

464 Doughty Boulevard Inwood, New York 11096 Telephone: (516) 239-5232 Facsimile: (516) 239-2455 steve.p.trifiletti@exxonmobil.com

Steve P. Trifiletti
Major Projects – Project Manager
Global Remediation

May 13, 2008

Mr. William Ports
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway
Albany, New York 12233 -7014

RE: Pre-Design Investigation Report

Former Tappan Terminal

Hastings on Hudson, Westchester County, New York

Site No. 3-60-015

Dear Mr. Ports:

On December 28, 2007, the NYSDEC issued a letter of approval for the November 19, 2007 "Pre-Design Investigation Work Scope" (PDIWS) for soil at the former Mobil Terminal Property in Hastings-on-Hudson, New York pursuant to Section 8 of the September 2006 Record of Decision (ROD) for the subject site. Following NYSDEC approval, the PDIWS was implemented, with field activities and results reported herein.

Please contact me at (516) 239-5232 with any questions or comments.

Sincerely,

Steve P/Trifiletti Project Manager

copy: N. Walz - NYSDOH

R. Pergadia, C. Post, G. Heitzman - NYSDEC

M. Hendrickson – Chevron

G. Merritt - Fitzpatrick, Merritt & Samra-Arteaga

W. McCune - BBL

N. Hastings, A. Proctor – Woodard & Curran

Pre-Design Investigation Report
Former Mobil Terminal Property
Hastings-on-Hudson, New York
Former Tappan Terminal Site No. 3-60-015
May 13, 2008
Page 1 of 4

Introduction

On December 28, 2007, the NYSDEC issued a letter of approval for the November 19, 2007 "Pre-Design Investigation Work Scope" (PDIWS) for soil at the former Mobil Terminal Property in Hastings-on-Hudson, New York. Field work was conducted on February 28 and 29, March 31, and April 1, 2008. A summary of findings, including laboratory analytical results, is reported herein.

Background

Historic investigation programs and the requirements of the Record of Decision (ROD) were considered to scope the PDIWS for the former Mobil terminal property as required by the ROD. The following items summarize objectives for the work scope.

- The 1998 sampling program conducted by Dvirka and Bartilucci (refer to Figure 1) was augmented by completing a comparable (estimated 150 foot) grid pattern across the former Mobil terminal property.¹ Additional sampling locations (test pits TP2 through TP4) were completed in the central area of the former tank farm to evaluate the potential presence of grossly impacted soil in that area.
- Soil below former structures was investigated, including the concrete pad near the former Mobil terminal entrance and Tank Pad 2.^{1,2} As depicted on Figure 1, test pit TP1 was completed at the concrete pad near the former Mobil terminal entrance and TP2 was completed inside former Tank Pad 2. An obstruction was encountered inside Tank Pad 2 and test pit TP2A was also competed immediately adjacent to the tank pad.
- Historic data for areas of gross contamination as defined by the ROD²: Semi-volatile Organic Compounds plus Tentatively Identified Compounds (SVOCs + TICs) greater that 500 parts per million (ppm) or areas of elevated total petroleum hydrocarbon (TPH) concentrations, were reviewed. Elevated concentrations of TPH were found in the northern portion of the parcel, with free petroleum product historically noted in well OW-5 and replacement well OW-5A, and visual petroleum impact reported at sample location SB-3.^{1,3,4} To better define this area, a test trench was excavated between soil boring SB-3 and well OW-5A as depicted on Figure 1.

Implementation

Following NYSDEC approval, copies of the PDIWS were sent to the public repositories for the project on January 18, 2008. The public repositories include the Hastings Public Library, the Hastings Village Clerk, and the NYSDEC Region 3 office. A fact Sheet on the pre-design investigation work was made public by the NYSDEC on or about January 18, 2008.

On February 5, 2008, a site walk was conducted with Anne Proctor of Woodard & Curran, Therese Pitterle of Roux Associates, JoAnn Robertson of Arcadis-BBL and the three NYSDEC personnel that shared oversight of field activities: George Heitzman, Bill Ports, and Charlie Post. This group was later joined by Willie Janeway, NYSDEC Region 3 Director.

Pre-Design Investigation Report
Former Mobil Terminal Property
Hastings-on-Hudson, New York
Former Tappan Terminal Site No. 3-60-015
May 13, 2008
Page 2 of 4

During the site walk, an attempt was made by Woodard & Curran to visually catalogue and map subsurface piping and structures on the former Mobil terminal property (refer to Section 8 of the ROD²). Numerous pieces of piping and concrete were found in the tank farm area. Further work on this task is proposed to be deferred until future phases of field work are implemented that will facilitate general removal of site materials and debris, up to and including redevelopment of the site.

Initial test pitting activities for the PDIWS were performed on February 28 and 29, 2008 (refer to Figure 1). Test pits TP1 through TP4 around the former terminal and tank farm were completed with NYSDEC oversight. Test pits were constructed by backhoe and soil samples were collected from two feet above and two feet below the water table. Soil samples were field screened with a photoionization detector (PID) and submitted to Accutest Laboratories of Dayton, New Jersey for analysis of SVOCs+TICs by EPA Method 8270. Excavated soil from these test pits was returned to the respective excavations.

To investigate the area in the vicinity of soil boring SB-3 and well OW-5A, in advance of remedial excavation, a test trench was excavated with NYSDEC oversight between soil boring SB-3 and well OW-5A (the "SB-3/OW-5A Trench"). The test trench was constructed by backhoe and soil samples were collected from eleven locations at two feet above and two feet below the water table. Soil samples were field screened with a photoionization detector (PID) and submitted to Accutest Laboratories for analysis of SVOCs+TICs by EPA Method 8270.

To help alleviated concerns expressed by the NYSDEC that soil in the SB-3/OW-5A Trench appeared to be "grossly contaminated", soil from this effort was temporarily stockpiled on concrete and covered. Analysis of some samples from the SB-3/OW-5A Trench was expedited to facilitate planning the next steps. Also, three additional test pits, test pits TP5, TP6 and TP7, were completed around the SB-3/OW-5A Trench just prior to demobilization on February 29th. The NYSDEC personnel had departed from the site when these three test pits were excavated and NYSDEC personnel were not present to observe these extra test pits; however, samples were collected for laboratory analysis of SVOCs+TICs.

On March 3, 2008, the NYSDEC issued a letter to ExxonMobil confirming that current investigation work was being done under the Voluntary Cleanup Agreement of September 20, 1996.

Expedited soil results from the SB-3/OW-5A Trench were forwarded to the NYSDEC on March 7th (sample results for locations E1 through E6 on Table 1). Two locations, E1 and E5, had concentrations of SVOCs+TICs greater than 500 ppm in samples taken approximately two feet below the water table.

A conference call was conducted on March 10th and the NYSDEC referenced the ROD for the project that prescribes excavation of "grossly contaminated" soil or soil with SVOCs+TICs greater than 500 ppm. The NYSDEC proposed additional test pitting to delineate their observations of "grossly contaminated" soil.

Additional field work was planned for March 31st. In the interim, Roux Associates field personnel, on behalf of ExxonMobil, periodically visited the site to check on the soil pile and SB-3/OW-5A Trench. The trench network was surrounded by temporary fencing.

Pre-Design Investigation Report
Former Mobil Terminal Property
Hastings-on-Hudson, New York
Former Tappan Terminal Site No. 3-60-015
May 13, 2008
Page 3 of 4

Remaining soil results from the February 2008 field work were received and a summary was forwarded to the NYSDEC on March 20th (refer to Table 1). The NYSDEC responded on March 21st requesting that additional test pits be constructed near test pit TP2, inside the berm opposite MH-3, between test pits TP3 and TP4 (area believed to be not grossly contaminated, TP8), and near the SB-3/OW-5A Trench (area believed to be grossly contaminated, TP9). Sketches were provided to the NYSDEC by electronic mail on March 24 depicting their proposed test pit locations and three additional locations surrounding the SB-3/OW-5A Trench in the vicinity of test pits TP5, TP6 and TP7 that were excavated following departure of the NYSDEC on February 28th.

Arrangements were made with the excavation contractor to remobilize to the site on March 31st to perform the additional test pitting work.

- Test pits TP5A, TP6A and TP7A were excavated in the vicinity of previous test pits TP5, TP6 and TP7. Several additional test pits were excavated around the SB-3/OW-5A Trench at the direction of NYSDEC personnel.
- Test pit TP8 was excavated in a location south of test pit TP4 (area believed to be not grossly contaminated).
- Test pit TP9 was excavated in a location east of trench sampling location E11 (area believed to be grossly contaminated).
- Test pit TP18 was excavated in a location near sampling location SS-5, opposite manhole MH-3. Per the NYSDEC, during field work done by Arcadis-BBL on behalf of Chevron on February 14th, some contamination had been encountered. (Historically, sample SS-5 had been collected in this area with a concentration of Total SVOCs+TICs of 54 ppm. A soil sample taken by Arcadis-BBL during their work in the subject area had an estimated concentration of 2.3 ppm Total Volatile Organic Compounds.) Test pit TP18 was not considered to be grossly contaminated by NYSDEC personnel. A targeted sample of a discolored, darker layer at the water table from test pit TP18 had a concentration of 198.2 ppm Total SVOCs+TICs.
- Test pit TP22 was excavated near test pit TP2, though soil from test pit TP2A had low SVOC concentrations that decreased with depth. Test pit TP22 was not considered to be grossly contaminated by NYSDEC personnel.

Overall, eighteen test pits were excavated at the direction of the NYSDEC on March 31st. No consensus was reached on visual observations of "grossly contaminated" soil. ExxonMobil did not propose to take soil samples for laboratory analysis during this event; however, 5 samples were collected based on field judgment to facilitate the determination of soil as being grossly contaminated (refer to Table 1). These five soil samples were submitted for laboratory analysis of SVOCs.

With DEC concurrence, all excavated soil was returned to the respective test pits, including soil stockpiled from the SB-3/OW-5A Trench. Field work for the PDIWS concluded on April 1st.

Pre-Design Investigation Report
Former Mobil Terminal Property
Hastings-on-Hudson, New York
Former Tappan Terminal Site No. 3-60-015
May 13, 2008
Page 4 of 4

Results

Efforts in the field to visually identify grossly contaminated soil were highly subjective and visual observations were not supported by either field screening or analytical laboratory analysis. The site mainly consists of fill material which is generally dark in color and includes random debris (glass bottles, etc.). A targeted sample of a discolored, darker layer at the water table from test pit TP18 had Total SVOCs+TICs of 198.2 ppm, well below the criteria established in the ROD of 500 ppm. Visual discoloration of soil is not a consistent indication of gross contamination.

Using the criteria established in the ROD of 500 ppm Total SVOCs+TICs, laboratory analytical results (Table 1) were mapped (Figure 2) to identify areas that exceeded this criteria. A total of forty-four samples were analyzed, of which only four locations in the SB-3/OW-5A Trench and two locations in the vicinity of the trench had concentrations of Total SVOCs+TICs in excess of the 500 ppm criteria (Figure 3). These locations that exceeded criteria are proposed to be excavated as part of the future Remedial Design Work Plan (Figure 4).

Citations

- ¹ "Remedial Investigation Report, Tappan Terminal Site"; Dvirka and Bartilucci Consulting Engineers; Syracuse, NY; September 1999.
- ² "Record of Decision, Tappan Terminal Site"; New York State Department of Environmental Conservation; September 2006.
- ³ "Ground-water and Soil Quality Investigation at the Mobil Oil Corp. Tappan Terminal"; Leggette, Brashears & Graham, Inc.; Wilton, CT; March 1987.
- ⁴ "Monitor Well Replacement, Mobil Oil Corp. Tappan Terminal No. 31-020"; Leggette, Brashears & Graham, Inc.; Wilton, CT; December 1993.

Attachments

Table 1 Pre-Design Investigation Soil Sampling Results

Figure 1 Site Plan

Figure 2 Total SVOCs and TICs

Figure 3 Total SVOCs and TICs

Figure 4 Proposed Excavation Plan

Appendix A Laboratory Analytical Reports

Table 1 **Pre-Design Investigation Soil Sampling Results**

Former Mobil Tappan Terminal

Hastings-on-Hudson, NY

				15 12 1	M To			-12-21-5	TEST PIT SA	MPLE IDEN	TIFICATION	I - DEPTH (t) AND SAM	MPLE COLL	ECTION DATE		1		CONT.	IEVI EVI I	
Parameter	Units	TP1-4' 2/28/08	TP1-8' 2/28/08	TP2-2' 2/28/08	TP2A-2' 2/28/08	TP2A-6' 2/28/08	TP3-3' 2/28/08	TP3-7' 2/28/08	TP4-2' 2/28/08	TP4-6' 2/28/08	TP5-2' 2/29/08	TP5-6' 2/29/08	TP5A-4 3/31/08	TP6-3' 2/29/08	TP6-7' 2/29/08	TP7-3' 2/29/08	TP7-7' 2/29/08	TP7A-7' 3/31/08	TP9-6' 3/31/08	TP11-7' 3/31/08	TP18-6' 3/31/08
Acenaphthene	ug/kg	159	15600		971	432		21.8				807	1160	181	434		592	6620	3050	1470	3480
Acenaphthylene	ug/kg		198	14.3		215	31.2		19.5	23.8		231		793	59.3	117			617	291	2290
Anthracene	ug/kg		3270			499						2370	310	1180	404	111	319	1690	1620	4210	4970
Benzo(a)anthracene	ug/kg	235	2980	14.7		1620	133	169	88.9	281		5120	444	3100	991	55.6	202	1830	3150	7070	4250
Benzo(a)pyrene	ug/kg	239	1280	24.3		1010	136	147	84.2	296	118	4600	344	2990	928	90.8	105	1350	4550	5330	1940
Benzo(b)floroanthene	ug/kg	286	1390			696	133	142	89.6	387	140	5330	355	3380	873	115	111	929	4910	5590	2390
Benzo(g,h,i)perylene	ug/kg	311	726	26.5		591	108	101	70	274	75.8	2980	259	2170	556		70.2	919	3900	3230	789
Benzo(k)fluoranthene	ug/kg	302	1000			166	-	126		334	80	3270	324	2610	703	66.3	44.9	827	3140	3900	1870
2-Chloronaphthalene	ug/kg									33.9											
4-Chloroaniline	ug/kg	964	1100																		
Carbazole	ug/kg		2980						14.6			1180		406	170		151		865	2090	1540
Chrysene	ua/ka	284	3020			1740	127	167	93.1	383	96.8	4970	537	3310	1000	63.7	264	2950	4100	6750	4040
1,2-Dichlorobenzene	ug/kg								- 2011					00.10	1000	20.3	201	2000	1100	0,00	10 10
1,4-Dichlorobenzene	ug/kg								13.1							20.0					
Dibenzo(a,h)anthracene	ug/kg		265			237	43.7	40.8	26.9	114		1060		831	198				1300	1030	396
Dibenzofuran	ug/kg		11600		254		1831					599	311	113	139		477	3710	1880	1220	4160
Di-n-butyl phthalate	ug/kg								109				- 0,11	110	100			07.10	1000	1220	1100
bis(2-ethylhexyl)phthalate	ug/kg				_				71	168		223		110			145	2130		1330	828
Fluoroanthene	ug/kg	357	14700	13.9		1720	189	319		372	79	15600	1100	5010	1970	53	652	2370	5400	21700	16200
Fluorene	ug/kg	98.1	12200		235	456		15.6		0.12	- 1	920	2160	165	634	- 00	870	10700	5510	1620	6730
Ideno(1,2,3-c,d)pyrene	ug/kg		685			486	106	108	63	249	76.4	2870	2,00	2100	521	130	46.4	10100	3800	2910	777
2-Methylnaphthalene	ug/kg		17600							2.10	166	247		103	422	114	1260	32100	24700	362	
4-Nitroaniline	ug/kg	i i	1890								100			100	725		1200	02 100	24700	OOL	- 0000
Naphthalene	ug/kg		11800							392	67	318	193	75.3	254	25.8	1610	2210	1160	418	10100
N-Nitrosodiphenvlamine	ug/kg		433							001	- 0,	0.0	100	7 0.0	204	20.0	1010	22.10	1100	410	10100
Phenanthrene	ug/kg		35300	9.6		893	33.6	22.9	61.3	69.8	163	11500	1110	2710	1920	66.5	1550	24800	15600	20400	17700
Pyrene	ug/kg	369	12000	20.2		3130	191	324		541	389	12600	1050	4750	1840	78.1	633	4270	5560	16600	10400
TICs	ug/kg	135400	309100	0	35700	13100	5460	54700	7010	57140	109900	27820	143000	16290	37680	6730	51600	1283000	640000	77800	100300
Total SVOCs+TICs	mg/kg	139.0	461.1	0.1	37.2	27.2	6.7	56.4	8.1	61.1	111,4	104.6	152.7	52.4	51.7	8.0	60.7	1382.4	734.8	185.3	198.2
Total VOCs by PID	ea. PPMV	0.5	9.8	0.0	1.3		0.2	0.6		1.4	7.2	6.6	NR	0.3	44.2	1.6	38.9	NR	NR	NR.	NR.

		70.00	Y'E DE	JOHN TO THE						SB-3	OW-5A TES	T TRENCH	SAMPLE ID	ENTIFICAT	ON - DEPTH (f	t) AND SAMPI	LE COLLECT	ION DATE						1 7 21 7	
Parameter	Units	E1-3' 2/28/08	E1-7' 2/28/08	E2-3' 2/28/08	E2-7' 2/28/08	E3-3' 2/28/08	E3-3' DUP 2/28/08	E3-7' 2/28/08	E4-2' 2/28/08	E4-6' 2/28/08	E5-2' 2/28/08	E5-6' 2/28/08	E6-2' 2/28/08	E6-6' 2/28/08	E7-2' 2/29/08	E7-6' 2/29/08	E8-2' 2/29/08	E8-6' 2/29/08	E9-2' 2/29/08	E9-6' 2/29/08	E10-1' 2/29/08	E10-1' DUP 2/29/08	E10-5' 2/29/08	E11-2' 2/29/08	E11-6' 2/29/08
Acenaphthene	ug/kg	107	6440	5410	1740	67	106	997	1480	1560	70.9	1600			308	1570		6200		1710	26.2	39.6	203		2120
Acenaphthylene	ug/kg	135									95.3		150		82.2		133		127	1/01/21	93.4	119	57.2	127	
Anthracene	ug/kg	421	3760	1340	838	72.3	158	184		361	110	541			736	514	156	2600	156	270	137	189	200	167	575
Benzo(a)anthracene	ug/kg	1970	6090	566	986	87.1	334	176	108	329	112	570	629	345	1190	592	238			258	298	352	458	186	764
Benzo(a)pyrene	ug/kg	1650	4340	448	807	68.2	244	177	125	303	134	406	443	328	1050	559	239	1720	354	308	321	378	361	275	784
Benzo(b)floroanthene	ug/kg	1720	3850	431	808	82.1	235	194	136	384	187	455	528	303	1210	630	411	1990	362	324	506	539	478	433	916
Benzo(g,h,i)perylene	ug/kg	1270	2660	325	586	63.7	164	168	116	288	186	451	388	280	665	439	233	825	339	235	340	348	205	394	607
Benzo(k)fluoranthene	ug/kg	1710	3240	324	549	62.4	114	80.4	109	242	126	430	436	294	915	423	226	1810	307	257	315	389	392	232	694
2-Chloronaphthalene	ug/kg																								
4-Chloroaniline	ug/kg																								
Carbazole	ug/kg	259	2040		452	52.8	102				49.1		185		426		46.4	1540	28.7		47.1	73.2	112	50.7	
Chrysene	ug/kg	2210	6210	632	1030	111	358	215	149	387	146	797	747	300	1200	636	317	3050	262	310	374	445	671	288	1020
1,2-Dichlorobenzene	ug/kg		142	139	75						40.7						79.5				119	96.6			
1,4-Dichlorobenzene	ug/kg		144	35	28.1															49.5					
Dibenzo(a,h)anthracene	ug/kg	415	994	132	191	33.3	64.1	57	46	129	59.2		172		258	151	91.3	392	120	95.9	112	124	75.3	122	259
Dibenzofuran	ug/kg	98.4	4040	3110	1040	375	376	551	688	978	101	1080	273		249	939	26.2	4130	30.3	935	33	39.3	126	124	1320
Di-n-butyl phthalate	ug/kg			362																					
bis(2-ethylhexyl)phthalate	ug/kg	67.6	1710	868	706	80.8	70	328	150	486	81.7	543	463				241		312	194	513	464	127	147	
Fluoroanthene	ug/kg	3720	14200	1660	2220	96	621	312	211	654	139	1020	1520	710	3400	1560	438	7410	249	547	551	685	1730	355	1510
Fluorene	ug/kg	92.1	10900	8980	2920	220	250	1570	2360	2940	166	2910	89	179	419	2690		10500		2790		66.1	347	76.2	4020
Ideno(1,2,3-c,d)pyrene	ug/kg	1180	2600	275	535	53.2	151	151	104		155	363	332		624	370	216	897	307	213	299	324	217	313	506
2-Methylnaphthalene	ug/kg	330	4360			6320	6390	1590		2840	1230	8870	271		231		153	12400	295	2470	177	257	1350	2140	14300
4-Nitroaniline	ug/kg																								
Naphthalene	ug/kg	167	859		345	3580	3420	773		555	391	1200	136		227		48.3		95.1		58.2	58.8	311	669	1380
N-Nitrosodiphenylamine	ug/kg																								
Phenanthrene	ug/kg	2160	35600	23900	9210	1100	1570	4700		5710	553	7250	1320	120	3170	7300	251	28900	244	6450	305	401	1580	691	10000
Pyrene	ug/kg	3630	13600	2110	2160	127	606	366	492	786	173	1340	1290	706	2740	1330	446	6570	238	568	602	747	1430	415	1520
TICs	ug/kg	11840	1050000	104800	164800	33860	32420	138700	155600	318000	34840	478500	72300	248000	9970	314500	16430	825000	7220	252600	74500	41010	30530	17830	537900
Total SVOCs+TICs	PPM	35.2	1177.8	155.8	192.0	46.5	47.8	151.3	161.9	336.9	39.1	508.3	81.7	251.6	29.1	334.2	20.4	918.4	11.3	270.6	79.7	47.1	41.0	25.0	580.2
Total VOCs by PID	eq. PPMV	0.9	166.0	122.0	122.0	3.8	3.8	70.4	77.1	65.0	3.6	43.3	2.8	20.6	1.4	95.6	0.0			46.8	2.9		63.4	0.3	

Notes:

= Total SVOCs+TICs greater than 500 ppm Water table is at 4-6 feet below grade. eq. PPMV = Equivalent Parts Per Million by Volume

NR = Not Recorded; PID was not working properly on 3/31/08.

PID = Photoionization Detector
PPM - Parts Per Million or Milligrams per Kilogram

SVOCs+TICs = Semi-Volatile Organic Compounds plus Tentatively Identified Compounds TICs = Tentatively Identified Compounds

ug/kg = Micrograms per Kilogram

VOCs = Volatile Organic Compounds

APPENDIX A: LABORATORY ANALYTICAL RESULTS

Woodard & Curran

ExxonMobil Terminal 31020, Tappan, NY

PO#4509389305 WBS#08

Accutest Job Number: J84460

Sampling Date: 02/28/08

Report to:

Woodard & Curran 1520 Highland Avenuet Cheshire, CT 06410

ATTN: Anne Proctor

Total number of pages in report: 78

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Vincent J. Pugliese

President

Sections:

Table of Contents

	_	
	1	
~		

Section 1: Sample Summary	3
Section 2: Sample Results	5
2.1: J84460-1: TP1-4	б
2.2: J84460-2: TP1-8	9
2.3: J84460-3: TP2-2	12
2.4: J84460-4: TP2A-2	15
2.5: J84460-5: TP2A-6	18
2.6: J84460-6: TP4-2	21
2.7: J84460-7: TP4-6	24
2.8: J84460-8: TP3-3	27
2.9: J84460-9: TP3-7	30
2.10 : J84460-10: FB-022808	33
2.11: J84460-11: E1-3	36
2.12: J84460-12: E5-6	39
2.13 : J84460-13: E6-2	42
2.14: J84460-14: E6-6	45
2.15: J84460-15: E1-7	48
2.16: J84460-16: E2-3	51
2.17: J84460-17: E2-7	54
2.18: J84460-18: E3-3	57
2.19: J84460-19: E3-3 DUP	60
2.20: J84460-20: E3-7	63
2.21: J84460-21: E4-2	66
2.22: J84460-22: E4-6	69
2.23: J84460-23: E5-2	72
Section 3: Misc. Forms	75
3.1: Chain of Custody	76

__

Sample Summary

Woodard & Curran

Job No:

J84460

ExxonMobil Terminal 31020, Tappan, NY Project No: PO#4509389305 WBS#08

Sample Number	Collected Date	Time By	Received	Matr: Code		Client Sample ID
J84460-1	02/28/08	10:15 MR	02/29/08	SO	Soil	TP1-4
J844G0-2	02/28/08	10:20 MR	02/29/08	so	Soil	TP1-8
J84460-3	02/28/08	10:50 MR	02/29/08	so	Soil	TP2-2
J844G0-4	02/28/08	11:05 MR	02/29/08	so	Soil	TP2A-2
J84460-5	02/28/08	11:10 MR	02/29/08	so	Soil	TP2A-6
J84460-6	02/28/08	11:25 MR	02/29/08	so	Soil	TP4-2
J844GO-7	02/28/08	11:35 MR	02/29/08	so	Soil	TP4-6
J84460-8	02/28/08	11:50 MR	02/29/08	SO	Soil	ТР3-3
J84460-9	02/28/08	11:55 MR	02/29/08	SO	Soil	TP3-7
J84460-10	02/28/08	12:00 MR	02/29/08	AQ	Field Blank Soil	FB-022808
J84460-11	02/28/08	13:05 MR	02/29/08	SO	Soil	E1-3
J84460-11D	02/28/08	13:05 MR	02/29/08	SO	Soil Dup/MSD	E1-3 MSD
J84460-11S	02/28/08	13:05 MR	02/29/08	so	Soil Matrix Spike	E1-3 MS

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Summary (continued)

Woodard & Curran

Job No:

J84460

ExxonMobil Terminal 31020, Tappan, NY Project No: PO#4509389305 WBS#08

Sample Number	Collected Date	l Time By	Received	Matr: Code		Client Sample ID
J84460-12	02/28/08	14:15 MR	02/29/08	so	Soil	E5-6
J84460-13	02/28/08	14:35 MR	02/29/08	so	Soil	E6-2
J84460-14	02/28/08	14:40 MR	02/29/08	so	Soil	E6-6
J84460-15	02/28/08	13:10 MR	02/29/08	so	Soil	E1-7
J84460-16	02/28/08	13:20 MR	02/29/08	so	Soil	E2-3 .
J84460-17	02/28/08	13:25 MR	02/29/08	so	Soil	E2-7
J84460-18	02/28/08	13:30 MR	02/29/08	so	Soil	E3-3
J84460-19	02/28/08	13:35 MR	02/29/08	so	Soil	E3-3 DUP
J84460-20	02/28/08	13:45 MR	02/29/08	so	Soil	E3-7
J84460-21	02/28/08	13:50 MR	02/29/08	so	Soil	Ę4-2
J84460-22	02/28/08	13:55 MR	02/29/08	so	Soil	E4-6
J84460-23	02/28/08	14:10 MR	02/29/08	so	Soil	E5-2

Sample Results	
Report of Analysis	

NAP

Page 1 of 3

Client Sample ID: TP1-4

Lab Sample ID: Matrix: J84460-1

J8440U-1

SO - Soil SW846 8270C SW846 3550B Date Sampled: Date Received:

Percent Solids: 51.8

02/29/08 51.8

02/28/08

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

File ID DF Analyzed By P

File ID Run #1 a F73497.D DF Analyzed 1 03/05/08

Prep Date 03/01/08

Prep Batch OP31516 Analytical Batch

EF3504

Run #2

Initial V

Initial Weight 5.1 g Final Volume 1.0 ml

Run #1 Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	1900	240	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	1900	510	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	1900	390	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	1900	460	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	7600	420	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	7600	690	ug/kg	
95-48-7	2-Methylphenol	ND	760	370	ug/kg	
	3&4-Methylphenol	ND	760	470	ug/kg	
88-75-5	2-Nitrophenol	ND	1900	440	ug/kg	
100-02-7	4-Nitrophenol	ND	7600	670	ug/kg	
87-86-5	Pentachlorophenol	ND	3800	400	ug/kg	
108-95-2	PhenoI	ND	760	350	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	1900	720	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	1900	7G0	ug/kg	
83-32-9	Acenaphthene	159	760	120	ug/kg	J
208-96-8	Acenaphthylene	ND	. 760	77	ug/kg	
120-12-7	Anthracene	ND	760	350	ug/kg	
56-55-3	Benzo(a)anthracene	235	760	78	ug/kg	J
50-32-8	Benzo(a) pyrene	239	760	190	ug/kg	J
205-99-2	Benzo(b)fluoranthene	286	760	120	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	311	760	150	ug/kg]]]
207-08-9	Benzo(k)fluoranthene	302	760	160	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	760	170	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	760	140	ug/kg	
91-58-7	2-Chloronaphthalene	ND	760	110	ug/kg	
106-47-8	4-Chloroaniline	964	1900	140	ug/kg	J
86-74-8	Carbazole	ND	760	130	ug/kg	
218-01-9	Chrysene	284	760	150	ug/kg	J
111-91-1	bis(2-Chloroethoxy) methane	ND	760	150	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	760	170	ug/kg	
108-G0-1	bis(2-Chloroisopropyl)ether	ND	760	220	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	760	110	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TP1-4

Lab Sample ID: Matrix:

J84460-1

SO - Soil

ExxonMobil Terminal 31020, Tappan, NY

SW846 8270C SW846 3550B

Date Sampled: 02/28/08

Date Received: 02/29/08

Percent Solids: 51.8

ABN TCL List

Method: Project:

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	760	130	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	760	110	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	760	100	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	760	120	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	760	150	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1900	270	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	760	97	ug/kg	
132-64-9	Dibenzofuran	ND	760	75	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	760	110	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	760	160	ug/kg	
84-66-2	Diethyl phthalate	ND	760	130	ug/kg	
131-11-3	Dimethyl phthalate	ND	760	100	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	760	230	ug/kg	
206-44-0	Fluoranthene	357	760	70	ug/kg	J
86-73-7	Fluorene	98.1	760	76	ug/kg	Ĵ
118-74-1	Hexachlorobenzene	ND	760	180	ug/kg	_
87-68-3	Hexachlorobutadiene	ND	760	180	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	7600	180	ug/kg	
67-72-1	Hexachloroethane	ND	1900	160	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	760	350	ug/kg	
78-59-1	Isophorone	ND	760	120	ug/kg	
91-57-6	2-MethyInaphthalene	ND	760	340	ug/kg	
88-74-4	2-Nitroaniline	ND	1900	240	ug/kg	
99-09-2	3-Nitroaniline	ND	1900	250	ug/kg	
100-01-6	4-Nitroaniline	ND	1900	220	ug/kg	
91-20-3	Naphthalene	ND	760	86	ug/kg	
98-95-3	Nitrobenzene	ND	760	130	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	760	130	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1900	83	ug/kg	
85-01-8	Phenanthrene	ND	760	95	ug/kg	
129-00-0	Pyrene	369	760	130	ug/kg	J
120-82-1	1,2,4-Trichlorobenzene	ND	760	120	ug/kg	•
					0 0	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
367-12-4	2-Fluorophenol	73%			05%	
4165-62-2	Phenol-d5	75%		34-1	.06%	
118-79-6	2,4,6-Tribromophenol	88%		30-1	.26%	
4165-60-0	Nitrobenzene-d5	82%		36-1	15%	
321-60-8	2-Fluorobiphenyl	69%		44-1	12%	
	- -					

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: TP1-4

Lab Sample ID:

J84460-1 SO - Soil

Matrix: Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

SW846 8270C SW846 3550B

02/28/08 Date Sampled: Date Received: 02/29/08

Percent Solids: 51.8

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	77%		42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
	system artifact system artifact/aldol-condensa system artifact system artifact system artifact Benzenamine, -methyl- Benzene, 1-chloronitro- unknown -Naphthalenol Benzenamine, -chloronitro- 9,10-Anthracenedione, -hydro 9,10-Anthracenedione, -dihyd unknown	xy-	2.10 3.08 3.16 3.25 3.39 6.62 8.93 10.34 12.79 14.88 18.76 19.73 20.37 21.58 23.28 23.42 23.56 24.06 24.29 24.33 24.79 24.98 25.99	1900 5400 1700 1700 240000 1600 5300 3700 3800 14000 2500 6100 2200 1600 1900 5500 1900 21000 8700 8100 1500 1900 27000 135400	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg

(a) Elevated detection limit due to low volume of sample extracted.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client San Lab Samp Matrix:					Date Sampled Date Received		
Method: Project:			SW846 3550B minal 31020, Ta	annan. NY	Percent Solid	s: 61.0	
110,000			·				
	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1 a	F73498.D	1	03/05/08	NAP	03/01/08	OP31516	EF3504
Run #2	F73504.D	2	03/05/08	NAP	03/01/08	OP31516	EF3504
	Initial Weight	Final V	olume				·
Run #1	5.1 g	1.0 ml					
Run #2	5.1 g	1.0 ml					

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	1600	210	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	1600	440	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	1600	330	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	1600	390	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	6400	350	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	6400	590	ug/kg	
95-48-7	2-Methylphenol	ND	640	310	ug/kg	
	3&4-Methylphenol	ND	G40	400	ug/kg	
88-75-5	2-Nitrophenol	ND	1600	370	ug/kg	
100-02-7	4-Nitrophenol	ND	6400	570	ug/kg	
87-86-5	Pentachlorophenol	ND	3200	340	ug/kg	
108-95-2	Phenol	ND	640	300	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	1600	610	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	1600	650	ug/kg	
83-32-9	Acenaphthene	15600	640	100	ug/kg	
208-96-8	Acenaphthylene	198	640	65	ug/kg	J
120-12-7	Anthracene	3270	640	300	ug/kg	
56-55-3	Benzo(a)anthracene	2980	640	67	ug/kg	
50-32-8	Benzo(a) pyrene	1280	640	. 160	ug/kg	
205-99-2	Benzo(b)fluoranthene	1390	640	110	ug/kg	
191-24-2	Benzo(g,h,i)perylene	726	640	130	ug/kg	
207-08-9	Benzo(k)fluoranthene	1000	640	140	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	640	140	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	640	120	ug/kg	
91-58-7	2-Chloronaphthalene	ND	640	97	ug/kg	
106-47-8	4-Chloroaniline	1100	1600	120	ug/kg	J
86-74-8	Carbazole	2980	640	110	ug/kg	
218-01-9	Chrysene	3020	640	130	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	640	130	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	640	150	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	640	190	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	640	92	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TP1-8

Lab Sample ID: J8
Matrix: S6

J84460-2 SO - Soil

SO - Soil

SW846 8270C SW846 3550B ExxonMobil Terminal 31020, Tappan, NY Date Sampled: 02/28/08 Date Received: 02/29/08 Percent Solids: 61.0

ABN TCL List

Method:

Project:

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	640	110	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	640	97	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	640	86	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	640	100	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	640	130	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1600	230	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	265	640	83	ug/kg	J
132-64-9	Dibenzofuran	11600	640	63	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	640	89	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	640	130	ug/kg	
84-66-2	Diethyl phthalate	ND	640	110	ug/kg	
131-11-3	Dimethyl phthalate	ND	640	87	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	640	190	ug/kg	
206-44-0	Fluoranthene	14700	640	60	ug/kg	
86-73-7	Fluorene	12200	G40	65	ug/kg	
118-74-1	Hexachlorobenzene	ND	640	160	ug/kg	
87-68-3	Hexachlorobutadiene	ND	640	150	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	6400	150	ug/kg	
67-72-1	Hexachloroethane	ND	1600	130	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	685	640	300	ug/kg	
78-59-1	Isophorone	ND	640	100	ug/kg	
91-57-6	2-Methylnaphthalene	17600	640	290	ug/kg	
88-74-4	2-Nitroaniline	.ND	1600	200	ug/kg	
99-09-2	3-Nitroaniline	ND	1600	210	ug/kg	
100-01-6	4-Nitroaniline	1890	1600	180	ug/kg	
91-20-3	Naphthalene	11800	640	73	ug/kg	
98-95-3	Nitrobenzene	ND	640	110	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	640	110	ug/kg	
86-30-6	N-Nitrosodiphenylamine	433	1600	71	ug/kg	J
85-01-8	Phenanthrene	35300 ^b	1300	160	ug/kg	
129-00-0	Pyrene	12000	640	110	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	640	100	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	76%	77%	26-1	05%	
4165-62-2	Phenol-d5	79%	78%	34-1		
118-79-6	2,4,6-Tribromophenol	92%	92%	30-1		
4165-60-0	Nitrobenzene-d5	85%	77%	36-1		
321-60-8	2-Fluorobiphenyl	72%	72%	44-1		

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 3 of 3

Client Sample ID: TP1-8

Lab Sample ID: Matrix:

J84460-2

SO - Soil

SW846 8270C SW846 3550B

ExxonMobil Terminal 31020, Tappan, NY

Date Sampled: 02/28/08 Date Received: 02/29/08

Percent Solids: 61.0

ABN TCL List

Method:

Project:

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	81%	79%	42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
	system artifact		3.08	5000	ug/kg J
	system artifact		3.39	210000	ug/kg J
496-11-7	Indane		6.07	5700	ug/kg JN
	Benzene, -chloronitro-		8.93	8500	ug/kg J
	Quinoline, -methyl-		10.05	4000	ug/kg J
90-12-0	Naphthalene, 1-methyl-		10.11	12000	ug/kg JN
92-52-4	Biphenyl		10.99	4500	ug/kg JN
	Naphthalene dimethyl		11.34	4400	ug/kg J
	Naphthalene dimethyl		11.54	4900	ug/kg J
	Naphthalene dimethyl		11.79	3000	ug/kg J
	unknown		14.65	3300	ug/kg J
	Benzenamine, -chloronitro-		14.90	31000	ug/kg J
	Dichloro-nitroaniline		15.18	11000	ug/kg J
132-65-0	Dibenzothiophene		15.51	3100	ug/kg JN
	unknown		17.24	4700	ug/kg J
10544-50-0	Cyclic octaatomic sulfur		18.46	19000	ug/kg JN
	9,10-Anthracenedione, -dihyd	гох	19.74	10000	ug/kg J
	Fluoranthene, -methyl-		19.80	2900	ug/kg J
	9,10-Anthracenedione, -diami	no-	22.98	8100	ug/kg J
	unknown		23.28	8800	ug/kg J
	unknown		23.56	6900	ug/kg J
	unknown		24.08	66000	ug/kg]
	unknown		24.29	5300	ug/kg J
	unknown		24.41	3000	ug/kg J
	unknown		24.98	16000	ug/kg J
	unknown		26.03	63000	ug/kg J
	Total TIC, Semi-Volatile			309100	ug/kg J

(a) Elevated detection limit due to low volume of sample extracted.

(b) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Вy

OYA

Client Sample ID: TP2-2 Lab Sample ID:

File ID

3E12897.D

J84460-3

SO - Soil

Date Sampled: 02/28/08

03/01/08

Matrix: Method:

SW846 8270C SW846 3550B

Percent Solids: 86.0

Date Received: 02/29/08

Project:

ExxonMobil Terminal 31020, Tappan, NY

Analyzed

03/03/08

Prep Date Prep Batch OP31396

Analytical Batch E3E563

Run #1 Run #2

Initial Weight Final Volume

Run #1 30.3 g 1.0 ml

DF

1

Run #2

ABN TCL List

ABN TCL I	JIST.					
CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	24	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	52	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	40	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	47	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	770	42	ug/kg	-
534-52-1	4,6-Dinitro-o-cresol	ND	770	70	ug/kg	
95-48-7	2-Methylphenol	ND	77	37	ug/kg	
	3&4-Methylphenol	ND	77	48	ug/kg	
88-75-5	2-Nitrophenol	ND	190	45	ug/kg	
100-02-7	4-Nitrophenol	ND	770	G8	ug/kg	
87-86-5	Pentachlorophenol	ND	380	40	ug/kg	
108-95-2	Phenol	ND	77	36	ug/kg	
95-95-4	·2,4,5-Trichlorophenol	ND	190	73	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	78	ug/kg	
83-32-9	Acenaphthene	ND	77	12	ug/kg	
208-96-8	Acenaphthylene	14.3	77	7.8	ug/kg	J
120-12-7	Anthracene	ND	77	35	ug/kg	
56-55-3	Benzo(a)anthracene	14.7	77	7.9	ug/kg	J
50-32-8	Вепго(а)ругепе	24.3	77	19	ug/kg	J
205-99-2	Benzo(b)fluoranthene	ND	77	13	ug/kg	
191-24-2	Benzo(g,h,i) perylene	26.5	77	15	ug/kg	J
207-08-9	Benzo(k)fluoranthene	ND	77	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	77	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	77	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	77	12	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	ND	77	13	ug/kg	
218-01-9	Chrysene	ND	77	16	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	77	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether-	ND	77	18	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	77	22	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	77	·11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TP2-2

Lab Sample ID: J84460-3 Matrix: SO - Soil

SO - Soil SW846 8270C SW846 3550B Date Sampled: 02/28/08
Date Received: 02/29/08
Percent Solids: 86.0

Method: SW846 8270C SW846 3550B
Project: ExxonMobil Terminal 31020, Tappan, NY

ARN	TCL	Lief
UDIA	100	וכועו

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	77	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	77	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	77	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	77	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	77	15	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	28	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	77	9.9	ug/kg	
132-64-9	Dibenzofuran	ND	77	7.6	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	77	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	77	16	ug/kg	
84-66-2	Diethyl phthalate	ND	77	13	ug/kg	
131-11-3	Dimethyl phthalate	ND	77	10	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	77	23	ug/kg	
206-44-0	Fluoranthene	13.9	77	7.1	ug/kg	j
86-73-7	Fluorene	ND	77	7.8	ug/kg	•
118-74-1	Hexachlorobenzene	ND	77	19	ug/kg	
87-68-3	Hexachlorobutadiene	ND	77	18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	770	18	ug/kg	
67-72-1	Hexachloroethane	ND	190	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	77	36	ug/kg	
78-59-1	Isophorone	ND	77	12	ug/kg	
91-57-6	2-Methylnaphthalene	ND	77	34	ug/kg	
88-74-4	2-Nitroaniline	ND	190	24	ug/kg	
99-09-2	3-Nitroaniline	ND	190	26	ug/kg	
100-01-6	4-Nitroaniline	ND	190	22	ug/kg	
91-20-3	Naphthalene	ND	77	8.7	ug/kg	
98-95-3	Nitrobenzene	ND	77	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	77	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	8.4	ug/kg	
85-01-8	Phenanthrene	9.6	77	9.6	ug/kg	J
129-00-0	Pyrene	20.2	77	13	ug/kg	Ĵ
120-82-1	1,2,4-Trichlorobenzene	ND	77	12	ug/kg	•
	• • • • • • • • • • • • • • • • • • • •					
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limi	ts	
367-12-4	2-Fluorophenol	58%		26-10		
4165-62-2	Phenol-d5	58%		34-10	16%	
118-79-6	2,4,6-Tribromophenol	78%		30-13	26%	
4165-60-0	Nitrobenzene-d5	52%		36-13	15%	
321-60-8	2-Fluorobiphenyl	55%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TP2-2

Lab Sample ID:

J84460-3 SO - Soil Date Sampled: Date Received:

Matrix: Method:

SW846 8270C SW846 3550B

Date Received: 02/29/08 Percent Solids: 86.0

02/28/08

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
1718-51-0	Terphenyl-d14	59%		42-133%		
CAS No.	Tentatively Identified Compe	R.T.	Est. Conc.	Units	Q	
	system artifact system artifact system artifact system artifact/aldol-condensa system artifact system artifact Total TIC, Semi-Volatile	tion	3.07 3.16 3.24 3.36 21.30 22.02	540 170 200 23000 210 250	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	J J J

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Page 1 of 3

Client Sample ID: TP2A-2

Lab Sample ID: J84460-4 Matrix: SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08 Date Received: 02/29/08

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

Percent Solids: 54.5

Run #	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	#1 F73499.D	1	03/05/08	NAP	03/01/08	OP31516	EF3504
l							

Run #2

Initial Weight Final Volume 1.0 ml 5.2 g

Run #1 Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	1800	230	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	1800	480	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	1800	370	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	1800	430	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	7100	390	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	7100	650	ug/kg	
95-48-7	2-Methylphenol	ND	710	340	ug/kg	
	3&4-Methylphenol	ND	710	440	ug/kg	
88-75-5	2-Nitrophenol	ND	1800	410	ug/kg	
100-02-7	4-Nitrophenol	ND	7100	620	ug/kg	
87-86-5	Pentachlorophenol	ND	3500	370	ug/kg	
108-95-2	Phenol	ND	710	330	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	1800	670	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	1800	710	ug/kg	
83-32-9	Acenaphthene	971	710	110	ug/kg	
208-96-8	Acenaphthylene	ND	710	72	ug/kg	
120-12-7	Anthracene	ND	710	320	ug/kg	
56-55-3	Benzo(a)anthracene	ND	710	73	ug/kg	
50-32-8	Benzo(a)pyrene	ND	710	170	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	710	120	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	710	140	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	710	150	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	710	150	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	710	130	ug/kg	
91-58-7	2-Chloronaphthalene	ND	710	110	ug/kg	
106-47-8	4-Chloroaniline	ND	1800	130	ug/kg	
86-74-8	Carbazole	ND	710	120	ug/kg	
218-01-9	Chrysene	ND	710	140	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	710	140	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	710	160	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	710	210	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	710	100	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TP2A-2

Lab Sample ID: J84460-4 Matrix: SO - Soil Date Sampled: 02/28/08 Date Received: 02/29/08 Percent Solids: 54.5

Method: Project:

SW846 8270C SW846 3550B ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	710	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	710	110	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	710	95	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	710	110	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	710	140	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1800	260	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	710	91	ug/kg	
132-64-9	Dibenzoluran	254	710	70	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	710	98	ug/kg	_
117-84-0	Di-n-octyl phthalate	ND	710	140	ug/kg	
84-66-2	Diethyl phthalate	ND	710	120	ug/kg	
131-11-3	Dimethyl phthalate	ND	710	96	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	710	210	ug/kg	
206-44-0	Fluoranthene	ND	710	66	ug/kg	
86-73-7	Fluorene	235	710	71	ug/kg	j
118-74-1	Hexachlorobenzene	ND	710	170	ug/kg	-
87-68-3	Hexachlorobutadiene	ND	710	160	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	7100	160	ug/kg	
67-72-1	Hexachloroethane	ND	1800	150	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	710	330	ug/kg	
78-59-1	Isophorone	ND	710	110	ug/kg	
91-57-6	2-Methylnaphthalene	ND	710	320	ug/kg	
88-74-4	2-Nitroaniline	ND	1800	220	ug/kg	
99-09-2	3-Nitroaniline	ND	1800	240	ug/kg	
100-01-6	4-Nitroaniline	ND	1800	200	ug/kg	
91-20-3	Naphthalene	ND	710	80	ug/kg	
98-95-3	Nitrobenzene	ND	710	120	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	710	120	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1800	78	ug/kg	
85-01-8	Phenanthrene	ND	710	88	ug/kg	
129-00-0	Pyrene	ND	710	120	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	710	110	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	74%			05%	
4165-62-2	Phenol-d5	76%			06%	
118-79-6	2,4,6-Tribromophenol	89%		30-1	26%	
4165-60-0	Nitrobenzene-d5	80%			15%	
321-60-8	2-Fluorobiphenyl	69%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TP2A-2

Lab Sample ID:

J84460-4

SO - Soil SW846 8270C SW846 3550B Date Sampled: 02/28/08 Date Received: 02/29/08

Percent Solids: 54.5

Method: Project:

Matrix:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1718-51-0	Terphenyl-d14	75%		42-133%		
CAS No.	Tentatively Identified Compe	ounds	R.T.	Est. Conc.	Units	Q
10544-50-0	system artifact system artifact/aldol-condensa system artifact system artifact system artifact/aldol-condensa system artifact/aldol-condensa system artifact Quinoline, -dimethyl- unknown Cyclic octaatomic sulfur unknown unknown unknown alkane alkane alkane alkane unknown Total TIC, Semi-Volatile		2.10 3.08 3.16 3.25 3.39 4.31 11.54 18.39 18.44 19.39 19.73 20.35 21.95 22.48 22.98 23.45 24.57	2700 5400 1700 1700 230000 1600 1500 2400 6700 2200 4500 9500 1600 1800 1900 1800 35700	ug/kg]

MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Client Sample ID: TP2A-6 Lab Sample ID: J84460-5 Date Sampled: 02/28/08 Matrix: SO - Soil Date Received: 02/29/08 Method: SW846 8270C SW846 3550B Percent Solids: 67.6 Project: ExxonMobil Terminal 31020, Tappan, NY Analytical Batch File ID DF Analyzed Prep Date Prep Batch Вy Run #1 F73500.D 03/05/08 NAP 03/01/08 OP31516 EF3504 Run #2 Initial Weight Final Volume Run #1 5.2 g 1.0 ml

ABN TCL List

Run #2

IDI TOD	2 140					
CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	1400	180	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	1400	390	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	1400	300	ug/kg	
105-67-9	2.4-Dimethylphenol	ND	1400	350	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	5700	310	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	5700	520	ug/kg	
95-48-7	2-Methylphenol	ND	570	280	ug/kg	
	3&4-Methylphenol	ND	570	350	ug/kg	
88-75-5	2-Nitrophenol	ND	1400	330	ug/kg	
100-02-7	4-Nitrophenol	ND	5700	500	ug/kg	
87-86-5	Pentachlorophenol	ND	2800	300	ug/kg	
108-95-2	Phenol	ND	570	270	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND ·	1400	540	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	1400	570	ug/kg	
83-32-9	Acenaphthene	432	570	90	ug/kg	J
208-96-8	Acenaphthylene	215	570	58	ug/kg	J J
120-12-7	Anthracene	499	570	260	ug/kg	J
56-55-3	Benzo(a)anthracene	1620	570	59	ug/kg	
50-32-8	Benzo(a)pyrene	1010	570	140	ug/kg	
205-99-2	Benzo(b)fluoranthene	696	570	93	ug/kg	
191-24-2	Benzo(g,h,i)perylene	591	570	110	ug/kg	
207-08-9	Benzo(k)fluoranthene	166	570	120	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	570	120	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	570	100	ug/kg	
91-58-7	2-Chloronaplithalene	ND	570	86	ug/kg	
106-47-8	4-Chloroaniline	ND	1400	100	ug/kg	
86-74-8	Carbazole	ND	570	96	ug/kg	
218-01-9	Chrysene	1740	570	120	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	570	110	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	570	130	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	570	170	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	570	81	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TP2A-6

Lab Sample ID: Matrix:

J84460-5 SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08 Date Received:

02/29/08 Percent Solids: 67.6

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

•						
CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	570	97	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	570	86	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	570	76	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	570	92	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	570	110	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1400	210	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	237	570	73	ug/kg	J
132-64-9	Dibenzofuran	160	570	56	ug/kg	j
84-74-2	Di-n-butyl phthalate	ND	570	79	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	570	120	ug/kg	
84-66-2	Diethyl phthalate	ND	570	100	ug/kg	
131-11-3	Dimethyl phthalate	ND	570	77	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	570	170	ug/kg	
206-44-0	Fluoranthene	1720	570	53	ug/kg	
86-73-7	Fluorene	456	570	57	ug/kg	J
118-74-1	Hexachlorobenzene	ND	570	140	ug/kg	
87-68-3	Hexachlorobutadiene	ND	570	130	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	5700	130	ug/kg	
67-72-1	Hexachloroethane	ND	1400	120	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	486	570	270	ug/kg	J
78-59-1	Isophorone	ND	570	92	ug/kg	
91-57-6	2-Methylnaphthalene	ND	570	260	ug/kg	
88-74-4	2-Nitroaniline	ND	1400	180	ug/kg	
99-09-2	3-Nitroaniline	ND	1400	190	ug/kg	
100-01-6	4-Nitroaniline	ND	1400	160	ug/kg	
91-20-3	Naphthalene	ND	570	64	ug/kg	
98-95-3	Nitrobenzene	ND	570	96	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	570	97	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND .	1400	63	ug/kg	
85-01-8	Phenanthrene	893	570	71	ug/kg	
129-00-0	Pyrene	3130	570	99	ug/kg	
120-82 - 1	1,2,4-Trichlorobenzene	ND	570	89	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
367-12-4	2-Fluorophenol	73%		26-1	05%	
4165-62-2	Phenol-d5	75%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	85%		30-1	26%	
4165-60-0	Nitrobenzene-d5	81%		36-1	15%	
321-60-8	2-Fluorobiphenyl	68%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TP2A-6

Lab Sample ID: Matrix:

J844G0-5

SO - Soil

Date Sampled: 02/28/08

Date Received: 02/29/08

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

SW846 8270C SW846 3550B

Percent Solids: 67.6

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
1718-51-0	Terphenyl-d14	75%		42-133%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
10544-50-0	system artifact system artifact system artifact system artifact/aldol-condensa system artifact alkane unknown unknown Cyclic octaatomic sulfur unknown Fluoranthene, -methyl- Chrysene, -methyl- Total TIC, Semi-Volatile	tion	3.08 3.17 3.25 3.39 4.31 15.50 17.24 18.39 18.44 19.74 19.80 22.14	4400 1200 1300 190000 1200 2600 1400 1200 4400 1100 1200 1200 13100	ug/kg	J J J J JN J

MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 1 of 3

Client Sample ID: TP4-2

Lab Sample ID: J84460-6 Matrix: SO - Soil

SO - Soil SW846 8270C SW846 3550B Date Sampled: 02/28/08
Date Received: 02/29/08
Percent Solids: 77.5

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 F73501.D 1 03/05/08 NAP 03/01/08 OP31516 EF3504

Run #2

Run #1 30.3 g 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	210	27	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	210	58	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	210	44	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	210	52	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	850	47	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	850	78	ug/kg	
95-48-7	2-Methylphenol	ND	85	41	ug/kg	
	3&4-Methylphenol	ND	85	53	ug/kg	
88-75-5	2-Nitrophenol	ND	210	49	ug/kg	
100-02-7	4-Nitrophenol	ND	850	75	ug/kg	
87-86-5	Pentachlorophenol	ND	430	45	ug/kg	
108-95-2	Phenol	ND	85	40	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	210	81	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	210	86	ug/kg	
83-32-9	Acenaphthene	ND	85	14	ug/kg	
208-96-8	Acenaphthylene	19.5	85	8.6	ug/kg	J
120-12-7	Anthracene	ND	85	39	ug/kg	
56-55-3	Benzo(a)anthracene	88.9	85	8.8	ug/kg	
50-32-8	Benzo(a)pyrene	84.2	85	21	ug/kg	J
205-99-2	Benzo(b)fluoranthene	89.6	85	14	ug/kg	
191-24-2	Benzo(g,h,i)perylene	70.0	85	17	ug/kg	J
207-08-9	Benzo(k)fluoranthene	ND	85	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	85	19	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	85	16	ug/kg	
91-58-7	2-Chloronaphthalene	ND	85	13	ug/kg	
106-47-8	4-Chloroaniline	ND	210	15	ug/kg	
86-74-8	Carbazole	14.6	85	14	ug/kg	J
218-01-9	Chrysene	93.1	85	17	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	85	17	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	85	20	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	85	25	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	85	12	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ŋ

Client Sample ID:	TP4-2		
Lab Sample ID:	J84460-6	Date Sampled:	02/28/08
Matrix:	SO - Soil	Date Received:	02/29/08
Method:	SW846 8270C SW846 3550B	Percent Solids:	77.5
Project:	ExxonMobil Terminal 31020, Tappan, NY		•

٨	ואם	TOT	т	:-+

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	85	14	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	85	13	ug/kg	
106-46-7	1,4-Dichlorobenzene	13.1	85	11	ug/kg	J
121-14-2	2,4-Dinitrotoluene	ND	85	14	ug/kg	J
606-20-2	2,6-Dinitrotoluene	ND	85	17	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	210	31	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	26.9	85	11	ug/kg	J
132-64-9	Dibenzofuran	ND	85	8.4	ug/kg	4
84-74-2	Di-n-butyl phthalate	109	85	12	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	85	17	ug/kg	
84-66-2	Diethyl phthalate	ND	85	15	ug/kg	
131-11-3	Dimethyl phthalate	ND	85	12	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	71.0	85	26	ug/kg	J
206-44-0	Fluoranthene	151	85	7.9	ug/kg	J
86-73-7	Fluorene	ND	85	8.6	ug/kg	
118-74-1	Hexachlorobenzene	ND	85	21	ug/kg	
87-68-3	Hexachlorobutadiene	ND	85	20	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	850	20	ug/kg	
67-72-1	Hexachloroethane	ND	210	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	63.0	85	40	ug/kg	J
78-59-1	Isophorone	ND	85	14	ug/kg	•
91-57-6	2-Methylnaphthalene	ND	85	38	ug/kg	
88-74-4	2-Nitroaniline	ND	210	27	ug/kg	
99-09-2	3-Nitroaniline	ND	210	28	ug/kg	
100-01-6	4-Nitroaniline	ND	210	24	ug/kg	
91-20-3	Naphthalene	ND	85	9.6	ug/kg	
98-95-3	Nitrobenzene	ND	85	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	85	15	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	210	9.4	ug/kg	
85-01-8	Phenanthrene	61.3	85	11	ug/kg	J
129-00-0	Pyrene	159	85	15	ug/kg	5
120-82-1	1,2,4-Trichlorobenzene	ND	85	13	ug/kg	
	-,-,-				-00	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limi	its	
367-12-4	2-Fluorophenol	73%		26-1		
4165-62-2	Phenol-d5	75%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	87%		30-1	26%	
4165-60-0	Nîtrobenzene-d5	84%		36-1	15%	
321-60-8	2-Fluorobiphenyl	70%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: TP4-2

Lab Sample ID: Matrix:

Method: Project:

J84460-6

SO - Soil SW846 8270C SW846 3550B

ExxonMobil Terminal 31020, Tappan, NY

Date Sampled: 02/28/08 Date Received: 02/29/08

Percent Solids: 77.5

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1718-51-0	Terphenyl-d14	75%		42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
	system artifact system artifact/aldol-condensa system artifact alkane unknown alkane alkane alkane alkane unknown alkane unknown alkane unknown alkane unknown alkane unknown Total TIC, Semi-Volatile	tion	3.08 3.39 4.31 19.46 20.05 20.16 20.80 21.95 22.48 22.98 23.11 23.45 23.91 24.06 24.41 24.56 25.06	590 27000 190 270 260 420 430 420 440 630 390 320 270 2100 320 490 250 7010	ug/kg J ug/kg J

MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Вy

OYA

Page 1 of 3

Client Sample ID: TP4-6

Lab Sample ID: Matrix:

J84460-7

SO - Soil

SW846 8270C SW846 3550B

03/03/08

Date Sampled: Date Received:

Percent Solids: 55.0

02/28/08 02/29/08

Project:

ExxonMobil Terminal 31020, Tappan, NY

DF Analyzed File ID

Prep Date 03/01/08

Prep Batch OP31396

Analytical Batch

E3E563

Run #1 Run #2

Run #1

Run #2

Method:

Initial Weight

3E12904.D

30.1 g

Final Volume 1.0 ml

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	300	39	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	300	82	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	300	63	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	300	74	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1200	66	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1200	110	ug/kg	
95-48-7	2-Methylphenol	ND	120	58	ug/kg	
	3&4-Methylphenol	ND	120	75	ug/kg	
88-75-5	2-Nitrophenol	ND	300	- 70	ug/kg	
100-02-7	4-Nitrophenol	ND	1200	110	ug/kg	
87-86-5	Pentachlorophenol	ND '	600	63	ug/kg	
108-95-2	Phenol	ND	120	56	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	300	110	ug/kg	
88-06 - 2	2,4,6-Trichlorophenol	ND	300	120	ug/kg	
83-32-9	Acenaphthene	ND	120	19	ug/kg	
208-96-8	Acenaphthylene	23.8	120	12	ug/kg	J
120-12-7	Anthracene	ND	120	5G	ug/kg	
56-55-3	Benzo(a)anthracene	281	120	13	ug/kg	
50-32-8	Benzo(a)pyrene	296	120	30	ug/kg	
205-99-2	Benzo(b)fluoranthene	387	120	20	ug/kg	
191-24-2	Benzo(g,h,i)perylene	274	120	24	ug/kg	
207-08-9	Benzo(k)fluoranthene	334	120	26	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	120	26	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	120	22	ug/kg	
91-58-7	2-Chloronaphthalene	33.9	120	18	ug/kg	j
106-47-8	4-Chloroaniline	ND	300	22	ug/kg	
86-74-8	Carbazole	ND	120	20	ug/kg	
218-01-9	Chrysene	383	120	24	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	120	23	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	120	28	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	120	35	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	120	17	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TP4-6

Lab Sample ID: Matrix:

J84460-7

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08 Date Received: 02/29/08

Percent Solids: 55.0

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MI	OL Units	Q
95-50-1	1,2-Dichlorobenzene	ND	120	21	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	120	18	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	120	16	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	120	20	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND .	120	24	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	300	44	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	114	120	16	ug/kg	J
132-64-9	Dibenzofuran	ND .	120	12	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	.120	17	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	120	25	ug/kg	
84-66-2	Diethyl phthalate	ND	120	21	ug/kg	
131-11-3	Dimethyl phthalate	ND	120	16	ug/kg	
117-81-7	bîs(2-Ethylhexyl)phthalate	168	120	36	ug/kg	
206-44-0	Fluoranthene	372	120	11	ug/kg	
86-73-7	Fluorene	ND	120	12	ug/kg	
118-74-1	Hexachlorobenzene	ND	120	29	ug/kg	
87-68-3	Hexachlorobutadiene	ND	120	28	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1200	28	ug/kg	
67-72-1	Hexachloroethane	ND	300	25	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	249	120	56	ug/kg	
78-59-1	Isophorone	ND	120	19	ug/kg	
91-57-6	2-Methylnaphthalene	ND	120	54	ug/kg	
88-74-4	2-Nitroaniline	ND	300	38	ug/kg	
99-09-2	3-Nitroaniline	ND	300	40	ug/kg	
100-01-6	4-Nitroaniline	ND	300	35	ug/kg	
91-20-3	Naphthalene	392	120	14	ug/kg	
98-95-3	Nitrobenzene	ND	120	20	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	120	21	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	300	13	ug/kg	
85-01-8	Phenanthrene	69.8	120	15	ug/kg	J
129-00-0	Pyrene	541	120	21	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	120	19	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2		Limits	
	- 2-Fluorophenol	59%			26-105%	
4165-62-2	Phenol-d5	62%			34-106%	
118-79-6	2,4,6-Tribromophenol	87%			30-126%	
4165-60-0	Nitrobenzene-d5	50%			36-115%	
321-60-8	2-Fluorobiphenyl	59%			44-112%	

ND = Not detected

MDL - Method Detection Limit

RL =. Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TP4-6

Lab Sample ID: Matrix:

J84460-7

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08

Date Received: 02/29/08 Percent Solids: 55.0

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	57%		42-133%	
CAS No.	Tentatively Identified Compe	ounds	R.T.	Est. Conc.	Units Q
	system artifact system artifact/aldol-condensa alkane Naphthalene, -trichloro- Naphthalene, -trichloro- unknown acid Cyclic octaatomic sulfur alkane alkane alkane unknown PAH substance unknown PAH substance alkane alkane alkane alkane alkane alkane alkane unknown	tion	3.07 3.36 14.70 15.06 15.19 17.31 18.30 18.55 18.68 19.05 19.41 19.50 20.37 20.43 21.53 22.04 22.53 22.99 23.44 23.94 24.13 24.41 24.62 25.27 25.82 26.29 26.52	790 36000 500 590 2900 1200 8700 1100 2200 3000 2400 2300 4200 1600 2600 2700 1400 1200 2100 1400 2200 950 4200 1000 2500 2900 1300 57140	ug/kg ug/kg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/k

MDL - Method Detection Limit

N = Indicates presumptive evidence of a compound

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TP3-3

Lab Sample ID: Matrix:

J84460-8

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08 Date Received:

Percent Solids: 63.9

02/29/08

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

1

File ID Analyzed Prep Date DF Run #1 F73502.D 03/05/08 NAP 03/01/08

Prep Batch OP31516

Analytical Batch EF3504

Run #2

Initial Weight Run #1 30.1 g

Final Volume 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	260	33	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	260	71	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	260	54	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	260	63	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1000	57	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1000	95	ug/kg	
95-48-7	2-Methylphenol	ND	100	50	ug/kg	
	3&4-Methylphenol	ND	100	64	ug/kg	
88-75-5	2-Nitrophenol	ND	260	60	ug/kg	
100-02-7	4-Nitrophenol	ND	1000	92	ug/kg	
87-86-5	Pentachlorophenol	ND	520	55	ug/kg	
108-95-2	Phenol	ND	100	49	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	260	99	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	260	110	ug/kg	
83-32-9	Acenaphthene	ND	100	17	ug/kg	
208-96-8	Acenaphthylene	31.2	100	11	ug/kg	J
120-12-7	Anthracene	ND	100	48	ug/kg	
56-55-3	Benzo(a)anthracene	133	100	11	ug/kg	
50-32-8	Benzo(a)pyrene	136	100	26	ug/kg	
205-99-2	Benzo(b)fluoranthene	133	100	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	108	100	21	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	100	22	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	100	23	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	100	19	ug/kg	
91-58-7	2-Chloronaphthalene	ND	100	16	ug/kg	
106-47-8	4-Chloroaniline	ND	260	19	ug/kg	
86-74-8	Carbazole	ND	100	18	ug/kg	
218-01-9	Chrysene	127	100	21	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	100	20	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	100	24	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	100	30	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	100	15	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TP3-3

Lab Sample ID: J84460-8 Matrix:

SO - Soil SW846 8270C SW846 3550B Date Sampled: Date Received:

02/28/08 02/29/08

Percent Solids: 63.9

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	100	18	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	100	16	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	100	14	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	100	17	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	100	21	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	260	38	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	43.7	100	13	ug/kg	J
132-64-9	Dibenzofuran	ND	100	10	ug/kg	-
84-74-2	Di-n-butyl phthalate	ND	100	14	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	100	21	ug/kg	
84-66-2	Diethyl phthalate	ND	100	18	ug/kg	
131-11-3	Dimethyl phthalate	ND	100	14	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	100	31	ug/kg	
206-44-0	Fluoranthene	189	100	9.7	ug/kg	
86-73-7	Fluorene	ND	100	11	ug/kg	
118-74-1	Hexachlorobenzene	ND	100	25	ug/kg	
87-68-3	Hexachlorobutadiene	ND	100	24	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1000	24	ug/kg	
67-72-1	Hexachloroethane	ND	260	22	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	106	100	49	ug/kg	
78-59-1	Isophorone	ND	100	17	ug/kg	
91-57-6	2-Methylnaphthalene	ND	100	47	ug/kg	
88-74-4	2-Nitroaniline	ND	260	33	ug/kg	
99-09-2	3-Nitroaniline	ND	260	35	ug/kg	
100-01-6	4-Nitroaniline	ND	260	30	ug/kg	
91-20-3	Naphthalene	ND	100	12	ug/kg	
98-95-3	Nitrobenzene	ND	100	18	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	100	18	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	260	11	ug/kg	
85-01-8	Phenanthrene	33.6	100	13	ug/kg	J
129-00-0	Pyrene	191	100	18	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	100	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limi	ts	
367-12-4	2-Fluorophenol	68%		26-10		
4165-62-2	Phenol-d5	70%		34-16		
118-79-6	2,4,6-Tribromophenol	84%		30-12		
4165-60-0	Nitrobenzene-d5	77%		36-11		
321-60-8	2-Fluorobiphenyl	66%		44-11	12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TP3-3

Lab Sample ID: Matrix:

Method:

Project:

J844G0-8

SO - Soil

SW846 8270C SW846 3550B

ExxonMobil Terminal 31020, Tappan, NY

Date Sampled: 02/28/08

Date Received: 02/29/08

Percent Solids: 63.9

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	70%		42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
	system artifact system artifact system artifact/aldol-condensa system artifact unknown acid unknown alkane alkane unknown alkane alkane unknown unknown unknown unknown unknown Total TIC, Semi-Volatile	ition	3.08 3.25 3.39 4.31 17.44 18.87 20.16 20.80 21.01 21.95 22.48 22.98 23.45 24.05 24.56 25.06	710 220 34000 210 560 300 230 260 270 400 670 440 300 1000 770 5460	ug/kg J ug/kg J

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

NAP

Page 1 of 3

Client Sample ID: TP3-7

Lab Sample ID: Matrix:

J84460-9

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08 Date Received: 02/29/08

Prep Date

03/01/08

Percent Solids: 56.4

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

03/05/08

File ID DF Analyzed Ву

1

Prep Batch Analytical Batch

OP31516 EF3504

Run #1 Run #2

Initial Weight Run #1

30.2 g

F73503.D

Final Volume 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	290	37	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	290	80	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	290	61	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	290	72	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1200	65	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1200	110	ug/kg	
95-48-7	2-Methylphenol	ND	120	57	ug/kg	
	3&4-Methylphenol	ND	120	73	ug/kg	
88-75-5	2-Nitrophenol	ND	290	68	ug/kg	
100-02-7	4-Nitrophenol	ND	1200	100	ug/kg	
87-86-5	Pentachlorophenol	ND	590	62	ug/kg	
108-95-2	Phenol	ND	120	55	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	290	110	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	290	120	ug/kg	
83-32-9	Acenaphthene	21.8	120	19	ug/kg	J
208-96-8	Acenaphthylene	ND	120	12	ug/kg	
120-12-7	Anthracene	ND	120	54	ug/kg	
56-55-3	Benzo(a)anthracene	169	120	12	ug/kg	
50-32-8	Benzo(a) pyrene	147	120	29	ug/kg	
205-99-2	Benzo(b)fluoranthene	142	120	19	ug/kg	
191-24-2	Benzo(g,h,i)perylene	101	120	23	ug/kg	J
207-08-9	Benzo(k)fluoranthene	126	120	25	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	120	26	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	120	21	ug/kg	
91-58-7	2-Chloronaphthalene	ND	120	18	ug/kg	
106-47-8	4-Chloroaniline	ND	290	21	ug/kg	
86-74-8	Carbazole	ND	120	20	ug/kg	
218-01-9	Chrysene	167	120	24	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	120	23	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	120	27	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	120	34	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	120	17	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TP3-7

Lab Sample ID: Matrix:

J84460-9

SO - Soil

Date Sampled: 02/28/08 Date Received: 02/29/08

SW846 8270C SW846 3550B Method: ExxonMobil Terminal 31020, Tappan, NY Project:

Percent Solids: 56.4

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
	_					`
95-50-1	1,2-Dichlorobenzene	ND	120	20	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	120	18	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	120	16	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	120	19	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	120	23	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	290	43	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	40.8	120	15	ug/kg	j
132-64-9	Dibenzofuran	ND	120	12	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	120	16	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	120	24	ug/kg	
84-66-2	Diethyl phthalate	ND	120	21	ug/kg	
131-11-3	Dimethyl phthalate	ND	120	16	ug/kg	
1 17-81-7	bis(2-Ethylhexyl)phthalate	ND	120	35	ug/kg	
206-44-0	Fluoranthene	319	120	11	ug/kg	
86-73-7	Fluorene	15.6	120	12	ug/kg	J
118-74-1	Hexachlorobenzene	ND	120	28	ug/kg	
87-68-3	Hexachlorobutadiene	ND	120	27	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1200	27	ug/kg	
67-72-1	Hexachloroethane	ND	290	24	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	108	120	55	ug/kg	J
78-59-1	Isophorone	ND	120	19	ug/kg	
91-57-6	2-Methylnaphthalene	ND	120	53	ug/kg	
88-74-4	2-Nitroaniline	ND	290	37	ug/kg	
99-09-2	3-Nitroaniline	ND	290	39	ug/kg	
100-01-6	4-Nitroaniline	ND	290	34	ug/kg	
91-20-3	Naphthalene	ND	120	13	ug/kg	
98-95-3	Nitrobenzene	ND	120	20	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	120	20	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	290	13	ug/kg	
85-01-8	Phenanthrene	22.9	120	15	ug/kg	J
129-00-0	Pyrene	324	120	20	ug/kg	•
120-82-1	1,2,4-Trichlorobenzene	ND	120	18	ug/kg	
					0.0	
CAS No	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
367-12-4	2-Fluorophenol	72%		26-1	05%	
4165-62-2	Phenol-d5	73%			06%	
118-79-6	2,4,6-Tribromophenol	87%		30-1	26%	
4165-60-0	Nitrobenzene-d5	77%			15%	
321-60-8	2-Fluorobiphenyl	69%			12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

Page 3 of 3

Client Sample ID: TP3-7

Lab Sample ID:

J84460-9

Date Sampled: 02/28/08

Matrix: Method: SO - Soil

SW846 8270C SW846 3550B

Date Received: 02/29/08

Project:

ExxonMobil Terminal 31020, Tappan, NY

Percent Solids: 56.4

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
1718-51-0	Terphenyl-d14	75%		42-133%		
CAS No.	Tentatively Identified Compo	R.T.	Est. Conc.	Units	Q	
10544-50-0	system artifact system artifact system artifact system artifact system artifact Sulfur Cyclic octaatomic sulfur unknown Total TIC, Semi-Volatile		2.10 3.08 3.39 4.31 12.70 18.47 19.80	330 810 36000 270 4400 48000 2300 54700	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	J J J J J

MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 1 of 3

Client Sample ID: FB-022808

Lab Sample ID:

J84460-10

AQ - Field Blank Soil

Date Sampled: 02/28/08 Date Received: 02/29/08

Matrix: Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

ExxonMobil Terminal 31020, Tappan, NY

Analytical Batch

Run #1 Run #2

File ID

3E12892.D

03/03/08 OYA

Analyzed

Prep Date 03/01/08

Prep Batch OP31364

E3E563

Initial Volume

1000 ml

Final Volume 1.0 ml

DF

1

Run #1 Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.87	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	1.2	ug/I	
120-83-2	2,4-Dichlorophenol	ND	5.0	1.4	ug/I	
105-67-9	2,4-Dimethylphenol	ND	5.0	1.7	ug/I	
51-28-5	2,4-Dinitrophenol	ND	20	1.I	ug/i	
534-52-1	4,6-Dinitro-o-cresol	ND	20	2.2	ug/I	
95-48-7	2-Methylphenol	ND	2.0	1.0	ug/I	
	3&4-Methylphenol	ND	2.0	1.1	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	1.5	ug/l	
100-02-7	4-Nitrophenol	ND	20	1.6	ug/l	
87-86-5	Pentachlorophenol	ND	10	0.93	ug/l	
108-95-2	Phenol	ND	2.0	0.68	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.1	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	1.0	ug/l	
83-32-9	Acenaphthene	ND	2.0	0.25	ug/l	
208-96-8	Acenaphthylene	ND	2.0	0.31	ug/l	
120-12 -7	Anthracene	· ND	2.0	0.33	ug/l	
56-55-3	Benzo(a)anthracene	ND	2.0	0.35	ug/l	
50-32-8	Велго(а)ругеле	ND	2.0	0.78	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	2.0	0.75	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	2.0	0.36	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	2.0	0.68	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.37	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.64	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.0	0.20	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.35	ug/l	
86-74-8	Carbazole	ND	2.0	0.40	ug/l	
218-01-9	Chrysene	ND	2.0	0.45	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.32	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.67	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.58	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.29	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: FB-022808

Lab Sample ID:

J84460-10

Matrix:

AQ - Field Blank Soil

SW846 8270C SW846 3510C

Date Sampled: 02/28/08 Date Received: 02/29/08

Percent Solids: n/a

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	2.0	0.17	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	2.0	0.15	ug/l	
106-46-7	1.4-Dichlorobenzene	ND	2.0	0.14	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.0	0.54	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.0	0.50	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	0.97	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	2.0	0.48	ug/i	
132-64-9	Dibenzofuran	ND	5.0	0.23	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.40	ug/i	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.48	ug/I	
84-66-2	Diethyl phthalate	ND	2.0	0.34	ug/I	
131-11-3	Dimethyl phthalate	ND	2.0	0.34	ug/i	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.88	ug/I	
206-44-0	Fluoranthene	ND	2.0	0.36	ug/I	
86-73-7	Fluorene	ND	2.0	0.36	ug/l	
118-74-1	Hexachlorobenzene	ND	2.0	0.31	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.13	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	20	0.10	ug/l	
67-72-1	Hexachloroethane	ND	5.0	0.16	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	2.0	0.79	ug/l	
78-59-1	Isophorone	ND	2.0	0.49	ug/l	
91-57-6	2-Methylnaphthalene	ND	2.0	0.76	ug/I	
88-74-4	2-Nitroaniline	ND	5.0	0.50	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.32	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.59	ug/I	
91-20-3	Naphthalene	ND	2.0	0.18	ug/I	
98-95-3	Nitrobenzene	ND	2.0	0.71	ug/I	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.38	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.41	ug/l	
85-01-8	Phenanthrene	ND	2.0	0.28	ug/l	
129-00-0	Pyrene	ND .	2.0	0.37	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.12	ug/l	
	• •				J	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	36%		10-6		
4165-62-2	Phenol-d5	24%		10-5		
118-79-6	2,4,6-Tribromophenol	88%		33-1	25%	
4165-60-0	Nitrobenzene-d5	52%		27-1	20%	
321-60-8	2-Fluorobiphenyl	58%		31-1	11%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: FB-022808

Lab Sample ID:

J84460-10

AQ - Field Blank Soil

Date Sampled:

02/28/08

Matrix: Method:

SW846 8270C SW846 3510C

Date Received: 02/29/08 Percent Solids: n/a

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No. Surrogate Recoveries Run#1 Run#2 Limits 1718-51-0 Terphenyl-d14 69% 31-124% CAS No. Tentatively Identified Compounds R.T. Est. Conc. Units Q system artifact/aldol-condensation 3.32 ug/l 16 21.30 5.3 system artifact ug/l J Total TIC, Semi-Volatile 0 ug/1

MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Ву

NAP

Page 1 of 3

Client Sample ID: E1-3

Lab Sample ID: Matrix:

J84460-11

SO - Soil

Analyzed

03/04/08

Date Sampled: 02/28/08 Date Received: 02/29/08

Percent Solids: 81.7

Method:

SW846 8270C SW846 3550B

ExxonMobil Terminal 31020, Tappan, NY Project: DF

1

Analytical Batch Prep Date Prep Batch 03/01/08 OP31516 EF3503

Run #1 Run #2

Initial Weight 30.2 g

File ID

F73469.D

Final Volume

Run #1

1.0 ml

Run #2

ABN TCL List

95-57-8 2-Chlorophenol ND 200 26 ug/kg	CAS No.	Compound	Result	RL	MDL	Units	Q
120-83-2 2,4-Dichlorophenol ND 200 42 ug/kg 105-67-9 2,4-Dimethylphenol ND 200 49 ug/kg 51-28-5 2,4-Dimitrophenol ND 810 45 ug/kg 534-52-1 4,6-Dimitro-o-cresol ND 810 74 ug/kg 95-48-7 2-Methylphenol ND 81 39 ug/kg 3&4-Methylphenol ND 81 50 ug/kg 88-75-5 2-Nitrophenol ND 200 47 ug/kg 100-02-7 4-Nitrophenol ND 810 71 ug/kg 87-86-5 Pentachlorophenol ND 410 43 ug/kg 108-95-2 Phenol ND 81 38 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 77 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 82 ug/kg 83-32-9 Acenaphthene 107 81 13 ug/kg 120-12-7 Anthracene 421 81 37 ug/kg 120-12-7 Anthracene 421 81 37 ug/kg 50-32-8 Benzo(a)anthracene 1970 81 8.4 ug/kg 50-32-8 Benzo(a)hjluoranthene 1720 81 13 ug/kg 205-99-2 Benzo(b)fluoranthene 170 81 13 ug/kg 101-55-3 4-Bromophenyl plenyl ether ND 81 18 ug/kg 101-55-3 4-Bromophenyl plenyl ether ND 81 15 ug/kg 106-47-8 4-Chloroaniline ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg 107-10-10-10-10-10-10-10-10-10-10-10-10-10-	95-57-8	2-Chlorophenol	ND -	200	26	ug/kg	
105-67-9 2,4-Dimethylphenol	59-50-7		ND	200	55	ug/kg	
S1-28-5	120-83-2	2,4-Dichlorophenol	ND	200	42	ug/kg	
S1-28-5	105-67-9	2,4-Dimethylphenol	ND	200	49	ug/kg	
S-48-7 2-Methylphenol ND 81 39 ug/kg	51-28-5		ND	810	45	ug/kg	
3&4-Methylphenol ND 81 50 ug/kg 88-75-5 2-Nitrophenol ND 200 47 ug/kg 100-02-7 4-Nitrophenol ND 810 71 ug/kg 87-86-5 Pentachlorophenol ND 410 43 ug/kg 108-95-2 Phenol ND 81 38 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 77 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 82 ug/kg 83-32-9 Acenaphthylene 135 81 8.2 ug/kg 208-96-8 Acenaphthylene 135 81 8.2 ug/kg 120-12-7 Anthracene 421 81 37 ug/kg 56-55-3 Benzo(a)anthracene 1970 81 8.4 ug/kg 50-32-8 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(g,h,i)perylene 1270 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710 81 </td <td>534-52-1</td> <td>4,6-Dinitro-o-cresol</td> <td>ND</td> <td>810</td> <td>74</td> <td>ug/kg</td> <td></td>	534-52-1	4,6-Dinitro-o-cresol	ND	810	74	ug/kg	
88-75-5 2-Nitrophenol ND 200 47 ug/kg 100-02-7 4-Nitrophenol ND 810 71 ug/kg 87-86-5 Pentachlorophenol ND 410 43 ug/kg 108-95-2 Phenol ND 81 38 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 77 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 82 ug/kg 83-32-9 Acenaphthene 107 81 13 ug/kg 208-96-8 Acenaphthylene 135 81 8.2 ug/kg 120-12-7 Anthracene 421 81 37 ug/kg 56-55-3 Benzo(a)anthracene 1970 81 8.4 ug/kg 50-32-8 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(b)fluoranthene 1720 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710	95-48-7	2-Methylphenol	ND	81	39	ug/kg	
100-02-7 4-Nitrophenol ND 810 71 ug/kg 87-86-5 Pentachlorophenol ND 410 43 ug/kg 108-95-2 Phenol ND 81 38 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 77 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 82 ug/kg 83-32-9 Acenaphthene 107 81 13 ug/kg 208-96-8 Acenaphthylene 135 81 8.2 ug/kg 120-12-7 Anthracene 421 81 37 ug/kg 56-55-3 Benzo(a)anthracene 1970 81 8.4 ug/kg 50-32-8 Benzo(a)pyrene 1650 81 20 ug/kg 205-99-2 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(k)fluoranthene 1710 81 18 ug/kg 207-08-9 Benzo(k)fluoranthene ND 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether		3&4-Methylphenol	ND	81	50	ug/kg	
87-86-5 Pentachlorophenol ND 410 43 ug/kg 108-95-2 Phenol ND 81 38 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 77 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 82 ug/kg 83-32-9 Acenaphthene 107 81 13 ug/kg 208-96-8 Acenaphthylene 135 81 8.2 ug/kg 120-12-7 Anthracene 421 81 37 ug/kg 56-55-3 Benzo(a)anthracene 1970 81 8.4 ug/kg 50-32-8 Benzo(a)pyrene 1650 81 20 ug/kg 205-99-2 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(g,h,i)perylene 1270 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether	88-75-5	2-Nitrophenol	ND	200	47	ug/kg	
108-95-2 Phenol ND 81 38 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 200 77 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 82 ug/kg 83-32-9 Acenaphthene 107 81 13 ug/kg 208-96-8 Acenaphthylene 135 81 8.2 ug/kg 120-12-7 Anthracene 421 81 37 ug/kg 56-55-3 Benzo(a)anthracene 1970 81 8.4 ug/kg 50-32-8 Benzo(a)pyrene 1650 81 20 ug/kg 205-99-2 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(g,h,i)perylene 1270 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 81 18 ug/kg 85-68-7 Butyl benzyl phthalate	100-02-7	4-Nitrophenol	ND	810	71	ug/kg	
95-95-4 2,4,5-Trichlorophenol ND 200 77 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 200 82 ug/kg 83-32-9 Acenaphthene 107 81 13 ug/kg 208-96-8 Acenaphthylene 135 81 8.2 ug/kg 120-12-7 Anthracene 421 81 37 ug/kg 56-55-3 Benzo(a)anthracene 1970 81 8.4 ug/kg 50-32-8 Benzo(a)pyrene 1650 81 20 ug/kg 205-99-2 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(g,h,i)perylene 1270 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 81 18 ug/kg 85-68-7 Butyl benzyl phthalate ND 81 15 ug/kg 91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	87-86-5	Pentachlorophenol	ND	410	43	ug/kg	
88-06-2 2,4,6-Trichlorophenol ND 200 82 ug/kg 83-32-9 Acenaphthene 107 81 13 ug/kg 208-96-8 Acenaphthylene 135 81 8.2 ug/kg 120-12-7 Anthracene 421 81 37 ug/kg 56-55-3 Benzo(a)anthracene 1970 81 8.4 ug/kg 50-32-8 Benzo(a)pyrene 1650 81 20 ug/kg 205-99-2 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(g,h,i)perylene 1270 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 81 18 ug/kg 85-68-7 Butyl benzyl phthalate ND 81 15 ug/kg 91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	108-95-2	Phenol	ND	81	38	ug/kg	
83-32-9 Acenaphthene 107 81 13 ug/kg 208-96-8 Acenaphthylene 135 81 8.2 ug/kg 120-12-7 Anthracene 421 81 37 ug/kg 56-55-3 Benzo(a)anthracene 1970 81 8.4 ug/kg 50-32-8 Benzo(a)pyrene 1650 81 20 ug/kg 205-99-2 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(g,h,i)perylene 1270 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 81 18 ug/kg 85-68-7 Butyl benzyl phthalate ND 81 15 ug/kg 91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	95-95-4	2,4,5-Trichlorophenol	ND	200	77		
83-32-9 Acenaphthene 107 81 13 ug/kg 208-96-8 Acenaphthylene 135 81 8.2 ug/kg 120-12-7 Anthracene 421 81 37 ug/kg 56-55-3 Benzo(a)anthracene 1970 81 8.4 ug/kg 50-32-8 Benzo(a)pyrene 1650 81 20 ug/kg 205-99-2 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(g,h,i)perylene 1270 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 81 18 ug/kg 85-68-7 Butyl benzyl phthalate ND 81 15 ug/kg 91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	88-06-2	2,4,6-Trichlorophenol	ND	200		ug/kg	
208-96-8 Acenaphthylene 135 81 8.2 ug/kg 120-12-7 Anthracene 421 81 37 ug/kg 56-55-3 Benzo(a)anthracene 1970 81 8.4 ug/kg 50-32-8 Benzo(a)pyrene 1650 81 20 ug/kg 205-99-2 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(g,h,i)perylene 1270 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 81 18 ug/kg 85-68-7 Butyl benzyl phthalate ND 81 15 ug/kg 91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	83-32-9	Acenaphthene	107	81		ug/kg	
56-55-3 Benzo(a)anthracene 1970 81 8.4 ug/kg 50-32-8 Benzo(a)pyrene 1650 81 20 ug/kg 205-99-2 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(g,h,i)perylene 1270 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 81 18 ug/kg 85-68-7 Butyl benzyl phthalate ND 81 15 ug/kg 91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	208-96-8	Acenaphthylene	135	81	8.2	ug/kg	
50-32-8 Benzo(a)pyrene 1650 81 20 ug/kg 205-99-2 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(g,h,i)perylene 1270 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 81 18 ug/kg 85-68-7 Butyl benzyl phthalate ND 81 15 ug/kg 91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	120-12-7	Anthracene	421	81	37	ug/kg	
205-99-2 Benzo(b)fluoranthene 1720 81 13 ug/kg 191-24-2 Benzo(g,h,i)perylene 1270 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 81 18 ug/kg 85-68-7 Butyl benzyl phthalate ND 81 15 ug/kg 91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	56-55-3	Benzo(a)anthracene	1970	81	8,4	ug/kg	
191-24-2 Benzo(g,h,i)perylene 1270 81 16 ug/kg 207-08-9 Benzo(k)fluoranthene 1710 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 81 18 ug/kg 85-68-7 Butyl benzyl phthalate ND 81 15 ug/kg 91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	50-32-8	Вепzо(а)ругепе	1650	81	20		
207-08-9 Benzo (k) fluoranthene 1710 81 18 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 81 18 ug/kg 85-68-7 Butyl benzyl phthalate ND 81 15 ug/kg 91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	205-99-2	Benzo(b) fluoranthene				ug/kg	
101-55-3 4-Bromophenyl phenyl ether ND 81 18 ug/kg 85-68-7 Butyl benzyl phthalate ND 81 15 ug/kg 91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	191-24-2	Benzo(g,h,i)perylene	1270	81		ug/kg	
85-68-7 Butyl benzyl phthalate ND 81 15 ug/kg 91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	207-08-9	Benzo(k)fluoranthene		81		ug/kg	
91-58-7 2-Chloronaphthalene ND 81 12 ug/kg 106-47-8 4-Chloroaniline ND 200 15 ug/kg	101-55-3	4-Bromophenyl phenyl ether				ug/kg	
106-47-8 4-Chloroaniline ND 200 15 ug/kg	85-68-7	Butyl benzyl phthalate					
	91-58-7	2-Chloronaphthalene				ug/kg	
96.74.9 Corborolo 250 91 14 na/ka	106-47-8	4-Chloroaniline					
	86-74-8	Carbazole	259	81	14	ug/kg	
218-01-9 Chrysene 2210 81 16 ug/kg	218-01-9					ug/kg	
111-91-1 bis(2-Chloroethoxy)methane ND 81 16 ug/kg							
111-44-4 bis(2-Chloroethyl)ether ND 81 19 ug/kg	111-44-4						
108-60-1 bis(2-Chloroisopropyl)ether ND 81 24 ug/kg							
7005-72-3 4-Chlorophenyl phenyl ether ND 81 12 ug/kg	7005-72-3	4-Chlorophenyl phenyl ether	ND	81	12	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: E1-3

Lab Sample ID:

Matrix:

Method:

J84460-11

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08 Date Received:

Percent Solids: 81.7

02/29/08

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	81	14	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	81	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	81	11	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	81	13	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	81	16	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	200	29	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	415	81	10	ug/kg	
132-64-9	Dibenzofuran	98.4	81	8.0	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	81	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	81	17	ug/kg	
84-66-2	Diethyl phthalate	ND	81	14	ug/kg	
131-11-3	Dimethyl phthalate	ND	81	11	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	67.6	81	24	ug/kg	J
206-44-0	Fluoranthene	3720	81	7.5	ug/kg	
86-73-7	Fluorene	92.1	81	8.2	ug/kg	
118-74-1	Hexachlorobenzene	ND	81	20	ug/kg	
87-68-3	Hexachlorobutadiene	ND	81	19	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	810	19	ug/kg	
67-72-1	Hexachloroethane	ND	200	17	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	1180	81	38	ug/kg	
78-59-1	Isophorone	ND	81	13	ug/kg	
91-57-6	2-Methylnaphthalene	330	81	36	ug/kg	
88-74-4	2-Nitroaniline	ND	200	26	ug/kg	
99-09-2	3-Nitroaniline	ND	200	27	ug/kg	
100-01-6	4-Nitroaniline	ND	200	23	ug/kg	
91-20-3	Naphthalene	167	81	9.2	ug/kg	
98-95-3	Nitrobenzene	ND	81	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	81	14	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	200	8.9	ug/kg	
85-01-8	Phenanthrene	2160	81	10	ug/kg	
129-00-0	Pyrene	3630	81	14	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	81	13	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
367-12-4	2-Fluorophenol	66%			.05%	
4165-62-2	Phenol-d5	67%		34-1	.06%	
118-79-6	2,4,6-Tribromophenol	71%		30-1	26%	
4165-60-0	Nitrobenzene-d5	75%		36-1	15%	

ND = Not detected

321-60-8

MDL - Method Detection Limit

58%

RL = Reporting Limit

E = Indicates value exceeds calibration range

2-Fluorobiphenyl

J = Indicates an estimated value

44-112%

B = Indicates analyte found in associated method blank

Client Sample ID: E1-3

Lab Sample ID: Matrix:

J84460-11

SO - Soil

SW846 8270C SW846 3550B

ExxonMobil Terminal 31020, Tappan, NY

Date Sampled: Date Received:

02/28/08 02/29/08

Percent Solids:

81.7

ABN TCL List

Method:

Project:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
0	2-11-08-11-11-11-11-11-11-11-11-11-11-11-11-11	*******			
1718-51-0	Terphenyl-d14	63%		42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
90-12-0	system artifact system artifact system artifact/aldoI-condensa Naphthalene, 1-methyl- Naphthalene dimethyl Naphthalene dimethyl alkane alkane 1H-Indene, -phenyl- unknown unknown	tion	2.09 3.07 3.36 10.10 11.33 11.53 14.72 14.78 17.04 17.23 18.86	570 510 26000 220 280 250 230 410 310 410 510	ug/kg J ug/kg J ug/kg JN ug/kg J
82-05-3	11H-Benzofluorene 7H-Benz[de]anthracen-7-one unknown PAH substance 7H-Benz[de]anthracenone unknown Triphenylene, -methyl- unknown unknown PAH substance alkane unknown PAH substance unknown unknown unknown unknown unknown pAH substance unknown PAH substance unknown PAH substance unknown PAH substance		19.78 20.78 21.03 21.15 21.79 22.13 22.95 23.32 23.45 23.56 24.05 24.05 24.96 25.60 25.67 26.11 26.34	500 480 330 290 240 330 310 480 530 1300 2200 370 220 460 220 960	ug/kg J ug/kg J J ug/kg J J ug/kg J J ug/kg J ug/kg J J ug/kg B J ug/kg B J ug/kg ug/kg ug/kg ug/kg J ug/kg J
	Total TIC, Semi-Volatile		MO.07	11840	ug/kg J

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client San Lab Samp Matrix: Method: Project:		84460-12 SO - Soil SW846 8270C	SW846 3550B erminal 31020, Ta	appan, NY	Date Sampled: Date Received: Percent Solids:	02/29/08	
Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	F73472.1	D 1	03/04/08	NAP	03/01/08	OP31516	EF3503

Initial Weight Final Volume Run #1 5.3 g 1.0 ml Run #2

ABN TCL	List					
CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	1800	230	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	1800	480	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	1800	370	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	1800	430	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	7100	390	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	7100	650	ug/kg	
95-48-7	2-Methylphenol	ND	710	340	ug/kg	
	3&4-Methylphenol	ND	710	440	ug/kg	
88-75-5	2-Nitrophenol	ND	1800	410	ug/kg	
100-02-7	4-Nitrophenal	ND	7100	620	ug/kg	
87-86-5	Pentachlorophenol	ND	3500	370	ug/kg	
108-95-2	Phenol	ND	710	330	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	1800	670	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	1800	720	ug/kg	
83-32-9	Acenaphthene	1600	710	110	ug/kg	
208-96-8	Acenaphthylene	ND	710	72	ug/kg	
120-12-7	Anthracene	541	710	330	ug/kg	J
56-55-3	Benzo(a)anthracene	570	710	73	ug/kg	J
50-32-8	Велго(а)ругеле	406	710	170	ug/kg	J
205-99-2	Benzo(b)fluoranthene	455	710	120	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	451	710	140	ug/kg	J
207-08-9	Benzo(k)fluoranthene	430	710	150	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	710	160	ug/kg	
85-G8-7	Butyl benzyl phthalate	ND	710	130	ug/kg	
91-58-7	2-Chloronaphthalene	ND	710	110	ug/kg	
106-47-8	4-Chloroaniline	ND	1800	130	ug/kg	
86-74-8	Carbazole	ND	710	120	ug/kg	
218-01-9	Chrysene	797	710	140	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	710	140	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	710	160	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	710	210	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	710	100	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E5-6

Lab Sample ID:

J84460-12 SO - Soil Date Sampled: 02/28/08 Date Received: 02/29/08

Matrix: Method:

SW846 8270C SW846 3550B

Date Received: 02/29/08 Percent Solids: 53.3

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	710	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	710	110	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	710	95	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	710	110	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	710	140	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1800	260	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	710	91	ug/kg	
132-64-9	Dibenzofuran	1080	710	70	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	710	98	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	710	150	ug/kg	
84-66-2	Diethyl phthalate	ND	710	120	ug/kg	
131-11-3	Dimethyl phthalate	ND	710	96	ug/kg	
117-81-7	bis(2-Ethylhexyi) phthalate	543	710	210	ug/kg	J
206-44-0	Fluoranthene	1020	710	66	ug/kg	_
86-73-7	Fluorene	2910	710	72	ug/kg	
118-74-1	Hexachlorobenzene	ND	710	170	ug/kg	
87-68-3	Hexachlorobutadiene	ND	710	160	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	7100	160	ug/kg	
67-72-1	Hexachloroethane	ND	1800	150	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	363	710	330	ug/kg	J
78-59-1	Isophorone	ND	710	110	ug/kg	
91-57-6	2-Methylnaphthalene	8870	710	320	ug/kg	
88-74-4	2-Nitroaniline	ND	1800	220	ug/kg	
99-09-2	3-Nitroaniline	ND	1800	240	ug/kg	
100-01-6	4-Nitroaniline	ND	1800	200	ug/kg	
91-20-3	Naphthalene	1200	710	80	ug/kg	
98-95-3	Nitrobenzene	ND	710	120	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	710	120	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1800	78	ug/kg	
85-01-8	Phenanthrene	7250	710	88	ug/kg	
129-00-0	Pyrene	1340	710	120	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	710	110	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run#2	Limi	ts	
367-12-4	2-Fluorophenol	78%		26-10	05%	
4165-62-2	Phenol-d5	81%		34-10	06%	
118-79-6	2,4,6-Tribromophenol	90%		30-12	26%	
4165-60-0	Nitrobenzene-d5	86%		36-1	-	
321-60-8	2-Fluorobiphenyl	71%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit E = Indicates value exceeds calibration range

Client Sample ID; E5-6

Lab Sample ID: Matrix:

J84460-12

SO - Soil

Date Sampled: 02/28/08 Date Received: 02/29/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 53.3

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	75%		42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
90-12-0	system artifact alkane Naphthalene, 1-methyl- Naphthalene ethyl Naphthalene dimethyl Naphthalene dimethyl		3.38 9.44 10.11 11.20 11.35 11.54	230000 11000 11000 10000 24000 28000	ug/kg J ug/kg J ug/kg JN ug/kg J ug/kg J ug/kg J
	Naphthalene dimethyl Naphthalene dimethyl alkane Naphthalene trimethyl unknown alkane alkane		11.59 11.79 11.94 12.60 12.86 12.93 13.13 13.16 13.33 13.73 14.16 14.79	14000 13000 9000 11000 12000 16000 11000 8900 11000 18000 17000 23000	ug/kg J
10544-50-0	unknown Cyclic octaatomic sulfur unknown unknown unknown unknown unknown unknown Total TIC, Semi-Volatile		14.98 18.45 18.51 19.75 20.37 22.45 24.06 25.97	18000 41000 56000 37000 28000 9600 23000 18000 478500	ug/kg J ug/kg JN ug/kg J

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Ву

NAP

Page 1 of 3

Client Sample ID: E6-2

Lab Sample ID:

J84460-13 SO - Soil

Date Sampled: 02/28/08

Prep Date

03/01/08

Matrix: Method:

SW846 8270C SW846 3550B

Date Received: 02/29/08

Percent Solids: 68.2

Project:

ExxonMobil Terminal 31020, Tappan, NY

Analyzed

03/04/08

Prep Batch OP31516

Analytical Batch EF3503

Run #1 Run #2

5.0 g

F73473.D

File ID

Initial Weight Final Volume

Run #1

1.0 mI

DF

1

Run #2

ABN TCL List

CAS No. Compound Result RL MDL Units Q	ADN TOLI	719t					
120-83-2	CAS No.	Compound	Result	RL	MDL	Units	Q
120-83-2	95-57-8	2-Chlorophenol	ND	1500	190	ug/kg	
120-83-2	59-50-7	4-Chloro-3-methyl phenol	ND	1500	400	ug/kg	
105-67-9 2,4-Dimethylphenol ND 1500 360 ug/kg 51-28-5 2,4-Dimitrophenol ND 5900 320 ug/kg 534-52-1 4,6-Dimitro-o-cresol ND 5900 540 ug/kg 95-48-7 2-Methylphenol ND 590 360 ug/kg 3&4-Methylphenol ND 590 360 ug/kg 100-02-7 4-Nitrophenol ND 5900 520 ug/kg 100-02-7 4-Nitrophenol ND 5900 520 ug/kg 108-95-2 Phenol ND 5900 310 ug/kg 108-95-2 Phenol ND 1500 560 ug/kg 88-06-2 2,4,5-Trichlorophenol ND 1500 560 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1500 590 ug/kg 83-32-9 Acenaphthene ND 5900 590 ug/kg 33-32-9 Acenaphthene ND 5900 93 ug/kg 120-12-7 Anthracene ND 5900 270 ug/kg 50-32-8 Benzo(a)anthracene 629 5900 61 ug/kg 50-32-8 Benzo(a)pyrene 443 5900 140 ug/kg J 191-24-2 Benzo(b)fluoranthene 528 5900 96 ug/kg J 191-24-2 Benzo(g,h,i)perylene 388 5900 120 ug/kg J 191-24-2 Benzo(g,h,i)perylene 388 5900 120 ug/kg J 191-25-3 4-Bromophenyl phenyl ether ND 5900 130 ug/kg J 191-55-3 4-Bromophenyl phenyl ether ND 5900 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 5900 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 5900 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 5900 130 ug/kg J 111-91-1 bis(2-Chloroethoxy)methane ND 5900 130 ug/kg J 111-91-1 bis(2-Chloroethoxy)methane ND 5900 130 ug/kg 111-44-4 bis(2-Chloroethoxy)methane ND 5900 1300 ug/kg 111-44-4 bis(2-Chloroethoxy)methane ND 5900 1700 ug/kg 111-44-4 bis(2-Chloroethoxy)methane N	120-83-2	2,4-Dichlorophenol	ND	1500	300		
534-52-1 4,6-Dinitro-o-cresol ND 5900 540 ug/kg 95-48-7 2-Methylphenol ND 590 280 ug/kg 3&4-Methylphenol ND 590 360 ug/kg 88-75-5 2-Nitrophenol ND 590 520 ug/kg 100-02-7 4-Nitrophenol ND 5900 520 ug/kg 87-86-5 Pentachlorophenol ND 2900 310 ug/kg 108-95-2 Phenol ND 590 270 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 1500 560 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1500 590 ug/kg 83-32-9 Acenaphthene ND 590 60 ug/kg 120-12-7 Anthracene ND 590 270 ug/kg 56-55-3 Benzo(a)anthracene 629 590 61 ug/kg 50-32-8 Benzo(b)fluoranthene 528 590	105-67-9	2,4-Dimethylphenol	ND	1500	360		
Section Sect	51-28-5	2,4-Dinitrophenol	ND	5900	320	ug/kg	
3&4-Methylphenol ND 590 360 ug/kg 88-75-5 2-Nitrophenol ND 1500 340 ug/kg 100-02-7 4-Nitrophenol ND 5900 520 ug/kg 87-86-5 Pentachlorophenol ND 2900 310 ug/kg 108-95-2 Phenol ND 590 270 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 1500 560 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1500 590 ug/kg 83-32-9 Acenaphthene ND 590 93 ug/kg 208-96-8 Acenaphthylene 150 590 60 ug/kg J 120-12-7 Anthracene ND 590 270 ug/kg J 56-55-3 Benzo(a)anthracene 629 590 61 ug/kg J 205-99-2 Benzo(b)fluoranthene 528 590 96 ug/kg J 191-24-2	534-52-1	4,6-Dinitro-o-cresol	ND	5900	540	ug/kg	
88-75-5 2-Nitrophenol ND 1500 340 ug/kg 100-02-7 4-Nitrophenol ND 5900 520 ug/kg 87-86-5 Pentachlorophenol ND 2900 310 ug/kg 108-95-2 Phenol ND 590 270 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 1500 560 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1500 590 ug/kg 83-32-9 Acenaphthene ND 590 93 ug/kg 208-96-8 Acenaphthylene 150 590 60 ug/kg 120-12-7 Anthracene ND 590 270 ug/kg 56-55-3 Benzo(a)anthracene 629 590 61 ug/kg 50-32-8 Benzo(b)fluoranthene 528 590 96 ug/kg J 205-99-2 Benzo(b)fluoranthene 528 590 96 ug/kg J 191-24-2 B	95-48-7	2-Methylphenol	ND	590	280	ug/kg	
100-02-7 4-Nitrophenol ND 5900 520 ug/kg 87-86-5 Pentachlorophenol ND 2900 310 ug/kg 108-95-2 Phenol ND 590 270 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 1500 560 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1500 590 ug/kg 83-32-9 Acenaphthene ND 590 93 ug/kg 208-96-8 Acenaphthylene 150 590 60 ug/kg 120-12-7 Anthracene ND 590 270 ug/kg 56-55-3 Benzo(a)anthracene 629 590 61 ug/kg 50-32-8 Benzo(b)fluoranthene 528 590 96 ug/kg J 205-99-2 Benzo(b)fluoranthene 528 590 96 ug/kg J 191-24-2 Benzo(k)fluoranthene 436 590 130 ug/kg 207-08-9		3&4-Methylphenol	ND	590	360	ug/kg	
100-02-7 4-Nitrophenol ND 5900 520 ug/kg 87-86-5 Pentachlorophenol ND 2900 310 ug/kg 108-95-2 Phenol ND 590 270 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 1500 560 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1500 590 ug/kg 83-32-9 Acenaphthene ND 590 93 ug/kg 208-96-8 Acenaphthylene 150 590 60 ug/kg 120-12-7 Anthracene ND 590 270 ug/kg 56-55-3 Benzo(a)anthracene 629 590 61 ug/kg 50-32-8 Benzo(b)fluoranthene 528 590 96 ug/kg J 205-99-2 Benzo(b)fluoranthene 528 590 96 ug/kg J 191-24-2 Benzo(k)fluoranthene 436 590 130 ug/kg 207-08-9	88-75-5	2-Nitrophenol	ND	1500	340	ug/kg	
108-95-2 Phenol ND 590 270 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 1500 560 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1500 590 ug/kg 83-32-9 Acenaphthene ND 590 93 ug/kg 208-96-8 Acenaphthylene 150 590 60 ug/kg 120-12-7 Anthracene ND 590 270 ug/kg 56-55-3 Benzo(a)anthracene 629 590 61 ug/kg 50-32-8 Benzo(a)pyrene 443 590 140 ug/kg 205-99-2 Benzo(b)fluoranthene 528 590 96 ug/kg J 191-24-2 Benzo(k)fluoranthene 388 590 120 ug/kg J 207-08-9 Benzo(k)fluoranthene 436 590 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 590 130 ug/kg	100-02-7	4-Nitrophenol		5900		ug/kg	
95-95-4 2,4,5-Trichlorophenol ND 1500 560 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1500 590 ug/kg 83-32-9 Acenaphthene ND 590 93 ug/kg 208-96-8 Acenaphthylene 150 590 60 ug/kg 120-12-7 Anthracene ND 590 270 ug/kg 56-55-3 Benzo(a)anthracene 629 590 61 ug/kg 50-32-8 Benzo(a)pyrene 443 590 140 ug/kg J 205-99-2 Benzo(b)fluoranthene 528 590 96 ug/kg J 191-24-2 Benzo(g,h,i)perylene 388 590 120 ug/kg J 207-08-9 Benzo(k)fluoranthene 436 590 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 590 130 ug/kg 85-68-7 Butyl benzyl phthalate ND 590 10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>ug/kg</td><td></td></t<>						ug/kg	
88-06-2 2,4,6-Trichlorophenol ND 1500 590 ug/kg 83-32-9 Acenaphthene ND 590 93 ug/kg 208-96-8 Acenaphthylene 150 590 60 ug/kg 120-12-7 Anthracene ND 590 270 ug/kg 56-55-3 Benzo(a)anthracene 629 590 61 ug/kg 50-32-8 Benzo(a)pyrene 443 590 140 ug/kg J 205-99-2 Benzo(b)fluoranthene 528 590 96 ug/kg J 191-24-2 Benzo(g,h,i)perylene 388 590 120 ug/kg J 207-08-9 Benzo(k)fluoranthene 436 590 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 590 130 ug/kg 85-68-7 Butyl benzyl phthalate ND 590 110 ug/kg 91-58-7 2-Chloroanline ND 590 89 ug/kg<	108-95-2					ug/kg	
83-32-9 Acenaphthene ND 590 93 ug/kg 208-96-8 Acenaphthylene 150 590 60 ug/kg J 120-12-7 Anthracene ND 590 270 ug/kg 56-55-3 Benzo(a)anthracene 629 590 61 ug/kg 50-32-8 Benzo(a)pyrene 443 590 140 ug/kg J 205-99-2 Benzo(b)fluoranthene 528 590 96 ug/kg J 191-24-2 Benzo(g,h,i)perylene 388 590 120 ug/kg J 207-08-9 Benzo(k)fluoranthene 436 590 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 590 130 ug/kg J 85-68-7 Butyl benzyl phthalate ND 590 110 ug/kg 91-58-7 2-Chloroaphthalene ND 590 89 ug/kg 106-47-8 4-Chloroaniline ND 590	95-95-4	2,4,5-Trichlorophenol		1500		ug/kg	
208-96-8 Acenaphthylene 150 590 60 ug/kg J 120-12-7 Anthracene ND 590 270 ug/kg 56-55-3 Benzo(a)anthracene 629 590 61 ug/kg 50-32-8 Benzo(a)pyrene 443 590 140 ug/kg J 205-99-2 Benzo(b)fluoranthene 528 590 96 ug/kg J 191-24-2 Benzo(g,h,i)perylene 388 590 120 ug/kg J 207-08-9 Benzo(k)fluoranthene 436 590 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 590 130 ug/kg 85-68-7 Butyl benzyl phthalate ND 590 110 ug/kg 91-58-7 2-Chloroaphthalene ND 590 89 ug/kg 106-47-8 4-Chloroaniline ND 1500 110 ug/kg 86-74-8 Carbazole 185 590 99							
120-12-7 Anthracene ND 590 270 ug/kg 56-55-3 Benzo(a)anthracene 629 590 61 ug/kg 50-32-8 Benzo(a)pyrene 443 590 140 ug/kg J 205-99-2 Benzo(b)fluoranthene 528 590 96 ug/kg J 191-24-2 Benzo(g,h,i)perylene 388 590 120 ug/kg J 207-08-9 Benzo(k)fluoranthene 436 590 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 590 130 ug/kg 85-68-7 Butyl benzyl phthalate ND 590 110 ug/kg 91-58-7 2-Chloroaphthalene ND 590 89 ug/kg 106-47-8 4-Chloroaniline ND 1500 110 ug/kg 86-74-8 Carbazole 185 590 99 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 590 110 <	83-32-9		ND	590		ug/kg	
56-55-3 Benzo (a) anthracene 629 590 61 ug/kg 50-32-8 Benzo (a) pyrene 443 590 140 ug/kg J 205-99-2 Benzo (b) fluoranthene 528 590 96 ug/kg J 191-24-2 Benzo (g,h,i) perylene 388 590 120 ug/kg J 207-08-9 Benzo (k) fluoranthene 436 590 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 590 130 ug/kg 85-68-7 Butyl benzyl phthalate ND 590 110 ug/kg 91-58-7 2-Chloroaphthalene ND 590 89 ug/kg 106-47-8 4-Chloroaniline ND 1500 110 ug/kg 86-74-8 Carbazole 185 590 99 ug/kg 218-01-9 Chrysene 747 590 120 ug/kg 111-91-1 bis(2-Chloroethoxy) methane ND 590 130	208-96-8	Acenaphthylene					J
50-32-8 Benzo (a) pyrene 443 590 140 ug/kg J 205-99-2 Benzo (b) fluoranthene 528 590 96 ug/kg J 191-24-2 Benzo (g,h,i) perylene 388 590 120 ug/kg J 207-08-9 Benzo (k) fluoranthene 436 590 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 590 130 ug/kg 85-68-7 Butyl benzyl phthalate ND 590 110 ug/kg 91-58-7 2-Chloroaphthalene ND 590 89 ug/kg 106-47-8 4-Chloroaniline ND 1500 110 ug/kg 86-74-8 Carbazole 185 590 99 ug/kg 218-01-9 Chrysene 747 590 120 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 590 130 ug/kg 111-44-4 bis(2-Chloroisopropyl)ether ND 590 1	120-12-7	Anthracene			270		
205-99-2 Benzo (b) fluoranthene 528 590 96 ug/kg J 191-24-2 Benzo (g,h,i) perylene 388 590 120 ug/kg J 207-08-9 Benzo (k) fluoranthene 436 590 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 590 130 ug/kg 85-68-7 Butyl benzyl phthalate ND 590 110 ug/kg 91-58-7 2-Chloronaphthalene ND 590 89 ug/kg 106-47-8 4-Chloroaniline ND 1500 110 ug/kg 86-74-8 Carbazole 185 590 99 ug/kg 218-01-9 Chrysene 747 590 120 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 590 110 ug/kg 111-44-4 bis(2-Chloroisopropyl)ether ND 590 170 ug/kg	56-55-3						
205-99-2 Benzo(b)fluoranthene 528 590 96 ug/kg J 191-24-2 Benzo(g,h,i)perylene 388 590 120 ug/kg J 207-08-9 Benzo(k)fluoranthene 436 590 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 590 130 ug/kg J 85-68-7 Butyl benzyl phthalate ND 590 110 ug/kg J 91-58-7 2-Chloronaphthalene ND 590 89 ug/kg J 106-47-8 4-Chloroaniline ND 1500 110 ug/kg J 86-74-8 Carbazole 185 590 99 ug/kg J 218-01-9 Chrysene 747 590 120 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 590 130 ug/kg 111-44-4 bis(2-Chloroisopropyl)ether ND 590 170 ug/kg						ug/kg	j
207-08-9 Benzo (k) fluoranthene 436 590 130 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 590 130 ug/kg 85-68-7 Butyl benzyl phthalate ND 590 110 ug/kg 91-58-7 2-Chloronaphthalene ND 590 89 ug/kg 106-47-8 4-Chloroaniline ND 1500 110 ug/kg 86-74-8 Carbazole 185 590 99 ug/kg 218-01-9 Chrysene 747 590 120 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 590 110 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 590 170 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 590 170 ug/kg							J
101-55-3 4-Bromophenyl phenyl ether ND 590 130 ug/kg 85-68-7 Butyl benzyl phthalate ND 590 110 ug/kg 91-58-7 2-Chloronaphthalene ND 590 89 ug/kg 106-47-8 4-Chloroaniline ND 1500 110 ug/kg 86-74-8 Carbazole 185 590 99 ug/kg 218-01-9 Chrysene 747 590 120 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 590 110 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 590 170 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 590 170 ug/kg							
85-68-7 Butyl benzyl phthalate ND 590 110 ug/kg 91-58-7 2-Chloronaphthalene ND 590 89 ug/kg 106-47-8 4-Chloroaniline ND 1500 110 ug/kg 86-74-8 Carbazole 185 590 99 ug/kg 218-01-9 Chrysene 747 590 120 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 590 110 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 590 130 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 590 170 ug/kg						ug/kg	J
91-58-7 2-Chloronaphthalene ND 590 89 ug/kg 106-47-8 4-Chloroaniline ND 1500 110 ug/kg 86-74-8 Carbazole 185 590 99 ug/kg 218-01-9 Chrysene 747 590 120 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 590 110 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 590 130 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 590 170 ug/kg							
106-47-8 4-Chloroaniline ND 1500 110 ug/kg 86-74-8 Carbazole 185 590 99 ug/kg J 218-01-9 Chrysene 747 590 120 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 590 110 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 590 130 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 590 170 ug/kg							
86-74-8 Carbazole 185 590 99 ug/kg J 218-01-9 Chrysene 747 590 120 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 590 110 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 590 130 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 590 170 ug/kg							
218-01-9 Chrysene 747 590 120 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 590 110 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 590 130 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 590 170 ug/kg							
111-91-1 bis(2-Chloroethoxy)methane ND 590 110 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 590 130 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 590 170 ug/kg		Carbazole					J
111-44-4 bis(2-Chloroethyl)ether ND 590 130 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 590 170 ug/kg							
108-60-1 bis(2-Chloroisopropyl)ether ND 590 170 ug/kg							
, , , , , , ,							
7005-72-3 4-Chlorophenyl phenyl ether ND 590 84 ug/kg							
	7005-72-3	4-Chlorophenyl phenyl ether	ND	590	84	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: E6-2

Lab Sample ID:

J84460-13 SO - Soil Date Sampled: Date Received:

Matrîx: Method:

SW846 8270C SW846 3550B

Date Received: 02/29/08 Percent Solids: 68.2

02/28/08

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Company	Result	RL	MDL	Units	^
CAS No.	Compound	Result	KL	MDL	Onns	Q
95-50-1	1,2-Dichlorobenzene	ND	590	100	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	590	88	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	590	79	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	590	95	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	590	120	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1500	210	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	172	590	75	ug/kg	J
132-64-9	Dibenzofuran	273	590	58	ug/kg	J J
84-74-2	Di-n-butyl phthalate	ND	590	82	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	590	120	ug/kg	
84-66-2	Diethyl phthalate	ND	590	100	ug/kg	
131-11-3	Dimethyl phthalate	ND	590	79	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	463	590	180	ug/kg	J
206-44-0	Fluoranthene	1520	590	55	ug/kg	
86-73-7	Fluorene	89.0	590	59	ug/kg	J
118-74-1	Hexachlorobenzene	ND	590	140	ug/kg	-
87-68-3	Hexachlorobutadiene	ND	590	140	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	5900	140	ug/kg	
67-72-1	Hexachloroethane	ND .	1500	120	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	332	590	270	ug/kg	J
78-59-1	Isophorone	ND	590	94	ug/kg	
91-57-6	2-Methylnaphthalene	271	590	260	ug/kg	J
88-74-4	2-Nitroaniline	ND	1500	190	ug/kg	
99-09-2	3-Nitroaniline	ND	1500	200	ug/kg	
100-01-6	4-Nitroaniline	ND	1500	170	ug/kg	
91-20-3	Naphthalene	136	590	66	ug/kg	J
98-95-3	Nitrobenzene	ND T	590	99	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	590	100	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1500	65	ug/kg	
85-01-8	Phenanthrene	1320	590	73	ug/kg	
129-00-0	Pyrene	1290	590	100	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	590	92	ug/kg	
O 4 O 3Y-	O	Tr# 1	D# 0	Limi	!a_	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	ıts	
367-12-4	2-Fluorophenol	75%		26-1		
4165-62-2	Phenol-d5	78%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	90%		30-1	26%	
4165-60-0	Nitrobenzene-d5	84%		36-1	15%	
321-60-8	2-Fluorobiphenyl	69%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Client Sample ID: E6-2

Lab Sample ID:

J84460-13

Date Sampled: 02/28/08

Matrix:

SO - Soil SW846 8270C SW846 3550B Date Received: 02/29/08

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

Percent Solids: 68.2

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1718-51-0	Terphenyl-d14	75%		42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
10544-50-0	system artifact system artifact system artifact system artifact system artifact cyclic octaatomic sulfur 9,10-Anthracenedione, -hydro unknown unknown unknown unknown alkane alkane alkane alkane alkane unknown unknown unknown Total TIC, Semi-Volatile	ху-	3.08 3.16 3.25 3.39 4.31 18.43 18.75 19.72 19.83 20.05 20.35 20.60 20.80 21.14 21.95 22.47 22.97 23.45 24.06 25.05 25.12	4700 1500 1500 200000 1300 6800 2000 2500 1300 1300 16000 2800 1200 3700 1400 1700 2500 23000 1200 3100 72300	ug/kg J

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sa Lab Sam Matrix; Method: Project;	ple ID: J8446 SO - SW84	Soil 16 8270C	SW846 3550B minal 31020, Ta	appan, NY	Date Sampled: Date Received: Percent Solids:	02/29/08	
Run #1 Run #2	File ID F73474.D	DF 1	Analyzed 03/04/08	By NAP	Prep Date 03/01/08	Prep Batch OP31516	Analytical Batch EF3503
Run #1 Run #2	Initial Weigh 5.1 g	t Final 7 1.0 ml	Volume .				*** •

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	2100	270	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	2100	570	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	2100	440	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	2100	510	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	8400	460	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	8400	770	ug/kg	
95-48-7	2-Methylphenol	ND	840	410	ug/kg	
	3&4-Methylphenol	ND	840	520	ug/kg	
88-75-5	2-Nitrophenol	ND	2100	490	ug/kg	
100-02-7	4-Nitrophenol	ND	8400	740	ug/kg	
87-86-5	Pentachlorophenol	ND	4200	440	ug/kg	
108-95-2	Phenol	ND	840	390	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	2100	800	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	2100	850	ug/kg	
83-32-9	Acenaphthene	ND	840	130	ug/kg	
208-96-8	Acenaphthylene	ND	840	85	ug/kg	
120-12-7	Anthracene	ND	840	390	ug/kg	
56-55-3	Benzo(a)anthracene	345	840	87	ug/kg	J
50-32-8	Benzo(a)pyrene	328	840	210	ug/kg	J
205-99-2	Benzo(b)fluoranthene	303	840	140	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	280	840	170	ug/kg	J J
207-08-9	Benzo(k)fluoranthene	294	840	180	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	840	180	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	840	150	ug/kg	
91-58-7	2-Chloronaphthalene	ND	840	130	ug/kg	
106-47-8	4-Chloroaniline	ND	2100	150	ug/kg	
86-74-8	Carbazole	ND	840	140	ug/kg	
218-01-9	Chrysene	300	840	170	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	840	160	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	840	190	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	840	250	ug/kg	
7005-72-3-	4-Chlorophenyl phenyl ether	ND	840	120	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: E6-6

Lab Sample ID: J8
Matrix: S0

J84460-14 SO - Soil Date Sampled: 02/28/08 Date Received: 02/29/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 46.6

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
95-50-1	1,2-Dichlorobenzene	ND	840	140	ug/kg		
541-73-1	1,3-Dichlorobenzene	ND	840	130	ug/kg		
106-46-7	1,4-Dichlorobenzene	ND	840	110	ug/kg		
121-14-2	2,4-Dinitrotoluene	ND	840	140	ug/kg		
606-20-2	2,6-Dinitrotoluene	ND	840	170	ug/kg		
91-94-1	3,3'-Dichlorobenzidine	ND	2100	300	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	ND	840	110	ug/kg		
132-64-9	Dibenzofuran	ND	840	83	ug/kg		
84-74-2	Di-n-butyl phthalate	ND	840	120	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	840	170	ug/kg		
84-66-2	Diethyl phthalate	ND	840	150	ug/kg		
131-11-3	Dimethyl phthalate	ND	840	110	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	840	250	ug/kg		
206-44-0	Fluoranthene	710	840	78	ug/kg	J	
86-73-7	Fluorene	179	840	85	ug/kg	J J	
118-74-1	Hexachlorobenzene	ND	840	200	ug/kg	-	
87-68-3	Hexachlorobutadiene	ND	840	200	ug/kg		
77-47-4	Hexachlorocyclopentadiene	ND	8400	200	ug/kg		
67-72-1	Hexachloroethane	ND .	2100	180	ug/kg		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	840	390	ug/kg		
78-59-1	Isophorone	ND	840	140	ug/kg		
91-57-6	2-Methylnaphthalene	ND	840	380	ug/kg		
88-74-4	2-Nitroaniline	ND	2100	270	ug/kg		
99-09-2	3-Nitroaniline	ND .	2100	280	ug/kg		
100-01-6	4-Nitroaniline	ND	2100	240	ug/kg		
91-20-3	Naphthalene	ND	840	95	ug/kg		
98-95-3	Nitrobenzene	ND	840	140	ug/kg		
621-64-7	N-Nitroso-di-n-propylamine	ND	840	140	ug/kg		
86-30-6	N-Nitrosodiphenylamine	ND	2100	93	ug/kg		
85-01-8	Phenanthrene	120	840	110	ug/kg	J	
129-00-0	Pyrene	706	840	150	ug/kg	J.	
120-82-1	1,2,4-Trichlorobenzene	ND	840	130	ug/kg	•	
					0 0		
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limi	ts		
367-12-4	2-Fluorophenol	73%		26-10			
4165-62-2	Phenol-d5	75%		34-10	06%		
118-79-6	2,4,6-Tribromophenol	85%		30-12	26%		
4165-G0-0	Nitrobenzene-d5	83%	3G-115%				
321-60-8	2-Fluorobiphenyl	67%		44-11	12%		

ND = Not detected

. . .

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: E6-6

Lab Sample ID:

J84460-14

SO - Soil

Date Sampled:

02/28/08 Date Received: 02/29/08

Percent Solids: 46.6

Matrix: Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

SW846 8270C SW846 3550B

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1718-51-0	Terphenyl-d14	72%		42-133%		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units	Q
10544-50-0	system artifact Naphthalene dimethyl unknown Cyclic octaatomic sulfur 9,10-Anthracenedione, -hydro unknown	ху-	2.09 3.07 3.16 3.24 3.38 4.31 11.54 12.66 18.47 18.75 19.73 20.34 21.20 21.58 22.02 22.97 23.11 23.37 24.09 24.28 25.12 25.97	2100 5900 1900 1900 270000 1700 3600 3100 81000 9900 26000 12000 4100 5300 11000 12000 9300 8900 50000 1800 6400 3600	ug/kg ug/kg ug/kg ug/kg ug/kg]
	Total TIC, Semi-Volatile			248000	ug/kg	Ĵ

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: E1-7

Lab Sample ID: Matrix:

J84460-15

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08 Date Received: 02/29/08

Percent Solids: 47.1

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

Run #1 a	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	F73475.D	1	03/04/08	NAP	03/01/08	OP31516	EF3503
Run #2	F73491.D	2	03/05/08	NAP	03/01/08	OP31516	EF3504

	Initial Weight	Final Volume
Run #1	5.3 g	1.0 ml
Run #2	5.3 g	1.0 ml

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	2000	260	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	2000	540	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	2000	420	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	2000	490	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	8000	440	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	8000	730	ug/kg	
95-48-7	2-Methylphenol	ND	800	390	ug/kg	
	3&4-Methylphenol	ND	800	500	ug/kg	
88-75-5	2-Nitrophenol	ND	2000	460	ug/kg	
100-02-7	4-Nitrophenol	ND	8000	710	ug/kg	
87-86-5	Pentachlorophenol	ND	4000	420	ug/kg	
108-95-2	Phenol	ND	800	370	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	2000	760	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	2000	810	ug/kg	
83-32-9	Acenaphthene	6440	800	130	ug/kg	
208-96-8	Acenaphthylene	ND	800	81	ug/kg	
120-12-7	Anthracene	3760	800	370	ug/kg	•
56-55-3	Benzo(a)anthracene	6090	800	83	ug/kg	
50-32-8	Benzo(a) pyrene	4340	800	200	ug/kg	
205-99-2	Benzo(b)fluoranthene	3850	800	130	ug/kg	
191-24-2	Benzo(g,h,i)perylene	2660	800	160	ug/kg	
207-08-9	Benzo(k)fluoranthene	3240	800	170	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	800	180	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	800	150	ug/kg	
91-58-7	2-Chloronaphthalene	ND	800	120	ug/kg	
106-47-8	4-Chloroaniline	ND	2000	150	ug/kg	
86-74-8	Carbazole	2040	800	140	ug/kg	
218-01-9	Chrysene	6210	800	160	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	800	160	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	800	180	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	800	230	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	800	110	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E1-7

Lab Sample ID: J84460-15 Matrix:

SO - Soil

SW846 8270C SW846 3550B

ExxonMobil Terminal 31020, Tappan, NY

Date Sampled: Date Received: 02/29/08

02/28/08

Percent Solids: 47.1

ABN TCL List

Method:

Project:

CAS No.	Compound	Result	RL	MDL	Units	Q	
95-50-1	1,2-Dichlorobenzene	142	800	140	ug/kg	J	
541-73-1	1,3-Dichlorobenzene	ND	800	120	ug/kg		
106-46-7	1,4-Dichlorobenzene	144	800	110	ug/kg	J	
121-14-2	2,4-Dinitrotoluene	ND	800	130	ug/kg		
606-20-2	2,6-Dinitrotoluene	ND	800	160	ug/kg		
91-94-1	3,3'-Dichlorobenzidine	ND	2000	290	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	994	800	100	ug/kg		
132-64-9	Dibenzofuran	4040	800	79	ug/kg		
84-74-2	Di-n-butyl phthalate	ND	800	110	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	800	160	ug/kg		
84-66-2	Diethyl phthalate	ND	800	140	ug/kg		
131-11-3	Dimethyl phthalate	ND	800	110	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	1710	800	240	ug/kg		
206-44-0	Fluoranthene	14200	800	75	ug/kg		
86-73-7	Fluorene	10900	800	81	ug/kg		
118-74-1	Hexachlorobenzene	ND	800	190	ug/kg		
87-68-3	Hexachlorobutadiene	ND	800	190	ug/kg		
77-47-4	Hexachlorocyclopentadiene	ND	8000	190	ug/kg		
67-72-1	Hexachloroethane	ND	2000	170	ug/kg		
193-39-5	Indeno(1,2,3-cd)pyrene	2600	800	370	ug/kg		
78-59-1	Isophorone	ND	800	130	ug/kg		
91-57-6	2-Methylnaphthalene	4360	800	360	ug/kg		
88-74-4	2-Nitroaniline	ND	2000	250	ug/kg		
99-09-2	3-Nitroaniline	ND	2000	270	ug/kg		
100-01-6	4-Nitroaniline	ND	2000	230	ug/kg		
91-20-3	Naphthalene	859	800	91	ug/kg		
98-95-3	Nitrobenzene	ND	800	130	ug/kg		
621-64-7	N-Nitroso-di-n-propylamine	ND	800	140	ug/kg		
86-30-6	N-Nitrosodiphenylamine	ND	2000	88	ug/kg		
85-01-8	Phenanthrene	35600 b	1600	200	ug/kg		
129-00-0	Pyrene	13600	800	140	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	800	130	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
367-12-4	2-Fluorophenol	69%	57%	26-10	05%		
4165-62-2	Phenol-d5	76%	63%	34-10			
118-79-6	2,4,6-Tribromophenol	78%	66%	30-12			
4165-60-0	Nitrobenzene-d5	84%	67%	36-1			
321-60-8	2-Fluorobiphenyl	65%	57%	44-11			
	J -		- • • •				

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: E1-7

Lab Sample ID: Matrix:

J844G0-15

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08 Date Received: 02/29/08

Percent Solids: 47.1

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	75%	63%	42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
132-65-0 10544-50-0	system artifact Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl alkane Naphthalene trimethyl unknown unknown Azulene, -ethyldimethyl- Naphthalene tetrahydro alkane 9H-Fluorene, -methyl- 9H-Fluorene, -methyl- unknown Dibenzothiophene unknown Anthracene, -methyl- Phenanthrene, -methyl- Phenanthrene, -dimethyl- Cyclic octaatomic sulfur		3.38 11.37 11.57 11.61 11.82 11.96 12.61 12.88 12.95 13.15 13.35 13.74 14.33 14.58 14.77 14.81 14.89 15.00 15.30 15.53 16.77 17.01 17.07 18.18 18.48	180000 68000 76000 60000 31000 25000 28000 41000 27000 28000 46000 37000 39000 28000 100000 35000 75000 23000 28000 28000 28000 28000 28000 28000 28000 28000	ug/kg J ug/kg J ug/kkg J
	unknown Total TIC, Semi-Volatile		19.81	31000 1050000	ug/kg J ug/kg J

- (a) Elevated detection limit due to low volume of sample extracted.
- (b) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Client Sample ID: E2-3

Lab Sample ID: Matrix:

J84460-16

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08 Date Received: 02/29/08

Percent Solids: 54.9

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	F73476.D	1	03/04/08	NAP	03/01/08	QP31516	EF3503
Run #2	F73492.D	5	03/05/08	NAP	03/01/08	OP31516	EF3504

Initial Weight Final Volume Run #1 30.2 g 1.0 ml Run #2 30.2 g 1.0 ml

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	300	38	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	300	82	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	300	63	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	300	74	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1200	66	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1200	110	ug/kg	
95-48-7	2-Methylphenol	ND	120	58	ug/kg	
	3&4-Methylphenol	ND	120	75	ug/kg	
88-75-5	2-Nitrophenol	ND	300	70	ug/kg	
100-02-7	4-Nitrophenol	ND	1200	110	ug/kg	
. 87-86-5	Pentachlorophenol	ND	G00	63	ug/kg	
108-95-2	Phenol	ND	120	56	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	300	110	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	300	120	ug/kg	
83-32-9	Acenaphthene	5410	120	19	ug/kg	
208-96-8	Acenaphthylene	ND	120	12	ug/kg	
120-12-7	Anthracene	1340	120	56	ug/kg	
56-55-3	Benzo(a)anthracene	566	120	12	ug/kg	
50-32-8	Benzo(a) pyrene	448	120	30	ug/kg	
205-99-2	Benzo(b)fluoranthene	431	120	20	ug/kg	
191-24-2	Benzo(g,h,i)perylene	325 .	120	24	ug/kg	
207-08-9	Benzo(k)fluoranthene	324	120	26	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	120	26	ug/kg	
85-68-7	Butyl benzyl plithalate	ND	120	22	ug/kg	
91-58-7	2-Chloronaphthalene	ND	120	18	ug/kg	
106-47-8	4-Chloroaniline	ND	300	22	ug/kg	
86-74-8	Carbazole	ND	120	20	ug/kg	
218-01-9	Chrysene	632	120	24	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	120	23	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	120	28	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	120	35	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	120	17	ug/kg	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 2 of 3

Client Sample ID: E2-3

Lab Sample ID: Matrix:

J84460-16

SO - Soil

02/28/08 Date Sampled: Date Received: 02/29/08

Percent Solids: 54.9

Method: Project:

SW846 8270C SW846 3550B ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	139	120	21	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	120	18	ug/kg	
106-46-7	1,4-Dichlorobenzene	35.0	120	16	ug/kg	J
121-14-2	2,4-Dinitrotoluene	ND	120	20	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	120	24	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	300	44	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	132	120	16	ug/kg	
132-64-9	Dibenzofuran	3110	120	12	ug/kg	
84-74-2	Di-n-butyl phthalate	362	120	17	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	120	25	ug/kg	
84-66-2	Diethyl phthalate	ND	120	21	ug/kg	
131-11-3	Dimethyl phthalate	ND	120	16	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	868	120	36	ug/kg	
206-44-0	Fluoranthene	1660	120	11	ug/kg	
86-73-7	Fluorene	8980 a	600	61	ug/kg	
118-74-1	Hexachlorobenzene	ND	120	29	ug/kg	
87-68-3	Hexachlorobutadiene	ND	120	28	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1200	28	ug/kg	
67-72-1	Hexachloroethane	ND	300	25	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	275	120	56	ug/kg	
78-59-1	Isophorone	ND	120	19	ug/kg	
91-57-6	2-Methylnaphthalene	ND	120	54	ug/kg	
88-74-4	2-Nitroaniline	ND	300	38	ug/kg	
99-09-2	3-Nitroaniline	ND	300	40	ug/kg	
100-01-6	4-Nitroaniline	ND	300	34	ug/kg	
91-20-3	Naphthalene	ND	120	14	ug/kg	
98-95-3	Nitrobenzene	ND	120	20	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	120	21	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	300	13	ug/kg	
85-01-8	Phenanthrene	23900 a	600	75	ug/kg	
129-00-0	Pyrene	2110	120	21	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	120	19	ug/kg	
120 05 1	1,2,1 1111111111010001110110	112	100	•	"p,"p	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Li	imits	
367-12-4	2-Fluorophenol	79%	68%	20	G-105%	
4165-62-2	Phenol-d5	79%	68%	34	l-106%	
118-79-6	2,4,6-Tribromophenol	82%	67%	30)-126%	
4165-60-0	Nitrobenzene-d5	106%	93%	36	3-115%	
321-60-8	2-Fluorobiphenyl	70%	66%	44	l-112%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: E2-3

Lab Sample ID:

J84460-16

SO - Soil

Date Sampled: 02/28/08

Date Received: 02/29/08

Matrix: Method:

SW846 8270C SW846 3550B

Percent Solids: 54.9

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1718-51-0	Terphenyl-d14	71%	72%	42-133%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
493-02-7	system artifact cycloalkane/alkene C4 alkyl benzene Naphthalene, decahydro-, tran cycloalkane/alkene unknown Naphthalene tetrahydro-methyl		3.38 6.00 6.27 6.38 8.86 9.04 9.89	9400 2400 2900 3900 2400 3000 3100	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	l lu l
90-12-0	Naphthalene, 1-methyl- cycloalkane/alkene alkane Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl alkane Naphthalene dimethyl unknown Naphthalene trimethyl unknown Azulene, -ethyldimethyl- alkane 9H-Fluorene, -methyl- Total TIC, Semi-Volatile		10.18 10.50 10.92 11.44 11.68 11.90 12.03 12.09 12.25 12.69 12.98 13.05 13.23 13.28 13.44 13.84 14.09 14.91 15.10	5400 3800 2500 7500 12000 5200 3900 3700 2900 4200 5400 4200 3900 4300 5300 2700 3600 3700 104800	ug/kg	JN

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $\boldsymbol{B} = \boldsymbol{I}\boldsymbol{n} dicates$ analyte found in associated method blank

Ву

Client Sample ID: E2-7

Lab Sample ID: Matrix:

J84460-17

Date Sampled: 02/28/08

SO - Soil

DF

1

4

Date Received: 02/29/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 55.7

Project;

Run #1

Run #2

ExxonMobil Terminal 31020, Tappan, NY

Analyzed

03/04/08

03/05/08

Prep Date Prep Batch Analytical Batch

NAP 03/01/08 OP31516 EF3503 NAP 03/01/08 OP31516 EF3504

Initial Weight Final Volume

Run #1 30.1 g 1,0 ml 1.0 ml

Run #2 30.1 g

File ID

F73477.D

F73493.D

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	300	38	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	300	81	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	300	62	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	300	73	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1200	66	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1200	110	ug/kg	
95-48-7	2-Methylphenol	ND	120	58	ug/kg	
	3&4-Methylphenol	ND	120	74	ug/kg	
88-75-5	2-Nitrophenol	ND	300	69	ug/kg	
100-02-7	4-Nitrophenol	ND	1200	100	ug/kg	
87-86-5	Pentachlorophenol	ND	600	63	ug/kg	
108-95-2	Phenol	ND	120	56	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	300	110	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	300	120	ug/kg	
83-32-9	Acenaphthene	1740	120	19	ug/kg	
208-96-8	Acenaphthylene	ND	120	12	ug/kg	
120-12-7	Anthracene	838	120	55	ug/kg	
56-55-3	Benzo(a)anthracene	986	120	12	ug/kg	
50-32-8	Benzo(a)pyrene	807	120	29	ug/kg	
205-99-2	Benzo(b)fluoranthene	808	120	20	ug/kg	
191-24-2	Benzo(g,h,i)perylene	586	120	24	ug/kg	
207-08-9	Benzo(k)fluoranthene	549	120	26	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	120	26	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	120	22	ug/kg	
91-58-7	2-Chloronaphthalene	ND	120	18	ug/kg	
106-47-8	4-Chloroaniline	ND	300	22	ug/kg	
86-74-8	Carbazole	452	120	20	ug/kg	
218-01-9	Chrysene	1030	120	24	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	120	23	ug/kg	
111-44 - 4	bis(2-Chloroethyl)ether	ND	120	27	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	120	35	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	120	17	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E2-7

Lab Sample ID:

J84460-17

SO - Soil

Date Sampled: 02/28/08

Date Received: 02/29/08

Matrix: Method: Project:

SW846 8270C SW846 3550B ExxonMobil Terminal 31020, Tappan, NY Percent Solids: 55.7

ABN TCL List

CAS No.	Compound	Result	RL	MD	L Units	Q
95-50-1	1,2-Dichlorobenzene	75.0	120	20	ug/kg	J
541-73-1	1,3-Dichlorobenzene	ND	120	18	ug/kg	
106-46-7	1,4-Dichlorobenzene	28.1	120	16	ug/kg	J
121-14-2	2,4-Dinitrotoluene	ND	120	19	ug/kg	•
606-20-2	2,6-Dinitrotoluene	ND	120	24	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	300	43	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	191	120	15	ug/kg	
132-64-9	Dibenzofuran	1040	120	12	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	120	17	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	120	24	ug/kg	
84-66-2	Diethyl phthalate	ND	120	21	ug/kg	
131-11-3	Dimethyl phthalate	ND	120	16	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	706	120	36	ug/kg	
206-44-0	Fluoranthene	2220	120	11	ug/kg	
86-73-7	Fluorene	2920	120	12	ug/kg	
118-74-1	Hexachlorobenzene	ND	120	29	ug/kg	
87-68-3	Hexachlorobutadiene	ND	120	28	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1200	28	ug/kg	
67-72-1	Hexachloroethane	ND	300	25	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	535	120	56	ug/kg	
78-59-1	Isophorone	ND	120	19	ug/kg	
91-57-6	2-Methylnaphthalene	ND	120	54	ug/kg	
88-74-4	2-Nitroaniline	ND	300	38	ug/kg	
99-09-2	3-Nitroaniline	ND	300	40	ug/kg	
100-01-6	4-Nitroaniline	ND	300	34	ug/kg	
91-20-3	Naphthalene	345	120	13	ug/kg	
98-95-3	Nitrobenzene	ND	120	20	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	120	20	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	300	13	ug/kg	
85-01-8	Phenanthrene	9210 a	480	60	ug/kg	
129-00-0	Pyrene	2160	120	21	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	120	19	ug/kg	
150-05-1	1,5,4-111cmorocascae	IVD	120	10	ug/	
CAS No.	Surrogate Recoveries	Run# 1	Run#2]	Limits	
367-12-4	2-Fluorophenol	76%	70%	:	26-105%	
4165-62-2	Phenol-d5	78%	69%		34-106%	
118-79-6	2,4,6-Tribromophenol	74%	73%		30-126%	
4165-60-0	Nitrobenzene-d5	90%	87%		36-115%	
321-60-8	2-Fluorobiphenyl	66%	65%		44-112%	
		50,0	3070			

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: E2-7

Lab Sample ID:

J84460-17

Date Sampled: 02/28/08 Date Received: 02/29/08

Matrix: Method: SO - Soil

SW846 8270C SW846 3550B

Project:

ExxonMobil Terminal 31020, Tappan, NY

Percent Solids: 55.7

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
1718-51-0	Terplicnyl-d14	70%	74%	42-133%		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units	Q
150.50.5	system artifact		3.39	25000	ug/kg	J
493-02-7	Naphthalene, decahydro-, tran	15-	6.38	3500	ug/kg	ĴΒ
	alkane		9.48	3700	ug/kg	
	cycloalkane/alkene		10.48	4900	ug/kg	
	alkane		10.89	4500	ug/kg	
	Naphthalene tetrahydro-methy	<i>i</i> l	11.22	5200	ug/kg	J
	Naphthalene dimethyl		11.40	10000	ug/kg	J
	Naphthalene dimethyl		11.61	17000	ug/kg	
	Naphthalene dimethyl		11.66	12000	ug/kg	
	Naphthalene dimethyl		11.85	6900	ug/kg	J
	alkane		11.98	6600	ug/kg	
	Naphthalene dimethyl		12.04	4400	ug/kg	J
	alkane		12.21	4100	ug/kg	
	Naphthalene trimethyl		12.53	3100	ug/kg	
	Naphthalene trimethyl		12.65	8100	ug/kg	J
	Naphthalene trimethyl		12.86	3000	ug/kg	J
	Naphthalene trimethyl		12.92	8700	ug/kg	J
	Naphthalene trimethyl		12.99	9300	ug/kg	j
	Naphthalene trimethyl		13.18	7700	ug/kg	
	Naphthalene trimethyl		13.22	7800	ug/kg	J
	Naphthalene trimethyl		13.38	6800	ug/kg	
	unknown		13.78	10000	ug/kg	J
	Azulene, -ethyldimethyl-		14.04	4400	ug/kg	
	alkane		14.20	3700	ug/kg	
	alkane		14.85	5200	ug/kg	
	9H-Fluorene, -methyl-		15.04	4200	ug/kg	
	Total TIC, Semi-Volatile			164800	ug/kg	

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 3

Client Sample ID: E3-3

Lab Sample ID: Matrix: J84460-18 SO - Soil Date Sampled: 02/28/08 Date Received: 02/29/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 73.2

Project:

ExxonMobil Terminal 31020, Tappan, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	F73478.D	1	03/04/08	NAP	03/01/08	OP31516	EF3503
Run #2	F73494 D	4	03/05/08	NAP	03/01/08	OP31516	EF3504

Initial Weight Final Volume
Run #1 30.1 g 1.0 ml
Run #2 30.1 g 1.0 ml

ABN TCL List

95-57-8	CAS No.	Compound	Result	RL	MDL	Units	Q	
59-50-7 4-Chloro-3-methyl phenol ND 230 62 ug/kg 120-83-2 2,4-Dichlorophenol ND 230 47 ug/kg 105-67-9 2,4-Dimethylphenol ND 910 50 ug/kg 51-28-5 2,4-Dinitrophenol ND 910 83 ug/kg 534-52-1 4,6-Dinitro-o-cresol ND 91 44 ug/kg 95-48-7 2-Methylphenol ND 91 56 ug/kg 88-75-5 2-Nitrophenol ND 91 80 ug/kg 100-02-7 4-Nitrophenol ND 910 80 ug/kg 87-86-5 Pentachlorophenol ND 910 80 ug/kg 87-86-5 Pentachlorophenol ND 91 42 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 230 86 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 230 92 ug/kg 88-06-8 Acenaphthylene 6	95-57-8	2-Chlorophenol	ND	230	29	ug/kg		
120-83-2 2,4-Dichlorophenol ND 230 47 ug/kg 105-67-9 2,4-Dimethylphenol ND 230 55 ug/kg 51-28-5 2,4-Dinitrophenol ND 910 50 ug/kg 534-52-1 4,6-Dinitro-o-cresol ND 910 50 ug/kg 95-48-7 2-Methylphenol ND 91 44 ug/kg 88-75-5 2-Nitrophenol ND 91 56 ug/kg 88-75-5 2-Nitrophenol ND 910 80 ug/kg 88-75-5 2-Nitrophenol ND 910 80 ug/kg 87-86-5 Pentachlorophenol ND 910 80 ug/kg 108-95-2 Phenol ND 91 42 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 230 86 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 230 92 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 230 92 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 230 92 ug/kg 120-12-7 Anthracene 67.0 91 14 ug/kg J 120-12-7 Anthracene 72.3 91 9.2 ug/kg J 120-12-7 Anthracene 87.1 91 9.4 ug/kg J 150-32-8 Benzo(a)anthracene 87.1 91 9.4 ug/kg J 150-32-8 Benzo(a)anthracene 88.2 91 22 ug/kg J 191-24-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 191-24-2 Benzo(b)fluoranthene 62.4 91 20 ug/kg J 191-25-3 4-Bromophenyl phenyl ether ND 91 20 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 91 17 ug/kg J 106-47-8 4-Chloroaniline ND 91 17 ug/kg J 106-47-8 4-Chloroaniline ND 91 15 ug/kg J 108-60-1 bis(2-Chlorothyy)methane ND 91 18 ug/kg J 108-60-1 bis(2-Chlorothyy)methane ND 91 21 ug/kg J 108-60-1 bis(2-Chlorothyy)ether ND 91 27 ug/kg J 108-60-1 bis(2-Chlorothyy)ether ND 91 27 ug/kg J 108-60-1 ug/kg J Ug/kg J Ug/kg J 108-60-1 ug/kg J Ug/kg Ug/kg	59-50-7		ND	230	62			
105-67-9 2,4-Dimethylphenol ND 230 55 ug/kg 51-28-5 2,4-Dinitrophenol ND 910 50 ug/kg 534-52-1 4,6-Dinitro-o-cresol ND 910 83 ug/kg 95-48-7 2-Methylphenol ND 91 44 ug/kg 38-4-Methylphenol ND 91 44 ug/kg 88-75-5 2-Nitrophenol ND 910 80 ug/kg 100-02-7 4-Nitrophenol ND 910 80 ug/kg 87-86-5 Pentachlorophenol ND 91 42 ug/kg 108-95-2 Phenol ND 91 42 ug/kg 95-95-4 2,4,6-Trichlorophenol ND 230 92 ug/kg 83-32-9 Acenaphthene 67.0 91 14 ug/kg J 208-96-8 Acenaphthylene ND 91 92 ug/kg J 205-95-3 Benzo(a)pyrene 68.2	120-83-2		ND	230	47			
51-28-5 2,4-Dinitrophenol ND 910 50 ug/kg 534-52-1 4,6-Dinitro-o-cresol ND 910 83 ug/kg 95-48-7 2-Methylphenol ND 91 44 ug/kg 3&4-Methylphenol ND 91 56 ug/kg 88-75-5 2-Nitrophenol ND 910 80 ug/kg 100-02-7 4-Nitrophenol ND 910 80 ug/kg 87-86-5 Pentachlorophenol ND 91 42 ug/kg 108-95-2 Phenol ND 91 42 ug/kg 88-06-2 2,4,5-Trichlorophenol ND 230 86 ug/kg 88-32-9 Acenaphthene 67.0 91 14 ug/kg J 208-96-8 Acenaphthylene ND 91 42 ug/kg J 50-32-8 Benzo(a)pyrene 68.2 91 22 ug/kg J 205-99-2 Benzo(b)fluoranthene <	105-67-9	2,4-Dimethylphenol	ND	230	55			
534-52-1 4,6-Dinitro-o-cresol ND 910 83 ug/kg 95-48-7 2-Methylphenol ND 91 44 ug/kg 38-4-Methylphenol ND 91 56 ug/kg 100-02-7 4-Nitrophenol ND 90 80 ug/kg 87-86-5 Pentachlorophenol ND 450 48 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 230 86 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 230 86 ug/kg 83-32-9 Acenaphthene 67.0 91 14 ug/kg 208-96-8 Acenaphthylene ND 91 9.2 ug/kg 120-12-7 Anthracene 72.3 91 42 ug/kg 205-99-2 Benzo(a)anthracene 87.1 91 9.4 ug/kg 205-99-2 Benzo(b)fluoranthene 82.1 91 9.5 ug/kg 207-08-9 Benzo(k)fluoranthene 62.4 91 </td <td>51-28-5</td> <td>2,4-Dinitrophenol</td> <td>ND</td> <td>910</td> <td>50</td> <td></td> <td></td> <td></td>	51-28-5	2,4-Dinitrophenol	ND	910	50			
95-48-7	534-52-1		ND	910	83			
3&4-Methylphenol ND 91 56 ug/kg 88-75-5 2-Nitrophenol ND 230 53 ug/kg 100-02-7 4-Nitrophenol ND 910 80 ug/kg 87-86-5 Pentachlorophenol ND 450 48 ug/kg 88-95-2 Phenol ND 91 42 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 230 86 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 230 92 ug/kg 83-32-9 Acenaphthene 67.0 91 14 ug/kg J 208-96-8 Acenaphthylene ND 91 92 ug/kg J 120-12-7 Anthracene 72.3 91 42 ug/kg J 50-32-8 Benzo(a)aptracene 87.1 91 9.4 ug/kg J 205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 ug/kg 35-	95-48-7	2-Methylphenol	ND	91	44			
88-75-5 2-Nitrophenol ND 230 53 ug/kg 100-02-7 4-Nitrophenol ND 910 80 ug/kg 87-86-5 Pentachlorophenol ND 450 48 ug/kg 108-95-2 Phenol ND 91 42 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 230 86 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 230 92 ug/kg 83-32-9 Acenaphthylene 67.0 91 14 ug/kg 120-12-7 Anthracene 72.3 91 42 ug/kg 120-12-7 Anthracene 72.3 91 42 ug/kg 56-55-3 Benzo(a)anthracene 87.1 91 9.4 ug/kg J 50-32-8 Benzo(a)pyrene 68.2 91 22 ug/kg J 205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 101-55-3		3&4-Methylphenol	ND	91	56	ug/kg		
100-02-7 4-Nitrophenol ND 910 80 ug/kg 87-86-5 Pentachlorophenol ND 450 48 ug/kg 108-95-2 Phenol ND 91 42 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 230 86 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 230 92 ug/kg 83-32-9 Acenaphthylene 67.0 91 14 ug/kg J 208-96-8 Acenaphthylene ND 91 9.2 ug/kg J 120-12-7 Anthracene 72.3 91 42 ug/kg J 56-55-3 Benzo(a)anthracene 87.1 91 9.4 ug/kg J 50-32-8 Benzo(a)pyrene 68.2 91 22 ug/kg J 205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 <td< td=""><td>88-75-5</td><td></td><td>ND</td><td>230</td><td>53</td><td></td><td></td><td></td></td<>	88-75-5		ND	230	53			
87-86-5 Pentachlorophenol ND 450 48 ug/kg 108-95-2 Phenol ND 91 42 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 230 86 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 230 92 ug/kg 83-32-9 Acenaphthene 67.0 91 14 ug/kg J 208-96-8 Acenaphthylene ND 91 9.2 ug/kg J 120-12-7 Anthracene 72.3 91 42 ug/kg J 56-55-3 Benzo(a)anthracene 87.1 91 9.4 ug/kg J 50-32-8 Benzo(a)pyrene 68.2 91 22 ug/kg J 205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 191-24-2 Benzo(g,h,i)perylene 63.7 91 18 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 ug/kg J 101-55-3 4-Bromophenyl phthalate ND	100-02-7		ND	910	80			
95-95-4 2,4,5-Trichlorophenol ND 230 86 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 230 92 ug/kg 83-32-9 Acenaphthene 67.0 91 14 ug/kg 208-96-8 Acenaphthylene ND 91 9.2 ug/kg 120-12-7 Anthracene 72.3 91 42 ug/kg J 56-55-3 Benzo(a)anthracene 87.1 91 9.4 ug/kg J 50-32-8 Benzo(a)pyrene 68.2 91 22 ug/kg J 205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 191-24-2 Benzo(g,h,i)perylene 63.7 91 18 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 91 17 ug/kg 91-58-7 2-Chloroaphthalene ND 91	87-86-5	Pentachlorophenol	ND	450	48			
95-95-4 2,4,5-Trichlorophenol ND 230 86 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 230 92 ug/kg 83-32-9 Acenaphthene 67.0 91 14 ug/kg 208-96-8 Acenaphthylene ND 91 9.2 ug/kg 120-12-7 Anthracene 72.3 91 42 ug/kg J 56-55-3 Benzo(a)anthracene 87.1 91 9.4 ug/kg J 50-32-8 Benzo(a)pyrene 68.2 91 22 ug/kg J 205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 191-24-2 Benzo(g,h,i)perylene 63.7 91 18 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 91 17 ug/kg 91-58-7 2-Chloroaphthalene ND 91	108-95-2	Phenol	ND	91	42	ug/kg		
88-06-2 2,4,6-Trichlorophenol ND 230 92 ug/kg 83-32-9 Acenaphthene 67.0 91 14 ug/kg J 208-96-8 Acenaphthylene ND 91 9.2 ug/kg J 120-12-7 Anthracene 72.3 91 42 ug/kg J 56-55-3 Benzo(a)anthracene 87.1 91 9.4 ug/kg J 50-32-8 Benzo(a)pyrene 68.2 91 22 ug/kg J 205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 191-24-2 Benzo(g,h,i)perylene 63.7 91 18 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 91 20 ug/kg 85-68-7 Butyl benzyl phthalate ND 91 17 ug/kg 91-58-7 2-Chloroaphthalene ND 91 14 ug/kg 106-47-8 4-Chloroaniline	95-95-4	2,4,5-Trichlorophenol	ND	230	86	ug/kg		
83-32-9 Acenaphthene 67.0 91 14 ug/kg J 208-96-8 Acenaphthylene ND 91 9.2 ug/kg J 120-12-7 Anthracene 72.3 91 42 ug/kg J 56-55-3 Benzo(a)anthracene 87.1 91 9.4 ug/kg J 50-32-8 Benzo(a)pyrene 68.2 91 22 ug/kg J 205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 191-24-2 Benzo(k)fluoranthene 63.7 91 18 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 91 20 ug/kg J 85-68-7 Butyl benzyl phthalate ND 91 17 ug/kg 91-58-7 2-Chloroaphthalene ND 91 14 ug/kg 106-47-8 4-Chloroaniline ND 230 16 ug/kg 218-01-9 Chrysene<	88-06-2	2,4,6-Trichlorophenol	ND	230	92	ug/kg		
120-12-7 Anthracene 72.3 91 42 ug/kg J 56-55-3 Benzo(a)anthracene 87.1 91 9.4 ug/kg J 50-32-8 Benzo(a)pyrene 68.2 91 22 ug/kg J 205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 191-24-2 Benzo(g,h,i)perylene 63.7 91 18 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 91 20 ug/kg 85-68-7 Butyl benzyl phthalate ND 91 17 ug/kg 91-58-7 2-Chloroaphthalene ND 91 14 ug/kg 106-47-8 4-Chloroaniline ND 230 16 ug/kg 86-74-8 Carbazole 52.8 91 15 ug/kg 218-01-9 Chrysene 111 91 18 ug/kg 111-91-1 bis(2-Chloroethyl)ether ND 91	83-32-9	Acenaphthene	67.0	91	14		J	
56-55-3 Benzo(a)anthracene 87.1 91 9.4 ug/kg J 50-32-8 Benzo(a)pyrene 68.2 91 22 ug/kg J 205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 191-24-2 Benzo(g,h,i)perylene 63.7 91 18 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 91 20 ug/kg 85-68-7 Butyl benzyl phthalate ND 91 17 ug/kg 91-58-7 2-Chloroaphthalene ND 91 14 ug/kg 106-47-8 4-Chloroaniline ND 230 16 ug/kg 86-74-8 Carbazole 52.8 91 15 ug/kg 218-01-9 Chrysene 111 91 18 ug/kg 111-91-1 bis(2-Chloroethyl)ether ND 91 21	208-96-8	Acenaphthylene	ND	91	9.2	ug/kg		
56-55-3 Benzo(a)anthracene 87.1 91 9.4 ug/kg J 50-32-8 Benzo(a)pyrene 68.2 91 22 ug/kg J 205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 191-24-2 Benzo(g,h,i)perylene 63.7 91 18 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 91 20 ug/kg 85-68-7 Butyl benzyl phthalate ND 91 17 ug/kg 91-58-7 2-Chloroaphthalene ND 91 14 ug/kg 106-47-8 4-Chloroaniline ND 230 16 ug/kg 86-74-8 Carbazole 52.8 91 15 ug/kg 218-01-9 Chrysene 111 91 18 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 91 21	120-12-7	Anthracene	72.3	91	42	ug/kg	J	
50-32-8 Benzo(a)pyrene 68.2 91 22 ug/kg J 205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 191-24-2 Benzo(g,h,i)perylene 63.7 91 18 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 91 20 ug/kg 85-68-7 Butyl benzyl phthalate ND 91 17 ug/kg 91-58-7 2-Chloroaphthalene ND 91 14 ug/kg 106-47-8 4-Chloroaniline ND 230 16 ug/kg 86-74-8 Carbazole 52.8 91 15 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 91 18 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 91 27 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 91 27	56-55-3	Benzo(a)anthracene	87.1	91	9.4	ug/kg	J	
205-99-2 Benzo(b)fluoranthene 82.1 91 15 ug/kg J 191-24-2 Benzo(g,h,i)perylene 63.7 91 18 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 91 20 ug/kg 85-68-7 Butyl benzyl phthalate ND 91 17 ug/kg 91-58-7 2-Chloronaphthalene ND 91 14 ug/kg 106-47-8 4-Chloroaniline ND 230 16 ug/kg 86-74-8 Carbazole 52.8 91 15 ug/kg 218-01-9 Chrysene 111 91 18 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 91 21 ug/kg 111-44-4 bis(2-Chloroisopropyl)ether ND 91 27 ug/kg	50-32-8	Benzo(a)pyrene	68.2	91	22	ug/kg		
191-24-2 Benzo(g,h,i)perylene 63.7 91 18 ug/kg J 207-08-9 Benzo(k)fluoranthene 62.4 91 20 ug/kg J 101-55-3 4-Bromophenyl phenyl ether ND 91 20 ug/kg 85-68-7 Butyl benzyl phthalate ND 91 17 ug/kg 91-58-7 2-Chloronaphthalene ND 91 14 ug/kg 106-47-8 4-Chloroaniline ND 230 16 ug/kg 86-74-8 Carbazole 52.8 91 15 ug/kg 218-01-9 Chrysene 111 91 18 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 91 18 ug/kg 111-44-4 bis(2-Chloroisopropyl)ether ND 91 27 ug/kg	205-99-2	Benzo(b)fluoranthene	82.1	91	15	ug/kg		
101-55-3 4-Bromophenyl phenyl ether ND 91 20 ug/kg 85-68-7 Butyl benzyl phthalate ND 91 17 ug/kg 91-58-7 2-Chloronaphthalene ND 91 14 ug/kg 106-47-8 4-Chloroaniline ND 230 16 ug/kg 86-74-8 Carbazole 52.8 91 15 ug/kg J 218-01-9 Chrysene 111 91 18 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 91 18 ug/kg 111-44-4 bis(2-Chloroisopropyl)ether ND 91 21 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 91 27 ug/kg	191-24-2	Benzo(g,h,i)perylene	63.7	91	18			
85-68-7 Butyl benzyl phthalafe ND 91 17 ug/kg 91-58-7 2-Chloronaphthalene ND 91 14 ug/kg 106-47-8 4-Chloroaniline ND 230 16 ug/kg 86-74-8 Carbazole 52.8 91 15 ug/kg 218-01-9 Chrysene 111 91 18 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 91 18 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 91 21 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 91 27 ug/kg	207-08-9	Benzo(k)fluoranthene	62.4	91	20	ug/kg	J	
91-58-7 2-Chloronaphthalene ND 91 14 ug/kg 106-47-8 4-Chloroaniline ND 230 16 ug/kg 86-74-8 Carbazole 52.8 91 15 ug/kg 218-01-9 Chrysene 111 91 18 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 91 18 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 91 21 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 91 27 ug/kg	101-55-3	4-Bromophenyl phenyl ether	ND	91	20	ug/kg		
106-47-8 4-Chloroaniline ND 230 16 ug/kg 86-74-8 Carbazole 52.8 91 15 ug/kg J 218-01-9 Chrysene 111 91 18 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 91 18 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 91 21 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 91 27 ug/kg	85-68-7	Butyl benzyl phthalate	ND	91	17	ug/kg		
86-74-8 Carbazole 52.8 91 15 ug/kg J 218-01-9 Chrysene 111 91 18 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 91 18 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 91 21 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 91 27 ug/kg	91-58-7	2-Chloronaphthalene	ND	91	14	ug/kg		
218-01-9 Chrysene 111 91 18 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 91 18 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 91 21 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 91 27 ug/kg	106-47-8	4-Chloroaniline	ND	230				
218-01-9 Chrysene 111 91 18 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 91 18 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 91 21 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 91 27 ug/kg	86-74-8	Carbazole	52.8	91	15	ug/kg	J	
111-91-1 bis(2-Chloroethoxy)methane ND 91 18 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 91 21 ug/kg 108-60-1 bis(2-Chloroisopropyl)ether ND 91 27 ug/kg	218-01-9	Chrysene	111	91	18			
108-60-1 bis(2-Chloroisopropyl)ether ND 91 27 ug/kg	111-91-1	bis(2-Chloroethoxy)methane		91				
108-60-1 bis(2-Chloroisopropyl)ether ND 91 27 ug/kg	111-44-4	bis(2-Chloroethyl)ether	ND	91	21	ug/kg		
7005-72-3 4-Chlorophenyl phenyl ether ND 91 13 ug/kg	108-60-1	bis(2-Chloroisopropyl)ether	ND	91	27			
	7005-72-3	4-Chlorophenyl phenyl ether	ND	91	13	ug/kg		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: E3-3

Lab Sample ID:

J84460-18

Date Sampled:

Matrix:

SO - Soil

02/28/08 Date Received: 02/29/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 73.2

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	91	15	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	91	14	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	91	12	ид/кд	
121-14-2	2,4-Dinitrotoluene	ND	91	15	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	91	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	230	33	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	33.3	91	12	ug/kg	J
132-64-9	Dibenzofuran	375	91	8.9	ug/kg	•
84-74-2	Di-n-butyl phthalate	ND	91	13	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	91	19	ug/kg	
84-66-2	Diethyl phthalate	ND	91	16	ug/kg	
131-11-3	Dimethyl phthalate	ND	91	12	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	80.8	91	27	ug/kg	J
206-44-0	Fluoranthene	96.0	91	8.4	ug/kg	•
86-73-7	Fluorene	220	91	9.2	ug/kg	
118-74-1	Hexachlorobenzene	ND	91	22	ug/kg	
87-68-3	Hexachlorobutadiene	ND	91	21	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND .	910	21	ug/kg	
67-72-1	Hexachloroethane	ND	230	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	53.2	91	42	ug/kg	J
78-59-1	Isophorone	ND	91	15	ug/kg	•
91-57-6	2-Methylnaphthalene	6320 a	360	160	ug/kg	
88-74-4	2-Nitroaniline	ND	230	29	ug/kg	
99-09-2	3-Nitroaniline	ND	230	30	ug/kg	
100-01-6	4-Nitroaniline	ND	230	26	ug/kg	
91-20-3	Naphthalene	3580	91	10	ug/kg	
98-95-3	Nitrobenzene	ND	91	15	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	91	16	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	230	10	ug/kg	
85-01-8	Phenanthrene	1100	91	11	ug/kg	
129-00-0	Ругеле	127	91	16	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	91	14	ug/kg	
	-,-,-				0 0	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	63%	58%	26-1	05%	
4165-62-2	PhenoI-d5	65%	62%	34-1	06%	
118-79-6	2,4,6-Tribromophenol	71%	65%	30-1	26%	
4165-60-0	Nitrobenzene-d5	70%	63%	36-1	15%	
321-60-8	2-Fluorobiphenyl	60%	55%	44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: E3-3

Lab Sample ID:

J84460-18 SO - Soil

Date Sampled: 02/28/08

Date Received: 02/29/08

Matrix: Method:

SW846 8270C SW846 3550B

Percent Solids: 73.2

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1718-51-0	Terphenyl-d14	64%	65%	42-133%	
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units Q
496-11-7	system artifact C3 alkyl benzene C3 alkyl benzene C3 alkyl benzene C3 alkyl benzene Indane		3.38 4.86 4.97 5.44 5.88 6.08	23000 630 1600 1500 600 790	ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg JN
	C4 alkyl benzene Benzene, -butenyl- alkane alkane unknown		6.35 7.79 8.63 9.46 9.99	1200 830 1200 1500 640	ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J
90-12-0	Naphthalene, 1-methyl- Naphthalene ethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl alkane alkane alkane 9H-Fluorene, -methyl- unknown alkane		10.12 11.21 11.36 11.55 11.60 11.81 11.95 14.17 14.81 15.00 15.30 16.77	2200 890 2500 1400 1200 760 1300 2400 3700 840 670 710	ug/kg JN ug/kg J
10544-50-0	Cyclic octaatomic sulfur unknown Total TIC, Semi-Volatile		18.46 24.08	2000 2800 33860	ug/kg JN ug/kg J ug/kg J

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sar Lab Samp Matrix: Method:	SC	4460-19 O - Soil	SW846 3550B		Date Sampled Date Received Percent Solids	: 02/29/08		
Project:		ExxonMobil Terminal 31020, Tappan, NY				144444 504451 1111		
	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch	
Run #1	F73479.D	1	03/04/08	NAP	03/01/08	OP31516	EF3503	
Run #2	F73495.D	4	03/05/08	NAP	03/01/08	OP31516	EF3504	

	Initial Weight	Final Volume
Run #1	30.3 g	1.0 ml
Run #2	30.3 g	1.0 ml

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	
95-57-8	2-Chlorophenol	ND	210	27	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	210	58	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	210	44	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	210	52	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	850	47	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	850	78	ug/kg	
95-48-7	2-Methylphenol	ND	85	41	ug/kg	
	3&4-Methylphenol	ND	85	53	ug/kg	
88-75-5	2-Nitrophenol	ND	210	49	ug/kg	
100-02-7	4-Nitrophenol	ND	850	75	ug/kg	
87-86-5	Pentachlorophenol	ND	420	45	ug/kg	
108-95-2	Phenol	ND	85	40	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	210	81	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	210	86	ug/kg	
83-32-9	Acenaphthene	106	85	14	ug/kg	
208-96-8	Acenaphthylene	ND	85	8.6	ug/kg	
120-12-7	Anthracene	158	85	39	ug/kg	
56-55-3	Benzo(a)anthracene	334	85	8.8	ug/kg	
50-32-8	Benzo(a)pyrene	244	85	21	ug/kg	
205-99-2	Benzo(b)fluoranthene	235	85	14	ug/kg	
191-24-2	Benzo(g,h,i)perylene	164	85	17	ug/kg	
207-08-9	Benzo(k)fluoranthene	114	85	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	85	19	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	85	15	ug/kg	
91-58-7	2-Chloronaphthalene	ND	85	13	ug/kg	
106-47-8	4-Chloroaniline	ND	210	15	ug/kg	
86-74-8	Carbazole	102	85	14	ug/kg	
218-01-9	Chrysene	358	85	17	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	85	17	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	85	19	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	85	25	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	85	12	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 Client Sample ID:
 E3-3 DUP

 Lab Sample ID:
 J84460-19
 Date Sampled:
 02/28/08

 Matrix:
 SO - Soil
 Date Received:
 02/29/08

 Method:
 SW846 8270C
 SW846 3550B
 Percent Solids:
 77.7

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	85	14	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	85	13	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	85	11	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	85	14	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	85	17	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	210	31	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	64.1	85	11	ug/kg	J
132-64-9	Dibenzofuran	376	85	8.4	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	85	12	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	85	17	ug/kg	
84-66-2	Diethyl phthalate	ND	85 ·	15	ug/kg	
131-11-3	Dimethyl phthalate	ND	85	12	ug/kg	
117-81-7	bis(2-Ethylhexyl) phthalate	70.0	85	26	ug/kg	J
206-44-0	Fluoranthene	621	85	7.9	ug/kg	
86-73-7	Fluorene	250	85	8.6	ug/kg	
118-74-1	Hexachlorobenzene	ND	85	21	ug/kg	
87-68-3	Hexachlorobutadiene	ND	85	20	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	850	20	ug/kg	
67-72-1	Hexachloroethane	ND	210	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	151	85	40	ug/kg	
78-59-1	Isophorone	ND	85	14	ug/kg	
91-57-6	2-Methylnaphthalene	6390 a	340	150	ug/kg	
88-74-4	2-Nitroaniline	ND	210	27	ug/kg	
99-09-2	3-Nitroaniline	ND	210	28	ug/kg	
100-01-6	4-Nitroaniline	ND	210	24	ug/kg	
91-20-3	Naphthalene	3420	85	9.6	ug/kg	
98-95-3	Nitrobenzene	ND	85	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	85	15	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	210	9.3	ug/kg	
85-01-8	Phenanthrene	1570	85	11	ug/kg	
129-00-0	Pyrene	606	85	15	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	85	13	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	67%	64%	26-10	05%	
4165-62-2	Phenol-d5	70%	66%	34-10	06%	
118-79-6	2,4,6-Tribromophenol	78%	75%	30-12	26%	
4165-60-0	Nitrobenzene-d5	73%	67%	36-11	15%	
321-60-8	2-Fluorobiphenyl	63%	62%	44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

3 of 3

Client Sample ID: E3-3 DUP

Lab Sample ID:

J84460-19

Date Sampled: 02/28/08 Date Received: 02/29/08

Matrix: Method: SO - Soil SW846 8270C SW846 3550B

Percent Solids: 77.7

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	69%	71%	42-133%	
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units Q
	system artifact C3 alkyl benzene C3 alkyl benzene C3 alkyl benzene C3 alkyl benzene		3.39 4.86 4.97 5.44 5.88	24000 580 1600 1500 590	ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J
496-11-7	Indane C4 alkyl benzene Benzene, (-methylpropenyl)- alkane alkane	. (6.08 6.35 7.79 8.63 9.46	770 1200 800 970 1300	ug/kg JN ug/kg J ug/kg J ug/kg J ug/kg J
90-12-0	Naphthalene, 1-methyl- Naphthalene ethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl alkane alkane alkane unknown unknown alkane Anthracene, -methyl-		10.12 11.21 11.36 11.55 11.60 11.81 11.95 14.17 14.81 15.00 15.30 16.77 17.07	2300 880 2500 1400 1200 760 1100 2200 3600 840 830 700 600	ug/kg JN ug/kg J
10544-50-0	Cyclic octaatomic sulfur unknown Total TIC, Semi-Volatile		18.46 24.07	2100 2100 32420	ug/kg JN ug/kg J ug/kg J

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Ву

NAP

Page 1 of 3

Client Sample ID: E3-7

Lab Sample ID:

J84460-20

SO - Soil

Date Sampled:

02/28/08

Matrix: Method:

SW846 8270C SW846 3550B

Date Received: 02/29/08

Percent Solids: 61.5

Project:

ExxonMobil Terminal 31020, Tappan, NY

Run #1

Analyzed 03/04/08

Prep Date 03/01/08

Prep Batch OP31516

Analytical Batch

EF3503

Run #2

Initial Weight Final Volume

30.2 g

File ID

F73480.D

1.0 ml

DF

1

Run #1 Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	270	34	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	270	73	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	270	56	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	270	66	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1100	59	ug/kg	
534-52-1	4,6-Dînîtro-o-cresol	ND	1100	99	ug/kg	
95-48-7	2-Methylphenol	ND	110	52	ug/kg	
	3&4-Methylphenol	ND	110	67	ug/kg	
88-75-5	2-Nitrophenol	ND	270	62	ug/kg	
100-02-7	4-Nitrophenol	ND	1100	95	ug/kg	
87-86-5	Pentachlorophenol	ND	540	57	ug/kg	
108-95-2	Phenol	ND	110	50	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	270	100	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	270	110	ug/kg	
83-32-9	Acenaphthene	997	110	17	ug/kg	
208-96-8	Acenaphthylene	ND	110	11	ug/kg	
120-12-7	Anthracene	184	110	50	ug/kg	
56-55-3	Benzo(a)anthracene	176	110	11	ug/kg	
50-32-8	Benzo(a)pyrene	177	110	26	ug/kg	
205-99-2	Benzo(b)fluoranthene	194	110	18	ug/kg	
191-24-2	Benzo(g,h,i)perylene	168	110	21	ug/kg	
207-08-9	Benzo(k)fluoranthene	80.4	110	23	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	110	24	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	110	20	ug/kg	
91-58-7	2-Chloronaphthalene	ND	110	16	ug/kg	
106-47-8	4-Chloroaniline	ND	270	19	ug/kg	
86-74-8	Carbazole	ND	110	18	ug/kg	
218-01-9	Chrysene	215	110	22	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	110	21	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	110	25	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	110	31	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	110	15	ug/kg	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: E3-7

Lab Sample ID: J84460-20 Matrix:

SO - Soil

Date Sampled: Date Received: 02/29/08

02/28/08

Method: SW846 8270C SW846 3550B Project:

ExxonMobil Terminal 31020, Tappan, NY

Percent Solids: 61.5

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	110	18	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	110	16	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	110	14	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	110	17	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	110	22	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	270	39	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	57.0	110	14	ug/kg	j
132-64-9	Dibenzofuran	551	110	11	ug/kg	-
84-74-2	Di-n-butyl phthalate	ND	110	15	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	110	22	ug/kg	
84-66-2	Diethyl phthalate	ND	110	19	ug/kg	
131-11-3	Dimethyl phthalate	ND	110	15	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	328	110	32	ug/kg	
206-44-0	Fluoranthene	312	110	10	ug/kg	
86-73-7	Fluorene	1570	110	11	ug/kg	
118-74-1	Hexachlorobenzene	ND	110	26	ug/kg	
87-68-3	Hexachlorobutadiene	ND	110	25	ug/kg	
77-47-4	Hexachlorocyclopentadiene	·ND	1100	25	ug/kg	
67-72-1	Hexachloroethane	ND	270	22	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	151	110	50	ug/kg	
78-59-1	Isophorone	ND	110	17	ug/kg	
91-57-6	2-Methylnaphthalene	1590	110	48	ug/kg	
88-74-4	2-Nitroaniline	ND	270	34	ug/kg	
99-09-2	3-Nitroaniline	ND	270	36	ug/kg	
100-01-6	4-Nitroaniline	ND	270	31	ug/kg	
91-20-3	Naphthalene	773	110	12	ug/kg	
98-95-3	Nitrobenzene	ND	110	18	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	110	18	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	270	12	ug/kg	
85-01-8	Phenanthrene	4700	110	13	ug/kg	
129-00-0	Pyrene .	366	110	19	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	110	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	72%		26-1	.05%	
4165-62-2	Phenol-d5	74%		34-1	.06%	
118-79-6	2,4,6-Tribromophenol	75%		30-1	26%	
4165-60-0	Nitrobenzene-d5	81%			15%	
321-60-8	2-Fluorobiphenyl	66%		44-1	.12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: E3-7

Lab Sample ID: Matrix:

J84460-20

SO - Soil SW846 8270C SW846 3550B Date Sampled: 02/28/08

Percent Solids: 61.5

Date Received: 02/29/08

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	70%		42-133%	
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units Q
	system artifact alkane alkane Naphthalene ethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl alkane Naphthalene dimethyl alkane Naphthalene trimethyl unknown Azulene, -ethyldimethyl- alkane alkane unknown alkane		3.38 9.48 10.48 10.89 11.23 11.39 11.60 11.65 11.84 11.98 12.04 12.21 12.64 12.92 12.99 13.17 13.22 13.38 13.78 14.04 14.20 14.85 15.04 16.78	20000 3600 3000 4500 5000 9100 13000 11000 5400 5800 3000 4100 4400 6000 6800 5600 6200 4300 6700 3500 5300 7600 5100	ug/kg J
10544-50-0	Cyclic octaatomic sulfur unknown Total TIC, Semi-Volatile		18.50 24.08	3100 3100 138700	ug/kg JN ug/kg J ug/kg J

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

NAP

Page 1 of 3

Client Sample ID: E4-2

Lab Sample ID: J84460-21 Matrix:

F73481.D

SO - Soil

Date Sampled: Date Received:

Prep Date

03/01/08

02/28/08 02/29/08

Prep Batch

OP31516

Method:

SW846 8270C SW846 3550B

Percent Solids:

56.5

Project:

ExxonMobil Terminal 31020, Tappan, NY

03/04/08

Analytical Batch EF3503

File ID DF Analyzed

1

Run #1 Run #2

Final Volume

Initial Weight Run #1 30.1 g

1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	290	38	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	290	80	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	290	61	ug/kg	
105-67-9	2,4-DimethyIphenol	ND	290	72	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1200	65	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1200	110	ug/kg	
95-48-7	2-Methylphenol	ND	120	57	ug/kg	
	3&4-Methylphenol	ND	120	73	ug/kg	
88-75-5	2-Nitrophenol	ND	290	68	ug/kg	
100-02-7	4-Nitrophenol	ND	1200	100	ug/kg	
87-86-5	Pentachlorophenol	ND	590	62	ug/kg	
108-95-2	Phenol	ND	120	55	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	290	110	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	290	120	ug/kg	
83-32-9	Acenaphthene	1480	120	19	ug/kg	
208-96-8	Acenaphthylene	ND	120	12	ug/kg	
120-12-7	Anthracene	ND	120	54	ug/kg	
56-55-3	Benzo(a)anthracene	108	120	12	ug/kg	J
50-32-8	Benzo(a)pyrene	125	120	29	ug/kg	
205-99-2	Benzo(b)fluoranthene	136	120	19	ug/kg	
191-24-2	Benzo(g,h,i)perylene	116	120	23	ug/kg	J
207-08-9	Benzo(k)fluoranthene	109	120	25	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	120	26	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	120	21	ug/kg	
91-58-7	2-Chloronaphthalene	ND	120	18	ug/kg	
106-47-8	4-Chloroaniline	ND	290	21	ug/kg	
86-74-8	Carbazole	ND	120	20	ug/kg	
218-01-9	Chrysene	149	120	24	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	120	23	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	120	27	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	120	34	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	120	17	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: E4-2

Lab Sample ID;

J84460-21

SO - Soil

Date Sampled: 02/28/08

Matrix: Method:

SW846 8270C SW846 3550B

Date Received: 02/29/08 Percent Solids; 56.5

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

95-50-1 1,2-Dichlorobenzene NiD 120 20 ug/kg 541-73-1 1,3-Dichlorobenzene NiD 120 18 ug/kg 106-46-7 1,4-Dichlorobenzene NiD 120 19 ug/kg 106-46-7 1,4-Dichlorobenzene NiD 120 19 ug/kg 121-14-2 2,4-Dinitrotoluene NiD 120 19 ug/kg 191-94-1 3,3'-Dichlorobenzidine NiD 290 43 ug/kg 132-64-9 3,3'-Dichlorobenzidine NiD 290 43 ug/kg 132-64-9 3,3'-Dichlorobenzidine NiD 290 43 ug/kg 132-64-9 Dibenzo(a,b)anthracene 46.0 120 15 ug/kg 132-64-9 Dibenzo(a)h)anthracene 46.0 120 15 ug/kg 132-64-9 Dibenzo(a)h)anthracene 46.0 120 15 ug/kg 117-84-0 Di-n-octyl phthalate NiD 120 16 ug/kg 117-84-0 Di-n-octyl phthalate NiD 120 21 ug/kg 131-11-3 Dimethyl phthalate NiD 120 21 ug/kg 131-11-3 Dimethyl phthalate NiD 120 21 ug/kg 131-11-3 Dimethyl phthalate NiD 120 35 ug/kg 131-11-3 Dimethyl phthalate NiD 120 35 ug/kg 117-81-7 bis(2-Ethylhexyl)phthalate 150 120 35 ug/kg 118-74-1 Hexachlorobenzene NiD 120 12 ug/kg 118-74-1 Hexachlorobenzene NiD 120 27 ug/kg 118-74-1 Hexachlorobenzene NiD 120 27 ug/kg 118-74-1 Hexachlorocyclopentadiene NiD 120 27 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene NiD 120 27 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene NiD 120 29 ug/kg 19-57-6 2-Methylnaphthalene NiD 120 37 ug/kg 19-59-3 Naphthalene NiD 120 39 ug/kg 19-50-3 Naphthalene NiD 120 13 ug/kg 19-00-16 4-Nitroaniline NiD 290 34 ug/kg 19-00-16 4-Nitroaniline NiD 290 34 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-00-0 Pyrene 492 120 20 ug/kg 120-00-0 Pyrene 492 120 20 ug/kg 120-00-0 Pyrene 492 120 20 ug/kg 118-79-6 2,4,6-Tribronophenol 33% 30-126% 36-115% 321-60-8 2-Fluorobiphenyl 70% 44-112% 321-60-8 2-Fluorobiphenyl	CAS No.	Compound	Result	RL	MDL	Units	Q
541-73-1	95-50-1	1.2-Dichlorobenzene	ND	120	20	ug/kg	
106-46-7	541-73-1		ND	120	18		
121-14-2	106-46-7	•	ND	120	16		
October Color Co	121-14-2	-	ND	120	19	~ ~	
91-94-1 3,3'-Dichlorobenzidine ND 290 43 ug/kg 53-70-3 Dibenzo(a,h)anthracene 46.0 120 15 ug/kg 132-64-9 Dibenzofuran 688 120 12 ug/kg 44-74-2 Di-n-butyl phthalate ND 120 16 ug/kg 84-66-2 Diethyl phthalate ND 120 21 ug/kg 84-66-2 Diethyl phthalate ND 120 16 ug/kg 117-81-7 bis (2-Ethylhexyl)phthalate 150 120 35 ug/kg 117-81-7 bis (2-Ethylhexyl)phthalate 150 120 35 ug/kg 206-44-0 Fluoranthene 211 120 35 ug/kg 86-73-7 Fluoranthene 2360 120 12 ug/kg 87-68-3 Hexachlorobazene ND 120 29 ug/kg 87-68-3 Hexachlorobutadiene ND 120 27 ug/kg 96-77-2-1 Hexachlor	606-20-2		ND	120	24		
53-70-3 Dibenzo(a,h)anthracene 46.0 120 15 ug/kg J 132-64-9 Dibenzofuran 688 120 12 ug/kg 84-74-2 Di-n-butyl phthalate ND 120 16 ug/kg 117-84-0 Di-n-butyl phthalate ND 120 24 ug/kg 117-81-7 Directlyl phthalate ND 120 16 ug/kg 131-11-3 Dimethyl phthalate ND 120 16 ug/kg 117-81-7 bis(2-Ethylhexyl)phthalate 150 120 35 ug/kg 117-81-7 bis(2-Ethylhexyl)phthalate 150 120 120 120 120 ug/kg 117-81-81-81-81-81-81-81-81-81-81-81-81-81-	91-94-1	-	ND	290	43		
132-64-9	53-70-3	Dibenzo(a,h)anthracene	46.0	120	15		J
84-74-2 Di-n-butyl phthalate ND 120 16 ug/kg 117-84-0 Di-n-octyl phthalate ND 120 24 ug/kg 84-66-2 Diethyl phthalate ND 120 21 ug/kg 131-11-3 Dimethyl phthalate ND 120 16 ug/kg 117-81-7 bis(2-Ethylhexyl)phthalate 150 120 35 ug/kg 206-44-0 Fluoranthene 211 120 11 ug/kg 86-73-7 Fluorene 2360 120 12 ug/kg 118-74-1 Hexachlorobutadiene ND 120 29 ug/kg 118-74-2 Hexachlorocyclopentadiene ND 120 27 ug/kg 67-72-1 Hexachlorocyclopentadiene ND 120 27 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 25 ug/kg 195-5-6 2-Methylnaphthalene ND 120 19 ug/kg 19-09-2 3-N	132-64-9				12		_
117-84-0 Di-n-octyl phthalate ND 120 24 ug/kg 84-66-2 Diethyl phthalate ND 120 21 ug/kg 131-11-3 Dimethyl phthalate ND 120 16 ug/kg 117-81-7 bis(2-Ethylhexyl)phthalate 150 120 35 ug/kg 206-44-0 Fluoranthene 211 120 11 ug/kg 206-44-0 Fluoranthene 2360 120 12 ug/kg 118-74-1 Hexachlorobenzene ND 120 29 ug/kg 118-74-1 Hexachlorobutadiene ND 120 27 ug/kg 87-68-3 Hexachlorocyclopentadiene ND 120 27 ug/kg 87-47-4 Hexachlorocyclopentadiene ND 1200 27 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg 193-39-5 Isophorone ND 120 19 ug/kg 194-59-1 Isophorone ND 120 53 ug/kg 88-74-4 2-Nitroaniline ND 290 37 ug/kg 88-74-4 2-Nitroaniline ND 290 37 ug/kg 99-09-2 3-Nitroaniline ND 290 39 ug/kg 100-01-6 4-Nitroaniline ND 290 34 ug/kg 91-20-3 Naphthalene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 20 ug/kg 621-64-7 N-Nitrosodiphenylamine ND 290 31 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg 120-82-1 1,2,4-Trichlorobenzene	84-74-2	Di-n-butyl phthalate	ND	120	16		
84-66-2 Diethyl phthalate ND 120 21 ug/kg 131-11-3 Dimethyl phthalate ND 120 16 ug/kg 117-81-7 bis(2-Ethylhexyl)phthalate 150 120 35 ug/kg 206-44-0 Fluoranthene 211 120 11 ug/kg 86-73-7 Fluorene 2360 120 12 ug/kg 86-73-7 Fluorene 2360 120 12 ug/kg 87-68-3 Hexachlorobutadiene ND 120 27 ug/kg 87-68-3 Hexachlorocyclopentadiene ND 1200 27 ug/kg 67-72-1 Hexachlorocyclopentadiene ND 1200 27 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg 19-57-6 2-Methylnaphthalene ND 120 19 ug/kg 91-57-6 2-Methylnaphthalene ND 120 37 ug/kg 99-09-2 3-Nitroaniline<	117-84-0		ND	120	24		
131-11-3 Dimethyl phthalate ND 120 16 ug/kg 117-81-7 bis(2-Ethylhexyl)phthalate 150 120 35 ug/kg 206-44-0 Fluoranthene 211 120 11 ug/kg 86-73-7 Fluorene 2360 120 12 ug/kg 118-74-1 Hexachlorobenzene ND 120 29 ug/kg 87-68-3 Hexachlorobutadiene ND 120 27 ug/kg 77-47-4 Hexachlorocyclopentadiene ND 1200 27 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg 195-7-6 2-Methylnaphthalene ND 120 19 ug/kg 191-57-6 2-Methylnaphthalene ND 120 53 ug/kg 88-74-4 2-Nitroaniline ND 290 37 ug/kg 99-09-2 3-Nitroaniline ND 290 39 ug/kg 100-01-6 4-Nitroaniline ND 290 34 ug/kg 191-20-3 Naphthalene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 20 ug/kg 621-64-7 N-Nitroso-di-n-propylamine ND 120 20 ug/kg 86-30-6 N-Nitrosodiphenylamine ND 290 13 ug/kg 85-01-8 Phenanthrene ND 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 15 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg 18-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%	84-66-2		ND	120	21		
117-81-7 bis(2-Ethylhexyl)phthalate 150 120 35 ug/kg 206-44-0 Fluoranthene 211 120 11 ug/kg 86-73-7 Fluorene 2360 120 12 ug/kg 118-74-1 Hexachlorobenzene ND 120 29 ug/kg 87-68-3 Hexachlorobutadiene ND 120 27 ug/kg 77-47-4 Hexachlorocyclopentadiene ND 1200 27 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg 193-57-6 2-Methylnaphthalene ND 120 19 ug/kg 190-92 3-Nitroaniline ND 290 37 ug/kg 190-01-6 4-Nitroaniline ND 290 39 ug/kg 19-20-3 Naphthalene ND 120 13 ug/kg 19-20-3 Naphthalene ND 120 13 ug/kg 1920-3 Nitrobenzene ND 120 20 ug/kg 120-64-7 N-Nitroso-di-n-propylamine ND 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 15 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg 18-79-6 2,4,6-Tribromophenol 93% 30-126% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 115-60-0 Nitrobenzene-d5 94% 36-115%	131-11-3		ND	120	16		
206-44-0 Fluoranthene 211 120 11 ug/kg 86-73-7 Fluorene 2360 120 12 ug/kg 118-74-1 Hexachlorobenzene ND 120 29 ug/kg 87-68-3 Hexachlorocyclopentadiene ND 120 27 ug/kg 77-47-4 Hexachlorocyclopentadiene ND 1200 27 ug/kg 67-72-1 Hexachlorocyclopentadiene ND 120 27 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg 91-57-6 2-Methylnaphthalene ND 120 19 ug/kg 91-57-6 2-Methylnaphthalene ND 120 37 ug/kg 88-74-4 2-Nitroaniline ND 290 37 ug/kg 99-09-2 3-Nitroaniline ND 120 13 ug/kg 91-20-3 Naphthalene <td>117-81-7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	117-81-7						
86-73-7 Fluorene 2360 120 12 ug/kg 118-74-1 Hexachlorobenzene ND 120 29 ug/kg 87-68-3 Hexachlorocyclopentadiene ND 120 27 ug/kg 77-47-4 Hexachlorocyclopentadiene ND 1200 27 ug/kg 67-72-1 Hexachlorochhane ND 290 25 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg 91-57-6 2-Methylnaphthalene ND 120 19 ug/kg 91-57-6 2-Methylnaphthalene ND 120 53 ug/kg 99-09-2 3-Nitroaniline ND 290 37 ug/kg 99-09-2 3-Nitroaniline ND 290 34 ug/kg 91-20-3 Naphthalene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 20 ug/kg 621-64-7 N-Nitroso-di-n-propylamine	206-44-0		211	120	11		
118-74-1 Hexachlorobenzene ND 120 29 ug/kg 87-68-3 Hexachlorobutadiene ND 120 27 ug/kg 77-47-4 Hexachlorocyclopentadiene ND 1200 27 ug/kg 67-72-1 Hexachlorocthane ND 290 25 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg 91-57-6 2-Methylnaphthalene ND 120 19 ug/kg 98-95-2 3-Nitroaniline ND 290 34 ug/kg 98-95-3 Nitrobenzene ND 120 13 ug/kg 621-64-7 N	86-73-7	Fluorene	2360	120	12		
87-68-3 Hexachlorobutadiene ND 120 27 ug/kg 77-47-4 Hexachlorocyclopentadiene ND 1200 27 ug/kg 67-72-1 Hexachloroethane ND 290 25 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg 91-57-6 2-Methylnaphthalene ND 120 19 ug/kg 91-57-6 2-Methylnaphthalene ND 120 53 ug/kg 88-74-4 2-Nitroaniline ND 290 37 ug/kg 99-09-2 3-Nitroaniline ND 290 39 ug/kg 91-20-3 Naphthalene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 13 ug/kg 621-64-7 N-Nitrosodiphenylamine ND 120 20 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-02-0 Pyrene 492	118-74-1	Hexachlorobenzene			29		
77-47-4 Hexachlorocyclopentadiene ND 1200 27 ug/kg 67-72-1 Hexachloroethane ND 290 25 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg 78-59-1 Isophorone ND 120 19 ug/kg 91-57-6 2-Methylnaphthalene ND 120 53 ug/kg 88-74-4 2-Nitroaniline ND 290 37 ug/kg 99-09-2 3-Nitroaniline ND 290 39 ug/kg 100-01-6 4-Nitroaniline ND 290 34 ug/kg 91-20-3 Naphthalene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 20 ug/kg 621-64-7 N-Nitrosodiphenylamine ND 120 20 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120<	87-68-3	Hexachlorobutadiene	ND	120			
67-72-1 Hexachloroethane ND 290 25 ug/kg 193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg J 78-59-1 Isophorone ND 120 19 ug/kg 91-57-6 2-Methylnaphthalene ND 120 53 ug/kg 88-74-4 2-Nitroaniline ND 290 37 ug/kg 99-09-2 3-Nitroaniline ND 290 39 ug/kg 100-01-6 4-Nitroaniline ND 290 34 ug/kg 91-20-3 Naphthalene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 20 ug/kg 621-64-7 N-Nitroso-di-n-propylamine ND 120 20 ug/kg 86-30-6 N-Nitrosodiphenylamine ND 290 13 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 6367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%					27		
193-39-5 Indeno(1,2,3-cd)pyrene 104 120 55 ug/kg J 78-59-1 Isophorone ND 120 19 ug/kg 9 91-57-6 2-Methylnaphthalene ND 120 53 ug/kg 88-74-4 2-Nitroaniline ND 290 37 ug/kg 99-09-2 3-Nitroaniline ND 290 39 ug/kg 99-09-2 3-Nitroaniline ND 290 34 ug/kg 99-09-2 3-Nitroaniline ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 20 ug/kg 90 13 ug/kg 90 13 ug/kg 90 13 ug/kg 90 120 120 <			ND	290	25		
78-59-1 Isophorone ND 120 19 ug/kg 91-57-6 2-Methylnaphthalene ND 120 53 ug/kg 88-74-4 2-Nitroaniline ND 290 37 ug/kg 99-09-2 3-Nitroaniline ND 290 39 ug/kg 100-01-6 4-Nitroaniline ND 290 34 ug/kg 91-20-3 Naphthalene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 20 ug/kg 621-64-7 N-Nitroso-di-n-propylamine ND 120 20 ug/kg 86-30-6 N-Nitrosodiphenylamine ND 120 13 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 <			104		55		J
91-57-6 2-Methylnaphthalene ND 120 53 ug/kg 88-74-4 2-Nitroaniline ND 290 37 ug/kg 99-09-2 3-Nitroaniline ND 290 39 ug/kg 100-01-6 4-Nitroaniline ND 290 34 ug/kg 91-20-3 Naphthalene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 20 ug/kg 621-64-7 N-Nitroso-di-n-propylamine ND 120 20 ug/kg 86-30-6 N-Nitrosodiphenylamine ND 290 13 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%			ND	120	19		Ū
88-74-4 2-Nitroaniline ND 290 37 ug/kg 99-09-2 3-Nitroaniline ND 290 39 ug/kg 100-01-6 4-Nitroaniline ND 290 34 ug/kg 91-20-3 Naphthalene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 20 ug/kg 621-64-7 N-Nitroso-di-n-propylamine ND 120 20 ug/kg 86-30-6 N-Nitrosodiphenylamine ND 290 13 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 36-105% 4165-62-2 Phenol-d5 85% 34-106% 418-79-6 2,4,6-Tribromoph	91-57-6		ND		53		
99-09-2 3-Nitroaniline ND 290 39 ug/kg 100-01-6 4-Nitroaniline ND 290 34 ug/kg 91-20-3 Naphthalene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 20 ug/kg 621-64-7 N-Nitroso-di-n-propylamine ND 120 20 ug/kg 86-30-6 N-Nitrosodiphenylamine ND 290 13 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%	88-74-4	* -	ND	290	37		
100-01-6 4-Nitroaniline ND 290 34 ug/kg 91-20-3 Naphthalene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 20 ug/kg 621-64-7 N-Nitroso-di-n-propylamine ND 120 20 ug/kg 86-30-6 N-Nitrosodiphenylamine ND 290 13 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%	99-09-2	3-Nitroaniline	ND	290	39		
91-20-3 Naphthalene ND 120 13 ug/kg 98-95-3 Nitrobenzene ND 120 20 ug/kg 621-64-7 N-Nitroso-di-n-propylamine ND 120 20 ug/kg 86-30-6 N-Nitrosodiphenylamine ND 290 13 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%	100-01-6		ND	290	34		
98-95-3 Nitrobenzene ND 120 20 ug/kg 621-64-7 N-Nitroso-di-n-propylamine ND 120 20 ug/kg 86-30-6 N-Nitrosodiphenylamine ND 290 13 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%	91-20-3		ND	120	13		
621-64-7 N-Nitroso-di-n-propylamine ND 120 20 ug/kg 86-30-6 N-Nitrosodiphenylamine ND 290 13 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%	98-95-3		ND	120	20		
86-30-6 N-Nitrosodiphenylamine ND 290 13 ug/kg 85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%	621-64-7		ND	120	20		
85-01-8 Phenanthrene ND 120 15 ug/kg 129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%	86-30-6		ND	290	13		
129-00-0 Pyrene 492 120 20 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%	85-01-8		ND		15		
120-82-1 1,2,4-Trichlorobenzene ND 120 18 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%	129-00-0	Pyrene		120	20		
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%		-	ND		18		
367-12-4 2-Fluorophenol 85% 26-105% 4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%		-•··•			_	0 0	
4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%	CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lin	nits	
4165-62-2 Phenol-d5 85% 34-106% 118-79-6 2,4,6-Tribromophenol 93% 30-126% 4165-60-0 Nitrobenzene-d5 94% 36-115%	367-12-4	2-Fluorophenol	85%		26-	105%	
4165-60-0 Nitrobenzene-d5 94% 36-115%	4165-62-2	Phenol-d5	85%		34-	106%	
4165-60-0 Nitrobenzene-d5 94% 36-115%	118-79-6	2,4,6-Tribromophenol	93%		30-	126%	
321-60-8 2-Fluorobiphenyl 70% 44-112%	4165-60-0	_ <u>.</u>	94%		36-	115%	
	321-60-8	2-Fluorobiphenyl	70%		44-	112%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: E4-2

Lab Sample ID; Matrix:

J84460-21

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08 Date Received: 02/29/08

Percent Solids: 56.5

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

Surrogate Recoveries	Run# 1	Run# 2	Limits	
Terphenyl-d14	78%		42-133%	
Tentatively Identified Compe	ounds	R.T.	Est. Conc.	Units Q
cycloalkane/alkene cycloalkane/alkene alkane Naphthalene tetrahydro-methy Decahydropentamethylna alkane Decahydropentamethylna alkane Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl unknown Azulene, -ethyldimethyl- Naphthalene tetrahydro-methy unknown Naphthalene tetrahydro-methy alkane unknown unknown unknown alkane unknown alkane unknown	i	3.39 6.39 10.51 10.75 10.93 11.24 11.69 12.03 12.16 12.25 12.94 13.02 13.22 13.82 14.08 14.41 14.65 14.85 14.90 15.09 15.31 15.38 16.00 16.25 16.82 18.53	17000 3300 3700 4500 5900 6400 13000 7700 5300 6500 4500 5300 3500 8800 4900 6900 4700 5200 13000 12000 3400 5100 7400 3500 6900 4200	ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kkg J
Total TIC, Semi-Volatile			155600	ug/kg J
	Terphenyl-d14 Tentatively Identified Composystem artifact Naphthalene, decahydro-, trancycloalkane/alkene cycloalkane/alkene alkane Naphthalene tetrahydro-methy Decahydropentamethylna alkane Decahydropentamethylna alkane Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl unknown Azulene, -ethyldimethyl- Naphthalene tetrahydro-methy unknown Naphthalene tetrahydro-methy alkane unknown unknown unknown alkane unknown alkane Cyclic octaatomic sulfur	Terphenyl-d14 Tentatively Identified Compounds system artifact Naphthalene, decahydro-, trans- cycloalkane/alkene cycloalkane/alkene alkane Naphthalene tetrahydro-methyl Decahydropentamethylna alkane Decahydropentamethylna alkane Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl unknown Azulene, -ethyldimethyl- Naphthalene tetrahydro-methyl unknown Naphthalene tetrahydro-methyl alkane unknown unknown unknown alkane unknown alkane Cyclic octaatomic sulfur	Terphenyl-d14 78% Tentatively Identified Compounds R.T. system artifact 3.39 Naphthalene, decahydro-, trans- cycloalkane/alkene 10.51 cycloalkane/alkene 10.75 alkane 10.93 Naphthalene tetrahydro-methyl 11.24 Decahydropentamethylna 11.69 alkane 12.03 Decahydropentamethylna 12.16 alkane 12.25 Naphthalene trimethyl 12.94 Naphthalene trimethyl 13.02 Naphthalene trimethyl 13.02 Naphthalene trimethyl 13.82 Azulene, -ethyldimethyl- 14.08 Naphthalene tetrahydro-methyl 14.41 unknown 14.65 Naphthalene tetrahydro-methyl 14.85 alkane 14.90 unknown 15.09 unknown 15.31 unknown 15.38 alkane 16.00 unknown 16.25 alkane 16.25 alkane 16.82 Cyclic octaatomic sulfur 18.53	Terphenyl-d14 78% 42-133% Tentatively Identified Compounds R.T. Est. Conc. system artifact 3.39 17000 Naphthalene, decahydro-, trans- cycloalkane/alkene 10.51 3700 cycloalkane/alkene 10.75 4500 alkane 10.93 5900 Naphthalene tetrahydro-methyl 11.24 6400 Decahydropentamethylna 11.69 13000 alkane 12.03 7700 Decahydropentamethylna 12.16 5300 alkane 12.25 6500 Naphthalene trimethyl 12.94 4500 Naphthalene trimethyl 13.02 5300 Naphthalene trimethyl 13.02 5300 Naphthalene trimethyl 13.22 3500 unknown 13.82 8800 Azulene, -ethyldimethyl- 14.08 4900 Naphthalene tetrahydro-methyl 14.41 6900 unknown 14.65 4700 Naphthalene tetrahydro-methyl 14.85 5200 alkane 14.90 13000 unknown 15.09 12000 unknown 15.31 3400 unknown 15.38 5100 alkane 16.00 7400 unknown 16.25 3500 alkane 16.82 6900 Cyclic octaatomic sulfur 18.53 4200

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: E4-6

Lab Sample ID:

J84460-22

SO - Soil

Date Sampled: 02/28/08 Date Received: 02/29/08

Matrix: Method:

SW846 8270C SW846 3550B

Percent Solids: 54.7

Project:

ExxonMobil Terminal 31020, Tappan, NY

File ID DF Analyzed Prep Date Prep Batch Analytical Batch Ву Run #1 F73482.D 1 03/04/08 NAP 03/01/08 OP31516 EF3503

Run #2

Initial Weight

Run #1 5.3 g Final Volume 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	1700	220	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	1700	470	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	1700	360	ug/kg	
105-67-9	2,4-DimethyIphenol	ND	1700	420	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	6900	380	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	6900	630	ug/kg	
95-48-7	2-Methylphenol	ND	690	330	ug/kg	
	3&4-Methylphenol	ND	690	430	ug/kg	
88-75-5	2-Nitrophenol	ND	1700	400	ug/kg	
100-02-7	4-Nitrophenol	ND	6900	610	ug/kg	
87-86-5	Pentachlorophenol	ND	3400	360	ug/kg	
108-95-2	Phenol	ND	690	320	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	1700	660	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	1700	700	ug/kg	
83-32-9	Acenaphthene	1560	690	110	ug/kg	
208-96-8	Acenaphthylene	ND	690	70	ug/kg	
120-12-7	Anthracene	361	690	320	ug/kg	J
56-55-3	Benzo(a)anthracene	329	690	71	ug/kg	J
50-32-8	Benzo(a)pyrene	303	690	170	ug/kg	J
205-99-2	Benzo(b)fluoranthene	384	690	110	ug/kg	J J
191-24-2	Benzo(g,h,i)perylene	288	690	140	ug/kg	J
207-08-9	Benzo(k)fluoranthene	242	690	150	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	690	150	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	690	130	ug/kg	
91-58-7	2-Chloronaphthalene	ND	690	100	ug/kg	
106-47-8	4-Chloroaniline	ND	1700	120	ug/kg	
86-74-8	Carbazole	ND	690	120	ug/kg	
218-01-9	Chrysene	387	690	140	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	690	130	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	690	160	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	690	200	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	690	99	ug/kg	
	• • •				0 0	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 2 of 3

Client Sample ID: E4-6

Lab Sample ID:

J84460-22

SO - Soil

Date Sampled: 02/28/08 Date Received: 02/29/08

Matrix: Method:

SW846 8270C SW846 3550B

Percent Solids: 54.7

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	690	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	690	100	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	690	92	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	690	110	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	690	140	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1700	250	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	129	690	89	ug/kg	J
132-64-9	Dibenzofuran	978	690	68	ug/kg	-
84-74-2	Di-n-butyl phthalate	ND	690	96	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	690	140	ug/kg	
84-66-2	Diethyl phthalate	ND	690	120	ug/kg	
131-11-3	Dimethyl phthalate	ND	690	93	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	486	690	210	ug/kg	J
206-44-0	Fluoranthene	654	690	64	ug/kg	J
86-73-7	Fluorene	2940	690	70	ug/kg	_
118-74-1	Hexachlorobenzene	ND	690	170	ug/kg	
87-68-3	Hexachlorobutadiene	ND	690	160	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	6900	160	ug/kg	
67-72-1	Hexachloroethane	ND	1700	140	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	690	320	ug/kg	
78-59-1	Isophorone	ND	690	110	ug/kg	
91-57-6	2-Methylnaphthalene	2840	690	310	ug/kg	
88-74-4	2-Nitroaniline	ND	1700	220	ug/kg	
99-09-2	3-Nitroaniline	ND	1700	230	ug/kg	
100-01-6	4-Nitroaniline	ND	1700	200	ug/kg	
91-20-3	Naphthalene	555	690	78	ug/kg	J
98-95-3	Nitrobenzene	ND	690	120	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	690	120	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1700	76	ug/kg	
85-01-8	Phenanthrene	5710	690	86	ug/kg	
129-00-0	Pyrene	786	690	120	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	690	110	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limi	its	
367-12-4	2-Fluorophenol	75%		26-10	05%	
4165-62-2	Phenol-d5	79%		34-1		
118-79-6	2,4,6-Tribromophenol	85%		30-1	* 1	
4165-60-0	Nitrobenzene-d5	85%		36-1	15%	
321-60-8	2-Fluorobiphenyl	74%		44-1	12%	
	- -					

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: E4-6

Lab Sample ID:

J84460-22

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08

Date Received: 02/29/08 Percent Solids: 54.7

Method: Project:

Matrix:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1718-51-0	Terphenyl-d14	76%		42-133%	
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units Q
90-12-0	system artifact system artifact alkane Naphthalene, I-methyl- Naphthalene ethyl Naphthalene dimethyl		2.09 3.39 9.46 10.12 11.21 11.36	7200 230000 10000 8000 7100 15000	ug/kg J ug/kg J ug/kg J ug/kg JN ug/kg J ug/kg J
	Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl alkane Naphthalene dimethyl Naphthalene trimethyl		11.56 11.60 11.82 11.95 12.01 12.61	21000 12000 11000 10000 6600 6700	ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J
	Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl unknown		12.88 12.95 13.15 13.35 13.75	9700 14000 9900 9400 15000	ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J
	Azulene, -ethyldimethyl- alkane Azulene, -ethyldimethyl- Azulene, -ethyldimethyl-		14.01 14.18 14.34 14.58	7000 16000 8800 8100	ug/kg J ug/kg J ug/kg J ug/kg J
10544-50-0	alkane 9H-Fluorene, -methyl- unknown unknown Cyclic octaatomic sulfur		14.81 14.89 15.01 15.30 18.49	26000 7000 17000 7800 47000	ug/kg J ug/kg J ug/kg J ug/kg J ug/kg JN
	unknown Total TIC, Semi-Volatile		22.46	7900 318000	ug/kg J ug/kg J

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: E5-2

Lab Sample ID: Matrix:

J84460-23 SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/28/08 Date Received: 02/29/08 Percent Solids: 59.7

ExxonMobil Terminal 31020, Tappan, NY

Project:

File ID DF Analyzed Prep Date Prep Batch Analytical Batch Ву Run #1 F73483.D 03/04/08 NAP 03/01/08 OP31516 EF3503 1

Run #2

Method:

Initial Weight Final Volume Run #1 30.2 g1,0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	280	35	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	280	75	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	280	58	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	280	68	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1100	61	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1100	100	ug/kg	
95-48-7	2-Methylphenol	ND	110	54	ug/kg	
	3&4-Methylphenol	ND	110	69	ug/kg	
88-75-5	2-Nitrophenol	ND	280	64	ug/kg	
100-02-7	4-Nitrophenol	ND	1100	98	ug/kg	
87-86-5	Pentachlorophenol	ND	550	58	ug/kg	
108-95-2	Phenol	ND	110	52	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	280	110	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	280	110	ug/kg	
83-32-9	Acenaphthene	70.9	110	18	ug/kg	J
208-96-8	Acenaphthylene	95.3	110	11	ug/kg	J
120-12-7	Anthracene	110	110	51	ug/kg	
56-55-3	Benzo(a)anthracene	112	110	11	ug/kg	
50-32-8	Benzo(a)pyrene	134	110	27	ug/kg	
205-99-2	Benzo(b)fluoranthene	187	110	18	ug/kg	
191-24-2	Benzo(g,h,i)perylene	186	110	22	ug/kg	
207-08-9	Benzo(k)fluoranthene	126	110	24	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	110	24	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	110	20	ug/kg	
91-58-7	2-Chloronaphthalene	ND	110	17	ug/kg	
106-47-8	4-Chloroaniline	ND	280	20 -	ug/kg	
86-74-8	Carbazole	49.1	110	19	ug/kg	J
218-01-9	Chrysene	146	110	22	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	110	22	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	110	25	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	110	32	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	110	16	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

<u>.</u>

Client Sample ID:	E5-2
Lab Sample ID:	J84460

J84460-23 SO - Soil Date Sampled: 02/28/08 Date Received: 02/29/08

Matrix: Method: Project:

SW846 8270C SW846 3550B ExxonMobil Terminal 31020, Tappan, NY Percent Solids: 59.7

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	40.7	110	19	ug/kg	J
541-73-1	1,3-Dichlorobenzene	ND	110	17	ug/kg ug/kg	Ţ
106-46-7	1,4-Dichlorobenzene	ND	110	15	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	110	18	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	110	22	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	280	40	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	59.2	110	14	ug/kg	Ţ
132-64-9	Dibenzofuran	101	110	11	ug/kg	J J
84-74-2	Di-n-butyl phthalate	ND	110	15	ug/kg	1
117-84-0	Di-n-octyl phthalate	ND	110	23	ug/kg	
84-66-2	Diethyl phthalate	ND	110	19	ug/kg	
131-11-3	Dimethyl phthalate	ND	110	15	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	81.7	110	33	ug/kg	J
206-44-0	Fluoranthene	139	110	10	ug/kg	J
86-73-7	Fluorene	166	110	11	ug/kg	
118-74-1	Hexachlorobenzene	ND	110	27	ug/kg	
87-68-3	Hexachlorobutadiene	ND	110	26	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1100	26	ug/kg	
67-72-1	Hexachloroethane	ND	280	23	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	155	110	52	ug/kg	
78-59-1	Isophorone	ND	110	18	ug/kg	
91-57-6	2-Methylnaphthalene	1230	110	50	ug/kg	
88-74-4	2-Nitroaniline	ND	280	35	ug/kg	
99-09-2	3-Nitroaniline	ND	280	37	ug/kg	
100-01-6	4-Nitroaniline	ND	280	32	ug/kg	
91-20-3	Naphthalene	391	110	13	ug/kg	
98-95-3	Nitrobenzene	ND	110	19	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	110	19	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	280	12	ug/kg	
85-01-8	Phenanthrene	553	110	14	ug/kg	
129-00-0	Pyrene	173	110	19	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	110	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limi	its	
367-12-4	2-Fluorophenol	66%		26-10		
4165-62-2	Phenol-d5	68%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	71%		30-13		
4165-60-0	Nitrobenzene-d5	72%		36-1	15%	
321-60-8	2-Fluorobiphenyl	60%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: E5-2

Lab Sample ID: Matrix:

Method:

J84460-23

SO - Soil

Date Sampled: 02/28/08

SW846 8270C SW846 3550B

Date Received: 02/29/08 Percent Solids: 59.7

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	61%		42-133%	
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units Q
	system artifact		3.08	690	ug/kg J
	system artifact		3.38	32000	ug/kg J
493-02-7	Naphthalene, decahydro-, tran	5-	6.38	520	ug/kg JN
	cycloalkane/alkene		8.83	560	ug/kg J
	alkane		9.46	680	ug/kg J
90-12-0	Naphthalene, 1-methyl-		10.12	860	ug/kg JN
	Naphthalene ethyl		11.21	810	ug/kg J
	Naphthalene dimethyl		11.36	1900	ug/kg J
	Naphthalene dimethyl		11.55	1700	ug/kg J
	Naphthalene dimethyl		11.60	1300	ug/kg J
	Naphthalene dimethyl		11.81	760	ug/kg J
	Naphthalene trimethyl		12.G1	760	ug/kg J
	Naphthalene trimethyl		12.88	810	ug/kg J
	Naphthalene trimethyl		12.94	1000	ug/kg]
	Naphthalene trimethyl		13.14	570	ug/kg J
-	Naphthalene trimethyl		13.18	860	ug/kg J
	Naphthalene trimethyl		13.34	520	ug/kg J
	unknown		13.74	980	ug/kg J
	alkane		14.17	590	ug/kg J
	Naphthalene tetrahydro-methy	1	14.33	630	ug/kg J
	alkane		14.81	880	ug/kg J
	unknown		15.00	1000	ug/kg J
10544-50-0	Cyclic octaatomic sulfur		18.46	1400	ug/kg JN
	unknown		19.75	790	ug/kg J
	unknown		24.11	13000	ug/kg J
	unknown		24.60	990	ug/kg J
	unknown		25.09	970	ug/kg J
	Total TIC, Semi-Volatile			34840	ug/kg J

MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

	ACCUTE	rles		223 733	HAIN 95 Route 1 2029-020	130 C	ayton VX: 73	NJ (2-329	3810 -3499/	3480)		,		Aceia	oa1 J ob -		սվ								Pg 1	of:	3 /	/
1002 80:00		A ALMANDA						14 4- 1	, (,	-		7,			<u> </u>	1	_		Ans	ytic	t Lnix	Ymati T	ion	_	1	.	_	\dashv	1
	NMOBIL CORPORATION -	Regional		ACT PROPERTY.	gram (n	17, 14	<u> </u>						ł	ı		1	ļ.			1		1	. 1	^			1 1		٠,
wa	DOARD & LURRAN			XW M	isenl	ive.	ME	21	1084	N	TEX	MA	JAL.	EAC		l_			1					7	1		1 1		
Address			120	ii											l	P.F.								G£78					1-
154	O HIGHLAND AVE	ME	1 72	MURC	716	₹V₽	NΓ	re.	B	_			2	묘	ĺ	ľ	d C	İ		ŀ									ر ا
		06410		ASTANO	65 as	J - H	210	\$ላሌ	,	לו	/			MTTGE II	l	뭁.	ě	9	۱.			ļ l	i	13	ı	.i			
Propert Cor	Tarit	00410	Exic	miliobil Man	ager;					· · ·			8 <u>7</u>		l۴	ļ <u>.</u>	д (на) въсс	Ĕ	ΙĒ			i l	. !	-USEPA		1	l l	1	
P(T Serresers)	UNE PROCTOR		Erry	TEVE	<u> 1721</u>		Ε	71						₹. 5.	STAFFS LIST	롡	-	WIBEO TPKO	PULLUST O	l					1		1 1		1
M.R	LITORTO IM. PRET	SSLEP2.	_	718	283	73	574						20	P	≝	00	2007	Ę				02420		ુ		1			1
Phone f:	/ Ext.	Nan 22174		31-0	2D					WBA	ا		0 90210 11786 0 0	₽. •	I _	효후	នទូ	<u> </u>	0	٦		I - I	1	1105		1			
MI	7 241 0 3141 1203	7 271 77	P PO			10	میری		_	ببعرا	_	_	(CZ y	do.	Ē			-TC3 BTEX D	GIEX.	80158	80158	<u> </u>	1	700		1.	1 1		1
		, -,		<u>и</u> ъ	<i>0</i> 938	59 E	$\frac{\omega}{2}$		<u> </u>				IBUS	[유월	2	調点		5 S				419.1	1	5	.l	1	1 1	1	
Accutest			Collection	i	┪	نہ ا		š	Prose			ाह	ESSO C CAN SENSENE D NAVAMBALENE	먏	2	STATE BES DISTANCE	20	Methana D	¥101+	TPH-GRO	TPH-DRIC	l _≖ l	1	نَحَ		1			1
Sample #	Field ID / Point of Collection	Daire	Time	Sampled b		F DI	u	١	(18)	Ī	تلة	118	<u>n</u> 855	121 ₹	1 2	1 to	32	₹ 5	3	<u> </u>	Ê	₹	-	S	<u> </u>	↓	 	ш	1
-1	TP1-H	2/28/18	1015	MR/M	<u> 120</u>	1			Ш	X				!	Į			Į				Ц		乄	<u>.L.</u>	<u> </u>			
-2	TP1-8		1020	1 1	1	1			1 1	l (l		١٠		1	ĺ	l		ĺ)					ſ	1				2,
-3	TP2-2 .	<u> </u>	10:50		\top	П	П		ī	П	7	Т			П		<u> </u>		Г			П		\Box	Т	1			3
- 4	1021-7		1105		11	П		1	П	П	十	┪					$\overline{}$		T	Т	П	П		\sqcap	\top	\top		Г	Í
-5	703A-C		1110	+ +	++	i - 	-	┪	┪	H	╅	┰		+-	\vdash				1	┱		Н		i- -	+	+	\vdash		1
	TP4-2		1125	┤╸┤╸	╅╅	╁	┨═	-	+	H	+	+		+	\vdash	┪	\vdash	1	H	┝	-	\vdash	 	+	十	+	+	\vdash	1
<u>-ç</u>	+	 		├ ├	╂╂╌	┝╋	+	\dashv	+	₩		+-		┿╾	╀╌	╂╾	 	!	╌	⊢	\vdash	\vdash		╀	十	╫	╂╾╾┦	┟╼╾╵	ł
-1	TP4-6 °	1 . [1132	 		╀			+-	<u> </u>	+	+	-	_	ļ.,	 -	!	 	١	 	<u> </u>	_	 		 	┿	╀	<u> </u>	4
<u>–8</u>	<u> </u>	<u> </u>	1150		11	L.	-!	_		Щ	4	┷	_	 	<u> </u>	↓	!—	 _	↓_	╙	_	_	ļ		↓_	—	↓ !		ł
~ q	175-7		1150	<u> </u>	11	Ш				Ш	\perp						<u></u>				Ш		LJ	Ш					1.
- 10	Fis 022808). 1	, 12W			L			1 1	Ш										_]
-11	F1-3· F	1 3	1305	1 1	1	J		П	\sqcap	W		Τ		Ī			Γ		Ī	Г		П		Ų,	Т	\top		П	1.
	Temercunt Time (Business)	Mys.)			C 7.77		Deta D	direction.	of artor	meže	Y)	-83	a distance	als, ya							Com	- Parks	/ Florests		_				
樫	Std., 10 Business Days	Appreced B	y/Dete		ommerci			٠	<u>□</u> ₽			٠							_			75	_AI	<u>1E/\</u>	აუი	<u>N:</u>			1
	E Day RUSH 5 Day RUSH			1 8 5	ommerci 1 Design				אַם						F	M	E	221	<u> </u>	06	_					SAC 01	1010	<u> </u>	1
暑	SONY EMERGENCY E STAR	61 par 7	Pitter	. ☐ NJ Reduced ☐ NYASP Category :							-		•	2017	. Va	0-12	Ric	4	34	045	200	937K	کیون	Dit	300	KL.	1		
125	2 Day EMERGENCY	<u>. K</u>	2/25	- □ •	ther t				0 E		01770				F	ייניים	~	40	1 1 1 1		لا م	. II	H76	395	ᄻ		2.29		1
	1 Day EMERGENCY			0	ommend	4.Y.	= P4+		*7						ᄩ	VU?	~=		تصت الا	عدد	الت				~~		عرب ٦		1
En	nemency T/A is for FAX or Labiink	LAIGE	*		Tio No. of		-1-4			ш.,					1 7	- X - 1 6	1			-7.		77.1	الستالة	45	1(47	تببت	<u> 1 (117)</u>	न्यक	1

186 736 Preserve ware species : ec'd 711 tract 1 121 2/29/65

J84460: Chain of Custody

Page 1 of 3

N. 34-1 Atra-tr VNP -7'-J CHARGO

EACCUTES	Γ.

CHAIN OF CUSTODY 2235 Route 130 Dayton, NJ 08810

So Laboratories 732-329-0200 FAX: 732-329-3499/3480													Account Job F:												\neg				
																USULGO Applytical information													
EXXONMO			Regional	Leborat	COV Proor	ann (N	nabon_ IY. N.D	٠.	_	<u> </u>	_		.12	┿	$\overline{}$	 	_	_	<u> </u>	Ana	ytica I	l Indo	rmatic	»^		т	$\neg \tau$		\dashv
Consumer Compa	ul hymnet			Proje	CI Name				_					┥	•						ŀ٠l		1	- 1	اہ		1	- 1	
MODRE	20 4 (1	<u>vcfai</u>	<u> </u>	EXX Street	CHIMORI M	L Fü	<u>ረሎ</u> ቼን	<u>_ 1</u> 1	ħΡ	<u>PAN</u>	<u> </u>	P.	410		TPA D		DH/4								8270			ŀ	
<u> 1520 +</u>	MGHLAN	TO W	henme	<u>= 8</u>	AILROA		<u>ት</u> /ድ	NU	Œ	- 64	t a				D SELLE C	1	≾	e S				ı		- 1					
CHESH	Pt 1	cr-	064			STAUGS-ON- PRIPSON NY											2	0000 (DM) C	문	5				- }	471CS -USEPA		-	İ	
ANNE	E PROC	mx.			TEVE	흅草	12.0 PP.0	喜	25.0	×	0.0	เหนบราช			ا ۾	- }	3	ł	-	-									
M. PLTC	<u>270/p</u>	U.PR	<u>22 اي.</u>	LCK	<u>(718</u>	\ ₹	ጵጂ	7 3	<u>.</u> 7	4] ² 2	<u>□</u> =	STANG UST	55	200,7			lł		00435		6		- 1	ı	
(203) 27	1 0374	120	5) 271 7	7452	~~~31-	020	5				₩85	ط	,		ᆙᇛ		55	Despera	Š	a X	2			- 1	읩		ı		
APLI				POI	45	793	893	<u> </u>	5		Livine			300	WATHWENE C	5	STANS LST D	20 00 00 00 00 00 00 00 00 00 00 00 00 0	AINTO BIEKO MTBEO TPHO Methane D	NA TOILE BIEK	99168	B0158	418.10		7		- 1		
Annatant				Collection	r				- I		· V		ΞĪ	BENZENE D	먆	D: 020	100	3 3	100 E	ğ	TPH-GRO	8	- 1	[Slocs	ļ		-	
	11D / Point of C		Date	Tarre	Service) to	Matte	0 cd bother	ğ,	ğ	8 §	5	3	ă,	§ ន ឹង	83	8	156	3,8	₹ <u>₹</u>	3	E	흰	<u> </u>	_ <u> </u>	<u>(2)</u>	_	_	_	_
	E5-6	*	2 75/08		MRIND	<u>50</u>	1_	<u> </u>	_		M	_	_		┖	_	<u> </u>	$ldsymbol{ld}}}}}}$	<u> </u>		Ш		_	Т,	⋈			_	_
	E6-2	¥	_	1435					_	1	Ш	Ц	_		<u> </u>	_	<u> </u>	<u> </u>	<u></u>	_	Ш			[11	_			_
-14	Floria	*		1440				Ц	_	┸	Ц							<u> </u>			Ш	_[┙		<u>' 1</u>		_	_	_
				<u> </u>	<u> </u>			Ш							<u> </u>			<u> </u>	<u> </u>			╝						•	
				<u> </u>	:			Ш	┙	1	Ш							<u> </u>	<u></u>			_[_1					
																						_1							\Box
								П	Т	1			1			<u> </u>		-					\cdot	Т	\neg		\neg		╗
				1				П			Π		╗			Π		Г		Г	П			\neg	\neg		\neg		\neg
				i	i			IТ	7	_	П	П	T			İ								7	コ		\neg		ヿ
					1		<u> </u>		╗	7	П	Π	┪		1	Ī		Г	Π		П		寸	一	一		一	\neg	ᆿ
	_				ì			⇈	寸	┪	П	Π	Ť	1	Τ	Π		Г	İ		П		T	一十	一		寸	寸	ヿ
	Tymera,nd Tim	a (Dynamaus de	177)	•	THE WAY	4-1	Ď.	to Del	44.	die ink	ersék.	'n	1	MATERIA.	(Tebas		-		_	_	_	<u></u>	- is / i	Remarks			=		=
(1) 8 Dey 5	Business Days	•	Approved B	y:/Dete							ULL					<u> </u>			<u> </u>										_
/ B Boay F	RUSH	_			ונא 🗆 ו						eayi Sayi					╙													_
	EMERGENCY	- ALL	"E 1 5.4	mouss	- mi		•				tute		-	.,-															
	EMERGENCY	_			□ 0th						DO I	Fore	at_																
1 Day EMERGENCY Commercial *A* a Results only Emergency T/A is for FAX or Lablink Data																									\neg				
9-b	4.40		Date Torre		Distory mus			ed be	kow	eech	жпе	40 m	plee	change p	263431				or deby	му.				lane.	-41-4	~			二
Reduction of by Bur 1 Williams Reduction of the	TEGON!	خا	2 18/	18 65			ei.	<u>火</u>		_ 2°			<i></i>	دبر		_	3/7		(u	ميه					ed by:	ورارا	?		_
3					Received 3					- 4	el é		LF:			<u> </u>	oto These							4				·-	_
Robinsolvénou by: 6	+		Date Times		Received 5	I										-								`	On lon	-		ÿ	7~
															-														_

J84460: Chain of Custody

Page 2 of 3

23 14	
EACCUTES	<u> 3T.</u>

CHAIN OF CUSTODY

2235 Roste 130 Dayton, NJ 08810

79	3	of	3
----	---	----	---

EACCUTEST		732-3	29-020	O FAX	: 732-3	29-3	499/34	30					Acres	pert Job	-												ı
So Laboratories		•													<u>(, "</u>	84											l
executive transfer Chent Information Take 12 to 1						A 44.	. Ç v		•	- E-1							Ars	γúça	l Unit	rma1	ion			_	_		l
EXXONMOBIL CORPORATION - Regional I	_aborator	y Progra	im (N	Y, NJ	<u></u> .	_				긕				i	į .	•			i 1			4	<u>'</u>				l
WOODARD + CURRAN	EXX	N) N()	ليطاني	FORM	£(<u>—</u>	77\/	<u>የ</u> ተ፣	47	EΥ	<u> </u>	iNAC	340	l	<u>.</u>	İ							- USB91-823-	3		1		ļ
1520 HIGHLAND AVENUE		P11_21	44:Q	ΔV	£Ν	uė				_		11360 T		BYO PAHO	5						!	&	1				
CHESINEE CT OWNO	Ites	T) - Y-C	<u>- a</u>	<u>)-H</u>	w <u>c5</u> 0	ΔJ	,	۱۲			D _D	lou!			(WC) FOOZ	Ar-TOS BTEXES MISEG TPHIC	<u>.</u>					33	3				
ANNE PROCTUR_	57	EVE.	TE	LEU	LE:7	\Box					2	£.	垣		a	6	COLL LIST O		ш	E							
M. PINETO IN PRESSUER	_ 	EVE 718) 31-0	28	<u> </u>	757	u					0 8021 0 1 LTRE 0 1	12.0 Pr. 0	25	0.0	200,7 [2	Ē	[2			00A-25 II		+716	9	Į.		1	
(203) 271 0379 (203) 271 77.	-Z. Lecoto	37-0	2.0				W	5.5 T	/_		홟튜ㅁ	Ę.,	G	함	8 3	9	0	l e		8		<u>F</u>	7	ļ.,		١.	
(255) 241 (371) (255) 241 116	~ RF .	15 bA	20	cen		_	Lie C		0	\dashv	조근	2%	Į.	20		Įğ	18	įŝ	O 60158	<u> </u>]				ŀ		l
	diection	1000	22 6	7 137	?—	P	****	ation	,	\dashv	골살	3	, ×	<u> </u>	B.	18 2	≝.	8	Š,	¥		্ ও	3	.			i
Accudent				1 ci	4 5		ā ı	Ì	ş	å	PERMUSANI BONDACO IN DIVIDIC DOM	KANTHALENE	8	KIT D EZE D OTAL SIANS LIST D . 15	ĭ	Ar-TOO B	NFTO14: BTEX	PH GRO 60158	TPH-DRO	Ŧ		3MC.5			1		
Bample # Field 1D / Point of Collection Dec			Marke	contes	7 3	Ť	¥ ±	#	"	5	RES	82	#4	B to	17 6	14 3	₹.	 -	트	<u> </u>	⊢	Ÿ	+	╁	╁		i
-115 E1-3MS 12/20/08		re no	<u>80</u>	<u> </u>	- -	╌		- -	┨	Н		 	 	┈	-	! —	┼	╢	Н		 	_	: 	┿	┼	i -	l
	1305	- -		- -	-	┦┤	-	₩	┝╌╏	Н	-	⊢	┝	-	_	╀	⊢	⊢			-	\vdash	+	╁	╁	 —	
-15 E1-7 4	1310			<u></u>		╀╌┤		Н-	Н	Н		L			_	!	╀	⊢				\vdash	+	╀	├ -	 —	
	1320	_	44	Ц	<u>! </u>	Ц		Щ.	Ц	Ц		_	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	┡	Щ			\vdash	<u> </u>	 	↓	 _	ł
-17 E2-7 *	1325	_ _	\perp	Ц.	<u> </u>	Ш		Ц_	ᆜ	Ц		L	<u> </u>	!—	!	<u> </u>	<u>ļ</u>	┡	_	<u> </u> _		_	<u> </u>	╄	 	 	
-18 E3-3 *	1380	$\perp \!\!\! \perp$	\perp	И_	$oxed{oldsymbol{ol}}}}}}}}}}}}}}}}}}$	Ц		Ш_	Ц	Ц		_	<u> </u>	<u> </u>	_	<u>!</u>	<u> </u>	<u> </u>		_	<u> </u>	1	<u>.ļ. </u>		↓		
	1355		\perp	<u> </u>	$\sqcup \bot$	Ц		<u> </u>	Ш	Ц			_	1		<u> </u>	上	L							<u> </u>		
-20 63-7 出	1345			<u> </u>	<u>1_L</u>	Ш	Ш	1	Ш	Ц			<u> </u>				乚	<u>L</u>		_		Ш			<u>L.</u>		ŀ
-21 [4-2 -4-1.	1350								П																1		
-22 EU-6 *	355	$\overline{}$	\top	П	П	П	П	Ш	П			Γ			ŀ	Τ	Π	Γ	Γ	Γ	ľ	\sqcap		\top			
-23 E5-2 * 4	ในเป็	Ÿ	7	1	П	П	1	ĮΓ	П	П			Γ.	1		1	Т	Т	Γ	_	<u> </u>	14	7	1			l
Turners and Time (Business Gays)	- A	an mark (Charles	Mar.	5	elii. Celiv	erable	PROTE	a tion		ود	17770	Ph.		•					Com	~100 ·	/Renga						Į
Std. 10 Business Days Approved By:	(Date	□ Com) FUI				_																
3 Day RUSH							אינא (יישור (NSP (NSP (<u> </u>														1
D SON EMERGENCY - ALLIE SAMP	LES	D NU F		-			Sta			,,,,	-		L]
1 2 Day EMERGENCY PARTY IN THE INTERIOR	<u> </u>	C Othe					ED!	D For	met,		_														-		1
1 Day EMERGENCY Emergency T/A is for FAX or Lablink Data		Com	unerdi	1.Y. =	Results	only	'						Г				_										1
	Sample Cut			CLIMEN	ted beid	W_ 94	ch bir	0 1-21	note	chi	ange po	11441										_					1
1 Mont & Prin 27281	18 1630	Feceived 5	nys .	Fox	ياد		Podre 2		<u> 1</u>	ے,	يخر			777		<i>(</i> 0	<u>t-</u>						PIJ	٠, ا]
Redrighting by: Date Time:		Received 2 3	Y:				Retre	quiet a	4 by:					was The							Paros 4	hed by					
Retrogulated by: Date Times		Received b	71				ian a	•				•	753477		e applic							07 to	٠		ħ	ى ر	1
<u> </u>		В.					<u>. </u>			_																	1

J84460: Chain of Custody Page 3 of 3

03/18/08

Technical Report for

Woodard & Curran

ExxonMobil Terminal 31020, Tappan, NY

PO#4509389305 WBS#08

Accutest Job Number: J84581

Sampling Date: 02/29/08

Report to:

Woodard & Curran 1520 Highland Avenuet Cheshire, CT 06410

ATTN: Anne Proctor

Total number of pages in report: 62

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

incent J. Pugliese

President

Sections:

Table of Contents

		-1-	
		-T-	•

Section 1: Sample Summary	3
Section 2: Sample Results	5
2.1: J84581-1: E8-2	6
2.2: J84581-2: E8-6	9
2.3: J84581-3: E10-1	12
2.4: J84581-4: DUP-022908	15
2.5: J84581-5: E10-5	18
2.6: J84581-6: E7-2	
2.7: J84581-7: E7-6	24
2.8: J84581-8: E9-2	27
2.9: J84581-9: E9-6	
2.10: J84581-10: E11-2	33
2.11: J84581-11: E11-6	36
2.12: J84581-12: FB-022908	39
2.13: J84581-13: TP5-2	
2.14: J84581-14: TP5-6	
2.15: J84581-15: TP6-3	48
·	
2.17: J84581-17: TP7-3	
2.18: J84581-18: TP7-7	
Section 3: Misc. Forms	

Sample Summary

Woodard & Curran

Job No:

J84581

ExxonMobil Terminal 31020, Tappan, NY Project No: PO#4509389305 WBS#08

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
J84581-1	02/29/08	08:05 MR	03/01/08	so	Soil	E8-2
J84581-2	02/29/08	08:10 MR	03/01/08	SO	Soil	E8-6
J84581-3	02/29/08	08:25 MR	03/01/08	so	Soil	E10-1
J84581-3D	02/29/08	08:25 MR	03/01/08	so	Soil Dup/MSD	E10-1 MSD
J84581-3S	02/29/08	08:25 MR	03/01/08	so	Soil Matrix Spike	E10-1 MS
J84581-4	02/29/08	08:30 MR	03/01/08	so	Soil	DUP-022908
J84581-5	02/29/08	08:35 MR	03/01/08	so	Soil	E10-5
J84581-6	02/29/08	08:45 MR	03/01/08	so	Soil	E7-2
J84581-7	02/29/08	08:50 MR	03/01/08	so	Soil	E7-6
J84581-8	02/29/08	08:55 MR	03/01/08	so	Soil	E9-2
J84581-9	02/29/08	09:00 MR	03/01/08	so	Soil	E9-6
J84581-10	02/29/08	09:20 MR	03/01/08	so	Soil	E11-2
J84581-11	02/29/08	09:30 MR	03/01/08	so	Soil	E11-6

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Summary (continued)

Woodard & Curran

Job No:

J84581

ExxonMobil Terminal 31020, Tappan, NY Project No: PO#4509389305 WBS#08

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
J84581-12	02/29/08	10:30 MR	03/01/08	AQ	Field Blank Soil	FB-022908
J84581-13	02/29/08	10:45 MR	03/01/08	so	Soil	TP5-2
J84581-14	02/29/08	10:50 MR	03/01/08	so	Soil	TP5-6
]84581-15	02/29/08	10:55 MR	03/01/08	so	Soil	TP6-3
J84581-16	02/29/08	10:59 MR	03/01/08	so	Soil	TP6-7
J84581-17	02/29/08	11:05 MR	03/01/08	so	Soil	TP7-3
J84581-18	02/29/08	11:10 MR	03/01/08	so	Soil	TP7-7

Sample Results		
Report of Analysis	·	

OYA

Page 1 of 3

Client Sample ID: E8-2 Lab Sample ID:

J84581-1 SO - Soil

02/29/08 Date Sampled: Date Received: 03/01/08 Percent Solids: 64.9

03/04/08

Matrix: Method: Project:

SW846 8270C SW846 3550B

ExxonMobil Terminal 31020, Tappan, NY

03/05/08

File ID DF Analyzed Ву Prep Date

Analytical Batch Prep Batch OP31534 E3E565

Run #1 Run #2

Initial Weight Final Volume Run #1 30.1 g

3E12937.D

1.0 ml

1

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Ç
95-57-8	2-Chlorophenol	ND	260	33	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	260	70	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	260	53	ug/kg	
105-67-9	2,4-Dimethylphenol	ND .	260	62	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1000	56	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1000	94	ug/kg	
95-48-7	2-Methylphenol	ND	100	50	ug/kg	
	3&4-Methylphenol	ND	100	63	ug/kg	
88-75-5	2-Nitrophenol	ND	. 260	59	ug/kg	
100-02-7	4-Nitrophenol	ND	1000	90	ug/kg	
87-86-5 -	Pentachlorophenol	ND	510	54	ug/kg	
108-95-2	Phenol	ND	100	48	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	260	97	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	260	100	ug/kg	
83-32-9	Acenaphthene	ND	100	16	ug/kg	
208-96-8	Acenaphthylene	133	100	10	ug/kg	
120-12-7	Anthracene	156	100	47	ug/kg	
56-55-3	Benzo(a)anthracene	238	100	11	ug/kg	
50-32-8	Benzo(a) pyrene	239	100	25	ug/kg	
205-99-2	Benzo(b)fluoranthene	411	100	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	233	100	20	ug/kg	
207-08-9	Benzo(k)fluoranthene	226	100	22	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	100	22	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	100	19	ug/kg	
91-58-7	2-Chloronaphthalene	ND	100	15	ug/kg	
106-47-8	4-Chloroaniline	ND	260	19	ug/kg	
86-74-8	Carbazole	46.4	100	17	ug/kg	J
218-01-9	Chrysene	317	100	21	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	100	20	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	100	23	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	100	30	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	100	15	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: E8-2

Lab Sample ID:

J84581-1 SO - Soil Date Sampled: 02/29/08 Date Received: 03/01/08

Matrix: Method:

SW846 8270C SW846 3550B

Percent Solids: 64.9

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	79.5	100	17	ug/kg	J
541-73-1	1,3-Dichlorobenzene	ND	100	15	ug/kg	_
106-46-7	1,4-Dichlorobenzene	ND	100	14	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	100	17	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	100	20	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND .	260	37	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	91.3	100	13	ug/kg	J
132-64-9	Dibenzofuran	26.2	100	10	ug/kg	Ĵ
84-74-2	Di-n-butyl phthalate	ND	100	14	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	100	21	ug/kg	
84-66-2	Diethyl phthalate	ND	100	18	ug/kg	
131-11-3	Dimethyl phthalate	ND	100	14	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	241	100	31	ug/kg	
206-44-0	Fluoranthene	438	100	9.5	ug/kg	
86-73-7	Fluorene	ND	100	10	ug/kg	
118-74-1	Hexachlorobenzene	ND	100	25	ug/kg	
87-68-3	Hexachlorobutadiene	ND	100	24	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1000	24	ug/kg	
67-72-1	Hexachloroethane	ND	260	21	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	216	100	48	ug/kg	
78-59-1	Isophorone	ND	100	16	ug/kg	
91-57-6	2-Methylnaphthalene	153	100	46	ug/kg	
88-74-4	2-Nitroaniline	ND	260	33	ug/kg	
99-09-2	3-Nitroaniline	ND	260	34	ug/kg	
100-01-6	4-Nitroaniline	ND	260	29	ug/kg	
91-20-3	Naphthalene	48.3	100	12	ug/kg	J
98-95-3	Nitrobenzene	ND	100	17	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	100	18	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	260	11	ug/kg	
85-01-8	Phenanthrene	251	100	13	ug/kg	
129-00-0	Pyrene	446	100	18	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	100	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lin	nits	
367-12-4	2-Fluorophenol	66%		26-	105%	
4165-62-2	Phenol-d5	66%			106%	
118-79-6	2,4,6-Tribromophenol	83%		30-	126%	
4165-60-0	Nitrobenzene-d5	58%		36-	115%	
321-60-8	2-Fluorobiphenyl	64%		44-	112%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: E8-2

Lab Sample ID:

J84581-1

SO - Soil

Date Received: 03/01/08

Date Sampled: 02/29/08

Matrix: Method:

SW846 8270C SW846 3550B

Percent Solids: 64.9

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
1718-51-0	Terphenyl-d14	63%		42-133%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
100	system artifact system artifact/aldol-condensat system artifact Benzaldehyde Benzene, -ethenylmethyl- unknown unknown acid unknown) B)	3.06 3.36 3.40 4.90 5.86 7.94 8.92 10.28 16.78 18.59 19.12 19.39 19.43 19.56 19.67 19.71 19.79 19.99 20.05 20.19 20.59 20.71 20.75 20.93 21.19 21.35 22.40 23.60	700 32000 370 800 390 340 360 360 330 340 880 390 700 920 680 570 590 320 350 1200 660 280 370 560 1600 440 400 2600	ug/kg]
	Total TIC, Semi-Volatile			16430	ug/kg	j

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

NO

Lab Samp Matrix: Method: Project:	SO - Soil SW846 8270C	SW846 3550B erminal 31020, Ta	oppan, NY	Date I	Sampled: Received nt Solids	: 03/01/08	
Run #1 ^a Run #2	File ID DF 3E12938.D 1	Апаlyzed 03/05/08	By OYA	Prep D 03/04/0		Prep Batch OP31534	Analytical Batch E3E565
Run #1 Run #2	Initial Weight Final 5.5 g 1.0 n	l Volume il			-		· · · · ·
ABN TCL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	1600	200	ug/kg		
59-50-7	4-Chloro-3-methyl ph	enol ND	1600	420	ug/kg		
120-83-2	2,4-Dichlorophenol	ND	1600	320	ug/kg		
105-67-9	2,4-Dimethylphenol	ND	1600	380	ug/kg		
51-28-5	2,4-Dinitrophenol	ND	6200	340	ug/kg		
534-52-1	4.6-Dinitro-o-cresol	ND	6200	570	ug/kg		

AC 50 A	0.011 1 1	***	4000		м
95-57-8	2-Chlorophenol	ND	1600	200	ug/kg
59-50-7	4-Chloro-3-methyl phenol	ND	1600	420	ug/kg
120-83-2	2,4-Dichlorophenol	ND	1600	320	ug/kg
105-67-9	2,4-Dimethylphenol	ND	1600	380	ug/kg
51-28-5	2,4-Dinitrophenol	ND	6200	340	ug/kg
534-52-1	4,6-Dinitro-o-cresol	ND	6200	570	ug/kg
95-48-7	2-Methylphenol	ND	620	300	ug/kg
	3&4-Methylphenol	ND	620	390	ug/kg
88-75-5	2-Nitrophenol	ND	1600	360	ug/kg
100-02-7	4-Nitrophenol	ND	6200	550	ug/kg
87-86-5	Pentachlorophenol	ND	3100	330	ug/kg
108-95-2	Phenol	ND	620	290	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	1600	590	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	1600	630	ug/kg
83-32-9	Acenaphthene	6200	620	99	ug/kg
208-96-8	Acenaphthylene	ND	620	63	ug/kg
120-12-7	Anthracene	2600	620	290	ug/kg
56-55-3	Benzo(a)anthracene	2500	620	G5	ug/kg
50-32-8	Benzo(a) pyrene	1720	620	150	ug/kg
205-99-2	Benzo(b)fluoranthene	1990	620	100	ug/kg
191-24-2	Benzo(g,h,i)perylene	825	620	120	ug/kg
207-08-9	Benzo(k)fluoranthene	1810	620	130	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	620	140	ug/kg
85-68-7	Butyl benzyl phthalate	ND	620	110	ug/kg
91-58-7	2-Chloronaphthalene	ND	620	94	ug/kg
106-47-8	4-Chloroaniline	ND	1600	110	ug/kg
86-74-8	Carbazole	1540	620	110	ug/kg
218-01-9	Chrysene	3050	620	130	ug/kg
111-91-1	bis(2-Chloroethoxy)methane	ND	620	120	ug/kg
111-44-4	bis(2-Chloroethyl)ether	ND	620	140	ug/kg
108-60-1	bis(2-Chloroisopropyl)ether	ND	620	180	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	620	89	ug/kg
. 500 . 20		. 125	V 20	~~	~6· ~6

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: E8-6

Lab Sample ID: J84581-2 Matrix: SO - Soil

Matrix: Method:

SW846 8270C SW846 3550B

Date Sampled: 02/29/08
Date Received: 03/01/08

Percent Solids: 58.2

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND '	620	110	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	620	94	ug/kg	
106-46-7	I,4-Dichlorobenzene	ND	620	84	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	620	100	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	620	120	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1600	230	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	392	620	80	ug/kg	J
132-64-9	Dibenzofuran	4130	620	62	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	620	87.	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	620	130	ug/kg	
84-66-2	Diethyl phthalate	ND	620	110	ug/kg	
131-11-3	Dimethyl phthalate	ND	620	85	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	620	190	ug/kg	
206-44-0	Fluoranthene	7410	620	58	ug/kg	
86-73-7	Fluorene	10500	620	63	ug/kg	
118-74-1	Hexachlorobenzene	ND	620	150	ug/kg	
87-68-3	Hexachlorobutadiene	ND	620	140	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	6200	150	ug/kg	
67-72-1	Hexachloroethane	ND	1600	130	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	897	620	290	ug/kg	
78-59-1	Isophorone	ND	620	100	ug/kg	
91-57-6	2-MethyInaphthalene	12400	620	280	ug/kg	
88-74-4	2-Nitroaniline	ND	1600	200	ug/kg	
99-09-2	3-Nitroaniline	ND	1600	210	ug/kg	
100-01-6	4-Nitroaniline	ND	1600	180	ug/kg	
91-20-3	Naphthalene	ND	620	71	ug/kg	
98-95-3	Nitrobenzene	ND	G20	110	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	620	110	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1600	69	ug/kg	
85-01-8	Phenanthrene	28900	620	78	ug/kg	
129-00-0	Pyrene	6570	620	110	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	620	98	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
367-12-4	2-Fluorophenol	70%		26-1	05%	
4165-62-2	Phenol-d5	71%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	87%		30-1	26%	
4165-60-0	Nitrobenzene-d5	67%	•	36-1	15%	
321-60-8	2-Fluorobiphenyl	69%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: E8-6

Lab Sample ID: Matrix:

J84581-2

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/29/08 Date Received:

03/01/08 Percent Solids: 58.2

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	63%		42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
90-12-0	system artifact/aldol-condensa Naphthalene, 1-methyl- Naphthalene ethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl alkane Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl unknown alkane unknown alkane 9H-Fluorene methyl unknown	tion	3.37 10.04 11.12 11.29 11.49 11.54 11.73 11.85 12.53 12.80 12.87 13.06 13.10 13.26 13.65 14.06 14.24 14.48 14.70 14.79 14.91 15.20	170000 19000 23000 48000 58000 26000 24000 19000 20000 28000 23000 23000 20000 38000 55000 26000 28000 120000 21000 63000 26000	ug/kg J ug/kg J
132	Dibenzothiophene unknown Anthracene -methyl Anthracene -methyl Total TIC, Semi-Volatile		15.44 16.70 16.90 16.96	20000 22000 27000 28000 825000	ug/kg JN ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J

(a) Elevated detection limit due to low volume of sample extracted.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

OYA

Page 1 of 3

Analytical Batch

E3E565

Client Sample ID: E10-1 Lab Sample ID: Matrix:

File ID

30.2 g

3E12939,D

Initial Weight

J84581-3 SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/29/08 Date Received: 03/01/08

Prep Date

03/04/08

Percent Solids: 65.7

Prep Batch

OP31534

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

Analyzed

03/05/08

Run #1 Run #2 1

DF

Run #1 Run #2 Final Volume 1.0 ml

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	ġ
95-57-8	2-Chlorophenol	ND	250	32	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	250	69	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	250	52	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	250	61	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1000	55	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1000	92	ug/kg	
95-48-7	2-Methylphenol	ND	100	49	ug/kg	
	3&4-Methylphenol	ND	100	62	ug/kg	
88-75-5	2-Nitrophenol	ND	250	58	ug/kg	
100-02-7	4-Nitrophenol	ND.	1000	89	ug/kg	
87-86-5	Pentachlorophenol	ND	500	53	ug/kg	
108-95-2	Phenol	ND	100	47	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	250	96	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	250	100	ug/kg	
83-32-9	Acenaphthene	26.2	100	16	ug/kg	J
208-96-8	Acenaphthylene	93.4	100	10	ug/kg	J
120-12-7	Anthracene	137	100	46	ug/kg	
56-55-3	Benzo(a)anthracene	298	100	10	ug/kg	
50-32-8	Benzo(a) pyrene	321	100	25	ug/kg	
205-99-2	Benzo(b)fluoranthene	506	100	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	340	100	20	ug/kg	
207-08-9	Benzo(k)fluoranthene	315	100	22	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	100	22	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	100	18	ug/kg	
91-58-7	2-Chloronaphthalene	ND	100	15	ug/kg	
106-47-8	4-Chloroaniline	ND	250	18	ug/kg	
86-74-8	Carbazole	47.1	100	17	ug/kg	J
218-01-9	Chrysene	374	100	20	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	100	20	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	100	23	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	100	29	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	100	14	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E10-1 Lab Sample ID:

J84581-3

Date Sampled: Date Received:

Matrix: Method: SO - Soil SW846 8270C SW846 3550B

03/01/08 Percent Solids; 65.7

02/29/08

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	119	100	17	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	100	15	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	100	14	ug/kg	
121-14-2	2.4-Dinitrotoluene	ND	100	16	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	100	20	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	250	36	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	112	100	13	ug/kg	
132-64-9	Dibenzofuran	33.0	100	9.9	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	100	14	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	100	21	ug/kg	
84-66-2	Diethyl phthalate	ND	100	18	ug/kg	
131-11-3	Dimethyl phthalate	ND	100	14	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	513	100	30	ug/kg	
206-44-0	Fluoranthene	551	100	9.4	ug/kg	
86-73-7	Fluorene	ND	100	10	ug/kg	
118-74-1	Hexachlorobenzene	ND	100	24	ug/kg	
87-68-3	Hexachlorobutadiene	ND	100	23	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1000	23	ug/kg	
67-72-1	Hexachloroethane	ND	250	21	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	299	100	47	ug/kg	
78-59-1	Isophorone	ND	100	16	ug/kg	
91-57-6	2-Methylnaphthalene	177	100	45	ug/kg	
88-74-4	2-Nitroaniline	ND	250	32	ug/kg	
99-09-2	3-Nitroaniline	ND	250	34	ug/kg	
100-01-6	4-Nitroaniline	ND	250	29	ug/kg	
91-20-3	Naphthalene	58.2	100	11	ug/kg	J
98-95-3	Nitrobenzene	ND	100	17	ug/kg	•
621-64-7	N-Nitroso-di-n-propylamine	ND .	100	17	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	250	11	ug/kg	
85-01-8	Phenanthrene	305	100	13	ug/kg	
129-00-0	Pyrene	602	100	18	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	100	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
367-12-4	2-Fluorophenol	64%		26-1	05%	
4165-62-2	Phenol-d5	63%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	71%		30-1	26%	
4165-60-0	Nitrobenzene-d5	58%		36-1	15%	
321-60-8	2-Fluorobiphenyl	62%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: E10-1 Lab Sample ID:

J84581-3 SO - Soil Date Sampled: 02/29/08

Matrix:

SW846 8270C SW846 3550B

Date Received: 03/01/08

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

Percent Solids: 65.7

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits				
1718-51-0	Terphenyl-d14 62%			42-133%				
CAS No.	Tentatively Identified Compe	ounds	R.T.	Est. Conc.	Units	Q		
100.	system artifact/aldol-condensa Benzaldehyde Benzene, cyclopropyl- unknown		3.35 4.90 5.86 7.94 8.92 16.78 18.53 19.14 19.40 19.44 19.58 19.68 19.88 19.95 20.00 20.07 20.21 20.61 20.78 20.97 21.22 21.37 21.52 22.03 22.52	27000 2300 1200 1200 1700 1200 1600 1700 1200 8000 7300 3400 1200 1500 1600 1400 8900 1900 3100 1400 4300 10000 2600 1700 1900 2200 74500	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg] 		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client San Lab Samp Matrix: Method: Project:	SO - So SW846	4 ii 8270C 3	SW846 3550B minal 31020, Ta	appan, NY	Date Sampled: Date Received Percent Solids:	03/01/08	
Run #1 Run #2	File ID 3E12940.D	DF 1	Analyzed 03/05/08	By OYA	Prep Date 03/04/08	Prep Batch OP31534	Analytical Batch E3E565
Run #1 Run #2	Initial Weight 30.2 g	Final V 1.0 ml	olume			-	

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	270	34 ·	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	270	73	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	270	56	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	270	66	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1100	59	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1100	99	ug/kg	
95-48-7	2-Methylphenol	ND	110	52	ug/kg	
	3&4-Methylphenol	ND	110	67	ug/kg	
88-75-5	2-Nitrophenol	ND	270	G2	ug/kg	
100-02-7	4-Nitrophenol	ND	1100	95	ug/kg	
87-86-5	Pentachlorophenol	ND	540	57	ug/kg	
108-95-2	Phenol	ND	110	50	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	270	100	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	270	110	ug/kg	
83-32-9	Acenaphthene	39.6	110	17	ug/kg	J
208-96-8	Acenaphthylene	119	110	11	ug/kg	J
120-12-7	Anthracene	189	110	50	ug/kg	
56-55-3	Benzo(a)anthracene	352	110	11	ug/kg	
50-32-8	Вепло(а)ругеле	378	110	26	ug/kg	
205-99-2	Benzo(b) fluoranthene	539	110	18	ug/kg	
191-24-2	Benzo(g,h,i)perylene	348	110	21	ug/kg	
207-08-9	Benzo(k)fluoranthene	389	110	23	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	110	24	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	110	20	ug/kg	
91-58-7	2-Chloronaphthalene	ND	110	16	ug/kg	
106-47-8	4-Chloroaniline	ND	270	19	ug/kg	
86-74-8	Carbazole	73.2	110	18	ug/kg	J
218-01 - 9	Chrysene	445	110	22	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	110	21	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	110	25	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	110	31	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	110	15	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit
E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Client Sample ID: DUP-022908

Lab Sample ID: Matrix:

J84581-4 SO - Soil

Date Sampled: Date Received:

02/29/08 03/01/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 61.5

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	96.6	110	18	· ug/kg	j
541-73-1	1,3-Dichlorobenzene	ND	110	16	ug/kg	•
106-46-7	1,4-Dichlorobenzene	ND	110	14	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	110	17	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	110	22	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	270	39	ug/kg	
53-70-3 ·	Dibenzo(a,h)anthracene	124	110	14	ug/kg	
132-64-9	Dibenzofuran	39.3	110	11	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	110	15	ug/kg	_
117-84-0	Di-n-octyl phthalate	ND	110	22	ug/kg	
84-66-2	Diethyl phthalate	ND	110	19	ug/kg	
131-11-3	Dimethyl phthalate	ND	110	15	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	464	110	32	ug/kg	
206-44-0	Fluoranthene	685	110	10	ug/kg	
86-73-7	Fluorene	66.1	110	11	ug/kg	J
118-74-1	Hexachlorobenzene	ND	110	26	ug/kg	
87-68-3	Hexachlorobutadiene	ND	110	25	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1100	25	ug/kg	
67-72-1	Hexachloroethane	ND	270	22	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	324	110	50	ug/kg	
78-59-1	Isophorone	ND	110	17	ug/kg	
91-57-6	2-Methylnaphthalene	257	110	48	ug/kg	
88-74-4	2-Nitroaniline	ND	270	34	ug/kg	
99-09-2	3-Nitroaniline	ND	270	36	ug/kg	
100-01-6	4-Nitroaniline	ND	270	31	ug/kg	
91-20-3	Naphthalene	58.8	110	12	ug/kg	J
98-95-3	Nitrobenzene	ND	110	18	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	110	18	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	270	12	ug/kg	
85-01-8	Phenanthrene	401	110	13	ug/kg	
129-00-0	Pyrene	747	110	19	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	110	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lic	nits	
367-12-4	2-Fluorophenol	72%			105%	
4165-62-2	Phenol-d5	72%		34-	106%	
118-79-6	2,4,6-Tribromophenol	76%		30-	126%	
4165-60-0	Nitrobenzene-d5	63%		36-	115%	
321-60-8	2-Fluorobiphenyl	68%		44-	112%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 3 of 3

Client Sample ID: DUP-022908

Lab Sample ID: Matrix: J84581-4

SO - Soil SW846 8270C SW846 3550B Date Sampled: 02/29/08 Date Received: 03/01/08

Percent Solids: 61.5

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
1718-51-0	Terphenyl-d14	71%		42-133%		
CAS No.	Tentatively Identified Compe	ounds	R.T.	Est. Conc.	Units	Q
100 62	system artifact system artifact/aldol-condensa Benzaldehyde Aniline Benzene, -propenyl- unknown unknown acid alkane Benzamide Naphthalene dimethyl Naphthalene dimethyl unknown alkane unknown		3.06 3.37 4.91 5.16 5.86 7.95 8.93 9.35 10.32 11.26 11.45 13.63 14.68 16.78 18.54 19.16 19.44 19.59 19.69 20.21 20.61 20.78 20.97 21.23 21.37 22.04 23.58	950 39000 2500 8300 950 1100 1500 560 690 910 750 560 800 1200 540 600 2900 2600 880 2900 2600 910 540 600 2900 2600 910 540 600 2900 2600 400 400 41010] N N N N N N N N N N N N N N N N N N N

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: E10-5

Lab Sample ID: J84581-5 Matrix: SO - Soil Date Sampled: 02/29/08 Date Received: 03/01/08

Matrix:

SW846 8270C SW846 3550B

Percent Solids: 80.3

Project:

ExxonMobil Terminal 31020, Tappan, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3E12941.D 1 03/05/08 OYA 03/04/08 OP31534 E3E565

Run #2

Initial Weight Final Volume Run #1 30.2 g 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	210	26	ug/kg	
59-50 - 7	4-Chloro-3-methyl phenol	ND	210	56	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	210	43	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	210	50	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	820	45	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	820	75	ug/kg	
95-48-7	2-Methylphenol	ND	82	40	ug/kg	
	3&4-Methylphenol	ND	82	51	ug/kg	
88-75-5	2-Nitrophenol	ND	210	48	ug/kg	
100-02-7	4-Nitrophenol	ND	820	73	ug/kg	
87-86-5	Pentachlorophenol	ND	410	43	ug/kg	
108-95-2	Phenol	ND	82	39	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	210	78	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	210	83	ug/kg	
83-32-9	Acenaphthene	203	82	13	ug/kg	
208-96-8	Acenaphthylene	57.2	82	8.4	ug/kg	J
120-12-7	Anthracene	200	82	38	ug/kg	
56-55-3	Benzo(a)anthracene	458	82	8.5	ug/kg	
50-32-8	Benzo(a)pyrene	361	82	20	ug/kg	
205-99-2	Benzo(b)fluoranthene	478	82	14	ug/kg	
191-24-2	Benzo(g,h,i)perylene	205	82	16	ug/kg	
207-08-9	Benzo(k)fluoranthene	392	82	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	82	18	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	82	15	ug/kg	
91-58-7	2-Chloronaphthalene	ND	82	12	ug/kg	
106-47-8	4-Chloroaniline	ND	210	15	ug/kg	
86-74-8	Carbazole	112	82	14	ug/kg	
218-01-9	Chrysene	671	82	17	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	82	16	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	82	19	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	82	24	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	82	12	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E10-5

Lab Sample ID; J84581-5 Matrix:

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 02/29/08 Date Received: 03/01/08 Percent Solids: 80.3

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	82	14	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	82	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	82	11	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	82	13	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	82	16	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	210	30	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	75,3	82	11	ug/kg	J
132-64-9	Dibenzofuran	126	82	8.1	ug/kg	-
84-74-2	Di-n-butyl phthalate	ND	82	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	82	17	ug/kg	
84-66-2	Diethyl phthalate	ND	82	14	ug/kg	
131-11-3	Dimethyl phthalate	ND .	82	11	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	127	82	25	ug/kg	
206-44-0	Fluoranthene	1730	82	7.7	ug/kg	
86-73-7	Fluorenc	347	82	8.3	ug/kg	
118-74-1	Hexachlorobenzene	ND	82	20	ug/kg	
87-68-3	Hexachlorobutadiene	ND	82	19	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	820	19	ug/kg	
67-72-1	Hexachloroethane	ND	210	17	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	217	82	38	ug/kg	
78-59-1	Isophorone	ND	82	13	ug/kg	
91-57-6	2-Methylnaphthalene	1350	82	37	ug/kg	
88-74-4	2-Nitroaniline	ND	210	26	ug/kg	
99-09-2	3-Nitroaniline	ND	210	28	ug/kg	
100-01-6	4-Nitroaniline	ND	210	24	ug/kg	
91-20-3	Naphthalene	311	82	9.3	ug/kg	
98-95-3	Nitrobenzene	ND	82	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	82	14	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	210	9.1	ug/kg	
85-01-8	Phenanthrene	1580	82	10	ug/kg	
129-00-0	Pyrene	1430	82	14	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	82	13	ug/kg	
	.,-,-					
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
367-12-4	2-Fluorophenol	67%		26-1	05%	
4165-62-2	Phenol-d5	68%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	74%		30-1	26%	
4165-60-0	Nitrobenzene-d5	63%		36-1	15%	
321-60-8	2-Fluorobiphenyl	69%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 3 of 3

N

Client Sample ID: E10-5

Lab Sample ID: J84581-5

SO - Soil

Date Sampled: Date Received:

02/29/08 03/01/08

Matrix: Method:

SW846 8270C SW846 3550B ,

Percent Solids: 80.3

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
1718-51-0	Terphenyl-d14	66%		42-133%		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units	Q
90	system artifact/aldol-condensa unknown alkane unknown Naphthalene, 1-methyl- unknown Naphthalene ethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene trimethyl unknown alkane unknown unknown Anthracene -methyl unknown Total TIC, Semi-Volatile	lion	3.37 5.99 8.54 8.93 9.36 10.03 10.11 11.11 11.27 11.47 11.51 11.72 12.51 12.78 12.85 13.04 13.08 13.25 13.64 14.05 14.23 14.69 14.90 15.19 16.95 19.43	27000 720 1100 710 1600 1400 730 950 2000 2400 1400 1000 1100 1100 1200 980 1000 850 1400 1600 710 3200 1300 700 780 700 30530	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg]

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Page 1 of 3

Client Sample ID: E7-2

Lab Sample ID: Matrix:

]84581-6 SO - Soil

SW846 8270C SW846 3550B

Date Sampled: Date Received:

02/29/08 03/01/08

Percent Solids: 73.7

Project: ExxonMobil Terminal 31020, Tappan, NY

File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch 03/05/08 03/04/08 OP31534 E3E565 Run #1 3E12942.D 1 OYA

Run #2

Method:

Initial Weight Run #1

Final Volume 1.0 ml 30.0 g

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	230	29	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	230	62	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	230	47	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	230	55	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	900	50	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	900	83	ug/kg	
95-48-7	2-Methylphenol	ND	90	44	ug/kg	
	3&4-Methylphenol	ND	90	56	ug/kg	
88-75-5	2-Nitrophenol	ND	230	52	ug/kg	
100-02-7	4-Nitrophenol	ND	900	80	ug/kg	
87- 86-5	Pentachlorophenol	ND	450	47	ug/kg	
108-95-2	Phenol	ND	90	42	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	230	86	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	230	91	ug/kg	
83-32-9	Acenaphthene	308	90	14	ug/kg	
208-96-8	Acenaphthylene	82.2	90	9.2	ug/kg	J
120-12-7	Anthracene	736	90	42	ug/kg	
56-55-3	Benzo(a)antḥracene	1190	90	9.4	ug/kg	
50-32-8	Benzo(a)pyrene	1050	90	22	ug/kg	
205-99-2	Benzo(b)fluoranthene	1210	90	15	ug/kg	
191-24-2	Benzo(g,h,i)perylene	665	90	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	915	90	20	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	90	20	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	90	16	ug/kg	
91-58-7	2-Chloronaphthalene	ND	90	14	ug/kg	
106-47-8	4-Chloroaniline	ND	230	16	ug/kg	
86-74-8	Carbazole	426	90	15	ug/kg	
218-01-9	Chrysene	1200	90	18	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	90	18	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	90	21	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	90	26	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	90	13	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E7-2

Lab Sample ID: J84581-6 Matrix: SO - Soil Date Sampled: 02/29/08

Date Received: 03/01/08 Percent Solids: 73.7

Method: SW846 8270C SW846 3550B Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	90	15	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	90	14	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	90	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	90	15	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	90	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	230	33	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	258	90	12	ug/kg	
132-64-9	Dibenzofuran	249	90	8.9	ug/kg	
84-74-2	Dî-n-butyl phthalate	ND	90	13	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	90	19	ug/kg	
84-66-2	Diethyl phthalate	ND	90	16	ug/kg	
131-11-3	Dimethyl phthalate	ND	90	12	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	90	27	ug/kg	
206-44-0	Fluoranthene	3400	90	8.4	ug/kg	
86-73-7	Fluorene	419	90	9.1	ug/kg	
118-74-1	Hexachlorobenzene	ND	90	22	ug/kg	
87-68-3	Hexachlorobutadiene	ND	90	21	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	900	21	ug/kg	
67-72-1	Hexachloroethane ·	ND	230	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	624	90	42	ug/kg	
78-59-1	Isophorone	ND	90	15	ug/kg	
91-57-6	2-Methylnaphthalene	231	90	41	ug/kg	
88-74-4	2-Nitroaniline	ND	230	29	ug/kg	
99-09-2	3-Nitroaniline	ND	230	30	ug/kg	
100-01-6	4-Nitroaniline	ND	230	26	ug/kg	
91-20-3	Naphthalene	227	90	10	ug/kg	
98-95-3	Nitrobenzene	ND	90	15	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	90	15	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	230	10	ug/kg	
85-01-8	Phenanthrene	3170	90	11	ug/kg	
129-00-0	Pyrene	2740	90	16	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	90	14	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	62%		26-1	05%	
4165-62-2	Phenol-d5	63%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	69%		30-3	26%	
4165-60-0	Nitrobenzene-d5	58%		3G-1	15%	
321-60-8	2-Fluorobiphenyl	59%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: E7-2

Lab Sample ID:

J84581-6

Date Sampled: Date Received:

02/29/08 03/01/08

73.7

Matrix: Method: Project:

SO - Soil SW846 8270C SW846 3550B

ExxonMobil Terminal 31020, Tappan, NY

Percent Solids:

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1718-51-0	Terphenyl-d14	55%		42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
	system artifact system artifact/aldoi-condensa unknown unknown alkane unknown alkane Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl alkane alkane Anthracene -methyl Anthracene -methyl unknown Benzo[b]naphtho[-d]furan unknown unknown PAH substance unknown Benzo[b]naphtho[-d]thiophene unknown		3.07 3.37 6.29 7.39 8.54 8.74 9.35 11.26 11.46 11.50 14.04 14.68 16.88 16.94 17.12 19.07 19.13 19.48 19.60 19.79 20.59 20.66	710 31000 280 260 300 280 480 270 280 260 340 380 280 370 510 310 570 690 260 410 420 530	ug/kg J J J J J J J J J J J J J J J J J J J
	unknown unknown PAH substance unknown PAH substance unknown		20.78 21.21 21.73 22.01	270 330 300 390	ug/kg J ug/kg J ug/kg J ug/kg J

23.12

1200

9970

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

unknown PAH substance

Total TIC, Semi-Volatile

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound

ug/kg J

Page 1 of 3

Client Sample ID: E7-6

Lab Sample ID: J84581-7 Matrix:

SO - Soil

SW846 8270C SW846 3550B

02/29/08 Date Sampled: Date Received: 03/01/08

Percent Solids: 53.8

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

File ID DF Analyzed Prep Date Вy Run #1 a 3E12932.D 03/05/08 OYA 03/04/08

Prep Batch Analytical Batch OP31534 E3E565

Run #2

Initial Weight Final Volume

Run #1

1.0 ml

1

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	1800	220	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	1800	480	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	1800	360	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	1800	430	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	7000	390	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	7000	640	ug/kg	
95-48-7	2-Methylphenol	ND	700	340	ug/kg	
	3&4-Methylphenol	ND	700	430	ug/kg	
88-75-5	2-Nitrophenol	ND	1800	410	ug/kg	
100-02-7	4-Nitrophenol	ND	7000	620	ug/kg	
87-86-5	Pentachlorophenol	ND	3500	370	ug/kg	
108-95-2	Phenol	ND	700	330	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND .	1800	670	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	1800	710	ug/kg	
83-32-9	Acenaphthene	1570	700	110	ug/kg	
208-96-8	Acenaphthylene	ND ·	700	71	ug/kg	
120-12-7	Anthracene	514	700	320	ug/kg	J
56-55-3	Benzo(a)anthracene	592	700	73	ug/kg	J
50-32-8	Benzo(a) pyrene	559	700	170	ug/kg	J
205-99-2	Benzo(b) fluoranthene	630	700	120	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	439	700	140	ug/kg	J
207-08-9	Benzo(k)fluoranthene	423	700	150	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	700	150	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	700	130	ug/kg	
91-58-7	2-Chloronaphthalene	ND	700	110	ug/kg	
106-47-8	4-Chloroaniline	ND	1800	130	ug/kg	
86-74-8	Carbazole	ND	700	120	ug/kg	
218-01-9	Chrysene	636	700	140	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	700	140	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	700	160	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	700	200	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	700	100	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E7-6

Lab Sample ID: J84581-7 Matrix: SO - Soil

SW846 8270C SW846 3550B

Date Received: Percent Solids: 53.8

Date Sampled:

02/29/08

03/01/08

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

Method:

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	700	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	700	110	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	700	94	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	700	110	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	700	140	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1800	250	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	151	700	90	ug/kg	J
132-64-9	Dibenzofuran	939	700	69	ug/kg	_
84-74-2	Di-n-butyl phthalate	ND	700	97	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	700	140	ug/kg	
84-66-2	Diethyl phthalate	ND	700	120	ug/kg	
131-11-3	Dimethyl phthalate	ND	700	95	ug/kg	
117-81-7	bîs(2-Ethylhexyl)phthalate	ND	700	210	ug/kg	
206-44-0	Fluoranthene	1560	700	65	ug/kg	
86-73-7	Fluorene	2690	700	71	ug/kg	
118-74-1	Hexachlorobenzene	ND	700	170	ug/kg	
87-68-3	Hexachlorobutadiene	ND	700	160	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	7000	160	ug/kg	
67-72-1	Hexachloroethane	ND	1800	150	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	370	700	330	ug/kg	J
78-59-1	Isophorone	ND	700	110	ug/kg	
91-57-6	2-Methylnaphthalene	ND	700	310	ug/kg	
88-74-4	2-Nitroaniline	ND	1800	220	ug/kg	
99-09-2	3-Nitroaniline	ND	1800	230	ug/kg	
100-01-6	4-Nitroaniline	ND	1800	200	ug/kg	
91-20-3	Naphthalene	ND	700	79	ug/kg	
98-95-3	Nitrobenzene	ND	700	120	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	700	120	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1800	77	ug/kg	
85-01-8	Phenanthrene	7300	700	88	ug/kg	
129-00-0	Pyrene	1330	700	120	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	700	110	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limi	its	
367-12-4	2-Fluorophenoi	68%		26-10	05%	
4165-62-2	Phenol-d5	69%		34-10		
118-79-6	2,4,6-Tribromophenol	93%		30-17		
4165-60-0	Nitrobenzene-d5	61%		36-13		
321-60-8	2-Fluorobiphenyl	68%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J84581 Laboratories

Page 3 of 3

Client Sample ID: E7-6

Lab Sample ID:

J84581-7

Date Sampled:

02/29/08

Matrix: Method: SO - Soil SW846 8270C SW846 3550B Date Received:
Percent Solids:

03/01/08 53.8

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

Surrogate Recoveries	Run# 1	Run#2	Limits	
Terphenyl-d14	65%		42-133%	
Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units Q
alkane unknown Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl alkane Naphthalene dimethyl Naphthalene dimethyl Naphthalene, -(-methylethyl)- Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl unknown unknown unknown unknown alkane 9H-Fluorene methyl unknown -Biphenyl, -ethyl- Anthracene -methyl Cyclic octaatomic sulfur	tion	3.05 3.36 9.33 10.33 11.23 11.42 11.47 11.68 11.81 11.87 12.47 12.74 12.80 13.00 13.03 13.20 13.60 13.86 14.18 14.43 14.65 14.73 14.85 15.15 16.84 16.90 18.20	6200 260000 10000 6800 18000 26000 21000 11000 12000 12000 14000 15000 12000 9600 9200 19000 6200 7900 8200 26000 7100 16000 6600 7000 7200 20000	ug/kg J J J J J J J J J J J J J J J J J J J
Total TIC, Semi-Volatile			314500	ug/kg J
	Terphenyl-d14 Tentatively Identified Composition system artifact system artifact/aldol-condensational alkane unknown Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene trimethyl unknown unknown unknown unknown alkane 9H-Fluorene methyl unknown -Biphenyl, -ethyl- Anthracene -methyl Anthracene -methyl	Terphenyl-d14 65% Tentatively Identified Compounds system artifact system artifact/aldol-condensation alkane unknown Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene trimethyl unknown unknown unknown unknown alkane 9H-Fluorene methyl unknown -Biphenyl, -ethyl- Anthracene -methyl Cyclic octaatomic sulfur	Tentatively Identified Compounds R.T. system artifact system artifact/aldol-condensation alkane alk	Terphenyl-d14 65% 42-133% Tentatively Identified Compounds R.T. Est. Conc. system artifact 3.05 6200 system artifact/aldol-condensation 3.36 260000 alkane 9.33 10000 unknown 10.33 6800 Naphthalene dimethyl 11.23 18000 Naphthalene dimethyl 11.42 26000 Naphthalene dimethyl 11.47 21000 Naphthalene dimethyl 11.68 11000 alkane 11.81 12000 Naphthalene dimethyl 11.87 6700 Naphthalene, -(-methylethyl)- 12.47 12000 Naphthalene, -(-methylethyl)- 12.47 12000 Naphthalene trimethyl 12.74 14000 Naphthalene trimethyl 13.00 12000 Naphthalene trimethyl 13.00 12000 Naphthalene trimethyl 13.00 9600 Naphthalene trimethyl 13.03 9600 Naphthalene trimethyl 13.20 9200 unknown 13.66 19000 unknown 14.18 7900 unknown 14.43 8200 alkane 14.65 26000 9H-Fluorene methyl 14.73 7100 unknown 14.85 16000 -Biphenyl, -ethyl- Anthracene -methyl 16.84 7000 Anthracene -methyl 16.90 7200 Cyclic octaatomic sulfur

(a) Elevated detection limit due to low volume of sample extracted.

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 3

Client Sample ID: E9-2 02/29/08 Lab Sample ID: J84581-8 Date Sampled: Matrix: SO - Soil Date Received: 03/01/08 Method: SW846 8270C SW846 3550B Percent Solids: 63.2

Project: ExxonMobil Terminal 31020, Tappan, NY

Analytical Batch File ID DF Analyzed Ву Prep Date Prep Batch 03/05/08 OYA 03/04/08 **OP31534** E3E565 Run #1 3E12943.D 1

Run #2

Initial Weight Final Volume Run #1 30.0 g 1,0 ml Run #2

ABN TCL List

CAS No:	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	260	34	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	260	72	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	260	55	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	260	64	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1100	58	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1100	97	ug/kg	
95-48-7	2-Methylphenol	ND	110	51	ug/kg	
	3&4-Methylphenol	ND	110	65	ug/kg	
88-75-5	2-Nitrophenol	ND	260	61	ug/kg	
100-02-7	4-Nitrophenol	ND	1100	93	ug/kg	
87-86-5	Pentachlorophenol	ND	530	55	ug/kg	
108-95-2	Phenol	ND	110	49	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	260	100	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	260	110	ug/kg	
83-32-9	Acenaphthene	ND	110	17	ug/kg	
208-96-8	Acenaphthylene	127	110	11	ug/kg	
120-12-7	Anthracene	156	110	49	ug/kg	
56-55-3	Benzo(a)anthracene	246	110	11	ug/kg	
50-32-8	Benzo(a)pyrene	354	110	26	ug/kg	
205-99-2	Benzo(b)fluoranthene	362	110	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	339	110	21	ug/kg	
207-08-9	Benzo(k)fluoranthene	307	110	23	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	110	23	ug/kg	
85- 68-7	Butyl benzyl phthalate	ND	110	19	ug/kg	
91-58-7	2-Chloronaphthalene	ND	110	16	ug/kg	
106-47-8	4-Chloroaniline	ND	260	19	ug/kg	
86-74-8	Carbazole	28.7	110	18	ug/kg	J
218-01-9	Chrysene	262	110	21	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	110	21	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	110	24	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	110	31	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	110	15	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E9-2

Lab Sample ID: Matrix:

J84581-8 SO - Soil Date Sampled:

02/29/08 Date Received: 03/01/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 63.2

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	110	18	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	110	16	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND.	110	14	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	110	17	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	110	21	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	260	38	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	120	110	14	ug/kg	
132-64-9	Dibenzofuran	30.3	110	10	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	110	15	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	110	22	ug/kg	
84-66-2	Diethyl phthalate	ND	110	18	ug/kg	
131-11-3	Dimethyl phthalate	ND	110	14	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	312	110	32	ug/kg	
206-44-0	Fluoranthene	249	110	9.8	ug/kg	
86-73-7	Fluorene	ND	110	11	ug/kg	
118-74-1	Hexachlorobenzene	ND	110	26	ug/kg	
87-68-3	Hexachlorobutadiene	ND	110	24	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1100	25	ug/kg	
67-72-1	Hexachloroethane	ND	260	22	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	307	110	49	ug/kg	
78-59-1	Isophorone	ND	110	17	ug/kg	
91-57-6	2-Methylnaphthalene	295	110	47	ug/kg	
88-74-4	2-Nitroaniline	ND	260	33	ug/kg	
99-09-2	3-Nitroaniline	ND	260	35	ug/kg	
100-01-6	4-Nitroaniline	ND	260	30	ug/kg	
91-20-3	Naphthalene	95.1	110	12	ug/kg	J
98-95-3	Nitrobenzene	ND	110	18	ug/kg	•
621-64-7	N-Nitroso-di-n-propylamine	ND	110	18	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	260	12	ug/kg	
85-01-8	Phenanthrene	244	110	13	ug/kg	
129-00-0	Pyrene	238	110	18	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	110	17	ug/kg	
	-,-,-				0 0	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limi	its	
367-12-4	2-Fluorophenol	67%		26-1		
4165-62-2	Phenol-d5	73%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	90%		30-13	26%	
4165-60-0	Nitrobenzene-d5	63%		36-1	15%	
321-60-8	2-Fluorobiphenyl	71%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: E9-2

Lab Sample ID: Matrix:

J84581-8

SO - Soil

02/29/08 Date Sampled:

Date Received: 03/01/08 Percent Solids: 63.2

Method: Project:

SW846 8270C SW846 3550B ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1718-51-0	Terphenyl-d14	67%		42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
	system artifact system artifact system artifact system artifact/aldol-condensa system artifact Naphthalene dimethyl Naphthalene dimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl unknown alkane unknown alkane unknown alkane alkane alkane alkane alkane alkane alkane alkane alkane alkane alkane	tion	3.07 3.14 3.22 3.37 3.41 4.27 11.26 11.46 11.50 12.84 13.07 13.64 14.04 14.22 14.68 14.88 16.70 16.95 17.61 19.13 19.79 20.39 21.50 22.01 23.58	980 260 280 42000 360 300 400 370 320 280 210 310 320 230 670 290 290 290 610 470 360 510 430	ug/kg J J J J J J J J J J J J J J J J J J J
	Total TIC, Semi-Volatile			7220	ug/kg J

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 3

Client Sample ID: E9-6

Lab Sample ID:

J84581-9 SO - Soil Date Sampled:

Matrix: Method:

SW846 8270C SW846 3550B

Date Received: 03/01/08 Percent Solids: 50.1

Project:

ExxonMobil Terminal 31020, Tappan, NY

Prep Batch Analytical Batch

E3E565

OP31534

02/29/08

File ID DF Analyzed Ву Prep Date Run #1 03/05/08 OYA 03/04/08 3E12944.D 1

Run #2

Initial Weight 30.1 g

Final Volume

Run #1

1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	330	42	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	330	90	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	330	69	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	330	81	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1300	73	ug/kg	•
534-52-1	4,6-Dinitro-o-cresol	ND	1300	120	ug/kg	
95-48-7	2-Methylphenol	ND	130	64	ug/kg	
•	3&4-Methylphenol	ND	130	82	ug/kg	
88-75-5	2-Nitrophenol	ND	330	77	ug/kg	
100-02-7	4-Nitrophenol	ND	1300	120	ug/kg	
87-86-5	Pentachlorophenol	ND	660	70	ug/kg	
108-95-2	Phenol	ND	130	62	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	330	130	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	330	130	ug/kg	
83-32-9	Acenaphthene	1710	130	21	ug/kg	
208-96-8	Acenaphthylene	ND	130	13	ug/kg	
120-12-7	Anthracene	270	130	61	ug/kg	
56-55-3	Benzo(a) anthracene	258	130	14	ug/kg	
50-32-8	Benzo(a) pyrene	308	130	33	ug/kg	
205-99-2	Benzo(b)fluoranthene	324	130	22	ug/kg	
191-24-2	Benzo(g,h,i)perylene	235	130	26	ug/kg	
207-08-9	Benzo(k)fluoranthene	257	130	29	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	130	29	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	130	24	ug/kg	
91-58-7	2-Chloronaphthalene	ND	130	20	ug/kg	
106-47-8	4-Chloroaniline	ND	330	24	ug/kg	
86-74-8	Carbazole	ND	130	22	ug/kg	
218-01-9	Chrysene	310	130	27	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	130	26	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	130	30	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	130	39	ug/kg	•
7005-72-3	4-Chlorophenyl phenyl ether	ND	130	19	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E9-6

Lab Sample ID:

J84581-9 SO - Soil

Date Sampled: 02/29/08 Date Received:

Matrix: Method:

SW846 8270C SW846 3550B

03/01/08 Percent Solids: 50.1

Project:

ExxonMobil Terminal 31020, Tappan, NY

٨	Rh	JΈ	CI	T	iet
м	.DI	N I	1 . [. ISL

CAS No.	Compound	Result	RL	MDI	L Units	Q
95-50-1	1,2-Dichlorobenzene	ND	130	23	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	130	20	ug/kg	
106-46-7	1.4-Dichlorobenzene	49.5	130	18	ug/kg	J
121-14-2	2,4-Dinitrotoluene	ND	130	21	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	130	27	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	330	48	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	95.9	130	17	ug/kg	J
132-64-9	Dibenzofuran	935	130	13	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	130	18	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	130	27	ug/kg	
84-66-2	Diethyl phthalate	ND	130	23	ug/kg	
131-11-3	Dimethyl phthalate	ND	130	18	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	194	130	40	ug/kg	
206-44-0	Fluoranthene	547	130	12	ug/kg	
86-73-7	Fluorene	2790	130	13	ug/kg	
118-74-1	Hexachlorobenzene	ND	130	32	ug/kg	
87-68-3	Hexachlorobutadiene	ND	130	31	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1300	31	ug/kg	
67-72-1	Hexachloroethane	ND	330	28	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	213	130	62	ug/kg	
78-59-1	Isophorone	ND	130	21	ug/kg	
91-57-6	2-Methylnaphthalene	2470	130	59	ug/kg	
88-74-4	2-Nitroaniline	ND	330	42	ug/kg	
99-09-2	3-Nitroaniline	ND	330	44	ug/kg	
100-01-6	4-Nitroaniline	ND	330	38	ug/kg	
91-20-3	Naphthalene	ND	130	15	ug/kg	
98-95-3	Nitrobenzene	ND	130	22	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	130	23	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	330	15	ug/kg	
85-01-8	Phenanthrene	6450	130	17	ug/kg	
129-00-0	Pyrene	568	130	23	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	130	21	ug/kg	
120-02-1	1,2,4-1110110101201120110	ND	130	21	ugrkg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	L	imits	
367-12-4	2-Fluorophenol	63%		20	6-105%	
4165-62-2	Phenol-d5	63%			4-106%	
118-79-6	2,4,6-Tribromophenol	75%		30	0-126%	
4165-60-0	Nitrobenzene-d5	64%			6-115%	
321-60-8	2-Fluorobiphenyl	60%			1-112%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: E9-6 Lab Sample ID:

J84581-9

Date Sampled:

02/29/08

Matrix;

SO - Soil SW846 8270C SW846 3550B Date Received: 03/01/08

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

Percent Solids: 50.1

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	57%		42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est, Conc.	Units Q
	system artifact/aldol-condensa alkane unknown unknown Naphthalene ethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl alkane Naphthalene dimethyl unknown Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl unknown unknown alkane alkane 9H-Fluorene methyl Total TIC, Semi-Volatile	tion	3.36 9.38 10.38 11.13 11.19 11.31 11.51 11.56 11.76 11.87 11.95 12.10 12.43 12.55 12.83 12.89 12.97 13.08 13.12 13.29 13.31 13.68 13.93 14.08 14.72 14.94	22000 4100 7500 8600 6400 17000 28000 17000 13000 9900 7000 6400 7300 11000 13000 14000 5200 12000 11000 14000 5200 4100 14000 5200 4500 11000 5400 252600	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

OYA

Page 1 of 3

Client Sample ID: E11-2

Lab Sample ID; Matrix: J84581-10

SO - Soil SW846 8270C SW846 3550B Date Sampled: Date Received:

03/04/08

Date Received: 03/01/08 Percent Solids: 75.0

Method: SW846 8270C SW846 3550B
Project: ExxonMobil Terminal 31020, Tappan, NY

1

File ID DF Analyzed By

Prep Date Prep Batch Analytical Batch

E3E565

OP31534

02/29/08

Run #1 Run #2

> Initial Weight 30.1 g

3E12945.D

Final Volume

03/05/08

1,0 ml

Run #1 Run #2

ABN TCL List

CAS No. Compound Result RL MDL Units	Q
95-57-8 2-Chlorophenol ND 220 28 ug/kg	
59-50-7 4-Chloro-3-methyl phenol ND 220 60 ug/kg	
120-83-2 2,4-Dichlorophenol ND 220 46 ug/kg	
105-67-9 2,4-Dimethylphenol ND 220 54 ug/kg	
51-28-5 2,4-Dinitrophenol ND 890 49 ug/kg	
534-52-1 4,6-Dinitro-o-cresol ND 890 81 ug/kg	
95-48-7 2-Methylphenol ND 89 43 ug/kg	
3&4-Methylphenol ND 89 55 ug/kg	
88-75-5 2-Nitrophenol ND 220 51 ug/kg	
100-02-7 4-Nitrophenol ND 890 78 ug/kg	
87-86-5 Pentachlorophenol ND 440 47 ug/kg	
108-95-2 Phenol ND 89 41 ug/kg	
95-95-4 2,4,5-Trichlorophenol ND 220 84 ug/kg	
88-06-2 2,4,6-Trichlorophenol ND 220 89 ug/kg	
83-32-9 Acenaphthene ND 89 14 ug/kg	
208-96-8 Acenaphthylene 127 89 9.0 ug/kg	
120-12-7 Anthracene 167 89 41 ug/kg	
56-55-3 Benzo(a)anthracene 186 89 9.2 ug/kg	
50-32-8 Benzo(a) pyrene 275 89 22 ug/kg	
205-99-2 Benzo(b)fluoranthene 433 89 15 ug/kg	
191-24-2 Benzo(g,h,i)perylene 394 89 18 ug/kg	
207-08-9 Benzo(k)fluoranthene 232 89 19 ug/kg	
101-55-3 4-Bromophenyl phenyl ether ND 89 19 ug/kg	
85-68-7 Butyl benzyl phthalate ND 89 16 ug/kg	
91-58-7 2-Chloronaphthalene ND 89 13 ug/kg	
106-47-8 4-Chloroaniline ND 220 16 ug/kg	
86-74-8 Carbazole 50.7 89 15 ug/kg	J
218-01-9 Chrysene 288 89 18 ug/kg	-
111-91-1 bis(2-Chloroethoxy)methane ND 89 17 ug/kg	
111-44-4 bis(2-Chloroethyl)ether ND 89 20 ug/kg	
108-60-1 bis(2-Chloroisopropyl)ether ND 89 26 ug/kg	
7005-72-3 4-Chlorophenyl phenyl ether ND 89 13 ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E11-2

Lab Sample ID: Matrix: J84581-10 SO - Soil Date Sampled: Date Received: 02/29/08 03/01/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 75.0

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	89	15	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	89	13	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	89	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	89	14	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	89	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	220	32	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	122	89	11	ug/kg	
132-64-9	Dibenzofuran	124	89	8.7	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	89	12	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	89	18	ug/kg	
84-66-2	Diethyl phthalate	ND	89	16	ug/kg ug/kg	
131-11-3	Dimethyl phthalate	ND ND	89	12		
117-81-7	bis(2-Ethylhexyl)phthalate	147	89	27	ug/kg	
206-44-0	Fluoranthene	355	89	8.2	ug/kg	
	Fluorene	76.2	89	8.9	ug/kg	J
86-73-7 118-74-1	Hexachlorobenzene	ND		0.9 21	ug/kg	J
87-68-3			89 89	21	ug/kg	
	Hexachlorobutadiene	ND			ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	890	21	ug/kg	
67-72-1	Hexachloroethane	ND	220	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	313	89	41	ug/kg	
78-59-1	Isophorone	ND	89	14	ug/kg	
91-57-6	2-Methylnaphthalene	2140	89	40	ug/kg	
88-74-4	2-Nitroaniline	ND .	220	28	ug/kg	
99-09-2	3-Nitroaniline	ND	220	30	ug/kg	
100-01-6	4-Nitroaniline	ND	220	25	ug/kg	
91-20-3	Naphthalene	669	89	10	ug/kg	
98-95-3	Nitrobenzene	ND	89	15	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	89	15	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	220	9.7	ug/kg	
85-01-8	Phenanthrene	691	89	11	ug/kg	
129-00-0	Pyrene	415	89	15	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	89	14	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limi	its	
367-12-4	2-Fluorophenol	66%		26-1	05%	
4165-62-2	Phenol-d5	69%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	84%		30-13	26%	
4165-60-0	Nitrobenzene-d5	61%		36-1	15%	
321-60-8	2-Fluorobiphenyl	67%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: E11-2

Lab Sample ID:

J84581-10 SO - Soil

Date Sampled: 02/29/08

Matrix:

Date Received:

03/01/08

Method: Project:

SW846 8270C SW846 3550B

Percent Solids: 75.0

ADMITOT Y :--

ExxonMobil Terminal 31020, Tappan, NY

il	
	i

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1718-51-0	Terphenyl-d14	62%		42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units Q
90-12-0	system artifact system artifact/aldol-condensa C3 alkyl benzene C3 alkyl benzene Naphthalene, 1-methyl- Naphthalene ethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl unknown Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl unknown unknown unknown unknown unknown unknown unknown Pibenzothiophene, -methyl unknown Anthracene -methyl unknown Unknown Total TIC, Semi-Volatile	tion .	3.06 3.36 4.91 5.38 10.03 11.11 11.26 11.46 11.50 12.30 12.50 12.84 13.07 13.63 14.22 14.67 14.89 16.48 16.70 16.89 16.95 17.45 17.61 17.97 18.13 23.60	820 34000 530 540 910 550 1500 1100 820 490 490 490 600 530 570 490 680 470 400 690 520 820 470 580 430 450 2800 17830	ug/kg J ug/kg J

ND = Not detected

J = Indicates an estimated value

RL = Reporting Limit

		_					
Lab Samp Matrix: Method: Project:	SO - S SW840	oil 8 8270C	SW846 3550B minal 31020, Ta	nppan, NY	Date Sampled: Date Received: Percent Solids:	03/01/08	
Run #1 ^a Run #2	File ID 3E12946.D	DF 1	Analyzed 03/05/08	By OYA	Prcp Date 03/04/08	Prep Batch OP31534	Analytical Batch E3E565
Run #1 Run #2	Initial Weight 5.0 g	Final V 1.0 ml	Volume				

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	1600	210	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	1600	450	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	1600	340	ug/kg	
105-67-9	2.4-Dimethylphenol	ND	1600	400	ug/kg	
51-28-5	2.4-Dinitrophenol	.ND	G 600	360	ug/kg	
534-52-1	4.6-Dinitro-o-cresol	ND	6600	600	ug/kg	
95-48-7	2-Methylphenol	ND	660	320	ug/kg	
	3&4-Methylphenol	ND	660	410	ug/kg	
88-75-5	2-Nitrophenol	ND	1600	380	ug/kg	
100-02-7	4-Nitrophenol	ND	6600	580	ug/kg	
87-86-5	Pentachlorophenol	ND	3300	340	ug/kg	
108-95-2	Phenol	ND	660	310	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	1600	620	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	1600	660	ug/kg	
83-32-9	Acenaphthene	2120	660	100	ug/kg	
208-96-8	Acenaphthylene	ND	660	67	ug/kg	
120-12-7	Anthracene	575	660	300	ug/kg	J
56-55-3	Benzo(a)anthracene	764	660	68	ug/kg	
50-32-8	Велго(а)ругеле	784	660	160	ug/kg	
205-99-2	Benzo(b)fluoranthene	916	660	110	ug/kg	
191-24-2	Benzo(g,h,i)perylene	607	660	130	ug/kg	J
207-08-9	Benzo(k)fluoranthene	694	660	140	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	660	140	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	660	120	ug/kg	
91-58-7	2-Chloronaphthalene	ND	660	99	ug/kg	
106-47-8	4-Chloroaniline	ND	1600	120	ug/kg	
86-74-8	Carbazole	ND	660	110	ug/kg	
218-01-9	Chrysene	1020	660	130	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	660	130	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	660	150	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	660	190	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	660	94	ug/kg	

ND = Not detected

MDL - Method Detection Limit

$$\begin{split} RL &= Reporting \ Limit \\ E &= Indicates \ value \ exceeds \ calibration \ range \end{split}$$

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E11-6

Lab Sample ID:

J84581-11 SO - Soil Date Sampled:

Matrix: Method:

SW846 8270C SW846 3550B

Date Received: 03/01/08 Percent Solids: 60.9

02/29/08

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	660	110	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	660	99	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	660	88	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	660	110	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	660	130	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1600	240	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	259	660	84	ug/kg	J
132-64-9	Dibenzofuran	1320	660	65	ug/kg	•
84-74-2	Di-n-butyl phthalate	ND	660	91	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	660	130	ug/kg	
84-66-2	Diethyl phthalate	ND	660	110	ug/kg	
131-11-3	Dimethyl phthalate	ND	660	89	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	660	200	ug/kg	
206-44-0	Fluoranthene	1510	660	61	ug/kg	
86-73-7	Fluorene	4020	660	66	ug/kg	
118-74-1	Hexachlorobenzene	ND	660	160	ug/kg	
87-68-3	Hexachlorobutadiene	ND	660	150	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	6600	150	ug/kg	
67-72-1	Hexachloroethane	ND	1600	140	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	506	660	310	ug/kg	J
78-59-1	Isophorone	ND	660	110	ug/kg	
91-57-6	2-Methylnaphthalene	14300	660	290	ug/kg	
88-74-4	2-Nitroaniline	ND	1600	210	ug/kg	
99-09-2	3-Nitroaniline	ND	1600	220	ug/kg	
100-01-6	4-Nitroaniline	ND	1600	190	ug/kg	
91-20-3	Naphthalene	1380	660	74	ug/kg	
98-95-3	Nitrobenzene	ND	660	110	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	660	110	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1600	72	ug/kg	
85-01-8	Phenanthrene	10000	660	82	ug/kg	•
129-00-0	Pyrene	1520	660	110	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND ·	660	100	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limi	its	
367-12-4	2-Fluorophenol	62%		26-10	05%	
4165-62-2	Phenol-d5	66%		34-10	06%	
118-79-6	2,4,6-Tribromophenol	80%		30-13	26%	
4165-60-0	Nitrobenzene-d5	57%		36-1	15%	
321-60-8	2-Fluorobiphenyl	65%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

න 1

Client Sample ID: E11-6

Lab Sample ID: Matrix:

J84581-11 SO - Soil

Date Sampled: Date Received:

02/29/08 03/01/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 60.9

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

Surrogate Recoveries	Run# 1	Run#2	Limite	
	TCUII() I	ACDMIT IS	Dimits	
Terphenyl-d14	60%		42-133%	
Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units Q
-		3.36 8.54 9.36 10.04 11.11 11.27 11.48 11.52 11.72 11.84 12.52 12.79 12.85 13.05 13.09 13.25 13.65 14.06 14.90 17.97 18.32 18.60 19.45 20.01 23.59 25.51	170000 9900 14000 12000 13000 29000 33000 18000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 15000 16000 17000 16000 17000 13000 18000 11000	ug/kg J ug/kg J
Total TIC, Semi-Volatile			537900	ug/kg J
	Tentatively Identified Composystem artifact/aldol-condensa alkane Naphthalene, 1-methyl-Naphthalene ethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene trimethyl unknown alkane alkane 9H-Fluorene -methyl unknown unknown unknown unknown	Terphenyl-d14 60% Tentatively Identified Compounds system artifact/aldol-condensation alkane alkane Naphthalene, 1-methyl- Naphthalene ethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene trimethyl unknown alkane alkane 9H-Fluorene -methyl unknown unknown unknown unknown unknown unknown unknown	Terphenyl-d14 60% Tentatively Identified Compounds R.T. system artifact/aldol-condensation 3.36 alkane 8.54 alkane 9.36 Naphthalene, 1-methyl- 10.04 Naphthalene ethyl 11.11 Naphthalene dimethyl 11.27 Naphthalene dimethyl 11.48 Naphthalene dimethyl 11.52 Naphthalene dimethyl 11.72 alkane 11.84 Naphthalene dimethyl 12.52 Naphthalene trimethyl 12.52 Naphthalene trimethyl 12.79 Naphthalene trimethyl 12.85 Naphthalene trimethyl 13.05 Naphthalene trimethyl 13.05 Naphthalene trimethyl 13.05 Naphthalene trimethyl 13.65 alkane 14.06 alkane 14.69 9H-Fluorene -methyl 14.90 unknown 17.97 unknown 18.32 unknown 19.45 unknown 20.01 unknown 23.59 unknown 23.59 unknown 25.51	Terphenyl-d14 60% 42-133% Tentatively Identified Compounds R. T. Est. Conc. system artifact/aldol-condensation 3.36 170000 alkane 8.54 9900 alkane 9.36 14000 Naphthalene, 1-methyl- 10.04 12000 Naphthalene ethyl 11.11 13000 Naphthalene dimethyl 11.27 29000 Naphthalene dimethyl 11.48 33000 Naphthalene dimethyl 11.52 18000 Naphthalene dimethyl 11.72 14000 alkane 11.84 14000 Naphthalene trimethyl 12.52 15000 Naphthalene trimethyl 12.79 15000 Naphthalene trimethyl 12.85 17000 Naphthalene trimethyl 12.85 17000 Naphthalene trimethyl 13.05 14000 Naphthalene trimethyl 13.05 14000 Naphthalene trimethyl 13.05 14000 Naphthalene trimethyl 13.25 12000 unknown 13.65 18000 alkane 14.06 20000 alkane 14.06 20000 shr-Fluorene -methyl 14.90 17000 unknown 17.97 10000 unknown 17.97 10000 unknown 19.45 37000 unknown 19.45 37000 unknown 20.01 13000 unknown 23.59 18000 unknown 23.59 18000 unknown 23.59 18000 unknown 23.59 18000

(a) Elevated detection limit due to low volume of sample extracted.

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Lab Samp Matrix: Method: Project:	ple ID: J		ık Soil SW846 3510C rminal 31020, Ta	appan, NY	Date Sampled: Date Received: Percent Solids:	03/01/08	
Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	R65280.1	D I	03/10/08	OYA	03/07/08	OP31592	ER2392

Initial Volume Final Volume Run #1 1000 ml 1,0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	,
95-57-8	2-Chlorophenol	ND	5.0	0.87	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	1.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.0	1.4	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	1.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	1.1	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	20	2.2	ug/I	
95-48-7	2-Methylphenol	ND	2.0	1.0	ug/I	
	3&4-Methylphenol	ND	2.0	1.1	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	1.5	ug/l	
100-02-7	4-Nitrophenol	ND	20	1.6	ug/l	
87-86-5	Pentachlorophenol	ND	10	0.93	ug/l	
108-95-2	Phenol	ND	2.0	0.68	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.1	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	1.0	ug/l	
83-32-9	Acenaphthene	ND	2.0	0.25	ug/l	
208-96 - 8	Acenaphthylene	ND	2.0	0.31	ug/l	
120-12-7	Anthracene	ND	2.0	0.33	ug/I	
56-55-3	Benzo(a)anthracene	ND	2.0	0.35	ug/l	
50-32-8	Benzo(a) pyrene	ND	2.0	0.78	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	2.0	0.75	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	2.0	0.36	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	2.0	0.68	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.37	ug/I	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.64	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.0	0.20	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.35	ug/l	
86-74-8	Carbazole	ND	2.0	0.40	ug/l	
218-01-9	Chrysene	ND	2.0	0.45	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.32	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.67	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.58	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.29	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: FB-022908

Lab Sample ID:

J84581-12

Date Sampled:

02/29/08

Matrix: Method: AQ - Field Blank Soil SW846 8270C SW846 3510C Date Received: 03/01/08 Percent Solids: n/a

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

7131					
Compound	Result	RL	MDL	Units	Q
1,2-Dichlorobenzene	ND	2.0	0.17	ug/l	
1,3-Dichlorobenzene	ND	2.0	0.15	ug/l	
1,4-Dichlorobenzene	ND	2.0	0.14	ug/l	
2,4-Dinitrotoluene	ND	2.0	0.54	ug/l	
2,6-Dinitrotoluene	ND	2.0	0.50	ug/l	
3,3'-Dichlorobenzidine	ND	5.0	0.97	ug/l	
Dibenzo(a,h)anthracene	ND	2.0	0.48	ug/l	
Dibenzofuran	ND	5.0	0.23	ug/l	
Di-n-butyl phthalate	ND	2.0	0.40		
Di-n-octyl phthalate	ND	2.0	0.48		
Diethyl phthalate	ND	2.0	0.34		
Dimethyl phthalate	ND	2.0	0.34		
bis(2-Ethylhexyl)phthalate	ND	2.0	0.88		
Fluoranthene	ND	2.0	0.36		
Fluorene	ND	2.0	0.36	ug/I	
Hexachlorobenzene	ND	2.0	0.31		
Hexachlorobutadiene	ND	2.0	0.13		
Hexachlorocyclopentadiene	ND	20	0.10		
Hexachloroethane	ND	5.0	0.16		
Indeno(1,2,3-cd)pyrene	ND		0.79		
	ND	2.0	0.49		
	ND	2.0	0.76		
2-Nitroaniline	ND	5.0	0.50		
3-Nitroaniline	ND	5.0	0.32		
4-Nitroaniline	ND	5.0	0.59		
	ND	2.0	0.18		
Nitrobenzene	ND	2.0	0.71		
N-Nitroso-di-n-propylamine	ND	2.0	0.38		
	ND	5.0			
Phenanthrene	ND	2.0	0.28		
	ND				
1,2,4-Trichlorobenzene	ND	2.0	0.12	ug/l	
Surrogate Recoveries	Run# 1	Run#2	Lim	its	
2-Fluorophenol	35%		10-6	9%	
PhenoI-d5	24%		10-5	2%	
2,4,6-Tribromophenol	50%				
Nitrobenzene-d5	54%				
2-Fluorobiphenyl	57%				
	1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3,3'-Dichlorobenzidine Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate Diethyl phthalate Diethyl phthalate Dimethyl phthalate bis(2-Ethylhexyl)phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline Naphthalene Nitrobenzene N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine Phenanthrene Pyrene 1,2,4-Trichlorobenzene Surrogate Recoveries 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5	1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 2,4-Dinitrotoluene ND 2,6-Dinitrotoluene ND 3,3'-Dichlorobenzidine ND Dibenzo(a,h)anthracene ND Dibenzofuran ND Di-n-butyl phthalate ND Di-n-octyl phthalate ND Diethyl phthalate ND Dimethyl phthalate ND Dimethyl phthalate ND Fluoranthene ND Fluoranthene ND Hexachlorobenzene ND Hexachlorobenzene ND Hexachlorobenzene ND Hexachlorocyclopentadiene ND Hexachlorocyclopentadiene ND Indeno(1,2,3-cd)pyrene ND Isophorone ND 2-Methylnaphthalene ND 2-Nitroaniline ND 3-Nitroaniline ND Naphthalene ND Nitrobenzene ND N-Nitroso-di-n-propylamine ND N-Nitroso-di-n-propylamine ND N-Nitrosodiphenylamine ND N-Nitrosodiphenylamine ND N-Nitrosodiphenylamine ND Phenanthrene ND Pyrene ND 1,2,4-Trichlorobenzene ND Surrogate Recoveries Run# 1 2-Fluorophenol 35% Phenol-d5 24% 2,4,6-Tribromophenol 50% Nitrobenzene-d5 54%	1,2-Dichlorobenzene ND 2.0 1,3-Dichlorobenzene ND 2.0 2,4-Dinitrotoluene ND 2.0 2,4-Dinitrotoluene ND 2.0 3,3'-Dichlorobenzidine ND 5.0 Dibenzo(a,h)anthracene ND 2.0 Dibenzofuran ND 5.0 Di-n-butyl phthalate ND 2.0 Di-n-octyl phthalate ND 2.0 Diethyl phthalate ND 2.0 Dist(2-Ethylhexyl)phthalate ND 2.0 Fluoranthene ND 2.0 Fluoranthene ND 2.0 Hexachlorobenzene ND 2.0 Hexachlorobenzene ND 2.0 Hexachlorocyclopentadiene ND 2.0 Hexachlorocyclopentadiene ND 2.0 Indeno(1,2,3-cd)pyrene ND 2.0 Isophorone ND 2.0 Solitroaniline ND 5.0 3-Nitroaniline ND 5.0 Naphthalene ND 5.0 N-Nitroso-di-n-propylamine ND 2.0 N-Nitroso-di-n-propylamine ND 2.0 N-Nitroso-di-n-propylamine ND 2.0 Phenanthrene ND 2.0 Surrogate Recoveries Run# 1 Run# 2 2-Fluorophenol 35% Phenol-d5 24% 2,4,6-Tribromophenol 50% Nitrobenzene-d5	1,2-Dichlorobenzene ND 2.0 0.17 1,3-Dichlorobenzene ND 2.0 0.15 1,4-Dichlorobenzene ND 2.0 0.14 2,4-Dinitrotoluene ND 2.0 0.54 2,6-Dinitrotoluene ND 2.0 0.50 3,3'-Dichlorobenzidine ND 5.0 0.97 Dibenzo(a,h)anthracene ND 2.0 0.48 Dibenzofuran ND 5.0 0.23 Di-n-butyl phthalate ND 2.0 0.40 Di-n-octyl phthalate ND 2.0 0.48 Diethyl phthalate ND 2.0 0.48 Diethyl phthalate ND 2.0 0.34 Dimethyl phthalate ND 2.0 0.34 Diseityl phthalate ND 2.0 0.34 Dimethyl phthalate ND 2.0 0.34 Dimethyl phthalate ND 2.0 0.34 Dimethyl phthalate ND 2.0 0.36 Fluoranthene ND 2.0 0.36 Fluoranthene ND 2.0 0.36 Fluorene ND 2.0 0.36 Hexachlorobenzene ND 2.0 0.36 Hexachlorobutadiene ND 2.0 0.31 Hexachlorocyclopentadiene ND 2.0 0.13 Hexachlorocyclopentadiene ND 2.0 0.10 Hexachlorocyclopentadiene ND 2.0 0.79 Isophorone ND 2.0 0.79 Isophorone ND 2.0 0.79 Isophorone ND 2.0 0.76 2-Nitroaniline ND 5.0 0.50 3-Nitroaniline ND 5.0 0.50 3-Nitroaniline ND 5.0 0.59 Naphthalene ND 2.0 0.38 Nitrobenzene ND 2.0 0.71 N-Nitroso-di-n-propylamine ND 2.0 0.38 Nitrobenzene ND 2.0 0.37 1,2,4-Trichlorobenzene ND 2.0 0.28 Pyrene ND 2.0 0.28 Pyrene ND 2.0 0.28 Pyrene ND 2.0 0.37 1,2,4-Trichlorobenzene ND 2.0 0.12 Surrogate Recoveries Run#1 Run#2 Lim 2-Fluorophenol 35% 10-6 Phenol-d5 24% 10-5 2,4,6-Tribromophenol 50% 33-1 Nitrobenzene-d5 54%	1,2-Dichlorobenzene ND 2.0 0.17 ug/l 1,3-Dichlorobenzene ND 2.0 0.15 ug/l 1,4-Dichlorobenzene ND 2.0 0.14 ug/l 2,4-Dinitrotoluene ND 2.0 0.54 ug/l 2,6-Dinitrotoluene ND 2.0 0.50 ug/l 3,3'-Dichlorobenzidine ND 5.0 0.97 ug/l Dibenzo(a,h)anthracene ND 2.0 0.48 ug/l Dibenzofuran ND 5.0 0.23 ug/l Di-n-butyl phthalate ND 2.0 0.48 ug/l Di-n-octyl phthalate ND 2.0 0.48 ug/l Di-n-otyl phthalate ND 2.0 0.48 ug/l Di-n-otyl phthalate ND 2.0 0.48 ug/l Di-n-otyl phthalate ND 2.0 0.48 ug/l Di-n-otyl phthalate ND 2.0 0.34 ug/l Di-n-otyl phthalate ND 2.0 0.34 ug/l Di-n-otyl phthalate ND 2.0 0.34 ug/l Di-n-otyl phthalate ND 2.0 0.34 ug/l Di-n-otyl phthalate ND 2.0 0.34 ug/l Di-n-otyl phthalate ND 2.0 0.36 ug/l Pluorene ND 2.0 0.36 ug/l Fluoranthene ND 2.0 0.36 ug/l Fluoranthene ND 2.0 0.36 ug/l Hexachlorobenzene ND 2.0 0.36 ug/l Hexachlorobenzene ND 2.0 0.31 ug/l Hexachlorobenzene ND 2.0 0.13 ug/l Hexachlorocyclopentadiene ND 2.0 0.13 ug/l Hexachlorocyclopentadiene ND 2.0 0.10 ug/l Indeno(1,2,3-cd)pyrene ND 2.0 0.79 ug/l Isophorone ND 2.0 0.79 ug/l Isophorone ND 2.0 0.79 ug/l Isophorone ND 2.0 0.79 ug/l Isophorone ND 2.0 0.70 ug/l N-Nitroaniline ND 5.0 0.50 ug/l N-Nitroaniline ND 5.0 0.50 ug/l N-Nitroaniline ND 5.0 0.59 ug/l N-Nitrosodi-n-propylamine ND 2.0 0.71 ug/l N-Nitrosodi-n-propylamine ND 2.0 0.38 ug/l N-Nitrosodi-n-propylamine ND 2.0 0.38 ug/l N-Nitrosodi-n-propylamine ND 2.0 0.38 ug/l N-Nitrosodi-n-propylamine ND 2.0 0.38 ug/l N-Nitrosodi-n-propylamine ND 2.0 0.28 ug/l N-Nitrosodi-n-propylamine ND 2.0 0.28 ug/l N-Nitrosodi-n-propylamine ND 2.0 0.28 ug/l N-Nitrosodi-n-propylamine ND 2.0 0.39 ug/l N-Nitrosodi-n-propylamine ND 2.0 0.12 ug/l Surrogate Recoveries Run#1 Run#2 Limits

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: FB-022908

Lab Sample ID:

J84581-12

AQ - Field Blank Soil

Date Sampled: 02/29/08 Date Received: 03/01/08

Matrix: Method:

SW846 8270C SW846 3510C

Project:

Percent Solids: n/a

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
1718-51-0	Terphenyl-d14	76%		31-124%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	system artifact/aldoI-condensar Total TIC, Semi-Volatile	tion	4.45	5.2 0	ug/l ug/l	J

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Samp Matrix: Method: Project:	SO - Se SW846	oil 8270C	SW846 3550B minal 31020, Ta	appan, NY	Date Sampled: Date Received: Percent Solids:	03/01/08	
Run #1 Run #2	File ID 3E12977.D	DF 1	Analyzed 03/07/08	By OYA	Prep Date 03/04/08	Prep Batch OP31534	Analytical Batch E3E567
Run #1 Run #2	Initial Weight 30.0 g	Final V 1.0 ml	/olume				

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	390	50	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	390	110	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	390	82	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	390	96	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1600	86	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1600	140	ug/kg	
95-48-7	2-Methylphenol	ND	160	76	ug/kg	
	3&4-Methylphenol	ND	160	97	ug/kg	
88-75-5	2-Nitrophenol	ND	390	91	ug/kg	
100-02-7	4-Nitrophenol	ND	1600	140	ug/kg	
87-86-5	Pentachlorophenol	ND	780	82	ug/kg	
108-95-2	Phenol	ND	160	73	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	390	150	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	390	160	ug/kg	
83-32-9	Acenaphthene	ND	160	25	ug/kg	
208-96-8	Acenaphthylene	ND	160	16	ug/kg	
120-12-7	Anthracene	ND	160	72	ug/kg	
56-55-3	Benzo(a)anthracene	ND	160	16	ug/kg	
50-32-8	Benzo(a)pyrene	118	160	39	ug/kg	J
205-99-2	Benzo(b)fluoranthene	140	160	26	ug/kg	J J J
191-24-2	Benzo(g,h,i)perylene	75.8	160	31	ug/kg	J
207-08-9	Benzo(k)fluoranthene	80.0	160	34	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	160	34	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	160	29	ug/kg	
91-58-7	2-Chloronaphthalene	ND	160	24	ug/kg	
106-47-8	4-Chloroaniline	ND	390	28	ug/kg	
86-74-8	Carbazole	ND	160	27	ug/kg	
218-01-9	Chrysene	96.8	160	32	ug/kg	j
111-91-1	bis(2-Chloroethoxy)methane	ND	160	31	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	160	36	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	160	46	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	160	22	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: TP5-2

Lab Sample ID:

J84581-13

Date Sampled:

02/29/08

Matrix: Method: SO - Soil

Date Received: 03/01/08

Project:

SW846 8270C SW846 3550B ExxonMobil Terminal 31020, Tappan, NY Percent Solids: 42.5

ABN TCL List

CAS No.	Commound	Result	RL	MDL	Units	0
CAS NO.	Compound	Resuit	KL	MIDL	Опиз	Q
95-50-1	1,2-Dichlorobenzene	ND	160	27	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	160	24	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	160	21	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	160	25	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	160	31	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	390	57	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	160	20	ug/kg	
132-64-9	Dibenzofuran	ND	160	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	160	22	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	160	32	ug/kg	
84-66-2	Diethyl phthalate	ND	160	27	ug/kg	
131-11-3	Dimethyl phthalate	ND "	160	21	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	160	47	ug/kg	
206-44-0	Fluoranthene	79.0	160	15	ug/kg	J
86-73-7	Fluorene	ND	160	16	ug/kg	•
118-74-1	Hexachlorobenzene	ND	160	38	ug/kg	
87-68-3	Hexachlorobutadiene	ND	160	36	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1600	36	ug/kg	
67-72-1	Hexachloroethane	ND	390	33	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	76.4	160	73	ug/kg	J
78-59-1	Isophorone	ND	160	25	ug/kg	•
91-57-6	2-Methylnaphthalene	166	160	70	ug/kg	
88-74-4	2-Nitroaniline	ND	390	50	ug/kg	
99-09-2	3-Nitroaniline	ND	390	52	ug/kg	
100-01-6	4-Nitroaniline	ND	390	45	ug/kg	
91-20-3	Naphthalene	67.0	160	18	ug/kg	J
98-95-3	Nitrobenzene	ND	160	26	ug/kg	•
621-64-7	N-Nitroso-di-n-propylamine	ND	160	27	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	390	17	ug/kg	
85-01-8	Phenanthrene	163	160	20	ug/kg	
129-00-0	Pyrene	389	160	27	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	160	25	ug/kg	
	-,-,				0'0	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	64%		26-1	05%	
4165-62-2	PhenoI-d5	69%			06%	
118-79-6	2,4,6-Tribromophenol	100%			26%	
4165-60-0	Nitrobenzene-d5	58%			15%	
321-60-8	2-Fluorobiphenyl	68%		44-1		

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: TP5-2

Lab Sample ID:

J84581-13

Date Sampled:

: 02/29/08 : 03/01/08

Matrix: Method: SO - Soil SW846 8270C SW846 3550B Date Received:

Percent Solids: 42.5

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1718-51-0	Terphenyl-d14	66%		42-133%	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est, Conc.	Units Q
	system artifact/aldol-condensa unknown	tion	3.33 10.38 10.57 10.80 10.94 11.03 11.50 11.83 11.97 12.07 12.26 13.08 13.15 13.38 14.04 14.38 14.69 15.05 15.18 16.62 17.30 18.59 25.69 26.11 26.22 26.45	50000 2800 3400 3500 2500 2600 12000 8400 7400 5000 3500 3900 3600 2400 6500 2100 12000 2600 2300 2800 2800 2800 2200 3200 7400 2500 2500 109900	ug/kg g J J J J J J J J J J J J J J J J J J
	TAILE TTO COME TOMBLE			200000	-8/ "5 J

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: TP5-6 Lab Sample ID:

J84581-14

SO - Soil SW846 8270C SW846 3550B Date Sampled: Date Received:

02/29/08 03/01/08

Percent Solids: 55.4

Method: Project:

Matrix:

ExxonMobil Terminal 31020, Tappan, NY

File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch 3E12978.D 03/07/08 OYA 03/04/08 OP31534 E3E567 Run #1

1 Run #2 3E13002.D 03/10/08 03/04/08 OP31534 E3E568 4 OYA

Initial Weight Final Volume Run #1 1.0 ml 30.2 g

Run #2 1.0 ml 30.2 g

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Ç
95-57-8	2-Chlorophenol	ND	300	38	ug/kg	
59-50 -7	4-Chloro-3-methyl phenol	ND	300	81	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	300	62	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	300	73	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1200	66	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1200	110	ug/kg	
95-48-7	2-Methylphenol	ND	120	58	ug/kg	
	3&4-Methylphenol	ND	120	74	ug/kg	
88-75-5	2-Nitrophenol	ND	300	69	ug/kg	
100-02-7	4-Nitrophenol	ND	1200	110	ug/kg	
87-86-5	Pentachlorophenol	ND	600	63	ug/kg	
108-95-2	Phenol	ND	120	56	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	300	110	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	300	120	ug/kg	
83-32-9	Acenaphthene	807	120	19	ug/kg	
208-96-8	Acenaphthylene	231	120	12	ug/kg	
120-12-7	Anthracene	2370	120	55	ug/kg	
56-55-3	Benzo(a)anthracene	5120	120	12	ug/kg	
50-32-8	Benzo(a) pyrene	4600	120	29	ug/kg	
205-99-2	Benzo(b)fluoranthene	5330	120	20	ug/kg	
191-24-2	Benzo(g,h,i)perylene	2980	120	24	ug/kg	
207-08-9	Benzo(k)fluoranthene	3270	120	26	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	120	26	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	120	22	ug/kg	
91-58-7	2-Chloronaphthalene	ND	120	18	ug/kg	
106-47-8	4-Chloroaniline	ND	300	22	ug/kg	
86-74-8	Carbazole	1180	120	20	ug/kg	
218-01-9	Chrysene	4970	120	24	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	120	23	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	120	27	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	120	35	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	120	17	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TP5-6 Lab Sample ID:

J84581-14

Date Sampled:

02/29/08 03/01/08

Matrix:

SO - Soil

Date Received:

Method:

SW846 8270C SW846 3550B

Percent Solids: 55.4

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

Compound	Result	RL	MDL	Units	Q
1,2-Dichlorobenzene	ND	120	20	ug/kg	
1,3-Dichlorobenzene	ND	120	18	ug/kg	
1,4-Dichlorobenzene	ND	120	16	ug/kg	
2,4-Dinitrotoluene	ND	120	19	ug/kg	
2,6-Dinitrotoluene	ND	120	24		
3,3'-Dichlorobenzidine	ND	300	43		
	1060	120	15		
Dibenzofuran	599	120	12		
Di-n-butyl phthalate	ND	120	17		
	ND	120	25		
	ND	120	21		
	ND	120	16		
Fluoranthene	15600 a	480	44		
Fluorene	920	120	12		
			29		
			28		
		1200			
Hexachloroethane	ND	300			
Indeno(1.2.3-cd)pyrene	2870				
-					
-,-,-				-00	
Surrogate Recoveries	Run# 1	Run#2	Lin	nits	
2-Fluorophenol	65%	67%	26-	105%	
Phenol-d5	70%	79%	34-	106%	
2,4,6-Tribromophenol	91%	92%			
Nitrobenzene-d5	56%	61%			
2-Fluorobiphenyl	61%	G6%			
	1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3,3'-Dichlorobenzidine Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate Diethyl phthalate Dimethyl phthalate Dimethyl phthalate bis(2-Ethylhexyl)phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobenzene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline 3-Nitroaniline Naphthalene Nitrobenzene N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine Phenanthrene Pyrene 1,2,4-Trichlorobenzene Surrogate Recoveries 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5	1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 2,4-Dinitrotoluene ND 2,6-Dinitrotoluene ND 3,3'-Dichlorobenzidine ND Dibenzo(a,h) anthracene 1060 Dibenzofuran 599 Di-n-butyl phthalate ND Diethyl phthalate ND Dimethyl phthalate ND Hexachlorobenzene ND Hexachlorobenzene ND Hexachlorobenzene ND Hexachlorocyclopentadiene ND Hexachlorocyclopentadiene ND Hexachloroethane ND Indeno(1,2,3-cd)pyrene 2870 Isophorone ND 2-Methylnaphthalene 247 2-Nitroaniline ND Naphthalene ND N-Nitroso-di-n-propylamine ND N-Nitroso-di-n-propylamine ND N-Nitrosodiphenylamine ND N-Nitrosodiphenylamine ND N-Nitrosodiphenylamine ND Surrogate Recoveries Run# 1 2-Fluorophenol 65% Phenol-d5 70% 2,4,6-Tribromophenol 91% Nitrobenzene-d5	1,2-Dichlorobenzene ND 120 1,3-Dichlorobenzene ND 120 2,4-Dinitrotoluene ND 120 2,4-Dinitrotoluene ND 120 2,6-Dinitrotoluene ND 120 3,3'-Dichlorobenzidine ND 300 Dibenzo(a,h)anthracene 1060 120 Dibenzofuran 599 120 Di-n-butyl phthalate ND 120 Di-n-octyl phthalate ND 120 Diethyl phthalate ND 120 Dimethyl phthalate ND 120 Dis(2-Ethylhexyl)phthalate 223 120 Fluoranthene 15600 a 480 Fluorene 920 120 Hexachlorobenzene ND 120 Hexachlorobenzene ND 120 Hexachlorocyclopentadiene ND 120 Hexachlorocyclopentadiene ND 120 Indeno(1,2,3-cd)pyrene 2870 120 Isophorone ND 120 2-Methylnaphthalene 247 120 2-Methylnaphthalene 247 120 2-Nitroaniline ND 300 A-Nitroaniline ND 300 Naphthalene ND 300 Naphthalene ND 120 N-Nitrosodi-n-propylamine ND 120 N-Nitrosodi-n-propylamine ND 120 N-Nitrosodi-n-propylamine ND 120 N-Nitrosodi-n-propylamine ND 120 Surrogate Recoveries Run# 1 Run# 2 2-Fluorophenol 65% 67% Phenol-d5 70% 79% 2,4,6-Tribromophenol 91% 92% Nitrobenzene-d5 56% 61%	1,2-Dichlorobenzene ND 120 18 1,3-Dichlorobenzene ND 120 18 1,4-Dichlorobenzene ND 120 16 2,4-Dinitrotoluene ND 120 19 2,6-Dinitrotoluene ND 120 19 3,3'-Dichlorobenzidine ND 300 43 Dibenzo(a,h) anthracene 1060 120 15 Dibenzofuran 599 120 12 Di-n-butyl phthalate ND 120 17 Di-n-octyl phthalate ND 120 25 Diethyl phthalate ND 120 21 Dimethyl phthalate ND 120 16 bis(2-Ethylhexyl)phthalate 223 120 36 Fluoranthene 15600 a 480 44 Fluorene 920 120 12 Hexachlorobenzene ND 120 29 Hexachlorobenzene ND 120 29 Hexachlorocyclopentadiene ND 120 28 Hexachlorocyclopentadiene ND 120 28 Hexachlorocyclopentadiene ND 120 28 Indeno(1,2,3-cd)pyrene 2870 120 56 Isophorone ND 120 19 2-Methylnaphthalene 247 120 54 2-Nitroaniline ND 300 38 3-Nitroaniline ND 300 34 Naphthalene ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 20 N-Nitroso-di-n-propylamine ND 120 19 Surrogate Recoveries Run# 1 Run# 2 Lin Surrogate Recoveries Run# 1 Run# 2 Lin 2-Fluorophenol 65% 67% 26- Phenol-d5 70% 79% 34- 2,4,6-Tribromophenol 91% 92% 30- Nitrobenzene-d5 56% 61%	1,2-Dichlorobenzene ND 120 18 ug/kg 1,3-Dichlorobenzene ND 120 16 ug/kg 2,4-Dinitrotoluene ND 120 16 ug/kg 2,4-Dinitrotoluene ND 120 19 ug/kg 3,3'-Dichlorobenzidine ND 300 43 ug/kg Dibenzo(a,h)anthracene 1060 120 15 ug/kg Dibenzofuran 599 120 12 ug/kg Di-n-butyl phthalate ND 120 17 ug/kg Di-n-otyl phthalate ND 120 25 ug/kg Dimethyl phthalate ND 120 25 ug/kg Dimethyl phthalate ND 120 16 ug/kg bis(2-Ethylhexyl)phthalate ND 120 16 ug/kg Fluoranthene 15600 a 480 44 ug/kg Fluoranthene 15600 a 480 44 ug/kg Fluoranthene 15600 a 480 44 ug/kg Fluoranthene 15600 a 480 44 ug/kg Fluoranthene 15600 a 480 44 ug/kg Hexachlorobutadiene ND 120 29 ug/kg Hexachlorobutadiene ND 120 29 ug/kg Hexachlorocyclopentadiene ND 120 28 ug/kg Indeno(1,2,3-cd)pyrene 2870 120 28 ug/kg Isophorone ND 120 19 ug/kg S-Methylnaphthalene 247 120 54 ug/kg Isophorone ND 120 19 ug/kg S-Methylnaphthalene 247 120 54 ug/kg S-Nitroaniline ND 300 34 ug/kg Naphthalene ND 300 34 ug/kg Naphthalene ND 300 34 ug/kg N-Nitrosodi-n-propylamine ND 300 34 ug/kg N-Nitrosodi-n-propylamine ND 300 34 ug/kg N-Nitrosodi-n-propylamine ND 300 34 ug/kg N-Nitrosodi-n-propylamine ND 120 20 ug/kg N-Nitrosodi-n-propylamine ND 120 20 ug/kg N-Nitrosodi-n-propylamine ND 120 19 ug/kg Surrogate Recoveries Run# 1 Run# 2 Limits 2-Fluorophenol 65% 67% 26-105% Phenol-d5 70% 79% 34-106% 2,4,6-Tribromophenol 91% 92% 30-126% Nitrobenzene-d5 56% 61% 36-115%

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: TP5-6

Lab Sample ID:

J84581-14

Date Sampled: Date Received:

02/29/08 03/01/08

Matrix: Method: SO - Soil SW846 8270C SW846 3550B

Percent Solids: 55.4

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

Surrogate Recoveries	Run# 1	Run# 2	Limits	
Terphenyl-d14	64%	67%	42-133%	
Tentatively Identified Compo	ounds	R.T.,	Est. Conc.	Units Q
system artifact system artifact/aldol-condensa C4 alkyl benzene alkane Naphthalene dimethyl alkane Naphthalene dimethyl unknown unknown unknown alkane alkane 9H-Fluorene methyl 9H-Fluorenone Dibenzothiophene Anthracene methyl Anthracene methyl unknown unknown unknown unknown unknown unknown unknown unknown unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Oyclic octaatomic sulfur unknown PAH substance unknown PAH substance		3.03 3.33 5.79 9.32 11.68 11.81 11.88 12.04 13.61 13.88 14.02 14.65 14.85 15.22 15.39 16.86 16.92 17.01 17.10 17.16 17.55 17.65 18.11 18.16 18.23 19.46 23.11	840 41000 730 510 580 1600 660 510 550 710 1200 1400 730 610 880 890 1300 620 1800 930 1000 720 480 1100 2400 710 5200	ug/kg J J ug/kg J J ug/kg Ug/kg J ug/kg J ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg
rotat ffC, Semi-Volatile			21820	ug/kg J
	Terphenyl-d14 Tentatively Identified Compositions artifact system artifact/aldol-condensa C4 alkyl benzene alkane Naphthalene dimethyl alkane Naphthalene dimethyl unknown unknown unknown alkane 9H-Fluorene methyl 9H-Fluoren-one Dibenzothiophene Anthracene methyl Anthracene methyl unknown unknown unknown unknown unknown unknown unknown unknown unknown Unknown PAH substance unknown unknown Cyclic octaatomic sulfur unknown PAH substance	Terphenyl-d14 64% Tentatively Identified Compounds system artifact system artifact/aldol-condensation C4 alkyl benzene alkane Naphthalene dimethyl alkane Naphthalene dimethyl unknown unknown unknown alkane alkane 9H-Fluorene methyl 9H-Fluorenone Dibenzothiophene Anthracene methyl Anthracene methyl unknown unknown unknown unknown unknown unknown unknown unknown unknown Unknown	Terphenyl-d14 64% 67% Tentatively Identified Compounds R.T system artifact 3.03 system artifact/aldol-condensation 3.33 C4 alkyl benzene 5.79 alkane 9.32 Naphthalene dimethyl 11.68 alkane 11.81 Naphthalene dimethyl 11.88 unknown 12.04 unknown 13.61 unknown 13.61 unknown 13.88 alkane 14.02 alkane 14.02 alkane 14.05 9H-Fluorene methyl 14.85 9H-Fluorene methyl 16.86 Anthracene methyl 16.86 Anthracene methyl 16.92 unknown 17.01 unknown 17.10 unknown 17.10 unknown 17.55 unknown 17.65 unknown 17.65 unknown 18.11 unknown PAH substance 19.46 unknown PAH substance 19.46 unknown PAH substance 19.46 unknown PAH substance 19.46 unknown PAH substance 19.46 unknown PAH substance 19.46 unknown PAH substance 19.46 unknown PAH substance 19.46	Terphenyl-d14 64% 67% 42-133% Tentatively Identified Compounds R.T. Est. Conc. system artifact 3.03 840 system artifact/aldol-condensation 3.33 41000 C4 alkyl benzene 5.79 730 alkane 9.32 510 Naphthalene dimethyl 11.68 580 alkane 11.81 1600 Naphthalene dimethyl 11.88 660 unknown 12.04 510 unknown 13.61 550 unknown 13.88 710 alkane 14.02 1200 alkane 14.02 1200 alkane 14.65 1400 9H-Fluorene methyl 14.85 730 9H-Fluorene-one 15.22 610 Dibenzothiophene 15.39 880 Anthracene methyl 16.86 890 Anthracene methyl 16.92 1300 unknown 17.01 620 unknown 17.10 1800 unknown 17.10 1800 unknown 17.15 720 unknown 17.65 720 unknown 17.65 720 unknown 18.11 480 unknown 18.16 1100 Cyclic octaatomic sulfur unknown PAH substance 19.46 710 unknown PAH substance 19.46 710 unknown PAH substance 19.46 710 unknown PAH substance 19.46 710

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Lab Sam; Matrix: Method: Project:	SO - So SW846	il 8270C	SW846 3550B minal 31020, Ta	appan, NY	Date Sample Date Receive Percent Solid	:d: 03/01/08	
Run #1 Run #2	File ID 3E12979.D	DF 1	Analyzed 03/07/08	By OYA	Prep Date 03/04/08	Prep Batch OP31534	Analytical Batch E3E567
Run #1 Run #2	Initial Weight 30.2 g	Final V	Volume				

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	270	35	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	270	74	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	270	57	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	270	67	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1100	60	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	1100	100	ug/kg	
95-48-7	2-Methylphenol	ND	110	53	ug/kg	
	3&4-Methylphenol	ND	110	68	ug/kg	
88-75-5	2-Nitrophenol	ND	270	63	ug/kg	
100-02-7	4-Nitrophenol	ND	1100	96	ug/kg	
87-86-5	Pentachlorophenol	ŇD	550	57	ug/kg	
108-95-2	Phenol	ND	110	51	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	270	100	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	270	110	ug/kg	
83-32-9	Acenaphthene	181	110	17	ug/kg	
208-96-8	Acenaphthylene	793	110	11	ug/kg	
120-12-7	Anthracene	1180	110	50	ug/kg	
56-55-3	Benzo(a)anthracene	3100	110	11	ug/kg	
50-32-8	Benzo(a)pyrene	2990	110	27	ug/kg	
205-99-2	Benzo(b)fluoranthene	3380	110	18	ug/kg	
191-24-2	Benzo(g,h,i)perylene	2170	110	22	ug/kg	
207-08-9	Benzo(k)fluoranthene	2610	110	24	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND .	110	24	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	110	20	ug/kg	
91-58-7	2-Chloronaphthalene	ND	110	16	ug/kg	
106-47-8	4-Chloroaniline	ND	270	20	ug/kg	
86-74-8	Carbazole	406	110	18	ug/kg	
218-01-9	Chrysene	3310	110	22	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND .	110	21	ug/kg	•
111-44-4	bis(2-Chloroethyl)ether	ND	110	25	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	110	32	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	110	16	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

Client Sample ID: TP6-3

Lab Sample ID: J84581-15 Matrix: SO - Soil

SO - Soil SW846 8270C SW846 3550B Date Sampled: 02/29/08 Date Received: 03/01/08 Percent Solids: 60.7

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	110	19	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	110	16	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	110	15	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	110	18	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	110	22	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	270	39	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	831	110	14	ug/kg	
132-64-9	Dibenzofuran	113	110	11	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	110	15	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	110	22	ug/kg	
84-66-2	Diethyl phthalate	ND	110	19	ug/kg	
131-11-3	Dimethyl phthalate	ND	110	15	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	110	110	33	ug/kg	
206-44-0	Fluoranthene	5010	110	10	ug/kg	
86-73-7	Fluorene	165	110	11	ug/kg	
118-74-1	Hexachlorobenzene	ND	110	26	ug/kg	
87-68-3	Hexachlorobutadiene	ND	110	25	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	1100	25	· ug/kg	
67-72-1	Hexachloroethane	ND	270	23	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	2100	110	51	ug/kg	
78-59-1	Isophorone	ND	110	18	ug/kg	
91-57-6	2-Methylnaphthalene	103	110	49	ug/kg	J
88-74-4	2-Nitroaniline	ND	270	35	ug/kg	
99-09-2	3-Nitroaniline	ND	270	36	ug/kg	
100-01-6	4-Nitroaniline	ND	270	31	ug/kg	
91-20-3	Naphthalene	75.3	110	12	ug/kg	J
98-95-3	Nitrobenzene	ND	110	18	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	110	19	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	270	12	ug/kg	
85-01-8	Phenanthrene	2710	110	14	ug/kg	
129-00-0	Pyrene	4750	110	19	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	110	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
367-12-4	2-Fluorophenol	64%		26-1	05%	
4165-62-2	Phenol-d5	66%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	87%		30-1	26%	
4165-60-0	Nitrobenzene-d5	58%		36-1	15%	
321-60-8	2-Fluorobiphenyl	63%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: TP6-3

Lab Sample ID: J84581-15 Matrix:

SO - Soil SW846 8270C SW846 3550B

Date Sampled: 02/29/08 Date Received: 03/01/08 Percent Solids: 60.7

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	61%		42-133%	
CAS No.	AS No. Tentatively Identified Compounds		R.T.	Est. Conc.	Units Q
84	system artifact system artifact/aldoI-condensa Anthracene methyl Anthracene methyl Anthracene methyl Anthracene methyl Anthracene methyl unknown 9,10-Anthracenedione Phenanthrene dimethyl Phenanthrene dimethyl Phenanthrene dimethyl unknown unknown unknown unknown Benzo[b]naphtho[-d]thiophene unknown unknown PAH substance unknown unknown PAH substance unknown PAH substance unknown PAH substance unknown PAH substance unknown PAH substance unknown PAH substance unknown PAH substance unknown PAH substance unknown Unknown Unknown Unknown Unknown Unknown Total TIC, Semi-Volatile		3.03 3.32 16.86 16.92 17.00 17.10 17.15 17.54 17.58 17.94 18.10 18.15 18.22 19.41 19.46 19.64 20.40 20.58 20.64 21.37 21.71 21.77 22.88 23.11 23.57 24.08 24.57	680 33000 520 680 360 1100 370 410 540 340 460 410 440 330 570 270 590 350 420 310 500 290 1000 2500 1200 1500 830 16290	ug/kg J ug/kg J

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

100

Client San Lab Sam Matrix: Method; Project:	ole ID: J84581- SO - So SW846	il 8270C S	W846 3550B ninal 31020, Ta	appan, NY	Date Sampled Date Received Percent Solid	1: 03/01/08	
Run #1 Run #2	File ID 3E12980.D	DF 1	Апаlyzed 03/07/08	By OYA	Prep Date 03/04/08	Prep Batch OP31534	Analytical Batch E3E567
Run #1 Run #2	Initial Weight 30.1 g	Final Vo	olume				

ABN TCL List

ABN TCL	L∕1St					
CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	240	31	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	240	66	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	240	50	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	240	59	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	970	53	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	970	88	ug/kg	
95-48-7	2-Methylphenol	ND	97	47	ug/kg	
	3&4-Methylphenol	ND .	97	60	ug/kg	
88-75-5	2-Nitrophenol	ND	240	56	ug/kg	
100-02-7	4-Nitrophenol	ND	970	85	ug/kg	
87-86-5	Pentachlorophenol	ND	480	51	ug/kg	
108-95-2	Phenol	ND	97	45	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	240	92	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	240	98	ug/kg	
83-32-9	Acenaphthene	434	97	15	ug/kg	
208-96-8	Acenaphthylene	59.3	97	9.8	ug/kg	J
120-12-7	Anthracene	404	97	45	ug/kg	
56-55-3	Benzo(a)anthracene	991	97	10	ug/kg	
50-32-8	Benzo(a)pyrene	928	97	24	ug/kg	
205-99-2	Benzo(b)fluoranthene	873	97	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	556	97	19	ug/kg	
207-08-9	Benzo(k)fluoranthene	703	97	21	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	97	21	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	97	18	ug/kg	
91-58-7	2-Chloronaphthalene	ND	97	15	ug/kg	
106-47-8	4-Chloroaniline	ND	240	18	ug/kg	
86-74-8	Carbazole	170	97	16	ug/kg	
218-01-9	Chrysene	1000	97	20	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	97	19	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	97	22	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	97	28	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	97	14	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TP6-7

Lab Sample ID: Matrix: J84581-16

Date Sampled; Date Received: 02/29/08 03/01/08

Method:

SO - Soil SW846 8270C SW846 3550B

Percent Solids:

68.7

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	97	16	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	97	15	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	97	13	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	97	16	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	97	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	240	35	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	198	97	12	ug/kg	
132-64-9	Dibenzofuran	139	97	9.5	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	97	13	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	97	20	ug/kg	
84-66-2	Diethyl phthalate	ND	97	17	ug/kg	
131-11-3	Dimethyl phthalate	ND	97	13	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	97	29	ug/kg	
206-44-0	Fluoranthene	1970	97	9.0	ug/kg	
86-73-7	Fluorene	634	97	9.8	ug/kg	
118-74-1	Hexachlorobenzene	ND	97	23	ug/kg	
87-68-3	Hexachlorobutadiene	ND	97	22	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	970	22	ug/kg	
67-72-1	Hexachloroethane	ND	240	20	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	521	97	45	ug/kg	
78-59-1	Isophorone	ND	97	16	ug/kg	
91-57-6	2-Methylnaphthalene	422	97	43	ug/kg	
88-74-4	2-Nitroaniline	ND	240	31	ug/kg	
99-09-2	3-Nitroaniline	ND	240	32	ug/kg	
100-01-6	4-Nitroaniline	ND	240	28	ug/kg	
91-20-3	Naphthalene	254	97	11	ug/kg	
98-95-3	Nitrobenzene	ND	97	16	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	97	17	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	240	11	ug/kg	
85-01-8	Phenanthrene	1920	97	12	ug/kg	
129-00-0	Pyrene	1840	97	17	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	97	15	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Li	mits	
367-12-4	2-Fluorophenol	63%		26	-105%	
4165-62-2	Phenol-d5	65%		34	-106%	
118-79-6	2,4,6-Tribromophenol	92%		30	-126%	
4165-60-0	Nitrobenzene-d5	59%		36	-115%	
321-60-8	2-Fluorobiphenyl	64%		44	-112%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: TP6-7

Lab Sample ID:

J84581-16

Date Sampled:

Matrix: Method: SO - Soil SW846 8270C SW846 3550B

02/29/08 Date Received: 03/01/08 Percent Solids: 68.7

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits	
1718-51-0	Terphenyl-d14	63%		42-133%	
CAS No.	AS No. Tentatively Identified Compounds		R.T.	Est. Conc.	Units Q
90	system artifact/aldol-condensa alkane Naphthalene, 1-methyl- Naphthalene ethyl Naphthalene ethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene trimethyl unknown unknown alkane alkane unknown Anthracene methyl Cyclic octaatomic sulfur unknown PAH substance unknown PAH substance	tion	3.33 9.33 10.00 11.08 11.14 11.24 11.43 11.48 11.69 11.73 11.88 12.48 12.75 12.81 13.01 13.05 13.22 13.61 13.88 14.02 14.66 14.86 16.92 18.21 19.47 23.10	30000 950 810 1200 890 2800 3900 2200 1700 710 1300 1300 1300 1300 1300 2400 790 1300 2400 790 1300 2700 1600 800 880 930 720	ug/kg JN ug/kg JN ug/kg JJ ug/kg JJ ug/kg JJ ug/kg J
	Total TIC, Semi-Volatile			37680	ug/kg J

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 3

Client Sample ID: TP7-3 Lab Sample ID:

J84581-17

SO - Soil SW846 8270C SW846 3550B

Date Sampled: Date Received:

Percent Solids: 80.1

02/29/08

03/01/08

Method: Project:

Matrix:

ExxonMobil Terminal 31020, Tappan, NY

Ву File ID DF Analyzed Prep Date Prep Batch Analytical Batch Run #1 03/07/08 OYA 03/04/08 OP31534 E3E567 3E12981.D 1

Run #2

Final Volume Initial Weight Run #1 30.2 g 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	210	26	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	210	56	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	210	43	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	210	50	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	830	45	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	830	76	ug/kg	
95-48-7	2-Methylphenol	ND	83	40	ug/kg	
	3&4-Methylphenol	ND	83	51	ug/kg	
88-75-5	2-Nitrophenol	ND	210	48	ug/kg	
100-02-7	4-Nitrophenol	ND	830	73	ug/kg	
87-86-5	Pentachlorophenol	ND .	410	43	ug/kg	
108-95-2	Phenol	ND	83	39	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	210	79	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	210	84	ug/kg	
83-32-9	Acenaphthene	ND	83	13	ug/kg	
208-96-8	Acenaphthylene	117	83	8.4	ug/kg	
120-12-7	Anthracene	111	83	38	ug/kg	
56-55-3	Benzo(a)anthracene	55.6	83	8.6	ug/kg	J
50-32-8	Benzo(a)pyrene	90.8	83	20	ug/kg	
205-99-2	Benzo(b)fluoranthene	115	83	14	ug/kg	
191-24-2	Benzo(g,h,i)perylene	197	83	16	ug/kg	
207-08-9	Benzo(k)fluoranthene	66.3	83	18	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	83	18	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	83	15	ug/kg	
91-58-7	2-Chloronaphthalene	ND ·	83	12	ug/kg	
106-47-8	4-Chloroaniline	ND	210	15	ug/kg	
86-74-8	Carbazole	ND	83	14	ug/kg	
218-01-9	Chrysene	63.7	83	17	ug/kg	J
111-91 - 1	bis(2-Chloroethoxy)methane	ND	83	16	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	83	19	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	83	24	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	83	12	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TP7-3

Lab Sample ID:

J84581-17 SO - Soil

Date Sampled:

Matrix: Method:

SW846 8270C SW846 3550B

Date Received: 03/01/08 Percent Solids: 80.1

02/29/08

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	·Q
95-50-1	1,2-Dichlorobenzene	20.3	83	14	ug/kg	J
541-73-1	1,3-Dichlorobenzene	ND	83	12	ug/kg	•
106-46-7	1,4-Dichlorobenzene	ND	83	11	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	83	13	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	83	17	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	210	30	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	83	11	ug/kg	
132-64-9	Dibenzofuran	ND ·	83	8.1	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	83	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	83	17	ug/kg	
84-66-2	Diethyl phthalate	ND	83	14	ug/kg	
131-11-3	Dimethyl phthalate	ND	83	11	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	83	25	ug/kg	
206-44-0	Fluoranthene	53.0	83	7.7	ug/kg	J
86-73-7	Fluorene	ND	83	8.4	ug/kg	•
118-74-1	Hexachlorobenzene	ND	83	20	ug/kg	
87-68-3	Hexachlorobutadiene	ND	83	19	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	830	19	ug/kg	
67-72-1	Hexachloroethane	ND	210	17	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	130	83	39	ug/kg	
78-59-1	Isophorone	ND	83	13	ug/kg	
91-57-6	2-Methylnaphthalene	114	83	37	ug/kg	
88-74-4	2-Nitroaniline	ND	210	26	ug/kg	
99-09-2	3-Nitroaniline	ND	210	28	ug/kg	
100-01-6	4-Nitroaniline	ND	210	24	ug/kg	
91-20-3	Naphthalene	25.8	83	9.3	ug/kg	J
98-95-3	Nitrobenzene	ND	83	14	ug/kg	_
621-64-7	N-Nitroso-di-n-propylamine	ND	83	14	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	210	9.1	ug/kg	
85-01-8	Phenanthrene	66.5	83	10	ug/kg	J
129-00-0	Pyrene	78.1	83	14	ug/kg	J J
120-82-1	1,2,4-Trichlorobenzene	ND	83	13	ug/kg	_
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limi	ts	
367-12-4	2-Fluorophenol	62%		26-10	05%	
4165-62-2	Phenol-d5	66%		34-10	06%	
118-79-6	2,4,6-Tribromophenol	89%		30-13		
4165-60-0	Nitrobenzene-d5	57%		36-13	15%	
321-60-8	2-Fluorobiphenyl	63%		44-13	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: TP7-3 Lab Sample ID:

J84581-17

Date Sampled: Date Received: 03/01/08

02/29/08

Matrix: Method: SO - Soil SW846 8270C SW846 3550B

Percent Solids: 80.1

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
1718-51-0	Terphenyl-d14	63%		42-133%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	system artifact system artifact system artifact system artifact/aldol-condensa system artifact unknown unknown alkane Naphthalene dimethyl Naphthalene dimethyl unknown alkane unknown		3.03 3.12 3.19 3.33 4.24 10.23 10.87 11.02 11.23 11.47 11.69 12.27 12.69 12.83 13.47 14.60 17.13 17.20 19.12 19.42 20.60 20.89 21.27 22.03 22.52 23.61	570 180 220 28000 180 200 260 230 210 240 180 200 170 180 280 260 340 260 290 210 380 200 250 450 340 1600	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
	Total TIC, Semi-Volatile			6730	ug/kg	j

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Lab Sample ID: J84581-18 Date Sampled: 02/29/08 Matrix: SO - Soil Date Received: 03/01/08 Method: SW846 8270C SW846 3550B Percent Solids: 73.7 Project: ExxonMobil Terminal 31020, Tappan, NY	Run #1 Run #2	File ID 3E12982.D	DF 1	Analyzed 03/07/08	By OYA	Prep Date 03/04/08	Prep Batch OP31534	Analytical Batch E3E567
• •	Method:	SW84	16 8270C		appan, NY	Percent Solids:		
Client Sample ID: TP7-7	Lab Sampl	le ID: J8458	81-18			•		

Kull #E				
Run #1 Run #2	Initial Weight 30.1 g	Final Volume 1.0 ml		

ABN TCL 1	List					
CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	230	29	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	230	61	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	230	47	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	230	55	ug/kg	
51-28 - 5	2,4-Dinitrophenol	ND	900	50	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	900	82	ug/kg	
95-48-7	2-Methylphenol	ND	90	44	ug/kg	
	3&4-Methylphenol	ND	90	56	ug/kg	
88-75-5	2-Nitrophenol	ND	230	52	ug/kg	
100-02-7	4-Nitrophenol	ND	900	79	ug/kg	
87-86-5	Pentachlorophenol	ND	450	47	ug/kg	
108-95-2	Phenol	ND	90	42	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	230	86	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	230	91	ug/kg	
83-32-9	Acenaphthene	592	90	14	ug/kg	
208-96-8	Acenaphthylene	ND	90	9.2	ug/kg	
120-12-7	Anthracene	319	90	42	ug/kg	
56-55-3	Benzo(a)anthracene	202	90	9.3	ug/kg	
50-32-8	Benzo(a)pyrene	105	90	22	ug/kg	
205-99-2	Benzo(b)fluoranthene	111	90	15	ug/kg	
191-24-2	Benzo(g,h,i)perylene	70.2	90	18	ug/kg	J J
207-08-9	Benzo(k)fluoranthene	44.9	90	19	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	90	20	ug/kg	
85-68 -7	Butyl benzyl phthalate	ND	90	16	ug/kg	
91-58-7	2-Chloronaphthalene	ND	90	14	ug/kg	
106-47-8	4-Chloroaniline	ND	230	16	ug/kg	
86-74-8	Carbazole	151	90	15	ug/kg	
218-01-9	Chrysene	264	90	18	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	90	18	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	90	21	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	90	26	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	90	13	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $\begin{array}{ll} J = \mbox{Indicates an estimated value} \\ B = \mbox{Indicates analyte found in associated method blank} \\ N = \mbox{Indicates presumptive evidence of a compound} \end{array}$

Client Sample ID: TP7-7

Lab Sample ID: Matrix:

J84581-18 SO - Soil

Date Sampled: 02/29/08 Date Received: 03/01/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 73.7

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABì	Ν.	. I	.151

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	90	15	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	90	14	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	90	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	90	15	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	90	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	230	33	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	90	12	ug/kg	
132-64-9	Dibenzofuran	477	90	8.9	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	90	13	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	90	18	ug/kg	
84-66-2	Diethyl phthalate	ND	90	16	ug/kg	
131-11-3	Dimethyl phthalate	ND	90	12	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	145	90	27	ug/kg	
206-44-0	Fluoranthene	652	90	8.4	ug/kg	
86-73-7	Fluorene	870	90	9.1	ug/kg	
118-74-1	Hexachlorobenzene	ND	90	22	ug/kg	
87-68-3	Hexachlorobutadiene	ND	90	21	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	900	21	ug/kg	
67-72-1	Hexachloroethane	ND	230	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	46.4	90	42	ug/kg	J
78-59-1	Isophorone	ND	90	15	ug/kg	•
91-57-6	2-Methylnaphthalene	1260	90	40	ug/kg	
88-74-4	2-Nitroaniline	ND	230	29	ug/kg	
99-09-2	3-Nitroaniline	ND	230	30	ug/kg	
100-01-6	4-Nitroaniline	ND	230	26	ug/kg	
91-20-3	Naphthalene	1610	90	10	ug/kg	
98-95-3	Nitrobenzene	ND	90	15	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	90	15	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	230	9.9	ug/kg	
85-01-8	Phenanthrene	1550	90	11	ug/kg	
129-00-0	Pyrene	633	90	16	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND.	90	14	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	63%		26-10	05%	
4165-62-2	Phenol-d5	68%		34-10	06%	
118-79-6	2,4,6-Tribromophenol	96%		30-12	26%	
4165-60-0	Nitrobenzene-d5	62%		36-13	15%	
321-60-8	2-Fluorobiphenyl	66%		44-11	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank, N = Indicates presumptive evidence of a compound

.18 (2)

Report of Analysis

Page 3 of 3

Client Sample ID: TP7-7

Lab Sample ID:

J84581-18

Date Sampled:

02/29/08

Matrix: Method: SO - Soil SW846 8270C SW846 3550B Date Received: 03/01/08 Percent Solids: 73.7

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
1718-51-0	Terphenyl-d14	66%		42-133%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
90	system artifact/aldol-condensal alkane unknown alkane Naphthalene, 1-methyl- unknown Naphthalene dimethyl Naphthalene dimethyl alkane Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl unknown alkane unknown	tion	3.34 8.51 8.71 9.34 10.01 10.09 11.25 11.45 11.70 11.83 12.83 13.03 13.07 13.23 13.63 14.04 14.22 14.46 14.68 14.88 15.18 18.52 19.45 20.01 23.60 25.54	29000 1600 1200 2100 1100 1200 1900 2300 1400 1500 1700 1400 1200 1200 1200 1200 1200 1200 12	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg]]]]]]]]]]]]]]]]]]]]

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

MISC. FORMS
Custody Documents and Other Forms
Includes the following where applicable: • Chain of Custody

				CHA	MΙΝ	OF	CU	IS7	[O]	DΥ		•										•					/		
MACCUTE	: c	r		2235 R	oste III	Day	ton, l	11 0	8810		_									-									
Laborat			CI	732-329 7	HQ200	FAX	: 732	329	3499	V3480	0				Actu	teri Jab	£;	-7-3	24	٠,	4	1				-		_	ì
Canada Para Canada Canada Promission	190.00	****************		Earlin.	10lorus	tion I	. ma:	- In		٠		. 15 . 19			<u> </u>	_		$\mathcal{J}_{\mathcal{L}}$			0	<u> 1</u>							
EXXONMOBIL CORPORATION	- Regio	anai Labo	ratory F	rogran	n (NY	, NJ)			- ,,	1: -		1.6. 1	 	Τ-	╁╌	_	т		T.Ana	llytics 	1 2-4.0) Primite		1	т	1		_	l
WOODAKD & CURR			Project Nan	Mes .				۷.,	٠.,		<u> </u>			L	ı	i i	1	ŀ	i	l	l	Ι,	Kethe		ł	l			
	XN_		Exx.	<u>۱۲.۸</u>	<u>(C 15</u>	WITE !		(1) (1)	'AI'	- 1		H IN	4	TAGE .	ı	-	1	1	1	l	i		×			1			<u>ω</u>
1520 HEHLAND A	Venu.	<u> </u>	<u>- Kai</u>	المعالم	۷,	ive	N.	F					9		ı	I₹	<u> </u>	i	l	١.	ı	Ιi	125	}	[
CHESING CT	Do 'C.	415	IA-T		!	41			É		.,		Ę	MIREO		DW0 DW0	8	<u>_</u>	l	1	Ш		ž.	ì					200
		1415	Control	TA CA	• • • •	. HU!	1567	1	- 737			e Kr	400	1 – 10	ı	la l	a (wa) exps	Įξ	E	l	Ш		7		1				ලා
Semestra Harper			Example (Market)		2,18	νE	111	F١	LE	<u>771</u>			185	Ta.0 Pr.0	별	74.0		MTBEO TPHO	FALUSTO	l	Н	a	ıζŸ	١.					1
MATURITURITY T. 0,5.	£44.7			-	7	<u> </u>	<u> 53</u> -	-7	37				<u>□</u> □		STATELET		2007	麗	본	L		004.250	1/2	Ι΄		!			
	fa a 33・21	71-74-6	de robison	نځ:	- 02	27				WELE (٠ ;	,		ᆝ볃	<u> </u>	먑	18 2		0	أيا	_	8	and	Į				:	
NE?			POI			5 93	7	_	_	(Proper		_	┧┇┺╻		10	la		arec c	etex	S	O 60158	<u>-</u>		ŀ			-		
· · · · · · · · · · · · · · · · · · ·		Cofect	ion	77.	7073	ولمف	ເສ		704	ivati	200		- 24	일	1	휥	lē⁻	12.5	9	ē	امّا	#16	B	7					
Accutest Sample # Field ID / Point of Collection						. a [a lā	Ę		1	Ž į	5 8	REGION COM	MATHWENE	8	STAYS LIST C	7 7	At - TOS S Medium D	4-1014:	TPH CRO BOISE	TPILDRO	Ŧ	32/50		1				
-1 E8-2	2.27		5 MA	100 by U	_	O 100	┸	 	<u>2</u> .	2	#1	115	1883	183	2	122	26	₹ 3	1	Ħ	阜	£		 	!	<u> </u>	_		
-Z EX-6	^~			1-1-		' 	+	╀	╄	11	+	╬	┼—	<u> </u>	 	ـ	 -	 _	<u> </u>	L	Ш		L	<u> </u>	 			_	l
-B €10-1 \	╀	1311	_	5	24	4	╀	╀╌	-	4	4	+-	—	<u> </u>	<u> </u>	<u> </u>	├ —	<u> </u>	<u> </u>	Ц	Щ		ı		<u> </u>	0			ĺ
- / 	k 	(28.1	_		i -	<u> </u>	Ļ	ļ.,	·	1	4		़	_	L	Ľ		<u> </u>	<u> </u>	<u> </u>			_i_		<u> </u>	PX	38		İ
-4 ED-IMS /	/ 	282	~		Цċ	11	<u> </u>	╙	Ш	11	\perp	┸	<u> </u>		L	<u> </u>	<u> </u>								Ι.				ĺ
- 8 E10-1 MSD		082	5	<u> </u>		,	上	L					<u>.l</u>							П	П		1						1
- & Dur 0229178-		083	<u> </u>	\coprod	1_1					-)[Т	Τ	Ţ	П				Ī	Ī		П		1		\Box				
-7 E10-5 -5		083	5	1	П	π	Ţ	Γ	П	-1	Т	T		1		i				П	H	П	1		\vdash			_	İ
-8 F7-2 -6		084	5			$\overline{}$	Τ	T	П	7	╅	T		†	一		<u> </u>			Н	H		÷		 -				1
-9 E7-6 -7	1	185	7		\sqcap	7	╅		П	7	┪	╅	-	⇈	 	 	 	 	H	Н	H	-	÷		 			_	
-10 E9-2 -X	1	085		11	\ - -	;	\top	┢	\vdash	' ;	╅	┿	 	\vdash	┢╌	┼─	H	 	 -	ļ	Н	\dashv	-		╁			_	
-14 E9-12 -4	⊀	1310		√ /-	₩	' 	+	┝	╂═┨	∄	+	┪╸	-		┞		┝	 	-	Н	Н		1		, n	\vdash			
Tumeround Time (flushness)	My4)	112/02		eres agliere		Deta	Deive	rabie	Lindon) j Nakon	ᆠ	456	(6.55m. 1 4 72.4	ا الأدروان الأدروان	├	!	Ц			щ	<u> </u>		Remark			-	!	\dashv	ĺ
Std. 10 Business Days a Day RUSH	Approve	d By. Date		Comme	/* (ali)	٠-) Fi	ILL C		•									-21177			Ę,				\dashv	•
Day RUSH				Comme		9-		Ē	יא [/ASP	Cab	POLY			┌		_				_							\dashv	İ
3 Day EMERGENCY				KJ Rock	uced			E		rasp ato F		901y			┝							_						-	ĺ
D 2 Day EMERGENCY _	-			Dtrer				Ë		XD Fe					┝						_		_					\dashv	ĺ
1 Day EMERGENCY Emergency T/A is for FAX or Labilitie	Dete		•]	Courine	rciel "/	L* = Re	eu ite	only	,				_		 	- .	•		4			_			—		<u>.</u>	\dashv	Í
		Samps	Curyony	must be	docur	nented	beic	- 44	ch th	T-0 (84	mpi	es ch	ange po	epes hi	on, ku	luding	courie	e delive	ну,	_								\dashv	
1 Male Thill	Detay.	49/200	78	Head by:		<u>ed }</u>	<u></u>		2 2	-	⇔d by	Jp.	₹X.		O.	3/	68	1015					Recei	ne form	2/	///	100	25	<u>-</u>
3	Date Tin		Peca 3	rived by:			-		74	4	+d b;	r		•		te Time		•	٠.				1	red by:	Series Series	-	,	\Box	
Perforanteed by: 6	Deta Tio		Peca	ilved by:					East	•			_	Pi	*****	<u> </u>	et open	i de				P	-	On los			.4	94	
								_	τ_							ш,			•					MEST .			- 73	/ w	1.

J84581: Chain of Custody Page 1 of 2

(A)					IV OI				JΥ																			
ACCUTE	ST		273	Route	: 130 D :00 PA	ayton, i	NU D	8810																				
Laborat		40		Ž~.	אַנו טעג	W: 132	-329	•3493	3480	'				Accu	dol: Ine	F;		_	21	T	· F	71		—				1
AT THE PROPERTY TO CONTRICT Information	Dries Dries	<u>35</u>				,				_				<u> </u>				\mathcal{T}_{ϵ}	8 -	T $^{\circ}$	りと	1						1
EXCONMOBIL CORPORATION	- Regiona	Labora	lory Prog	ram (MY N.I) Wh.		4.4	F1 - • -	14 ,7		-		⊢	_	_	_	Ans	yue	Inf	ormati	lon_			=			1
Committee V		<u> </u>	YXON M		_		7		÷	7		1	l		1	J					Ιŧ	⊤ા		1	1	1 1		
WOODARD & LUR	KATIV	غ إـــــــ	<u> </u>	بانتك	1000	16. 1	Īm	i in	<u>1 '</u>	1/2	14//	į t	JA D		Ì	i			F			110	1					(4)
1520 HIGHLAND	AVE	[*7	l'		٠.]_	尸	ı	Z¥C	l	ļ		ľ	Н		. Nethool			1			
CHESHILE CT	Zn.		ZMLN	ንሉኮ	_/\7	لا _	<u> </u>	Blust	_	_			LEGE CO.	l	<u> </u>	0		ı		П	1 1	ځل⊧	l]	i	1 1		F 777
Project Contact / LE CT	DIPLHO	<u> </u>	7151 _N :	N	i – k	tuix	13		M			[≊	肾.	l	2	Į <u>₹</u>	p p	١,	ĺ		!	47		1	1	1		l a
HNNE PROCTU	2	Emo	27/1/1	74C	TELE	*******	11.					28 E	PΒ	١		O (MQ) 6'002	E	탏		H		15	i	1		1 1		œ
Secretary water		Eas	antiotal Mark	pera Ph	15-4 b		_				_	la⊵	100 PR 0	STARS LEST	PP.13	1	MIBEO TPHO	PUL UST D	Ι.		<u> </u>	usera.		1	1	li		
M. KITORTO, T. BUSP	ייואא	_	ston libs	7	18 .	<u> 987</u>	•	73	74			1 302 C	P 를	Ę	۵.	20	lë	₹		1	00A-25 E	٠,				1 1		
303-271-0319 20	5-271 1	751. I'''	36	- O	ìb			- 1	WBST	io		ᆙ	Ĕ.		Ğ.₹-	8 B	6		_	ا۔ا	8	12			1	1		
		FOR					_	_	her.	4	_	먇Έν	모벨	=	0.0	<u>•</u>		ă	80158	80158	<u>-</u>	7	. '		1			
	т	Collection	<u> </u>	200	1.589	<u> 30</u>				_	_	A S	NAPATIVALENE	<u> </u>	1279 0 625 D STANSUST 0	8 _ 6 %	E 5	2	ő	8	418.1 0	~		1			li	i
Accutest					14	ВŠ	l g	8	8			DENGENE DENGENE NAPARWA	ほ	882	盟.		Air-103 E	AF 7014:	TPH-GRO	&	- 1	2002		1		il		
Semple # Field ID / Point of Covection	Date	1ime	Samples by	Matrix	txxtes	4 3	Ιž	181	Ш	Ì	3	883	日子	1	26	3 8	13 3	1	Ĕ.	Ĕ.	E	₹ S		ļ				
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2-2908	<u>6920</u>	AR.	So	<u> </u>	Ш	L	Ш	1	┸									i			1		П	\Box			1
-13 E11-10 -11	7-14-13	0930	MR	So	l I i		1	11	Π	Т	Π								П		7	-1-1	_		 	ı	_	1
-/T F6-022908-17	2-21-08	1030	76	ka	2.	П	Τ	П	2	1	\Box					 	 	-	H	-	-	2		⊢		┼─┼	_	1
-//5 TDC-2 -/3	2-29-08	1045	MR	50	~	1	┿	H	"1	+	Н	_	-			 	_	 	┝╌	\dashv	-+	24		⊢	-	┦	_	l
7/A TOS 114	2-21-07	1050	_	,	 	Η-	┿	╁┼	╁	┿	Н	_	\vdash		_	 —	-	_	H	4		ᆚ		<u> </u>	<u> </u>			1
-1/ TP6-3 -15	2-21-0	1022	Me	50_	╏═╀╴	+-	╀	! !	! -	╬	Н	 	Н			_				_!	4	ᆚ		igspace	<u> </u>	<u> </u>	_	1
	7-29-08	**	ME	50		-	╄	╁┼	;;;-	┦╾┆	-					 				_ļ	_	<u> </u>		oxdot	ļ'	\sqcup	[l
-/// TP7-3 -/7		1059	MR	<u>5,</u>	<u> </u>		╀	∤- ∤.	Ц.		Ц										. [11		L		1	- [į
300 - 10	2-29-06	1/05	_ML	<u>50</u>			L	Ц	<u> </u>	┸	Ц											1						ĺ
TP7-7-18	2-29-05]//0	MR	څک					11											T	7						_	ĺ
0 /		4				7		П	\top	П	F		\Box						Ħ	寸	┪	' 	•	 			\neg	ĺ
] [┰	П	Π	_	Ħ	П						_		\vdash	┰	┰			 	 	\longrightarrow	\dashv	ĺ
Turneround Time (Suemese o	ryt)		170-13-9	ar .e.	. 04	a Dittor	72.54	inion:	ation	_	page (P)	ia.es ibi	172 PM						<u>- </u>			lement p			اا			ĺ
\$10. 10 Bushess Days Day RUSH	Approved by	/Deta	□ Com	mercia	4 "A"		5) FU	щa	P													-					ĺ
D 5 Day RUSH			Com) NY					ì			_				_							╌	
3 Day EMERGENCY			RUA⊡ AUA⊡		1					Categ		9	ŀ							_								
2 Day EMERGENCY							5] \$14 } ED:		TTTR -			ŀ		_					_								I- &
1 Day EMERGENCY		i			"A" = F	lesuita			ur			_	ŀ													٠]	
Emergency Y/A is for FAX or Labiink	Deta	Semple Ci	artedy must	be de-	1/70404	d hab-	-	ch to		male -																		
Marie mary to be	1272V	Lorent V	Villacatives to	مَا ء	N			Petr	Turk ha	dby: (5	1 V	106 110	n, Inc	hiding o							Parat	and have	_	1/1		2	
Redriguested by:	Outs Time:	- 10 3	Received by		٠,		-	Z Repo	-	d be	-0	<u> </u>		_ _	e Times		lbs	1015	_			2		44	110	<		
Pathophited by:	Date Trees		3 Received by					4 Seed 2				_		ᅼ			_					george 4	ed By:	_				
.s	1		5										P/1			ipplica)	-								- 1	4.4	7	

J84581: Chain of Custody Page 2 of 2

04/16/08

Technical Report for

Woodard & Curran

ExxonMobil Terminal 31020, Tappan, NY

PO#4509389305 WBS#08

Accutest Job Number: J87061

Sampling Date: 03/31/08

Report to:

aproctor@woodardcurran.com

ATTN: Distribution5

Total number of pages in report: 21

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories, Test results relate only to samples analyzed.

/incent J. Pugliese

President

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	
2.1: J87061-1: TP11-7	5
2.2: J87061-2: TP7A-7	8
2.3: J87061-3: TP9-6	1
2.4: J87061-4: TP18-6	14
2.5: J87061-5: TPSA-W	1
Section 3: Misc. Forms	
3.1: Chain of Custody	

2

Sample Summary

Woodard & Curran

Job No:

J87061

ExxonMobil Terminal 31020, Tappan, NY Project No: PO#4509389305 WBS#08

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID	
J87061-1	03/31/08	10:20 MR	04/01/08	SO	Soil	TP11-7	
J87061-2	03/31/08	10:30 MR	04/01/08	so	Soil	ТР7А-7	·
J87061-3	03/31/08	11:30 MR	04/01/08	so	Soil	TP9-6	
J87061-4	03/31/08	11:40 MR	04/01/08	so	Soil	Ţ <u>P</u> 18-6	- m
J87061-5	03/31/08	12:00 MR	04/01/08	so	Soil	TPSA-W	

Sample Results	•	
Report of Analysis		
•		

Page 1 of 3

Project:			minal 31020, Ta			Duan Datat	41-17-17
Run #1 ²	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batcl
Run #2	3M4414.D	1	04/15/08	LP	04/05/08	OP32038	E3M169

ABN TCL List

Run #2

95-57-8	CAS No.	Compound	Result	RL	MDL	Units	Q
S9-50-7 4-Chloro-3-methyl phenol ND 1800 490 ug/kg	05.57.9	2 Chlorophonol	MD	1000	220	ualle.	•
120-83-2 2,4-Dichlorophenol ND 1800 370 ug/kg							
105-67-9 2,4-Dimethylphenol ND 1800 440 ug/kg			•				
S1-28-5 Z,4-Dinitrophenol ND 7200 390 ug/kg							
534-52-1 4,6-Dinitro-o-cresol ND 7200 660 ug/kg 95-48-7 2-Methylphenol ND 720 350 ug/kg 88-75-5 2-Nitrophenol ND 1800 420 ug/kg 100-02-7 4-Nitrophenol ND 7200 630 ug/kg 87-86-5 Pentachlorophenol ND 3600 380 ug/kg 108-95-2 Phenol ND 720 330 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 1800 680 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1800 720 ug/kg 83-32-9 Acenaphthene 1470 720 110 ug/kg 208-96-8 Acenaphthylene 291 720 73 ug/kg 56-55-3 Benzo(a)anthracene 4210 720 74 ug/kg 50-32-8 Benzo(a)pyrene 5330 720 180 ug/kg 205-99-2 Benzo(b)fluoranthene <							
95-48-7							
3&4-Methylphenol ND 720 440 ug/kg 88-75-5 2-Nitrophenol ND 1800 420 ug/kg 100-02-7 4-Nitrophenol ND 7200 630 ug/kg 87-86-5 Pentachlorophenol ND 3600 380 ug/kg 108-95-2 Phenol ND 720 330 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 1800 680 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1800 720 ug/kg 83-32-9 Acenaphthene 1470 720 110 ug/kg 208-96-8 Acenaphthylene 291 720 73 ug/kg 120-12-7 Anthracene 4210 720 330 ug/kg 56-55-3 Benzo(a)anthracene 7070 720 74 ug/kg 50-32-8 Benzo(b)fluoranthene 5590 720 180 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 7							
88-75-5 2-Nitrophenol ND 1800 420 ug/kg 100-02-7 4-Nitrophenol ND 7200 630 ug/kg 87-86-5 Pentachlorophenol ND 3600 380 ug/kg 108-95-2 Phenol ND 720 330 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 1800 680 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1800 720 ug/kg 83-32-9 Acenaphthene 1470 720 110 ug/kg 208-96-8 Acenaphthylene 291 720 73 ug/kg 120-12-7 Anthracene 4210 720 330 ug/kg 56-55-3 Benzo(a)anthracene 7070 720 74 ug/kg 50-32-8 Benzo(a)pyrene 5330 720 180 ug/kg 205-99-2 Benzo(b)fluoranthene 5590 720 120 ug/kg 191-24-2 Benzo(k)fluoranthene <	95-48-7						
100-02-7							
87-86-5 Pentachlorophenol ND 3600 380 ug/kg 108-95-2 Phenol ND 720 330 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 1800 680 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1800 720 ug/kg 83-32-9 Acenaphthene 1470 720 110 ug/kg 208-96-8 Acenaphthylene 291 720 73 ug/kg 120-12-7 Anthracene 4210 720 330 ug/kg 56-55-3 Benzo(a)anthracene 7070 720 74 ug/kg 50-32-8 Benzo(a)pyrene 5330 720 180 ug/kg 205-99-2 Benzo(b)fluoranthene 5590 720 120 ug/kg 191-24-2 Benzo(g,h,i)perylene 3230 720 140 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 101-55-3 4-Bromophenyl phen	88-75-5					ug/kg	
87-86-5 Pentachlorophenol ND 3600 380 ug/kg 108-95-2 Phenol ND 720 330 ug/kg 95-95-4 2,4,5-Trichlorophenol ND 1800 680 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1800 720 ug/kg 83-32-9 Acenaphthene 1470 720 110 ug/kg 208-96-8 Acenaphthylene 291 720 73 ug/kg 120-12-7 Anthracene 4210 720 330 ug/kg 56-55-3 Benzo(a)anthracene 7070 720 74 ug/kg 50-32-8 Benzo(b)fluoranthene 5590 720 180 ug/kg 205-99-2 Benzo(b)fluoranthene 5590 720 120 ug/kg 191-24-2 Benzo(k)fluoranthene 3230 720 140 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 85-68-7 Butyl benzyl	100-02-7	4-Nitrophenol	;ND	7200	630	ug/kg	
95-95-4 2,4,5-Trichlorophenol ND 1800 680 ug/kg 88-06-2 2,4,6-Trichlorophenol ND 1800 720 ug/kg 83-32-9 Acenaphthene 1470 720 110 ug/kg 208-96-8 Acenaphthylene 291 720 73 ug/kg J 120-12-7 Anthracene 4210 720 330 ug/kg 56-55-3 Benzo(a)anthracene 7070 720 74 ug/kg 50-32-8 Benzo(a)pyrene 5330 720 180 ug/kg 205-99-2 Benzo(b)fluoranthene 5590 720 120 ug/kg 191-24-2 Benzo(g,h,i)perylene 3230 720 140 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 720 160 ug/kg 85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7 2-Chloronaphthalene ND 720 130 ug/kg 106-47-8 4-Chloroaniline ND 1800 130 ug/kg 86-74-8 Carbazole 2090 720 120 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg	87-86-5	Pentachlorophenol	ND	3600	380	ug/kg	
95-95-4 2,4,5-Trichlorophenol NID 1800 680 ug/kg 88-06-2 2,4,6-Trichlorophenol NID 1800 720 ug/kg 83-32-9 Acenaphthene 1470 720 110 ug/kg 208-96-8 Acenaphthylene 291 720 73 ug/kg 120-12-7 Anthracene 4210 720 330 ug/kg 56-55-3 Benzo(a)anthracene 7070 720 74 ug/kg 50-32-8 Benzo(a)pyrene 5330 720 180 ug/kg 205-99-2 Benzo(b)fluoranthene 5590 720 120 ug/kg 191-24-2 Benzo(g,h,i)perylene 3230 720 140 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 720 160 ug/kg 85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7	108-95-2	Phenol	(ND	720	330	ug/kg	
88-06-2 2,4,6-Trichlorophenol ND 1800 720 ug/kg 83-32-9 Acenaphthene 1470 720 110 ug/kg 208-96-8 Acenaphthylene 291 720 73 ug/kg 120-12-7 Anthracene 4210 720 330 ug/kg 56-55-3 Benzo(a)anthracene 7070 720 74 ug/kg 50-32-8 Benzo(a)pyrene 5330 720 180 ug/kg 205-99-2 Benzo(b)fluoranthene 5590 720 120 ug/kg 191-24-2 Benzo(g,h,i)perylene 3230 720 140 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 720 160 ug/kg 85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7 2-Chloroanline ND 720 110 ug/kg 10-47-8 4-C	95-95-4	2,4,5-Trichlorophenol	ND	1800	680	ug/kg	
83-32-9 Acenaphthene 1470 720 110 ug/kg 208-96-8 Acenaphthylene 291 720 73 ug/kg J 120-12-7 Anthracene 4210 720 330 ug/kg 56-55-3 Benzo(a)anthracene 7070 720 74 ug/kg 50-32-8 Benzo(a)pyrene 5330 720 180 ug/kg 205-99-2 Benzo(b)fluoranthene 5590 720 120 ug/kg 191-24-2 Benzo(g,h,i)perylene 3230 720 140 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 720 160 ug/kg 85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7 2-Chloroaphthalene ND 720 110 ug/kg 106-47-8 4-Chloroaniline ND 1800 130 ug/kg 218-01-9 </td <td>88-06-2</td> <td>2,4,6-Trichlorophenol</td> <td>ND</td> <td>1800</td> <td>720</td> <td></td> <td></td>	88-06-2	2,4,6-Trichlorophenol	ND	1800	720		
208-96-8 Acenaphthylene 291 720 73 ug/kg J 120-12-7 Anthracene 4210 720 330 ug/kg 56-55-3 Benzo(a)anthracene 7070 720 74 ug/kg 50-32-8 Benzo(a)pyrene 5330 720 180 ug/kg 205-99-2 Benzo(b)fluoranthene 5590 720 120 ug/kg 191-24-2 Benzo(g,h,i)perylene 3230 720 140 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 720 160 ug/kg 85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7 2-Chloronaphthalene ND 720 110 ug/kg 106-47-8 4-Chloroaniline ND 1800 130 ug/kg 218-01-9 Chrysene 6750 720 150 ug/kg 211-91-1 <td>83-32-9</td> <td>Acenaphthene</td> <td>1470</td> <td>720</td> <td>110</td> <td></td> <td></td>	83-32-9	Acenaphthene	1470	720	110		
120-12-7 Anthracene 4210 720 330 ug/kg 56-55-3 Benzo(a)anthracene 7070 720 74 ug/kg 50-32-8 Benzo(a)pyrene 5330 720 180 ug/kg 205-99-2 Benzo(b)fluoranthene 5590 720 120 ug/kg 191-24-2 Benzo(g,h,i)perylene 3230 720 140 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 720 160 ug/kg 85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7 2-Chloronaphthalene ND 720 110 ug/kg 106-47-8 4-Chloroaniline ND 1800 130 ug/kg 218-01-9 Chrysene 6750 720 150 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4	208-96-8	Acenaphthylene	291	720	73		J
56-55-3 Benzo(a)anthracene 7070 720 74 ug/kg 50-32-8 Benzo(a)pyrene 5330 720 180 ug/kg 205-99-2 Benzo(b)fluoranthene 5590 720 120 ug/kg 191-24-2 Benzo(g,h,i)perylene 3230 720 140 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 720 160 ug/kg 85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7 2-Chloronaphthalene ND 720 110 ug/kg 106-47-8 4-Chloroaniline ND 1800 130 ug/kg 86-74-8 Carbazole 2090 720 120 ug/kg 218-01-9 Chrysene 6750 720 150 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4	120-12-7	Anthracene	4210	720	330		-
50-32-8 Benzo(a)pyrene 5330 720 180 ug/kg 205-99-2 Benzo(b)fluoranthene 5590 720 120 ug/kg 191-24-2 Benzo(g,h,i)perylene 3230 720 140 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 720 160 ug/kg 85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7 2-Chloronaphthalene ND 720 110 ug/kg 106-47-8 4-Chloroaniline ND 1800 130 ug/kg 86-74-8 Carbazole 2090 720 120 ug/kg 218-01-9 Chrysene 6750 720 150 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg	56-55-3	Benzo(a)anthracene	7070	720	74		
205-99-2 Benzo(b)fluoranthene 5590 720 120 ug/kg 191-24-2 Benzo(g,h,i)perylene 3230 720 140 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 720 160 ug/kg 85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7 2-Chloronaphthalene ND 720 110 ug/kg 106-47-8 4-Chloroaniline ND 1800 130 ug/kg 86-74-8 Carbazole 2090 720 120 ug/kg 218-01-9 Chrysene 6750 720 150 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg	50-32-8		5330	720			
191-24-2 Benzo(g,h,i)perylene 3230 720 140 ug/kg 207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 720 160 ug/kg 85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7 2-Chloronaphthalene ND 720 110 ug/kg 106-47-8 4-Chloroaniline ND 1800 130 ug/kg 86-74-8 Carbazole 2090 720 120 ug/kg 218-01-9 Chrysene 6750 720 150 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg	205-99-2		5590				
207-08-9 Benzo(k)fluoranthene 3900 720 150 ug/kg 101-55-3 4-Bromophenyl phenyl ether ND 720 160 ug/kg 85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7 2-Chloronaphthalene ND 720 110 ug/kg 106-47-8 4-Chloroaniline ND 1800 130 ug/kg 86-74-8 Carbazole 2090 720 120 ug/kg 218-01-9 Chrysene 6750 720 150 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg		• •					
101-55-3 4-Bromophenyl phenyl ether ND 720 160 ug/kg 85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7 2-Chloronaphthalene ND 720 110 ug/kg 106-47-8 4-Chloroaniline ND 1800 130 ug/kg 86-74-8 Carbazole 2090 720 120 ug/kg 218-01-9 Chrysene 6750 720 150 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg							
85-68-7 Butyl benzyl phthalate ND 720 130 ug/kg 91-58-7 2-Chloronaphthalene ND 720 110 ug/kg 106-47-8 4-Chloroaniline ND 1800 130 ug/kg 86-74-8 Carbazole 2090 720 120 ug/kg 218-01-9 Chrysene 6750 720 150 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg							
91-58-7 2-Chloronaphthalene ND 720 110 ug/kg 106-47-8 4-Chloroaniline ND 1800 130 ug/kg 86-74-8 Carbazole 2090 720 120 ug/kg 218-01-9 Chrysene 6750 720 150 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg							
106-47-8 4-Chloroaniline ND 1800 130 ug/kg 86-74-8 Carbazole 2090 720 120 ug/kg 218-01-9 Chrysene 6750 720 150 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg							
86-74-8 Carbazole 2090 720 120 ug/kg 218-01-9 Chrysene 6750 720 150 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg							
218-01-9 Chrysene 6750 720 150 ug/kg 111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg							
111-91-1 bis(2-Chloroethoxy)methane ND 720 140 ug/kg 111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg							
111-44-4 bis(2-Chloroethyl)ether ND 720 160 ug/kg							
			•				
108-60-1 his (2-Chlorois openny) lether ND 720 210 well-a	108-60-1	bis(2-Chloroisopropyl)ether	ND	720	210		
108-60-1 bis(2-Chloroisopropyl)ether ND 720 210 ug/kg 7005-72-3 4-Chlorophenyl phenyl ether ND 720 100 ug/kg							

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TP11-7 Lab Sample ID: J87061-

Lab Sample ID:
Matrix:

J87061-1 SO - Soil

SO - Soil SW846 8270C SW846 3550B

ExxonMobil Terminal 31020, Tappan, NY

Date Sampled: 03/31/08 Date Received: 04/01/08

Percent Solids: 53.7

ABN TCL List

Method:

Project:

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND T	720	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	720	110	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	720	96	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	720	120	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	720	140	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1800	260	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	1030	720	.92	ug/kg	
132-64-9	Dibenzofuran	1220	720	71	ug/kg	
84-74-2	Dî-n-butyl phthalate	ND	720	100	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	720	150	ug/kg	
84-66-2	Diethyl phthalate	ND	720	130	ug/kg	
131-11-3	Dimethyl phthalate	ND	720	97	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	1330	720	220	ug/kg	
206-44-0	Fluoranthene	21700	720	67	ug/kg	
86-73-7	Fluorene	1620	720	72	ug/kg	
118-74-1	Hexachlorobenzene	ND	720	170	ug/kg	
87-68-3	Hexachlorobutadiene	ND	720	170	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	7200	170	ug/kg	
67-72-1	Hexachloroethane	ND	1800	150	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	2910	720	330	ug/kg	
78-59-1	Isophorone	ND	720	120	ug/kg	
91-57-6	2-Methylnaphthalene	362	720	320	ug/kg	J
88-74-4	2-Nitroaniline	ND	1800	230	ug/kg	,
99-09-2	3-Nitroaniline	ND	1800	240	ug/kg	
100-01-6	4-Nitroaniline	ND	1800	200	ug/kg	
91-20-3	Naphthalene	418	720	81	ug/kg	j
98-95-3	Nitrobenzene	ND	720	120	ug/kg	•
621-64-7	N-Nitroso-di-n-propylamine	ND	1720	120	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1800	79	ug/kg	
85-01-8	Phenanthrene	20400	720	90	ug/kg	
129-00-0	Pyrene		720	120	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	720	110	ug/kg	
-		: -2::	:		~6,6	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	:s	
367-12-4	2-Fluorophenol	71%		26-10	5%	
4165-62-2	Phenol-d5	80%		34-10	6%	
118-79-6	2,4,6-Tribromophenol	98%		30-12	6%	
4165-60-0	Nitrobenzene-d5	67%		36-11	5%	
321-60-8	2-Fluorobiphenyl	72%		44-11	2%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

 Client Sample ID:
 TP11-7

 Lab Sample ID:
 J87061-1
 Date Sampled:
 03/31/08

 Matrix:
 SO - Soil
 Date Received:
 04/01/08

 Method:
 SW846 8270C
 SW846 3550B
 Percent Solids:
 53.7

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
1718-51-0	Terphenyl-d14	71%		42-133%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
486 132	alkane 9H-Fluoren-9-one Dibenzothiophene Anthracene methyl Phenanthrene methyl unknown Phenylnaphthalene		14.41 14.97 15.15 16.57 16.62 16.79 17.21	1600	ug/kg ug/kg	JN JN J J J
10544 10544-50-0	Phenanthrene dimethyl Sulfur, mol. (S8) Sulfur, mol. (S8) Pyrene methyl alkane unknown C17H100 Benzo[b]naphtho thiophene unknown PAH substance unknown C17H100 alkane unknown PAH substance alkane alkane alkane unknown PAH substance alkane unknown PAH substance alkane unknown PAH substance		19.02 19.90 19.93 20.10 20.16 20.29 20.46 20.71 20.99 21.49	2200 20000 3800 1700 1800 2000 2500 2000 4000 1600 3500 4500 3000 1600]]]]]]]]]]

(a) Elevated detection limit due to low volume of sample extracted.

ND = Not detected RL = Reporting Limit

MDL - Method Detection Limit

TIDIS - INCUIDA Detection I

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID:	TP7A-7		
Lab Sample ID:	J87061-2	Date Sampled:	03/31/08
Matrix:	SO - Soil	Date Received:	04/01/08
Method:	SW846 8270C SW846 3550B	Percent Solids:	71.2
Project:	ExxonMobil Terminal 31020, Tannan, NY		

 Analytical Batch E3M169

Initial Weight Final Volume Run #1 5.0 ml 5.0 g

ABN TCL List

Run #2

121, 102						
CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	7000	900	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	7000	1900	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	7000	1500	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	7000	1700	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	28000	1500	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	28000	2600	ug/kg	
95-48-7	2-Methylphenol	ND	2800	1400	ug/kg	
	3&4-Methylphenol	ND	2800	1700	ug/kg	
88-75-5	2-Nitrophenol	ND	7000	1600	ug/kg	
100-02-7	4-Nitrophenol	ND	i 28000	2500	ug/kg	
87-86-5	Pentachlorophenol	ND	14000	1500	ug/kg	
108-95-2	Phenol	ND	2800	1300	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	7000	2700	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	7000	2800	ug/kg	
83-32-9	Acenaphthene	6620	2800	450	ug/kg	
208-96-8	Acenaphthylene	ND	2800	290	ug/kg	
120-12-7	Anthracene	1690	2800	1300	ug/kg	j
56-55-3	Benzo(a)anthracene	1830	. 2800	290	ug/kg	j
50-32-8	Benzo(a)pyrene	1350	2800	690	ug/kg	J
205-99-2	Benzo(b)fluoranthene	929	, 280 0	460	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	919	2800	560	ug/kg	J
207-08-9	Benzo(k)fluoranthene	827	2800	610	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	2800	620	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	. 2800	510	ug/kg	
91-58-7	2-Chloronaphthalene	ND	2800	420	ug/kg	
106-47-8	4-Chloroaniline	.ND	7000	510	ug/kg	
86-74-8	Carbazole	∃ND	2800	470	ug/kg	
218-01-9	Chrysene	2950	2800	570	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	2800	550	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	2800	640	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2800	820	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2800	400	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: TP7A-7

Lab Sample ID:

J87061-2 SO - Soil Date Sampled: 03/31/08 Date Received: 04/01/08

Matrix: Method:

SW846 8270C SW846 3550B

Percent Solids: 71.2

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	2800	480	ug/kg	
541-73-1	1,3-Dichlorobenzene	:ND	2800	420	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	2800	380	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	2800	460	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	2800	560	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	7000	1000	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	2800	360	ug/kg	
132-64-9	Dibenzofuran	3710	2800	280	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	2800	390	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	2800	580	ug/kg	
84-66-2	Diethyl phthalate	ND	2800	490	ug/kg	
131-11-3	Dimethyl phthalate	ND	2800	380	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	2130	2800	850	ug/kg	J
206-44-0	Fluoranthene	2370	2800	260	ug/kg	Ĵ
86-73-7	Fluorene	10700	2800	280	ug/kg	•
118-74-1	Hexachlorobenzene	⊧ND	2800	680	ug/kg	
87-68-3	Hexachlorobutadiene	ND	2800	650	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	28000	650	ug/kg	
67-72-1	Hexachloroethane	ND	7000	590	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	2800	1300	ug/kg	
78-59-1	Isophorone	IND	2800	450	ug/kg	
91-57-6	2-Methylnaphthalene	32100	2800	1300	ug/kg	
88-74-4	2-Nitroaniline	ND	7000	890	ug/kg	
99-09-2	3-Nitroaniline	ND	7000	940	ug/kg	
100-01-6	4-Nitroaniline	ND	7000	800	ug/kg	
91-20-3	Naphthalene	2210	2800	320	ug/kg	J
98-95-3	Nitrobenzene	'ND	2800	470	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	2800	480	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	7000	310	ug/kg	
85-01-8	Phenanthrene	24800	2800	350	ug/kg	
129-00-0	Pyrene	4270	2800	490	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	2800	440	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
367-12-4	2-Fluorophenol	82%		26-1	05%	
4165-62-2	Phenol-d5	82%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	102%	;	30-1	26%	
4165-60-0	Nitrobenzene-d5	78%		36-1	15%	
321-60-8	2-Fluorobiphenyl	79%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 3 of 3

Client Sample ID: TP7A-7 Lab Sample ID:

Matrix:

J87061-2

SO - Soil SW846 8270C SW846 3550B

ExxonMobil Terminal 31020, Tappan, NY

Date Received: 04/01/08 Percent Solids: 71.2

Date Sampled: 03/31/08

ABN TCL List

Method:

Project:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1718-51-0	Terphenyl-d14	72%		42-133%	
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units Q
90-12-0	alkane Naphthalene, 1-methyl- unknown Naphthalene, ethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene trimethyl unknown unknown alkane OH Elwanne mathyl		8.24 9.07 9.74 9.81 10.07 10.83 10.99 11.19 11.24 11.44 11.57 11.81 12.13 12.24 12.51 12.58 12.78 12.81 12.98 13.38 13.64 13.80 14.21 14.44	47000 40000 26000 36000 38000 88000 110000 48000 47000 45000 26000 26000 50000 51000 42000 80000 27000 59000 38000	ug/kg J ug/kg JN ug/kg J
	9H-Fluorene methyl Total TIC, Semi-Volatile		14.53	30000 1283000	ug/kg J ug/kg J

(a) Elevated detection limit due to low volume of sample extracted.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TP9-6 Lab Sample ID: J87061-3 Matrix:

SO - Soil

Date Sampled: 03/31/08 Date Received: 04/01/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 66.5

Project:

ExxonMobil Terminal 31020, Tappan, NY

File ID Run #1 a 3M4416.D Analyzed Ву 04/15/08 LP Prep Date 04/05/08

Prep Batch OP32038

Analytical Batch E3M169

Run #2

Initial Weight Final Volume

Run #1 5.0 g 1.0 ml

DF

1

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	1500	190	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	; 1500	410	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	1500	310	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	; 1500	360	ug/kg	
51-28-5	2,4-Dinitrophenol	·ND	6000	330	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	√ 6000	550	ug/kg	
95-48-7	2-Methylphenol	ND	600	290	ug/kg	
	3&4-Methylphenol	ND	: 600	370	ug/kg	
88-75 - 5	2-Nitrophenol	ND	1500	350	ug/kg	
100-02-7	4-Nitrophenol	ND	6000	530	ug/kg	
87-86-5	Pentachlorophenol	ND	3000	310	ug/kg	
108-95-2	Phenol	ND	600	280	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	¹ 1500	570	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	1500	600	ug/kg	
83-32-9	Acenaphthene	:3050	600	95	ug/kg	
208-96-8	Acenaphthylene	617	600	61	ug/kg	
120-12-7	Anthracene	1620	600	280	ug/kg	
56-55-3	Benzo(a)anthracene	3150	600	62	ug/kg	
50-32-8	Benzo(a)pyrene	4550	600	150	ug/kg	
205-99-2	Benzo(b)fluoranthene	4910	600	98	ug/kg	
191-24-2	Benzo(g,h,i)perylene	3900	600	120	ug/kg	
207-08-9	Benzo(k)fluoranthene	3140	600	130	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	600	130	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	600	110	ug/kg	
91-58-7	2-Chloronaphthalene	ND	600	90	ug/kg	
106-47-8	4-Chloroaniline	ND	1500	110	ug/kg	
86-74-8	Carbazole	865	600	100	ug/kg	
218-01-9	Chrysene	4100	600	120	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	600	120	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	600	140	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	· 600	170	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	600	86	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TP9-6 Lab Sample ID: J87061-3 Matrix:

SO - Soil

Date Sampled: 03/31/08 Date Received:

04/01/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 66.5

Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	600	100	uallen.	
541-73-1	1,3-Dichlorobenzene	ND	: 600	90	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	600	80	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	600	97	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	600	120	ug/kg	
91-94-1	-	ND ND	1500	220	ug/kg	
53-70-3	3,3'-Dichlorobenzidine Dibenzo(a,h)anthracene	1300		220 77	ug/kg	
132-64-9	Dibenzofuran		- 600 - 600	59	ug/kg	
84-74-2		1880			ug/kg	
	Di-n-butyl phthalate	ND	600	83	ug/kg	
117-84-0 84-66-2	Di-n-octyl phthalate	ND	600	120	ug/kg	
	Diethyl phthalate	ND	600	100	ug/kg	
131-11-3	Dimethyl phthalate	ND	600	81	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	600	180	ug/kg	
206-44-0	Fluoranthene	5400	600	56	ug/kg	
86-73-7	Fluorene	5510	. 600	60	ug/kg	
118-74-1	Hexachlorobenzene	ND	600	140	ug/kg	
87-68-3	Hexachlorobutadiene	ND	600	140	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	6000	140	ug/kg	
67-72-1	Hexachloroethane .	ND	1500	120	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	3800	600	280	ug/kg	
78-59-1	Isophorone	ND	600	96	ug/kg	
91-57-6	2-Methylnaphthalene		600	270	ug/kg	
88-74-4	2-Nitroaniline	ND	1500	190	ug/kg	
99-09-2	3-Nitroaniline	ND	1500	200	ug/kg	
100-01-6	4-Nitroaniline	ND	1500	170	ug/kg	
91-20-3	Naphthalene	1160	600	68	ug/kg	
98-95-3	Nitrobenzene	ND	600	100	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	600	100	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1500	66	ug/kg	
85-01-8	Phenanthrene	15600	600	75	ug/kg	
129-00-0	Pyrene	5560	: 600	100	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	600	94	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limi	ts	
367-12-4	2-Fluorophenol	69%		26-10)5%	
4165-62-2	Phenol-d5	79%		34-10	16%	
118-79-6	2,4,6-Tribromophenol	104%		30-12	26%	
4165-60-0	Nitrobenzene-d5	68%		36-11	15%	
321-60-8	2-Fluorobiphenyl	73%		44-11		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TP9-6

Lab Sample ID: Matrix:

J87061-3

SO - Soil SW846 8270C SW846 3550B Date Sampled: Date Received:

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

04/01/08 Percent Solids: 66.5

03/31/08

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
1718-51-0	Terphenyl-d14	71%		42-133%	•	
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units	Q
90	alkane Naphthalene, 1-methyl- unknown Naphthalene ethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl unknown Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl unknown unknown alkane unknown alkane 9H-Fluorene methyl unknown Dimethylbiphenyl Total TIC, Semi-Volatile		9.07 9.75 10.08 10.85 11.02 11.22 11.26 11.46 11.65 11.82 12.26 12.54 12.61 12.80 12.84 13.00 13.40 13.66 13.81 13.99 14.23 14.46 14.54 14.66 14.96	12000 20000 11000 23000 60000 67000 30000 27000 12000 25000 25000 25000 28000 23000 14000 23000 14000 52000 13000 28000 12000 12000 640000	######################################]N

(a) Elevated detection limit due to low volume of sample extracted.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Lab Samp Matrix: Method: Project:		(87061-4 SO - Soil SW846 82700	C SW846 3550B Ferminal 31020, T	appan, N	Date Sampled: Date Received: Percent Solids:	04/01/08	
Run #1 a	File ID 3M4417.	DF D 1	Analyzed 04/15/08	By LP	Prep Date 04/05/08	Prep Batch OP32038	Analytical Batch E3M169
Run #2	* ***	<u>.</u>					

	Initial Weight	Final Volume
Run #1	5.0 g	1.0 ml
Run #2	-	

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	(
95-57-8	2-Chlorophenol	ND	1600	200	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	1600	430	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	1600	330	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	1600	380	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	6300	350	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	.ND	6300	580	ug/kg	
95-48-7	2-Methylphenol	ND	630	310	ug/kg	
	3&4-Methylphenol	ND	: 630	390	ug/kg	
88-75-5	2-Nitrophenol	ND	1600	370	ug/kg	
100-02-7	4-Nitrophenol	ND .	6300	560	ug/kg	
87-86-5	Pentachlorophenol	ND	3200	330	ug/kg	
108-95-2	Phenol	ND	630	290	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	1600	600	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	1600	640	ug/kg	
83-32-9	Acenaphthene	3480	630	100	ug/kg	
208-96-8	Acenaphthylene	2290	630	64	ug/kg	
120-12-7	Anthracene	4970	630	290	ug/kg	
56-55-3	Benzo(a)anthracene	4250	630	65	ug/kg	
50-32-8	Велго(а) ругеле	1940	630	150	ug/kg	
205-99-2	Benzo(b)fluoranthene	2390	630	100	ug/kg	
191-24-2	Benzo(g,h,i)perylene	789	4 630	130	ug/kg	
207-08-9	Benzo(k)fluoranthene	1870	630	140	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	'ND	630	140	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	- 630	110	ug/kg	
91-58-7	2-Chloronaphthalene	ND	630	95	ug/kg	
106-47-8	4-Chloroaniline	ND	1600	110	ug/kg	
86-74-8	Carbazole	1540	- 630	110	ug/kg	
218-01-9	Chrysene	4040	630	130	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	630	120	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	630	140	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	630	180	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	630	90	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Client Sample ID:
 TP18-6

 Lab Sample ID:
 J87061-4
 Date Sampled:
 03/31/08

 Matrix:
 SO - Soil
 Date Received:
 04/01/08

 Method:
 SW846 8270C
 SW846 3550B
 Percent Solids:
 62.9

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	[:] 630	110	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	630	95	ug/kg	
106-46-7	1,4-Dichlorobenzene		630	85	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	630	100	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	630	130	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1600	230	ug/kg	
53-70-3	Dibenzo(a,h)anthracene		630	81	ug/kg	J
132-64-9	Dibenzofuran ·	4160	630	62	ug/kg	•
84-74-2	Di-n-butyl phthalate	ND	630	88	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	630	130	ug/kg	
84-66-2	Diethyl phthalate	'ND	630	110	ug/kg	
131-11-3	Dimethyl phthalate	ND	630	85	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	828	630	190	ug/kg	
206-44-0	Fluoranthene	16200	630	59	ug/kg	
86-73-7	Fluorene	6730	630	64	ug/kg	
118-74-1	Hexachlorobenzene	ND	630	150	ug/kg	
87-68-3	Hexachlorobutadiene	ND	630	150	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	6300	150	ug/kg	
67-72-1	Hexachloroethane	ND	1600	130	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	777	630	290	ug/kg	
78-59-1	Isophorone	ND	630	100	ug/kg	
91-57-6	2-Methylnaphthalene	3080	630	280	ug/kg	
88-74-4	2-Nitroaniline	ND	1600	200	ug/kg	
99-09-2	3-Nitroaniline	ND	1600	210	ug/kg	
100-01-6	4-Nitroaniline	'ND	1600	180	ug/kg	
91-20-3	Naphthalene	10100	630	71	ug/kg	
98-95-3	Nitrobenzene	ND	630	110	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	:ND	630	110	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1600	69	ug/kg	
85-01-8	Phenanthrene	17700	630	79	ug/kg	
129-00-0	Pyrene	10400 .	630	110	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	630	99	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run#2	Limi	ts	
367-12-4	2-Fluorophenol	77%		26-10	15%	
4165-62-2	Phenol-d5	83%		34-10		
118-79-6	2,4,6-Tribromophenol	97%		30-12		
4165-60-0	Nitrobenzene-d5	76%		36-11		
321-60-8	2-Fluorobiphenyl	76%		44-11		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TP18-6

Lab Sample ID: Matrix:

Method:

J87061-4 SO - Soil

SO - Soil SW846 8270C SW846 3550B Date Sampled: 03/31/08 Date Received: 04/01/08 Percent Solids: 62.9

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
OLID XIO.	D2110B41011000101103	Train, T	ACOMIT 2	DMIII3		
1718-51-0	Terphenyl-d14	61%		42-133%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
90	system artifact/aldol-condensat Naphthalene, 1-methyl- alkane	ion	3.04 9.74 10.77	76000 3100 2400	ug/kg ug/kg ug/kg	JN
	Naphthalene dimethyl Naphthalene dimethyl		10.97 11.18	3600 3900	٠٠	J J
	unknown Naphthalene dimethyl		11.24 11.43	5100 2800		J
	unknown unknown		11.71 12.11	·3600	ug/kg	
	unknown unknown		12.72 12.89	2300 2300	ug/kg	J
	unknown		13.66	2100	ug/kg ug/kg	
	alkane alkane		13.80 14.44	5400 8100		j
	Anthracene methyl Phenanthrene methyl		16.60 16.65	. 2500 ∤3800	ug/kg ug/kg	j J
	unknown Anthracene methyl		16.82 16.88		ug/kg ug/kg	
	Phenylnaphthalene Phenanthrene dimethyl		17.24 17.78	2200 3500	ug/kg ug/kg	J
10544	Phenanthrene dimethyl		17.83	4500	ug/kg	J J
10544	Sulfur, mol. (S8) Pyrene methyl		17.92 19.06	15000 4600	ug/kg ug/kg	
	alkane alkane		19.93 21.54	2100 4700	ug/kg ug/kg	j J
	unknown Total TIC, Semi-Volatile		22.95	3000 100300	ug/kg	j J

(a) Elevated detection limit due to low volume of sample extracted.

MDL - Method Detection Limit

B = Indicates analyte found in associated method blank

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 3

Client Sample ID:	TPSA-W		
Lab Sample ID:	J87061-5	Date Sampled:	03/31/08
Matrix:	SO - Soil	Date Received:	04/01/08
Method:	SW846 8270C SW846 3550B	Percent Solids:	64.3
Project:	ExxonMobil Terminal 31020, Tannan, NY		

=							
1	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1 a	3M4418.D	1	04/15/08	LP	04/05/08	OP32038	E3M169

Run #2

|--|

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND .	1600	200	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	1600	420	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	1600	320	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	1600	380	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	6200	340	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	6200	570	ug/kg	
95-48-7	2-Methylphenol	ND	620	300	ug/kg	
	3&4-Methylphenol	ND	620	390	ug/kg	
88-75-5	2-Nitrophenol	ND	1600	360	ug/kg	
100-02-7	4-Nitrophenol	ND	6200	550	ug/kg	
87-86-5	Pentachlorophenol	'ND	3100	330	ug/kg	
108-95-2	Phenol	ND	620	290	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	1600	590	ug/kg	
88-06-2	2,4,6-Trichlorophenol	IND	1600	630	ug/kg	
83-32-9	Acenaphthene	1160	620	99	ug/kg	
208-96-8	Acenaphthylene	ND	620	63	ug/kg	
120-12-7	Anthracene	310	620	290	ug/kg	J
56-55-3	Benzo(a) anthracene	444	620	64	ug/kg	Ĵ
50-32-8	Benzo(a) pyrene	344	620	150	ug/kg	Ĵ
205-99-2	Benzo(b)fluoranthene	355	620	100	ug/kg	Ĵ
191-24-2	Benzo(g,h,i)perylene	259	620	120	ug/kg	Ĵ
207-08-9	Benzo(k)fluoranthene	324	620	130	ug/kg	Ĵ
101-55-3	4-Bromophenyl phenyl ether	ND	620	140	ug/kg	-
85-68-7	Butyl benzyl phthalate	ND	620	110	ug/kg	
91-58-7	2-Chloronaphthalene	ND	620	94	ug/kg	
106-47-8	4-Chloroaniline	ND	1600	110	ug/kg	
86-74-8	Carbazole	ND	620	110	ug/kg	
218-01-9	Chrysene	537	620	130	ug/kg	j
111-91-1	bis(2-Chloroethoxy)methane	ND	620	120	ug/kg	_
111-44-4	bis(2-Chloroethyl)ether	ND	620	140	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	620	180	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	620	89	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: TPSA-W Lab Sample ID: J87061-5

Matrix:

SO - Soil SW846 8270C SW846 3550B

Date Sampled: 03/31/08 Date Received: 04/01/08

Percent Solids: 64.3

Method: Project:

ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	620	110	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND ·	: 620	94	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	620	83	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	620	100	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	620	120	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1600	230	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	620	80	ug/kg	
132-64-9	Dibenzofuran	311	620	61	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	620	86	ug/kg	-
117-84-0	Di-n-octyl phthalate	ND	620	130	ug/kg	
84-66-2	Diethyl phthalate	ND	· 620	110	ug/kg	
131-11-3	Dimethyl phthalate	ND	620	84	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	620	190	ug/kg	
206-44-0	Fluoranthene	1100	620	58	ug/kg	
86-73-7	Fluorene	2160	620	63	ug/kg	
118-74-1	Hexachlorobenzene	ND	620	150	ug/kg	
87-68-3	Hexachlorobutadiene	ND	620	140	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	6200	140	ug/kg	
67-72-1	Hexachloroethane	ND	1600	130	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	620	290	ug/kg	
78-59-1	Isophorone	ND	620	100	ug/kg	
91-57-6	2-Methylnaphthalene	ND	620	280	ug/kg	
88-74-4	2-Nitroaniline	ND	1600	200	ug/kg	
99-09-2	3-Nitroaniline	ND	1600	210	ug/kg	
100-01-6	4-Nitroaniline	ND	1600	180	ug/kg	
91-20-3	Naphthalene	193	620	70	ug/kg	J
98-95-3	Nitrobenzene	ND	620	100	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	620	110	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1600	68	ug/kg	
85-01-8	Phenanthrene	1110	620	78	ug/kg	
129-00-0	Pyrene	1050	620	110	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	620	98	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
367-12-4	2-Fluorophenol	66%	•	26-1	05%	
4165-62-2	Phenol-d5	79%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	. 101%		30-1	26%	
4165-60-0	Nitrobenzene-d5	61%	•	36-1	15%	
321-60-8	2-Fluorobiphenyl	75%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Client Sample ID: TPSA-W

Lab Sample ID: Matrix:

Method:

J87061-5 SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 03/31/08 Date Received: 04/01/08

Percent Solids: 64.3

Project: ExxonMobil Terminal 31020, Tappan, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1718-51-0	Terphenyl-d14	66%		42-133%	
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units Q
	system artifact/aldol-condensatunknown 1H-Indene-dihydro-trimethyl Naphthalene ethyl Naphthalene dimethyl alkane Naphthalene dimethyl unknown Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl Naphthalene trimethyl unknown unknown unknown unknown alkane unknown alkane unknown Dimethylbiphenyl	tion	3.03 9.82 10.08 10.89 11.45 11.57 11.65 11.81 12.15 12.58 12.78 12.97 13.39 13.46 13.65 13.80 13.98 14.23 14.45 14.65 14.95	52000 3300 3200 3200 3700 3900 5000 4200 3300 5700 5800 3500 10000 3100 4100 7800 3800 3500 19000 9500 4300	ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J ug/kg J
132 10544 10544	Dibenzothiophene Sulfur, mol. (S8) Sulfur, mol. (S8) unknown Total TIC, Semi-Volatile		15.19 17.84 17.93 20.46	3900 4100 16000 5800 143000	ug/kg JN ug/kg JN ug/kg JN ug/kg J ug/kg J

(a) Elevated detection limit due to low volume of sample extracted.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

• Chain of Custody

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

MACCUTE		CHAIN OF CUST 2235 Route 130 Dayton, NJ 08 732-329-0200 PAX: 732-329-0	1810	Accuracy Job st	
Constants Company Name	Regional Laborato	ry Program (NY, NJ)		Acceptant July 12 106	'
Woodard & Corro 1520 Highland Ave Corrocheshire CT 20	ne Ra	Town MobileTHAPPE Ulmad Avenue	35 w g .:: B	D PWI	- 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
Anne Proctor Sampler Name Wike 2, to to	i Lines	stras-on-Hudson the Trifiletti (718) 383-737	(2) 13	ונוס אינו אינוס אינוס אינוס אינוס אינוס אינוס אינוס אינוס אינוס אינוס אינוס אינוס אינוס אינוס אינוס אינוס אינוס	\$3 1
(203)271 -037 5	· ·	4309 389305	Toservation Office of the contraction	0 627 0 75 512 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	
Sample # Fletd ID / Point of Cohection TPIS-7	3/31 1020 3/31 1030	Services by Warts Corner of S S S S S S S S S S S S S S S S S S	Second S	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 2 S
-3 IP9-6 \$P	3/31 /130	MR So 1	X I		\(\frac{\chi}{\chi} \) \\ \(\frac{\chi}{\chi}
3 713A2W W	5/31 / 200	MA So /		17.1	
Turneround Stree (Business day) Std. 10 Business Days	t) Approved By:/Data	Commercial "A"		Compress	Parmets
B Day RUSH 5 Day RUSH 1 S Day RUSH 1 S Day EMERGENCY 2 Day EMERGENCY 1 1 Day EMERGENCY Emergency T/A is for FAX or Lability Data Commercial "A" = Results only		NYASP Category A NYASP Category B State Forms EDD Formut	EXG5	THE 41/6P TER OK TO PAUCED	
Palinquished by:	Sample Cu	Received by:	Relinquished by: FeX	4/1/ch 09:28	Recoved by PDD *
У <u>г </u>		5	, P/N	etted hydra strategie	3.6

J87061: Chain of Custody

Page 1 of 1