
Johnny Cake Road Farm Site town of danube, herkimer county, new york

Site Management Plan

NYSDEC Site Number: 6-22-016

Prepared by:

New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau C, Remedial Section B 625 Broadway Albany, New York 12233-7014 (518) 402-9662

TABLE OF CONTENTS

TABLE OF CONTENTS	II
LIST OF TABLES	V
LIST OF FIGURES	V
LIST OF APPENDICES	VI
CERTIFICATION	1
1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM	2
1.1 INTRODUCTION	2
1.1.1 General	2
1.1.2 Purpose	
1.1.3 Responsibilities 1.1.4 Revisions	
1.2 SITE BACKGROUND	4
1.2.1 Site Location and Description	4
1.2.2 Site History	
1.2.3 Geologic Conditions	
1.3 SUMMARY OF SITE INVESTIGATION FINDINGS	6
1.3.1 Soil	7
1.3.2 Site-Related Groundwater	
1.3.3 Site-Related Soil Vapor Intrusion	10
1.4 SUMMARY OF REMEDIAL ACTIONS	10
1.4.1 Removal of Contaminated Materials from the Site	12
1.4.2 Remaining Contamination	13

2.0 INSTITUTIONAL CONTROL PLAN	14
	4.4
2.1 INTRODUCTION	14
2.1.1 General	
2.1.2 Purpose	14
2.2 INSTITUTIONAL CONTROLS	14
2.2.1 Excavation Restrictions	16
2.2.2 Soil Vapor Intrusion Evaluation	17
2.3 INSPECTIONS AND NOTIFICATIONS	18
2.3.1 Inspections	18
2.3.2 Notifications	
2.4 CONTINGENCY PLAN	19
2.4.1 Emergency Telephone Numbers	19
2.4.2 Map and Directions to Nearest Health Facility	20
2.4.3 Response Procedures	20
3.0 SITE MONITORING PLAN	21
3.1 INTRODUCTION	21
3.1.1 General	21
3.1.2 Purpose and Schedule	
3.2 MEDIA MONITORING PROGRAM	22
3.2.1 Groundwater Monitoring	22
3.2.1.1 Sampling Protocol	24
3.2.1.2 Monitoring Well Repairs, Replacement and Decommissioning	24

3.3 SITE-WIDE INSPECTION	25
3.4 MONITORING QUALITY ASSURANCE/QUALITY CONTROL	26
3.5 MONITORING REPORTING REQUIREMENTS	27
4.0 OPERATION AND MAINTENANCE PLAN	29
4.1 INTRODUCTION	29
5. SITE MANAGEMENT REPORTING PLAN	30
5.1 INTRODUCTION	30
5.2 CERTIFICATION OF INSTITUTIONAL CONTROLS	30
5.3 SITE INSPECTIONS	31
5.3.1 Inspection Frequency	31
5.3.2 Inspection Forms, Sampling Data, and Maintenance Reports	31
5.3.3 Evaluation of Records and Reporting	32
5.4 PERIODIC REVIEW REPORT	32
5.5 CORRECTIVE MEASURES PLAN	33

LIST OF TABLES

- Table 1 Active Monitoring Well Summary
- Table 2 Summary of Laboratory Analytical Data for Groundwater (October 2008)
- Table 3 Monitored Natural Attenuation Data Summary (October 2008)
- Table 4 Site Contacts
- Table 5 Monitoring/Inspection Schedule
- Table 6 Monitoring/Inspection Reports Schedule

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Parcel Map
- Figure 3 October 2008 Groundwater Investigation & Site Boundary
- Figure 4 Environmental Easement Survey
- Figure 5 Groundwater Monitoring Well Network

LIST OF APPENDICES

Appendix A – Excerpts from NYSDEC Site File

Appendix A1 – Historic Well Information from Environmental Subsurface Investigation Report – June 1990

Appendix A2 – Historic Well Information from Extent of Contamination Study Report – November 1991

Appendix A3 – Historic Well Information from Removal Action Report – October 2006

Appendix A4 – Soil Data Tables & Figures from Removal Action Report – October 2006

Appendix A5 – Historical Groundwater Data & Attenuation Analysis – October 2008

Appendix A6 – Historic Well Information from Site Investigation Report – February 2009

Appendix A7 – Historical Groundwater Data & Attenuation Analysis – January 2011

Appendix B – Environmental Easement

Appendix C – Letter to Herkimer County Highway Department dated February 11, 2010

Appendix D - Monitoring Well Boring and Construction Logs

Appendix E – Emergency Contacts & Map and Directions to the Nearest Health Facility

Appendix F - Daily Inspection Form & Annual Inspection Example

CERTIFICATION

rofessional engineer and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Amendix A6 - Historic Well Information from Site Investigation Report -

Amoendix F - Daily Inspection Form & Amend Inspection Example

1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM

1.1 INTRODUCTION

This document is required as an element of the remedial program at the Johnny Cake Road Farm Site (hereinafter referred to as the "Site") under the New York State (NYS) Inactive Hazardous Waste Disposal Site Remedial Program administered by New York State Department of Environmental Conservation (NYSDEC). The Site was remediated by the United States Environmental Protection Agency (EPA) through a series of Interim Remedial Measures (IRMs). A No Further Action with Site Management Record of Decision (ROD) was issued for the Site, Site #: 6-22-016, on March 30, 2009.

1.1.1 General

The NYSDEC is executing the ROD for this Site under the State Superfund Program. The Johnny Cake Road Farm Site, Site #: 6-22-016 is located in the Town of Danube, Herkimer County, New York. The site is 3.24 acres in size. Figure 1 shows the site location, and Figure 2 shows the site boundaries. The boundaries of the site are more fully described in the metes and bounds site description that is part of the Environmental Easement (Appendix B).

After completion of the remedial work described in the November 2006 "Removal Action Report," prepared by the EPA, some contamination was left in the subsurface at this site, which is hereafter referred to as "remaining contamination." This Site Management Plan (SMP) was prepared to manage remaining contamination at the site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State.

This SMP was prepared by NYSDEC, in accordance with the requirements in NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated

May 2010, and the guidelines provided by NYSDEC. This SMP addresses the means for implementing the Institutional Controls (ICs) and groundwater monitoring that is required by the Environmental Easement for the site.

1.1.2 Purpose

The site contains contamination left after completion of the remedial action. An Environmental Easement granted to the NYSDEC, and recorded with the Herkimer County Clerk, will require compliance with this SMP and all ICs placed on the site. The ICs place restrictions on site use, and mandate operation, maintenance, monitoring and reporting measures for all ICs. This SMP specifies the methods necessary to ensure compliance with all ICs required by the Environmental Easement for contamination that remains at the site. This plan has been approved by the NYSDEC and execution of this plan is the responsibility of the NYSDEC. The grantor of the Environmental Easement shall satisfy their responsibility for compliance with the Site Management Plan by adhering to all Institutional Controls specified in the Site Management Plan.

Compliance with ICs is required by the grantor of the Environmental Easement and the grantor's successors and assigns, as applicable. This SMP may only be revised with the approval of the NYSDEC.

This SMP provides a detailed description of all procedures required to manage remaining contamination at the site after completion of the Remedial Action, including: (1) implementation and management of all Institutional Controls; (2) groundwater monitoring; (3) performance of periodic inspections, certification of results, and submittal of Periodic Review Reports; and (4) defining criteria for termination of groundwater monitoring.

To address these needs, this SMP includes two plans: (1) an Institutional Control Plan for implementation and management of ICs; (2) a Monitoring Plan for implementation of Site Monitoring.

This plan also includes a description of Periodic Review Reports for the periodic submittal of data, information, recommendations, and certifications to NYSDEC.

It is important to note that:

- This SMP details the site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the environmental easement;
- Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6 NYCRR Part 375 and thereby subject to applicable penalties.

1.1.3 Responsibilities

The grantor of the Environmental Easement is responsible for adhering to the Institutional Controls specified in Section 2, and certification of Institutional Controls specified in Section 5. The grantor of the Environmental Easement satisfies their responsibility under the Environmental Easement and Site Management Plan through the certification of Institutional Controls.

The NYSDEC (or the NYSDEC's designated representative) is responsible for the implementation of all remaining tasks specified in this Site Management Plan including but not limited to the monitoring of groundwater and site inspection.

1.1.4 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. In accordance with the Environmental Easement for the site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.2 SITE BACKGROUND

1.2.1 Site Location and Description

The site is located in the Town of Danube County of Herkimer, New York and is identified as a portion of Section 127 Subsection 002 Block 4 and Lot 1 on the Herkimer County Tax Map. The site is comprised of 3.24 acres of rural farmland along the northern and southern side of Johnny Cake Road and was formerly the site of a farmhouse, garage, inground pool, stable building and dairy barn (see Figure 2). The area surrounding the site consists primarily of active and fallow farmland, as well as scattered

residences. The boundaries of the site are more fully described in Appendix B – Environmental Easement.

1.2.2 Site History

The site was a diary farm that became the site of an illegal drug manufacturing operation in the mid-1980's. The illegal drug manufacturing operation lasted 14 months. In 1987 the United States Marshals Service (USMS) took possession of the site as part of a long-term drug investigation which identified the site as involved in the manufacturing and distribution of cocaine. At the time of the seizure, the site consisted of a 377 acre dairy farm, however over the course of the project, non-impacted portions of the 377 acres of farmland have been sold off by the USMS. An October 2008 Groundwater Investigation concluded that site contamination was limited to the 3.24 acre site boundary shown on Figure 2.

As part of the drug manufacturing operations, significant quantities of chlorinated solvents were used to refine the cocaine. The spent solvents were then dumped outside the farmhouse, in an underground septic tank just east of the farmhouse, and in the farmhouse driveway. Effluent from the overtopped septic tank discharged directly into an adjacent drainage swale. The on-site inground swimming pool was also used to rinse filters used in the drug production process. It is also believed that direct discharge repeatedly occurred on the dirt floor of the farmhouse.

1.2.3 Geologic Conditions

The site slopes from south to north. Just south of the site boundary, a small intermittent stream meanders from west to east. According to the U.S. Geological Survey, the area incorporating the site consists of surficial deposits of lacustrine sand underlain by kame moraine and ablation till. Till extends several dozen feet below grade. Groundwater in the overburden aquifer follows site topography and flows south to north through the site. Depth to groundwater in the overburden aquifer ranged between 3 and 10 feet below grade in October 2008. Historically, during wet periods, perched groundwater has been observed on the south side of the site. Artesian conditions have been observed in the bedrock aquifer. A groundwater flow figure is shown in Figure 3.

SMP: June 2011 FINAL

1.3 SUMMARY OF SITE INVESTIGATION FINDINGS

Several Site Investigations (SIs) were performed to characterize the nature and extent of contamination at the site between 1990 and 2008. The results of these SIs are described in detail in the following reports:

"Environmental Subsurface Investigation Report", June 1990;

"Extent of Contamination Study Report", November 1991;

"Removal Action Report", October 2006;

"Site Investigation Report", February 2009;

"Record of Decision", March 2009; and

"2010 Groundwater Monitoring Report", January 2011.

Relevant excerpts of the reports listed above are included in Appendix A.

The Site was subject to several SIs throughout the 1990's and early 2000's through a cooperative agreement between the USMS and EPA. During these SIs a total of twenty-three (23) monitoring wells were installed and dozens of soil borings were advanced. The Site has been remediated through a series of IRMs performed by EPA which removed all site sources of contamination. Source areas included on-site drums located in the former garage, the septic tank, and two areas of soil contamination, one in the area of the former farmhouse and septic tank and one in the area of the former garage. In addition, all on-site buildings were also demolished and removed as part of an IRM.

The final IRM completed by the EPA in 2005 included the removal of the septic tank and two areas of soil contamination. Confirmation soil sampling and four quarters of groundwater sampling were completed following the IRM. Documentation of this IRM and the results of soil confirmation and groundwater sampling were presented in the October 2006 Removal Action Report prepared by the EPA.

In October 2008, the NYSDEC completed an additional groundwater investigation to determine the horizontal and vertical extents of groundwater contamination remaining following the removal of source areas. The results of this groundwater sampling were presented in the February 2009 Site Investigation Report

prepared by the NYSDEC. The soil confirmation sampling results from the October 2006 Removal Action Report and the groundwater sampling results from the October 2006 Removal Action Report and the February 2009 Site Investigation Report were used to represent current site conditions in the March 2009 Record of Decision. The results of the October 2008 groundwater sampling (see Figure 3) are considered the baseline groundwater conditions for this SMP.

Annual groundwater sampling in October 2009 and October 2010 confirmed the results of previous site investigations and the Record of Decision.

Below is a summary of current site conditions by media:

1.3.1 Soil

Following completion of the 2005 IRM, six (6) surface soil samples were taken and analyzed for Volatile Organic Compounds (VOCs) in a road side ditch just south of Johnny Cake Road to evaluate if contamination from the septic tank had migrated into the sediments/surface soils in the ditch. Sample locations and sampling results are provided in Appendix A4. There was only one marginal exceedence of the 6 NYCRR Part 375-6.8 Unrestricted land use Soil Cleanup Objective (SCO) for acetone (0.065 parts per million (ppm) at RSD-02B), however this level is well below the residential land use SCO for acetone of 100 ppm.

As part of the IRM in 2005 confirmation subsurface soil samples were collected following excavation of source areas identified during previous investigations and from a drainage ditch adjacent to Johnny Cake Road. Sample locations and sampling results are provided in Appendix A4. A total of twenty-one (21) confirmatory samples were collected and analyzed for VOCs. Confirmation sampling exceeded the unrestricted land use SCO for acetone, dicholoroethene (DCE), vinyl chloride, trichloroethene (TCE), and toluene. The exceedences were located beneath the former septic tank at the bottom and down gradient edge of the source soil excavation at a depth of about 16 feet below grade. The contamination appears to be associated with small sand lenses in the subsurface geology.

Three (3) subsurface soil samples were taken in a road side ditch just south of Johnny Cake Road to evaluate if contamination from the septic tank had migrated into the sediments/surface soils in the ditch. Sample locations and sampling results are provided in Appendix A4. There was only one marginal exceedence of the unrestricted land use SCOs for acetone.

No site-related subsurface soil contamination exceeds the 6 NYCRR Part 375 SCOs for residential land use.

1.3.2 Site-Related Groundwater

As of the March 2009 Record of Decision, Twenty three (23) monitoring wells were installed on and in the vicinity of the site boundary. Figure 2 shows the locations of all wells, and Table 1 summarizes well specifications for all wells. The wells ranged in depth from 12 to 40 feet below ground surface except for one well which extended to 101 feet below ground surface. The deeper wells are installed into a till unit which is a relatively impermeable unit with a large clay content.

A series of groundwater monitoring events since 1990 have documented a contaminant plume emanating from the source areas. The plume consists of VOCs, primarily chlorinated solvents Tetrachloroethene (PCE) and TCE, and their bi-products DCE and vinyl chloride. Historically other VOCs such as acetone, trans-1,2-DCE, 2-butanone, and dichlorodifluoromethane have been detected in site wells. The groundwater plume follows the overburden aquifer north from the source areas and extends beneath Johnny Cake Road.

Following the completion of the 2005 IRM, a total of fourteen (14) monitoring wells were sampled on a quarterly basis for VOCs from summer 2005 to spring 2006 to confirm the effectiveness of the IRM. A supplemental sampling of seventeen (17) existing monitoring wells and three (3) new monitoring wells was conducted in October 2008 to confirm the findings of previous sampling and to establish the horizontal extent of the groundwater plume. Monitoring wells MW-21, MW-22, and MW-23 were installed down gradient of the suspected final extent of groundwater contamination. The results of the October 2008 groundwater investigation are shown on Figure 3 and summarized in Tables 2 and 3. Historical groundwater data including the results of the

October 2008 groundwater investigation are provided in Appendix A5. Groundwater results are compared to the applicable Standards, Criteria, and Guidance (SCGs) which is the "Use and Protection of Water", 6 NYCRR Part 608, in Table 2.

The results of the 2005-2006 quarterly groundwater monitoring event and the October 2008 groundwater monitoring event indicate that groundwater contamination for VOCs is continuing to decrease since the 2005 IRM. During these investigations five (5) VOCs, all chlorinated solvents, exceeded the groundwater SCGs: 1,2-dichloroethane, cis-1,2-DCE, PCE, TCE, and vinyl chloride.

The October 2008 sampling event, depicted on Figure 3, indicated lower levels of groundwater contamination than at any previous point. This confirms the continued effectiveness of the IRMs. In general, PCE and TCE are detected in higher concentrations to the south of Johnny Cake Road near the former source areas, while cis-1,2-DCE (a product of the natural degradation of PCE and TCE) was detected both in the source areas and down gradient to north of Johnny Cake Road. This is evidence that contaminants are attenuating naturally as they migrate with groundwater.

The October 2008 groundwater investigation also established the vertical and horizontal limits of groundwater contamination. Three new monitoring wells were installed beyond the suspected horizontal limits of groundwater contamination as shown on Figure 3. No VOCs were detected above SCGs in these wells. These results confirm the contaminated groundwater plume follows the overburden groundwater aquifer north from the source areas, and extends approximately 200 feet to the north of Johnny Cake Road. The plume extends no more than 15' into the till layer underlying overburden soils and further vertical migration of the contamination plume has not been observed.

The source of groundwater contamination identified during previous site investigations was addressed during the 2005 IRM. Although groundwater contamination is still present at the site analytical data indicates the plume is decreasing, is no longer migrating either horizontally or vertically, and is not expected to migrate beyond the site boundary.

Annual groundwater sampling in October 2009 and October 2010 confirmed the conclusions made about remaining groundwater contamination above, with further

reductions in contaminant concentrations observed. The results of the October 2009 and October 2010 groundwater sampling are given in Appendix A7.

1.3.3 Site-Related Soil Vapor Intrusion

The potential for soil vapor and indoor air contamination has been identified during the course of the SIs. No sampling was conducted during SIs and/or IRMs as there are presently no structures on the Site. The results of the investigations indicate that the adjacent residences are not impacted nor expected to be impacted by VOCs found onsite. However, the potential for contaminated soil vapor above the groundwater plume must be addressed in accordance with the ROD (see Section 2.2 of this SMP).

1.4 SUMMARY OF REMEDIAL ACTIONS

The Site was remediated by the United States Environmental Protection Agency (EPA) through a series of Interim Remedial Measures (IRMs). These IRMs are described below:

- In 1990, the EPA removed the contents from on-site drums and the septic tank, both of which contained VOCs, primarily consisting of chlorinated solvents. The contents of the septic tank and 55-gallon drums were transferred into secure on-site containers and in March 1991, transported off-site for disposal at a permitted facility.
- In the early 1990s, the EPA demolished and removed all on-site structures including the farmhouse, garage, pool, stable building, and dairy barn. The pool was filled with clean fill.
- In 2005, the EPA conducted a removal action to excavate and dispose off-site soil identified as a source contamination to groundwater. Two source areas were excavated, one in the area of the former farmhouse and septic tank and one in the area of the former garage. These areas were associated with the previous storage and dumping of drums of chlorinated solvents. The septic tank source area excavation measured twenty-three (23) feet by twenty-three (23) feet horizontally, and was to a maximum depth 17.5 feet. The former septic tanks were removed and were found to be degraded metal vessels. The garage source area excavation

measured twenty-five (25) feet by thirty-two (32) feet horizontally, and was to a maximum depth of 16.5 feet. A total of 325 cubic yards of soil considered source material because of VOC contamination was excavated, removed, and disposed of off-site in a permitted landfill. Soil sampling was conducted to verify the level of cleanup and confirmed the removal of source soils.

Two other suspected source areas were investigated as part of this IRM. A source area in the vicinity of the stable building identified previously was investigated by excavation and test pitting, however field screening indicated no contamination above background values. The other area of investigation was the Johnny Cake Road drainage ditch just south of Johnny Cake Road. Six (6) surface and three (3) subsurface samples were taken from this area and results indicated removal of soils was not necessary.

Confirmatory soil sampling results and figures from the 2005 IRM are provided in Appendix A4.

The NYSDEC March 2009 ROD specifies the remaining remedy for this site as No Further Action with Site Management including continued groundwater monitoring and institutional controls. In accordance with the ROD, the elements of the remedy to be implemented through this Site Management Plan are as follows:

Imposition of an institutional control in the form of an environmental easement that will require (a) limiting the use and development of the property to residential use, which would also allow commercial or industrial uses. Further, due to the site specific nature of the contamination (i.e. VOCs in deep subsurface soil and groundwater) agricultural use will be permitted.; (b) compliance with the approved Site Management Plan (SMP); (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by New York State Department of Health (NYSDOH); and (d) the remedial party or site owner to complete a periodic certification of institutional controls. The site boundary subject to the environmental easement is shown on Figure 4.

- Development of a SMP which will include the following: (a) evaluation of the potential for vapor intrusion for any buildings developed on the site, including provision for mitigation of any impacts identified; (b) monitoring of groundwater; (c) restricting use of the site as set forth in the environmental easement; and (d) providing the Herkimer County Highway Department with all relevant reports and data to identify the location and requirements to handle potentially contaminated groundwater in the county right-of-way/dedicated public highway during future repairs and/or replacements of the section of Johnny Cake Road which runs through the site. Groundwater monitoring wells identified in the SMP will be sampled and analyzed for VOCs on a periodic basis. The monitoring well network could be reduced as future delineation shows they are no longer needed. This program will allow groundwater to be monitored and will be a component of the long-term management for the site.
- The remedial party will provide a periodic certification of the institutional controls, prepared and submitted by a professional engineer or such other expert acceptable to the NSYDEC, until the NYSDEC determines the certification is no longer needed. This submittal will: (a) contain certification that the institutional controls put in place are still in place and are either unchanged from the previous certification or are compliant with Department-approved modifications; (b) allow the NYSDEC access to the site; and (c) state that nothing has occurred that would impair the ability of the control to protect public health or the environment, or constitute a violation or failure to comply with the SMP unless otherwise approved by the NYSDEC.

1.4.1 Removal of Contaminated Materials from the Site

The 2005 IRM removed all soils in exceedence of the 6 NYCRR Part 375 SCOs for residential land use. This removal action included excavation and off-site disposal of 325 cubic yards of soil considered source material because of VOC contamination from two areas, one in the area of the former farmhouse and septic tank and one in the area of the former garage. The 2005 IRM is documented in the October 2006, "Removal Action Report" prepared by the EPA. Figures showing areas where excavation was performed

as well as tables summarizing confirmation sampling results are provided in Appendix A4.

1.4.2 Remaining Contamination

Following the 2005 IRM, soils below the 6 NYCRR Part 375 SCOs for residential land use, but above the 6 NYCRR Part 375 SCOs for unrestricted use remained at the site. Confirmation sampling indicated subsurface soil exceeded the unrestricted land use SCO for acetone, dicholoroethene (DCE), vinyl chloride, TCE, and toluene. The exceedences were located beneath the former septic tank at the bottom and down gradient edge of the excavation at a depth of about 16 feet below grade and appear attributed to a small sand lenses. Figures showing areas where excavation was preformed as well as tables summarizing confirmation sampling results are provided in Appendix A4.

As discussed in Section 1.3.2, groundwater contamination remains at the site. The extent of groundwater contamination as of October 2008 is shown on Figure 3. The horizontal and vertical boundaries of groundwater contamination have been delineated and are within the 3.24-acre site boundary which is subject to an environmental easement. In order to account for groundwater contamination remaining at the site, the easement shall require compliance with the approved SMP and restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by New York State Department of Health (NYSDOH). Groundwater monitoring wells identified in this SMP will be sampled and analyzed for VOCs on a periodic basis.

In accordance with the March 2009 Record of Decision, the Herkimer County Highway Department was provided with all relevant reports and data to identify the location and recommendations on proper handling of potentially contaminated groundwater in the county right-of-way/dedicated public highway during future repairs and/or replacement of the section of Johnny Cake Road which runs through the site (see Section 2.2.1).

2.0 INSTITUTIONAL CONTROL PLAN

2.1 INTRODUCTION

2.1.1 General

Since remaining residual contaminated soil and groundwater exist beneath the site, Institutional Controls (ICs) are required to protect human health and the environment. This Institutional Control Plan describes the procedures for the implementation and management of all ICs at the site. The IC Plan is one component of the SMP and is subject to revision by NYSDEC.

2.1.2 Purpose

This plan provides:

- A description of all ICs on the site;
- The basic implementation and intended role of each IC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the features to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of ICs, such as maintenance or redevelopment work at the site; and
- Any other provisions necessary to identify or establish methods for implementing the ICs required by the site remedy, as determined by the NYSDEC.

2.2 INSTITUTIONAL CONTROLS

A series of Institutional Controls is required by the ROD to: (1) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (2) limit the use and development of the site to residential use which would allow commercial and industrial uses. Further, due to the site specific nature of the contamination (i.e. VOCs in deep subsurface soil and groundwater) agricultural use

would be permitted. Adherence to these Institutional Controls on the site is required by the Environmental Easement and will be implemented under this Site Management Plan. These Institutional Controls are:

- Compliance with the Environmental Easement and this SMP by the Grantor and the Grantor's successors and assigns, as applicable;
- Groundwater monitoring must be performed by the NYSDEC (or the NYSDEC's designated representative) as defined in this SMP;
- Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in this SMP;

Institutional Controls identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The site has a series of Institutional Controls in the form of site restrictions.

Adherence to these Institutional Controls is required by the Environmental Easement.

Site restrictions that apply to the Controlled Property are:

- The property may only be used for residential use which would allow commercial and industrial uses provided that the long-term Institutional Controls included in this SMP are employed. Further, due to the site specific nature of the contamination (i.e. VOCs in deep subsurface soil and groundwater) agricultural use would be permitted.
- The property may not be used for a higher level of use, such as unrestricted use, without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- The use of the groundwater underlying the property as a source of potable or process water is prohibited without necessary water quality treatment as determined by NYSDOH;

- The potential for vapor intrusion must be evaluated for any buildings developed within the site boundary, and any potential impacts that are identified must be monitored or mitigated;
- The Herkimer County Highway Department was provided with all relevant reports and data to identify the location and recommendations on proper handling of potentially contaminated groundwater in the county right-ofway/dedicated public highway during future repairs and/or replacements of the section of Johnny Cake Road which runs through the site.
- The Environmental Easement grantor will submit to NYSDEC a written statement that certifies: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

2.2.1 Excavation Restrictions

The site has been remediated for residential use, which also allows for agricultural use due to the site specific nature of contamination (i.e. VOCs in deep subsurface soil and groundwater). The grantor of the Environmental Easement is responsible for adherence to this use restriction.

In accordance with the March 2009 Record of Decision, the Herkimer County Highway Department was provided with all relevant reports and data to identify the location and recommendations on proper handling of potentially contaminated groundwater in the county right-of-way/dedicated public highway during future repairs and/or replacements of the section of Johnny Cake Road which runs through the site.

In a letter dated February 11, 2010 the NYSDEC provided the Herkimer County Highway Department with the requirements for handling potentially contaminated groundwater which may be encountered during future repair and/or replacement of the section of Johnny Cake Road which runs though the site. Also included with this letter were excerpts from the February 2009 Site Investigation Report which provides the location of contaminated groundwater at the site. Any future intrusive work that may potentially disturb the remaining groundwater contamination in the county right-of-way/dedicated public highway during future repairs and/or replacement of the section of Johnny Cake Road which runs through the site will be performed in compliance with this letter, which is attached as Appendix C to this SMP.

In the event that the periodic groundwater monitoring described in Section 3 indicates a significant increase in the magnitude or extent of groundwater contamination at the site, the NYSDEC will notify the Herkimer County Highway Department of any additional recommendations for handling potentially contaminated groundwater.

2.2.2 Soil Vapor Intrusion Evaluation

Prior to the construction of any enclosed structures located over areas within the site boundary, an SVI evaluation will be performed to determine whether any mitigation measures are necessary to eliminate potential exposure to vapors in the proposed structure. Alternatively, an SVI mitigation system may be installed as an element of the building foundation without first conducting an investigation. This mitigation system will include a vapor barrier and passive sub-slab depressurization system that is capable of being converted to an active system.

Prior to conducting an SVI investigation or installing a mitigation system, a work plan will be developed and submitted to the NYSDEC and NYSDOH for approval. This work plan will be developed in accordance with the most recent NYSDOH "Guidance for Evaluating Vapor Intrusion in the State of New York". Measures to be employed to mitigate potential vapor intrusion will be evaluated, selected, designed, installed, and maintained based on the SVI evaluation, the NYSDOH guidance, and construction details of the proposed structure.

Preliminary (unvalidated) SVI sampling data will be forwarded to the NYSDEC and NYSDOH for initial review and interpretation. Upon validation, the final data will be transmitted to the agencies, along with a recommendation for follow-up action, such as mitigation. Validated SVI data will be transmitted to the property owner within 30 days of validation.

SVI sampling results, evaluations, and follow-up actions will also be summarized in the next Periodic Review Report.

All provisions of the Environmental Easement and Site Management Plan relating to the evaluation of Soil Vapor Intrusion shall be the responsibility of the grantor of the Environmental Easement.

2.3 INSPECTIONS AND NOTIFICATIONS

2.3.1 Inspections

Inspections of all remedial components installed at the site will be conducted at the frequency specified in the SMP Monitoring Plan schedule. The inspections will be conducted by the NYSDEC (or NYSDEC's designated representative). The inspections will determine and document the following:

- Compliance with requirements of this SMP and the Environmental Easement;
- Sampling and analysis of appropriate media during monitoring events;
- If site records are complete and up to date; and
- Changes, or needed changes, to the monitoring system;

Inspections will be conducted in accordance with the procedures set forth in the Monitoring Plan of this SMP (Section 3). The reporting requirements are outlined in the Periodic Review Reporting section of this plan (Section 5).

If an emergency occurs, such as a natural disaster, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the ICs implemented at the site by the NYSDEC (or NYSDEC's designated representative).

2.3.2 Notifications

Notifications will be submitted by the property owner to the NYSDEC as needed for the following reasons:

• 60-day advance notice of any proposed changes in site use that are required under the terms of 6 NYCRR Part 375 and/or Environmental Conservation Law (ECL).

Any change in the ownership of the site will include the following notifications:

- The NYSDEC will be notified in writing of the proposed change. This will
 include a certification that the prospective purchaser has been provided with a
 copy of all approved work plans and reports, including this SMP.
- Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing.

2.4 CONTINGENCY PLAN

Emergencies may include injury to personnel, fire or explosion, environmental release, or serious weather conditions.

2.4.1 Emergency Telephone Numbers

In the event of any environmentally related situation or unplanned occurrence requiring assistance the Owner or the remedial party should contact the appropriate party from the contact list below (Table 4). For emergencies, appropriate emergency response personnel should be contacted (see Appendix E). Prompt contact should also be made to NYSDEC Project Manager.

Table 4: Site Contacts*

William Bennett, Project Manager NYSDEC	
Division of Environmental Remediation Remedial Bureau C, Remedial Section B 625 Broadway Albany, NY 12233-7014	Phone: 1-866-520-2334
Pete Taylor, Regional Hazardous Waste Engineer NYSDEC Division of Environmental Remediation 317 Washington Street Watertown, NY 13601	Phone: 315-785-2513
Greg Rys, NYSDOH Project Manager NYSDOH Field Office 5665 State Route 5 Herkimer, NY 13350	Phone: 315-866-6879

^{*} Note: Contact numbers subject to change and should be updated as necessary

2.4.2 Map and Directions to Nearest Health Facility

Emergency contact information as well as a map and directions to the nearest health facility are provided in Appendix E.

2.4.3 Response Procedures

As appropriate, the fire department and other emergency response groups will be notified immediately by telephone of the emergency. The emergency telephone number list is found in Appendix E.

3.0 SITE MONITORING PLAN

3.1 INTRODUCTION

3.1.1 General

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy for all affected site media identified below. This Monitoring Plan may only be revised with the approval of NYSDEC.

3.1.2 Purpose and Schedule

This Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater);
- Assessing compliance with applicable NYSDEC SCGs, particularly ambient groundwater standards;
- Assessing achievement of the remedial performance criteria;
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems (e.g., well logs);
- Analytical sampling program requirements;
- Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and
- Periodic inspection and periodic certification.

Periodic monitoring of on-site groundwater and site inspection will be conducted by the NYSDEC (or NYSDEC's designated representative). Contaminant levels in on-site groundwater will be evaluated to determine if the groundwater contamination plume continues to be stable. The site inspection conducted with the groundwater sampling will confirm that all ICs are being adhered to. Monitoring programs are summarized in Table 1 and Table 5 and outlined in detail in Sections 3.2 below.

Monitoring Frequency* **Program** Matrix **Analysis** Periodically, within 30 days **CLP Trace VOC** Groundwater Water before of after April 1st. method (SOM 01.2) Site Periodically, within 30 days N/A N/A before of after April 1st. Inspection

Table 5: Monitoring/Inspection Schedule

3.2 MEDIA MONITORING PROGRAM

3.2.1 Groundwater Monitoring

Groundwater monitoring will be performed on a periodic basis by the NYSDEC (or NYSDEC's designated representative) to assess the performance of the remedy.

The network of monitoring wells has been installed to monitor both up-gradient and down-gradient groundwater conditions at the site. The network of on-site wells has been designed based on the following criteria:

The initial monitoring well network shall consist of eleven (11) wells. All eleven (11) wells shall be initially sampled on a periodic basis. Seven (7) wells (MW-2R, MW-6R, MW-12A, MW-19, MW-21, MW-22, and MW-23) shall serve as horizontal perimeter monitoring wells for the groundwater contaminant plume. Two (2) wells (MW-16 and MW-18) shall serve as vertical perimeter monitoring wells for the groundwater contaminant plume. Two (2) wells (MW-1 and MW-13) shall serve as midplume monitoring wells to assess the attenuation of the groundwater contaminant plume.

^{*} The frequency of events will be conducted as specified by NYSDEC and NYSDOH. Initially, groundwater sampling and site inspections will be annual starting in 2012, however this schedule may be revised based on the findings and results.

Two (2) monitoring wells (MW-4R and MW-17) shall remain at the site as contingency wells, but shall not be sampled. These wells may be incorporated into the monitoring well network if deemed necessary at a later date. Ten (10) monitoring wells (MW-2RR, MW-3, MW-7, MW-8, MW-9, MW-10, MW-11, MW-14, MW-15 and MW-20) were decommissioned in October 2009.

The monitoring well network subject to this Site Management Plan is shown on Figure 5. Baseline post-remedial groundwater quality conditions from October 2008 are shown on Figure 3. Table 1 summarizes key well elevations and parameters as well as the availability of documentation for the thirteen (13) monitoring wells that exist at the site.

All available historical well documentation for the thirteen (13) monitoring wells that exist at the site as of Record of Decision issuance in March 2009 is included in Appendices A1, A2, A3, and A6. For some current monitoring wells boring and/or construction logs are not available. Available monitoring well construction logs for wells which are a part of the initial groundwater monitoring program are included in Appendix D.

Each of the eleven monitoring wells identified as a part of the monitoring well network above shall be sampled periodically using standard EPA low flow sampling techniques and analyzed for VOCs by the USEPA CLP Trace method (SOM 01.2). Sampling shall take place within 30 days before or after April 1st.

Following each sampling event the results of the groundwater sampling event will be reported in the Periodic Review Report as described in Section 3.5. Results shall be compared to the groundwater SCGs. Deliverables for the groundwater monitoring program are specified in Section 3.5.

Based on these results the sampling frequency may be modified with the approval NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by NYSDEC. Groundwater monitoring will continue until groundwater SCGs are met for all wells, or the NYSDEC determines groundwater monitoring is no longer necessary.

The completion of groundwater monitoring as defined by this section of the SMP shall be solely the responsibility of the NYSDEC.

All provisions of the Environmental Easement and Site Management Plan relating to groundwater monitoring shall be the responsibility of the NYSDEC (or NYSDEC's designated representative). The only responsibility of the Environmental Easement grantor in respect to the groundwater monitoring described in this section is to provide access to the site to the NYSDEC (or NYSDEC's designated representative) for maintaining the monitoring well network and the collection of samples.

3.2.1.1 Sampling Protocol

All monitoring well sampling activities will be recorded in a field book and a groundwater-sampling log. Other observations (e.g., well integrity, etc.) will be noted on the well sampling log. The well sampling log will serve as the inspection form for the groundwater monitoring well network.

All monitoring wells subject to the groundwater sampling program shall initially be gauged for water level. Water levels shall be used to generate a groundwater contour map to be submitted with each Periodic Review Report. All wells shall be sampled in accordance with EPA low-flow groundwater sampling procedures and analyzed for VOCs by the USEPA CLP Trace method (SOM 01.2). The entity which is responsible for the implementation of the groundwater monitoring program must prepare and submit to the NYSDEC for approval a Field Sampling Plan, Quality Assurance Project Plan, Health and Safety and Community Air Monitoring Plan, and a Groundwater Monitoring Well Sampling Form which adhere to the NYSDEC's DER-10 prior to the initiation of field work.

3.2.1.2 Monitoring Well Repairs, Replacement and Decommissioning

If biofouling or silt accumulation occurs in the on-site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan), if an event renders the wells unusable.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

Ten (10) monitoring wells (MW-2RR, MW-3, MW-7, MW-8, MW-9, MW-10, MW-11, MW-14, MW-15 and MW-20) were decommissioned in October 2009. Additional monitoring wells may be decommissioned in the future with NYSDEC approval if the wells no longer serve a function in the monitoring well network. The NYSDEC will be notified prior to any repair or decommissioning of monitoring wells for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent periodic report. Well decommissioning without replacement will be done only with the prior approval of NYSDEC. Well abandonment will be performed in accordance with NYSDEC's CP-43: Groundwater Monitoring Well Decommissioning Policy. Monitoring wells that are decommissioned because they have been rendered unusable will be reinstalled in the nearest available location, unless otherwise approved by the NYSDEC.

3.3 SITE-WIDE INSPECTION

Periodic site inspections shall take place within 30 days before or after April 1st and should be performed concurrently with groundwater sampling by the NYSDEC (or the NYSDEC's designated representative). The site wide inspection shall be documented in the Periodic Review Report as discussed in Section 3.5 and all necessary information shall be collected to complete the Periodic Certification for the site as discussed in Section 5. Site-wide inspections will also be performed after all severe weather conditions that may affect monitoring devices by the NYSDEC (or the NYSDEC's designated representative). During these inspections, an inspection form will be completed (Appendix F). The form will compile sufficient information to assess the following:

- Compliance with the Environmental Easement and all ICs, including site usage;
- General site conditions at the time of the inspection;
- The site management activities being conducted including health and safety inspection;

• Confirm that site records are up to date.

The findings of the site wide inspection conducted by the NYSDEC (or the NYSDEC's designated representative) will be included in the Periodic Review Report and provided to the site owner for certification as described in Section 5. An example Site Inspection Report for 2009 is provided in Appendix F.

3.4 MONITORING QUALITY ASSURANCE/QUALITY CONTROL

All sampling and analyses will be performed in accordance with the requirements of the Quality Assurance Project Plan (QAPP) prepared for the site by the entity executing this Site Management Plan. Main Components of the QAPP include:

- QA/QC Objectives for Data Measurement;
- Sampling Program:
 - Sample containers will be properly washed, decontaminated, and appropriate preservative will be added (if applicable) prior to their use by the analytical laboratory. Containers with preservative will be tagged as such.
 - Sample holding times will be in accordance with the NYSDEC ASP requirements.
 - o Field QC samples (e.g., trip blanks, coded field duplicates, and matrix spike/matrix spike duplicates) will be collected as necessary.
- Sample Tracking and Custody;
- Calibration Procedures:
 - All field analytical equipment will be calibrated immediately prior to each day's use. Calibration procedures will conform to manufacturer's standard instructions.
 - The laboratory will follow all calibration procedures and schedules as specified in USEPA SW-846 and subsequent updates that apply to the instruments used for the analytical methods.

- Analytical Procedures;
- Internal QC and Checks;
- Preventative Maintenance Procedures and Schedules:
- Corrective Action Measures.

3.5 MONITORING REPORTING REQUIREMENTS

Forms and any other information generated during regular monitoring events and inspections will be kept on file. All forms, and other relevant reporting formats used during the monitoring/inspection events, will be (1) subject to approval by NYSDEC and (2) submitted at the time of the Periodic Review Report, as specified in the Reporting Plan of this SMP.

All monitoring results will be reported to NYSDEC on a periodic basis in the Periodic Review Report. The report will include, at a minimum:

- Date of event;
- Personnel conducting sampling;
- Description of the activities performed;
- Type of samples collected (e.g., groundwater);
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation, etc.);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type, sampling locations, groundwater contours, and contaminant concentrations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDECidentified format);
- Any observations, conclusions, or recommendations; and

• A determination as to whether groundwater conditions have changed since the last reporting event.

Data will be reported in hard copy or digital format as determined by NYSDEC. A summary of the monitoring program deliverables are summarized in Table 6 below.

Table 6: Monitoring/Inspection Report Schedule

Task	Reporting Frequency*
Periodic Review Report – Groundwater Sampling Plan and Institutional Control Certification	Groundwater Sampling and Site Inspection to be conducted periodically, 30 days before or after April 1 st of each year. Periodic Review Report must be submitted to or completed by the NYSDEC no later than November 15 st of the same year.

^{*} The frequency of events will be conducted as specified until otherwise approved by NYSDEC

4.0 OPERATION AND MAINTENANCE PLAN

4.1 INTRODUCTION

The site remedy does not rely on any mechanical systems, such as sub-slab depressurization systems or air sparge/ soil vapor extraction systems to protect public health and the environment. Therefore, the operation and maintenance of such components is not included in this SMP.

5. SITE MANAGEMENT REPORTING PLAN

5.1 INTRODUCTION

A Periodic Review Report will be submitted by the NYSDEC's designated representative or prepared by the NYSDEC every year, beginning with the initial round of groundwater sampling and corresponding site inspection. The initial round of groundwater sampling under this SMP will be conducted 30 days before or after April 1st, 2012. The Periodic Review Report shall be submitted to or completed by NYSDEC no later than November 15, 2012. The Periodic Review Report will be prepared in accordance with NYSDEC DER-10 "Technical Guidance for site Investigation and Remediation" requirements. The frequency of submittal of the Periodic Review Report may be modified with the approval of the NYSDEC.

This report will include the following:

- Identification of all ICs required by the Record of Decision for the site;
- An assessment of the effectiveness of all Institutional Controls for the site;
- An evaluation of the Institutional Control Plan and the Monitoring Plan for adequacy in meeting remedial goals;
- Results of the required site inspections and severe condition inspections, if any;
 and
- A compilation of all deliverables generated during the reporting period, as specified in Section 2 IC Plan and Section 3 Monitoring Plan.

In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in Appendix B (Environmental Easement).

5.2 CERTIFICATION OF INSTITUTIONAL CONTROLS

Information on ICs can be found in the Institutional Control Plan portion of the SMP. Inspection of the ICs will occur at a frequency described in Section 3 Monitoring Plan. After the last inspection of the reporting period, the NYSDEC will provide the site

owner with the Periodic Review Report. The site owner acting as the grantor of the Environmental Easement will sign and certify the Property Owner Certification. The document will certify that:

- On-site ICs are unchanged from the previous certification;
- Site use is compliant with the environmental easement;
- the inspection of the site to confirm the effectiveness of the ICs was performed by the NYSDEC and is accurate:
- to the best of their knowledge and belief, the work and conclusions described in the certification are in accordance with the requirements of the site remedial program; and
- the information presented is accurate and complete.

The signed certification will be amended to the Periodic Review Report (see Section 5.4) during the NYSDEC's Periodic Review of the site.

5.3 SITE INSPECTIONS

5.3.1 Inspection Frequency

All inspections will be conducted at the frequency specified in the schedules provided in Section 3 Monitoring Plan of this SMP. Periodic site inspections shall take place within 30 days before or after April 1st and should be performed concurrently with groundwater sampling. Inspections of remedial components will also be conducted whenever a severe condition has taken place, such as erosion or flooding.

5.3.2 Inspection Forms, Sampling Data, and Maintenance Reports

All inspections and monitoring events will be recorded on the appropriate forms. A general site-wide inspection form will be completed during the site-wide inspection (see Appendix F). These forms are subject to NYSDEC revision.

All applicable inspection forms and other records, including all media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format in the Periodic Review Report.

5.3.3 Evaluation of Records and Reporting

The results of the inspection and site monitoring data will be evaluated as part of the IC certification by the NYSDEC to confirm that the:

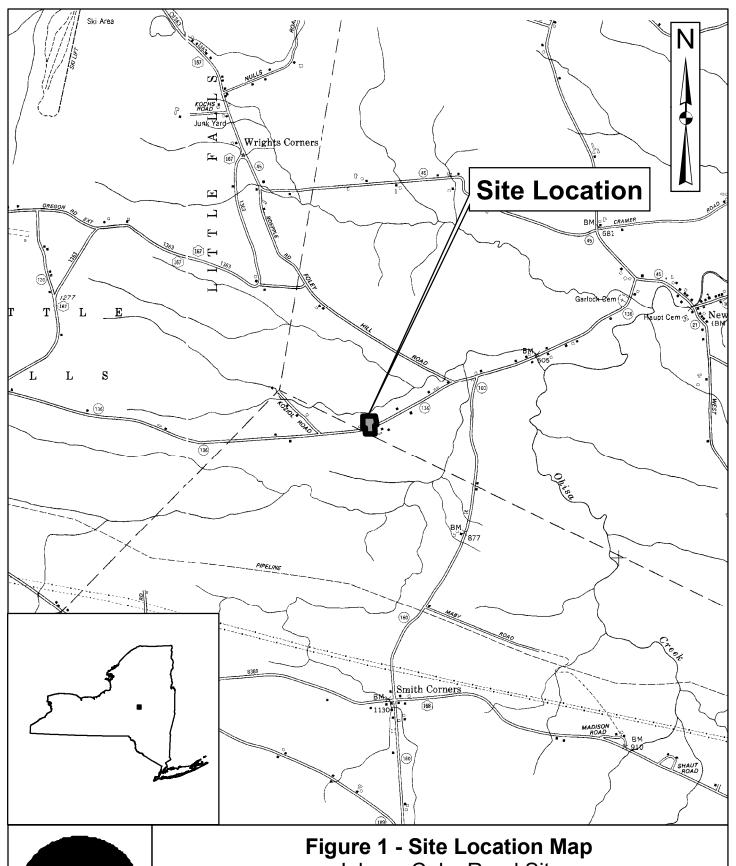
- ICs are in place, are performing properly, and remain effective;
- The Monitoring Plan is being implemented; and,
- The site remedy continues to be protective of public health and the environment in accordance with the ROD (the groundwater contaminant plume is stable and not migrating).

5.4 PERIODIC REVIEW REPORT

A Periodic Review Report will be submitted periodically, beginning with the initial round of groundwater sampling and corresponding site inspection. The initial round of groundwater sampling under this SMP will be conducted 30 days before or after April 1st, 2012. The first Periodic Review Report shall be submitted to or completed by NYSDEC no later than November 15, 2012. The report will include:

- All applicable inspection forms and other records generated for the site during the reporting period;
- Data summary tables and graphical representations of contaminants of concern by media (groundwater), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data sufficient for the Department to evaluate contaminant concentration trends;
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format;
- A site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the site-specific ROD (ICs in place, the groundwater contaminant plume is stable and not migrating);

- Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
- Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
- o The overall performance and effectiveness of the remedy.


The Periodic Review Report will be submitted, in hard-copy format, to the NYSDEC Central Office and Regional Office in which the site is located, and in electronic format to NYSDEC Central Office, Regional Office and the NYSDOH Bureau of Environmental Exposure Investigation. Current site contacts are listed in Table 4.

Following completion of the Periodic Review Report the NYSDEC will provide the site owner with the Periodic Review Report. The site owner will sign and certify the Property Owner Certification. The signed certification will be amended to the Periodic Review Report.

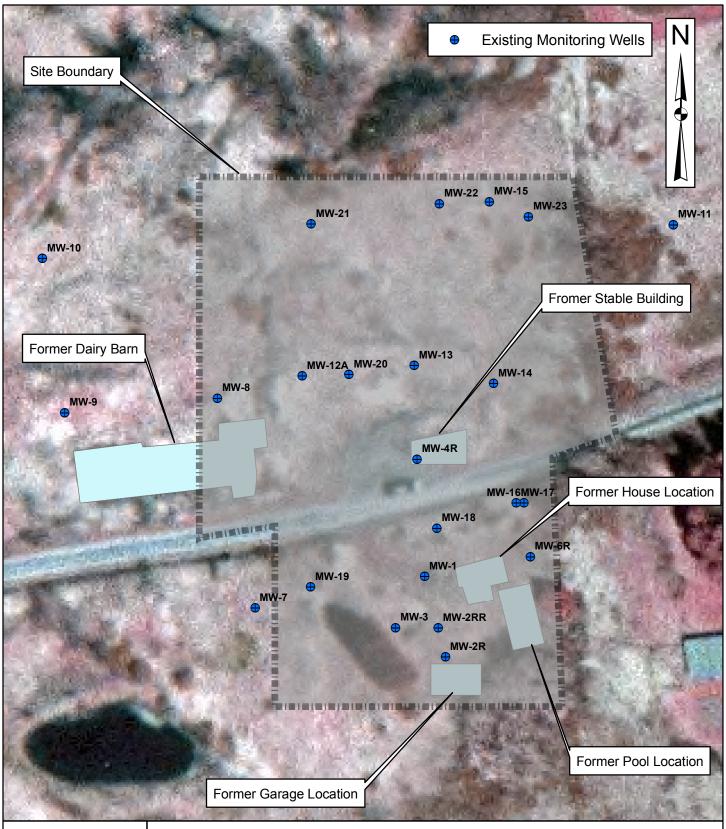
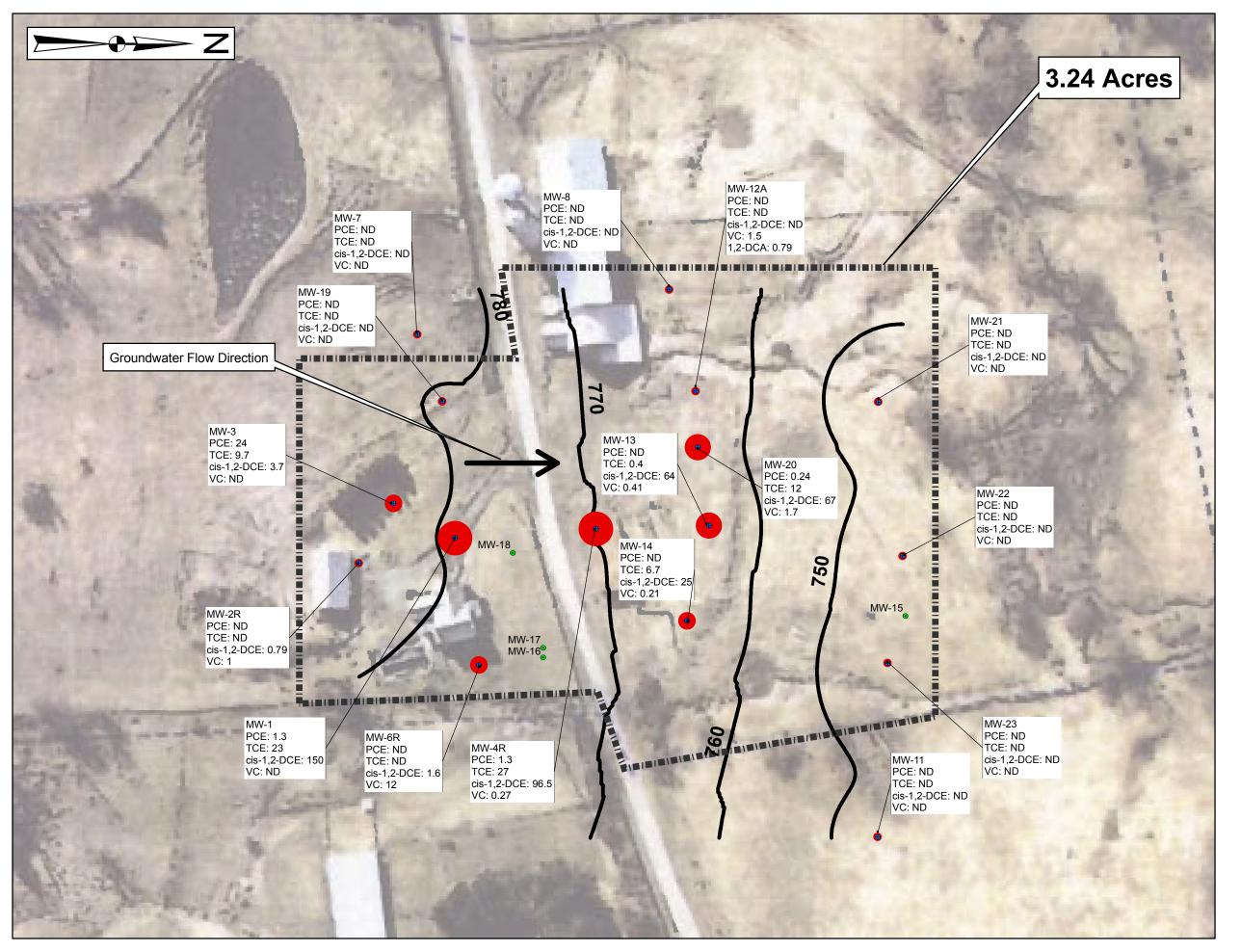
5.5 CORRECTIVE MEASURES PLAN

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a corrective measures plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the corrective measures plan until it is approved by the NYSDEC.

Figures

Johnny Cake Road Site
Site No. 6-22-016
Town of Danube, Herkimer County, New York

1:30,000

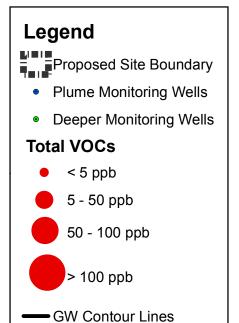
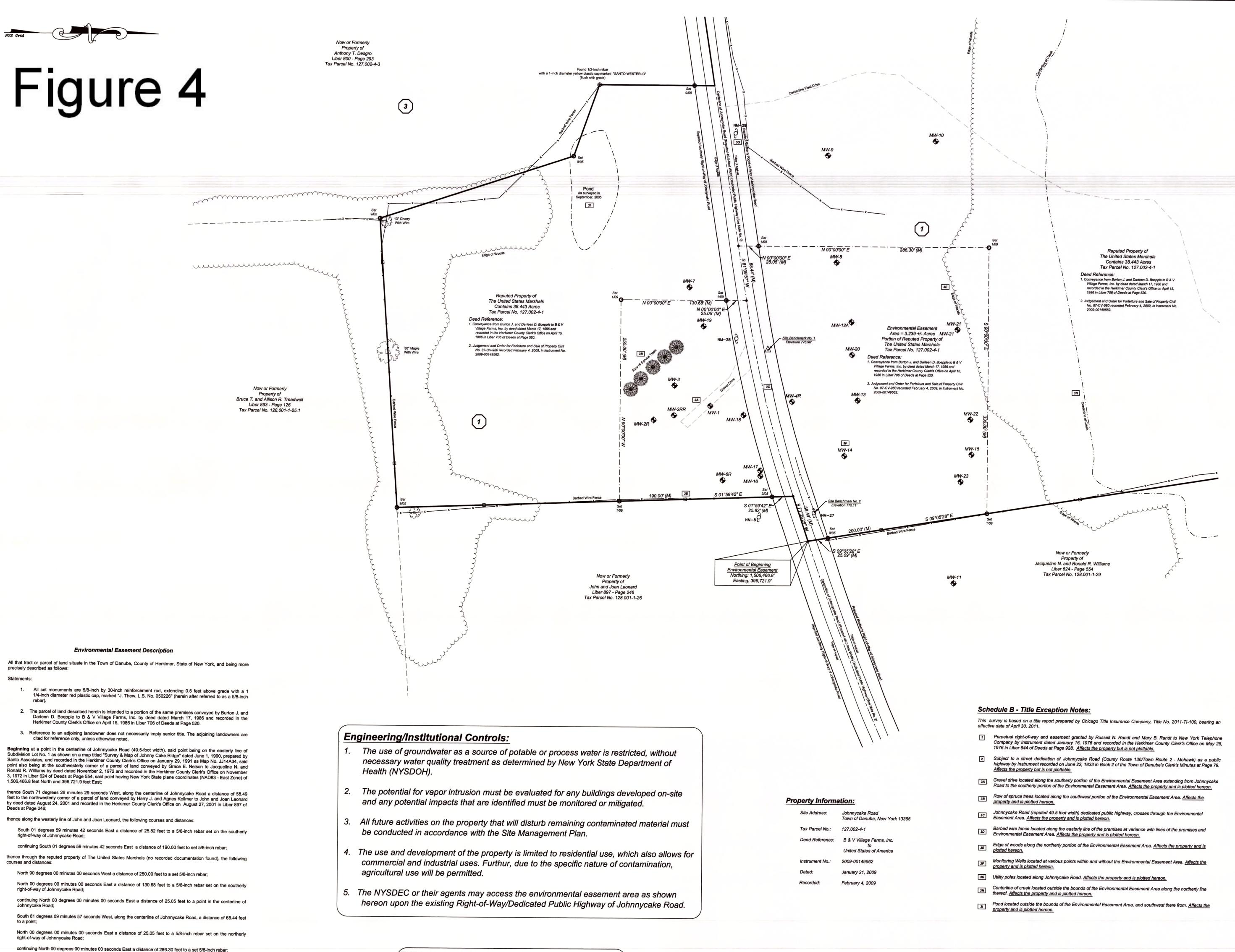


Figure 2 - Site Parcel Map
Johnny Cake Road Site
Site No. 6-22-016
Town of Danube, Herkimer County, New York
1:1,000

Figure 3 Johnny Cake Road Site Site No. 6-22-016 October 2008 Groundwater Investigation & Site Boundary

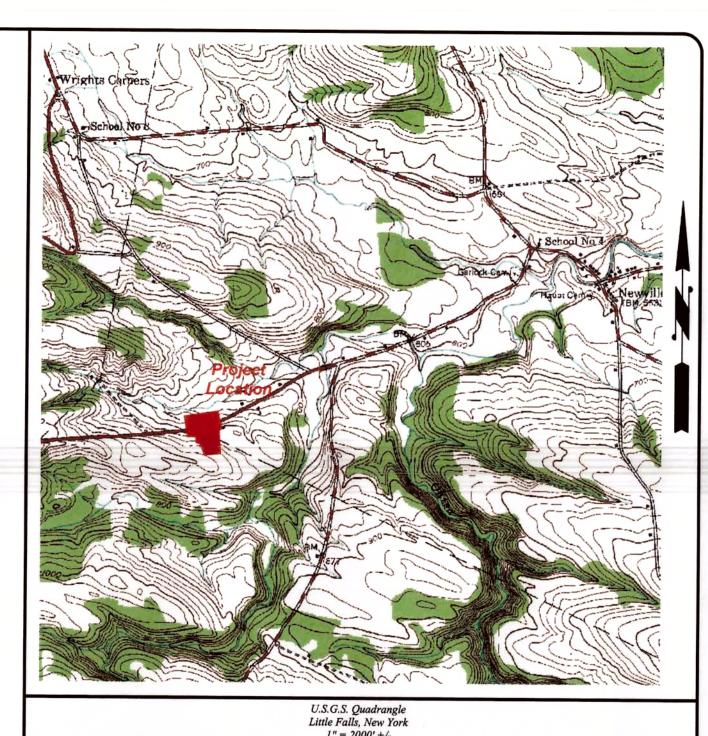

1991 Aerial Photo 1:800

Note

- PCE = Tetrachloroethene
 TCE = Trichloroethene
 cis-1,2-DCE = cis-1,2-Dichloroethene
 VC = Vinyl Chloride
 1,2-DCA = 1,2-Dichloroethane
 ND = Not Detected
- 2. All concentrations in parts per billion (ppb)
- 3. No Volatile Organic Compounds (VOCs) were detected in MW-15, MW-16, MW-17, or MW-18. These wells are screened below the level of groundwater contamination and were not used to generate groundwater contours.

THE ENGINEERING AND INSTITUTIONAL CONTROLS for the Easement are set forth in more detail in the Site Management Plan ("SMP"). A copy of the SMP must be obtained by any party with an interest in the property. The SMP may be obtained from New York State Department of Environmental Conservation, Division of Environmental Remediation, Site Control Section, 625 Broadway, Albany, NY 12233 or at derweb@gw.dec.state.ny.us.

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the New York Environmental Conservation Law.


ALTA / ACSM Land Title Survey

Copyright © 2011 Thew Associates PE-LS, PLLC - All Rights Reserved RE

I hereby certify to New York State Department of Environmental Conversation:

This is to certify that this map or plat and the survey on which it is based were made in accordance with the "Minimum Standard Detail Requirements for ALTA/ACSM Land Title Surveys" jointly established and adopted by ALTA and NSPS in 2005. Pursuant to the accuracy standards as adopted by ALTA and NSPS and in effect on the date of this certification, the undersigned further certifies that in my professional opinion, as a land surveyor registered in the State of New York, the relative positional accuracy of this survey does not exceed that which is

Registration Number: 050578 Within the State of: New York Date of Field Survey: January 14, 2009 Date of Survey: February 2, 2009 Date of Last Revision: May 17, 2011

General Notes:

- 1. This survey is referenced horizontally to the North American Datum of 1983 (NAD83) and projected on the New York State Plane Coordinate System (East Zone), and vertically to the North American Vertical Datum of 1988 (NAVD88).
- 2 . North arrow as shown indicates Grid North referenced to NAD83 and projected on the New York State Plane Coordinate System (East Zone).
- 3. The reference horizontal control station is a GPS Continuously Operating Reference Station (CORS) designated as "HERKIMER CORS ARP" (NYHM). NYHM is a horizontal and vertical Control Station established by the National Geodetic Survey (NGS) in 2006.
- V 281 RESET is a third order benchmark. Elevation 604.19 feet 4. A title report prepared by Chicago Title Insurance Company, Title No. 2011-TI-100, bearing an effective date of April

The reference benchmark is a Coast and Geodetic Survey (CGS) disc distinguished as "E 316", established in 1942.

- 30, 2011 was utilized in the preparation of this survey. 5. The information shown hereon is based on an instrument survey completed on September 13, 2005.
- 6. The location of the centerline of creek shown hereon is based on aerial photography.
- 7. Monitoring well locations and elevations were obtained by Thew Associates PE-LS, PLLC on October 28, 2008. 8. At the time of the survey there were not any buildings on site.
- 9. Based on conversations with with representatives of Herkimer County Department of Transportation, Johnnycake Road (A.K.A. County Route 136) is a dedicated public highway with a width of four rods (66 feet). They referenced Book No. 2 of the Town of Danube's Clerk's Minutes, at Page 79 which presumably states how the County acquired the road. However, after review of the document, it is unclear as to who the grantor was, if there was any consideration, and under what method was the acquisition taken (i.e. Fee acquisition, right-of-way, eminent domain, easement, etc.). Therefore, it appears that that the ownership of Johnnycake Road (A.K.A. County Route 136) lies with the private landowners adjacent to the road and the public, Town Highway Department and County Highway Department has the right to use, maintain and repair the highway.

Reference Drawings:

- 1. Titled "Survey & Map of Johnny Cake Ridge" dated June 1, 1990, prepared by Santo Associates, and recorded in the Herkimer County Clerks Office on January 29, 1991 as Map Number JJ14A34.
- 2. Titled "Proposed Subdivision Map of Lands of Robert D. Johnson, Estate to be Conveyed to Charles Soukup" dated October 5, 2003, and prepared by Charles R. Ackerbauer, PE LS.
- 3. Titled "Figure 2 Soil Boring Locations and Soil Sample Results Johnny Cake Road Site Danube, New York" dated May 13, 2004, and prepared by Weston Solutions, Inc.
- 4. Titled "Map Showing Lands of Michaels Associates, Inc. and J. Michael Sanders" dated September 15, 2005, last revised September 20, 2005, prepared by Thew Associates PE-LS, PLLC, and distinguished as UK075-08-05.

Site Benchmarks:

Site Benchmark No. 1
Set 5/8-inch rebar with a 1 1/4-inch diameter orange plastic cap marked "THEW BASELINE", located on the northerly side of Johnnycake Road, approximately 71 feet westerly of MW-4R. Elevation 776.96 feet.

Railroad spike set 1-foot above grade in the southerly face of Utility Pole NM-27, located on the northerly side of

Johnnycake Road, approximately 80 feet southeasterly of MW-14. Elevation 775.11 feet.

	Environmental Easement line
	Adjoiner Deed Line
	Traveled Centerline
xx	Barbed Wire Fence
•	Stone Wall
· · · · · · · · · · · · · · · · · · ·	Edge of Woods/Brush
	Centerline of Creek
	Edge of Water
	Edge of Gravel
	Centerline of Field Drive
•	Set 5/8-inch Rebar with a 1 1/4-inch diameter red plastic cap marked "J. Thew, L.S. No. 050226"
•	Found Iron (Pipe Rebar, et cetera) as Noted
□	Set 5-foot Metal Fence Post
30	Schedule B Title Exception Identifier
мw-8 Ф	Monitoring Well and Identifier
\odot	Subdivision Lot Number
B	Utility Pole
	Deciduous Tree
	Coniferous Tree
	Site Benchmark
4	

(IN METERS) 1 inch: 15.24 meters GRAPHIC SCALE

(IN FEET 1 inch = 50 ft.

ALTA/ACSM Land Title Survey R.D.S. Tax Parcel No. 127.002-4-1 Environmental Easement Description RHK. DEC Site No. 6-22-016 Town of Danube County of Herkimer 1" = 50' State of New York P.O. Box 463
6431 US Highway 11
Canton, New York 13617
T. 315/386-2776

Thew Associates
LAND SURVEYORS
Marcy, New York 13403
T: 315/333-7278
F: 315/797-1957 2/2/09 Updated Map per Title Commitmen T: 315/386-2776
F: 315/386-1012 www.ThewAssociates.com

UK233-10-08

Unauthorized alteration or addition to a survey map bearing a licensed land surveyors seal is a violation of Section 7209, Subdivision 2 of the New York

Williams, the following courses and distances:

right-of-way of Johnnycake Road;

South 90 degrees 00 minutes 00 seconds East a distance of 330.00 feet to a 5/8-inch rebar set on the easterly line

South 09 degrees 05 minutes 28 seconds East a distance of 200.00 feet to a 5/8-inch rebar set on the northerly

thence along the easterly line of Subdivision Lot No. 1 and along the westerly line of Jacqueline N. and Ronald R.

continuing South 09 degrees 05 minutes 28 seconds East a distance of 25.09 feet to the Point of Beginning.

To contain 3.239 acres of land, more or less, as surveyed by Robert H. Korosec, Licensed Land Surveyor No. 050578.

last revised on May 17, 2011, and is distinguished as Drawing No. UK233-10-08.

A map of the above described parcel of land was prepared by Thew Associates PE-LS, PLLC, dated February 2, 2009.

Only copies from the original of this survey marked with an original of the surveyor's inked seal or his embossed seal shall be considered to be valid and

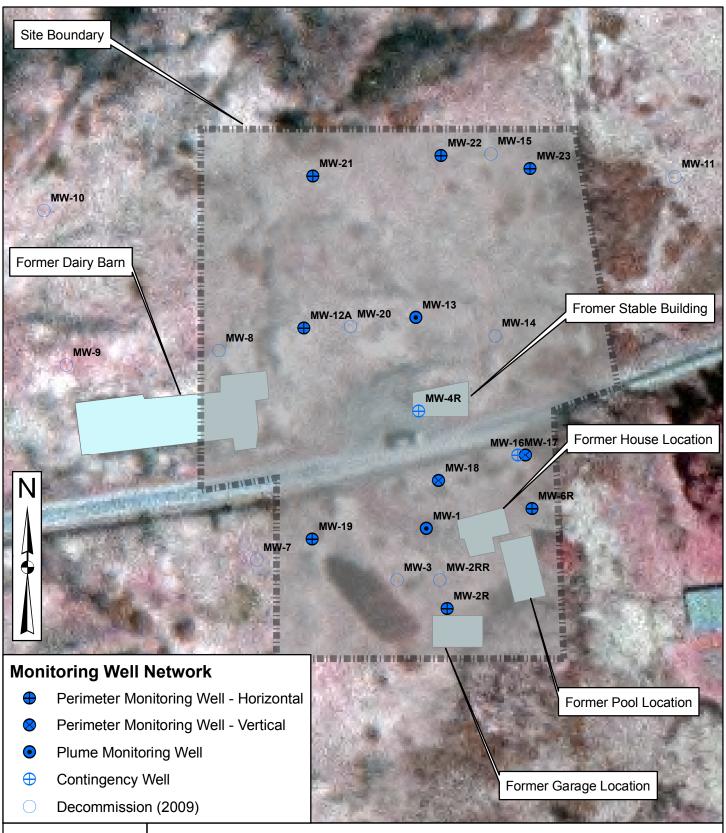


Figure 5 - Groundwater Monitoring Well Network
Johnny Cake Road Site
Site No. 6-22-016
Town of Danube, Herkimer County, New York
1:1,000

Tables

Johnny Cake Road Site, Site No.: 6-22-016, Town of Danube, Herkimer County Table 1 - Active Monitoring Well Summary

Well	TOC Elev	TIC Elev	Ground Elev	Well Screen (bgs)	Oct-08 Well Depth (bgs)	Screen Top Elev	Screen Bot Elev	Oct 08 Water Elev	Date Installed	Well Dia (in)	Status	Documentation ²	Boring Log	Const Log
MW-1	785.55	782.59	782.5	2' - 12'	9.2	780.5	770.5	778.94	4/19/1990	2	Network - Plume	ESI	Yes	Yes
MW-2R	791.40	791.15	789.4	3' - 23'	22.3	786.4	766.4	785.45	7/25/2005	4	Network - Perimeter	RAR	Yes	Yes
MW-6R	785.46	785.35	783.1	3' - 23'	23	780.1	760.1	777.11	7/25/2005	4	Network - Perimeter	RAR	Yes	Yes
MW-12A	769.44	769.08	767.2	10' - 20'	19.8	757.2	747.2	762.12	May-91	4	Network - Perimeter	ECS	Yes	Yes
MW-13	768.71	768.44	766.6	5' - 15'	15.3	761.6	751.6	761.94	May-91	4	Network - Plume	ECS	Yes	Yes
MW-16	781.85	781.39	778.9	15' - 25'	25.4	763.9	753.9	771.83	9/23/2003	4	Network - Vertical	RAR	Yes	No
MW-18	784.12	783.95	781.5	15' - 25'	24.4	766.5	756.5	774.44	9/29/2003	4	Network - Vertical	RAR	Yes	No
MW-19	788.22	787.83	785.6	15' - 25'	24.9	770.6	760.6	779.51	9/29/2003	4	Network - Perimeter	RAR	Yes	No
MW-21	747.46	747.33	744.6	8' - 23'	23	736.6	721.6	741.83	9/29/2008	2	Network - Perimeter	SIR	Yes	Yes
MW-22	748.77	748.52	746.3	6' - 21'	21	740.3	725.3	743.03	9/30/2008	2	Network - Perimeter	SIR	Yes	Yes
MW-23	747.65	747.44	744.9	5' - 20'	20	739.9	724.9	740.54	9/30/2008	2	Network - Perimeter	SIR	Yes	Yes
MW-17	782.10	781.17	778.9	30' - 40'	39	748.9	738.9	776.17	9/25/2003	4	Contingency	RAR	Yes	No
MW-4R	778.99	778.70	776.5	3.5' - 23.5'	23.8	773.0	753.0	769.88	7/26/2005	4	Contingency	RAR	Yes	Yes
MW-2RR	790.92	790.62	788.8	4.5' - 24.5'	23.4	784.3	764.3	787.11	7/27/2005	4	Decommission	RAR	Yes	Yes
MW-3	790.26	790.08	787.7	3' - 13'	10.1	784.7	774.7	783.18	4/19/1990	2	Decommission	ESI, ECS	Yes	Yes
MW-7	791.50	791.48	788.4	4' - 24'	19.7	784.4	764.4	787.78	6/6/1990	2	Decommission	ECS	No	No
MW-8	769.00	769.11	765.9	N/A	14.1	N/A	N/A	761.16	6/6/1990	2	Decommission	ECS	No	No
MW-9	N/A	769.44	768.6	2' - 12'	11.5	766.6	756.6	765.51	6/6/1990	2	Decommission	ECS	No	No
MW-10	752.59	752.67	748.4	2.5' - 17.5'	14	745.9	730.9	740.12	6/6/1990	2	Decommission	ECS	No	No
MW-11	750.99	750.51	748.9	5' - 20'	20.1	743.9	728.9	748.61	May-91	4	Decommission	ECS	Yes	Yes
MW-14	769.23	769.11	767.4	6' - 21'	11.1	761.4	746.4	762.86	May-91	4	Decommission	ECS	Yes	Yes
MW-15	746.83	746.64	744.5	91' - 101'	100.7	653.5	643.5	Artesian	May-91	2	Decommission	ECS	Yes	Yes
MW-20	769.90	769.54	767.4	14' - 24'	23.6	753.4	743.4	759.89	10/1/2003	4	Decommission	RAR	Yes	No

Notes:

bgs = below ground surface

1. Elevations Above Mean Sea Level (AMSL) unless otherwise noted.

2. Documentation : ESI = Environmental Subsurface Investigation, June 1990 (Appendix A1); ESC = Extent of Contamination Study, November 1991 (Appendix A2); RAR = Removal Action Report, October 2006 (Appendix A3); SIR = Site Investigation Report, February 2009 (Appendix A6)

Johnny Cake Road Site Monitored Natural Attenuation Data Summary

Table 3

Parameter	MW-1	MW-2R	MW-3	MW-4R	MW-6R	MW-8	MW-12A	MW-13	MW-14
Alkalinity	1	-	•	1	1	-	1	1	-
BTEX	-	-	-	-	•	-	-	-	-
Carbon Dioxide	NM	NM	NM	NM	NM	NM	NM	NM	NM
Carbon Tetrachloride	-	-	<u>-</u>	<u>- </u>	-	-	-	· -	-
Chloride		-	-	2	-	-	2	-	2
Chloroethane	-	-	-	<u> </u>	-	-	-	-	-
Chloroform	-	-	-	-	-	-	-	-	-
DCA	-	-	-	-	-	-	-	-	-
DCE	2	2	2	2	2	-	-	2	2
Dichloromethane	-	-	-	-	_		-	-	-
Dissolved Oxygen	-3	3	-	-	-	-	3	3	-
Ethene/Ethane	-	-	-	-	-	-	-	-	
Ferrous Iron	NM	NM	NM	NM	NM	NM	NM	NM	NM
Hydrogen	NM	NM	NM	NM	NM	NM	NM	NM	NM
Methane	0	0	0	0	3	0	3	0	0
Nitrate	2	2	2	2	2	2	2	2	2
PCE	0	0	0	0	0	0	0	0	0
pН	0	0	0	0	0	0	0	0	0 .
ORP	-	1 .		-	1	-	1	-	-
Sulfate	-	-	-	-	-	2	2	-	-
Sulfide	-	-	-	-	-	-	-	-	-
1,1,1-TCA	-	<u>.</u>	-	-	-	-	-	-	-
Temperature	-	•	ı	•	_	-	-	-	-
TOC	-	-	1	-	-	-	-	-	-
TCE	2	4	2	2	-	-	-	2	2
VC	-	2	-	2	2		2	2	2
Volatile Fatty Acids	NM	NM	NM	NM	NM	NM	NM	NM	NM
Total	4	10	6	11	11	4	16	12	10
Biodegradation Potential	Inadequate	Limited	Limited	Limited	Limited	Inadequate	Adequate	Limited	Limited

Table 2

Johnny Cake Road Site

Summary of Laboratory Analytical Data for Groundwater

Sample ID	Groundwater	MW-1	MW-2R	MW-3	MW-4R	MW-54R	MW-6R	MW-7	MW-8	
Date Collected	NYCRR	10/08/08	10/06/08	10/06/08	10/06/08	10/06/08	10/02/08	10/07/08	10/07/08	
Lab Sample ID	Criteria	G1734-13A	G1734-03A	G1734-04A	G1734-05A	G1734-02A	G1709-07A	G1734-09A	G1734-10A	
CLP VOC by Method SOM 01.2 (µg/L)							02705 07.1	GITST-OZA	G1734-10A	
trans-1,2-Dichloroethene	5	1.2	< 0.50 UJ	< 0.50 U	0.67	0.68	< 0.50 U	< 0.50 U	< 0.50 U	
Toluene	. 5	< 0.50 U	< 0.50 U	< 0.50 U						
Tetrachloroethene (PCE)	5	1.3	< 0.50 U	24	1.3	1.3	< 0.50 U	< 0.50 U	< 0.50 U	
1,2-Dichloroethane	0.6	< 0.50 U	< 0.50 U	< 0.50 U						
1,1-Dichloroethene (DCE)	5	0.24 J	< 0.50 U	< 0.50 U	< 0.50 U					
cis-1,2-Dichloroethene	5	150	0.79 J	3.7	99 J	94 J	1.6	< 0.50 U	< 0.50 U	
Trichloroethene (TCE)	5	23	< 0.50 U	9.7	27	27	< 0.50 U	< 0.50 U	< 0.50 U	
Vinyl chloride (VC)	2	< 0.50 U	1	< 0.50 U	0.28 J	0.26 J	12	< 0.50 U	< 0.50 U	
MNA Parameters	Units	MW-1	MW-2R	MW-3	MW-4R	MW-54R	MW-6R	MW-7	MW-8	
Chloride	mg/L	2.0	< 2.0 U	4.1	110	110	4.7	17	28	
Dissolved Iron	ug/L	< 61.0 U	101 B	< 61.0 U	< 61.0 U	< 61.0 U	756	< 61.0 U	87.9 B	
Total Iron	ug/L	2290	967	140 B	122 B	118 B	7,290	616	96.7 B	
Nitrogen-Nitrite	mg/L	< 0.13 U	< 0.13 U	< 0.13 U						
Nitrogen-Nitrate	mg/L	0.33	< 0.13 U	< 0.13 U	0.35	0.36	< 0.13 U	0.23	0.63	
Sulfate	mg/L	220	21	39	49	49	86	25	16	
Total Alkalinity	mg/L CaCO3	340	220	290	330	340	500	160	310	
Sulfide	mg/L	< 0.030 U	< 0.030 II	< 0.030 U						
Nitrogen-TKN	mg/L	0.70	0.20	< 0.20 U	0.37	0.48	0.67	0.34	0.030	
Total Organic Carbon	mg/L	< 10 U	< 10 U							
Ethane	ug/L	< 1.3 U	< 1.3 U	1 10 0						
Ethene	ug/L	< 1.6 U	< 1.6 U	1.5						
Methane	ug/L	1.2	240	< 0.63 U	< 0.63 U	< 0.63 U	700	0.62	1.0 0	
Dissolved Oxygen	mg/L	6.59	0.42	4.4	1.8	1.8	0,58	3.3	5.2 0.98	

Notes:

NYCRR - New York Code of Rules and Regulations, Title 6, Part 702.15 (a)(2) and 703.5.

MW-54R is a duplicate sample from MW-4R.

- U Not detected at practical quantitation limit.
- J Indicates an estimated value.
- D Indicates sample dilution.
- H Indicates sample dilution after holding time.
- B Analyte detected in the associated method method blank.
- na Sample not analyzed for MNA parameters.

Bolded values indicate detection above practical quantitation limit.

Shaded cells indicate exceedance of standard.

Johnny Cake Road Site Summary of Laboratory Analytical Data for Groundwater

Table 2

Sample ID	Groundwater	MW-11	MW-12A	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	
Date Collected	NYCRR	10/07/08	10/02/08	10/02/08	10/07/08	10/01/08	10/01/08	10/01/08	10/02/08	
Lab Sample ID	Criteria	G1734-08A	G1709-08A	G1709-09A	G1734-07A	G1709-05A	G1709-01A	G1709-02A	G1709-10A	
CLP VOC by Method SOM 01.2 (µg/L)							31.75 7.1.1	GITOS GERT	51707 1011	
trans-1,2-Dichloroethene	5	< 0.50 U	< 0.50 U	0.49 J	0.45 J	< 0.50 U	< 0.50 UJ	< 0.50 U	< 0.50 U	
Toluene	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 บ	< 0.50 U	< 0.50 U	< 0.50 U	
Tetrachloroethene (PCE)	5	< 0.50 U	< 0.50 U	< 0.50 U						
1,2-Dichloroethane	0.6	< 0.50 U	0.79	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	
1,1-Dichloroethene (DCE)	5	< 0.50 U	< 0.50 U	< 0.50 U						
cis-1,2-Dichloroethene	5	< 0.50 U	< 0.50 U	64 J	25 J	< 0.50 U	< 0.50 UJ	< 0.50 U	< 0.50 U	
Trichloroethene (TCE)	5	< 0.50 U	< 0.50 U	0.40 J	6.7	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	
Vinyl chloride (VC)	. 2	< 0.50 U	1.5	0.41 J	0.21 J	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	
MNA Parameters	Units	MW-11	MW-12A	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	
Chloride	mg/L	na	68	32	150	na	4.0	< 2.0 U	4.0	
Dissolved Iron	ug/L	na	2,350	< 61.0 U	274	na	< 61 U	< 61 U	< 61.0 U	
Total Iron	ug/L	na	19,500	62.9 B	300	na	597	173 B	330	
Nitrogen-Nitrite	mg/L	na	< 0.13 U	< 0.13 U	< 0.13 U	na	< 0.13 U	< 0.13 U	< 0.13 U	
Nitrogen-Nitrate	mg/L	na	< 0.13 U	< 0.13 U	< 0.13 U	па	< 0.13 U	< 0.13 U	< 0.13 U	
Sulfate	mg/L	na	< 5.0 U	31	26	па	26	46	28	
Total Alkalinity	mg/L CaCO ₃	na	440	320	290	па	220	160	210	
Sulfide	mg/L	па	< 0.030 U	< 0.030 U	< 0.030 U	na	< 0.030 U	< 0.030 U	< 0.030 U	
Nitrogen-TKN	mg/L	na	4.7	< 0.20 U	0.29	na	1.4	< 0.20 U	< 0.20 U	
Total Organic Carbon	mg/L	na	< 10 U	< 10 U	< 10 U	na	< 10 U	< 10 U	< 10 U	
Ethane	ug/L	na	< 1.3 U	< 1.3 U	< 1.3 U	na	< 1.3 U	< 1.3 U	< 1.3 U	
Ethene	ug/L	na	< 1.6 U	< 1.6 U	< 1.6 U	na	< 1.6 U	< 1.6 U	< 1.6 U	
Methane	ug/L	na	1,900 H	9.0	< 0.63 U	na	100	1.8	2.7	
Dissolved Oxygen	mg/L	па	0.22	0.35	1.9	na	0.88	1.42	0.45	

Notes:

NYCRR - New York Code of Rules and Regulations, Title 6, Part 702.15 (a)(2) and 703.5.

MW-54R is a duplicate sample from MW-4R.

- U Not detected at practical quantitation limit.
- J Indicates an estimated value.
- D Indicates sample dilution.
- H Indicates sample dilution after holding time.
- B Analyte detected in the associated method method blank.
- na Sample not analyzed for MNA parameters.

Bolded values indicate detection above practical quantitation limit.

Shaded cells indicate exceedance of standard.

Johnny Cake Road Site Summary of Laboratory Analytical Data for Groundwater

Table 2

Sample ID	Groundwater	MW-19	MW-20	MW-21	MW-22	MW-23	
Date Collected	NYCRR	10/06/08	10/02/08	10/07/08	10/08/08	10/08/08	
Lab Sample ID	Criteria	G1734-01A	G1709-06A	G1734-11A	G1734-14A	G1734-15A	
CLP VOC by Method SOM 01.2 (µg/L)							
trans-1,2-Dichloroethene	5	< 0.50 U	0.35 J	< 0.50 U	< 0.50 U	< 0.50 U	
Toluene	5	0.21 J	< 0.50 U	< 0.50 U	0.25 J	< 0.50 U	
Tetrachloroethene (PCE)	5	< 0.50 U	0.24 J	< 0.50 U	< 0.50 U	< 0.50 U	
1,2-Dichloroethane	0.6	< 0.50 U					
1,1-Dichloroethene (DCE)	5	< 0.50 U					
cis-1,2-Dichloroethene	5	< 0.50 U	67	< 0.50 U	< 0.50 U	< 0.50 U	
Trichloroethene (TCE)	5	< 0.50 U	12	< 0.50 U	< 0.50 U	< 0.50 U	
Vinyl chloride (VC)	2	< 0.50 U	1.70	< 0.50 U	< 0.50 U	< 0.50 U	
MNA Parameters	Units	MW-19	MW-20	MW-21	MW-22	MW-23	
Chloride	mg/L	< 2.0 U	39	31	7.6	4.5	
Dissolved Iron	ug/L	< 61.0 U	< 61 U	112 B	833	< 61.0 U	
Total Iron	ug/L	119 B	1,150	1180	< 61.0 U	180 B	
Nitrogen-Nitrite	mg/L	< 0.13 U					
Nitrogen-Nitrate	mg/L	< 0.13 U					
Sulfate	mg/L	22	34	23	50	37	
Total Alkalinity	mg/L CaCO3	20	310	430	220	190	
Sulfide	mg/L	< 0.030 U					
Nitrogen-TKN	mg/L	0.31	0.65	0.45	0.89	0.37	
Total Organic Carbon	mg/L	< 10 U					
Ethane	ug/L	< 1.3 U					
Ethene	ug/L	< 1.6 U					
Methane	ug/L	3.5	12	8.9	8.3	2.8	
Dissolved Oxygen	mg/L	0.57	0,33	1.86	5.5	8,98	

Notes:

NYCRR - New York Code of Rules and Regulations, Title 6, Part 702.15 (a)(2) and 703.5.

MW-54R is a duplicate sample from MW-4R.

- U Not detected at practical quantitation limit.
- J Indicates an estimated value.
- D Indicates sample dilution.
- H Indicates sample dilution after holding time.
- B Analyte detected in the associated method method blank.
- na Sample not analyzed for MNA parameters.

Bolded values indicate detection above practical quantitation limit.

Shaded cells indicate exceedance of standard.

Table 3

Johnny Cake Road Site Monitored Natural Attenuation Data Summary

Parameter	MW-16	MW-17	MW-18	MW-19	MW-20	MW-21	MW-22	MW-23	
Alkalinity		-	-	-	-	1		1/2// 25	
BTEX	-	-	-	-	**				
Carbon Dioxide	NM	NM	NM	NM	NM	NM	NM	NM	
Carbon Tetrachloride	-		-	-	-	-	-		
Chloride	-	-	-	-	2	-	-		
Chloroethane	-	-	_	-	-	-	_		
Chloroform	-	-	-	-	-	-	_		
DCA	-	-	-	-	-				
DCE	-	-	-	-	2	-			
Dichloromethane	<u>-</u>	-	-	-	-	-			
Dissolved Oxygen	-	-	3	-	3	-	-3	-3	
Ethene/Ethane	-	-	-	-	-				
Ferrous Iron	NM	NM	NM	NM	NM	NM	NM	NM	
Hydrogen	NM ·	NM	NM	NM	NM	NM	NM	NM	
Methane	0	0	0	0	0	0	0	0	
Nitrate	2	2	2	2	2	2	2	2	
PCE	0	0	0	0	0	0	0	0	
pН	0	0	0	0	0	0	0	0	
ORP	1	-	1	1	i	1	<u> </u>	- 0	
Sulfate	-	-	-	-	-		-		
Sulfide	-	-	-	-	-	-			
1,1,1-TCA	-	-	-	-	-		<u> </u>		
Temperature	-	-	-	-	-	-			
TOC	-	-	~	_				-	
TCE	-	-	-	-	2			<u> </u>	
VC	-	-	-	-	2	-	<u>-</u>	-	
Volatile Fatty Acids	NM	NM	NM	NM	NM	NM	NM	NM	
Total	3	2	6	3	14	4	-1	-1	
Biodegradation Potential	Inadequate	Inadequate	Limited	Inadequate	Limited	Inadequate	Inadequate	Inadequate	

Notes:

NM - Not Measured

Upgraient well MW-7 was used as a reference point and is there fore not included in this evaluation.

Appendix A: Excerpts from NYSDEC Site File

Appendix A1: Historic Well Information from Environmental Subsurface Investigation Report – June 1990

DATE HOLE NO. B-14/19/90 STARTED . SOILS INVESTIGATIONS INC. SUBSURFACE LOG SURF. ELEV. 4/19/90 FINISHED . C. W. DEPTH See Note #1 OF____ SHEET _ PROJECT Environmental Site Assessment LOCATION Johny Cake Road Town of Stark: NY BLOWS ON BLOW ON CASING C SOIL OR ROCK SAMPLER **NOTES** CLASSIFICATION /18. Note #1: At comple-17 Brown SILT & CLAY, Some Gravel tion of boring, a 2" 10 5 PVC ground water moni-5 -grades trace gravel toring well was instal 3 led as per attached 6 8 18 monitoring well detail (Wet-Soft to Stiff) 10 14 Brown Galcial Till 12 1.6 34 18 24 5 1001.5 -little recovery: rock fragments 6 50 49 26 grades gray (Moist-Compact) 20 End of Boring @ 12.4' N = No blows to drive 2 " spoon 12 " with 140b, pin wt. falling 30 "per blow. CLASSIFICATION Visual by Driller C = No blows to drive _____ " casing ____ " with ____ lb. weight falling _____ ___"per blow.

MITHOD OF INDESTIGATION 418 T.D. Hollow Stem Anders

į

į,

WAD BOX SUPPECE. PEPTY ELEVATION : 77/8 MANYAS 1.0 CONCRETE_ SEAL BENTONITE SEAL 2.01 PVC PIPE 2" Sch 40 PVC Flush Thread MAND PACKS = Whitehead WATER LEVEL Bros #0 Sand IN MONITOP) WELL SCHEEN 2" Sch 40 PVC Slot Size-.010" 12.4 12.4

WELL Nº

1

B-1



MONITORING WELL DETAILS

JOHNY CAKE ROAD E.S.A. TOWN OF STARK, N.Y.

DR.BY: J.H	SCALE: N.T. D.	PROI. NO.AD-90-36
	DATE: 5/23/90	DRWG.NO.

FIN	RTED ISHED	4/19 4/19 1 (/90		SOIL	MPIRE SINVESTIGATIONS INC. SUBSURFACE LO	G. W. DEPTH See Note #1
PROJ	ECT _	Envi	rons	enta	al Sit	e Assessment LOCATION Johny Cake	1
						Town of Stark	N.Y.
Эренил	SAMPLE NO	0 6	OWS ON AMPLER 12 12	a -	BLOW ON CASING C	SOIL OR ROCK CLASSIFICATION	NOTES
5-/	2 3	3 4 6 4 5 2 3 3 4 2		5 5		Brown SILT, SAND & GRAVEL	Note #1: At completion of borings a 2" PVC groundwater Mon- itoring Well was instal- led as per attached Monitoring Well Detail.
	5	 14 6		14		(Moist - Loose) Gray Glacial Till	
10		8 1 7 1 10 1 22 2	1 4	21			
15		18 18	3			(Moist-Firm to Compact) End of Boring @ 14.0'	
1 1 1							
							.
						"with 140 lb. pin wt. falling 30 "per blow. CLASS "with lb. weight falling "per blow.	FICATION <u>Visual by</u> Driller
						D. Hollow Stem Augers	

WELL Nº

B-2

MONITORING WELL DETAILS

Johny Cake Road E.S.A. TOWN OF STARK, N.Y.

DR BY	JH	SCALE:	N.T. 5.	PROI. NO. AD-90-36
CX'D BY		DATE	5-23-90	L DRWG NO.

WELL Nº

B-3

EMPIRE SOLIS INVESTIGATIONS INC.

MONITORING WELL DETAILS

JOHNY CAKE ROAD E.S.A. TOWN OF STARK, N.Y.

DRBY J.H.	SCALE	N.T.S.	PROI. NOAD-90-36
	DATE 5	5/23/90	DRWG NO

CURB BOX 0.5' 2.01 BENTONITE SEAL 3.0' PVC PIPE 2"Sch 40 PVC Flush Thread SAND PACKS . Whitehead Bros #0 Sand MONITOR WELL GUREEN 2" Sch 40 PVC Slot Size-.010" 13.0 14.0

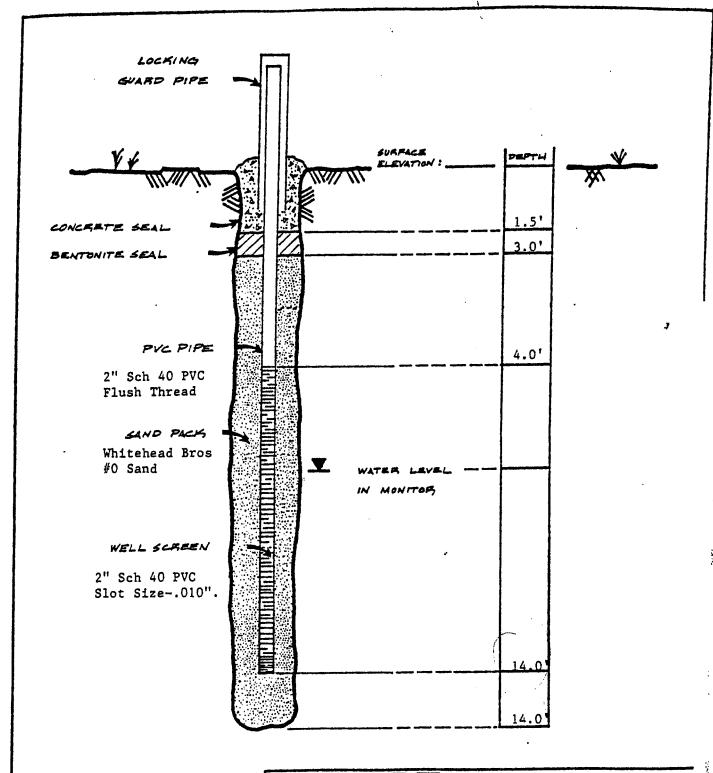
WELL Nº

B-4

W

EMPIRE SOILS INVESTIGATIONS INC.

MONITORING WELL DETAILS


JOHNY CAKE ROAD E.S.A. TOWN OF STARK, N.Y.

DR.BY: J. H. | SCALE: N.T. = . | PROI. NO. AD-90-36.

CK'D.BY: | DATE: 5/23/90 | DRWG.NO.

F SHE	TAR INIS	HED	4		/90 1		SOIL	SUBSURFACE LO Assessment LOCATION Johny Cak	G. W. DEPTH
_								Town of Sta	rk. NY
DEPTH-FT	SAMPLES	SAMPLE NO	0/6	SAM	75 ON PLER	\ \ \	BLOW ON CASING C	SOIL OR ROCK CLASSIFICATION	NOTES
15	1	3 4	1 3 6 7 10 3 2 2			9 5		Brown SILT, SAND & GRAVEL, trace clay -rock fragments (Moist to Wet-Loose to Compact) Augers advanced w/o sampling to 14.0'. End of Boring @ 14.0'	Note #1: At completion of boring, a 2" PVC groundwater Monitoring Well was installed as per attached Monitoring Well Detail.
C = N	n b	lows	to dr	ve		" casii	٠ع٦	" with 140 lb. pin wt. falling 30 "per blow. CLASS" " with lb. weight falling "per blow. Hollow Stem Augers	SIFICATION <u>Visual by</u> Driller

The state of the s

WELL Nº

14

11.

MW-.6

EMPIRE SOILS INVESTIGATIONS INC

MONITORING WELL DETAILS

JOHNY CAKE ROAD E.S.A. TOWN OF STARK, N.Y.

OR BY	J.H	SCALE:	N.T.S.	PROI. NO AD-90-36
CK'D BY		DATE. 5	/23/90	DRWC NO

Appendix A2: Historic Well Information from Extent of Contamination Study Report – November 1991

The following is a summary of well depths and screened interval of the wells installed by ERT/REAC:

Monitor Well	Depth (feet below grade)	Screened Interval (feet below grade)		
MW-11	22	5 to 20		
MW-12A	20	10 to 20		
MW-13	17	5.3 to 15.3		
MW-14	21	6 to 21		
MW-15	101	91 to 101		

The information pertaining to these monitor wells are indicated in the Monitor Well Drilling and Installation Logs, which appear in Appendix G.

In general, below the few inches of clayey topsoil, borings encountered a moist, brown silty clay to a depth of approximately two to three feet. Below this layer, wet, brown fine sand and silt with traces of fine angular gravel were encountered to depths of approximately ten feet. This layer was underlain by a wet, dense, gray, fine sand and silt with little fine and, coarse angular gravel layer, interpreted as glacial till. This unit was found to be 32 feet (from 10 to 42 feet depth in MW-15) to 40 feet thick (from 15 to 55 feet depth in B-12). Below the till layer, a moist, plastic, gray clay was found to the deeper portion of the borings. This unit was found to be at least 59 feet in MW-15 and at least 55 feet in B-12.

One day after the completion of MW-15, water from the well was found to be flowing slightly and consistently over the two-foot "stickup" (i.e., artesian condition). This indicates that the well was screened in an aquifer under confined conditions.

A total of 28 split spoon samples were recovered in acetate sleeves. These samples are summarized in Table 5.

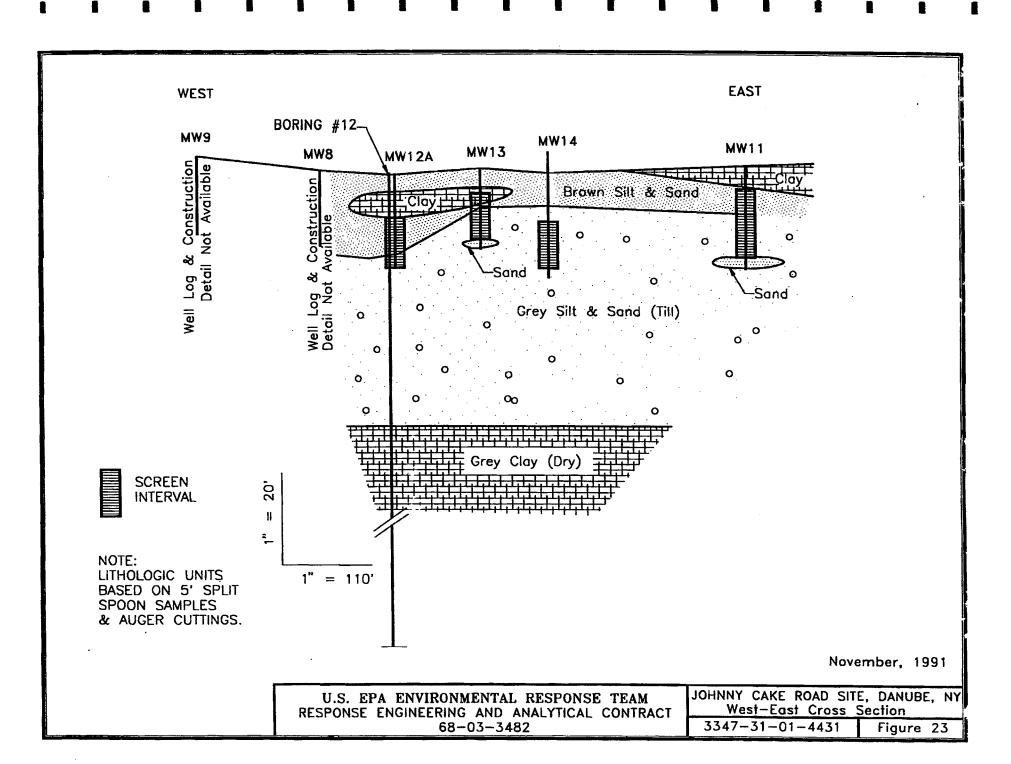
3.2 Hydrogeology

Water level measurements were converted using resurveyed top of casing elevation data to formulate water table elevations at each of the monitor well locations. These data are reported in Table 6. Water table depths ranged on November 15, 1990 from 0.5 feet (MW-1) to 9.75 feet (MW-6) and on May 22, 1991 from 1.61 feet (MW-1) to 7.77 feet (MW-8). No water table depths were collected at the REAC installed wells (monitor wells MW-11 to MW-15) due to the water levels not having sufficient time to stabilize.

Water table elevations for both sets of sampling events, September 11, 1990 and May 22, 1991 were plotted on the site map (Figures 5 and 6, respectively), were contoured, and then interpreted for groundwater flow direction. During both dates, overburden groundwater was found to be flowing from south to north consistent with the downslope of the hillside. It appears that the stream lying in the topographic low (i.e., stream valley) receives its source of water from the overburden aquifer, and the small tributaries that also feed it.

Table 6

Summary of Ground Water Table Data For November 15, 1990 and May 22, 1991


Johnny Cake Road Site Danube, New York

October, 1991

		11/15/90		5/22/91		
Monitor Well	Top of Casing (F.A.D.)	Depth to Water (feet)	Elevation of Water Table (F.A.D.)	Top of Casing (F.A.D.)	Depth to Water (feet)	Elevation of Water Table (F.A.D.)
MW-1	177.51	0.50	177.01	177.51	1.61	175.90
MW-2	191.04	3.72	187.32	191.04	5.14	185.90
MW-3	186.77	3.62	183.15	186.06	5.72	180.34
MW-4	172.62	3.12	169.50	172.10	3.35	168.75
MW-6	185.50	9.75	175.75	184.92	6.95	177.97
MW-7	187.02	1.88	185.14	186.49	3.38	183.11
MW-8	164.59	6.37	158.22	164.17	7.77	156.40
MW-9	167.52	4.52	163.00	167.12	5.79	161.33
MW-10	146.90	6.00	140.90	146.50	6.19	140.31
MW-11	****			145.57	ND	ND
MW-12A	****		vede	164.30	ND	ND
MW-13	****	****	2000	163.60	ND	ND
MW-14		****		164.22	ND	ND
MW-15	****	****	*	126.45	ND	ND
Upper Pond	204.15	204.15	204.15	ND	ND	ND
Lower Pond	150.00	150.00	150.00	ND	ND	ND

Note: Change in arbritary datums between sampling events. NR = Not Recorded; ND = No data

F.A.D. = Feet above site datum

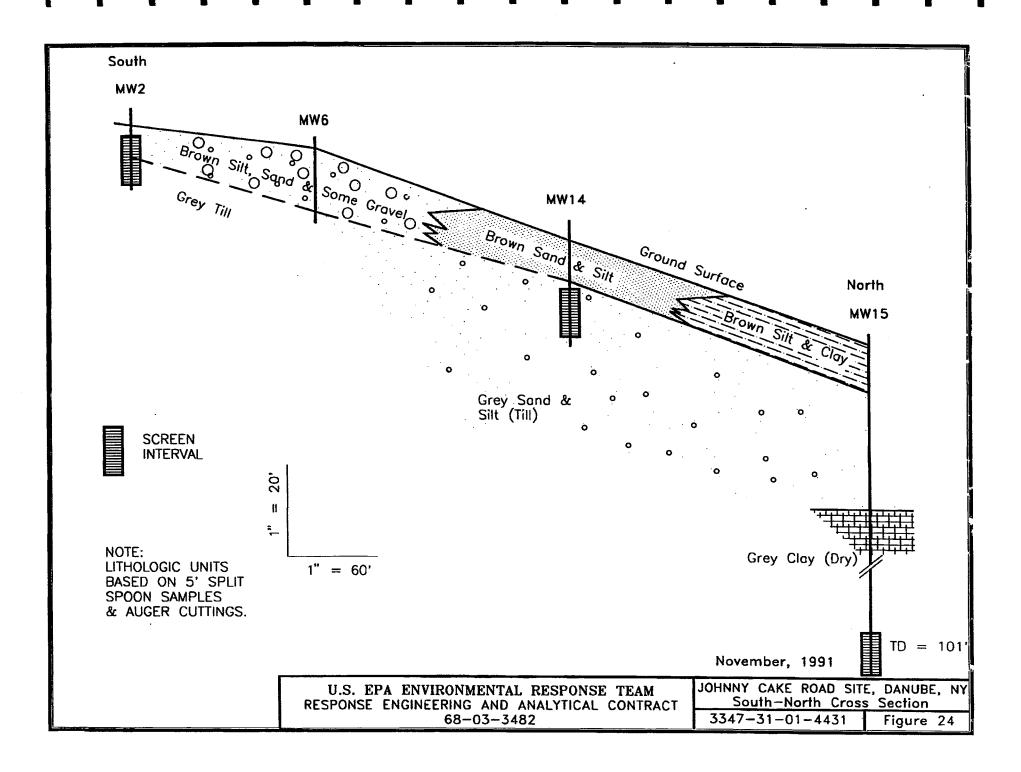
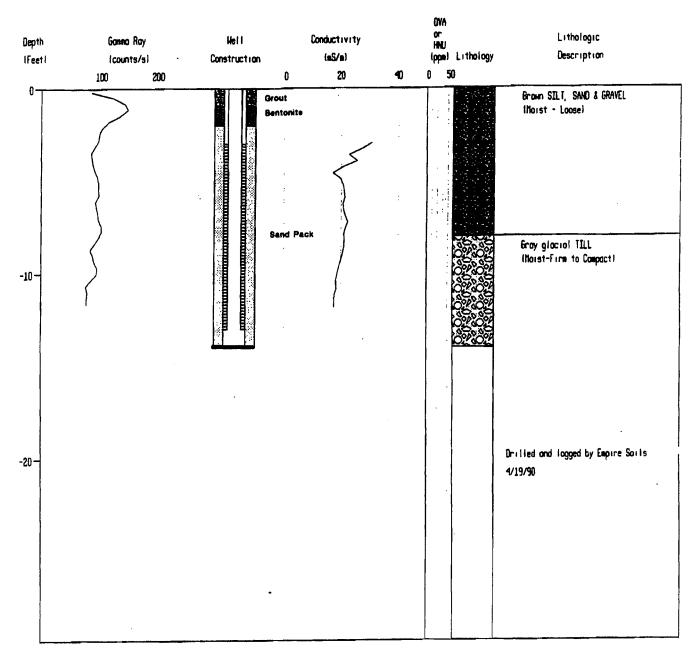
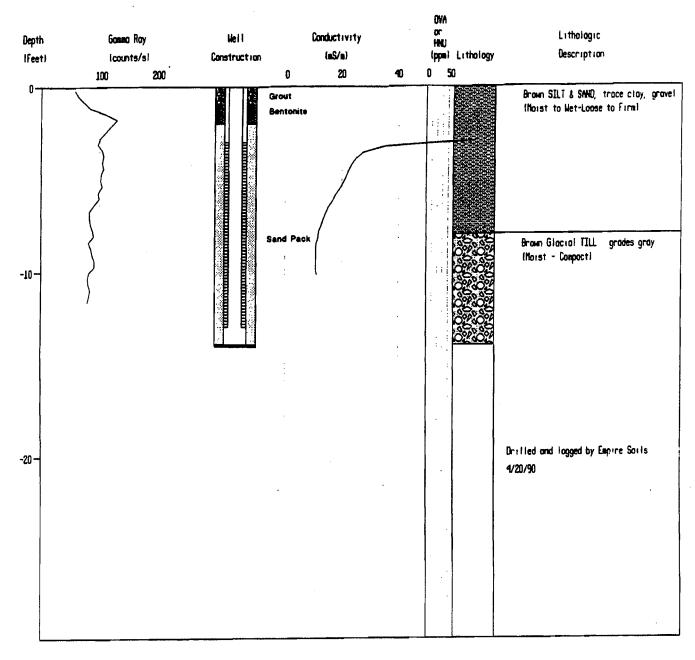




Figure 25

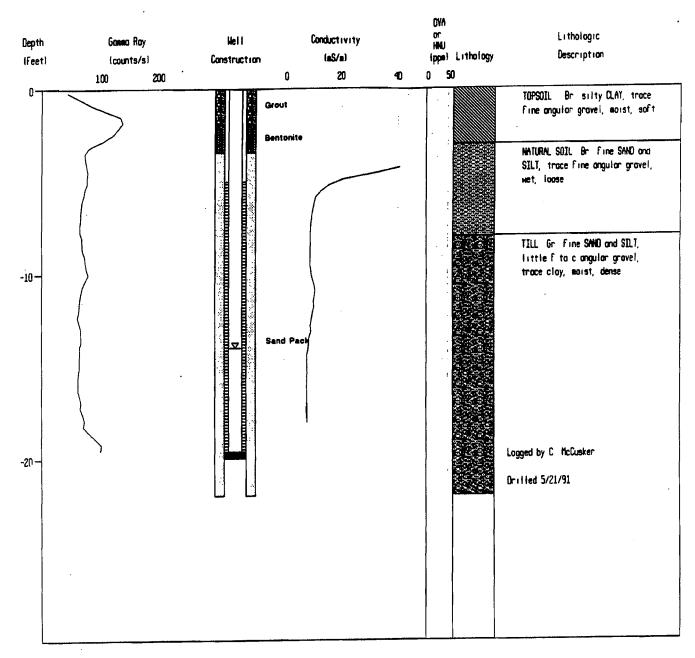

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Figure 26

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Figure 27

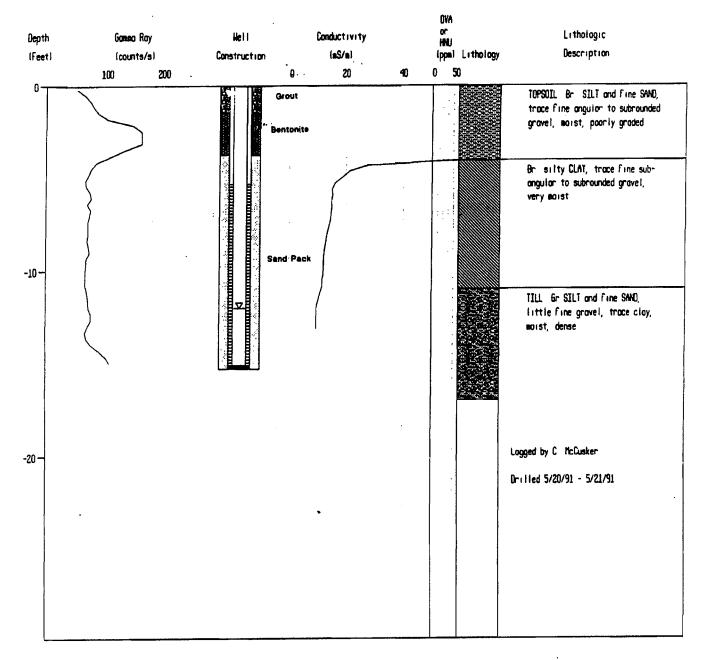
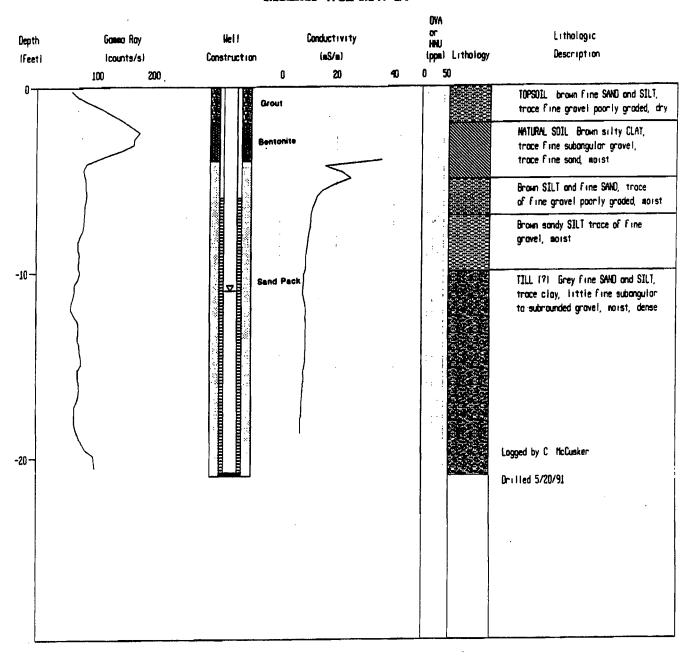

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

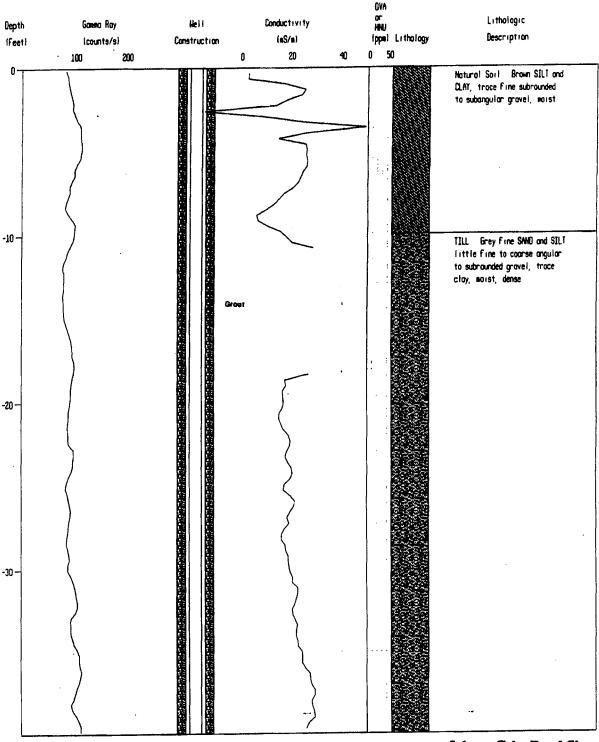
Figure 28

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482


Figure 29

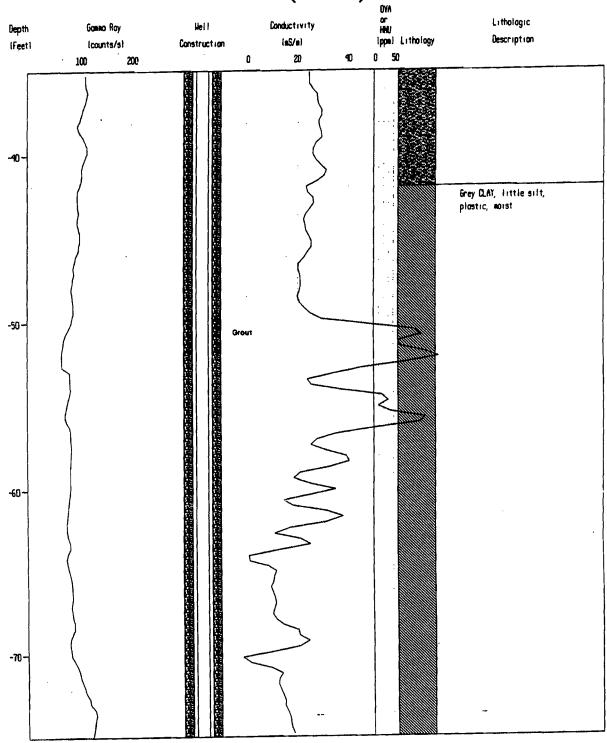
U.S. EPA Environmental Response Team Response Engineering & Analytical Contract: Contract No. 68-03-3482

Figure 30


Geophysical Well Logs, Well Construction, and Soil Stratigraphy For Monitor Well MW-14

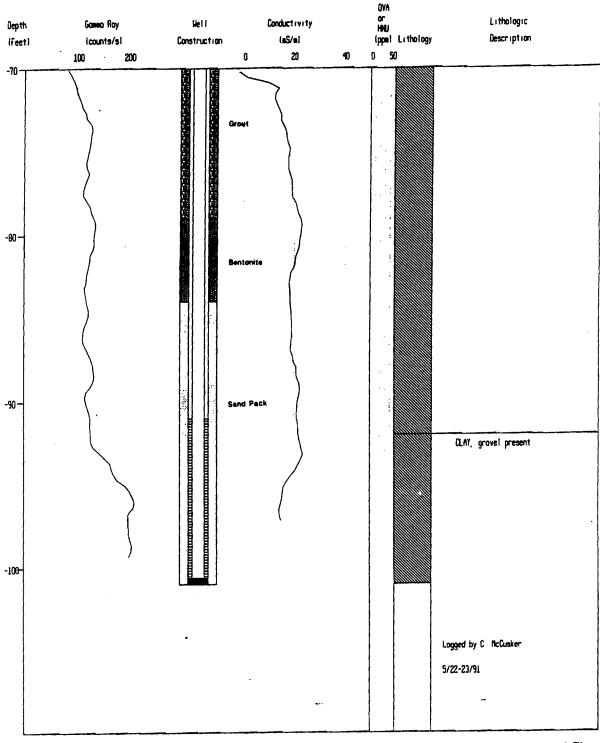
U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Figure 31


Grophysical Well Logs, Well Construction, and Soil Stratigraphy For Monitor Well MW-15 (0-40 Feet)

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Figure 31 Continued


Geophysic a well logs, Well Construction, and Soil Stratigraphy For Monitor Well MW-15 (35-75 Feet)

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Figure 31 Continued

Geophysical Well Logs, Well Constitution, and Soil Stratigraphy For Monitor Well MW-15 (70-110 Feet)

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Appendix A3: Historic Well Information from Removal Action Report – October 2006

S		SUR	FACE		Subsuri Log		Hole No.:	MW-2R				e started	• •
Cilera							Sheet	1 of 1		\A/mil	Date Depth	Finished	: 7/25/05 23.0' bgs
Client: Locati		Johnny	ech, Inc. Cake Road f Danube, NY		meu 100	or mves	stigation: 6 1/4" Hol	low-Stem Auger		Depth to	•		3.0' bgs
-		: 86361			lling Co.:			Driller: J. Grant D. Helper: C. Ross			-		Weather: Sunny
rojec	t Mgr	:: Pete	Johnson	Ge	ologist:	N/A		Drill Rig: Mobile B	-59		T	1 30/011	85 deg. f
Depth		Depth	Sample Blows	7-	Recovery	1		Sample			Depth	Well Details	Groundwate and Other
)を P は1 (代.)	No.	(ft.)	per 6"	"N"			D	escription		1	bg5		Observation
5						fine grav	: Moist, browi vel; trace silt;	n fine to coarse sand; so trace clay; trace organion	cs.	5' of 4" diameter Sch 40 PVC riser	0.5° 2.5°		6" Steel Stickup Bentonite Seal
10						coarse s	and; trace org			20' of 4" diameter			Yop of Screen at 3.0°
15										Sch 40, 0.01 slot, PVC well screen			GW at 17.5
20													Sand Pack No. 00N
25						·				4" diameter PVC plug	25.5' BOB		23.0' BOW
30													
35							 -		Mall C	elegii Mari			
mple` = Spl			2" by 2'	T≂ S	helby Tul	oe:			Cemen	ckfill Key t			Native Fill
= R	ock C	ore:			luger cut	_							a B
= AST	M D	1586		-					Sand				Bentonite

S	U	BSUE	RFACE		Subsur		Hole No.:	MW-2RR		Dat	e started	7/27/05
l	n	rilling So	lutions		Log		Sheet	1 of 1		Date	Finished	7/27/05
Client Locati			Tech, Inc. y Cake Road		Method	of inves	itigation: 6 1/4" Hol	llow-Stem Auger	We Depth to	ll Depth Screen		24.5' bgs 4.5' bgs
<u> </u>	<u> </u>	Town	of Danube, NY				•	· · · · · · · · · · · · · · · · · · ·				
Projec	t No	.: 86361	Į.	Dri	lling Co.:	SDS		Driller: J. Grant				Weather:
Denoise	+ Ma	r . Dok	Johnson	1	ologist:	B1/A		D. Helper: C. Ross				M-Sunny
riojec	I	II. PELE	Sample	loc	ologist.	N/A		Drill Rig: Mobile 8-59		Т	Well	80 deg. F Groundwater
Depth	一	Depth	Blows	Π	Recovery	1		Sample		Depth	1	and Other
(ft.)	No.	(ft.)	per 6"	"N"	(ft.)		D	escription		bgs	Details	Observations
									5' of 4"			6* Steel
	<u> </u>			L				n fine sand; some fine gravel;	diameter Sch 40	0.5		Stickup
						organics.		e sand; trace clay; trace	PVC riser	2.5'		Bentonite
						organica						Seal
5						1.5′-7.0′:	Wet, brown	silt and fine sand; little				Top of
				_		coarse to	medium san	d; trace clay; trace organics.				Top of Screen at
										Ì		4.5'
			····				': Wet, brown dium to coars	n silt and fine sand; little clay;				
10						u ace med	alum to coars	¢ \$41KJ.		1		
10									20' of 4"			
ŀ				-					diameter	L	H= 1	
ŀ	-					15 0'-25 A	li Mat arau	silt and fine sand; little fine	Sch 40,]		
ŀ	\dashv	 						coarse sand; trace day.	0.01 slot, PVC well			
15				\dashv				·	screen			
ŀ	7											
Ī				一								
				丁								Sand Pack No. 00N
20												NO. UUN
				\Box								GW <u>at</u> 20.3
L												<u></u>
L									4"	l	2 2	4.5' BOW
_									diameter			
25	_			\bot					PVC plug	25.0'		10°
_	-	•		4						вов	l l	diameter
	-									l		borehole
-	-+			-						l		
30	-			+						j	- 1	
30	+			-						- 1		
-	-			十								
-	-			_					1			
	1			1								
35	1			十					İ	1	ł	
mple 1						***************************************		Well B	ackfill Key	L	J	
= Spli					relby Tub			Ceme				Native Fill
R = Ro			0	A	uger cutti	ngs					PROGRAMM	
= AST	M DI	.586						Sand				Bentonite

S			FACE		Subsur Log	, 1100	e No.:	MW-4R		Date	e started:	7/26/0
	D	rilling Sol	utions	1	_	Sne		1 of 1			Finished:	
Client			fech, Inc.		Method	of investigat		_		Depth		23.5' bgs
_ocati	on:		Cake Road			6 1/	4" Hollow-	Stem Auger	Depth to	Screen	:	3. 5 ' bg s
			of Danube, NY				1					1
rojec	t No.	: 86361		Dri	lling Co.:	SDS		er: J. Grant				Weathe
					-11-4	A1 (A	4	elper: C. Ross				Overcast,
rojec	t Mgi	Pete	Johnson	JGe	ologist:	N/A	ווחטן	Rig: Mobile B-59		т	1 141-11	75 deg.
epth	 	D4-1	Sample Blows	т		1	Sam	nla		Depth	Well Details	Groundwa and Oth
(ft.)	No.	Depth	per 6"	"N"	Recovery (ft.)		Descri	•		bgs		Observation
11.7	NO.	(ft.)	per o	14	(12)		UGSCII	ption	5' of 4"	Dys		ODSEI Vau
		-		\vdash		0.0.400.000			diameter	1.5'		6" Steel
	\vdash			-				sand; little fine gravel l; trace organics.	Sch 40	2.5'		Stickup
				-		nac medium c	o cualas suns	, trace organics.	PVC riser	2.3		│ Bentonite
				 					1.			Şeal
5				\vdash		4.0'-7.5': Wet,	brown silt an	d fine sand; trace				Top of
				 		coarse to medi	um sand; trac	e organics.				Screen a
,				\sqcup								3.5
ļ				\vdash		7.5'-15.0': We	t, brown silt;	little fine sand and clay	.			
ļ									-			
10									1			
L									20' of 4"		-=	
L									Sch 40.			
							et, brown silt;	little fine sand and clay	/; 0.01 slot,			
						trace cobbles.			PVC well			
15 📗									screen			
						•	•		1			GW <u>at</u> 16.
										İ		-
									1 1	ı		Sand Pad No. 00N
0	-1			\Box								
										- 1		
Γ									4"		: 2	3.5' BOW
Γ									diameter			
5									PVC plug	25.0'	······································	
									1	вов		10" diameter
										j	1	porehole
											- 1	
										1	- 1	
0	\top			\top						- 1	1	
										1	ı	
	$oxed{T}$									}	Į.	
Γ	\Box											
				\top						- 1		
5											- [
nple	Гуре	5:						Well	Backfill Key			
= Spli	t Spo	on:	2" by 2'	= SI	helby Tub	ne:		Cem				Native Fil
= Ro) <u>A</u>	uger cutt	ings		1414141 9				
: AST	M DI	.586						San-	d			Bentonite

S			FACE		Subsur		Hole No.:	MW-6	5R		Dat	e started	7/25/0
	<u></u>	rilling So	utions		Log		Sheet	1 of	1			Finished	
Client			Tech, Inc.		Method		tigation:				Depth		23.0' bgs
Locati	on:		Cake Road				6 1/4" Hol	iow-Stem Auge	r	Depth to	Screen	1	3.0' bgs
Projec	t No	10Wn (of Danube, NY	Dri	lling Co.:	SDS		Driller: J. Grant					Weather
TOJEC	LINO	., 00201		1011	mig co	303		D. Helper: C. R					Sunny
Projec	t Mg	r.: Pete	Johnson	Ge	ologist:	N/A		Drill Rig: Mobil					85 deg.
			Sample					-				Well	Groundwat
Depth		Depth	Blows		Recovery			Sample			Depth	Details	and Other
(ft.)	No.	(ft.)	per <u>6"</u>	"N"	(ft.)	ļ		escription		5' of 4"	bgs		Observatio
		 		-		00 500	Maiet brauu	n fine sand; some fi	na armed	dlameter	1.0'		6" Steel
	 -	 		╁				e sand; trace organ		Sch 40 PVC riser	2.0		Stickup
	-	 		\vdash		1		•		LACHRE			Bentonite Seal
5		 		1						1	1) Jean
<u> </u>				1			Wet, brown e silt; trace o	fine to coarse sand roanics.	; trace				Top of
							- only makes to	. 2=11.4At		1			Screen at 3.0'
İ						8.0'-14.5'	: Wet, brown	n fine to coarse san	d; little				- /-
[fine grave	el; trace day;	trace silt; trace org	ganics.				
10													
										20' of 4" diameter			
ļ									d:	Sch 40,			
-				┝╌┤				fine sand; little med ; trace sllt; trace or		0.01 slot, PVC well	i		
<u>.</u>				├ ─┤			,	,	33	screen			
15													GW <u>at 17.0</u>
 		 -		$\vdash \vdash \vdash$					ĺ				J. 1 2 1 1 1
F				-									
-													Sand Pack
20	\exists			1				•		1	į		140.0014
									1				
]	1	1		
				\perp					ŀ	. 4 ^M	ĺ	具片	23.0' BOW
	\bot			_						dlameter PVC plug			
5	_								ĺ	Frag	25.0' BOB	<u> </u>	. 10"
-	-+	-		-+					}		555		diameter
-											- [1	borehole
-		\dashv		十									
30 F	十			+						ŀ		1	
1										İ	ļ	- 1	
	\Box									ł	- 1		
									1				
									j]	}		
5										1000			
nple 7			7/1 1/21 -	r_ c	haller Tub		1			ckfill Key			Matter Elli
= Spli . = Ro					helby Tub uger cutt				Cemen	τ			Native Fill
- AST			··	J 7	ager cutt	11193			Sand				Bentonite

TES	TROR	ING LO	2	AGENCY	,					
COMPANY	NAME	ING LOC	<u> </u>	70011.00					HOLE NUMBER MW-16	
Weston PROJECT N	Solutions			SJB	UBCONTRA Service	CTOR		SHEET		
	Cake Road					SITE	LOCATION		1 of 3	
Bill Bos	RILLER					He	rkimer Count	ty, NY		
NAME OF G						No	rth - 475724	6.377 (m): Fa	st 511679.797 (
R. Moul						SIGN	ATURE OF GEOLOG	GIST	011019.191	<u>''')</u>
CME 85	ize of drilling a 0 track mour	IND SAMPLING EQUI	PMENT	······································			STARTED	DATE COMP	ETED	
		••				9/23	3/03 ACE ELEVATION	9/23/03		
						1 237	7.748 (m)			
						DEPTI 6 ft.	TO FIRST ENCOU	NTERED WATER		
OVERBURDE	N THICKNESS/ DEF	TH TO BEDROCK						LAPSED TIME AFTER	DRILLING COMPLETED	
DEPTH DRILL	ED INTO BEDROCK	(ASUREMENTS (SPE		
TOTAL DEPT	OF HOLE					ŀ			(IFY)	
GEOTECHNIC	AI SAMPLES	6.0'				İ	FLUID LOSSES			
	or ormir EEG		SAMPLE DEPTH	UNDISTURBED	VDISTURBE	D	TOTAL NUMBER	OF CORE BOXES		
ENVIRONMENT	(N. 0411 -1									
CHAILCHWEN	ial samples		SAMPLE DEPTH	ANALYTES					TOTAL CORE RECOVER	V &
			 							
DISPOSITION O	FHOLE		BACKFILLED	MONITORING W	E) 1	1046				
DATE	STARTTIME	FINISH TIME				LAS	ING TYPE	WELL DEPTH	SCREENED INTERVAL	
		I stion time	DRILLI	NG DEPTH				DESCRIPTION		
	ļ									_#
										-
KETCH (F DRILLING	G LOCATION	/ADDITIONA	COMME	NTC					7
a.			"ADDITIONA	r Countie	412	SC	CALE:	Not T	o Scale	7
										ı
			Soo Soil	Doring L						
			066 3011	Boring L	ocatio	n Ma	ıp			ı
						•				I
										1
			•							
										l
OJECT										[
^hnny Cake	Road					t	E NO.			ı
						M	<i>N</i> -16			

RECOVERY SYMBOL MUNSEL DESCRIPTION OF MATERIALS PID READINGS LITHOLOGY DRILLING REMARKS	DEPTH	***************************************	Johnny Ca			GEOLOG R. Moult			HOLE NUMBER 3
0 Index	DEPIN	INTERVAL/ RECOVERY/	BLOW	USCS SYMBOL	MUNSELL COLOR		PID READINGS	LITHOLOGY	2 of 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	- IME	-	+'				LITHULUGY	DRILLING REMARKS
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	, 1		'	1	C-II	+		
2 25 Sample MW-16A Sample MW-16A Sample MW-16A 4 3 Sample MW-16A 4 4 Wet to saturated 1.4 5 12 10 12 15 25 8 3 Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated 10 Sample MW-16B 11 Sample MW-16B 12 Sample MW-16B 13 Sample MW-16B 14 Sample MW-16C 15 Sample MW-16C 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 13 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 13 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 13 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 1	-	, 1	3	,			4.5		j
2 — 4 4 4 3 5.7	1	, ,	25 25	,			4.2		
4 —	2		1	,	1	,			
4 3 5 5 7 4.4	- 1	,		,	1		1 1		
4 5 4 4 Wet to saturated 1.4 0.4 0.5	1	J	1 2	1	r				Sample MMAL 46A
## Company of the state of the	- 1	J	1 5	,	1				Carrible MAA-104
6	4				1		4.4		
6	1		3 ']]	1	1			
6 4 10 10 12 12 12 12 12 13 14 16 15 10 10 12 12 15 15 12 15 15 16 17 18 19 18 19 18 16 18 10 10 10 10 10 10 10 10 10 10 10 10 10	1		4	1)	i ,	1	1 44		
8 10	.	Ì		1 1	1	Wet to saturated			
8 12 15 15 16 25 17 18 17 18 18 19 18 18 19 18 18 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	9	1	. 10	1 1	,	1	0.5		
8 25			10 ,	1 1	, ,	1	1		
8 25 Sample MW-16B 10 21 18 19 11 21 18 19 12 22 10 12 3 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.3 Sample MW-16D 5.4 Sample MW-16D 5.4 Sample MW-16D 5.5 Sample MW-16D 5.6 Sample MW-16D 5.7 Sample MW-16D 5.8 Sample MW-16D 5.9 Sample MW-16D 5.9 Sample MW-16D 5.0 Sample MW-16D 5.0 Sample MW-16D 5.1 Sample MW-16D 5.2 Sample MW-16D 5.3 Sample MW-16D 5.4 Sample MW-16D 5.5 Sample MW-16D 5.6 Sample MW-16D 5.7 Sample MW-16D 5.8 Sample MW-16D 5.9 Sample MW-16D 5.9 Sample MW-16D 5.0 Sample MW-	1		15	1 1	,	1	128	ı	
Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated 10 10 12 12 14 15 16 16 17 18 19 10 11 11 11 12 12 13 14 15 16 17 18 19 18 19 19 10 11 12 13 14 15 16 17 18 18 19 19 10 11 12 13 14 15 16 17 18 18 19 19 10 10 11 11 12 13 14 15 16 17 18 18 19 19 10 10 10 11 11 12 13 14 15 16 17 18 18 19 19 10	Ω		25			1	5.2	'	Sample MW-16B
10	,		3 1			Till; CL, clay, silty, low to moderate	1		
10	1		11		,	plasticity, firm to stiff, wet to saturated	1	,	
10 — 10	1		12	1	,		22.3	,	
12 8 5.0 Sample MW-16C 12 8 5.4 2.7 14 21 18 19 22 16 Sample MW-16C 5.0 Sample MW-16C 5.0 Sample MW-16C 5.1 2.	10	1	10 /	1	•	1	36.8	,	Comple SEAL 100
12 9 9 14 5.4 2.7		1	22	1	1	1	5.0	,	Sample MW-16C
12 —		-1	9	1	ļ	1	<i>i</i>	,	1
12 — 8 12 12 13 15 15 15 18 19 22 Fine sand lenses Sample MW-16D Sample MW-16D	-	ł	9	1	J	1	,	Ţ.	1
14 21	12	1	14	1		1	5.4	J	1
14 15 12 15 3.9 1.8 1.4 18 19 22 16 21 16 21 17 17 18 19 22 16 21 18 19 22 16 21 18 19 22 16 21 18 19 22 22 23 24 25 25 25 25 25 25 25	1			<i>i</i>			2.7	Ţ.	l
14 21	I		12	$i = \frac{1}{2}$	 	Fine sand lenses	3.5	,	1
21 18 19 22	1	1	12		J	ino dana lenges	3.9	,	Sample MM 460
16 21 18 19 22	14				1			J	Jampie MM-10D
19 22	I		21		1		1.4	I	í
16 22	1		18	.			I		i
16			22				ı	1	
OJECT NAME: Johnny Cake Road	O IECT !	AIAAAE.			I			1	

2000	1				GEOLOGIST:			HOLE NUMBER MW-16
DEPTH	INTERVAL/ RECOVERY/ TIME	BLOW	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MATERIALS			SHEET:
	TIME		STMBUL	COLOR	- INTERIALS	PID READINGS	LITHOLOGY	3 of 3 REMARKS
	!	12		1	hard, grey, moist			
1	['	14 14	1 1	1	The Gray, Horse	0		
	1 1	15	1	1		0	1	
18	i 1		1 1	1		0	1	
	i 1	12	1 1	1			1	
j	1 1	15 14	1 1	i		1 , 1	1	
	1	15		i		0	l	
20			1 1	i		0	l .	
I	, ,	21 18	1	ı			I	Sample MW-16E
1		16	1 1	,		1 24 1		
22		20			l	3.4 4.4	1	
22		100	1 1	,		11.1	i i	
1		18 25 25	1 1	'	1	1 1		Sample MW-16F
1	1	25		'	1	2.5 3.0 2.9 1.7	1	
	· 1	30/0	1	,	1	3.0	1	
24	l	I	1	,	1	1.7		
	1	22	1	1			1	
1	į	24 25	1 1	,		1)	l
		25 43	<i>i</i> 1	1	Tatala u and	0.1	}	1
26			i = 1	,	Total Depth 26 ft.; groundwater at 6 ft.	0.1		Sample MW-16G
l	1		, 1	,	1	1 1	İ	i
	l	[ı İ	1	ı		1	i
28	1	1	, [1	ı		1	,
20			.			1		
1	ĺ	I	.					
]	.		ı			
30				I	,	1		
~ -	1	1		1	·		1	
	1	1			,	1	İ	
1	1	- 1	1	1	,			
32	ļ				1			
DIFCT	NAME: Jo	ohnny Cake				i	1	

TEC	TDAR	INO : G		LAGENCY	-			
COMPANY	PUBUK	ING LO	j	AGENCY				HOLE NUMBER
	NAME 1 Solutions			DRILL SUBCON	TRACTOR		SHEET	MW-17
PROJECT N	AME		·	SJB Serv				1 of 4
Johnny	Cake Road					ELOCATION Prkimer Coun	to AIV	
iame of di Bos۱القر	RILLER				HOL	E LOCATION	ty, IN Y	
NAME OF G	OLOGIST				N	orth - 475724	6.271 (m); Eas	st - 511679.367 (m)
R. Mouli	t				SIGI	NATURE OF GEOLO	GIST	(111)
CME 85	ize of drilling a 0 track mour	ND SAMPLING EQUI	PMENT		DAT	E STARTED	DATE COMPL	ETED
OWIE GO	o track inour	К				4/03	9/25/03	2125
						FACE ELEVATION 7.233 (m)		
					DEPT	H TO FIRST ENCOL	INTERED WATER	
OVERBURDE	N THICKNESS/ DEP	TH TO BEDROCK			6 fi	t.		
Ĭ					DEPT	H TO WATER AND I	ELAPSED TIME AFTER	DRILLING COMPLETED
DEPTH DRILL	ED INTO BEDROCK				OTHE	R WATER LEVEL M	EASUREMENTS (SPEC	IFY)
TOTAL DEPTH	OF HOLE							··· • ,
	4(0.0'			TOTAL	L FLUID LOSSES		
GEOTECHNIC	al samples		SAMPLE DEPTH	UNDISTURBEDIDIST	JRBED	TOTAL NUMBER	OF CORE BOXES	
			ł					
ENVIRONMENT	TAL SAMPLES		SAMPLE DEPTH	ANALYTES				
				AVALITES				TOTAL CORE RECOVERY %
	···		 					
DISPOSITION	F HOLE		BACKFILLED	MONITORING WELL	164	SWO TYPE		
DATE					~	SING TYPE	WELL DEPTH	SCREENED INTERVAL
DATE	START TIME	FINISH TIME	DRILL	NG DEPTH	T		DESCRIPTION	
		 	 		 			
					 			
			····		 -			
KETCH (OF DRILLING	G LOCATION	/ADDITIONA	L COMMENTS	1	CALE:		
						CALE:	Not I	o Scale
				•				
								į
								ĺ
			Son Call	Davina I	47			
			266 201	Boring Loca	ition M	ap		
								į
								· ·
								1
								#
						•		
OJECT								
าhnny Cak	o Bood					OLE NO.		
anny Cak	e voad				11	WW-17		

ROJE	ORING	Johnny Cal			ONTINUATION SHET			HOLE NUMBER	,
DEPTH	INTERVAL/ RECOVERY/	BLOW	USCS	MUNSELL	Tr. IVIOUIT			SHEET:	0 -5 4
	TIME		SYMBOL	COLOR	THE PROPERTY OF MINISTRALS	PID READINGS	LITHOLOGY	DRILL	2 of 4 ING REMARKS
0	!				Colluvium; CL. clav, silty low placticity	+			
2		Auger to			Colluvium; CL, clay, silty, low plasticity, brown, soft to firm, v. moist, small angular gravels (10 % + 4) to cobbles				
_		27		ĺ			I		
4									
6 —					Wet to saturated				
							!		
8					Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated				
10									
12									
14					Fine sand lenses			ł	
		1							
6		1	1		1	1			
JECT	NAME: Jo	lohnny Cake				<i>i</i>			

ROJECT NAI	ME:	LOG			GEOLOGIST:			HOLE NUMBER MW-17 SHEET:
OEF IN	INTERVAL/ RECOVERY/ TIME	BLOW	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	3 of 4 REMARKS
		! -			hard, grey, moist			
18								
20 —								
22					·			
		ļ						
24		10 18 15			Same as above; rock fragments			
26		17 10 17				0		Sample MW-17F
28		22 30 2 7				0		
30 —		11 15				0		
32	NAME: Jo	9 25 31 28 Ohnny Cake				0.9 0		Sample MW-17G

OJECT NAI					GEOLOGIST:			HOLE NUMBER MVV-17
DEPTH	INTERVAL/ RECOVERY/ TIME	BLOW	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	SHEET: 4 of 4 REMARKS
		10 26 33 21			hard, grey, moist	0		
34						0 0.3 0		Sample MW-17H
		9 35 34 28						
36						0 0		
_		14 37 29						
38		32				0 0.1		Sample MW-17I
		12 42 48 37				0 0 0		
40		37			Total Depth 40 feet; groundwater at 6 ft.	0		Sample MW-17J
42					·			
14 —								
6		·						
8	NAME: Jo	hnny Cake						

TEC	TPAR	NO LO		AGENCY				
	DUK	NG LO	خ	MOENCY				HOLE NUMBER
Weston	NAME Solutions			DRILL SUBCONT	RACTOR		SHEET	MW-18
PROJECT N	AME			SJB Servi				1 of 3
Johnny	Cake Road			-		E LOCATION		
					HOI	erkimer Count	y, NY	
III Bosy					N	orth – 47572 4	(0.290 /m)· Ea	ct E11657.000 ()
R. Moult					SIGI	ATURE OF GEOLOG	GIST	st - 511657.038 (m)
TYPE AND SI	ZE OF DRILLING A	ND SAMPLING EQUI	PMENT					
CME 850	track moun	nt				e started 6/03	DATE COMPL	ETED
						ACE ELEVATION	9/29/03	
- 1					23	7.444 (m)		-
- 1					DEPT	H TO FIRST ENCOU	NTERED WATER	
OVERBURDE	THICKNESS/ DEP	TH TO BEDROCK		<u> </u>	9 f			
DESTINATION OF					JOEP!	H TO WATER AND E	LAPSED TIME AFTER	DRILLING COMPLETED
DEPTH DRILL	ED INTO BEDROCK				OTHE	R WATER LEVEL ME	ASUREMENTS (SPEC	SEY)
TOTAL DEPTH	OF HOLE							en vy
	2	5.0'			TOTAL	FLUID LOSSES		
GEOTECHNICA	L SAMPLES		SAMPLE DEPTH	UNDISTURBED/DISTUR	RBED	TOTAL NUMBER	OF CODE BOYES	
ı			1			TOTAL HUMBER	OF CORE BOXES	
ENVIRONMENT	Al CAMPIEC	···						
	AL SAMPLES		SAMPLE DEPTH	ANALYTES	······································			TOTAL CORE RECOVERY %
			1	•				1
DISPOSITION O						·		
DISPUSITION O	F HOLE		BACKFILLED N	IONITORING WELL	CA	SING TYPE	WELL DEPTH	SCREENED INTERVAL
DATE	START TIME	FINISH TIME	55016					OUTTHED MIEKAME
		}	DRILLIN	G DEPTH	İ		DESCRIPTION	
								
								
'CKETCH C	F DRILLING	LOCATION	/ADDITIONAL	COMMENTS		CALE		
				COMMENTS	3	CALE:	Not T	o Scale
~								1
								i
Ī								
1								1
								İ
			See Soil I	Boring Locat	ion M	an		1
				y Local	-U11 1V	aγ		1
								j
								ł
								1
								Į.
								.[
								1
								1
								Į
ROJECT								i
Johnny Cake	Pood		-			PLE NO.		
	RUAU				N	™ -18		1

ROJE	·	Johnny Cal	ke Road		GEOLOGA. R. Moult			HOLE NUMBER 3
DEPTH	INTERVALI RECOVERY/	BLOW	USCS SYMBOL	MUNSELL		— <u>—</u>		SHEET:
	TIME	COUNT	SYMBOL	COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	2 of 3
0			+			1 ,	1	DRILLING REMARKS
1	1	2	,	1		 		
1	1 7	3	,	1	Colluvium; CL, clay, silty, low plasticity,		1	
1	1	3	,	1		ŏ	Ĺ	1
_	<i>i</i>	3	,	1	gravels (5 % + 4) to cobbles		1	1
2	, , , , ,		,	1		ŏ	i	l
J	, ,	3	1	f	1	1	I	
- 1	<i>i</i>	3	1	1	· i	0	ı	1
1	, J	4	1	1	· I	0	i	·
4		4 1	1	1	· i	0	ı	
Ī	. 1	, , '	1 1	1	1	0		Sample MW-18A
i		2 2		1	,	1		Cample MAA-104
1	1	2	1 1		,	1 , 1		1
1	1	2		4	Wet	0 0		1
6	i	_ 1		, · · · · · · · · · · · · · · · · · · ·	1	0		1
1	1	1 1	1	, 4	1	1 1	٠,	1
1	1	1 1	1	4	1	0	,	1
I	1	2	1	, , , , , , , , , , , , , , , , , , ,	1		,	1
	ì	2	1	, · · · · · · · · · · · · · · · · · · ·	· I	0		1
8	1	1	1	,	1		,	1
1	1	2	1	. · · · · · · · · · · · · · · · · · · ·	Colluvium: Cl. clay silly law startists	1	,	Sample MW-18B
I	1	6	1	, ,	Colluvium; CL, clay, silty, low plasticity, mottled, brown to black, stiff to hard, moist gravels (10 % + 4)	4.5	,	1
1	1	8 13	1	,	gravels (10 % + 4)		,	Sample MW-18C
10	1	15	1	,	1	0.4	,	1
1	ı	4	1	,	1	0.6	,	1
1	I	22		,	1	26	Ţ	1
I	[22	. 1	,	1	2.6 0.7	Ţ.	1
		25		J	1	0.7	. J	4
12	1	-		J	1	0.7	1	4
1	1	3		Ţ	1	· · ·)	4
1	1	11		J.	Till; ML, silt, low plasticity, fine sand		J	4
1	1	12	,)	Lenses, firm to stiff, saturated	0.3		4
14	i	11		j	, mili to still, saturated	1.3	J	Committee a man a man
	1	11	. 1	1	1	0.7	1	Sample MW-18D
į		13	1	.]		1	1	
[ł	14	-	1		<u> </u>	ì	
	1	13		I		0	ł	
16			1	1		0	[•
OJECT	NAME: J	ohnny Cake	e Road			ĭ	1	

OJEC1,	30RING				GEOLOGIST:			HOLE NUMBER MW-18
EPTH	INTERVAL/ RECOVERY/ TIME	BLOW	USCS Symbol	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	SHEET: 3 of 3 REMARKS
		11 12			hard, grey, wet to saturated			
		12 14				0 0		
18		8				0		
		12 11 14				0		Sample MW-18E
20		9				ŏ		
l		14 18 18						
22		18 16				0		
		20 16 22						
24		22				0		Sample MW-18F
26					Total Depth 25 ft.; groundwater at 9 ft.			·
8							·	
o								
2								
JECT	NAME: Jo	ohnny Cake	Road					

TES	TBOR	ING LO			AGENCY			-				
COMPANY	NAME	MO LO	<u> </u>		DDM - Company					HOLE NUMBER MW-19		
Westor PROJECT N	n Solutions				DRILL SUBCON SJB Serv	TRACTOR			SHEET			
				1		Si	E LOCAT			1 of 3		
'AME OF DI	Cake Road					H	erkime	r County	y, NY			
III Bos	worth								4 257 (m): Ec	257 (m); East – 511624.344 (m)		
R. Moult	•					SIG	NATURE	OF GEOLOG	IST (111), Ea	ist - 511624.344 (m)		
CNAL DE	ZE OF DRILLING A	AND SAMPLING EQUI	PMENT				E START					
CIVIE 00	0 track mour	nt					29/03		9/29/03	LETED		
İ							FACE ELI		15,25,00			
•						DEP	39.616 TH TO FIR	(III) ST ENCOUN	TERED WATER			
OVERBURDE	N THICKNESS DEF	TH TO BEDROCK				61	ft.					
1						DEP	TH TO WA	TER AND EL	APSED TIME AFTER	DRILLING COMPLETED		
DEPTH DKILL	ED INTO BEDROCK	K				ОТН	ER WATE	LEVEL ME	ASUREMENTS (SPE	(IFY)		
TOTAL DEPTH	OF HOLE						·			, ,		
GEOTECHNICA	2	4.0'					L FLUID L	OSSES				
OLO / ECHINO	C SAMPLES		SAMPLE DEPTH	UNDIS	TURBED/DISTU	RBED	TOTA	NUMBER O	F CORE BOXES			
L				1								
ENVIRONMENT	AL SAMPLES		SAMPLE DEPTH	ANALY	TES							
				1						TOTAL CORE RECOVERY %		
				 	······································							
DISPOSITION O	FHOLE		BACKFILLED	MONITO	ORING WELL	[C/	ASING TY	E	WELL DEPTH	SCREENED INTERVAL		
DATE	START TIME	FINISH TIME	Deni	ING DEP	-					SCREENED INTERVAL		
<u> </u>			I Drice	ING DEF	111			-	DESCRIPTION			
						 						
SKETCH C	E DELL IN	CLOCATION										
· (E) O) (. DIVILLIA	G LOCATION	VADDITIONA	L CO	MMENTS	S	CALE	:	Not T	o Scale		
										İ		
										8		
					•					į		
			Son Call	m						ŀ		
			266 201	ROL	ing Locat	tion M	ap			1		
										1		
										1		
										į		
										1		
										4		
										1		
												
OJECT				····]He	OLE NO.					
ohnny Cake	Road					i	/W-19					
·						, ,				H		

ROJ	_: :	Johnny Cal	ke Road		GEOLOG.	·	_	HOLE NUMBER 19
DEPTH	INTERVAL/	BLOW	USCS	MUNSELL	Tr. Moult			SHEET:
J	RECOVERY/ TIME	COUNT	SYMBOL	COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	2 of 3
0			+			1		DRILLING REMARKS
	1	1		1		++	-	
- 1	, 1		1 1	1	Colluvium; CL, clay, silty, low plasticity,	0		
1	. 1	2 2 3	1	1	Proving Solition III A World charter	0		İ
2	. 1	3	1 1	1	gravels (10 % + 4)	0		
-		1		i		0		Sample MW-19A
1	1	2		i				Cample MAA-184
I	ı	4 4		1		0		
. 1	1	5	1 1	i	,	0		ļ
4 -	1	· ,	1 1	4	1	l ŏ l		1
- 1		, 1 '			,			1
- 1	1	1 /	1		1	0		1
1	1	2 2			1	0		İ
6	1	· · · · · · · · · · · · · · · · · · ·	1	,	1	0		
1	j	2 2	1 1	,	1			Sample MW-19B
1	1	2	1	7	1	1		1
	1	3	1	,	1	0		
8		3	1	,	1	0		1
1		5	1	,	Till; CL, clay, silty, low to moderate	0		Sample MW-19C
- 1		8	. 1	,	plasticity, firm to stiff, wet to saturated		,	Sample MAA-18C
- 1		11		,	1	0		1
10 -	1	12		J	1	0		Í
	1	,	, [J	1	o l	1	1
	1	7 8	, [j	1			ĺ
- 1	I	7		ļ	1	1	1	1
40	1	10		1	,	0	1	1
12	1			i	,	ŏ	,	1
l	-]	10	1	1		_	j	l
ı		8		- 1			1	
- 1		13		1			İ	,
14	I	.		1	·	0	1	
[5 12		1	1	0	1	Sample MW-19D
j	1	12		1		1	1	• • • • • • •
l	1	15		i	1	i		
6		9		1	1		1	•
OJECT N	IAME: Je	ohnny Cake	Pood	L		0	j	

ROJEE. "	BORING				GEOLOGIST:			HOLE NUMBER MW-19
DEPTH	INTERVAL	BLOW	USCS	MUNSELL				SHEET:
	INTERVAL/ RECOVERY/ TIME	COUNT	USCS	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	3 of 3 REMARKS
18	·	15 14 13 16			hard, grey, moist	0		
20		8 8 5 12				0 0		Sample MW-19E
22		10 19 18 17				0 0		
24		15 22 25			Total Depth 24 feet; groundwater at 6 ft.	0 0 0 0		Sample MW-19F
26								
28								
30								
32	NAME: Jo	ohnny Cake						

COMPANY NA	ME	NG LO	3	AGENCY				HOLE NUMBER MW-20
Weston	Solutions	***		DRILL SUBCON SJB Servi	FRACTOR		SHEET	
PROJECT NAME Johnny C	ME Cake Road			1 DOD OCI VI	SIT	E LOCATION		1 of 3
3III Boswe					HOI	erkimer Coun		
NAME OF GEO	LOGIST			·	l N	orth - 47572	80.234 (m); Ea	st - 511634.312
R. Moult	E OF DRILLING A	ND SAMPLING EQU			SIG	NATURE OF GEOLO	GIST	
CME 850	track moun	it St	PMENT			E STARTED	DATE COMPL	.ETED
				•	SUR	FACE ELEVATION	10/01/03	
					23	3.239 (m) TH TO FIRST ENCOU		
OVERBURDEN 1	THICKNESS/ DEP	TH TO BEDROCK	· · · · · · · · · · · · · · · · · · ·		6 f	t.		
					DEPT	H TO WATER AND	ELAPSED TIME AFTER	DRILLING COMPLETED
HEPTH DRILLED	NTO BEDROCK				OTHE	R WATER LEVEL M	EASUREMENTS (SPE	(FY)
OTAL DEPTH O								
EOTECHNICAL	24.	0'			- 1	L FLUID LOSSES		
	OAMI' LLO		SAMPLE DEPTH	UNDISTURBEDIDISTUI	RBED	TOTAL NUMBER	OF CORE BOXES	
A/PDOMMETERS								
VIRONMENTA	L SAMPLES		SAMPLE DEPTH	ANALYTES	······································			TOTAL CORE RECOVE
POSITION OF I	HOLE		BACKFILLED	MONITORING WELL				
DATE T	START THE	T			CA	SING TYPE	WELL DEPTH	SCREENED INTERVAL
DAIE	START TIME	FINISH TIME	DRULLII	IG DEPTH	Γ		DESCRIPTION	l
			<u> </u>	······································				
ETCH OF	E DOLL IN	21004===						
	DKILLING	3 LOCATION	I/ADDITIONAL	COMMENTS	S	CALE:	Not T	o Scale
			·				•	
				•				
		4.						
			_					
			See Soil	Boring Locat	ion M	ар		
				_ :	•	•		
			*					
Ť			٠					
e r nny Cake i	Road				ļĸc	DLE NO.		

ROJ	E:	Johnny Cal	ke Road		GEOLO B MOUNT	Manager 1, 1981		HOLE NUMBER .J
DEPTH	INTERVAL	BLOW	USCS	MUNSELL	T. IVIQUIT			SHEET:
/	RECOVERY/ TIME	COUNT	SYMBOL	COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	2 of 3
0 —	,	 	+			1 1		DRILLING REMARKS
į	1	1	1 1	1		+		
J	1	2	1	1	Colluvium; CL, clay, silty, low plasticity,		ı	
1	1	3	1 1	1	brown, soft to firm, v. moist, small angular gravels (5 % + 4)	1	I	
2	1	3	1 1	i	9.41010 (0 /0 : 4)		i	1
-	1	3		i		0		
1	, , , , ,	3		i	1			
1	, t	4	1 1	i	'	1		
4	, 1	5	1 1	i		0		
I	,	3	1 1		1	0		Sample MW-20A
- 1	. 1	3			1	1		, , , , , , , , , , , , , , , , , , ,
1		3	1 1	1	1		,	
6	J	3		,	1	0	1	1
!	Į.	4	1 1	•	1	0	<i>!</i>	1
1	1	3	1	,	1	0		1
1	1	3	1 1	,	1	o o	1	1
8	1	3	1	,	1	0	1	1
1		. 1 /	1	,	Thin sand lense, micaceous, saturated	0	1	Sample MW-20B
1	l	4		J	- 1	0	ļ	1
ı	-	4	1	J	1	3.0	I	1
10		4	.	J	1	3.4	. 1	Sample MAIA COO
1	1	1		1	1	1.7	I	Sample MW-20C
	1	3	,	ŀ	ITill: Cl. clay silb; laws.	0	J	
1	1	5	. 1	1	Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated	i	1	
12	1	ĭ	1	1	, wor to saturated	0.5	1	
	I	14	1	I		0.8	1	
1	1	15	1			0		
- 1	1	17 21		1		0	1	
14	I	- '	1	ĺ	1	0	1	
1	1	5	1	1	1	0		
1	1	9			1		1	
	1	8		- 1		5.3	l	Samula MALORA
16				1		5.0 5.2	1	Sample MW-20D
OJECT N	NAME: J	ohnny Cake	Road			5.2	J	

ROJECT NA	BORING	3 LOG		(CON	TINUATION SHI			
					GEOLOGIST:			NUMBER MW-20
DEPTH	INTERVAL/ RECOVERY/	BLOW COUNT	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MA			SHEET:
	TIME	COUNT	SYMBOL	COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	3 of 3 REMARKS
18		22 22 13 15			hard, grey, moist , rock fragments			
	 -	18 16 15 12				3.8 1.3 0		Sample MW-20E
20		95 25 33 53			Cobbles at 20 ft.	0		·
22		53 31 31 49 52				0		
24		52			Total Depth 24 feet; groundwater at 6 ft.			Sample MW-20F
26							·	
28					, ·			
30								
2								
DJECT	NAME: Jo	hnny Cake	Road				1	

TABLE 12 - GPS DATA

JOHNNY CAKE ROAD SITE DANUBE, NY

October 14, 2003

Table Reference North/East Coordinates for Universal Transverse Mercator, 18 North, WGS 1984 Datum

LOCATION II	NORTH (m)	EAST (m)	ALTITUDE (m) (MSL)	COMMENTS
MW-16	4757246.377	511679.797	238.113*	Groundwater monitoring wel
MW-17	4757246.271	511678.367	238.046*	Groundwater monitoring wel
MW-18	4757240.290	511657.038	238.890*	Groundwater monitoring well
MW-19	4757224.257	511624.344	240.069*	Groundwater monitoring well
MW-20	4757280.234	511634.312	234.510*	Groundwater monitoring well
JCRS-029	4757255.629	511618.363	234.399	Soil boring
JCRS-030	4757260.770	511637.922	235.899	Soil boring
JCRS-031	4757263.007	511645.359	235.906	Soil boring
JCRS-032	4757291.190	511675.318	230.511	Soil boring
JCRS-033	4757277.829	511681.285	232.276	Soil boring
JCRS-034	4757266.103	511668.529	235.858	Soil boring
JCRS-035	4757256.340	511641.826	235.969	Soil boring
JCRS-036	4757242.478	511692.323	236.805	Soil boring
JCRS-037	4757236.415	511694.202	237.907	Soil boring
JCRS-038	4757225.848	511692.692	239.362	Soil boring
JCRS-039	4757232.055	511681.332	239.301	Soil boring
JCRS-040	4757243.501	511666.606	237.493	Soil boring
JCRS-041	4757233.112	511653.415	238.946	Soil boring
CRS-042	4757213.058	511657.582	240.514	Soil boring
CRS-043	4757220.914	511671.142	240.336	Soil boring

Table 1 Monitor Well Information Johnny Cake Road October 2006

Monitor Well	Ref. Point Elevation	Diameter	Screen Interval	-
	(feet-AMSL)	(inches)	(feet-bgs)	
		(1101105)	(lect-ogs)	-
MW-1	782.49	2	2 - 12	-
* MW-2 *	793.01	2	3 - 13	-
MW-2R	NA	2	3 - 23	-
MW-2RR	NA	2	4.5 - 24.5	-
MW-3	791.16	2		1
* MW-4 *	NA	NA NA	3 - 13 NA	1
MW-4R	NA	2		ı
* MW-6 *	789.55	2	3.5 - 23.5	l
MW-6R	NA	2	3 - 13	l
MW-7	791.27	NA	3 - 23	ĺ
MW-8	768.87	NA NA	4 - 24	1
MW-9	769.27	NA NA	NA NA	
MW-10	752.25	NA NA	2 - 12	
MW-11	750.29	4	2.5 - 17.5	
MW-12A	768.91	4	5 - 20	
MW-13	768.25	4	10 - 20	
MW-14	768.91	4	5 - 15	
MW-15	746.65	$\frac{7}{2}$	6 - 21	
MW-16	781.21	4	91 - 101	
MW-17	780.99	4	15 - 25	
MW-18	783.76	4	30 - 40	
MW-19	787.63	4	15 - 25	
MW-20	769.39	4	15 - 25 14 - 24	

AMSL - above mean sea level

bgs - below ground surface

NA - data not available

MW-15 - sand packed to 83 feet bgs

* Note: MW-2 and MW-6 no longer exist. They were removed during soil excavation activities in June/July 2005. MW-4 could not be found. The preceding wells were replaced with the "R" series wells in July 2005.

Appendix A4: Soil Data Tables & Figures from Removal Action Report – October 2006

TABLE 1 THNNY CAKE ROAD SITE , Herkimer County, New York

Septic Tank Excavation

NYSDEC	ST-01	ST-01	ST-02	ST-02	ST-03	ST-03	ST-04	ST-04	ST-05	ST-05
TAGM*	17.0-17.5									17.0-17.
(ppm)	07/06/2005									
	1.02	3.68	1.01	4.27	1.01	4.42	1.02	4.31	500	2000
0.11	0.032	0.065	0.022	0.051	0.025	0.059	0.028	0.055	ND	ND
2.7	0.0012 J	ND							1	ND
0.2	0.046	0.004 J	ND	ND	0.014		0.0057	0.004 J	37 E	60
0.1	0.00087 J	0.0033 J	0.0084 J	0.0037 J	0.0012 J			0.0034 J		ND
	0.00067 J	ND	ND	ND	ND	ND	ND	ND	0.3 J	0.48 J
	0.0092	ND	ND	ND	0.01	0.0038 J	0.0029 J	ND	3.1	1.9 J
	ND	ND	ND	ND	0.0038	0.0043 J	ND	ND	0.53 J	1 J
0.7	ND	ND	ND	ND	0.00078 J	ND	0.00087 J		1.1 J	2.2 J
	ND	ND	ND	ND	ND	ND	ND	ND	14	26
0.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5.5	ND	ND	ND	ND	ND	ND:	ND	ND	ND	ND
1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NVSDEC	ST-06	ST-07	ST-08	ST-08	ST-08	ST-09				•
1	,						1			
1						07/06/2005	.1			
(ppiii)	1						1			
	,	1.02	0.0	10.2		000				
0.11	0.0094 J	0.0042 J	0.84 J	0.084 J	ND	ND				
2.7	ND						_]			
0.2							4			
0.1	ND									
0.2	0.0027			4			1			
0.12	0.077									
1.4	0.00083 J]			
0.7	0.0032	0.057					_			
1.5	0.007	ND	ND							
0.3	0.0016 J	ND	ND	ND	ND	ND	-[
1 0.3										
5.5	0.00055	ND ND	ND ND	ND ND	ND ND	ND ND]			
	TAGM* (ppm) 0.11 2.7 0.2 0.1 0.2 0.12 1.4 0.7 1.5 0.3 5.5 1.2 NYSDEC TAGM* (ppm) 0.11 2.7 0.2 0.1 0.1 0.2 1.4 0.7 1.5	TAGM* (ppm) 17.0-17.5 (ppm) 07/06/2005 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	TAGM* (ppm) 17.0-17.5 17.0	TAGM* (ppm)	TAGM* (ppm) 07/06/2005	TAGM* (ppm)	TAGM* 17.0-17.5	TAGM* 17.0-17.5 17.0.0032 17.00068 1 10.0006 1	TAGM*	TAGM'

NOTES:

* - Soil Cleanup Objectives to Protect GW Quality ppm - parts per million ND - not detected

J - Analyte Detected Below Quantitation Limits E - Value Above Quantitation Range

Shading - result exceed cleanup criteria

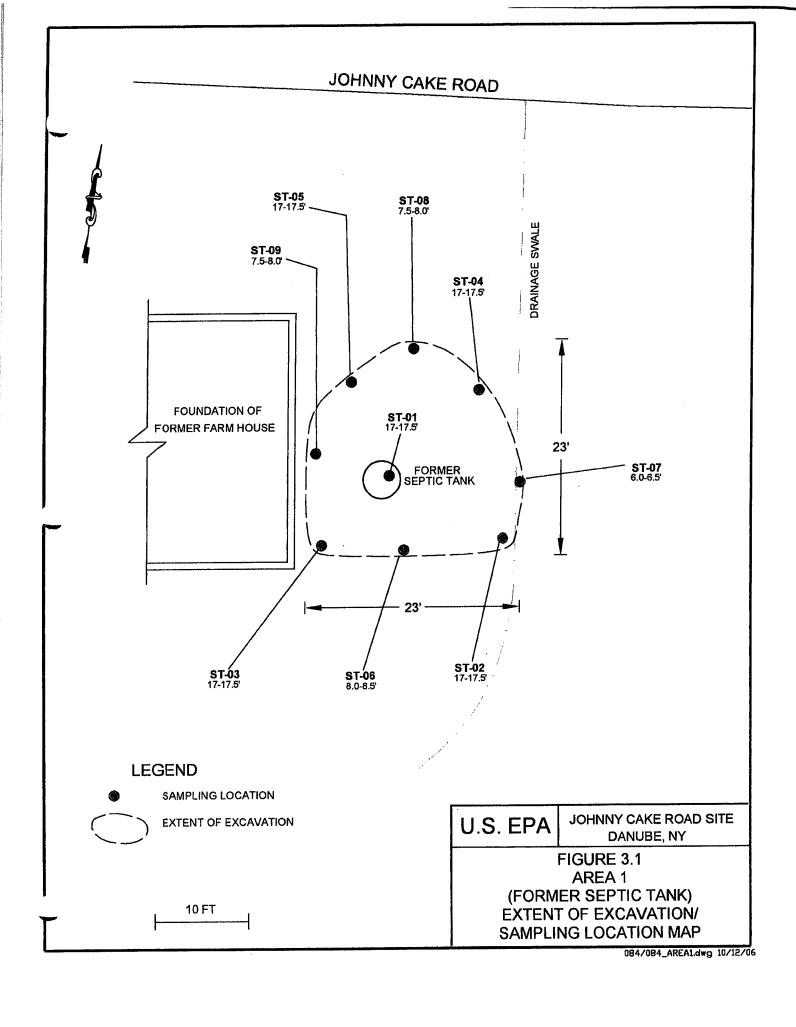
TABLE 2 JOHNNY CAKE ROAD SITE Danube, Herkimer County, New York

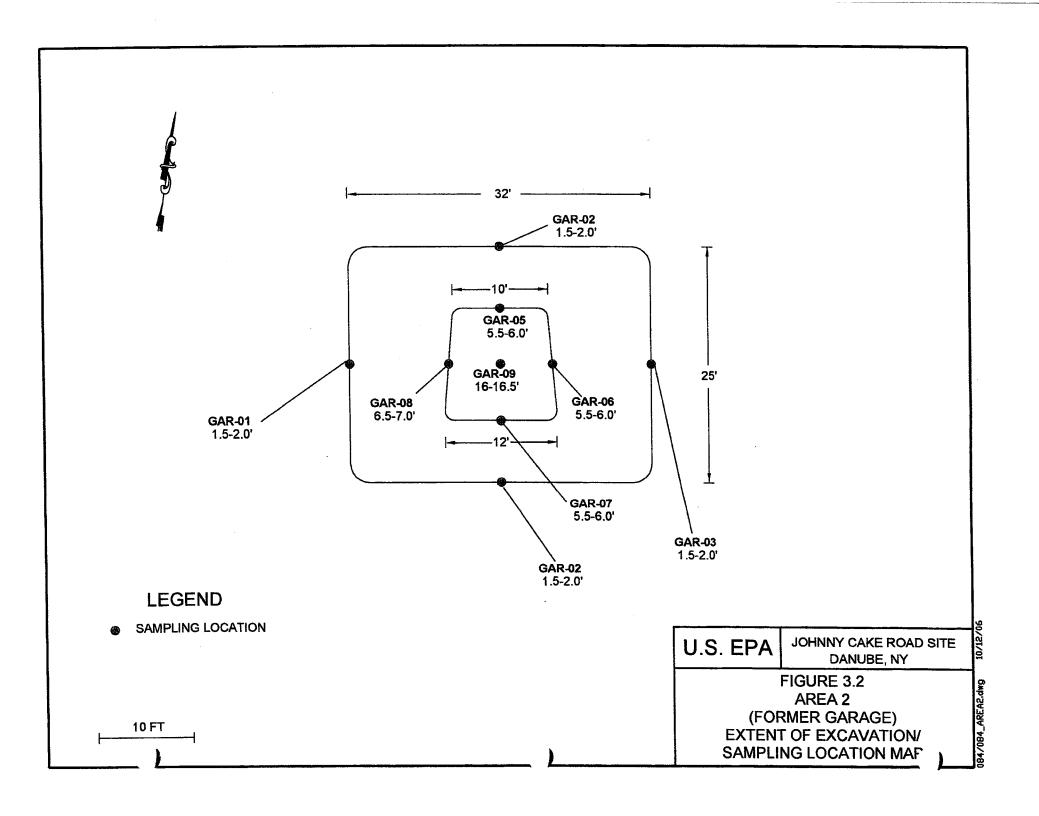
GARAGE AREA EXCAVATION

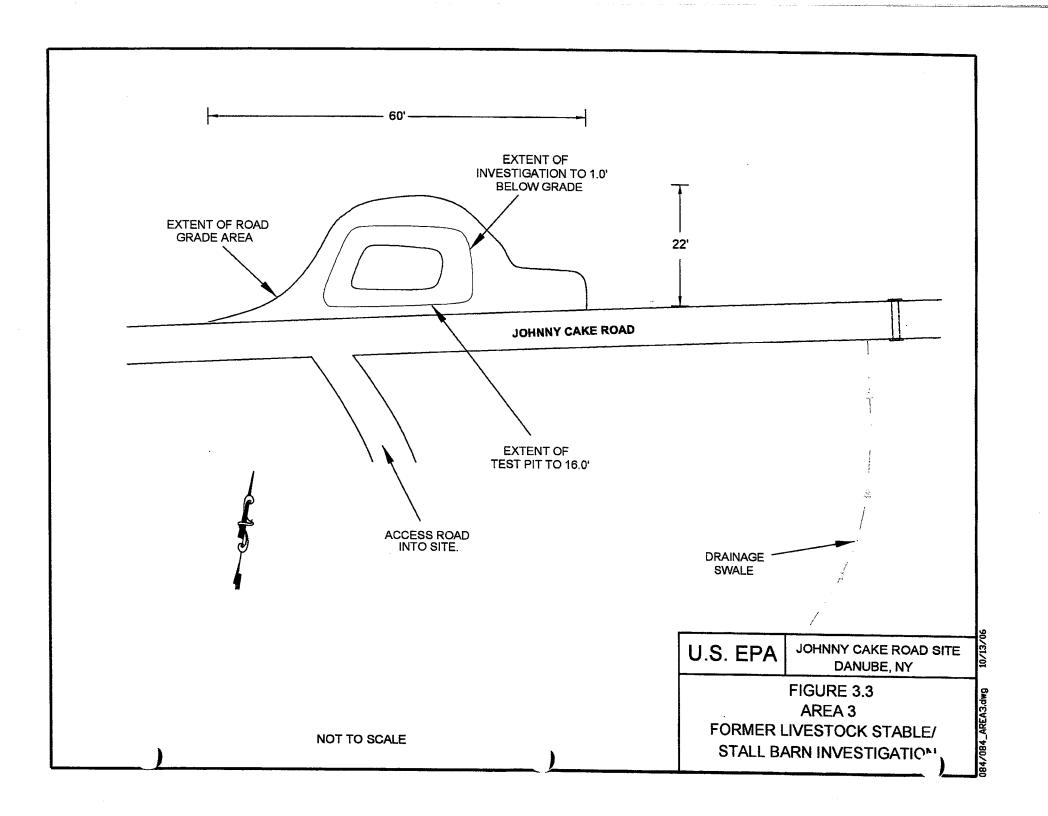
Sample Number Sample Depth (ft) Date Sampled Dilution Factor	NYSDEC TAGM* (ppm)	GAR-01 1.5-2.0 07/06/2005 0.99	GAR-02 1.5-2.0 07/06/2005 1.01	GAR-02 1.5-2.0 07/06/2005 10.2	GAR-03 1.5-2.0 07/06/2005 1.01	GAR-04 1.5-2.0 07/06/2005 1	GAR-05 5.5-6.0 07/06/2005 9.61	GAR-06 5.5-6.0 07/06/2005 1	GAR-06 5.5-6.0 07/06/2005 10	GAR-07 5.5-6.0 07/06/2005 1.01	GAR-08 6.5-7.0 07/07/2005 1	GAR-08 6.5-7.0 07/07/2005 10	GAR-09 16.0-16.5 07/06/2005	GAR-09 16.0-16.5 07/06/2005 4.54
VOLATILE ORGANICS (ppm)														
Acetone	0.11	0.0052 J	0.0066 J	0.079 J	0.0061 J	0.0058 J	0.068 J	0.0078 J	0.058 J	0.014	0.011 J	0.066 J	0.022	0.061
Carbon disulfide	2.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.085	ND	0.002 J	0.0058 J
Cis-1,2-dichloroethene	0.2	0.0008 J	0.0075	0.0074 J	0.0048	0.0027 J	0.022 J	0.075	0.053	0.0034	0.074	0.018 J	0.0032	ND
Methylene Chloride	0.1	ND	ND	ND	ND	ND	ND	0.0006 J	ND	ND	ND	ND	0.0013 J	0.0047 J
Trans-1,2-dichloroethene	0.2	ND	ND	ND	ND	ND	ND	0.0024 J	ND	0.0013 J	0.0037	ND	ND	ND
Vinyl Chloride	0.12	ND	ND	ND	ND ND	ND	ND	ND	ND_	ND	ND	ND	0.0022 J	ND
Tetrachloroethene	1.4	0.038	1 E	1.9	0.2	0.063	0.61	0.98 E	1.3	0.0084	0.41 E	0.22	0.0019 J	ND
Trichloroethene	0.7	0.0015 J	0.085	0.083	0.11	0.039	0.38	0.5 E	0.48	0.063	0.61 E	0.23	0.001 J	ND
Toluene	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	0.3	ND	ND	ND	ND	ND	ND	ND	ND	0.0028 J	0.0023 J	ND	ND	ND
2-hexanone	1.2	ND	ND	ND	ND	ND	ND	ND	ND	0.0013 J	0.0033 J	ND	ND	ND

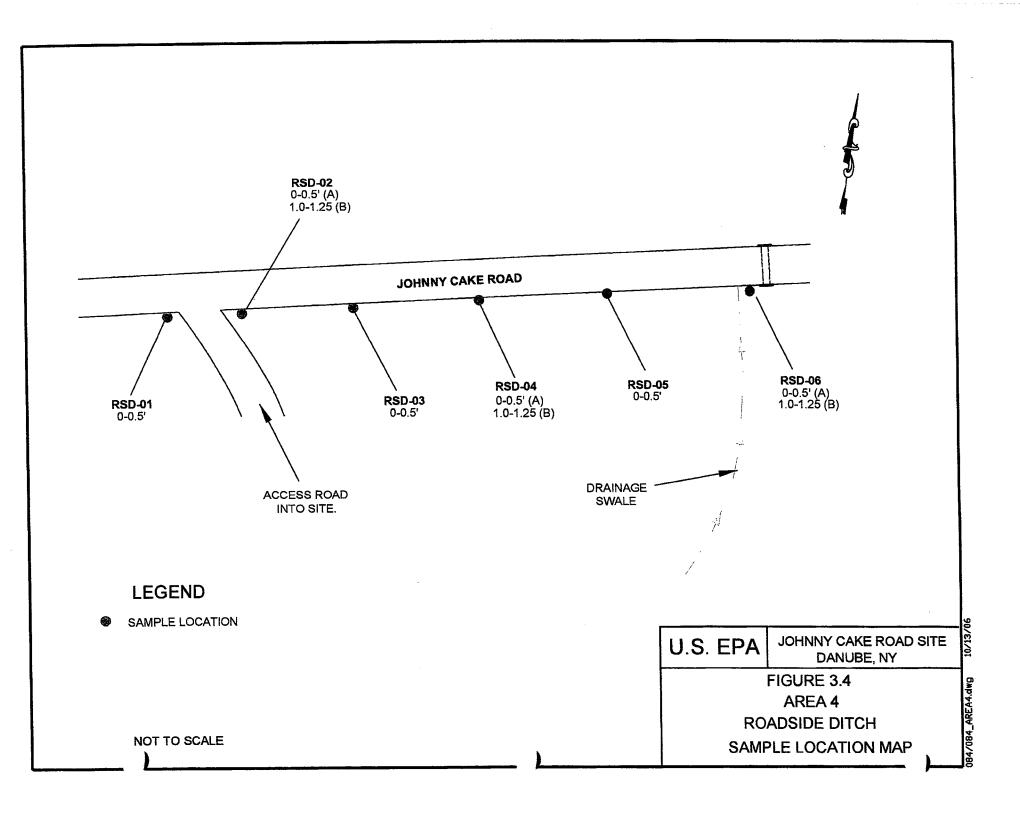
NOTES:
* - Soil Cleanup Objectives to Protect GW Quality
ppm - parts per million
ND - not detected
J - Analyte Detected Below Quantitation Limits
E - Value Above Quantitation Range
Shading - result exceed cleanup criteria

TABLE 3 JOHNNY CAKE ROAD SITE Danube, Herkimer County, New York


ROAD SIDE DITCH SAMPLES


Sample Number Sample Depth (ft) Date Sampled Dilution Factor	NYSDEC TAGM* (ppm)	RSD-01 0.0-0.5 07/12/2005 1.01	RSD-02A 0.0-0.5 07/12/2005 1	RSD-02B 1.0-1.25 07/12/2005 0.99	RSD-03 0.0-0.5 07/12/2005 0.99	RSD-04A 0.0-0.5 07/12/2005 1	RSD-04B 1.0-1.25 07/12/2005 0.99	RSD-05 0.0-0.5 07/12/2005 0.99	RSD-06A 0.0-0.5 07/12/2005 1.01	RSD-06B 1.0-1.25 07/12/2005 1.01
VOLATILE ORGANICS (ppm)										
Acetone	0.11	0.0069 J	0.018	0.016	0.065	0.0068 J	0.0068 J	0.005 J	0.011	0.024
Carbon disulfide	2.7	ND	ND	0.033	0.001 J	ND	ND	ND	0.0046	0.065
Cis-1,2-dichloroethene	0.2	0.0018 J	0.0018 J	0.039	0.002 J	0.017	0.0034	0.00084 J	0.0013 J	0.0036
Methylene Chloride	0.1	0.001 J	ND	ND	0.00084 J	0.00088 J	0.0079 J	0.00089 J	ND	ND
Trans-1,2-dichloroethene	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.12	ND	0.0035 J	0.052	ND	0.00074 J	ND	ND	0.001 J	0.022
Tetrachloroethene	1.4	0.004	ND	0.0015 J	ND	0.0053	0.013	0.00075 J	0.00089 J	ND
Trichloroethene	0.7	0.0051	ND	0.001 J	0.0033	0.0098	0.029	0.0016 J	ND	0.00087 J
Toluene	1.5	ND	0.0024 J	ND	ND	ND	ND	ND	ND	0.00011 J
2-Butanone	0.3	ND	0.0052 J	0.0047 J	0.16	ND	ND	ND	0.0026 J	0.0088 J
2-hexanone	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenxene	5.5	ND	0.00088 J	0.0033	ND	ND ND	ND	ND	ND	ND
Xylenes (total)	1.2	ND	0.0021 J	0.016	ND	ND ND	ND_	ND	ND	ND


NOTES:


* - Soil Cleanup Objectives to Protect GW Quality ppm - parts per million ND - not detected

J - Analyte Detected Below Quantitation Limits E - Value Above Quantitation Range Shading - result exceed cleanup criteria

Appendix A5: Historic Groundwater Data & Attenuation Analysis – October 2008

TABLE 1 HISTORIC PCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08
MW-1	25.1	0	140		0		10	1	9.8	2.4	0.9	0.67	0		0	1.3
MW-2	40000	470	19000		39000	1300	34000	5200	5300	12000	5400					
MW-2R					-		-					1.3	0	0	0	0
MW-2RR												0	0	0	0	Ť
MW-3	6000	730	510			620	4	40	23	17		16	11	38	27	24
MW-4																
MW-4R												0.69	1.3	8.1	7.3	1.3
MW-5														<u> </u>	7.0	
MW-6	30000	28000	13000		18000	6200	620	210	680	240	67					
MW-6R												0	0	0	0	0
MW-7	0	0								0						0
MW-8	0	0														0
MW-9	0	0								0	0					
MW-10	0	0								0.56	0			***		
MW-11		0	0			0	3	0	0	0						0
MW-12A										2.7	1.1	0	0	0	0	0
MW-13		0				0	0	0	0.4	1.1	0.9	0	0	0	0	0
MW-14		0				0	0	0	0	5.4	0	0	0	0	0	0
MW-15		0	0	0	0	0	6	0	0	0	0					0
MW-16										0	0	0	0	0	0	0
MVV-17									<u> </u>	0	0	0	0	0	0	0
MW-18									<u> </u>	0	0	0	0	0	0	0
MW-19										4	0	Ō	0	0	0	0
MW-20										4.6	0	0	0.78	0.24	0	0.24
MW-21																0
MW-22									i	1						0
MW-23																0

TABLE 2
HISTORIC TCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08
MW-1	51.2	26	190				28	11	14	8.1	8.4	2.4	1		4.3	23
MW-2	870	1200	5400		4700	620	4900	710	1900	1500	710				7.5	
MW-2R												1.3	0.84	0	0	0
MW-2RR												0	0	0	0	
MW-3	360	150	58			170	0	21	5.2	4.6		11	1.7	8.6	5.5	9.7
MW-4														- 0.0	- 0.0	
MW-4R												35	20	200	110	27
MW-5															110	
MW-6	6600	8300	13000		24000	5300	290	300	1200	650	360					
MW-6R												0	0.84	0	0	0
MW-7	0	0								0						0
MW-8	0	0														0
MW-9	0	0								0	0					
MW-10	0	0								0	0					
MW-11		0	0			0	0	0	0	0						0
MW-12A					_					0	0	0	0	0	0	ō
MW-13		0				0	0	1	2.1	1.9	2.7	0.63	1.3	1.2	2.2	0.4
MW-14		0				0	2	11	7.6	5.1	4.6	4.3	2.8	2.5	3.4	6.7
MW-15		0	0	0	0	0	0	0	0	0	0					Ö
MW-16										0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0
MW-18										0	0	0	0	0	0	0
MW-19										0.4	0	0	0	0	0	0
MW-20										0.56	0.9	7.4	10	8.6	4.9	12
MW-21																0
MW-22																0
MW-23															i	0

Notes:

0 - Non Detect Blank - No Data

TABLE 3 HISTORIC TOTAL DCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08
MVV-1	320	1100	2209.8				98	38	27.3	16	36.6	4.3	8.4		11	151.2
MW-2	980	630	3232		3431	400	495	110	183.8	451	222					
MW-2R												6.6	4.8	0	4.5	0.79
MW-2RR												0	0	0	0	
MVV-3	0	80	13			37	0	4	2.1	1.4		12	0.6	0	2.5	3.7
MW-4																
MW-4R												57.91	50	303.3	171.8	97.175
MW-5																
MW-6	6400	10000	24200		32000	0	190	280	664.6	1600	686					
MW-6R												1.6	3.15	2.1	2.4	1.6
MW-7		0								0						0
MW-8		0														0
MW-9		0								0	0					
MW-10		0								0	0					
MW-11		0	0			0	0	0	0	0						0
MW-12A	ļ						<u> </u>			0.59	0	0.83	0	0	0	0
MW-13		0				14	86	57	39	64.41	45.1	35.57	19	100	31	64.49
MW-14		3.5				88	29	60	49	29	33.7	30.71	96	19	20	25.45
MW-15	1	0	0	0	0	0	0	0	0	0	0					0
MW-16										0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0
MW-18										6.2	4.6	34	5.6	2.6	2.1	0
MW-19										0	0	0	0	0	0	0
MW-20										1	16	42	35	34	22.81	67.35
MW-21																0
MW-22																0
MW-23					<u> </u>											0

TABLE 3a
HISTORIC cis-1,2 DCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08
MW-1	0	0	2200				98	38	27	16	36	4.3	8.4		11	150
MW-2	0	0	3200		3400		495	110	180	440	210					
MW-2R												6.6	4.8	0	4.5	0.79
MW-2RR												0	0	0	0	
MW-3	0	0	13				0	4	2.1	1.4		12	0.6	0	2.5	3.7
MW-4					·											
MW-4R				-								57	50	300	170	96.5
MW-5																
MVV-6	0	0	23000		32000		190	280	660	1600	670					
MW-6R												1.6	3.15	2.1	2.4	1.6
MW-7	0	0								0						0
MW-8		0														0
MW-9		0								0	0					
MW-10		0		i.						0	0					
MW-11		0	0			0	0	0	0	0						0
MW-12A										0.59	0	0.83	0	0	0	0
MW-13		0			1		86	57	39	64	44	35	19	100	31	64
MW-14		0					29	60	48	29	33	30	96	19	20	25
MW-15	1	0	0	0	0	0	0	0	0	0	0					0
MW-16										0	0	0	0	0	0	ō
MW-17					1					0	0	0	0	0	0	0
MW-18										6.2	4.6	34	5.6	2.6	2.1	0
MW-19										0	0	0	0	0	0	0
MW-20										1	16	42	35	34	22	67
MW-21																0
MW-22																Ō
MW-23																0

Notes:

0 - Non Detect Blank - No Data

TABLE 3b HISTORIC trans-1,2 DCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08
MW-1	320	1100	9.8				0	0	0.3	0	0.6	0	0		0	1.2
MW-2	980	630	32		31		0	0	3.8	11	12					
MW-2R												0	0	0	0	0
MW-2RR												0	0	0	0	
MW-3	0	80	0				0	0	0	0		0	0	0	0	0
MW-4																
MW-4R												0.91	0	3.3	1.8	0.675
MW-5																
MW-6	6400	10000	1200		0		0	0	4.6	0	16					
MW-6R												0	0	0	0	0
MW-7										0						0
MW-8																ō
MW-9				1						0	0					
MW-10										0	0					
MW-11		0	0			0	0	0	0	0						0
MW-12A										0	0	0	0	0	0	0
MW-13		0					0	0	0	0.41	1.1	0.57	0	0	0	0.49
MW-14		3.5					0	0	1	0	0.7	0.71	0	0	0	0.45
MW-15		0	0	0	0	0	0	0	0	0	0					0
MW-16										0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0
MW-18		1	1		i					0	0	0	0	Ō	0	0
MW-19			Ī							0	0	0	0	0	0	0
MW-20										Ō	0	0	0	0	0.81	0.35
MW-21							Ì									0
MW-22											1					0
MW-23																0

TABLE 4 HISTORIC VC CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08
MW-1	0	0	0				65	30	8.5	4.6	30	0	18		4.5	0
MW-2	0	0	0		0	0	0	0	0	0	0					
MW-2R									-			0	0	0	3.2	· 1
MW-2RR												0	0	0	0	
MW-3	0	0	0		0	0	0	0	0.3	0.88		18	0	0	0	0
MW-4													·			
MW-4R												0.65	3	0	5.4	0.27
MW-5																
MW-6	3.4	0	44		28	3000	7	16	26	350	72					
MW-6R												1.3	0	0	12	12
MW-7										0						0
MW-8														· · · · · · · · · · · · · · · · · · ·		0
MW-9										0	0					
MW-10										0	0					
MW-11		0	0		0	0	0	0	0	0						0
MW-12A										1	0	2.5	0.77	0	1.5	1.5
MW-13		0	0		0	0	0	0	0	0	0	0	0	0	0	0.41
MW-14		0	0		0	0	0	0	0	0	0	0	0	0	0	0.21
MW-15		0	0	0	0	0	0	0	0	0	0					0
MW-16										0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0
MW-18										16	11	43	14	0	6	0
MW-19										0	0	0	0	0	0	0
MW-20										0	0.6	2.5	2.4	0	2.1	1.7
MW-21																0
MW-22																0
MW-23	1.															0

TABLE 5

NATURAL ATTENUATION REGRESSION STATISTICS (10/1/08)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

MW-1

MW-3

MW-2/2R

MW-13

MW-14

MW-18

MW-20

k (days⁻¹)

0.000683

0.000962

0.000537

-0.000150

-0.000155

0.000822

-0.002033

MW-6/6R 0.001446

R²

0.613

0.671

0.591

0.728

0.110

0.107

0.077

0.613

29.400

40.123

21.630

58.640

-1.903

-2.375

33.411

-75.740

	PCE Attenuation													
	k (days ⁻¹)	R ²	Coeff	Half Life (days)	Current C (ug/L)	Time to C = 5								
MW-1	0.000717	0.689	28.041	1395	0.64	_								
MW-2/2R	0.000532	0.132	27.339	1880	496.16	23.66								
MW-3	0.000790	0.701	33.310	1266	6.89	1.11								
MW-6/6R	0.001152	0.958	48.809	868	21.10	3.42								
MW-13	-0.000826	0.640	-31.627	-1211	3.27	increasing								
MW-14				All Non-Detect										
MW-18				All Non-Detect										
MW-20	0.001633	0.719	62.943	612	0.15	_								

			TCE Att	enuation		
	k (days ⁻¹)	R ²	Coeff	Half Life	Current C (ug/L)	Time to $C = 5$
MW-1	0.000437	0.487	18.717	2288	3.89	-
MW-2/2R	0.000784	0.308	34.562	1276	30.57	6.32
MW-3	0.000644	0.794	26,693	1553	3.04	_
MW-6/6R	0.001105	0.630	46.755	905	17.50	3.10
MW-13	0.000327	0.182	12.793	3058	0.82	
MW-14	0.000050	0.008	3,385	20000	4.05	_
MW-18			F	II Non-Detect		
MW-20	-0.001755	0.582	-66.528	-570	24.15	increasing

			VC	Attenuation		
	k (days ⁻¹)	R ²	Coeff	Half Life	Current C (ug/L)	Time to C = 2 (yrs)
MW-1	0.000650	0.302	27.310	1538	4.44	3.36
MW-2/2R	0.001400	1.000	54,613	714	0.37	-
MW-3	-0.003390		-128.212	-295	629.91	increasing
MW-6/6R	0.000152	0.024	8.881	6579	17.17	38.73
MW-13				Insufficient	data	
MW-14	1			Insufficient	data	
MW-18	0.000546	0.071	23.698	1832	7.46	6.60
MW-20	-0.000293	0.064	-10.873	-3413	2.15	increasing

Total DCE Attenuation

1464

1040

1862

692

-6667

-6452

1217

-492

Coeff | Half Life (days) | Current C (ug/L) | Time to C = 5 (yrs)

9.68

6.76

1.35

3.33

57.70

43.90

2.14

150.63

2.65

0.86

increasing

increasing

increasing

Notes:

Current C (Concentration) and Years to Goal From 10/1/2008

Appendix A6: Historic Well Information from Site Investigation Report – February 2009

			HTW DRILLING LOG				HOLE		MW-21
PROJEC	OT .	ماما	ny Cake Road Site	10. HO	LE LOCATIO	N		SHEET 1 OF	SHEETS 2
1. LOCA	TION	JOHN	ly Cake Hoad Sile	11. NO	OF OVERB	JRDEN GEOTE	CH SAMPLES		UNDISTURBED
2. COMP	DANIV	Danul	be, New York	12 SAI	O MPLES FOR	CHEMICAL ANA	LYSIS	13. Total Number of Core	Boxes
Z. COIVIF	ANT	Earth	Tech Northeast, Inc.		0				
	ING COMP		ogio NV Inc	14. SU	RFACE ELEV	ATION AT HOLE		15. ELEVATION DATUM NAVD 88	
4. MANU	JFACTURE	R'S DESIG	ogic NY, Inc.	17. DA	TE HOLE STA	ARTED		18. DATE HOLE COMPLI	TED
F 6175	ND TVOC	OF EQUIP	45B track-mounted rig	16 DES	9/28/20	008 UNDWATER EN	COUNTERE	9/28/2008	
5. SIZE /	AND ITPE	6" HA			NA	0.101111211			
6. NAME	OF DRILL		Breeds	1	ATHER Cloudy	light rain			
7. THICK	NESS OF	OVERBUR		20. DIS	POSITION O	, light rain			
8 DEPTI	H DRIU ED	23+ INTO ROC	ft	21. NAN	E OF INSPE	CTOR			
o. Der II	n DHILLED	NA	ft		Dino Za	ack			
9. TOTAL	. DEPTH O		ft	22. SIG	NATURE OF	INSPECTOR			
ECEV-		23 LEGEND		REC.	SAMPLE No.	PID (ppm)	BLOW	REMARK	s
ATION	(FEET)		CLASSIFICATION OF MATERIAL	(int)	(TIME)		ļ	HEWARA	
	_		0-1" TOPSOIL	8	NA	0.0	1		
			1-8" brown SILT, trace f.sand, trace clay (moist)				2		
	1 —		(moist)						
	-						3		
							3		
	2-		0-8" light brown SILT, trace f.sand, trace	8	NA NA	0.0	2		
	-		organics (moist)	ਁ	,	0.0			
	\exists						3		
	3						3	•	
	コ								
	. 4						3		
	4		0-10" light brown SILT, trace f.sand (moist)	19	NA	0.0	5		
			10-19" light brown SILT, little angular				4		
İ			medium rock fragments, trace fc.sand, trace clay (moist)						
	5		trace clay (moist)				3		
							3		
	6-				N I A	0.0			
	~ 		0-20" light brown SILT, little f.gravel, little f	22	NA	0.0	3	Top of till at ~7.	p, päs
	_		c.sand, trace clay - stiffening with depth (moist)				5		
	7—		20-22" dark grey SILT, some f.sand, little				7		
	4		f.mgravel, little fc.sand, trace clay (moist-				'		
	ゴ		dry) TILL				14		
	8-		0-7" light brown SILT, some f.sand, little f	9	NA	0.0	9		
			m.gravel, trace clay (moist) sluff?			-			
	7		20-22" dark grey SILT, some f.sand, little				12		
	9	1	f.mgravel, little fc.sand, trace clay (moist-				17		
			dry) TILL						
		ŀ					. 22		
	10-								

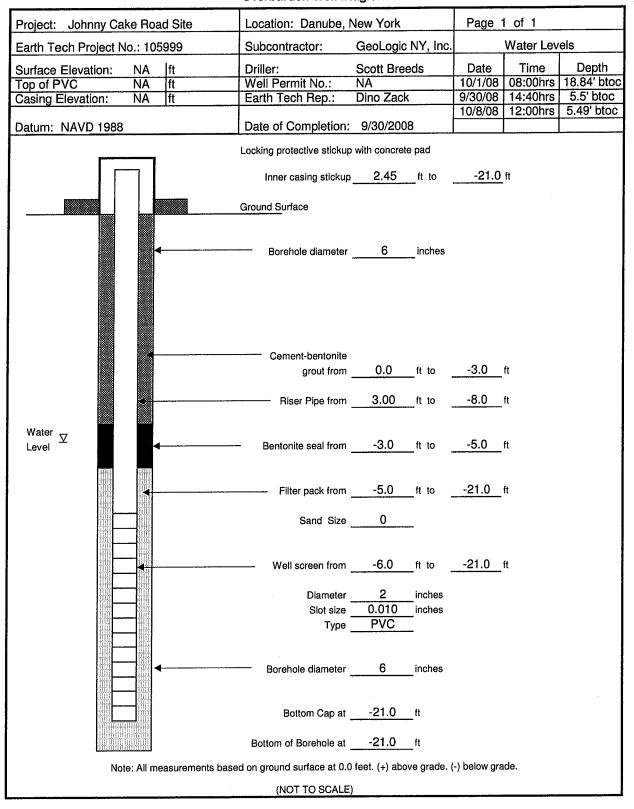
			HTW DRILLING LOG				HOLE 1		٨	/W-21
PROJEC	r	Johnny	Cake Road Site					SHEET 2	OF	SHEETS 2
I. LOCAT	10N		e, New York	21. NAN	E OF INSPE	CTOR				
2. COMP	ANY		ech Northeast, Inc.	22. SIGI	NATURE OF	NSPECTOR				
ELEV- ATION	DEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	REC. (ft)	SAMPLE No.	PID (ppm)	BLOW COUNT		REMARKS	
	10	-	0-2" sluff	20	(TIME) NA	0.0	19			
	11 -		2-20" dark grey SILT, some fm. angular gravel, little fc.sand, trace clay (moist-dry) stiff TILL				25			
							29 42			
	12—		0-22" dark grey SILT, some fm.gravel, little fc.sand, trace clay (dry) crumbly TILL	22	NA	0.0	47			
	13						100/.4			
	14-		0-4" sluff 4-10" dark grey SILT, some fm.gravel, little	14	NA	0.0	57			
	15		fc.sand, trace clay (dry-moist) TILL 10-14" SHALE in shoe				100/.4			
	16 - - 17-		0-12" dark grey SILT, little fm.gravel, trace fc.sand, trace clay (dry) TILL	12	NA	0.0	65			
	18		0-15" medium grey SILT and FSAND	15	NA	0.0	52			
	-		(thinly layered), trace clay (moist) soft			0.0	35			
	19		·				32			
	20		0-6" medium grey SILT and F.SAND (thinly layered), trace clay (moist) soft	24	NA	0.0	23			
	21 —		6-24" medium grey SILT and F.SAND (thinly layered), trace clay (dry) dense				40			
	, _ _ _						90			
	22		0-8" medium grey SILT and F.SAND (thinly layered), trace clay (moist) dense 8-12" dark grey SILT and F.SAND (thinly layered), trace fm.gravel (moist-dry) dense End of boring at 23' - refer to well installation diagram for additional details.	12	NA	0.0	17 22			

			HTW DRILLING LOG				HOLE		MW-22
PROJEC	Т			10. HO	E LOCATIO	1		SHEET	SHEETS
		Johnn	y Cake Road Site	11 NO	OF OVERBI	RDEN GEOTE	CH SAMPLES	DISTURBED	OF 2
1. LOCA	TION	Danub	e, New York	11.110.	0				
2. COMP	ANY	Danue	e, New Tork	12. SAN		HEMICAL ANA	ALYSIS	13. Total Number of	Core Boxes
			Tech Northeast, Inc.	14 010	O EACE ELEV	ATION AT HOL	F	15. ELEVATION DA	TUM
3. DRILLI	NG COMP		ogic NY, Inc.	14. 501	NA NA	ATION AT TIOL	-	NAVD	
4. MANU	FACTURE	R'S DESIG	NATION OF DRILL	17. DAT	E HOLE STA			18. DATE HOLE CO	MPLETED
		CME 4	45B track-mounted rig	140 555	9/29/20	08 INDWATER E	NOOLINTEDE	9/29/20	08
SIZE A	ND TYPE	OF EQUIPA		I I O. DEF	NA	JINDWATER E	NOODIVILIIL.	, and the second	
. NAME	OF DRILL			19. WE	ATHER				
		Scott F	Breeds	00 10101	Sunny;	60F			
7. THICK	NESS OF	OVERBURG	ft	20. 0131	-03/1/0/100	HOLL			
3. DEPTH	DRILLED	21+ INTO ROC		21. NAN	E OF INSPE				
			ft	20.000	Dino Za	ICK INSPECTOR			
O. TOTAL	DEPTH C		ft	122. SIGI	NATURE OF	INOPEUIUN			
ELEV-		21 LEGEND		REC.	SAMPLE	PID (nnm)	BLOW	pri	MARKS
ATION	(FEET)		CLASSIFICATION OF MATERIAL	(int)	No. (TIME)	(ppm)	COUNT	HEI	nei (NO
			0-1" TOPSOIL	8	NA	0.0	2		
	_		1-8" tan SILT, little f.sand, trace mc.sand,	:					
	-		trace f.gravel (moist)				3		
	1						3		
	-							1	
							6		
	2-		O diller Oil T little found troop m o good	18	NA	0.0	2		
	-		0-4" tan SILT, little f.sand, trace mc.sand, trace f.gravel (moist)	'0	1 1	0.0	-		
	_		4-18" tan-light brown SILT, little f.sand		İ		3		
	3-		(moist; wet at 16-18")						
			(110101), 1101011 10 70 7				2		
				İ			1		
	4								
	4 —		0-6" tan-light brown SILT, little f.sand	16	NA	0.0	1		
	_		(moist)				2		
	-		6-12" light brown SILT, little f.sand, trace f						
	5—		m.sand, trace fm.gravel (moist) 12-16" brown-grey SILT, little f.sand, trace f.				4	Top of till at	~5.5' bgs
			m.sand, trace fm.gravel (moist-wet) TILL						
	-		misand, hade it migraver (molet wee) The				4		
	6-		0-12" grey SILT, some f.sand, little m	12	NA	0.0	3		
	-		c.sand, littlefm.gravel, trace clay (moist-						
	_		wet) TILL				4		
	7		•				5		
	-		•						
1							5		
1	8—			8	NA	0.0	8		
ļ	_		SLUFF - rock in shoe	0	INA	0.0	°		
	_						13		
	<u> </u>								
	9						13		
	-						15		
	-						'		
	10 —								

			HTW DRILLING LOG				HOLE	
PROJEC	T	Johnn	y Cake Road Site					SHEET SHEETS 2 OF 2
1. LOCA	TION		pe, New York	21. NAN	ME OF INSPE	CTOR		
2. COMP	ANY		Tech Northeast, Inc.	22. SIG	NATURE OF	INSPECTOR		
ELEV- ATION	DEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	REC. (ft)	SAMPLE No.	PID (ppm)	BLOW COUNT	REMARKS
	10 _		0-10" medium grey SILT, little f.sand, trace	10	(TIME) NA	0.0	13	
			mc.sand, trace fm.gravel (moist)				15	
	11 —						17	
	_						16	
	12		0-6" medium grey SILT, little f.sand, trace	20	NA	0.0	13	
			mc.sand, trace fm.gravel (moist)		'''	0.0	9	
	13—		6-14" medium grey SILT and F.SAND, trace mc.sand, trace fm.gravel (wet)					
	-		14-20" grey SILT, little fc.sand, fm.gravel,				10	
			trace clay (moist)				14	
	14		SLUFF - rock in shoe	0	NA	NA	14	
	亅						9	
	15—						10	
							10	·
	16-		SLUFF - rock in shoe - auger to 18'	0	NA	NA	12	
	\dashv	:	_				13	
	17						14	
	4						12	
	18		O d Oll Oll T I E . O A N D . (4b imb.)	12	NA NA	0.0	7	
	4	ļ	0-12" grey SILT and FSAND (thinly layered), little mc.sand, little fm.gravel,	۱۵		0.0		
	19-		trace clay (moist) soft				7	
	19						8	
							8	
	20		0-12" grey SILT and FSAND (thinly	12	NA	0.0	9	
	=		layered), little mc.sand, little fm.gravel, trace clay (moist) soft				9	:
	21		End of boring at 21' - refer to well					
	-		installation diagram for additional details.					
	22						+	
	4							
	23							
	_							

			HTW DRILLING LOG				HOLE		MW-23
PROJEC	т			10. HOL	E LOCATION	V		SHEET	SHEETS OF 2
1. LOCAT	TION	Johnn	y Cake Road Site	11. NO.	OF OVERBL	IRDEN GEOTE	CH SAMPLES	1 DISTURBED	OF 2 UNDISTURBED
II. LOÇAI	IION	Danub	e, New York		0				
2. COMP	ANY			12. SAM		CHEMICAL ANA	LYSIS	13. Total Number of	Core Boxes
a DOILL	NG COMF		Tech Northeast, Inc.	14. SUF	O FACE ELEV	ATION AT HOL	E	15. ELEVATION DA	TUM
			paic NY, Inc.		NA			NAVD	
4. MANU	FACTURE		OGIC NY, Inc.	17. DAT	E HOLE STA 9/29/20			18. DATE HOLE CO 9/29/20	
5 SIZE A	ND TYPE	OF EQUIPA	45B track-mounted rig	16. DEF	TH OF GRO	UNDWATER E	NCOUNTERE		00
o. OILL A		6" HAS			NA				
6. NAME	OF DRILL		Proods	19. WE		d clouds:	60F		
7. THICK	NESS OF	Scott E	DEN	20. DISI	OSITION OF	d clouds;			
		21+	ft	LOC NAT	E OF INSPE	CTOR			
8. DEPTH	ORILLED	NA	к ft	ZI. IVAIV	Dino Za				
9. TOTAL	DEPTH C		n.	22. SIGI		INSPECTOR			
			ft	REC.	SAMPLE	PID	BLOW	I	
ELEV- ATION	OEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	(int)	No.	(ppm)	COUNT	REM	MARKS
			0-1" TOPSOIL	11	(TIME)	0.0	1		
	-		1-11" tan-light brown SILT, trace f.sand,						
			trace clay (dry-moist)				1		
	1 —		• • •				2		
	_						_		
							3		
	2-		OUT BUILT a good broom	4	NA	0.0	6		
			0-4" light brown SILT, little fc.sand, trace	+	147	0.0	"		
	_		f.gravel (dry)				12		
	3-								
	_						9		
							4		
	1 -			1		0.0			
	4-		0-8" light brown SILT, little fc.sand, trace	14	NA	0.0	2		
	_		f.gravel (dry) 8-14" grey SILT, little f.sand, trace f.gravel				4		
	- -		(moist) TILL					Top of till at	~5.0' bgs
	5 <i>-</i>		(moloc) FIEE				6		
							7		
	-			ļ., <u>.</u>					
	6		0-4" SLUFF	13	NA	0.0	8		
			4-13" grey SILT and F.SAND, little f				9		
	., -		m.gravel, little mc.sand (moist)						
	7—						14		
							14		
	_								
	8		0-6" brown SILT, little fc.sand, trace f	20	NA	0.0	6		
			m.gravel (dry) sluff?				7		
	-		6-20" grey SILT and F.SAND, trace clay				′		
	9 —		(dry)				9		
							14		
							'4		
	10			1					

			HTW DRILLING LOG				HOLE	
PROJEC	T	Johnn	y Cake Road Site					SHEET SHEETS 2 OF 2
1. LOCAT	TION		pe, New York	21. NA	ME OF INSPE	CTOR		
2. COMP.		Earth	Tech Northeast, Inc.	Ì	NATURE OF			
ELEV- ATION	DEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	REC. (ft)	SAMPLE No. (TIME)	(ppm)	COUNT	REMARKS
	10 _		0-18" grey SILT and F.SAND, trace clay	18	NA	0.0	7	
	_		(dry)				10	
	11 —						12	
	-						20	
	12-		0-18" grey SILT and F.SAND, trace clay	18	NA	0.0	14	
	_		(dry)				16	
	13						12	
	-			:			16	
	14		0-6" grey SILT, little f.sand, trace mc.sand,	24	NA	NA	10	
	4		trace fm.gravel, trace clay (moist) 6-24" grey SILT and F.SAND, trace clay,				14	
	15		trace fm.gravel (moist)				16	
							21	
	16		0.40" area CILT and E CAND, trace clay	18	NA	NA	21	
	₫		0-18" grey SILT and F.SAND, trace clay, trace fm.gravel (moist)	,0	IVA	1471		
	17						20	
							23	
	18						24	
			0-24" grey SILT and F.SAND, trace clay, trace fm.gravel (moist)	24	NA	0.0	17	
	19—		End of boring at 20' - refer to well				24	
	197		installation diagram for additional details.				22	
	F						28	
	20							
	21—							
	4							
	22				-			
	-							
	23							
	7			İ				


Location: Danube, New York Page 1 of 1 Project: Johnny Cake Road Site Water Levels GeoLogic NY, Inc. Earth Tech Project No.: 105999 Subcontractor: Time Depth **Scott Breeds** Date Driller: Surface Elevation: NA lft 9/30/08 | 09:00hrs | 5.5' btoc Well Permit No.: NA NA Top of PVC ft Dino Zack 9/30/08 | 14:40hrs | 5.5' btoc Earth Tech Rep.: Casing Elevation: NA ft 10/7/08 | 12:00hrs | 5.5' btoc Date of Completion: 9/29/2008 Datum: NAVD 1988 Locking protective stickup with concrete pad Inner casing stickup 2.5 ft to -23.0 ft **Ground Surface** Borehole diameter 6 inches Cement-bentonite grout from 0.0 ft to -5.0 ft Riser Pipe from 2.75 ft to -8.0 ft Water <u>▽</u> Bentonite seal from -5.0 ft to -7.0 ft Level Filter pack from -7.0 ft to -23.0 ft Sand Size 0 Well screen from -8.0 ft to -23.0 ft Diameter inches 0.010 Slot size inches PVC Type Borehole diameter _____6 ___inches Bottom Cap at -23.0 ft Bottom of Borehole at ______ft Note: All measurements based on ground surface at 0.0 feet. (+) above grade. (-) below grade. (NOT TO SCALE)

Overburden Well Diagram

Well No. MW-21

Overburden Well Diagram

Well No. MW-22

	Overburgen well bi	agram	Well No.		
Project: Johnny Cake Road Site	Location: Danube, N	lew York	Page 1	of 1	
Earth Tech Project No.: 105999	Subcontractor:	GeoLogic NY, Inc.	: 	Water Leve	els
Surface Elevation: NA ft	Driller:	Scott Breeds	Date	Time	Depth
Top of PVC NA ft	Well Permit No.:	NA		07:30 hrs	19.4' btoc
Casing Elevation: NA ft	Earth Tech Rep.:	Dino Zack		13:22 hrs	19.1' btoc 18.5' btoc
Datum: NAVD 1988	Date of Completion:	9/30/2008		07:02 hrs 08:00 hrs	6.90' btoc
	Locking protective stickup	with concrete pad			
	Inner casing stickup	2.60 ft to	-21.0	ft	
	Ground Surface				
	Borehole diameter	6 inches			
-	Cement-bentonite	0.0 ft to	-2.0	ft	
	groat nom				
•	Riser Pipe from	2.80 ft to	-8.0	ft	
Water <u>∨</u> Level -	- Bentonite seal from	-2.0 ft to	-4.0	ft	
	Filter pack from	-4.0 ft to	-20.0	ft	
	Sand Size	0			
					
	Well screen from	-5.0 ft to	-20.0	ft	
	Diameter	2 inches			
	Slot size	0.010 inches			
	Туре	PVC			
	Borehole diameter	6 inches			
	potential digitieter				
	Bottom Cap at	-20.0 ft			
	Bottom of Borehole at	-20.0 ft			
[#####################################			(-) halow are	ada	
Note: All measurements base			(-) neiow gra	wo.	
	(NOT TO SCALE)			

Overburden Well Diagram

Well No. MW-23

Appendix A7: Historic Groundwater Data & Attenuation Analysis - January 2011

TABLE 1 HISTORIC PCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08	20-Oct-09	20-Oct-10
MW-1	25.1	0	140		0		10	1	9.8	2.4	0.9	0.67	0		0	1.3	0	0.36
MW-2	40000	470	19000		39000	1300	34000	5200	5300	12000	5400							
MW-2R												1.3	0	0	0	0	0	0
MW-2RR												0	0	0	0			
MW-3	6000	730	510			620	4	40	23	17		16	11	38	27	24		
MW-4																		
MW-4R												0.69	1.3	8.1	7.3	1.3		
MW-5																		
MW-6	30000	28000	13000		18000	6200	620	210	680	240	67							
MW-6R												0	0	0	0	0	0	0
MW-7	0	0								0						0		
MW-8	0	0														0		
MW-9	0	0								0	0							
MW-10	0	0								0.56	0							
MW-11		0	0			0	3	0	0	0						0		
MW-12A										2.7	1.1	0	0	0	0	0	0	0
MW-13		0				0	0	0	0.4	1.1	0.9	0	0	0	0	0	0	0
MW-14		0				0	0	0	0	5.4	0	0	0	0	0	0		
MW-15		0	0	0	0	0	6	0	0	0	0					0		
MW-16										0	0	0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0		
MW-18						-	-			0	0	0	0	0	0	0	0	0
MW-19										4	0	0	0	0	0	0	0	0
MW-20						-	-			4.6	0	0	0.78	0.24	0	0.24		
MW-21				-			-									0	0	0
MW-22				·	·		-						•			0	0	0
MW-23							-									0	0	0

TABLE 2
HISTORIC TCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08	20-Oct-09	20-Oct-10
MW-1	51.2	26	190				28	11	14	8.1	8.4	2.4	1		4.3	23	5.1	6.8
MW-2	870	1200	5400		4700	620	4900	710	1900	1500	710							
MW-2R												1.3	0.84	0	0	0	0	0.4
MW-2RR												0	0	0	0			
MW-3	360	150	58			170	0	21	5.2	4.6		11	1.7	8.6	5.5	9.7		
MW-4																		
MW-4R												35	20	200	110	27		
MW-5																		
MW-6	6600	8300	13000		24000	5300	290	300	1200	650	360							
MW-6R												0	0.84	0	0	0	0	0
MW-7	0	0								0						0		
MW-8	0	0														0		
MW-9	0	0								0	0							
MW-10	0	0								0	0							
MW-11		0	0			0	0	0	0	0						0		
MW-12A										0	0	0	0	0	0	0	0.79	0
MW-13		0				0	0	1	2.1	1.9	2.7	0.63	1.3	1.2	2.2	0.4	0.42	0.39
MW-14		0				0	2	11	7.6	5.1	4.6	4.3	2.8	2.5	3.4	6.7		
MW-15		0	0	0	0	0	0	0	0	0	0					0		
MW-16										0	0	0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0		
MW-18								,		0	0	0	0	0	0	0	0	0
MW-19										0.4	0	0	0	0	0	0	0	0
MW-20										0.56	0.9	7.4	10	8.6	4.9	12		
MW-21																0	0	0
MW-22								,								0	0	0
MW-23																0	0	0

TABLE 3
HISTORIC TOTAL DCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08	20-Oct-09	20-Oct-10
MW-1	320	1100	2209.8				98	38	27.3	16	36.6	4.3	8.4		11	151.2	51.42	38.41
MW-2	980	630	3232		3431	400	495	110	183.8	451	222							
MW-2R												6.6	4.8	0	4.5	0.79	0.27	0.23
MW-2RR												0	0	0	0			
MW-3	0	80	13			37	0	4	2.1	1.4		12	0.6	0	2.5	3.7		
MW-4																		
MW-4R												57.91	50	303.3	171.8	97.175		
MW-5																		
MW-6	6400	10000	24200		32000	0	190	280	664.6	1600	686							
MW-6R												1.6	3.15	2.1	2.4	1.6	0.6	0.27
MW-7		0								0						0		
MW-8		0														0		
MW-9		0								0	0							
MW-10		0								0	0							
MW-11		0	0			0	0	0	0	0						0		
MW-12A										0.59	0	0.83	0	0	0	0	0	0.57
MW-13		0				14	86	57	39	64.41	45.1	35.57	19	100	31	64.49	32.32	9.7
MW-14		3.5				88	29	60	49	29	33.7	30.71	96	19	20	25.45		
MW-15		0	0	0	0	0	0	0	0	0	0					0		
MW-16										0	0	0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0		
MW-18										6.2	4.6	34	5.6	2.6	2.1	0	0	0
MW-19										0	0	0	0	0	0	0	0	0
MW-20										1	16	42	35	34	22.81	67.35		
MW-21																0	0	0
MW-22																0	0	0
MW-23																0	0	0

TABLE 3a
HISTORIC cis-1,2 DCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08	20-Oct-09	20-Oct-10
MW-1	0	0	2200				98	38	27	16	36	4.3	8.4		11	150	51	38
MW-2	0	0	3200		3400		495	110	180	440	210							
MW-2R												6.6	4.8	0	4.5	0.79	0.27	0.23
MW-2RR												0	0	0	0			
MW-3	0	0	13				0	4	2.1	1.4		12	0.6	0	2.5	3.7		
MW-4																		
MW-4R												57	50	300	170	96.5		
MW-5																		
MW-6	0	0	23000		32000		190	280	660	1600	670							
MW-6R												1.6	3.15	2.1	2.4	1.6	0.6	0.27
MW-7	0	0								0						0		
MW-8		0														0		
MW-9		0								0	0							
MW-10		0								0	0							
MW-11		0	0			0	0	0	0	0						0		
MW-12A										0.59	0	0.83	0	0	0	0	0	0.57
MW-13		0					86	57	39	64	44	35	19	100	31	64	32	9.7
MW-14		0					29	60	48	29	33	30	96	19	20	25		
MW-15		0	0	0	0	0	0	0	0	0	0					0		
MW-16										0	0	0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0		
MW-18										6.2	4.6	34	5.6	2.6	2.1	0	0	0
MW-19										0	0	0	0	0	0	0	0	0
MW-20			, and the second							1	16	42	35	34	22	67		
MW-21																0	0	0
MW-22																0	0	0
MW-23																0	0	0

TABLE 3b HISTORIC trans-1,2 DCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08	20-Oct-09	20-Oct-10
MW-1	320	1100	9.8				0	0	0.3	0	0.6	0	0		0	1.2	0.42	0.41
MW-2	980	630	32		31		0	0	3.8	11	12							
MW-2R												0	0	0	0	0	0	0
MW-2RR												0	0	0	0			
MW-3	0	80	0				0	0	0	0		0	0	0	0	0		
MW-4																		
MW-4R												0.91	0	3.3	1.8	0.675		
MW-5																		
MW-6	6400	10000	1200		0		0	0	4.6	0	16							
MW-6R												0	0	0	0	0	0	0
MW-7										0						0		
MW-8																0		
MW-9										0	0							
MW-10										0	0							
MW-11		0	0			0	0	0	0	0						0		
MW-12A										0	0	0	0	0	0	0	0	0
MW-13		0					0	0	0	0.41	1.1	0.57	0	0	0	0.49	0.32	0
MW-14		3.5					0	0	1	0	0.7	0.71	0	0	0	0.45		
MW-15		0	0	0	0	0	0	0	0	0	0					0		
MW-16										0	0	0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0		
MW-18										0	0	0	0	0	0	0	0	0
MW-19										0	0	0	0	0	0	0	0	0
MW-20										0	0	0	0	0	0.81	0.35		
MW-21																0	0	0
MW-22																0	0	0
MW-23																0	0	0

TABLE 4
HISTORIC VC CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08	20-Oct-09	20-Oct-10
MW-1	0	0	0				65	30	8.5	4.6	30	0	18		4.5	0	0.84	2.6
MW-2	0	0	0		0	0	0	0	0	0	0							
MW-2R												0	0	0	3.2	1	0.49	0.56
MW-2RR												0	0	0	0			
MW-3	0	0	0		0	0	0	0	0.3	0.88		18	0	0	0	0		
MW-4																		
MW-4R												0.65	3	0	5.4	0.27		
MW-5																		
MW-6	3.4	0	44		28	3000	7	16	26	350	72							
MW-6R												1.3	0	0	12	12	4.3	0.77
MW-7										0						0		
MW-8																0		
MW-9										0	0							
MW-10										0	0							
MW-11		0	0		0	0	0	0	0	0						0		
MW-12A										1	0	2.5	0.77	0	1.5	1.5	1.0	1.1
MW-13		0	0		0	0	0	0	0	0	0	0	0	0	0	0.41	0	0
MW-14		0	0		0	0	0	0	0	0	0	0	0	0	0	0.21		
MW-15		0	0	0	0	0	0	0	0	0	0					0		
MW-16										0	0	0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0		
MW-18										16	11	43	14	0	6	0	0.36	0.69
MW-19										0	0	0	0	0	0	0	0	0
MW-20										0	0.6	2.5	2.4	0	2.1	1.7		
MW-21																0	0	0
MW-22								, and the second								0	0	0
MW-23																0	0	0

TABLE 5 NATURAL ATTENUATION REGRESSION STATISTICS (1/1/11) JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

				PCE Attenu	ation		
	k (days ⁻¹)	R ²	Coeff	Half Life (days)	Current C (ug/L)	Time to $C = 5$	Actual C (ug/L)
MW-1	0.000719	0.743	28.107	1391	0.35		0.36
MW-2/2R	0.000532	0.132	27.339	1880	320.41	21.41	0
MW-6/6R	0.001152	0.958	48.809	868	12.46	2.17	0
MW-13	-0.000826	0.640	-31.627	-1211	4.76	increasing	0
MW-18				All Non-Deter	ct		0

				Total DC	E Attenuation		
	k (days ⁻¹)	R ²	Coeff	Half Life (days)	Current C (ug/L)	Time to $C = 5$ (yrs)	Actual C (ug/L)
MW-1	0.000540	0.508	24.298	1852	11.07	4.03	34.81
MW-2/2R	0.001160	0.751	47.118	862	1.09		0.23
MW-6/6R	0.001536	0.790	61.872	651	0.67		0.27
MW-13	0.000041	0.008	5.210	24390	34.73	129.43	9.7
MW-18	0.000822	0.077	33.411	1217	1.47	-	0

TCE Attenuation										
	k (days ⁻¹)	R ²	Coeff	Half Life	Current C (ug/L)	Time to $C = 5$	Actual C (ug/L)			
MW-1	0.000385	0.482	16.854	2597	3.47		6.8			
MW-2/2R	0.001010	0.465	42.523	990	4.82		0.4			
MW-6/6R	0.001105	0.630	46.755	905	10.56	1.85	0			
MW-13	0.000471	0.473	18.260	2123	0.43		0.39			
MW-18		0								

VC Attenuation											
	k (days ⁻¹)	R ²	Coeff	Half Life	Current C (ug/L)	Time to $C = 2$ (yrs)	Actual C (ug/L)				
MW-1	0.000835	0.628	34.273	1198	1.52		2.6				
MW-2/2R	0.001200	0.920	47.681	833	0.38		0.56				
MW-6/6R	0.000340	0.135	15.604	2941	6.17	9.07	0.77				
MW-13		0									
MW-18	0.001712	0.809	68.502	584	0.40		0.69				

Notes:
Current C (Concentration) and Years to Goal From 1/1/2010

PCE has been ND at MW-2R, MW-6R, or MW-13 since 2005, and the trends are biased based on previous high concentrations.

DCE has been stable at MW-13 since 1995, and this trend is likely the result of the decay process.

Appendix B: Environmental Easement

Herkimer County Honorable Sylvia M Rowan County Clerk 109 Mary Street Suite 1111 Herkimer. New York 13350-2923

ORIGINAL

Instrument Number: 2011-00166171

As

Recorded On: July 27, 2011

Easement

Parties: UNITED STATES OF AMERICA

PEOPLE OF THE STATE OF NEW YORK

Billable Pages:

11

Recorded By: UNITED STATES MARSHAL SERVICE

Num Of Pages:

12

Comment:

** Examined and Charged as Follows: **

Easement

95.00

Coversheet

5.00

TP584 Affidavit

5.00

Recording Charge:

105.00

Consideration

Amount RS#/CS#

Amount

0.00

Tax-Transfer

0.00

0.00 RS 1820

0.00 Special Additional

0.00

DANUBE T/O

Local

Basic

Additional

0.00 Transfer

0.00

Tax Charge:

0.00

STATE OF NEW YORK, COUNTY OF HERKIMER SS:

I, Sylvia M. Rowan, Clerk of the County of Herkimer of the County Court of said County and of the Supreme Court, both being Courts of Record having a common seal.

DO HEREBY CERTIFY that I have compared this copy with the original filed, recorded, or entered in this office and that the same is a correct transcript thereof and of the whole of said original.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed the seal of said County and Courts on

Facsimile signature used pursuant to Sec. 903 County Law

** THIS PAGE IS PART OF THE INSTRUMENT **

I hereby certify that the within and foregoing was recorded in the Clerk's Office For: Herkimer County, NY

File Information:

Record and Return To:

Document Number: 2011-00166171

UNITED STATES MARSHAL SERVICE

Receipt Number: 163822

100 SOUTH CLINTON STREET

Recorded Date/Time: July 27, 2011 12:57:24P

SYRACUSE NY 13261

Book-Vol/Pg: Bk-R VI-1405 Pg-277

Cashier / Station: M Murphy / Cashier Station 3

Sylvia M Rowan Herkimer County Clerk

Site No: 6-22-016

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the Johnny Cake Road, Mohawk, NY 13407 in the Town of Danube, County of Herkimer and State of New York, known and designated on the tax map of the County Clerk of Herkimer as tax map parcel numbers: Section 127.002 Block 4 Lot 1, being the same as that property conveyed to Grantor by Judgment and Forfeiture and Sale of Property dated February 27, 1990 and recorded on February 4, 2009 in the Herkimer County Clerk's Office in Instrument No. 2009-00149562, and by Deed dated March 17, 1986 recorded on April 15, 1986 in Book 706 Page 520, comprising approximately 3.239 ± acres, and hereinafter more fully described in the Land Title Survey dated January 21, 2009 and revised on October 22, 2010 and again on May 17, 2011, prepared by Thew Associates PE-LS, PLLC, which will be attached to the Site Management Plan. The property description (the "Controlled Property") is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of human health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

Site No: 6-22-016

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Order Number: None, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

- 1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP.
- (4) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- (5) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- (6) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- (7) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP.
- (8) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP.

County: Herkimer

- (9) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property shall not be used for raising livestock or producing animal products for human consumption, and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Regional Remediation Engineer NYSDEC – Region 6 Division of Environmental Remediation 317 Washington Street Watertown, NY 13601-3787, Phone: (315) 785-2238

or

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
- E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

Site No: 6-22-016

- F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- G. Grantor covenants and agrees that it shall annually, or such time as NYSDEC may allow, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - (2) the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- (5 the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect.</u> Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:
- A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;
- B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a

County: Herkimer

Site No: 6-22-016

defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: 6-22-016

Office of General Counsel.

NYSDEC 625 Broadway

Albany New York 12233-5500

With a copy to:

Site Control Section

Division of Environmental Remediation

NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

Site No: 6-22-016

- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment</u>. This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Grantors Name: The United States of America
U.S. Marshal Service
By Marshal Service
Print Name: Jennifer Crane

Title: Acting Assistant Program Manager
Date: 24, 207

Grantor=s Acknowledgment

STATE OF NEW YORK

COUNTY OF ARLING TO N

On the 24th day of JUNE, in the year 20 11, before me, the undersigned, personally appeared Jennifer Crane, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

MUNICAPHOUS GREGORY

Notary Public - State of New York Virginia

My commission expires, this 30th day of

November 2013. I was commissioned a

Notary Public as Terokeshas. Purce.

Site No: 6-22-016

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner.

By:

Dale A. Desnoyers, Director

Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)

COUNTY OF A (Vary) ss:

On the day of _____, in the year 20_11, before me, the undersigned, personally appeared _____ personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

David J. Chiusano
Notary Public, State of New York
No. 01CH5032146
Qualified in Schenectady County
Commission Expires August 22, 20

SCHEDULE "A" ENVIRONMENTAL EASEMENT PROPERTY DESCRIPTION

Johnny Cake Road Site No. 6-22-016

Town of Danube, County of Herkimer, State of New York

Tax Map Number: 127.002 - 4 - 1

All that tract or parcel of land situate in the Town of Danube, County of Herkimer, State of New York, and being more precisely described as follows:

Statements:

- 1. All set monuments are 5/8 –inch by 30-inch reinforcement rod, extending 0.5 feet above grade with a 1 1/4 –inch diameter red plastic cap, marked "J. Thew, L.S. No. 050226" (herein after referred to as a 5/8-inch rebar).
- 2. The parcel of land described herein is intended to a portion of the same premises conveyed by Burton J. and Darleen D. Boepple to B & V Village Farms, Inc. by deed dated March 17, 1986 and recorded in the Herkimer County Clerk's Office on April 15, 1986 in Liber 706 of Deeds at Page 520.
- 3. Reference to an adjoining landowner does not necessarily imply senior title. The adjoining landowners are cited for reference only, unless otherwise noted.

Beginning at a point in the centerline of Johnnycake Road (49.5-foot width), said point being on the easterly line of Subdivision Lot No. 1 as shown on map entitled "Survey & Map of Johnny Cake Ridge" dated June 1, 1990, prepared by Santo Associates, and recorded in the Herkimer County Clerk's Office on January 29, 1991 as Map No. JJ14A34, said point also being at the southwesterly corner of a parcel of land conveyed by Grace E. Nelson to Jacqueline N. and Ronald R. Williams by deed dated November 2, 1972 and recorded in the Herkimer County Clerk's Office on November 3, 1972 in Liber 624 of Deeds at Page 554, said point having New York State plane coordinates (NAD83 – East Zone) of 1,506,466.8 feet North and 396,721.9 feet East;

thence South 71 degrees 26 minutes 29 seconds West, along the centerline of Johnnycake Road a distance of 58.49 feet to the northwesterly corner of a parcel of land conveyed by Harry J. and Agnes Kollmer to John and Joan Leonard by deed dated August 24, 2001 and recorded in the Herkimer County Clerk's Office on August 27, 2001 in Liber 897 at Page 246;

Thence along the westerly line of John and Joan Leonard, the following courses and distances:

South 01 degrees 59 minutes 42 seconds East a distance of 25.82 feet to a 5/8-inch rebar set on the southerly right-of-way of Johnnycake Road;

continuing South 01 degrees 59 minutes 42 seconds East a distance of 190.00 feet to set 5/8-inch rebar;

thence through the reputed property of The United States Marshals (no recorded documentation found), the following courses and distances:

North 90 degrees 00 minutes 00 seconds West a distance of 250.00 feet to a set 5/8-inch rebar;

North 00 degrees 00 minutes 00 seconds East a distance of 130.68 feet a 5/8-inch rebar set on the southerly right-of-way of Johnnycake Road;

continuing North 00 degrees 00 minutes 00 seconds East a distance of 25.05 feet to a point in the centerline of Johnnycake Road;

South 81 degrees 09 minutes 57 seconds West, along the centerline of Johnnycake Road, a distance of 68.44 feet to a point;

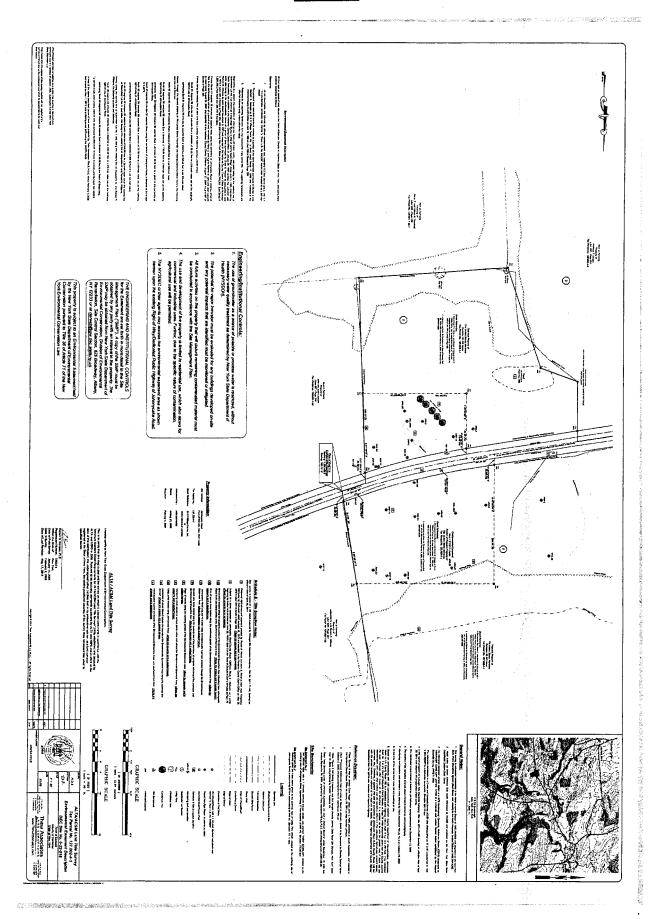
Site No: 6-22-016

North 00 degrees 00 minutes 00 seconds East a distance of 25.05 feet to a 5/8-inch rebar set on the northerly right-of-way of Johnnycake Road;

continuing North 00 degrees 00 minutes 00 seconds East a distance of 286.30 feet to a set 5/8-inch rebar;

South 90 degrees 00 minutes 00 seconds East a distance of 330.00 feet to a 5/8-inch rebar set on the easterly line of Subdivision Lot No. 1, said rebar also being on the westerly line of Jacqueline N. and Ronald R. Williams;

thence along the easterly line of Subdivision Lot No. 1 and along the westerly line of Jacqueline N. and Ronald R. Williams, the following courses and distances:


South 09 degrees 05 minutes 28 seconds East a distance of 200.00 feet to a 5/8- inch rebar set on the northerly right-of-way of Johnnycake Road;

continuing South 09 degrees 05 minutes 28 seconds East a distance of 25.09 feet to the Point of Beginning.

To contain 3.239 acres of land, more or less, as surveyed by Robert H. Korosec, Licensed Land Surveyor No. 050578.

Site No: 6-22-016

SURVEY

Appendix C: Letter to Herkimer County Highway Department dated February 11, 2010

New York State Department of Environmental Conservation

Division of Environmental Remediation

Remedial Bureau C, 11th Floor

625 Broadway, Albany, New York 12233-7014

Phone: (518) 402-9662 • Fax: (518) 402-9679

Website: www.dec.ny.gov

February 11, 2010

Herkimer County Highway Department Jay W. Ewanyk 313 3rd Avenue Herkimer, NY 13350

Re: Johnny Cake Road Farm Site, Site No. 6-22-016, Town of Danube, Herkimer County Groundwater Contamination in County Right-of-Way

Dear Mr. Ewanyk,

The purpose of this letter is to notify the Herkimer County Highway Department of the presence of contaminated groundwater beneath a county road and county right-of-way in the Town of Danube, Herkimer County.

The New York State Department of Environmental Conservation (Department) in March 2009 issued a Record of Decision (ROD) for the Johnny Cake Road Farm Site, Site No. 6-22-016. The ROD outlines a remedy for the site which includes placing an Environmental Easement on the site due to the presence of contaminated groundwater. As required by the ROD groundwater will be monitored by the Department. The ROD also includes a provision requiring notification of the Herkimer County Highway Department with all relevant reports and data to identify the location and requirements to handle potentially contaminated groundwater in the county right-of-way during future repairs and/or replacements of the section of Johnny Cake Road which runs through the site.

Therefore, as required by the ROD please find enclosed with this letter the following excerpts from documents concerning the Johnny Cake Road Site:

- "Record of Decision", March 2009 Figure 7: Groundwater Investigation & Site Boundary
- "Site Investigation Report", February 2009 Attachment H: Site Survey
- "Site Investigation Report", February 2009 Table 2: Summary of Laboratory Analytical Data for Groundwater

Figure 7 of the Record of Decision and Attachment H: Site Survey of the Site Investigation Report identify and illustrate the boundary of the 3.24 acre Johnny Cake Road Farm site. Figure 7 of the Record of Decision and Table 2 of the Site Investigation Report contain recent groundwater data for contaminants of concern in groundwater at the site. Contaminants of concern include Tetrachloroethene (PCE), Trichloroethene (TCE), cis-1,2-Dichloroethene

(DCE), and Vinyl chloride (VC). The 3.24 acre boundary of the Johnny Cake Road Farm site is currently a portion of the larger Herkimer County tax parcel 127.002-4-1.

The site boundary shown on Figure 7 and Attachment H represents the area which is currently or may potentially be underlain by contaminated groundwater. This site boundary includes a county right of way approximately 375 feet in length through which Johnny Cake Road passes. Site investigations indicate groundwater may be between 3 and 10 feet below grade in the county right of way, and thus groundwater could potentially be encountered during repairs or replacements of the section of Johnny Cake Road which runs through the site. The Department therefore requests the Herkimer County Highway Department take the following precautions for repairs of this section of Johnny Cake Road which could potentially expose contaminated groundwater:

Prior to the start of any activity that is anticipated to encounter remaining groundwater contamination in the county right-of-way, the Herkimer County Highway Department will notify the Department. Currently, this notification will be made to:

William Bennett, Project Manager
NYSDEC
Division of Environmental Remediation
Remedial Bureau C, Remedial Section B
625 Broadway
Albany, NY 12233-7014
1-800-520-2334

This notification will include:

- A schedule for the work during which groundwater may be encountered
- A plan to screen and manage contaminated groundwater
- A Health & Safety Plan (HSP) and Community Air Monitoring Plan (CAMP)

A copy of this letter will be including in a Site Management Plan (SMP) for the site. The Site Management Plan describes the long term requirements including institutional controls and monitoring that are required to protect public health and the environment. A copy of the final SMP will be provided to the Herkimer County Highway Department upon completion.

If you have any questions or concerns do not hesitate to contact me at (518) 402-9662.

Sincerely,

William Bennett

Environmental Engineer 1

William Bennett

Remedial Bureau C

Division of Environmental Remediation

Attachments (3)

cc:

W. Snider, USMS A. Deminski, USMS

ec:

G. Rys, NYSDOH A. Confortini, EPA

Appendix D: Monitoring Well Boring and Construction Logs

DATE HOLE NO. B-14/19/90 STARTED . SOILS INVESTIGATIONS INC. SUBSURFACE LOG SURF. ELEV. 4/19/90 FINISHED . C. W. DEPTH See Note #1 OF____ SHEET _ PROJECT Environmental Site Assessment LOCATION Johny Cake Road Town of Stark: NY BLOWS ON BLOW ON CASING C SOIL OR ROCK SAMPLER **NOTES** CLASSIFICATION /18. Note #1: At comple-17 Brown SILT & CLAY, Some Gravel tion of boring, a 2" 10 5 PVC ground water moni-5 -grades trace gravel toring well was instal 3 led as per attached 6 8 18 monitoring well detail (Wet-Soft to Stiff) 10 14 Brown Galcial Till 12 1.6 34 18 24 5 1001.5 -little recovery: rock fragments 6 50 49 26 grades gray (Moist-Compact) 20 End of Boring @ 12.4' N = No blows to drive 2 " spoon 12 " with 140b, pin wt. falling 30 "per blow. CLASSIFICATION Visual by Driller C = No blows to drive _____ " casing ____ " with ____ lb. weight falling _____ ___"per blow.

MITHOD OF INDESTIGATION 41" T.D. Hollow Stem Anders

į

į,

WAD BOX SUPPECE. PEPTY ELEVATION : 77/8 MANYAS 1.0 CONCRETE_ SEAL BENTONITE SEAL 2.01 PVC PIPE 2" Sch 40 PVC Flush Thread MAND PACKS = Whitehead WATER LEVEL Bros #0 Sand IN MONITOP) WELL SCHEEN 2" Sch 40 PVC Slot Size-.010" 12.4 12.4

WELL Nº

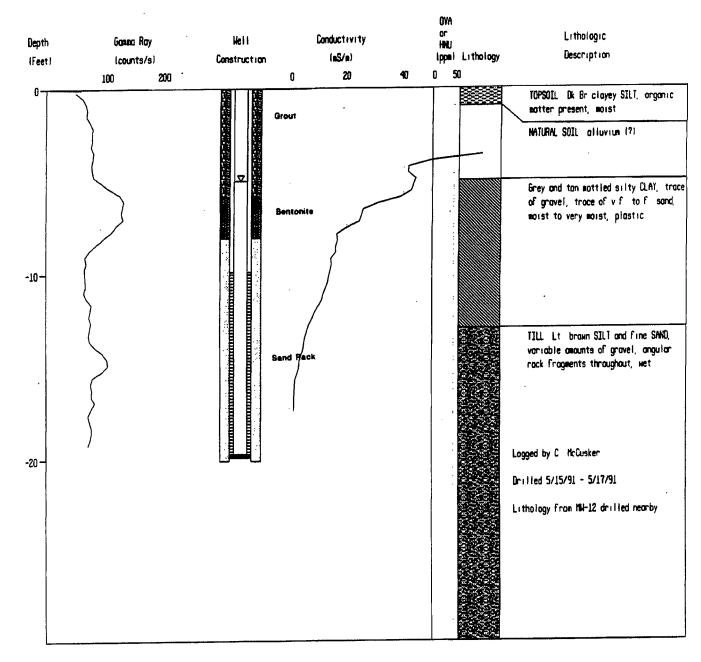
1

B-1

MONITORING WELL DETAILS

JOHNY CAKE ROAD E.S.A. TOWN OF STARK, N.Y.

DR.BY: J.H	SCALE: N.T. D.	PROI. NO.AD-90-36
	DATE: 5/23/90	DRWG.NO.

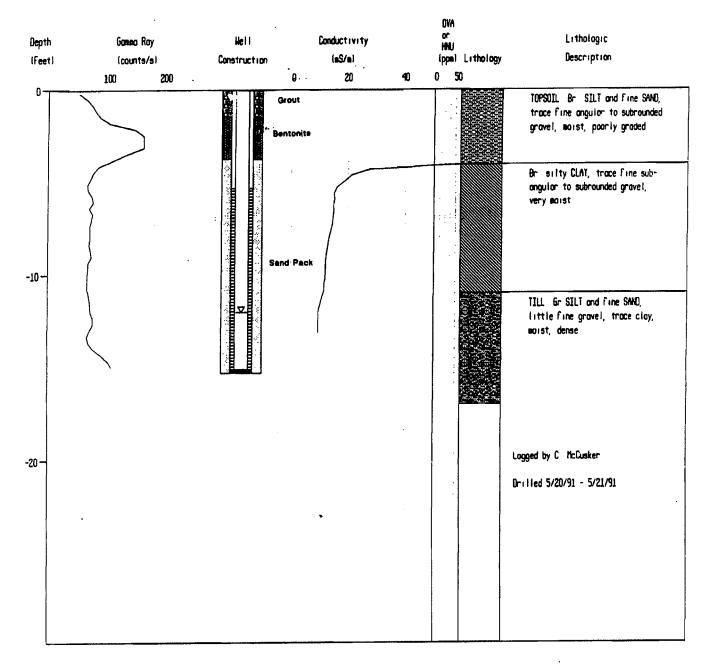

S		SUR	FACE		Subsuri Log		Hole No.:	MW-2R				e started	• •
Cilera							Sheet	1 of 1		\A/mil	Date Depth	Finished	: 7/25/05 23.0' bgs
Client: Locati		Johnny	ech, Inc. Cake Road f Danube, NY		meu 100	or mves	stigation: 6 1/4" Hol	low-Stem Auger		Depth to	•		3.0' bgs
-		: 86361			lling Co.:			Driller: J. Grant D. Helper: C. Ross			-		Weather: Sunny
rojec	t Mgr	:: Pete	Johnson	Ge	ologist:	N/A		Drill Rig: Mobile B	-59		T	1 30/011	85 deg. f
Depth		Depth	Sample Blows	7-	Recovery	1		Sample			Depth	Well Details	Groundwate and Other
)を P は1 (代.)	No.	(ft.)	per 6"	"N"			D	escription		1	bg5		Observation
5						fine grav	: Moist, browi vel; trace silt;	n fine to coarse sand; so trace clay; trace organion	cs.	5' of 4" diameter Sch 40 PVC riser	0.5° 2.5°		6" Steel Stickup Bentonite Seal
10						coarse s	and; trace org			20' of 4" diameter			Yop of Screen at 3.0°
15										Sch 40, 0.01 slot, PVC well screen			GW at 17.5
20													Sand Pack No. 00N
25						·				4" diameter PVC plug	25.5' BOB		23.0' BOW
30													
35							 -		Mall C	elegii Mari			
mple` = Spl			2" by 2'	T≂ S	helby Tul	oe:			Cemen	ckfill Key t			Native Fill
= R	ock C	ore:			luger cut	_							a B
= AST	M D	1586		-					Sand				Bentonite

S	U	BSUE	RFACE		Subsur		Hole No.:	MW-2RR		Dat	e started	7/27/05
l	n	rilling So	lutions		Log		Sheet	1 of 1		Date	Finished	7/27/05
Client Locati			Tech, Inc. y Cake Road		Method	of inves	itigation: 6 1/4" Hol	llow-Stem Auger	We Depth to	ll Depth Screen		24.5' bgs 4.5' bgs
<u> </u>	<u> </u>	Town	of Danube, NY				•	· · · · · · · · · · · · · · · · · · ·				
Projec	t No	.: 86361	Į.	Dri	lling Co.:	SDS		Driller: J. Grant				Weather:
Denoise	+ Ma	r . Dok	Johnson	1	ologist:	B1/A		D. Helper: C. Ross				M-Sunny
riojec	I	II. PELE	Sample	loc	ologist.	N/A		Drill Rig: Mobile 8-59		Т	Well	80 deg. F Groundwater
Depth	一	Depth	Blows	Π	Recovery	1		Sample		Depth	1	and Other
(ft.)	No.	(ft.)	per 6"	"N"	(ft.)		D	escription		bgs	Details	Observations
									5' of 4"			6* Steel
	<u> </u>			L				n fine sand; some fine gravel;	diameter Sch 40	0.5		Stickup
						organics.		e sand; trace clay; trace	PVC riser	2.5'		Bentonite
						organica						Seal
5						1.5′-7.0′:	Wet, brown	silt and fine sand; little				Top of
				_		coarse to	medium san	d; trace clay; trace organics.				Top of Screen at
										Ì		4.5'
			····				': Wet, brown dium to coars	n silt and fine sand; little clay;				
10						u ace med	alum to coars	e sain.		1		
10									20' of 4"			
ŀ				-					diameter	L	H= 1	
ŀ	-					15 0'-2E 0	li Mat arau	silt and fine sand; little fine	Sch 40,]		
ŀ	\dashv	 						coarse sand; trace day.	0.01 slot, PVC well			
15				\dashv				·	screen			
ŀ	7											
Ī				一								
				丁								Sand Pack No. 00N
20												NO. UUN
				\Box								GW <u>at</u> 20.3
L												<u></u>
L									4"	l	2 2	4.5' BOW
_									diameter			
25	_			\bot					PVC plug	25.0		10°
_	-	•		4						вов	l l	diameter
	-									l		borehole
-	-+			-						l		
30	+			+						j	- 1	
30	+			-						- 1		
-	-			十								
-	-			_					1			
	1			1								
35	1			十					İ	1	ł	
mple 1						***************************************		Well B	ackfill Key	L	J	
= Spli					relby Tub			Ceme				Native Fill
R = Ro			0	A	uger cutti	ngs					PROGRAMM	
= AST	M DI	.586						Sand				Bentonite

S			FACE		Subsur Log	, 1100	e No.:	MW-4R		Date	e started:	7/26/0
	D	rilling Sol	utions	1	_	Sne		1 of 1			Finished:	
Client			fech, Inc.		Method	of investigat		_		Depth		23.5' bgs
_ocati	on:		Cake Road			6 1/	4" Hollow-	Stem Auger	Depth to	Screen	:	3. 5 ' bg s
			of Danube, NY				1					1
rojec	t No.	: 86361		Dri	lling Co.:	SDS		er: J. Grant				Weathe
					-11-4	A1 (A	4	elper: C. Ross				Overcast,
rojec	t Mgi	Pete	Johnson	JGe	ologist:	N/A	ווחטן	Rig: Mobile B-59		т	1 141-11	75 deg.
epth	 	D4-1	Sample Blows	т		1	Sam	nla		Depth	Well Details	Groundwa and Oth
(ft.)	No.	Depth	per 6"	"N"	Recovery (ft.)		Descri	•		bgs		Observation
11.7	NO.	(ft.)	per o	14	(12)		UGSCII	ption	5' of 4"	Dys		ODSEI Vau
		-		\vdash		0.0.400.000			diameter	1.5'		6" Steel
	\vdash			-				sand; little fine gravel l; trace organics.	Sch 40	2.5'		Stickup
ļ				-		nac medium c	o cualas suns	, trace organics.	PVC riser	2.3		│ Bentonite
				 					1.			Şeal
5				\vdash		4.0'-7.5': Wet,	brown silt an	d fine sand; trace				Top of
				 		coarse to medi	um sand; trac	e organics.				Screen a
,				\sqcup								3.5
ļ				\vdash		7.5'-15.0': We	t, brown silt;	little fine sand and clay	.			
ļ									-			
10	-		···						1			
L									20' of 4"		-=	
L									Sch 40.			
							et, brown silt;	little fine sand and clay	/; 0.01 slot,			
						trace cobbles.			PVC well			
15 📗									screen			
						•	•		1			GW <u>at</u> 16.
										ı		-
									1 1	1		Sand Pad No. 00N
0	-1			\Box								
										- 1		
Γ									4"		: 5 2	3.5' BOW
Γ									diameter			
5									PVC plug	25.0'	······\	
									1	вов	7	10" diameter
										j	1	porehole
											- 1	
										1	- 1	
0	\top			\top						- 1	1	
										1	ı	
	\Box									}	Į.	
Γ	\Box											
				\top						- 1		
5											- [
nple	Гуре	5:						Well	Backfill Key			
= Spli	t Spo	on:	2" by 2'	= SI	helby Tub	ne:		Cem				Native Fil
= Ro) <u>A</u>	uger cutt	ings		101010				
: AST	M DI	.586						San-	d			Bentonite

Figure 28

Geophysical Well Logs, Well Construction, and Soil Stratigraphy For Monitor Well MW-12A



U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

> Johnny Cake Road Site Danube, New York WA #3347-31-01-4431 October, 1991

Figure 29

Geophysical Well Logs, Well Construction, and Soil Stratigraphy For Monitor Well MW-13

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract: Contract No. 68-03-3482

> Johnny Cake Road Site Danube, New York WA #3347-31-01-4431 October, 1991

TES	TROR	ING LO	2	AGENCY	,					
COMPANY	NAME	ING LOC	<u> </u>	70011 0					HOLE NUMBER MW-16	
Weston PROJECT N	Solutions			SJB	UBCONTRA Service	CTOR		SHEET		
	Cake Road					SITE	LOCATION		1 of 3	
Bill Bos	RILLER					He	rkimer Count	ty, NY		
NAME OF G						No	rth - 475724	6.377 (m): Fa	st 511679.797 (
R. Moul						SIGN	ATURE OF GEOLOG	GIST	011019.191	<u>'''')</u>
CME 85	o track mour	IND SAMPLING EQUI	PMENT	······································			STARTED	DATE COMP	ETED	
		••				9/23	3/03 ACE ELEVATION	9/23/03		
						1 237	7.748 (m)			
						DEPTI 6 ft.	TO FIRST ENCOU	NTERED WATER		
OVERBURDE	N THICKNESS/ DEF	TH TO BEDROCK						LAPSED TIME AFTER	DRILLING COMPLETED	
DEPTH DRILL	ED INTO BEDROCK	(ASUREMENTS (SPE		
TOTAL DEPT	OF HOLE					ŀ			(IFY)	
GEOTECHNIC	AI SAMPLES	6.0'				İ	FLUID LOSSES			
	or ormir EEG		SAMPLE DEPTH	UNDISTURBED	VDISTURBE	D	TOTAL NUMBER	OF CORE BOXES		
ENVIRONMENT	(N. 0411 -1									
CHAILCHWEN	ial samples		SAMPLE DEPTH	ANALYTES					TOTAL CORE RECOVER	V &
			 							
DISPOSITION O	FHOLE		BACKFILLED	MONITORING W	E) 1	1046				
DATE	STARTTIME	FINISH TIME				LAS	ING TYPE	WELL DEPTH	SCREENED INTERVAL	
		I stion time	DRILLI	NG DEPTH				DESCRIPTION		
ļ	ļ									_#
										\dashv
KETCH (F DRILLING	G LOCATION	/ADDITIONA	COMME	NTC					7
a.			"ADDITIONA	r Countie	412	SC	CALE:	Not T	o Scale	7
										ı
			See Seil	Doring L						
			066 3011	Boring L	ocatio	n Ma	ıp			ı
						•				I
										1
			•							
										l
OJECT										[
^hnny Cake	Road					t	E NO.			ı
						M	<i>N</i> -16			

RECOVERY SYMBOL MUNSEL DESCRIPTION OF MATERIALS PID READINGS LITHOLOGY DRILLING REMARKS	DEPTH	***************************************	Johnny Ca			GEOLOG R. Moult			HOLE NUMBER 3
0 Index	DEPIN	INTERVAL/ RECOVERY/	BLOW	USCS SYMBOL	MUNSELL COLOR		PID READINGS	LITHOLOGY	2 of 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	- IME	-	+'				LITHULUGY	DRILLING REMARKS
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	, 1		'	1	C-II	+		
2 25 Sample MW-16A Sample MW-16A Sample MW-16A 4 3 Sample MW-16A 4 4 Wet to saturated 1.4 5 12 10 12 15 25 8 3 Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated 10 Sample MW-16B 11 Sample MW-16B 12 Sample MW-16B 13 Sample MW-16B 14 Sample MW-16C 15 Sample MW-16C 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 13 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 13 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 13 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 1	-	, 1	3	,			4.5		j
2 — 4 4 4 3 5.7	1	, ,	25 25	,			4.2		
4 —	2		1	,	1	,			
4 3 5 5 7 4.4	- 1	,		,	1		1 1		
4 5 4 4 Wet to saturated 1.4 0.4 0.5	1	J	1 2	1	r				Sample MMAL 46A
## Company of the state of the	- 1	J	1 5	,	1				Carrible MAA-104
6	4				1		4.4		
6	1		3 ']]	1	1			
6 4 10 10 12 12 12 12 12 13 14 16 15 10 10 12 12 15 15 12 15 15 16 17 18 19 18 19 18 16 18 10 10 10 10 10 10 10 10 10 10 10 10 10	1		, 4 , 4	1)	i ,	1	1 44		
8 10	.	Ì		1 1	1	Wet to saturated			
8 12 15 15 16 25 17 18 17 18 18 19 18 18 19 18 18 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	9	1	. 10	1 1	,	1	0.5		
8 25			10 ,	1 1	, ,	1	1		
8 25 Sample MW-16B 10 21 18 19 11 21 18 19 12 22 10 13 Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated 12 25 Sample MW-16B 13 22 3 36.8 14 27 5.4 2.7 2.7 8 2.7 8 2.7 14 2.7 15 3.5 3.9 1.8 1.9 16 22 16 22 17 CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated 22.3 36.8 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.3 Sample MW-16D 5.4 2.7 8 3.5 3.9 1.8 1.4 1.4 Sample MW-16D 5.2 Sample MW-16D 5.3 Sample MW-16D 5.4 2.7 8 3.5 1.8 3.5 1.8 3.5 1.8 3.5 1.9 3.5 1.1 3.5 1.1 3.5 1.2 3.5 1.3 3.5 1.4 3.5 1.5 3.5 1.6 3.5 1.7 3.5 1.8 3.5 1.9 3.5 1.9 3.5 1.0 3.5 1.0 3.5 1.0 3.5 1.1 3.5 1.2 3.5 1.3 3.5 1.4 3.5 1.5 3.5 1.6 3.5 1.7 3.5 1.8 3.5 1.9 3.5 1.9 3.5 1.0 3.5	1		15	1 1	,	1	128	ı	
Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated 10 10 12 12 14 15 16 16 17 18 19 10 11 11 11 12 12 13 14 15 16 17 18 19 18 19 19 10 11 12 13 14 15 16 17 18 18 19 19 10 11 12 13 14 15 16 17 18 18 19 19 10 10 11 11 12 13 14 15 16 17 18 18 19 19 10 10 10 11 11 12 13 14 15 16 17 18 18 19 19 10	Ω		25			1	5.2	'	Sample MW-16B
10	,		3 1			Till; CL, clay, silty, low to moderate	1		
10	1		11		,	plasticity, firm to stiff, wet to saturated	1	,	
10 — 10	1		12	1	,		22.3	,	
12 8 5.0 Sample MW-16C 12 8 5.4 2.7 14 21 18 19 22 16 Sample MW-16C 5.0 Sample MW-16C 5.0 Sample MW-16C 5.1 2.	10	1	10 /	1	•	1	36.8	,	Comple SEAL 100
12 9 9 14 5.4 2.7		1	22	1	1	1	5.0	,	Sample MW-16C
12 —		-1	9	1	ļ	1	i l	,	1
12 — 8 12 12 13 15 15 15 18 19 22 Fine sand lenses Sample MW-16D Sample MW-16D	-	ł	9	1	J	1	,	Ţ.	1
14 21	12	1	14	1		1	5.4	J	1
14 15 12 15 3.9 1.8 1.4 18 19 22 16 21 16 21 17 18 19 22 16 21 18 19 22 16 21 18 19 22 16 21 18 19 22 16 21 18 19 22 20 20 20 20 20 20 2	1			<i>i</i>			2.7	Ţ.	l
14 21	I		12	$i = \frac{1}{2}$	 	Fine sand lenses	3.5	,	1
21 18 19 22	1	1	12		J	ino dana lenges	3.9	,	Sample MM 46D
16 21 18 19 22	14				1			J	Jampie MM-10D
19 22	I		21		1		1.4	I	í
16 22	1		18	.			I		i
16			22				ı	1	
OJECT NAME: Johnny Cake Road	O IECT !	AIAAAE.			I			1	

2000	1				GEOLOGIST:			HOLE NUMBER MW-16
DEPTH	INTERVAL/ RECOVERY/ TIME	BLOW	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MATERIALS			SHEET:
	TIME		STMBUL	COLOR	- INTERIALS	PID READINGS	LITHOLOGY	3 of 3 REMARKS
	!	12		1	hard, grey, moist			
1	['	14 14	1 1	1	The Gray, Horse	0		
	1 1	15	1	1		0	1	
18	i 1		1 1	1		0	1	
1	i 1	12	1 1	1			1	
J	1 1	15 14	1 1	i		1 , 1	1	
	1	15		i		0	l	
20			1 1	i		0	l .	
I	, ,	21 18	1	ı			I	Sample MW-16E
1		16	1 1	,		1 24 1		
22		20			l	3.4 4.4	1	
22		100	1 1	,		11.1	i i	
1		18 25 25	1 1	'	1	1 1		Sample MW-16F
1	1	25		'	1	2.5 3.0 2.9 1.7	1	
	· 1	30/0	1	,	1	3.0	1	
24	l	I	1		1	1.7		
	1	22	1	1			1	
1	į	24 25	1 1	,		1)	l
		25 43	i = 1	1	Tatala u and	0.1	}	1
26			i = 1	,	Total Depth 26 ft.; groundwater at 6 ft.	0.1		Sample MW-16G
l	1		, 1	,	1	1 1	İ	i
	l	[ı İ	1	ı		1	i
28	1	1	, [1	ı		1	,
20			.			1		
1	ĺ	I	.					
]	.		ı			
30				I	,	1		
~ -	1	1		1	·		1	
	1	1			,	1	İ	
1	1	- 1	1	1	,			
32	ļ				1			
DIFCT	NAME: Jo	ohnny Cake				i	1	

TEC	TDAR	INO : G		LAGENCY	-			
COMPANY	PUBUK	ING LO	j	AGENCY				HOLE NUMBER
	NAME 1 Solutions			DRILL SUBCON	TRACTOR		SHEET	MW-17
PROJECT N	AME		·	SJB Serv				1 of 4
Johnny	Cake Road					ELOCATION Prkimer Coun	to AIV	
iame of di Bos۱القر	RILLER				HOL	E LOCATION	ty, IN Y	
NAME OF G	OLOGIST				N	orth - 475724	6.271 (m); Eas	st - 511679.367 (m)
R. Mouli	t				SIGI	NATURE OF GEOLO	GIST	(111)
CME 85	ize of drilling a 0 track mour	ND SAMPLING EQUI	PMENT		DAT	E STARTED	DATE COMPL	ETED
OWIE GO	o track inour	К				4/03	9/25/03	2125
						FACE ELEVATION 7.233 (m)		
					DEPT	H TO FIRST ENCOL	INTERED WATER	
OVERBURDE	N THICKNESS/ DEP	TH TO BEDROCK			6 fi	t.		
Ĭ					DEPT	H TO WATER AND I	ELAPSED TIME AFTER	DRILLING COMPLETED
DEPTH DRILL	ED INTO BEDROCK				OTHE	R WATER LEVEL M	EASUREMENTS (SPEC	IFY)
TOTAL DEPTH	OF HOLE							··· • ,
	4(0.0'			TOTAL	L FLUID LOSSES		
GEOTECHNIC	al samples		SAMPLE DEPTH	UNDISTURBEDIDIST	JRBED	TOTAL NUMBER	OF CORE BOXES	
			ł					
ENVIRONMENT	TAL SAMPLES		SAMPLE DEPTH	ANALYTES				
				AVALITES				TOTAL CORE RECOVERY %
	···		 					
DISPOSITION	F HOLE		BACKFILLED	MONITORING WELL	164	SWO TYPE		
DATE					~	SING TYPE	WELL DEPTH	SCREENED INTERVAL
DATE	START TIME	FINISH TIME	DRILL	NG DEPTH	T		DESCRIPTION	
		 	 		 			
					 			
			····		 -			
KETCH (OF DRILLING	G LOCATION	/ADDITIONA	L COMMENTS	1	CALE:		
						CALE:	Not I	o Scale
				•				
								į
								ĺ
			Son Call	Davina I	47			
			266 201	Boring Loca	ition M	ap		
								į
								· ·
								1
								#
						•		
OJECT								
าhnny Cak	o Bood					OLE NO.		
anny Cak	e voad				11	WW-17		

ROJE	ORING	Johnny Cal			ONTINUATION SHET			HOLE NUMBER	,
DEPTH	INTERVAL/ RECOVERY/	BLOW	USCS	MUNSELL	Tr. IVIOUIT			SHEET:	0 -5 4
	TIME		SYMBOL	COLOR	THE PROPERTY OF MINISTRALS	PID READINGS	LITHOLOGY	DRILL	2 of 4 ING REMARKS
0	!				Colluvium; CL. clav, silty low placticity	+			
2		Auger to			Colluvium; CL, clay, silty, low plasticity, brown, soft to firm, v. moist, small angular gravels (10 % + 4) to cobbles				
_		27		ĺ			I		
4									
6 —					Wet to saturated				
							!		
8					Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated				
10									
12									
14					Fine sand lenses			ł	
		1							
6		1	1		1	1			
JECT	NAME: Jo	lohnny Cake				<i>i</i>			

ROJECT NAI	ME:	LOG			GEOLOGIST:			HOLE NUMBER MW-17 SHEET:
OEF IN	INTERVAL/ RECOVERY/ TIME	BLOW	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	3 of 4 REMARKS
		! -			hard, grey, moist			
18								
20 —								
22					·			
		ļ						
24		10 18 15			Same as above; rock fragments			
26		17 10 17				0		Sample MW-17F
28		22 30 2 7				0		
30 —		11 15				0		
32	NAME: Jo	9 25 31 28 Ohnny Cake				0.9 0		Sample MW-17G

OJECT NAI					GEOLOGIST:			HOLE NUMBER MVV-17
DEPTH	INTERVAL/ RECOVERY/ TIME	BLOW	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	SHEET: 4 of 4 REMARKS
		10 26 33 21			hard, grey, moist	0		
34						0 0.3 0		Sample MW-17H
		9 35 34 28						
36						0 0		
_		14 37 29						
38		32				0 0.1		Sample MW-17I
		12 42 48 37				0 0 0		
40		37			Total Depth 40 feet; groundwater at 6 ft.	0		Sample MW-17J
42					·			
14 —								
6		·						
8	NAME: Jo	hnny Cake						

TEC	TPAR	NO LO		AGENCY				
	DUK	NG LO	خ	MOENCY				HOLE NUMBER
Weston	NAME Solutions			DRILL SUBCONT	RACTOR		SHEET	MW-18
PROJECT N	AME			SJB Servi				1 of 3
Johnny	Cake Road					E LOCATION		
					HOI	erkimer Count	y, NY	
III Bosy					N	orth – 47572 4	(0.290 /m)· Ea	ct E11657.000 ()
R. Moult					SIGI	ATURE OF GEOLOG	GIST	st - 511657.038 (m)
TYPE AND SI	ZE OF DRILLING A	ND SAMPLING EQUI	PMENT					
CME 850	track moun	nt				e started 6/03	DATE COMPL	ETED
						ACE ELEVATION	9/29/03	
- 1					23	7.444 (m)		-
- 1					DEPT	H TO FIRST ENCOU	NTERED WATER	
OVERBURDE	THICKNESS/ DEP	TH TO BEDROCK		<u> </u>	9 f			
DESTINATION OF					JOEP!	H TO WATER AND E	LAPSED TIME AFTER	DRILLING COMPLETED
DEPTH DRILL	ED INTO BEDROCK				OTHE	R WATER LEVEL ME	ASUREMENTS (SPEC	SEY)
TOTAL DEPTH	OF HOLE							en vy
	2	5.0'			TOTAL	FLUID LOSSES		
GEOTECHNICA	L SAMPLES		SAMPLE DEPTH	UNDISTURBED/DISTUR	RBED	TOTAL NUMBER	OF CODE BOYES	
ı			1			TOTAL HUMBER	OF CORE BOXES	
ENVIRONMENT	Al CAMPIEC	···						
	AL SAMPLES		SAMPLE DEPTH	ANALYTES	······································			TOTAL CORE RECOVERY %
			1	•				1
DISPOSITION O						·		
DISPUSITION O	F HOLE		BACKFILLED N	IONITORING WELL	CA	SING TYPE	WELL DEPTH	SCREENED INTERVAL
DATE	START TIME	FINISH TIME	55016					OUTTHED MIEKAME
		}	DRILLIN	G DEPTH	İ		DESCRIPTION	
								
								
'CKETCH C	F DRILLING	LOCATION	/ADDITIONAL	COMMENTS		CALE		
				COMMENTS	3	CALE:	Not T	o Scale
~								1
								i
Ī								
1								1
								İ
			See Soil I	Boring Locat	ion M	an		1
				y Local	-U11 1V	aγ		1
								j
								ł
								1
								Į.
								.[
								1
								1
								Į
ROJECT								i
Johnny Cake	Pood		-			PLE NO.		
	RUAU				N	™ -18		1

ROJE	·	Johnny Cal	ke Road		GEOLOGA. R. Moult			HOLE NUMBER 3
DEPTH	INTERVALI RECOVERY/	BLOW	USCS SYMBOL	MUNSELL		— <u>—</u>		SHEET:
	TIME	COUNT	SYMBOL	COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	2 of 3
0			+			1 ,	1	DRILLING REMARKS
1	1	2	,	1		 		
1	1 7	3	,	1	Colluvium; CL, clay, silty, low plasticity,		1	
1	1	3	,	1		ŏ	Ĺ	1
_	<i>i</i>	3	,	1	gravels (5 % + 4) to cobbles		1	1
2	, , , , ,		,	1		ŏ	i	l
J	, ,	3	1	f	1	1	I	
- 1	<i>i</i>	3	1	1	· i	0	ı	1
1	, J	4	1	1	· I	0	i	·
4		4 1	1	1	· i	0	ı	
Ī	. 1	, , '	1 1	1	1	0		Sample MW-18A
i		2 2		1	,	1		Cample MAA-104
1	1	2	1 1		,	1 , 1		1
1	1	2		4	Wet	0 0		1
6	i	_ 1		, · · · · · · · · · · · · · · · · · · ·	1	0		1
1	1	1 1	1	, 4	1	1 1	٠,	1
1	1	1 1	1	4	1	0	,	1
I	1	2	1	, , , , , , , , , , , , , , , , , , ,	1		,	1
	ì	2	1	, · · · · · · · · · · · · · · · · · · ·	· I	0		1
8	1	1	1	,	1		,	1
1	1	2	1	. · · · · · · · · · · · · · · · · · · ·	Colluvium: Cl. clay silly law startists	1	,	Sample MW-18B
I	1	6	1	, ,	Colluvium; CL, clay, silty, low plasticity, mottled, brown to black, stiff to hard, moist gravels (10 % + 4)	4.5	,	1
1	1	8 13	1	,	gravels (10 % + 4)		,	Sample MW-18C
10	1	15	1	,	1	0.4	,	1
1	ı	4	1	,	1	0.6	,	1
1	I	22		,	1	26	Ţ	1
I	[22	. 1	,	1	2.6 0.7	Ţ.	1
		25		J	1	0.7	. J	4
12	1	-		J	1	0.7	1	4
1	1	3		Ţ	1	· · ·)	4
1	1	11		J.	Till; ML, silt, low plasticity, fine sand		J	4
1	1	12	,)	Lenses, firm to stiff, saturated	0.3		4
14	i	11		j	, mili to suil, saturated	1.3	J	Committee a man a man
	1	11	. 1	1	1	0.7	1	Sample MW-18D
į		13	1	.]		1	1	
[ł	14	-	1		<u> </u>	ì	
	1	13		I		0	ł	
16			1	1		0	[•
OJECT	NAME: J	ohnny Cake	e Road			ĭ	1	

OJEC1,	30RING				GEOLOGIST:			HOLE NUMBER MW-18
EPTH	INTERVAL/ RECOVERY/ TIME	BLOW	USCS Symbol	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	SHEET: 3 of 3 REMARKS
		11 12			hard, grey, wet to saturated			
		12 14				0 0		
18		8				0		
		12 11 14				0		Sample MW-18E
20		9				ŏ		
l		14 18 18						
22		18 16				0		
		20 16 22						
24		22				0		Sample MW-18F
26					Total Depth 25 ft.; groundwater at 9 ft.			·
8							·	
o								
2								
JECT	NAME: Jo	ohnny Cake	Road					

TES	TBOR	ING LO			AGENCY			-			
COMPANY	NAME	MO LO	<u> </u>		DDM - Company					HOLE NUMBER MW-19	
Westor PROJECT N	n Solutions				DRILL SUBCON SJB Serv	TRACTOR			SHEET		
				1		Si	E LOCAT			1 of 3	
'AME OF DI	Cake Road					H	erkime	r County	y, NY		
III Bos	worth				North - 475722				24.257 (m); East – 511624.344 (m		
R. Moult	•					SIG	NATURE	OF GEOLOG	IST (111), Ea	ist - 511624.344 (m)	
CNAL DE	ZE OF DRILLING A	AND SAMPLING EQUI	PMENT				E START				
CIVIE 00	0 track mour	nt					29/03		9/29/03	LETED	
İ							FACE ELI		15,25,00		
•						DEP	39.616 TH TO FIR	(III) ST ENCOUN	TERED WATER		
OVERBURDE	N THICKNESS DEF	TH TO BEDROCK				61	ft.				
1						DEP	TH TO WA	TER AND EL	APSED TIME AFTER	DRILLING COMPLETED	
DEPTH DKILL	ED INTO BEDROCK	K				ОТН	ER WATE	LEVEL ME	ASUREMENTS (SPE	(IFY)	
TOTAL DEPTH	OF HOLE						·			, ,	
GEOTECHNICA	2	4.0'					L FLUID L	OSSES			
OLO / ECHINO	C SAMPLES		SAMPLE DEPTH	UNDIS	TURBED/DISTU	RBED	TOTA	NUMBER O	F CORE BOXES		
L				1							
ENVIRONMENT	AL SAMPLES		SAMPLE DEPTH	ANALY	TES						
				1						TOTAL CORE RECOVERY %	
				 	······································						
DISPOSITION O	FHOLE		BACKFILLED	MONITO	ORING WELL	[C/	ASING TY	E	WELL DEPTH	SCREENED INTERVAL	
DATE	START TIME	FINISH TIME	Deni	ING DEP	-					SCREENED INTERVAL	
<u> </u>			I Drice	ING DEF	111			-	DESCRIPTION		
						 					
SKETCH C	E DELL IN	CLOCATION									
· (E) O) (. DIVILLIA	G LOCATION	VADDITIONA	L CO	MMENTS	S	CALE	:	Not T	o Scale	
										İ	
										8	
					•					į	
			Son Call	m						ŀ	
			266 201	ROL	ing Locat	tion M	ap			1	
										1	
										į	
										1	
										4	
										1	
											
OJECT				····]He	OLE NO.				
ohnny Cake	Road					i	/W-19				
·						, ,				H	

ROJ	_: :	Johnny Cal	ke Road		GEOLOG.	·	_	HOLE NUMBER 19
DEPTH	INTERVAL/	BLOW	USCS	MUNSELL	Tr. Moult			SHEET:
J	RECOVERY/ TIME	COUNT	SYMBOL	COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	2 of 3
0			+			1		DRILLING REMARKS
	1	1		1		++	-	
- 1	, 1		1 1	1	Colluvium; CL, clay, silty, low plasticity,	0		
1	. 1	2 2 3	1	1	Proving Solition III A World charter	Ö		İ
2	. 1	3	1 1	ı	gravels (10 % + 4)	0		
-		1		i		0		Sample MW-19A
1	1	2		i				Cample MAA-184
I	ı	4 4		1		0		
. 1	1	5	1 1	i	,	0		ļ
4 -	1	· ,	1 1	4	1	l ŏ l		1
- 1		, 1 '			,			1
- 1	1	1 /	1		1	0		1
1	1	2 2			1	0		İ
6	1	· · · · · · · · · · · · · · · · · · ·	1	,	1	0		
1	j	2 2	1 1	,	1			Sample MW-19B
1	1	2	1	7	1	1		1
	1	3	1	,	1	0		
8		3	1	,	1	0		1
1		5	1	,	Till; CL, clay, silty, low to moderate	0		Sample MW-19C
- 1		8	. 1	,	plasticity, firm to stiff, wet to saturated		,	Sample MAA-18C
- 1		11		,	1	0		1
10 -	1	12		J	1	0		Í
	1	,	, [J	1	o l	1	1
	1	7 8	, [j	1			ĺ
- 1	I	7		ļ	1	1	1	1
40	1	10		1	,	0	1	1
12	1		1	i	,	ŏ	,	1
l	-]	10	1	1		_	j	l
ı		8		- 1			1	
- 1		13		1			İ	,
14	I	.		1	·	0	1	
[5 12		1	1	0	1	Sample MW-19D
j	1	12		1		1	1	• • • • • • •
l	1	15		i	1	i		
6		9		1	1		1	•
OJECT N	IAME: Je	ohnny Cake	Pood	L		0	j	

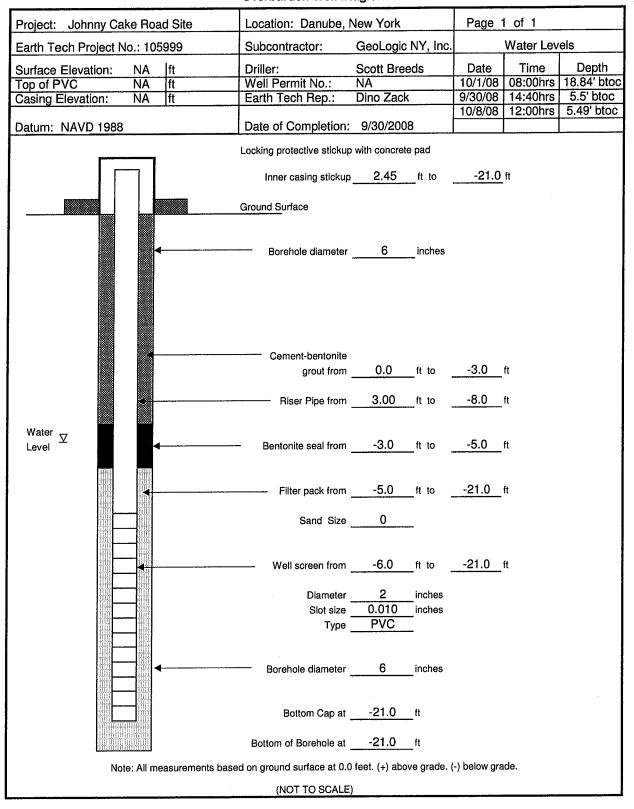
ROJEE. "	BORING				GEOLOGIST:			HOLE NUMBER MW-19
DEPTH	INTERVAL	BLOW	USCS	MUNSELL				SHEET:
	INTERVAL/ RECOVERY/ TIME	COUNT	USCS	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	3 of 3 REMARKS
18	·	15 14 13 16			hard, grey, moist	0		
20		8 8 5 12				0 0		Sample MW-19E
22		10 19 18 17				0 0		
24		15 22 25			Total Depth 24 feet; groundwater at 6 ft.	0 0 0 0		Sample MW-19F
26								
28								
30								
32	NAME: Jo	ohnny Cake						

			HTW DRILLING LOG				HOLE		MW-21
PROJEC	OT .	ماما	ny Cake Road Site	10. HO	LE LOCATIO	N		SHEET 1 OF	SHEETS 2
1. LOCA	TION	JOHN	ly Cake Hoad Sile	11. NO	OF OVERB	JRDEN GEOTE	CH SAMPLES		UNDISTURBED
2. COMP	DANIV	Danul	be, New York	12 SAI	O MPLES FOR	CHEMICAL ANA	LYSIS	13. Total Number of Core	Boxes
Z. COIVIF	ANT	Earth	Tech Northeast, Inc.	0					
	ING COMP		ogio NV Inc	14. SU	RFACE ELEV	15. ELEVATION DATUM NAVD 88			
4. MANU	JFACTURE	R'S DESIG	ogic NY, Inc.	17. DA	TE HOLE STA	ARTED	18. DATE HOLE COMPLI	TED	
F 6175	ND TVOC	OF EQUIP	45B track-mounted rig	9/28/2008 9/28/2008 16. DEPTH OF GROUNDWATER ENCOUNTERED					
5. SIZE /	AND ITPE	6" HA			NA	0.101111211			
6. NAME	OF DRILL		Breeds	1	ATHER Cloudy	light rain			
7. THICK	NESS OF	OVERBUR		20. DIS	POSITION O	, light rain			
8 DEPTI	H DRIU ED	23+ INTO ROC	ft	21. NAN	E OF INSPE	CTOR			
o. Der II	n DHILLED	NA	ft		Dino Za	ack			
9. TOTAL	. DEPTH O		ft	22. SIG	NATURE OF	INSPECTOR			
ECEV-		23 LEGEND		REC.	SAMPLE No.	PID (ppm)	BLOW	REMARK	s
ATION	(FEET)		CLASSIFICATION OF MATERIAL	(int)	(TIME)		ļ	HEWARA	
	_		0-1" TOPSOIL	8	NA	0.0	1		
			1-8" brown SILT, trace f.sand, trace clay (moist)				2		
	1 —		(moist)						
	-						3		
							3		
	2-		0-8" light brown SILT, trace f.sand, trace	8	NA NA	0.0	2		
	-		organics (moist)	ਁ	,	0.0			
	\exists						3		
	3						3	•	
	コ								
	. 4						3		
	4		0-10" light brown SILT, trace f.sand (moist)	19	NA	0.0	5		
			10-19" light brown SILT, little angular				4		
İ			medium rock fragments, trace fc.sand, trace clay (moist)						
	5		trace clay (moist)				3		
							3		
	6-				N I A	0.0			
	~ 		0-20" light brown SILT, little f.gravel, little f	22	NA	0.0	3	Top of till at ~7.	p, päs
	_		c.sand, trace clay - stiffening with depth (moist)				5		
	7—		20-22" dark grey SILT, some f.sand, little				7		
	4		f.mgravel, little fc.sand, trace clay (moist-				'		
	ゴ		dry) TILL				14		
	8-		0-7" light brown SILT, some f.sand, little f	9	NA	0.0	9		
			m.gravel, trace clay (moist) sluff?			-			
	7		20-22" dark grey SILT, some f.sand, little				12		
	9	1	f.mgravel, little fc.sand, trace clay (moist-				17		
			dry) TILL						
		ŀ					. 22		
	10-								

			HTW DRILLING LOG				HOLE 1			
PROJEC	r	Johnny	Cake Road Site					SHEET 2	OF	SHEETS 2
I. LOCAT	10N		e, New York	21. NAME OF INSPECTOR						
2. COMP	ANY		ech Northeast, Inc.	22. SIGNATURE OF INSPECTOR						
ELEV- ATION	DEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	REC. (ft)	SAMPLE No.	PID (ppm)	BLOW COUNT		REMARKS	
	10	-	0-2" sluff	20	(TIME) NA	0.0	19			
	11 -		2-20" dark grey SILT, some fm. angular gravel, little fc.sand, trace clay (moist-dry) stiff TILL				25			
							29 42			
	12—		0-22" dark grey SILT, some fm.gravel, little fc.sand, trace clay (dry) crumbly TILL	22	NA	0.0	47			
	13						100/.4			
	14-		0-4" sluff 4-10" dark grey SILT, some fm.gravel, little	14	NA	0.0	57			
	15		fc.sand, trace clay (dry-moist) TILL 10-14" SHALE in shoe				100/.4			
	16 - - 17-		0-12" dark grey SILT, little fm.gravel, trace fc.sand, trace clay (dry) TILL	12	NA	0.0	65			
	18		0-15" medium grey SILT and FSAND	15	NA	0.0	52			
	-		(thinly layered), trace clay (moist) soft			0.0	35			
	19		·				32			
	20		0-6" medium grey SILT and F.SAND (thinly layered), trace clay (moist) soft	24	NA	0.0	23			
	21 —		6-24" medium grey SILT and F.SAND (thinly layered), trace clay (dry) dense				40			
	, _ _ _						90			
	22		0-8" medium grey SILT and F.SAND (thinly layered), trace clay (moist) dense 8-12" dark grey SILT and F.SAND (thinly layered), trace fm.gravel (moist-dry) dense End of boring at 23' - refer to well installation diagram for additional details.	12	NA	0.0	17 22			

Location: Danube, New York Page 1 of 1 Project: Johnny Cake Road Site Water Levels GeoLogic NY, Inc. Earth Tech Project No.: 105999 Subcontractor: Time Depth **Scott Breeds** Date Driller: Surface Elevation: NA lft 9/30/08 | 09:00hrs | 5.5' btoc Well Permit No.: NA NA Top of PVC ft Dino Zack 9/30/08 | 14:40hrs | 5.5' btoc Earth Tech Rep.: Casing Elevation: NA ft 10/7/08 | 12:00hrs | 5.5' btoc Date of Completion: 9/29/2008 Datum: NAVD 1988 Locking protective stickup with concrete pad Inner casing stickup 2.5 ft to -23.0 ft **Ground Surface** Borehole diameter 6 inches Cement-bentonite grout from 0.0 ft to -5.0 ft Riser Pipe from 2.75 ft to -8.0 ft Bentonite seal from -5.0 ft to -7.0 ft Level Filter pack from -7.0 ft to -23.0 ft Sand Size 0 Well screen from -8.0 ft to -23.0 ft Diameter inches 0.010 Slot size inches PVC Type Borehole diameter _____6 ___inches Bottom Cap at -23.0 ft Bottom of Borehole at ______ft Note: All measurements based on ground surface at 0.0 feet. (+) above grade. (-) below grade. (NOT TO SCALE)

Overburden Well Diagram


Well No. MW-21

			HTW DRILLING LOG				HOLE N		М	W-22
PROJEC	Т	Johnn	y Cake Road Site					SHEET 2	OF	SHEETS 2
1. LOCA	TION			21. NA	ME OF INSPE	CTOR			<u></u>	
2. COMP	ANY		e, New York	22. SIG	NATURE OF I	NSPECTOR				
ELEV-		Earth LEGEND	Tech Northeast, Inc.	REC.	SAMPLE	PID	BLOW			
ATION	(FEET)		CLASSIFICATION OF MATERIAL	(ft)	No. (TIME)	(ppm)	COUNT	R	EMARKS	
	10 _		0-10" medium grey SILT, little f.sand, trace mc.sand, trace fm.gravel (moist)	10	NA	0.0	13			
			mc.sand, trace rm.graver (moist)				15			
	11—						17			
	_						16			
	12 —									
			0-6" medium grey SILT, little f.sand, trace mc.sand, trace fm.gravel (moist)	20	NA	0.0	13			
	_		6-14" medium grey SILT and F.SAND, trace				9			
	13		mc.sand, trace fm.gravel (wet) 14-20" grey SILT, little fc.sand, fm.gravel,				10			
]	-		trace clay (moist)				14			
	14—		OLUET week to the	0	NA	NA	14			
			SLUFF - rock in shoe	U	14/	, INC				
	-						9			
	15—						10			
							10			
	16-		SLUFF - rock in shoe - auger to 18'	0	NA	NA	12			
			SLOFF - 100k 1510e - augel to 10							
							13			
	17—						14			
	亅						12			
	18		0-12" grey SILT and FSAND (thinly	12	NA	0.0	7			
	コ		layered), little mc.sand, little fm.gravel,							
-	19—		trace clay (moist) soft				7			
	19—						8			
							8			
	20		0-12" grey SILT and FSAND (thinly	12	NA	0.0	9			
	4		layered), little mc.sand, little fm.gravel,				9			
	21 —		trace clay (moist) soft							
	- ' -		End of boring at 21' - refer to well							
	ᆿ	:	installation diagram for additonal details.							
	22									
	4									
	23									

			HTW DRILLING LOG	HOLE					MW-22
PROJEC	Т			10. HO	E LOCATIO	1		SHEET	SHEETS
		Johnn	y Cake Road Site	11 NO	OF OVERBI	RDEN GEOTE	CH SAMPLES	DISTURBED	OF 2
1. LOCA	TION	Danub	e, New York	11.110.	0				
2. COMP	ANY	Danue	e, New Tork	12. SAMPLES FOR CHEMICAL ANALYSIS 13. Total Number of Core B					
			Tech Northeast, Inc.	14 010	O EACE ELEV	ATION AT HOL	F	15. ELEVATION DA	TUM
3. DRILLI	NG COMP		ogic NY, Inc.	14. 501	NA	ATION AT TIOL	-	NAVD	
4. MANU	FACTURE	R'S DESIG	NATION OF DRILL	17. DAT	E HOLE STA			18. DATE HOLE CO	MPLETED
		CME 4	45B track-mounted rig	140 555	9/29/20	08 INDWATER E	NOOLINTEDE	9/29/20	08
SIZE A	ND TYPE	OF EQUIPA		I I O. DEF	NA	JINDWATER E	NOODIVILIIL.	,	
. NAME	OF DRILL			19. WE	ATHER				
		Scott F	Breeds	00 10101	Sunny;	60F			
7. THICK	NESS OF	OVERBURG	ft	20. 0131	-03/1/0/100	HOLL			
3. DEPTH	DRILLED	21+		21. NAN	E OF INSPE				
			ft	20.000	Dino Za	ICK INSPECTOR			
O. TOTAL	DEPTH C		ft	122. SIGI	NATURE OF	INOPEUIUN			
ELEV-		21 LEGEND		REC.	SAMPLE	PID (nnm)	BLOW	pri	MARKS
ATION	(FEET)		CLASSIFICATION OF MATERIAL	(int)	No. (TIME)	(ppm)	COUNT	HEI	nei (NO
			0-1" TOPSOIL	8	NA	0.0	2		
	_		1-8" tan SILT, little f.sand, trace mc.sand,	:					
	-		trace f.gravel (moist)				3		
	1-						3		
	-							1	
							6		
	2-		O diller Oil T little found troop m o good	18	NA	0.0	2		
	-		0-4" tan SILT, little f.sand, trace mc.sand, trace f.gravel (moist)	'0	1 1	0.0	-		
	_		4-18" tan-light brown SILT, little f.sand		İ		3		
	3—		(moist; wet at 16-18")						
			(110101), 1101011 10 70 7				2		
				İ			1		
	4								
	4 —		0-6" tan-light brown SILT, little f.sand	16	NA	0.0	1		
	_		(moist)				2		
	-		6-12" light brown SILT, little f.sand, trace f						
	5—		m.sand, trace fm.gravel (moist) 12-16" brown-grey SILT, little f.sand, trace f.				4	Top of till at	~5.5' bgs
			m.sand, trace fm.gravel (moist-wet) TILL						
	-		misand, hade it migraver (molet wee) The				4		
	6-		0-12" grey SILT, some f.sand, little m	12	NA	0.0	3		
	-		c.sand, littlefm.gravel, trace clay (moist-						
	_		wet) TILL				4		
	7		•				5		
	-		•						
1							5		
1	8—			8	NA	0.0	8		
ļ	_		SLUFF - rock in shoe	0	INA	0.0	°		
	_						13		
	<u> </u>								
	9						13		
	-						15		
	-						'		
	10 —								

Overburden Well Diagram

Well No. MW-22

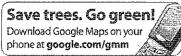
			HTW DRILLING LOG		HOLE				MW-23
PROJEC	т			10. HOL	E LOCATION	V		SHEET	SHEETS OF 2
1. LOCAT	TION	Johnn	y Cake Road Site	11. NO.	OF OVERBL	IRDEN GEOTE	CH SAMPLES	1 DISTURBED	OF 2 UNDISTURBED
II. LOÇAI	IION	Danub	e, New York		0				
2. COMP	ANY			12. SAM		CHEMICAL ANA	LYSIS	13. Total Number of	Core Boxes
a DOILL	NG COMF		Tech Northeast, Inc.	14. SUF	O FACE ELEV	ATION AT HOL	E	15. ELEVATION DA	TUM
			paic NY, Inc.		NA			NAVD	
4. MANU	FACTURE		OGIC NY, Inc.	17. DAT	E HOLE STA 9/29/20			18. DATE HOLE CO 9/29/20	
5 SIZE A	ND TYPE	OF EQUIPA	45B track-mounted rig	16. DEF	TH OF GRO	UNDWATER E	NCOUNTERE		00
o. OILL A		6" HAS			NA				
6. NAME	OF DRILL		Proods	19. WE		d clouds:	60F		
7. THICK	NESS OF	Scott E	DEN	20. DISI	OSITION OF	d clouds;			
		21+	ft	LOC NAT	E OF INSPE	CTOR			
8. DEPTH	ORILLED	NA	к ft	ZI. IVAIV	Dino Za				
9. TOTAL	DEPTH C		n.	22. SIGI		INSPECTOR			
			ft	REC.	SAMPLE	PID	BLOW	I	
ELEV- ATION	OEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	(int)	No.	(ppm)	COUNT	REM	MARKS
			0-1" TOPSOIL	11	(TIME)	0.0	1		
	-		1-11" tan-light brown SILT, trace f.sand,						
			trace clay (dry-moist)				1		
	1 —		• • •				2		
	_						_		
							3		
	2-		OUT BUILT a good broom	4	NA	0.0	6		
			0-4" light brown SILT, little fc.sand, trace	+	147	0.0	"		
	_		f.gravel (dry)				12		
	3-								
	_						9		
							4		
	1 -			1		0.0			
	4-		0-8" light brown SILT, little fc.sand, trace	14	NA	0.0	2		
	_		f.gravel (dry) 8-14" grey SILT, little f.sand, trace f.gravel				4		
	- -		(moist) TILL					Top of till at	~5.0' bgs
	5 <i>-</i>		(moloc) FIEE				6		
							7		
	-			ļ., <u>.</u>					
	6		0-4" SLUFF	13	NA	0.0	8		
			4-13" grey SILT and F.SAND, little f				9		
	., -		m.gravel, little mc.sand (moist)						
	7—						14		
							14		
	_								
	8		0-6" brown SILT, little fc.sand, trace f	20	NA	0.0	6		
			m.gravel (dry) sluff?				7		
	-		6-20" grey SILT and F.SAND, trace clay				′		
	9 —		(dry)				9		
							14		
							'4		
	10			1					

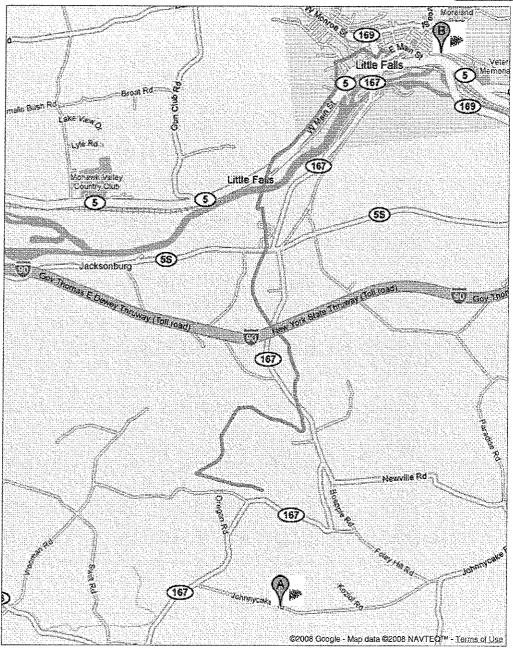
			HTW DRILLING LOG				HOLE	
PROJEC	T	Johnn	y Cake Road Site					SHEET SHEETS 2 OF 2
1. LOCAT	TION		pe, New York	21. NA	ME OF INSPE	CTOR		
2. COMP.		Earth	Tech Northeast, Inc.	Ì	NATURE OF			
ELEV- ATION	DEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	REC. (ft)	SAMPLE No. (TIME)	(ppm)	COUNT	REMARKS
	10 _		0-18" grey SILT and F.SAND, trace clay	18	NA	0.0	7	
	_		(dry)				10	
	11 —						12	
	-						20	
	12-		0-18" grey SILT and F.SAND, trace clay	18	NA	0.0	14	
	_		(dry)				16	
	13						12	
	-			:			16	
	14		0-6" grey SILT, little f.sand, trace mc.sand,	24	NA	NA	10	
	4		trace fm.gravel, trace clay (moist) 6-24" grey SILT and F.SAND, trace clay,				14	
	15		trace fm.gravel (moist)				16	
							21	
	16		0.40" area CILT and E CAND, trace clay	18	NA	NA	21	
	₫		0-18" grey SILT and F.SAND, trace clay, trace fm.gravel (moist)	,0	IVA	1471		
	17						20	
							23	
	18						24	
			0-24" grey SILT and F.SAND, trace clay, trace fm.gravel (moist)	24	NA	0.0	17	
	19—		End of boring at 20' - refer to well				24	
	197		installation diagram for additional details.				22	
	F						28	
	20							
	21—							
	4							
	22				-			
	-							
	23							
	-			İ				

	Overburgen well bi	agram	Well No.		
Project: Johnny Cake Road Site	Location: Danube, N	lew York	Page 1	of 1	
Earth Tech Project No.: 105999	Subcontractor:	GeoLogic NY, Inc.	: 	Water Leve	els
Surface Elevation: NA ft	Driller:	Scott Breeds	Date	Time	Depth
Top of PVC NA ft	Well Permit No.:	NA		07:30 hrs	19.4' btoc
Casing Elevation: NA ft	Earth Tech Rep.:	Dino Zack		13:22 hrs	19.1' btoc 18.5' btoc
Datum: NAVD 1988	Date of Completion:	9/30/2008		07:02 hrs 08:00 hrs	6.90' btoc
	Locking protective stickup	with concrete pad			
	Inner casing stickup	2.60 ft to	-21.0	ft	
	Ground Surface				
	Borehole diameter	6 inches			
-	Cement-bentonite	0.0 ft to	-2.0	ft	
	groat nom				
•	Riser Pipe from	2.80 ft to	-8.0	ft	
Water <u>∨</u> Level -	- Bentonite seal from	-2.0 ft to	-4.0	ft	
	Filter pack from	-4.0 ft to	-20.0	ft	
	Sand Size	0			
					
	Well screen from	-5.0 ft to	-20.0	ft	
	Diameter	2 inches			
	Slot size	0.010 inches			
	Туре	PVC			
	Borehole diameter	6 inches			
	potential digitieter				
	Bottom Cap at	-20.0 ft			
	Bottom of Borehole at	-20.0 ft			
[#####################################			(-) halow are	ada	
Note: All measurements base			(-) neiow gra	wo.	
	(NOT TO SCALE)			

Overburden Well Diagram

Well No. MW-23


Appendix E: Emergency Contacts & Map and Directions to the Nearest Health Facility


Emergency Contact Information

Emergency Coordinators / Key Personnel				
<u>Name</u>	Title/Workstation	Telephone Number	Mobile Phone	
Incident Reporting	Incident Reporting Line	(800) 348-5046		
William Bennett	NYSDEC Project Manager/ Client Contact	518-402-9564 (Office)	(518) 428-0100	
Dino Zack	Project Manager	716-836-4506 (Office)	(716) 866-8222	
Dino Zack	Site Supervisor/SSHO	716-836-4506 (Office)	(716) 866-8222	
Robert Poll, CIH	Safety and Health Manager	(518) 951-2200 (Office)	(518) 817-3089	
Mike Thiagaram	Primary Emergency Coordinator	(973) 337-4242 (Office)		
Organization / Agency				
Name			Telephone Number	
Police Department (local)			911	
Fire Department (local)			911	
State Police			911	
Ambulance Service (EMT will determine appropriate hospital for treatment)			911	
Non-Emergency Hospital (Use by site personnel is only for non-emergency cases) Little Falls Hospital			(315) 823-1000	
Poison Control Center			(800) 222-1222	
Pollution Emergency		(800) 292-4706		
Foliulion Emergency				
National Response Ce	nter		(800) 424-8802	
	nter		(800) 424-8802 (800) 424-9300	

Directions to 140 Burwell St, Little Falls, NY 13365 8.6 ml – about 15 mins

County Road 136 Mohawk, NY 13407

 Head west on Johnny Cake Rd toward RT-167 About 2 mins 	go 0.8 mi total 0.8 mi
2. Turn right at RT-167 About 7 mins	go 4.8 mi total 5.6 mi
■ 3. Turn left at RT-167/RT-5S	go 272 ft total 5.7 mi
4. Turn right at RT-167 About 3 mins	go 2.1 mi total 7.8 mi
▶ 5. Turn right at Albany St/RT-167 W Continue to follow Albany St About 2 mins	go 0.4 mi total 8.2 mi
6. Turn right at E Main St/RT-169	go 0,2 mi Iotal 8,4 mi
■ 7. Turn left at Ward St About 1 min	go 0.1 mi total 8.5 mi
▶ 8. Turn right at Burwell St	go 0.1 mile total 8.6 mi

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route.

Map data ©2008 NAVTEQ™

Appendix F: Daily Inspection Form & Annual Inspection Example

New York State Department of Environmental Conservation

Division of Environmental Remediation

Remedial Bureau C, 11th Floor

625 Broadway, Albany, New York 12233-7014 **Phone:** (518) 402-9662 • **FAX:** (518) 402-9679

Website: www.dec.state.ny.us

DAILY INSPECTION REPORT

Site Code #:	Date:	Report #:	
Site Name: Location: PRP Proj. Mgr.: DEC Proj. Mgr.: Consultant Proj. Mgr.: Proj. Contr.: Site Phone & Fax:			
	AM	PM	
Weather			
Temperature			
Wind Speed & Direction			

Description of work performed by contr. this report period:

•

Discussions/comments regarding visitors, contractor and/or engineer:

_

Sampling and Analyses:

•

Major Issues	Description	& Reason
Health & Safety:		
Level of protection:		
Is the level of protection in conform	agnes with the approved Uselth O	Safety Plan? Yes No
Is the level of protection in conform List deviations:	nance with the approved Health &	Safety Plan? Yes No
Are atmospheric monitoring results List deviations:	acceptable? Yes No	
Are atmospheric monitoring results List deviations:	acceptable? Yes No	
Are atmospheric monitoring results List deviations:	acceptable? Yes No	
Are atmospheric monitoring results List deviations: Site Visitors	acceptable? Yes No Representing	Entered Exclusion Zo
List deviations:		Entered Exclusion Zo
List deviations:		Entered Exclusion Zo
List deviations:		Entered Exclusion Zo
List deviations:		Entered Exclusion Zo
List deviations:		Entered Exclusion Zo
List deviations:		Entered Exclusion Zo
List deviations:		Entered Exclusion Zo
Site Visitors		Entered Exclusion Zo
List deviations:	Representing	Entered Exclusion Zo

New York State Department of Environmental Conservation

Division of Environmental Remediation

Remedial Bureau C, 11th Floor

625 Broadway, Albany, New York 12233-7014 **Phone:** (518) 402-9662 • **FAX:** (518) 402-9679

Website: www.dec.state.ny.us

DAILY INSPECTION REPORT

Site Name: Johnny Cake Road

Location: Danube, NY

DEC Proj. Mgr.: William Bennett

Consultant Proj. Mgr.: Dino Zack, AECOM

Proj. Contr.: GeoLogic **Site Phone & Fax:** N/A

	AM	PM
Weather	Sunny	N/A
Temperature	50 F	N/A
Wind Speed & Direction	None Observed	N/A

Description of work performed by contr. this report period:

- AECOM (consultant) and GeoLogic (driller) mobilized to the site before noon on October 19, 2009 to conduct annual groundwater sampling and well decommissioning at the site. NYSDEC walked the site with AECOM to confirm the location of all wells and the specific wells to be decommissioned and sampled. The existence and location of all current monitoring wells twenty-three (23) was confirmed prior to the initiation of work.
- The following wells were decommissioned by GeoLogic with oversight by AECOM starting on Monday, October 19, 2009 with completion by Friday, October 23, 2009: MW-2RR, MW-3, MW-7, MW-8, MW-9, MW-10, MW-11, MW-14, MW-15, and MW-20.
- The following wells were sampled for VOCs by AECOM for CLP Trace VOC method (SOM 01.2) starting Monday, October 19, 2009 and concluding Wednesday, October 21, 2009: MW-21, MW-22, MW-23, MW-12A, MW-19, MW-2R, MW-1, MW-16, MW-18, MW-6R, and MW-13. The Chain of Custody was sent to the NYSDEC on October 23, 2009 as confirmation.

Discussions/comments regarding visitors, contractor and/or engineer:

- As part of this site inspection, the NYSDEC representative conducted the annual Site Inspection as specified in the March 2009 Record of Decision and current draft of the Site Management Plan. The following conditions of the Record of Decision were confirmed:
 - o The site is currently vacant with no active use.
 - o There is no current use of groundwater as a source of potable water at the site.
 - o There are no structures on the site, and therefore no potential for vapor intrusion.
 - o Groundwater monitoring is being completed by AECOM on behalf of the NYSDEC. All groundwater monitoring wells not decommissioned were either visual inspected or sampled.
 - o There is no evidence of work by the Herkimer County Highway Department in the county right of way which could potential lead to contact with contaminated groundwater.
 - o The NYSDEC's access to the site is not restricted in any way.
- As part of the well decommissioning program, AECOM and the NYSDEC contacted Ron Williams of 653 Johnny Cake Road to gain access to his property for the decommissioning of well MW-11. Mr. Williams indicated he had a strong interest in purchasing the Johnny Cake Road site from the Marshals Service.

Sampling and Analyses:

The following wells were sampled for VOCs by AECOM for CLP Trace VOC method (SOM 01.2) starting Monday, October 19, 2009 and concluding Wednesday, October 21, 2009: MW-21, MW-22, MW-23, MW-12A, MW-19, MW-2R, MW-1, MW-16, MW-18, MW-6R, and MW-13. The Chain of Custody was sent to the NYSDEC on October 23, 2009 as confirmation.

Major Issues	Description & Reason
None	N/A

Health & Safety:

Level of protection: Dino Zack performed a thorough Health & Safety overview for AECOM, NYSDEC, and GeoLogic staff on Monday, October 19, 2009. All site visitors signed the AECOM Health & Safety Plan.

Is the level of protection in conformance with the approved Health & Safety Plan? No List deviations: None

Are atmospheric monitoring results acceptable? **Yes** No List deviations: None

Site Visitors	Representing	Entered Exclusion Zone
William Bennett	NYSDEC	N/A
Dino Zack	AECOM	N/A
Emily Laity	AECOM	N/A
Ron Williams	Self	N/A

Site Representative: William Bennett Date: November 3, 2009

Representative's signature: William Bennett