

engineering and constructing a better tomorrow

October 17, 2023

Ms. Jenelle Gaylord, Project Manager
New York State Department of Environmental Conservation
Bureau E, Division of Remediation
625 Broadway
Albany, NY 12233-7012

Subject: Final 2022 Annual Report

American Thermostat Site (NYSDEC Site No. 420006)

MACTEC Engineering & Geology, P.C., Project No. 3616206098

Dear Ms. Gaylord,

MACTEC Engineering & Geology, P.C (MACTEC) is pleased to submit the Final 2022 Annual Report for the New York State Department of Environmental Conservation (NYSDEC) American Thermostat Site No. 420006 located in South Cairo, New York (hereinafter referred to as the "Site"). This Report includes a summary of the following items:

- Site History
- 2022 Activity Summary
- Institutional Controls/Engineering Controls (ICs/ECs)
- Groundwater Extraction and Treatment System (GWETS) Operation, Maintenance, and Monitoring (OM&M) Activities
- Remedial System Optimization (RSO) Extraction Well Optimization Evaluation
- Point of Entry Treatment (POET) System Activities
- Long-Term Groundwater Monitoring
- Semiannual Hydraulic Monitoring
- Sustainability and Resiliency
- Cost Control Summary
- Recommendations for the Coming Year (2023)

Based on activities completed in 2022, the Site use and activities are in compliance with the Site Management Plan (SMP) requirements (MACTEC, 2018a); the ICs/ECs remain in-place, the GWETS is performing as designed, and Site controls are effective in protecting the public health and environment.

SITE HISTORY

The Site consists of approximately eight acres located in South Cairo, Town of Catskill, Greene County, New York (Figure 1). The Site has been remediated in accordance with the Record of Decision (ROD) for Operable Unit 1 (OU1) (potable water supply) (United States Environmental Protection Agency [USEPA], 1988) and OU2 (soil, sediment, surface water, groundwater, and building contamination) (USEPA, 1990). The Site includes an active GWETS which utilizes an air stripper unit to remove volatile organic compounds (VOCs) from groundwater and has been operational since 1998. In 2008, following 10 years of Site Management (SM) by the USEPA, the Site was transferred to the NYSDEC. The contaminants of concern (COC) are VOCs including tetrachloroethene (PCE), trichloroethene (TCE), 1,2-dichloroethene (1,2-DCE), and vinyl chloride. Remedial goals outlined in the ROD documents for the Site are instituted to ensure protection of groundwater from site contaminants in soil, to restore groundwater to drinking water standards or until a point has been reached at which contaminant concentrations in the groundwater "level off," and reduce risk to human health and the environment. Current SM requirements for monitoring the performance and effectiveness of the remedial measures completed at the Site to meet current Remedial Action Objectives (RAOs) (MACTEC, 2013c) consist of operating the groundwater extraction and treatment system to maintain hydraulic control of the bedrock source area (PCE concentrations greater than 1,000 micrograms per liter [µg/L]), routine inspection, sampling, and reporting.

2022 ACTIVITY SUMMARY

This report summarizes the SM and RSO activities completed at the Site from January 2022 through December 2022.

The following recommendations from the 2021 Annual Report (MACTEC, 2022a) were implemented in 2022 and are discussed in detail in upcoming sections of the report:

- Continued implementation, review, and evaluation of the existing ICs/ECs, Operation and Maintenance (O&M) Plan, and groundwater monitoring program, as applicable.
- Continued routine GWETS maintenance including general housekeeping, troubleshooting of well components, and semiannual air stripper cleanings.
 - Maintain air stripper efficiency through regularly scheduled (semiannual) air stripper cleaning using the washer wand. This does not require disassembly of the air stripper, rather the trays are power washed through the viewports using a washer wand.
 - Perform annual inspection of building heaters.
 - Conduct general housekeeping activities to improve work processes and eliminate general clutter.
 - Troubleshoot well components as needed to maintain normal system operation.
- Reduce sampling frequency at the three residences containing POET systems from quarterly to semiannually and to evaluate future decommissioning of the POET systems.
- Evaluate findings of the RSO for potential to continue the shutdown of EW-2 and an eventual shutdown of EW-9 to further optimize contaminant mass removal and operational efficiency of the GWETS as detailed in the Field Activities Plan Extraction Well Optimization Evaluation and approved by the NYSDEC.

The following recommendation from the 2021 Annual Report was not implemented in 2022:

Decommissioning of the building's septic holding tank and associated plumbing facilities to
reduce costs associated with its maintenance did not occur in 2022 due to delays in
responsive bids, and health and safety concerns with respect to underground and overhead
utilities and structures. Decommissioning is anticipated for 2023 and is included in the
recommendations section of this report.

The following additional site-related activities were conducted in 2022:

- Partial decommissioning of one residential POET system.
- Semiannual cleaning of extraction well flow meters to maintain proper function.
- Removal of expired/unnecessary flammable aerosol products by ACV Environmental Services, Inc. for off-site disposal.
- Replacement of non-functioning pumps, including pump motor leads, in extraction wells OW-3, OW-7, OW-13, and OW-16.
- The NYSDEC assumed responsibility of site snow plowing in November 2022.

The following activity unrelated to SM for the Site was conducted in 2022:

 Delivery of NYSDEC-owned used, empty, clean water supply treatment equipment tanks by US Ecology for storage in the treatment building until selected for use on other NYSDEC sites or for disposal. Twelve tanks were delivered on May 16, 2022, and three tanks were delivered on November 11, 2022. SM requirements are summarized in Table 1. A matrix for GWETS and POET system performance sampling, long-term monitoring (LTM) sampling, and water level gauging locations is presented in Table 2. Groundwater monitoring wells and residential POET system sample locations are depicted on Figure 2.

INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS

ICs/ECs provide added measures of protection for potentially exposed receptors over and above natural attenuation mechanisms and source area remedial measures. ICs for the Site in 2022 consisted of restrictions to soil excavation, groundwater use, and well installations, and a monitoring plan. Adherence to the ICs is required by and implemented under the SMP. ECs consist of the GWETS, the Site perimeter fence, monitoring wells, residential POET systems, and an alternate water supply (MACTEC, 2018a).

Groundwater is captured by the GWETS to confine the plume extent and migration and to recover contaminant mass. The Site perimeter fence prohibits unauthorized access to the GWETS building and is inspected monthly. Monitoring wells (on- and off-site) are used to verify the effectiveness of the GWETS through the collection of groundwater samples and water level measurements as part of the LTM program. POET systems for three residences without city water, directing potentially affected residential groundwater through two-stage granular activated carbon (GAC) filtration, have been monitored through routine maintenance and quarterly collection and analysis of groundwater samples. In May 2022, the NYSDEC issued letters to the three residences ending responsibility of POET system OM&M (NYSDEC, 2022a, 2022b, 2022c). It is recommended that these no longer be considered a site EC. An alternate water supply consisting of a public water supply line, extended to the vicinity of the Site from the Village of Catskill in 1992, is maintained by the Village of Catskill (MACTEC, 2018a).

At the Site transfer from USEPA to the NYSDEC in 2008, the Country Estates groundwater communal water supply treatment system was maintained and sampled by the NYSDEC. Treatment system operation and maintenance responsibilities were transferred from the NYSDEC to the Country Estates owner in April 2010 (MACTEC, 2013a). A pre-treatment sample is collected from Country Estates' primary water supply well, CE-2, as part of the Site's long-term groundwater monitoring program, which is discussed later in the report.

GWETS OM&M ACTIVITIES

The GWETS has not been staffed full-time since 2017 and can be monitored and operated remotely. Bimonthly site visits are completed as part of routine operations and include general maintenance, monitoring, inspection, and sampling activities.

A total of 11 extraction wells are active and include four bedrock wells (EWs) and seven overburden wells (OWs):

- EW-6, EW-7, EW-9, EW-16
- OW-2, OW-3, OW-5, OW-7, OW-13, OW-14, OW-16

Bedrock extraction well EW-2 has been inoperable since September 2020 due to electrical and mechanical issues including loss of power, piping repairs, and pump failure. The need to restore operation of this well to meet RAOs is currently under evaluation as part of the Field Activities Plan – Extraction Well Optimization Evaluation discussed at the end of this section (MACTEC, 2021).

Operating parameters for the GWETS include monitoring the volume of groundwater treated (gallons), flow rate (gallons per minute), system downtime (days), and total VOCs extracted from groundwater (pounds) and are summarized on Tables 3, 4 and 5. In 2022, the treatment plant processed approximately 9.9 million gallons of groundwater at an average flow rate of 20 gallons per minute and removed 161 pounds of total VOCs. System influent and effluent samples were collected and analyzed monthly for VOCs; therefore, mass removal is an approximation.

Effluent is discharged from the GWETS to a surface drainage swale which leads to Tributary A (a Class C surface water body) and discharges to Catskill Creek. Effluent samples are collected at the end of the treatment system train and compared to Class C standards and guidance values (NYSDEC, 1998) which are applicable at the point of discharge at the swale. Iron exceeded Class C criteria in July, August, and November 2022. Except for the noted iron exceedances, treated effluent water met surface discharge limits during the reporting period. System performance monitoring results for 2022 are presented in Table 6.

Site-related VOCs in the August 2022 monthly effluent samples exceeded Class C criteria. Conversely, there were no detections of site-related VOCs in the August 2022 influent samples

(collected before air stripper treatment) which is inconsistent with the conceptual site model and groundwater sampling results at the Site. The VOC concentrations observed in the effluent sample were consistent with historical influent sample results and concentrations in the influent sample were consistent with historical effluent sample results. The historical sample data and lack of a potential contributing VOC source within the GWETS treatment train indicates that mishandling or misreporting of results by the laboratory may have occurred.

During 2022, there were approximately 12 downtime days, or 3% of the year (Table 4). The GWETS was shut down on several occasions in 2022 due to system alarms, power outages, and maintenance periods. The longest shutdown occurred May 27 to June 1, 2022 (approximately 6 days) from a system power loss likely due to power loss/fluctuation from the electric utility company service line. Power losses/fluctuations from the electric utility company have historically resulted in GWETS shutdowns.

GWETS modifications and improvements implemented in 2022 include, but were not limited to:

- Replacement of level transmitter fuses in EW-16 and OW-13 to resolve inaccurate water level outputs in those wells.
- Replacement of non-functioning pumps, including pump motor leads, in extraction wells OW-3, OW-7, OW-13, and OW-16 on June 16, 2022, by Precision Environmental Services, Inc. (PES) and Claverack Pump Services, LLC.
- Replacement of flow meter O-ring at EW-16.
- Phased reductions of the pumping rate at EW-9 as part of the optimization evaluation discussed below.

Additional activities completed as part of OM&M activities at the Site include:

- Removal of expired/unnecessary flammable aerosol products on January 4, 2022, by ACV Environmental Services, Inc. for off-site disposal.
- Annual fire inspection of the treatment building by a qualified inspector with the New York State Office of Fire Prevention and Control on May 25, 2022. No violations of the New York State Uniform Fire Prevention and Building Code were identified.
- Annual inspection of three fire extinguishers in the treatment building by a qualified inspector on May 25, 2022.
- Spent ultraviolet bulbs from the residential POET systems were shipped off-site for proper disposal on September 1, 2022.
- Final inspection OM&M and sampling of three residential POET systems, and partial decommissioning of one residential POET system.

- Semiannual cleaning of extraction well flow meters implemented in 2022.
- Replacement of the Site's water meter by the Village of Catskill Water Department on September 29, 2022.

October 2023

• As of November 2022, the NYSDEC has assumed responsibility for snow plowing services at the Site. Snow plowing services were previously provided by a subcontractor.

RSO EXTRACTION WELL OPTIMIZATION EVALUATION

At the request of the NYSDEC, MACTEC prepared and submitted an RSO Field Activities Plan in 2021 to evaluate if bedrock extraction wells EW-2 and EW-9 can ultimately be removed from service to further optimize contaminant mass removal and operational efficiency of the GWETS while still meeting RAOs (MACTEC, 2021). Coupled with periodic reductions in pumping rates, EW-9 groundwater samples were collected from its sample port (located approximately 315 feet north of the well in an aboveground enclosure) monthly from February 1 through August 1, 2022, for the analysis of site-specific VOCs. Water levels were measured twice per month from eight monitoring wells (EW-3, EW-4, EW-5, EW-8, IW-8, IW-9, IW-10 and M-8) and groundwater elevations were recorded from five bedrock extraction well control panels (EW-2, EW-6, EW-7, EW-9, and EW-16) to evaluate effects of pumping rate reductions on hydraulic gradients north and west of the Site. Scoped activities for EW-2, which included removal of pump equipment for unobstructed groundwater sampling via PDBs, could not be completed due to contractor unavailability for removal of pump equipment and inability to recover the PDB deployed for baseline sample collection. The optimization evaluation is discussed in detail in the field activities report (MACTEC, 2023).

POET SYSTEM ACTIVITIES

Municipal water is supplied through the town distribution system to most houses in the area. Three residences located outside the area of the municipal water supply, and within the former off-site plume footprint, were equipped with POET systems. Quarterly maintenance and monitoring of the three residential POET systems occurred in January 2022. Samples were collected before and between GAC filters, and no exceedances of NYS Class GA standards for Site-related VOCs were observed. Samples results are presented in Table 7.

On May 17, 2022, POET system cessation letters were issued to the three residences because COCs exceeding GA standards have not been detected in pre-treatment groundwater since January 2013

(NYSDEC, 2022a, 2022b, 2022c). The residences were offered the option to keep and assume all responsibility of their system or to have the NYSDEC arrange for its removal. One residence opted for partial removal of their POET system. Removal activities were summarized by MACTEC in a NYSDEC Daily Inspection Report (MACTEC, 2022b). Copies of the cessation letters are included in Attachment 1.

POET system OM&M completed by MACTEC in 2022 included the following:

- Residence
 - Quarterly inspection of the POET system in January. Additional requested inspections in March and June.
 - Quarterly sample collection of water before and between GAC filters in January.
 - o Replacement of particulate filters, GAC filters, and ultraviolet bulb, as necessary, through June 1. Filters and UV unit remain in place; owner assumed responsibility of system.
- Residence
 - Quarterly inspection of the POET system in January.
 - Quarterly sample collection of water before and between GAC filters in January.
 - Filters remain and UV unit in place; owner assumed responsibility of system.
- Residence
 - Quarterly inspection of the POET system in January.
 - Quarterly sample collection of water before and between GAC filters in January.
 - Modifications to the POET system in August 2022 by PES:
 - Removal of two GAC tanks from the treatment train.
 - Installation of new piping between particulate filter housing and UV unit.
 - Particulate filter and ultraviolet unit remain in place; owner assumed responsibility of system.

LONG-TERM GROUNDWATER MONITORING

The LTM program has been designed to monitor the effect of the GWETS on contaminant levels in groundwater in the vicinity of the Site, to monitor long-term trends in concentrations of contaminants in groundwater, and to evaluate the effectiveness of the remedial actions (MACTEC, 2018a). This is accomplished through groundwater sampling and analysis and water level measurement collection from select wells to generate bedrock and overburden potentiometric surface maps. Since 2014, groundwater sampling events for the Site have been performed on a 15-month frequency.

The most recent LTM sampling event was conducted in July 2022. Country Estates could not provide access to well CE-2 for LTM sample collection in July 2022. Therefore, a sample was collected on August 1, 2022, and is considered part of the July 2022 LTM event for the purposes of this report. Groundwater samples were collected and analyzed for VOCs from 35 locations (Table 2). Figures depicting well locations, bedrock and overburden potentiometric surfaces, inferred bedrock groundwater PCE plume, and inferred overburden groundwater PCE plume are included as Figures 2, 3, 4, 5, and 6, respectively. Field records from this event are included in Attachment 2. A copy of the Category A Review validation document is provided in Attachment 3.

The July 2022 LTM results for Site COCs are summarized in Table 9. The highest concentrations of PCE in overburden groundwater were observed in OW-3 and OW-5. The highest concentrations of PCE in bedrock groundwater were observed at EW-6 and EW-16. These findings are generally consistent with results observed since the reconfiguration of the GWETS (MACTEC, 2013b). Laboratory results for samples were provided to NYSDEC in electronic document delivery format for loading into EQuIS.

Since 2010, the nature and extent of the overburden groundwater plume has been variable with hot spots related to interpreted residual source areas with steep concentration gradients, consistent with previous sampling events at the Site. The July 2022 result for PCE of 10,400 µg/L in OW-3 suggests that residual product remains present in the overburden. However, these observations agree with the conceptual site model that: 1) overburden groundwater is not migrating horizontally beyond the influence of the overburden extraction well network, and 2) is primarily vertically flow-dominated within the fractured till.

The histogram plots below present PCE concentrations from 2010 to 2022 in bedrock extraction wells EW-2, EW-6, EW-7, EW-9, and EW-16. Bedrock source area core extraction wells EW-6, EW-7, and EW-16 wells exhibit generally higher PCE concentrations compared to bedrock extraction wells EW-2 and EW-9. PCE concentrations in wells EW-6, EW-7, and EW16 are also relatively stable or increasing due to GWETS extraction well network optimization completed in 2017 including: 1) more efficient plume capture by limiting extraction of clean water from off-site;

2) adjustments to bedrock extraction well pumping elevation setpoints in 2018; and 3) adjustments to pumping rates in extraction wells in 2019.

Cross-gradient bedrock source area boundary extraction wells EW-2 and EW-9 exhibit overall lower PCE concentrations with EW-9 levels declining through time. EW-2 has been inoperable since September 2020 due to electrical and mechanical issues and hasn't been sampled since 2018. Reduced pumping rate at EW-9 is being assessed under the Extraction Well Optimization Evaluation to evaluate the need to continue operating this well. Activities scoped for EW-2 under the Extraction Well Optimization Evaluation could not be completed due to presence of extraction pump equipment and contractor unavailability for its removal.

PCE Concentrations in Bedrock Source Area Core Extraction Wells

Page 10 of 18

Time-series plots of PCE concentrations in extraction wells OW-14, EW-7, and EW-16 and off-site monitoring wells CE-2, EW-13, and M-5 were prepared to evaluate the long-term effectiveness of extraction well network modifications completed in 2017, 2018, and 2019. Time-series plots are included in Attachment 4.

Overburden extraction well OW-14 and bedrock extraction wells EW-7 and EW-16 were selected to monitor on-site changes in groundwater quality. Wells OW-14 and EW-16 have historically shown high concentrations of PCE but have exhibited a general downward trend in PCE concentrations beginning in 2013/2014 through 2022. Current PCE levels in OW-14 and EW-16 remain elevated but continued to show a decline between 2021 and 2022. In contrast, PCE levels in EW-7 have exhibited a general upward trend from 2013 to 2021, likely a result of optimized pumping rates that have limited the overextraction of clean off-site groundwater; however, a considerable decrease occurred between 2021 (4,200 μ g/L) and 2022 (6.5 μ g/L). This decrease by three orders of magnitude is suspect and will be confirmed by additional sampling.

Monitoring wells CE-2, EW-13, and M-5 were selected to track progression of the residual off-site plume to the northeast towards Catskill Creek. Country Estates primary supply well, CE-2, has previously been used to track the distal end (i.e., northwest tip) of the residual, off-site plume. LTM sample results from 2014 to 2021 have demonstrated consistent PCE concentrations below the NYS Class GA Standard for PCE of 5 μg/L. However, in August 2022, PCE was detected above the standard at 10.9 μg/L. CE-2 will continue to be monitored to track plume migration from historical receptors (residential water supply wells). The highest PCE concentrations in the off-site plume, observed in EW-13 (located southeast of CE-2), have demonstrated a slow decline from 2018 to 2022. Monitoring well M-5 was selected as a sentinel well to monitor the northeastward (off-site) progression of the plume beyond EW-13. Although PCE has not been detected in M-5 since 2010, daughter compounds cis-1,2-DCE and vinyl chloride remain above applicable NYS Class GA Standards. This trend demonstrates degradation of PCE either at or upgradient of this location, as is recently evident in other locations in this area. The off-site plume is expected to continue to decrease in concentration through natural degradation processes and migrate to the northeast towards Catskill Creek.

The objective of establishing hydraulic capture of highly contaminated bedrock groundwater (>5,000 µg/L) in close proximity to the Site is being maintained while achieving improved extraction efficiency.

Per email correspondence with the NYSDEC on October 20, 2022, LTM samples will no longer be collected from the three residences with former POET systems.

The next LTM event is scheduled for October 2023.

SEMIANNUAL HYDRAULIC MONITORING

Water levels are measured semiannually, typically during the spring and fall seasons, to monitor the hydraulic gradient resulting from previous GWETS modifications (2013 to 2017, 2018 to 2019) and to evaluate hydraulic control of the bedrock groundwater plume in the vicinity of the Site. Water levels were measured in April and October 2022 from a select set of monitoring and extraction wells as part of the hydraulic monitoring program. Measurements were also collected in July 2022 as part of the LTM sampling program and include more extensive set of wells. Water levels for each event are presented in Table 8.

Bedrock potentiometric surface figures were generated for the April, July, and October 2022 events (Figures 3, 7, and 8). These figures indicate that groundwater flow of the highly contaminated bedrock groundwater in the source area remains inward toward the Site through the GWETS operation. Well IW-10 has been excluded from these maps due to it representing shallow bedrock not hydraulically connected to the bedrock aquifer monitored by the other wells. Further evaluation of the groundwater monitoring network is recommended.

An overburden potentiometric surface map was generated for the July 2022 event from well measurements collected as part of the LTM synoptic round (Figure 4). The overburden extraction wells essentially operate as sumps and do not represent the overall overburden potentiometric surface. Groundwater flow in the overburden from the Site is generally to the north and northeast in the direction of Catskill Creek.

SUSTAINABILITY AND RESILIENCY

In 2022, MACTEC submitted an updated Ground Source Heating and Solar Photovoltaic Evaluation (an update to the original document [MACTEC, 2018b]) to the NYSDEC summarizing an assessment of energy conservation measures to reduce utility expenditures as well as greenhouse gas output at the Site (MACTEC, 2022c). The evaluation proposed a ground source heat pump system to heat and cool the treatment building utilizing infrastructure already present as part of the GWETS and a solar photovoltaic system for local electric power generation. Measures proposed in the evaluation are planned for implementation in 2023.

Ongoing site activities regarding sustainability and resiliency have been evaluated and implemented to reduce energy usage, waste generation, emissions, and water usage at the Site (MACTEC, 2018a). Site activities currently implemented include the following:

- Use of PDBs for LTM groundwater sampling events. PDBs generate minimal purge water waste and do not require use of a power source, as is necessary with other sampling methods.
- Disposal of used oil from the treatment system's transfer and discharge pumps at an appropriate recycling facility.
- Utilizing local staff for routine site visits and carpooling, when possible, to minimize environmental impacts related to transportation.
- Application of window insulation film to exterior windows of the treatment building office to reduce heat loss from November to April.
- Remote monitoring of the treatment system as needed to potentially reduce non-routine visits to the Site.
- Reuse of investigation derived waste on-site, when possible, and as approved by the NYSDEC.
- Optimization of the treatment system to improve operational efficiency and cost effectiveness.

Further evaluation of energy conservation measures for the Site is proposed in the recommendations section of this report.

COST CONTROL SUMMARY

A cost summary table for 2022 SM activities is provided in Attachment 5. As shown in the table, most of the SM costs for the reporting period were incurred for operation and maintenance of the GWETS.

Optimization measures to reduce overall operating expenses have been and will continue to be implemented to provide further cost savings at the Site. Since the NYSDEC assumed responsibility from the USEPA for the Site in 2008, annual SM costs associated with reporting, LTM, and GWETS OM&M have reduced by 67 percent, and cost per pound of VOCs removed has decreased by 27 percent. Charts depicting a breakdown of annual SM costs from 2008 to 2022 and cost per pound of VOCs removed are included in Attachment 5.

RECOMMENDATIONS FOR THE COMING YEAR (2023)

As mentioned previously, the RAOs were redefined in 2012 to focus on hydraulic containment of the highly contaminated bedrock groundwater in the on-site source area. For the 2022 reporting period, inward gradients to the bedrock source area were maintained. To continue optimizing system efficiency and remedial progress, and to provide further cost savings at the Site, the following are recommended:

- Continued implementation, review, and evaluation of the existing ICs/ECs, O&M Plan, and groundwater monitoring program, as applicable.
 - Conduct an evaluation of the LTM sampling and hydraulic monitoring programs to remove wells that may no longer be required for monitoring the off-site bedrock plume.
 - Remove residential POET systems from the list of site ECs.
 - Update the SMP to reflect treatment systems and long-term monitoring plan changes.
- Continued routine GWETS maintenance.
 - Maintain air stripper efficiency through regularly scheduled (semiannual) air stripper cleaning. This does not require disassembly of the air stripper, rather the trays are washed through the viewports using a pressure washer.
 - Perform semiannual cleaning of extraction well flow meters to maintain proper function.
 - Perform annual inspection and maintenance of building heaters by a qualified contractor.

- Conduct general housekeeping activities to improve work processes and eliminate general clutter.
- Troubleshoot well components as needed to maintain normal system operation.
- Remove extraction pump equipment from EW-2 to implement scoped activities in the Field Activities Plan Extraction Well Optimization Evaluation.
- Evaluate the findings of the current ongoing RSO for the potential to continue the shutdown of EW-2 and an eventual shutdown of EW-9 to further optimize contaminant mass removal and operational efficiency of the GWETS as detailed in the Field Activities Plan Extraction Well Optimization Evaluation and approved by the NYSDEC.
- Conduct a private utility mark-out to identify the perimeter/extent and depth of the Site's septic holding tank and to identify all underground utilities and structures in the vicinity of the tank in preparation for its decommissioning. Historical documentation identifying the above is either incomplete or not available.
- Decommission the building's septic holding tank and associated plumbing facilities to reduce costs associated with its maintenance. The GWETS has not been staffed full-time since 2017 and the septic tank and plumbing facilities are no longer necessary.
- EW-16 well is located beneath vegetative growth and partially beneath vehicle on the adjacent property and could not be located on multiple occasions. Routine housekeeping and visual marking around the well are recommended.
- Replace level transducers in EW-7 and EW-16 due to repeated transducer failures.
- Install stilling tubes in bedrock extraction wells EW-6, EW-7, EW-9, and EW-16 for unobstructed, direct water level measurement for routine transducer checks and calibration.
- Implement measures proposed in the 2022 Ground Source Heating and Solar Photovoltaic Evaluation:
 - Install a ground source heat pump system to heat and cool the treatment building utilizing infrastructure already present as part of the GWETS.
 - Install a solar photovoltaic system for local electric power generation.

Please feel free to contact us at (207) 775-5401 with questions on the material provided herein.

Sincerely,

MACTEC Engineering & Geology, P.C.

Katie Amann

Assistant Project Manager

Jean Firth, PG

Project Manager/Program Manager

Enclosures (22)

Figure 1	Site Location
Figure 2	Groundwater Well Locations
Figure 3	July 2022 Interpreted Bedrock Potentiometric Surface (Pumping)
Figure 4	July 2022 Interpreted Overburden Potentiometric Surface (Pumping)
Figure 5	Bedrock Groundwater PCE Plume July 2022
Figure 6	Overburden Groundwater PCE Plume July 2022
Figure 7	April 2022 Interpreted Bedrock Potentiometric Surface (Pumping)
Figure 8	October 2022 Interpreted Bedrock Potentiometric Surface (Pumping)
Table 1	Site Management Requirements
Table 2	Long-Term Monitoring and System Performance Sampling Matrix
Table 3	Groundwater Extraction and Treatment System Monthly Throughput
Table 4	Groundwater Extraction and Treatment System Operational Data
Table 5	Total VOCs Extracted from Groundwater (lbs.)
Table 6	Groundwater Extraction and Treatment System Performance Sampling Results - 2022
Table 7	Residential Point of Entry Treatment System Sampling Results - 2022
Table 8	LTM and Semiannual Groundwater Level Measurements
Table 9	Groundwater Monitoring Results – Site-Specific Contaminants of Concern
Attachment	NYSDEC POET System Cessation Letters
Attachment	Field Records
Attachment	Category A Review – July 2022 LTM Groundwater Sampling
Attachment	Time-Series Plots – OW-14, EW-16, EW-7, CE-2, EW-13, M-5

cc: File

Attachment 5

Cost Control Summary Documents

REFERENCES

- MACTEC, 2023. Draft Extraction Well Optimization Evaluation Field Activities Report. American Thermostat NYSDEC Site No. 420006. October 13, 2023.
- MACTEC, 2022a. Final 2021 Annual Report. Prepared for the New York State Department of Environmental Conservation. November 17, 2022.
- MACTEC, 2022b. Daily Inspection Report, August 20, 2022. Prepared for the New York State Department of Environmental Conservation. September 22, 2022.
- MACTEC, 2022c. Ground Source Heating and Solar Photovoltaic Evaluation Update, American Thermostat Site (NYSDEC Site No. 420006). Prepared for the New York State Department of Environmental Conservation. June 9, 2022.
- MACTEC, 2021. Field Activities Plan Extraction Well Optimization Evaluation. Prepared for the New York State Department of Environmental Conservation. November 16, 2021.
- MACTEC, 2018a. Site Management Plan, American Thermostat Site (Site No. 420006), Revision 4. Prepared for the New York State Department of Environmental Conservation. November 29, 2018.
- MACTEC, 2018b. Ground Source Heating and Solar Photovoltaic Evaluation, American Thermostat Site. Site #4-20-006. Prepared for the New York State Department of Environmental Conservation. October 19, 2018.
- MACTEC, 2013a. Periodic Review Report (2012). Prepared for the New York State Department of Environmental Conservation. June 4, 2013.
- MACTEC, 2013b. Basis of Design Memorandum, American Thermostat Site (Site No. 420006), Treatment Plan Improvements. Prepared for the New York State Department of Environmental Conservation. January 29, 2013.
- MACTEC, 2013c. Final RSO Implementation Activities Report, American Thermostat Site (Site No. 420006). Prepared for the New York State Department of Environmental Conservation. January 10, 2013.

REFERENCES (CONTINUED)

- NYSDEC, 2022a. American Thermostat Site, Site ID: 420006, Point of Entry Treatment (POET) System Cessation. Division of Environmental Remediation, Remediation Bureau E. May 17, 2022.
- NYSDEC, 2022b. , *American Thermostat Site, Site ID: 420006, Point of Entry Treatment (POET) System Cessation.* Division of Environmental Remediation, Remediation Bureau E. May 17, 2022.
- NYSDEC, 2022c. , *American Thermostat Site, Site ID: 420006, Point of Entry Treatment (POET) System Cessation.* Division of Environmental Remediation, Remediation Bureau E. May 17, 2022.
- NYSDEC, 1998. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. October 1998 (revised).
- USEPA, 1990. USEPA Region II Record of Decision, Operable Unit 2, American Thermostat site, South Cairo, Greene County, New York. June 29, 1990.
- USEPA, 1988. USEPA Region II Record of Decision for the American Thermostat site, South Cairo, Greene County, New York. January 7, 1988.

FIGURES

TABLES

Table 1: Site Management Requirements

Component	Action	Required Frequency	Comments/Recommendations
Groundwater Extracti	on and Treatment	System (GWE	TS)
GWETS Operation Checklist	Inspection	Each O&M visit	Check groundwater treatment system operation: flow rates, meter readings, system components.
Extraction Wells	Inspection	Each O&M visit	Check extraction wells, housing, control panels.
Control Panel, Heaters	Inspection	Each O&M visit	Check function of control panel indicating lights. In cold weather, verify pilot light operation of heaters.
Safety Equipment, Treatment Plant Lighting	Inspection	Monthly	Inspect safety equipment (ladders, eyewash, fire extinguishers, etc.). Inspect plant lighting for proper operation.
Site Security	Inspection	Monthly	Check treatment building door locks, fencing, and site perimeter fence for defects.
Air Stripper	Inspection/ Maintenance	Semiannually	Perform cleaning of air stripper unit trays and sump, if necessary.
Treatment Plant Heaters	Inspection/ Maintenance	Annually	Annual inspection and cleaning of heaters; to be performed by a licensed subcontractor.
Groundwater Monitoring System	Inspection	15-Month	Visually inspect well pads/locks at site wells; repair as necessary to maintain integrity and security.
System Performance M	Ionitoring		
Influent Header (SP-1)	Plant influent water sampling	Monthly	Grab sample collected to monitor and evaluate GWETS performance.
Treatment Plant Discharge (SP-39)	Plant effluent water sampling	Monthly	Grab sample collected to monitor and evaluate GWETS performance.
Point of Entry Treatme	ent (POET) System	m	
POET System	Residential water supply sampling and inspection	Quarterly ⁽¹⁾	Grab sample collected between carbon filters to monitor and evaluate water supply and GAC performace. Perform system maintenance on carbon filters and UV system as needed, annual at a minimum.
Environmental Monito	ring		
Groundwater Elevation Monitoring	Groundwater elevation measurements	Semiannually (spring and fall)	Collect groundwater elevation measurements for active extraction wells and select monitoring wells to monitor hydraulic control of the plume near the site.
Environmental Groundwater Sampling	Groundwater sampling of 36 wells	15-Month sampling interval	Grab/PDB samples collected from 36 locations including: 21 monitoring wells, 12 active bedrock and overburden extraction wells, 1 private supply well (Country Estates), and 3 residential water supply wells before GAC filters.

GAC = granular activated carbonO&M = operation and maintenance

PDB = passive diffusion bag

UV = ultraviolet

Prepared by: KLS 01/06/2023 Checked by: KAA 05/17/2023

⁽¹⁾ Samples collected January 4, 2022. As of May 31, 2022, NYSDEC no longer responsible for maintenance and sampling of POET systems.

Table 2: Long-Term Monitoring and System Performance Sampling Matrix

Sample ID/	Monitoring	Water Level N	Measurements		Sample		
Location	Interval	Semiannual	15-Month LTM	Analysis	Description		
	ells (15-Month L	TM) (1)					
CE-1 (2)	bedrock			VOCs	Grab, before filters		
CE-2	bedrock			VOCs	Grab, before filters		
EW-3	bedrock	X	X	VOCs	PDB		
EW-4	bedrock	X	X	VOCs	PDB		
EW-5	bedrock	X	X	VOCs	PDB		
EW-8	bedrock	X	X	VOCs	PDB		
EW-10	unknown		X		Not Applicable		
EW-11	bedrock		X	VOCs	PDB		
EW-12	bedrock		X	VOCs	PDB		
EW-13	bedrock		X	VOCs	PDB		
EW-15	unknown		X		Not Applicable		
IW-8	bedrock	X	X	VOCs	PDB		
IW-9	bedrock	X	X	VOCs	PDB		
IW-10	bedrock	X	X	VOCs	PDB		
M-4	bedrock		X	VOCs	PDB		
M-5	bedrock		X	VOCs	PDB		
M-6	bedrock		X	VOCs	Grab		
$M-8^{(3)}$	bedrock	X	X	VOCs	PDB		
M-9 (3)	bedrock	X	X	VOCs	PDB		
Mueller	bedrock		X	VOCs	PDB		
MW-104 (3)	overburden		X	VOCs	PDB		
MW-108	overburden		X		Not Applicable		
MW-109 (3)	overburden		X	VOCs	PDB		
MW-112 (3)	overburden		X	VOCs	PDB		
MW-113 (3)	overburden		X	VOCs	PDB		
Active Bedroc	k Extraction Wel	ls (15-Month L7	TM) (1)				
EW-2 (4)	bedrock	X	X	VOCs	Grab		
EW-6	bedrock	X	X	VOCs	Grab		
EW-7	bedrock	X	X	VOCs	Grab		
EW-9	bedrock	X	X	VOCs	Grab		
EW-16	bedrock	X	X	VOCs	Grab		
	rden Extraction						
OW-2	overburden	X	X	VOCs	Grab		
OW-3	overburden	X	X	VOCs	Grab		
OW-5	overburden	X	X	VOCs	Grab		
OW-7	overburden	X	X	VOCs	Grab		

Prepared by: KLS 01/06/2023 Checked by: KAA 05/17/2023

Table 2: Long-Term Monitoring and System Performance Sampling Matrix

Sample ID/	Monitoring	Water Level I	Measurements		Sample
Location	Interval	Semiannual	15-Month LTM	Analysis	Description
OW-13	overburden	X	X	VOCs	Grab
Active Overbu	rden Extraction	Wells (15-Montl	h LTM) (cont	inued)	
OW-14	overburden	X	X	VOCs	Grab
OW-16	overburden	X	X	VOCs	Grab
Residential W	ells (15-Month L'	TM) (1)			
	bedrock			VOCs	Grab, before filters
	bedrock			VOCs	Grab, before filters
	bedrock			VOCs	Grab, before filters
				!	
Residential W	ell POET System	Performance (C	Quarterly) ⁽⁵⁾		
				VOCs	Grab, before &
				1003	between filters
				VOCs	Grab, before &
				v o es	between filters
				VOCs	Grab, before &
				VOCS	between filters
GWETS Perfo	rmance (Monthl	y)			
PS-INFLUENT				VOCs, Metals, TDS, TSS	Grab, influent water
PS-AS-EFFLU	ENT			VOCs	Grab, air stripper effluent water

GWETS = groundwater extraction and treatment system

 $LTM = long\text{-}term\ monitoring$

PDB = passive diffusion bag

 $POET = point \ of \ entry \ treatment$

TDS = Total Dissolved Solids

TSS = Total Suspended Solids

VOCs = Volatile Organic Compounds

Prepared by: KLS 01/06/2023 Checked by: KAA 05/17/2023

⁽¹⁾ LTM conducted on a 15-month basis. LTM event occurred July 18-20, 2022. CE-2 LTM sample collected August 1, 2022.

⁽²⁾ CE-1 not in service; acts as an emergency backup well to CE-2 for Country Estates. Therefore, not sampled as part of LTM event.

⁽³⁾ Well added to LTM network based on recommendation from 2018 EPA Five-Year Review for the Site.

⁽⁴⁾ EW-2 has been inoperable since September 2020 due to electrical and mechanical issues. It cannot be sampled due to presence of extraction well equipment.

⁽⁵⁾ Samples collected January 4, 2022. As of May 31, 2022, NYSDEC no longer responsible for maintenance and sampling of POET systems.

Table 3: Groundwater Extraction and Treatment System Monthly Throughput

Year	Month													Cumulative Total
Tear	January	February	March	April	May	June	July	August	September	October	November	December	Year (gallons)	Throughput (gallons)
1998	-	-	-	-	-	-	-	1,845,307	2,326,580	2,000,099	1,387,734	1,515,814	9,075,534	9,075,534
1999	2,327,342	1,946,464	1,570,828	1,986,297	1,876,550	1,810,328	1,880,672	2,865,086	2,849,292	2,967,620	2,840,040	2,996,042	27,916,561	36,992,095
2000	2,188,662	1,828,969	2,782,069	2,625,243	2,689,205	2,515,671	2,845,066	2,656,221	2,790,754	3,191,008	2,906,470	3,089,535	32,108,873	69,100,968
2001	3,154,385	3,202,253	3,397,280	3,325,592	3,507,403	3,241,052	2,846,350	3,323,930	3,116,812	3,172,179	2,668,748	2,676,774	37,632,758	106,733,726
2002	2,643,561	2,400,906	2,581,039	3,015,136	2,827,722	3,087,176	3,109,504	2,969,001	2,826,453	3,126,848	3,151,070	3,043,354	34,781,770	141,515,496
2003	3,112,140	2,640,103	3,032,627	2,956,081	2,279,599	2,817,292	2,828,580	2,862,294	2,805,159	2,889,540	2,703,444	1,743,574	32,670,433	174,185,929
2004	1,452,060	1,323,679	1,433,444	1,621,998	1,511,813	1,378,343	1,829,427	2,488,132	2,214,838	2,016,922	2,147,628	2,218,612	21,636,896	195,822,825
2005	1,969,101	1,627,579	1,505,083	1,888,648	1,679,210	1,635,094	1,679,658	1,675,021	1,668,387	1,048,462	1,753,165	1,804,582	19,933,990	215,756,815
2006	1,850,648	1,724,943	1,726,705	1,860,726	2,038,414	2,225,379	1,700,523	1,505,840	1,573,918	2,365,602	2,542,691	1,570,319	22,685,708	238,442,523
2007	1,860,431	1,484,866	1,797,869	1,651,491	1,595,631	1,567,880	1,656,624	1,680,981	1,559,100	1,624,903	1,628,116	1,779,807	19,887,699	258,330,222
2008	1,621,909	1,661,136	1,872,515	1,922,613	1,496,402	1,519,804	1,344,964	2,366,862	2,053,268	2,649,688	2,172,569	2,466,153	23,147,883	281,478,105
2009	2,009,299	1,973,492	2,109,251	2,164,940	2,086,536	2,069,749	2,413,904	1,461,639	1,572,872	1,962,537	1,782,527	2,171,560	23,778,306	305,256,411
2010	1,715,140	1,562,130	2,144,107	1,972,606	1,692,254	1,657,835	1,710,898	1,814,591	1,502,900	1,736,300	1,505,900	1,799,400	20,814,061	326,070,472
2011	1,660,400	1,608,200	1,677,100	1,807,700	1,869,800	1,617,700	1,626,100	1,676,400	1,764,200	1,646,400	1,806,000	1,966,500	20,726,500	346,796,972
2012	1,617,600	1,592,100	1,545,800	976,300	1,050,200	655,200	435,000	1,572,000	1,098,900	1,363,800	1,223,500	1,351,200	14,481,600	361,278,572
2013	1,287,600	1,165,900	1,213,400	1,213,400	1,024,000	560,000	-	368,300	282,600	1,133,000	1,240,188	950,031	10,438,419	371,716,991
2014	605,868	537,554	828,412	1,311,895	1,181,124	1,036,409	1,101,365	968,790	516,422	771,419	643,451	804,076	10,306,785	382,023,776
2015	1,055,444	726,839	818,456	829,691	918,585	1,174,145	1,364,309	1,069,571	1,424,510	890,175	-	251,416	10,523,141	392,546,917
2016	1,028,212	1,142,661	1,197,620	1,176,265	1,105,646	1,027,389	1,159,271	1,156,925	1,179,487	1,145,887	936,208	953,286	13,208,857	405,755,774
2017	1,492,216	906,043	1,123,788	1,197,556	1,049,899	1,426,931	1,168,068	1,576,200	928,859	1,428,789	863,212	1,231,949	14,393,510	420,149,284
2018	1,225,869	1,362,944	983,689	968,599	1,548,696	1,134,499	1,470,999	97,588	287,744	1,076,410	863,088	1,227,285	12,247,410	432,396,694
2019	1,589,576	1,274,721	1,562,495	1,217,017	1,343,215	1,222,569	1,222,569	1,063,488	1,114,585	1,141,511	902,426	755,511	14,409,683	446,806,377
2020	499,106	1,258,095	679,114	720,765	523,678	409,470	731,479	860,427	1,191,122	784,850	1,149,568	1,037,075	9,844,749	456,651,126
2021	859,906	937,650	981,620	951,290	1,260,945	914,353	1,355,500	1,152,711	1,016,565	1,269,408	1,061,188	1,017,492	12,778,628	469,429,754
2022	1,010,934	860,600	934,151	1,033,360	696,112	730,950	655,937	678,561	689,057	753,523	873,911	952,235	9,869,331	479,299,085

⁻ Treatment system modifications resulted in plant shutdown during the months of July 2013 and November 2015.

Table 4: Groundwater Extraction and Treatment System Operational Data

Year	Reporting Month	Reporting Pe	eriod Interval	System Downtime (approximate)	System Runtime (1)		lizer Reading ons)	Monthly System Throughput	Average Flow Rate
	Wionin	Start Date	End Date	(days)	(days)	Start	End	(gallons)	(gpm)
	January	1/4/2022	2/1/2022	0.1	28	94,070,046	95,080,980	1,010,934	25
	February	2/1/2022	3/1/2022	2.1	26	95,080,980	95,941,580	860,600	23
	March	3/1/2022	4/1/2022	0.2	31	95,941,580	96,875,731	934,151	21
	April	4/1/2022	5/2/2022	0.1	31	96,875,731	97,909,091	1,033,360	23
	May	5/2/2022	6/1/2022	5.8	24	97,909,091	98,605,203	696,112	20
2022	June	6/1/2022	7/1/2022	0.1	30	98,605,203	99,336,153	730,950	17
2022	July	7/1/2022	8/1/2022	0.1	31	99,336,153	99,992,090	655,937	15
	August	8/1/2022	9/1/2022	0.1	31	99,992,090	100,670,651	678,561	15
	September	9/1/2022	10/3/2022	0.1	32	100,670,651	101,359,708	689,057	15
	October	10/3/2022	11/2/2022	3.1	27	101,359,708	102,113,231	753,523	19
	November	11/2/2022	12/2/2022	0.1	30	102,113,231	102,987,142	873,911	20
	December	12/2/2022	1/3/2023	0.1	32	102,987,142	103,939,377	952,235	21

 $^{^{(1)}}$ Calculated by subtracting system downtime in days from number of days in reporting period interval. gpm = gallons per minute

Table 5: Total VOCs Extracted from Groundwater (lbs.)

Year						Calenda	nr Month						Total for Calendar	Cumulative Total
Tear	January	February	March	April	May	June	July	August	September	October	November	December	Year (lbs.)	VOCs (lbs.)
1998	ı	-	-	-	-	-	-	104.7	24.5	42.4	26.6	35.0	233	233
1999	26.5	49.3	43.7	39.2	26.7	31.0	23.9	47.3	39.0	63.2	58.1	66.9	515	748
2000	57.5	47.2	62.3	58.7	43.7	50.0	40.8	41.5	33.9	34.6	42.7	49.9	563	1,311
2001	42.7	42.6	50.5	44.1	54.4	45.5	34.7	41.2	29.5	71.5	23.9	27.9	509	1,820
2002	28.1	26.0	28.3	43.4	42.5	44.8	40.5	38.5	37.3	36.9	42.3	42.8	451	2,271
2003	38.2	37.3	43.8	44.8	34.1	45.5	32.7	42.0	51.9	49.3	35.1	34.4	489	2,760
2004	29.7	31.3	39.2	42.0	34.6	32.6	32.1	31.6	26.9	36.0	26.8	34.3	397	3,157
2005	39.4	33.0	20.5	21.8	29.6	23.6	24.3	14.3	17.5	15.2	31.8	31.3	302	3,460
2006	33.8	28.5	27.2	29.0	40.2	44.1	13.1	14.1	24.4	40.1	40.4	23.1	358	3,818
2007	32.3	19.8	28.8	34.4	19.8	18.7	20.2	16.4	15.8	15.8	20.2	21.9	264	4,082
2008	23.9	24.3	34.0	30.6	22.7	14.7	11.8	24.7	21.8	24.8	24.1	25.3	283	4,364
2009	23.0	18.5	20.0	21.0	23.8	19.4	25.3	15.8	14.8	16.9	19.9	26.5	245	4,609
2010	19.0	19.4	30.6	23.6	15.1	13.9	12.0	9.8	13.7	21.8	18.0	30.4	227	4,836
2011	18.2	15.9	35.5	26.3	25.1	22.9	19.5	19.8	25.0	22.5	19.8	22.5	273	5,109
2012	18.5	18.6	18.0	18.8	24.0	5.4	27.5	39.6	12.8	29.2	23.9	17.0	253	5,363
2013	21.8	27.9	30.2	18.7	18.6	13.1	-	20.0	10.4	17.1	18.5	14.1	211	5,573
2014	7.5	11.0	25.1	18.1	26.1	15.6	13.0	40.3	7.0	8.9	14.0	10.7	197	5,770
2015	14.1	6.4	6.1	15.5	15.5	16.8	16.9	14.2	17.4	10.5	-	8.9	142	5,912
2016	24.0	19.1	18.0	32.1	14.4	17.6	14.1	9.5	9.5	13.4	8.6	16.1	196	6,109
2017	13.9	37.0	10.3	27.0	10.5	18.6	10.0	20.5	10.9	7.1	6.1	8.0	180	6,289
2018	25.1	21.5	10.8	20.6	18.1	14.1	13.5	7.8	9.2	23.9	15.5	18.7	199	6,487
2019	17.8	17.7	20.4	15.8	14.6	12.4	20.7	16.9	71.6	8.3	27.8	22.5	267	6,754
2020	9.8	23.4	10.0	20.2	13.2	22.2	20.3	7.5	14.5	9.1	25.9	14.1	190	6,944
2021	24.3	34.6	15.2	17.0	20.8	11.2	41.8	16.8	30.8	21.7	17.1	26.0	277	7,221
2022	10.4	6.9	11.3	15.9	9.4	38.0	9.8	9.4	7.4	11.8	15.3	15.3	161	7,382

- Treatment system modifications resulted in plant shutdown during the months of July 2013 and November 2015.

lbs. = pounds

VOCs = Volatile Organic Compounds

⁻ VOCs Extracted calculated by multiplying site-specific VOC concentrations in monthly influent samples by monthly average flow rate and monthly system runtime (refer to Table 4).

Table 6: Groundwater Extraction and Treatment System Performance Sampling Results - 2022

			Parameter	1,2-DCE (total)	PCE	TCE	Vinyl Chloride	Barium	Iron	TDS
			Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L
	N	ew York Sta	ate Class C Criteria	-	1 (1)	40 (2)	-	-	300 (1)	-
Location	Matrix	Date	Field Sample ID							
PS-Influent	L	1/4/2022	PS-INFLUENT	739	349	128	17	48 J	76 J	410
PS-Influent	L	2/1/2022	PS-INFLUENT	632	218	101	9 J-	53 J+	99 J	387
PS-Influent	L	3/1/2022	PS-INFLUENT	368	792	272	14	52 J	237	373
PS-Influent	L	4/1/2022	PS-INFLUENT	652	899	273	12	50 J	246	356
PS-Influent	L	5/2/2022	PS-INFLUENT	794	484	317	16	47 J	172	366
PS-Influent	L	6/1/2022	PS-Influent	1,708 (3)	3,300	1,200	18	60	150	380
PS-Influent	L	7/1/2022	PS-Influent	825 J ⁽³⁾	040	270	17 J	49 J	330	350
PS-Influent	L	8/1/2022(4)	PS-Influent	2 U (3)	1 U	1 U	1 U	200 U	352	398
PS-Influent	L	9/1/2022	PS-INFLUENT	692	365	213	15	41 J	158	410
PS-Influent	L	10/3/2022	PS-Influent	866 J ⁽³⁾	690	250	26	62	300	350
PS-Influent	L	11/2/2022	PS-Influent	715 J ⁽³⁾	1,100	240	12 J	58	1,300	190
PS-Influent	L	12/2/2022	PS-Influent	494 J ⁽³⁾	1,100	400	13 J	43 J	100	250
Air Stripper Eff	L	1/4/2022	PS-AS EFFLUENT	2 U	1 U	1 U	1 U	40 J	73 J	401
Air Stripper Eff	L	2/1/2022	PS-AS EFFLUENT	2 U	1 U	1 U	1 U	53 J	167	378
Air Stripper Eff	L	3/1/2022	PS-AS EFFLUENT	2 U	1 U	1 U	1 U	53 J	231	364
Air Stripper Eff	L	4/1/2022	PS-AS-EFFLUENT	2 U	1	1 U	1 U	51 J	199	354
Air Stripper Eff	L	5/2/2022	PS-AS EFFLUENT	2 U	1 U	1 U	1 U	47 J	140	373
Air Stripper Eff	L	6/1/2022	PS-AS Effluent	2 U (3)	1 U	1 U	2 U	68	180	230
Air Stripper Eff	L	7/1/2022	PA-AS Effluent	2 U (3)	1 U	1 U	2 U	53	310	340
Air Stripper Eff	L	8/1/2022(4)	PS-AS Effluent	855 ⁽³⁾	523	246	30	200 U	308	423
Air Stripper Eff	L	9/1/2022	PS-AS-EFFLUENT	2 U	1 U	1 U	1 U	42 J	146	362
Air Stripper Eff	L	10/3/2022	PS-AS Effluent	2 U (3)	0 J	1 U	2 U	41 J	200	370
Air Stripper Eff	L	11/2/2022	PS-AS Effluent	2 U (3)	0 J	1 U	2 U	53	850	250
Air Stripper Eff	L	12/2/2022	PS-AS Effluent	2 U ⁽³⁾	1 U	1 U	2 U	44 J	96	270

Gray highlight = exceedance of standard or guidance value

1,2-DCE = 1,2-Dichloroethene

 $\mu g/L = micrograms per liter$

mg/L = milligrams per liter

PCE = Tetrachloroethene

TCE = Trichloroethene

TDS = Total Dissolved Solids

Qualifiers:

J = estimated value

J+= estimated value, biased high

J- = estimated value, biased low

L = liquid

 $U = not \ detected$

Prepared by: KMS 01/13/2023 Checked by: KAA 05/17/2023

⁽¹⁾ Guidance Value

⁽²⁾ Standard

⁽³⁾ Result not reported by lab. Result manually calculated and recorded in applicable significant figures.

⁽⁴⁾ Results are inconsistent with conceptual site model and groundwater sampling results at the Site. Historical sample data and lack of a potential contributing VOC source within GWETS treatment train indicates mishandling or misreporting of results by lab may have occurred.

[&]quot; - " = no criteria

Table 7: Residential Point of Entry Treatment System Sampling Results - 2022

	Parameter	1,2-DCE (total)		Cis-1,2-DCE		Trans-1	Trans-1,2-DCE		PCE		TCE		Vinyl Chloride	
	Units		μg/L											
NYS Cla	ss GA Standard	5		5			5		5		5		2	
Location	Sample Date	Before Filtration	Between Filtration											
	1/4/2022	2 U (1)	2 U (1)	2.9	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
	1/4/2022	2 U (1)	2 U (1)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
	1/4/2022	2 U (1)	2 U (1)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	

(1) Result not reported by lab. Result manually calculated and recorded in applicable significant figures.

1,2-DCE = 1,2-Dichloroethene

Cis-1,2-DCE = Cis-1,2-Dichloroethene

 $\mu g/L = micrograms per liter$

NYS = New York State

PCE = Tetrachloroethene

TCE = Trichloroethene

Trans-1,2-DCE = Trans-1,2-Dichloroethene

Qualifiers:

U = not detected

Prepared by: KMS 01/13/2023 Checked by: KAA 05/17/2023

Table 8: LTM and Semiannual Groundwater Level Measurements

Well ID/	Measurement			Measurement	Depth to	Groundwater	Depth to	Groundwater	Depth to	Groundwater
Sampling	Point	Well	Monitoring	Point	Water	Elevation	Water	Elevation	Water	Elevation
Location	Elevation	Depth	Interval	Reference	4/18/2022	4/18/2022	7/18/2022 (1)	7/18/2022 (1)	10/17/2022	10/17/2022
	(ft. msl)	(ft.)			(ft. btoc)	(ft. msl)	(ft. btoc)	(ft. msl)	(ft. btoc)	(ft. msl)
Monitoring	` ′	(3)			(,	(11 11)		(11 11 11 11 11 11 11 11 11 11 11 11 11	(,	
CE-1 (3)	224.91	535.00	bedrock	TOC	NM	NM	NM	NM	NM	NM
CE-2	224.95	287.00	bedrock	TOC	NM	NM	NM	NM	NM	NM
EW-3	259.67	295.00	bedrock	TOC	102.95	156.72	108.75	150.92	107.99	151.68
EW-4	256.01	322.00	bedrock	TOC	99.46	156.55	105.35	150.66	104.62	151.39
EW-5	259.85	235.20	bedrock	TOC	2.24	257.61	6.20	253.65	7.15	252.70
EW-8	223.93	318.00	bedrock	TOC	77.65	146.28	82.65	141.28	82.02	141.91
EW-10	234.09	225.00	unknown	TOC	NM	NM	16.85	217.24	NM	NM
EW-11	231.40	172.20	bedrock	TOC	NM	NM	67.02	164.38	NM	NM
EW-12	232.76	270.50	bedrock	TOC	NM	NM	49.35	183.41	NM	NM
EW-13	217.06	360.00	bedrock	TOC	NM	NM	48.34	168.72	NM	NM
EW-15	236.37	275.00	unknown	TOC	NM	NM	14.83	221.54	NM	NM
IW-8 (6)	239.47	391.80	bedrock	TOC	57.46	182.01	84.99	154.48	84.15	155.32
IW-9	224.37	358.10	bedrock	TOC	68.82	155.55	73.10	151.27	73.20	151.17
IW-10	235.57	176.30	bedrock	TOC	5.33	230.24	8.91	226.66	6.64	228.93
M-4	232.19	200.00	bedrock	TOC	NM	NM	67.70	164.49	NM	NM
M-5	213.88	200.00	bedrock	TOC	NM	NM	45.59	168.29	NM	NM
M-6	248.31	100.00	bedrock	TOC	NM	NM	32.45	215.86	NM	NM
M-8	261.57	200.00	bedrock	TOC	10.57	251.00	13.60	247.97	11.29	250.28
M-9	256.39	200.00	bedrock	TOC	84.35	172.04	86.63	169.76	87.57	168.82
Mueller	183.25	114.00	bedrock	TOC	NM	NM	19.43	163.82	NM	NM
MW-104	258.00	81.60	overburden	TOC	NM	NM	29.55	228.45	NM	NM
MW-108	254.72	86.10	overburden	TOC	NM	NM	23.16	231.56	NM	NM
MW-109	255.96	87.50	overburden	TOC	NM	NM	20.69	235.27	NM	NM
MW-112	256.60	25.10	overburden	TOC	NM	NM	7.61	248.99	NM	NM
MW-113	257.38	25.00	overburden	TOC	NM	NM	10.54	246.84	NM	NM
Active Bedi	rock Extraction V	Vells								
EW-2 (2)	255.29	322.00	bedrock	TOC/PLC	NM	166.57 ⁽⁴⁾	NM	161.82 (4)	NM	162.70 (4)
EW-6	242.94	325.00	bedrock	TOC/PLC	NM	164.88 ⁽⁴⁾	NM	160.18 ⁽⁴⁾	NM	161.14 ⁽⁴⁾

Prepared by: KLS 01/10/2023 Checked by: KAA 05/17/2023

Table 8: LTM and Semiannual Groundwater Level Measurements

Well ID/ Sampling Location	Measurement Point Elevation	Well Depth	Monitoring Interval	Measurement Point Reference	Depth to Water 4/18/2022	Groundwater Elevation 4/18/2022	Depth to Water 7/18/2022 (1)	Groundwater Elevation 7/18/2022 (1)	Depth to Water 10/17/2022	Groundwater Elevation 10/17/2022	
	(ft. msl)	(ft.)			(ft. btoc)	(ft. msl)	(ft. btoc)	(ft. msl)	(ft. btoc)	(ft. msl)	
Active Bedrock Extraction Wells (continued)											
EW-7	251.64	227.00	bedrock	TOC/PLC	NM	132.64 (4)	NM	69.00 (4)	NM	69.00 (4)	
EW-9	236.21	365.00	bedrock	TOC/PLC	NM	159.07 ⁽⁴⁾	NM	153.64 (4)	NM	153.90 ⁽⁴⁾	
EW-16	248.16	417.00	bedrock	TOC/PLC	NM	134.85 (4)	NM	NM ⁽⁵⁾	NM	NM ⁽⁵⁾	
Active Over	rburden Extracti	on Wells									
OW-2	257.03	30.00	overburden	TOC/PLC	NM	254.24 (4)	NM	244.58 (4)	NM	245.07 (4)	
OW-3	256.81	25.00	overburden	TOC/PLC	NM	253.56 ⁽⁴⁾	NM	239.09 (4)	NM	249.37 (4)	
OW-5	258.20	30.00	overburden	TOC/PLC	NM	251.13 ⁽⁴⁾	NM	250.99 (4)	NM	251.19 ⁽⁴⁾	
OW-7	254.57	25.00	overburden	TOC/PLC	NM	251.69 ⁽⁴⁾	NM	236.98 (4)	NM	237.04 (4)	
OW-13	259.95	29.50	overburden	TOC/PLC	NM	269.37 ⁽⁴⁾	NM	253.02 ⁽⁴⁾	NM	252.03 ⁽⁴⁾	
OW-14	261.24	30.00	overburden	TOC/PLC	NM	255.23 ⁽⁴⁾	NM	259.82 ⁽⁴⁾	NM	253.48 ⁽⁴⁾	
OW-16	259.81	30.00	overburden	TOC/PLC	NM	248.41 (4)	NM	258.58 ⁽⁴⁾	NM	248.75 ⁽⁴⁾	

Notes:

btoc = below top of casing

ft. = feet

msl = mean sea level

LTM = long-term monitoring

NM = not measured

PLC = programmable logic controller

TOC = top of casing

 $^{^{(1)}}$ Water level measurements collected as part of the 15-month LTM event.

⁽²⁾ Water levels were measured under pumping conditions with EW-2 offline. EW-2 has been off-line since September 2020 due to electrical and mechanical issues.

⁽³⁾ CE-1 not in service; acts as emergency backup well to CE-2 for Country Estates.

⁽⁴⁾ Measurement collected from extraction well control panel.

⁽⁵⁾ Level transducer not working; therefore, measurement could not be collected.

⁽⁶⁾ Measurements not included in potentiometric surface figures as it represents shallow bedrock that is not hydraulically connected to the bedrock aquifer monitored by other wells.

Table 9: Groundwater Monitoring Results – Site-Specific Contaminants of Concern

		Parameter	1,2-DCE (total)	Cis-1,2- DCE	Trans-1,2- DCE	PCE	ТСЕ	Vinyl Chloride
		Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
New Y	ork State Clas	ss GA Standard	5	5	5	5	5	2
Location	Sample Date	Sample ID						
CE-2	8/1/2022	CE-2 BEF	2.7 (1)	2.7	1 U	10.9	3.9	1 U
EW-3	7/20/2022	EW-3	5.3 J	5.3 J	1 U	1 U	1 U	4.8
EW-4	7/20/2022	EW-4	5.7	5.7	1 U	1 U	1 U	1
EW-5	7/20/2022	EW-5	260	258	2.4	182	67	8.7
EW-6	7/20/2022	EW-6	175	171	3.3	446	135	13.4
EW-7	7/20/2022	EW-7	304	292	11.7	6.5	6.4	9.7
EW-8	7/20/2022	EW-8	3.8	3.8	1 U	1 U	1 U	2.1
EW-9	7/20/2022	EW-9	40	38.6	1.4	6.1	5.4	16.2
EW-11	7/20/2022	EW-11	1.2 J	1.2	1 U	1 U	1 U	1 U
EW-12	7/20/2022	EW-12	2 U	1 U	1 U	5.7	1 U	1 U
EW-13	7/19/2022	EW-13	3.1	3.1	1 U	24.3	2.5	1 U
EW-16	7/20/2022	EW-16	1,960	1,940	23.3	599	657	25.6
IW-8	7/20/2022	IW-8	2 U	1 U	1 U	1 U	1.1	1 U
IW-9	7/20/2022	IW-9	590	586	3.6	168	239	2.1
IW-10	7/20/2022	IW-10	3.6	3.6	1 U	1 U	1.3	1 U
	7/19/2022		2 U	1 U	1 U	1 U	1 U	1 U
	7/19/2022	1	2 U	1 U	1 U	1 U	1 U	1 U
M-4	7/20/2022	MW-4	2 U	1 U	1 U	1 U	1 U	1 U
M-5	7/19/2022	M-5	12.7	12.7	1 U	1 U	1 U	6.7
M-6	7/19/2022	M-6	2 U	1 U	1 U	1 U	1 U	1 U
M-8	7/19/2022	M-8	2 U	1 U	1 U	1 U	1 U	1 U
M-9	7/19/2022	M-9	2 U	1 U	1 U	1 U	1 U	1 U
MUELLER	7/19/2022	MUELLER	2 U	1 U	1 U	1 U	1 U	1 U
MW-104	7/20/2022	MW-104	2 U	1 U	1 U	1 U	1 U	1 U
MW-109	7/20/2022	MW-109	2 U	1 U	1 U	1 U	1 U	1 U
MW-112	7/19/2022	MW-112	2 U	1 U	1 U	1 U	1 U	1 U
MW-113	7/19/2022	MW-113	24.4	24.4	1 U	1,650	23.1	1 U
OW-2	7/20/2022	OW-2	68.4	68.4	1 U	389	17.8	1 U
OW-3	7/20/2022	OW-3	221	217	3.2	10,400	289	1.7
OW-5	7/20/2022	OW-5	1,370	1,360	5.3	3,900	273	2.5
OW-7	7/20/2022	OW-7	37.6	37.6	1 U	116	16.1	1 U
OW-13	7/20/2022	OW-13	90.2	90.2	1 U	147	8.8	1.2
OW-14	7/20/2022	OW-14	1,380	1,370	7.2	2,420	584	134
OW-16	7/20/2022	OW-16	64	64	1 U	80.4	24.2	1 U
	7/19/2022		2 U	1 U	1 U	1 U	1 U	1 U

Notes:

(1) Result not reported by lab. Result manually calculated and recorded in applicable significant figures.

Gray highlight = exceedance of standard 1,2-DCE = 1,2-Dichloroethene

Cis-1,2-DCE = Cis-1,2-Dichloroethene

PCE = Tetrachloroethene TCE = Trichloroethene

Trans-1,2-DCE = Trans-1,2-Dichloroethene

 $\mu g/L = micrograms per liter$

Qualifiers:

J =estimated value U =not detected

Prepared by: KMS 01/13/2023 Checked by: KAA 05/17/2023

ATTACHMENT 1 NYSDEC POET System Cessation Letters

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau E 625 Broadway, 12th Floor, Albany, NY 12233-7017 P: (518) 402-9813 I F: (518) 402-9819 www.dec.ny.gov

May 17, 2022

Jane Klinke P.O. Box 167 South Cairo, New York 12482

RE: 123 Scotch Rock Road

American Thermostat Site, Site ID: 420006

Point of Entry Treatment (POET) System Cessation

Dear Jane Klinke:

The New York State Department of Environmental Conservation (NYSDEC), under the NYS State Superfund program, provides relief to property owners when their private water supply wells become impacted by contamination from release of hazardous wastes. Initially, as an emergency measure, bottled water may be provided to the impacted residents. If required, a more permanent solution may be provided with the installation of a point of entry treatment (POET) system. This relief is provided by the NYSDEC until such a time that either a public water connection becomes available or the contamination decreases to a level determined by the New York State Department of Health (NYSDOH) to be acceptable for human consumption.

The Environmental Protection Agency (EPA) installed a granular activated carbon (GAC) POET system at your property in 2000 to treat water from your supply well contaminated with volatile organic compounds (VOCs). Since that time the levels of VOCs in the untreated water from your supply well have decreased to levels in conformance with the NYSDOH regulations for public water supply systems. Specifically, the concentrations of contaminants of concern have been non-detect or below the maximum contaminant level of 5 parts per billion dating back to January 2013.

Based on this fact NYSDEC, in concurrence with NYSDOH, will as of May 31, 2022 no longer provide for the operation, maintenance, and monitoring of the POET system at your residence. You may elect, however, to keep the POET system and assume all responsibility for the operation and maintenance of said system or NYSDEC will arrange for the removal of the POET system and provide direct connection to your water supply well. There is no charge to you for either choice. Please complete the enclosed form indicating your choice and return to me via email and/or within the enclosed self-addressed stamped envelope.

Should you have any questions, please do not hesitate to contact me; by phone at (518) 402-9791, or by email at jenelle.gaylord@dec.ny.gov. If you have any questions related to health issues or should you notice any odors or taste issues with your water in the future, please contact Angela Martin at the NYSDOH, (518) 402-7860 or angela.martin@health.ny.gov.

Sincerely,

Jenelle Gaylord Project Manager

Remedial Section D, Remedial Bureau E Division of Environmental Remediation

Enclosures

Ec: A. Martin, NYSDOH

J. Deming, NYSDOH

D. Chiusano, NYSDEC

C. O'Neill, NYSDEC

J. Dyber, NYSDEC

M. Cruden, NYSDEC

J. Firth/K. Amann, Wood PLC

AGREEMENT BY PROPERTY OWNER TO ACCEPT/DECLINE TO RETAIN GAC SYSTEM

The undersigned (owner) Jane Klinke of property located at 123 Scotch Rock Road in Greene County, Town of Catskill having been notified by the New York State Department of Environmental Conservation (the Department), in concurrence with the New York State Department of Health, that the Department will no longer monitor and maintain the Granular Activated Carbon (GAC) Point of Entry Treatment (POET) System installed at the above referenced property due to the following reason: levels of VOCs in the untreated water from the potable water supply well at this location have decreased to levels in conformance with the NYSDOH regulations for public water supply systems, does hereby select the following option: (select only one): ____1) (a) I hereby agree to keep the System and accept all physical and financial responsibility for the operation, maintenance, and monitoring of said System. I accept this System as is and recognize that the Department does not warrant or otherwise guarantee its performance. (b) I hereby release and hold harmless the Department from any and all causes of actions in law or equity, demands, payments, recoveries, arising either directly or indirectly from the operation of the System. 2) (a) I hereby request that the Department arrange for the removal of the System and hereby release and hold harmless the Department from any and all causes of action in law or equity, demands, payments, recoveries, arising either directly or indirectly from the removal of the System. (b) I hereby grant permission to the Department and its contractor(s) to enter upon my property with equipment, personnel, and such items as are necessary to remove the System. In consideration thereof, the Department, agrees to restore said property to its previous condition, and agrees to restore and/or replace any items on the aforesaid property which are damaged as a result of the Department, and/or its contractors entering the aforesaid premises and performing the removal. Signed: _____ Date: _____ Property Address: Phone Numbers:

Best time to call for making arrangements to enter your property: ______

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau E 625 Broadway, 12th Floor, Albany, NY 12233-7017 P: (518) 402-9813 I F: (518) 402-9819 www.dec.ny.gov

May 17, 2022

Robert Kubler 83 Scotch Rock Road South Cairo, New York 12482

RE: 83 Scotch Rock Road

American Thermostat Site, Site ID: 420006

Point of Entry Treatment (POET) System Cessation

Dear Robert Kubler:

The New York State Department of Environmental Conservation (NYSDEC), under the NYS State Superfund program, provides relief to property owners when their private water supply wells become impacted by contamination from release of hazardous wastes. Initially, as an emergency measure, bottled water may be provided to the impacted residents. If required, a more permanent solution may be provided with the installation of a point of entry treatment (POET) system. This relief is provided by the NYSDEC until such a time that either a public water connection becomes available or the contamination decreases to a level determined by the New York State Department of Health (NYSDOH) to be acceptable for human consumption.

The Environmental Protection Agency (EPA) installed a granular activated carbon (GAC) POET system at your property in 2000 to treat water from your supply well contaminated with volatile organic compounds (VOCs). Since that time the levels of VOCs in the untreated water from your supply well have decreased to levels in conformance with the NYSDOH regulations for public water supply systems. Specifically, the concentrations of contaminants of concern have been non-detect or below the maximum contaminant level of 5 parts per billion dating back to at least January 2013.

Based on this fact NYSDEC, in concurrence with NYSDOH, will as of May 31, 2022 no longer provide for the operation, maintenance, and monitoring of the POET system at your residence. You may elect, however, to keep the POET system and assume all responsibility for the operation and maintenance of said system or NYSDEC will arrange for the removal of the POET system and provide direct connection to your water supply well. There is no charge to you for either choice. Please complete the enclosed form indicating your choice and return to me via email and/or within the enclosed self-addressed stamped envelope.

Should you have any questions, please do not hesitate to contact me; by phone at (518) 402-9791, or by email at jenelle.gaylord@dec.ny.gov. If you have any questions related to health issues or should you notice any odors or taste issues with your water in the future, please contact Angela Martin at the NYSDOH, (518) 402-7860 or angela.martin@health.ny.gov.

Sincerely,

Jenelle Gaylord Project Manager

Remedial Section D, Remedial Bureau E Division of Environmental Remediation

Enclosures

Ec: A. Martin, NYSDOH

J. Deming, NYSDOH
D. Chiusano, NYSDEC
C. O'Neill, NYSDEC
J. Dyber, NYSDEC
M. Cruden, NYSDEC

J. Firth/K. Amann, Wood PLC

AGREEMENT BY PROPERTY OWNER TO ACCEPT/DECLINE TO RETAIN GAC SYSTEM

The undersigned (owner) Robert Kubler of property located at 83 Scotch Rock Road in **Greene County, Town of Catskill** having been notified by the New York State Department of Environmental Conservation (the Department), in concurrence with the New York State Department of Health, that the Department will no longer monitor and maintain the Granular Activated Carbon (GAC) Point of Entry Treatment (POET) System installed at the above referenced property due to the following reason: levels of VOCs in the untreated water from the potable water supply well at this location have decreased to levels in conformance with the NYSDOH regulations for public water supply systems, does hereby select the following option: (select only one): ____1) (a) I hereby agree to keep the System and accept all physical and financial responsibility for the operation, maintenance, and monitoring of said System. I accept this System as is and recognize that the Department does not warrant or otherwise guarantee its performance. (b) I hereby release and hold harmless the Department from any and all causes of actions in law or equity, demands, payments, recoveries, arising either directly or indirectly from the operation of the System. 2) (a) I hereby request that the Department arrange for the removal of the System and hereby release and hold harmless the Department from any and all causes of action in law or equity, demands, payments, recoveries, arising either directly or indirectly from the removal of the System. (b) I hereby grant permission to the Department and its contractor(s) to enter upon my property with equipment, personnel, and such items as are necessary to remove the System. In consideration thereof, the Department, agrees to restore said property to its previous condition, and agrees to restore and/or replace any items on the aforesaid property which are damaged as a result of the Department, and/or its contractors entering the aforesaid premises and performing the removal. Signed: _____ Date: _____ Property Address:_____

Best time to call for making arrangements to enter your property: ______

Phone Numbers:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau E 625 Broadway, 12th Floor, Albany, NY 12233-7017 P: (518) 402-9813 I F: (518) 402-9819 www.dec.ny.gov

May 17, 2022

Michael Viella P.O. Box 343 South Cairo, New York 12482

RE: 93 Scotch Rock Road

American Thermostat Site, Site ID: 420006

Point of Entry Treatment (POET) System Cessation

Dear Michael Viella:

The New York State Department of Environmental Conservation (NYSDEC), under the NYS State Superfund program, provides relief to property owners when their private water supply wells become impacted by contamination from release of hazardous wastes. Initially, as an emergency measure, bottled water may be provided to the impacted residents. If required, a more permanent solution may be provided with the installation of a point of entry treatment (POET) system. This relief is provided by the NYSDEC until such a time that either a public water connection becomes available or the contamination decreases to a level determined by the New York State Department of Health (NYSDOH) to be acceptable for human consumption.

The Environmental Protection Agency (EPA) installed a granular activated carbon (GAC) POET system at your property in 2000 to treat water from your supply well contaminated with volatile organic compounds (VOCs). Since that time the levels of VOCs in the untreated water from your supply well have decreased to levels in conformance with the NYSDOH regulations for public water supply systems. Specifically, the concentrations of contaminants of concern have been non-detect or below the maximum contaminant level of 5 parts per billion dating back to at least January 2013.

Based on this fact NYSDEC, in concurrence with NYSDOH, will as of May 31, 2022 no longer provide for the operation, maintenance, and monitoring of the POET system at your residence. You may elect, however, to keep the POET system and assume all responsibility for the operation and maintenance of said system or NYSDEC will arrange for the removal of the POET system and provide direct connection to your water supply well. There is no charge to you for either choice. Please complete the enclosed form indicating your choice and return to me via email and/or within the enclosed self-addressed stamped envelope.

Should you have any questions, please do not hesitate to contact me; by phone at (518) 402-9791, or by email at jenelle.gaylord@dec.ny.gov. If you have any questions related to health issues or should you notice any odors or taste issues with your water in the future, please contact Angela Martin at the NYSDOH, (518) 402-7860 or angela.martin@health.ny.gov.

Sincerely,

Jenelle Gaylord Project Manager

Remedial Section D, Remedial Bureau E Division of Environmental Remediation

Enclosures

Ec: A. Martin, NYSDOH

J. Deming, NYSDOH
D. Chiusano, NYSDEC
C. O'Neill, NYSDEC
J. Dyber, NYSDEC
M. Cruden, NYSDEC

J. Firth/K. Amann, Wood PLC

AGREEMENT BY PROPERTY OWNER TO ACCEPT/DECLINE TO RETAIN GAC SYSTEM

The undersigned (owner) Michael Viella of property located at 93 Scotch Rock Road in **Greene County, Town of Catskill** having been notified by the New York State Department of Environmental Conservation (the Department), in concurrence with the New York State Department of Health, that the Department will no longer monitor and maintain the Granular Activated Carbon (GAC) Point of Entry Treatment (POET) System installed at the above referenced property due to the following reason: levels of VOCs in the untreated water from the potable water supply well at this location have decreased to levels in conformance with the NYSDOH regulations for public water supply systems, does hereby select the following option: (select only one): ____1) (a) I hereby agree to keep the System and accept all physical and financial responsibility for the operation, maintenance, and monitoring of said System. I accept this System as is and recognize that the Department does not warrant or otherwise guarantee its performance. (b) I hereby release and hold harmless the Department from any and all causes of actions in law or equity, demands, payments, recoveries, arising either directly or indirectly from the operation of the System. 2) (a) I hereby request that the Department arrange for the removal of the System and hereby release and hold harmless the Department from any and all causes of action in law or equity, demands, payments, recoveries, arising either directly or indirectly from the removal of the System. (b) I hereby grant permission to the Department and its contractor(s) to enter upon my property with equipment, personnel, and such items as are necessary to remove the System. In consideration thereof, the Department, agrees to restore said property to its previous condition, and agrees to restore and/or replace any items on the aforesaid property which are damaged as a result of the Department, and/or its contractors entering the aforesaid premises and performing the removal. Signed: _____ Date: _____ Property Address:_____

Best time to call for making arrangements to enter your property: ______

Phone Numbers:

ATTACHMENT 2 Field Records

WATER LEVEL MONITORING AND WELL INSPECTION CHECKLIST

American Thermostat NYSDEC Site No. 420006

Project#: 3616206098

Date: Name(s):

																Today Police , Terre Olaso ,
Location ID	Measurement Point Elevation (ft. above msl)	Well Depth (ft.)	Measure Point Reference	Well Diameter (in.)	Point Marked (Y/N)	Protective Casing Stickup (ft.)	TOC-TOR Difference (ft.)	Depth to Water (ft. BMP)	Depth to Bottom of Well (ft. BMP)	Well ID Present (Y/N)	Well Lock/Cap (G/F/P)*	Protective Casing (G/F/P)*	Water in Annular Space (Y/N)	Concrete Pad (G/F/P)*	Well Riser/Cap (G/F/P)*	Comments
Monitorin				(,	(2/2/)	(1.1.)	()	(200 200 200 200 200 200 200 200 200 200	1 ()	(3.1.)	(3/2/2)	(3/2/2)	(2)337	10.2127	(-,-,-)	
EW-3	259.67	295	TOR	6	N	NA	-0.50	108.75	295	Y	G	6	N	G	G	2' x 2' vault
EW-4	256.01	322	TOR	6	Y	NK	-0.17	105.35	322.5	Y	F	6	2	Gn	6	2' x 2' vault
EW-5	259.85	235.2	TOV	6	Y	NA	-1.00	6.20	235	Y	F	F	2	F	F	Located in aboveground vault
EW-8	223.93	318	TOR	G	N	NK	-0.50	82.65	327.5	Y	F	G	2	P	F	15" flush-mount road box
EW-10	234.09	225	TOR	6	2	NA	-058	16.85	222	4	F	6	2	G	F	15" flush-mount road box
EW-I1	231.40	172.2	TOR	6	2	NA	-0.70	67.62	173.0	Y	F	F	N	F	F	15" flush-mount road box
EW-12	232.76	270.5	TOR	6	7	NK	-0.33	49.35	271.3	Y	G	G	N	6	6	2' x 2' vault
EW-13	217.06	360	TOR	6	2	NK	-0.83	48.34	344*	Y	P	E	2	F	8	15" flush-mount road box
EW-14	234.85	185	TOC													Well inaccessible; located under stored materials on a private property
EW-15	236.37	275	TOV	- 6	N	NA	-3.67	14.83	275.50	Y	6	5	N	6	NA	2' x 2' vault
IW-8	239.47	391.8	TOR	6	Υ.	NA	-0.42	84.99	395	Y	F	65	N	G	G	2' x 2' vault
IW-9	224.37	358.1	TOR	6	N	NA	-0.92	73.10	3645	Y	F	F	7	G	F	15" flush-mount road box
IW-10	235.57	176.3	TOR	6	N	0.50	-1.10	8.91	176.0	Y	F	F	N	G	4	Located in EW-9's aboveground vault
M-4	232.19	200	TOR	4	N	2.21	-0.5	67.70	2025	Y	F	F	N	NA	G	4" diameter steel riser in 6" diameter steel casing
M-5	213.88	200	TOR	4	N	2.46	-1.04	45.59	202	Y	F	F	N	NA	NA	4" diameter steel riser in 6" diameter steel casing
M-6	248.31	100	TOC	6	N	NK	NA	32.45	NM	N	F	F	N	AN	NA	6" steel casing, homeowner utilizes well for yard
M-8	261.57	200	TOR	4	Y	2-33	-0.42	13.60	201.65	7	6	6	N	G	67	4" diameter steel riser in 6" diameter steel casing
M-9	256.39	200	TOR	4	N	2.38	-0.50	86.63	205,20	Y	6	6	N	6	G	4" diameter steel riser in 6" diameter steel casing
Mueller	183.25	114	TOC	6	N	1,42	NA	19.43	113.50	Y	F	F	NA	NA	NA	6" diameter steel casing
MW-104	258.00	83.3	TOR	2	N	NA	-0.33	29.55	NM84.50	Y	6	6	N	F	6	8" flush-mount road box, 2" PVC diameter riser
MW-108	254.72	86.1	TOR	2	MY	NA	-0.33	23.16	27.80	Y	F	5	2	F	F	8" flush-mount road box, 2" PVC diameter riser
MW-109	255.96	87.7	TOR	2	N	NK	-0-46	20.69	NM86-1		F	F	2	F	F	8" flush-mount road box, well ID on gripper plug, 2" PVC diameter riser
MW-112	256.60	25.3	TOR	2	N	NA	-0.42	7.61	NM 24.8		67	6	N	6	G	8" flush-mount road box, 2" PVC diameter riser
MW-113	257.38	22.9	TOR	2	N	NK	-0.25	10.54	NM 22:50	, ,	F	F	N	P	G	8" flush-mount road box, 2" PVC diameter riser
Extraction	Wells (Values Col	lected Fr	om Well Pan	els)				(ft. above msl)								
EW-2	255.29	322	TOC/PLC	6	NA	NA	NA	161.82	NA	Y	G	6	N	(3)	G	Was pump running at time of inspection? Yes or No
EW-6	242.94	325	TOC/PLC	6	NA	NA	NA	160.18	NA	Y	G	G	N	65	67	Was pump running at time of inspection? Yes or No
EW-7	251.64	227	TOC/PLC	6	NA	NA	NA	69	NA	Y	61	62	N	Gn	G	Was pump running at time of inspection? Yesor No
EW-9	236.21	365	TOC/PLC	6	NA	NA	NA	153.64	NA	Y	G	6	N	67	Gi	Was pump running at time of inspection? Yes or No
EW-16	248.16	417	TOC/PLC	6	NA	NA	NA	75.41	NA	Y	G	G	2	65	NA	Was pump running at time of inspection? Yes or No
OW-2	257.03	30	TOC/PLC	8	NA	NA	NA	244.58	NA	Y	G	6	N	(2)		Was pump running at time of inspection? Yes o No
OW-3	256.81	25	TOC/PLC	8	NA	NA	NA	239.09	NA	Y	6	Gi	N	5	G	Was pump running at time of inspection? Yes or No
OW-5	258.20	30	TOC/PLC	8	NA	NA	NA	250.99	NA	Y	67	Gi	N	G	G	Was pump running at time of inspection? Yes or No
OW-7	254.57	25	TOC/PLC	8	NA	NA	NA	236.48	NA	Y	Gi	6	N	G	Gr	Was pump running at time of inspection? Yes or No
OW-13	259.95	29.5	TOC/PLC	8	NA	NA	NA	253.02		Y	G	Gr	N	G	Or	Was pump running at time of inspection? Yes or No
OW-14	261.24	30	TOC/PLC	8	NA	NA	NA	259.82	NA	Y	G	G	N	6	G	Was pump running at time of inspection? Yes or No
OW-16	259.81	30	TOC/PLC	8	NA	NA	NA	258,58	NA	Y	6	G	N	0	67	Was pump running at time of inspection? Yes on No

Notes:

* = poor or notable observations require input in "Comments"

G = good

NA = not applicable

TOR = top of riser

BMP = below measurement point

in. = inches

P = poor

TOV = top of vaultY = yes

F = fairft. = feet

PLC = programmable logic controller TOC = top of casing

* - Estimated msl = mean sea level

N = no

DTB @ EW-15 + M-5 very soft

15-Month Long-Term Monitoring (LTM) Sampling

Well ID/ Sampling Location	Sample Description	Well Depth (ft)	Sample Depth (ft)	Sample ID	Sampler Initials	Sample Date	Sample Time	Comments
Monitorin	g Wells				-			
CE-1 (1)	Before filters	535	unknown	CE-1				
CE-2 *	Before filters	287	unknown	CE-2 BEF	NR	Ne	NR	0
EW-3	PDB	295	275	EW-3	ANIKSM	712022	1135	owner not avallable.
EW-4 *	PDB	322	302	EW-4		7/20/22	1105	
EW-5	PDB	235	150	EW-5	ANVISIME	7/20/22	1200	
EW-8	PDB	318	200	EW-8	ANKS	7/2022	0915	
EW-11*	PDB	172	117	EW-11	ANIKSIMI	-	1030	
EW-12 »	PDB	270.5	115	EW-12	ANTISME		1050	
EW-13	PDB	360	200	EW-13	ANIKS	7/19/22	1300	
IW-8	PDB	392	339	IW-8	ANNES	7/20/24		
IW-9	PDB	358	333	IW-9	ANIUS	7 20 04	0850	
IW-10	PDB	176	40	IW-10	ANICS	7 20 22		
M-4.	PDB	200	130	M-4	ANIKSML	7/20/22	1045	
M-5	PDB	200	129	M-5	ANKS	7/19/22	1230	
M-6	Grab	100	pump intake	M-6	ANKS	7/19/22	1150	
M-8	PDB	200	195	M-8	ANIVS	7/19/72	1415	
M-9	PDB	200	195	M-9	AITHS	7/14/22	1430	
Mueller	PDB	114	69	Mueller	ANIKS	4/19/22	1205	
MW-104	PDB	83	79,40	MW-104	ANIES)MC		1140	
MW-109	PDB	88	69	MW-109	AN KS/ML		1130	
MW-112	PDB	25	20	MW-112	ANKS	7/19/22	1345	
MW-113	PDB	23	20	MW-113	ANKS	7/19/22	1330	
Active Bed	rock Extraction	n Wells				1114		
EW-2 (2)	Grab	322	284	EW-2				
EW-6	Grab	325	285	EW-6	ANJMILE	HUNDE	1320	
EW-7	Grab	227	200	EW-7	ANIMULA	7/20/22	1330	
EW-9	Grab	365	307	EW-9			0940	
EW-16	Grab	417	157	EW-16		7/20/22		
Active Ove	rburden Extra	ction We	ells			1101		
OW-2	Grab	30	23	OW-2	ANLUYE	5 7/2/22	1345	
OW-3	Grab	25	pump intake	OW-3	ANIMULES	7/20/22	1340	
OW-5	Grab	30	23	OW-5	AVIMLES		1350	
OW-7	Grab	25	23	OW-7		7/20/22	1245	
DW-13	Grab	29.5	23	OW-13		7/20/22		
OW-14	Grab	30	24	OW-14	ANINL	2/20/2	1230	
DW-16	Grab	30	23	OW-16		7/20/22/		
Residential	Wells				-, /			
KLINKE	Before filters	240	unknown	KLINKE-BEF	ANILS	7/19/22	1025	
KUBLER	Before filters	300	unknown	KUBLER-BEF	ANILS			
VIELLA	Before filters	300	unknown	VIELLA-BEF		7/19/22		

Notes:

1017

ield Blank ANKSML 71:

ANKSML 7/20/22 1420

-Wells listed above are to be analyzed for Site-related VOCs by Method 8260

(1) = CE-1 not in service; acts as an emergency backup well to CE-2 for Country Estates and therefore does not get sampled if CE-2 is in service.

(2) = EW-2 off-line due to non-functioning pump.

PDB = passive diffusion bag

*CE-2 BEF sample collected on 8/1/22.

		FIELD	INSTR	RUME	NTATIO	N CALIBRA	TION REC	ORD	S. E. S. Ph. 18
PROJECT NAM	13 - 3 - 12 - 12 - 12	rican Thermos					TASK NO:	04	DATE: 7-18-22
PROJECT NUI	MBER: 30	0162060					MACTEC CR	EW: A.No	welle, K. Stilson
PROJECT LOG	CATION:	South Cair					SAMPLER NA		velle, K. Sbison
A STATE OF THE STA	ONDITIONS (A	M):	22°F (bude	Kent Ra.	no Calan	SAMPLER SI		
WEATHER CO	ONDITIONS (P	M):	OF, A	oud of 1	LightRa	71	CHECKED B	Y: K. Amai	ON DATE: 10/19/22
MULTI-PARA	AMETER WAT	ER QUALIT	Y METER	1	1	-			
METER TYPE					San trademarket a Cit	0.50(0)			
MODEL NO			m 1 m		I CALIBRAT			OST CALIBRA	TION CHECK
UNIT ID NO.			Start T	ime	/End '	l'ime	Start Time	/	End Time
		*****	Standard	N	1eter	*Acceptance	Standard	Meter	*Acceptance
		Units	Value	Y	/alue	Criteria (AM)	Value	Value	Criteria (PM)
	pH (4)	SU	4.0		+/	- 0.1 pH Units			2002000000000000
	pH (7)	SO	7.0			- 0.1 pH Units	7.0		+/- 0.3 pH Units
	pH (10)	SU	10.0			-0.1 pH Units	1	_	_ viv par cana
	Redox	+/- mV	240			- 10 mV	240		+/- 10 mV
	Conductivity	mS/cm	1.413		+/	- 0.5 % of standard	1.413	-	+/- 5% of standard
E	OO (saturated)	9/0	100	/		- 2% of standard			a so or mandard
T.	OO (saturated) n	ig/L 1 (see Chart 1)		1	+/-	- 0.2 mg/L			+/- 0.5 mg/L of
	DO (<0.1)	mg/L	<0.1			0.5 mg/L.	-		standard
	Temperature	°C		-		Color			21010000
	Baro. Press.	mmHg			- V	V A			2
TURBIDITY N	METER				Standard	1	Standard	Meter	*Acceptance
METER TYPE				Units	Value	Value A.A.	Value	Value	Criteria (PM)
MODEL NO.						AH.			5.114.114 (2.114)
UNIT ID NO.			standard	NTU	< 0.1		< 0.1		+/- 0.3 NTU of stan.
		20 8	Standard	NTU	20		20		+/- 5% of standard
			standard	NTU	100		100		+/- 5% of standard
			standard	NTU	800		800		+/- 5% of standard
PHOTOIONIZ	CATION DETE				16.9				
METER TYPE MODEL NO.		Back	kground	ppmv	< 0.1		<0.1	\	within 5 ppmv of BG
UNIT ID NO.		- S	pan Gas	ppmv	100		100		+/- 10% of standard
O2-LEL 4 GAS	METER		Jan (345)	Print	100		100	-	+/- 10% of standard
METER TYPE		N	Methane	0/6	50		50		
MODEL NO.		_	O ₂	%	20.9		20.9		+/- 10% of standard
UNIT ID NO.		-	H ₂ S	ppmv	25	_	25		+/10% of standard
		-	CO	ppmv	50		50	_	+/- 10% of standard +/- 10% of standard
OTHER METE	PP P			ppinv	50		30		+/- 10% okstandard
METER TYPE	Heron								
MODEL NO.	500	_					-		See Notes Below
UNIT ID NO.	32555								for Additional
						-	-	-	Information
Equipm	nent calibrated with	in the Accentance	e Criteria spe	cified for ea	ach of the parame	ters listed above			
						arameters listed above*			
MATERIALS I			1		Total and the position of the		Cal. Standard Lo	Number	Em Date
	and on the					pH (4)	Car. Standard Lo	1 Number	Exp. Date
Deionized Water	Source:		Portland FO	OS	177	pH (7)			7
Lot#/Date I	Produced:				NIT	pH (10)			
Frip Blank Sourc						AN ORP			
Sample Preservat	tives Source:					Conductivity			
Disposable Filter			45µm cellulos	se		<0.1 Turb. Stan.			
Calibration Fluid						20 Turb. Stan.			
	on Fluid (<0.1 n	ng/L)	Port	land FOS		100 Turb. Stan.			
- Other						800 Turb. Stan.			
- Other						PID Span Gas			
- Other						O2-LEL Span Gas			
NOTES.						Other			
NOTES: Non	e								

*= Ufnless otherwise noted, calibration procedures and acceptance criteria are in general accordance with USEPA Region 1 SOPs for Field Instrument Calibration (EQASOP-FieldCalibrat) and Low Stress Purging and Sampling (EQASOP-GW001), each dated 1/19/2010. Additional acceptance criteria obtained from instrument specific manufacturer recommendations.

**= If meter reading is not within acceptance criteria, clean/replace probe and re-calibrate, or use calibrated back-up meter if available. If project requirements necessitate use of the instrument, clearly document any deviations from acceptance criteria on all data sheets and log book entries.

1 = DO Saturated standard value is calculated based on Oxygen Solubility at Indicated Pressure Chart from the USEPA Region 1 SOP for Field Instrument Calibration (EQASOP-FieldCalibrat), dated 1/19/2010.

511 Congress Street, Portland Maine 04101

and the second second	FIELD INST	RUMENT	TATION C.	ALIBRAT	TION RECO	RD	
	an Thermostat LTM				TASK NO:	04.	DATE: 7-19-22
	6206098				MACTEC CREW	: A. Nos	velle, K. Shilson
PROJECT LOCATION:	South Cairo, N.Y.				SAMPLER NAM		rele, K. Shilson
WEATHER CONDITIONS (AM		Sunny,	Calm		SAMPLER SIGN.	ATURE:	May to
WEATHER CONDITIONS (PM)			oads, Colo	n_	CHECKED BY:	K. Amai	nn_DATE:10/19/22
MULTI-PARAMETER WATE	R QUALITY METE	R	01				
METER TYPE					P 1043645		
MODEL NO.	Start		/End Time				TON CHECK
UNIT ID NO.	Start	i iiie	/End Time_		Start Time	/1	End Time
	Units Standard	Mete	r *Acc	eptance	Standard	Meter	*Acceptance
	Value	Value		ria (AM)	Value	Value	Criteria (PM)
pHq	SU 4.0		+/- 0.1 p	H Units			4770 2040
pH (7)	SU 7.0		+/- 0.1 p		7.0		+/- 0.3 pH Units
pH (10)	10.0		+/- 0.1 p	H Units			To the second
Redox	+/- m 240		+/- 10 m		240		+/- 10 mV
Conductivity	mS/cm 1,413		+/- 0.5 %	6 of standard	1.413		+/- 5% of standard
DO (saturated)	% 100			of standard	100000		o o o o o o o o o o o o o o o o o o o
DO (saturated) mg/	L 1 (see Chart 1)	\	+/- 0.2 n				+/- 0.5 mg/L of
DO (<0.1)	mg/L <0.1	-	< 0.5 mg	~	-	_	standard
Temperature	°C		10	,			Standard
	mmHg	-	NA				
TURBIDITY METER	-		Standard	Meter	G. 1.1		42.00
METER TYPE		Units	Value A.A.	Value	Standard Value	Meter Value	"Acceptance
MODEL NO.			A-14	Tante	value	value	Criteria (PM)
UNIT ID NO.	< 0.1 Standard	NTU	< 0.1		< 0.1		+/- 0.3 NTU of stan.
	20 Standard	NTU	20	1	20		+/- 5% of standard
	100 Standard	NTU	100	1	100		+/- 5% of standard
	800 Standard	NTU	800		800		+/- 5% of standard
PHOTOIONIZATION DETECT							
METER TYPE	Background	ppmv	< 0.1		101		within 5 ppmv of BG
MODEL NO.	66		100				
UNIT ID NO.	Span Gas	ppmv	100		100		+/- 10% of standard
O2-LEL 4 GAS METER							
METER TYPE	Methane	%	50		50		+/- 10% of standard
MODEL NO.	O_2	%	20.9		20.9		+/- 10% of standard
UNIT ID NO.	H_2S	ppmv	25		25		+/- 10% of standard
	CO	ppmv	50		50		+/10% of standard
OTHER METER							
METERTYPE Heron							
MODEL NO. COO							See Notes Below for Additional
UNITID NO. 32555							Information
							mormation
Equipment calibrated within			Part of all agency and the contraction of the contr				
Equipment (not) calibrated w	ithin the Acceptance Crite	na specified for e	each of the paramete	rs listed above**			
MATERIALS RECORD		40.00		C	al. Standard Lot N	umber	Exp. Date
		_ ///		pH(4)			and an area
Deionized Water Source:	Portland F	OS TYP		pH(7)			
Lot#/Date Produced:			A.N.	pH (10)			
Trip Blank Source:				ORP			
Sample Preservatives Source:				onductivity			
Disposable Filter Type:	0.45µm cellule	ose		Turb. Stan.			
Calibration Fluids / Standard Sour				Turb Stan			
- DO Calibration Fluid (<0.1 mg/	L.) Por	tland FOS		Turb. Stan			
- Other				Turb. Stan.		_	
- Other				D Span Gas			
- Other			O ₂ -LE	I. Span Gas			
NOTES				Other			
NOTES: None							

* = Unless otherwise noted, calibration procedures and acceptance criteria are in general accordance with USEPA Region 1 SOPs for Field Instrument Calibration (EQASOP-FieldCalibrat) and Low Stress Purging and Sampling (EQASOP-GW001), each dated [1]9/2010. Additional acceptance criteria obtained from instrument specific manufacturer recommendations.

**= If meter reading is not within acceptance criteria, clean/replace probe and re-calibrate, or use calibrated back-up meter if available. If project requirements necessitate use of the instrument, clearly document any deviations from acceptance criteria on all data sheets and log book entries

1 = DO Saturated standard value is calculated based on Oxygen Solubility at Indicated Pressure Chart from the USEPA Region 1 SOP for Field Instrument Calibration (EQASOP-FieldCalibrat), dated 1/19/2010.

PROJECT NAM	MF: Amer	rican Thermos		RUMIB	NTATIO	N CALIBRA	ATION RECO		D. 17 7 10 20	
PROJECT NUM		6162060					TASK NO: MACTEC CREW	04 Navel	DATE: 7-20-22 E. K. Shikan, M. L.	
PROJECT LOC.		South Cair					SAMPLER NAM	E: L Norw	le, K. Stilger, M. La	
WEATHER CO		M): 7	10-1	пии	Cam		SAMPLER SIGN	ATURE:	E, CATOLOGI, M. Ca	
WEATHER CO	NDITIONS (P)	M): 9		11 /2 /4.	1 1	elm	CHECKED BY:	K. Amann	DATE:10/19/22	
MULTI-PARA	METER WAT	ER QUALIT	Y METER		0					
METER TYPE	_	_		AN	I CALIBRAT	ION	POST	CALIBRATIO	ON CHECK	
MODEL NO.		_	Start T		/End		Start Time	POST CALIBRATION CHECK Start Time /End Time		
CINITIDINO.	1	-	Standard		Aeter	*Acceptance	Ch. T. I			
		Units	Value		/alue	Criteria (AM)	Standard Value	Meter Value	*Acceptance Criteria (PM)	
	pH (4)	SU	4.0			- 0.1 pH Units	7 53.55	, mac	Cincin (Litt)	
	pH (7)	SO	7.0	-		-0.1 pH Units	7.0		+/- 0.3 pH Units	
	pH(10)	SU	10.0			- 0.1 pH Units			one pro commo	
	Redox	+/- mV	840		+,	- 10 mV	240		+/- 10 mV	
	Conductivity	mS/cm	1,413	_		- 0.5 % of standard	1.413		+/- 5% of standard	
	O (saturated)	%	100	1		- 2% of standard				
De	O (saturated) m					-0.2 mg/L			+/- 0.5 mg/L of	
	DO (<0.1)	mg/L	< 0,1		_/<	0.5 mg/L			standard	
	Temperature	°C			\	NIA				
	Baro, Press.	mmHg				TALL				
TURBIDITY M METER TYPE	IETER			Units	Standard	Meter	Standard	Meter	*Acceptance	
MODEL NO.		-			Value	Value	N. Value	Value	Criteria (PM)	
UNIT ID NO.		- <0.1 S	tandard	NTU	< 0.1		<0.1		+/- 0.3 NTU of stan.	
		20 S	standard	NTU	20		20		+/- 5% of standard	
		100 S	tandard	NTU	100		100		+/- 5% of standard	
			tandard	NTU	800		800		+/- 5% of standard	
PHOTOIONIZA METER TYPE			-	0.5000	-0.1		UA Y		TALK SET OF BUILD	
MODEL NO.		_ Back	ground	ppmv	<0.1		< 0.1		within 5 ppmv of BG	
UNIT ID NO.		Sı	pan Gas	ppmv	100		100	1	+/- 10% of standard	
O2-LEL 4 GAS	METER								- Torrorsandard	
METER TYPE		N	/lethane	9/0	50		50		+/- 18% of standard	
MODEL NO.			O_2	%	20.9		20.9	-	+/- 10% of standard	
UNIT ID NO.			H ₂ S	ppmv	25		25		+/- 10% of shindard	
			CO	ppmv	50		50		+/- 10% of standard	
OTHER METE	41									
METER TYPE MODEL NO.	Heron				-				See Notes Below	
UNIT ID NO.	32555	-			-	-			for Additional	
01111 1111 1107	22777				-				Information	
Equipme	ent calibrated with	in the Acceptance	e Criteria spe	cified for e	ach of the parame	eters listed above				
						arameters listed above	**			
MATERIALS							Cal. Standard Lot N	umber	Exp. Date	
						pH (4)			<u> </u>	
Deionized Water S			Portland F(OS		pH(7)				
Lot#/Date P					. 1	pH (10)				
Frip Blank Source Sample Preservati				$\sim \Lambda$	14-	ORP_				
Disposable Filter		0.	45µm cellulos	-	1	Conductivity 0 Turb Stan				
Calibration Fluids			p			20 Turb. Stan.				
- DO Calibratio	n Fluid (<0.1 n	ng/L)	Port	and FOS		100 Turb, Stan.		-		
- Other						800 Turb. Stan.				
- Other						PID Span Gas				
- Other						O ₂ -LEL Span Gas		_		
NOTES: N.	5 11 11 11 11					Other				
NOTES: Non	e									
= Unless otherwise noted	calibration procedure	res and accurate	entario ser in	etarol	lumina mish t server t	Busine I from P		wal year		
ampling (EQASOP-GW00	1), each dated 1/19/	2010. Additional acc	ceptance entens	obtained fre	om instrument speci	Region 1 SOPs for Field I fic manufacturer recomm	instrument Calibration (EQAS) iendations.	OP-FieldCalibrat) and	Low Stress Purging and	

** If meter reading is on within acceptance criteria, clean/replace probe and re-calibrate, or use calibrated back-up meter if available. If project requirements necessitate use of the instrument, clearly document any deviations from acceptance criteria on all data sheets and log book entries.

1 = DO Siturated standard value is calculated based on Oxygen Solubility at Indicated Pressure Chart from the USEPA Region 1 SOP for Field Instrument Calibration (EQASOP-FieldCalibrat), dated 1/19/2010.

MONITORING WELLS - SUBMERSIBLE PUMP SAMPLING RECORD

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	CE-2	₹ ^{4.N.}		
Sampling Date:				
Sampler Name(s):	8-1-2022 A. Norvell	e		
Weather Conditions:	Rain Snow Sur	Cloudy Dry Humid	Temperature	:: <u>82_</u> (°F)
Well Condition:	Satisfactory / Uns	atisfactory (explain in notes)		
Depth to Water:		feet — Depth to I	Bottom:	feet
Measurement Point Refe A.N. Resident Freatme Same	tral supply well;	P. I TOV Well Dian grab sample from the Chlorine injection Field Measurements	neter: tap at well h ~ (1 of 2 skeps	ore entry to) located at
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
· ·		NA.		
Sample Method: Sample Collection Time:	Grab [2 !04	Number of Cor Intended Analy		ethod 8260)
Notes: Supply a access to point to noted sample.	on cor, Pur	lountry Estates. hed. Earliest/upstre of chlorone trea ged for ~2 mi D: CE-2 BEF	,	ort is also injecti
°C = degrees Celcius	TOC = top of			
°F = Fahrenheit mS/cm = millisiemens per cent NTU = nephelometric turbidity			a) in	

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	EW-3	3	-						
Sampling Date:	71201	22	-1						
Sampler Name(s):	A Norvel	e K.SKI	son M.La	Lac	dny				
Weather Conditions:	Rain Snow Si	un Cloudy	Dry Humid	Temperature:	90	°F)			
Well Condition:	Satisfactory / Ur	nsatisfactory (e	explain in notes)						
Depth to Water:	108.75	_feet	Depth to Bottom	295	f	eet			
Measurement Point Refer	rence: TOC TO	DR / TOV	Well Diameter:	6	ir	nches			
		F: 1114							
		Field Measi	urements						
Time	Temperatu	re (°C)	Conductivity (n	nS/cm)	рН				
,				1					
			W						
Sample Method: Sample Collection Time: New PDB Deployed?:	Sample Collection Time:								
Notes:									
-									
°C = degrees Celcius		PDB = passive di	iffusion had						
°F = Fahrenheit									
mS/cm = millisiemens per centim	eter	TOC = top of cas							
		TOR = top of rise							
U = nephelometric turbidity units TOV = top of vault									

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	EW-1	1	_					
Sampling Date:	7/20	22						
Sampler Name(s):	Adam Non	velle, 1	Ladny 1. Ladney K	. Stils	-			
Weather Conditions:	Rain Snow Su	Cloudy	Dry Humid T	emperature:	85_(°F)			
Well Condition:	Satisfactory Un	satisfactory (e	explain in notes)					
Depth to Water:	105.35	feet	Depth to Bottom:	322.	.5feet			
Measurement Point Refer	ence: TOC /(TO	TOV	Well Diameter:	6	inches			
		Field Meas	uromente					
_	_		1					
Time	Temperature	e (°C)	Conductivity (mS	S/cm)	рН			
			001					
			M					
Sample Method: Sample Collection Time: New PDB Deployed?:	PDB 105 Yes No		Number of Containers: Intended Analysis:	VOCs (Meth	- \			
Notes:								
-								
-								
•								
°C = dagrass Calaina		555						
°C = degrees Celcius		PDB = passive d						
°F = Fahrenheit		TOC = top of casing						
mS/cm = millisiemens per centim		TOR = top of rise TOV = top of vau						
NTU = nephelometric turbidity un	IIIS	iit						

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	EW-5	<u> </u>	_						
Sampling Date:	7/20	0/22	_						
Sampler Name(s):	A Norul	e Mto	Ladny	KSXI	Noc				
Weather Conditions:	Rain Snow (Sun Cloudy	Dry Hu	mid ⁻	Temperature:	90	_(°F)		
Well Condition:	Satisfactory / I	Unsatisfactory (explain in r	notes)					
Depth to Water:	6.20	feet	Dep	th to Bottom:	235		feet		
Measurement Point Refe	rence: TOC / T	TOR TOV) Wel	l Diameter:	6		inches		
		Field Meas	Suromonto						
Time	Tompered								
Time	Temperat	ure (°C)	Co	nductivity (m	S/cm)	p⊦	4		
					1.1				
					KS				
Sample Method:	PDB	_	Number o	f Containers:	_2 Vo	As			
Sample Collection Time:	1200	_	Intended A	Analysis:	VOCs (Met)	nod 8260)			
New PDB Deployed?:	Yes No								
Notes									
				10 th					
					_				
		_							
C = degrees Celcius		PDB = passive d	liffusion has						
F = Fahrenheit		TOC = top of cas	_						
nS/cm = millisiemens per centim	leter	TOR = top of rise							
NTU = nephelometric turbidity un		TOV = top of vau							

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	EW-8	_	
Sampling Date:	7/20/22	-	
Sampler Name(s):	Adam Norve	de Kinsti	500
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Tem	perature: 80 (°F)
Well Condition:	Satisfactory / Unsatisfactory (e	explain in notes)	
Depth to Water:	82.65 feet	Depth to Bottom:	327.50 feet
Measurement Point Refer	rence: TOC / TOR TOV	Well Diameter:	(inches
	Field Meas	surements	
Time	Temperature (°C)		
Time	remperature (C)	Conductivity (mS/cr	m) pH
		VA.	
Sample Method:	PDB	Number of Containers:	2 VOAS
Sample Collection Time:	0915	Intended Analysis: Vo	OCs (Method 8260)
New PDB Deployed?:	Yes No		
Notes:			
Notes.			
°C = degrees Celcius	PDB = passive of	diffusion bag	
°F = Fahrenheit	TOC = top of ca	4	
mS/cm = millisiemens per centim			
NTU = nephelometric turbidity units TOV = top of vault			

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	EW	~1)	_		
Sampling Date:	7/20	122	_		
Sampler Name(s):	Adam	Norvelle	Kim Stilson	7 Mil	ae Lad ny
Weather Conditions:	Rain Snow	Sun Cloudy	Dry Humid	Temperature:	_85_(°F)
Well Condition:	Satisfactory /	Unsatisfactory (explain in notes)		
Depth to Water:	67.02	feet	Depth to Bottom:	173	. O feet
Measurement Point Reference: TOC / TOR / TOV Well Diameter:					inches
		Field Meas	Suramante		
Time	Т		1		
Time	Temper	ature (°C)	Conductivity (m	S/cm)	рН
)			VA		
			1		
Sample Method: Sample Collection Time:	PDB		Number of Containers: Intended Analysis:		10A5
cample collection fille.	10 50		interided Arialysis.	VOCs (Met	1100 6260)
New PDB Deployed?:	Yes / No				
Notes:		J			
-					
°C = degrees Celcius		PDB = passive	diffusion had		
°F = Fahrenheit		TOC = top of ca			
mS/cm = millisiemens per centim	neter	TOR = top of ris			
NTU = nephelometric turbidity ur		TOV = top of va			
to vitality and					

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	EW-	12			
Sampling Date:	7/20	22			
Sampler Name(s):	A. Norve	lle K.	Silson M.	Ladre	Ladny Ladny
Weather Conditions:	Rain Snow Si	Cloudy	Dry Humid	Temperature:	85 (°F)
Well Condition:	Satisfactory Ur	nsatisfactory (e.	xplain in notes)		
Depth to Water:	49.35	feet	Depth to Bottom:	271	feet feet
Measurement Point Refe	rence: TOC /	R TOV	Well Diameter:	6	inches
		Field Mess.			
		Field Measu	Secretary State of the State of State o		128
Time	Temperatu	re (°C)	Conductivity (m	S/cm)	рН
		- KS			
Sample Method:	PDB		Number of Containers:	2 Vb	As
Sample Collection Time:	1050	_	Intended Analysis:	VOCs (Meti	nod 8260)
New PDB Deployed?:	Yes / No				
Notes:					
°C = degrees Celcius		DDD = passing di	iffusion has		
°F = Fahrenheit		PDB = passive di TOC = top of cas			
mS/cm = millisiemens per centir	meter	TOR = top of rise			
NTU = nephelometric turbidity units TOV = top of riser TOV = top of riser					

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	EW-13	_		
Sampling Date:	7/19/22	_		
Sampler Name(s):	A. Novelle K	. SK(50M		
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Te	emperature: _	85 (°F)
Well Condition:	Satisfactory / Unsatisfactory (e	explain in notes)		
Depth to Water:	48.34 feet	Depth to Bottom:	344	feet
Measurement Point Refer	ence: TOC / TOR / TOV	Well Diameter:	6	inches
	F-11.M			
T.	Field Meas	and the contract of the contra		
Time	Temperature (°C)	Conductivity (mS	S/cm)	рН
		VA .		
Sample Method: Sample Collection Time: New PDB Deployed?:	1300 Yes / No	Number of Containers: Intended Analysis:	3 VO/	
Notes: New	PDB buy deployed.			
°C = degrees Celcius °F = Fahrenheit mS/cm = millisiemens per centim NTU = nephelometric turbidity un	Management Committee Commi	sing er		

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	10-8	_	
Sampling Date:	7/20/22	-	
Sampler Name(s):	Adain Nor	velle Kin Stitzer	7
Weather Conditions: Rai	n Snow Sun Cloudy	Dry Humid Temperature:	_85 (°F)
Well Condition:	isfactory Unsatisfactory (explain in notes)	
Depth to Water:	84.99 feet	Depth to Bottom: 395	feet
Measurement Point Reference	E: TOC TOR / TOV	Well Diameter:	inches
	Field Meas	surements	
Time			
Time	Temperature (°C)	Conductivity (mS/cm)	рН
	K		
		5	
Sample Method: PDE	3	Number of Containers: 2 Vo	As
Sample Collection Time:	0955	Intended Analysis: VOCs (Met	hod 8260)
New PDB Deployed?: Yes) No		
Notes:			
I BUILDING			
	•	The second secon	
W.			
°C = degrees Celcius	PDB = passive	diffusion bag	*
°F = Fahrenheit	TOC = top of ca	asing	
mS/cm = millisiemens per centimeter	TOR = top of ris	ser	
NTU = nephelometric turbidity units	TOV = top of va	ault	

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	IW-9	2	
Sampling Date:	7-20-22	_	
Sampler Name(s):	Adam Norvelle	Kin Stilson	
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Temperatur	e:_ <u>80</u> (°F)
Well Condition:	Satisfactory / Unsatisfactory (e	explain in notes)	
Depth to Water:	73.10 feet	Depth to Bottom: 364	-Ofeet
Measurement Point Refer	ence: TOC (TOR)/ TOV	Well Diameter: 6"	inches
	Field Meas	uromente	
Time			-11
Time	Temperature (°C)	Conductivity (mS/cm)	pH
		NA.	
Sample Method: Sample Collection Time: New PDB Deployed?:	PDB O850 Yes No		ethod 8260)
Notes:			
°C = degrees Celcius °F = Fahrenheit mS/cm = millisiemens per centim NTU = nephelometric turbidity un		sing er	

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	T(1)=15		
weilib.	100 10	-	
Sampling Date:	7/20/22	-	
Sampler Name(s):	Alam Abruel	le	
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Tempe	erature: 85 (°F)
Well Condition:	Satisfactory Unsatisfactory (e	explain in notes)	
Depth to Water:	8.91 feet	Depth to Bottom:	176.0 feet
Measurement Point Refer	ence: TOC / TOR / TOV	Well Diameter:	inches
	Field Meas	surements	
Time	Temperature (°C)	Conductivity (mS/cm)	pH
	1/ -	1	
	1-0		
Sample Method:	PDB	Number of Containers:	200A5
Sample Collection Time:	0950	Intended Analysis: VO	Cs (Method 8260)
New PDB Deployed?:	Yes / No		
Notes:			
-			
-			
°C = degrees Celcius	PDB = passive	diffusion bag	
°F = Fahrenheit	TOC = top of ca	asing	
mS/cm = millisiemens per centin	neter TOR = top of ris	ser	
NTU = nephelometric turbidity units TOV = top of vault			

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

A TOTAL CONTRACTOR OF THE PARTY					
Well ID:	M-4				
Sampling Date:	7/20)	22			
Sampler Name(s):	Adam	Norve	le Kin S	noclife	Milae Lad
Weather Conditions:	Rain Snow 80	Cloudy Dr	ry Humid	Temperature:	85 (°F)
Well Condition:	Satisfactory / Un	satisfactory (exp	olain in notes)		
Depth to Water:	67.70	_feet	Depth to Botto	m: 202.	5feet
Measurement Point Refer	rence: TOC / (TO	R / TOV	Well Diameter:	_ 4	inches
		F 111			
		Field Measure	ements		
Time	Temperatur	e (°C)	Conductivity	(mS/cm)	рН
_		KA			
Sample Method:	PDB	_ N	umber of Containe	rs: 2 V	DAS
Sample Collection Time:	1045	_ In	tended Analysis:	VOCs (Met	hod 8260)
New PDB Deployed?:	Yes / No				
Notes:					
-					
°C = degrees Celcius		PDB = passive diffu	usion bag		
°F = Fahrenheit		TOC = top of casing	g		
mS/cm = millisiemens per centir	neter	TOR = top of riser			
NTU = nephelometric turbidity u		TOV = top of vault			

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	M-5	_		
Sampling Date:	7-19-22	_		
Sampler Name(s):	A. Novell,	e K.SKIson	-	
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Te	emperature: 85	(°F)
Well Condition:	Satisfactory / Unsatisfactory (explain in notes)		
Depth to Water:	45.59 feet	Depth to Bottom:	202	feet
Measurement Point Refer	ence: TOC (TOR) TOV	Well Diameter:	4	inches
	-			
Time	Field Meas	T		3.2
Time	Temperature (°C)	Conductivity (mS	5/cm)	рН
	KS			
Sample Collection Time:	/230 (es)/ No	Number of Containers: Intended Analysis:	3 VoAs VOCs (Method 826	0)
Notes: Notes:	DB bay deployed.			
°C = degrees Celcius	PDB = passive	diffusion bag		
°F = Fahrenheit	TOC = top of ca			
mS/cm = millisiemens per centim	AND ADDRESS OF THE PROPERTY OF			
TU = nephelometric turbidity units TOV = top of vault				

MONITORING WELLS - SUBMERSIBLE PUMP SAMPLING RECORD

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	M-6				
Sampling Date:	7/19/22				
Sampler Name(s):	A. Norwa	lle K.SK	lson		
Weather Conditions:	Rain Snow Sur	Cloudy Dry	Humid	Temperature:	8 (°F)
Well Condition:	Satisfactory Uns	satisfactory (expla	in in notes)		
Depth to Water:	32.45	feet	Depth to B	ottom: _~100	feet
Measurement Point Refer	rence: TOC TOP	R / TOV	Well Diam	eter: 6	inches
		Field Measurem	nente		
Time	Temperature (°C)	Conductivity (рН	Turbidity (NTU)
		· 1			
		X			
		•			
Sample Method: Sample Collection Time:	Grab		nber of Cont	-	,-
Notes: Sample taken from hose. Purge 45 gallons of water before sampled.					
°C = degrees Celcius °F = Fahrenheit mS/cm = millisiemens per centim NTU = nephelometric turbidity un		iser			

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	M-8		_,		
Sampling Date:	7/19/	22	_		
Sampler Name(s):	A. No	rulle K.	Stilson		
Weather Conditions:	Rain Snow	Sun Cloudy	Dry Humid	Temperature:	<u>90</u> (°F)
Well Condition:	Satisfactory	Unsatisfactory (explain in notes)		
Depth to Water:	13,60	feet	Depth to Botton	m: 201.6	feet feet
Measurement Point Refe	rence: TOC	TOR TOV	Well Diameter:	4	inches
		Field Mean			
	T	Field Meas	and the second and the second		
Time	Tempera	iture (°C)	Conductivity ((mS/cm)	pН
,			M		
Sample Method:	PDB	_	Number of Container	rs: $3 V_{\rm C}$	AS
Sample Collection Time:	1415		Intended Analysis:	VOCs (Met	hod 8260)
New PDB Deployed?:	Yes No				
Notes:					
•					
•					
°C = degrees Celcius		PDB = passive	diffusion bag		
°F = Fahrenheit		TOC = top of ca	asing		
mS/cm = millisiemens per centir	neter	TOR = top of ris	ser		
NTU = nephelometric turbidity u	nits	TOV = top of va	ault		

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	M-9				
Sampling Date:	7/19/22				
Sampler Name(s):	A. Non	relle Ki	NOCHE		
Weather Conditions:	Rain Snow Sun	Cloudy Dry	Humid	Temperature: _	90_(°F)
Well Condition:	Satisfactory / Unsa	atisfactory (expla	in in notes)		
Depth to Water:	86.63	feet	Depth to Bottom:	205.2	Ofeet
Measurement Point Refer	rence: TOC / FOR	тоу	Well Diameter:	_ 4	inches
		Field Measurem			
			ients		
Time	Temperature	(°C)	Conductivity (m	nS/cm)	pН
		V	1		
		-			
Sample Method: Sample Collection Time: New PDB Deployed?:	PDB (430 No		nber of Containers nded Analysis:	VOCs (Metho	
Notes:					
°C = degrees Celcius	F	PDB = passive diffusion	on bag		
°F = Fahrenheit		OC = top of casing			
mS/cm = millisiemens per centin		OR = top of riser			
TU = nephelometric turbidity units TOV = top of vault					

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	Mueller			
Sampling Date:	7/19/22	_		
Sampler Name(s):	A. Norvelle	Kstilson		
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid T	emperature: _ {	(°F)
Well Condition: Satisfactory Unsatisfactory (explain in notes)				
Depth to Water:	19,43 feet	Depth to Bottom:	113.50	feet
Measurement Point Reference TOC TOR / TOV Well Diameter:			inches	
Field Measurements				
Time	Temperature (°C)	Conductivity (ms	S/cm)	рH
		VA.		
Sample Method: PDB Number of Containers: 3 VoAs				
Sample Collection Time: 1205 Intended Analysis: VOCs (Method 8260)				
New PDB Deployed?: Yes / No				
Notes: New PDB bay deployed.				
°C = degrees Celcius PDB = passive diffusion bag				
°F = Fahrenheit TOC = top of ca				
mS/cm = millisiemens per centimeter TOR = top of ris				
NTU = nephelometric turbidity units TOV = top of vault				

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	NW-104	_			
Sampling Date:	7/20/22	da .			
Sampler Name(s):	A. Norvelle Al	wey K Stils	ړسو		
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid T	emperature:	<u>90</u> (°F)	
Well Condition:	Satisfactory / Unsatisfactory (e	explain in notes)			
Depth to Water:	29.55 feet	Depth to Bottom:	8400	feet	
Measurement Point Refer	ence: TOC TOR / TOV	Well Diameter:	2	inches	
	Field Meas	urements			
Time	Temperature (°C)	Conductivity (ms	S/cm)	РН	
			Kd		
				4	
Sample Method:	PDB	Number of Containers:	2 VO	AS	
Sample Collection Time:	1140	Intended Analysis:	VOCs (Meti	nod 8260)	
New PDB Deployed?:	Yes / No				
Notes: Surpl	e depth-lbottom.	of bag) - 79	.40		
		7	9.90	751	
***	NOTICE OF THE PARTY OF THE PART				
°C = degrees Celcius	PDB = passive d	-			
°F = Fahrenheit	TOC = top of cas				
mS/cm = millisiemens per centim NTU = nephelometric turbidity un					
Trephetometric turbidity un	TOV = top of vault				

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	Mu) 109	_			
Sampling Date:	7/20/22	_			
Sampler Name(s):	A Norvelle K.S	Kloon M. La	Juey	Ladny	
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Te	mperature:	90 (°F)	
Well Condition: Unsatisfactory (explain in notes)					
Depth to Water:	20.69 feet	Depth to Bottom:	86.1	7 feet	
Measurement Point Refer	rence: TOC TOP / TOV	Well Diameter:	2	inches	
	Field Mean				
	Field Meas		w 101		
Time	Temperature (°C)	Conductivity (mS/	/cm)	рН	
_		K	1		
Sample Method:	PDB	Number of Containers:	2 VO.	45	
Sample Collection Time:	1130	Intended Analysis:	VOCs (Meth	nod 8260)	
New PDB Deployed?:	Yes / No				
Notes: Botton	- Cha - 1900'				
R H	1 of blg - 6 1000				
U0 1987	1 of weight - 402				
-					
°C = degrees Celcius	PDB = passive	diffusion bag			
°F = Fahrenheit	TOC = top of ca				
mS/cm = millisiemens per centin	11100001				
	TU = nephelometric turbidity units TOV = top of vault				

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	MW-11Z	_	
Sampling Date:	7/19/22	_	
Sampler Name(s):	A. Norvelle	K. Stilson	
Weather Conditions:	Rain Snow Sun cloudy	Dry Humid Temper	rature: <u>87</u> (°F)
Well Condition:	Satisfactory / Unsatisfactory	(explain in notes)	
Depth to Water:	7.61 feet	Depth to Bottom:	4.82feet
Measurement Point Refer	rence: TOC / TOP / TOV	Well Diameter:	inches
	Field Mos	asurements	
Time	Temperature (°C)	Conductivity (mS/cm)	рН
		N. A	
		A	
Sample Method:	PDB	Number of Containers: 3	VOA5
Sample Collection Time:	1345	Intended Analysis: VOC	s (Method 8260)
New PDB Deployed?:	Yes No		
Notes:			
°C = degrees Celcius	DDR = passiv	a diffusion had	
°F = Fahrenheit	PDB = passive TOC = top of c		
mS/cm = millisiemens per centin			
NTU = nephelometric turbidity u	944-14-0 WARRING AND		

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	MW-113	_				
Sampling Date:	7/19/22	_				
Sampler Name(s):	A. Norvelle	K. Shikan				
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Temperature	e: <u>87</u> (°F)			
Well Condition:	Well Condition: Unsatisfactory (explain in notes)					
Depth to Water:	10.54 feet	Depth to Bottom: 22	.50 feet			
Measurement Point Refer	rence: TOC / TOR TOV	Well Diameter: 2	inches			
	Field Mee	aa.manta				
	Field Meas	T and the second				
Time	Temperature (°C)	Conductivity (mS/cm)	рН			
	$\mathcal{U}_{\mathcal{V}}$	<u> </u>				
Sample Method:	PDB	Number of Containers: 3 VC	A-			
Sample Collection Time:	1330	Intended Analysis: VOCs (Me	ethod 8260)			
New PDB Deployed?:	Yes / No					
Natas						
Notes:						
-						
-						
°C = degrees Celcius	PDB = passive					
°F = Fahrenheit	TOC = top of co					
mS/cm = millisiemens per centir NTU = nephelometric turbidity u	W-100-00 100-00 100 100 100 100 100 100 1					

MONITORING WELLS - SUBMERSIBLE PUMP SAMPLING RECORD

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	KUBLER-	BGF		
Sampling Date:	7-19-27	2		
Sampler Name(s):	Adam N	prvelle, Kim St	ilson	
Weather Conditions:	Rain Snow Su	n Cloudy Dry Humid	Temperature:	78 (°F)
Well Condition:	Satisfactory / Uni	satisfactory (explain in notes)		
Depth to Water:	NM.*	feet Depth to E	Bottom:	- 300 feet (historic
Measurement Point Refe	rence: TOC / TO	unknown R / TOV Well Diam	neter: UM _	unknown inches
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
		- 11		
		1		
Sample Method: Sample Collection Time:	Grab 0950	Number of Cont		
Notes: Sample 2 ga *Water level NM = not me	Llons before	•	em. System	n puyed
°C = degrees Celcius	TOC = top of c	casing		
°F = Fahrenheit	TOR = top of r	iser		
mS/cm = millisiemens per centin	A STATE OF THE STATE OF	rault		
NTU = nephelometric turbidity ur	nits			

MONITORING WELLS - SUBMERSIBLE PUMP SAMPLING RECORD

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	VIELLA-B	EF	1	
Sampling Date:	7-19-22	2		
Sampler Name(s):	Adam No	rvelle, K. Stilson	1	
Weather Conditions:	Rain Snow &u	n Cloudy Dry Humid	Temperature	78(°F)
Well Condition:	Satisfactory / Uns	satisfactory (explain in notes)		
Depth to Water:	NM*	feet Depth to E	Bottom:	44 300 feet (historic
Measurement Point Refere	ence: TOC / TO l	unknown R / TOV Well Diam	neter:	A unknown inches
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
		1, 1)		
Sample Method: Sample Collection Time:	Grab	Number of Cont		VOAS_
Sample Collection Time.	icu	Interlued Arialys	sis: VOCs (Met	.110d 6260)
Notes: Sauples *Water level NM = not me	measurements are	not collected from this well a		
°C = degrees Celcius	TOC = top of			
°F = Fahrenheit	TOR = top of			
mS/cm = millisiemens per centim NTU = nephelometric turbidity uni		/ault		
ivio - nephelometric turbialty un	19			

MONITORING WELLS - SUBMERSIBLE PUMP SAMPLING RECORD

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	Klinke-Be	£ 7-			
Sampling Date:	7-19-	22			
Sampler Name(s):		Norvelle, Kin	Stilson		
Weather Conditions: F		Cloudy Dry Humid	Temperature:	7 % (°F)	
Well Condition:	Satisfactory / Uns	satisfactory (explain in notes)			
Depth to Water:	NA*	feet Depth to E	Bottom:	240 feet (histori	cal)
Measurement Point Refere	nce: TOC / TOI	unknown R / TOV Well Diam	neter: N	Aunknown inches	
		Fidd Management			
		Field Measurements			
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)	
		1			
		1-3-6			
			-		
Sample Method:	Grab	Number of Cont	tainers: 3VOF	15	
Sample Collection Time: _	1025	Intended Analys	sis: VOCs (Met	hod 8260)	
Notes: Samples taken before. Poet systems, System Purged 2 gallons of water before sampled. *Water level measurements are not collected from this well as of the long-term monitoring program. NA = not applicable					
°C = degrees Celcius	TOC = top of				
°F = Fahrenheit	TOR = top of				
mS/cm = millisiemens per centime		vault			
NTU = nephelometric turbidity units	S				

Well ID:	Ou	1-2		
Sampling Date:	7/20	22		
Sampler Name(s):	A. Norve	elle K. Stilson	M. Lad	11/
Weather Conditions:	Rain Snow Su	n Cloudy Dry Humid	Temperature:	(°F)
Well Condition:	Satisfactory Uns	satisfactory (explain in notes)	
Initial Water Level:	255.45	ft. / ft. above msl	Reading: Transduc	cer Manual DTW
Pump Intake Depth:	234.63*	ft. / ft. above msl	Pump Operation	Auto / Manual
Depth to Water:	Not measured	ft. / ft. above msl		
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	pН	Turbidity (NTU)
				,
			UN	
			100	
Purge Water Description:	Color: Other:	Clear NA	Odor: NAPL prese	no odav
Sample Method:	Grab	Number of Cont	ainers: 2 VC	1A5
Sample Collection Time:	1345	Intended Analys	is: VOCs (Meti	hod 8260)
Final Water Level:	255.45	ft. / ft. above msl	Reading. Transdu	cer Manual DTW
Notes: *Fixed depth NA = not app		018 Site Management Plan		
			Checked by:	KAA 10/19/22

Well ID:	OW-3	,		
Sampling Date:	7/20/2	2	<u>L</u> adny	
Sampler Name(s):	A-Norve	elle M. Lan	1	ilson
Weather Conditions:	Rain Snow Su	Cloudy Dry Humid	Temperature:	<u>90</u> (°F)
Well Condition:	Satisfactor / Uns	satisfactory (explain in notes	3)	
Initial Water Level:	249.40	ft. / ft. above msl	Reading: Transduc	cer / Manual DTW
Pump Intake Depth:	Not availa	tt. / ft. above msl	Pump Operation A	Auto) / Manual
Depth to Water:	Not measured .	ft. / ft. above msl-		
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
		111		
		0 1		
Purge Water Description:	Color: Other:	Clear	Odor: NAPL prese	ent? Yes (No)
Sample Method:	Grab	Number of Con	tainers: 2 VE	As
Sample Collection Time:	1340	Intended Analy	sis: VOCs (Meti	nod 8260)
Final Water Level:	249,40	ft. / ft. above msl	Reading Transduc	cer / Manual DTW
Notes: NA = not ap	plicable			
			Checked by:	KAA 10/19/22

Well ID:	OW-5			
Sampling Date:	7/20/2	27		
Sampler Name(s):	A. Norv	elle K. Shilson	M. Lae	ny_
Weather Conditions:	Rain Snow Su	n Cloudy Dry Humid	Temperature:	(°F)
Well Condition:	Satisfactory Uns	satisfactory (explain in notes)		C
Initial Water Level:	251.12	ft. / ft. above msl	Reading Transduc	cer Manual DTW
Pump Intake Depth:	235.2*	ft. / ft. above msl	Pump Operation	Auto Manual
Depth to Water:	Not measured	ft. / ft. above msl		
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
		KF		
Purge Water Description:	Color:	lear	Odor:	no alor
	Other:	NK	NAPL pres	ent? Yes No
Sample Method:	Grab	Number of Cont	ainers: 2 VD	A>
Sample Collection Time:	1350	Intended Analys	sis: VOCs (Met	hod 8260)
Final Water Level:	248.29	ft. / ft. above msl	Reading	cer / Manual DTW
Notes: Play control showing to flow "red keup" but				
- mater level drapping and Vibration to taking while				
-				72
*Fixed depth NA = not app		018 Site Management Plan	. Checked by:	KAA 10/19/22

Well ID:		0ω-7			
Sampling D	ate:	7-20-2	022		
Sampler Na	ame(s):	A. None	lle, M. Ladny		
Weather Co	onditions:	Rain Snow Sú	Cloudy Dry Humid	Temperature:	9/(°F)
Well Condit	ion:	Satisfactory / Uns	satisfactory (explain in notes)	
Initial Wate	r Level:	237.00	ft. / ft. above msl	Reading: Transduc	cer / Manual DTW
Pump Intak	e Depth:	231,37*	ft. / ft. above msl	Pump Operation: A	auto / Manual
Depth to W	ater:	Not measured	ft. / ft. above msl		
			Field Measurements		
Т	ime	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
					-
Purge Wate	r Description:	Color:	Clear	Odor:	None
		Other:	NA	NAPL prese	ent? Yes / No
Sample Met	hod:	Grab	Number of Cont	tainers: 2 V	0A5_
Sample Coll	ection Time:	1245	Intended Analys	sis: VOCs (Meth	nod 8260)
Final Water	Level:	235.16	ft. / ft. above msl	Reading: Transduc	cer Manual DTW
Notes:	*Fixed depth	: from SOP-15 in 20	018 Site Management Plan	L	
monative to avi	NA = not app				
				Checked by: _	KAA 10/19/22

Well ID:		-13		
Sampling Date:	7/20	22		
Sampler Name(s):	A. Norve	le Mtadrey	K.Silsa	√
Weather Conditions:	Rain Snow Sui	Cloudy Dry Humid	Temperature:	<u>90</u> (°F)
Well Condition:	Satisfactory / Uns	satisfactory (explain in notes)		
Initial Water Level:	253.02	ft. / ft. above msl	Reading: Transduc	cer / Manual DTW
Pump Intake Depth:	236.95*	ft. / ft. above msl	Pump Operation: A	Auto / Manual
Depth to Water:	Not measured	ft. / ft. above msl		
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
		0/ /		
Purge Water Description:	Color: Other:	Clear NK	Odor: NAPL prese	None noted ent? Yes / No
Sample Method:	Grab	Number of Conta	ainers: 2 V	DAS_
Sample Collection Time:	1155	Intended Analys	is: VOCs (Met	hod 8260)
Final Water Level:	Not recorded	ft. / ft. above msl	Reading: Transdu	cer / Manual DTW
Notes: *Fixed depth	n; from SOP-15 in 2	018 Site Management Plan		
NA = not ap	plicable			
			Checked by:	KAA 10/19/22

Well ID:	Ow-14			
Sampling Date:	7-20-20	022		
Sampler Name(s):	A. Norvelle	, M. Ladny		
Weather Conditions:		Cloudy Dry Humid	Temperature:	9((°F)
Well Condition:	Satisfactory / Uns	satisfactory (explain in notes	s)	
Initial Water Level:	256.53	ft. / ft. above msl	Reading: Transduc	cer Manual DTW
Pump Intake Depth:	237.24*	ft. / ft. above msl	Pump Operation: A	auto / Manual
Depth to Water:	Not measured	ft. / ft. above msl		
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
Purge Water Description:	Color:	Clear	Odor:	None
	Other:	NA	NAPL prese	ent? Yes / No
Sample Method:	Grab	Number of Con	tainers: 2	
Sample Collection Time:	1230	Intended Analys	sis: VOCs (Meth	nod 8260)
Final Water Level:	256.23	ft. / ft. above msl	Reading Transduc	cer Manual DTW
Notes: *Fixed depth	ı; from SOP-15 in 20	018 Site Management Plar	1.	
NA = not app				
			Checked by:	ΚΔΔ 10/10/22

Well ID:	Dω-16			
Sampling Date:	7-20-2	022		
Sampler Name(s):	A. Norve	le Mhadny		
Weather Conditions:	Rain Snow Su	n Cloudy Dry Humid	Temperature:	<u>90</u> (°F)
Well Condition:	Satisfactory / Uns	satisfactory (explain in notes)	
Initial Water Level:	249.00	ft. / ft. above msl	Reading: Transduc	cer Manual DTW
Pump Intake Depth:	236.81*	ft. / ft. above msl	Pump Operation: A	Auto / Manual
Depth to Water:	Not measured	d ft. / ft. above msl		
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
				led .
Purge Water Description:	Color: Other:	Clear	Odor: NAPL prese	no abovent? Yes / No
Sample Method:	Grab	Number of Cont	ainers: 2 Võ	A5
Sample Collection Time:	1305	Intended Analys	is: VOCs (Met	hod 8260)
Final Water Level:	247,17	ft. / ft. above msl	Reading: Transdu	cer Manual DTW
Notes: *Fixed depth NA = not app		018 Site Management Plan		
			Checked by:	KAA 10/19/22

Well ID:	EW-G			
Sampling Date:	7/20/22	į.		
Sampler Name(s):	A. Narve	Me, K.Salson,	M. Lada	<u> </u>
Weather Conditions:	Rain Snow Sui	Cloudy Dry Humid	Temperature:	790 (°F)
Well Condition:	Satisfactory / Uns	satisfactory (explain in notes))	
Initial Water Level:	160.91	ft. / ft. above msl	Reading: Transduc	Manual DTW
Pump Intake Depth:	-4z.06	ft. / (ft. above msl	Pump Operation:	Auto / Manual
Depth to Water:	Not measured	ft. / ft. above msl		
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
		11		
		WA.		
		1 dt = ./	,	
Purge Water Description:	Color:	CI CI	Odor:	None
	Other:	NA	NAPL prese	ent? Yes / No
Sample Method:	Grab	Number of Cont	ainers: 2	
Sample Collection Time:	1320	Intended Analys	is: VOCs (Met	hod 8260)
Final Water Level:	160,91	ft. / ft. above msl	Reading: Transdu	cer / Manual DTW
Notes: *Fixed depth	; from SOP-15 in 20	018 Site Management Plan		
NA = not app	olicable			
-				
			Checked by	ΚΔΔ 10/10/22

Well ID:	EW-7		0	
Sampling Date:	7-20-2	4022		
Sampler Name(s):	M. Ladny	K. Stilson		
Weather Conditions:	0.	Cloudy Dry Humid	Temperature:	(°F)
Well Condition:	Satisfactory Uns	satisfactory (explain in notes	3)	
Initial Water Level:	71	ft. / ft. above msl	Reading: Transduc	Manual DTW
Pump Intake Depth:	51.64*	ft. / ft. above msl	Pump Operation. A	Auto / Manual
Depth to Water:	Not measured	ft. / ft. above msl		
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
	E E			
Purge Water Description:	Color: Other:	Cloudy NA	Odor: NAPL prese	None ent? Yes No
Sample Method:	Grab	Number of Con	tainers: 2	
Sample Collection Time:	1330	Intended Analy	sis: VOCs (Met	hod 8260)
Final Water Level:	70	ft. / ft. above msl	Reading: Transdu	cer / Manual DTW
Notes: *Fixed depth	n; from SOP-15 in 20	018 Site Management Plar	1.	
NA = not ap				
			Checked by:	KAA 10/19/22

Well ID:	EW-9			
Sampling Date:	7/20/2	7		
Sampler Name(s):	Adam 1	Vorvelle K.St	nochi	
Weather Conditions:	Rain Snow Su	n Cloudy Dry Humid	Temperature:	85 (°F)
Well Condition:	Satisfactory / Uns	satisfactory (explain in notes)	
Initial Water Level:	153.64	ft. / ft. above msl	Reading: Transdu	cer Manual DTW
Pump Intake Depth:	-70,79*	ft. / ft. above msl	Pump Operation: A	Auto / Manual
Depth to Water:	Not measured	ft. / ft. above msl		
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	pН	Turbidity (NTU)
		del		
Purge Water Description:	Color:	Clear	Odor:	None nated
	Other:	NA	NAPL prese	ent? Yes / No
Sample Method:	Grab	Number of Cont	ainers: 2 V	1A5_
Sample Collection Time:	0940	Intended Analys	is: VOCs (Met	hod 8260)
Final Water Level:	Not recorded -	ft. / ft. above msl	Reading: Transdu	cer / Manual DTW
Notes: *Fixed depth	; from SOP-15 in 20	018 Site Management Plan		
NA = not app	olicable			
			Checked by:	ΚΔΔ 10/10/22

Well ID:				
Sampling Date:	7-20-1	2022		
Sampler Name(s):	A. Norvelle	e, M. Ladny		
Weather Conditions:	Rain Snow Sui	Cloudy Dry Humid	Temperature:	(°F)
Well Condition:	Satisfactory / Uns	satisfactory (explain in notes	3)	
Initial Water Level:	75.41	ft. / ft. above msl	Reading: Transdu	cer / Manual DTW
Pump Intake Depth:	91.16*	ft. / ft. above msl	Pump Operation: /	Auto / Manual
Depth to Water:	Not measured -	ft. / ft. above msl		
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
Purge Water Description:	Color:	Gear	Odor:	None
	Other:	NA	NAPL prese	
Sample Method:	Grab	Number of Con	tainers: 2	
Sample Collection Time:	1240	Intended Analys	sis: VOCs (Met	nod 8260)
Final Water Level:	75.41	ft. / ft. above msl	Reading: Transdu	cer / Manual DTW
Notes: *Fixed depth NA = not app		018 Site Management Plar	l.	
			Checked by:	ΚΔΔ 10/10/22

ATTACHMENT 3

Category A Review – July 2022 LTM Groundwater Sampling

CATEGORY A REVIEW JULY 2022 LTM GROUNDWATER SAMPLING AMERICAN THERMOSTAT SITE SOUTH CAIRO, NEW YORK

1.0 INTRODUCTION

This validation report was revised to correct the concentration of total 1,2-dichloroethene initially reported by the laboratory. See Section 3.0 for more information.

Groundwater samples were collected in July 2022 at the American Thermostat Site in South Cairo, New York, and shipped to Pace Analytical Laboratory located in Melville, New York and Pace Analytical Laboratory in Longmeadow, Massachusetts for analysis. Samples were analyzed by the following United States Environmental Protection Agency (USEPA) method:

Project List Volatile Organic Compounds (VOCs) by Method 8260C

Results were reported in the following sample delivery group (SDG):

- 70223061 Pace Melville
- 22H0077 Pace Longmeadow

Sample event information included in this chemistry review is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

Laboratory deliverables included:

Chain of custody documentation plus batch quality control results.

The Category A review included the following evaluations. Data review checklists are provided as Attachment A.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- QC Blanks
- Laboratory Control Samples (LCS)
- Field Duplicate Evaluation (none collected)
- Matrix spike and Matrix Spike Duplicate (MS/MSD) Evaluation
- Surrogates (if applicable)
- Reporting Limits

Electronic Data Qualification and Verification

The following laboratory data qualifiers or data review qualifiers are used in the final data presentation:

U = target analyte is not detected at or above the reporting limit
 J = concentration is estimated
 J+ = Concentration is estimated with high bias

Results are interpreted to be usable as reported by the laboratory or as qualified in the following sections.

2.0 POTENTIAL DATA LIMITATIONS

Based on the Category A Review the majority of data meet the quality objectives; however, the following potential limitations were identified:

The relative percent difference (RPD) between results for 1,2-dichloroethene (total) and cis-1,2-dichloroethene in the laboratory duplicate associated with sample EW-3 exceeded the project goal of 20. Results for 1,2-dichloroethene (total) and cis-1,2-dichloroethene in sample EW-3 were qualified estimated (J). Qualified results are summarized in Table 3 with reason code LD.

Acetone (34.6 ug/L) and toluene (1.3 ug/L) were detected above the reporting limit in the field blank associated with a subset of samples. Acetone results in a subset of samples were qualified as non-detect (U) at the reporting limit or the reported sample result. Acetone results in EW-13, MW-113, and EW-8 were qualified as estimated with high bias (J+). The toluene result in sample M-8 was qualified as non-detect (U) at the reported sample concentration. All qualified results are summarized in Table 3 with reason code BL2.

3.0 ADDITIONAL QC EXCEEDANCES AND OBSERVATIONS

Additional observations and quality control exceedances not specifically addressed above (Section 2.0) or included in Table 3 are summarized below. Unless presented in Table 3, sample results are interpreted to be usable as reported by the laboratory.

Sample OW-14 was analyzed at a dilution to obtain a result for cis-1,2-dichloroethene within the instrument calibration range. Sample OW-14 was also analyzed without dilution to obtain a result for trans-1,2-dichloroethene. The lab reported total 1,2-dichloroethene (sum of cis- and trans-1,2-dichloroethene) using the diluted analysis for which trans-1,2-dichloroethene was diluted out. In the final data set, the reported result for total 1,2-dichloroethene in sample OW-14 was calculated by summing the reported results for cis-1,2-dichloroethene (from the diluted analysis) and trans-1,2-dichloroethene (from the undiluted analysis).

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

Data Validator: Kassidy Patoine

Date: September 30, 2022

Reviewed by: Julie Ricardi

Date: October 18, 2022

Revised by: Amber Jones

Date: May 22, 2023

Reviewed by: Julie Ricardi

Julie Rivaroi

Date: May 22, 2023

Standard Table Notes:

ng/L - nanograms per liter

Sample Type (QC Code) Qualification Reason Codes

FS – field sample BL1 – method blank qualifier

FD – field duplicate BL2 – field or trip blank qualifier

TB – trip blank CCV – continuing calibration verification recovery outside limits

EB – equipment blank CCV%D – continuing calibration verification percent difference exceeds goal

FB – field blank CCVRRF – continuing calibration relative response factor low

CI – chromatographic interference present

Matrix DCPD – dual column percent difference exceeds limit

GW – ground water E – result exceeds calibration range

BW – blank water FD – field duplicate precision goal exceeded

TW – tap water FP – false positive interference

SV – soil vapor HT – holding time for prep or analysis exceeded

SED - sediment HTG – holding time for prep or analysis grossly exceeded

ICV – initial calibration verification recovery outside limit

<u>Units</u> ICVRRF – initial calibration verification relative response factor low

mg/L – milligrams per liter ICVRSD – initial calibration verification % relative standard deviation exceeds

goal

 $ISH-internal\ standard\ response\ greater\ than\ limit$ $\mu g/L-micrograms\ per\ liter$

ISL – internal standard response less than limit

mg/kg – milligrams per kilogram

LCSH – laboratory control sample recovery high

µg/kg – micrograms per kilogram

μg/m³ – micrograms per cubic meter

LCSRPD – laboratory control sample/duplicate relative % difference precision

goal exceeded

Qualifiers LD – lab duplicate precision goal exceeded

U – not detected above quantitation limit MSH – matrix spike and/or MS duplicate recovery high

J – estimated quantity

MSL – matrix spike and/or MS duplicate recovery low

J+ - estimated quantity, biased high

MSRPD — matrix spike/duplicate relative % difference precision goal exceeded

J- - estimated quantity, biased low N – analyte identification is not certain

R – data unusable PEM – performance evaluation mixture exceeds limit

PM – sample percent moisture exceeds EPA guideline

<u>Fraction</u> SD – serial dilution result exceeds percent difference limit

T – total SP – sample preservation/collection does not meet method requirement

D – dissolved SSH – surrogate recovery high

N – normal SSL – surrogate recovery low

TD – dissolved concentration exceeds total

					Lab Id	PACE_LI	PACE_MEL
				M	ethod Class	VOCs	VOCs
				Analy	sis Method	8260C	8260C
					Fraction	N	N
Lab SDG	Media	Location	Field Sample ID	Sample Date	Qc Code	Parameters	Parameters
22H0077	GW	CE-2	CE-2 BEF	8/1/2022	FS	18	
70223061	GW	EW-11	EW-11	7/20/2022	FS		19
70223061	GW	EW-12	EW-12	7/20/2022	FS		19
70223061	GW	EW-13	EW-13	7/19/2022	FS		19
70223061	GW	EW-16	EW-16	7/20/2022	FS		19
70223061	GW	EW-3	EW-3	7/20/2022	FS		19
70223061	GW	EW-4	EW-4	7/20/2022	FS		19
70223061	GW	EW-5	EW-5	7/20/2022	FS		19
70223061	GW	EW-6	EW-6	7/20/2022	FS		19
70223061	GW	EW-7	EW-7	7/20/2022	FS		19
70223061	GW	EW-8	EW-8	7/20/2022	FS		19
70223061	GW	EW-9	EW-9	7/20/2022	FS		19
70223061	GW	IW-10	IW-10	7/20/2022	FS		19
70223061	GW	IW-8	IW-8	7/20/2022	FS		19
70223061	GW	IW-9	IW-9	7/20/2022	FS		19
70223061	GW	KLINKE	KLINKE-BEF	7/19/2022	FS		19
70223061	GW	KUBLER	KUBLER-BEF	7/19/2022	FS		19
70223061	GW	M-4	MW-4	7/20/2022	FS		19
70223061	GW	M-5	M-5	7/19/2022	FS		19
70223061	GW	M-6	M-6	7/19/2022	FS		19
70223061	GW	M-8	M-8	7/19/2022	FS		19
70223061	GW	M-9	M-9	7/19/2022	FS		19
70223061	GW	MUELLER	MUELLER	7/19/2022	FS		19
70223061	GW	MW-104	MW-104	7/20/2022	FS		19
70223061	GW	MW-109	MW-109	7/20/2022	FS		19
70223061	GW	MW-112	MW-112	7/19/2022	FS		19
70223061	GW	MW-113	MW-113	7/19/2022	FS		19
70223061	GW	OW-13	OW-13	7/20/2022	FS		19
70223061	GW	OW-14	OW-14	7/20/2022	FS		19
70223061	GW	OW-16	OW-16	7/20/2022	FS		19
70223061	GW	OW-2	OW-2	7/20/2022	FS		19
70223061	GW	OW-3	OW-3	7/20/2022	FS		19
70223061	GW	OW-5	OW-5	7/20/2022	FS		19
70223061	GW	OW-7	OW-7	7/20/2022	FS		19
70223061	GW	VIELLA	VIELLA-BEF	7/19/2022	FS		19
70223061		QC	FIELD BLANK	7/20/2022	FB		19
70223061	BW	QC	TRIP BLANK	7/20/2022	ТВ		19

Created by: KLD 9/27/22 Checked by: KRP 9/30/2022

					Location	CE	-2	EW	V-11	EW	/-12										
				Lab Sample Deli	very Group	22H(0077	7022	23061	7022	23061										
				Field Sa	ample Date	8/1/	2022	7/20	/2022	7/20	/2022										
				Field	Sample ID	CE-2	BEF	EW-11		EW	/-12										
					Qc Code	FS		ı	FS	ı	-S										
Matrix	Method Class	Method	Fraction			Result	Qualifier	Result	Qualifier	Result	Qualifier										
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1 U		1	. U	1	U										
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1 U		1	. U	1	U										
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1 U		1 U		1 U		1 U		1 U		1 U		1	. U	1	U
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1	U	1	. U	1	U										
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1	U	1	. U	1	U										
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L		1.2 J		1.2 J		U										
L	VOCs	8260C	N	2-Hexanone	UG/L	5	U	5 U		5 U											
L	VOCs	8260C	N	Acetone	UG/L	5	U	37.3	U	5	U										
L	VOCs	8260C	N	Carbon disulfide	UG/L	1	1 U		. U	1	U										
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1	1 U		. U	1	U										
L	VOCs	8260C	N	Chloroform	UG/L	1	1 U		. U	1	U										
L	VOCs	8260C	N	Chloromethane	UG/L	1	U	1	. U	1	U										
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	2.7		1.2		1	U										
L	VOCs	8260C	N	Methylene chloride	UG/L	1	U	1	. U	1	U										
L	VOCs	8260C	N	Tetrachloroethene	UG/L	10.9		1	. U	5.7											
L	VOCs	8260C	N	Toluene	UG/L	1 U 1 U		. U	1	U											
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	1 U		1 U		1 U		1 U		1	. U	1	U				
L	VOCs	8260C	N	Trichloroethene	UG/L	3.9		3.9		1	. U	1	U								
L	VOCs	8260C	N	Vinyl chloride	UG/L	1	U	1	. U	1	U										

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

> Created by: KLD 10/17/22 Checked by: KRP 10/17/22

					Location	EW	'-13	EW	<i>I</i> -16	E۱	V-3				
				Lab Sample Deli			3061	7022	23061	7022	23061				
				•	ample Date		/2022	7/20	/2022	7/20	/2022				
					l Sample ID		′-13	EW-16		-	N-3				
				Qc Code		FS		ı	-S		FS				
Matrix	Method Class	Method	Fraction	on Parameter Units		Result	Qualifier	Result	Qualifier	Result	Qualifier				
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1	U	1	U	1	U				
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1 U		1	U	1	U				
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1	U	1	U	1	U				
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1	U	4.8		1	U				
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1	U	1	U	1	U				
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L	3.1	3.1 1960		1960		J				
L	VOCs	8260C	N	2-Hexanone	UG/L	5	U	5	U	5 U					
L	VOCs	8260C	N	Acetone	UG/L	140 J+		5	U	29.6	U				
L	VOCs	8260C	N	Carbon disulfide	UG/L	1 U		1	U	1	. U				
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1	1 U		U	1	. U				
L	VOCs	8260C	N	Chloroform	UG/L	1	U	1	U	1	. U				
L	VOCs	8260C	N	Chloromethane	UG/L	1	U	1	U	1	U				
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	3.1		1940		5.3	J				
L	VOCs	8260C	N	Methylene chloride	UG/L	1	U	1	U	1	U				
L	VOCs	8260C	N	Tetrachloroethene	UG/L	24.3		599		1	U				
L	VOCs	8260C	N	Toluene	UG/L	1	U	1	U	1	. U				
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	1 U		23.3		1	U				
L	VOCs	8260C	N	Trichloroethene	UG/L	2.5		2.5		2.5		657		1	U
L	VOCs	8260C	N	Vinyl chloride	UG/L	1	U	25.6		4.8					

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

Created by: KLD 10/17/22 Checked by: KRP 10/17/22 Revised by: ALJ 5/22/23

					Location	EW	/-4	E۱	N-5	EV	V-6		
				Lab Sample Deli	very Group	7022	3061	7022	23061	7022	23061		
				Field Sa	ample Date	7/20/	2022	7/20	/2022	7/20	/2022		
				Field	l Sample ID	EW	/-4	EW-5		EV	V-6		
					Qc Code			FS		F	-s		
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier		Result	Qualifier	Result	Qualifier		
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1 U		1	. U	1	U		
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1 U		1	. U	1	U		
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1 U		1	. U	1	U		
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L	5.7		260)	175			
L	VOCs	8260C	N	2-Hexanone	UG/L	5	U	5 U		5 U			
L	VOCs	8260C	N	Acetone	UG/L	27.5	U	28.7	' U	5 U			
L	VOCs	8260C	N	Carbon disulfide	UG/L	1	U	1	. U	1 U			
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	Chloroform	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	Chloromethane	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	5.7		258		171			
L	VOCs	8260C	N	Methylene chloride	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	Tetrachloroethene	UG/L	1	U	182		446			
L	VOCs	8260C	N	Toluene	UG/L	1	U	50.5		1	U		
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	1 U		2.4		3.3			
L	VOCs	8260C	N	Trichloroethene	UG/L	1 U		1 U		67	,	135	
L	VOCs	8260C	N	Vinyl chloride	UG/L	1		8.7	,	13.4			

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

> Created by: KLD 10/17/22 Checked by: KRP 10/17/22

					Location	EW	<i>I-</i> 7	ΕV	N-8	EV	V-9						
				Lab Sample Deli	very Group	70223	3061	7022	23061	7022	23061						
				Field Sa	ample Date	7/20/	2022	7/20	/2022	7/20	/2022						
				Field	Sample ID	EW	<i>I-</i> 7	EW-8		EV	V-9						
					Qc Code	FS		ı	FS	F	=S						
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier		Result	Qualifier	Result	Qualifier						
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1 U		1	. U	1	U						
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1 U		1	. U	1	U						
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1 U		1	. U	1	U						
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1	U	1	. U	1	U						
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1	U	1	. U	1	U						
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L	304		3.8		40							
L	VOCs	8260C	N	2-Hexanone	UG/L	5	U	5 U		5 U							
L	VOCs	8260C	N	Acetone	UG/L	5	U	81.5 J+		5 U							
L	VOCs	8260C	N	Carbon disulfide	UG/L	1 U		1	. U	1	U						
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1	1 U		. U	1	U						
L	VOCs	8260C	N	Chloroform	UG/L	1	U	1	. U	1	U						
L	VOCs	8260C	N	Chloromethane	UG/L	1	U	1	. U	1	U						
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	292		3.8		38.6							
L	VOCs	8260C	N	Methylene chloride	UG/L	1	U	1	. U	1	U						
L	VOCs	8260C	N	Tetrachloroethene	UG/L	6.5		1	. U	6.1							
L	VOCs	8260C	N	Toluene	UG/L	1	U	1	. U	1	U						
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	11.7		11.7		11.7		11.7		1	. U	1.4	
L	VOCs	8260C	N	Trichloroethene	UG/L	6.4		6.4		1	. U	5.4					
L	VOCs	8260C	N	Vinyl chloride	UG/L	9.7		2.1		16.2							

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

> Created by: KLD 10/17/22 Checked by: KRP 10/17/22

					Location	IW-10	0	IV	V-8	IV	V-9						
				Lab Sample Deli					23061		23061						
				•	mple Date		022	7/20	/2022	7/20	/2022						
					Sample ID	, ,			IW-8		V-9						
					Oc Code	FS		F	s		-s						
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier		Result	Qualifier	Result	Qualifier						
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1 U		1	U	1	U						
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1 U		1	U	1	U						
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1 U		1	U	1	U						
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1 U		1	U	1.4							
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1 U		1	U	1	U						
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L	3.6		2	U	590							
L	VOCs	8260C	N	2-Hexanone	UG/L	5 U		5	U	5 U							
L	VOCs	8260C	N	Acetone	UG/L	29.9 U		68.3	U	34.5 U							
L	VOCs	8260C	N	Carbon disulfide	UG/L	1 U		1	U	1	U						
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1 U		1	U	1	U						
L	VOCs	8260C	N	Chloroform	UG/L	1 U		1	U	1	U						
L	VOCs	8260C	N	Chloromethane	UG/L	1 U		1	U	1	U						
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	3.6		1	U	586							
L	VOCs	8260C	N	Methylene chloride	UG/L	1 U		1	U	1	U						
L	VOCs	8260C	N	Tetrachloroethene	UG/L	1 U		1	U	168							
L	VOCs	8260C	N	Toluene	UG/L	1 U		1	U	1	U						
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	1 U		1 U		1 U		1 U		1	U	3.6	
L	VOCs	8260C	N	Trichloroethene	UG/L	1.3		1.3		1.3		1.1		239			
L	VOCs	8260C	N	Vinyl chloride	UG/L	1 U		1	U	2.1							

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

Created by: KLD 10/17/22 Checked by: KRP 10/17/22 Revised by: ALJ 5/22/23

					Location	KLINKE		KUBLER		VIE	LLA		
				Lab Sample Deli	very Group	7022	3061	70223061		7022	23061		
				Field Sa	ample Date	7/19/	/2022	7/19/2022		7/19/2022			
				Field	Sample ID	KLINK	Œ-BEF	KUBL	KUBLER-BEF		A-BEF		
					Qc Code	F	:S	FS		FS			
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier		
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1	U	1	U	1 U			
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1 U		1 U		1 U 1 U		1	U
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L	2	U	2 U		U 2 U			
L	VOCs	8260C	N	2-Hexanone	UG/L	5	U	5 U		5 U			
L	VOCs	8260C	N	Acetone	UG/L	5	U	5 U		5 U			
L	VOCs	8260C	N	Carbon disulfide	UG/L	1	U	1	U	1 U			
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Chloroform	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Chloromethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Methylene chloride	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Tetrachloroethene	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Toluene	UG/L	1	U	1 U		1 U			
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	1	U	1 U		1 U			
L	VOCs	8260C	N	Trichloroethene	UG/L	1	U	1 U		1 U			
L	VOCs	8260C	N	Vinyl chloride	UG/L	1	U	1	U	1	U		

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

> Created by: KLD 10/17/22 Checked by: KRP 10/17/22

				Locatio		M-4		M-5		N	1-6		
				Lab Sample Deli	very Group	70223	3061	70223061		7022	23061		
				Field Sa	ample Date	7/20/	2022	7/19/2022		7/19/2022			
				Field	Sample ID	MW	V-4	Ν	1-5	M-6			
					Qc Code	FS	S	FS		FS			
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier		
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1	U	1	. U	1 U			
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1 U		1 U		1 U 1 U		1	U
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L	2	2 U		12.7		U		
L	VOCs	8260C	N	2-Hexanone	UG/L	5	U	5 U		5 U			
L	VOCs	8260C	N	Acetone	UG/L	30.5	U	37.9 U		5 U			
L	VOCs	8260C	N	Carbon disulfide	UG/L	1	U	1	. U	1 U			
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1	U	1	. U	1 U			
L	VOCs	8260C	N	Chloroform	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	Chloromethane	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	1	U	12.7	,	1	U		
L	VOCs	8260C	N	Methylene chloride	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	Tetrachloroethene	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	Toluene	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	1	1 U		1 U 1 U		. U	1	U
L	VOCs	8260C	N	Trichloroethene	UG/L	1	1 U 1 U		1 U				
L	VOCs	8260C	N	Vinyl chloride	UG/L	1	U	6.7		1	U		

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

> Created by: KLD 10/17/22 Checked by: KRP 10/17/22

					Location	M	-8	M-9		MU	ELLER		
				Lab Sample Deli	very Group	7022	3061	70223061		7022	23061		
				Field Sa	ample Date	7/19,	/2022	7/19/2022		7/19	/2022		
				Field	Sample ID	M	-8	M-9		MUELLER			
					Qc Code	F	S	FS		FS			
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier		
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1	U	1	U	1 U			
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1 U		1 U		1 U 1 U		1	U
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L	2	U	2 U		2 U			
L	VOCs	8260C	N	2-Hexanone	UG/L	5	U	5 U		5 U			
L	VOCs	8260C	N	Acetone	UG/L	27.4	U	37.3 U		29.1 U			
L	VOCs	8260C	N	Carbon disulfide	UG/L	1	U	1	U	1 U			
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Chloroform	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Chloromethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Methylene chloride	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Tetrachloroethene	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Toluene	UG/L	2.3	U	1 U		1 U			
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	1	1 U		1 U		U	1 U	
L	VOCs	8260C	N	Trichloroethene	UG/L	1	U	1 U		1 U			
L	VOCs	8260C	N	Vinyl chloride	UG/L	1	U	1	U	1	1 U		

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

Created by: KLD 10/17/22 Checked by: KRP 10/17/22

					Location	MW-104		MW-109		MW	/-112		
				Lab Sample Deli	very Group	7022	3061	70223061		7022	23061		
				Field Sa	ample Date	7/20/	/2022	7/20/2022		7/19/2022			
				Field	Sample ID	MW	-104	MW	/-109	MW-112			
					Qc Code	F	S	FS		FS			
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier		
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1 U		1	U	1 U			
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1 U		1 U		1 U 1 U		1	U
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L	2	U	2 U		U 2 U			
L	VOCs	8260C	N	2-Hexanone	UG/L	5	U	5 U		5 U			
L	VOCs	8260C	N	Acetone	UG/L	39.1	U	12.2 U		28.2 U			
L	VOCs	8260C	N	Carbon disulfide	UG/L	1	U	1	U	1 U			
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Chloroform	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Chloromethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Methylene chloride	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Tetrachloroethene	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Toluene	UG/L	1	U	1 U		1 U			
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	1	1 U 1		U	1	U		
L	VOCs	8260C	N	Trichloroethene	UG/L	1	U	1 U		1 U			
L	VOCs	8260C	N	Vinyl chloride	UG/L	1	U	1	U	1	U		

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

Created by: KLD 10/17/22 Checked by: KRP 10/17/22

				Location			-113	OW-13		OV	V-14		
				Lab Sample Deli	very Group	7022	3061	70223061		7022	23061		
				Field Sa	mple Date	7/19/	/2022	7/20/2022		7/20/2022			
				Field	Sample ID	MW	-113	OV	V-13	OW-14			
					Qc Code	F	FS FS		-S	FS			
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier		
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1	U	1	U	1	. U		
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1	U	1	U	1	. U		
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1 U		1 U		5.1			
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1 U		1 U		1 U 1 U		1	. U
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L	24.4		90.2		1380			
L	VOCs	8260C	N	2-Hexanone	UG/L	5	U	5 U		5 U			
L	VOCs	8260C	N	Acetone	UG/L	115	J+	5 U		5 U			
L	VOCs	8260C	N	Carbon disulfide	UG/L	1	U	1	U	1 U			
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1	U	1	U	1 U			
L	VOCs	8260C	N	Chloroform	UG/L	1	U	1	U	1	. U		
L	VOCs	8260C	N	Chloromethane	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	24.4		90.2		1370			
L	VOCs	8260C	N	Methylene chloride	UG/L	1	U	1	U	1	U		
L	VOCs	8260C	N	Tetrachloroethene	UG/L	1650		147	'	2420)		
L	VOCs	8260C	N	Toluene	UG/L	1	U	1	U	1	. U		
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	1	1 U		1 U		U	7.2	
L	VOCs	8260C	N	Trichloroethene	UG/L	23.1	23.1		23.1 8.8			584	
L	VOCs	8260C	N	Vinyl chloride	UG/L	1	U 1.2		134	134			

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

Created by: KLD 10/17/22 Checked by: KRP 10/17/22 Revised by: ALJ 5/22/23

		Locatio		Location	OW	/-16	OW-2		0\	W-3			
				Lab Sample Deli	very Group	7022	3061	70223061		7022	23061		
				Field Sa	ample Date	7/20/	/2022	7/20/2022		7/20/2022			
					Sample ID		/-16	0\	N-2	OW-3			
					Qc Code	F	:S	1	FS		FS		
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier		
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1	U	1	. U	1.9			
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1 U		1 U		1 U 1 U		1	U
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L	64		68.4		221			
L	VOCs	8260C	N	2-Hexanone	UG/L	5	U	5 U		5 U			
L	VOCs	8260C	N	Acetone	UG/L	5	U	5	U	5 U			
L	VOCs	8260C	N	Carbon disulfide	UG/L	1	1 U 1 U		. U	1	U		
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1	U	1	. U	1 U			
L	VOCs	8260C	N	Chloroform	UG/L	1	U	1	. U	1.1			
L	VOCs	8260C	N	Chloromethane	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	64		68.4		217	,		
L	VOCs	8260C	N	Methylene chloride	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	Tetrachloroethene	UG/L	80.4		389)	10400)		
L	VOCs	8260C	N	Toluene	UG/L	1	U	1	. U	1	U		
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	1	1 U		1 U		. U	3.2	
L	VOCs	8260C	N	Trichloroethene	UG/L	24.2	24.2		24.2			289	
L	VOCs	8260C	N	Vinyl chloride	UG/L	1	1 U 1 U		1.7				

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

Created by: KLD 10/17/22 Checked by: KRP 10/17/22

		Locat				OW	'- 5	OW-7		QC			
				Lab Sample Deli				70223061			23061		
					ample Date			7/20/2022		7/20/2022			
					Sample ID				N-7		BLANK		
				Ticle	Qc Code		-		-S	TB			
Matrix	Method Class	Method	Fraction	Parameter	Units		, Qualifier	Result	Qualifier	Result	Qualifier		
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1 (1	U	1	U		
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	, UG/L	1 (U	1	U	1	U		
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1 (U	1	U	1	U		
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	2		1	U	1 U			
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1 U		1 U		1 U 1 U		1	U
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L	1370		37.6		2 U			
L	VOCs	8260C	N	2-Hexanone	UG/L	5 (U	5 U		5 U			
L	VOCs	8260C	N	Acetone	UG/L	5 (U	5 U		5 U			
L	VOCs	8260C	N	Carbon disulfide	UG/L	1 (U	1	U	1 U			
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1 (U	1	U	1	U		
L	VOCs	8260C	N	Chloroform	UG/L	1 (U	1	U	1	U		
L	VOCs	8260C	N	Chloromethane	UG/L	1 (U	1	U	1	U		
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	1360		37.6		1	U		
L	VOCs	8260C	N	Methylene chloride	UG/L	1 (U	1	U	1	U		
L	VOCs	8260C	N	Tetrachloroethene	UG/L	3900		116		1	U		
L	VOCs	8260C	N	Toluene	UG/L	1 (1 U		U	1	U		
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	5.3	5.3		5.3 1 1		U	1	U
L	VOCs	8260C	N	Trichloroethene	UG/L	273	273 16.1			1 U			
L	VOCs	8260C	N	Vinyl chloride	UG/L	2.5		1 U		1	1 U		

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

Created by: KLD 10/17/22 Checked by: KRP 10/17/22

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS CATEGORY A REVIEW JULY 2022 LTM GROUNDWATER SAMPLING AMERICAN THERMOSTAT SITE SOUTH CAIRO, NEW YORK

					Location	(QC
				Lab Sample Deli	very Group	7022	23061
				Field Sa	ample Date	7/20	/2022
				Field	Sample ID	FIELD	BLANK
					Qc Code	F	В
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1	U
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1	U
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1	U
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1	U
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1	U
L	VOCs	8260C	N	1,2-Dichloroethene (total)	UG/L	2	U
L	VOCs	8260C	N	2-Hexanone	UG/L	5	U
L	VOCs	8260C	N	Acetone	UG/L	34.6	
L	VOCs	8260C	N	Carbon disulfide	UG/L	1	U
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1	U
L	VOCs	8260C	N	Chloroform	UG/L	1	U
L	VOCs	8260C	N	Chloromethane	UG/L	1	U
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	1	U
L	VOCs	8260C	N	Methylene chloride	UG/L	1	U
L	VOCs	8260C	N	Tetrachloroethene	UG/L	1	U
L	VOCs	8260C	N	Toluene	UG/L	1.3	
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	1	U
L	VOCs	8260C	N	Trichloroethene	UG/L	1	U
L	VOCs	8260C	N	Vinyl chloride	UG/L	1	U

Note:

Total 1,2-dichloroethene in sample OW-14 was calculated by summing the results for cis- and trans-1,2-dichloroethene

Created by: KLD 10/17/22 Checked by: KRP 10/17/22 Revised by: ALJ 5/22/23 Checked by: JAR 5/22/23

TABLE 3 - SUMMARY OF QUALIFICATION ACTIONS CATEGORY A REVIEW JULY 2022 LTM GROUNDWATER SAMPLING AMERICAN THERMOSTAT SITE SOUTH CAIRO, NEW YORK

							Lab	Final	Final	Val Reason	
Lab SDG	Lab Sample ID	Field Sample ID	Method	Fraction	Parameter	Lab Result	Qualifier	Result	Qualifier	Code	Units
70223061	70223061004	EW-13	8260C	N	Acetone	140	IH,v1	140	J+	BL2	UG/L
70223061	70223061005	M-5	8260C	N	Acetone	37.9	IH,v1	37.9	U	BL2	UG/L
70223061	70223061007	M-8	8260C	N	Acetone	27.4	IH,v1	27.4	U	BL2	UG/L
70223061	70223061007	M-8	8260C	N	Toluene	2.3		2.3	U	BL2	UG/L
70223061	70223061008	M-9	8260C	N	Acetone	37.3	IH,v1	37.3	U	BL2	UG/L
70223061	70223061009	MUELLER	8260C	N	Acetone	29.1	IH	29.1	U	BL2	UG/L
70223061	70223061010	MW-112	8260C	N	Acetone	28.2	IH	28.2	U	BL2	UG/L
70223061	70223061011	MW-113	8260C	N	Acetone	115	IH	115	J+	BL2	UG/L
70223061	70223061012	EW-3	8260C	N	cis-1,2-Dichloroethene	5.3	D6	5.3	J	LD	UG/L
70223061	70223061012	EW-3	8260C	N	1,2-Dichloroethene (total)	5.3		5.3	J	LD	UG/L
70223061	70223061012	EW-3	8260C	N	Acetone	29.6	IH	29.6	U	BL2	UG/L
70223061	70223061013	EW-4	8260C	N	Acetone	27.5	IH	27.5	U	BL2	UG/L
70223061	70223061014	EW-5	8260C	N	Acetone	28.7	IH	28.7	U	BL2	UG/L
70223061	70223061015	EW-8	8260C	N	Acetone	81.5	IH	81.5	J+	BL2	UG/L
70223061	70223061016	EW-11	8260C	N	Acetone	37.3	IH	37.3	U	BL2	UG/L
70223061	70223061017	EW-12	8260C	N	Acetone	3.2	J,IH	5	U	BL2	UG/L
70223061	70223061018	IW-8	8260C	N	Acetone	68.3	IH	68.3	U	BL2	UG/L
70223061	70223061019	IW-9	8260C	N	Acetone	34.5	IH	34.5	U	BL2	UG/L
70223061	70223061020	IW-10	8260C	N	Acetone	29.9	IH	29.9	U	BL2	UG/L
70223061	70223061021	M-4	8260C	N	Acetone	30.5	IH	30.5	U	BL2	UG/L
70223061	70223061022	MW-104	8260C	N	Acetone	39.1	IH	39.1	U	BL2	UG/L
70223061	70223061023	MW-109	8260C	N	Acetone	12.2	IH	12.2	U	BL2	UG/L

Created by: KLD 10/17/22 Checked by: KRP 10/17/22

Project No. 3616206098

CATEGORY A REVIEW JULY 2022 LTM GROUNDWATER SAMPLING AMERICAN THERMOSTAT SITE SOUTH CAIRO, NEW YORK

ATTACHMENT A

VOCs

PROJECT CATEGORY A REVIEW RECORD

Project: American Thermostat

Method: SW-846 8260C Laboratory & SDGs: Pace - Melville, NY (70223061) & Pace - Longmeadow, MA (22H0077) Date: 09-22-2022 **Reviewer: Kassidy Patoine** X CATEGORY A **Review Level** 1. M☐ Case Narrative Review and COC/Data Package Completeness **COMMENTS** Were problems noted? No Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly YES NO (circle one) **☑** Holding time and Sample Collection All samples were analyzed within the 14 day holding time. NO (circle one) 3. **♥**□ **QC Blanks** Are method blanks free of contamination? NO (circle one) Are Trip blanks free of contamination? NO (circle one) The FB associated with a subset of samples in SDG 70223061 had detects Are Rinse blanks free of contamination? NO NA (circle one) for acetone (34.6 ug/L) and toluene (1.3 ug/L). See QC backup for quals 4. Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35) Were MS/MSDs submitted/analyzed^c YES NO Were all results within the Region II limits YES NO NA (circle one) ☑ Laboratory Control Sample Results - Region II (Water and soil 70-130%) Were all results were within Region II control limits? NO (circle one) Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%) NO (circle one) Were all results within Region II limits? YES 7. **V** Field Duplicates - Region II Limits (water PPD 50, soil RPD 100) Were Field Duplicates submitted/analyzed YES NO A laboratory duplicate was submitted for sample EW-3. Cis-1,2-DCE and 1,2-DCE Were all results within Region II Limits? NO NA (circle one) (total) were qualified J LD due to RPD **Reporting Limits:** Were samples analyzed at a dilution? (circle one) **☑** Electronic Data Review and Edits Does the EDD match the Form Is? NO (circle one) 10. **☑** □ **Table Review** Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions) NO (circle one) Were all tables produced and reviewed? YES NO (circle one) Table 4 (TICs) Did lab report TICs?

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Method: EPA 8260C/5030C **Description:** 8260C Volatile Organics

Client: NYDEC_Wood Plc-Clifton Park, NY

Date: August 02, 2022

General Information:

36 samples were analyzed for EPA 8260C/5030C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 266379

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- EW-13 (Lab ID: 70223061004)
 - Acetone
- LCS (Lab ID: 1345764)
 - Acetone
- M-5 (Lab ID: 70223061005)
 - Acetone
- M-8 (Lab ID: 70223061007)
 - Acetone
- M-9 (Lab ID: 70223061008) Acetone
- MS (Lab ID: 1345933)
 - Acetone
- MSD (Lab ID: 1345934)
 - Acetone

QC Batch: 266544

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- DUP (Lab ID: 1347963)
 - Acetone
- EW-11 (Lab ID: 70223061016)
 - Acetone
- EW-12 (Lab ID: 70223061017)
 - Acetone
- EW-3 (Lab ID: 70223061012) Acetone
- EW-4 (Lab ID: 70223061013)
- Acetone
- EW-5 (Lab ID: 70223061014) Acetone
- EW-8 (Lab ID: 70223061015)
 - Acetone
- IW-10 (Lab ID: 70223061020)

REPORT OF LABORATORY ANALYSIS

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Method: EPA 8260C/5030C

Description: 8260C Volatile Organics

Client: NYDEC_Wood Plc-Clifton Park, NY

Date: August 02, 2022

QC Batch: 266544

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- Acetone
- IW-8 (Lab ID: 70223061018)
 - Acetone
- IW-9 (Lab ID: 70223061019)
 - Acetone
- LCS (Lab ID: 1346372)
 - Acetone
- MS (Lab ID: 1347964)
 - Acetone
- MUELLER (Lab ID: 70223061009)
 - Acetone
- MW-104 (Lab ID: 70223061022)
 - Acetone
- MW-109 (Lab ID: 70223061023)
 - Acetone
- MW-112 (Lab ID: 70223061010)
 - Acetone
- MW-113 (Lab ID: 70223061011)
 - Acetone
- MW-4 (Lab ID: 70223061021)
 - Acetone

QC Batch: 266971

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- FIELD BLANK (Lab ID: 70223061036)
 - Acetone
- LCS (Lab ID: 1348831)
 - Acetone
- MS (Lab ID: 1349538)
 - Acetone

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 266379

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- EW-13 (Lab ID: 70223061004)
 - Acetone
- LCS (Lab ID: 1345764)
 - Acetone
- M-5 (Lab ID: 70223061005)
 - Acetone

REPORT OF LABORATORY ANALYSIS

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Method: EPA 8260C/5030C

Description: 8260C Volatile Organics

Client: NYDEC_Wood Plc-Clifton Park, NY

Date: August 02, 2022

QC Batch: 266379

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

• M-8 (Lab ID: 70223061007)

Acetone

• M-9 (Lab ID: 70223061008)

Acetone

• MS (Lab ID: 1345933)

Acetone

• MSD (Lab ID: 1345934)

Acetone

QC Batch: 266971

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- FIELD BLANK (Lab ID: 70223061036)
 - Acetone
- LCS (Lab ID: 1348831)
 - 1,1-Dichloroethene
 - Acetone
- MS (Lab ID: 1349538)
 - 1,1-Dichloroethene
 - Acetone
- OW-14 (Lab ID: 70223061033)
 - 1,1-Dichloroethene
- OW-3 (Lab ID: 70223061030)
 - 1,1-Dichloroethene
- OW-5 (Lab ID: 70223061031)
 - 1,1-Dichloroethene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

REPORT OF LABORATORY ANALYSIS

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Method: EPA 8260C/5030C

Description: 8260C Volatile Organics

Client: NYDEC_Wood Plc-Clifton Park, NY

Date: August 02, 2022

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 266544

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

DUP (Lab ID: 1347963)cis-1,2-Dichloroethene

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: EW-13	Lab ID: 702	23061004	Collected: 07/19/2	22 13:00	Received: 0	7/22/22 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/25/22 22:03	3 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/25/22 22:03	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/25/22 22:03	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/25/22 22:03	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/25/22 22:03	3 107-06-2	
1,2-Dichloroethene (Total)	3.1	ug/L	2.0	1		07/25/22 22:03	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/25/22 22:03	591-78-6	
Acetone J+ BL2	140	ug/L	5.0	1		07/25/22 22:03	8 67-64-1	IH,v1
Carbon disulfide	<1.0	ug/L	1.0	1		07/25/22 22:03	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/25/22 22:03	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/25/22 22:03	8 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/25/22 22:03	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/25/22 22:03	75-09-2	
Tetrachloroethene	24.3	ug/L	1.0	1		07/25/22 22:03	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/25/22 22:03	108-88-3	
Trichloroethene	2.5	ug/L	1.0	1		07/25/22 22:03	79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/25/22 22:03	75-01-4	
cis-1,2-Dichloroethene	3.1	ug/L	1.0	1		07/25/22 22:03	3 156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/25/22 22:03	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	102	%	81-122	1		07/25/22 22:03	3 17060-07-0	
4-Bromofluorobenzene (S)	98	%	79-118	1		07/25/22 22:03	3 460-00-4	
Toluene-d8 (S)	100	%	82-122	1		07/25/22 22:03	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: M-5	Lab ID: 702	23061005	Collected: 07/19/2	22 12:30	Received: 0	7/22/22 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/25/22 22:24	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/25/22 22:24	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/25/22 22:24	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/25/22 22:24	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/25/22 22:24	107-06-2	
1,2-Dichloroethene (Total)	12.7	ug/L	2.0	1		07/25/22 22:24	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/25/22 22:24	591-78-6	
Acetone U @ sample result, BL2	37.9	ug/L	5.0	1		07/25/22 22:24	67-64-1	IH,v1
Carbon disulfide	<1.0	ug/L	1.0	1		07/25/22 22:24	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/25/22 22:24	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/25/22 22:24	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/25/22 22:24	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/25/22 22:24	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/25/22 22:24	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/25/22 22:24	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/25/22 22:24	79-01-6	
Vinyl chloride	6.7	ug/L	1.0	1		07/25/22 22:24	75-01-4	
cis-1,2-Dichloroethene	12.7	ug/L	1.0	1		07/25/22 22:24	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/25/22 22:24	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	103	%	81-122	1		07/25/22 22:24	17060-07-0	
4-Bromofluorobenzene (S)	98	%	79-118	1		07/25/22 22:24	460-00-4	
Toluene-d8 (S)	99	%	82-122	1		07/25/22 22:24	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: M-8	Lab ID: 702	23061007	Collected: 07/19/2	22 14:15	Received: 0	7/22/22 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/25/22 23:05	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/25/22 23:05	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/25/22 23:05	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/25/22 23:05	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/25/22 23:05	107-06-2	
1,2-Dichloroethene (Total)	<2.0	ug/L	2.0	1		07/25/22 23:05	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/25/22 23:05	591-78-6	
Acetone U @ sample result, BL2	27.4	ug/L	5.0	1		07/25/22 23:05	67-64-1	IH,v1
Carbon disulfide	<1.0	ug/L	1.0	1		07/25/22 23:05	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/25/22 23:05	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/25/22 23:05	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/25/22 23:05	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/25/22 23:05	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/25/22 23:05	127-18-4	
Toluene U @ sample result, BL2	2.3	ug/L	1.0	1		07/25/22 23:05	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/25/22 23:05	79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/25/22 23:05	75-01-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/25/22 23:05	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/25/22 23:05	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	105	%	81-122	1		07/25/22 23:05	17060-07-0	
4-Bromofluorobenzene (S)	99	%	79-118	1		07/25/22 23:05	460-00-4	
Toluene-d8 (S)	101	%	82-122	1		07/25/22 23:05	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: M-9	Lab ID: 702	23061008	Collected: 07/19/2	2 14:30	Received: 0	7/22/22 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/25/22 23:26	3 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/25/22 23:26	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/25/22 23:26	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/25/22 23:26	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/25/22 23:26	6 107-06-2	
1,2-Dichloroethene (Total)	<2.0	ug/L	2.0	1		07/25/22 23:26	5 540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/25/22 23:26	5 591-78-6	
Acetone U @ sample result, BL2	37.3	ug/L	5.0	1		07/25/22 23:26	6 67-64-1	IH,v1
Carbon disulfide	<1.0	ug/L	1.0	1		07/25/22 23:26	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/25/22 23:26	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/25/22 23:26	6 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/25/22 23:26	6 74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/25/22 23:26	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/25/22 23:26	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/25/22 23:26	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/25/22 23:26	79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/25/22 23:26	75-01-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/25/22 23:26	5 156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/25/22 23:26	5 156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	102	%	81-122	1		07/25/22 23:26		
4-Bromofluorobenzene (S)	98	%	79-118	1		07/25/22 23:26	6 460-00-4	
Toluene-d8 (S)	101	%	82-122	1		07/25/22 23:26	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: MUELLER	Lab ID: 702	23061009	Collected: 07/19/2	22 12:05	Received: 0	7/22/22 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 18:24	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 18:24	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 18:24	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 18:24	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 18:24	107-06-2	
1,2-Dichloroethene (Total)	<2.0	ug/L	2.0	1		07/26/22 18:24	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 18:24	591-78-6	
Acetone U @ sample result, BL2	29.1	ug/L	5.0	1		07/26/22 18:24	67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 18:24	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 18:24	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 18:24	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 18:24	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 18:24	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/26/22 18:24	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/26/22 18:24	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/26/22 18:24	79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/26/22 18:24	75-01-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 18:24	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 18:24	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	97	%	81-122	1		07/26/22 18:24	17060-07-0	
4-Bromofluorobenzene (S)	99	%	79-118	1		07/26/22 18:24	460-00-4	
Toluene-d8 (S)	100	%	82-122	1		07/26/22 18:24	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: MW-112	Lab ID: 702	23061010	Collected: 07/19/2	22 13:45	Received: 0	7/22/22 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 18:45	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 18:45	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 18:45	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 18:45	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 18:45	107-06-2	
1,2-Dichloroethene (Total)	<2.0	ug/L	2.0	1		07/26/22 18:45	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 18:45	591-78-6	
Acetone U @ sample result, BL2	28.2	ug/L	5.0	1		07/26/22 18:45	67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 18:45	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 18:45	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 18:45	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 18:45	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 18:45	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/26/22 18:45	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/26/22 18:45	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/26/22 18:45	79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/26/22 18:45	75-01-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 18:45	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 18:45	156-60-5	
Surrogates		_						
1,2-Dichloroethane-d4 (S)	97	%	81-122	1		07/26/22 18:45	17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-118	1		07/26/22 18:45	460-00-4	
Toluene-d8 (S)	98	%	82-122	1		07/26/22 18:45	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

1,1,2-Trichloroethane <1.0 ug/L 1.0 1 07/26/22 19:05 79-00-5 79-00-5 1,1-Dichloroethene <1.0 ug/L 1.0 1 07/26/22 19:05 75-35-4 1,2-Dichloroethane <1.0 ug/L 1.0 1 07/26/22 19:05 75-35-4 1,2-Dichloroethane <1.0 ug/L 1.0 1 07/26/22 19:05 75-35-4 107-06-2 1,2-Dichloroethane <1.0 1 07/26/22 19:05 540-59-0 107-06-2 1,2-Dichloroethane <5.0 ug/L 5.0 1 07/26/22 19:05 540-59-0 540-59-0 591-78-6 Acetone J+BL2 115 ug/L 5.0 1 07/26/22 19:05 591-78-6 Acetone J+BL2 115 ug/L 1.0 1 07/26/22 19:05 591-78-6 Acetone J+BL2 1.0 1 07/26/22 19:05 57-15-0 Acetone Acetone J+BL2 1.0 1 07/26/22 1	
Pace Analytical Services - Melville	Qua
1,1,1-Trichloroethane	
1,1,2,2-Tetrachloroethane <1.0	
1,1,2-Trichloroethane <1.0	
1,1-Dichloroethene <1.0	
1,2-Dichloroethane <1.0	
1,2-Dichloroethene (Total) 24.4 ug/L 2.0 1 07/26/22 19:05 540-59-0 2-Hexanone <5.0	
2-Hexanone	
Acetone J+ BL2 115 ug/L 5.0 1 07/26/22 19:05 67-64-1 Carbon disulfide <1.0 ug/L 1.0 1 07/26/22 19:05 75-15-0 Carbon tetrachloride <1.0 ug/L 1.0 1 07/26/22 19:05 56-23-5 Chloroform <1.0 ug/L 1.0 1 07/26/22 19:05 67-66-3 Chloromethane <1.0 ug/L 1.0 1 07/26/22 19:05 74-87-3 Methylene Chloride <1.0 ug/L 1.0 1 07/26/22 19:05 75-09-2 Tetrachloroethene 1650 ug/L 20.0 20 07/27/22 21:04 127-18-4 Toluene <1.0 ug/L 1.0 1 07/26/22 19:05 79-01-6 Vinyl chloride <1.0 ug/L 1.0 1 07/26/22 19:05 75-01-4 cis-1,2-Dichloroethene 24.4 ug/L 1.0 1 07/26/22 19:05 156-59-2 trans-1,2-Dichloroethene <1.0 ug/L <td></td>	
Carbon disulfide <1.0 ug/L 1.0 1 07/26/22 19:05 75-15-0 Carbon tetrachloride <1.0 ug/L 1.0 1 07/26/22 19:05 56-23-5 Chloroform <1.0 ug/L 1.0 1 07/26/22 19:05 67-66-3 Chloromethane <1.0 ug/L 1.0 1 07/26/22 19:05 74-87-3 Methylene Chloride <1.0 ug/L 1.0 1 07/26/22 19:05 75-09-2 Tetrachloroethene 1650 ug/L 20.0 20 07/27/22 21:04 127-18-4 Toluene <1.0 ug/L 1.0 1 07/26/22 19:05 79-01-6 Vinyl chloride <1.0 ug/L 1.0 1 07/26/22 19:05 75-01-4 cis-1,2-Dichloroethene 24.4 ug/L 1.0 1 07/26/22 19:05 156-59-2 trans-1,2-Dichloroethene <1.0 ug/L 1.0 1 07/26/22 19:05 156-60-5 Surrogates	
Carbon tetrachloride <1.0 ug/L 1.0 1 07/26/22 19:05 56-23-5 Chloroform <1.0 ug/L 1.0 1 07/26/22 19:05 67-66-3 Chloromethane <1.0 ug/L 1.0 1 07/26/22 19:05 74-87-3 Methylene Chloride <1.0 ug/L 1.0 1 07/26/22 19:05 75-09-2 Tetrachloroethene 1650 ug/L 20.0 20 07/27/22 21:04 127-18-4 Toluene <1.0 ug/L 1.0 1 07/26/22 19:05 108-88-3 Trichloroethene 23.1 ug/L 1.0 1 07/26/22 19:05 79-01-6 Vinyl chloride <1.0 ug/L 1.0 1 07/26/22 19:05 75-01-4 cis-1,2-Dichloroethene 24.4 ug/L 1.0 1 07/26/22 19:05 156-59-2 surrogates	IH
Chloroform <1.0 ug/L 1.0 1 07/26/22 19:05 67-66-3 Chloromethane <1.0 ug/L 1.0 1 07/26/22 19:05 74-87-3 Methylene Chloride <1.0 ug/L 1.0 1 07/26/22 19:05 74-87-3 Methylene Chloride <1.0 ug/L 1.0 1 07/26/22 19:05 75-09-2 Tetrachloroethene <1650 ug/L 20.0 20 07/27/22 21:04 127-18-4 Toluene <1.0 ug/L 1.0 1 07/26/22 19:05 108-88-3 Trichloroethene <23.1 ug/L 1.0 1 07/26/22 19:05 79-01-6 Vinyl chloride <1.0 ug/L 1.0 1 07/26/22 19:05 75-01-4 cis-1,2-Dichloroethene <24.4 ug/L 1.0 1 07/26/22 19:05 156-59-2 trans-1,2-Dichloroethene <1.0 ug/L 1.0 1 07/26/22 19:05 156-60-5 Surrogates	
Chloromethane <1.0 ug/L 1.0 1 07/26/22 19:05 74-87-3 Methylene Chloride <1.0	
Methylene Chloride <1.0 ug/L 1.0 1 07/26/22 19:05 75-09-2 Tetrachloroethene 1650 ug/L 20.0 20 07/27/22 21:04 127-18-4 Toluene <1.0	
Tetrachloroethene 1650 ug/L 20.0 20 07/27/22 21:04 127-18-4 Toluene <1.0	
Toluene <1.0 ug/L 1.0 1 07/26/22 19:05 108-88-3 Trichloroethene 23.1 ug/L 1.0 1 07/26/22 19:05 79-01-6 Vinyl chloride <1.0	
Trichloroethene 23.1 ug/L 1.0 1 07/26/22 19:05 79-01-6 Vinyl chloride <1.0	
Vinyl chloride <1.0 ug/L 1.0 1 07/26/22 19:05 75-01-4 cis-1,2-Dichloroethene 24.4 ug/L 1.0 1 07/26/22 19:05 156-59-2 trans-1,2-Dichloroethene <1.0	
cis-1,2-Dichloroethene	
trans-1,2-Dichloroethene <1.0 ug/L 1.0 1 07/26/22 19:05 156-60-5 Surrogates	
Surrogates	
4-Bromofluorobenzene (S) 99 % 79-118 1 07/26/22 19:05 460-00-4	
Toluene-d8 (S) 96 % 82-122 1 07/26/22 19:05 2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

ample: EW-3	Lab ID: 702	23061012	Collected: 07/20/2	22 11:35	Received: 0	7/22/22 10:50 ľ	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/27/22 01:17	71-55-6	
,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/27/22 01:17	79-34-5	
,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/27/22 01:17	79-00-5	
,1-Dichloroethene	<1.0	ug/L	1.0	1		07/27/22 01:17	75-35-4	
,2-Dichloroethane	<1.0	ug/L	1.0	1		07/27/22 01:17	107-06-2	
,2-Dichloroethene (Total)	5.3	ug/L	2.0	1		07/27/22 01:17	540-59-0	
-Hexanone	<5.0	ug/L	5.0	1		07/27/22 01:17	591-78-6	
cetone U @ sample result, BL2	29.6	ug/L	5.0	1		07/27/22 01:17	67-64-1	IH
arbon disulfide	<1.0	ug/L	1.0	1		07/27/22 01:17	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/27/22 01:17	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/27/22 01:17	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/27/22 01:17	74-87-3	
lethylene Chloride	<1.0	ug/L	1.0	1		07/27/22 01:17	75-09-2	
etrachloroethene	<1.0	ug/L	1.0	1		07/27/22 01:17	127-18-4	
oluene	<1.0	ug/L	1.0	1		07/27/22 01:17	108-88-3	
richloroethene	<1.0	ug/L	1.0	1		07/27/22 01:17	79-01-6	
'inyl chloride	4.8	ug/L	1.0	1		07/27/22 01:17	75-01-4	
is-1,2-Dichloroethene	5.3	ug/L	1.0	1		07/27/22 01:17	156-59-2	D6
ans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/27/22 01:17	156-60-5	
Surrogates								
,2-Dichloroethane-d4 (S)	96	%	81-122	1		07/27/22 01:17		
-Bromofluorobenzene (S)	99	%	79-118	1		07/27/22 01:17		
oluene-d8 (S)	97	%	82-122	1		07/27/22 01:17	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: EW-4	Lab ID: 702	23061013	Collected: 07/20/2	22 11:05	Received: 0	7/22/22 10:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 19:47	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 19:47	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 19:47	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 19:47	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 19:47	107-06-2	
1,2-Dichloroethene (Total)	5.7	ug/L	2.0	1		07/26/22 19:47	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 19:47	591-78-6	
Acetone U @ sample result, BL2	27.5	ug/L	5.0	1		07/26/22 19:47	67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 19:47	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 19:47	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 19:47	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 19:47	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 19:47	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/26/22 19:47	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/26/22 19:47	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/26/22 19:47	79-01-6	
Vinyl chloride	1.0	ug/L	1.0	1		07/26/22 19:47	75-01-4	
cis-1,2-Dichloroethene	5.7	ug/L	1.0	1		07/26/22 19:47	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 19:47	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	98	%	81-122	1		07/26/22 19:47	17060-07-0	
4-Bromofluorobenzene (S)	98	%	79-118	1		07/26/22 19:47	460-00-4	
Toluene-d8 (S)	97	%	82-122	1		07/26/22 19:47	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: EW-5	Lab ID: 702	23061014	Collected: 07/20/2	22 12:00	Received: 0	7/22/22 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 20:07	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 20:07	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 20:07	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 20:07	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 20:07	107-06-2	
1,2-Dichloroethene (Total)	260	ug/L	10.0	5		07/27/22 21:24	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 20:07	591-78-6	
Acetone U @ sample result, BL2	28.7	ug/L	5.0	1		07/26/22 20:07	67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 20:07	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 20:07	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 20:07	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 20:07	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 20:07	75-09-2	
Tetrachloroethene	182	ug/L	1.0	1		07/26/22 20:07	127-18-4	
Toluene	50.5	ug/L	1.0	1		07/26/22 20:07	108-88-3	
Trichloroethene	67.0	ug/L	1.0	1		07/26/22 20:07	79-01-6	
Vinyl chloride	8.7	ug/L	1.0	1		07/26/22 20:07	75-01-4	
cis-1,2-Dichloroethene	258	ug/L	5.0	5		07/27/22 21:24	156-59-2	
trans-1,2-Dichloroethene	2.4	ug/L	1.0	1		07/26/22 20:07	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	98	%	81-122	1		07/26/22 20:07	7 17060-07-0	
4-Bromofluorobenzene (S)	98	%	79-118	1		07/26/22 20:07	460-00-4	
Toluene-d8 (S)	97	%	82-122	1		07/26/22 20:07	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: EW-8	Lab ID: 702	23061015	Collected: 07/20/2	22 09:15	Received: 0	7/22/22 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 20:28	3 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 20:28	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 20:28	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 20:28	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 20:28	107-06-2	
1,2-Dichloroethene (Total)	3.8	ug/L	2.0	1		07/26/22 20:28	3 540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 20:28	591-78-6	
Acetone J+ BL2	81.5	ug/L	5.0	1		07/26/22 20:28	67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 20:28	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 20:28	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 20:28	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 20:28	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 20:28	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/26/22 20:28	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/26/22 20:28	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/26/22 20:28	79-01-6	
Vinyl chloride	2.1	ug/L	1.0	1		07/26/22 20:28	75-01-4	
cis-1,2-Dichloroethene	3.8	ug/L	1.0	1		07/26/22 20:28	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 20:28	156-60-5	
Surrogates	6-	0.4	04 100			07/00/00 65 55		
1,2-Dichloroethane-d4 (S)	97	%	81-122	1		07/26/22 20:28		
4-Bromofluorobenzene (S)	99	%	79-118	1		07/26/22 20:28		
Toluene-d8 (S)	97	%	82-122	1		07/26/22 20:28	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: EW-11	Lab ID: 702	23061016	Collected: 07/20/2	22 10:30	Received: 0	7/22/22 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 20:49	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 20:49	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 20:49	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 20:49	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 20:49	107-06-2	
1,2-Dichloroethene (Total)	1.2J	ug/L	2.0	1		07/26/22 20:49	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 20:49	591-78-6	
Acetone U @ sample result, BL2	37.3	ug/L	5.0	1		07/26/22 20:49	67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 20:49	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 20:49	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 20:49	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 20:49	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 20:49	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/26/22 20:49	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/26/22 20:49	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/26/22 20:49	79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/26/22 20:49	75-01-4	
cis-1,2-Dichloroethene	1.2	ug/L	1.0	1		07/26/22 20:49	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 20:49	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	97	%	81-122	1		07/26/22 20:49	17060-07-0	
4-Bromofluorobenzene (S)	98	%	79-118	1		07/26/22 20:49	460-00-4	
Toluene-d8 (S)	99	%	82-122	1		07/26/22 20:49	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: EW-12	Lab ID: 702	23061017	Collected: 07/20/2	22 10:50	Received: 0	7/22/22 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 21:09	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 21:09	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 21:09	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 21:09	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 21:09	107-06-2	
1,2-Dichloroethene (Total)	<2.0	ug/L	2.0	1		07/26/22 21:09	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 21:09	591-78-6	
Acetone U @ RL BL2	3.2J	ug/L	5.0	1		07/26/22 21:09	67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 21:09	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 21:09	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 21:09	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 21:09	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 21:09	75-09-2	
Tetrachloroethene	5.7	ug/L	1.0	1		07/26/22 21:09	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/26/22 21:09	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/26/22 21:09	79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/26/22 21:09	75-01-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 21:09	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 21:09	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	98	%	81-122	1		07/26/22 21:09	17060-07-0	
4-Bromofluorobenzene (S)	98	%	79-118	1		07/26/22 21:09	460-00-4	
Toluene-d8 (S)	96	%	82-122	1		07/26/22 21:09	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: IW-8	Lab ID: 7022	23061018	Collected: 07/20/2	22 09:55	Received: 0	7/22/22 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 21:30	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 21:30	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 21:30	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 21:30	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 21:30	107-06-2	
1,2-Dichloroethene (Total)	<2.0	ug/L	2.0	1		07/26/22 21:30	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 21:30	591-78-6	
Acetone U @ sample result, BL2	68.3	ug/L	5.0	1		07/26/22 21:30	67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 21:30	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 21:30	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 21:30	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 21:30	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 21:30	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/26/22 21:30	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/26/22 21:30	108-88-3	
Trichloroethene	1.1	ug/L	1.0	1		07/26/22 21:30	79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/26/22 21:30	75-01-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 21:30	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 21:30	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	99	%	81-122	1		07/26/22 21:30		
4-Bromofluorobenzene (S)	100	%	79-118	1		07/26/22 21:30	460-00-4	
Toluene-d8 (S)	99	%	82-122	1		07/26/22 21:30	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: IW-9	Lab ID: 702	23061019	Collected: 07/20/2	22 08:50	Received: 0	7/22/22 10:50 ľ	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 21:51	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 21:51	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 21:51	79-00-5	
1,1-Dichloroethene	1.4	ug/L	1.0	1		07/26/22 21:51	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 21:51	107-06-2	
1,2-Dichloroethene (Total)	590	ug/L	20.0	10		07/27/22 21:45	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 21:51	591-78-6	
Acetone U @ sample result, BL2	34.5	ug/L	5.0	1		07/26/22 21:51	67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 21:51	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 21:51	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 21:51	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 21:51	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 21:51	75-09-2	
Tetrachloroethene	168	ug/L	1.0	1		07/26/22 21:51	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/26/22 21:51	108-88-3	
Trichloroethene	239	ug/L	10.0	10		07/27/22 21:45	79-01-6	
Vinyl chloride	2.1	ug/L	1.0	1		07/26/22 21:51	75-01-4	
cis-1,2-Dichloroethene	586	ug/L	10.0	10		07/27/22 21:45	156-59-2	
trans-1,2-Dichloroethene	3.6	ug/L	1.0	1		07/26/22 21:51	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	89	%	81-122	1		07/26/22 21:51	17060-07-0	
4-Bromofluorobenzene (S)	100	%	79-118	1		07/26/22 21:51	460-00-4	
Toluene-d8 (S)	105	%	82-122	1		07/26/22 21:51	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: IW-10	Lab ID: 702	23061020	Collected: 07/20/2	22 09:50	Received: 0	7/22/22 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 22:11	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 22:11	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 22:11	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 22:11	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 22:11	107-06-2	
1,2-Dichloroethene (Total)	3.6	ug/L	2.0	1		07/26/22 22:11	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 22:11	591-78-6	
Acetone U @ sample result, BL2	29.9	ug/L	5.0	1		07/26/22 22:11	67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 22:11	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 22:11	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 22:11	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 22:11	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 22:11	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/26/22 22:11	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/26/22 22:11	108-88-3	
Trichloroethene	1.3	ug/L	1.0	1		07/26/22 22:11	79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/26/22 22:11	75-01-4	
cis-1,2-Dichloroethene	3.6	ug/L	1.0	1		07/26/22 22:11	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 22:11	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	98	%	81-122	1		07/26/22 22:11	17060-07-0	
4-Bromofluorobenzene (S)	98	%	79-118	1		07/26/22 22:11	460-00-4	
Toluene-d8 (S)	97	%	82-122	1		07/26/22 22:11	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: MW-4	Lab ID: 702	23061021	Collected: 07/20/2	22 10:45	Received: 0	7/22/22 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 22:32	2 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 22:32	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 22:32	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 22:32	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 22:32	107-06-2	
1,2-Dichloroethene (Total)	<2.0	ug/L	2.0	1		07/26/22 22:32	2 540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 22:32	591-78-6	
Acetone U @ sample result, BL2	30.5	ug/L	5.0	1		07/26/22 22:32	2 67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 22:32	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 22:32	2 56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 22:32	2 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 22:32	2 74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 22:32	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/26/22 22:32	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/26/22 22:32	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/26/22 22:32	79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/26/22 22:32	75-01-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 22:32	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 22:32	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	97	%	81-122	1		07/26/22 22:32		
4-Bromofluorobenzene (S)	99	%	79-118	1		07/26/22 22:32	2 460-00-4	
Toluene-d8 (S)	97	%	82-122	1		07/26/22 22:32	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: MW-104	Lab ID: 702	23061022	Collected: 07/20/2	22 11:40	Received: 0	7/22/22 10:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 22:53	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 22:53	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 22:53	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 22:53	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 22:53	107-06-2	
1,2-Dichloroethene (Total)	<2.0	ug/L	2.0	1		07/26/22 22:53	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 22:53	591-78-6	
Acetone U @ sample result, BL2	39.1	ug/L	5.0	1		07/26/22 22:53	67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 22:53	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 22:53	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 22:53	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 22:53	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 22:53	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/26/22 22:53	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/26/22 22:53	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/26/22 22:53	79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/26/22 22:53	75-01-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 22:53	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 22:53	156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	96	%	81-122	1		07/26/22 22:53	17060-07-0	
4-Bromofluorobenzene (S)	98	%	79-118	1		07/26/22 22:53	460-00-4	
Toluene-d8 (S)	96	%	82-122	1		07/26/22 22:53	2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Sample: MW-109	Lab ID: 702	23061023	Collected: 07/20/2	22 11:30	Received: 0	7/22/22 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 23:13	3 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/26/22 23:13	3 79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/26/22 23:13	3 79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 23:13	3 75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/26/22 23:13	3 107-06-2	
1,2-Dichloroethene (Total)	<2.0	ug/L	2.0	1		07/26/22 23:13	3 540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/26/22 23:13	3 591-78-6	
Acetone U @ sample result, BL2	12.2	ug/L	5.0	1		07/26/22 23:13	8 67-64-1	IH
Carbon disulfide	<1.0	ug/L	1.0	1		07/26/22 23:13	3 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/26/22 23:13	3 56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/26/22 23:13	8 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/26/22 23:13	3 74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/26/22 23:13	3 75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/26/22 23:13	3 127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/26/22 23:13	3 108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/26/22 23:13	3 79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/26/22 23:13	3 75-01-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 23:13	3 156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/26/22 23:13	3 156-60-5	
Surrogates								
1,2-Dichloroethane-d4 (S)	96	%	81-122	1		07/26/22 23:13	3 17060-07-0	
4-Bromofluorobenzene (S)	99	%	79-118	1		07/26/22 23:13	3 460-00-4	
Toluene-d8 (S)	98	%	82-122	1		07/26/22 23:13	3 2037-26-5	

Date: 08/02/2022 03:34 PM

Project: AMERICAN THERMOSTAT 7/20

Pace Project No.: 70223061

Date: 08/02/2022 03:34 PM

Sample: FIELD BLANK	Lab ID: 702	23061036	Collected: 07/20/2	2 14:20	Received: 0	7/22/22 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/28/22 19:39	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/28/22 19:39	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/28/22 19:39	79-00-5	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/28/22 19:39	75-35-4	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/28/22 19:39	107-06-2	
1,2-Dichloroethene (Total)	<2.0	ug/L	2.0	1		07/28/22 19:39	540-59-0	
2-Hexanone	<5.0	ug/L	5.0	1		07/28/22 19:39	591-78-6	
Acetone	34.6	ug/L	5.0	1		07/28/22 19:39	67-64-1	IH,v1
Carbon disulfide	<1.0	ug/L	1.0	1		07/28/22 19:39	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/28/22 19:39	56-23-5	
Chloroform	<1.0	ug/L	1.0	1		07/28/22 19:39	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/28/22 19:39	74-87-3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/28/22 19:39	75-09-2	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/28/22 19:39	127-18-4	
Toluene Toluene	1.3	ug/L	1.0	1		07/28/22 19:39	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/28/22 19:39	79-01-6	
Vinyl chloride	<1.0	ug/L	1.0	1		07/28/22 19:39	75-01-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/28/22 19:39	156-59-2	
trans-1,2-Dichloroethene Surrogates	<1.0	ug/L	1.0	1		07/28/22 19:39	156-60-5	
1,2-Dichloroethane-d4 (S)	99	%	81-122	1		07/28/22 19:39	17060-07-0	
4-Bromofluorobenzene (S)	98	%	79-118	1		07/28/22 19:39	460-00-4	
Toluene-d8 (S)	93	%	82-122	1		07/28/22 19:39	2037-26-5	

REPORT OF LABORATORY ANALYSIS

SAMPLE NO.

17076247CCV

Lab Name: Pace Analytical - New York Calibration Date: 07/29/2022 Time: 15:31

Instrument ID: 70MSVB GC Column: Col 1 Init. Calib. Date(s): 07/22/2022 07/22/2022

Lab File ID: 072922.B\M2166.D Init. Calib. Time(s): 15:32 18:49

SDG No.: 70223061

COMPOUND	CURVE	RRF or Amount	RRF or Amount	MIN RRF	%D	MAX %D
Acetone	Averaged	0.10924	0.15694	0.0100	43.6676*	20.0000
Carbon disulfide	Averaged	1.21685	1.28572	0.1000	5.6592	20.0000
Carbon tetrachloride	Averaged	0.38238	0.31991	0.1000	-16.3363	20.0000
Chloroform	Averaged	0.91887	1.01745	0.3000	10.7286	20.0000
Chloromethane	Averaged	0.48050	0.42497	0.0100	-11.5563	20.0000
1,2-Dichloroethane	Averaged	0.62269	0.66722	0.0700	7.1502	20.0000
1,1-Dichloroethene	Averaged	0.37939	0.46517	0.0600	22.6101*	20.0000
cis-1,2-Dichloroethene	Averaged	0.56018	0.61490	0.2000	9.7673	20.0000
trans-1,2-Dichloroethene	Averaged	0.46793	0.54283	0.1000	16.0047	20.0000
2-Hexanone	Averaged	0.31551	0.28145	0.0100	-10.7948	20.0000
Methylene Chloride	Averaged	0.47875	0.49921	0.0100	4.2750	20.0000
1,1,2,2-Tetrachloroethane	Averaged	0.72387	0.61759	0.2000	-14.6828	20.0000
Tetrachloroethene	Averaged	0.62614	0.63514	0.1000	1.4368	20.0000
Toluene	Averaged	1.33878	1.44900	0.3000	8.2328	20.0000
1,1,1-Trichloroethane	Averaged	0.50311	0.49828	0.0500	-0.9591	20.0000
1,1,2-Trichloroethane	Averaged	0.23462	0.23014	0.2000	-1.9062	20.0000
Trichloroethene	Averaged	0.32824	0.34610	0.2000	5.4409	20.0000
Vinyl chloride	Averaged	0.52327	0.53658	0.0100	2.5444	20.0000
4-Bromofluorobenzene (S)	Averaged	0.89672	0.90607	0.0100	1.0432	20.0000
1,2-Dichloroethane-d4 (S)	Averaged	0.37166	0.34466	0.0100	-7.2653	20.0000
Toluene-d8 (S)	Averaged	2.17704	2.07753	0.0100	-4.5710	20.0000

outside of scope

The values for compounds reported as total are based on a summation of the components within the laboratory information management system.

^{* -} Value lies outside of established control limits.

SAMPLE NO.

17069110CCV

Lab Name: Pace Analytical - New York Calibration Date: 07/28/2022 Time: 14:29

GC Column: Col 1 Instrument ID: 70MSVB

Init. Calib. Date(s): 07/22/2022

07/22/2022

Lab File ID: 072822.B\M2138.D

Init. Calib. Time(s): 15:32

18:49

SDG No.: 70223061

COMPOUND	CURVE	RRF or Amount	RRF or Amount	MIN RRF	%D	MAX %D
Acetone	Averaged	0.10924	0.14121	0.0100	29.2636*	20.0000
Carbon disulfide	Averaged	1.21685	1.32251	0.1000	8.6826	20.0000
Carbon tetrachloride	Averaged	0.38238	0.33082	0.1000	-13.4832	20.0000
Chloroform	Averaged	0.91887	1.02899	0.3000	11.9838	20.0000
Chloromethane	Averaged	0.48050	0.45283	0.0100	-5.7584	20.0000
1,2-Dichloroethane	Averaged	0.62269	0.67548	0.0700	8.4777	20.0000
1,1-Dichloroethene	Averaged	0.37939	0.48020	0.0600	26.5709*	20.0000
cis-1,2-Dichloroethene	Averaged	0.56018	0.63370	0.2000	13.1240	20.0000
trans-1,2-Dichloroethene	Averaged	0.46793	0.55676	0.1000	18.9825	20.0000
2-Hexanone	Averaged	0.31551	0.28130	0.0100	-10.8423	20.0000
Methylene Chloride	Averaged	0.47875	0.52003	0.0100	8.6222	20.0000
1,1,2,2-Tetrachloroethane	Averaged	0.72387	0.65520	0.2000	-9.4866	20.0000
Tetrachloroethene	Averaged	0.62614	0.67390	0.1000	7.6270	20.0000
Toluene	Averaged	1.33878	1.47839	0.3000	10.4284	20.0000
1,1,1-Trichloroethane	Averaged	0.50311	0.51355	0.0500	2.0749	20.0000
1,1,2-Trichloroethane	Averaged	0.23462	0.23692	0.2000	0.9840	20.0000
Trichloroethene	Averaged	0.32824	0.35666	0.2000	8.6590	20.0000
Vinyl chloride	Averaged	0.52327	0.55877	0.0100	6.7853	20.0000
4-Bromofluorobenzene (S)	Averaged	0.89672	0.90047	0.0100	0.4185	20.0000
1,2-Dichloroethane-d4 (S)	Averaged	0.37166	0.35275	0.0100	-5.0889	20.0000
Toluene-d8 (S)	Averaged	2.17704	2.07829	0.0100	-4.5362	20.0000

outside of $\operatorname{scope} \operatorname{\mathcal{KRP}}$

The values for compounds reported as total are based on a summation of the components within the laboratory information management system.

^{* -} Value lies outside of established control limits.

SAMPLE NO.

17063254CCV

Lab Name: Pace Analytical - New York Calibration Date: 07/27/2022 Time: 14:52

GC Column: Col 1 Instrument ID: 70MSVB

Init. Calib. Date(s): 07/22/2022

07/22/2022

Lab File ID: 072722.B\M2111.D

Init. Calib. Time(s): 15:32

18:49

SDG No.: 70223061

10223001						
COMPOUND	CURVE	RRF or Amount	RRF or Amount	MIN RRF	%D	MAX %D
Acetone	Averaged	0.10924	0.12910	0.0100	18.1813	20.0000
Carbon disulfide	Averaged	1.21685	1.32748	0.1000	9.0910	20.0000
Carbon tetrachloride	Averaged	0.38238	0.36540	0.1000	-4.4402	20.0000
Chloroform	Averaged	0.91887	1.03264	0.3000	12.3812	20.0000
Chloromethane	Averaged	0.48050	0.44831	0.0100	-6.7000	20.0000
1,2-Dichloroethane	Averaged	0.62269	0.67193	0.0700	7.9073	20.0000
1,1-Dichloroethene	Averaged	0.37939	0.47724	0.0600	25.7909*	20.0000
cis-1,2-Dichloroethene	Averaged	0.56018	0.63262	0.2000	12.9302	20.0000
trans-1,2-Dichloroethene	Averaged	0.46793	0.54150	0.1000	15.7217	20.0000
2-Hexanone	Averaged	0.31551	0.27671	0.0100	-12.2988	20.0000
Methylene Chloride	Averaged	0.47875	0.51578	0.0100	7.7347	20.0000
1,1,2,2-Tetrachloroethane	Averaged	0.72387	0.64042	0.2000	-11.5286	20.0000
Tetrachloroethene	Averaged	0.62614	0.69962	0.1000	11.7352	20.0000
Toluene	Averaged	1.33878	1.48429	0.3000	10.8687	20.0000
1,1,1-Trichloroethane	Averaged	0.50311	0.53191	0.0500	5.7245	20.0000
1,1,2-Trichloroethane	Averaged	0.23462	0.23956	0.2000	2.1074	20.0000
Trichloroethene	Averaged	0.32824	0.35897	0.2000	9.3614	20.0000
Vinyl chloride	Averaged	0.52327	0.56248	0.0100	7.4939	20.0000
4-Bromofluorobenzene (S)	Averaged	0.89672	0.90126	0.0100	0.5067	20.0000
1,2-Dichloroethane-d4 (S)	Averaged	0.37166	0.34339	0.0100	-7.6063	20.0000
Toluene-d8 (S)	Averaged	2.17704	2.11909	0.0100	-2.6621	20.0000

outside of scope KPP

The values for compounds reported as total are based on a summation of the components within the laboratory information management system.

^{* -} Value lies outside of established control limits.

SAMPLE NO.

17047960CCV

Lab Name: Pace Analytical - New York Calibration Date: 07/25/2022 Time: 14:39

GC Column: Col 1

Init. Calib. Date(s): 07/22/2022 07/22/2022

Lab File ID: 072522.B\M2055.D Init. Calib. Time(s): 15:32 18:49

SDG No.: 70223061

Instrument ID: 70MSVB

COMPOUND	CURVE	RRF or Amount	RRF or Amount	MIN RRF	%D	MAX %D	
Acetone	Averaged	0.10924	0.14650	0.0100	34.1101*	20.0000	
Carbon disulfide	Averaged	1.21685	1.30935	0.1000	7.6012	20.0000	
Carbon tetrachloride	Averaged	0.38238	0.44261	0.1000	15.7505	20.0000	
Chloroform	Averaged	0.91887	0.97596	0.3000	6.2131	20.0000	
Chloromethane	Averaged	0.48050	0.46972	0.0100	-2.2431	20.0000	
1,2-Dichloroethane	Averaged	0.62269	0.64183	0.0700	3.0732	20.0000	
1,1-Dichloroethene	Averaged	0.37939	0.44302	0.0600	16.7708	20.0000	
cis-1,2-Dichloroethene	Averaged	0.56018	0.58900	0.2000	5.1446	20.0000	
trans-1,2-Dichloroethene	Averaged	0.46793	0.50600	0.1000	8.1344	20.0000	
2-Hexanone	Averaged	0.31551	0.37442	0.0100	18.6710	20.0000	
Methylene Chloride	Averaged	0.47875	0.46109	0.0100	-3.6889	20.0000	
1,1,2,2-Tetrachloroethane	Averaged	0.72387	0.75459	0.2000	4.2438	20.0000	
Tetrachloroethene	Averaged	0.62614	0.72057	0.1000	15.0810	20.0000	
Toluene	Averaged	1.33878	1.46473	0.3000	9.4077	20.0000	
1,1,1-Trichloroethane	Averaged	0.50311	0.56103	0.0500	11.5132	20.0000	
1,1,2-Trichloroethane	Averaged	0.23462	0.23965	0.2000	2.1473	20.0000	
Trichloroethene	Averaged	0.32824	0.34948	0.2000	6.4707	20.0000	
Vinyl chloride	Averaged	0.52327	0.55001	0.0100	5.1110	20.0000	
4-Bromofluorobenzene (S)	Averaged	0.89672	0.90323	0.0100	0.7263	20.0000	
1,2-Dichloroethane-d4 (S)	Averaged	0.37166	0.35689	0.0100	-3.9736	20.0000	
Toluene-d8 (S)	Averaged	2.17704	2.21736	0.0100	1.8518	20.0000	

outside of scope \mathcal{KRP}

The values for compounds reported as total are based on a summation of the components within the laboratory information management system.

^{* -} Value lies outside of established control limits.

MSV - FORM VII VOA-1 MSV INITIAL CALIBRATION DATA

SAMPLE NO.

17044291ICV

Lab Name: Pace Analytical - New York Calibration Date: 07/22/2022 Time: 20:26

Instrument ID: <u>70MSVB</u> GC Column: <u>Col 1</u> Init. Calib. Date(s): <u>07/22/2022</u> <u>07/22/2022</u>

 Lab File ID:
 0722222.B\M2053.D
 Init. Calib. Time(s):
 15:32
 18:49

SDG No.: 70223061

10223001							
COMPOUND	CURVE	RRF or Amount	RRF or Amount	MIN RRF	%D	MAX %D	
Acetone	Averaged	0.10924	0.15097	0.0100	38.2047*	30.0000	
Carbon disulfide	Averaged	1.21685	1.29054	0.1000	6.0551	30.0000	
Carbon tetrachloride	Averaged	0.38238	0.38728	0.1000	1.2828	30.0000	
Chloroform	Averaged	0.91887	0.91291	0.3000	-0.6486	30.0000	
Chloromethane	Averaged	0.48050	0.52615	0.0100	9.5001	30.0000	
1,2-Dichloroethane	Averaged	0.62269	0.60960	0.0700	-2.1031	30.0000	
1,1-Dichloroethene	Averaged	0.37939	0.42575	0.0600	12.2186	30.0000	
cis-1,2-Dichloroethene	Averaged	0.56018	0.53730	0.2000	-4.0845	30.0000	
trans-1,2-Dichloroethene	Averaged	0.46793	0.45476	0.1000	-2.8155	30.0000	
2-Hexanone	Averaged	0.31551	0.35874	0.0100	13.6998	30.0000	
Methylene Chloride	Averaged	0.47875	0.47405	0.0100	-0.9804	30.0000	
1,1,2,2-Tetrachloroethane	Averaged	0.72387	0.65218	0.2000	-9.9035	30.0000	
Tetrachloroethene	Averaged	0.62614	0.60706	0.1000	-3.0475	30.0000	
Toluene	Averaged	1.33878	1.35115	0.3000	0.9242	30.0000	
1,1,1-Trichloroethane	Averaged	0.50311	0.50174	0.0500	-0.2722	30.0000	
1,1,2-Trichloroethane	Averaged	0.23462	0.21586	0.2000	-7.9926	30.0000	
Trichloroethene	Averaged	0.32824	0.32187	0.2000	-1.9396	30.0000	
Vinyl chloride	Averaged	0.52327	0.57055	0.0100	9.0369	30.0000	
4-Bromofluorobenzene (S)	Averaged	0.89672	0.88692	0.0100	-1.0925	30.0000	
1,2-Dichloroethane-d4 (S)	Averaged	0.37166	0.36802	0.0100	-0.9791	30.0000	
Toluene-d8 (S)	Averaged	2.17704	2.18581	0.0100	0.4028	30.0000	

outside of scope

The values for compounds reported as total are based on a summation of the components within the laboratory information management system.

^{* -} Value lies outside of established control limits.

MSV - FORM III VOA-1 WATER VOLATILE SAMPLE/DUPLICATE RECOVERY

Lab Name: Pace Analytical - New York	Duplicate Sample No: 70223061012DUP
Date Extracted: 07/26/2022	Date Analyzed: 07/26/2022
Instrument: 70MSVB	Lab File ID: 072622.B\M2091.D
Lab Sample ID: EW-3	SDG No.: 70223061

COMPOUND	SAMPLE CONCENTRATION (ug/L)	DUPLICATE CONCENTRATION (ug/L)	RPD	RPD LIMITS	
1,1,1-Trichloroethane	<1.0	<1.0		0-20	1
1,1,2,2-Tetrachloroethane	<1.0	<1.0		0-20	1
1,1,2-Trichloroethane	<1.0	<1.0		0-20	1
1,1-Dichloroethene	<1.0	<1.0		0-20	1
1,2-Dichloroethane	<1.0	<1.0		0-20	1
1,2-Dichloroethene (Total)	5.3	2.2	83	0-20	J
2-Hexanone	<5.0	<5.0		0-20	1
Acetone	29.6	28.7	3	0-20	1
Carbon disulfide	<1.0	<1.0		0-20	1
Carbon tetrachloride	<1.0	<1.0		0-20	7
Chloroform	<1.0	<1.0		0-20	7
Chloromethane	<1.0	<1.0		0-20	1
Methylene Chloride	<1.0	<1.0		0-20	1
Tetrachloroethene	<1.0	1.2		0-20	7
Toluene	<1.0	<1.0		0-20	1
Trichloroethene	<1.0	<1.0		0-20	1
Vinyl chloride	4.8	4.5	6	0-20	1
cis-1,2-Dichloroethene	5.3	2.2	83	0-20	J
trans-1,2-Dichloroethene	<1.0	<1.0		0-20	1

 $^{\mathrm{J,\,LD}}\mathcal{KRP}$

J, LD KRP

RPD: 2 out of 4 outside limits.

SAMPLE NO.

17069110CCV

Lab Name: Pace Analytical - New York Calibration Date: 07/28/2022 Time: 14:29

Instrument ID: 70MSVB GC Column: Col 1 Init. Calib. Date(s): 07/22/2022 07/22/2022

 Lab File ID:
 072822.B\M2138.D
 Init. Calib. Time(s):
 15:32
 18:49

SDG No.: 70223061

70223061							
COMPOUND	CURVE	RRF or Amount	RRF or Amount	MIN RRF	%D	MAX %D	
Acetone	Averaged	0.10924	0.14121	0.0100	29.2636*	20.0000	
Carbon disulfide	Averaged	1.21685	1.32251	0.1000	8.6826	20.0000	
Carbon tetrachloride	Averaged	0.38238	0.33082	0.1000	-13.4832	20.0000	
Chloroform	Averaged	0.91887	1.02899	0.3000	11.9838	20.0000	
Chloromethane	Averaged	0.48050	0.45283	0.0100	-5.7584	20.0000	
1,2-Dichloroethane	Averaged	0.62269	0.67548	0.0700	8.4777	20.0000	
1,1-Dichloroethene	Averaged	0.37939	0.48020	0.0600	26.5709*	20.0000	
cis-1,2-Dichloroethene	Averaged	0.56018	0.63370	0.2000	13.1240	20.0000	
trans-1,2-Dichloroethene	Averaged	0.46793	0.55676	0.1000	18.9825	20.0000	
2-Hexanone	Averaged	0.31551	0.28130	0.0100	-10.8423	20.0000	
Methylene Chloride	Averaged	0.47875	0.52003	0.0100	8.6222	20.0000	
1,1,2,2-Tetrachloroethane	Averaged	0.72387	0.65520	0.2000	-9.4866	20.0000	
Tetrachloroethene	Averaged	0.62614	0.67390	0.1000	7.6270	20.0000	
Toluene	Averaged	1.33878	1.47839	0.3000	10.4284	20.0000	
1,1,1-Trichloroethane	Averaged	0.50311	0.51355	0.0500	2.0749	20.0000	
1,1,2-Trichloroethane	Averaged	0.23462	0.23692	0.2000	0.9840	20.0000	
Trichloroethene	Averaged	0.32824	0.35666	0.2000	8.6590	20.0000	
Vinyl chloride	Averaged	0.52327	0.55877	0.0100	6.7853	20.0000	
4-Bromofluorobenzene (S)	Averaged	0.89672	0.90047	0.0100	0.4185	20.0000	
1,2-Dichloroethane-d4 (S)	Averaged	0.37166	0.35275	0.0100	-5.0889	20.0000	
Toluene-d8 (S)	Averaged	2.17704	2.07829	0.0100	-4.5362	20.0000	

Outside of scope KRF

The values for compounds reported as total are based on a summation of the components within the laboratory information management system.

^{* -} Value lies outside of established control limits.

ATTACHMENT 4 Time-Series Plots OW-14, EW-16, EW-7, CE-2, EW-13, M-5

ATTACHMENT 5 Cost Control Summary Documents

2022 Cost Summary Table

Task 1 (Preliminary Activitie	es)
Labor	\$19,101
Task 2 (Site Management Pl	an)
Labor	\$1,828
Task 3 (Operation and Maintena	ince) (a)
Labor	\$97,849
Lodging, Travel, and M&IE	\$5,322
Waste Disposal	\$451
Internet	\$1,855
Plowing	
Supplies & Equipment	
Subcontractors	•
Electricity*	
Propane*	· ·
Water*	
Laboratory Services* (b)	\$3,293
	\$143,832
Task 4 (Monitoring and Repor	rting)
Labor (c)	\$96,996
Lodging, Travel, and M&IE	\$786
Supplies & Equipment	
Laboratory Services* (b)	\$2,750
	\$101,294
Task 5 (Periodic Review and Rep	porting)
Labor	\$12,576
Annual Total:	\$278,631

Notes:

- (a) Includes routine and non-routine OM&M, residential POET system OM&M, POET system decommissioning and reporting, and costs for new pumps and motor leads for OW-3, OW-7, OW-13, and OW-16 and oversight during replacement.
- (b) Costs for Laboratory Services under Tasks 3 and 4 were estimated using the total laboratory services cost provided by the NYSDEC for 2022. Monthly treatment system performance samples and quarterly residential POET samples represent Task 3 laboratory costs. July 2022 LTM samples and EW-9 samples collected under the optimization evaluation represent Task 4 laboratory costs.
- (c) Labor costs included LTM; semiannual hydraulic monitoring; analytical data validation and management; compilation, review, and evaluation of monthly system performance data; monthly reporting and invoicing; sustainability and resiliency presentation with the NYSDEC; an updated Ground Source Heating and Solar Photovoltaic Evaluation; extraction well optimization evaluation reporting.
- * NYSDEC direct expense

M&IE = Meals and incidental expenses

Annual SM Costs 2008/2009-2022

Notes:

GWETS OM&M includes Country Estates (thru Q2 2013) and residential GAC system OM&M (thru 6/1/2022). After Q2 2013, OM&M of Country Estates treatment system(s) became owner's responsibility. OM&M of three residential GAC systems ceased after 6/1/2022. 2008/2009: Costs from 10/1/2008 through 12/31/2009.

2010: GWETS OM&M includes Country Estates & residential GAC system OM&M. Reporting includes preparation of 2008/2009 PRR.

2011: GWETS OM&M includes Country Estates & residential GAC system OM&M.

2012: GWETS OM&M includes Country Estates & residential GAC system OM&M, preparation of detailed design drawings for GWETS improvements; Reporting includes preparation of SMP and 2010/2011 PRR.

2013: OM&M does not include preparation of detailed design drawings for GWTS improvements or implementation of RSO improvements. LTM includes conducting hydraulic effectiveness monitoring and EW-9 step test.

2014: OM&M does not include GWETS modifications; Reporting includes 2014 PRR, drafting SMP update.

2015: GWETS OM&M includes oversight/coordination of GWETS upgrades/modifications; LTM reflects quarterly residential POET system OM&M, extraction well decommissioning, EW-5 over drilling/MW conversion, EW-5 investigation derived waste disposal.

2016/2017: GWETS OM&M includes modifications, GWETS commissioning; Reporting includes PRR preparation, SMP updates.

2018: GWETS OM&M includes GWETS commissioning/optimization & monitoring well decommissioning inventory; Reporting includes annual report preparation, SMP updates.

2019: GWETS OM&M includes regular inspections/maintenance; LTM reflects quarterly residential POET system OM&M, semiannual hydraulic monitoring; Reporting includes annual report preparation.

2020: GWETS OM&M includes routine/non-routine inspections/maintenance, replacement of two effluent discharge pumps, quarterly residential POET system OM&M; LTM reflects January/July 2020 groundwater monitoring/sampling events, semiannual hydraulic monitoring, October 2020 emerging contaminants sampling; Reporting includes 2019 Annual Report, initial 2020 PRR preparation, 2020 MPRs

2021: GWETS OM&M includes routine/non-routine inspections/maintenance, quarterly residential POET system OM&M, well decommissioning event; LTM reflects April 2021 groundwater monitoring/sampling event, semiannual hydraulic monitoring; Reporting includes 2020 Periodic Review Report edits, 2021 MPRs, Field Activities Plans for Well Decommissioning and Extraction Well Optimization Evaluation, Well Decommissioning Field Activities Report, annual report preparation, data management/validation.

2022: GWETS OM&M includes routine/non-routine inspection/maintenance, waste disposal, residential POET system OM&M through June 1st, partial decommissioning of one residential POET system, OW-3, OW-7, OW-13, OW-16 pump replacements; LTM includes July 2022 groundwater monitoring/sampling event, semiannual hydraulic monitoring; Reporting includes 2021 Annual Report, MPRs, Extraction Well Optimization Evaluation Field Activities Report, updated Ground Source Heating and Solar Photovoltaic Evaluation, data management/validation.

	2008/2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
GWETS OM&M Cost	\$644,463	\$436,679	\$307,055	\$323,996	\$341,910	\$237,347	\$260,109	\$278,887	\$206,121	\$157,316	\$113,866	\$206,964	\$159,592	\$143,832
VOCs Removed (pounds/year)	527	227	273	253	211	197	142	196	180	199	267	190	277	161
\$/pound VOCs Removed	\$1,222	\$1,921	\$1,125	\$1,280	\$1,624	\$1,204	\$1,830	\$1,421	\$1,145	\$791	\$427	\$1,089	\$575	\$894