International Specialists in the Environment

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

February 14, 2007

Swapan Gupta, PE
Acting Chief, Contracts and Payments Section
New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway, 12th Floor
Albany, New York 12233-7012

Re: Final Report

Soil Vapor Intrusion Evaluation at Waite Road, Site No. 5-46-023 Standby Contract Work Assignment

Work Assignment D004435-14

Dear Mr. Gupta:

Ecology and Environment Engineering, P.C. (EEEPC) is pleased to submit the following report for Work Assignment No. D004435-14 for work at Waite Road, Site No. 5-46-023.

EEEPC is pleased to provide these services to the Department. If you have any questions or comments, please call me or Brian Cervi at 716-684-8060.

Sincerely,

David Albers Contract Manager

Attachments

cc: B. Jankauskas, P.E. (NYSDEC)

B. Cervi (EEEPC)

FINAL SOIL VAPOR INTRUSION EVALUATION REPORT WAITE ROAD SITE DECEMBER 2006

1.0 Introduction

Pursuant to Work Assignment Number D004435-14, Ecology and Environment Engineering, P.C. (EEEPC) was tasked with preparing this Soil Vapor Intrusion Evaluation Report of the Waite Road Site (Site No. 5-46-023) on behalf of the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation (DER). The primary objective of this investigation is to determine if soil vapor concerns exist at the site. This report includes a summary description of field sampling activities, a discussion of the sampling effort, and a comparison of the analytical results with the appropriate standards or guidance values. Attachment A contains a copy of the field log and forms for the August 2006 sampling activities and Attachment B contains the laboratory report for the samples.

2.0 Site Description and History

The site is a former waste oil recovery and storage facility located at 742 Waite Road in Clifton Park, Saratoga County, New York (see Figure 1). The site is located at the southwestern corner of the intersection of Waite Road and the Boston and Maine rail line, with approximately a dozen residences within one-half mile of the site. The site consists of approximately 4 acres of undeveloped property that contains a small pond and wetland area on the western half of the property.

Prior to 1980, the site was owned and operated by Tri-County Waste Oil Service and Albany Waste Oil as a storage and disposal facility for waste liquids from numerous local companies. In 1981, the New York State Department of Transportation (NYSDOT) performed a removal action and subsequent disposal of large volumes of liquid waste oil and contaminated soil from the site. A second removal action was performed at the site by the NYSDEC in 1987 to address several thousand gallons of illegally disposed liquid wastes disposed of by unidentified "midnight dumpers." Remedial investigations conducted by NYSDEC, NYSDOT, and the Potential Responsible Parties (PRP) identified residual contaminant sources remained at the site. In 1990 and 1991, approximately 1,185 tons of contaminated soil were excavated and disposed of off-site. Post-remedial groundwater monitoring indicated little or no contamination remained at the site and in May 1999, the site was de-listed from the New York State Registry of Inactive Hazardous Waste Disposal Sites (NYSDEC 2006).

3.0 Summary of Field Activities

The soil vapor intrusion evaluation investigation for the Waite Road Site consisted of several activities intended to investigate the magnitude and location of groundwater and soil vapor contamination. These activities included a site reconnaissance; construction and sampling of temporary soil vapor points; collection of subsurface soil samples during drilling; sampling of temporary groundwater grab points; laboratory analysis; and a site survey. The primary field effort was conducted on August 21 and 22, 2006. All investigation work was performed in

accordance with the approved procedures in EEEPC's June 2006 *Final Work Plan, Soil Vapor Intrusion Evaluation at Waite Road Site* unless otherwise specified (EEEPC 2006).

A summary of the field procedures and modifications to the planned field investigation are provided below. Sample locations are shown on Figure 2.

3.1 Direct-Push Soil and Soil Vapor Sampling

Soil vapor sampling points were installed by Zebra Environmental Corp. under the supervision of an EEEPC field team, using direct-push technology (DPT). As described in the work plan, eight soil vapor samples were to be collected from a depth of approximately 8 feet below ground surface (bgs). The purpose of soil vapor sampling was to determine if vapor phase volatile organic compounds (VOCs) are present at the foundation-level within the investigation area.

All eight soil vapor samples were collected at least 0.5 foot above the water table; however, due to shallow bedrock at the site, four locations were sampled at depths less than 4 feet bgs (but 3 feet bgs or deeper) at the direction of NYSDEC's project manager. The remaining samples were collected from depths of 5 to 7 feet bgs. Continuous Macrocore sampling was conducted from grade to bedrock refusal. An EEEPC geologist logged all pertinent lithologic information (borehole logs are presented in Appendix A). A 6-inch soil gas implant (manufactured by Geoprobe Systems), which contains a double-woven stainless steel screen, was installed at the bottom of the approximately 1.5-inch diameter Macrocore hole. Teflon tubing was connected to the top of the implant, extended to the surface, and capped. Porous backfill material (coarse sand) was placed into the soil probe hole around the tubing/implant to create a sampling zone of 1 foot in length. Bentonite was placed above the sand pack to 1 foot below ground surface and hydrated for 30 minutes with potable water. Before grout (portland cement with 5% bentonite by weight) was installed to the surface to prevent direct infiltration of air from the surface. The bentonite seal was allowed to hydrate for approximately 24 hours before a soil vapor sample was collected. The temporary soil vapor construction summary is presented in Table 1.

During continuous macrocore sampling, subsurface soil samples were collected from two temporary soil vapor sample locations (WR-SV-06 and WR-SV-07) due to elevated readings when the sleeves were screened with a photoionization detector (PID). At the WR-SV-06 location, 11.5 parts per million (ppm) of VOCs were detected 0.5 to 1.5 feet bgs, while 50 ppm of VOCs were detected 2 feet bgs at the WR-SV-07 location. Subsurface soil samples were submitted to Mitkem Corporation of Warwick, Rhode Island, for VOC analysis by United States Environmental Protection Agency (EPA) Method 8260B, semivolatile organic compound (SVOC) analysis by EPA Method 8270C, and metals analysis by EPA Methods 6010B/7471A.

Soil vapor samples were collected as 2-hour flow-controlled samples using evacuated canisters and submitted to Centek Laboratories in Syracuse, New York for VOC analysis by EPA Method TO-15 (*Determination of Volatile Organic Compounds [VOCs] in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry [GC/MS]*), with reporting limits of approximately 1 microgram per cubic meter (µg/m³) for all compounds. After sampling was completed, the tubing was removed and the hole was backfilled with bentonite.

Prior to sample collection, a surface leak detection test was conducted at each soil vapor location. An inverted bucket was placed over the temporary soil vapor probe tubing, sealed to the ground surface using hydrated bentonite, and the sample tubing was threaded through a hole in the bucket. Ultra-pure helium (>99.9%) was introduced into the chamber through a second opening in the bucket. A MGD 2002 Multi-Gas Detector (helium monitor) was used to verify that the interior of the bucket contained sufficient helium (minimum of 40% helium in air). The helium monitor probe was then connected to the sample tubing penetrating the bucket and was used to purge approximately three volumes of the sample tubing and intake area. During purging, the helium concentration was monitored to verify that there was no air leakage from the surface. In the single case where helium was possibly detected (meter readings were probably due to water vapor interference), the probe hole was resealed with bentonite, the filter cartridge in the detector was replaced, and the test was repeated with no helium detected.

Data related to soil vapor sample collection was recorded on Soil Gas Sampling Data Collection forms including sample IDs, dates/times, leak detection test results, and sample depths. These forms are provided in Appendix A.

3.2 Existing Monitoring Well Sampling

According to previous remedial investigations, numerous groundwater monitoring wells had been constructed in the vicinity of the site and NYSDEC has no record of their removal. However, during the initial site walkover and the August 2006 field effort, no existing monitoring wells were identified at the site and as such, no monitoring wells were sampled.

3.3 Temporary Well Sampling

A temporary groundwater sample point was installed by Zebra Environmental Corp., under the supervision of an EEEPC field team, using DPT. The purpose of groundwater sampling was to determine if VOCs are present in the groundwater within the investigation area. According to the work plan, up to eight groundwater samples were to be collected; however, due to a lack of water in the overburden, only one of the planned samples (WR-PZ-06) was collected.

Continuous Macrocore sampling was conducted from grade to bedrock refusal and a temporary piezometer was installed at the bottom of the approximately 1.5-inch diameter Macrocore hole. Riser material consisted of new, 1-inch inner diameter (ID), threaded, flush-joint polyvinyl chloride (PVC) Schedule 40 pipe with a 5-foot commercially fabricated, threaded, flush-joint, factory-slotted (0.010 inch) PVC screen. The remainder of the borehole was filled with clean, chemically inert, non-carbonated, well-sorted silica sand to 1-foot bgs and followed by bentonite to grade. The temporary piezometer construction summary is presented in Table 2.

The temporary piezometer WR-PZ-06 was sampled on August 22, 2006 (approximately 20 hours after installation) using a dedicated polyethylene bailer. Prior to sampling, the water level was measured to within ± 0.01 foot in the well using an oil/water interface probe. Due to poor recharge rates, the piezometer could not be purged prior to sample collection nor could the appropriate quality assurance/quality control (QA/QC) samples be collected. Field measurements of pH, temperature, specific conductivity, and turbidity were recorded immediately after sample collection and are summarized in Table 3. All sample containers were placed on ice in coolers and were shipped directly to Mitkem Corporation of Warwick, Rhode

Island, for VOC analysis by EPA Method 8260B, SVOC analysis by EPA Method 8270C, and metals analysis by EPA Methods 6010B/7471A.

3.4 Site Survey

The locations of all temporary groundwater and soil vapor sample collection points were measured by EEEPC personnel using a GeoXT Global Positioning Satellite (GPS) system. In addition to locating all the sample points, EEEPC also measured static water elevations at four locations around the pond (see Table 4). World Geodetic System (WGS) coordinates were recorded using the real-time differential correction mode in the WGS 1984 coordinate system resulting in an approximate accuracy of ± 3 feet. A site control point was established at the ground surface on the north side of a telephone pole located near the southeastern corner of the property (see Figure 2).

Elevation data were measured by EEEPC personnel using a Sokkia B2 level. A local reference elevation of 100 feet was assigned to the survey equipment by EEEPC. Vertical control was established to the nearest ± 0.01 foot for all ground shots and PVC casing elevations (see Table 4).

3.5 Analytical Data Review

All laboratory deliverables were reviewed in accordance with the site-specific Quality Assurance Project Plan (QAPP) (EEEPC 2006). The data were qualified following general guidelines in the *EPA CLP National Functional Guidelines for Organic Data Review, EPA 540/R-99-008* (October 1999). DUSRs were prepared for each laboratory report (based on sample delivery group) as specified in NYSDEC's *Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports* (July 1999). The data review included an evaluation of the following:

- Holding times;
- Initial and continuing calibration;
- Reporting limits;
- Laboratory blanks;
- Laboratory control samples;
- Field duplicates;
- Sample result verification; and
- Method-specific QC samples (e.g., gas chromatography/mass spectrometry[GC/MS]).

DUSRs were prepared by EEEPC's project chemist and were reviewed by EEEPC's quality assurance director. DUSRs, including Form 1s, are provided in Appendix B. Any deviations from acceptable QC specifications are discussed in the DUSRs. Qualifiers were added to the

data, if appropriate, to indicate potential concerns with data usability and these qualifiers were transferred to the data summary tables in Section 4. In general, there were no significant impacts on data usability.

4.0 Analytical Results

4.1 Soil Vapor

Eight temporary soil vapor samples, one outdoor ambient air, one duplicate (WR-SV-07/D), and one matrix spike/matrix spike duplicate (WR-SV-01) were collected from the site on August 22, 2006 (see Figure 2). Four of the eight soil vapor samples (WR-SV-01 through -03 and -08) contained very high levels of carbon dioxide (CO₂) in the canisters and the laboratory was forced to run three of the samples (WR-SV-01 through 03) at a 4-fold dilution and one of the samples (WR-SV-08) at a 10-fold dilution. EEEPC investigated this problem with Centek because it occurred on several different projects. It is believed that the source of the carbon dioxide was Centek's cryogenic focusing unit. Centek made adjustments to their cryogenic focusing unit to eliminate this problem on future sites. However, since the CO₂ results were not quantified by the laboratory, these results cannot be reported. This section provides a summary of the results of the samples (see Table 5). The analytical data, including the chain-of-custody records, applicable quality control data, and sample extraction and analysis dates are provided in the attached laboratory report C0608021 (see Attachment B).

A total of 29 VOCs were detected in one or more of the eight soil vapor samples (see Table 5). TCE was detected in seven samples, with a maximum concentration of $42.1 \,\mu\text{g/m}^3$ detected at WR-SV-08. PCE was detected in three samples, with a maximum concentration of $7.17 \,\mu\text{g/m}^3$ detected at WR-SV-01. Total VOCs were calculated and two soil vapor samples contained total VOC concentrations above $100 \,\mu\text{g/m}^3$, with a maximum concentration of $1,850 \,\mu\text{g/m}^3$ detected at WR-SV-08. The total sum of benzene, toluene, ethylbenzene, and xylene isomers (BTEX) concentrations were also calculated, with WR-SV-08 the only sample found to contain total BTEX concentrations above $50 \,\mu\text{g/m}^3 \,(1,190 \,\mu\text{g/m}^3)$.

There is a large discrepancy in the total VOC sample results between WR-SV-07 ($162 \,\mu g/m^3$) and its duplicate sample WR-SV-07/D ($30.0 \,\mu g/m^3$). This difference is primarily due to the concentration of four VOCs compounds: 1,2,4-trimethylbenzene; 2,2,4-trimethylpentane; heptane; and hexane. The variation in sample results could be due to a variation in the field sampling equipment (sample cans and/or pressure regulators), which is unlikely, or could be due to laboratory methodologies. Since we are unable to determine which of the two sample results are correct, all results are considered to be estimated values and the higher results should be used for evaluation purposes.

A total of 17 VOCs were detected in the one outdoor ambient air location. TCE was detected at a concentration of 1.47 μ g/m³, while PCE was detected at a concentration of 1.38 μ g/m³. The total VOC concentration was 28.7 μ g/m³, and the total BTEX concentration was 7.50 μ g/m³. No VOCs were detected in the trip blank sample that accompanied all the air vapor samples.

4.2 Subsurface Soil

Two subsurface soil samples were collected on August 21, 2006, and were submitted to Mitkem for VOC, SVOC, and metal analyses (see Table 6). All laboratory quality control results were

within acceptable limits. This section provides a summary of the results of the sampling effort as they compare to appropriate standards and guidance values. The analytical data, including the chain-of-custody records, applicable quality control data, and sample extraction and analysis dates are provided in the attached laboratory report E1282 (see Attachment B).

Subsurface soil sample WR-SV-06-S1 contained one VOC and one SVOC, while subsurface soil sample WR-SV-07-S1 contained a total of 13 VOCs and 10 SVOCs. None of the results in either sample exceeded NYSDEC Recommended Soil Cleanup Objectives (TAGM 4046). A total of 20 metals were detected in both soil samples, with seven metals present at concentrations exceeding NYSDEC Recommended Soil Cleanup Objectives (TAGM 4046) in subsurface soil sample WR-SV-06-S1 and four metals present at concentrations exceeding clean-up objectives in subsurface soil sample WR-SV-07-S1 (see Table 6).

4.3 Groundwater

One groundwater sample (WR-PZ-06) was collected on August 22, 2006, and submitted for VOC and SVOC laboratory analyses (see Table 7). Four VOCs and three SVOCs were detected in the groundwater sample, of which 1,1-dichloroethane and 1,2-dichloroethane exceeding the NYSDEC Class GA ambient water standards for groundwater. No VOCs were detected in the associated trip blank and all laboratory quality control results were within acceptable limits. The analytical data, including the chain-of-custody records, applicable quality control data, and sample extraction and analysis dates are provided in the attached laboratory report E1282 (see Attachment B).

5.0 Conclusions and Recommendations

In general, chemicals are present in the soil vapor throughout the site, including both chlorinated and fuel-related VOCs. However, the chemical concentrations are generally low, especially with respect to PCE and TCE. The only areas of concern appear to be immediately south of the small on-site pond at location WR-SV-08, and to a lesser extent immediately west of the pond at WR-SV-07.

Overburden groundwater appears to be a seasonal occurrence at the site. During the site walkover in May 2006, the majority of the overburden at the site appeared to be saturated. However, during the field activities in August 2006, overburden groundwater was only detected at one of the eight sampled locations. Due to the limited data, EEEPC was unable to determine overburden groundwater flow direction across the site. Groundwater contaminant concentrations at location WR-PZ-06 were generally similar in relative magnitude to that in the soil vapor sample WR-SV-06.

No further investigation is recommended at this time. However, if the property is developed in the future, the pond and surrounding area may need to be further evaluated for chlorinated and fuel-related VOCs.

6.0 References

- Ecology and Environment Engineering, P.C. (EEEPC), 2006, Final Work Plan, Soil Vapor Intrusion Evaluation at Waite Road, Site No. 5-46-023, Lancaster, New York.
- New York State Department of Environmental Conservation (NYSDEC), 2006, Standby Contract Wok Assignment, Project: Soil Vapor Intrusion Evaluation at Waite road (Site No.:5-46-023), Albany, New York.
- NYSDEC, July 1999, Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports.
- NYSDEC, 1998, Division of Water Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Division of Water, Albany, New York.
- NYSDEC, 1994, Technical and Administrative Guidance Memorandum (TAGM) No. 4046, Determination of Soil Cleanup Objectives and Soil Cleanup Levels, prepared by M.J. O'Toole, Jr., Division of Hazardous Waste Remediation, NYSDEC, Albany, New York.
- United States Environmental Protection Agency (USEPA), October 1999, Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA 540/R-99-008.

Figures

Feet

37.5

Feet

150

Outdoor Air Sample

Site Control Point

Waite Road Site

Clifton Park, New York

Tables

Table 1 Temporary Soil Vapor Probe Construction Summary
Waite Road Soil Vapor Intrusion Evaluation, Site No. 5-46-023

Vapor			Total Probe Depth	Screen Interval	Sand Pack Interval	Bentonite Interval
Probe ID	Longitude	Latitude	(ft bgs)	(ft bgs)	(ft bgs)	(ft bgs)
WR-SV-01	-73.865298	42.884921	3.5	3.0 - 3.5	2.5 - 3.5	0.5 - 2.5
WR-SV-02	-73.865495	42.884954	3.5	3.0 - 3.5	2.5 - 3.5	0.5 - 2.5
WR-SV-03	-73.864979	42.884934	5.0	4.5 - 5.0	4.0 - 5.0	1.0 - 4.0
WR-SV-04	-73.864928	42.885165	4.0	3.5 - 4.0	3.0 - 4.0	1.0 - 3.0
WR-SV-05	-73.864903	42.885396	6.0	5.5 - 6.0	5.0 - 6.0	1.0 - 5.0
WR-SV-06	-73.865350	42.885575	5.0	4.5 - 5.0	4.0 - 5.0	1.0 - 4.0
WR-SV-07	-73.865176	42.885318	7.0	6.5 - 7.0	6.0 - 7.0	1.0 - 6.0
WR-SV-08	-73.865512	42.885111	4.0	3.5 - 4.0	3.0 - 4.0	1.0 - 3.0

Key:

ft bgs = Feet below ground surface.

Table 2 Temporary Groundwater Piezometer Construction Summary Waite Road Soil Vapor Intrusion Evaluation, Site No. 5-46-023

			Total Well	Screen	Sand Pack	Bentonite
Vapor			Depth	Interval	Interval	Interval
Probe ID	Longitude	Latitude	(ft bgs)	(ft bgs)	(ft bgs)	(ft bgs)
WR-PZ-06	-73.865364	42.885576	6.5	1.5 - 6.5	1.0 - 6.5	0.0 - 1.0

Key:

ft bgs = Feet below ground surface.

Table 3 Groundwater Sample Collection Summary
Waite Road Soil Vapor Intrusion Evaluation, Site No. 5-46-023

		Sample Depth		Temperature	Conductivity	Turbidity
Sample ID	Sample Date	(ft bgs)	pH (s.u.)	(°C)	(μS/cm)	(NTUs)
WR-PZ-06	8/22/2006	5.5 - 6.5	6.95	17.6	531.5	>1000

Key:

ft bgs = Feet below ground surface.

°C = Degrees Celsius.

NTUs = Nephelometric turbidity units.

s.u. = Standard units.

 $\mu S/cm = Microsiemens per centimeter.$

Table 4 Water Level and Survey Data
Waite Road Soil Vapor Intrusion Evaluation, Site No. 5-46-023

Location ID	Longitude	Latitude	Level Elevation Measurement	Surface Elevation (feet)*	Casing Elevation (feet)*	Bottom of Borehole Elevation (feet)*	Water Elevation (feet)*
WR-SV-01	-73.865298	42.884921	5.40	94.60	NA	91.10	NA
WR-SV-02	-73.865495	42.884954	4.92	95.08	NA	91.58	NA
WR-SV-03	-73.864979	42.884934	5.41	94.59	NA	89.59	NA
WR-SV-04	-73.864928	42.885165	5.81	94.19	NA	90.19	NA
WR-SV-05	-73.864903	42.885396	4.82	95.18	NA	89.18	NA
WR-SV-06	-73.865350	42.885575	5.44	94.56	NA	89.56	NA
WR-SV-07	-73.865176	42.885318	4.54	95.46	NA	88.46	NA
WR-SV-08	-73.865512	42.885111	4.92	95.08	NA	90.78	NA
WR-PZ-06	-73.865364	42.885576	5.22	94.78	98.55	88.28	92.10
Pond-N	-73.865357	42.885494	8.21	91.79	NA	NS	91.79
Pond-E	-73.865287	42.885281	8.21	91.79	NA	NS	91.79
Pond-S	-73.865454	42.885192	8.22	91.78	NA	NS	91.78
Pond-W	-73.865529	42.885382	8.24	91.76	NA	NS	91.76
Site Control Point	-73.864930	42.884925	5.50	94.50	NA	NA	NA

Note: * A local datum of 100 feet was assigned to the survey equipment to provide a reference elevation for the site survey.

Key

NA = Not available.

Table 5 Volatile Organic Compound Detection Summary for Soil Vapor Samples Waite Road Soil Vapor Intrusion Evaluation, Site No. 5-46-023

					Sc	oil Vapor Sam	ples				Ambient Air
	Sample ID:	WR-SV-01	WR-SV-02	WR-SV-03	WR-SV-04	WR-SV-05	WR-SV-06	WR-SV-07	WR-SV-07/D*	WR-SV-08	WR-OA
Analyte	Date:	8/22/2006	8/22/2006	8/22/2006	8/22/2006	8/22/2006	8/22/2006	8/22/2006	8/22/2006	8/22/2006	8/22/2006
VOCs by Met	hod TO-15 (µg/m	3)									
1,1,1-Trichlor	oethane	5.77	< 3.33	< 3.33	< 0.832	< 0.832	< 0.832	< 0.832	< 0.832	< 0.832 J	< 0.832
1,1-Dichloroet	thane	< 2.47 J	< 2.47	< 2.47	< 0.617	< 0.617	4.48	< 0.617	< 0.617	218	< 0.617
1,2,4-Trimethy	ylbenzene	6.60 J	6.00	26.8	5.70	3.15	2.10	22.0 J	4.65 J	16.0	3.95
1,2-Dichlorob	enzene	< 3.67	< 3.67	< 3.67	< 0.917	< 0.917	< 0.917	0.672 J	< 0.917 J	< 0.917 J	< 0.917
1,3,5-Trimethy	ylbenzene	4.80 J	6.80	17.6	8.04	3.05	3.00	5.35	4.65	11.0	3.90
1,3-Dichlorob	enzene	< 3.67	< 3.67	< 3.67	< 0.917	< 0.917	< 0.917	< 0.917	< 0.917	22.0	< 0.917
1,4-Dichlorob	enzene	< 3.67	< 3.67	< 3.67	0.673 J	< 0.917	< 0.917	< 0.917	< 0.917	20.2	< 0.917
2,2,4-trimethy	lpentane	< 2.85 J	< 2.85	< 2.85	< 0.712	1.85	< 0.712	58.6 J	< 0.712 J	261	< 0.712
4-ethyltoluene	;	< 3.00 J	< 3.00	18.4	1.80	0.899	0.550 J	1.60 J	0.800 J	8.00	0.750
Benzene		1.95 J	2.08	< 1.95	2.11	1.69	0.422 J	2.50 J	0.390 J	21.8	0.390 J
Carbon disulfi	de	3.17 J	2.66	2.66	4.27	2.56	0.601	0.538	0.570	20.6	0.538
Carbon tetrach	ıloride	< 3.84 J	< 3.84	< 3.84	0.767 J	0.831 J	0.831 J	0.767 J	0.959	< 0.959 J	0.959
Chloroform		12.5 J	2.98	< 2.98	0.943	0.496 J	< 0.744	< 0.744	< 0.744	< 0.744 J	< 0.744
cis-1,2-Dichlo	roethene	< 2.42 J	< 2.42	< 2.42	< 0.604	< 0.604	0.403 J	< 0.604	< 0.604	38.7	< 0.604
Cyclohexane		< 2.10 J	< 2.10	< 2.10	< 0.525	2.48	< 0.525	< 0.525	< 0.525	< 0.525 J	< 0.525
Ethylbenzene		4.77 J	5.65	3.71	5.65	1.90	0.794	1.54 J	0.883 J	405	0.662
Freon 11		3.66 J	3.88	2.28 J	2.23	3.77	1.88	1.71	2.28	6.23 J	2.17
Freon 113		< 4.67 J	< 4.67	< 4.67	< 1.17	0.857 J	0.935 J	1.09 J	1.01 J	< 1.17 J	1.01 J
Freon 12		< 3.02 J	< 3.02	< 3.02	< 0.754	< 0.754	< 0.754	< 0.754 J	3.72 J	< 0.754 J	3.87
Heptane		< 2.50 J	< 2.50	< 2.50	< 0.625	2.33	< 0.625	33.3 J	< 0.625 J	< 0.625 J	< 0.625
Hexane		< 2.15 J	< 2.15	< 2.15	< 0.537	7.45	< 0.537	24.9 J	< 0.537 J	< 0.537 J	< 0.537
m&p-Xylene		7.06 J	9.89	10.8	9.36	3.66	1.81	2.78	2.21	554	1.99
Methyl Butyl	Ketone	< 5.00 J	< 5.00	< 5.00	5.45	< 1.25	< 1.25	< 1.25	< 1.25	< 1.25 J	< 1.25
Methylene chl	oride	< 2.12 J	< 2.12	< 2.12	< 0.530	< 0.530	< 0.530	< 0.530 J	0.494 J	< 0.530 J	0.424 J
o-Xylene		2.82	3.35	2.65	3.22	1.24	0.706	1.15	0.794	52.1	0.706
Styrene		< 2.60	< 2.60	< 2.60	< 0.649	< 0.649	< 0.649	< 0.649	< 0.649	< 0.649 J	0.736
Tetrachloroeth	nylene	7.17	< 4.14	< 4.14	< 1.03	< 1.03	< 1.03	< 1.03 J	0.827 J	< 1.03 J	1.38
Toluene		8.73 J	12.3	4.90	8.20	5.52	2.83	3.06	3.75	153	3.75
Trichloroether	ne	7.43 J	< 0.874	< 0.874	0.929	1.04	0.983	0.874 J	1.97 J	42.1	1.47
Total VOCs		76.4	55.6	89.8	59.3	44.8	22.3	162	30.0	1850	28.7
Total BTEX		25.3	33.3	22.1	28.5	14.0	6.56	11.0	8.03	1190	7.50

Note: *Duplicate of sample WR-SV-07

Key:

J = Estimated value.

VOCs = Volatile organic compounds. $\mu g/m^3$ = Micrograms/cubic meter.

<: Not detected (lab reporting limit shown).

[/]D in Sample ID is field duplicate sample.

Table 6 Summary of Positive Results for Waite Road Subsurface Soil Samples Waite Road Soil Vapor Intrusion Evaluation, Site # 5-46-023

		WR-SV-06-S1	WR-SV-07-S1
Analyte	Screening Criteria ⁽¹⁾	08/21/2006	08/21/2006
Sample Interval (feet bgs)		0.5 - 1.5	2.0 - 2.5
Volatiles 8260B (µg/Kg)			
1,2,4-Trimethylbenzene	NA	6 U	6600 J
1,2-Dichlorobenzene	7900	6 U	10
1,3,5-Trimethylbenzene	NA	6 U	19
4-Isopropyltoluene	NA	6 U	17
Benzene	60	6 U	4 J
Ethylbenzene	5500	6 U	5 J
Isopropylbenzene	NA	6 U	28
m/p-Xylene	1200	6 U	7
Naphthalene	13000	3 J	9
n-Butylbenzene	NA	6 U	67
n-Propylbenzene	NA NA	6 U	90
o-Xylene	1200	6 U	4 J
sec-Butylbenzene	NA	6 U	
Total Xylenes	1200		18
Semivolatiles 8270C (µg/Kg)	1200	6 U	11
	36400	440.11	40000
2-Methylnaphthalene		410 U	13000
Anthracene	50000	410 U	100 J
Benzo(a)anthracene	224	410 U	180 J
Benzo(g,h,i)perylene	50000	410 UJ	130 J
bis(2-Ethylhexyl) phthalate	50000	270 J	1300 J
Chrysene	400	410 U	190 J
Fluoranthene	50000	410 U	210 J
Fluorene	50000	410 U	240 J
Phenanthrene	50000	410 U	760 J
Pyrene	50000	410 U	900 J
Metals 6010B/7471A (mg/Kg)			
Aluminum	NA	18900	8800
Arsenic	7.5	6.0	5.0
Barium	300	123	71.2
Beryllium	0.16	0.93	0.38
Cadmium	1	1.8	0.49
Calcium	NA	44800 J	2940 J
Chromium	10	17.6	11.4
Cobalt	30	10.6	5.3
Copper	25	25.2	13.6
Iron	2000	32600	15700
Lead	NA	10.5	422
Magnesium	NA	8770	2490
Manganese	NA	563	267
Nickel	13	23.3 J	12.7 J
Potassium	NA	2580	648
Sodium	NA	300 J	48.7 J
Thallium	NA	1.1 J	0.77 J
Vanadium	150	30.5	20.3
Zinc	20	64.0 J	66.9 J
Mercury	0.1	0.022 J	0.088

(1) New York State Department of Environmental Conservation, Technical and Administrative Guidance and Memorandum, # 4046, Revised Jan. 24, 1994 Determination of Soil Cleanup Objectives and Cleanup Levels

Note: Bolded and shaded values exceed screening criteria

Key:

bgs = Below ground surface U = Not detected (lab reporting limit shown)

J = Estimated value UJ = Estimated/Not detected (lab reporting limit is estimated)

 $mg/Kg = miligram \ per \ kilogram \qquad \qquad \mu g/Kg = microgram \ per \ kilogram \label{eq:mgkg}$

Table 7 Summary of Positive Results for Waite Road Groundwater Samples Waite Road Soil Vapor Intrusion Evaluation, Site No. 5-46-023

Analyte	Screening Criteria ⁽¹⁾	WR-PZ-06 08/22/2006	Trip Blank WR-TB-GW 08/22/2006
Volatiles 8260B (µg/L)		-	
1,1-Dichloroethane	5	15	5 U
1,2-Dichloroethane	0.6	1 J	5 U
Acetone	50	4 J	5 U
Chloroethane	5	2 J	5 U
Semivolatiles 8260B (µg/L)			
bis(2-Ethylhexyl) phthalate	5	1 J	N/A
Diethyl phthalate	50	1 J	N/A
Di-n-butyl phthalate	50	1 J	N/A

⁽¹⁾ New York State Department of Environmental Conservation, Technical and Operational Guidance No. 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 Table 1, Class GA, Source of Drinking Water.

Note: Bolded and shaded values exceed screening criteria.

Key:

J = Estimated value.

NA = Not applicable.

U = Not detected.

 $\mu g/L = Microgram per liter.$

Project Name Waite Rol.		Water Level (TC	PIC)
Site Location Cliffon Park, NY	Date	Time	Level(Feet)
Date Started/Finished 8/21/05			
Orilling Company Zebn			
oriller's Name Will McAlyster	Well Location S	ketch	
ieologist's Name Brian Cerri			
eologist's Signature			
ig Type (s) Geopale 4200			<u>.</u>
rilling Method (s) <u>Geopre</u>			
it Size (s) Auger Size (s)	_		
uger/Split Spoon Refusal3.5 '			
otal Depth of Borehole Is 3.5			
otal Depth of Corehole Is			

BILL

ENI

WII.

31.

BIT.

De	epth(F	Feet)	Sample Number	rs on apler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments
					Pt	0945		-			12.2	Freshing Fore Oppor
1					SM		1 _					Brestling Fore Oppor downhole 20 ppm
	- 3				<u> </u>						55,5	20 ppm
4	-				The second secon							
	5 -											
e	3 -										<u> </u>	
	,											
'												
	8 -						_		-			
!	9 -								-			
10	0 -								_			
1	1 -			 		*		-	-		_	
1	2 -								_		 	
1.	3 -						_					
1	4 -						_		_			
1				 					_		_	

•	Lock Number		Stick-upft
S CREENED WELL	Inner Casing — Flow Material — Terlion	OPEN-HOLE WELL	Inner Casing Material
Stick-upNAft	Inner Casing Inside Diameter <u>14</u> inches		Inner Casing Inside Diameterinches
	GROUND SURFACE		
Top of Grout	Quantity of Material Used: Bentonite Pellets		Outer Casing Diameterinches
Top of	Cement		Borehole
Seal at 0,5ft	Borehole inches Diameter		Diameterft
Top of Sand Pack 2,5 ft	Cement/ Bentonite		Bedrockft
Top of Screen at <u>3</u> ft	Grout		Bottom of Rock Socket/ Outer Casingft
	Screen Slot Size		Bottom of Inner Casingft
Bottom of Screen at St.5 ft	Screen Type		
	Stainless Steel		Corehole Diameter
Bottom of Hole atft	Pack Type/Size:		Bottom of
Bottom of Sandpack at 3.5	Gravel Natural		Coreholeft
NOTE: See pages 136 and 137 for well constru-	ction diagrams		

Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	Moistu Conte	ent
		Dry Moist	Wet
	0"-10" Brown arguing topsail with little arganies, trace grown, slightfrait	(00)	\bigcirc
2	0"-10" Brown arguing topsoil with little organies, trace grown , slightfront 10"-38" Brown Hen silly smal with Little grown, trace organies,	000	\bigcirc
3	Slighty moral		
4	38"-42" Brown clayer silt with trace organics al rock fragments at very		\bigcirc
5	bottom, slightly mont	00) (
6			\bigcirc
7			
,) (
8		0 C) (
		10 C) (
10		10 C) (
11		0 C) (
13		10 C) (
14		0 C	
15		10 C	
15			

Project Name Wait Rd.		Water Level (1	TOIC)	
Site Location Cliffon Park, NY	Date	Time	Lev	rel(Feet)
Date Started/Finished 8/21/05				
Drilling Company Zelora				
Driller's Name Will Mc Alyster	Well Location S	Sketch		1
Geologist's Name <u>Brian Cerri</u>				
Geologist's Signature F	-			
Rig Type (s) <u>Geep de 4200</u>	-		4.	
Drilling Method (s) <u>Geogrape</u>				
Bit Size (s) Auger Size (s)				
Auger/Split Spoon Refusal 3.5	-			
Total Depth of Borehole Is				
Total Depth of Corehole Is				

П

Depth(Feet)	Sample Number	s on	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments
				<u>Pt</u>	0920	-	Marie Commission Control		. '	8ppn	Breathing Zone
1 -				CL		1	PARTITION IN THE PARTIT			 	- Oppm
2 -				SM							Breathing Zone Oppm - Down hole Zppm
4	******		 				Services propulations from the services of the		tild toppeti deliga en och opinion och til til till toppetion	2ppm	MMAN angular committee control
5											_
.6						-		-	_		
7								-	Andorrado:		
8											
9						-					
10											
12						_					
13									_		
14									_		-
15						_		_	_		

WR-SV-02

		·	
	Lock Number		Stick-upft
SCREENED WELL	Inner Casing	OPEN-HOLE WELL	Inner Casing Material
Stick-upNAft	Inner Casing Inside Diameter 24 inches		Inner Casing Inside Diameterinches
	GROUND SURFACE		
Top of Groutft	Quantity of Material Used: Bentonite Pellets		Outer Casing Diameterinches
Top of —	Cement		Borehole
Seal at , 5 ft	Borehole inches Diameter		Diameterft
Top of Sand Pack 2.5 ft	Cement/ Bentonite		Bedrockft
Top of Screen at 3 ft	Grout		Bottom of Rock Socket/ Outer Casingft
	Screen Slot Size		Bottom of Inner
Bottom of 🤚 🦟	Screen Type		Casingft
Bottom of 3.5 ft Screen atft	PVC		Corehole
	✓ Stainless Steel		Diameter
Bottom of 2 5	Pack Type/Size:		
Bottom of 3.5 ft	Pack Type/Size:		Bottom of
Bottom of Sandpack at _3.5_	☐ Gravel ☐ Natural		Coreholeft
NOTE: See pages 136 and 137 for well construc	ction diagrams		

Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	Moist Cont	ent
		Dry Moist	Wet
	0"-6" Brown organic topsoil will some organis, few grown, Sighty mont		
2	6"-24" Brown clayer silt little I sound trace organio, trace gravely by	O C	
3	24"- 42" Brown / tan Faml /set with few chy , trace organies , little	9 C	
4	rock fraguents at bother, slighty moist	COC	
5		100	
		10 C	
6		0	\bigcirc
/			
8		00	
9		00	
10		0.0	
11		100	
12		100) C
13	į.	100	
14		100	
15		100	

Project Name Waite LD.	Water Level (TOIC)						
Site Location Clitton Park, NY	Date	Time	·	Level(Feet)			
Date Started/Finished 8/21/06							
Orilling Company Zebra							
oriller's Name Will McAlyster	_ Well Location S	Sketch					
ieologist's Name Brain Cervi	-			(
Geologist's Signature 5.	_						
ig Type (s) <u>Geopolise 4200</u>	-		Š.				
rilling Method (s) <u>Geoprobe</u>							
it Size (s) Auger Size (s)							
uger/Split Spoon Refusal	_						
otal Depth of Borehole Is							
otal Depth of Corehole Is							

Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments
1		6	PE	1015					2.2	breathing zone -
2			SM		. 1 _				1.0	breathing zone - Oppm down wile - Span
3			CL							down will
5	THE COLUMN TO THE COLUMN THE COLU		rock	encinacia yessan sandarisinizarania tassigini, ex	2	-(e.g.)	an all shows		1.5	3 7
6										
8	-								_	
9										
11					Control of the Contro					
12										
14										
15					_	-	_	-		

Soil Vapor Pt.	Lock Number	OPEN-HOLE WELL	Stick-upft
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Inner Casing Tellera Material Tellera		Inner Casing Material
Stick-upft	Inner Casing Inside Diameter 4 inches		Inner Casing Inside Diameterinches
	GROUND SURFACE		
Top of Groutft	Quantity of Material Used: Bentonite Pellets		Outer Casing Diameterinches
Top of	Cement		Borehole
Seal atft	Borehole 2 inches Diameter		Diameterft
Top of Sand Packft	Cement/ Bentonite		Bedrockft
Top of Screen at 4.5 ft	Grout		Bottom of Rock Socket/ Outer Casingft
	Screen Slot Size		Bottom of Inner
Bottom of Screen at 5-6 ft	Screen Type		Casingft
Screen at	☐ PVC Stainless Steel		Corehole Diameter
Bottom of Hole at 5.0 ft	Pack Type/Size:		
	Sand # / Gravel		Bottom of Corehole ft
Bottom of Sandpack at 5.0	☐ Natural		001011010
NOTE: See pages 136 and 137 for well constr	uction diagrams		

Depth-ff.	NARRATIVE LITHOLOGIC DESCRIPTION	i	isture	
		Dry	Moist	Wet
	0"-9" Brown organic Apsoil with little organics, for sund, truce growt	0		\subset
1	Still most	(A)	\bigcirc	\mathbb{C}
2	9"-3" Tan / brown Silly saul, few gravel, have engages, day	0	\bigcirc	\subset
3	3'-4.5' Brown I grow sitts clay, face sand most to shifty most	0	0	\subset
4	4.5'-5' Con weather (highly) rock with few sand dry			\subset
5			0	C
6			\bigcirc	\subset
7			\bigcirc	
8			\bigcirc	$\overline{}$
9			\bigcirc	\subset
10			\bigcirc	$\overline{}$
11		1.0	\bigcirc	$\overline{}$
12			\bigcirc	
13		1	\bigcirc	
14		10		
15		10	\bigcirc	(

Project Name <u>Waite</u> Kd.	Water Level (TOIC)						
Site Location Cliffen Pack, NY	Date	Time	Level(Feet)				
Date Started/Finished 8/21/06							
Orilling Company Zebra							
Driller's Name Will Me Alyster	Well Location S	Sketch		1			
Geologist's Name Brian Cervi							
Geologist's Signature 1							
Rig Type (s) Geographe 4200	outros		%, *				
Orilling Method (s)							
Bit Size (s) Auger Size (s)	- .						
suger/Split Spoon Refusal							
otal Depth of Borehole is4 f	_						
otal Depth of Corehole Is							

Em

SM

Callie

Tital

Tales

िंग

Depth(Feet)	Sample Number	Blows Sampl		Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments
			Pt	1055					0.3	Bresthing Eure Oppm Doublide 3ppm
2			cL		1			and the second s		Oppm
3 -	-		cL				_			Doubhle 3ppm
4	ACCOUNT OF THE PARTY OF THE PAR	-	o months are more than the second of the sec						O.Oppn	
5				ange a pasa della constitución			_			or and the state of the state o
6										
7										
8	,				_		_	-		
9			· ·	-			_			
10										
11					_		_		<u> </u>	
12					_	-				
13					_		-	_		,
14	-			The second secon	_		_	_		
15				V. Chandoore	_	 		_		

SCREENED WELL	Lock Number Inner Casing Tellen	OPEN-HOLE WELL	Stick-upft Inner Casing Material
Stick-upft	Inner Casing Inside Diameter // inches		Inner Casing Inside Diameterinches
Top of Grout ft	GROUND SURFACE Quantity of Material Used: Bentonite Pellets		Outer Casing Diameterinches
Top of Seal atft	Cementinches Diameter		Borehole Diameterft
Top of Sand Packft	Cement/ Bentonite		Bedrockft
Top of Screen a 3.5 ft	Grout		Bottom of Rock Socket/ Outer Casingft
Bottom of 4 t	Screen Slot Size		Bottom of Inner Casingft
	☐ PVC ✓ Stainless Steel		Corehole Diameter
Bottom of Hole atft Bottom of Sandpack at	Pack Type/Size: Sand Gravel Natural		Bottom of Coreholeft
NOTE: See pages 136 and 137 for well construc	ction diagrams		

Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION		oistur onten	
		Dry	Moist	Wet
	0"-10" Brown arganic topsoil with little organics, trace sand grand, moint	0	②	0
,	10"-2" Brown clayer silt with trace organics, trace sand, moist	0		
3	2'-4' Brown / gray silly clay with truce sand, slighty place, slighty			0
4	moist			0
5		0	\bigcirc	0
6		0	0	0
7		0	Ó	0
8			0	0
9				0
10			\bigcirc	
11			\bigcirc	
12				
13			O	
14			\bigcirc	
15			\bigcirc	\bigcirc

Project Name Waite Ro.		Material 2001/7	-010/	
A .	Date	Water Level (1		
Site Location Cliffon Park, NY	– Date	Time	Level	(Feet)
				-
Date Started/Finished				
Drilling Company Zebra	-			
Driller's Name Will Mc Alysto-	Well Location Si	ketch		1
Geologist's Name Brian Ceri				
Geologist's Signature	-			
Rig Type (s) <u>Geopole 4200</u>	-		<u> </u>	•
Drilling Method (s) <u>Geografe</u>				
Bit Size (s) Auger Size (s)				
Auger/Split Spoon Refusal6	-			
Total Depth of Borehole Is				
Total Depth of Corehole Is				

11.1

3 1

Depth(Feet)	Sample Number	Blows o		Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments
1			Pt	1112					1.5 pm	Breedling Zone
2			CL	The state of the s	1 -					Breething Zone Oppm Downhole
3							-	-	65pm	- Downhole
5			Pt/0L		2 -				1	— Ч _{ер} т
6			SM					ed and the second secon	1.0,0-	
7										
9				-			_			
10				-						_
11										
13			-							_
14										_

WR-5V-05 So; Vapor Pt-Lock Number Stick-up___ **OPEN-HOLE WELL** Inner Casing ... Inner Casing Material_ Material_ Inner Casing Inside Diameter 4 inches NA ft Inner Casing Inside Stick-up_ Diameter_ _inches **GROUND SURFACE** Quantity of Material Used: Top of Grout Outer Casing Bentonite Diameter_ inches Pellets_ Cement Borehole Top of Diameter_ ft Seal at_ Borehole inches Diameter Bedrock ___ Top of Sand Pack _ Cement/ Bentonite Bottom of Rock Socket/ Grout Outer Casing ____ Top of Screen at 5.5 Screen Slot Size Bottom of Inner Casing_ Bottom of Screen Type Screen at ☐ PVC__ Corehole ✓ Stainless Steel _ Diameter Pack Type/Size:
Sand #1
Gravel
Natural Bottom of Hole at. Bottom of Corehole_ Bottom of Sandpack at NOTE: See pages 136 and 137 for well construction diagrams

Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	C	oistur onter	nt
		Dry	Moist	Wet
1	0"-8" Bown topsoil with some organis, little gravel, moist		(\circ
2	8"-3.9" Brown / fan clayer sitt with for soul, slighty moist to dry	0	\bigcirc	\circ
3	3.9'-4.2' Dark Bran organiz day with for sand / silt, moist	9	\bigcirc	0
3	4.2'-6.0 Gray sandy sitt with few clay, Little werther bedonk	0		\bigcirc
4	at bottom, slightly moist			\bigcirc
6				\bigcirc
7		0	\bigcirc	\bigcirc
			\bigcirc	\bigcirc
8			\bigcirc	\bigcirc
9			\bigcirc	\bigcirc
10			\bigcirc	\bigcirc
11			\bigcirc	\bigcirc
12			\bigcirc	\bigcirc
14		10	\bigcirc	\bigcirc
			\bigcirc	\bigcirc
15		1		

Site Location Chiffen Park, NY Date Time Level(Feet) Date Started/Finished 8/21/06 Drilling Company Zebra Driller's Name Will NeAlyster Geologist's Name Brian Cervi Geologist's Signature Rig Type (s) Geopole 4200 Drilling Method (s) Geoprole Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 65	Project Name Waite Rol		Water Level (TC	IC)
Drilling Company Zebra Driller's Name Will McAlyster Geologist's Name Brian Cerri Geologist's Signature Band Rig Type (s) Geopole 4200 Drilling Method (s) Geopole Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 65	Site Location Chiffon Park, NY	Date	Time	Level(Feet)
Driller's Name Will McAlyster Geologist's Name Brian Cerri Geologist's Signature Brian Cerri Rig Type (s) Geografe 4200 Drilling Method (s) Geografe Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 65	Date Started/Finished 8/21/0C			
Geologist's Name Brian Ceri, Geologist's Signature Brian Ceri, Rig Type (s) Geografic 4200 Drilling Method (s) Geografic Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 65	Drilling Company Zebra			
Geologist's Signature Rig Type (s) Geografe 4200 Drilling Method (s) Geografe Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 65		Well Location S	ketch	
Prig Type (s) Geograe 4200 Drilling Method (s) Geograe Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 65				•
Drilling Method (s) Ceoprobe Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 5	,			i de la companya de l
Auger/Split Spoon Refusal	V	-		
	Bit Size (s) Auger Size (s)			
Total Depth of Borehole Is	Auger/Split Spoon Refusal6.5	_		
	Total Depth of Borehole Is	_		

Depth(Feet)	Sample Number	Blows or Sampler		Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments
1	SOI		PE	1240					210-	Breathing Force Oppm Downhole
2			CL		1 -		-		— (1.5 ₁)—	Oppm
3									1 1	
5			CL		2 -				1.5,,,_	Soil suple 1300
6		The state of the s	CL					No. Top Swarp work to the control of	Oppor	Soil sight 1300 WR-1206-SOI K 8"-14" bgs WR-SV-06-SI
8	-		-				-			WR-5V-06-31
9					_		_			
11 -			-		en de la constante de la const			· _		
12				-			-			
13							-			
15 ——			-							

WX-3			
Soil Vigo	At- Lock Number		Stick-upft
SOREENED 	Inner Casing — Hon Material Tetlon	OPEN-HOLE WELL	Inner Casing Material
Stick-up VA ft	Inner Casing Inside Diameter 14 inches		Inner Casing Inside Diameterinches
Top of Grout Oft	GROUND SURFACE Quantity of Material Used: Bentonite Pellets		Outer Casing Diameterinches
Top of Seal atft	Cement		Borehole Diameterft
Top of Sand Packft	Cement/ Bentonite		Bedrockft
Top of Screen at 4.5 ft	. Grout		Bottom of Rock Socket/ Outer Casingft
	Screen Slot Size		Bottom of Inner Casingft
Bottom of Screen atft	Screen Type		Corehole Diameter
Bottom of Hole at ft	Pack Type/Size: Sand Gravel Natural		Bottom of Coreholeft
NOTE: See pages 136 and 137 for well co			

Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	Moistu Conte	
·		Dry Moist	Wet
	0"-6" Brown organic topsoil will little organis, true gover fam, slight	000	
1	most	0	\bigcirc
2	6"-24" Brown/fan 5:14 claswith for sand, day		
3	24"-28" Dark Brown organic clay with Little Silf Soul, moist		
4	28 -5' Brown / tan 5:14 day with little siml, trace grand, slighty most) (
5	5'-65' Gray brown sandy clay with few grand, most to wefat bothen) (
6	(-6'bus)) 🔴
7	(3,37,	0 C) (
8		10 C) (
9		0 C) ()
10		$\downarrow 0$ C) ()
11		00	
12		100	$) \bigcirc$
13) (
14			
15		$+$ 0 \cdot) (

roject Name Waite Rol.	_	Water Level (TOIC)							
ite Location Cliffen Park, NY	Date	Time	Level(Feet)						
vate Started/Finished 8/21/06									
rilling Company <u>Lebra</u>									
riller's Name W. 11 Nethyster	Well Location S	ketch	1						
eologist's Name Brian Cerri	-								
eologist's Signature	-	,							
ig Type (s) <u>Geogrape</u> 4200			N.						
rilling Method (s) <u>Geograpse</u>									
it Size (s) Auger Size (s)									
uger/Split Spoon Refusal7 ′									
otal Depth of Borehole Is									

T

Statute Silver

Bull

Bur

Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments
1	Soi		ρt 5M 6ρ cL	1315	-		_			- breathing zone
3			C L Wartherd Bolonk		2			 	15 ppm 15 ppm 16 ppm Oppm	Jewinhele = 7 ppm 5 & 1 Sample 1325 WR-5V-07-51
7 			Beinek				MARCHAEL STATE OF THE STATE OF	egen allem a	epp	WR-5V-01-51
10										
13	·									

Soil Vapor Pt. Screened WELL	Lock Number Inner Casing Tellon	OPEN-HOLE WELL	Stick-upft Inner Casing Material
Stick-upft	Inner Casing Inside Diameter 14 inches GROUND SURFACE		Inner Casing Inside Diameterinches
Top of Grout	Quantity of Material Used: Bentonite Pellets		Outer Casing Diameterinches
Top of Seal atft	Cement inches Diameter		Borehole Diameterft
Top of Sand Packft	Cement/ Bentonite		Bedrockft
Top of Screen at 6.5 ft	Grout Screen Slot Size		Bottom of Rock Socket/ Outer Casingft
Bottom of 7 ft	Screen Type		Bottom of Inner Casingft
	☐ PVC Stainless Steel		Corehole Diameter
Bottom of Hole atft Bottom of Sandpack at7!	Pack Type/Size: Sand ** Gravel Natural		Bottom of Coreholeft
NOTE: See pages 136 and 137 for well construc	tion diagrams		

Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	С	oistur onter	
. '		Dry	Moist	Wet
	0"-6" Brown arganic hopsoil with little send, moist	0	0	
1	6"-18" Brown silty sail, fair grown, day	0	\bigcirc	
2	18"- 22" Gravel / rock Zone with few send, dry	•	\bigcirc	0
3	22"- 28" Gray Silly clay with for sand, free gravely stighty most	0		\circ
5	28"-6 Dark brown / gray silly clay with Little soul, slighty most			\circ
6	6-7' Gray weather bestroke little silt, slighty most to day	O		\bigcirc
7			0	0
			\circ	\circ
0			\circ	\bigcirc
10			\circ	\bigcirc
			\circ	\bigcirc
11			\bigcirc	\bigcirc
12		10	\circ	\circ
14		10	\bigcirc	\bigcirc
15			\bigcirc	\circ

roject Name Warte Kol		Water Level (T	OIC)	
ite Location Chiffen Park, NY	Date	Time	Level	(Feet)
ate Started/Finished 8/21/06				
rilling Company Lebra	-			
riller's Name Will Mc Alys for	Well Location St	retch		1
eologist's Name Brian Ceni	-		•	
eologist's Signature	-			
g Type (s) Geoprale 4200	-		V,	
rilling Method (s) <u>Geografie</u>				
t Size (s) Auger Size (s)				
ger/Split Spoon Refusal	_			
otal Depth of Borehole Is				
otal Depth of Corehole Is				

ai

T.

		7		·	,	Y				
Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments
1			SM	1350					Oppos	Preating tone Oppor Downhole
2			CL		1 _		-	· .	 	Opp.
3			CL						8pp	1 pp ~
5	A CONTRACTOR OF THE PROPERTY O	accession and the second		A CONTRACTOR AND ADDRESS OF THE PARTY OF THE	A STATE OF THE PARTY OF THE PAR					www.coloured.coloured.coloured.coloured.coloured.coloured.coloured.abs/coloured.colo
6			_							,
7							-	manus.	<u>.</u>	
8	_							The Table State of the State of	_	
9	-						-		-	
10							-	and the same of th		
11							-			
12										
14							_			
15			_							

Soil Vapor Pt.	Lock Number		
SOIL VAPOR IT.		C 10 10 10 10 10 10 10 10 10 10 10 10 10	Stick-upft
S creened Wel l	Inner Casing Teffen	OPEN-HOLE WELL	Inner Casing Material
Stick-upft	Inner Casing Inside Diameter <u>74</u> inches		Inner Casing Inside Diameterinches
	GROUND SURFACE		
Top of Grout 6 ft	Quantity of Material Used: Bentonite Pellets		Outer Casing Diameterinches
Top of Seal atft	Cement Borehole inches		Borehole Diameterft
	Diameter		
Top of Sand Packft	Cement/ Bentonite		Bedrockft
Top of Screen at 3.5 ft	Grout		Bottom of Rock Socket/ Outer Casingft
Screen at 39 II	Screen Slot Size		Bottom of Inner Casingft
Bottom of Screen atft	Screen Type PVC Stainless Steel		Corehole Diameter
Bottom of Hole atft	Pack Type/Size: Sand #		Bottom of Coreholeft
Bottom of Sandpack at	Natural		CorenoleII
NOTE: See pages 136 and 137 for well constru	ction diagrams		

Depth-ft.	narrative Lithologic description		Moisture Content	
-		Dry	Moist	Wet
	0"-18" Brun Sand with little sitt, truce organies, dy	©	\bigcirc	\bigcirc
2	18"-40" Brown from Sitty clay with fow sand, chy	0	\bigcirc	\bigcirc
	40"-48" Gray brown Sitty clay will truce sund, trace organics, slighty	0	\bigcirc	\bigcirc
4	menot	0		\bigcirc
5			\bigcirc	\bigcirc
			\bigcirc	\bigcirc
6		0	\bigcirc	\bigcirc
/			\bigcirc	\bigcirc
8			\bigcirc	\bigcirc
9			\bigcirc	\bigcirc
10		0	\bigcirc	\bigcirc
11			\bigcirc	\bigcirc
12		\downarrow		\bigcirc
13		1	\bigcirc	\bigcirc
14		10		\bigcirc
15		10	\odot	\bigcirc

ecology and environment engineering, p.c.

International Specialists in the Environment

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Temporary Soil Gas Implant Sampling Data Collection Form

Site Name: Waik Lol.				Project No.: 002699. ID14				
Samp	le Location	Information						
Projec	et Task:	Soil Vapor	Intrusion	a Evaluati	on			
Samp	ler Names	(Print): Bria	n Cervi	Julie Rug	0			
				σ 4			,	
Orgar	nic Vapor N	Aeter Úsed:	☑ PID ☐ FID	Model:				
	:							
Sampl	e ID	WR-SV-01	WR-SV-02	WR-5V-03	WR-SV-04	WR-SV-OS	UR-SV-OC	WR-5V-07
Canist	er No.	215	362	354	332	222	334	410
Regula	ator No.	149	276	126	155	144	304	41
Durati	on (hours)	2 hr	2hr	2hr	2h	2 hr	2hr	24
	Date	8/22/06	8/22/06	8/22/05	8/22/06	8/22/06	8/22/06	8/22/05
Start	Time	1130	1132	1127	1124	1145	1148	1142
	Pressure	-30	-30	-30	-29.5	-30	-28.5	-27.0
	Date	8/22/05	8/22/06	8/22/05	8/22/05	8/22/05	8/22/06	8/22/06
End	Time	1326	1328	1323	14.35	1345	1339	1333
	Pressure	-1.5	-2.5	-15	-6.0	-7.0	-1.5	-1.0
Qualit	y Control	MS/MSD					-	• .
OVM	(ppb)							,
Analysis Method		TO-15	TO-15	TO-15	TO-15	To-15	70-15	TO-15
					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·	
Labor	Laboratory: Centek Date Shipped to Lab: 8/22/06							
Associ	ated Trip B	lank Sample ID:	WR-TB.	-SV				
Comn	ients:				• ,			

Кеу:

FID = flame-ionization detector

OVM = organic vapor meter

PID = photo-ionization detector

ppb = parts per billion

Pressure measured in inches of mercury, gauge (in Hg)

ecology and environment engineering, p.c.

International Specialists in the Environment

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Temporary Soil Gas Implant Sampling Data Collection Form

Sita N	Jame:	Wait Rd.				Project No ·	002699. I	
						Troject i vo.:	(N)Him 77" at	-019
	et Task:	Information Soul Management	Intrusion	E.11				
rrojec	I Task:	Waper Vaper	IN INCOIN	CVAINANO	<u> </u>			
Sampl	ler Names	(Print): Bna	n Cervi,	Julie Ru	<i>PO</i>			
Organ	nic Vapor N	Aeter Used:	⊠ PID ☐ FID	Model:				
						·		
Sample	e ID	WR-SV-07/D	WR-SV-08	WR-OA				
Canist	er No.	96	358	237		-		
Regula	itor No.	121	301	146				
Durati	on (hours)	2hr	24	24				
	Date	8/22/06	8/22/05	8/22/05		-		
Start	Time	1142	1135	1136	·			
	Pressure	-30	-28	-30				
	Date	8/22/06	8/22/06	8/22/06				
End	Time	1333	1330	1334				
	Pressure	~ 3. c	-1.0	-7.0				
Qualit	y Control	Dup		,				
OVM	(ppb)							
Analys	sis Method	TO-15	TO-15	TO-15				
Labor	atory: (Centek			Date Shipped to I	ab: 8/24/0	6	
Assoc	iated Trip B	lank Sample ID:	WR-TB	-SV				
Comn	nents:							

Key

FID = flame-ionization detector

OVM = organic vapor meter

PID = photo-ionization detector

ppb = parts per billion

Pressure measured in inches of mercury, gauge (in Hg)

POTT CAS DUE C-11-22-2 F--- T2-2-4-1- 0/20/2004

8/21/06 Monday 8/21/06 Monday
0730 B. Cervi and J. Rup meet in hotel loty, loud the vehicle and do paperwork
Goods: Amire arisite, drill/install 8 temporary soil gas probes and begin to drill/construct Lether: Party cloud, 60°F, wind 0-5 mph, sun and high at 78°F expected 0758 BC of JR. arrive onsite and world/look for geopole / Single licetheir 0815 Will (Zebm) arrives onsite al BC hold He daily site Safety meeting with everyone going over especial work, weather, chemical/physical Luzer's route to hispital and questions. Febra brought an ATV greapose huzer's route to hispital and questions. Febra brought an ATV greapose in the site but will informs BC that he only has 5 90il gas implants instead of the required 8. It needed, Febra will order and overright altihand probes.

10826 BC at JK setup equipment and he puperwake while will set up the geographe.

10835 Brian Sankanskas (NYSPTE) arrives mails to observe geopole/Sanfing asturks

10854 We arrive at WK-SW-01 (weaklown) set up and begin to doi! / mucrocore the Countrien We hit refused at CIR-SV-01 at express. 3' bas. Be is going to move to the west 0905 Location approx. 50 west and alterst next brushon We arrive at WR-SV-02 and begin to dolf mourocore. 5 personnel from NYSDOH arrive on sto to observe drilling actives.
We hit refuel at 3.5 by, but Brian Jankauskes (NYSDEC) whome It to set the 0930 Soil vapor probe at 3.0-3.5' bys. We fruit constructing WR-SV-02 will a bentonite sent to 0.5 bys, hydrate it and more 0940 back to WE-SV-01 even to alloyet with borchole We finish dolling to 3.5 bes at construct soil upor probe from 3-3.5 bes. 0950 We finish construction / hydration of WR-SV-01 and sedup to drill WR-SV-03 We are using 14" ID Tellon tubing, 6" long soil vapor probas We frush constructing WR-SV-03 from 4.5-5.0' bys and hydring the bentomte Sent to i' bys. Most Edwie (Zebra) arrives onite to dop off extra soil vyer probes. 1025 1040 We more up and all groute to WK-SV-01 and oz probe bourbons. 1052 We arrive at DR-SV-04 location approx, 25 west of write road, set up al begin to 1100 We finish drilling WR-SV-04 to 4' bys (refusal) and begin to construct the Sil vapor probe 3,5-4 bgs. 110 We arrive at WR-SV-05 after fruiting hydrating the Seal at Soil vapor probe

WR-SV-04. WR-SV-05 is approx. 25' west of the northern site entruce.

1120 We finish dolling UR-SV-05 to E' by (reduce) and begin to construct soil yes point.

8/21/06 Monkey		
1130 We finish o	construction of WK-SU-05 and hydrating the sent to 1'bgs. tebra	
Sets if to 9	rout the tops of USR-SVO3 and OY while Blad JR do paperwork	
The NYS DOL	construction of WK-SV-OS and hydroty the seal to 1'bgs. tebra rout the tops of UR-SVO3 and OY while Blad JR do paperwish to present leave the site for the day.	
The forest	W. 1.	
030 Everyone is to	and from lunch at we set up to drill WR-SV-or on the north sole	
at the pond	l after adding growt to WR-SU-05.	
So We finish of	lathing LIR-SV-of to 605 bgs and we detect a little water at 5.5-6 bg	i, E
30 SC 15 No	way a piezometer set with soul ous above his at screen and bentomte to	
312 ble findle	where we will then set a soil vager probe 45-5 bgs. whiling WR-P2006 and WR-SV-06 Locations and setup to drill	
	17 hating on the east sile of the poul.	
	construction of USR-SV-07 6.5'-70' bys lowly and drive to	
the last la	extign WR-SV-08 and south end of pond.	
352 We finish d	Isthing USR-SU-08 to 4' bis (refuel) at set the proke 3.5-40' bis.	
1410 We finish gr	billing UR-SV-08 to 4' bis (refuel) at set the prok 3.5-4.0' bis.	
de popourk		
1420 Bran Jank	anskes (NYSDEC) leaves the site for the dy after we finish	
ank h a ma	4- 6 (16 -0.15 -0.14.)	
1430 W.4 NeAL	stor (Zebm) leaves the site for the day while 36 I JK Loud	
He selle V.	a bar large all a constants and the constants are all a constants and the constants are all a constants are all	
1 300 BC at SK 6	when but at the hotel after Shiping to buy supplies at Price Chappers buling the vehicle, charging eguponed, packaging suples and doing preparate	/
1640 De al JR les	and in the vetricle; changing expressed; packaging Suples and doing preparate	8
	comine but of the hill to do paperount al sertup to ship enquent	, i
formarow at		
	5 .	
		3) <u>.</u>
WATER CO.		

8/22/06 Tuesly 0710 B. Cori at J. Rupp meet in the hold loty, bout the vehicle and drive to the site Goods: Chelium test the 8 soil vapor probes; Check/single UR P206; Collect the Soil upor singles, " Surry all single locations; Ship singles/equipment at Fed Ex. Weather Party sung, 60°F, wind o-5 uph, sun al high at 8th equate. Blad J. R. arrive onsite and set up to beliam test the 8 locations. We trush believe testing WR-SV-03 lication will no problems with believe = 49.5% Frul 47.2% 0810 We fruish helium testing WR-SU-01 logation with no problems - until helium - 67.1% . Final 65.4% 0828 We fruith helium testing WR-SV-02 location with no problems - inth felium = 71.2 %; Find 69.8% 0845 We fruit below tobing WR-SU-08 location with us problem - instal below - 52.2%, Find 45.2% 7902 We finish believe testing WR-SV-07 location will no problem. inital behin 42.9%; Fried 41.4% 0920 We finish beliam testing WR-SU-06 location with no problem inthe hom - 44.16; time 40.28 We find believe testing WK-SV-05 location with no problem - intel 52.6%; Find 50.16 We finish below testing WR-SV-04 Lowerson with no postles -inital: 48.66, Frul 47.08 1025 We arrive back at the Field truck to pakene / load the behin testing egypwant and set up to GRS all the Sample toursions. 1040 We truit making the 8 Soil unpor and I pictometer locations. The water level in WR-12.06 is 6.45 BTOIC; Stock up is 3.77. We are selling up to collect a groundant sagle from UK-P2-06. (TD=10.18) Myron 6P ultra meto: (S#: 607A1). pt 7 standed read 6.98; pt 4 standed read 3.98

Hach Turb, Stimetor HODP (402-03-004): 5.23 Standed read 5.04 julius; 46.3 standards read 45.4 422 Standard rend 420 n/m 1058 Collected WR-PZ-06 Sample, ph = 6.95, Lond 531.5, T= 17.6C turbidity > 1000 1105 BCal JK arme buck at the truck to package / papare sayles and set up to collect the soil vyer sayles 1155 We fruit lote setting up all the soil ges points, load the trule and drie to get hunch and by mue ice. 1230 BCal JR arrive back miste, begin to parke egripment and de paperwork.

1255 We begin to set up to de kevel survey and clear line of spht. 1320 BCal JR begin to collect the soil vagor sayles. 1355 We find collect all the soil vapor sugles except LIR-SV-04 and do paperant.

1410 We begin to collect cleration data from various points around the site including Soil upper, pietonely, al poul water elevations. 1435 We find the electron point surry and the collect the SV-04 Suple.

1500 3C of JR lawe the site of shapegrap of and Sarghes at Fed Ex.

1530 We find shaping at Fed Ex and done back to HQ IN Buttob, NY.

Data Usability Summary Report

Centek DUSR

Data Usability Summary Report		Project: NYSDEC Waite Road		
Laboratory: Centek		LAB SDG ID: CO608021		
	Date Completed: September 21, 2006	Data Validation Chemist: B. Krajewski		

The samples and analytical methods included in this sample delivery group (SDG) are documented in Table 1 Sample Summary. The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) Guidance for the Development of Data Usability Summary Reports (DUSRs), June 1999. The data review involved looking at the electronic data deliverables (EDDs) and comparing the sample results and laboratory quality control (QC) samples versus the data quality objectives (DQO). Any major or minor concerns affected data usability also are summarized listed below. The representativeness and comparability of the data are evaluated to determine how data usability may be impacted.

Completeness Review			
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes.		
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	NA - the air samples were delivered at ambient temperature.		
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples. Trip Blank - 1/20 samples. Equipment Blank - 1/ set of samples per day.	Yes – Trip blank and field duplicate collected. Equipment blank not included in SDG.		
Laboratory QC frequency correct? Method blank with each batch and one set of MS/MSD and LCS per 20 samples?	Yes.		
All forms and raw data complete?	Yes.		
Case narrative present and complete?	Yes.		
Target analyte list and reporting limits match QAPP?	Yes.		
Were any samples re-analyzed or diluted? For any sample re-analysis and dilutions ensure that only one result per sample and analyte is flagged as reportable.	Yes – Several samples required dilution due to level of target compounds present and CO2 interference.		
Were the canisters for air samples received with a vacuum pressure of between -10 and zero inches of Hg?	Yes		

Compliance Review		
Description	Notes and Qualifiers	
Any holding time violations?	No.	
Any compounds present in method, trip and field blanks?	No.	

Data Usability Summary Report	Project: NYSDEC Waite Road		
Laboratory: Centek	LAB SDG ID: CO608021		
Date Completed: September 21, 2006	Data Validation Chemist: B. Krajewski		

Description	Notes and Qualifiers
Were any analytes flagged for blank contamination? For samples, if results are <5 times the blank or <10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs reported with GC/MS.	No.
Surrogate for method blanks and LCS within limits?	Yes.
Surrogate for samples and MS/MSD within limits? Were appropriate samples re-analyzed? All samples should be re-analyzed for VOCs.	No – Surrogate low for sample WR-SV-01 and high for sample WR-SV-08. Both samples reanalyzed at dilutions with acceptable surrogate recoveries.
MS/MSD within QC criteria? If out and LCS is compliant, then J flag positive data in original sample due to matrix.	No- the percent recovery values for 1,1-dichloroethane; 1,1,2-trichloroethane, 1,2,4-trichlorobenzene, 1,2,4-trimethylbenzene; 1,2-dichloroethane, 1,3-butadiene; 1,4-dioxane; 2,2,4-trimethylpentane; 4-ethyltoluene, acetone; allyl chloride; benzene, bromodichloromethane; bromomethane, carbon disulfide, carbon tetrachloride, chloroethane; chloroform, chloromethane; cis-1,2-dichloroethene, cis-1,2-dichloropropene, cyclohexane, dibromochloromethane, ethyl acetate, ethylbenzene; Freon 11; Freon 113; Freon 114, Freon 12; heptane; hexachlorobutadiene, hexane isopropyl alcohol, m&p-xylenes methyl butyl ketone (MBK); methyl ethyl ketone (MEK); methyl isobutyl ketone, methyl tert-butyl ether, methylene chloride (DCM); propylene; tetrahydrofuran, toluene, t-1,2-dichloroethene, t-1,3-dicloropropane; trichloroethene, vinyl acetate, vinyl bromide and vinyl chloride were outside QC limits. Parent sample results are qualified as estimated (J or UJ) for all compounds with recoveries outside of limits except for m&p-xylenes. Since the m&p-xylenes concentration was greater than four times the spike amount or not detected, control limits were not applied.
LCS within QC criteria? If out, and the recovery high with no positive values, then no data qualification is required. Positive results are "J" flagged and non-detects are "J" flagged if low. Reject data with recovery <10%.	Yes

Data Usability Summary Report	Project: NYSDEC Waite Road	
Laboratory: Centek	LAB SDG ID: CO608021	
Date Completed: September 21, 2006	Data Validation Chemist: B. Krajewski	

Compliance Review			
Description	Notes and Qualifiers		
Were any samples re-analyzed or diluted? For any sample re-analysis and dilutions ensure that only one result per sample and analyte is flagged as reportable.	Yes – Several samples required dilution due to level of target compounds present and CO2 interference.		
Do field duplicate results show good precision for all compounds except TICs?	No, the field duplicate sample results for 1,2,4-trimethylbenzene; 1,2-dichlorobenzene; 2,2,4-Trimethylpentane, 4-ethyltoluene, benzene; ethylbenzene; Freon 12, heptane; hexane, methylene chloride, trichloroethene and tetrachloroethene in sample WR-SV-07 were outside QC limits. The results for outliers were qualified as estimated (J) in the parent and duplicate sample.		

Complian	Compliance Review by Method					
Method	Description	Notes and Qualifiers				
GC/MS	Do internal standards areas and retention time meet criteria? Samples should be re-analyzed to establish matrix effects or chromatograms documenting matrix effects provided.	No, the internal standards for samples WR-SV-01, WR-SV-01MS/MSD, WR-SV-02 and WR-SV-08 were outside the QC limits. Samples were reanalyzed at dilutions with acceptable IS responses. Only diluted results of sample WR-SV-01 and WR-SV-02 reported and no data qualified based on IS. Results reported for the undiluted analysis of sample WR-SV-08 are qualified UJ or J.				
GC/MS	Does initial calibration meet criteria for all positive target compounds? (%RSD≤30) Note that two compounds can have less than 40%. Note that two compounds can have less than 40%. Is the minimum response factor must be met for all compounds? (≤0.05)	Yes.				
GC/MS	Does continuing calibration meet criteria for all positive target compounds? (%D ± 30%) Is the minimum response factor must be met for all compounds? (≤0.05)	Yes. (%D >30 for benzyl chloride; compound not detected in samples) Yes.				

Data Usability Summary Report	Project: NYSDEC Waite Road		
Laboratory: Centek	LAB SDG ID: CO608021		
Date Completed: September 21, 2006	Data Validation Chemist: B. Krajewski		

Summary of Potential Impacts on Data Usability

Major Concerns

CO2 levels significant in most samples – necessitated dilutions. Manual integrations required due to poor peak shapes in retention times affected by CO2.

Field duplicate reproducibility poor.

Minor Concerns

The sample results that were qualified during data review are summarized on Table 2 below. The field duplicate results are summarized on Table 3 below.

Key:

CCV = Continuing calibration verification

COC = Chain-of-custody

GC/MS = Gas Chromatography/Mass Spectrometry

NA = Not Applicable

LCS = Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate

QAPP = Quality Assurance Project Plan

QC = Quality Control

TIC = Tentatively Identified Compound
VOCs = Volatile Organic Compounds

Data Usability Summary Report	Project: NYSDEC Waite Road				
Laboratory: Centek	LAB SDG ID: CO608021				
Date Completed: September 21, 2006	Data Validation Chemist: B. Krajewski				

Table 1 Sample Listing

Lab Sample ID	Client Sample ID	Matrix	Sample Date	Method	ID Corrections
CO608021- 001A	WR-SV-01	Air	8/22/2006	1ug/m3 w/ 0.25ug/M3 TCE by Method TO15	
CO608021- 002A	WR-SV-02	Air	8/22/2006	1ug/m3 w/ 0.25ug/M3 TCE by Method TO15	
CO608021- 003A	WR-SV-03	Air	8/22/2006	1ug/m3 w/ 0.25ug/M3 TCE by Method TO15	
CO608021- 004A	WR-SV-04	Air	8/22/2006	1ug/m3 w/ 0.25ug/M3 TCE by Method TO15	
CO608021- 005A	WR-SV-05	Air	8/22/2006	1ug/m3 w/ 0.25ug/M3 TCE by Method TO15	
CO608021- 006A	WR-SV-06	Air	8/22/2006	1ug/m3 w/ 0.25ug/M3 TCE by Method TO15	
CO608021- 007A	WR-SV-07	Air	8/22/2006	1ug/m3 w/ 0.25ug/M3 TCE by Method TO15	
CO608021- 008A	WR-SV-08	Air	8/22/2006	1ug/m3 w/ 0.25ug/M3 TCE by Method TO15	
CO608021- 009A	WR-SV-07/D	Air	8/22/2006	1ug/m3 w/ 0.25ug/M3 TCE by Method TO15	
CO608021- 010A	WR-OA	Air	8/22/2006	1ug/m3 w/ 0.25ug/M3 TCE by Method TO15	
CO608021- 011A	WR-TB-SV	Air	8/22/2006	1ug/m3 w/ 0.25ug/M3 TCE by Method TO15	

Data Usability Summary Report	Project: NYSDEC Waite Road				
Laboratory: Centek	LAB SDG ID: CO608021				
Date Completed: September 21, 2006	Data Validation Chemist: B. Krajewski				

Table 2 Summary of Qualified Data

Table 2 Summary of Qualified Data							
Client SampID	TEST NO	Analyte	Reported Result	PQLVAL	QUA L	DR QVAL	DR REASON
WR-SV-01	TO-15	1,1,2-Trichloroethane	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	1,1-Dichloroethane	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	1,2,4-Trichlorobenzene	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	1,2,4-Trimethylbenzene	6.60	0.6		J	MS/MSD Outlier
WR-SV-01	TO-15	1,2-Dichloropropane	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	1,3,5-Trimethylbenzene	4.80	0.6		J	MS/MSD Outlier
WR-SV-01	TO-15	1,3-butadiene	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	1,4-Dioxane	ND	1.2		UJ	MS/MSD Outlier
WR-SV-01	TO-15	2,2,4-trimethylpentane	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	4-ethyltoluene	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Acetone	ND	1.2		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Allyl chloride	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Benzene	1.95	0.6		J	MS/MSD Outlier
WR-SV-01	TO-15	Bromodichloromethane	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Bromomethane	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Carbon disulfide	3.17	0.6		J	MS/MSD Outlier
WR-SV-01	TO-15	Carbon tetrachloride	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Chloroethane	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Chloroform	12.5	0.6		J	MS/MSD Outlier
WR-SV-01	TO-15	Chloromethane	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	cis-1,2-Dichloroethene	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	cis-1,3- Dichloropropene	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Cyclohexane	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Dibromochloromethane	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Ethyl acetate	ND	1		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Ethylbenzene	4.77	0.6		J	MS/MSD Outlier
WR-SV-01	TO-15	Freon 11	3.66	0.6		J	MS/MSD Outlier
WR-SV-01	TO-15	Freon 113	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Freon 114	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Freon 12	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Heptane	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Hexachloro-1,3- butadiene	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Hexane	ND	0.6		UJ	MS/MSD Outlier

Data Usability Summary Report	Project: NYSDEC Waite Road				
Laboratory: Centek	LAB SDG ID: CO608021				
Date Completed: September 21, 2006	Data Validation Chemist: B. Krajewski				

Client SamplD	TEST NO	Analyte	Reported Result	PQLVAL	QUA L	DR QVAL	DR REASON
WR-SV-01	TO-15	Isopropyl alcohol	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	m&p-Xylene	7.06	1.2		J	MS/MSD Outlier
WR-SV-01	TO-15	Methyl Butyl Ketone	ND	1.2		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Methyl Ethyl Ketone	ND	1.2		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Methyl Isobutyl Ketone	ND	1.2		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Methyl tert-butyl ether	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Methylene chloride	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Propylene	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Tetrahydrofuran	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Toluene	8.73	0.6		J	MS/MSD Outlier
WR-SV-01	TO-15	trans-1,2- Dichloroethene	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	trans-1,3- Dichloropropene	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Trichloroethene	7.43	0.16		J	MS/MSD Outlier
WR-SV-01	TO-15	Vinyl acetate	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Vinyl Bromide	ND	0.6		UJ	MS/MSD Outlier
WR-SV-01	TO-15	Vinyl chloride	ND	0.6		UJ	MS/MSD Outlier
WR-SV-07	TO-15	1,2,4-Trimethylbenzene	22.0	0.75		J	FD Outlier
WR-SV-07	TO-15	1,2-Dichlorobenzene	0.672	0.15	J	J	FD Outlier
WR-SV-07	TO-15	2,2,4-trimethylpentane	58.6	0.75		J	FD Outlier
WR-SV-07	TO-15	4-ethyltoluene	1.60	0.15		J	FD Outlier
WR-SV-07	TO-15	Benzene	2.50	0.15		J	FD Outlier
WR-SV-07	TO-15	Ethylbenzene	1.54	0.15		J	FD Outlier
WR-SV-07	TO-15	Freon 12	ND	0.15		J	FD Outlier
WR-SV-07	TO-15	Heptane	33.3	0.75		J	FD Outlier
WR-SV-07	TO-15	Hexane	24.9	0.75		J	FD Outlier
WR-SV-07	TO-15	Methylene chloride	ND	0.15		J	FD Outlier
WR-SV-07	TO-15	Tetrachloroethylene	ND	0.15		J	FD Outlier
WR-SV-07	TO-15	Trichloroethene	0.874	0.04		J	FD Outlier
WR-SV-08	TO-15	1,1,1-Trichloroethane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	1,1,2,2- Tetrachloroethane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	1,1,2-Trichloroethane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	1,1-Dichloroethane	266	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	1,1-Dichloroethene	ND	0.15		UJ	IS Outlier

Data Usability Summary Report	Project: NYSDEC Waite Road				
Laboratory: Centek	LAB SDG ID: CO608021				
Date Completed: September 21, 2006	Data Validation Chemist: B. Krajewski				

Client SampID	TEST NO	Analyte	Reported Result	PQLVAL	QUA L	DR QVAL	DR REASON
WR-SV-08	TO-15	1,2,4-Trichlorobenzene	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	1,2,4-Trimethylbenzene	31.7	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	1,2-Dibromoethane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	1,2-Dichlorobenzene	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	1,2-Dichloroethane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	1,2-Dichloropropane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	1,3,5-Trimethylbenzene	21.5	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	1,3-butadiene	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	1,3-Dichlorobenzene	50.4	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	1,4-Dichlorobenzene	42.9	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	1,4-Dioxane	ND	0.3		UJ	IS Outlier
WR-SV-08	TO-15	2,2,4-trimethylpentane	266	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	4-ethyltoluene	19.6	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	Acetone	ND	0.3		UJ	IS Outlier
WR-SV-08	TO-15	Allyl chloride	0	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Benzene	32.5	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	Benzyl chloride	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Bromodichloromethane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Bromoform	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Bromomethane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Carbon disulfide	20.8	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	Carbon tetrachloride	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Chlorobenzene	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Chloroethane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Chloroform	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Chloromethane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	cis-1,2-Dichloroethene	42.8	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	cis-1,3- Dichloropropene	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Cyclohexane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Dibromochloromethane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Ethyl acetate	0	0.25		UJ	IS Outlier
WR-SV-08	TO-15	Ethylbenzene	766	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	Freon 11	6.23	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	Freon 113	ND	0.15		UJ	IS Outlier

Data Usability Summary Report	Project: NYSDEC Waite Road				
Laboratory: Centek	LAB SDG ID: CO608021				
Date Completed: September 21, 2006	Data Validation Chemist: B. Krajewski				

Client SampID	TEST NO	Analyte	Reported Result	PQLVAL	QUA L	DR QVAL	DR REASON
WR-SV-08	TO-15	Freon 114	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Freon 12	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Heptane	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Hexachloro-1,3- butadiene	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Hexane	0	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Isopropyl alcohol	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	m&p-Xylene	1120	0.3		J	IS/Surrogate Outlier
WR-SV-08	TO-15	Methyl Butyl Ketone	ND	0.3		UJ	IS Outlier
WR-SV-08	TO-15	Methyl Ethyl Ketone	ND	0.3		UJ	IS Outlier
WR-SV-08	TO-15	Methyl Isobutyl Ketone	ND	0.3		UJ	IS Outlier
WR-SV-08	TO-15	Methyl tert-butyl ether	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Methylene chloride	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	o-Xylene	103	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	Propylene	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Styrene	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Tetrachloroethylene	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Tetrahydrofuran	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Toluene	254	0.15		J	IS/Surrogate Outlier
WR-SV-08	TO-15	trans-1,2- Dichloroethene	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	trans-1,3- Dichloropropene	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Trichloroethene	62.2	0.04		J	IS/Surrogate Outlier
WR-SV-08	TO-15	Vinyl acetate	ND	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Vinyl Bromide	0	0.15		UJ	IS Outlier
WR-SV-08	TO-15	Vinyl chloride	ND	0.15		UJ	IS Outlier
WR-SV-07/D	TO-15	1,2,4-Trimethylbenzene	4.65	0.15		J	FD Outlier
WR-SV-07/D	TO-15	1,2-Dichlorobenzene	ND	0.15		J	FD Outlier
WR-SV-07/D	TO-15	2,2,4-trimethylpentane	ND	0.15		J	FD Outlier
WR-SV-07/D	TO-15	4-ethyltoluene	0.800	0.15		J	FD Outlier
WR-SV-07/D	TO-15	Benzene	0.390	0.15	J	J	FD Outlier
WR-SV-07/D	TO-15	Ethylbenzene	0.883	0.15		J	FD Outlier
WR-SV-07/D	TO-15	Freon 12	3.72	0.15		J	FD Outlier
WR-SV-07/D	TO-15	Heptane	ND	0.15		J	FD Outlier
WR-SV-07/D	TO-15	Hexane	ND	0.15		J	FD Outlier
WR-SV-07/D	TO-15	Methylene chloride	0.494	0.15	J	J	FD Outlier

Data Usability Summary Report	Project: NYSDEC Waite Road				
Laboratory: Centek	LAB SDG ID: CO608021				
Date Completed: September 21, 2006	Data Validation Chemist: B. Krajewski				

Client SampID	TEST NO	Analyte	Reported Result	PQLVAL	QUA L	DR QVAL	DR REASON
WR-SV-07/D	TO-15	Tetrachloroethylene	0.827	0.15	J	J	FD Outlier
WR-SV-07/D	TO-15	Trichloroethene	1.97	0.04		J	FD Outlier

Table 3 Field Duplicate Results

Table 3 Fleid Duplicate	Nesuits							
Analyte	Units	PQL	WR-SV-0	7	WR-SV-07	/D	RPD	RPD Pating
· · · · · · · · · · · · · · · · · · ·				1		עו		Rating
1,2,4-Trimethylbenzene	ug/m3	1.13	22		4.65		130.2	Poor
1,2-Dichlorobenzene	ug/m3	0.917	0.672	J	0		200.0	Poor
1,3,5-Trimethylbenzene	ug/m3	0.750	5.35		4.65		14.0	Good
2,2,4-trimethylpentane	ug/m3	3.56	58.6		0		200.0	Poor
4-ethyltoluene	ug/m3	0.750	1.6		0.8		66.7	Poor
Benzene	ug/m3	0.487	2.5		0.39	J	146.0	Poor
Carbon disulfide	ug/m3	0.475	0.538		0.57		5.8	Good
Carbon tetrachloride	ug/m3	0.959	0.767	J	0.959		22.2	Good
Ethylbenzene	ug/m3	0.662	1.54		0.883		54.2	Poor
Freon 11	ug/m3	0.857	1.71		2.28		28.6	Good
Freon 113	ug/m3	1.17	1.09	J	1.01	J	7.6	Good
Freon 12	ug/m3	0.754	0		3.72		200.0	Poor
Heptane	ug/m3	3.12	33.3		0		200.0	Poor
Hexane	ug/m3	2.68	24.9		0		200.0	Poor
m&p-Xylene	ug/m3	1.32	2.78		2.21		22.8	Good
Methylene Chloride	ug/m3	0.530	0		0.494	J	200.0	Poor
o-Xylene	ug/m3	0.662	1.15		0.794		36.6	Good
Tetrachloroethylene	ug/m3	1.03	0		0.827	J	200.0	Poor
Toluene	ug/m3	0.575	3.06		3.75		20.3	Good
Trichloroethene	ug/m3	0.218	0.874		1.97		77.1	Poor

Key:

FD = Field Duplicate
NC = Not Calculated
ND = Not Detected

PQL = Practical Quantitation Limit RPD = Relative Percent Difference

CLIENT: Ecology and Environment, Inc.

Lab Order: C0608021 **Project:** Waite Road

Lab ID: C0608021-001A

Date: 30-Aug-06

Client Sample ID: WR-SV-01

Tag Number: 215,149 **Collection Date:** 8/22/2006

Matrix: AIR

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Vacuume Reading "Hg	-2		"Hg		8/22/2006
1UG/M3 W/ 0.25UG/M3 TCE BY N	METHOD TO15	TO-15			Analyst: RJP
1,1,1-Trichloroethane	1.04	0.600	ppbV	4	8/28/2006
1,1,1-Trichloroethane	1.11	0.150	ppbV	1	8/28/2006
1,1,2,2-Tetrachloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trimethylbenzene	0.270	0.150	ppbV	1	8/28/2006
1,2,4-Trimethylbenzene	1.32	0.600	ppbV	4	8/28/2006
1,2-Dibromoethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloropropane	ND	0.150	ppbV	1	8/28/2006
1,3,5-Trimethylbenzene	0.180	0.150	ppbV	1	8/28/2006
1,3,5-Trimethylbenzene	0.960	0.600	ppbV	4	8/28/2006
1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
1,3-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dioxane	ND	0.300	ppbV	1	8/28/2006
2,2,4-trimethylpentane	ND	0.150	ppbV	1	8/28/2006
4-ethyltoluene	ND	0.150	ppbV	1	8/28/2006
Acetone	ND	0.300	ppbV	1	8/28/2006
Allyl chloride	ND	0.150	ppbV	1	8/28/2006
Benzene	0.600	0.600	ppbV	4	8/28/2006
Benzene	0.810	0.150	ppbV	1	8/28/2006
Benzyl chloride	ND	0.150	ppbV	1	8/28/2006
Bromodichloromethane	ND	0.150	ppbV	1	8/28/2006
Bromoform	ND	0.150	ppbV	1	8/28/2006
Bromomethane	ND	0.150	ppbV	1	8/28/2006
Carbon disulfide	0.280	0.150	ppbV	1	8/28/2006
Carbon disulfide	1.00	0.600	ppbV	4	8/28/2006
Carbon tetrachloride	ND	0.150	ppbV	1	8/28/2006
Chlorobenzene	ND	0.150	ppbV	1	8/28/2006
Chloroethane	ND	0.150	ppbV	1	8/28/2006
Chloroform	2.52	0.600	ppbV	4	8/28/2006
Chloroform	1.96	0.150	ppbV	1	8/28/2006
Chloromethane	ND	0.150	ppbV	1	8/28/2006

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

Client Sample ID: WR-SV-01 Tag Number: 215,149

Lab Order: C0608021 **Project:** Waite Road

Collection Date: 8/22/2006

Date: 30-Aug-06

Lab ID: C0608021-001A **Matrix:** AIR

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 TCE BY M	ETHOD TO15	TO-	-15		Analyst: RJP
cis-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
cis-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Cyclohexane	ND	0.150	ppbV	1	8/28/2006
Dibromochloromethane	ND	0.150	ppbV	1	8/28/2006
Ethyl acetate	ND	0.250	ppbV	1	8/28/2006
Ethylbenzene	0.370	0.150	ppbV	1	8/28/2006
Ethylbenzene	1.08	0.600	ppbV	4	8/28/2006
Freon 11	0.400	0.150	ppbV	1	8/28/2006
Freon 11	0.640	0.600	ppbV	4	8/28/2006
Freon 113	ND	0.150	ppbV	1	8/28/2006
Freon 114	ND	0.150	ppbV	1	8/28/2006
Freon 12	ND	0.150	ppbV	1	8/28/2006
Heptane	ND	0.150	ppbV	1	8/28/2006
Hexachloro-1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
Hexane	ND	0.150	ppbV	1	8/28/2006
Isopropyl alcohol	ND	0.150	ppbV	1	8/28/2006
m&p-Xylene	1.34	0.300	ppbV	1	8/28/2006
m&p-Xylene	1.60	1.20	ppbV	4	8/28/2006
Methyl Butyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Ethyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Isobutyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl tert-butyl ether	ND	0.150	ppbV	1	8/28/2006
Methylene chloride	ND	0.150	ppbV	1	8/28/2006
o-Xylene	0.270	0.150	ppbV	1	8/28/2006
o-Xylene	0.640	0.600	ppbV	4	8/28/2006
Propylene	ND	0.150	ppbV	1	8/28/2006
Styrene	ND	0.150	ppbV	1	8/28/2006
Tetrachloroethylene	1.04	0.600	ppbV	4	8/28/2006
Tetrachloroethylene	0.820	0.150	ppbV	1	8/28/2006
Tetrahydrofuran	ND	0.150	ppbV	1	8/28/2006
Toluene	2.25	0.150	ppbV	1	8/28/2006
Toluene	2.28	0.600	ppbV	4	8/28/2006
trans-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
trans-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Trichloroethene	0.150	0.0400	ppbV	1	8/28/2006
Trichloroethene	1.36	0.160	ppbV	4	8/28/2006
Vinyl acetate	ND	0.150	ppbV	1	8/28/2006
Vinyl Bromide	ND	0.150	ppbV	1	8/28/2006
Vinyl chloride	ND	0.150	ppbV	1	8/28/2006
Surr: Bromofluorobenzene	64.0	70-130	S %REC	1	8/28/2006

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

C0608021

Client Sample ID: WR-SV-01

Tag Number: 215,149

Date: 30-Aug-06

Project: Waite Road Collection Date: 8/22/2006
Lab ID: C0608021-001A Matrix: AIR

Analyses Result Limit Qual Units DF Date Analyzed

1UG/M3 W/ 0.25UG/M3 TCE BY METHOD TO15 TO-15 Analyst: RJP

 Surr: Bromofluorobenzene
 97.0
 70-130
 %REC
 4
 8/28/2006

NOTES:

Lab Order:

Very high levels of CO2 present. Sample analyzed at 1 and 4x dilution. Both sets of data reported.

В

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Lab Order:

Project:

CLIENT: Ecology and Environment, Inc.

Client Sample ID: WR-SV-02 C0608021 **Tag Number:** 362,276 Collection Date: 8/22/2006 Waite Road

Matrix: AIR Lab ID: C0608021-002A

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Vacuume Reading "Hg	-4		"Hg		8/22/2006
1UG/M3 W/ 0.25UG/M3 TCE BY N	METHOD TO15	TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2,2-Tetrachloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trimethylbenzene	1.20	0.600	ppbV	4	8/28/2006
1,2,4-Trimethylbenzene	0.500	0.150	ppbV	1	8/28/2006
1,2-Dibromoethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloropropane	ND	0.150	ppbV	1	8/28/2006
1,3,5-Trimethylbenzene	0.600	0.150	ppbV	1	8/28/2006
1,3,5-Trimethylbenzene	1.36	0.600	ppbV	4	8/28/2006
1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
1,3-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dioxane	ND	0.300	ppbV	1	8/28/2006
2,2,4-trimethylpentane	1.23	0.150	ppbV	1	8/28/2006
4-ethyltoluene	0.220	0.150	ppbV	1	8/28/2006
Acetone	ND	0.300	ppbV	1	8/28/2006
Allyl chloride	ND	0.150	ppbV	1	8/28/2006
Benzene	0.640	0.600	ppbV	4	8/28/2006
Benzene	0.350	0.150	ppbV	1	8/28/2006
Benzyl chloride	ND	0.150	ppbV	1	8/28/2006
Bromodichloromethane	ND	0.150	ppbV	1	8/28/2006
Bromoform	ND	0.150	ppbV	1	8/28/2006
Bromomethane	ND	0.150	ppbV	1	8/28/2006
Carbon disulfide	ND	0.150	ppbV	1	8/28/2006
Carbon disulfide	0.840	0.600	ppbV	4	8/28/2006
Carbon tetrachloride	ND	0.150	ppbV	1	8/28/2006
Chlorobenzene	ND	0.150	ppbV	1	8/28/2006
Chloroethane	ND	0.150	ppbV	1	8/28/2006
Chloroform	ND	0.150	ppbV	1	8/28/2006
Chloroform	0.600	0.600	ppbV	4	8/28/2006
Chloromethane	ND	0.150	ppbV	1	8/28/2006
cis-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006

Qualifiers:

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Е Value above quantitation range
- Analyte detected at or below quantitation limits J

Date: 30-Aug-06

Not Detected at the Reporting Limit

Lab Order:

Project:

CLIENT: Ecology and Environment, Inc.

Client Sample ID: WR-SV-02 C0608021 **Tag Number:** 362,276 Collection Date: 8/22/2006 Waite Road

Matrix: AIR C0608021-002A Lab ID:

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 TCE BY MI	ETHOD TO15	TO-15	-		Analyst: RJP
cis-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Cyclohexane	ND	0.150	ppbV	1	8/28/2006
Dibromochloromethane	ND	0.150	ppbV	1	8/28/2006
Ethyl acetate	ND	0.250	ppbV	1	8/28/2006
Ethylbenzene	1.28	0.600	ppbV	4	8/28/2006
Ethylbenzene	0.880	0.150	ppbV	1	8/28/2006
Freon 11	0.680	0.600	ppbV	4	8/28/2006
Freon 11	ND	0.150	ppbV	1	8/28/2006
Freon 113	ND	0.150	ppbV	1	8/28/2006
Freon 114	ND	0.150	ppbV	1	8/28/2006
Freon 12	ND	0.150	ppbV	1	8/28/2006
Heptane	ND	0.150	ppbV	1	8/28/2006
Hexachloro-1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
Hexane	ND	0.150	ppbV	1	8/28/2006
Isopropyl alcohol	ND	0.150	ppbV	1	8/28/2006
m&p-Xylene	1.58	0.300	ppbV	1	8/28/2006
m&p-Xylene	2.24	1.20	ppbV	4	8/28/2006
Methyl Butyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Ethyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Isobutyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl tert-butyl ether	ND	0.150	ppbV	1	8/28/2006
Methylene chloride	ND	0.150	ppbV	1	8/28/2006
o-Xylene	0.630	0.150	ppbV	1	8/28/2006
o-Xylene	0.760	0.600	ppbV	4	8/28/2006
Propylene	ND	0.150	ppbV	1	8/28/2006
Styrene	ND	0.150	ppbV	1	8/28/2006
Tetrachloroethylene	ND	0.150	ppbV	1	8/28/2006
Tetrahydrofuran	ND	0.150	ppbV	1	8/28/2006
Toluene	1.80	0.150	ppbV	1	8/28/2006
Toluene	3.20	0.600	ppbV	4	8/28/2006
trans-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
trans-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Trichloroethene	ND	0.0400	ppbV	1	8/28/2006
Vinyl acetate	ND	0.150	ppbV	1	8/28/2006
Vinyl Bromide	ND	0.150	ppbV	1	8/28/2006
Vinyl chloride	ND	0.150	ppbV	1	8/28/2006
Surr: Bromofluorobenzene	97.0	70-130	%REC	1	8/28/2006
Surr: Bromofluorobenzene	97.0	70-130	%REC	4	8/28/2006
NOTES:					

Very high levels of CO2 present. Sample analyzed at 1 and 4x dilution. Both sets of data reported.

Qualifiers:

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Е Value above quantitation range
- Analyte detected at or below quantitation limits J

Date: 30-Aug-06

ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

Lab Order: C0608021 **Project:** Waite Road

Lab ID: C0608021-003A

Date: 30-Aug-06

Client Sample ID: WR-SV-03 Tag Number: 354,126

Collection Date: 8/22/2006

Matrix: AIR

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Vacuume Reading "Hg	-3		"Hg		8/22/2006
1UG/M3 W/ 0.25UG/M3 TCE BY N	METHOD TO15	TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2,2-Tetrachloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trimethylbenzene	3.29	0.150	ppbV	1	8/28/2006
1,2,4-Trimethylbenzene	5.36	0.600	ppbV	4	8/28/2006
1,2-Dibromoethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloropropane	ND	0.150	ppbV	1	8/28/2006
1,3,5-Trimethylbenzene	3.52	0.600	ppbV	4	8/28/2006
1,3,5-Trimethylbenzene	2.06	0.150	ppbV	1	8/28/2006
1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
1,3-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dioxane	ND	0.300	ppbV	1	8/28/2006
2,2,4-trimethylpentane	ND	0.150	ppbV	1	8/28/2006
4-ethyltoluene	3.68	0.600	ppbV	4	8/28/2006
4-ethyltoluene	2.20	0.150	ppbV	1	8/28/2006
Acetone	ND	0.300	ppbV	1	8/28/2006
Allyl chloride	ND	0.150	ppbV	1	8/28/2006
Benzene	0.180	0.150	ppbV	1	8/28/2006
Benzyl chloride	ND	0.150	ppbV	1	8/28/2006
Bromodichloromethane	ND	0.150	ppbV	1	8/28/2006
Bromoform	ND	0.150	ppbV	1	8/28/2006
Bromomethane	ND	0.150	ppbV	1	8/28/2006
Carbon disulfide	0.430	0.150	ppbV	1	8/28/2006
Carbon disulfide	0.840	0.600	ppbV	4	8/28/2006
Carbon tetrachloride	0.13	0.150 J	ppbV	1	8/28/2006
Chlorobenzene	ND	0.150	ppbV	1	8/28/2006
Chloroethane	ND	0.150	ppbV	1	8/28/2006
Chloroform	ND	0.150	ppbV	1	8/28/2006
Chloromethane	ND	0.150	ppbV	1	8/28/2006
cis-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
cis-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

C0608021

Project: Waite Road
Lab ID: C0608021-003A

Lab Order:

Date: 30-Aug-06

Client Sample ID: WR-SV-03 **Tag Number:** 354,126

Collection Date: 8/22/2006

Matrix: AIR

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 TCE BY MI	ETHOD TO15	TO-15			Analyst: RJP
Cyclohexane	ND	0.150	ppbV	1	8/28/2006
Dibromochloromethane	ND	0.150	ppbV	1	8/28/2006
Ethyl acetate	ND	0.250	ppbV	1	8/28/2006
Ethylbenzene	0.840	0.600	ppbV	4	8/28/2006
Ethylbenzene	0.590	0.150	ppbV	1	8/28/2006
Freon 11	0.40	0.600	J ppbV	4	8/28/2006
Freon 11	0.360	0.150	ppbV	1	8/28/2006
Freon 113	ND	0.150	ppbV	1	8/28/2006
Freon 114	ND	0.150	ppbV	1	8/28/2006
Freon 12	ND	0.150	ppbV	1	8/28/2006
Heptane	ND	0.150	ppbV	1	8/28/2006
Hexachloro-1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
Hexane	ND	0.150	ppbV	1	8/28/2006
Isopropyl alcohol	ND	0.150	ppbV	1	8/28/2006
m&p-Xylene	1.56	0.300	ppbV	1	8/28/2006
m&p-Xylene	2.44	1.20	ppbV	4	8/28/2006
Methyl Butyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Ethyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Isobutyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl tert-butyl ether	0.430	0.150	ppbV	1	8/28/2006
Methylene chloride	ND	0.150	ppbV	1	8/28/2006
o-Xylene	0.400	0.150	ppbV	1	8/28/2006
o-Xylene	0.600	0.600	ppbV	4	8/28/2006
Propylene	ND	0.150	ppbV	1	8/28/2006
Styrene	ND	0.150	ppbV	1	8/28/2006
Tetrachloroethylene	ND	0.150	ppbV	1	8/28/2006
Tetrahydrofuran	ND	0.150	ppbV	1	8/28/2006
Toluene	0.820	0.150	ppbV	1	8/28/2006
Toluene	1.28	0.600	ppbV	4	8/28/2006
trans-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
trans-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Trichloroethene	0.110	0.0400	ppbV	1	8/28/2006
Vinyl acetate	ND	0.150	ppbV	1	8/28/2006
Vinyl Bromide	ND	0.150	ppbV	1	8/28/2006
Vinyl chloride	ND	0.150	ppbV	1	8/28/2006
Surr: Bromofluorobenzene	98.0	70-130	%REC	4	8/28/2006
Surr: Bromofluorobenzene	108	70-130	%REC	1	8/28/2006
NOTES.					

NOTES:

Very high levels of CO2 present. Sample analyzed at 1 and 4x dilution. Both sets of data reported.

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

Client Sample ID: WR-SV-04 C0608021 Lab Order: **Tag Number:** 332,155 Collection Date: 8/22/2006 **Project:** Waite Road

Matrix: AIR Lab ID: C0608021-004A

Analyses	Result	Limit (Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLC)			Analyst:
Vacuume Reading "Hg	-9			"Hg		8/22/2006
1UG/M3 W/ 0.25UG/M3 TCE BY N	METHOD TO15	TO-1	15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.150		ppbV	1	8/28/2006
1,1,2,2-Tetrachloroethane	ND	0.150		ppbV	1	8/28/2006
1,1,2-Trichloroethane	ND	0.150		ppbV	1	8/28/2006
1,1-Dichloroethane	ND	0.150		ppbV	1	8/28/2006
1,1-Dichloroethene	ND	0.150		ppbV	1	8/28/2006
1,2,4-Trichlorobenzene	ND	0.150		ppbV	1	8/28/2006
1,2,4-Trimethylbenzene	1.14	0.150		ppbV	1	8/28/2006
1,2-Dibromoethane	ND	0.150		ppbV	1	8/28/2006
1,2-Dichlorobenzene	ND	0.150		ppbV	1	8/28/2006
1,2-Dichloroethane	ND	0.150		ppbV	1	8/28/2006
1,2-Dichloropropane	ND	0.150		ppbV	1	8/28/2006
1,3,5-Trimethylbenzene	1.61	0.150		ppbV	1	8/28/2006
1,3-butadiene	ND	0.150		ppbV	1	8/28/2006
1,3-Dichlorobenzene	ND	0.150		ppbV	1	8/28/2006
1,4-Dichlorobenzene	0.11	0.150	J	ppbV	1	8/28/2006
1,4-Dioxane	ND	0.300		ppbV	1	8/28/2006
2,2,4-trimethylpentane	ND	0.150		ppbV	1	8/28/2006
4-ethyltoluene	0.360	0.150		ppbV	1	8/28/2006
Acetone	ND	0.300		ppbV	1	8/28/2006
Allyl chloride	ND	0.150		ppbV	1	8/28/2006
Benzene	0.650	0.150		ppbV	1	8/28/2006
Benzyl chloride	ND	0.150		ppbV	1	8/28/2006
Bromodichloromethane	ND	0.150		ppbV	1	8/28/2006
Bromoform	ND	0.150		ppbV	1	8/28/2006
Bromomethane	ND	0.150		ppbV	1	8/28/2006
Carbon disulfide	1.35	0.150		ppbV	1	8/28/2006
Carbon tetrachloride	0.12	0.150	J	ppbV	1	8/28/2006
Chlorobenzene	ND	0.150		ppbV	1	8/28/2006
Chloroethane	ND	0.150		ppbV	1	8/28/2006
Chloroform	0.190	0.150		ppbV	1	8/28/2006
Chloromethane	ND	0.150		ppbV	1	8/28/2006
cis-1,2-Dichloroethene	ND	0.150		ppbV	1	8/28/2006
cis-1,3-Dichloropropene	ND	0.150		ppbV	1	8/28/2006
Cyclohexane	ND	0.150		ppbV	1	8/28/2006
Dibromochloromethane	ND	0.150		ppbV	1	8/28/2006
Ethyl acetate	ND	0.250		ppbV	1	8/28/2006
Ethylbenzene	1.28	0.150		ppbV	1	8/28/2006

Qualifiers:

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Е Value above quantitation range
- Analyte detected at or below quantitation limits J

Date: 30-Aug-06

Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

Lab Order: C0608021 **Project:** Waite Road

Lab ID: C0608021-004A

Date: 30-Aug-06

Client Sample ID: WR-SV-04

Tag Number: 332,155 **Collection Date:** 8/22/2006

Matrix: AIR

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 TCE BY M	ETHOD TO15	TO-15			Analyst: RJP
Freon 11	0.390	0.150	ppbV	1	8/28/2006
Freon 113	ND	0.150	ppbV	1	8/28/2006
Freon 114	ND	0.150	ppbV	1	8/28/2006
Freon 12	ND	0.150	ppbV	1	8/28/2006
Heptane	ND	0.150	ppbV	1	8/28/2006
Hexachloro-1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
Hexane	ND	0.150	ppbV	1	8/28/2006
Isopropyl alcohol	ND	0.150	ppbV	1	8/28/2006
m&p-Xylene	2.12	0.300	ppbV	1	8/28/2006
Methyl Butyl Ketone	1.31	0.300	ppbV	1	8/28/2006
Methyl Ethyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Isobutyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl tert-butyl ether	ND	0.150	ppbV	1	8/28/2006
Methylene chloride	ND	0.150	ppbV	1	8/28/2006
o-Xylene	0.730	0.150	ppbV	1	8/28/2006
Propylene	ND	0.150	ppbV	1	8/28/2006
Styrene	ND	0.150	ppbV	1	8/28/2006
Tetrachloroethylene	ND	0.150	ppbV	1	8/28/2006
Tetrahydrofuran	ND	0.150	ppbV	1	8/28/2006
Toluene	2.14	0.150	ppbV	1	8/28/2006
trans-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
trans-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Trichloroethene	0.170	0.0400	ppbV	1	8/28/2006
Vinyl acetate	ND	0.150	ppbV	1	8/28/2006
Vinyl Bromide	ND	0.150	ppbV	1	8/28/2006
Vinyl chloride	ND	0.150	ppbV	1	8/28/2006
Surr: Bromofluorobenzene	104	70-130	%REC	1	8/28/2006

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

Lab Order: C0608021

Project: Waite Road

Lab ID: C0608021-005A

Date: 30-Aug-06

Client Sample ID: WR-SV-05 Tag Number: 222,144

Collection Date: 8/22/2006

Matrix: AIR

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Vacuume Reading "Hg	-3		"Hg		8/22/2006
1UG/M3 W/ 0.25UG/M3 TCE BY N	IETHOD TO15	TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2,2-Tetrachloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trimethylbenzene	0.630	0.150	ppbV	1	8/28/2006
1,2-Dibromoethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloropropane	ND	0.150	ppbV	1	8/28/2006
1,3,5-Trimethylbenzene	0.610	0.150	ppbV	1	8/28/2006
1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
1,3-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dioxane	ND	0.300	ppbV	1	8/28/2006
2,2,4-trimethylpentane	0.390	0.150	ppbV	1	8/28/2006
4-ethyltoluene	0.180	0.150	ppbV	1	8/28/2006
Acetone	ND	0.300	ppbV	1	8/28/2006
Allyl chloride	ND	0.150	ppbV	1	8/28/2006
Benzene	0.520	0.150	ppbV	1	8/28/2006
Benzyl chloride	ND	0.150	ppbV	1	8/28/2006
Bromodichloromethane	ND	0.150	ppbV	1	8/28/2006
Bromoform	ND	0.150	ppbV	1	8/28/2006
Bromomethane	ND	0.150	ppbV	1	8/28/2006
Carbon disulfide	0.810	0.150	ppbV	1	8/28/2006
Carbon tetrachloride	0.13	0.150 J	ppbV	1	8/28/2006
Chlorobenzene	ND	0.150	ppbV	1	8/28/2006
Chloroethane	ND	0.150	ppbV	1	8/28/2006
Chloroform	0.10	0.150 J	ppbV	1	8/28/2006
Chloromethane	ND	0.150	ppbV	1	8/28/2006
cis-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
cis-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Cyclohexane	0.710	0.150	ppbV	1	8/28/2006
Dibromochloromethane	ND	0.150	ppbV	1	8/28/2006
Ethyl acetate	ND	0.250	ppbV	1	8/28/2006
Ethylbenzene	0.430	0.150	ppbV	1	8/28/2006

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Lab Order:

Project:

CLIENT: Ecology and Environment, Inc.

Waite Road

Client Sample ID: WR-SV-05 C0608021 **Tag Number:** 222,144 Collection Date: 8/22/2006

Matrix: AIR Lab ID: C0608021-005A

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 TCE BY M	ETHOD TO15	TO-15			Analyst: RJF
Freon 11	0.660	0.150	ppbV	1	8/28/2006
Freon 113	0.11	0.150	l ppbV	1	8/28/2006
Freon 114	ND	0.150	ppbV	1	8/28/2006
Freon 12	ND	0.150	ppbV	1	8/28/2006
Heptane	0.560	0.150	ppbV	1	8/28/2006
Hexachloro-1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
Hexane	2.08	0.150	ppbV	1	8/28/2006
Isopropyl alcohol	ND	0.150	ppbV	1	8/28/2006
m&p-Xylene	0.830	0.300	ppbV	1	8/28/2006
Methyl Butyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Ethyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Isobutyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl tert-butyl ether	ND	0.150	ppbV	1	8/28/2006
Methylene chloride	ND	0.150	ppbV	1	8/28/2006
o-Xylene	0.280	0.150	ppbV	1	8/28/2006
Propylene	ND	0.150	ppbV	1	8/28/2006
Styrene	ND	0.150	ppbV	1	8/28/2006
Tetrachloroethylene	ND	0.150	ppbV	1	8/28/2006
Tetrahydrofuran	ND	0.150	ppbV	1	8/28/2006
Toluene	1.44	0.150	ppbV	1	8/28/2006
trans-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
trans-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Trichloroethene	0.190	0.0400	ppbV	1	8/28/2006
Vinyl acetate	ND	0.150	ppbV	1	8/28/2006
Vinyl Bromide	ND	0.150	ppbV	1	8/28/2006
Vinyl chloride	ND	0.150	ppbV	1	8/28/2006
Surr: Bromofluorobenzene	109	70-130	%REC	1	8/28/2006

Qualifiers:

Date: 30-Aug-06

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Е Value above quantitation range

Analyte detected at or below quantitation limits J

Not Detected at the Reporting Limit

Lab ID:

CLIENT: Ecology and Environment, Inc.

Client Sample ID: WR-SV-06 C0608021 **Tag Number:** 334,304 Lab Order: Collection Date: 8/22/2006 **Project:** Waite Road Matrix: AIR C0608021-006A

Analyses Result Limit Qual Units DF **Date Analyzed FIELD PARAMETERS FLD** Analyst: Vacuume Reading "Hg -3 "Hg 8/22/2006 1UG/M3 W/ 0.25UG/M3 TCE BY METHOD TO15 TO-15 Analyst: RJP 1,1,1-Trichloroethane ppbV 8/28/2006 ND 0.150 1 1,1,2,2-Tetrachloroethane ND 0.150 Vdqq 1 8/28/2006 ND ppbV 1 1,1,2-Trichloroethane 0.150 8/28/2006 1,1-Dichloroethane 1.09 0.150 ppbV 1 8/28/2006 ND 1,1-Dichloroethene 0.150 ppbV 1 8/28/2006 1,2,4-Trichlorobenzene ND 0.150 ppbV 1 8/28/2006 1,2,4-Trimethylbenzene 0.420 0.150 ppbV 1 8/28/2006 1,2-Dibromoethane ND 0.150 ppbV 1 8/28/2006 1,2-Dichlorobenzene ND 0.150 ppbV 8/28/2006 1 ND 1 1,2-Dichloroethane 0.150 ppbV 8/28/2006 1,2-Dichloropropane ND 0.150 ppbV 1 8/28/2006 0.600 1,3,5-Trimethylbenzene 0.150 ppbV 1 8/28/2006 ppbV 1,3-butadiene ND 0.150 1 8/28/2006 ND 1,3-Dichlorobenzene 0.150 ppbV 1 8/28/2006 1,4-Dichlorobenzene ND 0.150 ppbV 1 8/28/2006 1,4-Dioxane ND 0.300 ppbV 1 8/28/2006 2,2,4-trimethylpentane ND 0.150 1 ppbV 8/28/2006 4-ethyltoluene 0.11 0.150 ppbV 1 8/28/2006 Acetone ND 0.300 ppbV 1 8/28/2006 Allyl chloride ND 0.150 ppbV 1 8/28/2006 ppbV Benzene 0.13 0.150 1 8/28/2006 Benzyl chloride ND 0.150 ppbV 1 8/28/2006 Bromodichloromethane ND 8/28/2006 0.150 ppbV 1 **Bromoform** ND 0.150 ppbV 8/28/2006 1 Bromomethane ND 0.150 ppbV 1 8/28/2006 Carbon disulfide 0.190 0.150 ppbV 8/28/2006 1 Carbon tetrachloride 0.13 0.150 J ppbV 8/28/2006 1 Chlorobenzene ND 0.150 8/28/2006 ppbV 1 ND Chloroethane 0.150 8/28/2006 ppbV 1 Chloroform ND 0.150 ppbV 1 8/28/2006 ND 0.150 8/28/2006 Chloromethane ppbV 1 cis-1,2-Dichloroethene 0.10 0.150 ppbV 1 8/28/2006 cis-1,3-Dichloropropene ND 0.150 ppbV 1 8/28/2006 Cyclohexane ND 0.150 8/28/2006 ppbV 1 Dibromochloromethane ND 0.150 ppbV 8/28/2006 1 Ethyl acetate ND 0.250 8/28/2006 ppbV 1 Ethylbenzene 0.180 0.150 ppbV 8/28/2006

Qualifiers:

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Е Value above quantitation range
- Analyte detected at or below quantitation limits

Date: 30-Aug-06

ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

Client Sample ID: WR-SV-06 C0608021 Lab Order: Collection Date: 8/22/2006 **Project:** Waite Road

Matrix: AIR Lab ID: C0608021-006A

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 TCE BY M	ETHOD TO15	TO-15			Analyst: RJF
Freon 11	0.330	0.150	ppbV	1	8/28/2006
Freon 113	0.12	0.150	J ppbV	1	8/28/2006
Freon 114	ND	0.150	ppbV	1	8/28/2006
Freon 12	ND	0.150	ppbV	1	8/28/2006
Heptane	ND	0.150	ppbV	1	8/28/2006
Hexachloro-1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
Hexane	ND	0.150	ppbV	1	8/28/2006
Isopropyl alcohol	ND	0.150	ppbV	1	8/28/2006
m&p-Xylene	0.410	0.300	ppbV	1	8/28/2006
Methyl Butyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Ethyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Isobutyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl tert-butyl ether	ND	0.150	ppbV	1	8/28/2006
Methylene chloride	ND	0.150	ppbV	1	8/28/2006
o-Xylene	0.160	0.150	ppbV	1	8/28/2006
Propylene	ND	0.150	ppbV	1	8/28/2006
Styrene	ND	0.150	ppbV	1	8/28/2006
Tetrachloroethylene	ND	0.150	ppbV	1	8/28/2006
Tetrahydrofuran	ND	0.150	ppbV	1	8/28/2006
Toluene	0.740	0.150	ppbV	1	8/28/2006
trans-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
trans-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Trichloroethene	0.180	0.0400	ppbV	1	8/28/2006
Vinyl acetate	ND	0.150	ppbV	1	8/28/2006
Vinyl Bromide	ND	0.150	ppbV	1	8/28/2006
Vinyl chloride	ND	0.150	ppbV	1	8/28/2006
Surr: Bromofluorobenzene	102	70-130	%REC	1	8/28/2006

Qualifiers:

Date: 30-Aug-06

Tag Number: 334,304

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Е Value above quantitation range

Analyte detected at or below quantitation limits J

Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

C0608021 Waite Road

Lab ID: C0608021-007A

Lab Order:

Project:

Date: 30-Aug-06

Client Sample ID: WR-SV-07 Tag Number: 410,41

Collection Date: 8/22/2006

Matrix: AIR

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Vacuume Reading "Hg	-5		"Hg		8/22/2006
1UG/M3 W/ 0.25UG/M3 TCE BY MI	ETHOD TO15	TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2,2-Tetrachloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trimethylbenzene	4.40	0.750	ppbV	5	8/28/2006
1,2-Dibromoethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichlorobenzene	0.11	0.150 J	ppbV	1	8/28/2006
1,2-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloropropane	ND	0.150	ppbV	1	8/28/2006
1,3,5-Trimethylbenzene	1.07	0.150	ppbV	1	8/28/2006
1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
1,3-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dioxane	ND	0.300	ppbV	1	8/28/2006
2,2,4-trimethylpentane	12.4	0.750	ppbV	5	8/28/2006
4-ethyltoluene	0.320	0.150	ppbV	1	8/28/2006
Acetone	ND	0.300	ppbV	1	8/28/2006
Allyl chloride	ND	0.150	ppbV	1	8/28/2006
Benzene	0.770	0.150	ppbV	1	8/28/2006
Benzyl chloride	ND	0.150	ppbV	1	8/28/2006
Bromodichloromethane	ND	0.150	ppbV	1	8/28/2006
Bromoform	ND	0.150	ppbV	1	8/28/2006
Bromomethane	ND	0.150	ppbV	1	8/28/2006
Carbon disulfide	0.170	0.150	ppbV	1	8/28/2006
Carbon tetrachloride	0.12	0.150 J	ppbV	1	8/28/2006
Chlorobenzene	ND	0.150	ppbV	1	8/28/2006
Chloroethane	ND	0.150	ppbV	1	8/28/2006
Chloroform	ND	0.150	ppbV	1	8/28/2006
Chloromethane	ND	0.150	ppbV	1	8/28/2006
cis-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
cis-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Cyclohexane	ND	0.150	ppbV	1	8/28/2006
Dibromochloromethane	ND	0.150	ppbV	1	8/28/2006
Ethyl acetate	ND	0.250	ppbV	1	8/28/2006
Ethylbenzene	0.350	0.150	ppbV	1	8/28/2006

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

C0608021

Project: Waite Road

Lab Order:

Lab ID: C0608021-007A

Date: 30-Aug-06

Client Sample ID: WR-SV-07 Tag Number: 410,41

Collection Date: 8/22/2006

Matrix: AIR

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 TCE BY METHOD TO15		TO-15			Analyst: RJF
Freon 11	0.300	0.150	ppbV	1	8/28/2006
Freon 113	0.14	0.150	l ppbV	1	8/28/2006
Freon 114	ND	0.150	ppbV	1	8/28/2006
Freon 12	ND	0.150	ppbV	1	8/28/2006
Heptane	8.00	0.750	ppbV	5	8/28/2006
Hexachloro-1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
Hexane	6.95	0.750	ppbV	5	8/28/2006
Isopropyl alcohol	ND	0.150	ppbV	1	8/28/2006
m&p-Xylene	0.630	0.300	ppbV	1	8/28/2006
Methyl Butyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Ethyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Isobutyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl tert-butyl ether	ND	0.150	ppbV	1	8/28/2006
Methylene chloride	ND	0.150	ppbV	1	8/28/2006
o-Xylene	0.260	0.150	ppbV	1	8/28/2006
Propylene	ND	0.150	ppbV	1	8/28/2006
Styrene	ND	0.150	ppbV	1	8/28/2006
Tetrachloroethylene	ND	0.150	ppbV	1	8/28/2006
Tetrahydrofuran	ND	0.150	ppbV	1	8/28/2006
Toluene	0.800	0.150	ppbV	1	8/28/2006
trans-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
trans-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Trichloroethene	0.160	0.0400	ppbV	1	8/28/2006
Vinyl acetate	ND	0.150	ppbV	1	8/28/2006
Vinyl Bromide	ND	0.150	ppbV	1	8/28/2006
Vinyl chloride	ND	0.150	ppbV	1	8/28/2006
Surr: Bromofluorobenzene	108	70-130	%REC	1	8/28/2006

Oua	I:£		
Qua		ers	i

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

Lab Order: C0608021 **Project:** Waite Road

Lab ID: C0608021-008A

Date: 30-Aug-06

Client Sample ID: WR-SV-08 Tag Number: 358,301

Collection Date: 8/22/2006

Matrix: AIR

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed
FIELD PARAMETERS	FLD			Analyst:	
Vacuume Reading "Hg	-4		"Hg		8/22/2006
1UG/M3 W/ 0.25UG/M3 TCE BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2,2-Tetrachloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethane	64.7	0.150	ppbV	1	8/28/2006
1,1-Dichloroethane	53.0	1.50	ppbV	10	8/28/2006
1,1-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trimethylbenzene	6.35	0.150	ppbV	1	8/28/2006
1,2,4-Trimethylbenzene	3.20	1.50	ppbV	10	8/28/2006
1,2-Dibromoethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloropropane	ND	0.150	ppbV	1	8/28/2006
1,3,5-Trimethylbenzene	4.30	0.150	ppbV	1	8/28/2006
1,3,5-Trimethylbenzene	2.20	1.50	ppbV	10	8/28/2006
1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
1,3-Dichlorobenzene	3.60	1.50	ppbV	10	8/28/2006
1,3-Dichlorobenzene	8.25	0.150	ppbV	1	8/28/2006
1,4-Dichlorobenzene	7.01	0.150	ppbV	1	8/28/2006
1,4-Dichlorobenzene	3.30	1.50	ppbV	10	8/28/2006
1,4-Dioxane	ND	0.300	ppbV	1	8/28/2006
2,2,4-trimethylpentane	55.0	1.50	ppbV	10	8/28/2006
2,2,4-trimethylpentane	56.0	0.150	ppbV	1	8/28/2006
4-ethyltoluene	1.60	1.50	ppbV	10	8/28/2006
4-ethyltoluene	3.92	0.150	ppbV	1	8/28/2006
Acetone	ND	0.300	ppbV	1	8/28/2006
Allyl chloride	ND	0.150	ppbV	1	8/28/2006
Benzene	6.70	1.50	ppbV	10	8/28/2006
Benzene	10.0	0.150	ppbV	1	8/28/2006
Benzyl chloride	ND	0.150	ppbV	1	8/28/2006
Bromodichloromethane	ND ND	0.150	ppbV	1	8/28/2006
Bromoform	ND ND	0.150	yddd	1	8/28/2006
Bromomethane	ND ND	0.150	ppbV	1	8/28/2006
Carbon disulfide	6.50	1.50		10	8/28/2006
Carbon disulfide	6.56	0.150	ppbV	10	8/28/2006
	6.56 ND		ppbV	1 1	
Carbon tetrachloride Chlorobenzene	ND ND	0.150 0.150	ppbV ppbV	1	8/28/2006 8/28/2006

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

Lab Order: C0608021 Waite Road

C0608021-008A Lab ID:

Project:

Date: 30-Aug-06

Client Sample ID: WR-SV-08 **Tag Number:** 358,301

Collection Date: 8/22/2006

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
IUG/M3 W/ 0.25UG/M3 TCE BY N	METHOD TO15	TO-15			Analyst: RJ l
Chloroethane	ND	0.150	ppbV	1	8/28/2006
Chloroform	ND	0.150	ppbV	1	8/28/2006
Chloromethane	ND	0.150	ppbV	1	8/28/2006
cis-1,2-Dichloroethene	10.6	0.150	ppbV	1	8/28/2006
cis-1,2-Dichloroethene	9.60	1.50	ppbV	10	8/28/2006
cis-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Cyclohexane	ND	0.150	ppbV	1	8/28/2006
Dibromochloromethane	ND	0.150	ppbV	1	8/28/2006
Ethyl acetate	ND	0.250	ppbV	1	8/28/2006
Ethylbenzene	173	0.150	ppbV	1	8/28/2006
Ethylbenzene	91.8	1.50	ppbV	10	8/28/2006
Freon 11	1.09	0.150	ppbV	1	8/28/2006
Freon 113	ND	0.150	ppbV	1	8/28/2006
Freon 114	ND	0.150	ppbV	1	8/28/2006
Freon 12	ND	0.150	ppbV	1	8/28/2006
Heptane	ND	0.150	ppbV	1	8/28/2006
Hexachloro-1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
Hexane	ND	0.150	ppbV	1	8/28/2006
Isopropyl alcohol	ND	0.150	ppbV	1	8/28/2006
m&p-Xylene	254	0.300	ppbV	1	8/28/2006
m&p-Xylene	126	3.00	ppbV	10	8/28/2006
Methyl Butyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Ethyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Isobutyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl tert-butyl ether	ND	0.150	ppbV	1	8/28/2006
Methylene chloride	ND	0.150	ppbV	1	8/28/2006
o-Xylene	23.4	0.150	ppbV	1	8/28/2006
o-Xylene	11.8	1.50	ppbV	10	8/28/2006
Propylene	ND	0.150	ppbV	1	8/28/2006
Styrene	ND	0.150	ppbV	1	8/28/2006
Tetrachloroethylene	ND	0.150	ppbV	1	8/28/2006
Tetrahydrofuran	ND	0.150	ppbV	1	8/28/2006
Toluene	66.3	0.150	ppbV	1	8/28/2006
Toluene	39.9	1.50	ppbV	10	8/28/2006
trans-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
trans-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Trichloroethene	11.4	0.0400	ppbV	1	8/28/2006
Trichloroethene	7.70	0.400	ppbV	10	8/28/2006
Vinyl acetate	ND	0.150	ppbV	1	8/28/2006
Vinyl Bromide	ND	0.150	ppbV	1	8/28/2006

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Е Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

Client Sample ID: WR-SV-08 C0608021 Lab Order: **Tag Number:** 358,301 Collection Date: 8/22/2006 **Project:** Waite Road

Matrix: AIR Lab ID: C0608021-008A

Analyses	Result	Limit	Qua	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 TCE BY METHOD TO15		TO-15				Analyst: RJP
Vinyl chloride	ND	0.150		ppbV	1	8/28/2006
Surr: Bromofluorobenzene	208	70-130	S	%REC	1	8/28/2006
Surr: Bromofluorobenzene	94.0	70-130		%REC	10	8/28/2006
Surr: Bromofluorobenzene	95.0	70-130		%REC	120	8/28/2006

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Е Value above quantitation range
- Analyte detected at or below quantitation limits J

Date: 30-Aug-06

Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc. Client Sample ID: WR-SV-07/D

 Lab Order:
 C0608021
 Tag Number:
 96,121

 Project:
 Waite Road
 Collection Date:
 8/22/2006

 Lab ID:
 C0608021-009A
 Matrix:
 AIR

Analyses Result Limit Qual Units DF **Date Analyzed FIELD PARAMETERS FLD** Analyst: Vacuume Reading "Hg -4 "Hg 8/22/2006 1UG/M3 W/ 0.25UG/M3 TCE BY METHOD TO15 TO-15 Analyst: RJP 1,1,1-Trichloroethane ppbV 8/28/2006 ND 0.150 1 1,1,2,2-Tetrachloroethane ND 0.150 Vdqq 1 8/28/2006 ND ppbV 1 1,1,2-Trichloroethane 0.150 8/28/2006 1,1-Dichloroethane ND 0.150 ppbV 1 8/28/2006 ND 1,1-Dichloroethene 0.150 ppbV 1 8/28/2006 1,2,4-Trichlorobenzene ND 0.150 ppbV 1 8/28/2006 1,2,4-Trimethylbenzene 0.930 0.150 ppbV 1 8/28/2006 1,2-Dibromoethane ND 0.150 ppbV 1 8/28/2006 1,2-Dichlorobenzene ND 0.150 ppbV 8/28/2006 1 ND 1 1,2-Dichloroethane 0.150 ppbV 8/28/2006 1,2-Dichloropropane ND 0.150 ppbV 1 8/28/2006 0.930 1,3,5-Trimethylbenzene 0.150 ppbV 1 8/28/2006 ppbV 1,3-butadiene ND 0.150 1 8/28/2006 ND 1,3-Dichlorobenzene 0.150 ppbV 8/28/2006 1,4-Dichlorobenzene ND 0.150 ppbV 1 8/28/2006 1,4-Dioxane ND 0.300 ppbV 1 8/28/2006 2,2,4-trimethylpentane ND 0.150 1 ppbV 8/28/2006 4-ethyltoluene 0.160 0.150 ppbV 1 8/28/2006 Acetone ND 0.300 ppbV 1 8/28/2006 Allyl chloride ND 0.150 ppbV 8/28/2006 1 Benzene 0.12 0.150 ppbV 1 8/28/2006 Benzyl chloride ND 0.150 ppbV 1 8/28/2006 Bromodichloromethane ND 8/28/2006 0.150 ppbV 1 **Bromoform** ND 0.150 ppbV 8/28/2006 1 Bromomethane ND 0.150 ppbV 1 8/28/2006 Carbon disulfide 0.180 0.150 ppbV 8/28/2006 1 Carbon tetrachloride 0.150 0.150 ppbV 8/28/2006 1 Chlorobenzene ND 8/28/2006 0.150 ppbV 1 ND Chloroethane 0.150 ppbV 8/28/2006 1 Chloroform ND 0.150 ppbV 1 8/28/2006 ND 8/28/2006 Chloromethane 0.150 ppbV 1 cis-1,2-Dichloroethene ND 0.150 ppbV 1 8/28/2006 ND cis-1,3-Dichloropropene 0.150 ppbV 1 8/28/2006 Cyclohexane ND 0.150 8/28/2006 ppbV 1 Dibromochloromethane ND 0.150 ppbV 8/28/2006 1 Ethyl acetate ND 0.250 ppbV 8/28/2006 1 Ethylbenzene 0.200 0.150 ppbV 8/28/2006

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $JN \quad \ \, Non-routine \ analyte. \ Quantitation \ estimated.$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits

Date: 30-Aug-06

ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc. Client Sample ID: WR-SV-07/D

 Lab Order:
 C0608021
 Tag Number:
 96,121

 Project:
 Waite Road
 Collection Date:
 8/22/2006

 Lab ID:
 C0608021-009A
 Matrix:
 AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 TCE BY M	METHOD TO15	то)-15			Analyst: RJP
Freon 11	0.400	0.150		ppbV	1	8/28/2006
Freon 113	0.13	0.150	J	ppbV	1	8/28/2006
Freon 114	ND	0.150		ppbV	1	8/28/2006
Freon 12	0.740	0.150		ppbV	1	8/28/2006
Heptane	ND	0.150		ppbV	1	8/28/2006
Hexachloro-1,3-butadiene	ND	0.150		ppbV	1	8/28/2006
Hexane	ND	0.150		ppbV	1	8/28/2006
Isopropyl alcohol	ND	0.150		ppbV	1	8/28/2006
m&p-Xylene	0.500	0.300		ppbV	1	8/28/2006
Methyl Butyl Ketone	ND	0.300		ppbV	1	8/28/2006
Methyl Ethyl Ketone	ND	0.300		ppbV	1	8/28/2006
Methyl Isobutyl Ketone	ND	0.300		ppbV	1	8/28/2006
Methyl tert-butyl ether	ND	0.150		ppbV	1	8/28/2006
Methylene chloride	0.14	0.150	J	ppbV	1	8/28/2006
o-Xylene	0.180	0.150		ppbV	1	8/28/2006
Propylene	ND	0.150		ppbV	1	8/28/2006
Styrene	ND	0.150		ppbV	1	8/28/2006
Tetrachloroethylene	0.12	0.150	J	ppbV	1	8/28/2006
Tetrahydrofuran	ND	0.150		ppbV	1	8/28/2006
Toluene	0.980	0.150		ppbV	1	8/28/2006
trans-1,2-Dichloroethene	ND	0.150		ppbV	1	8/28/2006
trans-1,3-Dichloropropene	ND	0.150		ppbV	1	8/28/2006
Trichloroethene	0.360	0.0400		ppbV	1	8/28/2006
Vinyl acetate	ND	0.150		ppbV	1	8/28/2006
Vinyl Bromide	ND	0.150		ppbV	1	8/28/2006
Vinyl chloride	ND	0.150		ppbV	1	8/28/2006
Surr: Bromofluorobenzene	98.0	70-130		%REC	1	8/28/2006

Qualifiers:

Date: 30-Aug-06

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

C0608021

Project: Waite Road

Lab Order:

Lab ID: C0608021-010A

Date: 30-Aug-06

Client Sample ID: WR-OA

Tag Number: 237,146 **Collection Date:** 8/22/2006

Matrix: AIR

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Vacuume Reading "Hg	-3		"Hg		8/22/2006
1UG/M3 W/ 0.25UG/M3 TCE BY N	METHOD TO15	TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2,2-Tetrachloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trimethylbenzene	0.790	0.150	ppbV	1	8/28/2006
1,2-Dibromoethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloropropane	ND	0.150	ppbV	1	8/28/2006
1,3,5-Trimethylbenzene	0.780	0.150	ppbV	1	8/28/2006
1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
1,3-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dioxane	ND	0.300	ppbV	1	8/28/2006
2,2,4-trimethylpentane	ND	0.150	ppbV	1	8/28/2006
4-ethyltoluene	0.150	0.150	ppbV	1	8/28/2006
Acetone	ND	0.300	ppbV	1	8/28/2006
Allyl chloride	ND	0.150	ppbV	1	8/28/2006
Benzene	0.12	0.150 J	ppbV	1	8/28/2006
Benzyl chloride	ND	0.150	ppbV	1	8/28/2006
Bromodichloromethane	ND	0.150	ppbV	1	8/28/2006
Bromoform	ND	0.150	ppbV	1	8/28/2006
Bromomethane	ND	0.150	ppbV	1	8/28/2006
Carbon disulfide	0.170	0.150	ppbV	1	8/28/2006
Carbon tetrachloride	0.150	0.150	ppbV	1	8/28/2006
Chlorobenzene	ND	0.150	ppbV	1	8/28/2006
Chloroethane	ND	0.150	ppbV	1	8/28/2006
Chloroform	ND	0.150	ppbV	1	8/28/2006
Chloromethane	ND	0.150	ppbV	1	8/28/2006
cis-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
cis-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Cyclohexane	ND	0.150	ppbV	1	8/28/2006
Dibromochloromethane	ND	0.150	ppbV	1	8/28/2006
Ethyl acetate	ND	0.250	ppbV	1	8/28/2006
Ethylbenzene	0.150	0.150	ppbV	1	8/28/2006

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc.

C0608021

C0608021-010A

Project: Waite Road

Lab Order:

Lab ID:

Date: 30-Aug-06

Client Sample ID: WR-OA **Tag Number:** 237,146

Collection Date: 8/22/2006

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 TCE BY M	ETHOD TO15	то)-15			Analyst: RJF
Freon 11	0.380	0.150		ppbV	1	8/28/2006
Freon 113	0.13	0.150	J	ppbV	1	8/28/2006
Freon 114	ND	0.150		ppbV	1	8/28/2006
Freon 12	0.770	0.150		ppbV	1	8/28/2006
Heptane	ND	0.150		ppbV	1	8/28/2006
Hexachloro-1,3-butadiene	ND	0.150		ppbV	1	8/28/2006
Hexane	ND	0.150		ppbV	1	8/28/2006
Isopropyl alcohol	ND	0.150		ppbV	1	8/28/2006
m&p-Xylene	0.450	0.300		ppbV	1	8/28/2006
Methyl Butyl Ketone	ND	0.300		ppbV	1	8/28/2006
Methyl Ethyl Ketone	ND	0.300		ppbV	1	8/28/2006
Methyl Isobutyl Ketone	ND	0.300		ppbV	1	8/28/2006
Methyl tert-butyl ether	ND	0.150		ppbV	1	8/28/2006
Methylene chloride	0.12	0.150	J	ppbV	1	8/28/2006
o-Xylene	0.160	0.150		ppbV	1	8/28/2006
Propylene	ND	0.150		ppbV	1	8/28/2006
Styrene	0.170	0.150		ppbV	1	8/28/2006
Tetrachloroethylene	0.200	0.150		ppbV	1	8/28/2006
Tetrahydrofuran	ND	0.150		ppbV	1	8/28/2006
Toluene	0.980	0.150		ppbV	1	8/28/2006
trans-1,2-Dichloroethene	ND	0.150		ppbV	1	8/28/2006
trans-1,3-Dichloropropene	ND	0.150		ppbV	1	8/28/2006
Trichloroethene	0.270	0.0400		ppbV	1	8/28/2006
Vinyl acetate	ND	0.150		ppbV	1	8/28/2006
Vinyl Bromide	ND	0.150		ppbV	1	8/28/2006
Vinyl chloride	ND	0.150		ppbV	1	8/28/2006
Surr: Bromofluorobenzene	94.0	70-130		%REC	1	8/28/2006

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc. Client Sample ID: WR-TB-SV

Lab Order:C0608021Tag Number: 226Project:Waite RoadCollection Date:

Lab ID: C0608021-011A **Matrix:** AIR

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Vacuume Reading "Hg	NA		"Hg		
1UG/M3 W/ 0.25UG/M3 TCE BY N	IETHOD TO15	TO-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2,2-Tetrachloroethane	ND	0.150	ppbV	1	8/28/2006
1,1,2-Trichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,1-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2,4-Trimethylbenzene	ND	0.150	ppbV	1	8/28/2006
1,2-Dibromoethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloroethane	ND	0.150	ppbV	1	8/28/2006
1,2-Dichloropropane	ND	0.150	ppbV	1	8/28/2006
1,3,5-Trimethylbenzene	ND	0.150	ppbV	1	8/28/2006
1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
1,3-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dichlorobenzene	ND	0.150	ppbV	1	8/28/2006
1,4-Dioxane	ND	0.300	ppbV	1	8/28/2006
2,2,4-trimethylpentane	ND	0.150	ppbV	1	8/28/2006
4-ethyltoluene	ND	0.150	ppbV	1	8/28/2006
Acetone	ND	0.300	ppbV	1	8/28/2006
Allyl chloride	ND	0.150	ppbV	1	8/28/2006
Benzene	ND	0.150	ppbV	1	8/28/2006
Benzyl chloride	ND	0.150	ppbV	1	8/28/2006
Bromodichloromethane	ND	0.150	ppbV	1	8/28/2006
Bromoform	ND	0.150	ppbV	1	8/28/2006
Bromomethane	ND	0.150	ppbV	1	8/28/2006
Carbon disulfide	ND	0.150	ppbV	1	8/28/2006
Carbon tetrachloride	ND	0.150	ppbV	1	8/28/2006
Chlorobenzene	ND	0.150	ppbV	1	8/28/2006
Chloroethane	ND	0.150	ppbV	1	8/28/2006
Chloroform	ND	0.150	ppbV	1	8/28/2006
Chloromethane	ND	0.150	ppbV	1	8/28/2006
cis-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
cis-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Cyclohexane	ND	0.150	ppbV	1	8/28/2006
Dibromochloromethane	ND	0.150	ppbV	1	8/28/2006
Ethyl acetate	ND	0.250	ppbV	1	8/28/2006
Ethylbenzene	ND	0.150	ppbV	1	8/28/2006

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $JN \quad \ Non-routine \ analyte. \ Quantitation \ estimated.$
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits

Date: 30-Aug-06

ND Not Detected at the Reporting Limit

CLIENT: Ecology and Environment, Inc. Client Sample ID: WR-TB-SV

Lab Order: C0608021 Tag Number: 226
Project: Waite Road Collection Date:

Lab ID: C0608021-011A **Matrix:** AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 TCE BY M	ETHOD TO15	TO-15			Analyst: RJP
Freon 11	ND	0.150	ppbV	1	8/28/2006
Freon 113	ND	0.150	ppbV	1	8/28/2006
Freon 114	ND	0.150	ppbV	1	8/28/2006
Freon 12	ND	0.150	ppbV	1	8/28/2006
Heptane	ND	0.150	ppbV	1	8/28/2006
Hexachloro-1,3-butadiene	ND	0.150	ppbV	1	8/28/2006
Hexane	ND	0.150	ppbV	1	8/28/2006
Isopropyl alcohol	ND	0.150	ppbV	1	8/28/2006
m&p-Xylene	ND	0.300	ppbV	1	8/28/2006
Methyl Butyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Ethyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl Isobutyl Ketone	ND	0.300	ppbV	1	8/28/2006
Methyl tert-butyl ether	ND	0.150	ppbV	1	8/28/2006
Methylene chloride	ND	0.150	ppbV	1	8/28/2006
o-Xylene	ND	0.150	ppbV	1	8/28/2006
Propylene	ND	0.150	ppbV	1	8/28/2006
Styrene	ND	0.150	ppbV	1	8/28/2006
Tetrachloroethylene	ND	0.150	ppbV	1	8/28/2006
Tetrahydrofuran	ND	0.150	ppbV	1	8/28/2006
Toluene	ND	0.150	ppbV	1	8/28/2006
trans-1,2-Dichloroethene	ND	0.150	ppbV	1	8/28/2006
trans-1,3-Dichloropropene	ND	0.150	ppbV	1	8/28/2006
Trichloroethene	ND	0.0400	ppbV	1	8/28/2006
Vinyl acetate	ND	0.150	ppbV	1	8/28/2006
Vinyl Bromide	ND	0.150	ppbV	1	8/28/2006
Vinyl chloride	ND	0.150	ppbV	1	8/28/2006
Surr: Bromofluorobenzene	103	70-130	%REC	1	8/28/2006

Qualifiers:

Date: 30-Aug-06

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Mitkem DUSR

Data Usability Summary Report	Project: Waite Road
Laboratory: Mitkem	LAB SDG ID: E1282
Date Completed: 9/20/2006	Data Validation Chemist: B. Krajewski

The samples and analytical methods included in this sample delivery group (SDG) are documented in Attachment 1 Table 1 Sample Summary and Table 2 Tests and Number of Samples. The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) Guidance for the Development of Data Usability Summary Reports (DUSRs), June 1999. The data were processed using Automated Data Review (ADR) electronic data deliverables (EDDs) for sample results and laboratory quality control (QC) samples. ADR software is programmed to verify the completeness and compliance of electronic data and automatically assign data qualifiers. Data for instrument QC files including calibration and tuning were not reviewed with ADR and data qualifiers were added manually. Data qualifiers generated during the review process are summarized in Attachment 1 Table 3 Summary of Data Validation Qualifiers. A detailed listing of the qualified data is provided in Attachment 2 Sample Qualification Report. All data qualification was reviewed and approved by the qualified Data Validation Chemist listed in the heading of this DUSR.

Specific criteria for reporting and QC limits were obtained from the ADR library developed for the project and documented in the project Quality Assurance Project Plan (QAPP). Compliance with the project QC criteria is documented on ADR outlier reports provided in Attachment 2. The checklist and tables summarize the data review process and any items not reviewed by ADR. Any major or minor concerns affected data usability also are summarized listed below. The representativeness and comparability of the data are evaluated to determine how data usability may be impacted.

Completeness Review - General Sample and Batc	h Information - See Attachment 1
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	No – COC and Work Plan list Method 8021 as analysis for soil volatiles. Lab used Method 8260B. (Method 8260B listed in QAPP). Compound list reported differs from ADR library and QAPP.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	No – Samples received at 1°C.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples. Trip Blank - Every cooler with VOCs waters only. Equipment Blank - 1/ set of samples per day.	Yes – Trip blank received. Field duplicate and equipment blank not included in SDG.
Laboratory QC frequency correct? Method blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes
All forms and raw data complete?	Yes
Case narrative present and complete?	Yes
Target analyte list and reporting limits match QAPP?	No – Compound lists reported do not match ADR library and QAPP.
Were any samples re-analyzed or diluted? For any sample re-analysis and dilutions ensure that only one result per sample and analyte is flagged as reportable.	Yes – Sample WR-SV-07-S1 analyzed at dilution for volatiles and semivolatiles based on levels detected.

Data Usability Summary Report	Project: Waite Road
Laboratory: Mitkem	LAB SDG ID: E1282
Date Completed: 9/20/2006	Data Validation Chemist: B. Krajewski

Compliance Review - ADR with Approval by Data Validation Chemist - See Attachment 2				
Description	Notes and Qualifiers			
Any holding time violations?	Yes – See Holding Time Outlier			
Any compounds present in method, trip and field blanks?	No			
Were any analytes flagged for blank contamination? For samples, if results are <5 times the blank or <10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs reported with GC/MS.	No			
Surrogate for method blanks and LCS within limits? Organic Methods Only	Yes			
Surrogate for samples and MS/MSD within limits? Organic Methods Only. Were appropriate samples re-analyzed? All samples should be re-analyzed for VOCs. Samples should re-analyzed if more than one BN or more than AP for SVOCs is out. Matrix effects should be established for all other methods. Only samples exceeding these criteria are listed on the Surrogate Outlier Report. MS/MSD within QC criteria? If out and LCS is compliant, then J flag positive data in original sample due to matrix.	Yes - Surrogates were high for the Method 8270 MS/MSD of sample WRSV07S1 but acceptable for parent. No qualifiers applied based on high surrogate. No - See MS/MSD Outlier Report.			
If metal recoveries were ≤30%, then "R" flag associated non-detect values.				
LCS within QC criteria? If out, and the recovery high with no positive values, then no data qualification is required. Positive results are "J" flagged and non-detects are "J" flagged if low. Reject data with recovery <10%.	No - See LCS Outlier Report.			
Were any samples re-analyzed or diluted? For any sample re-analysis and dilutions ensure that only one result per sample and analyte is flagged as reportable.	Yes – Sample WR-SV-07-S1 analyzed at dilution for volatiles and semivolatiles based on levels detected.			

Data Usability Summary Report	Project: Waite Road
Laboratory: Mitkem	LAB SDG ID: E1282
Date Completed: 9/20/2006	Data Validation Chemist: B. Krajewski

Compliance Review - ADR with Approval by Data Validation Chemist - See Attachment 2			
Description	Notes and Qualifiers		
Do field duplicate results show good precision for all compounds except TICs?	NA		

Compliar	Compliance Review by Data Validation Chemist				
Method	Description	Notes and Qualifiers			
GC/MS	Do internal standards areas and retention time meet criteria?	No SVOCS – Responses low for samples WRSV06S1 and WRSV07S1. Also low for			
	Samples should be re-analyzed to establish matrix effects or chromatograms documenting matrix effects provided.	WRSV07S1 MS, MSD and dilution. Matrix effect indicated. Sample WRSV06R1 not reanalyzed.			
GC/MS	Does initial calibration meet criteria for all positive target compounds?	No - %RSD >30% for hexachlorocyclopentadiene and 2,4-dimethylphenol.			
	Is the minimum response factor must be met for all compounds?	Yes			
GC/MS	Does continuing calibration meet criteria for all positive target compounds?	No - %D>25% for dichlorodifluoromethane, chloromethane and acetone for volatiles. %D>25% for 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, 3,3'-dichlorobenzidine, pentachlorophenol and hexachlorocyclopentadiene.			
	Is the minimum response factor must be met for all compounds?	No – 2,4-dinitrophenol.			
GC/MS	For TICs are there any system related compounds that should not be reported?	Not validated.			
ICP/ CVAA	ICS recoveries within 80-120%?	Yes			
ICP/ CVAA	ICV recoveries within 90-110%?	Yes			
ICP/ CVAA	CCV recoveries within 90-110% or 80-120% for mercury?	Yes			
ICP/ CVAA	Serial dilution recoveries within 90- 110% for concentrations greater than 50 times reporting limit?	No – Sodium results qualified "J".			

Data Usability Summary Report	Project: Waite Road
Laboratory: Mitkem	LAB SDG ID: E1282
Date Completed: 9/20/2006	Data Validation Chemist: B. Krajewski

Summary of Potential Impacts on Data Usability

Major Concerns

2,4-dimethylphenol result for sample WR-PZ-06 qualified "R" rejected based on LCS recovery; hexachlorocyclopentadiene result for sample WRSV07S1 qualified "R rejected based on MS/MSD recovery; and soil sample antimony results flagged "R" rejected based on MS recovery.

Sample WRSV06S1 not reanalyzed for Method 8270 in order to confirm matrix effect based on internal standard area responses.

Minor Concerns

Methods and compound lists not consistent between QAPP and those provided by Mitkem.

Data qualified "J" or "UJ" based on matrix spike recoveries, duplicate RPD values, internal standard responses, calibrations and serial dilution results.

Key:

ADR = Automated Data Review

AP = Acid Phenol BN = Base Neutral

CCV = Continuing calibration verification

COC = Chain-of-custody

CVAA = Cold Vapor Automatic Absorption

GC = Gas Chromatography

GC/MS = Gas Chromatography/Mass Spectrometry

ICP = Inductively Coupled Plasma Argon Spectrometry

ICS = Interference check standardICV = Initial calibration verification

NA = Not Applicable

LCS = Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate

QAPP = Quality Assurance Project Plan

QC = Quality Control SD = Serial Dilution

SVOCs = Semivolatile Organic Compounds

TIC = Tentatively Identified Compound

VOCs = Volatile Organic Compounds

DUSR - Attachment 1	Project: 002699.1D14.02
Laboratory: MITKEM	Lab SDG ID: E1282
Date Completed: October 12, 2006	Data Validation Chemist: B. Krajewski

Reference

ProjectName	Project Number	Lab Report Batch	Lab Receipt Date
Waite Road	002699.1D14.02	E1282	08/23/2006 08:45

Table 1: Sample Summary Tables from Electronic Data Deliverables

Sample ID	Matrix	Lab ID	Sample Date	QC Type
WR-PZ-06	AQ	E1282-03A	08/22/2006 10:58	
WR-SV-06-S1	SO	E1282-01A	08/21/2006 13:00	
WR-SV-06-S1DUP	SO	E1282-01CDUP	08/21/2006 13:00	DUP
WR-SV-06-S1MS	SO	E1282-01CMS	08/21/2006 13:00	MS
WR-SV-07-S1	SO	E1282-02A	08/21/2006 13:25	
WR-SV-07-S1DL	SO	E1282-02ADL	08/21/2006 13:25	
WR-SV-07-S1MS	SO	E1282-02BMS	08/21/2006 13:25	MS
WR-SV-07-S1MSD	SO	E1282-02BMSD	08/21/2006 13:25	MSD
WR-TB-GW	AQ	E1282-04A	08/22/2006 10:40	ТВ

Table 2: Tests and Number of Samples Included in this DUSR

Matrix	Test Method	Method Name	Number of Samples
AQ	8260B	Volatile Organic Compounds by GC/MS	2
AQ	8270C	Semi-Volatile Organic Compounds by GC/MS	1
so	6010B	Metals by Inductively Coupled Plasma-Atomic Emission	2
so	7471A	Mercury in Solid or Semi-solid Waste by Manual Cold Vapor Technique	2
so	8260B	Volatile Organic Compounds by GC/MS	3
SO	8270C	Semi-Volatile Organic Compounds by GC/MS	3

Client SampleID	Method	Type	AnalyteName	Result	Units	Lab	Qual Res	sult/Qua	I/Code
WR-SV-06-S1	6010B	RES	Antimony	0.72	mg/Kg	UN	0.72	R	8L
WR-SV-07-S1	6010B	RES	Antimony	0.73	mg/Kg	UN	0.73	R	8L
WR-SV-06-S1	6010B	RES3	Calcium	44800	mg/Kg	*	44800	J	26
WR-SV-07-S1	6010B	RES	Calcium	2940	mg/Kg	*	2940	J	26
WR-SV-06-S1	6010B	RES	Nickel	23.3	mg/Kg	N	23.3	J-	8L
WR-SV-07-S1	6010B	RES	Nickel	12.7	mg/Kg	N	12.7	J-	8L

DUSR - Attachment 1	Project: 002699.1D14.02
Laboratory: MITKEM	Lab SDG ID: E1282
Date Completed: October 12, 2006	Data Validation Chemist: B. Krajewski

Client SampleID	Method	Туре	AnalyteName	Result	Units	Lab	Qual Re	sult/Qua	I/Code
WR-SV-06-S1	6010B	RES	Selenium	1.1	mg/Kg	UN	1.1	UJ	8L
WR-SV-07-S1	6010B	RES	Selenium	1.1	mg/Kg	UN	1.1	UJ	8L
WR-SV-06-S1	6010B	RES2	Sodium	300	mg/Kg	Е	300	J	31
WR-SV-07-S1	6010B	RES2	Sodium	48.7	mg/Kg	Е	48.7	J	31
WR-SV-06-S1	6010B	RES	Thallium	1.1	mg/Kg	N	1.1	J-	8L
WR-SV-07-S1	6010B	RES	Thallium	0.77	mg/Kg	N	0.77	J-	8L
WR-SV-06-S1	6010B	RES	Zinc	64.0	mg/Kg	N	64.0	J-	8L
WR-SV-07-S1	6010B	RES	Zinc	66.9	mg/Kg	N	66.9	J-	8L
WR-SV-06-S1	7471A	RES	Mercury	0.022	mg/Kg	В	0.022	J	12
WR-SV-07-S1DL	8260B	DL	1,2,4-Trimethylbenzene	6600	ug/Kg	D	6600	J-	3L,1
WR-SV-06-S1	8260B	RES	Acetone	6	ug/Kg	U	6	UJ	23L,1
WR-SV-07-S1	8260B	RES	Acetone	290	ug/Kg	Е	290	UJ	23L,1
WR-PZ-06	8260B	RES	Chloromethane	5	ug/L	U	5	UJ	23L,1,12
WR-TB-GW	8260B	RES	Chloromethane	5	ug/L	U	5	UJ	23L,1,12
WR-PZ-06	8260B	RES	Dichlorodifluoromethane	5	ug/L	U	5	UJ	10L,23L,12
WR-SV-06-S1	8260B	RES	Dichlorodifluoromethane	6	ug/Kg	U	6	UJ	10L,23L
WR-SV-07-S1	8260B	RES	Dichlorodifluoromethane	6	ug/Kg	U	6	UJ	10L,23L
WR-TB-GW	8260B	RES	Dichlorodifluoromethane	5	ug/L	U	5	UJ	10L,23L,12
WR-SV-07-S1	8270C	RES	2,4,5-Trichlorophenol	810	ug/Kg	U	810	UJ	9,1
WR-SV-07-S1	8270C	RES	2,4,6-Trichlorophenol	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-07-S1	8270C	RES	2,4-Dichlorophenol	400	ug/Kg	U	400	UJ	9,1,12
WR-PZ-06	8270C	RES	2,4-Dimethylphenol	10	ug/L	U	10	R	11,10L,18
WR-SV-06-S1	8270C	RES	2,4-Dimethylphenol	410	ug/Kg	U	410	UJ	18
WR-SV-07-S1	8270C	RES	2,4-Dimethylphenol	400	ug/Kg	U	400	UJ	9,1,12,18
WR-PZ-06	8270C	RES	2,4-Dinitrophenol	20	ug/L	U	20	UJ	10L,23L,12
WR-SV-06-S1	8270C	RES	2,4-Dinitrophenol	840	ug/Kg	U	840	UJ	10L
WR-SV-07-S1	8270C	RES	2,4-Dinitrophenol	810	ug/Kg	U	810	UJ	9,10L,8L
WR-SV-07-S1	8270C	RES	2,4-Dinitrotoluene	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-07-S1	8270C	RES	2,6-Dinitrotoluene	400	ug/Kg	U	400	UJ	9,1,12

DUSR - Attachment 1	Project: 002699.1D14.02
Laboratory: MITKEM	Lab SDG ID: E1282
Date Completed: October 12, 2006	Data Validation Chemist: B. Krajewski

Client SampleID	Method	Туре	AnalyteName	Result	Units	Lab	Qual Re	sult/Qua	I/Code
WR-SV-07-S1	8270C	RES	2-Chloronaphthalene	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-07-S1	8270C	RES	2-Chlorophenol	400	ug/Kg	U	400	UJ	9,8L,1,12
WR-SV-07-S1DL	8270C	DL	2-Methylnaphthalene	13000	ug/Kg	D	13000		1
WR-PZ-06	8270C	RES	2-Methylphenol	10	ug/L	U	10	UJ	10L
WR-SV-07-S1	8270C	RES	2-Methylphenol	400	ug/Kg	U	400	UJ	9,8L,1,12
WR-SV-07-S1	8270C	RES	2-Nitroaniline	810	ug/Kg	U	810	UJ	9,1
WR-SV-07-S1	8270C	RES	2-Nitrophenol	400	ug/Kg	U	400	UJ	9,8L,1,12
WR-PZ-06	8270C	RES	3,3'-Dichlorobenzidine	10	ug/L	U	10	UJ	23L,1
WR-SV-06-S1	8270C	RES	3,3'-Dichlorobenzidine	410	ug/Kg	U	410	UJ	23L,1
WR-SV-07-S1	8270C	RES	3,3'-Dichlorobenzidine	400	ug/Kg	U	400	UJ	27L,23L,8L,1 ,9,12
WR-SV-06-S1	8270C	RES	3-Nitroaniline	840	ug/Kg	U	840	UJ	10L
WR-SV-07-S1	8270C	RES	3-Nitroaniline	810	ug/Kg	U	810	UJ	9,10L,8L
WR-PZ-06	8270C	RES	4,6-Dinitro-2-methylphenol	20	ug/L	U	20	UJ	10L,23L,12
WR-SV-06-S1	8270C	RES	4,6-Dinitro-2-methylphenol	840	ug/Kg	U	840	UJ	10L,12
WR-SV-07-S1	8270C	RES	4,6-Dinitro-2-methylphenol	810	ug/Kg	U	810	UJ	9,10L,8L,12
WR-SV-07-S1	8270C	RES	4-Bromophenyl phenyl ether	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-07-S1	8270C	RES	4-Chloro-3-Methylphenol	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-06-S1	8270C	RES	4-Chloroaniline	410	ug/Kg	U	410	UJ	10L
WR-SV-07-S1	8270C	RES	4-Chloroaniline	400	ug/Kg	U	400	UJ	9,10L,8L,12
WR-SV-07-S1	8270C	RES	4-Chlorophenyl phenyl ether	400	ug/Kg	U	400	UJ	9,8L,1,12
WR-PZ-06	8270C	RES	4-Methylphenol	10	ug/L	U	10	UJ	10L
WR-SV-07-S1	8270C	RES	4-Methylphenol	400	ug/Kg	U	400	UJ	9,8L,1,12
WR-PZ-06	8270C	RES	4-Nitroaniline	20	ug/L	U	20	UJ	10L,12
WR-SV-06-S1	8270C	RES	4-Nitroaniline	840	ug/Kg	U	840	UJ	10L
WR-SV-07-S1	8270C	RES	4-Nitroaniline	810	ug/Kg	U	810	UJ	9,10L
WR-PZ-06	8270C	RES	4-Nitrophenol	20	ug/L	U	20	UJ	10L,12
WR-SV-07-S1	8270C	RES	4-Nitrophenol	810	ug/Kg	U	810	UJ	9,1
WR-SV-07-S1	8270C	RES	Acenaphthene	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-07-S1	8270C	RES	Acenaphthylene	400	ug/Kg	U	400	UJ	9,1,12

DUSR - Attachment 1	Project: 002699.1D14.02
Laboratory: MITKEM	Lab SDG ID: E1282
Date Completed: October 12, 2006	Data Validation Chemist: B. Krajewski

Client SampleID	Method	Туре	AnalyteName	Result	Units	Lab	Qual F	Result/Qua	I/Code
WR-SV-06-S1	8270C	RES	Benzo(a)pyrene	410	ug/Kg	U	410	UJ	27L,1
WR-SV-07-S1	8270C	RES	Benzo(a)pyrene	400	ug/Kg	U	400	UJ	27L,1,9,12
WR-SV-06-S1	8270C	RES	Benzo(b)fluoranthene	410	ug/Kg	U	410	UJ	27L,1
WR-SV-07-S1	8270C	RES	Benzo(b)fluoranthene	400	ug/Kg	U	400	UJ	27L,1,9,12
WR-SV-06-S1	8270C	RES	Benzo(g,h,i)perylene	410	ug/Kg	U	410	UJ	27L,1
WR-SV-06-S1	8270C	RES	Benzo(k)fluoranthene	410	ug/Kg	U	410	UJ	27L,1
WR-SV-07-S1	8270C	RES	Benzo(k)fluoranthene	400	ug/Kg	U	400	UJ	27L,1,9,12
WR-SV-07-S1	8270C	RES	bis(2- Chloroethoxy)methane	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-07-S1	8270C	RES	bis(2-Chloroethyl) Ether	400	ug/Kg	U	400	UJ	9,8L,1,12
WR-SV-07-S1	8270C	RES	bis(2-Chloroisopropyl) Ether	400	ug/Kg	U	400	UJ	9,8L,1,12
WR-SV-07-S1	8270C	RES	bis(2-Ethylhexyl) phthalate	1300	ug/Kg		1300	J	9,1,27
WR-SV-07-S1	8270C	RES	Butylbenzyl phthalate	400	ug/Kg	U	400	UJ	27L,1,9,12
WR-SV-07-S1	8270C	RES	Carbazole	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-06-S1	8270C	RES	Dibenz(a,h)anthracene	410	ug/Kg	U	410	UJ	27L,1
WR-SV-07-S1	8270C	RES	Dibenz(a,h)anthracene	400	ug/Kg	U	400	UJ	27L,8L,1,12
WR-SV-07-S1	8270C	RES	Dibenzofuran	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-07-S1	8270C	RES	Diethyl phthalate	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-07-S1	8270C	RES	Dimethyl phthalate	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-07-S1	8270C	RES	Di-n-butyl phthalate	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-06-S1	8270C	RES	Di-n-octyl phthalate	410	ug/Kg	U	410	UJ	27L,1
WR-SV-07-S1	8270C	RES	Di-n-octyl phthalate	400	ug/Kg	U	400	UJ	27L,1,9,12
WR-PZ-06	8270C	RES	Hexachlorocyclopentadien	10	ug/L	U	10	UJ	18
WR-SV-06-S1	8270C	RES	Hexachlorocyclopentadien	410	ug/Kg	U	410	UJ	18
WR-SV-07-S1	8270C	RES	Hexachlorocyclopentadien	400	ug/Kg	U	400	R	8L,1,12,18
WR-SV-06-S1	8270C	RES	Indeno(1,2,3-cd)pyrene	410	ug/Kg	U	410	UJ	27L,1
WR-SV-07-S1	8270C	RES	Indeno(1,2,3-cd)pyrene	400	ug/Kg	U	400	UJ	27L,8L,1,9,1
WR-SV-07-S1	8270C	RES	Isophorone	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-07-S1	8270C	RES	Nitrobenzene	400	ug/Kg	U	400	UJ	9,1,12
WR-SV-07-S1	8270C	RES	N-Nitroso-di-n-propylamine	400	ug/Kg	U	400	UJ	9,1,12

DUSR - Attachment 1	Project: 002699.1D14.02
Laboratory: MITKEM	Lab SDG ID: E1282
Date Completed: October 12, 2006	Data Validation Chemist: B. Krajewski

Client SampleID	Method	Type	AnalyteName	Result	Units	Lab	Qual Res	sult/Qua	I/Code
WR-SV-07-S1	8270C	RES	N-Nitrosodiphenylamine	400	ug/Kg	U	400	UJ	9,1,12
WR-PZ-06	8270C	RES	Pentachlorophenol	20	ug/L	U	20	UJ	10L,12
WR-SV-06-S1	8270C	RES	Pentachlorophenol	840	ug/Kg	U	840	UJ	10L
WR-SV-07-S1	8270C	RES	Pentachlorophenol	810	ug/Kg	U	810	UJ	9,10L,8L
WR-SV-07-S1	8270C	RES	Phenanthrene	760	ug/Kg		760	J	9,1
WR-PZ-06	8270C	RES	Phenol	10	ug/L	U	10	UJ	10L
WR-SV-07-S1	8270C	RES	Phenol	400	ug/Kg	U	400	UJ	9,8L,1,12
WR-SV-07-S1	8270C	RES	Pyrene	900	ug/Kg		900	J	9,8H,1,27

Table 3: Data Validation Code Qualifier Key

DV Qual Code	DV Qual Code Description
1	Cooler temperature outside range.
3L	Holding time from sample collection to analysis was exceeded. Result has a low bias.
8H	Matrix spike recovery outside control limits. Result has a high bias.
8L	Matrix spike recovery outside control limits. Result has a low bias.
9	Matrix spike duplicate RPD outside control limits.
10L	LCS recovery outside control limits. Result has a low bias.
11	LCS duplicate RPD outside control limits.
12	Result is below project reporting limit, but above MDL.
18	Initial calibration calibration coefficient exceeded control limits.
23L	Continuing calibration verification percent difference exceeded control limits. Result has a low bias.
26	Laboratory duplicate RPD exceeded control limits.
27	GCMS internal standard recoveries exceeded control limits.
27L	GCMS internal standard recoveries exceeded control limits. Result has a low bias.
31	Result qualified based on professional judgement.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM COF	RPORATION	Contract:		WRPZ06	
Lab Code: MITKEM	Case No.:	SAS No.:	SDG N	o.: ME1282	•
Matrix: (soil/water)			mple ID: E	1282-03A	
Sample wt/vol:	5.000 (g/mL) ML	Lab Fil	le ID: V	2H7735	
Level: (low/med)		Date Re	eceived: 0	B/23/06	
% Moisture: not dec.		Date An	alyzed: 08	3/26/06	
GC Column: DB-624		Dilutio	n Factor:	1.0	
Soil Extract Volume:	(uL)	Soil Al	iquot Volu	me:	(uL)
CAS NO.	COMPOUND	CONCENTRATION	UNITS: g) UG/L	Q	
74-87-3 75-01-4 74-83-9 75-00-3 75-69-4 75-35-4 75-15-0 75-09-2 156-60-5 156-60-5 75-34-3 156-59-2 74-97-5 590-20-7 74-97-5 563-58-6 71-55-6 563-58-6 71-43-2 79-01-6 71-43-2 79-01-6 71-43-2 79-01-6 71-43-2 79-01-6 71-43-2 79-01-6 71-43-2 79-01-6 71-43-2 79-01-6 71-43-2		methane ene ide oroethene yl ether ane bethene cane ane chane			

FORM I VOA

			1
Lab Name: MITKEM CO	RPORATION	Contract:	WRPZ06
Lab Code: MITKEM	Case No.:	CNC NT	- No - Museum
Matrix: (soil/water)		Tab G	F No.: ME1282 E1282-03A
Sample wt/vol: Level: (low/med)	5.000 (g/mL) ML	Lab File ID:	V2H7735
% Moisture: not dec.		Date Received:	08/23/06
GC Column: DB-624		Date Analyzed:	
Soil Extract Volume:	trentil .	20000	
Cas no.		Soil Aliquot Vo	olume:(uL)
	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
591-78-6	-Dibromochloromet -1,2-Dibromoethan -1,1,1,2-Tetrachl -1,1,1,2-Tetrachl -Ethylbenzene -m,p-Xylene -o-Xylene -o-Xylene -tylene (Total) -Styrene -Bromoform -Isopropylbenzene -1,1,2,2-Tetrachloropr -Bromobenzene -1,2,3-Trichloropr -n-Propylbenzene -2-Chlorotoluene -1,3,5-Trimethylben -2-Chlorotoluene -1,2,4-Trimethylben -1,2,4-Trimethylben -1,2,4-Trimethylben -1,3-Dichlorobenzene -1,4-Dichlorobenzene -1,2-Dibromo-3-chlorobenzene -2-Dibromo-3-chlorobenzene -2,2-Dibromo-3-chlorobenzene -2,2-Trichlorobenzene	chane de coroethane coroethane copane	ממממממממממממממממממממממממממממממממממממממ

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract: WRPZ06
Lab Code: MITKEM Case No::	SAS No.: SDG No.: ME1282
Matrix: (soil/water) WATER	Lab Sample ID: El282-03A
Sample wt/vol: 5.000 (g/mL) MI	Lab File ID: V2H7735
Level: (low/med) LOW	Date Received: 08/23/06
% Moisture: not dec	Date Analyzed: 08/26/06
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)

Number TICs found: 4

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST.	CONC.	Q
1. 110-62-3	pentanal	6.91	======	======	
2. τ	UNKNOWN	9.04	ļ	72	ŊJ
3. 111-71-7	HEPTANAL	11.01		93	<u> </u>
4. 124-13-0	CTANAL	12.63		20	UJ
5.		12.03	1	7.6	LI
		·	l 		
/ •		·			
		·			
3					
4					
5					
6					
7					
<u></u>					
			· · · · · · · · · · · · · · · · · · ·		
				 [·	
				 [.	
4.		·		·	
• •				.	
t. I					
S. —					
5.					
•		· .			
) 		·			
		l			
·					***

FORM I VOA-TIC

OLM03.0

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION Contract: WRSV06S1 Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME1282 Matrix: (soil/water) SOIL Lab Sample ID: E1282-01A Sample wt/vol: 5.1 (g/mL) G Lab File ID: V1H8112 Level: (low/med) Low Date Received: 08/23/06 % Moisture: not dec. 21 Date Analyzed: 08/28/06 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: ____(mL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS:

CAS NO.	COMPOUND	CONCENTRI (ug/L or	ATION UNITS: ug/Kg) UG/KG	Q
75-01-4 74-83-9 75-00-3 75-69-4 75-35-4 67-64-1 74-88-4 75-15-0 75-09-2 156-60-5 1634-04-4 75-34-3 108-05-4 74-97-5 563-58-6 563-58-6 563-58-6 71-55-6 563-58-6 71-43-2 79-01-6 78-87-5 74-95-3 108-87-5 108-88-3 108-88-3 108-88-3 108-88-3	IcdomethaneCarbon Disulfication	cmethane hene le ride loroethene loroethene pane lane ethane pene oride ane cane cane cane cane		ממשמממממממממממממממממממממממממממ ממממממממ
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	_l	_1

IA VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract: WRSV06S1
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: ME1282
Matrix: (soil/water) SOIL	Lab Sample ID: E1282-01A
Sample wt/vol: 5.1 (g/mL) G	
Level: (low/med) LOW	Date Received: 08/23/06
% Moisture: not dec. 21	Date Analyzed: 08/28/06
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(mL)	Soil Aliquot Volume:(ul)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
142-28-91,3-Dichloropm 127-18-4Tetrachloroethe 591-78-62-Hexanone	opane 6 U

,	142-28-91,3-Dichloropropane	.]		_	
	14/-18-4Tetrachloroethere	-		6 U	ı
	591-78-62-Hexanone			6 n	,
	124-48-1Di bromoch l oromathana	·[e n	
1	106-93-41.2-Dibromoethane	.		6 U	İ
ļ	106-93-41,2-Dibromoethane 108-90-7Chlorobenzene	. [6 U	ļ
1	630-20-6	.		6 U	
١	100-41-4Ethylbenzene			6 U	
1	100-41-4Ethylbenzene	ŀ		6 U	- 1
ı	95-47-6Xylene			6 U	[
1	1330-20-7Xylene (Total)			6 U	· [
ı	100-42-5Styrene	İ		6 U	
l	75-25-2Bromoform	1		6 U	
I	98-82-8Isopropylbenzene			6 U	
l	79-34-5			6 U	
ı	79-34-51,1,2,2-Tetrachloroethane 108-86-1Bromobenzene			6 U	
l	96-18-4			6 U	- 1
ŀ	96-18-41,2,3-Trichloropropane			6 U	
l	103-65-1n-Propylbenzene 95-49-82-Chlorotoluene			6 U	
l	109_67.0			6 U	- 1
	108-67-81,3,5-Trimethylbenzene			6 U	.
	106-43-44-Chlorotoluene			6 U	}
l	98-06-6tert-Butylbenzene			6 U	-
	95-63-61,2,4-Trimethylbenzene			6 U	
ľ	135-98-8sec-Butylbenzene			6 U	İ
	99-87-64-Isopropyltoluene			6 T	
	541-73-11,3-Dichlorobenzene			6 U	
	106-46-71,4-Dichlorobenzene			6 U	J.
	LU4-51-8BrifyThenzene			6 U	
	95-50-11,2-Dichlorobenzene			6 U	
	20-12-8			6 U	- 1
				6 บั	- [.
	0/-00-3HAY20110Y0N114-34.00			6 U	- 1
	91-20-3Naphthalene			3 5	
	87-61-61,2,3-Trichlorobenzene			ត់ប	
_				~ ~	İ
			<u> </u>	,	- 1

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Tolk arm			i
Lab Name: MITKEM COF	RPORATION	Contract:	WRSV06S1
Lab Code: MITKEM	Case No.:	SAS No.:	
Matrix: (soil/water)	·	SDG	No.: ME1282
	SOIL	Lab Sample ID:	曜1282~01ヵ
Sample wt/vol:	5.1 (g/mL) G	-	
Level: (low/med)		Lab File ID:	V1H8112
in-in-	LOW	Date Received:	09/22/or
% Moisture: not dec.	21		
		Timber 7 7	_

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(mL) Soil Aliquot Volume: ____(uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

	·-5/	or ag/kg/	ug/kg	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3.				====
3.		-		
4.				
6				·
8.		·		
9				
10				
12				
13				
15.				
16.			,	
.8.				
9				
1				
			-	
3				
5.		-		
7.				[
8				
9				
0				

FORM I VOA-TIC

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION

Contract:

WRSV07S1

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: ME1282

Matrix: (soil/water) SOIL

5.0 (g/mL) G

Lab Sample ID: E1282-02A

Sample wt/vol:

Lab File ID: V1H8113

Level: (low/med)

Date Received: 08/23/06

% Moisture: not dec. 17

Date Analyzed: 08/28/06

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(mL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

	CONTROUND	(ng/T	or	ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluc					
74-87-3	Chlorodifluc	promethane		ł		6. U
75-01-4	Chloromethane Vinyl Chloride					0.10
74-83-9	Vinyl Chloride					6 U
75-00-3	Chloroethane			 -}		6 n
75-69-4	Chioroethane					ย่ับ
75-35-4	Chloroethane Trichlorofluor 1,1-Dichloroet	omethane				6 U
67-64-1	1,1-Dichloroet	hene		 -		
74-00 4	1,1-Dichloroet			 -∤		6 U
					29	OE
/3-15-0	Carbon Disulfic	io				6 U
/5-09-2	Carbon Disulfic	15 -4 3		_1		6 U
156-60-5	Methylene Chlor trans-1,2-Dichi Methyl text	lae		_1		៩ ប
1634-04-4	Methar tout	.oroethene		- !		6 0
75-31-3		yl ether '		-		
108-05-4	TITE THE TOTORUM	ane		-1		6 U
78-93-2	A WINT WORLD'S			- .	1	6 U
756-59-2	2-butanone				Į	5 U
590-20-7	2-Butanone cis-1,2-Dichlor 2,2-Dichloropro	oethere		- 1		5 U
7/-07 -	2,2-Dichloropro	Dane		-		5 U
F7 CC 5	2,2-Dichloropro	270		→	6	ו סוג
0/-06-3	Bromochlorometh			-1	. 6	ו סוג
71-55-6	Chloroform1,1,1-Trichloroform1,1-Dichloroproproproproproproproproproproproprop			.1	6	
563-58-6	1.1-Dichlor	=Lnane		1	. 6	Ü
56-23-5	1,1-Dichloroproproproproproproproproproproproprop	pene		1	6	
107-06-2-	TOTAL TOTAL	oride		1	. 6	ם ק
71-43-2	Bearens	ine		ĺ		
79-01-6	perizene			l	6	ם
				1	. 4	J
74-95-3	Trichloroethene 1,2-Dichloroprop Dibromomethane	ane		İ		ע
75-27-4-	Bromodichloromet					ן ש
70067 07	Bromodichloromet	hane			6	ן ט
TOOOT-0T-2	Bromodichloromet Cis-1,3-Dichloro	DYONO TO			6	ט
T00-T0-T	Cls-1,3-Dichloro	broberre			6	U
108-88-3	Toluene]		6	ט
			}	•		ן ש
/9-00-5	1.1.2-Traight	cobrobeus				ט ו
	trans-1,3-Dichlor 1,1,2-Trichloroet	:hane				ט ו
					10	1) (

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION WRSV07S1 Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME1282 Matrix: (soil/water) SOIL Lab Sample ID: E1282-02A Sample wt/vol: 5.0 (g/mL) G Lab File ID: V1H8113 Level: (low/med) LOW Date Received: 08/23/06 % Moisture: not dec. 17 Date Analyzed: 08/28/06 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: ____(mL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

142-28-91,3-Dichloropropane	
	_ 6 0
JJA-	[6] [
1/4-48-1	_ ธีโซ
106-93-4-Dibromochioromethane	5 0
108-00 7	6 0
106-93-41, 2-Dibromoethane 108-90-7Chlorobenzene	6 0
	6 U 5 J
	• •
433U-70-7	4 J
	11.
/2~/2=Z=================================	6 U
70-8/-8Tappage-7	6 U
	28
108-86-1Bromobenzene	6 0
1 20710040= 1 D A W 1	6 U
103-65-1n-Propylbenzene	6 0
95-49-82-Chlorotoluene	90
#MGTD/#65======	6 11 -
	19
98-06-6tert-Butylbenzene	6 0
95-63-6-Lert-Huty Denzene	6 0
95-63-61,2,4-Trimethylbenzene	720 E
135-98-8sec-Butylbenzene	18
	17
	1 I
	6 0
	<u>e</u> n
	67
96-12-81,2-Dichtorobenzene 120-82-11,2-Dibromo-3-chloropropane	1.0
120-82-11,2,4-Trichlorobenzene	6 0
87-68-3Hexachlorobutadiene	6 U
	6 U
87-61-61,2,3-Trichlorobenzene	9
-, -, o	6 0
	_

FORM I VOA

O.EOMIO

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION

Contract:

WRSV07S1

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: ME1282

Matrix: (soil/water) SOIL

5.0 (g/mL) G

Lab Sample ID: E1282-02A

Sample wt/vol:

Lab File ID: V1H8113

Level: (low/med) LOW

Date Received: 08/23/06

% Moisture: not dec. 17

Date Analyzed: 08/28/06

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(mL)

Soil Aliquot Volume: ____(uL)

Number TICs found: 29

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER 1. 2. 526-73-8 BENZENE, 1,2,3-TRIMETHYL- BRANCHED ALKANE CYCLIC ALKANE 5. 611-14-3 BENZENE, 1-ETHYL-2-METHYL- BRANCHED ALKANE 7. 873-49-4 BENZENE, CYCLOPROPYL- UNKNOWN UNKNOWN 10. 95-93-2 11. 2870-04-4 BENZENE, 1,2,4,5-TETRAMETHYL 12. 1758-88-9 BENZENE, 2-ETHYL-1,3-DIMETHY BENZENE, 2-ETHYL-1,4-DIMETHY BENZENE, 2-ETHYL-1,4-DIMETHY BENZENE, (2-METHYL-1-PROPENY BENZENE, 1,2,4,5-TETRAMETHYL BENZENE, 1,2,4,5-TETRAMETHYL BENZENE, 1,2,4,5-TETRAMETHYL	12.55 12.76 12.90 13.24 13.46 13.55 13.68 13.77	60 42 37 44 55 41 110	T UN U UN UN UN
2. 526-73-8 3. BENZENE, 1,2,3-TRIMETHYL- BRANCHED ALKANE CYCLIC ALKANE 5. 611-14-3 6. BENZENE, 1-ETHYL-2-METHYL- BRANCHED ALKANE 7. 873-49-4 BENZENE, CYCLOPROPYL- UNKNOWN UNKNOWN 10. 95-93-2 11. 2870-04-4 BENZENE, 1,2,4,5-TETRAMETHYL BENZENE, 2-ETHYL-1,3-DIMETHY BENZENE, 2-ETHYL-1,4-DIMETHY BENZENE, 2-ETHYL-1,4-DIMETHY BENZENE, (2-METHYL-1-PROPENY 14. 95-93-2 BENZENE, 1,2,4,5-TETRAMETHYL BENZENE, 1,2,4,5-TETRAMETHYL BENZENE, 1,2,4,5-TETRAMETHYL	12.55 12.76 12.90 13.24 13.46 13.55 13.68 13.77	60 42 37 44 55 41 110	T UN U UN UN UN
15. 874-41-9 16. 17. 824-90-8 18. 33641-78-0 19. 824-90-8 20. 1595-16-0 21. 22. 97664-18-1 23. 4175-53-5 24. 56253-64-6 25. 26. 27. 28. 29. 6682-71-9 20. 6682-71-9 21. 29. 6682-71-9 22. 9764-18-1 23. 4175-53-5 24. 56253-64-6 25. 26. 27. 28. 29. 6682-71-9 26. 27. 28. 29. 6682-71-9	14.11 14.19 14.32 14.63 14.68 14.79 14.98 15.09 15.15	35 3	

Lab Name: MITKEM CORPORATION

Contract:

WRSV07S1DL

Lab Code: MITKEM

.Case No.:

SAS No.:

SDG No.: ME1282

Matrix: (soil/water) SOIL

Lab Sample ID: E1282-02ADL

Sample wt/vol:

5.0 (g/mL) G

Lab File ID:

Level:

MED

V1H8531

(low/med)

Date Received: 08/21/06

% Moisture: not dec. 17

Date Analyzed: 09/12/06

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume:

100.0 (uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		ug/kg)	UG/KG	Ç	5
75-71-8Dichlorodifluo	1.1				
74-87-3Chloromethane	romernane	1	35	יט ס	
74-83-9Bromomethane		_		מוס	- 1
75-00-3		<u> </u>			- 1
		-		ם ם	- 1
75-69-4Trichlorofluoro	methane	— ·			
75-35-41,1-Dichloroeth	iene			ט ט	ı
74-90 4		 ∤		<u> </u>	- 1
74-88-4Iodomethane		 ∤		כוכ	
	6	 ∫	350		
		{	350		
156-60-5trans-1,2-Dichl	270022	/	500	D	
1634-04-4Methy tert-bat	riceriele	_	350	שופ	1
1634-04-4Methyl tert-but 75-34-31,1-Dichloroeth	yr erner		350		
108-05-4Vinyl acetate	ane		350		
78-93-3			350		ł
		7	350		
590-20-72,2-Dichloro	ethene	-	350		
74-97-5- 2,2-Dichloroproproproproproproproproproproproprop	pane	-	350 350		
67-66-3 Bromochiorometha	me	-1			- 1
71_EE C		-	350		
71-55-61,1,1-Trichloroe 563-58-61,1-Dichloroprop	thane	-/	. 350		
56-33 r	ene	-	350		- !
56-23-5Carbon Tetrachlo	ride	-}	350		
107-06-21,2-Dichloroetha	ne	-1	350		1
71-43-2Benzene		.}	350	שׁ	
		.}	350	U	1
	200		350	U	1
74-95-3Dibromomethane	жие	j	350	Ū	1
		į	350	דד דד	1
10061-01-5cis-1,3-Dichlorometh	rane	ł	350		1
108-10-1	propene		350		1
108-88-3Toluene	lone		350		1
LUUD. 1 - 1 1 2 - 6			350		}
79-00-5	opropene		350 1		1
79-00-51,1,2-Trichloroet	hane —		350 1		1
			220 1	ا ا	١.
	!		!.		ļ

FORM I VOA

Lab Name: MITKEM CORPORATION

Contract:

WRSV07S1DL

Lab Code: MITKEW

Case No.:

MED

SAS No.:

SDG No.: ME1282

Matrix: (soil/water) SOIL

Lab Sample ID: E1282-02ADL

Sample wt/vol:

5.0 (g/mL) G

Lab File ID:

V1H8531

Level: (low/med)

Date Received: 08/21/06

% Moisture: not dec. 17

Date Analyzed: 09/12/06

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume: 100.0(uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

0

	,, <u>-</u> ,,	Q
142-28-91,3-Dichloropropane 127-18-4Tetrachloroethene 591-78-62-Hexanone 124-48-1Dibromochloromethane 106-93-41,2-Dibromoethane 108-90-7Chlorobenzene 630-20-61,1,1,2-Tetrachloroethane 100-41-4Ethylbenzene 95-47-6	350 350 350 350 350 350 350 73 350 73 350	מלמלמממממם
1330-20-7	73 350 350 220 350 350 350 170 350 350 210 180 350 170 180 1	ב משמשמשמשמשמשמשמשמשמשמשמשמשמשמשמשמשמשמש
120-82-11,2,4-Trichlorobenzene 87-68-3Hexachlorobutadiene 91-20-3Naphthalene 87-61-61,2,3-Trichlorobenzene	350 T 350 T 350 T 350 T 350 T	1 1

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION

Contract:

WRSV07S1DL

Lab Code: MITKEM

Case No.:

MED

SAS No.:

SDG No.: ME1282

Matrix: (soil/water) SOIL

Lab Sample ID: E1282-02ADL

Sample wt/vol:

5.0 (g/mL) G

Lab File ID:

V1H8531

Level: (low/med)

Date Received: 08/21/06

% Moisture: not dec. 17

Date Analyzed: 09/12/06

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume:

100 (uL)

Number TICs found: 29

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 4. 5. 6. 7. 526-73-8 8. 9. 637-50-3 10. 141-93-5 11. 12. 99-87-6 13. 2870-04-4 14. 15. 16. 95-93-2 17. 95-93-2	UNKNOWN BRANCHED ALKANE STRAIGHT-CHAIN ALKANE UNKNOWN BRANCHED ALKANE CYCLIC ALKANE BENZENE, 1,2,3-TRIMETHYL- BRANCHED ALKANE BENZENE, 1-PROPENYL- BENZENE, 1,3-DIETHYL- UNKNOWN BENZENE, 1-METHYL-4-(1-METHY BENZENE, 2-ETHYL-1,3-DIMETHY UNKNOWN UNKNOWN UNKNOWN BENZENE, 1,2,4,5-TETRAMETHYL BENZENE, 1,2,4,5-TETRAMETHYL	11.69 12.11 12.53 12.74 12.87 13.23 13.43 13.54 13.65 13.75	830 680 790 730 680 1100 840 2100 1800 1600 2000 2600 1700 720	######################################
22. 1595-16-0 23. 24. 25. 26. 27. 6682-71-9 28. 6682-71-9	UNKNOWN INDAN, 1-METHYL- UNKNOWN BENZENE, 2-ETHENYL-1,4-DIMET BENZENE, 1-METHYL-4-(1-METHY UNKNOWN UNKNOWN UNKNOWN UNKNOWN 1H-INDENE, 2,3-DIHYDRO-4,7-D 1H-INDENE, 2,3-DIHYDRO-4,7-D NAPHTHALENE, 1-METHYL-	15.24 15.31		

FORM I VOA-TIC

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM COR	PORATION (Contract:		WRIBGW	
Lab Code: MITKEM	Case No.:	SAS No.:	SDG No	.: ME1282	—- ı
Matrix: (soil/water)			le ID: E1	.282-04A	
Sample wt/vol:	5.000 (g/mL) ML	Lab File	ID: V2	H7736	
Level: (low/med)		Date Rec	eived: 08	/23/06	
% Moisture: not dec.		Date Ana	lyzed: 08	/26/06	
GC Column: DB-624		Dilution	Factor:	1.0	
Soil Extract Volume:	(uL)	Soil Alic	pot Volum	ne:	_(uL)
CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/Kg)	NITS: UG/L	Q	
74-87-33 75-01-4 74-83-9 75-00-3 75-69-4 75-35-4 74-88-4 75-15-0 75-09-2 156-60-5 1634-04-4 78-93-3 156-59-2 590-20-7 74-97-5 563-58-6 71-55-6 563-58-6 71-43-2 79-01-6 78-87-5 74-95-3 74-95-3 108-10-1 108-88-3 10061-02-6	IodomethaneCarbon DisulfideMethylene Chloritrans-1,2-DichloMethyl tert-buty1,1-DichloroethaVinyl acetate2-Butanonecis-1,2-DichloroethaChloroform1,1-TrichloroethaChloroform1,1-DichloropropeCarbon Tetrachlor1,2-DichloroethanBenzeneTrichloroethane1,2-DichloropropaDibromomethane1,2-Dichloropropa	de de de de de de de de de de de de de d		<u>"</u>	•

WRIBGW Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME1282 Matrix: (soil/water) WATER Lab Sample ID: E1282-04A Sample wt/vol: 5.000 (q/mL) ML Lab File ID: V2H7736 Level: (low/med) LOW Date Received: 08/23/06 % Moisture: not dec. Date Analyzed: 08/26/06 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (ul) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 0 142-28-9-----1,3-Dichloropropane 5 U 127-18-4----Tetrachloroethene 591-78-6----2-Hexanone 124-48-1-----Dibromochloromethane 106-93-4-----1,2-Dibromoethane_ 108-90-7-----Chlorobenzene 630-20-6-----1,1,1,2-Tetrachloroethane 100-41-4----Ethylberzene ----m,p-Xylene U-95-47-6------Xylene 1330-20-7-----Xylene (Total)_ 5 U 100-42-5-----Styrene 5 U 75-25-2-----Bromoform 5 U 98-82-8-----Isopropylbenzene 5 U 79-34-5-----1,1,2,2-Tetrachloroethane 5 U 108-86-1-----Bromobenzene 5 U 96-18-4-----1,2,3-Trichloropropane 5 U 103-65-1----n-Propylbenzene 5 U 95-49-8-----2-Chlorotoluene 5 U 108-67-8-----1,3,5-Trimethylbenzene 5 U 106-43-4-----4-Chlorotoluene 5 U 98-06-6----tert-Butylbenzene 5 U 95-63-6-----1,2,4-Trimethylbenzene 5 U 135-98-8----sec-Butylbenzene 5 U 99-87-6----4-Isopropyltoluene 5 U 541-73-1----1,3-Dichlorobenzene 5 U 106-46-7----1,4-Dichlorobenzene 5 U 104-51-8----n-Butylbenzene 5 U 95-50-1----1,2-Dichlorobenzene 5 U 96-12-8-----1,2-Dibromo-3-chloropropane .5 U 120-82-1-----1,2,4-Trichlorobenzene ש 87-68-3-----Hexachlorobutadiene U 91-20-3-----Naphthalene 5 U 87-61-6----1,2,3-Trichlorobenzene

FORM I VOA

OLMO3.0

IJ

1E

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

WRIBGW

Lab Name: MITKEM CORI	PORATION (Contract:	WRIDGW
Lab Code: MITKEM (Case No.:	SAS No.: SDG	No.: ME1282
Matrix: (soil/water)	WATER	Lab Sample ID:	E1282-04A
Sample wt/vol:	5.000 (g/mL) ML	Lab File ID:	V2H7736
Level: (low/med)	LOW	Date Received:	08/23/06
% Moisture: not dec.	-	Date Analyzed:	08/26/06
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor	r: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vo	olume:(uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
				=====
1				·
2		· [· · · · · ·	ļ
4 ,		-		
5		· •	· · · · · · · · · · · · · · · · · · ·	
٥.	•	 -	<u> </u>	
7.				
G.)	,			
9.		-		
		 -		ļ
4.			-	ļ
3. ,				
T				
5_ 1		 -		
h. I				
8.				
· · · · · · · · · · · · · · · · · · ·				•
0			•	
L				
2.				-
-7 6 1				
± _				
J•				
<i>,</i> •				
J &				
7.				
).		·		

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

GPC Cleanup: (Y/N) N pH: ___

EPA SAMPLE NO.

Lab Name: MITKEM CORI	PORATION	Contract:	SIMLCS
Lab Code: MITKEM	Case No.:	SAS No.:	9 No.: ME1282
Matrix: (soil/water)	WATER	Lab Sample ID	: LCS-25577
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S1F0183
Level: (low/med)	LOM	Date Received	5
% Moisture:	decanted: (Y/N)_	Date Extracted	i:08/28/06
Concentrated Extract	Volume: 1000(uL) Date Analyzed	: 09/06/06
Injection Volume:	1.0 (uL)	Dilution Facto	or: 1.0

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/kg) UG/L Q

	i	
108-95-2Phenol	15	
111-44-4bis(2-Chloroethyl)Ether	40	
95-57-82-Chlorophenol	39	
541-73-11,3-Dichlorobenzene	39	
106-46-71,4-Dichlorobenzene	41	
95-50-11,2-Dichlorobenzene	39	
95-48-72-Methylphenol	25	
108-60-12,2'-oxybis(1-Chloropropane)	37	,
106-44-54-Methylphenol	26	
621-64-7N-Nitroso-di-n-propylamine	43	
67-72-1Hexachloroethane	40	
98-95-3Nitrobenzene	41.	
78-59-1Isophorone	43	-
88-75-52-Nitrophenol	45	**
105-67-92,4-Dimethylphenol	4	J
120-83-22,4-Dichlorophenol	42	
120-82-11,2,4-Trichlorobenzene	45	
91-20-3Naphthalene	42	
106-47-84-Chloroaniline	40	
87-68-3Hexachlorobutadiene	43	
111-91-1bis(2-Chloroethoxy) methane	41	
59-50-74-Chloro-3-Methylphenol	42	
91-57-62-Methylnaphthalene	42	
77-47-4Hexachlorocyclopentadiene	41.	
88-06-22,4,6-Trichlorophenol	45	
95-95-42,4,5-Trichlorophenol	45	i i
91-58-72-Chloronaphthalene	43	
88-74-42-Nitroaniline	45	
131-11-3Dimethylphthalate	48	
208-96-8Acenaphthylene	43	
606-20-22,6-Dinitrotoluene	50	
99-09-23-Nitroaniline	45	
83-32-9Acenaphthene	47	
		l

FORM I SV-1

OLM03.0

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

GPC Cleanup: (Y/N) N pH: ___

EPA SAMPLE NO.

Lab Name: MITKEM CORI	~^\rightarrow\rightarr	Contract:	***************************************	SIMICS
Lab Name: MITREM CORP	PORALLON	ة سا ما الماليالياليالياليالياليالياليالياليالياليا	\$.	
Lab Code: MITKEM (Case No.:	SAS No.:	SDG	No.: ME1282
Matrix: (soil/water)	WATER	Lab	Sample ID:	LCS-25577
Sample wt/vol:	1000 (g/mL) ML	Lab	File D:	S1F0183
Level: (low/med)	LOW	Date	e Received:	
% Moisture:	decanted: (Y/N)_	Date	e Extracted	L: 08/28/06
Concentrated Extract	Volume: 1000(uL) Date	e Analyzed:	09/06/06
Injection Volume:	1.0 (uL)	Dil	ution Facto	r: 1.0

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

51-28-5	2,4-Dinitrophenol	12	J
100-02-7	4-Nitrophenol	20	
132-64-9	Dibenzofuran	47	
	2,4-Dinitrotoluene	52	
	Diethylphthalate	49	
	4-Chlorophenyl-phenylether_	46	
86-73-7	Fluorene	45	
	4-Nitroaniline	34	*
	4,6-Dinitro-2-methylphenol	31	
	N-Nitrosodiphenylamine (1)	56	·
	4-Bromophenyl-phenylether	47	
	Hexachlorobenzene	46	l
	Pentachlorophenol	28	ļ
	Phenanthrene	47	
	Anthracene	44	•
	Carbazole	49	
	Di-n-butylphthalate	48	l
	Fluoranthène	46	
129-00-0		43	l
85-68-7	Butylbenzylphthalate	46	
91-94-1	3,3'-Dichlorobenzidine	51	
	Benzo (a) anthracene	50	
	Chrysene	47	I
	bis(2-Ethylhexyl)phthalate	46	l
117-84-0	Di-n-octylphthalate	59	
	Benzo (b) fluoranthene	65	*************************************
	Benzo (k) fluoranthene	60	
	Benzo (a) pyrene	62	
	Indeno (1, 2, 3-cd) pyrene	69	
	Dibenzo (a, h) anthracene	73	
	Benzo(q,h,i) perylene	77	
	"	• •	

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORI	PORATION Contract:	•	SIMLCSD
Lab Code: MITKEM (Case No.: SAS No.	.: SDG	No.: ME1282
Matrix: (soil/water)	WATER	Lab Sample ID:	LCSD-25577
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S1F0184
Level: (low/med)	LOW	Date Received:	
% Moisture:	decanted: (Y/N)	Date Extracted	L:08/28/06
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	09/06/06
Injection Volume:	1.0 (uL)	Dilution Facto	r: 1.0
GPC Cleanup: (Y/N)	N pH:		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q

75 JA NA JAN JAN JAN JAN JAN JAN JAN JAN J	1	
108-95-2Phenol	16	}
111-44-4bis(2-Chloroethyl)Ether	42	
95-57-82-Chlorophenol	41	
541-73-11,3-Dichlorobenzene	40	
106-46-71,4-Dichlorobenzene	42	
95-50-11,2-Dichlorobenzene	39	
95-48-72-Methylphenol	23	
108-60-12,2'-oxybis(1-Chloropropane)	39	
106-44-54-Methylphenol	25	
621-64-7N-Nitroso-di-n-propylamine	42	
67-72-1Hexachloroethane	41	
98-95-3Nitrobenzene	42	
78-59-1Isophorone	45	
88-75-52-Nitrophenol	44	-
105-67-92,4-Dimethylphenol	1 213	7
120-83-22,4-Dichlorophenol	41	
120-82-11,2,4-Trichlorobenzene	44	
91-20-3Naphthalene	44	
106-47-84-Chloroaniline	39	
87-68-3Hexachlorobutadiene	44	
111-91-1bis (2-Chloroethoxy) methane	43	
59-50-74-Chloro-3-Methylphenol	42	
91-57-62-Methylnaphthalene	41	
77-47-4Hexachlorocyclopentadiene	42	······································
88-06-22,4,6-Trichlorophenol	42	
95-95-42,4,5-Trichlorophenol	42	
91-58-72-Chloronaphthalene	43	
88-74-42-Nitroaniline	44	
131-11-3Dimethylphthalate	47	
208-96-8Acenaphthylene	43	
606-20-22,6-Dinitrotoluene	48	
99-09-23-Nitroaniline	46	
83-32-9Acenaphthene	46	
•		

FORM I SV-1

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM COR	PORATION (Contract:	SIMLCSD
Lab Code: MITKEM	Case No.:	SAS No.: SDO	No.: MEL282
Matrix: (soil/water)	WATER	Lab Sample ID:	LCSD-25577
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S1F0184
Level: (low/med)	LOW	Date Received:	
% Moisture:	decanted: (Y/N)_	_ Date Extracted	L:08/28/06
Concentrated Extract	Volume: 1000 (u	n.) Date Analyzed:	09/06/06
Injection Volume:	1.0(uL)	Dilution Facto	r: 1.0
GPC Cleanup: (Y/N)	N pH:	•	·
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/I	
100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 118-74-1 87-86-5 85-01-8 120-12-7 86-74-8 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3	4-Nitroaniline4,6-Dinitro-2N-Nitrosodipher4-Bromophenyl-pHexachlorobenzePentachlorobenzePhenanthreneCarbazoleDi-n-butylphthaFluoranthenePyreneButylbenzylphtha3,3'-Dichlorobe	methylphenol methylphenol mylamine (1) methylether methylphenol mylamine (1) mhenylether me mol mlate malate malate malate malate midine mene midine	10 J 19 J 46 50

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME1282

Matrix: (soil/water) SOTL: Lab Sample ID: LCS-25543

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S1F0191

Level: (low/med) LOW Date Received:

% Moisture: 0 decented: (Y/N) N Date Extracted: 08/25/06

Concentrated Extract Volume: 1000(uL) Date Analyzed: 09/06/06

Injection Volume: 1.0(uL) Dilution Factor: 1.0

mjectom volume: 2.0 (m) Director wactor, 2.0

pH: ____

GPC Cleanup: (Y/N) N

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/kg) Ug/kg Q

108-95-2Phenol	1400	
111-44-4bis(2-Chloroethyl)Ether	1300	
95-57-82-Chlorophenol	1400	
541-73-11,3-Dichlorobenzene	1200	
106-46-71,4-Dichlorobenzene	1200	
95-50-11,2-Dichlorobenzene	1200	
95-48-72-Methylphenol	1400	
108-60-12,2'-oxybis(1-Chloropropane)	1200	
106-44-54-Methylphenol	1400	
621-64-7N-Nitroso-di-n-propylamine	1400	
67-72-1Hexachloroethane	1300	
98-95-3Nitrobenzene	1300	
78-59-1Isophorone	1300	
88-75-52-Nitrophenol	1300	***************************************
105-67-92,4-Dimethylphenol	1200	
120-83-22,4-Dichlorophenol	1400	
120-83-21,2,4-Dichiorophenoi	1300	
91-20-3Naphthalene	1300	
106-47-84-Chloroaniline	1100	
87-68-3Hexachlorobutadiene	1300	
	1300 1300	
111-91-1bis (2-Chloroethoxy) methane	——————————————————————————————————————	
59-50-74-Chloro-3-Methylphenol	1500	
91-57-62-Methylnaphthalene	1200 1200	
77-47-4Hexachlorocyclopentadiene	1400	
88-06-22,4,6-Trichlorophenol		
95-95-42,4,5-Trichlorophenol	1300	
91-58-72-Chloronaphthalene	1300	
88-74-42-Nitroaniline	1400	ļ
131-11-3Dimethylphthalate	1500	ļ
208-96-8Acemaphthylene	1300	
606-20-22,6-Dinitrotoluene	1500	
99-09-23-Nitroaniline	1100	
83-32-9Acenaphthene	1400	
		l

FORM I SV-1

OLM03.0

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SIN	LCS		
			ŀ

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: ME1282

Matrix: (soil/water) SOIL

Lab Sample ID: LCS-25543

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: S1F0191

Level: (low/med) LOW

Date Received: _____

CONCENTRATION UNITS:

% Moisture: 0 decanted: (Y/N) N

Date Extracted:08/25/06

Concentrated Extract Volume: 1000(uL) Date Analyzed: 09/06/06

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: ____

CAS NO.	COMPOUND	(ug/L or	ug/Kg)	UG/KG	Q
51-28-5	2,4-Dinitroph	enol		540	J
	4-Nitrophenol			1500	
132-64-9	Dibenzofuran			1400	
121-14-2	2,4-Dinitrotc	luene		1500	***************************************
84-66-2	Diethylphthal	ate		1500	(m/
7005-72-3	4-Chloropheny	1-phenylether	. 	1400	
86-73-7	Fluorene	•		1400	
100-01-6	4-Nitroa nilir	e		1000	
534-52-1	4,6-Dinitro-2	-methylphenol	-	960	
86-30-6	N-Nitrosodiph	enylamine (1)		1800	
	4-Bromophenyl			1400	
118-74-1	Hexachlôrobên	zene		1400	
87-86-5	Pentachloroph	enol		980	
	Phenanthrene	h		1400	***************************************
	Anthracene			1400	
86-74-8	Carbazole			1600	
	Di-n-butylpht	halate		1500	,
	Fluoranthene	<u> </u>		1400	***************************************
129-00-0				1300	
	Butylbenzylph	thalate		1400	
91-94-1	3,3 [†] -Dichloro	benzidine		1300	
	Benzo (a) anthr			1500	
	Chrysene			1400	
	bis(2-Ethylhe	xvl)phthalate		1500	
117-84-0	Di-n-octylpht	halate		1700	
205-99-2	Benzo (b) fluor	anthene		1800	
	Benzo (k) fluor			1700	
	Benzo (a) pyrer		<u> </u>	1800	
193-39-5	Indeno (1, 2, 3-	cd) pyrene		2000	
53-70-3	Dibenzo(a,h)a	nthracene		2100	+
	Benzo(g,h,i)p			2200	
			1		I

FORM I SV-2

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

WRPZ06

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: ME1282

Matrix: (soil/water) WATER

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Lab Sample ID: E1282-03B

Sample wt/vol:

1000 (g/mL) ML

Lab File ID: S1F0187

Level:

(low/med)

LOW

Date Received: 08/23/06

% Moisture: ____ decanted: (Y/N)___

Date Extracted: 08/28/06

Concentrated Extract Volume:

CAS NO.

1000 (uL)

Date Analyzed: 09/06/06

Injection Volume: 1.0(uL)

COMPOUND

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: ____

108-95-2Phenol	10	ד
111-44-4bis (2-Chloroethyl) Ether	10	U
95-57-82-Chlorophenol	10	U
541-73-11,3-Dichlorobenzene	10	U
106-46-71,4-Dichlorobenzene	10	บ
95-50-11,2-Dichlorobenzene	10	U
95-48-72-Methylphenol	10	U
108-60-12,2'-oxybis(1-Chloropropane)	10	
106-44-54-Methylphenol	10	
621-64-7N-Nitroso-di-n-propylamine	10	ł
67-72-1Hexachloroethane	10	
98-95-3Nitrobenzene	10	
78-59-1Isophorone	10	
88-75-52-Nitrophenol	10	ı
105-67-92,4-Dimethylphenol	10	
120-83-22,4-Dichlorophenol	10	ł
120-82-11,2,4-Trichlorobenzene	10	
91-20-3Naphthalene	10	ı
106-47-84-Chloroaniline	10	l
87-68-3Hexachlorobutadiene	10	
111-91-1bis (2-Chloroethoxy) methane	10	t
59-50-74-Chloro-3-Methylphenol	10	-
91-57-62-Methylnaphthalene	10	
	10	1
77-47-4Hexachlorocyclopentadiene	10	
88-06-22,4,6-Trichlorophenol		
95-95-42,4,5-Trichlorophenol	20	ľ
91-58-72-Chloronaphthalene	10) -
88-74-42-Nitroaniline	20	1
131-11-3Dimethylphthalate	10	1
208-96-8Acenaphthylene	10	1
606-20-22,6-Dinitrotoluene	10	I -
99-09-23-Nitroaniline	20	ſ
83-32-9Acenaphthene	10	U
	ł	l

FORM I SV-1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

				at a terr control.			
T.ah	Name:	איטישיידיש	CORPORATIO	RAT	Contract:	WRPZ06	
للتكل	Maine:	MILIKEM	CORFORMAL	2.V	COLLIGICATION IN 8	[]	

Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME1282

Matrix: (soil/water) WATER Lab Sample ID: E1282-03B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S1F0187

Level: (low/med) LOW Date Received: 08/23/06

% Moisture: ____ decanted: (Y/N) __ Date Extracted:08/28/06

Concentrated Extract Volume: 1000(uL) Date Analyzed: 09/06/06

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

51-28-5	2,4-Dinitrophenol	20	U
100-02-7	4-Nitrophenol	20	σ
132-64-9	Dibenzofuran	10	U
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	1.	J
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
86-73-7	Fluorene	10	ט
100-01-6	4-Nitroaniline	20	σ
534-52-1	4,6-Dinitro-2-methylphenol	20	σ
	N-Nitrosodiphenylamine (1)	10	שו
	4-Bromophenyl-phenylether	10	ש
	Hexachlorobenzene	10	ប
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	ŧ
84-74-2	Di-n-butylphthalate	1	J
	Fluoranthene	10	σ
129-00-0	Pyrene	10	ับ
	Butylbenzylphthalate	1.0	U
91-94-1	3,3"-Dichlorobenzidine	10	υ
56-55-3	Benzo (a) anthracene	10	ט
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	1	J
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo (b) fluoranthene	10	ט
207-08-9	Benzo(k) fluoranthene	1.0	Ū
	Benzo (a) pyrene	10	ט
193-39-5	Indeno (1, 2, 3-cd) pyrene	10	שו
	Dibenzo (a,h) anthracene	10	U
	Benzo(g,h,i)perylene	1.0	U

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME1282

Matrix: (soil/water) WATER

Lab Sample ID: E1282-03B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: S1F0187

Level: (low/med) LOW

Date Received: 08/23/06

% Moisture: _____ decanted: (Y/N)___

Date Extracted: 08/28/06

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 09/06/06

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Number TICs found: 8

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
-	TINTENTYWINT	9.75	0	J
1.	UNKNOWN		8	
2. 124-07-2	OCTANOIC ACID	10.84		ĽИ
3. 112-34-5	ETHANOL, 2-(2-BUTOXYETHOXY)-	11.05		NJ
4.	UNKNOWN	11.22	4 5	J
5.	UNKNOWN	11.82	5	J
6.	UNKNOWN	13.19	4	J
7. 98-73-7	BENZOIC ACID, P-TERT-BUTYL-	14.00	10	IJ
8.	UNKNOWN	20.21	4	J
9.				

			<u></u>	
I -l€e w			,	
13.				
14.				
15.				
15.		-		
16.				
17.				
1 a -				
19.				
			·	
21.				
				
1 /2-1 -				
1 40.				
47.				
43.				
30				
	1			

FORM I SV-TIC

OLM03.0

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

WRSV06S1

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: ME1282

Matrix: (soil/water) SOIL

Lab Sample ID: E1282-01B

Sample wt/vol:

30.2 (g/mL) G

Lab File ID: S1F0214

Level: (low/med) LOW

Concentrated Extract Volume:

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Date Received: 08/23/06

% Moisture: 21

decanted: (Y/N) N

Date Extracted: 08/25/06 Date Analyzed: 09/07/06

CAS NO.

Injection Volume: 1.0(uL)

COMPOUND

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: ____

1000 (uL)

(mean) 1807.			~
108-95-2		410	U
111-44-4	bis(2-Chloroethyl)Ether	410	U
95-57-8	2-Chlorophenol	410	U
541-73-1	1,3-Dichlorobenzene	410	שׁוֹ
106-46-7	1,4-Dichlorobenzene	410	U
95-50-1	1,2-Dichlorobenzene	410	U
95-48-7	2-Methylphenol	410	U
108-60-1	2,2'-oxybis(1-Chloropropane)	410	บ
106-44-5	4-Methylphenol	410	U
621-64-7	N-Nitroso-di-n-propylamine	410	
67-72-1	Hexachloroethane	410	
98-95-3	Nitrobenzene	410	
78-59-1	Isophorone	410	Ū
88-75-5	2-Nitrophenol	410	Ü
105-67-9	2,4-Dimethylphenol	410	U
120-83-2	2,4-Dichlorophenol	410	I .
120-82-1	1,2,4-Trichlorobenzene	410	į.
	Naphthalene	410	שׁ
106-47-8	4-Chloroaniline	410	Ū
	Hexachlorobutadiene	410	
	bis(2-Chloroethoxy) methane	410	
	4-Chloro-3-Methylphenol	410	
91-57-6	2-Methylnaphthalene	410	1
77-47-4	Hexachlorocyclopentadiene	410	Ū
88-06-2	2,4,6-Trichlorophenol	410	ſ
95-95-4	2,4,5-Trichlorophenol	840	I
91-58-7	2-Chloronaphthalene	410	
	2-Nitroaniline	840	
	Dimethylphthalate	410	·
	Acenaphthylene	410	
	2,6-Dinitrotoluene	410	,
99-09-2	3-Nitroaniline	840	l .
	Acenaphthene	410	
المريقات المات	a sin was also provide to be a bear also and also a	7.1.0	, w

FORM I SV-1

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

WRSV06SI

Lab Name: MITKEM CORPORATION Contract:

SDG No.: ME1282

Lab Code: MITKEM Case No.:

SAS No.:

Lab Sample ID: E1282-01B

Matrix: (soil/water) SOIL

Sample wt/vol: 30.2 (g/mL) G

Lab File ID: S1F0214

Level: (low/med) LOW

Date Received: 08/23/06

% Moisture: 21 decanted: (Y/N) N

Date Extracted: 08/25/06

Concentrated Extract Volume: 1000(uL) Date Analyzed: 09/07/06

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

CONCENTRATION UNITS:

GPC Cleanup: (Y/N) N pH: ___

CAS NO.	COMPOUND	(ug/L or	ug/Kg) UG/KG		Ω
51-28-5	2,4-Dinitropl	nenol		840 T	
100-02-7	4-Nitropheno	•		840 T	
132-64-9	Dibenzofuran		I	410 T	
121-14-2	2,4-Dinitrot	oluene		410 T	
84-66-2	Diethylphtha	late		410 T	
7005-72-3	4-Chloropheny	/l-phenylether		410 T	
86-73-7	Fluorene	-		410 T	J
	4-Nitroanilin			840 T	
534-52-1	4,6-Dinitro-2	2-methylphenol		840 T	
86-30-6	N-Nitrosodipl	nenylamine (1)		410 T	
101-55-3	4-Bromopheny	L-phenylether_		410 T	
118-74-1	Hexachlorobe	nzene		410 T	
87-86-5	Pentachloropl	nenol	1	840 T	
85-01-8	Phenanthrene			410 T	
120-12-7	Anthracene			410 [J
	Carbazole			410 [J
84-74-2	Di-n-butylph	thalate		410 [J
206-44-0	Fluoranthene			410 [
129-00-0	Pyrene			410 [
85-68-7	Butylbenzylp	nthalate	f	410 T	_
91-94-1	3,3 ³ -Dichlor	obenzidine		410 [J
56-55-3	Benzo (a) anth:	racene	!	410 [
218-01-9	Chrysene			410 (
117-81-7	bis(2-Etbylb	exyl)phthalate	<u> </u>	270 3	Ţ
117-84-0	Di-n-octylph	thalate		410 (J
	Benzo (b) fluo:			410 1	J
207-08-9	Benzo (k) fluo:	ranthene		410 1	
50-32-8	Benzo (a) pyre:	ne		410 1	
193-39-5	Indeno (1, 2, 3	-cd) pyrene		410 T	
53-70-3	Dibenzo (a, h) :	anthracene		410 T	
191-24-2	Benzo(g,h,i)	perylene		410	J
	e separated from		[

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: ME1282

Matrix: (soil/water) SOIL

Lab File ID:

S1F0214

Sample wt/vol: 30.2 (g/mL) G

Lab Sample ID: E1282-01B

Level: (low/med)

Date Received: 08/23/06

% Moisture: 21

decanted: (Y/N) N

Date Extracted: 08/25/06

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 09/07/06

Injection Volume: 1.0(uL)

Number TICs found: 5

LOW

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: ____

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 4.	UNKNOWN UNKNOWN UNKNOWN	14.67 15.21 22.67 23.99	220 280 1200 1600	J J J
5. 6. 7. 8.	UNKNOWN	24.56	1600	J
10.		***************************************		
14. 15.				
17. 18. 19. 20. 21.				
23. 24.				
26. 27. 28. 29.				
30.				

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

WRSV07S1

Lab Name: MITKEM CORPORATION

decanted: (Y/N) N

Case No.: Lab Code: MITKEM

SAS No.:

Contract:

SDG No.: ME1282

Matrix: (soil/water) SOIL

CONCENTRATION UNITS: (uq/L or uq/Kg) UG/KG

Lab Sample ID: E1282-02B

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

S1F0215

Level:

(low/med) LOW Date Received: 08/23/06

% Moisture: 17

Date Extracted: 08/25/06

Concentrated Extract Volume:

CAS NO.

1000 (uL)

Date Analyzed: 09/07/06

Injection Volume:

1.0(uL)

COMPOUND

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

99-09-2----3-Nitroaniline 83-32-9-----Acenaphthene

pH: ____

108-95-2	Phenol	400	U
	bis(2-Chloroethyl)Ether	400	U
	2-Chlorophenol	400	U
541-73-1	1,3-Dichlorobenzene	400	U
	1,4-Dichlorobenzene	400	U
	1,2-Dichlorobenzene	400	שׁ
	2-Methylphenol	400	U
108-60-1	2,2'-oxybis(1-Chloropropane)	400	U
	4-Methylphenol	400	U
621-64-7	N-Nitroso-di-n-propylamine	400	U
	Hexachloroethane	400	ט
	Nitrobenzene	400	U
78-59-1	Isophorone	400	U
	2-Nitrophenol	400	U
	2,4-Dimethylphenol	400	ש
120-83-2	2,4-Dichlorophenol	400	U
120-82-1	1,2,4-Trichlorobenzene	400	U
	Naphthalene	400	U
106-47-8	4-Chloroaniline	400	\$ ···
87-68-3	Hexachlorobutadiene	400	U
111-91-1	bis(2-Chloroethoxy) methane	400	U
59-50-7	4-Chloro-3-Methylphenol	400	U
	2-Methylnaphthalene	71.00	E
77-47-4	Hexachlorocyclopentadiene	400	U
88-06-2	2,4,6-Trichlorophenol	400	U
	2,4,5-Trichlorophenol	810	U
	2-Chloronaphthalene	400	U
	2-Nitroaniline	810	U
	Dimethylphthalate	400	U
	Acenaphthylene	400	1
	2,6-Dinitrotoluene	400	ש

FORM I SV-1

OLM03.0

810 U

400 U

EPA SAMPLE NO.

WRSV07S1

Lab Name: MITKEM CORPORATION

Contract:

SAS No.: Lab Code: MITKEM Case No.:

SDG No.: ME1282

Matrix: (soil/water) SOIL

Lab Sample ID: E1282-02B

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: S1F0215

Level: (low/med) LOW

Date Received: 08/23/06

% Moisture: 17 decanted: (Y/N) N Date Extracted: 08/25/06

Concentrated Extract Volume:

1000 (uL) Date Analyzed: 09/07/06

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: ____

CAS NO.	COMPOUND	CONCENI (ug/L c						
51-28-5	2,4-Dinitroph	epol.				810	ט	
100-02-7	4-Nitrophenol					810	Ū	
132-64-9	Dibenzofuran					400	ד	
	2,4-Dinitroto	vene				400	ł	
	Diethylphthal					400	U	
	4-Chloropheny		ier			400	υ	
86-73-7		- 2	····			240	J	
	4-Nitroanilin	2				810	Ü	
	4,6-Dinitro-2		nol			810	U	
86-30-6	N-Nitrosodiph	envlamine	(1)			400	U	
101-55-3	4-Bromophenyl	-phenylethe	er			400	บ	
	Hexachloroben					400	U	
	Pentachloroph					810	U	
	Phenanthrene					760		
	Anthracene		-			100		
	Carbazole					400	บ	
	Di-n-butylpht	halate	-			400	U	
206-44-0	Fluoranthene					210	J	
129-00-0						900	İ	
85-68-7	Butylbenzylph	thalate				400	Ū	
91-94-1	3,3 -Dichloro	benzidine				400	U	
	Benzo (a) anthr					180	J	
218-01-9			***************************************			190	J	
117-81-7	bis(2-Ethylhe	xvl) phthala	ate]	L300		
117-84-0	Di-n-octylpht	halate				400	U	
	Benzo(b) fluor					400	U	
	Benzo(k) fluor			1		400	U	
	Benzo (a) pyren		<u></u>			400	U	
	Indeno (1, 2, 3-					400	U	
	Dibenzo (a, h) a					400	U	
	Benzo(g,h,i)p					130	J	
	separated from D	-	ne	l			l	

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

WRSV07S1

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: ME1282

Matrix: (soil/water) SOIL

Lab Sample ID: E1282-02B

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: S1F0215

Level: (low/med) LOW Date Received: 08/23/06

% Moisture: 17

decanted: (Y/N) N

Date Extracted: 08/25/06

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 09/07/06

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

Number TICs found: 17

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

WRSV07S1DL

Lab Name: MITKEM CORPORATION Contract:

GPC Cleanup: (Y/N) N pH: ___

Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME1282

Matrix: (soil/water) SOIL Lab Sample ID: E1282-02BDL

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S1F0264

Level: (low/med) LOW Date Received: 08/23/06

% Moisture: 17 decanted: (Y/N) N Date Extracted: 08/25/06

Concentrated Extract Volume: 1000(uL) Date Analyzed: 09/11/06

Injection Volume: 1.0(uL) Dilution Factor: 2.0

Lijectich volume.

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG O

CAS NO.	COMPOUND (ug/L or ug	7 297	OW) 102	<u>.</u>
108-95-2	Phenol		800	ט
	bis(2-Chloroethyl)Ether	'	800	U
	2-Chlorophenol	•	800	U
	1,3-Dichlorobenzene	' [800	U
	1,4-Dichlorobenzene	'	800	ט
	1,2-Dichlorobenzene	1	800	U
95-48-7	2-Methylphenol		800	U
108-60-1	2,2'-oxybis(1-Chloropropane)	`	800	ប
	4-Methylphenol		800	U
621-64-7	N-Nitroso-di-n-propylamine	`	800	U
67-72-1	Hexachloroethane		800	ט
	Nitrobenzene		800	U
	Isophorone	1	800	שׁ
	2-Nitrophenol	1	800	U
105-67-9	2,4-Dimethylphenol	•	800	U
120-83-2	2,4-Dichlorophenol	١.	800	U
	1,2,4-Trichlorobenzene	•	800	ט
	Naphthalene	•	800	ש
	4-Chloroaniline	-	800	U
	Hexachlorobutadiene	•	800	U
	bis(2-Chloroethoxy) methane	•	800	U
	4-Chloro-3-Methylphenol	- [800	U
	2-Methylnaphthalene	- [13000	D
77-47-4	Hexachlorocyclopentadiene	-1	800	U
	2,4,6-Trichlorophenol	-	800	U
	2,4,5-Trichlorophenol	"	1600	ט
91-58-7	2-Chloronaphthalene	-	800	U
	2-Nitroaniline	-	1600	ש
	Dimethylphthalate	٦	800	υ
	Acenaphthylene	-	800	U
	2,6-Dinitrotoluene	7	800	U
	3-Nitroaniline	-	1600	ΰ
	Acenaphthene	-[800	U
83-32-9	Acenaphthene	_	800	<u>"</u>

FORM I SV-1

OLM03.0

EPA SAMPLE NO.

WRSV075LDL

Lab Name: MITKEM CORPORATION

Contract:

SDG No.: ME1282

Lab Code: MITKEM

Case No.:

SAS No.:

Lab Sample ID: E1282-02BDL

Matrix: (soil/water) SOIL

Lab File ID:

Sample wt/vol:

30.0 (g/mL) G

S1F0264

Level: (low/med) LOW

Date Received: 08/23/06

% Moisture: 17

decanted: (Y/N) N

Date Extracted: 08/25/06

Concentrated Extract Volume:

1000 (uL)

Date Analyzed: 09/11/06

Injection Volume:

1.0 (uL)

Dilution Factor: 2.0

GPC Cleanup:

(Y/N) N

pH:

CAS NO.	COMPOUND	CONCENTRATION UI (ug/L or ug/Kg)		· Q	
51-28-5	2,4-Dinitropl	henol.	1600 1600		
	100-02-74-Nitrophenol				
	132-64-9Dibenzofuran				
121-14-2	121-14-22,4-Dinitrotoluene				
84-66-2	84-66-2Diethylphthalate				
7005-72-3-	4-Chlorophen	vl-phenylether	800	U	

7005-72-3----4-Chlorophenyl-phenylether 86-73-7-----Fluorene 100-01-6----4-Nitroaniline 534-52-1----4,6-Dinitro-2-methylphenol 86-30-6----N-Nitrosodiphenylamine_(1) 101-55-3----4-Bromophenyl-phenylether 118-74-1----Hexachlorobenzene 87-86-5-----Pentachlorophenol 85-01-8-----Phenanthrene 120-12-7-----Anthracene 86-74-8-----Carbazole 84-74-2-----Di-n-butylphthalate 206-44-0----Fluoranthene

800 U 1600 U 1300 D 800 T 800 U 800 U 400 DJ 1400 D 800 U 85-68-7-----Butylbenzylphthalate 800 U 340 DJ 310 DJ

91-94-1----3,37-Dichlorobenzidine 56-55-3-----Benzo (a) anthracene 218-01-9-----Chrysene 117-81-7----bis(2-Ethylhexyl)phthalate

129-00-0-----Pyrene

117-84-0-----Di-n-octylphthalate 205-99-2-----Benzo (b) fluoranthene 207-08-9-----Benzo (k) fluoranthene

50-32-8-----Benzo (a) pyrene 193-39-5-----Indeno (1, 2, 3-cd) pyrene

53-70-3-----Dibenzo (a, h) anthracene 191-24-2----Benzo(g,h,i) perylene

2600 D 800 U 250 DJ 800 U 800 T 800 U

440 DJ

1600 U

1600 U

800 U 800 U

800 U 800 U

(i) - Cannot be separated from Diphenylamine

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

WRSV07S1DL

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: ME1282

Matrix: (soil/water) SOIL

Lab Sample ID: E1282-02BDL

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: S1F0264

Level:

(low/med) LOW Date Received: 08/23/06

% Moisture: 17

decanted: (Y/N) N

Date Extracted: 08/25/06

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 09/11/06

Injection Volume: 1.0(uL)

Dilution Factor: 2.0

GPC Clearup: (Y/N) N

рH: ___

Number TICs found: 19

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 526-73-8 2. 934-80-5 3. 4. 5. 535-77-3 6. 2870-04-4 7. 95-93-2 8. 3454-07-7 9. 10. 11. 1595-16-0 12. 4706-90-5 13. 700-12-9 14. 15. 4175-53-5 16. 17. 90-12-0 18. 581-40-8 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.	BENZENE, 1,2,3-TRIMETHYL- BENZENE, 4-EIHYL-1,2-DIMETHY UNKNOWN UNKNOWN BENZENE, 1-METHYL-3-(1-METHY BENZENE, 2-EIHYL-1,3-DIMETHYL BENZENE, 1,2,4,5-TEIRAMETHYL BENZENE, 1-EIHENYL-4-EIHYL- UNKNOWN UNKNOWN BENZENE, 1,3-DIMETHYL-5-(1-M BENZENE, 1,3-DIMETHYL-5-(1-M BENZENE, PENTAMETHYL- UNKNOWN 1H-INDENE, 2,3-DIHYDRO-1,3-D UNKNOWN NAPHTHALENE, 1-METHYL- NAPHTHALENE, 2,3-DIMETHYL- UNKNOWN	8.95 9.27 9.39 9.62 9.67 9.74 10.12 10.53 10.66 10.76 11.01 11.12	6900 4200 4300 9400 3000 3400 6000 2500 1400 4100 1500 1400 3800	9999999999999999999999999999999999999
30				

SEMIVOLATTLE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

WRSV07S1MS

Lab Name: MITKEM CORPORATION

Lab Code: MITKEM Case No.:

Contract:

SDG No.: ME1282 SAS No.:

Matrix: (soil/water) SOIL

Lab Sample ID: E1282-02BMS

Sample wt/vol: 30.3 (g/mL) G

Lab File ID: S1F0216

Level: (low/med)

LOW

Date Received: 08/23/06

% Moisture: 17

decanted: (Y/N) N

Date Extracted: 08/25/06

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 09/07/06

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

CONCENTRATION UNITS:

GPC Cleamup: (Y/N) N

pH: ____

CAS NO.	COMPOUND (ug/l	or ug/Kg) UG/KG	Q
108-95-2		110	
111-44-4	bis(2-Chloroethyl)Ethe	<u>ir</u> 110	0
95-57-8	2-Chlorophenol	130	
541-73-1	1,3-Dichlorobenzene	120	0
106-46-7	1,4-Dichlorobenzene	1.20	0
95-50-1	1,2-Dichlorobenzene	1.40	0
	2-Methylphenol	130	0
108-60-1	2,2'-oxybis(1-Chlorop	ropane) 130	0
106-44-5	4-Methylphenol	130	0
621-64-7	·N-Nitroso-di-n-propyla	amine 160	0
	Hexachloroethane	200	0
98-95-3	·Nitrobenzene	1.60	0
78-59-1	Isophorone	140	0
	2-Nitrophenol	130	0
	2,4-Dimethylphenol	150	0
	2,4-Dichlorophenol	150	0
120-82-1	1,2,4-Trichlorobenzene	3 140	0
	Naphthalene	1.80	0
	4-Chloroaniline	75	0
	Hexachlorobutadiene	140	0
	bis(2-Chloroethoxy) met	hane 160	0
	4-Chloro-3-Methylphen		0
	2-Methylnaphthalene		OE
	Hexachlorocyclopentad	iene 5	9 J
	2,4,6-Trichlorophenol	160	0
	2,4,5-Trichlorophenol	150	0
	2-Chloronaphthalene	140	
	2-Nitroaniline	1.50	
	Dimethylphthalate	140	
	Acenaphthylene	140	00
	2,6-Dinitrotoluene	1.50	
	3-Nitroaniline	120	i
	Acenaphthene	150	

FORM I SV-1

OLM03.0

EPA SAMPLE NO.

WRSV07S1MS

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME1282

Matrix: (soil/water) SOIL Lab Sample ID: K1282-02BMS

Sample wt/vol: 30.3 (g/mL) G Lab File ID: S1F0216

Level: (low/med) LOW Date Received: 08/23/06

% Moisture: 17 decanted: (Y/N) N Date Extracted: 08/25/06

Concentrated Extract Volume: 1000(uL) Date Analyzed: 09/07/06

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/kg) UG/kG C

51-28-52,4-Dinitrophenol	610	J
100-02-74-Nitrophenol	1800	
132-64-9Dibenzofuran	1400	
121-14-22,4-Dinitrotoluene	1500	
84-66-2Diethylphthalate	1400	
7005-72-34-Chlorophenyl-phenylether	1300	
86-73-7Fluorene	1500	•
100-01-64-Nitroaniline	1400	
534-52-14,6-Dinitro-2-methylphenol	890	•
86-30-6N-Nitrosodiphenylamine (1)	2700	
101-55-34-Bromophenyl-phenylether	1500	
118-74-1Hexachlorobenzene	1500	
87-86-5Pentachlorophenol	1200	
85-01-8Phenanthrene	2200	l
120-12-7Anthracene	1600	
86-74-8Carbazole	1800	
84-74-2Di-n-butylphthalate	1400	
206-44-0Fluoranthene	1000	
129-00-0Pyrene	3700	
85-68-7Butylbenzylphthalate	2000	
91-94-13,3'-Dichlorobenzidine	590	
56-55-3Benzo (a) anthracene	1600	
218-01-9Chrysene	1500	
117-81-7bis(2-Ethylhexyl)phthalate	3000	
117-84-0Di-n-octylphthalate	1900	
205-99-2Benzo (b) fluoranthene	1700	
207-08-9Benzo (k) fluoranthene	1800	***************************************
50-32-8Benzo (a) pyrene	1500	
193-39-5Indeno (1, 2, 3-cd) pyrene	1200	
53-70-3Dibenzo (a, h) anthracene	1200	
191-24-2Benzo(g,h,i)perylene	1300	

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

WRSV07S1MSD

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.:

SAS No.: SDG No.: ME1282

Matrix: (soil/water) SOIL

Lab Sample ID: E1282-02BMSD

Sample wt/vol: 30.2 (g/mL) G Lab File ID: S1F0217

Level: (low/med) LOW

Date Received: 08/23/06

% Moisture: 17 decanted: (Y/N) N Date Extracted: 08/25/06

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/07/06

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

CAS NO.	COMPOUND	CONCENTRAT			Ω
108-95-2	Phenol			1700	
	bis(2-Chloroethyl	\Ether		1500	
	2-Chlorophenol	,	-	1700	
	1,3-Dichlorobenze	ne		1400	
	1,4-Dichlorobenze		-	1500	
	1,2-Dichlorobenze			1600	
	2-Methylphenol			1800	
	2.2'-oxybis(1-Chl	oropropane	<u> </u>	1600	
	4-Methylphenol	T T	1	1800	***************************************
	N-Nitroso-di-m-pr	opylamine		2100	-
	Hexachloroethane	+	-	2000	
98-95-3	Nitrobenzene			2100	
78-59-1	Isophorone		<u> </u>	1800	***************************************
88-75-5	2-Nitrophenol	·····		1800	
105-67-9	2,4-Dimethylpheno	1		2000	
120-83-2	2,4-Dichloropheno	1	_	1900	
120-82-1	1,2,4-Trichlorobe	nzene		1700	
91-20-3	Naphthalene			2200	
106-47-8	4-Chloroaniline			950	
87-68-3	Hexachlorobutadie	ne	}	1700	
111-91-1	bis(2-Chloroethox	y) methane		2100	
59-50-7	4-Chloro-3-Methyl	phenol		2100	
91-57-6	2-Methylnaphthale	ne		11000	E
	Hexachlorocyclope			390	U
	2,4,6-Trichloroph			2000	
	2,4,5-Trichloroph			2000	
	2-Chloronaphthale	ne	_}	1800	
	2-Nitroaniline			2100	
	Dimethylphthalate			2000	
	Acenaphthylene			1800	
	2,6-Dinitrotoluen	ee		2100	
	3-Nitroaniline			1500	
83-32-9	Acenaphthene			1900	

FORM I SV-1

EPA SAMPLE NO.

WRSV07S1MSD

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME1282

Matrix: (soil/water) SOIL Lab Sample ID: E1282-02BMSD

Sample wt/vol: 30.2 (g/mL) G Lab File ID: S1F0217

Level: (low/med) LOW Date Received: 08/23/06

% Moisture: 17 decanted: (Y/N) N Date Extracted:08/25/06

Concentrated Extract Volume: 1000(uL) Date Analyzed: 09/07/06

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

51-28-5	CAS NO.	COMPOUND	CONCENTRA (ug/L or	****** ***** **** ****		Q
121-14-22,4-Dinitrotoluene 2400 84-66-2Diethylphthalate 2000 7005-72-34-Chlorophenyl-phenylether 1700 86-73-7Fluorene 1900 100-01-64-Nitroaniline 2000 534-52-14,6-Dinitro-2-methylphenol 1500 86-30-6N-Nitrosodiphenylamine 11 101-55-3	100-02-7	4-Nitrophenol			2900	
1900 100-01-6	121-14-2	2,4-Dinitroto	Late		2400 2000	
86-30-6N-Nitrosodiphenylamine (1) 3400 101-55-3	86-73-7	Fluorene	ne		1900 2000	
87-86-5	86-30-6	N-Nitrosodipl	uenylamine_(l)		3400	
86-74-8Carbazole 2400 84-74-2Di-n-butylphthalate 1800 206-44-0Fluoranthene 1400 129-00-0Pyrene 4400 85-68-7Butylbenzylphthalate 2800 91-94-13,3'-Dichlorobenzidine 830 56-55-3	87-86-5	Pentachloroph			1500	
206-44-0	86-74-8	Carbazole	:halate		2400	**************************************
91-94-13,3'-Dichlorobenzidine 830 56-55-3Benzo(a) anthracene 2000 218-01-9Chrysene 2000 117-81-7bis (2-Ethylhexyl) phthalate 3700 117-84-0Di-n-octylphthalate 2800 205-99-2Benzo(b) fluoranthene 2400 207-08-9Benzo(k) fluoranthene 2400 50-32-8Benzo(a) pyrene 2000 193-39-5Indeno(1,2,3-cd) pyrene 1500 53-70-3Dibenzo(a,h) anthracene 1400	206-44-0 129-00-0	Fluoranthene			4400	
117-81-7bis (2-Ethylhexyl) phthalate 3700 117-84-0	91-94-1 56-55-3	3,3 ³ -Dichlord Benzo(a) anth	obenzidine		2000	
207-08-9Benzo (k) fluoranthene 2400 50-32-8Benzo (a) pyrene 2000 193-39-5Indeno (1,2,3-cd) pyrene 1500 53-70-3Dibenzo (a,h) anthracene 1400	117-81-7	bis(2-Ethylhe	chalate	3	2800	
53-70-3Dibenzo (a,h) anthracene 1400	207-08-9	Benzo (k) fluo: Benzo (a) pyrei	canthene ne		2400 2000	
	53-70-3	Dibenzo(a,h)a	anthracene		1400	

FORM I SV-2

(1) - Cannot be separated from Diphenylamine

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

WRSV06S1

Lab Name: Mitkem Corporation

Contract: 002699.1D

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: ME1282

Matrix (soil/water): SOIL

Lab Sample ID: E1282-01

Level (low/med):

MED

Date Received: 08/23/06

% Solids:

79.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

			·		
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	18900	1		Þ
7440-36-0	Antimony	0.041	U	N	P
7440-38-2	Arsenic	6.0			P
7440-39-3	Barium	123			₽
7440-41-7	Beryllium	0.93			P
7440-43-9	Cadmium	1.8			₽
7440-70-2	Calcium	44800		*	P
7440-47-3	Chromium	17.6	-		₽
7440-48-4	Cobalt	10.6			Р
7440-50-8	Copper	25.2			P
7439-89-6	Iron	32600			P
7439-92-1	Lead	10.5			P
7439-95-4	Magnesium	8770			P
7439-96-5	Manganese	563			P
7440-02-0	Nickel	23.3		N	P
7440-09-7	Potassium	2580			P
7782-49-2	Selenium	0.049	U	N	₽
7440-22-4	Silver	0.014	U		₽
7440-23-5	Sodium	300		E	P
7440-28-0	Thallium	1.1		N	P
7440-62-2	Vanadium	30.5			P
7440-66-6	Zinc	64.0		N	P
7439-97-6	Mercury	0.022	В		CV

Comme:	nis:
-	
_	

EPA SAMPLE NO

INORGANIC ANALYSIS DATA SHEET

Contract: 002699.1D

WRSV07S1

Lab Name: Mitkem Corporation

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: ME1282

Matrix (soil/water): SOIL

Lab Sample ID: E1282-02

Level (low/med):

MED

Date Received: 08/23/06

% Solids:

83.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	8800		<u> </u>	P
7440-36-0	Antimony	0.041	U	N	P
7440-38-2	Arsenic	5.0			P
7440-39-3	Barium	71.2			P
7440-41-7	Beryllium	0.38			P
7440-43-9	Cadmium	0.49			P
7440-70-2	Calcium	2940		*	P
7440-47-3	Chromium	11.4			P
7440-48-4	Cobalt	5.3			P
7440-50-8	Copper	13.6			P
7439-89-6	Iron	15700			P
7439-89-6	Iron	13900			P
7439-92-1	Lead	422			₽
7439-95-4	Magnesium	2490			Ъ
7439-96-5	Manganese	267			P
7440-02-0	Nickel	12.7		N	P
7440-09-7	Potassium	648			P
7782-49-2	Selenium	0.049	U	N	₽
7440-22-4	Silver	0.014	IJ		P
7440-23-5	Sodium	48.7		E	P
7440-28-0	Thallium	0.77		N	₽
7440-62-2	Vanadium	20.3			₽
7440-66-6	Zinc	66.9		N	P
7439-97-6	Mercury	0.088			CA

Comm	ents:	

3 BLANKS

Lab Name: Mitkem Corporation

Contract: 002699.1D14.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: ME1282

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

	Initial Calib. Blank		Cor		uing Cal: Lank (ug,		on		Prepa- ration			
Analyte	(ug/L)	C	1	C	2	С	3	С	Blank	С	ĺ	M
Mercury	0.047	ū	0.047	U	0.04	ט 7	0.04	7 ס	0.00	7 0		

3 BLANKS

Lab Name: Mitkem Corporation

Contract: 002699.1D14.02

Lab Code: MITKEM

TKEM Case No.

SAS No.:

SDG No.: ME1282

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

Analyte	Initial Calib. Blank (ug/L)	С	Con	Prepa- ration Blank	C		M					
Aluminum	14.0	U	14.0	ש	14.0	п	14.0	U	1.521	B	Н	·
Antimony	4.5		3.1	В	4.2		2.5	В	0.056	4		1
Arsenic	1.6	1	1.6	0	1.6		1.6	Ū	0.076			1
Barium	2.1		2.1	Ü	2.1	•	2.1	Ū	0.130	1		
Beryllium	0.2		0.2	U	0.2		0.2	Ü	0.006	1	Н	1
Cadmium	-0.1		0.1	Ū	0.1		0.1	U	0.005	U		
Calcium	33.0	U	41.6	В	33.0	U	33.0	ם	4.495	В		
Chromium	0.4	Ū	0.4	ט	0.4		0.4	บ	0.019	В		
Cobalt	0.5	В	0.8	В	0.8		0.6	В	0.034	В		,
Copper	6.3	Ū	6.3	Ū	6.3	Ų	6.3	ŭ	0.210	ם		
Iron	19.0	U	82.4	В	93.5	В	59.2	В	8.031	В		
Lead	-0.5	B	0.5	В	1.1	В	0.5	В	0.041	U		
Magnesium	20.0	ซ	73.1	В	115.1	В	60.8	В	22.648	В		
Manganese	1.8	U	1.8	Ū	1.8	U	1.8	U	0.101	В		į
Nickel	0.9	В	1.1	В	1.2	В	0.9	В	0.077	В		
Selenium	2.1	В	1.0	U	1.0	U	1.1	В	0.128	В		
Silver	0.9	U	0.9	U	0.9	U	0.9	U	0.019	U		
Thallium	2.8	В	2.1	В	3.8	В	2.0	В	0.079	U		
Vanadium	0.5	ט	0.5	ט	0.5	U	0.5	ט	0.021	U		
Zinc	4.3	В	5.7	В	7.4	В	6.0	В	0.244	B		

3 BLANKS

Lab Name: <u>Mitkem Corporation</u>

Contract: <u>002699.1D14.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: ME1282

Preparation Blank Matrix (soil/water):

Preparation Blank Concentration Units (ug/L or mg/kg):

Analyte	Initial Calib. Blank (ug/L)	С	Con 1	Prepa- ration Blank	С	м					
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Selenium Silver Thallium Vanadium Zinc			14.0 4.0 1.6 2.1 0.2 0.1 60.2 1.0 6.3 87.8 0.5 112.9 1.8 1.3 2.4 0.9 4.1 0.5 8.4	BUUUUUBUBUBBU							PPPPPPPPPPPPPPPPPP

3 BLANKS

Lab Name: Mitkem Corporation

Contract: 002699.1D14.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: ME1282

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

The same of the sa	Initial Calib. Blank		Con	Prepa- ration								
Analyte	(ug/L)	С	1	С	2	С	3	C	Blank C	:	M	1
Potassium Sodium	160.0 130.0	"	160.0 130.0	I " I	160.0 130.0		160.0 130.0	u U	4.600 0 7.500 0	- 1	The state of the s	

3 BLANKS

Lab Name: Mitkem Corporation

Contract: 002699.1D14.02

Lab Code: MITKEM

TKEM Case No.

SAS No.:

SDG No.: ME1282

Preparation Blank Matrix (soil/water):

Preparation Blank Concentration Units (ug/L or mg/kg):

	Initial Calib. Blank		Con	Prepa- ration								
Analyte	(ug/L)	C	1	¢	2	C	3	C	Blank	C		M
Aluminum	14.0	ט	14.0	σ	14.0	U				T	7	\neg
Calcium	33.0	ש	33.0	ט	33.0	Ū					1	
Iron	19.0	ם	19.0	ם	19.0	U						
	·							i				