

March 21, 2018

Mr. Amen Omorogbe New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7014

Subject: SVE System Design Work Plan 101 Westmoreland Avenue White Plains, New York 10606 Automobile Club of New York GCE Project No. 05-003-00 Monthly / Quarterly Soil Vapor Extraction System Performance - Cover System Monitoring & Quarterly Air Sampling Report

Dear Mr. Omorogbe:

As you aware, Automobile Club of New York (AAA) (Now Known as AAA Northeast) entered into an Order on Consent (Index No. D3-0504-06-09) with the New York State Department of Environmental Conservation (NYSDEC) in December, 2006. Based on the submitted and approved August 2015 SVE System Design Work Plan, April 2015 Site Management Plan, October 2015 Construction Completion Report and November 2013 Site Characterization Report, the monthly and quarterly reports prepared by G. C. Environmental, Inc. (GCE) for the Subject Site are listed as follows:

Monthly Reports (December-January);

- Soil Vapor Extraction System Performance
- Cover System Monitoring

Quarterly Reports (March);

- Soil Vapor Extraction System Performance
- Cover System Monitoring
- Air Sampling

Due to no access to the Site in February, quarterly inspection was postponed to the first week of March.

If you have any questions concerning this project, please feel free to call me at (631) 206 3700, ext. 111.

Very truly yours,

Jul-

Gregory A. Collins President

Enclosures: SVE System Design Monthly & Quarterly Report

22 DAK STREET • BAY SHORE, NY 11706 • TEL: (31) 206-3700 • FAX: (631) 206-3729

Monthly SVE & Cover System Monitoring Reports December 2017, January 2018

22 OAK STREET • BAY SHORE, NY 11706 • TEL: (31) 206-3700 • FAX: (631) 206-3729

December 20, 2017

Mr. Amen Omorogbe New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7014

VIA E-MAIL TO ALL

Subject: SVE System Design Work Plan 101 Westmoreland Avenue White Plains, New York 10606 Automobile Club of New York GCE Project No. 05-003-00 Monthly Soil Vapor Extraction System Performance & Cover System Monitoring Report - December 2017

Dear Mr. Omorogbe:

Enclosed please find the December 2017 Monthly Soil Vapor Extraction System Performance & Cover System Monitoring Report prepared by G. C. Environmental, Inc. (GCE) for the Subject Site.

If you have any questions concerning this project, please feel free to call me at (631) 206 3700, ext. 111.

Very truly yours,

J.L.

Gregory A. Collins President

SVE System Design, Site Code Number 360095 Soil Vapor Extraction (SVE) System Performance & Cover System Monitoring Report December 2017

SVE System Performance Overview

In December 20, 2017, the SVE system was found to be operating at a flow rate of 50 CFM. Vacuum measurements at the manifold were consistent, ranging from 44-46 inches wc. Vacuum measurements at the system blower show that the blower produces 37-45 inches wc. The SVE System was operational throughout the month of December with water accumulating in the SVE system's knock out (KO) drum (¼ of the drum). Water was drained out and placed into 55-gallon drum. Air filter on the CFM gauge was inspected for moisture. No water accumulation was observed.

System Inspections

The SVE system operated continuously and routine inspections of the system are conducted by GCE personnel. System Operational Inspection logs are in place and are maintained. The concentrations of VOC (via photoionization detector (PID)) were measured on all soil vapor extraction points (SVE-1 & SVE-2 & SP-1 & SP-2). The PID readings were identified as 0.00 ppm for each point.

Cover System Inspections

The cover system routine inspection of the system is conducted by GCE personnel. The building slab and pavement act as a site cover for residual contaminated soils that exceed soil clean up objectives for the site use. The cover system at the soil vapor extraction wells (SVEs) location was not breached, penetrated or temporarily removed, and any underlying remaining contamination was not disturbed during the system inspection. However, during the system inspection, in some areas within the building footprint, which were not identified as the source of the contamination in soil vapor, cracks were observed.

Sincerely,

Fulya Toylular Environmental Scientist

January 23, 2018

Mr. Amen Omorogbe New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7014

VIA E-MAIL TO ALL

Subject: SVE System Design Work Plan 101 Westmoreland Avenue White Plains, New York 10606 Automobile Club of New York GCE Project No. 05-003-00 Monthly Soil Vapor Extraction System Performance & Cover System Monitoring Report - January 2018

Dear Mr. Omorogbe:

Enclosed please find the January 2018 Monthly Soil Vapor Extraction System Performance & Cover System Monitoring Report prepared by G. C. Environmental, Inc. (GCE) for the Subject Site.

If you have any questions concerning this project, please feel free to call me at (631) 206 3700, ext. 111.

Very truly yours,

Jhh

Gregory A. Collins President

SVE System Design, Site Code Number 360095 Soil Vapor Extraction (SVE) System Performance & Cover System Monitoring Report January 2018

SVE System Performance Overview

In January 23, 2018, the SVE system was found to be operating at a flow rate of 50 CFM. Vacuum measurements at the manifold were consistent, ranging from 45-46 inches wc. Vacuum measurements at the system blower show that the blower produces 30-46 inches wc. The SVE System was operational throughout the month of January with water accumulating (¼ of the drum) in the SVE system's knock out (KO) drum. Water was drained off and placed into 55-gallon drum. Air filter on the CFM gauge was inspected for moisture. No water accumulation was observed.

System Inspections

The SVE system operated continuously and routine inspections of the system are conducted by GCE personnel. System Operational Inspection logs are in place and are maintained. The concentrations of VOC (via photoionization detector (PID)) were measured on all soil vapor extraction points (SVE-1 & SVE-2 & SP-1 & SP-2). The PID readings were identified as 0.00 ppm for each point.

Cover System Inspections

The cover system routine inspection of the system is conducted by GCE personnel. The building slab and pavement act as a site cover for residual contaminated soils that exceed soil clean up objectives for the site use. The cover system at the soil vapor extraction wells (SVEs) location was not breached, penetrated or temporarily removed, and any underlying remaining contamination was not disturbed during the system inspection. However, during the system inspection, in some areas within the building footprint, which were not identified as the source of the contamination in soil vapor, cracks were observed.

Sincerely,

Fulya Toylular Environmental Scientist

Quarterly SVE & Cover System Monitoring & Air Sampling Report February/March, 2018

22 DAK STREET • BAY SHORE, NY 11706 • TEL: (31) 206-3700 • FAX: (631) 206-3729

March 21, 2018

Mr. Amen Omorogbe New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7014

VIA E-MAIL TO ALL

Subject: SVE System Design Work Plan 101 Westmoreland Avenue White Plains, New York 10606 Automobile Club of New York (Now Known as AAA Northeast) GCE Project No. 05-003-00 Quarterly Soil Vapor Extraction System Performance & Cover System Monitoring Report & Air Sampling Report – February/March 2018

Dear Mr. Omorogbe:

Enclosed please find the February/March 2018 Quarterly Soil Vapor Extraction System Performance & Cover System Monitoring Report & Air Sampling Report prepared by G. C. Environmental, Inc. (GCE) for the Subject Site.

If you have any questions concerning this project, please feel free to call me at (631) 206 3700, ext. 111.

Very truly yours,

J.L.

Gregory A. Collins President

SVE System Design, Site Code Number 360095 Soil Vapor Extraction (SVE) System Performance & Cover System Monitoring Report Air Sampling Report February/March 2018

SVE System Performance Overview

In March 6, 2018, the SVE system was found to be operating at a consistent flow rate of approximately 50 CFM. Vacuum measurements at the manifold were consistent, ranging from 45-46 inches wc. Vacuum measurements at the system blower showed that the blower produces 30-46 inches wc. The SVE System was operational throughout the month of February/March with water accumulating (¼ of the drum) in the system's knock out (KO) drum. The accumulated water was drained off and placed in 55-gallon drum. Air filter on the CFM gauge was inspected for moisture. No moisture was observed.

Due to vacuum gauge readings indicated potential clogging, the knock out drum cover was removed and the filter/demister assembly inside the moisture separator was removed and cleaned up. After system maintenance, vacuum measurements at the system blower showed that the blower produces 36-44 inches wc.

Air Sampling Procedures

According to the Soil Vapor Sampling Program attached to the August 2015 SVE System Design Work Plan Report, air samples were collected at four (4) locations in the SVE system: at the SVE system blower discharge (SP-1), at the discharge of the GAC vessel (SP-2) when the SVE system was running and at the each SVE wells (SV-1 and SV-2) taken at the repair shop area when the SVE system was shutdown. The air samples were collected using SUMMA canisters over an elapsed time of 1 hour. The air samples were boxed and shipped to the Phoenix Environmental Laboratories (PEL), a New York State ELAP-approved laboratory for analysis of VOC using EPA Method TO-15. PID readings were 0.00 ppm at all sampling locations (Please, refer to the lab results in Appendix A and Table 1 for air sample results and Figure 1 for air sampling diagram).

Air Sampling Data Interpretation

Air samples were collected in March 6, 2018. In March, at an average flow rate of approximately 50 cfm (approximately 72,000 cub.ft/day), the SVE system was estimated to be removing approximately 0.99 lbs of total VOC per day (Please, refer to the lab results in Appendix A and Table 1 for air sample results).

Air Sampling PID Measurements

According to the August 2015 SVE System Design Work Plan Report and April 2015 Site Management Report (SMP) concentrations of VOC (via photoionization detector (PID)) should be measured on all soil vapor extraction points (SVE-1 & SVE-2). The PID readings had been

measured on these points and all sampling locations (Please, refer to Table 2 for the PID Readings at all air sampling locations, March 6, 2018).

System Inspections

The SVE system operated as described and routine inspections of the system are conducted by GCE personnel. System Operational Inspection logs are in place and are maintained.

Cover System Inspections

The cover system routine inspection of the system is conducted by GCE personnel. The building slab and pavement act as a site cover for residual contaminated soils that exceed soil clean up objectives for the site use. The cover system was not breached, penetrated or temporarily removed, and any underlying remaining contamination was not disturbed during the system inspection. Nevertheless, during the system inspection, in some areas within the building footprint, which were not identified as the source of the contamination in soil vapor, cracks were observed.

Groundwater Level Measurements

On March 6, 2018, prior to groundwater sampling, GCE conducted groundwater level measurements in all the on-site monitoring wells. Depth to groundwater was measured using a Solinst oil/water interface probe equipped with a fiberglass measuring tape. The same probe and measuring tape were used for all measurements. All of the groundwater level measurements were taken from an etch mark at the top of the PVC casing of each well (Please, refer to Table 3 for the Groundwater Depth Measurements, Figure 2 for the Site Map).

Groundwater Sampling Procedures

Based on the work plan and site management plan, no groundwater samples were collected at this time. Next groundwater sampling event will be during May quarterly inspection.

Groundwater PID Measurements

According to the to the August 2015 SVE System Design Work Plan (SVE) and April 2015 Site Management Report (SMP) concentrations of VOC (via photoionization detector (PID)) should be measured on all on-site monitoring wells MW-1 through MW-8. The PID readings had been measured at all monitoring wells (Please, refer to Table 4 for the PID Readings).

Sincerely,

Fulya Toylular Environmental Scientist

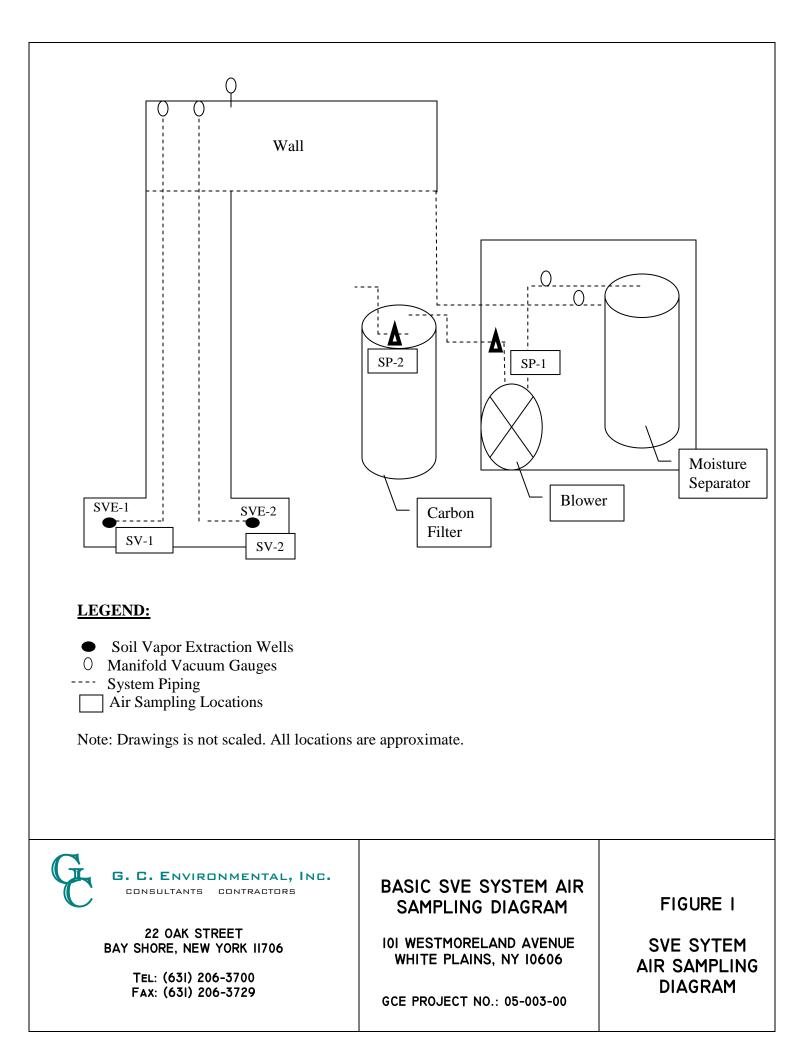
GCE 05-003-00

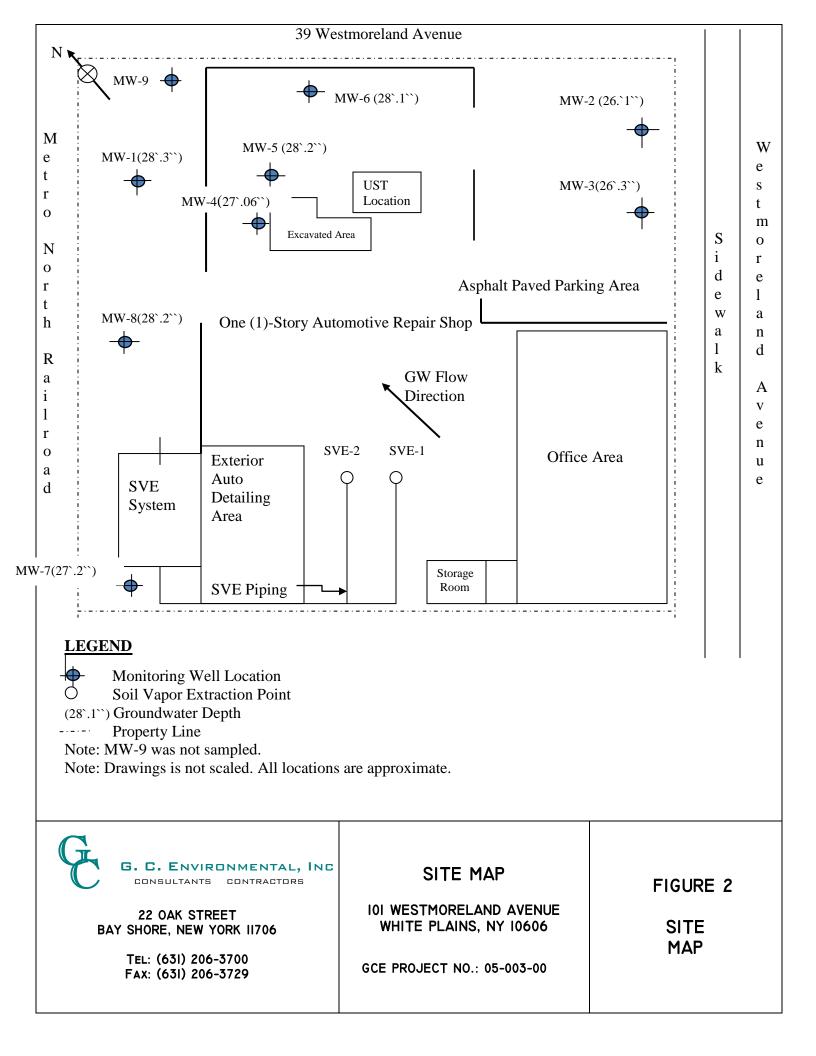
Enclosures:

Figures:

Figure 1: SVE System Air Sampling Diagram

Figure 2: Site Map


Tables:


Table 1: Air Sampling Results (03/06/18) Table 2: PID Readings for Air Sampling Locations (03/06/18) Table 3: Depth of Groundwater (03/06/18) Table 4: PID Readings for MW Locations (03/06/18) Appendixes: Appendix A: Lab Analytical Results

Appendix B: Photolog

LIST OF FIGURES

22 DAK STREET • BAY SHORE, NY 11706 • TEL: (31) 206-3700 • FAX: (631) 206-3729

LIST OF TABLES

22 DAK STREET • BAY SHORE, NY 11706 • TEL: (31) 206-3700 • FAX: (631) 206-3729

G. C. Environmental, Inc. 101 Westmoreland Avenue, White Plains, New York Table 2-PID Readings, March 2018

Monitoring Wells - Onsite	Unit	PID Level Measurement
SP-1 (Blower Discharge)	ppm	0.00
SP-2 (Discharge of the Carbon Vessel)	ppm	0.00
SV-1 (SVE -1)	ppm	0.00
SV-2 (SVE -2)	ppm	0.00

Note:

ppm: part per million

G. C. Environmental, Inc. 101 Westmoreland Avenue, White Plains, New York Table 3-Depth of GW, March 2018

Monitoring Wells -Onsite	Unit	GW Level Measurement
MW-1	ft	28.3
MW-2	ft	26.1
MW-3	ft	26.3
MW-4	ft	27.06
MW-5	ft	28.2
MW-6	ft	28.1
MW-7	ft	27.2
MW-8	ft	28.2

G. C. Environmental, Inc. 101 Westmoreland Avenue, White Plains, New York Table 4-PID Readings, March 2018

Monitoring Wells -On-site	Unit	PID Level Measurement
MW-1	ppm	0.00
MW-2	ppm	0.00
MW-3	ppm	0.00
MW-4	ppm	0.00
MW-5	ppm	0.00
MW-6	ppm	0.00
MW-7	ppm	0.00
MW-8	ppm	0.00

APPENDIX A Lab Analytical Results

22 DAK STREET • BAY SHORE, NY 11706 • TEL: (31) 206-3700 • FAX: (631) 206-3729

Tuesday, March 13, 2018

Attn: Mr. Greg Collins G.C. Environmental, Inc. 22 Oak Street Bayshore, NY 11706

Project ID: 05-003-00 Sample ID#s: CA00210 - CA00213

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Stille

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

Rush Request:

Canister Id:

Project ID:

Client ID:

P.O.#:

March 13, 2018

FOR: Attn: Mr. Greg Collins G.C. Environmental, Inc. 22 Oak Street Bayshore, NY 11706

Sample Informa	<u>Custody</u>	
Matrix:	AIR	Collected
Location Code:	GC-ENV	Received

Standard

10964

13647

05-003-00

SP-1

Custody Information		<u>Date</u>	<u>Time</u>
Collected by:	FT	03/06/18	11:30
Received by:	LB	03/08/18	18:00
Analyzed by:	see "By" below		

Laboratory Data

SDG ID: GCA00210 Phoenix ID: CA00210

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	By	Dilution	
						,		
<u>Volatiles (TO15)</u>								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	03/09/18	KCA	1	1
1,1,1-Trichloroethane	11.3	0.183	61.6	1.00	03/09/18	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	03/09/18	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	03/09/18	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	03/09/18	KCA	1	
1,1-Dichloroethene	0.240	0.051	0.95	0.20	03/09/18	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	03/09/18	KCA	1	
1,2,4-Trimethylbenzene	3.12	0.204	15.3	1.00	03/09/18	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	03/09/18	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	03/09/18	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	03/09/18	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	03/09/18	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	03/09/18	KCA	1	
1,3,5-Trimethylbenzene	2.63	0.204	12.9	1.00	03/09/18	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	03/09/18	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	03/09/18	KCA	1	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	03/09/18	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	03/09/18	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	03/09/18	KCA	1	1
4-Ethyltoluene	1.06	0.204	5.21	1.00	03/09/18	KCA	1	1
4-Isopropyltoluene	0.688	0.182	3.77	1.00	03/09/18	KCA	1	1
4-Methyl-2-pentanone(MIBK)	1.55	0.244	6.35	1.00	03/09/18	KCA	1	
Acetone	7990	253	19000	601	03/09/18	KCA	600	
Acrylonitrile	ND	0.461	ND	1.00	03/09/18	KCA	1	
Benzene	0.450	0.313	1.44	1.00	03/09/18	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	03/09/18	KCA	1	

Project ID: 05-003-00

Client ID: SP-1

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	03/09/18	KCA	1	
Bromoform	ND	0.097	ND	1.00	03/09/18	KCA	1	
Bromomethane	ND	0.258	ND	1.00	03/09/18	KCA	1	
Carbon Disulfide	ND	0.321	ND	1.00	03/09/18	KCA	1	
Carbon Tetrachloride	0.063	0.032	0.40	0.20	03/09/18	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	03/09/18	KCA	1	
Chloroethane	ND	0.379	ND	1.00	03/09/18	KCA	1	
Chloroform	ND	0.205	ND	1.00	03/09/18	KCA	1	
Chloromethane	ND	0.485	ND	1.00	03/09/18	KCA	1	
Cis-1,2-Dichloroethene	0.069	0.051	0.27	0.20	03/09/18	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	03/09/18	KCA	1	
Cyclohexane	ND	0.291	ND	1.00	03/09/18	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	03/09/18	KCA	1	
Dichlorodifluoromethane	2.13	0.202	10.5	1.00	03/09/18	KCA	1	
Ethanol	4.62	0.531	8.70	1.00	03/09/18	KCA	1	1
Ethyl acetate	ND	0.278	ND	1.00	03/09/18	KCA	1	1
Ethylbenzene	1.63	0.230	7.07	1.00	03/09/18	KCA	1	
Heptane	0.675	0.244	2.76	1.00	03/09/18	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	03/09/18	KCA	1	
Hexane	0.796	S 0.284	2.80	1.00	03/09/18	KCA	1	
Isopropylalcohol	2.39	0.407	5.87	1.00	03/09/18	KCA	1	
Isopropylbenzene	0.277	0.204	1.36	1.00	03/09/18	KCA	1	
m,p-Xylene	4.94	0.230	21.4	1.00	03/09/18	KCA	1	
Methyl Ethyl Ketone	4100	204	12100	601	03/09/18	KCA	600	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	03/09/18	KCA	1	
Methylene Chloride	ND	0.864	ND	3.00	03/09/18	KCA	1	
n-Butylbenzene	0.785	0.182	4.31	1.00	03/09/18	KCA	1	1
o-Xylene	2.52	0.230	10.9	1.00	03/09/18	KCA	1	
Propylene	ND	0.581	ND	1.00	03/09/18	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	03/09/18	KCA	1	1
Styrene	2.41	0.235	10.3	1.00	03/09/18	KCA	1	
Tetrachloroethene	80.5	1.33	546	9.02	03/09/18	KCA	36	
Tetrahydrofuran	19300	204	56900	601	03/09/18	KCA	600	1
Toluene	17.3	0.266	65.2	1.00	03/09/18	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	03/09/18	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	03/09/18	KCA	1	
Trichloroethene	0.805	0.037	4.32	0.20	03/09/18	KCA	1	
Trichlorofluoromethane	ND	0.178	ND	1.00	03/09/18	KCA	1	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	03/09/18	KCA	1	
Vinyl Chloride	ND	0.078	ND	0.20	03/09/18	KCA	1	
QA/QC Surrogates								
% Bromofluorobenzene	118	%	118	%	03/09/18	KCA	1	

Project ID: 05-003-00 Client ID: SP-1					Pł	noenix l	.D.: CA00210
Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis, Shiller, Laboratory Director March 13, 2018 Reviewed and Released by: Rashmi Makol, Project Manager

Time

9:00 18:00

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 13, 2018

FOR: Attn: Mr. Greg Collins G.C. Environmental, Inc. 22 Oak Street Bayshore, NY 11706

Sample Information

Matrix:	AIR
Location Code:	GC-ENV
Rush Request:	Standard
P.O.#:	10964
Canister Id:	121344
Project ID:	05-003-00
Client ID:	SV-1

Collected by:	FT	03/06/18
Received by:	LB	03/08/18
Analyzed by:	see "By" below	

Laboratory Data

Custody Information

SDG ID: GCA00210 Phoenix ID: CA00211

Date

Parameter	ppb∨ Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	By	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	03/09/18	KCA	1	1
1,1,1-Trichloroethane	8.06	0.183	43.9	1.00	03/09/18	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	03/09/18	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	03/09/18	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	03/09/18	KCA	1	
1,1-Dichloroethene	0.122	0.051	0.48	0.20	03/09/18	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	03/09/18	KCA	1	
1,2,4-Trimethylbenzene	3.03	0.204	14.9	1.00	03/09/18	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	03/09/18	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	03/09/18	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	03/09/18	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	03/09/18	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	03/09/18	KCA	1	
1,3,5-Trimethylbenzene	0.793	0.204	3.90	1.00	03/09/18	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	03/09/18	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	03/09/18	KCA	1	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	03/09/18	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	03/09/18	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	03/09/18	KCA	1	1
4-Ethyltoluene	0.663	0.204	3.26	1.00	03/09/18	KCA	1	1
4-Isopropyltoluene	ND	0.182	ND	1.00	03/09/18	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	03/09/18	KCA	1	
Acetone	16.2	0.421	38.5	1.00	03/09/18	KCA	1	
Acrylonitrile	ND	0.461	ND	1.00	03/09/18	KCA	1	
Benzene	0.449	0.313	1.43	1.00	03/09/18	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	03/09/18	KCA	1	

Project ID: 05-003-00

Client ID: SV-1

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	03/09/18	KCA	1	
Bromoform	ND	0.097	ND	1.00	03/09/18	KCA	1	
Bromomethane	ND	0.258	ND	1.00	03/09/18	KCA	1	
Carbon Disulfide	ND	0.321	ND	1.00	03/09/18	KCA	1	
Carbon Tetrachloride	0.054	0.032	0.34	0.20	03/09/18	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	03/09/18	KCA	1	
Chloroethane	ND	0.379	ND	1.00	03/09/18	KCA	1	
Chloroform	0.795	0.205	3.88	1.00	03/09/18	KCA	1	
Chloromethane	ND	0.485	ND	1.00	03/09/18	KCA	1	
Cis-1,2-Dichloroethene	0.067	0.051	0.27	0.20	03/09/18	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	03/09/18	KCA	1	
Cyclohexane	1.37	0.291	4.71	1.00	03/09/18	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	03/09/18	KCA	1	
Dichlorodifluoromethane	1.24	0.202	6.13	1.00	03/09/18	KCA	1	
Ethanol	1.98	0.531	3.73	1.00	03/09/18	KCA	1	1
Ethyl acetate	ND	0.278	ND	1.00	03/09/18	KCA	1	1
Ethylbenzene	0.789	0.230	3.42	1.00	03/09/18	KCA	1	
Heptane	1.30	0.244	5.32	1.00	03/09/18	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	03/09/18	KCA	1	
Hexane	0.954	S 0.284	3.36	1.00	03/09/18	KCA	1	
Isopropylalcohol	0.838	0.407	2.06	1.00	03/09/18	KCA	1	
Isopropylbenzene	ND	0.204	ND	1.00	03/09/18	KCA	1	
m,p-Xylene	3.11	0.230	13.5	1.00	03/09/18	KCA	1	
Methyl Ethyl Ketone	0.597	0.339	1.76	1.00	03/09/18	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	03/09/18	KCA	1	
Methylene Chloride	ND	0.864	ND	3.00	03/09/18	KCA	1	
n-Butylbenzene	0.577	0.182	3.17	1.00	03/09/18	KCA	1	1
o-Xylene	1.29	0.230	5.60	1.00	03/09/18	KCA	1	
Propylene	1.32	0.581	2.27	1.00	03/09/18	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	03/09/18	KCA	1	1
Styrene	2.89	0.235	12.3	1.00	03/09/18	KCA	1	
Tetrachloroethene	54.8	0.184	371	1.25	03/09/18	KCA	5	
Tetrahydrofuran	8.78	0.339	25.9	1.00	03/09/18	KCA	1	1
Toluene	10.4	0.266	39.2	1.00	03/09/18	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	03/09/18	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	03/09/18	KCA	1	
Trichloroethene	0.367	0.037	1.97	0.20	03/09/18	KCA	1	
Trichlorofluoromethane	0.237	0.178	1.33	1.00	03/09/18	KCA	1	
Trichlorotrifluoroethane	0.159	0.131	1.22	1.00	03/09/18	KCA	1	
Vinyl Chloride	ND	0.078	ND	0.20	03/09/18	KCA	1	
QA/QC Surrogates								
% Bromofluorobenzene	105	%	105	%	03/09/18	KCA	1	

Project ID: 05-003-00					Pł	noenix I	.D.: CA00211
Client ID: SV-1							
	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis, Shiller, Laboratory Director March 13, 2018 Reviewed and Released by: Rashmi Makol, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 13, 2018

FOR: Attn: Mr. Greg Collins G.C. Environmental, Inc. 22 Oak Street Bayshore, NY 11706

Sample Information

Matrix:	AIR
Location Code:	GC-ENV
Rush Request:	Standard
P.O.#:	10964
Canister Id:	19931
Project ID:	05-003-00
Client ID:	SV-2

Custody Infor	mation	<u>Date</u>	<u>Time</u>
Collected by:	FT	03/06/18	9:05
Received by:	LB	03/08/18	18:00
Analyzed by:	see "By" below		

Laboratory Data

Custody Information

SDG ID: GCA00210 Phoenix ID: CA00212

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	03/09/18	KCA	1	1
1,1,1-Trichloroethane	11.1	0.183	60.5	1.00	03/09/18	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	03/09/18	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	03/09/18	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	03/09/18	KCA	1	
1,1-Dichloroethene	0.129	0.051	0.51	0.20	03/09/18	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	03/09/18	KCA	1	
1,2,4-Trimethylbenzene	2.93	0.204	14.4	1.00	03/09/18	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	03/09/18	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	03/09/18	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	03/09/18	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	03/09/18	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	03/09/18	KCA	1	
1,3,5-Trimethylbenzene	1.31	0.204	6.44	1.00	03/09/18	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	03/09/18	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	03/09/18	KCA	1	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	03/09/18	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	03/09/18	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	03/09/18	KCA	1	1
4-Ethyltoluene	0.860	0.204	4.23	1.00	03/09/18	KCA	1	1
4-Isopropyltoluene	0.378	0.182	2.07	1.00	03/09/18	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	03/09/18	KCA	1	
Acetone	15.7	0.421	37.3	1.00	03/09/18	KCA	1	
Acrylonitrile	ND	0.461	ND	1.00	03/09/18	KCA	1	
Benzene	ND	0.313	ND	1.00	03/09/18	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	03/09/18	KCA	1	

Project ID: 05-003-00

Client ID: SV-2

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	03/09/18	KCA	1	
Bromoform	ND	0.097	ND	1.00	03/09/18	KCA	1	
Bromomethane	ND	0.258	ND	1.00	03/09/18	KCA	1	
Carbon Disulfide	ND	0.321	ND	1.00	03/09/18	KCA	1	
Carbon Tetrachloride	0.052	0.032	0.33	0.20	03/09/18	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	03/09/18	KCA	1	
Chloroethane	ND	0.379	ND	1.00	03/09/18	KCA	1	
Chloroform	2.30	0.205	11.2	1.00	03/09/18	KCA	1	
Chloromethane	ND	0.485	ND	1.00	03/09/18	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	ND	0.20	03/09/18	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	03/09/18	KCA	1	
Cyclohexane	1.39	0.291	4.78	1.00	03/09/18	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	03/09/18	KCA	1	
Dichlorodifluoromethane	2.31	0.202	11.4	1.00	03/09/18	KCA	1	
Ethanol	1.60	0.531	3.01	1.00	03/09/18	KCA	1	1
Ethyl acetate	ND	0.278	ND	1.00	03/09/18	KCA	1	1
Ethylbenzene	0.606	0.230	2.63	1.00	03/09/18	KCA	1	
Heptane	1.03	0.244	4.22	1.00	03/09/18	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	03/09/18	KCA	1	
Hexane	0.517	S 0.284	1.82	1.00	03/09/18	KCA	1	
Isopropylalcohol	0.667	0.407	1.64	1.00	03/09/18	KCA	1	
Isopropylbenzene	ND	0.204	ND	1.00	03/09/18	KCA	1	
m,p-Xylene	2.39	0.230	10.4	1.00	03/09/18	KCA	1	
Methyl Ethyl Ketone	0.448	0.339	1.32	1.00	03/09/18	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	03/09/18	KCA	1	
Methylene Chloride	0.869	S 0.864	3.02	3.00	03/09/18	KCA	1	
n-Butylbenzene	0.631	0.182	3.46	1.00	03/09/18	KCA	1	1
o-Xylene	1.43	0.230	6.21	1.00	03/09/18	KCA	1	
Propylene	1.98	0.581	3.41	1.00	03/09/18	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	03/09/18	KCA	1	1
Styrene	2.22	0.235	9.45	1.00	03/09/18	KCA	1	
Tetrachloroethene	117	0.184	793	1.25	03/09/18	KCA	5	
Tetrahydrofuran	8.87	0.339	26.1	1.00	03/09/18	KCA	1	1
Toluene	7.86	0.266	29.6	1.00	03/09/18	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	03/09/18	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	03/09/18	KCA	1	
Trichloroethene	0.834	0.037	4.48	0.20	03/09/18	KCA	1	
Trichlorofluoromethane	0.229	0.178	1.29	1.00	03/09/18	KCA	1	
Trichlorotrifluoroethane	0.295	0.131	2.26	1.00	03/09/18	KCA	1	
Vinyl Chloride	ND	0.078	ND	0.20	03/09/18	KCA	1	
QA/QC Surrogates								
% Bromofluorobenzene	109	%	109	%	03/09/18	KCA	1	

Project ID: 05-003-00					Pł	noenix	I.D.: CA00212
Client ID: SV-2							
	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis, Shiller, Laboratory Director March 13, 2018 Reviewed and Released by: Rashmi Makol, Project Manager

Time

10:30 18:00

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 13, 2018

FOR: Attn: Mr. Greg Collins G.C. Environmental, Inc. 22 Oak Street Bayshore, NY 11706

Sample Information

Matrix:	AIR
Location Code:	GC-ENV
Rush Request:	Standard
P.O.#:	10964
Canister Id:	474
Project ID:	05-003-00
Client ID:	SP-2

Collected by:	FT	03/06/18
Received by:	LB	03/08/18
Analyzed by:	see "By" below	
_	_	

Laboratory Data

Custody Information

SDG ID: GCA00210 Phoenix ID: CA00213

Date

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	By	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	03/09/18	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	03/09/18	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	03/09/18	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	03/09/18	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	03/09/18	KCA	1	
1,1-Dichloroethene	ND	0.051	ND	0.20	03/09/18	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	03/09/18	KCA	1	
1,2,4-Trimethylbenzene	0.909	0.204	4.47	1.00	03/09/18	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	03/09/18	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	03/09/18	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	03/09/18	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	03/09/18	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	03/09/18	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	03/09/18	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	03/09/18	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	03/09/18	KCA	1	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	03/09/18	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	03/09/18	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	03/09/18	KCA	1	1
4-Ethyltoluene	ND	0.204	ND	1.00	03/09/18	KCA	1	1
4-Isopropyltoluene	ND	0.182	ND	1.00	03/09/18	KCA	1	1
4-Methyl-2-pentanone(MIBK)	0.496	0.244	2.03	1.00	03/09/18	KCA	1	
Acetone	99.9	2.11	237	5.01	03/09/18	KCA	5	
Acrylonitrile	ND	0.461	ND	1.00	03/09/18	KCA	1	
Benzene	ND	0.313	ND	1.00	03/09/18	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	03/09/18	KCA	1	

Project ID: 05-003-00

Client ID: SP-2

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	03/09/18	KCA	1	
Bromoform	ND	0.097	ND	1.00	03/09/18	KCA	1	
Bromomethane	ND	0.258	ND	1.00	03/09/18	KCA	1	
Carbon Disulfide	ND	0.321	ND	1.00	03/09/18	KCA	1	
Carbon Tetrachloride	ND	0.032	ND	0.20	03/09/18	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	03/09/18	KCA	1	
Chloroethane	ND	0.379	ND	1.00	03/09/18	KCA	1	
Chloroform	ND	0.205	ND	1.00	03/09/18	KCA	1	
Chloromethane	ND	0.485	ND	1.00	03/09/18	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	ND	0.20	03/09/18	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	03/09/18	KCA	1	
Cyclohexane	ND	0.291	ND	1.00	03/09/18	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	03/09/18	KCA	1	
Dichlorodifluoromethane	1.05	0.202	5.19	1.00	03/09/18	KCA	1	
Ethanol	9.90	0.531	18.6	1.00	03/09/18	KCA	1	1
Ethyl acetate	ND	0.278	ND	1.00	03/09/18	KCA	1	1
Ethylbenzene	0.356	0.230	1.54	1.00	03/09/18	KCA	1	
Heptane	ND	0.244	ND	1.00	03/09/18	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	03/09/18	KCA	1	
Hexane	0.586	S 0.284	2.06	1.00	03/09/18	KCA	1	
Isopropylalcohol	3.49	0.407	8.57	1.00	03/09/18	KCA	1	
Isopropylbenzene	ND	0.204	ND	1.00	03/09/18	KCA	1	
m,p-Xylene	1.40	0.230	6.08	1.00	03/09/18	KCA	1	
Methyl Ethyl Ketone	4.17	0.339	12.3	1.00	03/09/18	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	03/09/18	KCA	1	
Methylene Chloride	1.83	S 0.864	6.35	3.00	03/09/18	KCA	1	
n-Butylbenzene	ND	0.182	ND	1.00	03/09/18	KCA	1	1
o-Xylene	0.537	0.230	2.33	1.00	03/09/18	KCA	1	
Propylene	ND	0.581	ND	1.00	03/09/18	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	03/09/18	KCA	1	1
Styrene	0.735	0.235	3.13	1.00	03/09/18	KCA	1	
Tetrachloroethene	ND	0.037	ND	0.25	03/09/18	KCA	1	
Tetrahydrofuran	1.03	0.339	3.04	1.00	03/09/18	KCA	1	1
Toluene	2.65	0.266	10.0	1.00	03/09/18	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	03/09/18	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	03/09/18	KCA	1	
Trichloroethene	ND	0.037	ND	0.20	03/09/18	KCA	1	
Trichlorofluoromethane	ND	0.178	ND	1.00	03/09/18	KCA	1	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	03/09/18	KCA	1	
Vinyl Chloride	ND	0.078	ND	0.20	03/09/18	KCA	1	
QA/QC Surrogates % Bromofluorobenzene	105	%	105	%	03/09/18	KCA	1	

Project ID: 05-003-00 Client ID: SP-2					Pł	noenix I	.D.: CA00213
Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Bv	Dilution

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis, Shiller, Laboratory Director March 13, 2018 Reviewed and Released by: Rashmi Makol, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 13, 2018

QA/QC Data

SDG I.D.: GCA00210

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3		LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
QA/QC Batch 422325 (ppbv), Q	C Sam	ole No: (CA00212	(CA002 ²	10 (1X.	36X).	CA0021	1 (1X.	5X). C/	400212	(1X, 5)	X) . CAC	0213 (1X.
5X))				(,,		(,		(,	,,	
<u>Volatiles</u>													
1,1,1,2-Tetrachloroethane	ND	0.150	ND	1.03		106	ND	ND	ND	ND	NC	70 - 130	25
1,1,1-Trichloroethane	ND	0.180	ND	0.98		105	60.5	61.6	11.1	11.3	1.8	70 - 130	25
1,1,2,2-Tetrachloroethane	ND	0.150	ND	1.03		111	ND	ND	ND	ND	NC	70 - 130	25
1,1,2-Trichloroethane	ND	0.180	ND	0.98		109	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethane	ND	0.250	ND	1.01		106	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethene	ND	0.050	ND	0.20		106	0.51	0.52	0.129	0.131	NC	70 - 130	25
1,2,4-Trichlorobenzene	ND	0.130	ND	0.96		102	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	0.200	ND	0.98		114	14.4	14.9	2.93	3.03	3.4	70 - 130	25
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00		110	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorobenzene	ND	0.170	ND	1.02		111	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	0.250	ND	1.01		107	ND	ND	ND	ND	NC	70 - 130	25
1,2-dichloropropane	ND	0.220	ND	1.02		101	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	0.140	ND	0.98		108	ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	0.200	ND	0.98		112	6.44	6.68	1.31	1.36	3.7	70 - 130	25
1,3-Butadiene	ND	0.450	ND	0.99		102	ND	ND	ND	ND	NC	70 - 130	25
1,3-Dichlorobenzene	ND	0.170	ND	1.02		111	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dichlorobenzene	ND	0.170	ND	1.02		111	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	0.280	ND	1.01		105	ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	0.240	ND	0.98		103	ND	ND	ND	ND	NC	70 - 130	25
4-Ethyltoluene	ND	0.200	ND	0.98		109	4.23	3.87	0.860	0.787	NC	70 - 130	25
4-Isopropyltoluene	ND	0.180	ND	0.99		102	2.07	1.85	0.378	0.338	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	0.240	ND	0.98		104	ND	ND	ND	ND	NC	70 - 130	25
Acetone	ND	0.420	ND	1.00		107	37.3	38.0	15.7	16.0	1.9	70 - 130	25
Acrylonitrile	ND	0.460	ND	1.00		75	ND	ND	ND	ND	NC	70 - 130	25
Benzene	ND	0.310	ND	0.99		100	ND	ND	ND	ND	NC	70 - 130	25
Benzyl chloride	ND	0.190	ND	0.98		106	ND	ND	ND	ND	NC	70 - 130	25
Bromodichloromethane	ND	0.150	ND	1.00		107	ND	ND	ND	ND	NC	70 - 130	25
Bromoform	ND	0.097	ND	1.00		112	ND	ND	ND	ND	NC	70 - 130	25
Bromomethane	ND	0.260	ND	1.01		99	ND	ND	ND	ND	NC	70 - 130	25
Carbon Disulfide	ND	0.320	ND	1.00		121	ND	ND	ND	ND	NC	70 - 130	25
Carbon Tetrachloride	ND	0.032	ND	0.20		101	0.33	0.36	0.052	0.057	NC	70 - 130	25
Chlorobenzene	ND	0.220	ND	1.01		107	ND	ND	ND	ND	NC	70 - 130	25
Chloroethane	ND	0.380	ND	1.00		99	ND	ND	ND	ND	NC	70 - 130	25
Chloroform	ND	0.200	ND	0.98		105	11.2	11.1	2.30	2.28	0.9	70 - 130	25
Chloromethane	ND	0.480	ND	0.99		99	ND	ND	ND	ND	NC	70 - 130	25
Cis-1,2-Dichloroethene	ND	0.050	ND	0.20		107	ND	ND	ND	ND	NC	70 - 130	25
cis-1,3-Dichloropropene	ND	0.220	ND	1.00		106	ND	ND	ND	ND	NC	70 - 130	25
Cyclohexane	ND	0.290	ND	1.00		98	4.78	4.64	1.39	1.35	NC	70 - 130	25
Dibromochloromethane	ND	0.120	ND	1.02		109	ND	ND	ND	ND	NC	70 - 130	25
Dichlorodifluoromethane	ND	0.200	ND	0.99		113	11.4	11.6	2.31	2.35	1.7	70 - 130	25

QA/QC Data

SDG I.D.: GCA00210

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
Ethanol	ND	0.530	ND	1.00	109	3.01	2.96	1.60	1.57	NC	70 - 130	25
Ethyl acetate	ND	0.280	ND	1.01	113	ND	ND	ND	ND	NC	70 - 130	25
Ethylbenzene	ND	0.230	ND	1.00	108	2.63	2.82	0.606	0.649	NC	70 - 130	25
Heptane	ND	0.240	ND	0.98	101	4.22	4.30	1.03	1.05	NC	70 - 130	25
Hexachlorobutadiene	ND	0.094	ND	1.00	92	ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	0.280	ND	0.99	105	1.82 S	1.86 S	0.517 S	0.528 S	NC	70 - 130	25
Isopropylalcohol	ND	0.410	ND	1.01	90	1.64	1.82	0.667	0.740	NC	70 - 130	25
Isopropylbenzene	ND	0.200	ND	0.98	101	ND	ND	ND	ND	NC	70 - 130	25
m,p-Xylene	ND	0.230	ND	1.00	111	10.4	10.9	2.39	2.51	4.9	70 - 130	25
Methyl Ethyl Ketone	ND	0.340	ND	1.00	98	1.32	1.34	0.448	0.453	NC	70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	0.280	ND	1.01	105	ND	ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	0.860	ND	2.99	102	3.02 S	3.16 S	0.869 S	0.911 S	NC	70 - 130	25
n-Butylbenzene	ND	0.180	ND	0.99	105	3.46	3.55	0.631	0.648	NC	70 - 130	25
o-Xylene	ND	0.230	ND	1.00	109	6.21	6.34	1.43	1.46	2.1	70 - 130	25
Propylene	ND	0.580	ND	1.00	107	3.41	3.66	1.98	2.13	NC	70 - 130	25
sec-Butylbenzene	ND	0.180	ND	0.99	98	ND	ND	ND	ND	NC	70 - 130	25
Styrene	ND	0.230	ND	0.98	109	9.45	9.8	2.22	2.31	4.0	70 - 130	25
Tetrachloroethene	ND	0.037	ND	0.25	106	546	559	80.5	82.5	2.5	70 - 130	25
Tetrahydrofuran	ND	0.340	ND	1.00	99	26.1	26.4	8.87	8.94	0.8	70 - 130	25
Toluene	ND	0.270	ND	1.02	107	29.6	30.6	7.86	8.12	3.3	70 - 130	25
Trans-1,2-Dichloroethene	ND	0.250	ND	0.99	112	ND	ND	ND	ND	NC	70 - 130	25
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	108	ND	ND	ND	ND	NC	70 - 130	25
Trichloroethene	ND	0.037	ND	0.20	112	4.48	4.54	0.834	0.846	1.4	70 - 130	25
Trichlorofluoromethane	ND	0.180	ND	1.01	109	1.29	1.33	0.229	0.237	NC	70 - 130	25
Trichlorotrifluoroethane	ND	0.130	ND	1.00	109	2.26	2.44	0.295	0.318	NC	70 - 130	25
Vinyl Chloride	ND	0.078	ND	0.20	100	ND	ND	ND	ND	NC	70 - 130	25
% Bromofluorobenzene	103		103		101	109	111	109	111	NC	70 - 130	25

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

hyllis Shille

Phyllis/Shiller, Laboratory Director March 13, 2018

Tuesday, Ma	arch 13, 2018		Sample Criteria	a Exceedances Report				
Criteria:	None		•	0210 - GC-ENV				
State:	NY		004	0210 - 00-ENV			RL	Analvsis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** • •								

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

March 13, 2018

SDG I.D.: GCA00210

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

AIRSIM

CHEM20 03/08/18-1: CA00210, CA00211, CA00212, CA00213

The following Continuing Calibration compounds did not meet % deviation criteria: 1,1-Dichloroethene(sim) 34%H (30%),

Trichlorotrifluoroethane(sim) 36%H (30%)

The following Continuing Calibration compounds did not meet Maximum % deviation criteria: 1,1-Dichloroethene(sim) 34%H (30%), Trichlorotrifluoroethane(sim) 36%H (30%)

			} _									<u></u>	r r		 T	<u> </u>							
of		Scartanting		``````````````````````````````````````				[0-12 [0-14	- Ž -	7	\times	×	, ,	\angle	 				iey 🗆			l attest that all media released by Phoenix Environmental Laboratories, Inc. have been veceived in good working condition and agree to the terms and conditions as listed on the back of this document:	à
Page	6	00	0				(C) sti	soqmoD (D) darD		6	S	U		<u>ں</u>	 				GISKey			aboratories, nd conditio	Date:
Pa	た	O La	OOFL				, I	Ambient/Indoor Ai	, ¥	X	\prec	×	•	\times					Ē			mmental L the terms a	
	906		Jac 1	00		ables 🗆	7	Canister Pressure at End ("Hg)		ب ا ا	د ۱	م		9					Equis	Other:		oenix Enviro md agree to	
P.O. # 10 96 L	Very:		1291	1	ASP CAT B	NJ Deliverables	2	Canister Pressure at Start (" Hg)		در_	-23	28		52-								leased by Ph g condition (
P.O.# \	Data Delivery:		Phone #1	2-003	able:		State where samples collected:	Sample Start Date		3 .61 1 8	2.6.19	3,6,8		3 yrgr				mat:	₹	Ŗ		l attest that all media re received in good workin, back of this document:	
				ame: O	Requested Deliverable: RCP	MCP	ere sample	Sampling End Time	+	m0[1]	9100 mon	3,05~	,	10,300				Data Format:	Excel	PDF		I attest that received in back of this	Signature:
Q				Project Name:	Request		State wh	Sampling Start Time		10,300	8'00	8'D5am		9,30an				Time:	10:00	J.S			
CHAIN OF CUSTODY RECORD	n	bs.com						Flow Controller Setting (mL/min)		68 14	_)					-18	78			
I YOO	AL YOE: -5426	hoenixla					10 CI	Flow Regulator ID #	ONLY	5398	3357	5039	5+10	Shee			_	Date:	3-8.	2°	l Criteria		mber:
CUST	AIK ANAL 15E5 800-827-5426	email: greg@phoenixlabs.com		a acto	7		55	Incoming Canister Pressure ("Hg)	THIS SECTION FOR LAB USE ONLY	ĥ	[']		-	7					(7	Requested Criteria		Quote Number:
VIN OF	I	email	÷	لر			0	Outgoing Canister Pressure (" Hg)	TION FOR	-30	-)					$\left\{ \right\}$	9	2		
CHA				Diano			12	Canister Size (L)	THIS SEC	ہ ف				->						/	tHP		
				Invoice to:			Sampled by:	Canister ID #		13647	האבוב	19931	13635	hth		÷		Accepted by:	A Pha		ه.م (ع)		
	11<504			<u> </u>			g														NSTRUCTIONS, OC REQUIREMENTS, REGULATORY INFORMATION:		
				2		- X	0711												\mathbf{X}		ATORY INFO		
Ì	ies, Inc.	ter, CT 06040 .0823		Toulula	-	Kee	57	Client Sample ID											0	Z	TS, REGUL		
	VLA M aboratories,	ox 370, Manches 2 • Fax: 860.645		- 1	Z	ſ,	roce, NY	Clie				2		4						J	QUIKEMEN		
	UEI VI. mental Labor	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Telephone: 860,645, 1102 • Fax: 860,645,0823	5	FUND	5	<i>]</i> 6 0	0			59-1	54-1	51-		St-S							ONS, OC RE		
	Environ	587 East Midd Telepho			Ŭ	22	J.	**					2					shed by:	M	Anon			
	_			Report to:	Customer :	Address:		Phoenix ID #		CRODIO	11600	6)600		51900				Relinquished		SH I			
										6.4												Pa	ge 18 of 18

.

APPENDIX B Photolog

22 DAK STREET • BAY SHORE, NY 11706 • TEL: (31) 206-3700 • FAX: (631) 206-3729

SVE System Design Work - Photolog

1. Air Sampling at the SVE Points by Using Suma-Canister

2. Air Sampling at the Discharge of the Carbon Vessel

by Using Suma-Canister


3. A Typical PID Reading by Using MultiRAE

4. CFM Reading at the SVE System Unit

5. Vacuum Gauges of the SVE System in the Repair Shop Area

6. Vacuum Gauge of the SVE System in the Repair Shop Area

7. Vacuum Gauges of the SVE System Unit before System Maintenance

8. Vacuum Gauges of the SVE System Unit after System Maintenance

9. A View from the Interior Portion of the Site

(Sub-Slab Area)

10. A View from the Exterior Portion of the Site

(Sub-Slab Area)

11. System Maintenance by Removing the Cover of the Knock out Drum

12. Cleaning the Filter/Demister Assembly inside the Knock out Drum