7.15         7.07         6.44         7.07         6.99         7.59         6.24         6.82         6.93         7.15         7.27           specific conductance (μS/cm)         524         752         839         566         451         353         517         543         76         81         68.8         71         74         95.6         112         82           temperature (degrees C)         9.6         10.2         13.3         11.5         8.3         9.37         13.22         11.69         7.79         9.9         13.2         10.4         8.4         8.57         10.6         13.5           dissolved oxygen (mg/L)         3.55         0.8         1.2         2.66         4.88         4.02         6.28         3.41         4.1         2.9         4.59         8.11         6.87         5.22         2.86         5.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |           |            |              |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
| specific conductance (µScm)         524         752         839         566         451         353         517         543         76         81         68.8         71         74         95.6         112         82           temperature (degrees C)         9.6         10.2         13.3         11.5         8.3         9.37         13.22         11.69         7.79         9.9         13.2         10.4         8.4         8.57         10.6         13.5           dissolved oxygen (mgL)         3.55         0.8         1.2         2.66         4.88         4.02         6.28         3.41         4.1         2.9         4.59         8.11         6.87         5.22         2.86         5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dissolved iron (mg/L)              |           |            |              |             |             |             |             |             |            |           |             | 1           |             |             |             |             |             |
| temperature         (degrees C)         9.6         10.2         13.3         11.5         8.3         9.37         13.22         11.69         7.79         9.9         13.2         10.4         8.4         8.57         10.6         13.5           dissolved oxygen         (mg/L)         3.55         0.8         1.2         2.66         4.88         4.02         6.28         3.41         4.1         2.9         4.59         8.11         6.87         5.22         2.86         5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pH                                 |           |            |              |             |             |             |             |             |            |           | 6.99        |             |             |             |             |             |             |
| dissolved oxygen (mg/L) 3.55 0.8 1.2 2.66 4.88 4.02 6.28 3.41 4.1 2.9 4.59 8.11 6.87 5.22 2.86 5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |           |            |              |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |           |            |              |             |             |             |             |             |            |           |             |             |             |             |             |             |             |
| oxidation reduction potential (mV) -90 -111 6 -99 52 -89 -129 -73 -21 -70 -38 -51 75 -50 118 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |           |            |              | 1.2         |             |             |             |             |            |           |             |             | 8.11        |             |             | 2.86        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oxidation reduction potential (mV) |           | -90        | -111         | 6           | -99         | 52          | -89         | -129        | -73        | -21       | -70         | -38         | -51         | 75          | -50         | 118         | 23          |

Notes:

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

Sum of total phenolic compounds may not exceed 1 ppm.
 Concentrations are from duplicate sample or dilution, which was greater than the original sample

-- Indidcates no NYS GA Groundwater Standard B - The analyte was also detected in a blank.

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

J - Analyte was positively identified, quantitation is an approximation

N/A - Analyte was not analyzed during sampling

N/S- Analyte was not sampled.

U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

UJ - The analyte was not detected above the RL, however the quantitation is an approximation.

#### Table 3-2 Tank Farms 1 and 3 Detected Analytical Results (continued)

| Monitoring Well ID                 | NYSDEC TF3MW-128       |              |              |             |             |             |              |             |             |             |             |             |             |             |             |             |             |
|------------------------------------|------------------------|--------------|--------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                          | GW                     | TF3M112813AA | TF3M112813BB | TF3M12814CA | TF3M12813DA | TF3M12814EA | TF3M12813FA  | TF3M12814GB | TF3M12813HB | TF3M12813IB | TF3M12814JB | TF3M12813KB | TF3M12814LB | TF3M12814MA | TF3M12814NA | TF3M12814OA | TF3M12814PA |
| Date of Collection                 | Standards <sup>1</sup> | 2/12/02      | 6/19/02      | 9/13/02     | 12/20/2002  | 3/12/2003   | 6/20/2003    | 9/11/2003   | 12/12/2003  | 3/17/2004   | 6/17/2004   | 9/13/2004   | 12/30/2004  | 3/29/2005   | 3/28/2006   | 6/20/2006   | 9/26/2006   |
| Sample Depth (ft)                  | (µg/L)                 | 13           | 13           | 14          | 13          | 14          | 13           | 14          | 13          | 13          | 14          | 13          | 14          | 14          | 14          | 14          | 14          |
| VOCs (ug/L)                        |                        |              |              |             |             |             |              |             |             |             |             |             |             |             |             |             |             |
| 1,2,4-trimethylbenzene             | 5                      | 140 ♦        | 98 ♦         | 53          | 33          | 31          | 60 ♦         | 44          | 24          | 16          | 32          | 20          | 8.3         | 25          | 17          | 8           | 4.25        |
| 1,3,5-trimethylbenzene             | 5                      | 54           | 39 ♦         | 23          | 14          | 10          | 24 ♦         | 18          | 7.9         | 5.5         | 12          | 6.7         | 2.7         | 11          | 9.8         | U           | U           |
| acetone                            | 50                     | U            | U            | U           | U           | U           | U            | U           | 3.4 F       | U           | U           | U           | U           | U           | U           | U           | U           |
| benzene                            | 1                      | 4.2          | 2.2 ♦        | 3.3         | 1.4         | 0.62        | 0.99 ♦       | 1.4         | 0.42 F      | 0.63        | 0.8         | 0.42 F      | .25 F       | 1.2         | 0.9         | 0.85        | 0.33        |
| n-butylbenzene                     | 5                      | 6            | 3.6          | U           | U           | U           | U            | 3           | 0.89 F      | U           | 0.74 F      | 0.59 F      | U           | 1.8         | 1.2         | 2           | U           |
| sec-butylbenzene                   | 5                      | 9.3          | 6.8          | 6           | 3.1         | 2           | 4.5 ♦        | 3.8         | 1.2         | 1.4         | 2.2         | 1.5         | 0.44 F      | 3.4         | 3.2         | 3.4         | 0.89        |
| t-butylbenzene                     | 5                      | 1.2          | 0.75         | 0.8         | 0.42 F      | 0.24 F      | 0.3 F        | 0.47 F      | U           | U           | 0.3 F       | U           | U           | 0.34 F      | 0.38 F      | 0.4 F       | U           |
| chloroethane                       | 5                      | U            | U            | 0.29 F      | U           | U           | U            | U           | U           | U           | U           | U           | U           | U           | U           | U           | U           |
| chloromethane                      | 5                      | U            | U            | 0.31 F      | U           | U           | U            | U           | U           | U           | U           | U           | U           | U           | U           | U           | U           |
| ethylbenzene                       | 5                      | 98 ♦         | 58 ♦         | 54 B        | 19          | 12          | 22 ♦         | 21          | 9.1         | 10          | 15          | 8.6         | 5.5         | 17          | 14          | 14          | 6.5         |
| isopropylbenzene                   | 5                      | 32           | 21 ♦         | 24          | 9.3         | 5.5         | 10 ♦         | 9.8         | 3.9         | 4.7         | 7.3         | 3.9         | 2.1         | 9           | 7.4         | 7.7         | 2.05        |
| p-isopropyltoluene                 | 5                      | 40           | 17 ♦         | 19          | 9.8         | 3.9         | 5.6 ♦        | 3.8         | 1.2         | 2           | 5.3         | 2.4         | 0.75 F      | 5           | 2.1         | 2           | 0.86        |
| methyl ethyl ketone                | 5                      | U            | U            | U           | U           | U           | U            | U           | U           | U           | U           | U           | U           | U           | U           | U           | U           |
| n-propylbenzene                    | 5                      | 41           | 30 ♦         | 30          | 13          | 7.3         | 16 ♦         | 14          | 5.4         | 5.2         | 9.6         | 5.5         | 2.5         | 12          | 10          | 10          | 2.49        |
| naphthalene                        | 10                     | U            | 23           | 30          | 9.9 J       | 5.4         | 9            | 8.3         | 3.1         | 4.8         | 6.5         | 3.4         | 2.4         | 7.4         | 6.5         | 6.4 B       | 3.04        |
| toluene                            | 5                      | 1 ♦          | 0.5          | 0.36 F      | 0.23 F      | U           | U            | U           | U           | U           | U           | U           | U           | U           | U           | U           | U           |
| o-xylene                           | 5                      | 1.1          | U            | 0.44 F      | 0.25 F      | U           | U            | U           | U           | U           | U           | U           | U           | U           | U           | U           | U           |
| m,p-xylene                         | 5                      | 82           | 47 🔶         | 32 B        | 14          | 11          | 21 ♦         | 20          | 9.4         | 8.4         | 14          | 8           | 4.2         | 12          | 9.9         | 7.2         | 4.37        |
| Total VOCs                         |                        | 427.8        | 346.85       | 276.5       | 127.4       | 88.96       | 173.39       | 147.57      | 69.91       | 58.63       | 105.74      | 61.01       | 29.14       | 105.14      | 82.38       | 61.95       | 24.78       |
| SVOCs (µg/L) MCL <sup>2</sup>      |                        |              |              |             |             |             |              |             |             |             |             |             |             |             |             |             |             |
| 2-methylnaphthalene                |                        | 24           | 17           | 12          | U           | 4 F         | 6 F          | 8 F         | U           | 5 F         | N/S         |
| benzo(a)anthracene                 | 0.002                  | U            | U            | U           | 2 F         | U           | U            | U           | U           | U           | N/S         |
| acenaphthene                       | 20                     | 8 F          | U            | 5 F         | U           | U           | U            | U           | U           | U           | N/S         |
| anthracene                         | 50                     | 5 F          | U            | U           | U           | U           | U            | U           | U           | U           | N/S         |
| benzoic acid                       |                        | U            | U            | U           | U           | 13 UJ       | 17 R         | 18 R        | U           | U           | N/S         |
| dibenzofuran                       |                        | 4 F          | U            | U           | U           | U           | U            | U           | U           | U           | N/S         |
| flouranthene                       | 50                     | 6 F          | U            | U           | U           | U           | U            | U           | U           | U           | N/S         |
| flourene                           | 50                     | 6 F          | U            | U           | U           | U           | U            | U           | U           | U           | N/S         |
| naphthalene                        | 10                     | 26           | 15           | 17          | 6 F         | 4 F         | 5 F          | 7 F         | U           | 4 F         | N/S         |
| phenanthrene                       | 50                     | 20           | 4 F          | 8 F         | U           | U           | U            | U           | U           | U           | N/S         |
| pyrene                             | 50                     | 4 F          | U            | 3           | U           | U           | U            | U           | U           | U           | N/S         |
| Total SVOCs                        |                        | 103          | 32           | 45          | 8 F         | 8 F         | 11 F         | 15 F        | 0           | 9 F         | N/S         |
| Wet Chemistry Data (mg/L)          | 10000                  |              |              |             | N7/4        | 0.52        | 0.00         |             | 0.0714      | 0.40        |             |             | 0.50        |             | 21/0        | 21.0        | 21/0        |
| nitrate                            | 10000                  | U            | U            | U           | N/A         | 0.73        | 0.32         | U           | 0.074       | 0.19        | U           | U           | 0.59        | U           | N/S         | N/S         | N/S         |
| sulfate                            | 250000                 | 12.9         | 6.1          | 5.8         | 31.8        | 9.3 B       | 25.8         | 6.1         | 4           | 2.6         | N/S         |
| sulfide                            |                        | U            | U            | U           | U           | U           | U            | U           | U           | U           | N/S         |
| total alkalinity                   |                        | 247          | 233          | 293         | 212         | 203         | 253          | 329         | 573         | 314 B       | 362         | 371         | 381         | 402         | N/S         | 332         | 400         |
| Field Parameters                   |                        | 0.5          | 27/4         |             |             |             | 1.4          |             |             | 0.4         | 0.5         | 0           | 0           |             |             |             |             |
| dissolved iron (mg/L)              |                        | 0.7          | N/A<br>7.74  | 3.2         | 1.6         | 0           | 1.6          | 0.4         | 0.2         | 0.4         | 0.5         | 0           | 0           | 0.8         | 0           | 0           | 0           |
| pri                                |                        | 7.29         |              | 7.13        | 7.05        | 7.34        | 7.05         | 7.09        | 5.83        | 6.8         | 6.72        | 7.21        | 6.3         | 6.86        | 6.92        | 6.93        | 7.43        |
| specific conductance (µS/cm)       |                        | 377          | 457          | 612         | 609         | 338         | 609          | 500         | 659         | 75          | 75          | 76.5        | 73          | 71          | 91.3        | 84          | 70          |
| temperature (degrees C)            |                        | 9.7          | 9.9          | 13.4        | 11.2        | 6.72        | 11.2<br>4.27 | 12.05       | 10.83       | 7.92        | 9.8<br>5.3  | 13.4        | 10.6        | 7.5         | 8.89        | 10.7 4.47   | 13.5        |
| dissolved oxygen (mg/L)            |                        | 4.8          | 1.81         | 4.46        | 4.27        | 6.89        |              | 5.89        | 3.48        | 4.2         |             | 5.93        | 7.81        |             | 4.5         |             |             |
| oxidation reduction potential (mV) |                        | -124         | -90          | -15         | -79         | 162         | -79          | -61         | 246         | 91          | -12         | 65          | 99          | 92          | 20          | 231         | 135         |

Notes:

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

\* - Sum of total phenolic compounds may not exceed 1 ppm.

Concentrations are from duplicate sample or dilution, which was greater than the original sample
 Indicates no NYS GA Groundwater Standard
 B - The analyte was also detected in a blank.

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

J - Analyte was positively identified, quantitation is an approximation

N/A - Analyte was not analyzed during sampling

N/S- Analyte was not sampled.

U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit. UJ - The analyte was not detected above the RL, however the quantitation is an approximation.

Page 3-22

|                                    |                        |             | Tank Far    | ms 1 and 3 Det     | ected Analytical | Results (continu | ed)         |             |             |             | 1 450                                        |
|------------------------------------|------------------------|-------------|-------------|--------------------|------------------|------------------|-------------|-------------|-------------|-------------|----------------------------------------------|
| Monitoring Well ID                 | NYSDEC                 |             |             |                    |                  | TF3MW-           | 129         |             |             |             |                                              |
| Sample ID                          | GW                     | TF3M12918AA | TF3M12918BB | <b>FF3M12915CA</b> | TF3M12917DA      | TF3M12918EA      | TF3M12918FA | TF3M12918GB | TF3M12918HB | TF3M12918IB |                                              |
| Date of Collection                 | Standards <sup>1</sup> | 2/12/02     | 6/19/02     | 9/13/02            | 12/20/2002       | 3/12/2003        | 6/20/03     | 9/12/03     | 12/12/2003  | 3/17/2004   |                                              |
| Sample Depth (ft)                  | (µg/L)                 | 13          | 13          | 15                 | 17               | 18               | 17          | 18          | 18          | 18          |                                              |
| VOCs (ug/L)                        |                        |             |             |                    |                  |                  |             |             |             |             |                                              |
| 1,1,1-trichloroethane              | 5                      | U           | 0.41 F      | 0.25 F             | U                | 0.35 F           | 0.24 F      | U           | U           | U           |                                              |
| 1,3,5-trimethylbenzene             | 5                      | U           | U           | U                  | U                | U                | U           | U           | U           | 0.39 F      |                                              |
| acetone                            | 50                     | U           | U           | U                  | U                | U                | U           | U           | 4.4 F       | U           |                                              |
| benzene                            | 1                      | 0.44 F      | U           | U                  | U                | U                | 0.61        | 0.58        | 0.31 F      | 2.2         |                                              |
| chloroform                         | 7                      | U           | 0.45 F      | U                  | U                | 0.31 F           | 0.39 F      | 0.22 F      | 0.21 F      | U           |                                              |
| sec - butylbenzene                 | 5                      | 0.21 F      | U           | U                  | U                | U                | U           | U           | U           | U           |                                              |
| ethylbenzene                       | 5                      | 0.78        | 0.25 F      | 0.42 F             | 0.23 F           | 1.1              | 0.95 F      | 1.2         | 0.61 F      | 3.9         | 4                                            |
| isopropylbenzene                   | 5                      | 1           | 0.29 F      | 0.34 F             | U                | 1.3              | 0.65 F      | 0.67 F      | 0.3 F       | 4.5         | 200                                          |
| n-propylbenzene                    | 5                      | U           | U           | U                  | U                | U                | U           | U           | U           | 0.22 F      | ch                                           |
| naphthalene                        | 10                     | U           | U           | U                  | UJ               | 0.21 F           | U           | U           | U           | U           | lar                                          |
| trichloroethylene                  | 5                      | 0.34 F      | 0.41 F      | 0.32 F             | 0.4 F            | 0.33 F           | 0.2 F       | 0.27 F      | 0.3 F       | 0.28 F      | Ň                                            |
| o-xylene                           | 5                      | U           | U           | U                  | U                | U                | U           | U           | U           | 0.31 F      | fteı                                         |
| Total VOCs                         |                        | 2.77        | 1.81        | 1.33               | 0.63             | 3.6              | 3.04        | 2.94        | 6.13        | 11.8        | Monitoring well not sampled after March 2004 |
| SVOCs (µg/L)                       |                        |             |             |                    |                  |                  |             |             |             |             | ple                                          |
| bis(2-ethylhexyl)phthalate         | 5                      | 3 F         | U           | U                  | U                | U                | U           | U           | U           | U           | lm                                           |
| benzoic acid                       |                        | U           | U           | U                  | U                | U                | 17 R        | 7 R         | U           | U           | t s:                                         |
| di-n-butyl phthalate               | 50                     | 3 F         | U           | U                  | U                | U                | U           | U           | U           | U           | ou                                           |
| flouranthene                       | 50                     | 23          | 4 F         | 4 F                | 5 F              | 4 F              | U           | U           | U           | U           | /ell                                         |
| phenanthrene                       | 50                     | 8 F         | U           | U                  | U                | U                | U           | U           | U           | U           | s<br>∞                                       |
| pyrene                             | 50                     | 16          | U           | 3 F                | 4 F              | 3 F              | U           | 2 F         | U           | U           | ui.                                          |
| Total SVOCs                        |                        | 53          | 4 F         | 7 F                | 9 F              | 7 F              | 0           | 2 F         | 0           | 0           | itoı                                         |
| Wet Chemistry Data (mg/L)          |                        |             |             |                    |                  |                  |             |             |             |             | lon                                          |
| nitrate                            | 10000                  | 0.22        | 0.28        | 0.14               | N/A              | 0.46             | 0.84        | 0.4         | 0.82        | 0.8         | Z                                            |
| sulfate                            | 250000                 | U           | 14.7        | 17.6               | 9.3              | 14.2 B           | 24          | 12.6        | 23.6        | 18.3        |                                              |
| sulfide                            |                        | U           | U           | U                  | U                | U                | U           | U           | U           | U           |                                              |
| total alkalinity                   |                        | 216         | 208         | 223                | 149              | 202              | 235         | 221         | 324         | 175 B       |                                              |
| Field Parameters                   |                        |             |             |                    |                  |                  |             |             |             |             |                                              |
| dissolved iron (mg/L)              |                        | 0.3         | N/A         | 0.2                | 0.4              | 0.2              | 0.02        | 0           | 0.6         | 0.5         |                                              |
| pH                                 |                        | 7.17        | 7.59        | 6.75               | 7.39             | 9.09             | 7.39        | 7.37        | 6.83        | 7.17        |                                              |
| specific conductance (µS/cm)       |                        | 563         | 478         | 537                | 512              | 439              | 293         | 480         | 584         | 61          |                                              |
| temperature (degrees C)            |                        | 11          | 11          | 12.4               | 12.7             | 11.1             | 11.12       | 12.06       | 12.86       | 10.48       |                                              |
| dissolved oxygen (mg/L)            |                        | 3.90        | 1.36        | 1.22               | 3.09             | 3.97             | 3.89        | 5.06        | 7.71        | 3.2         |                                              |
| oxidation reduction potential (mV) |                        | -59         | -75         | 29                 | -50              | -73              | -61         | -102        | -43         | 151         |                                              |

 Table 3-2

 Tank Farms 1 and 3 Detected Analytical Results (continued)

Notes:

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

♦ - Indicates higher value detected in the sample duplicate or during the dilution phase.

-- Indidcates no NYS GA Groundwater Standard

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

N/A - Analyte was not analyzed during sampling

Draft Long-Term Monitoring Report Petroleum SRA LTM Former Griffiss AFB Contract # F41624-03-D-8601 / Task Order #0027 Revision 0.0 August 2007

| -    |      |
|------|------|
| Page | 3-23 |

|                                    | Tank Farms 1 and 3 Detected Analytical Results (continued) |         |         |         |             |             |           |           |             |             |                                              |
|------------------------------------|------------------------------------------------------------|---------|---------|---------|-------------|-------------|-----------|-----------|-------------|-------------|----------------------------------------------|
| Monitoring Well ID                 | NYSDEC                                                     |         |         |         |             | TF3MW-      |           |           |             |             |                                              |
| Sample ID                          | GW                                                         |         |         |         | TF3M13016DA | TF3M13017EA |           |           | TF3M13017HB | TF3M13017IB | 1                                            |
| Date of Collection                 | Standards                                                  | 2/12/02 | 6/19/02 | 9/13/02 | 12/20/2002  | 3/12/2003   | 6/23/2003 | 9/12/2003 | 12/12/2003  | 3/17/2004   | 1                                            |
| Sample Depth (ft)                  | (µg/L)                                                     | 16      | 16      | 16      | 16          | 17          | 17        | 17        | 17          | 17          | 1                                            |
| VOCs (ug/L)                        |                                                            |         |         |         |             |             |           |           |             |             | 1                                            |
| 1,1,2-trichloroethane              | 1                                                          | 1.1     | U       | U       | U           | U           | U         | U         | U           | U           | 1                                            |
| 1,2,4-trimethylbenzene             | 5                                                          | 12      | U       | 0.75    | 0.59        | 0.37 F      | 0.67 F    | 0.87 F    | 0.83 F      | 1.8         | 1                                            |
| 1,3,5-trimethylbenzene             | 5                                                          | 2.5     | U       | U       | U           | U           | 0.37 F    | 0.74 F    | 0.89 F      | U           | 1                                            |
| bromodichloromethane               | 5                                                          | 0.25 F  | U       | U       | U           | U           | U         | U         | U           | U           | I                                            |
| chloroethane                       | 5                                                          | U       | U       | 0.25 F  | 0.26 F      | U           | U         | U         | U           | U           | I                                            |
| chloroform                         | 7                                                          | 0.25 F  | U       | U       | U           | U           | U         | U         | U           | U           | 4                                            |
| sec - butylbenzene                 | 5                                                          | 0.61    | U       | 1.2     | 0.21 F      | U           | U         | 0.65 F    | 0.39 F      | 0.48 F      | 50                                           |
| ethylbenzene                       | 5                                                          | 1.7     | 0.74    | 0.98 B  | 1.3         | 0.68        | 0.41 F    | 3.8       | 3.3         | 1.7         | -H                                           |
| isopropylbenzene                   | 5                                                          | 2.4     | 0.23 F  | 1.2     | 1.4         | 0.46 F      | 0.72 F    | 1.8       | 2.5         | 2.3         | ar                                           |
| methylene chloride                 | 5                                                          | U       | U       | U       | U           | 0.53        | U         | U         | U           | U           | ž                                            |
| p-isopropyltoluene                 | 5                                                          | 0.45 F  | U       | 0.49 F  | U           | U           | U         | U         | U           | U           | fter                                         |
| n-propylbenzene                    | 5                                                          | 1.3     | U       | 1.4     | 0.78        | 0.44 F      | 0.34 F    | 2.4       | 2           | 2.1         | d ai                                         |
| naphthalene                        | 10                                                         | U       | 0.53 F  | 0.61 F  | 1.9         | 0.47 F      | 1.7       | 0.98 F    | 3           | 1           | ble                                          |
| o-xylene                           | 5                                                          | 1.3     | 0.26 F  | U       | 0.47 F      | U           | U         | 0.48 F    | 0.55        | 0.38 F      | Ē                                            |
| m,p-xylene                         | 5                                                          | 1.5     | 0.47 F  | U       | 0.38 F      | U           | U         | 1.4 F     | 1.1 F       | 0.68 F      | t s:                                         |
| Total VOCs                         |                                                            | 25.36   | 2.23    | 6.88    | 7.29        | 2.95        | 4.21      | 13.12     | 14.56       | 48.78       | ou                                           |
| SVOCs (µg/L)                       |                                                            |         |         |         |             |             |           |           |             |             | Monitoring well not sampled after March 2004 |
| bis(2-ethylhexyl)phthalate         | 5                                                          | U       | U       | 2 F ♦   | U           | U           | U         | U         | U           | U           | ><br>∞                                       |
| benzoic acid                       |                                                            | U       | U       | U       | U           | U           | 17 R      | 7 R       | U           | U           | .E                                           |
| Wet Chemistry Data (mg/L)          |                                                            |         |         |         |             |             |           |           |             |             | ito                                          |
| nitrate                            | 10000                                                      | 0.29    | 1.5     | U       | N/A         | 1.3         | 1.8       | 0.86      | 1.5         | 0.75        | on                                           |
| sulfate                            | 250000                                                     | 48      | 13.1    | 12.3    | 70          | 13.2 B      | 17.6      | 8.4       | 13.2        | 12.6        | Σ                                            |
| sulfide                            |                                                            | U       | U       | U       | U           | U           | U         | U         | U           | 0.056 F     | 1                                            |
| total alkalinity                   |                                                            | 225     | 136     | 246     | 120         | 157         | 149       | 212       | 240         | 137 B       | 1                                            |
| Field Parameters                   |                                                            |         |         |         |             |             |           |           |             |             | 1                                            |
| dissolved iron (mg/L)              |                                                            | 1       | N/A     | 0.6     | 0.8         | 0.4         | 0         | 0         | 0.2         | 0           | 1                                            |
| рН                                 |                                                            | 6.92    | 7.18    | 7.11    | 7           | 7.02        | 6.63      | 7.1       | 6.18        | 6.76        | 1                                            |
| specific conductance (µS/cm)       |                                                            | 465     | 301     | 591     | 340         | 345         | 226       | 412       | 343         | 50          | 1                                            |
| temperature (degrees C)            |                                                            | 10.3    | 10.2    | 13      | 12.6        | 9.88        | 10.34     | 12.88     | 12.89       | 9.38        | 1                                            |
| dissolved oxygen (mg/L)            |                                                            | 3.69    | 2.57    | 1.22    | 3.65        | 5.19        | 6.3       | 4.48      | 3.81        | 2.7         | 1                                            |
| oxidation reduction potential (mV) |                                                            | -41     | 4       | -12     | -17         | 163         | 32        | -38       | 48          | 81          |                                              |

 Table 3-2

 Tank Farms 1 and 3 Detected Analytical Results (continued)

Notes:

1 - Groundwater Standards are from Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998. Amended in April 2000

♦ - Indicates higher value detected in the sample duplicate or during the dilution phase.

-- Indidcates no NYS GA Groundwater Standard

F - Ananlyte was positively identified but the associated numerical value is below the reporting limit

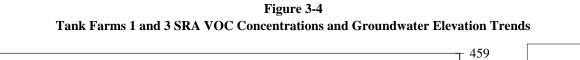
N/A - Analyte was not analyzed during sampling

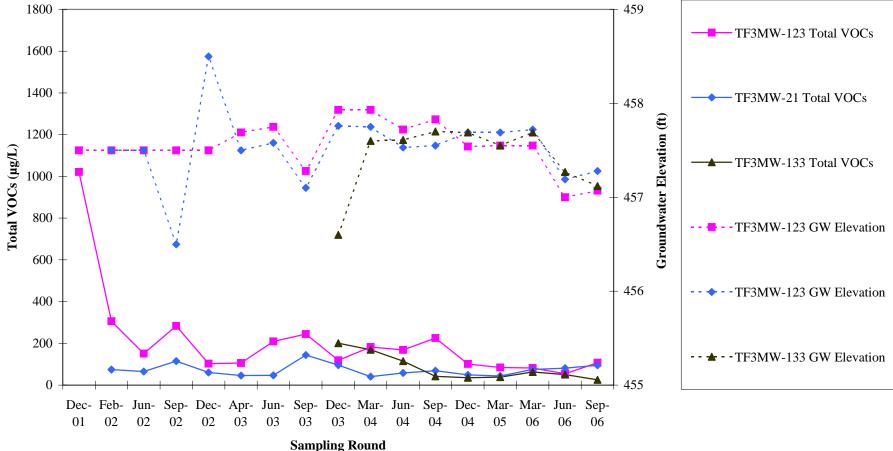
U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

# Draft Long-Term Monitoring Report Petroleum SRA LTM Former Griffins AFB Contract # F41624-03-Do8601 / Task Order #0027 Revision 0.0 August 2007 Page 3-24

Table 3-2 Tank Farms 1 and 3 Detected Analytical Results (continued)

| 3 | Detected | Analytical |  |
|---|----------|------------|--|
|   |          |            |  |


| Monitoring Well ID                         | NYSDEC              | VYSDEC TF3MW-131        |                       |                       |             |             |             |       | TF3MW-132   |             |             |             |             | TF3MW-133   |              |        |             |             |             |             |             |             |             |             |
|--------------------------------------------|---------------------|-------------------------|-----------------------|-----------------------|-------------|-------------|-------------|-------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                                  | GW                  | TF3M13117HB             | TF3M13114IB           | TF3M13115JB           | TF3M13115KB | TF3M13114LB | TF3M13114MA |       | TF3M13217HB | TF3M13217IB | TF3M13217JB | TF3M13217KB | TF3M13217LB | TF3M13217MA | TF3M13       | 3316HB | TF3M13317IB | TF3M13316JB | TF3M13316KB | TF3M13316LB | TF3M13316MA | TF3M13316NA | TF3M13316OA | TF3M13316PA |
| Date of Collection                         | Standards           | 11/25/2003              | 3/17/2004             | 6/17/2004             | 9/13/2004   | 12/30/2004  | 3/29/2005   |       | 11/25/2003  | 3/17/2004   | 6/17/2004   | 9/13/2004   | 12/30/2004  | 3/29/2005   | 11/25/       | /2003  | 3/17/2004   | 6/17/2004   | 9/13/2004   | 12/30/2004  | 3/29/2005   | 3/28/2006   | 6/20/2006   | 9/29/2006   |
| Sample Depth (ft)                          | (µg/L)              | 17                      | 14                    | 15                    | 15          | 15          | 14          |       | 17          | 17          | 16          | 17          | 17          | 17          | 1            | 7      | 16          | 16          | 16          | 16          | 16          | 16          | 16          | 16          |
| VOCs (ug/L)                                |                     |                         |                       |                       |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             | 1           |
| 1,2,4-trimethylbenzene                     | 5                   | U                       | U                     | U                     | U           | U           | U           |       | U           | U           | U           | U           | U           | U           | 81           | 30     | 72          | 49          | 15          | 12          | 9.3         | 22          | 9.2 ♦       | 2.88        |
| 1,3,5-trimethylbenzene                     | 5                   | U                       | U                     | U                     | U           | U           | U           | 1     | U           | U           | U           | U           | U           | U           | 4            | 14     | 26          | 16          | 6.2         | 5.7         | 8.6         | 12          | U           | U           |
| acetone                                    | 5                   | U                       | U                     | 1.5 F                 | U           | U           | U           |       | U           | U           | 1.8 F       | 1.9 F       | U           | U           | τ            | U      | U           | U           | U           | U           | U           | U           | U           | U           |
| chloroform                                 | 7                   | 0.34 F                  | U                     | 0.55                  | 0.4 F       | 0.47 F      | 0.3 F       |       | 0.93        | U           | 0.79        | 0.63 B      | 0.57        | 0.78        | τ            | U      | U           | U           | U           | U           | U           | U           | U           | U           |
| chloroethane                               | 5                   | U                       | U                     | U                     | U           | U           | U           |       | U           | U           | U           | U           | U           | U           | τ            | U      | U           | U           | U           | U           | 0.33 F      | U           | U           | U           |
| cis-1,2-dichloroethylene                   | 5                   | U                       | U                     | U                     | U           | U           | U           | 1     | U           | U           | 0.21 F      | 0.22 F      | U           | U           | τ            | U      | U           | U           | U           | U           | U           | U           | U           | U           |
| sec - butylbenzene                         | 5                   | U                       | U                     | U                     | U           | U           | U           |       | U           | U           | U           | U           | U           | U           | 1            | 1      | 12          | 8.4         | 4.8         | 4.1         | 6.3         | 5.9         | 8.3 ♦       | 4.53        |
| ethylbenzene                               | 5                   | U                       | U                     | U                     | U           | U           | U           | 005   | U           | U           | U           | U           | U           | U           | 9 U          | U      | 0.73 F      | 0.97 F      | U           | U           | 0.2 F       | 0.38 F      | 0.31 F 🔶    | 0.16        |
| isopropylbenzene                           | 5                   | U                       | U                     | U                     | U           | U           | U           | 12    | U           | U           | U           | U           | U           | U           | 2            | 3      | 20          | 14          | 5.3         | 4.3         | 6.8         | 8.5         | 11 •        | 5.16        |
| methylene chloride                         | 5                   | U                       | U                     | U                     | U           | U           | U           | rd    | U           | U           | U           | U           | U           | U           | 2 2.9        | 9 B    | 0.56 F      | 1.8 F       | U           | U           | U           | U           | U           | U           |
| p-isopropyltoluene                         | 5                   | U                       | U                     | U                     | U           | U           | U           | Ma    | U           | U           | U           | U           | U           | U           | eW 11        | 8      | 3.5         | 1.9 F       | 0.8 F       | 0.88 F      | 1.5         | 2.4         | 2.2 ♦       | 1.29        |
| n-butylbenzene                             | 5                   | U                       | U                     | U                     | U           | U           | U           | er    | U           | U           | U           | U           | U           | U           | 5 5.         | 1      | 3.1         | 1.8 F       | 0.77 F      | 0.68 F      | 1.4         | 0.83 F      | 2.2 ♦       | 1.19        |
| n-propylbenzene                            | 5                   | U                       | U                     | U                     | U           | U           | U           | aft   | U           | U           | U           | U           | U           | U           | 4            | 6      | 20          | 14          | 6.6         | 5.4         | 7.6         | 8.7         | 13 +        | 6.59        |
| naphthalene                                | 10                  | U                       | U                     | U                     | U           | U           | U           | kd    | U           | U           | U           | U           | U           | U           | <b>Pa</b> 3. | .7     | 5.2         | 3           | 0.87 F      | 0.98 F      | 1.6         | 1.6         | 2.5 B ♦     | 2.09        |
| trichloroethylene                          | 5                   | 0.43 F                  | 0.32 F                | 0.36 F                | 0.38 F      | 0.27 F      | 0.29 F      | đ     | 0.8 F       | 0.67 F      | 0.64 F      | 0.69 F      | 0.6 F       | 0.65 F      | <b>ີ ແ</b> ປ | U      | U           | U           | U           | U           | U           | U           | U           | U           |
| t-butylbenzene                             | 5                   | U                       | U                     | U                     | U           | U           | U           | 23    | U           | U           | U           | U           | U           | U           | 1. I.        | .9     | 1.3 F       | 1 F         | 0.54 F      | 0.45 F      | 0.75 F      | 0.66 F      | 1 +         | 0.92        |
| m,p-xylene                                 | 5                   | U                       | U                     | U                     | U           | U           | U           | ot    | U           | U           | U           | U           | U           | U           | 10 8.        | .2     | 5           | 3.4 F       | 1.2 F       | 0.95 F      | 1 F         | 1.3         | 1.1 F ♦     | 0.49        |
| Total VOCs                                 |                     | 0.77                    | 0.32                  | 2.41                  | 0.78        | 0.74        | 0.59        | 1     | 1.73        | 0.67        | 3.44        | 3.44        | 1.17        | 1.43        | - 200        | 0.9    | 169.39      | 115.27      | 42.08       | 35.44       | 38.08       | 62.97       | 50.81       | 25.3        |
| SVOCs (µg/L)                               |                     |                         |                       |                       |             |             |             | 6     |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
| 2-methylnapthalene                         |                     | U                       | U                     | N/S                   | N/S         | N/S         | N/S         | ů.    | U           | U           | N/S         | N/S         | N/S         | N/S         | . i 1:       | 5      | 9 F         | N/S         |
| naphthalene                                | 10                  | U                       | U                     | N/S                   | N/S         | N/S         | N/S         | tor   | U           | U           | N/S         | N/S         | N/S         | N/S         | <b>Jo</b> 3  | F      | 3 F         | N/S         |
| Total SVOCs                                |                     | 0                       | 0                     | N/S                   | N/S         | N/S         | N/S         | - iii | 0           | 0           | N/S         | N/S         | N/S         | N/S         | 11           | 8      | 12 F        | N/S         |
| Wet Chemistry Data (mg/L)                  |                     |                         |                       |                       |             |             |             | 2     |             |             |             |             |             |             | M            |        |             |             |             |             |             |             |             |             |
| nitrate                                    | 10000               | 1                       | 1.1                   | 1.1                   | 0.73        | 0.95        | 0.55        | 1     | 2           | 2           | 1.8         | 1.6         | 1.7         | 1.4         | 0.0          | 064    | 0.45        | 0.14        | 0.098       | 0.59        | U           | N/S         | N/S         | N/S         |
| sulfate                                    | 250000              | 16.7                    | 14.9                  | N/S                   | N/S         | N/S         | N/S         |       | 19.3        | 20.4        | N/S         | N/S         | N/S         | N/S         | 36           | 5.8    | 9.4         | N/S         |
| sulfide                                    |                     | U                       | 0.26 F                | N/S                   | N/S         | N/S         | N/S         |       | U           | U           | N/S         | N/S         | N/S         | N/S         | L            | U      | U           | N/S         |
| total alkalinity                           |                     | 416                     | 146 B                 | 200                   | 226         | 187         | 222         |       | 346         | 182 B       | 268         | 236         | 233         | 237         | 31           | 10     | 153 B       | 263         | 223         | 226         | 272         | N/S         | 273         | 330         |
| Field Parameters                           |                     |                         |                       |                       |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
| dissolved iron (mg/L)                      |                     | 0                       | N/A                   | 0                     | 0           | 0           | 0           | 1     | 0.8         | 0           | 0           | 0           | 0           | 0           | 0.           | .8     | 1.8         | 3.3         | 2.8         | 2           | 3.2         | 0.7         | 0.4         | 0.4         |
| pH                                         |                     | 5.9                     | 6.89                  | 6.98                  | 7.46        | 6.57        | 6.65        |       | 6.02        | 7.18        | 7.13        | 7.31        | 6.57        | 7.01        | 6.6          | 61     | 7.05        | 7.15        | 7.29        | 6.09        | 6.98        | 7.22        | 7.51        | 6.71        |
| specific conductance (µS/cm)               |                     | 626                     | 80                    | 0.11 *                | 84.8        | 65          | 0.1 *       |       | 682         | 66          | 63          | 76.7        | 90          | 0.071 *     | 54           | 42     | 41          | 58          | 62.7        | 62          | 70          | 82.4        | 94          | 67          |
| temperature (degrees C)                    |                     | 13.15                   | 9.21                  | 11                    | 14.6        | 11.7        | 9           |       | 12.03       | 9.94        | 10.1        | 12.1        | 11.4        | 10.2        | 11.          | .63    | 8.12        | 9.7         | 12.7        | 11          | 8.9         | 8.95        | 10.3        | 13.2        |
| dissolved oxygen (mg/L)                    |                     | 2.43                    | 1.6                   | 4.8                   | 3.64        | 7.58        | 6.39        | 1     | 2.63        | 2.9         | 4.9         | 6.52        | 8.78        | 9.52        | 1.           | .1     | 2.8         | 4.1         | 3.82        | 8.41        | 6.89        | 4.65        | 280         | 4.76        |
| oxidation reduction potential (mV)         |                     | 249                     | 169                   | 59                    | 154         | 141         | 152         | 1     | 274         | 169         | 77          | 269         | 118         | 204         | -10          | 01     | -37         | -96         | -94         | -31         | 32          | -60         | 90          | 164         |
| Notes:                                     |                     |                         |                       |                       |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
| 1 - Groundwater Standards are from Tech    | nical and Operation | al Guidance Series (T)  | DGS) 1 1 1 June 199   | 8 Amended in Anril    | 2000        |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
| * - specific conductance is measured in S  |                     |                         |                       |                       |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
| + - Indicates higher value detected in the |                     | during the dilution pha | 15C.                  |                       |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
| Indidcates no NYS GA Groundwater St        |                     |                         |                       |                       |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
| F - Ananlyte was positively identified but |                     | rical value is below th | te reporting limit    |                       |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
| N/A - Analyte was not analyzed during sa   |                     |                         | ······                |                       |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
| N/S- Analyte was not sampled.              |                     |                         |                       |                       |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
| U - The analyte was analyzed for, but not  | detected. The assoc | iated numerical value   | is at or below the m  | ethod detection limit |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
|                                            |                     |                         | to at of early the in |                       |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
|                                            |                     |                         |                       |                       |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |
|                                            |                     |                         |                       |                       |             |             |             |       |             |             |             |             |             |             |              |        |             |             |             |             |             |             |             |             |


Draft Long-Term Monitoring Report Petroleum SRA LTM Program Former Griffiss AFB Contract # F41624-03-D-8601 / Task Order #0027 Revision 0.0 August 2007 Page 3-25

- 458 TF3MW-127 Total VOCs . . - TF3MW-126 Total VOCs Groundwater Elevation (ft MSL) TF3MW-116 Total VOCs TF3-CE3 Total VOCs Total VOCs (µg/L) TF3MW-128 Total VOCs TF3MW-127 GW Elevation TF3MW-126 GW Elevation - TF3MW-116 GW Elevation TF3-CE3 GW Elevation -- TF3MW-128 GW Elevation Dec- Feb- Jun- Sep- Dec- Apr- Jun- Sep- Dec- Mar- Jun- Sep- Dec- Mar- Jun- Sep-

Figure 3-3 Tank Farms 1 and 3 SRA VOC Concentrations and Groundwater Elevation Trends

Draft Long-Term Monitoring Report Petroleum SRA LTM Program Former Griffiss AFB Contract # F41624-03-D-8601 / Task Order #0027 Revision 0.0 August 2007 Page 3-26





#### **December 2001 Downgradient Delineation Results:**

During December 2001 sampling round, monitoring wells TF3MW-116, -117, -118, -119, -120, -121, -123, -124 were sampled along Brooks Road to assess the downgradient migration of the plume. Samples were not analyzed for natural attenuation parameters during this sampling round. TF3MW-123 reported several VOC exceedances and three SVOC exceedances. TF3MW-116 and -118 contained two and one VOC exceedances, respectively, while TF3MW-119 contained one VOC and several SVOC exceedances. No exceedances were reported in monitoring wells TF3MW-117, -120, -121 and -124.

- Minimum VOC exceedance: 5.6 µg/L for 2-dibromo-3-chloropropane at TF3MW-123
- Maximum VOC exceedance: 480 µg/L for isopropylbenzene at TF3MW-123
- Maximum total VOCs: 1,021 µg/L at TF3MW-123
- Maximum SVOC exceedance: 16 µg/L for bis(2-ethylhexyl)phthlate at TF3MW-123
- Maximum total SVOCs: 148 µg/L at TF3MW-123

#### February 2002:

Monitoring wells TF3CE-3, TF3MW-21, -116, -126, and -130 contained only VOC exceedances, while TF3MW-119, -123, -125, -127, and -128 showed exceedances for VOCs and SVOCs. Monitoring wells TF3MW-2, -25, -117, -118, -120, -121, -124, and -129 showed no exceedances of NYS Groundwater Standards. In March 2002, monitoring wells TF3MW-118 through -121 were decommissioned due to site construction that changed the site topography and usage. Following completion of site construction, replacement monitoring wells will be installed to monitor plume migration.

- Minimum VOC exceedance: 5.1 µg/L of n-butylbenzene at TF3MW-21
- Maximum VOC exceedance: 140 µg/L of 1,2,4-trimethylbenzene at TF3MW-128
- Maximum total VOCs: 510 µg/L at TF3MW-128
- Maximum SVOC exceedance: 26 µg/L of naphthalene at TF3MW-128
- Maximum total SVOCs: 127 µg/L at TF3MW-127

#### June 2002:

Monitoring wells TF3-CE3, TF3MW-21, -116, -117, -123, -125, -126, -127, and -128 contained VOC or SVOC exceedances. TF3MW-21, -116, -117, and -123 showed SVOC exceedances that were qualified with an "M" qualifier that indicated a matrix effect was present. Monitoring wells TF3MW-2, -25, -124, -129, and -130 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance: 5.8 µg/L of n-propylbenzene at TF3CE-3
- Maximum VOC exceedance: 98 µg/L of 1,2,4-trimethylbenzene at TF3MW-128
- Maximum total VOCs: 294 µg/L at TF3MW-125

- Maximum SVOC exceedance: 20 µg/L of naphthalene at TF3MW-127
- Maximum total SVOCs: 54 µg/L at TF3MW-127

#### September 2002:

Monitoring wells TF3-CE3, TF3MW-21, -116, -117, -123, -125, and -126 contained only VOC exceedances. Monitoring wells TF3MW-127 and -128 contained VOC and SVOC exceedances. Monitoring wells TF3MW-2, -25, -117, -124, -129, and -130 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance: 5.7 µg/L of benzene at TF3MW-127
- Maximum VOC exceedance: 190 µg/L of 1,2,4-trimethylbenzene at TF3MW-127
- Maximum total VOCs: 659.77 µg/L at TF3MW-127
- Maximum SVOC exceedance: 110 µg/L of naphthalene at TF3MW-127
- Maximum total SVOCs: 412 µg/L at TF3MW-127

#### December 2002:

Monitoring wells TF3-CE3, TF3MW-21, -116, and -125 contained VOC exceedances. Monitoring wells TF3MW-123, -127, and -128 contained both VOC and minor SVOC exceedances. Monitoring wells TF3MW-2, -25, -117, -124, -126, -129, and -130 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance: 5.1 µg/L of isopropylbenzene at TF3-CE3
- Maximum VOC exceedance: 53  $\mu$ g/L for isopropylbenzene at TF3MW-123 and ethylbenzene at TF3MW-125
- Maximum total VOCs: 182 µg/L at TF3MW-125
- Maximum SVOC exceedance: 2 F µg/L at TF3MW-127 and -128 for benzo(a)anthracene
- Maximum total SVOCs: 27 µg/L at TF3MW-127

#### March 2003:

Monitoring wells TF3MW-21, -117, -123, -125, -127, and -128 contained only VOC exceedances. No SVOC exceedances were detected, except for naphthalene, also a VOC, at TF3MW-127. Monitoring wells TF3-CE3, TF3MW-2, -25, -116, -117, -124, -126, -129, and -130 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance:  $5.2 \text{ J} \mu \text{g/L}$  for n-propylbenzene for TF3MW-21
- Maximum VOC exceedance: 61 M µg/L for ethylbenzene for TF3MW-125
- Maximum total VOCs: 205 µg/L at TF3MW-125

#### June 2003:

Monitoring wells TF3MW-21, -116, -117, -123, -125, -127, and -128 contained only VOC exceedances. No SVOC exceedances were detected. Monitoring wells TF3-CE3, TF3MW-2, -25, -124, -126, -129, and -130 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance: 5.2 J µg/L for n-propylbenzene at TF3MW-21
- Maximum VOC exceedance: 120 µg/L for isopropylbenzene at TF3MW-123
- Maximum total VOCs: 209 µg/L at TF3MW-123

#### September 2003:

Monitoring wells TF3MW-21, -117, -123, -125, -127, and -128 contained only VOC exceedances. No SVOC exceedances were detected, except for naphthalene, also a VOC, at TF3MW-127. Monitoring wells TF3-CE3, TF3MW-2, -25, -116, -124, -126, -129, and -130 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance: 5.2  $\mu$ g/L for benzene at TF3MW-127 and n-butylbenzene at TF3MW-123
- Maximum VOC exceedance: 130 µg/L for isopropylbenzene at TF3MW-123
- Maximum total VOCs: 245 µg/L for TF3MW-123

In September 2003, monitoring wells TF3MW-25 and -125 were decommissioned due to site construction at the Tank Farms 1 and 3 site. As with previously decommissioned monitoring wells, replacement monitoring wells will be installed following completion of site construction and evaluation of the LTM monitoring well network. In addition, in November 2003, TF3MW-131, -132, and -133 were installed in the central portion of the Tank Farm 1 and 3 site.

#### December 2003:

Monitoring wells TF3-CE3, TF3MW-21, -116, -117, -123, -127, -128, and -133 contained only VOC exceedances. No SVOC exceedances were detected. Monitoring wells TF3MW-2, -25, -124, -126, -129, -130, -131, and -132 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance:  $2.1 \,\mu$ g/L for benzene at TF3MW-127
- Maximum VOC exceedance: 80 µg/L for 1,2,4-trimethylbenzene at TF3MW-133
- Maximum total VOCs: 230 µg/L for TF3MW-127

#### March 2004:

Monitoring wells TF3-CE3, TF3MW-21, -116, -117, -123, -127, -128, -129 and -133 contained only VOC exceedances. No SVOC exceedances were detected. Monitoring wells TF3MW-2, -25, -124, -126, -130, -131, and -132 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance:  $2.2 \mu g/L$  for benzene at TF3MW-129
- Maximum VOC exceedance: 110 µg/L for isopropylbenzene at TF3MW-123
- Maximum total VOCs: 182 µg/L for TF3MW-123

Following the March 2004 sampling round SVOCs, sulfate and sulfide were no longer sampled for at the Tank Farms 1 & 3 site. In addition, monitoring wells TF3MW-2, -25, -124, -125, -129, and -130 are no longer sampled because previous sampling data showed an absence of contamination.

#### June 2004:

Monitoring wells TF3-CE3, TF3MW-21, -116, -117, -123, -127, -128, and -133 contained VOC exceedances. Monitoring wells -126, -131, and -132 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance:  $4.2 \mu g/L$  for benzene at TF3MW-127
- Maximum VOC exceedance: 85 µg/L for isopropylbenzene at TF3MW-123
- Maximum total VOCs: 230.67 µg/L for TF3MW-127

#### September 2004:

Replacement monitoring wells TF3MW-119R and TF3MW-121R were installed prior to the September 2004 sampling round. Replacement monitoring well TF3MW-125R could not be installed due to the installation of new site utilities that obstruct the installation of the replacement well. Monitoring wells TF3-CE3, TF3MW-21, -116, -117, -119R, -123, -127, -128, and -133 contained VOC exceedances. Monitoring wells -126, -131, and -132 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance:  $3.3 \mu g/L$  for benzene at TF3MW-127
- Maximum VOC exceedance: 120 µg/L for isopropylbenzene at TF3MW-123
- Maximum total VOCs: 225.4 µg/L for TF3MW-123

#### December 2004:

Monitoring wells TF3-CE3, TF3MW-21, -116, -117, -123, -127, -128, and -133 contained VOC exceedances. Monitoring wells TF3MW-119R, -126, -131, and -132 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance:  $5.4 \mu g/L$  for n-propylbenzene at TF3MW-133
- Maximum VOC exceedance: 70 µg/L for isopropylbenzene at TF3MW-127
- Maximum total VOCs: 162.13 µg/L for TF3MW-127

#### March 2005:

Monitoring wells TF3-CE3, TF3MW-21, -116, -123, -127, -128, and -133 contained VOC exceedances. Monitoring wells TF3MW-117, -119R, -121R, -126, -131, and -132 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance: 5.2 µg/L for ethylbenzene at TF3MW-127
- Maximum VOC exceedance: 62 µg/L for isopropylbenzene at TF3MW-125
- Maximum total VOCs: 105.14 µg/L for TF3MW-128

In December 2005, Oxygen Release Compound (ORC<sup>®</sup>) Advanced was injected into seventeen borings. Site utilities made injection impossible south of Brooks Road and ORC<sup>®</sup> socks were installed in existing monitoring wells instead. Five pounds of ORC<sup>®</sup> per foot were injected from 20 to 14 feet bgs. Injection took place in the source area of Tank Farms 1 & 3 as shown on Figure 3-1 and added to downgradient monitoring wells TF3MW-21, -116, -117, -119R, -121R and -123 by the use of ORC<sup>®</sup> socks in October 2005.

#### March 2006:

Monitoring wells TF3-CE3, TF3MW-21, -116, -123, -127, -128, and -133 contained VOC exceedances. Monitoring wells TF3MW-117, -119R, -121R, and -126 showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance: 5.9 µg/L for sec-butylbenzene at TF3MW-133
- Maximum VOC exceedance: 62 µg/L for isopropylbenzene at TF3MW-123
- Maximum total VOCs: 82.38 µg/L for TF3MW-128

#### June 2006:

Monitoring wells TF3-CE3, TF3MW-21, -116, -123, -126, -127, -128, and -133 contained VOC exceedances. Monitoring wells TF3MW-117, -119R, and -121R showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance: 5.2 µg/L for isopropylbenzene at TF3-CE3
- Maximum VOC exceedance: 54 µg/L for isopropylbenzene at TF3MW-21
- Maximum total VOCs: 81.2 µg/L for TF3MW-21

In August 2006, ORC<sup>®</sup> was injected at fifteen locations along Brooks Road near former well TF3MW-25 and existing wells TF3MW-123 and TF3MW-133 as shown on Figure 3-2.

#### September 2006:

Monitoring wells TF3-CE3, TF3MW-21, -116, -123, -126, -127, -128, and -133 contained VOC exceedances. Monitoring wells TF3MW-117, -119R, and -121R showed no exceedances of NYS Groundwater Standards.

- Minimum VOC exceedance: 5.1 µg/L for sec-butylbenzene at TF3MW-21
- Maximum VOC exceedance: 101 µg/L for 1,2,4-trimethylbenzene at TF3MW-127
- Maximum total VOCs: 271.41 µg/L for TF3MW-127

#### **Natural Attenuation**

Natural attenuation includes any reduction in concentration as a result of any of the natural attenuation processes, including dilution, dispersion, sorption, volatilization, biodegradation/biotransformation, and abiotic degradation/transformation.

In the original LTM workplan, groundwater samples were also analyzed for the following geochemical indicator parameters: alkalinity, dissolved ferrous iron, nitrate, sulfate, and sulfide. These parameters can be used to document if the groundwater conditions support *biological* natural attenuation processes, particularly hydrocarbon biodegradation. These parameters help to identify if groundwater conditions are aerobic or anaerobic, and to indicate if other alternate electron acceptors are available to assist in the biodegradation of remaining COCs.

Microorganisms obtain energy for cell production and maintenance by catalyzing the transfer of electrons from electron donors to electron acceptors. This process results in the oxidation of the electron donor (which, in this case, is benzene, toluene, ethylbenzene and xylene (BTEX)/Total Petroleum Hydrocarbons (TPH), and the reduction of the electron acceptor. In most scenarios, Dissolved Oxygen (DO) is the primary electron acceptor. After DO is consumed, anaerobic microorganisms generally use electron acceptors in the following order of preference – nitrate, ferric iron, sulfate, and carbon dioxide (Wiedemeier et al., November 1995). Anaerobic destruction of BTEX is associated with the reduction of nitrate, solubilization of iron, reduction of sulfate, and production of methane (the latter of which is not included in the list of geochemical parameters analyzed). Each of these parameters will be reviewed in the following subsections. Please refer to Table 3-2 for natural attenuation parameter results.

Long-Term Monitoring Report Petroleum SRA LTM Former Griffiss AFB Contract No. F41624-03-D-8601/Delivery Order No. 0027 Revision 0.0 August 2007 Page 3-33

#### **Dissolved Oxygen (DO)**

Oxygen is the most thermodynamically preferred electron acceptor and is normally depleted in areas with relatively higher BTEX/TPH concentrations. The Tank Farms 1& 3 site contained data within normal DO ranges but did show lower readings during the June (summer) and September (fall) 2002 sampling rounds at several well locations (TF3-CE3, TF3MW-21, -116, -123, -124, -127, -128, and -129). No correlation could be found between depleted DO levels within plume boundaries or at contaminated monitoring wells. It does appear that DO levels have been rising site wide since LTM began. Please note that DO levels were measured in the field from samples collected with a disposable bailer and do not necessarily represent subsurface conditions.

#### Nitrate

After the DO has been consumed, nitrate is used as an alternate electron acceptor for anaerobic biodegradation. In this process, nitrate (NO  $_3$ ) is converted to nitrite (NO  $_2$ ); therefore, nitrate depletion relative to background conditions can be an indication of biological activity. Depleted nitrate conditions appear to exist at monitoring wells within most of the designated plume areas. Nitrate levels in three uncontaminated and upgradient/crossgradient monitoring wells (TF3MW-2, -25, -130, -131, and -132) detections were generally within the range of 0.8 to 2 mg/L. These monitoring wells also showed no contamination during sample analysis. Monitoring wells within the eastern plume show mostly depleted or undetectable nitrate levels. Downgradient well TF3-CE3 showed some nitrate depletion, with levels between 0.087 and 0.71 mg/L that are higher than the source area but lower than uncontaminated upgradient or crossgradient wells. Downgradient wells TF3MW-116 through -119R and -126 also showed depleted or undetectable nitrate ranges of 0-2.5 mg/L with no or low levels of contamination. In addition, uncontaminated well TF3MW-124 and contaminated wells TF3MW-21, -123, and -125 within the western plume boundary along Brooks Road showed depleted or undetectable levels of nitrate when compared to uncontaminated upgradient wells discussed above. It should be noted that downgradient replacement monitoring well TF3MW-121R showed a positive detection of nitrate at 1.2 mg/L for the September 2004 sampling round. The absence of nitrate in within-plume and downgradient wells suggests biological activity associated with nitrate reduction has consumed the available nitrate in areas affected with relatively higher levels of contamination. It was recommended that nitrate no longer be sampled for at the Tank Farms 1 & 3 SRA after March 2005.

#### **Dissolved Iron**

After DO and nitrate have been depleted by microbial activity, ferric iron (Fe<sup>3+</sup>) is used as an electron acceptor during anaerobic biodegradation of hydrocarbons. Ferric iron is reduced to ferrous iron (Fe<sup>2+</sup>), which is soluble in groundwater, and is therefore an indicator of microbial degradation activity. The presence of ferrous iron above background levels is indicative of anaerobic consumption of petroleum hydrocarbons via iron reduction. Low dissolved iron levels were identified at upgradient/crossgradient uncontaminated locations TF3MW-2, -25, -128, -129, and -130, with an approximate range of 0-1.8 mg/L. Monitoring wells within the Building 147

plume (TF3MW-127, and TF3-CE3) as well as downgradient wells TF3MW-116, -117, and -126 contained relatively higher levels (1-6.5 mg/L) of ferrous iron than upgradient, uncontaminated wells described above. The western plume along Brooks Road shows similar results with contaminated wells TF3MW-21, -123, and, -125 showing relatively elevated ferrous iron levels (1.6 – 5.6 mg/L). Crossgradient well TF3MW-124 showed slightly elevated levels 0.2 –3.2 mg/L, while downgradient uncontaminated monitoring wells TF3MW-118, -120, and -121 all showed undetectable ferrous iron levels. Monitoring wells TF3MW-119, -121 and its replacement wells TF3MW-119R and -121R, located downgradient of TF3MW-123, show undetectable and low levels (0-1 mg/L) during sampling rounds in addition to minor SVOC contamination for the 2002 sampling round only. The presence of ferrous iron above background levels within plume boundaries is indicative of anaerobic degradation of petroleum hydrocarbons in the vicinity of these wells.

#### Sulfate

Sulfate is the next thermodynamically preferred alternate electron acceptor and is used by microbes once the oxygen, nitrate, and ferric iron have been depleted by the anaerobic biodegradation of hydrocarbons. Sulfate is converted to sulfide in the subsurface during anaerobic biodegradation, often forming hydrogen sulfide gas, which produces a "rotten egg" odor. This process results in a depletion of sulfate and the production of sulfide. Sulfide may not always be detected in groundwater samples, however, because it commonly forms metal sulfide precipitates and falls out of solution. Sulfate levels at upgradient/crossgradient uncontaminated locations TF3MW-2, -25, -129, and -130 did not differ significantly when compared to contaminated, within-plume wells TF3MW-21, -123, -125, -127, and -128. Sulfide was detected during the March 2004 sampling round, but was identified just above the detection limit at wells TF3-CE3, TF3MW-116, -123, -127, -130, -131, -132 and -133. These results indicate that sulfate reduction is not a significant process for the potential anaerobic completion of petroleum hydrocarbons at the site and sulfate sampling was discontinued after the March 2004 sampling round.

#### Alkalinity

Aerobic biodegradation (during the oxidation of hydrocarbon) uses oxygen to oxidize the hydrocarbon and produces carbon dioxide by the process known as mineralization. When carbon dioxide is produced, it increases the alkalinity, or the water's ability to buffer an acid, and can therefore be an indicator of biological activity. In general, areas contaminated with hydrocarbons exhibit a higher total alkalinity than background areas. Changes in alkalinity are most pronounced during aerobic respiration, denitrification, iron reduction, and sulfate reduction. Generally higher (>200 mg/L) alkalinity levels were originally measured in downgradient or within-plume wells (TF3-CE3, TF3MW-116, -117, -120, -121, -126, -127, -128, -133) than other wells at the site, with levels generally less than 200 mg/L. It should be noted that alkalinity levels are most likely to be higher in wells downgradient of the plumes; some of the highest levels reported above 300 mg/L were associated with wells TF3CE-3 and TF3MW-116, -117,

-126, and -128. These results now appear to be inconclusive when compared to historical data. High and low alkalinity measurements were found at both contaminated and uncontaminated wells that were upgradient, downgradient, and crossgradient from known sources and existing plumes. Some of the most contaminated areas (TF3MW-123, -21) showed low levels of alkalinity as did its downgradient wells (TF3MW-119, -119R). Alkalinity has become less of an indicator of biodegradation as the plume stabilizes and the clean perimeter wells are no longer sampled with remaining LTM wells.

#### pН

Hydrocarbon-degrading microbes are active within a pH range of 5 to 9 standard units (s.u.). There was no clear correlation with pH and contaminant locations. All pH readings are within normal ranges with no discernable trends identified between pH levels and seasonal variations or contaminant levels between wells.

#### Temperature

Groundwater temperature affects the rate of biodegradation, and for every 10 °C increase in temperature between 5 and 25 °C, biodegradation rates may double. The highest groundwater temperatures were found during the fall and winter sampling rounds and the lowest observed during spring and summer sampling, with temperatures falling within normal variation. The temperature discrepancy may be caused by buried steam heat piping at the site which is active during fall, winter and early spring.

#### **Specific Conductance**

Specific conductance is a measure of a groundwater's ability to conduct electricity. As the concentration of ions in solution increases, the specific conductance increases. Specific conductance was found to be highest during the summer and fall (June and September) sampling round and lowest during the winter (December, February) sampling.

#### **Redox (Reduction/Oxidation Potential)**

The redox potential of groundwater is a measure of electron activity and is an indicator of the relative tendency of a solution to accept or transfer electrons. The redox potential of groundwater typically ranges from -400 mV to +800 mV. Positive redox values (redox > 0) indicate oxidizing (and generally aerobic) conditions (i.e., loss of electrons) and negative measurement (redox < 0) indicate reducing (and generally anaerobic) conditions (i.e., gain of electrons). Redox conditions are usually mediated by biological activity. Positive redox measurements are generally favorable for hydrocarbon biodegradation. Mostly, there appears to be site-wide negative redox measurements throughout, except for TF3MW-121 (which was decommissioned and replaced by TF3MW-121R), TF3MW-2, -128, -129, -130, -131, and -132 during the past sampling rounds. These measurements are consistent with the observation of ongoing anaerobic processes such as nitrate and iron reduction, therefore the potential for significant biodegradation is severely limited.

#### 3.5 CONCLUSIONS AND RECOMMENDATIONS

The 2002 source removal excavation (Parsons, December 2003) positively affected localized groundwater conditions. Removal of the residual soil contamination continued into the saturated zone where contamination was located and eliminated additional leaching of contamination to groundwater from the vadose zone.

In Fall 2005, ORC<sup>®</sup> Advanced was injected into the source area of Tank Farms 1 & 3 near TF3MW-128 (as shown on Figure 3-2) and added to monitoring wells TF3MW-21, -116, -117, -118R, 121R and -123 by the use of ORC<sup>®</sup> socks. In Summer 2006, additional ORC<sup>®</sup> was injected in the vicinity of monitoring wells TF3MW133, TF3MW-123 and former well TF3MW-125 to promote biodegradation. The original LTM plan is summarized in Table 3-1. An optimized LTM network is listed in Table 3-4 and shown on Figure 3-2.

Monitoring wells TF3MW-123, -127, -128, and -133 appear to be the most contaminated wells, with VOC contamination that is primarily isopropylbenzene, ethylbenzene, and 1,2,4-trimethylbenzene. Contaminant levels appear to be attenuating, with downgradient locations showing no increases in contamination with the exception of TF3MW-126 which contained returning VOC exceedances in the summer and fall 2006 sampling rounds. Based on the December 2001 through September 2006 quarterly sampling and review of analytical results, a groundwater plume exists as shown on Figure 3-2.

Groundwater contamination data and review of natural attenuation parameters shows definite seasonal fluctuations. In addition to the decline of total VOC levels over time, nitrate depletion, ferrous iron production, and increased alkalinity have provided the best evidence of natural attenuation provided by biodegradation at the site. No definable trends or attenuation mechanisms were identified after reviews of sulfate and sulfide levels. Generally, low levels of sulfate indicate that sulfate reduction is not a major anaerobic pathway for the site and sulfate analysis was discontinued after March 2004. In general, biodegradation processes appear to be severely electron acceptor-limited at the site.

Additional ORC<sup>®</sup> injection may follow the review of LTM data in December 2007 to decide if additional injection would be needed to aid further biodegradation at the site. A mobile biosparging setup will also be evaluated for intermittent application at the most contaminated wells (TF3MW-123, -127 and -128), to enhance bioremediation.

Table 3-3Tank Farms 1 and 3 Proposed Future LTM Sampling

| Sampling<br>Locations | Sampling Rationale     | Target Analytes/<br>Method Numbers | Sampling<br>Frequency | Evaluation Criteria/<br>Modification Justification     |
|-----------------------|------------------------|------------------------------------|-----------------------|--------------------------------------------------------|
| TF3-CE3               | Within plume           | VOCs (AFCEE QAPP                   | Annually              | The plume is stable.                                   |
| TF3MW-21              | Within plume           | 4.0 List)/SW8260                   |                       |                                                        |
| TF3MW-116             | Within plume           | Alkalinity/310.2                   |                       |                                                        |
| TF3MW-117             | Crossgradient of plume |                                    |                       |                                                        |
| TF3MW-119R            | Downgradient of plume  |                                    |                       |                                                        |
| TF3MW-121R            | Downgradient of plume  |                                    |                       |                                                        |
| TF3MW-123             | Within plume           |                                    |                       |                                                        |
| TF3MW-126             | Within plume           |                                    |                       |                                                        |
| TF3MW-127             | Within plume           |                                    |                       |                                                        |
| TF3MW-128             | Within plume           |                                    |                       |                                                        |
| TF3MW-133             | Within plume           |                                    |                       |                                                        |
|                       |                        | Recommended                        | LTM Chan              | nges                                                   |
|                       |                        | Analysis                           | Changes               |                                                        |
| TF3MW-119R            | Downgradient of plume  | SVOCs/SW8270                       |                       | SVOCs were not identified at these wells following six |
| TF3MW-121R            | Downgradient of plume  |                                    |                       | sampling rounds. SVOC sampling is no longer needed.    |
|                       |                        |                                    |                       |                                                        |

Table 3-3 (continued)Tank Farms 1 and 3 Proposed Future LTM Sampling

| Sampling<br>Locations               | Sampling Rationale                                                   | Target Analytes/<br>Method Numbers | Sampling<br>Frequency | Evaluation Criteria/<br>Modification Justification                                                                                                            |  |  |  |  |  |
|-------------------------------------|----------------------------------------------------------------------|------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                     |                                                                      | Historical LTM N                   | etwork Change         | es                                                                                                                                                            |  |  |  |  |  |
|                                     | June 2006                                                            |                                    |                       |                                                                                                                                                               |  |  |  |  |  |
|                                     | Analysis/Frequency Change                                            |                                    |                       |                                                                                                                                                               |  |  |  |  |  |
| All sampled<br>wells                | 1                                                                    | Nitrate/353.2                      |                       | Nitrate is no longer a useful biodegradation<br>indicator at the Tank Farms 1 and 3 site, and<br>will not be sampled after the Winter 2006<br>sampling round. |  |  |  |  |  |
|                                     |                                                                      | Novembe                            | er 2005               |                                                                                                                                                               |  |  |  |  |  |
|                                     |                                                                      | Removed Samp                       | ling Locations        |                                                                                                                                                               |  |  |  |  |  |
| TF3MW-131<br>TF3MW-132              | Upgradient of plume<br>Upgradient of plume                           |                                    |                       | Previous quarterly LTM samples indicate that<br>no contamination is present and additional<br>groundwater sampling is not needed.                             |  |  |  |  |  |
|                                     |                                                                      | Februar                            | y 2005                |                                                                                                                                                               |  |  |  |  |  |
|                                     |                                                                      | Removed Samp                       | ling Locations        |                                                                                                                                                               |  |  |  |  |  |
| TF3MW-124<br>TF3MW-129<br>TF3MW-130 | Crossgradient of plume<br>Upgradient of plume<br>Upgradient of plume |                                    |                       | Previous quarterly LTM samples indicate<br>that no contamination is present and<br>additional groundwater sampling is not<br>needed.                          |  |  |  |  |  |
|                                     |                                                                      | June 2                             | 2004                  |                                                                                                                                                               |  |  |  |  |  |
|                                     |                                                                      | Analysis/Frequ                     | ency Changes          |                                                                                                                                                               |  |  |  |  |  |
| All sampled<br>wells                |                                                                      | Sulfate/376.3<br>Sulfide/375.4     |                       | Sulfate reduction is depleted and will no longer be sampled during June 2004 round.                                                                           |  |  |  |  |  |

Long-Term Monitoring Report Petroleum SRA LTM Former Griffiss AFB Contract No. F41624-03-D-8601/Delivery Order No. 0027 Revision 0.0 August 2007 Page 3-39

# Table 3-3 (continued)Tank Farms 1 and 3 Proposed Future LTM Sampling

| Sampling<br>Locations                            | Sampling Rationale                                                                               | Target Analytes/<br>Method Numbers                                                                  | Sampling<br>Frequency | Evaluation Criteria/<br>Modification Justification                                                                                                                                                                                          |  |  |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                  |                                                                                                  | Added Sampling L                                                                                    | ocations              |                                                                                                                                                                                                                                             |  |  |  |
| TF3MW-119R<br>TF3MW-121R                         | Downgradient of plume<br>Downgradient of plume                                                   | VOCs and<br>SVOCs(AFCEE QAPP<br>3.1 List)/SW8260 and<br>SW8270<br>Alkalinity/310.2<br>Nitrate/353.2 | Quarterly             | Quarterly monitoring with semi-annual<br>evaluation and recommendations. SVOC<br>analysis was added due to previous<br>identification of SVOC contamination.<br>Monitoring well locations were replacements<br>for previous well locations. |  |  |  |
|                                                  |                                                                                                  | Removed Sampling                                                                                    | Locations             |                                                                                                                                                                                                                                             |  |  |  |
| TF3MW-118<br>TF3MW-119<br>TF3MW-120<br>TF3MW-121 | Downgradient of plume<br>Downgradient of plume<br>Downgradient of plume<br>Downgradient of plume | VOCs (AFCEE QAPP<br>3.1 List)/SW8260                                                                | Quarterly             | Decomissioned March 2002 due to site construction.                                                                                                                                                                                          |  |  |  |
| TF3MW-1<br>TF3MW-25<br>TF3MW-125                 | Within plume<br>Crossgradient of plume<br>Within plume                                           | VOCs (AFCEE QAPP<br>3.1 List)/SW8260                                                                | Quarterly             | Destroyed 2003 due to site construction.                                                                                                                                                                                                    |  |  |  |

Long-Term Monitoring Report Petroleum SRA LTM Former Griffiss AFB Contract No. F41624-03-D-8601/Delivery Order No. 0027 Revision 0.0 August 2007 Page 3-40

This page is intentionally left blank.

#### 4 **REFERENCES**

- AFCEE (Air Force Center for Environmental Excellence). Quality Assurance Project Plan, Version 3.1, August 2001.
- AFCEE (Air Force Center for Environmental Excellence). Quality Assurance Project Plan, Version 4.0, February 2005.
- E&E, Basewide Environmental Baseline Survey Supplement (Update 3), Griffiss AFB, New York, December 1997.
- E&E, Final Report for Supplemental Investigations of Areas of Concern, Griffiss Air Force Base, July 1998.
- E&E, Well/Piezometer Inventory (October 1998) Report for the Former Griffiss Air Force Base, Rome, New York, January 1999.
- FPM, Draft Supplemental Study Report Tank Farms 1 and 3 Source Removal Area of Concern, September 2000.
- FPM, Petroleum Spill Sites Long Term Monitoring Program Draft Work Plan Addendum III,, Former Griffiss Air Force Base, Revision 0.0, May 2003.
- FPM, Tank Farms 1 and 3 Source Removal Area of Concern Long Term Monitoring Draft Work Plan, November 2001.
- FPM, Field Sampling Plan, Long Term Monitoring Program at the Former Griffiss Air Force Base, June 2003.
- FPM, Draft Long Term Monitoring Report, Petroleum Source Removal Areas of Concern, Long Term Monitoring Program at the Former Griffiss Air Force Base, February 2004.
- Law Engineering and Environmental Services, Inc., Draft Final Primary Report, Remedial Investigation at Griffiss Air Force Base, December 1996.
- Law Engineering and Environmental Services, Inc. Tank Farms 1 and 3 Predesign Investigation Technical Memorandum, February 1995.
- Law Engineering and Environmental Services, Inc. Draft-Final Primary Report. Volume 19, Remedial Investigation of Building 112 Area of Concern, December 1996.

- McAllister, P.M. and C.Y. Chiang. A Practical Approach to Evaluating Natural Attenuation of Contaminants in Ground Water. Ground Water Monitoring Review. Spring 1984: 161-173.
- New York Natural Heritage Program, 1993 Rare plant species and significant natural communities at Griffiss Air Force Base in Rome, New York, January 1994.
- NYSDEC, Interim Procedures for Inactivation of Petroleum-Impacted Sites, January 1997.
- NYSDEC, New York State Ambient Water Quality Standards and Guidance Values, June 1998.
- NYSDEC, Spill Technology and Remediation Series (STARS), Guidance Values for Fuel Contaminated Soil, August 1992.
- NYSDEC, TAGM 4046, Determination of RSCOs and Cleanup Levels, January 1994.
- Parsons, Remedial Action Report for Source Removal Area of Concern, AOC SS-20 Tank Farms 1 & 3 at the Former Griffiss AFB, Rome, NY, December 2003.
- Tetra Tech, Basewide Environmental Baseline Survey, Griffiss AFB, New York, September 1994.
- Weston, Roy F., Subsurface Investigations At Tank Farms 1 and 3, November 1985 (Note: document was contained in Appendix D of the Engineering Evaluation. Cost Analysis Report for Tank Farms 1 and 3).
- Wiedemeier, T.H.; Wilson, J.T.; Wilson, B.H.; Kampbell, D.H.; Miller, R.N.; Hansen, J.E. Technical Protocol for Implementing Intrinsic Remediation with Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater, Draft – Revision 0, Air Force Center for Environmental Excellence, November 1995.

Appendices

#### **Daily Chemical Quality Control Report**

Project/Delivery Order Number: F41624-03-D-8601-0027 Date: 06/20/06

Project Name/Site Number: Griffiss Petro SRAs Landfills LTM sampling (Tank Farms 1 and 3, Apron 2, and Building 789).

Weather conditions: Temperature: 75 Barometric reading: 29.87 Wind direction and speed: west 14 mph. Significant wind changes: none.

General description of tasks completed: Bailer sampling at Site Tank Farms 1 and 3 (TF3MW-21, -116, -117, -119R, -121R, -123, -126, -127, -128, -133, and TF3CE3) and Site Apron 2 (AP2MW-3, -14, -LD1SW, -B1NE2, and 782VMW-102) and Site Building 789 (789MW-102). Surface water sampling at Site Apron 2 (782SW-118, -119, and -120).

Explain any departures from the SAP or deviations from approved procedures during the day's field activities: none.

Explain any technical problems encountered in the field or field equipment/field analytical instrument malfunction: none.

Corrective actions taken or instructions obtained from AFCEE personnel: No corrective actions necessary.

Sampling shipment completed:  $\sqrt{Yes} \square$  No STL courier.

DCQCR Prepared by: Niels van Hoesel, FOM

Date: 21 June 2006

CQCC Signature: Concordia Van Harael Date: 6/23/06

ATTACHMENTS:

| Checklist               |              | Daily Chemical Quality Control Report Attachments |
|-------------------------|--------------|---------------------------------------------------|
| V/                      | $\checkmark$ | Field sampling forms                              |
| $\mathbb{N}/\mathbb{N}$ | $\checkmark$ | Equipment Calibration Log                         |
|                         | $\checkmark$ | Copies of COCs                                    |
|                         | $\checkmark$ | SDG Table (See accompanying COCs)                 |
| 1                       | $\checkmark$ | Daily Health and Safety Meeting Form              |

| Page | of |  |
|------|----|--|
|      |    |  |

| Project:              | 40-05-2                                | 7               | Saı                  | mpled by: | T         | PC                                     |                |             |
|-----------------------|----------------------------------------|-----------------|----------------------|-----------|-----------|----------------------------------------|----------------|-------------|
| Location a            | nd Site Code (SI                       | reid): -        |                      |           |           | ······································ |                |             |
|                       | LOCID): W                              |                 | 8 B                  |           | er (SDIAM | n. S.                                  |                |             |
|                       | GDATE):                                | f .             | 8 *                  |           |           | 7, 80°                                 |                |             |
|                       |                                        | ~ 10 >          |                      |           |           | 7, 00                                  |                |             |
| CASING VOLU           | ME INFORMATION:                        | ~               | ١                    |           | *         | v                                      |                |             |
| Casing ID (inch)      | 1.0                                    | 1.5 2.0         | 2.2                  | 3.0 4.0   |           | .0 6.0                                 | 7.0            |             |
| Unit Casing Volum     | e (A) (gal/ft) 0.04                    | 0.09            | / 0.2                | 0.37 0.65 | 0.75 1    | .0 1.5                                 | 2.0 2.6        |             |
| PURGING INFO          | RMATION                                |                 |                      | <b></b>   |           |                                        |                |             |
|                       | Depth (B) (TOTDEPTH)                   | 21.0            | ft ft                |           | C C       |                                        |                |             |
|                       | Level Depth (C) (STATD                 |                 |                      | t ho      |           |                                        |                |             |
|                       | Water Column (D) =                     | /               |                      |           |           | B<br>ELEVATI                           | ON             |             |
| Longin of Static      | (B                                     | ) (C)           | = <u>7.36</u><br>(D) | н. н₂с    |           | (MPELE                                 | V)             | ~ >+ I      |
| Casing Water Vo       | lume (E) = $\underbrace{O.16}_{(A)} x$ | 736-1           | 18                   |           |           |                                        | ل              | re27.45ml   |
| Cashig Water Vo       | $\frac{(A)}{(A)}$                      | (D)             | <u> </u>             |           | STATIC    | V                                      | -              |             |
| Minimum Purge         | Volume = 3:53 ga                       | 1 (3 well volum | ec)                  |           | ELEVATION | <b>V</b>                               | MEAN           |             |
| Minimum i uige        |                                        |                 |                      |           |           |                                        | - SEA<br>LEVEL |             |
| Purge Date            | e and Method:                          | Brile           | C                    |           |           |                                        |                |             |
| Physical A            | ppearance/Comm                         | ents:           | loude                | , Brow    | N.        | 0 ode                                  | r. Potri       | s cobol     |
|                       |                                        |                 | - 1                  |           | l         |                                        |                | ne adde     |
| FIELD ME<br>Allowable | EASUREMENTS<br>Range <sup>*</sup>      | :<br>± 0.1      | ± 5%                 | ±1°C      |           |                                        | perc           | infice dole |
| Time                  | Volume                                 | <br>pH          | EC                   | Temp.     | Turbidity | D.O.                                   | ORP            |             |
|                       | Removed (gal)                          |                 | ( <b>s</b> S/sm)     | (F or C)  | (NTU)     | (mg/L)                                 | (mV)           |             |
| 1045                  | 0.75                                   |                 | 6.176                | 117       | 213       | 5.97                                   | -98            |             |
| 1046                  | 1.50                                   | 7.05            | 0.173<br>0.168       |           | 189       | 1.7+<br>9.00                           | - <u>46</u>    | -           |
| 1051                  | 2.25                                   | 2.04            | 0. 170               | M. I      | 184       | 7.54                                   | -95            |             |
| 1053                  | 3.75                                   | 7:04<br>7:02    | 0.169                | 11.0      | 140       | 6:82                                   | -92            |             |
|                       |                                        |                 |                      |           |           |                                        |                |             |
|                       |                                        |                 |                      |           |           |                                        |                |             |
|                       |                                        |                 |                      |           |           |                                        |                |             |
|                       | -                                      |                 |                      |           |           |                                        | <u></u>        | ]           |
| Sample Time           | e: <u>1055</u> Samp                    | ole ID: TF      | 3MIL                 | 6140      | 4         |                                        |                |             |

| Page |       | of |   |
|------|-------|----|---|
| 0    | ***** |    | - |

|                   | 40.09.27                         |                |                  |                      |                 |                | >               |          |      |     |
|-------------------|----------------------------------|----------------|------------------|----------------------|-----------------|----------------|-----------------|----------|------|-----|
|                   | and Site Code (SI                |                |                  |                      |                 | ₩° \           | 2               |          |      |     |
|                   |                                  |                |                  | ell Diamet           |                 | I):            | ۷.              |          |      |     |
| Date (LO          | GDATE):                          | · 0            | ø W              | eatner:              | <i>A A</i>      |                |                 |          |      |     |
| CASING VOLU       | ME INFORMATION:                  |                |                  |                      |                 |                |                 |          |      |     |
| Casing ID (inch)  | 1.0                              | 1.5 2.         | 0 2.2            | 3.0 4.0              | 4.3 5.          | .0 6.0         | 7.0             |          | ]    |     |
| Unit Casing Volun | ne (A) (gal/ft) 0.04             | 0.09 0.1       | 6 0.2            | 0.37 0.65            | 0.75 1          | .0 1.5         | 2.0             | 2.6      |      |     |
| PURGING INFO      |                                  |                | -                |                      |                 | A A            |                 |          |      |     |
|                   | Depth (B) (TOTDEPTH)             |                |                  | E E                  | C               |                |                 |          |      |     |
|                   | Level Depth (C) (STATD           |                |                  |                      | ~               | B              |                 |          |      |     |
| Length of Static  | Water Column (D) = $(B)$         | ) - (C)        | = <u>7.9</u> K   | _ft. <sub>H2</sub> ( |                 | ELEVA<br>(MPEL |                 |          |      |     |
| Casing Water Vo   | $ (E) = \underline{\qquad} (A) $ | (D) =          | <b>1.2736</b> ga |                      |                 |                |                 |          | TE 1 | ۰ م |
| Minimum Purge     | Volume = <b>3.82</b> ga          | l (3 well volu | mes)             |                      | ELEVATION       | V              | MEAN<br>SEA     |          | FE 9 | . L |
| Purge Date        | e and Method:                    |                | Sil.             | ,                    |                 |                | LEVEL           |          |      |     |
|                   |                                  |                |                  |                      | up L            | de-            |                 |          |      |     |
| FIELD MI          | EASUREMENTS                      | •              |                  | <i>y</i>             |                 |                |                 | <u> </u> |      |     |
| Allowable         |                                  | ± 0.1          | ± 5%             | ±1°C                 |                 |                |                 |          |      |     |
| Time              | Volume                           | pH             | EC               | Temp.                | Turbidity       | D.O.           | OR              | P        |      |     |
|                   | Removed (gal)                    | Ĩ              | (mS/cm)          | · ·                  | (NTU)           | (mg/L)         | (m <sup>v</sup> |          |      |     |
| 1024              | 1                                | 7.52           | 0.115            | 12.4                 | 493             | 6:22           | -10;            |          |      |     |
| 1025              | 2                                | 7.21           | 76.6             | 11.6                 | 185             | 4.67           | -9!             |          |      |     |
| 1027              | 2<br>3                           | 2.09           | 75.7             | 11.6                 | 119             | 4.52           |                 |          |      |     |
| 1028              | 4                                | 7.05           | 94.6             | 11.5                 | 81              | 4.64           | -99<br>-9       | 2        |      |     |
| 1030              | 5'                               | 7.06           | 14.0             | 11.5                 | 119<br>81<br>62 | 4.64<br>7.47   | -8              | 5        |      |     |
|                   |                                  |                |                  |                      |                 |                |                 |          |      |     |
|                   |                                  |                |                  |                      |                 |                |                 |          |      |     |
|                   |                                  |                |                  |                      |                 |                |                 |          |      |     |
|                   | 1000 -                           |                | 63               | ang 1                |                 |                |                 |          |      |     |

Sample Time: <u>(033</u> Sample ID: <u>T(-3MII7130A</u>

| Page | of |  |
|------|----|--|
|      |    |  |

| Project:                                | 40-05-2                                                                                                         | 7                   | Sai                 | mpled by:                               | JD        | PC            |                      |                  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|---------------------|-----------------------------------------|-----------|---------------|----------------------|------------------|
| -                                       | nd Site Code (SI                                                                                                |                     |                     |                                         |           |               |                      |                  |
| W-IIN. C                                | LOCID): <u> <u> <u> </u> <u> <u> </u> <u></u></u></u></u> | [210)               |                     |                                         | (CINTANA  | D: 2"         |                      |                  |
| wen no. (                               |                                                                                                                 | <u>romer</u>        |                     |                                         | er (SDIAM | · / · ·       |                      |                  |
| Date (LOC                               | GDATE): <u>6/20</u>                                                                                             | 101                 | We                  | eather: 🗹                               | MARY, T   | 03            |                      |                  |
|                                         | • • • • • • • • • • • • • • • • • • •                                                                           |                     |                     |                                         |           |               |                      |                  |
| CASING VOLU                             | ME INFORMATION:                                                                                                 |                     |                     |                                         |           |               |                      |                  |
| Casing ID (inch)<br>Unit Casing Volum   | e (A) (gal/ft) 0.04                                                                                             | 1.5 2.0<br>0.09 0.1 | <u>2.2</u><br>6 0.2 | 3.0 4.0<br>0.37 0.65                    |           | .0 6.0        | 7.0 2.6              |                  |
| <u>omecasing</u> (onin                  | <u> </u>                                                                                                        |                     |                     |                                         |           | . <u>y. I</u> |                      |                  |
| PURGING INFO                            | RMATION:                                                                                                        |                     |                     |                                         |           | A A           |                      |                  |
|                                         | Depth (B) (TOTDEPTH)                                                                                            | 18.4                | 3 .                 | -                                       | ļ ļ       |               |                      |                  |
|                                         | Level Depth (C) (STATE                                                                                          |                     |                     | -<br>-                                  |           |               |                      |                  |
|                                         |                                                                                                                 | ET) <u>i</u> 64 0   | æ                   | Γ, p                                    |           | B             | ION                  |                  |
| Length of Static                        | Water Column (D) =(B                                                                                            | ) - (C)             | = ( 0  <br>(D)      | п. н₂с                                  |           | (MPELE        |                      |                  |
|                                         | ~ <i>L</i> /                                                                                                    | ( AL                | A 01                |                                         |           |               |                      |                  |
| Casing Water Vo                         | $lume(E) = \underbrace{0.(6)}_{(A)} x_{-}$                                                                      | (D) = J             | V. Io gal           |                                         | STATIC    |               |                      |                  |
|                                         | 2 76                                                                                                            |                     |                     |                                         | ELEVATION |               | አለም ላ አና             |                  |
| Minimum Purge                           | Volume = $2.88$ ga                                                                                              | ıl (3 well volu:    | mes)                |                                         | <u> </u>  |               | MEAN<br>SEA<br>LEVEL |                  |
|                                         |                                                                                                                 | 1.0                 | 6                   |                                         |           |               | 10400                |                  |
|                                         | and Method:                                                                                                     |                     | - e -               | <u> </u>                                | K i       | 1 /           |                      | - 1 - Silcolds   |
| Physical A                              | ppearance/Comm                                                                                                  | nents:              | >ilty x             | Sawa                                    | , tetro   | oder be       | <u>clame</u>         | Stronger, Blacke |
| FIFLD MF                                | EASUREMENTS                                                                                                     |                     | and a second        | ~                                       |           | Fe            | T:0.7                | mg/L             |
| Allowable                               |                                                                                                                 | $\pm 0.1$           | ± 5%                | ±1°C                                    |           |               |                      | <b>U</b>         |
| Time                                    | Volume                                                                                                          | pН                  | EC                  | Temp.                                   | Turbidity | D.O.          | ORP                  |                  |
|                                         | Removed (gal)                                                                                                   | - ~~                | (mS/em)             | (F or C)                                | (NTU)     | (mg/L)        | (mV)                 |                  |
| 0925                                    | 0.75                                                                                                            | 6.60                | 0.142               | 15.6<br>14.4                            | >999      | 6.53          | 64<br>-8             |                  |
| 0927<br>0928                            | 1.50                                                                                                            | 7.00                | 0.133               | 14.0                                    | >999      | 7.59          | -30                  | _                |
| 0930                                    | 3.60                                                                                                            | 7.29                | 0.132               | 13.9                                    | 5999      | 10.36         |                      |                  |
| 0431                                    | 3.60<br>3.75<br>4.50                                                                                            | 7.29<br>7.33        | 0.133               | $\left(\frac{2}{9}, \frac{8}{9}\right)$ | 7999      | 7.09          | -36<br>-53           |                  |
| 0933                                    | 4.50                                                                                                            | 7.33                | 0.133               | 14,1                                    | 2999      | 9.19          | -53                  |                  |
|                                         |                                                                                                                 |                     |                     |                                         |           |               |                      | -                |
|                                         |                                                                                                                 | 1                   |                     |                                         |           |               |                      |                  |
|                                         |                                                                                                                 |                     |                     |                                         |           |               |                      |                  |
| *************************************** | ~47E ~                                                                                                          |                     | (21/10              | RIAN                                    | ٨         | ······        |                      |                  |
| Sample Time                             | e: <u>0935</u> Samj                                                                                             |                     | F3M119              | ricu                                    | 1         |               |                      |                  |

| Page | of | • |
|------|----|---|
|      |    |   |

L

#### WELL PURGING & SAMPLING FORM

| Project:          | 40-05-27                          |                     | Saı                    | mpled by:                     | JU B           | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       |
|-------------------|-----------------------------------|---------------------|------------------------|-------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| Location a        | nd Site Code (SIT                 | 'EID):              | TF                     | 18=3                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                   | LOCID): W-TI                      |                     |                        | ( eg.                         | er (SDIAM      | ): 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |       |
|                   | GDATE): 62                        | 8                   | <b>ter</b> We          | eather '                      | Samo           | ): <u>21</u><br>80°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·····        |       |
|                   | MALE). <u>ele</u>                 | <u>-106</u>         | VV (                   |                               | Jar we have a  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |       |
| CASING VOLU       | ME INFORMATION:                   | A                   |                        |                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
| Casing ID (inch)  | 1.0                               | 1.5 2.0             | 2.2                    | 3.0 4.0                       | 4.3 5.0        | ) 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.0          |       |
| Unit Casing Volum | e (A) (gal/fi) 0.04               | 0.09 0.10           | 0.2                    | 0.37 0.65                     | 0.75 1.0       | ) 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0 2.6      |       |
| PURGING INFC      | RMATION:                          |                     |                        | <b></b>                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                   | Depth (B) (TOTDEPTH)              | 1219                | fi fi                  |                               | Ç              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                   | Level Depth (C) (STATD            |                     | 5 /                    |                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                   |                                   | 2                   | =5.23                  | ft.                           |                | B<br>ELEVAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ION          | e 0.8 |
| Length of Static  | Water Column (D) = $(B)$          |                     | _= <u>). ()</u><br>(D) | <u>н.</u><br>H <sub>z</sub> C |                | (MPELI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       |
| Coging Water Vo   | blume (E) = $O(k x 4)$            | 5 7 5 _ 0           | 94                     |                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
| Casing water ve   | $\frac{\operatorname{A}(A)}{(A)}$ | (D)                 | <u>• • 1</u> gai       | 1                             | <b>TATIC</b>   | _₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |       |
|                   | Volume = 2.52 gai                 |                     |                        |                               | ELEVATION      | The second secon | MEAN         |       |
| Minimum Purge     | Volume = $c$ , $c$ gal            | (3 well volu        | nes)                   |                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEA<br>LEVEL |       |
| Durgo Dota        | e and Method: 📡                   | · · l ·             | <i>(</i>               |                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
| -                 |                                   |                     |                        |                               | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
| Physical A        | ppearance/Comm                    | ents:               | Silly b                | <u>Y Ana.</u> 94              | <u>. odo</u> y | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |       |
| FIELD MI          | EASUREMENTS                       | :                   |                        |                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ų            | *     |
| Allowable         | Range:                            | ± 0.1               | ± 5%                   | ±1°C                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 7     |
| Time              | Volume                            | pН                  | EC                     | Temp.                         | Turbidity      | D.O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ORP          |       |
| A 45              | Removed (gal)                     | <u> </u>            | (mS/cm)                | (F  or  C)                    | (NTU)          | (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mV)         | -     |
| 958               | . 15                              | 7.65                | . 130                  | 17.3                          | >999           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>58</u>    | -     |
| 959               | 1.50                              | <u>7.34</u><br>7.28 | .13/                   | 17.6                          | 7999<br>7999   | 4.56<br>4.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55<br>57     | -     |
| /06/              | 3.0                               | 7.30                | .132                   | 17.6                          | >999           | 5.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60           |       |
| 1002              | 3.75                              | 7.34                | .139                   | 17.6                          | >999           | s.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63           | -     |
| 1007              | 2.13                              |                     | ···2(                  | 1,0                           |                | <u>~~~~</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | -     |
|                   |                                   |                     |                        |                               | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -     |
|                   |                                   |                     |                        |                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                   |                                   |                     |                        |                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                   |                                   |                     |                        |                               | <u> </u>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                   | e: <u>/005</u> Samp               | - <del>+</del> -    | F3M1z                  | N IN IN                       | s Λ_           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |

| Page | of |  |
|------|----|--|
| 0    |    |  |

| Project: <u>40-05-27</u>               |                  |              |            |       | Sa       | impled by: | Ĩ                    | 2 35           | >                 |    |
|----------------------------------------|------------------|--------------|------------|-------|----------|------------|----------------------|----------------|-------------------|----|
| Location and Site Code (SITEID):       |                  |              |            |       | ¢.       | TF I.      | + 3                  |                |                   |    |
| Well No. (                             |                  |              | ,          |       | •        | ell Diamet |                      |                | 2                 |    |
| Date (LOC                              |                  |              |            |       |          | eather:    |                      | 30<br>30       |                   |    |
| Duit (LO                               | <i>GD1(11)</i> . |              |            | -     |          |            |                      |                |                   |    |
| CASING VOLU                            | ME INFORMA       | TION:        |            |       |          |            |                      |                |                   |    |
| Casing ID (inch)                       |                  | 1.0          | 1.5        | 2.0   | 2.2      | 3.0 4.0    | 4.3                  | 5.0 6.0        | 7.0               |    |
| Unit Casing Volum                      | ne (A) (gal/ft)  | 0.04         | 0.09       | 0.16  | 0.2      | 0.37 0.65  | 0.75                 | 1.0 1.5        | 2.0 2.6           |    |
| <u>PURGING INFC</u><br>Measured Well I |                  | DEPTH)       | 2          | 0.5   | ;<br>; / | ft.        |                      |                |                   |    |
| Measured Water                         |                  |              |            |       | 76       | ft.        |                      | <b>V</b>       |                   | 2  |
|                                        | • •              | • •          | -          |       |          |            |                      | B I ELEVA      | , .               |    |
| Length of Static                       | water Column (   | (I)          | 3)         | (C)   | (D)      | - 14. Hz   | 0   I                | (MPEI          |                   |    |
| Casing Water Vo                        |                  |              |            |       |          | 1          | STATIC<br>ELEVATION  | <b>•</b>       |                   |    |
| Minimum Purge                          | Volume =         | <b>,29</b> g | al (3 well | volum | es)      | -          |                      | V              | MEAN<br>SEA       |    |
|                                        | 1 X # 11         | <b>1</b>     |            |       | n. 1     |            |                      |                | LEVEL             |    |
| Purge Date<br>Physical A               | e and Meth       | iod: _       |            |       | Va.les   | ,          | 1                    |                |                   |    |
| Physical A                             | ppearance        | /Comr        | nents:     |       | lowdy    | pedo       | oder                 |                |                   |    |
| FIFI D MI                              | EASUREN          | <b>IENTS</b> | ζ.         |       |          | 8          |                      |                | ų                 |    |
| Allowable                              |                  | 11.71 1 1 2  | ± 0.       | .1    | ± 5%     | ±1°C       |                      |                |                   | N. |
| Time                                   | Volur            | ne           | pF         | I     | EC       | Temp.      | Turbidit             | y D.O.         | ORP               | -  |
|                                        | Removed          | l (gal)      |            |       | (mS/cm)  |            | (NTU)                |                | (mV)              |    |
| 1117                                   |                  |              | 7.         |       | 76.7     |            | 121                  | 9.25           | - 89              |    |
| 1119                                   | 23               |              |            | 32    | 75.9     | 11.7       | 88.(                 | 4.70           | -95               |    |
| 1/2/                                   | 3                |              | 7.         |       | 79.9     | 11.6       | 55.6                 | 6.33           | -95               |    |
| 1122                                   | 4                |              | 7.         | 30    | 74.4     | 11.9       | 88.(<br>55.9<br>37.8 | 6.33<br>3 5.83 | -95<br>-95<br>-99 |    |
| 1125                                   | ¥. <b>j</b>      | [Ø           | 2.         | 26    | 74.7     | 11.5       | 31.7                 | 6.08           | - 99              |    |
|                                        |                  |              |            |       |          |            |                      |                |                   |    |
|                                        |                  |              | <u> </u>   |       |          | -          | <u> </u>             |                |                   | 4  |
|                                        |                  |              |            |       |          |            |                      |                |                   | 1  |
|                                        |                  | <del></del>  |            |       |          |            | <u> </u>             |                |                   | ł  |
|                                        | 1                |              | . <u> </u> |       |          |            |                      |                |                   | ]  |
|                                        | 1100             |              |            |       |          | - elt -    | ^                    |                |                   |    |

Sample Time: 1129 Sample ID: <u>**F3m23140**</u>

| Project:          | 40-05-=                               | 27               | Sa                                    | mpled by:            | <u>∧vh</u>          | bF             |              |          |
|-------------------|---------------------------------------|------------------|---------------------------------------|----------------------|---------------------|----------------|--------------|----------|
| Location a        | nd Site Code (SI                      | TEID):           |                                       |                      | J+3 _               |                |              |          |
| Well No. (        | LOCID): TE3                           | mw-F             |                                       |                      | er (SDIAM           |                |              |          |
| Date (LOC         | (GDATE): 6                            | Izolah           |                                       |                      | rs sum              |                |              |          |
|                   | <b>3D</b> ATL)                        |                  | <b>***</b>                            | Jutii                |                     | 1              | <u></u>      |          |
| CASING VOLU       | ME INFORMATION:                       |                  |                                       |                      |                     |                |              |          |
| Casing ID (inch)  | 1.0                                   | 1.5 2.0          | ) 2.2                                 | 3.0 4.0              | 4.3 5.              | ) 6.0          | 7.0          |          |
| Unit Casing Volur | ne (A) (gal/ft) 0.04                  | 0.09 0.1         | 6 0.2                                 | 0.37 0.65            | 0.75 1.             | 0 1.5          | 2.0 2.6      | <u>5</u> |
|                   |                                       |                  |                                       | ·                    |                     |                |              |          |
| PURGING INFO      |                                       | ~                | 01                                    |                      | T                   | A A            |              |          |
|                   | Depth (B) (TOTDEPTH)                  |                  |                                       | t.                   | C L                 |                |              |          |
|                   | Level Depth (C) (STATI                |                  |                                       | ft. fr.              |                     | В              |              |          |
| Length of Static  | Water Column (D) = $\frac{20}{(11)}$  | <u>86 - 17.6</u> | <u>3 = 7.23</u>                       | ft. H <sub>2</sub> C |                     | ELEVA<br>(MPEI |              |          |
|                   | (*                                    | J) (C)           |                                       |                      | D                   |                |              |          |
| Casing Water Vo   | plume (E) = $\underline{o, lb}$ x     | 1:23 =           | 1.15 gal                              |                      |                     | ▼              |              |          |
|                   | (A)                                   | (D)              |                                       | L                    | STATIC<br>ELEVATION |                | r            |          |
| Minimum Purge     | Volume = <b><u>3,49</u></b> g         | al (3 well volu  | mes)                                  |                      | ELEVATION           | V              | MEAN         |          |
|                   |                                       | ,                | ,                                     |                      |                     |                | SEA<br>LEVEL |          |
| Purge Date        | e and Method:                         | 6/50             | 106                                   | haile                |                     |                |              |          |
| Physical A        | ppearance/Comr                        | nents.           | net                                   |                      |                     | Fe.3+          | = 4,8        | mali     |
| 1 Hysteat 74      | ppeurance, com                        |                  | PV 40                                 | DU0                  |                     |                |              | 1        |
| FIELD MI          | EASUREMENTS                           | 5:               |                                       |                      |                     |                |              |          |
| Allowable         | · · · · · · · · · · · · · · · · · · · | $\pm 0.1$        | · · · · · · · · · · · · · · · · · · · | ±1°C                 | ·                   |                | 1            | 1        |
| Time              | Volume                                | pH               | EC                                    | Temp.                | Turbidity           | D.O.           | ORP (mV)     |          |
| 11:18             | Removed (gal)                         | 7.57             | (mS/sm)<br>9!2                        | (F or C)             |                     | (mg/L)         | (mV)         |          |
| 11:20             | 2                                     | 7.53             | 88.9                                  | 11.)                 | 99.0<br>6a1         | 5,04<br>4.55   | 125<br>36    |          |
| 11:22             | 3                                     | 7.53             | 98.)                                  | 16.4                 | 460                 | 2.9)           | - 44         |          |
| 11:24             | .4                                    | 2.50             | 680                                   | 10.4                 | 347                 | 2.92           | -57          |          |
| F                 | *                                     |                  |                                       |                      |                     | •              |              |          |
|                   |                                       | · · · · ·        |                                       |                      |                     |                |              |          |
|                   |                                       |                  |                                       |                      |                     |                |              |          |
|                   |                                       |                  |                                       |                      |                     |                |              |          |
|                   |                                       |                  |                                       |                      |                     |                |              |          |
|                   |                                       | 1                |                                       |                      |                     |                |              |          |

Sample Time: 11:26 Sample ID: **TF3M** 1>6 140**A** 

| Page | of |       |
|------|----|-------|
| ~    |    | ***** |

| Project:          | 40-05                                                       | 22                            | Sa                        | ampled by:           | NVH       | DF                  |               |            |
|-------------------|-------------------------------------------------------------|-------------------------------|---------------------------|----------------------|-----------|---------------------|---------------|------------|
| Location a        | nd Site Code (SI                                            | ΓEID):                        | <i>Par</i>                | Je Forms             | 1 + 3     |                     |               |            |
|                   | LOCID):                                                     |                               |                           |                      |           | ): 2 <sup>1</sup> / |               |            |
|                   | GDATE): 6/                                                  |                               |                           |                      | 75° Su    |                     |               |            |
| Dute (LOV         | <b>30</b> 1111)                                             | 24/08                         |                           |                      | <u> </u>  | arrag -             |               |            |
| CASING VOLU       | ME INFORMATION:                                             |                               |                           |                      |           |                     |               |            |
| Casing ID (inch)  | 1.0                                                         | 1.5 2.0                       |                           | 3.0 4.0              | 4.3 5.    | 0 6.0               | 7.0           |            |
| Unit Casing Volum | ne (A) (gal/ft) 0.04                                        | 0.09 0.1                      | 6 0.2                     | 0.37 0.65            | 0.75 1.   | 0 1.5               | 2.0 2.6       |            |
| PURGING INFO      | DDM ATIONI                                                  |                               |                           | <b></b>              | <b>_</b>  |                     | -             |            |
|                   |                                                             | 8                             | o he                      |                      |           |                     | i             |            |
|                   | Depth (B) (TOTDEPTH)                                        | 16 estis                      |                           | ft.                  |           |                     |               |            |
|                   | Level Depth (C) (STATE                                      |                               |                           | _ft                  |           | B                   |               |            |
| Length of Static  | Water Column (D) = $\frac{19}{(B)}$                         | <mark>65 - <u>1</u>7.y</mark> | <u>B = 6.19</u><br>(D)    | ft. H <sub>2</sub> ( |           | ELEVA<br>(MPEI      |               |            |
| Cooling Water Ve  | $h_{\rm max}(E) = 0.1k$                                     | 6.12                          | n 82                      | 1                    |           |                     |               |            |
| Casing water ve   | $blume(E) = \underbrace{0.16}_{(A)} x \underbrace{1}_{(A)}$ | (D)                           | ga                        |                      | STATIC    |                     |               |            |
|                   | 1                                                           |                               |                           |                      | ELEVATION |                     | MEAN          |            |
| Minimum Purge     | Volume = <b>2.96</b> ga                                     | ıl (3 well volu               | mes)                      | -                    |           | <u> </u>            | SEA<br>LEVEL  |            |
| _                 |                                                             | 1 1                           | , ,                       | <i>A</i> .           |           |                     | DETER         |            |
| Purge Date        | e and Method:                                               | 0/20/                         | 105                       | bailes               |           |                     |               |            |
| Physical A        | e and Method:                                               | nents:                        | Very St                   | light ad             | <i>n</i>  | {                   | <u>Fest</u> = | · 3.7 mg/d |
|                   | EASUREMENTS                                                 |                               |                           | ø                    |           |                     |               | •          |
| Allowable         |                                                             | $\pm 0.1$                     | ± 5%                      | ±1°C                 |           |                     |               |            |
| Time              | Volume                                                      | pH                            | EC                        | Temp.                | Turbidity | D.O.                | ORP           | 7          |
|                   | Removed (gal)                                               | -                             | ( <b>m</b> S/ <b>s</b> m) | (F or C)             | (NTU)     | (mg/L)              | (mV)          |            |
| 9:57              |                                                             | 1.9)                          | 0.109                     | 11.8                 | 89.2      | 4,40                | 251           |            |
| 9:58              | 2                                                           | 7.05                          | 0.)11                     | )).,)                | 1,18.0    | 334                 | 232           |            |
| 9:59              | 3                                                           | 7:69                          | 0.112                     |                      | 107.0     | 3.13                | 204           | -          |
| 10:6)             | Ч                                                           | 7.12                          | 0.113                     | 10.5                 | 99.3      | 2.92                | 185           | _          |
| 10:03             | ġ                                                           | 7.15                          | 0,1)2                     | )0.6                 | 97.5      | 286                 | 118           | -          |
|                   | L                                                           |                               |                           |                      |           | 1                   |               | -          |
|                   |                                                             |                               |                           |                      |           |                     |               |            |
|                   |                                                             |                               |                           |                      |           |                     |               |            |
| L                 |                                                             |                               | 1                         |                      |           |                     |               |            |
| ~ . m             |                                                             |                               | an '30 an age an          |                      | 5         |                     |               |            |

Sample Time: 10:06 Sample ID: TF3m129130A

| Page | 0 | £ |
|------|---|---|
|      |   |   |

| Project: _                                                                                                       | 40-05-2                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sar                                                                  |                                                                                       |                                                                   |                                                                            |                                                                                |        |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------|
| Location a                                                                                                       | and Site Code (SI                                                                                                                                       | TEID):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tar                                                                  | nde Form                                                                              | e 1+=                                                             | 3                                                                          |                                                                                |        |
|                                                                                                                  | (LOCID): <u>TE</u>                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                                                       |                                                                   |                                                                            |                                                                                |        |
|                                                                                                                  | $(\text{LOOID}): \underline{6/}$                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                                                       |                                                                   |                                                                            |                                                                                |        |
|                                                                                                                  | $\mathbf{GDATE}).  \underline{\mathbf{D7}}$                                                                                                             | 20/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VV C                                                                 |                                                                                       | s sun                                                             | d'and                                                                      |                                                                                |        |
| <u>ASING VOLU</u>                                                                                                | UME INFORMATION:                                                                                                                                        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                    |                                                                                       |                                                                   |                                                                            |                                                                                |        |
| Casing ID (inch)                                                                                                 | 1.0                                                                                                                                                     | 1.5 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      | 3.0 4.0                                                                               | 1                                                                 | .0 6.0                                                                     | 7.0                                                                            |        |
| Jnit Casing Volur                                                                                                | me (A) (gal/ft) 0.04                                                                                                                                    | 0.09 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2                                                                  | 0.37 0.65                                                                             | 0.75                                                              | .0 1.5                                                                     | 2.0 2.0                                                                        | 5}     |
|                                                                                                                  | Depth (B) (TOTDEPTH)                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                                                       |                                                                   |                                                                            |                                                                                |        |
|                                                                                                                  | r Level Depth (C) (STATE                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | / -                                                                  |                                                                                       |                                                                   | B<br>B<br>ELEVA                                                            | TION                                                                           |        |
| ength of Static                                                                                                  | e Water Column (D) = $\frac{2\rho}{(B)}$                                                                                                                | <b>:20</b> - <b>14.</b><br>(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>22= 5.93</u><br>) (D)                                             | ft. H <sub>2</sub> C                                                                  |                                                                   | (MPEL                                                                      |                                                                                |        |
| Casing Water V                                                                                                   | $\operatorname{colume}(E) = \checkmark I \diamond x$                                                                                                    | >. ″? √ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/45 S ant                                                           | 1                                                                                     | 111                                                               | 19997                                                                      |                                                                                |        |
| Ainimum Purge                                                                                                    | $Volume (E) = \frac{0.16}{(A)} \times \frac{1}{(A)}$ e Volume = <u>2.86</u> ga                                                                          | al (3 well volu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | imes)                                                                |                                                                                       | STATIC<br>ELEVATION                                               | V                                                                          | MEAN<br>SEA<br>LEVEL                                                           |        |
| Minimum Purge<br>Purge Dat                                                                                       | e Volume = <u><b>2.86</b></u> ga<br>te and Method:                                                                                                      | (3)<br>al (3 well volu<br>8/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | umes)<br>166                                                         |                                                                                       |                                                                   |                                                                            | SEA<br>LEVEL                                                                   |        |
| Minimum Purge<br>Purge Dat                                                                                       | e Volume = <u><b>2.86</b></u> ga<br>te and Method:                                                                                                      | (3)<br>al (3 well volu<br>8/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | umes)<br>166                                                         |                                                                                       |                                                                   | ν<br>V<br>ΣFe                                                              | SEA<br>LEVEL                                                                   | 0.0 m  |
| <sup>Ainimum Purge</sup><br>Purge Dat<br>Physical A                                                              | e Volume = <u><b>2.86</b></u> ga<br>te and Method:<br>Appearance/Comm                                                                                   | (3) well volu<br><b>8/20</b><br>hents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | umes)<br>166                                                         |                                                                                       |                                                                   | ν<br>ΓFe                                                                   | SEA                                                                            | 0.0 m  |
| Minimum Purge<br>Purge Dat<br>Physical A<br>FIELD M                                                              | e Volume = <u><b>2.86</b></u> ga<br>te and Method:<br>Appearance/Comm                                                                                   | (3) well volu<br><b>6/20</b><br>hents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | umes)<br>/66 ,<br>Class m                                            | o odre                                                                                |                                                                   | <br>ΣFe                                                                    | SEA<br>LEVEL                                                                   | 0.0 m  |
| ۸inimum Purge<br>Purge Dat<br>Physical A<br>FIELD M                                                              | e Volume = <u><b>2.86</b></u> ga<br>te and Method:<br>Appearance/Comm                                                                                   | (3) well volu<br><b>6/20</b><br>hents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | umes)<br>166                                                         |                                                                                       |                                                                   |                                                                            | SEA<br>LEVEL                                                                   | 0.0 m  |
| <sup>Ainimum Purge</sup><br>Purge Dat<br>Physical A<br>FIELD M<br><u>Allowable</u>                               | e Volume = <u><b>2.86</b></u> ga<br>te and Method:<br>Appearance/Comm<br>IEASUREMENTS<br>e Range:                                                       | $\frac{b}{20}$ al (3 well volume of the second       | umes)<br>/66<br>(lon n<br>± 5%                                       | ±1°C<br>Temp.                                                                         |                                                                   |                                                                            | SEA<br>LEVEL                                                                   | 0.0 m  |
| Minimum Purge<br>Purge Dat<br>Physical A<br>FIELD M<br>Allowable<br>Time<br><b>9:30</b>                          | e Volume = <b><u>2.86</u></b> ga<br>te and Method: <u></u><br>Appearance/Comm<br>IEASUREMENTS<br>e Range:<br>Volume                                     | $\frac{\delta}{20}$ $\frac{\delta}{20}$ nents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | السes)<br>/ 6 6<br>/ 6 6<br>/ 6 6<br>± 5%<br>EC<br>(هS/om)<br>0.03 ٦ | ±1°C<br>Temp.<br>(F or C)<br><b>[2.0</b>                                              | ELEVATION                                                         | D.O.<br>(mg/L)<br><b>5.31</b>                                              | SEA<br>LEVEL<br>3+] :<br>ORP<br>(mV)<br>2.28                                   | 0.0 m  |
| Minimum Purge<br>Purge Dat<br>Physical A<br>FIELD M<br>Allowable<br>Time<br><b>9:30</b><br><b>9:32</b>           | e Volume = <b><u>2.86</u></b> ga<br>te and Method:<br>Appearance/Comm<br>IEASUREMENTS<br>e Range:<br>Volume<br>Removed (gal)                            | $\frac{\delta}{20}$ nents: $\frac{1000}{200}$ $\pm 0.1$ pH $6.55$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ± 5%<br>EC<br>(€S/€m)<br>0.093                                       | ±1°C<br>Temp.<br>(F or C)<br><b>[2.0</b><br><b>}2.0</b>                               | ELEVATION<br> <br>Turbidity<br>(NTU)<br> 53<br> 32                | D.O.<br>(mg/L)<br><b>5.31</b><br><b>3.62</b>                               | SEA         3+] :         ORP         (mV)         2.28         2.22           | 0.0 m  |
| Minimum Purge<br>Purge Dat<br>Physical A<br>FIELD M<br>Allowable<br>Time<br>9:30<br>9:32<br>9:34                 | e Volume = <u><b>2.86</b></u> ga<br>te and Method:<br>Appearance/Comm<br>IEASUREMENTS<br>e Range:<br>Volume<br>Removed (gal)<br>1<br>2<br>3             | $\frac{\delta}{20}$ a) (3 well volumed of a second strain o | imes)<br>/66<br>± 5%<br>EC<br>(ه\$/\$m)<br>0.093<br>86.0             | ±1°C<br>Temp.<br>(F or C)<br>12.0<br>12.0<br>10.8                                     | ELEVATION<br> <br>Turbidity<br>(NTU)<br> 53<br> 32<br> 48         | D.O.<br>(mg/L)<br><b>5.31</b><br>3.6-2<br>4,76                             | SEA         3+] :         ORP         (mV)         228         222         223 | 0.0 m  |
| Ainimum Purge<br>Purge Dat<br>Physical A<br>FIELD M<br>Allowable<br>Time<br>9:30<br>9:32<br>9:34<br>9:34<br>0:36 | e Volume = <u><b>2.86</b></u> ga<br>te and Method:<br>Appearance/Comm<br>IEASUREMENTS<br>e Range:<br>Volume<br>Removed (gal)<br>1<br>2<br>3<br>3<br>3.5 | (b)<br>al (3 well volu<br>5/20<br>ments:<br>$\pm 0.1$<br>pH<br>6.55<br>6.91<br>6.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | imes)<br>/66<br>                                                     | ±1°C<br>Temp.<br>(F or C)<br><b>12.0</b><br><b>12.0</b><br><b>10.8</b><br><b>10.7</b> | ELEVATION<br> <br>Turbidity<br>(NTU)<br> 53<br> 32<br> 48<br> 080 | D.O.<br>(mg/L)<br><b>5.31</b><br><b>3.62</b><br><b>4,96</b><br><b>4,99</b> | SEA<br>LEVEL<br>3+] :<br>ORP<br>(mV)<br>228<br>222<br>223<br>228               | 0.0 ym |
| Minimum Purge<br>Purge Dat<br>Physical A<br>FIELD M<br>Allowable<br>Time<br>9:30<br>9:32<br>9:34                 | e Volume = <u><b>2.86</b></u> ga<br>te and Method:<br>Appearance/Comm<br>IEASUREMENTS<br>e Range:<br>Volume<br>Removed (gal)<br>1<br>2<br>3             | $\frac{\delta}{20}$ a) (3 well volumed of a second strain o | imes)<br>/66<br>± 5%<br>EC<br>(ه\$/\$m)<br>0.093<br>86.0             | ±1°C<br>Temp.<br>(F or C)<br>12.0<br>12.0<br>10.8                                     | ELEVATION<br> <br>Turbidity<br>(NTU)<br> 53<br> 32<br> 48         | D.O.<br>(mg/L)<br><b>5.31</b><br>3.6-2<br>4,76                             | SEA         3+] :         ORP         (mV)         228         222         223 | 0.0 m  |
| Minimum Purge<br>Purge Dat<br>Physical A<br>FIELD M<br>Allowable<br>Time<br>9:30<br>9:32<br>9:34<br>9:34<br>9:36 | e Volume = <u><b>2.86</b></u> ga<br>te and Method:<br>Appearance/Comm<br>IEASUREMENTS<br>e Range:<br>Volume<br>Removed (gal)<br>1<br>2<br>3<br>3<br>3.5 | (b)<br>al (3 well volu<br>5/20<br>ments:<br>$\pm 0.1$<br>pH<br>6.55<br>6.91<br>6.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | imes)<br>/66<br>                                                     | ±1°C<br>Temp.<br>(F or C)<br><b>12.0</b><br><b>12.0</b><br><b>10.8</b><br><b>10.7</b> | ELEVATION<br> <br>Turbidity<br>(NTU)<br> 53<br> 32<br> 48<br> 080 | D.O.<br>(mg/L)<br><b>5.31</b><br><b>3.62</b><br><b>4,96</b><br><b>4,99</b> | SEA<br>LEVEL<br>3+] :<br>ORP<br>(mV)<br>228<br>222<br>223<br>228               | 0.0 jm |
| Minimum Purge<br>Purge Dat<br>Physical A<br>FIELD M<br>Allowable<br>Time<br>9:30<br>9:32<br>9:34<br>9:34<br>9:36 | e Volume = <u><b>2.86</b></u> ga<br>te and Method:<br>Appearance/Comm<br>IEASUREMENTS<br>e Range:<br>Volume<br>Removed (gal)<br>1<br>2<br>3<br>3<br>3.5 | (b)<br>al (3 well volu<br>5/20<br>ments:<br>$\pm 0.1$<br>pH<br>6.55<br>6.91<br>6.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | imes)<br>/66<br>                                                     | ±1°C<br>Temp.<br>(F or C)<br><b>12.0</b><br><b>12.0</b><br><b>10.8</b><br><b>10.7</b> | ELEVATION<br> <br>Turbidity<br>(NTU)<br> 53<br> 32<br> 48<br> 080 | D.O.<br>(mg/L)<br><b>5.31</b><br><b>3.62</b><br><b>4,96</b><br><b>4,99</b> | SEA<br>LEVEL<br>3+] :<br>ORP<br>(mV)<br>228<br>222<br>223<br>228               | 0.0 ym |
| Minimum Purge<br>Purge Dat<br>Physical A<br>FIELD M<br>Allowable<br>Time<br>9:30<br>9:32<br>9:34<br>9:34<br>9:36 | e Volume = <u><b>2.86</b></u> ga<br>te and Method:<br>Appearance/Comm<br>IEASUREMENTS<br>e Range:<br>Volume<br>Removed (gal)<br>1<br>2<br>3<br>3<br>3.5 | (b)<br>al (3 well volu<br>5/20<br>ments:<br>$\pm 0.1$<br>pH<br>6.55<br>6.91<br>6.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | imes)<br>/66<br>                                                     | ±1°C<br>Temp.<br>(F or C)<br><b>12.0</b><br><b>12.0</b><br><b>10.8</b><br><b>10.7</b> | ELEVATION<br> <br>Turbidity<br>(NTU)<br> 53<br> 32<br> 48<br> 080 | D.O.<br>(mg/L)<br><b>5.31</b><br><b>3.62</b><br><b>4,96</b><br><b>4,99</b> | SEA<br>LEVEL<br>3+] :<br>ORP<br>(mV)<br>228<br>222<br>223<br>228               | 0.0 m  |

Sample Time: <u>9.'40</u> Sample ID: <u>TP3m128) MOR</u>

| Page | of |  |
|------|----|--|
| ~    |    |  |

|                                                                              | 40-0                                                                        | 5-27                                                                                                  | S                                                             | ampled by:                                                                                                                                       | NVH                                                | DF                                                                        |                                          |    |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|----|
| Location a                                                                   | nd Site Cod                                                                 | le (SITEID)                                                                                           | : Pan                                                         | h Imm                                                                                                                                            | 1+3                                                | •                                                                         |                                          |    |
|                                                                              |                                                                             | TF3 mw                                                                                                |                                                               | •                                                                                                                                                |                                                    |                                                                           | ]                                        |    |
|                                                                              |                                                                             |                                                                                                       |                                                               |                                                                                                                                                  |                                                    |                                                                           |                                          |    |
| Date (LOC                                                                    | GDATE):                                                                     | \$120/0                                                                                               | ۸                                                             | veather:                                                                                                                                         | 75 G                                               | www.y                                                                     | ······                                   |    |
| CASING VOLU                                                                  | ME INFORMAT                                                                 | <u>'ION:</u>                                                                                          |                                                               |                                                                                                                                                  |                                                    |                                                                           |                                          |    |
| Casing ID (inch)                                                             |                                                                             | 1.0 1.5                                                                                               | 2.0 2.2                                                       | 3.0 4.0                                                                                                                                          | 4.3 5.                                             | 0 6.0                                                                     | 7.0                                      |    |
| Jnit Casing Volun                                                            | ne (A) (gal/ft)                                                             | 0.04 0.09                                                                                             | 0.16 0.2                                                      | 0.37 0.65                                                                                                                                        | 0.75 1.                                            | 0 1.5                                                                     | 2.0 2.6                                  |    |
|                                                                              |                                                                             |                                                                                                       |                                                               | f                                                                                                                                                |                                                    |                                                                           |                                          |    |
| PURGING INFO                                                                 | DRMATION:                                                                   |                                                                                                       |                                                               |                                                                                                                                                  | Î                                                  | <b>A A</b>                                                                |                                          |    |
| vieasured Well I                                                             | Depth (B) (TOTD                                                             | DEPTH)                                                                                                | 22.20                                                         | _ft.                                                                                                                                             | C                                                  |                                                                           |                                          |    |
| Measured Water                                                               | Level Depth (C)                                                             | (STATDEP)                                                                                             | 16.33                                                         | _ft.                                                                                                                                             | ~                                                  | В                                                                         |                                          |    |
| Length of Static                                                             | Water Column (E                                                             | D) = <u>2230</u> - <u>)</u><br>(B)                                                                    | <u> 6.33 - 5.8</u>                                            | <b>7</b> ft.                                                                                                                                     |                                                    | ELEVA                                                                     |                                          |    |
|                                                                              |                                                                             | (B)                                                                                                   | (C) (D)                                                       | H <sub>2</sub> t                                                                                                                                 |                                                    | (MPEI                                                                     | .EV)                                     |    |
| Coning Water W                                                               | -1                                                                          | 12 . <.97                                                                                             | _ nau                                                         | -o1                                                                                                                                              |                                                    |                                                                           |                                          |    |
| Lasing water vo                                                              | $\operatorname{Diume}(E) \cong \underline{\mathcal{Q}}_{\mathrm{vir}}$ $(A$ | <u>16                                    </u>                                                         | = <u>v. 7 7</u>                                               |                                                                                                                                                  | STATIC                                             |                                                                           |                                          |    |
|                                                                              |                                                                             | 0.                                                                                                    |                                                               |                                                                                                                                                  | ELEVATION                                          |                                                                           |                                          |    |
| Minimum Purge                                                                | Volume = $2$                                                                | <b>8</b> gal (3 well                                                                                  | volumes)                                                      | -                                                                                                                                                |                                                    | <u> </u>                                                                  | MEAN<br>SEA                              |    |
|                                                                              |                                                                             |                                                                                                       |                                                               |                                                                                                                                                  |                                                    |                                                                           | LEVEL                                    |    |
|                                                                              |                                                                             |                                                                                                       | * * * *                                                       |                                                                                                                                                  |                                                    |                                                                           |                                          |    |
| Purge Date                                                                   | e and Metho                                                                 | od:                                                                                                   | 6/20/06                                                       | bai                                                                                                                                              | لام                                                |                                                                           |                                          |    |
| Purge Date<br>Physical A                                                     | e and Metho                                                                 | od:                                                                                                   | 5/20/06<br>shig                                               | bou<br>ht odge                                                                                                                                   | لام                                                | Fe                                                                        | 3+ = 0.4                                 | h  |
|                                                                              |                                                                             | od:                                                                                                   | 6/20/06<br>shig                                               | bai<br>ht ocn                                                                                                                                    | 4                                                  | Fe                                                                        | <sup>3+</sup> = 0.4                      | m  |
| FIELD MI                                                                     | EASUREM                                                                     | ENTS:                                                                                                 | 7                                                             |                                                                                                                                                  | ke,                                                | Fe                                                                        | 3+ = 0.4                                 | h  |
| FIELD MI<br>Allowable                                                        | EASUREM                                                                     | ENTS: $\pm 0.$                                                                                        | $\frac{1}{\pm 5\%}$                                           | ±1°C                                                                                                                                             |                                                    |                                                                           |                                          | m  |
| FIELD MI                                                                     | EASUREM<br>Range:                                                           | ENTS:<br>$\begin{array}{c} \pm 0.\\ ne & pH \end{array}$                                              | $\frac{1 \pm 5\%}{EC}$                                        | ±1°C<br>Temp.                                                                                                                                    | Turbidity                                          | D.O.                                                                      | ORP                                      | m  |
| FIELD MI<br><u>Allowable</u><br>Time                                         | EASUREM                                                                     | ENTS:<br>$\pm 0.$<br>ne pH<br>(gal)                                                                   | 1 ± 5%<br>EC<br>(mS/cm                                        | $ \begin{array}{c} \pm 1^{\circ}C \\ \text{Temp.} \\ \text{(F or C)} \end{array} $                                                               | Turbidity<br>(NTU)                                 | D.O.<br>(mg/L)                                                            | ORP<br>(mV)                              | m  |
| FIELD MI<br><u>Allowable</u><br>Time                                         | EASUREM<br>Range:<br>Volum<br>Removed                                       | ENTS:<br><u>± 0.</u><br>ne pH<br>(gal)<br><b>1.6</b>                                                  | 1 ± 5%<br>EC<br>(mS/cm                                        | $ \begin{array}{c} \pm 1^{\circ}C \\ \text{Temp.} \\ \text{(F or C)} \\ \hline \text{(F or C)} \\ \hline \text{(F or C)} \\ \hline \end{array} $ | Turbidity<br>(NTU)<br><b>98.9</b>                  | D.O.<br>(mg/L)<br><b>7.67</b>                                             | ORP<br>(mV)<br><b>159</b>                | m. |
| FIELD MI<br>Allowable<br>Time                                                | EASUREM<br>Range:<br>Volum<br>Removed                                       | ENTS:<br>± 0.<br>he pH<br>(gal)<br><b>3.6</b><br><b>7.9</b>                                           | 1 ± 5%<br>EC<br>(mS/cm<br><b>70.5</b>                         | ±1°C<br>Temp.<br>(F or C)<br>).£<br>).2<br>).2                                                                                                   | Turbidity<br>(NTU)<br><b>98.9</b>                  | D.O.<br>(mg/L)<br><b>7.67</b><br><b>3.05</b>                              | ORP<br>(mV)<br><b>159</b><br><b>1</b> 22 | m  |
| FIELD MI<br>Allowable<br>Time<br>11:44,<br>11:44,<br>11:49<br>11:49<br>11:52 | EASUREM<br>Range:<br>Volum<br>Removed                                       | ENTS:<br>± 0.<br>ne pH<br>(gal)<br><b>3.6</b><br><b>7.9</b><br><b>7.9</b>                             | 1 ± 5%<br>EC<br>(mS/cm<br>70.5<br>1 89.9<br>5 -96.7           | ±1°C<br>Temp.<br>(F or C)<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).                                                   | Turbidity<br>(NTU)<br>98-9<br>99-0<br>8-3-0        | D.O.<br>(mg/L)<br><b>7.67</b><br><b>3.05</b><br><b>2.6</b><br><b>2.57</b> | ORP<br>(mV)<br>159<br>122<br>102         | h  |
| FIELD MI<br>Allowable<br>Time                                                | EASUREM<br>Range:<br>Volum<br>Removed                                       | ENTS:<br>± 0.<br>he pH<br>(gal)<br><b>3.6</b><br><b>7.9</b>                                           | 1 ± 5%<br>EC<br>(mS/cm<br>70.5<br>1 89.9<br>5 -96.7<br>95.3   | ±1°C<br>Temp.<br>(F or C)<br>)).5<br>)).5<br>)0.7<br>]0.3                                                                                        | Turbidity<br>(NTU)<br><b>98.9</b>                  | D.O.<br>(mg/L)<br><b>7.67</b><br><b>3.05</b>                              | ORP<br>(mV)<br><b>159</b><br><b>1</b> 22 | m  |
| FIELD MI<br>Allowable<br>Time<br>11:44,<br>11:44<br>11:49<br>11:49<br>11:52  | EASUREM<br>Range:<br>Volum<br>Removed                                       | ENTS:<br>± 0.<br>ne pH<br>(gal)<br><b>3.6</b><br><b>7.9</b><br><b>7.9</b><br><b>7.9</b><br><b>7.9</b> | 1 ± 5%<br>EC<br>(mS/cm<br>1 70.5<br>1 89.9<br>5 -96.7<br>95.3 | ±1°C<br>Temp.<br>(F or C)<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).                                                   | Turbidity<br>(NTU)<br>98.9<br>99.0<br>93.6<br>61.1 | D.O.<br>(mg/L)<br><b>7.67</b><br><b>3.05</b><br><b>2.6</b><br><b>2.5</b>  | ORP<br>(mV)<br>159<br>122<br>102         | h  |
| FIELD MI<br>Allowable<br>Time<br>11:44,<br>11:44<br>11:49<br>11:49<br>11:52  | EASUREM<br>Range:<br>Volum<br>Removed                                       | ENTS:<br>± 0.<br>ne pH<br>(gal)<br><b>3.6</b><br><b>7.9</b><br><b>7.9</b><br><b>7.9</b><br><b>7.9</b> | 1 ± 5%<br>EC<br>(mS/cm<br>1 70.5<br>1 89.9<br>5 -96.7<br>95.3 | ±1°C<br>Temp.<br>(F or C)<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).                                                   | Turbidity<br>(NTU)<br>98.9<br>99.0<br>93.6<br>61.1 | D.O.<br>(mg/L)<br><b>7.67</b><br><b>3.05</b><br><b>2.6</b><br><b>2.5</b>  | ORP<br>(mV)<br>159<br>122<br>102         | m  |
| FIELD MI<br>Allowable<br>Time<br>11:44,<br>11:44<br>11:49<br>11:49<br>11:52  | EASUREM<br>Range:<br>Volum<br>Removed                                       | ENTS:<br>± 0.<br>ne pH<br>(gal)<br><b>3.6</b><br><b>7.9</b><br><b>7.9</b><br><b>7.9</b><br><b>7.9</b> | 1 ± 5%<br>EC<br>(mS/cm<br>1 70.5<br>1 89.9<br>5 -96.7<br>95.3 | ±1°C<br>Temp.<br>(F or C)<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).                                                   | Turbidity<br>(NTU)<br>98.9<br>99.0<br>93.6<br>61.1 | D.O.<br>(mg/L)<br><b>7.67</b><br><b>3.05</b><br><b>2.6</b><br><b>2.5</b>  | ORP<br>(mV)<br>159<br>122<br>102         |    |
| FIELD MI<br>Allowable<br>Time<br>11:44,<br>11:44<br>11:49<br>11:49<br>11:52  | EASUREM<br>Range:<br>Volum<br>Removed                                       | ENTS:<br>± 0.<br>ne pH<br>(gal)<br><b>3.6</b><br><b>7.9</b><br><b>7.9</b><br><b>7.9</b><br><b>7.9</b> | 1 ± 5%<br>EC<br>(mS/cm<br>1 70.5<br>1 89.9<br>5 -96.7<br>95.3 | ±1°C<br>Temp.<br>(F or C)<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).5<br>).                                                   | Turbidity<br>(NTU)<br>98.9<br>99.0<br>93.6<br>61.1 | D.O.<br>(mg/L)<br><b>7.67</b><br><b>3.05</b><br><b>2.6</b><br><b>2.5</b>  | ORP<br>(mV)<br>159<br>122<br>102         | h  |

Sample Time: 1):54 Sample ID: **TF3m13316@A** 

| Page | of |  |
|------|----|--|
|      |    |  |

| Project:          | 40-05-27                                                                                                                        |                     | Sampled by:                            | JC                  | PC              |                |          |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|---------------------|-----------------|----------------|----------|
| Location a        | nd Site Code (SI                                                                                                                | TEID): T            | FIBS                                   |                     | •               |                |          |
|                   | LOCID): TF.                                                                                                                     |                     | Well Diamet                            | or (SDIANA)         | . V"            |                |          |
|                   |                                                                                                                                 |                     |                                        |                     | ). <u>/</u>     |                |          |
| Date (LOC         | $GDATE): \int \left( \frac{2}{2} \right)^{2}$                                                                                   | 100                 | Weather:                               | Sunny,              | 80-             |                |          |
| CASING VOLU       | ME INFORMATION:                                                                                                                 |                     |                                        | 400 H               |                 |                |          |
| Casing ID (inch)  | 1.0                                                                                                                             | 1.5 2.0 2.          | 2 3.0 4.0                              | 42 50               | 60              | 70             | 1        |
| Unit Casing Volum | ··· · · · · · · · · · · · · · · · · ·                                                                                           | 0.09 0.16 0.        |                                        | 4.3 5.0<br>0.75 1.0 |                 | 7.0<br>2.0 2.6 |          |
|                   |                                                                                                                                 |                     |                                        |                     |                 |                |          |
| PURGING INFO      |                                                                                                                                 | *                   |                                        |                     |                 |                |          |
| Measured Well D   | Depth (B) (TOTDEPTH)                                                                                                            | 76.02               | ft.                                    | C                   | T T             |                |          |
|                   |                                                                                                                                 |                     | ft. ~~~                                |                     |                 |                |          |
| Length of Static  | Level Depth (C) (STATE<br>Water Column (D) =(E)<br>Jume (E) = $\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$ |                     | <b>. 6°</b> <sub>ft.</sub>             |                     | B I<br>ELEVATIO |                |          |
|                   | 0.65                                                                                                                            | (C)                 | (D) H <sub>2</sub> C                   |                     | (MPELEV         |                |          |
| Casing Water Vo   |                                                                                                                                 | 11 6: 17            | F154                                   |                     |                 | T 24.          | 3.7 mg/l |
| Cashig water vo   |                                                                                                                                 | (D)                 | E Bai                                  | STATIC              |                 | te             |          |
|                   | $Volume = \frac{22.62}{ga}$                                                                                                     |                     |                                        | ELEVATION           | 4               | MEAN           |          |
| Minimum Purge     | $Volume = \underbrace{2 \cdot c_*}_{g_2} g_3$                                                                                   | al (3 well volumes) |                                        |                     | ¥               | - SEA<br>LEVEL |          |
| Durgo Data        | e and Method:                                                                                                                   | Bailer              |                                        |                     |                 |                |          |
| ÷                 |                                                                                                                                 |                     | 5 N                                    | 10-1                | A 1             | /1             |          |
| Physical A        | ppearance/Comn                                                                                                                  | ients: <u>Jilty</u> | Orange, P                              | 21000               | or in           | Susa           |          |
| FIELD ME          | EASUREMENTS                                                                                                                     | :                   | , v                                    |                     |                 |                |          |
| Allowable         | Range:                                                                                                                          | $\pm 0.1$ $\pm 5$   |                                        | ,                   |                 |                |          |
| Time              | Volume                                                                                                                          | pH E                | 1 1                                    | Turbidity           | D.O.            | ORP            |          |
| 1010              | Removed (gal)                                                                                                                   | - 65 (mS)           | (m) (F or C)                           | (NTU)<br>509        | (mg/L)          | (mV)           |          |
| 1319              | 4.0<br>9.0                                                                                                                      | 7.20 94             | 9 13.2                                 | 501                 | 5.49            | -122           |          |
| 1328              | 2.2                                                                                                                             | 1.21 92             | 3 14                                   | 592                 | 7.04            | -99            |          |
| 1331              | 16.0                                                                                                                            | 7.23 93             | ······································ | मुरुप               | 6.74            | -100           |          |
| 1334              | 20.0                                                                                                                            | 7.25 90             |                                        | 371                 | 7.63            | -101           |          |
| (338              | 24.0                                                                                                                            | 7.28 8:             | 7.6 11.1                               | 218                 | 8.64            | -99            |          |
| 1340              | 25.0                                                                                                                            | 125 8               | 3.4 11.6                               | SIM                 | 1.9 X           | -16            |          |
| 1341              | 26.0                                                                                                                            | 7.26 81             | . Z 11.4*                              | 187                 | 7.68            | -97            |          |
|                   |                                                                                                                                 |                     |                                        |                     |                 |                |          |
| t                 | 1.2 3 A                                                                                                                         |                     | Aallila A                              | I [,                |                 |                |          |
| Sample Time       | e: <b>\337</b> Sam                                                                                                              |                     | M21140A                                | ÷                   |                 |                |          |

| ~~~                                                                                           | 40-05                                                                                                             | 23                                                                    | Sa                                                                | mpled by:                                                         | <u>Nv</u> M                                                     | DF                                            |                                                                             |                      |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|----------------------|
|                                                                                               | nd Site Code (SII                                                                                                 | -                                                                     |                                                                   |                                                                   |                                                                 |                                               |                                                                             |                      |
|                                                                                               |                                                                                                                   |                                                                       |                                                                   |                                                                   | er (SDIAN                                                       | n                                             |                                                                             |                      |
|                                                                                               | LOCID): TF3                                                                                                       | . <sup>.</sup> .                                                      |                                                                   | •                                                                 |                                                                 | L). <u> </u>                                  |                                                                             |                      |
| Date (LOC                                                                                     | GDATE): 6                                                                                                         | 120/00                                                                | <u> </u>                                                          | eather:                                                           | <u>]</u>                                                        |                                               | <del></del>                                                                 |                      |
|                                                                                               |                                                                                                                   |                                                                       |                                                                   |                                                                   |                                                                 |                                               |                                                                             |                      |
| <u>CASING VOLU</u>                                                                            | ME INFORMATION:                                                                                                   |                                                                       |                                                                   | <b>~</b>                                                          |                                                                 |                                               |                                                                             |                      |
| Casing ID (inch)                                                                              | 1.0                                                                                                               | 1.5 2.0                                                               |                                                                   | 3.0 4.0                                                           | ++                                                              | .0 6.0                                        | 7.0                                                                         |                      |
| Unit Casing Volum                                                                             | ne (A) (gal/ft) 0.04                                                                                              | 0.09 0.16                                                             | 5 0.2                                                             | 0.37 0.65                                                         | 0.75 1                                                          | .0 1.5                                        | 2.0 2.6                                                                     | ]                    |
|                                                                                               |                                                                                                                   |                                                                       |                                                                   |                                                                   |                                                                 |                                               |                                                                             |                      |
| PURGING INFO                                                                                  | DRMATION:                                                                                                         |                                                                       |                                                                   |                                                                   |                                                                 | <b>4</b>                                      |                                                                             |                      |
| Measured Well I                                                                               | Depth (B) (TOTDEPTH)                                                                                              |                                                                       | <b>7.82</b> f                                                     | t.                                                                | Ċ                                                               |                                               |                                                                             |                      |
| Measured Water                                                                                | Level Depth (C) (STATD                                                                                            | EP)                                                                   | 3.08                                                              | ft                                                                | ~                                                               |                                               |                                                                             |                      |
|                                                                                               | Water Column (D) = $\frac{2}{(B)}$                                                                                | _                                                                     |                                                                   | Aft.                                                              |                                                                 | B ELEVA                                       |                                                                             |                      |
| <u> </u>                                                                                      | (B                                                                                                                | ) (C)                                                                 | (D)                                                               | H <sub>2</sub> C                                                  |                                                                 | (MPEL                                         | ÆV)                                                                         |                      |
| a                                                                                             | ka                                                                                                                | lunn                                                                  | a < 2 .                                                           |                                                                   |                                                                 |                                               |                                                                             |                      |
| Casing Water Vo                                                                               | blume (E) = $\underline{\textbf{D.b5}}_{(A)} \times \underline{\textbf{A}}_{(A)}$                                 | (D)                                                                   | gai gai                                                           |                                                                   | STATIC                                                          |                                               |                                                                             |                      |
|                                                                                               | - ·                                                                                                               |                                                                       |                                                                   |                                                                   | ELEVATION                                                       |                                               |                                                                             |                      |
| Minimum Durga                                                                                 | Volume = <b>28.34</b> ga                                                                                          | d (3 well volu                                                        | nes)                                                              |                                                                   |                                                                 | V                                             | MEAN                                                                        |                      |
| vinimum ruige                                                                                 |                                                                                                                   |                                                                       | )                                                                 |                                                                   |                                                                 |                                               | SEA                                                                         |                      |
|                                                                                               | ¥.                                                                                                                |                                                                       |                                                                   | _ #                                                               |                                                                 |                                               | SEA<br>LEVEL                                                                |                      |
|                                                                                               | ¥.                                                                                                                |                                                                       |                                                                   | briles                                                            |                                                                 | <b>_</b>                                      |                                                                             |                      |
|                                                                                               | ¥.                                                                                                                |                                                                       |                                                                   | bailes                                                            | , odor                                                          |                                               |                                                                             | همر<br>تو            |
|                                                                                               | e and Method:                                                                                                     |                                                                       |                                                                   | bailes<br>ry petre                                                | , odor                                                          | •<br>•                                        | LEVEL                                                                       | ہ<br>حسر<br>ت        |
| Purge Date<br>Physical A<br>FIELD MI                                                          | e and Method:<br>ppearance/Comm<br>EASUREMENTS                                                                    | <b>6/30</b><br>nents:                                                 | los<br>heav                                                       | <i>a</i> -                                                        | , odo                                                           |                                               | LEVEL                                                                       | ا<br>الاسر<br>الاتين |
| Purge Date<br>Physical A<br>FIELD MI<br>Allowable                                             | e and Method:<br>ppearance/Comm<br>EASUREMENTS<br>Range:                                                          | 6/30<br>nents:<br>:<br>                                               | 106<br>hear<br>± 5%                                               | ±1°C                                                              |                                                                 |                                               | LEVEL                                                                       | ہ<br>جنہے            |
| Purge Date<br>Physical A<br>FIELD MI                                                          | e and Method:<br>ppearance/Comm<br>EASUREMENTS<br>Range:<br>Volume                                                | <b>6/30</b><br>nents:                                                 | 108<br>hear<br>± 5%<br>EC                                         | ±1°C<br>Temp.                                                     | Turbidity                                                       |                                               | LEVEL                                                                       | *                    |
| Purge Date<br>Physical A<br>FIELD MI<br>Allowable<br>Time                                     | e and Method:<br>appearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)                              | <i>6/30</i><br>nents:<br>:<br>± 0.1<br>pH                             | ± 5%<br>EC<br>(mS/em)                                             | ±1°C<br>Temp.<br>(F or C)                                         | Turbidity<br>(NTU)                                              | (mg/L)                                        | ORP<br>(mV)                                                                 |                      |
| Purge Date<br>Physical A<br>FIELD MI<br>Allowable<br>Time                                     | e and Method:<br>ppearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)                               | <i>6/30</i><br>nents:<br>± 0.1<br>pH<br>-<br><b>7.5</b> )             | ± 5%<br>EC<br>(mS/em)<br>0.107                                    | ±1°C<br>Temp.<br>(F or C)<br>/o.7                                 | Turbidity<br>(NTU)<br><b>193.0</b>                              | (mg/L)<br><b>7.25</b>                         | LEVEL<br>Fe <sup>3+</sup><br>ORP<br>(mV)<br><b>189</b>                      |                      |
| Purge Date<br>Physical A<br>FIELD MI<br>Allowable<br>Time<br>ID: 32<br>ID: 40                 | e and Method:<br>appearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)<br>5<br>10                   | 6/30<br>nents:<br>± 0.1<br>pH<br><b>7.5</b> ]<br><b>7.3</b> 6         | ± 5%<br>EC<br>(mS/em)<br>0.107<br>0.108                           | ±1°C<br>Temp.<br>(F or C)<br>/o.7<br>/o.7                         | Turbidity<br>(NTU)<br>193.0<br>133.0                            | (mg/L)<br>7.25<br>4.9)                        | ORP<br>(mV)<br>189<br>. 10                                                  |                      |
| Purge Date<br>Physical A<br>FIELD MI<br>Allowable<br>Time<br><b>10:32</b><br>10:40<br>10:45   | e and Method:<br>ppearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)<br>5<br>10<br>15              | 6/30<br>nents:<br>± 0.1<br>pH<br>7.5)<br>7.36<br>7.40                 | ± 5%<br>EC<br>(mS/em)<br>0.107<br>0.108<br>0.108<br>0.109         | ±1°C<br>Temp.<br>(F or C)<br>/0.7<br>/0.7                         | Turbidity<br>(NTU)<br>193.0<br>133.0<br>118.0                   | (mg/L)<br>7.25<br>4.9)<br>4.75                | LEVEL<br>Fe <sup>3+</sup><br>ORP<br>(mV)<br><b>)</b> 89<br>. )0<br>5        |                      |
| Purge Date<br>Physical A<br>FIELD MI<br>Allowable<br>Time<br>10:32<br>10:40<br>10:45<br>10:43 | e and Method:<br>ppearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)<br>S<br>NO<br>NS              | 6/20<br>nents:<br>± 0.1<br>pH<br>7.5)<br>7.36<br>7.40<br>7.40         | ± 5%<br>EC<br>(mS/em)<br>0.107<br>0.108<br>0.109<br>0.109         | ±1°C<br>Temp.<br>(F or C)<br>/0.7<br>/0.7<br>10.7<br>10.8         | Turbidity<br>(NTU)<br>193.0<br>133.0<br>118.0<br>137.0          | (mg/L)<br>7.25<br>4.9)<br>4.75<br>5.34        | LEVEL<br>Fe <sup>3+</sup><br>ORP<br>(mV)<br>)89<br>. 10<br>5<br>. 20        |                      |
| Purge Date<br>Physical A<br>FIELD MI<br>Allowable<br>Time<br>10:32<br>10:40<br>10:45<br>10:57 | e and Method:<br>appearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)<br>5<br>10<br>15<br>29<br>25 | 6/30<br>nents:<br>± 0.1<br>pH<br>7.5)<br>7.5)<br>7.96<br>7.40<br>7.44 | ± 5%<br>EC<br>(mS/m)<br>0.107<br>0.108<br>0.109<br>0.109<br>0.109 | ±1°C<br>Temp.<br>(F or C)<br>/0.7<br>/0.7                         | Turbidity<br>(NTU)<br>193.0<br>133.0<br>118.0                   | (mg/L)<br>7.25<br>4.9)<br>4.75                | LEVEL<br>Fe <sup>3+</sup><br>ORP<br>(mV)<br>189<br>. 10<br>5<br>. 20<br>.)) |                      |
| Purge Date<br>Physical A<br>FIELD MI<br>Allowable<br>Time<br>10:32<br>10:40<br>10:45<br>10:43 | e and Method:<br>ppearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)<br>5<br>10<br>15              | 6/20<br>nents:<br>± 0.1<br>pH<br>7.5)<br>7.36<br>7.40<br>7.40         | ± 5%<br>EC<br>(mS/em)<br>0.107<br>0.108<br>0.109<br>0.109         | ±1°C<br>Temp.<br>(F or C)<br>/0.7<br>/0.7<br>/0.7<br>/0.8<br>/0.8 | Turbidity<br>(NTU)<br>193.0<br>133.0<br>118.0<br>137.0<br>131.0 | (mg/L)<br>7.25<br>4.9)<br>4.75<br>5.34<br>4.8 | LEVEL<br>Fe <sup>3+</sup><br>ORP<br>(mV)<br>)89<br>. 10<br>5<br>. 20        |                      |
| Purge Date<br>Physical A<br>FIELD MI<br>Allowable<br>Time<br>10:32<br>10:40<br>10:45<br>10:57 | e and Method:<br>appearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)<br>5<br>10<br>15<br>29<br>25 | 6/30<br>nents:<br>± 0.1<br>pH<br>7.5)<br>7.5)<br>7.96<br>7.40<br>7.44 | ± 5%<br>EC<br>(mS/m)<br>0.107<br>0.108<br>0.109<br>0.109<br>0.109 | ±1°C<br>Temp.<br>(F or C)<br>/0.7<br>/0.7<br>/0.7<br>/0.8<br>/0.8 | Turbidity<br>(NTU)<br>193.0<br>133.0<br>118.0<br>137.0<br>131.0 | (mg/L)<br>7.25<br>4.9)<br>4.75<br>5.34<br>4.8 | LEVEL<br>Fe <sup>3+</sup><br>ORP<br>(mV)<br>189<br>. 10<br>5<br>. 20<br>.)) |                      |
| Purge Date<br>Physical A<br>FIELD MI<br>Allowable<br>Time<br>10:32<br>10:40<br>10:45<br>10:57 | e and Method:<br>appearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)<br>5<br>10<br>15<br>29<br>25 | 6/30<br>nents:<br>± 0.1<br>pH<br>7.5)<br>7.5)<br>7.96<br>7.40<br>7.44 | ± 5%<br>EC<br>(mS/m)<br>0.107<br>0.108<br>0.109<br>0.109<br>0.109 | ±1°C<br>Temp.<br>(F or C)<br>/0.7<br>/0.7<br>/0.7<br>/0.8<br>/0.8 | Turbidity<br>(NTU)<br>193.0<br>133.0<br>118.0<br>137.0<br>131.0 | (mg/L)<br>7.25<br>4.9)<br>4.75<br>5.34<br>4.8 | LEVEL<br>Fe <sup>3+</sup><br>ORP<br>(mV)<br>189<br>. 10<br>5<br>. 20<br>.)) |                      |

Sample Time: 11:02 Sample ID: TF3CE3130A

1

## **Equipment Calibration Log**

1

| Instrumen | at Name:                        | =Pm H                     | <u> </u>                         |                            |                             |
|-----------|---------------------------------|---------------------------|----------------------------------|----------------------------|-----------------------------|
| Model Nu  | mber:                           | 4-22                      | Horiba                           |                            |                             |
| Date      | First Standard<br>Concentration | First Standard<br>Reading | Second Standard<br>Concentration | Second Standard<br>Reading | Comments                    |
| 3/9       | U,00                            | 3.98                      | 4.00                             | 4.00                       | Cond. out changed solution. |
| 3-10      | 4.00                            | 3.87                      | 4.00                             | 4.00                       |                             |
| 3-13      | 4,00                            | 4.06                      |                                  |                            |                             |
| 3/14      | 4.00<br>4.0-                    | 4.01                      | 4                                | 4-01                       | $\sim$                      |
| 3/15      |                                 | 3.99                      |                                  |                            |                             |
| 3/10      | 4.00                            | <u> </u>                  |                                  |                            |                             |
| 3/17      | 4,00                            | 4,00                      |                                  |                            |                             |
| 3-20      | 4.00                            | 3.99                      |                                  |                            |                             |
| 3/21      | 4.05                            | 4.00                      |                                  |                            |                             |
| 3-22      | 4.00                            | 4,00                      |                                  |                            |                             |
| 3-23      | 400                             | 3.95                      | - 4                              | 3.99                       |                             |
| 3-24      | 4.00                            | 3:45                      | 4.00                             | 4.00                       |                             |
| 3-27      | 4.00                            | 3.91                      | 4.00                             |                            |                             |
| 3-28      | 4.00                            | 4.00                      |                                  |                            |                             |
| 4/11      | 4.00                            | 66.V                      |                                  |                            |                             |
| 4-13      | 4.00                            | 3.94                      | 4.00                             | 4.00                       |                             |
| 5-22      | 4.00                            | 3.99                      |                                  |                            |                             |
| 6-19      | 4.00                            | 400                       |                                  |                            |                             |
| 6/20/06   | 4.00                            | 3.99                      |                                  |                            |                             |
|           |                                 |                           |                                  |                            |                             |
|           |                                 |                           |                                  |                            |                             |
|           |                                 |                           |                                  |                            |                             |
|           |                                 |                           |                                  |                            |                             |
|           |                                 |                           |                                  |                            |                             |

### Equipment Calibration Log

| Instrumen           | t Name:                         | FPM #                     | 2                                |                            |                           |        |
|---------------------|---------------------------------|---------------------------|----------------------------------|----------------------------|---------------------------|--------|
| Model Nu            | mber: $H_{\partial}$            | riba U-                   | 22                               |                            |                           |        |
| Date                | First Standard<br>Concentration | First Standard<br>Reading | Second Standard<br>Concentration | Second Standard<br>Reading | Comments                  |        |
| 3/9                 | 4,00                            | 3.99                      |                                  |                            |                           |        |
| 3-10                | 4.00                            | 4.00                      |                                  |                            |                           |        |
| 3-10<br>5-9<br>6-19 | 4.00                            | 3.77                      |                                  |                            |                           |        |
| 6-19                | 4.00                            | 4.00                      |                                  |                            |                           |        |
| 6/20/06             | 4.00                            | 3.99                      | 4.00                             | 4.00                       | Goror 7 ( cuduction )- 12 | . John |
| :                   |                                 |                           |                                  |                            | I                         |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  | :                          |                           |        |
| ļ                   |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  | •<br>•                     |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |
|                     |                                 |                           |                                  |                            |                           |        |

| AFCEE | CHAIN OF CUSTODY RECORD (AC 63200) |
|-------|------------------------------------|
|-------|------------------------------------|

COC#: \_4\_ SDG#: \_134\_ Cooler ID: \_A\_

| esel                              | toad<br>3441                                                                    | Phone: (315) 336-7721 Ext. 205 |                    | Comments<br>(HOPN)                                                      |            |            |              |              |               |               |              |              |              |              |              |              |          |          |          |
|-----------------------------------|---------------------------------------------------------------------------------|--------------------------------|--------------------|-------------------------------------------------------------------------|------------|------------|--------------|--------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|----------|----------|----------|
| Send Results to: Niels van Hoesel | FPM Group<br>153 Brooks Road<br>Rome, NY 13441                                  | e: (315) 3                     |                    | ا 6 oz poly<br>Total Sulfide <sup>Note 5</sup><br>ا 6 oz poly (ZnZn and |            |            | •            |              |               | 1             | F            | 1            | 1            | 1            | 1            |              | 1        | -        | t        |
| to: Nie                           | FPN<br>153<br>Ror                                                               | Phon                           |                    | <sup>4 ston</sup> (Nitrate) <sup>note 4</sup>                           | 1          | 1          | F            | I            | t             | 1             | t :          | + .          | 1            | 1            |              | £            | 1        | 1        | ;        |
| Results                           |                                                                                 |                                | uested             | Total Alkalinity <sup>note 3</sup><br>(zero headspace)                  |            | 1          |              |              |               | 1             |              |              | Ţ            | -            | I            | 1            | 1        | ŀ        | 3        |
| [ Send ]                          | 1                                                                               |                                | Analyses Requested | I L amber<br>SVOCs <sup>note 2</sup>                                    | 1          | 1          | 1            | ŀ            | 2             | 2             |              | ŀ            | 1            | Γ.           | t            | ł            |          | I        | 6        |
| 00                                |                                                                                 |                                | Analy              | VOC <sup>note 1</sup><br>40 mL vials (HCI)                              | 3          | 3          | 3            | 3            | 3             | 3             | 3            | £            | 3            | 3            | 3            | 3            | 3        | 3        | 3        |
| and 3 Sampling                    | (                                                                               | 72262                          |                    | No. of<br>Containers                                                    | 4          | 4          | 4            | 4            | 9             | 9             | 4            | 4            | 4            | 4            | 4            | 4            | 5        | 3        | 3        |
|                                   |                                                                                 | 06                             | •                  | Filt./UnFilt.                                                           | Unf.       | Unf.       | Unf.         | Unf.         | Unf.          | Unf.          | Unf.         | Unf.         | Unf.         | Unf.         | Unf.         | Unf.         | Unf.     | Unf.     | Unf.     |
| Project Name: Griffiss AFB TF 1   | forse                                                                           | e: Jamy                        | Cant o             | Ргезегуаціуе                                                            | HCI        | HCI        | HCI          | HCI          | HCI           | HCI           | HCI          | HCI          | HCI          | HCI          | HCI          | HCI          | HCI      | HCI      | HCI      |
| riffiss A                         | Sampler Name: David Forse                                                       |                                |                    | SACODE                                                                  | N          | N          | N            | N            | z             | N             | Z            | Ν            | N            | Z            | z            | ΗD           | EB       | AB       | TB       |
| ame: G                            | Name:                                                                           | Sampler Signature:             |                    | ZBD/ZED                                                                 | 0/0        | 0/0        | 0/0          | 0/0          | 0/0           | 0/0           | 0/0          | 0/0          | 0/0          | 0/0          | 0/0          | 0/0          | 0/0      | 0/0      | 0/0      |
| oject N                           | umpler 1                                                                        | impler (                       |                    | SMCODE                                                                  | В          | в          | В            | В            | B             | В             | В            | В            | В            | В            | В            | В            | В        | NA       | NA       |
| - br                              | 1                                                                               | Sã                             |                    | XIATAM                                                                  | WG         | МG         | МG           | WG           | ВМ            | ЪМ            | MG           | WG           | МG           | МG           | WG           | WG           | МQ       | МQ       | МQ       |
|                                   | Tel: (716) 691-2600                                                             |                                |                    | Time                                                                    | 1102       | 1339       | 1055         | 1033         | 0935          | 1005          | 1129         | 1126         | 1006         | 0940         | 1154         | 1154         | 0815     | 1107     | 0800     |
|                                   | Tel: (716                                                                       |                                |                    | Date<br>2006                                                            | 6/20       | 6/20       | 6/20         | 6/20         | 6/20          | 6/20          | 6/20         | 6/20         | 6/20         | 6/20         | 6/20         | 6/20         | 6/20     | 6/20     | 6/20     |
|                                   | e 106                                                                           |                                |                    | Location ID<br>(LOCID)                                                  | MW-CE      | TF3MW21    | WL-TF3MW-116 | WL-TF3MW-117 | WL-TF3MW-119R | WL-TF3MW-121R | WL-TF3MW-123 | WL-TF3MW-126 | WL-TF3MW-127 | WL-TF3MW-128 | WL-TF3MW-133 | WL-TF3MW-133 | FIELDQC  | FIELDQC  | FIELDQC  |
| Ship to: Mark Nemec               | Severn Trent Laboratories<br>10 Hazelwood Drive, Suit<br>Amherst, NY 14228-2298 | Carrier: STL courier.          |                    | Field Sample ID                                                         | TF3CE3130A | TF3M21140A | TF3M116140A  | TF3M117130A  | TF3M119R120A  | TF3M121R120A  | TF3M123140A  | TF3M126140A  | TF3M127130A  | TF3M128140A  | TF3M13316OA  | TF3M13316OC  | 062006OE | 062006OF | 062006OR |

Collect water levels at all wells that are not sampled.

SO = Soil WS - Surface water

NA = Not Applicable (only for AB/TB) PP = Peristaltic Pump BP = Bladder Pump SP = Submersible Pump SS = Split Spoon

TB = Trip Blank EB = Equipment Blank FD = Field Duplicate MS = Matrix Spike SD = Matrix Spike Duplicate

| Daily Health and Safety Meeting Form                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date: 6-20-06 Time: 8:15                                                                                                                                                       |
| Location: FPM office (garage)                                                                                                                                                  |
| Weather Conditions: <u>85° Scang</u>                                                                                                                                           |
| Meeting Type: Daily Health and Safety                                                                                                                                          |
| Personnel Present:<br>D. Forse, J. Damann, P. Grigliane, N. Van Koesel                                                                                                         |
| Visitors Present:                                                                                                                                                              |
| Visitor Training:                                                                                                                                                              |
| PPE Required: Modified D                                                                                                                                                       |
| Possible risks, injuries, concerns:<br><u>Trip slip fall + insects (bees ticks, spikers)</u> .                                                                                 |
| Anticipated Releases to Environment (if so, describe and detail response action/control measures implemented):                                                                 |
| Property Damage:<br>None                                                                                                                                                       |
| Description (include sequence of events describing step by step how incident happened):                                                                                        |
| Analysis for, and Implementation of Corrective/Preventative Procedure to Prevent Future<br>Occurrences (to be formulated by SSHO + FOM, approved by PM, and SSHO implemented): |
| None                                                                                                                                                                           |
| Report made by (Name): Anio P Forse                                                                                                                                            |
| SSHP Organization Title: Site Safety and Health Officer                                                                                                                        |

#### **Daily Chemical Quality Control Report**

Project/Delivery Order Number: F41624-03-D-8601-0027 Date: 09/26/06

Project Name/Site Number: Griffiss Petroleum Spills Sites sampling (Tank Farms 1 and 3).

Weather conditions: Temperature: 62 Barometric reading: 30.01 Wind direction and speed: west 12 gusting 20 mph. Significant wind changes: none.

General description of tasks completed: Bailer sampling at Site Tank Farms 1 and 3 (TF3MW-21, -116, -117, -119R, -121R, -123, -126, -127, -128, -133, and TF3CE-3).

Explain any departures from the SAP or deviations from approved procedures during the day's field activities: none.

Explain any technical problems encountered in the field or field equipment/field analytical instrument malfunction: none.

Corrective actions taken or instructions obtained from AFCEE personnel: No corrective actions necessary.

Sampling shipment completed:  $\sqrt{\text{Yes}}$   $\square$  No LSL courier.

DCQCR Prepared by: Niels van Hoesel, FOM

Date: 26 September 2006

CQCC Signature: Date:

**ATTACHMENTS:** 

| Checklist | Daily Chemical Quality Control Report Attachments |
|-----------|---------------------------------------------------|
|           | ✓ Field sampling forms                            |
| V         | ✓ Equipment Calibration Log                       |
| V         | ✓ Copies of COCs                                  |
|           | ✓ SDG Table (See accompanying COCs)               |
| V.        | ✓ Daily Health and Safety Meeting Form            |

| Page | of |
|------|----|
|      |    |

| Project:                                                         | 40-05-                                                                                                          | 27                                 | Sar                            | Sampled by: DB / PC     |                                              |                  |                  |  |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|-------------------------|----------------------------------------------|------------------|------------------|--|--|
| Location and Site Code (SITEID): TF3                             |                                                                                                                 |                                    |                                |                         |                                              |                  |                  |  |  |
| Well No. (LOCID): TF3WW-21 Well Diameter (SDIAM): 4 <sup>n</sup> |                                                                                                                 |                                    |                                |                         |                                              |                  |                  |  |  |
|                                                                  |                                                                                                                 |                                    |                                |                         |                                              |                  |                  |  |  |
| Date (LOGDATE): 9/26/06 Weather: cloudy 60                       |                                                                                                                 |                                    |                                |                         |                                              |                  |                  |  |  |
|                                                                  |                                                                                                                 |                                    |                                |                         |                                              |                  |                  |  |  |
| CASING VOLUME INFORMATION:                                       |                                                                                                                 |                                    |                                |                         |                                              |                  |                  |  |  |
| Casing ID (inch)                                                 | 1.0                                                                                                             | 1.5 2.0                            |                                | 3.0 4.0                 | 4.3 5.0                                      |                  | 7.0              |  |  |
| Unit Casing Volum                                                | e (A) (gal/ft) 0.04                                                                                             | 0.09 0.10                          | 6 0.2                          | 0.37 0.65               | 0.75 1.0                                     | ) 1.5            | 2.0 2.6          |  |  |
| PURGING INFO                                                     | RMATION:                                                                                                        |                                    |                                |                         |                                              | AA               |                  |  |  |
|                                                                  | Pepth (B) (TOTDEPTH)                                                                                            | <b>~</b> 4                         |                                |                         | C                                            |                  |                  |  |  |
|                                                                  |                                                                                                                 | *                                  |                                |                         |                                              |                  |                  |  |  |
|                                                                  | Level Depth (C) (STATI                                                                                          |                                    |                                | 1                       |                                              | B                |                  |  |  |
| Length of Static V                                               | Water Column (D) = 26                                                                                           | <u>-02</u> -1 <u>4.5</u><br>3) (C) | <u>3</u> = <u>11.97</u><br>(D) | ft.<br>H <sub>2</sub> C |                                              | ELEVAT<br>(MPELI |                  |  |  |
|                                                                  | ``                                                                                                              |                                    | . ,                            |                         | D                                            |                  |                  |  |  |
| Casing Water Vo                                                  | lume (E) = $0.65$ x<br>(A)                                                                                      | 11.(9_=_                           | <u>7.59 gal</u>                |                         |                                              | ♥                |                  |  |  |
|                                                                  | (A)                                                                                                             | (D)                                |                                | L                       | STATIC                                       |                  |                  |  |  |
| Minimum Purge                                                    | Volume = <b>22.8</b> g                                                                                          | al (3 well volu                    | mes)                           |                         |                                              |                  | MEAN<br>— SEA    |  |  |
|                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                           |                                    |                                | . –                     | ,                                            |                  | LEVEL            |  |  |
| Purge Date                                                       | and Method:                                                                                                     | . *                                |                                | aile.                   | 19-                                          | 26-06            | odor<br>2.8 my/2 |  |  |
| Physical A                                                       | e and Method:                                                                                                   | nents,                             | al                             | oud.                    |                                              | netro            |                  |  |  |
| i iiysicai A                                                     | ppearance/Conn                                                                                                  | incints                            |                                | oury -                  |                                              |                  | oaor             |  |  |
| FIELD ME                                                         | EASUREMENTS                                                                                                     | S:                                 |                                |                         |                                              | ILON:            | 2.8 Mg/C         |  |  |
| Allowable                                                        | The second se | ± 0.1                              |                                | ±1°C                    |                                              |                  |                  |  |  |
| Time                                                             | Volume                                                                                                          | pН                                 | EC                             | Temp.                   | Turbidity                                    | D.O.             | ORP              |  |  |
|                                                                  | Removed (gal)                                                                                                   |                                    | (mS/cm)                        |                         | (NTU)                                        | (mg/L)           | (mV)             |  |  |
| 1019                                                             | <u> </u>                                                                                                        | 7.22                               | 0.12                           | 14.7                    | 120                                          | 0.65             | -113             |  |  |
| 1022                                                             | 8                                                                                                               | 7.15                               | 0.12                           | 14.6                    | 180                                          | 0.85             | - 111            |  |  |
| 1025                                                             | 12                                                                                                              | 7,15                               | 0.12                           | 14.4                    | 140                                          | 0.97             | -110             |  |  |
| 1028                                                             | 16<br>20                                                                                                        | 7.17                               | 0.12                           | 14.2                    | 120<br>140                                   | 1.09             | -112             |  |  |
| 1033                                                             | 23                                                                                                              | 7.27                               | 0.12                           | 14.1                    | )20                                          | 3.34             | -116             |  |  |
|                                                                  |                                                                                                                 | <u> </u>                           |                                | * * *                   |                                              |                  |                  |  |  |
|                                                                  |                                                                                                                 |                                    |                                |                         |                                              |                  |                  |  |  |
|                                                                  |                                                                                                                 |                                    |                                |                         |                                              |                  |                  |  |  |
|                                                                  |                                                                                                                 |                                    | ·····                          |                         |                                              |                  |                  |  |  |
| Sample Time                                                      | e: 1035 Sam                                                                                                     | iple ID:                           | TF3M                           | 2114 PA                 | <u>.                                    </u> |                  |                  |  |  |

| Project:             | 40-05-4                                             | 27                 | Sa               | mpled by: |                     | 25                 |                                       |         |     |
|----------------------|-----------------------------------------------------|--------------------|------------------|-----------|---------------------|--------------------|---------------------------------------|---------|-----|
| Location a           | and Site Code (SI                                   | ΓEID):             |                  |           |                     | l.                 |                                       | -       |     |
|                      | (LOCID): TF3                                        |                    |                  |           | er (SDIAM)          | : 2 <sup>1</sup> 1 |                                       |         |     |
|                      | GDATE):2                                            |                    |                  |           | 62                  |                    | l <u>ş</u>                            | -       |     |
| CASING VOLU          | JME INFORMATION:                                    | ~                  |                  |           |                     |                    |                                       |         |     |
| Casing ID (inch)     | 1.0                                                 | 1.5 2.0            |                  | 3.0 4.0   | 4.3 5.0             |                    | 7.0                                   |         |     |
| Unit Casing Volur    | ne (A) (gal/ft) 0.04                                | 0.09 0.10          | <u>5   0.2  </u> | 0.37 0.65 | 0.75 1.0            | 1.5                | 2.0 2                                 | .6      |     |
| PURGING INFO         | ORMATION:                                           |                    |                  |           |                     |                    |                                       |         |     |
| Measured Well        | Depth (B) (TOTDEPTH)                                |                    | 21.97 f          | ì.        | C                   |                    | ſ                                     | errous; | 3.2 |
| Measured Water       | Level Depth (C) (STATD                              | EP)                | 13.64            | ft.       |                     | B                  |                                       |         |     |
| Length of Static     | Water Column (D) = $\frac{2l_{s}}{(B)}$             | 07 - 13.6<br>) (C) | <u>4 = 3.43</u>  | _ftH_20   |                     | ELEVAT             |                                       |         |     |
|                      | × .                                                 | , , ,              | (D)              |           | D                   |                    |                                       |         |     |
| Casing Water V       | olume (E) = $\frac{0.16}{(A)} \times \frac{1}{(A)}$ | <u>1-45</u> = _    | I.IO gal         |           |                     | <b>V</b>           |                                       |         |     |
|                      |                                                     |                    |                  |           | STATIC<br>ELEVATION | V                  | MEAN                                  |         |     |
| Minimum Purge        | e Volume = _ <b>3,5%</b> ga                         | l (3 well volu     | nes)             |           | I                   |                    | - SEA<br>LEVEL                        |         |     |
| Purge Dat            | e and Method:                                       | <u>,</u> .         |                  | A riles   |                     |                    |                                       |         |     |
| Physical A           | Appearance/Comm                                     | nents:             | 5:14             | Roma      | Petr                | n 21               | es.                                   | -       |     |
|                      |                                                     |                    |                  | -View     | 1 24 1              | <u> </u>           | ~                                     |         |     |
| FIELD M<br>Allowable | EASUREMENTS                                         | :<br>± 0.1         | ± 5%             | ±1°C      |                     |                    |                                       |         |     |
| Time                 | Volume                                              | $\pm 0.1$ pH       | $\pm 376$ EC     | Temp.     | Turbidity           | D.O.               | ORP                                   |         |     |
|                      | Removed (gal)                                       | -                  | (mS/cm)          |           | (NTU)               | (mg/L)             | (mV)                                  |         |     |
| 1093                 | <u> </u>                                            | 7.51<br>7.39       | 13               | 14.2      | <u> </u>            | <u>. 29</u>        | -125                                  | ·       |     |
| 1044<br>1045         | 3                                                   | 7.31               | .  4<br>.14      | 14.2      | <u>8</u><br>6       | .61<br>.77         | -129<br>-120                          |         |     |
| 1047                 | 4                                                   | 7.30               | .14              | 14.1      | 10                  | .70                | -122                                  |         |     |
|                      |                                                     |                    |                  |           |                     |                    |                                       |         |     |
|                      |                                                     |                    |                  |           |                     |                    |                                       | ·····   |     |
|                      |                                                     |                    |                  |           |                     |                    | · · · · · · · · · · · · · · · · · · · |         |     |
|                      |                                                     |                    |                  |           |                     |                    |                                       |         |     |
| Complete Trim        | ne: <b>1050</b> Samp                                | 1. II. <b>X</b>    | ES MIII          | 10 01     |                     |                    |                                       |         |     |
| sample 11m           | ie. <u>jvzv</u> samp                                |                    | 1                | 1751      |                     |                    |                                       |         |     |

Note: Attempt to get at least 5 sets of field measurements during purging. Sample may be collected after 3 to 5 well volumes have been removed and parameters have stabilized. Sample may be collected after 6 well volumes if parameters do not stabilize. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2+}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

Page \_\_\_\_ of \_\_\_

| Page | of |  |
|------|----|--|
|      |    |  |

| Project:           | 40-05-2                                                                                    | 7              | Sai              | mpled by:         | DB                 | 1PC                     |              |                        |
|--------------------|--------------------------------------------------------------------------------------------|----------------|------------------|-------------------|--------------------|-------------------------|--------------|------------------------|
| Location a         | nd Site Code (SIT                                                                          | TEID):         | T73              |                   |                    |                         |              |                        |
| Well No. (I        | LOCID): TF3                                                                                | 3WW            |                  |                   | er (SDIAM          |                         |              |                        |
| Date (LOC          | GDATE): <u>9</u> /                                                                         | z@ 01          | <b>\$</b> We     | eather:           | 60                 | 1 ela                   | udy          |                        |
| CASING VOLU        | ME INFORMATION:                                                                            |                | •                |                   |                    |                         |              |                        |
| Casing ID (inch)   | 1.0                                                                                        | 1.5 2.0        |                  | 3.0 4.0           | 4.3 5.0            |                         | 7.0          | 7                      |
| Unit Casing Volume | e (A) (gal/ft) 0.04                                                                        | 0.09 0.1       | 6 0.2            | 0.37 0.65         | 0.75 1.1           | 0 1.5                   | 2.0 2.6      |                        |
| PURGING INFO       | RMATION:                                                                                   |                |                  |                   | <b>^</b>           |                         |              |                        |
| Measured Well D    | Depth (B) (TOTDEPTH)                                                                       |                | 2 <u>1.20</u> fi | t.                | Ċ                  |                         |              |                        |
| Measured Water     | Level Depth (C) (STATD                                                                     | EP)            | 13.19            | n                 |                    |                         |              |                        |
| Length of Static V | Water Column (D) =                                                                         | 20 - 13.       | 19 = 8.01        | _ft               |                    | B I<br>ELEVAT<br>(MPELI |              |                        |
|                    | (B)                                                                                        | · · · ·        |                  |                   |                    |                         |              |                        |
| Casing Water Vo    | $\operatorname{Hume}(E) = \underbrace{\mathbf{O.I}}_{(A)} x \underbrace{\mathbf{A}}_{(A)}$ | (D) = -        | 1,25 gal         |                   | STATIC             | <u> </u>                |              |                        |
|                    |                                                                                            |                |                  |                   | ELEVATION          | W I                     | MEAN         |                        |
| Minimum Purge      | Volume = <u><b>3.84</b></u> ga                                                             | l (3 well volu | mes)             |                   |                    | <u></u>                 | SEA<br>LEVEL |                        |
| Purge Date         | e and Method:                                                                              | 2.1            |                  | boiler            | 19.                | -26-                    | 02,          | retro odor al<br>Zzali |
| Physical A         | ppearance/Comm                                                                             | ents:          | silly            | 1 oran            | se 1               | ne c                    | dor          | ietro odor al          |
| ÷                  | 4 1                                                                                        |                |                  |                   | 0 it               | · K74 * 1.              |              | Bach                   |
|                    |                                                                                            |                |                  |                   | <i>i</i> 4         | un. 4                   | .0 mg/L      | 0                      |
| Allowable          |                                                                                            | $\pm 0.1$      |                  | ±1°C              | m. 1:1:            | DO                      |              |                        |
| Time               | Volume<br>Removed (gal)                                                                    | pН             | EC<br>(mS/cm)    | Temp.<br>(F or C) | Turbidity<br>(NTU) | D.O.<br>(mg/L)          | ORP<br>(mV)  |                        |
| 1102               | 1. O                                                                                       | 7.27           | 0.16             | 155               | 46                 | (ing/L)<br>2.(8         | <i>~ 118</i> |                        |
| 1104               | 2.0                                                                                        | 7.15           |                  | 1                 | 47                 | 0.00                    | -116         |                        |
| 1106               | 3.0                                                                                        | 7.15           | 0.16             | 15.7              | 63                 | 0.00                    | -115         |                        |
| 1107               | 4.0                                                                                        | 7.14           | 0.16             | 15.7              | 61                 | 0.51                    | -113         |                        |
|                    |                                                                                            |                |                  |                   | ·····              |                         |              |                        |
|                    |                                                                                            |                |                  |                   |                    |                         |              |                        |
|                    |                                                                                            |                |                  |                   |                    |                         |              |                        |
|                    |                                                                                            |                |                  |                   |                    |                         |              |                        |
| L                  | [                                                                                          | L              |                  | [                 | <u> </u>           |                         | <u></u>      | :                      |
| Sample Time        | e: IllO Samp                                                                               | le ID:         | F3MIII           | 713 PA            |                    |                         |              |                        |

| Page | of |  |
|------|----|--|
| -    |    |  |

| Project:          | 40.05,                       | 22                                          | Sai                  | mpled by:                                   | 400                 |                      |                        | _          |      |
|-------------------|------------------------------|---------------------------------------------|----------------------|---------------------------------------------|---------------------|----------------------|------------------------|------------|------|
| Location a        | nd Site Code (SIT            | TEID):                                      | TF3                  |                                             |                     |                      |                        |            |      |
| Well No. (        | LOCID): 773                  | mW - 1                                      | 23 We                | ell Diameto                                 | er (SDIAM           | ): 21                |                        |            |      |
|                   | GDATE): <b>9</b>             |                                             |                      |                                             | cluby<br>allow:     |                      | mih<br>070             | of rain    | +Sun |
| CASING VOLU       | ME INFORMATION:              | $\sim$                                      |                      |                                             | - 6 a • •           |                      |                        |            |      |
| Casing ID (inch)  | 1.0                          | 1.5         2.0           0.09         0.10 | - <del>/</del>       | 3.0         4.0           0.37         0.65 | 4.3 5.0             |                      | 7.0                    | 2.6        |      |
| Unit Casing Volum | ne (A) (gal/ft) 0.04         | 0.09 0.1                                    | <b>7</b> 0.2         | 0.37 0.65                                   | 0.75 1.0            | ) 1.5                | 2.0                    | 2.6        |      |
| PURGING INFO      | ORMATION:                    |                                             |                      |                                             |                     |                      |                        |            |      |
| Measured Well I   | Depth (B) (TOTDEPTH)         |                                             | <u>20.5)</u> fi      | t.                                          |                     |                      |                        | Ferrous    | 3.0  |
| Measured Water    | Level Depth (C) (STATD       | EP)                                         | 13.69                | ft.                                         | $\sim 1$            | B                    |                        |            |      |
| Length of Static  | Water Column (D) = $20$ (B)  | (C)                                         | <u>6.92 (D)</u>      | ft. <sub>Hz</sub> C                         |                     | ELEVATI              |                        |            |      |
|                   | blume (E) = $3.16$ x _ (A)   |                                             |                      |                                             | STATIC<br>ELEVATION |                      |                        |            |      |
| Minimum Purge     | Volume – <b>3.23</b> ga      | l (3 well volu                              | mes)                 | _                                           |                     | <u> </u>             | MEAN<br>— SEA<br>LEVEL |            |      |
| Purge Date        | e and Method:                | . ·                                         |                      | aily                                        |                     |                      |                        | 8          |      |
| Physical A        | e and Method:                | ents:                                       | <u>sik</u>           | Naz                                         | ready               | -, Reh               | 0 00                   | <u>L</u> e |      |
| FIELD MI          | EASUREMENTS                  |                                             |                      | ¢/                                          |                     | v                    |                        | -          |      |
| Allowable         | Range:                       | ± 0.1                                       | ± 5%                 | ±1°C                                        | ş                   |                      |                        |            |      |
| Time              | Volume                       | pН                                          | EC                   | Temp.                                       | Turbidity           | D.O.                 | ORF                    | l.         |      |
| 18 P. 6           | Removed (gal)                | <u>ግ ጽ</u> ቁ                                | (mS/cm)              |                                             | (NTU)               | (mg/L)               | (mV                    | )          |      |
| 959               | . 75                         | 7.87                                        | 83                   | 15.6                                        | 170                 | 2.96                 | -121                   | _          |      |
| /000              | 1.50                         | 7.57<br>7.37<br>7.34                        | 01                   | 15.2                                        | 270                 | 2.42<br>2.48<br>2.78 | -12                    | 4          |      |
| 1001              | 3.0                          | 1.2/                                        | - 85-                | 15.1<br>15.0                                | 10<br>17            | 1.18                 | -119<br>-111           |            |      |
| 1003              | 3.75                         | 7.33                                        | 87<br>87<br>87<br>81 | 17.0                                        | 3                   | 3.09                 | -/08                   |            |      |
| / 00 /            | <i><i>v</i> • 6 <i>I</i></i> | 6.077                                       | ~ 5                  | 1.1.0.                                      |                     | <u>~•vi</u>          |                        |            |      |
|                   |                              |                                             |                      |                                             |                     |                      |                        |            |      |
| ·····             |                              |                                             |                      |                                             |                     |                      |                        |            |      |
|                   |                              |                                             |                      |                                             |                     |                      |                        |            |      |
|                   | 1                            |                                             | <                    | . 14                                        |                     |                      |                        |            |      |

Sample Time: **1006** Sample ID: **TF3m12314PA** 

| Page | , | of |
|------|---|----|
|      |   |    |

| Project:             | 40-05-7                                               | 2              | Sar                           | npled by:        |                                       | JUIF     |               |                                         |
|----------------------|-------------------------------------------------------|----------------|-------------------------------|------------------|---------------------------------------|----------|---------------|-----------------------------------------|
| Location a           | and Site Code (SII                                    | TEID):         |                               |                  |                                       | *        |               |                                         |
|                      | (LOCID): TF3                                          |                |                               | ell Diamete      | er (SDIAM                             | ): 24    |               |                                         |
|                      | GDATE): 9                                             |                | We                            |                  | 600                                   |          | + Rein        |                                         |
| CASING VOLU          | JME INFORMATION:                                      |                |                               |                  | -                                     | • •      |               |                                         |
| Casing ID (inch)     | 1.0                                                   | 1.5 2.0        | 2.2                           | 3.0 4.0          | 4.3 5.0                               | ) 6.0    | 7.0           |                                         |
| Jnit Casing Volur    | me (A) (gal/ft) 0.04                                  | 0.09 0.1       | 6 0.2                         | 0.37 0.65        | 0.75 1.                               | ) 1.5    | 2.0 2.6       | ]                                       |
| URGING INFO          | ORMATION:                                             |                |                               | [                | <b>_</b>                              |          |               |                                         |
| Aeasured Well        | Depth (B) (TOTDEPTH)                                  | 1              | <b>3.43</b> ft                |                  | C C                                   | T T      | Fer           | 1003. 0                                 |
|                      | r Level Depth (C) (STATD                              | . 5            | 1:35                          | it.              |                                       |          |               |                                         |
|                      | Water Column (D) = $(B)$                              |                | = <u>6.68</u><br>(D)          | ft.              |                                       | B ELEVAT |               |                                         |
|                      |                                                       |                |                               | H <sub>2</sub> C | D D                                   | (MPEL)   | EV)           |                                         |
| Casing Water V       | $volume(E) = \underline{\qquad} x \underline{\qquad}$ |                | <u>, 9 728 <sub>gal</sub></u> |                  |                                       |          |               |                                         |
|                      |                                                       |                |                               |                  | STATIC<br>ELEVATION                   | w l      |               |                                         |
| ∕linimum Purge       | e Volume = <b>2.1249</b> ga                           | l (3 well volu | mes)                          |                  |                                       | Y        | MEAN<br>— SEA |                                         |
|                      |                                                       |                |                               | 1 - 1            |                                       |          | LEVEL         |                                         |
| Purge Dat            | te and Method:                                        |                | <.11                          | ATT THE          |                                       | 1        |               |                                         |
| Physical A           | Appearance/Comm                                       | ients:         | Dilly                         | 131.00           | <u>a 100</u>                          |          |               |                                         |
| FIELD M              | EASUREMENTS                                           |                |                               |                  | rou                                   | : 0.6 m  | 19/2          |                                         |
| Allowable            |                                                       | ± 0.1          | ± 5%                          | ±1°C             | • • • • • • • • • • • • • • • • • • • |          |               |                                         |
| Time                 | Volume                                                | pН             | EC                            | Temp.            | Turbidity                             | D.O.     | ORP           |                                         |
| 10-Q                 | Removed (gal)                                         | 671            | (mS/cm)                       | (F or C)         | (NTU)                                 | (mg/L)   | (mV)<br>152   |                                         |
| 0908<br>0909         | .75                                                   | S. 71          | 93                            | 16.7             | 720                                   | 0.0      | 86            |                                         |
| <u>09 09</u><br>0910 | 2.25                                                  | 6.27           | • <i>11</i><br>.12            | 16.8<br>16.8     | 710<br>990                            | . 84     | 34            | 4                                       |
| N971                 | <u>~~~~</u>                                           | 6.47           | .1/                           | 16.9             | YOD                                   | 1.13     | 2             | 4                                       |
| 0912                 | 3<br>3.75                                             | 6.50           | ./0                           | 16.5             |                                       | 11.5     | - ?           |                                         |
| 917                  | 4.5                                                   | 6.50           | .12                           | 16.8             | 150                                   | 1.65     | -22           | r i i i i i i i i i i i i i i i i i i i |
| * 7                  |                                                       |                |                               |                  |                                       | ~        |               | -                                       |
|                      |                                                       | [              |                               | ]                |                                       |          |               |                                         |
|                      |                                                       |                |                               |                  |                                       |          |               | _                                       |
|                      |                                                       | 1              | 1                             | :                | 1                                     | 1        | 1             | t                                       |

| Page | of |
|------|----|
|      |    |

#

#### WELL PURGING & SAMPLING FORM

| Project:           | 40-25-                                              | 27           | Sai             | Sampled by: DB/PC |           |                   |              |
|--------------------|-----------------------------------------------------|--------------|-----------------|-------------------|-----------|-------------------|--------------|
| Location a         | nd Site Code (SI7                                   | EID):        | TF3             |                   |           | *                 |              |
|                    | LOCID): <u> </u>                                    |              |                 | ell Diamet        | er (SDIAM | ): 2 <sup>h</sup> |              |
|                    | GDATE):9                                            | m/l.         |                 | athor             |           | J. J.             | r 0          |
| Date (LOC          | $\mathbf{DAIE}$ . <u>9</u>                          | -6 10        | <u> </u>        |                   | el n      | <u>uq*/</u>       | 60.          |
| CASING VOLUM       | ME INFORMATION:                                     |              |                 |                   |           |                   |              |
| Casing ID (inch)   | 1.0                                                 | 1.5 2.0      | 2.2             | 3.0 4.0           | 4,3 5.0   | ) 6,0             | 7.0          |
| Unit Casing Volume | e (A) (gal/ft) 0.04                                 | 0.09 0.1     | 6 0.2           | 0.37 0.65         | 0.75 1.0  | ) 1.5             | 2.0 2.6      |
|                    |                                                     |              |                 |                   |           |                   |              |
| PURGING INFO       | RMATION:                                            |              |                 |                   |           |                   |              |
| Measured Well D    | epth (B) (TOTDEPTH)                                 | 1            | <b>9.19</b> _fi | -                 | C         | T                 |              |
| Measured Water     | Level Depth (C) (STATD                              | EP)/         | 1.89            | 1. h              |           |                   |              |
|                    | Water Column (D) =(B)                               |              |                 |                   |           | B I<br>ELEVAT     | ION          |
|                    | (B)                                                 | (Ç)          | (D)             | H <sub>2</sub> C  |           | (MPELI            | EV)          |
| O                  | t                                                   | +            | 848             |                   |           |                   |              |
| Casing water vo    | $lume(E) = \underline{\qquad} x \underline{\qquad}$ | (D) = -      | gai             | L                 | STATIC    | <u> </u>          |              |
|                    | Volume = $2.5$ gal                                  |              |                 |                   | ELEVATION | 4                 | MEAN         |
| Minimum Purge '    | Volume = gai                                        | (3 well volu | mes)            |                   |           | ·····             | SEA<br>LEVEL |
|                    | 135.11                                              |              |                 | 1                 |           | 19 7              | 5-01         |
| Purge Date         | e and Method:                                       |              |                 | <u> </u>          | l/        | 1-2               | 0-08         |
| Physical A         | ppearance/Comm                                      | ents:        | sill            | y provis          | n /       | no od             | ~            |
| FIFI D MF          | e and Method:<br>ppearance/Comm<br>EASUREMENTS      |              |                 | jra               | M; 0.0    | mgli              |              |
| Allowable          |                                                     | ± 0.1        |                 |                   | ·         |                   |              |
| Time               | Volume                                              | pН           | EC              | Temp.             | Turbidity | D.O.              | ORP          |
|                    | Removed (gal)                                       |              | (mS/cm)         | (F or C)          | (NTU)     | (mg/L)            | (mV)         |
| 0932               | 0.75                                                | 7.00         | 0.12            | 17.8              | 7999      | 2.13              | 20           |
| 0934               | 1.5                                                 | 7.01         | 0.13            | 18.2              | 7999      | 0.31              | 24           |
| 0937               | 2.25                                                | 7.06         | 0:13            | 18.4              | 7.499     | 0:00              | 29           |
|                    | 3.0                                                 |              |                 | 10-1              |           | <u>v.v-</u>       | ame. k       |
|                    |                                                     |              |                 |                   |           |                   |              |
|                    |                                                     |              |                 |                   |           |                   |              |
|                    |                                                     |              |                 |                   |           |                   |              |
|                    |                                                     |              |                 |                   |           |                   |              |
|                    | - 0m 27                                             |              |                 | A                 | ۱<br>۸    |                   | <u> </u>     |
| Sample Time        | e: <u>0938</u> Samp                                 | le ID:       | FF-3M[2         | -IR 121           | H         |                   |              |

| Page     | of |  |
|----------|----|--|
| <i>u</i> |    |  |

| Project:                              | 40-05.                                                   | 27                                          | Sar                           | npled by:                                   | NVH                                        |                                               |                                         |         |
|---------------------------------------|----------------------------------------------------------|---------------------------------------------|-------------------------------|---------------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------|---------|
|                                       | nd Site Code (SIT                                        |                                             |                               |                                             |                                            |                                               |                                         |         |
|                                       | LOCID): TEE                                              |                                             | <i>a</i> .                    | ell Diamete                                 | er (SDIAM)                                 | : 017                                         | <u></u>                                 |         |
|                                       | GDATE): <u>9</u> ]-                                      | -                                           |                               |                                             | 7020                                       | - wi                                          | indy +5,                                | row     |
| CASING VOLU                           | ME INFORMATION:                                          | <u> </u>                                    | <b></b>                       |                                             |                                            |                                               |                                         | _       |
| Casing ID (inch)<br>Unit Casing Volum | e (A) (gal/ft) 0.04                                      | 1.5         2.0           0.09         0.16 | 0.2                           | 3.0         4.0           0.37         0.65 | 4.3         5.0           0.75         1.0 |                                               | 7.0           2.0         2.6           |         |
| PURGING INFO                          |                                                          | _                                           |                               |                                             | <b>^</b>                                   |                                               | yers<br>An a the second                 | Ng: 2.6 |
|                                       | Depth (B) (TOTDEPTH)                                     |                                             |                               |                                             | Ċ                                          |                                               | Terre                                   | w7      |
| Measured Water                        | Level Depth (C) (STATD                                   | EP)                                         | <u>3.54</u>                   | t. ~~                                       |                                            | в                                             | Saraharan .                             |         |
| Length of Static                      | Water Column (D) = $20$ (B)                              | <b>86 - 13.5</b><br>(C)                     | <b>Y</b> = <b>1.32</b><br>(D) | ft.<br><sub>Hz</sub> C                      | 1 1 '                                      | ELEVATI<br>(MPELE                             |                                         |         |
|                                       | $\text{shume}(E) = \frac{0 1}{(A)} \cdot \mathbf{x}_{-}$ | ()                                          |                               |                                             | STATIC<br>ELEVATION                        | V                                             |                                         |         |
| Minimum Purge                         | Volume = <b>3.51</b> gal                                 | (3 well volum                               | nes)                          |                                             | <b>]</b>                                   | V                                             | MEAN<br>SEA<br>LEVEL                    |         |
| Purge Date                            | e and Method:                                            | . •                                         |                               | Sailer                                      |                                            |                                               |                                         |         |
|                                       | .ppearance/Comm                                          |                                             |                               |                                             | 5:1+9                                      | da                                            | ¥                                       |         |
| FIELD MI                              | EASUREMENTS                                              |                                             |                               |                                             | 0                                          | /                                             |                                         |         |
| Allowable                             |                                                          | $\pm 0.1$                                   | ± 5%                          | ±1°C                                        |                                            |                                               |                                         |         |
| Time                                  | Volume                                                   | pН                                          | EC                            | Temp.                                       | Turbidity                                  | D.O.                                          | ORP                                     |         |
|                                       | Removed (gal)                                            | ~ ~ ~ ~                                     | (mS/cm)                       | (F or C)                                    | (NTU)                                      | (mg/L)                                        | (mV)                                    |         |
| 1/17                                  | <u> </u>                                                 | 7.36                                        | <u> 93</u>                    | 14.9                                        | 400<br>M                                   | 2.62                                          | -//6                                    |         |
| <u>///¶</u>                           | 3                                                        |                                             | <u>87</u><br>01               | 19.9                                        | <u>\$6</u><br>0                            | 1. (3<br>2.90                                 | -122                                    |         |
| 1122                                  | 9                                                        | 7.30<br>7.29<br>7.28                        | 86<br>87                      | 14.9                                        | 0                                          | 3.00                                          | -121                                    |         |
|                                       |                                                          |                                             |                               |                                             |                                            |                                               |                                         |         |
|                                       |                                                          |                                             |                               |                                             |                                            |                                               |                                         |         |
|                                       |                                                          |                                             |                               | ]                                           |                                            | <u>,,, , , , , , , , , , , , , , , , , , </u> |                                         |         |
|                                       |                                                          |                                             |                               |                                             |                                            |                                               |                                         |         |
| Sample Time                           | e: <u>1124</u> Samp                                      | le ID: <u>1</u>                             | <sup>2</sup> 3m126            | 14 PA.                                      | ·                                          |                                               | • • • • • • • • • • • • • • • • • • • • |         |

| Page | of |  |
|------|----|--|
| 0    |    |  |

| Project:          | 40-05-                              | 27             | Sa           | mpled by:          |           | DB/Pa      |                       |              |
|-------------------|-------------------------------------|----------------|--------------|--------------------|-----------|------------|-----------------------|--------------|
| Location a        | nd Site Code (SIT                   | EID):          |              |                    |           | ŧ          |                       |              |
|                   | LOCID): TF                          | _              |              |                    | er (SDIAM | D: $2^{1}$ | 0.04820-              |              |
|                   | GDATE):                             |                | K We         | eather:            | sun       | 160        | 0                     |              |
|                   | (). <u> </u>                        | <u> </u>       |              |                    |           |            |                       |              |
| CASING VOLU       | ME INFORMATION:                     |                |              |                    |           |            |                       |              |
| Casing ID (inch)  | 1.0                                 | 1.5 2.0        | 2.2          | 3.0 4.0            | 4.3 5     | .0 6.0     | 7.0                   |              |
| Unit Casing Volum | ne (A) (gal/ft) 0.04                | 0.09 0.16      | 0.2          | 0.37 0.65          | 0.75 1    | .0 1.5     | 2.0 2.6               |              |
| PURGING INFO      | ORMATION:                           |                |              |                    |           | - <u> </u> |                       |              |
|                   | Depth (B) (TOTDEPTH)                | distant.       | 9.6< n       | ŕ                  | c         |            |                       | ·            |
|                   | Level Depth (C) (STATD              |                |              |                    | _         |            |                       |              |
| Length of Static  | Water Column (D) = $\frac{19}{(B)}$ | 65 . 17.U      | 1 = 624      |                    |           | B I ELEVA  | TION                  |              |
| Length of Static  | water Column $(D) = \frac{1}{(B)}$  | (C)            | (D)          | - H <sub>2</sub> C |           | (MPEI      | LEV)                  |              |
| Casing Water V    | plume (E) = $0.16$ x                | 6.zu _         | 0.99 ml      |                    |           |            |                       |              |
| Casing water ve   | $\frac{(A)}{(A)}$                   | (D)            | <b>•••</b>   |                    | STATIC    |            |                       |              |
| Minimum Purga     | Volume = <b>2.99</b> gai            | 1/3 welt volue | mec)         |                    | ELEVATION | Ý          | MEAN                  |              |
| willinnun i urge  | volume - <u> ga</u> ga              |                | lics)        |                    |           |            | SEA<br>LEVEL          |              |
| Purge Date        | e and Method:                       | . •            | . á          | baily              | 1         | 9-26.      | -06<br>etro o<br>my/2 |              |
| Physical A        | e and Method:                       | ents:          | Ć            | lear               | 1 ev      | The a      | etos o                | -            |
|                   | -FF                                 |                |              |                    | 150       |            | 11                    | м - <i>у</i> |
|                   | EASUREMENTS                         |                | ( 50/        | 1100               | (ron      | -= 9,2     | . mg/c                | *            |
| Allowable<br>Time |                                     | ± 0.1<br>pH    | ± 5%<br>EC   | ±1°C<br>Temp.      | Turbidity | D.O.       | ORP                   |              |
| 1 11110           | Removed (gal)                       | 1              | (mS/cm)      | (F or C)           | 1         |            | 1                     |              |
| 1400              | 0.75                                | 7.28           | 82.6<br>81.7 | 14.0               | 70.7      | 7.37       | 51                    |              |
| 1401              | 1.50                                | 7.25           | 81.7         | 18.9               | 108.0     | 6.63       | 32                    |              |
| 1402              | 2.25                                | 7.23           | 80.9         | 13.5               | 148.1     | 5.35       | 16                    |              |
| 1403              | 3.0                                 | 7.27           | 82.0         | 13.5               | 126.0     | 5:12       | 23                    |              |
|                   |                                     |                |              |                    |           |            |                       |              |
|                   |                                     |                |              |                    |           |            |                       |              |
|                   |                                     |                |              |                    |           |            |                       |              |
|                   |                                     |                |              |                    |           |            |                       |              |
| L                 |                                     |                |              |                    | <u> </u>  | <u> </u>   |                       | ]            |
| Sample Tim        | e: <u>1405</u> Samp                 | ole ID:        | 1 F 3MI      | 2713               | r A       |            |                       |              |

| Page | of |
|------|----|
|      |    |

| Project: 40-05- 5                                                                                                                                                                  | 23                            | San             | npled by:     | <u>_</u>            | S/P                  |             |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|---------------|---------------------|----------------------|-------------|----------|
| Location and Site Code (SIT                                                                                                                                                        |                               |                 |               |                     | /                    |             |          |
| Well No. (LOCID): <u>TF3h</u>                                                                                                                                                      |                               |                 |               | er (SDIAM           | ): 2"                |             |          |
| Date (LOGDATE): $9/2$                                                                                                                                                              |                               |                 | ather:        |                     | / sur                | 1           |          |
| CASING VOLUME INFORMATION:                                                                                                                                                         |                               |                 |               |                     | F                    |             |          |
|                                                                                                                                                                                    | 1.5 2.0                       | 1               | 3.0 4.0       | 4.3 5.0             |                      | 7.0         |          |
| Unit Casing Volume (A) (gal/ft) 0.04 (                                                                                                                                             | 0.09 0.16                     | 0.2             | 0.37 0.65     | 0.75 1.0            | ) 1.5                | 2.0 2.6     | ·]       |
| <u>PURGING INFORMATION:</u><br>Measured Well Depth (B) ( <b>TOTDEPTH</b> )<br>Measured Water Level Depth (C) ( <b>STATDE</b><br>Length of Static Water Column (D) = $222.7$<br>(B) | EP) 14,                       | <b>.17</b> f    | i. fr         |                     | B<br>ELEVAT<br>(MPEL |             |          |
| Casing Water Volume (E) = $\frac{\partial_{1}B}{(A)} \times \frac{\partial_{2}B}{(A)}$                                                                                             | <u>5.97</u> = <b>R</b><br>(D) | 9 <b>95</b> gai |               | STATIC<br>ELEVATION |                      |             |          |
| Minimum Purge Volume = <b>2.86</b> gal                                                                                                                                             | (3 well volumes               | s)              |               |                     | Y                    | MEAN<br>SEA |          |
| Purge Date and Method:                                                                                                                                                             |                               | a //            | båler<br>ybro |                     | 926-                 | LEVEL       |          |
| Physical Appearance/Comme                                                                                                                                                          | ents:                         | Silt            | 4600          | wor 6               | <u>s od o</u>        | Y           | //       |
| FIELD MEASUREMENTS:                                                                                                                                                                |                               |                 |               |                     | 11                   | on = c      | 0,0 mg/L |
| Allowable Range:                                                                                                                                                                   | $\pm 0.1$                     | ± 5%            | ±1°C          |                     |                      |             |          |
| Time Volume                                                                                                                                                                        | pН                            | EC              | Temp.         | Turbidity           | D.O.                 | ORP         |          |
| Removed (gal)                                                                                                                                                                      |                               | mS/cm)          | (F or C)      | (NTU)               | (mg/L)               | (mV)        |          |
| 1414 0.75                                                                                                                                                                          |                               | 69.3            | 14.0          | 205.0               | 10.22                | 184         |          |
| 1415 1.50                                                                                                                                                                          | 7.53                          | 71.2<br>70.3    | 13.7          | 60,5                | 5.96                 | 150         |          |
| 1415 1.50<br>1417 2.25                                                                                                                                                             |                               |                 | 13.5          | 241.0               | 4.71                 | 123         |          |
| 1419 3.0                                                                                                                                                                           | 7.43                          | 70.0            | 13.5          | 20.3                | 5.11                 | 135         |          |
|                                                                                                                                                                                    |                               |                 |               |                     |                      |             |          |
|                                                                                                                                                                                    |                               |                 |               |                     |                      |             |          |
|                                                                                                                                                                                    | t                             |                 |               |                     |                      | [           |          |
|                                                                                                                                                                                    |                               |                 |               |                     |                      |             |          |
|                                                                                                                                                                                    |                               |                 |               |                     |                      |             |          |
|                                                                                                                                                                                    |                               |                 |               |                     |                      |             |          |

| Page | of |  |
|------|----|--|
|      |    |  |

| Project:                    | 40-05-                                                                                | 24             | Sa                     | npled by:            | DB                  | / PC                    | · · · · · ·          |          |
|-----------------------------|---------------------------------------------------------------------------------------|----------------|------------------------|----------------------|---------------------|-------------------------|----------------------|----------|
| Location a                  | nd Site Code (SII                                                                     | FEID):         | TPS                    | 3                    |                     |                         |                      |          |
|                             | LOCID):                                                                               |                |                        |                      | er (SDIAM           | ): 2 <sup>1)</sup>      |                      |          |
|                             | GDATE): <b>9</b>                                                                      |                |                        | eather:              | . 1                 | Sum                     |                      | * * *    |
| CASING VOLU                 | ME INFORMATION:                                                                       |                |                        |                      | • • • • •           | · · ·                   |                      |          |
| Casing ID (inch)            | 1.0                                                                                   | 1.5 2.0        | 1                      | 3.0 4.0              | 4.3 5.4             | i                       | 7.0                  | _        |
| Unit Casing Volum           | e (A) (gal/ft) 0.04                                                                   | 0.09 0.1       | 0.2                    | 0.37 0.65            | 0.75 1.             | 0 1.5                   | 2.0 2.6              |          |
| PURGING INFC                | DRMATION:                                                                             |                |                        |                      |                     |                         |                      |          |
| Measured Well E             | Depth (B) (TOTDEPTH)                                                                  | 22.            | <b>20</b>              | -                    | C                   | Ī                       |                      |          |
| Measured Water              | Level Depth (C) (STATD                                                                | EP) 16         | .48                    | n. /~                |                     |                         |                      |          |
|                             | Water Column (D) = $\frac{22}{(B)}$                                                   |                | <u>8</u> = <u>5,72</u> | ft. H <sub>2</sub> C |                     | B I<br>ELEVAT<br>(MPELI |                      |          |
| Minimum Purge<br>Purge Date | $Polyme (E) = \frac{0.16}{(A)} \times \frac{4}{(A)}$ $Volume = 2.35 ga$ e and Method: | l (3 well volu | mes)<br>ø              | failes               | STATIC<br>ELEVATION | -26-0<br>oder           | MEAN<br>SEA<br>LEVEL |          |
|                             |                                                                                       |                |                        |                      | /                   | iran                    | = 0.4                | ms/L     |
| Allowable                   | EASUREMENTS<br>Range <sup>.</sup>                                                     | :<br>± 0.1     | ± 5%                   | ±1°C                 |                     | 10 8                    |                      |          |
| Time                        | Volume                                                                                | pH             | EC                     | Temp.                | Turbidity           | D.O.                    | ORP                  | <b>.</b> |
|                             | Removed (gal)                                                                         | -              | (mS/cm)                | (F or C)             | (NTU)               | (mg/L)                  | (mV)                 |          |
| 1302                        | 0,75                                                                                  | 6.30           | 51.3                   | 13.9                 | 54.3                | 8,10                    | 231                  | _        |
| 1304                        | 1.50                                                                                  | 6.44           | 63.1                   | (3.4                 | 90.4                | 5.86                    | 204                  | -        |
| 1305                        | 2.25                                                                                  | 6.62           | 66.5                   | 13.2                 | 127.0               | 5.26                    | 182<br>175           | -        |
| 1306                        | 3,00<br>3,75                                                                          | 6.69<br>6.71   | 67.5<br>67.0           | 13.2                 | 10.0                | 4.84<br>4.76            | 164                  |          |
| 1348                        | · ·                                                                                   |                |                        |                      | 1 1.24 7            | <u> 10 r Kar</u>        |                      | 1        |
|                             |                                                                                       |                |                        |                      |                     |                         |                      | -        |
|                             |                                                                                       |                |                        |                      | [                   |                         |                      | _        |
|                             |                                                                                       |                |                        |                      |                     |                         |                      | -        |
|                             | <u> </u>                                                                              |                |                        | A                    | <u> </u>            |                         | L                    | 1        |
| Sample Time                 | e: <u>1310</u> Samp                                                                   | ole ID:        | TF3mi3                 | 5316PP               |                     |                         |                      |          |

| Page | of |
|------|----|
|      |    |

| Project:           | 40-05.                                 | 27               | Sar                            | npled by:                    | DE                  | 3/ PC               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|--------------------|----------------------------------------|------------------|--------------------------------|------------------------------|---------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Location a         | nd Site Code (SIT                      | EID):            | 722                            |                              |                     | ,                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|                    | LOCID): <u> </u>                       |                  |                                | ell Diamete                  | er (SDIAM           | ): 🛛 🖉              | ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
|                    | GDATE): <u>91</u>                      |                  |                                | eather:                      | Widy V<br>H saiz a  | widdle !            | 1040 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ermisel,                                |
| CASING VOLU        | ME INFORMATION:                        |                  |                                |                              |                     | -                   | 9 - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| Casing ID (inch)   | 1.0                                    | 1.5 2.0          | 2.2                            | 3.0 4.0                      | 4.3 5.(             | ) 6.0               | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Unit Casing Volume | e (A) (gal/ft) 0.04                    | 0.09 0.10        | 5 0.2                          | 0.37 0.65                    | 0.75 1.0            | ) 1.5               | 2.0 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| PURGING INFO       |                                        | ~~ ·             |                                |                              |                     | <b>A A</b>          | Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (INS: 3.6                               |
|                    | Depth (B) (TOTDEPTH)                   |                  | . A                            |                              | Ĭ                   |                     | Constant of the second se | A C C C C C C C C C C C C C C C C C C C |
|                    | Level Depth (C) (STATD                 | ·                | 2.99                           |                              |                     | B                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| Length of Static V | Water Column (D) = $\frac{2}{(B)}$     | <u>.82. 12.9</u> | <u>9</u> = <u>14.83</u><br>(D) | ft. <sub>H2</sub> C          |                     | ELEVAT<br>(MPELE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|                    | lume (E) = $\frac{2.65}{(A)} \times 1$ | . ,              |                                |                              | STATIC<br>ELEVATION | V                   | MEAN<br>— SEA<br>LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| Purge Date         | e and Method:                          | . •              |                                | bailer                       |                     |                     | LEY EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
|                    | ppearance/Comm                         |                  |                                | petro                        | orly                |                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
|                    | EASUREMENTS                            |                  |                                | 9                            |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| Allowable          |                                        | ± 0.1            | ± 5%                           | ±1°C                         |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| Time               | Volume                                 | pH               | EC                             | Temp.                        | Turbidity           | D.O.                | ORP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]                                       |
|                    | Removed (gal)                          | *                | (mS/cm)                        | (F or C)                     | (NTU)               | (mg/L)              | (mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| 133/               | \$                                     | 7.30             | 77.2                           | 13.0                         | 62.6                | 10.34               | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 1337               | 10                                     | 7.20<br>7.22     | 78,4                           | 12.6                         | <u>435</u>          | 4.84                | ~ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       |
| 13.40              | 15                                     | 1.22             | 78.3                           | 12.8                         | 39.3                | 2.81                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| 1343               | 20                                     | 7.29             | 78.3                           | 12.8<br>12.8<br>12.8<br>12.8 | 39.9<br>78.9        | <u>5,18</u>         | -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 1349               | 30<br>30                               | 7 29             | 78.5<br>78.7                   | 12.3                         |                     | <u>9.92</u><br>9.77 | - 20<br>- 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
|                    |                                        | /. <i>~</i> (    | (0.(                           | 17.0                         | 42.(                | 1. (/               | K. jo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
|                    |                                        |                  |                                |                              |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***                                     |
|                    |                                        |                  |                                |                              |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                       |
|                    |                                        |                  |                                |                              |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| Sample Time        | e: 13.50 Samp                          | ole ID: T        | 3(E) [:                        | BAY .                        |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |

# EQUIPMENT CALIBRATION LOG

Instrument Name:

FPM H2

Model No.:

Houba U-22

| Date and<br>Time | First Standard<br>Concentration | First Standard<br>Reading                | Second Standard<br>Concentration                                                                                  | Second Standard<br>Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comments                                                                                                        |
|------------------|---------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 9-12             | 4.00                            | 4.00                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
| 9-13             | 4.00                            | 4.00                                     | ,                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
| 9-14             | 4.00                            | 3.95                                     | 4.00                                                                                                              | ¥. T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |
| 9-15             | 4.00                            | 3.99                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
| 9/18/06          | 4.00                            | 39Y                                      | 4.00                                                                                                              | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stor 7, Panagain.                                                                                               |
| 9-18-02          | 4.0D                            | 4.00                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
| 9/20/06          | 4.00                            | 3.98                                     | 4.00                                                                                                              | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |
| 9/21/06          | 4,00                            | 3,98                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
| 9/22/06          | 4.00                            | 3.19                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
| 9-25-06          | <u>4.00</u>                     | 4.00                                     |                                                                                                                   | n<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>National<br>N | THE ENVIRONMENT OF THE ATTENDANCE AND A THE ATTENDED AND A THE ATTENDED AND A THE ATTENDED AND A THE ATTENDED A |
| 9-260            | 4.00                            | 3.91                                     | 4.00                                                                                                              | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |
|                  |                                 |                                          |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                  |                                 | 2300223807000000000000000000000000000000 | asientellen andel 1911 - al ristellen die State (Society and a state                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                  |                                 |                                          |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                  |                                 |                                          |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                  |                                 |                                          | The case of the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                  |                                 |                                          |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                  |                                 |                                          |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                  |                                 |                                          |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                  |                                 |                                          |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|                  |                                 |                                          |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |

**FPM** 

# EQUIPMENT CALIBRATION LOG

Instrument Name:

FPM HI

Model No.:

Houlda 14-20

| Date and<br>Time | First Standard<br>Concentration | First Standard<br>Reading | Second Standard<br>Concentration | Second Standard<br>Reading | Comments           |
|------------------|---------------------------------|---------------------------|----------------------------------|----------------------------|--------------------|
| 9-12             | 4.00                            | 4.00                      |                                  |                            |                    |
| 9-13             | 4.00                            | 3.96                      | 4,00                             | 3.97                       |                    |
| 9-14             | 4.00                            | 3.96<br><b>G</b> .45      | 4.00                             | 4.00                       |                    |
| 9-15             | 1.00                            | 3.95                      | 4.00                             | 4.00                       |                    |
| 9/10/00          | 9.00                            | 7.9Y                      | 4.00                             | 3.98                       | Gror 7, recallerte |
| 9-18-06          | 4.00                            | 4.00                      |                                  |                            |                    |
| 7/20/06          | 4.00                            | 7.99                      |                                  |                            |                    |
| 9/21/06          | 4.00                            | 3.97                      |                                  |                            |                    |
| 9/22/06          | 4.00                            | 3,99                      | 4.00                             | 4.00                       |                    |
| 9-25-02          | 4.00                            | 4.00                      |                                  |                            |                    |
| 9-26-6           | 4.00                            | 4.00                      |                                  |                            |                    |
|                  |                                 |                           |                                  |                            |                    |
|                  |                                 |                           |                                  |                            |                    |
|                  |                                 |                           |                                  |                            |                    |
|                  |                                 |                           |                                  |                            |                    |
|                  |                                 |                           |                                  |                            |                    |
|                  |                                 |                           |                                  |                            |                    |
|                  |                                 |                           |                                  |                            |                    |
|                  |                                 |                           |                                  |                            |                    |
|                  |                                 |                           |                                  |                            |                    |
|                  |                                 |                           |                                  |                            |                    |

FPM

# AFCEE CHAIN OF CUSTODY RECORD (WO 0906018)

COC#: \_4\_ SDG#: \_139\_ Cooler ID: \_A\_

| Ship to: Monika Santucci     | tucci                          |                         |       | Pro    | Project Name: Griffiss AFB TF | ne: Gri | ffiss Al | FB TF 1      | 1 and 3 Sampling | guilqme              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Send Re                                | sults to:                                              | Send Results to: Niels van Hoesel                   | n Hoesel                                                          |                                          |
|------------------------------|--------------------------------|-------------------------|-------|--------|-------------------------------|---------|----------|--------------|------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|
| Life Science                 | ife Science Laboratories, Inc. |                         |       | San    | Sampler Name: David Forse     | tme: D  | avid Fc  | ~            | 14               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                        | FPM Group                                           | dno                                                               |                                          |
| 5000 Britton<br>Fast Syracus | 5                              | 0<br>Tel: (315)437-0200 | -0200 |        | -                             |         |          |              | land -           | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                        | 153 Broe<br>Rome, N                                 | 153 Brooks Road<br>Rome, NY 13441                                 |                                          |
| Carrier: LSL courier.        |                                |                         |       | Sar    | Sampler Signature:            | gnature |          | 1100         |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                        | Phone: (3                                           | (315) 336-7721                                                    | '21 Ext. 205                             |
|                              |                                |                         |       |        |                               |         |          |              |                  |                      | o location de la construction de la construcción de la constru | A molecos Dominadod                    | otod                                                   |                                                     |                                                                   |                                          |
|                              |                                |                         |       |        |                               |         | -        |              |                  |                      | Auatys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es neque                               | ) ICU                                                  |                                                     |                                                                   |                                          |
| Field Sample ID              | Location ID<br>(LOCID)         | Date<br>2006            | Time  | XIATAM | SMCODE                        | ZBD/ZED | SACODE   | Preservative | Filt./\LIF       | No. of<br>Containers | VOC <sup>note 1</sup><br>40 mL vials (HCI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SVOCs <sup>6 bote 2</sup><br>I L amber | Total Alkalinity <sup>note 3</sup><br>(soro headspace) | Nitrogen (Nitrate) <sup>note 4</sup><br>I 6 oz poly | Total Sulfide <sup>Note 5</sup><br>16 oz poly (ZnAC and<br>(HOaN) | Comments                                 |
| TF3CE313PA                   | MW-CE                          | 9/26                    | 1350  | WG     | В                             | 0/0     | Z        | HCI          | Unf.             | 4                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        | 1                                                      | 1                                                   | 1                                                                 |                                          |
| TF3M2114PA                   | TF3MW21                        | 9/26                    | 1035  | WG     | В                             | 0/0     | N        | HCI          | Unf.             | 4                    | ю                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t                                      | 1                                                      | I                                                   | I                                                                 |                                          |
| TF3M11614PA                  | WL-TF3MW-116                   | 9/26                    | 1050  | WG     | В                             | 0/0     | z        | HCI          | Unf.             | 4                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ¥                                      | 1                                                      | 1                                                   | 1                                                                 |                                          |
| TF3M11713PA                  | WL-TF3MW-117                   | 9/26                    | 1110  | WG     | В                             | 0/0     | N        | HCI          | Unf.             | 4                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                        | 3                                                   | 1                                                                 |                                          |
| TF3M119R12PA                 | WL-TF3MW-119R                  | 9/26                    | 0915  | WG     | В                             | 0/0     | Z        | HCI          | Unf.             | 6                    | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                      |                                                        | ĩ                                                   | 4                                                                 |                                          |
| TF3M121R12PA                 | WL-TF3MW-121R                  | 9/26                    | 0938  | WG     | В                             | 0/0     | N        | HCI          | Unf.             | 6                    | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                      |                                                        | г                                                   | z                                                                 |                                          |
| TF3M12314PA                  | WL-TF3MW-123                   | 9/26                    | 1006  | WG     | В                             | 0/0     | z        | HCI          | Unf.             | 4                    | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I                                      |                                                        | 1                                                   |                                                                   |                                          |
| TF3M12614PA                  | WL-TF3MW-126                   | 9/26                    | 1124  | WG     | В                             | 0/0     | N        | HCI          | Unf.             | 4                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                      |                                                        | 3                                                   | г                                                                 |                                          |
| TF3M12713PA                  | WL-TF3MW-127                   | 9/26                    | 1405  | WG     | В                             | 0/0     | N        | HCI          | Unf.             | 4                    | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                      |                                                        | 1                                                   | 1                                                                 |                                          |
| TF3M12814PA                  | WL-TF3MW-128                   | 9/26                    | 1420  | WG     | В                             | 0/0     | N        | HC1          | Unf.             | 4                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                      | 1                                                      | 1                                                   | J                                                                 |                                          |
| TF3M13316PA                  | WL-TF3MW-133                   | 9/26                    | 1310  | WG     | В                             | 0/0     | Z        | HCI          | Unf.             | 4                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I                                      | 1                                                      | ı                                                   | 1                                                                 |                                          |
| TF3M13316PC                  | WL-TF3MW-133                   | 9/26                    | 1310  | WG     | В                             | 0/0     | FD       | HCI          | Unf.             | 4                    | ю                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                      | 1                                                      | 1                                                   | 1                                                                 |                                          |
| 092606PE                     | FIELDQC                        | 9/26                    | 0830  | ЪМ     | В                             | 0/0     | EB       | HCI          | Unf.             | S                    | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                        | I                                                   | 3                                                                 | sampleID changed<br>from 0925 to<br>0926 |
| 092606PF                     | FIELDQC                        | 9/26                    | 1320  | МQ     | NA                            | 0/0     | AB       | HCI          | Unf.             | 3                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ŝ                                      | ł                                                      | E                                                   | ı                                                                 | sampleID changed<br>from 0925 to<br>0926 |
| 092606PR                     | FIELDQC                        | 9/26                    | 0820  | МQ     | NA                            | 0/0     | TB       | HCI          | Unf.             | 3                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ĩ                                      | ł                                                      | <br>I                                               | 1                                                                 | sample1D changed<br>from 0925 to<br>0926 |
|                              |                                |                         |       |        |                               |         | -        |              |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                        |                                                     |                                                                   |                                          |

Collect water levels at all wells that are not sampled.

| Sample Condition Upon Receipt at Laboratory:                                              | tory:              |                                                            | Cooler Temperature: |       |
|-------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------|---------------------|-------|
| Special Instructions/Comments: Analyses to be conducted in compliance with AFCEE QAPP 3.1 | to be conducted ir | 1 compliance with AFCEE QAPP 3.1                           |                     |       |
| Note 1: VOCs: SW8260, AFCEE QAPP 3.1 List.                                                | l List.            |                                                            |                     |       |
| Note 2: SVOCs: SW8270, AFCEE QAPP 3.1 List.                                               | 3.1 List.          |                                                            |                     |       |
| Note 3: Total Alkalinity, 310.2.                                                          |                    |                                                            |                     |       |
| Note 4: Nitrogen: 353.2, Nitrate: Automated.                                              | d.                 |                                                            |                     |       |
| Note 5: Total Sulfide: 376.2.                                                             |                    |                                                            |                     |       |
|                                                                                           |                    | to action of                                               |                     |       |
| #1 Released by: (Sig)                                                                     | Date:              | #2 Released by: (Sig) //////////////////////////////////// | ased by: (Sig)      | Date: |

| # I Keleased by: (Sig)                 | Date:         | #2 Keleased by: (Jig)                             | Date: 9/20/06       | #3 Keicascu ny. (Jug) | Date: |
|----------------------------------------|---------------|---------------------------------------------------|---------------------|-----------------------|-------|
| Company Name:                          | Time:         | Company Name: FPMI Group Ltd                      | Time: <b>16</b> :40 | Company Name:         | Time  |
| #1 Received by: (Sig) Niels van Hocsel | Date: 9/26/06 | #2 Received by: (Sig) - 2 Lack                    | Date // : -/ 0/     | #3 Received by: (Sig) | Date  |
| Company Name: FPM Group Ltd            | Time: 1000    | Company Name: $\mathcal{L} \subseteq \mathcal{L}$ | Time: 9/2 6/06      | Company Name:         | Time: |
|                                        |               |                                                   |                     |                       |       |

|      | 1 |
|------|---|
| ×    |   |
| 2    | ς |
| MATR |   |
| 2    |   |
| 2    | Ş |

WG = Ground water WQ = Water Quality Control Matrix SO = Soil

SMCODE

- B = Bailer G = Grab (only for EB). NA = Not Applicable (only for AB/TB). PP = Peristaltic Pump BP = Bladder Pump SP = Submersible Pump SS = Split Spoon

<u>SACODE</u> N = Normal Sample AB = Ambient Blank TB = Trip Blank EB = Equipment Blank FD = Field Duplicate MS = Matrix Spike SD = Matrix Spike Duplicate

Daily Health and Safety Meeting Form Date: 9-26-06 Time: 0810 Location: FPM office (garage) Weather Conditions: rain / clondy 50 to 60 Location: FPM office (garage) *Meeting Type:* Daily Health and Safety Personnel Present: Pete Corigliano, Dan Buldyga Visitors Present: \_\_\_\_\_ Visitor Training: None PPE Required: Modified D *Possible risks, injuries, concerns:* trattic, slip/trip/ball Anticipated Releases to Environment (if so, describe and detail response action/control measures *implemented*): None Property Damage: Non Description (include sequence of events describing step by step how incident happened): Non Analysis for, and Implementation of Corrective/Preventative Procedure to Prevent Future *Occurrences (to be formulated by SSHO + FOM, approved by PM, and SSHO implemented):* Nerre

Report made by (Name): \_\_\_\_\_ Dan Baldy & \_\_\_\_\_

SSHP Organization Title: Site Safety and Health Officer

#### FPM-GROUP Data Verification and Usability Report GRIFFISS AIR FORCE BASE Site Griffiss AFB TANK FARM 1/3 Water Sampling Contract No. F41624-03-D-8601

#### FPM Project No. 40-05-27

#### STL Job # A06-7102

| Laboratory:          | STL Buffalo                                                |
|----------------------|------------------------------------------------------------|
| Sample Matrix:       | Water                                                      |
| Number of Samples:   | 15                                                         |
| Analytical Protocol: | AFCEE QAPP, Version 3.1, with AFCEE-approved lab variances |
| Data Reviewer:       | Connie van Hoesel                                          |
| Sample Date:         | June 20, 2006                                              |

#### LIST OF DATA VERIFICATION SAMPLES

This verification report pertains to the following environmental samples and corresponding QC samples:

| Sample ID    | Date    | QC Samples                   | Date    |
|--------------|---------|------------------------------|---------|
| TF3CE313OA   | 6/20/06 | 062006OE, 062006OF, 062006OR | 6/20/06 |
| TF3M11614OA  | 6/20/06 |                              |         |
| TF3M119R12OA | 6/20/06 |                              |         |
| TF3M121R12OA | 6/20/06 |                              |         |
| TF3M12713OA  | 6/20/06 |                              |         |
| TF3M12814OA  | 6/20/06 |                              |         |
| TF3M13316OA  | 6/20/06 | TF3M13316OC                  | 6/20/06 |
| TF3M2114OA   | 6/20/06 |                              |         |
| TF3M11713OA  | 6/20/06 |                              |         |
| TF3M12614OA  | 6/20/06 |                              |         |
| TF3M12314OA  | 6/20/06 |                              |         |

Notes:

Refer to attached chain-of-custody for detailed sampling information and sample specific analyses requested.

OA - Primary environmental samples

OC - Field duplicate sample

OE – Equipment blank

OF – Ambient blank

OR - Trip blank

#### DELIVERABLES

The data deliverable report was per requirements of the AFCEE QAPP 3.1 and approved variances. The report consisted of the following major sections: lab attachment letter, case narrative, chain-of-custody, lab qualifier definitions, analytical results (sheet 2) based on analytical batch, calibration summaries, method blank summaries, laboratory control sample summaries, matrix spike/matrix spike duplicate summaries, holding time forms, performance checks, surrogate and internal standard recoveries, as applicable.

#### ANALYTICAL METHODS

The analytical test methods and QA/QC requirements used for the soil sample analysis was per methods as specified in the AFCEE Quality Assurance Project Plan, Version 3.1 and AFCEE approved laboratory variances. The analytical methods employed included SW-846: Volatile Organic Compounds (VOCs) by Method SW8260 and Semivolatile Organic Compounds (SVOCs) by Method SW8270, and Total Alkalinity by EPA Method 310.2.

#### **VERIFICATION GUIDANCE**

The analytical work was performed by Severn Trent Laboratory in accordance with the Air Force Center for Environmental Excellence (AFCEE), Quality Assurance Project Plan (QAPP), Version 3.1, with AFCEE-approved laboratory variances. The data was verified according to the protocols and QC requirements of the respective analytical methods and of the QAPP Version 3.1. For data usability purposes all values were further evaluated, including positive and non-detect results that were qualified "R" (Rejected) according to QAPP. The data usability analysis was based on the reviewer's professional judgment and on an assessment of how this data would fare with respect to the U.S. Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for Organic (and Inorganic) Data Review (February 1994), and the AFCEE QAPP, Version 3.1.

#### QA/QC CRITERIA

The following QA/QC criteria were reviewed, as applicable and available:

- Method detection limits and reporting limits (MDL, RL)
- Holding times, sample preservation and storage
- MS tune performance
- Initial and Continuing calibration summaries
- Second source calibration verification summary
- Method blanks
- Ambient, equipment, and trip blanks (as applicable)
- Field duplicate results
- Surrogate spike recoveries
- Internal standard areas counts and retention times
- Laboratory control samples (LCS)
- Results reported between MDL and RL (F-flag)

- Sample storage and preservation
- Data system printouts
- Qualitative and quantitative compound identification
- Chain-of-custody (COC)
- Case narrative and deliverables compliance

The items listed above were in compliance with AFCEE QAPP and USEPA criteria and protocols <u>with exceptions discussed in the text below</u>. The data have been verified according to the procedures outlined above and qualified accordingly.

#### GENERAL NOTES:

#### MISSING SAMPLES

None. All samples documented on the chain of custody were received by the laboratory.

#### SAMPLE LABELING

No problems were encountered with sample labeling and transcription to laboratory forms.

#### **BLANKS**

Whenever blanks, including method, ambient, equipment, and trip, contained low levels of contaminants (between MDL and RL), the laboratory and/or data verifier qualified the subject results with an "F" flag. Since no qualification of associated field samples are required for blanks less than the RL, no further action was taken in such instances.

#### MS/MSD

For SVOCs, the lab performed matrix spike and matrix spike duplicate samples for parent sample TF3M119R12OA. However, these samples were not requested by the client in the chain-of-custody; therefore, no action was taken for the MS/MSD criterion.

#### VOLATILE ORGANIC COMPOUNDS (VOCs)

• The purpose of laboratory or field blank analysis is to determine the existence and magnitude of contamination resulting from lab or field activities. In Method Blank A6B2229802, naphthalene was detected with a concentration less than its reporting limit (RL) per the AFCEE QAPP (see Table below). According to the AFCEE QAPP, the presence of analytes in a method blank at concentrations equal to or greater than the RL indicates a need for corrective action.

| Analyte     | Method Blank Result (µg/L) | Reporting Limit (µg/L) |
|-------------|----------------------------|------------------------|
| Naphthalene | 0.23                       | 1.0                    |

<u>Corrective Action</u>: Since the detected concentration for this analyte was below its RL, no corrective action is required for this criterion and the "B" qualifiers applied by the lab to the associated samples are removed.

• Laboratory performance on individual samples is established by means of spiking all samples prior to analysis with surrogate compounds and assessing the percent recoveries. The following table summarizes QC exceedances for samples which exhibited surrogate compound recovery deficiencies. The Sample ID, surrogate compound, percent recoveries, and QC limits are listed.

| Sample ID                           | Surrogate                 | %Rec | AFCEE<br>QC<br>Limits (%) | STL<br>QC<br>Limits<br>(%) | Flag<br>Applied                                              | Rationale                                                                                                                                                                                                                                   |
|-------------------------------------|---------------------------|------|---------------------------|----------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TF3M119R12OA                        | 1,2-Dichloroethane-<br>d4 | 150  | 72-119                    | 72-143                     | R                                                            | %Rec greater<br>than upper<br>control limit;<br>reanalysis<br>results used                                                                                                                                                                  |
| TF3M119R12OARI                      | 1,2-Dichloroethane-<br>d4 | 142  | 72-119                    | 72-143                     | None                                                         | %Rec within<br>STL QC limits                                                                                                                                                                                                                |
| TF3M12314OA                         | 1,2-Dichloroethane-<br>d4 | 147  | 72-119                    | 72-143                     | R for<br>positive<br>results/<br>None<br>for non-<br>detects | %Rec greater<br>than upper<br>control limit;<br>dilution sample<br>results used for<br>all results<br>greater than RL<br>(Non-detect<br>results do not<br>require<br>flagging, and<br>results between<br>RL and MDL<br>were flagged<br>"F") |
| TF3M12314OADL<br>(performed at 1:4) | 1,2-Dichloroethane-<br>d4 | 103  | 72-119                    | 72-143                     | None                                                         | %Rec within AFCEE QC                                                                                                                                                                                                                        |

| Sample ID                          | Surrogate                 | %Rec | AFCEE<br>QC<br>Limits (%) | STL<br>QC<br>Limits<br>(%) | Flag<br>Applied                                              | Rationale                                                                                                                                                                                                                                   |
|------------------------------------|---------------------------|------|---------------------------|----------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                           |      |                           |                            |                                                              | limits                                                                                                                                                                                                                                      |
| TF3M2114OA                         | 1,2-Dichloroethane-<br>d4 | 150  | 72-119                    | 72-143                     | R for<br>positive<br>results/<br>None<br>for non-<br>detects | %Rec greater<br>than upper<br>control limit;<br>dilution sample<br>results used for<br>all results<br>greater than RL<br>(Non-detect<br>results do not<br>require<br>flagging, and<br>results between<br>RL and MDL<br>were flagged<br>"F") |
| TF3M2114OADL<br>(performed at 1:4) | 1,2-Dichloroethane-<br>d4 | 104  | 72-119                    | 72-143                     | None                                                         | %Rec within<br>AFCEE QC<br>limits                                                                                                                                                                                                           |

According to the AFCEE-approved variance, STL may apply internal control limits as a second tier evaluation. If the surrogate recovery fails both first tier (AFCEE) and second tier (STL) evaluation, corrective action shall be implemented: the sample shall be reextracted and reanalyzed. If the corrective action is ineffective in resolving the exceedance, then all analytes associated with the surrogate in that sample are qualified. As per the QAPP, for samples with recoveries greater than the upper control limit for any surrogate, positive sample results are considered estimated (flagged "J"). For samples with recoveries less than the lower control limit and greater than 10%, positive results are considered estimated (flagged "J") and non-detect results are considered unusable (flagged "R"). For samples with recoveries less than 10%, all results are considered unusable (flagged "R"). However, for data usability purposes, applying professional judgment and surrogate criteria from the USEPA National Functional Guidelines (and consistent with the AFCEE QAPP Version 4.0), data are not rejected with respect to surrogate recovery unless any surrogate had recovery of less than 10%. Therefore, for data usability purposes, applying surrogate criteria from the USEPA National Functional guidelines (and the AFCEE QAPP 4.0), the samples will be qualified for surrogate recovery criterion as follows: For samples with surrogate recoveries greater than the upper control limit, positive sample results are considered estimated (flagged "J"). For samples with surrogate recoveries greater than 10% but less than the lower control limit, positive results are considered estimated (flagged "J") and non-detect results are considered estimated (flagged "UJ"). For samples with surrogate recoveries less than 10%, the results are rejected for the analytes. However, using professional judgment, no corrective action and/or flagging is required for minimal exceedances (i.e., within 1% of the control limits).

<u>Corrective Action</u>: The samples above were re-extracted and reanalyzed due to one surrogate recovery exceedance in each of the original samples, that for 1,2-dichloroethane-

d4. The results of the resample reanalysis are also shown in the above table. The determination of which sample results to use for each sample is summarized below:

- ➤ TF3M119R12OA: The original sample had one surrogate recovery exceedance, whereas the reanalysis sample was within the STL control limits. The reanalysis results were deemed usable with no qualification, and the original results were rejected.
- ➤ TF3M12314OA: The original sample had one surrogate recovery exceedance above the AFCEE/STL control limits, and the dilution sample (performed at 1:4) was within AFCEE control limits. Since the surrogate failure in the original sample requires "J" qualifiers only for results greater than non-detect, the non-detect results are considered usable without qualification. The positive results in the original sample are rejected, and the dilution results (usable without qualification) for the compounds isopropylbenzene, and n-propylbenzene 1,2,4-trimethylbenzene, have been transferred to the original sample results and modified accordingly. Note that for the results in the original sample which were below the reporting limit but above the detection limit, using professional judgment, the "F" flag is deemed more appropriate and "J" flag were not applied. This is consistent with the AFCEE QAPP, which states that *all* results between the method detection limit and the reporting limit shall be flagged "F."
- > TF3M2114OA: The original sample had one surrogate recovery exceedance above the AFCEE/STL control limits, and the dilution sample (performed at 1:4) was within AFCEE control limits. Since the surrogate failure in the original sample requires "J" qualifiers only for results greater than non-detect, the non-detect results are considered usable without qualification. The positive results in the original sample are rejected, and the dilution results (usable without qualification) for the compounds chloroethane, chloromethane, isopropylbenzene, n-butylbenzene, n-propylbenzene, naphthalene, p-isopropyltoluene, sec-butylbenzene and t-butylbenzene results have been transferred to the original sample results and modified accordingly. Note that results for chloroethane and chloromethane in the dilution sample were non-detect; this is possible due to the fact that the surrogate failure in the original sample caused a positive bias. Also note that for the results in the original sample which were below the reporting limit but above the detection limit, using professional judgment, the "F" flag is deemed more appropriate and "J" flag were not applied. This is consistent with the AFCEE QAPP, which states that all results between the method detection limit and the reporting limit shall be flagged "F."
- Field duplicate samples, which are collected at the same location and at the same time using identical collection, handling, and analytical procedures, are used to assess precision of the sample collection process. The AFCEE QAPP requires qualification of data for field duplicates criterion if the duplicate samples contain detected compounds with concentrations above the reporting limits (RLs) and the relative percent differences (RPDs) between the duplicate sample results exceed AFCEE QAPP's RPD control limits. If these conditions are met for any analytes in the field duplicate samples, per the AFCEE QAPP, the specific analytes in all samples collected on the same sampling date are to be qualified as estimated ("J") for positive results and rejected ("R") for nondetects. Using professional judgment, it is

deemed inappropriate to consider any set of field duplicate samples to be truly representative of a site or sampling event. Therefore, if qualification of data is needed, then only the parent-duplicate sample set will be qualified as estimated ("J") for positive results and rejected ("R") for non-detects, and no action will be taken for this criterion in all the other samples collected on the same sampling date.

The following table summarizes QC exceedances of the relative percent differences (RPD's) of field duplicate samples TF3M13316OA and TF3M13316OC.

|    | Sample ID,<br>Normal | Sample ID,<br>Field Duplicate | Analyte                    | Normal<br>Result<br>(µg/L) | Field<br>Dup<br>Result<br>(µg/L) | MDL<br>(µg/L) | RPD  | Flag<br>Applied | Rationale |
|----|----------------------|-------------------------------|----------------------------|----------------------------|----------------------------------|---------------|------|-----------------|-----------|
| Tł | F3M13316OA           | TF3M13316OC                   | 1,2,4-<br>Trimethylbenzene | 7.0                        | 9.2                              | 0.18          | 27.2 | J               | RPD > 20% |

**Corrective Action:** 1,2,4-Trimethylbenzene exhibited an RPD exceedance (above AFCEE's 20% limit). As discussed above, "J" qualifiers were applied to the results of samples TF3M13316OA and TF3M13316OC, and these results are considered estimated.

#### SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

• There were no exceedances for SVOC analysis.

# TOTAL ALKALINITY

• There were no exceedances for total alkalinity analysis.

#### DATA USABILITY RESULTS

#### VOCs

Based on the evaluation of all information in the analytical data groups, the results of the samples for VOCs are highly usable with the data qualifiers as noted. Using the verification approach as presented above, the results for all above samples are 100% usable.

#### **SVOCs**

Based on the evaluation of all information in the analytical data groups, the results of the samples for SVOCs are highly usable with the data qualifiers as noted. Using the verification approach as presented above, the results for all above samples are 100% usable.

#### TOTAL ALKALINITY

Based on the evaluation of all information in the analytical data groups, the results of the samples for total alkalinity are highly usable with the data qualifiers as noted. Using the verification approach as presented above, the results for all above samples are 100% usable.

#### AFCEE SUMMARY

All data in Job # A06-7102 are valid and usable with qualifications as noted in the data review.

Signed: Concordia van Hoesel

Date: 7/20/06

#### **ATTACHMENTS**

- Chain-of-Custody
- Laboratory's Case Narrative
- Definition of AFCEE Data Qualifiers
- Definition of USEPA Data Qualifiers
- Qualified final data verification results on annotated Lab Sheet 2s

#### AFCEE ORGANIC ANALYSES DATA PACKAGE

 Analytical Method: 8260-A98
 AAB #: A6B22298

 Lab Name: STL Buffalo
 Contract #: \_\_\_\_\_

 Base/Command: Griffiss Airforce Base
 Prime Contractor: Fanning, Phillips & Molna

Field Sample ID

Lab Sample ID

0620060E 0620060F 0620060R TF3CE3130A TF3M116140A TF3M119R120A TF3M12R120A TF3M12R120A TF3M123140A TF3M128140A TF3M128140A TF3M133160C TF3M133160C TF3M21140A A6710213 A6710212 A6710201 A6710202 A6710202 A6710203 A6710204 A6710205 A6710206 A6710208 A6710208 A6710209 A6710210 A6710210 A6710211

Comments:

<u>See Case Narrative</u>

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:

Date:

106

Name: John Schove

Title: Operations Manager

AFCEE FORM 0-1

.

# AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method:  | 8260-A98           | Preparatory Method:       | <u>sw5030</u> | ł             | AB #: <u>A6</u>                       | 322298       |           |
|---------------------|--------------------|---------------------------|---------------|---------------|---------------------------------------|--------------|-----------|
| Lab Name:           | STL Buffalo        |                           |               | Contra        | act #:                                |              |           |
| Field Sample ID:    | 0620060E           | Lab Sample ID:            | A6710213      | Ma            | atrîx: <u>WA</u>                      | rer          |           |
| % Solids:           |                    | Initial Calibration ID:   | A61000168     | <u>0</u>      |                                       |              |           |
| Date Received:      | <u>21-Jun-2006</u> | Date Prepared:            | 1-Jul-20      | 06 Date Ana   | lyzed: <u>1</u>                       | - Jul - 2006 |           |
| Concentra           | ation Units (ug    | J/L or mg/kg dry weight): | UG/L          |               |                                       |              |           |
| Analyte             |                    | MDL                       | RL            | Concentration | Dilution                              | Confirm      | Qualifier |
| 2-TETRACHLORDETHANE |                    | 0.21                      | 0.50          | 0.21          | 1.00                                  | N/A          | υ         |
| TRICHLOROETHANE     |                    | 0.28                      | 1.0           | 0.28          | 1.00                                  | N/A          | U         |
|                     |                    | ·····                     |               | 1             | · · · · · · · · · · · · · · · · · · · |              |           |

1,1,1,

| 1,1,1-TRICHLOROETHANE                  | 0,28 | 1.0  | 0.28 | 1.00 | N/A | υ |
|----------------------------------------|------|------|------|------|-----|---|
| 1,1,2,2-TETRACHLORDETHANE              | 0.21 | 0.50 | 0.21 | 1.00 | N/A | U |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22 | 1.00 | N/A | U |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27 | 1.00 | N/A | U |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27 | 1.00 | N/A | υ |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23 | 1.00 | N/A | U |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13 | 1.00 | N/A | U |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19 | 1.00 | N/A | U |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14 | 1.00 | N/A | u |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1_0  | 0.18 | 1.00 | N/A | U |
| 1,2-DICHLORDETHANE                     | 0.23 | 0.50 | 0.23 | 1.00 | N/A | U |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18 | 1.00 | N/A | U |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31 | 1.00 | N/A | υ |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1_0  | 0.25 | 1.00 | N/A | U |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20 | 1.00 | N/A | U |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20 | 1.00 | N/A | υ |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16 | 1.00 | N/A | U |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22 | 1.00 | N/A | U |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19 | 1.00 | N/A | U |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0.30 | 1.00 | N/A | U |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27 | 1.00 | N/A | U |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21 | 1.00 | N/A | U |
| 4-CHLOROTOLUENE                        | 0.18 | 1.0  | 0.18 | 1.00 | N/A | υ |
| ACETONE                                | 0.94 | 10   | 4.8  | 1.00 | N/A | F |
| BENZENE                                | 0.25 | 0.50 | 0.25 | 1.00 | N/A | U |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23 | 1.00 | N/A | U |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25 | 1.00 | N/A | U |
| BROMODICHLOROMETHANE                   | 0.17 | 0.50 | 0.17 | 1.00 | N/A | U |
| BROMOFORM                              | 0.13 | 1.0  | 0.13 | 1.00 | N/A | U |

Curt April

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u> P  | reparatory Method: | <u>SW5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|--------------------|-------------------|----------------|-------------------|
| Lab Name:          | STL Buffalo        |                    |                   | Contract #:    |                   |
| Field Sample ID:   | 0620060E           | Lab Sample ID:     | <u>A6710213</u>   | Matrix:        | WATER             |
| % Solids:          | Initi              | al Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:     | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                                       | MDL  | RL    | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|------|-------|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 0.27 | 3.0   | 0.27          | 1.00     | N/A     | U         |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0   | 0.22          | 1.00     | N/A     | U         |
| CHLOROBENZENE                                 | 0.19 | 0.50  | 0.19          | 1.00     | N/A     | U         |
| CHLOROETHANE                                  | 0.18 | 1.0   | 0.18          | 1.00     | N/A     | U         |
| CHLOROFORM                                    | 0.26 | 0.50  | 0.26          | 1.00     | N/A     | υ         |
| CHLOROMETHANE                                 | 0.15 | 1.0   | 0.15          | 1.00     | N/A     | U         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0   | 0.32          | 1.00     | N/A     | U         |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50  | 0.24          | 1.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50  | 0.15          | 1.00     | N/A     | U         |
| DIBROMOMETHANE                                | 0.26 | 1.0   | 0.26          | 1.00     | N/A     | U         |
| DICHLORODIFLUOROMETHANE                       | 0.15 | 1.0   | 0.15          | 1.00     | N/A     | U         |
| ETHYLBENZENE                                  | 0.23 | 1.0   | 0.23          | 1.00     | N/A     | U         |
| HEXACHLOROBUTADIENE                           | D.11 | 0.60  | 0.11          | 1.00     | N/A     | U         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0   | 0.19          | 1.00     | N/A     | U         |
| METHYLENE CHLORIDE                            | 0.31 | 1.0   | 0.31          | 1.00     | N/A     | υ         |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0   | 0.12          | 1.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10    | 0.82          | 1.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10    | 0.76          | 1.00     | N/A     | U         |
| n-BUTYLBENZENE                                | 0.18 | 1.0   | 0.18          | 1.00     | N/A     | U         |
| n-PROPYLBENZENE                               | 0.19 | 1.0   | 0.19          | 1.00     | N/A     | U         |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0,44 | 2.0   | 0.44          | 1.00     | N/A     | U         |
| NAPHTHALENE                                   | 0.14 | 1.0   | 0.14          | 1.00     | N/A     | U         |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1.0   | 0.21          | 1.00     | N/A     | U         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0   | 0.17          | 1.00     | N/A     | U         |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0   | 0.19          | 1.00     | N/A     | U         |
| STYRENE                                       | 0.21 | 1.0   | 0.21          | 1.00     | N/A     | υ         |
| TRICHLOROETHYLENE (TCE)                       | 0.23 | 1.0   | 0.23          | 1.00     | N/A     | U         |
| t-BUTYLBENZENE                                | 0.23 | 1.0   | 0.23          | 1.00     | N/A     | U         |
| TETRACHLOROETHYLENE(PCE)                      | 0.19 | 1.0   | 0.19          | 1.00     | N/A     | υ         |
| TOLUENE                                       | 0.22 | · 1.0 | 0.22          | 1.00     | N/A     | U         |

AFCEE FORM 0-2

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:  | <u>SW5030</u>     | AAB #:         | <u>A6822298</u>   |
|--------------------|--------------------|----------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                      |                   | Contract #:    |                   |
| Field Sample ID:   | 0620060E           | Lab Sample ID:       | <u>A6710213</u>   | Matrix:        | WATER             |
| % Solids:          | Init               | tial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:       | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | U         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits | Qualifier |
|-----------------------------------------------|----------|----------------|-----------|
| TOLUENE - D8                                  | 95       | 81 - 120       |           |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 90       | 76 - 119       |           |
| 1,2-DICHLOROETHANE-d4                         | 83       | 72 - 119       |           |
| DIBROMOFLUOROMETHANE                          | 90       | 85 - 115       |           |

what wholes

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 523315      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 341854      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 162089      | 88272 - 353088    |           |

#### Comments:

ent do

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | 8260-A98           | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | 0620060F           | Lab Sample ID:          | <u>A6710212</u>   | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | A610001680        |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L\_\_\_\_

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLOROETHANE              | 0.21 | 0,50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,1-TRICHLOROETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | U         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1,00     | N/A     | υ         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | υ         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | υ         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0,14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | υ         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | υ         |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0_19          | 1.00     | N/A     | U         |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | υ         |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | υ         |
| 4-CHLOROTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| ACETONE                                | 0.94 | 10   | 5.1           | 1.00     | N/A     | F         |
| BENZENE                                | 0.25 | 0.50 | 0.25          | 1.00     | N/A     | U         |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| BROMOD I CHLOROMETHANE                 | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | U         |
| BROMOFORM                              | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
| 4                                      |      |      |               |          |         |           |

crock de

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6822298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    | www.se_           |
| Field Sample ID:   | 0620060F           | Lab Sample ID:          | <u>A6710212</u>   | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                                       | MDL. | RL   | Concentration | Dilution       | Confirm | Qualifie |
|-----------------------------------------------|------|------|---------------|----------------|---------|----------|
| BROMOMETHANE                                  | 0.27 | 3.0  | 0.27          | 1.00           | N/A     | U        |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0  | 0.22          | 1.00           | N/A     | -<br>U   |
| CHLOROBENZENE                                 | 0.19 | 0.50 | 0.19          | 1.00           | N/A     | U        |
| CHLOROETHANE                                  | 0.18 | 1.0  | 0.18          | 1.00           | N/A     | U        |
| CHLOROFORM                                    | 0.26 | 0.50 | 0.26          | 1.00           | · N/A   | υ        |
| CHLOROMETHANE                                 | 0.15 | 1.0  | 0.15          | 1.00           | N/A     | U        |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0  | 0.32          | 1.00           | N/A     | U        |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50 | 0.24          | 1.00           | N/A     | U        |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50 | 0.15          | 1.00           | N/A     | U        |
| DIBROMOMETHANE                                | 0.26 | 1.0  | 0.26          | 1.00           | N/A     | U        |
| DICHLORODIFLUOROMETHANE                       | 0.15 | 1.0  | 0.15          | 1.00           | N/A     | U        |
| ETHYLBENZENE                                  | 0.23 | 1.0  | 0.23          | 1.00           | N/A     | U        |
| HEXACHLOROBUTADIENE                           | 0.11 | 0.60 | 0.11          | 1.00           | N/A     | U        |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0  | 0.19          | 1.00           | N/A     | U        |
| METHYLENE CHLORIDE                            | 0.31 | 1.0  | 0.31          | 1.00           | N/A     | U        |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0  | 0.12          | 1.00           | N/A     |          |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10   | 0.82          | 1.00           | N/A     | U        |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10   | 0.76          | 1.00           | N/A     | U        |
| n-BUTYLBENZENE                                | 0.18 | 1.0  | 0.18          | 1.00           | N/A     | U        |
| n-PROPYLBENZENE                               | 0.19 | 1.D  | 0.19          | 1.00           | N/A     | U        |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44 | 2.0  | 0.44          | 1.00           | N/A     | U        |
| NAPHTHALENE                                   | 0.14 | 1.0  | 0.14          | 1.00           | N/A     | U        |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1.0  | 0.21          | 1.00           | N/A     | U        |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0  | 0.17          | 1.00           | N/A     |          |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0  | 0.19          | 1.00           | N/A     | U        |
| STYRENE                                       | 0.21 | 1.0  | 0.21          | 1.00           | N/A     | U        |
| TRICHLOROETHYLENE (TCE)                       | 0.23 | 1.0  | 0.23          | 1.00           | N/A     | U        |
| t-BUTYLBENZENE                                | 0.23 | 1.0  | 0.23          | 1.00           | N/A     | U        |
| TETRACHLOROETHYLENE(PCE)                      | 0.19 | 1.0  | 0.19          | 1.00           | N/A     | U        |
| TOLUENE                                       | 0.22 | 1.0  | . 0.22        | a <b>1.0</b> 0 | N/A     | U        |

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | A6B22298          |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | 0620060F           | Lab Sample ID:          | A6710212          | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | U         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | D.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits | Qualifier |
|-----------------------------------------------|----------|----------------|-----------|
| TOLUENE-D8                                    | 97       | 81 - 120       |           |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 91       | 76 - 119       |           |
| 1,2-DICHLOROETHANE-d4                         | 85       | 72 - 119       |           |
| DIBROMOFLUOROMETHANE                          | 93       | 85 - 115       |           |

N

| Internal Std           | Area Counts | Area Count Limits | Qualifier |  |
|------------------------|-------------|-------------------|-----------|--|
| FLUOROBENZENE          | 496601      | 259272 - 1037088  |           |  |
| CHLOROBENZENE-d5       | 327364      | 178213 - 712850   |           |  |
| 1,4-DICHLOROBENZENE-d4 | 154237      | 88272 - 353088    |           |  |

#### Comments:

· \_ ·

apple

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | 8260-A98 Pre       | paratory Method: | <u>SW5030</u>     | AAB #:         | A6B22298          |
|--------------------|--------------------|------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                  |                   | Contract #:    |                   |
| Field Sample ID:   | 0620060R           | Lab Sample ID:   | <u>A6710214</u>   | Matrix:        | WATER             |
| % Solids:          | Initial            | Calibration ID:  | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:   | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,1-TRICHLORDETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | U         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | U         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| 4-CHLOROTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | <br>U     |
| ACETONE                                | 0.94 | 10   | 0.94          | 1.00     | N/A     | บ         |
| BENZENE                                | 0.25 | 0.50 | 0.25          | 1.00     | N/A     | U         |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| BROMODICHLOROMETHANE                   | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | U         |
| BROMOFORM                              | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |

AFCEF FORM 0-2

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | 0620060R           | Lab Sample ID:          | <u>A6710214</u>   | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

.

| Analyte                                       | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|------|------|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 0.27 | 3.0  | 0.27          | 1.00     | N/A     | U         |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | υ         |
| CHLOROBENZENE                                 | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| CHLOROETHANE                                  | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| CHLOROFORM                                    | 0.26 | 0.50 | 0.26          | 1.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0  | 0.32          | 1.00     | N/A     | u         |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50 | D.24          | 1.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50 | 0.15          | 1.00     | N/A     | U U       |
| DIBROMOMETHANE                                | 0.26 | 1.0  | 0.26          | 1.00     | N/A     | U         |
| DI CHLOROD I FLUOROME THANE                   | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U         |
| ETHYLBENZENE                                  | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| HEXACHLOROBUTAD I ENE                         | 0.11 | 0.60 | 0.11          | 1.00     | N/A     | U         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | u         |
| METHYLENE CHLORIDE                            | 0.31 | 1.0  | 0.31          | 1.00     | N/A     | u         |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0  | 0.12          | 1.00     | N/A     | u         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10   | 0.82          | 1.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10   | 0.76          | 1.00     | N/A     | U         |
| n-BUTYLBENZENE                                | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | u         |
| n-PROPYLBENZENE                               | 0.19 | 1.0  | D.19          | 1.00     | N/A     | υ         |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44 | 2.0  | 0.44          | 1.00     | N/A     | U         |
| NAPHTHALENE                                   | 0.14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1.0  | D.21          | 1.00     | N/A     | u         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0  | 0.17          | 1.00     | N/A     | υ         |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| STYRENE                                       | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| TRICHLOROETHYLENE (TCE)                       | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | u         |
| t-BUTYLBENZENE                                | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| TETRACHLOROETHYLENE(PCE)                      | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| TOLUENE                                       | 0.22 | 1.0  | 0.22          | 1.00     | ····N/A | u         |

AFCEF FORM 0-2



| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | A6B22298          |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | 0620060R           | Lab Sample ID:          | A6710214          | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | υ         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | D.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     |           |

| Surrogate                                     | Recovery | Control Limíts | Qualifier |
|-----------------------------------------------|----------|----------------|-----------|
| TOLUENE-D8                                    | 103      | 81 - 120       |           |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 98       | 76 - 119       |           |
| 1,2-DICHLOROETHANE-d4                         | 89       | 72 - 119       |           |
| DIBROMOFLUOROMETHANE                          | 96       | 85 - 115       |           |

uskado

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 498718      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 328203      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 156306      | 88272 - 353088    |           |

## Comments:

shop

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | 8260-898           | Preparatory Method:    | <u>sw5030</u>     | AAB #:         | A6B22298          |
|--------------------|--------------------|------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                        |                   | Contract #:    |                   |
| Field Sample ID:   | TF3CE3130A         | Lab Sample ID:         | <u>A6710201</u>   | Matrix:        | WATER             |
| % Solids:          |                    | nitial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:         | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

| Ánalyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLORGETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,1-TRICHLOROETHANE                  | 0.28 | 1_0  | 0,28          | 1.00     | N/A     | U         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | υ         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0,23          | 1.00     | N/A     | υ         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.36          | 1.00     | N/A     | F         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.29          | 1.00     | N/A     | F         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0_31 | 2.0  | 0.31          | 1.00     | N/A     | U         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0,20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | บ         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     | υ         |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0,30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 2-CHLOROTOLUENE                        | D.21 | 1.0  | 0,21          | 1.00     | N/A     | U         |
| 4-CHLORDTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| ACETONE                                | 0.94 | 10   | 0.94          | 1.00     | N/A     | U         |
| BENZENE                                | 0.25 | 0.50 | 0.25          | 1.00     | N/A     | U         |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1,00     | N/A     | U         |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| BROMODICHLOROMETHANE                   | 0.17 | 0.50 | 0.17          | 1,00     | N/A     | U         |
| BROMOFORM                              | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |

with Haddo

## AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>SW5030</u>      | AAB #:         | A6B22298          |
|--------------------|--------------------|-------------------------|--------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                    | Contract #:    | **********        |
| Field Sample ID:   | TF3CE3130A         | Lab Sample ID:          | <u>A6710201</u>    | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>08610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u>  | Date Analyzed: | <u>1-Jul-2006</u> |

| Analyte                                       | MDL  | RL.  | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|------|------|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 0.27 | 3.0  | 0.27          | 1.00     | N/A     | U         |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| CHLOROBENZENE                                 | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| CHLOROETHANE                                  | 0.18 | 1.0  | 0.29          | 1.00     | N/A     | F         |
| CHLOROFORM                                    | 0.26 | 0.50 | 0.26          | 1.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0  | 0.32          | 1.00     | N/A     | U         |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50 | 0.24          | 1.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50 | 0.15          | 1.00     | N/A     | U         |
| DIBROMOMETHANE                                | 0.26 | 1.0  | 0.26          | 1.00     | N/A     | U         |
| DICHLORODIFLUOROMETHANE                       | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U         |
| ETHYLBENZENE                                  | 0.23 | 1.0  | 0.23          | 1.00     | N/A     |           |
| HEXACHLOROBUTADIENE                           | 0.11 | 0.60 | 0.30          | 1.00     | N/A     | F         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0  | 5.2           | 1.00     | N/A     |           |
| METHYLENE CHLORIDE                            | 0.31 | 1.0  | 0.31          | 1.00     | N/A     |           |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0  | 0.12          | 1.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10   | 0.82          | 1.00     | N/A     |           |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10   | 0.76          | 1.00     | N/A     | U         |
| n-BUTYLBENZENE                                | 0.18 | 1.0  | 1.1           | 1.00     | N/A     |           |
| n-PROPYLBENZENE                               | 0.19 | 1.0  | 5.8           | 1.00     | N/A     |           |
| M,P-XYLENE(SUM DF ISOMERS)                    | 0.44 | 2.0  | 0.44          | 1.00     | N/A     | U         |
| NAPHTHALENE                                   | 0.14 | 1.0  | 1.6           | 1.00     | N/A     | -15-      |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0  | 0.17          | 1.00     | N/A     | υ         |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0  | 3.7           | 1.00     | N/A     |           |
| STYRENE                                       | 0.21 | 1.0  | 0.21          | 1.00     | N/A     |           |
| TRICHLOROETHYLENE (TCE)                       | 0.23 | 1.0  | 1.0           | 1.00     | N/A     | -         |
| t-BUTYLBENZENE                                | 0.23 | 1.0  | 0.59          | 1.00     | N/A     | F         |
| TETRACHLOROETHYLENE (PCE)                     | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| TOLUENE                                       | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |

AFCEE FORM 0-2

| Analytical Method: | 8260-A98           | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL_Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3CE3130A         | Lab Sample ID:          | <u>A6710201</u>   | Matrix:        | WATER             |
| % Solids:          | ·····              | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL. | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | U         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits | Qualifier |
|-----------------------------------------------|----------|----------------|-----------|
| TOLUENE-D8                                    | 85       | 81 - 120       |           |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 90       | 76 - 119       |           |
| 1,2-DICHLOROETHANE-d4                         | 90       | 72 - 119       |           |
| DIBROMOFLUOROMETHANE                          | 89       | 85 - 115       |           |

eural Hadob

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 560836      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 379408      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 187132      | 88272 - 353088    |           |

## Comments:

Cast

dob

## AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M116140A        | Lab Sample ID:          | <u>A6710202</u>   | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,1-TRICHLOROETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | υ         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | • N/A   | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0_14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | <br>U     |
| 1,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     |           |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | <br>U     |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     |           |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     |           |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     |           |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | υ         |
| 1,3-DICHLOROPROPANE                    | D.22 | 0.50 | 0.22          | 1.00     | N/A     | υ         |
| 1,4-DICHLOROBENZENE                    | 0_19 | 0.50 | 0.19          | 1.00     | N/A     |           |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| 4-CHLOROTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| ACETONE                                | 0.94 | 10   | 0.94          | 1.00     | N/A     | U         |
| BENZENE                                | 0.25 | 0.50 | 0.25          | 1.00     | N/A     | U         |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| BROMODICHLOROMETHANE                   | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | U         |
| BROMOFORM                              | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | υ         |

unk de

## AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:    | <u>sw5030</u>     | AAB #:         | A6B22298          |
|--------------------|--------------------|------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                        |                   | Contract #:    |                   |
| Field Sample ID:   | <u>TF3M116140A</u> | Lab Sample ID:         | <u>A6710202</u>   | Matrix:        | WATER             |
| % Solids:          | Ī                  | nitial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | 21-Jun-2006        | Date Prepared:         | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

| Analyte                                       | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|------|------|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 0.27 | 3.0  | 0.27          | 1.00     | N/A     | u         |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| CHLOROBENZENE                                 | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| CHLOROETHANE                                  | 0.18 | 1.0  | 0.54          | 1.00     | N/A     | F         |
| CHLOROFORM                                    | 0.26 | 0,50 | 0.26          | 1.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.15 | 1.0  | 0.42          | 1.00     | N/A     | F         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0  | 0.32          | 1.00     | N/A     | υ         |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50 | 0.24          | 1.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50 | 0.15          | 1.00     | N/A     | U         |
| DIBROMOMETHANE                                | 0.26 | 1.0  | 0.26          | 1.00     | N/A     | U         |
| DICHLORODIFLUOROMETHANE                       | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | υ         |
| ETHYLBENZENE                                  | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| HEXACHLOROBUTADIENE                           | 0.11 | 0.60 | 0.11          | 1.00     | N/A     | U         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0  | 5.8           | 1.00     | N/A     |           |
| METHYLENE CHLORIDE                            | 0.31 | 1.0  | 0.31          | 1.00     | N/A     | U         |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0  | 0.12          | 1.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10   | 0.82          | 1.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10   | 0.76          | 1.00     | N/A     | U         |
| n-BUTYLBENZENE                                | 0.18 | 1.0  | 2.0           | 1.00     | N/A     |           |
| n-PROPYLBENZENE                               | 0.19 | 1.0  | 4.4           | 1.00     | N/A     |           |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44 | 2.0  | 0.44          | 1.00     | N/A     | U         |
| NAPHTHALENE                                   | 0.14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | υ         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0  | 0.17          | 1.00     | N/A     | U         |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0  | 4.5           | 1.00     | N/A     |           |
| STYRENE                                       | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | υ         |
| TRICHLOROETHYLENE (TCE)                       | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| t-BUTYLBENZENE                                | 0.23 | 1.0  | 1.5           | 1.00     | N/A     |           |
| TETRACHLOROETHYLENE(PCE)                      | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| TOLUENE                                       | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | υ         |

AFCEE FORM 0-2

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:  | <u>sw5030</u>     | AAB #:         | A6B22298          |
|--------------------|--------------------|----------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                      |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M116140A        | Lab Sample ID:       | <u>A6710202</u>   | Matrîx:        | WATER             |
| % Solids:          | Ini                | tial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:       | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | Ŀ         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     |           |

| Surrogate                                     | Recovery | Control Limits | Qualifier |
|-----------------------------------------------|----------|----------------|-----------|
| TOLUENE-D8                                    | 85       | 81 - 120       |           |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 93       | 76 - 119       |           |
| 1,2-DICHLOROETHANE-d4                         | 111      | 72 - 119       |           |
| DIBROMOFLUOROMETHANE                          | 92       | 85 - 115       |           |

und und

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 552729      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 377332      | 178213 - 712850   |           |
| 1,4~DICHLOROBENZENE-d4 | 186719      | 88272 - 353088    |           |

#### Comments:

| Analytical Method: | <u>8260-a98</u>    | Preparatory Method:   | <u>sw5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|-----------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                       |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M117130A        | Lab Sample ID:        | <u>A6710203</u>   | Matrix:        | WATER             |
| % Solids:          | In                 | itial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:        | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,1-TRICHLOROETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | υ         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | υ         |
| 1,1-DICHLORGETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | u         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | U         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0,25          | 1.00     | N/A     | U         |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | υ         |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| 4-CHLOROTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| ACETONE                                | 0.94 | 10   | 0.94          | 1.00     | N/A     | U         |
| BENZENE                                | 0.25 | 0.50 | 0.25          | 1.00     | N/A     | U         |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| BROMODICHLOROMETHANE                   | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | U         |
|                                        |      |      |               | {        |         |           |

unk ppolo

and prope

## AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:    | <u>sw5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|------------------------|-------------------|----------------|-------------------|
| Lab Name:          | STL_Buffalo        |                        |                   | Contract #:    |                   |
| Field Sample ID:   | <u>TF3M117130A</u> | Lab Sample ID:         | A6710203          | Matrix:        | WATER             |
| % Solids:          | ] r                | nitial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:         | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

| Analyte                                       | MDL  | RL    | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|------|-------|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 0.27 | 3.0   | 0.27          | 1.00     | N/A     | U         |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0   | 0.22          | 1.00     | N/A     | u u       |
| CHLOROBENZENE                                 | 0.19 | 0,50  | 0.19          | 1.00     | N/A     | U         |
| CHLORDETHANE                                  | 0.18 | 1.0   | 0.41          | 1.00     | N/A     | F         |
| CHLOROFORM                                    | 0.26 | 0.50  | 0.26          | 1.00     | N/A     | U         |
| CHLOROMETHANE.                                | 0.15 | 1.0   | 0.40          | 1.00     | N/A     | F         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0   | 0.34          | 1.00     | N/A     | F         |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50  | 0.24          | 1.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50  | 0.15          | 1.00     | N/A     | υ         |
| DIBROMOMETHANE                                | 0.26 | 1.0   | 0.26          | 1.00     | N/A     | U         |
| DICHLORODIFLUOROMETHANE                       | 0.15 | 1.0   | 0.15          | 1.00     | N/A     | U         |
| ETHYLBENZENE                                  | 0.23 | 1.0   | 0.23          | 1.00     | N/A     | U         |
| HEXACHLOROBUTADIENE                           | 0.11 | 0.60  | 0.11          | 1.00     | N/A     | U         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0   | 0.73          | 1.00     | N/A     | F         |
| METHYLENE CHLORIDE                            | D.31 | 1.0   | 0.31          | 1.00     | N/A     | U         |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0   | 0.12          | 1.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10    | 0.82          | 1.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10    | 0.76          | 1.00     | N/A     | υ         |
| n-BUTYLBENZENE                                | 0.18 | 1.0   | 0.18          | 1.00     | N/A     | U         |
| n-PROPYLBENZENE                               | 0.19 | 1.0   | 0.19          | 1.00     | N/A     | U         |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44 | 2.0   | 0.44          | 1.00     | N/A     | U         |
| NAPHTHALENE                                   | D.14 | 1.0   | 0.14          | 1.00     | N/A     | U         |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | D.21 | 1.0   | 0.21          | 1.00     | N/A     | U         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0   | 0.17          | 1.00     | N/A     | U         |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0   | 0.86          | 1.00     | N/A     | F         |
| STYRENE                                       | D.21 | 1.D   | 0.21          | 1.00     | N/A     | U         |
| TRICHLOROETHYLENE (TCE)                       | 0.23 | 1.0   | 0.23          | 1.00     | N/A     | U         |
| t-BUTYLBENZENE                                | 0.23 | 1.0   | 1.8           | 1.00     | N/A     |           |
| TETRACHLOROETHYLENE(PCE)                      | 0.19 | 1.0   | 0.19          | 1.00     | N/A     | U         |
| TOLUENE                                       | 0.22 | 1.0 . | 0.22          | 1.00     | N/A     | U         |

| Analytical Method: | 8260-A98           | Preparatory Method:     | <u>SW5030</u>     | AAB #:         | <u>A6822298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL_Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | <u>TF3M117130A</u> | Lab Sample ID:          | <u>A6710203</u>   | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | υ         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits Qualifier |
|-----------------------------------------------|----------|--------------------------|
| TOLUENE-D8                                    | 86       | 81 - 120                 |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 94       | 76 - 119                 |
| 1,2-DICHLOROETHANE-d4                         | 99       | 72 - 119                 |
| DIBROMOFLUOROMETHANE                          | 91       | 85 - 115                 |

ust job

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 552038      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 374614      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 184881      | 88272 - 353088    |           |

## Comments:

. c

and

# AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

|                                      | ORGANIC ANALYSES DATA S<br>RESULTS | SHEET 2                                  | Not    |
|--------------------------------------|------------------------------------|------------------------------------------|--------|
| Analytical Method: <u>8260-A98</u>   | Preparatory Method: <u>SW50</u>    | )30 AAB #: <u>A6B22298</u>               | h. Co  |
| Lab Name: <u>STL Buffalo</u>         |                                    | Contract #:                              | - YEM  |
| Field Sample ID: <u>TF3M119R12OA</u> | Lab Sample ID: <u>A671</u>         | 10204 Matrix: WATER                      | Wark   |
| % Solids:                            | Initial Calibration ID: A610       | 0001680                                  | REIF   |
| Date Received: <u>21-Jun-2006</u>    | Date Prepared: <u>1-J</u>          | ul-2006 Date Analyzed: <u>1-Jul-2006</u> | - That |
| Concentration Units (up              | 1/L or mg/kg dry weight): UG/L     |                                          | Andrew |

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | N N       |
| 1,1,1-TRICHLOROETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | U         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0 21          | 1.00     | N/A     | U         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14          | 1,00     | N/A     | U         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | U U       |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0,81          | 1.00     | N/A     | U         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1 00     | N/A     | U         |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| 1-CHLOROHEXANE                         | 0.30 | 1/0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | /1.0 | 0.27          | 1.00     | N/A     | U         |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| 4-CHLOROTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| ACETONE                                | 0.94 | 10   | 0.94          | 1.00     | N/A     | U         |
| BENZENE                                | 0.25 | 0.50 | 0.25          | 1.00     | N/A     | u         |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| BROMODICHLOROMETHANE                   | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | u         |
| BROMOFORM                              | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | λυ        |

AFREE FORM 0-2

32/213

wholds

# AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

|                    |                      | RESULTS                   |                   |                                 | 1        |
|--------------------|----------------------|---------------------------|-------------------|---------------------------------|----------|
| Analytical Method: | 8260-A98             | Preparatory Method:       | <u>sw5030</u>     | AAB #: <u>A6B22298</u>          | TO NOT   |
| Lab Name:          | <u>STL Buffalo</u>   |                           |                   | Contract #:                     | - THE WE |
| Field Sample ID:   | TF3M119R120A         | Lab Sample ID:            | <u>A6710204</u>   | Matrix: <u>WATER</u>            | MIALP    |
| % Solids:          |                      | Initial Calibration ID:   | <u>A610001680</u> |                                 | FERRICE  |
| Date Received:     | <u>21 - Jun-2006</u> | Date Prepared:            | <u>1-Jul-2006</u> | Date Analyzed: <u>1-Jul-200</u> | 2 PESME  |
| Concentra          | ation Units (ug      | g/L or mg/kg dry weight): | UG/L              |                                 | 7        |

| Analyte                                       | MDL  | RL    | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|------|-------|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 0.27 | 3.0   | 0_27          | 1.00     | N/A     | U         |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0   | 0.22          | 1.00     | N/A     | U         |
| CHLOROBENZENE                                 | 0.19 | 0.50  | 0.19          | 1.00     | N/A     | U         |
| CHLOROETHANE                                  | 0.18 | 1.0   | <b>Q.70</b>   | 1.00     | ŊZA     | F         |
| CHLOROFORM                                    | 0.26 | 0.50  | 0 26          | 1.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.15 | 1.0   | 0.15          | 1.00     | N/A     | U         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0   | 0.32          | 1.00     | N/A     | U         |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50  | 0.24          | 1.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50  | 0.15          | 1.00     | N/A     | U         |
| DIBROMOMETHANE                                | 0.26 | 1.0   | 0.26          | 1.00     | N/A     | U U       |
| DICHLORODIFLUOROMETHANE                       | 0.15 | 1.0   | 0.15          | 1.00     | N/A     | U         |
| ETHYLBENZENE                                  | 0.23 | 1.0   | 0.23          | 1.00     | N/A     | U         |
| HEXACHLOROBUTADIENE                           | 0.11 | 0.60  | 0.11          | 1,00     | N/A     | U         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0   | 0.15          | 1.00     | N/A     | U         |
| METHYLENE CHLORIDE                            | 0.31 | 1.0   | 0/31          | 1.00     | N/A     | U         |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0   | 0.12          | 1.00     | N/A     | u         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10    | 0.82          | 1.00     | N/A     | Ų         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10    | 0.76          | 1\00     | N/A     | U         |
| n-BUTYLBENZENE                                | 0.18 | 1.0   | 0.18          | 1.00     | N/A     | U         |
| n-PROPYLBENZENE                               | 0.19 | 1.0   | 0.19          | 1.00     | N/A     | U         |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44 | 2.0   | 0.44          | 1.00     | N/A     | U         |
| NAPHTHALENE                                   | 0.14 | 1.0   | 0.14          | 1.00     | N/A     | Ų         |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1.0   | 0.21          | 1.00     | N/A     | U         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0   | 0.17          | 1.00     | N/A     | υ         |
| SEC-BUTYLBENZENE                              | 0.19 | 1/.0  | 0.19          | 1.00     | N/A     | U         |
| STYRENE                                       | 0.21 | /1.0  | 0.21          | 1.00     | N/A     | U         |
| TRICHLOROETHYLENE (TCE)                       | 0.23 | 1.0   | 0.26          | 1.00     | NYA     | F         |
| t-BUTYLBENZENE                                | 0.23 | 1.0   | 0.45          | 1.00     | N/A     | F         |
| TETRACHLOROETHYLENE(PCE)                      | 0.19 | 1.0   | 0.19          | 1.00     | N/A     | U         |
| TOLUENE                                       | 0.22 | / 1.0 | 0.22          | 1_00     | • • N/A | U         |

VEVER CUDM U-5

|                                 |                                | AFCEE<br>ORGANIC ANALYSES<br>RESULT | DATA SHEET         | 2                    |                            |                  | NOT.CE    |
|---------------------------------|--------------------------------|-------------------------------------|--------------------|----------------------|----------------------------|------------------|-----------|
| Analytical Method:<br>Lab Name: | <u>8260-A98</u><br>STL Buffalo | Preparatory Method                  | : <u>SW5030</u>    |                      | AAB #: <u>A6</u><br>act #: | <u>B22298</u>    | USE WE    |
| Field Sample ID:                | TF3M119R120A                   | Lab Sample ID                       | : <u>A6710204</u>  | M                    | atrix: <u>WA</u>           | TER              | 200 S     |
| % Solids:                       |                                | Initial Calibration ID              | : <u>A61000168</u> | <u>80</u> \          |                            |                  | Sall      |
| Date Received:                  | <u>21-Jun-2006</u>             | Date Prepared                       | : <u>1-Jul-20</u>  | 1 <u>06</u> Date Ana | lyzed: <u>1</u>            | <u>-Jul-2006</u> | KOr -     |
| Concentra                       | ation Units (ug                | /L or mg/kg dry weight)             | : <u>UG/L</u>      |                      |                            |                  | >         |
| Analyte                         |                                | MDL                                 | RL                 | Concentration        | Dilution                   | Confirm          | Qualifier |
| trans-1,2-DICHLOROETHENE        |                                | 0.38                                | 1.0                | 0.38                 | 1.00                       | N/A              | U         |
| trans-1,3-DICHLOROPROPENE       |                                | 0.16                                | 1.0                | 0.16                 | 1.00                       | N/A              | U         |
| TRICHLOROFLUOROMETHANE          |                                | 0.16                                | 1.0                | 0.16                 | 1.80                       | N/A              |           |

1.0

1.0

|                                               |          |         |        | A.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------|----------|---------|--------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surrogate                                     | Recovery | Control | Limits | Qualitier |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TOLUENE-D8                                    | 82 /     | 81 - 1  | 120    |           | and the second sec |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 89       | 76 -    | 119    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1,2-DICHLORDETHANE-d4                         | 150      | 72 - '  | 119    | *         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DIBROMOFLUOROMETHANE                          | 89       | 85 - 1  | 115    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

0.16

0.26

U

U

N/A

N/A

1,80

1.00

. . .

0.16

0.26

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 577999      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 391401      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 192887      | 88272 - 353088    |           |

#### Comments:

VINYL CHLORIDE

and the second 3

crit Apople

## AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M121R120A       | Lab Sample ID:          | <u>A6710205</u>   | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,1-TRICHLOROETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | U         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | υ         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0,19          | 1.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | U         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | υ         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| 1 - CHLOROHEXANE                       | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-D1CHLORDPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| 4-CHLOROTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| ACETONE                                | 0.94 | 10   | 0.94          | 1.00     | N/A     | U         |
| BENZENE                                | 0.25 | 0.50 | 0.25          | 1.00     | N/A     | U         |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| BROMODICHLOROMETHANE                   | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | บ         |
| BROMOFORM                              | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U.        |

AFCEE FORM 0-2

work apold

## AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:    | <u>sw5030</u>     | AAB #:         | <u>A6822298</u>   |
|--------------------|--------------------|------------------------|-------------------|----------------|-------------------|
| Lab Name:          | STL Buffalo        |                        |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M121R120A       | Lab Sample ID:         | <u>A6710205</u>   | Matrix:        | WATER             |
| % Solids:          | 1                  | nitial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:         | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

| Analyte                                       | MDL  | RL.  | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|------|------|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 0.27 | 3.0  | 0.27          | 1.00     | N/A     | υ         |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| CHLOROBENZENE                                 | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| CHLOROETHANE                                  | 0.18 | 1.0  | D.18          | 1.00     | N/A     | U         |
| CHLOROFORM                                    | 0.26 | 0.50 | 0.26          | 1.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0  | 0.32          | 1.00     | N/A     | U         |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50 | 0.24          | 1.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50 | 0.15          | 1.00     | N/A     | U         |
| DIBROMOMETHANE                                | 0.26 | 1.0  | 0.26          | 1.00     | N/A     | U         |
| D I CHLOROD I FLUOROMETHANE                   | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U         |
| ETHYLBENZENE                                  | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| HEXACHLOROBUTADIENE                           | 0.11 | 0.60 | 0.11          | 1.00     | N/A     | U         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| METHYLENE CHLORIDE                            | 0.31 | 1.0  | 0.31          | 1.00     | N/A     | U         |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0  | 0.12          | 1.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10   | 0.82          | 1.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10   | 0.76          | 1.00     | N/A     | U         |
| n-BUTYLBENZENE                                | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| n-PROPYLBENZENE                               | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44 | 2.0  | 0.44          | 1.00     | N/A     | U         |
| NAPHTHALENE                                   | 0.14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0  | 0.17          | 1.00     | N/A     | U         |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| STYRENE                                       | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| TRICHLOROETHYLENE (TCE)                       | 0.23 | 1.0  | 1.6           | 1.00     | N/A     |           |
| t-BUTYLBENZENE                                | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| TETRACHLOROETHYLENE (PCE)                     | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| TOLUENE                                       | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | Ų         |

AFCEE FORM 0-2

| Analytical Method: | <u>8260-A98</u> | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|-----------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | STL Buffalo     |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M121R120A    | Lab Sample ID:          | <u>A6710205</u>   | Matrix:        | WATER             |
| % Solids:          | •               | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | 21-Jun-2006     | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | U         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits | Qualifier |
|-----------------------------------------------|----------|----------------|-----------|
| TOLUENE - D8                                  | 89       | 81 - 120       |           |
| 1-BRDMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 94       | 76 - 119       |           |
| 1,2-DICHLOROETHANE-d4                         | 88       | 72 - 119       |           |
| DIBROMOFLUOROMETHANE                          | 94       | 85 - 115       |           |

U de la

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 528912      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 348608      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 167642      | 88272 - 353088    |           |

#### Comments:

38/213

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | 826D-A98           | Preparatory Method:   | <u>sw5030</u>     | AAB #:         | <u>A6822298</u>                      |
|--------------------|--------------------|-----------------------|-------------------|----------------|--------------------------------------|
| Lab Name:          | STL Buffalo        |                       |                   | Contract #:    | •••••••••••••••••••••••••••••••••••• |
| Field Sample ID:   | TF3M123140A        | Lab Sample ID:        | <u>A6710206</u>   | Matrix:        | WATER                                |
| % Solids:          | In                 | itial Calibration ID: | <u>A610001680</u> |                |                                      |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:        | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u>                    |

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| ,1,1,2-TETRACHLORDETHANE               | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| , 1, 1-TRICHLOROETHANE                 | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | U         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.37          | 1.00     | N/A     | F         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 5.5 m         | 1.00     | N/A     | <u>.</u>  |
| 1,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | υ         |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | U         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| 1,2-DIBROMDETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3,5+TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.47          | 1.00     | N/A     | F         |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | u         |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| 4-CHLOROTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| ACETONE                                | 0.94 | 10   | 0.94          | 1.00     | N/A     | U         |
| BENZENE                                | 0.25 | 0.50 | 0.25          | 1.00     | N/A     | U         |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| SROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| BROMOD I CHLOROMETHANE                 | 0.17 | 0,50 | 0.17          | 1.00     | N/A     | U         |
| BROMOFORM                              | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |

×

with

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | 8260-A98           | Preparatory Method:     | <u>SW5030</u>     | AAB #:         | <u>A6822298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M123140A        | Lab Sample ID:          | <u>A6710206</u>   | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

| Analyte                                       | MDL   | RL   | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|-------|------|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 0.27  | 3.0  | 0.27          | 1.00     | N/A     | U         |
| CARBON TETRACHLORIDE                          | 0.22  | 1.0  | 0.22          | 1.00     | N/A     | IJ        |
| CHLOROBENZENE                                 | 0.19  | 0.50 | 0.19          | 1.00     | N/A     | U         |
| CHLOROETHANE                                  | 0.18  | 1.0  | 0.69          | 1.00     | N/A     | F         |
| CHLOROFORM                                    | D.26  | 0.50 | 0.26          | 1.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.15  | 1.0  | 0.68          | 1.00     | N/A     | F         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32  | 1.0  | 0.32          | 1.00     | N/A     | U         |
| cis-1,3-DICHLOROPROPENE                       | 0.24  | 0.50 | 0.24          | 1.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.15  | 0.50 | 0.15          | 1.00     | N/A     | U         |
| DIBROMOMETHANE                                | 0.26  | 1.0  | 0.26          | 1.00     | N/A     | U         |
| DICHLORODIFLUOROMETHANE                       | 0.15  | 1.0  | 0.15          | 1.00     | N/A     | U         |
| ETHYLBENZENE                                  | 0.23  | 1.0  | 0.23          | 1.00     | N/A     | U         |
| HEXACHLOROBUTADIENE                           | 0.11  | 0.60 | 0.11          | 1.00     | N/A     | U         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19  | 1.0  | 29 77         | 1.00     | N/A     | Tratana,  |
| NETHYLENE CHLORIDE                            | 0.31  | 1.0  | 0.31          | 1.00     | N/A     | U         |
| tert-BUTYL METHYL ETHER                       | 0.12  | 5.0  | 0.12          | 1.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82  | 10   | 0.82          | 1.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76  | 10   | 0.76          | 1.00     | N/A     | U         |
| n-BUTYLBENZENE                                | 0.18  | 1.0  | 0.18          | 1.00     | N/A     | U         |
| n-PROPYLBENZENE                               | 0.19  | 1.0  | 2.8 #         | 1.00     | N/A     | 3-5-      |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44  | 2.0  | 0.44          | 1.00     | N/A     | U         |
| NAPHTHALENE                                   | 0.14  | 1.0  | 0.14          | 1.00     | N/A     | U         |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | D.21  | 1.0  | 0.21          | 1.00     | N/A     | Ų         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17  | 1.0  | 0.46          | 1.00     | N/A     | F         |
| SEC-BUTYLBENZENE                              | 0.19  | 1.0  | 0.79          | 1.00     | N/A     | F         |
| STYRENE                                       | 0.21  | 1.0  | 0.21          | 1.00     | N/A     | U U       |
| TRICHLOROETHYLENE (TCE)                       | 0.23  | 1.0  | 0.23          | 1.00     | N/A     | U         |
| t-BUTYLBENZENE                                | 0.23  | 1.0  | 0.77          | 1.00     | N/A     | F         |
| TETRACHLOROETHYLENE(PCE)                      | 0.19  | 1.0  | 0.19          | 1.00     | N/A     | U         |
| TOLUENE                                       | .0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |

Krenets transferred from dilution Somple TF3H123140ADL

| Analytical Method: | 8260-A98           | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL_Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M123140A        | Lab Sample ID:          | <u>A6710206</u>   | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | U         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits | Qualifier |
|-----------------------------------------------|----------|----------------|-----------|
| TOLUENE-D8                                    | 84       | 81 - 120       |           |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 91       | 76 - 119       |           |
| 1,2-DICHLOROETHANE-d4                         | 147      | 72 - 119       | *         |
| DIBROMOFLUOROMETHANE                          | 91       | 85 - 115       |           |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 569778      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 384063      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 189391      | 88272 - 353088    |           |

#### Comments:

.....

untijok 120jok

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | 8260-A98           | Preparatory Method:   | <u>sw5030</u>     | AAB #:         | <u>A6822298</u>   |
|--------------------|--------------------|-----------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                       |                   | Contract #:    | ····              |
| Field Sample ID:   | TF3M127130A        | Lab Sample ID:        | <u>A6710208</u>   | Matrix:        | WATER             |
| % Solids:          | In                 | itial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:        | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U.        |
| 1,1,1-TRICHLOROETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | U         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | υ         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0,13          | 1.00     | N/A     | u         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 15            | 1.00     | N/A     |           |
| 1,2-DICHLOROETHANE                     | 0.23 | 0,50 | 0.23          | 1.00     | N/A     |           |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | U         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     |           |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     | υ         |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | u         |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| 4-CHLORDTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| ACETONE                                | 0.94 | 10   | 0.94          | 1.00     | N/A     | U         |
| BENZENE                                | 0.25 | 0,50 | 1.4           | 1.00     | N/A     |           |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | υ         |
| BROMODICHLORDMETHANE                   | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | U         |
| BROMOFORM                              | 0.13 | 1_0  | 0.13          | 1.00     | N/A     |           |
|                                        |      | L    | L             |          |         | 1         |

| Analytical Method: | 8260-A98           | Preparatory Method:  | <u>sw5030</u>     | AAB #:         | <u>A6822298</u>   |
|--------------------|--------------------|----------------------|-------------------|----------------|-------------------|
| Lab Name:          | STL Buffalo        |                      |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M127130A        | Lab Sample ID:       | <u>A6710208</u>   | Matrix:        | WATER             |
| % Solids:          | Ini                | tial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:       | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

| Analyte                                       | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|------|------|---------------|----------|---------|-----------|
| ROMOMETHANE                                   | 0.27 | 3.0  | 0.27          | 1.00     | N/A     | U         |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | <u> </u>  |
| CHLOROBENZENE                                 | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| CHLOROETHANE                                  | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| CHLOROFORM                                    | 0.26 | 0.50 | 0.26          | 1.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.15 | 1.0  | 0.22          | 1.00     | N/A     | F         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0  | 0.32          | 1.00     | N/A     | <u> </u>  |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50 | 0.24          | 1.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50 | 0.15          | 1.00     | N/A     | U         |
| DIBROMOMETHANE                                | 0.26 | 1.0  | 0.26          | 1.00     | N/A     | U         |
| DICHLORODIFLUOROMETHANE                       | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U         |
| ETHYLBENZENE                                  | 0.23 | 1.0  | 17            | 1.00     | N/A     |           |
| NEXACHLOROBUTAD I ENE                         | 0.11 | 0.60 | 0.11          | 1.00     | N/A     | U         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0  | 9.9           | 1.00     | N/A     |           |
| METHYLENE CHLORIDE                            | 0.31 | 1.0  | 0.31          | 1.00     | N/A     | U         |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0  | 0.12          | 1.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10   | 0.82          | 1.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10   | 0.76          | 1.00     | N/A     | U         |
| n-BUTYLBENZENE                                | 0.18 | 1.0  | 0,18          | 1.00     | N/A     | U         |
| n-PROPYLBENZENE                               | 0.19 | 1.0  | 9.8           | 1.00     | N/A     |           |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44 | 2.0  | 8.3           | 1.00     | N/A     |           |
| NAPHTHALENE                                   | 0.14 | 1.0  | 7.9           | 1.00     | N/A     | -8        |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| P-CYMENE (P-1SOPROPYLTOLUENE)                 | 0.17 | 1.0  | 0.66          | 1.00     | N/A     | F         |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0  | 1.4           | 1.00     | N/A     |           |
| STYRENE                                       | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| TRICHLOROETHYLENE (TCE)                       | D.23 | 1.0  | 0.23          | 1.00     | N/A     | υ         |
| t-BUTYLBENZENE                                | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| TETRACHLOROETHYLENE(PCE)                      | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| TOLUENE                                       | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |

AFFEF FORM N-2

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method: | <u>SW5030</u>     | AAB #:         | A6B22298          |
|--------------------|--------------------|---------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                     |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M127130A        | Lab Sample ID:      | <u>A6710208</u>   | Matrix:        | WATER             |
| % Solids:          | Initi              | al Calibration ID:  | A610001680        |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:      | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L\_\_\_\_

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | . ป       |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits | Qualifier |
|-----------------------------------------------|----------|----------------|-----------|
| TOLUENE-D8                                    | 94       | 81 - 120       |           |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 94       | 76 - 119       |           |
| 1,2-DICHLOROETHANE-d4                         | 89       | 72 - 119       |           |
| DIBROMOFLUOROMETHANE                          | 91       | 85 - 115       |           |

unk 7/20/06

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 563370      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 377996      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 187053      | 88272 - 353088    |           |

## Comments:

anopt

## AFCEE DRGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:        | A6B22298          |
|--------------------|--------------------|-------------------------|-------------------|---------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:   |                   |
| Field Sample ID:   | TF3M128140A        | Lab Sample ID:          | <u>A6710209</u>   | Matrix:       | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |               |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed | <u>1-Jul-2006</u> |

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,1-TRICHLOROETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | U         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 8.0           | 1.00     | N/A     |           |
| 1,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DIBROMD-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | U         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| 4-CHLOROTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| ACETONE                                | 0.94 | 10   | 0.94          | 1.00     | N/A     | U         |
| BENZENE                                | 0.25 | 0.50 | 0.85          | 1.00     | N/A     |           |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| BROMODICHLOROMETHANE                   | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | U         |
| BROMOFORM                              | 0.13 | 1.0  | 0.13          | . 100    | N/A     | U         |

VELEE CUDM U-3

and Happle

## AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | A6B22298          |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL_Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M128140A        | Lab Sample ID:          | A6710209          | Matrix:        | WATER             |
| % Solids:          | *****              | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1~Jul-2006</u> |

| Analyte                                       | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|------|------|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 0.27 | 3.0  | 0.27          | 1.00     | N/A     | U         |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| CHLOROBENZENE                                 | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| CHLOROETHANE                                  | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| CHLOROFORM                                    | 0.26 | 0.50 | 0.26          | 1.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.15 | 1.0  | 0.15          | - 1.00   | N/A     | U         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0  | 0.32          | 1.00     | N/A     | U         |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50 | 0.24          | 1.00     | N/A     | u         |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50 | 0.15          | 1.00     | N/A     | U         |
| DIBROMOMETHANE                                | 0.26 | 1.0  | 0.26          | 1.00     | N/A     | U         |
| DICHLORODIFLUOROMETHANE                       | 0.15 | 1.0  | 0.15          | 1.00     | N/A     |           |
| ETHYLBENZENE                                  | 0.23 | 1.0  | 14            | 1.00     | N/A     |           |
| HEXACHLOROBUTADIENE                           | 0.11 | 0.60 | 0.11          | 1.00     | N/A     | U         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0  | 7.7           | 1.00     | N/A     |           |
| METHYLENE CHLORIDE                            | 0.31 | 1.0  | 0.31          | 1.00     | N/A     | U         |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0  | 0.12          | 1.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10   | 0.82          | 1.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10   | 0.76          | 1.00     | N/A     |           |
| n-BUTYLBENZENE                                | 0.18 | 1.0  | 2.0           | 1.00     | N/A     |           |
| n-PROPYLBENZENE                               | 0.19 | 1.0  | 10            | 1.00     | N/A     | -         |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44 | 2.0  | 7.2           | 1.00     | N/A     |           |
| NAPHTHALENE                                   | 0.14 | 1.0  | 6.4           | 1.00     | N/A     | -BL       |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0  | 2.0           | 1.00     | N/A     |           |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0  | 3.4           | 1.00     | N/A     | +         |
| STYRENE                                       | 0.21 | 1.0  | 0.21          | 1_00     | N/A.    | U         |
| TRICHLOROETHYLENE (TCE)                       | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| t-BUTYLBENZENE                                | 0.23 | 1.0  | 0.40          | 1.00     | N/A     | F         |
| TETRACHLOROETHYLENE(PCE)                      | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | υ         |
| I.OLUENE                                      | 0.22 | 1.0  | 0.22 .        | 1.00     | N/A     | U         |

AFCEE FORM 0-0

| Analytical Method: | 8260-A98           | Preparatory     | Method:  | <u>sw5030</u>     | AAB #:         | <u>A6822298</u>   |
|--------------------|--------------------|-----------------|----------|-------------------|----------------|-------------------|
| Lab Name:          | STL Buffalo        |                 |          |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M128140A        | Lab Sar         | mple ID: | <u>A6710209</u>   | Matrix:        | WATER             |
| % Solids:          | İ1                 | nitial Calibrai | tion ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Pr         | repared: | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L\_\_\_\_

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | υ         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     | υ         |

| Surrogate                                     | Recovery | Control Limits | mits Qualifier |
|-----------------------------------------------|----------|----------------|----------------|
| TOLUENE-D8                                    | 94       | 81 ~ 120       |                |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 92       | 76 - 119       |                |
| 1,2-DICHLOROETHANE-d4                         | 94       | 72 - 119       |                |
| DIBROMOFLUOROMETHANE                          | 90       | 85 - 115       |                |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUDROBENZENE          | 572460      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 388150      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 190986      | 88272 - 353088    |           |

## Comments:

unt hopb

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6822298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M133160A        | Lab Sample ID:          | A6710210          | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | υ         |
| 1,1,1-TRICHLOROETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | U         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U 1       |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | υ         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U U       |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14          | 1.00     | N/A     | υ         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 7.0           | 1.00     | N/A     | J.        |
| 1,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | <br>      |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | U         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | u         |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1_00     | N/A     | U ·       |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| 4-CHLOROTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U U       |
| ACETONE                                | 0.94 | 10   | 0,94          | 1.00     | N/A     | U         |
| BENZENE                                | 0.25 | 0.50 | 0.25          | 1.00     | N/A     | U         |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| BROMODICHLOROMETHANE                   | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | U         |
| BROMOFORM                              | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
|                                        |      | L.,  | L             | L        |         |           |

when

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | 8260-A98           | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | A6B22298          |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | STL Buffalo        |                         |                   | Contract #:    | <u></u>           |
| Field Sample ID:   | TF3M133160A        | Lab Sample ID:          | <u>A6710210</u>   | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

| Analyte                                       | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|------|------|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 0.27 | 3.0  | 0.27          | 1.00     | N/A     | Ľ         |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| CHLOROBENZENE                                 | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| CHLOROETHANE                                  | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| CHLOROFORM                                    | 0.26 | 0.50 | 0.26          | 1.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0  | 0.32          | 1.00     | N/A     | U         |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50 | 0.24          | 1.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50 | 0.15          | 1.00     | N/A     | U         |
| DIBROMOMETHANE                                | 0.26 | 1.0  | 0.26          | 1.00     | N/A     | U         |
| DICHLORODIFLUOROMETHANE                       | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U         |
| ETHYLBENZENE                                  | 0.23 | 1.0  | 0.28          | 1.00     | N/A     | F         |
| HEXACHLOROBUTADIENE                           | 0.11 | 0.60 | 0.11          | 1.00     | N/A     | U         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0  | 10            | 1.00     | N/A     |           |
| METHYLENE CHLORIDE                            | 0.31 | 1.0  | 0.31          | 1.00     | N/A     | U         |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0  | 0.12          | 1.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10   | 0.82          | 1.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10   | 0.76          | 1.00     | N/A     | U         |
| n-BUTYLBENZENE                                | 0.18 | 1.0  | 1.9           | 1.00     | N/A     |           |
| n-PROPYLBENZENE                               | 0.19 | 1.0  | 12            | 1,00     | N/A     |           |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44 | 2.0  | 0.96          | 1.00     | N/A     | F         |
| NAPHTHALENE                                   | 0.14 | 1.0  | 2.4           | 1.00     | N/A     | ₿         |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0  | 1.9           | 1.00     | N/A     |           |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0  | 7.5           | 1.00     | N/A     |           |
| STYRENE                                       | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| TRICHLOROETHYLENE (TCE)                       | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| t-BUTYLBENZENE                                | 0.23 | 1.0  | 0.94          | 1,00     | N/A     | F         |
| TETRACHLOROETHYLENE(PCE)                      | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| TOLUENE                                       | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |

AFCEE FORM 0-2

| Analytical Method: | 8260-A98           | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M133160A        | Lab Sample ID:          | <u>A6710210</u>   | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>1-Jul-2006</u> | Date Analyzed: | <u>1-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLORDETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | U         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | <br>N/A | U         |

| Surrogate                                     | Recovery | Control Limits Qualif | ier      |
|-----------------------------------------------|----------|-----------------------|----------|
| TOLUENE-D8                                    | 90       | 81 - 120              | ****     |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 93       | 76 - 119              | ·        |
| 1,2-DICHLOROETHANE-d4                         | 98       | 72 - 119              |          |
| DIBROMOFLUOROMETHANE                          | 90       | 85 - 115              | <u> </u> |

unt 7/20/06

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 577675      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 389617      | 178213 - 712850   | 1         |
| 1,4-DICHLOROBENZENE-d4 | 192597      | 88272 - 353088    |           |

Comments:

with white

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | 8260-A98           | Preparatory Method:     | <u>SW5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    | <u></u>           |
| Field Sample ID:   | TF3M133160C        | Lab Sample ID:          | <u>A6710210FD</u> | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,1-TRICHLOROETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | U         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | υ         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1_0  | 0.27          | 1.00     | N/A     | υ         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | υ         |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 9.2           | 1.00     | N/A     | J         |
| 1,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | U         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| 1,2-DIBROMDETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0,50 | 0.22          | 1.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | υ         |
| 4 - CHLOROTOLUENE                      | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| ACETONE                                | 0.94 | 10   | 0.94          | 1.00     | N/A     | U         |
| BENZENE                                | 0.25 | 0.50 | 0.25          | 1.00     | N/A     | U         |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| BROMODICHLOROMETHANE                   | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | U         |
| BROMOFORM                              | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
|                                        |      |      |               |          |         |           |

and

## AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | 8260-A98           | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | A6B22298          |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M133160C        | Lab Sample ID:          | <u>A6710210FD</u> | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |

| Analyte                                       | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier      |
|-----------------------------------------------|------|------|---------------|----------|---------|----------------|
| BROMOMETHANE                                  | 0.27 | 3.0  | 0.27          | 1.00     | N/A     | U              |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U              |
| CHLOROBENZENE                                 | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U              |
| CHLOROETHANE                                  | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U              |
| CHLOROFORM                                    | 0.26 | 0.50 | 0.26          | 1.00     | N/A     | U              |
| CHLOROMETHANE                                 | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U              |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0  | 0.32          | 1.00     | N/A     | υ              |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50 | 0.24          | 1.00     | N/A     | U              |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50 | D.15          | 1.00     | N/A     | U              |
| DIBROMOMETHANE                                | 0.26 | 1.0  | 0.26          | 1.00     | N/A     | U              |
| DICHLORODIFLUOROMETHANE                       | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U              |
| ETHYLBENZENE                                  | 0.23 | 1.0  | 0.31          | 1.00     | N/A     | F              |
| HEXACHLOROBUTAD I ENE                         | 0.11 | 0.60 | 0.11          | 1.00     | N/A     | υ              |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0  | 11            | 1.00     | N/A     |                |
| METHYLENE CHLORIDE                            | 0.31 | 1.0  | 0.31          | 1.00     | N/A     | U              |
| tert-BUTYL METHYL ETHER                       | 0,12 | 5.0  | 0.12          | 1.00     | N/A     | U              |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10   | 0.82          | 1.00     | N/A     | U              |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10   | 0.76          | 1.00     | N/A     | U              |
| n-BUTYLBENZENE                                | 0.18 | 1.0  | 2.2           | 1.00     | N/A     | -              |
| n-PROPYLBENZENE                               | 0.19 | 1.0  | 13            | 1.00     | N/A     |                |
| M,P-XYLENE(SUM OF ISOMERS)                    | D.44 | 2.0  | 1.1           | 1.00     | N/A     | F              |
| NAPHTHALENE                                   | 0.14 | 1.0  | 2.5           | 1.00     | N/A     | 3 <sup>5</sup> |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U              |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0  | 2.2           | 1.00     | N/A     |                |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0  | 8.3           | 1.00     | N/A     |                |
| STYRENE                                       | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U              |
| TRICHLOROETHYLENE (TCE)                       | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U              |
| t-BUTYLBENZENE                                | 0.23 | 1.0  | 1.0           | 1.00     | N/A     |                |
| TETRACHLOROETHYLENE(PCE)                      | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | υ              |
| TOLUENE                                       | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | - U            |

AFCER FORM 0-2

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M133160C        | Lab Sample ID:          | A6710210FD        | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | A610001680        |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |
|                    |                    |                         |                   |                |                   |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | U         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits | Qualifier | ŭ   |
|-----------------------------------------------|----------|----------------|-----------|-----|
| TOLUENE-D8                                    | 95       | 81 - 120       |           | WAN |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 98       | 76 - 119       |           | AM  |
| 1,2-DICHLOROETHANE-d4                         | 98       | 72 - 119       |           |     |
| DIBROMOFLUOROMETHANE                          | 93       | 85 - 115       |           |     |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 553567      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 370963      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 183527      | 88272 - 353088    |           |

## Comments:

•

÷.

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M21140A         | Lab Sample ID:          | A6710211          | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,1-TRICHLOROETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     |           |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14          | 1.00     | N/A     |           |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| 1,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     |           |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | U         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     |           |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     |           |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 2-CHLOROTOLUENE                        | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| 4-CHLOROTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| ACETONE                                | D.94 | 10   | 0.94          | 1.00     | N/A     | U         |
| BENZENE                                | 0.25 | 0.50 | 0.25          | 1.00     | N/A     | υ         |
| RCMOBENZENE                            | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | υ<br>υ    |
| BROMOCHLORDMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| ROMOD I CHLOROME THANE                 | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | U         |
| ROMOFORM                               | 0.13 | 1.0  | 0.13          | 1.00     | N/A     |           |

UNA 2120/06

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:    | <u>sw5030</u>     | AAB #:         | A6B22298          |
|--------------------|--------------------|------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                        |                   | Contract #:    |                   |
| Field Sample ID:   | <u>TF3M21140A</u>  | Lab Sample ID:         | <u>A6710211</u>   | Matrix:        | WATER             |
| % Solids:          | 1                  | nitial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:         | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                                       | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier | _   |
|-----------------------------------------------|------|------|---------------|----------|---------|-----------|-----|
| BROMOMETHANE                                  | 0.27 | 3.0  | 0.27          | 1.00     | N/A     | U         | -   |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |     |
| CHLOROBENZENE                                 | 0.19 | 0.50 | 0,19          | 1.00     | N/A     | U         | ]   |
| CHLOROETHANE                                  | 0.18 | 1.0  | 0.72 13       | 1.00     | N/A     | ŦV        | _¥4 |
| CHLOROFORM                                    | 0.26 | 0.50 | 0.26          | 1.00     | N/A     | U         |     |
| CHLOROMETHANE                                 | 0.15 | 1.0  | 0.62 ====     | 1.00     | N/A     | ≠ U       | *   |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0  | 0.32          | 1.00     | N/A     | U         | ]   |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50 | 0.24          | 1.00     | N/A     | U         |     |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50 | 0.15          | 1.00     | N/A     | U         |     |
| DIBROMOMETHANE                                | 0.26 | 1.0  | 0.26          | 1.00     | N/A     | U         |     |
| DICHLORODIFLUOROMETHANE                       | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U         |     |
| ETHYLBENZENE                                  | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |     |
| HEXACHLOROBUTADIENE                           | 0.11 | 0.60 | 0.11          | 1.00     | N/A     | U         |     |
| ISOPROPYLBENZENE (CUMENE)                     | 0.19 | 1.0  | <b>≈</b> -54  | 1.00     | N/A     | Ŧ         | ]¥  |
| METHYLENE CHLORIDE                            | 0.31 | 1.0  | 0.31          | 1.00     | N/A     | U         |     |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0  | 0.12          | 1.00     | N/A     | U         |     |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10   | 0.82          | 1.00     | N/A     | U         |     |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10   | 0.76          | 1.00     | N/A     | U         |     |
| n-BUTYLBENZENE                                | 0.18 | 1.0  | 4.0-12        | 1.00     | N/A     |           | ×   |
| n-PROPYLBENZENE                               | 0.19 | 1.0  | 8. 1 8.0      | 1.00     | N/A     |           | ×   |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44 | 2.0  | 1.1           | 1.00     | N/A     | F         |     |
| NAPHTHALENE                                   | 0.14 | 1.0  | 1.6 1=8-      | 1.00     | N/A     |           | *   |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1_0  | 0.21          | 1.00     | N/A     | U         |     |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0  | 3.2 3-0       | 1.00     | N/A     | FI        | ]*  |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0  | 5.1 📚         | 1.00     | N/A     | -===      | ×   |
| STYRENE                                       | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |     |
| TRICHLOROETHYLENE (TCE)                       | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         | ,   |
| t-BUTYLBENZENE                                | 0.23 | 1.0  | 1.2 1         | 1.00     | N/A     | F=        | X   |
| TETRACHLOROETHYLENE(PCE)                      | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |     |
|                                               |      |      |               | <u> </u> | N/A     | U         | 1   |

\* lesnets transferred from dikution sample TF3M2/140ADL

and

AFTER FORM 0-7

| Analytical Method: | 8260-A98           | Preparatory Method:     | <u>SW5030</u>     | AAB #:         | <u>A6B22298</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    | •••••             |
| Field Sample ID:   | <u>TF3M21140A</u>  | Lab Sample ID:          | A6710211          | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL. | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | U         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits | Qualifier |
|-----------------------------------------------|----------|----------------|-----------|
| TOLUENE-D8                                    | 88       | 81 - 120       |           |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 95       | 76 - 119       |           |
| 1,2-DICHLORDETHANE-d4                         | 150      | 72 - 119       | *         |
| DIBROMOFLUOROMETHANE                          | 91       | 85 - 115       |           |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 585768      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 395879      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 198473      | 88272 - 353088    |           |

## Comments:

# AFCEE ORGANIC ANALYSES DATA PACKAGE

 Analytical Method:
 8260-A98
 AAB #: A6B22301

 Lab Name:
 STL Buffalo
 Contract #: \_\_\_\_\_

 Base/Command:
 Griffiss Airforce Base
 Prime Contractor:
 Fanning, Phillips & Molna

Field Sample ID

Lab Sample ID

TF3M119R12OA TF3M12314OA TF3M12614OA TF3M2114OA <u>A6710204RI</u> <u>A6710206DL</u> <u>A6710207</u> <u>A6710211DL</u>

Comments:

See Case Narrative

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

|            | DDKD      |                                  |  |
|------------|-----------|----------------------------------|--|
| Signature: | _ lobola  | Name: John Schove                |  |
|            | CLIF .    |                                  |  |
| Date:      | - F 16 06 | Title: <u>Operations Manager</u> |  |
|            |           |                                  |  |

AFCER FORM 0-1

list

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | 8260-A98            | Preparatory Method:     | <u>SW5030</u>     | AAB #:         | A6B22301          |
|--------------------|---------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u>  |                         |                   | Contract #:    |                   |
| Field Sample ID:   | <u>TF3M119R120A</u> | Lab Sample ID:          | A6710204R1        | Matrix:        | WATER             |
| % Solids:          | <del></del>         | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u>  | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L\_\_\_\_

| Analyte                               | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|---------------------------------------|------|------|---------------|----------|---------|-----------|
| ,1,1,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| ,1,1-TRICHLOROETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | U         |
| ,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| ,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |
| ,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| ,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| ,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| ,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |
| ,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| ,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14          | 1.00     | N/A     | U         |
| ,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| ,2-DICHLOROETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | U         |
| ,2-DICHLOROBENZENE                    | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| , 2-DIBROMO-3-CHLOROPROPANE           | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | υ         |
| ,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | υ         |
| ,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| ,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | IJ        |
| ,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| ,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     | U         |
| ,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| - CHLOROHEXANE                        | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| ,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| CHLOROTOLUENE                         | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| CHLOROTOLUENE                         | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| CETONE                                | D.94 | 10   | 0,94          | 1.00     | N/A     | U         |
| ENZENE                                | D.25 | 0.50 | 0.25          | 1.00     | N/A     | U         |
| ROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | U         |
| ROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| ROMOD I CHLOROMET HANE                | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | U         |
| ROMOFORM                              | 0.13 | 1.0  | 0.13          | 1.00     |         |           |

AFRE FORM 0-2

# 76/213

and low

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | A6822301          |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL_Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M119R120A       | Lab Sample ID:          | <u>A6710204RI</u> | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                                       | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|------|------|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 0.27 | 3.0  | 0.27          | 1.00     | N/A     | U         |
| CARBON TETRACHLORIDE                          | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | · U       |
| CHLOROBENZENE                                 | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | υ         |
| CHLOROETHANE                                  | 0.18 | 1.0  | 0.58          | 1.00     | N/A     | F         |
| CHLOROFORM                                    | 0.26 | 0.50 | 0.26          | 1.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | U         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32 | 1.0  | 0.32          | 1.00     | N/A     | U         |
| cis-1,3-DICHLOROPROPENE                       | 0.24 | 0.50 | 0.24          | 1.00     | N/A     | Ų         |
| DIBROMOCHLOROMETHANE                          | 0.15 | 0.50 | 0.15          | 1.00     | N/A     | U         |
| DIBROMOMETHANE                                | 0.26 | 1.0  | 0.26          | 1.00     | N/A     | U         |
| DICHLORODIFLUOROMETHANE                       | 0.15 | 1.0  | 0.15          | 1.00     | N/A     | υ         |
| ETHYLBENZENE                                  | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | Ų         |
| HEXACHLOROBUTADIENE                           | 0.11 | 0.60 | 0.11          | 1.00     | N/A     | U         |
| I SOPROPYLBENZENE (CUMENE)                    | 0.19 | 1_0  | 0.19          | 1.00     | N/A     | U         |
| METHYLENE CHLORIDE                            | 0.31 | 1.0  | 0.31          | 1.00     | N/A     | U         |
| tert-BUTYL METHYL ETHER                       | 0.12 | 5.0  | 0.12          | 1.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82 | 10   | 0.82          | 1.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76 | 10   | 0.76          | 1.00     | N/A     | υ         |
| n-BUTYLBENZENE                                | D.18 | 1.0  | 0.18          | 1.00     | N/A     | U         |
| n-PROPYLBENZENE                               | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | υ         |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44 | 2.0  | 0.44          | 1.00     | N/A     | U         |
| NAPHTHALENE                                   | 0.14 | 1.0  | 0.20          | 1.00     | N/A     | F         |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17 | 1.0  | 0.17          | 1.00     | N/A     | U         |
| SEC-BUTYLBENZENE                              | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| STYRENE                                       | 0.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| TRICHLORDETHYLENE (TCE)                       | 0.23 | 1.0  | 0.25          | 1.00     | N/A     | F         |
| t-BUTYLBENZENE                                | 0.23 | 1.0  | 0.50          | 1.00     | N/A     | F         |
| TETRACHLOROETHYLENE(PCE)                      | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| TOLUENE .                                     | 0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | <u>A6822301</u>   |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    | ·                 |
| Field Sample ID:   | TF3M119R120A       | Lab Sample ID:          | <u>A6710204RI</u> | Matrix:        | WATER             |
| % Solids:          | ************       | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |
|                    |                    |                         |                   |                |                   |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | U         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits | Qualifier |
|-----------------------------------------------|----------|----------------|-----------|
| TOLUENE-D8                                    | 88       | 81 - 120       |           |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 94       | 76 - 119       |           |
| 1,2-DICHLOROETHANE-d4                         | 142      | 72 - 119       |           |
| DIBROMOFLUOROMETHANE                          | 90       | 85 - 115       |           |

Anglere tholog

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 629062      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 421486      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 206049      | 88272 - 353088    |           |

#### Comments:

· · · · · · ·

| Analytical Method: | 8260-898    | Preparatory Method:    | <u>sw5030</u>     | AAB #:         | A6B22301          |
|--------------------|-------------|------------------------|-------------------|----------------|-------------------|
| Lab Name:          | STL Buffalo |                        |                   | Contract #:    | <u></u>           |
| Field Sample ID:   | TF3M123140A | Lab Sample ID:         | A6710206DL        | Matrix:        | WATER             |
| % Solids:          | I           | nitial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | 21-Jun-2006 | Date Prepared:         | 2-jul-2006        | Date Analyzed: | <u>2-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                                | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|-----|---------------|----------|---------|-----------|
| ,1,1,2-TETRACHLOROETHANE               | 0.84 | 2.0 | 0.84          | 4.00     | N/A     | U         |
| ,1,1-TRICHLOROETHANE                   | 1.1  | 4.0 | 1.1           | 4.00     | N/A     | U         |
| ,1,2,2-TETRACHLOROETHANE               | 0.84 | 2.0 | 0.84          | 4.00     | N/A     | U         |
| I,1,2-TRICHLOROETHANE                  | 0.86 | 4.0 | 0.86          | 4.00     | N/A     | U         |
| I,1-DICHLOROETHANE                     | 1.1  | 4.0 | 1.1           | 4.00     | N/A     | U         |
| ,1-DICHLOROETHENE                      | 1_1  | 4.0 | 1.1           | 4.00     | N/A     | U         |
| I,1-DICHLOROPROPENE                    | 0.92 | 4.0 | 0.92          | 4.00     | N/A     | U         |
| 1,2,3-TRICHLOROBENZENE                 | 0.51 | 4.0 | 0.51          | 4.00     | N/A     | U         |
| 1,2,3-TRICHLOROPROPANE                 | 0.76 | 4.0 | 0.76          | 4.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0.56 | 4.0 | 0.56          | 4,00     | N/A     | υ         |
| 1,2,4-TRIMETHYLBENZENE                 | 0.74 | 4.0 | 5.5           | 4.00     | N/A     | /         |
| 1,2-DICHLORGETHANE                     | 0.93 | 2.0 | 0.93          | 4.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                    | 0.71 | 4.0 | 0.71          | 4,00     | N/A     | U         |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 1.2  | 8.0 | 1.2           | 4.00     | N/A     | U         |
| I, 2-DICHLOROPROPANE                   | 1.0  | 4.0 | 1.0           | 4.00     | N/A     | U         |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.81 | 4.0 | 0.81          | 4.00     | N/A     | U         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.81 | 4.0 | 0.88          | 4.00     | N/A     | F         |
| 1,3-DICHLOROBENZENE                    | D.64 | 4.0 | 0.64          | 4.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.89 | 2.0 | 0.89          | 4.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                    | 0.77 | 2.0 | 0.77          | 4.00     | N/A     | υ         |
| 1-CHLOROHEXANE                         | 1.2  | 4.0 | 1.2           | 4.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 1.1  | 4.0 | 1.1           | 4.00     | N/A     | U         |
| 2-CHLOROTOLUENE                        | 0.83 | 4.0 | 0.83          | 4.00     | N/A     | U         |
| 4-CHLOROTOLUENE                        | 0.74 | 4.0 | 0.74          | 4.00     | N/A     | U         |
| ACETONE                                | 3.8  | 40  | 3.8           | 4.00     | N/A     | U         |
| BENZENE                                | 0.99 | 2.0 | 0.99          | 4.00     | N/A     | U         |
| BROMOBENZENE                           | 0.93 | 4.0 | 0.93          | 4.00     | N/A     | U         |
| BROMOCHLOROMETHANE                     | 0.99 | 4.0 | 0.99          | 4.00     | N/A     | υ         |
| BROMODICHLOROMETHANE                   | 0.69 | 2.0 | 0.69          | 4,00     | N/A     | U         |
| BRDMOFORM                              | 0.54 | 4.0 | 0.54          | 4.00     | N/A     | U         |

with

| Analytical Method: | 8260-A98           | Preparatory Method:     | <u>SW5030</u>     | AAB          | #: <u>A6B22301</u>    |  |
|--------------------|--------------------|-------------------------|-------------------|--------------|-----------------------|--|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract     | #:                    |  |
| Field Sample ID:   | TF3M123140A        | Lab Sample ID:          | A67102060L        | Matri        | x: WATER              |  |
| % Solids:          |                    | Initial Calibration ID: | A610001680        |              |                       |  |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyze | ed: <u>2-Jul-2006</u> |  |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                                       | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|------|-----|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 1.1  | 12  | 1.1           | 4.00     | N/A     | U         |
| CARBON TETRACHLORIDE                          | 0.88 | 4.0 | 0.88          | 4.00     | N/A     | U         |
| CHLOROBENZENE                                 | 0.77 | 2.0 | 0.77          | 4.00     | N/A     | U         |
| CHLORDETHANE                                  | 0.72 | 4.0 | 0.72          | 4.00     | N/A     | U         |
| CHLOROFORM                                    | 1.0  | 2.0 | 1.0           | 4.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.62 | 4.0 | 0.62          | 4.00     | N/A     | U         |
| cis-1,2-DICHLORDETHYLENE                      | 1.3  | 4.0 | 1.3           | 4.00     | N/A     | U         |
| cis-1,3-DICHLOROPROPENE                       | 0.95 | 2.0 | 0.95          | 4.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.61 | 2.0 | 0.61          | 4.00     | N/A     | U         |
| DIBROMOMETHANE                                | 1.1  | 4.0 | 1.1           | 4.00     | N/A     | U         |
| DICHLORODIFLUOROMETHANE                       | 0.62 | 4.0 | 0.62          | 4.00     | N/A     | U         |
| ETHYLBENZENE                                  | 0.93 | 4.0 | 0.93          | 4.00     | N/A     | U         |
| HEXACHLOROBUTADIENE                           | 0.43 | 2.4 | 0.43          | 4.00     | N/A     | U         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.76 | 4.0 | 29            | 4.00     | N/A     |           |
| METHYLENE CHLORIDE                            | 1.2  | 4.0 | 1.2           | 4.00     | N/A     | U         |
| tert-BUTYL METHYL ETHER                       | 0.49 | 20  | 0.49          | 4.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 3.3  | 40  | 3.3           | 4.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 3.0  | 40  | 3.0           | 4.00     | N/A     | U         |
| n-BUTYLBENZENE                                | 0.71 | 4.0 | 0.71          | 4.00     | N/A     | U         |
| n-PROPYLBENZENE                               | 0.76 | 4.0 | 2.8           | 4.00     | N/A     | F -       |
| M,P-XYLENE(SUM OF ISOMERS)                    | 1.8  | 8.0 | 1.8           | 4.00     | N/A     | U         |
| NAPHTHALENE                                   | 0.56 | 4.0 | 0.56          | 4.00     | N/A     | U         |
| D-XYLENE (1,2-DIMETHYLBENZENE)                | 0.84 | 4.0 | 0.84          | 4.00     | N/A     | U         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.68 | 4.0 | 0.68          | 4.00     | N/A     | u         |
| SEC-BUTYLBENZENE                              | 0.78 | 4.0 | 0.78          | 4.00     | N/A     | u         |
| STYRENE                                       | 0.82 | 4.0 | 0.82          | 4.00     | N/A     | U         |
| TRICHLOROETHYLENE (TCE)                       | 0.94 | 4.0 | 0.94          | 4.00     | N/A     | U         |
| L-BUTYLBENZENE                                | 0.92 | 4.0 | 0.92          | 4.00     | N/A     | U         |
| TETRACHLOROETHYLENE (PCE)                     | D.76 | 4.0 | 0.76          | 4.00     | N/A     | U         |
| TOLUENE                                       | 0.90 | 4.0 | 0.90          | 4.00     | N/A     | U         |

AEREE ENDM 0-2

| Analytical Method: | 8260-A98           | Preparator    | y Method: | <u>sw5030_</u>    | AAB #:         | <u>A6B22301</u> |
|--------------------|--------------------|---------------|-----------|-------------------|----------------|-----------------|
| Lab Name:          | <u>STL Buffalo</u> |               |           |                   | Contract #:    |                 |
| Field Sample ID:   | TF3M123140A        | Lab S         | ample ID: | A671020601        | Matrix:        | WATER           |
| % Solids:          | I                  | nitial Calibr | ation ID: | <u>A610001680</u> |                |                 |
| Date Received:     | <u>21-Jun-2006</u> | Date          | Prepared: | <u>2-Jul-2006</u> | Date Analyzed: | 2-Jul-2006      |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL  | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 1.5  | 4.0 | 1.5           | 4.00     | N/A     | U         |
| trans-1,3-DICHLOROPROPENE | 0.63 | 4.0 | 0.63          | 4.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.63 | 4.0 | 0,63          | 4.00     | N/A     | U         |
| VINYL CHLORIDE            | 1.0  | 4.0 | 1.0           | 4.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits Qualifier |
|-----------------------------------------------|----------|--------------------------|
| TOLUENE-D8                                    | 91       | 81 - 120                 |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 92       | 76 - 119                 |
| 1,2-DICHLOROETHANE-d4                         | 103      | 72 - 119                 |
| DIBROMOFLUOROMETHANE                          | 89       | 85 - 115                 |

UNA 7/2006

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 572434      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 383351      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 186502      | 88272 - 353088    | ]         |

Comments:

- \*

Usk Apoloo

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | A6B22301          |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M126140A        | Lab Sample ID:          | <u>A6710207</u>   | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                                | MDL  | RL   | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------|------|------|---------------|----------|---------|-----------|
| 1,1,1,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,1-TRICHLOROETHANE                  | 0.28 | 1.0  | 0.28          | 1.00     | N/A     | U         |
| 1,1,2,2-TETRACHLOROETHANE              | 0.21 | 0.50 | 0.21          | 1.00     | N/A     | U         |
| 1,1,2-TRICHLOROETHANE                  | 0.22 | 1.0  | 0.22          | 1.00     | · N/A   | U         |
| 1,1-DICHLOROETHANE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROETHENE                     | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 1,1-DICHLOROPROPENE                    | 0.23 | 1.0  | 0.23          | 1.00     | N/A     |           |
| 1,2,3-TRICHLOROBENZENE                 | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | u         |
| 1,2,3-TRICHLOROPROPANE                 | 0.19 | 1.0  | 0.19          | 1.00     | N/A     | U         |
| 1,2,4-TRICHLOROBENZENE                 | 0.14 | 1.0  | 0.14          | 1.00     | N/A     |           |
| 1,2,4-TRIMETHYLBENZENE                 | 0.18 | 1.0  | 0.18          | 1.00     | N/A     |           |
| 1,2-DICHLORDETHANE                     | 0.23 | 0.50 | 0.23          | 1.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                    | 0,18 | 1.0  | 0.18          | 1.00     | N/A     |           |
| 1,2-DIBROMO-3-CHLOROPROPANE            | 0.31 | 2.0  | 0.31          | 1.00     | N/A     | U         |
| 1,2-DICHLOROPROPANE                    | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | <br>U     |
| 1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE) | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3,5-TRIMETHYLBENZENE (MESITYLENE)    | 0.20 | 1.0  | 0.20          | 1.00     | N/A     | U         |
| 1,3-DICHLOROBENZENE                    | 0.16 | 1.0  | 0.16          | 1.00     | N/A     | U         |
| 1,3-DICHLOROPROPANE                    | 0.22 | 0.50 | 0.22          | 1.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                    | 0.19 | 0.50 | 0.19          | 1.00     | N/A     | U         |
| 1-CHLOROHEXANE                         | 0.30 | 1.0  | 0.30          | 1.00     | N/A     | U         |
| 2,2-DICHLOROPROPANE                    | 0.27 | 1.0  | 0.27          | 1.00     | N/A     | U         |
| 2-CHLOROTOLUENE                        | D.21 | 1.0  | 0.21          | 1.00     | N/A     | U         |
| 4-CHLOROTOLUENE                        | 0.18 | 1.0  | 0.18          | 1.00     | N/A     | υ         |
| ACETONE                                | 0.94 | 10   | 0.94          | 1.00     | N/A     | U         |
| BENZENE                                | 0.25 | 0.50 | 0.25          | 1.00     | N/A     | Li I      |
| BROMOBENZENE                           | 0.23 | 1.0  | 0.23          | 1.00     | N/A     | υ         |
| BROMOCHLOROMETHANE                     | 0.25 | 1.0  | 0.25          | 1.00     | N/A     | U         |
| BROMODICHLOROMETHANE                   | 0.17 | 0.50 | 0.17          | 1.00     | N/A     | U         |
| BROMOFORM                              | 0.13 | 1.0  | 0.13          | 1.00     | N/A     | U         |

with yob

### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | 8260-A98 Pre       | paratory Method: | <u>sw5030</u>     | AAB #:         | <u>A6822301</u>   |
|--------------------|--------------------|------------------|-------------------|----------------|-------------------|
| Lab Name:          | STL Buffalo        |                  |                   | Contract #:    | <u> </u>          |
| Field Sample ID:   | TF3M126140A        | Lab Sample ID:   | <u>A6710207</u>   | Matrix:        | WATER             |
| % Solids:          | Initial            | Calibration ID:  | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:   | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                                       | MDL   | RL   | Concentration | Dilution | Confirm | Qualifier |
|-----------------------------------------------|-------|------|---------------|----------|---------|-----------|
| BROMOMETHANE                                  | 0.27  | 3.0  | 0.27          | 1.00     | N/A     | υ         |
| CARBON TETRACHLORIDE                          | 0.22  | 1.0  | 0.22          | 1.00     | N/A     | U         |
| CHLOROBENZENE                                 | 0.19  | 0.50 | 0.19          | 1.00     | N/A     | บ         |
| CHLOROETHANE                                  | 0.18  | 1.0  | 0.62          | 1.00     | N/A     | F         |
| CHLOROFORM                                    | 0.26  | 0.50 | 0.26          | 1.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.15  | 1.0  | 0.69          | 1.00     | N/A     | F         |
| cis-1,2-DICHLOROETHYLENE                      | 0.32  | 1.0  | 0.32          | 1.00     | N/A     | U         |
| cis-1,3-DICHLOROPROPENE                       | 0.24  | 0.50 | 0.24          | 1.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.15  | 0.50 | 0.15          | 1.00     | N/A     | U         |
| D I BROMOME THANE                             | 0.26  | 1.0  | 0.26          | 1.00     | N/A     | υ         |
| DICHLORODIFLUOROMETHANE                       | 0.15  | 1.0  | 0.15          | 1.00     | N/A     | υ         |
| ETHYLBENZENE                                  | 0.23  | 1.0  | 0.23          | 1.00     | N/A     | U         |
| HEXACHLOROBUTADIENE                           | 0.11  | 0.60 | 0.11          | 1.00     | N/A     | U         |
| I SOPROPYLBENZENE (CUMENE)                    | 0.19  | 1.0  | 9.6           | 1.00     | N/A     |           |
| METHYLENE CHLORIDE                            | 0.31  | 1.0  | 0.31          | 1.00     | N/A     | U         |
| tert-BUTYL METHYL ETHER                       | 0.12  | 5.0  | 0.12          | 1.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 0.82  | 10   | 0.82          | 1.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 0.76  | 10   | 0.76          | 1.00     | N/A     | U         |
| n-BUTYLBENZENE                                | 0.18  | 1.0  | 0.18          | 1.00     | N/A     | U         |
| n-PROPYLBENZENE                               | 0.19  | 1.0  | 1.4           | 1.00     | N/A     |           |
| M,P-XYLENE(SUM OF ISOMERS)                    | 0.44  | 2.0  | 0.44          | 1.00     | N/A     | U         |
| NAPHTHALENE                                   | 0.14  | 1.0  | 0.22          | 1.00     | N/A     | F         |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.21  | 1.0  | 0.21          | 1.00     | N/A     | U         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.17  | 1.0  | 0.17          | 1.00     | N/A     | υ         |
| SEC-BUTYLBENZENE                              | 0.19  | 1.0  | 4.4           | 1.00     | N/A     |           |
| STYRENE                                       | 0.21  | 1.0  | 0.21          | 1.00     | N/A     | U         |
| TRICHLOROETHYLENE (TCE)                       | 0.23  | 1.0  | 0.23          | 1.00     | N/A     | U         |
| t-BUTYLBENZENE                                | 0.23  | 1.0  | 2.4           | 1.00     | N/A     |           |
| TETRACHLOROETHYLENE(PCE)                      | 0.19  | 1.0  | 0.19          | 1.00     | N/A     | U         |
| TOLUENE                                       | .0.22 | 1.0  | 0.22          | 1.00     | N/A     | U         |

| Analytical Method: | 8260-A98           | Preparatory Method:     | <u>sw5030</u>     | AAB #         | : <u>A6B22301</u> |
|--------------------|--------------------|-------------------------|-------------------|---------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #    | *                 |
| Field Sample ID:   | TF3M126140A        | Lab Sample ID:          | A6710207          | Matrix        | : WATER           |
| % Solids:          | *****              | Initial Calibration ID: | A610001680        |               |                   |
| Date Received:     | 21-Jun-2006        | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyzed | <u>2-Jul-2006</u> |
|                    |                    |                         |                   |               |                   |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL. | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 0.38 | 1.0 | 0.38          | 1.00     | N/A     | U         |
| trans-1,3-DICHLOROPROPENE | 0.16 | 1.0 | D.16          | 1.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.16 | 1.0 | 0.16          | 1.00     | N/A     | U         |
| VINYL CHLORIDE            | 0.26 | 1.0 | 0.26          | 1.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits | Qualifier |
|-----------------------------------------------|----------|----------------|-----------|
| TOLUENE-D8                                    | 82       | 81 - 120       |           |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 92       | 76 - 119       | 1         |
| 1,2-DICHLORGETHANE-d4                         | 114      | 72 - 119       |           |
| DIBROMOFLUOROMETHANE                          | 88       | 85 - 115       |           |

cent glados

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 625685      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 418621      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 208116      | 88272 - 353088    |           |

#### Comments:

with Alaph

## AFCEE DRGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>sw5030</u>     | AAB #:         | A6B22301          |
|--------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
| Lab Name:          | <u>STL Buffalo</u> |                         |                   | Contract #:    | <u> </u>          |
| Field Sample ID:   | TF3M21140A         | Lab Sample ID:          | A6710211DL        | Matrix:        | WATER             |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| 1,1,1,2-TETRACHLORDETHANE         0.84         2.0         0.84         4.00         N/A           1,1,1-TRICHLORDETHANE         1.1         4.0         1.1         4.00         N/A           1,1,2,2-TETRACHLORDETHANE         0.84         2.0         0.84         4.00         N/A           1,1,2,2-TETRACHLORDETHANE         0.86         4.0         0.86         4.00         N/A           1,1,2-TRICHLORDETHANE         0.86         4.0         0.86         4.00         N/A           1,1-DICHLORDETHANE         1.1         4.0         1.1         4.00         N/A           1,1-DICHLORDETHANE         1.1         4.0         1.1         4.00         N/A           1,1-DICHLORDETHANE         1.1         4.0         1.1         4.00         N/A           1,1-DICHLORDETHANE         0.76         4.0         0.76         4.00         N/A           1,2,3-TRICHLORDBENZENE         0.55         4.0         0.56         4.00         N/A           1,2,4-TRIMETHYLBENZENE         0.74         4.0         0.74         4.00         N/A           1,2,4-TRIMETHYLBENZENE         0.71         4.0         0.71         4.00         N/A           1,2-DICHLOROBENZENE <td< th=""><th>Qualifier</th></td<>                                                                                                                                                                                                                                                         | Qualifier |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1,1,2,2-TETRACHLOROETHANE       0.84       2.0       0.84       4.00       N/A         1,1,2,2-TETRACHLOROETHANE       0.86       4.0       0.86       4.00       N/A         1,1,2-TETRICHLOROETHANE       0.86       4.0       0.86       4.00       N/A         1,1-DICKLOROETHANE       1.1       4.0       1.1       4.00       N/A         1,1-DICKLOROETHENE       1.1       4.0       1.1       4.00       N/A         1,1-DICKLOROETHENE       0.51       4.0       0.92       4.00       N/A         1,2,3-TETICHLOROBENZENE       0.51       4.0       0.51       4.00       N/A         1,2,4-TETRICHLOROBENZENE       0.76       4.0       0.76       4.00       N/A         1,2,4-TETRICHLOROBENZENE       0.74       4.0       0.74       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.74       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DIBROMO-3-CHLOROPROPANE       1.2       8.0       1.2       4.00       N/A         1,2-DIBROMO-3-CHLOROPROPANE       1.0       4.00       N/A       1.3,5-TETIMETHYLENE DIBROMIDE)       0.81                                                                                                                                                                                                                                                                                                                                            | U         |
| 17.17.2.1         17.17.2.1         17.17.2.1         17.17.2.1         17.17.2.1         17.17.2.1         17.1         4.00         1.1         4.00         N/A           1,1-2.TRICHLOROETHANE         1.1         4.0         1.1         4.00         N/A           1,1-DICHLOROETHANE         1.1         4.0         1.1         4.00         N/A           1,1-DICHLOROETHANE         1.1         4.0         1.1         4.00         N/A           1,1-DICHLOROETHANE         0.92         4.0         0.92         4.00         N/A           1,2-JATRICHLOROBENZENE         0.51         4.0         0.51         4.00         N/A           1,2,3-TRICHLOROBENZENE         0.76         4.0         0.76         4.00         N/A           1,2,4-TRICHLOROBENZENE         0.76         4.0         0.74         4.00         N/A           1,2-DICHLOROBENZENE         0.71         4.0         0.71         4.00         N/A           1,2-DICHLOROBENZENE         0.71         4.0         0.71         4.00         N/A           1,2-DIBROMO-3-CHLOROPROPANE         1.2         8.0         1.2         4.00         N/A           1,2-DIBROMO-3-CHLOROPROPANE         1.0         4.00 <t< td=""><td>U</td></t<>                                                                                                                                                                                                                                                          | U         |
| 1,1-1,2-TRICHONOCTHAME       1.1       4.0       1.1       4.00       N/A         1,1-DICHLOROETHAME       1.1       4.0       1.1       4.00       N/A         1,1-DICHLOROETHEME       1.1       4.0       1.1       4.00       N/A         1,1-DICHLOROETHEME       0.92       4.0       0.92       4.00       N/A         1,2,3-TRICHLOROBENZENE       0.51       4.0       0.51       4.00       N/A         1,2,3-TRICHLOROBENZENE       0.76       4.0       0.76       4.00       N/A         1,2,4-TRIMETHYLBENZENE       0.74       4.0       0.76       4.00       N/A         1,2-DICHLOROBENZENE       0.74       4.0       0.74       4.00       N/A         1,2-4-TRIMETHYLBENZENE       0.74       4.0       0.74       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DIGROMO-3-CHLOROPROPANE       1.0       4.0       0.71       4.00       N/A         1,2-DIGROMO-3-CHLOROPROPAN                                                                                                                                                                                                                                                                                                                                                           | U         |
| 1,1-DICHLORCETHARE         1.1         4.0         1.1         4.00         N/A           1,1-DICHLORCETHENE         0.92         4.0         0.92         4.00         N/A           1,2-JICHLOROPROPENE         0.92         4.0         0.92         4.00         N/A           1,2,3-TRICHLOROBENZENE         0.51         4.0         0.51         4.00         N/A           1,2,3-TRICHLOROBENZENE         0.76         4.0         0.76         4.00         N/A           1,2,4-TRIMETHYLBENZENE         0.76         4.0         0.74         4.00         N/A           1,2-OICHLOROBENZENE         0.74         4.0         0.74         4.00         N/A           1,2-A-TRIMETHYLBENZENE         0.74         4.0         0.74         4.00         N/A           1,2-DICHLOROBENZENE         0.71         4.0         0.71         4.00         N/A           1,2-DIGHLOROBENZENE         0.71         4.0         0.71         4.00         N/A           1,2-DIGHLOROPROPANE         1.2         8.0         1.2         4.00         N/A           1,2-DIGHLOROPROPANE         1.0         4.0         0.81         4.00         N/A           1,2-DIGHLOROPROPANE         0.81                                                                                                                                                                                                                                                                                              | U         |
| 1,1-DICHLOROPROPENE         0.92         4.0         0.92         4.00         N/A           1,2,3-TRICHLOROBENZENE         0.51         4.0         0.51         4.00         N/A           1,2,3-TRICHLOROBENZENE         0.51         4.0         0.76         4.00         N/A           1,2,3-TRICHLOROBENZENE         0.76         4.0         0.76         4.00         N/A           1,2,4-TRICHLOROBENZENE         0.56         4.0         0.56         4.00         N/A           1,2,4-TRICHLOROBENZENE         0.74         4.0         0.74         4.00         N/A           1,2,4-TRIMETHYLBENZENE         0.74         4.0         0.74         4.00         N/A           1,2-DICHLOROBENZENE         0.71         4.0         0.71         4.00         N/A           1,2-DICHLOROBENZENE         0.71         4.0         0.71         4.00         N/A           1,2-DICHLOROBENZENE         0.71         4.0         0.71         4.00         N/A           1,2-DIGHOROPAPANE         1.2         8.0         1.2         4.00         N/A           1,2-DISROMO-3-CHLOROPROPANE         1.0         4.0         0.81         4.00         N/A           1,2-DIGHOROPROPANE <t< td=""><td>U</td></t<>                                                                                                                                                                                                                                                                  | U         |
| 1,2,3-TRICHLOROBENZENE       0.51       4.0       0.51       4.00       N/A         1,2,3-TRICHLOROBENZENE       0.76       4.0       0.76       4.00       N/A         1,2,3-TRICHLOROBENZENE       0.76       4.0       0.76       4.00       N/A         1,2,4-TRICHLOROBENZENE       0.76       4.0       0.76       4.00       N/A         1,2,4-TRICHLOROBENZENE       0.74       4.0       0.74       4.00       N/A         1,2-4-TRIMETHYLBENZENE       0.74       4.0       0.74       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DIENDROBO-3-CHLOROPROPANE       1.2       8.0       1.2       4.00       N/A         1,2-DIENDROPROPANE       1.0       4.0       1.0       4.00       N/A         1,2-DIENDROPROPANE       0.81       4.0       0.81       4.00       N/A         1,3-STRIMETHYLBENZENE (MESITYLENE)       0.81       4.0       0.64       4.00       N/A         1,                                                                                                                                                                                                                                                                                                                                                           | U         |
| 1,2,3 TRICHLOROPROPANE       0.76       4.00       N/A         1,2,3 TRICHLOROPROPANE       0.76       4.00       N/A         1,2,4 TRICHLOROBENZENE       0.56       4.00       0.56       4.00       N/A         1,2,4 TRICHLOROBENZENE       0.74       4.00       0.74       4.00       N/A         1,2,4 TRIMETHYLBENZENE       0.74       4.00       0.74       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.00       0.71       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.00       0.71       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.00       0.71       4.00       N/A         1,2-DIBROMO-3-CHLOROPROPANE       1.2       8.0       1.2       4.00       N/A         1,2-DIBROMO-3-CHLOROPROPANE       1.0       4.00       N/A       1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)       0.81       4.00       N/A         1,2-DIBROMOETHANE (MESITYLENE)       0.81       4.00       0.81       4.00       N/A         1,3-DICHLOROBENZENE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROBENZENE       0.89       2.0       0.89       4.00       N/A         <                                                                                                                                                                                                                                                                                                                                     | U         |
| 1,2,4-TRICHLOROBENZENE       0.56       4.0       0.56       4.00       N/A         1,2,4-TRICHLOROBENZENE       0.74       4.0       0.74       4.00       N/A         1,2,4-TRIMETHYLBENZENE       0.74       4.0       0.74       4.00       N/A         1,2-DICHLOROETHANE       0.93       2.0       0.93       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DICHLOROPROPANE       1.2       8.0       1.2       4.00       N/A         1,2-DICHLOROPROPANE       1.0       4.0       1.0       4.00       N/A         1,2-DICHLOROPROPANE       1.0       4.0       1.0       N/A         1,2-DICHLOROPROPANE       0.81       4.00       N/A         1,2-DICHLOROPROPANE       0.81       4.00       N/A         1,3-DICHLOROPROPANE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROBENZENE       0.64       4.0       0.64       4.00       N/A         1,4-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A                                                                                                                                                                                                                                                                                                                                                                             | U         |
| 1,2,4 TRIMETHYLBENZENE       0.74       4.0       0.74       4.00       N/A         1,2,4-TRIMETHYLBENZENE       0.73       2.0       0.93       4.00       N/A         1,2-DICHLOROETHANE       0.93       2.0       0.93       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DIBROMO-3-CHLOROPROPANE       1.2       8.0       1.2       4.00       N/A         1,2-DIBROMO-3-CHLOROPROPANE       1.0       4.0       1.0       4.00       N/A         1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)       0.81       4.0       0.81       4.00       N/A         1,3-5-TRIMETHYLBENZENE (MESITYLENE)       0.81       4.0       0.81       4.00       N/A         1,3-DICHLOROPROPANE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROPROPANE       0.89       2.0       0.89       4.00       N/A         1,4-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1,4-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A <t< td=""><td>Ų</td></t<>                                                                                                                                                                                                                                                                                                                             | Ų         |
| 1,2-DICHLOROETHANE       0.93       2.0       0.93       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DICHLOROBENZENE       1.2       8.0       1.2       4.00       N/A         1,2-DIBROMO-3-CHLOROPROPANE       1.0       4.0       1.2       4.00       N/A         1,2-DICHLOROPROPANE       1.0       4.0       1.0       4.00       N/A         1,2-DICHLOROPROPANE       1.0       4.0       0.81       4.00       N/A         1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)       0.81       4.0       0.81       4.00       N/A         1,3-5-TRIMETHYLBENZENE (MESITYLENE)       0.81       4.0       0.81       4.00       N/A         1,3-DICHLOROBENZENE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROPROPANE       0.89       2.0       0.89       4.00       N/A         1,4-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1,4-DICHLOROBENZENE       1.1       4.0       1.1       4.00       N/A         2,2-DI                                                                                                                                                                                                                                                                                                                                                           | U         |
| 1,2-DICHLOROBENZENE       0.71       4.0       0.71       4.00       N/A         1,2-DIBROMO-3-CHLOROPROPANE       1.2       8.0       1.2       4.00       N/A         1,2-DIBROMO-3-CHLOROPROPANE       1.0       4.0       1.2       4.00       N/A         1,2-DICHLOROPROPANE       1.0       4.0       1.0       4.00       N/A         1,2-DICHLOROPROPANE       1.0       4.0       0.81       4.00       N/A         1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)       0.81       4.0       0.81       4.00       N/A         1,3-5-TRIMETHYLBENZENE (MESITYLENE)       0.81       4.0       0.81       4.00       N/A         1,3-DICHLOROBENZENE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROPROPANE       0.89       2.0       0.89       4.00       N/A         1,3-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1,4-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1,4-DICHLOROBENZENE       1.1       4.0       1.1       4.00       N/A         2,2-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         <                                                                                                                                                                                                                                                                                                                                                       | U         |
| 1,2-DIBROMO-3-CHLOROPROPANE       1.2       8.0       1.2       4.00       N/A         1,2-DICHLOROPROPANE       1.0       4.0       1.0       4.00       N/A         1,2-DICHLOROPROPANE       1.0       4.0       1.0       4.00       N/A         1,2-DICHLOROPROPANE       0.81       4.0       0.81       4.00       N/A         1,2-DIGROMOETHANE (ETHYLENE DIBROMIDE)       0.81       4.0       0.81       4.00       N/A         1,3-DICHLOROBENZENE (MESITYLENE)       0.81       4.0       0.64       4.00       N/A         1,3-DICHLOROBENZENE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1,4-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1,4-DICHLOROBENZENE       1.2       4.0       1.2       4.00       N/A         2,2-DICHLOROPROPANE       1.1       4.0       1.1       4.00       N/A         2,2-DICHLOROPROPANE       0.83       4.0       0.83       4.00       N/A         2,2-DICHLOROPROPANE       0.74       4.0       0.74       4.00       N/A         2-CHLOROT                                                                                                                                                                                                                                                                                                                                                           | U         |
| 1,2-DICHLOROPROPANE       1.0       4.0       1.0       4.00       N/A         1,2-DICHLOROPROPANE       1.0       4.0       0.81       4.00       N/A         1,2-DIGROMOETHANE (ETHYLENE DIBROMIDE)       0.81       4.0       0.81       4.00       N/A         1,3-5-TRIMETHYLENENE (MESITYLENE)       0.81       4.0       0.81       4.00       N/A         1,3-DICHLOROBENZENE       (MESITYLENE)       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROBENZENE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROBENZENE       0.64       4.0       0.64       4.00       N/A         1,4-DICHLOROPROPANE       0.89       2.0       0.89       4.00       N/A         1,4-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1,2-DICHLOROPROPANE       1.2       4.0       1.1       4.00       N/A         2,2-DICHLOROPROPANE       1.1       4.0       1.1       4.00       N/A         2,2-DICHLOROPROPANE       0.83       4.0       0.83       4.00       N/A         2-CHLOROTOLUENE       0.83       4.0       0.74       4.00       N/A <td>U</td>                                                                                                                                                                                                                                                                                                                                                       | U         |
| 1,2-DIECORDENSERAL       0.81       4.0       0.81       4.00       N/A         1,3,5-TRIMETHYLENE DIBROMIDE)       0.81       4.0       0.81       4.00       N/A         1,3,5-TRIMETHYLENZENE (MESITYLENE)       0.81       4.0       0.81       4.00       N/A         1,3-DICHLOROBENZENE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROBENZENE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROBENZENE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1,4-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1-CHLOROHEXANE       1.2       4.0       1.2       4.00       N/A         2,2-DICHLOROPROPANE       1.1       4.0       1.1       4.00       N/A         2,2-DICHLOROPROPANE       0.83       4.0       0.83       4.00       N/A         2-CHLOROTOLUENE       0.83       4.0       0.74       4.00       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U         |
| 1,2-01BROMOLTINAL (CHITELAL OTBIOLIDE)       0.81       4.0       0.81       4.00       N/A         1,3,5-TRIMETHYLBENZENE (MESITYLENE)       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROBENZENE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROPROPANE       0.89       2.0       0.89       4.00       N/A         1,4-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1,4-DICHLOROBENZENE       1.2       4.0       1.2       4.00       N/A         1,2-DICHLOROPROPANE       1.2       4.0       1.1       4.00       N/A         2,2-DICHLOROPROPANE       1.1       4.0       1.1       4.00       N/A         2,2-DICHLOROPROPANE       0.83       4.0       0.83       4.00       N/A         2,2-DICHLOROPROPANE       1.1       4.0       1.1       4.00       N/A         2-CHLOROTOLUENE       0.83       4.0       0.83       4.00       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U         |
| 1,3.5 TKINETITIELEKE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROBENZENE       0.64       4.0       0.64       4.00       N/A         1,3-DICHLOROPROPANE       0.89       2.0       0.89       4.00       N/A         1,4-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1-CHLOROBENZENE       1.2       4.0       1.2       4.00       N/A         2,2-DICHLOROPROPANE       1.1       4.0       1.1       4.00       N/A         2-CHLOROTOLUENE       0.83       4.0       0.83       4.00       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | u         |
| 1,3-DICHLOROPROPANE       0.89       2.0       0.89       4.00       N/A         1,4-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1-CHLOROBENZENE       1.2       4.0       1.2       4.00       N/A         2,2-DICHLOROPROPANE       1.1       4.0       1.1       4.00       N/A         2,2-DICHLOROPROPANE       1.1       4.0       1.1       4.00       N/A         2-CHLOROTOLUENE       0.83       4.0       0.83       4.00       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U         |
| 1,4-DICHLOROBENZENE       0.77       2.0       0.77       4.00       N/A         1-CHLOROBENZENE       1.2       4.0       1.2       4.00       N/A         2,2-DICHLOROPROPANE       1.1       4.0       1.1       4.00       N/A         2-CHLOROTOLUENE       0.83       4.0       0.83       4.00       N/A         4-CHLOROTOLUENE       0.74       4.0       0.74       4.00       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | บ         |
| 1-CHLOROHEXANE       1.2       4.0       1.2       4.00       N/A         2,2-DICHLOROPROPANE       1.1       4.0       1.1       4.00       N/A         2-CHLOROTOLUENE       0.83       4.0       0.83       4.00       N/A         4-CHLOROTOLUENE       0.74       4.0       0.74       4.00       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U         |
| International         Interna         International         International< | υ         |
| 2-CHLOROTOLUENE         0.83         4.0         0.83         4.00         N/A           4-CHLOROTOLUENE         0.74         4.0         0.74         4.00         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | υ         |
| 4-CHLOROTOLUENE         0.74         4.0         0.74         4.00         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U         |
| ACETONE 3.8 40 3.8 4.00 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U         |
| BENZENE 0.99 2.0 0.99 4.00 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U         |
| BROMOBENZENE 0.93 4.0 0.93 4.00 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U         |
| BROMOCHLOROMETHANE 0.99 4.0 0.99 4.00 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U         |
| BROMODICHLOROMETHANE 0.69 2.0 0.69 4.00 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U         |
| BROMOFORM 0.54 .4.0 0.54 4.00 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U         |

AFRE FORM 0-2

| A | nalytical Method: | <u>8260-A98</u>    | Preparatory Method:     | <u>s₩5030</u>     | AAB #:         | <u>A6B22301</u>   |
|---|-------------------|--------------------|-------------------------|-------------------|----------------|-------------------|
|   | Lab Name:         | <u>STL Buffalo</u> |                         |                   | Contract #:    | ·····             |
|   | Field Sample ID:  | TF3M21140A         | Lab Sample ID:          | A6710211DL        | Matrix:        | WATER             |
|   | % Solids:         |                    | Initial Calibration ID: | A610001680        |                |                   |
|   | Date Received:    | <u>21-Jun-2006</u> | Date Prepared:          | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |
|   |                   |                    |                         |                   |                |                   |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                                       | MDL.   | RL  | Concentration | Dilution | Confirm | 0.001144  |
|-----------------------------------------------|--------|-----|---------------|----------|---------|-----------|
| BROMOMETHANE                                  |        |     |               |          |         | Qualifier |
|                                               | 1.1    | 12  | 1.1           | 4.00     | N/A     | U         |
|                                               | 0.88   | 4.0 | 0.88          | 4.00     | N/A     | U         |
| CHLOROBENZENE                                 | 0.77   | 2.0 | 0.77          | 4.00     | N/A     | U         |
| CHLOROETHANE                                  | 0.72   | 4.0 | 0.72          | 4.00     | N/A     | U         |
| CHLOROFORM                                    | 1.0    | 2.0 | 1_0           | 4.00     | N/A     | U         |
| CHLOROMETHANE                                 | 0.62   | 4.0 | 0.62          | 4.00     | N/A     | U         |
| cis-1,2-DICHLOROETHYLENE                      | 1.3    | 4.0 | 1.3           | 4.00     | N/A     | U         |
| cis-1,3-DICHLOROPROPENE                       | 0.95   | 2.0 | 0.95          | 4.00     | N/A     | U         |
| DIBROMOCHLOROMETHANE                          | 0.61   | 2.0 | 0.61          | 4.00     | N/A     | <u></u> ບ |
| DIBROMOMETHANE                                | 1.1    | 4.0 | 1.1           | 4.00     | N/A     | U         |
| DICHLORODIFLUOROMETHANE                       | 0.62   | 4.0 | 0.62          | 4.00     | N/A     | U         |
| ETHYLBENZENE                                  | 0.93   | 4.0 | 0.93          | 4.00     | N/A     | U U       |
| HEXACHLOROBUTADIENE                           | 0.43   | 2.4 | 0.43          | 4.00     | N/A     | U         |
| ISOPROPYLBENZENE (CUMENE)                     | 0.76   | 4.0 | 54 -          | 4.00     | N/A     | •         |
| METHYLENE CHLORIDE                            | 1.2    | 4.0 | 1.2           | 4.00     | N/A     | U         |
| tert-BUTYL METHYL ETHER                       | 0.49   | 20  | D.49          | 4.00     | N/A     | U         |
| METHYL ETHYL KETONE (2-BUTANONE)              | 3.3    | 40  | 3.3           | 4.00     | N/A     | U         |
| METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE) | 3.0    | 40  | 3.0           | 4.00     | N/A     | U         |
| n-BUTYLBENZENE                                | 0.71   | 4.0 | 4.0 K         | 4.00     | N/A     |           |
| n-PROPYLBENZENE                               | 0.76   | 4.0 | 8.1 🕌         | 4.00     | N/A     |           |
| M,P-XYLENE(SUM OF ISOMERS)                    | 1.8    | 8.0 | 1.8           | 4.00     | N/A     | U         |
| NAPHTHALENE                                   | 0.56   | 4.0 | 1.6 4         | 4.00     | N/A     | F         |
| O-XYLENE (1,2-DIMETHYLBENZENE)                | 0.84   | 4.0 | 0.84          | 4.00     | N/A     | U         |
| P-CYMENE (p-ISOPROPYLTOLUENE)                 | 0.68   | 4.0 | 3.2 *         | 4.00     | N/A     | F         |
| SEC-BUTYLBENZENE                              | 0.78   | 4.0 | 5.1 4         | 4.00     | N/A     |           |
| STYRENE                                       | 0.82   | 4.0 | 0.82          | 4.00     | N/A     | U         |
| TRICHLOROETHYLENE (TCE)                       | 0.94   | 4.0 | 0.94          | 4.00     | N/A     | U         |
| t-BUTYLBENZENE                                | 0.92   | 4.0 | 1.2 🔆         | 4.00     | N/A     | F         |
| TETRACHLOROETHYLENE(PCE)                      | 0.76   | 4.0 | 0.76          | 4.00     | N/A     | U         |
| TOLUENE                                       | 0.90   | 4.0 | 0.90          | 4,00     | N/A     | U         |
|                                               | ······ | L   |               |          |         |           |

\* lesubb transferred to original sample TF3 M21140A

AFREE FORM 0-2

| Analytical Method: | <u>8260-A98</u>    | Preparatory Method: | <u>sw5030</u>     | AAB #:         | A6B22301          |
|--------------------|--------------------|---------------------|-------------------|----------------|-------------------|
| Lab Name:          | STL Buffalo        |                     |                   | Contract #:    |                   |
| Field Sample ID:   | TF3M21140A         | Lab Sample ID:      | A6710211DL        | Matrix:        | WATER             |
| % Solids:          | Init               | ial Calibration ID: | <u>A610001680</u> |                |                   |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:      | <u>2-Jul-2006</u> | Date Analyzed: | <u>2-Jul-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                   | MDL   | RL  | Concentration | Dilution | Confirm | Qualifier |
|---------------------------|-------|-----|---------------|----------|---------|-----------|
| trans-1,2-DICHLOROETHENE  | 1.5   | 4.0 | 1.5           | 4.00     | N/A     | υ         |
| trans-1,3-DICHLOROPROPENE | 0.63  | 4.0 | 0.63          | 4.00     | N/A     | U         |
| TRICHLOROFLUOROMETHANE    | 0.63  | 4.0 | 0.63          | 4.00     | N/A     | U         |
| VINYL CHLORIDE            | . 1.0 | 4.0 | 1.0           | 4.00     | N/A     | U         |

| Surrogate                                     | Recovery | Control Limits | Qualifier |
|-----------------------------------------------|----------|----------------|-----------|
| TOLUENE-D8                                    | 88       | 81 - 120       |           |
| 1-BROMO-4-FLUOROBENZENE (4-BROMOFLUOROBENZENE | 91       | 76 - 119       |           |
| 1,2-DICHLOROETHANE-d4                         | 104      | 72 - 119       |           |
| DIBROMOFLUOROMETHANE                          | 88       | 85 - 115       |           |

| CURK     |  |
|----------|--|
| 21 rolob |  |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| FLUOROBENZENE          | 571233      | 259272 - 1037088  |           |
| CHLOROBENZENE-d5       | 383596      | 178213 - 712850   |           |
| 1,4-DICHLOROBENZENE-d4 | 189115      | 88272 - 353088    |           |

Comments:

# AFCEE ORGANIC ANALYSES DATA PACKAGE

|                  | 1                                                                        |                                                                                                 |                |
|------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------|
| Analytical Metho | d: <u>8270-A98</u>                                                       | AAB #: <u>A6B21680</u>                                                                          |                |
| Lab Nar          | e: <u>STL Buffalo</u>                                                    | Contract #:                                                                                     |                |
| Base/Conman      | d: <u>Griffiss Airforce Base</u>                                         | Prime Contractor: Fanning, Phi                                                                  | illips & Molna |
|                  |                                                                          |                                                                                                 |                |
|                  | Field Sample ID                                                          | Lab Sample ID                                                                                   |                |
|                  | 0620060E<br>TF3M119R120A<br>TF3M119R120A<br>TF3M119R120A<br>TF3M121R120A | <u>A6710213</u><br><u>A6710204</u><br><u>A6710204MS</u><br><u>A6710204SD</u><br><u>A6710205</u> |                |
|                  |                                                                          |                                                                                                 |                |
|                  |                                                                          |                                                                                                 |                |

Comments:

See Case Narrative

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

| <u>.</u>   |        |
|------------|--------|
| Signature: | $\geq$ |
| Date:      |        |

Name: John Schove

Title: Operations Manager

123/213

why why

### AFPEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytic     | al Method:                                           | 8270-A98           | Preparatory M     | ethod: | <u>sw3510</u> |                    | AAB #: <u>A6B</u> | 21680           |         |
|--------------|------------------------------------------------------|--------------------|-------------------|--------|---------------|--------------------|-------------------|-----------------|---------|
|              | Lab Name:                                            | STL Buffalo        |                   |        |               | Contr              | act #:            |                 |         |
| Field        | Sample ID:                                           | 0620060E           | Lab Samp          | le ID: | A6710213      | . М                | atrix: <u>WAT</u> | ER              |         |
|              | % Solids:                                            | ž1                 | nitial Calibratio | on ID: | A610001637    | 7                  |                   |                 |         |
| Date         | Received:                                            | <u>21-Jun-2006</u> | Date Prep         | bared: | 26-Jun-200    | <u>)6</u> Date Ana | lyzed: <u>28</u>  | <u>Jun-2006</u> |         |
|              | Concentration Units (ug/L or mg/kg dry weight): UG/L |                    |                   |        |               |                    |                   |                 |         |
|              | Analyte                                              |                    | MDL               |        | RL            | Concentration      | Dilution          | Confirm         | Qualifi |
| TRICHLOROBEN | ZENE                                                 |                    | 2                 |        | 10            | 2                  | 1.00              | N/A             | U       |
| CHLOROBENZEN | -                                                    |                    | 2                 |        | 10            | 2                  | 1.00              | N/A             | U       |
| CHLOROBENZEN |                                                      |                    | 2                 |        | 10            | 2                  | 1.00              | N/A             | U       |
| CHLOROBENZEN | ž                                                    |                    | 2                 |        | 10            | 2                  | 1.00              | N/A             | υ       |
| ITROTOLUENE  |                                                      |                    | 2                 |        | 10            | 2                  | 1.00              | N/A             | U       |

F

. . . . .

| Analyte                                      | MDL  | RL | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------------|------|----|---------------|----------|---------|-----------|
| 1,2,4-TRICHLOROBENZENE                       | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                          | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 1,3-DICHLOROBENZENE                          | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                          | 2    | 10 | 2             | 1.00     | N/A     | υ         |
| 2,4-DINITROTOLUENE                           | 2    | 10 | 2             | 1.00     | N/A     |           |
| 2,6-DINITROTOLUENE                           | 2    | 10 | .2            | 1.00     | N/A     | U         |
| 2-CHLORONAPHTHALENE                          | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 2-METHYLNAPHTHALENE                          | 0.09 | 10 | 0.09          | 1.00     | N/A     | U         |
| 2-NITROANILINE                               | 2    | 50 | 2             | 1.00     | N/A     | U         |
| 3-NITROANILINE                               | 2    | 50 | 2             | 1.00     | N/A     | U         |
| 3,3'-DICHLOROBENZIDINE                       | 10   | 20 | 10            | 1.00     | N/A     | U         |
| 4-BROMOPHENYL PHENYL ETHER                   | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 4-CHLOROANILINE                              | 4    | 20 | 4             | 1.00     | N/A     | υ         |
| 4-CHLOROPHENYL PHENYL ETHER                  | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 4-NITROANILINE                               | 2    | 50 | 2             | 1.00     | N/A     | U         |
| ACENAPHTHYLENE                               | 0.09 | 10 | 0.09          | 1.00     | N/A     | U         |
| ACENAPHTHENE                                 | 0.1  | 10 | 0.1           | 1.00     | N/A     | U         |
| ANTHRACENE                                   | 0.1  | 10 | 0.1           | 1.00     |         | U         |
| BENZO(a)ANTHRACENE                           | 0.2  | 10 | 0.2           | 1.00     | <br>N/A | U         |
| BENZO(a)PYRENE                               | 0.09 | 10 | 0.09          | 1.00     | N/A     | U         |
| 8ENZO(k)FLUORANTHENE                         | 0.1  | 10 | 0.1           | 1.00     | N/A     | U         |
| BENZO(b)FLUORANTHENE                         | 0.2  | 10 | 0.2           | 1.00     | N/A     | U         |
| BENZO(g,h,i)PERYLENE                         | 0.1  | 10 | 0.1           | 1.00     | N/A     | U         |
| BENZYL ALCOHOL                               | 2    | 20 | 2             | 1.00     | N/A     | U         |
| bis(2-CHLOROETHOXY) METHANE                  | 2    | 10 | 2             | 1.00     | N/A     | U         |
| bis(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHE | 2    | 10 | 2             | 1.00     | N/A     | U         |
| bis(2-CHLOROISOPROPYL) ETHER                 | 2    | 10 | 2             | 1.00     | N/A     | U         |
| bis(2-ETHYLHEXYL) PHTHALATE                  | 2    | 10 | 2             | 1.00     | N/A     | U         |
| BENZYL BUTYL PHTHALATE                       | 2    | 10 | 2             | 1.00     | N/A     | U         |
| CHRYSENE                                     | 0.2  | 10 | 0.2           | 1.00     | N/A     | υ         |

# 124/213

# AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytic           | al Method: <u>8270-A98</u>   | Preparatory Me     | thod: <u>SW3510</u>      | į                  | aab #: <u>A6B</u>  | 21680    |           |
|--------------------|------------------------------|--------------------|--------------------------|--------------------|--------------------|----------|-----------|
|                    | Lab Name: <u>STL_Buffalo</u> |                    |                          | Contra             | act #:             |          |           |
| Field              | Sample ID: <u>0620060E</u>   | Lab Sampl          | e ID: <u>A6710213</u>    | <u>-</u>           | atrix: <u>WATI</u> | R        |           |
|                    | % Solids:                    | Initial Calibratio | n ID: <u>A610001637</u>  | -                  |                    |          |           |
| Date               | Received: 21-Jun-2006        | Date Prep          | oared: <u>26-Jun-200</u> | <u>)6</u> Date Ana | lyzed: <u>28-</u>  | Jun-2006 |           |
|                    | Concentration Units (ug/     | L or mg∕kg dry wei | ght): <u>UG/L</u>        |                    |                    |          |           |
|                    | Analyte                      | MDL.               | RL                       | Concentration      | Dilution           | Confirm  | Qualifier |
| DI-n-BUTYL PHTHALA | 1E                           | 3                  | 10                       | 3                  | 1.00               | N/A      | U         |
| DI-n-OCTYL PHTHALA | ſΈ                           | 2                  | 10                       | 2                  | 1.00               | N/A      | U .       |
| DIBENZ(a,h)ANTHRAC | žne                          | 0.1                | 10                       | 0.1                | 1.00               | N/A      | U         |
| DIBENZOFURAN       |                              | 0.1                | 10                       | 0.1                | 1.00               | N/A      | U         |
| DIETHYL PHTHALATE  |                              | 2                  | 10                       | 2                  | 1.00               | N/A      | U         |
| DIMETHYL PHTHALATE | ,                            | 2                  | 10                       | 2                  | 1.00               | N/A      | U         |
| FLUORANTHENE       |                              | 0.1                | 10                       | 0.1                | 1.00               | N/A      | U         |
| FLUORENE           |                              | 0.1                | 10                       | 0.1                | 1.00               | N/A      | U         |
| HEXACHLOROBENZENE  |                              | 2                  | 10                       | 2                  | 1.00               | N/A      | U         |
|                    |                              |                    |                          |                    |                    |          |           |

| LUORENE                    | 0.1 | 10   | 0.1 | 1.00 | N/A | U |
|----------------------------|-----|------|-----|------|-----|---|
| IEXACHLOROBENZENE          | 2   | 10   | 2   | 1.00 | N/A | U |
| IEXACHLOROBUTAD I ENE      | 4   | . 10 | 4   | 1.00 | N/A | U |
| IEXACHLOROETHANE           | 3   | 10   | 3   | 1.00 | N/A | U |
| NDENO(1,2,3-c,d)PYRENE     | 0.1 | 10   | 0.1 | 1.00 | N/A | U |
| SOPHORONE                  | 1   | 10   | 1   | 1.00 | N/A | U |
| N-NITROSODIPHENYLAMINE     | 3   | 10   | 3   | 1.00 | N/A | U |
| NITROSODI - n-PROPYLAMINE  | 2   | 10   | 2   | 1.00 | N/A | υ |
| NAPHTHALENE                | 0.1 | 10   | 0.1 | 1.00 | N/A | U |
| NITROBENZENE               | 1   | 10   | 1   | 1.00 | N/A | U |
| PHENANTHRENE               | 0.1 | 10   | 0.1 | 1.00 | N/A | U |
| PYRENE                     | 0.2 | 10   | 0.2 | 1.00 | N/A | U |
| 2,4,5-TRICHLOROPHENOL      | 2   | 50   | 2   | 1.00 | N/A | U |
| 2,4,6-TRICHLOROPHENOL      | 2   | 10   | 2   | 1.00 | N/A | U |
| 2,4-DICHLOROPHENOL         | 2   | 10   | 2   | 1.00 | N/A | U |
| 2,4-DIMETHYLPHENOL         | 1   | 10   | 1   | 1.00 | N/A | U |
| 2,4-DINITROPHENOL          | 10  | 50   | 10  | 1.00 | N/A | U |
| 2-CHLOROPHENOL             | 1   | 10   | 1   | 1.00 | N/A | U |
| 2-METHYLPHENOL (o-CRESOL)  | 2   | 10   | 2   | 1.00 | N/A | U |
| 2-NITROPHENOL              | 1   | 10   | 1   | 1.00 | N/A | U |
| 4,6-DINITRO-2-METHYLPHENOL | 9   | 50   | 9   | 1.00 | N/A | U |
| 4-CHLORO-3-METHYLPHENOL    | 2   | 20   | 2   | 1.00 | N/A | U |
| 4-METHYLPHENOL (p-CRESOL)  | 3   | 50   | 3   | 1.00 | N/A | U |

ACACC CODM 0-2

÷

## AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analyti       | cal Method: | <u>8270-A98</u>    | Preparatory Method:       | SW3510            |                   | AAB #: <u>A6B2</u> | 1680           |           |
|---------------|-------------|--------------------|---------------------------|-------------------|-------------------|--------------------|----------------|-----------|
|               | Lab Name:   | <u>STL Buffalo</u> |                           |                   | Contr             | act #:             | ·              |           |
| Field         | Sample ID:  | 0620060E           | Lab Sample ID:            | A6710213          | м                 | atrix: <u>WATE</u> | R              |           |
|               | % Solids:   |                    | Initial Calibration ID:   | A610001637        |                   |                    |                |           |
| Dati          | e Received: | <u>21-Jun-2006</u> | Date Prepared:            | <u>26-Jun-200</u> | <u>6</u> Date Ana | lyzed: <u>28-</u>  | <u>un-2006</u> |           |
|               | Concentr    | ation Units (u     | g/L or mg/kg dry weight): | UG/L              |                   |                    |                |           |
|               | Analyte     |                    | MDL                       | RL                | Concentration     | Dilution           | Confirm        | Qualifier |
| 4-NITROPHENOL |             |                    | 4                         | 50                | 4                 | 1.00               | N/A            | U         |
| BENZOIC ACID  |             |                    |                           | 100               | 24                | 1 00               |                |           |

| BENZOIC ACID      | 31 | 100 | 31 | 1.00 | N/A | U |
|-------------------|----|-----|----|------|-----|---|
| PENTACHLOROPHENOL | 11 | 50  | 11 | 1.00 | N/A | U |
| PHENOL            | 3  | 10  | 3  | 1.00 | N/A | ย |

| Surrogate            | Recovery | Control Limits | Qualifier |
|----------------------|----------|----------------|-----------|
| NITROBENZENE-D5      | 74       | 41 - 120       |           |
| 2-FLUOROBIPHENYL     | 82       | 48 - 120       |           |
| TERPHENYL-D14        | 89       | 51 - 135       |           |
| PHENOL-D5            | 30       | 20 - 120       |           |
| 2-FLUOROPHENOL       | 42       | 20 - 120       |           |
| 2,4,6-TRIBROMOPHENOL | 82       | 42 - 124       |           |

CAR ÒO

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-DICHLOROBENZENE-d4 | 97046       | 51959 - 207836    |           |
| NAPHTHALENE-d8         | 420401      | 230752 - 923008   |           |
| ACENAPHTHENE-d10       | 225206      | 122046 - 488184   |           |
| PHENANTHRENE-d10       | 414987      | 200494 - 801974   |           |
| CHRYSENE-d12           | 384586      | 193477 - 773908   |           |
| PERYLENE-d12           | 358796      | 196322 - 785286   |           |

Comments:

# 126/213

Unk Not

AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

. ÷

| Analytic           | al Method: <u>8270-A98</u>             | Preparatory Me   | thod: <u>SW3510</u>      | AAB #: <u>A6B21680</u> |                   |         |           |
|--------------------|----------------------------------------|------------------|--------------------------|------------------------|-------------------|---------|-----------|
|                    | Lab Name: <u>STL Buffalo</u>           |                  | Contract #:              |                        |                   |         |           |
| Field              | Sample ID: <u>TF3M119R12OA</u>         | Lab Sampl        | e ID: <u>A6710204</u>    | Matrix: <u>WATER</u>   |                   |         |           |
|                    | % Solids: In                           | itial Calibratic | n 1D: <u>A610001637</u>  |                        |                   |         |           |
| Date               | Received: <u>21-Jun-2006</u>           | Date Prep        | pared: <u>26-Jun-200</u> | 6 Date Anal            | yzed: <u>28-J</u> | un-2006 |           |
|                    | Concentration Units (ug/L              | or mg/kg dry wei | ight): <u>UG/L</u>       |                        |                   |         |           |
|                    |                                        |                  |                          | <b></b>                | Dilution          | Confirm | Qualifier |
|                    | Analyte                                | MDL              | RL                       |                        |                   |         | U         |
| 1,2,4-TRICHLOROBEN | ZENE                                   | 2                | 10                       | 2                      | 1.00              | N/A     | U         |
| 1,2-DICHLOROBENZEN | E                                      | 2                | 10                       | 2                      | 1.00              | N/A     |           |
| 1,3-DICHLOROBENZEN | E                                      | 2                | 10                       | 2                      | 1.00              | N/A     | U         |
| 1,4-DICHLOROBENZEN | ie                                     | 2                | 10                       | 2                      | 1.00              | N/A     | U<br>     |
| 2,4-DINITROTOLUEN  |                                        | 2                | 10                       | 2                      | 1.00              | N/A     | U         |
| 2,6-DINITROTOLUEN  |                                        | 2                | 10                       | 2                      | 1.00              | N/A     | U         |
| 2-CHLORONAPHTHALE  | NE                                     | 2                | 10                       | 2                      | 1.00              | N/A     | U         |
| 2-METHYLNAPHTHALE  | NE                                     | 0.09             | 10                       | 0.09                   | 1.00              | N/A     | <u>u</u>  |
| 2-NITROANILINE     |                                        | 2                | 48                       | 2                      | 1.00              | N/A     | U         |
| 3-NITROANILINE     |                                        | 2                | 48                       | 2                      | 1.00              | N/A     | <u> </u>  |
| 3,3'-DICHLOROBENZ  | IDINE                                  | 9                | 19                       | 9                      | 1.00              | N/A     | U         |
| 4-BROMOPHENYL PHE  | NYL ETHER                              | 2                | 10                       | 2                      | 1.00              | N/A     | U         |
| 4-CHLOROANILINE    |                                        | 4                | 19                       | 4                      | 1.00              | N/A     | U         |
| 4-CHLOROPHENYL PH  | ENYL ETHER                             | 2                | 10                       | 2                      | 1.00              | N/A     | U         |
| 4-NITROANILINE     |                                        | 2                | 48                       | 2                      | 1.00              | N/A     | U         |
| ACENAPHTHYLENE     |                                        | 0.09             | 10                       | 0.09                   | 1.00              | N/A     | U         |
| ACENAPHTHENE       |                                        | 0.1              | 10                       | 0.1                    | 1.00              | N/A     | U         |
| ANTHRACENE         |                                        | 0.1              | 10                       | 0.1                    | 1.00              | N/A     | U         |
| BENZO(a)ANTHRACEN  |                                        | 0.2              | 10                       | 0.2                    | 1.00              | N/A     | U         |
| BENZO(a)PYRENE     | ······································ | 0.09             | 10                       | 0.09                   | 1.00              | N/A     | U         |
| BENZO(k)FLUORANTH  | IENE                                   | 0.1              | 10                       | 0.1                    | 1.00              | N/A     | U         |
| BENZO(b)FLUORANTH  | IENE                                   | 0.2              | 10                       | 0.2                    | 1.00              | N/A     | U         |
| BENZO(g,h,i)PERY   | LENE                                   | 0.1              | 10                       | 0.1                    | 1.00              | N/A     | U         |
| BENZYL ALCOHOL     |                                        | 2                | 19                       | 2                      | 1.00              | N/A     | U         |
| bis(2-CHLOROETHO   | XY) METHANE                            | 2                | 10                       | 2                      | 1.00              | N/A     | U         |
| bis(2-CHLOROETHY   | L) ETHER (2-CHLOROETHYL ETH            | E 1              | 10                       | 1                      | 1.00              | N/A     | U         |
| bis(2-CHLOROISOP   |                                        | 2                | 10                       | 2                      | 1.00              | N/A     | U         |
| bis(2-ETHYLHEXYL   |                                        | 2                | 10                       | 2                      | 1.00              | N/A     | U         |
| BENZYL BUTYL PHT   |                                        | 2                | 10                       | 2                      | 1.00              | N/A     | υ         |
| CHRYSENE           |                                        | 0.2              | 10                       | 0.2                    | 1.00              | N/A     | U         |

AFORT FORM O D

White

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| 2,4-DIMETHYLPHENOL       1       10       1       1.00       N/A       U         2,4-DINITROPHENOL       10       10       1       1.00       N/A       U         2,4-DINITROPHENOL       10       48       10       1.00       N/A       U         2-CHLOROPHENOL       10       48       10       1.00       N/A       U         2-CHLOROPHENOL       1       10       1       1.00       N/A       U         2-CHLOROPHENOL       1       10       1       1.00       N/A       U         2-METHYLPHENOL (o-CRESOL)       2       10       2       1.00       N/A       U         2-NITROPHENOL       1       10       1       1.00       N/A       U         4,6-DINITRO-2-METHYLPHENOL       9       48       9       1.00       N/A       U         4-CHLORO-3-METHYLPHENOL       2       19       2       1.00       N/A       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analytic            | al Method: <u>8270-A98</u>                                                                                     | Preparatory Me     | thod: <u>SW3510</u>    |               | AAB #: <u>A682</u>  | 1680           |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------|--------------------|------------------------|---------------|---------------------|----------------|-----------|
| 1 Solids:         Initial Calibration 10: ASI0001637           Date         Date Prepared: 26-Jun.2005         Date Analyse: 28-Jun.2005           Concentration Units (Ug/L or mg/kg dry weight):         Ug/L           Analyse         MOL         RL         Concentration         Ditting         Dunit (Ug/L or mg/kg dry weight):           Di-n-OCTVL PSTALLATE         Analyse         MOL         RL         Concentration         Ditting         Dunit (Ug/L or mg/kg dry weight):           Di-n-OCTVL PSTALLATE         Analyse         MOL         RL         Concentration         Ditting         Dunit (Ug/L or mg/kg dry weight):           Di-n-OCTVL PSTALLATE         0.1         100         0.1         1.00         N/A         U           DISERZORUMA         0.1         100         0.1         1.00         N/A         U           DIMERZORUMA         0.1         1.00         N/A         U           REXACHURGRORUMA         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | Lab Name: STL Buffalo                                                                                          |                    |                        | Contr         | act #:              |                |           |
| Date         Sectived:         21.111-0200         Date Prepared:         23.111-0200         Date Inserver:         24.111-0200           Concentration Units (ug/L or mg/kg dry veright):         Lig/L           D1-n-07UV, PSTHALATE         3         10         3         1.00         N/A         U           D1-n-07UV, PSTHALATE         2         10         2.1         1.00         N/A         U           D1-n-07UV, PSTHALATE         2         10         2.1         1.00         N/A         U           D1BER/2GLARAM         0.1         100         0.1         1.00         N/A         U           D1BER/2GLARAM         0.1         10         0.1         1.00         N/A         U           D10EREXCE/LEAN         0.1         10         2.0         N/A         U           D10EREXCE/LEAN         0.1         100         2.00         N/A         U           D10EREXCE/LEAN         0.1         100         0.01         1.00         N/A         U           PLUDERE         0.1         100         0.1         1.00         N/A         U           INCACALORORENEX         2         100         0.1         1.00         N/A         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Field               | Sample ID: <u>TF3M119R12OA</u>                                                                                 | Lab Sampl          | e ID: <u>A6710204</u>  | M             | atrix: <u>WATE</u>  | R              |           |
| Concentration Units (ug/L or mg/kg dry weight): Ug/L           Analyte         MDL         RL         Concentration         Dilution         Confirm         Qualifier           D1-n-BUTL_PHTRALATE         2         10         2         1.00         M/A         U           D1-n-DUTL_PHTRALATE         2         10         2         1.00         M/A         U           D1EREZOFULA PHTRALATE         2         10         2         1.00         M/A         U           D1EREZOFULA PHTRALATE         2         10         2         1.00         M/A         U           D1EREZOFULAN         0.1         100         0.1         1.00         M/A         U           D1EREXOFULAN         0.1         100         0.1         1.00         M/A         U           D1ENTERT PHTRALATE         2         100         2         1.00         M/A         U           PLORATINENE         0.1         100         0.1         1.00         M/A         U           PLORATINENE         0.1         100         0.1         1.00         M/A         U           PLORATINENE         0.1         100         0.1         1.00         M/A         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | % Solids:                                                                                                      | Initial Calibratio | n 1D: <u>A61000163</u> | <u>17</u>     |                     |                |           |
| Analyte         MDL         RL         Concentration         Dition         Confirm         Qualifier           D1-n-BUTV_PHINALATE         3         100         3         1.00         N/A         U           D1-n-OCTV_PHINALATE         2         100         2         1.00         N/A         U           D1BERZCP, bhantmaceme         0.1         100         0.1         1.00         N/A         U           D1BERZCP, bhantmaceme         0.1         100         0.1         1.00         N/A         U           D1EREZCP, bhantmaceme         0.1         100         0.1         1.00         N/A         U           D1EREZCP, brantmaceme         0.1         100         0.1         1.00         N/A         U           D1ERETME         2         100         2         1.00         N/A         U           UREACH CROBERSE         0.1         100         0.1         1.00         N/A         U           HEXACH CROBERSENE         0.1         100         0.1         1.00         N/A         U           HEXACH CROBERSENE         0.1         100         0.1         1.00         N/A         U           HEXACH CROBERSENE         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date                | Received: <u>21-Jun-2006</u>                                                                                   | Date Prep          | ared: <u>26-Jun-20</u> | 106 Date Ana  | lyzed: <u>28-</u> J | <u>un-2006</u> |           |
| D1BUTVL PMTRALATE         3         10         3         1.00         N/A         U           D1OCTVL PMTRALATE         2         10         3         1.00         N/A         U           D1OCTVL PMTRALATE         2         10         2.1.00         N/A         U           D1BERZGLADAM         0.1         10         0.1         1.00         N/A         U           D1ERMENDERAM         0.1         10         0.1         1.00         N/A         U           DIERMENDERAM         0.1         10         0.1         1.00         N/A         U           DIERMENDERAM         0.1         10         0.6         1.00         N/A         U           DIMETMENE         2         10         2         1.00         N/A         U           PLUDBAME         0.1         10         0.6         1.00         N/A         U           PLUDBAME         2         10         2         1.00         N/A         U           PLUDBAME         0.1         10         0.1         1.00         N/A         U           PLUDBAME         2         10         2         1.00         N/A         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Concentration Units (ug/)                                                                                      | . or mg∕kg dry wei | ght): <u>UG/L</u>      |               |                     |                |           |
| D1OCTVL         D1-AL         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< th="">         D         D</thd<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Analyte                                                                                                        | MDL                | RL                     | Concentration | Dilution            | Confirm        | Qualifier |
| DIERNZC4, h3ANTHRACEME         D.1         D.0         D.1         D.0         N/A         U           DIERNZC6, h3ANTHRACEME         0.1         10         0.1         1.00         N/A         U           DIERNZCFURAN         0.1         10         0.1         1.00         N/A         U           DIERNZCFURAN         0.1         10         0.1         1.00         N/A         U           DIERNYL PHTHALATE         2         10         2         1.00         N/A         U           PLUDRAUTHENE         0.1         10         0.6         1.00         N/A         U           PLUDRAUTHENE         0.1         10         0.1         1.00         N/A         U           MEXACHLOROBENZENE         0.1         100         0.1         1.00         N/A         U           MEXACHLOROBENZENE         0.1         100         2         1.00         N/A         U           NEXACHLOROBENZENE         0.1         100         1.00         N/A         U           IBOENCI (2, 2, 3-c, d)PYRENE         0.1         100         1.00         N/A         U           IBOENCI (2, 2, 3-c, d)PYRENE         0.1         100         1.00         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DI-N-BUTYL PHTHALA  | TE                                                                                                             | 3                  | 10                     | 3             | 1.00                | N/A            | U         |
| DIERNZOFURAN         0.1         10         0.1         100         N/A         0           DIERNZOFURAN         0.1         10         0.1         1.00         N/A         U           DIERNZOFURAN         2         10         2         1.00         N/A         U           DIMETNYL PHTHALATE         2         10         2         1.00         N/A         U           FLUDRANTWENE         0.1         10         0.6         1.00         N/A         U           FLUDRANTWENE         0.1         10         0.6         1.00         N/A         U           FLUDRANTWENE         0.1         10         0.1         1.00         N/A         U           HEXACHLOROBENZENE         2         10         2         1.00         N/A         U           HEXACHLOROBENZENE         3         10         3         1.00         N/A         U           INDENOCI, 2.3-c, dy YRENE         0.1         10         0.1         1.00         N/A         U           ISOPHONAE         1         10         1         1.00         N/A         U           N'NTROBENZO IPHENTLAMINE         3         10         3         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DI-n-OCTYL PHTHALA  | TE                                                                                                             | 2                  | 10                     | 2             | 1.00                | N/A            | U         |
| DIETHYL PHTHALATE         2         10         2         1.00         N/A         0           DIETHYL PHTHALATE         2         10         2         1.00         N/A         U           DIMETHYL PHTHALATE         2         10         2         1.00         N/A         U           FLUGRANTHENE         0.1         10         0.6         1.00         N/A         U           FLUGRANTHENE         0.1         10         0.1         1.00         N/A         U           HEXACHLORGBENZENE         2         10         2         1.00         N/A         U           MEXACHLORGBENZENE         2         10         2         1.00         N/A         U           MEXACHLORGBENZENE         3         10         3         1.00         N/A         U           MEXACHLORGBENZENE         0.1         10         0.1         1.00         N/A         U           INCRENDESTAINE         3         10         3         1.00         N/A         U           INSORDIVENTLAINE         1         10         1         1.00         N/A         U           NATTROSCO IPHENTLAINE         1         10         1         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DIBENZ(a,h)ANTHRAC  | ENE                                                                                                            | 0.1                | 10                     | 0.1           | 1.00                | N/A            | U         |
| DIMETHYL PHTHALATE         2         1.0         N/A         U           FLUORANTHENE         2         10         2         1.00         N/A         U           FLUORANTHENE         0.1         10         0.6         1.00         N/A         U           FLUORANTHENE         0.1         10         0.6         1.00         N/A         U           FLUORENE         0.1         10         0.1         1.00         N/A         U           HEXACHLOROBENZENE         2         10         2         1.00         N/A         U           NEXACHLOROBENZENE         3         10         3         1.00         N/A         U           NEXACHLOROBENZENE         3         10         3         1.00         N/A         U           INDENO(1,2,3-c,d)PYRENE         0.1         10         1.00         N/A         U           INSPHORONE         1         10         1         1.00         N/A         U           N-NITROSOD PHENYLANINE         1         10         1         1.00         N/A         U           NHTROSENZENE         0.1         10         0.1         1.00         N/A         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DIBENZOFURAN        | · · · · · · · · · · · · · · · · · · ·                                                                          | 0.1                | 10                     | 0.1           | 1.00                | N/A            | U         |
| FLIORANTHENE         I.O.         I.O.         I.O.         I.O.         I.O.         I.O.         II.O.         II.O. <t< td=""><td>DIETHYL PHTHALATE</td><td>, , , , , , , , , , , , , , , , , , ,</td><td>2</td><td>10</td><td>2</td><td>1.00</td><td>N/A</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DIETHYL PHTHALATE   | , , , , , , , , , , , , , , , , , , ,                                                                          | 2                  | 10                     | 2             | 1.00                | N/A            |           |
| FLUORENE         I.O.         I.O.         I.O.         I.O.         I.O.         I.O.         II.O.         III.O.         III.O. <thiii.o.< <="" td=""><td>DIMETHYL PHTHALATE</td><td></td><td>2</td><td>ĩO</td><td>2</td><td>1.00</td><td>N/A</td><td>U</td></thiii.o.<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DIMETHYL PHTHALATE  |                                                                                                                | 2                  | ĩO                     | 2             | 1.00                | N/A            | U         |
| FLUORENE         0.1         10         0.1         1.00         N/A         U           HEXACHLOROBENZENE         2         10         2         1.00         N/A         U           HEXACHLOROBENZENE         4         10         4         1.00         N/A         U           HEXACHLOROBENZENE         4         10         4         1.00         N/A         U           HEXACHLOROBENZENE         3         10         3         1.00         N/A         U           INDENO(1,2,3-c,d)PYRENE         0.1         10         0.1         1.00         N/A         U           INDENO(1,2,3-c,d)PYRENE         0.1         10         0.1         1.00         N/A         U           ISOPHORONE         1         10         1         1.00         N/A         U           N-NITROSCOLPHENYLAMINE         1         10         1         1.00         N/A         U           NAPHTHALENE         0.1         100         0.1         1.00         N/A         U           PYRENE         0.1         100         0.1         1.00         N/A         U           2,4,5-TRICRLOROPHENOL         2         48         2         1.00 </td <td>FLUORANTHENE</td> <td><del></del></td> <td>0.1</td> <td>10</td> <td>0.6</td> <td>1.00</td> <td>N/A</td> <td>F</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FLUORANTHENE        | <del></del>                                                                                                    | 0.1                | 10                     | 0.6           | 1.00                | N/A            | F         |
| НЕХАСНІОКОВИТАЛІЕНЕ         1.00         N/A         0           НЕХАСНІОКОВИТАЛІЕНЕ         4         10         4         1.00         N/A         0           NEXACHLOROBUTADIENE         3         10         3         1.00         N/A         0           INDENO(1,2,3-c,d)PYRENE         0.1         10         0.1         1.00         N/A         0           INDENO(1,2,3-c,d)PYRENE         0.1         10         0.1         1.00         N/A         0           INDENO(1,2,3-c,d)PYRENE         0.1         10         1.00         N/A         0           N-NITROSCOIPHENTLAHINE         3         10         3         1.00         N/A         0           N-NITROSCOIPHENTLAHINE         1         10         1         1.00         N/A         0           N-NITROSCOIPHENTLAHINE         0.1         100         0.1         1.00         N/A         0           NAPHTHALENE         0.1         100         0.1         1.00         N/A         0           NITROSCOIPHENTLAHINE         0.1         100         1.00         N/A         0           2,4,5-TRICHLOROPHENOL         2         10         0.7         1.00         N/A         0 </td <td>FLUORENE</td> <td>and a second and a second and a second /td> <td>0.1</td> <td>10</td> <td>0.1</td> <td>1.00</td> <td>N/A</td> <td>U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FLUORENE            | and a second and a second and a second | 0.1                | 10                     | 0.1           | 1.00                | N/A            | U         |
| HEXACHLOROETHANE         I.O.         N.A.         U.U.           INDENOLIZA.C.J.PYRENE         0.1         10         3         1.00         N/A         U           INDENOLIZA.C.J.PYRENE         0.1         10         0.1         1.00         N/A         U           INDENOLIZA.C.J.PYRENE         0.1         10         0.1         1.00         N/A         U           ISOPRONE         1         10         1.00         N/A         U           N-NITROSCOIPHENYLAMINE         3         100         3         1.00         N/A         U           N-NITROSCOIP-PROPYLAMINE         1         10         1         1.00         N/A         U           N-NITROSCOIP-PROPYLAMINE         0.1         100         0.1         1.00         N/A         U           NAPHTHALENE         0.1         100         0.1         1.00         N/A         U           PHENANTHRENE         0.2         10         0.7         1.00         N/A         U           2,4,5-TRICHLOROPHENOL         2         10         2         1.00         N/A         U           2,4-01CHLOROPHENOL         1         10         1         1.00         N/A         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HEXACHLOROBENZENE   | ······································                                                                         | 2                  | 10                     | 2             | 1.00                | N/A            | U         |
| INDENO(1,2,3-c,d)PYRENE         O.1         I.O.         I.O.         I.O.         II.O.         II.O.         II.O.         III.O.         IIII.O.         IIII.O.         IIII.O.         IIII.O.         IIII.O.         IIII.O.         IIII.O.         IIII.O.         IIII.O.         IIIII.O.         IIIIII.O.         IIIIIIII.O.         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HEXACHLOROBUTADIEN  | g                                                                                                              | 4                  | 10                     | 4             | 1.00                | N/A            | U         |
| ISOPHORONE         I.O.         I.O.         I.O.         I.O.         II.O.         II.O.         II.O.         III.O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HEXACHLOROETHANE    |                                                                                                                | 3                  | 10                     | 3             | 1.00                | N/A            | U         |
| N-NITROSOD IPHENYLAMINE         N/A         U           N-NITROSOD IPHENYLAMINE         3         10         3         1.00         N/A         U           N-NITROSOD IPHENYLAMINE         1         10         3         1.00         N/A         U           N-NITROSOD I-n-PRO         YLAMINE         1         10         1         1.00         N/A         U           NAPHTHALENE         0.1         10         0.1         1.00         N/A         U           NITROBENZENE         1         10         1         1.00         N/A         U           PHENANTHRENE         0.1         10         0.1         1.00         N/A         U           PYRENE         0.2         10         0.7         1.00         N/A         U           2,4,5-TRI CHLOROPHENOL         2         48         2         1.00         N/A         U           2,4,6-TRI CHLOROPHENOL         2         10         2         1.00         N/A         U           2,4-DINITROPHENOL         1         10         1         1.00         N/A         U           2,4-DINITROPHENOL         1         10         1         1.00         N/A         U <td>INDENO(1,2,3-c,d)P</td> <td>YRENE</td> <td>0.1</td> <td>10</td> <td>0.1</td> <td>1.00</td> <td>N/A</td> <td>- U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INDENO(1,2,3-c,d)P  | YRENE                                                                                                          | 0.1                | 10                     | 0.1           | 1.00                | N/A            | - U       |
| N-NITROSODI-n-PROPYLAMINE         1         10         1         100         N/A         U           NAPHTHALENE         0.1         10         1         1.00         N/A         U           NAPHTHALENE         0.1         10         0.1         1.00         N/A         U           NITROBENZENE         1         10         1.10         N/A         U           PHENANTHRENE         0.1         10         1.00         N/A         U           PYRENE         0.2         10         0.1         1.00         N/A         U           2,4,5-TRICHLOROPHENOL         2         10         0.7         1.00         N/A         U           2,4,6-TRICHLOROPHENOL         2         10         2.48         2         1.00         N/A         U           2,4-0ICHLOROPHENOL         2         10         2         1.00         N/A         U           2,4-0ICHLOROPHENOL         2         10         2         1.00         N/A         U           2,4-DINITROPHENOL         1         10         1         1.00         N/A         U           2,4-DINITROPHENOL         1         10         1         1.00         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ISOPHORONE          | · · · · · · · · · · · · · · · · · · ·                                                                          | 1                  | 10                     | 1             | 1.00                | N/A            | U         |
| NAPHTHALENE         I. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N-NITROSODIPHENYLA  | MINE                                                                                                           | 3                  | 10                     | 3             | 1.00                | N/A            | U         |
| NITROBENZENE         I.100         N/A         U           NITROBENZENE         1         10         1         1.00         N/A         U           PHENANTHRENE         0.1         10         0.1         1.00         N/A         U           PYRENE         0.2         0.1         10         0.1         1.00         N/A         U           2,4,5-TRICHLOROPHENOL         2         10         0.7         1.00         N/A         U           2,4,5-TRICHLOROPHENOL         2         10         0.7         1.00         N/A         U           2,4,5-TRICHLOROPHENOL         2         10         2         1.00         N/A         U           2,4,5-TRICHLOROPHENOL         2         10         2         1.00         N/A         U           2,4-0INTROPHENOL         1         10         1         1.00         N/A         U           2,4-0INTROPHENOL         10         48         10         1.00         N/A         U           2,4-0INTROPHENOL         2         10         2         1.00         N/A         U           2,4-0INTROPHENOL         1         1.00         N/A         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N-NITROSODI-n-PROP  | YLAMINE                                                                                                        | 1                  | 10                     | 1             | 1.00                | N/A            | U         |
| PHENANTHRENE         0.1         1.0         N/A         U           PYENNE         0.1         10         0.1         1.00         N/A         U           PYENNE         0.2         10         0.7         1.00         N/A         U           2,4,5-TRICHLOROPHENOL         2         10         0.7         1.00         N/A         U           2,4,5-TRICHLOROPHENOL         2         10         0.7         1.00         N/A         U           2,4,5-TRICHLOROPHENOL         2         10         2         1.00         N/A         U           2,4,6-TRICHLOROPHENOL         2         10         2         1.00         N/A         U           2,4-DICHLOROPHENOL         2         10         2         1.00         N/A         U           2,4-DINETHYLPHENOL         1         10         1         1.00         N/A         U           2,4-DINITROPHENOL         11         10         1         1.00         N/A         U           2,4-DINITROPHENOL         2         10         2         1.00         N/A         U           2-NITROPHENOL         1         10         1         1.00         N/A         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NAPHTHALENE         |                                                                                                                | 0.1                | 10                     | 0.1           | 1.00                | N/A            | U         |
| PYRENE         Image: Construction of the construction | NITROBENZENE        |                                                                                                                | 1                  | 10                     | 1             | 1.00                | N/A            | - u       |
| PYRENE         Image: Marcine  | PHENANTHRENE        |                                                                                                                | 0.1                | 10                     | 0.1           | 1.00                | N/A            |           |
| 2,4,5-TRICHLOROPHENOL       2       .48       2       1.00       N/A       U         2,4,6-TRICHLOROPHENOL       2       10       2       1.00       N/A       U         2,4,6-TRICHLOROPHENOL       2       10       2       1.00       N/A       U         2,4-DICHLOROPHENOL       2       10       2       1.00       N/A       U         2,4-DICHLOROPHENOL       2       10       2       1.00       N/A       U         2,4-DICHLOROPHENOL       1       10       1       0       N/A       U         2,4-DINITROPHENOL       11       10       1       0       N/A       U         2,4-DINITROPHENOL       10       48       10       1.00       N/A       U         2-CHLOROPHENOL       1       10       1       0       N/A       U         2-METHYLPHENOL (o-       CRESOL)       2       10       2       1.00       N/A       U         2-NITROPHENOL       1       10       1       1.00       N/A       U         4,6-DINITRO-2-METHYLPHENOL       2       19       2       1.00       N/A       U         4-CHLORO-3-METHYLPHENOL       2       19<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PYRENE              |                                                                                                                | 0.2                | 10                     | 0.7           |                     |                | F         |
| 2,4,6-TRICHLOROPHE       NOL       2       10       2       1.00       N/A       U         2,4-DICHLOROPHENOL       2       10       2       1.00       N/A       U         2,4-DICHLOROPHENOL       2       10       2       1.00       N/A       U         2,4-DIMETHYLPHENOL       11       10       1       1.00       N/A       U         2,4-DIMETHYLPHENOL       11       10       1       1.00       N/A       U         2,4-DINITROPHENOL       10       48       10       1.00       N/A       U         2,4-DINITROPHENOL       1       10       1       1.00       N/A       U         2,4-DINITROPHENOL       11       10       1       0       N/A       U         2,4-DINITROPHENOL       2       10       2       1.00       N/A       U         2-CHLOROPHENOL       2       10       1       1.00       N/A       U         2-METHYLPHENOL       2       10       1       1.00       N/A       U         2-NITROPHENOL       1       10       1       1.00       N/A       U         4,6-DINITRO-2-METHYLPHENOL       2       19       2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,4,5-TRICHLOROPHEN | IOL.                                                                                                           | 2                  | . 48                   | 2             | 1.00                |                |           |
| 2,4-DICHLOROPHENOL       2       10       2       1.00       N/A       U         2,4-DIMETHYLPHENOL       1       10       1       1.00       N/A       U         2,4-DINITROPHENOL       10       48       10       1.00       N/A       U         2,4-DINITROPHENOL       10       48       10       1.00       N/A       U         2,4-DINITROPHENOL       10       1       10       1.00       N/A       U         2-CHLOROPHENOL       1       10       1       1.00       N/A       U         2-CHLOROPHENOL       2       10       2       1.00       N/A       U         2-METHYLPHENOL (o-CRESOL)       2       10       2       1.00       N/A       U         2-NITROPHENOL       1       10       1       1.00       N/A       U         4,6-DINITRO-2-METHYLPHENOL       9       48       9       1.00       N/A       U         4-CHLORO-3-METHYLPHENOL       2       19       2       1.00       N/A       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,4,6-TRICHLOROPHEN | 101_                                                                                                           | 2                  | 10                     | 2             |                     |                |           |
| 2,4-DIMETHYLPHENOL       1       10       1       1.00       N/A       U         2,4-DINITROPHENOL       10       48       10       1.00       N/A       U         2,4-DINITROPHENOL       10       48       10       1.00       N/A       U         2-CHLOROPHENOL       11       10       1       1.00       N/A       U         2-CHLOROPHENOL       1       10       1       1.00       N/A       U         2-METHYLPHENOL (o-CRESOL)       2       10       2       1.00       N/A       U         2-NITROPHENOL       1       10       1       1.00       N/A       U         4,6-DINITRO-2-METHYLPHENOL       9       48       9       1.00       N/A       U         4-CHLORO-3-METHYLPHENOL       2       19       2       1.00       N/A       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,4-DICHLOROPHENOL  |                                                                                                                | 2                  | 10                     | 2             | 1.00                |                |           |
| 2,4-DINITROPHENOL       10       48       10       1.00       N/A       U         2-CHLOROPHENOL       1       10       1       1.00       N/A       U         2-CHLOROPHENOL       1       10       1       1.00       N/A       U         2-METHYLPHENOL (o-CRESOL)       2       10       2       1.00       N/A       U         2-NITROPHENOL       1       10       1       1.00       N/A       U         4-G-DINITRO-2-METHYLPHENOL       9       48       9       1.00       N/A       U         4-CHLORO-3-METHYLPHENOL       2       19       2       1.00       N/A       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,4-DIMETHYLPHENOL  |                                                                                                                | 1                  | 10                     | 1             |                     |                |           |
| 2-CHLOROPHENOL       1       10       1       1.00       N/A       U         2-METHYLPHENOL (o-CRESOL)       2       10       2       1.00       N/A       U         2-NITROPHENOL       1       10       1       1.00       N/A       U         2-NITROPHENOL       1       10       1       1.00       N/A       U         4-G-DINITRO-2-METHYLPHENOL       9       48       9       1.00       N/A       U         4-CHLORO-3-METHYLPHENOL       2       19       2       1.00       N/A       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,4-DINITROPHENOL   |                                                                                                                | 10                 | 48                     | 10            |                     |                |           |
| 2-METHYLPHENOL (o- CRESOL)       2       10       2       1.00       N/A       U         2-NITROPHENOL       1       10       1       1.00       N/A       U         4,6-DINITRO-2-METHYLPHENOL       9       48       9       1.00       N/A       U         4-CHLORO-3-METHYLPHENOL       2       19       2       1.00       N/A       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-CHLOROPHENOL      |                                                                                                                | 1                  |                        |               |                     |                |           |
| 2-NITROPHENOL         1         10         1         1.00         N/A         U           4,6-DINITRO-2-METHYLPHENOL         9         48         9         1.00         N/A         U           4-CHLORO-3-METHYLPHENOL         2         19         2         1.00         N/A         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-METHYLPHENOL (0-C | RESOL)                                                                                                         | 2                  | 10                     | 2             |                     |                |           |
| 4,6-DINITRO-2-METHYLPHENOL     9     48     9     1.00     N/A     U       4-CHLORO-3-METHYLPHENOL     2     19     2     1.00     N/A     U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-NITROPHENOL       |                                                                                                                | 1                  | 10                     |               |                     |                |           |
| 4-CHLORO-3-METHYLPHENOL 2 19 2 1.00 N/A U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,6-DINITRO-2-METHY | LPHENOL                                                                                                        | 9                  |                        |               |                     |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-CHLORO-3-METHYLPH | ENOL                                                                                                           | 2                  |                        |               |                     |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-METHYLPHENOL (p-C | RESOL)                                                                                                         | 3                  | 48                     | 3             | 1.00                | N/A            | U         |

| Analytic | al Method: | <u>8270-A98</u>    | Preparatory Method:      | <u>sw3510</u>       | AAB #:         | <u>A6B21680</u>    |
|----------|------------|--------------------|--------------------------|---------------------|----------------|--------------------|
|          | Lab Name:  | <u>STL Buffalo</u> |                          |                     | Contract #:    |                    |
| Field    | Sample ID: | TF3M119R12OA       | Lab Sample ID:           | <u>A6710204</u>     | Matrix:        | WATER              |
|          | % Solids:  |                    | Initial Calibration ID:  | <u>A610001637</u>   |                |                    |
| Date     | Received:  | <u>21-Jun-2006</u> | Date Prepared:           | <u> 26-Jun-2006</u> | Date Analyzed: | <u>28-Jun-2006</u> |
|          | Concentr   | ation Units (ug,   | /L or mg/kg dry weight): | UG/L                |                |                    |
|          |            |                    |                          |                     |                |                    |

|                   | Analyte  | MDL | RL | Concentration | Dilution | Confirm | Qualifier |
|-------------------|----------|-----|----|---------------|----------|---------|-----------|
| 4-NITROPHENOL     | <u> </u> | 4   | 48 | 4             | 1.00     | N/A     | U         |
| BENZOIC ACID      |          | 30  | 97 | 30            | 1.00     | N/A     | U         |
| PENTACHLOROPHENOL |          | 10  | 48 | 10            | 1.00     | N/A     | U         |
| PHENOL            |          | 3   | 10 | 3             | 1.00     | N/A     | U         |

|                | Surrogate            | Recovery | Control Limits Qualifie |
|----------------|----------------------|----------|-------------------------|
| n ngan sinan s | NITROBENZENE-D5      | 57       | 41 - 120                |
|                | 2-FLUOROBIPHENYL     | 61       | 48 - 120                |
|                | TERPHENYL-D14        | 62       | 51 - 135                |
|                | PHENOL-D5            | 22       | 20 - 120                |
|                | 2-FLUOROPHENOL       | 31       | 20 - 120                |
|                | 2,4,6-TRIBROMOPHENOL | 68       | 42 - 124                |

art

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-DICHLOROBENZENE-d4 | 106650      | 51959 - 207836    |           |
| NAPHTHALENE-d8         | 461593      | 230752 - 923008   |           |
| ACENAPHTHENE-d10       | 252977      | 122046 - 488184   |           |
| PHENANTHRENE-d10       | 457702      | 200494 - 801974   |           |
| CHRYSENE-d12           | 429349      | 193477 - 773908   |           |
| PERYLENE-d12           | 400056      | 196322 - 785286   |           |

Comments:

und of

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8270-A98</u> | Preparatory Method:     | <u>sw3510</u>      | AAB #:         | <u>A6B21680</u>    |
|--------------------|-----------------|-------------------------|--------------------|----------------|--------------------|
| Lab Name:          | STL Buffalo     |                         |                    | Contract #:    |                    |
| Field Sample ID:   | TF3M121R120A    | Lab Sample ID:          | <u>A6710205</u>    | Matrix:        | WATER              |
| % Solids:          |                 | Initial Calibration ID: | <u>A610001637</u>  |                |                    |
| Date Received:     | 21-Jun-2006     | Date Prepared:          | <u>26-Jun-2006</u> | Date Analyzed: | <u>28-Jun-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte                                      | MDL  | RL | Concentration | Dilution | Confirm | Qualifier |
|----------------------------------------------|------|----|---------------|----------|---------|-----------|
| 1,2,4-TRICHLOROBENZENE                       | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 1,2-DICHLOROBENZENE                          | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 1,3-DICHLOROBENZENE                          | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 1,4-DICHLOROBENZENE                          | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 2,4-DINITROTOLUENE                           | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 2,6-DINITROTOLUENE                           | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 2-CHLORONAPHTHALENE                          | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 2-METHYLNAPHTHALENE                          | 0.09 | 10 | 0.09          | 1.00     | N/A     | U         |
| 2-NITROANILINE                               | 2    | 50 | 2             | 1.00     | N/A     | U         |
| 3-NITROANILINE                               | 2    | 50 | 2             | 1.00     | N/A     | U         |
| 3,3'-DICHLOROBENZIDINE                       | 10   | 20 | 10            | 1.00     | N/A     | υ         |
| 4-BROMOPHENYL PHENYL ETHER                   | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 4-CHLORDANILINE                              | 4    | 20 | 4             | 1.00     | N/A     | U         |
| 4-CHLOROPHENYL PHENYL ETHER                  | 2    | 10 | 2             | 1.00     | N/A     | U         |
| 4-NITROANILINE                               | 2    | 50 | 2             | 1.00     | N/A     | U         |
| ACENAPHTHYLENE                               | 0.09 | 10 | 0.09          | 1.00     | N/A     | U         |
| ACENAPHTHENE                                 | 0.1  | 10 | 0.1           | 1.00     | N/A     | U         |
| ANTHRACENE                                   | 0.1  | 10 | 0.1           | 1.00     | N/A     | U         |
| BENZO(a)ANTHRACENE                           | 0.2  | 10 | 0.2           | 1.00     | N/A     | U         |
| BENZO(a)PYRENE                               | 0.09 | 10 | 0.09          | 1.00     | N/A     | U         |
| BENZO(k)FLUORANTHENE                         | 0.1  | 10 | 0.1           | 1.00     | N/A     | U         |
| BEN20(b)FLUORANTHENE                         | 0.2  | 10 | 0.2           | 1.00     | N/A     | U         |
| BENZO(g,h,i)PERYLENE                         | 0.1  | 10 | 0.1           | 1.00     | N/A     | U         |
| BENZYL ALCOHOL                               | 2    | 20 | 2             | 1.00     | N/A     | υ         |
| bis(2-CHLOROETHOXY) METHANE                  | 2    | 10 | 2             | 1.00     | N/A     | U         |
| bis(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHE | 1    | 10 | 1             | 1.00     | N/A     | U         |
| bis(2-CHLOROISOPROPYL) ETHER                 | 2    | 10 | 2             | 1.00     | N/A     | υ         |
| bis(2-ETHYLHEXYL) PHTHALATE                  | 2    | 10 | 2             | 1.00     | N/A     | U         |
| BENZYL BUTYL PHTHALATE                       | 2    | 10 | 2             | 1.00     | N/A     | U         |
| CHRYSENE                                     | 0.2  | 10 | 0.2           | 1.00     | N/A     | U         |

anglatic

### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | <u>8270-A98</u>    | Preparatory Method:     | <u>sw3510</u>      | AAB #         | A6B21680    |
|--------------------|--------------------|-------------------------|--------------------|---------------|-------------|
| Lab Name:          | STL Buffalo        |                         |                    | Contract #    |             |
| Field Sample ID:   | TF3M121R120A       | Lab Sample ID:          | <u>A6710205</u>    | Matrix        | WATER       |
| % Solids:          |                    | Initial Calibration ID: | <u>A610001637</u>  |               |             |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:          | <u>26-Jun-2006</u> | Date Analyzed | 28-Jun-2006 |

Concentration Units (ug/L or mg/kg dry weight): UG/L\_\_\_\_

| Analyte                    | MD L. | RL  | Concentration | Dilution | Confirm | Qualifier |
|----------------------------|-------|-----|---------------|----------|---------|-----------|
| DI-n-BUTYL PHTHALATE       | 3     | 10  | 3             | 1.00     | N/A     | U         |
| DI-n-OCTYL PHTHALATE       | 2     | 10  | 2             | 1.00     | N/A     | U         |
| DIBENZ(a,h)ANTHRACENE      | 0.1   | 10  | 0.1           | 1.00     | N/A     | U         |
| DIBENZOFURAN               | 0.1   | 10  | 0.1           | 1.00     | N/A     | U         |
| DIETHYL PHTHALATE          | 2     | 10  | 2             | 1.00     | N/A     | U         |
| DIMETHYL PHTHALATE         | 2     | 10  | 2             | 1.00     | N/A     | U         |
| FLUORANTHENE               | 0.1   | 10  | 0.1           | 1.00     | N/A     | U         |
| FLUORENE                   | 0.1   | 10  | 0.1           | 1,00     | N/A     | U         |
| HEXACHLOROBENZENE          | 2     | 10  | 2             | 1.00     | N/A     | U         |
| HEXACHLOROBUTADIENE        | 4     | 10  | 4             | 1.00     | N/A     | υ         |
| HEXACHLOROETHANE           | 3     | 10  | 3             | 1.00     | N/A     | U         |
| INDENO(1,2,3-c,d)PYRENE    | 0.1   | 10  | 0.1           | 1.00     | N/A     | U         |
| ISOPHORONE                 | 1     | 10  | 1             | 1.00     | N/A     | U         |
| N-NITROSODIPHENYLAMINE     | 3     | 10  | 3             | 1.00     | N/A     | υ         |
| N-NITROSODI-n-PROPYLAMINE  | 1     | 10  | 1             | 1.00     | N/A     | U         |
| NAPHTHALENE                | 0.1   | 10  | 0.1           | 1.00     | N/A     | U         |
| NITROBENZENE               | 1     | 10  | 1             | 1.00     | N/A     | U         |
| PHENANTHRENE               | 0.1   | 10  | 0.1           | 1.00     | N/A     | U         |
| PYRENE                     | 0.2   | 10  | 0.2           | 1.00     | N/A     | U         |
| 2,4,5-TRICHLOROPHENOL      | 2     | 50  | 2             | 1_00     | N/A     | U         |
| 2,4,6-TRICHLOROPHENOL      | 2     | 10  | 2             | 1.00     | N/A     | U         |
| 2,4-DICHLOROPHENOL         | 2     | 10  | 2             | 1.00     | N/A     | U         |
| 2,4-DIMETHYLPHENOL         | 1     | 10  | 1             | 1.00     | N/A     | U         |
| 2,4-DINITROPHENOL          | 10    | 50  | 10            | 1.00     | N/A     | U         |
| 2-CHLOROPHENOL             | 1     | 10  | 1             | 1.00     | N/A     | υ         |
| 2-METHYLPHENOL (0-CRESOL)  | 2     | 10  | 2             | 1.00     | N/A     | U         |
| 2-NITROPHENOL              | 1     | 10  | 1             | 1.00     | N/A     | U         |
| 4,6-DINITRO-2-METHYLPHENOL | 9     | 50  | 9             | 1.00     | N/A     | U         |
| 4-CHLORO-3-METHYLPHENOL    | 2     | 20  | 2             | 1.00     | N/A     | U         |
| 4-METHYLPHENOL (p-CRESOL)  | 3     | \$0 | 3             | 1.00     | N/A     | U         |

AFOFE FORM O D

# 137/213

# AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | 8270-A98           | Preparatory Method:   | <u>sw3510</u>       | AAB #:         | <u>A6B21680</u>    |
|--------------------|--------------------|-----------------------|---------------------|----------------|--------------------|
| Lab Name:          | STL Buffalo        |                       |                     | Contract #:    |                    |
| Field Sample ID:   | TF3M121R120A       | Lab Sample ID:        | <u>A6710205</u>     | Matrix:        | WATER              |
| % Solids:          | In                 | itial Calibration ID: | A610001637          |                |                    |
| Date Received:     | <u>21-Jun-2006</u> | Date Prepared:        | <u>26- Jun-2006</u> | Date Analyzed: | <u>28-Jun-2006</u> |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte           | MDL | RL | Concentration | Dilution | Confirm | Qualifier |
|-------------------|-----|----|---------------|----------|---------|-----------|
| 4-NITROPHENOL     | 4   | 50 | 4             | 1.00     | N/A     | U         |
| BENZOIC ACID      | 31  | 99 | 31            | 1.00     | N/A     | U         |
| PENTACHLOROPHENOL | 11  | 50 | 11            | 1.00     | N/A     | U         |
| PHENOL            | 3   | 10 | 3             | 1.00     | N/A     | ម         |

| Surrogate            | Recovery | Control Limits | Qualifier |
|----------------------|----------|----------------|-----------|
| NITROBENZENE-D5      | 68       | 41 - 120       |           |
| 2-FLUOROBIPHENYL     | 78       | 48 - 120       |           |
| TERPHENYL-D14        | 69       | 51 - 135       |           |
| PHENOL-D5            | 22       | 20 - 120       |           |
| 2-FLUDROPHENOL       | 31       | 20 - 120       |           |
| 2,4,6-TRIBROMOPHENOL | 65       | 42 - 124       |           |

Sholop

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-DICHLOROBENZENE-d4 | 100841      | 51959 - 207836    |           |
| NAPHTHALENE-d8         | 440166      | 230752 - 923008   |           |
| ACENAPHTHENE-d10       | 234763      | 122046 - 488184   |           |
| PHENANTHRENE-d10       | 433400      | 200494 - 801974   |           |
| CHRYSENE-d12           | 395302      | 193477 - 773908   |           |
| PERYLENE-d12           | 373532      | 196322 - 785286   |           |

Comments:

# AFCEE WET CHEM ANALYSES DATA PACKAGE

Analytical Method: 310.2-A98

Lab Name: STL Buffalo

AAB #: A6B21677

Contract #: \_\_\_\_\_

Base/Command: <u>Griffiss Airforce Base</u>

Prime Contractor: Fanning, Phillips & M

Field Sample ID

Lab Sample ID

062006OE

<u>A6710213</u>

Comments:

See Case Narrative

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

| Signature: | Abol    |
|------------|---------|
| Date:      | 7/18/06 |

Name: <u>John Schove</u>

Title: Operations Manager

| Analytical Method: <u>310.</u>   | 2-498           |                |                 | AAB #: /         | 46B21677    |           |
|----------------------------------|-----------------|----------------|-----------------|------------------|-------------|-----------|
| Lab Name: <u>STL</u>             | Buffalo         |                |                 | Contract #: _    |             |           |
| Field Sample ID: 0620            | 0060E           | Lab Sample ID: | <u>A6710213</u> | Matrix: <u>N</u> | JATER       |           |
| % Solids: <u>0</u> .             | .0              |                |                 |                  |             |           |
| Date Received: <u>21-</u> J      | <u>Jun-2006</u> |                |                 | Date Analyzed: 2 | 23-Jun-2006 |           |
| Concentration Units: <u>MG/L</u> | <u> </u>        |                |                 |                  |             |           |
| Analyte                          |                 | MDL            | RL              | Concentration    | Dilution    | Qualifier |
| ALKALINITY, TOTAL (AS CACO       | 3)              | 2.7            | 5.0             | 2.7              | 1.00        | U         |
| Comments:                        |                 | *********      |                 |                  |             | *         |

u Curto Apolos

# AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>310.2-A98</u>       | AAB #:            | <u>A6B21856</u>                  |
|--------------------|------------------------|-------------------|----------------------------------|
| Lab Name:          | <u>STL Buffalo</u>     | Contract #:       |                                  |
| Base/Command:      | Griffiss Airforce Base | Prime Contractor: | <u>Fanning, Phillips &amp; M</u> |
|                    |                        |                   |                                  |

Field Sample ID

TF3CE313OA TF3M11614OA TF3M11713OA TF3M119R12OA TF3M121R12OA TF3M12314OA TF3M12614OA TF3M12713OA TF3M12814OA TF3M13316OC TF3M13316OC TF3M2114OA Lab Sample ID

A6710201 A6710202 A6710203 A6710204 A6710205 A6710206 A6710207 A6710208 A6710209 A6710209 A6710210 A6710210FD A6710211

Comments:

See Case Narrative

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:

Date:

100

Name: John Schove

Title: Operations Manager

| Analytical Method:                     | 310.2-A98          |            |                     |    | AAB #:         | A6B21856    |           |
|----------------------------------------|--------------------|------------|---------------------|----|----------------|-------------|-----------|
| Lab Name:                              | <u>STL Buffalo</u> |            |                     |    | Contract #:    |             | -         |
| Field Sample ID:                       | TF3CE3130A         | Lab Sample | ID: <u>A6710201</u> |    | Matrix:        | WATER       |           |
| % Solids:                              | 0.0                |            |                     |    |                |             |           |
| Date Received:                         | <u>21-Jun-2006</u> |            |                     |    | Date Analyzed: | 27-Jun-2006 |           |
| Concentration Units:                   | MG/L               |            |                     |    |                |             |           |
| Analyte                                |                    | MDL        |                     | RF | Concentration  | Dilution    | Qualifier |
| ALKALINITY, TOTAL (AS                  | CACO3)             | 5.3        |                     | 10 | 192            | 2.00        | 1         |
| ······································ |                    |            |                     |    |                |             | 3         |

Comments:

,

Wet pb

| Analytical Method:    | <u>310.2-A98</u>   |              |                    | AAB #: <u>4</u> | 6 <u>821856</u> |           |
|-----------------------|--------------------|--------------|--------------------|-----------------|-----------------|-----------|
| Lab Name:             | <u>STL Buffalo</u> |              |                    | Contract #: _   |                 |           |
| Field Sample ID:      | TF3M116140A        | Lab Sample I | D: <u>A6710202</u> | Matrix: y       | ATER            |           |
| % Solids:             | <u>0.Ò</u>         |              |                    |                 |                 |           |
| Date Received:        | <u>21-Jun-2006</u> |              |                    | Date Analyzed:  | 27-Jun-2006     |           |
| Concentration Units:  | MG/L               |              |                    |                 |                 |           |
| Analyte               |                    | MDL          | RL                 | Concentration   | Dilution        | Qualifier |
| ALKALINITY, TOTAL (AS | CAC03)             | 5.3          | 10                 | 178             | 2.00            |           |
| Comments:             |                    |              |                    |                 |                 | ^         |

ank infr

| Analytical Method:    | <u>310.2-A98</u>   |                         |         | AAB #: <u>A</u>  | 6B21856    |           |
|-----------------------|--------------------|-------------------------|---------|------------------|------------|-----------|
| Lab Name:             | <u>STL Buffalo</u> |                         |         | Contract #: _    |            | _         |
| Field Sample ID:      | <u>TF3M117130A</u> | Lab Sample ID: <u>A</u> | 6710203 | Matrix: <u>W</u> | ATER       |           |
| % Solids:             | 0.0                |                         |         |                  |            |           |
| Date Received:        | <u>21-Jun-2006</u> |                         |         | Date Analyzed: 2 | 7-Jun-2006 |           |
| Concentration Units:  | MG/L               |                         |         |                  |            |           |
| Analyte               |                    | MDL                     | RL      | Concentration    | Dilution   | Qualifier |
| ALKALINITY, TOTAL (AS | CACO3)             | 8.0                     | 15.0    | 224              | 3.00       |           |
| Comments:             |                    |                         |         |                  |            | NJK       |
|                       |                    |                         |         |                  |            | E drejos  |
|                       |                    |                         |         |                  |            |           |
|                       |                    |                         |         |                  |            |           |

| Analytical Method:              | <u>310.2-A98</u><br>STL Buffalo |                  |         | AAB #: <u>/</u><br>Contract #: |             |           |
|---------------------------------|---------------------------------|------------------|---------|--------------------------------|-------------|-----------|
| Field Sample ID:                |                                 | Lab Sample ID: A | 6710204 | Matrix:                        |             | -         |
| % Solids:<br>Date Received:     | <u>21-Jun-2006</u>              |                  |         | Date Analyzed: 2               | 27-Jun-2006 |           |
| Concentration Units:<br>Analyte | <u>MG/L</u>                     | MDL              | RL      | Concentration                  | Dilution    | Qualifier |
| ALKALINITY, TOTAL (AS           | CACO7 \                         | 5.3              | 10      | 159                            | 2.00        |           |

| Analytical Method: <u>310.</u>          | .2-498    |               |                   | AAB #:         | <u>A6B21856</u> |           |
|-----------------------------------------|-----------|---------------|-------------------|----------------|-----------------|-----------|
| Lab Name: <u>STL</u>                    | Buffalo   |               |                   | Contract #:    |                 | _         |
| Field Sample ID: <u>TF3M</u>            | 1121R120A | Lab Sample ID | : <u>A6710205</u> | Matrix:        | WATER           |           |
| % Solids: <u>0</u> .                    | .0        |               |                   |                |                 |           |
| Date Received: 21-J                     | lun-2006  |               |                   | Date Analyzed: | 27-Jun-2006     |           |
| Concentration Units: <u>MG/L</u>        | L         |               |                   |                |                 |           |
| Analyte                                 |           | MDL           | RL                | Concentration  | Dilution        | Qualifier |
| ALKALINITY, TOTAL (AS CACO              | )3)       | 8.0           | 15.0              | 203            | 3.00            |           |
| *************************************** |           |               |                   |                |                 | <u>.</u>  |

Comments:

ant the pos

# 197/213

| Analytical Method: <u>310.2-A98</u> |                   |        | AAB #: <u>A</u>  | <u>6821856</u> |           |
|-------------------------------------|-------------------|--------|------------------|----------------|-----------|
| Lab Name: <u>STL Buffalo</u>        |                   |        | Contract #: _    |                |           |
| Field Sample ID: <u>TF3M123140A</u> | Lab Sample ID: A6 | 710206 | Matrix: <u>W</u> | ATER           |           |
| % Solids: <u>0.0</u>                |                   |        |                  |                |           |
| Date Received: <u>21-Jun-2006</u>   |                   |        | Date Analyzed: 2 | 7-Jun-2006     |           |
| Concentration Units: MG/L           |                   |        |                  |                |           |
| Analyte                             | MDL               | RL     | Concentration    | Dilution       | Qualifier |
| ALKALINITY, TOTAL (AS CACO3)        | 5.3               | 10     | 156              | 2.00           |           |
| Comments:                           |                   |        |                  |                | <u> </u>  |
| ······                              |                   |        |                  | · · · · ·      | f à       |

| Analytical Method:    | 310.2-498              |                |          | AAB #:         | <u>A6B21856</u> |           |
|-----------------------|------------------------|----------------|----------|----------------|-----------------|-----------|
| Lab Name:             | <u>STL Buffalo</u>     |                |          | Contract #:    |                 |           |
| Field Sample ID:      | TF3M126140A            | Lab Sample ID: | A6710207 | Matrix:        | WATER           |           |
| % Solids:             | 0.0                    |                |          |                |                 |           |
| Date Received:        | <u>21 - Jun - 2006</u> |                |          | Date Analyzed: | 27-Jun-2006     |           |
| Concentration Units:  | MG/L                   |                |          |                |                 |           |
| Analyte               |                        | MDL            | RL       | Concentration  | 1 Dilution      | Qualifier |
| ALKALINITY, TOTAL (AS | CAC03)                 | 8.0            | 15.0     | 217            | 3.00            |           |

Comments:

curt Heddob

\_\_\_\_

| Analytical Method:    | <u>310.2-A98</u>   |                |          | AAB #:         | A6B21856    |           |
|-----------------------|--------------------|----------------|----------|----------------|-------------|-----------|
| Lab Name:             | STL Buffalo        |                |          | Contract #:    |             |           |
| Field Sample ID:      | TF3M127130A        | Lab Sample ID: | A6710208 | Matrix:        | WATER       |           |
| % Solids:             | 0.0                |                |          |                |             |           |
| Date Received:        | <u>21-Jun-2006</u> |                |          | Date Analyzed: | 27-Jun-2006 |           |
| Concentration Units:  | MG/L               |                |          |                |             |           |
| Analyte               |                    | MDL            | RL       | Concentration  | Dilution    | Qualifier |
| ALKALINITY, TOTAL (AS | CACO3)             | 8.0            | 15.0     | 209            | 3.00        |           |

Comments:

aloops

| Analytical Method:    | 310.2-A98_         |            |                   |      | AAB #:         | A6B21856           |           |
|-----------------------|--------------------|------------|-------------------|------|----------------|--------------------|-----------|
| Lab Name:             | STL Buffalo        |            |                   |      | Contract #:    |                    |           |
| Field Sample ID:      | TF3M128140A        | Lab Sample | ID: <u>A67102</u> | 09   | Matrix:        | WATER              |           |
| % Solids:             | 0.0                |            |                   |      |                |                    |           |
| Date Received:        | <u>21-Jun-2006</u> |            |                   |      | Date Analyzed: | <u>27-jun-2006</u> |           |
| Concentration Units:  | MG/L               |            |                   |      |                |                    |           |
| Analyte               |                    | MDL        |                   | RL   | Concentration  | Dilution           | Qualifier |
| ALKALINITY, TOTAL (AS | CACO3)             | 10.6       | ,                 | 20.0 | 332            | 4.00               |           |
|                       |                    | .4         |                   |      |                |                    | 1         |

Comments:

Curk Heads

----

| 1 - 5 - 57            |                    |                          |        | AAB #: <u>A</u>  | 6B21856      |           |
|-----------------------|--------------------|--------------------------|--------|------------------|--------------|-----------|
| Lap Name:             | STL Buffalo        |                          |        | Contract #: _    |              |           |
| Field Sample ID:      | TF3M133160A        | Lab Sample ID: <u>A6</u> | 710210 | Matrix: <u>b</u> | ATER         |           |
| % Solids:             | 0.0                |                          |        |                  |              |           |
| Date Received:        | <u>21-Jun-2006</u> |                          |        | Date Analyzed: 2 | 7- Jun- 2006 | 1         |
| Concentration Units:  | MG/L               |                          |        |                  |              |           |
| Analyte               |                    | MDL                      | RL     | Concentration    | Dilution     | Qualifier |
| ALKALINITY, TOTAL (AS | CACO3)             | 8.0                      | 15.0   | 273              | 3.00         |           |

| Analytical Method: 310.2-A98      |                   |          | AAB #: <u>4</u>  | 6 <u>6821856</u> |           |
|-----------------------------------|-------------------|----------|------------------|------------------|-----------|
| Lab Name: <u>STL Buffalo</u>      |                   |          | Contract #: _    |                  | _         |
| Field Sample ID: TF3M133160C      | Lab Sample ID: Ad | 710210FD | Matrix: <u>L</u> | ATER             |           |
| % Solids: <u>0.0</u>              |                   |          |                  |                  |           |
| Date Received: <u>21-Jun-2006</u> |                   |          | Date Analyzed: 2 | 7-Jun-2006       |           |
| Concentration Units: MG/L         |                   |          |                  |                  |           |
| Analyte                           | MDL               | RL       | Concentration    | Dilution         | Qualifier |
| ALKALINITY, TOTAL (AS CACO3)      | 8.0               | 15.0     | 250              | 3.00             |           |
| Comments -                        |                   |          |                  |                  |           |

| NINK   |
|--------|
| anoppe |
| 714    |

# 203/213

#### AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

| Anatycicat Method.    | <u>310.2-A98</u>   | AAB #: <u>A6B21856</u>                |    |                         |            |           |
|-----------------------|--------------------|---------------------------------------|----|-------------------------|------------|-----------|
| Lab Name:             | STL Buffalo        | Contract #                            |    |                         |            | _         |
| Field Sample ID:      | TF3M21140A         | Lab Sample ID: <u>A6710211</u> Matri> |    |                         | ATER       |           |
| % Solids:             | 0.0                |                                       |    |                         |            |           |
| Date Received:        | <u>21-Jun-2006</u> |                                       |    | Date Analyzed: <u>2</u> | 7-Jun-2006 |           |
| Concentration Units:  | MG/L               |                                       |    |                         |            |           |
| Analyte               |                    | MDL.                                  | RL | Concentration           | Dilution   | Qualifier |
| ALKALINITY, TOTAL (AS | CACO3)             | 5.3                                   | 10 | 147                     | 2.00       |           |

# FPM-GROUP Data Verification and Usability Report GRIFFISS AIR FORCE BASE Site Griffiss AFB TANK FARM 1/3 Water Sampling Contract No. F41624-03-D-8601

# FPM Project No. 40-05-27

# LSL Job # 0609018

| Laboratory:          | Life Sciences Laboratories, Inc.                           |
|----------------------|------------------------------------------------------------|
| Sample Matrix:       | Water                                                      |
| Number of Samples:   | 15                                                         |
| Analytical Protocol: | AFCEE QAPP, Version 4.0, with AFCEE-approved lab variances |
| Data Reviewer:       | Connie van Hoesel                                          |
| Sample Date:         | June 26, 2006                                              |

# LIST OF DATA VERIFICATION SAMPLES

This verification report pertains to the following environmental samples and corresponding QC samples:

| Sample ID    | Date    | QC Samples                   | Date    |
|--------------|---------|------------------------------|---------|
| TF3CE313PA   | 9/26/06 | 092606PE, 092606PF, 092606PR | 9/26/06 |
| TF3M2114PA   | 9/26/06 |                              |         |
| TF3M11614PA  | 9/26/06 |                              |         |
| TF3M11713PA  | 9/26/06 |                              |         |
| TF3M119R12PA | 9/26/06 |                              |         |
| TF3M121R12PA | 9/26/06 |                              |         |
| TF3M12314PA  | 9/26/06 |                              |         |
| TF3M12614PA  | 9/26/06 |                              |         |
| TF3M12713PA  | 9/26/06 |                              |         |
| TF3M13316PA  | 9/26/06 | TF3M13316PC                  | 9/26/06 |
| TF3M12814PA  | 9/26/06 |                              |         |

Notes:

Refer to attached chain-of-custody for detailed sampling information and sample specific analyses requested.

PA - Primary environmental samples

PC - Field duplicate sample

PE – Equipment blank

PF – Ambient blank

PR - Trip blank

# DELIVERABLES

The data deliverable report was per requirements of the AFCEE QAPP 4.0 and approved variances. The report consisted of the following major sections: lab attachment letter, case narrative, chain-of-custody, lab qualifier definitions, analytical results (sheet 2) based on analytical batch, calibration summaries, method blank summaries, laboratory control sample summaries, matrix spike/matrix spike duplicate summaries, holding time forms, performance checks, surrogate and internal standard recoveries, as applicable.

# ANALYTICAL METHODS

The analytical test methods and QA/QC requirements used for the soil sample analysis was per methods as specified in the AFCEE Quality Assurance Project Plan, Version 4.0 and AFCEE approved laboratory variances. The analytical methods employed included SW-846: Volatile Organic Compounds (VOCs) by Method SW8260 and Semivolatile Organic Compounds (SVOCs) by Method SW8270, and Total Alkalinity by EPA Method 310.2.

# **VERIFICATION GUIDANCE**

The analytical work was performed by Life Sciences Laboratories, Inc. in accordance with the Air Force Center for Environmental Excellence (AFCEE), Quality Assurance Project Plan (QAPP), Version 4.0, with AFCEE-approved laboratory variances. The data was verified according to the protocols and QC requirements of the respective analytical methods and of the QAPP Version 4.0. For data usability purposes all values were further evaluated, including positive and non-detect results that were qualified "R" (Rejected) according to QAPP. The data usability analysis was based on the reviewer's professional judgment and on an assessment of how this data would fare with respect to the U.S. Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for Organic (and Inorganic) Data Review (February 1994), and the AFCEE QAPP, Version 4.0.

# QA/QC CRITERIA

The following QA/QC criteria were reviewed, as applicable and available:

- Method detection limits and reporting limits (MDL, RL)
- Holding times, sample preservation and storage
- MS tune performance
- Initial and Continuing calibration summaries
- Second source calibration verification summary
- Method blanks
- Ambient, equipment, and trip blanks (as applicable)
- Field duplicate results
- Surrogate spike recoveries
- Internal standard areas counts and retention times
- Laboratory control samples (LCS)
- Results reported between MDL and RL (F-flag)

- Sample storage and preservation
- Data system printouts
- Qualitative and quantitative compound identification
- Chain-of-custody (COC)
- Case narrative and deliverables compliance

The items listed above were in compliance with AFCEE QAPP and USEPA criteria and protocols <u>with exceptions discussed in the text below</u>. The data have been verified according to the procedures outlined above and qualified accordingly.

# GENERAL NOTES:

# MISSING SAMPLES

None. All samples documented on the chain of custody were received by the laboratory.

# SAMPLE LABELING

No problems were encountered with sample labeling and transcription to laboratory forms.

# **BLANKS**

Whenever blanks, including method, ambient, equipment, and trip, contained low levels of contaminants (between MDL and RL), the laboratory and/or data verifier qualified the subject results with an "F" flag. Since no qualification of associated field samples are required for blanks less than the RL, no further action was taken in such instances.

# MS/MSD

For SVOCs, the lab performed matrix spike and matrix spike duplicate samples for parent sample TF3M119R12OA. However, these samples were not requested by the client in the chain-of-custody; therefore, no action was taken for the MS/MSD criterion.

# VOLATILE ORGANIC COMPOUNDS (VOCs)

• The analyte isopropylbenzene required additional dilution (1:2) in original samples TF3M2114NA and TF3M12314PA, which were analyzed at 1:1. Also, the analytes ethylbenzene and 1,2,4-trimethylbenzene required additional dilution (1:5) in original sample TF3M12713PA, which was analyzed at 1:1. Use diluted sample results for these compounds only. Original sample results are modified accordingly.

# SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

• Laboratory performance on individual samples is established by means of spiking all samples prior to analysis with surrogate compounds and assessing the percent recoveries. The following table summarizes QC exceedances for samples which exhibited surrogate compound recovery deficiencies. The Sample ID, surrogate compound, percent recoveries, and QC limits are listed.

| Sample ID                    | Surrogate            | %Rec | AFCEE QC<br>Limits (%) | Flag<br>Applied | Rationale                                                                           |
|------------------------------|----------------------|------|------------------------|-----------------|-------------------------------------------------------------------------------------|
| TF3M121R12PA                 | 2,4,6-Tribromophenol | 18   | 42-124                 | J/UJ            | %Rec lower than<br>lower control<br>limit but greater<br>than 10%                   |
| TF3M121R12PA<br>(reanalysis) | 2,4,6-Tribromophenol | 26   | 42-124                 | R               | Reanalysis<br>performed outside<br>holding time;<br>original results<br>used        |
| Method Blank-3922            | 2,4,6-Tribromophenol | 129  | 42-124                 | None            | QC sample<br>relevant only to<br>reanalyzed<br>sample<br>TF3M121R12PA<br>(rejected) |
| LCS-3922                     | 2,4,6-Tribromophenol | 132  | 42-124                 | None            | QC sample<br>relevant only to<br>reanalyzed<br>sample<br>TF3M121R12PA<br>(rejected) |
| LCSD-3922                    | 2,4,6-Tribromophenol | 137  | 42-124                 | None            | QC sample<br>relevant only to<br>reanalyzed<br>sample<br>TF3M121R12PA<br>(rejected) |

If the surrogate recovery is not within AFCEE limits, corrective action shall be implemented: the sample shall be reextracted and reanalyzed. If the corrective action is ineffective in resolving the exceedance, then all analytes associated with the surrogate in that sample are qualified. As per the QAPP, for samples with recoveries greater than the upper control limit,

positive sample results are considered estimated (flagged "J"). For samples with surrogate recoveries greater than 10% but less than the lower control limit, positive results are considered estimated (flagged "J") and non-detect results are considered estimated (flagged "U"). For samples with surrogate recoveries less than 10%, the results are rejected for the analytes. However, using professional judgment, no corrective action and/or flagging is required for minimal exceedances (i.e., within 1% of the control limits).

**Corrective Action:** The sample TF3M121R12PA above was re-extracted and reanalyzed due to one surrogate recovery exceedance, that for 2,4,6-tribromophenol. The results of the resample reanalysis are also shown in the above table. The determination of which sample results to use for each sample is summarized below:

- TF3M121R12PA: The reanalyzed sample confirmed a matrix effect, according to the case narrative. However, the reanalyzed sample was re-extracted outside of holding time (maximum holding time 7 days, time to re-extraction 8.2 days). Therefore, the reanalysis results were rejected, and the original results were deemed usable with qualifiers as discussed above ("J" for detected results, "UJ" for non-detect results). Note that this surrogate is associated with seven analytes: 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, 4-chloro-3-methylphenol, 4-nitrophenol, and pentachlorophenol.
- MB-3922, LCS-3922, and LCSD-3922: These QC samples are only relevant to the reanalyzed sample TF3M121R12PA, which was rejected. No corrective action or qualification of the original sample results is required.

| Analyte                           | CCV %D |
|-----------------------------------|--------|
| LSL Job # 0609018, CCV CC100506A5 |        |
| Benzoic Acid                      | 21.6   |
| Hexachlorobutadiene               | -27.8  |
| 2,4,6-Tribromophenol              | -24.4  |
| Indeno[1,2,3-cd]pyrene            | -25.4  |
| Dibenz[a,h]anthracene             | -26.6  |

• According to the case narrative, the following analytes exhibited percent differences greater than 20% for the purposes of the continuing calibration verification (CCV):

<u>Corrective Action</u>: This CCV was relevant only to the reanalyzed sample TF3M121R12PA, which was rejected. No corrective action or qualification of the original sample results is required.

• Laboratory control samples (LCS) are samples spiked with all analytes of interest at known concentrations. The following table summarizes QC exceedances of the LCS analysis. The LCS ID, percent recovery, and QC limits are listed.

| LCS Job Number<br>Spike Analytes | LCS<br>%Rec | QC<br>Limits (%) | Flag<br>Applied | Rationale                                                                                |  |
|----------------------------------|-------------|------------------|-----------------|------------------------------------------------------------------------------------------|--|
| LSL Job # 0609018: LCS           | -3904       |                  |                 |                                                                                          |  |
| Benzoic Acid                     | 0           | 20-120           | None            | %Rec within marginal exceedance limits<br>(0-150) and parameters of approved<br>variance |  |
| LSL Job # 0609018: LCSD-3904     |             |                  |                 |                                                                                          |  |
| Benzoic Acid                     | 10          | 20-120           | None            | %Rec within marginal exceedance limits                                                   |  |

| LCS Job Number | LCS  | QC         | Flag    | Rationale                                   |
|----------------|------|------------|---------|---------------------------------------------|
| Spike Analytes | %Rec | Limits (%) | Applied |                                             |
|                |      |            |         | (0-150) and parameters of approved variance |

The LCS analyses are used to assess the overall laboratory performance pertaining to the analytical method. The QAPP includes method-specific QC acceptance criteria for the percent recovery of the spike compounds. The LCS results are used to evaluate each AFCEE analytical batch and to determine if the method is within control limits. When an LCS analyte is outside the acceptance limit, the laboratory shall perform corrective action. If the corrective action is ineffective in resolving the exceedance, then that analyte's results in all the associated samples are qualified. According to the QAPP, when the percent recovery (%Rec) is greater than the upper control limit, positive results are considered estimated (flagged "J"); and when the %Rec is less than the lower control limit, positive values are estimated (flagged "J") and non-detects are rejected (flagged "R"). Note that the QAPP also allows for up to three marginal exceedances of LCS control limits for an LCS with 64 analytes.

<u>Corrective Action</u>: In accordance with the case narrative, no corrective action was required since %Rec was within marginal exceedance limits. Furthermore, LSL has an approved variance which states that corrective action is not required if benzoic acid (a poor-performing analyte) exceeds acceptance criteria. Note that benzoic acid is not a project-specific analyte of concern for the site.

# TOTAL ALKALINITY

• There were no exceedances for total alkalinity analysis.

# DATA USABILITY RESULTS

# VOCs

Based on the evaluation of all information in the analytical data groups, the results of the samples for VOCs are highly usable with the data qualifiers as noted. Using the verification approach as presented above, the results for all above samples are 100% usable.

# **SVOCs**

Based on the evaluation of all information in the analytical data groups, the results of the samples for SVOCs are highly usable with the data qualifiers as noted. Using the verification approach as presented above, the results for all above samples are 100% usable.

# TOTAL ALKALINITY

Based on the evaluation of all information in the analytical data groups, the results of the samples for total alkalinity are highly usable with the data qualifiers as noted. Using the verification approach as presented above, the results for all above samples are 100% usable.

# **AFCEE SUMMARY**

All data in Job # 0609018 are valid and usable with qualifications as noted in the data review.

Signed: Concordin Van Hoesel Date: 11/3/06

# **ATTACHMENTS**

- Chain-of-Custody
- Laboratory's Case Narrative
- Definition of AFCEE Data Qualifiers
- Definition of USEPA Data Qualifiers
- Qualified final data verification results on annotated Lab Sheet 2s

## AFCEE ORGANIC ANALYSES DATA PACKAGE

| Base/Command:      |                                 | Prime Contractor: | FPM Group    |
|--------------------|---------------------------------|-------------------|--------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |              |
| Analytical Method: | <u>SW8260B</u>                  | AAB #:            | <u>R6783</u> |

Field Sample ID Lab Sample ID TF3CE313PA 0609018-001A TF3M2114PA 0609018-002A TF3M11614PA 0609018-003A TF3M11713PA 0609018-004A TF3M119R12PA 0609018-005A TF3M121R12PA 0609018-006A TF3M12314PA 0609018-007A TF3M12614PA 0609018-008A TF3M12713PA 0609018-009A TF3M13316PC 0609018-012A 092606PE 0609018-013A 092606PF 0609018-014A 092606PR 0609018-015A

#### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | Monika Santucci | Name:  | Monika Santucci |
|------------|-----------------|--------|-----------------|
| Date:      | 40/30/06        | Title: | Project Manager |
| .0         | AFCEE FOI       | RM O-1 | Page 1 of 2     |

QAPP 4.0

## AFCEE ORGANIC ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW8260B</u>                  | AAB #:           | <u>R6816</u> |
|--------------------|---------------------------------|------------------|--------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number: |              |

Base/Command:

Prime Contractor: FPM Group

| Field Sample ID | Lab Sample ID |
|-----------------|---------------|
| TF3M12314PA     | 0609018-007A  |
| TF3M12713PA     | 0609018-009A  |
| TF3M12814PA     | 0609018-010A  |
| TF3M13316PA     | 0609018-011A  |

#### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | Morika Donquicei | Name:  | Monika Santucci |
|------------|------------------|--------|-----------------|
| Date:      | 10/20/06         | Title: | Project Manager |
| QAPP 4.0   | AFCEE FOR        | M O-1  | Page 2 of 2     |

| Analytical Method:     | SW8260B                  | Preparat        | ory Method:   |             | AAB #:        | E        | 6783        |
|------------------------|--------------------------|-----------------|---------------|-------------|---------------|----------|-------------|
| Lab Name:              | Life Science Laboratorie | <u>is, Inc.</u> |               | Contract #: |               |          |             |
| Field Sample ID:       | TF3CE313PA               | Lab Sam         | ple ID:       | 0609018-0   | <u>01A</u> Ma | atrix:   | Groundwater |
| % Solids:              | <u>0</u>                 | Initial Ca      | libration ID: | <u>663</u>  | File ID:      | J0058.D  |             |
| Date Received:         | 27-Sep-06                | Date Extr       | racted:       |             | Date An       | alyzed:  | 02-Oct-06   |
| Concentration Units    | (ug/L or mg/Kg dry weig  | ht): ⊔          | <u>g/L</u>    |             | Sample        |          | 10 mL       |
|                        | Analyte                  |                 | MDL           | RL          | Concentration | Dilution |             |
| (m+p)-Xylene           |                          |                 | 0.0280        | 2.0         | 0.0280        | 1        | U           |
| 1,1,1,2-Tetrachloroeth | ane                      |                 | 0.0540        | 0.50        | 0.0540        | 1        | U           |
| 1,1,1-Trichloroethane  |                          |                 | 0.0150        | 1.0         | 0.0150        | 1        | - Ŭ         |
| 1,1,2,2-Tetrachloroeth | ane                      |                 | 0.0810        | 0.50        | 0.0810        | 1        | U U         |
| 1,1,2-Trichloroethane  |                          |                 | 0.0280        | 1.0         | 0.0280        | 1        | - U         |
| 1,1-Dichloroethane     |                          |                 | 0.0330        | 1.0         | 0.0330        | 1        | - U         |
| 1,1-Dichloroethene     |                          |                 | 0.0460        | 1.0         | 0.0460        | 1        | - Ŭ         |
| 1,1-Dichloropropene    |                          |                 | 0.0240        | 1.0         | 0.0240        | 1        |             |
| 1,2,3-Trichlorobenzene | >                        |                 | 0.0360        | 1.0         | 0.0360        | 1        |             |
| 1,2,3-Trichloropropane |                          |                 | 0.0460        | 1.0         | 0.0460        | 1        | - u         |
| 1,2,4-Trichlorobenzene | >                        |                 | 0.0250        | 1.0         | 0.0250        | 1        | U           |
| 1,2,4-Trimethylbenzen  | 6                        |                 | 0.0120        | 1.0         | 0.0120        | 1        | U           |
| 1,2-Dibromo-3-chlorop  | ropane                   |                 | 0.261         | 2.0         | 0.261         | 1        | <u> </u>    |
| 1,2-Dibromoethane      |                          |                 | 0.0350        | 1.0         | 0.0350        | 1        | - <u> </u>  |
| 1,2-Dichlorobenzene    |                          |                 | 0.0190        | 1.0         | 0.0190        | 1        |             |
| 1,2-Dichloroethane     |                          |                 | 0.0240        | 0.50        | 0.0240        | 1        | U           |
| 1,2-Dichloropropane    |                          |                 | 0.0260        | 1.0         | 0.0260        | 1        | U           |
| 1,3,5-Trimethylbenzen  | 3                        | ·····           | 0.0130        | 1.0         | 0.0130        | 1        | U           |
| 1,3-Dichlorobenzene    |                          |                 | 0.0200        | 1.0         | 0.0200        | 1        | <u> </u>    |
| 1,3-Dichloropropane    |                          |                 | 0.0230        | 0.50        | 0.0230        | 1        |             |
| 1,4-Dichlorobenzene    | ,,,,,,,,,,,              |                 | 0.0170        | 0.50        | 0.0170        | 1        | - <u> </u>  |
| 1-Chlorohexane         |                          |                 | 0.0470        | 1.0         | 0.0470        | 1        | U           |
| 2,2-Dichloropropane    |                          |                 | 0.0820        | 1.0         | 0.0820        | 1        | U           |
| 2-Butanone             | ······                   |                 | 0.649         | 10          | 0.649         | 1        |             |
| 2-Chlorotoluene        | ΔΑΔΑ                     |                 | 0.0120        | 1.0         | 0.0120        | 1        | U           |
| 4-Chlorotoluene        |                          |                 | 0.0170        | 1.0         | 0.0170        | 1        | U           |
| 4-Methyl-2-pentanone   | *                        |                 | 0.375         | 10          | 0.375         | 1        | U           |
| Acetone                |                          |                 | 0.823         | 10          | 0.823         | 1        | - U         |
| Benzene                |                          |                 | 0.0100        | 0.50        | 0.0100        | 1        | U           |
| Bromobenzene           |                          |                 | 0.0280        | 1.0         | 0.0280        | 1        | U           |
| Bromochloromethane     |                          |                 | 0.0590        | 1.0         | 0.0590        | 1        |             |
| Bromodichloromethane   | }                        |                 | 0.0310        | 0.50        | 0.0310        | 1        | U           |
| Bromoform              |                          |                 | 0.0470        | 1.0         | 0.0470        | 1        | - U         |
|                        |                          |                 | I             |             |               |          |             |

Comments:

-----Page 1 of 54

UNA 11/3/06

| Analytical Method:      | SW8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Preparato   | ory Method:   |                  | AAB #:         | Re      | 783         |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|------------------|----------------|---------|-------------|
| Lab Name:               | Life Science Laborat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ories, Inc. |               | Contract #:      |                |         |             |
| Field Sample ID:        | TF3CE313PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lab Sam     | ple ID:       | <u>0609018-(</u> | <u>)01A</u> Ma | trix:   | Groundwater |
| % Solids:               | <u>0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Initial Cal | libration ID: | <u>663</u>       | File ID:       | J0058.D |             |
| Date Received:          | 27-Sep-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date Extr   | acted:        |                  | Date An        | alyzed: | 02-Oct-06   |
| Concentration Units     | (ua/L or ma/Ka drv w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eioht): u   | a/L           |                  | Sample         | Cirra.  | 10 mL       |
| 5                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · –       |               | RL               | Concentration  |         |             |
| Bromomethane            | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 0.0590        | RL<br>3.0        | 0.0590         | 1       | U           |
| Carbon tetrachloride    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0320        | 1.0              | 0.0320         | 1       | Ŭ           |
| Chlorobenzene           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0320        | 0.50             | 0.0110         | 1       |             |
| Chloroethane            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0110        | 1.0              | 0.0110         | 1       | U           |
| Chloroform              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |               |                  | 0.0290         | 1       | U           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·····       | 0.0290        | 0.50             | 0.126          | 1       |             |
| Chloromethane           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.126         | 1.0              | 0.0320         | 1       | U U         |
| cis-1,2-Dichloroethene  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0320        | 1.0              | 0.0320         | 1       | U           |
| cis-1,3-Dichloroproper  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0210        | 0.50             |                | 1       | U U         |
| Dibromochloromethan     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 0.0410        | 0.50             | 0.0410         | 1       | U U         |
| Dibromomethane          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0380        | 1.0              |                | 1       | U U         |
| Dichlorodifluorometha   | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 0.0670        | 1.0              | 0.0670         |         |             |
| Ethylbenzene            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0240        | 1.0              | 0.0240         |         | <u> </u>    |
| Hexachlorobutadiene     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0610        | 0.60             | 0.0610         | 1       | <u> </u>    |
| Isopropylbenzene        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0210        | 1.0              | 6.40           |         |             |
| Methyl tert-butyl ether | ,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 0.0250        | 5.0              | 0.0250         | 1       | U           |
| Methylene chloride      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0340        | 1.0              | 0.0340         | 1       | U           |
| n-Butylbenzene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0130        | 1.0              | 1.31           |         |             |
| n-Propylbenzene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.00900       | 1.0              | 6.68           | 1       |             |
| Naphthalene             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0240        | 1.0              | 2.33 :         | 1       |             |
| o-Xylene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0140        | 1.0              | 0.0140         | 1       | U           |
| p-Isopropyltoluene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0140        | 1.0              | 0.0140         | 1       | U           |
| sec-Butylbenzene        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0170        | 1.0              | 4,06           | 1       |             |
| Styrene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0200        | 1.0              | 0.0200         | 1       | U           |
| tert-Butylbenzene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0160        | 1.0              | 0.850          | 1       | F           |
| Tetrachloroethene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0300        | 1.0              | 0.0300         | 1       | U           |
| Toluene                 | 1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 |             | 0.0180        | 1.0              | 0.0180         | 1       | U           |
| trans-1,2-Dichloroethe  | ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 0.0270        | 1.0              | 0.0270         | 1       | U           |
| trans-1,3-Dichloroprop  | pene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 0.0290        | 1.0              | 0.0290         | 1       | U           |
| Trichloroethene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0270        | 1.0              | 1.13 《         | 1       |             |
| Trichlorofluoromethar   | ie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 0.0200        | 1.0              | 0.0200         | 1       | <u> </u>    |
| Vinyl chloride          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0380        | 1.0              | 0.0380         | 1       | U           |
| Xylenes (total)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0420        | 2.0              | 0.0420         | 1       | U           |

## Comments:

|   |                                        | Dens O of Ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|---|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|   |                                        | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
|   |                                        | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111-1- |
|   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1200   |
|   | ······································ | and the second state of th | MVV4   |
| C | Comments:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 at   |

QAPP 4.0

·

| Analytical Method:  | SW8260B                    | Preparatory Method:     |                | AAB #:           | <u>R6783</u> |
|---------------------|----------------------------|-------------------------|----------------|------------------|--------------|
| Lab Name:           | Life Science Laboratories, | Inc.                    | Contract #:    |                  |              |
| Field Sample ID:    | TF3CE313PA                 | Lab Sample ID:          | 0609018-001A   | Matrix:          | Groundwater  |
| % Solids:           | <u>0</u>                   | Initial Calibration ID: | <u>663</u>     | File ID: J0058.I | D            |
| Date Received:      | 27-Sep-06                  | Date Extracted:         |                | Date Analyzed:   | 02-Oct-06    |
| Concentration Units | (ug/L or mg/Kg dry weight) | : <u>µg/L</u>           |                | Sample Size:     | 10 mL        |
|                     | Surrogate                  | Recover                 | Control Limite |                  |              |

| 1,2-Dichloroethane-d4 | 98  | 72 - 119 |  |
|-----------------------|-----|----------|--|
| 4-Bromofluorobenzene  | 103 | 76 - 119 |  |
| Dibromofluoromethane  | 101 | 85 - 115 |  |
| Toluene-d8            | 112 | 81 - 120 |  |

| internal Std           | Area Counis | Area Count Limits Qualifier |
|------------------------|-------------|-----------------------------|
| 1,4-Dichlorobenzene-d4 | 359807      | 178690 - 714758             |
| Chlorobenzene-d5       | 383900      | 199960 - 799842             |
| Fluorobenzene          | 1143274     | 571263 - 2285052            |

WA 11/3/06

| Analytical Method:      | SW8260B                                | Preparat    | ory Method:   |             | AAB #:                | R        | <u> 5783</u> |
|-------------------------|----------------------------------------|-------------|---------------|-------------|-----------------------|----------|--------------|
| Lab Name:               | Life Science Laboratories              | <u>Inc.</u> |               | Contract #: |                       |          |              |
| Field Sample ID:        | TF3M2114PA                             | Lab Sam     | ple ID:       | 0609018-0   | <u>102A</u> Ma        | trix:    | Groundwater  |
| % Solids:               | <u>0</u>                               | Initial Ca  | libration ID: | <u>663</u>  | File ID:              | J0059.D  |              |
| Date Received:          | 27-Sep-06                              | Date Extr   | acted:        |             | Date Ana              | ivzed:   | 02-Oct-06    |
| Concentration Units /   | ug/L or mg/Kg dry weigh                |             | g/L           |             | ·                     | •        | ·            |
|                         |                                        | -y- E       |               |             | Sample :              |          | 10 mL        |
| (m+p)-Xylene            | Analyte                                |             | MDL<br>0.0280 | RL 2.0      | Concentration<br>1.18 | Dilution | Gualifier    |
| 1,1,1,2-Tetrachloroetha |                                        |             | <u></u>       | 0.50        | 0.0540                | 1        |              |
| 1.1.1-Trichloroethane   | 2110                                   |             | 0.0540        | 1.0         | 0.0150                | 1        | U U          |
| 1.1.2.2-Tetrachloroetha | 200                                    |             | 0.0150        | 0.50        | 0.0810                | 1        | U            |
| 1,1,2-Trichloroethane   |                                        |             | 0.0280        | 1.0         | 0.0280                |          | U            |
| 1,1-Dichloroethane      |                                        |             | 0.0280        | 1.0         | 0.0330                | 1        |              |
| 1,1-Dichloroethene      |                                        |             | 0.0330        | 1.0         | 0.0460                | 1        | - u          |
| 1,1-Dichloropropene     |                                        |             | 0.0480        | 1.0         | 0.0240                | 1        | U            |
| 1.2.3-Trichlorobenzene  |                                        |             | 0.0240        | 1.0         | 0.0360                | 1        |              |
| 1,2,3-Trichloropropane  |                                        |             | 0.0360        | 1.0         | 0.0460                | 1        | U            |
| 1.2.4-Trichlorobenzene  |                                        | <b></b>     | 0.0250        | 1.0         | 0.0250                | 1        | U            |
| 1,2,4-Trimethylbenzen   |                                        |             | 0.0120        | 1.0         | 0.670                 | 1        | F            |
| 1,2-Dibromo-3-chlorop   |                                        |             | 0.261         | 2.0         | 0.261                 | 1        | - U          |
| 1.2-Dibromoethane       |                                        |             | 0.0350        | 1.0         | 0.0350                | 1        | U            |
| 1,2-Dichlorobenzene     |                                        |             | 0.0190        | 1.0         | 0.0190                | 1        | U            |
| 1,2-Dichloroethane      |                                        | ·······     | 0.0240        | 0.50        | 0.0240                | 1        | U            |
| 1,2-Dichloropropane     |                                        | ••••        | 0.0260        | 1.0         | 0.0260                | 1        | U            |
| 1,3,5-Trimethylbenzen   | e                                      |             | 0.0130        | 1.0         | 0.0130                | 1        | U            |
| 1.3-Dichlorobenzene     |                                        |             | 0.0200        | 1.0         | 0.0200                | 1        | U            |
| 1,3-Dichloropropane     |                                        |             | 0.0230        | 0.50        | 0.0230                | 1        | U            |
| 1,4-Dichlorobenzene     |                                        |             | 0.0170        | 0.50        | 0.0170                | 1        | U            |
| 1-Chlorohexane          |                                        |             | 0.0470        | 1.0         | 0.0470                | 1        | - U          |
| 2,2-Dichloropropane     |                                        |             | 0.0820        | 1.0         | 0.0820                | 1        | U            |
| 2-Butanone              | ······                                 | - <u>.</u>  | 0.649         | 10          | 0.649                 | 1        | U            |
| 2-Chlorotoluene         |                                        | nva         | 0.0120        | 1.0         | 0.0120                | 1        | U            |
| 4-Chlorotoluene         |                                        |             | 0.0170        | 1.0         | 0.0170                | 1        | U            |
| 4-Methyl-2-pentanone    |                                        |             | 0.375         | 10          | 0.375                 | 1        | U            |
| Acetone                 |                                        |             | 0.823         | 10          | 0.823                 | 1        | U            |
| Benzene                 |                                        |             | 0.0100        | 0.50        | 0.230                 | 1        | F            |
| Bromobenzene            |                                        |             | 0.0280        | 1.0         | 0.0280                | 1        | U            |
| Bromochloromethane      | ************************************** |             | 0.0590        | 1.0         | 0.0590                | 1        | U            |
| Bromodichloromethan     | e                                      |             | 0.0310        | 0.50        | 0.0310                | 1        | U            |
| Bromoform               |                                        |             | 0.0470        | 1.0         | 0.0470                | 1        | U            |

| Analytical Method:      | <u>SW8260B</u>                        | Preparatory Method     | :           | AAB #:          | R        | 6783             |    |
|-------------------------|---------------------------------------|------------------------|-------------|-----------------|----------|------------------|----|
| Lab Name:               | Life Science Laborat                  | ories, Inc.            | Contract #: |                 |          |                  |    |
| Field Sample ID:        | TF3M2114PA                            | Lab Sample ID:         | 0609018-    | <u>002A</u> Mat | rix:     | Groundwater      |    |
| % Solids:               | Q                                     | Initial Calibration ID | <u>663</u>  | File ID:        | J0059.D  |                  |    |
| Date Received:          | 27-Sep-06                             | Date Extracted:        |             | Date Anal       | yzed:    | 02-Oct-06        |    |
| Concentration Units     | (ug/L or mg/Kg dry w                  | eight): <u>ua/L</u>    |             | Sample S        | -        | 10 п             | nl |
|                         | Analyte                               | MDL                    | RL          | Concentration   | Dilutior |                  |    |
| Bromomethane            | - rastinyets                          | 0.0590                 | 3.0         | 0.0590          | 1        | U Sectionalities |    |
| Carbon tetrachloride    | ·                                     | 0.0320                 | 1.0         | 0.0320          | 1        | - U              |    |
| Chlorobenzene           |                                       | 0.0110                 | 0.50        | 0.0110          | '        | - U              |    |
| Chloroethane            |                                       | 0.0116                 | 1.0         | 0.116           | 1        | U                | -  |
| Chloroform              |                                       | 0.0290                 | 0.50        | 0.0290          |          | <u>ט</u>         |    |
| Chloromethane           |                                       | 0.126                  | 1.0         | 0.126           | 1        | U U              |    |
| cis-1,2-Dichloroethene  | 3                                     | 0.0320                 | 1.0         | 0.0320          | 1        | U                |    |
| cis-1,3-Dichloroproper  | ne                                    | 0.0210                 | 0.50        | 0.0210          | 1        |                  |    |
| Dibromochloromethan     | e                                     | 0.0410                 | 0.50        | 0.0410          | 1        | -<br>U           |    |
| Dibromomethane          |                                       | 0.0380                 | 1.0         | 0.0380          | 1        | U                |    |
| Dichlorodifluorometha   | ne                                    | 0.0670                 | 1.0         | 0.0670          | . 1      | U                |    |
| Ethylbenzene            | Walahan (1844) & Walahaki             | 0.0240                 | 1.0         | 0.150           | 1        | F                |    |
| Hexachlorobutadiene     |                                       | 0.0610                 | 0.60        | 0.0610          | 1        | U                |    |
| Isopropylbenzene        |                                       | 0.0210                 | 1.0         | 640 62.9        | #2       | J                | -* |
| Methyl tert-butyl ether |                                       | 0.0250                 | 5.0         | 0.0250          | 1        | U                |    |
| Methylene chloride      |                                       | 0.0340                 | 1.0         | 0.0340          | 1        | U                |    |
| n-Butylbenzene          |                                       | 0.0130                 | 1.0         | 2.96 *          | 1        |                  |    |
| n-Propylbenzene         |                                       | 0.00900                | 1.0         | 10.8            | 1        |                  |    |
| Naphthalene             |                                       | 0.0240                 | 1.0         | 2.76            | 1        |                  |    |
| o-Xylene                |                                       | 0.0140                 | 1.0         | 0.0140          | 1        | U                |    |
| p-Isopropyltoluene      |                                       | 0.0140                 | 1.0         | 3.84            | 1        | 1                |    |
| sec-Butylbenzene        |                                       | 0.0170                 | 1.0         | 5.10            | 1        |                  |    |
| Styrene                 | · · · · · · · · · · · · · · · · · · · | 0.0200                 | 1.0         | 0.0200          | .1       | U                |    |
| tert-Butylbenzene       |                                       | 0.0160                 | 1.0         | 1.53            | 1        |                  |    |
| Tetrachloroethene       |                                       | 0.0300                 | 1.0         | 0.0300          | 1        | U                |    |
| Toluene                 |                                       | 0.0180                 | 1.0         | 0.240           | 1        | F                |    |
| trans-1,2-Dichloroethe  | ne                                    | 0.0270                 | 1.0         | 0.0270          | 1        | U                |    |
| trans-1,3-Dichloroprop  | ene                                   | 0.0290                 | 1.0         | 0.0290          | 1        | U                |    |
| Trichloroethene         |                                       | 0.0270                 | 1.0         | 0.0270          | 1        | U                |    |
| Trichlorofluoromethan   | e                                     | 0.0200                 | 1.0         | 0.0200          | 1        | U                |    |
| Vinyl chloride          |                                       | 0.0380                 | 1.0         | 0.0380          | 1        | υ                |    |
| Xylenes (total)         |                                       | 0.0420                 | 2.0         | 1.18            | 1        | F                |    |

Comments:

\* Result transferrer from Libertin sample TF3MZ/14PA(1:2)

Wht 11/3/06

| Analytical Method:  | <u>SW8260B</u>             | Preparatory Method:     |                   | AAB #:          | <u>R6783</u> |
|---------------------|----------------------------|-------------------------|-------------------|-----------------|--------------|
| Lab Name:           | Life Science Laboratories, | Inc.                    | Contract #:       |                 |              |
| Field Sample ID:    | TF3M2114PA                 | Lab Sample ID:          | 0609018-002A      | Matrix:         | Groundwater  |
| % Solids:           | <u>0</u>                   | Initial Calibration ID: | <u>663</u>        | File ID: J0059. | D            |
| Date Received:      | 27-Sep-06                  | Date Extracted:         |                   | Date Analyzed:  | 02-Oct-06    |
| Concentration Units | (ug/L or mg/Kg dry weight) | μ <u>α/l</u>            |                   | Sample Size:    | 10 mL        |
|                     | Surrogate                  | Recover                 | y 👘 Control Limit | Qualifier       |              |
| 1,2-Dich            | loroethane-d4              | 94                      | 72 - 119          |                 |              |
| 4-Bromo             | ofluorobenzene             | 110                     | 76 - 119          |                 |              |
| Dibromo             | ofluoromethane             | 96                      | 85 - 115          |                 |              |
| Toluene             | -d8                        | 116                     | 81 - 120          |                 |              |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 439817      | 178690 - 714758   |           |
| Chlorobenzene-d5       | 449222      | 199960 - 799842   |           |
| Fluorobenzene          | 1303642     | 571263 - 2285052  |           |

do

#### Comments:

QAPP 4.0

| Lab Name:         Life Science Laboratories. Inc.         Contract #:           Field Sample ID:         TF3M2114PA         Lab Sample ID:         0609018-002A         Matrix:         Convolvement           % Solids:         Q         Initial Calibration ID:         663         File ID:         0073.D           Date Received:         ZT-Sap-06         Date Extracted:         Date Analyze:         02-Oct-06           Concentration Units (ug/L or mg/Kg dry weight):         µg/L         Sample Size:         10 mf           1,1.2-Tetratchioroethane         0.0300         2.0         0.0300         2         U           1,1.1.2-fratrachioroethane         0.0660         2.0         0.0660         2         U           1,1.2-Tretrachioroethane         0.0660         2.0         0.0660         2         U           1,1-Dichtoroethane         0.0660         2.0         0.0660         2         U           1,1-Dichtoroethane         0.0660         2.0         0.0660         2         U           1,2-Trichtoroethane         0.0720         2         U         U         U           1,2-Dichtoroethane         0.0720         2         U         U         U           1,2-Dichtoroethane         0.0700                                                                                               | Analytical Method:      | SW8260B                                | Preparato     | ry Method:   |                                         | AAB #:                                      | R       | 6783        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|---------------|--------------|-----------------------------------------|---------------------------------------------|---------|-------------|
| % Solida:         0         Initial Calibration ID:         663         File ID:         JOURTINGE           Date Received:         27.Sep06         Date Extracted:         Date Analyzed:         02-Oct-06           Concentration Units (ug/L or mg/Kg dry weight):         ug/L         Sample Size:         10 ml           (m*p)-Xylene         0.0560         4.0         1.12         2         F           1.1.12-Tetrachloroethane         0.108         1.0         0.108         2         U           1.1.12-Tetrachloroethane         0.162         1.0         0.6660         2         U           1.1.22-Tetrachloroethane         0.0560         2.0         0.03000         2         U           1.1.22-Tetrachloroethane         0.0660         2.0         0.0660         2         U           1.1.22-Tetrachloroethane         0.0660         2.0         0.0660         2         U           1.1.22-Tetrachloroethane         0.0660         2.0         0.0660         2         U           1.23-Trichloroethane         0.0660         2.0         0.0660         2         U           1.23-Trichloroethane         0.0500         2.0         U         U         1.24-Trichtrithorobenzene         0.020         2.                                                                                              | Lab Name:               | Life Science Laboratories.             | Inc.          |              | Contract #:                             |                                             |         |             |
| Date Received:         27.Sep-06         Date Extracted:         Date Analyzed:         02-Oct-06           Concentration Units (ug/L or mg/Kg dry weight):         ug/L         Sample Size:         10 ml           (m+p)-Xylene         0.0560         4.0         1.12         2         F           1,1.1-Trichioroethane         0.0108         1.0         0.0108         2         U           1,1.2-Tetrachioroethane         0.0660         2.0         0.0300         2         U           1,1.2-Trichioroethane         0.0660         2.0         0.0660         2         U           1,1-Dichioroethane         0.0660         2.0         0.0660         2         U           1,2-Dichioroethane         0.0720         2.0         0.0720         2         U           1,2-Dichioroethane         0.0620         2.0         0.0620         2         U           1,2-Dichioroethane         0.0520         2.0                                                                                                                              | Field Sample ID:        | TF3M2114PA                             | Lab Samp      | ole ID:      | 0609018-0                               | <u>02A</u> Ma                               | atrix:  | Groundwater |
| Linking         Date Extraction         Date Multiple         Date Multiple         Date Multiple           Concentration Units (ug/L or mg/Kg dry weight):         uo/L         Sample Size:         10 ml.           (m*p)-Xylene         0.0550         4.0         1.12         2 F           1.1,12-Tetrachloresthane         0.0300         2.0         0.0300         2         U           1.1,12-Tetrachloresthane         0.0660         2.0         0.0560         2         U           1.1,2-Tetrachloresthane         0.0660         2.0         0.0560         2         U           1.1,2-Tetrachloresthane         0.0660         2.0         0.0660         2         U           1.1-Dichloresthane         0.0660         2.0         0.0660         2         U           1.1-Dichloresthane         0.0660         2.0         0.0660         2         U           1.2-Tetrachloresthane         0.0660         2.0         0.0660         2         U           1.2-Tetrachloresthane         0.0660         2.0         0.0660         2         U           1.2-Tetrachloresthane         0.0660         2.0         0.0720         2         U           1.2-Tetrachloresthane         0.0620         2.0<                                                                                                             | % Solids:               | <u>0</u>                               | Initial Cal   | ibration ID: | <u>663</u>                              | File ID:                                    | J0073.D |             |
| Analyte         MDL         PL         Concentration         Dilution         Qualifier           (m+p)-Xylene         0.0560         4.0         1.12         2         F           1.1,1-Trichtoroethane         0.0300         2.0         0.0300         2         U           1.1,1-Trichtoroethane         0.162         1.0         0.162         2         U           1.1,2-Trichtoroethane         0.0560         2.0         0.0560         2         U           1.1-Dichtoroethane         0.0560         2.0         0.0660         2         U           1.1-Dichtoroethane         0.0620         2.0         0.0520         2         U           1.1-Dichtoroethane         0.0620         2.0         0.0520         2         U           1.2-Strichtoroethane         0.0720         2.0         0.0520         2         U           1.2-Strichtoroethane         0.0620         2.0         0.0520         2         U           1.2-Strichtoroepragene         0.0220         2.0         0.0520         2         U           1.2-Strichtoroepragene         0.0240         2.0         1.04         2         F           1.2-Strichtoroepragene         0.0240 <td< td=""><td>Date Received:</td><td>27-Sep-06</td><td>Date Extra</td><td>acted:</td><td></td><td>Date An</td><td>alyzed:</td><td>02-Oct-06</td></td<> | Date Received:          | 27-Sep-06                              | Date Extra    | acted:       |                                         | Date An                                     | alyzed: | 02-Oct-06   |
| Analyle         MDL         PL         Concentration         Dilution         Qualifier           (m*p)-Xylene         0.0560         4.0         1.12         2         F           1.1.12-Tetrachloroethane         0.108         1.0         0.108         2         U           1.1.12-Tetrachloroethane         0.0300         2.0         0.0300         2         U           1.1.2-Tetrachloroethane         0.0660         2.0         0.0660         2         U           1.1-Dickhoroethane         0.0660         2.0         0.0660         2         U           1.1-Dickhoroethane         0.0920         2.0         0.0820         2         U           1.1-Dickhoroethane         0.0920         2.0         0.0820         2         U           1.2-Strichkoroethane         0.0440         2.0         0.0480         2         U           1.2-Strichkoroethane         0.0620         2.0         0.0820         2         U           1.2-Strichkoroenzene         0.0620         2.0         0.0820         2         U           1.2-Strichkoroenzene         0.0620         2.0         0.0520         2         U           1.2-Strichkoroenzene         0.0620                                                                                                                                                     | Concentration Units (   | ug/L or mg/Kg dry weight               | ): <u>µ</u> g | <u>/L</u>    |                                         | Samala                                      | Siza.   | 10 ml       |
| Im-p)-Xylene         0.0560         4.0         1.12         2         F           1,1,2-Tetrachloroethane         0.108         1.0         0.00300         2         U           1,1,1-Trichloroethane         0.162         1.0         0.162         2         U           1,1,2-Trichloroethane         0.0660         2.0         0.0560         2         U           1,1-Zirchloroethane         0.0660         2.0         0.0660         2         U           1,1-Dichloroethane         0.0660         2.0         0.0660         2         U           1,1-Dichloroethane         0.0660         2.0         0.0660         2         U           1,1-Dichloroethane         0.0620         2.0         0.0660         2         U           1,2-Strichloroptopane         0.0480         2.0         0.0480         2         U           1,2-Trichloroptopane         0.0500         2.0         0.0500         2         U           1,2-Trimetrybenzene         0.0500         2.0         0.0500         2         U           1,2-Trimetrybenzene         0.0500         2.0         0.0300         2         U           1,2-Dichloroptopane         0.0520         2.0                                                                                                                                                       |                         | Analyte                                |               | RAFDI        | RI                                      |                                             |         |             |
| 1.1.1.2-Tetrachloroethane         0.108         1.0         0.108         2         U           1.1.1-Trichloroethane         0.0300         2.0         0.0300         2         U           1.1.2.2-Tetrachloroethane         0.162         1.0         0.162         2         U           1.1.2.2-Tetrachloroethane         0.0660         2.0         0.0660         2         U           1.1.Dichloroethane         0.0620         2.0         0.0920         2         U           1.1-Dichloroethane         0.0480         2.0         0.0480         2         U           1.2.3-Trichlorobenzene         0.0720         2.0         0.0720         2         U           1.2.3-Trichlorobenzene         0.06500         2.0         0.0920         2         U           1.2.4-Trichlorobenzene         0.0500         2.0         0.0500         2         U           1.2.4-Trichlorobenzene         0.0522         2         U         U         1.2-Dichloroethane         0.0520         2         U           1.2.Dichloroethane         0.0520         2.0         0.0700         2         U         U           1.2-Dichloroethane         0.0520         2.0         0.0520         2                                                                                                                                       | (m+p)-Xylene            |                                        |               |              |                                         |                                             |         |             |
| 1.1.1-Trichloroethane         0.0300         2.0         0.0300         2         U           1.1.2.2-Tetrachloroethane         0.162         1.0         0.162         2         U           1.1.2-Trichloroethane         0.0560         2.0         0.0560         2         U           1.1-Dichloroethane         0.0660         2.0         0.0660         2         U           1.1-Dichloroethane         0.0920         2.0         0.0920         2         U           1.1-Dichloroethane         0.0920         2.0         0.0480         2         U           1.2.3-Trichlorobenzene         0.0720         2.0         0.0920         2         U           1.2.3-Trichloropengane         0.0500         2.0         0.0920         2         U           1.2.3-Trichloropengane         0.0500         2.0         0.0920         2         U           1.2.4-Trichloropengane         0.0500         2.0         0.0700         2         U           1.2.4-Trichloropengane         0.0220         0.0700         2         U         1           1.2-Dibromo-scharopropane         0.0260         2.0         0.0720         2         U           1.2-Dichlorobenzene         0.0380                                                                                                                                        | 1,1,1,2-Tetrachloroetha | Ine                                    |               |              |                                         |                                             |         |             |
| 1.1.2.2-Tetrachloroethane         0.162         1.0         0.162         2         U           1.1.2-Trichloroethane         0.0560         2.0         0.0560         2         U           1.1-Dichloroethane         0.0660         2.0         0.0660         2         U           1.1-Dichloroethane         0.0920         2.0         0.0920         2         U           1.1-Dichloropropene         0.0480         2         U         U         1.2.3-Trichlorobenzene         0.0720         2         U           1.2.3-Trichlorobenzene         0.0500         2.0         0.0620         2         U           1.2.4-Trichlorobenzene         0.0500         2.0         0.0500         2         U           1.2.4-Trichlorobenzene         0.0500         2.0         0.0500         2         U           1.2.4-Trichlorobenzene         0.0520         2         U         1.2.4-Trichloropropane         0.522         4.0         0.522         2         U           1.2.4-Dichloropropane         0.522         4.0         0.522         2         U         1.2-Dichloropropane         0.0480         2         U         1.2-Dichloropropane         0.0480         2         U         1.3-Dichloropropane <td>1,1,1-Trichloroethane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>     | 1,1,1-Trichloroethane   |                                        |               |              |                                         |                                             |         |             |
| 1,1,2-Trichloroethane         0.0560         2.0         0.0560         2         U           1,1-Dichloroethane         0.0660         2.0         0.0660         2         U           1,1-Dichloroethane         0.0920         2.0         0.0920         2         U           1,1-Dichloropropene         0.0480         2.0         0.0480         2         U           1,2,3-Trichlorobenzene         0.0720         2.0         0.0720         2         U           1,2,4-Trichlorobenzene         0.0240         2.0         0.0500         2         U           1,2,4-Trichloropropane         0.0240         2.0         1.04         2         F           1,2-Dibromo-3-chloropropane         0.0240         2.0         1.04         2         F           1,2-Dibromo-3-chloropropane         0.0240         2.0         0.0700         2         U           1,2-Dichlorobenzene         0.0380         2.0         0.0380         2         U         U           1,2-Dichlorobenzene         0.0480         1.0         0.0480         2         U           1,2-Dichlorobenzene         0.0520         2         U         U         1.3-Dichlorobenzene         0.0540         2                                                                                                                                          | 1,1,2,2-Tetrachloroetha | ine                                    |               |              |                                         |                                             |         |             |
| 1.1-Dichloroethane         0.0660         2.0         0.0660         2         U           1.1-Dichloroethane         0.0920         2.0         0.0920         2         U           1.1-Dichloroethane         0.0480         2.0         0.0480         2         U           1.2,3-Trichloropropane         0.0720         2.0         0.0720         2         U           1.2,3-Trichloropropane         0.0500         2.0         0.0500         2         U           1.2,4-Trinchloropropane         0.0520         2.0         0.0500         2         U           1.2-Hrinchloropropane         0.0522         4.0         0.522         2         U           1.2-Dibromo-3-chloropropane         0.522         4.0         0.522         2         U           1.2-Dichlorobenzene         0.0700         2.0         0.0700         2         U           1.2-Dichlorobenzene         0.0380         2.0         0.0380         2         U           1.2-Dichloropenane         0.0480         1.0         0.0480         2         U           1.2-Dichloropenane         0.0400         2.0         0.0400         2         U           1.3-Dichloropropane         0.0460                                                                                                                                                    | 1,1,2-Trichloroethane   |                                        |               |              | • [].                                   | //////                                      | ·       |             |
| 1.1-Dichlorogene         0.0920         2.0         0.0920         2         U           1.1-Dichloropropene         0.0480         2.0         0.0480         2         U           1.2.3-Trichlorobenzene         0.0770         2.0         0.0720         2         U           1.2.3-Trichloropopane         0.0920         2.0         0.0920         2         U           1.2.4-Trichlorobenzene         0.0500         2         U         U         U           1.2.4-Trichlorobenzene         0.0500         2         U         U         U           1.2.4-Trinethylbenzene         0.0500         2         U         U         U         U           1.2-Dibromo-3-chloropropane         0.522         4.0         0.522         2         U           1.2-Dibromoethane         0.0700         2.0         0.0700         2         U           1.2-Dichloropropane         0.0480         1.0         0.0480         2         U           1.2-Dichloropropane         0.0520         2.0         0.0520         2         U           1.2-Dichloropenpane         0.0480         1.0         0.0480         2         U           1.3-Dichloropenpane         0.0520                                                                                                                                                            | 1,1-Dichloroethane      |                                        |               |              | - I                                     |                                             |         |             |
| 1.1-Dichloropropene         0.0480         2.0         0.0480         2         U           1.2,3-Trichlorobenzene         0.0720         2.0         0.0720         2         U           1.2,3-Trichlorobenzene         0.0920         2.0         0.0920         2         U           1.2,4-Trichlorobenzene         0.0500         2.0         0.0500         2         U           1.2,4-Trichlorobenzene         0.0500         2.0         1.04         2         F           1.2,4-Trimethylbenzene         0.0240         2.0         1.04         2         F           1.2-Dibromo-3-chloropropane         0.0240         2.0         0.0700         2         U           1.2-Dichlorobenzene         0.0380         2.0         0.0700         2         U           1.2-Dichlorobenzene         0.0480         1.0         0.0480         2         U           1.2-Dichloropropane         0.0480         1.0         0.0480         2         U           1.3-Dichloropropane         0.0460         2.0         0.0280         2         U           1.3-Dichloropropane         0.0460         1.0         0.0460         2         U           1.3-Dichloropropane         0.0460                                                                                                                                             | 1,1-Dichloroethene      |                                        |               |              |                                         |                                             |         |             |
| 1,2,3-Trichlorobenzene       0.0720       2.0       0.0720       2       U         1,2,3-Trichloropropane       0.0920       2.0       0.0920       2       U         1,2,4-Trichloropropane       0.0500       2.0       0.0500       2       U         1,2,4-Trinethylbenzene       0.0240       2.0       1.04       2       F         1,2-Dibromo-3-chloropropane       0.522       4.0       0.522       2       U         1,2-Dibromo-sthane       0.0700       2.0       0.0700       2       U         1,2-Dichlorobenzene       0.0380       2.0       0.0380       2       U         1,2-Dichlorobenzene       0.0380       2.0       0.0380       2       U         1,2-Dichlorobenzene       0.0480       1.0       0.0480       2       U         1,2-Dichlorobenzene       0.0480       1.0       0.0480       2       U         1,3-Dichlorobenzene       0.0520       2.0       0.0520       2       U         1,3-Dichlorobenzene       0.0400       2.0       0.0460       2       U         1,3-Dichlorobenzene       0.0400       2.0       0.0460       2       U         1,4-Dichlorobenzene       0.                                                                                                                                                                                                                       | 1,1-Dichloropropene     |                                        |               |              |                                         |                                             |         |             |
| 1.2,3-Trichloropropane       0.0920       2.0       0.0920       2       U         1.2,4-Trichlorobenzene       0.0500       2.0       0.0500       2       U         1.2,4-Trichlorobenzene       0.0240       2.0       1.04       2       F         1.2-Dibromo-3-chloropropane       0.522       4.0       0.522       2       U         1.2-Dibromo-3-chloropropane       0.0700       2.0       0.0700       2       U         1.2-Dichlorobenzene       0.0380       2.0       0.0380       2       U         1.2-Dichlorobenzene       0.0480       1.0       0.0480       2       U         1.2-Dichloropenzene       0.0520       2.0       0.0520       2       U         1.2-Dichloropenzene       0.0480       1.0       0.0480       2       U         1.2-Dichloropenzene       0.0460       1.0       0.0460       2       U         1.3-Dichloropenzene       0.0460       2.0       0.0460       2       U         1.3-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1.4-Dichlorobenzene       0.0340       2.0       0.0340       2       U         2-Dichloropropane <t< td=""><td>1,2,3-Trichlorobenzene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                              | 1,2,3-Trichlorobenzene  |                                        |               |              |                                         |                                             |         |             |
| 1.2,4-Trichlorobenzene       0.0500       2.0       0.0500       2       U         1.2,4-Trimethylbenzene       0.0240       2.0       1.04       2       F         1.2-Dibromo-3-chloropropane       0.522       4.0       0.522       2       U         1.2-Dibromoethane       0.0700       2.0       0.0700       2       U         1.2-Dibromoethane       0.0380       2.0       0.0380       2       U         1.2-Dichlorobenzene       0.0380       2.0       0.0380       2       U         1.2-Dichlorobenzene       0.0480       1.0       0.0480       2       U         1.2-Dichloropropane       0.0520       2.0       0.0520       2       U         1.3-5-Trimethylbenzene       0.0260       2.0       0.0260       2       U         1.3-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1.3-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1.4-Dichlorobenzene       0.0460       1.0       0.0340       2       U         1.4-Dichlorobenzene       0.0460       1.0       0.0340       2       U         2.2-Dichloropopane       0.164 <td>1,2,3-Trichloropropane</td> <td></td> <td></td> <td></td> <td>· • • • • • • • • • • • • • • • • • • •</td> <td>·····</td> <td></td> <td></td>                                                                         | 1,2,3-Trichloropropane  |                                        |               |              | · • • • • • • • • • • • • • • • • • • • | ·····                                       |         |             |
| 1,2,4-Trimethylbenzene       0.0240       2.0       1.04       2       F         1,2-Dibromo-3-chloropropane       0.522       4.0       0.522       2       U         1,2-Dibromoethane       0.0700       2.0       0.0700       2       U         1,2-Dichlorobenzene       0.0380       2.0       0.0380       2       U         1,2-Dichlorobenzene       0.0380       2.0       0.0380       2       U         1,2-Dichlorobenzene       0.0480       1.0       0.0480       2       U         1,2-Dichloropropane       0.0520       2.0       0.0520       2       U         1,3-5-Trimethylbenzene       0.0460       2.0       0.0260       2       U         1,3-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1,3-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1,3-Dichloropropane       0.0460       1.0       0.0460       2       U         1,4-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1,4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         2,2-Dichloropropane       0.164 <td>1,2,4-Trichlorobenzene</td> <td></td> <td></td> <td></td> <td></td> <td>#</td> <td></td> <td></td>                                                                                                                    | 1,2,4-Trichlorobenzene  |                                        |               |              |                                         | #                                           |         |             |
| 1.2-Dibromo-3-chloropropane       0.522       4.0       0.522       2       U         1.2-Dibromoethane       0.0700       2.0       0.0700       2       U         1.2-Dichlorobenzene       0.0380       2.0       0.0380       2       U         1.2-Dichlorobenzene       0.0480       1.0       0.0480       2       U         1.2-Dichloroptopane       0.0480       1.0       0.0480       2       U         1.2-Dichloroptopane       0.0520       2.0       0.0520       2       U         1.3-Dichloroptopane       0.0260       2.0       0.0260       2       U         1.3-Dichloroptopane       0.0400       2.0       0.0400       2       U         1.3-Dichloroptopane       0.0460       1.0       0.0460       2       U         1.4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1.4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1.4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1.4-Dichlorobenzene       0.0340       2.0       0.0940       2       U         2.2-Dichloropropane       0.164                                                                                                                                                                                                                               | 1,2,4-Trimethylbenzene  |                                        |               |              |                                         |                                             |         |             |
| 1.2-Dibromoethane       0.0700       2.0       0.0700       2       U         1.2-Dichlorobenzene       0.0380       2.0       0.0380       2       U         1.2-Dichloroethane       0.0480       1.0       0.0480       2       U         1.2-Dichloroethane       0.0520       2.0       0.0520       2       U         1.2-Dichloropropane       0.0520       2.0       0.0520       2       U         1.3-Dichlorobenzene       0.0260       2.0       0.0400       2       U         1.3-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1.3-Dichloropropane       0.0460       1.0       0.0460       2       U         1.3-Dichloropropane       0.0460       1.0       0.0460       2       U         1.4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1.4-Dichloropropane       0.164       2.0       0.164       2       U         2.2-Dichloropropane       0.164       2.0       0.164       2       U         2.2-Dichloropropane       0.164       2.0       0.164       2       U         2.2-Chlorotoluene       0.0240       2.0 <td>1,2-Dibromo-3-chloropr</td> <td>opane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                         | 1,2-Dibromo-3-chloropr  | opane                                  |               |              |                                         |                                             |         |             |
| 1.2-Dichlorobenzene       0.0380       2.0       0.0380       2       U         1.2-Dichloroethane       0.0480       1.0       0.0480       2       U         1.2-Dichloropropane       0.0520       2.0       0.0520       2       U         1.3-5-Trimethylbenzene       0.0260       2.0       0.0260       2       U         1.3-Dichlorobenzene       0.0400       2.0       0.0400       2       U         1.3-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1.3-Dichloropropane       0.0460       1.0       0.0460       2       U         1.4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1.4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1.4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         2.2-Dichloropropane       0.164       2.0       0.164       2       U         2.2-Dichloropropane       0.164       2.0       0.164       2       U         2.4-Chlorotoluene       0.0240       2.0       0.0240       2       U         4-Chlorotoluene       0.0340       2.0                                                                                                                                                                                                                                | 1,2-Dibromoethane       | ······································ |               |              |                                         |                                             |         |             |
| 1,2-Dichloroethane       0.0480       1.0       0.0480       2       U         1,2-Dichloropropane       0.0520       2.0       0.0520       2       U         1,3,5-Trimethylbenzene       0.0260       2.0       0.0260       2       U         1,3-Dichlorobenzene       0.0400       2.0       0.0400       2       U         1,3-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1,3-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1,4-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1,4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1,4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         2,2-Dichloropropane       0.164       2.0       0.164       2       U         2,2-Dichloropropane       1.30       20       1.30       2       U         2-Butanone       1.30       20       1.30       2       U         2-Chlorotoluene       0.0240       2.0       0.0240       2       U         4-Methyl-2-pentanone       0.750       20                                                                                                                                                                                                                                                | 1,2-Dichlorobenzene     |                                        |               |              |                                         |                                             |         |             |
| 1,2-Dichloropropane       0.0520       2.0       0.0520       2       U         1,3,5-Trimethylbenzene       0.0260       2.0       0.0260       2       U         1,3-Dichlorobenzene       0.0400       2.0       0.0400       2       U         1,3-Dichlorobenzene       0.0400       2.0       0.0400       2       U         1,3-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1,4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1.4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1.4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         2,2-Dichloropropane       0.164       2.0       0.164       2       U         2,2-Dichloropropane       1.30       20       1.30       2       U         2-Sutanone       1.30       2.0       0.0240       2       U         2-Chlorotoluene       0.0240       2.0       0.0240       2       U         4-Methyl-2-pentanone       0.750       20       0.750       2       U         Acetone       1.65       20       1.65                                                                                                                                                                                                                                                 | 1,2-Dichloroethane      |                                        |               |              |                                         |                                             |         | **          |
| 1,3,5-Trimethylbenzene       0.0260       2.0       0.0260       2       U         1,3-Dichlorobenzene       0.0400       2.0       0.0400       2       U         1,3-Dichlorobenzene       0.0460       1.0       0.0460       2       U         1,4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1-Chlorobenzene       0.0340       1.0       0.0340       2       U         1-Chlorobenzene       0.0940       2.0       0.0940       2       U         2-Dichloropropane       0.164       2.0       0.164       2       U         2,2-Dichloropropane       0.164       2.0       0.164       2       U         2-Butanone       1.30       20       1.30       2       U         2-Chlorotoluene       0.0240       2.0       0.0240       2       U         4-Chlorotoluene       0.0340       2.0       0.0340       2       U         4-Methyl-2-pentanone       0.750       20       0.750       2       U         Acetone       1.65       20       1.65       2       U         Benzene       0.0200       1.0       0.200       2       F<                                                                                                                                                                                                                                                           | 1,2-Dichloropropane     | ······································ |               |              |                                         |                                             |         |             |
| 1,3-Dichlorobenzene       0.0400       2.0       0.0400       2       U         1,3-Dichloropropane       0.0460       1.0       0.0460       2       U         1,4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1-Chlorobexane       0.0940       2.0       0.0940       2       U         2,2-Dichloropropane       0.164       2.0       0.164       2       U         2,2-Dichloropropane       0.164       2.0       0.164       2       U         2-Butanone       1.30       20       1.30       2       U         2-Chlorotoluene       0.0240       2.0       0.0240       2       U         4-Chlorotoluene       0.0340       2.0       0.0340       2       U         4-Methyl-2-pentanone       0.0340       2.0       0.0340       2       U         Acetone       1.65       20       1.65       2       U         Benzene       0.0200       1.0       0.200       2       F         Bromobenzene       0.0560       2.0       0.0560       2       U                                                                                                                                                                                                                                                                                                                                              | 1,3,5-Trimethylbenzene  | }                                      |               |              |                                         |                                             |         |             |
| 1,3-Dichloropropane       0.0460       1.0       0.0460       2       U         1,4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1-Chlorobexane       0.0940       2.0       0.0940       2       U         2,2-Dichloropropane       0.164       2.0       0.164       2       U         2-Butanone       1.30       20       1.30       2       U         2-Chlorotoluene       0.0240       2.0       0.0240       2       U         4-Chlorotoluene       0.0340       2.0       0.0340       2       U         4-Chlorotoluene       0.0340       2.0       0.0340       2       U         4-Chlorotoluene       0.0340       2.0       0.0340       2       U         4-Methyl-2-pentanone       0.750       20       0.750       2       U         Acetone       1.65       20       1.65       2       U         Benzene       0.0200       1.0       0.200       2       F         Bromobenzene       0.0560       2.0       0.0560       2       U                                                                                                                                                                                                                                                                                                                                                       | 1,3-Dichlorobenzene     |                                        |               |              |                                         |                                             |         |             |
| 1.4-Dichlorobenzene       0.0340       1.0       0.0340       2       U         1-Chlorohexane       0.0940       2.0       0.0940       2       U         2,2-Dichloropropane       0.164       2.0       0.164       2       U         2-Butanone       1.30       20       1.30       2       U         2-Chlorotoluene       0.0240       2.0       0.0240       2       U         4-Chlorotoluene       0.0340       2.0       0.0340       2       U         4-Chlorotoluene       0.0340       2.0       0.0340       2       U         4-Methyl-2-pentanone       0.750       20       0.750       2       U         Acetone       1.65       20       1.65       2       U         Benzene       0.0200       1.0       0.200       2       F         Bromobenzene       0.0560       2.0       0.0560       2       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,3-Dichloropropane     | A                                      |               | 1000         |                                         |                                             |         |             |
| 1-Chlorohexane       0.0940       2.0       0.0940       2       U         2,2-Dichloropropane       0.164       2.0       0.164       2       U         2-Butanone       1.30       20       1.30       2       U         2-Chlorotoluene       0.0240       2.0       0.0240       2       U         4-Chlorotoluene       0.0340       2.0       0.0340       2       U         4-Methyl-2-pentanone       0.750       20       0.750       2       U         Acetone       1.65       20       1.65       2       U         Benzene       0.0200       1.0       0.200       2       F         Bromobenzene       0.0560       2.0       0.0560       2       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,4-Dichlorobenzene     |                                        |               |              |                                         |                                             |         |             |
| 2,2-Dichloropropane       0.164       2.0       0.164       2       U         2-Butanone       1.30       20       1.30       2       U         2-Chlorotoluene       0.0240       2.0       0.0240       2       U         4-Chlorotoluene       0.0340       2.0       0.0340       2       U         4-Methyl-2-pentanone       0.750       20       0.750       2       U         Acetone       1.65       20       1.65       2       U         Benzene       0.0200       1.0       0.200       2       F         Bromobenzene       0.0560       2.0       0.0560       2       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-Chlorohexane          |                                        |               | ······       |                                         |                                             |         |             |
| 2-Butanone         1.30         20         1.30         2         U           2-Chlorotoluene         0.0240         2.0         0.0240         2         U           4-Chlorotoluene         0.0340         2.0         0.0340         2         U           4-Chlorotoluene         0.0340         2.0         0.0340         2         U           4-Methyl-2-pentanone         0.750         20         0.750         2         U           Acetone         1.65         20         1.65         2         U           Benzene         0.0200         1.0         0.200         2         F           Bromobenzene         0.0560         2.0         0.0560         2         U           Bromochloromethane         0.118         2.0         0.118         2         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,2-Dichloropropane     | ······································ |               |              |                                         | www.ana                                     |         |             |
| 2-Chlorotoluene         0.0240         2.0         0.0240         2         U           4-Chlorotoluene         0.0340         2.0         0.0340         2         U           4-Methyl-2-pentanone         0.750         20         0.750         2         U           Acetone         1.65         20         1.65         2         U           Benzene         0.0200         1.0         0.200         2         F           Bromobenzene         0.0560         2.0         0.0560         2         U           Bromochloromethane         0.118         2.0         0.118         2         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-Butanone              | <b>Ang 1</b>                           |               |              |                                         |                                             |         |             |
| 4-Chlorotoluene         0.0340         2.0         0.0340         2         U           4-Methyl-2-pentanone         0.750         20         0.750         2         U           Acetone         1.65         20         1.65         2         U           Benzene         0.0200         1.0         0.200         2         F           Bromobenzene         0.0560         2.0         0.0560         2         U           Bromochloromethane         0.118         2.0         0.118         2         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-Chlorotoluene         | ······································ |               |              | ·                                       |                                             |         |             |
| 4-Methyl-2-pentanone         0.750         20         0.750         2         U           Acetone         1.65         20         1.65         2         U           Benzene         0.0200         1.0         0.200         2         F           Bromobenzene         0.0560         2.0         0.0560         2         U           Bromochloromethane         0.118         2.0         0.118         2         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-Chlorotoluene         |                                        |               | 0.0340       |                                         |                                             |         |             |
| Acetone         1.65         20         1.65         2         U           Benzene         0.0200         1.0         0.200         2         F           Bromobenzene         0.0560         2.0         0.0560         2         U           Bromochloromethane         0.118         2.0         0.118         2         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-Methyl-2-pentanone    |                                        | *******       |              |                                         |                                             |         |             |
| Benzene         0.0200         1.0         0.200         2         F           Bromobenzene         0.0560         2.0         0.0560         2         U           Bromochloromethane         0.118         2.0         0.118         2         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acetone                 |                                        |               |              |                                         |                                             |         |             |
| Bromobenzene         0.0560         2.0         0.0560         2         U           Bromochloromethane         0.118         2.0         0.118         2         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Benzene                 |                                        |               |              |                                         |                                             |         |             |
| Bromochloromethane 0.118 2.0 0.118 2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bromobenzene            |                                        |               |              |                                         |                                             |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromochloromethane      |                                        |               |              |                                         |                                             | ·       |             |
| 0.0620 1.0 0.0620 2 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bromodichloromethane    |                                        |               | 0.0620       | 1.0                                     | 0.0620                                      | 2       | U           |
| Bromoform 0.0940 2.0 0.0940 2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromoform               |                                        | ,             |              |                                         | P.2010.01.01.01.01.01.01.01.01.01.01.01.01. |         |             |

Comments:

Page 7 of 54

113106

| Analytical Method:      | SW8260B                                | Preparatory Method:     |             | AAB #:                 | E       | <u> 16783</u> |             |
|-------------------------|----------------------------------------|-------------------------|-------------|------------------------|---------|---------------|-------------|
| Lab Name:               | Life Science Laborat                   | ories, Inc.             | Contract #: |                        |         |               |             |
| Field Sample ID:        | TF3M2114PA                             | Lab Sample ID:          | 0609018-0   | <u>02A</u> Ma          | atrix:  | Groundwater   |             |
| % Solids:               | <u>0</u>                               | Initial Calibration ID: | 663         | File ID:               | J0073.D |               |             |
| Date Received:          | <u>27-Sep-06</u>                       | Date Extracted:         |             | Date An                | alyzed: | 02-Oct-06     |             |
| Concentration Units     | (ug/L or mg/Kg dry w                   | eight): <u>µq/L</u>     |             | Sample                 | -       |               |             |
|                         | Analyte                                |                         |             | -                      |         |               |             |
| Bromomethane            | An and the                             | 0.118                   | RL - 6.0    | Concentration<br>0.118 | Dilutio |               |             |
| Carbon tetrachloride    | ······································ | 0.0640                  | 2.0         |                        | 2       | U             | 1           |
| Chlorobenzene           |                                        | 0.0840                  | 1.0         | 0.0640                 | 2       | <u> </u>      | 4           |
| Chloroethane            |                                        | 0.0220                  | 2.0         | 0.0220                 | 2       | U             |             |
| Chloroform              |                                        | 0.0580                  | 1.0         | 0.0580                 | 2       | U             | l           |
| Chloromethane           |                                        | 0.0580                  | 2.0         | 0.0580                 | 2       | <u>U</u>      | ł           |
| cis-1,2-Dichloroethene  |                                        | 0.252                   | 2.0         | 0.0640                 | 2       | <u> </u>      | -           |
| cis-1,3-Dichloropropen  | /////                                  | 0.0340                  | 1.0         | 0.0420                 | 2       | U<br>U        | ļ           |
| Dibromochloromethan     |                                        | 0.0820                  | 1.0         | 0.0820                 | 2       |               |             |
| Dibromomethane          |                                        | 0.0760                  | 2.0         | 0.0760                 | 2       |               |             |
| Dichlorodifluoromethar  | ne                                     | 0.134                   | 2.0         | 0.134                  | 2       |               |             |
| Ethylbenzene            |                                        | 0.0480                  | 2.0         | 0.0480                 | 2       | U             |             |
| Hexachlorobutadiene     |                                        | 0.122                   | 1.2         | 0.122                  | 2       | U             |             |
| Isopropylbenzene        |                                        | 0.0420                  | 2.0         | 62.9                   | 2       |               | * this      |
| Methyl tert-butyl ether |                                        | 0.0500                  | 10          | 0.0500                 | 2       |               | -the        |
| Methylene chloride      | · / /                                  | 0.0680                  | 2.0         | 0.0680                 | 2       |               | MYC         |
| n-Butylbenzene          | ······                                 | 0.0260                  | 2.0         | 3.20                   | 2       |               | <u></u> তিম |
| n-Propylbenzene         |                                        | 0.0180                  | 2.0         | 10.2                   | 2       |               |             |
| Naphthalene             |                                        | 0.0480                  | 2.0         | 3.26                   | 2       |               |             |
| o-Xylene                |                                        | 0.0280                  | 2.0         | 0.0280                 | 2       | U             |             |
| p-Isopropyltoluene      |                                        | 0.0280                  | 2.0         | 4.10                   | 2       |               |             |
| sec-Butylbenzene        | ······································ | 0.0340                  | 2.0         | 5.06                   | 2       |               |             |
| Styrene                 |                                        | 0.0400                  | 2.0         | 0.0400                 | 2       |               |             |
| tert-Butylbenzene       |                                        | 0.0320                  | 2.0         | 1.84                   | 2       | F             |             |
| Tetrachloroethene       |                                        | 0.0600                  | 2.0         | 0.0600                 | 2       | U             |             |
| Toluene                 |                                        | 0.0360                  | 2.0         | 0.0360                 | 2       |               |             |
| trans-1,2-Dichloroethe  | ne                                     | 0.0540                  | 2.0         | 0.0540                 | 2       |               |             |
| trans-1,3-Dichloroprop  | ene                                    | 0.0580                  | 2.0         | 0.0580                 | 2       |               |             |
| Trichloroethene         |                                        | 0.0540                  | 2.0         | 0.0540                 | 2       |               |             |
| Trichlorofluoromethane  | •                                      | 0.0400                  | 2.0         | 0.0400                 | 2       |               |             |
| Vinyl chloride          |                                        | 0.0760                  | 2.0         | 0.0760                 | 2       |               |             |
| Xylenes (total)         |                                        | 0.0840                  | 4.0         | 1.12                   | 2       | F             |             |

Comments:

\*ferilt transferred to original semple TF32114PA(1:1)

CUA 11/3/06

Page 8 of 54

| Analytical Method:  | <u>SW8260B</u>             | Preparatory Method     | 9:              | AAB #:          | <u>R6783</u> |
|---------------------|----------------------------|------------------------|-----------------|-----------------|--------------|
| Lab Name:           | Life Science Laboratories, | Inc.                   | Contract #:     |                 |              |
| Field Sample ID:    | TF3M2114PA                 | Lab Sample ID:         | 0609018-002A    | Matrix:         | Groundwater  |
| % Solids:           | Q                          | Initial Calibration IE | ): <u>663</u>   | File ID: J0073. | D            |
| Date Received:      | <u>27-Sep-06</u>           | Date Extracted:        |                 | Date Analyzed:  | 02-Oct-06    |
| Concentration Units | (ug/L or mg/Kg dry weight) | : <u>µg/L</u>          |                 | Sample Size:    | 10 mL        |
|                     | Surrogate                  | Reco                   | very Control Li | mits Qualifier  |              |
| 1,2-Dich            | loroethane-d4              | 90                     | ) 72 - 119      | 9               |              |

| T,Z-Dichloroethane-d4 | 90  | 72 - 119 |  |
|-----------------------|-----|----------|--|
| 4-Bromofluorobenzene  | 108 | 76 - 119 |  |
| Dibromofluoromethane  | 98  | 85 - 115 |  |
| Toluene-d8            | 112 | 81 - 120 |  |

| Internal Std           | Area Counts                            | Area Count Limits | Qualifier |
|------------------------|----------------------------------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 499017                                 | 178690 - 714758   |           |
| Chlorobenzene-d5       | 532900                                 | 199960 - 799842   |           |
| Fluorobenzene          | 1547334                                | 571263 - 2285052  |           |
|                        | ······································ |                   |           |

= wit = 11/3/06

## Comments:

QAPP 4.0

Page 9 of 54

.

| Analytical Method:      | <u>SW8260B</u>                         | Preparatory Method:     |             | AAB #:                  | ]       | R6783                |
|-------------------------|----------------------------------------|-------------------------|-------------|-------------------------|---------|----------------------|
| Lab Name:               | Life Science Laboratories, Inc.        |                         | Contract #: |                         |         |                      |
| Field Sample ID:        | TF3M11614PA                            | Lab Sample ID:          | 0609018-003 | <u>A</u> 翻              | atrix:  | Groundwater          |
| % Solids:               | <u>0</u>                               | Initial Calibration ID: | <u>663</u>  | File ID:                | J0060.D |                      |
| Date Received:          | <u>27-Sep-06</u>                       | Date Extracted:         |             | Date An                 | alvzed: | 02-Oct-06            |
| Concentration Units (   | ug/L or mg/Kg dry weight               | ): µg/L                 | ·           |                         | •       |                      |
|                         | Analyte                                | MDL                     | RL          | Sample<br>Concentration |         | 10 mL<br>n Qualifier |
| (m+p)-Xylene            | ,                                      | 0.0280                  | 2.0         | 0.0280                  | 1       | U                    |
| 1,1,1,2-Tetrachloroetha | BNe                                    | 0.0540                  | 0.50        | 0.0540                  | 1       | U U                  |
| 1,1,1-Trichloroethane   |                                        | 0.0150                  | 1.0         | 0.0150                  | 1       | U                    |
| 1,1,2,2-Tetrachloroetha | 3ne                                    | 0.0810                  | 0.50        | 0.0810                  |         |                      |
| 1,1,2-Trichloroethane   | · · · · · · · · · · · · · · · · · · ·  | 0.0280                  | 1.0         | 0.0280                  | 1       |                      |
| 1,1-Dichloroethane      |                                        | 0.0330                  | 1.0         | 0.0330                  | 1       | U                    |
| 1,1-Dichloroethene      |                                        | 0.0460                  | 1.0         | 0.0460                  | 1       |                      |
| 1,1-Dichloropropene     |                                        | 0.0240                  | 1.0         | 0.0240                  | 1       |                      |
| 1,2,3-Trichlorobenzene  | ······                                 | 0.0360                  | 1.0         | 0.0360                  | 1       |                      |
| 1,2,3-Trichloropropane  |                                        | 0.0460                  | 1.0         | 0.0460                  | 1       |                      |
| 1,2,4-Trichlorobenzene  |                                        | 0.0250                  | 1.0         | 0.0250                  | 1       |                      |
| 1,2,4-Trimethylbenzene  | 3                                      | 0.0120                  | 1.0         | 0.0120                  | 1       |                      |
| 1,2-Dibromo-3-chlorop   |                                        | 0.261                   | 2.0         | 0.261                   | 1       | - U                  |
| 1,2-Dibromoethane       |                                        | 0.0350                  | 1.0         | 0.0350                  | 1       | - U                  |
| 1,2-Dichlorobenzene     |                                        | 0.0190                  | 1.0         | 0.0190                  | 1       | - U                  |
| 1,2-Dichloroethane      |                                        | 0.0240                  | 0.50        | 0.0240                  | 1       |                      |
| 1,2-Dichloropropane     |                                        | 0.0260                  | 1.0         | 0.0260                  | 1       |                      |
| 1,3,5-Trimethylbenzene  | 9                                      | 0.0130                  | 1.0         | 0.0130                  | 1       | - U                  |
| 1,3-Dichlorobenzene     | ······································ | 0.0200                  | 1.0         | 0.0200                  | 1       | U                    |
| 1,3-Dichloropropane     |                                        | 0.0230                  | 0.50        | 0.0230                  | 1       | U                    |
| 1,4-Dichlorobenzene     | ······································ | 0.0170                  | 0.50        | 0.0170                  | 1       | U                    |
| 1-Chlorohexane          |                                        | 0.0470                  | 1.0         | 0.0470                  | 1       |                      |
| 2,2-Dichloropropane     |                                        | 0.0820                  | 1.0         | 0.0820                  | 1       | U                    |
| 2-Butanone              | ,,,////                                | 0.649                   | 10          | 0.649                   | 1       | U                    |
| 2-Chlorotoluene         | P.A.P.                                 | 0.0120                  | 1.0         | 0.0120                  | 1       | υ                    |
| 4-Chlorotoluene         |                                        | 0.0170                  | 1.0         | 0.0170                  | 1       | U                    |
| 4-Methyl-2-pentanone    |                                        | 0.375                   | 10          | 0.375                   | 1       | U                    |
| Acetone                 |                                        | 0.823                   | 10          | 0.823                   | 1       | U                    |
| Benzene                 |                                        | 0.0100                  | 0.50        | 0.0100                  | 1       | Ū                    |
| Bromobenzene            | · · · · · · · · · · · · · · · · · · ·  | 0.0280                  | 1.0         | 0.0280                  | 1       | U                    |
| Bromochloromethane      |                                        | 0.0590                  | 1.0         | 0.0590                  | 1       | U                    |
| Bromodichloromethane    | 3                                      | 0.0310                  | 0.50        | 0.0310                  | 1       | U                    |
| Bromoform               |                                        | 0.0470                  | 1.0         | 0.0470                  | 1       | U                    |

AFCEE FORM 0-2

Comments:

Page 10 of 54

WA 11/3/06

| Lab Name: Li              | ife Science Laboratories, I            |                         |             |               |         |             |
|---------------------------|----------------------------------------|-------------------------|-------------|---------------|---------|-------------|
|                           |                                        | nc.                     | Contract #: |               |         |             |
| Field Sample ID: 1        | F3M11614PA                             | Lab Sample ID:          | 0609018-003 | A Ma          | trix:   | Groundwater |
| % Solids: <u>0</u>        | !                                      | Initial Calibration ID: | <u>663</u>  | File ID:      | J0060.D |             |
| Date Received: 2          | 7-Sep-06                               | Date Extracted:         |             | Date Ana      | lyzed:  | 02-Oct-06   |
| Concentration Units (ug   | /L or mg/Kg dry weight):               | <u>нд/I</u>             |             | Sample 5      | Size    | 10 mL       |
|                           | Analyte                                | MDL                     | RL          | Concentration | Dilutio |             |
| Bromomethane              |                                        | 0.0590                  | 3.0         | 0.0590        | 1       | U           |
| Carbon tetrachloride      |                                        | 0.0320                  | 1.0         | 0.0320        | 1       |             |
| Chlorobenzene             |                                        | 0.0110                  | 0.50        | 0.0110        | 1       | U U         |
| Chloroethane              |                                        | 0.116                   | 1.0         | 0.116         | 1       |             |
| Chloroform                |                                        | 0.0290                  | 0.50        | 0.0290        | 1       | U U         |
| Chloromethane             |                                        | 0.126                   | 1.0         | 0.126         | 1       | - U         |
| cis-1,2-Dichloroethene    |                                        | 0.0320                  | 1.0         | 0.0320        | 1       | <u> </u>    |
| cis-1,3-Dichloropropene   |                                        | 0.0210                  | 0.50        | 0.0210        | 1       | U           |
| Dibromochloromethane      | ************************************** | 0.0410                  | 0.50        | 0.0410        | 1       | U           |
| Dibromomethane            |                                        | 0.0380                  | 1.0         | 0.0380        | 1       | <u> </u>    |
| Dichlorodifluoromethane   |                                        | 0.0670                  | 1.0         | 0.0670        | 1       | - U         |
| Ethylbenzene              |                                        | 0.0240                  | 1.0         | 0.0240        | 1       | U U         |
| Hexachlorobutadiene       |                                        | 0.0610                  | 0.60        | 0.0610        | 1       | U           |
| Isopropylbenzene          |                                        | 0.0210                  | 1.0         | 7.44          | 1       |             |
| Methyl tert-butyl ether   |                                        | 0.0250                  | 5.0         | 0.0250        | 1       |             |
| Methylene chloride        |                                        | 0.0340                  | 1.0         | 0.0340        | 4       | Ū           |
| n-Butylbenzene            |                                        | 0.0130                  | 1.0         | 1.80          | 1       |             |
| n-Propylbenzene           |                                        | 0.00900                 | 1.0         | 4.18          | 1       |             |
| Naphthalene               |                                        | 0.0240                  | 1.0         | 0.0240        | 1       | U           |
| o-Xylene                  |                                        | 0.0140                  | 1.0         | 0.0140        | 1       | U           |
| p-Isopropyltoluene        |                                        | 0.0140                  | 1.0         | 0.0140        | 1       | Ū           |
| sec-Butylbenzene          |                                        | 0.0170                  | 1.0         | 4.03          | 1       |             |
| Styrene                   |                                        | 0.0200                  | 1.0         | 0.0200        | 1       | U           |
| tert-Butylbenzene         |                                        | 0.0160                  | 1.0         | 1.54          | 1       |             |
| Tetrachloroethene         |                                        | 0.0300                  | 1.0         | 0.0300        | 1       | U           |
| Toluene                   |                                        | 0.0180                  | 1.0         | 0.0180        | 1       | U           |
| trans-1,2-Dichloroethene  |                                        | 0.0270                  | 1.0         | 0.0270        | 1       | Ū           |
| trans-1,3-Dichloropropene | 9                                      | 0.0290                  | 1.0         | 0.0290        | 1       | Ū           |
| Trichloroethene           | ·······                                | 0.0270                  | 1.0         | 0.0270        | 1       | U           |
| Trichlorofluoromethane    |                                        | 0.0200                  | 1.0         | 0.0200        | 1       | U           |
| Vinyl chloride            |                                        | 0.0380                  | 1.0         | 0.0380        | 1       | U           |
| Xylenes (total)           |                                        | 0.0420                  | 2.0         | 0.0420        | 1       | U           |

| C | USF   |  |
|---|-------|--|
| ų | 13/06 |  |

| Analytical Method:  | SW8260B                    | Preparatory Method:                    |                  | AAB #:          | <u>R6783</u> |
|---------------------|----------------------------|----------------------------------------|------------------|-----------------|--------------|
| Lab Name:           | Life Science Laboratories. | Inc. C                                 | Inc. Contract #: |                 |              |
| Field Sample ID:    | TF3M11614PA                | Lab Sample ID:                         | 0609018-003A     | Matrix:         | Groundwater  |
| % Solids:           | <u>0</u>                   | Initial Calibration ID:                | 663              | File ID: J0060. | D            |
| Date Received:      | 27-Sep-06                  | Date Extracted:                        |                  | Date Analyzed:  | 02-Oct-06    |
| Concentration Units | (ug/L or mg/Kg dry weight  | ): <u>µg/L</u>                         |                  | Sample Size:    | 10 mL        |
|                     | Surrogate                  | Recovery                               | Control Limits   | Qualifier       |              |
| 1,2-Dict            | loroethane-d4              | 94                                     | 72 - 119         |                 |              |
| 4-Brome             | ofluorobenzene             | 106                                    | 76 - 119         |                 |              |
| Dibromo             | ofluoromethane             | 99                                     | 85 - 115         |                 |              |
| Toluene             | -d8                        | 118                                    | 81 - 120         |                 |              |
|                     |                            | ······································ |                  |                 |              |

| Internal Std           | Area Counts | Area Count Limits | Qualifier | ~ 1      |
|------------------------|-------------|-------------------|-----------|----------|
| 1,4-Dichlorobenzene-d4 | 470281      | 178690 - 714758   |           | WH       |
| Chlorobenzene-d5       | 495443      | 199960 - 799842   |           | 1.12/01  |
| Fluorobenzene          | 1424548     | 571263 - 2285052  |           | 17 5 106 |

Comments:

oonnenis.

| Analytical Method:      | <u>SW8260B</u>                                                 | Preparate                             | ory Method:   |             | AAB #:                                                                                                          | RE       | 783         |
|-------------------------|----------------------------------------------------------------|---------------------------------------|---------------|-------------|-----------------------------------------------------------------------------------------------------------------|----------|-------------|
| Lab Name:               | Life Science Laboratories,                                     | Inc.                                  |               | Contract #: |                                                                                                                 |          |             |
| Field Sample ID:        | TF3M11713PA                                                    | Lab Sam                               | ple ID:       | 0609018-0   | <u></u>                                                                                                         | trix: (  | Groundwater |
| % Solids:               | <u>0</u>                                                       | Initial Ca                            | libration ID: | <u>663</u>  | File ID:                                                                                                        | J0061.D  |             |
| Date Received:          | 27-Sep-06                                                      | Date Ext                              | racted:       |             | Date Ana                                                                                                        | lvzed: ( | )2-Oct-06   |
| Concentration Units (   | ug/L or mg/Kg dry weight                                       | ): µ                                  | g/L           | ·           |                                                                                                                 |          | 10 mL       |
|                         | Analyte                                                        |                                       | MOL           | RL          | Sample | Dilution | Qualifier   |
| (m+p)-Xylene            |                                                                |                                       | 0.0280        | 2.0         | 0.0280                                                                                                          | 1        | U           |
| 1,1,1,2-Tetrachloroetha | ane                                                            |                                       | 0.0540        | 0.50        | 0.0540                                                                                                          | 1        | U U         |
| 1,1,1-Trichloroethane   |                                                                |                                       | 0.0150        | 1.0         | 0.0150                                                                                                          | 1        | U           |
| 1,1,2,2-Tetrachloroetha | ane                                                            |                                       | 0.0810        | 0.50        | 0.0810                                                                                                          | 1        | <u> </u>    |
| 1,1,2-Trichloroethane   |                                                                |                                       | 0.0280        | 1.0         | 0.0280                                                                                                          | 1        | U           |
| 1,1-Dichloroethane      |                                                                |                                       | 0.0330        | 1.0         | 0.0330                                                                                                          | 1        | U           |
| 1,1-Dichloroethene      |                                                                |                                       | 0.0460        | 1.0         | 0,0460                                                                                                          | 1        | U           |
| 1,1-Dichloropropene     |                                                                | · · · · · · · · · · · · · · · · · · · | 0.0240        | 1.0         | 0.0240                                                                                                          | 1        | U           |
| 1,2,3-Trichlorobenzene  | )                                                              |                                       | 0.0360        | 1.0         | 0.0360                                                                                                          | 1        | U           |
| 1,2,3-Trichloropropane  |                                                                |                                       | 0.0460        | 1.0         | 0.0460                                                                                                          | 1        | U           |
| 1,2,4-Trichlorobenzene  | )                                                              |                                       | 0.0250        | 1.0         | 0.0250                                                                                                          | 1        | U           |
| 1,2,4-Trimethylbenzen   | 8                                                              |                                       | 0.0120        | 1.0         | 0.0120                                                                                                          | 1        | U           |
| 1,2-Dibromo-3-chlorop   | ropane                                                         |                                       | 0.261         | 2.0         | 0.261                                                                                                           | 1        | U           |
| 1,2-Dibromoethane       |                                                                |                                       | 0.0350        | 1.0         | 0.0350                                                                                                          | 1        | U           |
| 1,2-Dichlorobenzene     |                                                                |                                       | 0.0190        | 1.0         | 0.0190                                                                                                          | 1        | U           |
| 1,2-Dichloroethane      |                                                                |                                       | 0.0240        | 0.50        | 0.0240                                                                                                          | 1        | U           |
| 1,2-Dichloropropane     |                                                                |                                       | 0.0260        | 1.0         | 0.0260                                                                                                          | 1        | U           |
| 1,3,5-Trimethylbenzen   | 8                                                              |                                       | 0.0130        | 1.0         | 0.0130                                                                                                          | 1        | U           |
| 1,3-Dichlorobenzene     |                                                                |                                       | 0.0200        | 1.0         | 0.0200                                                                                                          | 1        | U           |
| 1,3-Dichloropropane     | ης <u>πολογού</u> ταται το |                                       | 0.0230        | 0.50        | 0.0230                                                                                                          | 1        | U           |
| 1,4-Dichlorobenzene     |                                                                |                                       | 0.0170        | 0.50        | 0.0170                                                                                                          | 1        | U           |
| 1-Chlorohexane          |                                                                |                                       | 0.0470        | 1.0         | 0.0470                                                                                                          | 1        | U           |
| 2,2-Dichloropropane     |                                                                |                                       | 0.0820        | 1.0         | 0.0820                                                                                                          | 1        | U           |
| 2-Butanone              |                                                                |                                       | 0.649         | 10          | 0.649                                                                                                           | 1        | U           |
| 2-Chlorotoluene         |                                                                |                                       | 0.0120        | 1.0         | 0.0120                                                                                                          | 1        | U           |
| 4-Chlorotoiuene         |                                                                |                                       | 0.0170        | 1.0         | 0.0170                                                                                                          | 1        | U           |
| 4-Methyl-2-pentanone    |                                                                |                                       | 0.375         | 10          | 0.375                                                                                                           | 1        | U           |
| Acetone                 |                                                                |                                       | 0.823         | 10          | 0.823                                                                                                           | 1        | U           |
| Benzene                 |                                                                |                                       | 0.0100        | 0.50        | 0.120                                                                                                           | 1        | F           |
| Bromobenzene            |                                                                |                                       | 0.0280        | 1.0         | 0.0280                                                                                                          | 1        | U           |
| Bromochloromethane      |                                                                |                                       | 0.0590        | 1.0         | 0.0590                                                                                                          | 1        | U           |
| Bromodichloromethane    | 3                                                              |                                       | 0.0310        | 0.50        | 0.0310                                                                                                          | 1        | U           |
| Bromoform               |                                                                |                                       | 0.0470        | 1.0         | 0.0470                                                                                                          | 1        | U           |

Comments:

| ent    |
|--------|
| 1200   |
| (1) VO |
| ; '    |

Page 13 of 54

| Analytical Method:      | <u>SW8260B</u>                         | Preparatory Method     | :           | AAB #:        | l       | R6783       |
|-------------------------|----------------------------------------|------------------------|-------------|---------------|---------|-------------|
| Lab Name:               | Life Science Laborate                  | ories, Inc.            | Contract #: |               |         |             |
| Field Sample ID:        | TF3M11713PA                            | Lab Sample ID:         | 0609018-0   | <u>)04A</u> M | atrix:  | Groundwater |
| % Solids:               | <u>0</u>                               | Initial Calibration ID | <u>663</u>  | File ID:      | J0061.D |             |
| Date Received:          | <u>27-Sep-06</u>                       | Date Extracted:        |             | Date An       | alyzed: | 02-Oct-06   |
| Concentration Units     | (ug/L or mg/Kg dry w                   | light): yg/L           |             | Sample        | Size    | 10 mL       |
|                         |                                        | MDL                    | RL          | Concentration |         |             |
| Bromomethane            | Palatyle                               | 0.0590                 | 3.0         | 0.0590        | 1       | U           |
| Carbon tetrachloride    |                                        | 0.0320                 | 1.0         | 0.0320        | 1       |             |
| Chlorobenzene           |                                        | 0.0320                 | 0.50        | 0.0320        | 1       | U           |
| Chloroethane            |                                        | 0.0116                 | 1.0         | 0.116         | 1       |             |
| Chloroform              |                                        | 0.0290                 | 0.50        | 0.0290        | 1       | U           |
| Chloromethane           |                                        | 0.126                  | 1.0         | 0.126         | 1       | U           |
| cis-1.2-Dichloroethene  | 3                                      | 0.0320                 | 1.0         | 0.200         | 1       | F           |
| cis-1,3-Dichloroproper  | •••••••••••••••••••••••••••••••••••••• | 0.0320                 | 0.50        | 0.0210        | 1       | U I         |
| Dibromochloromethan     |                                        | 0.0210                 | 0.50        | 0.0410        | 1       | U           |
| Dibromomethane          |                                        | 0.0380                 | 1.0         | 0.0380        | 1       |             |
| Dichlorodifluorometha   | ne                                     | 0.0670                 | 1.0         | 0.0670        | 1       |             |
| Ethylbenzene            |                                        | 0.0240                 | 1.0         | 0.0240        | 1       | U U         |
| Hexachlorobutadiene     |                                        | 0.0610                 | 0.60        | 0.0610        |         |             |
| Isopropylbenzene        |                                        | 0.0210                 | 1.0         | 0.150         | 1       |             |
| Methyl tert-butyl ether |                                        | 0.0250                 | 5.0         | 0.0250        | 1       |             |
| Methylene chloride      |                                        | 0.0340                 | 1.0         | 0.0340        | 1       |             |
| n-Butylbenzene          | 1/2//A/A                               | 0.0130                 | 1.0         | 0.0130        | 1       | U           |
| n-Propylbenzene         |                                        | 0.00900                | 1.0         | 0.00900       | 1       |             |
| Naphthalene             |                                        | 0.0240                 | 1.0         | 0.0240        | 1       | U U         |
| o-Xylene                | ,,                                     | 0.0140                 | 1.0         | 0.0140        | 1       | U           |
| p-isopropyitoluene      |                                        | 0.0140                 | 1.0         | 0.0140        | 1       | U           |
| sec-Butylbenzene        |                                        | 0.0170                 | 1.0         | 0.550         | 1       |             |
| Styrene                 |                                        | 0.0200                 | 1.0         | 0.0200        | 1       |             |
| tert-Butylbenzene       |                                        | 0.0160                 | 1.0         | 1.36          | 1       |             |
| Tetrachloroethene       |                                        | 0.0300                 | 1.0         | 0.0300        | 1       | U           |
| Toluene                 | M*//II.A                               | 0.0180                 | 1.0         | 0.0180        | 1       | U           |
| trans-1,2-Dichloroethe  | ne                                     | 0.0270                 | 1.0         | 0.0270        | 1       | U           |
| trans-1,3-Dichloroprop  | oene                                   | 0.0290                 | 1.0         | 0.0290        | 1       | Ū           |
| Trichloroethene         |                                        | 0.0270                 | 1.0         | 0.0270        | 1       | U           |
| Trichlorofluoromethan   | ê                                      | 0.0200                 | 1.0         | 0.0200        | 1       | U           |
| Vinyl chloride          |                                        | 0.0380                 | 1.0         | 0.0380        | 1       | U           |
| Xylenes (total)         |                                        | 0.0420                 | 2.0         | 0.0420        | 1       | U           |

| Comments: |         | AL       |
|-----------|---------|----------|
|           |         | (NK      |
|           | <b></b> | 1. Jahla |
|           |         | II DVW   |
|           |         | • •      |
|           |         |          |

| Analytical Method:  | <u>SW8260B</u>             | Preparatory Method:     |                 | AAB #:           | <u>R6783</u> |
|---------------------|----------------------------|-------------------------|-----------------|------------------|--------------|
| Lab Name:           | Life Science Laboratories, | Inc.                    | Contract #:     |                  |              |
| Field Sample ID:    | TE3M11713PA                | Lab Sample ID:          | 0609018-004A    | Matrix:          | Groundwater  |
| % Solids:           | <u>0</u>                   | Initial Calibration ID: | <u>663</u>      | File ID: J0061.E | )            |
| Date Received:      | <u>27-Sep-06</u>           | Date Extracted:         |                 | Date Analyzed:   | 02-Oct-06    |
| Concentration Units | (ug/L or mg/Kg dry weight) | μ <u>α/L</u>            |                 | Sample Size:     | 10 mL        |
|                     | Surrogate                  | Recove                  | ery Control Lim | its Qualifier    |              |
| 1,2-Dich            | loroethane-d4              | 91                      | 72 - 119        |                  |              |
| 4-Bromo             | fluorobenzene              | 113                     | 76 - 119        |                  |              |
| Dibromo             | fluoromethane              | 99                      | 85 - 115        |                  |              |
| Toluene             | -d8                        | 106                     | 81 - 120        |                  |              |

| I,4-Dichlorobenzene-d4<br>Chlorobenzene-d5 | 476489  | 178690 - 714758  |       |
|--------------------------------------------|---------|------------------|-------|
| Fluorobenzene                              |         | 199960 - 799842  | <br>1 |
| Tuoropenzene                               | 1495789 | 571263 - 2285052 | WH    |

Comments:

QAPP 4.0

Page 15 of 54

.

| Analytical Method:     | <u>SW8260B</u>                         | Preparat      | ory Method:   |             | AAB #:        | F        | 6783        |
|------------------------|----------------------------------------|---------------|---------------|-------------|---------------|----------|-------------|
| Lab Name:              | Life Science Laborator                 | ies, Inc.     |               | Contract #: | ×             |          |             |
| Field Sample ID:       | TF3M119R12PA                           | Lab Sam       | ple ID:       | 0609018-00  | <u>)5A</u> M  | atrix:   | Groundwater |
| % Solids:              | <u>0</u>                               | Initial Ca    | libration ID: | <u>663</u>  | File ID:      | J0062.D  |             |
| Date Received:         | 27-Sep-06                              | Date Ext      | racted:       |             | Date An       | alvzed:  | 02-Oct-06   |
| Concentration Units    | (ug/L or mg/Kg dry wei                 |               | g/L           |             |               | •        |             |
|                        |                                        | 9my. <u>P</u> |               |             | Sample        |          | 10 mL       |
| (m+p)-Xylene           | Analyte                                |               | MDL           | RL          | Concentration | Dilution |             |
| 1,1,1,2-Tetrachloroeth |                                        |               | 0.0280        | 2.0         | 0.0280        | 1        | U           |
| 1,1,1-Trichloroethane  |                                        |               | 0.0540        | 0.50        | 0.0540        | 1        | U           |
| 1,1,2,2-Tetrachloroeth | ·····                                  |               | 0.0150        | 1.0         | 0.0150        | 1        | U           |
|                        | ane                                    |               | 0.0810        | 0.50        | 0.0810        | 1        | U           |
| 1,1,2-Trichloroethane  |                                        |               | 0.0280        | 1.0         | 0.0280        | 1        | <u> </u>    |
| 1,1-Dichloroethane     |                                        | /             | 0.0330        | 1.0         | 0.0330        | 1        | U           |
| 1,1-Dichloroethene     |                                        |               | 0.0460        | 1.0         | 0.0460        | 1        | U           |
| 1,1-Dichloropropene    |                                        |               | 0.0240        | 1.0         | 0.0240        | 1        | U           |
| 1,2,3-Trichlorobenzen  |                                        |               | 0.0360        | 1.0         | 0.0360        | 1        | U           |
| 1,2,3-Trichloropropane |                                        |               | 0.0460        | 1.0         | 0.0460        | 1        | U           |
| 1,2,4-Trichlorobenzene |                                        |               | 0.0250        | 1.0         | 0.0250        | 1        | U           |
| 1,2,4-Trimethylbenzen  |                                        |               | 0.0120        | 1.0         | 0.0120        | 1        | U           |
| 1,2-Dibromo-3-chlorop  | ropane                                 |               | 0.261         | 2.0         | 0.261         | 1        | U           |
| 1,2-Dibromoethane      |                                        |               | 0.0350        | 1.0         | 0.0350        | 1        | U           |
| 1,2-Dichlorobenzene    |                                        |               | 0.0190        | 1.0         | 0.0190        | 1        | U           |
| 1,2-Dichloroethane     |                                        |               | 0.0240        | 0.50        | 0.0240        | 1        | U           |
| 1,2-Dichloropropane    |                                        |               | 0.0260        | 1.0         | 0.0260        | 1        | U           |
| 1,3,5-Trimethylbenzen  | e                                      |               | 0.0130        | 1.0         | 0.0130        | 1        | U           |
| 1,3-Dichlorobenzene    |                                        |               | 0.0200        | 1.0         | 0.0200        | 1        | U           |
| 1,3-Dichloropropane    |                                        |               | 0.0230        | 0.50        | 0.0230        | 1        | υ・          |
| 1,4-Dichlorobenzene    | ////////////////////////////////////// |               | 0.0170        | 0.50        | 0.0170        | 1        | υ           |
| 1-Chlorohexane         |                                        |               | 0.0470        | 1.0         | 0.0470        | 1        | U           |
| 2,2-Dichloropropane    |                                        | ·····         | 0.0820        | 1.0         | 0.0820        | 1        | Ū           |
| 2-Butanone             |                                        |               | 0.649         | 10          | 0.649         | 1        | U           |
| 2-Chlorotoluene        |                                        |               | 0.0120        | 1.0         | 0.0120        | 1        | Ū           |
| 4-Chlorotoluene        | ······································ |               | 0.0170        | 1.0         | 0.0170        | 1        | Ū           |
| 4-Methyl-2-pentanone   | ······································ |               | 0.375         | 10          | 0.375         | 1        | U           |
| Acetone                |                                        |               | 0.823         | 10          | 2.22          | 1        | F           |
| Benzene                |                                        |               | 0.0100        | 0.50        | 0.0100        | 1        | U           |
| Bromobenzene           | No                                     |               | 0.0280        | 1.0         | 0.0280        | 1        | U           |
| Bromochloromethane     |                                        |               | 0.0590        | 1.0         | 0.0590        | 1        | U           |
| Bromodichloromethan    | e                                      |               | 0.0330        | 0.50        | 0.0310        | 1        | U           |
| Bromoform              |                                        |               | 0.0470        | 1.0         | 0.0310        |          |             |
| Cromonte:              |                                        |               | 0.0470        | 1.0         | 0.0470        | 1        | <u> </u>    |

Comments:

Page 16 of 54

| Analytical Method:      | SW8260B                               | Preparatory Method     | :            | AAB #:        | R        | 6783        |
|-------------------------|---------------------------------------|------------------------|--------------|---------------|----------|-------------|
| Lab Name:               | Life Science Laborato                 | ies, Inc.              | Contract #:  |               |          |             |
| Field Sample ID:        | TF3M119R12PA                          | Lab Sample ID:         | 0609018-00   | 5 <u>A</u> Ma | itrix:   | Groundwater |
| % Solids:               | 0                                     | Initial Calibration ID | : <u>663</u> | File ID:      | J0062.D  |             |
| Date Received:          | 27-Sep-06                             | Date Extracted:        |              | Date Ana      | alyzed:  | 02-Oct-06   |
| Concentration Units     | (ug/L or mg/Kg dry wei                | ght): <u>µg/L</u>      |              | Sample        | Sizo.    | 10 mL       |
|                         | Analyte                               | MDL                    | RL           | Concentration | Dilution |             |
| Bromomethane            |                                       | 0.0590                 | 3.0          | 0.0590        | 1        | U           |
| Carbon tetrachloride    |                                       | 0.0320                 | 1.0          | 0.0320        | 1        | U           |
| Chlorobenzene           |                                       | 0.0110                 | 0.50         | 0.0110        | 1        | U           |
| Chloroethane            |                                       | 0.116                  | 1.0          | 0.116         | 1        | U U         |
| Chloroform              | , , , , , , , , , , , , , , , , , , , | 0.0290                 | 0.50         | 0.0290        | 1        | U           |
| Chloromethane           |                                       | 0.126                  | 1.0          | 0.126         | 1        | U           |
| cis-1,2-Dichloroethene  | 9                                     | 0.0320                 | 1.0          | 0.0320        | 1        | Ū           |
| cis-1,3-Dichloroproper  |                                       | 0.0210                 | 0.50         | 0.0210        | 1        | Ū           |
| Dibromochloromethan     |                                       | 0.0410                 | 0.50         | 0.0410        | 1        | U           |
| Dibromomethane          |                                       | 0.0380                 | 1.0          | 0.0380        | 1        | U           |
| Dichlorodifluorometha   | пе                                    | 0.0670                 | 1.0          | 0.0670        | 1        | U           |
| Ethylbenzene            |                                       | 0.0240                 | 1.0          | 0.0240        | 1        | U           |
| Hexachlorobutadiene     |                                       | 0.0610                 | 0.60         | 0.0610        | 1        | U           |
| Isopropylbenzene        |                                       | 0.0210                 | 1.0          | 0.0210        | 1        | U           |
| Methyl tert-butyl ether |                                       | 0.0250                 | 5.0          | 0.0250        | 1        | U           |
| Methylene chloride      |                                       | 0.0340                 | 1.0          | 0.0340        | 1        | U           |
| n-Butylbenzene          |                                       | 0.0130                 | 1.0          | 0.0130        | 1        | U           |
| n-Propylbenzene         |                                       | 0.00900                | 1.0          | 0.00900       | 1        | U           |
| Naphthalene             |                                       | 0.0240                 | 1.0          | 0.0240        | 1        | U           |
| o-Xylene                |                                       | 0.0140                 | 1.0          | 0.0140        | 1        | U           |
| p-Isopropyitoluene      |                                       | 0.0140                 | 1.0          | 0.0140        | 1        | υ           |
| sec-Butylbenzene        |                                       | 0.0170                 | 1.0          | 0.0170        | 1        | U           |
| Styrene                 |                                       | 0.0200                 | 1.0          | 0.0200        | 1        | U           |
| tert-Butylbenzene       |                                       | 0.0160                 | 1.0          | 0.600         | 1        | F           |
| Tetrachioroethene       |                                       | 0.0300                 | 1.0          | 0.0300        | 1        | U           |
| Toluene                 |                                       | 0.0180                 | 1.0          | 0.0180        | 1        | U           |
| trans-1,2-Dichloroethe  | ne                                    | 0.0270                 | 1.0          | 0.0270        | 1        | U           |
| trans-1,3-Dichloroprop  | репе                                  | 0.0290                 | 1.0          | 0.0290        | 1        | U           |
| Trichloroethene         |                                       | 0.0270                 | 1.0          | 0.0270        | 1        | U           |
| Trichlorofluoromethan   | e                                     | 0.0200                 | 1.0          | 0.0200        | 1        | U           |
| Vinyl chloride          |                                       | 0.0380                 | 1.0          | 0.0380        | 1        | U           |
| Xylenes (total)         |                                       | 0.0420                 | 2.0          | 0.0420        | 1        | U           |

|          |                |               | wW    |
|----------|----------------|---------------|-------|
|          |                |               |       |
|          |                |               | 11306 |
|          |                |               |       |
| OAPP 4 0 | AFCEE EOON O 3 | Dogo 17 of 54 |       |

| Analytical Method:  | <u>SW8260B</u>             | Preparatory Method:     |                  | AAB #:          | <u>R6783</u>         |
|---------------------|----------------------------|-------------------------|------------------|-----------------|----------------------|
| Lab Name:           | Life Science Laboratories, | Inc.                    | Contract #:      |                 |                      |
| Field Sample ID:    | TF3M119R12PA               | Lab Sample ID:          | 0609018-005A     | Matrix:         | Groundwater          |
| % Solids:           | Q                          | Initial Calibration ID: | <u>663</u>       | File ID: J0062. | D                    |
| Date Received:      | 27-Sep-06                  | Date Extracted:         |                  | Date Analyzed:  | 02-Oct-06            |
| Concentration Units | (ug/L or mg/Kg dry weight) | : <u>μg/L</u>           |                  | Sample Size:    | 10 mL                |
|                     | Surrogate                  | Recover                 | y Control Limits | Qualifier       |                      |
| 1,2-Dich            | loroethane-d4              | 92                      | 72 - 119         |                 |                      |
| 4-Bromo             | fluorobenzene              | 105                     | 76 - 119         |                 |                      |
| Dibromo             | fluoromethane              | 99                      | 85 - 115         |                 |                      |
| Toluene             | -d8                        | 111                     | 81 - 120         |                 | a i Filos di William |

|                        |         | Area Count Limits Qualifier |
|------------------------|---------|-----------------------------|
| 1,4-Dichlorobenzene-d4 | 466214  | 178690 - 714758             |
| Chlorobenzene-d5       | 510677  | 199960 - 799842             |
| Fluorobenzene          | 1529776 | 571263 - 2285052            |

WH 11/3/06

| Analytical Method:      | SW8260B                                | Preparat   | ory Method:   |             | AAB #:        | F                                          | <u>R6783</u> |
|-------------------------|----------------------------------------|------------|---------------|-------------|---------------|--------------------------------------------|--------------|
| Lab Name:               | Life Science Laboratories              | Inc.       |               | Contract #: |               |                                            |              |
| Field Sample ID:        | TF3M121R12PA                           | Lab Sam    | ple ID:       | 0609018-0   | <u>)06A</u> M | atrix:                                     | Groundwater  |
| % Solids:               | <u>0</u>                               | Initial Ca | libration ID: | <u>663</u>  | File ID:      | J0063.D                                    |              |
| Date Received:          | 27-Sep-06                              | Date Ext   | racted:       |             | Date An       | abord.                                     | 02-Oct-06    |
| Concentration Units     | (ug/L or mg/Kg dry weight              |            | g/L           |             |               |                                            | 02-001-00    |
|                         |                                        | /· P       |               |             | Sample        | CIE/ ACCOMMEND IN COMMENDIA IN THE ADDRESS | 10 mL        |
| (m+p)-Xylene            | Analyte                                |            | MDL           | RL.         | Concentration | Dilution                                   | Qualifier    |
| 1,1,1,2-Tetrachloroeth  | 200                                    |            | 0.0280        | 2.0         | 0.0280        | 1                                          | U            |
| 1,1,1-Trichloroethane   | 2115                                   |            | 0.0540        | 0.50        | 0.0540        | 1                                          | U            |
| 1,1,2,2-Tetrachloroetha |                                        |            | 0.0150        | 1.0         | 0.0150        | 1                                          | U            |
| 1,1,2-Trichloroethane   |                                        |            | 0.0810        | 0.50        | 0.0810        | 1                                          | U            |
| 1,1-Dichloroethane      |                                        |            | 0.0280        | 1.0         | 0.0280        | 1                                          | U            |
| 1.1-Dichloroethene      |                                        |            | 0.0330        | 1.0         | 0.0330        | 1                                          | U            |
| 1,1-Dichloropropene     |                                        |            | 0.0460        | 1.0         | 0.0460        | 1                                          | U            |
| 1,2,3-Trichlorobenzene  |                                        |            | 0.0240        | 1.0         | 0.0240        | 1                                          | U            |
| 1,2,3-Trichloropropane  |                                        |            | 0.0360        | 1.0         | 0.0360        | 1                                          | U            |
| 1,2,4-Trichlorobenzene  |                                        |            | 0.0460        | 1.0         | 0.0460        | 1                                          | U            |
|                         |                                        |            | 0.0250        | 1.0         | 0.0250        | 1                                          | U            |
| 1,2,4-Trimethylbenzene  |                                        |            | 0.0120        | 1.0         | 0.0120        | 1                                          | U            |
| 1,2-Dibromo-3-chloropi  | ropane                                 |            | 0.261         | 2.0         | 0.261         | 1                                          | U            |
| 1,2-Dibromoethane       |                                        |            | 0.0350        | 1.0         | 0.0350        | 1                                          | U            |
| 1,2-Dichlorobenzene     | 4                                      |            | 0.0190        | 1.0         | 0.0190        | 1                                          | U            |
| 1,2-Dichloroethane      |                                        |            | 0.0240        | 0.50        | 0.0240        | 1                                          | U            |
| 1,2-Dichloropropane     | ·····                                  |            | 0.0260        | 1.0         | 0.0260        | 1                                          | U            |
| 1,3,5-Trimethylbenzene  | 2                                      |            | 0.0130        | 1.0         | 0.0130        | 1                                          | U            |
| 1,3-Dichlorobenzene     | ······································ |            | 0.0200        | 1.0         | 0.0200        | 1                                          | U            |
| 1,3-Dichloropropane     |                                        |            | 0.0230        | 0.50        | 0.0230        | 1                                          | Ū            |
| 1,4-Dichlorobenzene     |                                        |            | 0.0170        | 0.50        | 0.0170        | 1                                          | U            |
| 1-Chlorohexane          |                                        |            | 0.0470        | 1.0         | 0.0470        | 1                                          | U            |
| 2,2-Dichloropropane     |                                        |            | 0.0820        | 1.0         | 0.0820        | 1                                          | U            |
| 2-Butanone              |                                        |            | 0.649         | 10          | 0.649         | 1                                          | U            |
| 2-Chlorotoluene         |                                        |            | 0.0120        | 1.0         | 0.0120        | 1                                          | U U          |
| 4-Chlorotoluene         |                                        |            | 0.0170        | 1.0         | 0.0170        | 1                                          | U            |
| 4-Methyl-2-pentanone    |                                        |            | 0.375         | 10          | 0.375         | 1                                          |              |
| Acetone                 |                                        |            | 0.823         | 10          | 0.823         | 1                                          | U            |
| Benzene                 |                                        |            | 0.0100        | 0.50        | 0.0100        | 1                                          | U            |
| Bromobenzene            |                                        |            | 0.0280        | 1.0         | 0.0280        | 1                                          | U            |
| Bromochloromethane      |                                        |            | 0.0590        | 1.0         | 0.0590        | 1                                          | U            |
| Bromodichloromethane    |                                        |            | 0.0310        | 0.50        | 0.0310        | 1                                          | U            |
| Bromoform               |                                        |            | 0.0470        | 1.0         | 0.0470        | 1                                          | U            |
| omments:                |                                        |            |               |             | 0.0110        | 1                                          | <u> </u>     |

Comments:

QAPP 4.0

CUNA

| Analytical Method:      | SW8260B                                                                                                         | Preparatory Method      |             | AAB #:        |          | <u>R6783</u> |
|-------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|-------------|---------------|----------|--------------|
| Lab Name:               | Life Science Laborator                                                                                          | ies, Inc.               | Contract #: |               |          |              |
| Field Sample ID:        | TF3M121R12PA                                                                                                    | Lab Sample ID:          | 0609018-00  | <u>)6A</u> M  | atrix:   | Groundwater  |
| % Solids:               | <u>0</u>                                                                                                        | Initial Calibration ID: | <u>663</u>  | File ID:      | J0063.D  | •            |
| Date Received:          | 27-Sep-06                                                                                                       | Date Extracted:         |             | Date An       | alyzed:  | 02-Oct-06    |
| Concentration Units     | (ug/L or mg/Kg dry wei                                                                                          | ght): <u>va/L</u>       |             | Comple        | Cine     | 10 mL        |
|                         | Analyie                                                                                                         |                         | -           | Sample        |          |              |
| Bromomethane            | Patatyte                                                                                                        | MDL                     | RL          | Concentration | <u> </u> |              |
| Carbon tetrachloride    |                                                                                                                 | 0.0590                  | 3.0         | 0.0590        | 1        | U            |
| Chlorobenzene           |                                                                                                                 | 0.0320                  | 1.0         | 0.0320        | 1        | U            |
| Chloroethane            |                                                                                                                 | 0.0110                  | 0.50        | 0.0110        | 1        | U            |
| Chloroform              |                                                                                                                 | 0.116                   | 1.0         | 0.116         | 1        | U            |
| Chloromethane           |                                                                                                                 | 0.0290                  | 0.50        | 0.0290        | 1        | U            |
| cis-1.2-Dichloroethene  | N                                                                                                               | ······                  | 1.0         |               | 1        |              |
| cis-1,3-Dichloroproper  |                                                                                                                 | 0.0320                  | 1.0         | 0.0320        | 1        | U            |
| Dibromochloromethan     |                                                                                                                 | 0.0210                  | 0.50        | 0.0210        |          | U            |
| Dibromomethane          | 6                                                                                                               | 0.0410                  | 0.50        | 0.0410        | 1        | U            |
| Dichlorodifluorometha   | <b>n</b> a                                                                                                      | 0.0380                  | 1.0         | 0.0380        | 1        | <u> </u>     |
| Ethylbenzene            |                                                                                                                 | 0.0670                  | 1.0         | 0.0670        | 1        | U            |
| Hexachlorobutadiene     |                                                                                                                 | 0.0240                  | 1.0         | 0.0240        | 1        | U            |
| Isopropylbenzene        |                                                                                                                 | 0.0610                  | 0.60        | 0.0610        |          | <u> </u>     |
| Methyl tert-butyl ether |                                                                                                                 | 0.0210                  | 1.0         | 0.0210        | 1        | U            |
| Methylene chloride      |                                                                                                                 | 0.0250                  | 5.0         | 0.0250        | 1        | <u> </u>     |
| n-Butylbenzene          |                                                                                                                 | 0.0340                  | 1.0         | 0.0340        | 1        | U            |
| n-Propylbenzene         |                                                                                                                 | 0.0130                  | 1.0         | 0.0130        | 1        | <u> </u>     |
| Naphthalene             |                                                                                                                 | 0.00900                 | 1.0         | 0.00900       | 1        | U            |
| o-Xylene                | ,                                                                                                               | 0.0240                  | 1.0         | 0.0240        |          | U            |
| p-Isopropyitoluene      | ничения на полно на п | 0.0140                  | 1.0         | 0.0140        | 1        | U            |
| sec-Butylbenzene        | ······                                                                                                          | 0.0140                  | 1.0         | 0.0140        | 1        | U<br>U       |
| Styrene                 | · · · · · · · · · · · · · · · · · · ·                                                                           | 0.0170                  |             | 0.0200        |          |              |
| tert-Butylbenzene       | ///////////////////////////////////////                                                                         | 0.0200                  | 1.0         |               | 1        | U            |
| Tetrachloroethene       |                                                                                                                 | 0.0160                  | 1.0         | 0.0160        | 1        | U            |
| Toluene                 |                                                                                                                 | 0.0300                  | 1.0         | 0.0300        | 1        | U            |
| trans-1,2-Dichloroethe  | 200                                                                                                             | 0.0180                  | 1.0         | 0.0180        | 1        | U            |
| trans-1,3-Dichloroprop  | -                                                                                                               | 0.0270                  | 1.0         | 0.0270        | 1        | U            |
| Trichloroethene         |                                                                                                                 | 0.0290                  | 1.0         | 0.0290        | 1        | U            |
| Trichlorofluoromethan   | A                                                                                                               | 0.0270                  | 1.0         | 1.20          | 1        |              |
| Vinyl chloride          | C                                                                                                               | 0.0200                  | 1.0         | 0.0200        | 1        | <u> </u>     |
|                         |                                                                                                                 | 0.0380                  | 1.0         | 0.0380        | 1        | <u> </u>     |
| Xylenes (total)         |                                                                                                                 | 0.0420                  | 2.0         | 0.0420        | 1        | U            |

|   |        | ,<br>-, |
|---|--------|---------|
|   |        | (10)    |
| · |        | 11/2/06 |
|   |        | 0001    |
|   | ······ | CURA    |
|   |        |         |

| W8260B                      | Preparatory Method:                                                                                                                |                                                                                                                                                                                                                                                             | AAB #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>R6783</u>                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ife Science Laboratories, I | nc.                                                                                                                                | Contract #:                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                     |
| F3M121R12PA                 | Lab Sample ID:                                                                                                                     | 0609018-006A                                                                                                                                                                                                                                                | Matrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Groundwater                                                                                                                                                                                                                                                                                                                                                                         |
|                             | Initial Calibration ID:                                                                                                            | <u>663</u>                                                                                                                                                                                                                                                  | File ID: J0063.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D                                                                                                                                                                                                                                                                                                                                                                                   |
| 7 <u>-Sep-06</u>            | Date Extracted:                                                                                                                    |                                                                                                                                                                                                                                                             | Date Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02-Oct-06                                                                                                                                                                                                                                                                                                                                                                           |
| /L or mg/Kg dry weight):    | <u>µg/L</u>                                                                                                                        |                                                                                                                                                                                                                                                             | Sample Size:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 mL                                                                                                                                                                                                                                                                                                                                                                               |
| Surrogate                   | Recove                                                                                                                             | ry Control Limits                                                                                                                                                                                                                                           | a Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                     |
| ethane-d4                   | 94                                                                                                                                 | 72 - 119                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                     |
| probenzene                  | 105                                                                                                                                | 76 - 119                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                     |
| promethane                  | 97                                                                                                                                 | 85 - 115                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | 102                                                                                                                                | 81 - 120                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | <u>e Science Laboratories, I</u><br>3M121R12PA<br><u>-Sep-06</u><br>L or mg/Kg dry weight):<br>Surrogate<br>ethane-d4<br>robenzene | <u>e Science Laboratories, Inc.</u><br><u>SM121R12PA</u><br>Lab Sample ID:<br>Initial Calibration ID:<br><u>Sep-06</u><br>Date Extracted:<br>L or mg/Kg dry weight):<br><u>Ug/L</u><br><u>Surrogate</u><br>ethane-d4<br>robenzene<br>105<br>romethane<br>97 | Endpointing       Contract #:         Contract #:       Initial Calibration ID:         Contract #:       Contract #:         Contract #:       Up         Lot mg/Kg dry weight):       Up(I.)         Surrogate       Recovery       Control Limits         ethane-d4       94       72 - 119         robenzene       105       76 - 119         romethane       97       85 - 115 | initial Calibration ID:       663       Matrix:         Initial Calibration ID:       663       File ID:       J0063.         Sep-06       Date Extracted:       Date Analyzed:       Date Analyzed:         L or mg/Kg dry weight):       µg/L       Sample Size:         Surrogate       Recovery       Control Limits       Qualifier         robenzene       105       76 - 119 |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |         |
|------------------------|-------------|-------------------|-----------|---------|
| 1,4-Dichlorobenzene-d4 | 441309      | 178690 - 714758   |           | CIDA    |
| Chlorobenzene-d5       | 463040      | 199960 - 799842   |           | UVM .   |
| Fluorobenzene          | 1487368     | 571263 - 2285052  |           | 11/3/06 |
|                        |             |                   |           | 1 1     |

| Analytical Method:     | <u>SW8260B</u>        | Preparatory Me     | ethod: |              | AAB #:        | . 1     | R6783       |
|------------------------|-----------------------|--------------------|--------|--------------|---------------|---------|-------------|
| Lab Name:              | Life Science Laborato | es, Inc.           |        | ontract #:   |               |         |             |
| Field Sample ID:       | TF3M12314PA           | Lab Sample ID      | :      | 0609018-007A | Ma            | trix:   | Groundwater |
| % Solids:              | <u>0</u>              | Initial Calibrati  | on ID: | <u>663</u>   | File ID:      | J0064.D |             |
| Date Received:         | <u>27-Sep-06</u>      | Date Extracted     | 1:     |              | Date Ana      | lyzed:  | 02-Oct-06   |
| Concentration Units    | (ug/L or mg/Kg dry we | ight): <u>µq/L</u> |        |              | Sample \$     | 21701   | 10 mL       |
|                        | Analyte               | -                  | IDL D  | RL           | Concentration | Dilutio |             |
| (m+p)-Xylene           | r u cut g cu          |                    | 0280   | 2.0          | 0.340         | 1       | F           |
| 1,1,1,2-Tetrachloroeth | ane                   |                    | 0540   | 0.50         | 0.0540        | 1       | Ū Ū         |
| 1,1,1-Trichloroethane  |                       |                    | 0150   | 1.0          | 0.0150        | . 1     | - Ū         |
| 1,1,2,2-Tetrachloroeth | ane                   |                    | 0810   | 0.50         | 0.0810        | 1       |             |
| 1,1,2-Trichloroethane  |                       | ·///               | 0280   | 1.0          | 0.0280        | 1       | - Ŭ         |
| 1.1-Dichloroethane     |                       |                    | 0330   | 1.0          | 0.0330        | 1       | Ū           |
| 1.1-Dichloroethene     |                       |                    | 0460   | 1.0          | 0.0460        | 1       | U           |
| 1,1-Dichloropropene    |                       |                    | 0240   | 1.0          | 0.0240        | 1       |             |
| 1,2,3-Trichlorobenzen  | 3                     |                    | 0360   | 1.0          | 0.0360        | 1       | U           |
| 1,2,3-Trichloropropane | }                     |                    | 0460   | 1.0          | 0.0460        | 1       | U           |
| 1,2,4-Trichlorobenzene |                       |                    | 0250   | 1.0          | 0.0250        | 1       | Ū           |
| 1,2,4-Trimethylbenzen  | 6                     |                    | 0120   | 1.0          | 22.5          | 1       |             |
| 1,2-Dibromo-3-chlorop  | ····                  |                    | .261   | 2.0          | 0.261         | 1       | U           |
| 1,2-Dibromoethane      |                       |                    | 0350   | 1.0          | 0.0350        | 1       | Ū           |
| 1,2-Dichlorobenzene    |                       |                    | 0190   | 1.0          | 0.0190        | 1       | U           |
| 1,2-Dichloroethane     |                       | 0.0                | 0240   | 0.50         | 0.0240        | 1       | υ           |
| 1,2-Dichloropropane    |                       | 0.0                | 0260   | 1.0          | 0.0260        | 1       | U           |
| 1,3,5-Trimethylbenzen  | ê                     | 0.0                | 0130   | 1.0          | 3.88          | 1       |             |
| 1,3-Dichlorobenzene    |                       | 0.1                | 0200   | 1.0          | 0.0200        | 1       | U           |
| 1,3-Dichloropropane    |                       | 0.1                | 0230   | 0.50         | 0.0230        | 1       | U           |
| 1,4-Dichlorobenzene    |                       | 0.0                | 0170   | 0.50         | 0.0170        | 1       | U           |
| 1-Chlorohexane         |                       | 0.0                | 0470   | 1.0          | 0.0470        | 1       | U           |
| 2,2-Dichloropropane    |                       | 0.0                | 0820   | 1.0          | 0.0820        | 1       | U           |
| 2-Butanone             | 1117/7-A.             | 0.                 | .649   | 10           | 0.649         | 1       | U           |
| 2-Chlorotoluene        |                       | 0.0                | 0120   | 1.0          | 0.0120        | 1       | U           |
| 4-Chlorotoluene        |                       | 0.0                | 0170   | 1.0          | 0.0170        | 1       | U           |
| 4-Methyl-2-pentanone   |                       | 0.                 | .375   | 10           | 0.375         | 1       | U           |
| Acetone                |                       |                    | .823   | 10           | 0.823         | 1       | U           |
| Benzene                |                       | 0.0                | 0100   | 0.50         | 0.0100        | 1       | U           |
| Bromobenzene           |                       | 0.1                | 0280   | 1.0          | 0.0280        | 1       | U           |
| Bromochloromethane     |                       | 0.1                | 0590   | 1.0          | 0.0590        | 1       | U           |
| Bromodichloromethan    | e                     | 0.1                | 0310   | 0.50         | 0.0310        | 1       | U           |
| Bromoform              |                       | 0.0                | 0470   | 1.0          | 0.0470        | 1       | U           |

Comments:

| Analytical Method:                              | SW8260B               | Preparatory Method         | :            | AAB #:          | E       | 6783      |     |
|-------------------------------------------------|-----------------------|----------------------------|--------------|-----------------|---------|-----------|-----|
| Lab Name:                                       | Life Science Laborate | pries, Inc.                | Contract #:  |                 |         |           |     |
| Field Sample ID:                                | TF3M12314PA           | TF3M12314PA Lab Sample ID: |              | 7 <u>A</u> Mat  | Matrix: |           |     |
| % Solids:                                       | <u>0</u>              | Initial Calibration ID     | : <u>663</u> | File ID:        | J0064.D |           |     |
| Date Received:                                  | 27-Sep-06             | Date Extracted:            |              | Date Anal       | yzed:   | 02-Oct-06 |     |
| Concentration Units (ug/L or mg/Kg dry weight): |                       |                            |              | Sample S        | ize:    | 10 m      | L   |
|                                                 | Analyte               | MDL                        | RL           | Concentration   |         |           |     |
| Bromomethane                                    |                       | 0.0590                     | 3.0          | 0.0590          | 1       | U         | 222 |
| Carbon tetrachloride                            |                       | 0.0320                     | 1.0          | 0.0320          | 1       | U         |     |
| Chlorobenzene                                   |                       | 0.0110                     | 0.50         | 0.0110          | 1       | U         |     |
| Chloroethane                                    |                       | 0.116                      | 1.0          | 0.116           | 1       | U         |     |
| Chloroform                                      |                       | 0.0290                     | 0.50         | 0.0290          | 1       | U         |     |
| Chloromethane                                   |                       | 0.126                      | 1.0          | 0.126           | . 1     | U         |     |
| cis-1,2-Dichloroethen                           | 3                     | 0.0320                     | 1.0          | 0.0320          | 1       | U         |     |
| cis-1,3-Dichloroproper                          | ne                    | 0.0210                     | 0.50         | 0.0210          | 1       | U         |     |
| Dibromochloromethar                             | le                    | 0.0410                     | 0.50         | 0.0410          | 1       | U         |     |
| Dibromomethane                                  |                       | 0.0380                     | 1.0          | 0.0380          | 1       | U         |     |
| Dichlorodifluorometha                           | ine                   | 0.0670                     | 1.0          | 0.0670          | 1       | U         |     |
| Ethylbenzene                                    | ······                | 0.0240                     | 1.0          | 0.170           | 1       | F         |     |
| Hexachlorobutadiene                             |                       | 0.0610                     | 0.60         | 0.0610          | 1       | υ         |     |
| Isopropylbenzene                                |                       | 0.0210                     | 1.0          | <b>BZ9</b> 58.4 | 12      | . 3       | 4   |
| Methyl tert-butyl ether                         | -                     | 0.0250                     | 5.0          | 0.0250          | 1       | U         | 1   |
| Methylene chloride                              |                       | 0.0340                     | 1.0          | 0.0340          | 1       | U         |     |
| n-Butylbenzene                                  |                       | 0.0130                     | 1.0          | 0.980           | 1       | F         |     |
| n-Propylbenzene                                 |                       | 0.00900                    | 1.0          | 7.35            | 1       |           |     |
| Naphthalene                                     |                       | 0.0240                     | 1.0          | 0.0240          | 1       | U         |     |
| o-Xyiene                                        |                       | 0.0140                     | 1.0          | 0.0140          | 1       | U         |     |
| p-Isopropyltoluene                              |                       | 0.0140                     | 1.0          | 1.38            | 1       |           |     |
| sec-Butylbenzene                                |                       | 0.0170                     | 1.0          | 1.39            | 1       |           |     |
| Styrene                                         |                       | 0.0200                     | 1.0          | 0.0200          | 1       | U         |     |
| tert-Butylbenzene                               |                       | 0.0160                     | 1.0          | 1.14            | 1       |           |     |
| Tetrachloroethene                               |                       | 0.0300                     | 1.0          | 0.0300          | 1       | U         |     |
| Toluene                                         |                       | 0.0180                     | 1.0          | 0.0180          | 1       | U         |     |
| trans-1,2-Dichloroethe                          | ene                   | 0.0270                     | 1.0          | 0.0270          | 1       | U         |     |
| trans-1,3-Dichloroprop                          | pene                  | 0.0290                     | 1.0          | 0.0290          | 1       | U         |     |
| Trichloroethene                                 |                       | 0.0270                     | 1.0          | 0.0270          | 1       | U         |     |
| Trichlorofluoromethar                           | 18                    | 0.0200                     | 1.0          | 0.0200          | 1       | U         |     |
| Vinyl chloride                                  |                       | 0.0380                     | 1.0          | 0.0380          | 1       | U         |     |
| Xylenes (total)                                 |                       | 0.0420                     | 2.0          | 0.340           | 1       | F         |     |

Comments: +Result transford from dilution sample TF3M12314PA (1:2) ENA 11/3/06

| Analytical Method:  | <u>SW8260B</u>             | Preparatory Method:     |                   | AAB #:          | <u>R6783</u> |
|---------------------|----------------------------|-------------------------|-------------------|-----------------|--------------|
| Lab Name:           | Life Science Laboratories, | Inc.                    | Contract #:       |                 |              |
| Field Sample ID:    | TF3M12314PA                | Lab Sample ID:          | 0609018-007A      | Matrix:         | Groundwater  |
| % Solids:           | <u>0</u>                   | Initial Calibration ID: | <u>663</u>        | File ID: J0064. | D            |
| Date Received:      | <u>27-Sep-06</u>           | Date Extracted:         |                   | Date Analyzed:  | 02-Oct-06    |
| Concentration Units | (ug/L or mg/Kg dry weight) | : <u>µg/L</u>           |                   | Sample Size:    | 10 mL        |
|                     | Surrogate                  | Recov                   | ery Control Limit | s Qualifier     |              |
| 1,2-Dich            | nloroethane-d4             | 94                      | 72 - 119          |                 |              |
| 4-Brom              | ofluorobenzene             | 107                     | 76 - 119          |                 |              |
| Dibromo             | Dibromofluoromethane       |                         | 85 - 115          |                 |              |
| Toluene             | ÷-d8                       | 114                     | 81 - 120          |                 |              |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 472911      | 178690 - 714758   |           |
| Chlorobenzene-d5       | 481208      | 199960 - 799842   |           |
| Fluorobenzene          | 1408509     | 571263 - 2285052  |           |

wat 11/3/06

Comments:

QAPP 4.0

Page 27 of 54

| Analytical Method:      | <u>SW8260B</u>                                                                                                 | Preparato          | ry Method:              |                                          | AAB #:        | Ē        | <u>R6816</u> |
|-------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|------------------------------------------|---------------|----------|--------------|
| Lab Name:               | Life Science Laborato                                                                                          | Laboratories, Inc. |                         | Contract #:                              |               |          |              |
| Field Sample ID:        | TF3M12314PA                                                                                                    | Lab Sample ID:     |                         | 0609018-0                                | <u>07A</u> Ma | Matrix:  |              |
| % Solids:               | <u>0</u>                                                                                                       | Initial Cal        | Initial Calibration ID: |                                          | File ID:      | J0086.D  |              |
| Date Received:          | 27-Sep-06                                                                                                      | Date Extra         | acted.                  |                                          | , Date Ana    | alvzeci- | 03-Oct-06    |
| Concentration Units (   |                                                                                                                |                    |                         |                                          |               | -        | <u></u> ,    |
| Concentration Units (   |                                                                                                                | ignt): <u>uc</u>   | <u>/L</u>               | an a | Sample        |          | 10 mL        |
|                         | Analyte                                                                                                        |                    | MDL                     | RL                                       | Concentration | Dilutio  |              |
| (m+p)-Xylene            |                                                                                                                |                    | 0.0560                  | 4.0                                      | 0.280         | 2        | F            |
| 1,1,1,2-Tetrachloroetha | ine                                                                                                            |                    | 0.108                   | 1.0                                      | 0.108         | 2        | U            |
| 1,1,1-Trichloroethane   |                                                                                                                |                    | 0.0300                  | 2.0                                      | 0.0300        | 2        | U            |
| 1,1,2,2-Tetrachloroetha | ne                                                                                                             |                    | 0.162                   | 1.0                                      | 0.162         | 2        | U            |
| 1,1,2-Trichloroethane   |                                                                                                                |                    | 0.0560                  | 2.0                                      | 0.0560        | 2        | U            |
| 1,1-Dichloroethane      |                                                                                                                |                    | 0.0660                  | 2.0                                      | 0.0660        | 2        | U            |
| 1,1-Dichloroethene      |                                                                                                                | ·                  | 0.0920                  | 2.0                                      | 0.0920        | 2        | U            |
| 1,1-Dichloropropene     |                                                                                                                |                    | 0.0480                  | 2.0                                      | 0.0480        | 2        | U            |
| 1,2,3-Trichlorobenzene  |                                                                                                                |                    | 0.0720                  | 2.0                                      | 0.0720        | 2        | U            |
| 1,2,3-Trichloropropane  |                                                                                                                |                    | 0.0920                  | 2.0                                      | 0.0920        | 2        | U            |
| 1,2,4-Trichlorobenzene  |                                                                                                                |                    | 0.0500                  | 2.0                                      | 0.0500        | 2        | U            |
| 1,2,4-Trimethylbenzene  | 3                                                                                                              |                    | 0.0240                  | 2.0                                      | 18.5          | 2        |              |
| 1,2-Dibromo-3-chlorop   | ropane                                                                                                         |                    | 0.522                   | 4.0                                      | 0.522         | 2        | U            |
| 1,2-Dibromoethane       | ····                                                                                                           |                    | 0.0700                  | 2.0                                      | 0.0700        | 2        | υ            |
| 1,2-Dichlorobenzene     |                                                                                                                |                    | 0.0380                  | 2.0                                      | 0.0380        | 2        | U            |
| 1,2-Dichloroethane      |                                                                                                                |                    | 0.0480                  | 1.0                                      | 0.0480        | 2        | U            |
| 1,2-Dichloropropane     |                                                                                                                |                    | 0.0520                  | 2.0                                      | 0.0520        | 2        | U            |
| 1,3,5-Trimethylbenzene  | 3                                                                                                              |                    | 0.0260                  | 2.0                                      | 3.56          | 2        |              |
| 1,3-Dichlorobenzene     |                                                                                                                |                    | 0.0400                  | 2.0                                      | 0.0400        | 2        | U            |
| 1,3-Dichloropropane     |                                                                                                                |                    | 0.0460                  | 1.0                                      | 0.0460        | 2        | U            |
| 1,4-Dichlorobenzene     |                                                                                                                |                    | 0.0340                  | 1.0                                      | 0.0340        | 2        | U            |
| 1-Chlorohexane          |                                                                                                                | ·                  | 0.0940                  | 2.0                                      | 0.0940        | 2        | U            |
| 2,2-Dichloropropane     |                                                                                                                |                    | 0.164                   | 2.0                                      | 0.164         | 2        | U            |
| 2-Butanone              |                                                                                                                |                    | 1.30                    | 20                                       | 1.30          | 2        | U            |
| 2-Chiorotoluene         |                                                                                                                |                    | 0.0240                  | 2.0                                      | 0.0240        | 2        | U            |
| 4-Chlorotoluene         |                                                                                                                |                    | 0.0340                  | 2.0                                      | 0.0340        | 2        | U            |
| 4-Methyl-2-pentanone    |                                                                                                                |                    | 0.750                   | 20                                       | 0.750         | 2        | U            |
| Acetone                 |                                                                                                                |                    | 1.65                    | 20                                       | 1.65          | 2        | U            |
| Benzene                 | and a second |                    | 0.0200                  | 1.0                                      | 0.0200        | 2        | U            |
| Bromobenzene            |                                                                                                                |                    | 0.0560                  | 2.0                                      | 0.0560        | 2        | U            |
| Bromochloromethane      |                                                                                                                |                    | 0.118                   | 2.0                                      | 0.118         | 2        | υ            |
| Bromodichloromethane    | 3                                                                                                              |                    | 0.0620                  | 1.0                                      | 0.0620        | 2        | U            |
| Bromoform               |                                                                                                                |                    | 0.0940                  | 2.0                                      | 0.0940        | 2        | U            |

Comments:

CMB 13/06 Page 22 of 54

QAPP 4.0

| Analytical Method:      | <u>SW8260B</u>        | Preparatory Method     | :           | AAB #:         | ļ       | R6816          |       |
|-------------------------|-----------------------|------------------------|-------------|----------------|---------|----------------|-------|
| Lab Name:               | Life Science Laborate | ories, Inc.            | Contract #: |                |         |                |       |
| Field Sample ID:        | TF3M12314PA           | Lab Sample ID:         | 0609018-    | <u>007A</u> Mi | atrix:  | Groundwate     | Г     |
| % Solids:               | <u>0</u>              | Initial Calibration ID | : 663       | File ID:       | J0086.D |                |       |
| Date Received:          | 27-Sep-06             | Date Extracted:        |             | Date An        | alvzed- | 03-Oct-06      |       |
| Concentration Units     | (ug/L or mg/Kg dry we |                        |             |                | -       | <u></u>        |       |
|                         |                       |                        |             | Sample         |         | 10 i           |       |
| Bromomethane            | Analyte               | MDL                    | RL          | Concentration  |         | acad contracts | r     |
| Carbon tetrachloride    |                       | 0.118                  | 6.0         | 0.118          | 2       | <u> </u>       |       |
| Chlorobenzene           | ······                | 0.0640                 | 2.0         | 0.0640         | 2       | <u> </u>       |       |
| Chloroethane            |                       | 0.0220                 | 1.0         | 0.0220         | 2       | <u> </u>       |       |
| Chloroform              |                       | 0.232                  | 2.0         | 0.232          | 2       | U              |       |
| Chloromethane           |                       | 0.0580                 | 1.0         | 0.0580         | 2       | U              |       |
| cis-1,2-Dichloroethene  |                       | 0.252                  | 2.0         | 0.252          | 2       | <u> </u>       |       |
| cis-1,2-Dichloroproper  |                       | 0.0640                 | 2.0         | 0.0640         | 2       | <u> </u>       |       |
| Dibromochloromethan     |                       | 0.0420                 | 1.0         | 0.0420         | 2       | <u> </u>       |       |
| Dibromomethane          | e                     | 0.0820                 | 1.0         | 0.0820         | 2       | <u> </u>       |       |
| Dichlorodifluorometha   | **                    | 0.0760                 | 2.0         | 0.0760         | 2       | <u> </u>       |       |
| Ethylbenzene            |                       | 0.134                  | 2.0         | 0.134          | 2       | U              |       |
| Hexachlorobutadiene     | ······                | 0.0480                 | 2.0         | 0.0480         | 2       | <u> </u>       |       |
| Isopropylbenzene        |                       | 0.122                  | 1.2         | 0.122          | 2       | U              |       |
| Methyl tert-butyl ether |                       | 0.0420                 | 2.0         | 58.4           | 2       |                | - Kev |
| Methylene chloride      |                       | 0.0500                 | 10          | 0.0500         | 2       | U              |       |
| n-Butylbenzene          |                       | 0.0680                 | 2.0         | 0.0680         | 2       | U              |       |
| n-Propylbenzene         |                       | 0.0260                 | 2.0         | 1.44           | 2       | F              |       |
| Naphthalene             |                       | 0.0180                 | 2.0         | 6.16           | 2       |                |       |
| o-Xylene                |                       | 0.0480                 | 2.0         | 0.0480         | 2       | <u> </u>       |       |
| p-isopropyltoluene      |                       | 0.0280                 | 2.0         | 0.0280         | 2       | <u> </u>       |       |
| sec-Butylbenzene        |                       | 0.0280                 | 2.0         | 1.82           | 2       | F              |       |
| Styrene                 |                       | 0.0340                 | 2.0         | 1.52           | 2       | F              |       |
| tert-Butylbenzene       |                       | 0.0400                 | 2.0         | 0.0400         | 2       | <u> </u>       |       |
| Tetrachloroethene       |                       | 0.0320                 | 2.0         | 1.42           | 2       | F              |       |
| Toluene                 |                       | 0.0600                 | 2.0         | 0.0600         | 2       | <u> </u>       | _     |
| trans-1,2-Dichloroethe  |                       | 0.0360                 | 2.0         | 0.0360         | 2       | U              |       |
| trans-1,3-Dichloroprop  |                       | 0.0540                 | 2.0         | 0.0540         | 2       | U              |       |
| Trichloroethene         |                       | 0.0580                 | 2.0         | 0.0580         | 2       | <u> </u>       |       |
| Trichlorofluoromethan   | <b>.</b>              | 0.0540                 | 2.0         | 0.0540         | 2       | U              |       |
| Vinyl chloride          | <u>ت</u>              | 0.0400                 | 2.0         | 0.0400         | 2       | <u> </u>       |       |
| Xylenes (total)         |                       | 0.0760                 | 2.0         | 0.0760         | 2       | <u> </u>       |       |
| NACHES (IOISI)          | ////                  | 0.0840                 | 4.0         | 0.280          | 2       | F              |       |

Comments: Alegult transferred to original sample TF3M12314PA 11:1

QAPP 4.0

| Analytical Method:  | <u>SW8260B</u>            | Preparate   | Preparatory Method: |                   |          |          | <u>R6816</u> |  |
|---------------------|---------------------------|-------------|---------------------|-------------------|----------|----------|--------------|--|
| Lab Name:           | Life Science Laboratories | Inc.        | C                   | ontract #:        |          |          |              |  |
| Field Sample ID:    | TF3M12314PA               | Lab Sam     | ple ID:             | 0609018-007A      | Ма       | trix:    | Groundwater  |  |
| % Solids:           | <u>0</u>                  | Initial Ca  | libration ID:       | <u>663</u>        | File ID: | J0086.D  | j            |  |
| Date Received:      | 27-Sep-06                 | Date Extr   | acted:              |                   | Date Ana | lyzed:   | 03-Oct-06    |  |
| Concentration Units | (ug/L or mg/Kg dry weight | ): <u>µ</u> | <u>a/L</u>          |                   | Sample S | Size:    | 10 mL        |  |
| 100                 | Surrogate                 | - 1 - E     | Recovery            | Control Lir       | nits 📃 Q | ualifier |              |  |
| 1,2-Did             | nloroethane-d4            |             | 91                  | 72 - 119          | )        |          |              |  |
| 4-Brom              | ofiuorobenzene            |             | 112                 | 76 - 119          | )        |          |              |  |
| Dibrom              | ofluoromethane            |             | 96                  | 85 - 115          | 5        |          |              |  |
| Toluene             | ⊱d8                       |             | 109                 | 81 - 120          | )        |          |              |  |
|                     | Internal Std              | Area Ci     | ounts /             | Area Count Limits | Qualifi  |          |              |  |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |         |
|------------------------|-------------|-------------------|-----------|---------|
| 1,4-Dichlorobenzene-d4 | 479525      | 178690 - 714758   |           | ENA     |
| Chlorobenzene-d5       | 496577      | 199960 - 799842   |           | 1.12/06 |
| Fluorobenzene          | 1533108     | 571263 - 2285052  |           | 11/2/02 |
|                        |             |                   |           | , ,     |

#### Comments:

QAPP 4.0

| Analytical Method:     | <u>SW8260B</u>                          | Preparatory Me     | thod:            | AAB #         | #: <u>R</u> ( | <u>6783</u> |
|------------------------|-----------------------------------------|--------------------|------------------|---------------|---------------|-------------|
| Lab Name:              | Life Science Laborato                   | ies, Inc.          | Contract         | #:            |               |             |
| Field Sample ID:       | TF3M12614PA                             | Lab Sample ID:     | 0609             | 018-008A      | Matrix:       | Groundwater |
| % Solids:              | <u>0</u>                                | Initial Calibratio | n ID: <u>663</u> | File II       | D: J0065.D    |             |
| Date Received:         | 27-Sep-06                               | Date Extracted:    |                  | Date          | Analyzed:     | 02-Oct-06   |
| Concentration Units    | (ug/L or mg/Kg dry wei                  | ght): <u>ug/L</u>  |                  | Samp          | le Size:      | 10 mL       |
|                        | Analyte                                 | M                  | DL RL            | Concentration | Dilution      | Qualifier   |
| (m+p)-Xylene           |                                         | 0.0                | 280 2.0          | 0.0280        | 1             | U           |
| 1,1,1,2-Tetrachloroeth | ane                                     | 0.0                | 540 0.50         | 0.0540        | 1             | U           |
| 1,1,1-Trichloroethane  |                                         | 0.0                | 150 1.0          | 0.0150        | 1             | U           |
| 1,1,2,2-Tetrachloroeth | ane                                     | 0.0                | 810 0.50         | 0.0810        | 1             | U           |
| 1,1,2-Trichloroethane  |                                         | 0.0                | 280 1.0          | 0.0280        | 1             | U           |
| 1,1-Dichloroethane     |                                         | 0.0                | 330 1.0          | 0.0330        | 1             | U           |
| 1,1-Dichloroethene     |                                         | 0.0                | 460 1.0          | 0.0460        | 1             | U           |
| 1,1-Dichloropropene    |                                         | 0.0                | 240 1.0          | 0.0240        | 1             | U           |
| 1,2,3-Trichlorobenzene | 3                                       | 0.0                | 360 1.0          | 0.0360        | 1             | U           |
| 1,2,3-Trichloropropane | }                                       | 0.0                | 460 1.0          | 0.0460        | 1             | U           |
| 1,2,4-Trichlorobenzend | 3                                       | 0.0                | 250 1.0          | 0.0250        | 1             | U           |
| 1,2,4-Trimethylbenzen  | e                                       | 0.0                | 120 1.0          | 0.0120        | 1             | U           |
| 1,2-Dibromo-3-chlorop  | ropane                                  | 0.2                | 261 2.0          | 0.261         | 1             | U           |
| 1,2-Dibromoethane      |                                         | 0.0                | 350 1.0          | 0.0350        | 1             | U           |
| 1,2-Dichlorobenzene    |                                         | 0.0                | 190 1.0          | 0.0190        | 1             | U           |
| 1,2-Dichloroethane     |                                         | 0.0                | 240 0.50         | 0.0240        | 1             | U           |
| 1,2-Dichloropropane    |                                         | 0.0                | 260 1.0          | 0.0260        | 1             | U           |
| 1,3,5-Trimethylbenzen  | e                                       | 0.0                | 130 1.0          | 0.0130        | 1             | U           |
| 1,3-Dichlorobenzene    |                                         | 0.0                | 200 1.0          | 0.0200        | 1             | U           |
| 1,3-Dichloropropane    | an ann an an an Anna Anna Anna Anna Ann | 0.0                | 230 0.50         | 0.0230        | 1             | U           |
| 1,4-Dichlorobenzene    |                                         | 0.0                | 170 0.50         | 0.0170        | 1             | U           |
| 1-Chlorohexane         |                                         | 0.0                | 470 1.0          | 0.0470        | 1             | U           |
| 2,2-Dichloropropane    |                                         | 0.0                | 820 1.0          | 0.0820        | 1             | U           |
| 2-Butanone             |                                         | 0.0                | 649 10           | 0.649         | 1             | U           |
| 2-Chlorotoluene        |                                         | 0.0                | 120 1.0          | 0.0120        | 1             | U           |
| 4-Chlorotoluene        |                                         | 0.0                | 170 1.0          | 0.0170        | 1             | U           |
| 4-Methyl-2-pentanone   |                                         | 0.:                | 375 10           | 0.375         | 1             | U           |
| Acetone                |                                         | 0.1                | 323 10           | 0.823         | 1             | U           |
| Benzene                |                                         | 0.0                | 100 0.50         | 0.0100        | 1             | U           |
| Bromobenzene           |                                         | 0.0                | 280 1.0          | 0.0280        | 1             | U           |
| Bromochloromethane     |                                         | 0.0                | 590 1.0          | 0.0590        | 1             | U           |
| Bromodichloromethan    | e                                       | 0.0                | 310 0.50         | 0.0310        | 1             | U           |
| Bromoform              |                                         | 0.0                | 470 1.0          | 0.0470        | 1             | U           |

Comments:

CNA 11/3

C

| Analytical Method:      | <u>SW8260B</u>        | Preparatory Metho   | od:            | AAB #:          | E        | 6783        |
|-------------------------|-----------------------|---------------------|----------------|-----------------|----------|-------------|
| Lab Name:               | Life Science Laborate | ries, Inc.          | Contract #:    |                 |          |             |
| Field Sample ID:        | TF3M12614PA           | Lab Sample ID:      | <u>0609018</u> | -008 <u>A</u> M | atrix:   | Groundwater |
| % Solids:               | <u>0</u>              | Initial Calibration | ID: <u>663</u> | File ID:        | J0065.D  |             |
| Date Received:          | 27-Sep-06             | Date Extracted:     |                | Date An         | alyzed:  | 02-Oct-06   |
| Concentration Units     | (ug/L or mg/Kg dry we | ight): <u>µa/L</u>  |                | Sample          | Size     | 10 mL       |
|                         | Analyte               | MDL                 | RL             | -               | Dilution |             |
| Bromomethane            | - Andrijak            | 0.059               |                | 0.0590          | 1        | U           |
| Carbon tetrachloride    |                       | 0.032               |                | 0.0320          | 1        | U           |
| Chlorobenzene           |                       | 0.011               |                | 0.0110          | 1        | U<br>U      |
| Chloroethane            |                       | 0.116               |                | 0.116           | 1        | U U         |
| Chloroform              |                       | 0.029               |                | 0.0290          | 1        |             |
| Chioromethane           |                       | 0.126               |                | 0.126           | 1        | Ŭ           |
| cis-1,2-Dichloroethene  | 2                     | 0.032               |                | 0.0320          | 1        | U           |
| cis-1,3-Dichloroproper  |                       | 0.021               |                | 0.0210          | 1        | U           |
| Dibromochloromethar     |                       | 0.041               |                | 0.0410          | 1        | U           |
| Dibromomethane          | · · · ·               | 0.038               |                | 0.0380          | 1        | U           |
| Dichlorodifluorometha   | ne                    | 0.067               |                | 0.0670          | 1        | Ū           |
| Ethylbenzene            |                       | 0.024               | ······         | 0.0240          | 1        |             |
| Hexachlorobutadiene     |                       | 0.061               | 0 0.60         | 0.0610          | 1        | U           |
| Isopropylbenzene        |                       | 0.021               | 0 1.0          | 6.28            | 1        |             |
| Methyl tert-butyl ether |                       | 0.025               | 0 5.0          | 0.0250          | 1        | U           |
| Methylene chloride      |                       | 0.034               | 0 1.0          | 0.0340          | 1        | U           |
| n-Butylbenzene          |                       | 0.013               | 0 1.0          | 0.0130          | 1        | U           |
| n-Propylbenzene         |                       | 0.0090              | 0 1.0          | 5.81            | 1        |             |
| Naphthalene             |                       | 0.024               | 0 1.0          | 0.0240          | 1        | U           |
| o-Xylene                |                       | 0.014               | 0 1.0          | 0.0140          | 1        | U           |
| p-Isopropyltoluene      |                       | 0.014               | 0 1.0          | 0.0140          | 1        | U           |
| sec-Butylbenzene        |                       | 0.017               | 0 1.0          | 5.33            | 1        |             |
| Styrene                 |                       | 0.020               | 0 1.0          | 0.0200          | 1        | U           |
| tert-Butylbenzene       |                       | 0.016               | 0 1.0          | 1.58            | 1        |             |
| Tetrachloroethene       |                       | 0.030               | 0 1.0          | 0.0300          | - 1      | U           |
| Toluene                 |                       | 0.018               | 0 1.0          | 0.0180          | 1        | U           |
| trans-1,2-Dichloroethe  | ene                   | 0.027               | 0 1.0          | 0.0270          | 1        | U           |
| trans-1,3-Dichloroprop  | pene                  | 0.029               | 0 1.0          | 0.0290          | 1        | U           |
| Trichloroethene         |                       | 0.027               | 0 1.0          | 0.0270          | 1        | U           |
| Trichlorofluoromethan   | 18                    | 0.020               | 0 1.0          | 0.0200          | 1        | U           |
| Vinyl chloride          |                       | 0.038               | 0 1.0          | 0.0380          | 1        | U           |
| Xylenes (total)         |                       | 0.042               | 0 2.0          | 0.0420          | 1        | U           |

# Comments:

|      | ······ |   |
|------|--------|---|
| <br> |        |   |
|      | U      | 1 |
|      | 1      |   |

UNF 11/3/06

÷

| Analytical Metho | od: <u>SW8260B</u>           | Preparatory Metho   | Preparatory Method: |                |                  | <u>R6783</u> |
|------------------|------------------------------|---------------------|---------------------|----------------|------------------|--------------|
| Lab Name:        | Life Science Laborato        | ries, Inc.          | Contrac             | :t #:          |                  |              |
| Field Sample ID  | TF3M12614PA                  | Lab Sample ID:      | 060                 | 9018-008A      | Matrix:          | Groundwater  |
| % Solids:        | Q                            | Initial Calibration | D: <u>663</u>       |                | File ID: J0065.I | C            |
| Date Received:   | <u>27-Sep-06</u>             | Date Extracted:     |                     |                | Date Analyzed:   | 02-Oct-06    |
| Concentration L  | Inits (ug/L or mg/Kg dry wei | ight): µg/L         |                     |                | Sample Size:     | 10 mL        |
|                  | Surrogate                    | Rec                 | overy               | Control Limits | Qualifier        |              |
| 1,2              | -Dichloroethane-d4           | 5                   | 1                   | 72 - 119       |                  |              |
| 4-E              | Bromofluorobenzéne           | · 1                 | 11                  | 76 - 119       |                  |              |
| Dit              | romofluoromethane            | (                   | 9                   | 85 - 115       |                  |              |
| Tol              | uene-d8                      | 1                   | 18                  | 81 - 120       |                  |              |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 485074      | 178690 - 714758   |           |
| Chlorobenzene-d5       | 497376      | 199960 - 799842   |           |
| Fluorobenzene          | 1488045     | 571263 - 2285052  |           |

ent 11/3/06

# Comments:

QAPP 4.0

| Analytical Method:      | <u>SW8260B</u>                               | Preparat   | ory Method:   |             | AAB #:            | -              | R6783       |        |
|-------------------------|----------------------------------------------|------------|---------------|-------------|-------------------|----------------|-------------|--------|
| Lab Name:               | Life Science Laboratories.                   | Inc.       |               | Contract #: |                   |                |             |        |
| Field Sample ID:        | TF3M12713PA                                  | Lab Sam    | ple ID:       | 0609018-0   | <u>)09A</u> Mai   | rix:           | Groundwater |        |
| % Solids:               | <u>0</u>                                     | Initial Ca | libration ID: | 663         | File ID:          | J0066.D        |             |        |
| Date Received:          | 27-Sep-06                                    | Date Ext   | racted:       |             | Date Ana          | vzed:          | 02-Oct-06   |        |
| Concentration Units (   | ug/L or mg/Kg dry weight)                    | : Ц        | g/L           |             |                   |                |             |        |
|                         | Analyte                                      |            | MDL           | RL          | Sample S          | Dilutio        | 10 m        | L      |
| (m+p)-Xylene            |                                              |            | 0.0280        | 2.0         | 31.6 <sup>°</sup> | 110102-01-0000 | n Qualifier |        |
| 1,1,1,2-Tetrachloroetha | ine                                          |            | 0.0540        | 0.50        | 0.0540            | 1              |             | ···•.  |
| 1,1,1-Trichloroethane   |                                              |            | 0.0150        | 1.0         |                   | 1              | <u> </u>    | -      |
| 1,1,2,2-Tetrachloroetha | ine                                          |            | 0.0810        | 0.50        | 0.0150            | 1              | <u> </u>    |        |
| 1,1,2-Trichloroethane   |                                              |            | 0.0280        | 1.0         | 0.0810            | 1              |             |        |
| 1,1-Dichloroethane      |                                              |            | 0.0280        | 1.0         | 0.0280            | 1              | <u> </u>    |        |
| 1,1-Dichloroethene      |                                              |            | 0.0350        | <u> </u>    | 0.0330            | 1              | <u> </u>    | _      |
| 1,1-Dichloropropene     |                                              |            | 0.0460        | 1.0         | 0.0460            | 1              | <u> </u>    |        |
| 1,2,3-Trichlorobenzene  | <b></b>                                      |            |               | 1.0         | 0.0240            | 1              | U           | {      |
| 1,2,3-Trichloropropane  |                                              |            | 0.0360        | 1.0         | 0.0360            | 1              | U           |        |
| 1.2.4-Trichlorobenzene  | ······································       |            | 0.0460        | 1.0         | 0.0460            | 1              | U           |        |
| 1,2,4-Trimethylbenzene  |                                              |            | 0.0250        | 1.0         | 0.0250            | 1              | U           |        |
| 1,2-Dibromo-3-chloropr  |                                              |            | 0.0120        | 1.0         | 10= 78.6          | 1              | #           | $\ast$ |
| 1,2-Dibromoethane       |                                              |            | 0.261         | 2.0         | 0.261             | 1              | U           |        |
| 1,2-Dichlorobenzene     | ······································       | ·          | 0.0350        | 1.0         | 0.0350            | 1              | U           |        |
| 1,2-Dichloroethane      |                                              |            | 0.0190        | 1.0         | 0.0190            | 1              | <u> </u>    | _      |
| 1,2-Dichloropropane     |                                              |            | 0.0240        | 0.50        | 0.0240            | 1              | U           |        |
| 1,3,5-Trimethylbenzene  | ·                                            |            | 0.0260        | 1.0         | 0.0260            | 1              | <u> </u>    |        |
| 1,3-Dichlorobenzene     | · · · · · · · · · · · · · · · · · · ·        |            | 0.0130        | 1.0         | 0.0130            | 1              | U           |        |
| 1,3-Dichloropropane     |                                              |            | 0.0200        | 1.0         | 0.0200            | 1              | U           |        |
| 1,4-Dichlorobenzene     |                                              |            | 0.0230        | 0.50        | 0.0230            | 1              | บ           |        |
| 1-Chlorohexane          |                                              |            | 0.0170        | 0.50        | 0.0170            | 1              | U           |        |
| 2,2-Dichloropropane     |                                              |            | 0.0470        | 1.0         | 0.0470            | 1              | U           |        |
| 2-Butanone              |                                              |            | 0.0820        | 1.0         | 0.0820            | 1              | U           |        |
| 2-Chlorotoluene         |                                              |            | 0.649         | 10          | 0.649             | 1              | U           |        |
| 4-Chlorotoluene         |                                              |            | 0.0120        | 1.0         | 0.0120            | 1              | U           |        |
| 4-Methyl-2-pentanone    |                                              |            | 0.0170        | 1.0         | 0.0170            | 1              | U           |        |
| Acetone                 |                                              |            | 0.375         | 10          | 0.375             | 1              | U           | ]      |
| Benzene                 |                                              |            | 0.823         | 10          | 0.823             | 1              | U           |        |
|                         |                                              |            | 0.0100        | 0.50        | 3.05              | 1              |             | 1      |
| Bromobenzene            | ۲۰۰۰ میں |            | 0.0280        | 1.0         | 0.0280            | 1              | υ           | -      |
| Bromochloromethane      |                                              |            | 0.0590        | 1.0         | 0.0590            | 1              | U           | 1      |
| Bromodichloromethane    | <b></b>                                      |            | 0.0310        | 0.50        | 0.0310            | 1              | U           | 1      |
| Bromoform               |                                              |            | 0.0470        | 1.0         | 0.0470            | 1              | U           | 1      |

Comments: \* Republ transferred hom dilution Sample TF3M12713PA 1:5

ent 11/3/06

| Analytical Method:     | SW8260B                                       | Preparatory Method:     |             | AAB #:            | <u>R</u> | 6783        |
|------------------------|-----------------------------------------------|-------------------------|-------------|-------------------|----------|-------------|
| Lab Name:              | Life Science Laborato                         | ries, Inc.              | Contract #: |                   |          |             |
| Field Sample ID:       | TF3M12713PA                                   | Lab Sample ID:          | 0609018-    | <u>-009A</u> Mat  | rix:     | Groundwater |
| % Solids:              | <u>o</u>                                      | Initial Calibration ID: | 663         | File ID:          | J0066.D  |             |
| Date Received:         | 27-Sep-06                                     | Date Extracted:         |             | Date Anal         | yzed:    | 02-Oct-06   |
| Concentration Units    | s (ug/L or mg/Kg dry we                       | light): <u>µg/L</u>     |             | Sample S          | ize:     | 10 mL       |
|                        | Analyte                                       | MDL                     | RL          | Concentration     | Dilution | n Qualifier |
| Bromomethane           |                                               | 0.0590                  | 3.0         | 0.0590            | 1        | U           |
| Carbon tetrachloride   |                                               | 0.0320                  | 1.0         | 0.0320            | 1        | U           |
| Chlorobenzene          |                                               | 0.0110                  | 0.50        | 0.0110            | 1        | U           |
| Chloroethane           |                                               | 0.116                   | 1.0         | 0.116             | 1        | U           |
| Chloroform             |                                               | 0.0290                  | 0.50        | 0.0290            | 1        | U           |
| Chloromethane          |                                               | 0.126                   | 1.0         | 0.126             | 1        | U           |
| cis-1,2 Dichloroethen  | 16                                            | 0.0320                  | 1.0         | 0.0320            | 1        | <u> </u>    |
| cis-1,3-Dichloroprope  | ene                                           | 0.0210                  | 0.50        | 0.0210            | 1        | U           |
| Dibromochlorometha     | ne                                            | 0.0410                  | 0.50        | 0.0410            | 1        | U           |
| Dibromomethane         |                                               | 0.0380                  | 1.0         | 0.0380            | 1        | U           |
| Dichlorodifluorometh   | ane                                           | 0.0670                  | 1.0         | 0.0670            | 1        | U           |
| Ethylbenzene           | · · · · · · · · · · · · · · · · · · ·         | 0.0240                  | 1.0         | 35.2 478 78-15    | ±5       | J J         |
| Hexachlorobutadiene    | ;                                             | 0.0610                  | 0.60        | 0.0610            | 1        | U           |
| Isopropylbenzene       |                                               | 0.0210                  | 1.0         | 25.5°             | 1        |             |
| Methyl tert-butyl ethe | er                                            | 0.0250                  | 5.0         | 0.0250            | 1        | U           |
| Methylene chloride     | *****                                         | 0.0340                  | 1.0         | 0.0340            | 1        | U           |
| n-Butylbenzene         |                                               | 0.0130                  | 1.0         | 1.56              | 1        |             |
| n-Propylbenzene        |                                               | 0.00900                 | 1.0         | 27.5              | 1        |             |
| Naphthalene            |                                               | 0.0240                  | 1.0         | 25.8 <sup>¢</sup> | 1        |             |
| o-Xylene               | anya ya kata ku kata kata kata kata kata kata | 0.0140                  | 1.0         | 0.0140            | 1        | U           |
| p-isopropyltoluene     |                                               | 0.0140                  | 1.0         | 2.25              | 1        |             |
| sec-Butylbenzene       |                                               | 0.0170                  | 1.0         | 3.39              | 1        |             |
| Styrene                |                                               | 0.0200                  | 1.0         | 0.0200            | 1        | U           |
| tert-Butylbenzene      |                                               | 0.0160                  | 1.0         | 0.0160            | 1        | U           |
| Tetrachloroethene      |                                               | 0.0300                  | 1.0         | 0.0300            | 1        | U           |
| Toluene                |                                               | 0.0180                  | 1.0         | 0.0180            | 1        | U           |
| trans-1,2-Dichloroeti  | hene                                          | 0.0270                  | 1.0         | 0.0270            | 1        | U           |
| trans-1,3-Dichloropro  | opene                                         | 0.0290                  | 1.0         | 0.0290            | , 1      | U           |
| Trichloroethene        |                                               | 0.0270                  | 1.0         | 0.0270            | 1        | U           |
| Trichlorofluorometha   | ane                                           | 0.0200                  | 1.0         | 0.0200            | 1        | U           |
| Vinyl chloride         |                                               | 0.0380                  | 1.0         | 0.0380            | 1        | U           |
| Xylenes (total)        |                                               | 0.0420                  | 2.0         | 31.6              | 1        |             |

Comments: \* Result transferred from Lilution Sample TF3M127 13PA1

cut 11/3/06

Page 32 of 54

| Analytical Method:  | <u>SW8260B</u>             | Preparatory Method:     |                 | AAB #:          | <u>R6783</u> |
|---------------------|----------------------------|-------------------------|-----------------|-----------------|--------------|
| Lab Name:           | Life Science Laboratories, | Inc.                    | Contract #:     |                 |              |
| Field Sample ID:    | TF3M12713PA                | Lab Sample ID:          | 0609018-009A    | Matrix:         | Groundwater  |
| % Solids:           | Q                          | Initial Calibration ID: | <u>663</u>      | File ID: J0066. | D            |
| Date Received:      | 27-Sep-06                  | Date Extracted:         |                 | Date Analyzed:  | 02-Oct-06    |
| Concentration Units | (ug/L or mg/Kg dry weight  | ): <u>µg/L</u>          |                 | Sample Size:    | 10 mL        |
|                     | Surrogate                  | Recover                 | y Control Limit | s Qualifier     |              |
| 1,2-Dict            | nloroethane-d4             | 90                      | 72 - 119        |                 |              |

| 1,2-DICINOIOEUIAIIE-04 | 90  | 12115    |  |
|------------------------|-----|----------|--|
| 4-Bromofluorobenzene   | 110 | 76 - 119 |  |
| Dibromofluoromethane   | 97  | 85 - 115 |  |
| Toluene-d8             | 108 | 81 - 120 |  |

| Internal Std           | Area Counts | Area Count Limits | Qualifier | <u>^</u> 1 |
|------------------------|-------------|-------------------|-----------|------------|
| 1,4-Dichlorobenzene-d4 | 565026      | 178690 - 714758   |           | CUH        |
| Chlorobenzene-d5       | 540971      | 199960 - 799842   |           | 1.10/01-   |
| Fluorobenzene          | 1642481     | 571263 - 2285052  |           | 11300      |
|                        |             |                   |           | 1          |

Comments:

QAPP 4.0

Page 33 of 54

| Analytical Method:     | <u>SW8260B</u>        | Preparatory Method:             |             | AAB #:        | R          | 6816        |          |
|------------------------|-----------------------|---------------------------------|-------------|---------------|------------|-------------|----------|
| Lab Name:              | Life Science Laborate | ories, Inc.                     | Contract #: |               |            |             |          |
| Field Sample ID:       | TF3M12713PA           | Lab Sample ID:                  | 0609018-0   | 009A Ma       | trix:      | Groundwater | -        |
| % Solids:              | <u>0</u>              | Initial Calibration ID:         | 663         | File ID:      | J0087.D    |             |          |
| Data Dasabuad          |                       | Photo Photometry at a structure |             | Dete has      | - luma ala | 03-Oct-06   |          |
| Date Received:         | 27-Sep-06             | Date Extracted:                 |             | Date Ana      | nyzeu:     | 03-06-06    | •        |
| Concentration Units    | (ug/L or mg/Kg dry we | eight): <u>ua/L</u>             |             | Sample        | Size:      | 10 mL       |          |
|                        | Analyte               | MDL                             | RL          | Concentration | Dilution   | i Qualifier |          |
| (m+p)-Xylene           |                       | 0.140                           | 10          | 22.2          | 5          |             |          |
| 1,1,1,2-Tetrachloroeth | ane                   | 0.270                           | 2.5         | 0.270         | 5          | U           |          |
| 1,1,1-Trichloroethane  |                       | 0.0750                          | 5.0         | 0.0750        | 5          | U           |          |
| 1,1,2,2-Tetrachloroeth | ane                   | 0.405                           | 2.5         | 0.405         | 5          | U           |          |
| 1,1,2-Trichloroethane  |                       | 0.140                           | 5.0         | 0.140         | 5          | U           | }        |
| 1,1-Dichloroethane     |                       | 0.165                           | 5.0         | 0.165         | 5          | U           |          |
| 1,1-Dichloroethene     |                       | 0.230                           | 5.0         | 0.230         | 5          | U U         |          |
| 1,1-Dichloropropene    |                       | 0.120                           | 5.0         | 0.120         | 5          | U           |          |
| 1,2,3-Trichlorobenzen  | e                     | 0.180                           | 5.0         | 0.180         | 5          | U           | ļ        |
| 1,2,3-Trichloropropane | 9                     | 0.230                           | 5.0         | 0.230         | 5          | U           |          |
| 1,2,4-Trichlorobenzen  | e                     | 0.125                           | 5.0         | 0.125         | 5          | U           | 1 i A    |
| 1,2,4-Trimethylbenzer  | )e                    | 0.0600                          | 5.0         | 78.6          | 5          |             | 学长 ?     |
| 1,2-Dibromo-3-chlorop  | propane               | 1.31                            | 10          | 1.31          | 5          | U           | N. Y. M. |
| 1,2-Dibromoethane      |                       | 0.175                           | 5.0         | 0.175         | 5          | υ           | μŶ       |
| 1,2-Dichlorobenzene    |                       | 0.0950                          | 5.0         | 0.0950        | 5          | U           |          |
| 1,2-Dichloroethane     |                       | 0.120                           | 2.5         | 0.120         | 5          | U           |          |
| 1,2-Dichloropropane    |                       | 0.130                           | 5.0         | 0.130         | 5          | U           |          |
| 1,3,5-Trimethylbenzer  | 1e                    | 0.0650                          | 5.0         | 0.0650        | 5          | U           | -        |
| 1,3-Dichlorobenzene    |                       | 0.100                           | 5.0         | 0.100         | 5          | U           | +        |
| 1,3-Dichloropropane    |                       | 0.115                           | 2.5         | 0.115         | 5          | U           |          |
| 1,4-Dichlorobenzene    |                       | 0.0850                          | 2.5         | 0.0850        | 5          | U           |          |
| 1-Chlorohexane         |                       | 0.235                           | 5.0         | 0.235         | 5          | υ           | -        |
| 2,2-Dichloropropane    |                       | 0.410                           | 5.0         | 0.410         | 5          | υ           |          |
| 2-Butanone             |                       | 3.24                            | 50          | 3.24          | 5          | U           |          |
| 2-Chlorotoluene        |                       | 0.0600                          | 5.0         | 0.0600        | 5          | U           |          |
| 4-Chlorotoluene        |                       | 0.0850                          | 5.0         | 0.0850        | 5          | U           |          |
| 4-Methyl-2-pentanone   | )                     | 1.88                            | 50          | 1.88          | 5          | U           |          |
| Acetone                | ······                | 4.12                            | 50          | 4.12          | 5          | U           |          |
| Benzene                |                       | 0.0500                          | 2.5         | 2.40          | 5          | F           | 1        |
| Bromobenzene           |                       | 0.140                           | 5.0         | 0.140         | 5          |             | -        |
| Bromochloromethane     |                       | 0.295                           | 5.0         | 0.295         | 5          | υ           | -        |
| Bromodichloromethar    | ne                    | 0.155                           | 2.5         | 0.155         | 5          | U           |          |
| Bromoform              | ****                  | 0.235                           | 5.0         | 0.235         | 5          | U           | 1        |
| L                      |                       |                                 |             |               |            |             | -        |

Comments:

transferred Ge T O DANAGO tr translepted 3 MIZZI3PA if fie Su 8 A

Page 34 of 54

| Analytical Method:      | <u>SW8260B</u>                         | Preparato                              | ory Method:   |             | AAB #:        | <u>F</u> | <u>R6816</u> |       |
|-------------------------|----------------------------------------|----------------------------------------|---------------|-------------|---------------|----------|--------------|-------|
| Lab Name:               | Life Science Laborate                  | ories, Inc.                            |               | Contract #: |               |          |              |       |
| Field Sample ID:        | TF3M12713PA                            | Lab Sam                                | ple ID:       | 0609018-0   | 009A Ma       | ıtrix:   | Groundwat    | er    |
| % Solids:               | <u>0</u>                               | Initial Cal                            | libration ID: | 663         | File ID:      | J0087.D  |              |       |
| Date Received:          | 27-Sep-06                              | Date Extr                              | acted.        |             | Date Ana      | -        | 03-Oct-06    |       |
| O                       |                                        |                                        |               |             | pate Ant      | <i></i>  | 00-00-00     |       |
| Concentration Units     | (ug/L or mg/Kg dry we                  | eight): <u>µ</u>                       | <u>g/L</u>    |             | Sample        | Size:    | 10           | mL    |
|                         | Analyte                                | and the second                         | MDL           | RL          | Concentration | Dilution | n Qualifi    | er    |
| Bromomethane            |                                        |                                        | 0.295         | 15          | 0.295         | 5        | U            |       |
| Carbon tetrachloride    |                                        |                                        | 0.160         | 5.0         | 0.160         | 5        | U            |       |
| Chlorobenzene           |                                        |                                        | 0.0550        | 2.5         | 0.0550        | 5        | U            |       |
| Chloroethane            |                                        |                                        | 0.580         | 5.0         | 0.580         | 5        | U            |       |
| Chloroform              |                                        |                                        | 0.145         | 2.5         | 0.145         | 5        | U            |       |
| Chloromethane           |                                        |                                        | 0.630         | 5.0         | 0.630         | 5        | U            |       |
| cis-1,2-Dichloroethene  | }                                      |                                        | 0.160         | 5.0         | 0.160         | 5        | U            |       |
| cis-1,3-Dichloropropen  | e                                      |                                        | 0.105         | 2.5         | 0.105         | 5        | U            |       |
| Dibromochloromethan     | e                                      |                                        | 0.205         | 2.5         | 0.205         | 5        | U            |       |
| Dibromomethane          |                                        |                                        | 0.190         | 5.0         | 0.190         | 5        | U            |       |
| Dichlorodifluorometha   | ne                                     |                                        | 0.335         | 5.0         | 0.335         | 5        | υ            |       |
| Ethylbenzene            |                                        |                                        | 0.120         | 5.0         | 35.2          | 5        |              | - Y   |
| Hexachlorobutadiene     |                                        |                                        | 0.305         | 3.0         | 0.305         | 5        | U            |       |
| Isopropylbenzene        |                                        | ······································ | 0.105         | 5.0         | 18.0          | 5        |              |       |
| Methyl tert-butyl ether |                                        |                                        | 0.125         | 25          | 0.125         | 5        | U            |       |
| Methylene chloride      |                                        |                                        | 0.170         | 5.0         | 0.170         | 5        | U            |       |
| n-Butylbenzene          |                                        |                                        | 0.0650        | 5.0         | 0.0650        | 5        | U            |       |
| n-Propylbenzene         |                                        |                                        | 0.0450        | 5.0         | 20.3          | 5        |              | ••••• |
| Naphthalene             | ······································ |                                        | 0.120         | 5.0         | 21.7          | 5        |              |       |
| o-Xylene                |                                        |                                        | 0.0700        | 5.0         | 0.0700        | 5        | U            |       |
| p-Isopropyltoluene      |                                        |                                        | 0.0700        | 5.0         | 3.90          | 5        | F            |       |
| sec-Butylbenzene        | <b></b>                                |                                        | 0.0850        | 5.0         | 3.70          | 5        | F            |       |
| Styrene                 |                                        | 1                                      | 0.100         | 5.0         | 0.100         | 5        | U            |       |
| tert-Butylbenzene       |                                        |                                        | 0.0800        | 5.0         | 0.0800        | 5        | U            |       |
| Tetrachloroethene       |                                        |                                        | 0.150         | 5.0         | 0.150         | 5        | U            |       |
| Toluene                 |                                        |                                        | 0.0900        | 5.0         | 0.0900        | 5        | U            |       |
| trans-1,2-Dichloroethe  | ne                                     |                                        | 0.135         | 5.0         | 0.135         | 5        |              |       |
| trans-1,3-Dichloroprop  | ene                                    |                                        | 0.145         | 5.0         | 0.145         | 5        | U            |       |
| Trichloroethene         |                                        |                                        | 0.135         | 5.0         | 0.135         | 5        | U            |       |
| Trichlorofluoromethane  | 3                                      |                                        | 0.100         | 5.0         | 0.100         | 5        | Ū            |       |
| Vinyl chloride          |                                        |                                        | 0.190         | 5.0         | 0.190         | 5        |              |       |
| Xylenes (total)         |                                        |                                        | 0.210         | 10          | 22.2          | 5        |              |       |

comments: \* Repult transferred to toriginal sample TF3M12713PA (1:1)

why job 11

Page 35 of 54

57

| Analytical Method:         | <u>SW8260B</u>             | Preparatory Method:     |                 | AAB #:          | <u>R6816</u> |
|----------------------------|----------------------------|-------------------------|-----------------|-----------------|--------------|
| Lab Name:                  | Life Science Laboratories, | Inc.                    | Contract #:     |                 |              |
| Field Sample ID:           | TF3M12713PA                | Lab Sample ID:          | 0609018-009A    | Matrix:         | Groundwater  |
| % Solids:                  | Q                          | Initial Calibration ID: | <u>663</u>      | File ID: J0087. | D            |
| Date Received:             | <u>27-Sep-06</u>           | Date Extracted:         |                 | Date Analyzed:  | 03-Oct-06    |
| <b>Concentration Units</b> | (ug/L or mg/Kg dry weight) | ): <u>µg/L</u>          |                 | Sample Size:    | 10 mL        |
|                            | Surrogate                  | Recov                   | ery Control Lim | its Qualifier   |              |
| 1,2-Dich                   | loroethane-d4              | 94                      | 72 - 119        |                 |              |
| 4-Bromo                    | ofluorobenzene             | 107                     | 76 - 119        |                 |              |
| Dibromo                    | ofluoromethane             | 95                      | 85 - 115        |                 |              |
| Toluene                    | -d8                        | 104                     | 81 - 120        |                 |              |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 466140      | 178690 - 714758   |           |
| Chlorobenzene-d5       | 472275      | 199960 - 799842   |           |
| Fluorobenzene          | 1474454     | 571263 - 2285052  |           |

11/3/06

| Analytical Method:     | <u>SW8260B</u>                           | Preparatory Method     | :            | AAB #:         | F        | <u>R6816</u> |
|------------------------|------------------------------------------|------------------------|--------------|----------------|----------|--------------|
| Lab Name:              | Life Science Laborato                    | ries, Inc.             | Contract #:  |                |          |              |
| Field Sample ID:       | TF3M12814PA                              | Lab Sample ID:         | 0609018      | <u>-010A</u> M | atrix:   | Groundwater  |
| % Solids:              | <u>0</u>                                 | Initial Calibration ID | : <u>663</u> | File ID:       | J0084.D  |              |
| Date Received:         | 27-Sep-06                                | Date Extracted:        |              | Date An        | alyzed:  | 03-Oct-06    |
| Concentration Units    | (ug/L or mg/Kg dry we                    | ight): <u>µg/L</u>     |              | Sample         | Size:    | 10 mL        |
|                        | Analyte                                  | MDL                    | RL           | Concentration  | Dilution | n Qualifier  |
| (m+p)-Xylene           | 4                                        | 0.0280                 | 2.0          | 4.37           | 1        |              |
| 1,1,1,2-Tetrachloroeth | ane                                      | 0.0540                 | 0.50         | 0.0540         | 1        | U            |
| 1,1,1-Trichloroethane  |                                          | 0.0150                 | 1.0          | 0.0150         | 1        | U            |
| 1,1,2,2-Tetrachloroeth | ane                                      | 0.0810                 | 0.50         | 0.0810         | 1        | υ            |
| 1,1,2-Trichloroethane  | ,                                        | 0.0280                 | 1.0          | 0.0280         | 1        | U            |
| 1,1-Dichloroethane     |                                          | 0.0330                 | 1.0          | 0.0330         | 1        | U            |
| 1.1-Dichloroethene     |                                          | 0.0460                 | 1.0          | 0.0460         | 1        | U            |
| 1,1-Dichloropropene    |                                          | 0.0240                 | 1.0          | 0.0240         | 1        | U            |
| 1,2,3-Trichlorobenzen  | 16                                       | 0.0360                 | 1.0          | 0.0360         | 1        | U            |
| 1,2,3-Trichloropropan  | e                                        | 0.0460                 | 1.0          | 0.0460         | 1        | U            |
| 1,2,4-Trichlorobenzen  |                                          | 0.0250                 | 1.0          | 0.0250         | 1        | U            |
| 1,2,4-Trimethylbenzer  |                                          | 0.0120                 | 1.0          | 4.25           | 1        |              |
| 1,2-Dibromo-3-chloro   |                                          | 0.261                  | 2.0          | 0.261          | 1        | U            |
| 1,2-Dibromoethane      |                                          | 0.0350                 | 1.0          | 0.0350         | 1        | U            |
| 1.2-Dichlorobenzene    |                                          | 0.0190                 | 1.0          | 0.0190         | 1        | U            |
| 1,2-Dichloroethane     |                                          | 0,0240                 | 0.50         | 0.0240         | 1        | U            |
| 1,2-Dichloropropane    |                                          | 0.0260                 | 1.0          | 0.0260         | 1        | U            |
| 1,3,5-Trimethylbenzei  | ne                                       | 0.0130                 | 1.0          | 0.0130         | 1        | U            |
| 1,3-Dichlorobenzene    |                                          | 0.0200                 | 1.0          | 0.0200         | 1        | U            |
| 1,3-Dichloropropane    |                                          | 0.0230                 | 0.50         | 0.0230         | 1        | U            |
| 1.4-Dichlorobenzene    |                                          | 0.0170                 | 0.50         | 0.0170         | 1        | U            |
| 1-Chlorohexane         | ······································   | 0.0470                 | 1.0          | 0.0470         | 1        | U            |
| 2,2-Dichloropropane    |                                          | 0.0820                 |              | 0.0820         | 1        | U            |
| 2-Butanone             | TA                                       | 0.649                  | 10           | 0.649          | 1        | U            |
| 2-Chlorotoluene        |                                          | 0.0120                 |              | 0.0120         | 1        | υ            |
| 4-Chlorotoluene        |                                          | 0.0170                 |              | 0.0170         | 1        | U            |
| 4-Methyl-2-pentanone   | 3                                        | 0.375                  | 10           | 0.375          | 1        | U            |
| Acetone                |                                          | 0.823                  | 10           | 0.823          | 1        | U            |
| Benzene                |                                          | 0.0100                 |              | 0.330          | 1        | F            |
| Bromobenzene           |                                          | 0.0280                 |              | 0.0280         | 1        | U            |
| Bromochloromethane     | 3                                        | 0.0590                 |              | 0.0590         | 1        | U            |
| Bromodichlorometha     |                                          | 0.0310                 |              | 0.0310         | 1        | U            |
| Bromoform              | 1007-1001-1001-1001-1001-100-100-100-100 | 0.0470                 | ·····        | 0.0470         | 1        | U U          |

Comments:

QAPP 4.0

| MA      |
|---------|
|         |
| 11/3/06 |
|         |

AFCEE FORM 0-2

| Analytical Method:      | SW8260B                                | Preparatory Method:     | :           | AAB #:        |         | <u>R6816</u>                                                                                                     |
|-------------------------|----------------------------------------|-------------------------|-------------|---------------|---------|------------------------------------------------------------------------------------------------------------------|
| Lab Name:               | Life Science Laborate                  | ories, Inc.             | Contract #: |               |         |                                                                                                                  |
| Field Sample ID:        | TF3M12814PA                            | Lab Sample ID:          | 0609018-01  | <u>0A</u> M   | atrix:  | Groundwater                                                                                                      |
| % Solids:               | <u>0</u>                               | Initial Calibration ID: | <u>663</u>  | File ID:      | J0084.C | )                                                                                                                |
| Date Received:          | <u>27-Sep-06</u>                       | Date Extracted:         |             | Date An       | alvzed: | 03-Oct-06                                                                                                        |
| Concentration Units     | (ug/L or mg/Kg dry we                  | eight): µa/L            |             |               | -       |                                                                                                                  |
| R.                      | Analyte                                |                         | 1917        | Sample        |         | 10 mL                                                                                                            |
| Bromomethane            | Allalyte                               | RELATE STREET           | RL          | Concentration |         | Cardina and Card |
| Carbon tetrachloride    | ······                                 | 0.0590                  | 3.0         | 0.0590        | 1       | <u> </u>                                                                                                         |
| Chlorobenzene           | · · · · · · · · · · · · · · · · · · ·  | 0.0320                  | 1.0         | 0.0320        | 1       | U                                                                                                                |
| Chloroethane            |                                        | 0.0110                  | 0.50        | 0.0110        | 1       | U                                                                                                                |
| Chloroform              |                                        | 0.116                   | 1.0         | 0.116         | 1       | U                                                                                                                |
| Chloromethane           |                                        | 0.0290                  | 0.50        | 0.0290        | 1       | U                                                                                                                |
| cis-1.2-Dichloroethene  |                                        | 0.126                   | 1.0         | 0.126         | 1       | U                                                                                                                |
| cis-1,3-Dichloroproper  | -                                      | 0.0320                  | 1.0         | 0.0320        | 1       | U                                                                                                                |
| Dibromochloromethan     |                                        | 0.0210                  | 0.50        | 0.0210        | 1       | U                                                                                                                |
| Dibromomethane          | <b>G</b>                               | 0.0410                  | 0.50        | 0.0410        | 1       | U                                                                                                                |
| Dichlorodifluorometha   | ne.                                    | 0.0380                  | 1.0         | 0.0380        | 1       | U                                                                                                                |
| Ethylbenzene            |                                        | 0.0670                  | 1.0         | 0.0670        | 1       | U                                                                                                                |
| Hexachlorobutadiene     |                                        | 0.0240                  | 1.0         | 6.50          | 1       |                                                                                                                  |
| Isopropylbenzene        |                                        | 0.0610                  | 0.60        | 0.0610        | 1       | U                                                                                                                |
| Methyl tert-butyl ether |                                        | 0.0210                  | 1.0         | 2.05          | 1       |                                                                                                                  |
| Methylene chloride      | ////////////////////////////////////// | 0.0250                  | 5.0         | 0.0250        | 1       | <u> </u>                                                                                                         |
| n-Butylbenzene          |                                        | 0.0340                  | 1.0         | 0.0340        | 1       | U                                                                                                                |
| n-Propylbenzene         | · · · · · · · · · · · · · · · · · · ·  | 0.0130                  | 1.0         | 0.0130        | 1       | U                                                                                                                |
| Naphthalene             |                                        | 0.00900                 | 1.0         | 2.49          | 1       |                                                                                                                  |
| o-Xylene                |                                        | 0.0240                  | 1.0         | 3.04          | 1       |                                                                                                                  |
| p-Isopropyitoluene      | ······································ | 0.0140                  | 1.0         | 0.0140        |         | <u> </u>                                                                                                         |
| sec-Butylbenzene        | 1                                      | 0.0140                  | 1.0         | 0.860         | 1       | F                                                                                                                |
| Styrene                 |                                        | 0.0170                  | 1.0         | 0.890         | 1       | F                                                                                                                |
| tert-Butvlbenzene       |                                        | 0.0200                  | 1.0         | 0.0200        | 1       | <u> </u>                                                                                                         |
| Tetrachloroethene       |                                        | 0.0160                  | 1.0         | 0.0160        | 1       | U                                                                                                                |
| Toluene                 |                                        | 0.0300                  | 1.0         | 0.0300        | 1       | <u> </u>                                                                                                         |
| trans-1,2-Dichloroethe  | ne                                     | 0.0180                  | 1.0         | 0.0180        | 1       | <u> </u>                                                                                                         |
| trans-1,3-Dichloroprop  |                                        | 0.0270                  | 1.0         | 0.0270        | 1       | <u> </u>                                                                                                         |
| Trichloroethene         |                                        | 0.0290                  | 1.0         | 0.0290        | 1       | <u> </u>                                                                                                         |
| Trichlorofluoromethane  | ۵                                      | 0.0270                  | 1.0         | 0.0270        | 1       | <u> </u>                                                                                                         |
| Vinyl chloride          | w                                      | 0.0200                  | 1.0         | 0.0200        | 1       | U                                                                                                                |
| Xylenes (total)         |                                        | 0.0380                  | 1.0         | 0.0380        | 1       | U                                                                                                                |
| Aliches (IO(di)         |                                        | 0.0420                  | 2.0         | 4.37          | 1       |                                                                                                                  |

|  | <i></i> | $\sim$ |
|--|---------|--------|
|  | - (L)   | JØ     |
|  | · · ·   | -      |
|  | []      |        |
|  |         | .1     |

A 3/06

| Analytical Method:  | <u>SW8260B</u>             | Preparatory Method:     |                   | AAB #:           | <u>R6816</u> |
|---------------------|----------------------------|-------------------------|-------------------|------------------|--------------|
| Lab Name:           | Life Science Laboratories, | Inc.                    | Contract #:       |                  |              |
| Field Sample ID:    | TF3M12814PA                | Lab Sample ID:          | 0609018-010A      | Matrix:          | Groundwater  |
| % Solids:           | <u>0</u>                   | Initial Calibration ID: | 663               | File ID: J0084.I | C            |
| Date Received:      | 27-Sep-06                  | Date Extracted:         |                   | Date Analyzed:   | 03-Oct-06    |
| Concentration Units | (ug/L or mg/Kg dry weight) | : <u>µg/L</u>           |                   | Sample Size:     | 10 mL        |
|                     | Surrogate                  | Recov                   | ery Control Limit | Qualifier        |              |
| 1,2-Dich            | loroethane-d4              | 95                      | 72 - 119          |                  | 00.020000    |
| 4-Bromo             | ofluorobenzene             | 105                     | 76 - 119          |                  |              |
| Dibromo             | fluoromethane              | 104                     | 85 - 115          |                  |              |
| Toluene             | -d8                        | 103                     | 81 - 120          |                  |              |

| Internal Std           | Area Counts | Area Count Limits | Qualifier * |
|------------------------|-------------|-------------------|-------------|
| 1,4-Dichlorobenzene-d4 | 406917      | 178690 - 714758   |             |
| Chlorobenzene-d5       | 426160      | 199960 - 799842   |             |
| Fluorobenzene          | 1331785     | 571263 - 2285052  |             |

UNA 11/3/06

Comments:

# QAPP 4.0

| Analytical Method:     | <u>SW8260B</u>                               | Preparatory Method     | :            | AAB #:                  | F       | <u> 36816</u>        |
|------------------------|----------------------------------------------|------------------------|--------------|-------------------------|---------|----------------------|
| Lab Name:              | Life Science Laboratories                    | <u>, Inc.</u>          | Contract #:  |                         |         |                      |
| Field Sample ID:       | TF3M13316PA                                  | Lab Sample ID:         | 0609018-011  | <u>A</u> Ma             | atrix:  | Groundwater          |
| % Solids:              | <u>0</u>                                     | Initial Calibration ID | : <u>663</u> | File ID:                | J0085.D |                      |
| Date Received:         | 27-Sep-06                                    | Date Extracted:        |              | Date An                 | alyzed: | 03-Oct-06            |
| Concentration Units    | (ug/L or mg/Kg dry weigh                     | i): <u>µg/L</u>        |              |                         | -       |                      |
|                        | Analyte                                      | MDL                    | RL           | Sample<br>Concentration | Dilutio | 10 mL<br>n Qualifier |
| (m+p)-Xylene           |                                              | 0.0280                 | 2.0          | 0.490                   | 1       | F                    |
| 1,1,1,2-Tetrachloroeth | ane                                          | 0.0540                 | 0.50         | 0.0540                  | 1       | U                    |
| 1,1,1-Trichloroethane  |                                              | 0.0150                 | 1.0          | 0.0150                  | 1       | <u> </u>             |
| 1,1,2,2-Tetrachloroeth | ane                                          | 0.0810                 | 0.50         | 0.0810                  | 1       |                      |
| 1,1,2-Trichloroethane  | <b>*******</b> ***************************** | 0.0280                 | 1.0          | 0.0280                  | 1       |                      |
| 1,1-Dichloroethane     |                                              | 0.0330                 | 1.0          | 0.0330                  | 1       | U U                  |
| 1,1-Dichloroethene     |                                              | 0.0460                 | 1.0          | 0.0460                  | 1       |                      |
| 1,1-Dichloropropene    |                                              | 0.0240                 | 1.0          | 0.0240                  | 1       |                      |
| 1,2,3-Trichlorobenzene | 3                                            | 0.0360                 | 1.0          | 0.0360                  | 1       |                      |
| 1,2,3-Trichloropropane |                                              | 0.0460                 | 1.0          | 0.0460                  | 1       |                      |
| 1,2,4-Trichlorobenzene | 3                                            | 0.0250                 | 1.0          | 0.0250                  | 1       |                      |
| 1,2,4-Trimethylbenzen  | 8                                            | 0.0120                 | 1.0          | 2.88                    | 1       |                      |
| 1,2-Dibromo-3-chlorop  |                                              | 0.261                  | 2.0          | 0.261                   | 1       |                      |
| 1,2-Dibromoethane      | 1 ····                                       | 0.0350                 | 1.0          | 0.0350                  | 1       | U                    |
| 1,2-Dichlorobenzene    |                                              | 0.0190                 | 1.0          | 0.0190                  | 1       | U                    |
| 1,2-Dichloroethane     |                                              | 0.0240                 | 0.50         | 0.0240                  | 1       |                      |
| 1,2-Dichloropropane    | A                                            | 0.0240                 | 1.0          | 0.0240                  | 1       |                      |
| 1,3,5-Trimethylbenzen  | 0                                            | 0.0130                 | 1.0          | 0.0130                  | 1       | U                    |
| 1,3-Dichlorobenzene    |                                              | 0.0200                 | 1.0          | 0.0200                  | 1       | ·····                |
| 1,3-Dichloropropane    |                                              | 0.0230                 | 0.50         | 0.0230                  | 1       | <u> </u>             |
| 1,4-Dichlorobenzene    |                                              | 0.0230                 | 0.50         | 0.0170                  | 1       | U<br>U               |
| 1-Chlorohexane         |                                              | 0.0470                 | 1.0          | 0.0470                  | 1       | U                    |
| 2,2-Dichloropropane    |                                              | 0.0820                 | 1.0          | 0.0820                  | 1       | - <u>u</u>           |
| 2-Butanone             |                                              | 0.649                  | 1.0          | 0.649                   | 1       | U                    |
| 2-Chlorotoluene        |                                              | 0.0120                 | 1.0          | 0.0120                  | 1       |                      |
| 4-Chlorotoluene        | ۹۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰        | 0.0120                 | 1.0          | 0.0120                  | 1       | U                    |
| 4-Methyl-2-pentanone   |                                              | 0.375                  | 10           | 0.375                   | 1       | U                    |
| Acetone                |                                              | 0.823                  | 10           | 0.823                   | 1       | U                    |
| Benzene                |                                              | 0.0100                 | 0.50         | 0.0100                  | 1       |                      |
| Bromobenzene           |                                              | 0.0280                 | 1.0          | 0.0280                  |         | UU                   |
| Bromochloromethane     |                                              | 0.0590                 | 1.0          | 0.0590                  | 1       | UU                   |
| Bromodichloromethane   |                                              | 0.0310                 | 0.50         | 0.0310                  | 1       |                      |
| Bromoform              | · · · · · · · · · · · · · · · · · · ·        | 0.0310                 | 1.0          | 0.0470                  | -       | U                    |
|                        |                                              | 0.0470                 | 1.0          | 0.04/0                  | 1       | <u> </u>             |

<u>A</u> 0

| Analytical Method:      | <u>SW8260B</u>                         | Preparatory Method     | :            | AAB #:         | R        | <u>5816</u> |
|-------------------------|----------------------------------------|------------------------|--------------|----------------|----------|-------------|
| Lab Name:               | Life Science Laborato                  | ries, Inc.             | Contract #:  |                |          |             |
| Field Sample ID:        | TF3M13316PA                            | Lab Sample ID:         | 0609018-     | <u>011A</u> Ma | atrix:   | Groundwater |
| % Solids:               | <u>0</u>                               | Initial Calibration ID | : <u>663</u> | File ID:       | J0085.D  |             |
| Date Received:          | 27-Sep-06                              | Date Extracted:        |              | Date An        | alyzed:  | 03-Oct-06   |
| Concentration Units     | (ug/L or mg/Kg dry we                  | ight): <u>µg/L</u>     |              | Sample         | Size:    | 10 mL       |
|                         | Analyte                                | MDL                    | RL           | Concentration  | Dilution | Qualifier   |
| Bromomethane            |                                        | 0.0590                 | 3.0          | 0.0590         | 1        | U           |
| Carbon tetrachloride    |                                        | 0.0320                 | 1.0          | 0.0320         | 1        | U           |
| Chlorobenzene           |                                        | 0.0110                 | 0.50         | 0.0110         | 1        | U           |
| Chloroethane            |                                        | 0.116                  | 1.0          | 0.116          | 1        | U           |
| Chloroform              |                                        | 0.0290                 | 0.50         | 0.0290         | 1        | U           |
| Chloromethane           |                                        | 0.126                  | 1.0          | 0.126          | 1        | U           |
| cis-1,2-Dichloroethene  | •                                      | 0.0320                 | 1.0          | 0.0320         | 1        | U           |
| cis-1,3-Dichloroproper  | 10                                     | 0.0210                 | 0.50         | 0.0210         | 1        | U           |
| Dibromochloromethan     | 6                                      | 0.0410                 | 0.50         | 0.0410         | 1        | U           |
| Dibromomethane          |                                        | 0.0380                 | 1.0          | 0.0380         | 1        | U           |
| Dichlorodifluorometha   | ne                                     | 0.0670                 | 1.0          | 0.0670         | 1        | U           |
| Ethylbenzene            |                                        | 0.0240                 | 1.0          | 0.160          | 1        | F           |
| Hexachlorobutadiene     |                                        | 0.0610                 | 0.60         | 0.0610         | 1        | U           |
| Isopropylbenzene        | 1                                      | 0.0210                 | 1.0          | 5.16           | 1        |             |
| Methyi tert-butyl ether |                                        | 0.0250                 | 5.0          | 0.0250         | 1        | U           |
| Methylene chloride      |                                        | 0.0340                 | 1.0          | 0.0340         | 1        | U           |
| n-Butylbenzene          |                                        | 0.0130                 | 1.0          | 1.19           | 11       |             |
| n-Propylbenzene         |                                        | 0.00900                | ) 1.0        | 6.59           | 1        |             |
| Naphthalene             |                                        | 0.0240                 | 1.0          | 2.09           | 1        |             |
| o-Xylene                |                                        | 0.0140                 | 1.0          | 0.0140         | 1        | U           |
| p-isopropyltoluene      |                                        | 0.0140                 | 1.0          | 1.29           | 1        |             |
| sec-Butylbenzene        | ······································ | 0.0170                 | 1.0          | 4.53           | 1        |             |
| Styrene                 |                                        | 0.0200                 | 1.0          | 0.0200         | 1        | U           |
| tert-Butylbenzene       |                                        | 0.0160                 | 1.0          | 0.920          | 1        | F           |
| Tetrachloroethene       |                                        | 0.0300                 | 1.0          | 0.0300         | 1        | U           |
| Toluene                 |                                        | 0.0180                 | 1.0          | 0.0180         | 1        | U           |
| trans-1,2-Dichloroethe  | ene                                    | 0.0270                 | ) 1.0        | 0.0270         | 1        | U           |
| trans-1,3-Dichloropro   | pene                                   | 0.0290                 | ) 1.0        | 0.0290         | 1        | U           |
| Trichloroethene         | A                                      | 0.0270                 | ) 1.0        | 0.0270         | 1        | U           |
| Trichlorofluoromethar   | ne                                     | 0.0200                 | ) 1.0        | 0.0200         | 1        | U           |
| Vinyl chloride          |                                        | 0.0380                 | ) 1.0        | 0.0380         | 1        | U           |
| Xylenes (total)         |                                        | 0.0420                 | ) 2.0        | 0.490          | 1        | F           |

| Comm | ients: | - A .      |
|------|--------|------------|
|      |        | <br>CUL    |
|      |        | <br>112/06 |
|      |        | <br>11 100 |
|      |        | <br>· •    |
|      |        | <br>       |

| Analytical Metho     | d: <u>SW8260B</u>             | Preparatory Method:     |                 | AAB #:          | <u>R6816</u> |
|----------------------|-------------------------------|-------------------------|-----------------|-----------------|--------------|
| Lab Name:            | Life Science Laboratorie      | s. Inc.                 | Contract #:     |                 |              |
| Field Sample ID:     | TF3M13316PA                   | Lab Sample ID:          | 0609018-011A    | Matrix:         | Groundwater  |
| % Solids:            | 0                             | Initial Calibration ID: | <u>663</u>      | File ID: J0085. | D            |
| Date Received:       | 27-Sep-06                     | Date Extracted:         |                 | Date Analyzed:  | 03-Oct-06    |
| Concentration U      | nits (ug/L or mg/Kg dry weigi | it): <u>ug/L</u>        |                 | Sample Size:    | 10 mL        |
|                      | Sutrogate                     | Recover                 | y Control Limit | s Qualifier     |              |
| 1,2-                 | Dichloroethane-d4             | 95                      | 72 - 119        |                 |              |
| 4-Bromofluorobenzene |                               | 106                     | 76 - 119        |                 |              |
| Dibi                 | omofiuoromethane              | 101                     | 85 - 115        |                 |              |
| Tolu                 | Jene-d8                       | 112                     | 81 - 120        |                 |              |

| Internal Std           | Area Counts | Area Count Limits Qualifier |  |
|------------------------|-------------|-----------------------------|--|
| 1,4-Dichlorobenzene-d4 | 439994      | 178690 - 714758             |  |
| Chlorobenzene-d5       | 455433      | 199960 - 799842             |  |
| Fluorobenzene          | 1339116     | 571263 - 2285052            |  |

WA 11/3/06

| Analytical Method:      | <u>SW8260B</u>                         | Preparat          | ory Method:   |             | AAB #:                    | E                 | <u> 6783</u>     |
|-------------------------|----------------------------------------|-------------------|---------------|-------------|---------------------------|-------------------|------------------|
| Lab Name:               | Life Science Laboratories,             | aboratories, Inc. |               | Contract #: |                           |                   |                  |
| Field Sample ID:        | TF3M13316PC                            | Lab Sam           | ple ID:       | 0609018-0   | <u>12A</u> Ma             | trix:             | Groundwater      |
| % Solids:               | <u>0</u>                               | Initial Ca        | libration ID: | <u>663</u>  | File ID:                  | J0069.D           |                  |
| Date Received:          | <u>27-Sep-06</u>                       | Date Extr         | acted:        |             | Date Ana                  | wzed.             | 02-Oct-06        |
| Concentration Units (   | ug/L or mg/Kg dry weight)              | : u               | a/L           | •           |                           | •                 |                  |
|                         | Analyte                                | -                 | MDL           | RL          | Sample :<br>Concentration | Size:<br>Dilutior | 10 mL            |
| (m+p)-Xylene            |                                        |                   | 0.0280        | 2.0         | 0.470                     | 1                 | i Qualifier<br>F |
| 1,1,1,2-Tetrachloroetha | ane                                    |                   | 0.0540        | 0.50        | 0.0540                    | 1                 | U                |
| 1,1,1-Trichloroethane   |                                        |                   | 0.0150        | 1.0         | 0.0150                    | 1                 | U                |
| 1,1,2,2-Tetrachioroetha | Ine                                    |                   | 0.0810        | 0.50        | 0.0810                    | 1                 | U U              |
| 1,1,2-Trichloroethane   | ·                                      |                   | 0.0280        | 1.0         | 0.0280                    | 1                 | U U              |
| 1,1-Dichloroethane      |                                        |                   | 0.0330        | 1.0         | 0.0330                    | 1                 | U                |
| 1,1-Dichloroethene      | · · · · · · · · · · · · · · · · · · ·  |                   | 0.0460        | 1,0         | 0.0460                    | 1                 | U U              |
| 1,1-Dichloropropene     |                                        |                   | 0.0240        | 1.0         | 0.0240                    | 1                 |                  |
| 1,2,3-Trichlorobenzene  |                                        |                   | 0.0360        | 1.0         | 0.0360                    | 1                 |                  |
| 1,2,3-Trichloropropane  |                                        |                   | 0.0460        | 1.0         | 0.0460                    | 1                 | U                |
| 1,2,4-Trichlorobenzene  |                                        |                   | 0.0250        | 1.0         | 0.0250                    | f                 | Ŭ                |
| 1,2,4-Trimethylbenzene  | )                                      |                   | 0.0120        | 1.0         | 2.79                      | 1                 |                  |
| 1,2-Dibromo-3-chloropr  | ropane                                 |                   | 0.261         | 2.0         | 0.261                     | 1                 | U                |
| 1,2-Dibromoethane       |                                        |                   | 0.0350        | 1.0         | 0.0350                    | 1                 |                  |
| 1,2-Dichlorobenzene     |                                        |                   | 0.0190        | 1.0         | 0.0190                    | 1                 |                  |
| 1,2-Dichloroethane      |                                        |                   | 0.0240        | 0.50        | 0.0240                    | 1                 | U                |
| 1,2-Dichloropropane     |                                        |                   | 0.0260        | 1.0         | 0.0260                    | 1                 | U                |
| 1,3,5-Trimethylbenzene  | }                                      |                   | 0.0130        | 1.0         | 0.0130                    | 1                 | U                |
| 1,3-Dichlorobenzene     |                                        |                   | 0.0200        | 1.0         | 0.0200                    | 1                 | U                |
| 1,3-Dichloropropane     |                                        |                   | 0.0230        | 0.50        | 0.0230                    | 1                 | U                |
| 1,4-Dichlorobenzene     |                                        |                   | 0.0170        | 0.50        | 0.0170                    | 1                 | U                |
| 1-Chlorohexane          |                                        |                   | 0.0470        | 1.0         | 0.0470                    | 1                 | U                |
| 2,2-Dichloropropane     |                                        |                   | 0.0820        | 1.0         | 0.0820                    | 1                 | U                |
| 2-Butanone              |                                        |                   | 0.649         | 10          | 0.649                     | 1                 | U                |
| 2-Chlorotoluene         |                                        |                   | 0.0120        | 1.0         | 0.0120                    | 1                 | U                |
| 4-Chlorotoluene         | ·····                                  |                   | 0.0170        | 1.0         | 0.0170                    | 1                 | U                |
| 4-Methyl-2-pentanone    |                                        |                   | 0.375         | 10          | 0.375                     | 1                 | U                |
| Acetone                 |                                        |                   | 0.823         | 10          | 0.823                     | 1                 | U                |
| Benzene                 |                                        |                   | 0.0100        | 0.50        | 0.0100                    | 1                 | U                |
| Bromobenzene            | // · · · · · · · · · · · · · · · · · · |                   | 0.0280        | 1.0         | 0.0280                    | 1                 | U                |
| Bromochloromethane      |                                        |                   | 0.0590        | 1.0         | 0.0590                    | 1                 | U                |
| Bromodichloromethane    |                                        |                   | 0.0310        | 0.50        | 0.0310                    | 1                 | U                |
| Bromoform               |                                        |                   | 0.0470        | 1.0         | 0.0470                    | 1                 | U                |

Comments:

CUNA 11/3/06

| Analytical Method:      | SW8260B                                | Preparatory Metho   | od:                                    | AAB #:        | R        | 6783        |
|-------------------------|----------------------------------------|---------------------|----------------------------------------|---------------|----------|-------------|
| Lab Name:               | Life Science Laborato                  | ries, Inc.          | Contract #:                            |               |          |             |
| Field Sample ID:        | TF3M13316PC                            | Lab Sample ID:      | 060901                                 | 8-012A N      | latrix:  | Groundwater |
| % Solids:               | <u>0</u>                               | Initial Calibration | ID: <u>663</u>                         | File ID:      | J0069.D  |             |
| Date Received:          | 27-Sep-06                              | Date Extracted:     |                                        | Date Ar       | nalyzed: | 02-Oct-06   |
| Concentration Units     | (ug/L or mg/Kg dry we                  | ight): <u>ug/L</u>  |                                        | Sample        | e Size:  | 10 mL       |
|                         | Analyte                                | MDL                 | RL                                     | Concentration | Dilution | Qualifier   |
| Bromomethane            |                                        | 0.059               |                                        | 0.0590        | 1        | υ           |
| Carbon tetrachloride    |                                        | 0.032               | ······································ | 0.0320        | 1        | υ           |
| Chlorobenzene           |                                        | 0.011               |                                        | 0.0110        | 1        | U           |
| Chloroethane            |                                        | 0.11(               |                                        | 0.116         | 1        | U           |
| Chloroform              |                                        | 0.029               |                                        | 0.0290        | 1        | U           |
| Chloromethane           |                                        | 0.12                |                                        | 0.126         | 1        | U           |
| cis-1,2-Dichloroethene  | }                                      | 0.032               |                                        | 0.0320        | 1        | U           |
| cis-1,3-Dichloroproper  |                                        | 0.021               |                                        | 0.0210        | 1        | U           |
| Dibromochloromethan     |                                        | 0.041               | 0 0.50                                 | 0.0410        | 1        | U           |
| Dibromomethane          |                                        | 0.038               | 10 1.0                                 | 0.0380        | 1        | U           |
| Dichlorodifluorometha   | ne                                     | 0.067               | 0 1.0                                  | 0.0670        | 1        | U           |
| Ethylbenzene            |                                        | 0.024               | 0 1.0                                  | 0.160         | 1        | F           |
| Hexachlorobutadiene     |                                        | 0.061               | 0 0.60                                 | 0.0610        | 1        | U           |
| Isopropylbenzene        |                                        | 0.021               | 0 1.0                                  | 5.00          | 1        |             |
| Methyl tert-butyl ether | , , , , , , , , , , , , , , , , , , ,  | 0.025               | 50 5.0                                 | 0.0250        | 1        | U           |
| Methylene chloride      |                                        | 0.034               | 1.0                                    | 0.0340        | 1        | U           |
| n-Butylbenzene          |                                        | 0.013               | 30 1.0                                 | 1.15          | 1        |             |
| n-Propylbenzene         | ······································ | 0.009               | 00 1.0                                 | 6.12          | 1        |             |
| Naphthalene             |                                        | 0.024               | 10 1.0                                 | 1.99          | 1        |             |
| o-Xylene                |                                        | 0.014               | 10 1.0                                 | 0.0140        | 1        | U           |
| p-Isopropyltoluene      |                                        | 0.014               | 10 1.0                                 | 1.26          | 1        |             |
| sec-Butylbenzene        |                                        | 0.017               | 70 1.0                                 | 4.31          | 1        |             |
| Styrene                 |                                        | 0.020               | 0 1.0                                  | 0.0200        | 1        | U           |
| tert-Butylbenzene       |                                        | 0.016               | 50 1.0                                 | 0.880         | 1        | F           |
| Tetrachloroethene       |                                        | 0.030               | 00 1.0                                 | 0.0300        | 1        | U           |
| Toluene                 |                                        | 0.018               | 30 1.0                                 | 0.0180        | 1        | U           |
| trans-1,2-Dichloroethe  | ene                                    | 0.02                | 70 1.0                                 | 0.0270        | 1        | U           |
| trans-1,3-Dichloroprop  | pene                                   | 0.029               | 90 1.0                                 | 0.0290        | 1        | U           |
| Trichloroethene         |                                        | 0.02                | 70 1.0                                 | 0.0270        | 1        | U           |
| Trichlorofluoromethan   | e                                      | 0.020               | 00 1.0                                 | 0.0200        | 1        | U           |
| Vinyl chloride          |                                        | 0.03                | 80 1.0                                 | 0.0380        | 1        | U           |
| Xylenes (total)         |                                        | 0.04                | 20 2.0                                 | 0.470         | 1        | F           |

|  | (č            | 11/3/06 |
|--|---------------|---------|
|  | Pane 44 of 54 |         |

ŝ 6

| Analytical Method:  | SW8260B                    | Preparatory Method:    |               |                | AAB #:        | <u>R6783</u>        |
|---------------------|----------------------------|------------------------|---------------|----------------|---------------|---------------------|
| Lab Name:           | Life Science Laboratories, | Inc.                   | Contract      | #:             |               |                     |
| Field Sample ID:    | TF3M13316PC                | Lab Sample ID:         | 0609          | 018-012A       | Matrix:       | Groundwater         |
| % Solids:           | Q                          | Initial Calibration II | ): <u>663</u> |                | File ID: J000 | 59.D                |
| Date Received:      | 27-Sep-06                  | Date Extracted:        |               |                | Date Analyze  | i: <u>02-Oct-06</u> |
| Concentration Units | (ug/L or mg/Kg dry weight) | : µg/L                 |               |                | Sample Size:  | 10 mL               |
|                     | Surrogate                  | Réco                   | very          | Control Limits | Qualifi       | er                  |
| 1,2-Dich            | loroethane-d4              | 93                     | 3             | 72 - 119       |               |                     |
| 4-Bromo             | ofluorobenzene             | 11                     | 5             | 76 - 119       |               |                     |
| Dibromo             | ofluoromethane             | 99                     | )             | 85 - 115       |               |                     |

110

81 - 120

| Internal Std           | Area Counts | Area Count Limits Qualifier |
|------------------------|-------------|-----------------------------|
| 1,4-Dichlorobenzene-d4 | 546976      | 178690 - 714758             |
| Chlorobenzene-d5       | 547776      | 199960 - 799842             |
| Fluorobenzene          | 1704006     | 571263 - 2285052            |

WA 11/3/06

#### Comments:

Toluene-d8

| Analytical Method:     | <u>SW8260B</u>     | Preparatory N        | lethod:  |             | AAB #:        | R6       | 783           |
|------------------------|--------------------|----------------------|----------|-------------|---------------|----------|---------------|
| Lab Name:              | Life Science Labo  | atories, Inc.        |          | Contract #: |               |          |               |
| Field Sample ID:       | 092606PE           | Lab Sample I         | D:       | 0609018-01  | <u>13A</u> Ma | etrix:   | Groundwater Q |
| % Solids:              | 0                  | Initial Calibra      | tion ID: | <u>663</u>  | File ID:      | J0070.D  |               |
| Date Received:         | 27-Sep-06          | Date Extracte        | d:       |             | Date An       | alyzed:  | 02-Oct-06     |
| Concentration Units    | (ual) or malKa dry | weight): <u>ug/L</u> |          |             | Comple        | Cimer    | 10 mL         |
| Concentration of the   |                    |                      |          |             | Sample        | Dilution |               |
|                        | Analyte            |                      | MDL.     | RL          | Concentration |          | U             |
| (m+p)-Xylene           |                    |                      | 0.0280   | 2.0         | 0.0280        | 1        |               |
| 1,1,1,2-Tetrachloroeth | ane                |                      | 0.0540   | 0.50        | 0.0540        | 1        | <u> </u>      |
| 1,1,1-Trichloroethane  |                    |                      | 0.0150   | 1.0         | 0.0150        | 1        | U             |
| 1,1,2,2-Tetrachloroeth | ane                |                      | 0.0810   | 0.50        | 0.0810        | 1        | U             |
| 1,1,2-Trichloroethane  |                    |                      | 0.0280   | 1.0         | 0.0280        | 1        | U             |
| 1,1-Dichloroethane     |                    |                      | 0.0330   | 1.0         | 0.0330        | 1        | <u> </u>      |
| 1,1-Dichloroethene     |                    |                      | 0.0460   | 1.0         | 0.0460        | 1        | <u> </u>      |
| 1,1-Dichloropropene    |                    |                      | 0.0240   | 1.0         | 0.0240        | 1        | U             |
| 1,2,3-Trichlorobenzen  |                    |                      | 0.0360   | 1.0         | 0.0360        | 1        | U             |
| 1,2,3-Trichloropropan  |                    |                      | 0.0460   | 1.0         | 0.0460        | 1        | U             |
| 1,2,4-Trichlorobenzen  |                    |                      | 0.0250   | 1.0         | 0.0250        | 1        | U             |
| 1,2,4-Trimethylbenzer  |                    |                      | 0.0120   | 1.0         | 0.0120        | 1        | U             |
| 1,2-Dibromo-3-chlorop  | oropane            |                      | 0.261    | 2.0         | 0.261         | 1        | U             |
| 1,2-Dibromoethane      |                    |                      | 0.0350   | 1.0         | 0.0350        | 1        | <u> </u>      |
| 1,2-Dichlorobenzene    |                    |                      | 0.0190   | 1.0         | 0.0190        | 1        | U             |
| 1,2-Dichloroethane     |                    |                      | 0.0240   | 0.50        | 0.0240        | 1        | U             |
| 1,2-Dichloropropane    |                    |                      | 0.0260   | 1.0         | 0.0260        | 1        | U             |
| 1,3,5-Trimethylbenzer  | 1e                 |                      | 0.0130   | 1.0         | 0.0130        | 1        | U             |
| 1,3-Dichlorobenzene    |                    |                      | 0.0200   | 1.0         | 0.0200        | 1        | U             |
| 1,3-Dichloropropane    |                    |                      | 0.0230   | 0.50        | 0.0230        | 1        | U             |
| 1,4-Dichlorobenzene    |                    |                      | 0.0170   | 0.50        | 0.0170        | 1        | U             |
| 1-Chlorohexane         |                    |                      | 0.0470   | 1.0         | 0.0470        | 1        | U             |
| 2,2-Dichloropropane    |                    |                      | 0.0820   | 1.0         | 0.0820        | 1        | U             |
| 2-Butanone             |                    |                      | 0.649    | 10          | 0.649         | 1        | U             |
| 2-Chlorotoluene        |                    |                      | 0.0120   | 1.0         | 0.0120        | 1        | U             |
| 4-Chlorotoluene        | ······             |                      | 0.0170   | 1.0         | 0.0170        | 1        | U             |
| 4-Methyl-2-pentanone   | 3                  |                      | 0.375    | 10          | 0.375         | 1        | U             |
| Acetone                |                    |                      | 0.823    | 10          | 0.823         | 1        | U             |
| Benzene                |                    |                      | 0.0100   | 0.50        | 0.0100        | 1        | U             |
| Bromobenzene           |                    |                      | 0.0280   | 1.0         | 0.0280        | 1        | U             |
| Bromochloromethane     | ;                  |                      | 0.0590   | 1.0         | 0.0590        | 1        | υ             |
| Bromodichlorometha     | ne                 |                      | 0.0310   | 0.50        | 0.0310        | 1        | U             |
| Bromoform              |                    |                      | 0.0470   | 1.0         | 0.0470        | 1        | U             |

| MA | ł |
|----|---|
| 0  | 1 |
| li | 3 |
| 1  | 1 |

106

| Analytical Method:      | SW8260B            | Preparato          | ry Method:   |             | AAB #:        | Re       | 783                  |
|-------------------------|--------------------|--------------------|--------------|-------------|---------------|----------|----------------------|
| Lab Name:               | Life Science Labor | atories, Inc.      |              | Contract #: |               |          |                      |
| Field Sample ID:        | 092606PE           | Lab Samp           | ole ID:      | 0609018-01  | <u>3A</u> Ma  | trix:    | <u>Groundwater Q</u> |
| % Solids:               | <u>0</u>           | Initial Cal        | ibration ID: | <u>663</u>  | File ID:      | J0070.D  |                      |
| Date Received:          | 27-Sep-06          | Date Extra         | acted:       |             | Date Ana      | ilyzed:  | 02-Oct-06            |
| Concentration Units (   | (ug/L or mg/Kg dry | weight): <u>µc</u> | <u>1/L</u>   |             | Sample        | Size:    | 10 mL                |
|                         | Analyte            |                    | MDL          | RL          | Concentration | Dilution | Qualifier            |
| Bromomethane            |                    |                    | 0.0590       | 3.0         | 0.0590        | 1        | U                    |
| Carbon tetrachloride    |                    |                    | 0.0320       | 1.0         | 0.0320        | 1        | U                    |
| Chlorobenzene           |                    |                    | 0.0110       | 0.50        | 0.0110        | 1        | U                    |
| Chloroethane            |                    |                    | 0.116        | 1.0         | 0.116         | 1        | U                    |
| Chloroform              |                    |                    | 0.0290       | 0.50        | 0.0290        | 1        | U                    |
| Chloromethane           |                    |                    | 0.126        | 1.0         | 0.126         | 1        | U                    |
| cis-1,2-Dichloroethene  |                    |                    | 0.0320       | 1.0         | 0.0320        | 1        | U                    |
| cis-1,3-Dichloroproper  | le                 |                    | 0.0210       | 0.50        | 0.0210        | 1        | U                    |
| Dibromochloromethan     | e                  |                    | 0.0410       | 0.50        | 0.0410        | 1        | U                    |
| Dibromomethane          |                    |                    | 0.0380       | 1.0         | 0.0380        | 1        | U                    |
| Dichlorodifluorometha   | ne                 |                    | 0.0670       | 1.0         | 0.0670        | 1        | U                    |
| Ethylbenzene            |                    |                    | 0.0240       | 1.0         | 0.0240        | 1        | U                    |
| Hexachlorobutadiene     |                    |                    | 0.0610       | 0.60        | 0.0610        | 1        | U                    |
| Isopropylbenzene        |                    |                    | 0.0210       | 1.0         | 0.0210        | 1        | U                    |
| Methyl tert-butyl ether |                    |                    | 0.0250       | 5.0         | 0.0250        | 1        | U                    |
| Methylene chloride      |                    |                    | 0.0340       | 1.0         | 0.0340        | 1        | U                    |
| n-Butylbenzene          |                    |                    | 0.0130       | 1.0         | 0.0130        | 1        | U                    |
| n-Propylbenzene         |                    |                    | 0.00900      | 1.0         | 0.00900       | 1        | U                    |
| Naphthalene             |                    |                    | 0.0240       | 1.0         | 0.0240        | 1        | U                    |
| o-Xylene                |                    |                    | 0.0140       | 1.0         | 0.0140        | 1        | U                    |
| p-isopropyitoluene      |                    |                    | 0.0140       | 1.0         | 0.0140        | 1        | U                    |
| sec-Butylbenzene        |                    |                    | 0.0170       | 1.0         | 0.0170        | 1        | U                    |
| Styrene                 |                    |                    | 0.0200       | 1.0         | 0.0200        | 1        | U                    |
| tert-Butylbenzene       |                    |                    | 0.0160       | 1.0         | 0.0160        | 1        | U                    |
| Tetrachloroethene       |                    | -                  | 0.0300       | 1.0         | 0.0300        | 1        | U                    |
| Toluene                 |                    |                    | 0.0180       | 1.0         | 0.0180        | 1        | U                    |
| trans-1,2-Dichloroethe  | e                  |                    | 0.0270       | 1.0         | 0.0270        | 1        | U                    |
| trans-1,3-Dichloroprop  | bene               |                    | 0.0290       | 1.0         | 0.0290        | 1        | U                    |
| Trichloroethene         | ·                  |                    | 0.0270       | 1.0         | 0.0270        | 1        | U                    |
| Trichlorofluoromethan   | e                  |                    | 0.0200       | 1.0         | 0.0200        | 1        | U                    |
| Vinyl chloride          |                    |                    | 0.0380       | 1.0         | 0.0380        | 1        | U                    |
| Xylenes (total)         |                    |                    | 0.0420       | 2.0         | 0.0420        | 1        | U                    |

| wa,   |
|-------|
| , 131 |
| 111   |
|       |

| Analytical Method:  | SW8260B                    | Preparatory Method:     |               | AAB #:           | <u>R6783</u>  |
|---------------------|----------------------------|-------------------------|---------------|------------------|---------------|
| Lab Name:           | Life Science Laboratories, | Inc.                    | Contract #:   |                  |               |
| Field Sample ID:    | 092606PE                   | Lab Sample ID:          | 0609018-013A  | Matrix:          | Groundwater Q |
| % Solids:           | <u>0</u>                   | Initial Calibration ID: | <u>663</u>    | File ID: J0070.1 | D             |
| Date Received:      | 27-Sep-06                  | Date Extracted:         |               | Date Analyzed:   | 02-Oct-06     |
| Concentration Units | (ug/L or mg/Kg dry weight) | : <u>µg/L</u>           |               | Sample Size:     | 10 mL         |
|                     | Surrogate                  | Recovery                | Control Limit | Qualifier        |               |
| 1,2-Dicl            | nloroethane-d4             | 91                      | 72 - 119      |                  |               |
| 4-Brom              | ofluorobenzene             | 108                     | 76 - 119      |                  |               |
| Dibrom              | ofluoromethane             | 98                      | 85 - 115      |                  |               |

103

81 - 120

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 508461      | 178690 - 714758   |           |
| Chlorobenzene-d5       | 523629      | 199960 - 799842   |           |
| Fluorobenzene          | 1646051     | 571263 - 2285052  |           |

CURA 11/3/06

#### Comments:

Toluene-d8

| Analytical Method:     | <u>SW8260B</u>                         | Preparato                               | ry Method:  |             | AAB #:        | <u>R</u> | <u>6783</u>   |
|------------------------|----------------------------------------|-----------------------------------------|-------------|-------------|---------------|----------|---------------|
| Lab Name:              | Life Science Laboratories,             | Inc.                                    |             | Contract #: |               |          |               |
| Field Sample ID:       | 092606PF                               | Lab Samp                                | le ID:      | 0609018-0   | <u>14A</u> Ma | trix:    | Groundwater Q |
| % Solids:              | <u>0</u>                               | Initial Cali                            | bration ID: | <u>663</u>  | File ID:      | J0071.D  |               |
| Date Received:         | 27-Sep-06                              | Date Extra                              | icted:      |             | Date Ana      | lyzed:   | 02-Oct-06     |
| Concentration Units    | (ug/L or mg/Kg dry weight              | ): <u>µq</u>                            | <u>/L</u>   |             | Sample        | Size:    | 10 mL         |
|                        | Analyte                                |                                         | MDL         | RL          | Concentration |          | Qualifier     |
| (m+p)-Xylene           | *                                      |                                         | 0.0280      | 2.0         | 0.0280        | 1        | U             |
| 1,1,1,2-Tetrachloroeth | ane                                    |                                         | 0.0540      | 0.50        | 0.0540        | 1        | U             |
| 1,1,1-Trichloroethane  |                                        |                                         | 0.0150      | 1.0         | 0.0150        | 1        | U             |
| 1,1,2,2-Tetrachloroeth | ane                                    |                                         | 0.0810      | 0.50        | 0.0810        | 1        | U             |
| 1,1,2-Trichloroethane  | ************************************** |                                         | 0.0280      | 1.0         | 0.0280        | 1        | υ             |
| 1,1-Dichloroethane     |                                        |                                         | 0.0330      | 1.0         | 0.0330        | 1        | U             |
| 1,1-Dichloroethene     |                                        |                                         | 0.0460      | 1.0         | 0.0460        | 1        | U             |
| 1,1-Dichloropropene    |                                        |                                         | 0.0240      | 1.0         | 0.0240        | 1        | U             |
| 1,2,3-Trichlorobenzen  | e                                      |                                         | 0.0360      | 1.0         | 0.0360        | 1        | U             |
| 1,2,3-Trichloropropane |                                        |                                         | 0.0460      | 1.0         | 0.0460        | 1        | U             |
| 1,2,4-Trichlorobenzen  | e                                      |                                         | 0.0250      | 1.0         | 0.0250        | 1        | U             |
| 1,2,4-Trimethylbenzen  | )¢                                     |                                         | 0.0120      | 1.0         | 0.0120        | 1        | U             |
| 1,2-Dibromo-3-chlorop  | propane                                |                                         | 0.261       | 2.0         | 0.261         | 1        | U             |
| 1,2-Dibromoethane      |                                        |                                         | 0.0350      | 1.0         | 0.0350        | 1        | U             |
| 1,2-Dichlorobenzene    |                                        |                                         | 0.0190      | 1.0         | 0.0190 ·      | 1        | U             |
| 1,2-Dichloroethane     |                                        |                                         | 0.0240      | 0.50        | 0.0240        | 1        | U             |
| 1,2-Dichloropropane    |                                        |                                         | 0.0260      | 1.0         | 0.0260        | 1        | U             |
| 1,3,5-Trimethylbenzen  | 16                                     |                                         | 0.0130      | 1.0         | 0.0130        | 1        | U             |
| 1,3-Dichlorobenzene    |                                        |                                         | 0.0200      | 1.0         | 0.0200        | 1        | U             |
| 1,3-Dichloropropane    |                                        |                                         | 0.0230      | 0.50        | 0.0230        | 1        | U             |
| 1,4-Dichlorobenzene    |                                        |                                         | 0.0170      | 0.50        | 0.0170        | 1        | U             |
| 1-Chlorohexane         |                                        |                                         | 0.0470      | 1.0         | 0.0470        | 1        | U             |
| 2,2-Dichloropropane    |                                        |                                         | 0.0820      | 1.0         | 0.0820        | 1        | U             |
| 2-Butanone             |                                        |                                         | 0.649       | 10          | 0.649         | 1        | U             |
| 2-Chlorotoluene        |                                        |                                         | 0.0120      | 1.0         | 0.0120        | 1        | U             |
| 4-Chiorotoluene        |                                        |                                         | 0.0170      | 1.0         | 0.0170        | 1        | U             |
| 4-Methyl-2-pentanone   |                                        | 1111-111-11-11-11-11-11-11-11-11-11-11- | 0.375       | 10          | 0.375         | 1        | U             |
| Acetone                | ************************************** |                                         | 0.823       | 10          | 0.823         | 1        | U             |
| Benzene                |                                        | ······                                  | 0.0100      | 0.50        | 0.0100        | 1        | U             |
| Bromobenzene           |                                        |                                         | 0.0280      | 1.0         | 0.0280        | 1        | U             |
| Bromochloromethane     |                                        |                                         | 0.0590      | 1.0         | 0.0590        | 1        | U             |
| Bromodichloromethar    | Æ                                      |                                         | 0.0310      | 0.50        | 0.0310        | 1        | U             |
| Bromoform              |                                        |                                         | 0.0470      | 1.0         | 0.0470        | 1        | U             |

| • |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

with 06 ۲، ا ۱

| Analytical Method:      | SW8260B            | Preparatory Method     | :            | AAB #:                  |         | R6783            |
|-------------------------|--------------------|------------------------|--------------|-------------------------|---------|------------------|
| Lab Name:               | Life Science Labor | atories, Inc.          | Contract #:  |                         |         |                  |
| Field Sample ID:        | 092606PF           | Lab Sample ID:         | 0609018-01   | 1 <u>4A</u> Ma          | atrix:  | Groundwater Q    |
| % Solids:               | <u>0</u>           | Initial Calibration ID | : <u>663</u> | File ID:                | J0071.D | •                |
| Date Received:          | <u>27-Sep-06</u>   | Date Extracted:        |              | Date An                 | alvzed: | 02-Oct-06        |
| Concentration Units     |                    | weight): µg/L          |              |                         | -       |                  |
|                         |                    |                        | <b>P</b>     | Sample                  |         | 10 mL            |
| Bromomethane            | Allalyte           | MDL<br>0.0590          | RL 3.0       | Concentration<br>0.0590 | 1       | n Qualifier<br>U |
| Carbon tetrachloride    |                    | 0.0320                 | 1.0          | 0.0320                  | 1       | U U              |
| Chlorobenzene           |                    |                        | 0.50         | 0.0320                  | 1       | U U              |
| Chloroethane            |                    | 0.0110                 | 1.0          | 0.116                   | 1       |                  |
| Chloroform              |                    | 0.0290                 | 0.50         | 0.0290                  | 1       | U U              |
| Chloromethane           |                    | 0.126                  | 1.0          | 0.126                   | 1       | U<br>U           |
| cis-1,2-Dichloroethene  | a                  | 0.0320                 | 1.0          | 0.0320                  | 1       |                  |
| cis-1,3-Dichloroproper  |                    | 0.0210                 | 0.50         | 0.0320                  | 1       | U U              |
| Dibromochloromethan     |                    | 0.0210                 | 0.50         | 0.0410                  | 1       |                  |
| Dibromomethane          |                    | 0.0380                 | 1.0          | 0.0380                  | 1       |                  |
| Dichlorodifluorometha   | ne                 | 0.0670                 | 1.0          | 0.0670                  | 1       |                  |
| Ethylbenzene            |                    | 0.0240                 | 1.0          | 0.0240                  | 1       | <u> </u>         |
| Hexachlorobutadiene     |                    | 0.0610                 | 0.60         | 0.0610                  | 1       |                  |
| Isopropyibenzene        |                    | 0.0210                 | 1.0          | 0.0210                  | 1       | - U              |
| Methyl tert-butyl ether | ·····              | 0.0250                 | 5.0          | 0.0250                  | 1       | U                |
| Methylene chloride      |                    | 0.0340                 | 1.0          | 0.0340                  | 1       | - Ŭ              |
| n-Butylbenzene          |                    | 0.0130                 | 1.0          | 0.0130                  | 1       |                  |
| n-Propytbenzene         | ······             | 0.00900                | 1.0          | 0.00900                 | 1       | U U              |
| Naphthalene             |                    | 0.0240                 | 1.0          | 0.0240                  | 1       | U                |
| o-Xylene                |                    | 0.0140                 | 1.0          | 0.0140                  | 1       |                  |
| p-Isopropyitoluene      | ******             | 0.0140                 | 1.0          | 0.0140                  | 1       | U                |
| sec-Butylbenzene        |                    | 0.0170                 | 1.0          | 0.0170                  | 1       |                  |
| Styrene                 |                    | 0.0200                 | 1.0          | 0.0200                  | 1       |                  |
| tert-Butylbenzene       | ······             | 0.0160                 | 1.0          | 0.0160                  | 1       |                  |
| Tetrachloroethene       |                    | 0.0300                 | 1.0          | 0.0300                  | 1       | Ū                |
| Toluene                 | ·····              | 0.0180                 | 1.0          | 0.0180                  | 1       | U                |
| trans-1,2-Dichloroethe  | ine                | 0.0270                 | 1.0          | 0.0270                  | 1       | U                |
| trans-1,3-Dichloroprop  | ene                | 0.0290                 | 1.0          | 0.0290                  | 1       | υ                |
| Trichloroethene         |                    | 0.0270                 | 1.0          | 0.0270                  | 1       | υ                |
| Trichlorofluoromethan   | e                  | 0.0200                 | 1.0          | 0.0200                  | 1       | U                |
| Vinyl chloride          |                    | 0.0380                 | 1.0          | 0.0380                  | 1       | U                |
| Xylenes (total)         |                    | 0.0420                 | 2.0          | 0.0420                  | 1       | U                |

| Crock  |
|--------|
| 11310  |
| 1.1. 1 |

0 do

| Analytical Method:  | <u>SW8260B</u>             | Preparatory Method     | -           | AAB #:        | <u>R6783</u>        |   |
|---------------------|----------------------------|------------------------|-------------|---------------|---------------------|---|
| Lab Name:           | Life Science Laboratories, | Inc.                   | Contract #: |               |                     |   |
| Field Sample ID:    | 092606PF                   | Lab Sample ID:         | 0609018-01  | 4A Ma         | trix: Groundwater Q | - |
| % Solids:           | <u>0</u>                   | Initial Calibration ID | <u>663</u>  | File ID:      | J0071.D             |   |
| Date Received:      | <u>27-Sep-06</u>           | Date Extracted:        |             | Date Ana      | alyzed: 02-Oct-06   |   |
| Concentration Units | (ug/L or mg/Kg dry weight) | ): <u>µg/L</u>         |             | Sample S      | Size: 10 mL         | - |
|                     | Surrogate                  | Recon                  | erý Con     | trol Limits Q | ualifier            |   |
| 1,2-Dich            | loroethane-d4              | 91                     | 7           | 2 - 119       |                     |   |
| 4-Bromo             | ofluorobenzene             | 104                    | 7           | 6 - 119       |                     |   |
| Dibromo             | offuoromethane             | 97                     | 8           | 5 - 115       |                     |   |

102

81 - 120

| Internal Std           | Area Counts | Area Count Limits | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n h      |
|------------------------|-------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1,4-Dichlorobenzene-d4 | 478330      | 178690 - 714758   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C' i ( H |
| Chlorobenzene-d5       | 508216      | 199960 - 799842   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Un alab  |
| Fluorobenzene          | 1599491     | 571263 - 2285052  | // ment for the second s | 11300    |

Comments:

Toluene-d8

Page 51 of 54

| Analytical Method:     | <u>SW8260B</u>                                                                                                 | Preparato                              | ry Method:   |             | AAB #:        | <u>R6</u>       | <u>783</u>   |
|------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------|-------------|---------------|-----------------|--------------|
| Lab Name:              | Life Science Laboratories,                                                                                     | Inc.                                   |              | Contract #: |               |                 |              |
| Field Sample ID:       | 092606PR                                                                                                       | Lab Samp                               | ole ID:      | 0609018-0   | <u>15A</u> Ma | trix: <u>G</u>  | roundwater Q |
| % Solids:              | <u>0</u>                                                                                                       | Initial Cal                            | ibration ID: | 663         | File ID:      | J0072.D         |              |
|                        | _                                                                                                              |                                        |              |             | Date Ana      | പ്രംപം വ        | 2-Oct-06     |
| Date Received:         | <u>27-Sep-06</u>                                                                                               | Date Extra                             | acteo:       |             | , Date Alla   | iyacu. <u>v</u> | <u></u>      |
| Concentration Units    | (ug/L or mg/Kg dry weight                                                                                      | ): <u>µc</u>                           | <u>1/L</u>   |             | Sample S      | Size:           | 10 mL        |
|                        | Analyte                                                                                                        |                                        | MOL          | RL          | Concentration | Dilution        | Qualifier    |
| (m+p)-Xylene           |                                                                                                                |                                        | 0.0280       | 2.0         | 0.0280        | 1               | U            |
| 1,1,1,2-Tetrachloroeth | ane                                                                                                            |                                        | 0.0540       | 0.50        | 0.0540        | 1               | U            |
| 1,1,1-Trichloroethane  |                                                                                                                |                                        | 0.0150       | 1.0         | 0.0150        | 1               | <u> </u>     |
| 1,1,2,2-Tetrachloroeth | ane                                                                                                            |                                        | 0.0810       | 0.50        | 0.0810        | 1               | U            |
| 1,1,2-Trichloroethane  |                                                                                                                |                                        | 0.0280       | 1.0         | 0.0280        | 1               | U            |
| 1,1-Dichloroethane     |                                                                                                                |                                        | 0.0330       | 1.0         | 0.0330        | 1               | U            |
| 1,1-Dichloroethene     |                                                                                                                |                                        | 0.0460       | 1.0         | 0.0460        | 1               | U            |
| 1,1-Dichloropropene    |                                                                                                                |                                        | 0.0240       | 1.0         | 0.0240        | 1               | U            |
| 1,2,3-Trichlorobenzen  | 8                                                                                                              |                                        | 0.0360       | 1.0         | 0.0360        | 1               | U            |
| 1,2,3-Trichloropropane | 2                                                                                                              |                                        | 0.0460       | 1.0         | 0.0460        | 1               | U            |
| 1,2,4-Trichlorobenzen  | 8                                                                                                              |                                        | 0.0250       | 1.0         | 0.0250        | 1               | U            |
| 1,2,4-Trimethylbenzer  | 16                                                                                                             |                                        | 0.0120       | 1.0         | 0.0120        | 1               | U            |
| 1,2-Dibromo-3-chlorop  | propane                                                                                                        |                                        | 0.261        | 2.0         | 0.261         | 1               | U            |
| 1,2-Dibromoethane      |                                                                                                                |                                        | 0.0350       | 1.0         | 0.0350        | 1               | U            |
| 1,2-Dichlorobenzene    |                                                                                                                |                                        | 0.0190       | 1.0         | 0.0190        | 1               | U            |
| 1,2-Dichloroethane     |                                                                                                                |                                        | 0.0240       | 0.50        | 0.0240        | 1               | U            |
| 1,2-Dichloropropane    |                                                                                                                |                                        | 0.0260       | 1.0         | 0.0260        | 1               | U            |
| 1,3,5-Trimethylbenzer  | 10                                                                                                             |                                        | 0.0130       | 1.0         | 0.0130        | 1               | U            |
| 1,3-Dichlorobenzene    |                                                                                                                |                                        | 0.0200       | 1.0         | 0.0200        | 1               | U            |
| 1,3-Dichloropropane    |                                                                                                                |                                        | 0.0230       | 0.50        | 0.0230        | 1               | U            |
| 1 4-Dichlorobenzene    |                                                                                                                |                                        | 0.0170       | 0.50        | 0.0170        | 1               | U            |
| 1-Chlorohexane         |                                                                                                                |                                        | 0.0470       | 1.0         | 0.0470        | 1               | U            |
| 2,2-Dichloropropane    |                                                                                                                |                                        | 0.0820       | 1.0         | 0.0820        | 1               | U            |
| 2-Butanone             |                                                                                                                |                                        | 0.649        | 10          | 0.649         | 1               | U            |
| 2-Chlorotoluene        |                                                                                                                |                                        | 0.0120       | 1.0         | 0.0120        | 1               | U            |
| 4-Chlorotoluene        |                                                                                                                |                                        | 0.0170       | 1.0         | 0.0170        | 1               | U            |
| 4-Methyl-2-pentanone   | >                                                                                                              |                                        | 0.375        | 10          | 0.375         | 1               | U            |
| Acetone                |                                                                                                                |                                        | 0.823        | 10          | 0.823         | 1               | U            |
| Benzene                |                                                                                                                |                                        | 0.0100       | 0.50        | 0.0100        | 1               | U            |
| Bromobenzene           | aanahaan dadhada dadda Aafa miiyiin ya Amigo maya kuwa kuma damaa dama ina addana miiya daana miiya aafaa aana |                                        | 0.0280       | 1.0         | 0.0280        | 1               | U            |
| Bromochloromethane     | )                                                                                                              |                                        | 0.0590       | 1.0         | 0.0590        | 1               | U            |
| Bromodichlorometha     | ne                                                                                                             |                                        | 0.0310       | 0.50        | 0.0310        | 1               | U            |
| Bromoform              |                                                                                                                | ************************************** | 0.0470       | 1.0         | 0.0470        | 1               | U            |

Comments:

Page 52 of 54

| Analytical Method:      | SW8260B                               | Preparatory Met     | nod:             | AAB #:    | R        | 6783          |
|-------------------------|---------------------------------------|---------------------|------------------|-----------|----------|---------------|
| Lab Name:               | Life Science Labor                    | atories, Inc.       | Contract #       | :         |          |               |
| Field Sample ID:        | 092606PR                              | Lab Sample ID:      | 060901           | 18-015A N | latrix:  | Groundwater Q |
| % Solids:               | <u>0</u>                              | Initial Calibration | n ID: <u>663</u> | File ID:  | J0072.D  |               |
| Date Received:          | 27-Sep-06                             | Date Extracted:     |                  | Date Ar   | nalyzed: | 02-Oct-06     |
| Concentration Units     |                                       | weight): µg/L       |                  | Comple    | Cime     | 10 mL         |
|                         |                                       |                     |                  | Sample    |          |               |
|                         | Analyte                               | MC                  |                  |           |          |               |
| Bromomethane            |                                       | 0.05                |                  | 0.0590    | 1        | <u> </u>      |
| Carbon tetrachloride    |                                       | 0.03                |                  | 0.0320    | 1        | U             |
| Chlorobenzene           |                                       | 0.01                |                  | 0.0110    | 1        | U             |
| Chloroethane            |                                       | 0.1                 |                  | 0.116     | 1        | U             |
| Chloroform              |                                       | 0.02                |                  | 0.0290    | 1        | U             |
| Chloromethane           |                                       | 0.1                 |                  | 0.126     | 1        | U             |
| cis-1,2-Dichloroethene  | <b>}</b>                              | 0.03                | 320 1.0          | 0.0320    | 1        | U             |
| cis-1,3-Dichloroproper  | ne                                    | 0.02                | 210 0.50         | 0.0210    | 1        | U             |
| Dibromochloromethan     | 10                                    | 0.04                | 10 0.50          | 0.0410    | 1        | U             |
| Dibromomethane          |                                       | 0.03                | 380 1.0          | 0.0380    | 1        | U             |
| Dichlorodifluorometha   | пе                                    | 0.06                | 570 1.0          | 0.0670    | 1        | U             |
| Ethylbenzene            |                                       | 0.02                | 240 1.0          | 0.0240    | 1        | U             |
| Hexachlorobutadiene     |                                       | 0.00                | 610 0.60         | 0.0610    | 1        | U             |
| Isopropylbenzene        |                                       | 0.02                | 210 1.0          | 0.0210    | 1        | <u> </u>      |
| Methyl tert-butyl ether | ,<br>,                                | 0.0                 | 250 5.0          | 0.0250    | 1        | U             |
| Methylene chloride      |                                       | 0.0                 | 340 1.0          | 0.0340    | 1        | U             |
| n-Butylbenzene          |                                       | 0.0                 | 130 1.0          | 0.0130    | 1        | U             |
| n-Propylbenzene         | · · · · · · · · · · · · · · · · · · · | 0.00                | 900 1.0          | 0.00900   | 1        | U             |
| Naphthalene             |                                       | 0.0                 | 240 1.0          | 0.0240    | 1        | U             |
| o-Xylene                |                                       | 0.0                 | 140 1.0          | 0.0140    | 1        | U             |
| p-isopropyitoluene      |                                       | 0.0                 | 140 1.0          | 0.0140    | 1        | U             |
| sec-Butylbenzene        |                                       | 0.0                 | 170 1.0          | 0.0170    | 1        | U             |
| Styrene                 |                                       | 0.0                 | 200 1.0          | 0.0200    | 1        | U             |
| tert-Butylbenzene       |                                       | 0.0                 | 160 1.0          | 0.0160    | 1        | U             |
| Tetrachloroethene       |                                       | 0.0                 | 300 1.0          | 0.0300    | 1        | U             |
| Toluene                 |                                       | 0.0                 | 180 1.0          | 0.0180    | 1        | U             |
| trans-1,2-Dichloroethe  | ene                                   | 0.0                 | 270 1.0          | 0.0270    | 1        | U             |
| trans-1,3-Dichloropro   |                                       |                     | 290 1.0          | 0.0290    | 1        | U             |
| Trichloroethene         | •                                     |                     | 270 1.0          | 0.0270    | 1        | U             |
| Trichlorofluoromethar   | ne                                    |                     | 200 1.0          | 0.0200    | 1        | U             |
| Vinyl chloride          |                                       |                     | 380 1.0          | 0.0380    | 1        | U             |
| Xylenes (total)         |                                       |                     | 420 2.0          | 0.0420    | 1        | U             |

## Comments:

| Comments: | CUN     |
|-----------|---------|
|           |         |
|           | 11/3/06 |
|           | · / /   |
|           |         |

QAPP 4.0

| <u>SW8260B</u>              | Preparatory Method:                                                                                                                    |                                                                                                                                                                                                                                                                                                        | AAB #:                                                                                                                                                                                                                                                                                                                                                     | <u>R6783</u>                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Life Science Laboratories   | Inc. C                                                                                                                                 | ontract#:                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 092606PR                    | Lab Sample ID:                                                                                                                         | 0609018-015A                                                                                                                                                                                                                                                                                           | Matrix:                                                                                                                                                                                                                                                                                                                                                    | Groundwater Q                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u>0</u>                    | Initial Calibration ID:                                                                                                                | <u>663</u>                                                                                                                                                                                                                                                                                             | File ID: J0072.                                                                                                                                                                                                                                                                                                                                            | )                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>27-Sep-06</u>            | Date Extracted:                                                                                                                        |                                                                                                                                                                                                                                                                                                        | Date Analyzed:                                                                                                                                                                                                                                                                                                                                             | 02-Oct-06                                                                                                                                                                                                                                                                                                                                                                                                              |
| (ug/L. or mg/Kg dry weight) | <u>µа/1</u>                                                                                                                            |                                                                                                                                                                                                                                                                                                        | Sample Size:                                                                                                                                                                                                                                                                                                                                               | 10 mL                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Surrogate                   | Recovery                                                                                                                               | Control Limits                                                                                                                                                                                                                                                                                         | Qualifier                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| loroethane-d4               | 92                                                                                                                                     | 72 - 119                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| fluorobenzene               | 104                                                                                                                                    | 76 - 119                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| fluoromethane               | 97                                                                                                                                     | 85 - 115                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | Life Science Laboratories,<br>092606PR<br>0<br>27-Sep-06<br>(ug/L. or mg/Kg dry weight)<br>Surrogate<br>loroethane-d4<br>fluorobenzene | Life Science Laboratories, Inc.       C         092606PR       Lab Sample ID:         0       Initial Calibration ID:         27-Sep-06       Date Extracted:         (ug/L, or mg/Kg dry weight): <u>µg/L</u> Surrogate       Recovery         loroethane-d4       92         fluorobenzene       104 | Life Science Laboratories, Inc.       Contract #:         092606PR       Lab Sample ID:       0609018-015A         0       Initial Calibration ID:       663         27-Sep-06       Date Extracted:         (ug/L. or mg/Kg dry weight):       µ0/L.         Surrogate       Recovery       Control Limits         fluorobenzene       104       76 - 119 | Life Science Laboratories, Inc.     Contract #:       092606PR     Lab Sample ID:     0609018-015A     Matrix:       0     Initial Calibration ID:     663     File ID:     J0072.1       27-Sep-06     Date Extracted:     Date Analyzed:       (ug/L. or mg/Kg dry weight):     ug/L     Sample Size:       Surrogate     Recovery     Control Limits     Qualifier       fluorobenzene     104     76 - 119     104 |

101

81 - 120

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 453520      | 178690 - 714758   |           |
| Chlorobenzene-d5       | 467122      | 199960 - 799842   |           |
| Fluorobenzene          | 1499781     | 571263 - 2285052  |           |

Comments:

Toluene-d8

5

UNA 11/3/06

# AFCEE ORGANIC ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW8270C</u>                  | AAB #:            | 3904      |
|--------------------|---------------------------------|-------------------|-----------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |           |
| Base/Command:      |                                 | Prime Contractor: | FPM Group |

| Field Sample ID | Lab Sample (D |
|-----------------|---------------|
| TF3M119R12PA    | 0609018-005C  |
| TF3M121R12PA    | 0609018-006C  |
| 092606PE        | 0609018-013C  |

#### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | Moniko Sanfucci | Name:    | Monika Santucci |  |
|------------|-----------------|----------|-----------------|--|
| Date:      | 10/30/04        | Title:   | Project Manager |  |
| D          | AFCEE           | FORM 0-1 | Page 1 of 2     |  |

QAPP 4.0

# AFCEE ORGANIC ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW8270C</u>                  | AAB #:            | <u>3922</u> |
|--------------------|---------------------------------|-------------------|-------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |             |
| Base/Command:      |                                 | Prime Contractor: | FPM Group   |

| Field Sa     | nple ID Lab Sample ID |
|--------------|-----------------------|
| TF3M121R12PA | 0609018-006C          |

#### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | Mouka Jantucei | Name:   | Monika Santucci |  |
|------------|----------------|---------|-----------------|--|
| Date:      | 40/32/06       | Title:  | Project Manager |  |
| QAPP 4.0   | AFCEE FC       | DRM 0-1 | Page 2 of 2     |  |

78

| Analytical Method:     | <u>SW8270C</u>                                                                                                   | Preparatory Method:    | <u>SW3520C</u>   | AAB #:         | <u>3</u> | 904              |
|------------------------|------------------------------------------------------------------------------------------------------------------|------------------------|------------------|----------------|----------|------------------|
| Lab Name:              | Life Science Laboratories, Inc.                                                                                  |                        | Contract #:      |                |          |                  |
| Field Sample ID:       | TF3M119R12PA                                                                                                     | Lab Sample ID:         | 0609018-00       | ) <u>5C</u> Ma | trix:    | Groundwater      |
| % Solids:              | <u>0</u>                                                                                                         | Initial Calibration ID | <u>686</u>       | File ID:       | N5143.D  |                  |
| Date Received:         | 27-Sep-06                                                                                                        | Date Extracted:        | <u>27-Sep-06</u> | Date Ana       | lyzed:   | <u>29-Sep-06</u> |
| Concentration Units    | (ug/L or mg/Kg dry wei                                                                                           | ght): <u>µg/L</u>      |                  | Sample S       | Size:    | 1000 mL          |
|                        | Analyte                                                                                                          | MDL                    | RL               | Concentration  | Dilution | 1 Qualifier      |
| 1,2,4-Trichlorobenzen  |                                                                                                                  | 0.10                   | 10               | 0.10           | 1        | U                |
| 1,2-Dichlorobenzene    |                                                                                                                  | 0.07                   | 10               | 0.07           | 1        | U                |
| 1,3-Dichlorobenzene    |                                                                                                                  | 0.06                   | 10               | 0.06           | 1        | U                |
| 1,4-Dichlorobenzene    |                                                                                                                  | 0.07                   | 10               | 0.07           | 1        | U                |
| 2,4,5-Trichlorophenol  | 997                                                                                                              | 0.14                   | 50               | 0.14           | 1        | U                |
| 2,4,6-Trichlorophenol  | ******                                                                                                           | 0.10                   | 10               | 0.10           | 1        | U                |
| 2,4-Dichlorophenol     |                                                                                                                  | 0.08                   | 10               | 0.08           | 1        | U                |
| 2,4-Dimethylphenol     |                                                                                                                  | 0.25                   | 10               | 0.25           | 1        | U                |
| 2,4-Dinitrophenol      |                                                                                                                  | 0.27                   | 50               | 0.27           | 1        | U                |
| 2,4-Dinitrotoluene     |                                                                                                                  | 0.14                   | 10               | 0.14           | 1        | U                |
| 2,6-Dinitrotoluene     |                                                                                                                  | 0.20                   | 10               | 0.20           | 1        | U                |
| 2-Chloronaphthalene    |                                                                                                                  | 0.11                   | 10               | 0.11           | 1        | U                |
| 2-Chlorophenol         |                                                                                                                  | 0.12                   | 10               | 0.12           | 1        | U                |
| 2-Methylnaphthalene    |                                                                                                                  | 0.05                   | 10               | 0.05           | 1        | U                |
| 2-Methylphenol         | and the second | 0.07                   | 10               | 0.07           | 1        | U                |
| 2-Nitroaniline         | <b></b>                                                                                                          | 0.20                   | 50               | 0.20           | 1        | U                |
| 2-Nitrophenol          |                                                                                                                  | 0.07                   | 10               | 0.07           | 1.       | U                |
| 3,3'-Dichlorobenzidine | 9                                                                                                                | 0.51                   | 20               | 0.51           | 1        | U                |
| 3-Nitroaniline         |                                                                                                                  | 0.08                   | 50               | 0.08           | 1        | U                |
| 4,6-Dinitro-2-methylph | ienol                                                                                                            | 0.35                   | 50               | 0.35           | 1        | U                |
| 4-Bromophenyl pheny    | i ether                                                                                                          | 0.15                   | 10               | 0.15           | 1        | U                |
| 4-Chloro-3-methylphe   | nol                                                                                                              | 0.08                   | 20               | 0.08           | 1        | U                |
| 4-Chloroaniline        |                                                                                                                  | 0.10                   | 20               | 0.10           | 1        | U                |
| 4-Chlorophenyi pheny   | i ether                                                                                                          | 0.12                   | 10               | 0.12           | 1        | U                |
| 4-Methylphenol         |                                                                                                                  | 0.11                   | 50               | 0.11           | 1        | U                |
| 4-Nitroaniline         |                                                                                                                  | 0.19                   | 50               | 0.19           | 1        | U                |
| 4-Nitrophenol          |                                                                                                                  | 0.40                   | 50               | 0.40           | 1        | U                |
| Acenaphthene           | A                                                                                                                | 0.08                   | 10               | 0.560          | 1        | F                |
| Acenaphthylene         |                                                                                                                  | 0.10                   | 10               | 0.10           | 1        | U                |
| Anthracene             |                                                                                                                  | 0.14                   | 10               | 0.14           | 1        | U                |
| Benzo[a]anthracene     |                                                                                                                  | 0.08                   | 10               | 0.08           | 1        | U                |
| Benzo[a]pyrene         | ······································                                                                           | 0.15                   | 10               | 0.15           | 1        | U                |
| Benzo[b]fluoranthene   |                                                                                                                  | 0.50                   | 10               | 0.50           | 1        | U                |

Comments:

| 11/3/01 |   |
|---------|---|
|         | 0 |
| WX      | 0 |
|         |   |
|         |   |

79

| Analytical Method:      | <u>SW8270C</u>                         | Preparato   | ory Method:  | <u>SW3520C</u>   | AAB #:        | 39       | 904              |
|-------------------------|----------------------------------------|-------------|--------------|------------------|---------------|----------|------------------|
| Lab Name:               | Life Science Laboratories,             | Inc.        |              | Contract #:      |               |          |                  |
| Field Sample ID:        | TF3M119R12PA                           | Lab Samp    | ole ID:      | 0609018-0        | <u>05C</u> Ma | trix:    | Groundwater      |
| % Solids:               | <u>0</u>                               | Initial Cal | ibration ID: | <u>686</u>       | File ID:      | N5143.D  |                  |
| Date Received:          | 27-Sep-06                              | Date Extr   | acted:       | <u>27-Sep-06</u> | Date Ana      | lyzed:   | <u>29-Sep-06</u> |
| Concentration Units (   | (ug/L or mg/Kg dry weight)             | : <u>uc</u> | <u>1/L</u>   |                  | Sample S      | Size:    | 1000 mL          |
|                         | Analyte                                |             | MDL          | RL.              | Concentration | Dilution | Qualifier        |
| Benzo[g,h,i]perylene    |                                        |             | 0.10         | 10               | 0.10          | 1        | U                |
| Benzo[k]fiuoranthene    |                                        |             | 0.33         | 10               | 0.33          | 1        | U                |
| Benzoic acid            |                                        |             | 5.19         | 100              | 5.19          | 1        | U                |
| Benzyl alcohol          |                                        |             | 0.11         | 20               | 0.11          | 1        | U                |
| bis(2-Chloroethoxy)me   | thane                                  |             | 0.10         | 10               | 0.10          | 1        | U                |
| bis(2-chloroethyl)ether |                                        |             | 0.04         | 10               | 0.04          | 1        | U                |
| bis(2-chloroisopropyl)e | ether                                  |             | 0.13         | 10               | 0.13          | 1        | U                |
| bis(2-Ethylhexyl)phtha  | late                                   |             | 0.45         | 10               | 0.820         | 1        | F                |
| Butyl benzyl phthalate  |                                        |             | 0.16         | 10               | 0.16          | 1        | U                |
| Chrysene                |                                        |             | 0.08         | 10               | 0.08          | 1        | υ                |
| Di-n-butyl phthalate    |                                        |             | 1.58         | 10               | 1.58          | 1        | U                |
| Di-n-octyl phthalate    | ······································ |             | 0.18         | 10               | 0.18          | 1        | U                |
| Dibenz[a,h]anthracene   | 3                                      |             | 0.09         | 10               | 0.09          | 1        | U                |
| Dibenzofuran            | · · · · · · · · · · · · · · · · · · ·  |             | 0.14         | 10               | 0.14          | 1        | U                |
| Diethyl phthalate       |                                        |             | 0.13         | 10               | 0.13          | 1        | U                |
| Dimethyl phthalate      |                                        |             | 0.10         | 10               | 0.10          | 1        | U .              |
| Fluoranthene            | · · · · · · · · · · · · · · · · · · ·  |             | 0.06         | 10               | 0.700         | 1        | F                |
| Fluorene                |                                        |             | 0.11         | 10               | 0.11          | 1        | U                |
| Hexachlorobenzene       |                                        |             | 0.11         | 10               | 0.11          | 1        | υ                |
| Hexachlorobutadiene     |                                        |             | 0.13         | 10               | 0.13          | 1        | U                |
| Hexachloroethane        |                                        |             | 0.08         | 10               | 0.08          | 1        | U                |
| Indeno[1,2,3-cd]pyren   | 6                                      |             | 0.09         | 10               | 0.09          | 1        | U                |
| Isophorone              |                                        |             | 0.12         | 10               | 0.12          | 1        | U                |
| N-Nitroso-di-n-propyla  | mine                                   |             | 0.15         | 10               | 0.15          | 1        | U                |
| N-Nitrosodiphenylami    | ne                                     |             | 0.08         | 10               | 0.08          | 1        | U                |
| Naphthalene             | —,—,—,—,—,—,,,,,,,,,,,,,,,,,,,,,,,,,,, |             | 0.06         | 10               | 0.06          | 1        | U                |
| Nitrobenzene            | ·····                                  |             | 0.12         | 10               | 0.12          | 1        | U                |
| Pentachlorophenol       |                                        |             | 0.23         | 50               | 0.23          | 1        | U                |
| Phenanthrene            |                                        |             | 0.10         | 10               | 0.10          | 1        | U                |
| Phenol                  | • • • • • • • • • • • • • • • • • • •  |             | 0.09         | 10               | 0.09          | 1        | U                |
| Pyrene                  |                                        |             | 0.07         | 10               | 0.660         | 1        | F                |

| Comments:                                       | Surrogate Recovery Control Limits Qualifier | Cint  |
|-------------------------------------------------|---------------------------------------------|-------|
| AMALANA /11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 |                                             | 11306 |
|                                                 |                                             |       |
| ······                                          |                                             | -     |
|                                                 |                                             |       |

QAPP 4.0

| Analytical Method:                                                        | SW8270C                    | Preparatory Method: <u>SW3520C</u> |              | AAB #:         | 3904        |
|---------------------------------------------------------------------------|----------------------------|------------------------------------|--------------|----------------|-------------|
| Lab Name:                                                                 | Life Science Laboratories, | Inc. C                             | Contract #:  |                |             |
| Field Sample ID:                                                          | TF3M119R12PA               | Lab Sample ID:                     | 0609018-005C | Matrix:        | Groundwater |
| % Solids:                                                                 | <u>0</u>                   | Initial Calibration ID:            | <u>686</u>   | File ID: N5143 | .D          |
| Date Received:                                                            | 27-Sep-06                  | Date Extracted:                    | 27-Sep-06    | Date Analyzed: | 29-Sep-06   |
| Concentration Units (ug/L or mg/Kg dry weight): µg/L Sample Size: 1000 mL |                            |                                    |              |                |             |

| Surrogate            | Recovery | Control Limits Qualifier |   |
|----------------------|----------|--------------------------|---|
| 2,4,6-Tribromophenol | 115      | 42 - 124                 |   |
| 2-Fluorobiphenyl     | 79       | 48 - 120                 |   |
| 2-Fluorophenol       | 76       | 20 - 120                 |   |
| Nitrobenzene-d5      | 90       | 41 - 120                 |   |
| Phenol-d5            | 82       | 20 - 120                 |   |
| Terphenyl-d14        | 88       | 51 - 135                 | - |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 195715      | 106288 - 425152   |           |
| Acenaphthene-d10       | 381877      | 197321 - 789284   |           |
| Chrysene-d12           | 508780      | 257362 - 1029448  |           |
| Naphthalene-d8         | 704311      | 372642 - 1490570  |           |
| Perylene-d12           | 431500      | 212374 - 849496   |           |
| Phenanthrene-d10       | 641125      | 321928 - 1287714  |           |

WA 11/3/06

Comments:

Page 3 of 12

| Analytical Method:     | SW8270C                               | Preparato   | ory Method:   | SW3520C          | AAB #:          | <u>39</u> | 04          |              |
|------------------------|---------------------------------------|-------------|---------------|------------------|-----------------|-----------|-------------|--------------|
| Lab Name:              | Life Science Laborator                | ies, Inc.   |               | Contract #:      |                 |           |             |              |
| Field Sample ID:       | TF3M121R12PA                          | Lab Sam     | ple ID:       | <u>0609018-0</u> | 06C Mat         | rix:      | Groundwater |              |
| % Solids:              | <u>0</u>                              | Initial Cal | libration ID: | <u>686</u>       | File ID:        | N5144.D   |             |              |
| Date Received:         | <u>27-Sep-06</u>                      | Date Extr   | acted:        | 27-Sep-06        | Date Ana        | lyzed:    | 29-Sep-06   |              |
| Concentration Units    | (ug/L or mg/Kg dry wei                | ght): 😐     | <u>a/L</u>    |                  | Sample S        | Size:     | 910 mL      |              |
|                        | Analyte                               |             | MDL           | RL               | Concentration   | Dilution  | Qualifier   | ,            |
| 1.2.4-Trichlorobenzen  |                                       |             | 0.11          | 11               | 0.11            | 1         | υ           |              |
| 1,2-Dichlorobenzene    | <u>.</u>                              |             | 0.08          | 11               | 0.08            | 1         | J U         | <pre>/</pre> |
| 1.3-Dichlorobenzene    |                                       |             | 0.07          | 11               | 0.07            | 1         | U N         | ÷            |
| 1.4-Dichlorobenzene    |                                       |             | 0.08          | 11               | 0.08            | 1         | <u> </u>    |              |
| 2,4,5-Trichlorophenol  | • • • • • • • • • • • • • • • • • • • |             | 0.00          | 55               | 0.15            | 1         | LU          |              |
| 2,4,6-Trichlorophenol  |                                       |             | 0.13          | 11               | 0.11            | 1         | uj          |              |
| 2,4-Dichlorophenol     |                                       |             | 0.09          | 11               | 0.09            | 1         |             |              |
| 2,4-Dimethylphenol     |                                       |             | 0.27          | 11               | 0.27            | 1         | / U         |              |
| 2,4-Dinitrophenol      |                                       |             | 0.30          | 55               | 0.30            | 1         | 1 UJ        |              |
| 2,4-Dinitrotoluene     |                                       |             | 0.15          | 11               | 0.15            | 1         | U           |              |
| 2,6-Dinitrotoluene     |                                       |             | 0.22          | 11               | 0.22            | 1         | / U         |              |
| 2-Chloronaphthalene    |                                       |             | 0.12          | 11               | 0,12            | 1/        | U           |              |
| 2-Chlorophenol         |                                       |             | 0.13          | 11               | 0.13            | 1/        | U           |              |
| 2-Methylnaphthalene    |                                       |             | 0.05          | 11               | 0.05            | 1         | U           |              |
| 2-Methylphenol         |                                       |             | 0.08          | 11               | 0.08            | 11        | U           |              |
| 2-Nitroaniline         |                                       |             | 0.22          | 55               | 0.22            | 71        | U           |              |
| 2-Nitrophenol          |                                       |             | 0.08          | 11               | 0.08            | / 1       | U           |              |
| 3,3'-Dichlorobenziding | 8                                     |             | 0.56          | 22               | 0.56            | 1         | υ           |              |
| 3-Nitroaniline         |                                       |             | 0.09          | 55               | 0.09 /          | 1         | U           |              |
| 4,6-Dinitro-2-methylph | nenol                                 |             | 0.38          | 55               | 0.38            | 1         | UJ          |              |
| 4-Bromophenyl pheny    | /i ether                              |             | 0.16          | 11               | 0.16            | 1         | U           |              |
| 4-Chloro-3-methylphe   | nol                                   |             | 0.09          | 22               | 0.09            | 1         | UJ          |              |
| 4-Chloroaniline        |                                       |             | 0.11          | 22               | 0.11            | 1         | U           |              |
| 4-Chlorophenyl pheny   | /l ether                              |             | 0.13          | 11               | 0/13            | 1         | U           |              |
| 4-Methylphenol         |                                       |             | 0.12          | 55               | <u>\0.12</u>    | 1         | U           |              |
| 4-Nitroaniline         |                                       |             | 0.21          | 55               | 0.21            | 1         | U           |              |
| 4-Nitrophenol          |                                       |             | 0.44          | 55               | 0.44            | 1         | UJ          |              |
| Acenaphthene           | #//#//www.allowed.com                 |             | 0.09          | 11               | ∑ 0.09          | 1         | U           |              |
| Acenaphthylene         |                                       |             | 0.11          | 11               | °∕⊂ 0.11        | 1         | <u> </u>    |              |
| Anthracene             |                                       |             | 0.15          | 11               | <i>∱</i> √ 0.15 | 1         | U           |              |
| Benzo[a]anthracene     |                                       |             | 0.09          | 11               | 0.09            | 1         | U           |              |
| Benzo[a]pyrene         |                                       |             | 0.16          | 11 /             | 0.16            | 1         | U           |              |
| Benzo[b]fluoranthene   | •                                     |             | 0.55          | 11               | 0.55            | 1         | U           |              |
| • ·                    |                                       |             |               | <i>r</i>         |                 |           |             |              |

QAPP 4.0

| Analytical Method:     | SW8270C                    | Preparatory Method     | I: <u>SW3520C</u> | AAB #:        | <u>3</u> : | 904              |
|------------------------|----------------------------|------------------------|-------------------|---------------|------------|------------------|
| Lab Name:              | Life Science Laboratories, | Inc.                   | Contract #:       |               |            |                  |
| Field Sample ID:       | TF3M121R12PA               | Lab Sample ID:         | 0609018-00        | <u>06C</u> Ma | trix:      | Groundwater      |
| % Solids:              | <u>0</u>                   | Initial Calibration II | ): <u>686</u>     | File ID:      | N5144.D    |                  |
| Date Received:         | 27-Sep-06                  | Date Extracted:        | 27-Sep-06         | Date Ana      | lyzed:     | <u>29-Sep-06</u> |
| Concentration Units    | (ug/L or mg/Kg dry weight) | : <u>µg/L</u>          |                   | Sample        | Size:      | 910 mL           |
|                        | Analyte                    | MDL                    | RL                | Concentration | Dilution   | n Qualifier      |
| Benzo[g,h,i]perviene   |                            | 0.11                   | 11                | 0.11          | 1          | U                |
| Benzo[k]fluoranthene   |                            | 0.36                   | 11                | 0.36          | 1          | U                |
| Benzoic acid           |                            | 5.70                   | 110               | 5.70          | 1          | U                |
| Benzyi alcohol         |                            | 0.12                   | 22                | 0.12          | 1          | U                |
| bis(2-Chloroethoxy)m   | ethane                     | 0.11                   | 11                | 0.11          | 1          | U                |
| bis(2-chloroethyl)ethe |                            | 0.04                   | 11                | 0.04          | 1          | U                |
| bis(2-chloroisopropyl) |                            | 0.14                   | 11                | 0.14          | 1          | U                |
| bis(2-Ethylhexyl)phtha |                            | 0.49                   | 11                | 0.824         | 1          | F                |
| Butyl benzyl phthalate | ·····                      | 0.18                   | 11                | 0.18          | 1          | U                |
| Chrysene               |                            | 0.09                   | 11                | 0.09          | 1          | U                |
| Di-n-butyl phthalate   |                            | 1.74                   | 11                | 1.74          | 1          | U                |
| Di-n-octyl phthalate   |                            | 0.20                   | 11                | 0.20          | 1          | U                |
| Dibenz[a,h]anthracen   | 8                          | 0.10                   | 11                | 0.10          | 1          | U                |
| Dibenzofuran           |                            | 0.15                   | 11                | 0.15          | 1          | U                |
| Diethyl phthalate      |                            | 0.14                   | 11                | 0.14          | 1          | U                |
| Dimethyl phthalate     |                            | 0.11                   | 11                | 0.11          | 1          | U                |
| Fluoranthene           |                            | 0.07                   | 11                | 0.07          | 1          | U                |
| Fluorene               |                            | 0.12                   | 11                | 0.12          | 1          | U                |
| Hexachlorobenzene      |                            | 0.12                   | 11                | 0.12          | 1          | U                |
| Hexachlorobutadiene    |                            | 0.14                   | 11                | 0.14          | 1          | U                |
| Hexachloroethane       |                            | 0.09                   | 11                | 0.09          | 1          | U                |
| Indeno[1,2,3-cd]pyrei  | ne                         | 0.10                   | 11                | 0.10          | 1          | U                |
| isophorone             |                            | 0.13                   | 11                | 0.13          | 1          | U                |
| N-Nitroso-di-n-propyl  | amine                      | 0.16                   | 11                | 0.16          | 1          | υ                |
| N-Nitrosodiphenylam    |                            | 0.09                   | 11                | 0.09          | 1          | <u> </u>         |
| Naphthalene            |                            | 0.07                   | 11                | 0.07          | 1          | U                |
| Nitrobenzene           |                            | 0.13                   | 11                | 0.13          | 1          | υ                |
| Pentachlorophenol      |                            | 0.25                   | 55                | 0.25          | 1          | UJ               |
| Phenanthrene           |                            | 0.11                   | 11                | 0.11          | 1          | U                |
| Phenol                 |                            | 0.10                   | 11                | 0.10          | 1          | U                |
| Pyrene                 | //////                     | 0.08                   | 11                | 0.08          | 1          | U                |

| Surrogate Recovery Control Limits Qualifier | CUNK. |
|---------------------------------------------|-------|
| Comments:                                   | 11/31 |
|                                             |       |
| ·<br>·                                      |       |
|                                             |       |

| Analytical Method | : <u>SW8270C</u>               | Preparatory Method:     | <u>SW35</u> | 520C                  | AAB #:         | <u>3904</u>      |
|-------------------|--------------------------------|-------------------------|-------------|-----------------------|----------------|------------------|
| Lab Name:         | Life Science Laboratories,     | Inc.                    | Contract    | #:                    |                |                  |
| Field Sample ID:  | TF3M121R12PA                   | Lab Sample ID:          | 06090       | )18-006C              | Matrix:        | Groundwater      |
| % Solids:         | <u>0</u>                       | Initial Calibration ID: | <u>686</u>  |                       | File ID: N5144 | .D               |
| Date Received:    | 27-Sep-06                      | Date Extracted:         | 27-Se       | p-0 <u>6</u>          | Date Analyzed: | <u>29-Sep-06</u> |
| Concentration Un  | its (ug/L or mg/Kg dry weight) | : <u>µg/L</u>           |             |                       | Sample Size:   | 910 mL           |
|                   | Surrogate                      | Recov                   | ery –       | <b>Control Limits</b> | Qualifier      |                  |
| 2,4,6             | -Tribromophenol                | 18                      |             | 42 - 124              | *              |                  |
| 2-Flu             | orobiphenyl                    | 84                      |             | 48 - 120              |                |                  |
| 2-Fh              | orophenol                      | 50                      |             | 20 - 120              |                |                  |
| Nitro             | benzene-d5                     | 91                      |             | 41 - 120              |                |                  |
| Pher              | nol-d5                         | 62                      |             | 20 - 120              |                |                  |
| Terp              | henyi-d14                      | 61                      |             | 51 - 135              |                |                  |
|                   |                                | ·····                   |             |                       |                |                  |
|                   | Internal Std                   | Area Counts             | Area Co     | unt Limits            | Qualifier      | N.               |
| 1,4-[             | Dichlorobenzene-d4             | 174689                  | 106288      | - 425152              |                | NAK .            |
| Acer              | haphthene-d10                  | 343716                  | 197321      | - 789284              | 1              | Non              |
| Chry              | sene-d12                       | 445776                  | 257362      | - 1029448             |                | 11-11            |
|                   |                                |                         |             |                       |                | \ ·              |

632061

360627

574402

372642 - 1490570

212374 - 849496

321928 - 1287714

Comments:

Naphthalene-d8

Phenanthrene-d10

Perylene-d12

Page 9 of 12

| Analytical Method:      | SW8270C                                | Preparat       | iory Method:  | <u>SW3520C</u>   | AAB #:         |         | <u>3904</u>   |
|-------------------------|----------------------------------------|----------------|---------------|------------------|----------------|---------|---------------|
| Lab Name:               | Life Science Laboratorie               | <u>s, Inc.</u> |               | Contract #:      |                |         |               |
| Field Sample ID:        | 092606PE                               | Lab Sam        | iple ID:      | <u>0609018-(</u> | ) <u>13C</u> N | latrix: | Groundwater ( |
| % Solids:               | <u>0</u>                               | Initial Ca     | libration ID: | <u>686</u>       | File ID:       | N5145.0 | )             |
| Date Received:          | 27-Sep-06                              | Date Ext       | racted:       | 27-Sep-06        | Date Ar        | alyzed: | 29-Sep-06     |
| Concentration Units     | (ug/L or mg/Kg dry weigh               | t): u          | g/L           |                  |                | -       | <u></u>       |
|                         | Analyte                                |                | MDL           | <u> </u>         | Sample         |         | 940 mi        |
| 1,2,4-Trichlorobenzen   |                                        |                | 0.11          | RL 11            | Concentration  | Dilutio |               |
| 1,2-Dichlorobenzene     |                                        | ······         | 0.07          | -                | 0.11           | 1       | U             |
| 1,3-Dichlorobenzene     |                                        |                | 0.07          | 11               | 0.07           | 1       | U             |
| 1,4-Dichlorobenzene     | , /                                    |                | 0.00          | 11               | 0.06           | 1       | <u> </u>      |
| 2,4,5-Trichlorophenol   |                                        |                | ······        | 11               | 0.07           | 1       | <u> </u>      |
| 2,4,6-Trichlorophenol   | ······                                 |                | 0.15          | 53               | 0.15           | 1       | <u>U</u>      |
| 2,4-Dichlorophenol      |                                        |                | 0.09          | 11               | 0.11           | 1       | U             |
| 2,4-Dimethylphenol      |                                        |                |               | 11               | 0.09           | 1       | U             |
| 2,4-Dinitrophenol       |                                        |                | 0.27          | 11               | 0.27           | 1       | U             |
| 2,4-Dinitrotoluene      |                                        |                | 0.29          | 53               | 0.29           | 1       | <u> </u>      |
| 2,6-Dinitrotoluene      | ······································ |                | 0.15          | 11               | 0.15           | 1       | <u> </u>      |
| 2-Chloronaphthalene     |                                        |                | 0.21          | 11               | 0.21           | 1       | U             |
| 2-Chlorophenol          |                                        |                | 0.12          | 11               | 0.12           | 1       | U             |
| 2-Methylnaphthalene     |                                        |                | 0.13          | 11               | 0.13           | 1       | <u> </u>      |
| 2-Methylphenol          | · · · · · · · · · · · · · · · · · · ·  |                | 0.05          | 11               | 0.05           | 1       | U             |
| 2-Nitroaniline          |                                        |                | 0.07          | 11               | 0.07           | 1       | <u> </u>      |
| 2-Nitrophenol           |                                        |                | 0.21          | 53               | 0.21           | 1       | <u> </u>      |
| 3,3'-Dichlorobenzidine  | <u> </u>                               |                | 0.07          | 11               | 0.07           | 1       | U             |
| 3-Nitroaniline          |                                        |                | 0.54          | 21               | 0.54           | 1       | <u> </u>      |
| 4,6-Dinitro-2-methylphe | Inde                                   |                | 0.09          | 53               | 0.09           | 1       | <u> </u>      |
| 4-Bromophenyl phenyl    |                                        |                | 0.37          | 53               | 0.37           | 1       | U             |
| 4-Chloro-3-methylphen   |                                        | ·////          | 0.16          | 11               | 0.16           | 1       | <u>U</u>      |
| 4-Chloroaniline         |                                        |                | 0.09          | 21               | 0.09           | 1       | U             |
| 4-Chlorophenyl phenyl   | ether                                  |                | 0.11          | 21               | 0.11           | 1       | U             |
| 4-Methylphenol          | ~ C F&1                                |                | 0.13          | 11               | 0.13           | 1       | U             |
| 4-Nitroaniline          |                                        |                | 0.12          | 53               | 0.12           | 1       | U             |
| 4-Nitrophenol           |                                        |                | 0.20          | 53               | 0.20           | 1       | U             |
| Acenaphthene            |                                        |                | 0.43          | 53               | 0.43           | 1       | υ             |
| Acenaphthylene          | n 1999 / /                             |                | 0.09          | 11               | 0.09           | 1       | U             |
| Anthracene              |                                        |                | 0.11          | 11               | 0.11           | 1       | U             |
| Benzo[a]anthracene      |                                        |                | 0.15          | 11               | 0.15           | 1       | U             |
| Benzo[a]pyrene          | . A makeye 1979                        |                | 0.09          | 11               | 0.09           | 1       | U             |
| Benzo[b]fluoranthene    |                                        |                | 0.16          | 11               | 0.16           | 1       | U             |
| omments:                |                                        |                | 0.53          | 11               | 0.53           | 1       | U             |

QAPP 4.0

MJ 106

| Analytical Method:                                                        | <u>SW8270C</u>             | Preparatory Method:     | <u>SW3520C</u> | AAB #:          | 3922        |
|---------------------------------------------------------------------------|----------------------------|-------------------------|----------------|-----------------|-------------|
| Lab Name:                                                                 | Life Science Laboratories. | Inc. (                  | Contract #:    |                 |             |
| Field Sample ID:                                                          | TF3M121R12PA               | Lab Sample ID:          | 0609018-006C   | Matrix:         | Groundwater |
| % Solids:                                                                 | Q                          | Initial Calibration ID: | <u>686</u>     | File ID: N5209. | D           |
| Date Received:                                                            | 27-Sep-06                  | Date Extracted:         | 02-Oct-06      | Date Analyzed:  | 05-Oct-06   |
| Concentration Units (ug/L or mg/Kg dry weight): ug/L Sample Size: 1000 mL |                            |                         |                |                 |             |

| Surrogate            | Recovery | Control Limits | Qualifier |
|----------------------|----------|----------------|-----------|
| 2,4,6-Tribromophenol | 26       | 42 - 124       | * /       |
| 2-Fluorobiphenyl     | 60       | 48 - 120       |           |
| 2-Fluorophenol       | 43       | 20 - 120       |           |
| Nitrobenzene-d5      | 78       | 41 - 120       |           |
| Phenol-d5            | 52       | 20 - 120       |           |
| Terphenyl-d14        | 64       | 51 - 135       | /         |

| Internal Std           | Area Counts | Area Count Limits Qualifier |
|------------------------|-------------|-----------------------------|
| 1,4-Dichlorobenzene-d4 | 120416      | 106288 - 425152             |
| Acenaphthene-d10       | 243964      | 197321 - 789284             |
| Chrysene-d12           | 411626      | 257362 - 1029448            |
| Naphthalene-d8         | 411844      | 372642 - 1490570            |
| Perylene-d12           | 380214      | 212374 - 849496             |
| Phenanthrene-d10       | 437381      | 321928 - 1287714            |

UNK (1/3/06

1

Comments:

Page 6 of 12

| Analytical Method:                   | SW8270C                                | Preparatory Method     | d: <u>SW3520C</u> | 2 AAB #:        | <u>39</u> | <u>04</u>     |
|--------------------------------------|----------------------------------------|------------------------|-------------------|-----------------|-----------|---------------|
| Lab Name:                            | Life Science Laboratories,             | Inc.                   | Contract #:       |                 |           |               |
| Field Sample ID:                     | 092606PE                               | Lab Sample ID:         | <u>0609018-(</u>  | 0 <u>13C</u> Ma | trix: (   | Groundwater Q |
| % Solids:                            | <u>0</u>                               | Initial Calibration ID | ): <u>686</u>     | File ID:        | N5145.D   |               |
| Date Received:                       | 27-Sep-06                              | Date Extracted:        | 27-Sep-06         |                 |           | 00 500 06     |
| Concentration Units                  | (ug/L or mg/Kg dry weight):            |                        |                   |                 | iyzeti. 🐇 | 29-Sep-06     |
|                                      |                                        |                        |                   | Sample S        | Size:     | 940 mL        |
| Benzola b ilpopulare                 | Analyte                                | MDL                    | RL                | Concentration   | Dilution  | Qualifier     |
| Benzo[g,h,i]perylene                 |                                        | 0.11                   | 11                | 0.11            | 1         | U U           |
| Benzo[k]fluoranthene<br>Benzoic acid |                                        | 0.35                   | 11                | 0.35            | 1         | U             |
|                                      |                                        | 5.52                   | 110               | 5.52            | 1         | U             |
| Benzyl alcohol                       |                                        | 0.12                   | 21                | 0.12            | 1         | U             |
| bis(2-Chloroethoxy)me                |                                        | 0.11                   | 11                | 0.11            | 1         | U             |
| bis(2-chloroethyl)ether              |                                        | 0.04                   | 11                | 0.04            | 1         | U             |
| bis(2-chloroisopropyl)e              |                                        | 0.14                   | 11                | 0.14            | 1         | U             |
| bis(2-Ethylhexyl)phthal              | ate                                    | 0.48                   | 11                | 0.840           | 1         | F             |
| Butyl benzyl phthalate               |                                        | 0.17                   | 11                | 0.17            | 1         | U             |
| Chrysene                             |                                        | 0.09                   | 11                | 0.09            | - 1       | U             |
| Di-n-butyl phthalate                 |                                        | 1.68                   | 11                | 1.68            | 1         | U             |
| Di-n-octyl phthalate                 |                                        | 0.19                   | 11                | 0.19            | 1         | <u> </u>      |
| Dibenz[a,h]anthracene                | · · · · · · · · · · · · · · · · · · ·  | 0.10                   | 11                | 0.10            | 1         | U             |
| Dibenzofuran                         | ······································ | 0.15                   | 11                | 0.15            | 1         | U             |
| Diethyl phthalate                    |                                        | 0.14                   | 11                | 0.14            | 1         | U             |
| Dimethyl phthalate                   |                                        | 0.11                   | 11                | 0.11            | 1         | -<br>U        |
| Fluoranthene                         | · · ·                                  | 0.06                   | 11                | 0.06            | 1         | U             |
| Fluorene                             |                                        | 0.12                   | 11                | 0.12            | 1         | U             |
| Hexachlorobenzene                    |                                        | 0.12                   | 11                | 0.12            | 1         | U             |
| Hexachlorobutadiene                  |                                        | 0.14                   | 11                | 0.14            | 1         | U U           |
| Hexachloroethane                     |                                        | 0.09                   | 11                | 0.09            | 1         | U             |
| Indeno[1,2,3-cd]pyrene               |                                        | 0.10                   | 11                | 0.10            | 1         | U             |
| Isophorone                           |                                        | 0.13                   | 11                | 0.13            | 1         | U             |
| N-Nitroso-di-n-propylan              | nine                                   | 0.16                   | 11                | 0.16            | 1         | U             |
| N-Nitrosodiphenylamine               | 3                                      | 0.09                   | 11                | 0.09            | <u>-</u>  | U U           |
| Naphthalene                          |                                        | 0.06                   | 11                | 0.06            | 1         | U             |
| Nitrobenzene                         |                                        | 0.13                   | 11                | 0.13            | 1         | UU            |
| Pentachlorophenol                    |                                        | 0.24                   | 53                | 0.13            | 1         | U<br>U        |
| Phenanthrene                         |                                        | 0.11                   | 11                | 0.11            | 1         | U             |
| Phenol                               | 1                                      | 0.10                   | 11                | 0.10            | 1         | U             |
| Pyrene                               |                                        | 0.07                   | 11                | 0.07            | 1         |               |
|                                      |                                        |                        |                   | 0.07            |           | U             |

UNA 11/3/06

| Analytical Method:                                                       | <u>SW8270C</u>             | Preparatory Method:     | SW3520C      | AAB #:         | 3904             |
|--------------------------------------------------------------------------|----------------------------|-------------------------|--------------|----------------|------------------|
| Lab Name:                                                                | Life Science Laboratories, | Inc. C                  | Contract #:  |                |                  |
| Field Sample ID:                                                         | 092606PE                   | Lab Sample ID:          | 0609018-013C | Matrix:        | Groundwater Q    |
| % Solids:                                                                | <u>0</u>                   | Initial Calibration ID: | <u>686</u>   | File ID: N5145 | D                |
| Date Received:                                                           | 27-Sep-06                  | Date Extracted:         | 27-Sep-06    | Date Analyzed: | <u>29-Sep-06</u> |
| Concentration Units (ug/L or mg/Kg dry weight): ug/L Sample Size: 940 mL |                            |                         |              |                |                  |

| Surrogate            | Recovery | Control Limits Qua | lifier |
|----------------------|----------|--------------------|--------|
| 2,4,6-Tribromophenol | 102      | 42 - 124           |        |
| 2-Fluorobiphenyi     | 78       | 48 - 120           |        |
| 2-Fluorophenol       | 77       | 20 - 120           |        |
| Nitrobenzene-d5      | 87       | 41 - 120           |        |
| Phenol-d5            | 80       | 20 - 120           |        |
| Terphenyl-d14        | 97       | 51 - 135           |        |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 168311      | 106288 - 425152   |           |
| Acenaphthene-d10       | 328290      | 197321 - 789284   |           |
| Chrysene-d12           | 433643      | 257362 - 1029448  |           |
| Naphthalene-d8         | 605604      | 372642 - 1490570  |           |
| Perylene-d12           | 342563      | 212374 - 849496   |           |
| Phenanthrene-d10       | 550649      | 321928 - 1287714  |           |

11/3/06

.

# AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>E310.1</u>                   | AAB #:            | <u>R6847</u>                            |
|--------------------|---------------------------------|-------------------|-----------------------------------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |                                         |
| Base/Command:      |                                 | Prime Contractor: | FPM Group                               |
|                    |                                 |                   |                                         |
|                    | Field Sample ID                 | Lab Sample ID     |                                         |
|                    | TF3CE313PA                      | 0609018-001B      |                                         |
|                    | TF3M2114PA                      | 0609018-002B      |                                         |
|                    | TF3M11614PA                     | 0609018-003B      |                                         |
|                    | TF3M11713PA                     | 0609018-004B      |                                         |
|                    | TF3M119R12PA                    | 0609018-005B      |                                         |
|                    | TF3M121R12PA                    | 0609018-006B      |                                         |
|                    | TF3M12314PA                     | 0609018-007B      |                                         |
|                    | TF3M12614PA                     | 0609018-008B      |                                         |
|                    | TF3M12713PA                     | 0609018-009B      | *****                                   |
|                    | TF3M12814PA                     | 0609018-010B      | · — · · · · · · · · · · · · · · · · · · |
|                    | TF3M13316PA                     | 0609018-011B      |                                         |
|                    | TF3M13316PC                     | 0609018-012B      |                                         |
|                    | 092606PE                        | 0609018-013B      |                                         |

#### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | Monika Santucei | Name:  | Monika Santucci |
|------------|-----------------|--------|-----------------|
| Date:      | 10/30/06        | Title: | Project Manager |

QAPP 4.0

Page 1 of 1

| Analytical Method:                                   | E310.1                     |                         | AAB #:     | R6847 |                |             |
|------------------------------------------------------|----------------------------|-------------------------|------------|-------|----------------|-------------|
| Lab Name:                                            | Life Science Laboratories, | inc. Co                 | ontract #: |       |                |             |
| Field Sample ID:                                     | TF3CE313PA                 | Lab Sample ID:          | 0609018-0  | 001B  | Matrix:        | Groundwater |
| % Solids:                                            | 0                          | Initial Calibration ID: | 0          |       |                |             |
| Date Received:                                       | 27-Sep-06                  | Date Prepared:          |            |       | Date Analyzed: | 03-Oct-06   |
| Concentration Units (mg/L or mg/kg dry weight): mg/L |                            |                         |            |       |                |             |

| Analyte                      | MDL | RL | Concentration | Dilution | "Qualifier" |
|------------------------------|-----|----|---------------|----------|-------------|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 250           | 1        |             |

| Analytical Method:         | E310.1                     |                        | AAB #:      | R6847 |                |             |
|----------------------------|----------------------------|------------------------|-------------|-------|----------------|-------------|
| Lab Name:                  | Life Science Laboratories, | Inc. C                 | Contract #: |       |                |             |
| Field Sample ID:           | TF3M2114PA                 | Lab Sample ID:         | 0609018-4   | 002B  | Matrix:        | Groundwater |
| % Solids:                  | 0                          | Initial Calibration ID | : 0         |       |                |             |
| Date Received:             | 27-Sep-06                  | Date Prepared:         |             |       | Date Analyzed: | 03-Oct-06   |
| <b>Concentration Units</b> | (mg/L or mg/kg dry weight  | ): mg/L                |             |       |                |             |

| Analyte                      | MDL | RL | Concentration | Dilution Qualifier |  |
|------------------------------|-----|----|---------------|--------------------|--|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 240           | 1                  |  |

Comments:

11/3/06

| Analytical Method:  | E310.1                     |                       | AAB #:      | R6847 |                |             |
|---------------------|----------------------------|-----------------------|-------------|-------|----------------|-------------|
| Lab Name:           | Life Science Laboratories, | Inc.                  | Contract #: |       |                |             |
| Field Sample ID:    | TF3M11614PA                | Lab Sample ID:        | 0609018-    | 003B  | Matrix:        | Groundwater |
| % Solids:           | 0                          | Initial Calibration I | D: 0        |       |                |             |
| Date Received:      | 27-Sep-06                  | Date Prepared:        |             |       | Date Analyzed: | 03-Oct-06   |
| Concentration Units | (mg/L or mg/kg dry weight  | ): mg/L               |             |       |                |             |

| Analyte                      | MDL | RL | Concentration | Dilution | Qualifier |
|------------------------------|-----|----|---------------|----------|-----------|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 250           |          |           |

Comments:

AFCEE FORM W-2

UNA 11/3/06

| Analytical Method:  | E310.1                     |                     | AAB #:      | R6847 | ·              |             |
|---------------------|----------------------------|---------------------|-------------|-------|----------------|-------------|
| Lab Name:           | Life Science Laboratories, | Inc.                | Contract #: |       |                |             |
| Field Sample ID:    | TF3M11713PA                | Lab Sample ID:      | 0609018-    | 004B  | Matrix:        | Groundwater |
| % Solids:           | 0                          | Initial Calibration | ID: 0       |       |                |             |
| Date Received:      | 27-Sep-06                  | Date Prepared:      |             |       | Date Analyzed: | 03-Oct-06   |
| Concentration Units | (mg/L or mg/kg dry weight  | ): mg/L             |             |       |                |             |

| Analyte                      | MDL | RL | Concentration | Dilution | Qualifier |
|------------------------------|-----|----|---------------|----------|-----------|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 280           | 1        |           |
|                              |     |    |               | , nL     |           |
|                              |     |    |               | WH.      |           |
|                              |     |    |               | 11/3/    | 06        |

## Comments:

AFCEE FORM W-2

| Analytical Method: | E310.1                     |                         | AAB #:    | R6847 |                |             |
|--------------------|----------------------------|-------------------------|-----------|-------|----------------|-------------|
| Lab Name:          | Life Science Laboratories, | Inc. Cor                | ntract #: |       |                |             |
| Field Sample ID:   | TF3M119R12PA               | Lab Sample ID:          | 0609018-( | 005B  | Matrix:        | Groundwater |
| % Solids:          | 0                          | Initial Calibration ID: | 0         |       |                |             |
| Date Received:     | 27-Sep-06                  | Date Prepared:          |           |       | Date Analyzed: | 03-Oct-06   |

Concentration Units (mg/L or mg/kg dry weight): mg/L

| Analyte                      | MDL | RL | Concentration | Dilution | Qualifier |
|------------------------------|-----|----|---------------|----------|-----------|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 210           | 1        |           |

U/\$106

| Analytical Method:  | E310.1                     |                        | AAB #:     | R6847 |                |             |
|---------------------|----------------------------|------------------------|------------|-------|----------------|-------------|
| Lab Name:           | Life Science Laboratories, | Inc. C                 | ontract #: |       |                |             |
| Field Sample ID:    | TF3M121R12PA               | Lab Sample ID:         | 0609018-0  | )06B  | Matrix:        | Groundwater |
| % Solids:           | 0                          | Initial Calibration ID | : 0        |       |                |             |
| Date Received:      | 27-Sep-06                  | Date Prepared:         |            |       | Date Analyzed: | 03-Oct-06   |
| Concentration Units | (mg/L or mg/kg dry weight  | ): mg/L                |            |       |                |             |

| Analyte                      | MDL | RL | Concentration | Dilution | eneritte: |
|------------------------------|-----|----|---------------|----------|-----------|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 280           | 1        |           |
|                              |     |    |               |          |           |
|                              |     |    |               | ~ AL     |           |
|                              |     |    |               | CNA      |           |
|                              |     |    |               | - I- hi  |           |
|                              |     |    |               | h I.≺K)/ | ĥ         |

Comments:

ł,

| Analytical Method:         | E310.1                    |                         | AAB #:     | R6847 |                |             |
|----------------------------|---------------------------|-------------------------|------------|-------|----------------|-------------|
| Lab Name:                  | Life Science Laboratories | , Inc. Co               | ontract #: |       |                |             |
| Field Sample ID:           | TF3M12314PA               | Lab Sample ID:          | 0609018-0  | 007B  | Matrix:        | Groundwater |
| % Solids:                  | 0                         | Initial Calibration ID: | 0          |       |                |             |
| Date Received:             | 27-Sep-06                 | Date Prepared:          |            |       | Date Analyzed: | 03-Oct-06   |
| <b>Concentration Units</b> | (mg/L or mg/kg dry weigh  | t): mg/L                |            |       |                |             |

| Analyte                      | MDL | RL | Concentration | Dilution | Qualifier |
|------------------------------|-----|----|---------------|----------|-----------|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 200           | 1        |           |

MX do

| Analytical Method:         | E310.1                     |                     |     | AAB #:    | R6847 |                |             |
|----------------------------|----------------------------|---------------------|-----|-----------|-------|----------------|-------------|
| Lab Name:                  | Life Science Laboratories, | Inc.                | Cor | tract #:  |       |                |             |
| Field Sample ID:           | TF3M12614PA                | Lab Sample ID:      |     | 0609018-( | )08B  | Matrix:        | Groundwater |
| % Solids:                  | 0                          | Initial Calibration | ID: | 0         |       |                |             |
| Date Received:             | 27-Sep-06                  | Date Prepared:      |     |           |       | Date Analyzed: | 03-Oct-06   |
| <b>Concentration Units</b> | (mg/L or mg/kg dry weight  | ): mg/L             |     |           |       |                |             |

| Analyte                      | MDL | RL | Concentration | Dilution Qualifier |  |
|------------------------------|-----|----|---------------|--------------------|--|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 260           |                    |  |

curt 11/3/06

| Analytical Method:  | E310.1                     |                     | A     | AB #:     | R6847 |                |             |
|---------------------|----------------------------|---------------------|-------|-----------|-------|----------------|-------------|
| Lab Name:           | Life Science Laboratories, | Inc.                | Contr | act #:    |       |                |             |
| Field Sample ID:    | TF3M12713PA                | Lab Sample ID:      |       | 0609018-0 | 09B   | Matrix:        | Groundwater |
| % Solids:           | 0                          | Initial Calibration | ID:   | 0         |       |                |             |
| Date Received:      | 27-Sep-06                  | Date Prepared:      |       |           |       | Date Analyzed: | 03-Oct-06   |
| Concentration Units | (mg/L or mg/kg dry weight  | ): mg/L             |       |           |       |                |             |

| Analyte                      | MDL | RL | Concentration | Dilution | Qualifier |  |
|------------------------------|-----|----|---------------|----------|-----------|--|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 380           | 1        |           |  |

custiple 11/3/ple

Comments:

QAPP 4.0

| Analytical Method:  | E310.1                    |                         | AAB #:     | R6847 |                |             |
|---------------------|---------------------------|-------------------------|------------|-------|----------------|-------------|
| Lab Name:           | Life Science Laboratories | , Inc. C                | ontract #: |       |                |             |
| Field Sample ID:    | TF3M12814PA               | Lab Sample ID:          | 0609018-0  | 010B  | Matrix:        | Groundwater |
| % Solids:           | 0                         | Initial Calibration ID: | : 0        |       |                |             |
| Date Received:      | 27-Sep-06                 | Date Prepared:          |            |       | Date Analyzed: | 03-Oct-06   |
| Concentration Units | (mg/L or mg/kg dry weigh  | :): mg/L                |            |       |                |             |

| Analyte                      | MDL | RL | Concentration | Dilution | Qualifier |  |
|------------------------------|-----|----|---------------|----------|-----------|--|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 400           | 1        |           |  |

cint 11/3/06

| Analytical Method:         | E310.1                     |                     | AAB #:      | R6847 |                |             |
|----------------------------|----------------------------|---------------------|-------------|-------|----------------|-------------|
| Lab Name:                  | Life Science Laboratories, | Inc.                | Contract #: |       |                |             |
| Field Sample ID:           | TF3M13316PA                | Lab Sample ID:      | 0609018-    | -011B | Matrix:        | Groundwater |
| % Solids:                  | 0                          | Initial Calibration | ID: 0       |       |                |             |
| Date Received:             | 27-Sep-06                  | Date Prepared:      |             |       | Date Analyzed: | 03-Oct-06   |
| <b>Concentration Units</b> | (mg/L or mg/kg dry weight  | ): mg/L             |             |       |                |             |

| Analyte                      | MDL | RL | Concentration | Dilution | Qualifier |
|------------------------------|-----|----|---------------|----------|-----------|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 330           | 1        |           |
| · ·                          |     |    |               | ad       |           |
|                              |     |    |               | CUB      | 1         |
|                              |     |    |               | 13       | sido      |
|                              |     |    |               | · · / ·  | 7         |

| Analytical Method:  | E310.1                     |                        | AAB #:      | R6847 |                |             |  |
|---------------------|----------------------------|------------------------|-------------|-------|----------------|-------------|--|
| Lab Name:           | Life Science Laboratories, | inc.                   | Contract #: |       |                |             |  |
| Field Sample ID:    | TF3M13316PC                | Lab Sample ID:         | 0609018-(   | 012B  | Natrix:        | Groundwater |  |
| % Solids:           | 0                          | Initial Calibration II | D: 0        |       |                |             |  |
| Date Received:      | 27-Sep-06                  | Date Prepared:         |             |       | Date Analyzed: | 03-Oct-06   |  |
| Concentration Units | mg/L or mg/kg dry weight   | : mg/L                 |             |       |                |             |  |

| Analyte                      | MDL | RL | Concentration | Dilution | Qualifier |
|------------------------------|-----|----|---------------|----------|-----------|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 330           | 1        |           |

und 11/3/06

| Analytical Method:    | E310.1                     |                        | AAB #:      | R6847 |                |               |
|-----------------------|----------------------------|------------------------|-------------|-------|----------------|---------------|
| Lab Name:             | Life Science Laboratories, | Inc. C                 | Contract #: |       |                |               |
| Field Sample ID:      | 092606PE                   | Lab Sample ID:         | 0609018-    | 013B  | Matrix:        | Groundwater Q |
| % Solids:             | 0                          | Initial Calibration ID | : 0         |       |                |               |
| Date Received:        | 27-Sep-06                  | Date Prepared:         |             |       | Date Analyzed: | 03-Oct-06     |
| Concentration Units ( | mg/L or mg/kg dry weight   | ): mg/L                |             |       |                |               |

| Analyte                      | MOL | RL | Concentration | Dilution | Qualifier | ļ |
|------------------------------|-----|----|---------------|----------|-----------|---|
| Alkalinity, Total (As CaCO3) | 10  | 10 | 10            | 1        | U         |   |

Comments:

X

yç