

March 1, 2017

Mr. Brian Jankauskas New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation, Remedial Bureau A 625 Broadway, 11th Floor Albany, NY 12233-7015

- **REFERENCE:** National Guard Bureau Contract No. W9133L-14-D-0007, Task Order 0004, Eastern Region Installation Restoration Program Activities at Multiple Air National Guard Installations, Project #ANG2015EASTIRP
- SUBJECT:Final Remedial Action Completion Report for Installation Restoration
Program Site 6 (Suspected Spill Area), 109th Airlift Wing, Stratton Air
National Guard Base (SANGB), Scotia, New York, dated March 2017

Dear Mr. Jankauskas,

The above-referenced document will be submitted on a compact disk for your records per Task 9.1 of Task Order 0004.

Should you have any questions, please do not hesitate to contact me at 865-481-8749 or by email at <u>Michael.D.Poligone@leidos.com</u>. Thank you.

Sincerely,

LEIDOS

M. Po

Michael Poligone Project Manager

Copy with attachment to:

Jody Ann Murata, NGB COR (2 CDs plus 1 CD w/native files) NGB/A4OR Shepperd Hall 3501 Fetchet Avenue Joint Base Andrews, MD 20762-5157 Jody.murata@ang.af.mil

Jennifer Kotch (2 hard copies with CD) Environmental Specialist Stratton Air National Guard Base 1 Air National Guard Road Scotia, NY 12302 jennifer.r.kotch.civ@mail.mil

Cindy Lang (file transfer) BB&E 235 East Main Street, Suite 107 Northville, MI 48167 clang@bbande.com REMEDIAL ACTION COMPLETION REPORT FOR INSTALLATION RESTORATION PROGRAM SITE 6 (SUSPECTED SPILL AREA)

109th Airlift Wing New York Air National Guard Stratton Air National Guard Base Scotia, New York

March 2017

FINAL

REMEDIAL ACTION COMPLETION REPORT FOR INSTALLATION RESTORATION PROGRAM SITE 6 (SUSPECTED SPILL AREA)

109th Airlift Wing New York Air National Guard Stratton Air National Guard Base Scotia, New York

March 2017

Contract Number W9133L-14-D-0007 Task Order Number 0004

Prepared for NGB/A4OR 3501 Fetchet Avenue Joint Base Andrews, Maryland 20762

> Prepared by Leidos 301 Laboratory Road Oak Ridge, Tennessee 37831

Remedial Action Completion Report Certification

I, Michael Poligone, certify that I am currently a New York State-registered professional engineer, as defined in 6 New York Codes, Rules, and Regulations Part 375, and that this Remedial Action Completion Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation Technical Guidance for Site Investigation and Remediation (DER-10).

Michael Poligone

Signature:

Name (print):

New York State Professional Engineer License Number:

096083		
03/01/17		

Date:

1.0 INTRODUCTION 1-1 1.1 INTRODUCTION 1-1 1.1 INTRODUCTION 1-1 1.1.1 Remedial Action Objectives 1-2 1.2 GENERAL REMEDIAL APPROACH 1-2 1.3 DEVIATION FROM WORK PLAN 1-2 1.4 REPORT ORGANIZATION 1-3 2.0 INSTALLATION BACKGROUND AND SITE DESCRIPTION 2-1 2.1 INSTALLATION NOTORION 2-1 2.2 INSTALLATION AND SITE HISTORY 2-1 2.3 INSTALLATION AND SITE HISTORY 2-1 2.3.1 Remedial Investigation (1999) 2-1 2.3.2 Supplemental Data Collection (2002) 2-1 2.3.3 Interim Remedial Measures (2007) 2-1 2.3.4 Data Gp Investigation (2011) 2-4 2.3.5 Remedial Action (2013 and 2014) 2-4 2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6 3-1 3.1 BASELINE GROUNDWATER SAMPLING EVENT 3-1 3.1.1 Monitoring Well Inventory 3-1 3.1.2 Baselin	FIGU ACR	JRES . ONYI	MS VE SUMMARY	vii ix
1.1 PROJECT PURPOSE AND SCOPE. 1-1 1.1.1. Remedial Action Objectives 1-1 1.1.2 GOUNDWATE REMEDIAL APPROACH 1-2 1.2 GENERAL REMEDIAL APPROACH 1-2 1.3 DEVIATION FROM WORK PLAN 1-2 1.4 REPORT ORGANIZATION 1-3 2.0 INSTALLATION BACKGROUND AND SITE DESCRIPTION. 2-1 2.1 INSTALLATION LOCATION 2-1 2.1 INSTALLATION NOS SITE HISTORY. 2-1 2.3 INSTALLATION AND SITE HISTORY. 2-1 2.3 PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES 2-1 2.3.1 Remedial Investigation (1999). 2-1 2.3.2 Supplemental Data Collection (2002). 2-1 2.3.3 Interim Remedial Measures (2007). 2-1 2.3.4 Data Gap Investigation (2013). 2-4 2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION COMPLETION REPORT 2-5 3.0 REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6. 3-1 3.1.1 Monitoring Event 3-1 3.2 FIELD CHANGE REQUEST 3-6 <	LITL	com		A1
1.1.1 Remedial Action Objectives 1-1 1.1.2 Groundwater Remedial Action Objectives 1-2 1.2 GENERAL REMEDIAL APPROACH 1-2 1.3 DEVIATION FROM WORK PLAN 1-2 1.4 REPORT ORGANIZATION 1-3 2.0 INSTALLATION BACKGROUND AND SITE DESCRIPTION 2-1 2.1 INSTALLATION NOCATION 2-1 2.1 INSTALLATION NO SITE HISTORY. 2-1 2.3 INSTALLATION NO SITE HISTORY. 2-1 2.3 INSTALLATION AND SITE HISTORY. 2-1 2.3 Remedial Investigation (1999) 2-1 2.3.2 Supplemental Data Collection (2002) 2-1 2.3.3 Interim Remedial Measures (2007) 2-1 2.3.4 Data Gap Investigation (2011) 2-4 2.4.5 Remedial Action CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6 3-1 3.1 BASELINE GROUNDWATER SAMPLING EVENT 3-1 3.1.1 Monitoring Event 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.3 ISASTRATION AIR NATIONAL GUARD	1.0	INTE		
1.1.2 Groundwater Remedial Action Objectives 1-2 1.2 GENERAL REMEDIAL APPROACH 1-2 1.3 DEVIATION FROM WORK PLAN 1-2 1.4 REPORT ORGANIZATION 1-3 2.0 INSTALLATION BACKGROUND AND SITE DESCRIPTION 2-1 2.1 INSTALLATION NOT SITE HISTORY 2-1 2.2 INSTALLATION AND SITE HISTORY 2-1 2.3 PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES 2-1 2.3.1 Remedial Investigation (1999) 2-1 2.3.2 Supplemental Data Collection (2002) 2-1 2.3.3 Interim Remedial Measures (2007) 2-1 2.3.4 Data Gap Investigation (2013) 2-4 2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE 2-4 2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE 3-1 3.1 BASELINE GROUNDWATER SAMPLING EVENT 3-1 3.1.1 Monitoring Event 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.3 Baseline Monitoring Event 3-1 3.1.4 Honitoring Well Inventory 3-1 <		1.1		
1.2 GENERAL REMEDIAL APPROACH 1-2 1.3 DEVIATION FROM WORK PLAN 1-2 1.4 REPORT ORGANIZATION 1-3 2.0 INSTALLATION BACKGROUND AND SITE DESCRIPTION 2-1 2.1 INSTALLATION NOCATION 2-1 2.1 INSTALLATION AND SITE HISTORY 2-1 2.3 INSTALLATION AND SITE HISTORY 2-1 2.3 I REMEdial Investigation (1999) 2-1 2.3.1 Remedial Investigation (2002) 2-1 2.3.3 Interim Remedial Measures (2007) 2-1 2.3.4 Data Gap Investigation (2011) 2-4 2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION COMPLETION REPORT 2-5 3.0 REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6 3-1 3.1.1 Monitoring Event 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.1 Monitoring Well Inventory 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.1 Bosteline Conference 3-10 3.5.3				
1.3 DEVIATION FROM WORK PLAN 1-2 1.4 REPORT ORGANIZATION 1-3 2.0 INSTALLATION BACKGROUND AND SITE DESCRIPTION 2-1 2.1 INSTALLATION LOCATION 2-1 2.2 INSTALLATION AND SITE HISTORY 2-1 2.3 INEVENTIGATIONS AND REMEDIAL ACTIVITIES 2-1 2.3.1 Remedial Investigation (1999) 2-1 2.3.2 Supplemental Data Collection (2002) 2-1 2.3.3 Interim Remedial Measures (2007) 2-1 2.3.4 Data Gap Investigation (2011) 2-4 2.3.5 Remedial Action (2013 and 2014) 2-4 2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6 3-1 3.1 BASELINE GROUNDWATER SAMPLING EVENT 3-1 3.1.1 Monitoring Well Inventory 3-1 3.1.2 Baseline Monitoring Event 3-6 3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5 ENHANCED ANEROBIC BIOREMEDIATION INJECT				
1.4 REPORT ORGANIZATION 1-3 2.0 INSTALLATION BACKGROUND AND SITE DESCRIPTION 2-1 2.1 INSTALLATION NO SITE HISTORY. 2-1 2.3 PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES 2-1 2.3.1 Remedial Investigation (1999). 2-1 2.3.2 Supplemental Data Collection (2002). 2-1 2.3.3 Interim Remedial Measures (2007). 2-1 2.3.4 Data Gap Investigation (2013) and 2014). 2-4 2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION AT INSTALLATION REPORT 2-5 3.0 REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6 3-1 3.1 BASELINE GROUNDWATER SAMPLING EVENT 3-1 3.1.1 Monitoring Well Inventory. 3-1 3.1.2 Baseline Monitoring Event 3-1 3.2 FIELD CHANGE REQUEST. 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS. 3-7 3.4.1 Pilot Test. 3-10 3.5 ENHANCED ANEROBIC BIOREMEDIATION INJECTION. 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococoides sp. Injection 3-10				
2.0 INSTALLATION BACKGROUND AND SITE DESCRIPTION. 2-1 2.1 INSTALLATION LOCATION 2-1 2.2 INSTALLATION AND SITE HISTORY. 2-1 2.3 PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES 2-1 2.3.1 Remedial Investigation (1999). 2-1 2.3.2 Supplemental Data Collection (2002). 2-1 2.3.3 Interim Remedial Measures (2007). 2-1 2.3.4 Data Gap Investigation (2011). 2-4 2.3.5 Remedial Action (2013 and 2014). 2-4 2.4 2.3.5 Remedial Action (2013 and 2014). 2-4 2.4 2.4 STIE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6 3-1 3.1 BASELINE GROUNDWATER SAMPLING EVENT 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.1 Monitoring Well Inventory 3-1 3.1.2 3-1 3-1 3.1.2 Baseline Monitoring Event 3-6 3-6 3-6 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3-10 3-10 3-10 3-10 3-10				
2.1 INSTALLATION LOCATION 2-1 2.2 INSTALLATION AND SITE HISTORY. 2-1 2.3 PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES 2-1 2.3.1 Remedial Investigation (1999). 2-1 2.3.2 Supplemental Data Collection (2002). 2-1 2.3.3 Interim Remedial Measures (2007). 2-1 2.3.4 Data Gap Investigation (2011). 2-4 2.4 2.3.5 Remedial Action (2013 and 2014). 2-4 2.4 2.3.5 Remedial Action (2013 and 2014). 2-4 2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION AT INSTALLATION REPORT 2-5 3.0 REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6. 3-1 3.1.1 Monitoring Well Inventory 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.1 Baseline Monitoring Event 3-6 3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5.1 Pre-Construction Teleconference 3-10		1.4	REPORT ORGANIZATION	1-3
2.1 INSTALLATION LOCATION 2-1 2.2 INSTALLATION AND SITE HISTORY. 2-1 2.3 PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES 2-1 2.3.1 Remedial Investigation (1999). 2-1 2.3.2 Supplemental Data Collection (2002). 2-1 2.3.3 Interim Remedial Measures (2007). 2-1 2.3.4 Data Gap Investigation (2011). 2-4 2.4 2.3.5 Remedial Action (2013 and 2014). 2-4 2.4 2.3.5 Remedial Action (2013 and 2014). 2-4 2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION AT INSTALLATION REPORT 2-5 3.0 REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6. 3-1 3.1.1 Monitoring Well Inventory 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.1 Baseline Monitoring Event 3-6 3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5.1 Pre-Construction Teleconference 3-10	2.0	INST	FALLATION BACKGROUND AND SITE DESCRIPTION	2-1
2.2 INSTALLATION AND SITE HISTORY. 2-1 2.3 PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES 2-1 2.3.1 Remedial Investigation (1999). 2-1 2.3.2 Supplemental Data Collection (2002). 2-1 2.3.3 Interim Remedial Measures (2007). 2-1 2.3.4 Data Gap Investigation (2011). 2-4 2.3.5 Remedial Action (2013 and 2014). 2-4 2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6 3-1 3.1 BASELINE GROUNDWATER SAMPLING EVENT. 3-1 3.1.1 Monitoring Event 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.2 Baseline Monitoring Event 3-1 3.2.5 FIELD CHANGE REQUEST 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5.1 Pre-Construction Teleconference 3-10 3.5.2 Mobilization 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 3-10 3.5.2	210			
2.3.1 Remedial Investigation (1999) 2-1 2.3.2 Supplemental Data Collection (2002) 2-1 2.3.3 Interim Remedial Measures (2007) 2-1 2.3.4 Data Gap Investigation (2011) 2-4 2.4 STE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6 3-1 3.1 BASELINE GROUNDWATER SAMPLING EVENT 3-1 3.1.1 Monitoring Well Inventory 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.2 Baseline Monitoring Event 3-1 3.2 FIELD CHANGE REQUEST 3-6 3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5.2 Mobilization 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 3-10 3.5.4 FIELD PARAMETER MEASUREMENT EVENTS 4-1		2.2		
2.3.2 Supplemental Data Collection (2002)		2.3	PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES	2-1
2.3.3 Interim Remedial Measures (2007)			2.3.1 Remedial Investigation (1999)	2-1
2.3.3 Interim Remedial Measures (2007)				
2.3.5 Remedial Action (2013 and 2014) 2.4 2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION COMPLETION REPORT 2.5 3.0 REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6. 3-1 3.1 BASELINE GROUNDWATER SAMPLING EVENT 3-1 3.1.1 Monitoring Well Inventory 3-1 3.1.2 Baseline Monitoring Event 3-1 3.2 FIELD CHANGE REQUEST 3-6 3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5 ENHANCED ANEROBIC BIOREMEDIATION INJECTION 3-10 3.5.1 Pre-Construction Teleconference 3-10 3.5.2 Mobilization 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 4-1 4.1 FIELD PARAMETER MEASUREMENT EVENTS 4-1 4.2 PERFORMANCE MONITORING EVENTS 4-2 4.4 CLOSURE MONITORING EVENTS 4-2 4.5 P				
2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION COMPLETION REPORT 2-5 3.0 REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6 3-1 3.1 BASELINE GROUNDWATER SAMPLING EVENT 3-1 3.1.1 Monitoring Well Inventory 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.2 Baseline Monitoring Event 3-1 3.1.2 Baseline Monitoring Event 3-6 3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5 ENHANCED ANEROBIC BIOREMEDIATION INJECTION 3-10 3.5.1 Pre-Construction Teleconference 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 4-1 4.1 FIELD PARAMETER MEASUREMENT EVENTS 4-1 4.2 PERFORMANCE MONITORING EVENTS 4-2 4.4 CLOSURE MONITORING EVENTS 4-2 4.5 PROJECT CLOSEOUT 4-2 5.0			2.3.4 Data Gap Investigation (2011)	2-4
REMEDIAL ACTION COMPLETION REPORT 2-5 3.0 REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6 3-1 3.1 BASELINE GROUNDWATER SAMPLING EVENT 3-1 3.1.1 Monitoring Well Inventory 3-1 3.1.2 Baseline Monitoring Event 3-1 3.2.5 FIELD CHANGE REQUEST 3-6 3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5.5 ENHANCED ANEROBIC BIOREMEDIATION INJECTION 3-10 3.5.1 Pre-Construction Teleconference 3-10 3.5.2 Mobilization 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 4-1 4.1 FIELD PARAMETER MEASUREMENT EVENTS 4-1 4.2 PERFORMANCE MONITORING EVENTS 4-2 4.4 CLOSURE MONITORING EVENTS 4-2 4.5 PROJECT CLOSEOUT 4-2 5.0 CONCLUSIONS 5-1				
3.0 REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6		2.4		
3.1 BASELINE GROUNDWATER SAMPLING EVENT 3-1 3.1.1 Monitoring Well Inventory 3-1 3.1.2 Baseline Monitoring Event 3-1 3.2 FIELD CHANGE REQUEST 3-6 3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5 ENHANCED ANEROBIC BIOREMEDIATION INJECTION 3-10 3.5.1 Pre-Construction Teleconference 3-10 3.5.2 Mobilization 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 3-10 4.0 GROUNDWATER MONITORING 4-1 4.1 FIELD PARAMETER MEASUREMENT EVENTS 4-1 4.2 PERFORMANCE MONITORING EVENTS 4-1 4.3 SEMIANNUAL MONITORING EVENTS 4-2 4.4 CLOSURE MONITORING EVENTS 4-2 4.5 PROJECT CLOSEOUT 4-2 5.0 CONCLUSIONS 5-1			REMEDIAL ACTION COMPLETION REPORT	2-5
3.1 BASELINE GROUNDWATER SAMPLING EVENT 3-1 3.1.1 Monitoring Well Inventory 3-1 3.1.2 Baseline Monitoring Event 3-1 3.2 FIELD CHANGE REQUEST 3-6 3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5 ENHANCED ANEROBIC BIOREMEDIATION INJECTION 3-10 3.5.1 Pre-Construction Teleconference 3-10 3.5.2 Mobilization 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 3-10 4.0 GROUNDWATER MONITORING 4-1 4.1 FIELD PARAMETER MEASUREMENT EVENTS 4-1 4.2 PERFORMANCE MONITORING EVENTS 4-1 4.3 SEMIANNUAL MONITORING EVENTS 4-2 4.4 CLOSURE MONITORING EVENTS 4-2 4.5 PROJECT CLOSEOUT 4-2 5.0 CONCLUSIONS 5-1	3.0	REM	IEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6	3-1
3.1.1Monitoring Well Inventory3-13.1.2Baseline Monitoring Event3-13.2FIELD CHANGE REQUEST3-63.3STRATTON AIR NATIONAL GUARD BASE PERMITS3-63.4INSTALLATION OF PERMANENT INJECTION WELLS3-73.4.1Pilot Test3-103.5ENHANCED ANEROBIC BIOREMEDIATION INJECTION3-103.5.1Pre-Construction Teleconference3-103.5.2Mobilization3-103.5.3Emulsified Vegetable Oil/Dehalococcoides sp. Injection3-104.0GROUNDWATER MONITORING4-14.1FIELD PARAMETER MEASUREMENT EVENTS4-14.2PERFORMANCE MONITORING EVENTS4-24.4CLOSURE MONITORING EVENTS4-24.5PROJECT CLOSEOUT4-25.0CONCLUSIONS5-1	2.0			
3.1.2 Baseline Monitoring Event 3-1 3.2 FIELD CHANGE REQUEST 3-6 3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5 ENHANCED ANEROBIC BIOREMEDIATION INJECTION 3-10 3.5.1 Pre-Construction Teleconference 3-10 3.5.2 Mobilization 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 3-10 4.0 GROUNDWATER MONITORING 4-1 4.1 FIELD PARAMETER MEASUREMENT EVENTS 4-1 4.2 PERFORMANCE MONITORING EVENTS 4-1 4.3 SEMIANNUAL MONITORING EVENTS 4-2 4.4 CLOSURE MONITORING EVENTS 4-2 4.5 PROJECT CLOSEOUT 4-2 5.0 CONCLUSIONS 5-1		0.1		
3.2 FIELD CHANGE REQUEST 3-6 3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5 ENHANCED ANEROBIC BIOREMEDIATION INJECTION 3-10 3.5.1 Pre-Construction Teleconference 3-10 3.5.2 Mobilization 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 4-1 4.0 GROUNDWATER MONITORING 4-1 4.1 FIELD PARAMETER MEASUREMENT EVENTS 4-1 4.2 PERFORMANCE MONITORING EVENTS 4-1 4.3 SEMIANNUAL MONITORING EVENTS 4-2 4.4 CLOSURE MONITORING EVENTS 4-2 4.5 PROJECT CLOSEOUT 4-2 5.0 CONCLUSIONS 5-1				
3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS 3-6 3.4 INSTALLATION OF PERMANENT INJECTION WELLS 3-7 3.4.1 Pilot Test 3-10 3.5 ENHANCED ANEROBIC BIOREMEDIATION INJECTION 3-10 3.5.1 Pre-Construction Teleconference 3-10 3.5.2 Mobilization 3-10 3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection 3-10 4.0 GROUNDWATER MONITORING 4-1 4.1 FIELD PARAMETER MEASUREMENT EVENTS 4-1 4.2 PERFORMANCE MONITORING EVENTS 4-1 4.3 SEMIANNUAL MONITORING EVENTS 4-2 4.4 CLOSURE MONITORING EVENTS 4-2 4.5 PROJECT CLOSEOUT 4-2 5.0 CONCLUSIONS 5-1		3.2		
3.4.1Pilot Test.3-103.5ENHANCED ANEROBIC BIOREMEDIATION INJECTION3-103.5.1Pre-Construction Teleconference.3-103.5.2Mobilization.3-103.5.3Emulsified Vegetable Oil/Dehalococcoides sp. Injection3-104.0GROUNDWATER MONITORING.4-14.1FIELD PARAMETER MEASUREMENT EVENTS.4-14.2PERFORMANCE MONITORING EVENTS4-14.3SEMIANNUAL MONITORING EVENTS4-24.4CLOSURE MONITORING EVENTS4-24.5PROJECT CLOSEOUT4-25.0CONCLUSIONS5-1				
3.5ENHANCED ANEROBIC BIOREMEDIATION INJECTION.3-103.5.1Pre-Construction Teleconference.3-103.5.2Mobilization.3-103.5.3Emulsified Vegetable Oil/Dehalococcoides sp. Injection3-104.0GROUNDWATER MONITORING.4-14.1FIELD PARAMETER MEASUREMENT EVENTS.4-14.2PERFORMANCE MONITORING EVENTS4-14.3SEMIANNUAL MONITORING EVENTS.4-24.4CLOSURE MONITORING EVENTS.4-24.5PROJECT CLOSEOUT4-25.0CONCLUSIONS.5-1		3.4	INSTALLATION OF PERMANENT INJECTION WELLS	3-7
3.5.1Pre-Construction Teleconference.3-103.5.2Mobilization.3-103.5.3Emulsified Vegetable Oil/Dehalococcoides sp. Injection3-104.0GROUNDWATER MONITORING.4-14.1FIELD PARAMETER MEASUREMENT EVENTS.4-14.2PERFORMANCE MONITORING EVENTS.4-14.3SEMIANNUAL MONITORING EVENTS.4-24.4CLOSURE MONITORING EVENTS.4-24.5PROJECT CLOSEOUT4-25.0CONCLUSIONS.5-1			3.4.1 Pilot Test	.3-10
3.5.2Mobilization3-103.5.3Emulsified Vegetable Oil/Dehalococcoides sp. Injection3-104.0GROUNDWATER MONITORING4-14.1FIELD PARAMETER MEASUREMENT EVENTS4-14.2PERFORMANCE MONITORING EVENTS4-14.3SEMIANNUAL MONITORING EVENTS4-24.4CLOSURE MONITORING EVENTS4-24.5PROJECT CLOSEOUT4-25.0CONCLUSIONS5-1		3.5		
3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection3-104.0 GROUNDWATER MONITORING4-14.1 FIELD PARAMETER MEASUREMENT EVENTS4-14.2 PERFORMANCE MONITORING EVENTS4-14.3 SEMIANNUAL MONITORING EVENTS4-24.4 CLOSURE MONITORING EVENTS4-24.5 PROJECT CLOSEOUT4-25.0 CONCLUSIONS5-1			3.5.1 Pre-Construction Teleconference	3-10
4.0GROUNDWATER MONITORING.4-14.1FIELD PARAMETER MEASUREMENT EVENTS.4-14.2PERFORMANCE MONITORING EVENTS.4-14.3SEMIANNUAL MONITORING EVENTS.4-24.4CLOSURE MONITORING EVENTS.4-24.5PROJECT CLOSEOUT4-25.0CONCLUSIONS.5-1			3.5.2 Mobilization	.3-10
4.1FIELD PARAMETER MEASUREMENT EVENTS4-14.2PERFORMANCE MONITORING EVENTS4-14.3SEMIANNUAL MONITORING EVENTS4-24.4CLOSURE MONITORING EVENTS4-24.5PROJECT CLOSEOUT4-25.0CONCLUSIONS5-1			3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection	.3-10
4.1FIELD PARAMETER MEASUREMENT EVENTS4-14.2PERFORMANCE MONITORING EVENTS4-14.3SEMIANNUAL MONITORING EVENTS4-24.4CLOSURE MONITORING EVENTS4-24.5PROJECT CLOSEOUT4-25.0CONCLUSIONS5-1	40	GRC	NINDWATER MONITORING	4-1
4.2PERFORMANCE MONITORING EVENTS4-14.3SEMIANNUAL MONITORING EVENTS4-24.4CLOSURE MONITORING EVENTS4-24.5PROJECT CLOSEOUT4-25.0CONCLUSIONS5-1	7.0			
4.3SEMIANNUAL MONITORING EVENTS.4-24.4CLOSURE MONITORING EVENTS.4-24.5PROJECT CLOSEOUT4-25.0CONCLUSIONS.5-1				
4.4CLOSURE MONITORING EVENTS				
4.5 PROJECT CLOSEOUT				
6.0 REFERENCES	5.0	CON	ICLUSIONS	5-1
	6.0	REF	ERENCES	6-1

CONTENTS

APPENDIX A – FIELD CHANGE REQUEST-01	A-1
APPENDIX B - WELL INSPECTION NOTES AND PHOTOGRAPH LOG	
APPENDIX C - BASELINE GROUNDWATER MONITORING EVENT: PURGE LOGS	AND
ANALYTICAL RESULTS	C-1
APPENDIX D - STRATTON AIR NATIONAL GUARD BASE WORK CLEARANCE REC	QUEST
FORM	D-1
APPENDIX E - PERMANENT INJECTION WELL SOIL BORING LOGS	E-1
APPENDIX F - REMEDIAL ACTION PHOTOGRAPH LOG	F-1

TABLES

1-1	Remedial Levels for Site 6 Groundwater COCs	.1-2
	Detected Constituents in the May 2016 Baseline Groundwater Monitoring Event	
	Injection Well Construction Details	
	Groundwater Monitoring Plan for Site 6	
4-1	Groundwater Mointoining Flan for Site 0	.4-

FIGURES

2-1	Site Features and Previous Remedial Actions at IRP Site 6	.2-2
3-1	Groundwater Concentrations and Past Remedial Actions at Site 6	.3-3
3-2	Injection Wells and Sample Locations for Site 6 Remedial Action	.3-9

ACRONYMS

AGWQS	Ambient Groundwater Quality Standards
ANG	Air National Guard
AW	Airlift Wing
BGS	-
COC	below ground surface chemical of concern
DCE	dichloroethene
DERP	Defense Environmental Restoration Program
DHC	Dehalococcoides sp.
DO	dissolved oxygen
DoD	U.S. Department of Defense
DPT	direct-push technology
EOS®	edible oil substrate [®]
ERD	enhanced reductive dechlorination
EVO	emulsified vegetable oil
FCR	field change request
IRM	interim remedial measure
IRP	Installation Restoration Program
ISCO	in-situ chemical oxidation
NFA	no further action
NGB	National Guard Bureau
NYANG	New York Air National Guard
NYSDEC	New York State Department of Environmental Conservation
ORP	oxidation-reduction potential
PCE	tetrachloroethene
PCO	project closeout
PID	photoionization detector
ppm	parts per million
PVC	polyvinyl chloride
RA	remedial action
RACR	Remedial Action Completion Report
RAO	remedial action objective
RA-O	remedial action-operation
RAWP	Remedial Action Work Plan
RI	remedial investigation
ROD	Record of Decision
RSCO	recommended soil cleanup objective
S.U.	standard unit
SANGB	Stratton Air National Guard Base
SCA	Schenectady County Airport
SDC	supplemental data collection
TCE	trichloroethene
TOC	total organic carbon
VC	vinyl chloride
VOC	volatile organic compound
.00	volutile organic compound

EXECUTIVE SUMMARY

The Air National Guard (ANG) Restoration Branch manages the Installation Restoration Program (IRP) and related activities for the U.S. Department of Defense ANG Installation. Leidos has been retained by ANG to complete remedial action-operations (RA-Os), groundwater monitoring, and project closeout (PCO) activities at Site 6 – Suspected Spill Area for the 109th Airlift Wing of the New York Air National Guard, Stratton Air National Guard Base (SANGB) in Scotia, New York. Remedial action (RA) is being conducted under National Guard Bureau Contract Number W9133L-14-D-0007, Task Order Number 0004 in accordance with the selected remedy for Site 6 groundwater, as dictated by the approved *Record of Decision for Sites 3 and 6 for the 109th Airlift Wing, Schenectady Air National Guard Base, Scotia, New York* (ANG 2012).

Following RA activities, including soil excavation in 2013 and two rounds of in-situ chemical oxidation treatment (June 2013 and May 2014) to address the elevated concentrations of dissolved-phase chlorinated volatile organic compounds (VOCs) in groundwater, chlorinated VOCs in groundwater from 4 to 9 ft below ground surface continue to exceed New York State Department of Environmental Conservation (NYSDEC) Ambient Groundwater Quality Standards in six monitoring wells.

As agreed upon by ANG and NYSDEC, and detailed in the Final Work Plan for Remedial Action-Operations, Monitoring, and Project Closeout at Site 6 (Suspected Spill Area), herein referred to as the Remedial Action Work Plan (RAWP) (Leidos 2016), RA-O activities were conducted at SANGB as follows:

- Conduct a baseline groundwater sampling event to establish current contaminant conditions.
- Install permanent injection wells and an interceptor trench, and conduct a pilot study.
- Perform biostimulation and bioaugmentation injections to treat groundwater.

Following the completion of the biostimulation and bioaugmentation injections documented herein, the following activities will be conducted and reported in periodic groundwater monitoring reports and a final PCO Report:

- Conduct groundwater performance monitoring, additional biostimulation and bioaugmentation injections as necessary, and closure monitoring events.
- Perform PCO by abandoning vertical infusion wells, horizontal infusion points, injection wells, and site monitoring wells.

A baseline groundwater sampling event was conducted May 11 and 12, 2016. Six wells at IRP Site 6 (6MW-20, 6MW-22, 6MW-23, 6MW-24, 6MW-25, and 6MW-26) were sampled for VOCs, anions, and total organic carbon. Well 6MW-25 was also sampled for the bacteria *Dehalococcoides* sp. (DHC). Inspections of the Site 6 monitoring wells being sampled were also conducted at this time.

Based on the baseline sampling event, which showed a decline in VOC contaminant concentrations in 6MW-22 and 6MW-23, a field change request was initiated to reduce the number of injection wells to be installed from 16 to 13, revise the sequencing, and increase the volume of emulsified vegetable oil (EVO) that was specified in the RAWP.

A total of 13 permanent injection wells were installed between June 28 and 30, 2016. Additionally, an interceptor trench was installed between the Site 6 injection network and a drainage ditch running parallel to the western edge of Site 6. A pilot test was conducted injecting a dye tracer into the newly installed

injection wells. The adjacent monitoring wells, interceptor trench, and drainage ditch were monitored for signs of dye. No dye was observed in any of the wells, interceptor trench, or ditch.

The biostimulation and bioaugmentation injections were performed between July 25 and 29, 2016. Between 600 and 750 gal of EVO mixed with water was injected at each of the 13 new injection wells, and approximately 300 gal was injected at 5 infusion points in the existing horizontal infusion network. The EVO injections were followed with 2 L of KB-1 DechlorinatorTM in injection wells and 1 L in infusion points to encourage growth of DHC, increasing the likelihood of complete degradation of the chlorinated solvents. Monitoring wells, the interceptor trench, and the drainage ditch were continuously monitored during the injections for any sign of breakthrough. Some cloudiness was observed at the interceptor trench during the first 2 days, which was likely from the recent placement of gravel in the trench. There was no sign of EVO in any of the monitoring wells or in the drainage ditch, signifying there were no negative impacts to the drainage ditch from the injections.

1.0 INTRODUCTION

The Defense Environmental Restoration Program (DERP) was established in 1984 to promote and coordinate efforts for the evaluation and cleanup of contamination at U.S. Department of Defense (DoD) Installations. In 1987, DERP became part of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and the Superfund Amendments and Reauthorization Act of 1986. The Installation Restoration Program (IRP) was established under DERP to identify, investigate, and clean up contamination at DoD Installations. The IRP is focused on cleanup of contamination associated with past DoD activities to ensure that threats to public health are eliminated and to restore natural resources for future use following applicable, relevant, and appropriate federal, state, and local cleanup standards.

Leidos was contracted by the Air National Guard (ANG) to perform remedial action-operations (RA-Os), groundwater monitoring, and project closeout (PCO) activities at IRP Site 6 (Suspected Spill Area) at the 109th Airlift Wing (AW), New York Air National Guard (NYANG), Stratton Air National Guard Base (SANGB) in Scotia, New York. This work is being performed under National Guard Bureau (NGB) Contract Number W9133L-14-D-0007, Task Order Number 0004 in accordance with the selected remedy for Site 6 groundwater, as dictated by the approved *Record of Decision for Sites 3 and 6 for the 109th Airlift Wing, Schenectady Air National Guard Base, Scotia, New York (ANG 2012).*

This document serves as the Remedial Action Completion Report (RACR) for remedial actions (RAs) conducted at SANGB IRP Site 6. The purpose of the actions described in this RACR is to reduce volatile organic compounds (VOCs) in groundwater and to achieve site closure within the 56-month period of performance. The specific scope for Site 6 is to optimize in-situ enhanced reductive dechlorination (ERD) through biostimulation and bioaugmentation to biologically degrade low levels of chlorinated VOCs to below New York State Department of Environmental Conservation (NYSDEC) groundwater standards to achieve site closure, as outlined in the approved Final *Work Plan for Remedial Action-Operations Monitoring, and Project Closeout at Site 6 (Suspected Spill Area)*, herein referred to as the Remedial Action Work Plan (RAWP) (Leidos 2016).

1.1 PROJECT PURPOSE AND SCOPE

The primary purpose of this RACR is to document field activities conducted from May 11, 2016, through injection completion on July 29, 2016, associated with RAs for IRP Site 6.

1.1.1 Remedial Action Objectives

The RA described in this RACR was intended to increase remedial efficiencies and close the site in the most expedient and efficient way possible, and to protect public health, welfare, or the environment from actual or threatened releases of pollutants or contaminants from this site, which may present an imminent and substantial endangerment to public health or welfare. Remedial action objectives (RAOs) provide a general description of what the cleanup will accomplish. RAOs identified for Site 6 groundwater were developed in the Record of Decision (ROD) and include the following:

- Prevent contact with, or inhalation of, VOCs from contaminated groundwater.
- Prevent migration of contaminants that would result in groundwater or surface water contamination.
- Restore the groundwater aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Prevent impacts to biota from ingestion/direct contact.

Groundwater is the only medium of concern requiring RA at Site 6. ANG requested no further action (NFA) for site soil in March 2015 (ANG 2015), which was approved by NYSDEC in April 2015 (NYSDEC 2015).

1.1.2 Groundwater Remedial Action Objectives

The ROD for Sites 3 and 6 identified site-related chemicals of concern (COCs) in soil and groundwater that pose a potential risk to human health and the environment (ANG 2012). Tetrachloroethene (PCE); trichloroethene (TCE); cis-1,2-dichloroethene (DCE); and vinyl chloride (VC) were identified as primary groundwater COCs with concentrations exceeding established NYSDEC Class GA Ambient Groundwater Quality Standards (AGWQS). Remedial levels for groundwater are NYSDEC Class GA AGWQS. Table 1-1 lists the remedial levels for Site 6.

Table 1-1	. Remedial	Levels	for Site (6 Groundwater	COCs
-----------	------------	--------	------------	---------------	------

COC	Remedial Level (µg/L)
Tetrachloroethene	5
Trichloroethene	5
cis-1,2-Dichloroethene	5
Vinyl Chloride	2

COC = Chemical of concern.

1.2 GENERAL REMEDIAL APPROACH

Field activities were completed in accordance with the RAWP and included the following (discussed in detail in Chapter 3.0):

- Conduct a baseline groundwater sampling event to establish current contaminant conditions.
- Install permanent injection wells and an interceptor trench, and conduct a pilot study.
- Perform biostimulation and bioaugmentation injections to treat groundwater.

Following the completion of the biostimulation and bioaugmentation injections documented herein, the following activities will be conducted and reported in periodic groundwater monitoring reports and a final PCO Report:

- Conduct groundwater performance monitoring, additional biostimulation and bioaugmentation injections as necessary, and closure monitoring events.
- Perform PCO by abandoning vertical infusion points, horizontal infusion wells, injection wells, and site monitoring wells.

1.3 DEVIATION FROM WORK PLAN

Based on the baseline sampling event, which showed a decline in concentrations in wells 6MW-22 and 6MW-23, a field change request (FCR) was initiated to reduce the number of injection wells to be installed, revise the sequencing, and increase the volume of emulsified vegetable oil (EVO) that was specified in the RAWP. Increasing EVO volume per well increased effectiveness, and revising sequencing improved field logistics and provided an additional measure to mitigate releases to the drainage ditch. Reducing the number of injection wells had no impact. FCR-01 is included in Appendix A.

1.4 REPORT ORGANIZATION

This RACR is organized as follows:

- Executive Summary,
- Chapter 1.0 Introduction,
- Chapter 2.0 Installation Background and Site Description,
- Chapter 3.0 RA at IRP Site 6,
- Chapter 4.0 Groundwater Monitoring,
- Chapter 5.0 Conclusions, and
- Chapter 6.0 References.

The following appendices are also included in this document:

- Appendix A FCR-01,
- Appendix B Well Inspection Notes and Photograph Log,
- Appendix C Baseline Groundwater Monitoring Event: Purge Logs and Analytical Results,
- Appendix D SANGB Work Clearance Request Form,
- Appendix E Permanent Injection Well Soil Boring Logs, and
- Appendix F RA Photograph Log.

2.0 INSTALLATION BACKGROUND AND SITE DESCRIPTION

2.1 INSTALLATION LOCATION

The 109th AW of NYANG is located at SANGB in the southeast portion of Schenectady County Airport (SCA) in Scotia, New York (inset, Figure 2-1). The federal government leases the land from the SCA and licenses the land back to NYANG. The Base is comprised of approximately 126 acres, designated for exclusive use by NYANG. Land to the north, east, and west of the Base is agricultural and residential. The Mohawk River lies to the south of the Base, along with a railway and commercial and residential properties.

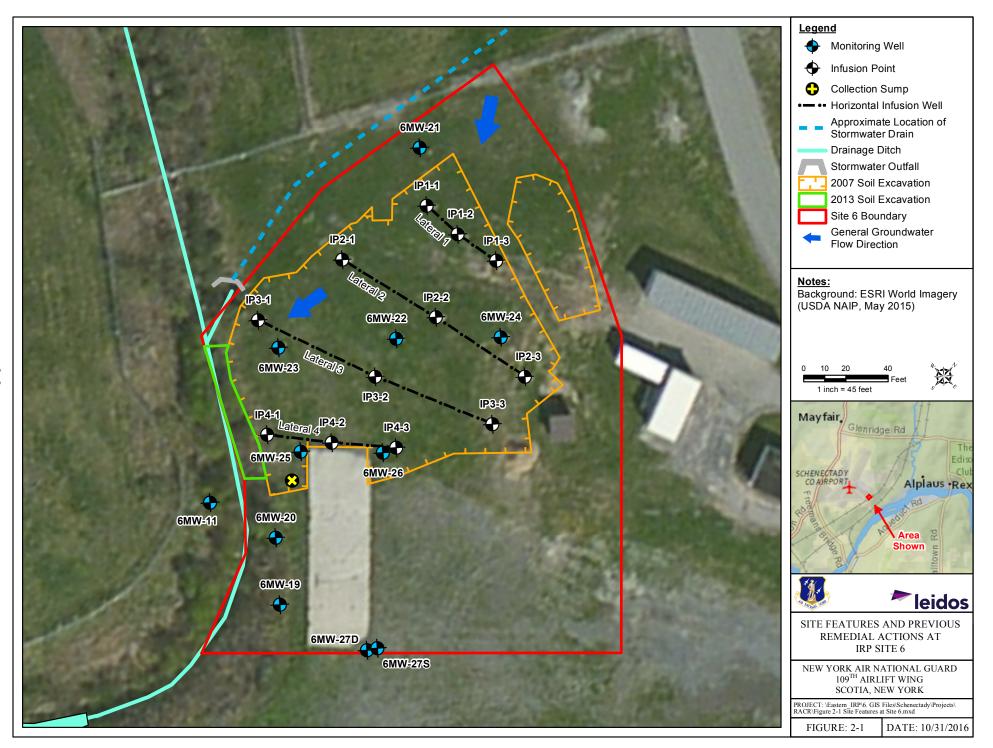
2.2 INSTALLATION AND SITE HISTORY

Site 6 (Suspected Spill Area), located near the southern corner of the Base, covers an area of approximately 0.96 acres and is bounded by the drainage ditch to the west, to the north by monitoring well 6MW-21, and to the south by monitoring well 6MW-20 (Figure 2-1). Soil and groundwater have been impacted at this site by past releases from aircraft fueling, maintenance, operation activities, and training exercises. Cleanup of contaminated areas has taken place over the last decade to prevent further environmental impacts.

2.3 PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES

Previous investigations and remedial activities at Site 6 are summarized below.

2.3.1 Remedial Investigation (1999)


A remedial investigation (RI) was completed at the Base in June 1999 (Aneptek 2000). The RI initially included installation of groundwater monitoring wells, hydraulic conductivity testing of the shallow overburden, and two rounds of groundwater sampling. The investigation at Site 3 also included collecting soil and sediment samples and excavating 49 test pits to identify the types and extent of buried debris/wastes. During the RI, VOCs were detected in groundwater samples collected from monitoring wells upgradient of Site 3. Subsequent investigations reported a distinct dissolved VOC plume in the groundwater that was determined to be unrelated to historical activity at Site 3. This area was added to the Environmental Restoration Program and designated as IRP Site 6.

2.3.2 Supplemental Data Collection (2002)

A supplemental data collection (SDC) program for Site 6 was conducted in 2002 that consisted of monitoring well installation, collection and analysis of subsurface soil samples, and collection and analysis of groundwater samples (ANG 2003). Results from the SDC indicated that VOCs in excess of soil cleanup goals remained in the soils and that a dissolved-phase VOC plume existed at Site 6. The SDC report recommended that further remedial measures be performed for Site 6 soils and groundwater.

2.3.3 Interim Remedial Measures (2007)

Between May and September 2007, ANG completed interim remedial measures (IRMs) at Site 6 (Earth Tech Northeast, Inc. 2007). The objectives of the IRMs were to remove and treat all unconsolidated material and perform an in-situ pilot test to evaluate the use of enhanced bioremediation to treat the VOC plume at Site 6.

2-2

2.3.3.1 Soil Removal Activities (2007)

As determined by previous investigations, the groundwater plume was delineated by chlorinated VOCs in exceedance of 50 parts per billion. Site 6 soils within the delineated groundwater plume were excavated (Figure 2-1). All of the soil in the area was removed from the ground surface to the top of competent bedrock, encountered at a depth interval of 5 to 7 ft below ground surface (BGS), and field screened. Six sections of Site 6 were excavated sequentially, tested, and backfilled beginning with the furthest upgradient area and advancing downgradient towards the drainage ditch. The total volume of soil excavated in Site 6 for field screening of VOCs was 4,790 vd³, based on measured in-situ volume. A mechanical screener was brought onto the site to physically separate material larger than 2 in. from the smaller material. Smaller material (less than 2 in.) was segregated into stockpiles based on photoionization detector (PID) readings. The total estimated volume of soil with PID readings less than 5 parts per million (ppm) was approximately 2,870 yd³. The volume of soil removed with PID measurements greater than 5 ppm but less than 50 ppm was approximately 1,920 yd³. No stockpiled soil reported PID readings greater than 50 ppm. Using these procedures and subsequent Environmental Laboratory Accreditation Program confirmation sampling, all 4,790 yd³ of stockpiled soils were screened, sampled, and returned to the excavation as backfill based on the analytical results, which indicated all analyzed chlorinated VOCs were below NYSDEC recommended soil cleanup objective (RSCO) standards criteria and guidance values. The 2007 Site 6 excavation areas are shown on Figure 2-1.

During the soil removal activities at Site 6, a horizontal infusion gallery was constructed to perform in-situ chemical oxidation (ISCO) injections. The layout of the infusion gallery is shown in Figure 2-1. The infusion gallery consists of four horizontal laterals (Lateral 1 through 4) constructed of slotted polyvinyl chloride (PVC) pipe aligned somewhat perpendicular to the assumed groundwater flow direction.

Based on the sequencing and final limits of the excavation and apparent local groundwater flow direction, the final length of the lateral piping sections varied from 45 to 120 ft, with the longer laterals located near the center of Site 6.

The laterals were constructed of 4-in.-diameter, Schedule 40 PVC 0.010-slot screen placed along the top of competent bedrock at the base of the excavation with solid vertical risers to grade at each end and in the middle of the horizontal well. The lateral well screens were covered with an approximately 1-ft-thick layer of the highly permeable material (2 in. plus aggregate) that had been screened from the excavation materials. A permeable woven geotextile liner was placed over the aggregate, and the remaining excavation(s) were backfilled to grade with the screened stockpiled soils that were less than 2-in. diameter.

2.3.3.2 Enhanced Bioremediation Pilot Test (2007)

An enhanced bioremediation pilot test was conducted at Site 6 on August 8, 2007. Edible oil substrate[®] (EOS[®]) and Vitamin B12 supplement were gravity-fed sequentially into each of the 12 vertical riser pipes of the infusion gallery constructed as part of the Site 6 interim RAs, beginning with the furthest upgradient riser and advancing progressively downgradient. The infusion was prepared by mixing one drum of EOS[®] and 1 qt of Vitamin B12 supplement with 10,000 gal of treated groundwater. The objectives of the pilot test were to decrease concentrations of chlorinated VOCs in groundwater and prevent VOC plume migration through increased biological activity.

Five groundwater monitoring events were performed to assess groundwater quality. One round of groundwater samples was collected prior to enhanced bioremediation injections, while four quarterly rounds of groundwater samples were collected post-injection to evaluate ERD progress. It was concluded

that the injection of EOS[®] and the Vitamin B12 supplement had a beneficial effect and decreased chlorinated VOC concentrations in groundwater at Site 6. As a result of the initial infusion, the substrate contamination at Site 6 was reduced. During the final sampling event in September 2008, an increase in COC concentrations was identified in two wells (6MW-22 and 6MW-25) located within the infusion gallery treatment area. This suggests the increase is likely attributable to VOCs being flushed from the coarse aggregate, which was separated by screening from the fine-grained material, then reintroduced into the excavation. Despite this increase in COC concentrations, an overall decreasing trend was established and breakdown occurred through anaerobic dechlorination. COC reductions, attributable to the biostimulation pilot study, range from 34 to 83%, with an average of 63%.

2.3.3.3 Soil Gas Sampling (2007)

Two soil gas samples were collected to characterize the potential for soil vapor migration from the dissolved VOC plume at Site 6 to the closest indoor air receptor. The closest indoor air receptor is Building 18, located 475 ft cross-gradient to the Site 6 groundwater plume. The soil gas samples were analyzed using modified Method TO-15 (chlorinated hydrocarbons only). No VOCs were reported above their respective laboratory method detection limit for either soil gas sample. While there were no detections for the soil gas samples, indicating there is not a vapor intrusion concern for Building 18, if a building is constructed closer to Site 6 while groundwater indicates VOC impacts persist, soil gas will need to be re-evaluated.

2.3.4 Data Gap Investigation (2011)

A data gap investigation was conducted on October 31, 2011, to delineate the soil at Site 6 impacted with VOCs above screening criteria that would require future excavation. Soil borings were advanced at each site using direct-push technology (DPT). Site 6 delineation results indicated that soil samples obtained from two of the five boring locations were reported above the NYSDEC RSCO for unrestricted use for multiple VOCs in soil (BEM 2012).

2.3.5 Remedial Action (2013 and 2014)

2.3.5.1 Soil Excavation (2013)

Soils contaminated with chlorinated VOCs on the western portion of Site 6, and along the eastern bank of the drainage ditch, were removed on June 13, 2013. Soil was removed to a depth of 5 ft BGS at the eastern extent of the excavation, while the depth of excavation on the west was flush with the drainage ditch. All soils were removed down to bedrock within the extent of the excavation. The excavation limits were approximately 12 ft wide by 64 ft long (Figure 2-1). Soils excavated from Site 6 were stockpiled on a concrete pad with polyethylene sheeting beneath it to collect any water leaching from the soil. The soil was stockpiled for 5 days until it was loaded into trucks and taken offsite for thermal treatment prior to disposal. A total of 73.30 tons of excavated soil was disposed offsite at a soil management location in Fort Edwards, New York, on June 17, 2013.

Two post-excavation soil samples were collected from sidewalls in accordance with the RAWP. In addition, one post-excavation soil sample was collected from the limits of excavation, along the southwest perimeter. No exceedances of RSCOs were detected in any post-excavation soil samples. The excavation will filled with imported, clean backfill and restored to pre-existing conditions.

Soil excavation activities at Site 6 were completed in June 2013. ANG requested NFA for site soil in March 2015 (ANG 2015), which was approved by NYSDEC in April 2015 (NYSDEC 2015). RA for groundwater consisted of two rounds of ISCO injections in June 2013 and May 2014; however, dissolved-phase COCs linger in site groundwater at concentrations exceeding NYSDEC AGWQS.

2.3.5.2 ISCO Injections (2013 and 2014)

Utilizing sodium permanganate, two rounds (June 2013 and May 2014) of ISCO were conducted to address the elevated concentrations of dissolved-phase chlorinated VOCs in groundwater at Site 6. RA consisted of direct injection of sodium permanganate using the existing horizontal infusion gallery, as well as 25 DPT borings (11 during the first round and 14 during the second round). An 18-in. collection sump was installed downgradient of the injection area to collect groundwater containing the permanganate so that it could be recirculated to the injection gallery.

Seven rounds of post-injection groundwater sampling were conducted between September 2013 and January 2015. COC reductions between September 2013 and January 2015 ranged from 8 to 56%, with an overall average of 41%. Based on the December 2014 and January 2015 data, rebound is evident at 6MW-25. The remaining monitoring wells located within the active treatment zone did not show rebound and had stable to a slightly decreasing trend in COCs.

2.4 SITE CONDITIONS AND CONTAMINANT CONCENTRATIONS PRIOR TO THE REMEDIAL ACTION COMPLETION REPORT

Based on the results of the soil RA and post-excavation samples collected at Site 6, soil contamination resulting from historical operations at Site 6 has been removed. No soil contamination remains at Site 6 above the NYSDEC unrestricted use regulatory levels. Soil remediation is complete for Site 6, and NYSDEC approved the RACR (ANG 2015) that recommended an NFA determination for soil.

Chlorinated VOCs (PCE; TCE; cis-1,2-DCE; and VC) in groundwater from 4 to 9 ft BGS continue to exceed NYSDEC AGWQS in six monitoring wells at Site 6. The last groundwater sampling event, which occurred in January 2015, showed some evidence of rebound in VOC concentrations. The following is a brief summary of the January 2015 groundwater sample data.

PCE: PCE was detected in five of six monitoring wells sampled, with concentrations ranging from 2.7 to 47 μ g/L. Of these, PCE concentrations in four of the monitoring wells exceeded the NYSDEC AGWQS for PCE of 5 μ g/L. The maximum detection of PCE was in monitoring well 6MW-25.

TCE: TCE was detected in all six monitoring wells sampled at concentrations ranging from 1.9 to $10 \ \mu g/L$. Of these, TCE concentrations in four of the monitoring wells exceeded the NYSDEC AGWQS for TCE of 5 $\mu g/L$. The maximum detection of TCE was in monitoring well 6MW-25.

cis-1,2-DCE: cis-1,2-DCE was detected in all six monitoring wells sampled at concentrations ranging from 5.2 to 68 μ g/L. All detected concentrations exceeded the NYSDEC AGWQS for cis-1,2-DCE of 5 μ g/L. The maximum detection of cis-1,2-DCE was in monitoring well 6MW-25.

VC: VC was detected in three of six monitoring wells sampled, with concentrations ranging from 0.61J μ g/L to 5.8 μ g/L. Of these, only the maximum detection (5.8 μ g/L) exceeded the NYSDEC AGWQS for VC (2 μ g/L). The maximum detection of VC was in monitoring well 6MW-25.

3.0 REMEDIAL ACTION AT INSTALLATION RESTORATION PROGRAM SITE 6

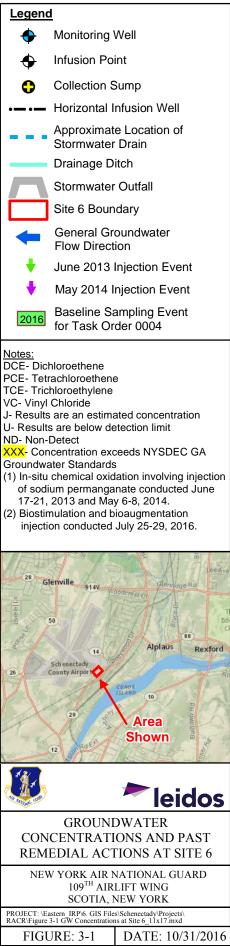
3.1 BASELINE GROUNDWATER SAMPLING EVENT

3.1.1 Monitoring Well Inventory

In accordance with Policies A7O 11-01 and A7O 14-01 (ANG 2011 and 2014, respectively), Leidos inspected six monitoring wells within the Site 6 well network as part of the baseline groundwater sampling event (Figure 3-1). All wells were labeled, and any missing bolts were replaced. It was noted that frost heave or heavy traffic appeared to move the well casing and pad at several wells, preventing the lid from closing properly and being bolted down. This was especially notable at wells 6MW-23, 6MW-25, and 6MW-26. The well casing and pad at 6MW-22 had moved slightly, but not enough to impact function. The well plugs at wells 6MW-23, 6MW-25, and 6MW-26 were replaced with a PVC pipe plug or cap to allow the lid to be bolted down.

It was also noted that the well gasket was missing or damaged at several wells: 6MW-23, 6WM-24, 6MW-25, and 6MW-26. It is recommended the missing or damaged well gaskets be replaced during the next groundwater sampling event.

Photographs were taken to document the initial overall condition of each monitoring well. This information is used to update the monitoring well inventory for IRP Site 6. The monitoring well inventory, well construction information, inspection notes, and photographs are provided in Appendix B.


3.1.2 Baseline Monitoring Event

A baseline sampling event was conducted May 11 through 13, 2016, prior to remedial activities. The purpose was to provide current subsurface conditions and verify amendment quantities based on current contaminant concentrations and distribution. Baseline sampling results were used to complete the final remedial design (i.e., chemical quantities and distribution).

Samples were analyzed for VOCs, total organic carbon (TOC), sulfate, nitrate, and field parameters from six wells (6MW-20, 6MW-22, 6MW-23, 6MW-24, 6MW-25, and 6MW-26). Samples were submitted for analysis to TestAmerica Laboratories, Inc., in Denver, Colorado (sulfate, nitrate, and TOC), and St. Louis, Missouri (VOCs). Additionally, one sample was collected from well 6MW-25 and analyzed for *Dehalococcoides* sp. (DHC) by Microbial Insights, in Knoxville, Tennessee. Purge logs (including field parameters) and the complete analytical data reports are included in Appendix C.

The following constituents were detected in at least one sample: cis-1,2-DCE; PCE; TCE; VC; nitrate; sulfate; and TOC. Table 3-1 shows the concentrations of detected chemicals and field parameters in each of the wells sampled during the baseline event. Figure 3-1 shows the results of the baseline sampling in addition to analytical data from historical (2008 through pre-injection) and recent (2013 through 2015) sampling events. The baseline sampling event results showed decreases in contaminant concentrations at wells 6MW-22 and 6MW-23. The sample from well 6MW-25 contained 357 DHC cells per mL.

IYSDEC CLASS	GA GROUN	DWATER	6MW-	-21 (3'-8')		+	+			µg/L	The Part Hand	105 -	-	11	1000		1.10	Contraction of the second	100	
STANDARDS	6 NYCRR 7	(03.5)	Samp	le Date	2008	Aug 2013 S	ep 2014 Au	ug 2014 Se	p 2014 Oct		6MW-24 (4'-9')		<u>+</u>	<u>+</u>		-				µg∕
E (µg/L)		5	PCE		ND	-				0.25 U	Sample Date	2008 Aug		-	2014 Sep				2015 Jan	2016 Ma
Ξ (μg/L)		5	TCE		0.3	4 0.33	J 1.0	2.9	4.5	0.25 U	PCE	ND	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	1.0 U	1.0 U
-1,2-DCE (µg/L)		5	cis-1,2	2-DCE	0.2	0.19	J 0.49 J	0.73 J	1.1	0.25 U	TCE	14.0	12.0	10.0	12.0	11.0	9.1	9.3	6.8	5.9
(µg/L)		2	VC		ND	0.50	J 0.50U	0.50 U	0.50 U	0.50 U	cis-1,2-DCE	42.0	14.0	9.7	11.0	11.0	6.4	7.6	5.2	4.8 J
Later and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the Car.			1.00	A COLOR		1 . A. 10 M	1000		VC	ND	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.0 U	1.0 U
	12726.00			CHE ARC.		1000		1912					A Sector		/		1.1			
N-23 (4'-9')			, 		0044 O 4				µg/L					/				1 1	-	-
nple Date	2008 Aug	2013 Sep	-			2014 Nov 2		015 Jan 201		100	6MW-21		1000	/	XA		100	10		
-	3.5	5.9	16.0	7.5	10.0	7.5			3.0 J					/	53.3		1.00			A 10.75
E	3.0	3.0	5.4	6.9	5.0	4.2	3.3		1.7 J					/	24.5			100	1	
-1,2-DCE	45.0	18.0	18.0	21.0	15.0	14.0			13		IP1-1			/	Sec.	1000	A2 14		8	
	27.0	3.2	2.0	2.6	1.8	1.5	1.8	1.2 1	1.0 U		4						23		25 W	
	5 11										Kan .						Marge (
						1000		1. Cal.		IP2-1	¹⁹ 87, P 1	-3					120		12.45	
						1 - 4				•	IP1-2	-								1
										la		/		100	-			1100	and a state	
						1 12 4			IP3-1		² al ₂ IP2-2	/	Pro Para	and the second	-				1000	-
								X		6	MW-22 👍 6MW	1-24	622		and the second	1		1		
							Ser. at		1.				-			200				
Child and appl		1993 C			1.1	1000							2014	200	1111	282.22	A Real Property in			Senter 1
N-25 (4'-9')	+	+					μg/	۲L							6MW-22 (,		7		µg/l
nple Date 200	8 Aug 2013	Sep 2014 S	ep 2014 C	Oct 2014 N	Nov 2014 D	ec 2015 Ja	in 2016 Ma	y 🕴	6MW-23			•	e De		Sample D	ate		2014 Dec	2015 Jan	2016 May
Ξ 2	2.0 4.8	5 52.0) 4.7	5.6	81.0	47.0	20		ID 4.4		IP3-2 Lata IP3-3	IP2=3		40	PCE		2.5	6.5	6.8	3.4 J
1	.8 <mark>5.</mark> 0	8.1	0.27 、	J 0.93	J 19.0	10.0	5.8		IP4-1	IP4-9	IP4-3		140.0	19 C	TCE		6.8	7.0	7.0	3.6 J
-1,2-DCE 58	80.0 220	.0 36.0) 1.9	2.7	120.) 68.0	58			aal4.	· · · · · · · · · · · · · · · · · · ·			Prov.	cis-1,2-DC	Έ	390.0	16.0	19.0	16
37	70.0 79.	0 0.50	U 0.50 L	U 0.50 l	U 12.0	5.8	21		6MW-25			- 100			VC		35.0	0.50 U	0.61 J	1.0 U
		Sec. Sec.	A 2		-	1210	1 Contraction			6	MW-26	P at 15			RAM		1	4000	and the second	1000
		41.4.20			2.12					U	MIN-20						10000			Statute.
									6MW-20	12.200	6MW-26 (4'-9')		+	•						µg/
					Non-D	otoct	11	6MW-11	1	1250.00	Sample Date	2008 Aug	2013 Sep	2014 Aug	2014 Sep	2014 Oct	2014 Nov	2014 Dec	2015 Jan	2016 May
					Non-D	eleci				1.000	PCE	6.0	2.7	3.2	2.5	2.4	2.0	2.0	2.7	1.2 J
							47 1		<u>/</u>	Car is	TCE	3.9	3.0	3.1	3.3	3.4	2.5	1.9	1.9	1.1 J
			11						6MW-18	9	cis-1,2-DCE	37.0	16.0	11.0	13.0	16.0	9.8	6.3	5.3	6.6 J
		1				1000	and a state				VC	8.6	2.0	2.3	2.4	2.0	1.3	0.64 J	1.0 U	1.0 U
		15				aster	/				Statement of the local division in which the local division in the									1000
The second	5.00	19 3			4-1-2	the for	/		-	1 1000	6MW-27S			in .					COLUMN TO A	
	100				ALC: NO					-	01111-213	-		100					and and	1 hall
	1-11	1 James	States and the second second	-	States 1	/	10.5			6MW-27D			-					the state of the s		121
W-20 (5'-15')			<u>/</u>			<u> </u>	1		µg/L			Detect	215				5 1 1 2		1000	KI .
mple Date	2008 Aug		-				2014 Dec 2											2-120		A R M.
E	10.0	0.32 J	0.33 J	0.31 J	0.25 U	0.25 U	4.0		0.86 J									235	19. 13.	1/13
=	8.5	0.51 J	1.2	0.88 J	0.29 J	0.35 J	1.9	1.9	1.5 J		Non-Detec	L .						2 4 1	Esta al	Chille and
1,2-DCE	330.0	22.0	19.0	19.0	7.8	7.1	9.2	6.8	<mark>6.8</mark>										the start	
	8.2	2.6	4.3	6.0	7.7	2.8 J	0.73 J	1.0 U	1.0 U	A STREET							Cor 1	a star	" all of the	
	Freeze	120			Carl Strate	and the second		Contraction of	6MW-19 (7	''-17')	1 1					ıg/L	6 4	St plan		
	Carrier Street								Sample Da		2008 Aug 2013 Sep 2014	Aug 2014	Sen 2014	Oct 2014	Nov 2014 I			17		
	1000						0.011			uc 2	ND 0.25 U 0.25							Part -		
1 des	AND DESCRIPTION OF							anal 1	PCE TCE							and the second se		Carl St		135 -
					2000			27.1	cis-1,2-DC		ND 0.25 U 0.25 1.3 0.78 J 0.53							Store 1		
		10000	and an end of the local distance	and the second second						L	I.J I U./OJ I U.J.	ער בינ	0.93	/U.4/	J J U.35	J				
-	F	1														and the second se				
20 40	L	80 4	N. I.						VC		ND 0.50 U 0.38			U 0.50		and the second se	-			
20 40 1 inch = 5		30 4 Feet	XXX							- Au				U 0.50		and the second se				

Table 3-1. Detected Constituents in the May 2016 Baseline Groundwater Monitoring Event

Well Identifier		6MW-20	6MW-20	6MW-22	6MW-23	6MW-24	6MW-25	6MW-26
Sample Identifier	6MW-2001	6MW-2001D	6MW-2201	6MW-2301	6MW-2401	6MW-2501	6MW-2601	
Date Collected		05/11/16	05/11/16	05/11/16	05/12/16	05/12/16	05/11/16	05/11/16
Date Contettu		03/11/10	Field	03/11/10	03/12/10	03/12/10	03/11/10	03/11/10
Sample Type		Grab	Duplicate	Grab	Grab	Grab	Grab	Grab
Analyte	NYSDEC AGWQS							
			Volatile Organic	c Compounds (µ	g/L)			
cis-1,2-Dichloroethene	5	6.8	7	16	13	4.8 J	58	6.6
Tetrachloroethene	5	0.86 J	1.3 J	3.4 J	3 J	ND	20	1.2 J
Trichloroethene	5	1.5 J	1.5 J	3.6 J	1.7 J	5.9	5.8	1.1 J
Vinyl chloride	2	ND	ND	ND	ND	ND	21	ND
			Anior	ns (mg/L)				
Nitrate		ND	0.06 J	0.16 J	ND	1.2	ND	0.28 J
Sulfate		270	270	290	200	360	820	320
			Carbo	on (mg/L)				
Total organic carbon		2.8	2.6	2.5	2.8	5.3	2.3	2.6
			Dechlorinating	Bacteria (cells/n	nL)			
Dehalococcoides sp.		NA	NS	NA	NA	NA	357	NA
			Water Qual	ity Parameters ^a				
pH (S.U.)		6.75	6.75	6.87	6.81	7.24	6.87	7.01
Temperature (°C)		17.91	17.91	18.78	13.84	9.54	14.49	13.73
Conductivity (mS/cm)		1.31	1.31	1.40	1.12	1.26	1.92	1.43
ORP (mV)		173	173	194	-37	237	12.0	43
DO (mg/L)		3.83	3.83	4.78	3.20	7.59	3.41	3.77
Turbidity (NTU)		0.9	0.9	0.0	14.1	1.9	40.6	3.0
Water level (ft BGS)		7.33	7.33	6.89	6.31	7.82	4.13	4.97

^{*a*} Water quality parameters listed are the final reading prior to sampling.

Bold values exceed the NYSDEC AGWQS.

AGWQS = NYSDEC Class GA Ambient Groundwater Quality Standards.

BGS = Below ground surface.

DO = Dissolved oxygen.

J =Estimated value.

mS/cm = MilliSiemens per centimeter.

NA = Not analyzed.

ND = Not detected.

NS = Not uccected.

NTU = Nephelometric turbidity unit.

NYSDEC = New York State Department of Environmental Conservation.

ORP = Oxidation-reduction potential.

S.U. = Standard unit.

Chlorinated VOCs (PCE; TCE; cis-1,2-DCE; and VC) in groundwater from 4 to 9 ft BGS continue to exceed NYSDEC AGWQS in one or more monitoring well at Site 6. The following is a summary of the May 2016 baseline groundwater sample data.

cis-1,2-DCE: cis-1,2-DCE was detected in all six samples during the baseline monitoring event, at concentrations ranging from 4.8J μ g/L (6MW-24) to 58 μ g/L (6MW-25). Only the sample from well 6MW-24 was below the NYSDEC AGWQS of 5 μ g/L.

PCE: PCE was detected in five of six samples during the baseline event but only exceeded the NYSDEC AGWQS of 5 μ g/L in one well (6MW-25) with a concentration of 20 μ g/L.

TCE: TCE was detected in all six samples, with concentrations ranging from 1.1J μ g/L in well 6MW-26 to 5.9 μ g/L in 6MW-24. Samples from wells 6MW-24 and 6MW-25 were slightly above the NYSDEC AGWQS of 5 μ g/L.

VC: VC was detected in well 6MW-25 at a concentration of 21 μ g/L, which exceeds the NYSDEC AGWQS of 2 μ g/L. VC was not detected in any other well during the baseline groundwater sampling event.

DHC: Well 6MW-25 was sampled for DHC and contained 357 DHC cells/mL. The detected concentration is considered to be in the moderate range (100 to less than 10,000 cells/mL), with concentrations greater than or equal to 10,000 cells/mL considered ideal (Lu et al., 2006). However, the addition of an electron donor such as EVO may stimulate DHC growth and enhance anaerobic bioremediation when DHC concentrations are in the moderate range.

Nitrate: Nitrate was detected in three of the six groundwater monitoring wells (6MW-22, 6MW-23, and 6MW-26), with concentrations ranging from 0.16J mg/L in 6MW-22 to 1.2 mg/L in 6MW-24. Nitrate levels less than 1.0 mg/L are desirable for anaerobic in-situ bioremediation.

Sulfate: Sulfate was detected in all samples during the baseline groundwater sampling event, with concentrations ranging from 200 mg/L (well 6MW-23) to 820 mg/L (well 6MW-25). With the exception of the maximum concentration, detected concentrations ranged from 200 to 360 mg/L, which is considered moderate. Higher sulfate concentrations represent a higher demand level for organic material and require additional organic substrate (i.e., EVO) during bioremediation.

TOC: TOC concentrations ranged from 2.3 mg/L at well 6MW-25 to 5.3 mg/L at well 6MW-24, with an average concentration of 3.1 mg/L. The detected concentrations are typical background levels of TOC for a site with relatively low remaining groundwater contamination and below the 20- to 50-mg/L TOC concentration desired in the anaerobic treatment zone.

Field Parameters: Field parameters, including pH, temperature, conductivity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity, were recorded during the baseline groundwater sampling event (Table 3-1). Of particular interest to Site 6 are the following parameters:

• **ORP:** ORP is a measure of electron activity and an indicator of the relative tendency of a solution to accept or transfer electrons. Values less than -100 mV are optimal for anaerobic dechlorination to occur (AFCEE 2004). In this pre-treatment baseline sampling event, ORP values ranged from -37 mV (well 6MW-23) to 237 mV (well 6MW-24). Values in five of the six wells were greater than 0 mV, indicating the groundwater at Site 6 is oxidizing.

- **DO:** DO is a measure of oxygen dissolved in a solution. Concentrations equal to 1.0 mg/L or less are indicative of an environment conducive to anaerobic dechlorination (AFCEE 2004). During the pre-treatment baseline sampling event, concentrations ranged from 3.2 mg/L at well 6MW-23 to 7.59 mg/L at well 6MW-24. All DO readings were greater than 2 mg/L, indicating the groundwater is aerobic.
- **pH:** The optimal pH range for microbial activity is between 6 and 8 standard units (S.U.), and biological activity is not likely to occur if the pH is below 5 or above 9 S.U. (AFCEE 2004). During the pre-treatment baseline sampling event, pH ranged from 6.75 S.U. in well 6MW-20 to 7.24 S.U. in well 6MW-24, thus indicating a suitable environment for biological activity.

ORP concentrations ranging from -37 to 237 mV and DO concentrations ranging from 3.2 to 7.59 mg/L indicate aerobic or borderline aerobic/anaerobic starting conditions considered optimal for ERD. The higher-than-desirable baseline ORP and DO levels indicate that additional substrate (i.e., EVO) will be required to provoke anaerobic dechlorination.

3.2 FIELD CHANGE REQUEST

Based on the results of the baseline sampling in May 2016, an FCR was initiated prior to the installation of permanent injection wells (Appendix A) to revise the number of injection wells and sequencing specified in the RAWP as follows:

- Two injection wells were deleted from 6MW-22 and 1 injection well was deleted from 6MW-23, resulting in 13 injection wells and 5 infusion points for injection during the RA.
- The sequencing was revised from the proposed injection event described in the RAWP; instead, injection wells at 6MW-22, 6MW-23, and 6MW-24 and all infusion points could be injected at any time during field activities.
- Injection wells 8, 9, and 13 should be injected 1 day prior to injection wells 7 and 12. The adjacent monitoring wells, and injection wells 7 and 12, should be monitored in between injections.
- The total volume of water to be injected at injection wells 12 and 13 (6MW-20) was reduced from 750 to 600 gal.
- The RAWP indicated that injection wells will be injected with 30 to 40 gal of EVO; however, due to moderately high sulfate levels observed in the baseline monitoring event, a minimum of 40 gal will be injected in each injection well.

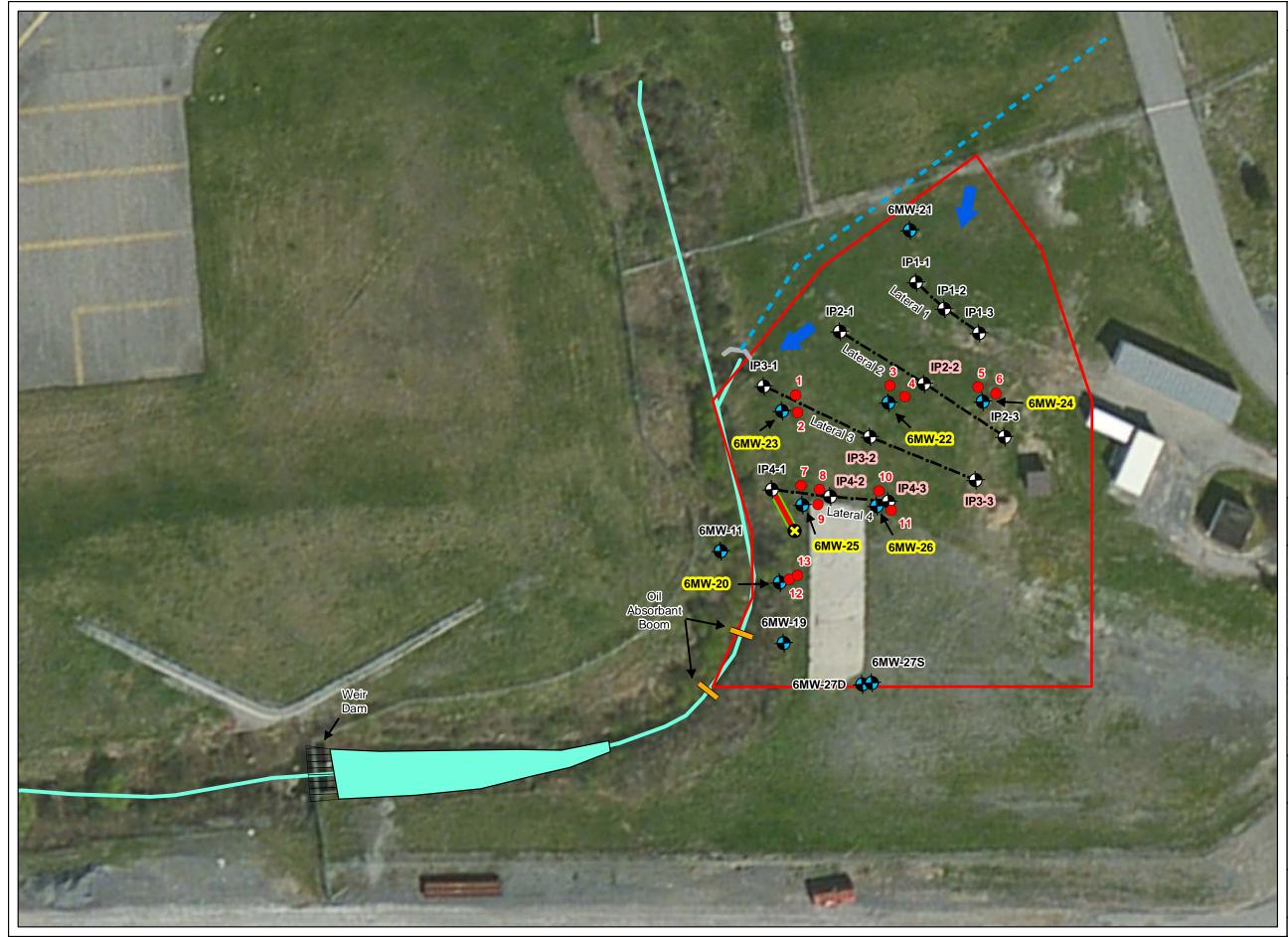
3.3 STRATTON AIR NATIONAL GUARD BASE PERMITS

A Base Civil Engineering Work Clearance Request (dig permit) was initiated for IRP Site 6. The SANGB dig permit contained the required Dig Safely New York documentation and identified any public utilities that may exist within or immediately adjacent to the remediation area. The dig permit was signed and approved on June 28, 2016. The complete SANG Base Civil Engineering Work Clearance Request Form for IRP Site 6 is provided in Appendix D. No other permits related to the remediation activities were required.

3.4 INSTALLATION OF PERMANENT INJECTION WELLS

A total of 13 injection wells were installed between June 28 and 30, 2016, in areas where chlorinated groundwater continues to exceed groundwater criteria. The wells were installed surrounding monitoring wells 6MW-20, 6MW-22, 6MW-23, 6MW-24, 6MW-25, and 6MW-26 (Table 3-2 and Figure 3-2). The 1-in.-diameter PVC injection wells were installed using a DPT rig to eliminate soil cuttings. As indicated in Table 3-2, each injection well includes 3- or 5-ft screened intervals with a slot size of 0.010 in. to provide complete vertical treatment coverage. The well annulus was backfilled with sand from the bottom of the borehole to approximately 6 in. above the top of the well screen. A bentonite seal was installed to a thickness of 1 to 3 ft above the sand pack, and the balance of the well casing was filled with a cement grout to ground surface. Injection well completions were flush-mounted with a 6-in. PVC manhole. All injection wells were installed to the top of bedrock. Soil boring logs for the 13 injection wells are included in Appendix E.

Injection Well ID	Soil Boring Log ID	Associated Monitoring Well	Distance from Monitoring Well (ft)	Total Depth ^a (ft BGS)	Screen Interval (ft BGS)	Filter Pack Length (ft)	Annular Seal Thickness (ft)	Grout Thickness to Surface (ft)
1	SB-1	6MW-23	8	9	4 - 9	5.5	2.5	1
2	SB-2	6MW-23	8	8.7	3.7 - 8.7	5.7	2	1
3	SB-4	6MW-22	8	8.8	3.8 - 5.8	6.3	1.5	1
4	SB-5	6MW-22	8	8.2	3.2 - 8.2	5.7	1.5	1
5	SB-8	6MW-24	8	8.3	3.3 - 8.3	5.3	2	1
6	SB-9	6MW-24	8	7.9	2.9 - 7.9	4.9	2	1
7	SB-10	6MW-25	8	7.8	4.8 - 7.8	3.8	2	2
8	SB-11	6MW-25	8	7.6	4.6 - 7.6	4.1	2	1.5
9	SB-12	6MW-25	8	7	4 - 7	3.5	2.5	1
10	SB-13	6MW-26	8	9.3	4.3 - 9.3	6.3	2	1
11	SB-14	6MW-26	8	8.7	3.7 - 8.7	6.7	1	1
12	SB-15	6MW-20	8	8.7	3.7 - 8.7	6.2	1.5	1
13	SB-16	6MW-20	8	8.3	5.3 - 8.3	4.3	3	1


Table 3-2. Injection Well Construction Details

^{*a*} Wells were installed to bedrock.

BGS = Below ground surface.

ID = Identifier.

A temporary interceptor trench was also installed on June 28, 2016. The trench runs between the existing sump and IP4-1 of the horizontal infusion gallery (Figure 3-2). The trench was excavated to bedrock (approximately 8 ft BGS) and is approximately 2-ft wide. Excavated soil was stockpiled onsite for reuse as backfill. The trench wall was lined with geotextile material from 6 to 10 ft BGS. Three interceptor pipes, each constructed of 4-in.-diameter, 8-ft length, and 2 Hole Triplewall Pipe, were installed to the bottom of the trench to monitor for injection solution. Each pipe was wrapped in a single layer of geotextile material and bound in together using zip ties. Gravel was backfilled to 6 ft BGS, and the gravel was covered with geotextile material The native saturated soil was backfilled to 1 ft BGS, and the remaining unsaturated soils were backfilled to ground surface and spread in the surrounding area to a thickness of less than 6 in. and vegetated. The photograph log for the inceptor trench installation is in Appendix F.

PROJECT: \Eastern_IRP\6. GIS Files\Schenectady\Projects\RACR\Figure 3-2 Sample Locations For Site 6_11x17.mxd

LEGEND Injection Well Honitoring Well Infusion Point \bullet Collection Sump Interceptor Trench ---- Horizontal Infusion Well Approximate Location of Stormwater Drain Drainage Ditch Oil Absorbant Boom Stormwater Outfall Site 6 Boundary General Groundwater Flow Direction 6MW-24 Performance Monitoring Well **IP2-2** 2016 Infusion Injection Location NOTES 1. Oil booms were placed in the drainage ditch downstream from southernmost injection point. Pumps and tanks were in place as a contingency measure downstream from the northernmost oil boom. The drainage ditch was monitored for 48 hours and no releases were observed. 40 20 80 0 Feet 1 inch = 50 feet Data Sources: 鋖 Background: ESRI World Imagery (USDA NAIP, May 2015) Glenville 914V Alplaus Rext Schenectady County Airpor Area Shown leidos INJECTION WELLS AND SAMPLE LOCATIONS FOR SITE 6 REMEDIAL ACTION NEW YORK AIR NATIONAL GUARD 109TH AIRLIFT WING SCOTIA, NEW YORK FIGURE: 3-2 DATE: 2/16/2017

3.4.1 Pilot Test

After the permanent injection wells and interceptor trench were installed, a pilot test was conducted June 28 through July 1, 2016. Approximately 700 gal of dye tracer was injected in injection wells associated with 6MW-20 and 6MW-25. After 48 hr, there was no dye present in the monitoring wells, interceptor trench, or drainage ditch, providing a higher level of confidence that the injection materials will not travel to the drainage ditch. The pilot test indicated that the initial radius of influence was less than 8 ft and more than 5 ft based on injections at injection well 13 showing dye in injection well 12.

3.5 ENHANCED ANEROBIC BIOREMEDIATION INJECTION

The rationale for the RA is that injection of a long-lasting, slow-release carbon amendment into existing infusion wells and new permanent injection wells will facilitate anaerobic biodegradation and abiotic degradation of PCE, TCE, and associated daughter products. EVO was diluted with sufficient injection water to provide for dispersion of this organic substrate through the subsurface. The bioaugment KB-1 DechlorinatorTM, which contains DHC bacteria, was then injected to assist indigenous bacteria that may not be independently capable of complete degradation of the chlorinated solvents.

3.5.1 Pre-Construction Teleconference

A pre-construction teleconference was held with NGB/A4OR, SANGB, and Leidos personnel on July 15, 2016, prior to mobilization for the RA. The purpose of the pre-construction meeting was to outline the scope of the RA; the anticipated field schedule; and site logistics, including EVO delivery, sanitary waste, water supply, and other Installation requirements and concerns.

3.5.2 Mobilization

The field team arrived onsite on July 25, 2016, and set up for injection activities. Remedial control measures outlined in the RAWP were implemented, including placement of two oil-absorbing containment booms in the drainage ditch on the western edge of Site 6 (Figure 3-2). At the northernmost oil boom, sand bags, PVC piping functioning as a scupper across the drainage ditch, and a pump were installed as a contingency measure to remove any product reaching the drainage ditch. Potable water tanks, garden hoses, and a diaphragm pump for mixing EVO and water were mobilized onsite. Suction hoses were run to a storage tank as part of the contingency plan. The photograph log for the injection field activities is included in Appendix F.

3.5.3 Emulsified Vegetable Oil/Dehalococcoides sp. Injection

The EVO and DHC injection activities took place from July 25 through 29, 2016, with injections conducted in accordance with the RAWP. Approximately 40 gal of Terra Systems SRS-FRL Large Droplet EVO was combined with potable water and injected using between 600 gal (at injection wells 12 and 13) and 750 gal of potable water per injection well. Injections into the horizontal infusion wells typically yield two to three times greater dispersion in groundwater than injections into vertical wells. Therefore, one-half the volumes (approximately 20 gal of EVO and up to 350 gal of potable water) were injected into each infusion point. The biostimulation amendment was injected into the 13 new injection wells and 5 infusion points (IP2-2, IP3-2, IP3-3, IP4-2, and IP4-3) using temporary hoses. The water was gravity-fed into injection wells and infusions points. A summary of the approximate injection quantities is provided in Table 3-3.

Well	Associated Monitoring	EVO	Water	DHC							
Identifier	Well	(gal)	(gal)	(L)							
	Permanent Injection Wells										
1	6MW-23	40	750	2							
2	6MW-23	40	750	2							
3	6MW-22	40	750	2							
4	6MW-22	40	750	2							
5	6MW-24	40	750	2							
6	6MW-24	40	750	2							
7	6MW-25	40	750	2							
8	6MW-25	40	750	2							
9	6MW-25	40	750	2							
10	6MW-26	40	750	2							
11	6MW-26	40	750	2							
12	6MW-20	40	600	2							
13	6MW-20	40	600	2							
Subtotal Inj	ected Volume	520	9,450	26							
	Horizontal Inf	usion Point	ts								
IP2-2	6MW-22	20	350	1							
IP3-2	6MW-25 and 6MW-26	20	350	1							
IP3-3	6MW-26	20	350	1							
IP4-2	6MW-25 and 6MW-26	20	350	1							
IP4-3	6MW-26	20	350	1							
Subtotal Inj	ected Volume	100	1,750	5							
Total		620	11,200	31							

Table 3-3. Summary of Injection Quantities at Site 6

DHC = *Dehalococcoides* sp.

EVO = Emulsified vegetable oil.

Continuous visual monitoring was conducted during the biostimulation amendment injection to mitigate surfacing and promote distribution across the treatment area while minimizing excessive volume, so as to not create immediate impacts to nearby surface water. Visual observations (EVO typically has a distinctive milky white appearance) at adjacent injection and monitoring wells, as well as the two wells nearest the drainage ditch (6MW-20 and 6MW-25), the interceptor trench, and the drainage ditch, confirmed there was no breakthrough. Water in the trench was noted as "cloudy" on July 25 and 26, 2016, which may have been caused by the recent placement of gravel in the trench. There were no signs of EVO in the trench on the following days, nor in wells 6MW-20 or 6MW-25, nor in the drainage ditch at any time during the injection event.

The baseline sampling event results indicated aerobic, oxidizing conditions at the site. DO concentrations ranged from 3.2 to 7.59 mg/L (values greater than 2 mg/L indicate aerobic conditions), and ORP values ranged from -37 to 237 mV (values greater than 0 mV indicate oxidizing conditions; all values were greater than 0 mV except at well 6MW-23). DHC cannot survive in oxygenated environments, and chlorine is a bactericide. Because onsite potable water is chlorinated and typically has a DO concentration up to 10 ppm, which will temporarily inhibit anaerobic reductive dechlorination, the potable water was deoxygenated and dechlorinated prior to use as injection water. Twenty gal of deoxygenated water was injected immediately before and after the injection of KB-1 DechlorinatorTM for a total of 40 gal per well. Water was deoxygenated by adding 4 lb of sodium ascorbate powder (Vitamin C) per 1,000 gal of water approximately 24 to 48 hr prior to use.

The potable water was monitored for DO and ORP using a water quality meter to ensure that the water becomes anoxic. DO and ORP measurements were the primary parameters to monitor anoxic (i.e., reducing) conditions. A reducing condition (anoxic), as measured by a DO of less than 1 mg/L and an ORP of less than -50 mV, indicates the makeup water is ready for injection with DHC. DO readings were noted to be higher than 1 mg/L (average 3.34 mg/L), but ORP levels were significantly less than -50 mV (average -262 mV). This was brought to the attention of the EVO and DHC vendor (Terra Systems), who confirmed that the DO readings may not be accurate, but if the ORP is -262 mV, the water is ready for injection with DHC.

Approximately 2 L of KB-1 DechlorinatorTM was injected at the 13 injection wells and 1 L was injected at infusion points to encourage a microbial population greater than 10^4 (10,000) DHC per mL, which increases the likelihood of complete degradation of the chlorinated solvents. Nitrogen gas was used as a carrier gas during injections.

Subsequent biostimulation or bioaugmentation injections will be recommended and detailed in periodic groundwater monitoring reports. Groundwater monitoring, as detailed in the RAWP, is summarized in Chapter 4.0.

4.0 GROUNDWATER MONITORING

Post-injection groundwater monitoring will consist of performance monitoring and closure monitoring, as discussed below. The monitoring network consists of six monitoring wells: 6MW-20, 6MW-22, 6MW-23, 6MW-24, 6MW-25, and 6MW-26 (Figure 3-2). The monitoring well construction details for wells within the monitoring network are summarized in Appendix B (Table B-1).

Groundwater sampling will be conducted to evaluate the progress of reductive dechlorination via bioremediation and to determine the progress of natural attenuation on decreasing the chlorinated solvent plume. Table 4-1 summarizes the well sampling plan for the monitoring well network.

Event ^a	Frequency	Field Parameters	voc	тос	Sulfate	Nitrate	DHC
Baseline Monitoring	1	Х	Х	Х	Х	Х	Х
Field Parameter Measurements	4	Х					
Performance Monitoring	6 ^b	Х	X	Х			\mathbf{X}^{c}
Closure Monitoring	4	Х	Х				

 Table 4-1. Groundwater Monitoring Plan for Site 6

^{*a*} The monitoring network consists of six monitoring wells: 6MW-20, 6MW-22, 6MW-23, 6MW-24, 6MW-25, and 6MW-26. All six wells within the monitoring network will be sampled during each event.

^b Performance monitoring is anticipated to consist of three quarterly events and three semiannual events before initiating closure monitoring; however, the required frequency will be dependent on the plume's rate of degradation.

^c DHC will be collected from well 6MW-25 during the third quarterly performance monitoring event.

DHC = *Dehalococcoides* sp.

TOC = Total organic carbon.

VOC = Volatile organic compound.

4.1 FIELD PARAMETER MEASUREMENT EVENTS

Field parameters will be collected on a monthly basis between performance monitoring events for up to 6 months after completing biostimulation injections from the six wells within the monitoring well network (Figure 3-2). DO, ORP, and pH will be used as a guide to confirm that a suitable environment exists for anaerobic dechlorination to occur.

DO is a measurement of the presence or absence of oxygen within groundwater. DO levels less than 1.0 mg/L are optimum for microbial populations to thrive.

Negative ORP within the treatment zone is an indicator that anaerobic degradation is occurring. ORP values between -100 and -50 mV are optimal.

A relatively neutral pH is required for dechlorinating bacteria to survive. Optimum pH range is between 6 and 8 S.U. pH levels outside the optimal range indicate that a buffering agent may be required to sustain high rates of anaerobic degradation.

4.2 PERFORMANCE MONITORING EVENTS

Three quarterly performance monitoring events will be conducted after completing the biostimulation and bioaugmentation injections. Samples will be analyzed for field parameters, VOCs, and TOC from six monitoring wells (6MW-20, 6MW-22, 6MW-23, 6MW-24, 6MW-25, and 6MW-26). During the third quarterly event, one sample will be collected from well 6MW-25 for analysis of DHC. The third

performance monitoring event will verify that anaerobic bioremediation zones have been established within the treated plume. Field parameters and TOC concentrations outside the optimum range for anaerobic bioremediation will be used to guide any supplemental amendment injections as required.

Additionally, the injection wells installed during the RA will be field-surveyed during the December 2016 monitoring event using a Trimble GeoXHTM handheld Global Positioning System or measured from existing monitoring wells using a transit level and tape measurer to determine coordinates.

4.3 SEMIANNUAL MONITORING EVENTS

Groundwater monitoring will continue on a semiannual basis following the quarterly performance monitoring events. Samples will continue to be analyzed for VOCs and TOC from six monitoring wells within the RA monitoring network (Figure 3-2). Semiannual monitoring will continue until the NYSDEC AGWQS for PCE; TCE; cis-1,2-DCE; and VC are achieved.

4.4 CLOSURE MONITORING EVENTS

Compliance monitoring for closure status will begin once groundwater sampling results from Site 6 indicate successful remediation and degradation of the groundwater plume. Quarterly groundwater sampling will commence to demonstrate compliance for progression towards site closure in accordance with NYSDEC regulations. Up to six monitoring wells (6MW-20, 6MW-22, 6MW-23, 6MW-24, 6MW-25, and 6MW-26) will be sampled quarterly and analyzed for VOCs.

4.5 PROJECT CLOSEOUT

PCO will be conducted once NYSDEC approves NFA for Site 6. A total of 11 monitoring wells (3 stick-up and 8 flush-mount), 12 vertical infusion points to horizontal infusion wells, 4 horizontal infusion wells, 13 permanent injection wells, and the interceptor trench wells will require abandonment to fulfill PCO requirements at Site 6. Full details of the PCO activities are provided in the RAWP.

5.0 CONCLUSIONS

As agreed upon by ANG and NYSDEC, and detailed in the Final RAWP (Leidos 2016), RA-O activities were conducted at SANGB as follows:

- Conduct a baseline groundwater sampling event to establish current contaminant conditions.
- Install permanent injection wells and an interceptor trench, and conduct a pilot study.
- Perform biostimulation and bioaugmentation injections to treat groundwater.

Following the completion of the biostimulation and bioaugmentation injections documented herein, the following activities will be conducted and reported in periodic groundwater monitoring reports and a final PCO Report:

- Conduct groundwater performance monitoring, additional biostimulation and bioaugmentation injections as necessary, and closure monitoring events.
- Perform PCO by abandoning vertical infusion wells, horizontal infusion points, injection wells, and site monitoring wells.

A baseline groundwater sampling event was conducted May 11 and 12, 2016. Six wells at IRP Site 6 (6MW-20, 6MW-22, 6MW-23, 6MW-24, 6MW-25, and 6MW-26) were sampled for VOCs, anions, and TOC. Well 6MW-25 was also sampled for the bacteria DHC. Inspections of the Site 6 monitoring wells being sampled were also conducted at this time.

Based on the baseline sampling event, which showed a decline in concentrations in wells 6MW-22 and 6MW-23, an FCR was initiated to reduce the number of injection wells to be installed, revise the sequencing, and increase the volume of EVO that was specified in the RAWP.

A total of 13 permanent injection wells were installed between June 28 and 30, 2016. Additionally, an interceptor trench was installed between the Site 6 injection network and a drainage ditch running parallel to the western edge of Site 6. A pilot test was conducted injecting a dye tracer into the newly installed injection wells. The adjacent monitoring wells, interceptor trench, and drainage ditch were monitored for signs of dye. No dye was observed in any of the monitoring wells or interceptor trench.

The biostimulation and bioaugmentation injections were performed between July 25 and 29, 2016. Between 600 and 750 gal of EVO mixed with water was injected at each of the 13 new injection wells, and approximately 300 gal was injected at 5 infusion points in the existing horizontal infusion network. The EVO injections were followed with 2 L of KB-1 DechlorinatorTM in injection wells and 1 L in infusion points to encourage growth of DHC, increasing the likelihood of complete degradation of the chlorinated solvents. Monitoring wells, the interceptor trench, and the drainage ditch were continuously monitored during the injections for any sign of breakthrough. Some cloudiness was observed at the interceptor trench during the first 2 days, which was likely from the recent placement of gravel in the trench. There was no sign of EVO in any of the monitoring wells or in the drainage ditch, signifying there were no negative impacts to the drainage ditch from the injections.

Subsequent biostimulation or bioaugmentation injections will be recommended and detailed in periodic groundwater monitoring reports.

6.0 REFERENCES

- AFCEE (Air Force Center for Environmental Excellence) 2004. *Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents*, Final, August.
- Aneptek (Aneptek Corporation) 2000. *Remedial Investigation Report Site 2 Site 3 Site 6, Stratton Air National Guard Base*, Final, September.
- ANG (Air National Guard) 2003. Supplemental Data Collection Technical Memorandum Site 6, 109th Airlift Wing, New York Air National Guard, Schenectady Air National Guard Base, Scotia, New York, Volume I of II, Final, August.
- ANG 2011. Policy on Collection of Digital Spatial Data for Monitoring Wells During Environmental Investigations at Air National Guard Sites (Supplements A7CV 07-03, 15 Aug 2007, same subject), Policy A7O 11-01, April.
- ANG 2012. Record of Decision for Sites 3 and 6 for the 109th Airlift Wing, Schenectady Air National Guard Base, Scotia, New York, Final, March.
- ANG 2014. Requirements for Geospatial Deliverables, Policy A7O 14-01, March.
- ANG 2015. Remedial Action Completion Report for Soil at Sites 3 and 6, Schenectady Air National Guard Base, Final, March.
- BEM (BEM Systems, Inc.) 2012. Data Gap Investigation Technical Memorandum for Sites 3 and 6 for the 109th Airlift Wing, Schenectady Air National Guard Base (SANGB), Scotia, New York, February.
- Earth Tech Northeast, Inc. 2007. Interim Removal Action Completion Report Site 3 and Site 6, New York Air National Guard, Schenectady Air National Guard Base, Scotia, New York, Final, December.
- Leidos 2016. Work Plan for Remedial Action-Operations, Monitoring, and Project Closeout at IRP Site 6 (Suspected Spill Area), Final, January.
- Lu, X., J.T. Wilson, and D.H. Kampbell 2006. "Relationship between *Dehalococcoides* DNA in ground water and rates of reductive dechlorination at field scale." *Water Research* **40**:3131-3140.
- NYSDEC (New York State Department of Environmental Conservation) 2010. DER-10, *Technical Guidance for Site Investigation and Remediation, Division of Environmental Remediation*, Final, May.
- NYSDEC 2015. Regarding Air National Guard Stratton, Site No.: 447022, Approval letter of the Remedial Action Completion Report for Soil at Sites 3 and 6, dated March 2015.

APPENDIX A – FIELD CHANGE REQUEST-01

Field Change Request Form

FIELD CHANGE REQUEST (FCR)									
FCR Number:	Sche	enect	tady Site 6 - FCR 01	D	ate Initiated:	7-12-16			
Project: NGB Eastern IRP 2016 - Schenectady Site 6 RA Field Activities									
Contract Number	Contract Number (CRN): 314561								
Requestor Nam	e:	Mike	e Poligone	С	rganization:	H&I			
Phone Number:		865	-405-8332	Т	itle/Project Role:	Project Manager			
Requestor Signature:			hael.d.poligone Digitally signed by michael.d.poligone@leid DN: cn=michael.d.poligo Date: 2016.07.13 09:12:3	one@leidos.c	om				
Baselines Affect	ted:		□Cost ■Scope □	Miles	stone Method	of Accomplishment			
Document(s) Af (full title, revision page, section):			Work Plan for Remedial Action-Operations, Monitoring, And Project Closeout At Site 6 (Suspected Spill Area), Schenectady Air National Guard Base, Scotia, New York, January 2016						
Description of C	hang	ge:	Revise number of injection points and sequencing.						
Justification:			See attached						
Impact of Not Implementing th Request:	ie		Reducing number of injection wells has no impact. Increasing EVO volume per well will increase effectiveness. Revising sequencing will improve field logistics and provide additional measure to mitigate releases to creek.						
Participants Affected by Implementing the Request:									
Cost Estimate (\$): \$0									
Estimator Name			Mike Poligone Phone Number: 865-405-8332						
Estimator Signa	iture:		michael.d.poligone Digitally signed by michael.d.poligone@leidos.com @leidos.com DN: cn=michael.d.poligone@leidos.com Date: 2016.07.13 09;12:44 -04/00'						
Previous FCR Affected:			□ Yes ■ No If	yes, F	CR number:				

APPROVAL SIGNATURES							
Client Project Manager:	Jody Murata	Date:					
Client QA Manager (if applicable):	N/A	Date:					
Leidos Site Safety & Health Officer (if H&S related):	N/A	Date:					

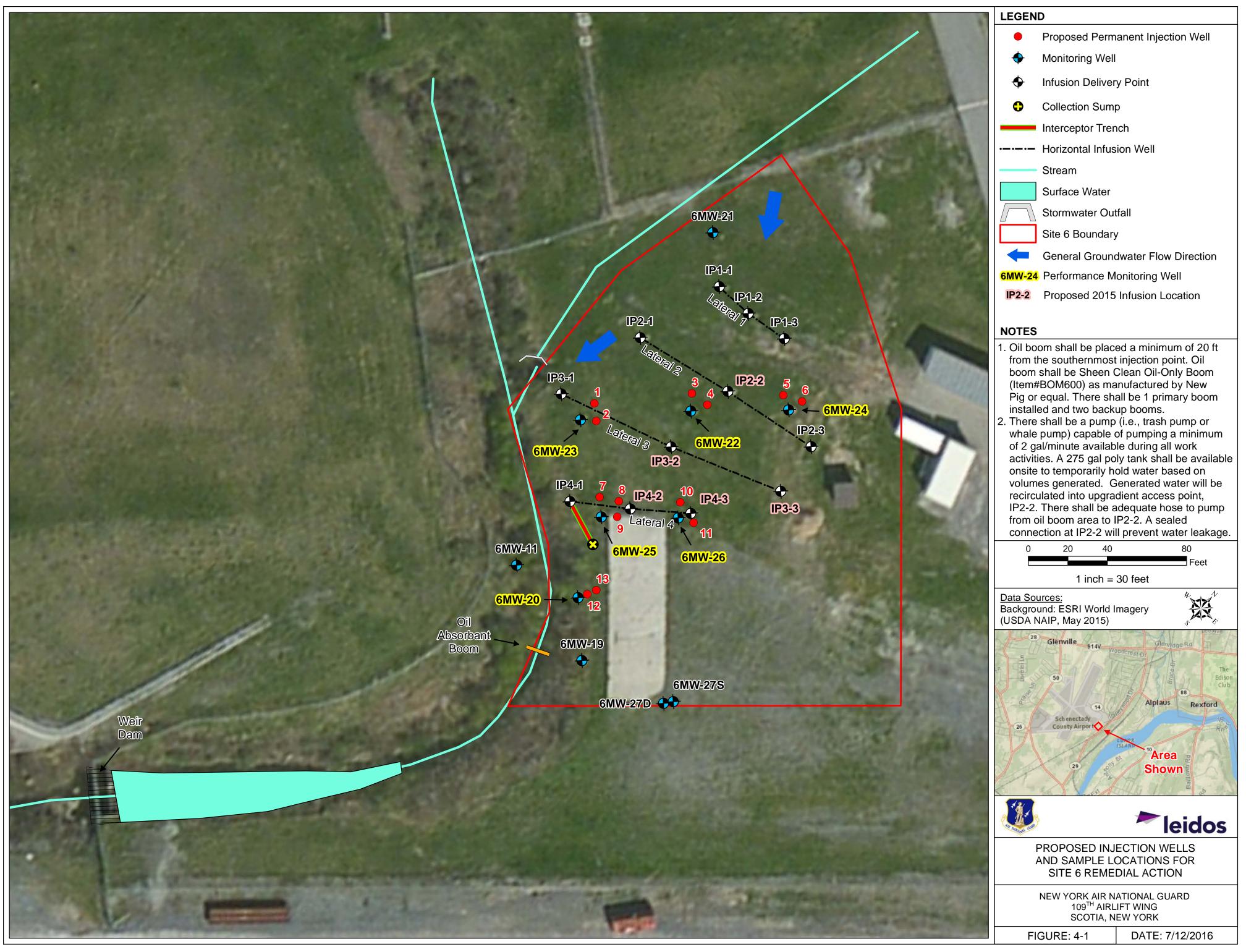
Justification:

The baseline sampling event results showed decreases in contaminant concentrations at 6MW-22 and 6MW-23. Two injection points were deleted from 6MW-22 and one injection point from 6MW-23. There are now 13 vertical injection wells and 5 horizontal infusion points that will be injected (See Figure 4-1).

The work plan currently states vertical injection well will injected with 30-40 gallons of EVO. Due to elevated sulfate levels, a minimum of 40 gallons will be injected into each well.

Table 4-1 (see attached) has been updated with new injection well identifiers and the sequencing has been removed. Injection wells at 6MW-22, 6MW-23, 6MW-24, and all infusion points can be injected at any time during field activities. Injection points 8, 9, and 13 should be injected a day prior to injecting points 7 and 12. The adjacent monitoring wells and injection points 7 and 12 should be monitored in between injections. The total volume of water to be injected at injection points 12 and 13 (6MW-20) will be reduced from 750 gallons to 600 gallons.

Injection Sequence	Injection Well ID	Associated Monitoring Well	Distance from Monitoring Well (ft)	Total Depth ^a (ft BGS)	Screen Interval ^b (ft BGS)	Filter Pack Length (ft)	Annular Seal Thickness (ft)	Grout Thickness to Surface (ft)
	1	6MW-23	8	9	4 - 9	5.5	2	1.5
	2	6MW-23	8	9	4 - 9	5.5	2	1.5
	3	6MW-22	8	9	4 - 9	5.5	2	1.5
	4	6MW-22	8	9	4 - 9	5.5	2	1.5
	5	6MW-24	8	9	4 - 9	5.5	2	1.5
	6	6MW-24	8	9	4 - 9	5.5	2	1.5
	7	6MW-25	8	9	6 - 9	3.5	2	3.5
	8	6MW-25	8	9	6 - 9	3.5	2	3.5
	9	6MW-25	8	9	6 - 9	3.5	2	3.5
	10	6MW-26	8	9	4 - 9	5.5	2	3.5
	11	6MW-26	8	9	4 - 9	5.5	2	3.5
	12	6MW-20	8	15	12 - 15	3.5	2	9.5
	13	6MW-20	8	15	12 - 15	3.5	2	9.5


Table 4-1. Injection Well Construction Details

^{*a*} Wells will be installed to bedrock. Exact depths are expected to vary slightly based on the observed depth to bedrock at each location.

^b For locations in which bedrock is determined to be less than 7 ft BGS, a 3 ft screen interval will be used.

BGS = Below ground surface

ID = Identification

APPENDIX B – WELL INSPECTION NOTES AND PHOTOGRAPH LOG

SITE 6 MONITORING WELL INVENTORY AND WELL INSPECTION NOTES

	Well Construction								
Well ID	Northing ^a (ft)	Easting ^a (ft)	TOC Elevation (ft AMSL)	Total Depth (ft BTOC)	Screened Interval (ft BGS)	Well Material	Completion Method	Condition/Note	Date Checked
6MW-20	4744646.706	588169.0988	305.44	18.0	5.0 - 15.0	2-in. PVC	Stick-up	Concrete pad and well plug in place. Labeled well	05/11 - 05/12/16
6MW-22	4744679.543	588163.2882	309.83	8.72	4.0 - 9.0	4-in. PVC	Flushmount	Concrete pad in place. Frost heave has moved well casing and pad slightly but has not impacted function. Well plug and gasket in place. Replaced missing bolts and labeled well	05/11 - 05/12/16
6MW-23	4744667.365	588151.3442	308.37	8.73	4.0 - 9.0	4-in. PVC	Flushmount	Concrete pad in place but undersized. Frost heave has moved well casing and pad prohibiting lid from bolting down. Well plug and damaged gasket in place. Replaced well plug with PVC cap to allow lid closure. Replaced missing bolts and labeled well. Well gasket needs to be replaced	05/11 - 05/12/16
6MW-24	4744689.912	588174.0884	310.60	8.54	4.0 - 9.0	4-in. PVC	Flushmount	Concrete pad in place. Well plug in place, but gasket is missing. Replaced missing bolts and labeled well. Well gasket needs to be replaced	05/11 - 05/12/16
6MW-25	4744658.403	588163.688	306.12	8.68	4.0 - 9.0	4-in. PVC	Flushmount	Concrete pad in place but undersized. Frost heave has moved well casing and pad prohibiting lid from bolting down. Well plug and damaged gasket in place. Replaced well plug with pipe plug to allow lid closure. Replaced missing bolts and labeled well. Well gasket needs to be replaced	05/11 - 05/12/16

Table B-1. Groundwater Monitoring Network and Inspection Details at IRP Site 6

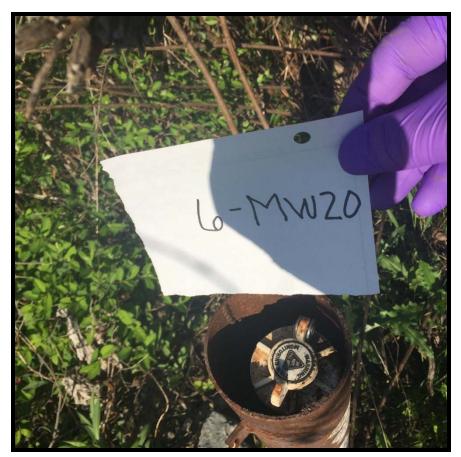
Table B-1. Groundwater Monitoring Network and Inspection Details at IRP Site 6 (continued)

			Well	Construction					
			TOC	Total	Screened				
			Elevation	Depth	Interval	Well	Completion		
Well ID	Northing ^a (ft)	Easting ^a (ft)	(ft AMSL)	(ft BTOC)	(ft BGS)	Material	Method	Condition/Note	Date Checked
6MW-26	4744666.032	588172.6357	307.05	8.59	4.0 - 9.0	4-in. PVC	Flushmount	Concrete pad in place but	05/11-05/12/16
								undersized. Frost heave has moved	
								well casing and pad prohibiting lid	
								from bolting down. Well plug and	
								damaged gasket in place. Replaced	
								well plug with PVC cap to allow lid	
								closure. Replaced missing bolts and	
								labeled well. Well gasket needs to	
								be replaced	

^a Horizontal coordinates shown are WGS84 UTM zone 18 north-meters.

AMSL = Above mean sea level.

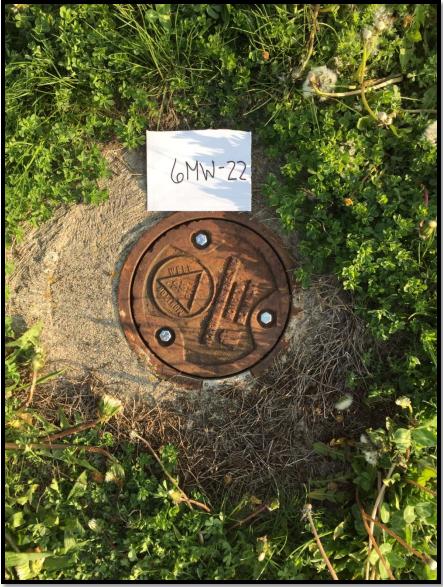
BGS = Below ground surface. BTOC = Below top of casing.


ID = Identifier.

IRP = Installation Restoration Program.

PVC = Polyvinyl chloride. TOC = Top of casing.

SITE 6 MONITORING WELL INSPECTION PHOTOGRAPH LOG


6MW-20

6MW-20

6MW-22

6MW-22

6MW-23

6MW-22 with replaced bolts (typical)

6MW-23

6MW-23

6MW-24

6MW-24

6MW-24

6MW-25

6MW-25 with new pipe plug

6MW-25 with new bolts (typical)

6MW-26

6MW-26 with new end cap

APPENDIX C – BASELINE GROUNDWATER MONITORING EVENT: PURGE LOGS AND ANALYTICAL RESULTS

SITE 6 BASELINE GROUNDWATER EVENT PURGE LOGS AND FIELD PARAMETERS

GROUND	WATER MICRO PURGE SHEET
PROJECT NAME: SCHENECTADY SITE 6	TASK ORDER 0004
DATE (mm/dd/yy): 5-11-16	TIME: 13 :06
WELL ID NUMBER: 6MW-20	WELL LOCATION: SITE 6
DEPTH OF SCREENED INTERVAL (toc notch): 5	ft. to15ft.
INNER CASING: TYPE: PVC or Steel	ID: 0.75 inches 2 inches 4 inches
WATER QUALITY METER ID: 0066010	
WATER LEVEL INDICATOR ID: GABMP30	
PUMP ID: 16356	
TURBIDITY ID: OO GG 010	
PIDID: na	
DEPTH TO WATER: 5,92' FT FRO	OM MEASURE POINT
DEPTH TO TOP OF SCREEN:5 FT FRC	DM MEASURE POINT Note: If the water table is below the top of screen, the
DEPTH TO PUMP INTAKE: 11.0'20 (see note) FT FRO	pump should be positioned in the middle of the water DM MEASURE POINT column.
	er Pump [X] Other Pump Type Perista (tic
PURGE START TIME: 1235	PURGE END TIME: 1306
TOTAL VOLUME PURGED: 1,85	
S&A PLAN SAMPLING PROCEDURE FOLLOWED: [×]	Yes [] No IF NO, WHY WAS A DEVIATION NECESSARY:
RECORDED BY: Signature)	QA CHECKED BY:

 \bigcirc

								WELL ID:	Gmw-	20
PROJECT	NAME: SC	<u> </u>	DY SITE 6			· · · · · · · · · · · · · · · · · · ·		TASK ORD	ER 0004	
TIME	LITERS REMOVED	PURGE RATE (mL/min)	ORP (mv)	TEMP (Celsius)	рН (s.u.)	COND (RECORD UNITS)	DO (mg/L)	TURBIDITY (NTU)	DEPTH TO WATER (FT BTOC)	COMMENT
1232	0	80	190	18,33	6.77	1.34 ms/cm or S/m	7.74	11.4	5.92'	
1245	0.8	80	186	18.76		1.31 ms/cm or S/m	5,42	0.0	6,91	
1248	0.95	50	182	18,95	6175	1.30 ms/cm or S/m	5.14	6.0	7.07	
<u>h251</u>	1.10	50	180	18.63	6.75	الار المراحة ا	4.78	0.0	7.12	
1254	1,25	50	176	18,45	6.75	1,30 ms/cm or S/m	4.38	0.1	7,19	
1257	1.40	50	176	18,00	6.75	1.30 ms/cm or S/m	4.07	0.0	7.26	
1300	1.55	50	174	19,53	6.75	J.29 ms/cm or S/m	3.72	0.0	7.29	<u></u>
1303	1.70	50	174	18.28	6.75	1,31 ms/cm or S/m	5.77	0.0	7.28	
1306	1.85	50	173	17.91	6.75	1.31 ms/cm or S/m	3,83	0.9	7.33	·····
						ms/cm or S/m				
						ms/cm or S/m				
						ms/cm or S/m				
					<u></u>	ms/cm or S/m				<u> </u>
	\leq	<u> </u>				ms/cm or S/m				
\leq						ms/cm or S/m				

•

GROUND	WATER MICRO PURGE SHEET
PROJECT NAME: SCHENECTADY SITE 6	TASK ORDER 0004
DATE (mm/dd/yy): 5-11-16	TIME: 15 : 01
WELL ID NUMBER: 6MW-22	WELL LOCATION: SITE 6
DEPTH OF SCREENED INTERVAL (toc notch): 4	ft. to <u>9</u> ft.
INNER CASING: TYPE: PVC or Steel	ID: 0.75 inches 2 inches 4 inches
WATER QUALITY METER ID: 0066010	
WATER LEVEL INDICATOR ID: GABMP30	
PUMPID: 16356	
TURBIDITY ID: 0066010	
PIDID: nla	
DEPTH TO WATER: 6,71 FT FF	ROM MEASURE POINT
DEPTH TO TOP OF SCREEN:	ROM MEASURE POINT Note: If the water table is below the top of screen, the pump should be positioned in the middle of the water
	ROM MEASURE POINT column.
PURGE/SAMPLE METHOD: [] Bailer [] Blade	der Pump [X] Other Pump Type Peristaltic
PURGE START TIME: 1억식O	PURGE END TIME: 150 /
TOTAL VOLUME PURGED: 1.682	
S&A PLAN SAMPLING PROCEDURE FOLLOWED:	Yes [] No IF NO, WHY WAS A DEVIATION NECESSARY:
(OM on behalf of) s127/16	
RECORDED BY: <u>Zach Steele</u> (Signature)	QA CHECKED BY: Quild (Signature)

		·		GROUN	ID WA	TER MICRO P	URGE	LOG	. <u>.</u>	
									6 MW	·22
PROJECT	NAME: SC	HENECTA	DY SITE 6					TASK ORD		
TIME	LITERS REMOVED	PURGE RATE (mL/min)	ORP (mv)	TEMP (Celsius)	рН (s.u.)	COND (RECORD UNITS)	DO (mg/L)	TURBIDITY (NTU)	DEPTH TO WATER (FT BTOC)	COMMENTS
1440	0.0	80	a17	18.55	6.64	1.54 ms/cmor S/m	12.32	25.5	6.71	
1443	6.24	80	214	18,42	4 .84	1.40 ms/cm or S/m	7.65	14.2	6.79	·
1446	0.418	80	211	18,52	6.87	1.42 ms/cm or S/m	6,34	7.5	6.84	
1449	0.72	हरु	205	18.75	6.87	1,42 ms/cm or S/m	5.44	0.0	6.87	
1452	0.96	Ø	201	18.73	6.87), -(2 ms/cm or S/m	5.38	0,0	6,87	
1455	1.20	80	198	18,71	6187	1,41 ms/cm or S/m	5,19	0.7	6.88	
1-158	1,44	80	197	18:73		1.11 ms/cm or S/m	5,13	0.0	6,88	
1501	1.68	80	194	18,78	6.87	1.40 ms/cm or S/m	4.78	0.0	6.89	
						ms/cm or S/m				
			<u> </u>			ms/cm or S/m				
						ms/cm or S/m				
					<u> . </u>	DRS/SOLOE-S/M				
<u></u>						ms/cm or S/m				
						ms/cm or S/m				
			\leq			ms/cm or S/m				
						ms/cm or S/m	i 			
RECO	ORDED BY:	. <u></u>	(Signatu	re)		QA CHECKED BY:		Du	(Signatu	fuellit

GROU	ND WATER MICRO PURGE SHEET
PROJECT NAME: SCHENECTADY SITE 6	TASK ORDER 0004
DATE (mm/dd/yy): 5-12-26	TIME: 09:55
WELL ID NUMBER: 6MW-23	WELL LOCATION: SITE 6
DEPTH OF SCREENED INTERVAL (toc notch):	4 ft. to <u>9</u> ft.
INNER CASING: TYPE: PVC or Steel	ID: 0.75 inches 2 inches 4 inches
WATER QUALITY METER ID: 00660	0
WATER LEVEL INDICATOR ID: GARMP	38
PUMP ID: 16356	
TURBIDITY ID: 00 GODTO	
PID ID: n/Ce	
DEPTH TO WATER: 6,3(FT FROM MEASURE POINT
	FT FROM MEASURE POINT Note: If the water table is below the top of screen, the
	pump should be positioned in the middle of the waterFT FROM MEASURE POINTcolumn.
	Bladder Pump [7] Other Pump Type Poristalfic
PURGE START TIME: 0925	PURGE END TIME: OFSS
TOTAL VOLUME PURGED: 3, 12	
S&A PLAN SAMPLING PROCEDURE FOLLOWED:	[͡] Yes [] No IF NO, WHY WAS A DEVIATION NECESSARY:
RECORDED BY:(Signature)	QA CHECKED BY: <u>Quick Multip</u> (Signature)

								WELL ID:	GMW-	·23
PROJECT	NAME: SC	HENECTA PURGE	DY SITE 6		_			TASK ORDI	ER 0004	······
TIME	LITERS REMOVED	RATE (mL/min)	ORP (mv)	TEMP (Celsius)	рН (s.u.)	COND (RECORD UNITS)	DO (mg/L)	TURBIDITY (NTU)	DEPTH TO WATER (FT BTOC)	COMMENTS
0925	0	100	245	14.4)	633	1.16 ms/cmor S/m	8.7a	15.7	6131	
0928	.30	100	165	13,62	6.88	117 ms/cm or S/m	4.25	18.6	6.31	
0931	.60	100	123	13.TT	le ille	1,16 ms/cm or S/m	4,05	12.2	6,31	
0934	.90	100	98	13,78	6,85],] @ ms/cm or S/m	3.98	10.9	6.31	
0937	1.20	100	51	13,90	6,85	1.15 ms/cm or S/m	3.73	11.3	6.31	
6940	1.5	100	23	14,06	6.85	1,15 ms/cm or S/m	3,54	11.5	6.31	
6943	1.8	100	17	14,00	6,85	1.)7 ms/cm or S/m	3.41	1119	6131	
0946	2.2	100	-17	13,74	6,89	1.15 ms/cm or S/m	3,29	11.4	6.31	
6949	2,5	100	-29	13.74	6,85	(, 13 ms/cm or S/m	3,27	11.9	6.31	
6952	2.8	601	-33	13,79	6.82	いろ ms/cm or S/m	3.24	13.5	6.31	
6955	3,1	100	-37	13,841	6,81	し、しみ ms/cm or S/m	3,20	14,1	6.31	<u>,</u> ,_
						ms/cm or S/m				
						ms/cm or S/m				
<u> </u>					- <u>-</u>	ms/cm c5/1				<u> </u>
						ms/cm or S/m	\mathcal{F}			<u>i</u>
						ms/cm or S/m				

(Signature)

GROUND WATER MICRO PURGE SHEET
PROJECT NAME: SCHENECTADY SITE 6 DELIVERY ORDER NO: 187 AND 190
DATE (mm/dd/yy): 05-12-16 TIME: 08:30
WELL ID NUMBER: 6MW-24 WELL LOCATION: SITE 6
DEPTH OF SCREENED INTERVAL (toc notch): 4.0 ft. to 9.0 ft.
INNER CASING: TYPE: PVC or Steel ID: 0.75 inches 2 inches 4 inches
WATER QUALITY METER ID: 0064010
WATER LEVEL INDICATOR ID: GABBARSS
PUMP ID: 16356
TURBIDITY ID: 006601/)
PID ID: MA
DEPTH TO WATER:
DEPTH TO TOP OF SCREEN: 4 FT FROM MEASURE POINT Note: If the water table is below the top of screen, the
DEPTH TO PUMP INTAKE: 7 5 (see note) FT FROM MEASURE POINT column.
PURGE/SAMPLE METHOD: [] Bailer [] Bladder Pump [] Other Pump Type Perista (tic
PURGE START TIME: 0916 PURGE END TIME: 0830
TOTAL VOLUME PURGED: 1+392
S&A PLAN SAMPLING PROCEDURE FOLLOWED: [天] Yes [] No IF NO, WHY WAS A DEVIATION NECESSARY:
RECORDED BY:QA CHECKED BY:

				GROU	ND WA	TER MICRO	PURGE	LOG		
								WELL ID:	GMW-	221
PROJECT	NAME: SC		DY SITE 6					TASK ORDI		<u> </u>
TIME	LITERS REMOVED	PURGE RATE (mL/min)	ORP (mv)	TEMP (Celsius)	рН (s.u.)	COND (RECORD UNITS)	DO (mg/L)	TURBIDITY (NTU)	DEPTH TO WATER (FT BTOC)	COMMENTS
08:16	0	90	258	9,64	6-82	1+31 (ms/cm)or S/m	9.71	38.2	7,245	
0ZZI	,49	90	255	5,52	7.14	1,28 ms/cm or S/m	9.02	20.7	57.5	
0824	,79	100	249	9,49	7.19	1.2.7 ms/cm or S/m	8.40	12.7	דר, ד	
0827	1.09	100	244	9.54	7.21	1.27 ms/cm or S/m	8,12	3.7	7,80	
6830	1.39	100	237	9.54	7,24	1,26 ms/cm or S/m	7.59	1,9	7.82	
			······································			ms/cm or S/m				
			·			ms/cm or S/m				
				<u> </u>		ms/cm or S/m				
						Distern or S/m			·	
						ms/cm or S/m			·	
<u> </u>			·		\leq	ms/cm or S/m				
<u> </u>			\langle			ms/cm or S/m				
		\square				ms/cm or S/m				
	\sim					ms/cm or S/m				
	/					ms/cm or S/m				
<u> </u>						ms/cm or S/m				
RECO	RDED BY:		(Signatu	re)		QA CHECKED BY:		Din	JA M. (Signature	

GROUND WATER MICRO PURGE SHEET
PROJECT NAME: SCHENECTADY SITE 6 TASK ORDER 0004
DATE (mm/dd/yy): <u>のS-11-16</u> TIME: <u>11</u> : <u>μ</u> の
WELL ID NUMBER: 6MW-25 WELL LOCATION: SITE 6
DEPTH OF SCREENED INTERVAL (toc notch): 4 ft. to 9 ft.
INNER CASING: TYPE: PVC or Steel ID: 0.75 inches 2 inches 4 inches
WATER QUALITY METER ID: 0066010
WATER LEVEL INDICATOR ID:) 63566
PUMPID: GABMP30 638
TURBIDITY ID: OOGGOIO
PIDID: nla
DEPTH TO WATER: 4.13 FT FROM MEASURE POINT
DEPTH TO TOP OF SCREEN: 4 FT FROM MEASURE POINT Note: If the water table is below the top of screen, the pump should be positioned in the middle of the water column. DEPTH TO PUMP INTAKE: 55 (see note) FT FROM MEASURE POINT Note: If the water table is below the top of screen, the pump should be positioned in the middle of the water column.
PURGE/SAMPLE METHOD: [] Bailer [] Bladder Pump [] Other Pump Type Peristaltic
PURGE START TIME: 1054 PURGE END TIME: 1140
TOTAL VOLUME PURGED: 4,74 L
S&A PLAN SAMPLING PROCEDURE FOLLOWED: 🛛 🔀 Yes [] No IF NO, WHY WAS A DEVIATION NECESSARY:
RECORDED BY: QA CHECKED BY: Dive Multis (Signature) (Signature)

GROUND WATER MICRO PURGE LOG											
								WELL ID:	6MW	-25	
PROJECT	NAME: SC		DY SITE 6	<u>.</u>	·			TASK ORD			
TIME	LITERS REMOVED	PURGE RATE (mL/min)	ORP (mv)	TEMP (Celsius)	рН (s.u.)	COND (RECORD UNITS)	DO (mg/L)	TURBIDITY (NTU)	DEPTH TO WATER (FT BTOC)	COMMENTS	
1054	0	110	144	14,38	6.86	1.gq ms/cm or S/m	5.29	51.9	4,13		
1104	1.1	110	101	14,42	6.87	1.90 ms/cm or S/m	4.52	44.9	4,13		
1109	1.65	110	72	14,33	6.87	1.91 ms/cm or S/m	4.22	39.9	4.13		
51/4	2.10	110	47	14,47	6.87	1.91 ms/cm or S/m	3.83	42.0	4.13		
1119	2.65	110	39	14,29	6.87	1,42 ms/cm or S/m	3,76	39.8	4,13		
1124	3.20	110	30	14.33	6.87	1.92 ms/cm or S/m	3,65	39.7	4.13	<u> </u>	
1129	3.75	116	15	14,40	6.87	1.92 ms/cm or S/m	3,62	40,4	4,13		
1132	4.08	110	14	14.62	6,87	1.12 ms/cm or S/m	3.42	38.9	4.13		
1137	4.41	110	13	14,58	6187	1.92 ms/cm or S/m	3.40	42.0	4,13		
1140	4.74	110	12	14,49	6.87	1.92 ms/cm or S/m	3,41	4016	4,13		
	·			. <u> </u>		ms/cm or S/m					
						ms/cm.or-S/m-					
					38	ms/cm or S/m		······			
						ms/cm or S/m					
·						ms/cm or S/m	·				
	r					ms/cm or S/m		·			
RECC	PRDED BY:		(Signatu	re)		QA CHECKED BY:	<u> </u>	Dui	(Signatu	Lulli e)	

·)

GROUND	WATER MICRO PURGE SHEET
PROJECT NAME: SCHENECTADY SITE 6	TASK ORDER 0004
DATE (mm/dd/yy): 05-11-16	TIME: 10:23
WELL ID NUMBER: 6MW-26	WELL LOCATION: SITE 6
DEPTH OF SCREENED INTERVAL (toc notch): 4.0	ft. to 9.0 ft.
INNER CASING: TYPE: PVC or Steel	ID: 0.75 inches 2 inches 4 inches
WATER QUALITY METER ID: 006010	
WATER LEVEL INDICATOR ID: GABMP30	
PUMPID: n/a PPz/6356	
TURBIDITY ID: 0066010	
PIDID: <u>nla</u>	
DEPTH TO WATER: 4,95 FT FRO	OM MEASURE POINT
	OM MEASURE POINT Note: If the water table is below the top of screen, the
DEPTH TO PUMP INTAKE:6.5 (see note) FT FR(pump should be positioned in the middle of the water
	er Pump [>] Other Pump Type _ <u>Peristalfic</u>
PURGE START TIME: 6938	PURGE END TIME: 1023
TOTAL VOLUME PURGED: 4,95L	
S&A PLAN SAMPLING PROCEDURE FOLLOWED:	[] Yes [] No IF NO, WHY WAS A DEVIATION NECESSARY:
RECORDED BY:(Signature)	QA CHECKED BY: Din Mullio (Signature)

				GROUN	ND WA	TER MICRO F	PURGE	LOG		<u>.</u>
DROIFCT								WELL ID:	<u>601</u>	1-26
PROJECT	NAME: SC		DY SILE 6		·····			TASK ORD	ER 0004	
	LITERS REMOVED	PURGE RATE (mL/min)	ORP (mv)	TEMP (Celsius)	рН (s.u.)	COND (RECORD UNITS)	DO (mg/L)	TURBIDITY (NTU)	DEPTH TO WATER (FT BTOC)	COMMENTS
0938	0	110	151	13.24	7.07	1.53 ms/cm or S/m	5.94	25.3	4.95'	
0948	1.1	110	123	12,82	7.86	1.50 ms/cm or S/m	4.61	2.5	4,95'	
0953	1.65	110	97	13.33	7.04	1,47 ms/cm or S/m	4.25	0,0	4.95'	
0458	3.2	110	77	13.40	7.03	1.45 ms/cm or S/m	4,04	0.0	4,95'	·
1003	2.75	110	60	13,54	7.05	1.52 ms/cm or S/m	4,27	3.9	4,97'	<u> </u>
1008	3.3	110	44	13.54	7,06	1,48 ms/cm or S/m	4,55	3.1	4.97'	
1013	3.85	110	42	13.69	7.05		3.92	312	4,97'	
1618	4,40	110	43	13.70	7,02		3,79	3.1	4.97'	·······
1023	4,95	110	43	13,73	7.01	1.43 ms/cm or S/m	3.77	3.0	4,97'	
				<u>_</u>	· 	ms/cm or S/m				
				,		ms/cm or S/m				
						ms/cm or s/m				
						ms/cm or S/m				
						ms/cm or S/m				
						ms/cm or S/m				
						ms/cm or S/m				
RECO	RDED BY:		Signatu	re)		QA CHECKED BY:		Au	(Signatu	Aultis

S. 2. 19

SITE 6 BASELINE GROUNDWATER EVENT ANALYTICAL DATA REPORTS

(FOR HARD COPY VERSIONS OF THIS REPORT, THIS PORTION OF APPENDIX C IS INCLUDED ON THE COMPLETE DOCUMENT COMPACT DISC) THIS PAGE WAS INTENTIONALLY LEFT BLANK.

ANALYTICAL REPORT

Job Number: 280-83161-1 Job Description: Schenectady ANGB, NY

> For: Leidos, Inc. 301 Laboratory Road Leidos SSC-AP LOC #47, MS 2113-03 Oak Ridge, TN 37830

Attention: Mr. Michael Poligone

Jessica Detterrera

Approved for release. Jessica H DeHerrera Project Manager I 5/31/2016 5:22 PM

Jessica H DeHerrera, Project Manager I 4955 Yarrow Street, Arvada, CO, 80002 jessica.deherrera@testamericainc.com 05/31/2016

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is 4025.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

NOTE - All references to Schenectady ANGB in this report should be Stratton ANGB

CASE NARRATIVE Client: Leidos, Inc. Project: Schenectady ANGB, NY Report Number: 280-83161-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 05/13/2016; the samples arrived in good condition, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.1°C and 1.8° C.

One of two coolers for this job was received without custody seal present, however packing tape was intact upon arrival. The laboratory will continue with analysis unless instructed otherwise by the client. The client was notified on 5/16/16.

One of three containers for the following sample was received broken: FB01 (280-83161-10). Sufficient volume was available to proceed with analysis for the sample. The client was notified on 5/16/16.

Due to a shipping delay, the following samples were received expired or with less than one shift (8 hours) remaining on a test with a holding time of 48 hours or less. As such, the laboratory had insufficient time remaining to perform the Nitrate by IC analysis within holding time: 6MW2601 (280-83161-4), 6MW2501 (280-83161-5), 6MW2001 (280-83161-6), 6MW2001MS (280-83161-6[MS]), 6MW2001MSD (280-83161-6[MSD]), 6MW2201 (280-83161-7) and 6MW2001D (280-83161-8). The client was contacted and the laboratory was instructed to proceed with analysis as long as it was performed within two times of the holding time. The client was notified on 5/16/16.

The Chain-of-Custody (COC) was incomplete as received. No analyses are marked on the Chain-of-Custody for sample FB01 (280-83161-10). The sample was logged for VOC analysis per the volume received.

The requested 8260C VOC analysis was subcontracted to TestAmerica's St. Louis laboratory.

VOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples 6MW2301 (280-83161-1), 6MW2401 (280-83161-2), TB02 (280-83161-3), 6MW2601 (280-83161-4), 6MW2501 (280-83161-5), 6MW2001 (280-83161-6), 6MW2201 (280-83161-7), 6MW2001D (280-83161-8), TB01 (280-83161-9) and FB01 (280-83161-10) were analyzed for Volatile Organic Compounds (GC/MS) in accordance with 8260C_DOD5. The samples were analyzed on 05/22/2016, 05/23/2016 and 05/24/2016.

The continuing calibration verification (CCV) associated with batch 160-252275 recovered above the upper control limit for 2,2-Dichloropropane. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The associated results have been flagged "Q".

The following compounds did not meet the minimum relative response factor limits in the continuing calibration verification (CCV) associated with batch 160-252275: Acetone and 2-Butanone (MEK). A low-level LOQV was analyzed at the reporting limit (5ug/L) and the affected analytes were detected. Target analytes recovering above the reporting limit will be qualified and reported.

The standard mix used to spike the CCVC for batch 160-252275 expired at the end of the day, 5/22/2016. The CCVC was spiked on 5/22 but did not inject on the instrument until after midnight, causing it to be flagged as using an expired standard. Analyte recoveries are within acceptance limits, indicating the standard had not degraded.

The continuing calibration verifications (CCV/CCVC) associated with batch 160-252588 recovered above the upper control limit for Chloromethane, Dichlorodifluoromethane and/or 2,2-Dichloropropane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated results have been flagged "Q".

The continuing calibration verification (CCV) associated with batch 160-252588 recovered above the upper control limit for Vinyl chloride. Vinyl chloride was detected above the Reporting Limit in sample Sample 6MW2501 (280-83161-5); this sample will be re-analyzed for Vinyl Chloride only, in a batch with an acceptable CCV for this analyte (160-25287). All other samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The following compounds did not meet the minimum relative response factor limits in the continuing calibration verifications (CCV/CCVC) associated with batch 160-252588: Acetone and 2-Butanone (MEK). A low-level LOQV was analyzed at the reporting limit (5ug/L) and

the affected analytes were detected. Target analytes recovering above the reporting limit will be qualified and reported.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with analytical batch 160-252878. A laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) were analyzed within this batch for QC purposes.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ANIONS (28 DAYS)

Samples 6MW2301 (280-83161-1), 6MW2401 (280-83161-2), 6MW2601 (280-83161-4), 6MW2501 (280-83161-5), 6MW2001 (280-83161-6), 6MW2201 (280-83161-7) and 6MW2001D (280-83161-8) were analyzed for anions (28 days) in accordance with 9056A. The samples were analyzed on 05/13/2016 and 05/14/2016.

Samples 6MW2301 (280-83161-1)[5X], 6MW2401 (280-83161-2)[5X], 6MW2601 (280-83161-4)[5X], 6MW2501 (280-83161-5)[5X], 6MW2001 (280-83161-6)[5X], 6MW2201 (280-83161-7)[5X] and 6MW2001D (280-83161-8)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Sulfate was detected in method blank MB 280-325180/6 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged "J". However, because the result concentration was less than ½ the reporting limit, no corrective action was necessary.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ANIONS (48 HOURS)

Samples 6MW2301 (280-83161-1), 6MW2401 (280-83161-2), 6MW2601 (280-83161-4), 6MW2501 (280-83161-5), 6MW2001 (280-83161-6), 6MW2201 (280-83161-7) and 6MW2001D (280-83161-8) were analyzed for anions (48 hours) in accordance with 9056A. The samples were analyzed on 05/13/2016 and 05/14/2016.

Nitrate was detected in method blank MB 280-325179/6 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged "J". However, because the result concentration was less than ½ the reporting limit, no corrective action was necessary.

As noted above, the following samples was received outside of holding time or with insufficient time remaining for analysis: 6MW2601 (280-83161-4), 6MW2501 (280-83161-5), 6MW2001 (280-83161-6), 6MW2001MS (280-83161-6[MS]), 6MW2001MSD (280-83161-6[MSD]), 6MW2201 (280-83161-7) and 6MW2001D (280-83161-8). The samples were analyzed outside of the analytical holding time per client request.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Samples 6MW2301 (280-83161-1), 6MW2401 (280-83161-2), 6MW2601 (280-83161-4), 6MW2501 (280-83161-5), 6MW2001 (280-83161-6), 6MW2201 (280-83161-7) and 6MW2001D (280-83161-8) were analyzed for total organic carbon in accordance with EPA SW-846 Method 9060A. The samples were analyzed on 05/24/2016 and 05/25/2016.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

EXECUTIVE SUMMARY - Detections

Client: Leidos, Inc.

Lab Sample ID	Client Sample ID			Reporting		
Analyte	onent Sample IB	Result	Qualifier		Units	Method
280-83161-1	6MW2301					
cis-1,2-Dichloroethe		13		5.0	ug/L	8260C DOD
Tetrachloroethene		3.0	J	5.0	ug/L	8260C DOD
Trichloroethene		1.7	J	5.0	ug/L	8260C DOD
Sulfate		200	D	25	mg/L	9056A
Total Organic Carbo	on - Quad	2.8		1.0	mg/L	9060A
280-83161-2	6MW2401					
cis-1,2-Dichloroethe		4.8	J	5.0	ug/L	8260C DOD
Trichloroethene		5.9		5.0	ug/L	8260C DOD
Nitrate		1.2		0.50	mg/L	9056A
Sulfate		360	D	25	mg/L	9056A
Total Organic Carbo	on - Quad	5.3		1.0	mg/L	9060A
280-83161-4	6MW2601					
cis-1,2-Dichloroethe	ne	6.6		5.0	ug/L	8260C DOD
Tetrachloroethene		1.2	J	5.0	ug/L	8260C DOD
Trichloroethene		1.1	J	5.0	ug/L	8260C DOD
Nitrate		0.28	JΗ	0.50	mg/L	9056A
Sulfate		320	D	25	mg/L	9056A
Total Organic Carbo	on - Quad	2.6		1.0	mg/L	9060A
280-83161-5	6MW2501					
cis-1,2-Dichloroethe		58		5.0	ug/L	8260C DOD
Tetrachloroethene		20		5.0	ug/L	8260C DOD
Trichloroethene		5.8		5.0	ug/L	8260C DOD
Vinyl chloride		21		5.0	ug/L	8260C DOD
Sulfate		820	D	25	mg/L	9056A
Total Organic Carbo	on - Quad	2.3		1.0	mg/L	9060A
280-83161-6	6MW2001					
cis-1,2-Dichloroethe		6.8		5.0	ug/L	8260C DOD
Tetrachloroethene		0.86	J	5.0	ug/L	8260C DOD
Trichloroethene		1.5	J	5.0	ug/L	8260C DOD
Sulfate		270	D	25	mg/L	9056A
Total Organic Carbo	on - Quad	2.8		1.0	mg/L	9060A

EXECUTIVE SUMMARY - Detections

Client: Leidos, Inc.

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-83161-7	6MW2201					
cis-1,2-Dichloroethe	ne	16		5.0	ug/L	8260C DOD
Tetrachloroethene		3.4	J	5.0	ug/L	8260C DOD
Trichloroethene		3.6	J	5.0	ug/L	8260C DOD
Nitrate		0.16	JΗ	0.50	mg/L	9056A
Sulfate		290	D	25	mg/L	9056A
Total Organic Carbo	n - Quad	2.5		1.0	mg/L	9060A
280-83161-8FD	6MW2001D					
cis-1,2-Dichloroethe	ne	7.0		5.0	ug/L	8260C DOD
Tetrachloroethene		1.3	J	5.0	ug/L	8260C DOD
Trichloroethene		1.5	J	5.0	ug/L	8260C DOD
Nitrate		0.060	JΗ	0.50	mg/L	9056A
Sulfate		270	D	25	mg/L	9056A
Total Organic Carbo	n - Quad	2.6		1.0	mg/L	9060A

METHOD SUMMARY

Client: Leidos, Inc.

Job Number: 280-83161-1

Description	Lab Location	Method Preparation Method
Matrix: Water		
Anions, Ion Chromatography	TAL DEN	SW846 9056A
Organic Carbon, Total (TOC)	TAL DEN	SW846 9060A
Volatile Organic Compounds (GC/MS)	TAL SL	SW846 8260C DOD
Purge and Trap	TAL SL	SW846 5030C
Lab References:		

TAL DEN = TestAmerica Denver

TAL SL = TestAmerica St. Louis

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Leidos, Inc.

Method	Analyst	Analyst ID
SW846 8260C DOD SW846 8260C DOD	Hann, John D Rhoades, Stephanie M	JDH SMR
SW846 9056A	Benson, Alex F	AFB
SW846 9060A	Jewell, Connie C	CCJ

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
280-83161-1	6MW2301	Water	05/12/2016 0955	05/13/2016 0950
280-83161-2	6MW2401	Water	05/12/2016 0830	05/13/2016 0950
280-83161-3TB	TB02	Water	05/12/2016 0800	05/13/2016 0950
280-83161-4	6MW2601	Water	05/11/2016 1023	05/13/2016 0950
280-83161-5	6MW2501	Water	05/11/2016 1140	05/13/2016 0950
280-83161-6	6MW2001	Water	05/11/2016 1306	05/13/2016 0950
280-83161-6MS	6MW2001MS	Water	05/11/2016 1306	05/13/2016 0950
280-83161-6MSD	6MW2001MSD	Water	05/11/2016 1306	05/13/2016 0950
280-83161-7	6MW2201	Water	05/11/2016 1501	05/13/2016 0950
280-83161-8FD	6MW2001D	Water	05/11/2016 1306	05/13/2016 0950
280-83161-9TB	TB01	Water	05/11/2016 0815	05/13/2016 0950
280-83161-10FB	FB01	Water	05/11/2016 1030	05/13/2016 0950

SAMPLE RESULTS

Analytical Data

Job Number: 280-83161-1

Client Sample ID:	6MW2301				
Lab Sample ID: Client Matrix:	280-83161-1 Water				mpled: 05/12/2016 0955 ceived: 05/13/2016 0950
		8260C DOD Volatile Org	anic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/22/2016 2127 05/22/2016 2127	Analysis Batch: Prep Batch:	160-252275 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	
Analyte		Result (u	g/L) Qualif	fier DL	LOQ
1,1,1,2-Tetrachlor		2.0	U	0.25	5.0
1,1,1-Trichloroetha		1.0	U	0.29	5.0
1,1,2,2-Tetrachlor		2.0	U	0.43	5.0
1,1,2-Trichloroetha		1.0	U	0.57	5.0
1,1-Dichloroethane		1.0	U	0.39	5.0
1,1-Dichloroethene		1.0	U	0.37	5.0
1,1-Dichloroproper		1.0	U	0.30	5.0
1,2,3-Trichloroben		2.0	U	0.65	5.0
1,2,3-Trichloroprop		1.0	U	0.56	5.0
1,2,4-Trimethylber		2.0	U	0.40	5.0
1,2-Dibromo-3-Ch		2.0	U	1.2	10
1,2-Dibromoethan		2.0	U	0.44	5.0
1,2-Dichloroethane		1.0	U	0.37	5.0
1,2-Dichloropropa		1.0	U	0.32	5.0
1,3,5-Trimethylber		2.0	U	0.28	5.0
1,3-Dichloropropa		1.0	U	0.24	5.0
2,2-Dichloropropa		2.0	UQ	0.54	5.0
2-Butanone (MEK))	5.0	U	0.39	20
2-Chlorotoluene		2.0	U	0.34	5.0
2-Hexanone		2.0	U	0.59	20
4-Chlorotoluene		2.0	U	0.31	5.0
4-Methyl-2-pentan	one (MIBK)	2.0	U	0.33	20
Acetone		10	U	6.7	20
Benzene		1.0	U	0.25	5.0
Bromobenzene		2.0	U	0.33	5.0
Bromochlorometha		2.0	U	0.55	5.0
Bromodichloromet	hane	2.0	U	0.25	5.0
Bromoform		1.0	U	0.37	5.0
Bromomethane		2.0	U	0.40	10
Carbon disulfide	4	1.0	U	0.37	5.0
Carbon tetrachlori	be	1.0	U	0.36	5.0
Chlorobenzene		1.0	U	0.38	5.0
Chloroethane		1.0	U	0.38	10
Chloroform Chloromethane		1.0	U	0.15	5.0
		2.0 13	U	0.55	10 5.0
cis-1,2-Dichloroeth		1.0	U	0.16 0.34	5.0
cis-1,3-Dichloropro	-				
Dibromochloromet Dibromomethane	liailt	1.0 2.0	U U	0.33 0.41	5.0 5.0
Dichlorodifluorome	thana	2.0		0.41	
		2.0	U U	0.45	10 5.0
Ethylbenzene				0.30	5.0 5.0
Isopropylbenzene		2.0	U	0.26	
m,p-Xylenes	hor	1.0	U		5.0
Methyl tert-butyl et		2.0 5.0	U U	0.40 1.7	5.0 7.5
Methylene Chlorid Naphthalene	6	2.0	U	0.85	7.5 5.0
Raphinalene		2.0	0	0.00	0.0

TestAmerica Denver

Page 10 of 72 C-28

Client:	Leidos,	Inc.
---------	---------	------

Analytical Data

Client Sample ID:	6MW2301					
Lab Sample ID:	280-83161-1				Date Sar	mpled: 05/12/2016 0955
Client Matrix:	Water				Date Re	ceived: 05/13/2016 0950
		8260C DOD Volatile Org	anic Com	pounds (0	GC/MS)	
Analysis Method:	8260C DOD	Analysis Batch:	160-2522	75	Instrument ID:	VMSF
Prep Method:	5030C	Prep Batch:	N/A		Lab File ID:	FSMP6618.D
Dilution:	1.0				Initial Weight/Volume:	
Analysis Date:	05/22/2016 2127				Final Weight/Volume:	5 mL
Prep Date:	05/22/2016 2127					
Analyte		Result (u	g/L)	Qualifie	er DL	LOQ
n-Butylbenzene		2.0	• /	U	0.23	5.0
N-Propylbenzene		2.0		U	0.30	5.0
o-Xylene		1.0		U	0.32	5.0
p-Isopropyltoluene	;	2.0		U	0.32	5.0
sec-Butylbenzene		2.0		U	0.31	5.0
Styrene		1.0		U	0.35	5.0
tert-Butylbenzene		2.0		U	0.31	5.0
Tetrachloroethene	;	3.0		J	0.28	5.0
Toluene		1.0		U	1.0	5.0
trans-1,2-Dichloro	ethene	1.0		U	0.18	5.0
trans-1,3-Dichloro	propene	1.0		U	0.35	5.0
Trichloroethene		1.7		J	0.29	5.0
Trichlorofluoromet	hane	2.0		U	0.22	5.0
Vinyl chloride		1.0		U	0.43	5.0
Xylenes (total)		5.0		U	0.85	10
Surrogate		%Rec		Qualifie	er Acceptar	nce Limits
1,2-Dichloroethan	e-d4 (Surr)	117			81 - 118	
4-Bromofluoroben		101			85 - 114	
Dibromofluoromet	hane (Surr)	103			80 - 119	
Toluene-d8 (Surr)		100			89 - 112	

Analytical Data

Job Number: 280-83161-1

Client Sample ID:	6MW2401				
Lab Sample ID: Client Matrix:	280-83161-2 Water				mpled: 05/12/2016 0830 ceived: 05/13/2016 0950
	8	260C DOD Volatile Org	anic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/22/2016 2152 05/22/2016 2152	Analysis Batch: Prep Batch:	160-252275 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMSF FSMP6619.D 5 mL 5 mL
Analyte		Result (u			LOQ
1,1,1,2-Tetrachlor		2.0	U	0.25	5.0
1,1,1-Trichloroetha		1.0	U	0.29	5.0
1,1,2,2-Tetrachlor	pethane	2.0	U	0.43	5.0
1,1,2-Trichloroetha	ane	1.0	U	0.57	5.0
1,1-Dichloroethane	9	1.0	U	0.39	5.0
1,1-Dichloroethene	e	1.0	U	0.37	5.0
1,1-Dichloroproper	ne	1.0	U	0.30	5.0
1,2,3-Trichloroben	zene	2.0	U	0.65	5.0
1,2,3-Trichloroprop		1.0	U	0.56	5.0
1,2,4-Trimethylber		2.0	U	0.40	5.0
1,2-Dibromo-3-Ch		2.0	U	1.2	10
1,2-Dibromoethan		2.0	U	0.44	5.0
1,2-Dichloroethane		1.0	U	0.37	5.0
1,2-Dichloropropa		1.0	U	0.32	5.0
1,3,5-Trimethylber		2.0	Ŭ	0.28	5.0
1,3-Dichloropropa		1.0	U	0.24	5.0
2,2-Dichloropropa		2.0	UQ	0.54	5.0
2-Butanone (MEK)		5.0	U	0.39	20
2-Chlorotoluene		2.0	U	0.34	5.0
2-Hexanone		2.0	Ŭ	0.59	20
4-Chlorotoluene		2.0	Ŭ	0.31	5.0
4-Methyl-2-pentan	one (MIBK)	2.0	Ŭ	0.33	20
Acetone		10	Ŭ	6.7	20
Benzene		1.0	Ŭ	0.25	5.0
Bromobenzene		2.0	Ŭ	0.33	5.0
Bromochlorometha	ane	2.0	Ŭ	0.55	5.0
Bromodichloromet		2.0	Ŭ	0.25	5.0
Bromoform	indire	1.0	Ŭ	0.37	5.0
Bromomethane		2.0	U	0.40	10
Carbon disulfide		1.0	Ŭ	0.37	5.0
Carbon tetrachlori	de	1.0	Ŭ	0.36	5.0
Chlorobenzene		1.0	Ŭ	0.38	5.0
Chloroethane		1.0	Ŭ	0.38	10
Chloroform		1.0	Ŭ	0.15	5.0
Chloromethane		2.0	Ŭ	0.55	10
cis-1,2-Dichloroeth	iene	4.8	J	0.16	5.0
cis-1,3-Dichloropro		1.0	Ŭ	0.34	5.0
Dibromochloromet	-	1.0	U	0.34	5.0
Dibromomethane		2.0	U	0.33	5.0
Dichlorodifluorome	thang	2.0	U	0.41	10
Ethylbenzene		2.0 1.0	U	0.45	5.0
•		2.0	U	0.26	5.0
Isopropylbenzene		2.0 1.0	U	0.28	5.0
m,p-Xylenes	thor		U		
Methyl tert-butyl el		2.0		0.40	5.0 7.5
Methylene Chlorid	c	5.0	U	1.7	7.5
Naphthalene		2.0	U	0.85	5.0

TestAmerica Denver

Page 12 of 72 C-30

Analytical Data

Client Sample ID	: 6MW2401					
Lab Sample ID:	280-83161-2					mpled: 05/12/2016 0830
Client Matrix:	Water				Date Re	ceived: 05/13/2016 0950
	82	:60C DOD Volatile Org	janic Com	pounds (0	GC/MS)	
Analysis Method:	8260C DOD	Analysis Batch:	160-2522	275	Instrument ID:	VMSF
Prep Method:	5030C	Prep Batch:	N/A		Lab File ID:	FSMP6619.D
Dilution:	1.0	I			Initial Weight/Volume:	5 mL
Analysis Date:	05/22/2016 2152				Final Weight/Volume:	
Prep Date:	05/22/2016 2152					
Analyte		Result (u	a/L)	Qualifie	er DL	LOQ
n-Butylbenzene		2.0	5 /	U	0.23	5.0
N-Propylbenzene		2.0		U	0.30	5.0
o-Xylene		1.0		Ū	0.32	5.0
p-lsopropyltoluene	9	2.0		U	0.32	5.0
sec-Butylbenzene		2.0		U	0.31	5.0
Styrene		1.0		U	0.35	5.0
tert-Butylbenzene		2.0		U	0.31	5.0
Tetrachloroethene	;	1.0		U	0.28	5.0
Toluene		1.0		U	1.0	5.0
trans-1,2-Dichloro	ethene	1.0		U	0.18	5.0
trans-1,3-Dichloro	propene	1.0		U	0.35	5.0
Trichloroethene		5.9			0.29	5.0
Trichlorofluoromet	hane	2.0		U	0.22	5.0
Vinyl chloride		1.0		U	0.43	5.0
Xylenes (total)		5.0		U	0.85	10
Surrogate		%Rec		Qualifie	er Accepta	nce Limits
1,2-Dichloroethan		105			81 - 118	
4-Bromofluoroben		101			85 - 114	
Dibromofluoromet	hane (Surr)	99			80 - 119	
Toluene-d8 (Surr)		99			89 - 112	

Analytical Data

Job Number: 280-83161-1

Client Sample ID:	тв02							
Lab Sample ID: Client Matrix:	280-83161-3TB Water				mpled: 05/12/2016 0800 ceived: 05/13/2016 0950			
8260C DOD Volatile Organic Compounds (GC/MS)								
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/22/2016 2010 05/22/2016 2010	Analysis Batch: Prep Batch:	160-252275 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:				
Analyte		Result (u	g/L) Quali	fier DL	LOQ			
1,1,1,2-Tetrachlor	oethane	2.0	U	0.25	5.0			
1,1,1-Trichloroetha		1.0	U	0.29	5.0			
1,1,2,2-Tetrachlor		2.0	U	0.43	5.0			
1,1,2-Trichloroetha		1.0	U	0.57	5.0			
1,1-Dichloroethane		1.0	U	0.39	5.0			
1,1-Dichloroethene		1.0	U	0.37	5.0			
1,1-Dichloroprope		1.0	U	0.30	5.0			
1,2,3-Trichloroben	zene	2.0	U	0.65	5.0			
1,2,3-Trichloropro	pane	1.0	U	0.56	5.0			
1,2,4-Trimethylber	nzene	2.0	U	0.40	5.0			
1,2-Dibromo-3-Ch	loropropane	2.0	U	1.2	10			
1,2-Dibromoethan	e	2.0	U	0.44	5.0			
1,2-Dichloroethan	е	1.0	U	0.37	5.0			
1,2-Dichloropropa	ne	1.0	U	0.32	5.0			
1,3,5-Trimethylber	nzene	2.0	U	0.28	5.0			
1,3-Dichloropropa	ne	1.0	U	0.24	5.0			
2,2-Dichloropropa	ne	2.0	UQ	0.54	5.0			
2-Butanone (MEK)	5.0	U	0.39	20			
2-Chlorotoluene		2.0	U	0.34	5.0			
2-Hexanone		2.0	U	0.59	20			
4-Chlorotoluene		2.0	U	0.31	5.0			
4-Methyl-2-pentan	one (MIBK)	2.0	U	0.33	20			
Acetone		10	U	6.7	20			
Benzene		1.0	U	0.25	5.0			
Bromobenzene		2.0	U	0.33	5.0			
Bromochlorometha	ane	2.0	U	0.55	5.0			
Bromodichloromet	hane	2.0	U	0.25	5.0			
Bromoform		1.0	U	0.37	5.0			
Bromomethane		2.0	U	0.40	10			
Carbon disulfide		1.0	U	0.37	5.0			
Carbon tetrachlori	de	1.0	U	0.36	5.0			
Chlorobenzene		1.0	U	0.38	5.0			
Chloroethane		1.0	U	0.38	10			
Chloroform		1.0	U	0.15	5.0			
Chloromethane		2.0	U	0.55	10			
cis-1,2-Dichloroeth	nene	1.0	U	0.16	5.0			
cis-1,3-Dichloropro		1.0	U	0.34	5.0			
Dibromochloromet	thane	1.0	U	0.33	5.0			
Dibromomethane		2.0	U	0.41	5.0			
Dichlorodifluorome	ethane	2.0	U	0.45	10			
Ethylbenzene		1.0	U	0.30	5.0			
Isopropylbenzene		2.0	U	0.26	5.0			
m,p-Xylenes		1.0	Ŭ	0.57	5.0			
Methyl tert-butyl e	ther	2.0	Ŭ	0.40	5.0			
Methylene Chlorid		5.0	Ŭ	1.7	7.5			
Naphthalene		2.0	U	0.85	5.0			
•			-					

TestAmerica Denver

Page 14 of 72 C-32

Analytical Data

Client Sample ID:	TB02					
Lab Sample ID: Client Matrix:	280-83161-3TB Water					npled: 05/12/2016 0800 ceived: 05/13/2016 0950
	82	260C DOD Volatile Org	anic Compo	unds (C	GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/22/2016 2010 05/22/2016 2010	Analysis Batch: Prep Batch:	160-252275 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMSF FSMP6615.D 5 mL 5 mL
Analyte		Result (u	g/L)	Qualifie	r DL	LOQ
n-Butylbenzene		2.0		U	0.23	5.0
N-Propylbenzene		2.0		U	0.30	5.0
o-Xylene		1.0		U	0.32	5.0
p-Isopropyltoluene	;	2.0		U	0.32	5.0
sec-Butylbenzene		2.0		U	0.31	5.0
Styrene		1.0		U	0.35	5.0
tert-Butylbenzene		2.0		U	0.31	5.0
Tetrachloroethene	:	1.0		U	0.28	5.0
Toluene		1.0		U	1.0	5.0
trans-1,2-Dichloro	ethene	1.0		U	0.18	5.0
trans-1,3-Dichloro	propene	1.0		U	0.35	5.0
Trichloroethene		1.0		U	0.29	5.0
Trichlorofluoromet	hane	2.0		U	0.22	5.0
Vinyl chloride		1.0		U	0.43	5.0
Xylenes (total)		5.0		U	0.85	10
Surrogate		%Rec		Qualifie		nce Limits
1,2-Dichloroethan	e-d4 (Surr)	108			81 - 118	
4-Bromofluoroben	zene (Surr)	99			85 - 114	
Dibromofluoromet	hane (Surr)	96			80 - 119	
Toluene-d8 (Surr)		98			89 - 112	

Analytical Data

Job Number: 280-83161-1

Client Sample ID:	6MW2601				
Lab Sample ID: Client Matrix:	280-83161-4 Water				mpled: 05/11/2016 1023 ceived: 05/13/2016 0950
	8	260C DOD Volatile Org	anic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/23/2016 0015 05/23/2016 0015	Analysis Batch: Prep Batch:	160-252275 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	
Analyte		Result (u	g/L) Qualif	ïer DL	LOQ
1,1,1,2-Tetrachlor	oethane	2.0	U	0.25	5.0
1,1,1-Trichloroetha	ane	1.0	U	0.29	5.0
1,1,2,2-Tetrachlor	oethane	2.0	U	0.43	5.0
1,1,2-Trichloroetha	ane	1.0	U	0.57	5.0
1,1-Dichloroethan	е	1.0	U	0.39	5.0
1,1-Dichloroethene	е	1.0	U	0.37	5.0
1,1-Dichloroprope		1.0	U	0.30	5.0
1,2,3-Trichloroben		2.0	U	0.65	5.0
1,2,3-Trichloropro		1.0	Ŭ	0.56	5.0
1,2,4-Trimethylber		2.0	U	0.40	5.0
1,2-Dibromo-3-Ch		2.0	Ŭ	1.2	10
1,2-Dibromoethan		2.0	Ŭ	0.44	5.0
1,2-Dichloroethan		1.0	Ŭ	0.37	5.0
1,2-Dichloropropa		1.0	Ŭ	0.32	5.0
1,3,5-Trimethylber		2.0	Ŭ	0.28	5.0
1,3-Dichloropropa		1.0	Ŭ	0.24	5.0
2,2-Dichloropropa		2.0	ŬQ	0.54	5.0
2-Butanone (MEK		5.0	U	0.39	20
2-Chlorotoluene)	2.0	U	0.34	5.0
2-Hexanone		2.0	Ŭ	0.59	20
4-Chlorotoluene		2.0	U	0.31	5.0
4-Methyl-2-pentan	one (MIRK)	2.0	U	0.33	20
Acetone		10	U	6.7	20
Benzene		1.0	U	0.25	5.0
Bromobenzene		2.0	U	0.23	5.0
Bromochlorometha	200	2.0	U	0.55	5.0
Bromodichloromet		2.0	U	0.25	5.0
Bromoform	liane	1.0	U	0.25	5.0
Bromomethane		2.0	U	0.40	10
Carbon disulfide		1.0	U	0.40	5.0
Carbon tetrachlori	do	1.0	U	0.36	5.0
	ue				
Chlorobenzene Chloroethane		1.0 1.0	U U	0.38 0.38	5.0 10
			U	0.38	
Chloroform		1.0			5.0
Chloromethane	2020	2.0	U	0.55	10
cis-1,2-Dichloroeth		6.6		0.16	5.0
cis-1,3-Dichloropro	•	1.0	U	0.34	5.0
Dibromochloromet	linane	1.0	U	0.33	5.0
Dibromomethane	- 41	2.0	U	0.41	5.0
Dichlorodifluorome	etnane	2.0	U	0.45	10
Ethylbenzene		1.0	U	0.30	5.0
Isopropylbenzene		2.0	U	0.26	5.0
m,p-Xylenes		1.0	U	0.57	5.0
Methyl tert-butyl e		2.0	U	0.40	5.0
Methylene Chlorid	e	5.0	U	1.7	7.5
Naphthalene		2.0	U	0.85	5.0

TestAmerica Denver

Page 16 of 72 C-34

Analytical Data

Client Sample ID:	6MW2601					
Lab Sample ID:	280-83161-4				Date Sa	ampled: 05/11/2016 1023
Client Matrix:	Water				Date R	eceived: 05/13/2016 0950
	8	3260C DOD Volatile Org	anic Comp	oounds (GC/MS)	
Analysis Method:	8260C DOD	Analysis Batch:	160-2522	75	Instrument ID:	VMSF
Prep Method:	5030C	Prep Batch:	N/A		Lab File ID:	FSMP6624.D
Dilution:	1.0	I.			Initial Weight/Volume	: 5 mL
Analysis Date:	05/23/2016 0015				Final Weight/Volume	
Prep Date:	05/23/2016 0015					•=
Analyte		Result (u	a/L)	Qualifie	er DL	LOQ
n-Butylbenzene		2.0	g/∟)	U	0.23	5.0
N-Propylbenzene		2.0		U	0.20	5.0
o-Xylene		1.0		U	0.32	5.0
p-lsopropyltoluene	`	2.0		U	0.32	5.0
sec-Butylbenzene	•	2.0		Ŭ	0.31	5.0
Styrene		1.0		Ŭ	0.35	5.0
tert-Butylbenzene		2.0		Ŭ	0.31	5.0
Tetrachloroethene	1	1.2		J	0.28	5.0
Toluene		1.0		U	1.0	5.0
trans-1,2-Dichloro	ethene	1.0		U	0.18	5.0
trans-1,3-Dichloro		1.0		U	0.35	5.0
Trichloroethene		1.1		J	0.29	5.0
Trichlorofluoromet	hane	2.0		U	0.22	5.0
Vinyl chloride		1.0		U	0.43	5.0
Xylenes (total)		5.0		U	0.85	10
Surrogate		%Rec		Qualifie	er Accepta	ance Limits
1,2-Dichloroethan	e-d4 (Surr)	110			81 - 118	3
4-Bromofluoroben		102			85 - 114	1
Dibromofluoromet		102			80 - 119)
Toluene-d8 (Surr)		102	89 - 112		2	
. ,						

Analytical Data

Job Number: 280-83161-1

Client Sample ID:	6MW2501				
Lab Sample ID: Client Matrix:	280-83161-5 Water				mpled: 05/11/2016 1140 ceived: 05/13/2016 0950
	82	260C DOD Volatile Org	ganic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/23/2016 1847 05/23/2016 1847	Analysis Batch: Prep Batch:	160-252588 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMSF FSMP6656.D 5 mL 5 mL
Analyte		Result (u	ıg/L) Qualif	fier DL	LOQ
1,1,1,2-Tetrachlor	pethane	2.0	U	0.25	5.0
1,1,1-Trichloroetha		1.0	U	0.29	5.0
1,1,2,2-Tetrachlor		2.0	U	0.43	5.0
1,1,2-Trichloroetha		1.0	U	0.57	5.0
1,1-Dichloroethane		1.0	U	0.39	5.0
1,1-Dichloroethene		1.0	U	0.37	5.0
1,1-Dichloroproper		1.0	U	0.30	5.0
1,2,3-Trichloroben		2.0	U	0.65	5.0
1,2,3-Trichloroprop		1.0	U	0.56	5.0
1,2,4-Trimethylber		2.0	U	0.40	5.0
1,2-Dibromo-3-Ch		2.0	U	1.2	10
1,2-Dibromoethan		2.0 1.0	U U	0.44 0.37	5.0 5.0
1,2-Dichloroethane 1,2-Dichloropropa		1.0	U	0.32	5.0
1,3,5-Trimethylber		2.0	U	0.32	5.0
1,3-Dichloropropa		1.0	U	0.24	5.0
2,2-Dichloropropa		2.0	ŬQ	0.54	5.0
2-Butanone (MEK)		5.0	Ű	0.39	20
2-Chlorotoluene		2.0	Ŭ	0.34	5.0
2-Hexanone		2.0	Ŭ	0.59	20
4-Chlorotoluene		2.0	Ŭ	0.31	5.0
4-Methyl-2-pentan	one (MIBK)	2.0	U	0.33	20
Acetone		10	U	6.7	20
Benzene		1.0	U	0.25	5.0
Bromobenzene		2.0	U	0.33	5.0
Bromochlorometha	ane	2.0	U	0.55	5.0
Bromodichloromet	hane	2.0	U	0.25	5.0
Bromoform		1.0	U	0.37	5.0
Bromomethane		2.0	U	0.40	10
Carbon disulfide		1.0	U	0.37	5.0
Carbon tetrachlori	de	1.0	U	0.36	5.0
Chlorobenzene		1.0	U	0.38	5.0
Chloroethane		1.0	U	0.38	10
Chloroform		1.0	U	0.15	5.0
Chloromethane		2.0	UQ	0.55	10
cis-1,2-Dichloroeth		58 1.0	U	0.16 0.34	5.0 5.0
cis-1,3-Dichloropro Dibromochloromet	-	1.0	U	0.34	5.0
Dibromomethane		2.0	U	0.33	5.0
Dichlorodifluorome	thane	2.0	UQ	0.45	10
Ethylbenzene		1.0	U	0.30	5.0
Isopropylbenzene		2.0	U	0.26	5.0
m,p-Xylenes		1.0	U	0.57	5.0
Methyl tert-butyl ef	ther	2.0	U	0.40	5.0
Methylene Chlorid		5.0	Ŭ	1.7	7.5
Naphthalene		2.0	Ŭ	0.85	5.0

TestAmerica Denver

Analytical Data

Client Sample ID	6MW2501					
Lab Sample ID: Client Matrix:	280-83161-5 Water				Date Sampled: 05/ Date Received: 05/	
		8260C DOD Volatile Org	janic Compound	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/23/2016 1847 05/23/2016 1847	Analysis Batch: Prep Batch:	160-252588 N/A	Instrument ID Lab File ID: Initial Weight Final Weight/	FSMP66 /Volume: 5 mL	56.D
Analyte		Result (u	g/L) Qu	alifier DL	LOG	2
n-Butylbenzene		2.0	U	0.23	5.0	
N-Propylbenzene		2.0	U	0.30		
o-Xylene		1.0	U	0.32		
p-Isopropyltoluene	9	2.0	U	0.32		
sec-Butylbenzene		2.0	U	0.31		
Styrene		1.0	U	0.35		
tert-Butylbenzene		2.0	U	0.31		
Tetrachloroethene	ł	20		0.28		
Toluene		1.0	U	1.0	5.0	
trans-1,2-Dichloro		1.0	U	0.18		
trans-1,3-Dichloro	propene	1.0	U	0.35		
Trichloroethene		5.8		0.29		
Trichlorofluoromet	hane	2.0	U	0.22		
Xylenes (total)		5.0	U	0.85	5 10	
Surrogate		%Rec	Qu	alifier	Acceptance Limits	
1,2-Dichloroethan		107			81 - 118	
4-Bromofluoroben		97			85 - 114	
Dibromofluoromet	hane (Surr)	95		80 - 119		
Toluene-d8 (Surr)		100			89 - 112	

Analytical Data

Client: Leidos, Inc.

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Job Number: 280-83161-1

85 - 114

80 - 119 89 - 112

Client Sample ID: Lab Sample ID: Client Matrix:	6 MW2501 280-83161-5 Water					mpled: 05/11/2016 1140 cceived: 05/13/2016 0950
	8	260C DOD Volatile Org	ganic Compo	ounds (G	GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/24/2016 1807 05/24/2016 1807	Analysis Batch: Prep Batch:	160-252878 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	
Analyte		Result (u	ıg/L)	Qualifie	r DL	LOQ
Vinyl chloride		21			0.43	5.0
Surrogate		%Rec		Qualifie	r Accepta	nce Limits
1,2-Dichloroethan	e-d4 (Surr)	116			81 - 118	

101

102

Analytical Data

Job Number: 280-83161-1

Client Sample ID:	6MW2001				
Lab Sample ID: Client Matrix:	280-83161-6 Water				ampled: 05/11/2016 130 eceived: 05/13/2016 095
		8260C DOD Volatile Org	anic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/22/2016 2233 05/22/2016 2233	Analysis Batch: Prep Batch:	160-252275 N/A	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume:	
Analyte		Result (u	g/L) Qualif	ïer DL	LOQ
1,1,1,2-Tetrachloro	ethane	2.0	U	0.25	5.0
1,1,1-Trichloroetha	ne	1.0	U	0.29	5.0
1,1,2,2-Tetrachloro	ethane	2.0	U	0.43	5.0
1,1,2-Trichloroetha	ne	1.0	U	0.57	5.0
1,1-Dichloroethane	;	1.0	U	0.39	5.0
1,1-Dichloroethene	;	1.0	U	0.37	5.0
1,1-Dichloroproper	ne	1.0	U	0.30	5.0
1,2,3-Trichlorobenz	zene	2.0	U	0.65	5.0
1,2,3-Trichloroprop	ane	1.0	U	0.56	5.0
1,2,4-Trimethylben	zene	2.0	U	0.40	5.0
1,2-Dibromo-3-Chl	oropropane	2.0	U	1.2	10
1,2-Dibromoethane	9	2.0	U	0.44	5.0
1,2-Dichloroethane	;	1.0	U	0.37	5.0
1,2-Dichloropropar	ne	1.0	U	0.32	5.0
1,3,5-Trimethylben	zene	2.0	U	0.28	5.0
1,3-Dichloropropar	ne	1.0	U	0.24	5.0
2,2-Dichloropropar	ne	2.0	UQ	0.54	5.0
2-Butanone (MEK)		5.0	U	0.39	20
2-Chlorotoluene		2.0	U	0.34	5.0
2-Hexanone		2.0	U	0.59	20
4-Chlorotoluene		2.0	U	0.31	5.0
4-Methyl-2-pentance	one (MIBK)	2.0	U	0.33	20
Acetone		10	U	6.7	20
Benzene		1.0	U	0.25	5.0
Bromobenzene		2.0	U	0.33	5.0
Bromochlorometha	ine	2.0	U	0.55	5.0
Bromodichlorometh	nane	2.0	U	0.25	5.0
Bromoform		1.0	U	0.37	5.0
Bromomethane		2.0	U	0.40	10
Carbon disulfide		1.0	U	0.37	5.0
Carbon tetrachloric	le	1.0	U	0.36	5.0
Chlorobenzene		1.0	U	0.38	5.0
Chloroethane		1.0	U	0.38	10
Chloroform		1.0	U	0.15	5.0
Chloromethane		2.0	U	0.55	10
cis-1,2-Dichloroeth		6.8		0.16	5.0
cis-1,3-Dichloropro		1.0	U	0.34	5.0
Dibromochloromet	hane	1.0	U	0.33	5.0
Dibromomethane		2.0	U	0.41	5.0
Dichlorodifluorome	thane	2.0	U	0.45	10
Ethylbenzene		1.0	U	0.30	5.0
Isopropylbenzene		2.0	U	0.26	5.0
m,p-Xylenes		1.0	U	0.57	5.0
Methyl tert-butyl et		2.0	U	0.40	5.0
Mathulana Chlarida	9	5.0	U	1.7	7.5
Methylene Chloride Naphthalene		2.0	U	0.85	5.0

TestAmerica Denver

Page 21 of 72 C-39

Analytical Data

Client Sample ID:	6MW2001					
Lab Sample ID: Client Matrix:	280-83161-6 Water					mpled: 05/11/2016 1306 ceived: 05/13/2016 0950
	82	260C DOD Volatile Org	anic Com	pounds (GC/MS)	
Analysis Method:	8260C DOD	Analysis Batch:	160-2522		Instrument ID:	VMSF
Prep Method:	5030C	Prep Batch:	N/A	275	Lab File ID:	FSMP6620.D
Dilution:	1.0	Thep balon.			Initial Weight/Volume:	
Analysis Date:	05/22/2016 2233				Final Weight/Volume:	5 mL
•					Final Weight/Volume.	5 IIIL
Prep Date:	05/22/2016 2233					
Analyte		Result (u	g/L)	Qualifie	er DL	LOQ
n-Butylbenzene		2.0		U	0.23	5.0
N-Propylbenzene		2.0		U	0.30	5.0
o-Xylene		1.0		U	0.32	5.0
p-Isopropyltoluene	;	2.0		U	0.32	5.0
sec-Butylbenzene		2.0		U	0.31	5.0
Styrene		1.0		U	0.35	5.0
tert-Butylbenzene		2.0		U	0.31	5.0
Tetrachloroethene		0.86		J	0.28	5.0
Toluene		1.0		U	1.0	5.0
trans-1,2-Dichloro		1.0		U	0.18	5.0
trans-1,3-Dichloro	propene	1.0		U	0.35	5.0
Trichloroethene		1.5		J	0.29	5.0
Trichlorofluoromet	hane	2.0		U	0.22	5.0
Vinyl chloride		1.0		U	0.43	5.0
Xylenes (total)		5.0		U	0.85	10
Surrogate		%Rec		Qualifie	er Acceptar	nce Limits
1,2-Dichloroethan	e-d4 (Surr)	111			81 - 118	
4-Bromofluoroben		101		85 - 114		
Dibromofluoromet		99			80 - 119	
Toluene-d8 (Surr)		100			89 - 112	
. ,						

Job Number: 280-83161-1

Client Sample ID:	6MW2201				
Lab Sample ID: Client Matrix:	280-83161-7 Water				mpled: 05/11/2016 1501 ceived: 05/13/2016 0950
		8260C DOD Volatile Org	anic Compounds ((GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/23/2016 1913 05/23/2016 1913	Analysis Batch: Prep Batch:	160-252588 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	
Analyte		Result (u	g/L) Qualifi	ïer DL	LOQ
1,1,1,2-Tetrachloro	pethane	2.0	U	0.25	5.0
1,1,1-Trichloroetha	ane	1.0	U	0.29	5.0
1,1,2,2-Tetrachloro	pethane	2.0	U	0.43	5.0
1,1,2-Trichloroetha	ane	1.0	U	0.57	5.0
1,1-Dichloroethane	e	1.0	U	0.39	5.0
1,1-Dichloroethene	e	1.0	U	0.37	5.0
1,1-Dichloroproper	ne	1.0	U	0.30	5.0
1,2,3-Trichloroben		2.0	U	0.65	5.0
1,2,3-Trichloroprop		1.0	U	0.56	5.0
1,2,4-Trimethylber		2.0	U	0.40	5.0
1,2-Dibromo-3-Chl		2.0	Ŭ	1.2	10
1,2-Dibromoethan		2.0	U	0.44	5.0
1,2-Dichloroethane		1.0	Ŭ	0.37	5.0
1,2-Dichloropropa		1.0	U	0.32	5.0
1,3,5-Trimethylber		2.0	Ŭ	0.28	5.0
1,3-Dichloropropa		1.0	Ŭ	0.24	5.0
2,2-Dichloropropa		2.0	ŪQ	0.54	5.0
2-Butanone (MEK)		5.0	U	0.39	20
2-Chlorotoluene		2.0	U	0.34	5.0
2-Hexanone		2.0	Ŭ	0.59	20
4-Chlorotoluene		2.0	Ŭ	0.31	5.0
4-Methyl-2-pentan	one (MIBK)	2.0	Ŭ	0.33	20
Acetone		10	Ŭ	6.7	20
Benzene		1.0	Ŭ	0.25	5.0
Bromobenzene		2.0	U	0.33	5.0
Bromochlorometha	ane	2.0	Ŭ	0.55	5.0
Bromodichloromet		2.0	U	0.25	5.0
Bromoform	nanc	1.0	U	0.37	5.0
Bromomethane		2.0	U	0.40	10
Carbon disulfide		1.0	U	0.40	5.0
Carbon tetrachlorid		1.0	U	0.36	5.0
Chlorobenzene		1.0	U	0.38	5.0
Chloroethane		1.0	U	0.38	10
Chloroform		1.0	U	0.15	5.0
Chloromethane		2.0	υQ	0.55	10
cis-1,2-Dichloroeth	ana	16	0 Q	0.16	5.0
cis-1,3-Dichloropro		1.0	U	0.34	5.0
Dibromochloromet	-	1.0	U	0.34	5.0
Dibromomethane		2.0	U	0.33	5.0
Dichlorodifluorome	athano	2.0	UQ	0.41	
		2.0		0.45	10 5.0
Ethylbenzene			U		5.0
Isopropylbenzene		2.0	U	0.26	
m,p-Xylenes	lla a r	1.0	U	0.57	5.0
Methyl tert-butyl et		2.0	U	0.40	5.0
Methylene Chlorid	е	5.0	U	1.7	7.5
Naphthalene		2.0	U	0.85	5.0

TestAmerica Denver

Page 23 of 72 C-41

Client Sample ID	6MW2201					
Lab Sample ID: Client Matrix:	280-83161-7 Water					mpled: 05/11/2016 150 ceived: 05/13/2016 0950
	820	60C DOD Volatile Org	anic Con	npounds (C	GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/23/2016 1913 05/23/2016 1913	Analysis Batch: Prep Batch:	160-252 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	
Analyte		Result (u	g/L)	Qualifie	r DL	LOQ
n-Butylbenzene		2.0		U	0.23	5.0
N-Propylbenzene		2.0		U	0.30	5.0
o-Xylene		1.0		U	0.32	5.0
p-lsopropyltoluene	;	2.0		U	0.32	5.0
sec-Butylbenzene		2.0		U	0.31	5.0
Styrene		1.0		U	0.35	5.0
tert-Butylbenzene		2.0		U	0.31	5.0
Tetrachloroethene	•	3.4		J	0.28	5.0
Toluene		1.0		U	1.0	5.0
trans-1,2-Dichloro		1.0		U	0.18	5.0
trans-1,3-Dichloro	propene	1.0		U	0.35	5.0
Trichloroethene		3.6		J	0.29	5.0
Trichlorofluoromet	hane	2.0		U	0.22	5.0
Vinyl chloride		1.0		UQ	0.43	5.0
Xylenes (total)		5.0		U	0.85	10
Surrogate		%Rec		Qualifie	r Accepta	nce Limits
1,2-Dichloroethan		111			81 - 118	
4-Bromofluoroben		102			85 - 114	
Dibromofluoromet	hane (Surr)	98			80 - 119	
Toluene-d8 (Surr)		100			89 - 112	

Analytical Data

Job Number: 280-83161-1

Client Sample ID	6MW2001D					
Lab Sample ID: Client Matrix:	280-83161-8FD Water				Date Sampled: 05/11/2016 1 Date Received: 05/13/2016 0	
	826	0C DOD Volatile Orç	janic Compound	ls (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/23/2016 1938 05/23/2016 1938	Analysis Batch: Prep Batch:	160-252588 N/A	Instrument ID Lab File ID: Initial Weight/ Final Weight/\	FSMP6658.D Volume: 5 mL	
Analyte		Result (u	g/L) Qua	alifier DL	LOQ	
1,1,1,2-Tetrachlor	oethane	2.0	U	0.25	5.0	
1,1,1-Trichloroetha	ane	1.0	U	0.29	5.0	
1,1,2,2-Tetrachlor	oethane	2.0	U	0.43	5.0	
1,1,2-Trichloroetha	ane	1.0	U	0.57	5.0	
1,1-Dichloroethan	е	1.0	U	0.39	5.0	
1,1-Dichloroethen	e	1.0	U	0.37	5.0	
1,1-Dichloroprope		1.0	U	0.30	5.0	
1,2,3-Trichloroben		2.0	U	0.65	5.0	
1,2,3-Trichloropro		1.0	Ŭ	0.56	5.0	
1,2,4-Trimethylber		2.0	U	0.40	5.0	
1,2-Dibromo-3-Ch		2.0	U	1.2	10	
1,2-Dibromoethan		2.0	U	0.44	5.0	
1,2-Dichloroethan		1.0	U	0.37	5.0	
1,2-Dichloropropa	ne	1.0	U	0.32	5.0	
1,3,5-Trimethylber		2.0	U	0.28	5.0	
1,3-Dichloropropa		1.0	U	0.24	5.0	
2,2-Dichloropropa		2.0	UC	0.54	5.0	
2-Butanone (MEK		5.0	U	0.39	20	
2-Chlorotoluene		2.0	U	0.34	5.0	
2-Hexanone		2.0	U	0.59	20	
4-Chlorotoluene		2.0	U	0.31	5.0	
4-Methyl-2-pentan	one (MIBK)	2.0	U	0.33	20	
Acetone		10	U	6.7	20	
Benzene		1.0	U	0.25	5.0	
Bromobenzene		2.0	U	0.33	5.0	
Bromochlorometha	ane	2.0	U	0.55	5.0	
Bromodichloromet	hane	2.0	U	0.25	5.0	
Bromoform		1.0	U	0.37	5.0	
Bromomethane		2.0	U	0.40	10	
Carbon disulfide		1.0	U	0.37	5.0	
Carbon tetrachlori	de	1.0	U	0.36	5.0	
Chlorobenzene		1.0	U	0.38	5.0	
Chloroethane		1.0	U	0.38	10	
Chloroform		1.0	U	0.15	5.0	
Chloromethane		2.0	UC		10	
cis-1,2-Dichloroeth	nene	7.0		0.16	5.0	
cis-1,3-Dichloropro	opene	1.0	U	0.34	5.0	
Dibromochlorome	thane	1.0	U	0.33	5.0	
Dibromomethane		2.0	U	0.41	5.0	
Dichlorodifluorome	ethane	2.0	UC		10	
Ethylbenzene		1.0	U	0.30	5.0	
Isopropylbenzene		2.0	U	0.26	5.0	
m,p-Xylenes		1.0	U	0.57	5.0	
Methyl tert-butyl e		2.0	U	0.40	5.0	
Methylene Chlorid	e	5.0	U	1.7	7.5	
Naphthalene		2.0	U	0.85	5.0	

TestAmerica Denver

Page 25 of 72 C-43

Client:	Leidos,	Inc.
0.001.00	_0.a00,	

,	-					
Client Sample ID	: 6MW2001D					
Lab Sample ID: Client Matrix:	280-83161-8FD Water					: 05/11/2016 1306 1: 05/13/2016 0950
	826	60C DOD Volatile Org	anic Compounds	s (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/23/2016 1938 05/23/2016 1938	Analysis Batch: Prep Batch:	160-252588 N/A	Instrument ID: Lab File ID: Initial Weight/\ Final Weight/\	FSM Volume: 5 n	1P6658.D
Analyte		Result (u	g/L) Qua	lifier DL		LOQ
n-Butylbenzene		2.0	U	0.23		5.0
N-Propylbenzene		2.0	U	0.30		5.0
o-Xylene		1.0	U	0.32		5.0
p-Isopropyltoluene)	2.0	U	0.32		5.0
sec-Butylbenzene		2.0	U	0.31		5.0
Styrene		1.0	U	0.35		5.0
tert-Butylbenzene		2.0	U	0.31		5.0
Tetrachloroethene	;	1.3	J	0.28		5.0
Toluene		1.0	U	1.0		5.0
trans-1,2-Dichloro	ethene	1.0	U	0.18		5.0
trans-1,3-Dichloro	propene	1.0	U	0.35		5.0
Trichloroethene		1.5	J	0.29		5.0
Trichlorofluoromet	hane	2.0	U	0.22		5.0
Vinyl chloride		1.0	UQ	0.43		5.0
Xylenes (total)		5.0	U	0.85		10
Surrogate		%Rec	Qua	lifier /	Acceptance Lir	nits
1,2-Dichloroethan		106		6	81 - 118	
4-Bromofluoroben		100		ł	85 - 114	
Dibromofluoromet		95			80 - 119	
Toluene-d8 (Surr)		99		8	89 - 112	

Analytical Data

Job Number: 280-83161-1

Client Sample ID:	TB01				
Lab Sample ID:	280-83161-9TB				e Sampled: 05/11/2016 0815
Client Matrix:	Water			Date	e Received: 05/13/2016 0950
	8	260C DOD Volatile Org	ganic Compound	s (GC/MS)	
Analysis Method:	8260C DOD	Analysis Batch:	160-252275	Instrument ID:	VMSF
Prep Method:	5030C	Prep Batch:	N/A	Lab File ID:	FSMP6616.D
Dilution:	1.0			Initial Weight/Volu	
Analysis Date:	05/22/2016 2036			Final Weight/Volu	me: 5 mL
Prep Date:	05/22/2016 2036				
Analyte		Result (u	0,	lifier DL	LOQ
1,1,1,2-Tetrachloro		2.0	U	0.25	5.0
1,1,1-Trichloroetha		1.0	U	0.29	5.0
1,1,2,2-Tetrachloro		2.0	U	0.43	5.0
1,1,2-Trichloroetha		1.0	U	0.57	5.0
1,1-Dichloroethane		1.0	U	0.39	5.0
1,1-Dichloroethene		1.0	U	0.37	5.0
1,1-Dichloroproper		1.0	U	0.30	5.0
1,2,3-Trichloroben		2.0	U	0.65	5.0
1,2,3-Trichloroprop		1.0	U	0.56	5.0
1,2,4-Trimethylber		2.0	U	0.40 1.2	5.0
1,2-Dibromo-3-Chl		2.0	U		10
1,2-Dibromoethan		2.0	U	0.44	5.0
1,2-Dichloroethane		1.0	U U	0.37 0.32	5.0
1,2-Dichloropropa		1.0 2.0	U	0.32	5.0 5.0
1,3,5-Trimethylber 1,3-Dichloropropa		1.0	U	0.28	5.0
2,2-Dichloropropa		2.0	UQ		5.0
2-Butanone (MEK)		5.0	U	0.39	20
2-Chlorotoluene		2.0	U	0.34	5.0
2-Hexanone		2.0	U	0.59	20
4-Chlorotoluene		2.0	U	0.31	5.0
4-Methyl-2-pentan	one (MIRK)	2.0	U	0.33	20
Acetone		10	U	6.7	20
Benzene		1.0	U	0.25	5.0
Bromobenzene		2.0	U	0.33	5.0
Bromochlorometha	ane	2.0	U	0.55	5.0
Bromodichloromet		2.0	U	0.25	5.0
Bromoform	nano	1.0	Ű	0.20	5.0
Bromomethane		2.0	U	0.40	10
Carbon disulfide		1.0	Ŭ	0.37	5.0
Carbon tetrachlorio	de	1.0	Ŭ	0.36	5.0
Chlorobenzene		1.0	Ŭ	0.38	5.0
Chloroethane		1.0	Ŭ	0.38	10
Chloroform		1.0	Ŭ	0.15	5.0
Chloromethane		2.0	Ŭ	0.55	10
cis-1,2-Dichloroeth	iene	1.0	Ŭ	0.16	5.0
cis-1,3-Dichloropro		1.0	Ŭ	0.34	5.0
Dibromochloromet	•	1.0	U	0.33	5.0
Dibromomethane		2.0	Ŭ	0.41	5.0
Dichlorodifluorome	ethane	2.0	Ŭ	0.45	10
Ethylbenzene		1.0	Ū	0.30	5.0
Isopropylbenzene		2.0	Ū	0.26	5.0
m,p-Xylenes		1.0	Ŭ	0.57	5.0
Methyl tert-butyl et	her	2.0	Ū	0.40	5.0
Methylene Chlorid		5.0	Ū	1.7	7.5
Naphthalene		2.0	U	0.85	5.0

TestAmerica Denver

Page 27 of 72 C-45

Analytical Data

Client Sample ID:	TB01					
Lab Sample ID: Client Matrix:	280-83161-9TB Water					npled: 05/11/2016 0815 ceived: 05/13/2016 0950
	82	260C DOD Volatile Org	janic Compou	unds (C	GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/22/2016 2036 05/22/2016 2036	Analysis Batch: Prep Batch:	160-252275 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMSF FSMP6616.D 5 mL 5 mL
Analyte		Result (u	g/L)	Qualifie	r DL	LOQ
n-Butylbenzene		2.0		U	0.23	5.0
N-Propylbenzene		2.0	I	U	0.30	5.0
o-Xylene		1.0	I	U	0.32	5.0
p-Isopropyltoluene	;	2.0	I	U	0.32	5.0
sec-Butylbenzene		2.0		U	0.31	5.0
Styrene		1.0		U	0.35	5.0
tert-Butylbenzene		2.0		U	0.31	5.0
Tetrachloroethene	;	1.0		U	0.28	5.0
Toluene		1.0	I	U 1.0		5.0
trans-1,2-Dichloro	ethene	1.0		U	0.18	5.0
trans-1,3-Dichloro	propene	1.0		U	0.35	5.0
Trichloroethene		1.0	I	U	0.29	5.0
Trichlorofluoromet	hane	2.0		U	0.22	5.0
Vinyl chloride		1.0	I	U	0.43	5.0
Xylenes (total)		5.0		U	0.85	10
Surrogate		%Rec		Qualifie		nce Limits
1,2-Dichloroethan	e-d4 (Surr)	107			81 - 118	
4-Bromofluoroben	zene (Surr)	101			85 - 114	
Dibromofluoromet	hane (Surr)	101			80 - 119	
Toluene-d8 (Surr)		102			89 - 112	

Analytical Data

Client Sample ID:	FB01					
Lab Sample ID: Client Matrix:	280-83161-10FB Water				Date Sampled: 05/11/20 Date Received: 05/13/20	
	826	0C DOD Volatile Orç	janic Compound	ls (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/22/2016 2101 05/22/2016 2101	Analysis Batch: Prep Batch:	160-252275 N/A	Instrument ID: Lab File ID: Initial Weight/\ Final Weight/\	FSMP6617.D Volume: 5 mL	
Analyte		Result (u	g/L) Qua	alifier DL	LOQ	
1,1,1,2-Tetrachlore	pethane	2.0	U	0.25	5.0	
1,1,1-Trichloroetha	ane	1.0	U	0.29	5.0	
1,1,2,2-Tetrachlor	pethane	2.0	U	0.43	5.0	
1,1,2-Trichloroetha	ane	1.0	U	0.57	5.0	
1,1-Dichloroethan	9	1.0	U	0.39	5.0	
1,1-Dichloroethene	e	1.0	U	0.37	5.0	
1,1-Dichloroprope	ne	1.0	U	0.30	5.0	
1,2,3-Trichloroben		2.0	U	0.65	5.0	
1,2,3-Trichloropro	oane	1.0	U	0.56	5.0	
1,2,4-Trimethylber	nzene	2.0	U	0.40	5.0	
1,2-Dibromo-3-Ch	loropropane	2.0	U	1.2	10	
1,2-Dibromoethan	e	2.0	U	0.44	5.0	
1,2-Dichloroethane	Э	1.0	U	0.37	5.0	
1,2-Dichloropropa	ne	1.0	U	0.32	5.0	
1,3,5-Trimethylber	nzene	2.0	U	0.28	5.0	
1,3-Dichloropropa	ne	1.0	U	0.24	5.0	
2,2-Dichloropropa	ne	2.0	UC	Q 0.54	5.0	
2-Butanone (MEK)	5.0	U	0.39	20	
2-Chlorotoluene		2.0	U	0.34	5.0	
2-Hexanone		2.0	U	0.59	20	
4-Chlorotoluene		2.0	U	0.31	5.0	
4-Methyl-2-pentan	one (MIBK)	2.0	U	0.33	20	
Acetone		10	U	6.7	20	
Benzene		1.0	U	0.25	5.0	
Bromobenzene		2.0	U	0.33	5.0	
Bromochlorometha	ane	2.0	U	0.55	5.0	
Bromodichloromet	hane	2.0	U	0.25	5.0	
Bromoform		1.0	U	0.37	5.0	
Bromomethane		2.0	U	0.40	10	
Carbon disulfide		1.0	U	0.37	5.0	
Carbon tetrachlori	de	1.0	U	0.36	5.0	
Chlorobenzene		1.0	U	0.38	5.0	
Chloroethane		1.0	U	0.38	10	
Chloroform		1.0	U	0.15	5.0	
Chloromethane		2.0	U	0.55	10	
cis-1,2-Dichloroeth	nene	1.0	U	0.16	5.0	
cis-1,3-Dichloropro		1.0	U	0.34	5.0	
Dibromochloromet	thane	1.0	U	0.33	5.0	
Dibromomethane		2.0	U	0.41	5.0	
Dichlorodifluorome	ethane	2.0	U	0.45	10	
Ethylbenzene		1.0	U	0.30	5.0	
Isopropylbenzene		2.0	U	0.26	5.0	
m,p-Xylenes		1.0	U	0.57	5.0	
Methyl tert-butyl e		2.0	U	0.40	5.0	
Methylene Chlorid	e	5.0	U	1.7	7.5	
Naphthalene		2.0	U	0.85	5.0	

Job Number: 280-83161-1

Lab Sample ID: Client Matrix:	280-83161-10FB Water					ampled: 05/11/2016 10 eceived: 05/13/2016 09	
	826	0C DOD Volatile Org	janic Co	npounds (C	GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C DOD 5030C 1.0 05/22/2016 2101 05/22/2016 2101	Analysis Batch: 160-252275 Prep Batch: N/A		-	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume		
Analyte		Result (u	g/L)	Qualifie	r DL	LOQ	
n-Butylbenzene		2.0		U	0.23	5.0	
N-Propylbenzene		2.0		U	0.30	5.0	
-Xylene		1.0		U	0.32	5.0	
-Isopropyltoluene	9	2.0		U	0.32	5.0	
ec-Butylbenzene		2.0		U	0.31	5.0	
Styrene		1.0		U	0.35	5.0	
ert-Butylbenzene		2.0		U	0.31	5.0	
Tetrachloroethene	;	1.0		U	0.28	5.0	
Toluene		1.0		U	1.0	5.0	
rans-1,2-Dichloro	ethene	1.0		U	0.18	5.0	
rans-1,3-Dichloro	propene	1.0		U	0.35	5.0	
richloroethene		1.0		U	0.29	5.0	
richlorofluoromet	hane	2.0		U	0.22	5.0	
/inyl chloride		1.0		U	0.43	5.0	
Kylenes (total)		5.0		U	0.85	10	
Surrogate		%Rec		Qualifie		ance Limits	
,2-Dichloroethan		107			81 - 118		
-Bromofluoroben		104			85 - 114	1	
Dibromofluoromet	hane (Surr)	97			80 - 119	9	
Toluene-d8 (Surr)		98			89 - 112	2	

Client: Leidos, Inc.

Client: Leidos, Inc.

Job Number: 280-83161-1

General Chemistry Client Sample ID: 6MW2301 Lab Sample ID: 280-83161-1 Date Sampled: 05/12/2016 0955 Client Matrix: Water Date Received: 05/13/2016 0950 Analyte DL LOQ Dil Result Qual Units Method Nitrate 0.042 0.10 U mg/L 0.50 1.0 9056A Analysis Batch: 280-325179 Analysis Date: 05/13/2016 2200 Sulfate 25 5.0 9056A 200 D mg/L 1.2 Analysis Batch: 280-325180 Analysis Date: 05/13/2016 2220 Total Organic Carbon - Quad 2.8 mg/L 1.0 1.0 9060A 0.16 Analysis Batch: 280-326937 Analysis Date: 05/24/2016 2151

Client: Leidos, Inc.

Job Number: 280-83161-1

General Chemistry Client Sample ID: 6MW2401 Lab Sample ID: 280-83161-2 Date Sampled: 05/12/2016 0830 Client Matrix: Water Date Received: 05/13/2016 0950 Analyte DL LOQ Dil Result Qual Units Method Nitrate 0.042 1.2 mg/L 0.50 1.0 9056A Analysis Batch: 280-325179 Analysis Date: 05/13/2016 2240 Sulfate 25 5.0 9056A 360 D mg/L 1.2 Analysis Batch: 280-325180 Analysis Date: 05/13/2016 2300 Total Organic Carbon - Quad 5.3 mg/L 0.16 1.0 1.0 9060A Analysis Batch: 280-326937 Analysis Date: 05/24/2016 2206

Client: Leidos, Inc.

Job Number: 280-83161-1

General Chemistry Client Sample ID: 6MW2601 Lab Sample ID: 280-83161-4 Date Sampled: 05/11/2016 1023 Client Matrix: Water Date Received: 05/13/2016 0950 Analyte DL LOQ Dil Result Qual Units Method Nitrate 0.042 0.28 JΗ mg/L 0.50 1.0 9056A Analysis Batch: 280-325179 Analysis Date: 05/14/2016 0000 Sulfate 25 5.0 9056A 320 D mg/L 1.2 Analysis Batch: 280-325180 Analysis Date: 05/14/2016 0019 Total Organic Carbon - Quad 2.6 mg/L 0.16 1.0 1.0 9060A Analysis Batch: 280-326937 Analysis Date: 05/24/2016 2250

Job Number: 280-83161-1

General Chemistry Client Sample ID: 6MW2501 Lab Sample ID: 280-83161-5 Date Sampled: 05/11/2016 1140 Client Matrix: Water Date Received: 05/13/2016 0950 Analyte DL LOQ Dil Result Qual Units Method Nitrate 0.042 0.10 UΗ mg/L 0.50 1.0 9056A Analysis Batch: 280-325179 Analysis Date: 05/14/2016 0039 Sulfate 25 5.0 9056A 820 D mg/L 1.2 Analysis Batch: 280-325180 Analysis Date: 05/14/2016 0059 Total Organic Carbon - Quad 2.3 mg/L 0.16 1.0 1.0 9060A Analysis Batch: 280-326937 Analysis Date: 05/24/2016 2304

	General Chemistry								
Client Sample ID:	6MW2001								
Lab Sample ID: Client Matrix:	280-83161-6 Water							05/11/2016 1 05/13/2016 0	
Analyte	Re	sult	Qual	Units	DL	LOQ	Dil	Method	
Nitrate	0.1 Analysis Batch: 280-325	•	U H Analysis Date	mg/L : 05/14/2	0.042 2016 0119	0.50	1.0	9056A	
Sulfate	27 Analysis Batch: 280-325	-	D Analysis Date	mg/L : 05/14/2	1.2 2016 0438	25	5.0	9056A	
Total Organic Carb	oon - Quad 2.8 Analysis Batch: 280-326		Analysis Date	mg/L : 05/24/2	0.16 2016 2319	1.0	1.0	9060A	

Client: Leidos, Inc.

Job Number: 280-83161-1

General Chemistry Client Sample ID: 6MW2201 Lab Sample ID: 280-83161-7 Date Sampled: 05/11/2016 1501 Client Matrix: Water Date Received: 05/13/2016 0950 Analyte DL LOQ Dil Result Qual Units Method Nitrate 0.042 0.16 JΗ mg/L 0.50 1.0 9056A Analysis Batch: 280-325179 Analysis Date: 05/14/2016 0239 Sulfate 25 5.0 9056A 290 D mg/L 1.2 Analysis Batch: 280-325180 Analysis Date: 05/14/2016 0259 Total Organic Carbon - Quad 2.5 mg/L 1.0 1.0 9060A 0.16 Analysis Batch: 280-326937 Analysis Date: 05/25/2016 0048

Client: Leidos, Inc.

Job Number: 280-83161-1

General Chemistry Client Sample ID: 6MW2001D Lab Sample ID: 280-83161-8FD Date Sampled: 05/11/2016 1306 Client Matrix: Water Date Received: 05/13/2016 0950 Analyte DL LOQ Dil Result Qual Units Method Nitrate 0.042 0.060 JΗ mg/L 0.50 1.0 9056A Analysis Batch: 280-325179 Analysis Date: 05/14/2016 0358 Sulfate 25 5.0 9056A 270 D mg/L 1.2 Analysis Batch: 280-325180 Analysis Date: 05/14/2016 0418 Total Organic Carbon - Quad 2.6 mg/L 0.16 1.0 1.0 9060A Analysis Batch: 280-326937 Analysis Date: 05/25/2016 0102

DATA REPORTING QUALIFIERS

Client: Leidos, Inc.

Lab Section	Qualifier	Description
GC/MS VOA		
	J	Estimated: The analyte was positively identified; the quantitation is an estimation
	Q	One or more quality control criteria failed.
	U	Undetected at the Limit of Detection.
General Chemistry		
	J	Estimated: The analyte was positively identified; the quantitation is an estimation
	Н	Sample was prepped or analyzed beyond the specified holding time
	D	The reported value is from a dilution.
	U	Undetected at the Limit of Detection.

QUALITY CONTROL RESULTS

TestAmerica Denver

Job Number: 280-83161-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:160-25	2275				
LCS 160-252275/3	Lab Control Sample	Т	Water	8260C DOD	
LCSD 160-252275/4	Lab Control Sample Duplicate	Т	Water	8260C DOD	
MB 160-252275/6	Method Blank	Т	Water	8260C DOD	
280-83161-1	6MW2301	Т	Water	8260C DOD	
280-83161-2	6MW2401	Т	Water	8260C DOD	
280-83161-3TB	TB02	Т	Water	8260C DOD	
280-83161-4	6MW2601	Т	Water	8260C DOD	
280-83161-6	6MW2001	Т	Water	8260C DOD	
280-83161-6MS	Matrix Spike	Т	Water	8260C DOD	
280-83161-6MSD	Matrix Spike Duplicate	Т	Water	8260C DOD	
280-83161-9TB	TB01	Т	Water	8260C DOD	
280-83161-10FB	FB01	Т	Water	8260C DOD	
Analysis Batch:160-25	2588				
LCS 160-252588/4	Lab Control Sample	Т	Water	8260C DOD	
LCSD 160-252588/5	Lab Control Sample Duplicate	Т	Water	8260C DOD	
MB 160-252588/7	Method Blank	Т	Water	8260C DOD	
280-83161-5	6MW2501	Т	Water	8260C DOD	
280-83161-7	6MW2201	Т	Water	8260C DOD	
280-83161-8FD	6MW2001D	Т	Water	8260C DOD	
280-83161-8MS	Matrix Spike	Т	Water	8260C DOD	
280-83161-8MSD	Matrix Spike Duplicate	Т	Water	8260C DOD	
Analysis Batch:160-25	2878				
LCS 160-252878/3	Lab Control Sample	Т	Water	8260C DOD	
LCSD 160-252878/4	Lab Control Sample Duplicate	Ť	Water	8260C DOD	
MB 160-252878/6	Method Blank	Т	Water	8260C DOD	
280-83161-5	6MW2501	Т	Water	8260C DOD	

Report Basis

T = Total

_____,....

Client: Leidos, Inc.

TestAmerica Denver

Job Number: 280-83161-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch: 280-32	25179				
LCS 280-325179/4	Lab Control Sample	Т	Water	9056A	
LCSD 280-325179/5	Lab Control Sample Duplicate	Т	Water	9056A	
MB 280-325179/6	Method Blank	Т	Water	9056A	
280-83161-1	6MW2301	Т	Water	9056A	
280-83161-2	6MW2401	Т	Water	9056A	
280-83161-4	6MW2601	Т	Water	9056A	
280-83161-5	6MW2501	T	Water	9056A	
280-83161-6	6MW2001	T	Water	9056A	
280-83161-6DU	Duplicate	Ť	Water	9056A	
280-83161-6MS	Matrix Spike	Ť	Water	9056A	
280-83161-6MSD	Matrix Spike Duplicate	Ť	Water	9056A	
280-83161-7	6MW2201	Ť	Water	9056A	
280-83161-8FD	6MW2001D	Ť	Water	9056A	
200-03101-010		I	Water	9030A	
Analysis Batch: 280-32					
LCS 280-325180/4	Lab Control Sample	Т	Water	9056A	
LCSD 280-325180/5	Lab Control Sample Duplicate	Т	Water	9056A	
MB 280-325180/6	Method Blank	Т	Water	9056A	
280-83161-1	6MW2301	Т	Water	9056A	
280-83161-2	6MW2401	Т	Water	9056A	
280-83161-4	6MW2601	Т	Water	9056A	
280-83161-5	6MW2501	Т	Water	9056A	
280-83161-6	6MW2001	Т	Water	9056A	
280-83161-6DU	Duplicate	Т	Water	9056A	
280-83161-6MS	Matrix Spike	Т	Water	9056A	
280-83161-6MSD	Matrix Spike Duplicate	Т	Water	9056A	
280-83161-7	6MW2201	Т	Water	9056A	
280-83161-8FD	6MW2001D	Т	Water	9056A	
Analysia Batahy290 21	00027				
Analysis Batch:280-32 LCS 280-326937/35	Lab Control Sample	Т	Water	9060A	
LCS 280-326937/4	Lab Control Sample	T	Water	9060A	
MB 280-326937/36	Method Blank	T	Water	9060A	
MB 280-326937/5	Method Blank	T	Water	9060A	
280-83161-1	6MW2301	T	Water	9060A	
280-83161-2	6MW2401	T	Water	9060A	
280-83161-4	6MW2601	T	Water	9060A	
280-83161-5	6MW2501	T	Water	9060A	
280-83161-6	6MW2001	Т	Water	9060A	
280-83161-6MS	Matrix Spike	T	Water	9060A	
280-83161-6MSD	Matrix Spike Duplicate	Т	Water	9060A	
280-83161-7	6MW2201	Т	Water	9060A	
280-83161-8FD	6MW2001D	Т	Water	9060A	

Page 41 of 72 C-59

Quality Control Results

Client: Leidos, Inc.

Job Number: 280-83161-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch

Report Basis

T = Total

Surrogate Recovery Report

8260C DOD Volatile Organic Compounds (GC/MS)

Client Matrix: Water

Lab Sample ID	Client Sample ID	DCA %Rec	BFB %Rec	DBFM %Rec	TOL %Rec
280-83161-1	6MW2301	117	101	103	100
280-83161-2	6MW2401	105	101	99	99
280-83161-3	TB02	108	99	96	98
280-83161-4	6MW2601	110	102	102	102
280-83161-5	6MW2501	107	97	95	100
280-83161-5	6MW2501	116	101	102	99
280-83161-6	6MW2001	111	101	99	100
280-83161-7	6MW2201	111	102	98	100
280-83161-8	6MW2001D	106	100	95	99
280-83161-9	TB01	107	101	101	102
280-83161-10	FB01	107	104	97	98
MB 160-252275/6		102	101	95	100
MB 160-252588/7		106	98	96	100
MB 160-252878/6		110	105	99	105
LCS 160-252275/3		102	95	99	98
LCS 160-252588/4		106	95	99	98
LCS 160-252878/3		108	97	99	102
LCSD 160-252275/4		103	95	99	95
LCSD 160-252588/5		105	93	97	100
LCSD 160-252878/4		107	95	101	99
280-83161-6 MS	6MW2001MS MS	107	89	97	92
280-83161-8 MS	6MW2001D MS	111	93	97	95
280-83161-6 MSD	6MW2001MSD MSD	110	95	100	94
280-83161-8 MSD	6MW2001D MSD	100	88	94	91

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	81-118
BFB = 4-Bromofluorobenzene (Surr)	85-114
DBFM = Dibromofluoromethane (Surr)	80-119
TOL = Toluene-d8 (Surr)	89-112

Job Number: 280-83161-1

Client: Leidos, Inc.

Method Blank - Batch: 160-252275

Method: 8260C DOD Preparation: 5030C

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 160-252275/6 Water 1.0 05/22/2016 1859 05/22/2016 1859 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	160-252275 N/A N/A ug/L	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	-
Leach Date:	N/A				

Analyte	Result	Qual	DL	LOQ
1,1,1,2-Tetrachloroethane	2.0	U	0.25	5.0
1,1,1-Trichloroethane	1.0	U	0.29	5.0
1,1,2,2-Tetrachloroethane	2.0	U	0.43	5.0
1,1,2-Trichloroethane	1.0	U	0.57	5.0
1,1-Dichloroethane	1.0	U	0.39	5.0
1,1-Dichloroethene	1.0	U	0.37	5.0
1,1-Dichloropropene	1.0	U	0.30	5.0
1,2,3-Trichlorobenzene	2.0	U	0.65	5.0
1,2,3-Trichloropropane	1.0	U	0.56	5.0
1,2,4-Trimethylbenzene	2.0	U	0.40	5.0
1,2-Dibromo-3-Chloropropane	2.0	U	1.2	10
1,2-Dibromoethane	2.0	U	0.44	5.0
1,2-Dichloroethane	1.0	U	0.37	5.0
1,2-Dichloropropane	1.0	U	0.32	5.0
1,3,5-Trimethylbenzene	2.0	Ŭ	0.28	5.0
1,3-Dichloropropane	1.0	Ŭ	0.24	5.0
2,2-Dichloropropane	2.0	Ŭ	0.54	5.0
2-Butanone (MEK)	5.0	U	0.39	20
2-Chlorotoluene	2.0	Ŭ	0.34	5.0
2-Hexanone	2.0	U	0.59	20
4-Chlorotoluene	2.0	Ŭ	0.31	5.0
4-Methyl-2-pentanone (MIBK)	2.0	U	0.33	20
Acetone	10	Ŭ	6.7	20
Benzene	1.0	U	0.25	5.0
Bromobenzene	2.0	U	0.23	5.0
Bromochloromethane	2.0	U	0.55	5.0
Bromodichloromethane	2.0	U	0.35	5.0
Bromoform	1.0	U	0.25	5.0
Bromomethane	2.0	U	0.37	10
	1.0	U	0.40	5.0
Carbon disulfide				
Carbon tetrachloride	1.0	U	0.36	5.0
Chlorobenzene	1.0	U	0.38	5.0
Chloroethane Chloroform	1.0	U	0.38	10
	1.0	U	0.15	5.0
Chloromethane	2.0	U	0.55	10
cis-1,2-Dichloroethene	1.0	U	0.16	5.0
cis-1,3-Dichloropropene	1.0	U	0.34	5.0
Dibromochloromethane	1.0	U	0.33	5.0
Dibromomethane	2.0	U	0.41	5.0
Dichlorodifluoromethane	2.0	U	0.45	10
Ethylbenzene	1.0	U	0.30	5.0
Isopropylbenzene	2.0	U	0.26	5.0
m,p-Xylenes	1.0	U	0.57	5.0
Methyl tert-butyl ether	2.0	U	0.40	5.0
Methylene Chloride	5.0	U	1.7	7.5

Job Number: 280-83161-1

Client: Leidos, Inc.

Method Blank - Batch: 160-252275

Method: 8260C DOD Preparation: 5030C

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 160-252275/6 Water 1.0 05/22/2016 1859 05/22/2016 1859 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	160-252275 N/A N/A ug/L		Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Vol		VMSF FBLK6614.D 5 mL 5 mL	
Analyte		Resi	ult	Qua	al D	DL	LOQ	
Naphthalene		2.0		U	0.	.85	5.0	
n-Butylbenzene		2.0		U	0.	.23	5.0	
N-Propylbenzene		2.0		U	0.	.30	5.0	
o-Xylene		1.0 2.0		U	0	0.32 0.32	5.0	
p-Isopropyltoluene	9			U	0		5.0	
sec-Butylbenzene		2.0		U	0	.31	5.0	
Styrene		1.0		U	0	.35	5.0	
tert-Butylbenzene		2.0		U	0	.31	5.0	
Tetrachloroethene	•	1.0		U	0	.28	5.0	
Toluene		1.0		U	1.	.0	5.0	
trans-1,2-Dichloro	ethene	1.0		U	0.	.18	5.0	
trans-1,3-Dichloro	propene	1.0		U	0.	.35	5.0	
Trichloroethene		1.0		U		.29	5.0	
Trichlorofluoromet	hane	2.0		U		.22	5.0	
Vinyl chloride		1.0		U		.43	5.0	
Xylenes (total)		5.0		U	0	.85	10	
Surrogate		%	Rec		Acceptar	nce Lim	nits	
1,2-Dichloroethan	e-d4 (Surr)	1	02		81 -	118		
4-Bromofluoroben		1	01		85 -	114		
Dibromofluoromet		9	5	80 - 119				
Toluene-d8 (Surr)		100			89 - 112			

Chloroform

Chloromethane

VMSF

Job Number: 280-83161-1

Client: Leidos, Inc.

Lab Control Sample/

LCS Lab Sample ID: LCS 160-252275/3

Lab Control Sample Duplicate Recovery Report - Batch: 160-252275 Preparation:

Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ution: 1.0 alysis Date: 05/22/2016 1742 ep Date: 05/22/2016 1742		ent Matrix: Water ution: 1.0 alysis Date: 05/22/2016 1742 ep Date: 05/22/2016 1742		sis Batch: 3atch: Batch:	160-252275 N/A N/A ug/L	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:		FLCS6611.D 5 mL 5 mL 5 mL	
LCSD Lab Sampl Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	e ID: LCSD 160-252275/4 Water 1.0 05/22/2016 1808 05/22/2016 1808 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:		160-252275Instrument ID:N/ALab File ID:N/AInitial Weight/Volume:ug/LFinal Weight/Volume:		e ID: /eight/Volume:				
		%	6 Rec.							
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual		
1,1,1,2-Tetrachlor	roethane	105	103	78 - 124	2	20				
1,1,1-Trichloroeth		103	110	74 - 131	1	20				
1,1,2,2-Tetrachlor		100	101	71 - 121	1	20				
1,1,2-Trichloroeth		101	99	80 - 119	2	20				
1,1-Dichloroethan		107	107	77 - 125	0	20				
1,1-Dichloroethen		98	98	71 - 131	0	20				
1,1-Dichloroprope		100	99	79 - 125	0	20				
1,2,3-Trichlorobenzene		101	102	69 - 129	1	20				
1,2,3-Trichloropro	pane	99	100	73 - 122	1	20				
1,2,4-Trimethylbe	nzene	104	104	76 - 124	0	20				
1,2-Dibromo-3-Ch	nloropropane	104	99	62 - 128	4	20				
1,2-Dibromoethar	ne	97	95	80 - 120	2	20				
1,2-Dichloroethan	ie	104	105	73 - 128	1	20				
1,2-Dichloropropa		107	108	78 - 122	1	20				
1,3,5-Trimethylbe		103	105	75 - 124	2	20				
1,3-Dichloropropa		101	99	80 - 119	2	20				
2,2-Dichloropropa		119	119	60 - 139	0	20				
2-Butanone (MEK	()	97	90	56 - 143	7	20				
2-Chlorotoluene		103	106	79 - 122	3	20				
2-Hexanone		106	101	57 - 139	5	20				
4-Chlorotoluene		102	104	78 - 122	2	20				
4-Methyl-2-pentar	none (MIBK)	103	100	67 - 130 30 - 160	3	20				
Acetone		85 101	95 102	39 - 160 79 - 120	12 1	20 20				
Benzene Bromobenzene		95	96	79 - 120 80 - 120	1	20				
Bromochlorometh	ane	93 97	90 97	78 - 123	0	20				
Bromodichlorome		108	109	79 - 125	1	20				
Bromoform		103	103	66 - 130	1	20				
Bromomethane		103	104	53 - 141	2	20				
Carbon disulfide		102	99	64 - 133	1	20				
Carbon tetrachlor	ide	112	111	72 - 136	1	20				
Chlorobenzene		99	99	82 - 118	0	20				
Chloroethane		103	101	60 - 138	2	20				
Chloroform		100	107	70 104	_	20				

Batah, 460 252275

Analysis Batch: 160-252275

Method: 8260C DOD Preparation: 5030C

Instrument ID:

107

120

108

120

79 - 124

50 - 139

0

1

20

20

Method: 8260C DOD

Job Number: 280-83161-1

Client: Leidos, Inc.

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 160-252275 Preparation: 5030C

LCS Lab Sample ID:LCS 160-20Client Matrix:WaterDilution:1.0Analysis Date:05/22/2016 1°Prep Date:05/22/2016 1°Leach Date:N/A	Prep Leac 742 Units	ysis Batch: Batch: h Batch: S:	160-252275 N/A N/A ug/L			VMSF FLCS6611 5 mL 5 mL 5 mL	.D
LCSD Lab Sample ID: LCSD 160-Client Matrix:WaterDilution:1.0Analysis Date:05/22/2016 12Prep Date:05/22/2016 12Leach Date:N/A	Prep Leac 808 Units	ysis Batch: Batch: h Batch: S:	160-252275 N/A N/A ug/L			VMSF FLCS6612 5 mL 5 mL 5 mL	.D
		<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	103 103	104 104	78 - 123 75 - 124	1 0	20 20		
Dibromochloromethane Dibromomethane	105 99	105 101	74 - 126 79 - 123	0 2	20 20		
Dichlorodifluoromethane	112	110	79 - 123 32 - 152	2	20		
Ethylbenzene	106	105	79 - 121	0	20		
Isopropylbenzene	102	100	72 - 131	2	20		
m,p-Xylenes	100	100	80 - 121	1	20		
Methyl tert-butyl ether	103	100	71 - 124	3	20		
Methylene Chloride	102	103	74 - 124	0	20		
Naphthalene	106	105	61 - 128	0	20		
n-Butylbenzene	100	100	75 - 128	1	20		
N-Propylbenzene	106	107	76 - 126	1	20		
o-Xylene	101	102	78 - 122	1	20		
p-Isopropyltoluene	104	106	77 - 127	2	20		
sec-Butylbenzene	107	108	77 - 126	1	20		
Styrene	99	98	78 - 123	0	20		
tert-Butylbenzene	103	104	78 - 124	1	20		
Tetrachloroethene	91	91	74 - 129	0	20		
Toluene	100	99 101	80 - 121 75 - 124	0 0	20		
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	101 106	101 103	75 - 124 73 - 127	3	20 20		
Trichloroethene	94	93	79 - 123	3 1	20		
Trichlorofluoromethane	105	101	65 - 141	3	20		
Vinyl chloride	118	116	58 - 137	2	20		
Xylenes (total)	101	101	79 - 121	0	20		
Surrogate		LCS % Rec	LCSD %	Rec		tance Limits	
1,2-Dichloroethane-d4 (Surr)		102	103		•	1 - 118	
4-Bromofluorobenzene (Surr)		95	95			5 - 114	
Dibromofluoromethane (Surr)		99	99			0 - 119	
Toluene-d8 (Surr)		98	95		8	9 - 112	

Job Number: 280-83161-1

Client: Leidos, Inc.

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 160-252275

Method: 8260C DOD Preparation: 5030C

Dilution: Analysis Date: Prep Date:	: 280-83161-6 Water 1.0 05/22/2016 2259 05/22/2016 2259 N/A	Analysis Batch: Prep Batch: Leach Batch:	160-252275 N/A N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMSF FSMP6621.D 5 mL 5 mL 5 mL
Dilution: Analysis Date:	D: 280-83161-6 Water 1.0 05/22/2016 2324 05/22/2016 2324	Analysis Batch: Prep Batch: Leach Batch:	160-252275 N/A N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMSF FSMP6622.D 5 mL 5 mL 5 mL

% Rec.							
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
1,1,1,2-Tetrachloroethane	107	107	78 - 124	0	20		
1,1,1-Trichloroethane	116	114	74 - 131	1	20		
1,1,2,2-Tetrachloroethane	100	111	71 - 121	10	20		
1,1,2-Trichloroethane	102	108	80 - 119	6	20		
1,1-Dichloroethane	109	110	77 - 125	0	20		
1,1-Dichloroethene	99	99	71 - 131	0	20		
1,1-Dichloropropene	102	105	79 - 125	3	20		
1,2,3-Trichlorobenzene	109	109	69 - 129	0	20		
1,2,3-Trichloropropane	101	111	73 - 122	10	20		
1,2,4-Trimethylbenzene	104	108	76 - 124	3	20		
1,2-Dibromo-3-Chloropropane	107	113	62 - 128	6	20		
1,2-Dibromoethane	97	103	80 - 120	7	20		
1,2-Dichloroethane	112	115	73 - 128	2	20		
1,2-Dichloropropane	111	112	78 - 122	1	20		
1,3,5-Trimethylbenzene	104	107	75 - 124	3	20		
1,3-Dichloropropane	104	106	80 - 119	2	20		
2,2-Dichloropropane	132	124	60 - 139	6	20		
2-Butanone (MEK)	96	107	56 - 143	10	20		
2-Chlorotoluene	105	107	79 - 122	2	20		
2-Hexanone	103	111	57 - 139	8	20		
4-Chlorotoluene	102	108	78 - 122	5	20		
4-Methyl-2-pentanone (MIBK)	102	112	67 - 130	10	20		
Acetone	100	103	39 - 160	3	20		
Benzene	103	106	79 - 120	3	20		
Bromobenzene	90	98	80 - 120	8	20		
Bromochloromethane	97	101	78 - 123	4	20		
Bromodichloromethane	114	116	79 - 125	2	20		
Bromoform	102	111	66 - 130	8	20		
Bromomethane	93	91	53 - 141	3	20		
Carbon disulfide	100	99	64 - 133	1	20		
Carbon tetrachloride	118	116	72 - 136	2	20		
Chlorobenzene	101	103	82 - 118	3	20		

TestAmerica Denver

TestAmerica Denver

MS Lab Sample ID: 280-83161-6

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 160-252275

lah Number 000 0

VMSF

Job Number: 280-83161-1

Quality Control Results

Method: 8260C DOD Preparation: 5030C

Instrument ID:

Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	Water 1.0 05/22/2016 2259 05/22/2016 2259 N/A	Prep	b Batch: ch Batch:	N/A N/A N/A	Lab File ID: Initial Weight/Volume: Final Weight/Volume:		FSMP6621.D 5 mL 5 mL 5 mL		
MSD Lab Sample ID: 280-83161-6Client Matrix:WaterDilution:1.0Analysis Date:05/22/2016 2324Prep Date:05/22/2016 2324Leach Date:N/A		Analysis Batch: 160-2 Prep Batch: N/A Leach Batch: N/A			52275 Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:			FSMP6622.D 5 mL 5 mL	
		<u>%</u>	Rec.						
Analyte		MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual	
Chloroethane		98	100	60 - 138	2	20			
Chloroform		111	112	79 - 124	1	20			
Chloromethane		117	111	50 - 139	5	20			
cis-1,2-Dichloroe	ethene	105	106	78 - 123	1	20			
cis-1,3-Dichlorop	propene	108	111	75 - 124	3	20			
Dibromochlorom	ethane	106	110	74 - 126	4	20			
Dibromomethane	e	104	107	79 - 123	3	20			
Dichlorodifluoron	nethane	112	105	32 - 152	7	20			
Ethylbenzene		108	109	79 - 121	1	20			
Isopropylbenzen	e	101	107	72 - 131	5	20			
m,p-Xylenes		101	101	80 - 121	0	20			
Methyl tert-butyl	ether	104	110	71 - 124	6	20			
Methylene Chlori	ide	103	103	74 - 124	0	20			
Naphthalene		111	114	61 - 128	3	20			
n-Butylbenzene		103	103	75 - 128	0	20			
N-Propylbenzene	9	108	111	76 - 126	3	20			
o-Xylene		104	103	78 - 122	1	20			
p-Isopropyltoluer	ne	106	109	77 - 127	3	20			
sec-Butylbenzen		108	111	77 - 126	3	20			
Styrene		100	102	78 - 123	2	20			
tert-Butylbenzen	e	102	107	78 - 124	5	20			
Tetrachloroethen	ie	93	96	74 - 129	4	20			
Toluene		100	103	80 - 121	3	20			
trans-1,2-Dichlor	oethene	101	103	75 - 124	2	20			
trans-1,3-Dichlor	opropene	109	112	73 - 127	3	20			
Trichloroethene		97	98	79 - 123	1	20			
Trichlorofluorom	ethane	103	102	65 - 141	2	20			
Vinyl chloride		119	115	58 - 137	4	20			
Xylenes (total)		103	102	79 - 121	0	20			

Analysis Batch: 160-252275

 Xylenes (total)
 103
 102
 79 - 121
 0
 20

 Surrogate
 MS % Rec
 MSD % Rec
 Acceptance Limits

 1,2-Dichloroethane-d4 (Surr)
 107
 110
 81 - 118

C-67

Quality Control Results

Client: Leidos, Inc.

Surrogate	MS % Rec	MSD % Rec	Acceptance Limits
4-Bromofluorobenzene (Surr)	89	95	85 - 114
Dibromofluoromethane (Surr)	97	100	80 - 119
Toluene-d8 (Surr)	92	94	89 - 112

Job Number: 280-83161-1

Client: Leidos, Inc.

Method Blank - Batch: 160-252588

Method: 8260C DOD Preparation: 5030C

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 160-252588/7 Water 1.0 05/23/2016 1822 05/23/2016 1822 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	160-252588 N/A N/A ug/L	Lab Initia	ument ID: File ID: I Weight/Volume: I Weight/Volume:	VMSF FBLK6655.D 5 mL 5 mL	
Analyte		Res	ult	Qual	DL	LOQ	
1,1,1,2-Tetrachloroethane		2.0		U	0.25	5.0	
1,1,1-Trichloroeth	ane	1.0		U	0.29	5.0	
1,1,2,2-Tetrachlor	oethane	2.0		U	0.43	5.0	
1,1,2-Trichloroeth	ane	1.0		U	0.57	5.0	
1,1-Dichloroethan	e	1.0		U	0.39	5.0	
1,1-Dichloroethen	e	1.0		U	0.37	5.0	
1,1-Dichloroprope	ne	1.0		U	0.30	5.0	
1,2,3-Trichlorober	izene	2.0		U	0.65	5.0	
1,2,3-Trichloropropane		1.0		U	0.56	5.0	
1,2,4-Trimethylbenzene		2.0		U	0.40	5.0	
1,2-Dibromo-3-Ch	lloropropane	2.0		U	1.2	10	
1,2-Dibromoethar	ie	2.0		U	0.44	5.0	

1,1,1-I richloroethane	1.0	U	0.29	5.0	
1,1,2,2-Tetrachloroethane	2.0	U	0.43	5.0	
1,1,2-Trichloroethane	1.0	U	0.57	5.0	
1,1-Dichloroethane	1.0	U	0.39	5.0	
1,1-Dichloroethene	1.0	U	0.37	5.0	
1,1-Dichloropropene	1.0	U	0.30	5.0	
1,2,3-Trichlorobenzene	2.0	U	0.65	5.0	
1,2,3-Trichloropropane	1.0	U	0.56	5.0	
1,2,4-Trimethylbenzene	2.0	U	0.40	5.0	
1,2-Dibromo-3-Chloropropane	2.0	U	1.2	10	
1,2-Dibromoethane	2.0	U	0.44	5.0	
1,2-Dichloroethane	1.0	U	0.37	5.0	
1,2-Dichloropropane	1.0	U	0.32	5.0	
1,3,5-Trimethylbenzene	2.0	U	0.28	5.0	
1,3-Dichloropropane	1.0	U	0.24	5.0	
2,2-Dichloropropane	2.0	U	0.54	5.0	
2-Butanone (MEK)	5.0	U	0.39	20	
2-Chlorotoluene	2.0	U	0.34	5.0	
2-Hexanone	2.0	U	0.59	20	
4-Chlorotoluene	2.0	U	0.31	5.0	
4-Methyl-2-pentanone (MIBK)	2.0	U	0.33	20	
Acetone	10	U	6.7	20	
Benzene	1.0	U	0.25	5.0	
Bromobenzene	2.0	U	0.33	5.0	
Bromochloromethane	2.0	U	0.55	5.0	
Bromodichloromethane	2.0	U	0.25	5.0	
Bromoform	1.0	U	0.37	5.0	
Bromomethane	2.0	U	0.40	10	
Carbon disulfide	1.0	U	0.37	5.0	
Carbon tetrachloride	1.0	U	0.36	5.0	
Chlorobenzene	1.0	U	0.38	5.0	
Chloroethane	1.0	U	0.38	10	
Chloroform	1.0	U	0.15	5.0	
Chloromethane	2.0	U	0.55	10	
cis-1,2-Dichloroethene	1.0	U	0.16	5.0	
cis-1,3-Dichloropropene	1.0	U	0.34	5.0	
Dibromochloromethane	1.0	U	0.33	5.0	
Dibromomethane	2.0	U	0.41	5.0	
Dichlorodifluoromethane	2.0	U	0.45	10	
Ethylbenzene	1.0	U	0.30	5.0	
Isopropylbenzene	2.0	U	0.26	5.0	
m,p-Xylenes	1.0	U	0.57	5.0	
Methyl tert-butyl ether	2.0	U	0.40	5.0	
Methylene Chloride	5.0	U	1.7	7.5	

TestAmerica Denver

Page 52 of 72 C-70 Job Number: 280-83161-1

Method Blank - Batch: 160-252588

Method: 8260C DOD Preparation: 5030C

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 160-252588/7 Water 1.0 05/23/2016 1822 05/23/2016 1822 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	160-252588 N/A N/A ug/L	Lab Initia	ument ID: File ID: I Weight/Volume: I Weight/Volume:	VMSF FBLK6655.D 5 mL 5 mL	
Analyte		Res	ult	Qual	DL	LOQ	
Naphthalene		2.0		U	0.85	5.0	
n-Butylbenzene		2.0		U	0.23	5.0	
N-Propylbenzene		2.0		U	0.30	5.0	
o-Xylene		1.0		U	0.32	5.0	
p-Isopropyltoluene	9	2.0		U	0.32	5.0	
sec-Butylbenzene		2.0		U	0.31	5.0	
Styrene		1.0		U	0.35	5.0	
tert-Butylbenzene		2.0		U	0.31	5.0	
Tetrachloroethene	9	1.0		U	0.28	5.0	
Toluene		1.0		U	1.0	5.0	
trans-1,2-Dichloro		1.0		U	0.18	5.0	
trans-1,3-Dichloro	propene	1.0		U	0.35	5.0	
Trichloroethene		1.0		U	0.29	5.0	
Trichlorofluorome	thane	2.0		U	0.22	5.0	
Vinyl chloride		1.0		U	0.43	5.0	
Xylenes (total)		5.0		U	0.85	10	
Surrogate		%	Rec		Acceptance Lir	nits	
1,2-Dichloroethan	e-d4 (Surr)	1	06		81 - 118		
4-Bromofluoroben	zene (Surr)	9	8		85 - 114		
Dibromofluoromet	hane (Surr)	9	6		80 - 119		
Toluene-d8 (Surr)		1	00		89 - 112		

Client: Leidos, Inc.

Chloroform

Chloromethane

VMSF

FLCS6652.D

Job Number: 280-83161-1

Client: Leidos, Inc.

LCS Lab Sample ID: LCS 160-252588/4

Water

Lab Control Sample/

Client Matrix:

Lab Control Sample Duplicate Recovery Report - Batch: 160-252588 Preparation: 5030C

Dilution: Analysis Date: Prep Date: Leach Date:	1.0 05/23/2016 1705 05/23/2016 1705 N/A	-	Batch:	N/A ug/L	Initial Weight/Volume: Final Weight/Volume:		5 mL 5 mL 5 mL	U
LCSD Lab Samp Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ole ID: LCSD 160-252588/5 Water 1.0 05/23/2016 1730 05/23/2016 1730 N/A	Prep	sis Batch: Batch: n Batch:	160-252588 N/A N/A ug/L	Lab Fil Initial V	nent ID: e ID: Veight/Volume: Veight/Volume:	VMSF FLCS6653 5 mL 5 mL 5 mL	3.D
		9	<u>% Rec.</u>					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,1,1,2-Tetrachlo	proethane	104	103	78 - 124	1	20		
1,1,1-Trichloroet	hane	108	110	74 - 131	2	20		
1,1,2,2-Tetrachlo	proethane	105	99	71 - 121	6	20		
1,1,2-Trichloroet	hane	106	102	80 - 119	4	20		
1,1-Dichloroetha	ne	105	104	77 - 125	1	20		
1,1-Dichloroethe	ne	96	97	71 - 131	1	20		
1,1-Dichloroprop	ene	100	101	79 - 125	1	20		
1,2,3-Trichlorobe	enzene	102	99	69 - 129	3	20		
1,2,3-Trichloropr	opane	100	101	73 - 122	2	20		
1,2,4-Trimethylb	enzene	103	103	76 - 124	0	20		
1,2-Dibromo-3-C	hloropropane	104	102	62 - 128	3	20		
1,2-Dibromoetha	ine	100	99	80 - 120	1	20		
1,2-Dichloroetha	ne	105	106	73 - 128	1	20		
1,2-Dichloroprop	ane	104	105	78 - 122	1	20		
1,3,5-Trimethylb	enzene	103	104	75 - 124	1	20		
1,3-Dichloroprop	ane	103	101	80 - 119	3	20		
2,2-Dichloroprop	ane	116	120	60 - 139	4	20		
2-Butanone (ME	K)	97	97	56 - 143	0	20		
2-Chlorotoluene		105	103	79 - 122	1	20		
2-Hexanone		110	102	57 - 139	7	20		
4-Chlorotoluene		102	102	78 - 122	0	20		
4-Methyl-2-penta	anone (MIBK)	107	103	67 - 130	4	20		
Acetone		101	90	39 - 160	11	20		
Benzene		101	100	79 - 120	1	20		
Bromobenzene		94	94	80 - 120	1	20		
Bromochloromet	hane	95	94	78 - 123	0	20		
Bromodichlorom	ethane	107	106	79 - 125	1	20		
Bromoform		107	107	66 - 130	1	20		
Bromomethane		97	97	53 - 141	0	20		
Carbon disulfide		98	99	64 - 133	0	20		
Carbon tetrachlo	ride	111	113	72 - 136	2	20		
Chlorobenzene		100	100	82 - 118	0	20		
Chloroethane		101	101	60 - 138	0	20		
Chloroform		105	105	70 104	0	20		

Analysis Batch: 160-252588

N/A

Prep Batch:

Method: 8260C DOD

Instrument ID:

Lab File ID:

105

121

105

119

0

2

79 - 124

50 - 139

20

20

VMSF

Method: 8260C DOD

Instrument ID:

Job Number: 280-83161-1

Client: Leidos, Inc.

Lab Control Sample/

LCS Lab Sample ID: LCS 160-252588/4

Lab Control Sample Duplicate Recovery Report - Batch: 160-252588 Preparation: 5030C

Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	Water 1.0 05/23/2016 1705 05/23/2016 1705 N/A	Prep	Batch: Batch: Batch:	N/A N/A ug/L		e ID: Veight/Volume: /eight/Volume:		
LCSD Lab Samp Client Matrix: Dilution:	le ID: LCSD 160-252588/5 Water 1.0	Prep	sis Batch: Batch: n Batch:	160-252588 N/A N/A	Instrum Lab File Initial V		VMSF FLCS6653 5 mL	3.D
Analysis Date: Prep Date: Leach Date:	05/23/2016 1730 05/23/2016 1730 N/A	Units:		ug/L		/eight/Volume:	5 mL 5 mL	
		9	<u>6 Rec.</u>					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
cis-1,2-Dichloroe	thene	100	99	78 - 123	1	20		
cis-1,3-Dichlorop		103	105	75 - 124	2	20		
Dibromochlorome	ethane	110	104	74 - 126	5	20		
Dibromomethane	•	101	100	79 - 123	2	20		
Dichlorodifluorom	nethane	122	124	32 - 152	1	20		
Ethylbenzene		106	106	79 - 121	0	20		
Isopropylbenzene	e	103	103	72 - 131	1	20		
m,p-Xylenes		99	101	80 - 121	2	20		
Methyl tert-butyl		100	99	71 - 124	2	20		
Methylene Chlori	de	100	99	74 - 124	2	20		
Naphthalene		107	104	61 - 128	2	20		
n-Butylbenzene		101	99	75 - 128	2	20		
N-Propylbenzene	9	107	106	76 - 126	1	20		
o-Xylene		100	102	78 - 122	1	20		
p-Isopropyltoluen		105	104	77 - 127	1	20		
sec-Butylbenzene	е	106	107	77 - 126	1	20		
Styrene		98	98	78 - 123	0	20		
tert-Butylbenzene		102	100	78 - 124	2	20		
Tetrachloroethen	e	94	96	74 - 129	2	20		
Toluene		99	102	80 - 121	4	20		
trans-1,2-Dichloro		100	99	75 - 124	1	20		
trans-1,3-Dichloro	opropene	107	106	73 - 127	1	20		
Trichloroethene		94	95	79 - 123	2	20		
Trichlorofluorome	ethane	103	107	65 - 141	4	20		
Vinyl chloride		118	119	58 - 137	1	20		
Xylenes (total)		100	102	79 - 121	2	20		
Surrogate		L	CS % Rec	LCSD %	Rec	-	otance Limits	3
1,2-Dichloroetha			06	105			1 - 118	
4-Bromofluorobe			5	93			5 - 114	
Dibromofluorome			9	97			0 - 119	
Toluene-d8 (Surr	.)	9	8	100		8	9 - 112	

Analysis Batch: 160-252588

Job Number: 280-83161-1

Client: Leidos, Inc.

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 160-252588

Method: 8260C DOD Preparation: 5030C

MS Lab Sample I Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 280-83161-8 Water 1.0 05/23/2016 2004 05/23/2016 2004 N/A	Analysis Batch: Prep Batch: Leach Batch:	160-252588 N/A N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMSF FSMP6659.D 5 mL 5 mL 5 mL
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: 280-83161-8 Water 1.0 05/23/2016 2030 05/23/2016 2030 N/A	Analysis Batch: Prep Batch: Leach Batch:	160-252588 N/A N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMSF FSMP6660.D 5 mL 5 mL 5 mL

	<u>% Rec.</u>								
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual		
1,1,1,2-Tetrachloroethane	104	103	78 - 124	2	20				
1,1,1-Trichloroethane	116	110	74 - 131	5	20				
1,1,2,2-Tetrachloroethane	104	100	71 - 121	4	20				
1,1,2-Trichloroethane	108	99	80 - 119	9	20				
1,1-Dichloroethane	108	104	77 - 125	4	20				
1,1-Dichloroethene	99	97	71 - 131	2	20				
1,1-Dichloropropene	105	100	79 - 125	5	20				
1,2,3-Trichlorobenzene	103	99	69 - 129	3	20				
1,2,3-Trichloropropane	100	97	73 - 122	4	20				
1,2,4-Trimethylbenzene	105	103	76 - 124	2	20				
1,2-Dibromo-3-Chloropropane	107	102	62 - 128	5	20				
1,2-Dibromoethane	99	95	80 - 120	4	20				
1,2-Dichloroethane	113	103	73 - 128	9	20				
1,2-Dichloropropane	108	104	78 - 122	4	20				
1,3,5-Trimethylbenzene	104	102	75 - 124	2	20				
1,3-Dichloropropane	105	99	80 - 119	5	20				
2,2-Dichloropropane	128	119	60 - 139	8	20				
2-Butanone (MEK)	99	90	56 - 143	9	20				
2-Chlorotoluene	106	103	79 - 122	3	20				
2-Hexanone	101	100	57 - 139	1	20				
4-Chlorotoluene	105	102	78 - 122	3	20				
4-Methyl-2-pentanone (MIBK)	103	96	67 - 130	7	20				
Acetone	89	84	39 - 160	5	20				
Benzene	105	100	79 - 120	4	20				
Bromobenzene	93	93	80 - 120	0	20				
Bromochloromethane	97	94	78 - 123	3	20				
Bromodichloromethane	116	105	79 - 125	10	20				
Bromoform	105	100	66 - 130	5	20				
Bromomethane	92	93	53 - 141	2	20				
Carbon disulfide	103	99	64 - 133	4	20				
Carbon tetrachloride	118	112	72 - 136	6	20				
Chlorobenzene	101	98	82 - 118	4	20				

TestAmerica Denver

TestAmerica Denver

1,2-Dichloroethane-d4 (Surr)

Trichloroethene

Vinyl chloride

Xylenes (total)

Surrogate

Trichlorofluoromethane

97

106

126

102

94

102

118

MS % Rec

99

111

79 - 123

65 - 141

58 - 137

79 - 121

2

4

7

3

MSD % Rec

100

20

20

20

20

Acceptance Limits

81 - 118

VMSF

FSMP6659.D

Job Number: 280-83161-1

Method: 8260C DOD Preparation: 5030C

Instrument ID:

Lab File ID:

Dilution: Analysis Date: Prep Date: Leach Date:	1.0 05/23/2016 2004 05/23/2016 2004 N/A	Leach Batch:		N/A	Initial Weight/Volume: Final Weight/Volume:		5 mL 5 mL 5 mL	
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	e ID: 280-83161-8 Water 1.0 05/23/2016 2030 05/23/2016 2030 N/A	Prep Batch:		160-252588 N/A N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:		VMSF FSMP6660.D 5 mL 5 mL 5 mL	
		<u>%</u>	Rec.					
Analyte		MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Chloroethane		97	99	60 - 138	2	20		
Chloroform		109	106	79 - 124	3	20		
Chloromethane		126	116	50 - 139	8	20		
cis-1,2-Dichloroethene		104	100	78 - 123	4	20		
cis-1,3-Dichlorop	ropene	109	101	75 - 124	8	20		
Dibromochlorome	ethane	107	103	74 - 126	4	20		
Dibromomethane		108	102	79 - 123	5	20		
Dichlorodifluoromethane		134	123	32 - 152	9	20		
Ethylbenzene		110	105	79 - 121	4	20		
Isopropylbenzene		104	102	72 - 131	2	20		
m,p-Xylenes		102	99	80 - 121	3	20		
Methyl tert-butyl ether		103	99	71 - 124	4	20		
Methylene Chloride		99	100	74 - 124	1	20		
Naphthalene		107	104	61 - 128	3	20		
n-Butylbenzene		102	99	75 - 128	3	20		
N-Propylbenzene	9	109	106	76 - 126	2	20		
o-Xylene		102	100	78 - 122	3	20		
p-Isopropyltoluene		107	104	77 - 127	2	20		
sec-Butylbenzene		110	106	77 - 126	3	20		
Styrene		101	96	78 - 123	5	20		
tert-Butylbenzene		105	101	78 - 124	3	20		
Tetrachloroethene		95	93	74 - 129	2	20		
Toluene		102	101	80 - 121	1	20		
trans-1,2-Dichloroethene		99	99	75 - 124	0	20		
trans-1,3-Dichloropropene		110	105	73 - 127	5	20		

Analysis Batch:

Prep Batch:

160-252588

N/A

Client: Leidos, Inc.

Matrix Spike/

Client Matrix:

MS Lab Sample ID: 280-83161-8

Water

Matrix Spike Duplicate Recovery Report - Batch: 160-252588

Quality Control Results

Client: Leidos, Inc.

Surrogate	MS % Rec	MSD % Rec	Acceptance Limits
4-Bromofluorobenzene (Surr)	93	88	85 - 114
Dibromofluoromethane (Surr)	97	94	80 - 119
Toluene-d8 (Surr)	95	91	89 - 112

Quality Control Results

Job Number: 280-83161-1

Client: Leidos, Inc.

Method Blank - Batch: 160-252878

Method: 8260C DOD Preparation: 5030C

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 160-252878/6 Water 1.0 05/24/2016 1741 05/24/2016 1741 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	160-252878 N/A N/A ug/L	Lab Fi Initial	nent ID: le ID: Weight/Volume: Veight/Volume:	VMSF FBLK6691.D 5 mL 5 mL		
Analyte		Resu	It	Qual	DL	LOQ		
Vinyl chloride		1.0		U	0.43	5.0		
Surrogate		% R		Acceptance Limits				
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Lab Control Sample/ Lab Control Sample Duplicate Recove		11 10 99 10 ery Report - Bato	5 9 95		81 - 118 85 - 114 80 - 119 89 - 112 Method: 8260C DOD 8 Preparation: 5030C			
LCS Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: LCS 160-252878/3 Water 1.0 05/24/2016 1625 05/24/2016 1625 N/A	Analysis Batch Prep Batch: Leach Batch: Units:	n: 160-25287 N/A N/A ug/L	Lab Fi Initial	ment ID: le ID: Weight/Volume: Weight/Volume:	VMSF FLCS6688.D 5 mL 5 mL 5 mL		
LCSD Lab Sampl Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	e ID: LCSD 160-252878/4 Water 1.0 05/24/2016 1651 05/24/2016 1651 N/A	Analysis Batch Prep Batch: Leach Batch: Units:	n: 160-25287 N/A N/A ug/L	Lab Fi Initial '	ment ID: le ID: Weight/Volume: Neight/Volume:	VMSF FLCS6689.D 5 mL 5 mL 5 mL		
		<u>% Rec.</u>						

Analyte	LCS	LCSD	Limit	RPD	RPD Limit LCS Qual	LCSD Qual	
Vinyl chloride	112	111	58 - 137	1	20		
Surrogate	LCS % Rec		LCSD % Rec		Acceptance Limits		
1,2-Dichloroethane-d4 (Surr)	1	08	107		81 - 118		
4-Bromofluorobenzene (Surr)		97			85 - 114		
Dibromofluoromethane (Surr)	9	9	101		80 - 119		
Toluene-d8 (Surr)		02	99		89 - 112		

Quality Control Results

Job Number: 280-83161-1

Client: Leidos, Inc.

Method Blank - Batch: 280-325179 Method: 9056A **Preparation: N/A** Lab Sample ID: MB 280-325179/6 Analysis Batch: 280-325179 Instrument ID: WC_IonChrom11 **Client Matrix:** Water Prep Batch: N/A Lab File ID: 0006.d Dilution: Leach Batch: N/A Initial Weight/Volume: 5 mL 1.0 05/13/2016 1141 Final Weight/Volume: Analysis Date: Units: mg/L 5 mL Prep Date: N/A Leach Date: N/A Analyte Result Qual DL LOQ Nitrate 0.0869 0.042 0.50 J Method Reporting Limit Check - Batch: 280-325179 Method: 9056A Preparation: N/A Lab Sample ID: MRL 280-325179/3 Analysis Batch: 280-325179 Instrument ID: WC IonChrom11 Client Matrix: 0003.d Water Prep Batch: N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 ml Analysis Date: 05/13/2016 1041 Units: mg/L Final Weight/Volume: 5 mL Prep Date: N/A Leach Date: N/A Analyte Spike Amount Result % Rec. Limit Qual Nitrate 0.200 0.278 139 50 - 150 J Lab Control Sample/ Method: 9056A Lab Control Sample Duplicate Recovery Report - Batch: 280-325179 **Preparation: N/A** LCS Lab Sample ID: LCS 280-325179/4 WC IonChrom11 Analysis Batch: 280-325179 Instrument ID: Client Matrix: Water Prep Batch: N/A Lab File ID: 0004.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 05/13/2016 1101 Analysis Date: mg/L Final Weight/Volume: 5 mL Units: Prep Date: N/A 10 uL Leach Date: N/A LCSD Lab Sample ID: LCSD 280-325179/5 WC IonChrom11 Analysis Batch: 280-325179 Instrument ID: Client Matrix: Water Prep Batch: N/A Lab File ID: 0005.d Leach Batch: N/A Initial Weight/Volume: Dilution: 1.0 5 mL 05/13/2016 1121 Final Weight/Volume: Analysis Date: Units: mg/L 5 mL Prep Date: N/A 10 uL Leach Date: N/A % R<u>ec.</u> LCS Analyte LCSD Limit RPD RPD Limit LCS Qual LCSD Qual Nitrate 96 88 - 111 10 96 0

Analyte

Nitrate

Quality Control Results

RPD

NC

Limit

10

Qual

U

Result

0.10

Job Number: 280-83161-1

Matrix Spike/ Matrix Spike D	uplicate Recovery Rep		l: 9056A ation: N/A					
MS Lab Sample II Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 280-83161-6 Water 1.0 05/14/2016 0159 N/A N/A	Pre	lysis Batch: o Batch: ch Batch:	: 280-325179 N/A N/A			WC_lonCl 0035.d 5 mL 5 mL 10 uL	nrom11
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	on: 1.0 ysis Date: 05/14/2016 0219 Date: N/A		lysis Batch: o Batch: ch Batch:	: 280-325179 N/A N/A			WC_lonCl 0036.d 5 mL 5 mL 10 uL	nrom11
Analyte		<u>%</u> MS	<u>Rec.</u> MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Nitrate		102	103	88 - 111	1	10	Н	Н
Duplicate - Bat	ch: 280-325179					l: 9056A ation: N/A		
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	280-83161-6 Water 1.0 05/14/2016 0139 N/A N/A	Analys Prep B Leach Units:	atch: Batch:	280-325179 N/A N/A mg/L			WC_lonCl 0034.d 5 mL 5 mL 10 uL	nrom11

0.10

Sample Result/Qual

U

Matrix Spika/

Client: Leidos, Inc.

Quality Control Results

Job Number: 280-83161-1

Client: Leidos, Inc.

Method Blank - Batch: 280-325180 Method: 9056A **Preparation: N/A** Lab Sample ID: MB 280-325180/6 Analysis Batch: 280-325180 Instrument ID: WC_IonChrom11 **Client Matrix:** Water Prep Batch: N/A Lab File ID: 0006.d Leach Batch: N/A Initial Weight/Volume: 5 mL Dilution: 1.0 05/13/2016 1141 Final Weight/Volume: Analysis Date: Units: mg/L 5 mL Prep Date: N/A Leach Date: N/A Analyte Result Qual DL LOQ 5.0 Sulfate 0.427 0.23 J Method Reporting Limit Check - Batch: 280-325180 Method: 9056A **Preparation: N/A** Lab Sample ID: MRL 280-325180/3 Analysis Batch: 280-325180 Instrument ID: WC IonChrom11 Client Matrix: 0003.d Water Prep Batch: N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 ml Analysis Date: 05/13/2016 1041 Units: mg/L Final Weight/Volume: 5 mL Prep Date: N/A Leach Date: N/A Analyte Spike Amount Result % Rec. Limit Qual Sulfate 2.50 2.60 104 50 - 150 J Lab Control Sample/ Method: 9056A Lab Control Sample Duplicate Recovery Report - Batch: 280-325180 **Preparation: N/A** LCS Lab Sample ID: LCS 280-325180/4 WC IonChrom11 Analysis Batch: 280-325180 Instrument ID: Client Matrix: Water Prep Batch: N/A Lab File ID: 0004.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 05/13/2016 1101 Analysis Date: mg/L Final Weight/Volume: 5 mL Units: Prep Date: N/A 10 uL Leach Date: N/A LCSD Lab Sample ID: LCSD 280-325180/5 WC IonChrom11 Analysis Batch: 280-325180 Instrument ID: Client Matrix: Water Prep Batch: N/A Lab File ID: 0005.d Leach Batch: N/A Initial Weight/Volume: Dilution: 1.0 5 mL 05/13/2016 1121 Final Weight/Volume: Analysis Date: Units: mg/L 5 mL Prep Date: N/A 10 uL Leach Date: N/A % R<u>ec.</u> LCS Analyte LCSD Limit RPD RPD Limit LCS Qual LCSD Qual Sulfate 96 87 - 112 10 96 0

Analyte

Sulfate

Quality Control Results

Job Number: 280-83161-1

Matrix Spike/ Matrix Spike D	uplicate Recovery Re	eport - Bat	tch: 280-3	25180		d: 9056A ation: N/A		
MS Lab Sample I Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 280-83161-6 Water 5.0 05/14/2016 0518 N/A N/A	Pre	alysis Batch: p Batch: ch Batch:	280-325180 N/A N/A			WC_lonC 0045.d 5 mL 5 mL 10 uL	hrom11
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: 280-83161-6 Water 5.0 05/14/2016 0538 N/A N/A	Pre	Ilysis Batch: p Batch: ch Batch:	280-325180 N/A N/A			WC_lonC 0046.d 5 mL 5 mL 10 uL	hrom11
Analyte		<u>%</u> MS	<u>Rec.</u> MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Sulfate		95	95	87 - 112	0	10	D	D
Duplicate - Bat	ch: 280-325180					d: 9056A ation: N/A		
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	280-83161-6 Water 5.0 05/14/2016 0458 N/A N/A	Prep Batch: N/A Leach Batch: N/A					WC_lonC 0044.d 5 mL 5 mL 10 uL	hrom11

Sample Result/Qual

270

Client: Leidos, Inc.

Matrix Spike/

Method: 9056A

RPD

2

Limit

10

Qual

D

Result

262

Quality Control Results

Job Number: 280-83161-1

Client: Leidos, Inc.

Method Blank - Batch: 280-326937

Method: 9060A Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 280-326937/5 Water 1.0 05/24/2016 1633 N/A N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	: 280-326937 N/A N/A mg/L		Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume	
Analyte		Resi	ult	Qua	l DL	LOQ
Total Organic Ca	rbon - Quad	0.50		U	0.16	1.0
Method Blank	- Batch: 280-326937				Method: 9060A Preparation: N/A	
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 280-326937/36 Water 1.0 05/25/2016 0018 N/A N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	280-326937 N/A N/A mg/L		Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume	
Analyte		Resi	ult	Qua	I DL	LOQ
Total Organic Ca	rbon - Quad	0.50		U	0.16	1.0

Job Number: 280-83161-1

Client: Leidos, Inc.

Lab Control Sample - Batch: 280-326937

Method: 9060A Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LCS 280-326937/4 Water 1.0 05/24/2016 1618 N/A N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	280-326937 N/A N/A mg/L	Instrument I Lab File ID: Initial Weigh Final Weigh	t/Volume:	WC_SHI3 052416.txt 200 mL	
Analyte		Spike Amount	Result	% Rec.	Limi	t	Qual
Total Organic Ca	rbon - Quad	25.0	24.9	99	88 -	112	
Lab Control Sa	ample - Batch: 280-32	6937		Method: 9 Preparatio			
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LCS 280-326937/35 Water 1.0 05/25/2016 0003 N/A N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	280-326937 N/A N/A mg/L	Instrument I Lab File ID: Initial Weigh Final Weigh	t/Volume:	WC_SHI3 052416.txt 200 mL	
Analyte		Spike Amount	Result	% Rec.	Limi	t	Qual
Total Organic Ca	rbon - Quad	25.0	25.3	101	88 -	112	
Matrix Spike/ Matrix Spike D	uplicate Recovery Re	port - Batch: 280	-326937	Method: 9 Preparatio			
MS Lab Sample I Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 280-83161-6 Water 1.0 05/24/2016 2334 N/A N/A	Analysis Batc Prep Batch: Leach Batch:	N/A	Instrument I Lab File ID: Initial Weigh Final Weigh	t/Volume:	WC_SHI3 052416.txt 50 mL	
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	e ID: 280-83161-6 Water 1.0 05/24/2016 2348 N/A N/A	Analysis Batc Prep Batch: Leach Batch:	h: 280-326937 N/A N/A	Instrument I Lab File ID: Initial Weigh Final Weigh	t/Volume:	WC_SHI3 052416.txt 50 mL	
Analyte		<u>% Rec.</u> MS MSD	Limit	RPD R	PD Limit	MS Qual	MSD Qual
Total Organic Ca	rbon - Quad	100 101	88 - 112	1 1	5		

ſ	301 Laboratory Road, Oak Ridge, Tennesse						, T	CF	iAl	NC	JF	CUS	1												COC NO.:	
	PROJECT NAME: IRP Site 6, Sch	enectady,	NYANG	;								F	EQU	JEST	EDF	PAR	AME	TER	s T		<u> </u>		Т		LABORATORY N Test America	IAME:
	PROJECT NUMBER: 314561.00.0	04.8002.92	0																	-				ļ	LABORATORYA	DDRESS:
	PROJECT MANAGER: Mike Polig								and Nitrate				н н 1		N		7	1						Vial	4955 Yarrow Stre Arvada, CO 8000	
	Sampler (Signature)	-	ed Namej Ch S	-	ele				e and				\downarrow	\vdash											PHONE NO: 303-	-736-0192
	<i>\D</i>		Date		Time		VOCs	50	Sulfate		1	1												No. of	OVA	OBSERVATIONS, C
	Sample ID		Collect		Collected	Matrix		2	3	<u> </u>		 		 T						 	1 T				SCREENING	SPECIAL INSTR
	6MW2301	<u></u>	4		9955		X	X	Ä		-							_			-			5		
ļ	10 MW 24Ø1				0830			<u>X</u>	X	-			<u> </u>	<u> </u>						_	<u> </u>		K	_		
	TBOD		5-12	-162	680	92	X		_		-	· ; • ;	<u> </u> :	: 			17 g	_					0	척		
Page			ļ						_		_ <u> </u>	-11 						_	-		_		\perp			T
65	- <u>-</u>		<u> </u>					<u> </u>	_		-+		<u> </u>	_					_	4	╞	H	1		_	
어				-+				-	_		\downarrow	22	Ł	ŧ			1	-			_		╇	\downarrow		
	·····		ļ						\dashv	4	4	Ŧ	\Rightarrow	≱	П		(¹)						-	Ļ	 	Burren ander er kannen som en ander er er som e
				⇒			Ħ		-		4			1_												
ł		\sim	\square						-		_		-								<u> </u>		+			
ł							┝─┝			-				. 			-	\.					+-		280-83161	Chain of Custody
ŀ		Date/T			EIVED B	/.					Date	/Time					BER C				<u> </u>			+	Cooler Temperatu	I
	RELINQUISHED	5-12		N	3~	(l l	U	\sim	_			5/16	11-	Coole	-	_							<u>2</u>	-+	FEDEX NUMBER	
ľ	COMPANY NAME: Lerdos	140		COM	PANY NA TAT						295	50	_													
Ī	RECEIVED BY:	Date/T	īme	RELI	NQUISHI	ED BY:	_			ן נ	Date/	/Time		Star	ıdaı	rd (5 da	y) t	urn	aro	unc	I				
ľ	COMPANY NAME:		ŀ	СОМ	PANY NA	ME:								21	- 2	50 r	ni P	oły	ethy	lene	e, H		4 01		, 4C ICL, Cool, 4C	
ŀ	RELINQUISHED BY:	Date/T	īme	RECE	EIVED BY	(:	_				Date/	Time		31	- 50	00 r	nl P	oly	ethy	lene	∍, C	ool, 4	4C			
ŀ	COMPANY NAME:			COM	PANY NA	ME:	_																			

1.9-0.1 IR#5 Transfored by Dw 5/13/16

OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS

C-83

COC NO .: 1 0 F 1 CHAIN OF CUSTODY RECORD 301 Laboratory Road, Oak Ridge, Tennessee 37831 (865) 482-9031 PROJECT NAME: IRP Site 6, Schenectady, NYANG **REQUESTED PARAMETERS** LABORATORY NAME: Test America PROJECT NUMBER: 314561.00.04.8002.920 LABORATORY ADDRESS: ö 4955 Yarrow Street **PROJECT MANAGER: Mike Poligone** Sulfate and Nitrate Vial Arvada, CO 80002 Bottles/ Sampler (Signature) (Printed Name) ZachSteele PHONE NO: 303-736-0192 vocs ъ TOC Ňo. Date Time OVA OBSERVATIONS, COMMENTS, Sample ID Collected Matrix Collected SCREENING SPECIAL INSTRUCTIONS 2 3 6MW2 301 5-12-16 0955 GW 5 5 5-12-160830 GWXX MW2401 TRØD 5-12-160800 Э QC 280-83161 Chain of Custody Date/Time Date/Time TOTAL NUMBER OF CONTAINERS: RELINQU RECEIVED BY: 12 Cooler Temperature: ۵۵) ر 5/13/16 5-12-16 Cooler ID: FEDEX NUMBER: COMPANY NAME: 1400 COMPANY NAME: 0950 TAD Date/Time RELINQUISHED BY: Standard (5 day) turn-around RECEIVED BY: Date/Time

1 3 - 40 ml Glass Vials, HCL to pH < 2, 4C

- 2 1 250 ml Polyethylene, H2SO4 or HCL, Cool, 4C
- Date/Time 3 1 500 ml Polyethylene, Cool, 4C

1.9-0.1 IR#5 transfored by De 5/13/16

COMPANY NAME:

RECEIVED BY:

COMPANY NAME:

Date/Time

Page 66 o C-84

COMPANY NAME:

RELINQUISHED BY:

COMPANY NAME:

CHAIN OF CUSTODY RECORD

COC NO.:

301 Laboratory Road, Oak Ridge, Tennessee 37831 (86	5) 482-9031				CH	IAI	N O	FC	CUS	бто	DY	R	ECC	DRE)							000 110.	
PROJECT NAME: IRP Site 6, Schenectady	, NYANG								RI	EQUI	ESTE	ED P/	ARAN	1ETE	RS					71		LABORATORY NA Test America	AME:
PROJECT NUMBER: 314561.00.04.8002.92	20																		$\boldsymbol{\lambda}$			LABORATORY A	DRESS:
PROJECT MANAGER: Mike Poligone						itrate												Å			/ Vials:	4955 Yarrow Stre Arvada, CO 80002	et
- 11	^{ted Name)} ach St	noli	2			e and Nitrate											Λ	ĺ			Bottles/	PHONE NO: 303-7	736-0192
Sample ID	Date Collected	Time Collected	Matrix	VOCs	ğ	Sulfate									Þ/	/					No. of	OVA SCREENING	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
6MW26Ø1	5-11-16	 		1 X	2 X	<u>з</u> Х			1	I.		.	4	X						ļ	5		
6 MW 25 Ø1	5-11-16	1140	GW	χ		X			1 - - -				Í								5		
6mw 2001	5-11-16					Ϋ́	_				_	-	4							-	5 5		
6MW 2201 6MW 2001D	5-11-16		1			스 X	·				-	A	_							_	ว รี		Duplicate
6MW2001MS	5-11-16	1			Х	X					\square	. "									5		Matrix Spike
6MW2001MSD	5-11-16				χ	X			\downarrow	[]		· ·	-								5		Matrix Spike Du,
TBOI	5-11-16			Х				Æ				<u>.</u>		· 							2 3		Trip Blank Field Blank
FBØI Temo Blank	5-11-16	1030	8-				\overline{A}		-					·							<u>></u> 1		Temp Blank
							Z									_	-			-	-	-	
RELINQUISHED BY: Date/	17	CEIVED B		r				ate/T	ime 16		DTAL	_ NUI	MBE	R OF	CON	ITAI	NEF	RS:	4			Cooler Temperatu	e:
COMPANY NAME: Leidos 5-11		MPANY N TAC	AME:	<u>~</u>	<u> </u>		7	95		C	ooler	ID:										FEDEX NUMBER:	
RECEIVED BY: Date/	Time RE	LINQUISH					D	ate/T	ĩme				1 (5	-	-						1		
COMPANY NAME: MI 93	°0 ^{CO}	MPANY N	AME:]			2	1 -	- 25		Po	lyet	hyle	ene	, H2	250	94 o	or H	, 4C ICL, Cool, 4C	
Date/	<i>n</i> 1	CEIVED B	Y:				D	ate/T	ïme			- 50	0 m	10	y et	y 10	·	, ••	- - 1,				
MI IGO	MI COMPANY NAME						E:																

- - - -

COLUMN TAXAB

the second states and a second

۲

COC NO .: 1 0 F 1 CHAIN OF CUSTODY RECORD 301 Laboratory Road, Oak Ridge, Tennessee 37831 (865) 482-9031 LABORATORY NAME: REQUESTED PARAMETERS PROJECT NAME: IRP Site 6, Schenectady, NYANG Test America PROJECT NUMBER: 314561.00.04.8002.920 LABORATORY ADDRESS: 4955 Yarrow Street Ū, **PROJECT MANAGER: Mike Poligone** Sulfate and Nitrate Vial Arvada, CO 80002 Bottles/ (Printed Name) Sampler (Signature) ZachSteele PHONE NO: 303-736-0192 ъ VOCs 100 No. OBSERVATIONS, COMMENTS, Date Time OVA SCREENING SPECIAL INSTRUCTIONS Sample ID Collected Collected Matrix 2 2 5 6MW2 301 5-12-16 0955 GW 5 1 MW 2401 5-12-160830 GW Э 5-12-14080 QC ŤRØZ 3 έ. 280-83161 Chain of Custody TOTAL NUMBER OF CONTAINERS: 12 Cooler Temperature: RECEIVED BY: Date/Time Date/Time RELINQUIS 5/13/16 5-12-16 11 60 Cooler ID: FEDEX NUMBER: 0950 COMPANY NAME: COMPANY NAME: 1400 THO Date/Time Standard (5 day) turn-around RELINQUISHED BY: Date/Time RECEIVED BY: 1 3 - 40 ml Glass Vials, HCL to pH < 2, 4C COMPANY NAME: COMPANY NAME: 2 1 - 250 ml Polyethylene, H2SO4 or HCL, Cool, 4C 3 1 - 500 ml Polyethylene, Cool, 4C RECEIVED BY: Date/Time RELINQUISHED BY: Date/Time COMPANY NAME: COMPANY NAME:

1.2-0.1, 1.9-0.1 IR#5 Transformal by DW 5/13/16 NER 5/16/16

CHAIN OF CUSTODY RECORD

COC NO .:

Son Laboratory Road, Vak Ridge, Tennesse		<u> </u>												D C							LABORATORY				
PROJECT NAME: IRP Site 6, Sch	enectady, NYA	NG									REQ		STED							<u> </u>	-	/		Test America	
PROJECT NUMBER: 314561.00.0 PROJECT MANAGER: Mike Polig	-	1					and Nitrate														Λ	,	s/ Vials:	LABORATORY / 4955 Yarrow Str Arvada, CO 800	reet
Sampler (Signature)	(Printed Na	-					nd N					ļ							/				Bottle		700.0400
28	Zach	St	eele	?	Ň		Sulfate a											Λ					2	PHONE NO: 303	-736-0192
Sample ID)ate ilected	Time Collected	Matrix	SDOV 1		Sulf								1	P	þ/						No.	OVA SCREENING	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
6MW2601	5-	11-16	1023	GW	X	X	X		ļ				7.	4	H	V	1		1 ž		; ;		5		
6MW 25Ø1			1140	-		χ	X						т. ¹	-	1						i Lung		5		
6MW 2001			1306		X	X	X					,			1				•		14 - 4 - 2 14		5		
6mw 2201		11-16			X	X	X	0			,	·		Y									5		
6MW2001D	5-	11-16	1306	1			Х	, , , , , , , , , , , , , , , , , , ,			ľ		$\boldsymbol{\lambda}$. :		н н. 1 н и				· · · ·		Ś		Duplicate
6MW2001MS	5 5-	11-16	1306	GW	χ	X	X	 		Ą.	1	1			a, .	<u> </u>			4 				5		Matrix Spike
6mw2001ms		1-16	1306	66	X	Х	Χ				1								12				5		Matrix Spike Dup
TBØI	5-	il-16	0815	QC	Х							-					5		- 1 2 13			<u> </u>	2		Trip Blank
FBØI		1-16				- -			/			,			100				· · ·		(s. : 1 -		3		Field Blank
Temp Blank		-		-				/	,						1.1		1 		; "				1	·	Temp Blank
		<u> </u>							X								200				}				
RELINQUISHED BY:	Date/Time	REC	SEIVED B.	Y: (11	6				Date/						IBER	OF	CON	ITAI	NEF	ts:	4			Cooler Temperat	
COMPANY NAME:	1900		MPANY N		$\underline{\mathcal{V}}$				215 29'			Со	oler IC);										FEDEX NUMBER	र:
Leidos	5-11-16		TAC						ירכ																
RECEIVED BY:	Date/Time 5/12/10	REL	LINQUISH	ED BY:					Date/	/Time			anda		-										
COMPANY NAME: MI	930	COI	MPANY N	AME:								2		50	ml	Pol	yeti	hyle	ene	, H2	250)4	or l	2, 4C HCL, Cool, 4C	
FELINQUISHED BY:	Date/Time	REC	CEIVED B	Y:					Date/	/Time	e	J	1-0				y - t.			,	•	,	-		
COMFANY NAME: M.T	1600	CO	MPANY N	AME:																					

0

TestAmerica Denver

4955 Yarrow Street

Arvada, CO 80002

C-88

Chain of Custody Record

TestAmerica

Phone (303) 736-0100 Fax (303) 431-7171																	THE LEADER IN ER	(VIRONMENTAL	TEBTING
Client Information (Sub Contract Lab)	Sampler:			Lab I		ra le	essica	<u>ц</u>				Carri	er Track	ing No(s	s):		COC No:		
Client Contact:	Phone:			E-Ma		ia, Jo	3551Ua	п				_					280-351524.1 Page:		
Shipping/Receiving Company:				jess	ica.d	leherr	rera@t	testarr	nerica	ainc.co	om					-	Page 1 of 1		
TestAmerica Laboratories, Inc.									Ar	nalys	sis Re	eques	sted				Job #: 280-83161-1		
13715 Rider Trail North, ,	Due Date Request 6/2/2016	ed:				-	<u></u>										Preservation Cod	es:	
City:	TAT Requested (d	ays):			+		samples)										A - HCL B - NaOH	M - Hexane	
Earth City State, Zip:	4																C - Zn Acetate	N - None O - AsNaO2	
MO, 63045							ž										D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3	
Phone:	PO #.				11		St. Louis (for NY										F - MeOH G - Amchlor	R - Na2S2O3	
314-298-8566(Tel) 314-298-8757(Fax) Email:	WO#:				- Şİ	-											H - Ascorbic Acid	S - H2SO4 T - TSP Dodec	ahydrate
					o	9	IASt									ø	I - Ice J - DI Water	U - Acetone V - MCAA	
Project Name: Schenectady ANGB, NY	Project #: 28015159					2										iner	K - EDTÁ L - EDA	W - ph 4-5 Z - other (speci	if.v)
Site:	SSOW#:				ble	(Yes	AUCS									conta			ily;
					San	ISD										of c	Ouler.		
			Sample	Matrix	red	Perform MS/MSD (Yes or No)	DUD9/9030C												
		ē	Туре	(W=water, S=solid,	File	E	8									Total Number			:
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	(C=comp, G=grab)	O=waste/oil,	leid	Perfor	2600									otal	_		
	Sample Date			BI=Tissue, A=Air; tion Code:			20									-E	Special In	structions/No	ote:
6MW2301 (280-83161-1)	5/12/16	09:55		Water	ŕΫ́	Δ,	x			-				-		\square	DOD QSM Variand	ces Rev122815	5. DIL3.
6MW2401 (280-83161-2)		Eastern 08:30		· · · · ·	\square		-								<u> -</u>	3-	report only lowest	dilution w/in cal	libration
	5/12/16	Eastern		Water		;	x									3	DOD QSM Variand report only lowest	es Rev122815 dilution w/in cal	5, DIL3, libration
5 B02 (280-83161-3)	5/12/16	08:00 Eastern		Water			x							_		2	DOD QSM Variand	es Rev122815	5, DIL3,
6MW2601 (280-83161-4)	5/11/16	10:23		Water	$\uparrow \uparrow$;	x									3	report only lowest DOD QSM Variand	es Rev122815	5, DIL3,
6MW2501 (280-83161-5)	5/11/16	Eastern 11:40		Water	\square	+	x	-		_						3	report only lowest DOD QSM Variand	es Rev122815	5, DIL3,
6MW2001 (280-83161-6) includes MS/MSD	5/11/16	Eastern 13:06		Water	\mathbf{H}	_	x								$\left - \right $	e	report only lowest DOD QSM Variand	es Rev122815	5, DIL3,
6MW2201 (280-83161-7)	5/11/16	Eastern 15:01		Water	┼┼		x			-+					+ $-$	9	report only lowest DOD QSM Variand		
6MW2001D (280-83161-8)		Eastern 13:06			$\left \cdot \right $					_					+ +		report only lowest DOD QSM Variand		
	5/11/16	Eastern 08:15		Water	┞╟	'	×					_					report only lowest	dilution w/in cal	libration
TB01 (280-83161-9)	5/11/16	Eastern		Water);	X									2	DOD QSM Variand report only lowest		
FB01 (280-83161-10)	5/11/16	10:30 Eastern		Water		;	x									2	DOD QSM Variand	es Rev122815	5, DIL3,
	-	Laotom			11							-					report only lowest	ullution w/in cal	libration
Possible Hazard Identification	1	I			┺╢	Samr	ole Dis	posal		fee m	av be	25565	sed if	samnl		staine	ed longer than 1	month	
Unconfirmed							l Retur					Díspo:	sel By	Sumpr I ah			ve For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)	······						al Insti				uirem	ents:	50. Dy 1	Lab		Alom	Ve i Ul	MONUNS	
Empty Kit Relinquished by:	··	Date:			Tim	ie:				·			Method	of Shipn	nent:				
Relinquisped by	Date/Time: Stoll	o (r	1/1T	Company	<u> </u>	Re	eceived	by.	A	1	1			Date	/Time:	7 11	. 0820	Company THS	~77
Relinquished by:	Date/Time: Com					iny Received by:								Date) < / / e/Time:	- 14	· OPLO	Company	$\underline{\mathcal{P}}$
Relinquished by:	Date/Time: Comp.					Re	eceived	hv					Date/Time:						
						~] .										Company			
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No	an a			Cooler Temperature(s) °C and Other Re							č	· ·	. ¹ 2				а. С		

Client: Leidos, Inc.

Login Number: 83161 List Number: 1 Creator: White, Denise E

Job Number: 280-83161-1

List Source: TestAmerica Denver

oreator. Write, Denise L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	False	NO SEAL, TAPE INTACT
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	False	Shipping Delay, Refer to Case Narrative
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	Containers recd broken. Sufficient sample in remaining containers for analysis.
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Leidos, Inc.

Login Number: 83161 List Number: 2 Creator: Clarke, Jill C

Job Number: 280-83161-1

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ANALYTICAL REPORT

Job Number: 280-83093-1 Job Description: Schenectady ANGB, NY

> For: Leidos, Inc. 301 Laboratory Road Leidos SSC-AP LOC #47, MS 2113-03 Oak Ridge, TN 37830

Attention: Mr. Michael Poligone

Jessica Detterrera

Approved for release. Jessica H DeHerrera Project Manager I 5/19/2016 11:57 AM

Jessica H DeHerrera, Project Manager I 4955 Yarrow Street, Arvada, CO, 80002 jessica.deherrera@testamericainc.com 05/19/2016

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is 4025.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

NOTE - All references to Schenectady ANGB in this report should be Stratton ANGB

Table of Contents

Cover Title Page	1
Data Summaries	3
Definitions	3
Case Narrative	4
Detection Summary	5
Certification Summary	6
Method Summary	7
Sample Summary	8
Subcontracted Data	9
Shipping and Receiving Documents	19
Client Chain of Custody	20
Sample Receipt Checklist	21

Definitions/Glossary

Client: Leidos, Inc. Project/Site: Schenectady ANGB, NY

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
IEQ	Toxicity Equivalent Quotient (Dioxin)

CASE NARRATIVE Client: Leidos, Inc. Project: Schenectady ANGB, NY Report Number: 280-83093-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 05/13/2016; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 3.2° C.

The volume for DHC was to be shipped directly to Microbial Insights for analysis. Due to a shipping error, the volume for DHC analysis was received by TestAmerica Denver, and was reshipped to Microbial Insights.

Dehalococcoides sp. (DHC)

Sample 6MW2501 (280-83093-1) was subcontracted to Microbial Insights for the requested DHC analysis. Please note that Microbial Insights does not hold DOD certification for this analysis. Please refer to the subcontract narrative for additional information.

Detection Summary

Client: Leidos, Inc. Project/Site: Schenectady ANGB, NY

Client Sample ID: 6MW2501

No Detections.

Lab Sample ID: 280-83093-1

TestAmerica Denver

Laboratory: TestAmerica Denver The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	DoD ELAP		2907.01	10-31-17
Connecticut	State Program	1	PH-0686	09-30-16
Florida	NELAP	4	E87667	06-30-16
New Hampshire	NELAP	1	205310	04-28-17
New York	NELAP	2	11964	04-01-17
Pennsylvania	NELAP	3	68-00664	07-31-16

Method	Method Description	Pro	otocol	Laboratory
Dehalococcoides	General Sub Contract Method	NO	NE	Micro
sp. (DHC) - SUB				

Protocol References:

NONE = NONE

Laboratory References:

Micro = Micro, 10515 Research Dr, Knoxville, TN 37932

Sample Summary

Client: Leidos, Inc. Project/Site: Schenectady ANGB, NY

Lab Sample ID	Client Sample ID	Matrix	Collected Received
280-83093-1	6MW2501	Water	05/11/16 11:40 05/12/16 12:13

10515 Research Drive Knoxville, TN 37932 Phone: (865) 573-8188 Fax: (865) 573-8133

Client:	Test Am 4955 Ya	DeHerrera herica hrrow Street CO 80002			Phone: Fax:	303-736-0165
Identifier:	041NE		Date Rec:	05/13/2016	Repo	ort Date: 05/17/2016
Client Proj	ect #:	28015159		Client F	Project Name:	Schenectady ANGB, NY
Purchase (Order #:	TA Job #280	-83093-1			
Analysis R	equested	d: CE	INSUS			

Reviewed By:

Pen Jown.

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

Page 1 of 3

10515 Research Dr., Knoxville, TN 37932 Tel. (865) 573-8188 Fax. (865) 573-8133

Client:	Test America	
Ducient	Cabanastady ANCD	N I

Client: Project:	Test America Schenectady AN	GB, NY		MI Project Number: Date Received:	041NE 05/13/2016
Sample Infor	mation				
Client Sa	imple ID:		6MW2501		
			(280-83093-1)		
Sample [Date:		05/11/2016		
Units:			cells/mL		
Analyst:			JS		
Dechlorinati	ng Bacteria				
Dehalococ	coides	DHC	3.57E+02		

Legend:

NA = Not Analyzed NS = Not Sampled J = Estimated gene copies below PQL but above LQL I = Inhibited < = Result not detected

Page 2 of 3

Quality Assurance/Quality Control Data

Samples Received	5/13/2016						
Component	Date Prepared	Date Analyzed	Arrival Temperature	Positive Control	Extraction Blank	Negative Control	
DHC	05/13/2016	05/17/2016	0 °C	115%	non-detect	non-detect	

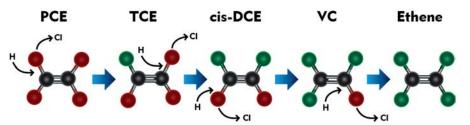
Page 3 of 3

Page 11 of 21 C-101

TestAmerica Denver 4955 Yarrow Street

Chain of Custody Record

ampler: hone: lue Date Requested: /24/2016 AT Requested (days): 0 #: VO #: VO #: 8015159 SOW#: SOW#: S			E-Mail jessio	orrera, ca.deho (ov. lo	ehalococcoides sp. (DHC) -		Analys			I):		COC No: 280-351101.1 Page: Page 1 of 1 Job #: 280-83093-1 Preservation Code A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH C - Amaphor	es: M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2SO3 R - Na2SO3 S - H2SO4
Uue Date Requested: /24/2016 AT Requested (days): 0 #: /0 #: roject #: 8015159 SOW#:			jessio	(ov. local dehotics of the local dehotics of	ehalococcoides sp. (DHC) -	estame			uestec				Page 1 of 1 Job #: 280-83093-1 Preservation Code A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH	M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3
/24/2016 AT Requested (days): 0 #: v0 #: v0 #: roject #: 8015159 SOW#:				(Yes or No) s or No)	Dehalococcoides sp. (DHC) -		Analys	sis Rec	uestec				280-83093-1 Preservation Code A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH	M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3
/24/2016 AT Requested (days): 0 #: v0 #: v0 #: roject #: 8015159 SOW#:			1	(Yes or No) s or No)	Dehalococcoides sp. (DHC) -								A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH	M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3
AT Requested (days): 0 #: //0 #: roject #: 8015159 SOW#:			7	(Yes or No) s or No)	Dehalococcoides sp. (DHC) -								B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH	N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3
0 #: v0 #: roject #: 8015159 SOW#:			1	(Yes or No) s or No)	Dehalococcoides sp. (D								C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH	O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3
v0 #: roject #: 8015159 SOW#:				(Yes or No) s or No)	Dehalococcoides s								E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3
v0 #: roject #: 8015159 SOW#:				(Yes or No) s or No)	Dehalococcoic							2		
roject #: 8015159 SOW#:				(Yes or No) s or No)	Dehaloco								G - Amchlor	
8015159 SOW#:				(Yes o s or No	Det							C. Status	H - Ascorbic Acid	T - TSP Dodecahydra U - Acetone V - MCAA
8015159 SOW#:				2 0									J - DI Water K - EDTA	W - ph 4-5
				e e	s sp.							1040	K - EDTA L - EDA Other:	Z - other (specify)
s				Samp SD (Y	SUB (Dehalococcoides sp.)/ D SUB								Other:	
s		Sample Type (C=comp, G=grab) в	Matrix	AS/M	locod							- Have	uper	
S		Туре	(W=water,	Filte rm A	Deha							ALLEN	MUN	
and the second sec	Sample Time	(C=comp,	O=waste/oil,	ield	UB (I							1010.	Special Ins	structions/Note:
Sample Date		Preservatio	on Code:		0 0							5		
5/11/16	11:40 Eastern		Water		x								1 6001	
	astern			-									Senot	and the second
													Drinch	4
													Filler	1 - Lat
								_					Over	MIGHI
							_	_						J
												-		
				5.21	nnlo Dis	nosal	(A foo m	av ho a	5505500	ifsamol	os are r	etai	ined longer than 1	month)
						n To Cl	ient)isposal F	ByLab		Arc	chive For	Months
				Spe	ecial Instr	ructions	QC Req	uiremer	nts:	9 100				
Dat	ite:			Time:			0		Meth					Constitution of the second second second
ate/Time:	15	17 00	mpany		Received	by:	Una			Date		110	9:30	Company MI
ate/Time:	10		mpany				000					i u	100	Company
ate/Time:		C	mpany		Received	V by:				Date	/Time:	-		Company
			Page 12							Date				
at	te/Time:	te/Time:	te/Time: Co	te/Time: Company te/Time: Company te/Time: Company	te/Time: Company Company	Performe: Pate: Time: Te/Time: Te/Time: Te/Time: Company Received Company Received Received	Image: Company Return To Cl Special Instructions te/Time: State Time: State Company Reserved by: State Company Reserved by: State Company Reserved by: Reserved by:	Date: Time: te/Time: Company Time: Company Received by: Description Company Received by: Received by: Received by:	Image: Company Return To Client Image: Company Image: Company Reserved by: Company Image: Company Reserved by: Company	Image: Company Company Received by Image: Company Received by	Return To Client Disposal By Lab Special Instructions/QC Requirements: Date: Time: Method of Shiprice Second by: Company Received by: Company Received by: Date:	Return To Client Disposal By Lab Special Instructions/QC Requirements: Date: Time: Method of Shipment: te/Time: Company Received by Date/Time: Company Received by Date/Time: Date/Time:	Image: Company Company Received by Date: Company Date: Compa	Special Instructions/QC Requirements: Date: Time: Method of Shipment: ter/Time: Company Received by: Date:/Time: ter/Time: Company Received by Date:/Time:


∆ Yes ∆ No

DHC Interpretation

Dehalococcoides 16S rRNA gene (qDHC)

Under anaerobic conditions, tetrachloroethene (PCE) and trichloroethene (TCE) can undergo sequential reductive dechlorination through the daughter products *cis*-dichloroethene (*cis*-DCE) and vinyl chloride to nontoxic ethene (1,2).

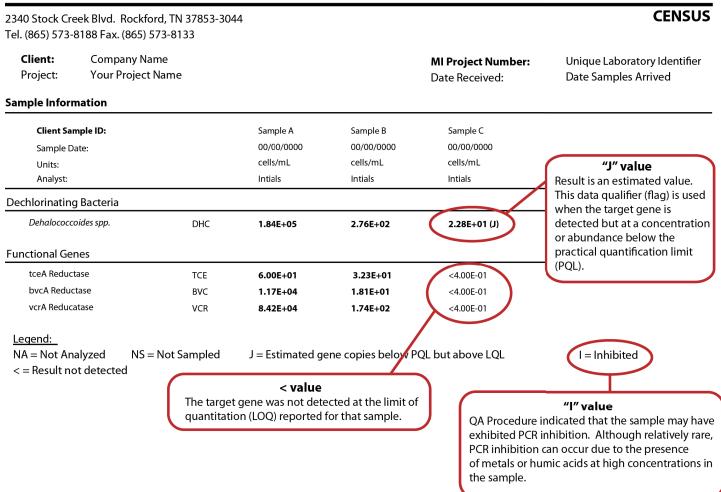
While a number of bacterial cultures capable of utilizing PCE and TCE as growth supporting electron acceptors have been isolated (3-7), *Dehalococcoides* spp. may be the most important because they are the only bacterial group that has been isolated to date which is capable of complete reductive dechlorination of PCE to ethene (8). In fact, the presence of *Dehalococcoides* spp. has been associated with complete dechlorination to ethene at sites across North America and Europe (9).

Status	Dehalococcoides spp.	Observation
	$\geq 10^4$	Lu et al. proposed that a concentration of 1 x 10 ⁴ DHC cells/mL could be used as a screening criterion to identify sites where reductive dechlorination will yield a generally useful biodegradation rate (10).
	(cells/mL)	Similarly, in an internal study conducted with nearly 1000 groundwater samples obtained from sites across the US, ethene production was observed in approximately 80% of samples in which CENSUS® qDHC results were greater than or equal to 10 ⁴ DHC cells/mL.
	10¹ to < 10⁴ (cells/mL)	When vinyl chloride reductase genes (See DHC functional genes discussion below) are also detected, complete reductive dechlorination of PCE and TCE to ethene may still occur even with moderate DHC concentrations.
		When the DHC population is below the 10 ⁴ cells/mL criterion proposed by Lu et al. (10), project managers should carefully consider other site-specific data to determine whether subsurface conditions may be limiting reductive dechlorination. For example, the addition of an electron donor may be able to stimulate DHC growth and enhance anaerobic bioremediation.
	< 10¹ (cells/mL)	DHC concentrations are low suggesting that complete reductive dechlorination of PCE and TCE to ethene is unlikely to occur under existing conditions. Enhanced anaerobic bioremediation options (biostimulation or bioaugmentation) may need to be considered.

DHC Functional Genes (tceA, bvcA, vcrA)

A "stall" where daughter products *cis*-DCE and vinyl chloride accumulate can occur at PCE- and TCE-impacted sites especially under MNA conditions. The accumulation of vinyl chloride, generally considered more carcinogenic than the parent compounds, is particularly problematic. Although elevated *Dehalococcoides* concentrations correspond to ethene production in numerous studies, the range of chlorinated ethenes metabolized and cometabolized varies among species and strains within the *Dehalococcoides* genus. For example, *Dehalococcoides ethenogenes* str. 195 metabolizes PCE, TCE, and *cis*-DCE and cometabolizes vinyl chloride (8) to produce ethene. Conversely, *Dehalococcoides* sp. CBDB1 utilizes PCE and TCE but does not cometabolize additional chloroethenes (11). Other *Dehalococcoides* strains, such as BAV1, GT and VS, are known to fully dechlorinate cis-DCE and VC to ethene (14,16,19). Quantification of reductive dehalogenase genes is used to more definitively confirm the potential for reductive dechlorination of TCE, cis-DCE, and vinyl chloride (12-15).

Functional Gene	Observation
TCE Reductase	
<i>tce</i> A gene	The <i>tce</i> A gene encodes the enzyme responsible for reductive dechlorination of TCE to <i>cis</i> -DCE in some strains of Dehalococcoides.
	Absence of <i>tce</i> A does not preclude the potential for reductive dechlorination of TCE in the field since the <i>tce</i> A gene is no universally distributed among all DHC and is not present in other microorganisms capable of reductive dechlorination of TCE (e.g. <i>Dehalobacter</i>).
	Detection of the <i>tce</i> A gene provides an additional line of evidence indicating the potential for dechlorination of TCE.
/inyl Chloride Redu	ctase
<i>bvc</i> A gene	The <i>bvc</i> A gene encodes the vinyl chloride reductase enzyme responsible for reductive dechlorination of vinyl chloride to ethene by <i>Dehalococcoides</i> sp. str. BAV1 (16).
	Presence of <i>bvc</i> A gene indicates the potential for reductive dechlorination of VC to ethene.
	Absence of both bvcA and vcrA genes suggests VC may accumulate.
	An internal study with ~1,000 samples showed ethene production was observed in 80% of the samples that the DHC population was greater than or equal to 10 ⁴ cells/mL. The <i>bvc</i> A gene was detected in over 50% of these samples.
	Van Der Zaan et al (17) noted that the bvcA gene was the only VC reductase gene detected at three of their sites.
	Alfred Spormann's laboratory at Stanford University (18) reported that the <i>bvc</i> A gene was the most abundant and active at the outflow of a PCE fed column study. This section of the column was in the DCE to VC stages of reductive dechlorination thus confirming the importance of the <i>bvc</i> A gene for complete reductive dechlorination.
<i>vcr</i> A gene	The vcrA gene encodes the vinyl chloride reductase enzyme responsible for reductive dechlorination of cis-DCE and vinyl chloride by Dehalococcoides sp. strain VS (14).
	Presence of vcrA gene indicates the potential for reductive dechlorination of DCE and/or VC to ethene.
	Absence of both <i>bvc</i> A and <i>vcr</i> A genes suggest VC may accumulate.
	As with the <i>bvc</i> A gene, detection of the <i>vcr</i> A gene is associated with ethene production in internal studies (67%) and vinyl chloride reduction in independent studies (14, 17).


10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 www.microbe.com

Reporting

Microbial Insights can provide a variety of data packages and reporting levels to suit the needs of any project. Data packages range from simple analytical reports with results only to more complex data packages that include a report narrative, analytical results, QC data, and supporting materials including all raw data and chain-of-custody documentation. The figure below shows our standard report and explains the way values are reported.

Microbial Insights, Inc.

Quality Assurance

Microbial Insights' comprehensive Quality Assurance (QA) Program is the foundation of all laboratory analyses, ensuring that our clients receive high-quality analytical services that are timely, reliable, and meet their intended purpose in a cost effective manner. MI is committed to providing quality data that surpasses regulatory and industry standards, thus enabling the client to make well-informed decisions. MI maintains strict standard operating procedures and QA/QC measures throughout all of the analyses offered. The following Table details specific QA/QC procedures that are used for CENSUS.

QA/QC	Description
Date of Extraction	DNA and RNA extractions are performed the day the samples are received by MI to minimize the possibility of any changes to the microbial community prior to analysis.
Laboratory Method Blanks	An extraction blank (no sample added) is processed alongside each set of field samples from DNA extraction through CENSUS [®] analysis to ensure that cross contamination has not occurred. Although MI has never experienced this issue, the detection of the CENSUS [®] target (e.g. <i>Dehalococcoides</i>) in an extraction blank is direct evidence of cross contamination with a sample or contamination of a reagent and would invalidate the results. If this were to occur, MI would re-extract the sample. If not possible to re-extract, MI would contact the client immediately and notate it on the laboratory report.
Laboratory Control Samples (LCS)	A laboratory control sample (LCS) or positive control (target DNA) is included with each CENSUS® plate to confirm amplification and as a continuing calibration check.
Negative Controls	A negative control (no DNA) is included with each CENSUS plate to ensure that cross contamination has not occurred during amplification. As with the extraction blank, detection of CENSUS target (e.g. DHC) in a negative control is direct evidence of contamination and would invalidate the results. If this were to occur, MI would rerun the analysis.

References

1. Freedman, D. L. and J. M. Gossett. 1989. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Applied and Environmental Microbiology 55(9): 2144-2151.

2. DiStefano, T. D., J.M. Gossett, and S.H. Zinder. 1991. Reductive dechlorination of high concentrations of tetrachlorethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Applied and Environmental Microbiology 57(8): 2287-2292.

3. Gerritse, J., V. Renard, T. M. Pedro Gomes, P. A. Lawson, M. D. Collins, and J. C. Gottschal. 1996. *Desulfitobacterium* sp. Strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Archives of Microbiology 165(2): 132-140.

4. Gerritse, J., O. Drzyzga, G. Kloetstra, M. Keijmel, L. P. Wiersum, R. Hutson, M. D. Collins, and J. C. Gottschal. 1999. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by *Desulfitobacterium frappieri* TCE1. Applied and Environmental Microbiology 65(12): 5212-5221.

5. Holliger, C., G. Schraa, A.J.M. Stams, and A.J.B. Zehnder. 1993. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Applied and Environmental Microbiology 59 (9): 2991-2997.

6. Krumholz, L. R., R. Sharp, and S. S. Fishbain. 1996. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Applied and Environmental Microbiology 62(11): 4108-4113.

7. Löffler, F.E., R.A. Sanford, and J.M. Tiedje. 1996. Initial characterization of a reductive dehalogenase from *Desulfitobacterium chlororespirans* Co23. Applied and Environmental Microbiology 62(10): 3809–3813.

4

8. Maymó-Gatell, X., T. Anguish, and S.H. Zinder. 1999. Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by *Dehalococcoides ethenogenes* 195. Applied and Environmental Microbiology 65(7): 3108–3113.

9. Hendrickson, E.R., J. Payne, R.M. Young, M.G. Starr, M.P. Perry, S. Fahnestock, D.E. Ellis, and R.C. Eversole. 2002. Molecular analysis of *Dehalococcoides* 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Applied and Environmental Microbiology 68(2): 485-495.

10. Lu, X., J.T. Wilson, and D.H. Kampbell. 2006. Relationship between *Dehalococcoides* DNA in ground water and rates of reductive dechlorination at field scale. Water Research 40:3131-3140.

11. Adrian, L, U. Szewzyk, J. Wecke, and H. Görisch. 2000. Bacterial dehalorespiration with chlorinated benzenes. Nature 408(6812): 580-583.

12. Holmes, V.F., J. He, P.K.H. Lee, and L. Alvarez-Cohen. 2006. Discrimination of multiple *Dehalococcoides* strains in a trichlorethene enrichment by quantification of their reductive dehalogenase genes. Applied and Environmental Microbiology 72(9): 5877-5883.

13. Lee, P.K.H., D.R. Johnson, V.F. Holmes, J. He, and L. Alvarez-Cohen. 2006. Reductive dehalogenase gene expression as a biomarker for physiological activity of *Dehalococcoides* spp. Applied and Environmental Microbiology 72(9): 6161-6168.

14. Müller, J.A., B.M. Rosner, G. von Avendroth, G. Meshulam-Simon, P.L. McCarty, and A.M. Spormann. 2004. Molecular identification of the catabolic vinyl chloride reductase from *Dehalococcoides* sp. strain VS and its environmental distribution. Applied and Environmental Microbiology 70(8): 4880-4888.

15. Ritalahti, K.M., B.K. Amos, Y. Sung, Q. Wu, S.S. Koenigsberg, and F.E. Löffler. 2006. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple *Dehalococcoides* strains. Applied and Environmental Microbiology 72(4): 2765-2774.

16. Krajmalnik-Brown, R., T. Hölscher, I. N. Thomson, F. M. Saunders, K. M. Ritalahti, and F. E. Löffler. 2004. Genetic identification of a putative vinyl chloride reductase in *Dehalococcoides* sp. strain BAV1. Applied and Environmental Microbiology 70:6347–6351.

17. van der Zaan, B., F. Hannes, N. Hoekstra, H. Rijnaarts, W.M. de Vos, H. Smidt, and J. Gerritse. 2010. Correlation of *Dehalococcoides* 16S rRNA and chlorethenereductive dehalogenase genes with geochemical conditions in chloroethene-contaminated groundwater. Applied and Environmental Microbiology 76(3):843-850.

18. Behrens, S., M.F., Azizian, P.J. McMurdie, A. Sabalowsky, M.E. Dolan, L. Semprini, and A.M. Spormann. 2008. Monitoring abundance and expression of *Dehalococcoides* species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Applied and Environmental Microbiology 74(18):5695-5703.

19. Sung, Y., K. M. Ritalahti, R. P. Apkarian, and F. E. Löffler. 2006. Quantitative PCR confirms purity of strain GT, a novel trichloroethene (TCE)-to-ethene respiring Dehalococcoides isolate. Appl. Environ. Microbiol. 72:1980-1987

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 www.microbe.com

Subcontract Data

Page 18 of 21 C-108

Shipping and Receiving Documents

CHAIN OF CUSTODY RECORD

.

COC NO .: 1 of 1

301 Laboratory Road, Oak Ridge, Tenness	ee 37831 (865) 482	2-9031				<u> </u>						DY											
PROJECT NAME: IRP Site 6, Sci	henectady, NY.	ANG					·			RI	EQU	ESTI	ED PA		NETE T	ERS		p-		1		LABORATORY N Test America	AME:
PROJECT NUMBER: 314561.00.	04.8002.920																					LABORATORYA	
PROJECT MANAGER: Mike Poli	gone					 ,	litrate														s/ Vials:	4955 Yarrow Stro Arvada, CO 8000	
Sampler (Signature)	(Printed N Zach	-	ele		s		Sulfate and Nitrate	い	r												of Bottles/	PHONE NO: 303	736-0192
Sample ID	c	Date Collected	Time Collected		SOCS 1	20 2	Sulfa	*													No.	OVA SCREENING	OBSERVATIONS, COMMENTS SPECIAL INSTRUCTIONS
6MW256	51 5	-11-16	1140	GW			ŀ	X									-				Ĭ		
																4.5 A.						280	83093 Chain of Custody
							4	1		. I. 				-	1								· · · · · · · · · · · · · · · · · · ·
<u></u>			<u> </u>	Pe	P		ŀ	1 - 1				$\left - \right $			╉								
······									<u>.</u>	-					-								
																				1			
							ŀ						ľ	1.1 1.5	i.			.10 4					
																н.							
RELINQUISHED BY:	Date/Time		RECEIVED BY: Du Ullu			,	Date/Time 5/12/16				TOTAL NUMBER OF CONTAINERS:									ļ	Cooler Temperature:		
COMPANY NAME: Leidos		-		ANY NAME:				1	91		C	Cooler ID:										FEDEX NUMBEF	
RECEIVED BY:	Date/Time	e REL	COMPANY NAME:				D	ate/1	Time	s	Standard (5 day) turn-around												
COMPANY NAME:	-	CON						-				1 3 - 40 ml Glass Vials, HCL to pH < 2 1 - 250 ml Polyethylene, H2SO4 or											
RELINQUISHED BY:	Date/Time	e REC	RECEIVED BY:			·			ate/1	Time	3	3 1 - 500 ml Polyethylene, Cool, 4C											
COMPANY NAME:	-	CON	COMPANY NAME:																				<i>b</i>

Client: Leidos, Inc.

Login Number: 83093 List Number: 1 Creator: DeHerrera, Jessica H

Job Number: 280-83093-1

List Source: TestAmerica Denver

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

APPENDIX D – STRATTON AIR NATIONAL GUARD BASE WORK CLEARANCE REQUEST FORM

Ĺ	BASE CIVIL E		NG WORK CLEAR	ANCE REQUEST		DATE PREPARED
1.	Clearance is requested to proceed			N 1		2820re 16
			31d Sewage Ph	nt lawn area		15
	Work Order No.	has not	Contract No. Leido	5 06776-111-060	, involving	excavation or utility disturbance per
	بچــــــــــــــــــــــــــــــــــــ		been staked or clearly man	ked.		
2.	TYPE OF FACILITY/WORK INVOLVE	and the second se				
-	A. PAVEMENTS B. DRAINAGE SYSTEMS		TECTION & PROTECTION	SYSTEMS	G. 4	AIRCRAFT OR VEHICULAR TRAFFIC FLOW
┢	C. RAILROAD TRACKS	E. UTILITY	OVERHEAD	UNDERGROUND		SECURITY
3	DATE CLEARANCE REQUIRED	F. COMM	OVERHEAD	4. DATE OF CLEARA	X 1. 0	THER Earth boring
	28 Jure	16		28 JUNE		
5. 1	SIGNATURE OF REQUESTING OFFI	CIAL		6. TELEPHONE NO.		7. ORGANIZATION
_	OPCANIZAZION			865-405-	8332	
8			REMARKS (Use	Reverse for additional co	omments)	REVIEWER'S NAME AND INITIAL
B A	A. ELECTRICAL DISTRIBUTION		analed he D.	Neu 22Jue		
s	B. STEAM DISTRIBUTION		1 1 1 1 1 1 1 1	to 2200	L <u></u>	tri
ε			LNA			ome
c	C. WATER DISTRIBUTION		Anakily 1			
			Jourted 64 W	45215 23 C	Tune 10	E the
	D. POL DISTRIBUTION		NA			
	E. SEWER DISTRIBUTION					time
E N			Marked by Wy	52.Mr 230	UNIC	trai
G	F. ENVIRONMENTAL		Apt Cat	1 1 0		
ŗ	G. PAVEMENTS/ GROUNDS		NUTITIED G	nd are Job Por		- Jane
	G PAVEMENTS/ GROUNDS		OY			
	H. FIRE PROTECTION				- Jul	
≀⊦			Notified in	E-Mail 23 June	16	tobel
• P						
۲ [J. OTHER (Specify)		<u>PA</u>			the
			NA			tim
S	ECURITY POLICE					en
			Notifiel 10	E-mail 23 June	16	5h
J. S			KOLDA: (
I. C	OMMUNICATIONS		In MITTING IN F	-mail ,23 Jule	<u>-16</u>	en
			All Bise Conmi	Area is deal	Harringt	r time
2 8	ASE OPERATIONS			in the second	(
			<u> </u>			time
	ABLE TV		MO COMMENT	cllo st. in		4
C	OMMERCIAL UTILITY COMPANY			Cuble = by U	STC	Cinc
1	ELEPHONE AS		to Commercial No Fas in An	tele place		anc
÷ .	LECTRIC		No fas in A	rea		anc
^			No Connercial El	ectric in Area, Base	Electre	1 ann
0	THER (Specify)			·····		
R	QUESTED CLEARANCE					
			PPROVED	DISAPF	ROVED	
ΤY	PED NAME AND SIGNATURE OF AP	PROVING OFFI	CER (Chief of Operations Fi	light or Chief of Engineerin	a Flight	
	an w/r				ar nyntij	17a. DATE SIGNED
	T 103, 19940801, V3					28 June 16

Chico, Thomas W NFG NG NYANG (US)

From:	Chico, Thomas W NFG NG NYANG (US)
Sent:	Thursday, June 23, 2016 1:29 PM
To:	Birdsall, Kevin NFG USAF 109 AW (US); Prevendoski, Mark MSgt USAF 109 AW (US);
	Waszmer, Gregg S NFG USAF 109 AW (US); WEATHERWAX, BRUCE W Civ USAF ANG
	109 CES/CEO; Kotch, Jennifer Rae (Jen) CIV USAF 109 AW (US); Parker, Paul R Jr NFG
	USAF 109 AW (US); Pike, Scott R NFG USAF 109 AW (US); Walters, Joshua J CMSgt USAF
	109 AW (US); Roberts, Raymond M Jr TSgt USAF 109 AW (US); Rueda, Richard T SMSgt
	USAF 109 AW (US); Bathrick, Seth D MSgt USAF 109 AW (US); Harrington, Robert C TSgt
	USAF 109 AW (US); Scholl, Kenneth A TSgt USAF 109 AW (US); Mihalko, Greg M SMSgt
	USAF 109 AW (US)
Cc:	Rulison, Shawn R Capt USAF 109 AW (US); Donaldson, Robert E (Rob) Lt Col USAF NG
	NYANG (US); Vallsdelosreyes, Frank V SMSgt USAF 109 AW (US); Behany, Katy M MSgt
	USAF 109 AW (US); Eldred, Michael S TSgt USAF 109 AW (US)
Subject:	2 dig safe requests

All,

We have two contractors requesting dig permits on Base. The first is Leidos Environmental. They will be performing soil borings in the lawn area around the old sewage plant area. The second will be a contractor working for Verizon but I don't know their name. They will be removing the Verizon telephone pole in the Aerial Port /TDY overflow parking area and burying the overhead phone line underground. The underground trench will run from the existing pole across the lower Base temporary entrance road out to Maple Ave. If you have any questions/concerns about the proposed work please let me know. Comm- please let me know when you have marked/cleared both areas. Thank you.

1

Chico, Thomas W NFG NG NYANG (US)

From:	Poligone, Mike D. <michael.d.poligone@leidos.com></michael.d.poligone@leidos.com>
Sent:	Wednesday, June 22, 2016 1:53 PM
То:	Chico, Thomas W NFG NG NYANG (US); Kotch, Jennifer Rae (Jen) CIV USAF 109 AW (US)
Cc:	Jason Natale; Joseph Sabanos (jsabanos@aztechenv.com); Steele, Charles Z.
Subject:	[Non-DoD Source] FW: Stakeout Request 06226-161-060, Next Steps

All active links contained in this email were disabled. Please verify the identity of the sender, and confirm the authenticity of all links contained within the message prior to copying and pasting the address to a Web browser.

Dig Safe NY has been contacted and I listed Thomas Chico as the base point of contact. Let me know if you have any questions.

-----Original Message-----From: DO_NOT_REPLY [Caution-mailto:APR_MailBot@DigSafelyNewYork.com] Sent: Wednesday, June 22, 2016 1:50 PM To: Poligone, Mike D. Subject: Stakeout Request 06226-161-060, Next Steps

MICHAEL POLIGONE,

This is an automated message. DO NOT REPLY, it will not go anywhere.

The Dig Safely New York issued Company ID for LEIDOS is 121489. You can use this as a shortcut to identify yourself the next time you call. No worries if you forget it, however, as your phone number can work as well.

Your stakeout request 06226-161-060, 13 SOIL BORINGS AND TRENCHING at 1 AIR NATIONAL GUARD RD in the Township of Glenville, resulted the following utilites being notified.

City Of Schenectady Water (Water). Firstlight Fiber (Fiber). Level 3 Communications (Fiber). Mci (Fiber). National Grid / East / Electric (Electric). National Grid / East / Gas (Gas). Time Warner Cable | Schenec A (Fiber, Catv). Town Of Glenville (Sanitary Sewer, Water). Verizon / East (Fiber, Telephone).

Now that you have taken the important first step of calling before you dig, here is what happens next:

1

You've scheduled your excavation to begin on 06/28/2016 08:00:00 AM. The utilities have until that time to mark their facilities around your indicated job site. To assist in that process, it is suggested that you outline the perimeter of the digsite using white paint or white flags, to narrow down the location as closely as is possible.

After a utility has marked, or if they have no facilities in that immediate area, each utility should respond to Dig Safely New York's APR system with their results, indicating that their stakeout process is complete, or that they had no facilities in the area. Dig Safely New York's APR system will consolidate their responses and attempt to send the result to you a few business hours before 06/28/2016 08:00:00 AM, or it will send it immediately if all have checked-in sooner. Some facility owners may also contact you directly if a high risk or high value facility is nearby.

You should receive "Positive Response" from *each* utility listed above before you commence excavating. You can view the current response status at any time by visiting Caution-http://www.digsafelynewyork.com/apr or you can dial 1-888-Diggers (888-344-4377) to check via phone call. It will want to know your phone and ticket number (865-405-8332, 06226-161-060).

Note that the Dig Safely New York call center agents cannot tell you if a utility has responded or not. Call Center Agents are not allowed to see this information.

If a utility has not provided Positive Response by your stated starting time, contact them via their Stakeout Contact that is provided, below. As a last resort, you can contact the one-call center and inform us of the problem. Remember to reference ticket 06226-161-060. Also remember that Dig Safely New York is a call center; it is not one of the utilities that were involved, and it is not a locating service.

City Of Schenectady Water: Phyllis Gaumond 518-382-5023. Firstlight Fiber: Evan Wert 518-857-7836. Level 3 Communications: Level 3 Cable Protection Management 877-366-8344 x3. Mci: Mci National Fiber Security 800-289-3427. National Grid / East / Electric: Usic Voice Calls 800-262-8600 x2. National Grid / East / Gas: Usic Voice Calls 800-262-8600 x2. Time Warner Cable | Schenec A: Usic Voice Calls 800-262-8600 x2. Town Of Glenville: Cathy Visco 518-688-1217. Verizon / East: Verizon (ppm Center) Stakeout Contact 855-226-9564.

The location of any privately owned utility (such as a service drop) is typically the responsibility of the property owner, since the property owner is the person who (a) owns it, and (b) had it installed. If the property owner is unsure of the location of the service drops, private locating services are available in most areas. Dig Safely New York has compiled a list of several of these services, but be advised that the list is incomplete and no endorsements are implied. Caution-http://www.digsafelynewyork.com/excavators/private-locators

Once all utility operators have responded to your pending excavation request, you may begin excavation on your stated commencement date 06/28/2016 08:00:00 AM. Remember that you are required to hand dig within two feet of any markings prior to using mechanized equipment (Tolerance Zone) in order to verify the location and depth of the facility. Or, you can also use vacuum excavation to accomplish this goal.

Caution-http://www.digsafelynewyork.com/excavators/tolerance-zone

Thank you for utilizing this one call service to ensure a safe excavation.

Chico, Thomas W NFG NG NYANG (US)

From: Sent: To: Subject:

Poligone, Mike D. <MICHAEL.D.POLIGONE@leidos.com> Wednesday, June 22, 2016 10:15 PM Chico, Thomas W NFG NG NYANG (US) [Non-DoD Source] FW: 06226-161-060

-----Original Message-----From: vztpositivenotification@verizon.com [mailto:vztpositivenotification@verizon.com] Sent: Wednesday, June 22, 2016 1:55 PM To: Poligone, Mike D. Subject: 06226-161-060

Dear Excavator,

Your request to locate Verizon facilities for the ticket identified above has been reviewed. The extent of work described in the request noted above has been compared with our facility records. Verizon has determined that the excavation location and scope of work you have identified does not conflict with our underground facilities. If you have questions or have additional information where you feel Verizon's underground facilities are in the excavation area, do not hesitate to contact our National Facility Locate Call Center at 800-492-3100.

Thank you and remember to dig safely!

Please do not reply to this email as the account is not monitored.

1

Chico, Thomas W NFG NG NYANG (US)

From:	Poligone, Mike D. <michael.d.poligone@leidos.com></michael.d.poligone@leidos.com>
Sent:	Thursday, June 23, 2016 7:22 AM
To:	Chico, Thomas W NFG NG NYANG (US)
Subject:	[Non-DoD Source] FW: Response to Dig Request
FYI	
Original Message From: IRTHNet@level3.com Sent: Wednesday, June 22, To: Poligone, Mike D. Subject: Response to Dig Re	
To: LEIDOS	
Voice: 8654058332	Attn: MICHAEL POLIGONE
Re: Response to Dig Requ	Fax:
ive: veshouse to big kedu	
This is an Important Messages in the area described on the	ge from Level 3 Communications replying to your request to locate our underground facilities e One Call Center ticket.

Ticket: 06226-161-060 County: SCHENECTADY Place: GLENVILLE Address: 1 AIR NATIONAL GUARD RD

LEVEL 3 COMMUN: Level 3 Communications has determined our facilities are clear of the dig site described by your One Call Center ticket. Level 3 Communications will not have to locate any underground utilities at this dig site. If you have any questions, please contact Level 3 Communications at 1-877-366-8344.

If you have any questions, please contact Level 3 Communication's Cable Protection Management Team at 1-877-366-8344.

This message was generated by an automated system. Please do not reply to this email.

1

6/24/2016

IRTH One Call

Ticket: 06226-161-060-00 Type:					
State: NY County: SCHENECTADY Addr: From: 1 To: Cross: From: To: Offset:	Pl Name: AI Name:	ace: GLENV R NATIONAL	/ILLE /T _ GUARD	RE)
Locate: NORTH OF MAPLE AVE AND SEE COMMENTS					
NearSt: MAPLE AVE Means of Excavation: DRILL RIG . Site marked with white: N Boring/Directional Drilling: N Within 25ft of Edge of Road: N	AND BACKHOE			Blasting: N	
Work Type: 13 SOIL BORINGS AND Duration: 4 DAYS Depth of excavation: Site dimensions: Start Date and Time: 06/28/2016 Must Start By: 07/13/2016	08:00				
Contact Name: MICHAEL POLIGONE	******				
Company: LEIDOS Addr1: 301 LABRATORY RD City: OAK RIDGE Phone: 865-405-8332 Email: POLIGONEM@LEIDOS.COM Field Contact: THOMAS CHICO Cell Phone: 518-344-2340	Add Sta Fax	te: TN	Zip: 378	31	
Working for: SCHENECTADY AIR NA					
Comments: SEE THOMAS ON SITE TO	BE SHOWN E	XACT LOCAT	ION		
TRENCH 25 FT LONG AND BORINGS 10 TO 15 FT DI DIG SITE ALSO AFFECTS Lookup Type: MANUAL	EEP WITH A 4 : EAST GLEN	4 1/2 INCH VILLE /P			
Members:					
CITY OF SCHENECTADY WATER FIRSTLIGHT FIBER LEVEL 3 COMMUNICATIONS MCI NATIONAL GRID / EAST / ELECTRI NATIONAL GRID / EAST / CAST	IC		5 8 8 8	518-382-5023 518-857-7836 377-366-8344 800-289-3427 800-262-8600	x2
NATIONAL GRID / EAST / GAS TIME WARNER CABLE SCHENEC A TOWN OF GLENVILLE VERIZON / EAST			8	800-262-8600 800-262-8600 918-688-1217 855-226-9564	

Service Area Code	Service Area Name	Contact	Day Phone	Emergency Phone	Alt Phone	Utility Type	Response
CIT SCHENECTADY WTR	CITY OF SCHENECTADY WATER	PHYLLIS GAUMOND	(518) 382 - 5023			WATER	10 CLEAR, NO FACILITIES WITHIN 15 FT OF THE EXCAVATOR DEFINED WORK AREA
FIRSTLIGHT FIBER	FIRSTLIGHT FIBER	EVAN WERT	(518) 857 - 7836		÷	FIBER	
LEVEL 3 COMMUN	LEVEL 3 COMMUNICATIONS	LEVEL 3 CABLE PROTECTION MANAGEMENT	(877) 366 - 8344 x 3			FIBER	10 CLEAR, NO FACILITIES WITHIN 15 FT OF THE EXCAVATOR DEFINED WORK AREA
мсі		MCI NATIONAL FIBER SECURITY	(800) 289 - 3427			FIBER	IO CLEAR, NO FACILITIES WITHIN 15 FT OF THE EXCAVATOR DEFINED WORK AREA

http://irth.digsafelynewyork.com//IRTHOneCall/Centers/PrinterFriendlyConfirmation.aspx

1/2

6/24/2016		IRTH One Call							
NAT GRID / EAST / ELECTRIC	NATIONAL GRID / EAST / ELECTRIC	USIC VOICE CALLS		(800) 262 - 8600 x 2		ELECTRIC			
NAT GRID / EAST / GAS	NATIONAL GRID / EAST / GAS	USIC VOICE CALLS		(800) 262 - 8600 x 2		GAS			
TWCBL- SCHENEC A	TIME WARNER CABLE SCHENEC A	USIC VOICE CALLS		(800) 262 - 8600 x 2		FIBER, CATV			
TWN Glenville	TOWN OF GLENVILLE	CATHY VISCO	(518) 688 - 1217		(518) 857 - 9931	SANITARY SEWER, WATER	10 CLEAR, NO FACILITIES WITHIN 15 FT OF THE EXCAVATOR DEFINED WORK AREA		
VERIZON / EAST	VERIZON / EAST	VERIZON (PPM CENTER) STAKEOUT CONTACT	(855) 226 - 9564		(855) 661 - 6323	FIBER, TELEPHONE	IO CLEAR, NO FACILITIES WITHIN 15 FT OF THE EXCAVATOR DEFINED WORK AREA		

Ticket Status Notification

To: LEIDOS Email: POLIGONEM@LEIDOS.COM

Below lists utilities that were statused by USIC in Central Standard Time. Please note there may be other Utilities which include private facilities that may be present in the work area and are NOT the responsibility of USIC to locate or mark.

Ticket Number	Address			
06226-161-060-00	1 AIR NA	TIONAL GUARD RD,GI	ENVILLE /T	
Utility NAT GRID ELECTRIC EAST UPST.	ATE - NY -	Locate Date / Time 06/27/16 09:05 AM	Status Not Marked	Detail Excavation Site Clear
NAT GRID GAS EAST UPSTATE - I	NY - P	06/27/16 09:05 AM	Not Marked	Excavation Site Clear
Time Warner Cable CATV - NY - P		06/27/16 09:05 AM	Not Marked	Excavation Site Clear

You are receiving this notification because your contact information is listed on the above ticket from the One Call System. If you have any questions regarding this notification, please contact USIC at 1-800-762-0592.

Ticket Status Notification 2016-06-27 Page 1 of 1

APPENDIX E – PERMANENT INJECTION WELL SOIL BORING LOGS

Az	tecl	L Envir	onmer	ntal	Soil E	Boring: 5	ß-	13	
5 (McCrea I 518.	Hill Road, Balls 885-5383 azi	ton Spa, NY 1 techenv.com	2020					
Proj Stre City Drill Drill	Client: Leidos Project: Stratton Air National Guard Base Street Address: 1 Air National Guard Road City/State: Schenectady / New York Drilling Company: Aztech Environmental Technologies Driller: Ray Hammond Logged By: Stefan Truex				Drilling Method: Direct Push via 3" Diameter Ca Sampling Method: N/A Borehole Diameter: 3.25" Borehole Depth: 4,3 Refusal Depth: 4,3 Hammer Weight and Travel: N/A Auger Size: N/A	De Gr Sta	ound irt Dai	Water: Elevatio se: 6/2 ate: 6/2	n: N/A 8/16
Depth (Feet)	Sample ID	Sample Interval (Feet)	Recovery (feet)	Blow Counts	. Description	Depth (Feet)	Well	Construction Diagram	Annotation
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -25 -24 -25 -2	N/A	N/A	N/A	N/A	Soil samples not collected. A three-inch (3") hard point was us to install injection/application wells.	ed -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -14 -15 -16 -17 -18 -19 -20 -21 -22 -22 -22 -22 -22 -22 -22	4.	All by I	Sand Sand Screen
N// Fbg '_'	g – Fee feet Inches	t Available t Below Gra poon Refu							

Az	ztecl	h Envi:	ronmei	ntal	Soil Boring	· <)	R . 1	J	
5	McCrea 518.	—— Hill Road, Bali .885-5383 az	ston Spa, NY 1 techenv.com	12020	Son boring	·υĮ	0 · 1	7	
Proj Stre City Drill Drill	eet Ado /State ling Co ler: Ra	ratton Air l fress: 1 Air : Schenecta	National G ady / New Y tech Envirc d	iuard Road York	Drilling Method: Direct Push via 3" Diameter Casing Sampling Method: N/A Borehole Diameter: 3.25" Borehole Depth: 7 . Refusal Depth: 8 . 7 ' Hammer Weight and Travel: N/A Auger Size: N/A	Dej Gro Sta Fin	pth to W ound Ele Irt Date: ish Date	ater: vation	N/A n: N/A 8/16
Depth (Feet)	Sample ID	Sample Interva) (Feet)	Recovery (feet)	Blow Counts	Description	Depth (Feet)			Annotation
- 1 2 3	N/A	N/A	N/A	N/A	Soil samples not collected. A three-inch (3") hard point was used to install injection/application wells.		Z	The	Binsed)
-4 5 6 -7						-4 5 -6 -7	(belen mar mar	-	Send Screen
- 						- 	Retus C 8.) ~'	
-11 -12 -13 -14						- 11 - 12 - 13 - 13 - 14			
- - 15 - 16 - 17						- 			
- 18 - 19 - 20 - 21						- 18 - 19 - 20 - 21			
- 22 - 23 - 24						-21 -22 -23 -24			
Fbg (- 1 (- 1	A – Not g – Fee feet Inches	t Available t Below Gra poon Refu:				- 25			

			ronmer ston Spa, NY 1		Soil Boring	: 5	B	- 16	
Clier Proj Stre City Drill Drill	nt: Leic ject: Str et Add /State: ling Coi ler: Ray	dos ratton Air I Iress: 1 Air : Schenecta	National Gu National G ady / New Y tech Envirc	uard Base Juard Road	Drilling Method: Direct Push via 3" Diameter Casing Sampling Method: N/A Borehole Diameter: 3.25" Borehole Depth: ず、う chnologies Refusal Depth: よ、う Hammer Weight and Travel: N/A Auger Size: N/A	Gro Sta	und rt Da	to Water: Elevatior ate: 6/2 Date: 6/2	n: N/A 8/16
Depth (Feet)	Sample ID	Sample Interval (Feet)	Recovery (feet)	Blow Counts	Description	Depth (Feet)	llaW	Construction Diagram	Annotation
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -24 -25 -25 -24 -25 -24 -25 -24 -25 -25 -24 -25 -2	N/A	N/A	N/A	N/A	Soil samples not collected. A three-inch (3") hard point was used to install injection/application wells.	- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 11 - 12 - 13 - 14 - 12 - 13 - 14 - 12 - 13 - 14 - 12 - 13 - 14 - 12 - 12 - 13 - 14 - 12 - 12 - 13 - 14 - 12 - 12 - 13 - 14 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12		11111111111111111111111111111111111111	Bonsed Sand Screen
N// Fbg ' _ 1 " _	g – Feei feet Inches	t Available t Below Gr 5 5poon Refu	ade						

	AcCrea F	Envir	ton Spa, NY 1			·····	Soil Boring:	5	B-15	5
Proj Stre City, Drill Drill	et Add /State: ing Co er: Ray	ratton Air N ress: 1 Air i Schenecta	National G dy / New Y ech Enviro d	uard Road Iork	echnologies	Drilling Method: Direct Push via 3" D Sampling Method: N/A Borehole Diameter: 3.25" Borehole Depth: Sea Below Refusal Depth: Sea Below Hammer Weight and Travel: N/A Auger Size: N/A	Diameter Casing	Gro Star	th to Water: und Elevation t Date: 6/2 sh Date: 6/2	1: N/A 8/16
Depth (Feet)	Sample ID	Sample Interval {Feet)	Recovery (feet)	Blow Counts		Description		Depth (Feet)	Well Construction Diagram	Annotation
-1 -2 -3 -4 -5 -6 -7 -8 -9 -11 -12 -13 -14 -15 -16 -17 -18 -17 -18 -19 -22 -21 -22 -22 -23 -222 -222 -222 -222 -222 -222 -222 -222 -222 -222 -222 -222	N/A	N/A	N/A	N/A	to install inj + Pruba Casing to red	s not collected. A three-inch (3") hard prection/application wells. refusal @ 8.3'. u u/ hardpoint and isal @ 8.9' ed Using 3" tool on G/29/16. Refu ', Used S' Screen	sed 2" drilled	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -17 -18 -17 -18 -19 -21 -22 -23 -24 -25 -25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	bensed Sind Sind Screen Befind 8.3 2" Susal 8.9
Fbg '-1 "-	A – Not g – Fee feet Inches	: Available t Below Gra poon Refus								

Client: Leidos Drilling Method: Direct Push via 3" Diamethod: N/A Street Address: 1 Air National Guard Base Sampling Method: N/A Street Address: 1 Air National Guard Road Borehole Diameter: 3,25" City/State: Schenectady / New York Borehole Depth: 7, 4' Drilling Company: Aztech Environmental Technologies Brehole Depth: 7, 4' Drilling Company: Aztech Environmental Technologies Borehole Depth: 7, 4' Drilling Company: Aztech Environmental Technologies N/A Dirilling Company: Aztech Environmental Technologies Borehole Depth: 7, 4' Dirilling Company: Aztech Environmental Technologies Borehole Depth: 7, 4' Logged By: Stefan Truex Auger Size: N/A (1) and begin b	Vas used	(1101)) c	vation 6/29 : 6/2	AVA AVA AVIIII AVIII AVIII AVIII AVIII AVIII AVIII AVIII AVIII AVIII
Soil samples not collected. A three-inch (3") hard point w to install injection/application wells.	vas used -1 -2 -3 -4 -5 -6	1110111) (111011)	Pulliv Diagram	Bunject
to install injection/application wells.	- 2 - 3 - 4 - 5 - 6	1110	willing !	
-9 -10 -11 -11 -12 -13 -13 -14 -15 -16 -16 -17 -18 -19 -20 -21 -23 -24 -24 -25 Notes;	-7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25		Jul	-5' 50 en

Aztech Environmental

Soil Boring: SB-8

S McCrea Hill Road, Ballston Spa, NY 12020

Client: Leio Project: St Street Add City/State Drilling Co Driller: Ray	ratton Air N fress: 1 Air I : Schenecta	National Gu National Gu Idy / New Y tech Enviro d	iard Base uard Road	chnologies	Drilling Method: Direct Push via 3" Diameter Casing Sampling Method: N/A Borehole Diameter: 3.25" Borehole Depth: 5.7 Depth to Wa Refusal Depth: 3.3 Ground Eleva Hammer Weight and Travel: N/A Start Date: 4 Auger Size: N/A Finish Date: 4											
Depth (Feet) Sample ID	Sample interval (Feet)	Left State of the state of the		Description (Feet				Recovery (feet) Blow Counts Blow Counts				Lite (teet) Contraction Contra		Description	Well Construction Diagram	Annotation
-1 -2 -2 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -16 -17 -18 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -24 -25	N/A	N/A	N/A		es not collected. A three-inch (3") hard point was used ajection/application wells.	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25		- Bensee - Sand - S' Serren								
Fbg Fe ' feet " Inche	ot Available eet Below Gr es Spoon Refu	rade														

Client: Le Project: S Street Ac City/Stat Drilling C Driller: R	eidos Stratton A Idress: 17 e: Schene	ond	uard Base Guard Road	chnologies	Drilling Method: Direct Push via 3" D Sampling Method: N/A Borehole Diameter: 3.25" Borehole Depth: 4 Refusal Depth: 4 Hammer Weight and Travel: N/A Auger Size: N/A	liameter Casing	Depi Grou Stari Finis	N/A 1: N/A 4/16 24/16	
Depth (Feet) Sample ID	Sample Interval (Feet)	Recovery (feet)	Blow Counts		Description		Depth (Feet)	Well Construction Diagram	Annotation
1 N/A	A N/A	N/A	N/A		s not collected. A three-inch (3") hard p ection/application wells.	oint was used	-1	International and the second s	-San -San -Scre

" – Inches

,

X – Split Spoon Refusal

Client: Project Street City/St Drilling Driller:	Leid t: Str Addr tate: g Cor : Ray	os atton Air N ess: 1 Air Schenecta	d	uard Base uard Road	Drilling Method: Direct Push via 3" Diameter Casing Sampling Method: N/A Borehole Diameter: 3.25" Borehole Depth: § . 7 chnologies Refusal Depth: § . 7 Hammer Weight and Travel: N/A Auger Size: N/A	Gro Star	th to Water: und Elevatior t Date: 6/12 sh Date: 6/12	1/16
Depth (Feet)	Sample ID	Sample Interval (Feet)	Recovery (feet)	Blow Counts	Description	Depth (Feet)	Well Construction Diagram	Annotation
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J/A	N/A	N/A	N/A	Soil samples not collected. A three-inch (3") hard point was used to install injection/application wells.	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -111 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -25 -24	10111111111111111111111111111111111111	Bensix - San - S Scree

X – Split Spoon Refusal

-			ston Spa, NY 1 techeny.com		Soil Boring	: 5	B-	12		
Clie Proj Stre City Drill Drill	nt: Lei ject: St et Ado /State ling Co ler: Ra	dos ratton Air I Iress: 1 Air : Schenecta	National Gu National G ady / New Y tech Envirc d	iard Base uard Road ′ork	Drilling Method: Direct Push via 3" Diameter Casing Sampling Method: N/A Borehole Diameter: 3.25" Borehole Depth: 7 echnologies Refusal Depth: 7 Hammer Weight and Travel: N/A Auger Size: N/A	Depth to Water: N/A Ground Elevation: N/A Start Date: <i>6.29/16</i> Finish Date: <i>6.29/16</i>				
Depth (Feet)	Sample ID	Sample Interval (Feet)	Recovery (feet)	Blow Counts	Description	Depth (Feet)	Well	Construction Diagram	Annotation	
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -12 -13 -14 -15 -16 -17 -18 -16 -17 -18 -17 -18 -20 -21 -22 -23 -24 -25 -24 -25 -25 -24 -25 -25 -24 -25 -25 -24 -25 -2		N/A	N/A	N/A	Soil samples not collected. A three-inch (3") hard point was used to install injection/application wells.	- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 17 - 18 - 19 - 11 - 12 - 13 - 14 - 15 - 10 - 11 - 12 - 13 - 14 - 10 - 11 - 12 - 13 - 14 - 10 - 11 - 11 - 11 - 11 - 11 - 11 - 12 - 11 - 11			Bersed Sand -3' Server	
N// Fbg ' _ :	A – Noi g – Fee feet Inches	: Available t Below Gr : poon Refu								

-			ston Spa, NY		Soil Borin	g: 5	B-4					
Pro Stre City Dril Dril	eet Ado //State ling Co ler: Ra	ratton Air i iress: 1 Air : Schenecta	ady / New ` tech Enviro d	uard Road	Drilling Method: Direct Push via 3" Diameter Casing Sampling Method: N/A Borehole Diameter: 3.25" Borehole Depth: 3.3 Refusal Depth: 3,9 " Hammer Weight and Travel: N/A Auger Size: N/A	Sampling Method: N/A Borehole Diameter: 3.25" Borehole Depth: 3.3' Dep Refusal Depth: 3.8' Gro Hammer Weight and Travel: N/A Sta						
Depth (Feet)	Sample ID	Sample Interval (Feet)	Recovery (feet)	Blow Counts	Description	Depth (Feet)	Well Construction Diagram	Annotation				
- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 22 - 23 - 24 - 25 - 21 - 21 - 21 - 21 - 21 - 21 - 21 - 21		N/A	N/A	N/A	Soil samples not collected. A three-inch (3") hard point was used to install injection/application wells.	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -25	MM2 11111111111111111111111111111111111	Bersen Screen Sand				
N/A Fbg ' - 1	A – Not g → Feet feet Inches	Available : Below Gra poon Refus										

A	ztec	셈 h Envi	ronme	ntal			0 -	
	McCrea	Hill Road, Bal	lston Spa, NY ztechenv.com	12020	Soil Boring:	5	6-5	1
Proj Stre City Dril Dril	nt: Lei ject: St et Ado /State ling Co ler: Ra	dos tratton Air fress: 1 Air : Schenect ompany: Ar y Hammor :: Stefan Tr	National G National G ady / New ttech Enviro d uex	uard Base Guard Road York	Drilling Method: Direct Push via 3" Diameter Casing Sampling Method: N/A Borehole Diameter: 3.25" Borehole Depth: 7.2' echnologies Refusal Depth: 3.2' Hammer Weight and Travel: N/A Auger Size: N/A	Gro	oth to Water: ound Elevatio ort Date: 6/2 ish Date: 6/2	n: N/A
Depth (Feet)	Sample ID	Sample Interval (Feet)	Recovery (feet)	Blow Counts	Description	Depth (Feet)	Well Construction Diagram	Annotation
	– Not	N/A Available	N/A	N/A	Soil samples not collected. A three-inch (3") hard point was used to install injection/application wells.	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -14 -15 -16 -17 -18 -17 -18 -19 -21 -22 -23 -224 -225 -255	((())) (())) ()) ()) ()) ()) ())	Barsen 5 - 5 Sand
' — fa " — 1	eet nches	Below Gra						

			onmer		Soil Boring	g: 5	B-11				
Clier Proj Stre City, Drill Drill	nt: Leic ect: St et Add /State: ing Co ler: Ray	los ratton Air I ress: 1 Air Schenecta	idy / New Y tech Envirc d	uard Base uard Road	Drilling Method: Direct Push via 3" Diameter Casing Sampling Method: N/A Borehole Diameter: 3.25" Borehole Depth: 7.6 chnologies Refusal Depth: 7.6 Hammer Weight and Travel: N/A Auger Size: N/A	Depth to Water: N/A Ground Elevation: N/A Start Date: <i>ひんち</i> んち					
Depth (Feet)	Sample ID	Sample Interval (Feet)	Recovery (feet)	Blow Counts	Description	Depth (Feet)	Well Construction Diagram	Annotation			
1	otes:	N/A	N/A	N/A	Soil samples not collected. A three-inch (3") hard point was used to install injection/application wells.	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -24 -25 -21 -22 -23 -24 -25 -21 -22 -23 -24 -25 -21 -22 -23 -24 -25 -25 -25 -27 -28 -27 -28 -29 -210 -221 -222 -23 -24 -25 -25 -27 -28 -27 -28 -27 -28 -27 -28 -27 -28 -27 -28 -27 -28 -27 -28 -27 -27 -28 -27 -27 -28 -27 -77	Min- Himming C.	Bensee -3' screen - sund			
Fb (g – Fee feet - Inche	et Below G	rade								

4 Aztech Environmental Soil Boring: SB-10 5 McCrea Hill Road, Ballston Spa, NY 12020 518.885-5383 | aztechenv.com Drilling Method: Direct Push via 3" Diameter Casing **Client: Leidos** Project: Stratton Air National Guard Base Sampling Method: N/A Borehole Diameter: 3.25" Street Address: 1 Air National Guard Road Borehole Depth: 7.8 City/State: Schenectady / New York Depth to Water: N/A Refusal Depth: 7.8 Hammer Weight and Travel: N/A Drilling Company: Aztech Environmental Technologies Ground Elevation: N/A Start Date: 6/28/16 Driller: Ray Hammond Finish Date: 6/28/16 Logged By: Stefan Truex Auger Size: N/A Sample Interval (Feet) Recovery (feet) Depth (Feet) Well Construction Diagram **Blow Counts** Depth (Feet) Annotation Sample ID Description Soil samples not collected. A three-inch (3") hard point was used -1 - 1 to install injection/application wells. - 2 - 2 Berseel N/A N/A N/A N/A -3 - 3 -4 -4 -5 3 - 5 -6 Si new - 6 **⊢**7 Sn nd -7 -8 Retusul - 8 078 -9 - 9 - 10 - 10 -11 -11 - 12 - 12 - 13 -13 - 14 - 14 - 15 - 15 - 16 - 16 - 17 -17 - 18 - 18 - 19 - 19 - 20 20 -21 21 - 22 22 - 23 23 - 24 - 24 - 25 - 25 Notes: N/A - Not Available Fbg -- Feet Below Grade ' – feet " - Inches

X – Split Spoon Refusal

PH: 518-885-5383	DATE: 6/29/16				. [EMPL	ογι			ТОТ	AL HOURS
FAX: 518-885-5385	CLIENT: Leidos		- A		-	DRILLER: Raying	N			9	
Aztech	JOB LOCATION: Scher	necta	<u>dy</u>		.	HELPER: Steffer		KIN AX		40	
Environmental	GEOLOGIST/ENGINEER:			11-	. l	HELPER:					
DESCRIPTION OF DRILLING		1 PM	13:00	SB-13	പ്ര	bed to 9.3	7	RIG Geofb		INE HRS	MILEAGE
5:30	FROBING OFERATIONS	1:15	13:15						<u>26</u>		<u> </u>
5:45		1:30	13:30	Sand to				TRUCK ROX		То:	·
6 AM		1:45	13:45	58-4		enseal to 1	-,			<u> </u>	
6:15						ed to 8.8' refus		Well/Boring #		_ _	┢━━━━┫
6:30	· · · · · · · · · · · · · · · · · · ·	2 PM	14:00	Set 1" We	<u>II at</u>	8.8 5' Screev	1 1	PVC Riser - FT		-	
		2:15	14:15	Sand to	<u> ~ K</u>	enseal to l'		PVC Screen - FT			
6:45		2:30	14:30			1 to 8.2 return		Core - Specify Si	ze		
TAM Start of de	iy	2:45	14:45	Set (" N	eli a	+ 8.2' 5' Screen		Soil Boring			
7:15 Final load	/	3 PM	15:00	Sandta		· Ronseul to		# of Spoons			
7:30 mobe to Site	<u> </u>	3:15	15:15	1' 58-	11 11	ubed to 7.6'		6" Road Box			
7:45		3:30	15:30	refusal	Set	["Well ut 7.6] [8" Road Box			
BAM ON SITE		3:45	15:45	2040.3	' Ser	een Sand 1035		Stand Pipe			
8:15 Singe in at	t off: ce	4 PM)	16:0 0	53-10		labed to 7.8'	1 [Grout – FT			
8:30		4:15	16:15	refusal	501		L	Sand - FT		1 1	
8:45		4:30	16:30	3 50100	n S	and b 4'	1	Benseal - FT			
9 AM		4:45	16:45				1	Holeplug – FT		+ +	
9:15 Walk Site		5 PM	4 7;00	1012	70	00:4					
9:30 Jet up on s	SB-15	5:15	17:15	ENTO	C d	4:20					
9:45 Probed to 8	. 3' with 3" casing	5:30	17:30			1		TOTAL DEPTH	_	+ +	
10AM Estudal mou	cd over 2'	5:45	17:45					TOTAL STANDBY T	IME:	_4	
10:15 used 2" toolin	g probed to 8.9	6 PM	18:00					TOTAL DECON TIM	E:		
10:30 Refucal Set 1	well at \$ 92'	6:15	18:15				ן ו	TOTAL SAMPLE FE	ET:		
10:45 3' Safeen 8.2'	Rifer 4' Sand	6:30	18:30					TOTAL PROBE FEE	T:		
11AM H' BERSeal		6:45	18:45					TOTAL AUGER FEE	Т:		
11:15 SB-16 probed	6 8.3' 3' Casing	7 PM	19:00					TOTAL CASING FEE	T:		
11:30 Set 1" Well at		7:15	19:15				Γ	TOTAL BIT FEET:			
11:45 Benseal to ,6	3' Screen 8'	7:30	19:30				Γ				- <u>-</u>
12PM R. Jer SB-1	4 probed to 8.7	7:45	19:45				Γ			-	
12:15 Fetusal Set 1ª	well at sil	8 PM -	20:00			1222		CLIENT'S RE	MARKS	APPRO	VAL
12:30 5º Screen San	d to 2' Bensel		BREAK	_		то: <u>lq`, 30</u>	. [· · ·			
12:45 10						k between 11AM and 2PM					
	oad time, leave shop/travel to site,				time off	site, and end of day.					
I ACKNOWLEDGE ALL STATEMEN	TS AND TIMES ABOVE ARE TRU	E AND A	CURAT	E. Sign:		Date:					

|--|

E-16

· -

APPENDIX F – REMEDIAL ACTION PHOTOGRAPH LOG

PHOTOGRAPH LOG INTERCEPTOR TRENCH INSTALLATION

Site 6 - Interceptor Trench

Site 6 - Interceptor Trench

Site 6 - Interceptor Trench

Site 6 - Interceptor Trench Monitoring Points

Site 6 - Interceptor Trench Restoration

PHOTOGRAPH LOG JULY 2016 INJECTION EVENT

Site 6 - Potable Water Totes

Site 6 - Sand Bags and Water Collection Scupper.

Site 6 – Diaphragm Pump, Hose, and Collection Scupper.

Site 6 – Totes of Emulsified Vegetable Oil.

Site 6 – Placard on Tote of Emulsified Vegetable Oil.

Site 6 – Placement of 330 gallon Injection Totes.

Site 6 – Injection Setup and Injection into IP 5.

Site 6 – Injection Setup and Injection into IP 12.

Site 6 – Injection Setup and Injection into IP 4.

Site 6 – Injection Setup and Injection into IP 1 and 2.