Forensic Environmental Services, Inc.

113 John Robert Thomas Drive The Commons at Lincoln Center Exton, Pennsylvania 19341

Telephone: (610) 594-3940 Telecopier: (610) 594-3943

August 15, 2021

Daniel McNally NYS Dept. of Environmental Conservation Division of Environmental Remediation Remedial Bureau B, 625 Broadway, 12th Floor Albany, NY 12233-7016

RE: Quarterly Progress Report on Project Activities (April 1 through July 31, 2021)
Former Norton/Nashua Tape Products Facility
2600 Seventh Avenue, Watervliet, New York
NYSDEC Order on Consent Index No. CO: 4-20001205-3375 (amended on January 10, 2019)

Dear Mr. McNally:

In accordance with the Site Management Plan (SMP), Forensic Environmental Services, Inc. (FES), on behalf of Saint-Gobain Corporation (SGC), submits this Quarterly Progress Report for ongoing project activities at the Former Norton/Nashua Tape Products Facility in Watervliet, New York. Activities performed during the reporting period (April 1 through July 31, 2020) consisted of: 1) implementation of ISCO remedial activities (June 6 – 17, 2021); 2) the collection of ISCO-related vapor intrusion pathway samples on June 9, 2020; 3) coordination of waste disposal contractors for the proposed 2021 Enhanced Fluid Recovery (EFR) activities; 4) coordination of paving contractors for the proposed Engineering Control (capping) activities; and 5) post-ISCO groundwater sampling activities. In addition, a report summarizing the First Quarter 2021 site activities was submitted to the NYSDEC on April 13, 2021.

ISCO Injection Activities

ISCO injection/treatment activities were conducted by ISOTEC of West Windsor, New Jersey from June 8 to 17, 2021 in two areas of the site exhibiting elevated toluene concentrations. These included: 1) Building #58 proximal to monitoring well MP-37; and 2) along the interior and exterior north wall of Building #61 (proximal to monitoring wells MP-24 through MP-27). It should be noted that ISCO injections were previously conducted proximal to monitoring well MW-27 in the northern portion of the site (see Figure 1); however, subsequent to ISCO and enhanced Fluid Recovery (EFR) activities conducted in this area through October 2019, the toluene concentration in MW-27 was reduced to less than 500 micrograms per liter (µg/L). Currently (April 2021), the toluene concentration in MW-27 is 1,700 µg/L. ISCO injection locations are presented in Figure 1. ISCO reagent injection volumes, flow rates, and field monitoring data are presented in Tables 1 and 2, respectively.

As outlined in the SMP, as well as previous (NYSDEC-approved) ISCO workplans, pre-ISCO injection clearance borings were installed inside the existing warehouse building, which included 10 borings in Building #61 proximal to existing monitoring wells MP-27 through MP-29 and 8 additional borings in Building #58 proximal to monitoring well MP-37 (Note: ISCO injection locations located to the north of Building #61 and proximal to monitoring well MW-27 were installed using conventional Geoprobe drilling methods). Clearance borings were installed by Cascade Drilling and Technical Services (Cascade) of Schenectady, New York from June 1 to 4, 2021. Injection point locations are presented in Figure 1.

A total of 20,000 gallons of ISCO reagents were injected into the subsurface during the 8-day injection event at depths ranging from 6 to 15 feet including: 1) 3,500 gallons of catalyst/stabilizer; 6,500 gallons of hydrogen peroxide; and 10,000 gallons of sodium persulfate into 25 borings in the vicinity of target wells. Injection point locations and reagent volumes and flow rates are presented in Figure 1 and Table 1, respectively.

Field monitoring was conducted throughout ISCO injection activities to: 1) evaluate the progress of the injection; 2) determine the approximate radius of influence around each injection point; and 3) conduct air monitoring in accordance with the site-specific Health and Safety Plan (HASP). Field monitoring parameters included: 1) depth-to-water; 2) monitoring well headspace PID, lower explosive limit (LEL), oxygen, and carbon dioxide; 3) groundwater quality parameters (temperature, conductivity, pH, oxidation reduction potential [ORP]; 4) injected reagents (iron, hydrogen peroxide, and persulfate; and 5) worker breathing zone PID monitoring.

During ISCO injection activities, elevated PID, LEL, and specific conductivity readings were observed at selected monitoring wells within and adjacent to the injection areas (see Tables 2a and 2b). Field data obtained from downgradient monitoring well MP-39, located in the Durham school bus maintenance area, exhibited a slightly elevated PID reading on June 9 (32.0 parts per million); however, subsequent PID readings at that location were below baseline (see Table 2a). Injected reagents including iron, hydrogen peroxide, and persulfate were also detected in monitoring wells within and adjacent to the injection areas (see Table 2b). Light non-aqueous phase liquid (LNAPL) was not observed in any monitoring well throughout injection activities (see Table 2a).

ISCO-Related Vapor Intrusion Investigation Sampling Activities (June 9, 2021)

In accordance with the SMP and NYSDEC/NYSDOH approved work scope, vapor intrusion sampling was conducted during the second day of ISCO injection activities on June 9, 2021. Vapor intrusion sampling activities included the collection of air-phase samples from: 1) existing sub-slab vapor monitoring points DB-VMP-2 and DB-VMP-3; 2) indoor air proximal to DB-VMP-2; and 3) an outdoor ambient sample (see Figure 1). In addition, a trip blank (QA/QC sample) accompanied the samples to and from the laboratory. All air-phase samples were submitted to SGS Accutest Laboratories of Dayton, New Jersey (Accutest) for analysis of VOCs via EPA Method TO-15 plus tentatively identified compounds (TICs) and included NYSDEC CLP/Category B laboratory deliverables.

Pre-Sampling Inspection and Product Inventory

All air-phase samples in June 2021 (DB-VMP-2, DB-VMP-3, and IA-2) were collected in the Stone Management (Stone) warehouse area, while the outdoor ambient sample was collected in the northwest portion of the property (see Figure 1). A pre-sampling inspection was conducted on June 8, 2021, which included: 1) a site walkover; 2) confirmation of the general floor plan; 3) PID field screening of the proposed sampling areas; and 4) an inventory of warehoused materials in the general vicinity of the sampling locations. The NYSDOH Indoor Air Quality Questionnaire and Building Inventory is presented in Attachment 1.

PID screening results from DB-VMP-2 and DB-VMP-3 were 0.0 parts per billion by volume (ppbv) prior to sampling and 2,924 ppbv and 3,733 ppbv, respectively subsequent to sampling (see Table 3). Indoor ambient readings were between 1,994 - 2,400 ppbv, and outdoor ambient PID readings were 0.0 ppbv.

With respect to the material inventory, the site is an active warehousing facility storing various materials on wooden or composite pallets, which typically change over time based on inventory and available warehouse space. In addition, a number of propane-powered forklifts operate within the facility during normal working hours from approximately 7:00 am to 4:00 pm. Below is a summary of the materials observed on June 8, 2021 during sampling activities and the associated PID field screening results proximal to these materials (a photographic log is presented in Attachment 2). In addition, the adjacent Durham facility is an active school bus maintenance/repair shop, and although isolated from the Stone warehouse, routine activities at Durham were conducted on the day of the sampling. The PID readings summarized below are consistent with prior data and are indicative of background conditions in the warehouse.

Material Description	PID Results (ppbv)
GenDrive forklift batteries	1,256
Large plastic crate	1,036
GenFuel testing tanks	1,084
2018 lottery tickets	927
FedEx tanks	1,060
Beverage cooler (boxes)	1,086
GenDrives (VMP-2 area)	1,149
Graphite plate boxes	1,095
Lite display frames	1,227
Aluminum vent stack	1,050
Cardboard packing material	955
White plastic containers	934
Indoor Air by DB-VMP-2	0.0
Indoor Air by DB-VMP-3	0.0

Sub-Slab VMP Sampling and Tracer Gas Monitoring

On the day of VMP sampling, a final site inspection, VMP inspection, and PID field screening survey were performed to document conditions at the time of sampling and each VMP was connected to dedicated 0.25-inch diameter Teflon tubing. Immediately prior to VMP sampling, helium gas monitoring was conducted to confirm the integrity of each VMP (and associated fittings). Tracer gas (helium) and associated sampling readings are presented in Table 3.

A low-flow peristaltic pump (i.e., flow rate 0.2 liters per minute or less) was connected to the Teflon tubing to purge approximately 1.0 liter of air from each VMP location (1-liter Tedlar bag), which was used for tracer gas monitoring and PID field screening. The Teflon tubing from the VMP was attached to the 6-liter Summa canister and the canister valve was opened to begin sub-slab vapor collection at each VMP location at a flow rate of approximately 0.75 liters per hour. The sampling assembly was periodically inspected during testing to determine the rate of vacuum loss (i.e., sample collection) and no abnormalities were noted on any sample. The VMP sub-slab samples were recovered approximately 8 hours later by closing the Summa canister valves, disconnecting the Teflon tubing from the VMP, and recording the remaining vacuum.

At the end of VMP sampling, tracer gas helium concentrations in the flux chambers had decreased in all VMP sampling locations; therefore, immediately after VMP sampling was completed, tracer gas monitoring and PID field screening was repeated as described above by recharging the flux chambers with helium gas. Tracer gas (helium) was not detected in either VMP during sampling activities (see Table 3).

Indoor/Outdoor Air Sampling and QA/QC Air Samples

In conjunction with sub-slab VMP sampling, concurrent ambient indoor/outdoor air samples were also collected on June 9, 2021 (see Figure 1 for sample locations). Ambient indoor/outdoor air samples were collected by placing certified-clean 6L Summa canisters, equipped with particulate filters and 8-hour regulators preset by the laboratory, in each sampling area approximately five to six feet off the floor/ground to collect representative "breathing air" samples. Field readings associated with indoor/outdoor air sampling are presented in Table 3.

The Summa canisters were not attached to any tubing. The Summa canister valves were opened to begin indoor/outdoor ambient air collection at a rate of approximately 0.75 liters per hour. Similar to VMP sampling, each sampling assembly was periodically inspected during testing to determine the rate of vacuum loss (i.e., sample collection). In addition to ongoing ISCO injection activities, normal business operations (i.e., operation of forklifts at Stone and bus repair/maintenance at Durham) continued at both the Stone and Durham facilities during the air sampling event and employees were occasionally present near or in the active sampling areas.

Vapor Sampling Results

VMP, ambient indoor/outdoor air, and QA/QC samples were submitted to SGS Accutest of Dayton, New Jersey for laboratory analysis of VOCs via EPA Method TO-15 plus TICs. Laboratory analytical results are presented in Table 4. The final laboratory data package was submitted to DataVal, Inc. for third-party validation on June 22, 2021 and the validated sampling results will be uploaded to the NYSDEC EQuIS database.

A total of 14 individual VOCs were present in sub-slab VMPs DB-VMP-2 and/or DB-VMP-3 at concentrations ranging from 0.81 J micrograms per cubic meter ($\mu g/m^3$) (Trichloroethylene [TCE] in DB-VMP-3) to 51.8 J $\mu g/m^3$ (ethanol in DB-VMP-3). Toluene, which is the primary compound of concern in groundwater at the former Norton/Nashua Site, was detected in DB-VMP-2 and DB-VMP- at concentrations of 4.9 $\mu g/m^3$, at 5.3 $\mu g/m^3$, respectively (see Table 3). VOC TICs were also detected in DB-VMP-2 at a total estimated concentration of 33 J ppbv (see Table 4).

Compounds identified in the May 2017 NYSDOH Soil Vapor/Indoor Air Matrices (A, B, and C); including: cis-1,2-Dichloroethylene (cis-1,2-DCE), 1,1-Dichloroethylene (1,1-DCE), and carbon tetrachloride (Matrix A); 1,1,1-TCA and methylene chloride (Matrix B), and vinyl chloride (Matrix C) were not detected in either DB-VMP-2 or DB-VMP-3 in June 2021 (see Table 4). TCE (Matrix A) was detected in DB-VMP-3 at an estimated concentration of 0.81 J μ g/m³. PCE (Matrix B) was detected in DB-VMP-2 and DB-VMP-3 at concentrations of 14 μ g/m³ and 3.1 μ g/m³, respectively.

With respect to the indoor air sample, which was co-located with sub-slab sample DB-VMP-2, a total of 28 individual VOCs were detected at concentrations ranging from 0.84 J $\mu g/m^3$ (4-Ethyltoluene) to 562 $\mu g/m^3$ (toluene). Of the NYSDOH Matrix A, B, and C compounds, methylene chloride and PCE were detected at concentrations of 2.9 $\mu g/m^3$ and 21 $\mu g/m^3$, respectively. VOC TICs were also detected in the indoor air sample at a total estimated concentration of 498.2 ppbv (see Table 4).

A total of 14 individual VOCs were present in the June 2021 outdoor ambient air sample at estimated concentrations ranging from 0.41 $\mu g/m^3$ (PCE) to 51.8 J $\mu g/m^3$ (ethanol). Two individual VOCs (acetone and methyl ethyl ketone) were detected in the trip blank sample at concentrations of 1.3 $\mu g/m^3$ and 0.53 J $\mu g/m^3$, respectively. Finally, VOC TICs were detected in the outdoor ambient air and trip blank samples at estimated concentrations of 14.9 J ppbv and 2.5 J ppbv, respectively (see Table 4).

Vapor Sampling Results Review

Similar to the previous (June 2020), as well as historical sampling event results, detected VOCs (including toluene, the primary COC for the site and PCE) were higher in the indoor air compared to sub-slab samples indicating VOC sources within the warehouse facility as opposed to the presence of a complete sub-slab to indoor air vapor intrusion exposure pathway.

Toluene concentrations in both sub-slab and indoor samples collected in June 2021 were generally consistent with the previous (June 2020) sampling results (see Table 4) indicating that ISCO injection activities are not causing significant mobilization/migration of vapor-phase toluene in the subsurface. Although toluene concentrations increased slightly in 2021 (562 $\mu g/m^3$), implementation of preventative measures including: 1) the use of ventilation fans in the immediate vicinity of ISCO injection points; 2) the sealing of injection drilling rods at the surface with hydrated bentonite; 3) minimizing the opening of adjacent monitoring points to prevent ofgassing into the indoor air, etc. were used to minimize exposure during ISCO injections.

Future vapor intrusion monitoring activities at the site will be conducted in accordance with the approved SMP.

Coordination of EFR Waste Disposal Activities

In preparation for the 2021 EFR activities, it came to the attention of FES that the current waste disposal facility (Norlite) will not accept wastes with "any detectable levels" of Perfluoroalkyl/Polyfluoroalkyl Substances (PFAS). Based on independent sampling conducted by the NYSDEC on June 27, 2017, select PFAS compounds were detected in three monitoring wells at the site (MW-15R, MW-25, and MW-26). However, according to an August 11, 2017 electronic mail correspondence from the previous NYSDEC Case Manager (Alicia Barraza), "none of the individual sample results were above the guidance value of 70 parts per trillion (ppt) that would have required further action". As such, PFAS compounds were not retained as Compounds of Concern (COCs) for the site.

In order to characterize groundwater conditions at proposed (or potential) EFR locations, groundwater samples from the following monitoring wells were collected during the July 2021 post-ISCO sampling event and submitted to Eurofins Lancaster Laboratories for PFAS analysis: MP-25, MP-26, MP-27, MP-29, MP-37, MW-27, and MW-28 (see Figure 1). Saint-Gobain is currently evaluating available waste haulers and disposal facilities for the planned 2021 EFR events, which are tentatively scheduled for the Fourth Quarter 2021 (i.e., allowing sufficient time for the ISCO reagents to be consumed).

Engineering Control (Asphalt Cap) Repair/Replacement Activities

Based on Engineering Control (cap) inspection activities conducted on October 8, 2019 and November 3, 2020, cracking/weathering, potholes/depressions, and ponded water were noted in several areas in the asphalt cap in the northern, exterior portion of the site (i.e., proximal to the former tank farm area; see Attachment 2, Photograph 16). Although no significant breaches of the cap were identified, in accordance with the SMP, repair/replacement of the asphalt cap within the Environmental Easement is required (see Figure 2). FES is currently soliciting bids from local paving contractors and site work is tentatively scheduled for August/September 2021. In addition, several monitoring well road boxes in the affected area will also require replacement (see Figure 2).

Groundwater Sampling Activities (July 2021) – Initial Post-ISCO Event

The initial post-ISCO sampling event was conducted on July 28, 2021 and included monitoring wells MW-22, MW-27, MW-28, MP-24, MP-25, MP-26, MP-27, MP-29, and MP-37 (see Figure 1). Groundwater sampling results will be presented in the next progress report tentatively scheduled for submittal in October 2021.

Upcoming Activities

In accordance with the SMP, upcoming activities at the site include: 1) a second post-ISCO groundwater sampling event; 2) an annual groundwater sampling event (on-site and off-site wells); 3) two EFR events; 4) bio-supplementation activities; 5) repair/replacement of the engineering control (asphalt cap) north of Building #61; and 6) submittal of a Periodic Review Report (PRR). The current project implementation schedule is presented in Table 5. If you have

any questions or comments regarding the information provided in this letter, please contact me or Thomas Maguire at (610) 594-3940.

Sincerely,

FORENSIC ENVIRONMENTAL SERVICES, INC.

Bryan J. Machella

Senior Project Manager

Top Much

cc: Kelsey Cummings (Hillegass), SGC

Ravi Korlipara, P.E., Korlipara

Silje Roalsvik, Resolute Management, Inc.

Jennifer Galoski, Resolute Management, Inc.

Brian K. Helf, Cloverleaf Distribution, LLC

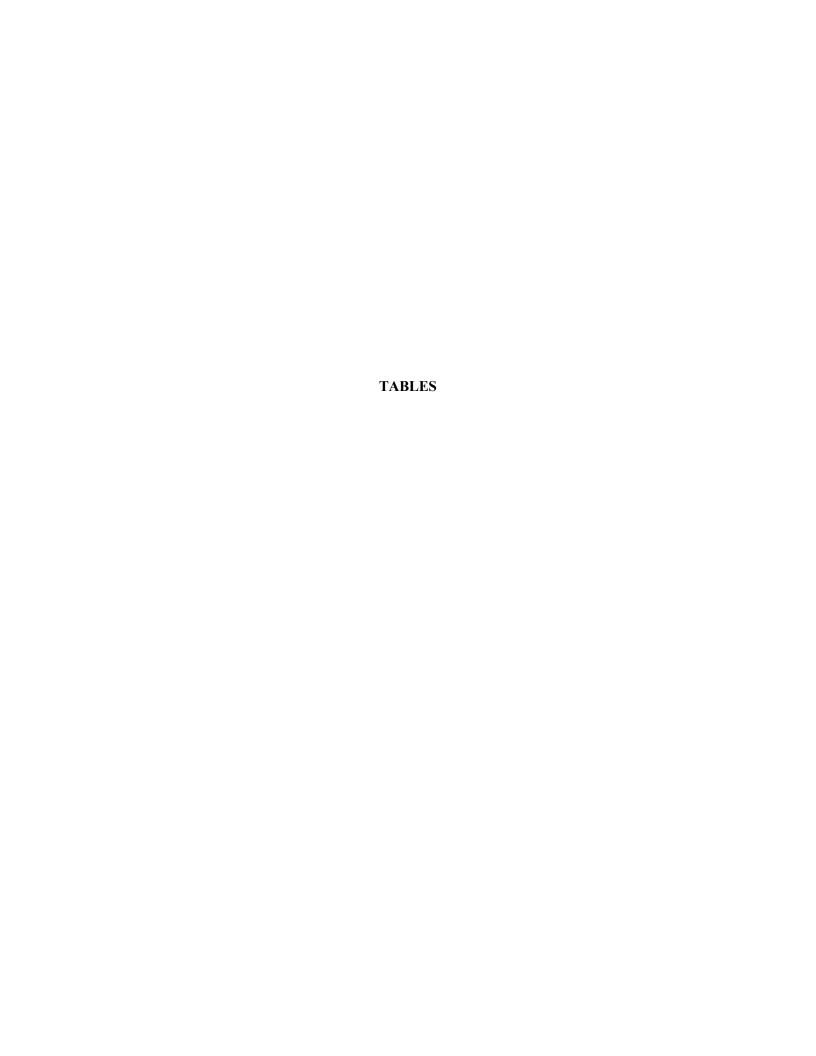
Pete Popovics, Cenveo, Inc.

Thomas S. West, Esq., The West Firm, PLLC

Steve N. Siegel, Esq., The Frink Law Firm, LLC

Rick Bethel, Tyco International

Jeffrey Danko, Tyco International


J. Hall, Esq., Berry Plastics Corporation

Gerard Burke, NYSDEC

Scarlett McLaughlin, NYSDOH

Sara Bogardus, NYSDOH

Jean Robert Jean, USEPA

				Catalyst			Oxidizer		Persulfate			
Date	Injection Point	Screen Interval (feet)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Well Head Pressure (psi)
6/8/2021	IP27-15	10-15	38	70	1.84	221	130	0.59				20
6/8/2021	IP27-09	10-15	30	70	2.33	89	130	1.46				8
6/8/2021	IP28-02	10-15	33	70	2.12	173	130	0.75				12
6/8/2021	IP28-04	10-15	31	70	2.26	39	50	1.28				5
6/8/2021	IP28-05	10-15	35	70	2.00	64	130	2.03				3
6/8/2021	IP27-12	10-15	45	70	1.56	93	130	1.40				20
6/8/2021	IP28-04	10-15				41	50	1.22				8
6/8/2021	IP28-01	10-15	20	15	0.75							
6/9/2021	IP28-01	10-15	96	55	0.57	27	15	0.56				90
6/9/2021	IP28-04	10-15				59	30	0.51				2
6/9/2021	IP27-15	7-11	46	70	1.52	146	130	0.89				16
6/9/2021	IP27-09	7-11	38	70	1.84	85	130	1.53				8
6/9/2021	IP27-12	7-11	64	70	1.09	135	130	0.96				6
6/9/2021	IP28-05	7-11	50	70	1.40	111	130	1.17				3
6/9/2021	IP28-02	7-11	102	70	0.69	161	130	0.81				5
6/9/2021	IP37-01	9-14	43	70	1.63	123	130	1.06				6
6/9/2021	IP28-04	7-11	68	70	1.03	73	65	0.89				5
6/9/2021	IP27-11	10-15	35	70	2.00	70	130	1.86				12
6/9/2021	IP28-03	10-15	44	70	1.59	89	130	1.46				5
6/9/2021	IP27-16	10-15	58	70	1.21	63	130	2.06				8
6/9/2021	IP37-04	10-15	44	70	1.59	58	130	2.24	_	_		5

				Catalyst			Oxidizer		Persulfate			
Date	Injection Point	Screen Interval (feet)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Well Head Pressure (psi)
6/10/2021	IP27-16	7-11	36	70	1.94	72	130	1.81				0
6/10/2021	IP27-14	10-15	31	70	2.26	95	130	1.37				15
6/10/2021	IP28-04	7-11				89	65	0.73				5
6/10/2021	IP37-02	10-15	33	70	2.12	165	130	0.79				4
6/10/2021	IP28-03	7-11	73	70	0.96	174	130	0.75				5
6/10/2021	IP28-06	10-15	29	70	2.41	95	130	1.37				3
6/10/2021	IP27-11	7-11	27	70	2.59	77	130	1.69				6
6/10/2021	IP37-01	6-10	74	70	0.95	141	130	0.92				4
6/10/2021	IP37-03	10-15	44	70	1.59	105	130	1.24				130
6/10/2021	IP28-01	10-15				104	115	1.11				12
6/10/2021	IP28-07	10-15	43	70	1.63	144	130	0.90				0
6/10/2021	IP27-14	7-11	40	70	1.75	94	130	1.38				4
6/11/2021	IP27-10	10-15	30	70	2.33	140	130	0.93				10
6/11/2021	IP37-02	7-11	30	70	2.33	58	130	2.24				4
6/11/2021	IP37-04	7-11	34	70	2.06	70	130	1.86				0
6/11/2021	IP28-06	7-11	31	70	2.26	59	130	2.20				0
6/11/2021	IP28-07	7-11	50	70	1.40	102	130	1.27				0
6/11/2021	IP28-01	7-11	26	70	2.69	67	130	1.94				0
6/11/2021	IP37-03	7-11	34	70	2.06	66	130	1.97				0
6/11/2021	IP27-13	10-15	40	70	1.75	261	130	0.50				40
6/11/2021	IP37-06	10-15	42	70	1.67	114	130	1.14				3
6/11/2021	IP27-17	10-15	55	70	1.27	209	130	0.62				40
6/11/2021	IP37-08	10-15	34	70	2.06	60	130	2.17				0
6/11/2021	IP37-06	7-11	41	70	1.71	74	130	1.76				4
6/11/2021	IP37-08	7-11	39	70	1.79	43	65	1.51				0

				Catalyst			Oxidizer		Persulfate			
Date	Injection Point	Screen Interval (feet)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Well Head Pressure (psi)
6/14/2021	IP37-08	7-11				32	65	2.03				3
6/14/2021	IP27-18	10-15	26	70	2.69	64	130	2.03				2
6/14/2021	IP37-05	10-15	61	70	1.15	111	130	1.17				2
6/14/2021	IP27-13	7-11	48	70	1.46	103	130	1.26				8
6/14/2021	IP37-08	10-15	16	23	1.44	40	45	1.13				2
6/14/2021	IP27-17	7-11	44	70	1.59	73	130	1.78				6
6/14/2021	IP37-01	9-14	12	23	1.92	37	45	1.22				18
6/14/2021	IP37-06	10-15	19	23	1.21	42	45	1.07				2
6/14/2021	IP27-18	7-11	35	70	2.00	86	130	1.51				2
6/14/2021	IP37-05	7-11	35	70	2.00	56	130	2.32				10
6/14/2021	IP37-08	7-11	13	23	1.77	30	45	1.50				2
6/14/2021	IP37-01	6-10	19	24	1.26	31	40	1.29				0
6/14/2021	IP37-06	7-11	11	24	2.18	27	40	1.48				6
6/14/2021	IP27-10	7-11	44	70	1.59	88	130	1.48				6
6/15/2021	IP27-09	10-15							80	200	2.50	2
6/15/2021	IP27-15	10-15							82	200	2.44	2
6/15/2021	IP37-05	10-15							253	200	0.79	40
6/15/2021	IP37-02	10-15							116	200	1.72	3
6/15/2021	IP27-12	10-15							85	200	2.35	0
6/15/2021	IP27-17	10-15							113	200	1.77	10
6/15/2021	IP37-01	9-14							90	200	2.22	4
6/15/2021	IP27-17	7-11							144	200	1.39	22
6/15/2021	IP27-14	10-15							105	200	1.90	5
6/15/2021	IP37-03	10-15							98	200	2.04	2
6/15/2021	IP28-01	10-15							97	200	2.06	5
6/15/2021	IP27-09	7-11							110	200	1.82	5
6/15/2021	IP37-01	6-10							122	200	1.64	4

				Catalyst			Oxidizer			Persulfate		
Date	Injection Point	Screen Interval (feet)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Well Head Pressure (psi)
6/15/2021	IP27-18	10-15							83	200	2.41	0
6/15/2021	IP37-02	7-11							107	200	1.87	0
6/15/2021	IP28-02	10-15							78	200	2.56	0
6/15/2021	IP27-12	7-11							68	200	2.94	4
6/15/2021	IP27-15	7-11							50	62.5	1.25	22
6/15/2021	IP37-05	7-11							34	62.5	1.84	3
6/16/2021	IP27-15	7-11							60	137.5	2.29	0
6/16/2021	IP37-05	7-11							71	137.5	1.94	2
6/16/2021	IP37-03	7-11							83	200	2.41	2
6/16/2021	IP27-14	7-11							78	200	2.56	0
6/16/2021	IP28-04	10-15							88	200	2.27	0
6/16/2021	IP37-01	6-10							84	125	1.49	5
6/16/2021	IP27-18	7-11							75	200	2.67	0
6/16/2021	IP28-05	10-15							83	200	2.41	0
6/16/2021	IP27-13	10-15							85	200	2.35	2
6/16/2021	IP37-08	10-15							96	262.5	2.73	3
6/16/2021	IP27-10	10-15							68	200	2.94	2
6/16/2021	IP28-04	7-11							83	200	2.41	0
6/16/2021	IP37-06	10-15							166	262.5	1.58	0
6/16/2021	IP28-06	10-15							81	200	2.47	2
6/16/2021	IP37-08	7-11							117	275	2.35	2
6/16/2021	IP27-10	7-11							100	200	2.00	0
6/16/2021	IP28-01	7-11							72	200	2.78	0
6/16/2021	IP28-05	7-11							88	200	2.27	0
6/16/2021	IP37-04	10-15							78	200	2.56	

				Catalyst			Oxidizer			Persulfate		
Date	Injection Point	Screen Interval (feet)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Injection Time (mins)	Volume (gal)	Flow Rate (gpm)	Well Head Pressure (psi)
6/17/2021	IP37-06	7-11							102	275	2.70	0
6/17/2021	IP37-04	7-11							73	200	2.74	2
6/17/2021	IP27-11	10-15							78	200	2.56	2
6/17/2021	IP27-16	10-15							80	200	2.50	2
6/17/2021	IP28-02	7-11							67	200	2.99	0
6/17/2021	IP28-06	7-11							73	200	2.74	2
6/17/2021	IP27-13	7-11							84	200	2.38	0
6/17/2021	IP28-07	10-15							87	200	2.30	0
6/17/2021	IP28-03	10-15							88	200	2.27	2
6/17/2021	IP27-11	7-11							100	200	2.00	0
6/17/2021	IP28-07	7-11							110	200	1.82	2
6/17/2021	IP28-03	7-11							106	200	1.89	0
6/17/2021	IP27-16	7-11							89	200	2.25	0
	Total Volume/Average Flov			3,500	1.72		6,500	1.36		10,000	2.22	
	Total Vo	lume Injected	20,000									

Notes:

- 1. Catalyst: ISOTEC Cat-4260; Oxidizer (H2O2): 10% Concentration; Sodium Persulfate: 10% Concentration
- 2. gpm = gallons per minute; psi = pounds per square inch.

				Monito	ring Well I	Headspace :	Readings		Groundwa	iter Read	dings (FES)	
Monitoring		Time	DTW	PID	LEL	O_2	CO ₂	DO	Sp. Cond.	ORP	pН	Temp
Point	Date	(24hr)	(feet)	(ppmv)	(%)	(%)	(%)	(mg/L)	(µS/Cm)	(mV)	(pH Units)	(°C)
MP-23	6/7/2021	12:17	9.29	0.8				1.02	1,073	-101.6	6.55	17.72
	6/8/2021	14:46	9.20	77.3				2.28	1,022	-72.6	6.81	17.25
	6/9/2021	9:04	9.25	12.0				1.51	988	-18.3	6.73	17.35
	6/9/2021	10:28	NM	NM	29	10.5	6.2	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:42	9.25	220.0	22	16.2	16.7	2.65	998	125.8	6.73	17.28
Trydrogen refoxide	6/10/2021	8:25	9.30	64.5	0	20.7	5.7	3.48	1,015	-2.8	6.83	16.21
	6/10/2021	15:40	9.27	84.6	7	21.2	6.3	1.73	562	-4.0	6.85	17.82
	6/11/2021	9:05	9.28	79.4	15	17.4	5.5	2.04	926	-18.4	6.85	17.45
	6/14/2021	13:16	9.15	0.7	10	20.2	8.2	2.86	784	-16.2	6.84	17.65
	6/15/2021	11:40	9.85	0.2	20	19.4	5.6	1.59	822	-14.8	6.74	18.65
	6/15/2021	15:40	9.72	0.2	15	20.7	5.7	1.05	651	-15.4	6.78	16.19
Persulfate	6/16/2021	9:05	9.75	0.1	20	21.2	6.3	3.80	345	-16.4	6.74	19.01
	6/16/2021	15:40	9.86	0.4	17	17.4	5.5	1.20	907	-12.4	6.75	16.94
	6/17/2021	9:05	9.72	0.1	18	16.2	16.7	1.65	1,035	-13.8	6.76	17.82
MP-24	6/7/2021	12:27	9.27	1.5				0.54	12,111	36.7	5.79	18.23
	6/8/2021	14:49	9.05	523.8				3.15	7,317	5.6	6.77	17.00
	6/9/2021	9:07	9.07	61.0		-		1.96	13,157	361.0	6.47	17.81
	6/9/2021	10:36	NM	NM	100	OR	6.9	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:47	9.42	725.0	100	OR	9.9	4.09	12,497	128.2	6.49	19.92
Trydrogen refoxide	6/10/2021	8:28	9.29	350.0	0	OR	2.1	3.18	12,629	6.3	6.38	15.59
	6/10/2021	15:46	NM	384.0	21	OR	1.4	NM	NM	NM	NM	NM
	6/11/2021	9:08	NM	426.0	100	OR	5.5	NM	NM	NM	NM	NM
	6/14/2021	13:22	9.85	0.4	35	OR	1.7	1.85	596	-42.8	6.93	14.82
	6/15/2021	11:43	9.78	26.2	21	21.6	0.2	1.24	604	-37.8	6.92	18.66
	6/15/2021	15:46	9.79	25.7	22	20.1	1.4	1.66	700	-42.9	6.92	17.28
Persulfate	6/16/2021	9:08	9.79	30.1	19	22.6	0.6	1.00	784	-39.7	6.93	16.21
[6/16/2021	15:46	9.77	75.4	18	22.7	0.7	0.86	904	-12.5	6.91	17.82
	6/17/2021	9:08	9.80	65.4	17	21.4	1.1	1.06	576	-70.5	6.92	17.45

	Point Date (24hr)			Monito	ring Well I	Headspace	Readings		Groundwa	iter Read	dings (FES)	
Monitoring		Time	DTW	PID	LEL	O_2	CO ₂	DO	Sp. Cond.	ORP	pН	Temp
Point	Date	(24hr)	(feet)	(ppmv)	(%)	(%)	(%)	(mg/L)	(µS/Cm)	(mV)	(pH Units)	(°C)
MP-25	6/7/2021	12:37	9.33	0.8				0.96	5,174	-154.5	6.74	15.40
	6/8/2021	14:58	9.10	1225.0				1.24	7,900	98.9	6.98	16.74
	6/9/2021	9:13	8.27	950.0				NM	NM	NM	NM	NM
	6/9/2021	10:29	NM	NM	100	-	6.1	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
nydrogen refoxide	6/10/2021	8:35	9.17	400.0	0	OR	3.3	3.35	15,106	-8.8	7.03	17.65
	6/10/2021	15:59	NM	512.0	17	OR	4.4	NM	NM	NM	NM	NM
	6/11/2021	9:14	NM	624.0	18	OR	4.7	NM	NM	NM	NM	NM
	6/14/2021	13:34	9.62	4.6	22	OR	5.0	1.04	699	-4.9	6.92	18.21
	6/15/2021	11:56	9.78	327.0	0	OR	28.0	1.04	14,006	-12.4	6.55	19.71
	6/15/2021	15:59	9.80	284.0	0	OR	6.0	1.20	14,320	-8.4	6.75	16.19
Persulfate	6/16/2021	9:14	9.79	185.0	2	OR	7.2	1.50	13,648	-1.0	6.65	19.01
	6/16/2021	15:59	9.79	301.0	0	OR	1.4	1.04	12,541	15.0	6.69	16.94
	6/17/2021	9:14	9.80	299.0	1	OR	3.7	1.00	13,679	-18.6	6.84	17.82
MP-26	6/7/2021	11:41	9.85	1.6				2.34	1,380	-96.7	6.85	15.44
	6/8/2021	14:17	8.28	296.7				1.22	3,152	149.6	6.92	17.32
	6/9/2021	8:44	NM	1100.0				NM	NM	NM	NM	NM
	6/9/2021	9:56	NM	NM	100	-	10.0	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
nydrogen refoxide	6/10/2021	8:03	9.85	210.0	0	OR	2.8	0.74	590	31.7	7.03	16.19
	6/10/2021	15:01	9.91	180.0	0	OR	3.4	1.66	343	33.4	6.96	19.01
	6/11/2021	8:45	9.92	155.0	0	OR	3.4	1.00	378	245.0	7.01	16.94
	6/14/2021	12:56	9.93	113.0	0	OR	3.4	0.86	483	406.0	7.00	17.82
	6/15/2021	11:12	9.94	60.0	12	OR	3.1	1.06	39	40.9	6.97	18.49
[6/15/2021	15:01	9.95	75.6	15	OR	2.7	0.92	315	75.4	6.99	16.94
Persulfate	6/16/2021	8:45	9.95	45.9	12	OR	36	0.86	465	13.4	6.98	17.82
	6/16/2021	15:01	9.94	86.3	13	OR	3.5	1.20	478	96.1	6.90	15.44
	6/17/2021	8:45	9.95	52.1	1	OR	3.9	1.01	319	52.3	6.92	17.32

				Monito	ring Well I	leadspace	Readings		Groundwa	iter Read	dings (FES)	
Monitoring		Time	DTW	PID	LEL	O ₂	CO ₂	DO	Sp. Cond.	ORP	pН	Temp
Point	Date	(24hr)	(feet)	(ppmv)	(%)	(%)	(%)	(mg/L)	(µS/Cm)	(mV)	(pH Units)	(°C)
MP-27	6/7/2021	11:45	9.85	1.3				2.94	5,280	-115.9	6.81	15.32
	6/8/2021	14:21	8.08	400.0				0.30	6,220	-67.4	6.82	16.50
	6/9/2021	8:47	NM	600.0				NM	NM	NM	NM	NM
	6/9/2021	9:57	NM	NM	100	OR	8.1	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Trydrogen refoxide	6/10/2021	8:06	9.73	220.0	0	OR	2.7	4.81	8,700	51.1	7.29	16.68
	6/10/2021	15:06	9.68	176.0	0	OR	3.2	5.82	10,046	72.6	7.31	18.42
	6/11/2021	8:48	NM	378.0	0	OR	3.4	NM	NM	NM	NM	NM
	6/14/2021	15:06	9.68	176.0	0	OR	3.2	5.82	10,046	72.6	7.31	18.42
	6/15/2021	13:01	NM	584.0	27	OR	3.3	NM	NM	NM	NM	NM
	6/15/2021	15:06	9.70	489.0	28	OR	2.7	6.41	10,247	66.4	7.31	16.94
Persulfate	6/16/2021	8:48	9.71	365.0	35	OR	36	5.98	11,068	87.6	7.32	17.82
	6/16/2021	15:06	9.71	159.0	24	OR	3.5	4.13	10,649	45.7	7.24	18.49
	6/17/2021	8:48	9.70	206.0	19	OR	3.9	5.23	10,378	63.1	7.35	16.94
MP-28	6/7/2021	11:49	9.88	28.1				1.98	970	-65.4	6.61	16.19
	6/8/2021	14:26	9.45	170.0				2.04	4,368	4.9	6.99	17.15
	6/9/2021	8:49	NM	430.0				NM	NM	NM	NM	NM
	6/9/2021	9:58	NM	NM	52	-	6.4	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Trydrogen refoxide	6/10/2021	8:11	9.78	375.0	0	OR	8.4	2.68	375	63.1	7.14	16.48
	6/10/2021	15:12	NM	425.0	0	OR	8.4	NM	NM	NM	NM	NM
	6/11/2021	8:50	NM	899.0	0	OR	8.3	NM	NM	NM	NM	NM
	6/14/2021	13:02	NM	1262.0	100	OR	8.1	NM	NM	NM	NM	NM
	6/15/2021	11:22	9.87	8.9	21	OR	4.8	0.96	1,284	-56.9	6.82	16.97
[6/15/2021	15:12	9.90	10.0	25	OR	8.4	1.45	1,346	-15.4	6.98	17.36
Persulfate	6/16/2021	8:50	9.88	4.0	22	OR	8.4	1.02	1,257	-72.3	6.83	16.68
[6/16/2021	15:12	9.90	6.3	24	OR	8.3	0.94	1,054	-65.7	6.94	18.55
	6/17/2021	8:50	9.91	3.6	23	OR	8.1	0.63	908	-23.1	6.93	17.66

										ater Rea	dings (FES)	
Monitoring		Time	DTW	PID	LEL	O_2	CO ₂	DO	Sp. Cond.	ORP	pН	Temp
Point	Date	(24hr)	(feet)	(ppmv)	(%)	(%)	(%)	(mg/L)	(µS/Cm)	(mV)	(pH Units)	(°C)
MP-29	6/7/2021	11:53	9.88	28.1				1.98	870	-65.4	6.61	16.19
	6/8/2021	14:30	6.80	275.4				9.98	933	6.7	6.85	16.93
	6/9/2021	8:50	NM	720.0				NM	NM	NM	NM	NM
	6/9/2021	9:59	NM	NM	100	-	8.0	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
nydrogen refoxide	6/10/2021	8:14	9.85	325.0	0	OR	9.4	9.38	1,603	52.6	7.08	15.87
	6/10/2021	15:18	9.98	178.0	0	OR	7.8	1.71	678	44.6	6.93	18.34
	6/11/2021	8:51	NM	595.0	0	OR	7.7	NM	NM	NM	NM	NM
	6/14/2021	13:04	NM	865.0	84	OR	7.6	NM	NM	NM	NM	NM
	6/15/2021	11:25	NM	500.0	5	OR	3.8	NM	NM	NM	NM	NM
	6/15/2021	15:18	NM	605.0	6	OR	8.4	NM	NM	NM	NM	NM
Persulfate	6/16/2021	8:51	NM	429.0	7	OR	8.4	NM	NM	NM	NM	NM
	6/16/2021	15:18	NM	569.0	9	OR	8.3	NM	NM	NM	NM	NM
	6/17/2021	8:51	NM	544.0	1	OR	8.1	NM	NM	NM	NM	NM
MP-30	6/7/2021	12:04	9.78	1.1				2.24	1,562	-91.2	6.62	NM
	6/8/2021	14:40	8.70	1.0				2.08	1,245	-31.9	6.59	16.97
	6/9/2021	8:57	9.19	170.0				0.80	908	43.7	6.65	17.45
	6/9/2021	10:02	NM	NM	20	16.1	12.7	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:37	9.68	400.0	4	18.8	19.5	2.39	1,091	2136.0	6.65	17.91
Trydrogen refoxide	6/10/2021	8:16	9.52	65.0	0	OR	1.1	3.03	1,097	31.7	6.66	17.78
	6/10/2021	15:30	9.57	72.3	0	OR	0.9	3.43	849	60.2	6.84	18.61
	6/11/2021	8:58	9.55	62.4	0	OR	1.1	2.47	902	178.0	6.74	17.95
	6/14/2021	13:10	9.55	56.8	0	OR	1.0	5.31	986	104.0	6.63	18.94
	6/15/2021	11:29	9.85	1.2	21	20.5	0.1	0.84	6,189	-1.2	6.78	17.95
	6/15/2021	15:30	9.86	0.8	21	19.5	1.9	2.01	2,064	78.4	6.75	17.36
Persulfate	6/16/2021	8:58	9.86	0.9	0	21.1	2.6	3.84	5,091	12.6	6.79	16.68
	6/16/2021	15:30	9.84	7.0	0	20.6	2.5	0.96	7,306	34.8	6.82	18.55
	6/17/2021	8:58	9.88	4.5	4	20.7	3.0	2.47	6,051	92.4	6.82	17.66

				Monito	ring Well I	leadspace l	Readings		Groundwa	nter Rea	dings (FES)	
Monitoring		Time	DTW	PID	LEL	O ₂	CO ₂	DO	Sp. Cond.	ORP	pН	Temp
Point	Date	(24hr)	(feet)	(ppmv)	(%)	(%)	(%)	(mg/L)	(µS/Cm)	(mV)	(pH Units)	(°C)
MP-31	6/7/2021	12:00	9.88	1.3				7.26	535	-26.5	7.07	16.57
	6/8/2021	14:36	7.58	4.6				4.02	620	-15.4	6.89	16.67
	6/9/2021	8:54	9.55	0.0				1.02	573	89.2	7.28	17.32
	6/9/2021	10:00	NM	NM	19	21.2	0.5	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:32	9.77	6.3	2	21.3	3.2	3.75	574	312.2	6.99	17.36
Trydrogen refoxide	6/10/2021	8:16	9.81	0.6	0	20.5	1.9	9.06	325	50.1	6.90	16.68
	6/10/2021	15:24	9.81	0.0	0	20.9	2.6	4.31	792	13.7	6.76	18.55
	6/11/2021	8:55	9.81	0.0	0	21.0	2.5	3.40	606	7.0	6.78	17.66
	6/14/2021	13:06	9.83	0.0	0	21.3	3.0	1.25	512	4.8	6.84	17.18
	6/15/2021	11:29	9.85	1.2	21	20.5	0.1	0.84	618	-1.2	6.78	17.95
	6/15/2021	15:24	9.85	2.0	22	21.2	1.1	1.23	346	1.5	6.80	19.84
Persulfate	6/16/2021	8:55	9.86	3.1	12	20.4	0.9	1.25	751	-3.4	6.78	18.98
	6/16/2021	15:24	9.85	1.5	0	20.1	1.1	1.04	642	9.0	6.79	18.43
	6/17/2021	8:55	9.86	1.8	20	21.1	1.0	1.63	398	8.7	6.80	17.45
MP-34	6/7/2021	10:55	9.79	1.9				2.49	715	-67.3	6.99	18.87
	6/8/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/9/2021	10:09	NM	NM	0	10.4	9.5	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:05	9.51	5.5	0	14.1	8.1	1.20	662	55.0	6.88	19.84
Trydrogen refoxide	6/10/2021	7:33	9.59	150.0	0	9.3	11.2	1.50	667	-4.8	6.99	18.98
	6/10/2021	14:20	9.52	162.0	0	15.6	9.2	1.04	800	-18.6	6.99	18.43
	6/11/2021	8:20	9.52	154.0	0	13.7	8.4	1.00	754	-13.5	7.00	17.45
	6/14/2021	12:30	9.52	114.0	0	12.8	6.2	0.98	722	72.6	6.84	17.82
	6/15/2021	10:45	9.61	1.0	20	20.5	0.1	1.92	594	-32.6	6.95	18.46
[6/15/2021	14:20	9.62	1.2	2	21.2	1.1	1.05	666	-45.6	6.96	17.66
Persulfate	6/16/2021	8:20	9.65	1.4	1	20.4	0.9	1.32	546	-67.8	6.95	18.97
	6/16/2021	14:20	9.64	1.2	20	20.1	1.1	0.94	735	-95.2	6.98	18.00
	6/17/2021	8:20	9.63	1.1	0	21.1	1.0	1.64	346	-31.0	6.94	17.94

				Monito	ring Well I	Headspace	Readings		Groundwa	iter Rea	dings (FES)	
Monitoring		Time	DTW	PID	LEL	O_2	CO ₂	DO	Sp. Cond.	ORP	pН	Temp
Point	Date	(24hr)	(feet)	(ppmv)	(%)	(%)	(%)	(mg/L)	(µS/Cm)	(mV)	(pH Units)	(°C)
MP-35	6/7/2021	11:28	9.82	3.9				2.14	621	-34.1	6.72	18.13
	6/8/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/9/2021	10:20	NM	NM	31	15.0	6.6	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:20	9.77	1400.0	7	17.2	5.3	1192.00	624	-16.0	6.82	18.47
nydrogen refoxide	6/10/2021	7:53	9.83	1100.0	0	17.8	4.8	0.93	632	-36.1	6.62	18.50
	6/10/2021	14:49	NM	892.0	0	18.4	4.4	NM	NM	NM	NM	NM
	6/11/2021	8:36	NM	1045.0	0	20.4	5.6	NM	NM	NM	NM	NM
	6/14/2021	12:45	NM	526.0	0	21.2	18.0	NM	NM	NM	NM	NM
	6/15/2021	10:59	9.85	24.6	12	13.5	6.8	1.65	487	-16.9	6.82	18.61
	6/15/2021	14:49	NM	27.8	13	13.4	5.6	NM	NM	NM	NM	NM
Persulfate	6/16/2021	8:36	NM	35.4	4	152	5.7	NM	NM	NM	NM	NM
	6/16/2021	14:49	NM	70.5	12	10.2	6.3	NM	NM	NM	NM	NM
•	6/17/2021	8:36	NM	44.9	12	13.5	5.5	NM	NM	NM	NM	NM
MP-37	6/7/2021	11:17	9.91	30.3				1.95	729	-50.1	6.44	18.90
	6/8/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/9/2021	10:16	NM	NM	100	3.1	17.4	NM	NM	NM	NM	NM
Hardan con Donovido	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/10/2021	7:47	9.93	200.0	100	-	16.7	1.51	741	-22.2	6.38	18.08
	6/10/2021	14:38	NM	370.0	100	-	14.8	NM	NM	NM	NM	NM
-	6/11/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
-	6/14/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/15/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/15/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Persulfate	6/16/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/16/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/17/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM

				Monito	ring Well I	leadspace	Readings		Groundwa	ater Rea	dings (FES)	
Monitoring		Time	DTW	PID	LEL	O_2	CO ₂	DO	Sp. Cond.	ORP	pН	Temp
Point	Date	(24hr)	(feet)	(ppmv)	(%)	(%)	(%)	(mg/L)	(µS/Cm)	(mV)	(pH Units)	(°C)
MP-38	6/7/2021	11:12	9.91	176.5				3.64	721	-20.5	6.28	18.35
	6/8/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/9/2021	10:10	NM	NM	100	1.9	12.5	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:15	9.83	147.0	100	0.5	15.4	2.90	587	1.8	6.21	19.06
Trydrogen refoxide	6/10/2021	7:44	9.93	499.1	100	0.5	19.6	1.78	670	1.6	6.31	17.01
	6/10/2021	14:32	9.79	507.0	100	0.3	16.7	1.24	925	-0.6	6.88	18.46
	6/11/2021	8:31	9.80	436.0	1	0.2	18.4	0.90	784	2.0	6.85	17.65
	6/14/2021	12:42	9.81	306.0	100	OR	20.1	1.04	1,002	1.3	6.84	17.62
	6/15/2021	10:55	9.74	186.1	100	OR	20.6	1.24	928	6.0	6.78	18.59
	6/15/2021	14:32	9.77	205.0	100	OR	16.2	0.72	1,024	4.5	6.80	17.01
Persulfate	6/16/2021	8:31	9.78	306.0	100	OR	21.2	0.94	976	9.5	6.92	18.46
	6/16/2021	14:32	9.76	175.0	100	OR	21.2	1.30	897	1.3	6.90	17.65
	6/17/2021	8:31	9.77	405.0	100	OR	20.9	1.26	949	6.2	6.88	17.62
MP-39	6/7/2021	12:44	9.96	8.0				1.43	1,289	-121.1	7.63	18.47
	6/8/2021	15:02	10.01	2.0				3.30	1,504	56.3	7.73	18.68
	6/9/2021	9:15	9.96	3.1				1.67	1,361	24.3	7.64	19.23
	6/9/2021	10:31	NM	NM	34	20.4	1.2	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:31	9.95	32.0	0	20.8	0.2	2.54	1,506	21.0	7.48	19.18
Trydrogen refoxide	6/10/2021	8:39	10.01	2.0	0	19.1	2.7	4.00	1,824	-23.6	7.52	17.66
	6/10/2021	16:06	9.99	1.7	0	20.2	4.3	1.59	12,146	-34.8	7.64	18.64
	6/11/2021	9:16	10.02	0.6	0	21.0	7.4	1.60	14,289	-21.8	7.56	18.21
	6/14/2021	13:40	10.05	0.4	0	21.0	6.2	1.56	16,015	-40.8	7.43	17.65
	6/15/2021	12:02	9.97	0.6	0	20.9	5.4	1.40	17,196	-37.9	7.65	17.82
	6/15/2021	16:06	10.00	1.0	0	21.0	5.6	1.30	16,573	-24.7	6.56	15.53
Persulfate	6/16/2021	9:16	9.99	0.0	0	21.2	5.7	1.23	19,467	-35.4	6.60	15.18
	6/16/2021	16:06	9.99	1.2	0	20.1	6.3	1.14	13,457	-41.0	6.61	18.11
	6/17/2021	9:16	10.01	0.9	0	20.0	5.5	1.18	16,497	-22.9	6.58	15.75

				Monito	ring Well I	Headspace 1	Readings		Groundwa	iter Read	dings (FES)	
Monitoring		Time	DTW	PID	LEL	O_2	CO ₂	DO	Sp. Cond.	ORP	pН	Temp
Point	Date	(24hr)	(feet)	(ppmv)	(%)	(%)	(%)	(mg/L)	(µS/Cm)	(mV)	(pH Units)	(°C)
MW-20	6/7/2021	11:35	9.78	5.2				3.68	8	37.5	6.68	16.50
	6/8/2021	14:13	9.65	0.0				0.66	741	126.4	6.47	18.60
	6/9/2021	8:40	9.74	20.3				0.39	704	87.3	6.43	18.48
	6/9/2021	9:55	NM	NM	17	11.2	8.2	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:25	9.70	700.0	4	7.7	13.0	1.11	716	315.8	5.64	17.02
nydrogen refoxide	6/10/2021	8:00	9.77	500.0	0	1732.0	8.3	0.96	695	125.0	6.56	17.66
	6/10/2021	14:55	9.71	390.0	0	17.6	7.9	1.25	643	14.7	6.92	18.97
	6/11/2021	8:41	9.72	104.0	0	17.9	8.0	1.30	575	17.8	6.90	18.00
	6/14/2021	12:50	9.75	26.8	0	18.6	8.1	1.52	526	22.8	6.87	17.94
	6/15/2021	11:06	9.76	71.6	19	OR	11.5	1.15	962	-4.8	6.87	17.91
	6/15/2021	14:55	9.76	75.2	0	OR	8.6	1.36	605	6.0	6.89	15.53
Persulfate	6/16/2021	8:41	9.75	88.8	0	OR	4.3	1.24	674	2.3	6.86	15.18
	6/16/2021	14:55	9.78	92.1	20	OR	7.4	1.09	599	5.2	6.87	18.11
	6/17/2021	8:41	9.77	107.0	1	OR	6.2	1.30	802	7.8	6.89	15.75
MW-22	6/7/2021	11:04	9.79	1.4				2.32	550	-221.0	6.30	18.22
	6/8/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/9/2021	10:15	NM	NM	0	13.8	6.2	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:10	9.41	131.0	100	6.1	0.8	2.54	345	21.8	6.18	18.40
nydrogen refoxide	6/10/2021	7:40	9.47	300.0	100	15.1	15.1	2.02	540	-5.0	6.47	17.34
	6/10/2021	14:26	9.52	162.0	100	6.2	1.2	1.86	375	-10.4	6.87	18.73
	6/11/2021	8:26	9.50	204.0	100	7.8	1.0	1.45	462	-14.8	6.92	17.77
	6/14/2021	12:36	9.51	285.0	100	8.4	0.8	1.26	586	-18.4	6.93	17.95
	6/15/2021	10:50	9.52	0.7	19	20.5	0.1	1.06	512	-8.4	6.95	18.57
[6/15/2021	14:26	9.53	12.0	20	15.4	0.8	1.02	576	-8.4	6.92	16.94
Persulfate	6/16/2021	8:26	9.53	17.4	30	7.8	0.7	1.55	601	-7.3	6.93	17.82
	6/16/2021	14:26	9.55	7.0	27	8.5	0.6	1.02	547	-7.1	6.97	15.44
	6/17/2021	8:26	9.53	9.4	25	9.2	0.9	1.31	553	-2.7	6.95	17.32

				Monito	ring Well I	Headspace	Readings		Groundwa	iter Read	dings (FES)	
Monitoring		Time	DTW	PID	LEL	O ₂	CO ₂	DO	Sp. Cond.	ORP	pН	Temp
Point	Date	(24hr)	(feet)	(ppmv)	(%)	(%)	(%)	(mg/L)	(µS/Cm)	(mV)	(pH Units)	(°C)
MW-26	6/7/2021	13:01	8.15	0.8	1	21.3	0.0	4.57	1,108	69.9	5.53	14.44
	6/8/2021	15:10	8.06	0.0	0	21.1	0.0	3.57	1,607	72.4	6.02	16.03
	6/9/2021	9:23	8.00	0.0	1	20.8	0.0	1.30	1,221	-47.2	6.60	13.96
	6/9/2021	10:36	NM	NM	33	4.1	6.7	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:58	7.97	0.0	0	3.1	8.8	0.79	1,209	-6.5	6.75	15.53
Trydrogen refoxide	6/10/2021	8:47	8.15	0.0	0	8.1	6.0	8.43	1,047	-22.8	6.93	15.18
	6/10/2021	16:20	8.14	0.0	0	4.9	5.3	0.91	1,024	-163.0	6.97	18.11
	6/11/2021	9:24	8.17	0.0	0	5.0	25.4	1.00	854	-64.0	6.82	15.75
	6/14/2021	13:52	8.20	0.0	0	5.8	52.0	0.81	959	-20.1	6.99	12.24
	6/15/2021	12:11	8.71	0.0	0	6.0	50.0	1.06	872	-22.8	6.81	16.42
	6/15/2021	16:20	8.71	0.0	0	6.0	55.0	1.70	954	-46.8	6.87	17.99
Persulfate	6/16/2021	9:24	8.73	0.0	0	5.5	54.0	1.95	875	-42.1	6.90	18.62
	6/16/2021	16:20	8.69	0.0	0	4.8	52.0	1.02	804	-36.9	6.85	15.53
	6/17/2021	9:24	8.70	0.0	0	6.2	53.0	1.32	965	-52.1	6.92	15.18
MW-27	6/7/2021	12:53	8.38	1.8				4.10	316	-8.2	5.92	16.49
	6/8/2021	15:07	8.40	12.6				3.10	1,424	-78.7	6.89	15.19
	6/9/2021	9:20	8.19	2.6				3.23	937	-33.4	6.84	14.39
	6/9/2021	10:35	NM	NM	36	9.4	5.5	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:55	8.25	38.1	9	20.9	0.3	3.19	899	-141.5	6.94	17.20
nydrogen refoxide	6/10/2021	8:44	8.35	20.6	0	5.5	3.9	8.09	810	-35.6	7.20	17.58
	6/10/2021	16:10	8.32	14.9	0	6.7	2.1	1.64	947	-42.7	6.66	18.73
	6/11/2021	9:21	8.52	8.4	0	7.2	2.2	1.45	925	-60.4	6.66	17.98
	6/14/2021	13:46	8.61	7.8	0	8.3	1.8	1.72	1,062	-59.6	6.97	17.42
	6/15/2021	12:08	8.74	2.4	0	7.4	1.0	1.59	999	-60.4	6.87	18.47
[6/15/2021	16:10	8.75	3.6	0	9.2	2.4	1.18	1,048	-70.4	6.90	15.18
Persulfate	6/16/2021	9:21	8.69	5.2	0	8.4	1.6	1.17	796	-83.6	6.87	16.49
[6/16/2021	16:10	8.77	1.6	0	7.6	0.8	1.26	856	-56.9	6.86	15.19
	6/17/2021	9:21	8.76	9.4	0	9.3	1.4	1.34	944	-104.8	6.88	14.39

				Monito	ring Well I	Headspace	Readings		Groundwa	iter Read	dings (FES)	
Monitoring		Time	DTW	PID	LEL	O_2	CO ₂	DO	Sp. Cond.	ORP	pН	Temp
Point	Date	(24hr)	(feet)	(ppmv)	(%)	(%)	(%)	(mg/L)	(µS/Cm)	(mV)	(pH Units)	(°C)
MW-28	6/7/2021	12:33	9.20	1.2				2.37	5,744	-204.8	6.62	16.44
	6/8/2021	14:53	8.07	137.3				2.74	9,581	69.5	6.99	17.15
	6/9/2021	9:10	8.46	1050.0				NM	NM	NM	NM	NM
	6/9/2021	10:29	NM	NM	100	OR	5.7	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	14:47	9.42	725.0	100	OR	9.9	4.09	12,497	128.2	6.49	17.90
nydrogen refoxide	6/10/2021	8:31	9.87	700.0	71	OR	9.1	3.96	19,362	31.3	6.30	21.30
	6/10/2021	15:53	NM	943.0	100	OR	11.3	NM	NM	NM	NM	NM
	6/11/2021	9:11	NM	865.0	100	OR	9.4	NM	NM	NM	NM	NM
	6/14/2021	13:28	9.88	12.8	100	OR	8.3	0.96	482	-30.6	6.89	17.99
	6/15/2021	11:48	9.68	29.0	22	21.5	0.5	1.75	820	-36.8	6.74	18.62
	6/15/2021	15:53	9.69	34.8	35	21.4	2.0	1.54	458	-42.9	6.78	15.53
Persulfate	6/16/2021	9:11	9.69	74.5	42	21.6	3.6	1.64	768	-23.6	6.74	15.18
	6/16/2021	15:53	9.71	48.6	27	21.7	1.5	1.25	905	-19.8	6.75	18.11
	6/17/2021	9:11	9.72	79.1	16	22.0	4.1	1.19	787	-78.6	6.76	15.75
MW-37R	6/7/2021	11:21	9.71	16.7				2.42	650	-38.1	6.63	17.90
	6/8/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/9/2021	10:17	NM	NM	100	13.0	6.6	NM	NM	NM	NM	NM
Hydrogen Peroxide	6/9/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
nydrogen refoxide	6/10/2021	7:50	NM	879.0	100	23.1	9.4	NM	NM	NM	NM	NM
	6/10/2021	14:45	NM	1042.0	100	23.1	9.0	NM	NM	NM	NM	NM
	6/11/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/14/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/15/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
[6/15/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Persulfate	6/16/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/16/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/17/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM

Table 2b Summary of In-Situ Chemical Oxidation (ISCO) Activities June 2021 Groundwater/Vapor Field Monitoring Data Former Norton/Nashua Watervliet, New York

				Gr	oundwater Rea	dings (ISOT	EC)		
Monitoring		DO	Sp. Cond.	ORP	pН	Temp	Persulfate	Iron	H ₂ O ₂
Point	Date/Time	(mg/L)	(µS/Cm)	(mV)	(pH Units)	(°C)	(mg/L)	(mg/L)	(mg/L)
MP-23	6/8/21 9:15	6.85	1,126	-62	6.71	21.3	0	26	0
	6/8/21 14:30	6.32	1,058	-65	6.61	23.10	0	30	0
	6/9/21 0:00	6.92	1,071	-92	6.77	21.9	0	34	0.8
	6/10/21 8:00	6.70	1,464	-55	6.68	21.1	0	26	0.6
	6/14/21 13:00	7.76	1,119	-54	6.76	20.3	0	23	1.2
	6/15/21 10:30	7.56	1,108	-65	6.71	20.5	2.1	27	0.8
	6/17/21 8:30	4.15	1,097	-41	6.75	19.6	7	32	2
MP-24	6/8/21 9:15	6.52	14,240	158	6.06	21.1	0	12	0
	6/8/21 14:30	6.17	7,733	133	6.64	23.0	0	10	1
	6/9/21 8:00	8.83	14,580	109	6.44	20.9	0	15	1.2
	6/10/21 8:00	9.35	14,000	136	6.37	21.6	0	23	3
	6/14/21 13:00	8.45	11,180	153	6.48	20.8	0	18	2
	6/15/21 10:30	8.95	9,559	106	6.62	20.2	0	74	3
	6/17/21 8:30	4.99	14,800	368	6.52	19.3	525	62	80
MP-25	6/8/21 9:15	6.63	5,374	113	7.04	21.1	0	16	0
	6/8/21 14:30	7.84	8,551	49	6.80	23.1	0	28	30
	6/9/21 8:00	9.52	8,334	49	7.13	21.3	0	28	16
	6/10/21 8:00	7.66	14,860	130	7.03	21.9	0	24	15
	6/14/21 13:00	7.91	2,423	80	7.19	21.5	0	60	7
	6/15/21 10:30	6.66	5,104	35	7.06	21.2	0	96	4
	6/17/21 8:30	6.13	6,131	62	6.97	19.4	56	90	4
MP-26	6/8/21 9:15	6.25	2,074	-235	6.91	20.0	0	1.8	0
	6/8/21 14:30	5.69	3,252	123	7.13	24.6	0	4.8	2
	6/9/21 8:00	6.01	4,507	115	7.16	22.9	0	6.4	7
	6/10/21 8:00	4.27	656	35	7.06	20.7	0	8.2	3
	6/14/21 13:00	6.41	5,931	50	7.02	22.2	0	48	4
	6/15/21 10:30	5.52	6,627	32	7.05	20.7	0	96	4
	6/17/21 8:30	12.20	12,970	202	7.12	19.5	210	100	35

Table 2b Summary of In-Situ Chemical Oxidation (ISCO) Activities June 2021 Groundwater/Vapor Field Monitoring Data Former Norton/Nashua Watervliet, New York

				Gr	oundwater Rea	dings (ISOT	EC)		
Monitoring		DO	Sp. Cond.	ORP	pН	Temp	Persulfate	Iron	H ₂ O ₂
Point	Date/Time	(mg/L)	(µS/Cm)	(mV)	(pH Units)	(°C)	(mg/L)	(mg/L)	(mg/L)
MP-27	6/8/21 9:15	4.79	5,788	-212	6.82	20.3	0	6	0
	6/8/21 14:30	5.68	7,181	111	6.94	24.7	0	4.6	0.4
	6/9/21 8:00	6.09	9,195	270	7.26	23.0	0	32	800
	6/10/21 8:00	7.20	9,402	154	7.06	21.3	0	27	60
	6/17/21 8:30	8.98	20,440	320	8.18	19.9	5600	54	300
MP-28	6/8/21 9:15	4.29	998	-44	6.75	20.2	0	9.4	0
	6/9/21 8:00	5.95	8,124	139	6.91	23.4	0	72	20
	6/10/21 8:00	4.05	9,516	170	6.66	22.3	0	124	15
	6/15/21 10:30	12.64	70,820	279	12.82	21.3	>7,000	40	450
MP-29	6/8/21 9:15	4.36	924	-59	6.69	22.2	0	22	0
	6/8/21 14:30	5.80	4,660	191	6.91	25.2	0	14	0.4
	6/8/21 14:30	5.53	882	124	6.64	25.0	0	44	0.6
	6/9/21 8:00	5.52	861	-24	6.72	23.0	0	28	1.2
	6/10/21 8:00	6.84	1,088	125	6.55	21.8	0	36	5
	6/17/21 8:30	13.46	21,600	278	10.94	20.4	>7,000	48	400
MW-28	6/8/21 9:15	5.15	5,983	-282	7.20	22.0	0	7.2	0
	6/8/21 14:30	6.31	9,736	98	6.82	24.7	0	18	60
	6/9/21 8:00	9.89	2,689	94	7.04	21.3	0	8	20
	6/10/21 8:00	6.57	10,740	123	6.91	21.1	0	152	10
	6/14/21 13:00	7.08	9,886	-12	6.85	22.2	0	272	8
	6/15/21 10:30	6.42	9,477	74	6.75	21.6	0	256	8
	6/17/21 8:30	2.43	22,390	252	9.51	20.7	4900	60	150
MW-37R	6/10/21 9:30	6.19	1,417	56	8.02	23.1	0	24	8
	6/16/21 7:00	13.52	20,656	296	9.06	21.4	4900	60	100

Notes:

- 1. DTW = Depth to Water; DO = dissolved oxygen; PID = Photoionization Detector; ORP = Oxidation Reduction Potential; OR = Over Range; LEL = lower explosive limit; O2 = vapor-phase oxygen; CO₂ = vapor-phase carbon dioxide; mg/L = milligrams per liter; ppmv = parts per million by volume; "--" = not recorded (LandTec meter not working properly); in/H2O = inches of water; NA = Not Accessible.
- 2. Field readings from select monitoring wells exhibiting elevated PID and/or LEL readings were not collected in order to minimize indoor air/worker breathing zone concerns.

Table 3 Vapor/Ambient Air Sampling Field Measurements (June 9, 2021) Former Norton/Nashua Tape Products Facility Watervliet, New York

Page 1 of 1

			Post-Sample				Tracer Gas (Helium) Monitoring					
	Initial	Post-Sample	Laboratory		Pre-Sample	Post-Sample	Pre-Sample	Pre-Sample	Post-Sample	Post-Sample		
	Summa	Summa	Summa	Purge	PID	PID	Concentration	Concentration	Concentration	Concentration		
Sample	Vacuum	Vacuum	Vacuum	Volume	Screening	Screening	(Flux Chamber)	(Tedlar Bag)	(Flux Chamber)	(Tedlar Bag)		
Designation	(inHg)	(inHg)	(inHg)	(Liters)	(ppbv)	(ppbv)	(%)	(ppmv)	(%)	(ppmv)		
DB-VMP-2	30.0	3.0	3.8	1.0	0.0	2,924	58.2%	0.0%	67.5%	0.0%		
DB-VMP-3	28.5	4.0	4.6	1.0	0.0	3,722	8,500 ppmv	0.0%	64.0%	0.0%		
Indoor Air	30.0	4.0	4.2	NA	0.0	2,016	NA	NA	NA	NA		
Outdoor Ambient	29.0	3.0	4.2	NA	0.0	0.0	NA	NA	NA	NA		
Trip Blank	29.4	NA	28.8	NA	NA	NA	NA	NA	NA	NA		

Notes:

^{1.} PID = photoionization detector; inHg = inches of mercury; ppbv = parts per billion by volume; ppmv = parts per million by volume; VMP = vapor monitoring point; IA = indoor air; TB = trip blank; NA = Not Applicable.

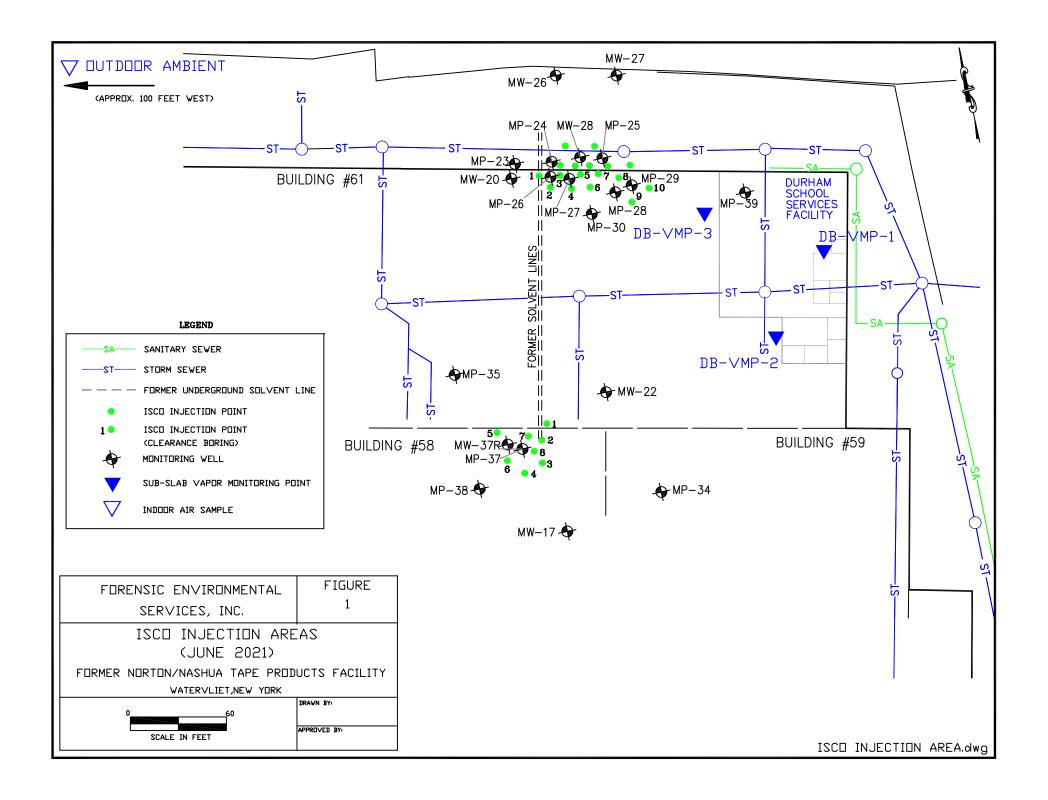
Table 4 Summary of Vapor Analytical Data 2021 In-Situ Chemical Oxidation (ISCO) Activities Former Norton/Nashua Facility Watervliet, New York

Sample ID:	Indoor Air	DB-VMP-2	DB-VMP-3	Outdoor Ambient	Trip Blank
Date Sampled:	6/9/2021	6/9/2021	6/9/2021	6/9/2021	6/9/2021
Acetone	106 J	ND (1.1)	ND (7.1)	ND (12)	1.3
1,3-Butadiene	ND (0.10)	ND (0.40)	ND (0.40)	ND (0.10)	ND (0.10)
Benzene	2.3	ND (0.15)	ND (0.15)	ND (0.038)	ND (0.038)
Bromodichloromethane	ND (0.18)	ND (0.74)	ND (0.74)	ND (0.18)	ND (0.18)
Carbon disulfide	1.4	1.2 J	ND (0.29)	4.4	ND (0.075)
Chloroform	1.3	ND (0.39)	ND (0.39)	ND (0.098)	ND (0.098)
Chloromethane	2.1	ND (0.13)	ND (0.13)	1.6	ND (0.031)
Carbon Tetrachloride	ND (0.15)	ND (0.59)	ND (0.59)	ND (0.15)	ND (0.15)
Cyclohexane	10	1.8 J	ND (0.30)	ND (0.076)	ND (0.076)
1,1-Dichloroethane	ND (0.049)	ND (0.19)	ND (0.19)	ND (0.049)	ND (0.049)
1,2-Dichloroethane	ND (0.085)	ND (0.34)	ND (0.34)	ND (0.085)	ND (0.085)
Dichlorodifluoromethane	2.5	2.3 J	2.5 J	2.6	ND (0.084)
trans-1,2-DCE	ND (0.029)	ND (0.11)	ND (0.11)	ND (0.029)	ND (0.029)
m-Dichlorobenzene	ND (0.11)	ND (0.46)	ND (0.46)	ND (0.11)	ND (0.11)
p-Dichlorobenzene	1.5	ND (0.42)	ND (0.42)	ND (0.11)	ND (0.11)
Ethanol	277 J	35.0 J	51.8 J	51.8 J	ND (0.41 J)
Ethylbenzene	9.6	ND (0.26)	ND (0.26)	ND (0.065)	ND (0.065)
Ethyl Acetate	ND (0.14)	ND (0.54)	4.0	3.5	ND (0.14)
4-Ethyltoluene	0.84 J	ND (0.59)	ND (0.59)	ND (0.15)	ND (0.15)
Heptane	471	5.7	ND (0.29)	0.61 J	ND (0.074)
Hexachlorobutadiene	ND (0.49)	ND (1.9)	ND (1.9)	ND (0.49)	ND (0.49)
Hexane	8.8	ND (0.15)	ND (0.15)	ND (0.039)	ND (0.039)
2-Hexanone	ND (0.15)	ND (0.61)	ND (0.61)	ND (0.15)	ND (0.15)
Isopropyl alcohol	124	2.9 J	ND (0.64 J)	1.8 J	ND (0.16 J)
Methylene chloride	2.9	ND (0.20)	ND (0.20)	0.94	ND (0.052)
Methyl ethyl ketone	395	4.7 J	ND (4.7)	ND (2.6)	0.53 J
Methyl Isobutyl Ketone	ND (0.15)	ND (0.57)	ND (0.57)	ND (0.15)	ND (0.15)
Methylmethacrylate	1.8	ND (0.53)	ND (0.53)	ND (0.14)	ND (0.14)
Propylene	ND (0.027)	ND (0.11)	ND (0.11)	ND (0.027)	ND (0.027)
Styrene	26	ND (0.32)	ND (0.32)	1.2	ND (0.081)

Table 4 **Summary of Vapor Analytical Data** 2021 In-Situ Chemical Oxidation (ISCO) Activities Former Norton/Nashua Facility

Watervliet, New York

Sample ID:	Indoor Air	DB-VMP-2	DB-VMP-3	Outdoor Ambient	Trip Blank
Date Sampled:	6/9/2021	6/9/2021	6/9/2021	6/9/2021	6/9/2021
1,1,1-Trichloroethane (1,1,1-TCA)	ND (0.18)	ND (0.71)	ND (0.71)	ND (0.18)	ND (0.18)
1,2,4-Trimethylbenzene	4.1	ND (0.64)	ND (0.64)	ND (0.16)	ND (0.16)
1,3,5-Trimethylbenzene	1.4	ND (0.64)	ND (0.64)	ND (0.17)	ND (0.17)
2,2,4-Trimethylpentane	3.1	ND (0.41)	ND (0.41)	ND (0.10)	ND (0.10)
Tertiary Butyl Alcohol	21	3.0	ND (0.17)	1.0	ND (0.042)
Tetrachloroethene (PCE)	21	14	3.1	0.41	ND (0.21)
Tetrahydrofuran	1.2	ND (0.59)	ND (0.59)	ND (0.15)	ND (0.15)
Toluene	562	4.9	5.3	3.4	ND (0.053)
Trichloroethene (TCE)	ND (0.10)	ND (0.41)	0.81 J	ND (0.10)	ND (0.10)
Trichlorofluoromethane	8.4	6.7	3.0 J	1.3	ND (0.16)
Vinyl Acetate	7.7	3.5	ND (0.49)	3.1	ND (0.12)
m,p-Xylene	23	ND (0.61)	ND (0.61)	ND (0.15)	ND (0.15)
o-Xylene	9.6	ND (0.30)	ND (0.30)	ND (0.074)	ND (0.074)
Xylenes (total)	32	ND (0.30)	ND (0.30)	ND (0.074)	ND (0.074)
Total VOC TICs	498.2 J	33 J	ND	14.9 J	2.5 J


Notes:

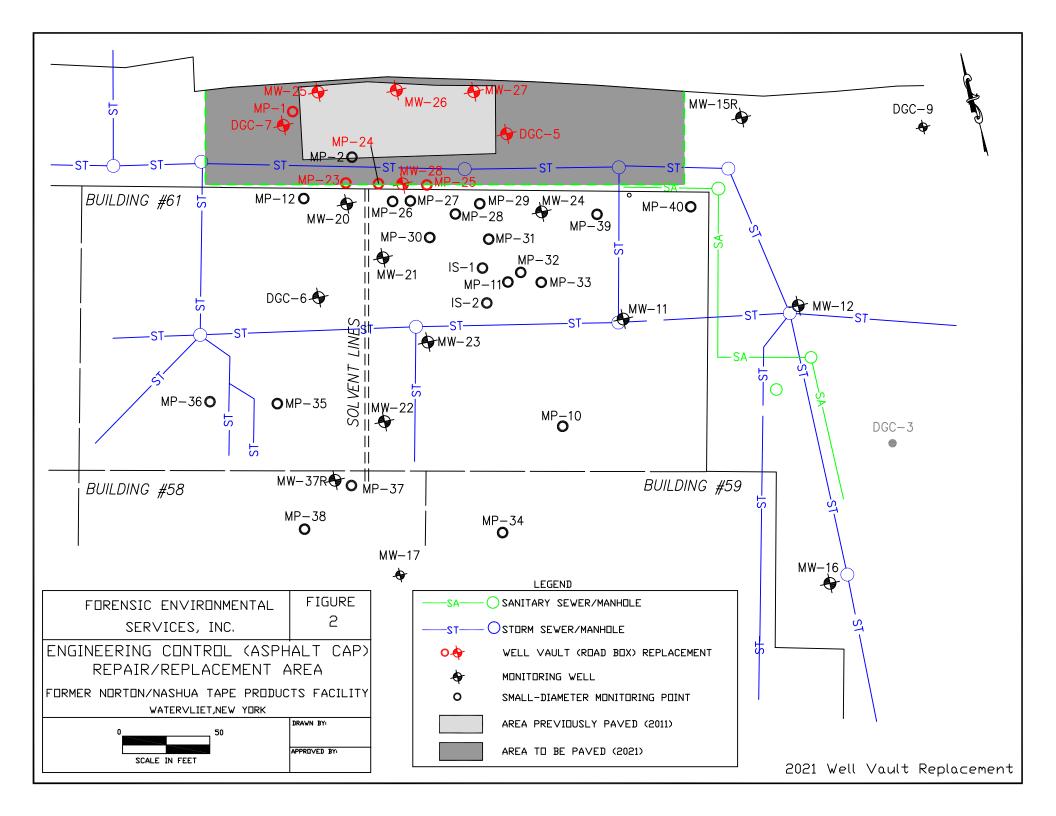

- 1. All samples were analyzed for VOCs via EPA Method TO-15 plus TICs. Only detected analytes are listed above.
- 2. All results presented in micrograms per cubic meter (µg/m³) except total volatile organic compound (VOC) tentatively identified compounds (TICs), which are presented in parts per billion by volume (ppbv).
- 3. J = estimated concentration, compound detected below the quantitation limit; ND = not detected (laboratory detection limit); VMP = vapor monitoring point.
- 4. All results reflect validated data.

Table 5 Tentative Schedule Former Norton/Nashua Tape Facility Watervliet, New York

	1Q2021		2Q2021			3Q2021			4Q2021		1	
Activity	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Bio-Supplementation/Well Dosing Events												
Enhanced Fluid Recovery (EFR) Events (Including Pre- EFR) Groundwater Sampling												
Installation of Pre-In-Situ Chemical Oxidation (ISCO) Injection Points												
ISCO Activities (including Vapor Intrusion Sampling)												
On-Site (Semi-Annual) Groundwater Sampling Events												
Off-Site (Annual) Groundwater Sampling Event												
Post-ISCO Groundwater Sampling Events												
Reporting												

ATTACHMENT 1

NYSDOH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Former Norton/Nashua	Site Code: 401062 Operable Unit:
Building Code: Building Na	mme: Stone Management Warehouse
Address: 2600 7th Avenue	Apt/Suite No:
City: Watervliet State: NY	Zip: 12189 County: Albany
Contact Information	
Preparer's Name: Bryan J. Machella	Phone No: (610) 594-3940
Preparer's Affiliation: Forensic Environmental Services,	Inc. Company Code:
Purpose of Investigation: ISCO-related vapor sampling	Date of Inspection: June 8, 2021
Contact Name: Brian Helf	Affiliation: OWNER
Phone No: (518) 272–2136 Alt. Phone No:	Email: bhelf@stone-mgt.com
Number of Occupants (total): 15–20 Number of Children:	
Occupant Interviewed?	Occupied?
Owner Name (if different):	Owner Phone:
Owner Mailing Address: 2622 7th Avenue, Watervliet, N	Y 12189
Building Details	
Bldg Type (Res/Com/Ind/Mixed): COMMERCIAL/MIXED	Bldg Size (S/M/L): LARGE
If Commercial or Industrial Facility, Select Operations: WAREHOUSE	If Residential Select Structure Type:
Number of Floors: 1 Approx. Year Construction: 1960	☐ Building Insulated? ☐ Attached Garage?
Describe Overall Building 'Tightness' and Airflows(e.g., results of smoke	tests):
Not air tight	
Foundation Description	
Foundation Type: NO BASEMENT/SLAB	Foundation Depth (bgs): Unit: FEET
Foundation Floor Material: POURED CONCRETE	Foundation Floor Thickness: 8
Foundation Wall Material: CONCRETE BLOCK	Foundation Wall Thickness: 8 Unit: INCHES
▼ Floor penetrations? Describe Floor Penetrations: Existing	monitoring wells; temp. injection points
▼ Wall penetrations? Describe Wall Penetrations: Doors/gar	age (bay) doors
Basement is:	Sumps/Drains? Water In Sump?:
Describe Foundation Condition (cracks, seepage, etc.) : Minor cr	acks (no penetrations except as noted above)
Radon Mitigation System Installed?	igation System Installed?
Heating/Cooling/Ventilation Systems	
Heating System: FORCED AIR Heat Fuel Type	e: GAS Central A/C Present?
Vented Appliances	
Water Heater Fuel Type:	Clothes Dryer Fuel Type:
Water Htr Vent Location:	Dryer Vent Location:

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

		PI	RODUCT INV	ENTORY		
Building Nam	e: Stone Management W	arehous	Bldg C	ode: Date:	June 8, 2	2021
Bldg Address:	2600 7th Avenue			Apt/Suite I	No:	
Bldg City/Stat	ce/Zip: Watervliet NY,	12189				
Make and Mo	del of PID: PPBRae			Date of Calibration:	June 8,	2021
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredients	PID Reading	COC Y/N?
Bldg #61	GenDrive forklift batteries	NA	Intact	None	1,256 (ppb)	
Bldg #61	Large Plastic Crate	NA	Intact	None	1,036	
Bldg #61	GenFuel Testing Tanks	NA	Intact	None	1,084	
Bldg #61	2018 Lottery Tickets	NA	Intact	None	927	
Bldg #61	FedEx tanks	NA	Intact	None	1,060	
Bldg #61	Beverage Cooler (Boxes)	NA	Intact	None	1,086	
Bldg #61	Gen Drives (VMP-2 area)	NA	Intact	None	1,149	
Bldg #61	Graphite Plate Boxes	NA	Intact	None	1,095	
Bldg #61	Lite display Frames	NA	Intact	None	1,227	
Bldg #61	Aluminum vent stack	NA	Intact	None	1,050	
Bldg #61	Cardboard packing material	NA	Intact	None	955	
Bldg #61	White plastic containers	NA	Intact	None	934	

Product Inventory Complete?	Yes	Were there any elevated PID readings taken on site? No	Products with COC?
-----------------------------	-----	--	--------------------

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

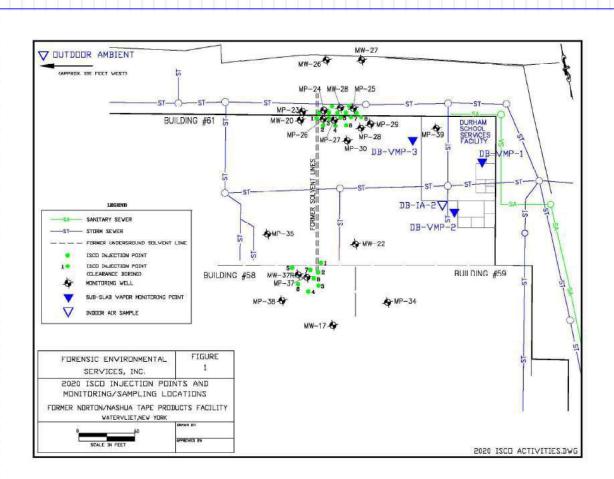
Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Former Norton/Nashua Sit	te Code: 40106	2 Operable Unit:				
Building Code: Building Name: S	tone Manageme	nt Warehouse				
Address: 2600 7th Avenue		Apt/Suite No:				
City: Watervliet State: NY	Zip: 12189	County: Albany				
Factors Affecting Indoor Air Quailty						
Frequency Basement/Lowest Level is Occupied?: FULL TIME	Floor Material:	CEMENT				
	om Exhaust Fan?	Kitchen Exhau	ust Fan?			
Alternate Heat Source:	☐ Is t	here smoking in the buildin	ng?			
Air Fresheners? Description/Location of Air Freshener:						
Cleaning Products Used Recently?: Description of Cleaning Products:						
Cosmetic Products Used Recently?: Description of Cosmetic Products:						
New Carpet or Furniture? Location of New Carpet/Furniture:						
Recent Dry Cleaning? Location of Recently Dry Cleaned Fabrics:						
Recent Painting/Staining? Location of New Painting:						
Solvent or Chemical Odors? Describe Odors (if any):						
Do Any Occupants Use Solvents At Work? If So, List Solvents Used:						
Recent Pesticide/Rodenticide? Description of Last Use:						
Describe Any Household Activities (chemical use,/storage, unvented appliances, hobbies, etc.) That May Affect Indoor Air Quality: Propane-powered forklifts in operation Monday through Friday from approximately 7:00 am to 11:00 pm (first and second shifts).						
In-situ chemical oxidation (ISCO) injection activiti 8, 2021.	es initiated	in Building #61 on	June			
Any Prior Testing For Radon? If So, When?:						
Any Prior Testing For VOCs? If So, When?: Annually						
Sampling Conditions						
Weather Conditions: SUNNY Outdo	or Temperature:	70 - 80	°F			
Current Building Use: WAREHOUSE Barom	etric Pressure:	29.97 - 30.02	in(hg)			
Product Inventory Complete? Yes Building Questionnaire Completed?						

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

Building Code: Address: 2600 7th Avenue Watervliet, NY 12189												
Sampling Information												
Sampler Name(s):	Bryan J. Machell	la	Sampler Comp	Sampler Company Code: Consultant								
Sample Collection Date	e: June 9, 2021		Date Samples Sent To Lab:June 11, 2021									
Sample Chain of Custo	dy Number:JD2647	1	Outdoor Air Sa	Outdoor Amh								
SUMMA Canister Information												
Sample ID:	DB-VMP-2	DB-VMP-3	Indoor Air	Outdoor Amb.	Trip Blank							
Location Code:	Bldg #61	Bldg #61	Bldg #61	NW Area								
Location Type:	SUBSLAB	SUBSLAB	FIRST FLOOR	OUTDOOR								
Canister ID:	A081	A083	A328	A194	A049							
Regulator ID:	MC198	FC107	MC269	FC184								
Matrix:	Subslab Soil Vapo	Subslab Soil	Indoor Air	Ambient Outd								
Sampling Method:	SUMMA AIR SAMPLII	SUMMA AIR SA	SUMMA AIR SA	SUMMA AIR SA	SUMMA AIR SA							
Sampling Area Info												
Slab Thickness (inches):	8	8										
Sub-Slab Material:	DIRT	DIRT										
Sub-Slab Moisture:	DRY	DRY										
Seal Type:												
Seal Adequate?:	\times	\times										
Sample Times and	Vacuum Readings											
Sample Start Date/Time:	06/09/2021 8:00	06/9/2021 7	06/09/2021	06/09/2021								
Vacuum Gauge Start:	30	28.5	30	29								
Sample End Date/Time:	06/09/2021 16:	06/09/2021	06/09/2021	06/09/2021								
Vacuum Gauge End:	3	4	4	3								
Sample Duration (hrs):	8	8	8	8	8							
Vacuum Gauge Unit:	in(hg)	in(hg)	in(hg)	in(hg)	in(hg)							
Sample QA/QC Readings												
Vapor Port Purge:												
Purge PID Reading:	2,924	3,772										
Purge PID Unit:	ppb	ppb										
Tracer Test Pass:	\boxtimes	\times										
Sample start	and end times should	l be entered using	the following forr	mat: MM/DD/YYY\	/ HH:MM							


Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

LOWEST BUILDING LEVEL LAYOUT SKETCH

Please click the box with the blue border below to upload a sketch of the lowest building level . The sketch should be in a standard image format (.jpg, .png, .tiff)

Clear Image

Design Sketch

Design Sketch Guidelines and Recommended Symbology

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

B or F	Boiler or Furnace	0	Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater	XXXXXXX	Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces	######	Areas of broken-up concrete
WS	Wood Stoves	• SS-1	Location & label of sub-slab samples
W/D	Washer / Dryer	• IA-1	Location & label of indoor air samples
S	Sumps	● OA-1	Location & label of outdoor air samples
@	Floor Drains • PFET-1		Location and label of any pressure field test holes.

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

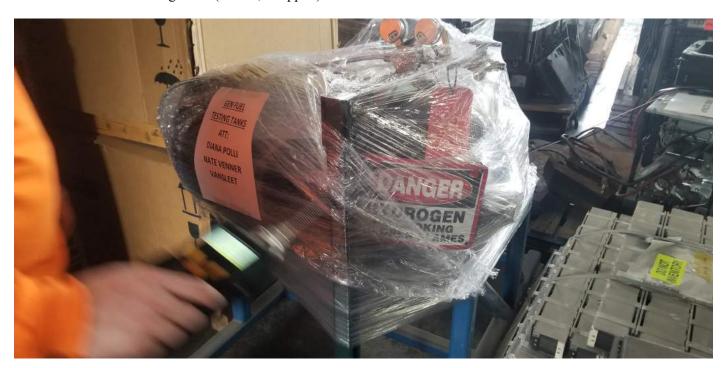
				of the first floor of the building.	Clear Im	
The ske	etch should be in a stan	dard image foi	rmat (.jpg, .png, .tiff)			
			Design Sketch			
					++	
	Design	າ Sketch Guide	elines and Recommend	led Symbology		
 Identify a 	and label the locations of all	sub-slab, indoo	r air, and outdoor air samp	oles on the layout sketch.		
■ Measure	the distance of all sample	locations from ic	tentifiable features, and in	clude on the layout sketch.		
	W. Land Control of the Control of th			Control and the control of the contr		
■ identify r	oom use (bedroom, living r	oom, den, kitche	n, etc.) on the layout sket			
 Identify t 	he locations of the following	g features on the	layout sketch, using the a	appropriate symbols:		
B or F	Boiler or Furnace	0	Other floor or wall penet	trations (label appropriately)		
HW	Hot Water Heater				iate)	
FP	Fireplaces	######	Areas of broken-up concrete			
WS	Wood Stoves	• SS-1	Location & label of sub-slab samples			
W/D	Washer / Dryer	• IA-1	Location & label of indoo	or air samples		
	Sumps	• OA-1	Location & label of outde	oor air samples		
S	Ouripo	■ UA-1	Floor Drains • PFET-1 Location and label of any pressure field test holes.			

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

OUTDOOR PLOT LAYOUT SKETCH Please click the box with the blue border below to upload a sketch of the outdoor plot of the building as well as the surrounding area. The sketch should be in a standard image format (.jpg, .png, .tiff) Clear Image Design Sketch Design Sketch Guidelines and Recommended Symbology ■ Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch. ■ Measure the distance of all sample locations from identifiable features, and include on the layout sketch. ■ Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch ■ Identify the locations of the following features on the layout sketch, using the appropriate symbols: B or F Boiler or Furnace Other floor or wall penetrations (label appropriately) 0 HW Hot Water Heater Perimeter Drains (draw inside or outside outer walls as appropriate) XXXXXXX FP Fireplaces ###### Areas of broken-up concrete WS Wood Stoves • SS-1 Location & label of sub-slab samples W/D Washer / Dryer Location & label of indoor air samples S Sumps Location & label of outdoor air samples ● OA-1 Floor Drains Location and label of any pressure field test holes. • PFET-1

ATTACHMENT 2 PHOTOGRAPHIC LOG


Picture 1: GenDrive forklift batteries proximal to DB-VMP-3 (Photoionization Detector [PID]: 1,256 parts per billion by volume [ppbv]).

Picture 2: Large plastic crate proximal to DB-VMP-3 (PID: 1,036 ppbv)

Picture 3: GenFuel testing tanks (PID: 1,084 ppbv)

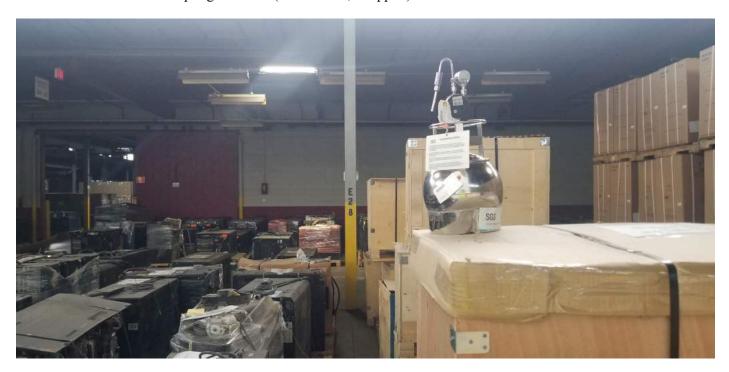
Picture 4: Packaged 2018 lottery tickets (PID: 927 ppbv)

Picture 5: FedEx tanks (PID: 1,060 ppbv).

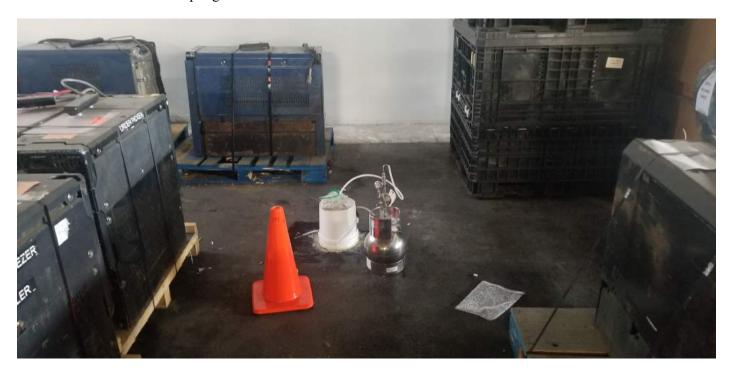
Picture 6: Beverage cooler (boxes) (PID: 1,086 ppbv)

Picture 7: Graphite plate boxes (PID: 1,095 ppbv).

Picture 8: Lite display frames (PID: 1,227 ppbv)


Picture 9: Aluminum vent stack (PID: 1,050 ppbv).

Picture 10: White plastic containers (PID: 934 ppbv) and cardboard packing material (PID: 955 ppbv)


Picture 11: Indoor Air Sampling Location (PID: 0.0 - 2,016 ppbv)

Picture 12: DB-VMP-2 sampling location.

Picture 13: DB-VMP-3 sampling location.

Picture 14: Outdoor Ambient sampling location (PID: 0.0 ppbv).

Picture 15: Building #61 warehouse area (view looking north).

Picture 16: October 8, 2019 Cap Inspection Photo; North of Building #61 (view looking east).

