Quality Control Summary Report for the Year 2002 Expanded Site Investigation at the Former Griffiss Air Force Base

Contract No. DACW41-99-D-9005 Task Order No. 001 Work Authorization Directive 09

November 2002

Prepared for:

U.S. ARMY CORPS OF ENGINEERS

Kansas City District

601 East 12th Street

Kansas City, Missouri 64106

Prepared by:

ECOLOGY AND ENVIRONMENT, INC.

368 Pleasant View Drive Lancaster, New York 14086

©2002 Ecology and Environment, Inc.

Data Validation Memo Page 5 of 18

FIELD DUPLICATE RESULTS

Field duplicates were analyzed as required in the QAPP. The samples are noted on Table 1 of this memo were field duplicates. The results will be summarized on a table in the QCSR. The field duplicate QC criteria are two times the laboratory duplicate QC criteria of 20% for water samples and 35% for soil samples (i.e., 40% for water samples and 70% for solid samples). The RPD ratings are listed as "Good" if the RPD is less than field duplicate QC criteria and as "Poor" if the RPD exceeded the field duplicate QC criteria.

Field duplicate results are summarized on Table 7 below. One set of duplicate wipe samples was collected and overall the precision was generally poor. The results indicate a high variability in the wipe sample collection. Field duplicate results with "Poor" are flagged "J" as estimated and the potential variability in the results needs to be evaluated if the results are compared to any regulatory criteria. Since the wipes results will probably be incorporated into an overall risk evaluation that would take into account the inherent variability of the results.

Table of Contents

Secti	ion			Page
Purp	ose of	Contracted Analytical Laboratories		
] Intro	ductio	n		1_1
2	ductio		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1-1
_	Collec	tion D	lata Management, and Quality Control	
Data		-	•	2-1
	2.1	•		
	2.1	•		
	2.2	•		
	2.3			
	2.5			
	2.6			
	2.7			
	2.,			
			• •	
	2.8			
	2.9			
3				
_	Snecifi	c Sam	nling Analysis and Quality Control Results	3-1
Oile-	3.1		• •	
	5.1			
			• •	
	3.2			
			• •	
			Data Quality Evaluation	
		3.2.5	Analytical Results Tables	2

Table of Contents (Cont.)

Section				Page
•		3.2.6	Data Completeness and Representativeness	2
		3.2.7		2
	3.3	Build	ing 211-Pipe Vault (OTH-211, DRY-211)	3-3
		3.3.1	Proposed Sample Collection and Analytical Requirements	1
		3.3.2		
		3.3.3	Deviations From Sample Handling and Custody Procedures	1
		3.3.4		
		3.3.5	Analytical Results Tables	2
		3.3.6	Data Completeness and Representativeness	2
		3.3.7	Summary and Conclusions	2
	3.4	Build	ing 112 Room 10 (AOI 473)	3-4
	3.4.1		sed Sample Collection and Analytical Requirements	
		3.4.2	Sampling and Analysis Performed	
		3.4.3	Deviations From Sample Handling and Custody Procedures	2
		3.4.4	Data Quality Evaluation	2
		3.4.5	Analytical Results Tables	4
		3.4.6	Data Completeness and Representativeness	
		3.4.7	Summary and Conclusions	5
System	Aud	lits	••••••	4-1
Report	Dist	ributi	on and Review	5-1
Referer	nces.			6-1
A			e Data for Proposed Work	
В	Fiel	d Qua	ality Control Reports	1
С	Cha	in-of	-Custody	1
D	Vali	datio	n Memoranda	1
E			ory Case Narratives	
_ F			Audits	
-			~~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

ist of Tables

Table		Page
3.1-1	Sample Listing, OTH 305 Year 2002 ESI	3.1-5
3.1-2	Association Between Field and QA/QC Samples for OTH 305 Year 2002 ESI	3.1-6
3.1-3	Complete Analytical Data Summary for Soil Samples, OTH 305 Year 2002 ESI	3.1-7
3.1-4	Summary of Tentatively Identified Compound Results for Soil Samples, OTH 305 Year 2002 ESI	3.1-11
3.1-5	Complete Analytical Data Summary for Grab Water Samples, OTH 305 Year 2002 ESI	3.1-12
3.1-6	Complete Analytical Data Summary for Trip Blank Samples, OTH 305 Year 2002 ESI	3.1-14
3.1-7	Summary of Positive Analytical Results for Soil Samples, OTH 305 Year 2002 ESI	3.1-15
3.1-8	Summary of Positive Analytical Results for Grab Water Samples, OTH 305 Year 2002 ESI	3.1-17
3.1-9	List of Sample Results Qualified, OTH 305 Year 2002 ESI	3.1-18
3.2-1	Sample Listing, PCI 20 Year 2002 ESI	3.2-3
3.2-2	Association Between Field and QA/QC Samples, PCI 20 Year 2002 ESI	3.2-4
3.2-3	Complete Analytical Data Summary for Near Surface Soil Samples, PCI 20 Year 2002 ESI	3.2-5
3.2-4	Summary of Positive Analytical Results for Near Surface Soil Samples, PCI 20 Year 2002 ESI	3.2-6

List of Tables (Cont.)

Table	Pa	age
3.3-1	Sample Listing, Building 211 Pipe Vault Floor Year 2002 ESI	.3-3
3.3-2	Association Between Field and QA/QC Samples, Building 211 Pipe Vault Floor Year 2002 ESI	.3-4
3.3-3	Complete Analytical Data Summary for Grab Water Samples, Building 211 Pipe Vault Floor Year 2002 ESI	3-5
3.3-4	Summary of Positive Analytical Results for Grab Water Samples, Building 211 Pipe Vault Floor Year 2002 ESI	3-6
3.4-1	Sample Listing, Building 112 AOI 473-Room 10 Year 2002 ESI	4-7
3.4-2	Association Between Field and QA/QC Samples for AOI 473	4-8
3.4-3	Complete Analytical Data Summary for the Sludge Sample, AOI 473 Year 2002 ESI	4-9
3.4-4	Summary of Tentatively Identified Compound Results for the Sludge Sample, AOI 473 2002 ESI	-12
3.4-5	Complete Analytical Data Summary for Wipe Samples, AOI 473 Year 2002 ESI	-13
3.4-6	Summary of Tentatively Identified Compound Results for Wipe Samples, AOI 473 2002 ESI	-17
3.4-7	Complete Analytical Data Summary for Field Blank Wipe Samples, AOI 473 Year 2002 ESI	-23
3.4-8	Summary of Tentatively Identified Compound Results for Field Blank Wipe Samples, AOI 473 2002 ESI	-25
3.4-9	Summary of Positive Analytical Results for the Sludge Sample, AOI 473 Year 2002 ESI	-26
3.4-10	Summary of Positive Analytical Results for Wipe Samples, AOI 473 Year 2002 ESI	-28
3.4-11	List of Sample Results Qualified, AOI 473 Year 2002 ESI	-31

ist of Acronyms

AFBCA Air Force Base Conversion Agency

AFCEE Air Force Center for Environmental Excellence

AOI Area of Interest

ASC Analytical Services Center

BGS below ground surface

CLP Contract Laboratory Program

COC chain-of-custody

/D duplicate

E & E Ecology and Environment, Inc.

ERDC United States Army Engineer Research and Development Center

ERPMIS Environmental Resource Program Information Management System

ESI Expanded Site Investigation

FSP Field Sampling Plan

GAFB Griffiss Air Force Base

IDW investigation-derived waste

J estimated result

Law Environmental, Inc.

LCS laboratory control sample

LIMS Laboratory Information Management System

mg/L milligrams per liter

MS/MSD matrix spike/matrix spike duplicate

NFA no further action

NFS no further study

NS near surface soil sample

NYSDEC New York State Department of Environmental Conservation

List of Acronyms (Cont.)

OTH Other Miscellaneous Environmental Factors (site)

OVA organic vapor analyzer

PCB polychlorinated biphenyl

PCI Panamerican Consultants, Inc. (site)

ppb parts per billion

PQL practical quantitation limit

QAPP Quality Assurance Project Plan

QA/QC quality assurance/quality control

QCP Quality Control Plan

QCSR Quality Control Summary Report

RPD relative percent difference

/S split

SD sludge sample

SOP Standard Operating Procedure

SS subsurface soil sample

SVOC semivolatile organic compound

TAL Target Analyte List

TCL Target Compound List

TCLP Toxicity Characteristic Leaching Procedure

TICS Tentatively Identified Compound

TRPH total recoverable petroleum hydrocarbons

U non-detect result

UJ estimated non-detect result

USACE Unite States Army Corps of Engineers

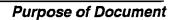
USEPA Environmental Protection Agency

UR Rejected non-detect result

VOC volatile organic compound

WAD Work Authorization Directive

WG grab water sample


μg/L micrograms per liter

Purpose of Document

The purpose of the 2002 additional Expanded Site Investigation (ESI) activities at four sites at the former Griffiss Air Force Base (GAFB) was (1) to further define whether environmental contaminants are present at certain areas of the former GAFB that may pose a threat to human health and/or the environment, (2) to continue the process of identifying where remedial actions may be needed, and (3) to conduct the necessary remedial actions to classify the sites as "No Further Action" (NFA). The four sites where this additional ESI was performed included: Other Miscellaneous Environmental Factors (OTH) site 305, Panamerican Consultants, Inc. (PCI) Site 20, the Building 211 – Pipe Vault (OTH-211, DRY-211), and Area of Interest (AOI) 473 - Building 112 Room 10. These additional investigations were completed in response to a request by the New York State Department of Environmental Conservation (INYSDEC) and the United States Environmental Protection Agency (USEPA) to continue the process of identifying where remedial actions may be needed and to conduct the necessary remedial actions to classify the sites as (NFA). The results of this additional work will be used to determine whether any of these sites should be added to the current list of sites that require no further study (NFS) or NFA, or determine the need for additional sampling, and if significant contamination is found, the need to develop appropriate remedial plans.

This quality control summary report (QCSR) presents the results of the analytical program and provides an opportunity to review the completeness and quality of the data collected. The purpose of this QCSR is to:

- Summarize sample collection, handling, and analytical procedures for the sampling investigation conducted at each site;
- Identify any deviations from the proposed sampling and analysis procedures;

- Present the analytical results for the field samples collected; and
- Discuss the results of the data quality evaluation associated with the sampling events.

Evaluation of any contaminants detected will be provided in a separate ESI report.

1

Introduction

Ecology and Environment, Inc. (E & E), under contract to the United States Army Corps of Engineers (USACE), Kansas City District, Contract DACW41-99-D-9005, Task Order 0001, Work Authorization Directive (WAD) 09, conducted additional Expanded Site Investigation (ESI) activities at four sites at the former Griffiss Air Force Base (GAFB) in Rome, New York. This QCSR summarizes sampling results for the following eight sites:

- Building 305 Paint Spray Booth (Other Miscellaneous Environmental Factors site [OTH]-305);
- Panamerican Consultants, Inc. Site 20 (PCI Site 20);
- Building 211-Pipe Vault (OTH-211, DRY-211); and
- Building 211 Room 10 (Area of Interest [AOI] 473).

Introduction

2

Data Collection, Data Management, and Quality Control Procedures

2.1 Sample Collection Procedures

The Year 2002 ESI activities consisted of the collection of environmental in accordance with the June 2002 Final Field Sampling Plan (FSP), Health and Safety Plan, and Quality Assurance Project Plan (QAPP) for the 2002 Expanded Site Investigation, Former Griffiss Air Force Base, Rome, New York (E & E 2002) (see Appendix A). Any minor variances in field methodologies that occurred during the investigation are noted on the Daily Activity Summary reports. E & E prepared the reports in the field each day and submitted them to USACE and Air Force Base Conversion Agency (AlFBCA) (see Appendix B). All field activities were carried out in accordance with the approved Quality Control Plan (QCP). An E & E QC inspector visited the site once during the field activities. Field inspection forms are included in Appendix F under system audits.

Methodologies used for field notebooks; sample labeling, packaging, and custody; equipment decontamination; disposal of investigation-derived waste (IDW); and site survey were performed in accordance with the FSP and documents referenced therein.

2.2 Field QA/QC Sample Requirements

Quality assurance/quality control (QA/QC) samples were collected on a site-wide basis according to the criteria established in Section 10 of the Law Environmental, Inc. (Law) Quality Assurance Project Plan (QAPP) (Law 1993), except as modified in E & E's QAPP addendum (E & E 2002).

In summary, these field QA/QC sample requirements are as follows:

• Field QC duplicates collected at a frequency of 10% of the number of field samples collected;

- Field QA split samples collected from the same sample points as the QC duplicate samples, at a frequency of 10% of the number of field samples collected;
- Rinsates collected at a frequency of 10% of the number of field samples collected with non-dedicated equipment;
- Matrix spike/matrix spike duplicates (MS/MSDs) for laboratory QC collected at a frequency of 20% of the samples collected;
- No ambient condition blanks would be collected; and
- One trip blank was submitted for each shipment containing water samples requiring volatile organic analysis.

2.3 Contracted Analytical Laboratories

All laboratory analyses were provided by E & E's Analytical Services Center (ASC) in Lancaster, New York. QA split samples were sent to the United States Army Engineer Research and Development Center (ERDC) Quality Assurance Laboratory in Omaha, Nebraska, for analysis.

2.4 Sample Handling and Custody Procedures

Field samples were collected, preserved, and transported to the appropriate laboratory according to the procedures described in FSP. Deviations from these sample handling and custody procedures are reported under the appropriate sampling area in Section 3 of this document.

All chain-of-custody (COC) documentation associated with the collection of samples for the 2002 ESI is included in Appendix C.

2.5 Equipment Calibration and Maintenance

Calibration procedures for the field and laboratory instruments are presented in Sections 8.1 and 8.2 of Law's QAPP (Law 1993), except as modified by E & E's FSP and QAPP. Deviations from these calibration and maintenance procedures are reported under the appropriate sampling area in Section 3 of this document.

2.6 Quality Assurance Objectives

Data uses and QA objectives were determined by E & E and are included in E & E's FSP (E & E 2002).

2.7 Procedures for Data Quality Evaluation

Data quality evaluations focus on deviations from expected QC activities, problems encountered, and the acceptability of the methodologies used. Sample integrity is based on information provided on the cooler receipt form, the COC documents, statements in the laboratory case narratives, and field notebooks. The evaluation of the analytical data with respect to project- and method-specific quality objectives was performed using the results of laboratory method blank analyses, laboratory control samples (LCS), MS/MSD analyses, and surrogate recoveries, where applicable. Field duplicate data were used to evaluate the accuracy and precision of the analytical results and field sample collection methods.

The ASC prepares one data package per laboratory work order. Data validation memoranda are generated for all laboratory work orders and describe the data qualifications in detail. These memoranda contain all the details of the data quality review. Copies of all data validation memoranda are provided in Appendix D. The key factors in the data quality review and validation procedures are highlighted for each sampling area in Section 3.

The sections that follow present the evaluation procedures used for laboratory and field QC samples.

2.7.1 Laboratory Data Quality Evaluation

The procedures used by E & E to evaluate and validate analytical data are described in Section 9.2.1 of Law's QAPP (Law 1993), except as modified by E & E's QAPP in the FSP. Data evaluation acceptance limits associated with this project are presented in Appendices L, K and M of Law's QAPP (Law 1993) as modified by E & E's QAPP addendum (E & E 2002). A senior chemist performed all data quality evaluation and qualification of the data summary tables. The data was qualified using the following documents as the basis:

- USEPA. Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 1999); and
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA 1994).

Data associated with laboratory and field QC samples that meet all acceptance limits were not qualified and are considered usable as reported. Data associated with laboratory and field QC samples that exceeded some of the acceptance limits or had other analytical problems are qualified as described in Section 3.

2.7.2 Field Data Quality Evaluation

QA and QC samples were collected to assess the quality of the field sampling activities. These QA/QC field samples include duplicates, splits, and rinsate blanks. The evaluation of these samples was based on completeness of data, results of rinsate blank analysis, and relative percent differences (RPDs) of field duplicate results. The evaluation criteria (RPD categories) used for field duplicates can be found in Section 4.3.1 of Law's QAPP (Law 1993).

To facilitate the comparison of the original field, QC duplicate, and QA split sample data, all samples from a common sample point were assigned the same client ID number. The QC duplicate samples were assigned a suffix of "/D," and QA split samples were assigned a suffix of "/S."

2.8 Data Management

ASC laboratory data collection, data reduction, and data handling procedures are presented in the ASC's standard operating procedures (SOPs) and Laboratory QA Manual (E & E 2002a).

Analytical results are stored by the ASC laboratory in both electronic and hard copy formats. Hard copy data packs for each laboratory work order are validated, and qualifiers are recorded on the data pack. Validation memoranda documenting the analytical procedures and results of the data evaluation are created for each laboratory work order. Validation memoranda and data packages associated with this investigation were sent to the USACE chemist after each data package was completed.

All analytical results are managed electronically using E & E's Laboratory Information Management System (LIMS). Analytical results are read directly off of the instruments. The data are transmitted electronically and checked as part of the data validation process. Validation qualifiers are added to the appropriate samples in the database. Analytical results are electronically transferred to a final database used to generate data summary reports.

Analytical data associated with the investigation will be provided electronically to the Air Force Center for Environmental Excellence (AFCEE) in the required format for inclusion in the Environmental Resources Program Information Management System (ERPIMS). ASC will provide data to E & E in compliance with the latest version of ERPTools/Lab and E & E will subsequently provide data to AFCEE in compliance with the latest version of the ERPIMS Data Loading Handbook. ERPTools/Lab and /PC incor-

porate a number of automatic error checking routines to identify duplicate record sets; incorrect date/time/number formats; invalid codes; failure to complete key required data fields essential for file integrity; and field, record, and submission level validation.

2.9 Location of Data

A complete set of the analytical results are contained in summary tables presented in Section 3 of this report. The QCSR (two copies) was forwarded to Mr. Mr. Phil Rosewicz of the USACE Kansas City District. The original data packages were forwarded to Ms. Daksha Dalal of the USACE, Kansas City District. Duplicate data packages are kept in the ASC. An electronic copy of the data is kept in the ERPIMS database at Brooks AFB, Texas and in a project-specific database maintained by E & E.

3

Site-Specific Sampling, Analysis, and Quality Control Results

This section describes the proposed sampling at each area, any deviations from the work plan or the QAPP, and includes a description of the data quality review on a sampling area-specific basis. Tabulations of the quality controlled analytical results are also included in this section. The appendices report supportive information, such as maps and tables describing the proposed work and background information (Appendix A), daily activity reports forms (Appendix B), COC documentation (Appendix C), validation memoranda (Appendix D), lab case narratives (Appendix E), and Systems Audit documentation (Appendix F). The data in the appendices are sorted in chronological order of the sampling events.

3.1 Building 305 – Paint Spray Booth (OTH-305)

3.1.1 Proposed Sample Collection and Analytical Requirements

The objective of this work was to remove contaminated water and sediment detected in the paint spray booth floor drain during the Year 2000 ESI program, sample the soil beneath the floor drain to see if it has been impacted by the contamination within the floor drain, and seal the floor drain and associated discharge pipe with concrete. According to the FSP, sampling at the Building 305 – Paint Spray Booth (OTH-305) was to include:

- A waste water and a sediment sample were to be collected for disposal purposes and analyzed for Toxicity Characteristic Leaching Procedure (TCLP) volatile organic compounds (VOCs) by Method SW1311/8260B; TCLP semivolatile organic compounds (SVOCs) by Method SW1311/8720C; TCLP pesticides by Method SW1311/8081A; TCLP herbicides by Method 1311/8151A; TCLP metals/mercury by Method SW1311/6010B/7470A for the water SW1311/6010B/7471A for the sediment, Target Compound List (TCL) polychlorinated biphenyls (PCBs) by Method 8082, ignitability by Method SW1010 for the water SW1030 for the sediment, reactive cyanide by Method 7.3.3.2, reactive sulfide by Method 7.3.4.2, pH by Method 9045, and percent solids by Method ASTM_D2216.
- Three subsurface soil samples were to be collected from beneath the floor drain sump after the sump was cleaned out and a hole was been drilled through the bottom (at 0 to 0.5 feet, 0.5 to 1.0 fcot, and 1.0 foot to 2.0 feet below the bottom of the drain). The subsurface soil samples were to be analyzed for TCL VOCs by Method SW8260B, TCL SVOCs by Method SW8270C, TCL pesticides/PCBs by Method SW8081A/8082, Target Analyte List (TAL) metals/mercury by Method SW6010B/7471A, and percent solids by Method ASTM_D2216.

3.1.2 Sampling and Analysis Performed

Three subsurface soil samples were collected from beneath the floor drain sump after the sump as per the FSP. No extra volume was required for MS/MSD analysis and no duplicate and split samples were required. Two wastewater samples were collected for disposal purposes and one trip blank was prepared to accompany the wastewater samples.

Table 3.1-1 lists the samples collected, as well as the sampling dates, sample depths, and analyses associated with the samples.

(This table is a post-sampling update of the FSP table presented in Appendix A.)

There were no changes to the proposed sample analyses required for the samples except for the wastewater sample of the drummed water generated during the sump clean-out and the associated trip blank that were added as noted on Table 3.1-1.

3.1.3 Deviations From Sample Handling and Custody Procedures

No deviations occurred to the proposed sample handling and sample custody procedures.

3.1.4 Data Quality Evaluation

The data quality was evaluated based on sample integrity, holding times, method blank results, LCS results, MS/MSD recoveries, surrogate recoveries, and duplicate precision as outlined in Section 2.7 of this document. The correlation between original samples collected at the site and the associated field and laboratory QA/QC samples used to confirm and qualify the original samples are reported in Table 3.1-2.

All of the data collected from the site are reported in E & E's ASC laboratory work orders as follows:

Work Order 0205079

Detailed descriptions of the data quality review are reported by lab work order in the Data Validation Memorandum provided in Appendix D.

Based on QC criteria, all data collected and analyzed from the site are usable. Data qualification for the samples from the site is discussed by method in the following sections.

3.1.4.1 Soil Samples OTH 305 Method SW8260B - TCL VOCs

Sample OTH305-SS01 had low surrogate recoveries. The sample was re-analyzed with similar results indicating a matrix effect. The only positive result in the samples was acetone and the value was flagged "J" as estimated.

Method 8081A-TCL Pesticides

The recovery for methoxy chlor in one LCS was low due to a spiking error that was corrected immediately. All the other recoveries were acceptable and there is no impact on data usability. No data qualification was required for the samples.

Method 6010B/7471A

No problems were encountered with sample analyses for these methods except slightly low antimony recovery and manganese in the method blank. Antimony was flagged "J" as estimated based on the MS/MSD outside QC limits for the sample batch. No other data qualification was required for the samples.

Other Methods

No problems were encountered with sample analyses for the other methods and no data qualification was required.

3.1.4.2 Water Samples OTH 305 Method 6010B/7470A

No problems were encountered with sample analyses for these methods except for mercury present in the method blank. The sample results were less than level of 5 times the method blank for mercury and results are flagged "U" as non-detect. No other data qualification was required for the samples.

Method 7.3.3.2 and 7.3.4.2

The Reactive cyanide and sulfide LCS recoveries were less than 1%, which was below the QC limits. The analysis was not repeated for cyanide because the holding time had expired. The analysis for sulfide was repeated with acceptable LCS recoveries even though the holding time had expired. The reactive cyanide was non-detect and the results are flagged "UR" as rejected. The sulfide results are non-detect and flagged "UJ" as estimated. The tests are highly variable and difficult to achieve good response. The results are for disposal purposes and there is no indication of cyanide or other hazardous materials in the samples. Therefore, there is no overall impact on the usability of the samples.

Other Methods

No problems were encountered with sample analyses for the other methods and no data qualification was required.

3.1.5 Analytical Results Tables

Tables 3.1-3 and 3.1-4 summarize the complete analytical results for the soil samples collected at the site. Table 3.1-5 summarizes

the complete analytical results for the grab water samples collected at the site and Table 3.1-6 summarize the trip blank results. Table 3.1-7 summarizes the positive results for soil samples and Table 3.1-8 summarizes the positive results for grab water samples. Positive results for the method blanks and the associated data qualifiers for both the method and field blanks are reported on Table 2 of the data validation memorandum in Appendix D. Table 4 in the data validation memorandum in Appendix D reports the results for the project-specific MS/MSD samples that were outside control limits.

3.1.6 Data Completeness and Representativeness3.1.6.1 Analytical Method Problems

No problems were noted with the analytical methods used for the samples collected at the site. Immediate corrective action on the spiking levels for methoxy chlor in the LCS.

3.1.6.2 Needed QA/QC Change

No QA/QC changes were noted for the analytical methods used for samples collected at the site.

3.1.7 Summary and Conclusions

Two data points were rejected for the grab water samples collected at the site. A completeness goal of 99.99% was achieved for analytical level III data. The analytical data meet specified QC criteria, with no any exceptions or qualifications except as noted in this report. Table 3.1-9 presents a list of samples qualified for this project. Any samples with "J" flags not listed on Table 3.1-9 were quantified below the PQL. The data points that were qualified as estimated should be considered useable for the purposes of this project. A total of 755 data points are associated with the site.

02:001002_UK10_05_01 QCSR OTH 305 Tables.xis-11/6/2002

	ATTATAG103W2 - SW6010B/7474A	*	I		ري (آيو ا	×
	TOT bosse - SW808Z				×	Τ.	
	TCL Pesticides - SW8081A			3	×	×	×
	TCL SVOCS - SW8270C				×	×	×
	TCL VOCs - SW8Z60B		1	×	×	×	×
	arssq_mtea - abiloe %	*	. h	1 044 	×	×	×
	Reactivity - Sulfide SW7.3.4.2	×	×				
SES	Reactivity - Cyanide SW7.5.3.2	×	×				
ANALYSES	2406W2 - Hg	×	×				
AN	050FW2 - Villdefingl	×	×				
	Total PCBs - SW8082	×	×				
	TCLP Mercury - SW1311/170A	×	×		• .0000		
	TCLP Metals & Extraction -	×	*	3,00	, , , , ,		
	TCLP Herbicides - SW1311/9151A	×	×	10.374	775	. 10	
	TCLP Pesticides - SW1311/8081A	×	×				. 34
	10LP 540Cs - 5W1311/82F0B	×	, k				
		ince and	**		1.0	1 2 3 3	
	Type	Z	ž	TB	z	Z	Ξ
	Stat	<u>.</u>	[-	<u> </u>	<u>-</u>	<u>-</u>	اء
	31						
	МΡ	>	z	z	>	>	>
					- 0.5	j.	- 2.0'
	Depth	$ \cdot $	•	•	0.0' - 0	5' - 1.0'	1.0' - 2
	3				ö	0.5	-
					Ħ	=	=
	Matrix	ар	rab	L	Subsurface soil	Subsurface soil	Subsurface soil
	ž	Water Grab	Water Grah	DI Water	surfa	surfa	Surfa
		Wa		ā		- 1	
	qer	ASC	ASC	ASC	ASC	ASC	ASC
			•				
	nber	2	<u>~</u>				
	Nut	MG0	WGO	TBI	SS01	SS02	SS03
	Sample Number	305-	305	305-	305	305	305
	35	OTI	OTI	OTH	OTH	OTH	Q E
		05/09/02 OT11305-WG02	05/09/02 OTH305-WG03	05/09/02 OTH305-TB1	05/09/02 OTH305-SS01	05/09/02 OTH305-SS02	05/09/02 OTH305-SS03
	Date	0/60/	0/60/	0/60/	0/60/	0/60/	96
		05,	0.5	0.	05	05	8
		ا ا					
	Location	OT11-305					
	Loca	OTI					
		l					

Table 3.1-1 Sample Listing, OTH 305 Additional Sampling, Former Griffiss Air Force Base, Rome, NY

Stat = Status (O + Open, T = Taken, S = Skipped).	SVOC = Sentivolatile organic compound.	TAL = Target analyte list.	TB = Trip blank sample.	TCL = Target Compound List,	TCLP = Toxicity Characteristic Leaching Procedure.	VOC = Volatile organic compound.	WG = Grab water sample.	WP = Sample in work plan (Y = yes, N= no).
ASC = E & E's Analytical Services Center.	ASTM = American Society for Testing and Materials.	Depth - Depth interval at which sample will be collected.	DI = Delonitzed.	ESI = Expanded Site finestigation.	N = Original sample.	OTH = Other Miscellaneous Buvironmental Factor site.	PCB = Polychlorinated biplienyl.	SS = Subsurface soil sample.

Key:

Association Between Field and QA/QC Samples for OTH 305 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York **Table 3.1-2**

Field Spilts					
Field Duplicates					
MS/MSD		MS/MSD		MS/MSD	
Field Blanks	OTH305-TB1	OTH305-TB1			
ID Corrections	None	None	None	None	
Sample ID	OTH305-WG02	OTH305-WG03	OTH305-SS01	OTH305-SS02	
Sample Date	5/9/02	5/9/02	5/9/02	5/9/02	

ESI = Expanded Site Investigation.

MS/MSD = Matrix spike/matrix spike duplicate.

OTH = Other Miscellaneous Environmental Factor site.

QA = Quality assurance.

QC = Quality control.
SS - Soil sample.
TB = Trip blank sample.
WG - Grab water sample.

Key:

Table 3.1-3
Complete Analytical Data Summary for Soil Samples, OTH 305 Year 2002 ESI,
Former Griffiss Air Force Base, Rome, New York

Method	Analyte	Sample ID: Date:	OTH305-SS01 05/09/02	OTH305-SS02	OTH305-SS03
			05/09/02	05/09/02	05/09/02
	Organics by Method 8270C (µg			242	
	1,2,4-Trichlorobenzene	ид/Кд	370 U	362 U	360 U
SW8270C	1,2-Dichlorobenzene	μg/Kg	370 U	362 U	360 U
SW8270C		µg/Кg	370 U	362 U	360 U
SW8270C	1,4-Dichlorobenzene	µg/Кg	370 U	362 <u>U</u>	360 U
SW8270C	2,4,5-Trichlorophenol	μg/Kg	931 U	911 U	905 U
SW8270C	2,4,6-Trichlorophenol	μg/Kg	370 U	362 U	360 U
SW8270C	2,4-Dichlorophenol	μg/Kg	370 U	362 U_	360 U
SW8270C	2,4-Dimethylphenol	μg/Kg	370 U	362 U	360 U
SW8270C	2,4-Dinitrophenol	μg/Kg	370 U	362 U	360 U
SW8270C	2,4-Dinitrotoluene .	μg/Kg	370 U	362 U	360 U
SW8270C	2,6-Dinitrotoluene	μg/Kg	370 U_	_362 U	_360 U
SW8270C	2-Chloronaphthalene	μg/Kg	370 U	362 U	360 U
SW8270C	2-Chlorophenol	µg/Кg	370 U	362 U	360 U
SW8270C	2-Methylnaphthalene	μg/Kg	370 U	362 U	360 U
SW8270C	2-Methylphenol	µg/Кg	370 U	362 U	360 U
SW8270C	2-Nitroaniline	µg/Kg	931 U	911 U	905 U
SW8270C	2-Nitrophenol	μ g/K g	370 U	362 U	360 U
SW8270C	3,3'-Dichlorobenzidine	μ g/ Kg	740 U	725 U	719 U
SW8270C	3-Nitroaniline	µg/Kg	931 U	911 U	905 U
SW8270C	4,6-Dinitro-2-methylphenol	μg/Kg	931 U	911 U	905 U
SW8270C	4-Bromophenyl phenyl ether	μg/Kg	370 U	362 U	360 U
	4-Chloro-3-methylphenol	μg/Kg	370 U	362 U	360 U
	4-Chloroaniline	µg/Кg	370 U	362 U	360 U
	4-Chlorophenyl phenyl ether	µg/Кg	370 U	362 U	360 U
_	4-Methylphenol	µg/Кg	370 U	362 U	360 U
	4-Nitroaniline	µg/Кg	931 U	911 U	905 U
	4-Nitrophenol	μ g/K g	931 U	911 U	905 U
	Acenaphthene	μg/Kg	370 Ū	362 U	360 U
	Acenaphthylene	μg/Kg	370 U	362 U	360 U
	Anthracene	μg/Kg	69.0 J	362 U	360 U
	Benz(a)anthracene	μg/Kg	146 J	362 U	360 U
	Benzo(a)pyrene	μg/Kg	104 J	362 U	360 U
	Benzo(b)fluoranthene	μg/Kg	86.2 J	362 U	360 U
	Benzo(g,h,i)perylene	μg/Kg μg/Kg	51.1 J	362 U	360 U
	Benzo(k)fluoranthene	μg/Kg	122 J	362 U	360 U
	Benzoic acid	μg/Kg	931 U	911 U	905 U
	Benzyl alcohol	μg/Kg	370 U	362 U	360 U
	Bis(2-chloroethoxy)methane	де/Кg	370 U	362 U	360 U
	Bis(2-chloroethyl)ether	μg/Kg μg/Kg	370 U	362 U	360 U
	Bis(2-chloroisopropyl)ether	μg/Kg	370 U	362 U	360 U
	Bis(2-ethylhexyl)phthalate	μg/Kg μg/Kg	77.9 J	362 U	78.9 J
	Butyl benzyl phthalate	μg/Kg μg/Kg	370 U	362 U	360 U
	Carbazole	μg/Kg μg/Kg	370 U	362 U	360 U
			148 J	362 U	360 U
	Chrysene Diberz(a b)anthracene	μg/Kg		362 U	360 U
	Dibenzofyma	μg/Kg	370 U		360 U
	Dibenzofuran Diethul ahtholete	µg/Kg	370 U	362 U	
	Diethyl phthalate Dimethyl phthalate	µg/Kg µg/Kg	370 U 370 U	362 U 362 U	360 U 360 U
SW8270C					

Table 3.1-3 Complete Analytical Data Summary for Soil Samples, OTH 305 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

Method	Analyte	Sample ID: Date:	OTH305-SS01 05/09/02	OTH305-SS02 05/09/02	OTH305-SS03 05/09/02
SW8270C	Di-n-octyl phthalate	µg/Kg	370 U	362 U	360 U
SW8270C	Fluoranthene	µg/Kg	379	· 362 U	360 U
SW8270C	Fluorene	μg/Kg	370 U	362 U	360 U
SW8270C	Hexachlorobenzene	μg/Kg μg/Kg	370 U	362 U	360 U
	Hexachlorobutadiene	μg/Kg μg/Kg	370 U	362 U	360 U
SW8270C	Hexachlorocyclopentadiene	µg/Kg	931 U	911 U	905 U
SW8270C	Hexachloroethane		370 U	362 U	360 U
		μg/Kg			
SW8270C	Indeno(1,2,3-cd)pyrene	μg/Kg	50.5 J	362 U	360 U
SW8270C	Isophorone	µg/Kg	370 U	362 U	360 U
SW8270C	Naphthalene	μg/Kg	370 U	362 U	360 U
SW8270C	Nitrobenzene	μ g/ Kg	370 U	362 U	360 U
SW8270C	N-Nitrosodimethylamine	µg/Kg	370 U	362 U	360 U
SW8270C		µg/Kg	370 U	362 U	360 U
SW8270C	N-Nitrosodiphenylamine	μg/Kg	370 U	362 U	360 U
SW8270C	Pentachlorophenol	μg/Kg	931 U	911 U	905 U
SW8270C	Phenanthrene	μg/Kg	302 J	362 U	360 U
SW8270C	Phenol	µg/Kg	370 U	362 U	360 U
SW8270C	Pyrene	μg/Kg	290 J	362 U	360 U
letals/Merce	ury by Method 6010B/7471A (m				
SW6010B	Aluminum	mg/Kg	16500	16700	17100
SW6010B	Antimony	mg/Kg	2.11 J	5.56 J	5.55 J
SW6010B	Arsenic	mg/Kg	4.78	6.72	6.73
SW6010B	Barium	mg/Kg	129	49.8	92.2
SW6010B	Beryllium	mg/Kg	0.809 U	0.370 J	0.400 J
SW6010B	Cadmium	mg/Kg	0.457 J	0.460 J	0.518 J
SW6010B	Calcium	mg/Kg	67900	3370	5500
SW6010B	Chromium	mg/Kg	15.5	15.3	18.1
SW6010B	Cobalt	mg/Kg	6.58	8.60	8.93
SW6010B	Соррег	mg/Kg	18.8	40.8	37.4
SW6010B	Iron			31300	30400
	Lead	mg/Kg	18200		
SW6010B SW6010B	Magnesium	mg/Kg	25.8	10.5 5280	18.1 5440
		mg/Kg	6040		
SW6010B	Manganese	mg/Kg	532	1550	1230
SW7471A	Mercury	mg/Kg	0.0163 J	0.0375 J	0.0560 U
	Nickel	mg/Kg	18.9	24.8	24.6
	Potassium	mg/Kg	1110	1080	1140
SW6010B	Selenium	mg/Kg	2.14	2.12 U	2.07 U
SW6010B	Silver	mg/Kg	0.809 U	1.06 U	1.04 U
SW6010B	Sodium	mg/Kg	647	189 J	193 J
SW6010B	Thallium	mg/Kg	1.62 U	2.12 U	2.07 U
SW6010B	Vanadium	mg/Kg	19.7	22.7	21.7
	Zinc	mg/Kg	51.6	72.3	89.0
_	hod 8082 (µg/Kg)	-1			
SW8082	Aroclor 1016	μg/Kg	20.6 U	20.7 U	21.9 U
SW8082	Aroclor 1221	µg/Кg	41.3 U	41.3 U	43.7 U
SW8082	Aroclor 1232	μg/Kg	20.6 U	20.7 U	21.9 U
SW8082	Aroclor 1242	µg/Кg	20.6 U	20.7 U	21.9 U
SW8082	Aroclor 1248	μg/Kg	20.6 U	20.7 U	21.9 U
SW8082	Aroclor 1254	µg/Кg	33.9	20.7 U	21.3 J
SW8082	Aroclor 1260	µg/Кg	20.6 U	20.7 U	21.9 U

Table 3.1-3
Complete Analytical Data Summary for Soil Samples, OTH 305 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

Method	Analyte	Sample ID: Date:	OTH305-SS01 05/09/02	OTH305-SS02 05/09/02	OTH305-SS03 05/09/02
	by Method 8081A (µg/Kg)	·	03/03/02	03/03/02	. 03/03/02
SW8081A	7	µg/Kg	1.61 J	3.10 U	3.28 U
SW8081A	4,4'-DDE		1.11 J	3.10 U	0.503 J
SW8081A		μg/Kg	1.86 J	4.13 U	4.37 U
SW8081A		µg/Kg	4.13 U	4.13 U	4.37 U
SW8081A		μ g/Kg μ g/K g	3.10 U	3.10 U	3.28 U
SW8081A	alpha-Chlordane	μg/Kg μg/Kg	1.03 U	1.03 U	1.09 U
SW8081A	beta-BHC	µg/Kg	5.60	0.543 J	4.37 U
SW8081A	delta-BHC	μg/Kg	0.748 J	2.07 U	2.19 U
SW8081A	Dieldrin	μ g/Kg	5.16 U	5.16 U	5.46 U
SW8081A	Endosulfan I		5.16 U	5.16 U	5.46 U
	Endosulfan II	µg/Kg			
SW8081A		⊥g/Kg	0.432 J	3.10 U	3.28 U
SW8081A	Endosulfan sulfate	jig/Kg	6.19 U	6.20 U	6.56 U
SW8081A	Endrin	ııg/Kg	4.13 U	4.13 U	4.37 U
SW8081A	Endrin aldehyde	jıg/Kg	10.3 U	10.3 U	10.9 U
SW8081A	Endrin ketone	Jig/Kg	3.10 U	3.10 U	3.28 U
SW8081A	gamma-BHC	ıg/Kg	2.06 U	2.07 U	2.19 U
SW8081A	gamma-Chlordane	jıg/Kg	2.06 U	2.07 U	2.19 U
SW8081A	Heptachlor	µg/Kg	6.00	3.10 U	3.28 U
SW8081A	Heptachlor epoxide	μg/Kg	5.16 U	5.16 U	5.46 U
SW8081A	Methoxychlor	ııg/Kg	7.12 J	41.3 U	43.7 U
SW8081A	Toxaphene	μ g/K g	103 U	103 U	109 U
	nics by Method 8260B (µg/Kg)			
SW8260B	1,1,1-Trichloroethane	Jug/Kg	5.55 U	5.41 U	5.52 U
SW8260B	1,1,2,2-Tetrachloroethane	µg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	1,1,2-Trichloroethane	ıg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	1,1-Dichloroethane	μg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	1,1-Dichloroethene	Ig/Kg	5.55 U	5.41 U	5.52 U
SW8260B	1,2-Dichlorobenzene	µg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	1,2-Dichloroethane	µg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	1,2-Dichloroethene, Total	µg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	1,2-Dichloropropane	μ g/K g	5.55 U	5.41 U	5.52 U
SW8260B	1,3-Dichlorobenzene	ıg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	1,4-Dichlorobenzene	ıg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	2-Butanone	ug/Kg	11.1 U	10.8 U	11.0 U
SW8260B	2-Chloroethyl vinyl ether	µg/Kg	11.1 U	10.8 U	11.0 U
SW8260B	2-Hexanone	μg/Kg	11.1 U	10.8 U	11.0 U
SW8260B	4-Methyl-2-pentanone	ı.g/Kg	11.1 U	10.8 U	11.0 U
SW8260B	Acetone	ıg/Kg	20.1 J	10.8 U	4.18 J
SW8260B	Benzene	g/Kg	5.55 U	5.41 U	5.52 U
SW8260B	Bromodichloromethane	.g/Kg	5.55 U	5.41 U	5.52 U
SW8260B	Bromoform	ıg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	Bromomethane	ıg/Kg	11.1 U	10.8 U	11.0 U
SW8260B	Carbon disulfide	ıg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	Carbon tetrachloride	ıg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	Chlorobenzene	ıg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	Chloroethane	ug/Kg	11.1 U	10.8 U	11.0 U
SW8260B	Chloroform	µg/Kg	5.55 U	5.41 U	5.52 U
SW8260B	Chloromethane	µg/Kg	11.1 U	10.8 U	11.0 U
SW8260B	cis-1,2-Dichloroethene	, g/Kg	5.55 U	5.41 U	5.52 U

Table 3.1-3
Complete Analytical Data Summary for Soil Samples, OTH 305 Year 2002 ESI,
Former Griffiss Air Force Base, Rome, New York

		Sample ID:	OTH305-SS01	OTH305-SS02	OTH305-SS03		
Method	Analyte	Date:	05/09/02	05/09/02	05/09/02		
SW8260B	cis-1,3-Dichloropropene	μg/Kg	5.55 U	5.41 U	5.52 U		
SW8260B	Dibromochloromethane	μg/Kg	5.55 U	5.41 U	5.52 U		
SW8260B	Ethylbenzene	μg/Kg	5.55 U	5.41 U	5.52 U		
SW8260B	m,p-Xylene	µ g/ Кg	0.845 J	5.41 U	5.52 U		
SW8260B	Methylene chloride	μ g/ Kg	2.10 Ј	0.446 J	5.52 U		
SW8260B	o-Xylene	μ g/ Kg	5.55 U	5.41 U	5.52 U		
SW8260B	Styrene	μ g/K g	5.55 U	5.41 U	5.52 U		
SW8260B	Tetrachloroethene	µg/Кg	5.55 U	5.41 U	5.52 U		
SW8260B	Toluene	µg/Кg	5.55 U	5.41 U	5.52 U		
SW8260B	trans-1,2-Dichloroethene	μg/Kg	5.55 U	5.41 U	5.52 U		
SW8260B	trans-1,3-Dichloropropene	μg/Kg	5.55 U	5.41 U	5.52 U		
SW8260B	Trichloroethene	µg/Кg	5.55 U	5.41 U	5.52 U		
SW8260B	Trichlorofluoromethane	μg/Kg	5.55 U	5.41 U	5.52 U		
SW8260B	Vinyl acetate	μg/Kg	11.1 U	10.8 U	11.0 Ŭ		
SW8260B	Vinyl chloride	μg/Kg	11.1 Ŭ	10.8 U	11.0 U		
SW8260B	Xylenes, Total	μg/Kg	0.838 J	5.41 U	5.52 U		
Percent Mois	Percent Moisture (wt%)						
ASTM_D221	Percent Moisture	wt%	11.7	9.27	10.7		

Note: Units of %REC indicate that the compound is a surrogate spike.

Key:

ESI = Expanded Site Investigation.

J = Estimated value. The reported value is below the quantitation limit or estimated due to variance from quality control limits.

µg/Kg = Micrograms per kilogram.

mg/Kg = Milligrams per kilogram.

OTH = Other Miscellaneous Environmental Factor Sites.

PCBs = Polychlorinated Biphenyls.

SS = Soil sample.

U = Analyte was not detected or not present above background levels. The reported value is the quantitation limit or value elevated due to

Table 3.1-4
Summary of Tentatively Identified Compound Results for Soil Samples, OTH 305 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

	Sample OTH305-	OTH305-	OTH305-
	ID: SS01	SS02	SS03
Analyte	Date: 05/09/02	05/09/02	05/09/02
Semivolatile Organics by Method 8270C (µg/Kg)			
Spermatheridine	NF	NF	107 NJ
Pyrene, 2-methyl-	282 NJ	NF	NF
Propane, 1-(1-methylethoxy)-	3270 NJ	1330 NJ	1590 NJ
Phenol, 2,2'-(1,2-ethanediylbis(nitrilom -	263 NJ	NF	NF
Octadecane, 2-methyl-	515 NJ	NF	NF
Octadecane	1100 NJ	125 NJ	91.4 NJ
Nonadecane	NF	NF	101 NJ
N,N,N',N'-Tetramethyl(3_3)paracyclophan-	NF	183 NJ	NF
METHYL ELAIDATE O-ISOPROPYLIDENE	NF	NF	228 NJ
Heptadecane	1817 NJ	NF	NF
exo-3-Carboxyl-endo-5-hydroxybicyclo(2_2	NF	NF	140 NJ
Eicosane	156 NJ	NF	NF
E-8-Hexadecen-1-ol acetate	NF	NF	116 NJ
Docosane, 7-hexyl-	534 NJ	NF	NF
Cyclopentane, (4-octyldodecyl)-	208 NJ	NF	NF
Cyclohexane, (2-decyldodecyl)-	NF	92.3 NJ	NF
Cyclohexadecane, 1,2-diethyl-	NF	NF	349 NJ
Benzo(j)fluoranthene	NF	NF	103 NJ
Benzo(e)pyrene	NF	127 NJ	NF
Benzo	452 NJ	NF	NF
Acetic acid, octadecyl ester	NF	181 NJ	NF
7H-Benz(de)anthracen-7-one	330 NJ	NF	NF
6-0-Ethylhexitol 1,2,3,4,5-pentaacetate	651 NJ	NF	NF
4-HYDROXY-5-METHOXY-3-NITROPHENYL ESTER	NF	116 NJ	NF
3,4-Dihydroisoquinolin, 1-benzyl-6,7-dih	NF	NF	229 NJ
2-Undecanone, 6,10-dimethyl-	NF	NF	93.7 NJ
2-Pentanone, 4-hydroxy-4-methyl-	266000 NJ	27300 UNJ	30600 UNJ
2-Nonadecanone	NF	NF	84 NJ
2,6,10,14-Hexadecatetraenoic acid, 3,7,1	NF	NF	140 NJ
2,5a-Methano-5ah-pyrido(1,2-b)(1,2)oxaze	NF	110 NJ	NF
1-Phenanthrenecarboxylic acid, 1,2,3,4,4	148 NJ	NF	NF
1-Octadecene	NF	136 NJ	NF
1H-Indole, 3-Phenyl-2-(3´-methyl-1H-indo	791 NJ	NF	127 NJ
1-Hexadecene	. NF	NF	165 NJ
1-Eicosanol	NF	NF	137 NJ
1-Docosene	700 NJ	NF	456 NJ
13-Tertadecen-1-ol acetate	NF	89.5 NJ	NF
11H-Benzo(b)fluorene	194 · NJ	NF	NF
1,21-Docosadiene	NF	NF	116 NJ
Note: Results are reported as total for similar tentatively identified compou			

Note: Results are reported as total for similar tentatively identified compounds.

Key:

ESI = Expanded Site Investigation.

NF = Not found.

NJ = Identification not confirmed, estimated value.

μg/Kg = Micrograms per kilogram.

OTH = Other Miscellaneous Environmental Factor Sites.

SS = Soil sample.

UNJ = Identification not confirmed, U flagged due to blank contamination.

Table 3.1-5
Complete Analytical Data Summary for Grab Water Samples, OTH 305 Year 2002 ESI,
Former Griffiss Air Force Base, Rome, New York

Method	Analyte	Sample ID: Date:	OTH305-WG02 05/09/02	OTH305-WG03 05/09/02
	Flashpoint), Liquids by Method 1		00/00/02	00/00/02
	Ignitability	°F	138	> 140
	od 9040B (S.U.)		150	7 140
SW9040B		S.U.	7.3	10
	anide by Method 9012A-7.3.3 (mg		7.5	
	Reactive Cyanide	mg/Kg	0.0500 UR	0.0500 UR
	Ifide by Method 9034-7.3.4 (mg/K		0.05,00 0.20	0.0000 010
	Reactive Sulfide	mg/Kg	170 UJ	170 UJ
	Mercury by Method 6010B/7470		11002	
W1311_6010		mg/L	0.300 U	0.0196 J
W1311_6010		mg/L	0.346	0.0732
W1311_6010		mg/L	0.0150 U	0.0150 U
W1311_6010	Chromium	mg/L	0.0300 U	0.0242 J
W1311_6010	OII ead	mg/L	0.00423 J	0.0727 J
W1311_0010 W1311_7470		mg/L	0.0200 U	0.0200 U
W1311_/4/0	-	mg/L	0.300 U	0.300 U
W1311_6010			0.0300 U	0.0300 U
	thod 8082 (µg/L)	mg/L	0.0300 0	0.0300 0
SW8082		μg/L	5.00 U	5.00 U
SW8082	Aroclor 1221	<u>н</u> g/L µg/L	10.0 U	10.0 U
SW8082			5.00 U	5.00 U
	Aroclor 1232	μg/L		5.00 U
SW8082	Aroclor 1242	μg/L	5.00 U	
SW8082	Aroclor 1248	μg/L	5.00 U	5.00 U
SW8082	Aroclor 1254	μg/L	37.3	29.2
SW8082	Aroclor 1260	μg/L	5.00 U	5.00 U
	ides by Method 8081A (mg/L)		0.0000 T1	0.0000.11
SW8081A	Chlordane	mg/L	0.0200 U	0.0200 U
SW8081A	Endrin	mg/L	0.005 U	0.005 U
SW8081A	 	mg/L	0.0025 U	0.0025 U
SW8081A		mg/L	0.0025 U	0.0025 U
SW8081A	Heptachlor epoxide	mg/L	0.005 U	0.005 U
SW8081A		mg/L	0.0200 U	0.0200 U
SW8081A		mg/L	0.100 U	0.100 U
	eides by Method 8151A (mg/L)		0.0050.77	0.0050.77
	2,4,5-TP (Silvex)	mg/L	0.0250 U	0.0250 U
SW8151A	2,4-D	mg/L	0.250 U	0.250 U
	olatile Organics by Method 82700		0 100 11	0.100.77
SW8270C		mg/L	0.100 U	0.100 U
SW8270C		mg/L	0.500 U	0.500 U
SW8270C		mg/L	0.100 U	0.100 U
SW8270C		mg/L	0.100 U	0.100 U
SW8270C		mg/L	0.100 U	0.100 U
SW8270C		mg/L	0.300 U	0.300 U
SW8270C		mg/L	0.100 U	0.100 U
SW8270C		mg/L	0.100 U	0.100 U
SW8270C		mg/L	0.100 U	0.100 U
SW8270C		mg/L	0.100 U	0.100 U
SW8270C		mg/L	0.500 U	0.500 U
SW8270C	Pyridine	mg/L	0.100 U	0.100 U

Table 3.1-5
Complete Analytical Data Summary for Grab Water Samples, OTH 305 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

		Sample ID:	OTH305-WG02	OTH305-WG03			
Method	Analyte	Date:	05/09/02	05/09/02			
TCLP VOCs by Method 8260B (mg/L)							
SW8260B	1,1-Dichloroethene	mg/L	0.0500 U	0.0500 U			
SW8260B	1,2-Dichloroethane	mg/L	0.0500 U	0.0500 U			
SW8260B	2-Butanone	mg/L	0.100 U	0.100 U			
SW8260B	Benzene	mg/L	0.0500 U	0.0500 U			
SW8260B	Carbon tetrachloride	mg/L	0.0500 U	0.0500 U			
SW8260B	Chlorobenzene	mg/L	0.0500 U	0.0500 U			
SW8260B	Chloroform	mg/L	0.0500 U	0.0500 U			
SW8260B	Tetrachloroethene	mg/L	0.0500 U	0.0500 U			
SW8260B	Trichloroethene	mg/L	0.0500 U	0.0500 U			
SW8260B	Vinyl chloride	mg/L	0.100 U	0.100 U			

Note: Units of %REC indicate that the compound is a surrogate spike.

Key:

ESI = Expanded Site Investigation.

J = Estimated value. The reported value is below the quantitation limit or estimated due to variance from quality control limits.

μg/L = Micrograms per liter.

mg/L = Milligrams per liter.

OTH = Other Miscellaneous Environmental Factor Sites.

PCBs = Polychlorinated Biphenyls.

S.U. = Standard units.

TCLP = Toxicity Characteristic Leaching Procedure.

U = Analyte was not detected or not present above background levels. The reported value is the quantitation limit or value elevated

UR = The PQL for this analyte is not usable. The actual PQL should be higher, but that level cannot be determined.

VOCs = Volatile Organic Compounds.

WG = Grab water sample.

T = Degree Fahrenheit.

Table 3.1-6 Complete Analytical Data Summary for the Trip Blank Sample, OTH 305 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

		Sample ID:	OTH305-TB1				
Method	Analyte	Date:	05/09/02				
Volatile Organics by GCMS Method 8260B (µg/L)							
SW8260B	1,1,1-Trichloroethane	μg/L	5.00 U				
SW8260B	1,1,2,2-Tetrachloroethane	µg/L	5.00 U				
SW8260B	1,1,2-Trichloroethane	μg/L	5.00 U				
SW8260B	1,1-Dichloroethane	µg/L	5.00 U				
SW8260B	1,1-Dichloroethene	hā/r	5.00 U				
SW8260B	1,2-Dichlorobenzene	μg/L	5.00 U				
SW8260B	1,2-Dichloroethane	µg/L	5.00 U				
SW8260B	1,2-Dichloroethene, Total	μg/L	5.00 U				
SW8260B	1,2-Dichloropropane	μg/L	5.00 U				
SW8260B	1,3-Dichlorobenzene	μ g/L	5.00 U				
SW8260B	1,4-Dichlorobenzene	μg/L	5.00 U				
SW8260B	2-Butanone	μg/L	10.0 U				
SW8260B	2-Chloroethyl vinyl ether	µg/L	10.0 U				
SW8260B	2-Hexanone	μg/L	10.0 U				
SW8260B	4-Methyl-2-pentanone	μg/L	10.0 U				
SW8260B	Acetone	μg/L	10.0 U				
SW8260B	Benzene	μg/L	5.00 U				
SW8260B	Bromodichloromethane	μg/L	5.00 U				
SW8260B	Bromoform	μg/L	5.00 U				
SW8260B	Bromomethane	μg/L	10.0 U				
SW8260B	Carbon disulfide	μg/L	5.00 U				
SW8260B	Carbon tetrachloride	μg/L	5.00 U				
SW8260B	Chlorobenzene	μg/L	5.00 U				
SW8260B	Chloroethane	μg/L	10.0 U				
SW8260B	Chloroform	μg/L	5.00 U				
SW8260B	Chloromethane	μg/L	10.0 U				
SW8260B	cis-1,2-Dichloroethene	μg/L	5.00 U				
SW8260B	cis-1,3-Dichloropropene	μg/L	5.00 U				
SW8260B	Dibromochloromethane	μg/L	5.00 U				
SW8260B	Ethylbenzene	μg/L	5.00 U				
SW8260B	m,p-Xylene	μg/L	5.00 U				
SW8260B	Methylene chloride	μg/L	5.00 U				
SW8260B	o-Xylene	μg/L	5.00 U				
SW8260B	Styrene	µg/Г_	5.00 U				
SW8260B	Tetrachloroethene	μg/L	5.00 U				
SW8260B	Toluene	μg/L	5.00 U				
SW8260B	trans-1,2-Dichloroethene	μg/L	5.00 U				
SW8260B	trans-1,3-Dichloropropene	μg/L	5.00 U				
SW8260B	Trichloroethene	μg/L	5.00 U				
SW8260B	Trichlorofluoromethane	μg/L	5.00 U				
SW8260B	Vinyl acetate	μg/L	10.0 U				
SW8260B	Vinyl chloride	μg/L	10.0 U				
SW8260B	Xylenes, Total	μg/L	5.00 U				

Note: Units of %REC indicate that the compound is a surrogate spike. Key:

ESI = Expanded Site Investigation.

'GCMS = Gas Chromatography/Mass Spectrometry.

μg/L = Micrograms per liter.

OTH = Other Miscellaneous Environmental Factor Sites.

TB = Trip blank sample.

U = Analyte was not detected or not present above background levels. The reported value is the quantitation limit or value elevated due to background.

Table 3.1-7
Summary of Positive Analytical Results for Soil Samples, OTH 305 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

Former Gilliss All Force			Comple	OTHORE COA	OTHER COR	OTHORE COR
	NVCDEO	EDA DEC			OTH305-SS02	
A	NYSDEC	EPA RBCs -	Depth (ft):		0.5 - 1.0	1.0 - 2.0
Analyte	TAGM 4046 (1)		Date:	05/09/02	05/09/02	05/09/02
Semivolatile Organics by M	_				1	
Anthracene	50,000	610,000,000		69.0 J	362 U	360 U
Benz(a)anthracene	224	7,800		146 J	362 U	360 U
Benzo(a)pyrene	61	780		MARKE	362 U	360 U
Benzo(b)fluoranthene	1,100	7,800		86.2 J	362 U	360 U
Benzo(g,h,i)perylene	50,000	NA		51.1 J	362 U	360 U
Benzo(k)fluoranthene	1,100	78,000		122 J	362 U	360 U
Bis(2-ethylhexyl)phthalate	50,000	410,000		77.9 J	362 U	78.9 J
Chrysene	400	′780,000		148 J	362 U	360 U
Fluoranthene	50,000	82,000,000		379	362 U	360 U
Indeno(1,2,3-cd)pyrene	3,200	7,800		50.5 J	362 U	360 U
Phenanthrene	50,000	NA NA		302 J	362 U	360 U
Pyrene	50,000	61,000,000		290 J	362 U	360 U
Volatile Organics by Method	d 8260B (µg/Kg)					
Acetone	200	20,000,000		20.1 J	10.8 U	4.18 J
Methylene chloride	100	760,000		2.10 J	0.446 J	5.52 U
Xylenes, Total	1,200	4,100,000,000		0.838 J	5.41 U	5.52 U
PCBs by Method 8082 (mg/h	(g)					
Aroclor 1254	1 (surface) 10 (subsurface)	2.9		0.0339	0.0207 U	0.0213 J
Pesticides/PCBs by Method	8081A/8082 (µg/	Kg)				
4,4'-DDD	2,900	24,000		1.61 J	3.10 U	3.28 U
4,4'-DDE	2,100	17,000		1.11 J	3.10 U	0.503 J
4,4'-DDT	2,100	17,000		1.86 J	4.13 U	4.37 U
beta-BHC	200	3,200		5.60	0.543 J	4.37 U
delta-BHC	300	NA		0.748 J	2.07 U	2.19 U
Endosulfan II	900	12,000,000		0.432 J	3.10 U	3.28 U
Heptachlor	100	1,300		6.00	3.10 U	3.28 U
Methoxychlor	NA	10,000,000		7.12 J	41.3 U	43.7 U
Metals/Mercury by Method 6						
Aluminum	18,306	2,000,000		16500	16700	17100
Antimony	3.4	820				
Arsenic	4.9	3.8			190	
Barium	71	140,000		(12), 57, 5	49.8	المراقع المراقع
Beryllium	0.16	4,100	_			SEED 2003 (1282)
Cadmium	1	1,000		0.457 J	0.460 J	0.518 J
Calcium	23,821	NA		M467900	3370	5500
Chromium	10	6,100		-115	342153.553	38.18.1.755
Cobalt	19	41,000		6.58	8.60	8.93
Copper	25	82,000				274 X
Iron	2,000	610,000			G231300230	
Lead	200	400		25.8	10.5	18.1
Magnesium	7,175	NA NA		6040	5280	5440
Manganese	2,106	41,000		532	1550	1230
Mercury	0.1	NA NA		0.0163 J	0.0375 J	0.0560 U
Nickel	13	41,000		180		246
Potassium	1,993	NA		1110	1080	1140
Selenium	0.34	10,000		2141-22	2.12 U	2.07 U
	259			- K. 125	189 J	193 J
Sodium	ل کی کا	NA NA			103 J	122.1

Key at the end of Table.

Table 3.1-7
Summary of Positive Analytical Results for Soil Samples, OTH 305 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

			Sample ID:	OTH305-SS01	OTH305-SS02	OTH305-SS03
	NYSDEC	EPA RECs -	Depth (ft):	0.0 -0.5	0.5 - 1.0	1.0 - 2.0
Analyte	TAGM 4046 (1)	Industrial (2)	Date:	05/09/02	05/09/02	05/09/02
Vanadium	36	14,000		19.7	22.7	21.7
Zinc	20	610,000		\$ 500 E		

⁽¹⁾ New York State Department of Environmental Conservation, Technical and Administrative Guidance Memorandum #4046: Determination of Soil Cleanup Objectives and Cleanup Levels, 1994.

Note: For a complete list of the screening criteria see Section 2.

Key:

EPA = Environmental Protection Agency.

ESI = Expanded Site Investigation.

ft = Feet.

J = Estimated value.

mg/Kg = Milligrams per kilogram.

μg/Kg = Micrograms per kilogram

NA = No criteria available.

NYSDEC = New York State Department of Environmental Conservation.

OTH = Other Miscellaneous Environmental Factor Sites.

PCBs = Polychlorinated biphenyls.

RBC = Risk-based concentration.

SS = Soil sample.

TAGM = Technical and Administrative Guidance Memorandum

U = Not detected (practical quantitation limit listed).

Result above NYSDEC screening criteria (shaded and bolded).

Result above EPA RBCs (shaded and underlined).

Result above both NYSDEC screening criteria and EPA RBCs (shaded, bolded, and underlined).

⁽²⁾ Environmental Protection Agency Region III Risk-based concentration for industrial soil, April 2002.

Table 3.1-8 Summary of Positive Analytical Results for Grab Water Samples, OTH 305 Year 2002 ESI, Former Griffiss Air Force Base, Rome, NY

Analyte	Screening Criteria (1)	Sample ID: Date:	OTH305-WG02 05/09/02	OTH305-WG03 05/09/02
Ignitability (Flashpoint), Liquids I	by Method 1010 (°F)		
Ignitability	<140			> 140
PCBs by Method 8082 (µg/L)				
Aroclor 1254	NA		37.3	29.2
pH by Method 9040B (S.U.)				
pH	<2 or >12.5		7.3	10
TCLP Metals by Method 6010B (n	ng/L)			
Arsenic	5		0.300 U	0.0196 J
Barium	100		0.346	0.0732
Chromium	5		0.0300 U	0.0242 J
Lead	5		0.00423 J	0.0727 J

New York State Department of Environmental Conservation, Division of Solid And Hazardous Materials, Identification And Listing Of Hazardous Wastes (6 NYCRR 371).

ESI = Expanded Site Investigation.

J = Estimated value.

mg/L = Milligrams per liter.

 $\mu g/L = Micrograms per liter.$

NA = No criteria available.

OTH = Other Miscellaneous Environmental Factor Sites.

PCBs = Polychlorinated biphenyls.

S.U. = Standard units.

TAGM = Technical and Administrative Guidance Memorandum

U = Not detected (practical quantitation limit listed).

WG = Grab water sample.

°F = Degree Fahrenheit.

Result above NYSDEC screening criteria (shaded and bolded).

Table 3.1-9
List of Sample Results Qualified, OTH 305 Year 2002 ESI,
Former Griffiss Air Force Base, Rome, New York

Lab Order	Method	Sample ID	Analyte	Result	Lab Qualifier	Validation Qualifier
0205079	SW1311_7470A	OTH305-WG02	Mercury	0.000612	J	ับ
0205079	SW6010B	OTH305-SS01	Antimony	2.11		J
0205079	SW6010B	OTH305-SS02	Antimony	5.56		J ·
0205079	SW6010B	OTH305-SS03	Antimony	5.55		J
0205079	SW7.3.3.2	OTH305-WG02	Reactive Cyanide	ND		UR
0205079	SW7.3.3.2	OTH305-WG03	Reactive Cyanide	ND		UR
0205079	SW7.3.4.2	OTH305-WG02	Reactive Sulfide	ND		UJ
0205079	SW7.3.4.2	OTH305-WG03	Reactive Sulfide	ND		UJ
0205079	SW8260B	OTH305-SS01	Acetone	20.1		J

- ESI = Expanded Site Investigation.
 - I = Estimated value. The reported value is below the quantitation limit or estimated due to variance from quality control limits.
- OTH = Other Miscellaneous Environmental Factor site.
 - SS Soil sample.
 - U = Analyte was not detected or not present above background levels. The reported value is the quantitation limit or value elevated due to
- UR = The PQL for this analyte is not usable. The actual PQL should be higher, but that level cannot be determined.
- WG Grab water sample.

3.2 Panamerican Consultants, Inc. (PCI) Site 20

3.2.1 Proposed Sample Collection and Analytical Requirements

The objective of was to determine whether lead contamination detected in the near-surface soil at this site remained after the Year 2000 ESI removal of near-surface soil and surface debris. According to the FSP, sampling at the PCI 20 site was to include:

 Three additional near-surface soil samples (0 to 2 inches below ground surface [BGS]) were to be collected from Year 2000 ESI sample locations NS02, NS03, and NS04. The 2002 samples were to be analyzed for TAL lead by Method SW6010B and percent solids by Method ASTM_D2216.

3.2.2 Sampling and Analysis Performed

Three near-surface soil samples were sampled and analyzed as per the FSP. Duplicate and split samples were collected from one soil sample location and extra volume was obtained for MS/MSD analysis from one soil sample location. Field rinsates were not required.

Table 3.2-1 lists the samples collected, as well as the sampling dates, sample depths, and analyses associated with the samples. (This table is a post-sampling update of the FSP table presented in Appendix A.)

There were no changes to the proposed sample analyses required for the samples.

3.2.3 Deviations From Sample Handling and Custody Procedures

No deviations occurred to the proposed sample handling and sample custody procedures.

3.2.4 Data Quality Evaluation

The data quality was evaluated based on sample integrity, holding times, method blank results, LCS results, MS/MSD recoveries, surrogate recoveries, and duplicate precision as outlined in Section 2.7 of this document. The correlation between original samples collected at the site and the associated field and laboratory QA/QC samples used to confirm and qualify the original samples are reported in Table 3.2-2.

All of the data collected from the site are reported in E & E's ASC laboratory work orders as follows:

Work Order 0207099

Detailed descriptions of the data quality review are reported by lab work order in the Data Validation Memorandum provided in Appendix D.

Based on QC criteria, all data collected and analyzed from the site are usable. Data qualification for the samples from the site is discussed by method in the following sections.

3.2.4.1 Soil Samples PCI 20

No problems were encountered with sample analyses for these methods.

3.2.5 Analytical Results Tables

Table 3.2-3 summarizes the complete analytical results for the soil samples collected at the site. Table 3.2-4 summarizes the positive results for soil samples. There were no positive results for the method blanks. Table 4 in the data validation memorandum in Appendix D reports the results for the project-specific MS/MSD samples that were outside control limits. Table 7 in the data validation memorandum in Appendix D reports the positive results and RPDs for the field duplicates.

3.2.6 Data Completeness and Representativeness 3.2.6.1 Analytical Method Problems

No problems were noted with the analytical methods used for the samples collected at the site.

3.2.6.2 Needed QA/QC Change

No QA/QC changes were noted for the analytical methods used for samples collected at the site.

3.2.7 Summary and Conclusions

No data points were rejected or qualified for the soil and ground-water samples collected at the site; therefore, a completeness goal of 100% was achieved for analytical level III data. The analytical data meet specified QC criteria, with no any exceptions or qualifications. A total of 8 data points are associated with the site.

Table 3.2-1 Sample Listing, PCI 20 Year 2002 ESI, Former Griffles Air Force Base, Rome, NY

					1 3	Ĺ	li
VALYSES	arssd_mtea abiloe %	×	×	×	×	×	> ¢
INAL	BOTOWN VINO DEST JAT	×	×	×	×	×	3¢
V			İ				
	Туре	Z	FDI	FR	Z	Z	187
	Slat	1	T	:-	;-	:-	٠٠
	Mb	Y	Υ	λ.	*	~	۶۰
	Depth	0.00' - 0.17'	0.00' - 0.17'	0.00' - 0.17'	0.00' - 0.17'	0.00' - 0.17"	Ū.ÕŪ - Ū.17
	Del	0.00	0.00	0.00	0.00	0.00	Ū.Ũ
	Lab	ASC Near-surface Soil	ASC Near-surface Soil	BRDC Near-surface Soil	ASC Near-surface Soil	ASC Near-surface Soil	ASC Near-surface Soil (MS/MSD)
	Sample Number	07/15/02 PCI20-NS06	07/15/02 PC120-NS06/D	07/15/02 PCI20-NS06/S	07/15/02 PCI20-NS07	07/15/02 PCI20-NS08	07/15/02 FCI20-INSOB (extra volume)
	Dato	07/15/02	07/15/02	07/15/02	07/15/02	07/15/02	07/15/02
	Locallon	PCI 20					

ASC = B & B's Analytical Services Center.

ASTM = American Society for Testing and Materials.

Duplicate sample.

Depth = Depth Interval at which sample will be collected.

ERDC = U.S. Army Englucer Research and Development Center Quality Assurance Laboratory.

ESI = Expanded Site Investigation.

FD = Field duplicate.

FR = Field spilvrepilcate.

MS/MSD = Matrix spike/matrix spike duplicate.

N = Original sample.

PCI = Panamerican Consultants, Inc. (site). NS = Near-surface solt sample.

/S = Split sample.

Stat = Status (O= Open, T= Taken, S= Skipped). TAL = Target analyte list.

Association Between Field and QA/QC Samples, PCI 20 Year 2002 ESI, Former Grifflss Air Force Base, Rome, New York **Table 3.2-2**

Field Splits	PCI20-NS06/S		
Field Duplicates	PCI20-NS06/D		
MS/MSD			MS/MSD
Fleld Blanks			
ID Corrections	None	None	None
Sample ID	PCI20-NS06	PCI20-NS07	PCI20-NS08
Sample Date	7/15/02	7/15/02	7/15/02

ESI = Expanded Site Investigation.

(D = Duplicate.

MS/MSD = Matrix spike/matrix spike duplicate.
NS - Near surface soil sample.

PCI = Panamerican Consultants, Inc. (site).

QA = Quality assurance.

QC = Quality control.

/S = Split.

Complete Analytical Data Summary for Near Surface Soil Samples, PCI 20 Year 2002 ESI, Year 2002 PCI 20 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York **Table 3.2-3**

		Sample ID:		PCI20-NS06/D	PCI20-NS07	PCI20-NS08
Method	Analyte	Date:	07/15/02	07/15/02	07/15/02	07/15/02
Metals by ICP Method 6010B	d 6010B (mg/Kg)					
SW6010B	Lead	mg/Kg	183	707	797	521
ASTM D2216	Percent Moisture	%1M	18.3	20.0	15.9	68'6

Note:

% REC = Units of %REC indicate that the compound is a surrogate spike.

Key:

ESI = Expanded Site Investigation.

J = Estimated value. The reported value is below the quantitation limit or estimated due to variance from quality control limits.

JB = Estimated value that may be bias high due to laboratory or field background contamination.

mg/Kg = Milligrams per kilogram.

NA = Not analyzed or reported.

U = Analyte was not detected or not present above background levels. The reported value is the quantitation limit or value elevated due to background.

UR = The PQL for this analyte is not usable. The actual PQL should be higher, but that level cannot be determined.

Table 3.2-4

Summary of Positive Analytical Results for Near Surface Soll Samples, PCI 20 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

		EPA	Sample ID:	PCI20-NS06	PCI20-NS06/D	PCI20-NS07	PC120-NS08
	NYSDEC	RBCs -	Depth (ft):	0.0 - 0.17	0.0 - 0.17	0.0 - 0.17	0.0 - 0.17
Analyte	TAGM 4046 ⁽¹⁾	Industrial ⁽²⁾	Date:	07/15/02	07/15/02	07/15/02	07/15/02
Metals by Method 6010B (mg/Kg)		•		•			
Lead	200	400		183		200	11/5

(1) New York State Department of Environmental Conservation, Technical and Administrative Guidance Memorandum #4046: Determination of Soil Cleanup Objectives and Cleanup Levels, 1994.

(2) Environmental Protection Agency Region III Risk-based concentration for industrial soll, April 2002.

Note: For a complete list of the screening criteria see Section 2.

Key:

/D = Duplicate sample.

EPA = Environmental Protection Agency.

ESI = Expanded Site Investigation.

ft = Peet.

J = Estimated value.

mg/Kg = Milligrams per kilogram.

NS = Near surface soil sample.

NYSDEC = New York State Department of Environmental Conservation.

PCI = Panamerican Consultants, Inc. (site).

RBC = Risk-based concentration.

TAGM = Technical and Administrative Guldance Memorandum

U = Not detected (practical quantitation limit listed).

Result above NYSDEC screening criteria (shaded and bolded).

Result above both NYSDEC screening criteria and EPA RBCs (shaded, bolded, and underlined).

02: 001002 UK10 08 01-B

3.3 Building 211-Pipe Vault (OTH-211, DRY-211)

3.3.1 Proposed Sample Collection and Analytical Requirements

The objective of this 2002 ESI Addendum work was to encapsulate residual mercury contamination present on the floor of the pipe vault beneath Building 211 (OTH-211, DRY-211). According to the FSP, sampling at the Building 211 was to include:

• Prior to removal, the water within the vault was to be sampled and analyzed for TAL metals by Method SW6010B/7470A, for disposal purposes. The results of the analyses would determine the disposal of the pumped water. Upon removal of the water, a layer of concrete between 3 and 6 inches thick was to be pumped into the bottom of the vault to prevent contact with the residual mercury contamination present on the existing concrete floor.

3.3.2 Sampling and Analysis Performed

A water sample was collected and analyzed as per the FSP. Field rinsates were not required.

Table 3.3-1 lists the samples collected, as well as the sampling dates, sample depths, and analyses associated with the samples. (This table is a post-sampling update of the FSP table presented in Appendix A.)

There were no changes to the proposed sample analyses required for the samples.

3.3.3 Deviations From Sample Handling and Custody Procedures

No deviations occurred to the proposed sample handling and sample custody procedures.

3.3.4 Data Quality Evaluation

The data quality was evaluated based on sample integrity, holding times, method blank results, LCS results, MS/MSD recoveries, surrogate recoveries, and duplicate precision as outlined in Section 2.7 of this document. The correlation between original samples collected at the site and the associated field and laboratory QA/QC samples used to confirm and qualify the original samples are reported in Table 3.3-2.

All of the data collected from the site are reported in E & E's ASC laboratory work orders as follows:

Work Order 0202063

A detailed data quality review was not performed for this lab work order because the sample was only for disposal purposes. The laboratory data was reviewed based on information provided in the case narrative in Appendix E.

Based on QC criteria, all data collected and analyzed from the site are usable. Data qualification for the samples from the site is discussed by method in the following sections.

3.3.4.1 Water Samples Building 211-Pipe Vault Method 6010B/7470A

No problems were encountered with sample analyses for these methods except those noted in the case narrative. The QC samples have no impact on data usability for disposal purposes.

3.3.5 Analytical Results Tables

Tables 3.3-3 and 3.3-4 summarize the complete analytical results and positive analytical results for the grab water sample collected at the site. No project-specific MS/MSD samples were collected.

3.3.6 Data Completeness and Representativeness3.3.6.1 Analytical Method Problems

No problems were noted with the analytical methods used for the samples collected at the site.

3.3.6.2 Needed QA/QC Change

No QA/QC changes were noted for the analytical methods used for samples collected at the site.

3.3.7 Summary and Conclusions

No data points were rejected or qualified for the soil and ground-water samples collected at the site; therefore, a completeness goal of 100% was achieved for analytical level III data. The analytical data meet specified QC criteria, with no any exceptions or qualifications. A total of 23 data points are associated with the site.

Table 3.3-1 Sample Listing, Building 211 Pipe Vault Floor Year 2002 ESI, Former Griffiss Air Force Base, Rome, NY

_		
ANALYSES	21519M JAT A17\0747\80103W2	×
	Туро	N.
	WP Stat	Ţ
	WP	λ
	Matrix	Water Grab
	Lab	ASC
	Sample Number	02/06/02 Bldg211-WG01
	Date	07/06/02
	Location	Bldg 211

ASC = B & B's Analytical Services Center.

Bldg. = Building. Depth = Depth Interval at which sample will be collected.

ESI = Expanded Site Investigation. N = Original sample.

Stat = Status (O= Open, T= Taken, S= Skipped).

TAL = Target analyte list.

WG = Grab water sample.

WP = Sample in work plan (Y = ycs, N = 110).

Association Between Field and QA/QC Samples, Building 211 Pipe Vault Floor Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York **Table 3.3-2**

Field Splits	
Field Duplicates	
MS/MSD	
Field Blanks	
ID Corrections	None
Sample ID	BLDG211-WG01
Sample Date	2/6/02

ESI = Expanded Site Investigation. QA = Quality assurance.

QC = Quality control. WG - Grab water sample.

Table 3.3-3
Complete Analytical Data Summary for Grab Water Samples,
Building 211 Pipe Vault Floor Year 2002 ESI,
Former Griffiss Air Force Base, Rome, New York

	Sample ID:	Bldg211-WG01
Analyte	Date:	02/06/02
Metals/Mercury by Meth	iod 6010B/7470A (µ	g/L)
Aluminum		51.6
Antimony		12.6
Arsenic		7.6 U
Barium		28.4
Beryllium		0.30 U
Cadmium		0.20 U
Calcium		39300
Chromium		1.3
Cobalt		8.1
Copper		63.3
Iron		1320
Lead		1.7 U
Magnesium		3700
Manganese		106
Mercury		0.72
Nickel		27.8
Potassium		4520
Selenium		4.2 U
Silver		2.9 U
Sodium		21300
Thallium		8.8 U
Vanadium		0.72
Zinc		254

ESI = Expanded Site Investigation.

J = Estimated value.

μg/L = Micrograms per liter.

WG = Grab water sample.

Table 3.3-4
Summary of Positive Analytical Results for Grab Water Samples,
Building 211 Pipe Vault Floor Year 2002 ESI,
Former Griffiss Air Force Base, Rome, New York

	Sample ID:	Bldg211-WG01
Analyte	Date:	02/06/02
Metals/Mercury by	Method 6010B/74	70A (µg/L)
Aluminum		61.6
Antimony		12.6
Barium		28.4
Calcium		39300
Chromium		1.3
Cobalt		8.1
Соррег		63.3
Iron		1320
Magnesium		3700
Manganese		106
Mercury		0.72
Nickel		27.8
Potassium		4520
Sodium		21300
Vanadium		0.72
Zinc		254

ESI = Expanded Site Investigation.

J = Estimated value.

 $\mu g/L = Micrograms per liter.$

WG = Grab water sample.

3.4 Building 112 Room 10 (AOI 473)

3.4.1 Proposed Sample Collection and Analytical Requirements

The objective of this work was to determine whether petroleum hydrocarbons, potentially containing PCBs, have been spilled in AOI 473-Building 112 Room 10. According to the FSP, sampling at Building 112 (AOI 473) was to include:

- A sludge sample, if present, was to be collected from the sump.
 The sludge sample was to be analyzed for TCL SVOCs by Method 8070C, TCL PCBs by Method 8082, total recoverable petroleum hydrocarbons (TRPH) by Method 418.1M, TAL metals/mercury by Method SW6010B/7471A, and percent solids by Method ASTM_D2216.
- One swipe sample was to be collected from the sump and nine swipe samples were to be collected from the floor of Room 10. The floor swipe samples were to be evenly spaced in a grid pattern. The 10 swipe samples were to be analyzed for TCL SVOCs by Method 8070C, TCL PCBs by Method 8082, TRPH by Method 418.1M, and TAL metals/mercury by Method SW6010B/7471A.
- One field blank was to be submitted for TCL SVOCs by Method 8070C, TCL PCBs by Method 8280, TRPH by Method 418.1M, and TAL metals/mercury by Method SW6010B/7471A.
- If, upon closer inspection of Room 10, either the sump had an open bottom or cracks were observed in the floor, then four provisional subsurface soil samples were to be collected from beneath the sump and/or cracks in the floor with a hand auger. All subsurface soil samples were to be analyzed for TCL SVOCs by Method 8070C, TCL PCBs by Method 8082, TRPH by Method 418.1M, and TAL metals/mercury by Method SW6010B/7471A. One rinsate blank was to be prepared and submitted for TCL SVOCs by Method 8070C, TCL PCBs by Method 3082, TRPH by Method 418.1M, and TAL metals/mercury by Method SW6010B/7471A.

3.4.2 Sampling and Analysis Performed

One sludge and ten swipe samples were collected and analyzed as per the FSP. Duplicate and split samples were collected and extra volume for MS/MSD analysis was obtained from one swipe sample location. The sludge duplicate and split samples planned were

not collected due to insufficient sludge volume in the sump. One field blank sample was also collected for analysis.

The provisional subsurface soil samples were not sampled because the sump had a closed bottom and there were no cracks observed in the floor. Consequently, the associated field rinsate was not required/collected.

Table 3.4-1 lists the samples collected, as well as the sampling dates, sample depths, and analyses associated with the samples. (This table is a post-sampling update of the FSP table presented in Appendix A.)

There were no changes to the proposed sample analyses required for the samples except for the skipped duplicate/spilt sample at the sludge location.

3.4.3 Deviations From Sample Handling and Custody Procedures

No deviations occurred to the proposed sample handling and sample custody procedures except for an additional field duplicate and split sample that were collected when samples were added during fieldwork.

3.4.4 Data Quality Evaluation

The data quality was evaluated based on sample integrity, holding times, method blank results, LCS results, MS/MSD recoveries, surrogate recoveries, and duplicate precision as outlined in Section 2.7 of this document. The correlation between original samples collected at the site and the associated field and laboratory QA/QC samples used to confirm and qualify the original samples are reported in Table 3.4-2.

All of the data collected from the site are reported in E & E's ASC laboratory work orders as follows:

Work Order 0207128

Detailed descriptions of the data quality review are reported by lab work order in the Data Validation Memorandum provided in Appendix D.

Based on QC criteria, all data collected and analyzed from the site are usable. Data qualification for the samples from the site is discussed by method in the following sections.

3.4.4.1 Sludge Sample AOI 473 Method 8270C

Sample analysis for G473-RM10-SD01 showed low internal standard responses. The sample chromatograms showed classic hydrocarbon patterns indicating severe matrix effects. Several PAH compounds in the sludge sample were found. All associated positive results present above the reporting limit are flagged "J" as estimated based on the matrix effects. The PQL values are not qualified because the surrogate recoveries were acceptable and no low bias was indicated. The above qualifications will not impact data usability.

Method 8082- TCL PCBs

Surrogate recoveries were high. The LCS recoveries also were slightly high side indicating an overall high bias likely due to slight over concentration. The recoveries were all within the method limits of 70 to 130% except for the recoveries in the sediment sample. The sludge sample had clear matrix effects and the positive results are flagged "J" as estimated.

Method 6010B/7471A

Trace levels of potassium and selenium were found in the soil method blank. The associated samples with positive results were much higher than the blank levels.

Other Methods

No problems were encountered with sample analyses for the other methods and no data qualification was required.

3.4.4.2 Swipe Samples AOI 473

One set of cuplicate wipe samples was collected and overall the precision was generally poor. The results indicate a high variability in the wipe sample collection. Field duplicate results with "Poor" are flagged "J" as estimated and the potential variability in the results reeds to be evaluated if the results are compared to any regulatory criteria. The compounds found are primarily metals and total petroleum hydrocarbons. Since the wipes results will probably be incorporated into an overall risk evaluation that would take into account the inherent variability of the results.

Method 8270C

Sample analysis for wipes G473-RM10-SP01, 02, 03, 04, 07 and 10 showed low internal standard responses. The sample chromatograms showed classic hydrocarbon patterns indicating severe matrix effects. There were no positive target compounds in the wipes

except for benzyl alcohol and bis(2-ethylhexyl)phthalate. All associated positive results present above the reporting limit are flagged "J" as estimated based on the matrix effects. The PQL values are not qualified because the surrogate recoveries were acceptable and no low bias was indicated. The above qualifications will not impact data usability.

The MS/MSD recoveries were below 10% for several reactive compounds including Hexachlorocyclopentadiene, 4-Nitroaniline, 4-Chloroaniline, 3-Nitroaniline, 3,3´-Dichlorobenzidine, and 2,4-Dinitrophenol. The LCS recoveries were acceptable indicating no analytical concerns. One problem is that the spike amount was below the reporting limit, which precluded acceptable recovery. Matrix effects also may be important. The other recoveries show a generally high bias indicating sufficient recovery. None of the associated compounds were detected in any of the sample and therefore, no data qualification is required because the problem is link to spiking levels. The compounds are not compounds of concern at the site and therefore the overall usability of the data are not affected. The spiking levels are being adjusted under a laboratory corrective action plan.

Method 6010B/7471A

Trace levels of aluminum and manganese were found in the wipe method blank below the PQL as shown on Table 2. Several metals also were detected in the field blank at levels above the PQL. The trace levels appear to be associated with field background. The sample results less than 5 times the blank levels are qualified "U" as non-detect. The metals results for antimony, sodium, and thallium could not be distinguished from background. The other metals are at much higher concentration then the blank samples. The non-detect metals results will not impact data usability because the levels are generally low and there are no screening values for these compounds.

Other Methods

No problems were encountered with sample analyses for the other methods and no data qualification was required.

3.4.5 Analytical Results Tables

Tables 3.4-3 and 3.4-4 summarize the complete analytical results for the sludge samples collected at the site. Tables 3.4-5 and 3.4-6 summarize the complete analytical results for the swipe samples. Tables 3.4-7 and 3.4-8 summarize the results for the field blank. The positive results for these samples are presented in Table 3.4-9 for sludge samples and Table 3.4-10 for swipe samples. Positive

results for the method blanks and the associated data qualifiers for both the method and field blanks are reported on Table 2 of the data validation memorandum in Appendix D. Table 4 in the data validation memorandum in Appendix D reports the results for the project-specific MS/MSD samples that were outside control limits. Table 7 in the data validation memorandum in Appendix D reports the positive results and RPDs for the field duplicates.

3.4.6 Data Completeness and Representativeness 3.4.6.1 Analytical Method Problems

No problems were noted with the analytical methods used for the samples collected at the site except for the levels of spiking for some reactive compounds. The laboratory is currently increasing spiking levels and calibration ranges for these compounds under a laboratory corrective action program.

3.4.6.2 Needed QA/QC Change

No QA/QC changes were noted for the analytical methods used for samples collected at the site.

3.4.7 Summary and Conclusions

There were no data points rejected for the samples collected at the site. A completeness goal of 100% was achieved for analytical level III data. The analytical data meet specified QC criteria, with no any exceptions or qualifications noted in this report. Table 3.4-11 presents a list of samples qualified for this project. Any samples with "J" flags not listed on Table 3.4-11 were quantified below the PQL. The data points that were qualified as estimated should be considered useable for the purposes of this project. A total of 1617 data points are associated with the site.

Table 3.4-1 Sample Listing, Building 112 AOI 473-Room 10 Year 2002 ESI, Former Griffiss Air Force Base, Rome, NY

	ATT+T/80103WS sletsM JAT	×	-			يدا	<u>_</u>	يدا	5	-	 	lح	_	يحا	×	عدا	×	×	×	<u>_</u>	حا	×	×	×	×	×	×
S	TRPH 418.1M	×	•	¥	2	×	×	×	>:	×	×	~	×		_	×	×	×	×	×	~	×	×	×	×	×	×
ANALYSES	TCL SVOC SW8270C				×	×											×					-					24
ζĄΪ				×	,	• ∵			ļ		Г	ि	i a fi					to Bo		×		×	×				
A	atsso_mtsa abilos %	XX	×	×	×	×		×	2			×	3	×	×		×	٤	×	l i		×	×	×	×	×	2
	TCL PCBs 5082						~		7					7		-		,A-16							-		
	Туре	ī	FD1	FRI	MSI	ī	FDI	FRI	2	MSI	ž	Z	N	N	Z	IN	MSI	N	FBI	IN.	**FD1	**FR1	**MS1	IN.	IN**	1N••	**RB1
	Stal	Ţ	s	S	S	£	Ţ	Ţ	٠	۵	÷	ī	T	T	Ţ	Ħ	T	÷	T	S	s	S	S	s	S	S	S
	WP	λ	γ	٨	Y	Y	Y	γ	Ä	٨	Y	γ	Y	Y	٨	~	*	٨	Y	. λ	Y	λ.	Y	Y	Y	٨	٨
	Motrix	Sediment	Sediment	Sediment	Sediment (MS/MSD)	Swipe	Swipe	Swipe	Suite	Swipe (MS/MSD)	Swipe	Subsurface soil	Subsurface soil	Subsurface soil	Subsurface soil	Subsurface soil	Subsurface soil	Subsurface soil	Eqpt. Washwater								
	L ab	VSC	ASC	ERDC	ASC	ASC	ASC	ERDC	ASC	ASC	ASC	VSC	ASC	ASC	ASC	ASC	ASC	ASC	VSC	ASC	ASC						
	Sample Number	G473-Rm10-SD01	G473-Rm10-SD01/D	G473-Rm10-SD01/S	G473-Rm10-SD01 (extra volume)	G473-Rm10-SP01	G473-Rm10-SP01/D	G473-Rm10-SP01/S	C473 Pmile Shot	G473-Rm10-SP02 (extra volume)	G473-Rm10-SP03	G473-Rm10-SP04	G473-Rm10-SP05	G473-Rm10-SP06	G473-Rm10-SP07	G473-Rm10-SP08	G473-Rm10-SP09	G473-Rm10-SP10	FIELDQC-FB473-Rm10-SP1	G473-Rm10-SS01	G473-Rm10-SS01/D	G473-Rm10-SS01/S	G473-Rm10-SS01 (extra volume)	G473-Rm10-SS02	G473-Rm10-SS03	G473-Rm10-SS04	FIELDQC-RB473-Rm10-SS1
	Date	07/17/02				07/11/02	07/11/02	07/11/02	2011110	07/17/02	07/17/02	07/17/02	01/11/02	07/17/02	07/17/02	07/11/02	07/11/02	07/17/02	07/17/02								
	Location	AOI 473-	Room 10																								

AOI = Area of Interest.

ASTM = American Society for Testing and Materials. ASC = B & E's Analytical Services Center.

Daplicate sample.

Depth = Depth interval at which sample will be collected.

ERDC = U.S. Army Engineer Research and Development Center Quality Assura

BSI = Expanded Site Investigation.

Eqp1.= Equipment Washwater. FB= Field blank sample.

FD = Field duplicate.

FR = Field split/replicate.

MS/MSD = Matrix spike/matrix spike duplicate. N = Original sample.

QC ≈ Quality control. PCB = Polychlorinated biphenyl.

VOC = Votatile organic compound.

TCI.P = Toxicity Characteristic Leaching Procedure TRPH = Total recoverable petroleum hydrocarbons.

TCL = Target Compound List.

TAL = Target analyte list.

Stat = Status (O=Open, T=Taken, S=Skipped). SVOC = Semivolatile organic compound.

SS = Subsurface soil sample.

SP = Swipe sample. /S = Split sample. SD = Sludge.

RB = Rinsate blank sample.

WP = Sauple in work plan (Y= yes, N= no). ** = Provisional samples collected only if cracks were observed in floor.

02:001001_UK10_02_01-B0930 QC\$R_A01473 Tabk.xls-11/7/2002

02:001002_UK10_03_03

Association Between Field and QA/QC Samples for AOI 473, Former Griffles Air Force Base, Rome, New York **Table 3.4-2**

Field Splits		G473-RM10-SP01/S									
Field Duplicates		G473-RM10-SP01/D									
MS/MSD			MS/MSD								
Fleid Blanks		FIELDQC-FB473-RM10-SP1	FIBLDQC-FB473-RM10-SP1	FIBLDQC-FB473-RM10-SP1	FIBLDQC-FB473-RM10-SP1	FIBLDQC-FB473-RM10-SP1	FIBL.DQC-FB473-RM10-SP1	FIELDQC-FB473-RM10-SP1	FIELDQC-FB473-RM10-SP1	PIBLDQC-FB473-RM10-SP1	FIELDQC-FB473-RM10-SP1
ID Corrections	None	None	None	None	None	None	None	None	None	None	None
Sample ID	G473-RM10-SD01	G473-RM10-SP01	G473-RM10-SP02	G473-RM10-SP03	G473-RM10-SP04	G473-RM10-SP05	G473-RM10-SP06	G473-RM10-SP07	G473-RM10-SP08	G473-RM10-SP09	G473-RM10-SP10
Sample Date	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	.7/17/02	7/17/02	7/17/02	7/17/02	7/17/02

AOI = Area of Interest.

M = Duplicate.
 ESI = Expanded Site Investigation.
 FB= Field blank sample.
 MS/MSD = Matrix spike/matrix spike duplicate.

QA = Quality assurance. QC = Quality control. /S = Split. SD - Sludge sample. SP = Swipe sample.

Table 3.4-3
Complete Analytical Data Summary for the Sludge Sample, AOI 473 Year 2002 ESI Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

Method	Analyte	Sample ID: Date:	G473-RM10-SD01 07/17/02
Semivolatile Org	anics by Method 8270C (µg/Kg)		,
SW8270C	1.2.4-Trichlorobenzene	μg/Kg	516 U
SW8270C	1,2-Dichlorobenzene	µg/Kg	516 U
SW8270C	1,3-Dichlorobenzene	μg/Kg	516 U
SW8270C	1,4-Dichlorobenzene	μg/Kg	516 U
SW8270C	2,4,5-Trichlorophenol	µg/Kg	1300 U
SW8270C	2,4,6-Trichlorophenol	μg/Kg	516 U
SW8270C	2,4-Dichlorophenol	μg/Kg	516 U
SW8270C	2,4-Dimethylphenol	µg/Кg	516 U
SW8270C	2,4-Dinitrophenol	μg/Kg	516 U
SW8270C	2,4-Dinitrotoluene	μg/Kg	516 U
SW8270C	2,6-Dinitrotoluene	µg/Kg	516 U
SW8270C	2-Chloronaphthalene	μg/Kg	516 U
SW8270C	2-Chlorophènol	μg/Kg	516 U
SW8270C	2-Methylnaphthalene	μ g/K g	516 U
SW8270C	2-Methylphenol	μ g/Kg	516 U
SW8270C	2-Nitroaniline	μ g/K g	1300 U
SW8270C	2-Nitrophenol	μg/Kg	516 U
SW8270C	3,3'-Dichlorobenzidine	μg/Kg	1030 U
SW8270C	3-Nitroaniline	μg/Kg	1300 U
SW8270C	4,6-Dinitro-2-methylphenol	µg/Кg	1300 U
SW8270C	4-Bromophenyl phenyl ether	μg/Kg	516 U
SW8270C	4-Chloro-3-methylphenol	μg/Kg	516 U
SW8270C	4-Chloroaniline	μg/Kg	516 U
SW8270C	4-Chlorophenyl phenyl ether	μg/Kg	516 U
SW8270C	4-Methylphenol	μ g/K g	516 U
SW8270C	4-Nitroaniline	μg/Kg	1300 U
SW8270C	4-Nitrophenol	μg/Kg	1300 U
SW8270C	Acenaphthene	μg/Kg	181 J
SW8270C	Acenaphthylene	µg/Кg	516 U
SW8270C	Anthracene	μg/Kg	660 J
SW8270C	Benz(a)anthracene	μg/Kg	1140 J
SW8270C	Benzo(a)pyrene	μg/Kg	810 J
SW8270C	Benzo(b)fluoranthene	μg/Kg	897 J
SW8270C	Benzo(g,h,i)perylene	μg/Kg	392 J
SW8270C	Benzo(k)fluoranthene	µg/Кg	1160 J
SW8270C	Benzoic acid	μg/Kg	1300 U
SW8270C	Benzyl alcohol	µg/Кg	516 U
SW8270C	Bis(2-chloroethoxy)methane	μg/Kg	516 U
SW8270C	Bis(2-chloroethyl)ether	μg/Kg	516 U
SW8270C	Bis(2-chloroisopropyl)ether	μg/Kg	516 U
SW8270C	Bis(2-ethylhexyl)phthalate	µg/Кg	11 00 U
SW8270C	Butyl benzyl phthalate ·	μg/Kg	516 U
SW8270C	Carbazole	μg/Kg	516 U
SW8270C	Chrysene	µg/Кg	1130 J
SW8270C	Dibenz(a,h)anthracene	µg/Kg	516 U
SW8270C	Dibenzofuran	μg/Kg	68.0 J
SW8270C	Diethyl phthalate	μg/Kg	516 U
SW8270C	Dimethyl phthalate	μ g /Kg	516 U

Table 3.4-3
Complete Analytical Data Summary for the Sludge Sample, AOI 473 Year 2002 ESI Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

		Sample ID:	G473-RM10-SD01
Method	Analyte	Date:	07/17/02
SW8270C	Di-n-butyl phthalate	μg/Kg	516 U
SW8270C	Di-n-octyl phthalate	μg/Kg	516 U
SW8270C	Fluoranthene	μg/Kg	1690 J
SW8270C	Fluorene	µg/Kg	190 J
SW8270C	Hexachlorobenzene	μg/Kg	516 U
SW8270C	Hexachlorobutadiene	μg/Kg	516 U
SW8270C	Hexachlorocyclopentadiene	μg/Kg	1300 U
SW8270C	Hexachloroethane	μg/Kg	516 U
SW8270C	Indeno(1,2,3-cd)pyrene	µg/Kg	227 J
SW8270C	Isophorone	μg/Kg	516 U
SW8270C	Naphthalene	μg/Kg	101 J
SW8270C	Nitrobenzene	μg/Kg	516 U
SW8270C	N-Nitrosodimethylamine	μg/Kg	516 U
SW8270C	N-Nitrosodi-n-propylamine	µg/Kg	516 U
SW8270C	N-Nitrosodiphenylamine	μg/Kg	516 U
SW8270C	Pentachlorophenol	μg/Kg	1300 U
SW8270C	Phenanthrene	µg/Кg	2210 J
SW8270C	Phenol	μg/Kg	516 U
SW8270C	Pyrene	μg/Kg	1440 J
Metals/Mercury b	y Method 6010B/7471A (mg/Kg)		<u>_</u>
SW6010B	Aluminum ·	mg/Kg	5530
SW6010B	Antimony	mg/Kg	28.2
SW6010B	Arsendic	mg/Kg	19.1 J
SW6010B	Barium	mg/Kg	190
SW6010B	Beryllium	mg/Kg	12.1 U
SW6010B	Cadmium	mg/Kg	15.9 J
SW6010B	Calcium	mg/Kg	148000
SW6010B	Chromium	mg/Kg	42.5 J
SW6010B	Cobalt	mg/Kg	8.36 J
SW6010B	Соррет	mg/Kg	1370
SW6010B	Iron	mg/Kg	114000
SW6010B	Lead	mg/Kg	12200
SW6010B	Magnesium	mg/Kg	4070
SW6010B	Manganese	mg/Kg	80 1
SW7471A	Mercury	mg/Kg	3.60
SW6010B	Nickel	mg/Kg	58.4
SW6010B	Potassium	mg/Kg	3680
SW6010B	Selenium	mg/Kg	121 U
SW6010B	Silver	mg/Kg	18.6 J
SW6010B	Sodium	mg/Kg	716 J
SW6010B	Thallium	mg/Kg	27.9 J
SW6010B	Thallium	mg/Kg	27.9 J
SW6010B	Vanadium	mg/Kg	12.0 J
SW6010B	Zinc	mg/Kg	2340

Table 3.4-3 Complete Analytical Data Summary for the Sludge Sample, AOI 473 Year 2002 ESI Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

		Sample ID:	G473-RM10-SD01
Method	Analyte	Date:	07/17/02
PCBs by Method	8082 (µg/Kg)		
SW8082	Aroclor 1016	µg/Kg	33.2 U
SW8082	Aroclor 1221	μg/Kg	66.4 U
SW8082	Aroclor 1232	μg/Kg	33.2 U
SW8082	Aroclor 1242	μ g/ Kg	33.2 U
SW8082	Aroclor 1248	μg/Kg	33.2 U
SW8082	Aroclor 1254	µg/Кg	33.2 U
SW8082	Aroclor 1260	μg/Kg	473 J
TRPH by Method	418.1M (mg/Kg)		
EPA418.1	Petroleum Hydrocarbons	mg/Kg	8710
Percent Moisture	(wt%)		
ASTM_D2216	Percent Moisture	wt%	44.1

Note: Units of %REC indicate that the compound is a surrogate spike.

Key:

AOI = Area of Interest.

ESI = Expanded Site Investigation.

J = Estimated value. The reported value is below the quantitation limit or estimated due to variance from quality control limits.

μg/Kg = Micrograms per kilogram.

mg/L = Milligrams per kilogram.

PCBs = Polychlorinated Biphenyls.

SD = Sludge sample.

TRPH = Total recoverable petroleum hydrocarbox s.

U = Analyte was not detected or not present above background levels. The reported value is the quantitation limit or value elevated due to background

Table 3.4-4
Summary of Tentatively Identified Compound Results for the Sludge Sample, AOI 473 2002 ESI, Former Griffiss Air Force Base, Rome, NY

Analyte	Match Quality	Sample ID: Date:	G473-RM10-SD01 07/17/02
Semivolatile Organics by Method 8270C (µg/Kg)			
Unknown	0		130 NJ
Stigmastan-3,5-dien	91		10600 NJ
Heptadecane, 2,6,10,15-tetramethyl-	80		184 NJ
Decahydro-9-ethyl-4,4,8,10-tetramethylna	91		3990 NJ
Decahydro-4,4,8,9,10-pentamethylnaphthal (15.657)	93		835 NJ
Decahydro-4,4,8,9,10-pentamethylnaphthal (15.248)	62		194 NJ
BENZENE, 1,3-BIS(DIMETHYLAMINO)-	43		161 NJ
Acridine, 9-methyl-	50		4830 NJ
4,4´-Difluorobiphenyl	60		111 N J
3-Hydroxy-3-methyl-2-butanone	53		319 NJ
3,8-Nonadien-2-one, (E)-	22		827 NJ
3,5-Octadiene, 4,5-diethyl-3,6-dimethyl-	70		267 NJ
2-UNDECENE, 4,5-DIMETHYL-, CIS-, THREO-	45		7960 NJ
2-Pentanone, 4-hydroxy-4-methyl-	50		64400 NJ
2-Hexanone, 4-hydroxy-5-methyl-	72		976 NJ
2-Heptanone	25		6030 NJ
2,5,5,6,1a-Pentamethyl-cis-1a,4a,5,6,7,8	58		252 NJ
1,4-Hexadiene, 2,3,4,5-tetramethyl-	53		136 NJ
(E)-4,8-Dimethyl-3,8-nonadien-2-one	52		1120000 NJ

Note: Results are reported as total for similar tentatively identified compounds.

Key:

AOI = Area of Interest.

ESI = Expanded Site Investigation.

µg/Kg = Micrograms per kilogram.

NJ = Identification not confirmed, estimated value.

SD = Sludge sample.

Table 3.4-5 Complete Analytical Data Summary for Wipe Samples, AOI 473 Year 2002 ESII, Former Griffiss Air Force Base, Rome, New York

					000	0 440		91,0		9	0 87 0		
		Sample	G4/3- RM10-	G4/3- RM10-	G4/3- RM10-	G473- RM10-	G473- RM10-	G473- RM10-	G4/3- RM10-	G473- RM10-	G4/3- RM10-	G473- RM10-	G473- RM10-
		<u>:</u>	SP01	SP01/D	SP02	SP03	SP04	SP05	SP06	SP07	SP08	SP09	SP10
Method	Analyte	Date:	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02
Semivolatile	Semivolatile Organics by Method 8270C (µg/wipe)	g/wipe)											
SW8270C	SW8270C 1,2,4-Trichlorobenzene	ng/wipe	10.0 U										
SW8270C	SW8270C 1,2-Dichlorobenzene	ug/wipe	10.0 U										
SW8270C	SW8270C 1,3-Dichlorobenzene	ug/wipe	10.0 U										
SW8270C	SW8270C 1,4-Dichlorobenzene	ug/wipe	10.0 U										
SW8270C	SW8270C 2,4,5-Trichlorophenol	ив/wipc	20.0 U	20.0 U	50.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	20.0 U	50.0 U	50.0 U
SW8270C	SW8270C 2,4,6-Trichlorophenol	µg/wipe	10.0 U										
SW8270C	SW8270C 2,4-Dichlorophenol	ug/wipe	10.0 U										
SW8270C	SW8270C 2,4-Dimethylphenol	ug/wipe	10.0 U										
SW8270C	SW8270C 2,4-Dinitrophenol	ug/wipe	50.0 U	50.0 U	50.0 U	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	20.0 U	20.0 U	50.0 U
SW8270C	SW8270C 2.4-Dinitrotoluene	iig/wine	10.01	10.01	10.01)	10.0 U	10.01	1001					
SW8270C	SW8270C 2,6-Dinitrotoluene	ug/wipe	10.0 U										
SW8270C	SW8270C 2-Chloronaphthalene	ug/wipe	10.0 U										
SW8270C	SW8270C 2-Chlorophenol	ug/wipe	10.0 U										
SW8270C	SW8270C 2-Methylnaphthalene	ug/wipe	10.0 U										
SW8270C	SW8270C 2-Methylphenol	ug/wipe	10.0 U										
SW8270C	SW8270C 2-Nitroaniline	ug/wipe	50.0 U	20.0 U	20.0 U	50.0 U	50.0 U						
SW8270C	SW8270C 2-Nitrophenol	ug/wipe	10.0 U										
SW8270C	SW8270C 3,3'-Dichlorobenzidine	μg/wipe	20.0 U										
SW8270C	SW8270C 3-Nitroaniline	µg/wipe	50.0 U	50.0 U	50.0 U	20.0 U	50.0 U						
SW8270C	SW8270C 4,6-Dinitro-2-methylphenol	μg/wipc	50.0 U	20.0 U	20.0 U	20.0 U	50.0 U						
SW8270C	SW8270C 4-Bromophenyl phenyl ether	ug/wipe	10.0 U										
SW8270C	SW8270C 4-Chloro-3-methylphenol	μg/wipe	10.0 U										
SW8270C	SW8270C 4-Chloroaniline	ug/wipe	10.0 U										
SW8270C	4-Chlorophenyl phenyl ether	ug/wipe	10.0 U										
SW8270C	4-Methylphenol	µg/wipe	10.0 U										
SW8270C	SW8270C 4-Nitroaniline	ug/wipe	50.0 U	20.0 U	20.0 U	50.0 U							
SW8270C	SW8270C 4-Nitrophenol	ug/wipe	50.0 U										
SW8270C	SW8270C Acenaphthene	ug/wipe	10.0 U										
SW8270C	SW8270C Accnaphthylene	µg/wipe	10.0 U										
SW8270C	Anthracene	ug/wipe	10.0 U										
SW8270C	SW8270C Benz(a)anthracene	ug/wipe	10.0 U										
SW8270C	SW8270C Benzo(a)pyrene	µg/wipc	10.0 U										

Table 3.4-5 Complete Analytical Data Summary for Wipe Samples, AOI 473 Year 2002 ESII, Former Griffiss Air Force Base, Rome, New York

		Sample	G473-	G473.	G473.	G473-	G473.	G473.	G473-	G473.	G473-	G473-	G473-
		iD:	SP01	SP01/D	SP02	SP03	SP04	SP05	SP06	SP07	SP08	SP09	SP10
Method	Analyte	Date:	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02
SW8270C Benzo(b)fluoranthene	(b)fluoranthene	ug/wipe	10.0 U										
	Benzo(g,h,i)perylene	ug/wipe	10.0 U										
	Benzo(k)fluoranthene	ug/wipe	10.0 U										
SW8270C Benzo	Benzoic acid	ug/wipe	150 U										
SW8270C Benzyl alcohol	/i alcohol	µg/wipe	5.45 J	10.0 U	4.37 J								
SW8270C Bis(2-	SW8270C Bis(2-chloroethoxy)methane	µg/wipe	10.0 U										
SW8270C Bis(2-chloroethyl)ether	chloroethyl)ether	ug/wipe	10.0 U										
SW8270C Bis(2-	SW8270C Bis(2-chloroisopropyl)ether	ug/wipe	10.0 U										
SW8270C Bis(2-	SW8270C Bis(2-ethylhexyl)phthalate	µg/wipe	14.3 J	17.8 J	10.4 J	6.64 J	168 J	10.0 U	10.0 U	189 J	2.88 J	10.0 U	5.32 J
SW8270C Butyl benzyl phthalate	benzyl phthalate	ug/wipe	10.0 U										
SW8270C Carbazole	zole	ug/wipe	10.0 U										
SW8270C Chrysene	ene	μg/wipe	10.0 U										
SW8270C Diben	Dibenz(a,h)anthracene	µg/wipe	10.0 U										
SW8270C Dibenzofuran	ızofuran	µg/wipe	10.0 U										
SW8270C Diethyl phthalate	yl phthalate	µg/wipe	10.0 U										
SW8270C Dimet	Dimethyl phthalate	μg/wipe	10.0 U										
SW8270C Di-n-b	Di-n-butyl phthalate	ug/wipe	10.0 U										
	Di-n-octyl phthalate	ug/wipe	10.0 U										
	Fluoranthene	µg/wipe	10.0 U										
SW8270C Fluorene	ene	ug/wipe	10.0 U										
SW8270C Hexac	Hexachlorobenzene	ug/wipe	10.0 U										
SW8270C Hexac	Hexachlorobutadiene	µg/wipe	10.0 U										
	Hexachlorocyclopentadiene	нg/wipe	20.0 U	50.0 U	50.0 U	20.0 U	50.0 U	20.0 U	50.0 U	50.0 U	20.0 U	20.0 U	S0.0 U
	Hexachloroethane	μg/wipe	10.0 U										
	Indeno(1,2,3-cd)pyrene	μg/wipe	10.0 U										
SW8270C Isophorone	orone	µg/wipe	10.0 U										
SW8270C Napht	Naphthalene	ug/wipe	10.0 U										
SW8270C Nitrob	Nitrobenzene	µg/wipe	10.0 U										
SW8270C N-Nit	SW8270C N-Nitrosodimethylamine	µg/wipe	10.0 U										
SW8270C N-Niti	N-Nitrosodi-n-propylaminė	µg/wipc	10.0 U										
SW8270C N-Nit	SW8270C N-Nitrosodiphenylamine	µg/wipe	10.0 U										
SW8270C Pentachlorophenol	chlorophenol	µg/wipc	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U	20.0 U	50.0 U	20.0 U	50.0 U	50.0 U
SW8270C Phenanthrene	unthrene	ив/wipe	10.0 U										

Table 3.4-5 Complete Analytical Data Summary for Wipe Samples, AOI 473 Year 2002 ESII, Former Grifflss Air Force Base, Rome, New York

		Comple	G473-	G473-	G473-	G473-	G473.	G473-	G473-	G473	G473-	G473-	G473-
		Sample	RM10 -	FM10 -	RM10-	RM10-	RM10-	RM10-	RM10-	RM10-	FM10-	RM10-	RM10-
		ä	SP01	SP01/D	SP02	SP03	SP04	SP05	SP06	SP07	SP08	SP09	SP10
Method	Analyte	Date:	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02
SW8270C Phenol	Phenol	ug/wipe	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
SW8270C Pyrene	Pyrene	ug/wipc	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Metals/Merci	Metals/Mercury by 6010B/7471A (µg/wipe)												
SW6010B Aluminum	Aluminum	ug/wipe	10716	4190 J	3320	2850	9180	1650	1980	7600	2420	2500	5170
SW6010B	Antimony	ug/wipe	5.38 U	7.15 U	50.0 U	10.0 U	10.0 U	10.0 U	5.00 U	6.75 U	2.70 U	5.00 U	11.6 J
SW6010B Arsenic	Arsenic	ug/wipe	5.54	5.00 U	50.0 U	10.0 U	8.99 J	10.0 U	5.00 U	2.48 J	0.671 J	5.00 U	25.0 U
SW6010B	Barium	ug/wipe	134 J	73.4 J	57.6 J	101	155	53.1	100	95.9	180	87.3	130
SW6010B Beryllium	Beryllium	ug/wipe	0.654 J	2.50 U	25.0 U	5.00 U	5.00 U	5.00 U	2.50 U	2.50 U	1.00 U	2.50 U	12.5 U
SW6010B Cadmium	Cadmium	ug/wipe	26.6 J	15.8 J	11.2 J	18.3	21.0	101	9.73	12.1	14.6	19.2	17.8
SW6010B	Calcium	ug/wipe	79200 J	38000 J	25300	29100	102000	15700	20400	21300	18300	13600	55800
SW6010B Chromium	Chromium	ug/wipe	93.9 J	28.4 J	75.6	26.7	57.1	17.1	14.1	19.5	15.7	22.9	37.3
SW6010B Cobalt	Cobalt	l µg/wipe	13.4	5.60 j	9.75 j	5.44 j	i0.4 j	3.99 j	i.99 j	3.56 J	3.13 J	18.3	50.0 U
SW6010B Copper	Copper	ug/wipc	283 J	123 J	335	100	86.1	94.9	1720	45.1	9.08	192	41500
SW6010B Iron	Iron	ug/wipe	81100 J	34600 J	314000	87000	45900	128000	35800	1790	12900	9510	19500
SW6010B	Lead	ug/wipe	2780 J	1170 J	539	571	461	327	405	208	258	188	1910
SW6010B	Magnesium	ug/wipe	3980 J	1840 J	1420 J	1860	5150	1030	1340	1650	1250	1160	4490
SW6010B	SW6010B Manganese	ug/wipc	5030 J	1640 J	1020	259	410	315	127	95.3	77.7	81.5	197
SW7471A	Mercury	µg/wipe	20.1	21.9	124	67.4	45.5	35.3	29.0	14.9	25.9	14.2	0.576
SW6010B Nickel	Nickel	µg/wipe	83.9 J	31.6 J	139	22.0	30.0	158	13.1	8.93 J	9.38	20.7	23.3 J
SW6010B Potassium	Potassium	ug/wipe	4980 J	2280 J	23100	29000	26700	0/0/	18200	37000	1100	3670	32500
SW6010B Sclenium	Sclenium	ug/wipe	5.00 U	5.00 U	50.0 U	10.0 U	10.0 U	10.0 U	5.00 U	5.00 U	2.00 U	5.00 U	25.0 U
SW6010B Silver	Silver	µg/wipc	32.5 J	5.87 J	50.0 U	3.42 J	5.94 J	2.23 J	1.39 J	3.93 J	15.5	1.81 J	5.74 J
SW6010B Sodium	Sodium	µg/wipe	1160 U	O 619	7840	14400	28600	2650 U	7310 U	17200	4350 U	1220 U	11600
SW6010B Sodium	Sodium	ug/wipe	U 0911	O 619	7840	14400	28600	2650 U	7310 U	17200	4350 U	1220 U	11600
SW6010B Thallium	Thallium	µg/wipe	14.8 J	7.97 J	21.7 J	6.16 J	12.1	6.38 J	4.76 J	S.00 U	2.45 U	5.00 U	11.4 J
SW6010B	Vanadium	ug/wipc	26.0 J	12.7 J	65.0 J	26.4	31.3	13.8 J	9.69 J	8.79 J	6.27	4.20 J	15.5 J
	Zinc	µg/wipe	1680 J	713 J	1010	639	1320	428	394	372	448	346	1560

02: 001002_UK10_08_01

Complete Analytical Data Summary for Wipe Samples, AOI 473 Year 2002 ESII, Former Griffiss Air Force Base, Rome, New York **Table 3.4-5**

		Commis	G473-	G473-	G473-	G473·	G473-	G473-	G473-	G473-	G473-	G473-	G473-
		Sample	FIM10	RM10-	RM10 -	RM10-	RM10-	FM10 -	RM10-	RM10-	RM10-	RM10-	RM10-
		ë	SP01	SP01/D	SP02	SP03	SP04	SP05	SP06	SP07	SP08	SP09	SP10
Method	Analyte	Date:	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02
PCBs by Me	PCBs by Method 8082 (µg/wlpe)												
SW8082	SW8082 Aroclor 1016	µg/wipe	1.50 U	1.50 U	1.50 U	1.50 U	1.50 U	1.50 U	1.50 U	4.50 U	1.50 U	1.50 U	1.50 U
SW8082	SW8082 Aroclor 1221	µg/wipe	3.00 U	3.00 U	3.00 U	3.00 U	3.00 U	3.00 U	3.00 U	9.00 U	3.00 U	3.00 U	3.00 U
SW8082	SW8082 Aroclor 1232	µg/wipe	1.50 U	1.50 U	1.50 U	1.50 U	1.50 U	1.50 U	1.50 U	4.50 U	1.50 U	1.50 U	1.50 U
SW8082	SW8082 Aroclor 1242	ug/wipe	1.50 U	1.50 U	2.09	2.01	1.50 U	1.50 U	0.402 J	4.50 U	1.50 U	1.50 U	1.50 U
SW8082	SW8082 Aroctor 1248	ug/wipe	1.50 U	1.50 U	1.50 U	1.50 U	1.50 U	1.50 U	1.50 U	4.50 U	1.50 U	1.50 U	1.50 U
SW8082	SW8082 Aroclor 1254	µg/wipe	1.73	1.50 U	1.50 U	1.50 U	1.50 U	1.50 U	1.50 U	4.50 U	U.50 U	1.50 U	1.50 U
SW8082	SW8082 Aroclor 1260	µg/wipe	1.50 U	1.50 U	1.58	1.62	1.50 U	1.50 U	1.50 U	4.50 U	1.50 U	1.50 U	1.50 U
TRPH by Me	TRPH by Method 418.1M (mg/wipe)												
EPA418.1	EPA418.1 Petroleum Hydrocarbons	mg/wipe	1650 J	879 J	3020	5580	4850	3970	7260	7190	0961	4820	3020

Note: Units of %REC Indicate that the compound is a surrogate spike.

Key:

AOI = Area of Interest.

ESI = Expanded Site Investigation.

J = Estimated value. The reported value is below the quantitation limit or estimated due to variance from quality control limits.

ug/wipe = Micrograms per wipe.

mg/wipe = Milligrams per wipe.

NA = Not analyzed or reported.

PCBs = Polychlorinated Biphenyls.

SP = Wipe sample.

TRPH = Total recoverable petroleum hydrocarbons.

U = Analyte was not detected or not present above background levels. The reported value is the quantitation limit or value elevated due to background.

Table 3.4-6 Summary of Tentatively Identified Compound Results for Wipe Samples, AOI 473 2002 ESI, Former Grifflss Air Force Base, Rome, NY

romer drimss An roice base, nome, wr									
	Sample ID:	G473-	G473-	G473	G473-	G473-	G473.	G473-	G473-
		HM10-	HM10.	HM10-	RIM 10-	RM10-	RM10-	RM10-	RM10-
Analyla	Match Ought	SP01	SP01/D	SP02	SP03	SP04	SPOS	SP06	SP07
Semivolatile Organics by Method 8270C (ug/wipe)		201111	307	201111	207117	201111	201111	7111102	2011111
Tritetracontane	16	ΔŃ	NR	ďN	ŖN	NF	193.2 NJ	HN.	NA
Triethylene glycol	78	ΗN	Ν̈́	Ŋ	ŊŊ	28.8 NJ	Ę	Ė	Ľ
Tricosane	63	NF	NF	ΝŖ	22.6 NJ	26.8 NJ	NF	άN	Ę.
Triallylsilane	52	NP	ΝF	ΝŖ	¥	LIN.	ĄN	141.2 NJ	ž
TRAPEZIFOLIXANTHONE DIMETHYL ETHER	35	'n	NF	NF	NF	NF	NF	Ä	NF
Tetratriacontane	06	'n	NP	NP	NF	NF	41.2 NJ	Ä	ΝŖ
Tetratetracontane	87	М	NF	NF	NF	ΝP	NF	N.	ĘŃ
Tetradecane, 1-bronno-	70	NF	NF	NP	NF	NF	Ę	ΝF	ΝF
Tetracosane	93	76 NJ	ΝP	NF	NF	43 NJ	έŁ	ŊŖ	P. P.
Squalene	98	NF	NP	NF	NP	N.	ξŽ	50.4 NJ	₽N BN
Propaire, 1-(1-inctliylethoxy)-	30	£	Nr.	NF	N.	.iki	Ħ	i.	Ņŗ
Phthalic anhydride (13.985)	96	NF	ŊŖ	NP	NP	NF	ΕŃ	N.	ΕŃ
Phenol, 4,4'-butylidenebis(2-(1,1-dimeth	16	Ϋ́N	124.4 NJ	NP	13.58 NJ	36.2 NJ	35.2 NJ	46.2 NJ	ŖN
Phenol, 4-(1-phenylethyt)-	83	Ϋ́	ĄN	NF	NP	NF	1N 66	έN	Ν
Phenol, 2,4-bis(1-phenylethyl)-	70	ΝĀ	Ą	NF	NF	NF	104.8 NJ	NF	Ϋ́
Pentatriacontane	16	Ë	μÑ	NP	NP	NF	ΝP	ĘN	ъ
Pentadecane, 8-hexyl-	16	ЯN	NF	NP	NP	NF	ИF	Ŋ	11.9 NJ
PENTADECANE, 2,6,10-TRIMETHYL-	43	Ä	ĄN	NP	NF	NF	ΝP	186 NJ	ΨN
Pentadecane, 2,6,10,14-tetramethyl-	94	NF	NP	NF	NF	NF	NF	2560 NJ	ΝF
Pentacosane	95	165.8 NJ	ĘŃ	NF	NF	NF	NP	NP	ЯN
Octanoic Acid	72	Ą	ĄN	NF	NF	NF	NF	NF	ΨN
Octadecane, 1-bromo-	64	NF	NF	NF	NF	NF	1154 NJ	ΝP	цХ
Octadecane	87	Ą	Ν̈́	Į.	NF	ΝF	NF	106 NJ	Ŋŗ
Octacosane	96	Ŋ	Ė	98.6 NJ	NF	ΝF	NP	NP	цХ
Nonadecane	96	Ë	ΝΡ	NF	ΝP	NF	NF	110.6 NJ	¥
Nonacosane	96	NF	ΝΡ	78.2 NJ	NF	ΝŖ	ŊŖ	NF	Ŋ
n-Decanoic acid	64	МP	NF	NP	ΑΝ	ΝP	NF	NP	Ě
Naphthalene, 1,6-dimethyl-4-(1-methyleth	72	NF	NF	NF	ŊŊ	NF	NF	NF	¥
Hexatriacontane	06	ΝΡ	ΝΡ	125.4 NJ	ďN	NF	322 NJ	11.58 NJ	E N
Hexanoic acid, 2-methyl-	43	ΝΡ	NP	NF	цN	ΝŖ	ЧN	NF	12.32 NJ
Hexadecane, 2-methyl-	93	ΝΡ	NF	NF	NF	ΝF	NF	NF	цN
Hexadecane, 2,6,11,15-tetramethyl-	06	ΝΡ	ΝŖ	ΝΉ	NF	ЯN	NF	15940 NJ	Ŋŗ
Hexadecane, 2,6,10,14-tetramethyl-	06	NF	NF.	NR	N	ž	91.2 NJ	NF	Ä.

Table 3.4-6 Summary of Tentatively identified Compound Resuits for Wipe Samples, AOI 473 2002 ESI, Former Griffiss Air Force Base, Rome, NY

				247	C472	C472	CA79	0470	04.70
	Sample 1D:	RM10-	RM10-	RM 10-	RM10-	RM 10.	RM10.	RM10.	PM 10.
	Match	SP01	SP01/D	SP02	SP03	SP04	SP05	SP06	SP07
Analyte	Quality Date:	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02
Hexadecane	93	NP	NF	NF	ИF	NF	NP	ΝP	ΝŖ
Hexacosane	93	40.4 NJ	NF	29 NJ	36 NJ	76 NJ	92.2 NJ	30.6 NJ	ΝΡ
Heptanoic acid, methyl ester	25	NP	NP	NP	NF	191.8 NJ	NF	ž	ΝR
Heptane, 2,2,3,3,5,6,6-heptamethyl-	28	NF	7.18 NJ	NP	IN 1.01	ИP	. NP	ĄN	N.
Heptadecane, 9-octyl-	93	NF	NP	NP	NF	NF	NP	31.4 NJ	ŊĿ
Heptadecane	83	89.8 NJ	NP	NF	NF	NP	NF	Ą	Ν̈́
Heptacosane	91	14.08 NJ	NP	NP	96.8 NJ	NF	186.2 NJ	ŊŊ	13.58 NJ
Heneicosane	95	NF	NP	NP	IN 98'LI	161.2 NJ	NF	ΝP	Ϋ́
HAHNFETT	87	NP	NP	NP	NP	3480 NJ	NF	Ę	Ϋ́
Furan, tetrahydro-3,4-dimethyl-, cis-	18	NF	NF	NP	8.9 NJ	ИN	NF	dN	N.
Ether, heptyl hexyl	34	9.38 NJ	N.	9.98 NJ	NR	NP	NF	NF	N.
Ethanol, 2,2'-oxybis-	64	ΝP	NF	NP	NP	ЫŖ	NF	Ę	8.38 NJ
Ethanol, 2,2'-(oxybis(2,1-ethanediyloxy)	78	NP	NF	5.9 NJ	NP	NP	NF	ΝΡ	N.
Ethanol, 2,2'-(1,2-ethanediylbis(oxy))bi	38	NF	ΝŖ	NF	ŅŖ	NP	NF	ЧN	В
Eicosane, 10-methyl-	93.	142.6 NJ	NP	NP	NP	NF	87 NJ	45.4 NJ	N
Eicosane	89	NF	NF	NF	NF	NF	71.2 NJ	103.6 NJ	NF
E-8-Methyl-9-tetradecen-1-ol acetate	52	Ė	NF	NP	NF	NF	NF	NF	1312 NJ
d-Ribonic acid, gammalactone, cyclic	59	NF	NF	NF	ΝŖ	NP	NF	NF	Ŋ
Dotriacontane	91	NP	NF	NF	NF	NF	40.2 NJ	ΝF	Α̈́
Docosane	93	108 NJ	NP	ΝŖ	11.88 NJ	NF	42.2 NJ	115.4 NJ	100.2 NJ
Cyclopentane, 1,2,3-trimethyl-, (1_alpha	43	NF	ŊŊ	NF	NF	NF	NF	N	ĄN
CYCLOPENTANCARBONIC ACID, 3-METHYL-, M	25	N	NF	NP	NF	12.6 NJ	NF	NF	NF
Cyclohexanemethanol, 2-methyl-	43	NF	NF	34.6 NJ	NF	NI	NF	NP	NF
Cyclohexane, decyl-	76	NF	Ν	NF	ΝŖ	NF	NP	172.2 NJ	NF
Cyclohexane, 1-ethyl-4-methyl-, cis-	38	NF	Νĥ	NP	Ŋŗ	228 NJ	NF	NF	NF
CAPRONIC ACID, OCTYL ESTER	18	46.2 NJ	NF	NF	NP	NF	NF	NP	NF
Bicyclo(3_1_1)heptane, 2,6,6-trimethyl-,	09	Ν	ΝΉ	ΝŖ	ΝΡ	NP	NF	NF	NF
Bicyclo(3_1_0)hexan-2-one, 4-methyl-1-(1	89	NF	ΝΡ	4260 NJ	1228 NJ	NF	NF	NF	NF
Benzothiazole	91	N.	6.64 NJ	NP	8.44 NJ	45.4 NJ	NF	NF	NF
Benzenethiol, 2-amino-	64	10.66 NJ	ΝŖ	NF	NF	ΝF	NF	NP	NF
8-Nonenoic acid	17	NF	NF	NF	NF	NF	NF	NP	NF
7-Octynoic acid, methyl ester	17	N	7.42 NJ	ΝF	ΝΡ	NF	NF	NP	ΝF
6-METHYL-6-(5'METHYL-2'-FURYL)HEPTA-2,3-	43	NF	NF	ΝF	ΝΡ	NF	NP	22.8 NJ	NF
4-Cyanocyclohexene	66	78 NJ	17.16 NJ	33.8 NJ	39.6 NJ	39 NJ	NF	NF	23.6 NJ

02: 001002_UK10_08_01-B

Summary of Tentatively Identified Compound Results for Wipe Samples, AOI 473 2002 ESI, Former Griffiss Air Force Base, Rome, NY **Table 3.4-6**

rolliel diffies All rolce base, notife, ivi									
	Sample ID:	G473-	G473.	G473·	G473-	G473·	G473·	G473-	G473-
		RM10-	RM10.	RM10.	RM10.	RM10.	FM10 .	FM10 -	RM10.
	Match	SP01	SP01/D	SP02	SP03	SPO4	SP05	SPOG	SP07
Analyte	Quality Date:	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02
4-Chloro-3-n-hexyltetrahydropyrane	09	3980 NJ	NF	Nβ	ΑN	ΝŖ	ΝP	ΝŖ	ΗN
4-Benzylamino-1,3-diphenyl-5,6,7,8-tetra	74	NF	NP	NF	NF	цХ	Ą	Ě	10.06 NJ
4,5-DIDEUTERO ISOTHIAZOLE	27	NF	dΝ	NF	£.	ЧĀ	Į.	¥	8.66 NJ
4(5)-METHYL-5(4)-NITROIMIDAZOLE	38	NF	NF	NF	ĄN	19.58 NJ	μN	ĘŲ	NP
3-Pentanol, 2-methyl-	53	10.84 NJ	NF	NF	Ŗ	Ę	Ë	H.	Z Z
3-Methyl-2-butyl acetate	42	NF	21.6 NJ	NF	NF	Ŋ	Ě	Ą	NF
3-Hydroxy-3-methyl-2-butanone	50	NF	10.04 NJ	NF	ΝŖ	Ŗ	ž	ΑN	NF
3-HEXEN-2-ONE, 3-CYCLOHEXYL-4-ETHYL-	43	Ν	NF	NF	NF	ИF	194.4 NJ	ž	NF
2-Pentenoic acid, 4-methylphenyl ester	22	ΝF	6.38 NJ	NF	NF	NF	Ę	NF	NP
2-Pentanone, 4-hydroxy-4-methyl-	23	2440 NJ	2283.8 NJ	2220 NJ	2040 NJ	2840 NJ	2100 NJ	147.2 NJ	2394.8 NJ
2-Octanone	47	ĄN	7.44 NJ	NF	NF	NF	NF	ŊŖ	NR
2-Hexanone, 4-hydroxy-5-methyi-	žű	79.8 NJ	ΝΉ	N.	2,1 NJ	27.4 NJ	NF	NF	32.6 NJ
2-Heptanone	23	210 NJ	ΡN	175 NJ	171.8 NJ	206 NJ	186.4 NJ	NF	Ä
2H-1,3-Benzoxazine, 6-chloro-3-cyclohexy	35	ŊŖ	NF	NF	NF	26.6 NJ	N.	NF	NP
2-Butanone, 3-hydroxy-3-methyl-	33	NF	μN	NF	NP	NP	NF	N.	8.78 NJ
2-Butanol, 3-methyl-, acetate	50	М	Ŋŗ	26 NJ	NP	NF	AF.	NF	NF
2-Acetylthiazole	32	EN.	ЧN	18.56 NJ	NP	NF	NF	ŊĿ	NR
2,6,10-Dodecatrien-1-ol, 3,7,11-trimethy	89	N.	160 NJ	NF	NP	NF	Ą	NF	NR
2,4-Hexadiene	35	NF	ΡN	8.72 NJ	NP	NF	¥	NF	NR
2,4,6-Tris-(1-phenylethyl)-phenol	38	63.66 NJ	175.04 NJ	168.04 NJ	215.08 NJ	189.3 NJ	82 NJ	69.8 NJ	164.4 NJ
1-Tetradecanol	38	N	ĘŲ.	NF	10.68 NJ	N.	NR	NF	NF
1-Bromo-3-(2-bromoethyl)heptane	52	ΝŖ	6140 NJ	ΝF	Ą	NF	NP	JN	H.
17-Pentatriacontene	43	ΝF	Ą	Ä	NF	NF	NF	NF	NR
10-Methylnonadecane	16	63.2 NJ	NF.	Ϋ́N	NF	NP	NP	NF	NF
1,4-Hexadiene, 2-methyl-	38	Ë	NF	S.	NF	33.6 NJ	NF	ΝF	NF
1,4-Benzenediol, 2,5-bis(1,1-dimethylpro	83	N.	NF	ΝŖ	NF	NF	NF	ЧN	Ž
1,3-Hexadiene, 3-ethyl-2-methyl-, (Z)-	25	Ν̈́	NF	ΝF	167 NJ	NF	NF	ЫF	N
1,2-Ethanediamine, N-methyl-	35	Α̈́	7.78 NJ	ŊŖ	NF	NF	NF	NF	'n
1,2,3,4-Tetrahydronaphthalene-d12	70	ΝŁ	ĄN	ŊŖ	7.24 NJ	NF	NF	NF	NF

Note: Results are reported as total for similar tenatively identified compounds.

AOI = Area of Interest. ESI = Expanded Site Investigation.

ug/wipe = Micrograms per wipe.

NF = Not found. NJ = Identification not confirmed, estimated value. SP = Wipe sample.

Table 3.4-6 Summary of Tentatively Identified Compound Results for Wipe Samples, AOI 473 2002 ESI, Former Griffiss Air Force Base, Rome, NY

	Sample 10.	G473-	G473-	G473-	G473.	G473.
			FIM10-	RM10-	HM10-	RM 10-
	Match	SP08	SP09	SP10	SP09	SP10
Analyte	Quality Date:	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02
Semivolatile Organics by Method 8270C (µg/wipe)						
Tritetracontane	16	ИP	dN	NF	ŊŖ	N
Triethylene glycol	78	NP	ΝP	NF	ΝP	NP
Tricosane	93	NP	335.2 NJ	Иľ	335.2 NJ	NP
Triallylsilanc	52	NP	NP	NP	NF	N
TRAPEZIFOLIXANTHONE DIMETHYL ETHER	35	NP	NP	254 NJ	NF	254 NJ
Tetratriacontane	06	NP	NP	NF	NP	NF
Tetratetracontane	87	ΝP	98.6 NJ	ŊŊ	98.6 NJ	NR
Tetradecane, 1-bromo-	70	208 NJ	NF	NF	ΝP	N
Tetracosane	93	266 NJ	89.4 NJ	106.2 NJ	89.4 NJ	106.2 NJ
Squalene	98	NP	ИN	NP	ЫN	NF
Propane, 1-(1-methylethoxy)-	38	NP.	138.2 NJ	NF	138.2 NJ	NF
Phthalic anhydride (13.985)	96	NF	ЫN	13 NJ	NP	13 NJ
Phenol, 4,4'-butylidenebis(2-(1,1-dimeth	16	32.6 NJ	44.2 NJ	12.68 NJ	44.2 NJ	12.68 NJ
Phenol, 4-(1-phenylethyl)-	83	NP	иN	NF	МF	Z
Phenol, 2,4-bis(1-phenylethyl)-	70	58.8 NJ	17.8 NJ	NF	17.8 NJ	Z
Pentatriacontane	16	NP	NF	40.8 NJ	ЫP	40.8 NJ
Pentadecane, 8-hexyl-	16	ΝP	NP	NF	Ы	NP
PENTADECANE, 2,6,10-TRIMETHYI	43	ЧN	NF	NP	NP	NF
Pentadecane, 2,6,10,14-tetramethyl-	94	ΝP	109 NJ	NP	IN 601	NF
Pentacosane	95	ΝF	NP	NP	ЫP	NF
Octanoic Acid	72	NP	NP	8.2 NJ	NP	8.2 NJ
Octadecane, 1-bromo-	64	ΑN	NP	NP	NF	NF
Octadecane	87	ΝP	NF	NF	NP	NF
Octacosane	96	40.8 NJ	51.2 NJ	NF	51.2 NJ	NF
Nonadecane	96	Ν'n	NF	NF	NP	NF
Nonacosane	96	ΝP	NP	NP	NP	NF
n-Decanoic acid	64	ĄN	ΝP	4.06 NJ	NP	4.06 NJ
Naphthalene, 1,6-dimethyl-4-(1-methyleth	72	ĄN	204 NJ	NP	204 NJ	NF
Hexatriacontane	06	167.4 NJ	NF	NP	NP	N₽
Hexanoic acid, 2-methyl-	43	МF	N.	Ņ	NP	NP
	93	МF	103.4 NJ	NF	103.4 NJ	NP
Hexadecane, 2,6,11,15-tetramethyl-	06	Ą	ΝF	NF	NP	NF
Hexadecane, 2,6,10,14-tetramethyl-	06	16.26 NJ	87.8 NJ	NF	87.8 NJ	NF

.....

Table 3.4-6 Summary of Tentatively Identified Compound Results for Wipe Samples, AOI 473 2002 ESI, Former Griffiss Air Force Base, Rome, NY

Torried Chimiss Am 1 Orde Dase, notine, 141						
	Sample ID:	G473.	G473.	G473·	G473-	G473-
		RM10-	RM10.	RM10-	RM10.	RM10.
	Match	SP08	SP09	SP10	SP09	SP10
Analyte	Quality Date:	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02
Hexadecane	93	38.2 NJ	NP	ЧN	ΝP	ΝŖ
Нехасозапе	93	NP	NF	59.06 NJ	Ŋ	S9.06 NJ
Heptanoic acid, methyl ester	25	NF	NF	NP	Ν	ΑN
Heptanc, 2,2,3,3,5,6,6-heptamethyl-	28	NP	NF	NP	NF	ξN
Heptadecane, 9-octyl-	93	NP	NF	Νľ	NF	Ψ
Heptadecane	83	NF	406 NJ	ΝP	406 NJ	ΑN
Heptacosane	16	39 NJ	NF	NF	ŊŖ	ΝΡ
Heneicosane	95	NP	146 NJ	NF	146 NJ	ΑN
HAHNFETT	87	NF	NF	NF	NF	Ν̈́
Furan, tetrahydro-3,4-dimethyl-, cis-	18	NF	NF	NF	NF	ž
Ether, heptyl hexyl	34	NF	NF	NF	NF	ĄN
Pthanol, 2,2'-oxyhis-	į v	NR	äN	12.38 NI	HN.	12 38 NI
Ethanol, 2,2'-(oxybis(2,1-ethanediyloxy)	78	NF	ЫN	NF	NF	Ŋ
Ethanol, 2,2'-(1,2-ethanediylbis(oxy))bi	38	18.8 NJ	ЫN	NF	NF	ΡN
Eicosane, 10-methyl-	93	NF	Иľ	NF	NF	Ŋ
Eicosane	89	330 NJ	ЫF	30.1 NJ	NF	30.1 NJ
E-8-Methyl-9-tetradecen-1-ol acetate	52	NF	Иľ	NF	ΝΡ	ЯN
d-Ribonic acid, _gammalactone, cyclic	59	NF	28.2 NJ	NF	28.2 NJ	Ŗ
Dotriacontane	16	NF	Иľ	NF	NF	ЯЯ
Docosanc	93	NF	210 NJ	NF	210 NJ	NF
Cyclopentane, 1,2,3-trimethyl-, (1_alpha	43	13.46 NJ	ЯN	NF	NF	Ν'n
CYCLOPENTANCARBONIC ACID, 3-METHYL-, M	25	NF	NF	NF	NF	NF
Cyclohexanemethanol, 2-methyl-	43	NF	NF.	Ŗ	NF	NF
Cyclohexane, decyl-	76	NF	NF	NF	NF	NF
Cyclohexane, 1-ethyl-4-methyl-, cis-	38	ΝF	NF	NF	NP	NF
CAPRONIC ACID, OCTYL ESTER	18	NF	ΝŖ	NF	NF	NF
Bicyclo(3_1_1)heptane, 2,6,6-trimethyl-,	09	ΝP	NP	39.4 NJ	NF	39.4 NJ
Bicyclo(3_1_0)hexan-2-one, 4-methyl-1-(1	89	ΝP	NF	NF	NF	NF
Benzothiazole	91	NF	NF	NP	ЯN	NF
Benzenethiol, 2-amino-	64	NF	NF	ΡĀ	NF	NF
8-Nonenoic acid	17	NF	ΝĿ	8.2 NJ	NF	8.2 NJ
7-Octynoic acid, methyl ester	17	МP	ΝF	NF	NF	NP
6-METHYL-6-(5'METHYL-2'-FURYL)HEPTA-2,3-	43	ΝP	ΝF	NF	NF	NP
4-Cyanocyclohexene	66	άN	AR	43.4 NJ	NF	43.4 NJ

Table 3.4-6

Summary of Tentatively Identified Compound Results for Wipe Samples, AOI 473 2002 ESI, Former Griffiss Air Force Base, Rome, NY

	Sample ID:	G473-	G473-	G473-	G473.	G473-
		KM10-	KIM 10.	RM10-	RIM 10.	RM10-
	Match	SP08	Sp09	SP10	SP09	SP10
Analyte	Quality Date:	7/17/02	7/17/02	7/17/02	7/17/02	7/17/02
4-Chloro-3-n-hexyltetrahydropyrane	09	NP	NP	NF	NF	NF
4-Benzylamino-1,3-diphenyl-5,6,7,8-tetra	74	NF	NF	NF	NF	NF
4,5-DIDEUTERO ISOTHIAZOLE	27	NP	NP	NF	NF	NF
4(5)-METHYL-5(4)-NITROIMIDAZOLE	38	NP	NF	NP	NF	ŊŖ
3-Pentanol, 2-methyl-	53	NP	NP	NF	NF	NF
3-Methyl-2-butyl acetate	42	ΝΡ	NF	ΝP	NF	NF
3-Hydroxy-3-methyl-2-butanone	50	NF	NF	NF	NP	NF
3-HEXEN-2-ONB, 3-CYCLOHEXYL-4-ETHYL-	43	NF	NP	NF	NF	NP
2-Pentenoic acid, 4-methylphenyl ester	22	NP	NF	NF	NF	N.
2-Pentanone, 4-hydroxy-4-methyl-	23	2380 NJ	2180 NJ	1764 NJ	2180 NJ	1764 NJ
2-Octanone	47	NP	NF	NP .	NF	NF
2-Hexanone, 4-hydroxy-5-methyl-	50	NP	NP	26.8 NJ	NF	26.8 NJ
2-Heptanone	23	212 NJ	NP	152.6 NJ	NP	152.6 NJ
2H-1,3-Benzoxazine, 6-chloro-3-cyclohexy	35	NF	NF	NF	NF	NF
2-Butanone, 3-hydroxy-3-methyl-	33	NF	NP	NF	NF	N.
2-Butanol, 3-methyl-, acetate	50	NP	NP	NP	NP	Ŋ
2-Acetylthiazole	32	NF	NF	NF	NF	NF
2,6,10-Dodecatrien-1-ol, 3,7,11-trimethy	89	NF	NP	NF	NF	NF
2,4-Hexadiene	35	NP	NF	ЫP	NP	NF
2,4,6-Tris-(1-phenylethyl)-phenol	38	100.2 NJ	47 NJ	IS NI	47 NJ	IS NJ
1-Tetradecanol	38	NF	ΝP	NF	NP	NP
1-Bromo-3-(2-bromoethyl)heptane	52	ΝP	NP	NF	NP	NF
17-Pentatriacontene	43	Ą	МP	12000 NJ	NF	12000 NJ
10-Methylnonadecane	91	ΝŖ	NP	NF	NP	NF
1,4-Hexadiene, 2-methyl-	38	NF	NP	NF	NF	ЫP
1,4-Benzenediol, 2,5-bis(1,1-dimethylpro	83	MF	870 NJ	NP	870 NJ	NF
1,3-Hexadiene, 3-ethyl-2-methyl-, (Z)-	25	NP	ΝP	ΝŖ	NP	dN
1,2-Ethancdiamine, N-methyl-	35	NP	NF	NF	ЫN	NF
1,2,3,4-Tetrahydronaphthalene-d12	70	ΝΡ	МŖ	ŊŖ	NP	NF
Note: Results are reported as total for similar tenatively identified compounds	compounds.					

Note: Results are reported as total for similar tenatively identified compounds.

Key:

ESI = Expanded Site Investigation. AOI = Area of Interest.

µg/wipe = Micrograms per wipe.

NF = Not found.

NJ = Identification not confirmed, estimated value.
SP = Wipe sample.

Table 3.4-7
Complete Analytical Data Summary for the Field Blank Wipe Samples, AOI 473 Year 2002 ESI, Former Griffiss Air Force Base, Rome. New York

Former Grit	ffiss Air Force Base, Rome, N		,
Method	Analyte	Sample ID: Date:	FIELDQC-FB473-RM10-SP1 07/17/02
	Organics by Method 8270C (μg		
	1,2,4-Trichlorobenzene	μg/wipe	10.0 U
SW8270C		μg/wipe	10.0 U
	1,3-Dichlorobenzene	μg/wipe	10.0 U
	1,4-Dichlorobenzene	μg/wipe	10.0 U
	2,4,5-Trichlorophenol	μg/wipe	50.0 U
	2,4,6-Trichlorophenol	μg/wipe	10.0 U
	2,4-Dichlorophenol	μg/wipe	10.0 U
	2,4-Dimethylphenol	μg/wipe	10.0 U
	2,4-Dinitrophenol	μg/wipe	50.0 U
	2,4-Dinitrotoluene	μg/wipe	10.0 U
	2,6-Dinitrotoluene	μg/wipe	10.0 U
	2-Chloronaphthalene	μg/wipe	10.0 U
	2-Chlorophenol	μg/wipe	10.0 U
	2-Methylnaphthalene		10.0 U
		μg/wipe	10.0 U
	2-Methylphenol	μg/wipe	50.0 U
	2-Nitroaniline	µg/wipe	10.0 U
	2-Nitrophenol	μg/wipe	20.0 U
	3,3'-Dichlorobenzidine	μg/wipe	50.0 U
	3-Nitroaniline	μg/wipe	
	4,6-Dinitro-2-methylphenol	μg/wipe	50.0 U
	4-Bromophenyl phenyl ether	μg/wipe	10.0 U
	4-Chloro-3-methylphenol	μg/wipe	10.0 U
	4-Chloroaniline	μg/wipe	10.0 U
	4-Chlorophenyl phenyl ether	μg/wipe	10.0 U
	4-Methylphenol	μg/wipe	10.0 U
	4-Nitroaniline	μg/wipe	50.0 U
	4-Nitrophenol	μg/wipe	50.0 U
SW8270C	Acenaphthene	μg/wipe	10.0 U
	Acenaphthylene	μg/wipe	10.0 U
SW8270C	Anthracene	μg/wipe	10.0 U
	Benz(a)anthracene	μg/wipe	10.0 U
	Benzo(a)pyrene	μg/wipe	10.0 U
	Benzo(b)fluoranthene	μg/wipe	10.0 U
	Benzo(g,h,i)perylene	µg/wipe	10.0 U
	Benzo(k)fluoranthene	μg/wipe	10.0 U
	Benzoic acid	μg/wipe	150 U
	Benzyl alcohol	μg/wipe	10.0 U
	Bis(2-chloroethoxy)methane	μg/wipe	10.0 U
	Bis(2-chloroethyl)ether	μg/wipe	10.0 U
	Bis(2-chloroisopropyl)ether	μg/wipe	10.0 U
		μg/wipe	10.0 U
SW8270C	Butyl benzyl phthalate	μg/wipe	10.0 U
SW8270C	Carbazole	μg/wipe	10.0 U
SW8270C	Chrysene	μg/wipe	10.0 U
	Dibenz(a,h)anthracene	μg/wipe	10.0 U
	Dibenzofuran	μg/wipe	10.0 U
	Diethyl phthalate	μg/wipe	10.0 U
	Dimethyl phthalate	μg/wipe	10.0 U
	Di-n-butyl phthalate	μg/wipe	10.0 U
SW8270C	Di-n-octyl phthalate_	μg/wipe	10.0 U

Table 3.4-7
Complete Analytical Data Summary for the Field Blank Wipe Samples, AOI 473 Year 2002 ESI, Former Griffiss Air Force Base. Rome. New York

Former Gri	niss Air Force Base, Home, M	Sample ID:	FIELDQC-FB473-RM10-SP1
Method	Analysta		07/17/02
	Analyte	Date:	
	Fluoranthene	μg/wipe	10.0 U
SW8270C		μg/wipe	10.0 U
SW8270C		μg/wipe	10.0 U
	Hexachlorobutadiene	μg/wipe	10.0 U
	Hexachlorocyclopentadiene	μg/wipe	50.0 U
SW8270C	Hexachloroethane	μg/wipe	10.0 U
SW8270C	Indeno(1,2,3-cd)pyrene	μg/wipe	10.0 U
SW8270C	Isophorone	µg/wipe	10.0 U
SW8270C	Naphthalene	μg/wipe	10.0 U
	Nitrobenzene	μg/wipe	10.0 U
	N-Nitrosodimethylamine	μg/wipe	10.0 U
	N-Nitrosodi-n-propylamine	µg/wipe	10.0 U
	N-Nitrosodiphenylamine	μg/wipe	10.0 U
	Pentachlorophenol	μg/wipe	50.0 U
SW8270C	Phenanthrene	μg/wipe	10.0 U
SW8270C	Phenol	μg/wipe	10.0 U
SW8270C	Pyrene	μg/wipe	10.0 U
Metals/Merc	ury Analysis by Method 6010B/	7471A (µg/wipe)	
SW6010B	Aluminum	μg/wipe	12.4
SW6010B	Antimony	μg/wipe	1.81
SW6010B	Arsenic	μg/wipe	1.00 U
SW6010B	Barium	μg/wipe	1.25 J
SW6010B	Beryllium	μg/wipe	0.500 U
SW6010B	Cadmium	µg/wipe	0.500 U
SW6010B	Calcium	μg/wipe	462
SW6010B	Chromium	μg/wipe	1.00 U
SW6010B	Cobalt	μg/wipe	2.00 U
SW6010B	Copper	µg/wipe	0.974 J
SW6010B	Iron	μg/wipe	20.4
SW6010B	Lead	μg/wipe	2.29
SW6010B	Magnesium	µg/wipe	· 164
SW6010B	Manganese	μg/wipe	1.88
SW7471A	Mercury	μg/wipe	0.0200 U
SW6010B	Nickel	μg/wipe	2.00 U
	Potassium	μg/wipe	49.0 J
SW6010B	Selenium	μg/wipe	1.00 U
SW6010B	Silver	μg/wipe	1.00 U
SW6010B	Sodium	μg/wipe	1550
SW6010B	Sodium	μg/wipe	1550
SW6010B	Thallium	μg/wipe	0.765 J
SW6010B	Vanadium	μg/wipe	2.00 U
SW6010B	Zinc	μg/wipe	4.26

Note: Units of %REC indicate that the compound is a surrogate spike.

Key:

AOI = Area of Interest.

ESI = Expanded Site Investigation.

FB = Field blank sample.

J = Estimated value. The reported value is below the quantitation limit or estimated due to variance from quality control limits.

µg/wipe = Micrograms per wipe.

SP = Wipe sample.

U = Analyte was not detected or not present above background levels. The reported value is the quantitation limit or value elevated due to background.

Table 3.4-8 Summary of Tentatively Identified Compound Results for the Field Blank Wipe Sample, AOI 473 2002 ESI, Former Griffiss Air Force Base, Rome, NY

	Match	Sample ID:	FIELDQC-FB473-RM10-SP1
Analyte	Quality	Date:	07/17/02
Semivolatile Organics by Method 8270C (µg/wipe)			
Unknown	0		13.7 NJ
PENTADECANE, 2,6,10-TRIMETHYL-	43		21.4 NJ
Octacosane (23.243)	72		12.76 NJ
Heptadecane	83		46.2 NJ
Heptacosane, 1-chloro-	50		44.8 NJ
Eicosane	89		14.12 NJ
Decane, 1,1'-oxybis-	18		15.3 NJ
Decane	52		11.8 NJ
Cyclohexane, undecyl-	53		20 NJ
4,8,12-Trimethyltridecan-4-olide	90		10.12 NJ
3-Methyl-2-butyl acetate	42		36.6 NJ
2-Pentanone, 4-hydroxy-4-methyl-	23		2620 NJ
2-Hexene, 1-(1-ethoxyethoxy)-, (Z)-	35		22 NJ
2-Heptanone	23		248 NJ
2-Furanmethanol	14		15.44 NJ
2,2'-Bi-1,3-dioxolane	35_		26.6 NJ
1H-Isoindole-1,3(2H)-dione, 3a,6,7,7a-te	11		14.12 NJ
17-Pentatriacontene	43		16.16 NJ
1,3-DIOXANE, 6-ACETOXY-2,4-DIMETHYL-	22		11.1 NJ
1,2-Benzenedicarboxylic acid, bis(2-ethy	25		15.74 NJ
(Z)-Methyl-5-((E)-3-(1-ethoxyethoxy)oct-	43		7.84 NJ

Note: Results are reported as total for similar tenatively identified compounds.

Key:

AOI = Area of Interest.

ESI = Expanded Site Investigation.

FB = Field blank sample.

NF = Not found.

µg/wipe = Micrograms per wipe.

N1 = Identification not confirmed, estim:

SP = Wipe sample.

Table 3.4-9
Summary of Positive Analytical Results for the Sludge Sample, AOI 473 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

			C (- 1D)	CITO PILIO CDOI
	NYSDEC	EPA RECs -	Sample IU:	G473-RM10-SD01
Analyte	TAGM 4046 (1)	Industrial (2)	Date:	07/17/02
PCBs by Method 8082 (mg/Kg)				
Aroclor 1260	1	2.9		0.473 J
Semivolatile organics by Method 82	70C (µg/Kg)		•	
Acenaphthene	50,000	120,000,000		181 J
Anthracene	50,000	610,000,000		660 J
Benz(a)anthracene	224	7,800		
Benzo(a)pyrene	61	. 780		
Benzo(b)fluoranthene	1,100	7,800		897 J
Benzo(g,h,i)perylene	50,000	NA		392 J
Benzo(k)fluoranthene	1,100	78,000		
Chrysene	400	780,000		3.2.47.11.20±1.323.
Dibenzofuran	6,200	8,200,000	1	68.0 J
Fluoranthene	50,000	82,000,000		1690 J
Fluorene	50,000	82,000,000		190 J
Indeno(1,2,3-cd)pyrene	3,200	7,800		227 J
Naphthalene	13,000	41,000,000		101 J
Phenanthrene	50,000	NA		2210 J
Pyrene	50,000	61,000,000		1440 J
Metals/Mercury by Method 6010B74	71A (mg/Kg)			
Aluminum	18,306	2,000,000		5530
Antimony	3.4	820		
Arsenic	4.9	3.8	- 1	alon is v endig
Barium	71	140,000		
Cadmium	1.1	1,000		
Calcium	23,821	NA		(4800) sales
Chromium	22.6	6,1 0 0		
Cobalt	30	41,000		8.36 J
Соррег	43	82,000		1670S
Iron	47,350	610,000		70 (00 (00 (00 (00 (00 (00 (00 (00 (00 (
Lead	200	400	,)	1200
Magnesium	7,175	NA		4070
Manganese	2,106	41,000		801
Mercury	0.1	NA		
Nickel	46	41,000		
Potassium	1,993	NA		
Silver	1.1	10,000		
Sodium	259	NA		67.67 B
Thallium	0.45	140	s	
Vanadium	150	14,000		12.0 J
Zinc	120	610,000		2.340 (4.35)
TRPH by Method 418.1M (mg/Kg)				
Petroleum Hydrocarbons	NA	NA		8710

Table 3.4-9

Summary of Positive Analytical Results for the Sludge Sample, AOI 473 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

Note: For a complete list of the screening criteria see Section 2.

Key:

AOI = Area of Interest

EPA = Environmental Protection Agency.

ESI = Expanded Site Investigation.

J = Estimated value.

mg/Kg = Milligrams per kilogram.

· μg/Kg = Micrograms per kilogram

NA = No criteria available.

NYSDEC = New York State Department of Environmental Conservation.

PCBs = Polychlorinated biphenyls.

RBC = Risk-based concentration.

SD = Sludge sample.

TAGM = Technical and Administrative Guidance Memorandum

TRPH = Total recoverable petroleum hydrocarbons.

Result above N'(SDEC screening criteria (shaded and bolded).

Result above both NYSDEC screening criteria and EPA RBCs (shaded, bolded, and underlined).

⁽¹⁾ New York State Department of Environmental Conservation, Technical and Administrative Guidance Memorandum #4046: Determination of Soil Cleanup Objectives and Cleanup Levels, 1994.

⁽²⁾ Environmental Protection Agency Region III Risk-based concentration for industrial soil, April 2002.

Table 3.4-10 Summary of Positive Analytical Results for Wipe Samples, AOI 473 2002 ESI, Former Griffiss Air Force Base, Rome, NY

								The state of the s	
	Serooning	ample FIE ID:	Sample FIELDOC-FB473- ID: RM10-SP1	G473-RM10- SP01	G473-RM10- SP01/D	G473-RM10- SP02	G473-RM10- SP03	G473-RM10- SP04	G473-RM10- SP05
Analyte		Date	07/17/02	07/17/02	07/17/02	07/17/02	07/17/02	07/17/02	07/17/02
PCBs by Method 8082 (ug/wipe)									
Aroclor 1242	9		NS	1.50 U	1.50 U	2.09	2.01	1.50 U	1.50 U
Aroclor 1254	9		NS	1.73	1.50 U	1.50 U	1.50 U	1.50 U	1.50 U
Aroclor 1260	9		NS	1.50 U	1.50 U	1.58	1.62	1.50 U	1.50 U
SVOCs by Method 8270C (µg/wipe)									
Benzyl alcohol	200,000		10.0 U	5.45 J	10.0 U	10.0 U	10.0 U	U 0.01	10.0 U
Bis(2-ethylhexyl)phthalate	009		10.0 U	14.3 J	17.8 J	10.4 J	6.64 J	168 J	10.0 U
Metals/Mercury by Method 6010B/7471A (µg/wlpe)	(ediw/gri) \								
Aluminum	2,000,000,000		12.4	9170 J	4190 J	3320	2850	9180	1650
Antimony	30,000		1.81	S:38 U	7.15 U	20.0 U	10.0 U	10.0 U	10.0 U
Arsenic	40		1.00 U	5.54	5.00 U	50.0 U	10.0 U	8.99 J	10.0 U
Barium	20,000,000		1.25 J	134 J	73.4 J	57.6 J	101	155	53.1
Beryllium	70,000,000		0.500 U	0.654 J	2.50 U	25.0 U	5.00 U	5.00 U	S.00 U
Cadmium	300,000		0.500 U	26.6 J	15.8 J	11.2 J	18.3	21.0	101
Calcium	NA		462	79200 J	38000 J	25300	29100	102000	15700
Chromium	20,000,000		1.00 U	93.9 J	28.4 J	75.6	26.7	57.1	17.1
Cobalt '	100,000		2.00 U	13.4	5.60 J	9.75 J	5.44 J	10.4 J	3.99 J
Copper	000'09		0.974 J	283 J	123 J	335	100	86.1	94.9
Iron	50,000,000		20.4	81100 J	34600 J	314000	87000	45900	128000
Lead	70,000		2.29	2780 J	1170 J	539	571	461	327
Magnesium	NA		164	3980 J	1840 J	1420 J	1860	5150	1030
Manganese	20,000,000		1.88	5030 J	1640 J	1020	259	410	315
Mercury	1,000,000		0.0200 U	20.1	21.9	124	67.4	45.5	35.3
Nickel	20,000,000		2.00 U	83.9 J	31.6 J	139	22.0	30.0	158
Potassium	NA		49.0 J	4980 J	2280 J	23100	29000	26700	7070
Silver	5,000,000		1.00 U	32.5 J	5.87 J	20.0 U	3.42 J	5.94 J	2.23 J
Sodium	NA		1550	1160 U	O 629	7840	14400	28600	2650 U
Thallium	100		0.765 J	14.8 J	7.97 J	21.7 J	6.16 J	12.1	6.38 J
Vanadium	20,000,000		2.00 U	26.0 J	12.7 J	65.0 J	26.4	31.3	13.8 J
Zinc	200,000		4.26	1680 J	713 J	1010	639	1320	428
TRPH by Method 418.1M (mg/wipe)									
Petroleum Hydrocarbons	VV		SN	1650 J	879 J	3020	5580	4850	3970

Table 3.4-10 Summary of Positive Analytical Results for Wipe Samples, AOI 473 2002 ESI, Former Griffiss Air Force Base, Rome, NY

	Screening	sample c ID:	sample G4/3-RM10- ID: SP06	G4/3-KM10- SP07	G4/3-HM10- SP08	G473-RM10- SD09	G473-RM10.
Analyte	Criteria (1)	Date:	07/17/02	07/17/02	07/17/02	07/17/02	07/17/02
PCBs by Method 8082 (µg/wipe)							
Aroclor 1242	9		0.402 J	4.50 U	1.50 U	1.50 U	1.50 U
Aroclor 1254	9		1.50 U	4.50 U	1.50 U	1.50 U	1.50 U
Aroclor 1260	9		1.50 U	4.50 U	1.50 U	1.50 U	1.50 U
SVOCs by Method 8270C (µg/wlpe)							
Benzyl alcohol	200,000		10.0 U	10.0 U	10.0 U	10.0 U	4.37 J
Bis(2-ethylhexyl)phthalate	009		10.0 U	189 J	2.88 J	10.0 U	5.32 J
Metals/Mercury by Method 6010B/7471A (µg/wipe)	4 (µg/wlpe)						
Aluminum	2,000,000,000		1980	2600	2420	2500	5170
Antimony	30,000		5.00 U	0.75 U	2.70 U	5.00 U	11.6 J
Arsenic	40		5.00 U	2.48 J	0.671 J	5.00 U	25.0 U
Bartum	20,000,000		100	6. 56	081	€7.3	130
Beryllium	70,000,000		2.50 U	2.50 U	1.00 U	2.50 U	12.5 U
Cadmium	300,000		9.73	12.1	14.6	19.2	17.8
Calcium	NA		20400	21300	18300	13600	55800
Chromium	20,000,000	_	14.1	19.5	15.7	22.9	37.3
Cobalt	100,000		1.99 J	3.56 J	3.13 J	18.3	50.0 U
Copper	000'09		1720	45.1	9.08	192	41500
Iron	50,000,000		35800	7790	12900	9510	19500
Lead	000'02		405	208	258	188	1910
Magnesium	NA		1340	1650	1250	1160	4490
Manganese	20,000,000		127	95.3	1.17	81.5	197
Mercury	1,000,000		29.0	14.9	25.9	14.2	0.576
Nickel	20,000,000		13.1	8.93 J	9:38	20.7	23.3 J
Potassium	ΝΑ		18200	37000	11100	3670	32500
Silver	2,000,000		1.39 J	3.93 J	15.5	1.81 J	5.74 J
Sodium	NA		7310 U	17200	4350 U	1220 U	11600
Thallium	100		4.76 J	2.00 U	2.45 U	5.00 U	11.4 J
Vanadium	20,000,000		69.6 J	8.79 J	6.27	4.20 J	15.5 J
Zinc	200,000		394	372	448	346	1560
TRPH by Method 418.1M (mg/wipe)							
Petroleum Hydrocarbons	NA		7260	7190	1960	4820	3020

Summary of Positive Analytical Results for Wipe Samples, AOI 473 2002 ESI, Former Grifflss Air Force Base, Rome, NY **Table 3.4-10**

Note: Shaded and boided results exceed the calculated risk based screening levels.

(1) Screening criteria for the wipe samples were developed in a manner similar to a method that was used by EPA to develop the TSCA screening criteria for PCBs, based on potential cancer risk from dermal exposure, presented in a 1986 memorandum.

Key:

AOI = Area of Interest.

EPA = Environmental Protection Agency.

ESI = Expanded Site Investigation.

FIELDQC-FB = Field blank.

J = Estimated value.

mg/wipe = Milligrams per wipe.

µg/wipc = Micrograms per wipe.

NA = No criteria available.

PCBs = Polychlorinated biphenyls. NS = Not sampled.

SP = Wipe sample.

SVOCs = Semivolatile organic compounds.

TRPH = Total recoverable petroleum hydrocarbons.

U = Not detected (practical quantitation limit listed).

Table 3.4-11 List of Sample Results Qualified, AOI 473 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

		rce Base, Rome, New			Lab	Validation
Lab Order	Method	Sample ID	Analyte	Result	Qualifier	Qualifier
0207128	EPA418.1	G473-RM10-SP01	Petroleum Hydrocarbons, TR	1 6 50		J
0207128	EPA418.1	G473-RM10-SP01/D	Petroleum Hydrocarbons, TR	879		J
0207128	SW6010B	G473-RM10-SP01	Aluminum	9170		J
0207128	SW6010B	G473-RM10-SP01	Antimony	5.38		U
0207128	- SW6010B	G473-RM10-SP01	Barium	134		J
0207128	SW6010B	G473-RM10-SP01	Cadmium .	26.6		J
0207128	SW6010B	G473-RM10-SP01	Calcium	79200	į	J
0207128	SW6010B	G473-RM10-SP01	Chromium	93.9		J
0207128	SW6010B	G473-RM10-SP01	Copper	283		J
0207128	SW6010B	G473-RM10-SP01	Iron	81100		J
0207128	SW6010B	G473-RM10-SP01	Lead	2780		J
0207128	SW6010B	G473-RM10-SP01	Magnesium	3980		J
0207128	SW6010B	G473-RM10-SP01	Manganese	5030		J
0207128	SW6010B	G473-RM10-SP01	Nickel	83.9		J
0207128	SW6010B	G473-RM10-SP01	Potassium	4980		J
0207128	SW6010B	G473-RM10-SP01	Silver	32.5		J
0207128	SW6010B	G473-RM10-SP01	Sodium	1160		U
0207128	SW6010B	G473-RM10-SP01	Thallium	14.8		J
0207128	SW6010B	G473-RM10-SP01	Vanadium	26.0		J
0207128	SW6010B	G473-RM10-SP01	Zinc	1680		J
0207128	SW6010B	G473-RM10-SP01/D	Aluminum	4190		J.
0207128	SW6010B	G473-RM10-SP01/D	Antimony	7.15		U
0207128	SW6010B	G473-RM10-SP01/D	Barium	73.4		J
0207128	SW6010B	G473-RM10-SP01/D	Cadmium	15.8		J
0207128	SW6010B	G473-RM10-SP01/D	Calcium	38000		J
0207128	SW6010B	G473-RM10-SP01/D	Chromium	28.4		J
0207128	SW6010B	G473-RM10-SP01/D	Copper	123		J
0207128	SW6010B	G473-RM10-SP01/D	Iron	34600		J
0207128	SW6010B	G473-RM10-SP01/D	Lead	1170		J
0207128	SW6010B	G473-RM10-SP01/D	Magnesium	1840		J
0207128	SW6010B	G473-RM10-SP01/D	Manganese	1640		J
0207128	SW6010B	G473-RM10-SP01/D	Nickel	31.6		J
0207128	SW6010B	G473-RM10-SP01/D	Potassium	2280		J
0207128	SW6010B	G473-RM10-SP01/D	Silver	5.87		J
0207128	SW6010B	G473-RM10-SP01/D	Sodium	67 9		U
0207128	SW6010B	G473-RM10-SP01/D	Thallium	7.97		J
0207128	SW6010B	G473-RM10-SP01/D	Vanadium	12.7	1	J
0207128	SW6010B	G473-RM10-SP01/D	Zinc	713		J
0207128	SW6010B	G473-RM10-SP04	Antimony	7.65	J	U
0207128	SW6010B	G473-RM10-SP05	Sodium	2650		U
0207128	SW6010B	G473-RM10-SP06	Antimony	1.68	J	U
0207128	SW6010B	G473-RM10-SP06	Sodium	7310		U
0207128	SW6010B	G473-RM10-SP07	Antimony	6.75		U
0207128	SW6010B	G473-RM10-SP07	Thallium	3.33	J	U
0207128	SW6010B	G473-RM10-SP08	Antimony	2.70		Ŭ
0207128	SW6010B	G473-RM10-SP08	Sodium	4350		Ŭ
0207128	SW6010B	G473-RM10-SP08	Thallium	2.45	_	U
0207128	SW6010B	G473-RM10-SP09	Antimony	2.87	J	U

Table 3.4-11 List of Sample Results Qualified, AOI 473 Year 2002 ESI, Former Griffiss Air Force Base, Rome, New York

Lab Order	Method	Sample ID	Analyte	Result	Lab Qualifier	Validation Qualifier
0207128	SW6010B	G473-RM10-SP09	Sodium	1220		U
0207128	SW6010B	G473-RM10-SP09	Thallium	2.15	J	U
0207128	SW8082	G473-RM10-SD01	Aroclor 1260	473		J
0207128	SW8270C	G473-RM10-SD01	Anthracene	660		J
0207128	SW8270C	G473-RM10-SD01	Benz(a)anthracene	1140		J.
0207128	SW8270C	G473-RM10-SD01	Benzo(a)pyrene	810		J
0207128	SW8270C	G473-RM10-SD01	Benzo(b)fluoranthene	897		J ,
0207128	SW8270C	G473-RM10-SD01	Benzo(k)fluoranthene	1160		J
0207128	'SW8270C	G473-RM10-SD01	Bis(2-ethylhexyl)phthalate	1100		U
0207128	SW8270C	G473-RM10-SD01	Chrysene	1130		J
0207128	SW8270C	G473-RM10-SD01	Fluoranthene	1690		J
0207128	SW8270C	G473-RM10-SD01	Phenanthrene	2210		J
0207128	SW8270C	G473-RM10-SD01	Ругепе	1440		J
0207128	SW8270C	G473-RM10-SP01	Bis(2-ethylhexyl)phthalate	14.3		J
0207128	SW8270C	G473-RM10-SP01/D	Bis(2-ethylhexyl)phthalate	17.8		J
0207128	SW8270C	G473-RM10-SP02	Bis(2-ethylhexyl)phthalate	10.4		J ·
0207128	SW8270C	G473-RM10-SP04	Bis(2-ethylhexyl)phthalate	168		J
0207128	SW8270C	G473-RM10-SP07	Bis(2-ethylhexyl)phthalate	189		J

Key:

AOI = Area of Interest.

/D = Duplicate.

ESI = Expanded Site Investigation.

J = Estimated value. The reported value is below the quantitation limit or estimated due to variance from quality control limits.

SD - Sludge sample.

SP = Swipe sample.

U = Analyte was not detected or not present above background levels. The reported value is the quantitation limit or value elevated due to background.

4

System Audits

Internal audits of the laboratory are conducted at ASC on a schedule determined by the ASC QA Coordinator. For this project, the ASC QA Coordinator did not perform an internal audit of the project-specific requirements. he ASC has undergone external audits from the following agencies over the past year:

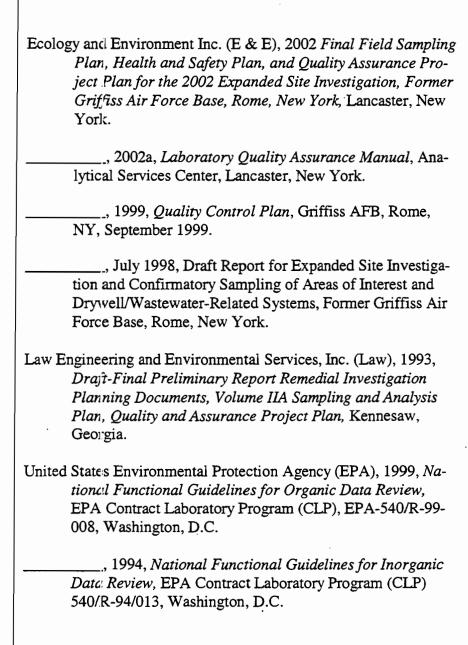
Agency/Company	Audit Dates	Scope of Audit
California Department of Health Services	June 20, 2001	California ELAP (not NELAP)
The Environmental Company	June 27, 2001	AFCEE
Florida Department of Health	August 13-14, 2001	NELAP (extra parameters)
SAIC	August 29, 2001	Savannah Army Depot Activity
Jacobs	October 24-25, 2001	Project Chanute AFCEE
New York State Department of	February 12-	NELAP (Wastewater, drinking water,
Health	14, 2002	solid and hazardous waste)
SAIC	May 1-3, 2002	Jacobs/Tooele
Wisconsin Department of Natural Resources	June 18-20, 2002	Wisconsin DNR certification
NUCOR	July 12, 2002	Consent Decree

One field inspection was performed during the field program. Richard Watt, as QA Inspector, performed all audits and inspections. The field inspection reports are included in Appendix F. None of the findings impact data usability or indicated noncompliance with USACE requirements.

4. System Audits

5

Report Distribution and Review


Mr. Phil Rosewicz
U.S. Army Corps of Engineers, Kansas City District
Bolling Federal Building
601 East 12th Street
Kansas City, MO 64106-2896

5. Report Distribution and Review

6

References

6. References

Reference Data for Proposed Work

A. Reference Data for Proposed Work

3.1 OTH-305: Building 305 - Paint Spray Booth/Floor Drain

The objective of this work is to remove contaminated water and sediment detected in the paint spray booth floor drain during the Year 2000 ESI program, sample the soil beneath the floor drain to see if it has been impacted by the contamination within the floor drain, and seal the floor drain and associated discharge pipe with concrete.

3.1.1 Site Background

Building 305 was originally a quartermaster motor pool garage before being converted to an automotive hobby shop (AFCEE 1998). The paint spray booth (OTH-305) is located inside Building 305 at the building's south end. The dates of operation and activities carried out at this site are unknown. At one time the location of a satellite waste accumulation point (STW 305) for paint thinners, the site is currently used to paint auto and truck parts.

3.1.2 Physical Characteristics

Building 305 is located in the central industrial area of the base. The area around the building is generally flat, with less than 5 feet of topographic relief. It is grassed to the north, south, and west, and paved to the east. Building 305 is not located near any major surface water drainage features. Site runoff is channeled to the base stormwater drainage system, which drains into Three Mile Creek, which in turn drains to the New York State Barge Canal approximately 1.5 miles south of the base.

The 13- by 22-foot paint spray booth is located inside Building 305 (the Auto Skills Center), at the building's south end. This enclosed unit (doors at one end and a filter wall at the other) is used for painting automobiles and small trucks. The filter wall consists of a forced air ventilation system with disposable filter elements.

The floor drain inside the paint spray booth consists of a concrete-lined sump (approximately 2 feet wide, 2.5 feet long, and 2 feet deep) with an overflow pipe that exits the sump to the northwest. This floor drain was covered by a steel grate, which was found to be sealed with plywood and tape during both the 1999 site inspection conducted by E & E and the Year 2000 ESI field program.

Most of Building 305 is being used to store lawn-mowing and snow-removal equipment. Five interconnected floor drains in this part of the building drain to the north before discharging to the sanitary sewer system (U.S. Army Air Corps 1942).

3.1.3 Previous Investigations

During a site inspection conducted in April 1994 by Tetra Tech, paint residue and overspray was observed on the floor and walls of the booth. Overall, however, the booth was in good condition. A satellite waste accumulation point (STW 305) was located inside the booth.

Parsons Engineering Science, Inc., and OHM Remediation Services Corp. performed a Closure of Hazardous Waste/Hazardous Materials Storage Areas Investigation at the former Griffiss Air Force Base in 1996. Building 305 was included in this investigation and underwent a closure action under RCRA. The investigation included preclosure sampling in July 1996, remediation in December 1996, and post-remediation sampling in December 1996.

The pre-closure sampling consisted of the collection of six wipe samples from within Building 305, one of which was collected from STW 305 within the paint spray booth (OTH-305). All six of the wipe samples were analyzed for metals and extractable organic halides. Three of the six samples (collected from north of the paint spray booth) were also analyzed for PCBs, and one of the three was analyzed for pesticides. Lead was detected in two samples and aldrin was detected in one sample at concentrations above action levels in samples collected from north of the paint spray booth. None of the samples exceeded the PCB action level, and none of the analytes in the sample collected from STW 305 (inside the paint spray booth) exceeded action levels.

Due to the percentage of exceedances of action levels for aldrin and lead, Building 305 was recommended for remediation. Approximately 225 square feet of the area north of OTH-305 were remediated for lead and aldrin.

Three post-remediation wipe samples were collected and analyzed for lead and aldrin. Lead and aldrin were not detected at concentrations above action levels. Remediation goals were met, and the building was recommended for closure (AFCEE 1998).

E & E inspected the booth on May 26, 1999, and confirmed its condition. There was no waste or evidence of spills at the satellite waste accumulation point. However, a floor drain partly filled with water and containing sludge approximately 1 inch deep was

observed at the eastern end of the booth. A drainpipe exited the floor drain toward the northwest. The discharge point of the drainpipe could not be determined during the inspection.

In spring 2000, E & E investigated OTH-305 as part of the Year 2000 ESI program. To determine the discharge point of the floor drain, a dye test was conducted. Results of the dye trace test indicated that the overflow pipe contained within the paint spray booth floor drain discharged westward into the storm sewer system that parallels March Street, west of Building 305. This 1,000-foot storm sewer discharges into the headwaters of Three Mile Creek approximately 1,000 feet south of Building 305.

To establish whether hazardous substances were present in the floor drain pit, a water sample and a sludge sample were collected from the floor drain. The samples were analyzed for Target Compound List volatile organic compounds (TCL VOCs), semi-volitile organic compounds (SVOCs), pesticides/PCBs, and Target Analyte List (TAL) metals.

Levels of two PCBs, two pesticides, three VOCs, five SVOCs, and thirteen metals detected in samples collected from the Building 305 floor drain pit were found to exceed state or federal standards (see Figure 3-1). However, the standing water and sludge were contained within the floor drain sump (beneath the level of the overflow pipe), appeared to be stagnant, and did not appear to be leaking into the ground beneath Building 305. The floor drain is currently restricted from use, there is no flow into the storm sewer, and the water and sludge remaining in the floor drain pit are contained.

Based on these findings and on the planned commercial use of this site (USAF 1995), the Final Year 2000 ESI Report (E & E 2002) recommended that the water and sludge within the paint spray booth floor drain be removed and the floor drain pit and associated piping be plugged with concrete.

3.1.4 2002 ESI Addendum Sampling and Remedial Actions

The objectives of the 2002 ESI program/addendum program are to remove and properly dispose of the contaminated water and sediment from within the floor drain sump, sample the soil beneath the floor drain to determine whether it has been impacted by the contamination within the floor drain, and plug the sump and associated piping with concrete. The waste water/sediment will be analyzed for Toxicity Characteristic Leaching Procedure (TCLP) VOCs, SVOCs, pesticides, herbicides, metals, and mercury; TCL

PCBs; ignitability; reactive cyanide; reactive sulfide; pH; and percent solids for disposal purposes.

Three subsurface soil samples will be collected from beneath the floor drain. The subsurface soil samples will be collected from 0.0 to 0.5 foot, 0.5 foot to 1.0 foot, and 1.0 foot to 2.0 feet beneath the bottom of the floor drain sump after the sump has been cleaned out and a hole has been drilled through the bottom (see Figure 3-1). The subsurface soil samples will be analyzed for TCL VOCs, SVOCs, pesticides, PCBs, TAL metals, mercury, and percent solids.

The Year 2000 ESI sampling locations and results and the proposed 2002 ESI sampling locations are shown on Figure 3-1. A list of the 2002 ESI Addendum sample identifications and analyses is presented on Table 3-1.

3.4 AOI 473 - Building 112 Room 10

A former base employee stated that a basement room, which has since had a false floor put over it, previously contained a large oil tank. The former employee stated there were two 150-gallon tanks outside the room and a large tank inside the room and that the pipes/fittings often leaked and soaked the entire floor of the room with oil. The objective of this work is to determine if petroleum hydrocarbons, potentially containing PCBs, have been spilled in AOI 473-Building 112 Room 10.

3.4.1 Site Background

Building 112, formerly a High Power Laboratory, is located in the central industrialized area of Griffiss AFB. Two aboveground storage tanks (ASTs) and one underground storage tank (UST) were located near the northeast corner of Building 112 before they were removed prior to 1994. The loading dock area was used for the storage of PCB containers, which resulted in PCB soil contamination. A PCB Dump Area south of Building 112, comprising a 16-foot by 44-foot fenced-in gravel area, was used to store PCB transformers until they were removed in 1994.

In spring 1999, a former Griffiss AFB employee reported to AFBCA that he dumped transformer oil along the northern wall of the building and the northern section of the east and west walls. Oil reportedly was also dumped into a concrete pit (terra-cotta sump) in the northernmost cell of the basement floor. These areas were designated AOI 469 and investigated during the Year 2000 ESI program. No further study was recommended for AOI 469 in the Final Year 2000 ESI Report.

However, in winter 2002, the same former Griffiss AFB employee reported to AFBCA that the terra-cotta sump investigated during the Year 2000 ESI program was not the concrete pit he was referring to in the spring of 1999. The former employee stated that he was referring to a basement room, which has since had a false floor put over it. The former employee stated there were two 150-gallon tanks outside the room and a large tank inside the room and that the pipes/fittings often leaked and soaked the entire floor of the room with oil. This area has been designated AOI 473-Building 112 Room 10.

3.4.2 Physical Characteristics

Building 112 is located in the central industrial area of the base. The site is generally flat, with less than 5 feet of topographic relief across the site. The area surrounding

Building 112 is grassed to the east and predominantly paved to the west. A substation is present on the south side of the building.

Building 112 is not located near any major surface water drainage features. Runoff from the site is channeled to the base stormwater drainage system, which drains into Six Mile Creek, which, in turn, ultimately drains to the New York State Barge Canal approximately 1.5 miles south of the base.

Based on field descriptions of soils encountered in 74 borings drilled during a remedial investigation (RI) (Law 1995) and 11 borings drilled during the Year 2000 ESI, the upper 10 feet of soil at Building 112 consists of predominantly brown, silty, fine to coarse sand and gravel. Soils encountered from 10 to 20 feet BGS consisted predominantly of brown, silty, fine to coarse sand.

The groundwater zone investigated at Building 112 exists under unconfined conditions within an unconsolidated aquifer. The saturated zone in the vicinity of Building 112 was encountered at depths ranging from 4 feet BGS in well TF3MW-1 east of Building 112 to 16 feet BGS in boring 112SB-57 south of Building 112.

3.4.3 Previous Investigations

Four areas were investigated at Building 112 prior to the Year 2000 ESI: a drywell located east of Building 112; the southwest roof of the building; the area around the loading dock located to the southwest; and the PCB dump site located south of the building.

In 1981, Griffiss AFB bioenvironmental engineers sampled site soils to determine whether PCBs were present. In 1982, soils were collected from areas next to the building and were analyzed for PCBs. PCBs were detected on the west and south sides of Building 112 and on a transformer pad on the roof. A limited groundwater investigation in the vicinity of Building 112 also identified the presence of inorganic compounds in groundwater. In 1984, a leaking transformer on the roof of Building 112 and contaminated roof materials were removed. In 1994 and early 1995, in accordance with a Federal Facility Agreement, Law Environmental Services performed a remedial investigation for the Building 112 Area of Concern (AOC) (Law 1996). The RI for the Building 112 AOC included collection of surface soil samples, subsurface soil samples, and a grab water sample and preparation of a baseline risk assessment. Based on the results of the baseline risk assessment, no further action was recommended at the drywell location. In 1996, E & E prepared a design analysis report to address remediation of contaminants at the

Building 112 AOC (E & E 1997). A drywell investigation for Building 112 was conducted by OHM Remediation Services Corp. in January 1997 (OHM 1998). Two presumed drywells were investigated. Drywell No. 1 was recommended for closure. Based on a smoke trace test, it was concluded that there was no second drywell; therefore, no further study was recommended for what was initially identified as Drywell No. 2.

In 1999, a removal action was performed to remove PCB-contaminated materials at the Building 112 AOC. The action included removal of a contaminated transformer pad from the roof, contaminated soil and a concrete retaining wall from the south side of the building, and contaminated soils from the southwest side of the building.

Extensive sampling for PCBs was performed at the south side of the building (dump area). However, prior to the Year 2000 ESI there was no sampling performed at the north side, except for a three-point composite sample collected from Drywell No. 1.

During a site visit in May 1999, E & E inspected Building 112 both inside and outside. A terra-cotta sump approximately 2 feet deep and 2 feet in diameter was discovered beneath the tile floor in the northwest corner of the basement beneath the stairway access. The terra-cotta sump had a concrete bottom. Both the sump and the concrete appeared clean and intact. Therefore sampling was not warranted in the area of the sump. There were no signs of stressed vegetation outside of the building.

In spring 2000, E & E investigated the north side of Building 112, where the waste oil was reportedly spilled (AOI 469), as part of the Year 2000 ESI program.

A sampling grid with 25-foot spacing, covering the area where PCBs were allegedly dumped, was used to collect 22 near-surface soil samples (0 to 2 inches BGS) (see Figure 3-4a). All the samples were analyzed for TCL SVOCs, TCL PCBs, total recoverable petroleum hydrocarbons (TRPH), TAL metals, and percent solids. Also, based on the analytical results of the 22 near-surface soil samples, additional sampling of soil borings at 11 locations with elevated PCB concentrations was completed. At nine of these borings, an intermediate depth soil sample (approximately 5 to 7 feet BGS) and a deeper soil sample (immediately above the water table [approximately 10 to 14 foot BGS]) were collected. Soil boring G469-NS19 was located due east of AOI 473-Building 112 Room 10, approximately 6 feet from the eastern exterior wall of Building 112 (See Fig. 3-4b). PCBs were detected at very low levels (0.0160J mg/kg) in the soil sample collected from immediately above the water table (12 to 13 feet BGS) and were not detected in the soil sample collected from 6 to 7 feet BGS. TRPH was not detected in either soil sample collected from boring G469-NS19. Soil samples were collected continuously from ground

surface to the water table at the remaining two borings (G469-NS01 and G469-NS20). All deeper soil samples were analyzed for the same parameters as specified previously for the near-surface soil samples. The primary contaminants detected at AOI 469 are PCBs and lead.

Three PCBs were detected in the 22 near-surface soil samples collected, including Aroclor 1242, Aroclor 1254, and Aroclor 1260. Concentrations of Aroclor 1242 ranged from non-detected to 0.495 mg/kg in NS01. Concentrations of Aroclor 1254 ranged from non-detected to 1.04 mg/kg in NS01. Concentrations of Aroclor 1260 ranged from 0.0206 mg/kg to 7.12 mg/kg in NS20. None of the concentrations of Aroclor 1242 detected exceeded either NYSDEC or EPA RBC criteria values. Concentrations of Aroclor 1254 only marginally exceeded the NYSDEC criterion (1 mg/kg) in NS01 (1.02 mg/kg) and NS01/D (1.04 mg/kg). Concentrations of Aroclor 1260 exceeded the NYSDEC and EPA RBC criteria value only in NS20 (7.12 mg/kg).

Thirty-one subsurface soil samples were collected at AOI 469 from the 11 soil borings installed. Two PCBs were detected in the subsurface soil samples, including Aroclor 1254 and Aroclor 1260 (see Figure 3-4a). Concentrations of Aroclor 1254 ranged from non-detected to 0.684 mg/kg in SS01-Z1. Concentrations of Aroclor 1260 ranged from non-detected to 12.40 mg/kg in SS20-Z1.

Concentrations of Aroclor 1260 exceeded screening criteria values in only two shallow subsurface soil samples, which were collected from soil boring G469-NS20. The concentration of Aroclor 1260 detected in SS20-Z1 (12.40 mg/kg) exceeded both NYSDEC and EPA RBC criterion value. The concentration of Aroclor 1260 in SS20-Z2 (3.88 mg/kg) exceeded EPA RBC criterion value but not the NYSDEC value. No other PCBs were detected in the subsurface soil samples above NYSDEC or EPA RBC screening criteria values.

Concentrations of lead ranged from 8.29 mg/kg in NS09 to 1,880 mg/kg in NS10 and exceeded both the NYSDEC and EPA RBC criteria values in NS10, NS14, NS16, and NS21. No other metals exceeded EPA RBCs. An Assessment of Adult Exposure to Lead in Soil was performed due to the levels of lead detected in the near-surface soil. The assessment indicated that the levels of lead present are unlikely to pose any significant health risk to future industrial/commercial workers.

During a site visit in February 2002, E & E inspected AOI 473-Building 112 Room 10. Room 10 currently has a false floor over it (half-inch thick steel plate) and can be accessed through a 3-foot-square opening in the false floor, which is situated above a

metal ladder. A sump is located near the northeast corner of the room. The sump pump has been removed from the sump and is presently located on the concrete floor next to the sump. The floor and walls of the room were observed to be clean and in good condition. No significant signs of spilled oil were observed on the floor or walls of the room.

During a site visit in March 2002, E & E inspected AOI 473-Building 112 Room 10 a second time in an attempt to determine the discharge point of the sump pump observed during the previous inspection. The sump pump discharge line appeared to consist of a flexible hose, which currently is coiled on the floor and extends up to the northwest ceiling of the room and then out of sight. The discharge point of the hose could not be determined during the site inspection without entering Room 10. E & E personnel also reviewed the existing Building 112 drawings in an attempt to determine the discharge point of the sump pump, but were unable to find a drawing showing the sump pump discharge line.

3.4.4 2002 ESI Addendum Sampling

The objective of this work is to determine if petroleum hydrocarbons, potentially containing PCBs, have been spilled in AOI 473-Building 112 Room 10. Collection of samples from the sump and the floor of Room 10 are planned (see Figure 3-4b). Sampling of the sump will include collection of a sediment sample if sediment is present in the sump and collection of a swipe sample. Nine additional swipe samples will be collected from the floor of Room 10. The floor swipe samples will be evenly spaced in a grid pattern as shown on Figure 3-4b. The sediment sample and 10 swipe samples will be analyzed for TCL SVOCs, PCBs, TRPH, and TAL metals. A list of sample identifications and analyses is presented on Table 3-4. In addition, the field crew will attempt to determine the discharge point of the sump pump upon entering Room 10.

Provisional 2002 ESI Addendum Sampling

In addition, up to four provisional subsurface soil samples may be collected from AOI 469-Room 10. If, upon closer inspection of Room 10, either the sump has an open bottom or cracks are observed in the floor, then soil samples will be collected from beneath the sump and/or cracks in the floor with a hand auger. If necessary, the concrete floor will first be cored and the soil samples collected from the first soil encountered. All subsurface soil samples collected will be analyzed for TCL SVOCs, PCBs, TRPH, and TAL metal with mercury.

The proposed 2002 ESI Addendum sampling locations for AOI 469-Room 10 are provided on Figure 3-4b. A list of sample identifications and analyses is presented on Table 3-4.

FORMER GRIFFISS AIR FORCE BASE **OTH-305 SAMPLE LISTING** TABLE 3-1

ANALYSES

TAL Metals/Merciny SW1311/6010B	1	×	×	×	1
TCL PCBs SW8082	Tai:	×			
TCL Pesticides 5W8081A	450,	×	×	×	
TCL SVOC's SW8270C	F. 11.2.3	×	×	×	0
TCL VOCs SWEDE		×	×	×	1
8 Solios & MTSA sbilos		×	×	×	
Reactivity - Sulf de SW7.3.4.2	×	300° .		Ţ.	
Reactivity - Cyanide SW7.3.3.2	×				
S406WS Hd	×		· ·		
Ignitability SW1030	×				
Total PCBs SW8082	×			. «	
TCLP Mercury1311/7470A	×				
TCLP Metals + Extraction SW1311/6010B	×		7 %	2	
TCLP Herbicides SW1311/9151A	×				
TCLP Pesticides SW1311/8081A	×	j.	30.		
TCLP SVOC's 5:W1311/8270C	×				
TCLP VOCs SW1311/8260B	×				
Туре	N F	E	Z	Z	
Depth		0.0'-0.5'	0.5'-1.0'	1.0'-2.0'	
Matrix	Water Grab	Subsurface soil	Subsurface soil	Subsurface soil	
Lab	ASC Wa	ASC Sut	ASC Sul	ASC Sut	
Sample Number Lab Mai	OTH305-WG02	OTH305-SS01	OTH305-SS02	OTH305-SS03	
Date	TBD	TBD	TBD	TBD	
Location	OTH-305				Key:

ASC = E & E's Analytical Services Center

N = Original OTH = Other Miscellaneous Environmental Factor sites

PCB = polychlorinated biphenyls

SS = Subsurface soff sample

SVOCs = semivolatile organic compounds

TAL = Target Analyte List

TBD = to be determined TCL = Target Compound List

TCLP = Toxicity Characteristic Leaching Procedure

VOCs = volatile organic compound

WG = water grab sample

FORMER GRIFFISS AIR FORCE BASE PCI 20 ADDITIONAL SAMPLING SAMPLE LISTING TABLE 3-2

81SSQ_MT&A abilo8 %	×	×	×	×	×	×
Boroaws vinO beal	×	×	×	×	×	×
Туре	N	FD1	FR1	N.	N1	MS1
Depth (feet)	0.00-0.17	0.00-0.17	0.00-0.17	0.00-0.17	0.00-0.17	4S/MSD 0.00-0.17
Matrix	Near-surface Soil	Near-surface Soil	ERDC Near-surface Soil	Near-surface Soil	Near-surface Soil	Near-surface Soil (MS/MSD 0.00-0.17
Lab	ASC	ASC	ERDC	ASC	ASC	ASC
Sample Number	PCI20-NS06	PCI20-NS06/D	PCI20-NS06/S	PCI20-NS07	PCI20-NS08	PCI20-NS08 (extra volume)
Date	TBD	TBD	TBD	TBD	TBD	TBD
Location	PCI-20					

Key:

ASC = E & E's Analytical Services Center

/D = duplicate Depth = Depth interval at which sample was collected

Development Center Quality Assurance ERDC = U.S. Army Engineer Research and

FD = field duplicate FR = field split/replicate

MS/MSD = matrix spike/matrix spike duplicate
N = Original
NS = near-surface soil sample /S = split

TBD = to be determined TCL = Target Compound List

TABLE 3-3 Building 211 PIPE VALUT FLOOR ADDITIONAL SAMPLING FORMER GRIFFISS AIR FORCE BASE SAMPLE LISTING

ANALYSES

ATTIOTATIBOTOBWE SISTEM	٦

Type Ę Water Grab Matrix Lab ASC Sample Number Bldg211-WG01 Date TBD Location Bldg 211

Key:

ASC = E & E's Analytical Services Center

N = Original TAL = Target Analyte List TBD = To be determined

WG = grab water sample

SAMPLE LISTING FOR BUILDING 112 AOI 469-Room 10 FORMER GRIFFISS AIR FORCE BASE TABLE 3-4 ADDITIONAL SAMPLING

ANALYSES

ANALTSES	CL PCBs 8082 6 Solids ASTM_D2216 CL SVOC SW8270C 7PH 418.1M 7AL Metals SW6010B/747	× × ×	×	×	× × × ×	×××		XXX					3	x x x x		. 3	XXX	×	××××	$\mathbf{x} \times \mathbf{x} \times \mathbf{x}$	XXXXX	X	X X X X	×	×	×	
	Tvpe	N	FD1	FR1	MS1	N	FD1	FR1	N1	MS1	N1	N1	N1	N1	N1	N1	MS1	N1	FB1	**N1	**FD1	**FR1	**MS1	**N1	**N1	**N**	
	Matrix		Sediment		Sediment (MS/MSD)	Swipe		Swipe	Swipe	Swipe (MS/MSD)	Swipe		Swipe		Swipe				Swipe	Subsurface soil				Subsurface soil			
	de de	ASC	ASC	ERDC	olume ASC	ASC	ASC	ERDC	ASC	olume, ASC	ASC	ASC	ASC	ASC	ASC	ASC	ASC	ASC	of ASC	ASC	ASC	ASC	olume, ASC	ASC	ASC	ASC	
	Sample Number	G473-Rm10-SD01	G473-Rm10-SD01/D	G473-Rm10-SD01/S	G473-Rm10-SD01 (extra v	G473-Rm10-SP01	G473-Rm10-SP01/D	G473-Rm10-SP01/S	G473-Rm10-SP02	G473-Rm10-SP02 (extra w	G473-Rm10-SP03	G473-Rm10-SP04	G473-Rm10-SP05	G473-Rm10-SP06	G473-Rm10-SP07	G473-Rm10-SP08	G473-Rm10-SP09	G473-Rm10-SP10	FIELDQC-FB473-Rm10-SF	G473-Rm10-SS01	G473-Rm10-SS01/D	G473-Rm10-SS01/S	G473-Rm10-SS01 (extra v	G473-Rm10-SS02	G473-Rm10-SS03	G473-Rm10-SS04 ASC	
	Date	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	
		AOI 469-	Room 10																								

TABLE 3-4 ADDITIONAL SAMPLING SAMPLE LISTING FOR BUILDING 112 AOI 469-Room 10 FORMER GRIFFISS AIR FORCE BASE

ANALYSES

TCL PCBs 8082 % Solids ASTM_D2216 TCL SVOC SW8270C TRPH 418.1M	×
	H**
Matrix	Eqpt. Washwater
Lab	ASC
Sample Number	FIELDQC-RB473-Rm10-SS1
Date	TBD
Location	

/S = Split sample.	SD = Sediment sample.	SP= Swipe sample.	Stat = Status (T = Taken, S = Skipped).	SVOC = Semivolatile organic compounds.	TAL = Target Analyte List.	TCL = Target Compound List.	**= Provisional samples collected only
FD = Field duplicate.	FR = Field split/replicate.	MS/MSD = Matrix spike/matrix spike duplicate.	pmer N = Original.	NS = Near-surface soil sample.	PCB = Polychlorinated biphenyls.	QC = Quality control.	RB = Rinsate blank sample.
AOI = Area of Interest.	ASC = E & E's Analytical Services Center.	Eqpt.= Equipment Washwater.	ERDC = U.S. Army Engineer Research and Developmer	Center Quality Assurance Laboratory.	/D = Duplicate sample.	FB= Field blank sample.	

if cracks are observed in floor.

			·
	·		
		,	

В

Field Quality Control Reports

B. Field Quality Control Reports

		Daily Acti	vity Summary		
Date: Monday	7-15-02	•	Report No.:	O i	
Project Name:	GAFB W	IAD9	Weather: 700	860	y Cloudy
Personnel	Hrs.	Affiliation	Personnel	Hrs.	Affiliation
R. Meyers	12+	244			
R. Meyers B. Lervi	12+ 12+	ETE			
5. Reynolds	12+	846			
Phil Ossi	87 mon 15	Zebra		_	
Duriale Pina	22 hours	Zebra		_	
Dominic Pino Ethan Plan E	83 ofe	Zebra		· .	
		·			
			-	-	
<u> </u>			-		
4		Summanı	of Activities		
Equipm	nent	AOC/Task		vities Perfo	rmed
TVA 100		AOC4	Beaun Gra	DONDE SU	rvey
Oz/EXP		1	Collected 6	P44D2	Also Collected
Ozlexp W.L. Inc	licator	V	2 Sed. Sample	les from A	rvey . Also Collected FFF logoon.
		D(55 a)	211.401	7.1.1	
		PCIZO	Collected for lead (2-N5 50	nil 24mples
			401 18GU (3	ויאסט דינים	rele)
	-		* Also Compl and Set u	eted In	tial Decon.
	_	•	and seru	h tol Du	ling rajecti
<u>.</u>					· .
		·			

		Daily Activi	ty Summary		
Date: 7-18-0	Z wed.		Report No.: (ク ラ	
Date: 7-18-0 Project Name:	WAD9 F	teld Program	Weather: 70°	-85° vaid, Poss.	T-storms
Personnel	Hrs.	Affiliation	Personnel	Hrs.	Affiliation
R. Meyers	12_	742			
B. Lervi	12	Ett			
5. Reynolds	12	€4€		1	
C. Taber	12	E+E			
Phil Ors)		fte Zobra			
Dom. Pino	/1	EHE Zebra			
					•
	•				
_		Summary o	f Activities		
Equipm		AOC/Task		vities Perfor	
TYAIC	000	AOC 9/	Installed a	Samples	12GP
02/87	(p	GP Sway	POINTS		
WILT	ndicutor	,			
		0 < 1.5			
		1+01473	Completed	5wipe/9	ed. Sampling
		Sampling			
<u> </u>		, ,			
\longrightarrow	· ·		•		
		,			

			Daily Activ	rity Summary		
	Date: 7-24-	-02 V	7-25-02	Report No.:	08 409	
	Project Name:	GAPB W		Weather: 70°,	Summy /	75° Nice
	Personnel	Hrs.	Affiliation	Personnel	Hrs.	Affiliation
	12 1/10 66	11	EHE			
1-24-02	5 Reports Swith	VI -	Etc.			
1	Will Mualling	9	Zebna			
	Tim Siciliano	Ď	Lebrin			
	B. Meyers	1/	141.			
25.02	5. Paynole 5 Smith][242			
7-12	Will Mualliga	6	Zebra			·
	Tim Sicilians	6	Zebra			
		_				
			Summary	of Activities		
ĺ	Equipme	ent	AOC/Task		ities Perfor	med
ام		· ·	A009	· Completed	GP Su	erver
7-24-02	Oz/EXA			· Installed		/ - / - //
7-0	(a) 1. Indi	catol		borings.		
	Camera					-
		<u> </u>	A 02 G	. 6 "		
1-25-0 ^Z	Same as a	bave	AOC 9	· Collected a full Round · Secured an	of W.L	3
			Building 211	Installed on Floor of	4 to 5"	concretesab
						7///
		<u> </u>	· .		·	
					· · · · · ·	

C

Chain-of-Custody

C. Chain-of-Custody

0881297

SETITOR A93 Walder Avenue, Lancaster, New York, 14086, Tel: 716/685-8080, Fax 716/685-0852

Cooler No:

	PROJECT No: SITE	NAME:		·.	9	LOCATION:		SONTAIN	IER TYF	CONTAINER TYPE AND PRESERVATIVE	PRESE	WATIVE	-			TURNAROUND	IND TIME	\blacksquare
	WEST OFFE Building 21	AFB Bu	116/ng 2,	/	Rome A	10 M	3	-								24-HOUR 48-HOUR		
	CLIENT: USACE-KC dist.	-KC dist					100 7	אילרונר מילרונר			1,					1-WEEK STANDARD	, <u>.</u>	
· :	PROJECT MANAGER:	Ma m		OFFICE No:	200		71	: -	REQUESTED	TED AN	ANALYSIS			(85)	.,	OTHER	days	
	1000	2		Ĉ	1/0	0							(M)		(SE	(FOR LAB USE ONLY)	ISE ONLY)	T
	BOD MOYP IS		EVE HQ					Xin	A1		y,		IB) SON	333) HT	1337)	Lab Job No:	'	
· ·	SAMPLERS: (PRINT) BOD MEYPYS	Mex	8	KIHTAM	/SW HO	E	INIATM	12 13 NY 5 C			· · ·	.· · · · · · · · · · · · · · · · · · ·	IGA3R		нтчэс	Report type: Batch QC:		· ·
				3 IdW		MPLE		الاجرار			<u> </u>		ONH/\		נואפ נ	Yes	No	
	DATE TIME	SAMF	SAMPLE ID	75		7 S	i	9					AO		EN	REMARKS	1KS	
	011120-9-2	18/dg 211- W/601	109/W -	5M	3	Z		: 					0	KX.	Ž	Voult Grab Water Sumple	Vater Sumpl	\mathcal{L}
)							1								,	
		- -							1			-	-		i			$\overline{}$
		:					1		: .	٠.				· .			·	
		:		₹ 7 . -	·	B	7		: .	· ·			· · · · · · · · · · · · · · · · · · ·	.:	±'			
		Note: Call Bob Mape	11 Bob 11	Perpos	\										· ·			1
		920	@ 2623 FOC					· .	1.5									
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	exact Job Charge	5 Charge	0		. :		٠		.:				-			**	15.
	4					,										ì		
	/	 						-	٠.						. ,.9			
								· · · ·						3.				· ·
··	Relinquished By (Signature)	nature)	Date/Time: 2/6/02/	Received By:	y: Slans	(dire)	Date	Date/Time:	Ship Vie:	Jan.	*	N.	Date: 2-6-5	F	Temperature Enclosed:	Blank Info.	NG	
71	Relingbished by: (Sign	: (Signature)	Date/Tims:	Received By: (Signature)	y: (Sign	() (fure)	Date	Date/Time:	BL/Airb	BL/Airbill Number:		-			E LAB	(FOR LAB USE ONLY) Date:	Time:	
	m.c.										- }			Ten	Temperature:	re:	ລູ	
	Distribution: White - Lab original Yellow - Field team leader	ab original Yellow - Fiel	d team leader				<u>.</u> .											1

) (um Sample (rinse water) Drum Sample (PIT Page: 1 of & **TURNAROUNDTIME:** LABPROJECT Trip Blank REMARKS MANAGER: Cooler No: STANDARD 48-HOUR 24-HOUR I-WEEK OTHER ENDING DEPTH (FEET BGS) LAB PROJECT No.: Seprical Ecology and Environment, Inc., Analytical Services Center Seprical 4493 Walden Avenue, Lancaster, New York, 14086, Tel: 716/685-8080, Fax 716/685-0852 ١ CONTAINER TYPE AND PRESERVATIVE Ship Via: Jelivery 5-402 REQUESTED ANALYSIS 2 Temperature Blank Info. Yes BL/Airbiii Number: Enclosed: Date/Time: 5/9/02 Date/Time: Date/Time: (Include State) GA FB Rome N.Y. Received By. (Signature) 8 Received By: (Signature) Received By: (Stghature) り ৬ BOD MEYP 15 OFFICE NO. 16-684-8060 5-9-02/2000 Nund Sriffis AFB-OTH305 OTH305 -W603 OTH305-WG02 OTH305- TBI SAMPLE ID Date/Time: Date/Time: Date/Time: CHAIN OF CUSTODY RECORD Gene Florentino PHONE No.: 15ACE - KC district SAMPLERS: (PRINT) BOB MEY PTS FIELD TEAM LEADER: Wayp (5 0010021110005011 0091 20-6-9 Relinquished By: (Signature) Relingulshed By: (Signature) Relinquiehed By: (Signatyy 5/9/ 20-6-5 TWE PROJECT MANAGER: 5-9-02 PROJECT No: SITE NAME: DATE ď.

TURNAROUND TIME:	24-HOUR	문 문	ОТНЕВ	(55	08133		REMARKS	ONA/HIM - 1/22 P	OVA/HINU= 0/12pg	OVA/HNY= 0/20pg						.: LABPROJECT MANAGER:		100 to
WATIVE /				(M)	HIGS (PP	MHUR DEPTY	ONY BEG	50	<u>,</u> 0	00 2:0 00						LAB PROJECT No.:	(FORTIABILISE ONLY	Tradition 1
CONTAINER TYPE AND PRESERVATIVE	15.20	/ / / / / / / / / / / / / / / / / / / /	REQUESTED ANALYSIS				/ / /			3					, e:	nkinfo.	delinery 5-9-02	"NA
/ CONTAIL	1 20 20/2 20/2 20/2 20/2 20/2 20/2 20/2	3	ŀ	820	5 P. 150	105 0	/ // //	X	×					· ·		Temperature Blank Info	s: Ship Via: Hand	BL/Airbill Number:
LIER	OAKO N.K.	7			NEPS (SE	OF CONTAINS MISSERIES	/////	<u> </u>	<u> </u>	×						Detertime:	Date/Time:	Date/Time:
LOCATION:	(Include State)	ı.		/26/	·	OF CONF	HO		50 3	50 3						ad By: (Signature)	Received By: (S)gnature)	ed B. (Signature)
		308 H		C908-H		<u> </u>	-	Z	Z	3 NI		·	fe,		· ·	Zac Received By:	Receiv	Received B
		AFB-OTH 305	7 7 11	OFFICE NO.: 684-8060	PHONE No.:		SAMPLE ID	TH305-5501	TH305-502	TH305-550						Date/Time:	Date/Time:	Date/Time:
PROJECTNo:	OC) 1 DOZNIKI 1 0 0 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SITE NAME:	(211111)	PROJECT MANAGER: BOD MAYE'S	FIELD TEAM LEADER: BOD MEYP (5	SAMPLERS: (PRINT) BOD MEYELS, GEORE Florentino	DATE TIME	5-9-02 1500 OTH305-5501	5-9-02 1515 OTH 305-502	5-9-02 1530 OTH305-5603						Relinquished By: (Signature)	Relinquished By: (Signaturgy	Relinquished By: (Signature)
PR	<u>5</u> 3	<u>s</u>		PR .	Ë	AS.		W								- B		- Re

F1260699.P65

CHAIN OF CUSTODY RECORD

analytical services center

Cooler No:

TURNAROUND TIME: ō LAB PROJECT MANAGER: REMARKS STANDARD 24-HOUR 48-HOUR 1-WEEK OTHER ENDING DEPTH (FEET 8GS) LAB PROJECT No.: BEGINNING DEPTH (FEET BGS) (MAA) SONIOS BADINGS (MAA) NO Ecology and Environment, Inc., Analytical Services Center 4493 Walden Avenue, Lancaster, New York, 14086, Tel: 716/685-8080, Fax 716/685-0852 Where Scientific Excellence and Efficiency Meet CONTAINER TYPE AND PRESERVATIVE 94.8087 Date: ANALYSIS ŝ **S** 88 Temperature Blank Info REQUESTED Enclosed: Ship Via: 多多 R S Date/Time: Date/Time: 3 CHECK FOR MS/MSL 3 N Received By: (Signature) Received By: (Signature) JARRY) Some LOCATION: (Include State) MATRIXCODE 99 20 PCI20- N508 8481150 Y X OFFICE NO.: 716-694-8060 PCIZO-NSOLD <u> 1720 - NS06</u> PCI20-N507 Sump 4FF-5DOIN AFF-5002 complate SAMPLE ID rormer Grithin AFB AFF-5DO 4FF-500 PHONE No.: SAMPLERS: (PRINT) BOD MAYE Stephanie 201002UH100100 00,00 PROJECT MANAGER: 0441 1425 graffure) 2 Relinguished By: (Signature) F40 1-15-62 1450 2-15-02 11540 -15-021555 7-15-02 HZS TIME FIELD TEAM LEADER 170-51 Scian 70-51-7 715-02 PROJECT No: SITE NAME: DATE CLIENT:

Time:

7-15-62 (FOR LAB USE ONLY)

るいいの

10136 Date/Time:

BL/Airbiil Number:

Received By: (Signature)

Date/Time:

ACCAN)

Relinquished By: (Signature)

Temperature:

Sediment from Jump Page: | of Z Baggie with 5 ungang TURNAROUND TIME: Gauze Pads inside REMARKS 55 / FIS 3 CODINE NO: STANDARD 24-HOUR 48-HOUR 1-WEEK OTHER _ | Pp: ENDING DEPTH (FEET 8GS) BEGINNING DEPTH (FEET BGS) Jellet. OVA/HNUREADINGS (PPM) HILLI UFHILTURA (1916-8080, Fax 716/685-0852) Where Scientific Excellence and Efficiency Meet CONTAINER TYPE AND PRESERVATIVE Sediment & **(**) REQUESTED ANALYSIS -NO MS/MSD &//PC/PA/ Series Series Sor Remark 3 Rome, 2 7 10 K 5 70 LOCATION: (Include State) 50/ MATRIXCODE **SE 5**Ø <u>20</u> **S** 7-17-02 18-00 FIRIDO-FB473-4-10-51 150 1550 (5473-12m10-5P05 SQ 1539 6473 - Rm10-5POH 1528 G473-RM10-5P03 G473-RM10-5P02 1502 G473 - Km10-5P01 7-17-02 1500 16473-Rm10-500 NOT CHECKED TO ATTO KIND DOOT 7-17-02 1502 16473 - Rm 10-5PO OFFICE No.: SAMPLE ID SAMPLEHS: (PRINT) Robert Meyers PHONE No.: Charles Tabel Griffis AFB (AOI 473) Robert Marers 201002 UK100801 L. Mayors CLIENT: U5ACE-K 1515 TIME FIELD TEAM LEADER: PROJECT MANAGER: PROJECT No: DATE

Distribution: White - Lab original Yellow - Field team leader/Project Manager

F1260699.P65

wostowicz

Ship Via: Hare deliver X1702 (FOR LAB USE ONLY)

BL/Airbill Number:

Date/Time:

Received By: (Signa)ure

Date/Time:

Relinquished By: (Signature)

Time:

Work Order No. Temperature:

LABPROJECT MANAGER:

LAB PROJECT No .:

ŝ

8

Enclosed:

Date/Time:

Received By: (Signature)

Date/Time:

Religgulshgd By: (Signature)

7-17-02/1830 SARA BARED

Received By: (Signature)

Date/Time:

Relinquished By: (Signatur

S

1556 G473-RM10-5P06 SQ

Temperature Blank Info.

Carra Los tanks Page: 2 of 2 Cooler No: 45C TURNAROUND TIME: LABPROJECT REMARKS AANAGER: STANDARD 48-HOUR 24-HOUR 1-WEEK OTHER ENDING DEPTH (FEET BGS) Ship Vie: Date: Hand de IVO 7-1702 (FOR LAB USE ONLY) BEGINNING DEPTH (FEET BGS) LAB PROJECT No.: OVA/HNUREADINGS (PPM) STANCES Ecology and Environment, Inc., Analytical Services Center \$493 Walden Avenue, Lancaster, New York, 14086, Tel: 716/685-8080, Fex 716/685-0852 Where Scientific Excellence and Efficiency Meet CONTAINER TYPE AND PRESERVATIVE **REQUESTED ANALYSIS** ဦ Date/Time: BL/Airbill Number: K / (%) Temperature Blank Info. 7-17-62/83# Enclosed: Date/Time: Rome NS SANABILL LOCATION: (Include State) Received By: (Signature) Received By: (Signature) MATRIX CODE 5473-12m10-5P10 5473-Rm 10-5P09 7-17-02/1605/6473-RMIU-5P07 G473-RM10-5P0B Griffiss AFB - ADI473 1-17-02/1830 Robert Meyers OFFICENO: HQ Date/Time: Date/Time: CHAIN OF CUSTODY RECORD PHONE No.: SAMPLERS. (PRINT) Robert Meyers
Charles Taber 001002WK100801 CLIENT: USACE - KC K. Meyers 12-17-02 11615 Relinquished By: (Signature) Relinquished By: (Signaffire) TIME -17-02/12 FIELD TEAM LEADER: PROJECT MANAGER: PROJECT No: SITE NAME:

D

Validation Memoranda

D. Validation Memoranda

DATA VALIDATION MEMORANDUM

DATE:

June 25, 2002 (Updated October 2002)

TO:

Robert Meyers, Project Manager,

Ecology and Environment, Inc. (E & E)

FROM:

Marcia Meredith Galloway, QA Officer, Buffalo

SUBJ:

2002 Expanded Site Investigation

USACE Contract DACW41-99-D-9005, Task Order No. 0001

WAD 9

Laboratory - Analytical Services Center (ASC)

REF:

Project	Lab Work Order
Griffiss AFB- OTH305	0205079

DELIVERABLES

The laboratory report is complete as stipulated in the master Quality Assurance Project Plan (QAPP) (E & E, 2002) and the site-specific QAPP for the above referenced project and site. The data validation memo findings and the potential impacts on data usability will be presented in a Quality Control Summary Report (QCSR) submitted as a separate report.

SAMPLE INTEGRITY

Based on the information provided on the cooler receipt form, the samples arrived at the laboratory intact and properly preserved. Completed chain-of-custody (COC) documents are included in the laboratory report.

SAMPLE IDENTIFICATION

The field samples for this laboratory data package and related laboratory identifications (IDs) are listed on the following Table 1. There were no field duplicates and project-specific matrix spike/matrix spike duplicates (MS/MSD) collected. Any samples noted as MS/MSD on Table 1 are provided as batch quality control (QC) MS/MSD. Samples identified with a matrix code of "WQ" are trip blanks (samples identified as -TB). All tables are included at the end of this memo except for Table 1 Sample Listing.

Table 1 - List of Samples Reported

Sample Date	Sample ID	Matrix	Lab ID	Lab QC	ID Corrections
5/9/2002	OTH305-TB1	Water	0205079-01		None
5/9/2002	OTH305-WG02		0205079-02		None
5/9/2002	OTH305-WG03	Water	0205079-03	MS/MSD	None
5/9/2002	OTH305-SS01	Soil	0205079-04		None
5/9/2002	OTH305-SS02	Soil	0205079-05	MS/MSD	None
5/9/2002	OTH305-SS03	Soil	0205079-06	MS/MSD	None

Work Orders	Matrix	Test Method	Number of Samples
0205079	Soil	SW6010B	3
0205079	Soil	SW7471A	3
0205079	Soil	SW8081A	. 3
0205079	Soil	SW8082	3
0205079	Soil	SW8260B	3
0205079	Soil	SW8270C	3
0205079	Soil	ASTM_D2216	3
0205079	Water	SW8260B	1
0205079	Water	SW1311_7470A	2
0205079	Water	SW1311_6010B	2
0205079	Water	SW9040B	2
0205079	Water	SW7.3.3.2	2
0205079	Water	SW7.3.4.2	2
0205079	Water	SW8081A	2
0205079	Water	SW8082	2
0205079	Water	SW8151A .	2
0205079	Water	SW8270C	. 2
0205079	Water	SW1010	2

Holding Times

All samples were analyzed within the project-specified holding time with the following exceptions:

Method	Sample ID	Sample Date	Matrix	Sample Type	PrepHT	Prep Date	AnalHT	Analysis Date	Samp Qual
Reactive Sulfide	OTH305- WG02	5/9/2002	Water	SAMP	5	5/20/2002	40	5/29/2002	UJ Flag Ali Data
Reactive Sulfide	OTH305- WG03	5/9/2002	Water	SAMP	5	5/20/2002	40	5/29/2002	UJ Flag All Data

Samples for reactive sulfide should be run as soon as possible. The laboratory ran the samples originally with the applied water method holding time for sulfide and got bad LCS recovery. The samples were re-analyzed 20 days after sample collection.

Go to Tables List

VOLATILE ANALYSES (8260B)

Blank Summary

Laboratory method blanks and trip blanks were performed at the required frequency and no compounds were present above the practical quantitation limit (PQL) or at trace levels (Table 2).

Surrogates

The recoveries for surrogates; 1,2-Dichloroethane-d4, 4-Bromofluorobenzene, Dibromofluoromethane, and Toluene-d8 were within acceptable QC limits for all samples except dibromofluoromethane in OTH305-SS01as noted on Table 3. The sample was re-analyzed as noted on Table 6 with similar results indicating a matrix effect. The results for the sample analysis are reported and qualified as indicated on Table 6.

Matrix Spike/Matrix Spike Duplicates (MS/MSD)

Batch QC MS/MSD was performed as indicated on Table 1. The percent recovery and relative percent difference (RPD) values were within laboratory QC limits (Table 4).

Laboratory Control Sample (LCS)

The LCSs were analyzed at the required frequency and all recoveries were within QC limits.

Calibration

The method calibration criteria for initial and continuing calibration were met for all samples except for acetone in one batch. Acetone was not detected in the associated samples and the response was sufficient to meet the detection limit. No manual integrations were required.

SEMIVOLATILE ANALYSES (8270C)

Blank Summary

Laboratory method blanks were performed at the required frequency and no compounds were present above the PQL or in trace levels.

Surrogates

The recoveries for surrogates 2,4,6-tribrornophenol, 2-fluorobiphenyl, 2-fluorophenol, nitrobenzene-d5, phenol-d5, and terphenyl-d14 were within acceptable QC limits except for 2,4,6-tribromophenol in OTH305-SS01as noted on Table 3. No action is required for one surrogate recovery per fraction outside QC limits. The sample results are reported and qualified as indicated on Table 3.

Data Validation Memo Page 4 of 9

Matrix Spike/Matrix Spike Duplicates (MS/MSD)

Batch QC MS/MSD was not performed with these samples. An LCS duplicate was performed instead. The LCS recoveries were acceptable indicating no analytical concerns.

Laboratory Control Sample (LCS)

The LCSs were analyzed at the required frequency and all recoveries were within QC limits.

Calibration

The method calibration criteria for initial calibration and continuing calibration criteria were met No manual integrations were required

PESTICIDE ANALYSES (8081A)

Blank Summary

Laboratory method blanks were performed at the required frequency and no corripounds were present above the PQL.

Surrogates

The recoveries for surrogates decachlorobiphenyl (DCB) and Tetrachloro-m-xylene (TCMX) were within acceptable QC limits except for DCB in OTH305-SS01 and TCMX in OTH305-WG02 as noted on Table 3. No action is required for one surrogate recovery per fraction outside QC limits. The sample results are reported and qualified as indicated on Table 3.

Matrix Spike/Matrix Spike Duplicates (MS/MSD)

Batch QC MS/MSD was performed as indicated on Table 1. The percent recovery and RPD values were within laboratory QC limits except as noted on Table 4 at the end of this memo. No data qualification is required on the MS/MSD outliers unless significant matrix effects are indicated. The LCS recoveries were acceptable with the exceptions noted below.

Laboratory Control Sample (LCS)

The LCSs were analyzed at the required frequency and all recoveries were within QC limits except as noted on Table 5. The recovery of methoxychlor was low because the compound was spiked at a level below the method detection limit. The other pesticides show good recovery and no data qualification is required.

Calibration

The method calibration criteria for initial calibration and continuing calibration criteria were met and no manual integrations were required.

Data Validation Memo Page 5 of 9

PCB ANALYSES (8082)

Blank Summary

Laboratory method blanks were performed at the required frequency and no target compounds were present at levels above or below the PQL.

Surrogates

The recoveries for surrogates DCB and TCMX were within acceptable QC limits.

Matrix Spike/Matrix Spike Duplicates (MS/MSD)

Batch QC MS/MSD was not performed with these samples. An LCS duplicate was performed instead. The LCS recoveries were acceptable indicating no analytical concerns.

Laboratory Control Sample

The LCSs were analyzed at the required frequency and all recoveries were within QC limits.

Calibration

The method calibration criteria for initial calibration and continuing calibration criteria were met.

METALS (6010/7000)

Blank Summary

Laboratory method blanks were analyzed at the required frequency and had no target analytes detected above the laboratory PQL. Trace levels of several metals mercury, aluminum, manganese and potassium) were found below the PQL as shown on Table 2. The associated samples with positive results for the compounds are shown on Table 2A for method blanks. Sample results for TCLP mercury less than 5 times the blank levels are qualified "U" as non-detect. The results were below the PQL and therefore well below the TCLP limit. There is no impact on data usability.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Batch QC MS/MSD was performed as indicated on Table 1. The percent recovery and RPD values were within laboratory QC limits except as noted on Table 4 at the end of this memo. Qualifiers were added as noted in Table 4. For low recoveries, both the results and quantitation limit are flagged "J" as estimated. For high recoveries, only the positive results are flagged "J" as estimated. QC limits do not apply to metals with spike amounts less than four times the sample amount. These metals are flagged as "4X" on Table 4.

Data Validation Memo Page 6 of 9

Laboratory Control Sample (LCS)

The LCSs were performed at the required frequency and all recoveries were within QC limits.

Calibration

The method calibration criteria for initial calibration and continuing calibration criteria were met.

GENERAL CHEMISTRY (7.3.4.2, 7.3.3.2, 1010, and 9040B)

Blank Summary

Laboratory method blanks were analyzed at the required frequency and had no target analytes detected above the laboratory PQL.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Batch QC MS/MSD was performed as indicated on Table 1. The percent recovery and RPD values were within laboratory QC limits.

Laboratory Control Sample (LCS)

The LCSs were performed at the required frequency and all recoveries were within QC limits except for reactive cyanide. The recovery for the LCS was zero. The analysis was not repeated because the holding time had expired. The reactive cyanide was non-detect and the results are flagged "UR" as rejected. However, the tests are highly variable and difficult to achieve good response. The results are for disposal purposes and there is no indication of cyanide or other hazardous materials in the samples. Therefore, there is no overall impact on the usability of the samples.

Calibration

The method calibration criteria for initial calibration and continuing calibration criteria were met.

FIELD DUPLICATE RESULTS

No field duplicates were collected.

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Samp Type Analyte	Analyte	Result Qual	Qual	Anal	Shinu	MOL	Pal
SW1311_7470A	SW1311_7470A MB-200201707	MBLK	Mercury	0.002013	7	⋖	mg/L	0.0001040	0.02000
SW1311_7470A	SW1311_7470A TB-200201404 TCLPMBLK	TCLPMBLK	Mercury	0.001718	3	4	mg/L	0.0001040 0.02000	0.02000
SW6010B	MB-200201471	MBLK	Aluminum	2.836	_	4	mg/Kg	1.200	10.00
SW6010B	MB-200201471	MBLK	Manganese	1.278	:	4	mg/Kg	0.2000	1.000
SW6010B	MB-200201471	MBLK	Potassium	4.932	٦	4	mg/Kg	4.500	100.0

lable 2A - List of Samples Qualified for Method Blank Contamination	t of Samples (Juante	ed tor meth	od Blank Con	tamina				
Method	Lab Blank	Matrix	Analyte	Blank Result	Result	Lab Qual	PQL	Lab Blank Matrix Analyte Blank Result Result Lab Qual POL Affected Samples Sample Flag	Sample Flag
SW6010B	MB-200201471 Soil		Aluminum	2.836 16700	0029	ſ	21.2	OTH305-SS02	Not Qualified
SW6010B	MB-200201471 Soil	Soil	Aluminum	2.836 16500	6500	ſ	16.2	OTH305-SS01	Not Qualified
SW6010B	MB-200201471 Soil	Soil	Aluminum	2.836 17100	7100	J.	20.7	OTH305-SS03	Not Qualified
SWEOTOB	MB-200201471 Soil	iios	จัจจันซซินซ์	1.278 532	35		1 62	OTH305-SS01	Not Qualified
SW6010B	MB-200201471 Soil	Soil	Manganese	1.278 1230	230		2.07	OTH305-SS03	Not Qualified
SW6010B	MB-200201471 Soil	Soil	Manganese	1.278 1550	550		2,12	OTH305-SS02	Not Qualified
SW1311_7470A TB-200201404 Water	TB-200201404	Water	Mercury	0.001718 0.000612	.000612	ſ	0.0200	0.0200 OTH305-WG02	U Flag
SW1311_7470A MB-200201707 Water	MB-200201707	Water	Mercury	0.002013 0.000612	.000612	f	0.0200	0.0200 OTH305-WG02	U Flag
SW6010B	MB-200201471 Soil	Soil	Potassium	4.932 1080	080) 	212	OTH305-SS02	Not Qualified
SW6010B	MB-200201471 Soil		Potassium	4.932 1110	110	J	162	OTH305-SS01	Not Qualified
SW6010B	MB-200201471 Soil		Potassium	4.932 1140	140	J	207	OTH305-SS03	Not Qualified

Table 2B - List of Samples Qualified for Field Blank Contamination None

ומחום כי בופו כו ממווה	oine min ear	ampies with San Ogates Outside Comor Emines		2111	:	
Method Sample ID	e ID Sample Type	Analyte	Rec.	Low Limit	ilgh Limir Dil Fa	Rec. Low Limit High Limit Dil Fac Sample Qual.
SW8270C OTH305-SS01	SS01 SAMP	2,4,6-Tribromophenol	24	32	130 1	None
SW8260B OTH305-SS01 SAMP	SAMP	Dibromofluoromethane	22	83	117 1	J flag acetone
SW8260B OTH305-SS01 RA	ВА	Dibromofluoromethane	09	83	117]1	Do not report
OTH305	SS01 SAMP	Decachlorobiphenyl	173	39	135 1	None
SW8081A OTH305-WG02 SAMP		Tetrachloro-m-xylene	40	44	135 20	Diluted Out

Data Validation Memo Page 8 of 9

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Orig. Result Spike Amount	Rec.	Dil Fac	Low Limit	High Limit	Rec. Dil Fac Low Limit High Limit Sample Qual.
SW8081A	SW8081A OTH305-SS03	MSD	4,4'-DDD	<3.290	3.649	129		73	119	19 None
SW8081A	SW8081A OTH305-SS03	MS	Heptachtor	<3.320	3.688	170	_	75	143	43 None
SW8081A	SW8081A OTH305-SS03	MSD	Heptachlor	<3.290	3.649	214		75	143	43 None
SW8081A	SW8081A OTH305-SS03	MS	Methoxychlor	<44.30	36.88	16	_	74	147	47 None
SW8081A	SW8081A OTH305-SS03	MSD	Methoxychlor	<43.80	36.49	12	_	74	147	147 None
SW6010B	SW6010B OTH305-SS02	MS	Aluminum	16700	104	-2962	č	75	125 4X	4X
SW6010B	SW6010B OTH305-SS02	MSD	Aluminum	16700	95.01	11432	~	75	125 4X	4X
SW6010B	SW6010B OTH305-SS02	MS	Antimony	5.56	104	60 2	2	75	125	125 J Flag
SW6010B	SW6010B OTH305-SS02	MSD	Antimony	95.5	95.01	225	~	75	125	125 J Flag
SW6010B	SW6010B OTH305-SS02	MS	Calcium	3370	1040	3042 2	~	75	125	125 None
SW6010B	SW6010B OTH305-SS02	MSD	Calclum	3370	950.1	3462	O.	75	125	125 None
SW6010B	SW6010B OTH305-SS02	MS	Iron	31300	104	104 - 3971 2	S	75	125 4X	4X
SW6010B	SW6010B OTH305-SS02	MSD	Iron	31300	95.01	95.01 -1528 2	CI.	75	125 4X	4X
SW6010B	SW6010B OTH305-SS02	MS	Magnesium	5280	1040	1432	~	75	125 4X	4X
SW6010B	SW6010B OTH305-SS02	MS	Manganese	1550	104	-422 2	~	75	125 4X	4X
SW6010B	SW6010B OTH305-SS02	MSD	Manganese	1550	95.01	-444	2	75	125 4X	4X

Method	Method Sample ID Sample Type Analyte RPD RPD Limit Sample Qual.	Sample Type	Analyte	RPD	RPD LIMIL	Sample Qual.
SW6010B	SW6010B OTH305-SS02 MSD		Aluminum 340.0 35	340.0	35	None
SW6010B	SW6010B OTH305-SS02 MSD		Calcium 159.1 35	159.1	Calcium 159.1 35 None	None
SW6010B	SW6010B OTH305-SS02 MSD	MSD	Iron	88.9 35	35	None

Table 5 - List LCS Recoveries outside Control Limits

	Taylo o Elot Red Tickotolico outolico dell'India						
Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	Analyte Rec. Low Limit High Limit Affected Samples	Samp Qual
SW7.3.3.2 LCS-200	SW7.3.3.2 LCS-200201346 Reactive Cyanide	201346 Reactive Cyanide	0	1	125	125 OTH305-WG02/WG03 Non-Detect	Non-Detect
SW8081A	SW8081A LCS-200201303 Methoxychlor	Methoxychlor	0	74		147 OTH305-SS01/SS02/SS03 None, MDL problem	None, MDL problem
SW8151A	SW8151A LCSD-200201331 2,4-D	2,4-D	22	74		120 OTH305-WG02/WG03	Non-Detect

Data Validation Memo Page 9 of 9

Table 6 -Samples that were Reanalyzed

Action	Report, add J flags	Do Not Report
Method Sample Type	OTH305-SS01 0205079-04 SW8260B SAMP	OTH305-SS01 0205079-04 SW8260B RA
Lab ID	0205079-04	0205079-04
Sample ID	TH305-SS01	TH305-SS01

DATA VALIDATION MEMORANDUM

DATE:

August 8, 2002 (Updated October 2002)

TO:

Robert Meyers, Project Manager,

Ecology and Environment, Inc. (E & E)

FROM:

Marcia Meredith Galloway, QA Officer, Buffalo

SUBJ:

Year 2002 Expanded Site Investigation at the Former Griffiss Air Force Base

USACE Contract DACW41-99-D-9005, Task Order 0001- WAD 9

Laboratory - Analytical Services Center (ASC) REF:

Project	Lab Work Order
Griffiss AFB- WAD 09 AOC 9/PCI 20	0207099

DELIVERABLES

The laboratory reports are complete as stipulated in the master Quality Assurance Project Plan (QAPP) (E & E 2000) and the site-specific QAPP for the above referenced project and site. The data validation memo findings and the potential impacts on data usability will be presented in a Quality Control Summary Report (QCSR) submitted as a separate report.

SAMPLE INTEGRITY

Based on the information provided on the cooler receipt form, the samples arrived at the laboratory intact and properly preserved. Completed chain-of-custody (COC) documents are included in the laboratory report.

SAMPLE IDENTIFICATION

The field samples for this laboratory data packages and related laboratory identifications (IDs) are listed on the following Table 1. Samples identified as /D are field duplicates. Project-specific matrix spike/matrix spike duplicates (MS/MSD) designated in the field as extra volume by on the COC are noted with a "*" on Table 1. Any other samples noted as MS/MSD on Table 1 are provided as batch quality control (QC) MS/MSD. Samples identified with a matrix code of "RB" are rinsate blanks and samples identified with a matrix code of "TP" or "TS" are trip blanks. All tables are included at the end of this memo except for Table 1 Sample Listing.

Table 1 - List of Samples Reported

Sample ID	Sample Date	Matrix	Lab ID	Lab QC	MS/MSD	ID Corrections
PCI20-NS06	7/15/2002	Soil	0207099-04			None
PCI20-NS07	7/15/2002	Soil	0207099-05			None
PCI20-NS08	7/15/2002	Soil	0207099-06	MS/MSD	*	None

Sample ID	Sample Date	Matrix	Lab ID	Lab QC	MS/MSD	ID Corrections
PCI20-NS06/D	7/15/2002	Soil	0207099-07			None

Work Orders	Matrix	Test Method	Number of	Samples
0207099	Soil	SW6010B	4	
0207099	Soil	ASTM_D2216	4	

Go to Tables List

Holding Times

All samples were analyzed within the project-specified holding time.

METALS (6010/7000)

Blank Summary

Laboratory method blanks were analyzed at the required frequency and had no target analytes detected above the laboratory PQL.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS/MSD was performed at the required frequency on samples indicated on the COC as project-specific QC. The percent recovery and RPD values were within laboratory QC limits except as noted on Table 4 at the end of this memo. No qualifiers were added because the spike amount was less than four times the sample amount.

Laboratory Control Sample (LCS)

The LCSs were performed at the required frequency and all recoveries were within QC limits.

Calibration

The method calibration criteria for initial calibration and continuing calibration criteria were met.

FIELD DUPLICATE RESULTS

Field duplicates were analyzed as required in the QAPP. The samples are noted on Table 1 of this memo were field duplicates. The results will be summarized on a table in the QCSR. The field duplicate QC criteria are two times the laboratory duplicate QC criteria of 20% for water samples and 35% for soil samples (i.e., 40% for water samples and 70% for solid samples). The RPD ratings are listed as "Good" if the RPD is less than field duplicate QC criteria and as "Poor" if the RPD exceeded the field duplicate QC criteria.

Field duplicate results are summarized on Table 7 below. One set of duplicate samples were collected and overall the precision is very good.

Data Validation Memo Page 3 of 3

Table 2 - List of Positive Results for Blank Samples None

Table 3 - List of Samples with Surrogates outside Control Limits None.

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Sample Qual.	4X
High Limit	125 4X
Dil Fac Low Limit High Limit	75
Dil Fac	2
Rec.	111 1332
Orig. Result Spike Amount	
Orig. Result	521
Analyte	Lead
Sample Type	MS
Sample ID	SW6010B PCI20-NS08
Method	SW6010B PCI2

Table 5 - List LCS Recoveries outside Control Limits None

Table 6 -Samples that were Reanalyzed

None

Table 7 - Summary of Field Duplicate Results

WorkOrder	WorkOrder ClientSampID	Expr1		CollectionDate
0207099	0207099 PCI20-NS06/D PCI20-NS0*		Griffiss AFB- WAD 09 AOC 9/PCI 20 7/15/2002 2:25:00 PM	7/15/2002 2:25:00 PM

				Anal	PCI20-	PC120-		RPD	Samo
Method	Analyte	Ę	PaL	Type	NS06	US06/D	B	Rating	Qual
ASTM_D2216 Percent	Percent Moisture	wt%	0.100	٧	18.3	20	8.9%	Good	None
SW6010B	Lead	mg/Kg 6.01	6.01	4	183	202	86.6	Good	None

ישיע יייטשא ווווו פעעפוט וטען עט פייוווי איי ציי י פיי

DATA VALIDATION MEMORANDUM

DATE:

September 19, 2002

TO:

Robert Meyers, Project Manager,

Ecology and Environment, Inc. (E & E)

FROM:

Marcia Meredith Galloway, QA Officer, Buffalo

SUBJ:

Year 2002 Expanded Site Investigation at the Former Griffiss Air Force Base

USACE Contract DACW41-99-D-9005, Task Order 0001- WAD 9

Laboratory - Analytical Services Center (ASC)

REF:

Project	Lab Work Order
Griffiss AFB- WAD 09 AOI 473	0207128

DELIVERABLES

The laboratory reports are complete as stipulated in the master Quality Assurance Project Plan (QAPP) (E & E 2000) and the site-specific QAPP for the above referenced project and site. The data validation memo findings and the potential impacts on data usability will be presented in a Quality Control Summary Report (QC:SR) submitted as a separate report.

SAMPLE INTEGRITY

Based on the information provided on the cooler receipt form, the samples arrived at the laboratory intact and properly preserved. Completed chain-of-custody (COC) documents are included in the laboratory report.

SAMPLE IDENTIFICATION

The field samples for this laboratory data packages and related laboratory identifications (IDs) are listed on the following Table 1. Samples identified as /D are field duplicates. Project-specific matrix spike/matrix spike duplicates (MS/MSD) designated in the field as extra volume by on the COC are noted with a "*" on Table 1. Any other samples noted as MS/MSD on Table 1 are provided as batch quality control (QC) MS/MSD. Samples identified with as Field QC are rinsate blanks. All tables are included at the end of this memo except for Table 1 Sample Listing.

Table 1 - List of Samples Reported

Sample Date	Sample ID	Matrix	Lab ID	Lab QC	MS MS	ID Corrections
7/17/2002	FIELDQC-FB473-RM10-SP1	Wipe	0207128-01			None

Sample Date	Sample ID	Matrix	Lab ID	Lab QC	MS MS	ID Corrections
7/17/2002	G473-RM10-SD01	Sediment	0207128-02			None
7/17/2002	G473-RM10-SP01	Wipe	0207128-03			None
7/17/2002	G473-RM10-SP01/D	Wipe	0207128-04			None
7/17/2002	G473-RM10-SP02	Wipe	0207128-05	MS/MSD	*	None
7/17/2002	G473-RM10-SP03	Wipe	0207128-06			None
7/17/2002	G473-RM10-SP04	Wipe	0207128-07			None
7/17/2002	G473-RM10-SP05	Wipe	0207128-08			None
7/17/2002	G473-RM10-SP06	Wipe	0207128-09			None
7/17/2002	G473-RM10-SP07	Wipe	0207128-10			None
7/17/2002	G473-RM10-SP08	Wipe	0207128-11			None
7/17/2002	G473-RM10-SP09	Wipe	0207128-12			None
7/17/2002	G473-RM10-SP10	Wipe	0207128-13	-		None

Work Orders	Matrix	Test Method	Number of Samples
0207128	Sediment	SW8270C	1
0207128	Sediment	SW8082	-
0207128	Sediment	SW7471A	1
0207128	Sediment	SW6010B	1
0207128	Sediment	EPA418.1	1
0207128	Sediment	ASTM_D2216	1
0207128	Wipe	SW8082	11
0207128	Wipe	EPA418.1	11
0207128	Wipe	SW8270C	12
0207128	Wipe	SW7471A	12
0207128	Wipe	SW6010B	12

Go to Tables List

Holding Times

All samples were analyzed within the project-specified holding time.

SEMIVOLATILE ANALYSES (8270C)

Blank Summary

Laboratory method blanks and field blanks were performed at the required frequency and no target compounds were present above the PQL. Bis(2-ethylhexyl)phthalate was found above the MDL at 118 $\,\mu$ g/Kg in method blank MB-200202014 as indicated on Table 2. Numerous tentatively identified compounds (TiCs) also were found. The associated samples with positive results for the compounds are shown on Table 2A for method blanks and Table 2B for field blanks. Sample results less than 10 times the blank levels are flagged "U" as non-detect for common laboratory contaminants. Sample results less than 5 times the blank levels are flagged "U" as non-detect for all other compounds.

Data Validation Memo Page 3 of 18

The TICs present in the method blanks are related to the aldol condensation products generated from extraction with acetone. The TICs present in the field blank for wipes appear to be related to low level impurities in the hexane used for the wipe process.

Surrogates

The recoveries for surrogates 2,4,6-tribrom ophenol, 2-fluorobiphenyl, 2-fluorophenol, nitrobenzene-d5, phenol-d5, and terphenyl-d14 were within acceptable QC limits except for one low surrogate in a sample and MSD as noted on Table 3. No action is required for one surrogate recovery per fraction outside QC limits.

Matrix Spike/Matrix Spike Duplicates (MS/MSD)

The MS/MSD was performed at the required frequency on samples indicated on the COC as project-specific QC. No additional batch QC was reported. The percent recovery and relative percent difference (RPD) values were within laboratory QC limits except as noted on Table 4. The recoveries were always above 10% except for several compounds with 0% recovery due to the fact that the spike amount was below the reporting limit. The other recoveries show a generally high bias indicating sufficient recovery. None of the associated compounds were detected in any of the sample and therefore, no data qualification is required on the MS/MSD outliers. The LCS recoveries were acceptable indicating no analytical concerns.

Laboratory Control Sample (LCS)

The LCSs were analyzed at the required frequency and all recoveries were within QC limits except as noted on Table 5 (low recovery 4-chloroaniline). 4-Chloroaniline was not detected in the associated samples and is not a compound of concern at the site. All other LCS recoveries were acceptable. Therefore no data qualification is required. The single extraction of wipe does not allow for repeat analysis as a corrective action.

Calibration

The method calibration criteria for initial and continuing calibration were met for all samples. Sample analysis for G473-RM10-SD01 and wipes G473-RM10-SP01, 02, 03, 04, 07 and 10 showed low internal standard responses and manual integrations were performed as noted in the narrative? The sample chromatograms showed classic hydrocarbon patterns indicating severe matrix effects. Several PAH compounds in the sludge sample were found. There were no positive target compounds in the wipes except for benzyl alcohol and bis(2-ethylhexyl)phthalate. All associated positive results present above the reporting limit are flagged "J" as estimated based on the matrix effects. The PQL values are not qualified because the surrogate recoveries were acceptable and no low bias was indicated.

PCBs (8082)

Blank Summary

Laboratory method blanks were performed at the required frequency and no target compounds were present at levels above or below the PQL.

Surrogates

Surrogate recoveries were high for several samples, LCS and method blank. The LCS recoveries also were slightly high side indicating an overall high bias likely due to slight over concentration. The recoveries were all within the method limits of 70 to 130% except for the recoveries in the sediment sample. The sediment sample had clear matrix effects and the

positive results are flagged "J" as estimated. The wipe samples had no matrix effects and the likely slightly high recoveries because the extraction in a wipe sample is much more efficient then in a soil sample. Therefore, the PCBs detected in the wipe samples were not qualified. The wipe samples cannot be re-extracted as there is no additional sample volume.

Matrix Spike/Matrix Spike Duplicates (MS/MSD)

The MS/MSD was performed at the required frequency on samples indicated on the COC as project-specific QC. No additional batch QC was reported. The percent recovery and relative percent difference (RPD) values were within laboratory QC limits except as noted on Table 4. The recoveries were always above 10%. No data qualification is required on the MS/MSD outliers unless significant matrix effects are indicated.

Laboratory Control Sample (LCS)

The LCSs were analyzed at the required frequency and all recoveries were acceptable except for a slightly high recovery in the wipe sample. The bias is probably due to a better extraction in the wipe sample compared to the soil limits. Re-extraction was not performed as no additional wipes were available.

Calibration

The method calibration criteria for initial and continuing calibration were met for all samples.

METALS (6010/7000)

Blank Summary

Laboratory method blanks were analyzed at the required frequency and had no target analytes detected above the laboratory PQL. Trace levels of potassium and selenium were found in the soil method blank and aluminum and manganese were found in the wipe method blank below the PQL as shown on Table 2. The associated samples with positive results for the compounds are shown on Table 2A. Sample results less than 5 times the blank levels are qualified "U" as non-detect.

Several metals also were detected in the field blank at levels above the PQL. The trace levels appear to be associated with field background. The sample results less than 5 times the blank levels are qualified "U" as non-detect as indicated on Table 2B. The metals results for antimony, sodium, and thallium could not be distinguished from background. The other metals are at much higher concentration then the blank samples.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS/MSD was performed at the required frequency on samples indicated on the COC as project-specific QC. The percent recovery and RPD values were within laboratory QC limits except as noted on Table 4 at the end of this memo. The metals were either diluted out of the analysis range or spike amount was less than 4 times the spike value. No data qualification is required because matrix effects cannot be established.

Laboratory Control Sample (LCS)

The LCSs were performed at the required frequency and all recoveries were within QC limits.

Calibration

The method calibration criteria for initial calibration and continuing calibration criteria were met.

Data Validation Memo Page 5 of 18

FIELD DUPLICATE RESULTS

Field duplicates were analyzed as required in the QAPP. The samples are noted on Table 1 of this memo were field duplicates. The results will be summarized on a table in the QCSR. The field duplicate QC criteria are two times the laboratory duplicate QC criteria of 20% for water samples and 35% for soil samples (i.e., 40% for water samples and 70% for solid samples). The RPD ratings are listed as "Good" if the RPD is less than field duplicate QC criteria and as "Poor" if the RPD exceeded the field duplicate QC criteria.

Field duplicate results are summarized on Table 7 below. One set of duplicate wipe samples was collected and overall the precision was generally poor. The results indicate a high variability in the wipe sample collection. Field duplicate results with "Poor" are flagged "J" as estimated and the potential variability in the results needs to be evaluated if the results are compared to any regulatory criteria. Since the wipes results will probably be incorporated into an overall risk evaluation that would take into account the inherent variability of the results.

Data Validation Memo Page 6 of 18

Table 2 - List of Positive Results for Blank Samples

Method Sample ID		Samp	Analyte	Result	Result QUAL	Analyte Type	Units	MDL	Pat
SW6010B FIELDQC-FB473-RM10-SP1	S	SAMP	Aluminum	12.4		A	ug/wipe 1.20		10.0
SW6010B FIELDQC-FB473-RM10-SP1		SAMP	Antimony	1.81		А	ug/wipe 0.300	_	1.00
SW6010B FIELDQC-FB473-RM10-SP1		SAMP	Barium	1.25	<u></u>	А	µg/wipe 0.200	0	2.00
SW6010B FIELDQC-FB473-RM10-SP1		SAMP	Calcium	462		Α	ug/wipe 16.8		50.0
SW6010B FIELDQC-FB473-RM10-SP1		SAMP	Copper	0.974	ſ	٨	ug/wipe 0.900		2.00
SW6010B FIELDQC-FB473-RM10-SP1		SAMP	Iron	20.4		A	ug/wipe 2.90		5.00
SW6010B FIELDQC-FB473-RM10-SP1		SAMP	Lead	2.29		٧	ug/wipe 0.300		0.500
SW6010B FIELDQC-FB473-RM10-SP1		SAMP	Magnesium	164	L	4	ug/wipe 5.00		50.0
SW6010B FIELDQC-FB473-RM10-SP1	1	SAMP	Manganese	1.88		4	ug/wipe 0.200		1.00
SW6010B FIELDQC-FB473-RM10-SP1		SAMP	Potassium	49.0		V	ug/wipe 4.50	\Box	100
SW6010B FIELDQC-FB473-RM10-SP1		SAMP	Sodium	1550		٧	<i>µ</i> g/wipe 29.1		100
SW6010B FIELDQC-FB473-RM10-SP1	l	SAMP	Thallium	0.765	<u></u>	A	ug/wipe 0.400		1.00
SW6010B FIELDQC-FB473-RM10-SP1	I	SAMP	Zinc	4.26		٨	ug/wipe 0.900	_	1.00
SW6010B MB-200202003	W	MBLK	Potassium	11.63	<u>-</u>	۷	mg/Kg	10.50	100.0
SW6010B MB-200202003	M	MBLK	Selenium	0.8869	7	۷	mg/Kg	0.5900 5.000	5.000
SW6010B MB-200202084	M	MBLK	Aluminum	2.425	7	A	ug/wipe 1.200		10.00
SW6010B MB-200202084	Ž	MBLK	Manganese	0.2242	Ŋ	٧	µg/wipe 0.2000 1.000	0.2000	1.000
SW8270C FIELDQC-FB473-RM10-SP1		SAMP	(Z)-Methyl-5-((E)-3-(1-ethoxyethoxy)oct-	3.92	N	Т	ug/wipe 0		0
SW8270C FIELDQC-FB473-RM10-SP1		SAMP	1,2-Benzenedicarboxylic acid, bis(2-ethy	7.87	3	F	ug/wipe 0		0
SW8270C FIELDQC-FB473-RM10-SP1		SAMP	1,3-DIOXANE, 6-ACETOXY-2,4-DIMETHYL-	5.55	N	T	ug/wipe 0		0
SW8270C FIELDQC-FB473-RM10-SP1		SAMP	17-Pentatriacontene	8.08	S	T	µg/wipe 0		0
SW8270C FIELDQC-FB473-RM10-SP1		SAMP	1H-Isoindole-1,3(2H)-dione, 3a,6,7,7a-te	2.06	N	⊢	ug/wipe 0		0
SW8270C FIELDQC-FB473-RM10-SP1		SAMP	2,2'-Bi-1,3-dioxolane	13.3	2	_	ug/wipe 0		0
SW8270C FIELDQC-FB473-RM10-SP1		SAMP	2-Furanmethanol	7.72	N	T	ug/wipe 0		0
SW8270C FIELDQC-FB473-RM10-SP1		SAMP	2-Heptanone	124	3	⊢	ug/wipe 0		0
SW8270C FIELDQC-FB473-RM10-SP1		SAMP	2-Hexene, 1-(1-ethoxyethoxy)-, (Z)-	Ξ	Z	_	ug/wipe 0		0
SW8270C FIELDQC-FB473-RM10-SP1		SAMP	2-Pentanone, 4-hydroxy-4-methyl-	1310	BNS	-	ug/wipe 0		0
SW8270C FIELDQC-FB473-RM10-SP1	- 1	SAMP	3-Methyl-2-butyl acetate	18.3	3	L	µg/wipe 0		0

Method Sample ID	Samp Type	Analyte	Resul	Result QUAL	Analyte Type	Units	MDL	Par
SW8270C FIEL DQC-FB473-RM10-SP1	SAMP	4,8,12-Trimethyltridecan-4-olide	90'9	ſN	Ţ	ug/wipe 0	0	0
SW8270C FIELDOC-FB473-RM10-SP1	SAMP	Cyclohexane, undecyl-	10	S	_	ug/wipe 0	0	0
SW8270C FIELDOC-FB473-RM10-SP1	SAMP	Decane	5.9	ſN	_	ug/wipe 0	0	0
SW8270C FIELDOC-FB473-RM10-SP1	SAMP	Decane, 1,1'-oxybis-	7.65	S	_	ug/wipe 0	0	0
SW8270C FIELDOC-FB473-RM10-SP1	SAMP	Eicosane	7.06	3	Ŀ	ug/wipe 0	0	0
SW8270C FIELDQC-FB473-RM10-SP1	SAMP	Heptacosane, 1-chloro-	22.4	3	F	ug/wipe 0	0	0
SW8270C FIELDQC-FB473-RM10-SP1	SAMP	Heptadecane	23.1	3	<u>-</u>	ug/wipe 0	0	0
SW8270C FIELDQC-FB473-RM10-SP1	SAMP	Octacosane (23.243)	6.38	3	<u></u>	ug/wipe 0	0	0
SW8270C FIELDQC-FB473-RM10-SP1	SAMP	PENTADECANE, 2,6,10-TRIMETHYL-	10.7	3	F	ug/wipe 0	0	0
SW8270C FIELDOC-FB473-RM10-SP1	SAMP	Unknown	6.85	Ŋ	Т	ug/wipe 0	0	0
SW8270C MB-200202014	MBLK	2-Heptanone	2250	N	Т	µg∕Kg	0	0
SW8270C MB-200202014	MBLK	2-Hexanone, 4-hydroxy-5-methyl-	327	CN.		µg/Kg	0	0
SW8270C MB-200202014	MBLK	2-Hexen-1-ol, 2-ethyl-	59.5	S	<u>-</u>	μg/Kg	0	0
SW8270C MB-200202014	MBLK	2-Pentanone, 4-hydroxy-4-methyl- (6.585)	23800	N)	T	μg/Kg	0	0
SW8270C MB-200202014	MBLK	2-Pentanone, 4-hydroxy-4-methyl- (6.768)	9.09	N	1	µg∕Kg	0	0
SW8270C MB-200202014	MBLK	3-Hexanol, 4-ethyl-	160	N	T	μg/Kg	0	0
SW8270C MB-200202014	MBLK	Bis(2-ethylhexyl)phthalate	118.9	ſ	A	µg∕Kg	41.40	292.0
SW8270C MB-200202014	MBLK	DIPROPYLENE GLYCOL DIBENZOATE	2.66	N	<u>_</u>	μg/Kg	0	0
SW8270C MB-200202067	MBLK	1-(4-Methyl-6-chloro-quinolin-2-yl)-3-me	5.58	S	F	ug/wipe 0	0	0
SW8270C MB-200202067	MBLK	1,2-Octadecanediol	15.9	N	_	ug/wipe 0	0	٥
SW8270C MB-200202067	MBLK	1,7-Dicarbadodecaborane(12) (8CI9CI)	14.1	S	ь	ug/wipe 0	0	0
SW8270C MB-200202067	MBLK	1-DECENE, 2-ETHYL-	3.72	N	⊢	ug/wipe 0	0	0
SW8270C MB-200202067	MBLK	2-(3-Fluorophenyl)pyrimidine	5.95	S		ug/wipe 0	0	0
SW8270C MB-200202067	MBLK	2-Butanol, 3-methyl-, acetate	5.5	S	<u> </u>	ug/wipe 0	0	0
SW8270C MB-200202067	MBLK	2-Hexanone, 4-hydroxy-5-methyl-	19.7	S	F	µg/wipe 0	0	0
SW8270C MB-200202067	MBLK	2-Pentacosanone	4.04	2	⊢	µg/wipe 0	0	0
SW8270C MB-200202067	MBLK	2-Pentanone, 4-hydroxy-4-methyl- (6.557)	1720	3	<u>_</u>	µg/wipe 0	0	0
SW8270C MB-200202067	MBLK	2-Pentanone, 4-hydroxy-4-methyl- (7.957)	155	3	<u>-</u>	ug/wipe 0	0	0
SW8270C MB-200202067	MBLK	3-BENZYL-2-OXO-2H-PYRIDO(2,1-	3	2	F	µg/wipe 0	0	0

ecology and environment, inc.

FIELD AUDIT CHECKLIST

Other Comments:

Experienced Field team well versed in sampling movedures and related protocols. No gross discrepancies noted. Field team, ashed to add sample cross-thech moves to field logbook.

FIELD AUDITOR: RICK WAH

FIELD TEAM LEADER: Bob Meyers

DATE OF AUDIT: 7/18/02

Method	Method Lab Blank	Matrix	Analyte	Blank Result Qual PQL	Result	Lab Qual	Par	Affected Samples	Sample Flag
SW8270C	SW8270C MB-200202067 Wipe	Wipe	2-Hexanone, 4-hydroxy-5- methyl-	19.7	19.7 13.7 NJ 0	ſN		G473-RM10-SP04	U Flag
SW8270C	SW8270C MB-200202067 Wipe	Wipe	2-Hexanone, 4-hydroxy-5- methyl-	19.7	19.7 16.3 NJ 0	<u> </u>		G473-RM10-SP07	U Flag
SW8270C	SW8270C MB-200202067 Wipe	Wipe	Eicosane	3.93	3.93 7.06 NJ	S	0	FIELDOC-FB473-RM10-SP1 U Flag	U Flag
SW8270C	SW8270C MB-200202067 Wipe	Wipe	Eicosane	3.93	3.93 35.6 NJ	N	0	G473-RM10-SP05	U Flag
SW8270C	SW8270C MB-200202067 Wipe	Wipe	Eicosane	3.93	3.93 165	2	0	G473-RM10-SP08	Not Qualified

Table 2B - List of Samples Qualified for Field Blank Contamination

lable 2B - List of Samples Qualified for	les Qualitie	ed for Field	Field Blank Contamination					
Blank ID	Method	Matrix	Analyte	Blank Result	Result	På	Affected Samples	Sample Flag
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B		Aluminum	12.4	12.4 1980-9180 20-500 All wipes	20-200	All wipes	Not Qualified
FIELDOC-FB473-RM10-SP1 SW6010B Wipe	SW6010B		Antimony	1.81 1.68	1.68	2.00	G473-RM10-SP06	U Flag
FIELDOC-FB473-RM10-SP1 SW6010B Wipe	SW6010B		Antimony	1.81 6.75	6.75	5.00	G473-RM10-SP07	U Flag
FIELDOC-FB473-RM10-SP1 SW6010B Wipe	SW6010B		Antimony	1.81 11.6	11.6	25.0	G473-RM10-SP10	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B		Antimony	1.81 2.70	2.70	2.00	G473-RM10-SP08	U Flag
FIELDOC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	:	Antimony	1.81 7.15	7.15	5.00	G473-RM10-SP01/D	U Flag
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B		Antimony	1.81 2.87	2.87	5.00	G473-RM10-SP09	U Flag
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B		Antimony	1.81 5.38	5.38	5.00	G473-RM10-SP01	U Flag
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B		Antimony	1.81 7.65	7.65	10.0	G473-RM10-SP04	U Flag
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B		Barium	1.25	1.25 53.1-180	4.00- 50.00	All wipe samples	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Calcium	462	462 13600- 102000	100- 2500	All wipe samples	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B		Copper	0.974 45.1 - 41500	45.1 - 41500	10-100	10-100 All wipe samples	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B		Iron	20.4	20.4 7790- 314000	10-250	10-250 All wipe samples	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B		Lead	2.29	188-2780	1-12.5	2.29 188-2780 1-12.5 All wipe samples	Not Qualified

Blank ID	Method	Matrix	Analyte	Blank Result	Result	Pal	Affected Samples	Sample Flag
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Magnesium	164	164 1250-5150	100- 2500	All wipe samples	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Manganese	1.88	1.88 77.7-5030	2.00 . 50.0	All wipe samples	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Potassium	49	49 2280- 56700	200- 5000	All wipe samples	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Sodium	1550	1550 14400	1000	G473-RM10-SP03	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Sodium	1550	1550 11600	2500	G473-RM10-SP10	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Sodium	1550 1220	1220	200	G473-RM10-SP09	U Flag
FIELDQC-FB473-RM10-SP1	SW6010B Wipe	Wipe	Sodium	1550 4350	4350	200	G473-RM10-SP08	U Flag
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Sodium	1550	1550 17200	200	G473-RM10-SP07	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Sodium	1550	550 7310	200	G473-RM10-SP06	U Flag
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Sodium	1550	1550 28600	1000	G473-RM10-SP04	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Sodium	1550 7840	7840	2000	G473-RM10-SP02	Not Qualified
FIELDQC-FB473-RM10-SP1	SW6010B Wipe	Wipe	Sodium	1550 679	629	200	G473-RM10-SP01/D	U Flag
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Sodium	1550 1160	1160	200	G473-RM10-SP01	U Flag
FIELDQC-FB473-RM10-SP1	SW6010B Wipe	Wipe	Sodium	1550 2650	2650	1000	G473-RM10-SP05	U Flag
FIELDOC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Thallium	0.765 4.76	4.76	2.00	G473-RM10-SP06	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Thallium	0.765 7.97	7.97	5.00	G473-RM10-SP01/D	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Thallium	0.765 2.15	2.15	5.00	G473-RM10-SP09	U Flag
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Thallium	0.765 2.45	2.45	2.00	G473-RM10-SP08	U Flag
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Thallium	0.765 3.33	3.33	5.00	G473-RM10-SP07	U Flag
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Thallium	0.765 11.4	11.4	25.0	G473-RM10-SP10	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Thallium	0.765 12.1	12.1	10.0	G473-RM10-SP04	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Thallium	0.765 21.7	21.7	50.0	G473-RM10-SP02	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Thallium	0.765 14.8	14.8	5.00	G473-RM10-SP01	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Thallium	0.765 6.38	6.38	10.0	G473-RM10-SP05	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Thallium	0.765 6.16	6.16	10.0	G473-RM10-SP03	Not Qualified
FIELDQC-FB473-RM10-SP1 SW6010B Wipe	SW6010B	Wipe	Zinc	4.26	4.26 346-1680	2-25	All wipe samples	Not Qualified

Blank ID	Method	Matrix	Analyte	Blank Result	Result	Por	Affected Samples	Sample Flag
FIELDQC-FB473-RM10-SP1	SW8270C Wipe	Wipe	17-Pentatriacontene	8.08 6000	0009	0	G473-RM10-SP10	Not Qualified
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Heptanone	124 105	105	0	G473-RM10-SP01	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Heptanone	124	124 87.5	0	G473-RM10-SP02	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Heptanone	124	124 85.9	0	G473-RM10-SP03	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Heptanone	124	124 103	0	G473-RM10-SP04	U Flag
FIELDOC-FB473-RM10-SP1	SW8270C Wipe	Wipe	2-Heptanone	124	124 93.2	0	G473-RM10-SP05	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Heptanone	124	124 106	0	G473-RM10-SP08	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Heptanone	124	124 76.3	0	G473-RM10-SP10	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Pentanone, 4-hydroxy-4-methyl-	1310 1090	1090	0	G473-RM10-SP09	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Pentanone, 4-hydroxy-4-methyl-	1310 882	882	0	G473-RM10-SP10	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Pentanone, 4-hydroxy-4-methyl-	1310 1190	1190	0	G473-RM10-SP08	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Pentanone, 4-hydroxy-4-methyl-	1310 73.6	73.6	0	G473-RM10-SP06	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Pentanone, 4-hydroxy-4- methyl-	1310 1050	1050	0	G473-RM10-SP05	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Pentanone, 4-hydroxy-4-methyl-	1310	1310 1020	0	G473-RM10-SP03	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Pentanone, 4-hydroxy-4-methyl-	1310 1110	1110	0	G473-RM10-SP02	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Pentanone, 4-hydroxy-4-methyl-	1310 1220	1220	0	G473-RM10-SP01	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	2-Pentanone, 4-hydroxy-4-methyl-	1310 1420	1420	0	G473-RM10-SP04	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	3-Methyl-2-butyl acetate	18.3	18.3 10.8	0	G473-RM10-SP01/D	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	Eicosane	7.06	7.06 35.6	0	G473-RM10-SP05	Not Qualified
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	Eicosane	7.06 165	165	0	G473-RM10-SP08	Not Qualified
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	Heptadecane	23.1 203	203	0	G473-RM10-SP09	Not Qualified

Data Validation Memo Page 12 of 18

Blank ID	Method	Matrix	Analyte	Blank Result	POL	PQL Affected Samples Sample Flag	Sample Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C	Wipe	Heptadecane	23.1 44.9	0	G473-RM10-SP01	U Flag
FIELDQC-FB473-RM10-SP1 SW8270C Wipe	SW8270C		Pentadecane, 2,6,10-	10.7 93	0	G473-RM10-SP06	Not Qualified
			trimethyl-	The second secon	!	- wander to see the second	***************************************

able 3 - List of Samples with Surrogates outside Control Limits

Table 3 -	List of Samples	with Surroga	Table 3 - List of Samples with Surrogates outside Control Limits	Limits				Principal Control of the Control of
Method	Sample ID	Sample Type	Analyte	Rec. Lo	w Limit	Rec. Low Limit High Limit Dil Fac	Dil Fac	Sample Qual.
SW8270C	SW8270C G473-RM10-SP02 MSD		2,4,6-Tribromophenol	22	32	162	1	None
SW8270C	SW8270C G473-RM10-SP07 SAMP	SAMP	2,4,6-Tribromophenol	24	32	162	1	None, no acid phenols detected
SW8082	SW8082 G473-RM10-SD01 SAMP	SAMP	Decachlorobiphenyl	144	25	115		J Flag
SW8082	SW8082 G473-RM10-SP02 MSD	MSD	Tetrachloro-m-xylene	146	32	110		None
SW8082	SW8082 G473-RM10-SP02 MS	MS	Decachlorobiphenyl	121	18	1121		None
SW8082	SW8082 G473-RM10-SP02 MS	MS	Tetrachloro-m-xylene	113	32	110		None
SW8082	SW8082 G473-RM10-SP04 SAMP	SAMP	Decachlorobiphenyl	128	18	1121		None
SW8082	SW8082 G473-RM10-SP05 SAMP	SAMP	Decachlorobiphenyl	121	18	1121		None
SW8082	SW8082 G473-RM10-SP08 SAMP	SAMP	Decachlorobiphenyl	127	18	112		None
SW8082	SW8082 G473-RM10-SP09 SAMP	SAMP	Tetrachloro-m-xylene	111	32	1101		None
SW8082	SW8082 LCS-1545-30-1	rcs	Decachlorobiphenyl	136	18	1121	_	None
SW8082	SW8082 LCS-1545-30-1	SOT	Tetrachloro-m-xylene	132	32	1101		None
SW8082	SW8082 MB-1545-30-1	MBLK	Decachlorobiphenyl	118	18	1121		None
SW8082	SW8082 MB-1545-30-1	MBLK	Tetrachloro-m-xylene	117	32	110		None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Method Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec. DII	Low	High Limit Sample Qual.
SW8270C	3W8270C G473-RM10-SP02 MS		2,4-Dinitrophenol	0'05>	30	0 1	20	115 Spike below <pql< td=""></pql<>
SW8270C	SW8270C G473-RM10-SP02 MSD	MSD	2,4-Dinitrophenol	0'09>	30	0 1	20	115 Spike below <pql< td=""></pql<>
SW8270C	SW8270C G473-RM10-SP02 MS	1	2,4-Dinitrotoluene	<10.0	30	117 1	42	111 None
SW8270C	SW8270C G473-RM10-SP02 MS		3,3'-Dichlorobenzidine	<20.0	30	0	20	115 R Flag NDs

Method	Sample ID	Sample	Analyte	Orig. Result	Spike	Rec.	Dil Low Fac Limit	H H	h Sample Qual.
SW8270C	G473-RM10-SP02	MSD	4,6-Dinitro-2- methylphenol	<50.0	30	0	·	021	115 Spike below <pql< td=""></pql<>
SW8270C	G473-RM10-SP02	MS	4-Bromophenyl phenyl ether	<10.0	30	172 1		20	115 None
SW8270C	G473-RM10-SP02	MSD	4-Bromophenyl phenyl ether	<10.0	30	228 1		20	115 None
SW8270C	G473-RM10-SP02	MSD	4-Chloroaniline	<10.0	30	151		20	115 None
SW8270C	SW8270C G473-RM10-SP02	MSD	4-Nitrophenol	<50.0	30	01		10	115 Spike below <pql< td=""></pql<>
SW8270C	G473-RM10-SP02	MS	Anthracene	<10.0	30	202		20	115 None
SW8270C	SW8270C G473-RM10-SP02	MS	Benzoic acid	<150	30	17 1		20	115 None
SW8270C	SW8270C G473-RM10-SP02	MSD	Benzoic acid	<150	30	0		20	115 Spike below <pql< td=""></pql<>
SW8270C	SW8270C G473-RM10-SP02	ŚW	Di-n-octyl phthalate	<10.0	30	124 1		20	115 None
SW8270C	SW8270C G473-RM10-SP02	MS	Hexachlorobenzene	<10.0	30	122		20	115 None
SW8270C	SW8270C G473-RM10-SP02	MS	Hexachlorocyclopentadi ene	<50.0	30	0 1		20	115 Spike below <pql< td=""></pql<>
SW8270C	G473-RM10-SP02	MSD	Hexachlorocyclopentadi ene	<50.0	30	0 1		20	115 Spike below <pql< td=""></pql<>
SW8270C	G473-RM10-SP02	MS	N-Nitrosodiphenylamine	<10.0	30	300		20	115 None
SW8270C	SW8270C G473-RM10-SP02	MSD	N-Nitrosodiphenylamine	<10.0	30	292 1		20	115 None
SW8270C	SW8270C G473-RM10-SP02	MS	Pentachlorophenol	<50.0	30	18 1		43	129 None
SW8270C	SW8270C G473-RM10-SP02	MSD	Pentachlorophenol	<50.0	30	0 1		43	129 Spike below <pql< td=""></pql<>
SW8270C	SW8270C G473-RM10-SP02	MS	Phenanthrene	<10.0	30	199 1		20	115 None
SW8270C	SW8270C G473-RM10-SP02	OSW	Phenanthrene	<10.0	30	156 1		20	115 None
SW8082	G473-RM10-SP02	MSD	Aroclor 1016	<1.500	15	183		47	114 None
SW8082	G473-RM10-SP02	MS	Aroclor 1260	1.58	15	126 1		28	112 None
SW8082	G473-RM10-SP02	MSD	Aroclor 1260	1.58	15	123 1		28	112 None
SW7471A	SW7471A G473-RM10-SP02	MS	Mercury	124	2	-168 50	0	80	120 4X
SW7471A	SW7471A G473-RM10-SP02	MSD	Mercury	124	2	-1675 50	_	80	120 4X
SW6010B	SW6010B G473-RM10-SP02	MS	Aluminum	3320	100	-1211 50	0	75	125 4X
SW6010B	SW6010B G473-RM10-SP02	MSD	Aluminum	3320	100	-789 50	0	75	125 4X

Data Validation Memo Page 14 of 18

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil	Low	High Limit	Sample Qual.
SW6010B	SW6010B G473-RM10-SP02	MS	Antimony	<50.00	100	09 99	20	75	125	125 Diluted Out
SW6010B	SW6010B G473-RM10-SP02	MS	Calcium	25300	1000	-220 50	50	75	125 4X	4X
SW6010B	SW6010B G473-RM10-SP02	MSD	Calcium	25300		274 50	50	75	125 4X	4X
SW6010B	SW6010B G473-RM10-SP02	MS	Chromium	75.6	100	02	70 50	75	125	125 Diluted Out
SW6010B	SW6010B G473-RM10-SP02	MSD	Chromium	75.6	100	61 50	20	75	125	125 Diluted Out
SW6010B	SW6010B G473-RM10-SP02	MS	Copper	335	100	264 50	20	75	125	125 Diluted Out
SW6010B	SW6010B G473-RM10-SP02	MSD	Copper	335	100	-107 50	20	75	125	125 Diluted Out
SW6010B	SW6010B G473-RM10-SP02	MS	Iron	314000	1000	-7991 50	20	75	125 4X	4X
SW6010B	SW6010B G473-RM10-SP02	MSD	Iron	314000	1000	•	20	75	125 4X	4X
						17782				
SW6010B	SW6010B G473-RM10-SP02	MS	Lead	689	100	-27 50	50	75	125 4X	4X
SW6010B	SW6010B G473-RM10-SP02	MSD	Lead	689	100	555 50	20	75	125 4X	4X
SW6010B	SW6010B G473-RM10-SP02	MS	Manganese	1020	100	-295 50	20	75	125 4X	4X
SW6010B	SW6010B G473-RM10-SP02	MSD	Manganese	1020	100	-524 50	50	75	125 4X	4X
SW6010B	SW6010B G473-RM10-SP02	MS	Nickel	139	100	37 50	20	75	125	125 Diluted Out
SW6010B	SW6010B G473-RM10-SP02	MSD	Nickel	139	100	2	2 50	75	125	25 Diluted Out
SW6010B	SW6010B G473-RM10-SP02	MS	Potassium	23100	1000	-354 50	20	75	125 4X	4X
SW6010B	SW6010B G473-RM10-SP02	MSD	Potassium	23100	1000	-332 50	20	75	125 4X	4X
SW6010B	SW6010B G473-RM10-SP02	MS	Silver	<50.00	5	231 50	20	75	125	25 Diluted Out
SW6010B	SW6010B G473-RM10-SP02	MSD	Silver	<50.00	2	0	020	75	125	125 Diluted Out
SW6010B	SW6010B G473-RM10-SP02	MS	Sodium	7840	1000	-50 50	20	75	125 4X	4X
SW6010B	SW6010B G473-RM10-SP02	MSD	Sodium	7840	1000	-81 50	20	75	125 4X	4X
SW6010B	SW6010B G473-RM10-SP02	MSD	Vanadium	0.29	100	20 20	20	75	125	125 Diluted Out
SW6010B	SW6010B G473-RM10-SP02	MS	Zinc	1010	100	-24 50	20	75	125 4X	4X
SW6010B	SW6010B G473-RM10-SP02	MSD	Zinc	1010	100	344 50	20	75	125 4X	4X

Method Sample ID Sample Type	Sample Type	Analyte	RPD	RPD RPD LIMIT	mit Sample Qual.
SW6010B G473-RM10-SP02 MSD	MSD	Aluminum	42.1 35		Diluted Out
SW6010B G473-RM10-SP02 MSD	MSD	Copper	471.8 35	35	Diluted Out

Method	Sample ID	Sample Type	Analyte	RPD	RPD Limit	RPD RPD Limit Sample Qual.
SW6010B	SW6010B G473-RM10-SP02 MSD	MSD	Lead	220.7 35	35	Diluted Out
SW6010B	SW6010B G473-RM10-SP02 MSD		Manganese	55.8	35	Diluted Out
SW6010B	SW6010B G473-RM10-SP02 MSD		Nickel	181.8 35	35	Diluted Out
SW6010B	SW6010B G473-RM10-SP02 MSD		Silver	200.0 35	35	Diluted Out
SW6010B	SW6010B G473-RM10-SP02 MSD		Zinc	230.2 35	35	Diluted Out
SW7471A	SW7471A G473-RM10-SP02 MSD		Mercury	163.6 35	35	Diluted Out
SW8082	G473-RM10-SP02 MSD		Aroclor 1016	51.2	35	None
SW8270C	SW8270C G473-RM10-SP02 MSD		1,2,4-Trichlorobenzene	26	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD		1,4-Dichlorobenzene	22	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD		2,4,5-Trichlorophenol	101	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD		2,4,6-Trichlorophenol	38	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD		2,4-Dinitrophenol	500	50	None
SW8270C	SW8270C G473-RM10-SP02 MSD		2,4-Dinitrotoluene	23	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD		3,3'-Dichlorobenzidine	200	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD		4,6-Dinitro-2-methylphenol	200	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD	MSD	4-Bromophenyl phenyl ether 28		20	None
SW8270C	SW8270C G473-RM10-SP02 MSD	MSD	4-Chloroaniline	103	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD		4-Nitrophenol	200	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD	MSD	Anthracene	127	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD	MSD .	Benzoic acid	200	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD	MSD	Bis(2-ethylhexyl)phthalate	30	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD	MSD	Hexachlorocyclopentadiene	200	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD	MSD	Indeno(1,2,3-cd)pyrene	36	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD		Naphthalene	22	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD	MSD	Pentachlorophenol	200	20	None
SW8270C	SW8270C G473-RM10-SP02 MSD	MSD	Phenanthrene	25	20	None

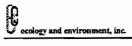
Data Validation Memo Page 16 of 18

Table 5 - List LCS Recoveries outside Control Limits

))));;)))])			
Method	Method Sample ID	Analyte	Rec.	Low Limit	Rec. Low Limit High Limit	Affected Samples S	Samp Qual
SW8082	SW8082 LCS-1545-30-1 Aroclor 1016	Aroclor 1016	116	47	114	114 G473-RM10-SP01, SP01/D, SP04, SP05, 08 None	one
SW8082	SW8082 LCS-1545-30-1 Aroclor 1260	Aroclor 1260	117	28	112	112 G473-RM10-SP01, SP01/D, SP04, SP05, 08 None	one
SW8082	LCS-1545-30-1	SW8082 LCS-1545-30-1 Decachlorobiphenyl 136	136	18	112	112 G473-RM10-SP01, SP01/D, SP04, SP05, 08 None	one
SW8082	SW8082 LCS-1545-30-1	SW8082 LCS-1545-30-1 Tetrachloro-m-xylene 132	132	32		110 G473-RM10-SP01, SP01/D, SP04, SP05, 08 None	one
SW8270C	SW8270C LCS-200202067 4-Chloroaniline	4-Chloroaniline	Ξ	20		115 All samples No	Non-Detect
						**************************************	And the same and t

Table 6 -Samples that were Reanalyzed None.

Table 7 -	Table 7 – Summary of Field Duplicate Results	S							
3				Anal	G473-RM10-	G473-RM10-		RPD	Samp
Method Analyte	Analyte	ES .	D D	Type	SP01	SP01/D	RPD	Rating	Qual
EPA418.1	EPA418.1 Petroleum Hydrocarbons, TR	mg/wipe-dry 400	400	4	1650	879	61.0%	Poor	J Flag
SW7471A Mercury	Mercury	ug/wipe-dry 0.100	0.100	4	20.1	21.9	8.6%	Good	None
SW6010B	SW6010B Aluminum	<i>µ</i> g/wipe	50.0	٧	9170	4190	74.6%	Poor	J Flag
SW6010B Antimony	Antimony	µg/wipe	5.00	۷	5.38	7.15	28.3%	Good	None
SW6010B Arsenic	Arsenic	µg/wipe	5.00	٧	5.54	ND	2		
SW6010B Barium	Barium	µg/wipe	10.0	۷	134	73.4	58.4%	Poor	J Flag
SW6010B Beryllium	Beryllium	μg/wipe	2.50	A	0.654	QN	NC		
SW6010B Cadmium	Cadmium	µg/wipe	2.50	Α	26.6	15.8	20.9%	Poor	J Flag
SW6010B Calcium	Calcium	μg/wipe	250	۷	79200	38000	70.3%	Poor	J Flag
SW6010B	SW6010B Chromium	µg/wipe	5.00	٧	93.9	28.4	107.1%	Poor	J Flag
SW6010B Cobalt	Cobalt	#g/wipe	10.0	4	13.4	5.6	82.1%	Poor	J Flag
SW6010B Copper	Copper	µg/wipe	10.0	∢	283	123	78.8%	Poor	J Flag
SW6010B Iron	Iron	µg/wipe	25.0	4	81100	34600	80.4%	Poor	J Flag
SW6010B Lead	Lead	µg/wipe	2.50	4	2780	1170	81.5%	Poor	J Flag
SW6010B	SW6010B Magnesium	µg/wipe	250	۷	3980	1840	73.5%	Poor	J Flag
SW6010B	SW6010B Manganese	µg/wipe	5.00	4	5030	1640	101.6%	Poor	J Flag
SW6010BNickel	Nickel	ug/wipe	10.0	V	83.9	31.6	%9.06	Poor	J Flag


			Anal	G473-RM10-	G473-RM10-		RPD	Samp
Method Analyte	Cuit	Pal	Type	SP01	SP01/D	RPD	Rating	Qual
SW6010B Potassium	µg/wipe	200	4	4980	2280	74.4%	Poor	J Flag
SW6010B Silver	µg/wipe	5.00	4	32.5	2.87	138.8%	Poor	J Flag
SW6010B Sodium	µg/wipe	200	⋖	1160	629	52.3%	Poor	J Flag
SW6010B Thallium	µg/wipe	5.00	∢	14.8	7.97	%0.09	Poor	J Flag
SW6010B Vanadium	µg/wipe	10.0	⋖	26	12.7	%2'89	Poor	J Flag
SW6010B Zinc	µg/wipe	5.00	⋖	1680	713	80.8%	Poor	J Flag
SW8082 Aroclor 1254	µg/wipe	1.50	⋖	1.73	QN	NC		
SW8270C 1,2-Ethanediamine, N-methyl-	ug/wipe	0	-	NA	3.89	NC	,	
SW8270C 10-Methylnonadecane	ug/wipe	0	_	31.6	NA	NC		
SW8270C 1-Bromo-3-(2-bromoethyl)heptane	µg/wipe	0	_	NA	3070	SC		
SW8270C 2,4,6-Tris-(1-phenylethyl)-phenol (26.92)	ug/wipe	0	-	NA	5.12	NC		
SW8270C 2,4,6-Tris-(1-phenylethyl)-phenol (26.932)	<i>µ</i> g/wipe	0	-	8.83	NA	NC		
SW8270C 2,4,6-Tris-(1-phenylethyl)-phenol (27.033)	#g/wipe	0	-	NA	82.4	NC		
SW8270C 2,4,6-Tris-(1-phenylethyl)-phenol (27.054)	ediw/br/	0	_	23	NA	NC		
SW8270C 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethy	ug/wipe	0	-	NA	80	NC		
SW8270C2-Heptanone	ug/wipe	0	-	105	NA	NC		
SW8270C2-Octanone	μg/wipe	0	⊢	NA	3.72	NC		
SW8270C 2-Pentenoic acid, 4-methylphenyl ester	ug/wipe	0	⊢	NA	3.19	NC		
SW8270C3-Hydroxy-3-methyl-2-butanone	ug/wipe	0	⊢	NA	5.02	NC		
SW8270C 3-Methyl-2-butyl acetate	µg/wipe	0	⊢	NA	10.8	NC PC		
SW8270C 3-Pentanol, 2-methyl-	µg/wipe	0	-	5.42	NA	S		
SW8270C 4-Chloro-3-n-hexyltetrahydropyrane	ug/wipe	0	-	1990	A	S		
SW8270C 4-Cyanocyclohexene	ug/wipe	0	⊢	39	8.58	127.9%	Poor	J Flag
SW8270C7-Octynoic acid, methyl ester	µg/wipe	0	⊢	NA	3.71	NC		
SW8270C Benzenethiol, 2-amino-	ug/wipe	0	⊢	5.33	NA	NC		
SW8270C Benzothiazole	ug/wipe	0	⊢	NA	3.32	SC		
SW8270C Benzyl alcohol	ug/wipe	10.0	4	5.45	QN	S		
SW8270C Bis(2-ethylhexyl)phthalate	ug/wipe	10.0	4	14.3	17.8	21.8%	Good	None
SW8270C CAPRONIC ACID, OCTYL ESTER	µg/wipe	0	⊢	23.1	NA	S		
SW8270C Docosane	μg/wipe	0	⊢	54	NA A	2		
SW8270C Eicosane, 10-methyl-	ug/wipe	0	⊢	71.3	NA	NC		

Data Validation Memo Page 18 of 18

Method Analyte	Analyte	1 1	Pal	Anal	G473-RM10- SP01	G473-RM10- SP01/D	RPD	RPD	Samp
SW8270C	SW8270C Ether, heptyl hexyl	µg/wipe	0		4.69	NA	NC		menopoly (gyropoly)
SW8270C	SW8270C Heptacosane	µg/wipe	0	1	7.04	NA	NC		
SW8270C	SW8270C Heptadecane	µg/wipe	0	_	44.9	NA	NC		
SW8270C	SW8270C Heptane, 2,2,3,3,5,6,6-heptamethyl-	μg/wipe	0	-	NA	3.59	NC		
SW8270C	SW8270C Hexacosane	µg/wipe	0	_	20.2	NA	NC		
SW8270C	SW8270C Pentacosane	µg/wipe	0	F	82.9	NA	NC		
SW8270C	SW8270C Phenol, 4,4'-butylidenebis(2-(1,1-dimeth	µg/wipe	0	_	NA	62.2	NC		
SW8270C	SW8270C Tetracosane	μg/wipe	0	_	38	NA	NC		

Laboratory Case Narratives

E. Laboratory Case Narrative

Cooler Receipt Form ACKAGE RECEIPT #: ______ NUMBER OF COOLERS: _____ DATE RECEIVED: : & E PROJECT #: PROJECT OR SITE NAME: CIRCLE ONE A. Preliminary Examination Phase . Did coolers come with airbill or packing slip? Enter carrier here and print airbill # below: (Circle One) FedEx _____Airborne Other Ship as high hazard or dangerous goods . Did cooler(s) have custody seals? _ NO NA NO* Were custody seals unbroken and intact on receipt? Were custody seals dated and signed?_ NO Sign here to acknowledge receipt of cooler (s): _ C-O-C numbers: Date cooler(s) opened: _ Signature: Cooler(s) opened by (print): Were the C-O-C forms received? _ NO* NO* NA Was the project identifiable from the C-O-C form? If YES, enter the project number and name in the heading above. lease record Temperature Blank Vial or Cooler Temperature for Each Cooler, Range (2 - 6C)* NJDEP must be ≤4C TEMP. °C AIRBILL # TEMP. °C 3.0 * If No or Temperature Outside of Acceptable Range, prepare a PM Notification form. Correction Factor 3. Unpacking Phase Was enough packing material used in cooler(s)? Vermiculite ☐ Bubble Wrap . If required, was enough ice used? NO ☐ Wet ☐ Dry ☐ Blue ♥ Other If YES, type of ice used: 0. Was a temperature blank vial included inside cooler(s)? NO If YES, indicate temperature blank vial temperature in table above. If NO, indicate cooler temperature in table above. NO 1. Were all containers sealed in separate plastic bags? 2. Did all containers arrive unbroken and in good condition? YES NO* 3. Samples stored in W Cooler before Login Phase? If yes: Signature In: Date/Time: Signature Out: C. Login Phase amples Logged in By (print): 4. Were all container labels complete (e.g. date, time preserved)? NO* 5. Were all C-O-C forms filled out properly in ink and signed? Did the C-O-C form agree with containers received? NO* Were the correct containers used for the tests requested? NO* 8. Were the correct preservatives listed on the sample labels? NO* NA Was a sufficient sample volume sent for the tests requested? NO* NA !0. Were all volatile samples received without head space? ____ YES NO* 'Prepare a PM Notification form.

.:\Forms & Lists\Final\F_024.ene\Rev \Approval Date5/1/00Last Update:

Ecology and Environment, Inc. Analytical Services Center

Laboratory Results

Analytical Services Center

4493 Walden Avenue

Lancaster, New York 14086

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

E and E Buffalo Office

Project:

GAFB Building 211 sampling

Work Order:

0202063

Method References

Mercury

Mercury Analysis in Water by Method 7470A

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Metals

Metals, TAL by ICP Method 6010B

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Analytical Services Center

Lancaster, New York 14086

Phone: (716) 685-8080

Laboratory Results

NYS ELAP ID#:

10486

CLIENT:

E and E Buffalo Office

Project:

GAFB Building 211 sampling

Lab Order:

0202063

CASE NARRATIVE

METALS

Sample Analysis

All samples were digested and analyzed within hold time.

Calibrations

All initial and continuing calibrations were acceptable except iron was high at 118% and 116% in the two CCVs n run 020422210R. The data was accepted and reported.

QС

All calibration and preparation blank analyses were acceptable.

All matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable except for a high calcium recovery in the MSD of sample BLDG211-WG01 and low mercury recoveries in the batch MS/MSD. Sample results have been flagged "N".

All laboratory control sample (LCS) recoveries were acceptable.

All serial dilution %D values were acceptable except for barium and iron in sample BLDG211-WG01 and nanganese in the batch QC. Sample results have been flagged "E".

certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this nardcopy data package has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Fony Bogolin
Project Manager

Analytical Services Center 4493 Walden Avenue Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486 Phone: (716) 685-8080

June 13, 2002

Mr. Robert Meyers E and E Buffalo Office 368 Pleasant View Dr. Lancaster, NY 14086

RE: GAFB OTH305

CostPoint ID: 001002.UK10.05.01.

Work Order No.: 0205079

Dear Mr. Robert Meyers,

Ecology and Environment, Inc. received 6 samples on Thursday, May 09, 2002 for the analyses presented in the following report.

E & E will retain the samples addressed in this report for 30 days, unless otherwise instructed by the client. If additional storage is requested, the storage fee is \$1.00 per sample container per month, to accrue until the client authorizes sample destruction.

This report is not to be reproduced, except in full, without the written approval of the laboratory.

Sincerely,

Tony Bogolin

Project Manager

CC:

Enclosures as note

Analytical Services Center

Lancaster, New York 14086

Phone: (716) 685-8080

Date Received: 05/09/02

Laboratory Results

NYS ELAP ID#:

10486

CLIENT:

E and E Buffalo Office

Project:

GAFB OTH305

Lab Order:

0205079

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Alt. Client Id	Collection Date
0205079-01A	OTH305-TB1	•	05/09/02 8:00:00 AM
0205079-02A	OTH305-WG02		05/09/02 4:00:00 PM
0205079-02B	OTH305-WG02		05/09/02 4:00:00 PM
0205079-02BRE	OTH305-WG02		05/09/02 4:00:00 PM
0205079-02C	OTH305-WG02		05/09/02 4:00:00 PM
0205079-02D	OTH305-WG02		05/09/02 4:00:00 PM
0205079-03A	OTH305-WG03		05/09/02 4:15:00 PM
0205079-03B	OTH305-WG03		05/09/02 4:15:00 PM
0205079-03BRE	OTH305-WG03	•	05/09/02 4:15:00 PM
0205079-03C	OTH305-WG03	•	05/09/02 4:15:00 PM
0205079-03D	OTH305-WG03		05/09/02 4:15:00 PM
0205079-04A	OTH305-SS01		05/09/02 3:00:00 PM
0205079-04B	OTH305-SS01		05/09/02 3:00:00 PM
0205079-05A	OTH305-SS02		05/09/02 3:15:00 PM
0205079-05B	OTH305-SS02		05/09/02 3:15:00 PM
0205079-06A	OTH305-SS03		05/09/02 3:30:00 PM
0205079-06B	OTH305-SS03		05/09/02 3:30:00 PM

Ecology and Environment, Inc. Analytical Services Center
Cooler Receipt Form

P	ACKAGE RECEIPT #: <u>081</u>	6 NUMBER OF	COOLERS:		DATE RECEIVED:	5/9	107	2_
E	& E PROJECT #:	PROJI	ECT OR SITE NAME: _	Griffis				
A	Preliminary Exami	nation Phase				CIR	CLE	0.N
	Enter earrier here and print	airbill # below: (Circl	le One) <u>FedEx Air</u>	rborne Client				
	Ship as high hazard or dan	gerous goods				YES	®	N.
2.	Did cooler(s) have custody seal	is?				E	NO	N.
3.	Were custody seals unbroken a	nd intact on receipt?				₹	NO.	N,
4.	Were custody seals dated and s	ıgned?				(3)	NO	N#
5.	Sign here to acknowledge recer	1 /						
	Date cooler(s) opened:5	110/02	c-c	O-C numbers				
	Cooler(s) opened by (print):	1		1				
6.	Were the C-O-C forms received	f				Œ	NO*	NA
7.	Was the project identifiable from If YES, enter the project nu	m the C-O-C form?	heading above.			(E)	NO°	NA
Di	ease record Temperature			for Each Cooler, R	ange (2 - 6C)* NJDE	P must	be <4	IC
-	AIRBILL#	TEMP. °C	AIRBILL #	TEMP. °C	AIRBILL#		TEMP	. °C
		3.0			•			
Th	mometer # 129 Corre	ection Factor O	• If No or Temperar	ture Outside of Acceptab	le Range, prep are a PM Not	ification f	orm.	
	Unpacking Phase			•				
8.	Was enough packing maternal us	sed in cooler(s)?	le Wrap I Other		· · ·	E	NO	NA
•	Type of material:		ile Willip _ Other			***	NO	NA
У.	If required, was enough ice used: If YES, type of ice used:	₩et □ Dr	y & Blue Other			- 😉	NO	110
10.	Was a temperature blank vial in	cluded inside cooler(s)	?			_ ©	NO	NA
	If YES, indicate temperature					\/E6	€	N/A
	Were all containers sealed in ser					YES	2100	NA
	Did all containers arrive unbroke	•	on?			- 😇	NO•	NA
13.	Samples stored in W Cooler before If yes: Signature in:	ore Login Phase?		Date Time:		. B	NO	
	Signature Out:	ah		Date:Time 5/	10/02 745			
	Login Phase ples Logged in By (print):	Hender so	Signature	and		Date: 5	1/10	<u> </u>
14.	Were all container labels comp	lete (e.g. date, time pre	served)?			. XZS	NO*	NA
15.	Were all C-O-C forms filled ou	it properly in ink and si	igned?			YES)	NO*	NA
	Did the C-O-C form agree with					_ <u>Y</u> Ês	NO*	NA
	Were the correct containers use					_ YES)		NA
	Were the correct preservatives					- (<u>.</u>	NO*	NA
	Was a sufficient sample volume					- (<u>-</u>)		NA
						-0		
	Were all volatile samples receive	ved without head space	:?			MES	NO°	NA

^{*}Prepare a PM Notification form.

L Verms & Linu:Finals_024 mediev Approval Direct/1/00Lan Update

nalytical Services Center

ancaster, New York 14086

hone: (716) 685-8080

Laboratory Results

NYS ELAP ID#:

10486

LIENT:

E and E Buffalo Office

oject:

GAFB OTH305

ab Order:

0205079

CASE NARRATIVE

AL metals was not listed on the chain-of-custody form for the soil samples. The analysis was added by Bob eyers on May 13, 2002.

CMS VOLATILES

DB 624 column and a trap packed with OV-1, Tenax, silica gel and activated charcoal was used for the latile analysis.

mple Analysis

aqueous volatile samples were determined to be at a pH of 7.

samples were analyzed within hold time.

libration and Tunes

initial and continuing calibrations were acceptable.

nual integrations were not required.

surrogate recoveries were within acceptable limits except for a low dibromofluoromethane recovery for sple OTH305-SS01. The sample was reanalyzed with similar results. Both sets of data have been reported.

blank analyses were acceptable.

laboratory control sample (LCS) recoveries were acceptable.

internal standard area responses were acceptable.

MS SEMIVOLATILES

ESTEK (Rtx-5ms) column, which is 30-m long, 0.25-mm wide, and has a 0.5-micron film thickness, was I for the semivolatile analyses. The column contains 5% diphenyl and 95% dimethylpolysiloxane.

ple Analysis

samples were extracted and analyzed within hold time.

bration and Tunes

nitial and continuing calibrations were acceptable.

ual integrations were not required.

E and E Buffalo Office

Project:

GAFB OTH305

Lab Order:

0205079

CASE NARRATIVE

OC

All surrogate recoveries were within acceptable limits except 2,4,6-tribromophenol recovery was low in sample OTH305-SS01. No further action was required nor taken.

All blank analyses were acceptable.

All laboratory control sample (LCS) recoveries were acceptable. The RPD for 3,3'-dichlorobenzidine was high for the LCS/LCSD pair.

All internal standard area responses were acceptable.

GC SEMIVOLATILES

PESTICIDE

The columns used for analysis were a CLPesticides (column 1) and a CLPesticides II (column 2), both 30 meters long and 0.53 mm in diameter, with a 1.0 um film thickness. A 1-ul injection was performed on all samples, QC, and standards.

Sample Analysis

All samples were extracted and analyzed within hold time.

Due to an oversight in the preparation of the matrix spiking solution, the concentration of methoxychlor is less than the calculated MDL for this compound. As a result, a percent recovery is not reported for this compound in the LCS, or in the MS/MSD pair.

Calibrations

All initial and continuing calibrations were acceptable.

Manual integrations were not required.

QC

All surrogate recoveries were within acceptable limits except for a high recovery of the surrogate DCB in sample OTH305-SS01. TCMX recovery was within QC limits.

All blank analyses were acceptable.

All matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable for sample OTH305-SS03 except for high recoveries of heptachlor in both the MS and MSD, 4,4-DDD in the MSD and methoxychlor as noted above.

All laboratory control sample (LCS) recoveries were acceptable except methoxychlor as noted above.

PCB

The columns used for analysis were a CLPesticides (column 1) and a CLPesticides II (column 2), both 30 meters long and 0.53 mm in diameter, with a 1.0 um film thickness. A 1-ul injection was performed on all samples, QC, and standards.

E and E Buffalo Office

roject:

GAFB OTH305

ab Order:

0205079

CASE NARRATIVE

ample Analysis

11 samples were extracted and analyzed within hold time.

secondary dilution was performed on samples OTH305-WG02 and OTH305-WG03 to bring PCB-1254 within e calibrated range of the instrument.

alibrations

ll initial and continuing calibrations were acceptable.

anual integrations were not required.

 \Box

l surrogate recoveries were within acceptable limits.

l blank analyses were acceptable.

ETALS

il and TCLP Analysis

samples were digested and analyzed within hold time.

soil samples were analyzed at a two-fold dilution (except for silver) to remove interelemental interferences. sorting limits have been adjusted accordingly.

ibrations

initial and continuing calibrations were acceptable.

calibration and preparation blank analyses were acceptable except for manganese which was present in the hod blank at 1.278 mg/kg. Manganese was present in the associated samples at levels 400 times the blank centration. Manganese results have been flagged "B".

matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable except for soil sample 1305-SS02 which had low antimony and high calcium recoveries. RPDs were outside QC limits for ninum, calcium and iron. Spike recoveries for aluminum, iron, magnesium and manganese were affected by nigher levels found in this sample relative to the spike amounts added (4X rule).

aboratory control sample (LCS) recoveries were acceptable.

erial dilution %D values were acceptable except for soil sample OTH305-SS02 which had a high potassium at 36.7%.

CURY

and TCLP Analysis

amples were digested and analyzed within hold time.

rations

E and E Buffalo Office

Project:

GAFB OTH305

Lab Order:

0205079

CASE NARRATIVE

All initial and continuing calibrations were acceptable.

QC

All calibration and preparation blank analyses were acceptable.

All matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable. The original TCLP data was not reported as a sample was accidentally spike instead of the MS. The reanalysis was within hold time and acceptable.

All laboratory control sample (LCS) recoveries were acceptable.

GENERAL ANALYTICAL CHEMISTRY

Sample Analysis

All samples were analyzed within hold time except for Reactive Sulfide analysis of samples OTH305-WG02 and OTH305-WG03. These samples were initially analyzed within hold time. The analysis had to be repeated due to no LCS recovery. The reanalysis of the samples was done thirteen days past hold time. Results of the original and reanalysis were the same (ND=not detected)

Calibrations

All initial and continuing calibrations standards were acceptable.

OC

All calibration and preparation blank analyses were acceptable.

All matrix duplicate analyses were acceptable.

All laboratory control sample (LCS) recoveries were acceptable except the LCS for Reactive Cyanide had a low recovery at 0.13% (recorded as 0% on the LCS report form; lower limit = 1%). The analysis was not repeated as the hold time had expired.

GCMS VOLATILES

A DB 624 column and a trap packed with OV-1, Tenax, silica gel and activated charcoal was used for the volatile analysis.

TCLP Analysis

All samples were analyzed within hold time.

Calibration and Tunes

All initial and continuing calibrations were acceptable.

Manual integrations were not required.

OC

All surrogate recoveries were within acceptable limits.

All blank analyses were acceptable.

LIMS Version #:

3.1.4.2 - 06/13/02 1:45:00 AM

Friday, June 14, 2007 4:1346 PM

E and E Buffalo Office

Project:

GAFB OTH305

Lab Order:

0205079

CASE NARRATIVE

All laboratory control sample (LCS) recoveries were acceptable.

All internal standard area responses were acceptable.

3CMS SEMIVOLATILES

A HP-5ms column, which is 30-m long, 0.25-mm wide, and has a 0.5-micron film thickness, was used for the emivolatile analyses. The column contains 5% diphenyl and 95% dimethylpolysiloxane.

CLP Analysis

Il samples were extracted and analyzed within hold time.

'alibration and Tunes

Il initial and continuing calibrations were acceptable.

lanual integrations were not required.

C

ll surrogate recoveries were within acceptable limits.

ll blank analyses were acceptable.

I laboratory control sample (LCS) recoveries were acceptable.

l internal standard area responses were acceptable.

LP PESTICIDE

e columns used for analysis were a CLPesticides (column 1) and a CLPesticides II (column 2), both 30 meters 1g and 0.53 mm in diameter, with a 1.0 um film thickness. A 1-ul injection was performed on all samples, QC, 1 standards.

nple Analysis

samples were extracted and analyzed within hold time. The original extracts were not reported as many of surrogate recoveries were low. The reextraction was within hold time.

ibrations

initial and continuing calibrations were acceptable.

nual integrations were not required.

surrogate recoveries were within acceptable limits except for a low recovery of the surrogate TCMX in ple OTH305-WG02. DCB recovery was within QC limits.

plank analyses were acceptable.

E and E Buffalo Office

Project:

GAFB OTH305

Lab Order:

0205079

CASE NARRATIVE

All laboratory control sample (LCS) recoveries were acceptable.

TCLP HERBICIDE

The columns used for analysis were a CLPesticides (column 1) and a CLPesticides II (column 2), both 30 meters long and 0.53 mm in diameter, with a 1.0 um film thickness. A 1-ul injection was performed on all samples, QC, and standards.

Sample Analysis

All samples were extracted and analyzed within hold time.

Calibrations

All initial and continuing calibrations were acceptable.

A manual integration was performed on 2,4-D in continuing calibration standard TCLP HERB M01 0524, to negate false area which resulted from a shouldering peak.

QC

All surrogate recoveries were within acceptable limits.

All blank analyses were acceptable.

All laboratory control sample (LCS) recoveries were acceptable except for a low recovery of 2,4-D in the LCSD.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Tony Bogolin

Project Manager

Laboratory Results

10486

NYS ELAP ID#:

Analytical Services Center

Lancaster, New York 14086

Phone: (716) 685-8080

0205079 Lab Order:

Lab Order:	0205079							
Client:	E and E Buffalo Office	fice				D⁄	DATES REPORT	ORT
Project:	GAFB OTH305							
Sample 1D	Client Sample ID	Collection Date	Received Date	Matrix	Test Name	TCLP Date*	Prep Date	Analysis Date
0205079-01A	ОТН305-ТВ1	05/09/02 8:00:00 AM	05/09/02 8:00:00 PM	Water	VOC by GCMS Method 8260B			05/13/02
0205079-02A	OTH305-WG02	05/09/02 4:00:00 PM			TCLP VOCs by Method 8260B	05/14/02		05/15/02
0205079-02B					PCBs by Method 8082		05/13/02	05/29/02
					TCLP Herbicides by Method 8151A	05/13/02	05/15/02	05/25/02
					TCLP Semivolatile Organics by Method 8270C	05/13/02	05/14/02	05/16/02
0205079-02BRE					TCLP Pesticides by Method 8081A		05/20/02	20/22/30
370 ú205070					Ignitability (Flashpoint), Liquids by Method 1010			06/04/02
					pH by Method 9040B			05/10/02
•					Reactive Cyanide by Method 9012A-7.3.3		05/15/02	05/15/02
					Reactive Sulfide by Method 9034-7.3.4		05/15/02	05/29/02
0205079-02D					TCLP Metals by ICP Method 6010B	05/20/02	05/24/02	06/04/02
0205079-02DRE	(17)				TCLP Mercury by Method 7470A		06/14/02 🕶	06/14/02
0205079-03A	OTH305-WG03	05/09/02 4:15:00 PM			TCLP VOCs by Method 8260B	05/14/02		05/15/02
0205079-03B					PCBs by Method 8082		05/13/02	05/29/02
					TCLP Herbicides by Method 8151A	05/13/02	05/15/02	05/25/02
					TCLP Semivolatile Organics by Method 8270C	05/13/02	05/14/02	05/16/02
0205079-03BRE	ы				TCLP Pesticides by Method 8081A		05/20/02	05/22/02
0205079-03C					Ignitability (Flashpoint), Liquids by Method 1010			06/04/02
					pH by Method 9040B			05/10/02
					Reactive Cyanide by Method 9012A-7.3.3		05/15/02	05/15/02
					Reactive Sulfide by Method 9034-7.3.4		05/15/02	05/29/02
0205079-03D					TCLP Metals by ICP Method 6010B	05/20/02	05/24/02	06/04/02
0205079-03DRE	1				TCLP Mercury by Method 7470A		06/14/02	06/14/02
0205079-04A	OTH305-SS01	05/09/02 3:00:00 PM		Soil	Volatile Organic Compounds by Method 8260B			05/10/02
LIMS Versian #:	3,1,4,2 - 96/15/02 1:45:00 AM	АМ			•	*Reflects Date of	*Reflects Date of TCLP Extraction Completion	moletion

*Reflects Date of TCLP Extraction Completion

11

Analytical Services Center

Lancaster, New York 14086

Phone: (716) 685-8080

Laboratory Results

10486 NYS ELAP ID#:

Lab Order:	0205079							
Client:	E and E Buffalo Office	fice				DA	DATES REPORT	PORT
Project:	GAFB OTH305							
Sample ID	Client Sample ID	Collection Date	Received Date	Matrix	Test Name	TCLP Date*	Prep Date	Analysis Date
0205079-04B	OTH305-SS01	05/09/02 3:00:00 PM	05/09/02 8:00:00 PM	Soil	ACE Semivolatile Organics by Method 8270C		05/13/02	05/14/02
					Mercury Analysis in Soil by Method 7471A		05/24/02	05/29/02
					Metals, TAL by ICP Method 6010B		05/23/02	06/03/02
					PCBs by Method 8082		05/14/02	05/30/02
					Percent Moisture			05/13/02
					Pesticides by Method 8081A		05/14/02	05/30/02
0205079-05A	OT11305-SS02	05/09/02 3:15:00 PM			Volatile Organic Compounds by Method 8260B			05/10/02
0205079-05B					ACE Semivolatile Organics by Method 8270C		05/13/02	05/14/02
					Mercury Analysis in Soil by Method 7471A		05/24/02	05/29/02
					Metals, TAL by ICP Method 6010B		05/23/02	06/03/02
					PCBs by Method 8082		05/14/02	05/30/02
					Percent Moisture			05/13/02
					Pesticides by Method 8081A		05/14/02	05/30/02
0205079-06A	OTH305-SS03	05/09/02 3:30:00 PM			Volatile Organic Compounds by Method 8260B			05/10/02
0205079-06B					ACE Semivolatile Organics by Method 8270C		05/13/02	05/14/02
					Mercury Analysis in Soil by Method 7471A		05/24/02	05/29/02
					Metals, TAL by ICP Method 6010B		05/23/02	06/03/02
					PCBs by Method 8082		05/14/02	05/30/02
					Percent Moisture			05/13/02
					Pesticides by Method 8081A		05/14/02	05/30/02

LIMS Version#:

Laboratory Results

Analytical Services Center

4493 Walden Avenue

Lancaster, New York 14086

NYS ELAP ID#:

10486

Phone: (716) 685-8080

Client:

E and E Buffalo Office

Project:

GAFB OTH305

Work Order:

0205079

Method References

GC Semivolatiles

PCBs by Method 8082

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Pesticides by Method 8081A

TCLP Herbicides by Method 8151A

TCLP Pesticides by Method 8081A

GCMS Semivolatiles

ACE Semivolatile Organics by Method 8270C

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

TCLP Semivolatile Organics by Method 8270C

GCMS Volatiles

TCLP VOCs by Method 8260B

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

VOC by GCMS Method 8260B

Volatile Organic Compounds by Method 8260B

Mercury

Page 1 of 2

Client:

E and E Buffalo Office

Project:

GAFB OTH305

Work Order:

0205079

Method References

Mercury Analysis in Soil by Method 7471A

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

TCLP Mercury by Method 7470A

Metals

Metals, TAL by ICP Method 6010B

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

TCLP Metals by ICP Method 6010B

WetChemistry

Ignitability (Flashpoint), Liquids by Method 1010

NIOSH Manual of Analytical Methods (NMAM). 1994. Fourth Edition. National Institute for Occupational Safety and Health

Percent Moisture

Annual Book of ASTM Standards. 1997. Volumes 11.01-11.04 (Water Methods, Atmospheric Analysis, Hazardous Substances). American Society for Testing and Materials.

pH by Method 9040B

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Reactive Cyanide by Method 9012A-7.3.3

Reactive Sulfide by Method 9034-7.3.4

Analytical Services Center 4493 Walden Avenue Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486 Phone: (716) 685-8080

July 30, 2002

Mr. Thomas Ferraro 3 and E Buffalo Office 368 Pleasant View Dr. ancaster, NY 14086

E: WAD 09 AOC 9/PCI 20

ostPoint ID: 001002.UK10.02.03.

⁷ork Order No.: **0207099**

ear Mr. Thomas Ferraro,

cology and Environment, Inc. received 7 samples on Monday, July 15, 2002 for the analyses esented in the following report.

& E will retain the samples addressed in this report for 30 days, unless otherwise instructed the client. If additional storage is requested, the storage fee is \$1.00 per sample container per inth, to accrue until the client authorizes sample destruction.

is report is not to be reproduced, except in full, without the written approval of the laboratory.

cerely,

ject Manager

losures as note

report ends on page 153

Laboratory Resul

104

Analytical Services Center

Lancaster, New York 14086

Phone: (716) 685-8080

NYS ELAP ID#:

CLIENT:

E and E Buffalo Office

Project:

WAD 09 AOC 9/PCI 20

Lab Order:

0207099

Date Received: 7/15/2002

Lab Sample I	Client Sample ID	Alt. Client Id	Collection Date
0207099-01A	AFFF-SD01		7/15/2002 3:40:00 PM
0207099-01B	AFFF-SD01		7/15/2002 3:40:00 PM
0207099-02A	AFFF-SD01/D		7/15/2002 3:40:00 PM
0207099-02B	AFFF-SD01/D		7/15/2002 3:40:00 PM
0207099-03A	AFFF-SD02		7/15/2002 3:55:00 PM
0207099-03B	AFFF-SD02		7/15/2002 3:55:00 PM
0207099-04A	PCI20-NS06	•	7/15/2002 2:25:00 PM
0207099-05A	PCI20-NS07	was a second	7/15/2002 2:40:00 PM
0207099-06A	PCI20-NS08		7/15/2002 2:50:00 PM
0207099-07A	PCI20-NS06/D		7/15/2002 2:25:00 PM

Ecology and Environment, Inc. Analytical Services Center Cooler Receipt Form

PACKAGE RECEIPT#:	0265 NUMBER	OF COOLERS		DATE RECEIVE	D: 7-15-	32
L v ! PROJECT#:	PRO	JECT OR SITE NAME	e: <u>Gri</u>	ffix AF	R	
Preliminary Exa	amination Phase bill or packing slip?				CIRCLE VES NO	_
limer carrier here and	print airbill # below: (Circ	cle One) <u>Fec Ex</u>	Airborne Client	t Other		
Ship as high hazard or	dangerous goods				YES 👀	NA 🤇
2 Indicooler(s) have custody	seals?				_ ŒS NO	NA
West custody seals unbrok	en and intact on receipt?_			_	_ 😰 NO	* NA
	nd signed?				_ YES NO	NA
- Sign nate to acknowledge i	receipt of cooler (5):	2.M:11.	Moune_		-	
plens) opened:	4-10 OL		C-O-C numbers:			
empleres) opened by (print)	iv. 1/icam	1+ Hexuare	Signature:	Ali II Idou	<u> </u>	
" Were the C-O-C forms rece	eived?			·	_ (ES) NO'	• NA
Was the project identifiable	from the C-O-C form? number and name in the	heading above:			_ (ES) NO.	NA NA
Pleas record Temperat			re for Each Cooler. I	Range (2 - 6C)* NJ	DEP must be ≤	4C
-HRBILL /12/1.	TEMP. °C	AIRB LL#	TEMP. °C	AIRBILL#	TEMI	
	3.5			·		
		· ·				
B. Unpacking Phas Was enough packing materia	e al used in cooler(s)?	·				NA
tope of material:	remiculite = Bubb	ble Wrap Cothe	=			
framired, was enough ice to fr VES, type of ice used.	ised? West I Dr	ry Z Blue Z Other			_ SES) NO	NA
Was a temperature blank via	l included inside cooler(s))?	O, indicate cooler temperatu	ire in table above.	YES NO	NA
. The aff containers sealed in	separate plastic bags?				YES NO	NA
1 staff containers arrive unbi	roken and in good condition	on?			YES NO	NA
mpics stored in W Cooler	_		Data/Times		YES NO	
Signature In: Signature Out:					<u> </u>	
Login Phase	William 11 15	Loword Signatur	re: <u>s.ll. </u>	Le	Date: 7-/ 5	<u>-0</u> 2
Were all container labels co	mplete (e.g. date, time pre	eserved)?			YES NO.	NA
were all C-O-C forms filled	out properly in ink and si	igned?			ES NO	NA
ha the C-O-C form agree w	vith containers received?_					NA .
" ere the correct containers	used for the tests requeste	ed?		_	😥 NO•	NA
Vere the correct preservative	es listed on the sample lab	bels?			_ (ES) NO.	NA
Was a sufficient sample volu	ime sent for the tests requ	ested?	·		_@ NO*	NA '
Were all volatile samples rec	ceived without head space	?			YES NO*	Q

Laboratory Results

10486

Analytical Services Center

Lancaster, New York 14086

Phone: (716) 685-8080

CLIENT:

E and E Buffalo Office

Project:

WAD 09 AOC 9/PCI 20

Lab Order:

0207099

CASE NARRATIVE

NYS ELAP ID#:

GCMS VOLATILES

A DB 624 or equivalent column and a trap packed with OV-1, Tenax, silica gel and activated charcoal was used for the volatile analysis.

Sample Analysis

All samples were analyzed within hold time.

Calibration and Tunes

All initial and continuing calibrations were acceptable.

QC

All surrogate recoveries were within acceptable limits.

All blank analyses were acceptable. Acetone was present in the soil method blank above the MDL and below the reporting limit.

All matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable for sample AFFF-SD01except for low recoveries of vinyl acetate.

All laboratory control sample (LCS) recoveries were acceptable except acetone and carbon tetrachloride recoveries were 2% and 1% high, respectively.

All internal standard area responses were acceptable.

GCMS SEMIVOLATILES

A RESTEK (Rtx-5ms) column, which is 30-m long, 0.25-mm wide, and has a 0.5-micron film thickness, was used for the semivolatile analyses. The column contains 5% diphenyl and 95% dimethylpolysiloxane.

Sample Analysis

All samples were extracted and analyzed within hold time.

Calibration and Tunes

All initial and continuing calibrations were acceptable.

OC

All surrogate recoveries were within acceptable limits.

All blank analyses were acceptable.

All matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable for sample AFFF-SD01

E and E Buffalo Office

Project:

WAD 09 AOC 9/PCI 20

Lab Order:

0207099

CASE NARRATIVE

except two spike recoveries were low (3,3-Dichlorobenzidine, hexachlorocyclopentadiene) and two spike ecoveries were high (benzoic acid, pentachlorophenol). The corresponding MSD had the same compounds out. The following compounds had high RPD values: 3,3'-Dichlorobenzidine, hexachlorocyclopentadiene.

Il laboratory control sample (LCS) recoveries were acceptable except for a high indeno(1,2,3-cd)pyrene ecovery.

Il internal standard area responses were acceptable.

C SEMIVOLATILES

ESTICIDE

he columns used for analysis were a CLPesticides (column 1) and a CLPesticides II (column 2), both 30 meters ng and 0.53 mm in diameter, with a 1.0 um film thickness. A 1-ul injection was performed on all samples, QC, d standards.

mple Analysis

I samples were extracted and analyzed within hold time.

librations

initial and continuing calibrations were acceptable.

nual integrations were not required.

surrogate recoveries were within acceptable limits.

blank analyses were acceptable.

matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable.

aboratory control sample (LCS) recoveries were acceptable.

column used for analysis was a CLPesticides, 30 meters long and 0.53 mm in diameter, with a 1.0 um film ness. A 1-ul injection was performed on all samples QC, and standards.

le Analysis

imples were extracted and analyzed within hold time.

rations

itial and continuing calibrations were acceptable.

al integrations were not required.

rrogate recoveries were within acceptable limits.

E and E Buffalo Office

Project:

WAD 09 AOC 9/PCI 20

Lab Order:

0207099

CASE NARRATIVE

All blank analyses were acceptable.

All matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable except for a high recovery of Aroclor 1016 in both the MS and MSD of sample AFFF-SD01.

All laboratory control sample (LCS) recoveries were acceptable.

METALS

Sample Analysis

All samples were digested and analyzed within hold time.

All soil samples were diluted two or five-fold due to poor internal standard response and/or interelemental interferences.

Calibrations

Calibration of the ICP utilizes a zero and one non-zero standard to determine the linear equation for quantitation. A low concentration standard (PQL) is analyzed at the reporting level.

All initial and continuing calibrations were acceptable.

OC

All calibration and preparation blank analyses were acceptable. Antimony and iron were present in the method blank above the MDL and below the reporting limit.

All matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable for sample AFFF-SD-01except for aluminum, antimony, calcium, iron, magnesium, manganese, potassium and silver. Aluminum and iron recoveries were affected by the elevated levels of these elements in the sample relative to the spike amount added. RPDs were high for aluminum, calcium and manganese for the MS/MSD pair.

The matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable for sample PCI20-NS08 except for a high lead recovery in the MS. Lead recoveries were affected by the elevated level of this element in the sample relative to the spike amount added.

All laboratory control sample (LCS) recoveries were acceptable.

Serial dilution %D values were out for aluminum, iron, potassium, magnesium and manganese for sample AFF-SD01 and lead for sample PCI20-NS08.

MERCURY

Sample Analysis

All samples were digested and analyzed within hold time.

Calibrations

All initial and continuing calibrations were acceptable.

E and E Buffalo Office

Project:

WAD 09 AOC 9/PCI 20

Lab Order:

0207099

CASE NARRATIVE

ЭC

All calibration and preparation blank analyses were acceptable.

All matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable.

all laboratory control sample (LCS) recoveries were acceptable.

JENERAL ANALYTICAL CHEMISTRY

ample Analysis

Il samples were analyzed within hold time.

C

he matrix duplicate (MD) was acceptable.

ertify that this data package is in compliance with the terms and conditions of the contract, both technically d for completeness, for other than the conditions detailed above. Release of the data contained in this rdcopy data package has been authorized by the Laboratory Manager or the Manager's designee, as verified the following signature.

my Bogolin

ject Manager

rsion #:

Laboratory Results

10486

NYS ELAP ID#:

Analytical Services Center

Lancaster, New York 14086

Phone: (716) 685-8080

	660/070					,		
Client:		ffice				DA	DATES REPORT	POKI
Project:	WAD 09 AOC 9/PCI 20	CI 20						
Sample ID	Client Sample ID	Collection Date	Received Date	Matrix	Test Name	TCLP Date*	Prep Date	Analysis Date
0207099-01A	AFFF-SD01	7/15/2002 3:40:00 PM 7/15/2002 1	0:36:00 PM	Sediment	Sediment Volatile Organic Compounds by Method 8260B			7/16/2002
0207099-01B					ACE Semivolatile Organics by Method 8270C		7/17/2002	7/20/2002
					Griffiss Metals, TAL by ICP Method 6010B		7/18/2002	7/25/2002
					Mercury Analysis in Soil by Method 7471A		7/18/2002	7/19/2002
					PCBs by Method 8082		7/16/2002	7/19/2002
					Percent Moisture			7/17/2002
					Pesticides by Method 8081A		7/16/2002	7/19/2002
0207099-02A	AFFF-SD01/D				Volatile Organic Compounds by Method 8260B			7/16/2002
0207099-02B					ACE Semivolatile Organics by Method 8270C		7/17/2002	7/25/2002
					Griffiss Metals, TAL by ICP Method 6010B		7/18/2002	7/26/2002
					Mercury Analysis in Soil by Method 7471A		7/18/2002	7/19/2002
					PCBs by Method 8082		7/16/2002	7/19/2002
					Percent Moisture			7/17/2002
					Pesticides by Method 8081A		7/16/2002	7/19/2002
0207099-03A	AFFF-SD02	7/15/2002 3:55:00 PM			Volatile Organic Compounds by Method 8260B			7/16/2002
0207099-03B					ACE Semivolatile Organics by Method 8270C		7/17/2002	7/25/2002
					Griffiss Metals, TAL by ICP Method 6010B		7/18/2002	7/26/2002
					Mercury Analysis in Soil by Method 7471A		7/18/2002	7/19/2002
					PCBs by Method 8082		7/16/2002	7/19/2002
*9					Percent Moisture			7/17/2002
)				. *	Pesticides by Method 8081A		7/16/2002	7/19/2002
0207099-04A	A PCI20-NS06	7/15/2002 2:25:00 PM	_	Soil	Griffiss Metals, TAL by ICP Method 6010B		7/18/2002	7/24/2002
					Percent Moisture			7/17/2002

.... By and Environment, Inc.

Analytical Services Center

Lancaster, New York 14086

Phone: (716) 685-8080

0207099 Lab Order: E and E Buffalo Office Client:

DATES REPORT

Laboratory Results

10486

NYS ELAP ID#:

Project:	WAD 09 AOC 9/PCI 20	21 20						
Sample ID	Cilent Sample ID	Collection Date	Received Date	Matrix	Matrix Test Name	TCLP Date*	Prep Date	Analysis Date
0207099-05A PCI20-NS07	PCI20-NS07	7/15/2002 2:40:00 PM 7/15/2002 10:36:00 PM	/15/2002 10:36:00 PM	Soil	Soil Griffiss Metals, TAL by ICP Method 6010B		7/18/2002	7/24/2002
					Percent Moisture			7/17/2002
0207099-06A	PCI20-NS08	7/15/2002 2:50:00 PM			Griffiss Metals, TAL by ICP Method 6010B		7/18/2002	7/24/2002
					Percent Moisture			7/17/2002
0207099-07A	PCI20-NS06/D	7/15/2002 2:25:00 PM			Griffiss Metals, TAL by ICP Method 6010B		7/18/2002	7/24/2002
					Percent Moisture			7/17/2002

LIMS Version #:

Laboratory Results

Analytical Services Center

4493 Walden Avenue

Lancaster, New York 14086

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

E and E Buffalo Office

Project:

WAD 09 AOC 9/PCI 20

Work Order:

0207099

Method References

GC Semivolatiles

PCBs by Method 8082

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Pesticides by Method 8081A

GCMS Semivolatiles

ACE Semivolatile Organics by Method 8270C

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

GCMS Volatiles

Volatile Organic Compounds by Method 8260B

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Mercury

Mercury Analysis in Soil by Method 7471A

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Metals

Griffiss Metals, TAL by ICP Method 6010B

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

WetChemistry

Client:

E and E Buffalo Office

Project:

WAD 09 AOC 9/PCI 20

Work Order:

0207099

Method References

Percent Moisture

Annual Book of ASTM Standards. 1997. Volumes 11.01-11.04 (Water Methods, Atmospheric Analysis, Hazardous Substances). American Society for Testing and Materials.

Analytical Services Center 4493 Walden Avenue Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486 Phone: (716) 685-8080

August 15, 2002

Mr. Thomas Ferraro E and E Buffalo Office 368 Pleasant View Dr. Lancaster, NY 14086

RE: WAD 09 AOI 473

Work Order No.: 0207128

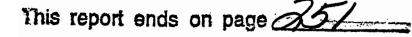
Dear Mr. Thomas Ferraro,

Ecology and Environment, Inc. received 13 samples on Wednesday, July 17, 2002 for the analyses presented in the following report.

You will receive an invoice under separate cover.

E & E will retain the samples addressed in this report for 30 days, unless otherwise instructed by the client. If additional storage is requested, the storage fee is \$1.00 per sample container per month, to accrue until the client authorizes sample destruction.

This report is not to be reproduced, except in full, without the written approval of the laboratory.


Sincerely,

Tony Bogolin

Project Manager

CC:

Enclosures as note

Analytical Services Center Lancaster, New York 14086

Phone: (716) 685-8080

Laboratory Results

NYS ELAP ID#:

10486

CLIENT:

E and E Buffalo Office

Project:

WAD 09 AOI 473

Lab Order: Date Received: 7/17/2002

0207128

Work Order Sample Summary

0207128-01A FIELDQC-FB473-RM10-SP1 7/17/2002 6:00:00 PM 0207128-02A G473-RM10-SD01 7/17/2002 3:00:00 PM 0207128-03B G473-RM10-SP01 7/17/2002 3:00:00 PM 0207128-03B G473-RM10-SP01 7/17/2002 3:00:00 PM 0207128-03C G473-RM10-SP01 7/17/2002 3:00:00 PM 0207128-03D G473-RM10-SP01 7/17/2002 3:00:00 PM 0207128-04B G473-RM10-SP01/D 7/17/2002 3:00:00 PM 0207128-04B G473-RM10-SP01/D 7/17/2002 3:00:00 PM 0207128-04B G473-RM10-SP01/D 7/17/2002 3:00:00 PM 0207128-04C G473-RM10-SP01/D 7/17/2002 3:00:00 PM 0207128-04B G473-RM10-SP01/D 7/17/2002 3:00:00 PM 0207128-04C G473-RM10-SP01/D 7/17/2002 3:00:00 PM 0207128-04C G473-RM10-SP01/D 7/17/2002 3:00:00 PM 0207128-04B G473-RM10-SP01/D 7/17/2002 3:00:00 PM 0207128-04G G473-RM10-SP01/D 7/17/2002 3:00:00 PM 0207128-05 G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05 G473-RM10-SP02 7/17/2002 3:15:00 PM	Lab Sample I	Client Sample ID	Alt. Client Id	Collection Date
0207128-02A G473-RM10-SD01 7/17/2002 3:00:00 PM 0207128-03A G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-03B G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-03C G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-03D G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-03E G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04A G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04B G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04B G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04D G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04D G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04G G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-05A G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM	_	-		
0207128-03B G473-RM10-SP01 71/17/2002 3:02:00 PM 0207128-03C G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-03D G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-03E G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-04A G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04B G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04C G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04D G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04D G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04E G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05E G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07B G473-RM10-SP03 7/17/2002 3:29:00 PM <	0207128-02A	G473-RM10-SD01		
0207128-03B G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-03C G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-03D G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-03E G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-04A G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04B G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04C G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04D G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04E G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05E G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:15:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128	0207128-03A	G473-RM10-SP01		
0207128-03D G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-03E G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04A G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04B G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04D G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04D G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04E G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-05A G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06D G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM <t< td=""><td>0207128-03B</td><td>G473-RM10-SP01</td><td></td><td></td></t<>	0207128-03B	G473-RM10-SP01		
0207128-03E G473-RM10-SP01 7/17/2002 3:02:00 PM 0207128-04A G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04B G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04C G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04C G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04D G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04E G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-05A G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07D G473-RM10-SP03 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00	0207128-03C	G473-RM10-SP01		7/17/2002 3:02:00 PM
0207128-04A G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04B G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04C G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04C G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04D G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04E G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04E G473-RM10-SP02 7/17/2002 3:02:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05D G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05D G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07D G473-RM10-SP03 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 7/17/2002	0207128-03D	G473-RM10-SP01		7/17/2002 3:02:00 PM
0207128-04B G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04C G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04D G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04E G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-05A G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05D G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05D G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06A G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06D G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM	0207128-03E	G473-RM10-SP01		7/17/2002 3:02:00 PM
0207128-04C G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04D G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04E G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-05A G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05D G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05E G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-04A	G473-RM10-SP01/D		7/17/2002 3:02:00 PM
0207128-04D G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-04E G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-05A G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05D G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05E G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06A G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06D G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07A G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-04B	G473-RM10-SP01/D		7/17/2002 3:02:00 PM
0207128-04E G473-RM10-SP01/D 7/17/2002 3:02:00 PM 0207128-05A G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05D G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05E G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06A G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06D G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07A G473-RM10-SP04 7/17/2002 3:28:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:39:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM <	0207128-04C	G473-RM10-SP01/D		7/17/2002 3:02:00 PM
0207128-05A G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05D G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05E G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06A G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07A G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-04D	G473-RM10-SP01/D		7/17/2002 3:02:00 PM
0207128-05B G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05D G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05E G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06A G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06D G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07A G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-04E	G473-RM10-SP01/D		7/17 /2002 3:02:00 PM
0207128-05C G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05D G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05E G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06A G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06D G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07A G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-05A	G473-RM10-SP02		7/17 /200 2 3:15:00 PM
0207128-05D G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-05E G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06A G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06D G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07A G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-05B	G473-RM10-SP02		7/17/2002 3:15:00 PM
0207128-05E G473-RM10-SP02 7/17/2002 3:15:00 PM 0207128-06A G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06D G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07A G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-05C	G473-RM10-SP02	•	7/17/2002 3:15:00 PM
0207128-06A G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06D G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07A G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-05D	G473-RM10-SP02		7/17/2002 3:15:00 PM
0207128-06B G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06D G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07A G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-05E	G473-RM10-SP02		7/17/2002 3:15:00 PM
0207128-06C G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06D G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07A G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-06A	G473-RM10-SP03		7/17/2002 3:28:00 PM
0207128-06D G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07A G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-06B	G473-RM10-SP03		7/17/2002 3:28:00 PM
0207128-06E G473-RM10-SP03 7/17/2002 3:28:00 PM 0207128-07A G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-06C	G473-RM10-SP03		7/17/2002 3:28:00 PM
0207128-07A G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-06D	G473-RM10-SP03		7/17/2002 3:28:00 PM
0207128-07B G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-06E	G473-RM10-SP03		7/17/2002 3:28:00 PM
0207128-07C G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-07A	G473-RM10-SP04		7/17/2002 3:39:00 PM
0207128-07D G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-07B	G473-RM10-SP04		7/17/2002 3:39:00 PM
0207128-07E G473-RM10-SP04 7/17/2002 3:39:00 PM 0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-07C	G473-RM10-SP04		7/17/2002 3:39:00 PM
0207128-08A G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-07D	G473-RM10-SP04	•	7/17/2002 3:39:00 PM
0207128-08B G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-07E	G473-RM10-SP04		7/17/2002 3:39:00 PM
0207128-08C G473-RM10-SP05 7/17/2002 3:50:00 PM 0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-08A	G473-RM10-SP05		7/17/2002 3:50:00 PM
0207128-08D G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-08B	G473-RM10-SP05		7/17/2002 3:50:00 PM
#1#202 5.50.00 FM	0207128-08C	G473-RM10-SP05		7/17/2002 3:50:00 PM
0207128-08E G473-RM10-SP05 7/17/2002 3:50:00 PM	0207128-08D	G473-RM10-SP05		7/17/2002 3:50:00 PM
)207128-08E	G473-RM10-SP05		7/17/2002 3:50:00 PM

E and E Buffalo Office

Project:

WAD 09 AOI 473

Lab Order:

0207128

Date Received: 7/17/2002

Work Order Sample Summary

Lab Sample I	Client Sample ID	Alt. Client Id	Collection Date
0207128-09A	G473-RM10-SP06		7/17/2002 3:56:00 PM
0207128-09B	G473-RM10-SP06		7/17/2002 3:56:00 PM
0207128-09C	G473-RM10-SP06		7/17/2002 3:56:00 PM
0207128-09D	G473-RM10-SP06		7/17/2002 3:56:00 PM
0207128-09E	G473-RM10-SP06		7/17/2002 3:56:00 PM
0207128-10A	G473-RM10-SP07		7/17/2002 4:05:00 PM
0207128-10B	G473-RM10-SP07		7/17/2002 4:05:00 PM
0207128-10C	G473-RM10-SP07		7/17/2002 4:05:00 PM
0207128-10D	G473-RM10-SP07		7/17/2002,4:05:00 PM
0207128-10E	G473-RM10-SP07		7/17/2002 4:05:00 PM
0207128-11A	G473-RM10-SP08		7/17/2002 4:15:00 PM
0207128-11B	G473-RM10-SP08		7/17/2002 4:15:00 PM
0207128-11C	G473-RM10-SP08		7/17/2002 4:15:00 PM
0207128-11D	G473-RM10-SP08		7/17/2002 4:15:00 PM
0207128-11E	G473-RM10-SP08		7/17/2002 4:15:00 PM
0207128-12A	G473-RM10-SP09		7/17/2002 4:21:00 PM
0207128-12B	G473-RM10-SP09		7/17/2002 4:21:00 PM
0207128-12C	G473-RM10-SP09		7/17/2002 4:21:00 PM
0207128-12D	G473-RM10-SP09		7/17/2002 4:21:00 PM
0207128-12E	G473-RM10-SP09		7/17/2002 4:21:00 PM
0207128-13A	G473-RM10-SP10	•	7/17/2002 4:28:00 PM
0207128-13B	G473-RM10-SP10		7/17/2002 4:28:00 PM
0207128-13C	G473-RM10-SP10		7/17/2002 4:28:00 PM
0207128-13D	G473-RM10-SP10		7/17/2002 4:28:00 PM
0207128-13E	G473-RM10-SP10		7/17/2002 4:28:00 PM

Cooler Receipt Form PACKAGE RECEIPT #: 10085 NUMBER OF COOLERS: DATE RECEIVED: 1: v.1: PROJECT#: ______ PROJECT OR SITE NAME: _____ ... Preliminary Examination Phase CIRCLE ONE 1 Did coolers come with airbill or packing slip? Enter carrier here and print airbill # below: (Circle One) FedEx Airborne Client Ship as high hazard or dangerous goods NA Ind cooler(s) have custody seals? Were custody seals unbroken and intact on receipt? with custody seals dated and signed? _ sign here to acknowledge receipt of cooler (s): _ C-O-C numbers: time choler(s) opened: cooler(s) opened by (print): ____ NO* NA Were the C-O-C forms received? Was the project identifiable from the C-O-C form? If YES, enter the project number and name in the heading at ove. Please record Temperature Blank Vial or Cooler Temperature for Each Cooler, Range (2 - 6C)* NJDEP must be ≤4C AIRBILL# TEMP. °C TEMP. °C * If No or Temperature Outside of Acceptable Range, prepare a PM Notification form. B. Unpacking Phase Was enough packing material used in cooler(s)? Bubble Wrap Vermiculite is required, was enough ice used? NA Dry Blu: Other Wet If YES, type of ice used: 13 Was a temperature blank vial included inside cooler(s)? II NES, indicate temperature blank vial temperature in table above. If NO, indicate cooler temperature in table above. ... Were all containers sealed in separate plastic bags? ____ had all containers arrive unbroken and in good condition? ompies stored in W Cooler before Login Phase? _____ Date/Time: Hives Signature In: ___ Signature Out: ___ ... Login Phase Samples Logged in By (print): Were all container labels complete (e.g. date, time preserved)? ____ A ere all C-O-C forms filled out properly in ink and signed? nd the C-O-C form agree with containers received? " ere the correct containers used for the tests requested? NO* Vere the correct preservatives listed on the sample labels? NO* Was a sufficient sample volume sent for the tests requested? NO* Were all volatile samples received without head space?

Ecology and Environment, Inc. Analytical Services Center

Laboratory Results

Analytical Services Center

Lancaster, New York 14086

Phone: (716) 685-8080

NYS ELAP ID#:

10486

CLIENT:

E and E Buffalo Office

Project:

WAD 09 AOI 473

Lab Order:

0207128

CASE NARRATIVE

TRPH and PCB analysis was not performed on the blank wipe FIELDQC-FB473-RM10-SP1 as the blank wipes designated for these analysis were used in the remaining analysis. Bob Meyers was notified and additional blank wipes were requested but none were received.

GCMS SEMIVOLATILES

SOIL

A RESTEK (Rtx-5ms) column, which is 30-m long, 0.25-mm wide, and has a 0.5-micron film thickness, was used for the semivolatile analyses. The column contains 5% diphenyl and 95% dimethylpolysiloxane.

Sample Analysis

All samples were extracted and analyzed within hold time.

TIC's (Tentatively Identified Compounds) were computer generated. No analyst interpretation was performed on the TIC's.

Calibration and Tunes

All initial and continuing calibrations were acceptable.

A manual integration was required on sample G473-RM10-SD01 for internal standard phenanthrene-d10 which was not identified by the data system due to sample matrix interferences.

OC

All surrogate recoveries were within acceptable limits.

All blank analyses were acceptable. Bis(2-ethylhexyl)phthalate was detected in the method blank above the MDL and below the reporting limit.

All laboratory control sample (LCS) recoveries were acceptable.

All internal standard area responses were acceptable except sample G473-RM10-SD01 had three low IS responses. The sample was analyzed a second time with two low IS responses. The sample exhibited the classic hydrocarbon crivelope. Sample matrix interference is the cause of the low IS areas.

GCMS SEMIVOLATILES

WIPES

A RESTEK (Rtx-5ms) column, which is 30-m long, 0.25-mm wide, and has a 0.5-micron film thickness, was used for the semivolatile analyses. The column contains 5% diphenyl and 95% dimethylpolysiloxane.

Sample Analysis

All samples were extracted and analyzed within hold time.

7

E and E Buffalo Office

Project:

WAD 09 AOI 473

ab Order:

0207128

CASE NARRATIVE

IC's (Tentatively Identified Compounds) were computer generated. No analyst interpretation was performed n the TIC's.

amples G473-RN10-SP04 and G473-RN10-SP07 were analyzed at a six-fold dilution for bis(2thylhexyl)phthalate due to the levels detected. The result from the diluted run were merged and reported with ne undiluted analysis.

Il initial and continuing calibrations were acceptable.

[anual integrations were required on multiple sample; due to matrix interferences. Samples G473-RM10-P01, G473-RM10-SP01/D, G473-RM10-SP02, G473-RM10-SP03, G473-RM10-SP04, G473-RM10-SP07, 473-RM10-SP10 all required a manual integration for the interanl standard phenamthrene-d10 which eluted in e middle of large hydrocarbon "hump". Sample G47'3-RM10-SP01/D also required integrations for 2,4,6bromophenol and bis(2-ethylhexyl)phthalate. Sample G473-RM10-SP07 also required integrations for 2,4,6bromophenol, terphenyl-d14, and chrysene-d12. Saraple G473-RM10-SP10 also required an integration for ttyl benzyl phthalate. Samples G473-RM10-SP02MS, G473-RM10-SP02MSD both required multiple tegrations for spike compounds. Again, all the integrations were required because the data system did not egrate the peaks properly due to the matrix interferences from the sample.

l surrogate recoveries were within acceptable limits except sample G473-RM10-SP07 had a low recovery for 6-tribromophenol at 24% (32% limit) and the MSD of sample G473-RM10-SP02 had a low recovery for ,6-tribromophenol at 22% (32% limit).

blank analyses were acceptable.

matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable for sample G473-RM10-02 except the MS had 7 high recoveries and 5 low recoveries and the MSD had 7 low and 3 high recoveries ulting in 19 high RPD's. See the MS/MSD summary sheet for details.

laboratory control sample (LCS) recoveries were acceptable except LCS-200202067 had a low recovery for bloroaniline at 11% (20% limit).

internal standard area responses were acceptable except samples G473-RM10-SP01, G473-RM10-SP01/D, 73-RM10-SP02, G473-RM10-SP02MS, G473-RM10-SP02MSD, G473-RM10-SP03, G473-RM10-SP04, 73-RM10-SP07, G473-RM10-SP10 all had tow or three low IS responses due to sample matrix rferences. See enclosed chromatograms and IS summary form for details.

SEMIVOLATILES

3 SOIL

column used for analysis was a CLPesticides II, 30 meters long and 0.53 mm in diameter, with a 1.0 um film kness. A 1-ul injection was performed on all samples, QC, and standards.

ple Analysis

Version #:

samples were extracted and analyzed within hold time.

8

E and E Buffalo Office

Project:

WAD 09 AOI 473

Lab Order:

0207128

CASE NARRATIVE

Calibrations

All initial and continuing calibrations were acceptable.

Manual integrations were not required.

QC

All surrogate recoveries were within acceptable limits except for a high recovery of the surrogate DCB in sample G473-RM10-SD01. Recovery was elevated due to sample matrix interferences.

All blank analyses were acceptable.

All laboratory control sample (LCS) recoveries were acceptable.

PCB WIPES

The column used for analysis was a CLPesticides II, 30 meters long and 0.53 mm in diameter, with a 1.0 um film thickness. A 1-ul injection was performed on all samples, QC, and standards.

Sample Analysis

All samples were extracted and analyzed within hold time.

A secondary dilution was performed on sample G473-RM10-SP07, based on the level of non-target compounds present in the native extract.

Calibrations

All initial and continuing calibrations were acceptable.

A manual integration was performed on the surrogate DCB in samples G473-RM10-SP01 and G473-RM10-SP01/D, to negate false area which resulted from an elevated baseline.

OC

All surrogate recoveries were within acceptable limits except for a high recovery of the surrogate DCB in samples G473-RM10-SP04, G473-RM10-SP05 and G473-RM10-SP08. TCMX recovery was elevated in sample G473-RM10-SP09 and the MSD of sample G473-RM10-SP02. The elevated recoveries are a result of sample matrix interferences. The method blank, LCS and the MS of sample G473-RM10-SP02 had both surrogates high. Reextraction was not performed as no additional wipes were available.

All blank analyses were acceptable.

All matrix spike/spike duplicate (MS/MSD) recoveries and RPD values for sample G473-RM10-SP02 were outside acceptable limits except for recovery of Aroclor 1016 in the MS.

All laboratory control sample (LCS) recoveries were slightly outside acceptable limits on the high side. Reextraction was not performed as no additional wipes were available.

E and E Buffalo Office

Project:

WAD 09 AOI 473

Lab Order:

0207128

CASE NARRATIVE

METALS

Sample Analysis

All samples were digested and analyzed within hold time.

Sediment sample G473-RM10-SD01 was analyzed at a twenty-fold dilution due to the levels of calcium and iron resent. All of the wipe samples except for sample FIELDQC-FB473-RM10-SP1 were analyzed at secondary lilutions due to the level of iron and/or calcium present.

Calibrations

'alibration of the ICP utilizes a zero and one non-zero standard to determine the linear equation for uantitation. A low concentration standard (PQL) is analyzed at the reporting level.

Il initial and continuing calibrations were acceptable

C

Il calibration and preparation blank analyses were acceptable. Potassium and selenium were present in the soil ethod blank above the MDL and below the reporting limit. Aluminum and manganese were present in the ipe method blank above the MDL and below the reporting limit. RPD values were high for aluminum, copper, ad, manganese, nickel, silver and zinc for the wipe MS/MSD pair.

Il matrix spike/spike duplicate (MS/MSD) recoveries were outside acceptance limits in wipe sample G473-M10-SP02 except for arsenic, barium, beryllium, cad nium, cobalt, magnesium, selenium and thallium. For any of the elements the concentration in the sample exceeded the spike amount by greater than four times.

1 laboratory control sample (LCS) recoveries were acceptable.

l serial dilution %D values were acceptable for wipe sample G473-RM10-SP02 except for sodium.

ERCURY

mple Analysis

I samples were digested and analyzed within hold time.

timent sample G473-RM10-SD01 was analyzed at a two-fold dilution due to the level of mercury present. of the wipe samples except samples FIELDQC-FB473-RM10-SP1 and G473-RM10-SP10 were analyzed at ondary dilutions due to the levels of mercury present.

librations

initial and continuing calibrations were acceptable.

calibration and preparation blank analyses were acceptable.

matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were outside acceptance limits for wipe sple G473-RM10-SP02. This sample contained mercury at levels greater than 60 times the spike amount ed.

Charsday, August 15, 2002 3,07,5e PM

E and E Buffalo Office

Project:

WAD 09 AOI 473

Lab Order:

0207128

CASE NARRATIVE

All laboratory control sample (LCS) recoveries were acceptable.

GENERAL ANALYTICAL CHEMISTRY

Sample Analysis

All samples were analyzed within hold time.

Wipe samples G473-RM10-SP03 and G473-RM10-SP10 were analyzed at two-fold dilutions due to the levels of petroleum hydrocarbons present.

OC

All calibration and preparation blank analyses were acceptable.

All matrix spikes (MS) and duplicates (MD) were acceptable.

All laboratory control sample (LCS) recoveries were acceptable.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Project Manager

Analytical Services Center

Lancaster, New York 14086

Phone: (716) 685-8080

0207128 Lab Order:

E and E Buffalo Office Client:

WAD 09 AOI 473 Project:

DATES REPORT

Laboratory Results

10486

NYS ELAP ID#:

riolecti	WALL TO A CO CLAN							
Sample ID	Client Sample ID	Collection Date	Received Date N	Matrix	Test Name	TCLP Date*	Prep Date	Analysis Date
0207128-01A	FIELDQC-FB473-RM10-SP1	7/17/2002 6:00:00 PM 7/17/2002	11:06:00 PM	Wipe /	ACE Semivolatile Organics by Method 8270C		7/24/2002	8/8/2002
					Mercury Analysis of Wipe by Method 7471A		7/19/2002	7/24/2002
				_	Metals Analysis of a Wipe by ICP Method 6010B		7/25/2002	8/2/2002
0207128-02A	G473-RM10-SD01	7/17/2002 3:00:00 PM	Š	ediment ,	Sediment ACB Semivolatile Organics by Method 8270C		7/19/2002	8/2/2002
				_	Griffiss Metals, TAL by ICP Method 6010B		7/19/2002	7/22/2002
					Mercury Analysis in Soil by Method 7471A		1124/2002	7/25/2002
					PCBs by Method 8082		7/18/2002	7/23/2002
					Percent Moisture			7/19/2002
					TRPH by Method 418.1M			8/10/2002
0207128-03A	G473-RM10-SP01	7/17/2002 3:02:00 PM		Wipe	PCBs by Method 8082			7/26/2002
0207128-03B					ACE Semivolatile Organics by Method 8270C		7/24/2002	8/8/2002
0207128-03C					TRPH by Method 418.1M			8/10/2002
0207128-03D					Metals Analysis of a Wipe by ICP Method 6010B		7/25/2002	8/1/2002
0207128-03E					Mercury Analysis of Wipe by Method 7471A		7/19/2002	7/24/2002
0207128-04A	G473-RM10-SP01/D				PCBs by Method 8082			7/26/2002
0207128-04B					ACE Semivolatile Organics by Method 8270C		7/24/2002	8/8/2002
0207128-04C					TRPH by Method 418.1M			8/10/2002
0207128-04D	:				Metals Analysis of a Wipe by ICP Method 6010B		7/25/2002	8/1/2002
0207128-04E					Mercury Analysis of Wipe by Method 7471A		7/19/2002	7/24/2002
0207128-05A	G473-RM10-SP02	7/17/2002 3:15:00 PM			PCBs by Method 8082			7/31/2002
0207128-05B					ACE Semivolatile Organics by Method 8270C		7/24/2002	8/9/2002
0207128-05C	ن.				TRPH by Method 418.1M			8/10/2002
0207128-05D	12				Metals Analysis of a Wipe by ICP Method 6010B		7/25/2002	8/1/2002
1,1MS Version #:	3.1.4.4 - 7/31/2002 1:00:00 PM		Reflects Date of TCLP Extrapless the date differs from t	action Co the origin	*Reflects Date of TCLP Extraction Completion. For Re-extracted samples (*RE) reflects the TCLP Extraction from the original sample unless the date differs from the original sample's TCLP extraction was also re-done.	cts the TCLP Extr is TCLP extraction	raction from the or was also re-done	iginal sample 3.

Analytical Services Center

Lancaster, New York 14086

Phone: (716) 685-8080

Laboratory Results

10486 NYS ELAP ID#:

0207128 Lab Order:

Lab Order:	020/128							
Client:	E and E Buffalo Office	fice				O O	DATES REPORT	PORT
Project:	WAD 09 AOI 473							
Sample ID	Cllent Sample ID	Collection Date	Received Date	Matrix	Test Name	TCLP Date*	Prep Date	Analysis Date
0207128-05E	G473-RM10-SP02	7/17/2002 3:15:00 PM 7/17/2002	7/17/2002 11:06:00 PM	Wipe	Mercury Analysis of Wipe by Method 7471A		7/19/2002	7/24/2002
0207128-06A	G473-RM10-SP03	7/17/2002 3:28:00 PM			PCBs by Method 8082			7/31/2002
0207128-06B					ACE Semivolatile Organics by Method 8270C		7/24/2002	8/8/2002
0207128-06C					TRPH by Method 418.1M			8/10/2002
0207128-06D					Metals Analysis of a Wipe by ICP Method 6010B		7/25/2002	8/1/2002
0207128-06E					Mercury Analysis of Wipe by Method 7471A		7/19/2002	7/24/2002
0207128-07A	G473-RM10-SP04	7/17/2002 3:39:00 PM			PCBs by Method 8082			7/27/2002
0207128-07B					ACE Semivolatile Organics by Method 8270C		7/24/2002	8/8/2002
0207128-07C					TRPH by Method 418.1M			8/10/2002
0207128-07D					Metals Analysis of a Wipe by ICP Method 6010B		7/25/2002	8/1/2002
0207128-07E					Mercury Analysis of Wipe by Method 7471A		7/19/2002	7/24/2002
0207128-08A	G473-RM10-SP05	7/17/2002 3:50:00 PM			PCBs by Method 8082			7/27/2002
0207128-08B					ACE Semivolatile Organics by Method 8270C		7/24/2002	8/8/2002
0207128-08C					TRPH by Method 418.1M			8/10/2002
0207128-08D					Metals Analysis of a Wipe by ICP Method 6010B		7/25/2002	8/1/2002
0207128-08E					Mercury Analysis of Wipe by Method 7471A		7/19/2002	7/24/2002
0207128-09A	G473-RM10-SP06	7/17/2002 3:56:00 PM			PCBs by Method 8082			7/31/2002
0207128-09B	-				ACE Semivolatile Organics by Method 8270C		7/24/2002	8/8/2002
0207128-09C					TRPH by Method 418.1M			8/10/2002
0207128-09D					Metals Analysis of a Wipe by ICP Method 6010B		7/25/2002	8/1/2002
0207128-09E					Mercury Analysis of Wipe by Method 7471A		7/19/2002	7/24/2002
0207128-10A	Q473-RM10-SP07	7/17/2002 4:05:00 PM			PCBs by Method 8082			7/31/2002
0207128-10B	.3				ACE Semivolatile Organics by Method 8270C		7/24/2002	8/8/2002

Laboratory Results

10486

NYS ELAP ID#:

Analytical Services Center

Lancaster, New York 14086

Phone: (716) 685-8080

8/10/2002 8/1/2002 Analysis Date 7/24/2002 7/27/2002 8/10/2002 7/31/2002 8/8/2002 1/24/2002 7/31/2002 3/10/2002 7/24/2002 8/1/2002 8/8/2002 8/1/2002 1/24/2002 8/1/2002 8/8/2002 DATES REPORT 7/19/2002 7/24/2002 1/25/2002 7/19/2002 7/24/2002 1/25/2002 Prep Date 7/24/2002 7/25/2002 7/19/2002 7/25/2002 7/19/2002 TCLP Date* Metals Analysis of a Wipe by ICP Method 6010B Metals Analysis of a Wipe by ICP Method 6010B Metals Analysis of a Wipe by ICP Method 6010B Metals Analysis of a Wipe by ICP Method 6010B ACE Semivolatile Organics by Method 8270C ACE Semivolatile Organics by Method 8270C ACE Semivolatile Organics by Method 8270C Mercury Analysis of Wipe by Method 7471A TRPH by Method 418.1M TRPH by Method 418.1M TRPH by Method 418.1M TRPH by Method 418.1M PCBs by Method 8082 PCBs by Method 8082 PCBs by Method 8082 Test Name Matrix Wipe 7/17/2002 4:05:00 PM 7/17/2002 11:06:00 PM Received Date 7/17/2002 4:21:00 PM 7/17/2002 4:28:00 PM 7/17/2002 4:15:00 PM Collection Date E and E Buffalo Office WAD 09 AOI 473 G473-RM10-SP10 G473-RM10-SP08 G473-RM10-SP09 Cllent Sample ID G473-RM10-SP07 0207128 0207128-13D 0207128-13E 0207128-13A 0207128-13C Lab Order: 0207128-12A 0207128-13B 0207128-11A 0207128-12C 0207128-12D 0207128-11B 0207128-11C 0207128-1110 0207128-11E 0207128-12B)207128-12E 0207128-10C 0207128-10D 0207128-10E Sample ID Project: Client:

<u>i4</u>

3.1.4.4 - 7/31/2002 1:00:00 PM

LIMS Version #:

*Reflects Date of TCLP Extraction Completion. For Re-extracted samples (*RE) reflects the TCLP Extraction from the original sample unless the date differs from the original sample's TCLP extraction date which indicates TCLP extraction was also re-done.

Laboratory Results

Analytical Services Center 4493 Walden Avenue

Lancaster, New York 14086

NYS ELAP ID#: 1

: 10486

Phone: (716) 685-8080

Client:

E and E Buffalo Office

Project:

WAD 09 AOI 473

Work Order:

0207128

Method References

GC Semivolatiles

PCBs by Method 8082

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

GCMS Semivolatiles

ACE Semivolatile Organics by Method 8270C

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Mercury

Mercury Analysis in Soil by Method 7471A

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Mercury Analysis of Wipe by Method 7471A

Metals

Griffiss Metals, TAL by ICP Method 6010B

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all promulgated Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Metals Analysis of a Wipe by ICP Method 6010B

WetChemistry

Page 1 of 2

Client:

E and E Buffalo Office

Project:

WAD 09 AOI 473

Work Order:

0207128

Method References

Percent Moisture

Annual Book of ASTM Standards. 1997. Volumes 11.01-11.04 (Water Methods, Atmospheric Analysis, Hazardous Substances).

American Society for Testing and Materials.

TRPH by Method 418.1M

Methods for Chemical Analysis of Water and Wastes. 1983. EPA-600/4-79-020. U.S. Environmental Protection Agency,

Environmental Monitoring and Support Laboratory.

Systems Audits

F. Systems Audits

FD	ELD LOG	воок	AUDIT	FORM			
Andit Date: 7/18/02		Site Name: GAFB -WAD 9					
Auditor: Rick Watt				Team Members: R. Meyers, B. Cervi			
Quality Assurance Notice (QAN):				5. Reynolds Suith			
Initial Information	Yes	No	NA	Comments			
Site Name	J'						
Location	✓						
Client I.D.		1		Job number (with Contract code) indu			
Date of Work	1						
Arrival/Departure Times	✓						
Proposed Daily Activities	1						
On-going Weather	. /						
Team Members and Duties	~						
Other Personnel and Affiliations	✓						
Other:							
HEALTH AND SAFETY							
Meeting Conducted	✓			·			
Personnel Attending	✓	į					
Levels of Protection for each Phase of Work	1						
Safety Equipment	/						
Equipment I.D. #		/		Equipment types noted, not Serial numbers.			
Calibration		/		Calibration not applicable. Instrument served in clean air.			
Background Readings	1			Noted for AOI473			
On-site Reading	V			For AOC9, readings recorded on COC			
Other:				8			
SAMPLE/DATA COLLECTION EQUIPMENT							
ypes	1						
Serial # (I.D. #)		✓					
Calibration		J		See above			
Background Readings	J			Noted for ADI473			
n-site Readings/Locations	1			For ADI 473, readings recorded in log. For ADC9, readings recorded on COC.			
Other:				The state of the s			

FIELD LOGBOOK AUDIT FORM

		T		
	Yes	No	NA	Comments
DECONTAMINATION/DISPOSAL				
Solution Used	1			Steam cleaning of Geomore Equipment noted. Only process is flow removal;
Procedures for Personnel		Now	1	only process is flowe removal;
Procedures for Equipment	<u> </u>			Steam cleaning water discharged to ground but
Disposal Method for Wastes		1		not noted.
Other:				
PHOTO DOCUMENTATION				
Camera		✓		
Lens			\	
Serial #		>		
Film Type/Roll #		✓		
Sequence #/Frame #	/			
Photographer	✓			
Direction	/			
Location/Subject	/			
Date and Time				
SITE ACTIVITY				
Conversation Interview with Site Representatives	✓.			
Description of Site Management Practices			√	
Descriptions of Wastes		✓		Only wastes were gloves & solids decon water.
Pathways/targets			√	
Reconnaissance Observations	✓			
Deviations from Approved Work Plan			1	
Site Maps/Sketches	1			
Field Calculations			/	
Assumptions			/	
Other:				

FIELD LOGBOOK AUDIT FORM

	Yes	No	NA	Comments
SAMPLES				
Matrix and Numbers	J.			
Dates/Times Collected	<i>J</i> .			
Who Collected Sample	<u> </u>			
Locations	<u> </u>			
Depth	<u> </u>			
Composite/Grab	<u> </u>	ļ		
Physical Descriptions	\ <u> </u>			
Field Measurements	<u> </u>			
Sample I.D. #	<u> </u>		_	Bosic sampling proceedings or an
Sampling Techniques	 -	✓		deviation from work plan
Preservation Techniques	<u> </u>		~	The meserved
Receipt for Samples Given	<u> </u>			Cousin BOL; FedEx airbill
Portions Offered to Site Representative	<u> </u>			Splits to ERDC lab
Chain-of-custody (COC) Filled Out	<u> </u>			
Crosscheck of Sample Inventory vs. COC		V		Observed - not noted in lop
Other:	<u> </u>			L
GENERAL				T
Each Page Signed and Dated by Team Leader	<u> </u>			complete, not signed at true dans
Entries Recorded by Anyone Else Initialed			✓	·
Blank Pages/Spaces Voided	<u> </u>			Some correct, some not initially
Corrections Made Properly	/	<u> </u>	_	in one book.
Entries with 24-Hour Clock Time Notations	/			
Other:				

Additional Comments

In general, very complete logs. Much sampling information that was not duplicated in log wise on C-O-C forms.

	·		

DAILY QUALITY CONTROL INSPECTION CHECKLIST FOR FIELD ACTIVITIES

HEALTH and SAFETY (H&S)	YES	NO	NA
Was the daily safety meeting held and documented?	Y		
Were site contaminants of concern discussed in meeting?	¥		
Were other H&S aspects discussed in meeting? Note below.	L		
Were exceptions, additions, or other changes in H&S procedures			
discussed?	V		
What level(s) of protection is required in HASP for today's work sites?	A B	C (1	<u></u>
What level of personal protective equipment (PPE) is being worn by personal protective equipment (PPE) is being word (PPE).	ersonne	l at toda	ıy's work
sites? A B C D			
COMMENTS Trip/fall in hunriocky AOC-9 area and	nd hea	+/h	mid its
discussed. Use of respiratory motection during	Swipe	SOLM	pline
on a previous day noted (due to solvent used			
DAILY FIELD MEETING	YES	NO	NA
Was the daily meeting held by Field Team Leader and documented?	<u> </u>		
Was the proposed scope of work discussed?	ॼ		
Are work plan and subcontracts available for each field team to		_	_
review if needed?	Ø	П	
	_	_	_
COMMENTS Both logbooks revuewed contained do	ily a	jechi	ues.
Daily field activity report completed.			
		_	
GEOPHYSICAL SURVEY	YES	NO	(NA)
Was equipment properly set-up?			
Was calibration of applicable equipment conducted?		□-	
Were background readings established?			
Have potential sources of geophysical interference been identified?			
Was appropriate field documentation completed?			
COMMENTS Task not performed.			

Page 2 of 6	Date	; <u>7/</u>	18/02
NEAR-SURFACE SOIL SAMPLING	YES	NO	(NA)
Were the sample collection points located in accordance with			
the work plan?			
Was the sampling conducted in accordance with the work plan?			
Were the samples collected for the correct analyses?			
Was the appropriate field documentation completed?			
Was the sample handling, preservation, and shipping performed			
in accordance with the work plan?			
COMMENTS Task not performed.			
DRILLING	YES	NO	N/A
DRILLING Have applicable drilling permits and utility elegrances been obtained	169	NO	NA
Have applicable drilling permits and utility clearances been obtained for this site?	☑		
Was the exclusion zone and contaminant reduction zone established	•		
around the drill rig?			図
Was the drilling and sampling equipment decontaminated prior to use	_	_	
in accordance with the work plan?	ø		
Was the kill switch on the drill rig tested prior to drilling?	_	_	_ ☑
Was the SSO present during drilling operations?	<u> </u>		
Was the appropriate monitoring equipment used?	<u> </u>		
Was the calibration of applicable equipment conducted?	I		
Were the instrument readings recorded?	Ø		
Were the geologic logs and proper documentation completed by			
the geologist?	Ø		
Were the soil samples field screened?			v
Were the soil samples collected in accordance with the work plan?			区
Was the collection of samples documented?			区
Were the soil samples handled, cooled, and shipped in accordance			
with the work plan?			
Were drill cuttings field screened for contamination?			I
If the cuttings required drumming, were the drums labeled and			
properly staged?			 ☑

properly staged?

COMMENTS Rotary drilling not conducted, so much of o	upove	- 15 N	st appl	icable.
DPT rig (Mule) used to drive casing - no IDW generat				
to surface. Muse was noved location to location freque		٠		
·		,		
MONITORING WELL INSTALLATION	YES	МО	NA	
Was the total depth of the boring measured and recorded?	Ø			
Has water been added to the borehole during drilling or well installation	? 🗆	ⅎ		
Was the PVC clean?	E			
Was the correct size and specification slot:ed screen and PVC riser				
placed into the well?				
Was the depth of the sandpack and bentonite seal measured				
during construction?			I	
Were the bentonite pellets allowed to hydrate?				
Was protective casing (above-ground or flush-mount type) installed?			9	
Was a permanent survey marker installed in the cement pad?			4	
Was a metal identification tag installed?			I	
Was the well locked upon completion?				
Was a water level monitoring reference point or notch established?			⊌′	
Was a monitoring well construction diagram completed?				
Was the well construction completed in accordance with the work plan?	(3			
COMMENTS Temporary groundwater sampling points in	ns+aJ	ued.	No	
permanent wells constructed.				<u> </u>
	_			_
WELL DEVELOPMENT	VEO	NO		
WELL DEVELOPMENT	YES	NO	WA	
Has an exclusion zone been properly set up around the well?				
Was the water level and total depth of the well measured?				
Were water quality parameters measured during development?				
n addition to standard volume removal, has additional volume been	_	_	_	
removed to compensate for water added during drilling (if any)?				
Was well development water screened and containerized (if necessary)?	2 🗆			
Was a record of the development parameters and volume of water				
removed kept?				
Was development completed in accordance with the work plan?				
Was a photograph taken of the final development water?				
Was calibration of applicable test equipment conducted?				

Page 4 of 6	Date <u>7/18/02</u>		
COMMENTS Task not performed	 .		
GROUNDWATER SAMPLING AT PERMANENT MONITORING WELLS	YES	NO	NA
Was the well sampled a minimum of 14 days after grouting/			
cementing (newly installed wells)?			
Was purge water screened and containerized (if necessary)?			
Were samples immediately placed inside a sample cooler with ice?			
Were the samples collected for the correct analyses?			
Were samples for dissolved metals (if any) field filtered?			
Was proper documentation completed for the samples collected?			
Were samples handled, preserved, and shipped in accordance			
with the work plan?			
COMMENTS Task not performed.			
SURFACE WATER/SEDIMENT SAMPLING	YES	NO	(NA)
Were sample collection points located in accordance with the work pla	n? 🗆		
Were downstream samples collected before upstream?			
At each location, was the surface water sample collected prior to the			
sediment sample?			
Was proper documentation completed for the samples collected?			
Were field parameters measured and recorded for each surface			
water sample?			
Was the sampling conducted in accordance with the work plan?			
Were samples handled, preserved, and shipped in accordance with			
the work plan?			. 🗖
COMMENTS Sediments for AOC-9 AFFF layoun c	ollecte	d ou	<u> </u>
previous day.			

Page 5 of 6	Date _ 7/18/02.			
GROUNDWATER SCREENING SAMPLIES AT TEMPORARY WELLS	YES	NO	NA	
Has an exclusion zone been set up around the temporary well?	Z			
Was purge water screened and containenzed (if necessary)?			⊡ ∕	
Were water quality parameters measured and recorded during				
purging/sampling?			⊡	
Were turbidity of both the filtered and unfiltered metals samples				
measured and recorded?				
Were all samples handled, preserved and shipped in accordance				
with the work plan?	\square			,
Was proper documentation completed for the samples collected?				
Was the sampling conducted in accordance with the work plan?	S		. \square	
COMMENTS Grab samples collected with dedicated dis	باطعه ۲۵ د	e Hop	E baile	rs.
Exclusion fore consisted of "Caution" tage around				
points. Sandic into recorded in king and investigation			•	
,				
INVESTIGATION-DERIVED WASTE	YES	NO	(NA)	
Were investigation-derived soils and groundwater field screened?				
Was any potentially contaminated soil or groundwater (as determined	_	_	_	
by field screening) drummed?			_	
Were all drums labeled and properly staged?				
Was handling of investigation-derived waste performed in accordance	_			
with the work plan?				
COMMENTS No sampling wast generated except				_
such as gloves, used bailers, etc. This materia	<u>e wa</u>	s ba	<u> </u>	_
for off-site disposal by EdE.				_
SOIL GAS SURVEY	YES	NO	(NA)	
Was soil gas grid set up according to the work plan?				
Were the passive soil gas receptors labeled and installed according				
to the manufacturer's specifications?				
Were the passive soil gas receptors correctly removed, handled and				
shipped for analysis according to the manufacturer's instructions?				
COMMENTS Task not performed.		_		_

Page 6 of 6	Date	7/	18/02
TEST PITS	YES	NO	NA
Has an exclusion zone been properly set up at the test pit area?			
Have proper H&S concerns been addressed at the test pits?			
Was a fire extinguisher present on site?			
Were the subsurface conditions in the test pits properly described?			
Were the test pits properly photographed?			
Were the test pits properly backfilled and regraded?			
COMMENTS Task to be conducted 7/19/02.			
		_	
Location Co-EFis AFR ACC-G	- 7(· ·	
	re	isfo:	2
Location Griffiss AFB, AOC-9 Dat QC Inspector Name Rick World	re7/	isfo:	2
	re7/	isfo-	2
QC Inspector Name Rick World QC Inspector Signature 12.1.1. World			
QC Inspector Name Rick Worth QC Inspector Signature 12L J. H. Worth General Description of Today's Scope of Work Field team	(2 E&	س (ع	orking
QC Inspector Name Rick Watt QC Inspector Signature 12.6 M. Watt General Description of Today's Scope of Work Field tean with Subcontractor (Zebra) to install tempor	(2 E&	E) w	orking dusatee
QC Inspector Name Rick Watt QC Inspector Signature 12. L. J. H. Watt General Description of Today's Scope of Work Field tean with Subcontractor (Zebra) to instau tempor Sampling points in clusters of Five using Geoph	(2 E&	el w	orking dwater E&E
QC Inspector Name Rick Worth QC Inspector Signature 12. L. J. H. Worth General Description of Today's Scope of Work Field tean with Subcontractor (Zebra) to install tempor Sampling points in clusters of five using Geoph then collected apab samples from each points	(2 Est	El w	orking dusatee E&E site
QC Inspector Name Rick Worth QC Inspector Signature 12LL M. Worth General Description of Today's Scope of Work Field team with subcontractor (Zebra) to install tempor Sampling points in clusters of five using Geophem collected grab samples from each point analysis. FTL (Pheners) assisted team, To	(2 Eestary of the following th	El w	orking dusates E&E site
QC Inspector Name Rick Worth QC Inspector Signature 1222 A. H. Worth General Description of Today's Scope of Work Field team with Subcontractor (Zebra) to install tempor Sampling points in clusters of five using Geoph then collected analysamples from each point analysis. FTL (P. Heigers) assisted team, re selected drilling locations, and packaged sam	(2 Ex	el w	orking dusates E&E site ta, snipment
QC Inspector Name Rick Worth QC Inspector Signature 12LL M. Worth General Description of Today's Scope of Work Field team with subcontractor (Zebra) to install tempor Sampling points in clusters of five using Geophem collected grab samples from each point analysis. FTL (Pheners) assisted team, To	(2 Ex	el w	orking dusates E&E site ta, snipment

ecology and environment, inc.
FIELD AUDIT CHECKLIST 7/18/02
Project Name: GAFB WAD 9 Project Number: 001002.UK10
Location: Griffiss AFB, Pome, NY
E& E Personnel: R. Meyers-FTL; Bran Cervi; Stephania Reynolds Skit
Presampling Procedures
1. Are routine/special sampling requirements discussed and documented in the logbook? Comments: No special requirements. Routing samples noted at time of collection.
2. Are personnel assigned as: a. Sample custodian (name): S. Reynelds Smith b. Team leader (name): R. Meyers c. Sampler (name): B. Cervi d. H&S (name): S. Reynolds Smith
3. Does the team member responsible for the following activities known how to complete them: a. Sample documentation and inventory yes b. Decontamination procedures yes c. Photodocumentation yes d. Chain-of-custody yes e. Sample packaging and shipping yes f. Site generated wastes yes Comments:
4. Are past problems reviewed, discussed, and solutions identified and documented in the logbook? Comments: Noted during daily seeting and seconded on Separate Form
5. Are site safety concerns covered during the meeting?
Comments: Yes. Noted ou separate firm.
Sampling Procedures and Documentation
 Is a copy of the workplan/sampling plan available so the team members understand the procedures required for sampling and sample collection? Yes. Comments:
2. Do team members know what to do if procedures cannot be used as identified in the sampling plan? Yes. Comments: Contact Feld team Hader to discuss

ecology and environment, inc. 7/18/02 FIELD AUDIT CHECKLIST Have changes in the sampling procedures been noted in the logbook? 3. Comments: No deviation from procedures required. Where Milliple attempt to Geomobe at a given location occurred, this was noted. Does the team have the necessary equipment for collecting appropriate samples? 4. Comments: Yes. 5. Does the team record appropriate information at the time that the sample is collected? (i.e., sample interval, sample type, composite or grab sample, etc.) Comments: Yes. Noted in logbook and/or directly on chain-of-custody Are sample jars kept clean during transfer of sample material? 6. Comments: Yes. Kept in box/cooler before use; gloves wan donny Sampling . 7. Are samples preserved as indicated in the sampling plan? Ves. Comments: 8. Are there any visible signs of contamination evident on the sampling equipment? No. Comments: Chain-of-Custody Are samples kept in a controlled area (i.e., in a locked location or with a team member) at all 1. Comments: Yes. Bother Lunuxed) stored in locked office. Is all of the sample information (sample type, date, time, etc.) noted on the chain-of-custody? 2. Comments: Yes. Form kept up to date as sampling progressed. 3. Have all samplers signed the chain-of-custody form? Comments: Is the Federal Express air bill number listed on the chain-of-custody form? Yes . Comments: Has a separate team member been assigned to cross check the sample inventory and the chain-of-5.

Yes. Performed by Field team leader.

Comments:

custody prior to shipment?

ecology and environment, inc. 7/18/02 FIELD AUDIT CHECKLIST Is the cross check procedure noted in the logbook? No. But mocess was observed 6. Comments: Are the sample numbers and Federal Express bill numbers listed in the sample log or the site 7. No because C-O-E Maintain on Fire at site with Ighook logbook? Comments: Were the labels, logbooks, and chain-of-custody form cross checked? Yes. 8. Comments: **Quality Control Samples** What QC samples are required (as per sampling plan)? 1. Comments: 1 dupe per 10 samples 1 MS/MSD per 20 samples I split per 10 (ERDC lab) I trip blank per coden for vocsonly 2. What frequency must QC samples be collected? See above. Are trip blanks being used? Yes. 3. Comments: Which laboratory provided trip blanks? 4. Fremade by Analytical Services Center-discussion that day regarding contamination of premade trip blanks with acetone Are appropriate materials used to generate QC samples? 5. Comments: upon discovery of acetone-contamated trip blanks, Field team used new botter and deconsect water for samples of QC. Site Generated Wastes What level of protective clothing is required? 1. What equipment is available on site? Tild 1000 for organic vapors, gasteel 2. explosimeter, water level indicator.

FIELD AUDIT CHECKLIST

- 3. Is the equipment calibrated daily and in accordance with appropriate procedures? Instrumentation Calibrated before rental in shop. Gastech explosimeter zeroed in clean air.
- 4. Are calibration data recorded in appropriate logbooks?

 Comments: Calibration not necessary. Fero archeck not noted.
- 5. Is data collected according to specific procedures and recorded in the site logbook?

 Comments: Readings recorded on chain-of-custody-form for geoprohe waters. Oz readings indoors during AOI473 swipe sampling recorded (TVA readings too).

Sample Packaging and Shipping

- 1. Describe sample packaging procedures.

 Jars taped, packaged with bubble way and iced (ice in Ziplochage)
- 2. Is packaging done at the end of the day, or as samples are collected?

 Sample: labeled, sealed, & iced at time of concerton. Bubble map
 ad additioned in added just prior to shipment.
- 3. Was an inventory conducted for chain-of-custody, logbook, and sample containers? VCS.
- 4. Are samples packed on ice? Yes. Comments:
- 5. Is the proper information being entered on the Federal Express form for billing purposes (i.e., project number and cost code)? Yes.

Personnel Management

- 1. Is the team leader noting the time that each team member arrives and departs the site in the logbook?

 Comments:
- 2. Do the weekly time reports reflect the on-site time only? Yes.

 Comments: Time cards reflect all billable time (including a portion of travel).

FIELD AUDIT CHECKLIST

Other Comments:

Experienced field team well versed in sampling movedures and related protocols. No gross discrepancies noted. Field teaminabled to add sample cross-thech moves to field logbook.

FIELD AUDITOR: RICK WOHL	ELSH Water
FIELD TEAM LEADER: BOD MEYERS	Palet a Mino
DATE OF AUDIT: 7/18/02	

	•		