

engineering and constructing a better tomorrow

July 19, 2023

Ms. Ruth Curley & Mr. Kyle Forster
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway
Albany, New York 12233

Subject: 2023 Long Term Monitoring Event – Main Plant Area
AL Tech Specialty Steel (NYSDEC Site 401003)

MACTEC Engineering & Geology, P.C., Project No. 3616206100

Dear Ms. Curley:

MACTEC Engineering & Geology, P.C., (MACTEC), under contract to the New York State (NYS) Department of Environmental Conservation (NYSDEC) has prepared this data report for the AL Tech Specialty Steel Site (Site No. 401003) (Figure 1). This report provides results for the 2023 Long Term Monitoring (LTM) conducted at the Main Plant Area (MPA) portion of the Site in February.

The LTM was conducted at the Site in accordance with the Interim Site Management Plan (MACTEC, 2016) to:

- Evaluate the effectiveness of the interim remedial actions that have been conducted at the Site.
- Monitor long-term trends in concentrations of contaminants.
- Evaluate whether Site-related contaminants chromium, lead, nickel, copper, and polychlorinated biphenyls (PCBs) are migrating off-Site.

The previous most recent LTM event for the MPA was conducted in August 2020. Long term groundwater monitoring was suspended during implementation of the Operable Unit 03 (OU-03) remedial action which included removal of bulk PCB containing Galbestos (NYSDEC, 2018). Remedial activities related to OU-03 were initiated in late 2020 and are anticipated to be completed in 2023.

SCOPE OF WORK

The LTM sampling event at the MPA was conducted by MACTEC from February 20 to February 24, 2023, and consisted of:

- Monitoring well inspection,
- Groundwater elevation monitoring, and
- Groundwater sampling and analysis.

The locations of the LTM monitoring points and their objectives are shown on Figure 2.

A synoptic round of water level measurements was recorded prior to sampling. Monitoring wells used for the collection of water level measurements are shown on Figure 2 and the water level measurements are presented in Table 1. A monitoring well inspection was conducted during the collection of the synoptic water level measurements. Monitoring well conditions were recorded on the monitoring well inspection checklist which is provided in Attachment 1. Correctable deficiencies were remedied by the field staff as necessary (e.g. tubing replacement, bolt replacement on flush mount covers, measurement point marking, and well labelling). Deficiencies that were unable to be remedied by the field staff (e.g. replacement of locking caps, rings, or NYSDEC keyed site locks) were noted and replacement materials will be procured for installation at the next planned Site visit. Observed protective casing heave and settlement will be monitored to determine if repairs may be required in the future.

Low flow groundwater sampling techniques were used for the collection of groundwater samples. Wells with historically low recharge rates were purged dry and allowed to recharge prior to sampling. Field Data Records (FDRs), which document sampling information such as total gallons purged, purge rate, depth to water, drawdown ratios, pump pressures used, and relevant notes and observations are presented in Attachment 1. The FDRs also document field measurements for pH, temperature, specific conductance, oxidation reduction potential, dissolved oxygen, and turbidity obtained during the pre-sample well purging. Samples were analyzed for one or more of the following parameters as per the sampling and analysis plan (Table 2):

- polychlorinated biphenyls (PCBs),
- total metals or dissolved metals,

MACTEC Engineering & Geology, P.C., Project No. 3616206100

• hexavalent chromium (Cr⁺⁶),

• volatile and semi-volatile organic compounds (VOCs and SVOCs),

• total petroleum hydrocarbons, and

• other inorganic compounds (ammonia, fluoride, nitrate, and sulfate).

Groundwater samples were analyzed by Eurofins Environment Testing, except for hexavalent chromium which was analyzed separately by SGS Acutest. A chemistry review report was prepared by MACTEC for the four laboratory sample delivery groups and is provided as Attachment 2. Based on this review, the results were deemed usable (i.e., no sample results were qualified as rejected).

Purge water from monitoring wells that showed evidence of contamination (photoionization detector readings above background, visual, or olfactory) was containerized for offsite disposal and documented on the FDRs. If no evidence of contamination was identified, purge water from monitoring wells was released on-site to the ground surface in the vicinity of the well sampled.

FINDINGS

The February 2023 LTM results are discussed below.

Monitoring Well Inspection. Results of the well inspection found most of the site wells intact and usable for the LTM objectives (Attachment 1). Two overburden monitoring wells which had historically been obstructed (MW-12) or observed to have been damaged as part of OU03 remediation activities (MW-22) were replaced/repaired by the remediation contractor prior to the LTM inspection activities. As part of the LTM inspection, some wells were observed to be damaged (e.g. dented casing, damaged risers, etc.), but not compromised (MW-14, MW-15, H-4S, H-4D, and MW-I704). Heaving of the concrete pad was observed at MW-18, MW-19, MW-37, MW-39, and MW-43. Repairs to the damaged wells or those with heaved pads are not required at this time and are recommended to be re-evaluated as part of anticipated remedial actions for OU-01 at the Site.

<u>Groundwater Elevations.</u> Groundwater elevations for monitoring wells located at the MPA are shown on Table 1. In general, the water levels and the groundwater flow direction observed are consistent with previous years. Depth to groundwater ranged from 2.1 to 15.2 feet below ground

Page 3 of 9

surface in the overburden and shallow bedrock at the MPA. Interpreted overburden and bedrock groundwater surface contours are presented on Figures 3 and 4, respectively. Survey data for MW-22 has not been obtained and is not included in the overburden potentiometric surface map. The groundwater contours indicate that groundwater flow in the vicinity of the MPA is to the east-northeast, towards the Hudson River which is located approximately one mile to the east of the site.

<u>Groundwater Sampling Results – February 2023.</u> The groundwater sampling results have been grouped by the following site region being monitored and sample objectives as shown on Figure 2:

Area	Monitoring Locations
Background	MW-8B, MW-15, MW-17, MW-43
Chlorobenzene Area	MW-27R, DP-09
Extrusion Region	MW-3, MW-3B
Rolling Mill Region	MW-12, MW-22, MW-G501, MW-I704, MW-5, MW-5B, MW-6, MW-6B, MW-18, PES-7
Melt Shop Region	MW-11
Scrap Metal Storage Area Region	MW-1, MW-1B, MW-14, MW-24, MW-26, MW-26B, MW-32, MW-F401, H-4D, H-4S, MW-37, MW-39
Waste Acid Pit Area	MW-4, MW-4B, MW-19, MW-19B, PES-5

Analytical results for compounds detected in groundwater were compared to NYS Class GA water quality standards and guidance values (GA/GV) (NYS, 1999) and are provided in Tables 3 (organic compounds) and 4 (metals and inorganic compounds). Concentration time series plots for PCBs, dichlorobenzene, total chromium, and hexavalent chromium for a select number of monitoring locations are provided in Attachment 3.

Sampling results from this monitoring event are consistent with results from previous years, and include the following:

Organics

 VOCs isopropylbenzene and propylbenzene were detected at concentrations exceeding the GA standards at MW-22 in the Rolling Mills Region. The VOC detections and concentrations are generally consistent with hisotircal sampling results.

Monitoring location MW-27R (a replacement well for MW-27) is located within the chlorobenzene Interim Remediation Measure (IRM) excavation area. VOCs (1,2,4-trichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, and chlorobenzene) were detected in groundwater at concentrations exceeding the GA standards (Table 3). Concentrations of 1,3-dichlorobenzene (11 μ g/L) and 1,4-dichlorobenzene (12 μ g/L) increased to above the Class GA standard of 3 μ g/L for this event after being observed as non-detect or below 1 μ g/L for the August 2020 event. As indicated by the time series plot, concentrations of dichlorobenzenes in this area have generally decreased over time since the 2013 IRM (Attachment 3). As part of the final completion of the IRM, PVC risers and injection piping were left in place within the excavation area for future application of additional treatment oxidants, if necessary (MACTEC, 2014).

The slight increase observed in concentrations of 1,3-dichlorobenzene and 1,4-dichlorobenzene will be re-evaluated in the next scheduled sampling event for May 2024.

- SVOCs were not detected at any monitoring well location at levels exceeding GA standards (Table 3).
- Hydrocarbons (diesel range organics) were detected at two monitoring wells within the Rolling Mill Area at locations (MW-6, and PES-7). Diesel range organics were also detected at location MW-4 in the Waste Acid Pit Area. The detection frequency and concentrations of these analytes are consistent with previous sampling events. Overall, the concentrations of diesel range organics have decreased since 2018 at MW-6 and PES-7. These are no Class GA standards for this analyte.
- PCBs were detected at concentrations exceeding GA standards at two on-site locations (H-4S and MW-32), both within the Scrap Metal Storage Area (SMSA) (Table 3). Groundwater samples for PCBs were collected as unfiltered samples. PCBs were detected at concentrations below GA standards at MW-14, also in the SMSA. As part of the 2015 MPA LTM, filtered and unfiltered groundwater samples were analyzed for PCBs. The

sample results showed similar concentrations between the two samples suggesting that PCB detections were not attributable to turbidity in a sample (MACTEC, 2015).

As illustrated on the time series plots, the detections and concentrations of PCBs in groundwater in the SMSA are consistent with previous sampling events and were not detected in downgradient monitoring wells MW-37 and MW-39 indicating they are not migrating off-Site (Attachment 3).

• LNAPL was observed in two wells, MW-22 and MW-F401 consistent with historical observations. MW-22 part of the site-wide well network monitored monthly by a NYSDEC subcontractor (Precision Environmental Services) for LNAPL (MACTEC, 2023). The monthly LNAPL measurements are compiled and submitted in the Annual Site Report. MW-F401 is not monitored as part of the monthly program.

Metals and Inorganics

- Metals including barium, total chromium, hexavalent chromium, molybdenum, manganese, nickel, and selenium, were detected in groundwater at concentrations exceeding Class GA standards (Table 4).
- Manganese was the most frequently detected analyte at concentrations exceeding the Class GA standards (25 out of 33 results). Many of the manganese concentrations (10 out of 25 results) that exceeded Class GA standards are consistent with overburden groundwater background levels in the region (65 to 1,670 μg/L) as reported by the United States Geologic Survey (USGS) (Nystrom, 2010, 2009 and 2008) and those collected near the site (Table 4). The highest concentrations of manganese in groundwater (>4,000 μg/L) were typically observed along the eastern property boundary (MW-4, MW-6, MW-12, MW-18, MW-39 and PES-7). Manganese exceedances were found to be less frequent and lower in concentration at other wells across the MPA. These trends suggest that the manganese exceedances along the eastern property boundary are potentially related to localized fill in these areas rather than past Site practices.
- Detections and concentrations of chromium and hexavalent chromium in groundwater in the SMSA are consistent with previous sampling events and were not detected in the downgradient off-site monitoring wells MW-37 and MW-39 (Table 4, Attachment 3).

These observations indicate that these Site-related contaminants within the SMSA are not migrating off-site.

• The monitoring wells located in the Waste Acid Pit Area and background wells (Figure 2) were analyzed for select inorganic constituents (ammonium, fluoride, sulfate). Fluoride was detected above the Class GA standard in each of the Waste Acid Pit Area Monitoring wells and sulfate was detected above the Class GA standards in upgradient bedrock well MW-8B (Table 4).

SUMMARY

Groundwater conditions (including water levels, flow direction, and contaminant levels) at the MPA were observed to be consistent with conditions reported for recent sampling events (2019 and 2020). The next sampling event for the MPA is scheduled for May 2024.

If you have any questions or need any additional information, please feel free to call us at 207-775-5401.

Sincerely,

MACTEC Engineering & Geology, P.C.

Nathan Vogan, PG

Site Manager

Jean Firth, PG

Project, Program Manager

Enclosures:

Attachment 1: Field Data Records

Attachment 2: Category A Review February 2023 Groundwater Sampling Program

Attachment 3: Groundwater Concentration vs Time Plots 2011-2023

REFERENCES

- MACTEC Engineering & Geology, P.C. (MACTEC), 2016. Interim Site Management Plan. AL Tech Specialty Steel, Site 4-01-003. March 2016.
- MACTEC, 2015. 2015 Long Term Monitoring Event Main Plant Area; AL Tech Specialty Steel (NYSDEC Site 401003). January 22, 2016.
- MACTEC, 2014. Chlorobenzene Investigation Report, Scrap Metal Storage Area; AL Tech Specialty Steel Colonie, NY (Site 401003). March 2014.
- New York State (NYS), 1999. New York Codes, Rules, and Regulations, Title 6, Part 700-705 Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Amended August 1999.
- New York State Department of Environmental Conservation (NYSDEC), 2019. Record of Decision, Al Tech Specialty Steel, Operable Unit Number 01: Main Plant Area (MPA) and Non-Landfill portion of WMA, Operable Unit Number 04: Kromma Kill on the MPA and Adjacent Upland Soils. March 2019
- NYSDEC, 2018. Record of Decision, Al Tech Specialty Steel, Operable Unit 02: REMEDIAL PROGRAM 12-acre LANDFILL and Supporting Infrastructure, Operable Unit Number 03: ON-SITE STRUCTURES. March 2018.
- Nystrom, E.A., 2010. Groundwater quality in the Lower Hudson River Basin, New York, 2008: U.S. Geological Survey Open-File Report 2010-1197, 39 p., available only at https://pubs.usgs.gov/of/2010/1197/.
- Nystrom, E.A., 2009. Ground-water quality in the Upper Hudson River Basin, New York, 2007: U.S. Geological Survey Open-File Report 2009–1240, 37 p., online only.
- Nystrom, E.A., 2008. Ground-water quality in the Mohawk River Basin, New York, 2006: U.S. Geological Survey Open-File Report 2008-1086, 33 p., online only.

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

FDR Field Data Record

GA NY State Class GA Water Quality Standard

GV Guidance Value

LTM Long Term Monitoring

MACTEC Engineering and Geology, P.C.

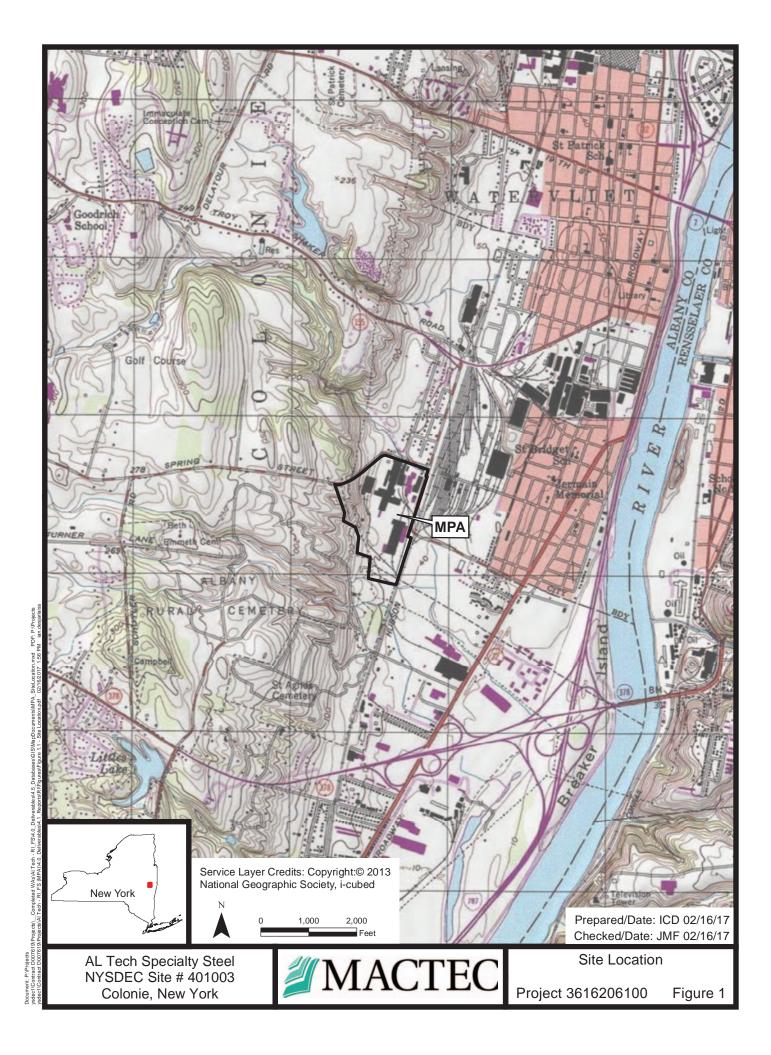
MPA Main Plant Area

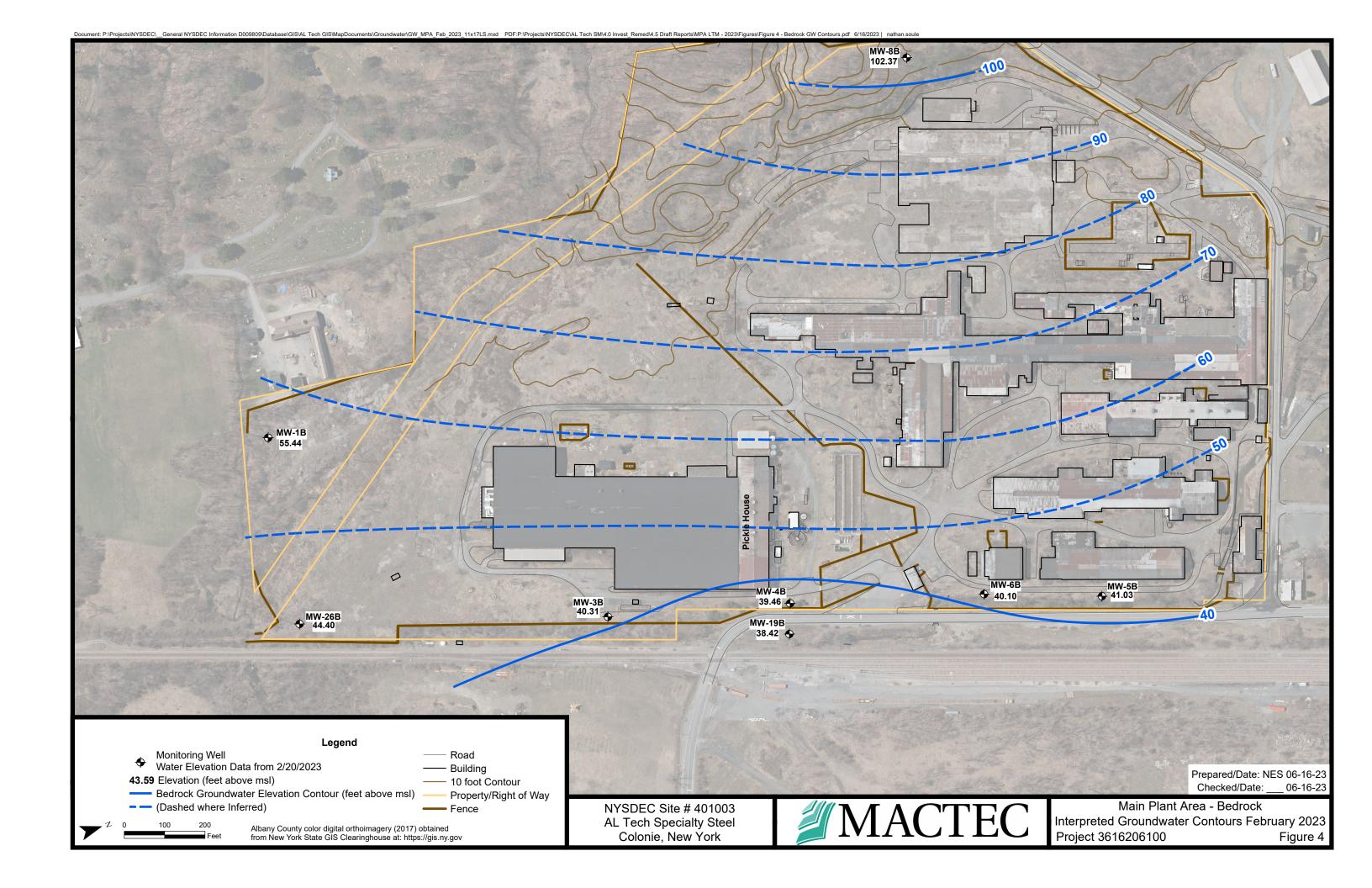
NYS New York State

NYSDEC New York State Department of Environmental Conservation

PCB Polychlorinated Biphenyl

Site AL Tech Specialty Steel Main Plant Area


SMSA Scrap Metal Storage Area


SVOC Semi-Volatile Organic Compounds

USGS United States Geologic Survey

VOC Volatile Organic Compounds

FIGURES

TABLES

Table 1: MPA LTM Water Levels - February 20, 2023

		Historical	Stickup on	Dist. TOC			
	Depth to Water	Depth to BOW	casing	to TOR	MP Elevation	GW Elevation	Monitored
Well ID	(ft TOR)	(ft TOR)	(ft)	(ft)	(ft msl)	(ft)	Zone
MW-1	8.86	20.1	2.4	0.29	67.18	58.32	overburden
MW-1B	11.46	40.2	1.9	0.15	66.90	55.44	bedrock
MW-3	13.17	21.8	2.2	0.16	54.64	41.47	overburden
MW-3B	14.00	52.3	2.1	0.19	54.31	40.31	bedrock
MW-4	12.69	19.9	2.1	0.20	53.26	40.57	overburden
MW-4B	14.09	51.2	2.5	0.21	53.55	39.46	bedrock
MW-5	9.08	20.9	2.6	0.22	51.35	42.27	overburden
MW-5B	10.22	61.8	1.2	0.08	51.25	41.03	bedrock
MW-6	10.64	18.5	2.1	0.15	51.21	40.57	overburden
MW-6B	11.70	65.4	1.7	0.27	51.80	40.10	bedrock
MW-8B	17.94	45.3	3.3	0.59	120.31	102.37	bedrock
MW-11	7.64	16.0	1.8	0.55	53.45	45.81	overburden
MW-12	9.40	18.6	1.9	0.67	47.87	38.47	overburden
MW-14	5.59	16.6	1.7	0.52	56.93	51.34	overburden
MW-15	3.61	12.7	2.2	0.67	55.01	51.40	overburden
MW-17	4.78	14.0	0.0	0.17	49.45	44.67	overburden
MW-18	8.00	18.2	1.9	0.28	47.17	39.17	overburden
MW-19	9.81	24.4	2.7	0.82	48.03	38.22	overburden
MW-19B	9.74	44.8	2.0	0.17	48.16	38.42	bedrock
MW-22	LNAPL	15.3	0.0	0.18	**	NA	overburden
H-4S	8.44	17.1	2.6	0.19	55.27	46.83	overburden
H-4D	10.40	26.4	2.6	0.22	55.36	44.96	overburden
MW-24	13.86	21.6	2.6	0.12 AC	64.30	50.44	overburden
MW-26	8.31	17.9	2.5	0.00	53.22	44.91	overburden
MW-26B	9.04	44.3	2.8	0.03	53.44	44.40	bedrock
MW-27R	7.99	19.5	2.3	0.25	53.77	45.78	overburden
MW-32	8.43	17.2	2.7	0.12	58.62	50.19	overburden
MW-37	6.13	22.0	3.6	0.60	46.95	40.82	overburden
MW-39	9.25	22.2	2.7	0.17	47.63	38.38	overburden
MW-43	5.03	13.9	3.4	0.87	78.60	73.57	overburden
MW-F401*	LNAPL	15.9	3.3	0.27	64.31	NA	overburden
MW-G501	12.56	19.1	3.6	0.49	57.50	44.94	overburden
MW-I704	10.75	22.7	2.7	0.31	48.38	37.63	overburden
DP-09	9.38	17.3	3.5	0.12	51.56	42.18	overburden
PES-5	7.89	13.2	0.0	0.19	46.49	38.60	overburden
PES-7	7.33	13.9	0.0	0.21	46.47	39.14	overburden

MP Elevations from "Year 5 Annual Monitoring Report" (RealCo Inc., 2005)

TOR=Top of Riser

NA=Not Available

TOC=Top of Casing

* = Estimate 1 foot of LNAPL in 1" well.

BOW=Bottom of Well

** - monitoring point elevation information is not available, newly

MP=Monitoring Point

installed replacement wells.

ft=Feet

AC = Above casing

Prepared by: JKR 4/12/23 Reviewed by: NWV 6/5/23

Table 2: Sample and Analysis-February 2023

	Method	PCBs 8082	Select Metals 6010B/ 7470A	Dissolved Select Metals* 6010C- Mod	Cr+6	VOCs	SVOCs	TPH/ Hydrocarbons 8015/ 310.13	Ammonia	Fluoride E300.0	Nitrate E353.2	Sulfate E300.0
		0002	7.7.011		ackgrour		02700	010010	1.000.1	Louis	100012	LUUUIU
MW-8B	40100308B38XX	X	X		X	X	X	X	X	X	X	X
MW-43	401003MW4309XX	X	X		X	X	X	NA	NA	NA	NA	NA
MW-15	401003MW1507XX	X	X		X	X	X	X	X	X	X	X
MW-17	401003MW1707XX	X	X		X	X	X	X	X	X	X	X
	-		•	Chlore	benzene	Wells		!				
DP-09	401003DP0912XX					X						
MW-27R	401003MW27R12XX					X						
			•	Extr	usion Re	gion	•		•			•
MW-3	401003MW0315XX	X	X									
MW-3B	401003MW03B45XX	X		X								
_				Rollin	g Mill R	egion						
MW-5	401003MW0513XX	X	X			X	X	X				
MW-5B	401003MW05B54XX	X		X		X	X	X				
MW-6	401003MW0612XX	X	X			X	X	X				
MW-6B	401003MW06B59XX	X	X			X	X	X				
MW-12	401003MW1211XX	X	X									
MW-18	401003MW1813XX	X	X			X	X	X				
MW-22	401003MW2214XX	X	X			X	X					
MW-G501	401003MWG50111XX	X		X		X	X					
MW-I704	401003MWI70413XX	X	X			X	X					
PES-7	401003PES0712XX	X	X			X	X	X				
				Melt	Shop Re	egion						
MW-11	401003MW1111XX	X	X									
	_			Scrap Metal		Area Re	gion		,	1	1	
MW-1	401003MW0120XX	X	X		X							
MW-1B	401003MW1B32XX	X	X		X							
MW-32	401003MW03209XX	X	X		X							
MW-14	401003MW1412XX	X	X		X							
MW-24	401003MW2413XX	X	X		X							
MW-26	401003MW2610XX	X	X		X							
MW-26B	401003MW26B37XX	X	X]	X							
MW-37	401003MW3714XX	X	X]	X							
MW-39	401003MW3914XX	X	X]	X							
H-4D	401003MWH4022XX	X	X]	X							
H-4S	401003MWH4510XX	X	X		X	L						
	T			Waste	Acid Pi			1				
MW-4	401003MW0413XX	X	X			X	X	X	X	X	X	X
MW-4B	401003MW04B46XX	X	X			X	X	X	X	X	X	X
MW-19	401003MW1918XX	X	X			X	X	X	X	X	X	X
MW-19B	401003MW19B38XX	X	X			X	X	X	X	X	X	X
PES-5	401003PES0512XX	X	X			X	X	X	X	X	X	X
	Total Samples	33	30	3	15	20	18	14	8	8	8	8
	i otai Sampies	33	30	3	13	∠∪	10	14	0	0	0	0

NOTES:

VOCs = Volatile Organic Compounds

SVOCs = Semi-Volatile Organic Compounds

PCBs = Polychlorinated Biphenyls

TPH = Total Petroleum Hydrocarbons

X = Analysis Conducted

NA = Not analyzed

MW-43 - Highlighted analytes not analyzed due to error on Chain of Custody.

^{*} Field filtered dissolved metals samples are collected for locations with turbidity greater than 25 NTU. An unfiltered sample for total metals is not collected.

Table 3: Organic Constituents Detected in Groundwater

				ſ		BACKG	ROUND		CHLOROBE	NZENE AREA
				Location	MW-8B	MW-15	MW-17	MW-43	DP-09	MW-27R
			Field Sar	mple Date	2/21/2023	2/21/2023	2/23/2023	2/21/2023	2/20/2023	2/20/2023
			Field S	Sample ID	401003-MW08B38XX	401003-MW1507XX	401003-MW1707XX	401003-MW4309XX	401003-DP0912XX	401003-MW27R12XX
				Qc Code	FS	FS	FS	FS	FS	FS
Method	Parameter	GA	GV	Unit	Result Qualifier					
	ic Compounds (VOCs)			•						
SW8260C	1,2,4-Trichlorobenzene	5	NS	$\mu g/L$	1 U	1 U	1 U	1 U	1 U	7.3
SW8260C	1,2-Dichlorobenzene	3	NS	$\mu g/L$	1 U	1 U	1 U	1 U	1 U	1.1
SW8260C	1,3-Dichlorobenzene	3	NS	μg/L	1 U	1 U	1 U	1 U	1 U	11
SW8260C	1,4-Dichlorobenzene	3	NS	μg/L	1 U	1 U	1 U	1 U	1 U	12
SW8260C	Benzene	1	NS	μg/L	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Chlorobenzene	5	NS	μg/L	1 U	1 U	1 U	1 U	1 U	8.6
SW8260C	Cyclohexane	NS	NS	μg/L	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Isopropylbenzene	5	NS	μg/L	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Methyl cyclohexane	NS	NS	μg/L	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Propylbenzene	5	NS	μg/L	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	sec-Butylbenzene	5	NS	μg/L	1 U	1 U	1 U	1 U	1 U	1 U
	Organic Comounds (SVOCs)									
SW8270D	2-Methylnaphthalene	NS	NS	$\mu g/L$	5 U	5.7 U	5 U	5 U		
SW8270D	Acenaphthene	NS	20	$\mu g/L$	5 U	5.7 U	5 U	5 U		
SW8270D	Dibenzofuran	NS	NS	μg/L	10 U	11 U	10 U	10 U		
SW8270D	Diethylphthalate	NS	50	$\mu g/L$	5 U	5.7 U	5 U	6.3		
SW8270D	Fluorene	NS	50	μg/L	5 U	5.7 U	5 U	5 U		
SW8270D	N-Nitrosodiphenylamine	NS	50	μg/L	5 U	5.7 U	5 U	5 U		
SW8270D	Phenanthrene	NS	50	μg/L	5 U	5.7 U	5 U	5 U		
	d Biphenyls (PCBs)									
SW8082A	Aroclor-1254	0.09	NS	μg/L	0.06 U	0.057 U	0.057 U	0.061 U		
SW8082A	Aroclor-1260	0.09	NS	$\mu g/L$	0.06 U	0.057 U	0.057 U	0.061 U		
SW8082A	Total PCBs	0.09	NS	μg/L	0.06 U	0.057 U	0.057 U	0.061 U		
Hydrocarbons		_		. 1						
SW8015D	Diesel Range Organics	NS	NS	μg/L	520 U	540 U	500 U			
SW8015D	Petroleum Hydrocarbons C10-C20	NS	NS	μg/L						

 μ g/L = micrograms per liter

GA = NY State Class GA Water Quality Standard

GV = Guidance Value

NS = no standard/guidance

Shaded result = exceeds GA or GV criteria

U = not detected

J = result is estimated

UJ = target analyte is not detected, result value is estimated

blank cells = not analyzed

Table 3: Organic Constituents Detected in Groundwater

						EXTRUSIC	N REGION				R	OLLING M	IILL REGION	V		
				Location	MW	7-3	MV	V-3B	MV	V-12	MW	7-22	MW-0	G501	MW	-I704
			Field S	Sample Date	2/20/2	2023	2/23	/2023	2/23/	/2023	2/23/	2023	2/22/2	2023	2/22/	/2023
			Field	l Sample ID	401003-MV	V0315XX	401003-M	W03B45XX	401003-M	W1211XX	401003-M	W2214XX	401003-MW	G50111XX	401003-M	WI7043XX
				Qc Code	FS	S	F	S	F	FS	F	S	FS	S	F	'S
Method	Parameter	GA	GV	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
	ic Compounds (VOCs)															
SW8260C	1,2,4-Trichlorobenzene	5	NS	μg/L							1	U	1 U	U	4	U
SW8260C	1,2-Dichlorobenzene	3	NS	μg/L							1	U	1 U	U	4	U
SW8260C	1,3-Dichlorobenzene	3	NS	μg/L							1	U	1 U	U	4	U
SW8260C	1,4-Dichlorobenzene	3	NS	μg/L							1	U	1 U	U	4	U
SW8260C	Benzene	1	NS	μg/L							0.92	J	1 U	U	4	U
SW8260C	Chlorobenzene	5	NS	μg/L							1	U	1 U	U	4	U
SW8260C	Cyclohexane	NS	NS	μg/L							7.3		1 U	U	4	U
SW8260C	Isopropylbenzene	5	NS	μg/L						·	12		1 U	U	4	U
SW8260C	Methyl cyclohexane	NS	NS	μg/L							8.2		1 U	U	4	U
SW8260C	Propylbenzene	5	NS	μg/L						·	15		1 U	U	4	U
SW8260C	sec-Butylbenzene	5	NS	μg/L							4.2		1 U	U	4	U
	Organic Comounds (SVOCs)															
SW8270D	2-Methylnaphthalene	NS	NS	μg/L							130		5 T	U	25	U
SW8270D	Acenaphthene	NS	20	μg/L							11	J	5 1	U	10	J
SW8270D	Dibenzofuran	NS	NS	μg/L							6.3	J	10 U	U	50	U
SW8270D	Diethylphthalate	NS	50	μg/L							25	U	5 1	U	25	U
SW8270D	Fluorene	NS	50	μg/L							9.1	J	5 1	U	10	J
SW8270D	N-Nitrosodiphenylamine	NS	50	μg/L							25	U	5 U	U	5.8	J
SW8270D	Phenanthrene	NS	50	μg/L							9.3	J	5 U	U	25	U
	d Biphenyls (PCBs)												Ī			
SW8082A	Aroclor-1254	0.09	NS	μg/L	0.057		0.057		0.058		0.058		0.057 1		0.059	
SW8082A	Aroclor-1260	0.09	NS	μg/L	0.057		0.057		0.058		0.058		0.057 1		0.059	
SW8082A	Total PCBs	0.09	NS	μg/L	0.057	U	0.057	U	0.058	U	0.058	U	0.057 1	U	0.059	U
Hydrocarbons	D' ID O	NG	NG	/T				T					1			
SW8015D	Diesel Range Organics	NS	NS	μg/L												
SW8015D	Petroleum Hydrocarbons C10-C20	NS	NS	μg/L												

 μ g/L = micrograms per liter

GA = NY State Class GA Water Quality Standard

GV = Guidance Value

NS = no standard/guidance

Shaded result = exceeds GA or GV criteria

U = not detected

J = result is estimated

UJ = target analyte is not detected, result value is estimated

blank cells = not analyzed

Table 3: Organic Constituents Detected in Groundwater

				ſ		_	ROLLING M	ILL REGION		
				Location	MW-5	MW-5B	MW-6	MW-6B	MW-18	PES-7
			Field Sa	ample Date	2/22/2023	2/23/2023	2/23/2023	2/22/2023	2/21/2023	2/21/2023
			Field	Sample ID	401003-MW0513XX	401003-MW05B54XX	401003-MW0612XX	401003-MW06B59XX	401003-MW1813XX	401003-PES0712XX
				Qc Code	FS	FS	FS	FS	FS	FS
Method	Parameter	GA	GV	Unit	Result Qualifier					
	ic Compounds (VOCs)									
SW8260C	1,2,4-Trichlorobenzene	5	NS	μg/L	1 U	1 U	2 U	1 U	1 U	2 U
SW8260C	1,2-Dichlorobenzene	3	NS	μg/L	1 U	1 U	2 U	1 U	1 U	2 U
SW8260C	1,3-Dichlorobenzene	3	NS	μg/L	1 U	1 U	2 U	1 U	1 U	2 U
SW8260C	1,4-Dichlorobenzene	3	NS	μg/L	1 U	1 U	2 U	1 U	1 U	2 U
SW8260C	Benzene	1	NS	μg/L	1 U	1 U	2 U	1 U	1 U	2 U
SW8260C	Chlorobenzene	5	NS	μg/L	1 U	1 U	2 U	1 U	1 U	2 U
SW8260C	Cyclohexane	NS	NS	μg/L	1 U	1 U	2 U	1 U	1 U	2 U
SW8260C	Isopropylbenzene	5	NS	μg/L	1 U	1 U	2 U	1 U	1 U	2 U
SW8260C	Methyl cyclohexane	NS	NS	μg/L	1 U	1 U	2 U	1 U	1 U	2 U
SW8260C	Propylbenzene	5	NS	μg/L	1 U	1 U	2 U	1 U	1 U	2 U
SW8260C	sec-Butylbenzene	5	NS	μg/L	1 U	1 U	2 U	1 U	1 U	2 U
Semi-Volatile C	Organic Comounds (SVOCs)									
SW8270D	2-Methylnaphthalene	NS	NS	μg/L	5.2 U	5.2 U	5.2 U	5 U	5 U	25 U
SW8270D	Acenaphthene	NS	20	μg/L	5.2 U	5.2 U	4.5 J	5 U	5 U	2.4 J
SW8270D	Dibenzofuran	NS	NS	μg/L	10 U	50 U				
SW8270D	Diethylphthalate	NS	50	μg/L	5.2 U	5.2 U	5.2 U	5 U	5 U	25 U
SW8270D	Fluorene	NS	50	μg/L	5.2 U	5.2 U	5.2 U	5 U	5 U	25 U
SW8270D	N-Nitrosodiphenylamine	NS	50	μg/L	5.2 U	5.2 U	2.6 J	5 U	5 U	25 U
SW8270D	Phenanthrene	NS	50	μg/L	5.2 U	5.2 U	5.2 U	5 U	5 U	25 U
	d Biphenyls (PCBs)									
SW8082A	Aroclor-1254	0.09	NS	μg/L	0.058 U	0.057 U	0.059 UJ	0.058 U	0.057 U	0.058 U
SW8082A	Aroclor-1260	0.09	NS	μg/L	0.058 U	0.057 U	0.059 UJ	0.058 U	0.057 U	0.058 U
SW8082A	Total PCBs	0.09	NS	μg/L	0.058 U	0.057 U	0.059 UJ	0.058 U	0.057 U	0.058 U
Hydrocarbons										
SW8015D	Diesel Range Organics	NS	NS	μg/L	520 U	520 U	980	500 U	500 U	700
SW8015D	Petroleum Hydrocarbons C10-C20	NS	NS	μg/L						600

 μ g/L = micrograms per liter

GA = NY State Class GA Water Quality Standard

GV = Guidance Value

NS = no standard/guidance

Shaded result = exceeds GA or GV criteria

U = not detected

J = result is estimated

UJ = target analyte is not detected, result value is estimated

blank cells = not analyzed

Table 3: Organic Constituents Detected in Groundwater

					MELT	SHOP				SCRAP M	ETAL STO	RAGE AREA	A REGION			
				Location	MW	V-11	M	W-1	MV	V-1B	MV	W-14	MV	V-24	MV	V-26
			Field S	ample Date	2/22/	2023	2/23	3/2023	2/21	/2023	2/21	/2023	2/21/	/2023	2/21	/2023
			Field	Sample ID	401003-M	W1111XX	401003-N	1W0120XX	401003-M	IW1B32XX	401003-N	1W1412XX	401003-M	W2413XX	401003-M	IW2610XX
				Qc Code	F	S]	FS	I	FS]	FS	F	S]	FS
Method	Parameter	GA	GV	Unit	Result	Qualifier										
	ic Compounds (VOCs)															
SW8260C	1,2,4-Trichlorobenzene	5	NS	$\mu g/L$												
SW8260C	1,2-Dichlorobenzene	3	NS	μg/L												
SW8260C	1,3-Dichlorobenzene	3	NS	μg/L												
SW8260C	1,4-Dichlorobenzene	3	NS	μg/L												
SW8260C	Benzene	1	NS	μg/L												
SW8260C	Chlorobenzene	5	NS	μg/L												
SW8260C	Cyclohexane	NS	NS	μg/L												
SW8260C	Isopropylbenzene	5	NS	μg/L												
SW8260C	Methyl cyclohexane	NS	NS	μg/L												
SW8260C	Propylbenzene	5	NS	μg/L												
SW8260C	sec-Butylbenzene	5	NS	μg/L												
Semi-Volatile C	Organic Comounds (SVOCs)			1.0												
SW8270D	2-Methylnaphthalene	NS	NS	μg/L												
SW8270D	Acenaphthene	NS	20	μg/L												
SW8270D	Dibenzofuran	NS	NS	μg/L												
SW8270D	Diethylphthalate	NS	50	μg/L												
SW8270D	Fluorene	NS	50	μg/L												
SW8270D	N-Nitrosodiphenylamine	NS	50	μg/L												
SW8270D	Phenanthrene	NS	50	μg/L												
	l Biphenyls (PCBs)			, 0												
SW8082A	Aroclor-1254	0.09	NS	μg/L	0.059	U	0.062	2 U	0.06	5 U	0.079)	0.061	U	0.057	U
SW8082A	Aroclor-1260	0.09	NS	μg/L	0.059	U	0.062	2 U	0.06	5 U	0.058	3 U	0.061	U	0.057	U
SW8082A	Total PCBs	0.09	NS	μg/L	0.059	U	0.062	2 U	0.06	5 U	0.079)	0.061	U	0.057	U
Hydrocarbons		_			_						_	•	1	_	1	_
SW8015D	Diesel Range Organics	NS	NS	μg/L												
SW8015D	Petroleum Hydrocarbons C10-C20	NS	NS	μg/L												

 μ g/L = micrograms per liter

GA = NY State Class GA Water Quality Standard

GV = Guidance Value

NS = no standard/guidance

Shaded result = exceeds GA or GV criteria

U = not detected

J = result is estimated

UJ = target analyte is not detected, result value is estimated

blank cells = not analyzed

Table 3: Organic Constituents Detected in Groundwater

									SCRAP M	IETAL STOI	RAGE AREA	A REGION				
				Location	MW	7-26B	MV	V-32	Н-	-4D	H	-4S	MV	V-37	MW	/-39
			Field S	Sample Date	2/21	/2023	2/21	/2023	2/21	/2023	2/21	/2023	2/21	/2023	2/21/	2023
			Field	d Sample ID	401003-M	W26B37XX	401003-M	IW3209XX	401003-I	H4D22XX	401003-1	H4S10XX	401003-M	W3714XX	401003-M	W3914XX
				Qc Code	I	FS	I	FS	F	FS	F	FS	F	S	F	S
Method	Parameter	GA	GV	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
	ic Compounds (VOCs)															
SW8260C	1,2,4-Trichlorobenzene	5	NS	μg/L												
SW8260C	1,2-Dichlorobenzene	3	NS	μg/L												
SW8260C	1,3-Dichlorobenzene	3	NS	μg/L												
SW8260C	1,4-Dichlorobenzene	3	NS	μg/L												
SW8260C	Benzene	1	NS	μg/L												
SW8260C	Chlorobenzene	5	NS	μg/L												
SW8260C	Cyclohexane	NS	NS	μg/L												
SW8260C	Isopropylbenzene	5	NS	μg/L												
SW8260C	Methyl cyclohexane	NS	NS	μg/L												
SW8260C	Propylbenzene	5	NS	μg/L												
SW8260C	sec-Butylbenzene	5	NS	μg/L												
	Organic Comounds (SVOCs)															
SW8270D	2-Methylnaphthalene	NS	NS	μg/L												
SW8270D	Acenaphthene	NS	20	μg/L												
SW8270D	Dibenzofuran	NS	NS	μg/L												
SW8270D	Diethylphthalate	NS	50	μg/L												
SW8270D	Fluorene	NS	50	μg/L												
SW8270D	N-Nitrosodiphenylamine	NS	50	μg/L												
SW8270D	Phenanthrene	NS	50	μg/L												
	d Biphenyls (PCBs)															
SW8082A	Aroclor-1254	0.09	NS	μg/L	0.057		0.19		0.058	U	0.063	_	0.057		0.06	
SW8082A	Aroclor-1260	0.09	NS	μg/L	0.057	U	0.062	U	0.058	U	0.44		0.057	U	0.06	U
SW8082A	Total PCBs	0.09	NS	μg/L	0.057	U	0.19		0.058	U	0.44		0.057	U	0.06	U
Hydrocarbons																
SW8015D	Diesel Range Organics	NS	NS	μg/L												
SW8015D	Petroleum Hydrocarbons C10-C20	NS	NS	μg/L												

 μ g/L = micrograms per liter

GA = NY State Class GA Water Quality Standard

GV = Guidance Value

NS = no standard/guidance

Shaded result = exceeds GA or GV criteria

U = not detected

J = result is estimated

UJ = target analyte is not detected, result value is estimated

blank cells = not analyzed

Table 3: Organic Constituents Detected in Groundwater

				Table 5: Organic Constituents Detected in Groundwater												
						1	WASTE ACID PIT ARE	A								
				Location	MW-4	MW-4B	MW-19	MW-19B	PES-5							
			Field S	ample Date	2/22/2023	2/22/2023	2/22/2023	2/22/2023	2/22/2023							
			Field	Sample ID	401003-MW0413XX	401003-MW04B46XX	401003-MW1918XX	401003-MW19B38XX	401003-PES0512XX							
				Qc Code	FS	FS	FS	FS	FS							
Method	Parameter	GA	GV	Unit	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier							
	ic Compounds (VOCs)															
SW8260C	1,2,4-Trichlorobenzene	5	NS	μg/L	2 U	1 U	1 U	1 U	1 U							
SW8260C	1,2-Dichlorobenzene	3	NS	μg/L	2 U	1 U	1 U	1 U	1 U							
SW8260C	1,3-Dichlorobenzene	3	NS	$\mu g/L$	2 U	1 U	1 U	1 U	1 U							
SW8260C	1,4-Dichlorobenzene	3	NS	$\mu g/L$	2 U	1 U	1 U	1 U	1 U							
SW8260C	Benzene	1	NS	$\mu g/L$	2 U	1 U	1 U	1 U	1 U							
SW8260C	Chlorobenzene	5	NS	$\mu g/L$	2 U	1 U	1 U	1 U	1 U							
SW8260C	Cyclohexane	NS	NS	$\mu g/L$	2 U	1 U	1 U	1 U	1 U							
SW8260C	Isopropylbenzene	5	NS	μg/L	2 U	1 U	1 U	1 U	1 U							
SW8260C	Methyl cyclohexane	NS	NS	μg/L	2 U	1 U	1 U	1 U	1 U							
SW8260C	Propylbenzene	5	NS	μg/L	2 U	1 U	1 U	1 U	1 U							
SW8260C	sec-Butylbenzene	5	NS	μg/L	2 U	1 U	1 U	1 U	1 U							
	Organic Comounds (SVOCs)															
SW8270D	2-Methylnaphthalene	NS	NS	μg/L	5.2 U	5.2 U	5 U	5 U	5.2 U							
SW8270D	Acenaphthene	NS	20	$\mu g/L$	5.2 U	5.2 U	5 U	5 U	5.2 U							
SW8270D	Dibenzofuran	NS	NS	$\mu g/L$	10 U	10 U	10 U	10 U	10 U							
SW8270D	Diethylphthalate	NS	50	μg/L	5.2 U	5.2 U	5 U	5 U	5.2 U							
SW8270D	Fluorene	NS	50	μg/L	5.2 U	5.2 U	5 U	5 U	5.2 U							
SW8270D	N-Nitrosodiphenylamine	NS	50	μg/L	5.2 U	5.2 U	5 U	5 U	5.2 U							
SW8270D	Phenanthrene	NS	50	μg/L	5.2 U	5.2 U	5 U	5 U	5.2 U							
	l Biphenyls (PCBs)															
SW8082A	Aroclor-1254	0.09	NS	$\mu g/L$	0.057 U	0.057 U	0.059 U	0.063 U	0.057 U							
SW8082A	Aroclor-1260	0.09	NS	μg/L	0.057 U	0.057 U	0.059 U	0.063 U	0.057 U							
SW8082A	Total PCBs	0.09	NS	μg/L	0.057 U	0.057 U	0.059 U	0.063 U	0.057 U							
Hydrocarbons				1				1								
SW8015D	Diesel Range Organics	NS	NS	μg/L	590	520 U	540 U	500 U	500 U							
SW8015D	Petroleum Hydrocarbons C10-C20	NS	NS	μg/L												

 $\mu g/L = micrograms per liter$

GA = NY State Class GA Water Quality Standard

GV = Guidance Value

NS = no standard/guidance

Shaded result = exceeds GA or GV criteria

U = not detected

J = result is estimated

UJ = target analyte is not detected, result value is estimated

blank cells = not analyzed

								BACKG	ROUND				C	HLOROBEN	NZENE ARI	E A
				Location	MV	V-8B	MV	V-15	MV	V-17	MV	V-43	MW	-27R	Dl	P-09
			Field S	Sample Date	2/21	/2023	2/21	/2023	2/23	/2023	2/21	/2023				
			Field	d Sample ID	401003-M	W08B38XX	401003-M	IW1507XX	401003-M	IW1707XX	401003-M	IW4309XX	401003-M	W27R12XX	401003-I	DP0912XX
				Qc Code]	FS]	FS	F	FS	I	FS	F	'S]	FS
Method	Parameter	GA	GV	Unit	Result	Qualifier	Result	Qualifier								
Metals																
SW6010C	Arsenic	25	NS	μg/L	15	U	15	U	15	U	15	U				
SW6010C	Barium	1000	NS	$\mu g/L$	31	31		1	62		42					
SW6010C	Chromium	50	NS	μg/L	4	4 U		· U	4	U	4	· U				
SW6010C	Copper	200	NS	μg/L	10	10 U		U	1.7	J	10	U				
SW6010C	Lead	25	NS	μg/L	10	10 U		U	10	U	10	U				
SW6010C	Manganese	300	NS	μg/L	480		220)	570		80)				
SW6010C	Molybdenum*	180	NS	μg/L	10	U	93	i	31		10	U				
SW6010C	Nickel	100	NS	μg/L	10	U	11		1.6	J	10	U				
SW6010C	Selenium	10	NS	μg/L	25	U	25	U	25	U	25	U				
SW7199	Chromium, Hexavalent	50	NS	μg/L	5.5	UJ	5.5	U	5.5	U	5.5	UJ				
Inorganic Cons	stituents															
E350.1	Ammonium	NS	NS	μg/L	640)	20	U	20	U						
E300.0	Fluoride	1500	NS	$\mu g/L$	430)	330)	650							
E300.0	Sulfate	250000	NS	μg/L	394000		89400)	114000							
E353.2	Nitrate as N	10000	NS	μg/L	32	J	50	U	100							

Notes:

 $\mu g/L = micrograms per liter$

GA = NY State Class GA Water Quality Standard

GV = Guidance Value

NS = no standard/guidance

Shaded result = exceeds GA or GV criteria

U = not detected

UJ = target analyte is not detected, result value is estimated

J = result is estimated

J+ = result is estimated with a potential high bias

* - site specific standard

blank cells = not analyzed

				-		EXTRUSIO	N REGION				R	OLLING M	ILLS REGIO)N		
				Location	M	W-3	MW	'-3B	MV	V-12	MV	V-22	MW-	-G501	MW	V-I704
			Field	Sample Date	2/20	/2023	2/23/	2023	2/23/	/2023	2/23/	/2023	2/22	/2023	2/22	2/2023
			Fiel	d Sample ID	401003-M	1W0315XX	401003-MV	V03B45XX	401003-M	W1211XX	401003-M	W2214XX	401003-MV	VG50111XX	401003-M	IWI7043XX
				Qc Code	I	FS	F	S	F	S	F	S	F	S		FS
Method	Parameter	GA	GV	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Metals																
SW6010C	Arsenic	25	NS	μg/L	15	U	15	U	15	U	15	U	15	U	7.4	4 J
SW6010C	Barium	1000	NS	μg/L	59	•	2300		94		200		130		170)
SW6010C	Chromium	50	NS	μg/L	1.1	J	4	U	4	U	2.3	J	2.2	J	1.4	4 J
SW6010C	Copper	200	NS	μg/L	10	U	1.7	J	1.7	J	1.9	J	3.9	J	2	2 J
SW6010C	Lead	25	NS	μg/L	10	U	10	U	10	U	10	U	10	U	10) U
SW6010C	Manganese	300	NS	μg/L	17	•	24	•	6800		3900		4000		2800)
SW6010C	Molybdenum*	180	NS	μg/L	10	U	10	U	250		11	•	9	J	10) U
SW6010C	Nickel	100	NS	μg/L	1.6	J	10	U	3.9	J	21		64		1.5	5 J
SW6010C	Selenium	10	NS	μg/L	25	U	25	U	25	U	25	U	25	U	25	5 U
SW7199	Chromium, Hexavalent	50	NS	μg/L												
Inorganic Cons	stituents			_												
E350.1	Ammonium	NS	NS	μg/L												
E300.0	Fluoride	1500	NS	μg/L												
E300.0	Sulfate	250000	NS	μg/L												
E353.2	Nitrate as N	10000	NS	μg/L												

Notes:

 $\mu g/L = micrograms per liter$

GA = NY State Class GA Water Quality Standard

GV = Guidance Value

NS = no standard/guidance

Shaded result = exceeds GA or GV criteria

U = not detected

UJ = target analyte is not detected, result value is estimated

J = result is estimated

J+ = result is estimated with a potential high bias

* - site specific standard

blank cells = not analyzed

									R	OLLING MI	ILLS REGIO	N				
				Location	M	W-5	MW	/-5B	MV	W-6	MV	/-6B	MV	V-18	Pl	ES-7
			Field	Sample Date	2/22	/2023	2/23/	2023	2/23/	/2023	2/22	2023	2/21	/2023	2/21	/2023
			Fiel	d Sample ID	401003-M	IW0513XX	401003-MV	W05B54XX	401003-M	W0612XX	401003-MV	W06B59XX	401003-M	W1813XX	401003-P	ES0712XX
				Qc Code	I	FS	F	S	F	FS	F	S	F	'S		FS
Method	Parameter	GA	GV	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Metals							T				T					
SW6010C	Arsenic	25	NS	μg/L	15	U	15	U	23		15	U	15	U	8.4	1 J
SW6010C	Barium	1000	NS	μg/L	160		1400		790		5900		230		240)
SW6010C	Chromium	50	NS	$\mu g/L$	4	4 U		U	4	U	4	U	4	U	2	1 U
SW6010C	Copper	200	NS	μg/L	10	10 U		J	10	U	10	U	1.9	J	10	U
SW6010C	Lead	25	NS	μg/L	10	10 U		U	4.4	J	10	U	10	U	3.0	5 J
SW6010C	Manganese	300	NS	μg/L	1200		27	·	5800		370		10900		4200	<u> </u>
SW6010C	Molybdenum*	180	NS	μg/L	33	_	10	U	17	-	10	U	10	U	5.4	J J
SW6010C	Nickel	100	NS	μg/L	10	U	10	U	10	U	10	U	2.2	J	1.4	4 J
SW6010C	Selenium	10	NS	μg/L	25	U	25	U	25	U	25	U	25	U	25	5 U
SW7199	Chromium, Hexavalent	50	NS	μg/L												
Inorganic Cons	stituents															
E350.1	Ammonium	NS	NS	μg/L												
E300.0	Fluoride	1500	NS	$\mu g/L$												
E300.0	Sulfate	250000	NS	μg/L												
E353.2	Nitrate as N	10000	NS	μg/L												

Notes:

 $\mu g/L = micrograms per liter$

GA = NY State Class GA Water Quality Standard

GV = Guidance Value

NS = no standard/guidance

Shaded result = exceeds GA or GV criteria

U = not detected

UJ = target analyte is not detected, result value is estimated

J = result is estimated

J+ = result is estimated with a potential high bias

* - site specific standard

blank cells = not analyzed

				-	MELT SHOP SCRAP METAL STORAGE AREA REGION											
	Location			MW-11		MW-1		MW-1B		MW-14		MW-24		MV	W-26	
	Field Sample Date		2/22/2023		2/23/2023		2/21/2023		2/21/2023		2/21/2023		2/21/2023			
			Fiel	=		401003-MW1111XX		401003-MW0120XX		401003-MW1B32XX		401003-MW1412XX		401003-MW2413XX		IW2610XX
				Qc Code		FS		FS		FS		FS		FS		FS
Method	Parameter	GA	GV	Unit	Result	Result Qualifier		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Metals																
SW6010C	Arsenic	25	NS	μg/L	6.4	J	15	U	15	U	15	5 U	15	U	15	U
SW6010C	Barium	1000	NS	μg/L	200	200		57		4600		280		120		<u>)</u>
SW6010C	Chromium	50	NS	μg/L	4 U		290		4 U		1.8 J		640		400	
SW6010C	Copper	200	NS	μg/L	2 J		6.5	6.5 J 2.2 J		J	10 U		3.2 J		1.8 J	
SW6010C	Lead	25	NS	μg/L	10	U	10	U	10 U		10 U		10 U		10 U	
SW6010C	Manganese	300	NS	μg/L	3600		3.1		630		870)	600		9.7	7
SW6010C	Molybdenum*	180	NS	μg/L	450		1200		10	U	180)	610		350	
SW6010C	Nickel	100	NS	μg/L	4.8	J	1.3	J	10	U	1.4	4 J	2.8	J	65	3
SW6010C	Selenium	10	NS	μg/L	25	U	79		25	U	25	5 U	320		25	U
SW7199	Chromium, Hexavalent	50	NS	μg/L			270		5.5	U	5.5	5 U	470	J	350	
Inorganic Cons	stituents															
E350.1	Ammonium	NS	NS	μg/L												
E300.0	Fluoride	1500	NS	μg/L												
E300.0	Sulfate	250000	NS	μg/L												
E353.2	Nitrate as N	10000	NS	μg/L												

Notes:

 $\mu g/L = micrograms per liter$

GA = NY State Class GA Water Quality Standard

GV = Guidance Value

NS = no standard/guidance

Shaded result = exceeds GA or GV criteria

U = not detected

UJ = target analyte is not detected, result value is estimated

J = result is estimated

J+ = result is estimated with a potential high bias

* - site specific standard

blank cells = not analyzed

					SCRAP METAL STORAGE AREA REGION											
Location				MW-26B		MW-32		H-4D		H-4S		MW-37		MW-39		
	Field Sample Date			2/21/2023		2/21/2023		2/21/2023		2/21/2023		2/21/2023		2/21/2023		
	Field Sample ID		401003-MW26B37XX		401003-MW3209XX		401003-H4D22XX		401003-H4S10XX		401003-MW3714XX		401003-N	1W3914XX		
			Qc Code		FS		FS		FS		FS		FS]	FS
Method	Parameter	GA	GV	Unit	Result	Result Qualifier		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Metals																
SW6010C	Arsenic	25	NS	μg/L	15	<u>U</u>	15	U	15	U	15	U	15	U	15	5 U
SW6010C	Barium	1000	NS	$\mu g/L$	1100		150		70		62		77		89	
SW6010C	Chromium	50	NS	μg/L	4 U		4 U		4 U		3.8 J		4 U		4 U	
SW6010C	Copper	200	NS	μg/L	10 U		2.4 J		10 U		2.1 J		10 U		2.7 J	
SW6010C	Lead	25	NS	μg/L	10 U		10 U		10 U		10 U		10 U		10	U
SW6010C	Manganese	300	NS	μg/L	19)	3300		1400		380		2800		11600	
SW6010C	Molybdenum*	180	NS	μg/L	10	U	700		10 U		10 U		10 U		10 U	
SW6010C	Nickel	100	NS	μg/L	10	U	37		2.1	J	14		4.2	J	6.4	l J
SW6010C	Selenium	10	NS	μg/L	25	i U	25	U	25	U	25	U	25	U	25	5 U
SW7199	Chromium, Hexavalent	50	NS	μg/L	5.5	i U	5.5	U	5.5	U	5.5	U	5.5	U	5.5	5 UJ
Inorganic Cons	stituents															
E350.1	Ammonium	NS	NS	μg/L												
E300.0	Fluoride	1500	NS	$\mu g/L$												
E300.0	Sulfate	250000	NS	$\mu g/L$												
E353.2	Nitrate as N	10000	NS	μg/L												

Notes:

 $\mu g/L = micrograms per liter$

GA = NY State Class GA Water Quality Standard

GV = Guidance Value

NS = no standard/guidance

Shaded result = exceeds GA or GV criteria

U = not detected

UJ = target analyte is not detected, result value is estimated

J = result is estimated

J+ = result is estimated with a potential high bias

* - site specific standard

blank cells = not analyzed

Table 4: Inorganic Constituents Detected in Groundwater

					WASTE ACID PIT AREA										
	Location				MW-4		MW-4B		MW-19		MW-19B		PES-5		
	Field Sample Date		2/22/2023		2/22/2023		2/22/2023		2/22/2023		2/22/2023				
			Fiel	Field Sample ID		401003-MW0413XX		401003-MW04B46XX		401003-MW1918XX		401003-MW19B38XX		ES0512XX	
				Qc Code		FS		FS		FS		FS		FS	
Method	Parameter	GA	GV	Unit	Result	Result Qualifier		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
Metals									ī						
SW6010C	Arsenic	ic 25 NS $\mu g/L$		6.5	J	15	U	15 U		15 U		15 U			
SW6010C	Barium	1000	NS	μg/L	73		320		60		100		73	3	
SW6010C	Chromium	50	NS	μg/L	4	4 U		3.9 J		4 U		4 U		1 U	
SW6010C	Copper	200	NS	μg/L	10 U		10 U		10 U		10 U		3.1 J		
SW6010C	Lead	25	NS	μg/L	3 J		10 U		10 U		10 U		10 U		
SW6010C	Manganese	300	NS	μg/L	10800		1100		2700		2400		780		
SW6010C	Molybdenum*	180	NS	μg/L	74		10 U		5.1 J		10 U		51		
SW6010C	Nickel	100	NS	μg/L	55		43		16		300		2.1 J		
SW6010C	Selenium	10	NS	μg/L	25	U	25 U		25 U		25 U		25 U		
SW7199	Chromium, Hexavalent	50	NS	μg/L											
Inorganic Cons	stituents														
E350.1	Ammonium	NS	NS	μg/L	160	J+	480		58		69		66		
E300.0	Fluoride	1500	NS	μg/L	10900		13500		13000		13900		4100		
E300.0	Sulfate	250000	NS	μg/L	52800		33300		36400		66300		33100		
E353.2	Nitrate as N	10000	NS	μg/L	1100		210	210		98		68		50 U	

 μ g/L = micrograms per liter

GA = NY State Class GA Water Quality Standard

GV = Guidance Value

NS = no standard/guidance

Shaded result = exceeds GA or GV criteria

U = not detected

UJ = target analyte is not detected, result value is estimated

J = result is estimated

J+ = result is estimated with a potential high bias

* - site specific standard

blank cells = not analyzed

ATTACHMENT 1

FIELD DATA RECORDS

Well Inspection Checklist AL Tech Steel Main Plant Area Site 401003

Inspection Date/Initials: 2/20/23/JKR, MHL, MDD, SBC, LF, KS

	Ground	Distance TOC	GW to TOR	TOR to	Well ID Clearly						
	Surface to	to TOR	(or TOC)	BOW	Labeled	Guard Posts	Well Lock	Cap on Well	Protective	Concrete Pad	
Well ID	TOC (ft.)	(ft.)	(ft. TOR)	(ft.)	(Y/N)	(G/F/P)	(Y/N)		Casing (G/F/P)	(G/F/P)	Comments ¹
Main Plant	` /									,	
MW-1	2.37	0.29	8.86	20.20	Y	G	Y	G	G	G	
MW-1B	1.85	0.15	11.46	40.30	Y	G	Y	G	G	G	
MW-3	2.2	0.16	13.17	22.00	Y	G	Y	G	G	G	
MW-3B	2.1	0.19	14.00	52.50	Y	G	Y	G	G	G	
MW-4	2.1	0.2	12.69	20.00	N	G	Y	G	G	G	No cap on well
MW-4B	2.5	0.21	14.09	51.15	N	G	Y	F	G	G	No cap on well
MW-5	2.55	0.22	9.08	18.15	N	G	Y	G	G	G	
MW-5B	1.15	0.08	10.22	61.20	Y	G	Y	G	G	G	
MW-6	2.1	0.15	10.64	18.50	Y	G	N	G	G		Lock needs to be replaced
MW-6B	1.7	0.27	11.70	65.40	N	G	N	G	G		Lock needs to be replaced, big hole at base of well.
MW-8B	3.3	0.59	17.94	45.40	Y	NA	Y	G	G	G	
MW-11	1.8	0.55	7.64	15.10	Y	G	Y	G	G	P	
MW-12	0	0.32	6.34	17.20	Y	NA	Y	G	G		Newly replaced as a flush mount well.
MW-14	1.7	0.52	5.59	16.68	Y	G	Y	G	P		Casing dented at bottom
MW-15	2.2	0.67	3.61	12.00	Y	P	Y	G	F		Casing dented at top, guard posts knocked over.
MW-17	0	0.17	4.78	14.00	N	NA	N	G	F	G	
MW-18	1.85	0.28	8.00	18.15	Y	G	Y	G	G		Some heaving, 4" well.
MW-19	2.7	0.82	9.81	24.60	Y	G	Y	G	G		Some heaving, 4" well.
MW-19B	1.95	0.17	9.74	45.00	Y	G	Y	G	G	G	
MW-22	0	0.18	LNAPL		Y	NA	N	G	G		Newly replaced flush mount, LNAPL in well no water level collected.
H-4S	2.56	0.19	8.44	17.17	N	F	Y	G	F	G	PVC loose at top well showing wear and tear.
H-4D	2.6	0.22	10.4	26.43	N	F	Y	G	F		Well showing wear and tear.
MW-F401	3.33	0.27	LNAPL				Y				LNAPL in 1" well, no water level collected.
	Abandoned										
MW-G501	3.62	0.49	12.56	13.32	N	NA	Y	G	G		Rusty cap not on well
MW-I704	2.7	0.31	10.75	22.5	Y	NA	N	G	G	G	No cap, little bent, odor
	l Storage Ar			•		,					
MW-24	2.56	0.12 AC	13.86	21.5	Y	NA	Y	G	G	G	
MW-26	2.51	0	8.31	17.43	Y	NA	Y	G	G	NA	
MW-26B	2.79	0.03	9.04	44.31	Y	NA	Y	G	G	NA	
MW-27R	2.33	0.25	7.99	19.37	Y	NA	Y	G	G	G	
MW-32	2.7	0.12	8.43	16.3	Y	NA	Y	G	G	G	
DP-09	3.52	0.12	9.38	17.62	N	NA	Y	G	G	NA	
Offsite	<u> </u>								I ~	-	[a 1 1 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a
MW-37	3.55	0.6	6.13	20.8	Y	NA	Y	G	G		Some heaving of concretepad/casing. (6")
MW-39	2.65	0.17	9.25	22.15	Y	NA	Y	G	G		Some heaving of concretepad/casing. (6")
PES-5	0	0.19	7.89	13.15	N	NA	N	G	G	F	
PES-7	0	0.21	7.33	13.4	N	NA	N	G	G	F	
MW-43	3.4	0.87	5.03	13.9	Y	NA	Y	G	G	F	Some heaving of concretepad/casing. (1')

Notes:

F = Fair AC = Above Casing.

G = Good ft. = feet

N = No BOW = bottom of well P = Poor TOR = Top of PVC well riser Y = yes TOC = Top of protective steel casing

ATTACHMENT 2

CATEGORY A REVIEW FEBRUARY 2023 GROUNDWATER SAMPLING PROGRAM

CATEGORY A REVIEW FEBRUARY 2023 GROUNDWATER SAMPLING PROGRAM AL TECH SPECIALTY STEEL SITE COLONIE, NEW YORK

1.0 INTRODUCTION

Groundwater samples were collected in February 2023 at the Al Tech Specialty Steel Site (Site) in Colonie, New York, and shipped to TestAmerica Buffalo Laboratory (TAL) located in Amherst, New York, and SGS Accutest Laboratories located in Dayton, New Jersey, for analysis. All sample analyses except hexavalent chromium were analyzed by TAL. Hexavalent chromium analyses were performed by SGS Accutest in Dayton, New Jersey. Samples were analyzed by one or more of the following United States Environmental Protection Agency (USEPA) methods:

- Volatile Organic Compounds (VOCs) by Method 8260C
- Semivolatile Organic Compounds (SVOCs) by Method 8270D
- Polychlorinated Biphenyls (PCBs) by Method 8082A
- Total and Dissolved Metals (select list) by Methods 6010C and 7470A
- Hexavalent Chromium by Method 7199
- Fluoride and Sulfate by Method 300.0
- Ammonium by Method 350.1
- Nitrate as N by Method 353.2
- Diesel Range Organics (DROs) by Method 8015D

Results were reported in the following sample delivery groups (SDGs):

- 480-206390-1
- 480-206416-1
- 480-206437-1
- JD60629
- JD60793

Sample event information included in this chemistry review is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

A summary of table notes applicable to Tables 1, 2, and 3 is presented just before Table 1.

Laboratory deliverables included:

 Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005). The Category A review included the following evaluations. Data review checklists are provided as Attachment A.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- QC Blanks
- Laboratory Control Samples (LCS)
- Matrix Spike and Matrix Spike Duplicate (MS/MSD) (as applicable)
- Field Duplicates (as applicable)
- Surrogates (as applicable)
- Reporting Limits
- Electronic Data Qualification and Verification

The following laboratory data qualifiers or data review qualifiers are used in the final data presentation:

U = target analyte is not detected at or above the reporting limit

J = concentration is estimated

UJ = target analyte is not detected, value is estimated

J+ = concentration is estimated with potential high bias

Results are interpreted to be usable as reported by the laboratory or as qualified in the following section.

2.0 POTENTIAL DATA LIMITATIONS

Based on the Category A Review the data meet the data quality objectives; however, the following potential limitations were identified:

VOCs by Method 8260C

Samples 401003-MW0413XX, 401003-MW0612XX, 401003-MWI7043XX, and 401003-PES0712XX were analyzed at various dilutions. Elevated reporting limits are listed in Table 2.

SVOCs by Method 8270D

The LCS/LCSDs associated with all samples analyzed by Method 8270D had percent recoveries for caprolactam that were less than the lower QC limit. Reporting limits for caprolactam in all samples were qualified as estimated (UJ) and are listed in Table 3 with reason code LCSL.

Samples 401003-MW2214XX and 401003-MWI7043XX were analyzed at a five-fold dilution. Elevated reporting limits are listed in Table 2.

PCBs by Method 8082A

Sample 401003-MW0612XX had a percent recovery for surrogate decachlorobiphenyl that was less than the lower QC limit. Reporting limits for all PCB aroclors and Total

PCBs in the affected sample were qualified as estimated (UJ) and are listed in Table 3 with reason code SSL.

Hexavalent Chromium by Method 7199

Samples 401003-MW08B38XX, 401003-MW2413XX, 401003-MW3914XX, and 401003-MW4309XX were analyzed outside of the holding time of 24 hours. Results for hexavalent chromium in all listed samples were qualified estimated as (J/UJ) and are listed in Table 3 with reason code HT.

Ammonium by Method 350.1

The matrix spike associated with sample 401003-MW0413XX had a percent recovery for ammonium that was greater than the upper QC limit. The result for ammonium in sample 401003-MW0413XX was qualified as estimated with potential high bias (J+) and is listed in Table 3 with reason code MSH.

Reference:

NYSDEC, 2005. "Analytical Services Protocols"; July 2005.

Data Validator: Casey Cormier, MACTEC Project Chemist

Date: 3/23/2023

leylornie

Reviewed by: Amber Jones, MACTEC Chemist, Technical Reviewer

Date: 3/28/2023

Standard Table Notes:

ng/L – nanograms per liter

Sample Type (QC Code) Qualification Reason Codes

FS – field sample BL1 – method blank qualifier

FD – field duplicate BL2 – field or trip blank qualifier

TB – trip blank CCV – continuing calibration verification recovery outside limits

EB – equipment blank CCV%D – continuing calibration verification percent difference exceeds goal

FB – field blank CCVRRF – continuing calibration relative response factor low

CI – chromatographic interference present

Matrix DCPD – dual column percent difference exceeds limit

GW – ground water E – result exceeds calibration range

BW – blank water FD – field duplicate precision goal exceeded

TW – tap water FP – false positive interference

SV – soil vapor HT – holding time for prep or analysis exceeded

SED - sediment HTG – holding time for prep or analysis grossly exceeded

ICV – initial calibration verification recovery outside limit

<u>Units</u> ICVRRF – initial calibration verification relative response factor low

mg/L – milligrams per liter ICVRSD – initial calibration verification % relative standard deviation exceeds

goal

μg/L – micrograms per liter

ISL – internal standard response less than limit

mg/kg – milligrams per kilogram

LCSH – laboratory control sample recovery high

µg/kg – micrograms per kilogram

LCSL – laboratory control sample recovery low μg/m³ – micrograms per cubic meter

LCSRPD – laboratory control sample/duplicate relative % difference precision

goal exceeded

Qualifiers LD – lab duplicate precision goal exceeded

U – not detected above quantitation limit MSH – matrix spike and/or MS duplicate recovery high

J – estimated quantity

MSL – matrix spike and/or MS duplicate recovery low

J+ - estimated quantity, biased high MSRPD – matrix spike/duplicate relative % difference precision goal exceeded

J- - estimated quantity, biased low N – analyte identification is not certain

R – data unusable PEM – performance evaluation mixture exceeds limit

PM – sample percent moisture exceeds EPA guideline

<u>Fraction</u> SD – serial dilution result exceeds percent difference limit

T – total SP – sample preservation/collection does not meet method requirement

D – dissolved SSH – surrogate recovery high

N – normal SSL – surrogate recovery low

TD – dissolved concentration exceeds total

TABLE 1 - SUMMARY OF SAMPLES AND ANALYTICAL METHODS CATEGORY A REVIEW

FEBRUARY 2023 GROUNDWATER SAMPLING PROGRAM AL TECH SPECIALTY STEEL SITE COLONIE, NEW YORK

					Lab Id	TALBFLO	TALBFLO	TALBFLO	TALBFLO	TALBFLO	TALBFLO
					Method Class	VOCs	SVOCs	PCBs	Metals	Metals	Metals
				An	alysis Method	SW8260C	SW8270D	SW8082A	SW6010C	SW6010C	SW7470A
					Fraction	N	N	N	Т	D	Т
Lab SDG	Location	Field Sample ID	Sample Date	Media	Qc Code	Count	Count	Count	Count	Count	Count
480-206390-1	DP-09	401003-DP0912XX	2/20/2023	GW	FS	58					
480-206390-1	H-4D	401003-H4D22XX	2/21/2023	GW	FS			10	9		1
480-206390-1	H-4S	401003-H4S10XX	2/21/2023	GW	FS			10	9		1
480-206390-1	MW-14	401003-MW1412XX	2/21/2023	GW	FS			10	9		1
480-206390-1	MW-15	401003-MW1507XX	2/21/2023	GW	FS	58	66	10	9		1
480-206390-1	MW-1B	401003-MW1B32XX	2/21/2023	GW	FS			10	9		1
480-206390-1	MW-24	401003-MW2413XX	2/21/2023	GW	FS			10	9		1
480-206390-1	MW-26	401003-MW2610XX	2/21/2023	GW	FS			10	9		1
480-206390-1	MW-26B	401003-MW26B37XX	2/21/2023	GW	FS			10	9		1
480-206390-1	MW-27R	401003-MW27R12XX	2/20/2023	GW	FS	58					
480-206390-1	MW-3	401003-MW0315XX	2/20/2023	GW	FS			10	9		1
480-206390-1	MW-32	401003-MW3209XX	2/21/2023	GW	FS			10	9		1
480-206390-1	MW-37	401003-MW3714XX	2/21/2023	GW	FS			10	9		1
480-206390-1	MW-39	401003-MW3914XX	2/21/2023	GW	FS			10	9		1
480-206390-1	MW-43	401003-MW4309XX	2/21/2023	GW	FS	58	66	10	9		1
480-206390-1	MW-8B	401003-MW08B38XX	2/21/2023	GW	FS	58	66	10	9		1
480-206390-1	PES-7	401003-PES0712XX	2/21/2023	GW	FS	58	66	10	9		1
480-206390-1	QC	401003-TRIP BLANK	2/18/2023	BW	ТВ	58					
480-206416-1	MW-11	401003-MW1111XX	2/22/2023	GW	FS			10	9		1
480-206416-1	MW-18	401003-MW1813XX	2/21/2023	GW	FS	58	66	10	9		1
480-206416-1	MW-19	401003-MW1918XX	2/22/2023	GW	FS	58	66	10	9		1
480-206416-1	MW-19B	401003-MW19B38XX	2/22/2023	GW	FS	58	66	10	9		1
480-206416-1	MW-4	401003-MW0413XX	2/22/2023	GW	FS	58	66	10	9		1
480-206416-1	MW-4B	401003-MW04B46XX	2/22/2023	GW	FS	58	66	10	9		1
480-206416-1	MW-G501	401003-MWG50111XX		GW	FS	58	66	10		9	
480-206416-1	MW-1704	401003-MWI7043XX	2/22/2023	GW	FS	58	66	10	9		1
480-206416-1		401003-PES0512XX	2/22/2023	GW	FS	58	66	10	9		1
480-206416-1		TRIP BLANK	2/18/2023	BW	ТВ	58					
480-206437-1	MW-1	401003-MW0120XX	2/23/2023	GW	FS			10	9		1
480-206437-1	MW-12	401003-MW1211XX	2/23/2023	GW	FS			10	9		1
480-206437-1	MW-17	401003-MW1707XX	2/23/2023	GW	FS	58	66	10	9		1
480-206437-1	MW-22	401003-MW2214XX	2/23/2023	GW	FS	58	66	10	9		1
480-206437-1	MW-3B	401003-MW03B45XX	2/23/2023	GW	FS			10		9	

TABLE 1 - SUMMARY OF SAMPLES AND ANALYTICAL METHODS CATEGORY A REVIEW

FEBRUARY 2023 GROUNDWATER SAMPLING PROGRAM

AL TECH SPECIALTY STEEL SITE COLONIE, NEW YORK

				•	Lab Id	TALBFLO	TALBFLO	TALBFLO	TALBFLO	TALBFLO	TALBFLO
					Method Class	VOCs	SVOCs	PCBs	Metals	Metals	Metals
				An	nalysis Method	SW8260C	SW8270D	SW8082A	SW6010C	SW6010C	SW7470A
					Fraction	N	N	N	Т	D	Т
Lab SDG	Location	Field Sample ID	Sample Date	Media	Qc Code	Count	Count	Count	Count	Count	Count
480-206437-1	MW-5	401003-MW0513XX	2/22/2023	GW	FS	58	66	10	9		1
480-206437-1	MW-5B	401003-MW05B54XX	2/23/2023	GW	FS	58	66	10		9	
480-206437-1	MW-6	401003-MW0612XX	2/23/2023	GW	FS	58	66	10	9		1
480-206437-1	MW-6B	401003-MW06B59XX	2/22/2023	GW	FS	58	66	10	9		1
480-206437-1	QC	401003-TRIPBLANK	2/18/2023	BW	TB	58					
JD60629	H-4D	401003-H4D22XX	2/21/2023	GW	FS						
JD60629	H-4S	401003-H4S10XX	2/21/2023	GW	FS						
JD60629	MW-14	401003-MW1412XX	2/21/2023	GW	FS						
JD60629	MW-15	401003-MW1507XX	2/21/2023	GW	FS						
JD60629	MW-1B	401003-MW1B32XX	2/21/2023	GW	FS						
JD60629	MW-24	401003-MW2413XX	2/21/2023	GW	FS						
JD60629	MW-26	401003-MW2610XX	2/21/2023	GW	FS						
JD60629	MW-26B	401003-MW26B37XX	2/21/2023	GW	FS						
JD60629	MW-32	401003-MW3209XX	2/21/2023	GW	FS						
JD60629	MW-37	401003-MW3714XX	2/21/2023	GW	FS						
JD60629	MW-39	401003-MW3914XX	2/21/2023	GW	FS						
JD60629	MW-43	401003-MW4309XX	2/21/2023	GW	FS						
JD60629	MW-8B	401003-MW08B38XX	2/21/2023	GW	FS						
JD60793	MW-1	401003-MW0120XX	2/23/2023	GW	FS						
JD60793	MW-17	401003-MW1707XX	2/23/2023	GW	FS						

TABLE 1 - SUMMARY OF SAMPLES AND ANALYTICAL METHODS CATEGORY A REVIEW

FEBRUARY 2023 GROUNDWATER SAMPLING PROGRAM

AL TECH SPECIALTY STEEL SITE COLONIE, NEW YORK

					Lab Id	TALBFLO	ACTD	TALBFLO	TALBFLO	TALBFLO	TALBFLO
					Method Class	Metals	Hex Chrome	Anions	Ammonia	Anions	Organic Range
				Ar	nalysis Method	SW7470A	SW7199	E300.0	E350.1	E353.2	SW8015D
					Fraction	D	Т	N	N	N	N
Lab SDG	Location	Field Sample ID	Sample Date	Media	Qc Code	Count	Count	Count	Count	Count	Count
480-206390-1	DP-09	401003-DP0912XX	2/20/2023	GW	FS						
480-206390-1	H-4D	401003-H4D22XX	2/21/2023	GW	FS						
480-206390-1	H-4S	401003-H4S10XX	2/21/2023	GW	FS						
480-206390-1	MW-14	401003-MW1412XX	2/21/2023	GW	FS						
480-206390-1	MW-15	401003-MW1507XX	2/21/2023	GW	FS			2	1	1	2
480-206390-1	MW-1B	401003-MW1B32XX	2/21/2023	GW	FS						
480-206390-1	MW-24	401003-MW2413XX	2/21/2023	GW	FS						
480-206390-1	MW-26	401003-MW2610XX	2/21/2023	GW	FS						
480-206390-1	MW-26B	401003-MW26B37XX	2/21/2023	GW	FS						
480-206390-1	MW-27R	401003-MW27R12XX	2/20/2023	GW	FS						
480-206390-1	MW-3	401003-MW0315XX	2/20/2023	GW	FS						
480-206390-1	MW-32	401003-MW3209XX	2/21/2023	GW	FS						
480-206390-1	MW-37	401003-MW3714XX	2/21/2023	GW	FS						
480-206390-1	MW-39	401003-MW3914XX	2/21/2023	GW	FS						
480-206390-1	MW-43	401003-MW4309XX	2/21/2023	GW	FS						
480-206390-1	MW-8B	401003-MW08B38XX	2/21/2023	GW	FS			2	1	1	2
480-206390-1	PES-7	401003-PES0712XX	2/21/2023	GW	FS						3
480-206390-1	QC	401003-TRIP BLANK	2/18/2023	BW	TB						
480-206416-1	MW-11	401003-MW1111XX	2/22/2023	GW	FS						
480-206416-1	MW-18	401003-MW1813XX	2/21/2023	GW	FS						2
480-206416-1	MW-19	401003-MW1918XX	2/22/2023	GW	FS			2	1	1	2
480-206416-1	MW-19B	401003-MW19B38XX	2/22/2023	GW	FS			2	1	1	2
480-206416-1	MW-4	401003-MW0413XX	2/22/2023	GW	FS			2	1	1	2
480-206416-1	MW-4B	401003-MW04B46XX	2/22/2023	GW	FS			2	1	1	2
480-206416-1	MW-G501	401003-MWG50111XX	2/22/2023	GW	FS	1					
480-206416-1	MW-1704	401003-MWI7043XX	2/22/2023	GW	FS						
480-206416-1	PES-5	401003-PES0512XX	2/22/2023	GW	FS			2	1	1	2
480-206416-1	QC	TRIP BLANK	2/18/2023	BW	TB						
480-206437-1	MW-1	401003-MW0120XX	2/23/2023	GW	FS						
480-206437-1	MW-12	401003-MW1211XX	2/23/2023	GW	FS						
480-206437-1	MW-17	401003-MW1707XX	2/23/2023	GW	FS			2	1	1	2
480-206437-1	MW-22	401003-MW2214XX	2/23/2023	GW	FS						
480-206437-1	MW-3B	401003-MW03B45XX	2/23/2023	GW	FS	1					

TABLE 1 - SUMMARY OF SAMPLES AND ANALYTICAL METHODS CATEGORY A REVIEW

FEBRUARY 2023 GROUNDWATER SAMPLING PROGRAM

AL TECH SPECIALTY STEEL SITE COLONIE, NEW YORK

				Lab Id Method Class		TALBFLO	ACTD	TALBFLO	TALBFLO	TALBFLO	TALBFLO
						Metals	Hex Chrome	Anions	Ammonia	Anions	Organic Range
					alysis Method	SW7470A	SW7199	E300.0	E350.1	E353.2	SW8015D
				A.I.	Fraction	D	T T	N	N	N	N
Lab SDG	Location	Field Sample ID	Sample Date	Media	Qc Code	Count	Count	Count	Count	Count	Count
480-206437-1	MW-5	401003-MW0513XX	2/22/2023	GW	FS						2
480-206437-1	MW-5B	401003-MW05B54XX	2/23/2023	GW	FS	1					2
480-206437-1	MW-6	401003-MW0612XX	2/23/2023	GW	FS						2
480-206437-1	MW-6B	401003-MW06B59XX	2/22/2023	GW	FS						2
480-206437-1	QC	401003-TRIPBLANK	2/18/2023	BW	TB						
JD60629	H-4D	401003-H4D22XX	2/21/2023	GW	FS		1				
JD60629	H-4S	401003-H4S10XX	2/21/2023	GW	FS		1				
JD60629	MW-14	401003-MW1412XX	2/21/2023	GW	FS		1				
JD60629	MW-15	401003-MW1507XX	2/21/2023	GW	FS		1				
JD60629	MW-1B	401003-MW1B32XX	2/21/2023	GW	FS		1				
JD60629	MW-24	401003-MW2413XX	2/21/2023	GW	FS		1				
JD60629	MW-26	401003-MW2610XX	2/21/2023	GW	FS		1				
JD60629	MW-26B	401003-MW26B37XX	2/21/2023	GW	FS		1				
JD60629	MW-32	401003-MW3209XX	2/21/2023	GW	FS		1				
JD60629	MW-37	401003-MW3714XX	2/21/2023	GW	FS		1				
JD60629	MW-39	401003-MW3914XX	2/21/2023	GW	FS		1				
JD60629	MW-43	401003-MW4309XX	2/21/2023	GW	FS		1				
JD60629	MW-8B	401003-MW08B38XX	2/21/2023	GW	FS		1				
JD60793	MW-1	401003-MW0120XX	2/23/2023	GW	FS		1				
JD60793	MW-17	401003-MW1707XX	2/23/2023	GW	FS		1				

					Location	H-4D	H-4S	MW-1	MW-11	MW-12
				l	ab Sample Delivery Group	480-206390-1	480-206390-1	480-206437-1	480-206416-1	480-206437-1
					Field Sample Date	2/21/2023	2/21/2023	2/23/2023	2/22/2023	2/23/2023
					Field Sample ID	401003-H4D22XX	401003-H4S10XX	401003-MW0120XX	401003-MW1111XX	401003-MW1211XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	PCBs	SW8082A	N	Aroclor-1016	UG/L	0.058 U	0.063 U	0.062 U	0.059 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1221	UG/L	0.058 U	0.063 U	0.062 U	0.059 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1232	UG/L	0.058 U	0.063 U	0.062 U	0.059 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1242	UG/L	0.058 U	0.063 U	0.062 U	0.059 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1248	UG/L	0.058 U	0.063 U	0.062 U	0.059 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1254	UG/L	0.058 U	0.063 U	0.062 U	0.059 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1260	UG/L	0.058 U	0.44	0.062 U	0.059 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1262	UG/L	0.058 U	0.063 U	0.062 U	0.059 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1268	UG/L	0.058 U	0.063 U	0.062 U	0.059 U	0.058 U
L	PCBs	SW8082A	N	Total PCBs	UG/L	0.058 U	0.44	0.062 U	0.059 U	0.058 U
L	Metals	SW6010C	D	Arsenic	MG/L					
L	Metals	SW6010C	D	Barium	MG/L					
L	Metals	SW6010C	D	Chromium	MG/L					
L	Metals	SW6010C	D	Copper	MG/L					
L	Metals	SW6010C	D	Lead	MG/L					
L	Metals	SW6010C	D	Manganese	MG/L					
L	Metals	SW6010C	D	Molybdenum	MG/L					
L	Metals	SW6010C	D	Nickel	MG/L					
L	Metals	SW6010C	D	Selenium	MG/L					
L	Metals	SW6010C	T	Arsenic	MG/L	0.015 U	0.015 U	0.015 U	0.0064 J	0.015 U
L	Metals	SW6010C	T	Barium	MG/L	0.07	0.062	0.057	0.2	0.094
L	Metals	SW6010C	T	Chromium	MG/L	0.004 U	0.0038 J	0.29	0.004 U	0.004 U
L	Metals	SW6010C	T	Copper	MG/L	0.01 U	0.0021 J	0.0065 J	0.002 J	0.0017 J
L	Metals	SW6010C	T	Lead	MG/L	0.01 U				
L	Metals	SW6010C	T	Manganese	MG/L	1.4	0.38	0.0031	3.6	6.8
L	Metals	SW6010C	T	Molybdenum	MG/L	0.01 U	0.01 U	1.2	0.45	0.25
L	Metals	SW6010C	T	Nickel	MG/L	0.0021 J	0.014	0.0013 J	0.0048 J	0.0039 J
L	Metals	SW6010C	T	Selenium	MG/L	0.025 U	0.025 U	0.079	0.025 U	0.025 U
L	Metals	SW7470A	D	Mercury	MG/L					
L	Metals	SW7470A	T	Mercury	MG/L	0.0002 U				
L	Anions	E300.0	N	Sulfate	MG/L					
L	Anions	E300.0	N	Fluoride	MG/L					
L	Ammonia	E350.1	N	Ammonium	MG/L					
L	Anions	E353.2	N	Nitrate as N	MG/L					
L	Organic Range	SW8015D	N	Diesel Range Or	ganics MG/L					
L	Organic Range	SW8015D	N	Petroleum Hydr	ocarbons C10-C MG/L					
L	Organic Range	SW8015D	N	Petroleum Hydr	ocarbons C20-C MG/L					

AL TECH SPECIALTY STEEL SITE COLONIE, NEW YORK

					Location	MW-14	MW-15	MW-17	MW-18	MW-19
					Lab Sample Delivery Group	480-206390-1	480-206390-1	480-206437-1	480-206416-1	480-206416-1
					Field Sample Date	2/21/2023	2/21/2023	2/23/2023	2/21/2023	2/22/2023
					Field Sample ID	401003-MW1412XX	401003-MW1507XX	401003-MW1707XX	401003-MW1813XX	401003-MW1918XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	PCBs	SW8082A	N	Aroclor-1016	UG/L	0.058 U	0.057 U	0.057 U	0.057 U	0.059 U
L	PCBs	SW8082A	N	Aroclor-1221	UG/L	0.058 U	0.057 U	0.057 U	0.057 U	0.059 U
L	PCBs	SW8082A	N	Aroclor-1232	UG/L	0.058 U	0.057 U	0.057 U	0.057 U	0.059 U
L	PCBs	SW8082A	N	Aroclor-1242	UG/L	0.058 U	0.057 U	0.057 U	0.057 U	0.059 U
L	PCBs	SW8082A	N	Aroclor-1248	UG/L	0.058 U	0.057 U	0.057 U	0.057 U	0.059 U
L	PCBs	SW8082A	N	Aroclor-1254	UG/L	0.079	0.057 U	0.057 U	0.057 U	0.059 U
L	PCBs	SW8082A	N	Aroclor-1260	UG/L	0.058 U	0.057 U	0.057 U	0.057 U	0.059 U
L	PCBs	SW8082A	N	Aroclor-1262	UG/L	0.058 U	0.057 U	0.057 U	0.057 U	0.059 U
L	PCBs	SW8082A	N	Aroclor-1268	UG/L	0.058 U	0.057 U	0.057 U	0.057 U	0.059 U
L	PCBs	SW8082A	N	Total PCBs	UG/L	0.079	0.057 U	0.057 U	0.057 U	0.059 U
L	Metals	SW6010C	D	Arsenic	MG/L					
L	Metals	SW6010C	D	Barium	MG/L					
L	Metals	SW6010C	D	Chromium	MG/L					
L	Metals	SW6010C	D	Copper	MG/L					
L	Metals	SW6010C	D	Lead	MG/L					
L	Metals	SW6010C		Manganese	MG/L					
L	Metals	SW6010C	D	Molybdenum	MG/L					
L	Metals	SW6010C	D	Nickel	MG/L					
L	Metals	SW6010C	D	Selenium	MG/L					
L	Metals	SW6010C		Arsenic	MG/L	0.015 U				
L	Metals	SW6010C	T	Barium	MG/L	0.28	0.11	0.062	0.23	0.06
L	Metals	SW6010C	T	Chromium	MG/L	0.0018 J	0.004 U	0.004 U	0.004 U	0.004 U
L	Metals	SW6010C	T	Copper	MG/L	0.01 U	0.01 U	0.0017 J	0.0019 J	0.01 U
L	Metals	SW6010C		Lead	MG/L	0.01 U				
L	Metals	SW6010C		Manganese	MG/L	0.87	0.22	0.57	10.9	2.7
L	Metals	SW6010C		Molybdenum	MG/L	0.18	0.093	0.031	0.01 U	0.0051 J
L	Metals	SW6010C		Nickel	MG/L	0.0014 J	0.011	0.0016 J	0.0022 J	0.016
L	Metals	SW6010C		Selenium	MG/L	0.025 U				
L	Metals	SW7470A		Mercury	MG/L					
L	Metals	SW7470A		Mercury	MG/L	0.0002 U				
L	Anions	E300.0	N	Sulfate	MG/L		89.4	114		36.4
L	Anions	E300.0	N	Fluoride	MG/L		0.33	0.65		13
L	Ammonia	E350.1	N	Ammonium	MG/L		0.02 U	0.02 U		0.058
L	Anions	E353.2	N	Nitrate as N	MG/L		0.05 U	0.1		0.098
L	Organic Range			Diesel Range O	•		0.54 U	0.5 U	0.5 U	0.54 U
L	Organic Range			•	rocarbons C10-C: MG/L					
L	Organic Range	SW8015D	N	Petroleum Hyd	rocarbons C20-C: MG/L		0.54 U	0.5 U	0.5 U	0.54 U

					Location	MW-19B	MW-1B	MW-22	MW-24	MW-26
				ı	ab Sample Delivery Group	480-206416-1	480-206390-1	480-206437-1	480-206390-1	480-206390-1
					Field Sample Date	2/22/2023	2/21/2023	2/23/2023	2/21/2023	2/21/2023
					Field Sample ID	401003-MW19B38XX	401003-MW1B32XX	401003-MW2214XX	401003-MW2413XX	401003-MW2610XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	PCBs	SW8082A	N	Aroclor-1016	UG/L	0.063 U	0.06 U	0.058 U	0.061 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1221	UG/L	0.063 U	0.06 U	0.058 U	0.061 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1232	UG/L	0.063 U	0.06 U	0.058 U	0.061 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1242	UG/L	0.063 U	0.06 U	0.058 U	0.061 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1248	UG/L	0.063 U	0.06 U	0.058 U	0.061 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1254	UG/L	0.063 U	0.06 U	0.058 U	0.061 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1260	UG/L	0.063 U	0.06 U	0.058 U	0.061 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1262	UG/L	0.063 U	0.06 U	0.058 U	0.061 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1268	UG/L	0.063 U	0.06 U	0.058 U	0.061 U	0.057 U
L	PCBs	SW8082A	N	Total PCBs	UG/L	0.063 U	0.06 U	0.058 U	0.061 U	0.057 U
L	Metals	SW6010C	D	Arsenic	MG/L					
L	Metals	SW6010C	D	Barium	MG/L					
L	Metals	SW6010C	D	Chromium	MG/L					
L	Metals	SW6010C	D	Copper	MG/L					
L	Metals	SW6010C	D	Lead	MG/L					
L	Metals	SW6010C	D	Manganese	MG/L					
L	Metals	SW6010C	D	Molybdenum	MG/L					
L	Metals	SW6010C	D	Nickel	MG/L					
L	Metals	SW6010C	D	Selenium	MG/L					
L	Metals	SW6010C	T	Arsenic	MG/L	0.015 U				
L	Metals	SW6010C	T	Barium	MG/L	0.1	4.6	0.2	0.12	0.38
L	Metals	SW6010C	T	Chromium	MG/L	0.004 U	0.004 U	0.0023 J	0.64	0.4
L	Metals	SW6010C	T	Copper	MG/L	0.01 U	0.0022 J	0.0019 J	0.0032 J	0.0018 J
L	Metals	SW6010C		Lead	MG/L	0.01 U				
L	Metals	SW6010C	T	Manganese	MG/L	2.4	0.63	3.9	0.6	0.0097
L	Metals	SW6010C		Molybdenum	MG/L	0.01 U	0.01 U	0.011	0.61	0.35
L	Metals	SW6010C		Nickel	MG/L	0.3	0.01 U	0.021	0.0028 J	0.065
L	Metals	SW6010C		Selenium	MG/L	0.025 U	0.025 U	0.025 U	0.32	0.025 U
L	Metals	SW7470A		Mercury	MG/L					
L	Metals	SW7470A	T	Mercury	MG/L	0.0002 U				
L	Anions	E300.0	N	Sulfate	MG/L	66.3				
L	Anions	E300.0	N	Fluoride	MG/L	13.9				
L	Ammonia	E350.1	N	Ammonium	MG/L	0.069				
L	Anions	E353.2	N	Nitrate as N	MG/L	0.068				
L	Organic Range			Diesel Range Or	•	0.5 U				
L	Organic Range	SW8015D	N	Petroleum Hydr	ocarbons C10-C MG/L					
L	Organic Range	SW8015D	N	Petroleum Hydr	ocarbons C20-C: MG/L	0.5 U				

AL TECH SPECIALTY STEEL SITE COLONIE, NEW YORK

					Location	MW-26B	MW-3	MW-32	MW-37	MW-39
				Lab Sample De	livery Group	480-206390-1	480-206390-1	480-206390-1	480-206390-1	480-206390-1
				Field 5	Sample Date	2/21/2023	2/20/2023	2/21/2023	2/21/2023	2/21/2023
				Fie	ld Sample ID	401003-MW26B37XX	401003-MW0315XX	401003-MW3209XX	401003-MW3714XX	401003-MW3914XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	PCBs	SW8082A	N	Aroclor-1016	UG/L	0.057 U	0.057 U	0.062 U	0.057 U	0.06 U
L	PCBs	SW8082A	N	Aroclor-1221	UG/L	0.057 U	0.057 U	0.062 U	0.057 U	0.06 U
L	PCBs	SW8082A	N	Aroclor-1232	UG/L	0.057 U	0.057 U	0.062 U	0.057 U	0.06 U
L	PCBs	SW8082A	N	Aroclor-1242	UG/L	0.057 U	0.057 U	0.062 U	0.057 U	0.06 U
L	PCBs	SW8082A	N	Aroclor-1248	UG/L	0.057 U	0.057 U	0.062 U	0.057 U	0.06 U
L	PCBs	SW8082A	N	Aroclor-1254	UG/L	0.057 U	0.057 U	0.19	0.057 U	0.06 U
L	PCBs	SW8082A	N	Aroclor-1260	UG/L	0.057 U	0.057 U	0.062 U	0.057 U	0.06 U
L	PCBs	SW8082A	N	Aroclor-1262	UG/L	0.057 U	0.057 U	0.062 U	0.057 U	0.06 U
L	PCBs	SW8082A	N	Aroclor-1268	UG/L	0.057 U	0.057 U	0.062 U	0.057 U	0.06 U
L	PCBs	SW8082A	N	Total PCBs	UG/L	0.057 U	0.057 U	0.19	0.057 U	0.06 U
L	Metals	SW6010C	D	Arsenic	MG/L					
L	Metals	SW6010C	D	Barium	MG/L					
L	Metals	SW6010C	D	Chromium	MG/L					
L	Metals	SW6010C	D	Copper	MG/L					
L	Metals	SW6010C	D	Lead	MG/L					
L	Metals	SW6010C	D	Manganese	MG/L					
L	Metals	SW6010C	D	Molybdenum	MG/L					
L	Metals	SW6010C	D	Nickel	MG/L					
L	Metals	SW6010C	D	Selenium	MG/L					
L	Metals	SW6010C	T	Arsenic	MG/L	0.015 U				
L	Metals	SW6010C	T	Barium	MG/L	1.1	0.059	0.15	0.077	0.089
L	Metals	SW6010C	T	Chromium	MG/L	0.004 U	0.0011 J	0.004 U	0.004 U	0.004 U
L	Metals	SW6010C	T	Copper	MG/L	0.01 U	0.01 U	0.0024 J	0.01 U	0.0027 J
L	Metals	SW6010C		Lead	MG/L	0.01 U				
L	Metals	SW6010C		Manganese	MG/L	0.019	0.017	3.3	2.8	11.6
L	Metals	SW6010C		Molybdenum	MG/L	0.01 U	0.01 U	0.7	0.01 U	0.01 U
L	Metals	SW6010C		Nickel	MG/L	0.01 U	0.0016 J	0.037	0.0042 J	0.0064 J
L	Metals	SW6010C		Selenium	MG/L	0.025 U				
L	Metals	SW7470A		Mercury	MG/L					
L	Metals	SW7470A		Mercury	MG/L	0.0002 U				
L	Anions	E300.0	N	Sulfate	MG/L					
L	Anions	E300.0	N	Fluoride	MG/L					
L	Ammonia	E350.1	N	Ammonium	MG/L					
L	Anions	E353.2	N	Nitrate as N	MG/L					
L	Organic Range			Diesel Range Organics	MG/L					
L	Organic Range			Petroleum Hydrocarbons C10-	-					
L	Organic Range	SW8015D	N	Petroleum Hydrocarbons C20-	C: MG/L					

					Location	MW-3B	MW-4	MW-43	MW-4B	MW-5
					Lab Sample Delivery Group	480-206437-1	480-206416-1	480-206390-1	480-206416-1	480-206437-1
					Field Sample Date	2/23/2023	2/22/2023	2/21/2023	2/22/2023	2/22/2023
					Field Sample ID	401003-MW03B45	XX 401003-MW0413XX	401003-MW4309XX	401003-MW04B46XX	401003-MW0513XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualific	er Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
L	PCBs	SW8082A	N	Aroclor-1016	UG/L	0.057 U	0.057 U	0.061 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1221	UG/L	0.057 U	0.057 U	0.061 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1232	UG/L	0.057 U	0.057 U	0.061 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1242	UG/L	0.057 U	0.057 U	0.061 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1248	UG/L	0.057 U	0.057 U	0.061 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1254	UG/L	0.057 U	0.057 U	0.061 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1260	UG/L	0.057 U	0.057 U	0.061 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1262	UG/L	0.057 U	0.057 U	0.061 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1268	UG/L	0.057 U	0.057 U	0.061 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Total PCBs	UG/L	0.057 U	0.057 U	0.061 U	0.057 U	0.058 U
L	Metals	SW6010C	D	Arsenic	MG/L	0.015 U				
L	Metals	SW6010C	D	Barium	MG/L	2.3				
L	Metals	SW6010C	D	Chromium	MG/L	0.004 U				
L	Metals	SW6010C	D	Copper	MG/L	0.0017 J				
L	Metals	SW6010C	D	Lead	MG/L	0.01 U				
L	Metals	SW6010C	D	Manganese	MG/L	0.024				
L	Metals	SW6010C	D	Molybdenum	MG/L	0.01 U				
L	Metals	SW6010C	D	Nickel	MG/L	0.01 U				
L	Metals	SW6010C	D	Selenium	MG/L	0.025 U				
L	Metals	SW6010C	T	Arsenic	MG/L		0.0065 J	0.015 U	0.015 U	0.015 U
L	Metals	SW6010C	T	Barium	MG/L		0.073	0.042	0.32	0.16
L	Metals	SW6010C	T	Chromium	MG/L		0.004 U	0.004 U	0.0039 J	0.004 U
L	Metals	SW6010C	T	Copper	MG/L		0.01 U	0.01 U	0.01 U	0.01 U
L	Metals	SW6010C	T	Lead	MG/L		0.003 J	0.01 U	0.01 U	0.01 U
L	Metals	SW6010C	T	Manganese	MG/L		10.8	0.08	1.1	1.2
L	Metals	SW6010C	T	Molybdenum	MG/L		0.074	0.01 U	0.01 U	0.033
L	Metals	SW6010C	T	Nickel	MG/L		0.055	0.01 U	0.043	0.01 U
L	Metals	SW6010C	T	Selenium	MG/L		0.025 U	0.025 U	0.025 U	0.025 U
L	Metals	SW7470A	D	Mercury	MG/L	0.0002 U				
L	Metals	SW7470A	T	Mercury	MG/L		0.0002 U	0.0002 U	0.0002 U	0.0002 U
L	Anions	E300.0	N	Sulfate	MG/L		52.8		33.3	
L	Anions	E300.0	N	Fluoride	MG/L		10.9		13.5	
L	Ammonia	E350.1	N	Ammonium	MG/L		0.16 J+		0.48	
L	Anions	E353.2	N	Nitrate as N	MG/L		1.1		0.21	
L	Organic Range	SW8015D	N	Diesel Range O	rganics MG/L		0.59		0.52 U	0.52 U
L	Organic Range			Petroleum Hyd	rocarbons C10-C MG/L					
L	Organic Range	SW8015D	N	Petroleum Hyd	rocarbons C20-C MG/L		0.52 U		0.52 U	0.52 U

					Location	MW-5B	MW-6	MW-6B	MW-8B	MW-G501
					Lab Sample Delivery Group	480-206437-1	480-206437-1	480-206437-1	480-206390-1	480-206416-1
					Field Sample Date	2/23/2023	2/23/2023	2/22/2023	2/21/2023	2/22/2023
					Field Sample ID	401003-MW05B54	XX 401003-MW0612	XX 401003-MW06B59XX	401003-MW08B38XX	401003-MWG50111XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifi	er Result Qualif	ier Result Qualifier	Result Qualifier	Result Qualifier
L	PCBs	SW8082A	N	Aroclor-1016	UG/L	0.057 U	0.059 UJ	0.058 U	0.06 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1221	UG/L	0.057 U	0.059 UJ	0.058 U	0.06 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1232	UG/L	0.057 U	0.059 UJ	0.058 U	0.06 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1242	UG/L	0.057 U	0.059 UJ	0.058 U	0.06 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1248	UG/L	0.057 U	0.059 UJ	0.058 U	0.06 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1254	UG/L	0.057 U	0.059 UJ	0.058 U	0.06 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1260	UG/L	0.057 U	0.059 UJ	0.058 U	0.06 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1262	UG/L	0.057 U	0.059 UJ	0.058 U	0.06 U	0.057 U
L	PCBs	SW8082A	N	Aroclor-1268	UG/L	0.057 U	0.059 UJ	0.058 U	0.06 U	0.057 U
L	PCBs	SW8082A	N	Total PCBs	UG/L	0.057 U	0.059 UJ	0.058 U	0.06 U	0.057 U
L	Metals	SW6010C	D	Arsenic	MG/L	0.015 U				0.015 U
L	Metals	SW6010C	D	Barium	MG/L	1.4				0.13
L	Metals	SW6010C	D	Chromium	MG/L	0.004 U				0.0022 J
L	Metals	SW6010C	D	Copper	MG/L	0.0016 J				0.0039 J
L	Metals	SW6010C	D	Lead	MG/L	0.01 U				0.01 U
L	Metals	SW6010C	D	Manganese	MG/L	0.027				4
L	Metals	SW6010C	D	Molybdenum	MG/L	0.01 U				0.009 J
L	Metals	SW6010C	D	Nickel	MG/L	0.01 U				0.064
L	Metals	SW6010C	D	Selenium	MG/L	0.025 U				0.025 U
L	Metals	SW6010C	T	Arsenic	MG/L		0.023	0.015 U	0.015 U	
L	Metals	SW6010C	T	Barium	MG/L		0.79	5.9	0.031	
L	Metals	SW6010C	T	Chromium	MG/L		0.004 U	0.004 U	0.004 U	
L	Metals	SW6010C	T	Copper	MG/L		0.01 U	0.01 U	0.01 U	
L	Metals	SW6010C	T	Lead	MG/L		0.0044 J	0.01 U	0.01 U	
L	Metals	SW6010C	T	Manganese	MG/L		5.8	0.37	0.48	
L	Metals	SW6010C	T	Molybdenum	MG/L		0.017	0.01 U	0.01 U	
L	Metals	SW6010C	T	Nickel	MG/L		0.01 U	0.01 U	0.01 U	
L	Metals	SW6010C	T	Selenium	MG/L		0.025 U	0.025 U	0.025 U	
L	Metals	SW7470A	D	Mercury	MG/L	0.0002 U				0.0002 U
L	Metals	SW7470A	T	Mercury	MG/L		0.0002 U	0.0002 U	0.0002 U	
L	Anions	E300.0	N	Sulfate	MG/L				394	
L	Anions	E300.0	N	Fluoride	MG/L				0.43	
L	Ammonia	E350.1	N	Ammonium	MG/L				0.64	
L	Anions	E353.2	N	Nitrate as N	MG/L				0.032 J	
L	Organic Range			Diesel Range O	•	0.52 U	0.98	0.5 U	0.52 U	
L	Organic Range	SW8015D	N	Petroleum Hyd	rocarbons C10-C MG/L					
L	Organic Range	SW8015D	N	Petroleum Hyd	rocarbons C20-C MG/L	0.52 U	0.5 U	0.5 U	0.52 U	

					Location	MW-1704	PES-5	PES-7
					Lab Sample Delivery Group	480-206416-1	480-206416-1	480-206390-1
					Field Sample Date	2/22/2023	2/22/2023	2/21/2023
					Field Sample ID	401003-MWI7043XX	401003-PES0512XX	401003-PES0712XX
					Qc Code	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
L	PCBs	SW8082A	N	Aroclor-1016	UG/L	0.059 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1221	UG/L	0.059 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1232	UG/L	0.059 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1242	UG/L	0.059 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1248	UG/L	0.059 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1254	UG/L	0.059 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1260	UG/L	0.059 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1262	UG/L	0.059 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Aroclor-1268	UG/L	0.059 U	0.057 U	0.058 U
L	PCBs	SW8082A	N	Total PCBs	UG/L	0.059 U	0.057 U	0.058 U
L	Metals	SW6010C	D	Arsenic	MG/L			
L	Metals	SW6010C	D	Barium	MG/L			
L	Metals	SW6010C	D	Chromium	MG/L			
L	Metals	SW6010C	D	Copper	MG/L			
L	Metals	SW6010C	D	Lead	MG/L			
L	Metals	SW6010C	D	Manganese	MG/L			
L	Metals	SW6010C	D	Molybdenum	MG/L			
L	Metals	SW6010C	D	Nickel	MG/L			
L	Metals	SW6010C	D	Selenium	MG/L			
L	Metals	SW6010C	T	Arsenic	MG/L	0.0074 J	0.015 U	0.0084 J
L	Metals	SW6010C	T	Barium	MG/L	0.17	0.073	0.24
L	Metals	SW6010C	T	Chromium	MG/L	0.0014 J	0.004 U	0.004 U
L	Metals	SW6010C	T	Copper	MG/L	0.002 J	0.0031 J	0.01 U
L	Metals	SW6010C	T	Lead	MG/L	0.01 U	0.01 U	0.0036 J
L	Metals	SW6010C	T	Manganese	MG/L	2.8	0.78	4.2
L	Metals	SW6010C	T	Molybdenum	MG/L	0.01 U	0.051	0.0054 J
L	Metals	SW6010C	T	Nickel	MG/L	0.0015 J	0.0021 J	0.0014 J
L	Metals	SW6010C	T	Selenium	MG/L	0.025 U	0.025 U	0.025 U
L	Metals	SW7470A	D	Mercury	MG/L			
L	Metals	SW7470A	T	Mercury	MG/L	0.0002 U	0.0002 U	0.0002 U
L	Anions	E300.0	N	Sulfate	MG/L		33.1	
L	Anions	E300.0	N	Fluoride	MG/L		4.1	
L	Ammonia	E350.1	N	Ammonium	MG/L		0.066	
L	Anions	E353.2	N	Nitrate as N	MG/L		0.05 U	
L	Organic Range	SW8015D	N	Diesel Range	Organics MG/L		0.5 U	0.7
L	Organic Range	SW8015D	N	Petroleum Hy	drocarbons C10-C MG/L			0.6
L	Organic Range	SW8015D	N	Petroleum Hy	drocarbons C20-C MG/L		0.5 U	0.5 U

					Location	H-	-4D	H	-4S	M	W-1	MV	V-14	MV	/-15
				Lab Samp	ole Delivery Group	JD6	0629	JD6	0629	JD6	0793	JD6	0629	JD6	0629
				[Field Sample Date	2/21	/2023	2/21	/2023	2/23	/2023	2/21/2023		2/21/2023	
				Field Sample ID		401003-	H4D22XX	401003-	H4S10XX	401003-N	/W0120XX	401003-N	∕IW1412XX	401003-N	IW1507XX
					Qc Code	F	FS	ı	=S	F	FS		FS	F	S
Matrix	Method Class	Method	Fraction	Parameter Units		Result	Qualifier	Result Qualifier		Result Qualifier		Result Qualifier		Result	Qualifier
L	Hex Chrome	SW7199	T	Chromium, Hexavalent MG/L		0.0055 U		0.0055 U		0.27		0.0055 U		0.0055	U

					Location	MW	-17	MV	V-1B	MV	V-24	MV	V-26	MW	-26B
				Lab Samp	le Delivery Group	JD60	793	JD6	0629	JD6	0629	JD6	0629	JD6	0629
				ļ	Field Sample Date	2/23/	2023	2/21	/2023	2/21	/2023	2/21	/2023	2/21	/2023
					Field Sample ID	401003-M	W1707XX	401003-N	/IW1B32XX	401003-N	1W2413XX	401003-N	ЛW2610XX	401003-M	W26B37XX
					Qc Code	FS	5		FS	F	S		FS	F	:S
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier								
L	Hex Chrome	SW7199	T	Chromium, Hexavalent	MG/L	0.0055	U	0.0055	U	0.47	J	0.35		0.0055	U

					Location	MW	V-32	MV	V-37	MV	V-39	MV	V-43	MW	V-8B
				Lab Samp	le Delivery Group	JD60	0629	JD6	0629	JD60	0629	JD6	0629	JD60	0629
				[Field Sample Date	2/21,	/2023	2/21	/2023	2/21	/2023	2/21	/2023	2/21,	/2023
					Field Sample ID	401003-N	1W3209XX	401003-N	1W3714XX	401003-N	1W3914XX	401003-N	∕IW4309XX	401003-M	W08B38XX
					Qc Code	F	S	F	-S	F	S		FS	F	S
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier								
L	Hex Chrome	SW7199	T	Chromium, Hexavalent	MG/L	0.0055	U	0.0055	U	0.0055	UJ	0.0055	UJ	0.0055	UJ

COLONIE, NEW YORK

					Location	DP-09	MW-15	MW-17	MW-18	MW-19
				Lab Sample Deli	ivery Group	480-206390-1	480-206390-1	480-206437-1	480-206416-1	480-206416-1
					ample Date	2/20/2023	2/21/2023	2/23/2023	2/21/2023	2/22/2023
				Field	d Sample ID	401003-DP0912XX	401003-MW1507XX	401003-MW1707XX	401003-MW1813XX	401003-MW1918XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	VOCs	SW8260C	N	1,1,1-Trichloroethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,1,2-Trichloro-1,2,2-Trifluoroe	t UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,1,2-Trichloroethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,1-Dichloroethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,1-Dichloroethene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,2,3-Trichlorobenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,2,4-Trichlorobenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,2,4-Trimethylbenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,2-Dibromo-3-chloropropane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,2-Dibromoethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,2-Dichlorobenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,2-Dichloroethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,2-Dichloropropane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,3,5-Trimethylbenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,3-Dichlorobenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,4-Dichlorobenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	1,4-Dioxane	UG/L	40 U				
L	VOCs	SW8260C	N	2-Butanone	UG/L	10 U				
L	VOCs	SW8260C	N	2-Hexanone	UG/L	5 U	5 U	5 U	5 U	5 U
L	VOCs	SW8260C	N	4-iso-Propyltoluene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	4-Methyl-2-pentanone	UG/L	5 U	5 U	5 U	5 U	5 U
L	VOCs	SW8260C	N	Acetic acid, methyl ester	UG/L	2.5 U				
L	VOCs	SW8260C	N	Acetone	UG/L	10 U				
L	VOCs	SW8260C	N	Benzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Bromochloromethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Bromodichloromethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Bromoform	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Bromomethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Carbon disulfide	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Carbon tetrachloride	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Chlorobenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Chloroethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Chloroform	UG/L	1 U	1 U	1 U	1 U	1 U

COLONIE, NEW YORK

					Location	DP-09	MW-15	MW-17	MW-18	MW-19
				Lab Sample De	livery Group	480-206390-1	480-206390-1	480-206437-1	480-206416-1	480-206416-1
				Field :	Sample Date	2/20/2023	2/21/2023	2/23/2023	2/21/2023	2/22/2023
				Fie	ld Sample ID	401003-DP0912XX	401003-MW1507XX	401003-MW1707XX	401003-MW1813XX	401003-MW1918XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	VOCs	SW8260C	N	Chloromethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	cis-1,2-Dichloroethene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	cis-1,3-Dichloropropene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Cyclohexane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Dibromochloromethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Dichlorodifluoromethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Ethylbenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Isopropylbenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Methyl cyclohexane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Methyl Tertbutyl Ether	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Methylene chloride	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	n-Butylbenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Propylbenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	sec-Butylbenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Styrene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	tert-Butylbenzene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Tetrachloroethene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Toluene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	trans-1,2-Dichloroethene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	trans-1,3-Dichloropropene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Trichloroethene	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Trichlorofluoromethane	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Vinyl chloride	UG/L	1 U	1 U	1 U	1 U	1 U
L	VOCs	SW8260C	N	Xylenes, Total	UG/L	2 U	2 U	2 U	2 U	2 U
L	SVOCs	SW8270D	N	1,2,4,5-Tetrachlorobenzene	UG/L		5.7 U	5 U	5 U	5 U
L	SVOCs	SW8270D	N	2,2'-Dichlorodiisopropylether	UG/L		5.7 U	5 U	5 U	5 U
L	SVOCs	SW8270D	N	2,4,5-Trichlorophenol	UG/L		5.7 U	5 U	5 U	5 U
L	SVOCs	SW8270D	N	2,4,6-Trichlorophenol	UG/L		5.7 U	5 U	5 U	5 U
L	SVOCs	SW8270D	N	2,4-Dichlorophenol	UG/L		5.7 U	5 U	5 U	5 U
L	SVOCs	SW8270D	N	2,4-Dimethylphenol	UG/L		5.7 U	5 U	5 U	5 U
L	SVOCs	SW8270D	N	2,4-Dinitrophenol	UG/L		11 U	10 U	10 U	10 U
L	SVOCs	SW8270D	N	2,4-Dinitrotoluene	UG/L		5.7 U	5 U	5 U	5 U
L	SVOCs	SW8270D	N	2,6-Dinitrotoluene	UG/L		5.7 U	5 U	5 U	5 U
L	SVOCs	SW8270D	N	2-Chloronaphthalene	UG/L		5.7 U	5 U	5 U	5 U

Page 12 of 30

COLONIE, NEW YORK

					Location	DF	P-09	MV	V-15	MW-	·17	MW	/ -18	MV	V-19
				Lab Sample De	livery Group	480-20	06390-1	480-20	06390-1	480-206	437-1	480-20	6416-1	480-20	06416-1
				Field :	Sample Date	2/20	/2023	2/21	/2023	2/23/2	2023	2/21/	/2023	2/22	/2023
				Fie	ld Sample ID	401003-	DP0912XX	401003-N	/W1507XX	401003-M\	W1707XX	401003-N	1W1813XX	401003-N	1W1918XX
					Qc Code		FS	1	-S	FS	;	F	:S	F	S
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
L	SVOCs	SW8270D	N	2-Chlorophenol	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	2-Methylnaphthalene	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	2-Methylphenol	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	2-Nitroaniline	UG/L			11	U	10 U	J	10	U	10	U
L	SVOCs	SW8270D	N	2-Nitrophenol	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	3,3'-Dichlorobenzidine	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	3-Nitroaniline	UG/L			11	U	10 l	J	10	U	10	U
L	SVOCs	SW8270D	N	4,6-Dinitro-2-methylphenol	UG/L			11	U	10 l	J	10	U	10	U
L	SVOCs	SW8270D	N	4-Bromophenyl phenyl ether	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	4-Chloro-3-methylphenol	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	4-Chloroaniline	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	4-Chlorophenyl phenyl ether	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	4-Methylphenol	UG/L			11	U	10 l	J	10	U	10	U
L	SVOCs	SW8270D	N	4-Nitroaniline	UG/L			11	U	10 l	J	10	U	10	U
L	SVOCs	SW8270D	N	4-Nitrophenol	UG/L			11	U	10 l	J	10	U	10	U
L	SVOCs	SW8270D	N	Acenaphthene	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Acenaphthylene	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Acetophenone	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Anthracene	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Atrazine	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Benzaldehyde	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Benzo(a)anthracene	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Benzo(a)pyrene	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Benzo(b)fluoranthene	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Benzo(ghi)perylene	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Benzo(k)fluoranthene	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Biphenyl	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Bis(2-Chloroethoxy)methane	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Bis(2-Chloroethyl)ether	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Bis(2-Ethylhexyl)phthalate	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Butylbenzylphthalate	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Caprolactam	UG/L			5.7	UJ	5 l	JJ	5	UJ	5	UJ
L	SVOCs	SW8270D	N	Carbazole	UG/L			5.7	U	5 l	J	5	U	5	U
L	SVOCs	SW8270D	N	Chrysene	UG/L			5.7	U	5 l	J	5	U	5	U

COLONIE, NEW YORK

					Location	DP-0	10	M	W-15	M	V-17	M	W-18	M	W-19
				Lab Sample De		480-206			06390-1		06437-1		06416-1		06416-1
				-	Sample Date	2/20/2			L/2023		/2023		./2023		2/2023
					eld Sample ID	401003-DF		•	MW1507XX	•	/2023 /W1707XX		л ИW1813XX		MW1918XX
				rie	Qc Code	401003-DF			FS		=S		FS		FS
Matrix	Method Class	Method	Fraction	Parameter	Units		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
I	SVOCs	SW8270D		Di-n-butylphthalate	UG/L	resure	Quanner	5.7			U		U		5 U
i	SVOCs	SW8270D		Di-n-octylphthalate	UG/L				7 U	_	U	_	, U		5 U
ļ	SVOCs	SW8270D		Dibenz(a,h)anthracene	UG/L				7 U		U		, U		5 U
آ	SVOCs	SW8270D		Dibenzofuran	UG/L				L U		U) U) U
l.	SVOCs	SW8270D		Diethylphthalate	UG/L				7 U		U		, U		5 U
ļ	SVOCs	SW8270D		Dimethylphthalate	UG/L				7 U		U		, U		5 U
ļ	SVOCs	SW8270D		Fluoranthene	UG/L			5.7			U		, U		5 U
ļ.	SVOCs	SW8270D		Fluorene	UG/L			5.7			U		, U		5 U
ī	SVOCs	SW8270D		Hexachlorobenzene	UG/L				7 U	_	U		, U		5 U
ļ	SVOCs	SW8270D		Hexachlorobutadiene	UG/L			5.7			U		, U		5 U
اً	SVOCs	SW8270D		Hexachlorocyclopentadiene	UG/L				7 U	_	U		, U		5 U
Ī	SVOCs	SW8270D		Hexachloroethane	UG/L			5.7			U		. U		5 U
Ī	SVOCs	SW8270D		Indeno(1,2,3-cd)pyrene	UG/L				7 U		U		. U		5 U
آ	SVOCs	SW8270D		Isophorone	UG/L				7 U		U		. U		5 U
Ī	SVOCs	SW8270D		N-Nitrosodi-n-propylamine	UG/L				7 U		U		i U		5 U
Ĺ	SVOCs	SW8270D		N-Nitrosodiphenylamine	UG/L				7 U		U		i U		5 U
ī	SVOCs	SW8270D		Naphthalene	UG/L			5.7			U		i U		5 U
L	SVOCs	SW8270D		Nitrobenzene	UG/L				7 U		U		. U		5 U
L	SVOCs	SW8270D		Pentachlorophenol	UG/L				LU	10) U) U
L	SVOCs	SW8270D		Phenanthrene	UG/L				7 U	_	U	_	i U		5 U
Ī	SVOCs	SW8270D		Phenol	UG/L			5.7			U		i U		5 U
L	SVOCs	SW8270D		Pyrene	UG/L			5.7		_	U		i U		5 U

AlTech_Feb2023_Tables2-3_final Created by: KLD 3/24/23

AlTech_Feb2023_Tables2-3_final Page 14 of 30 Created by: CLC 3/24/23

					Location	MW-19B	MW-22	MW-27R	MW-4	MW-43
				Lab Sample Deli	ivery Group	480-206416-1	480-206437-1	480-206390-1	480-206416-1	480-206390-1
					ample Date	2/22/2023	2/23/2023	2/20/2023	2/22/2023	2/21/2023
				Field	d Sample ID	401003-MW19B38XX	401003-MW2214XX	401003-MW27R12XX	401003-MW0413XX	401003-MW4309XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	VOCs	SW8260C	N	1,1,1-Trichloroethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,1,2-Trichloro-1,2,2-Trifluoroe	t UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,1,2-Trichloroethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,1-Dichloroethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,1-Dichloroethene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2,3-Trichlorobenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2,4-Trichlorobenzene	UG/L	1 U	1 U	7.3	2 U	1 U
L	VOCs	SW8260C	N	1,2,4-Trimethylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2-Dibromo-3-chloropropane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2-Dibromoethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2-Dichlorobenzene	UG/L	1 U	1 U	1.1	2 U	1 U
L	VOCs	SW8260C	N	1,2-Dichloroethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2-Dichloropropane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,3,5-Trimethylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,3-Dichlorobenzene	UG/L	1 U	1 U	11	2 U	1 U
L	VOCs	SW8260C	N	1,4-Dichlorobenzene	UG/L	1 U	1 U	12	2 U	1 U
L	VOCs	SW8260C	N	1,4-Dioxane	UG/L	40 U	40 U	40 U	80 U	40 U
L	VOCs	SW8260C	N	2-Butanone	UG/L	10 U	10 U	10 U	20 U	10 U
L	VOCs	SW8260C	N	2-Hexanone	UG/L	5 U	5 U	5 U	10 U	5 U
L	VOCs	SW8260C	N	4-iso-Propyltoluene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	4-Methyl-2-pentanone	UG/L	5 U	5 U	5 U	10 U	5 U
L	VOCs	SW8260C	N	Acetic acid, methyl ester	UG/L	2.5 U	2.5 U	2.5 U	5 U	2.5 U
L	VOCs	SW8260C	N	Acetone	UG/L	10 U	10 U	10 U	20 U	10 U
L	VOCs	SW8260C	N	Benzene	UG/L	1 U	0.92 J	1 U	2 U	1 U
L	VOCs	SW8260C	N	Bromochloromethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Bromodichloromethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Bromoform	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Bromomethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Carbon disulfide	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Carbon tetrachloride	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Chlorobenzene	UG/L	1 U	1 U	8.6	2 U	1 U
L	VOCs	SW8260C	N	Chloroethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Chloroform	UG/L	1 U	1 U	1 U	2 U	1 U

					Location	MW-19B	MW-22	MW-27R	MW-4	MW-43
				Lab Sample De	livery Group	480-206416-1	480-206437-1	480-206390-1	480-206416-1	480-206390-1
				Field	Sample Date	2/22/2023	2/23/2023	2/20/2023	2/22/2023	2/21/2023
				Fie	eld Sample ID	401003-MW19B38XX	401003-MW2214XX	401003-MW27R12XX	401003-MW0413XX	401003-MW4309XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	VOCs	SW8260C	N	Chloromethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	cis-1,2-Dichloroethene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	cis-1,3-Dichloropropene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Cyclohexane	UG/L	1 U	7.3	1 U	2 U	1 U
L	VOCs	SW8260C	N	Dibromochloromethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Dichlorodifluoromethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Ethylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Isopropylbenzene	UG/L	1 U	12	1 U	2 U	1 U
L	VOCs	SW8260C	N	Methyl cyclohexane	UG/L	1 U	8.2	1 U	2 U	1 U
L	VOCs	SW8260C	N	Methyl Tertbutyl Ether	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Methylene chloride	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	n-Butylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Propylbenzene	UG/L	1 U	15	1 U	2 U	1 U
L	VOCs	SW8260C	N	sec-Butylbenzene	UG/L	1 U	4.2	1 U	2 U	1 U
L	VOCs	SW8260C	N	Styrene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	tert-Butylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Tetrachloroethene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Toluene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	trans-1,2-Dichloroethene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	trans-1,3-Dichloropropene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Trichloroethene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Trichlorofluoromethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Vinyl chloride	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Xylenes, Total	UG/L	2 U	2 U	2 U	4 U	2 U
L	SVOCs	SW8270D	N	1,2,4,5-Tetrachlorobenzene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	2,2'-Dichlorodiisopropylether	•	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D		2,4,5-Trichlorophenol	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D		2,4,6-Trichlorophenol	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D		2,4-Dichlorophenol	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	2,4-Dimethylphenol	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D		2,4-Dinitrophenol	UG/L	10 U	50 U		10 U	10 U
L	SVOCs	SW8270D		2,4-Dinitrotoluene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D		2,6-Dinitrotoluene	UG/L	5 U	25 U		5.2 U	5 U
I	SVOCs	SW8270D		2-Chloronaphthalene	UG/L	5 U	25 U		5.2 U	5 U

					Location	MW-19B	MW-22	MW-27R	MW-4	MW-43
				Lab Sample De	livery Group	480-206416-1	480-206437-1	480-206390-1	480-206416-1	480-206390-1
				Field S	Sample Date	2/22/2023	2/23/2023	2/20/2023	2/22/2023	2/21/2023
				Fie	ld Sample ID	401003-MW19B38XX	401003-MW2214XX	401003-MW27R12XX	401003-MW0413XX	401003-MW4309XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	SVOCs	SW8270D	N	2-Chlorophenol	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	2-Methylnaphthalene	UG/L	5 U	130		5.2 U	5 U
L	SVOCs	SW8270D	N	2-Methylphenol	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	2-Nitroaniline	UG/L	10 U	50 U		10 U	10 U
L	SVOCs	SW8270D	N	2-Nitrophenol	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	3,3'-Dichlorobenzidine	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	3-Nitroaniline	UG/L	10 U	50 U		10 U	10 U
L	SVOCs	SW8270D	N	4,6-Dinitro-2-methylphenol	UG/L	10 U	50 U		10 U	10 U
L	SVOCs	SW8270D	N	4-Bromophenyl phenyl ether	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	4-Chloro-3-methylphenol	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	4-Chloroaniline	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	4-Chlorophenyl phenyl ether	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	4-Methylphenol	UG/L	10 U	50 U		10 U	10 U
L	SVOCs	SW8270D	N	4-Nitroaniline	UG/L	10 U	50 U		10 U	10 U
L	SVOCs	SW8270D	N	4-Nitrophenol	UG/L	10 U	50 U		10 U	10 U
L	SVOCs	SW8270D	N	Acenaphthene	UG/L	5 U	11 J		5.2 U	5 U
L	SVOCs	SW8270D	N	Acenaphthylene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Acetophenone	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Anthracene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Atrazine	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Benzaldehyde	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Benzo(a)anthracene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Benzo(a)pyrene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Benzo(b)fluoranthene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Benzo(ghi)perylene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Benzo(k)fluoranthene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Biphenyl	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Bis(2-Chloroethoxy)methane	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Bis(2-Chloroethyl)ether	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Bis(2-Ethylhexyl)phthalate	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Butylbenzylphthalate	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Caprolactam	UG/L	5 UJ	25 UJ		5.2 UJ	5 UJ
L	SVOCs	SW8270D	N	Carbazole	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Chrysene	UG/L	5 U	25 U		5.2 U	5 U

COLONIE, NEW YORK

					Location	MW-19B	MW-22	MW-27R	MW-4	MW-43
				Lab Sample De	elivery Group	480-206416-1	480-206437-1	480-206390-1	480-206416-1	480-206390-1
				Field	Sample Date	2/22/2023	2/23/2023	2/20/2023	2/22/2023	2/21/2023
				Fie	eld Sample ID	401003-MW19B38XX	401003-MW2214XX	401003-MW27R12XX	401003-MW0413XX	401003-MW4309XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	SVOCs	SW8270D	N	Di-n-butylphthalate	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Di-n-octylphthalate	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Dibenz(a,h)anthracene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Dibenzofuran	UG/L	10 U	6.3 J		10 U	10 U
L	SVOCs	SW8270D	N	Diethylphthalate	UG/L	5 U	25 U		5.2 U	6.3
L	SVOCs	SW8270D	N	Dimethylphthalate	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Fluoranthene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Fluorene	UG/L	5 U	9.1 J		5.2 U	5 U
L	SVOCs	SW8270D	N	Hexachlorobenzene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Hexachlorobutadiene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Hexachlorocyclopentadiene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Hexachloroethane	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Indeno(1,2,3-cd)pyrene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Isophorone	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	N-Nitrosodi-n-propylamine	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	N-Nitrosodiphenylamine	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Naphthalene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Nitrobenzene	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Pentachlorophenol	UG/L	10 U	50 U		10 U	10 U
L	SVOCs	SW8270D	N	Phenanthrene	UG/L	5 U	9.3 J		5.2 U	5 U
L	SVOCs	SW8270D	N	Phenol	UG/L	5 U	25 U		5.2 U	5 U
L	SVOCs	SW8270D	N	Pyrene	UG/L	5 U	25 U		5.2 U	5 U

Page 18 of 30 AlTech_Feb2023_Tables2-3_final Checked by: CLC 3/24/23

					Location	MW-4B	MW-5	MW-5B	MW-6	MW-6B
				Lab Sample Del	ivery Group	480-206416-1	480-206437-1	480-206437-1	480-206437-1	480-206437-1
				Field S	ample Date	2/22/2023	2/22/2023	2/23/2023	2/23/2023	2/22/2023
				Field	d Sample ID	401003-MW04B46XX	401003-MW0513XX	401003-MW05B54XX	401003-MW0612XX	401003-MW06B59X
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	VOCs	SW8260C	N	1,1,1-Trichloroethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,1,2-Trichloro-1,2,2-Trifluoroe	t UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,1,2-Trichloroethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,1-Dichloroethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,1-Dichloroethene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2,3-Trichlorobenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2,4-Trichlorobenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2,4-Trimethylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2-Dibromo-3-chloropropane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2-Dibromoethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2-Dichlorobenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2-Dichloroethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,2-Dichloropropane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,3,5-Trimethylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,3-Dichlorobenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,4-Dichlorobenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	1,4-Dioxane	UG/L	40 U	40 U	40 U	80 U	40 U
L	VOCs	SW8260C	N	2-Butanone	UG/L	10 U	10 U	10 U	20 U	10 U
L	VOCs	SW8260C	N	2-Hexanone	UG/L	5 U	5 U	5 U	10 U	5 U
L	VOCs	SW8260C	N	4-iso-Propyltoluene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	4-Methyl-2-pentanone	UG/L	5 U	5 U	5 U	10 U	5 U
L	VOCs	SW8260C	N	Acetic acid, methyl ester	UG/L	2.5 U	2.5 U	2.5 U	5 U	2.5 U
L	VOCs	SW8260C	N	Acetone	UG/L	10 U	10 U	10 U	20 U	10 U
L	VOCs	SW8260C	N	Benzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Bromochloromethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Bromodichloromethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Bromoform	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Bromomethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Carbon disulfide	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Carbon tetrachloride	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Chlorobenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Chloroethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Chloroform	UG/L	1 U	1 U	1 U	2 U	1 U

COLONIE, NEW YORK

					Location	MW-4B	MW-5	MW-5B	MW-6	MW-6B
				Lab Sample De	livery Group	480-206416-1	480-206437-1	480-206437-1	480-206437-1	480-206437-1
				Field	Sample Date	2/22/2023	2/22/2023	2/23/2023	2/23/2023	2/22/2023
				Fie	eld Sample ID	401003-MW04B46XX	401003-MW0513XX	401003-MW05B54XX	401003-MW0612XX	401003-MW06B59XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	VOCs	SW8260C	N	Chloromethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	cis-1,2-Dichloroethene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	cis-1,3-Dichloropropene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Cyclohexane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Dibromochloromethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Dichlorodifluoromethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Ethylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Isopropylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Methyl cyclohexane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Methyl Tertbutyl Ether	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Methylene chloride	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	n-Butylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Propylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	sec-Butylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Styrene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	tert-Butylbenzene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Tetrachloroethene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Toluene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	trans-1,2-Dichloroethene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	trans-1,3-Dichloropropene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Trichloroethene	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Trichlorofluoromethane	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Vinyl chloride	UG/L	1 U	1 U	1 U	2 U	1 U
L	VOCs	SW8260C	N	Xylenes, Total	UG/L	2 U	2 U	2 U	4 U	2 U
L	SVOCs	SW8270D	N	1,2,4,5-Tetrachlorobenzene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	2,2'-Dichlorodiisopropylether	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	2,4,5-Trichlorophenol	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	2,4,6-Trichlorophenol	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	2,4-Dichlorophenol	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	2,4-Dimethylphenol	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	2,4-Dinitrophenol	UG/L	10 U				
L	SVOCs	SW8270D	N	2,4-Dinitrotoluene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	2,6-Dinitrotoluene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	2-Chloronaphthalene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U

COLONIE, NEW YORK

					Location	MW-4B	MW-5	MW-5B	MW-6	MW-6B
				Lab Sample De	livery Group	480-206416-1	480-206437-1	480-206437-1	480-206437-1	480-206437-1
				Field :	Sample Date	2/22/2023	2/22/2023	2/23/2023	2/23/2023	2/22/2023
				Fie	ld Sample ID	401003-MW04B46XX	401003-MW0513XX	401003-MW05B54XX	401003-MW0612XX	401003-MW06B59XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier				
L	SVOCs	SW8270D	N	2-Chlorophenol	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	2-Methylnaphthalene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	2-Methylphenol	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	2-Nitroaniline	UG/L	10 U				
L	SVOCs	SW8270D	N	2-Nitrophenol	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	3,3'-Dichlorobenzidine	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	3-Nitroaniline	UG/L	10 U				
L	SVOCs	SW8270D	N	4,6-Dinitro-2-methylphenol	UG/L	10 U				
L	SVOCs	SW8270D	N	4-Bromophenyl phenyl ether	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	4-Chloro-3-methylphenol	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	4-Chloroaniline	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	4-Chlorophenyl phenyl ether	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	4-Methylphenol	UG/L	10 U				
L	SVOCs	SW8270D	N	4-Nitroaniline	UG/L	10 U				
L	SVOCs	SW8270D	N	4-Nitrophenol	UG/L	10 U				
L	SVOCs	SW8270D	N	Acenaphthene	UG/L	5.2 U	5.2 U	5.2 U	4.5 J	5 U
L	SVOCs	SW8270D	N	Acenaphthylene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Acetophenone	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Anthracene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Atrazine	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Benzaldehyde	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Benzo(a)anthracene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Benzo(a)pyrene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Benzo(b)fluoranthene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Benzo(ghi)perylene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Benzo(k)fluoranthene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Biphenyl	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Bis(2-Chloroethoxy)methane	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Bis(2-Chloroethyl)ether	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Bis(2-Ethylhexyl)phthalate	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Butylbenzylphthalate	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Caprolactam	UG/L	5.2 UJ	5.2 UJ	5.2 UJ	5.2 UJ	5 UJ
L	SVOCs	SW8270D	N	Carbazole	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D	N	Chrysene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U

COLONIE, NEW YORK

				Location	MW-4B	MW-5	MW-5B	MW-6	MW-6B
			Lab Sample De	elivery Group	480-206416-1	480-206437-1	480-206437-1	480-206437-1	480-206437-1
			Field	Sample Date	2/22/2023	2/22/2023	2/23/2023	2/23/2023	2/22/2023
			Fie	eld Sample ID	401003-MW04B46XX	401003-MW0513XX	401003-MW05B54XX	401003-MW0612XX	401003-MW06B59XX
				Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method Fraction	Parameter	Units	Result Qualifier				
L	SVOCs	SW8270D N	Di-n-butylphthalate	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Di-n-octylphthalate	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Dibenz(a,h)anthracene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Dibenzofuran	UG/L	10 U				
L	SVOCs	SW8270D N	Diethylphthalate	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Dimethylphthalate	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Fluoranthene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Fluorene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Hexachlorobenzene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Hexachlorobutadiene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Hexachlorocyclopentadiene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Hexachloroethane	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Indeno(1,2,3-cd)pyrene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Isophorone	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	N-Nitrosodi-n-propylamine	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	N-Nitrosodiphenylamine	UG/L	5.2 U	5.2 U	5.2 U	2.6 J	5 U
L	SVOCs	SW8270D N	Naphthalene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Nitrobenzene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Pentachlorophenol	UG/L	10 U				
L	SVOCs	SW8270D N	Phenanthrene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Phenol	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U
L	SVOCs	SW8270D N	Pyrene	UG/L	5.2 U	5.2 U	5.2 U	5.2 U	5 U

AlTech_Feb2023_Tables2-3_final Created by: KLD 3/24/23

AlTech_Feb2023_Tables2-3_final Page 22 of 30 Created by: CLC 3/24/23

					Location	MW-8B	MW-G501	MW-I704	PES-5	PES-7
				Lab Sample Deli	very Group	480-206390-1	480-206416-1	480-206416-1	480-206416-1	480-206390-1
				Field S	ample Date	2/21/2023	2/22/2023	2/22/2023	2/22/2023	2/21/2023
				Field	Sample ID	401003-MW08B38XX	401003-MWG50111XX	401003-MWI7043XX	401003-PES0512XX	401003-PES0712XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
L	VOCs	SW8260C	N	1,1,1-Trichloroethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,1,2-Trichloro-1,2,2-Trifluoroe	t UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,1,2-Trichloroethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,1-Dichloroethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,1-Dichloroethene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,2,3-Trichlorobenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,2,4-Trichlorobenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,2,4-Trimethylbenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,2-Dibromo-3-chloropropane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,2-Dibromoethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,2-Dichlorobenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,2-Dichloroethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,2-Dichloropropane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,3,5-Trimethylbenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,3-Dichlorobenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,4-Dichlorobenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	1,4-Dioxane	UG/L	40 U	40 U	160 U	40 U	80 U
L	VOCs	SW8260C	N	2-Butanone	UG/L	10 U	10 U	40 U	10 U	20 U
L	VOCs	SW8260C	N	2-Hexanone	UG/L	5 U	5 U	20 U	5 U	10 U
L	VOCs	SW8260C	N	4-iso-Propyltoluene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	4-Methyl-2-pentanone	UG/L	5 U	5 U	20 U	5 U	10 U
L	VOCs	SW8260C	N	Acetic acid, methyl ester	UG/L	2.5 U	2.5 U	10 U	2.5 U	5 U
L	VOCs	SW8260C	N	Acetone	UG/L	10 U	10 U	40 U	10 U	20 U
L	VOCs	SW8260C	N	Benzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Bromochloromethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Bromodichloromethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Bromoform	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Bromomethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Carbon disulfide	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Carbon tetrachloride	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Chlorobenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Chloroethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Chloroform	UG/L	1 U	1 U	4 U	1 U	2 U

					Location	MW-8B	MW-G501	MW-I704	PES-5	PES-7
				Lab Sample De	elivery Group	480-206390-1	480-206416-1	480-206416-1	480-206416-1	480-206390-1
				Field	Sample Date	2/21/2023	2/22/2023	2/22/2023	2/22/2023	2/21/2023
				Fie	eld Sample ID	401003-MW08B38XX	401003-MWG50111XX	401003-MWI7043XX	401003-PES0512XX	401003-PES0712XX
					Qc Code	FS	FS	FS	FS	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
L	VOCs	SW8260C	N	Chloromethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	cis-1,2-Dichloroethene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	cis-1,3-Dichloropropene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Cyclohexane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Dibromochloromethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Dichlorodifluoromethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Ethylbenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Isopropylbenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Methyl cyclohexane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Methyl Tertbutyl Ether	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Methylene chloride	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	n-Butylbenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Propylbenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	sec-Butylbenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Styrene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	tert-Butylbenzene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Tetrachloroethene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Toluene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	trans-1,2-Dichloroethene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	trans-1,3-Dichloropropene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Trichloroethene	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Trichlorofluoromethane	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Vinyl chloride	UG/L	1 U	1 U	4 U	1 U	2 U
L	VOCs	SW8260C	N	Xylenes, Total	UG/L	2 U	2 U	8 U	2 U	4 U
L	SVOCs	SW8270D	N	1,2,4,5-Tetrachlorobenzene	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	2,2'-Dichlorodiisopropylether	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	2,4,5-Trichlorophenol	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	2,4,6-Trichlorophenol	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	2,4-Dichlorophenol	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	2,4-Dimethylphenol	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	2,4-Dinitrophenol	UG/L	10 U	10 U	50 U	10 U	50 U
L	SVOCs	SW8270D	N	2,4-Dinitrotoluene	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	2,6-Dinitrotoluene	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	2-Chloronaphthalene	UG/L	5 U	5 U	25 U	5.2 U	25 U

COLONIE, NEW YORK

					Laaatiaa	MW-8B	MW-G501	MW-1704	PES-5	PES-7
				Lab Sample De	Location	480-206390-1	480-206416-1	480-206416-1	480-206416-1	480-206390-1
				•	Sample Date	2/21/2023	2/22/2023	2/22/2023	2/22/2023	2/21/2023
					•	• •	, ,		2/22/2023 401003-PES0512XX	401003-PES0712XX
				Fiei	-	FS	401003-MWG50111XX FS	FS	401003-PES0512XX FS	401003-PES0712XX FS
	Martin al Class		F	Danis and the second	Qc Code		. •	_	_	_
Matrix	Method Class	SW8270D	Fraction	Parameter 2. Chlorophoroph	Units	Result Qualifier 5 U	Result Qualifier 5 U	Result Qualifier 25 U	Result Qualifier 5.2 U	Result Qualifier 25 U
L.	SVOCs			2-Chlorophenol	UG/L					
L.	SVOCs	SW8270D		2-Methylnaphthalene	UG/L	5 U	5 U	25 U	5.2 U	25 U
L.	SVOCs	SW8270D		2-Methylphenol	UG/L	5 U	5 U	25 U	5.2 U	25 U
L.	SVOCs	SW8270D		2-Nitroaniline	UG/L	10 U	10 U	50 U	10 U	50 U
L.	SVOCs	SW8270D		2-Nitrophenol	UG/L	5 U	5 U	25 U	5.2 U	25 U
L.	SVOCs	SW8270D		3,3'-Dichlorobenzidine	UG/L	5 U	5 U	25 U	5.2 U	25 U
L.	SVOCs	SW8270D		3-Nitroaniline	UG/L	10 U	10 U	50 U	10 U	50 U
L	SVOCs	SW8270D		4,6-Dinitro-2-methylphenol	UG/L	10 U	10 U	50 U	10 U	50 U
L	SVOCs	SW8270D		4-Bromophenyl phenyl ether	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D		4-Chloro-3-methylphenol	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D		4-Chloroaniline	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D		4-Chlorophenyl phenyl ether	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D		4-Methylphenol	UG/L	10 U	10 U	50 U	10 U	50 U
L	SVOCs	SW8270D		4-Nitroaniline	UG/L	10 U	10 U	50 U	10 U	50 U
L	SVOCs	SW8270D		4-Nitrophenol	UG/L	10 U	10 U	50 U	10 U	50 U
L	SVOCs	SW8270D		Acenaphthene	UG/L	5 U	5 U	10 J	5.2 U	2.4 J
L	SVOCs	SW8270D		Acenaphthylene	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D		Acetophenone	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D		Anthracene	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D		Atrazine	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D		Benzaldehyde	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	Benzo(a)anthracene	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D		Benzo(a)pyrene	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D		Benzo(b)fluoranthene	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D		Benzo(ghi)perylene	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D		Benzo(k)fluoranthene	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	Biphenyl	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	Bis(2-Chloroethoxy)methane	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	Bis(2-Chloroethyl)ether	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	Bis(2-Ethylhexyl)phthalate	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	Butylbenzylphthalate	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	Caprolactam	UG/L	5 UJ	5 UJ	25 UJ	5.2 UJ	25 UJ
L	SVOCs	SW8270D	N	Carbazole	UG/L	5 U	5 U	25 U	5.2 U	25 U
L	SVOCs	SW8270D	N	Chrysene	UG/L	5 U	5 U	25 U	5.2 U	25 U

AlTech_Feb2023_Tables2-3_final Created by: KLD 3/24/23

AlTech_Feb2023_Tables2-3_final Page 25 of 30 Created by: CLC 3/24/23

COLONIE, NEW YORK

					Location	MW	-8B	MW	/-G501	MW	'-1704	PF	ES-5	P	ES-7
				Lab Sample De		480-20			06416-1		06416-1		06416-1		06390-1
				•	Sample Date	2/21/			2/2023		/2023		2/2023		1/2023
					ld Sample ID			•	•	•	1WI7043XX	'	PES0512XX		PESO712XX
					Qc Code	F:			FS		=S		FS		FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier								
L	SVOCs	SW8270D	N	Di-n-butylphthalate	UG/L	5			5 U	25	U	5.2	. U		5 U
L	SVOCs	SW8270D	N	Di-n-octylphthalate	UG/L	5	U		5 U	25	U	5.2	: U	25	5 U
L	SVOCs	SW8270D	N	Dibenz(a,h)anthracene	UG/L	5	U	ī	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	Dibenzofuran	UG/L	10	U	10) U	50	U	10	U	50) U
L	SVOCs	SW8270D	N	Diethylphthalate	UG/L	5	U	Ţ	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	Dimethylphthalate	UG/L	5	U	ī	5 U	25	U	5.2	: U	25	5 U
L	SVOCs	SW8270D	N	Fluoranthene	UG/L	5	U	Ţ	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	Fluorene	UG/L	5	U	ī	5 U	10	J	5.2	: U	25	5 U
L	SVOCs	SW8270D	N	Hexachlorobenzene	UG/L	5	U	Ţ	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	Hexachlorobutadiene	UG/L	5	U	Ţ	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	Hexachlorocyclopentadiene	UG/L	5	U	Ţ	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	Hexachloroethane	UG/L	5	U	Ţ	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	Indeno(1,2,3-cd)pyrene	UG/L	5	U	Ţ	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	Isophorone	UG/L	5	U	Ţ	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	N-Nitrosodi-n-propylamine	UG/L	5	U	Ţ	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	N-Nitrosodiphenylamine	UG/L	5	U	ŗ	5 U	5.8	J	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	Naphthalene	UG/L	5	U	Ţ	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	Nitrobenzene	UG/L	5	U	ī	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	Pentachlorophenol	UG/L	10		10) U	50	U	10	U	50) U
L	SVOCs	SW8270D	N	Phenanthrene	UG/L	5	U	ŗ	5 U	25	U	5.2	! U	25	5 U
L	SVOCs	SW8270D	N	Phenol	UG/L	5			5 U	25	_	5.2			5 U
L	SVOCs	SW8270D	N	Pyrene	UG/L	5	U		5 U	25	U	5.2	! U	25	5 U

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS CATEGORY A REVIEW

FEBRUARY 2023 GROUNDWATER SAMPLING PROGRAM AL TECH SPECIALTY STEEL SITE COLONIE, NEW YORK

					Location	QC		C	QC	(QC
				Lab Sample Del	ivery Group	480-206	390-1	480-20	06416-1	480-20	06437-1
				Field S	ample Date	2/18/2	2023	2/18	/2023	2/18	/2023
				Fiel	d Sample ID	401003-TRI	P BLANK	TRIP I	BLANK	401003-7	TRIPBLANK
					Qc Code	TB		Т	ТВ	-	ГΒ
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifie
L	VOCs	SW8260C	N	1,1,1-Trichloroethane	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,1,2,2-Tetrachloroethane	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,1,2-Trichloro-1,2,2-Trifluoroe	et UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,1,2-Trichloroethane	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,1-Dichloroethane	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,1-Dichloroethene	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,2,3-Trichlorobenzene	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,2,4-Trichlorobenzene	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,2,4-Trimethylbenzene	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,2-Dibromo-3-chloropropane	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,2-Dibromoethane	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,2-Dichlorobenzene	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,2-Dichloroethane	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,2-Dichloropropane	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,3,5-Trimethylbenzene	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,3-Dichlorobenzene	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,4-Dichlorobenzene	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	1,4-Dioxane	UG/L	40 L	J	40	U	40	U
L	VOCs	SW8260C	N	2-Butanone	UG/L	10 L	J	10	U	10	U
L	VOCs	SW8260C	N	2-Hexanone	UG/L	5 L	J	5	U	5	U
L	VOCs	SW8260C	N	4-iso-Propyltoluene	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	4-Methyl-2-pentanone	UG/L	5 L	J	5	U	5	U
L	VOCs	SW8260C	N	Acetic acid, methyl ester	UG/L	2.5 L	J	2.5	U	2.5	U
L	VOCs	SW8260C	N	Acetone	UG/L	10 L	J	10	U	10	U
L	VOCs	SW8260C	N	Benzene	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	Bromochloromethane	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	Bromodichloromethane	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	Bromoform	UG/L	1 L	J	1	U	1	U
L	VOCs	SW8260C	N	Bromomethane	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	Carbon disulfide	UG/L	1 U	J	1	U	1	. U
L	VOCs	SW8260C	N	Carbon tetrachloride	UG/L	1 L	J	1	U	1	. U
L	VOCs	SW8260C	N	Chlorobenzene	UG/L	1 U	J	1	U	1	. U
L	VOCs	SW8260C	N	Chloroethane	UG/L	1 L	J	1	U	1	U
L	VOCs	SW8260C	N	Chloroform	UG/L	1 L	J	1	U	1	. U

					Location	QC		QC		(QC
				Lab Sample De	livery Group	480-206390-1	1	480-2064:	16-1	480-2	06437-1
				Field 9	Sample Date	2/18/2023		2/18/20	23	2/18	3/2023
				Fie	d Sample ID	401003-TRIP BLA	ANK	TRIP BLA	NK	401003-	TRIPBLANK
					Qc Code	TB		ТВ			ТВ
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Quali	ifier	Result Q	ualifier	Result	Qualifie
L	VOCs	SW8260C	N	Chloromethane	UG/L	1 U		1 U		1	LU
L	VOCs	SW8260C	N	cis-1,2-Dichloroethene	UG/L	1 U		1 U		1	LU
L	VOCs	SW8260C	N	cis-1,3-Dichloropropene	UG/L	1 U		1 U		1	LU
L	VOCs	SW8260C	N	Cyclohexane	UG/L	1 U		1 U		1	LU
L	VOCs	SW8260C	N	Dibromochloromethane	UG/L	1 U		1 U		1	LU
L	VOCs	SW8260C	N	Dichlorodifluoromethane	UG/L	1 U		1 U		1	LU
L	VOCs	SW8260C	N	Ethylbenzene	UG/L	1 U		1 U		1	LU
L	VOCs	SW8260C	N	Isopropylbenzene	UG/L	1 U		1 U		1	LU
L	VOCs	SW8260C	N	Methyl cyclohexane	UG/L	1 U		1 U		1	ιU
L	VOCs	SW8260C	N	Methyl Tertbutyl Ether	UG/L	1 U		1 U		1	ιU
L	VOCs	SW8260C	N	Methylene chloride	UG/L	1 U		1 U		1	ιU
L	VOCs	SW8260C	N	n-Butylbenzene	UG/L	1 U		1 U		1	LU
L	VOCs	SW8260C	N	Propylbenzene	UG/L	1 U		1 U		1	ιU
L	VOCs	SW8260C	N	sec-Butylbenzene	UG/L	1 U		1 U		1	LU
L	VOCs	SW8260C	N	Styrene	UG/L	1 U		1 U		1	LU
L	VOCs	SW8260C	N	tert-Butylbenzene	UG/L	1 U		1 U		1	ιU
L	VOCs	SW8260C	N	Tetrachloroethene	UG/L	1 U		1 U		1	ιU
L	VOCs	SW8260C	N	Toluene	UG/L	1 U		1 U		1	ιU
L	VOCs	SW8260C	N	trans-1,2-Dichloroethene	UG/L	1 U		1 U		1	ιU
L	VOCs	SW8260C	N	trans-1,3-Dichloropropene	UG/L	1 U		1 U		1	ιU
L	VOCs	SW8260C	N	Trichloroethene	UG/L	1 U		1 U		1	ιU
L	VOCs	SW8260C	N	Trichlorofluoromethane	UG/L	1 U		1 U		1	ιU
L	VOCs	SW8260C	N	Vinyl chloride	UG/L	1 U		1 U		1	LU
L	VOCs	SW8260C	N	Xylenes, Total	UG/L	2 U		2 U		2	2 U
L	SVOCs	SW8270D	N	1,2,4,5-Tetrachlorobenzene	UG/L						
L	SVOCs	SW8270D	N	2,2'-Dichlorodiisopropylether	UG/L						
L	SVOCs	SW8270D	N	2,4,5-Trichlorophenol	UG/L						
L	SVOCs	SW8270D	N	2,4,6-Trichlorophenol	UG/L						
L	SVOCs	SW8270D	N	2,4-Dichlorophenol	UG/L						
L	SVOCs	SW8270D	N	2,4-Dimethylphenol	UG/L						
L	SVOCs	SW8270D	N	2,4-Dinitrophenol	UG/L						
L	SVOCs	SW8270D	N	2,4-Dinitrotoluene	UG/L						
L	SVOCs	SW8270D	N	2,6-Dinitrotoluene	UG/L						
L	SVOCs	SW8270D	N	2-Chloronaphthalene	UG/L						

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS CATEGORY A REVIEW

FEBRUARY 2023 GROUNDWATER SAMPLING PROGRAM AL TECH SPECIALTY STEEL SITE COLONIE, NEW YORK

					Location		QC	(QC	(QC
				Lab Sample De	livery Group	480-2	06390-1	480-2	06416-1	480-20	06437-1
				Field	Sample Date	2/18	3/2023	2/18	3/2023	2/18	/2023
				Fie	ld Sample ID	401003-	TRIP BLANK	TRIP	BLANK	401003-T	RIPBLANK
					Qc Code		ТВ		ТВ	7	ГВ
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifie
L	SVOCs	SW8270D	N	2-Chlorophenol	UG/L						
L	SVOCs	SW8270D	N	2-Methylnaphthalene	UG/L						
L	SVOCs	SW8270D	N	2-Methylphenol	UG/L						
L	SVOCs	SW8270D	N	2-Nitroaniline	UG/L						
L	SVOCs	SW8270D	N	2-Nitrophenol	UG/L						
L	SVOCs	SW8270D	N	3,3'-Dichlorobenzidine	UG/L						
L	SVOCs	SW8270D	N	3-Nitroaniline	UG/L						
L	SVOCs	SW8270D	N	4,6-Dinitro-2-methylphenol	UG/L						
L	SVOCs	SW8270D	N	4-Bromophenyl phenyl ether	UG/L						
L	SVOCs	SW8270D	N	4-Chloro-3-methylphenol	UG/L						
L	SVOCs	SW8270D	N	4-Chloroaniline	UG/L						
L	SVOCs	SW8270D	N	4-Chlorophenyl phenyl ether	UG/L						
L	SVOCs	SW8270D	N	4-Methylphenol	UG/L						
L	SVOCs	SW8270D	N	4-Nitroaniline	UG/L						
L	SVOCs	SW8270D	N	4-Nitrophenol	UG/L						
L	SVOCs	SW8270D	N	Acenaphthene	UG/L						
L	SVOCs	SW8270D	N	Acenaphthylene	UG/L						
L	SVOCs	SW8270D	N	Acetophenone	UG/L						
L	SVOCs	SW8270D	N	Anthracene	UG/L						
L	SVOCs	SW8270D	N	Atrazine	UG/L						
L	SVOCs	SW8270D	N	Benzaldehyde	UG/L						
L	SVOCs	SW8270D	N	Benzo(a)anthracene	UG/L						
L	SVOCs	SW8270D	N	Benzo(a)pyrene	UG/L						
L	SVOCs	SW8270D	N	Benzo(b)fluoranthene	UG/L						
L	SVOCs	SW8270D	N	Benzo(ghi)perylene	UG/L						
L	SVOCs	SW8270D	N	Benzo(k)fluoranthene	UG/L						
L	SVOCs	SW8270D	N	Biphenyl	UG/L						
L	SVOCs	SW8270D	N	Bis(2-Chloroethoxy)methane	UG/L						
L	SVOCs	SW8270D	N	Bis(2-Chloroethyl)ether	UG/L						
L	SVOCs	SW8270D	N	Bis(2-Ethylhexyl)phthalate	UG/L						
L	SVOCs	SW8270D	N	Butylbenzylphthalate	UG/L						
L	SVOCs	SW8270D	N	Caprolactam	UG/L						
L	SVOCs	SW8270D	N	Carbazole	UG/L						
L	SVOCs	SW8270D	N	Chrysene	UG/L						

					1		0.0		26		26
				Lab Camarla Da	Location		QC		QC		QC
				Lab Sample De			06390-1		06416-1		06437-1
					Sample Date	•	3/2023	•	/2023	•	3/2023
				FIE	eld Sample ID		TRIP BLANK		BLANK		TRIPBLANK
				_	Qc Code		TB		LB 1		TB
Matrix	Method Class		Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier
L	SVOCs	SW8270D		Di-n-butylphthalate	UG/L						
L	SVOCs	SW8270D		Di-n-octylphthalate	UG/L						
L	SVOCs	SW8270D		Dibenz(a,h)anthracene	UG/L						
L	SVOCs	SW8270D		Dibenzofuran	UG/L						
L	SVOCs	SW8270D	N	Diethylphthalate	UG/L						
L	SVOCs	SW8270D	N	Dimethylphthalate	UG/L						
L	SVOCs	SW8270D	N	Fluoranthene	UG/L						
L	SVOCs	SW8270D	N	Fluorene	UG/L						
L	SVOCs	SW8270D	N	Hexachlorobenzene	UG/L						
L	SVOCs	SW8270D	N	Hexachlorobutadiene	UG/L						
L	SVOCs	SW8270D	N	Hexachlorocyclopentadiene	UG/L						
L	SVOCs	SW8270D	N	Hexachloroethane	UG/L						
L	SVOCs	SW8270D	N	Indeno(1,2,3-cd)pyrene	UG/L						
L	SVOCs	SW8270D	N	Isophorone	UG/L						
L	SVOCs	SW8270D	N	N-Nitrosodi-n-propylamine	UG/L						
L	SVOCs	SW8270D	N	N-Nitrosodiphenylamine	UG/L						
L	SVOCs	SW8270D	N	Naphthalene	UG/L						
L	SVOCs	SW8270D	N	Nitrobenzene	UG/L						
L	SVOCs	SW8270D	N	Pentachlorophenol	UG/L						
L	SVOCs	SW8270D	N	Phenanthrene	UG/L						
L	SVOCs	SW8270D	N	Phenol	UG/L						
L	SVOCs	SW8270D		Pyrene	UG/L						

TABLE 3 - SUMMARY OF QUALIFICATION ACTIONS CATEGORY A REVIEW

FEBRUARY 2023 GROUNDWATER SAMPLING PROGRAM

							Lab	Final	Final	Val Reason	
Lab SDG	Lab Sample ID	Field Sample ID	Method	Fraction	Parameter	Lab Result		Result	Qualifier	Code	Units
480-206390-1	480-206390-14	401003-MW1507XX	SW8270D	N	Caprolactam	5.7	U	5.7	UJ	LCSL	UG/L
480-206390-1	480-206390-18	401003-PES0712XX	SW8270D	N	Caprolactam	25	U	25	UJ	LCSL	UG/L
480-206390-1	480-206390-5	401003-MW4309XX	SW8270D	N	Caprolactam	5	U	5	UJ	LCSL	UG/L
480-206390-1	480-206390-9	401003-MW08B38XX	SW8270D	N	Caprolactam	5	U	5	UJ	LCSL	UG/L
480-206416-1	480-206416-1	401003-MW1813XX	SW8270D	N	Caprolactam	5	U	5	UJ	LCSL	UG/L
480-206416-1	480-206416-3	401003-MWG50111XX	SW8270D	N	Caprolactam	5	U	5	UJ	LCSL	UG/L
480-206416-1	480-206416-4	401003-PES0512XX	SW8270D	N	Caprolactam	5.2	U	5.2	UJ	LCSL	UG/L
480-206416-1	480-206416-5	401003-MW1918XX	SW8270D	N	Caprolactam	5	U	5	UJ	LCSL	UG/L
480-206416-1	480-206416-6	401003-MW19B38XX	SW8270D	N	Caprolactam	5	U	5	UJ	LCSL	UG/L
480-206416-1	480-206416-7	401003-MWI7043XX	SW8270D	N	Caprolactam	25	U	25	UJ	LCSL	UG/L
480-206416-1	480-206416-8	401003-MW04B46XX	SW8270D	N	Caprolactam	5.2	U	5.2	UJ	LCSL	UG/L
480-206416-1	480-206416-9	401003-MW0413XX	SW8270D	N	Caprolactam	5.2	U	5.2	UJ	LCSL	UG/L
480-206437-1	480-206437-1	401003-MW05B54XX	SW8270D	N	Caprolactam	5.2	U	5.2	UJ	LCSL	UG/L
480-206437-1	480-206437-2	401003-MW0513XX	SW8270D	N	Caprolactam	5.2	U	5.2	UJ	LCSL	UG/L
480-206437-1	480-206437-3	401003-MW06B59XX	SW8270D	N	Caprolactam	5	U	5	UJ	LCSL	UG/L
480-206437-1	480-206437-4	401003-MW2214XX	SW8270D	N	Caprolactam	25	U	25	UJ	LCSL	UG/L
480-206437-1	480-206437-5	401003-MW0612XX	SW8270D	N	Caprolactam	5.2	U	5.2	UJ	LCSL	UG/L
480-206437-1	480-206437-8	401003-MW1707XX	SW8270D	N	Caprolactam	5	U	5	UJ	LCSL	UG/L
480-206437-1	480-206437-5	401003-MW0612XX	SW8082A	N	Aroclor-1260	0.059	U	0.059	UJ	SSL	UG/L
480-206437-1	480-206437-5	401003-MW0612XX	SW8082A	N	Aroclor-1016	0.059	U	0.059	UJ	SSL	UG/L
480-206437-1	480-206437-5	401003-MW0612XX	SW8082A	N	Aroclor-1268	0.059	U	0.059	UJ	SSL	UG/L
480-206437-1	480-206437-5	401003-MW0612XX	SW8082A	N	Total PCBs	0.059	U	0.059	UJ	SSL	UG/L
480-206437-1	480-206437-5	401003-MW0612XX	SW8082A	N	Aroclor-1221	0.059	U	0.059	UJ	SSL	UG/L
480-206437-1	480-206437-5	401003-MW0612XX	SW8082A	N	Aroclor-1262	0.059	U	0.059	UJ	SSL	UG/L
480-206437-1	480-206437-5	401003-MW0612XX	SW8082A	N	Aroclor-1242	0.059	U	0.059	UJ	SSL	UG/L
480-206437-1	480-206437-5	401003-MW0612XX	SW8082A	N	Aroclor-1254	0.059	U	0.059	UJ	SSL	UG/L
480-206437-1	480-206437-5	401003-MW0612XX	SW8082A	N	Aroclor-1248	0.059	U	0.059	UJ	SSL	UG/L
480-206437-1	480-206437-5	401003-MW0612XX	SW8082A	N	Aroclor-1232	0.059	U	0.059	UJ	SSL	UG/L
JD60629	JD60629-1	401003-MW4309XX	SW7199	Т	Chromium, Hexavalent	0.0055	U	0.0055	UJ	HT	MG/L
JD60629	JD60629-2	401003-MW3914XX	SW7199	Т	Chromium, Hexavalent	0.0055	U	0.0055	UJ	HT	MG/L
JD60629	JD60629-6	401003-MW08B38XX	SW7199	Т	Chromium, Hexavalent	0.0055	U	0.0055	UJ	HT	MG/L
JD60629	JD60629-8	401003-MW2413XX	SW7199	Т	Chromium, Hexavalent	0.47		0.47	J	HT	MG/L
480-206416-1	480-206416-9	401003-MW0413XX	E350.1	N	Ammonium	0.16	F1	0.16	J+	MSH	MG/L

Project No. 3616206100.04

CATEGORY A REVIEW FEBRUARY 2023 GROUNDWATER SAMPLING PROGRAM AL TECH SPECIALTY STEEL SITE COLONIE, NEW YORK

ATTACHMENT A

VOCs

PROJECT CATEGORY A REVIEW RECORD

Project: NYSDEC Al Tech Method: <u>SW-846 8260C</u>

Laboratory: Eurofins TAL SDG(s): 480-206390-1, 480-206416-1, 480-206390-1

Date: 3/21/2023

Reviewer: Casey Cormier

Review Level X CATEGORY A

1. X Case Narrative Review and COC/Data Package Completeness

COMMENTS

Were problems noted? YES NO (circle one)

Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one)

Are Field Sample IDs and Locations assigned correctly? YES NO (circle one)
Sample 401003-MW1111XX was incorrectly logged-in by the lab as 401003-MW111XX

2. X Holding time and Sample Collection

All samples were analyzed within the 14 day holding time. YES NO (circle one)

3. X QC Blanks

Are method blanks free of contamination? YES NO (circle one)

Are Trip blanks free of contamination? YES NO (circle one)

Are Rinse blanks free of contamination? YES NO NA (circle one)

4. X Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35) Were MS/MSDs submitted/analyzed? YES NO

Were all results within the Region II limits? YES NO NA (circle one)
Were any results <20%? YES NO NA (circle one)

5. X Laboratory Control Sample Results - Region II (Water and soil 70-130%)

Were all results were within Region II control limits? YES NO (circle one)

See 480-206390-1 QC Backup See 480-206437-1 QC Backup

6. X Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%)

Were all results within Region II limits? YES NO (circle one)

Were any results <10%? YES NO NA (circle one)

7. X Field Duplicates - Region II Limits (water RPD 50, soil RPD 100)

Were Field Duplicates submitted/analyzed? YES NO

Were all results within Region II Limits? YES NO NA (circle one)

8. X Reporting Limits

Were samples analyzed at a dilution? YES NO (circle one)
Samples 401003-PES0712XX, 401003-MW0413XX, and 401003-MW0612XX were analyzed at a 2X dilution due to foaming at the time of purging.
Sample 401003-MWI7043XX was analyzed at a 4X dilution due to foaming at the time of purging.

9. X Electronic Data Review and Edits

Does the EDD match the Form Is? YES NO (circle one) See above note about sample ID discrepancy

10. X Table Review

Table 1 (Samples and Analytical Methods)

Table 2 (Analytical Results)

Table 3 (Qualification Actions)

Were all tables produced and reviewed? YES NO (circle one)

 Table 4 (TICs)
 Did lab report TICs?
 YES
 NO (circle one)

Job Narrative 480-206390-1

Comments

No additional comments.

Receipt

The samples were received on 2/22/2023 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.6° C, 1.8° C and 2.4° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-659613 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane and 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: 401003-DP0912XX (480-206390-2), 401003-MW27R12XX (480-206390-3), 401003-MW4309XX (480-206390-5), 401003-MW08B38XX (480-206390-9), 401003-MW1507XX (480-206390-14), 401003-TRIP BLANK (480-206390-17) and 401003-PES0712XX (480-206390-18). Not within scope of Cat A review

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: 401003-PES0712XX (480-206390-18). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: 401003-MW08B38XX (480-206390-9) and 401003-MW1507XX (480-206390-14). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659645.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659709.

Method 3510C: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: 401003-PES0712XX (480-206390-18). The reporting limits (RLs) have been adjusted proportionately.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659751.

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC AI Tech

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-659613/7

Matrix: Water Analysis Batch: 659613 Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-206390-1

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		1.0	0.73	ug/L			02/23/23 10:41	1
ND		1.0	0.81	ug/L			02/23/23 10:41	1
ND		1.0	0.36	ug/L			02/23/23 10:41	1
ND		1.0	0.51	ug/L			02/23/23 10:41	1
ND		1.0	0.90	ug/L			02/23/23 10:41	1
ND		1.0	0.37	ug/L			02/23/23 10:41	1
ND		1.0	0.46	ug/L			02/23/23 10:41	1
ND		1.0	0.88	ug/L			02/23/23 10:41	1
ND		1.0	0.90	ug/L			02/23/23 10:41	1
ND		2.0	0.66	ug/L			02/23/23 10:41	1
	Result ND	ND ND ND ND ND ND ND	Result Qualifier RL ND 1.0 ND 1.0	Result Qualifier RL MDL ND 1.0 0.73 ND 1.0 0.81 ND 1.0 0.36 ND 1.0 0.51 ND 1.0 0.90 ND 1.0 0.37 ND 1.0 0.46 ND 1.0 0.88 ND 1.0 0.90	Result Qualifier RL MDL unit ND 1.0 0.73 ug/L ND 1.0 0.81 ug/L ND 1.0 0.36 ug/L ND 1.0 0.51 ug/L ND 1.0 0.90 ug/L ND 1.0 0.37 ug/L ND 1.0 0.46 ug/L ND 1.0 0.88 ug/L ND 1.0 0.90 ug/L	Result Qualifier RL MDL Unit D ND 1.0 0.73 ug/L ND 1.0 0.81 ug/L ND 1.0 0.36 ug/L ND 1.0 0.51 ug/L ND 1.0 0.90 ug/L ND 1.0 0.46 ug/L ND 1.0 0.88 ug/L ND 1.0 0.90 ug/L	Result Qualifier RL MDL ug/L Unit D Prepared ND 1.0 0.73 ug/L Vag/L Vag/L </td <td>Result Qualifier RL MDL Unit D Prepared Analyzed ND 1.0 0.73 ug/L 02/23/23 10:41 ND 1.0 0.81 ug/L 02/23/23 10:41 ND 1.0 0.36 ug/L 02/23/23 10:41 ND 1.0 0.90 ug/L 02/23/23 10:41 ND 1.0 0.37 ug/L 02/23/23 10:41 ND 1.0 0.46 ug/L 02/23/23 10:41 ND 1.0 0.88 ug/L 02/23/23 10:41 ND 1.0 0.88 ug/L 02/23/23 10:41 ND 1.0 0.90 ug/L 02/23/23 10:41 ND 1.0 0.88 ug/L 02/23/23 10:41 ND 1.0 0.90 ug/L 02/23/23 10:41</td>	Result Qualifier RL MDL Unit D Prepared Analyzed ND 1.0 0.73 ug/L 02/23/23 10:41 ND 1.0 0.81 ug/L 02/23/23 10:41 ND 1.0 0.36 ug/L 02/23/23 10:41 ND 1.0 0.90 ug/L 02/23/23 10:41 ND 1.0 0.37 ug/L 02/23/23 10:41 ND 1.0 0.46 ug/L 02/23/23 10:41 ND 1.0 0.88 ug/L 02/23/23 10:41 ND 1.0 0.88 ug/L 02/23/23 10:41 ND 1.0 0.90 ug/L 02/23/23 10:41 ND 1.0 0.88 ug/L 02/23/23 10:41 ND 1.0 0.90 ug/L 02/23/23 10:41

	IVID IV	VID					
Surrogate	%Recovery G	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	106		77 - 120		02/23/23 10:41	1	
4-Bromofluorobenzene (Surr)	95		73 - 120		02/23/23 10:41	1	
Dibromofluoromethane (Surr)	109		75 - 123		02/23/23 10:41	1	
Toluene-d8 (Surr)	102		80 - 120		02/23/23 10:41	1	

Lab Sample ID: LCS 480-659613/5

Matrix: Water

Analysis Batch: 659613

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec QC Limit: 70 - 130 Added Analyte Result Qualifier Unit %Rec Limits 1,1,1-Trichloroethane 25.0 27.5 ug/L 110 73 - 126 25.0 1,1,2,2-Tetrachloroethane 25.9 ug/L 104 76 - 120 1,1,2-Trichloro-1,2,2-trifluoroetha 25.0 32.8 ug/L 131 61 - 148 Samples ND, no quals 1,1,2-Trichloroethane 25.0 76 - 122 25.6 ug/L 102 25.0 1,1-Dichloroethane 28.1 ug/L 112 77 - 1201,1-Dichloroethene 25.0 29.1 ug/L 116 66 - 127 25.0 94 75 - 123 1,2,3-Trichlorobenzene 23.6 ug/L 1,2,4-Trichlorobenzene 25.0 23.8 ug/L 95 79 - 122 1,2,4-Trimethylbenzene 25.0 26.1 ug/L 105 76 - 121 1,2-Dibromo-3-Chloropropane 25.0 23.5 ug/L 94 56 - 134 1,2-Dibromoethane 25.0 25.6 ug/L 103 77 - 120 25.0 100 80 - 124 1,2-Dichlorobenzene 24.9 ug/L 1,2-Dichloroethane 25.0 25.5 ug/L 102 75 - 120 25.0 29.5 ug/L 118 76 - 120 1,2-Dichloropropane 1,3,5-Trimethylbenzene 25.0 26.2 ug/L 105 77 - 12125.0 103 1,3-Dichlorobenzene 25.6 ug/L 77 - 120 1,4-Dichlorobenzene 25.0 25.9 ug/L 104 80 - 120 Samples ND, 1,4-Dioxane 500 688 ug/L 138 50 - 150 no quals 125 130 57 - 140 2-Butanone (MEK) 162 ug/L 2-Hexanone 125 135 ug/L 108 65 - 12725.0 73 - 120 4-Isopropyltoluene 26.8 ug/L 107 4-Methyl-2-pentanone (MIBK) 125 125 100 71 - 125 ug/L Samples ND, Acetone 125 171 ug/L 137 56 - 142 no quals 25.0 29.7 71 - 124 Benzene ug/L 119 80 - 122 Bromodichloromethane 25.0 27.5 110 ug/L **Bromoform** 25.0 25.3 ug/L 101 61 - 132

Page 49 of 2053

Eurofins Buffalo

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC Al Tech

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-659613/5

Matrix: Water Analysis Batch: 659613 **Client Sample ID: Lab Control Sample**

Prep Type: Total/NA

Job ID: 480-206390-1

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromomethane	25.0	18.2		ug/L		73	55 - 144	
Carbon disulfide	25.0	25.9		ug/L		104	59 - 134	
Carbon tetrachloride	25.0	29.2		ug/L		117	72 - 134	
Chlorobenzene	25.0	25.5		ug/L		102	80 - 120	
Chlorobromomethane	25.0	29.6		ug/L		118	72 - 130	
Chloroethane	25.0	18.1		ug/L		72	69 - 136	
Chloroform	25.0	27.1		ug/L		108	73 - 127	
Chloromethane	25.0	23.8		ug/L		95	68 - 124	
cis-1,2-Dichloroethene	25.0	28.5		ug/L		114	74 - 124	
cis-1,3-Dichloropropene	25.0	28.9		ug/L		116	74 - 124	
Cyclohexane	25.0	31.0		ug/L		124	59 - 135	
Dibromochloromethane	25.0	25.8		ug/L		103	75 - 125	
Dichlorodifluoromethane	25.0	31.8		ug/L		127	59 - 135	
Ethylbenzene	25.0	25.4		ug/L		102	77 - 123	
Isopropylbenzene	25.0	26.2		ug/L		105	77 - 122	
Methyl acetate	50.0	65.8		ug/L		132	74 - 133	Samples ND,
Methyl tert-butyl ether	25.0	25.2		ug/L		101	77 - 120	no quals
Methylcyclohexane	25.0	31.3		ug/L		125	68 - 134	
Methylene Chloride	25.0	28.6		ug/L		114	75 - 124	
n-Butylbenzene	25.0	25.6		ug/L		103	71 - 128	
N-Propylbenzene	25.0	26.5		ug/L		106	75 - 127	
sec-Butylbenzene	25.0	26.3		ug/L		105	74 - 127	
Styrene	25.0	26.2		ug/L		105	80 - 120	
tert-Butylbenzene	25.0	25.7		ug/L		103	75 - 123	
Tetrachloroethene	25.0	26.3		ug/L		105	74 - 122	
Toluene	25.0	25.7		ug/L		103	80 - 122	
trans-1,2-Dichloroethene	25.0	29.3		ug/L		117	73 - 127	
trans-1,3-Dichloropropene	25.0	24.9		ug/L		100	80 - 120	
Trichloroethene	25.0	28.2		ug/L		113	74 - 123	
Trichlorofluoromethane	25.0	26.6		ug/L		107	62 - 150	
Vinyl chloride	25.0	23.3		ug/L		93	65 - 133	
Xylenes, Total	50.0	51.9		ug/L		104	76 - 122	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		77 - 120
4-Bromofluorobenzene (Surr)	97		73 - 120
Dibromofluoromethane (Surr)	112		75 - 123
Toluene-d8 (Surr)	100		80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-659751/1-A

Matrix: Water

Analysis Batch: 660001

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 659751

	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND ND	5.0	0.48	ug/L		02/24/23 08:35	02/28/23 11:01	1
1,2,4,5-Tetrachlorobenzene	ND	5.0	0.58	ug/L		02/24/23 08:35	02/28/23 11:01	1
2.4.6-Trichlorophenol	ND	5.0	0.61	ua/L		02/24/23 08:35	02/28/23 11:01	1

Page 50 of 2053

Eurofins Buffalo

Job Narrative 480-206416-1

Comments

No additional comments.

Receipt

The samples were received on 2/23/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.7° C, 2.1° C and 2.6° C.

GC/MS VOA

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: 401003-MWI7043XX (480-206416-7) and 401003-MW0413XX (480-206416-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: 401003-MWI7043XX (480-206416-7). Elevated reporting limits (RL) are provided.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: 401003-MWI7043XX (480-206416-7). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: 401003-PES0512XX (480-206416-4), 401003-MW1918XX (480-206416-5), 401003-MW19B38XX (480-206416-6), 401003-MW04B46XX (480-206416-8) and 401003-MW0413XX (480-206416-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659750.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659709.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659751.

Job Narrative 480-206437-1

Comments

No additional comments.

Receipt

The samples were received on 2/24/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 2.3° C, 2.4° C and 3.0° C.

GC/MS VOA

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-659879 recovered outside control limits for the following analytes: Methyl acetate. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated samples are impacted: 401003-MW05B54XX (480-206437-1), 401003-MW0513XX (480-206437-2), 401003-MW06B59XX (480-206437-3), 401003-MW2214XX (480-206437-4), 401003-MW0612XX (480-206437-5), 401003-TRIPBLANK (480-206437-7) and 401003-MW1707XX (480-206437-8).

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-659879 recovered outside control limits for the following analytes: 1,4-Dioxane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: 401003-MW0612XX (480-206437-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: 401003-MW2214XX (480-206437-4). Elevated reporting limits (RL) are provided.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: 401003-MW0612XX (480-206437-5). These results have been reported and qualified.

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660151 recovered outside acceptance criteria, low biased, for 4-Nitrophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: 401003-MW1707XX (480-206437-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659832.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659887.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659959.

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC Al Tech

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-659879/11

Matrix: Water

Analysis Batch: 659879

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-206437-1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			02/27/23 11:55	1
tert-Butylbenzene	ND		1.0	0.81	ug/L			02/27/23 11:55	1
Tetrachloroethene	ND		1.0	0.36	ug/L			02/27/23 11:55	1
Toluene	ND		1.0	0.51	ug/L			02/27/23 11:55	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			02/27/23 11:55	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			02/27/23 11:55	1
Trichloroethene	ND		1.0	0.46	ug/L			02/27/23 11:55	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			02/27/23 11:55	1
Vinyl chloride	ND		1.0	0.90	ug/L			02/27/23 11:55	1
Xylenes, Total	ND		2.0	0.66	ug/L			02/27/23 11:55	1

MB MB Surrogate %Recovery Qualifier Limits Dil Fac Prepared Analyzed 77 - 120 1,2-Dichloroethane-d4 (Surr) 103 02/27/23 11:55 4-Bromofluorobenzene (Surr) 96 73 - 120 02/27/23 11:55 Dibromofluoromethane (Surr) 105 75 - 123 02/27/23 11:55 1 Toluene-d8 (Surr) 95 80 - 120 02/27/23 11:55

Lab Sample ID: LCS 480-659879/9

Matrix: Water

Analysis Batch: 659879

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	QC Limit:
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	70 - 130
1,1,1-Trichloroethane	25.0	29.5		ug/L		118	73 - 126	·
1,1,2,2-Tetrachloroethane	25.0	24.2		ug/L		97	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	30.6		ug/L		122	61 - 148	
ne								
1,1,2-Trichloroethane	25.0	24.7		ug/L		99	76 - 122	
1,1-Dichloroethane	25.0	28.7		ug/L		115	77 - 120	
1,1-Dichloroethene	25.0	30.2		ug/L		121	66 - 127	
1,2,3-Trichlorobenzene	25.0	24.0		ug/L		96	75 - 123	
1,2,4-Trichlorobenzene	25.0	23.9		ug/L		96	79 - 122	
1,2,4-Trimethylbenzene	25.0	24.5		ug/L		98	76 - 121	
1,2-Dibromo-3-Chloropropane	25.0	19.9		ug/L		80	56 - 134	
1,2-Dibromoethane	25.0	24.9		ug/L		99	77 - 120	
1,2-Dichlorobenzene	25.0	21.6		ug/L		86	80 - 124	
1,2-Dichloroethane	25.0	26.4		ug/L		106	75 - 120	
1,2-Dichloropropane	25.0	29.9		ug/L		120	76 - 120	
1,3,5-Trimethylbenzene	25.0	24.5		ug/L		98	77 - 121	
1,3-Dichlorobenzene	25.0	24.3		ug/L		97	77 - 120	
1,4-Dichlorobenzene	25.0	24.4		ug/L		98	80 - 120	
1,4-Dioxane	500	775	*+	ug/L		155	50 - 150	Samples ND
2-Butanone (MEK)	125	165		ug/L		132	57 - 140	- no quals
2-Hexanone	125	135		ug/L		108	65 - 127	
4-Isopropyltoluene	25.0	25.0		ug/L		100	73 - 120	
4-Methyl-2-pentanone (MIBK)	125	124		ug/L		99	71 - 125	Samples ND
Acetone	125	175		ug/L		140	56 - 142	no quals
Benzene	25.0	30.2		ug/L		121	71 - 124	. 4
Bromodichloromethane	25.0	28.4		ug/L		114	80 - 122	
Bromoform	25.0	25.0		ug/L		100	61 - 132	

Eurofins Buffalo

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC Al Tech

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-659879/9

Matrix: Water

Analysis Batch: 659879

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-206437-1

Analysis Batch. 000070	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromomethane	25.0	23.4		ug/L		93	55 - 144	
Carbon disulfide	25.0	25.9		ug/L		104	59 - 134	
Carbon tetrachloride	25.0	31.0		ug/L		124	72 - 134	
Chlorobenzene	25.0	24.6		ug/L		99	80 - 120	
Chlorobromomethane	25.0	30.1		ug/L		120	72 - 130	
Chloroethane	25.0	25.2		ug/L		101	69 - 136	
Chloroform	25.0	27.8		ug/L		111	73 - 127	
Chloromethane	25.0	26.6		ug/L		106	68 - 124	
cis-1,2-Dichloroethene	25.0	28.6		ug/L		114	74 - 124	
cis-1,3-Dichloropropene	25.0	29.6		ug/L		119	74 - 124	
Cyclohexane	25.0	30.0		ug/L		120	59 - 135	
Dibromochloromethane	25.0	25.0		ug/L		100	75 - 125	
Dichlorodifluoromethane	25.0	32.8		ug/L		131	59 - 135	Samples ND,
Ethylbenzene	25.0	24.9		ug/L		100	77 - 123	no quals
Isopropylbenzene	25.0	24.9		ug/L		100	77 - 122	
Methyl acetate	50.0	67.9	*+	ug/L		136	74 - 133	Samples ND
Methyl tert-butyl ether	25.0	25.4		ug/L		102	77 - 120	no quals
Methylcyclohexane	25.0	29.8		ug/L		119	68 - 134	
Methylene Chloride	25.0	29.1		ug/L		116	75 - 124	
n-Butylbenzene	25.0	25.4		ug/L		101	71 - 128	
N-Propylbenzene	25.0	24.7		ug/L		99	75 - 127	
sec-Butylbenzene	25.0	24.6		ug/L		98	74 - 127	
Styrene	25.0	25.6		ug/L		102	80 - 120	
tert-Butylbenzene	25.0	24.5		ug/L		98	75 - 123	
Tetrachloroethene	25.0	25.2		ug/L		101	74 - 122	
Toluene	25.0	25.0		ug/L		100	80 - 122	
trans-1,2-Dichloroethene	25.0	30.1		ug/L		120	73 - 127	
trans-1,3-Dichloropropene	25.0	24.1		ug/L		96	80 - 120	
Trichloroethene	25.0	28.8		ug/L		115	74 - 123	
Trichlorofluoromethane	25.0	29.3		ug/L		117	62 - 150	
Vinyl chloride	25.0	25.2		ug/L		101	65 - 133	
Xylenes, Total	50.0	50.6		ug/L		101	76 - 122	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		77 - 120
4-Bromofluorobenzene (Surr)	92		73 - 120
Dibromofluoromethane (Surr)	112		75 - 123
Toluene-d8 (Surr)	97		80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-659887/1-A

Matrix: Water

Analysis Batch: 660001

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 659887

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed 2,4,5-Trichlorophenol ND 5.0 0.48 ug/L 02/27/23 08:18 02/28/23 18:02 02/27/23 08:18 02/28/23 18:02 1,2,4,5-Tetrachlorobenzene ND 5.0 0.58 ug/L 1 0.61 ug/L 2,4,6-Trichlorophenol ND 5.0 02/27/23 08:18 02/28/23 18:02

Page 46 of 5029

Eurofins Buffalo

SVOC

NYSDEC PROJECT CATEGORY A REVIEW RECORD Project: Al Tech Feb 2023 **Method**: SW-846 8270C Laboratory: Eurofins TAL SDG#: 480-206390-1, 480-206416-1, 480-206437-1 Date: 3/21/2023 Reviewer: Casev Cormier X CATEGORY A Review Level X Case Narrative Review and Data Package Completeness COMMENTS Were problems noted? YES NO (circle one) Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) 2. X Holding time and Sample Collection Were water samples extracted within 7 day holding time, or soil within 14 days? YES NO (circle one) X OC Blanks Are method blanks free of contamination? YES NO (circle one) Are field blanks free of contamination? YES NO NA (circle one) X Laboratory Control Sample Results (water&soil limits: Base/Neutral 50-140%, Acid 30-140%) Were all results within limits? YES NO (circle one) LCS/LCSD associated with all samples had %recs for caprolactam that were less than QC limit. All samples' results UJ LCSL. 5. X Matrix Spike (water & soil limits: Base/neutral 50-140; Acid 30-140; RPD water = 20; RPD soil = 35) Were MS/MSDs submitted/analyzed? YES NO Were all results within limits? YES NO NA (circle one) X Surrogate Recovery (water and soil limits: Base/Neutral 50-140%, Acid 30-140%) Were all results within limits? YES NO (circle one) Samples 480-206416-7 and 480-206437-5 had %Recs for phenol-d5 surrogate that were greater than QC limits. Samples allowed 1 surrogate outage per fraction before quals, no quals necessary. Were any recoveries < 10%? (Reject fraction compounds if recoveries are < 10%) YES NO (circle one) 7. X Field Duplicates (RPD limits = water:50, soil:100) Were Field Duplicates submitted/analyzed? YES NO Were RPDs within criteria. YES NO NA (circle one) **X** Reporting Limits: Were samples analyzed at a dilution? YES NO (circle one) Samples 401003-MWI7043XX and 401003-MW2214XX were analyzed at a 5X dilution due to

sample color, appearance, and viscosity

Does the EDD match the Form Is? YES NO (circle one)

9. X Electronic Data Review and Edits:

10. X Table Review

Table 1 (Samples and Analytical Methods)
Table 2 (Analytical Results)

 Table 3 (Qualification Actions)

YES NO (circle one) Were all tables produced and reviewed?

Job Narrative 480-206390-1

Comments

No additional comments.

Receipt

The samples were received on 2/22/2023 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.6° C, 1.8° C and 2.4° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-659613 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane and 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: 401003-DP0912XX (480-206390-2), 401003-MW27R12XX (480-206390-3), 401003-MW4309XX (480-206390-5), 401003-MW08B38XX (480-206390-9), 401003-MW1507XX (480-206390-14), 401003-TRIP BLANK (480-206390-17) and 401003-PES0712XX (480-206390-18).

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: 401003-PES0712XX (480-206390-18). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: 401003-MW08B38XX (480-206390-9) and 401003-MW1507XX (480-206390-14). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659645.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659709.

Method 3510C: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: 401003-PES0712XX (480-206390-18). The reporting limits (RLs) have been adjusted proportionately.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659751.

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC AI Tech

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-659751/2-A

Matrix: Water

Analysis Batch: 660001

Client Sample ID: Lab Control Sample Prep Type: Total/NA

B:N SVOC QC Limit: Prep Batch: 659751

Job ID: 480-206390-1

Analysis Batch: 660001	Spike	LCS	LCS	B:N S' 50 - 14	VOC Q 40	C Limit:	Prep Batch: 659751 %Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4-Chlorophenyl phenyl ether	32.0	30.5		ug/L		95	62 - 120
4-Methylphenol	32.0	28.1		ug/L		88	29 - 131
4-Nitroaniline	32.0	30.1		ug/L		94	65 - 120
4-Nitrophenol	64.0	51.2		ug/L		80	45 - 120
Acenaphthene	32.0	29.9		ug/L		93	60 - 120
Acenaphthylene	32.0	29.8		ug/L		93	63 - 120
Acetophenone	32.0	33.6		ug/L		105	45 - 120
Anthracene	32.0	29.5		ug/L		92	67 - 120
Atrazine	64.0	80.0		ug/L		125	71 - 130
Benzaldehyde	64.0	58.8		ug/L		92	10 - 140
Benzo(a)anthracene	32.0	34.3		ug/L		107	70 - 121
Benzo(a)pyrene	32.0	31.5		ug/L		98	60 - 123
Benzo(b)fluoranthene	32.0	31.0		ug/L		97	66 - 126
Benzo(g,h,i)perylene	32.0	31.0		ug/L		97	66 - 150
Benzo(k)fluoranthene	32.0	31.5		ug/L		99	65 - 124
Biphenyl	32.0	29.4		ug/L		92	59 - 120
bis (2-chloroisopropyl) ether	32.0	30.6		ug/L		96	21 - 136
Bis(2-chloroethoxy)methane	32.0	29.9		ug/L		93	50 - 128
Bis(2-chloroethyl)ether	32.0	36.3		ug/L		114	44 - 120
Bis(2-ethylhexyl) phthalate	32.0	34.6		ug/L		108	63 - 139
Butyl benzyl phthalate	32.0	33.1		ug/L		103	70 - 129
Caprolactam UJ LCSL	64.0	22.7		ug/L		35	22 - 120
Carbazole	32.0	33.7		ug/L		105	66 - 123
Chrysene	32.0	33.1		ug/L		103	69 - 120
Dibenz(a,h)anthracene	32.0	31.9		ug/L		100	65 - 135
Dibenzofuran	32.0	30.2		ug/L		94	66 - 120
Diethyl phthalate	32.0	35.2		ug/L		110	59 - 127
Dimethyl phthalate	32.0	33.1		ug/L		103	68 - 120
Di-n-butyl phthalate	32.0	32.5		ug/L		101	69 - 131
Di-n-octyl phthalate	32.0	33.5		ug/L		105	63 - 140
Fluoranthene	32.0	31.4		ug/L		98	69 - 126
Fluorene	32.0	30.3		ug/L		95	66 - 120
Hexachlorobenzene	32.0	31.8		ug/L		100	61 - 120
Hexachlorobutadiene	32.0	18.8		ug/L		59	35 - 120
Hexachlorocyclopentadiene	32.0	19.4		ug/L		61	31 - 120
Hexachloroethane	32.0	20.9		ug/L		65	43 - 120
Indeno(1,2,3-cd)pyrene	32.0	33.2		ug/L		104	69 - 146
Isophorone	32.0	30.0		ug/L		94	55 - 120
Naphthalene	32.0	24.7		ug/L		77	57 ₋ 120
Nitrobenzene	32.0	28.2		ug/L ug/L		88	53 - 123
N-Nitrosodi-n-propylamine	32.0	34.1		ug/L		106	32 - 140
N-Nitrosodiphenylamine	32.0	30.4		ug/L ug/L		95	61 - 120
Pentachlorophenol	64.0	62.6		ug/L ug/L		98	29 - 136
Phenanthrene	32.0	29.9		ug/L ug/L		94	68 - 120
Phenol	32.0	19.6		ug/L ug/L		9 4 61	17 - 120
Pyrene	32.0	34.1		ug/L		107	70 - 125

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC Al Tech

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-659751/3-A

Matrix: Water

Analysis Batch: 660001

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 659751

Job ID: 480-206390-1

Allalysis Batch. 600001	Spike	I CSD	LCSD				%Rec	attern. Ot	RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
bis (2-chloroisopropyl) ether	32.0	25.9		ug/L		81	21 - 136	17	24
Bis(2-chloroethoxy)methane	32.0	25.9		ug/L		81	50 - 128	14	17
Bis(2-chloroethyl)ether	32.0	31.6		ug/L		99	44 - 120	14	21
Bis(2-ethylhexyl) phthalate	32.0	31.5		ug/L		98	63 - 139	9	15
Butyl benzyl phthalate	32.0	29.9		ug/L		94	70 - 129	10	16
Caprolactam UJ LCSL	64.0	21.1		ug/L		33	22 - 120	7	20
Carbazole	32.0	29.7		ug/L		93	66 - 123	12	20
Chrysene	32.0	29.5		ug/L		92	69 - 120	12	15
Dibenz(a,h)anthracene	32.0	28.4		ug/L		89	65 - 135	12	15
Dibenzofuran	32.0	27.1		ug/L		85	66 - 120	11	15
Diethyl phthalate	32.0	31.4		ug/L		98	59 - 127	11	15
Dimethyl phthalate	32.0	30.0		ug/L		94	68 - 120	10	15
Di-n-butyl phthalate	32.0	28.0		ug/L		88	69 - 131	15	15
Di-n-octyl phthalate	32.0	30.0		ug/L		94	63 - 140	11	16
Fluoranthene	32.0	27.2		ug/L		85	69 - 126	14	15
Fluorene	32.0	27.7		ug/L		87	66 - 120	9	15
Hexachlorobenzene	32.0	28.1		ug/L		88	61 - 120	13	15
Hexachlorobutadiene	32.0	16.2		ug/L		51	35 - 120	14	44
Hexachlorocyclopentadiene	32.0	16.4		ug/L		51	31 - 120	17	49
Hexachloroethane	32.0	18.0		ug/L		56	43 - 120	15	46
Indeno(1,2,3-cd)pyrene	32.0	29.5		ug/L		92	69 - 146	12	15
Isophorone	32.0	25.8		ug/L		81	55 - 120	15	17
Naphthalene	32.0	21.5		ug/L		67	57 - 120	14	29
Nitrobenzene	32.0	24.9		ug/L		78	53 - 123	12	24
N-Nitrosodi-n-propylamine	32.0	28.9		ug/L		90	32 - 140	16	31
N-Nitrosodiphenylamine	32.0	26.8		ug/L		84	61 - 120	13	15
Pentachlorophenol	64.0	55.8		ug/L		87	29 - 136	11	37
Phenanthrene	32.0	26.7		ug/L		84	68 - 120	11	15
Phenol	32.0	17.1		ug/L		53	17 - 120	14	34
Pyrene	32.0	30.8		ug/L		96	70 - 125	10	19

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	101		41 - 120
2-Fluorobiphenyl	90		48 - 120
2-Fluorophenol	61		35 - 120
Nitrobenzene-d5	79		46 - 120
Phenol-d5	50		22 - 120
p-Terphenyl-d14	103		60 - 148

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 480-659709/1-A

Matrix: Water

Analysis Batch: 659738

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 659709

Prep Batch: 659709

	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		0.50	0.31	mg/L		02/23/23 15:23	02/24/23 17:57	1
Oil Range Organics (C20-C34)	ND		0.50	0.31	mg/L		02/23/23 15:23	02/24/23 17:57	1
Diesel Range Organics (C10-C20)	ND		0.50	0.31	ma/L		02/23/23 15:23	02/24/23 17:57	1

Eurofins Buffalo

Job Narrative 480-206416-1

Comments

No additional comments.

Receipt

The samples were received on 2/23/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.7° C, 2.1° C and 2.6° C.

GC/MS VOA

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: 401003-MWI7043XX (480-206416-7) and 401003-MW0413XX (480-206416-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Outside scope of Cat A Review

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: 401003-MWI7043XX (480-206416-7). Elevated reporting limits (RL) are provided.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: 401003-MWI7043XX (480-206416-7). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: 401003-PES0512XX (480-206416-4), 401003-MW1918XX (480-206416-5), 401003-MW19B38XX (480-206416-6), 401003-MW04B46XX (480-206416-8) and 401003-MW0413XX (480-206416-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659750.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659709.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659751.

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC Al Tech

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-659751/2-A

Matrix: Water

Analysis Batch: 660001

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
B:N SVOC OC Limit: Prep Batch 650754

Job ID: 480-206416-1

B:N SVOC QC Limit: Prep Batch: 659751

Analysis Batch: 660001	Spike	LCS	LCS	50 - 140			%Rec	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
4-Chlorophenyl phenyl ether	32.0	30.5		ug/L		95	62 - 120	
4-Methylphenol	32.0	28.1		ug/L		88	29 - 131	
4-Nitroaniline	32.0	30.1		ug/L		94	65 - 120	
4-Nitrophenol	64.0	51.2		ug/L		80	45 - 120	
Acenaphthene	32.0	29.9		ug/L		93	60 - 120	
Acenaphthylene	32.0	29.8		ug/L		93	63 - 120	
Acetophenone	32.0	33.6		ug/L		105	45 - 120	
Anthracene	32.0	29.5		ug/L		92	67 - 120	
Atrazine	64.0	80.0		ug/L		125	71 - 130	
Benzaldehyde	64.0	58.8		ug/L		92	10 - 140	
Benzo(a)anthracene	32.0	34.3		ug/L		107	70 - 121	
Benzo(a)pyrene	32.0	31.5		ug/L		98	60 - 123	
Benzo(b)fluoranthene	32.0	31.0		ug/L		97	66 - 126	
Benzo(g,h,i)perylene	32.0	31.0		ug/L		97	66 - 150	
Benzo(k)fluoranthene	32.0	31.5		ug/L		99	65 - 124	
Biphenyl	32.0	29.4		ug/L		92	59 - 120	
bis (2-chloroisopropyl) ether	32.0	30.6		ug/L		96	21 - 136	
Bis(2-chloroethoxy)methane	32.0	29.9		ug/L		93	50 - 128	
Bis(2-chloroethyl)ether	32.0	36.3		ug/L		114	44 - 120	
Bis(2-ethylhexyl) phthalate	32.0	34.6		ug/L		108	63 - 139	
Butyl benzyl phthalate	32.0	33.1		ug/L		103	70 - 129	
Caprolactam UJ LCSL	64.0	22.7		ug/L		35	22 - 120	
Carbazole	32.0	33.7		ug/L		105	66 - 123	
Chrysene	32.0	33.1		ug/L		103	69 - 120	
Dibenz(a,h)anthracene	32.0	31.9		ug/L		100	65 ₋ 135	
Dibenzofuran	32.0	30.2		ug/L		94	66 - 120	
Diethyl phthalate	32.0	35.2		ug/L		110	59 ₋ 127	
Dimethyl phthalate	32.0	33.1		ug/L		103	68 - 120	
	32.0	32.5				101	69 - 131	
Di-n-butyl phthalate Di-n-octyl phthalate	32.0	33.5		ug/L		101	63 - 140	
Fluoranthene	32.0	31.4		ug/L			69 - 126	
				ug/L		98		
Fluorene	32.0	30.3		ug/L		95	66 - 120	
Hexachlorobenzene	32.0	31.8		ug/L		100	61 - 120	
Hexachlorobutadiene	32.0	18.8		ug/L		59	35 - 120	
Hexachlorocyclopentadiene	32.0	19.4		ug/L		61	31 - 120	
Hexachloroethane	32.0	20.9		ug/L		65	43 - 120	
Indeno(1,2,3-cd)pyrene	32.0	33.2		ug/L		104	69 - 146	
Isophorone	32.0	30.0		ug/L		94	55 - 120	
Naphthalene	32.0	24.7		ug/L		77	57 - 120	
Nitrobenzene	32.0	28.2		ug/L		88	53 - 123	
N-Nitrosodi-n-propylamine	32.0	34.1		ug/L		106	32 - 140	
N-Nitrosodiphenylamine	32.0	30.4		ug/L		95	61 - 120	
Pentachlorophenol	64.0	62.6		ug/L		98	29 - 136	
Phenanthrene	32.0	29.9		ug/L		94	68 - 120	
Phenol	32.0	19.6		ug/L		61	17 - 120	
Pyrene	32.0	34.1		ug/L		107	70 - 125	

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC AI Tech

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-659751/3-A

Matrix: Water

Analysis Batch: 660001

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 659751

Job ID: 480-206416-1

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
bis (2-chloroisopropyl) ether	32.0	25.9		ug/L		81	21 - 136	17	24
Bis(2-chloroethoxy)methane	32.0	25.9		ug/L		81	50 - 128	14	17
Bis(2-chloroethyl)ether	32.0	31.6		ug/L		99	44 - 120	14	21
Bis(2-ethylhexyl) phthalate	32.0	31.5		ug/L		98	63 - 139	9	15
Butyl benzyl phthalate	32.0	29.9		ug/L		94	70 - 129	10	16
Caprolactam UJ LCSL	64.0	21.1		ug/L		33	22 - 120	7	20
Carbazole	32.0	29.7		ug/L		93	66 - 123	12	20
Chrysene	32.0	29.5		ug/L		92	69 - 120	12	15
Dibenz(a,h)anthracene	32.0	28.4		ug/L		89	65 - 135	12	15
Dibenzofuran	32.0	27.1		ug/L		85	66 - 120	11	15
Diethyl phthalate	32.0	31.4		ug/L		98	59 - 127	11	15
Dimethyl phthalate	32.0	30.0		ug/L		94	68 - 120	10	15
Di-n-butyl phthalate	32.0	28.0		ug/L		88	69 - 131	15	15
Di-n-octyl phthalate	32.0	30.0		ug/L		94	63 - 140	11	16
Fluoranthene	32.0	27.2		ug/L		85	69 - 126	14	15
Fluorene	32.0	27.7		ug/L		87	66 - 120	9	15
Hexachlorobenzene	32.0	28.1		ug/L		88	61 - 120	13	15
Hexachlorobutadiene	32.0	16.2		ug/L		51	35 - 120	14	44
Hexachlorocyclopentadiene	32.0	16.4		ug/L		51	31 - 120	17	49
Hexachloroethane	32.0	18.0		ug/L		56	43 - 120	15	46
Indeno(1,2,3-cd)pyrene	32.0	29.5		ug/L		92	69 - 146	12	15
Isophorone	32.0	25.8		ug/L		81	55 - 120	15	17
Naphthalene	32.0	21.5		ug/L		67	57 - 120	14	29
Nitrobenzene	32.0	24.9		ug/L		78	53 - 123	12	24
N-Nitrosodi-n-propylamine	32.0	28.9		ug/L		90	32 - 140	16	31
N-Nitrosodiphenylamine	32.0	26.8		ug/L		84	61 - 120	13	15
Pentachlorophenol	64.0	55.8		ug/L		87	29 - 136	11	37
Phenanthrene	32.0	26.7		ug/L		84	68 - 120	11	15
Phenol	32.0	17.1		ug/L		53	17 - 120	14	34

30.8

ug/L

32.0

LCSD LCSD

MR MR

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	101		41 - 120
2-Fluorobiphenyl	90		48 - 120
2-Fluorophenol	61		35 - 120
Nitrobenzene-d5	79		46 - 120
Phenol-d5	50		22 - 120
p-Terphenyl-d14	103		60 - 148

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 480-659709/1-A

Matrix: Water

Pyrene

Analysis Batch: 659738

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 659709

96

70 - 125

10

19

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		0.50	0.31	mg/L		02/23/23 15:23	02/24/23 17:57	1
Oil Range Organics (C20-C34)	ND		0.50	0.31	mg/L		02/23/23 15:23	02/24/23 17:57	1

Page 56 of 2789

Surrogate Summary

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC Al Tech

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-206416-1	401003-MW1813XX	103	102	104	101
480-206416-3	401003-MWG50111XX	102	102	103	101
480-206416-4	401003-PES0512XX	102	101	104	101
480-206416-5	401003-MW1918XX	103	103	105	100
480-206416-6	401003-MW19B38XX	103	101	105	101
480-206416-7	401003-MWI7043XX	101	102	103	99
480-206416-8	401003-MW04B46XX	101	102	103	102
480-206416-9	401003-MW0413XX	102	101	104	100
480-206416-10	TRIP BLANK	101	102	103	100
LCS 480-659770/7	Lab Control Sample	100	103	101	102
MB 480-659770/9	Method Blank	100	103	103	101

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)								
		TBP	FBP	2FP	NBZ	PHL	TPHd14			
Lab Sample ID	Client Sample ID	(41-120)	(48-120)	(35-120)	(46-120)	(22-120)	(60-148)			
480-206416-1	401003-MW1813XX	94	89	51	71	37	79			
480-206416-3	401003-MWG50111XX	113	111	73	97	53	90			
480-206416-4	401003-PES0512XX	105	104	70	90	52	101			
480-206416-5	401003-MW1918XX	81	87	49	67	35	85			
480-206416-6	401003-MW19B38XX	89	90	57	76	41	101			
480-206416-7	401003-MWI7043XX	129 S1+	114	77	86	44	93	Sample allowed 1		
480-206416-8	401003-MW04B46XX	80	81	54	68	39	94	surrogate out per		
480-206416-9	401003-MW0413XX	116	102	70	86	50	92	fraction before		
LCS 480-659751/2-A	Lab Control Sample	113	101	69	93	58	114	qualification, no		
LCSD 480-659751/3-A	Lab Control Sample Dup	101	90	61	79	50	103	quals necessary		
MB 480-659751/1-A	Method Blank	73	97	62	84	45	114			

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPHd14 = p-Terphenyl-d14

Method: 8015D - Diesel Range Organics (DRO) (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		ОТРН	
Lab Sample ID	Client Sample ID	(51-120)	
480-206416-1	401003-MW1813XX	54	

Eurofins Buffalo

Job ID: 480-206416-1

Job Narrative 480-206437-1

Comments

No additional comments.

Receipt

The samples were received on 2/24/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 2.3° C, 2.4° C and 3.0° C.

GC/MS VOA

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-659879 recovered outside control limits for the following analytes: Methyl acetate. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated samples are impacted: 401003-MW05B54XX (480-206437-1), 401003-MW0513XX (480-206437-2), 401003-MW06B59XX (480-206437-3), 401003-MW2214XX (480-206437-4), 401003-MW0612XX (480-206437-5), 401003-TRIPBLANK (480-206437-7) and 401003-MW1707XX (480-206437-8).

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-659879 recovered outside control limits for the following analytes: 1,4-Dioxane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: 401003-MW0612XX (480-206437-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Outside scope of Cat A Review

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: 401003-MW2214XX (480-206437-4). Elevated reporting limits (RL) are provided.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: 401003-MW0612XX (480-206437-5). These results have been reported and qualified.

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660151 recovered outside acceptance criteria, low biased, for 4-Nitrophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Outside scope of Cat A Review

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: 401003-MW1707XX (480-206437-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659832.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659887.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659959.

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC Al Tech

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-659887/2-A

Matrix: Water

Analysis Batch: 660001

Client Sample ID: Lab Control Sample Prep Type: Total/NA

B:N SVOC QC Limit: Prep Batch: 659887

Job ID: 480-206437-1

Analysis Batch: 660001	Spike	LCS LCS		50 - 140			%Rec		
Analyte	Added		Qualifier	Unit	D	%Rec	Limits		
4-Chlorophenyl phenyl ether	32.0	27.4		ug/L		86	62 - 120		
4-Methylphenol	32.0	25.9		ug/L		81	29 - 131		
4-Nitroaniline	32.0	26.1		ug/L		81	65 - 120		
4-Nitrophenol	64.0	47.9		ug/L		75	45 - 120		
Acenaphthene	32.0	26.5		ug/L		83	60 - 120		
Acenaphthylene	32.0	26.3		ug/L		82	63 - 120		
Acetophenone	32.0	30.3		ug/L		95	45 - 120		
Anthracene	32.0	26.9		ug/L		84	67 - 120		
Atrazine	64.0	72.4		ug/L		113	71 - 130		
Benzaldehyde	64.0	52.3		ug/L		82	10 - 140		
Benzo(a)anthracene	32.0	30.9		ug/L		96	70 - 121		
Benzo(a)pyrene	32.0	29.0		ug/L		91	60 - 123		
Benzo(b)fluoranthene	32.0	29.1		ug/L		91	66 - 126		
Benzo(g,h,i)perylene	32.0	29.5		ug/L		92	66 - 150		
Benzo(k)fluoranthene	32.0	29.5		ug/L		92	65 - 124		
Biphenyl	32.0	26.2		ug/L		82	59 - 120		
bis (2-chloroisopropyl) ether	32.0	27.3		ug/L		85	21 - 136		
Bis(2-chloroethoxy)methane	32.0	27.3		ug/L		85	50 - 128		
Bis(2-chloroethyl)ether	32.0	32.7		ug/L		102	44 - 120		
Bis(2-ethylhexyl) phthalate	32.0	32.8		ug/L		103	63 - 139		
Butyl benzyl phthalate	32.0	31.5		ug/L		98	70 - 129		
Caprolactam UJ LCSL	64.0	21.8		ug/L		34	22 - 120		
Carbazole	32.0	30.7		ug/L		96	66 - 123		
Chrysene	32.0	30.8		ug/L		96	69 - 120		
Dibenz(a,h)anthracene	32.0	30.4		ug/L		95	65 - 135		
Dibenzofuran	32.0	26.7		ug/L		83	66 - 120		
Diethyl phthalate	32.0	31.3		ug/L		98	59 - 127		
Dimethyl phthalate	32.0	28.7		ug/L		90	68 - 120		
Di-n-butyl phthalate	32.0	29.4		ug/L		92	69 - 131		
Di-n-octyl phthalate	32.0	31.7		ug/L		99	63 - 140		
Fluoranthene	32.0	28.0		ug/L		88	69 - 126		
Fluorene	32.0	27.1		ug/L		85	66 - 120		
Hexachlorobenzene	32.0	28.7		ug/L		90	61 - 120		
Hexachlorobutadiene	32.0	17.3		ug/L		54	35 - 120		
Hexachlorocyclopentadiene	32.0	18.8		ug/L		59	31 - 120		
Hexachloroethane	32.0	19.4		ug/L		61	43 - 120		
Indeno(1,2,3-cd)pyrene	32.0	32.2		ug/L		101	69 - 146		
Isophorone	32.0	27.0		ug/L		84	55 - 120		
Naphthalene	32.0	22.5		ug/L		70	57 - 120		
Nitrobenzene	32.0	25.8		ug/L		81	53 - 123		
N-Nitrosodi-n-propylamine	32.0	30.9		ug/L		97	32 - 140		
N-Nitrosodiphenylamine	32.0	27.1		ug/L		85	61 - 120		
Pentachlorophenol	64.0	62.4		ug/L		98	29 - 136		
Phenanthrene	32.0	26.9		ug/L		84	68 - 120		
Phenol	32.0	17.6		ug/L		55	17 - 120		
Pyrene	32.0	31.6		ug/L		99	70 - 125		

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC Al Tech

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-659887/3-A

Matrix: Water

Analysis Batch: 660001

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 659887

Job ID: 480-206437-1

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
bis (2-chloroisopropyl) ether	32.0	27.2		ug/L		85	21 - 136	0	24
Bis(2-chloroethoxy)methane	32.0	27.5		ug/L		86	50 - 128	1	17
Bis(2-chloroethyl)ether	32.0	32.8		ug/L		102	44 - 120	0	21
Bis(2-ethylhexyl) phthalate	32.0	32.7		ug/L		102	63 - 139	0	15
Butyl benzyl phthalate	32.0	31.2		ug/L		97	70 - 129	1	16
Caprolactam UJ LCSL	64.0	22.8		ug/L		36	22 - 120	5	20
Carbazole	32.0	31.7		ug/L		99	66 - 123	3	20
Chrysene	32.0	30.2		ug/L		94	69 - 120	2	15
Dibenz(a,h)anthracene	32.0	29.4		ug/L		92	65 - 135	4	15
Dibenzofuran	32.0	28.1		ug/L		88	66 - 120	5	15
Diethyl phthalate	32.0	33.2		ug/L		104	59 - 127	6	15
Dimethyl phthalate	32.0	31.1		ug/L		97	68 - 120	8	15
Di-n-butyl phthalate	32.0	30.0		ug/L		94	69 - 131	2	15
Di-n-octyl phthalate	32.0	31.5		ug/L		99	63 - 140	0	16
Fluoranthene	32.0	28.1		ug/L		88	69 - 126	0	15
Fluorene	32.0	28.7		ug/L		90	66 - 120	6	15
Hexachlorobenzene	32.0	30.2		ug/L		94	61 - 120	5	15
Hexachlorobutadiene	32.0	17.0		ug/L		53	35 - 120	2	44
Hexachlorocyclopentadiene	32.0	18.9		ug/L		59	31 - 120	1	49
Hexachloroethane	32.0	19.0		ug/L		59	43 - 120	2	46
Indeno(1,2,3-cd)pyrene	32.0	31.0		ug/L		97	69 - 146	4	15
Isophorone	32.0	27.3		ug/L		85	55 - 120	1	17
Naphthalene	32.0	22.8		ug/L		71	57 - 120	1	29
Nitrobenzene	32.0	26.3		ug/L		82	53 - 123	2	24
N-Nitrosodi-n-propylamine	32.0	30.8		ug/L		96	32 - 140	1	31
N-Nitrosodiphenylamine	32.0	28.4		ug/L		89	61 - 120	5	15
Pentachlorophenol	64.0	61.9		ug/L		97	29 - 136	1	37
Phenanthrene	32.0	28.0		ug/L		87	68 - 120	4	15
Phenol	32.0	18.5		ug/L		58	17 - 120	5	34
Pyrene	32.0	32.0		ug/L		100	70 - 125	1	19

ı	CSD	1	CSD

MR MR

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	108		41 - 120
2-Fluorobiphenyl	95		48 - 120
2-Fluorophenol	66		35 - 120
Nitrobenzene-d5	85		46 - 120
Phenol-d5	55		22 - 120
p-Terphenyl-d14	111		60 - 148

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 480-659959/1-A

Matrix: Water

Analysis Batch: 659987

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 659959

Prep Batch: 659959

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		0.50	0.31	mg/L		02/27/23 14:46	02/28/23 14:02	1
Oil Range Organics (C20-C34)	ND		0.50	0.31	mg/L		02/27/23 14:46	02/28/23 14:02	1

Page 51 of 5029

Surrogate Summary

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC Al Tech

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	gate Recov
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-206437-1	401003-MW05B54XX	102	86	105	97
480-206437-2	401003-MW0513XX	106	94	107	100
480-206437-3	401003-MW06B59XX	106	96	106	98
480-206437-4	401003-MW2214XX	105	90	106	90
480-206437-5	401003-MW0612XX	100	97	105	95
480-206437-7	401003-TRIPBLANK	100	95	106	96
480-206437-8	401003-MW1707XX	99	91	105	94
LCS 480-659879/9	Lab Control Sample	104	92	112	97
MB 480-659879/11	Method Blank	103	96	105	95

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	rcent Surro	gate Reco	very (Accep	tance Lin	nits)
		TBP	FBP	2FP	NBZ	PHL	TPHd14	L Comment
Lab Sample ID	Client Sample ID	(41-120)	(48-120)	(35-120)	(46-120)	(22-120)	(60-148))
480-206437-1	401003-MW05B54XX	93	94	66	83	47	101	
480-206437-2	401003-MW0513XX	100	107	73	89	52	103	
480-206437-3	401003-MW06B59XX	99	107	74	91	56	106	Sample allowed 1
480-206437-4	401003-MW2214XX	112	109	70	87	41	85	surrogate out per
480-206437-5	401003-MW0612XX	123 S1+	99	68	82	51	98	fraction before
480-206437-8	401003-MW1707XX	109	107	63	86	45	108	qualification, no
LCS 480-659887/2-A	Lab Control Sample	101	92	63	86	52	106	quals necessary
LCSD 480-659887/3-A	Lab Control Sample Dup	108	95	66	85	55	111	
MB 480-659887/1-A	Method Blank	89	97	65	86	49	110	

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPHd14 = p-Terphenyl-d14

Method: 8015D - Diesel Range Organics (DRO) (GC)

Matrix: Water Prep Type: Total/NA

-		P	ercent Surrogate Recovery (Acceptance Limits)
		ОТРН	
Lab Sample ID	Client Sample ID	(51-120)	
480-206437-1	401003-MW05B54XX	65	
480-206437-2	401003-MW0513XX	65	
480-206437-3	401003-MW06B59XX	57	
480-206437-5	401003-MW0612XX	65	
480-206437-8	401003-MW1707XX	63	

Page 42 of 5029

Job ID: 480-206437-1

NYSDEC PROJECT CATEGORY A REVIEW RECORD Project: Al Tech Method: PCB by Method 8082A Laboratory and SDG(s): Eurofins TAL Date: 3/22/2023 Reviewer: Casey Cormier Review Level X Category A Review
1. X Case Narrative Review and Data Package Completeness
Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) Sample 401003-MW1111XX was incorrectly logged-in as 401003-MW111X
2. X Holding time and Sample Collection There is no holding time requirement in Method 8082 (Chapter 4, Table 4-1 of SW-846)
Were samples properly preserved? YES NO (circle one)
3. X QC Blanks Are method blanks free of contamination? YES NO (circle one)
Are Rinse blanks free of contamination? YES NO NA (circle one)
4. X Laboratory Control Sample Results Were all results within limits? (50-150 project limits) YES NO (circle one)
5. X Matrix Spike (soil and water limits: 29-135% and RPD of 20, RPD is 15 for Aroclor 1016) Were MS/MSDs submitted/analyzed? YES NO (circle one)
Were all results were within limits? YES NO NA (circle one)
6. Surrogate Recovery Were all percent recoveries within limits? (soil and water limits: 30-150%) YES NO (circle one) Sample 401003-MW0612XX had a %Rec for decachlorobiphenyl surrogate that was less than QC limits. UJ SSL all results.
7. X Field Duplicates (RPD limits for soil=100, water = 50) Were Field Duplicates submitted/analyzed? YES NO Were RPDs within the limits? YES NO NA (circle one)
8. X Reporting Limits: Were samples analyzed at a dilution? YES NO (circle one)
9. X Electronic Data Review and Edits Does the EDD match the Form I's? YES NO (circle one) See above note about sample ID discrepancy
11. X Table Review Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions)
Were all tables produced and reviewed? YES NO (circle one)

No additional comments.

Receipt

The samples were received on 2/22/2023 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.6° C, 1.8° C and 2.4° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-659613 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane and 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: 401003-DP0912XX (480-206390-2), 401003-MW27R12XX (480-206390-3), 401003-MW4309XX (480-206390-5), 401003-MW08B38XX (480-206390-9), 401003-MW1507XX (480-206390-14), 401003-TRIP BLANK (480-206390-17) and 401003-PES0712XX (480-206390-18).

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: 401003-PES0712XX (480-206390-18). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: 401003-MW08B38XX (480-206390-9) and 401003-MW1507XX (480-206390-14). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659645.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659709.

Method 3510C: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: 401003-PES0712XX (480-206390-18). The reporting limits (RLs) have been adjusted proportionately.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659751.

No additional comments.

Receipt

The samples were received on 2/23/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.7° C, 2.1° C and 2.6° C.

GC/MS VOA

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: 401003-MWI7043XX (480-206416-7) and 401003-MW0413XX (480-206416-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: 401003-MWI7043XX (480-206416-7). Elevated reporting limits (RL) are provided.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: 401003-MWI7043XX (480-206416-7). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: 401003-PES0512XX (480-206416-4), 401003-MW1918XX (480-206416-5), 401003-MW19B38XX (480-206416-6), 401003-MW04B46XX (480-206416-8) and 401003-MW0413XX (480-206416-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659750.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659709.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659751.

Job Narrative 480-206437-1

Comments

No additional comments.

Receipt

The samples were received on 2/24/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 2.3° C, 2.4° C and 3.0° C.

GC/MS VOA

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-659879 recovered outside control limits for the following analytes: Methyl acetate. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated samples are impacted: 401003-MW05B54XX (480-206437-1), 401003-MW0513XX (480-206437-2), 401003-MW06B59XX (480-206437-3), 401003-MW2214XX (480-206437-4), 401003-MW0612XX (480-206437-5), 401003-TRIPBLANK (480-206437-7) and 401003-MW1707XX (480-206437-8).

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-659879 recovered outside control limits for the following analytes: 1,4-Dioxane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: 401003-MW0612XX (480-206437-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: 401003-MW2214XX (480-206437-4). Elevated reporting limits (RL) are provided.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: 401003-MW0612XX (480-206437-5). These results have been reported and qualified.

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660151 recovered outside acceptance criteria, low biased, for 4-Nitrophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: 401003-MW1707XX (480-206437-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659832.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659887.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659959.

Surrogate Summary

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC AI Tech

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		ОТРН	
Lab Sample ID	Client Sample ID	(51-120)	
LCS 480-659959/2-A	Lab Control Sample	72	
LCSD 480-659959/3-A	Lab Control Sample Dup	75	
MB 480-659959/1-A	Method Blank	69	
Surrogate Legend			
OTPH = o-Terphenyl			

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

	8082 Surr %Rec QC Limit: 30	150	Pe	ercent Surro	ogate Recovery (Acceptance Limits)
	5002 Guil 701CC QO Elillit. 50	DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(25-120)	(25-120)	(25-139)	(25-139)
480-206437-1	401003-MW05B54XX	50	47	41	40
480-206437-2	401003-MW0513XX	39	36	61	61
480-206437-3	401003-MW06B59XX	71	65	57	57
480-206437-4	401003-MW2214XX	46	40	55	53
480-206437-5	401003-MW0612XX	31	27	50	45 UJ SSL
480-206437-6	401003-MW03B45XX	50	45	45	46
480-206437-8	401003-MW1707XX	71	64	60	59
480-206437-9	401003-MW1211XX	43	39	72	71
480-206437-10	401003-MW0120XX	55	49	58	58
LCS 480-659832/2-A	Lab Control Sample	60	52	72	71
LCSD 480-659832/3-A	Lab Control Sample Dup	59	54	68	68
MB 480-659832/1-A	Method Blank	59	50	80	78

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Job ID: 480-206437-1

GENERAL CHEMISTRY

NYSDEC PROJECT CATEGORY A REVIEW RECORD

Project: Al Tech Method: DRO by Method SW8015D Laboratory and SDG(s): Eurofins TAL 480-206390-1, 480-206390-1, 480-206390-1 Date: 3/22/2023 **Reviewer: Casey Cormier** X Category A Review **Review Level** X Case Narrative Review and Data Package Completeness Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) X Holding time and Sample Collection Were all samples properly preserved? YES NO (circle one) Were all samples analyzed within the method/project holding times? YES NO (circle one) X OC Blanks Are method blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO NA (circle one) X Laboratory Control Sample Results Were all results were within lab limits? YES NO (circle one) 5. X Matrix Spike (lab limits) Were MS/MSDs submitted/analyzed? YES NO (circle one) Were all results were within limits? YES NO NA (circle one) X Surrogate Recovery Were all results were within lab limits? YES NO (circle one) X Field Duplicates (RPD limits for soil=100, water = 50) Were Field Duplicates submitted/analyzed? YES NO Were RPDs within the limits? YES NO NA (circle one) X Reporting Limits Were samples analyzed at a dilution? YES NO (circle one) X Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) 10. X Table Review: **Table 1** (Samples and Analytical Methods) **Table 2** (Analytical Results) **Table 3** (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)

No additional comments.

Receipt

The samples were received on 2/22/2023 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.6° C, 1.8° C and 2.4° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-659613 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane and 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: 401003-DP0912XX (480-206390-2), 401003-MW27R12XX (480-206390-3), 401003-MW4309XX (480-206390-5), 401003-MW08B38XX (480-206390-9), 401003-MW1507XX (480-206390-14), 401003-TRIP BLANK (480-206390-17) and 401003-PES0712XX (480-206390-18).

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: 401003-PES0712XX (480-206390-18). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: 401003-MW08B38XX (480-206390-9) and 401003-MW1507XX (480-206390-14). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659645.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659709.

Method 3510C: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: 401003-PES0712XX (480-206390-18). The reporting limits (RLs) have been adjusted proportionately.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659751.

No additional comments.

Receipt

The samples were received on 2/23/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.7° C, 2.1° C and 2.6° C.

GC/MS VOA

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: 401003-MWI7043XX (480-206416-7) and 401003-MW0413XX (480-206416-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: 401003-MWI7043XX (480-206416-7). Elevated reporting limits (RL) are provided.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: 401003-MWI7043XX (480-206416-7). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: 401003-PES0512XX (480-206416-4), 401003-MW1918XX (480-206416-5), 401003-MW19B38XX (480-206416-6), 401003-MW04B46XX (480-206416-8) and 401003-MW0413XX (480-206416-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659750.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659709.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659751.

No additional comments.

Receipt

The samples were received on 2/24/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 2.3° C, 2.4° C and 3.0° C.

GC/MS VOA

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-659879 recovered outside control limits for the following analytes: Methyl acetate. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated samples are impacted: 401003-MW05B54XX (480-206437-1), 401003-MW0513XX (480-206437-2), 401003-MW06B59XX (480-206437-3), 401003-MW0612XX (480-206437-5), 401003-TRIPBLANK (480-206437-7) and 401003-MW1707XX (480-206437-8).

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-659879 recovered outside control limits for the following analytes: 1,4-Dioxane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: 401003-MW0612XX (480-206437-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: 401003-MW2214XX (480-206437-4). Elevated reporting limits (RL) are provided.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: 401003-MW0612XX (480-206437-5). These results have been reported and qualified.

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660151 recovered outside acceptance criteria, low biased, for 4-Nitrophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: 401003-MW1707XX (480-206437-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659832.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659887.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659959.

METALS

NYSDEC CATEGORY A REVIEW RECORD Project: Al Tech Method: Metals by Methods 6010C and 7470A Laboratory and SDG(s): 480-206390-1, 480-206416-1, 480-206437-1 Date: 3/22/2023 **Reviewer: Casey Cormier** X CATEGORY A Review Level X Case Narrative Review and Data Package Completeness **COMMENTS** Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) Sample 401003-MW1111XX incorrectly logged-in as 401003-MW111XX X Holding time and Sample Collection Were all samples prepared and analyzed with the holding time (6 months)? YES NO X QC Blanks 3. Are method blanks free of contamination? YES NO (circle one) Manganese detected in MB associated with all samples in SDG 480-206390-1. Sample concs >> MB conc, no quals necessary. Manganese was detected in the MB associated with the dissolved samples in SDG 480-206416-1. Sample conc > MB conc, no quals necessary. Nickel was detected in the MB associated with dissolved sample 480-206437-1 and 480-206437-6. Samples ND, no quals Are Rinse blanks free of contamination? YES NO NA (circle one) X Laboratory Control Sample Results Were all results were within 80-120% limits? YES NO (circle one) X Matrix Spike Were MS/MSDs submitted/analyzed? YES NO Were all results were within 75-125% limits? YES NO NA (circle one) X Field Duplicates Were Field Duplicates submitted/analyzed? YES NO Aqueous RPD within limit? (20) YES NO NA (circle one) Soil RPD within limit? (35) YES NO NA (circle one) X Reporting Limits Were samples analyzed at a dilution? YES NO (circle one) X Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) See above note about sample ID discrepancy X Table Review: **Table 1** (Samples and Analytical Methods) **Table 2** (Analytical Results) **Table 3** (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)

\\PLD2-FS1\\Project\\Projects\\NYSDEC\\AL Tech SM\\4.0 Invest_Remed\\4.6 Site_Data\\D. Lab Data\\Validation\\In-progress Validation\\Feb 2023\\DNU\\Al Tech Feb 2023 Metal Checklist.doc

Job Narrative 480-206390-1

Comments

No additional comments.

Receipt

The samples were received on 2/22/2023 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.6° C, 1.8° C and 2.4° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-659613 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane and 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: 401003-DP0912XX (480-206390-2), 401003-MW27R12XX (480-206390-3), 401003-MW4309XX (480-206390-5), 401003-MW08B38XX (480-206390-9), 401003-MW1507XX (480-206390-14), 401003-TRIP BLANK (480-206390-17) and 401003-PES0712XX (480-206390-18).

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: 401003-PES0712XX (480-206390-18). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: 401003-MW08B38XX (480-206390-9) and 401003-MW1507XX (480-206390-14). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659645.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659709.

Method 3510C: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: 401003-PES0712XX (480-206390-18). The reporting limits (RLs) have been adjusted proportionately.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659751.

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC AI Tech

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

Lab Sample ID: LCS 480-659645/2-A

Matrix: Water

Analysis Batch: 659875

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-206390-1

Prep Batch: 659645

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	1.00	1.16		ug/L		116	64 - 129	
PCB-1260	1.00	0.981		ug/L		98	55 - 120	

LCS L	.cs
-------	-----

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	69		25 - 120
DCB Decachlorobiphenyl	50		25 - 120
Tetrachloro-m-xylene	91		25 - 139
Tetrachloro-m-xylene	99		25 - 139

Lab Sample ID: LCSD 480-659645/3-A

Matrix: Water

Analysis Batch: 659875

Client Sample	ID:	Lab	Control	Samp	ole I	Du∣
---------------	-----	-----	---------	------	-------	-----

Prep Type: Total/NA

Prep Batch: 659645

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	1.00	1.07		ug/L		107	64 - 129	8	50
PCB-1260	1.00	0.993		ug/L		99	55 - 120	1	50

LCSD LCSD

Surrogate	%Recovery Qu	alifier Limits
DCB Decachlorobiphenyl	70	25 - 120
DCB Decachlorobiphenyl	51	25 - 120
Tetrachloro-m-xylene	90	25 - 139
Tetrachloro-m-xylene	100	25 - 139

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-659576/1-A

Matrix: Water

Analysis Batch: 659898

Client Samp	le ID: Meth	od Blank
		- 4 1/51.5

Prep Type: Total/NA

Prep Batch: 659576

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		02/24/23 08:32	02/24/23 21:08	1
Barium	ND		0.0020	0.00070	mg/L		02/24/23 08:32	02/24/23 21:08	1
Chromium	ND		0.0040	0.0010	mg/L		02/24/23 08:32	02/24/23 21:08	1
Copper	ND		0.010	0.0016	mg/L		02/24/23 08:32	02/24/23 21:08	1
Lead Sample conc > MB conc, no quals	ND		0.010	0.0030	mg/L		02/24/23 08:32	02/24/23 21:08	1
Manganese	0.000690	J	0.0030	0.00040	mg/L		02/24/23 08:32	02/24/23 21:08	1
Molybdenum	ND		0.010	0.0036	mg/L		02/24/23 08:32	02/24/23 21:08	1
Nickel	ND		0.010	0.0013	mg/L		02/24/23 08:32	02/24/23 21:08	1
Selenium	ND		0.025	0.0087	mg/L		02/24/23 08:32	02/24/23 21:08	1

Lab Sample ID: LCS 480-659576/2-A

Matrix: Water

Analysis Batch: 659898

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 659576

,	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.200	0.221		mg/L		110	80 - 120	
Barium	0.200	0.219		mg/L		110	80 - 120	
Chromium	0.200	0.211		mg/L		106	80 - 120	

Page 57 of 2053

Eurofins Buffalo

Job Narrative 480-206416-1

Comments

No additional comments.

Receipt

The samples were received on 2/23/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.7° C, 2.1° C and 2.6° C.

GC/MS VOA

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: 401003-MWI7043XX (480-206416-7) and 401003-MW0413XX (480-206416-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: 401003-MWI7043XX (480-206416-7). Elevated reporting limits (RL) are provided.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: 401003-MWI7043XX (480-206416-7). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: 401003-PES0512XX (480-206416-4), 401003-MW1918XX (480-206416-5), 401003-MW19B38XX (480-206416-6), 401003-MW04B46XX (480-206416-8) and 401003-MW0413XX (480-206416-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659750.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659709.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659751.

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC AI Tech

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-659687/2-A

Matrix: Water

Analysis Batch: 659893

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-206416-1

Prep Batch: 659687

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Copper	0.200	0.203		mg/L		101	80 - 120	
Lead	0.200	0.204		mg/L		102	80 - 120	
Manganese	0.200	0.215		mg/L		108	80 - 120	
Molybdenum	0.200	0.215		mg/L		107	80 - 120	
Nickel	0.200	0.204		mg/L		102	80 - 120	
Selenium	0.200	0.199		mg/L		99	80 - 120	

Lab Sample ID: MB 480-659568/1-A

Matrix: Water

Analysis Batch: 659897

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 659568

		MB	MB							
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved		ND		0.015	0.0056	mg/L		02/24/23 08:33	02/24/23 19:22	1
Barium, Dissolved		ND		0.0020	0.00070	mg/L		02/24/23 08:33	02/24/23 19:22	1
Chromium, Dissolve	d	ND		0.0040	0.0010	mg/L		02/24/23 08:33	02/24/23 19:22	1
Copper, Dissolved	Sample conc > MB c	onc, ND		0.010	0.0016	mg/L		02/24/23 08:33	02/24/23 19:22	1
Lead, Dissolved	no quals	ND		0.010	0.0030	mg/L		02/24/23 08:33	02/24/23 19:22	1
Manganese, Dissolv	red	0.000400	J	0.0030	0.00040	mg/L		02/24/23 08:33	02/24/23 19:22	1
Molybdenum, Dissol	ved	ND		0.010	0.0036	mg/L		02/24/23 08:33	02/24/23 19:22	1
Nickel, Dissolved		ND		0.010	0.0013	mg/L		02/24/23 08:33	02/24/23 19:22	1
Selenium, Dissolved	I	ND		0.025	0.0087	mg/L		02/24/23 08:33	02/24/23 19:22	1

Lab Sample ID: LCS 480-659568/2-A

Matrix: Water

Analysis Batch: 659897

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 659568

Analysis Daton. 000007							i icp Batcii. 000000
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic, Dissolved	0.200	0.222		mg/L		111	80 - 120
Barium, Dissolved	0.200	0.219		mg/L		110	80 - 120
Chromium, Dissolved	0.200	0.213		mg/L		106	80 - 120
Copper, Dissolved	0.200	0.207		mg/L		103	80 - 120
Lead, Dissolved	0.200	0.206		mg/L		103	80 - 120
Manganese, Dissolved	0.200	0.216		mg/L		108	80 - 120
Molybdenum, Dissolved	0.200	0.216		mg/L		108	80 - 120
Nickel, Dissolved	0.200	0.203		mg/L		102	80 - 120
Selenium, Dissolved	0.200	0.200		mg/L		100	80 - 120

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-659912/1-A

Matrix: Water

Analysis Batch: 659962

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 659912

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.000043	mg/L		02/27/23 11:01	02/27/23 14:39	1

Page 59 of 2789

Job Narrative 480-206437-1

Comments

No additional comments.

Receipt

The samples were received on 2/24/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 2.3° C, 2.4° C and 3.0° C.

GC/MS VOA

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-659879 recovered outside control limits for the following analytes: Methyl acetate. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated samples are impacted: 401003-MW05B54XX (480-206437-1), 401003-MW0513XX (480-206437-2), 401003-MW06B59XX (480-206437-3), 401003-MW2214XX (480-206437-4), 401003-MW0612XX (480-206437-5), 401003-TRIPBLANK (480-206437-7) and 401003-MW1707XX (480-206437-8).

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-659879 recovered outside control limits for the following analytes: 1,4-Dioxane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: 401003-MW0612XX (480-206437-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: 401003-MW2214XX (480-206437-4). Elevated reporting limits (RL) are provided.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: 401003-MW0612XX (480-206437-5). These results have been reported and qualified.

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660151 recovered outside acceptance criteria, low biased, for 4-Nitrophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: 401003-MW1707XX (480-206437-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659832.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659887.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659959.

QC Sample Results

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC AI Tech

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-659830/2-A

Prep Type: Total/NA **Matrix: Water Prep Batch: 659830** Analysis Batch: 660089

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.200	0.207		mg/L		104	80 - 120	
Barium	0.200	0.226		mg/L		113	80 - 120	
Chromium	0.200	0.198		mg/L		99	80 - 120	
Copper	0.200	0.203		mg/L		101	80 - 120	
Manganese	0.200	0.228		mg/L		114	80 - 120	
Molybdenum	0.200	0.221		mg/L		111	80 - 120	
Selenium	0.200	0.207		mg/L		103	80 - 120	

Lab Sample ID: LCS 480-659830/2-A

Matrix: Water

Analysis Batch: 660295

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 659830**

Client Sample ID: Lab Control Sample

Job ID: 480-206437-1

•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lead	0.200	0.170		mg/L		85	80 - 120	
Nickel	0.200	0.168		mg/L		84	80 - 120	

Lab Sample ID: MB 480-659823/1-A

Matrix: Water

Analysis Batch: 660084

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 659823**

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved	ND		0.015	0.0056	mg/L		02/27/23 08:05	02/28/23 00:48	1
Chromium, Dissolved	ND		0.0040	0.0010	mg/L		02/27/23 08:05	02/28/23 00:48	1
Copper, Dissolved	ND		0.010	0.0016	mg/L		02/27/23 08:05	02/28/23 00:48	1
Molybdenum, Dissolved	ND		0.010	0.0036	mg/L		02/27/23 08:05	02/28/23 00:48	1
Selenium, Dissolved	ND		0.025	0.0087	mg/L		02/27/23 08:05	02/28/23 00:48	1

Lab Sample ID: MB 480-659823/1-A

Matrix: Water

Analysis Batch: 660308

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 659823

		MB	MB							
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium, Dissolved		ND		0.0020	0.00070	mg/L		02/27/23 08:05	03/01/23 12:10	1
Lead, Dissolved		ND		0.010	0.0030	mg/L		02/27/23 08:05	03/01/23 12:10	1
Manganese, Dissol	lved	ND		0.0030	0.00040	mg/L		02/27/23 08:05	03/01/23 12:10	1
Nickel, Dissolved	Sample ND, no quals	0.00136	J	0.010	0.0013	mg/L		02/27/23 08:05	03/01/23 12:10	1

Lab Sample ID: LCS 480-659823/2-A

Matrix: Water

Analysis Batch: 660084

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 659823

Analysis Baton. 000004	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic, Dissolved	0.200	0.215		mg/L		107	80 - 120
Chromium, Dissolved	0.200	0.201		mg/L		101	80 - 120
Copper, Dissolved	0.200	0.211		mg/L		105	80 - 120
Molybdenum, Dissolved	0.200	0.233		mg/L		116	80 - 120
Selenium, Dissolved	0.200	0.216		mg/L		108	80 - 120

Page 54 of 5029

Hexavalent Chromium

NYSDEC CATEGORY A REVIEW RECORD **Project: Al Tech** Method: Hexavalent Chromium by Method SW7199 Laboratory and SDG(s): SGS Dayton JD60629 & JD60793 Date: 3/23/2023 **Reviewer: Casev Cormier** X CATEGORY A Review Level X Case Narrative Review and Data Package Completeness **COMMENTS** Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) Various sample IDs were changed to match Eurofins sample ID X Holding time and Sample Collection Were all samples prepped and analyzed with the holding time (24hrs water)? YES NO A subset of samples in JD60629 analyzed outside of holding time Were all samples properly preserved? YES NO X QC Blanks 3. Are method blanks free of contamination? YES NO (circle one) Are rinse blanks free of contamination? YES NO NA X Laboratory Control Sample Results Were all LCS recoveries within 80-120? YES NO X Matrix Spike Results Were MS/MSDs submitted/analyzed? YES NO Were all results within Lab limits? YES NO NA (circle one) X Field Duplicates Were Field Duplicates submitted/analyzed? YES NO Aqueous RPD within limit? (20%) YES NO NA (circle one) Soil RPD within limit? (35%) YES NO NA (circle one) X Reporting Limits Were samples analyzed at a dilution? YES NO (circle one) X Electronic Data Review and Edits Does the EDD match the Form I's? YES NO (circle one) See above note about sample ID changes X Table Review: Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions)

YES NO (circle one)

Were all tables produced and reviewed?

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: WSP USA Environment & Infrastructure Inc Job No: JD60629

Site: AL Tech Specialty Steel, 200 Spring Street Road, Colonie, NY Report Date 3/2/2023 12:29:59 PM

On 02/22/2023, 13 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 1.9 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD60629 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

General Chemistry By Method SW846 7199

Matrix: AQ Batch ID: GP45255

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD60629-10DUP, JD60629-10MS were used as the QC samples for Chromium, Hexavalent.
- JD60629-3 for Chromium, Hexavalent: Analysis done out of holding time.
- JD60629-2 for Chromium, Hexavalent: Analysis done out of holding time.
- JD60629-1 for Chromium, Hexavalent: Analysis done out of holding time.
- JD60629-6 for Chromium, Hexavalent: Analysis done out of holding time.
- JD60629-8 for Chromium, Hexavalent: Analysis done out of holding time.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

Thursday, March 2, 2023

Report of Analysis

Client Sample ID: 401003-MW4309XX

Lab Sample ID: JD60629-1 Date Sampled: 02/21/23
Matrix: AQ - Ground Water Date Received: 02/22/23
Percent Solids: n/a

Project: AL Tech Specialty Steel, 200 Spring Street Road, Colonie, NY

General Chemistry

 Analyte
 Result
 RL
 Units
 DF
 Analyzed
 By
 Method

 Chromium, Hexavalent a
 < 0.0055</td>
 0.0055
 mg/l
 1
 02/22/23 14:38
 RI
 SW846 7199

UJ HT

4

Report of Analysis

Client Sample ID: 401003-MW3914XX

Lab Sample ID:JD60629-2Date Sampled:02/21/23Matrix:AQ - Ground WaterDate Received:02/22/23Percent Solids:n/a

Project: AL Tech Specialty Steel, 200 Spring Street Road, Colonie, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent a	< 0.0055	0.0055	mg/l	1	02/22/23 14:06	RI	SW846 7199
	.•	UJ HT					

Report of Analysis

Client Sample ID: 401003-MW3714XX

Lab Sample ID: JD60629-3 **Date Sampled:** 02/21/23 Matrix: AQ - Ground Water **Date Received:** 02/22/23 Percent Solids: n/a

Project: AL Tech Specialty Steel, 200 Spring Street Road, Colonie, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent ^a	< 0.0055	0.0055	mg/l	1	02/22/23 11:44 Analyzed with		SW846 7199
(a) Analysis done out of holding	ng time.				professional ju		

Page 1 of 1

4

Report of Analysis

Client Sample ID: 401003-MW08B38XX

Lab Sample ID:JD60629-6Date Sampled:02/21/23Matrix:AQ - Ground WaterDate Received:02/22/23Percent Solids:n/a

Project: AL Tech Specialty Steel, 200 Spring Street Road, Colonie, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent a	< 0.0055	0.0055	mg/l	1	02/22/23 14:54	RI	SW846 7199
	.•	UJ HT					

Report of Analysis

Client Sample ID: 401003-MW2413XX

Lab Sample ID: JD60629-8 **Date Sampled:** 02/21/23 Matrix: AQ - Ground Water **Date Received:** 02/22/23 Percent Solids: n/a

Project: AL Tech Specialty Steel, 200 Spring Street Road, Colonie, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent ^a	0.47	0.0055	mg/l	1	02/22/23 15:18	RI	SW846 7199
		JHT					

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: WSP USA Environment & Infrastructure Inc Job No: JD60793

Site: AL Tech Specialty Steel, 200 Spring Street Road, Colonie, NY Report Date 3/6/2023 11:57:56 AM

On 02/24/2023, 2 sample(s), 0 Trip Blank(s), and 0 Field Blank(s) were received at SGS North America Inc. (SGS) at a temperature of 3.7 °C. The samples were intact and properly preserved, unless noted below. An SGS Job Number of JD60793 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

General Chemistry By Method SW846 7199

Matrix: AQ Batch ID: GP45292

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD60793-1DUP, JD60793-1MS were used as the QC samples for the Chromium, Hexavalent analysis.

SGS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting SGS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by SGS indicated via signature on the report cover.

Monday, March 6, 2023

GENERAL CHEMISTRY

NYSDEC PROJECT CATEGORY A REVIEW RECORD Project: Al Tech Method: Ammonia by Method E350.1, Sulfate/Flouride by Method E300.0, Nitrate by Method Laboratory and SDG(s): Eurofins TAL 480-206390-1, 480-206416-, 480-206437-1 Date: 3/22/2023 **Reviewer: Casey Cormier** X Category A Review Review Level X Case Narrative Review and Data Package Completeness Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) 2. X Holding time and Sample Collection Were all samples properly preserved? YES NO (circle one) Were all samples analyzed within the method/project holding times? YES NO (circle one) 3. X QC Blanks Are method blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO NA (circle one) X Laboratory Control Sample Results Were all results were within 80-120% limits? YES NO (circle one) 5. X Matrix Spike (Lab Limits) Were MS/MSDs submitted/analyzed? YES NO (circle one) Were all results were within limits? YES NO NA (circle one) The MS associated with sample 401003-MW0413XX had a %Rec for ammonia (119) that was greater than the lab limit of 110. J+ MSH 6. X Field Duplicates (RPD limits for soil=100, water = 50) Were Field Duplicates submitted/analyzed? YES NO Were RPDs within the limits? YES NO NA (circle one) 7. **X** Reporting Limits Were samples analyzed at a dilution? YES NO (circle one) Samples 401003-MW08B38XX, 401003-MW1507XX, 401003-PES0512XX, 401002-MW1918XX, 401003-MW19B38XX, 401003-MW04B46XX, 401003-MW0413XX, and 401003-MW1707XX were analyzed by Method E300.0 at a 5X dilution 8. X Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) 9. X Table Review: **Table 1** (Samples and Analytical Methods) Table 2 (Analytical Results)

YES NO (circle one)

Table 3 (Qualification Actions)

Were all tables produced and reviewed?

Comments

No additional comments.

Receipt

The samples were received on 2/22/2023 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.6° C, 1.8° C and 2.4° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-659613 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane and 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: 401003-DP0912XX (480-206390-2), 401003-MW27R12XX (480-206390-3), 401003-MW4309XX (480-206390-5), 401003-MW08B38XX (480-206390-9), 401003-MW1507XX (480-206390-14), 401003-TRIP BLANK (480-206390-17) and 401003-PES0712XX (480-206390-18).

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: 401003-PES0712XX (480-206390-18). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: 401003-MW08B38XX (480-206390-9) and 401003-MW1507XX (480-206390-14). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659645.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659709.

Method 3510C: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: 401003-PES0712XX (480-206390-18). The reporting limits (RLs) have been adjusted proportionately.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659751.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job Narrative 480-206416-1

Comments

No additional comments.

Receipt

The samples were received on 2/23/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.7° C, 2.1° C and 2.6° C.

GC/MS VOA

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: 401003-MWI7043XX (480-206416-7) and 401003-MW0413XX (480-206416-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: 401003-MWI7043XX (480-206416-7). Elevated reporting limits (RL) are provided.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: 401003-MWI7043XX (480-206416-7). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: 401003-PES0512XX (480-206416-4), 401003-MW1918XX (480-206416-5), 401003-MW19B38XX (480-206416-6), 401003-MW04B46XX (480-206416-8) and 401003-MW0413XX (480-206416-9). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659750.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659709.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659751.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

QC Sample Results

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: NYSDEC AI Tech

Lab Sample ID: LCS 480-660613/28 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 660613

Spike LCS LCS %Rec Added Result Qualifier D %Rec Analyte Unit Limits 1.00 101 90 - 110 Ammonia 1.01 mg/L

Lab Sample ID: LCS 480-660613/4 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 660613

LCS LCS **Spike** %Rec Analyte Added Result Qualifier Unit %Rec Limits 1.00 Ammonia 1.01 101 90 - 110 mg/L

Lab Sample ID: 480-206416-9 MS Client Sample ID: 401003-MW0413XX

Matrix: Water

Analysis Batch: 660613

%Rec MS MS Sample Sample **Spike** Analyte **Result Qualifier** Added Result Qualifier Unit %Rec Limits Ammonia J+ MSH 0.16 F1 0.200 0.398 F1 mg/L 119 90 - 110

Lab Sample ID: 480-206416-9 DU Client Sample ID: 401003-MW0413XX **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 660613

DU DU RPD Sample Sample Analyte Result Qualifier **RPD** Limit Result Qualifier Unit Ammonia 0.16 F1 0.156 mg/L 20

Job ID: 480-206416-1

Prep Type: Total/NA

Prep Type: Total/NA

Comments

No additional comments.

Receipt

The samples were received on 2/24/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 2.3° C, 2.4° C and 3.0° C.

GC/MS VOA

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-659879 recovered outside control limits for the following analytes: Methyl acetate. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated samples are impacted: 401003-MW05B54XX (480-206437-1), 401003-MW0513XX (480-206437-2), 401003-MW06B59XX (480-206437-3), 401003-MW2214XX (480-206437-4), 401003-MW0612XX (480-206437-5), 401003-TRIPBLANK (480-206437-7) and 401003-MW1707XX (480-206437-8).

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-659879 recovered outside control limits for the following analytes: 1,4-Dioxane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: 401003-MW0612XX (480-206437-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660001 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: 401003-MW2214XX (480-206437-4). Elevated reporting limits (RL) are provided.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: 401003-MW0612XX (480-206437-5). These results have been reported and qualified.

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-660151 recovered outside acceptance criteria, low biased, for 4-Nitrophenol. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: 401003-MW1707XX (480-206437-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

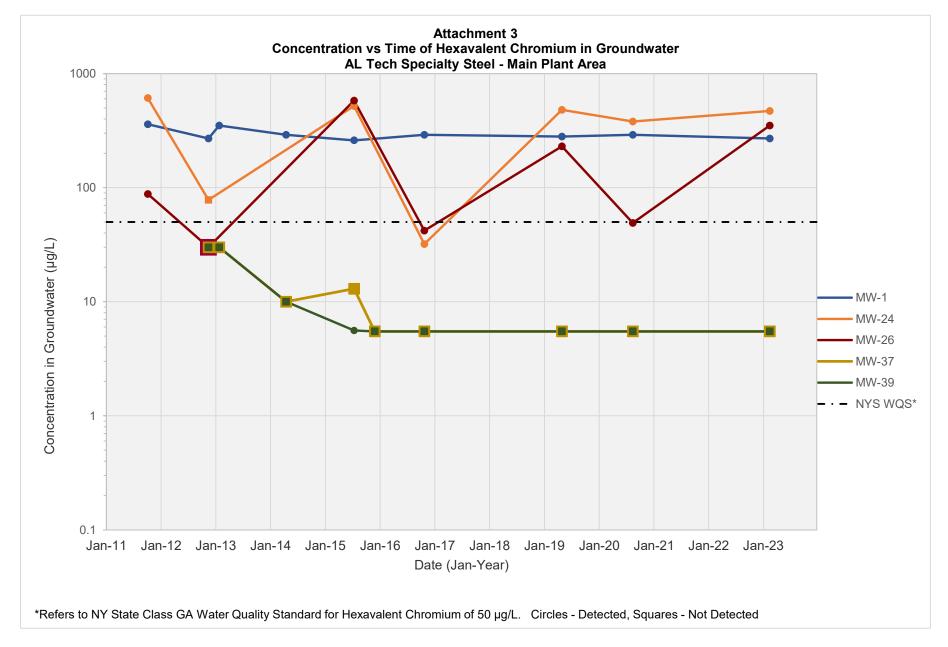
Metals

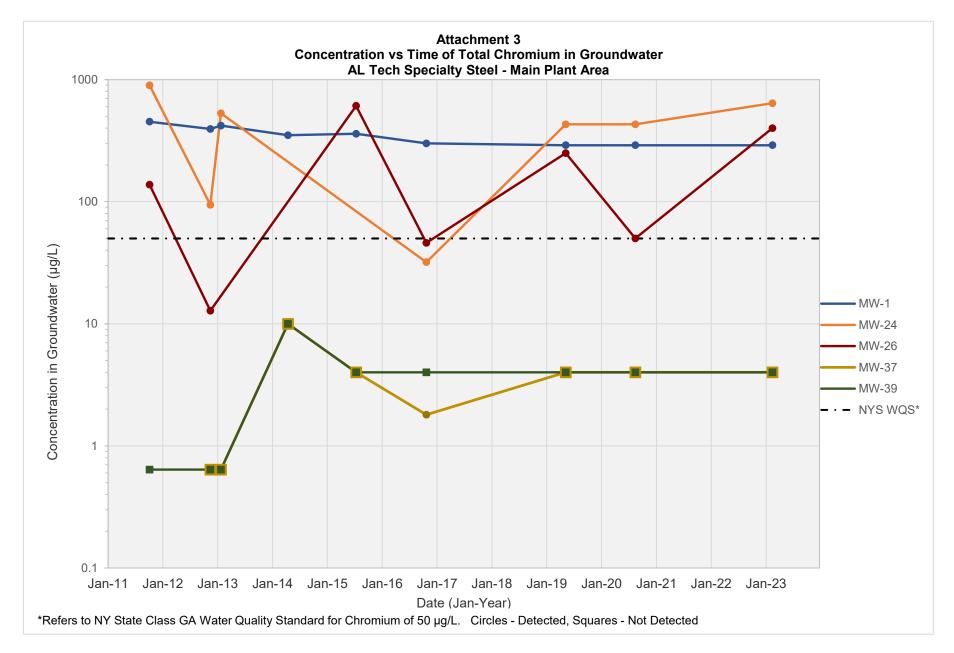
No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

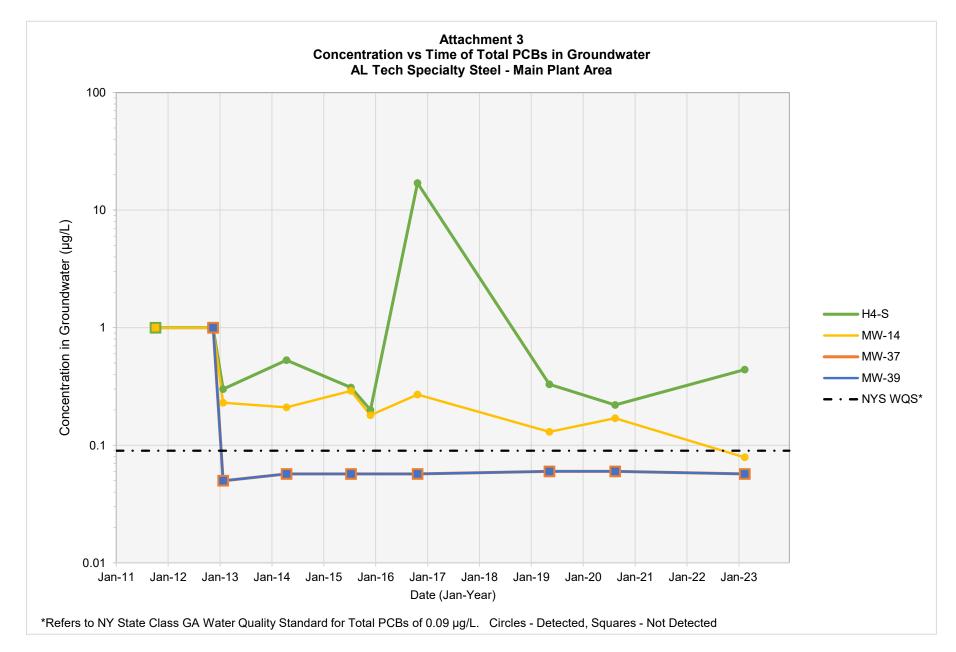
General Chemistry

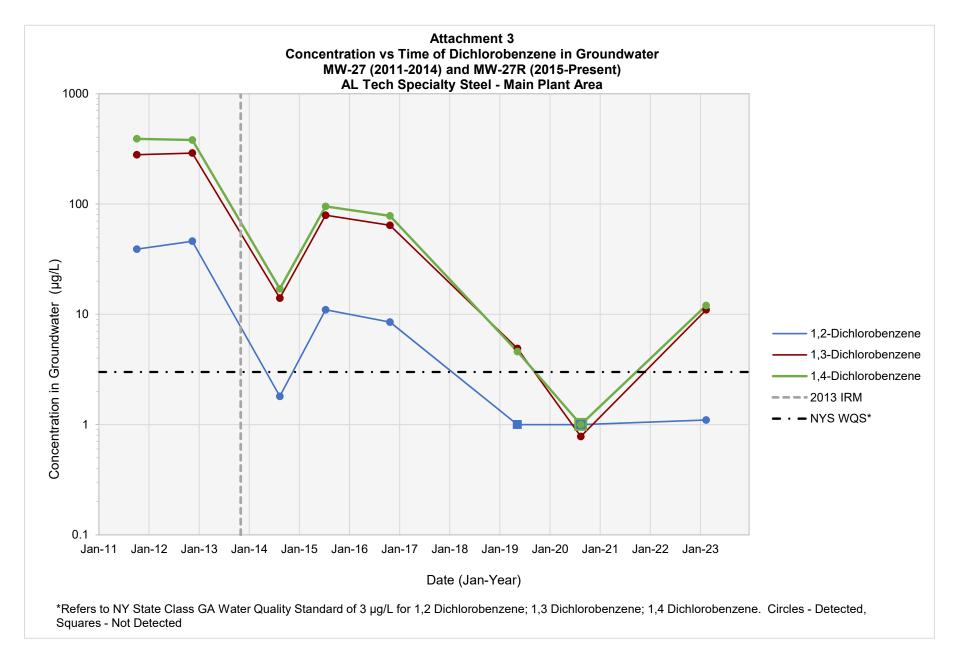
No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep


Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659832.


Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659887.


Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-659959.


ATTACHMENT 3

GROUNDWATER CONCENTRATION VS TIME PLOTS 2011-2023

