March 2022 Soil Vapor Intrusion Sampling Event Summary Report

Korkay, Inc.
Site No. 5-18-014
Work Assignment No. D009803-17

March 2022 Soil Vapor Intrusion Sampling Event Summary Report

Korkay, Inc.
Site No. 5-18-014
Work Assignment No. D009803-17

Contents

1.0 Introduction 1-1
2.0 Project Background 2-1
3.0 Scope of Work 3-1
4.0 Methodology 4-1
5.0 Results. 5-1
6.0 Conclusions 6-1
7.0 References 7-1
List of FiguresFigure 1 Site Location PlanFigure 2 Site Map
List of TablesTable 1 Soil Vapor/Indoor Air Analytical Data

List of Appendices

Appendix A Laboratory Analytical Report and Data Usability Summary Report - Redacted Appendix B Indoor Air Quality Questionnaire and Building Inventory - Redacted

Acronyms and Abbreviations

COCs	Site Contaminants of Concern
DUSR	Data Usability Summary Report
ISCO	In Situ Chemical Oxidation
Korkay	Korkay, Incorporated
NYSDEC	New York State Department of Conservation
NYSDOH	New York State Department of Health
PCE	Tetrachloroethylene
ROD	Record of Decision
SVE	Soil Vapor Extraction
SVI	Soil Vapor Intrusion
SVOCs	Semi-Volatile Organic Compounds
TVOCs	Total Volatile Organic Compounds
$\mu g /{ }^{3}$	Micrograms per cubic meter
USEPA	United States Environmental Protection Agency
VOCs	Volatile Organic Compounds

1.0 Introduction

This report documents the soil vapor intrusion (SVI) sampling event conducted in March 2022 at the Korkay Inc. Site (Site No. 5-18-014), located at 70 West Main Street in the Village of Broadalbin, Fulton County, New York (Figure 1). The sampling was conducted for Work Assignment No. D009803-17 of the State Superfund Standby Contract between the New York State Department of Environmental Conservation (NYSDEC) and AECOM USA, Inc. (AECOM).

The SVI sampling event was performed at the request of NYSDEC and the New York State Department of Health (NYSDOH) to evaluate if volatile organic compound (VOC) contamination in groundwater at the Korkay Inc. site (Site) is impacting the sub-slab soil vapor and/or indoor air of nearby residential and commercial structures. This SVI sampling event generally repeated two similar events completed in March 2017 and March 2019. As part of this 2022 event, SVI sampling was conducted at four (4) structures which are located adjacent to or in the immediate vicinity of the Korkay Site. A Site Plan (Figure 2) shows the Korkay Site and surrounding area. This report describes the SVI sampling event and presents and interprets analytical results for the sampling.

2.0 Project Background

Korkay, Inc. was a supplier of detergents, solvents, and degreasers to the automotive industry from 1969 to 1980. Releases of chemicals at the Site contaminated soil and groundwater. Site Contaminants of Concern (COCs) in soil and groundwater as identified in the Site Record of Decision (ROD) include various volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and pesticides. Remedial actions undertaken in accordance with the ROD by NYSDEC and NYSDOH included the excavation and removal of contaminated surface soil, air sparging, combined with soil vapor extraction (SVE), imposition of deed restrictions and Site environmental monitoring. These actions were found to have been somewhat effective in reducing Site contamination, although subsurface soil and groundwater impacts still exist.

Groundwater investigations were conducted at the Site in July 2014 and August 2015 using directpush drilling technology with the collection and analysis of grab groundwater samples. The purpose of the investigations was to further delineate and characterize on-Site and off-Site dissolved-phase groundwater impacts. In September 2015, 8 new monitoring wells (MW-17 through MW-24) were installed to aid in monitoring the nature and extent of groundwater impacts on and off Site.

A supplemental remedial action, consisting of in-situ chemical oxidation (ISCO) injection, was conducted in October 2015. The purpose of the ISCO injection was to attempt to further remediate residual soil and groundwater contamination to meet the remedial goals established for the Site. The remediation included the installation of 95 injection points. The points were installed with a direct push Geoprobe® unit. The oxidant that was used was activated persulfate, specifically, PersulfOx® from Regenesis Remediation Services. This oxidant has been shown to effectively reduce VOC mass, and has been shown to degrade some pesticides as well. PersulfOx $®$ is a catalyzed persulfate which does not require any additional activation. The PersulfOx® was applied concurrently with oxygen release compound Advanced (ORC-A®), a product that provides a sustained release of oxygen which will allow for polishing of COCs through aerobic bioremediation.

Between October 2015 and June 2017, eight (8) groundwater sampling events were conducted at the Site to evaluate the effects of the ISCO remedial action performed in October 2015. From the results of those sampling events it was concluded that the lateral extent of significant TVOC plume concentrations (i.e., greater than $1,000 \mu \mathrm{~g} / \mathrm{L}$) decreased following the ISCO treatment, however the concentration in the former source area in the southwest quadrant of the Site was found to remain relatively static and significantly above AWQS.

In March 2017, a NYSDEC Callout contractor (Aztech Technologies) completed soil vapor intrusion sampling at seven (7) structures located adjacent to or in the immediate vicinity of the Site. The results of that sampling event were presented in the Soil Vapor Intrusion Summary Report (Aztech, 2017). Based on a comparison of the sampling results to the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006) decision matrices, recommendations were provided to implement mitigation actions at one structure and to monitor another structure.

In March 2019, AECOM completed soil vapor intrusion sampling at six (6) structures located adjacent to or in the immediate vicinity of the Site. The results of that sampling event were presented in the March 2019 Soil Vapor Intrusion Sampling Event Summary Report (AECOM, 2019). Based on a comparison of the sampling results to the NYSDOH decision matrices (NYSDOH, 2017), recommendations were provided to identify the sources of methylene chloride in the basement of one structure and then resample or mitigate the structure.

In May 2019, AECOM conducted a groundwater sampling event where all twenty monitoring wells were sampled. Groundwater samples were analyzed for VOCs, SVOCs, organochlorine pesticides, and Per- and Polyfluoroalkyl Substances (PFAS). Samples from four wells located directly downgradient of the Site were also analyzed for 1,4-Dioxane at this time.

In June 2021, AECOM conducted a groundwater sampling event where all twenty monitoring wells and sediment in Kennyetto Creek were sampled. Groundwater and surface water samples were analyzed for VOCs, SVOCs, organochlorine pesticides, Per- and Polyfluoroalkyl Substances, and 1,4Dioxane. The sediment samples from Kennyetto Creek were analyzed for VOCs, SVOCs, and organochlorine pesticides.

3.0 Scope of Work

The purpose of the SVI sampling event was to collect and evaluate air sample data for indications that VOC contamination in groundwater at the Korkay Site may pose a threat to the indoor air quality of residences and businesses adjacent to the site, via a soil vapor intrusion migration pathway. This sampling event was completed in March 2022. This March 2022 event was intended to generally duplicate the events completed in March 2017 and March 2019; however, Structures 1 and 6 were inaccessible during the March 2022 sampling event and therefore were not sampled.

The SVI sampling event included:

- Collecting basement sub-slab soil vapor, basement and/or first floor indoor air, and ambient outdoor air samples;
- Interviewing property owners and completing NYSDOH Indoor Air Quality and Building Inventory questionnaires for each structure;
- Laboratory analysis and data quality review;
- Sample data review and preparation of this summary report to document the results of the sampling event.

4.0 Methodology

The four structures that were sampled during this event are located adjacent to or in the immediate vicinity of the Korkay Site, and VOC impacted groundwater associated with the Korkay Site. The sampling event was completed March 29-30, 2022. All sampling was conducted in accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, (NYSDOH, 2006), and the most recently updated soil vapor intrusion decision matrices (NYSDOH, 2017).

As previously described, soil vapor intrusion sampling was conducted at four residential or commercial structures. The laboratory analytical results and building inventory questionnaires from the sampling event were provided separately to NYSDEC and NYSDOH so that they could determine an appropriate course of action for each structure, if necessary, in consultation with the property owners. To maintain the confidentiality of the private property owners where the sampling was conducted, the four sampling locations are presented in this report with the following anonymous location identifications:

- \quad Structure 2

- Structure 3
- Structure 4
- \quad Structure 5

Also in this report, all air sample ID numbers in the laboratory analytical report and the data usability summary report, and the property address information on the NYSDOH building questionnaires have been redacted to use the above Structure number identifications.

The goal of the sampling event was to collect basement sub-slab soil vapor and indoor air samples at all structures. A sub-slab soil vapor sample could not be collected at Structure 3 because there was no basement floor slab. At this location two indoor air samples (one basement and one first floor) were collected. One sub-slab soil vapor and one indoor air sample were collected at Structures 2 and 5. Four indoor air samples were collected at Structure 4, due to the size and distribution of interior rooms. A sub-slab soil vapor sample could not be collected at Structure 4 because water was drawn into the sample regulator due to the high groundwater conditions. Outdoor ambient air samples were collected to evaluate background conditions at each structure except for Structure 5. The outdoor air sample collected at Structure 4 is considered to be a representative of background air quality for the sampling completed at Structure 5, as the two structures were sampled over the same period (March 29-30, 2022).

All soil vapor and air samples were collected using laboratory batch certified six-liter Summa® canisters equipped with laboratory-calibrated flow regulator valves to collect the samples over a 24hour period. One quality assurance/quality control sample was collected during the sampling event; a duplicate sample was collected with indoor air sample IA-2 at Structure 3. Upon collection, the soil vapor and air samples were submitted to ConTest Laboratories Longmeadow, MA laboratory for analysis of VOC's by EPA Method TO-15.

ConTest generated a United States Environmental Protection Agency (USEPA) Level IV report and NYSDEC EQuIS® electronic data deliverable file for the SVI sample results. Environmental Data Services, an AECOM Standby contractor, evaluated the laboratory report and prepared a Data Usability Summary Report (DUSR) to determine whether or not the data meets the project criteria for data quality and usability.

5.0 Results

Table 1 provides a summary of the soil vapor and air sample laboratory TO-15 analytical results. The laboratory analytical report and the DUSR are included in Appendix A. The DUSR reported the laboratory report to be a complete Category B data package as defined under the requirements for the NYSDEC Analytical Services Protocol, and there were no rejections of data. The building inventory questionnaires are included in Appendix B. As noted previously, the sample identification numbers and property address information in the laboratory report, DUSR, building inventory questionnaires, and Table 1, have been redacted with the structure identification numbers listed in Section 4.

Comparison of the analytical results (Table 1) to the guidance criteria (NYSDOH, 2017) show that except for Structure 5, none of the sample results meet NYSDOH decision matrix criteria for further action. For Structure 5, the laboratory reported a detection of tetrachloroethylene (PCE) at a concentration of $1,100 \mu \mathrm{~g} / \mathrm{m}^{3}$ in sample SS1 (sub-slab soil vapor) and $48 \mu \mathrm{~g} / \mathrm{m}^{3}$ in sample IA1 (indoor air). These sample results meet the NYSDOH guidance criteria to warrant implementation of mitigation measures (i.e., Matrix B compounds in sub-slab soil vapor above $1,000 \mu \mathrm{~g} / \mathrm{m}^{3}$, regardless of indoor air concentration).

6.0 Conclusions

Based on the comparison of the soil vapor intrusion laboratory analytical results to the NYSDOH decision matrices, AECOM concludes that:

- \quad Consideration should be given to implement soil vapor intrusion mitigation measures in Structure 5 to address the detected PCE concentrations in the sub-slab soil vapor. It should be noted that historical groundwater monitoring at the Korkay Site indicates VOC impacts in groundwater do not extend beneath Structure 5, and PCE (or other target VOCs) have generally not been detected in shallow groundwater monitoring well MW-8S, located near Structure 5. Based on this, the PCE detected in the Structure 5 sub-slab soil vapor and indoor air samples may reflect on-going operations at this location and not impact from the Korkay Site.
- No other actions are necessary at this time.

7.0 References

AECOM, 2019 March 2019 Soil Vapor Intrusion Sampling Event Summary Report. July.
Aztech, 2017 Soil Vapor Intrusion Summary Report. July.
NYSDOH, 2006 New York State Department of Health (NYSDOH). Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October.
NYSDOH, 2017 New York State Department of Health (NYSDOH). Updates to Soil Vapor/Indoor Air Decision Matrices. May.

Figures

Tables

	Sample Location	Structure 2						Structure 3															
	Sample Date	Structure 2 2 S1		Structure 2 IA1		Structure 2 OA1		Structure 3 ${ }^{\text {IA1 }}$															
	Sample io			Structure $31 \mathrm{~A}^{2}$	Structure 3 DUP		Structure 3 OA1																
VOC ($\mathrm{\mu g} / \mathrm{m}^{3}$)	CAS No.																						
NYSDOH Matrix A Compounds																							
Trichloroethylene	79.01-6	<1.1	U	<0.19	U			<0.19	U	0.87		<0.19	U	<0.19	U	0.37							
cis-1,2-Dichloroethylene	156-59-2	<0.79	U	<0.14	U	<0.14	\cup	<0.14	U	<0.14	U	<0.14	U	<0.14									
1,1-Dichloroethylene	75-35-4	<0.79	U	<0.14																			
Carbon Tetrachloride	56-23-5	<1.3	U	0.42		0.44		0.36		0.40		0.35		0.47									
Tetrachloroethylene	127-18-4	<1.4	U	0.35		<0.24	U	0.20	J	0.18	J	0.19	J	<0.24	U								
1,1,1-TTichloroethane	71-55-6	<1.1	U	<0.19	\cup	<0.19	U	<0.19	U	<0.19	U	<0.19	U	<0.19									
Methylene Chloride	75-09-2	<6.9	U	1.4		1.1	1	1.2	J	0.60	J	0.65	J	0.87									
NYSDOH Matrix C Compounds																							
(170.-4																							
Acetone		120		30		7.0		7.4		4.4		5.8		3.5									
Benzene	$71-43-2$	2.0		2.4		0.58		1.3		1.4		1.3		0.46									
Benzyl chloride	100-44-7	<1.0	u	<0.36	UJ	<0.36	U	<0.36	UJ	<0.36	U	<0.36	UJ	<0.36	UJ								
Bromodichloromethane	${ }^{75-27-4}$	<1.3	U	<0.23																			
Bromoform	75-25-2	<2.1	U	<0.36	U																		
Bromomethane	74-83-9	<0.78	U	<0.14																			
1,3-Butadiene		<0.44	U	1.3		<0.077	U																
2 2-Butanone (MEK)	78-93-3	11	J	2.9	J	1.4	J	1.4	J	<4.1	U	1.2	J	<4.1	U								
Carbon Disulfide		<6.2	U	<1.1	u	<1.1	u	<1.1	U	<1.1	U	<1.1	U	<1.1	U								
Chlorobenzene	108-90-7	<0.92	U	<0.16	U	<0.16																	
Chloroethane	75-00-3	<0.53	U	<0.092	U	<0.092	U	<0.092	u	<0.092	U	<0.092	u	<0.092	U								
Chloroform	67-66-3	<0.98	U	0.38		<0.17	U	<0.17	U	<0.17	U	<0.17	U	<0.17									
Chloromethane	74-87-3	<0.83	U	2.3		1.2		1.2		1.1		1.0		1.2									
Cyclohexane	110-82-7	<0.69	U	1.4		<0.12	u																
Dibromochloromethane	124-48-1	<1.7	U	<0.30	u	<0.30																	
1,2-Dibromoethane (EDB)	106-93-4	<1.5	U	<0.27	U	<0.27	U	<0.27	U	<0.27	U	<0.27	U	<0.27	U								
1,2-Dichlorobenzene	95-50-1	<1.2	U	<0.21	U	<0.21																	
1,3-Dichlorobenzene	541-73-1	<1.2	U	<0.21	U																		
1,4 Dichlorobenzene	106-46-7	<1.2	U	<0.21	U																		
Dichlorodifluoromethane (Freon 12)	75-71-8	2.3		2.3		2.4		2.4		2.5		2.4		2.4									
1,1-Dichloroethane	75-34-3	<0.81	u	<0.14	U	<0.14																	
1,2-Dichloroethane	107-06-2	<0.81	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U								
trans-1,2-2.ichloroethylene	156-60-5	<0.79	U	<0.14	U	<0.14																	
1,2-Dichloroporopane	78-87-5	<0.92	U	<0.16																			
Cis-1,3-Dichloropropene	10061-01-5	<0.91	u	<0.16	U																		
Trans-1,3-2ichloropropene	10061-02-6	<0.91	U	<0.16																			
1,2-Dichloro-1, ,1,2,2--tetrafluoroethane (Freon 114)		<1.4	U	<0.24																			
1,4-Dioxane	${ }^{123-91-1}$	<7.2	U	<1.3	\cup	<1.3	U																
Ethanol	64-17-5	22		1600		9.8		110		19		110		6.5									
Ethyl Acetate		<7.2	-	5.5		<1.3	U	1.1	J	<1.3	U	0.96	J	<1.3	U								
Ethylbenzene	100-41-4	3.6		2.1		<0.15	U	0.12	J	0.13	J	0.14	1	0.094									
4 -Ethyltoluene		<0.98	U	0.50	J	<0.17	U	<0.17	U	<0.17	U	<0.17	U	<0.17	U								
Heptane		71		2.2		0.14	J	0.17		0.14	J	0.17		<0.14									
Hexachlorobutadiene	87-68-3	<2.1	U	<0.37	\cup	<0.37	U																
Hexane		9.8	J	5.4		1.1	J	1.3	J	1.1	J	1.1	J	1.1									
2-Hexanone (MBK)		<0.82	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.14	\cup								
Isopropanol		5.8	J	10		1.6	J	1.2	J	0.97	J	0.79	J	0.81									
Methy lett-Butyl Ether (MTBE)	1634-04-4	<0.72	\cup	<0.13	\cup	<0.13	\cup	<0.13	\cup	<0.13	U	<0.13	U	<0.13									
4-Methy-2-pentanone (MBK)	108-10-1	2.1		<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U								
Naphthalene		<1.0	\cup	6.4		<0.18	\cup	0.22		0.17	J	0.23		0.24									
Propene		<14	U	<2.4																			
Styrene	100-42-5	<0.85	U	0.40		<0.15	U	0.11	J	<0.15	U	0.15		<0.15	U								
1,1,2,2-Tetrachloroethane	79-34-5	<1.4	U	<0.24	\checkmark	<0.24	U	<0.24	U	<0.24	U	<0.24	U	<0.24									
Tetrahydrofuran		4.3	J	<1.0	u	0.30	1	0.89	J	0.43	J	0.93	1	0.21									
Toluene	108-88-3	8.7		10.0		0.74		0.84		0.81		0.89		0.55									
1,2,4.-TTrichlorobenzene	120-82-1	<1.5	\cup	<0.26	UJ	<0.26	u	<0.26	UJ	<0.26	UJ	<0.26	UJ	<0.26	UJ								
1,1,2-TTrichloroethane	${ }^{79-00-5}$	<1.1	U	<0.19	\cup	<0.19	\cup	<0.19	\cup	<0.19	\checkmark	<0.19	\cup	<0.19									
Trichlorofluoromethane (Freon 11)	${ }^{75-69.4}$	3.1	J	4.3		1.3		1.5		1.3		1.4		1.3									
1,1,2-TTichloro-1,2,2,-tifituoroethane (Freon 113)	76-13-1	<6.1	U	0.65	I	0.58	J	0.59	J	0.63	J	0.60	J	0.60	J								
1,2,4,-Trimethylbenzene	${ }^{95-63-6}$	3.9		1.5		0.11	J	0.11	J	0.079	J	<0.17	U	0.099	1								
1 1,3,5-Trimethylibenzene	108-67-8	2.7		0.44		<0.17	U	<0.17	U	<0.17	U	<0.17	U	<0.17	\cup								
Vinyl Acetate		<14	\cup	<2.5	u	<2.5	\cup	<2.5	\cup	<2.5	\cup	<2.5	U	<2.5	\cup								
mep-XYene	179601-23-1	12		8.7		0.29	J	0.39		0.39		0.38		0.27	J								
o-xylene	95-47-6	3.7		3.9		0.12		0.14	J	0.14	J	0.15	,	0.100									

DTES:
Con ArirsS - Subssab sol vaporlOA - Outdor Ambient ar

- Compound was not detected a th
BoLD. The compound was defected

Estimeded concentration, greater than MDL. less than BL
Woune

Broadalibin, NY
March 2022

Sample Location Sample Date		Structure 4											Structure 5																		
	Sample id	Structure 4 SS ${ }^{\text {a }}$	Structure 4/A1		Structure 41 A 2		Structure 4 1A3		Structure 4 1 A 4		Structure 4 OA1		Structure 5 SS1		Structure 5 /A1																
VOC ($\mathrm{mg} / \mathrm{m}^{3}$)	CAS No.																														
NYSDOH Matrix A Compounds																															
Trichloroethylene	79001-6		<0.19	U	<1.4	U	<0.19	U																							
Cis-1,2-Dichloroethylene	156-59-2	.	<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U	<1.1	U	<0.14	\cup															
1,1-Dichloroethylene	75-35-4		0.14	U	<0.14	U	<0.14	U	00.14	U	<0.14	\cup	<1.1	U	<0.14	U															
Carbon Tetrachloride	56-23-5		0.49		0.47		0.47		0.46		0.54		<1.7	U	0.43																
NYSDOH Matrix B Compounds																															
Tetrachloroethylene	127-18-4		<0.24	U	<0.24	U	<0.24	U	0.41		<0.24	U	1100		48																
1,1,1-TTichloroethane	71-55-6		<0.19	U	<0.19	U	<0.19	\cup	<0.19	U	<0.19	U	<1.5	\cup	<0.19	\cup															
Methylene Chloride	75-09-2		1.2	J	1.9		1.5		3.8		1.2		<9.3	U	2.3																
NYSDOH Matrix C Compounds																															
Acetone			9.7		6.9		12		10		3.5		50		170																
Benzene	71-43-2		0.47		0.46		0.46		0.63		0.45		0.97		12																
Benzyl chloride	100-44-7	-	<0.36	UJ	<0.36	UJ	<0.36	U	<0.36	UJ	<0.36	UJ	<1.4	U	<0.36	U															
Bromodichloromethane	75-27-4	-	<0.23	U	1.3	1	<0.23																								
Bromoform	75-25-2		<0.36	U	<2.8	U	<0.36	U																							
Bromomethane	74-83-9	-	<0.14	U	<1.0	U	<0.14	U																							
1,3-Butadiene		-	<0.077	U	<0.59	u	<0.077	U																							
2-Butanone (MEK)	78-93-3	.	1.8	J	<4.1	U	1.6	J	1.4	J	<4.1	U	<31	U	4.6																
Carbon Disulitide			<1.1	U	1.8	,	<1.1	U																							
Chlorobenzene	108-90-7	.	<0.16	U	<0.16	U	<0.16	U	<0.16	U	<0.16	-	<1.2	U	<0.16	U															
Chloroethane	75-00-3		<0.092	U	<0.70	U	<0.092	U																							
Chloroform	67-66-3	-	<0.17	U	<0.17	\cup	<0.17	U	<0.17	U	<0.17	U	56		<0.17																
Chloromethane	74-87-3		1.1		1.1		1.1		0.96		1.1		<1.1	U	1.2																
Cyclohexane	110-82-7		<0.12	U	<0.12	U	<0.12	U	0.25		<0.12	U	<0.92	U	18																
Dibromochloromethane	124-48-1		<0.30	U	<2.3	U	<0.30	U																							
1,2-Dibromoethane (EDB)	106-93-4	.	<0.27	U	<0.27	\cup	<0.27	U	<0.27	U	<0.27	U	<2.0	U	<0.27																
1,2-Dichlorobenzene	95-50-1		<0.21	U	<1.6	U	<0.21																								
1,3-Dichlorobenzene	541-73-1		<0.21	U	<1.6	U	<0.21	U																							
1,4 Dichlorobenzene	106-46-7		<0.21	U	<1.6	U	<0.21	U																							
Dichlorodifluoromethane (Freon 12)	75-71-8	.	2.4		2.4		2.5		2.5		2.5		3.6		2.4																
1,1-Dichloroethane	75-34-3		<0.14	U	<1.1	U	<0.14	U																							
1,2-Dichloroethane	107-06-2		<0.14		<0.14	U	<0.14	U	<0.14	U	<0.14	U	<1.1	U	<0.14																
trans-1,2--Dichloroethylene	156-60-5		<0.14	U	<0.14	U	<0.14	U	<0.14	U	1.6		<1.1	U	<0.14	U															
1,2-Dichloropropane	78-87-5	.	<0.16	-	<0.16	U	<0.16	U	<0.16	U	<0.16	U	<1.2	U	<0.16																
Cis-1,3-Dichloropropene	10061-01-5		<0.16	U	<1.2	U	<0.16																								
Trans-1,3.-Dichloropropene	10061-02-6		<0.16	U	<0.16	U	<0.16	U	<0.16	U	<0.16	ט	<1.2	U	<0.16																
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 144)			<0.24	U	<1.9	u	<0.24	U																							
1,4-D.ioxane	123-91-1		<1.3	U	<1.3	U	<1.3	U	<1.3	U	<1.3	U	<9.6	U	<1.3																
Ethanol	64-17-5		170		82		24		8.0		2.7		14	J	140																
Ethyl Acetate			0.69	J	0.65	1	<1.3	U	4.1		<1.3	U	<9.6	U	4.8																
Ethybenzene	100-41-4	-	0.23		0.16		0.13	1	0.34		<0.15	U	4.8		13																
4-Ethyltoluene		.	<0.17	\cup	<0.17	u	<0.17	u	<0.17	U	<0.17	U	2.7		5.2																
Heptane			0.17		0.17		0.16		0.47		<0.14	U	4.6		29																
Hexachlorobutadiene	87-68-3		<0.37	U	<2.8	U	<0.37	\cup																							
Hexane		.	1.1	J	1.2	J	1.2	-	2.6	1	1.2	J	<38	U	46																
2-Hexanone (MBK)			<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U	<1.1	U	<0.14	\cup															
Isopropanol			1.4	J	1.9	J	1.6	J	3.4	J	1.3	J	<26	\checkmark	4.2																
Methy lert-Butyl Ether (MTBE)	${ }^{1634-04-4}$		<0.13	U	<0.13	\cup	<0.13	\cup	<0.13	U	<0.13	\cup	<0.96	\cup	<0.13																
4-Methy-2-pentanone (MIBK)	108-10-1		<0.14	U	<0.14	U	<0.14	\cup	<0.14	u	<0.14	U	<1.1	U	<0.14																
Naphthalene			$\stackrel{<0.18}{<24}$	U	$\stackrel{<0.18}{<24}$	u	<0.18	U		U		u	$\stackrel{1.4}{<1}$	u	2.3																
Propene	100-42-5		<2.4 0.14	U	$\stackrel{<2.4}{0.18}$	U	<2.4	U	<2.4 0.13	U	<2.4	U	$\stackrel{<18}{<1.1}$	U	<2.4	U															
1,1,2,2,-Tetrachloroethane	79-34-5		<0.24	U	<0.24	U	<0.24	U	<0.24	U	<0.24	U	<1.8	U	<0.24																
Tetrahydrofuran			<1.0	U	0.32	J	0.28	1	0.46	J	0.27	J	<7.9	U	<1.0	u															
Toluene	108-88-3		1.4		1.4		1.1		4.8		0.57		14		75																
1,2,4,-TTrichlorobenzene	${ }^{120-82-1}$		<0.26	u	<0.26	U	<0.26	U	<0.26	U	<0.26	u	<2.0	\checkmark	<0.26	U															
1,1,2-TTrichloroethane	79-00-5	.	<0.19	U	<1.5	U	<0.19	U																							
Trichlorofluoromethane (Freon 11)	75-69-4		1.3		1.4		1.3		1.4		1.4		1.9	J	2.0																
1,1,2-TTrichloro-1,2,2,-trifluoroethane (Freon 113)	${ }^{76-13-1}$		0.59	J	0.61	J	0.49	J	0.60	J	0.73	,	<8.2	U	0.64	1															
1, 1,2,-T-Trimethylbenzene	${ }^{95-63-6}$		0.26		0.14	J	<0.17	U	0.20		<0.17	U	13		18																
1,3,5-Trimethylbenzene	108-67-8	.	<0.17	U	<0.17	U	<0.17	U	<0.17	U	<0.17	\checkmark	3.4		4.6																
Viny Actate			2.5 0.78	U	$\stackrel{<2.5}{0.4}$	U	$\stackrel{<2.5}{0.4}$	u	$\stackrel{2.5}{ }$	U	<2.5	\cup	$\stackrel{19}{ }$	\cup																	
	$\left.\right\|_{95-47-6} ^{19601-23-1}$	-	0.78 0.34		0.48 0.19		0.40 0.14	,	1.0 0.36		0.26 0.100	J	2.3		43																

A - Indoor Airss - Sub.slab soil vaporoA - Outdoor Ambient An
U- Compound was not deteceted at the listed reporing init.

- Estimaled concentration, graeater than MDL, less than RL.
wo other structures (Structures 1 and 6) planned tor this event were inaccessible and couid

Appendix A

Laboratory Analytical Report and Data Usability Summary Report - Redacted

Walter Howard
NYDEC_AECOM Environment - Latham, NY
40 British American Blvd.
Latham, NY 12110

Project Location: NY
Client Job Number:
Project Number: 60631025.05.01F
Laboratory Work Order Number: 22D0004

Enclosed are results of analyses for samples as received by the laboratory on March 31, 2022. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raymond J. McCarthy
Project Manager

QA Officer
Katherine Allen

Laboratory Manager
Daren Damboragian

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332
NYDEC_AECOM Environment - Latham, NY
REPORT DATE: 4/14/2022

40 British American Blvd.
Latham, NY 12110 PURCHASE ORDER NUMBER: 141733
ATTN: Walter Howard

PROJECT NUMBER: $\quad 60631025.05 .01 \mathrm{~F}$

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 22D0004

The results of analyses performed on the following samples submitted to Con- Test, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: NY

FIELD SAMPLE \#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Structure 2-OA-1-03302022	22D0004-01	Ambient Air		EPA TO-15	
Structure 2-IA-1-03302022	22D0004-02	Indoor air		EPA TO-15	
Structure 2-SS-1-03302022	22D0004-03	Sub Slab		EPA TO-15	
Structure 3-OA-1-03302022	22D0004-04	Ambient Air		EPA TO-15	
Structure 3-IA-1-03302022	22D0004-05	Indoor air		EPA TO-15	
Structure 3-IA-DUP-03302022	22D0004-06	Indoor air		EPA TO-15	
Structure 3-IA-2-03302022	22D0004-07	Indoor air		EPA TO-15	
Structure 4-IA-1-03302022	22D0004-09	Indoor air		EPA TO-15	
Structure 4-OA-1-03302022	22D0004-10	Ambient Air		EPA TO-15	
Structure 4-IA-2-03302022	22D0004-11	Indoor air		EPA TO-15	
Structure 4-IA-3-03302022	22D0004-12	Indoor air		EPA TO-15	
Structure 4-IA-4-03302022	22D0004-13	Indoor air		EPA TO-15	
Structure 5-SS-1-03302022	22D0004-14	Sub Slab		EPA TO-15	
Structure 5-IA-1-03302022	22D0004-15	Indoor air		EPA TO-15	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA TO-15

Qualifications:

E Reported result is estimated. Value reported over verified calibration range.

Analyte \& Samples(s) Qualified:

Ethanol

B305343-DUP1
R-04 Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting
limit (RL).

Analyse \& Samples(s) Qualified:
4-Ethyltoluene
B305343-DUP1

RL-11 Elevated reporting limit due to high concentration of target compounds.

Analyte \& Samples(s) Qualified:

22D0004-14[69WMainSt-SS-1-03302022]

V-36 Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte \& Samples(s) Qualified:

1,2,4-Trichlorobenzene, Benzyl chloride
B305343-BS1, S070138-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing
I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative
Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 2 -OA-1-03302022
Sample ID: 22D0004-01
Sample Matrix: Ambient Air
Sampled: 3/30/2022 $08: 15$

Analyte	EPA TO-15				$\mathrm{ug} / \mathrm{m} 3$					
	Results	ppbv RL	MDL	Flag/Qual				Dilution	Date/Time Analyzed	Analyst
Acetone	3.0	1.4	0.84		7.0	3.3	2.0	0.698	4/7/22 14:50	BRF
Benzene	0.18	0.035	0.026		0.58	0.11	0.084	0.698	4/7/22 14:50	BRF
Benzyl chloride	ND	0.070	0.031		ND	0.36	0.16	0.698	4/7/22 14:50	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 14:50	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 14:50	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 14:50	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 14:50	BRF
2-Butanone (MEK)	0.46	1.4	0.37	J	1.4	4.1	1.1	0.698	4/7/22 14:50	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 14:50	BRF
Carbon Tetrachloride	0.070	0.035	0.028		0.44	0.22	0.17	0.698	4/7/22 14:50	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 14:50	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 14:50	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 14:50	BRF
Chloromethane	0.56	0.070	0.028		1.2	0.14	0.057	0.698	4/7/22 14:50	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 14:50	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 14:50	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 14:50	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 14:50	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 14:50	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 14:50	BRF
Dichlorodifluoromethane (Freon 12)	0.48	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 14:50	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 14:50	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 14:50	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 14:50	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 14:50	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 14:50	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 14:50	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 14:50	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 14:50	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 14:50	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 14:50	BRF
Ethanol	5.2	1.4	0.62		9.8	2.6	1.2	0.698	4/7/22 14:50	BRF
Ethyl Acetate	ND	0.35	0.18		ND	1.3	0.64	0.698	4/7/22 14:50	BRF
Ethylbenzene	ND	0.035	0.020		ND	0.15	0.088	0.698	4/7/22 14:50	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 14:50	BRF
Heptane	0.033	0.035	0.022	J	0.14	0.14	0.091	0.698	4/7/22 14:50	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 14:50	BRF
Hexane	0.32	1.4	0.18	J	1.1	4.9	0.64	0.698	4/7/22 14:50	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 14:50	BRF
Isopropanol	0.63	1.4	0.24	J	1.6	3.4	0.59	0.698	4/7/22 14:50	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 14:50	BRF
Methylene Chloride	0.31	0.35	0.16	J	1.1	1.2	0.56	0.698	4/7/22 14:50	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 14:50	BRF
Naphthalene	ND	0.035	0.022		ND	0.18	0.12	0.698	4/7/22 14:50	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 14:50	BRF
Styrene	ND	0.035	0.018		ND	0.15	0.078	0.698	4/7/22 14:50	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 14:50	BRF
									Page 4 of 64	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

	ANALYTICAL RESULTS	
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: $3 / 31 / 2022$	Sub Description/Location:	Initial Vacuum(in Hg): -29.5
Field Sample \#: Structure 2	-OA-1-03302022	Canister ID: 1986
Sample ID: 22D0004-01	Canister Size: 6 liter	Final Vacuum(in Hg): -10.5
Sample Matrix: Ambient Air	Flow Controller ID: 3256	Receipt Vacuum(in Hg): -7.6
Sampled: $3 / 30 / 202208: 15$	Sample Type: 24 hr	Flow Controller Type: Fixed-Orifice
		Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$	

Analyte	EPA TO-15				ug/m3					
	Results	ppbv RL	MDL	Flag/Qual				Dilution	Date/Time Analyzed	Analyst
Tetrachloroethylene	ND	0.035	0.027		ND	0.24	0.18	0.698	4/7/22 14:50	BRF
Tetrahydrofuran	0.10	0.35	0.057	J	0.30	1.0	0.17	0.698	4/7/22 14:50	BRF
Toluene	0.20	0.035	0.020		0.74	0.13	0.075	0.698	4/7/22 14:50	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND	0.26	0.18	0.698	4/7/22 14:50	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 14:50	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 14:50	BRF
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	4/7/22 14:50	BRF
Trichlorofluoromethane (Freon 11)	0.23	0.14	0.041		1.3	0.78	0.23	0.698	4/7/22 14:50	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.076	0.14	0.039	J	0.58	1.1	0.30	0.698	4/7/22 14:50	BRF
1,2,4-Trimethylbenzene	0.022	0.035	0.015	J	0.11	0.17	0.076	0.698	4/7/22 14:50	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22 14:50	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 14:50	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 14:50	BRF
m\&p-Xylene	0.067	0.070	0.039	J	0.29	0.30	0.17	0.698	4/7/22 14:50	BRF
o-Xylene	0.028	0.035	0.018	J	0.12	0.15	0.078	0.698	4/7/22 14:50	BRF
Surrogates	\% Recovery			\% REC Limits						

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 2-IA-1-03302022
Sample ID: 22D0004-02
Sample Matrix: Indoor air
Sampled: 3/30/2022 00:00

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $(\mathrm{in} \mathrm{Hg}):-29$
Canister ID: 1038	Final Vacuum(in Hg): -9
Canister Size: 6 liter	Receipt Vacuum(in Hg): -8.8
Flow Controller ID: 3257	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

Analyte	EPA TO-15				ug/m3					
	Results	ppbv RL	MDL	Flag/Qual				Dilution	Date/Time Analyzed	Analyst
Acetone	12	1.4	0.84		30	3.3	2.0	0.698	4/7/22 15:56	BRF
Benzene	0.75	0.035	0.026		2.4	0.11	0.084	0.698	4/7/22 15:56	BRF
Benzyl chloride	ND	0.070	0.031		ND	0.36	0.16	0.698	4/7/22 15:56	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 15:56	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 15:56	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 15:56	BRF
1,3-Butadiene	0.59	0.035	0.029		1.3	0.077	0.065	0.698	4/7/22 15:56	BRF
2-Butanone (MEK)	0.97	1.4	0.37	J	2.9	4.1	1.1	0.698	4/7/22 15:56	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 15:56	BRF
Carbon Tetrachloride	0.066	0.035	0.028		0.42	0.22	0.17	0.698	4/7/22 15:56	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 15:56	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 15:56	BRF
Chloroform	0.079	0.035	0.033		0.38	0.17	0.16	0.698	4/7/22 15:56	BRF
Chloromethane	1.1	0.070	0.028		2.3	0.14	0.057	0.698	4/7/22 15:56	BRF
Cyclohexane	0.41	0.035	0.023		1.4	0.12	0.079	0.698	4/7/22 15:56	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 15:56	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 15:56	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 15:56	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 15:56	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 15:56	BRF
Dichlorodifluoromethane (Freon 12)	0.47	0.035	0.034		2.3	0.17	0.17	0.698	4/7/22 15:56	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 15:56	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 15:56	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 15:56	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 15:56	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 15:56	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 15:56	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 15:56	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 15:56	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 15:56	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 15:56	BRF
Ethanol	830	60	26		1600	110	50	30	4/8/22 16:09	BRF
Ethyl Acetate	1.5	0.35	0.18		5.5	1.3	0.64	0.698	4/7/22 15:56	BRF
Ethylbenzene	0.48	0.035	0.020		2.1	0.15	0.088	0.698	4/7/22 15:56	BRF
4-Ethyltoluene	0.10	0.035	0.021		0.50	0.17	0.11	0.698	4/7/22 15:56	BRF
Heptane	0.54	0.035	0.022		2.2	0.14	0.091	0.698	4/7/22 15:56	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 15:56	BRF
Hexane	1.5	1.4	0.18		5.4	4.9	0.64	0.698	4/7/22 15:56	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 15:56	BRF
Isopropanol	4.2	1.4	0.24		10	3.4	0.59	0.698	4/7/22 15:56	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 15:56	BRF
Methylene Chloride	0.42	0.35	0.16		1.4	1.2	0.56	0.698	4/7/22 15:56	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 15:56	BRF
Naphthalene	1.2	0.035	0.022		6.4	0.18	0.12	0.698	4/7/22 15:56	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 15:56	BRF
Styrene	0.093	0.035	0.018		0.40	0.15	0.078	0.698	4/7/22 15:56	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 15:56	BRF
									Page 6 of 64	

	ANALYTICAL RESULTS	
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: $3 / 31 / 2022$	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample \#: Structure 2	-IA-1-03302022	Canister ID: 1038
Sample ID: 22D0004-02	Canister Size: 6 liter	Final Vacuum(in Hg): -9
Sample Matrix: Indoor air	Flow Controller ID: 3257	Receipt Vacuum(in Hg): -8.8
Sampled: $3 / 30 / 202200: 00$	Sample Type: 24 hr	Flow Controller Type: Fixed-Orifice
		Flow Controller Calibration

EPA TO-15										
Analyte	ppbv			Flag/Qual	$\mathrm{ug} / \mathrm{m} 3$			Date/Time		
Tetrachloroethylene	0.052	0.035	0.027		0.35	0.24	0.18	0.698	4/7/22 15:56	BRF
Tetrahydrofuran	ND	0.35	0.057		ND	1.0	0.17	0.698	4/7/22 15:56	BRF
Toluene	2.6	0.035	0.020		10.0	0.13	0.075	0.698	4/7/22 15:56	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND	0.26	0.18	0.698	4/7/22 15:56	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 15:56	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 15:56	BRF
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	4/7/22 15:56	BRF
Trichlorofluoromethane (Freon 11)	0.77	0.14	0.041		4.3	0.78	0.23	0.698	4/7/22 15:56	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.084	0.14	0.039	J	0.65	1.1	0.30	0.698	4/7/22 15:56	BRF
1,2,4-Trimethylbenzene	0.31	0.035	0.015		1.5	0.17	0.076	0.698	4/7/22 15:56	BRF
1,3,5-Trimethylbenzene	0.089	0.035	0.018		0.44	0.17	0.091	0.698	4/7/22 15:56	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 15:56	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 15:56	BRF
m\&p-Xylene	2.0	0.070	0.039		8.7	0.30	0.17	0.698	4/7/22 15:56	BRF
o-Xylene	0.90	0.035	0.018		3.9	0.15	0.078	0.698	4/7/22 15:56	BRF
Surrogates	\% Recovery			\% REC Limits						
4-Bromofluorobenzene (1)		103 97.6							$\begin{array}{ll}4 / 7 / 22 & 15: 56 \\ 4 / 8 / 22 & 16: 09\end{array}$	

Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 2
SS-1-03302022
Sample ID: 22D0004-03
Sample Matrix: Sub Slab
Sampled: 3/30/2022 08:56

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $($ in Hg$):-30$
Canister ID: 1162	Final Vacuum $(\mathrm{in} \mathrm{Hg}):-12$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-11.2$
Flow Controller ID: 3064	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results $\begin{gathered}\text { ppbv } \\ \text { RL }\end{gathered}$		MDL	Flag/Qual	Results	$\begin{gathered} \mathrm{ug} / \mathrm{m} 3 \\ \text { RL } \end{gathered}$	MDL	Dilution	Date/Time Analyzed	Analyst
Acetone	53	8.0	4.8		120	19	11	4	4/11/22 23:00	BRF
Benzene	0.64	0.20	0.15		2.0	0.64	0.48	4	4/11/22 23:00	BRF
Benzyl chloride	ND	0.20	0.18		ND	1.0	0.91	4	4/11/22 23:00	BRF
Bromodichloromethane	ND	0.20	0.14		ND	1.3	0.94	4	4/11/22 23:00	BRF
Bromoform	ND	0.20	0.14		ND	2.1	1.4	4	4/11/22 23:00	BRF
Bromomethane	ND	0.20	0.16		ND	0.78	0.63	4	4/11/22 23:00	BRF
1,3-Butadiene	ND	0.20	0.17		ND	0.44	0.37	4	4/11/22 23:00	BRF
2-Butanone (MEK)	3.7	8.0	2.1	J	11	24	6.3	4	4/11/22 23:00	BRF
Carbon Disulfide	ND	2.0	0.18		ND	6.2	0.58	4	4/11/22 23:00	BRF
Carbon Tetrachloride	ND	0.20	0.16		ND	1.3	1.0	4	4/11/22 23:00	BRF
Chlorobenzene	ND	0.20	0.13		ND	0.92	0.61	4	4/11/22 23:00	BRF
Chloroethane	ND	0.20	0.15		ND	0.53	0.39	4	4/11/22 23:00	BRF
Chloroform	ND	0.20	0.19		ND	0.98	0.93	4	4/11/22 23:00	BRF
Chloromethane	ND	0.40	0.16		ND	0.83	0.33	4	4/11/22 23:00	BRF
Cyclohexane	ND	0.20	0.13		ND	0.69	0.46	4	4/11/22 23:00	BRF
Dibromochloromethane	ND	0.20	0.13		ND	1.7	1.1	4	4/11/22 23:00	BRF
1,2-Dibromoethane (EDB)	ND	0.20	0.12		ND	1.5	0.93	4	4/11/22 23:00	BRF
1,2-Dichlorobenzene	ND	0.20	0.11		ND	1.2	0.69	4	4/11/22 23:00	BRF
1,3-Dichlorobenzene	ND	0.20	0.11		ND	1.2	0.67	4	4/11/22 23:00	BRF
1,4-Dichlorobenzene	ND	0.20	0.13		ND	1.2	0.79	4	4/11/22 23:00	BRF
Dichlorodifluoromethane (Freon 12)	0.46	0.20	0.20		2.3	0.99	0.97	4	4/11/22 23:00	BRF
1,1-Dichloroethane	ND	0.20	0.17		ND	0.81	0.71	4	4/11/22 23:00	BRF
1,2-Dichloroethane	ND	0.20	0.18		ND	0.81	0.73	4	4/11/22 23:00	BRF
1,1-Dichloroethylene	ND	0.20	0.15		ND	0.79	0.60	4	4/11/22 23:00	BRF
cis-1,2-Dichloroethylene	ND	0.20	0.15		ND	0.79	0.58	4	4/11/22 23:00	BRF
trans-1,2-Dichloroethylene	ND	0.20	0.16		ND	0.79	0.62	4	4/11/22 23:00	BRF
1,2-Dichloropropane	ND	0.20	0.11		ND	0.92	0.50	4	4/11/22 23:00	BRF
cis-1,3-Dichloropropene	ND	0.20	0.10		ND	0.91	0.47	4	4/11/22 23:00	BRF
trans-1,3-Dichloropropene	ND	0.20	0.10		ND	0.91	0.46	4	4/11/22 23:00	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.20	0.20		ND	1.4	1.4	4	4/11/22 23:00	BRF
1,4-Dioxane	ND	2.0	0.17		ND	7.2	0.60	4	4/11/22 23:00	BRF
Ethanol	12	8.0	3.5		22	15	6.6	4	4/11/22 23:00	BRF
Ethyl Acetate	ND	2.0	1.0		ND	7.2	3.6	4	4/11/22 23:00	BRF
Ethylbenzene	0.84	0.20	0.12		3.6	0.87	0.51	4	4/11/22 23:00	BRF
4-Ethyltoluene	ND	0.20	0.12		ND	0.98	0.60	4	4/11/22 23:00	BRF
Heptane	17	0.20	0.13		71	0.82	0.52	4	4/11/22 23:00	BRF
Hexachlorobutadiene	ND	0.20	0.16		ND	2.1	1.8	4	4/11/22 23:00	BRF
Hexane	2.8	8.0	1.0	J	9.8	28	3.7	4	4/11/22 23:00	BRF
2-Hexanone (MBK)	ND	0.20	0.10		ND	0.82	0.41	4	4/11/22 23:00	BRF
Isopropanol	2.4	8.0	1.4	J	5.8	20	3.4	4	4/11/22 23:00	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.20	0.15		ND	0.72	0.56	4	4/11/22 23:00	BRF
Methylene Chloride	ND	2.0	0.93		ND	6.9	3.2	4	4/11/22 23:00	BRF
4-Methyl-2-pentanone (MIBK)	0.52	0.20	0.10		2.1	0.82	0.42	4	4/11/22 23:00	BRF
Naphthalene	ND	0.20	0.13		ND	1.0	0.66	4	4/11/22 23:00	BRF
Propene	ND	8.0	1.8		ND	14	3.0	4	4/11/22 23:00	BRF
Styrene	ND	0.20	0.11		ND	0.85	0.45	4	4/11/22 23:00	BRF
1,1,2,2-Tetrachloroethane	ND	0.20	0.11		ND	1.4	0.74	4	4/11/22 23:00	BRF
									Page	of 64

	ANALYTICAL RESULTS	
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: $3 / 31 / 2022$	Sub Description/Location:	Initial Vacuum(in Hg): -30
Field Sample \#: Structure 2	-SS-1-03302022	Canister ID: 1162
Sample ID: 22D0004-03	Canister Size: 6 liter	Final Vacuum(in Hg): -12
Sample Matrix: Sub Slab	Flow Controller ID: 3064	Receipt Vacuum(in Hg): -11.2
Sampled: $3 / 30 / 202208: 56$	Sample Type: 24 hr	Flow Controller Type: Fixed-Orifice
		Flow Controller Calibration

EPA TO-15										
Analyte	Results	ppbv RL	MDL	Flag/Qual	Results	$\begin{gathered} \mathrm{ug} / \mathrm{m} 3 \\ \text { RL } \end{gathered}$	MDL	Dilution	Date/Time Analyzed	Analyst
Tetrachloroethylene	ND	0.20	0.15		ND	1.4	1.0	4	4/11/22 23:00	BRF
Tetrahydrofuran	1.5	2.0	0.33	J	4.3	5.9	0.97	4	4/11/22 23:00	BRF
Toluene	2.3	0.20	0.11		8.7	0.75	0.43	4	4/11/22 23:00	BRF
1,2,4-Trichlorobenzene	ND	0.20	0.14		ND	1.5	1.0	4	4/11/22 23:00	BRF
1,1,1-Trichloroethane	ND	0.20	0.16		ND	1.1	0.86	4	4/11/22 23:00	BRF
1,1,2-Trichloroethane	ND	0.20	0.14		ND	1.1	0.77	4	4/11/22 23:00	BRF
Trichloroethylene	ND	0.20	0.13		ND	1.1	0.72	4	4/11/22 23:00	BRF
Trichlorofluoromethane (Freon 11)	0.55	0.80	0.24	J	3.1	4.5	1.3	4	4/11/22 23:00	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.80	0.22		ND	6.1	1.7	4	4/11/22 23:00	BRF
1,2,4-Trimethylbenzene	0.80	0.20	0.088		3.9	0.98	0.43	4	4/11/22 23:00	BRF
1,3,5-Trimethylbenzene	0.54	0.20	0.11		2.7	0.98	0.52	4	4/11/22 23:00	BRF
Vinyl Acetate	ND	4.0	1.1		ND	14	3.8	4	4/11/22 23:00	BRF
Vinyl Chloride	ND	0.20	0.18		ND	0.51	0.46	4	4/11/22 23:00	BRF
m\&p-Xylene	2.7	0.40	0.22		12	1.7	0.97	4	4/11/22 23:00	BRF
o-Xylene	0.86	0.20	0.10		3.7	0.87	0.44	4	4/11/22 23:00	BRF
Surrogates	\% Reco			\% RE	Limits					

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 3-0A-1-03302022
Sample ID: 22D0004-04
Sample Matrix: Ambient Air
Sampled: 3/30/2022 09:15
Sample Description/Location:
Sub Description/Location:
Canister ID: 1745
Canister Size: 6 liter
Flow Controller ID: 3521
Sample Type: 24 hr

Work Order: 22D0004
Initial Vacuum(in Hg): -28
Final Vacuum(in Hg): -9
Receipt Vacuum(in Hg): -7.9
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling: $<20 \%$

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

	ANALYTICAL RESULTS	
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -28
Field Sample \#: Structure 3 -OA-1-03302022	Canister ID: 1745	Final Vacuum(in Hg): -9
Sample ID: 22D0004-04	Canister Size: 6 liter	Receipt Vacuum(in Hg): -7.9
Sample Matrix: Ambient Air	Flow Controller ID: 3521	Flow Controller Type: Fixed-Orifice
Sampled: $3 / 30 / 202209: 15$	Sample Type: 24 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: $<20 \%$

Analyte	EPA TO-15				ug/m3					
	Results	ppbv RL	MDL	Flag/Qual				Dilution	Date/Time Analyzed	Analyst
Tetrachloroethylene	ND	0.035	0.027		ND	0.24	0.18	0.698	4/7/22 17:06	BRF
Tetrahydrofuran	0.073	0.35	0.057	J	0.21	1.0	0.17	0.698	4/7/22 17:06	BRF
Toluene	0.15	0.035	0.020		0.55	0.13	0.075	0.698	4/7/22 17:06	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND	0.26	0.18	0.698	4/7/22 17:06	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 17:06	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 17:06	BRF
Trichloroethylene	0.069	0.035	0.024		0.37	0.19	0.13	0.698	4/7/22 17:06	BRF
Trichlorofluoromethane (Freon 11)	0.23	0.14	0.041		1.3	0.78	0.23	0.698	4/7/22 17:06	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.079	0.14	0.039	J	0.60	1.1	0.30	0.698	4/7/22 17:06	BRF
1,2,4-Trimethylbenzene	0.020	0.035	0.015	J	0.099	0.17	0.076	0.698	4/7/22 17:06	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22 17:06	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 17:06	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 17:06	BRF
m\&p-Xylene	0.061	0.070	0.039	J	0.27	0.30	0.17	0.698	4/7/22 17:06	BRF
o-Xylene	0.023	0.035	0.018	J	0.100	0.15	0.078	0.698	4/7/22 17:06	BRF
Surrogates	\% Recovery			\% REC Limits						

Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 3-IA-1-03302022
Sample ID: 22D0004-05
Sample Matrix: Indoor air
Sampled: 3/30/2022 12:55

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $(\mathrm{in} \mathrm{Hg}):-27$
Canister ID: 1502	Final Vacuum in Hg$):-4$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-4.7$
Flow Controller ID: 3503	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

Analyte	EPA TO-15				ug/m3					
	Results	ppbv RL	MDL	Flag/Qual				Dilution	Date/Time Analyzed	Analyst
Acetone	3.1	1.4	0.84		7.4	3.3	2.0	0.698	4/7/22 17:43	BRF
Benzene	0.39	0.035	0.026		1.3	0.11	0.084	0.698	4/7/22 17:43	BRF
Benzyl chloride	ND	0.070	0.031		ND	0.36	0.16	0.698	4/7/22 17:43	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 17:43	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 17:43	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 17:43	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 17:43	BRF
2-Butanone (MEK)	0.48	1.4	0.37	J	1.4	4.1	1.1	0.698	4/7/22 17:43	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 17:43	BRF
Carbon Tetrachloride	0.057	0.035	0.028		0.36	0.22	0.17	0.698	4/7/22 17:43	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 17:43	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 17:43	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 17:43	BRF
Chloromethane	0.56	0.070	0.028		1.2	0.14	0.057	0.698	4/7/22 17:43	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 17:43	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 17:43	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 17:43	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 17:43	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 17:43	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 17:43	BRF
Dichlorodifluoromethane (Freon 12)	0.49	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 17:43	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 17:43	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 17:43	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 17:43	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 17:43	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 17:43	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 17:43	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 17:43	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 17:43	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 17:43	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 17:43	BRF
Ethanol	58	8.0	3.5		110	15	6.6	4	4/8/22 17:07	BRF
Ethyl Acetate	0.30	0.35	0.18	J	1.1	1.3	0.64	0.698	4/7/22 17:43	BRF
Ethylbenzene	0.028	0.035	0.020	J	0.12	0.15	0.088	0.698	4/7/22 17:43	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 17:43	BRF
Heptane	0.043	0.035	0.022		0.17	0.14	0.091	0.698	4/7/22 17:43	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 17:43	BRF
Hexane	0.37	1.4	0.18	J	1.3	4.9	0.64	0.698	4/7/22 17:43	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 17:43	BRF
Isopropanol	0.51	1.4	0.24	J	1.2	3.4	0.59	0.698	4/7/22 17:43	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 17:43	BRF
Methylene Chloride	0.35	0.35	0.16	J	1.2	1.2	0.56	0.698	4/7/22 17:43	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 17:43	BRF
Naphthalene	0.043	0.035	0.022		0.22	0.18	0.12	0.698	4/7/22 17:43	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 17:43	BRF
Styrene	0.025	0.035	0.018	J	0.11	0.15	0.078	0.698	4/7/22 17:43	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 17:43	BRF
									Page 12 of 64	

	ANALYTICAL RESULTS	
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: $3 / 31 / 2022$	Sub Description/Location:	Initial Vacuum(in Hg): -27
Field Sample \#: Structure 3	-IA-1-03302022	Canister ID: 1502
Cample ID: 22D0004-05	Canister Size: 6 liter	Final Vacuum(in Hg): -4
Sample Matrix: Indoor air	Flow Controller ID: 3503	Receipt Vacuum(in Hg): -4.7
Sampled: $3 / 30 / 202212: 55$	Sample Type: 24 hr	Flow Controller Type: Fixed-Orifice
		Flow Controller Calibration
		RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results	ppbv RL	MDL	Flag/Qual	Results	$\begin{gathered} \mathrm{ug} / \mathrm{m} 3 \\ \text { RL } \end{gathered}$	MDL	Dilution	Date/Time Analyzed	Analyst
Tetrachloroethylene	0.030	0.035	0.027	J	0.20	0.24	0.18	0.698	4/7/22 17:43	BRF
Tetrahydrofuran	0.30	0.35	0.057	J	0.89	1.0	0.17	0.698	4/7/22 17:43	BRF
Toluene	0.22	0.035	0.020		0.84	0.13	0.075	0.698	4/7/22 17:43	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND	0.26	0.18	0.698	4/7/22 17:43	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 17:43	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 17:43	BRF
Trichloroethylene	0.16	0.035	0.024		0.87	0.19	0.13	0.698	4/7/22 17:43	BRF
Trichlorofluoromethane (Freon 11)	0.26	0.14	0.041		1.5	0.78	0.23	0.698	4/7/22 17:43	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.077	0.14	0.039	J	0.59	1.1	0.30	0.698	4/7/22 17:43	BRF
1,2,4-Trimethylbenzene	0.022	0.035	0.015	J	0.11	0.17	0.076	0.698	4/7/22 17:43	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22 17:43	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 17:43	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 17:43	BRF
m\&p-Xylene	0.090	0.070	0.039		0.39	0.30	0.17	0.698	4/7/22 17:43	BRF
o-Xylene	0.033	0.035	0.018	J	0.14	0.15	0.078	0.698	4/7/22 17:43	BRF
Surrogates	\% Reco			\% REC	Limits					
4-Bromofluorobenzene (1)		97.9							4/8/22 17:07	
4-Bromofluorobenzene (1)		101							4/7/22 17:43	

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 3 -IA-DUP-03302022
Sample ID: 22D0004-06
Sample Matrix: Indoor air
Sampled: 3/30/2022 00:00

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum(in Hg$):-28$
Canister ID: 1611	Final Vacuum(in Hg$):-5.5$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-4.9$
Flow Controller ID: 3363	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	ppbv			Flag/Qual	Results	ug/m3		Dilution	Date/Time	Analyst
Acetone	2.4	1.4	0.84		5.8	3.3	2.0	0.698	4/7/22 18:18	BRF
Benzene	0.40	0.035	0.026		1.3	0.11	0.084	0.698	4/7/22 18:18	BRF
Benzyl chloride	ND	0.070	0.031		ND	0.36	0.16	0.698	4/7/22 18:18	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 18:18	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 18:18	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 18:18	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 18:18	BRF
2-Butanone (MEK)	0.40	1.4	0.37	J	1.2	4.1	1.1	0.698	4/7/22 18:18	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 18:18	BRF
Carbon Tetrachloride	0.056	0.035	0.028		0.35	0.22	0.17	0.698	4/7/22 18:18	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 18:18	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 18:18	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 18:18	BRF
Chloromethane	0.51	0.070	0.028		1.0	0.14	0.057	0.698	4/7/22 18:18	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 18:18	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 18:18	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 18:18	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 18:18	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 18:18	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 18:18	BRF
Dichlorodifluoromethane (Freon 12)	0.48	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 18:18	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 18:18	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 18:18	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 18:18	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 18:18	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 18:18	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 18:18	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 18:18	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 18:18	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 18:18	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 18:18	BRF
Ethanol	59	8.0	3.5		110	15	6.6	4	4/8/22 17:35	BRF
Ethyl Acetate	0.27	0.35	0.18	J	0.96	1.3	0.64	0.698	4/7/22 18:18	BRF
Ethylbenzene	0.032	0.035	0.020	J	0.14	0.15	0.088	0.698	4/7/22 18:18	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 18:18	BRF
Heptane	0.042	0.035	0.022		0.17	0.14	0.091	0.698	4/7/22 18:18	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 18:18	BRF
Hexane	0.30	1.4	0.18	J	1.1	4.9	0.64	0.698	4/7/22 18:18	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 18:18	BRF
Isopropanol	0.32	1.4	0.24	J	0.79	3.4	0.59	0.698	4/7/22 18:18	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 18:18	BRF
Methylene Chloride	0.19	0.35	0.16	J	0.65	1.2	0.56	0.698	4/7/22 18:18	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 18:18	BRF
Naphthalene	0.043	0.035	0.022		0.23	0.18	0.12	0.698	4/7/22 18:18	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 18:18	BRF
Styrene	0.036	0.035	0.018		0.15	0.15	0.078	0.698	4/7/22 18:18	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 18:18	BRF
									Page	4 of 64

ANALYTICAL RESULTS		
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -28
Field Sample \#: Structure 3 -IA-DUP-03302022	Canister ID: 1611	Final Vacuum(in Hg): -5.5
Sample ID: 22D0004-06	Canister Size: 6 liter	Receipt Vacuum(in Hg) : -4.9
Sample Matrix: Indoor air	Flow Controller ID: 3363	Flow Controller Type: Fixed-Orifice
Sampled: 3/30/2022 00:00	Sample Type: 24 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results	ppbv RL	MDL	Flag/Qual	Results	$\begin{gathered} \mathbf{u g} / \mathrm{m} 3 \\ \text { RL } \end{gathered}$	MDL	Dilution	Date/Time Analyzed	Analyst
Tetrachloroethylene	0.029	0.035	0.027	J	0.19	0.24	0.18	0.698	4/7/22 18:18	BRF
Tetrahydrofuran	0.31	0.35	0.057	J	0.93	1.0	0.17	0.698	4/7/22 18:18	BRF
Toluene	0.24	0.035	0.020		0.89	0.13	0.075	0.698	4/7/22 18:18	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND	0.26	0.18	0.698	4/7/22 18:18	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 18:18	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 18:18	BRF
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	4/7/22 18:18	BRF
Trichlorofluoromethane (Freon 11)	0.26	0.14	0.041		1.4	0.78	0.23	0.698	4/7/22 18:18	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.078	0.14	0.039	J	0.60	1.1	0.30	0.698	4/7/22 18:18	BRF
1,2,4-Trimethylbenzene	ND	0.035	0.015		ND	0.17	0.076	0.698	4/7/22 18:18	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22 18:18	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 18:18	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 18:18	BRF
m\&p-Xylene	0.087	0.070	0.039		0.38	0.30	0.17	0.698	4/7/22 18:18	BRF
o-Xylene	0.034	0.035	0.018	J	0.15	0.15	0.078	0.698	4/7/22 18:18	BRF
Surrogates	\% Reco			\% REC	Limits					
4-Bromofluorobenzene (1)		99.8							4/8/22 17:35	
4-Bromofluorobenzene (1)		101							4/7/22 18:18	

Project Location: NY	
Date Received: 3/31/2022	
Field Sample \#: Structure 3	-IA-2-03302022
Sample ID: 22D0004-07	
Sample Matrix: Indoor air	
Sampled: 3/30/2022 12:56	

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum(in Hg): -28
Canister ID: 1876	Final Vacuum(in Hg): -5.5
Canister Size: 6 liter	Receipt Vacuum(in Hg): -4.2
Flow Controller ID: 3305	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

Analyte	EPA TO-15				$\mathrm{ug} / \mathrm{m} 3$					
	ppbv			Flag/Qual				Dilution	Date/Time Analyzed	Analyst
Acetone	1.8	1.4	0.84		4.4	3.3	2.0	0.698	4/7/22 18:54	BRF
Benzene	0.44	0.035	0.026		1.4	0.11	0.084	0.698	4/7/22 18:54	BRF
Benzyl chloride	ND	0.070	0.031		ND	0.36	0.16	0.698	4/7/22 18:54	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 18:54	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 18:54	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 18:54	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 18:54	BRF
2-Butanone (MEK)	ND	1.4	0.37		ND	4.1	1.1	0.698	4/7/22 18:54	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 18:54	BRF
Carbon Tetrachloride	0.063	0.035	0.028		0.40	0.22	0.17	0.698	4/7/22 18:54	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 18:54	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 18:54	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 18:54	BRF
Chloromethane	0.51	0.070	0.028		1.1	0.14	0.057	0.698	4/7/22 18:54	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 18:54	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 18:54	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 18:54	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 18:54	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 18:54	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 18:54	BRF
Dichlorodifluoromethane (Freon 12)	0.50	0.035	0.034		2.5	0.17	0.17	0.698	4/7/22 18:54	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 18:54	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 18:54	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 18:54	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 18:54	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 18:54	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 18:54	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 18:54	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 18:54	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 18:54	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 18:54	BRF
Ethanol	9.8	1.4	0.62		19	2.6	1.2	0.698	4/7/22 18:54	BRF
Ethyl Acetate	ND	0.35	0.18		ND	1.3	0.64	0.698	4/7/22 18:54	BRF
Ethylbenzene	0.029	0.035	0.020	J	0.13	0.15	0.088	0.698	4/7/22 18:54	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 18:54	BRF
Heptane	0.034	0.035	0.022	J	0.14	0.14	0.091	0.698	4/7/22 18:54	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 18:54	BRF
Hexane	0.31	1.4	0.18	J	1.1	4.9	0.64	0.698	4/7/22 18:54	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 18:54	BRF
Isopropanol	0.39	1.4	0.24	J	0.97	3.4	0.59	0.698	4/7/22 18:54	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 18:54	BRF
Methylene Chloride	0.17	0.35	0.16	J	0.60	1.2	0.56	0.698	4/7/22 18:54	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 18:54	BRF
Naphthalene	0.033	0.035	0.022	J	0.17	0.18	0.12	0.698	4/7/22 18:54	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 18:54	BRF
Styrene	ND	0.035	0.018		ND	0.15	0.078	0.698	4/7/22 18:54	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 18:54	BRF
									Page	6 of 64

ANALYTICAL RESULTS		
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -28
Field Sample \#: Structure 3 -IA-2-03302022	Canister ID: 1876	Final Vacuum(in Hg): -5.5
Sample ID: 22D0004-07	Canister Size: 6 liter	Receipt Vacuum(in Hg): -4.2
Sample Matrix: Indoor air	Flow Controller ID: 3305	Flow Controller Type: Fixed-Orifice
Sampled: 3/30/2022 12:56	Sample Type: 24 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15											
Analyte	Results $\begin{gathered}\text { ppbv } \\ \text { RL }\end{gathered}$		MDL	Flag/Qual	Results	$\begin{gathered} \mathrm{ug} / \mathrm{m} 3 \\ \text { RL } \end{gathered}$	MDL	Dilution	Date/T Analy	Time yzed	Analyst
Tetrachloroethylene	0.027	0.035	0.027	J	0.18	0.24	0.18	0.698	4/7/22	18:54	BRF
Tetrahydrofuran	0.15	0.35	0.057	J	0.43	1.0	0.17	0.698	4/7/22	18:54	BRF
Toluene	0.22	0.035	0.020		0.81	0.13	0.075	0.698	4/7/22	18:54	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND	0.26	0.18	0.698	4/7/22	18:54	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22	18:54	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22	18:54	BRF
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	4/7/22	18:54	BRF
Trichlorofluoromethane (Freon 11)	0.24	0.14	0.041		1.3	0.78	0.23	0.698	4/7/22	18:54	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.082	0.14	0.039	J	0.63	1.1	0.30	0.698	4/7/22	18:54	BRF
1,2,4-Trimethylbenzene	0.016	0.035	0.015	J	0.079	0.17	0.076	0.698	4/7/22	18:54	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22	18:54	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22	18:54	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22	18:54	BRF
m\&p-Xylene	0.090	0.070	0.039		0.39	0.30	0.17	0.698	4/7/22	18:54	BRF
o-Xylene	0.031	0.035	0.018	J	0.14	0.15	0.078	0.698	4/7/22	18:54	BRF
Surrogates	\% Recovery			\% REC Limits							

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 4
IA-1-03302022
Sample ID: 22D0004-09
Sample Matrix: Indoor air
Sampled: 3/30/2022 13:18

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $(\mathrm{in} \mathrm{Hg}):-27$
Canister ID: 1951	Final Vacuum in Hg$):-9$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-9.5$
Flow Controller ID: 3468	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

Analyte	EPA TO-15				$\mathrm{ug} / \mathrm{m} 3$					
	Results	ppbv RL	MDL	Flag/Qual				Dilution	Date/Time Analyzed	Analyst
Acetone	4.1	1.4	0.84		9.7	3.3	2.0	0.698	4/7/22 19:29	BRF
Benzene	0.15	0.035	0.026		0.47	0.11	0.084	0.698	4/7/22 19:29	BRF
Benzyl chloride	ND	0.070	0.031		ND	0.36	0.16	0.698	4/7/22 19:29	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 19:29	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 19:29	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 19:29	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 19:29	BRF
2-Butanone (MEK)	0.60	1.4	0.37	J	1.8	4.1	1.1	0.698	4/7/22 19:29	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 19:29	BRF
Carbon Tetrachloride	0.078	0.035	0.028		0.49	0.22	0.17	0.698	4/7/22 19:29	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 19:29	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 19:29	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 19:29	BRF
Chloromethane	0.53	0.070	0.028		1.1	0.14	0.057	0.698	4/7/22 19:29	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 19:29	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 19:29	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 19:29	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 19:29	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 19:29	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 19:29	BRF
Dichlorodifluoromethane (Freon 12)	0.49	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 19:29	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 19:29	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 19:29	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 19:29	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 19:29	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 19:29	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 19:29	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 19:29	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 19:29	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 19:29	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 19:29	BRF
Ethanol	91	8.0	3.5		170	15	6.6	4	4/8/22 18:04	BRF
Ethyl Acetate	0.19	0.35	0.18	J	0.69	1.3	0.64	0.698	4/7/22 19:29	BRF
Ethylbenzene	0.053	0.035	0.020		0.23	0.15	0.088	0.698	4/7/22 19:29	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 19:29	BRF
Heptane	0.043	0.035	0.022		0.17	0.14	0.091	0.698	4/7/22 19:29	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 19:29	BRF
Hexane	0.31	1.4	0.18	J	1.1	4.9	0.64	0.698	4/7/22 19:29	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 19:29	BRF
Isopropanol	0.58	1.4	0.24	J	1.4	3.4	0.59	0.698	4/7/22 19:29	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 19:29	BRF
Methylene Chloride	0.35	0.35	0.16	J	1.2	1.2	0.56	0.698	4/7/22 19:29	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 19:29	BRF
Naphthalene	ND	0.035	0.022		ND	0.18	0.12	0.698	4/7/22 19:29	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 19:29	BRF
Styrene	0.033	0.035	0.018	J	0.14	0.15	0.078	0.698	4/7/22 19:29	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 19:29	BRF
									Page 18 of 64	

ANALYTICAL RESULTS		
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -27
Field Sample \#: Structure 4 -IA-1-03302022	Canister ID: 1951	Final Vacuum(in Hg): -9
Sample ID: 22D0004-09	Canister Size: 6 liter	Receipt Vacuum(in Hg): -9.5
Sample Matrix: Indoor air	Flow Controller ID: 3468	Flow Controller Type: Fixed-Orifice
Sampled: 3/30/2022 13:18	Sample Type: 24 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results	ppbv RL	MDL	Flag/Qual	Results	$\begin{gathered} \mathbf{u g} / \mathrm{m} 3 \\ \text { RL } \end{gathered}$	MDL	Dilution	Date/Time Analyzed	Analyst
Tetrachloroethylene	ND	0.035	0.027		ND	0.24	0.18	0.698	4/7/22 19:29	BRF
Tetrahydrofuran	ND	0.35	0.057		ND	1.0	0.17	0.698	4/7/22 19:29	BRF
Toluene	0.37	0.035	0.020		1.4	0.13	0.075	0.698	4/7/22 19:29	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND	0.26	0.18	0.698	4/7/22 19:29	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 19:29	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 19:29	BRF
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	4/7/22 19:29	BRF
Trichlorofluoromethane (Freon 11)	0.24	0.14	0.041		1.3	0.78	0.23	0.698	4/7/22 19:29	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.077	0.14	0.039	J	0.59	1.1	0.30	0.698	4/7/22 19:29	BRF
1,2,4-Trimethylbenzene	0.052	0.035	0.015		0.26	0.17	0.076	0.698	4/7/22 19:29	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22 19:29	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 19:29	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 19:29	BRF
m\&p-Xylene	0.18	0.070	0.039		0.78	0.30	0.17	0.698	4/7/22 19:29	BRF
o-Xylene	0.079	0.035	0.018		0.34	0.15	0.078	0.698	4/7/22 19:29	BRF
Surrogates	\% Reco			\% REC	Limits					
4-Bromofluorobenzene (1)		102							4/7/22 19:29	
4-Bromofluorobenzene (1)		96.6							4/8/22 18:04	

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 4 -OA-1-03302022
Sample ID: 22D0004-10
Sample Matrix: Ambient Air
Sampled: 3/30/2022 13:30

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $(\mathrm{in} \mathrm{Hg}):-29$
Canister ID: 1071	Final Vacuum in Hg$):-9$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-7.8$
Flow Controller ID: 3676	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results	ppbv RL	MDL	Flag/Qual	Results	$\begin{gathered} \mathrm{ug} / \mathrm{m} 3 \\ \text { RL } \end{gathered}$	MDL	Dilution	Date/Time Analyzed	Analyst
Acetone	1.5	1.4	0.84		3.5	3.3	2.0	0.698	4/7/22 20:05	BRF
Benzene	0.14	0.035	0.026		0.45	0.11	0.084	0.698	4/7/22 20:05	BRF
Benzyl chloride	ND	0.070	0.031		ND	0.36	0.16	0.698	4/7/22 20:05	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 20:05	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 20:05	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 20:05	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 20:05	BRF
2-Butanone (MEK)	ND	1.4	0.37		ND	4.1	1.1	0.698	4/7/22 20:05	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 20:05	BRF
Carbon Tetrachloride	0.085	0.035	0.028		0.54	0.22	0.17	0.698	4/7/22 20:05	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 20:05	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 20:05	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 20:05	BRF
Chloromethane	0.55	0.070	0.028		1.1	0.14	0.057	0.698	4/7/22 20:05	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 20:05	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 20:05	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 20:05	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 20:05	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 20:05	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 20:05	BRF
Dichlorodifluoromethane (Freon 12)	0.50	0.035	0.034		2.5	0.17	0.17	0.698	4/7/22 20:05	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 20:05	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 20:05	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 20:05	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 20:05	BRF
trans-1,2-Dichloroethylene	0.40	0.035	0.027		1.6	0.14	0.11	0.698	4/7/22 20:05	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 20:05	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 20:05	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 20:05	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 20:05	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 20:05	BRF
Ethanol	1.4	1.4	0.62		2.7	2.6	1.2	0.698	4/7/22 20:05	BRF
Ethyl Acetate	ND	0.35	0.18		ND	1.3	0.64	0.698	4/7/22 20:05	BRF
Ethylbenzene	ND	0.035	0.020		ND	0.15	0.088	0.698	4/7/22 20:05	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 20:05	BRF
Heptane	ND	0.035	0.022		ND	0.14	0.091	0.698	4/7/22 20:05	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 20:05	BRF
Hexane	0.33	1.4	0.18	J	1.2	4.9	0.64	0.698	4/7/22 20:05	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 20:05	BRF
Isopropanol	0.53	1.4	0.24	J	1.3	3.4	0.59	0.698	4/7/22 20:05	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 20:05	BRF
Methylene Chloride	0.35	0.35	0.16		1.2	1.2	0.56	0.698	4/7/22 20:05	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 20:05	BRF
Naphthalene	ND	0.035	0.022		ND	0.18	0.12	0.698	4/7/22 20:05	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 20:05	BRF
Styrene	ND	0.035	0.018		ND	0.15	0.078	0.698	4/7/22 20:05	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 20:05	BRF
									Page	of 64

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

	ANALYTICAL RESULTS	
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample \#: Structure 4	-OA-1-03302022	Canister ID: 1071
Sample ID: 22D0004-10	Canister Size: 6 liter	Final Vacuum(in Hg): -9
Sample Matrix: Ambient Air	Flow Controller ID: 3676	Receipt Vacuum(in Hg): -7.8
Sampled: $3 / 30 / 202213: 30$	Sample Type: 24 hr	Flow Controller Type: Fixed-Orifice
		Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$	

Analyte	EPA TO-15				ug/m3					
	Results	ppbv RL	MDL	Flag/Qual				Dilution	Date/Time Analyzed	Analyst
Tetrachloroethylene	ND	0.035	0.027		ND	0.24	0.18	0.698	4/7/22 20:05	BRF
Tetrahydrofuran	0.093	0.35	0.057	J	0.27	1.0	0.17	0.698	4/7/22 20:05	BRF
Toluene	0.15	0.035	0.020		0.57	0.13	0.075	0.698	4/7/22 20:05	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND	0.26	0.18	0.698	4/7/22 20:05	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 20:05	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 20:05	BRF
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	4/7/22 20:05	BRF
Trichlorofluoromethane (Freon 11)	0.25	0.14	0.041		1.4	0.78	0.23	0.698	4/7/22 20:05	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.096	0.14	0.039	J	0.73	1.1	0.30	0.698	4/7/22 20:05	BRF
1,2,4-Trimethylbenzene	ND	0.035	0.015		ND	0.17	0.076	0.698	4/7/22 20:05	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22 20:05	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 20:05	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 20:05	BRF
m\&p-Xylene	0.061	0.070	0.039	J	0.26	0.30	0.17	0.698	4/7/22 20:05	BRF
o-Xylene	0.023	0.035	0.018	J	0.100	0.15	0.078	0.698	4/7/22 20:05	BRF
Surrogates	\% Recovery			\% REC Limits						

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 4-IA-2-03302022
Sample ID: 22D0004-11
Sample Matrix: Indoor air
Sampled: 3/30/2022 13:24

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $($ in Hg$):-29$
Canister ID: 1626	Final Vacuum $(\mathrm{in} \mathrm{Hg}):-9$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-8.6$
Flow Controller ID: 3510	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

Analyte	EPA TO-15				$\mathrm{ug} / \mathrm{m} 3$					
	Results	ppbv RL	MDL	Flag/Qual				Dilution	Date/Time Analyzed	Analyst
Acetone	2.9	1.4	0.84		6.9	3.3	2.0	0.698	4/7/22 20:40	BRF
Benzene	0.15	0.035	0.026		0.46	0.11	0.084	0.698	4/7/22 20:40	BRF
Benzyl chloride	ND	0.070	0.031		ND	0.36	0.16	0.698	4/7/22 20:40	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 20:40	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 20:40	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 20:40	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 20:40	BRF
2-Butanone (MEK)	ND	1.4	0.37		ND	4.1	1.1	0.698	4/7/22 20:40	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 20:40	BRF
Carbon Tetrachloride	0.075	0.035	0.028		0.47	0.22	0.17	0.698	4/7/22 20:40	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 20:40	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 20:40	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 20:40	BRF
Chloromethane	0.54	0.070	0.028		1.1	0.14	0.057	0.698	4/7/22 20:40	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 20:40	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 20:40	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 20:40	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 20:40	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 20:40	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 20:40	BRF
Dichlorodifluoromethane (Freon 12)	0.49	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 20:40	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 20:40	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 20:40	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 20:40	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 20:40	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 20:40	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 20:40	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 20:40	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 20:40	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 20:40	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 20:40	BRF
Ethanol	44	8.0	3.5		82	15	6.6	4	4/8/22 18:33	BRF
Ethyl Acetate	0.18	0.35	0.18	J	0.65	1.3	0.64	0.698	4/7/22 20:40	BRF
Ethylbenzene	0.038	0.035	0.020		0.16	0.15	0.088	0.698	4/7/22 20:40	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 20:40	BRF
Heptane	0.040	0.035	0.022		0.17	0.14	0.091	0.698	4/7/22 20:40	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 20:40	BRF
Hexane	0.35	1.4	0.18	J	1.2	4.9	0.64	0.698	4/7/22 20:40	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 20:40	BRF
Isopropanol	0.75	1.4	0.24	J	1.9	3.4	0.59	0.698	4/7/22 20:40	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 20:40	BRF
Methylene Chloride	0.54	0.35	0.16		1.9	1.2	0.56	0.698	4/7/22 20:40	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 20:40	BRF
Naphthalene	ND	0.035	0.022		ND	0.18	0.12	0.698	4/7/22 20:40	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 20:40	BRF
Styrene	0.043	0.035	0.018		0.18	0.15	0.078	0.698	4/7/22 20:40	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 20:40	BRF
									Page 22 of 64	

ANALYTICAL RESULTS		
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample \#: Structure 4 -IA-2-03302022	Canister ID: 1626	Final Vacuum(in Hg): -9
Sample ID: 22D0004-11	Canister Size: 6 liter	Receipt Vacuum(in Hg): -8.6
Sample Matrix: Indoor air	Flow Controller ID: 3510	Flow Controller Type: Fixed-Orifice
Sampled: 3/30/2022 13:24	Sample Type: 24 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results	ppbv RL	MDL	Flag/Qual	Results	$\begin{gathered} \mathbf{u g} / \mathrm{m} 3 \\ \text { RL } \end{gathered}$	MDL	Dilution	Date/Time Analyzed	Analyst
Tetrachloroethylene	ND	0.035	0.027		ND	0.24	0.18	0.698	4/7/22 20:40	BRF
Tetrahydrofuran	0.11	0.35	0.057	J	0.32	1.0	0.17	0.698	4/7/22 20:40	BRF
Toluene	0.38	0.035	0.020		1.4	0.13	0.075	0.698	4/7/22 20:40	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND	0.26	0.18	0.698	4/7/22 20:40	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 20:40	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 20:40	BRF
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	4/7/22 20:40	BRF
Trichlorofluoromethane (Freon 11)	0.25	0.14	0.041		1.4	0.78	0.23	0.698	4/7/22 20:40	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.080	0.14	0.039	J	0.61	1.1	0.30	0.698	4/7/22 20:40	BRF
1,2,4-Trimethylbenzene	0.028	0.035	0.015	J	0.14	0.17	0.076	0.698	4/7/22 20:40	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22 20:40	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 20:40	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 20:40	BRF
m\&p-Xylene	0.11	0.070	0.039		0.48	0.30	0.17	0.698	4/7/22 20:40	BRF
o-Xylene	0.044	0.035	0.018		0.19	0.15	0.078	0.698	4/7/22 20:40	BRF
Surrogates	\% Reco			\% REC	Limits					
4-Bromofluorobenzene (1)		98.7							4/8/22 18:33	
4-Bromofluorobenzene (1)		101							4/7/22 20:40	

Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 4
IA-3-03302022
Sample ID: 22D0004-12
Sample Matrix: Indoor air
Sampled: 3/30/2022 13:25

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum(in Hg$):-28$
Canister ID: 2154	Final Vacuum(in Hg$):-8$
Canister Size: 6 liter	Receipt Vacuum(in Hg$):-7.6$
Flow Controller ID: 3434	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

	ANALYTICAL RESULTS	
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: $3 / 31 / 2022$	Sub Description/Location:	Initial Vacuum(in Hg): $-\mathbf{2 8}$
Field Sample \#: Structure 4	-IA-3-03302022	Canister ID: 2154
Cample ID: 22D0004-12	Canister Size: 6 liter	Final Vacuum(in Hg): -8
Sample Matrix: Indoor air	Flow Controller ID: 3434	Receipt Vacuum(in Hg): -7.6
Sampled: $3 / 30 / 202213: 25$	Sample Type: 24 hr	Flow Controller Type: Fixed-Orifice
		Flow Controller Calibration
		RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results	ppbv RL	MDL	Flag/Qual	Results	$\begin{gathered} \mathrm{ug} / \mathrm{m} 3 \\ \text { RL } \end{gathered}$	MDL	Dilution	Date/Time Analyzed	Analyst
Tetrachloroethylene	ND	0.035	0.027		ND	0.24	0.18	0.698	4/7/22 21:15	BRF
Tetrahydrofuran	0.096	0.35	0.057	J	0.28	1.0	0.17	0.698	4/7/22 21:15	BRF
Toluene	0.29	0.035	0.020		1.1	0.13	0.075	0.698	4/7/22 21:15	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND	0.26	0.18	0.698	4/7/22 21:15	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 21:15	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 21:15	BRF
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	4/7/22 21:15	BRF
Trichlorofluoromethane (Freon 11)	0.24	0.14	0.041		1.3	0.78	0.23	0.698	4/7/22 21:15	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.063	0.14	0.039	J	0.49	1.1	0.30	0.698	4/7/22 21:15	BRF
1,2,4-Trimethylbenzene	ND	0.035	0.015		ND	0.17	0.076	0.698	4/7/22 21:15	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22 21:15	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 21:15	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 21:15	BRF
m\&p-Xylene	0.092	0.070	0.039		0.40	0.30	0.17	0.698	4/7/22 21:15	BRF
o-Xylene	0.031	0.035	0.018	J	0.14	0.15	0.078	0.698	4/7/22 21:15	BRF
Surrogates	\% Recovery			\% REC Limits						

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 4
IA-4-03302022
Sample ID: 22D0004-13
Sample Matrix: Indoor air
Sampled: 3/30/2022 13:26

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum(in Hg$):-30$
Canister ID: 2210	Final Vacuum(in Hg$):-6$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-5.5$
Flow Controller ID: 3058	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

Analyte	EPA TO-15				ug/m3					
	Results	ppbv RL	MDL	Flag/Qual				Dilution	Date/Time Analyzed	Analyst
Acetone	4.3	1.4	0.84		10	3.3	2.0	0.698	4/7/22 21:50	BRF
Benzene	0.20	0.035	0.026		0.63	0.11	0.084	0.698	4/7/22 21:50	BRF
Benzyl chloride	ND	0.070	0.031		ND	0.36	0.16	0.698	4/7/22 21:50	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 21:50	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 21:50	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 21:50	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 21:50	BRF
2-Butanone (MEK)	0.48	1.4	0.37	J	1.4	4.1	1.1	0.698	4/7/22 21:50	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 21:50	BRF
Carbon Tetrachloride	0.073	0.035	0.028		0.46	0.22	0.17	0.698	4/7/22 21:50	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 21:50	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 21:50	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 21:50	BRF
Chloromethane	0.46	0.070	0.028		0.96	0.14	0.057	0.698	4/7/22 21:50	BRF
Cyclohexane	0.074	0.035	0.023		0.25	0.12	0.079	0.698	4/7/22 21:50	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 21:50	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 21:50	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 21:50	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 21:50	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 21:50	BRF
Dichlorodifluoromethane (Freon 12)	0.50	0.035	0.034		2.5	0.17	0.17	0.698	4/7/22 21:50	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 21:50	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 21:50	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 21:50	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 21:50	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 21:50	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 21:50	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 21:50	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 21:50	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 21:50	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 21:50	BRF
Ethanol	4.2	1.4	0.62		8.0	2.6	1.2	0.698	4/7/22 21:50	BRF
Ethyl Acetate	1.1	0.35	0.18		4.1	1.3	0.64	0.698	4/7/22 21:50	BRF
Ethylbenzene	0.079	0.035	0.020		0.34	0.15	0.088	0.698	4/7/22 21:50	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 21:50	BRF
Heptane	0.12	0.035	0.022		0.47	0.14	0.091	0.698	4/7/22 21:50	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 21:50	BRF
Hexane	0.74	1.4	0.18	J	2.6	4.9	0.64	0.698	4/7/22 21:50	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 21:50	BRF
Isopropanol	1.4	1.4	0.24	J	3.4	3.4	0.59	0.698	4/7/22 21:50	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 21:50	BRF
Methylene Chloride	1.1	0.35	0.16		3.8	1.2	0.56	0.698	4/7/22 21:50	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 21:50	BRF
Naphthalene	ND	0.035	0.022		ND	0.18	0.12	0.698	4/7/22 21:50	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 21:50	BRF
Styrene	0.030	0.035	0.018	J	0.13	0.15	0.078	0.698	4/7/22 21:50	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 21:50	BRF
									Page 26 of 64	

ANALYTICAL RESULTS		
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -30
Field Sample \#: Structure 4 -IA-4-03302022	Canister ID: 2210	Final Vacuum(in Hg): -6
Sample ID: 22D0004-13	Canister Size: 6 liter	Receipt Vacuum(in Hg): -5.5
Sample Matrix: Indoor air	Flow Controller ID: 3058	Flow Controller Type: Fixed-Orifice
Sampled: 3/30/2022 13:26	Sample Type: 24 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results	ppbv RL	MDL	Flag/Qual	Results	$\begin{gathered} \mathrm{ug} / \mathrm{m} 3 \\ \text { RL } \end{gathered}$	MDL	Dilution	Date/Time Analyzed	Analyst
Tetrachloroethylene	0.060	0.035	0.027		0.41	0.24	0.18	0.698	4/7/22 21:50	BRF
Tetrahydrofuran	0.16	0.35	0.057	J	0.46	1.0	0.17	0.698	4/7/22 21:50	BRF
Toluene	1.3	0.035	0.020		4.8	0.13	0.075	0.698	4/7/22 21:50	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND	0.26	0.18	0.698	4/7/22 21:50	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 21:50	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 21:50	BRF
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	4/7/22 21:50	BRF
Trichlorofluoromethane (Freon 11)	0.24	0.14	0.041		1.4	0.78	0.23	0.698	4/7/22 21:50	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.079	0.14	0.039	J	0.60	1.1	0.30	0.698	4/7/22 21:50	BRF
1,2,4-Trimethylbenzene	0.040	0.035	0.015		0.20	0.17	0.076	0.698	4/7/22 21:50	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22 21:50	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 21:50	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 21:50	BRF
m\&p-Xylene	0.23	0.070	0.039		1.0	0.30	0.17	0.698	4/7/22 21:50	BRF
o-Xylene	0.083	0.035	0.018		0.36	0.15	0.078	0.698	4/7/22 21:50	BRF
Surrogates	\% Recovery			\% REC Limits						

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 5 -SS-1-03302022
Sample ID: 22D0004-14
Sample Matrix: Sub Slab
Sampled: 3/30/2022 15:25
Sample Description/Location:
Sub Description/Location:
Canister ID: 2205
Canister Size: 6 liter
Flow Controller ID: 3351
Sample Type: 24 hr

Work Order: 22D0004

Initial Vacuum(in Hg): -30
Final Vacuum(in Hg): -13
Receipt Vacuum(in Hg): -11.5
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15											
Sample Flags: RL-11 ppbv dite/Time											
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed		Analyst
Acetone	21	11	6.4		50	25	15	5.33	4/12/22	0:21	BRF
Benzene	0.30	0.27	0.20		0.97	0.85	0.65	5.33	4/12/22	0:21	BRF
Benzyl chloride	ND	0.27	0.24		ND	1.4	1.2	5.33	4/12/22	0:21	BRF
Bromodichloromethane	0.19	0.27	0.19	J	1.3	1.8	1.3	5.33	4/12/22	0:21	BRF
Bromoform	ND	0.27	0.18		ND	2.8	1.9	5.33	4/12/22	0:21	BRF
Bromomethane	ND	0.27	0.22		ND	1.0	0.84	5.33	4/12/22	0:21	BRF
1,3-Butadiene	ND	0.27	0.22		ND	0.59	0.49	5.33	4/12/22	0:21	BRF
2-Butanone (MEK)	ND	11	2.8		ND	31	8.4	5.33	4/12/22	0:21	BRF
Carbon Disulfide	0.58	2.7	0.25	J	1.8	8.3	0.77	5.33	4/12/22	0:21	BRF
Carbon Tetrachloride	ND	0.27	0.21		ND	1.7	1.3	5.33	4/12/22	0:21	BRF
Chlorobenzene	ND	0.27	0.18		ND	1.2	0.82	5.33	4/12/22	0:21	BRF
Chloroethane	ND	0.27	0.19		ND	0.70	0.51	5.33	4/12/22	0:21	BRF
Chloroform	12	0.27	0.25		56	1.3	1.2	5.33	4/12/22	0:21	BRF
Chloromethane	ND	0.53	0.21		ND	1.1	0.44	5.33	4/12/22	0:21	BRF
Cyclohexane	ND	0.27	0.18		ND	0.92	0.61	5.33	4/12/22	0:21	BRF
Dibromochloromethane	ND	0.27	0.18		ND	2.3	1.5	5.33	4/12/22	0:21	BRF
1,2-Dibromoethane (EDB)	ND	0.27	0.16		ND	2.0	1.2	5.33	4/12/22	0:21	BRF
1,2-Dichlorobenzene	ND	0.27	0.15		ND	1.6	0.92	5.33	4/12/22	0:21	BRF
1,3-Dichlorobenzene	ND	0.27	0.15		ND	1.6	0.89	5.33	4/12/22	0:21	BRF
1,4-Dichlorobenzene	ND	0.27	0.17		ND	1.6	1.0	5.33	4/12/22	0:21	BRF
Dichlorodifluoromethane (Freon 12)	0.74	0.27	0.26		3.6	1.3	1.3	5.33	4/12/22	0:21	BRF
1,1-Dichloroethane	ND	0.27	0.23		ND	1.1	0.94	5.33	4/12/22	0:21	BRF
1,2-Dichloroethane	ND	0.27	0.24		ND	1.1	0.98	5.33	4/12/22	0:21	BRF
1,1-Dichloroethylene	ND	0.27	0.20		ND	1.1	0.81	5.33	4/12/22	0:21	BRF
cis-1,2-Dichloroethylene	ND	0.27	0.19		ND	1.1	0.77	5.33	4/12/22	0:21	BRF
trans-1,2-Dichloroethylene	ND	0.27	0.21		ND	1.1	0.83	5.33	4/12/22	0:21	BRF
1,2-Dichloropropane	ND	0.27	0.14		ND	1.2	0.67	5.33	4/12/22	0:21	BRF
cis-1,3-Dichloropropene	ND	0.27	0.14		ND	1.2	0.63	5.33	4/12/22	0:21	BRF
trans-1,3-Dichloropropene	ND	0.27	0.14		ND	1.2	0.62	5.33	4/12/22	0:21	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.27	0.26		ND	1.9	1.8	5.33	4/12/22	0:21	BRF
1,4-Dioxane	ND	2.7	0.22		ND	9.6	0.80	5.33	4/12/22	0:21	BRF
Ethanol	7.3	11	4.7	J	14	20	8.9	5.33	4/12/22	0:21	BRF
Ethyl Acetate	ND	2.7	1.3		ND	9.6	4.9	5.33	4/12/22	0:21	BRF
Ethylbenzene	1.1	0.27	0.16		4.8	1.2	0.68	5.33	4/12/22	0:21	BRF
4-Ethyltoluene	0.55	0.27	0.16		2.7	1.3	0.80	5.33	4/12/22	0:21	BRF
Heptane	1.1	0.27	0.17		4.6	1.1	0.70	5.33	4/12/22	0:21	BRF
Hexachlorobutadiene	ND	0.27	0.22		ND	2.8	2.3	5.33	4/12/22	0:21	BRF
Hexane	ND	11	1.4		ND	38	4.9	5.33	4/12/22	0:21	BRF
2-Hexanone (MBK)	ND	0.27	0.13		ND	1.1	0.55	5.33	4/12/22	0:21	BRF
Isopropanol	ND	11	1.8		ND	26	4.5	5.33	4/12/22	0:21	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.27	0.21		ND	0.96	0.74	5.33	4/12/22	0:21	BRF
Methylene Chloride	ND	2.7	1.2		ND	9.3	4.3	5.33	4/12/22	0:21	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.27	0.14		ND	1.1	0.56	5.33	4/12/22	0:21	BRF
Naphthalene	ND	0.27	0.17		ND	1.4	0.89	5.33	4/12/22	0:21	BRF
Propene	ND	11	2.3		ND	18	4.0	5.33	4/12/22	0:21	BRF
Styrene	ND	0.27	0.14		ND	1.1	0.60	5.33	4/12/22	0:21	BRF
1,1,2,2-Tetrachloroethane	ND	0.27	0.14		ND	1.8	0.99	5.33	4/12/22	0:21	BRF
1,1,2,2-Tetrachoroethane									Page 28 of 64		

ANALYTICAL RESULTS											
Project Location: NY Date Received: 3/31/2022							Work Order: 22D0004				
	Sub Description/Location:						Initial Vacuum(in Hg): -30				
Field Sample \#: Structure 5 -SS-1-03302022	Canister ID: 2205						Final Vacuum(in Hg): -13				
Sample ID: 22D0004-14	Canister Size: 6 liter						Receipt Vacuum(in Hg): -11.5				
Sample Matrix: Sub Slab	Flow Controller ID: 3351						Flow Controller Type: Fixed-Orifice				
Sampled: 3/30/2022 15:25	Sample Type: 24 hr						Flow Controller Calibration				
							RPD Pre and Post-Sampling: $<20 \%$				
EPA TO-15											
Sample Flags: RL-11											
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analy		Analyst
Tetrachloroethylene	160	0.27	0.20		1100	1.8	1.4	5.33	4/12/22	0:21	BRF
Tetrahydrofuran	ND	2.7	0.44		ND	7.9	1.3	5.33	4/12/22	0:21	BRF
Toluene	3.7	0.27	0.15		14	1.0	0.57	5.33	4/12/22	0:21	BRF
1,2,4-Trichlorobenzene	ND	0.27	0.19		ND	2.0	1.4	5.33	4/12/22	0:21	BRF
1,1,1-Trichloroethane	ND	0.27	0.21		ND	1.5	1.1	5.33	4/12/22	0:21	BRF
1,1,2-Trichloroethane	ND	0.27	0.19		ND	1.5	1.0	5.33	4/12/22	0:21	BRF
Trichloroethylene	ND	0.27	0.18		ND	1.4	0.97	5.33	4/12/22	0:21	BRF
Trichlorofluoromethane (Freon 11)	0.33	1.1	0.32	J	1.9	6.0	1.8	5.33	4/12/22	0:21	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.1	0.30		ND	8.2	2.3	5.33	4/12/22	0:21	BRF
1,2,4-Trimethylbenzene	2.6	0.27	0.12		13	1.3	0.58	5.33	4/12/22	0:21	BRF
1,3,5-Trimethylbenzene	0.70	0.27	0.14		3.4	1.3	0.69	5.33	4/12/22	0:21	BRF
Vinyl Acetate	ND	5.3	1.4		ND	19	5.0	5.33	4/12/22	0:21	BRF
Vinyl Chloride	ND	0.27	0.24		ND	0.68	0.61	5.33	4/12/22	0:21	BRF
m\&p-Xylene	5.5	0.53	0.30		24	2.3	1.3	5.33	4/12/22	0:21	BRF
o-Xylene	1.9	0.27	0.14		8.3	1.2	0.59	5.33	4/12/22	0:21	BRF
Surrogates	\% Reco			\% RE	Limits						
4-Bromofluorobenzene (1)		93.9							4/12/22	0:21	

Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 5
IA-1-03302022
Sample ID: 22D0004-15
Sample Matrix: Indoor air
Sampled: 3/30/2022 15:26

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $($ in Hg$):-28.5$
Canister ID: 1839	Final Vacuum $(\mathrm{in} \mathrm{Hg}):-8$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-7.8$
Flow Controller ID: 3086	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

Analyte	EPA TO-15				ug/m3					
	Results	$\begin{gathered} \text { ppbv } \\ \text { RL } \end{gathered}$	MDL	Flag/Qual				Dilution	Date/Time Analyzed	Analyst
Acetone	71	8.0	4.8		170	19	11	4	4/8/22 19:01	BRF
Benzene	3.8	0.035	0.026		12	0.11	0.084	0.698	4/7/22 22:25	BRF
Benzyl chloride	ND	0.070	0.031		ND	0.36	0.16	0.698	4/7/22 22:25	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 22:25	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 22:25	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 22:25	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 22:25	BRF
2-Butanone (MEK)	1.6	1.4	0.37		4.6	4.1	1.1	0.698	4/7/22 22:25	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 22:25	BRF
Carbon Tetrachloride	0.068	0.035	0.028		0.43	0.22	0.17	0.698	4/7/22 22:25	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 22:25	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 22:25	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 22:25	BRF
Chloromethane	0.58	0.070	0.028		1.2	0.14	0.057	0.698	4/7/22 22:25	BRF
Cyclohexane	5.2	0.035	0.023		18	0.12	0.079	0.698	4/7/22 22:25	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 22:25	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 22:25	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 22:25	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 22:25	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 22:25	BRF
Dichlorodifluoromethane (Freon 12)	0.49	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 22:25	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 22:25	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 22:25	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 22:25	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 22:25	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 22:25	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 22:25	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 22:25	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 22:25	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 22:25	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 22:25	BRF
Ethanol	74	8.0	3.5		140	15	6.6	4	4/8/22 19:01	BRF
Ethyl Acetate	1.3	0.35	0.18		4.8	1.3	0.64	0.698	4/7/22 22:25	BRF
Ethylbenzene	2.9	0.035	0.020		13	0.15	0.088	0.698	4/7/22 22:25	BRF
4-Ethyltoluene	1.1	0.035	0.021		5.2	0.17	0.11	0.698	4/7/22 22:25	BRF
Heptane	7.0	0.035	0.022		29	0.14	0.091	0.698	4/7/22 22:25	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 22:25	BRF
Hexane	13	1.4	0.18		46	4.9	0.64	0.698	4/7/22 22:25	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 22:25	BRF
Isopropanol	1.7	1.4	0.24		4.2	3.4	0.59	0.698	4/7/22 22:25	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 22:25	BRF
Methylene Chloride	0.68	0.35	0.16		2.3	1.2	0.56	0.698	4/7/22 22:25	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 22:25	BRF
Naphthalene	0.45	0.035	0.022		2.3	0.18	0.12	0.698	4/7/22 22:25	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 22:25	BRF
Styrene	ND	0.035	0.018		ND	0.15	0.078	0.698	4/7/22 22:25	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 22:25	BRF
									Page 30 of 64	

	ANALYTICAL RESULTS	
Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: $3 / 31 / 2022$	Sub Description/Location:	Initial Vacuum(in Hg): -28.5
Field Sample \#: Structure 5	-IA-1-03302022	Canister ID: 1839
Sample ID: 22D0004-15	Canister Size: 6 liter	Final Vacuum(in Hg): -8
Sample Matrix: Indoor air	Flow Controller ID: 3086	Receipt Vacuum(in Hg): -7.8
Sampled: $3 / 30 / 202215: 26$	Sample Type: 24 hr	Flow Controller Type: Fixed-Orifice
		Flow Controller Calibration

Sample Extraction Data

Prep Method: TO-15 Prep-EPA TO-15 Lab Number [Field ID]	Batch	Pressure Dilution	Pre Dilution	Pre-Dil Initial mL	Pre-Dil Final mL	Default Injection mL	Actual Injection mL	Date
22D0004-01 [Structure 2 -OA-1-03302022]	B305343	1.5	1	N/A	1000	200	430	04/07/22
22D0004-02 [Structure 2-IA-1-03302022]	B305343	1.5	1	N/A	1000	200	430	04/07/22
22D0004-04 [Structure 3-OA-1-03302022]	B305343	1.5	1	N/A	1000	200	430	04/07/22
22D0004-05 [Structure 3-IA-1-03302022]	B305343	1.5	1	N/A	1000	200	430	04/07/22
22D0004-06 [Structure 3-IA-DUP-03302022]	B305343	1.5	1	N/A	1000	200	430	04/07/22
22D0004-07 [Structure 3-IA-2-03302022]	B305343	1.5	1	N/A	1000	200	430	04/07/22
22D0004-09 [Structure 4-IA-1-03302022]	B305343	1.5	1	N/A	1000	200	430	04/07/22
22D0004-10 [Structure 4-OA-1-03302022]	B305343	1.5	1	N/A	1000	200	430	04/07/22
22D0004-11 [Structure 4-IA-2-03302022]	B305343	1.5	1	N/A	1000	200	430	04/07/22
22D0004-12 [Structure 4-IA-3-03302022]	B305343	1.5	1	N/A	1000	200	430	04/07/22
22D0004-13 [Structure 4-IA-4-03302022]	B305343	1.5	1	N/A	1000	200	430	04/07/22
22D0004-15 [Structure 5 -IA-1-03302022]	B305343	1.5	1	N/A	1000	200	430	04/07/22
Prep Method: TO-15 Prep-EPA TO-15 Lab Number [Field ID]	Batch	Pressure Dilution	Pre Dilution	$\begin{gathered} \text { Pre-Dil } \\ \text { Initial } \\ \mathrm{mL} \end{gathered}$	$\begin{gathered} \text { Pre-Dil } \\ \text { Final } \\ \text { mL } \end{gathered}$	Default Injection mL	$\begin{gathered} \text { Actual } \\ \text { Injection } \\ \text { mL } \end{gathered}$	Date
22D0004-02RE1 [Structure 2-IA-1-03302022]	B305445	1.5	1	N/A	1000	200	10	04/08/22
22D0004-05RE1 [Structure 3-IA-1-03302022]	B305445	1.5	1	N/A	1000	200	75	04/08/22
22D0004-06RE1 [Structure 3-IA-DUP-03302022]	B305445	1.5	1	N/A	1000	200	75	04/08/22
22D0004-09RE1 [Structure 4 -IA-1-03302022]	B305445	1.5	1	N/A	1000	200	75	04/08/22
22D0004-11RE1 [Structure 4 -IA-2-03302022]	B305445	1.5	1	N/A	1000	200	75	04/08/22
22D0004-15RE1 [Structure 5-IA-1-03302022]	B305445	1.5	1	N/A	1000	200	75	04/08/22
Prep Method: TO-15 Prep-EPA TO-15 Lab Number [Field ID]	Batch	Pressure Dilution	$\begin{gathered} \text { Pre } \\ \text { Dilution } \end{gathered}$	Pre-Dil Initial mL	Pre-Dil Final mL	Default Injection mL	Actual Injection mL	Date
22D0004-03 [Structure 2-SS-1-03302022]	B305574	2	1	N/A	1000	400	200	04/11/22
22D0004-14 [Structure 5-SS-1-03302022]	B305574	2	1	N/A	1000	400	150	04/11/22

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppbv		ug/m3		Spike Level	Source		\%REC		RPD	
	Results	RL	Results	RL		Result	\%REC	Limits	RPD	Limit	Flag/Qual

Batch B305343-TO-15 Prep

Blank (B305343-BLK1)			Prepared \& Analyzed: 04/07/22
Acetone	ND	0.80	
Benzene	ND	0.020	
Benzyl chloride	ND	0.040	
Bromodichloromethane	ND	0.020	
Bromoform	ND	0.020	
Bromomethane	ND	0.020	
1,3-Butadiene	ND	0.020	
2-Butanone (MEK)	ND	0.80	
Carbon Disulfide	ND	0.20	
Carbon Tetrachloride	ND	0.020	
Chlorobenzene	ND	0.020	
Chloroethane	ND	0.020	
Chloroform	ND	0.020	
Chloromethane	ND	0.040	
Cyclohexane	ND	0.020	
Dibromochloromethane	ND	0.020	
1,2-Dibromoethane (EDB)	ND	0.020	
1,2-Dichlorobenzene	ND	0.020	
1,3-Dichlorobenzene	ND	0.020	
1,4-Dichlorobenzene	ND	0.020	
Dichlorodifluoromethane (Freon 12)	ND	0.020	
1,1-Dichloroethane	ND	0.020	
1,2-Dichloroethane	ND	0.020	
1,1-Dichloroethylene	ND	0.020	
cis-1,2-Dichloroethylene	ND	0.020	
trans-1,2-Dichloroethylene	ND	0.020	
1,2-Dichloropropane	ND	0.020	
cis-1,3-Dichloropropene	ND	0.020	
trans-1,3-Dichloropropene	ND	0.020	
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.020	
1,4-Dioxane	ND	0.20	
Ethanol	ND	0.80	
Ethyl Acetate	ND	0.20	
Ethylbenzene	ND	0.020	
4-Ethyltoluene	ND	0.020	
Heptane	ND	0.020	
Hexachlorobutadiene	ND	0.020	
Hexane	ND	0.80	
2-Hexanone (MBK)	ND	0.020	
Isopropanol	ND	0.80	
Methyl tert-Butyl Ether (MTBE)	ND	0.020	
Methylene Chloride	ND	0.20	
4-Methyl-2-pentanone (MIBK)	ND	0.020	
Naphthalene	ND	0.020	
Propene	ND	0.80	
Styrene	ND	0.020	

QUALITY CONTROL
Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppbv		ug/m3		Spike Level ppbv	Source		\%REC		RPD	
	Results	RL	Results	RL		Result	\%REC	Limits	RPD	Limit	Flag/Qual

Batch B305343-TO-15 Prep

Blank (B305343-BLK1)	Prepared \& Analyzed: 04/07/22				
1,1,2,2-Tetrachloroethane	ND	0.020			
Tetrachloroethylene	ND	0.020			
Tetrahydrofuran	ND	0.20			
Toluene	ND	0.020			
1,2,4-Trichlorobenzene	ND	0.020			
1,1,1-Trichloroethane	ND	0.020			
1,1,2-Trichloroethane	ND	0.020			
Trichloroethylene	ND	0.020			
Trichlorofluoromethane (Freon 11)	ND	0.080			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.080			
1,2,4-Trimethylbenzene	ND	0.020			
1,3,5-Trimethylbenzene	ND	0.020			
Vinyl Acetate	ND	0.40			
Vinyl Chloride	ND	0.020			
m\&p-Xylene	ND	0.040			
o-Xylene	ND	0.020			
Surrogate: 4-Bromofluorobenzene (1)	7.81		8.00	97.6	70-130

LCS (B305343-BS1)	Prepared \& Analyzed: 04/07/22				
Acetone	4.50	5.00	90.1	70-130	
Benzene	4.55	5.00	91.1	70-130	
Benzyl chloride	5.60	5.00	112	70-130	V-36
Bromodichloromethane	4.37	5.00	87.5	70-130	
Bromoform	4.90	5.00	98.0	70-130	
Bromomethane	5.15	5.00	103	70-130	
1,3-Butadiene	4.96	5.00	99.1	70-130	
2-Butanone (MEK)	4.68	5.00	93.6	70-130	
Carbon Disulfide	4.95	5.00	99.0	70-130	
Carbon Tetrachloride	4.60	5.00	91.9	70-130	
Chlorobenzene	4.73	5.00	94.6	70-130	
Chloroethane	5.11	5.00	102	70-130	
Chloroform	5.08	5.00	102	70-130	
Chloromethane	4.66	5.00	93.3	70-130	
Cyclohexane	4.84	5.00	96.8	70-130	
Dibromochloromethane	4.79	5.00	95.9	70-130	
1,2-Dibromoethane (EDB)	4.78	5.00	95.7	70-130	
1,2-Dichlorobenzene	5.10	5.00	102	70-130	
1,3-Dichlorobenzene	5.47	5.00	109	70-130	
1,4-Dichlorobenzene	5.13	5.00	103	70-130	
Dichlorodifluoromethane (Freon 12)	4.90	5.00	98.0	70-130	
1,1-Dichloroethane	5.15	5.00	103	70-130	
1,2-Dichloroethane	4.89	5.00	97.8	70-130	
1,1-Dichloroethylene	4.95	5.00	99.0	70-130	
cis-1,2-Dichloroethylene	4.93	5.00	98.6	70-130	
trans-1,2-Dichloroethylene	5.06	5.00	101	70-130	
1,2-Dichloropropane	4.38	5.00	87.6	70-130	

QUALITY CONTROL
Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppbv		ug/m3		Spike Level	Source		\%REC		RPD	
	Results	RL	Results	RL	ppbv	Result	\%REC	Limits	RPD	Limit	Flag/Qual

Batch B305343-TO-15 Prep

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332
QUALITY CONTROL
Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppbv		ug/m3		Spike Level ppbv	Source	\%REC		RPD		
	Results	RL	Results	RL		Result	\%REC	Limits	RPD	Limit	Flag/Qual

Batch B305343-TO-15 Prep

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppbv		ug/m3		Spike Level ppbv	Source		\%REC		RPD	
	Results	RL	Results	RL		Result	\%REC	Limits	RPD	Limit	Flag/Qual

Batch B305343-TO-15 Prep

Batch B305445-TO-15 Prep

| Blank (B305445-BLK1) | | Prepared \& Analyzed: 04/08/22 | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Acetone | ND | 0.80 | | |
| Ethanol | ND | 0.80 | | |
| Surrogate: 4-Bromofluorobenzene (1) | 7.93 | 8.00 | 99.2 | $70-130$ |
| LCS (B305445-BS1) | | Prepared \& Analyzed: $04 / 08 / 22$ | | |
| Acetone | 4.51 | 5.00 | 90.2 | $70-130$ |
| Ethanol | 4.58 | 5.00 | 91.5 | $70-130$ |
| Surrogate: 4-Bromofluorobenzene (1) | 8.58 | 8.00 | 107 | $70-130$ |

QUALITY CONTROL
Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppbv		ug/m3		Spike Level ppbv	Source		\%REC		RPD	
	Results	RL	Results	RL		Result	\%REC	Limits	RPD	Limit	Flag/Qual

Batch B305574-TO-15 Prep

$\underline{\text { Blank (B305574-BLK1) }}$			Prepared \& Analyzed: 04/11/22
Acetone	ND	1.4	
Benzene	ND	0.035	
Benzyl chloride	ND	0.035	
Bromodichloromethane	ND	0.035	
Bromoform	ND	0.035	
Bromomethane	ND	0.035	
1,3-Butadiene	ND	0.035	
2-Butanone (MEK)	ND	1.4	
Carbon Disulfide	ND	0.35	
Carbon Tetrachloride	ND	0.035	
Chlorobenzene	ND	0.035	
Chloroethane	ND	0.035	
Chloroform	ND	0.035	
Chloromethane	ND	0.070	
Cyclohexane	ND	0.035	
Dibromochloromethane	ND	0.035	
1,2-Dibromoethane (EDB)	ND	0.035	
1,2-Dichlorobenzene	ND	0.035	
1,3-Dichlorobenzene	ND	0.035	
1,4-Dichlorobenzene	ND	0.035	
Dichlorodifluoromethane (Freon 12)	ND	0.035	
1,1-Dichloroethane	ND	0.035	
1,2-Dichloroethane	ND	0.035	
1,1-Dichloroethylene	ND	0.035	
cis-1,2-Dichloroethylene	ND	0.035	
trans-1,2-Dichloroethylene	ND	0.035	
1,2-Dichloropropane	ND	0.035	
cis-1,3-Dichloropropene	ND	0.035	
trans-1,3-Dichloropropene	ND	0.035	
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	
1,4-Dioxane	ND	0.35	
Ethanol	ND	1.4	
Ethyl Acetate	ND	0.35	
Ethylbenzene	ND	0.035	
4-Ethyltoluene	ND	0.035	
Heptane	ND	0.035	
Hexachlorobutadiene	ND	0.035	
Hexane	ND	1.4	
2-Hexanone (MBK)	ND	0.035	
Isopropanol	ND	1.4	
Methyl tert-Butyl Ether (MTBE)	ND	0.035	
Methylene Chloride	ND	0.35	
4-Methyl-2-pentanone (MIBK)	ND	0.035	
Naphthalene	ND	0.035	
Propene	ND	1.4	
Styrene	ND	0.035	

QUALITY CONTROL
Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppbv		ug/m3		Spike Level ppbv	Source		\%REC		RPD	
	Results	RL	Results	RL		Result	\%REC	Limits	RPD	Limit	Flag/Qual

Batch B305574-TO-15 Prep

Blank (B305574-BLK1)	Prepared \& Analyzed: 04/11/22				
1,1,2,2-Tetrachloroethane	ND	0.035			
Tetrachloroethylene	ND	0.035			
Tetrahydrofuran	ND	0.35			
Toluene	ND	0.035			
1,2,4-Trichlorobenzene	ND	0.035			
1,1,1-Trichloroethane	ND	0.035			
1,1,2-Trichloroethane	ND	0.035			
Trichloroethylene	ND	0.035			
Trichlorofluoromethane (Freon 11)	ND	0.14			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.14			
1,2,4-Trimethylbenzene	ND	0.035			
1,3,5-Trimethylbenzene	ND	0.035			
Vinyl Acetate	ND	0.70			
Vinyl Chloride	ND	0.035			
m\&p-Xylene	ND	0.070			
o-Xylene	ND	0.035			
Surrogate: 4-Bromofluorobenzene (1)	7.61		8.00	95.1	70-130

LCS (B305574-BS1)		pared	1/22	
Acetone	5.93	5.00	119	70-130
Benzene	4.48	5.00	89.6	70-130
Benzyl chloride	4.77	5.00	95.4	70-130
Bromodichloromethane	4.38	5.00	87.5	70-130
Bromoform	5.12	5.00	102	70-130
Bromomethane	5.73	5.00	115	70-130
1,3-Butadiene	5.10	5.00	102	70-130
2-Butanone (MEK)	4.68	5.00	93.6	70-130
Carbon Disulfide	5.78	5.00	116	70-130
Carbon Tetrachloride	5.02	5.00	100	70-130
Chlorobenzene	4.84	5.00	96.7	70-130
Chloroethane	5.42	5.00	108	70-130
Chloroform	5.39	5.00	108	70-130
Chloromethane	5.26	5.00	105	70-130
Cyclohexane	4.12	5.00	82.5	70-130
Dibromochloromethane	5.05	5.00	101	70-130
1,2-Dibromoethane (EDB)	4.71	5.00	94.2	70-130
1,2-Dichlorobenzene	4.40	5.00	87.9	70-130
1,3-Dichlorobenzene	4.84	5.00	96.8	70-130
1,4-Dichlorobenzene	4.61	5.00	92.3	70-130
Dichlorodifluoromethane (Freon 12)	5.67	5.00	113	70-130
1,1-Dichloroethane	5.01	5.00	100	70-130
1,2-Dichloroethane	4.97	5.00	99.4	70-130
1,1-Dichloroethylene	5.84	5.00	117	70-130
cis-1,2-Dichloroethylene	4.56	5.00	91.2	70-130
trans-1,2-Dichloroethylene	4.73	5.00	94.6	70-130
1,2-Dichloropropane	3.94	5.00	78.9	70-130

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppbv		ug/m3		Spike Level ppbv	Source		\%REC		RPD	
	Results	RL	Results	RL		Result	\%REC	Limits	RPD	Limit	Flag/Qual

Batch B305574-TO-15 Prep

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
\dagger	Wide recovery limits established for difficult compound.
\ddagger	Wide RPD limits established for difficult compound.
\#	Data exceeded client recommended or regulatory level
RL	Reporting Limit
MDL	Method Detection Limit
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
LCS Dup	Duplicate Laboratory Control Sample
MS	Matrix Spike Sample
MS Dup	Duplicate Matrix Spike Sample
REC	Recovery
QC	Quality Control
ppbv	Parts per billion volume
EPA	United States Environmental Protection Agency
\% REC	Percent Recovery
ND	Not Detected
N/A	Not Applicable
DL	Detection Limit
NC	Not Calculated
LFB/LCS	Lab Fortified Blank/Lab Control Sample
ORP	Oxidation-Reduction Potential
wet	Not dry weight corrected
\% wt	Percent weight
Kg	Kilogram
g	Gram
mg	Milligram
$\mu \mathrm{g}$	Microgram
ng	Nanogram
L	Liter
mL	Milliliter
$\mu \mathrm{L}$	Microliter
m3	Cubic Meter
EPH	Extractable Petroleum Hydrocarbons
VPH	Volatile Petroleum Hydrocarbons
APH	Air Petroleum Hydrocarbons
FID	Flame Ionization Detector
PID	Photo Ionization Detector
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
E	Reported result is estimated. Value reported over verified calibration range.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
R-04	Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting limit (RL).
RL-11	Elevated reporting limit due to high concentration of target compounds.
V-36	Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

ANALYST

TPH	Thomas P. Hnitecki
RJM	Raymond J. McCarthy
STATION	PDF Management Station
LR	Lionel Rios
BRF	Brittany R. Fisk

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area \%	Area \% Limits	RT Diff	RT Diff Limit	Q
Initial Cal Check (S069130-ICV1)	Lab File ID: G22A070016.D					Analyzed: 03/12/22 00:46			
Bromochloromethane (1)	1422759	8.497	1375823	8.497	103	60-140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	3681016	10.271	3486350	10.271	106	60-140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	3376358	14.636	3232194	14.636	104	60-140	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area \%	Area \% Limits	RT Diff	RT Diff Limit	Q
Initial Cal Check (S069304-ICV1)	Lab File ID: K22A075019.D					Analyzed: 03/16/22 23:55			
Bromochloromethane (1)	104138	2.987	102745	2.987	101	60-140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	315817	3.584	303801	3.579	104	60-140	0.0050	+/-0.50	
Chlorobenzene-d5 (1)	233658	5.159	223280	5.159	105	60-140	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area \%	Area \% Limits	RT Diff	RT Diff Limit	Q
Calibration Check (S070138-CCV1)	Lab File ID: K22A097004.D					Analyzed: 04/07/22 10:13			
Bromochloromethane (1)	89286	2.992	102745	2.987	87	60-140	0.0050	+/-0.50	
1,4-Difluorobenzene (1)	288588	3.584	303801	3.579	95	60-140	0.0050	+/-0.50	
Chlorobenzene-d5 (1)	210793	5.159	223280	5.159	94	60-140	0.0000	+/-0.50	
LCS (B305343-BS1)	Lab File ID: K22A097005.D					Analyzed: 04/07/22 10:44			
Bromochloromethane (1)	87580	2.992	89286	2.992	98	60-140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	285987	3.584	288588	3.584	99	60-140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	210184	5.159	210793	5.159	100	60-140	0.0000	+/-0.50	
Blank (B305343-BLK1)	Lab File ID: K22A097008.D					Analyzed: 04/07/22 12:28			
Bromochloromethane (1)	88947	2.996	89286	2.992	100	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	269248	3.584	288588	3.584	93	60-140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	207585	5.159	210793	5.159	98	60-140	0.0000	+/-0.50	
Structure 2 -OA-1-03302022 (22D0004-01)			Lab File ID: K22A097011.D			Analyzed: 04/07/22 14:50			
Bromochloromethane (1)	87869	2.996	89286	2.992	98	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	269842	3.588	288588	3.584	94	60-140	0.0040	+/-0.50	
Chlorobenzene-d5 (1)	203660	5.164	210793	5.159	97	60-140	0.0050	+/-0.50	
Structure 2 -IA-1-03302022 (22D0004-02)			Lab File ID: K22A097013.D			Analyzed: 04/07/22 15:56			
Bromochloromethane (1)	86085	2.996	89286	2.992	96	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	269593	3.588	288588	3.584	93	60-140	0.0040	+/-0.50	
Chlorobenzene-d5 (1)	208658	5.159	210793	5.159	99	60-140	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area \%	Area \% Limits	RT Diff	RT Diff Limit	Q
Duplicate (B305343-DUP1)			Lab File ID: K22A097014.D			Analyzed: 04/07/22 16:31			
Bromochloromethane (1)	87321	2.996	89286	2.992	98	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	278285	3.588	288588	3.584	96	60-140	0.0040	+/-0.50	
Chlorobenzene-d5 (1)	207662	5.163	210793	5.159	99	60-140	0.0040	+/-0.50	
Structure 3 -OA-1-03302022 (22D0004-04)			Lab File ID: K22A097015.D			Analyzed: 04/07/22 17:06			
Bromochloromethane (1)	85360	2.996	89286	2.992	96	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	257074	3.584	288588	3.584	89	60-140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	198203	5.159	210793	5.159	94	60-140	0.0000	+/-0.50	
Structure 3 -IA-1-03302022 (22D0004-05)			Lab File ID: K22A097016.D			Analyzed: 04/07/22 17:43			
Bromochloromethane (1)	84948	2.996	89286	2.992	95	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	256990	3.588	288588	3.584	89	60-140	0.0040	+/-0.50	
Chlorobenzene-d5 (1)	196226	5.159	210793	5.159	93	60-140	0.0000	+/-0.50	
Structure 3 -IA-DUP-03302022 (22D0004-06)			Lab File ID: K22A097017.D			Analyzed: 04/07/22 18:18			
Bromochloromethane (1)	85367	2.996	89286	2.992	96	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	262342	3.588	288588	3.584	91	60-140	0.0040	+/-0.50	
Chlorobenzene-d5 (1)	198269	5.164	210793	5.159	94	60-140	0.0050	+/-0.50	
Structure 3-IA-2-03302022 (22D0004-07)			Lab File ID: K22A097018.D			Analyzed: 04/07/22 18:54			
Bromochloromethane (1)	84760	2.996	89286	2.992	95	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	260923	3.588	288588	3.584	90	60-140	0.0040	+/-0.50	
Chlorobenzene-d5 (1)	197946	5.164	210793	5.159	94	60-140	0.0050	+/-0.50	
Structure 4 -IA-1-03302022 (22D0004-09)			Lab File ID: K22A097019.D			Analyzed: 04/07/22 19:29			
Bromochloromethane (1)	85776	2.996	89286	2.992	96	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	259989	3.588	288588	3.584	90	60-140	0.0040	+/-0.50	
Chlorobenzene-d5 (1)	202459	5.163	210793	5.159	96	60-140	0.0040	+/-0.50	
$\text { Structure } 4 \text {-OA-1-03302022 (22D0004-10) }$			Lab File ID: K22A097020.D			Analyzed: 04/07/22 20:05			
Bromochloromethane (1)	85570	2.992	89286	2.992	96	60-140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	256592	3.584	288588	3.584	89	60-140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	196054	5.163	210793	5.159	93	60-140	0.0040	+/-0.50	
Structure 4 -IA-2-03302022 (22D0004-11)			Lab File ID: K22A097021.D			Analyzed: 04/07/22 20:40			
Bromochloromethane (1)	83875	2.996	89286	2.992	94	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	252901	3.588	288588	3.584	88	60-140	0.0040	+/-0.50	
Chlorobenzene-d5 (1)	197621	5.163	210793	5.159	94	60-140	0.0040	+/-0.50	
Structure 4 -IA-3-03302022 (22D0004-12)			Lab File ID: K22A097022.D			Analyzed: 04/07/22 21:15			
Bromochloromethane (1)	84548	2.996	89286	2.992	95	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	258449	3.588	288588	3.584	90	60-140	0.0040	+/-0.50	
Chlorobenzene-d5 (1)	197572	5.164	210793	5.159	94	60-140	0.0050	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area \%	Area \% Limits	RT Diff	RT Diff Limit	Q
Structure 4 -IA-4-03302022 (22D0004-13)	Lab File ID: K22A097023.D					Analyzed: 04/07/22 21:50			
Bromochloromethane (1)	83412	2.996	89286	2.992	93	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	258706	3.588	288588	3.584	90	60-140	0.0040	+/-0.50	
Chlorobenzene-d5 (1)	197773	5.159	210793	5.159	94	60-140	0.0000	+/-0.50	
Structure 5 -IA-1-03302022 (22D0004-15)	Lab File ID: K22A097024.D					Analyzed: 04/07/22 22:25			
Bromochloromethane (1)	84457	2.996	89286	2.992	95	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	271221	3.584	288588	3.584	94	60-140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	202031	5.159	210793	5.159	96	60-140	0.0000	+/-0.50	

INTERNAL STANDARD AREAAND RT SUMMARY

EPA TO-15

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area \%	Area \% Limits	RT Diff	RT Diff Limit	Q
Structure 4 -IA-1-03302022 (22D0004-09RE1)	Lab File ID: K22A098023.D					Analyzed: 04/08/22 18:04			
Bromochloromethane (1)	78294	2.996	84246	2.992	93	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	240100	3.588	275484	3.584	87	60-140	0.0040	+/-0.50	
Chlorobenzene-d5 (1)	183605	5.164	204768	5.159	90	60-140	0.0050	$+/-0.50$	
Structure 4 -IA-2-03302022 (22D0004-11RE1)	Lab File ID: K22A098024.D					Analyzed: 04/08/22 18:33			
Bromochloromethane (1)	79355	2.996	84246	2.992	94	60-140	0.0040	+/-0.50	
1,4-Difluorobenzene (1)	246115	3.588	275484	3.584	89	60-140	0.0040	+/-0.50	
Chlorobenzene-d5 (1)	188044	5.164	204768	5.159	92	60-140	0.0050	$+/-0.50$	
Structure 5 -IA-1-03302022 (22D0004-15RE1)			Lab File ID: K22A098025.D			Analyzed: 04/08/22 19:01			
Bromochloromethane (1)	80012	3.001	84246	2.992	95	60-140	0.0090	$+/-0.50$	
1,4-Difluorobenzene (1)	253685	3.588	275484	3.584	92	60-140	0.0040	$+/-0.50$	
Chlorobenzene-d5 (1)	192519	5.163	204768	5.159	94	60-140	0.0040	$+/-0.50$	

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area \%	Area \% Limits	RT Diff	RT Diff Limit	Q
Calibration Check (S070264-CCV1)	Lab File ID: G22A010104.D					Analyzed: 04/11/22 10:30			
Bromochloromethane (1)	1063725	8.485	1375823	8.497	77	60-140	-0.0120	+/-0.50	
1,4-Difluorobenzene (1)	3224323	10.259	3486350	10.271	92	60-140	-0.0120	+/-0.50	
Chlorobenzene-d5 (1)	2847055	14.63	3232194	14.636	88	60-140	-0.0060	+/-0.50	
LCS (B305574-BS1)	Lab File ID: G22A010105.D					Analyzed: 04/11/22 11:10			
Bromochloromethane (1)	1058412	8.485	1063725	8.485	100	60-140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	3217806	10.259	3224323	10.259	100	60-140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	2868721	14.63	2847055	14.63	101	60-140	0.0000	+/-0.50	
Blank (B305574-BLK1)			Lab File ID: G22A010111.D			Analyzed: 04/11/22 15:23			
Bromochloromethane (1)	1015075	8.491	1063725	8.485	95	60-140	0.0060	+/-0.50	
1,4-Difluorobenzene (1)	2944281	10.265	3224323	10.259	91	60-140	0.0060	+/-0.50	
Chlorobenzene-d5 (1)	2665344	14.636	2847055	14.63	94	60-140	0.0060	+/-0.50	
$\text { Structure } 2 \text {-SS-1-03302022 (22D0004-03) }$			Lab File ID: G22A010122.D			Analyzed: 04/11/22 23:00			
Bromochloromethane (1)	945952	8.485	1063725	8.485	89	60-140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	2872682	10.259	3224323	10.259	89	60-140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	2654532	14.63	2847055	14.63	93	60-140	0.0000	+/-0.50	
$\text { Structure } 5 \text {-SS-1-03302022 (22D0004-14) }$			Lab File ID: G22A010124.D			Analyzed: 04/12/22 00:21			
Bromochloromethane (1)	866204	8.491	1063725	8.485	81	60-140	0.0060	+/-0.50	
1,4-Difluorobenzene (1)	2728848	10.259	3224323	10.259	85	60-140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	2483222	14.63	2847055	14.63	87	60-140	0.0000	+/-0.50	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CONTINUING CALIBRATION CHECK EPA TO-15

S070138-CCV1

COMPOUND	TYPE	CONC. (ppbv)		RESPONSE FACTOR			\% DIFF / DRIFT	
		STD	CCV	ICAL	CCV	MIN (\#)	CCV	LIMIT (\#)
Acetone	A	5.00	4.61	1.000565	0.9232175		-7.7	30
Benzene	A	5.00	4.85	0.6327591	0.6144455		-2.9	30
Benzyl chloride	A	5.00	5.89	0.4421644	0.520708		17.8	30
Bromodichloromethane	A	5.00	4.72	0.4478553	0.4232248		-5.5	30
Bromoform	A	5.00	5.26	0.5300211	0.5589104		5.5	30
Bromomethane	A	5.00	5.47	0.5681906	0.6214995		9.4	30
1,3-Butadiene	A	5.00	5.34	0.4938916	0.5272226		6.7	30
2-Butanone (MEK)	A	5.00	4.56	1.142796	1.041507		-8.9	30
Carbon Disulfide	A	5.00	5.16	2.088941	2.166109		3.7	30
Carbon Tetrachloride	A	5.00	4.96	0.3578787	0.3555463		-0.7	30
Chlorobenzene	A	5.00	5.09	0.7308264	0.7432429		1.7	30
Chloroethane	A	5.00	5.31	0.3727141	0.3960666		6.3	30
Chloroform	A	5.00	5.40	1.205434	1.30131		8.0	30
Chloromethane	A	5.00	5.01	0.5840715	0.5858388		0.3	30
Cyclohexane	A	5.00	5.14	0.2470766	0.2542032		2.9	30
Dibromochloromethane	A	5.00	5.14	0.5366083	0.5520563		2.9	30
1,2-Dibromoethane (EDB)	A	5.00	5.14	0.4699119	0.4827788		2.7	30
1,2-Dichlorobenzene	A	5.00	5.60	0.5425978	0.6073826		11.9	30
1,3-Dichlorobenzene	A	5.00	5.92	0.5590468	0.6602648		18.1	30
1,4-Dichlorobenzene	A	5.00	5.83	0.4842168	0.5648005		16.6	30
Dichlorodifluoromethane (Freon 12)	A	5.00	5.25	1.436661	1.509576		5.1	30
1,1-Dichloroethane	A	5.00	5.35	0.9928728	1.062348		7.0	30
1,2-Dichloroethane	A	5.00	5.01	0.7601677	0.7622785		0.3	30
1,1-Dichloroethylene	A	5.00	5.20	1.024961	1.065556		4.0	30
cis-1,2-Dichloroethylene	A	5.00	5.27	0.8170638	0.861322		5.4	30
trans-1,2-Dichloroethylene	A	5.00	5.22	0.8261855	0.8637592		4.5	30
1,2-Dichloropropane	A	5.00	4.69	0.2522131	0.2367999		-6.1	30
cis-1,3-Dichloropropene	A	5.00	4.81	0.4036831	0.3889947		-3.6	30
trans-1,3-Dichloropropene	A	5.00	4.78	0.2817951	0.2699322		-4.2	30
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 1	A	5.00	5.27	1.570417	1.655104		5.4	30
1,4-Dioxane	A	5.00	5.03	0.1250488	0.1259262		0.7	30
Ethanol	A	5.00	4.82	0.2345993	0.2261676		-3.6	30
Ethyl Acetate	A	5.00	4.82	0.179697	0.1733038		-3.6	30
Ethylbenzene	A	5.00	5.16	1.166363	1.20256		3.1	30
4-Ethyltoluene	A	5.00	5.54	1.091641	1.208571		10.7	30
Heptane	A	5.00	4.99	0.2367552	0.2364838		-0.1	30
Hexachlorobutadiene	A	5.00	4.98	0.3847372	0.3830867		-0.4	30
Hexane	L	5.00	4.98	0.6113192	0.6260153		-0.3	30

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CONTINUING CALIBRATION CHECK EPA TO-15

S070138-CCV1

COMPOUND	TYPE	CONC. (ppbv)		RESPONSE FACTOR			\% DIFF / DRIFT	
		STD	CCV	ICAL	CCV	MIN (\#)	CCV	LIMIT (\#)
2-Hexanone (MBK)	A	5.00	5.01	0.5293937	0.5306666		0.2	30
Isopropanol	A	5.00	4.99	1.232138	1.2311		-0.08	30
Methyl tert-Butyl Ether (MTBE)	A	5.00	5.28	1.403234	1.482929		5.7	30
Methylene Chloride	A	5.00	4.80	0.774618	0.7431759		-4.1	30
4-Methyl-2-pentanone (MIBK)	A	5.00	4.49	0.1035297	0.0930101		-10.2	30
Naphthalene	A	5.00	4.96	0.9068141	0.8989369		-0.9	30
Propene	A	5.00	5.03	0.4753841	0.4782653		0.6	30
Styrene	A	5.00	5.62	0.619618	0.6967214		12.4	30
1,1,2,2-Tetrachloroethane	A	5.00	4.96	0.7650258	0.7584464		-0.9	30
Tetrachloroethylene	A	5.00	5.02	0.4025846	0.4045372		0.5	30
Tetrahydrofuran	A	5.00	5.05	0.6189522	0.6249222		1.0	30
Toluene	A	5.00	5.04	0.9589738	0.9656336		0.7	30
1,2,4-Trichlorobenzene	A	5.00	5.79	0.2888865	0.3346828		15.9	30
1,1,1-Trichloroethane	A	5.00	4.94	0.3999353	0.3960026		-1.0	30
1,1,2-Trichloroethane	A	5.00	5.03	0.3339886	0.3358745		0.6	30
Trichloroethylene	A	5.00	4.94	0.2665469	0.2636894		-1.1	30
Trichlorofluoromethane (Freon 11)	A	5.00	5.33	1.362621	1.453146		6.6	30
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113	A	5.00	5.65	1.307301	1.482266		13.4	30
1,2,4-Trimethylbenzene	A	5.00	5.48	0.9102048	0.9971792		9.6	30
1,3,5-Trimethylbenzene	A	5.00	5.59	0.9320592	1.040391		11.6	30
Vinyl Acetate	A	5.00	4.16	1.471422	1.211048		-17.7	30
Vinyl Chloride	A	5.00	5.35	0.669766	0.7164035		7.0	30
m\&p-Xylene	A	10.0	10.8	0.9872204	1.071831		8.6	30
o-Xylene	A	5.00	5.35	0.900727	0.9628859		6.9	30

\# Column to be used to flag Response Factor and \%Diff/Drift values with an asterisk

* Values outside of QC limits

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CONTINUING CALIBRATION CHECK
 EPA TO-15

S070204-CCV1

COMPOUND	TYPE	CONC. (ppbv)		RESPONSE FACTOR			\% DIFF / DRIFT	
		STD	CCV	ICAL	CCV	MIN (\#)	CCV	LIMIT (\#)
Acetone	A	5.00	4.68	1.000565	0.9378249		-6.3	30
Ethanol	A	5.00	4.89	0.2345993	0.2297272		-2.1	30

\# Column to be used to flag Response Factor and \%Diff/Drift values with an asterisk

* Values outside of QC limits

CONTINUING CALIBRATION CHECK EPA TO-15

S070264-CCV1

COMPOUND	TYPE	CONC. (ppbv)		RESPONSE FACTOR			\% DIFF / DRIFT	
		STD	CCV	ICAL	CCV	MIN (\#)	CCV	LIMIT (\#)
Acetone	A	5.00	5.80	1.120239	1.299073		16.0	30
Benzene	A	5.00	4.33	0.8240293	0.7138843		-13.4	30
Benzyl chloride	A	5.00	4.76	0.9910822	0.9424846		-4.9	30
Bromodichloromethane	A	5.00	4.34	0.6501748	0.5638393		-13.3	30
Bromoform	A	5.00	4.99	0.5709694	0.5695547		-0.2	30
Bromomethane	A	5.00	5.55	0.6889852	0.7642697		10.9	30
1,3-Butadiene	A	5.00	5.10	0.5731225	0.5841841		1.9	30
2-Butanone (MEK)	A	5.00	4.44	1.404817	1.248324		-11.1	30
Carbon Disulfide	A	5.00	5.34	1.937522	2.071147		6.9	30
Carbon Tetrachloride	A	5.00	4.85	0.548375	0.5314778		-3.1	30
Chlorobenzene	A	5.00	4.77	0.8415703	0.803547		-4.5	30
Chloroethane	A	5.00	5.25	0.3820533	0.4009172		4.9	30
Chloroform	A	5.00	5.27	1.56454	1.648668		5.4	30
Chloromethane	A	5.00	5.17	0.7020787	0.7262448		3.4	30
Cyclohexane	A	5.00	3.92	0.3645755	0.2859892		-21.6	30
Dibromochloromethane	A	5.00	5.01	0.626056	0.6267889		0.1	30
1,2-Dibromoethane (EDB)	A	5.00	4.78	0.5786076	0.5534263		-4.4	30
1,2-Dichlorobenzene	A	5.00	4.35	0.6776517	0.5900885		-12.9	30
1,3-Dichlorobenzene	A	5.00	4.80	0.7306768	0.7019357		-3.9	30
1,4-Dichlorobenzene	A	5.00	4.58	0.7152322	0.6552562		-8.4	30
Dichlorodifluoromethane (Freon 12)	A	5.00	5.59	1.7426	1.94821		11.8	30
1,1-Dichloroethane	A	5.00	4.73	1.327799	1.256878		-5.3	30
1,2-Dichloroethane	A	5.00	4.73	0.9789001	0.9265041		-5.4	30
1,1-Dichloroethylene	A	5.00	4.63	1.183396	1.096416		-7.4	30
cis-1,2-Dichloroethylene	A	5.00	4.47	0.9435815	0.8434691		-10.6	30
trans-1,2-Dichloroethylene	A	5.00	4.55	0.9826295	0.8948192		-8.9	30
1,2-Dichloropropane	A	5.00	3.86	0.3292917	0.2542242		-22.8	30
cis-1,3-Dichloropropene	A	5.00	4.08	0.4764829	0.388566		-18.5	30
trans-1,3-Dichloropropene	A	5.00	4.18	0.4238495	0.3544816		-16.4	30
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 1	A	5.00	5.64	1.934125	2.180392		12.7	30
1,4-Dioxane	A	5.00	4.44	0.1711519	0.1521336		-11.1	30
Ethanol	A	5.00	5.30	0.2507618	0.2656371		5.9	30
Ethyl Acetate	A	5.00	4.92	0.2168372	0.2134958		-1.5	30
Ethylbenzene	A	5.00	4.80	1.26444	1.213881		-4.0	30
4-Ethyltoluene	A	5.00	4.98	1.269319	1.264163		-0.4	30
Heptane	A	5.00	4.09	0.2494179	0.2040887		-18.2	30
Hexachlorobutadiene	A	5.00	4.46	0.4838339	0.4314926		-10.8	30
Hexane	A	5.00	4.61	0.8633594	0.7805401		-7.7	30

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CONTINUING CALIBRATION CHECK EPA TO-15

S070264-CCV1

COMPOUND	TYPE	CONC. (ppbv)		RESPONSE FACTOR			\% DIFF / DRIFT	
		STD	CCV	ICAL	CCV	MIN (\#)	CCV	LIMIT (\#)
2-Hexanone (MBK)	A	5.00	4.18	0.6449185	0.5390969		-16.4	30
Isopropanol	A	5.00	5.34	1.404012	1.498156		6.7	30
Methyl tert-Butyl Ether (MTBE)	A	5.00	4.84	1.744599	1.688191		-3.2	30
Methylene Chloride	A	5.00	4.66	0.873135	0.8144406		-6.7	30
4-Methyl-2-pentanone (MIBK)	A	5.00	4.05	0.6500395	0.5259949		-19.1	30
Naphthalene	A	5.00	4.23	1.104784	0.9346067		-15.4	30
Propene	A	5.00	5.09	0.5657486	0.5755503		1.7	30
Styrene	A	5.00	4.90	0.719924	0.7055689		-2.0	30
1,1,2,2-Tetrachloroethane	A	5.00	4.50	0.8812074	0.792649		-10.0	30
Tetrachloroethylene	A	5.00	4.68	0.4708091	0.4406844		-6.4	30
Tetrahydrofuran	A	5.00	4.96	0.2863014	0.2842238		-0.7	30
Toluene	A	5.00	4.75	1.019382	0.9684562		-5.0	30
1,2,4-Trichlorobenzene	A	5.00	4.01	0.5277494	0.4235158		-19.8	30
1,1,1-Trichloroethane	A	5.00	4.58	0.5718988	0.5232568		-8.5	30
1,1,2-Trichloroethane	A	5.00	4.74	0.3805634	0.3603746		-5.3	30
Trichloroethylene	A	5.00	4.58	0.374415	0.3431334		-8.4	30
Trichlorofluoromethane (Freon 11)	A	5.00	5.94	1.714601	2.037797		18.8	30
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113	A	5.00	5.72	1.431477	1.637489		14.4	30
1,2,4-Trimethylbenzene	A	5.00	4.85	1.043255	1.012337		-3.0	30
1,3,5-Trimethylbenzene	A	5.00	5.01	1.077363	1.078966		0.1	30
Vinyl Acetate	A	5.00	4.19	1.9525	1.634465		-16.3	30
Vinyl Chloride	A	5.00	4.94	0.8152498	0.8058925		-1.1	30
m\&p-Xylene	A	10.0	10.0	0.9836524	0.9864444		0.3	30
o-Xylene	A	5.00	4.78	1.021825	0.976973		-4.4	30

\# Column to be used to flag Response Factor and \%Diff/Drift values with an asterisk

* Values outside of QC limits

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332
CERTIFICATIONS
Certified Analyses included in this Report
Analyte Certifications

EPA TO-15 in Air

Acetone	AIHA,NY,ME,NH
Benzene	AIHA,FL,NJ,NY,ME,NH,VA
Benzyl chloride	AIHA,FL,NJ,NY,ME,NH,VA
Bromodichloromethane	AIHA,NJ,NY,ME,NH,VA
Bromoform	AIHA,NJ,NY,ME,NH,VA
Bromomethane	AIHA,FL,NJ,NY,ME,NH
1,3-Butadiene	AIHA,NJ,NY,ME,NH,VA
2-Butanone (MEK)	AIHA,FL,NJ,NY,ME,NH,VA
Carbon Disulfide	AIHA,NJ,NY,ME,NH,VA
Carbon Tetrachloride	AIHA,FL,NJ,NY,ME,NH,VA
Chlorobenzene	AIHA,FL,NJ,NY,ME,NH,VA
Chloroethane	AIHA,FL,NJ,NY,ME,NH,VA
Chloroform	AIHA,FL,NJ,NY,ME,NH,VA
Chloromethane	AIHA,FL,NJ,NY,ME,NH,VA
Cyclohexane	AIHA,NJ,NY,ME,NH,VA
Dibromochloromethane	AIHA,NY,ME,NH
1,2-Dibromoethane (EDB)	AIHA,NJ,NY,ME,NH
1,2-Dichlorobenzene	AIHA,FL,NJ,NY,ME,NH,VA
1,3-Dichlorobenzene	AIHA,NJ,NY,ME,NH
1,4-Dichlorobenzene	AIHA,FL,NJ,NY,ME,NH,VA
Dichlorodifluoromethane (Freon 12)	AIHA,NY,ME,NH
1,1-Dichloroethane	AIHA,FL,NJ,NY,ME,NH,VA
1,2-Dichloroethane	AIHA,FL,NJ,NY,ME,NH,VA
1,1-Dichloroethylene	AIHA,FL,NJ,NY,ME,NH,VA
cis-1,2-Dichloroethylene	AIHA,FL,NY,ME,NH,VA
trans-1,2-Dichloroethylene	AIHA,NJ,NY,ME,NH,VA
1,2-Dichloropropane	AIHA,FL,NJ,NY,ME,NH,VA
cis-1,3-Dichloropropene	AIHA,FL,NJ,NY,ME,NH,VA
trans-1,3-Dichloropropene	AIHA,NY,ME,NH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	AIHA,NJ,NY,ME,NH,VA
1,4-Dioxane	AIHA,NJ,NY,ME,NH,VA
Ethanol	AIHA
Ethyl Acetate	AIHA
Ethylbenzene	AIHA,FL,NJ,NY,ME,NH,VA
4-Ethyltoluene	AIHA,NJ
Heptane	AIHA,NJ,NY,ME,NH,VA
Hexachlorobutadiene	AIHA,NJ,NY,ME,NH,VA
Hexane	AIHA,FL,NJ,NY,ME,NH,VA
2-Hexanone (MBK)	AIHA
Isopropanol	AIHA,NY,ME,NH
Methyl tert-Butyl Ether (MTBE)	AIHA,FL,NJ,NY,ME,NH,VA
Methylene Chloride	AIHA,FL,NJ,NY,ME,NH,VA
4-Methyl-2-pentanone (MIBK)	AIHA,FL,NJ,NY,ME,NH
Naphthalene	NY,ME,NH
Propene	AIHA
Styrene	AIHA,FL,NJ,NY,ME,NH,VA
1,1,2,2-Tetrachloroethane	AIHA,FL,NJ,NY,ME,NH,VA

CERTIFICATIONS

Certified Analyses included in this Report	
Analyte	Certifications
EPA TO-15 in Air	
Tetrachloroethylene	AIHA,FL,NJ,NY,ME,NH,VA
Tetrahydrofuran	AIHA
Toluene	AIHA,FL,NJ,NY,ME,NH,VA
1,2,4-Trichlorobenzene	AIHA,NJ,NY,ME,NH,VA
1,1,1-Trichloroethane	AIHA,FL,NJ,NY,ME,NH,VA
1,1,2-Trichloroethane	AIHA,FL,NJ,NY,ME,NH,VA
Trichloroethylene	AIHA,FL,NJ,NY,ME,NH,VA
Trichlorofluoromethane (Freon 11)	AIHA,NY,ME,NH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	AIHA,NJ,NY,ME,NH,VA
1,2,4-Trimethylbenzene	AIHA,NJ,NY,ME,NH
1,3,5-Trimethylbenzene	AIHA,NJ,NY,ME,NH
Vinyl Acetate	AIHA,FL,NJ,NY,ME,NH,VA
Vinyl Chloride	AIHA,FL,NJ,NY,ME,NH,VA
m\&p-Xylene	AIHA,FL,NJ,NY,ME,NH,VA
o-Xylene	AIHA,FL,NJ,NY,ME,NH,VA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	$03 / 1 / 2024$
MA	Massachusetts DEP	M-MA100	$06 / 30 / 2022$
CT	Connecticut Department of Publilc Health	PH-0165	$12 / 31 / 2022$
NY	New York State Department of Health	10899 NELAP	$04 / 1 / 2023$
NH-S	New Hampshire Environmental Lab	2516 NELAP	$02 / 5 / 2023$
RI	Rhode Island Department of Health	LAO00373	$12 / 30 / 2022$
NC	North Carolina Div. of Water Quality	652	$12 / 31 / 2022$
NJ	New Jersey DEP	MA007 NELAP	$06 / 30 / 2022$
FL	Florida Department of Health	LL720741027 NELAP	$06 / 30 / 2022$
VT	Vermont Department of Health Lead Laboratory	MA00100	$07 / 30 / 2022$
ME	State of Maine	460217	$06 / 9 / 2023$
VA	Commonwealth of Virginia	2557 NELAP	$12 / 14 / 2022$
NH-P	New Hampshire Environmental Lab	VT-255716	$09 / 6 / 2022$
VT-DW	Vermont Department of Health Drinking Water	25703	$06 / 12 / 2022$
NC-DW	North Carolina Department of Health	$68-05812$	$07 / 31 / 2022$
PA	Commonwealth of Pennsylvania DEP	9100	$06 / 30 / 2022$

 Fax：413－525－6405 www．pacelabs．com Adteses： 40 British AEACticon
Project Location：Breadel Bin NY
Project Number： 60631025
Project Manager：Walt Howaticd

Collection Data Duration Flow Rate Matrix

nttp：／／www．pacelabs．com
lease use the following codes to indicate possible sample
concentration within the Conc Code column above：
H－High；M－Medium；L－Low；C－Clean；U－Unknown

PCB ONLY
荤 2aluxos uon \square
T-
\square

| reet |
| :--- | :--- |

\longrightarrow

Air Media Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client AECom

Received By $\$ & Date & $3 / 31$	22	Time	16.36		
How were the samples In Cooler received? In Box Were samples within Temperature		On Ice Ambient		No Ice Melted Ice	
	7				
	By Gun \# By Blank \# mples?		Actual Temp - M		
Was Custody Seal Intact? ND		Were Samples Tampered with?			NA
Was COC Relinquished? T		Does Chain Agree With Samples?I			I
Are there any loose caps/valves on any samples?					
Is COC in ink/Legible? T\qquad					
Did COC Include all Client T	Analysis	T	Sample	Name	I
Pertinent Information? Project T	ID's	T	Collection	es/Times	1
Are Sample Labels filled out and legible?	T				
Are there Rushes? F	Who wa	notified			
Samples are received within holding time?	T				
Proper Media Used? T		Individua	ly Certified Cans?	F	
Are there Trip Blanks? _I_		Is there	nough Volume?	T	

Can 15	1876	2205			Reg fis	3365	3351			
1986	2163	1239			32.56	3600	3086			
1038	1951				3257	3468				
1162	1071				3064	3676				
1745	1626				3521	3510				
1502	2154				3503	3434				
1611	2210				3363	3058				
Unuse	Media				Pursit	-17s				

[^0]

Note:Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: \quad PPBv

<0.04	Vinyl acetate
<0.20	Hexane
<0.02	Ethyl acetate
<0.02	Chloroform
<0.02	Tetrahydrofuran
<0.02	1,2-Dichloroethane
<0.02	1,1,1-Trichloroethane
<0.02	Benzene
<0.02	Carbon Tetrachloride
<0.02	Cyclohexane
<0.02	1,2-Dichloropropane
<0.02	Bromodichloromethane
<0.02	Trichloroethylene
<0.02	1,4-Dioxane
<0.02	Methylmethacrylate
<0.02	Heptane
<0.02	MIBK
<0.02	c-1,3-Dichloropropylene
<0.02	t-1,3-Dichloropropylene
<0.02	1,1,2-Trichloroethylene
<0.02	Toluene
<0.02	2-Hexanone (MBK)

<0.02	Dibromchloromethane
<0.02	1,2-Dibromomethane
<0.02	Tetrachloroethylene
<0.02	Chlorobenzene
<0.02	Ethylbenzene
<0.04	m,p-Xylenes
<0.02	Bromoform
<0.02	Styrene
<0.02	o-Xylene
<0.02	1,1,2,2-Tetrachloroethane
<0.02	4-Ethyltoluene
<0.02	1,3,5-Trimethylbenzene
<0.02	1,2,4-Trimethylbenzene
<0.02	,,3-Dichlorobenzene
<0.02	Benzyl chloride
<0.02	1,4-Dichlorobenzene
<0.02	1,2-Dichlorobenzene
<0.04	1,2,4-Trichlorobenzene
<0.02	Naphthalene
<0.02	Hexachlorobutadiene

Special Notes:

Air Sampling Media Certificate of Analysis

Note:Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: $\quad \mathrm{PPBv}$

<0.80	Propene Dichlorodifluoromethane			
<0.02				
<0.04	Chloromethane			
<0.02	Freon 114 Vinyl chloride			
<0.02				
<0.02	1.3-Butadiene Bromomethane			
<0.02				
<0.02	Chloroethane Acrolein Acetone Trichlorofluoromethane			
<0.08				
<0.80				
<0.20				
<0.80	Ethanol 1,1-Dichloroethylene			
<0.02				
<0.20	Methylene chloride Freon 113 Carbon disulfide			
<0.20				
<0.2				
<0.02	Carbon disulfide			
<0.02				
<0.02	$\left\{\begin{array}{l} \text { MTBE } \\ \text { IPA } \\ \text { 2-Butanone (MEK) } \\ \text { c-1,2-Dichloroethylene } \end{array}\right.$			
<0.80				
<0.20				
<0.02				

<0.04	Vinyl acetate
<0.20	Hexane
<0.02	Ethyl acetate
<0.02	Chloroform
<0.02	Tetrahydrofuran
<0.02	1,2-Dichloroethane
<0.02	1,1,1-Trichloroethane
<0.02	Benzene
<0.02	Carbon Tetrachloride
<0.02	Cyclohexane
<0.02	1,2-Dichloropropane
<0.02	Bromodichloromethane
<0.02	Trichloroethylene
<0.02	1,4-Dioxane
<0.02	Methylmethacrylate
<0.02	Heptane
<0.02	MIBK
<0.02	c-1,3-Dichloropropylen
<0.02	t-1,3-Dichloropropylene
<0.02	1,1,2-Trichloroethylene
<0.02	Toluene
<0.02	2-Hexanone (MBK)

<0.02	Dibromchloromethane
<0.02	1,2-Dibromomethane
<0.02	Tetrachloroethylene
<0.02	Chlorobenzene
<0.02	Ethylbenzene
<0.04	m,p-Xylenes
<0.02	Bromoform
<0.02	Styrene
<0.02	o-Xylene
<0.02	1,1,2,2-Tetrachloroethane
<0.02	4-Ethyltoluene
<0.02	1,3,5-Trimethylbenzene
<0.02	1,2,4-Trimethylbenzene
<0.02	1,3-Dichlorobenzene
<0.02	Benzyl chloride
<0.02	1,4-Dichlorobenzene
<0.02	1,2-Dichlorobenzene
<0.04	1,2,4-Trichlorobenzene
<0.02	Naphthalene
<0.02	Hexachlorobutadiene

Special Notes:

Note:Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: \quad PPBv

<0.80	Propene
<0.02	Dichlorodifluoromethane
<0.04	Chloromethane
<0.02	Freon 114
<0.02	Vinyl chloride
<0.02	1.3-Butadiene
<0.02	Bromomethane
<0.02	Chloroethane
<0.08	Acrolein
<0.80	Acetone
<0.20	Trichlorofluoromethane
<0.80	Ethanol
<0.02	1,1-Dichloroethylene
<0.20	Methylene chloride
<0.20	Freon 113
<0.2	Carbon disulfide
<0.02	t-1,2-Dichloroethylene
<0.02	1,1-Dichloroethane
<0.02	MTBE
<0.80	IPA
<0.20	2-Butanone (MEK)
<0.02	c-1,2-Dichloroethylene

<0.04	Vinyl acetate
<0.20	Hexane
<0.02	Ethyl acetate
<0.02	Chloroform
<0.02	Tetrahydrofuran
<0.02	1,2-Dichloroethane
<0.02	1,1,1-Trichloroethane
<0.02	Benzene
<0.02	Carbon Tetrachloride
<0.02	Cyclohexane
<0.02	1,2-Dichloropropane
<0.02	Bromodichloromethane
<0.02	Trichloroethylene
<0.02	1,4-Dioxane
<0.02	Methylmethacrylate
<0.02	Heptane
<0.02	MIBK
<0.02	c-1,3-Dichloropropylene
<0.02	t-1,3-Dichloropropylene
<0.02	1,1,2-Trichloroethylene
<0.02	Toluene
<0.02	2-Hexanone (MBK)

<0.02	Dibromchloromethane
<0.02	1,2-Dibromomethane
<0.02	Tetrachloroethylene
<0.02	Chlorobenzene
<0.02	Ethylbenzene
<0.04	m,p-Xylenes
<0.02	Bromoform
<0.02	Styrene
<0.02	o-Xylene
<0.02	1,1,2,2-Tetrachloroethane
<0.02	4-Ethyltoluene
<0.02	1,3,5-Trimethylbenzene
<0.02	1,2,4-Trimethylbenzene
<0.02	,,3-Dichlorobenzene
<0.02	Benzyl chloride
<0.02	1,4-Dichlorobenzene
<0.02	1,2-Dichlorobenzene
<0.04	1,2,4-Trichlorobenzene
<0.02	Naphthalene
<0.02	Hexachlorobutadiene

Special Notes:

Note:Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: PPBv

<0.04	Vinyl acetate
<0.20	Hexane
<0.02	Ethyl acetate
<0.02	Chloroform
<0.02	Tetrahydrofuran
<0.02	1,2-Dichloroethane
<0.02	1,1,1-Trichloroethane
<0.02	Benzene
<0.02	Carbon Tetrachloride
<0.02	Cyclohexane
<0.02	1,2-Dichloropropane
<0.02	Bromodichloromethane
<0.02	Trichloroethylene
<0.02	1,4-Dioxane
<0.02	Methylmethacrylate
<0.02	Heptane
<0.02	MIBK
<0.02	c-1,3-Dichloropropylene
<0.02	t-1,3-Dichloropropylene
<0.02	1,1,2-Trichloroethylene
<0.02	Toluene
<0.02	2-Hexanone (MBK)

<0.02	Dibromchloromethane
<0.02	1,2-Dibromomethane
<0.02	Tetrachloroethylene
<0.02	Chlorobenzene
<0.02	Ethylbenzene
<0.04	m,p-Xylenes
<0.02	Bromoform
<0.02	Styrene
<0.02	o-Xylene
<0.02	1,1,2,2-Tetrachloroethane
<0.02	4-Ethyltoluene
<0.02	1,3,5-Trimethylbenzene
<0.02	1,2,4-Trimethylbenzene
<0.02	,,3-Dichlorobenzene
<0.02	Benzyl chloride
<0.02	1,4-Dichlorobenzene
<0.02	1,2-Dichlorobenzene
<0.04	1,2,4-Trichlorobenzene
<0.02	Naphthalene
<0.02	Hexachlorobutadiene

Special Notes:

Air Sampling Media Certificate of Analysis

Note:Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: PPBv

<0.80	Propene Dichlorodifluoromethane			
<0.02				
<0.04	Chloromethane			
<0.02	Freon 114 Vinyl chloride			
<0.02				
<0.02	1.3-Butadiene Bromomethane			
<0.02				
<0.02	Chloroethane Acrolein Acetone Trichlorofluoromethane			
<0.08				
<0.80				
<0.20				
<0.80	Ethanol 1,1-Dichloroethylene			
<0.02				
<0.20	Methylene chloride Freon 113 Carbon disulfide			
<0.20				
<0.2				
<0.02	Carbon disulfide			
<0.02				
<0.02	$\left\{\begin{array}{l} \text { MTBE } \\ \text { IPA } \\ \text { 2-Butanone (MEK) } \\ \text { c-1,2-Dichloroethylene } \end{array}\right.$			
<0.80				
<0.20				
<0.02				

<0.04	Vinyl acetate
<0.20	Hexane
<0.02	Ethyl acetate
<0.02	Chloroform
<0.02	Tetrahydrofuran
<0.02	1,2-Dichloroethane
<0.02	1,1,1-Trichloroethane
<0.02	Benzene
<0.02	Carbon Tetrachloride
<0.02	Cyclohexane
<0.02	1,2-Dichloropropane
<0.02	Bromodichloromethane
<0.02	Trichloroethylene
<0.02	1,4-Dioxane
<0.02	Methylmethacrylate
<0.02	Heptane
<0.02	MIBK
<0.02	c-1,3-Dichloropropylen
<0.02	t-1,3-Dichloropropylene
<0.02	1,1,2-Trichloroethylene
<0.02	Toluene
<0.02	2-Hexanone (MBK)

<0.02	Dibromchloromethane
<0.02	1,2-Dibromomethane
<0.02	Tetrachloroethylene
<0.02	Chlorobenzene
<0.02	Ethylbenzene
<0.04	m,p-Xylenes
<0.02	Bromoform
<0.02	Styrene
<0.02	o-Xylene
<0.02	1,1,2,2-Tetrachloroethane
<0.02	4-Ethyltoluene
<0.02	1,3,5-Trimethylbenzene
<0.02	1,2,4-Trimethylbenzene
<0.02	1,3-Dichlorobenzene
<0.02	Benzyl chloride
<0.02	1,4-Dichlorobenzene
<0.02	1,2-Dichlorobenzene
<0.04	1,2,4-Trichlorobenzene
<0.02	Naphthalene
<0.02	Hexachlorobutadiene

Special Notes:

Note:Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: \quad PPBv

<0.04	Vinyl acetate
<0.20	Hexane
<0.02	Ethyl acetate
<0.02	Chloroform
<0.02	Tetrahydrofuran
<0.02	1,2-Dichloroethane
<0.02	1,1,1-Trichloroethane
<0.02	Benzene
<0.02	Carbon Tetrachloride
<0.02	Cyclohexane
<0.02	1,2-Dichloropropane
<0.02	Bromodichloromethane
<0.02	Trichloroethylene
<0.02	1,4-Dioxane
<0.02	Methylmethacrylate
<0.02	Heptane
<0.02	MIBK
<0.02	c-1,3-Dichloropropylene
<0.02	t-1,3-Dichloropropylene
<0.02	1,1,2-Trichloroethylene
<0.02	Toluene
<0.02	2-Hexanone (MBK)

<0.02	Dibromchloromethane
<0.02	1,2-Dibromomethane
<0.02	Tetrachloroethylene
<0.02	Chlorobenzene
<0.02	Ethylbenzene
<0.04	m,p-Xylenes
<0.02	Bromoform
<0.02	Styrene
<0.02	o-Xylene
<0.02	1,1,2,2-Tetrachloroethan
<0.02	4-Ethyltoluene
<0.02	1,3,5-Trimethylbenzene
<0.02	1,2,4-Trimethylbenzene
<0.02	1,3-Dichlorobenzene
<0.02	Benzyl chloride
<0.02	1,4-Dichlorobenzene
<0.02	1,2-Dichlorobenzene
<0.04	1,2,4-Trichlorobenzene
<0.02	Naphthalene
<0.02	Hexachlorobutadiene

Special Notes:

Note:Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: \quad PPBv

<0.04	Vinyl acetate
<0.20	Hexane
<0.02	Ethyl acetate
<0.02	Chloroform
<0.02	Tetrahydrofuran
<0.02	1,2-Dichloroethane
<0.02	1,1,1-Trichloroethane
<0.02	Benzene
<0.02	Carbon Tetrachloride
<0.02	Cyclohexane
<0.02	1,2-Dichloropropane
<0.02	Bromodichloromethane
<0.02	Trichloroethylene
<0.02	1,4-Dioxane
<0.02	Methylmethacrylate
<0.02	Heptane
<0.02	MIBK
<0.02	c-1,3-Dichloropropylene
<0.02	t-1,3-Dichloropropylene
<0.02	1,1,2-Trichloroethylene
<0.02	Toluene
<0.02	2-Hexanone (MBK)

Special Notes:

Note:Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: PPBv

<0.04	Vinyl acetate
<0.20	Hexane
<0.02	Ethyl acetate
<0.02	Chloroform
<0.02	Tetrahydrofuran
<0.02	1,2-Dichloroethane
<0.02	1,1,1-Trichloroethane
<0.02	Benzene
<0.02	Carbon Tetrachloride
<0.02	Cyclohexane
<0.02	1,2-Dichloropropane
<0.02	Bromodichloromethane
<0.02	Trichloroethylene
<0.02	1,4-Dioxane
<0.02	Methylmethacrylate
<0.02	Heptane
<0.02	MIBK
<0.02	c-1,3-Dichloropropylene
<0.02	t-1,3-Dichloropropylene
<0.02	1,1,2-Trichloroethylene
<0.02	Toluene
<0.02	2-Hexanone (MBK)

<0.02	Dibromchloromethane
<0.02	1,2-Dibromomethane
<0.02	Tetrachloroethylene
<0.02	Chlorobenzene
<0.02	Ethylbenzene
<0.04	m,p-Xylenes
<0.02	Bromoform
<0.02	Styrene
<0.02	o-Xylene
<0.02	1,1,2,2-Tetrachloroethane
<0.02	4-Ethyltoluene
<0.02	1,3,5-Trimethylbenzene
<0.02	1,2,4-Trimethylbenzene
<0.02	,,3-Dichlorobenzene
<0.02	Benzyl chloride
<0.02	1,4-Dichlorobenzene
<0.02	1,2-Dichlorobenzene
<0.04	1,2,4-Trichlorobenzene
<0.02	Naphthalene
<0.02	Hexachlorobutadiene

Special Notes:

VALIDATA

Chemical Services, Inc.	(770) $232-0130$
	(770) $232-5082$ (Fax)
2159 Wynnton Pointe, Duluth, GA 30097	www.datavalidator.com

DATA USABILITY SUMMARY REPORT

COMPANY:

PROJECT NAME:
CONTRACTED LAB:
QA/QC LEVEL:
ANALYTICAL METHOD(S):
VALIDATION GUIDELINES:

SAMPLE MATRIX:
TYPES OF ANALYSES:
DATA REVIEWER(S):
SDG NUMBER:
SAMPLING DATE(S):

AECOM Technical Services Northeast, Inc.
KorKay Inc. \# 518014
con-test
DUSR
EPA Methods
USEPA Region II data validation SOPs (VOA HW-24 Rev.4, SVOC HW-22 Rev.5, PEST-HW-44, Rev 1.1, PCB HW-37a Rev. 0, METALS_SOP_HW3a-ICP-AES Rev 1.1 and HW3c-Hg-CN, Rev. 1, VOA-TO15 HW-31 Rev.6), USEPA Contract Laboratory
Program National Functional Guidelines for Organic Data
Review, 2008; USEPA Contract Laboratory Program National
Functional Guidelines for Inorganic Data Review, 2010;
NYDEC Guidelines for Sampling and Analysis of PFAS, January 2020, Professional Judgment
Air
Volatile Organic Carbons (VOC)
Amy L. Hogan
22D0004
March 30, 2022

SAMPLES:

Client Sam	le ID
Structure 2	-OA-1-03302022
Structure 2	-IA-1-03302022
Structure 2	-IA-1-03302022DL
Structure 2	-IA-1-03302022MD
Structure 2	-SS-1-03302022
Structure 3	-OA-1-03302022
Structure 3	-IA-1-03302022
Structure 3	-IA-1-03302022DL
Structure 3	-IA-DUP-03302022
Structure 3	-IA-DUP-03302022DL
Structure 3	-IA-2-03302022
Structure 4	-IA-1-03302022
Structure 4	-IA-1-03302022DL
Structure 4	-0A-1-03302022
Structure 4	-IA-2-03302022
Structure 4	-IA-2-03302022DL

Laboratory ID	VOC
	22D0004-01
22D0004-02	X
22D0004-022DL	X
22D0004-02MD	X
22D0004-03	X
22D0004-04	X
22D0004-05	X
22D0004-05DL	X
22D0004-06	X
22D0004-06DL	X
22D0004-07	X
22D0004-09	X
22D0004-09DL	X
22D0004-10	X
22D0004-11	X
22D0004-11DL	X
	X

Client Sample ID	Laboratory ID	VOC
Structure 4-IA-3-03302022	22D0004-12	X
Structure 4-IA-4-03302022	22D0004-13	X
Structure 5-SS-1-03302022	22D0004-14	X
Structure 5-IA-1-03302022	22D0004-15	X
Structure 5-IA-1-03302022DL	22D0004-15DL	X

Suffix Codes: DL= DILUTION, MS = MATRIX SPIKE, MSD = MATRIX SPIKE DUPLICATE, RE = REANALYSIS

Qualifier	Definition
\mathbf{U}	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
\mathbf{J}	The reported result was an estimated value with an unknown bias.
$\mathbf{J}+$	The result was an estimated quantity, but the result may be biased high.
$\mathbf{J -}$	The result was an estimated quantity, but the result may be biased low. was presumptive evidence to make a "tentative identification."
\mathbf{N}	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value was the estimated concentration in the sample.
$\mathbf{N J}$	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
$\mathbf{U J}$	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.
\mathbf{X}	

con-test - 22D0004

VOLATILE ORGANICS

SUMMARY

I.) General:

The analyses for Volatile Organics were performed per EPA Method TO-15.
Appendix A contains the qualified sample summary reports.
II.) Overall Assessment of Data:

All laboratory data were acceptable with qualifications.
III.) Holding Times:

All Holding Time criteria were met. No data qualification was necessary.
IV.) GC/MS Tuning:

All GC/MS Tuning criteria were met. No data qualification was necessary.
V.) Calibration:

Initial Calibration:

All Initial Calibration criteria were met. No data qualification was necessary.
Initial Calibration Verification:

The Percent Differences (\%Ds) for the standards run on 3/16/22 at 23:55 on instrument SYSK exceeded the 30% QC limit for the following compounds:

$$
\begin{array}{ll}
\text { Benzyl chloride } & -40.7 \% \\
1,2,4 \text {-trichlorobenzene } & -40.2 \%
\end{array}
$$

The results for these compounds in the associated SDG samples, which were all non-detect, were qualified as estimated (UJ). The associated samples were all SDG samples except Structure 2 -SS-1-03302022 and Structure 5-SS-1-03302022.

Continuing Calibration:

All Continuing Calibration criteria were met. No data qualification was necessary.
VI.) Blanks:

Method Blanks:

There were no detections reported for the associated method blanks. No data qualification was necessary.

Canister Blanks:

There were no detects in the canister check blanks for this SDG. No data qualification was necessary.
VII.) Surrogate Recoveries:

All Surrogate Recovery criteria were met. No data qualification was necessary.
VIII.) Laboratory Control Samples (LCS):

Two LCS were analyzed by the laboratory for this SDG. All criteria were met. No data qualification was necessary.

IX.) Matrix Duplicate:

Matrix Duplicate analysis was performed using sample Structure 2-IA-1-03302022. The Relative Percent Difference (RPD) for 4-ethyltoluene at 32.4% exceeded the QC limit. Citing professional judgment, the validator has qualified the positive 4-ethyltoluene result for the parent sample as estimated (J).

X.) Field Duplicates:

One set of field duplicate samples (Structure 3-IA-1-03302022 / Structure 3-IA-DUP03302022) was identified as part of this SDG. The calculable Relative Percent Differences (RPDs) for the first set were:

Acetone	24%
Benzene	0%
2-butanone	15%
Carbon tetrachloride	2.8%
Chloromethane	18%
Freon 12	0%
Ethanol	0%
Ethyl acetate	14%

Ethylbenzene	15%
Heptane	0%
Hexane	17%
Isopropanol	41%
Methylene chloride	59%
Naphthalene	4.4%
Styrene	31%
Tetrachloroethylene	5.1%
Tetrahydrofuran	4.4%
Toluene	5.7%
Freon 11	6.9%
Freon 113	1.7%
M,p-xylene	2.6%
o-xylene	6.9%

The RPD for methylene chloride exceeded the 50% QC limit. The RPDs for trichloroethylene and 1,2,4-trimethylbenzene were set at 200% since one of the results for these compounds in the two samples was reported as non-detect. Citing the exceedances and professional judgment, the validator has qualified the positive results for methylene chloride in the two samples as estimated (J) and has qualified the positive and non-detect trichloroethylene and 1,2,4-trimethylbenzene results for the two samples as estimated (J) and (UJ).
XI.) TCL Compound Identification:

All TCL Compound Identification criteria were met. No data qualification was necessary.
XII.) Internal Standards Performance (ISTD):

All ISTD criteria were met. No data qualification was necessary.
XIII.) Compound Quantitation and Reported Contract Required Quantitation Limits (CRQL):

The initial analysis ethanol results for samples Structure 2-IA-1-03302022, Structure 3 -IA-103302022, Structure 3-IA-DUP-03302022, Structure 4-IA-1-03302022, Structure 4 -IA-203302022 and Structure 5 -IA-1-03302022 and the initial analysis acetone result for sample Structure 5 -IA-1-03302022 exceeded the linear calibration range. A dilution analysis was performed for each sample with all linear calibration criteria met. Since the Form Is for each sample is a composite of the results, no data qualification was necessary

Attachment A

Sample Result Forms (FORM Is) Corrected for Validation Qualifiers
Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 2-OA-1-03302022
Sample ID: 22D0004-01
Sample Matrix: Ambient Air
Sampled: 3/30/2022 08:15

Sample Description/Location:
Sub Description/Location:
Canister ID: 1986
Canister Size: 6 liter
Flow Controller ID: 3256
Sample Type: 24 hr

Work Order: 22D0004
Initial Vacuum(in Hg): -29.5
Final Vacuum(in Hg): -10.5
Receipt Vacuum(in Hg): -7.6
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	ppbv		MDL	Flag/Qual	ug/m3			Date/Time		
Acetone	3.0	1.4	0.84		7.0	3.3	2.0	0.698	4/7/22 14:50	BRF
Benzene	0.18	0.035	0.026		0.58	0.11	0.084	0.698	4/7/22 14:50	BRF
Benzyl chloride	ND	0.070	0.031		ND UJ	0.36	0.16	0.698	4/7/22 14:50	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 14:50	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 14:50	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 14:50	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 14:50	BRF
2-Butanone (MEK)	0.46	1.4	0.37	J	1.4	4.1	1.1	0.698	4/7/22 14:50	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 14:50	BRF
Carbon Tetrachloride	0.070	0.035	0.028		0.44	0.22	0.17	0.698	4/7/22 14:50	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 14:50	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 14:50	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 14:50	BRF
Chloromethane	0.56	0.070	0.028		1.2	0.14	0.057	0.698	4/7/22 14:50	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 14:50	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 14:50	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 14:50	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 14:50	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 14:50	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 14:50	BRF
Dichlorodifluoromethane (Freon 12)	0.48	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 14:50	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 14:50	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 14:50	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 14:50	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 14:50	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 14:50	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 14:50	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 14:50	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 14:50	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 14:50	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 14:50	BRF
Ethanol	5.2	1.4	0.62		9.8	2.6	1.2	0.698	4/7/22 14:50	BRF
Ethyl Acetate	ND	0.35	0.18		ND	1.3	0.64	0.698	4/7/22 14:50	BRF
Ethylbenzene	ND	0.035	0.020		ND	0.15	0.088	0.698	4/7/22 14:50	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 14:50	BRF
Heptane	0.033	0.035	0.022	J	0.14	0.14	0.091	0.698	4/7/22 14:50	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 14:50	BRF
Hexane	0.32	1.4	0.18	J	1.1	4.9	0.64	0.698	4/7/22 14:50	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 14:50	BRF
Isopropanol	0.63	1.4	0.24	J	1.6	3.4	0.59	0.698	4/7/22 14:50	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 14:50	BRF
Methylene Chloride	0.31	0.35	0.16	J	1.1	1.2	0.56	0.698	4/7/22 14:50	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 14:50	BRF
Naphthalene	ND	0.035	0.022		ND	0.18	0.12	0.698	4/7/22 14:50	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 14:50	BRF
Styrene	ND	0.035	0.018		ND	0.15	0.078	0.698	4/7/22 14:50	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 14:50	BRF
					$B L Q$	$x 5$	$1 / 3$	22	Page	$\text { of } 64$

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 2-OA-1-03302022
Sample ID: 22D0004-01
Sample Matrix: Ambient Air
Sampled: 3/30/2022 08:15

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $($ in Hg$):-29.5$
Canister ID: 1986	Final Vacuum(in Hg$):-10.5$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-7.6$
Flow Controller ID: 3256	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	ppbv		MDL	ug/m3				Date/Time		
Tetrachloroethylene	ND	0.035	0.027		ND	0.24	0.18	0.698	4/7/22 14:50	BRF
Tetrahydrofuran	0.10	0.35	0.057	J	0.30	1.0	0.17	0.698	4/7/22 14:50	BRF
Toluene	0.20	0.035	0.020		0.74	0.13	0.075	0.698	4/7/22 14:50	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND UJ	0.26	0.18	0.698	4/7/22 14:50	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 14:50	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 14:50	BRF
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	4/7/22 14:50	BRF
Trichlorofluoromethane (Freon 11)	0.23	0.14	0.041		1.3	0.78	0.23	0.698	4/7/22 14:50	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.076	0.14	0.039	J	0.58	1.1	0.30	0.698	4/7/22 14:50	BRF
1,2,4-Trimethylbenzene	0.022	0.035	0.015	J	0.11	0.17	0.076	0.698	4/7/22 14:50	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22 14:50	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 14:50	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 14:50	BRF
m\&p-Xylene	0.067	0.070	0.039	J	0.29	0.30	0.17	0.698	4/7/22 14:50	BRF
o-Xylene	0.028	0.035	0.018	J	0.12	0.15	0.078	0.698	4/7/22 14:50	BRF
Surrogates	\% Recovery			\% REC Limits						

Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 2 -IA-1-03302022
Sample ID: 22D0004-02
Sample Matrix: Indoor air
Sampled: 3/30/2022 00:00

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $(\mathrm{in} \mathrm{Hg}):-29$
Canister ID: 1038	Final Vacuum(in Hg$):-9$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-8.8$
Flow Controller ID: 3257	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15											
Analyte	Results $\begin{gathered}\text { ppbv } \\ \text { RL }\end{gathered}$		MDL	Flag/Qual	$\mathrm{ug} / \mathrm{m} 3$			Date/Time			
Acetone	12	1.4	0.84		30	3.3	2.0	0.698	4/7/22	15:56	BRF
Benzene	0.75	0.035	0.026		2.4	0.11	0.084	0.698	4/7/22	15:56	BRF
Benzyl chloride	ND	0.070	0.031		ND UJ	0.36	0.16	0.698	4/7/22	15:56	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22	15:56	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22	15:56	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22	15:56	BRF
1,3-Butadiene	0.59	0.035	0.029		1.3	0.077	0.065	0.698	4/7/22	15:56	BRF
2-Butanone (MEK)	0.97	1.4	0.37	J	2.9	4.1	1.1	0.698	4/7/22	15:56	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22	15:56	BRF
Carbon Tetrachloride	0.066	0.035	0.028		0.42	0.22	0.17	0.698	4/7/22	15:56	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22	15:56	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22	15:56	BRF
Chloroform	0.079	0.035	0.033		0.38	0.17	0.16	0.698	4/7/22	15:56	BRF
Chloromethane	1.1	0.070	0.028		2.3	0.14	0.057	0.698	4/7/22	15:56	BRF
Cyclohexane	0.41	0.035	0.023		1.4	0.12	0.079	0.698	4/7/22	15:56	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22	15:56	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22	15:56	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22	15:56	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22	15:56	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22	15:56	BRF
Dichlorodifluoromethane (Freon 12)	0.47	0.035	0.034		2.3	0.17	0.17	0.698	4/7/22	15:56	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22	15:56	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22	15:56	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22	15:56	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22	15:56	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22	15:56	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22	15:56	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22	15:56	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22	15:56	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22	15:56	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22	15:56	BRF
Ethanol	830	60	26		1600	110	50	30	4/8/22	16:09	BRF
Ethyl Acetate	1.5	0.35	0.18		5.5	1.3	0.64	0.698	4/7/22	15:56	BRF
Ethylbenzene	0.48	0.035	0.020		2.1	0.15	0.088	0.698	4/7/22	15:56	BRF
4-Ethyltoluene	0.10	0.035	0.021		0.50 J	0.17	0.11	0.698	4/7/22	15:56	BRF
Heptane	0.54	0.035	0.022		2.2	0.14	0.091	0.698	4/7/22	15:56	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22	15:56	BRF
Hexane	1.5	1.4	0.18		5.4	4.9	0.64	0.698	4/7/22	15:56	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22	15:56	BRF
Isopropanol	4.2	1.4	0.24		10	3.4	0.59	0.698	4/7/22	15:56	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22	15:56	BRF
Methylene Chloride	0.42	0.35	0.16		1.4	1.2	0.56	0.698	4/7/22	15:56	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22	15:56	BRF
Naphthalene	1.2	0.035	0.022		6.4	0.18	0.12	0.698	4/7/22	15:56	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22	15:56	BRF
Styrene	0.093	0.035	0.018		0.40	0.15	0.078	0.698	4/7/22	15:56	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22	15:56	BRF
					$B L Q$	$x 5$	$1 / 31$	22		Page	$\text { of } 64$

ANALYTICAL RESULTS

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 2 -SS-1-03302022
Sample ID: 22D0004-03
Sample Matrix: Sub Slab
Sampled: 3/30/2022 08:56
Sample Description/Location:
Sub Description/Location:
Canister ID: 1162
Canister Size: 6 liter
Flow Controller ID: 3064
Sample Type: 24 hr

Work Order: 22D0004

Initial Vacuum(in Hg): -30
Final Vacuum(in Hg): -12
Receipt Vacuum(in Hg): -11.2
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling: $<20 \%$

Analyte	EPA TO-15				ug/m3					
	ppbv			Flag/Qual				Dilution	Date/Time Analyzed	Analyst
	Results	RL	MDL		Results	RL	MDL			
Acetone	53	8.0	4.8		120	19	11	4	4/11/22 23:00	BRF
Benzene	0.64	0.20	0.15		2.0	0.64	0.48	4	4/11/22 23:00	BRF
Benzyl chloride	ND	0.20	0.18		ND	1.0	0.91	4	4/11/22 23:00	BRF
Bromodichloromethane	ND	0.20	0.14		ND	1.3	0.94	4	4/11/22 23:00	BRF
Bromoform	ND	0.20	0.14		ND	2.1	1.4	4	4/11/22 23:00	BRF
Bromomethane	ND	0.20	0.16		ND	0.78	0.63	4	4/11/22 23:00	BRF
1,3-Butadiene	ND	0.20	0.17		ND	0.44	0.37	4	4/11/22 23:00	BRF
2-Butanone (MEK)	3.7	8.0	2.1	J	11	24	6.3	4	4/11/22 23:00	BRF
Carbon Disulfide	ND	2.0	0.18		ND	6.2	0.58	4	4/11/22 23:00	BRF
Carbon Tetrachloride	ND	0.20	0.16		ND	1.3	1.0	4	4/11/22 23:00	BRF
Chlorobenzene	ND	0.20	0.13		ND	0.92	0.61	4	4/11/22 23:00	BRF
Chloroethane	ND	0.20	0.15		ND	0.53	0.39	4	4/11/22 23:00	BRF
Chloroform	ND	0.20	0.19		ND	0.98	0.93	4	4/11/22 23:00	BRF
Chloromethane	ND	0.40	0.16		ND	0.83	0.33	4	4/11/22 23:00	BRF
Cyclohexane	ND	0.20	0.13		ND	0.69	0.46	4	4/11/22 23:00	BRF
Dibromochloromethane	ND	0.20	0.13		ND	1.7	1.1	4	4/11/22 23:00	BRF
1,2-Dibromoethane (EDB)	ND	0.20	0.12		ND	1.5	0.93	4	4/11/22 23:00	BRF
1,2-Dichlorobenzene	ND	0.20	0.11		ND	1.2	0.69	4	4/11/22 23:00	BRF
1,3-Dichlorobenzene	ND	0.20	0.11		ND	1.2	0.67	4	4/11/22 23:00	BRF
1,4-Dichlorobenzene	ND	0.20	0.13		ND	1.2	0.79	4	4/11/22 23:00	BRF
Dichlorodifluoromethane (Freon 12)	0.46	0.20	0.20		2.3	0.99	0.97	4	4/11/22 23:00	BRF
1,1-Dichloroethane	ND	0.20	0.17		ND	0.81	0.71	4	4/11/22 23:00	BRF
1,2-Dichloroethane	ND	0.20	0.18		ND	0.81	0.73	4	4/11/22 23:00	BRF
1,1-Dichloroethylene	ND	0.20	0.15		ND	0.79	0.60	4	4/11/22 23:00	BRF
cis-1,2-Dichloroethylene	ND	0.20	0.15		ND	0.79	0.58	4	4/11/22 23:00	BRF
trans-1,2-Dichloroethylene	ND	0.20	0.16		ND	0.79	0.62	4	4/11/22 23:00	BRF
1,2-Dichloropropane	ND	0.20	0.11		ND	0.92	0.50	4	4/11/22 23:00	BRF
cis-1,3-Dichloropropene	ND	0.20	0.10		ND	0.91	0.47	4	4/11/22 23:00	BRF
trans-1,3-Dichloropropene	ND	0.20	0.10		ND	0.91	0.46	4	4/11/22 23:00	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.20	0.20		ND	1.4	1.4	4	4/11/22 23:00	BRF
1,4-Dioxane	ND	2.0	0.17		ND	7.2	0.60	4	4/11/22 23:00	BRF
Ethanol	12	8.0	3.5		22	15	6.6	4	4/11/22 23:00	BRF
Ethyl Acetate	ND	2.0	1.0		ND	7.2	3.6	4	4/11/22 23:00	BRF
Ethylbenzene	0.84	0.20	0.12		3.6	0.87	0.51	4	4/11/22 23:00	BRF
4-Ethyltoluene	ND	0.20	0.12		ND	0.98	0.60	4	4/11/22 23:00	BRF
Heptane	17	0.20	0.13		71	0.82	0.52	4	4/11/22 23:00	BRF
Hexachlorobutadiene	ND	0.20	0.16		ND	2.1	1.8	4	4/11/22 23:00	BRF
Hexane	2.8	8.0	1.0	J	9.8	28	3.7	4	4/11/22 23:00	BRF
2-Hexanone (MBK)	ND	0.20	0.10		ND	0.82	0.41	4	4/11/22 23:00	BRF
Isopropanol	2.4	8.0	1.4	J	5.8	20	3.4	4	4/11/22 23:00	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.20	0.15		ND	0.72	0.56	4	4/11/22 23:00	BRF
Methylene Chloride	ND	2.0	0.93		ND	6.9	3.2	4	4/11/22 23:00	BRF
4-Methyl-2-pentanone (MIBK)	0.52	0.20	0.10		2.1	0.82	0.42	4	4/11/22 23:00	BRF
Naphthalene	ND	0.20	0.13		ND	1.0	0.66	4	4/11/22 23:00	BRF
Propene	ND	8.0	1.8		ND	14	3.0	4	4/11/22 23:00	BRF
Styrene	ND	0.20	0.11		ND	0.85	0.45	4	4/11/22 23:00	BRF
1,1,2,2-Tetrachloroethane	ND	0.20	0.11		ND	1.4	0.74	4	4/11/22 23:00	BRF
									Page 8 of 64	

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 2
SSS-1-03302022
Sample ID: 22D0004-03
Sample Matrix: Sub Slab
Sampled: 3/30/2022 08:56

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $($ in Hg$):-30$
Canister ID: 1162	Final Vacuum(in Hg$):-12$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-11.2$
Flow Controller ID: 3064	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results	ppbv RL	MDL	Flag/Qual	Results	$\begin{gathered} \mathrm{ug} / \mathrm{m} 3 \\ \text { RL } \end{gathered}$	MDL	Dilution	Date/Time Analyzed	Analyst
Tetrachloroethylene	ND	0.20	0.15		ND	1.4	1.0	4	4/11/22 23:00	BRF
Tetrahydrofuran	1.5	2.0	0.33	J	4.3	5.9	0.97	4	4/11/22 23:00	BRF
Toluene	2.3	0.20	0.11		8.7	0.75	0.43	4	4/11/22 23:00	BRF
1,2,4-Trichlorobenzene	ND	0.20	0.14		ND	1.5	1.0	4	4/11/22 23:00	BRF
1,1,1-Trichloroethane	ND	0.20	0.16		ND	1.1	0.86	4	4/11/22 23:00	BRF
1,1,2-Trichloroethane	ND	0.20	0.14		ND	1.1	0.77	4	4/11/22 23:00	BRF
Trichloroethylene	ND	0.20	0.13		ND	1.1	0.72	4	4/11/22 23:00	BRF
Trichlorofluoromethane (Freon 11)	0.55	0.80	0.24	J	3.1	4.5	1.3	4	4/11/22 23:00	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.80	0.22		ND	6.1	1.7	4	4/11/22 23:00	BRF
1,2,4-Trimethylbenzene	0.80	0.20	0.088		3.9	0.98	0.43	4	4/11/22 23:00	BRF
1,3,5-Trimethylbenzene	0.54	0.20	0.11		2.7	0.98	0.52	4	4/11/22 23:00	BRF
Vinyl Acetate	ND	4.0	1.1		ND	14	3.8	4	4/11/22 23:00	BRF
Vinyl Chloride	ND	0.20	0.18		ND	0.51	0.46	4	4/11/22 23:00	BRF
m\&p-Xylene	2.7	0.40	0.22		12	1.7	0.97	4	4/11/22 23:00	BRF
o-Xylene	0.86	0.20	0.10		3.7	0.87	0.44	4	4/11/22 23:00	BRF
Surrogates	\% Recovery			\% REC Limits						

Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 3 -OA-1-03302022
Sample ID: 22D0004-04
Sample Matrix: Ambient Air
Sampled: 3/30/2022 09:15

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $(\mathrm{in} \mathrm{Hg}):-28$
Canister ID: 1745	Final Vacuum(in Hg$):-9$
Canister Size: 6 liter	Receipt Vacuum(in Hg): -7.9
Flow Controller ID: 3521	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results $\begin{gathered}\text { ppbv } \\ \text { RL }\end{gathered}$		MDL	$\mathrm{ug} / \mathrm{m} 3$				Date/Time		
Acetone	1.5	1.4	0.84		3.5	3.3	2.0	0.698	4/7/22 17:06	BRF
Benzene	0.14	0.035	0.026		0.46	0.11	0.084	0.698	4/7/22 17:06	BRF
Benzyl chloride	ND	0.070	0.031		ND UJ	0.36	0.16	0.698	4/7/22 17:06	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 17:06	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 17:06	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 17:06	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 17:06	BRF
2-Butanone (MEK)	ND	1.4	0.37		ND	4.1	1.1	0.698	4/7/22 17:06	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 17:06	BRF
Carbon Tetrachloride	0.075	0.035	0.028		0.47	0.22	0.17	0.698	4/7/22 17:06	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 17:06	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 17:06	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 17:06	BRF
Chloromethane	0.58	0.070	0.028		1.2	0.14	0.057	0.698	4/7/22 17:06	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 17:06	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 17:06	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 17:06	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 17:06	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 17:06	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 17:06	BRF
Dichlorodifluoromethane (Freon 12)	0.48	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 17:06	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 17:06	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 17:06	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 17:06	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 17:06	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 17:06	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 17:06	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 17:06	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 17:06	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 17:06	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 17:06	BRF
Ethanol	3.4	1.4	0.62		6.5	2.6	1.2	0.698	4/7/22 17:06	BRF
Ethyl Acetate	ND	0.35	0.18		ND	1.3	0.64	0.698	4/7/22 17:06	BRF
Ethylbenzene	0.022	0.035	0.020	J	0.094	0.15	0.088	0.698	4/7/22 17:06	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 17:06	BRF
Heptane	ND	0.035	0.022		ND	0.14	0.091	0.698	4/7/22 17:06	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 17:06	BRF
Hexane	0.31	1.4	0.18	J	1.1	4.9	0.64	0.698	4/7/22 17:06	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 17:06	BRF
Isopropanol	0.33	1.4	0.24	J	0.81	3.4	0.59	0.698	4/7/22 17:06	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 17:06	BRF
Methylene Chloride	0.25	0.35	0.16	J	0.87	1.2	0.56	0.698	4/7/22 17:06	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 17:06	BRF
Naphthalene	0.046	0.035	0.022		0.24	0.18	0.12	0.698	4/7/22 17:06	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 17:06	BRF
Styrene	ND	0.035	0.018		ND	0.15	0.078	0.698	4/7/22 17:06	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 17:06	BRF
				$B L A / 5 / 13 / 22$					$\text { Page } 10 \text { of } 64$	

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 3-OA-1-03302022
Sample ID: 22D0004-04
Sample Matrix: Ambient Air
Sampled: 3/30/2022 09:15

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $($ in Hg$):-28$
Canister ID: 1745	Final Vacuum(in Hg): -9
Canister Size: 6 liter	Receipt Vacuum(in Hg): -7.9
Flow Controller ID: 3521	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 3-IA-1-03302022
Sample ID: 22D0004-05
Sample Matrix: Indoor air
Sampled: 3/30/2022 12:55

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum(in Hg$):-27$
Canister ID: 1502	Final Vacuum in Hg$):-4$
Canister Size: 6 liter	Receipt Vacuum(in Hg): -4.7
Flow Controller ID: 3503	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results $\begin{gathered}\text { ppbv } \\ \text { RL }\end{gathered}$		MDL	ug/m3				Date/Time		
Acetone	3.1	1.4	0.84		7.4	3.3	2.0	0.698	4/7/22 17:43	BRF
Benzene	0.39	0.035	0.026		1.3	0.11	0.084	0.698	4/7/22 17:43	BRF
Benzyl chloride	ND	0.070	0.031		NDUJ	0.36	0.16	0.698	4/7/22 17:43	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 17:43	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 17:43	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 17:43	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 17:43	BRF
2-Butanone (MEK)	0.48	1.4	0.37	J	1.4	4.1	1.1	0.698	4/7/22 17:43	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 17:43	BRF
Carbon Tetrachloride	0.057	0.035	0.028		0.36	0.22	0.17	0.698	4/7/22 17:43	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 17:43	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 17:43	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 17:43	BRF
Chloromethane	0.56	0.070	0.028		1.2	0.14	0.057	0.698	4/7/22 17:43	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 17:43	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 17:43	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 17:43	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 17:43	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 17:43	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 17:43	BRF
Dichlorodifluoromethane (Freon 12)	0.49	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 17:43	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 17:43	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 17:43	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 17:43	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 17:43	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 17:43	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 17:43	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 17:43	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 17:43	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 17:43	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 17:43	BRF
Ethanol	58	8.0	3.5		110	15	6.6	4	4/8/22 17:07	BRF
Ethyl Acetate	0.30	0.35	0.18	J	1.1	1.3	0.64	0.698	4/7/22 17:43	BRF
Ethylbenzene	0.028	0.035	0.020	J	0.12	0.15	0.088	0.698	4/7/22 17:43	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 17:43	BRF
Heptane	0.043	0.035	0.022		0.17	0.14	0.091	0.698	4/7/22 17:43	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 17:43	BRF
Hexane	0.37	1.4	0.18	J	1.3	4.9	0.64	0.698	4/7/22 17:43	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 17:43	BRF
Isopropanol	0.51	1.4	0.24	J	1.2	3.4	0.59	0.698	4/7/22 17:43	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 17:43	BRF
Methylene Chloride	0.35	0.35	0.16	J	1.2	1.2	0.56	0.698	4/7/22 17:43	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 17:43	BRF
Naphthalene	0.043	0.035	0.022		0.22	0.18	0.12	0.698	4/7/22 17:43	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 17:43	BRF
Styrene	0.025	0.035	0.018	J	0.11	0.15	0.078	0.698	4/7/22 17:43	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 17:43	BRF
					$B L A / 5 / 13 / 22$				Page 12 of 64	

Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -27
Field Sample \#:	Structure 3	-IA-1-03302022

ANALYTICAL RESULTS

EPA TO-15										
Analyte	Results	ppbv RL	MDL	Flag/Qual	Results	$\begin{gathered} \mathrm{ug} / \mathrm{m} 3 \\ \text { RL } \end{gathered}$	MDL	Dilution	Date/Time Analyzed	Analyst
Tetrachloroethylene	0.030	0.035	0.027	J	0.20	0.24	0.18	0.698	4/7/22 17:43	BRF
Tetrahydrofuran	0.30	0.35	0.057	J	0.89	1.0	0.17	0.698	4/7/22 17:43	BRF
Toluene	0.22	0.035	0.020		0.84	0.13	0.075	0.698	4/7/22 17:43	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND UJ	0.26	0.18	0.698	4/7/22 17:43	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 17:43	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 17:43	BRF
Trichloroethylene	0.16	0.035	0.024		0.87	0.19	0.13	0.698	4/7/22 17:43	BRF
Trichlorofluoromethane (Freon 11)	0.26	0.14	0.041		1.5	0.78	0.23	0.698	4/7/22 17:43	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.077	0.14	0.039	J	0.59	1.1	0.30	0.698	4/7/22 17:43	BRF
1,2,4-Trimethylbenzene	0.022	0.035	0.015	J	0.11	0.17	0.076	0.698	4/7/22 17:43	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22 17:43	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 17:43	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 17:43	BRF
m\&p-Xylene	0.090	0.070	0.039		0.39	0.30	0.17	0.698	4/7/22 17:43	BRF
o-Xylene	0.033	0.035	0.018	J	0.14	0.15	0.078	0.698	4/7/22 17:43	BRF
Surrogates	\% Recovery			\% REC Limits						
4-Bromofluorobenzene (1) 4-Bromofluorobenzene (1)	97.9			70-130			4/8/22 17:07			

Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 3 -IA-DUP-03302022
Sample ID: 22D0004-06
Sample Matrix: Indoor air
Sampled: 3/30/2022 00:00

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum(in Hg): -28
Canister ID: 1611	Final Vacuum(in Hg): -5.5
Canister Size: 6 liter	Receipt Vacuum(in Hg): -4.9
Flow Controller ID: 3363	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	ppbv		MDL	Flag/Qual	$\mathrm{ug} / \mathrm{m} 3$			Date/Time		
Acetone	2.4	1.4	0.84		5.8	3.3	2.0	0.698	4/7/22 18:18	BRF
Benzene	0.40	0.035	0.026		1.3	0.11	0.084	0.698	4/7/22 18:18	BRF
Benzyl chloride	ND	0.070	0.031		ND UJ	0.36	0.16	0.698	4/7/22 18:18	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 18:18	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 18:18	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 18:18	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 18:18	BRF
2-Butanone (MEK)	0.40	1.4	0.37	J	1.2	4.1	1.1	0.698	4/7/22 18:18	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 18:18	BRF
Carbon Tetrachloride	0.056	0.035	0.028		0.35	0.22	0.17	0.698	4/7/22 18:18	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 18:18	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 18:18	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 18:18	BRF
Chloromethane	0.51	0.070	0.028		1.0	0.14	0.057	0.698	4/7/22 18:18	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 18:18	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 18:18	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 18:18	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 18:18	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 18:18	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 18:18	BRF
Dichlorodifluoromethane (Freon 12)	0.48	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 18:18	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 18:18	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 18:18	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 18:18	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 18:18	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 18:18	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 18:18	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 18:18	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 18:18	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 18:18	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 18:18	BRF
Ethanol	59	8.0	3.5		110	15	6.6	4	4/8/22 17:35	BRF
Ethyl Acetate	0.27	0.35	0.18	J	0.96	1.3	0.64	0.698	4/7/22 18:18	BRF
Ethylbenzene	0.032	0.035	0.020	J	0.14	0.15	0.088	0.698	4/7/22 18:18	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 18:18	BRF
Heptane	0.042	0.035	0.022		0.17	0.14	0.091	0.698	4/7/22 18:18	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 18:18	BRF
Hexane	0.30	1.4	0.18	J	1.1	4.9	0.64	0.698	4/7/22 18:18	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 18:18	BRF
Isopropanol	0.32	1.4	0.24	J	0.79	3.4	0.59	0.698	4/7/22 18:18	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 18:18	BRF
Methylene Chloride	0.19	0.35	0.16	J	0.65	1.2	0.56	0.698	4/7/22 18:18	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 18:18	BRF
Naphthalene	0.043	0.035	0.022		0.23	0.18	0.12	0.698	4/7/22 18:18	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 18:18	BRF
Styrene	0.036	0.035	0.018		0.15	0.15	0.078	0.698	4/7/22 18:18	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 18:18	BRF
				$B L$	$\sqrt{5} 11$	31			Page	of 64

Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -28
Field Sample \#:	Structure 3-IA-DUP-03302022	Canister ID: 1611
Sample ID: 22D0004-06	Canister Size: 6 liter	Final Vacuum(in Hg): -5.5
Sample Matrix: Indoor air	Flow Controller ID: 3363	Receipt Vacuum(in Hg): -4.9
Sampled: $3 / 30 / 202200: 00$	Sample Type: 24 hr	Flow Controller Type: Fixed-Orifice
		Flow Controller Calibration
	RPD Pere and Post-Sampling: $<20 \%$	

ANALYTICAL RESULTS

Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 3 -IA-2-03302022
Sample ID: 22D0004-07
Sample Matrix: Indoor air
Sampled: 3/30/2022 12:56
Sample Description/Location:
Sub Description/Location:
Canister ID: 1876
Canister Size: 6 liter
Flow Controller ID: 3305
Sample Type: 24 hr

Work Order: 22D0004
Initial Vacuum(in Hg): -28
Final Vacuum(in Hg): -5.5
Receipt Vacuum(in Hg): -4.2
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15											
Analyte	ppbv			Flag/Qual	ug/m3			Date/Time			
Acetone	1.8	1.4	0.84		4.4	3.3	2.0	0.698	4/7/22	18:54	BRF
Benzene	0.44	0.035	0.026		1.4	0.11	0.084	0.698	4/7/22	18:54	BRF
Benzyl chloride	ND	0.070	0.031		ND UJ	0.36	0.16	0.698	4/7/22	18:54	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22	18:54	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22	18:54	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22	18:54	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22	18:54	BRF
2-Butanone (MEK)	ND	1.4	0.37		ND	4.1	1.1	0.698	4/7/22	18:54	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22	18:54	BRF
Carbon Tetrachloride	0.063	0.035	0.028		0.40	0.22	0.17	0.698	4/7/22	18:54	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22	18:54	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22	18:54	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22	18:54	BRF
Chloromethane	0.51	0.070	0.028		1.1	0.14	0.057	0.698	4/7/22	18:54	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22	18:54	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22	18:54	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22	18:54	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22	18:54	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22	18:54	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22	18:54	BRF
Dichlorodifluoromethane (Freon 12)	0.50	0.035	0.034		2.5	0.17	0.17	0.698	4/7/22	18:54	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22	18:54	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22	18:54	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22	18:54	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22	18:54	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22	18:54	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22	18:54	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22	18:54	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22	18:54	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22	18:54	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22	18:54	BRF
Ethanol	9.8	1.4	0.62		19	2.6	1.2	0.698	4/7/22	18:54	BRF
Ethyl Acetate	ND	0.35	0.18		ND	1.3	0.64	0.698	4/7/22	18:54	BRF
Ethylbenzene	0.029	0.035	0.020	J	0.13	0.15	0.088	0.698	4/7/22	18:54	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22	18:54	BRF
Heptane	0.034	0.035	0.022	J	0.14	0.14	0.091	0.698	4/7/22	18:54	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22	18:54	BRF
Hexane	0.31	1.4	0.18	J	1.1	4.9	0.64	0.698	4/7/22	18:54	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22	18:54	BRF
Isopropanol	0.39	1.4	0.24	J	0.97	3.4	0.59	0.698	4/7/22	18:54	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22	18:54	BRF
Methylene Chloride	0.17	0.35	0.16	J	0.60	1.2	0.56	0.698	4/7/22	18:54	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22	18:54	BRF
Naphthalene	0.033	0.035	0.022	J	0.17	0.18	0.12	0.698	4/7/22	18:54	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22	18:54	BRF
Styrene	ND	0.035	0.018		ND	0.15	0.078	0.698	4/7/22	18:54	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22	18:54	BRF
					$B L$	$\phi r i$	$1 / 3$	122		Page	of 64

Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: $3 / 31 / 2022$	Sub Description/Location:	Initial Vacuum(in Hg): $-\mathbf{2 8}$
Field Sample \#:	Structure 3	-IA-2-03302022

ANALYTICAL RESULTS

Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 4 -IA-1-03302022
Sample ID: 22D0004-09
Sample Matrix: Indoor air
Sampled: 3/30/2022 13:18

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum(in Hg): -27
Canister ID: 1951	Final Vacuum(in Hg): -9
Canister Size: 6 liter	Receipt Vacuum(in Hg): -9.5
Flow Controller ID: 3468	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results $\begin{gathered}\text { ppbv } \\ \text { RL }\end{gathered}$		MDL	ug/m3				Date/Time		
Acetone	4.1	1.4	0.84		9.7	3.3	2.0	0.698	4/7/22 19:29	BRF
Benzene	0.15	0.035	0.026		0.47	0.11	0.084	0.698	4/7/22 19:29	BRF
Benzyl chloride	ND	0.070	0.031		NDUJ	0.36	0.16	0.698	4/7/22 19:29	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 19:29	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 19:29	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 19:29	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 19:29	BRF
2-Butanone (MEK)	0.60	1.4	0.37	J	1.8	4.1	1.1	0.698	4/7/22 19:29	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 19:29	BRF
Carbon Tetrachloride	0.078	0.035	0.028		0.49	0.22	0.17	0.698	4/7/22 19:29	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 19:29	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 19:29	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 19:29	BRF
Chloromethane	0.53	0.070	0.028		1.1	0.14	0.057	0.698	4/7/22 19:29	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 19:29	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 19:29	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 19:29	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 19:29	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 19:29	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 19:29	BRF
Dichlorodifluoromethane (Freon 12)	0.49	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 19:29	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 19:29	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 19:29	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 19:29	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 19:29	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 19:29	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 19:29	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 19:29	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 19:29	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 19:29	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 19:29	BRF
Ethanol	91	8.0	3.5		170	15	6.6	4	4/8/22 18:04	BRF
Ethyl Acetate	0.19	0.35	0.18	J	0.69	1.3	0.64	0.698	4/7/22 19:29	BRF
Ethylbenzene	0.053	0.035	0.020		0.23	0.15	0.088	0.698	4/7/22 19:29	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 19:29	BRF
Heptane	0.043	0.035	0.022		0.17	0.14	0.091	0.698	4/7/22 19:29	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 19:29	BRF
Hexane	0.31	1.4	0.18	J	1.1	4.9	0.64	0.698	4/7/22 19:29	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 19:29	BRF
Isopropanol	0.58	1.4	0.24	J	1.4	3.4	0.59	0.698	4/7/22 19:29	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 19:29	BRF
Methylene Chloride	0.35	0.35	0.16	J	1.2	1.2	0.56	0.698	4/7/22 19:29	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 19:29	BRF
Naphthalene	ND	0.035	0.022		ND	0.18	0.12	0.698	4/7/22 19:29	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 19:29	BRF
Styrene	0.033	0.035	0.018	J	0.14	0.15	0.078	0.698	4/7/22 19:29	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND)	0.24	0.13	0.698	4/7/22 19:29	BRF
						$\angle g$	$5 / 13$	$3 / 22$	Page	$\text { of } 64$

Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -27
Field Sample \#: Structure 4-IA-1-03302022	Canister ID: 1951	Final Vacuum(in Hg): -9
Sample ID: 22D0004-09	Canister Size: 6 liter	Receipt Vacuum(in Hg): -9.5
Sample Matrix: Indoor air	Flow Controller ID: 3468	Flow Controller Type: Fixed-Orifice
Sampled: 3/30/2022 13:18	Sample Type: 24 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: $<20 \%$

ANALYTICAL RESULTS

Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 4
Sample ID: 22D0004-10
Sampe2022
Sample Matrix: Ambient Air
Sampled: 3/30/2022 13:30

ANALYTICAL RESULTS

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $($ in Hg$):-29$
Canister ID: 1071	Final Vacuum(in Hg$):-9$
Canister Size: 6 liter	Receipt Vacuum(in Hg): -7.8
Flow Controller ID: 3676	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	ppbv		MDL	Flag/Qual	$\mathrm{ug} / \mathrm{m} 3$			Date/Time		
Acetone	1.5	1.4	0.84		3.5	3.3	2.0	0.698	4/7/22 20:05	BRF
Benzene	0.14	0.035	0.026		0.45	0.11	0.084	0.698	4/7/22 20:05	BRF
Benzyl chloride	ND	0.070	0.031		ND UJ	0.36	0.16	0.698	4/7/22 20:05	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 20:05	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 20:05	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 20:05	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 20:05	BRF
2-Butanone (MEK)	ND	1.4	0.37		ND	4.1	1.1	0.698	4/7/22 20:05	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 20:05	BRF
Carbon Tetrachloride	0.085	0.035	0.028		0.54	0.22	0.17	0.698	4/7/22 20:05	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 20:05	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 20:05	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 20:05	BRF
Chloromethane	0.55	0.070	0.028		1.1	0.14	0.057	0.698	4/7/22 20:05	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 20:05	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 20:05	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 20:05	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 20:05	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 20:05	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 20:05	BRF
Dichlorodifluoromethane (Freon 12)	0.50	0.035	0.034		2.5	0.17	0.17	0.698	4/7/22 20:05	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 20:05	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 20:05	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 20:05	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 20:05	BRF
trans-1,2-Dichloroethylene	0.40	0.035	0.027		1.6	0.14	0.11	0.698	4/7/22 20:05	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 20:05	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 20:05	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 20:05	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 20:05	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 20:05	BRF
Ethanol	1.4	1.4	0.62		2.7	2.6	1.2	0.698	4/7/22 20:05	BRF
Ethyl Acetate	ND	0.35	0.18		ND	1.3	0.64	0.698	4/7/22 20:05	BRF
Ethylbenzene	ND	0.035	0.020		ND	0.15	0.088	0.698	4/7/22 20:05	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 20:05	BRF
Heptane	ND	0.035	0.022		ND	0.14	0.091	0.698	4/7/22 20:05	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 20:05	BRF
Hexane	0.33	1.4	0.18	J	1.2	4.9	0.64	0.698	4/7/22 20:05	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 20:05	BRF
Isopropanol	0.53	1.4	0.24	J	1.3	3.4	0.59	0.698	4/7/22 20:05	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 20:05	BRF
Methylene Chloride	0.35	0.35	0.16		1.2	1.2	0.56	0.698	4/7/22 20:05	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 20:05	BRF
Naphthalene	ND	0.035	0.022		ND	0.18	0.12	0.698	4/7/22 20:05	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 20:05	BRF
Styrene	ND	0.035	0.018		ND	0.15	0.078	0.698	4/7/22 20:05	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 20:05	BRF
					$B \angle C$	$\sqrt{5}$	131	22	Page	of 64

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 4-OA-1-03302022
Sample ID: 22D0004-10
Sample Matrix: Ambient Air
Sampled: 3/30/2022 13:30

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $($ in Hg$):-29$
Canister ID: 1071	Final Vacuum(in Hg$):-9$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-7.8$
Flow Controller ID: 3676	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pere and Post-Sampling: $<20 \%$

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 4-IA-2-03302022
Sample ID: 22D0004-11
Sample Matrix: Indoor air
Sampled: 3/30/2022 13:24

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $(\mathrm{in} \mathrm{Hg}):-29$
Canister ID: 1626	Final Vacuum(in Hg$):-9$
Canister Size: 6 liter	Receipt Vacuum(in Hg): -8.6
Flow Controller ID: 3510	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results $\begin{gathered}\text { ppbv } \\ \text { RL }\end{gathered}$		MDL	Flag/Qual	ug/m3			Date/Time		
Acetone	2.9	1.4	0.84		6.9	3.3	2.0	0.698	4/7/22 20:40	BRF
Benzene	0.15	0.035	0.026		0.46	0.11	0.084	0.698	4/7/22 20:40	BRF
Benzyl chloride	ND	0.070	0.031		ND UJ	0.36	0.16	0.698	4/7/22 20:40	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 20:40	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 20:40	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 20:40	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 20:40	BRF
2-Butanone (MEK)	ND	1.4	0.37		ND	4.1	1.1	0.698	4/7/22 20:40	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 20:40	BRF
Carbon Tetrachloride	0.075	0.035	0.028		0.47	0.22	0.17	0.698	4/7/22 20:40	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 20:40	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 20:40	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 20:40	BRF
Chloromethane	0.54	0.070	0.028		1.1	0.14	0.057	0.698	4/7/22 20:40	BRF
Cyclohexane	ND	0.035	0.023		ND	0.12	0.079	0.698	4/7/22 20:40	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 20:40	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 20:40	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 20:40	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 20:40	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 20:40	BRF
Dichlorodifluoromethane (Freon 12)	0.49	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 20:40	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 20:40	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 20:40	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 20:40	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 20:40	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 20:40	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 20:40	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 20:40	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 20:40	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 20:40	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 20:40	BRF
Ethanol	44	8.0	3.5		82	15	6.6	4	4/8/22 18:33	BRF
Ethyl Acetate	0.18	0.35	0.18	J	0.65	1.3	0.64	0.698	4/7/22 20:40	BRF
Ethylbenzene	0.038	0.035	0.020		0.16	0.15	0.088	0.698	4/7/22 20:40	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 20:40	BRF
Heptane	0.040	0.035	0.022		0.17	0.14	0.091	0.698	4/7/22 20:40	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 20:40	BRF
Hexane	0.35	1.4	0.18	J	1.2	4.9	0.64	0.698	4/7/22 20:40	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 20:40	BRF
Isopropanol	0.75	1.4	0.24	J	1.9	3.4	0.59	0.698	4/7/22 20:40	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 20:40	BRF
Methylene Chloride	0.54	0.35	0.16		1.9	1.2	0.56	0.698	4/7/22 20:40	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 20:40	BRF
Naphthalene	ND	0.035	0.022		ND	0.18	0.12	0.698	4/7/22 20:40	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 20:40	BRF
Styrene	0.043	0.035	0.018		0.18	0.15	0.078	0.698	4/7/22 20:40	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 20:40	BRF
					$1 \angle A$	51	$/ 2$		Page	of 64

Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample \#:Structure 4-IA-2-03302022 Canister ID: 1626 Final Vacuum(in Hg): -9 Sample ID: 22D0004-11 Canister Size: 6 liter Receipt Vacuum(in Hg): -8.6 Sample Matrix: Indoor air Flow Controller ID: 3510 Flow Controller Type: Fixed-Orifice Sampled: $3 / 30 / 202213: 24$ Sample Type: 24 hr Flow Controller Calibration RPD Pere and Post-Sampling: $<20 \%$		

ANALYTICAL RESULTS

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 4-IA-3-03302022
Sample ID: 22D0004-12
Sample Matrix: Indoor air
Sampled: 3/30/2022 13:25

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $($ in Hg$):-28$
Canister ID: 2154	Final Vacuum(in Hg$):-8$
Canister Size: 6 liter	Receipt Vacuum $($ in Hg$):-7.6$
Flow Controller ID: 3434	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -28
Field Sample \#:Structure 4 -IA-3-03302022 Canister ID: 2154 Sample ID: 22D0004-12 Canister Size: 6 liter Final Vacuum(in Hg): -8 Sample Matrix: Indoor air Flow Controller ID: 3434 Receipt Vacuum(in Hg): -7.6 Sampled: $3 / 30 / 202213: 25$ Sample Type: 24 hr Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: $<20 \%$		

ANALYTICAL RESULTS

EPA TO-15										
Analyte	ppbv		MDL	ug/m3				Date/Time		
Tetrachloroethylene	ND	0.035	0.027		ND	0.24	0.18	0.698	4/7/22 21:15	BRF
Tetrahydrofuran	0.096	0.35	0.057	J	0.28	1.0	0.17	0.698	4/7/22 21:15	BRF
Toluene	0.29	0.035	0.020		1.1	0.13	0.075	0.698	4/7/22 21:15	BRF
1,2,4-Trichlorobenzene	ND	0.035	0.024		ND UJ	0.26	0.18	0.698	4/7/22 21:15	BRF
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	4/7/22 21:15	BRF
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	4/7/22 21:15	BRF
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	4/7/22 21:15	BRF
Trichlorofluoromethane (Freon 11)	0.24	0.14	0.041		1.3	0.78	0.23	0.698	4/7/22 21:15	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.063	0.14	0.039	J	0.49	1.1	0.30	0.698	4/7/22 21:15	BRF
1,2,4-Trimethylbenzene	ND	0.035	0.015		ND	0.17	0.076	0.698	4/7/22 21:15	BRF
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	4/7/22 21:15	BRF
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.698	4/7/22 21:15	BRF
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	4/7/22 21:15	BRF
m\&p-Xylene	0.092	0.070	0.039		0.40	0.30	0.17	0.698	4/7/22 21:15	BRF
o-Xylene	0.031	0.035	0.018	J	0.14	0.15	0.078	0.698	4/7/22 21:15	BRF
Surrogates	\% Recovery			\% REC Limits						

Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 4 -IA-4-03302022
Sample ID: 22D0004-13
Sample Matrix: Indoor air
Sampled: 3/30/2022 13:26

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $(\mathrm{in} \mathrm{Hg}):-30$
Canister ID: 2210	Final Vacuum $($ in Hg$):-6$
Canister Size: 6 liter	Receipt Vacuum(in Hg): -5.5
Flow Controller ID: 3058	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results $\begin{gathered}\text { ppbv } \\ \text { RL }\end{gathered}$		MDL	$\mathrm{ug} / \mathrm{m} 3$				Date/Time		
Acetone	4.3	1.4	0.84		10	3.3	2.0	0.698	4/7/22 21:50	BRF
Benzene	0.20	0.035	0.026		0.63	0.11	0.084	0.698	4/7/22 21:50	BRF
Benzyl chloride	ND	0.070	0.031		ND UJ	0.36	0.16	0.698	4/7/22 21:50	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 21:50	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 21:50	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 21:50	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 21:50	BRF
2-Butanone (MEK)	0.48	1.4	0.37	J	1.4	4.1	1.1	0.698	4/7/22 21:50	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 21:50	BRF
Carbon Tetrachloride	0.073	0.035	0.028		0.46	0.22	0.17	0.698	4/7/22 21:50	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 21:50	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 21:50	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 21:50	BRF
Chloromethane	0.46	0.070	0.028		0.96	0.14	0.057	0.698	4/7/22 21:50	BRF
Cyclohexane	0.074	0.035	0.023		0.25	0.12	0.079	0.698	4/7/22 21:50	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 21:50	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 21:50	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 21:50	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 21:50	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 21:50	BRF
Dichlorodifluoromethane (Freon 12)	0.50	0.035	0.034		2.5	0.17	0.17	0.698	4/7/22 21:50	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 21:50	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 21:50	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 21:50	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 21:50	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 21:50	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 21:50	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 21:50	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 21:50	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 21:50	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 21:50	BRF
Ethanol	4.2	1.4	0.62		8.0	2.6	1.2	0.698	4/7/22 21:50	BRF
Ethyl Acetate	1.1	0.35	0.18		4.1	1.3	0.64	0.698	4/7/22 21:50	BRF
Ethylbenzene	0.079	0.035	0.020		0.34	0.15	0.088	0.698	4/7/22 21:50	BRF
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	4/7/22 21:50	BRF
Heptane	0.12	0.035	0.022		0.47	0.14	0.091	0.698	4/7/22 21:50	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 21:50	BRF
Hexane	0.74	1.4	0.18	J	2.6	4.9	0.64	0.698	4/7/22 21:50	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 21:50	BRF
Isopropanol	1.4	1.4	0.24	J	3.4	3.4	0.59	0.698	4/7/22 21:50	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 21:50	BRF
Methylene Chloride	1.1	0.35	0.16		3.8	1.2	0.56	0.698	4/7/22 21:50	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 21:50	BRF
Naphthalene	ND	0.035	0.022		ND	0.18	0.12	0.698	4/7/22 21:50	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 21:50	BRF
Styrene	0.030	0.035	0.018	J	0.13	0.15	0.078	0.698	4/7/22 21:50	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 21:50	BRF
				$A L d 5 / 13 / 22$					Page 26 of 64	

ANALYTICAL RESULTS

Project Location: NY
Date Received: 3/31/2022
Field Sample \#: Structure 5 -SS-1-03302022
Sample ID: 22D0004-14
Sample Matrix: Sub Slab
Sampled: 3/30/2022 15:25
Sample Description/Location:
Sub Description/Location:
Canister ID: 2205
Canister Size: 6 liter
Flow Controller ID: 3351
Sample Type: 24 hr

Work Order: 22D0004
Initial Vacuum(in Hg): -30
Final Vacuum(in Hg): -13
Receipt Vacuum(in Hg): -11.5
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15											
Sample Flags: RL-11 prby											
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analy	zed	Analyst
Acetone	21	11	6.4		50	25	15	5.33	4/12/22	0:21	BRF
Benzene	0.30	0.27	0.20		0.97	0.85	0.65	5.33	4/12/22	0:21	BRF
Benzyl chloride	ND	0.27	0.24		ND	1.4	1.2	5.33	4/12/22	0:21	BRF
Bromodichloromethane	0.19	0.27	0.19	J	1.3	1.8	1.3	5.33	4/12/22	0:21	BRF
Bromoform	ND	0.27	0.18		ND	2.8	1.9	5.33	4/12/22	0:21	BRF
Bromomethane	ND	0.27	0.22		ND	1.0	0.84	5.33	4/12/22	0:21	BRF
1,3-Butadiene	ND	0.27	0.22		ND	0.59	0.49	5.33	4/12/22	0:21	BRF
2-Butanone (MEK)	ND	11	2.8		ND	31	8.4	5.33	4/12/22	0:21	BRF
Carbon Disulfide	0.58	2.7	0.25	J	1.8	8.3	0.77	5.33	4/12/22	0:21	BRF
Carbon Tetrachloride	ND	0.27	0.21		ND	1.7	1.3	5.33	4/12/22	0:21	BRF
Chlorobenzene	ND	0.27	0.18		ND	1.2	0.82	5.33	4/12/22	0:21	BRF
Chloroethane	ND	0.27	0.19		ND	0.70	0.51	5.33	4/12/22	0:21	BRF
Chloroform	12	0.27	0.25		56	1.3	1.2	5.33	4/12/22	0:21	BRF
Chloromethane	ND	0.53	0.21		ND	1.1	0.44	5.33	4/12/22	0:21	BRF
Cyclohexane	ND	0.27	0.18		ND	0.92	0.61	5.33	4/12/22	0:21	BRF
Dibromochloromethane	ND	0.27	0.18		ND	2.3	1.5	5.33	4/12/22	0:21	BRF
1,2-Dibromoethane (EDB)	ND	0.27	0.16		ND	2.0	1.2	5.33	4/12/22	0:21	BRF
1,2-Dichlorobenzene	ND	0.27	0.15		ND	1.6	0.92	5.33	4/12/22	0:21	BRF
1,3-Dichlorobenzene	ND	0.27	0.15		ND	1.6	0.89	5.33	4/12/22	0:21	BRF
1,4-Dichlorobenzene	ND	0.27	0.17		ND	1.6	1.0	5.33	4/12/22	0:21	BRF
Dichlorodifluoromethane (Freon 12)	0.74	0.27	0.26		3.6	1.3	1.3	5.33	4/12/22	0:21	BRF
1,1-Dichloroethane	ND	0.27	0.23		ND	1.1	0.94	5.33	4/12/22	0:21	BRF
1,2-Dichloroethane	ND	0.27	0.24		ND	1.1	0.98	5.33	4/12/22	0:21	BRF
1,1-Dichloroethylene	ND	0.27	0.20		ND	1.1	0.81	5.33	4/12/22	0:21	BRF
cis-1,2-Dichloroethylene	ND	0.27	0.19		ND	1.1	0.77	5.33	4/12/22	0:21	BRF
trans-1,2-Dichloroethylene	ND	0.27	0.21		ND	1.1	0.83	5.33	4/12/22	0:21	BRF
1,2-Dichloropropane	ND	0.27	0.14		ND	1.2	0.67	5.33	4/12/22	0:21	BRF
cis-1,3-Dichloropropene	ND	0.27	0.14		ND	1.2	0.63	5.33	4/12/22	0:21	BRF
trans-1,3-Dichloropropene	ND	0.27	0.14		ND	1.2	0.62	5.33	4/12/22	0:21	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.27	0.26		ND	1.9	1.8	5.33	4/12/22	0:21	BRF
1,4-Dioxane	ND	2.7	0.22		ND	9.6	0.80	5.33	4/12/22	0:21	BRF
Ethanol	7.3	11	4.7	J	14	20	8.9	5.33	4/12/22	0:21	BRF
Ethyl Acetate	ND	2.7	1.3		ND	9.6	4.9	5.33	4/12/22	0:21	BRF
Ethylbenzene	1.1	0.27	0.16		4.8	1.2	0.68	5.33	4/12/22	0:21	BRF
4-Ethyltoluene	0.55	0.27	0.16		2.7	1.3	0.80	5.33	4/12/22	0:21	BRF
Heptane	1.1	0.27	0.17		4.6	1.1	0.70	5.33	4/12/22	0:21	BRF
Hexachlorobutadiene	ND	0.27	0.22		ND	2.8	2.3	5.33	4/12/22	0:21	BRF
Hexane	ND	11	1.4		ND	38	4.9	5.33	4/12/22	0:21	BRF
2-Hexanone (MBK)	ND	0.27	0.13		ND	1.1	0.55	5.33	4/12/22	0:21	BRF
Isopropanol	ND	11	1.8		ND	26	4.5	5.33	4/12/22	0:21	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.27	0.21		ND	0.96	0.74	5.33	4/12/22	0:21	BRF
Methylene Chloride	ND	2.7	1.2		ND	9.3	4.3	5.33	4/12/22	0:21	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.27	0.14		ND	1.1	0.56	5.33	4/12/22	0:21	BRF
Naphthalene	ND	0.27	0.17		ND	1.4	0.89	5.33	4/12/22	0:21	BRF
Propene	ND	11	2.3		ND	18	4.0	5.33	4/12/22	0:21	BRF
Styrene	ND	0.27	0.14		ND	1.1	0.60	5.33	4/12/22	0:21	BRF
1,1,2,2-Tetrachloroethane	ND	0.27	0.14		ND	1.8	0.99	5.33	4/12/22	0:21	BRF
									P	age	of 64

Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: $3 / 31 / 2022$	Sub Description/Location:	Initial Vacuum(in Hg): -30
Field Sample \#:	Structure 5	
Sample ID: 22-1-030004-14	Canister ID: 2205	Final Vacuum(in Hg): -13
Sample Matrix: Sub Slab	Canister Size: 6 liter	Receipt Vacuum(in Hg): -11.5
Sampled: $3 / 30 / 202215: 25$	Flow Controller ID: 3351	Flow Controller Type: Fixed-Orifice
	Sample Type: 24 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20\%

ANALYTICAL RESULTS

EPA TO-15											
Sample Flags: RL-11		ppbv				ug/m3			Date/T	ime	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analy		Analyst
Tetrachloroethylene	160	0.27	0.20		1100	1.8	1.4	5.33	4/12/22	0:21	BRF
Tetrahydrofuran	ND	2.7	0.44		ND	7.9	1.3	5.33	4/12/22	0:21	BRF
Toluene	3.7	0.27	0.15		14	1.0	0.57	5.33	4/12/22	0:21	BRF
1,2,4-Trichlorobenzene	ND	0.27	0.19		ND	2.0	1.4	5.33	4/12/22	0:21	BRF
1,1,1-Trichloroethane	ND	0.27	0.21		ND	1.5	1.1	5.33	4/12/22	0:21	BRF
1,1,2-Trichloroethane	ND	0.27	0.19		ND	1.5	1.0	5.33	4/12/22	0:21	BRF
Trichloroethylene	ND	0.27	0.18		ND	1.4	0.97	5.33	4/12/22	0:21	BRF
Trichlorofluoromethane (Freon 11)	0.33	1.1	0.32	J	1.9	6.0	1.8	5.33	4/12/22	0:21	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.1	0.30		ND	8.2	2.3	5.33	4/12/22	0:21	BRF
1,2,4-Trimethylbenzene	2.6	0.27	0.12		13	1.3	0.58	5.33	4/12/22	0:21	BRF
1,3,5-Trimethylbenzene	0.70	0.27	0.14		3.4	1.3	0.69	5.33	4/12/22	0:21	BRF
Vinyl Acetate	ND	5.3	1.4		ND	19	5.0	5.33	4/12/22	0:21	BRF
Vinyl Chloride	ND	0.27	0.24		ND	0.68	0.61	5.33	4/12/22	0:21	BRF
m\&p-Xylene	5.5	0.53	0.30		24	2.3	1.3	5.33	4/12/22	0:21	BRF
o-Xylene	1.9	0.27	0.14		8.3	1.2	0.59	5.33	4/12/22	0:21	BRF
Surrogates	\% Recovery		\% REC Limits								

Project Location: NY
Date Received: $3 / 31 / 2022$
Field Sample \#: Structure 5 -IA-1-03302022
Sample ID: 22D0004-15
Sample Matrix: Indoor air
Sampled: 3/30/2022 15:26

Sample Description/Location:	Work Order: 22D0004
Sub Description/Location:	Initial Vacuum $(\mathrm{in} \mathrm{Hg}):-28.5$
Canister ID: 1839	Final Vacuum(in Hg$):-8$
Canister Size: 6 liter	Receipt Vacuum $(\mathrm{in} \mathrm{Hg}):-7.8$
Flow Controller ID: 3086	Flow Controller Type: Fixed-Orifice
Sample Type: 24 hr	Flow Controller Calibration
	RPD Pre and Post-Sampling: $<20 \%$

EPA TO-15										
Analyte	Results $\begin{gathered}\text { ppbv } \\ \text { RL }\end{gathered}$		MDL	Flag/Qual	ug/m3			Date/Time		
Acetone	71	8.0	4.8		170	19	11	4	4/8/22 19:01	BRF
Benzene	3.8	0.035	0.026		12	0.11	0.084	0.698	4/7/22 22:25	BRF
Benzyl chloride	ND	0.070	0.031		NDUJ	0.36	0.16	0.698	4/7/22 22:25	BRF
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	4/7/22 22:25	BRF
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	4/7/22 22:25	BRF
Bromomethane	ND	0.035	0.028		ND	0.14	0.11	0.698	4/7/22 22:25	BRF
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	4/7/22 22:25	BRF
2-Butanone (MEK)	1.6	1.4	0.37		4.6	4.1	1.1	0.698	4/7/22 22:25	BRF
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.698	4/7/22 22:25	BRF
Carbon Tetrachloride	0.068	0.035	0.028		0.43	0.22	0.17	0.698	4/7/22 22:25	BRF
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	4/7/22 22:25	BRF
Chloroethane	ND	0.035	0.025		ND	0.092	0.067	0.698	4/7/22 22:25	BRF
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	4/7/22 22:25	BRF
Chloromethane	0.58	0.070	0.028		1.2	0.14	0.057	0.698	4/7/22 22:25	BRF
Cyclohexane	5.2	0.035	0.023		18	0.12	0.079	0.698	4/7/22 22:25	BRF
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	4/7/22 22:25	BRF
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	4/7/22 22:25	BRF
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	4/7/22 22:25	BRF
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	4/7/22 22:25	BRF
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	4/7/22 22:25	BRF
Dichlorodifluoromethane (Freon 12)	0.49	0.035	0.034		2.4	0.17	0.17	0.698	4/7/22 22:25	BRF
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	4/7/22 22:25	BRF
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.698	4/7/22 22:25	BRF
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 22:25	BRF
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	4/7/22 22:25	BRF
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	4/7/22 22:25	BRF
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	4/7/22 22:25	BRF
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	4/7/22 22:25	BRF
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	4/7/22 22:25	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	4/7/22 22:25	BRF
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	4/7/22 22:25	BRF
Ethanol	74	8.0	3.5		140	15	6.6	4	4/8/22 19:01	BRF
Ethyl Acetate	1.3	0.35	0.18		4.8	1.3	0.64	0.698	4/7/22 22:25	BRF
Ethylbenzene	2.9	0.035	0.020		13	0.15	0.088	0.698	4/7/22 22:25	BRF
4-Ethyltoluene	1.1	0.035	0.021		5.2	0.17	0.11	0.698	4/7/22 22:25	BRF
Heptane	7.0	0.035	0.022		29	0.14	0.091	0.698	4/7/22 22:25	BRF
Hexachlorobutadiene	ND	0.035	0.029		ND	0.37	0.31	0.698	4/7/22 22:25	BRF
Hexane	13	1.4	0.18		46	4.9	0.64	0.698	4/7/22 22:25	BRF
2-Hexanone (MBK)	ND	0.035	0.018		ND	0.14	0.072	0.698	4/7/22 22:25	BRF
Isopropanol	1.7	1.4	0.24		4.2	3.4	0.59	0.698	4/7/22 22:25	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	4/7/22 22:25	BRF
Methylene Chloride	0.68	0.35	0.16		2.3	1.2	0.56	0.698	4/7/22 22:25	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.073	0.698	4/7/22 22:25	BRF
Naphthalene	0.45	0.035	0.022		2.3	0.18	0.12	0.698	4/7/22 22:25	BRF
Propene	ND	1.4	0.31		ND	2.4	0.53	0.698	4/7/22 22:25	BRF
Styrene	ND	0.035	0.018		ND	0.15	0.078	0.698	4/7/22 22:25	BRF
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	4/7/22 22:25	BRF
				$\text { RLA } 5 / 13 / 22$					$\text { Page } 30 \text { of } 64$	

Project Location: NY	Sample Description/Location:	Work Order: 22D0004
Date Received: 3/31/2022	Sub Description/Location:	Initial Vacuum(in Hg): -28.5
Field Sample \#: Structure 5-IA-1-03302022	Canister ID: 1839	Final Vacuum(in Hg): -8
Sample ID: 22D0004-15	Canister Size: 6 liter	Receipt Vacuum(in Hg): -7.8
Sample Matrix: Indoor air	Flow Controller ID: 3086	Flow Controller Type: Fixed-Orifice
Sampled: 3/30/2022 15:26	Sample Type: 24 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: $<20 \%$

ANALYTICAL RESULTS

Appendix B

Indoor Air Quality
Questionnaire and Building Inventory - Redacted

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Affiliation AECOM_ Phone No. Si8-880-3855
Purpose of Investigation_ Si \sqrt{a} Srevling

1. OCCUPANT:

Interviewed: Y/N
Last Name: \qquad First Name: \qquad
Address: \qquad Structure 2

County: Fulton
Home Phone: \qquad Office Phone: \qquad
Number of Occupants/persons at this location 3 Age of Occupants $18-54$
2. OWNER OR LANDLORD: (Check if same as occupant \downarrow)

Interviewed: Y/N
Last Name: \qquad First Name: \qquad
Address: \qquad
County: \qquad
Home Phone: \qquad Office Phone: \qquad

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

School Church

Commercial/Multi-use Other: \qquad

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment	Mouse
Modular	Townhouses/Condos	
	Log Home	Other:

If multiple units, how many?

\qquad
If the property is commercial, type?
Business Type (s) \qquad
Does it include residences (i.e., multi-use)? $\mathrm{Y} / \mathrm{N} \quad$ If yes, how many?
Other characteristics:
Number of floors 2
Building age 70
Is the building insulated Y N
How air tight? Tight Average/ Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors
None other thaw throng doorleading to basement

Airflow near source
\qquad
\qquad
\qquad

Outdoor air infiltration
\qquad
\qquad
\qquad
Infiltration into air ducts
5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

The primary type of fuel used is:

Other
None

Are there air distribution ducts present?
Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan
diagram. $\longrightarrow N / A$
\qquad
\qquad
\qquad
\qquad

7. OCCUPANCY

Is basement/lowest level occupied? Full-time Occasionally Seldom

Level General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage)
\qquad
Basement
$1^{\text {st }}$ Floor \qquad
$2^{\text {nd }}$ Floor
$3^{\text {rd }}$ Floor
$4^{\text {th }}$ Floor

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?
b. Does the garage have a separate heating unit?
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)
d. Has the building ever had a fire?
e. Is a kerosene or invented gas space heater present?
f. Is there a workshop or hobby/craft area?
g. Is there smoking in the building?
h. Have cleaning products been used recently?
i. Have cosmetic products been used recently?

N
Y/N/NA

Y/N/NA
Please specify \qquad
Y 1 N When? \qquad
Y/N Where? Mid 1970 's
Y (D) Where \& Type? \qquad
YN How frequently? Half a pack ado y
Y N When \& Type? \qquad
Y N When \& Type? \qquad
j. Has painting/staining been done in the last 6 months?

Y Where \& When? \qquad
k. Is there new carpet, drapes or other textiles?

Y (N) Where \& When? \qquad

1. Have air fresheners been used recently?

Y When \& Type? \qquad
m . Is there a kitchen exhaust fan?
Q/N If yes, where vented? Side of house
n. Is there a bathroom exhaust fan?
o. Is there a clothes dryer?

If yes, where vented? through pouf
(Y) N If yes, is it vented outside YY N

Y/ When \& Type? \qquad

Are there odors in the building?
If yes, please describe: \qquad ciggonettes $(\mathrm{V})_{\mathrm{N}}$

Do any of the building occupants use solvents at work?
(e.g., chemical manufacturing or laboratory, auto mechanic
(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)

If yes, what types of solvents are used? \qquad
If yes, are their clothes washed at work?
Y/N

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

> Yes, use dry-cleaning regularly (weekly)
> Yes, use dry-cleaning infrequently (monthly or less)
> Yes, work at a dry-cleaning service

Is there a radon mitigation system for the building/structure? Y (D) Date of Installation:
Is the system active or Is the system active or passive?

Active/Passive

9. WATER AND SEWAGE

Water Supply:

Sewage Disposal:

Driven Well Dug Well
Other: \qquad
Other: \qquad

10. RELOCATION INFORMATION (for oil spill residential emergency)

a. Provide reasons why relocation is recommended:
b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursement explained? Y/N
d. Relocation package provided and explained to residents? Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling locations) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make \& Model of field instrument used:_ \quad R kT 6×-6000
List specific products found in the residence that have the potential to affect indoor air quality.

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

1. OCCUPANT:

Interviewed: Y/ N
Last Name: \qquad First Name: \qquad
Address: \qquad Structure 3

County: Frltur
Home Phone: \qquad Office Phone: \qquad
Number of Occupants/persons at this location Veries Age of Occupants Virves
2. OWNER OR LANDLORD: (Check if same as occupant \nearrow)

Interviewed: Y/N
Last Name: \qquad First Name: \qquad
Address: \qquad
County: \qquad
Home Phone: \qquad Office Phone: \qquad

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)
Residential
Industrial

School Church

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other: Inn

If multiple units, how many? 12
If the property is commercial, type?
Business Types) Hotel Restraint
Does it include residences (ie., multi-use)? (Y)/N If yes, how many? 12
Other characteristics:

Number of floors 3
Is the building insulated (Y / N

Building age 165
How air tight? Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:
Airflow between floors

> Stor Lays no vents

Airflow near source
\qquad
\qquad
\qquad

Outdoor air infiltration
\qquad
\qquad
\qquad
Infiltration into air ducts
\qquad
\qquad
\qquad

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:
b. Basement type:
c. Basement floor:
d. Basement floor:
e. Concrete floor:
f. Foundation walls:
g. Foundation walls:
h. The basement is:
i. The basement is:
j. Sump present?
k. Water in sump? $\quad \mathrm{Y} / \mathrm{N} /$ not applicable

Basement/Lowest level depth below grade: \qquad (feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains) oper Sol tranch, cruchs in fleor

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

Hot air circulation
Space Heaters
Electric baseboard

Heat pump Hot water baseboard
Steam radiation Wood stove

Radiant floor

Outdoor wood boiler Other \qquad
The primary type of fuel used is:

Domestic hot water tank fueled by: \qquad Propere
Boiler/furnace located in:
Air conditioning:

Are there air distribution ducts present?
Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

Level General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage)
Basement \qquad
$1^{\text {st }}$ Floor

$2^{\text {nd }}$ Floor

$3^{\text {rd }}$ Floor
Storage
$4^{\text {th }}$ Floor

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?
b. Does the garage have a separate heating unit?
c. Are petroleum-powered machines or vehicles
stored in the garage (e.g., lawnmower, atv, car)
d. Has the building ever had a fire?
e. Is a kerosene or invented gas space heater present?
f. Is there a workshop or hobby/craft area?
g. Is there smoking in the building?
h. Have cleaning products been used recently?
i. Have cosmetic products been used recently?

Y (N) Where \& Type? \qquad
Y (N)
$\mathrm{Y} / \mathrm{N} /$ (NA
Y / N /NA
Please specify \qquad
Y (N) When? \qquad
Y ere?

Y (N) How frequently? \qquad
Y) When \& Type? Quark

Y N When \& Type? \qquad
j. Has painting/staining been done in the last 6 months?

Y N Where \& When? \qquad
k. Is there new carpet, drapes or other textiles?
Y / N Where \& When? \qquad

1. Have air fresheners been used recently?

Y When \& Type? \qquad
m. Is there a kitchen exhaust fan?
n. Is there a bathroom exhaust fan?
o. Is there a clothes dryer?
p. Has there been a pesticide application?

Y/ N If yes, where vented? boris sided Unilduy
(Y/N If yes, where vented? Soda offuildy
(Y) N If yes, is it vented outside $\widetilde{(Y)} \mathrm{N}$

Y (N) When \& Type? \qquad

Are there odors in the building?
If yes, please describe: \qquad No

Do any of the building occupants use solvents at work?
Y
(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)

If yes, what types of solvents are used? \qquad
If yes, are their clothes washed at work?

Y/N

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate
response)
Yes, use dry-cleaning regularly (weekly)
Yes, use dry-cleaning infrequently (monthly or less)

Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structure? Y Nate of Installation: Is the system active or passive? Active/Passive

9. WATER AND SEWAGE

Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:

10. RELOCATION INFORMATION (for oil spill residential emergency)

a. Provide reasons why relocation is recommended: \qquad
b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursement explained? Y/N
d. Relocation package provided and explained to residents?

Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a
basement, please note.

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make $\mathcal{\&}$ Model of field instrument used: \qquad RAT $6 x-6000$

List specific products found in the residence that have the potential to affect indoor air quality.

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Date/Time Prepared $3 / 29 / 22$
Preparer's Affiliation

\qquad Phone No. $518-860-3855$

1. OCCUPANT:

Interviewed: V

Last Name: \qquad
\qquad First Name: \qquad
Address: \qquad

Structure 4

County: Fulton Conn
Home Phone: \qquad Office Phone: \qquad
Number of Occupants/persons at this location V ares \square fries
2. OWNER OR LANDLORD: (Check if same as occupant \qquad)
Interviewed: \mathbf{Y} / \mathbf{N}
Last Name: \qquad First Name: \qquad
Address: \qquad
County: \qquad
Home Phone: \qquad Office Phone: \qquad

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential Industrial

Commercial/Multi-use
Other: \qquad

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other:

If multiple units, how many? \qquad
If the property is commercial, type?
Business Types) Church
Does it include residences (ie., multi-use)? Y/N If yes, how many? \qquad
Other characteristics:
$\begin{array}{ll}\text { Number of floors } 3 & \text { Building age } 200 \\ \text { Is the building insulated? (1)/ N } & \text { How air tight? Tight Average/ Not Tight }\end{array}$

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors

$$
\text { open Baton between } 1^{\text {st }} \text { \& sand for }
$$

Airflow near source
\qquad
\qquad
\qquad

Outdoor air infiltration
\qquad
\qquad
\qquad
Infiltration into air ducts
\qquad
\qquad
\qquad
5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)
a. Above grade construction:
b. Basement type:
c. Basement floor:
d. Basement floor:
e. Concrete floor:
f. Foundation walls:
g. Foundation walls:
h. The basement is:
i. The basement is:
j. Sump present?

\qquad
other \qquad $\begin{array}{ll}\text { covered } & \text { covered with } \\ \text { sealed } & \text { sealed with } \\ \text { block } & \text { stone other } \\ \text { sealed } & \text { sealed with }\end{array}$
k. Water in sump?

$\mathrm{DN} /$ not applicable

Basement/Lowest level depth below grade: \qquad (feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains) Cracks in besmont, Soil flower in old pat of Church

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating systems) used in this building: (circle all that apply - note primary)

Hot air circulation	Heat pump	Coot water baseboard	
Space Heaters	Steam radiation	Radiant floor	
Electric baseboard	Wood stove	Outdoor wood boiler	Other

The primary type of fuel used is:

Natural Gas	Fuel Oil	Kerosene
Electric	Propane	Solar
Wood	Coal	

Domestic hot water tank fueled by: \quad O 1
Boiler/furnace located in:
Air conditioning:

Central Air

Are there air distribution ducts present?
Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

Is basement/lowest level occupied? Full-time
Occasionally
Seldom Almost Never Level General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage)

Basement \qquad
$1^{\text {st }}$ Floor \square
$2^{\text {nd }}$ Floor
Balcosing Seating
$3^{\text {rd }}$ Floor
$4^{\text {th }}$ Floor

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?
b. Does the garage have a separate heating unit?
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)
d. Has the building ever had a fire?
e. Is a kerosene or invented gas space heater present?
f. Is there a workshop or hobby/craft area?
g. Is there smoking in the building?
h. Have cleaning products been used recently?
i. Have cosmetic products been used recently?

Y (N)
Y / N NA
Y/N NA
Please specify \qquad

$Y /(N)$ Where? \qquad
Y/N Where \& Type? \qquad
Y (N) How frequently? \qquad
(Y) N When \& Type? General Cleomes within te week

Y (N When \& Type? \qquad
j. Has painting/staining been done in the last 6 months?
k. Is there new carpet, drapes or other textiles?
$\mathrm{Y} \times \mathrm{N}$ Where \& When? \qquad
I. Have air fresheners been used recently?
m. Is there a kitchen exhaust fan?
n. Is there a bathroom exhaust fan?
o. Is there a clothes dryer?

Y N Where \& When? \qquad
(®)/N When \& Type? Spiry Bathrooms
(X/N If yes, where vented? Linknain
(1) N If yes, where vented? unknown
$\mathrm{Y} \sqrt{\mathrm{M}}$ If yes, is it vented outside? Y / N
Y When \& Type? \qquad
p. Has there been a pesticide application?

Are there odors in the building?
If yes, please describe:

Do any of the building occupants use solvents at work? Y(N)
(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)

If yes, what types of solvents are used? \qquad
If yes, are their clothes washed at work?

$$
\mathrm{Y} / \mathrm{N}
$$

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry-cleaning regularly (weekly)
Yes, use dry-cleaning infrequently (monthly or less)
Yes, work at a dry-cleaning service
(No)
Unknown

Is there a radon mitigation system for the building/structure? Y Date of Installation: \qquad Is the system active or passive?

Active/Passive

9. WATER AND SEWAGE

Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:

10. RELOCATION INFORMATION (for oil spill residential emergency)

a. Provide reasons why relocation is recommended: \qquad
b. Residents choose to: remain in home relocate to friends/family relocate to hotel $/ \mathrm{motel}$
c. Responsibility for costs associated with reimbursement explained?

Y/N
d. Relocation package provided and explained to residents?

Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make \& Model of field instrument used: \qquad
KI GX-6000
List specific products found in the residence that have the potential to affect indoor air quality.

Spin n Span intibaternf $32 \leq 2,0$

* Describeotherendition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)
** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Purerox caudizel crater based disentecturt
|gal

$$
0
$$

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

2. OWNER OR LANDLORD: (Check if same as occupant \qquad)
Interviewed: $\mathrm{Y} /(\mathbb{N}$
Last Name: \qquad First Name: \qquad
Address: \qquad
County: \qquad
Home Phone: \qquad Office Phone: \qquad

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential Industrial

School Church

Commercial/Dulti-use Other: \qquad

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other:

If multiple units, how many?

\qquad
If the property is commercial, type?
Business Type(s) Antomstive Repair
Does it include residences (i.e., multi-use)? Y/(N)
If yes, how many? \qquad
Other characteristics:
Number of floors \qquad Building age santwon
Is the building insulated? Y
How air tight? Tight / Average Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:
Airflow between floors

$$
N / A
$$

Airflow near source
\qquad
\qquad
\qquad

Outdoor air infiltration

Infiltration into air ducts
5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)
Cauts in concrefer flox

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

Hot air circulation
Space Heaters
Electric baseboard
Heat pump Hot water baseboard

Steam radiation Wood stove

Radiant floor
Outdoor wood boiler Other \qquad
The primary type of fuel used is:

$\begin{array}{llll}\text { Boiler/furnace located in: } & \text { Basement } & \text { Outdoors Main Floor } \\ \text { Air conditioning: } & \text { Central Air } & \text { Window units Open Windows }\end{array}$
Other \qquad

Are there air distribution ducts present? Y N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

Is basement/lowest level occupied? Full-time Occasionally Seldom Almost Never
Level \quad General Use of Each Floor

Level General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage)
Basement \qquad
$1^{\text {st }}$ Floor Avelomotive She if
$2^{\text {nd }}$ Floor \qquad
$3^{\text {rd }}$ Floor \qquad
$4^{\text {th }}$ Floor

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?
b. Does the garage have a separate heating unit?
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)
d. Has the building ever had a fire?
e. Is a kerosene or invented gas space heater present?
f. Is there a workshop or hobby/craft area?
g. Is there smoking in the building?
h. Have cleaning products been used recently?
i. Have cosmetic products been used recently?

YHN. It is a garage
(Y) N / NA

Y N / NA Please specify \qquad
Y/N When? \qquad
Y N Where? Mom flour Q/ N Where \& Type? Mon flow
Y / N How frequently? \qquad
(צ) N When \& Type? Break Comer within lost hick. Y/N When \& Type? \qquad
Are there odors in the building?
If yes, please describe: \qquad

Do any of the building occupants use solvents at work? (Y) N
(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)

If yes, what types of solvents are used?

If yes, are their clothes washed at work?
FIN

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

$$
\begin{aligned}
& \text { Yes, use dry-cleaning regularly (weekly) } \\
& \text { Yes, use dry-cleaning infrequently (monthly or less) } \\
& \text { Yes, work at a dry-cleaning service }
\end{aligned}
$$

Is there a radon mitigation system for the building/structure? Y Date of Installation: Is the system active or passive? Active/Passive

9. WATER AND SEWAGE

10. RELOCATION INFORMATION (for oil spill residential emergency)

a. Provide reasons why relocation is recommended: \qquad
b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursement explained? Y/N
d. Relocation package provided and explained to residents? Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basoment: Rest floor

First Floor:

N																								
A																								
1																								
N																								

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make \& Model of field instrument used: R\&EI GX-6000
List specific products found in the residence that have the potential to affect indoor air quality.

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)
** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

[^0]: Comments:

