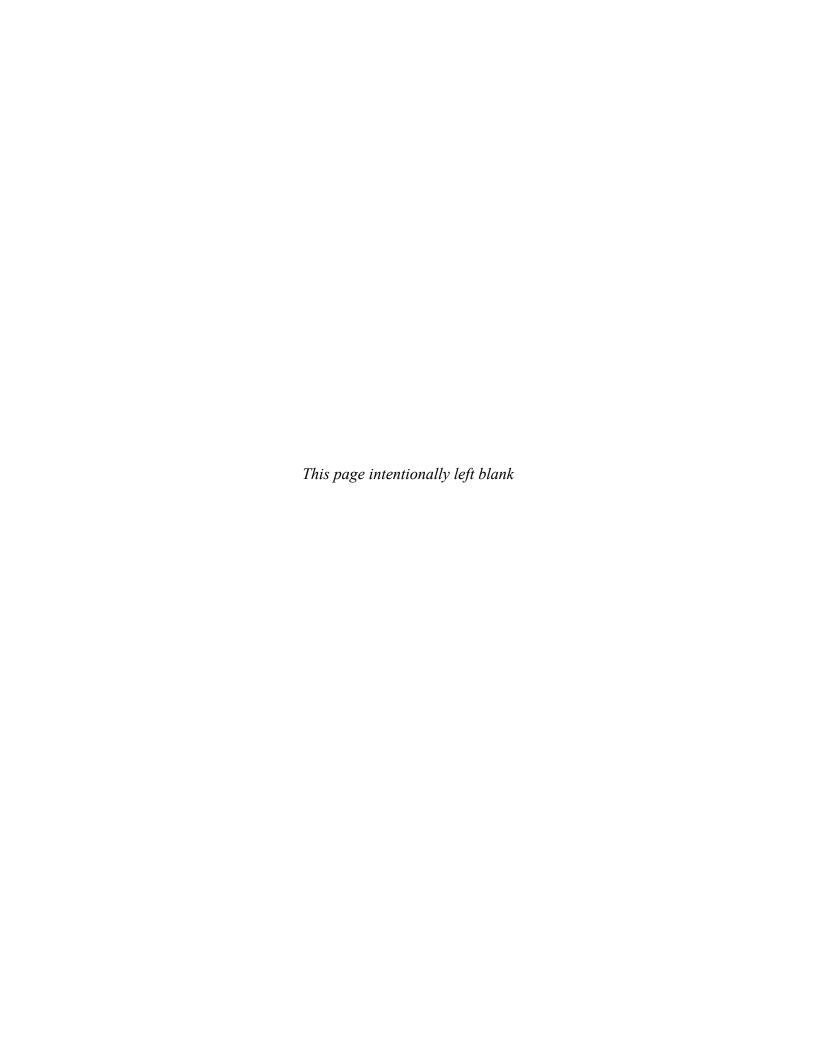


Periodic Review Report Napanoch Paper Mill Site No. 356014 Wawarsing, New York

Prepared for


New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 269 W. Jefferson Street Syracuse, New York 13202 (315) 431-4610

> March 2022 Version: FINAL EA Project No. 1602523.0015

Periodic Review Report Napanoch Paper Mill Site No. 356014 Wawarsing, New York

Prepared for

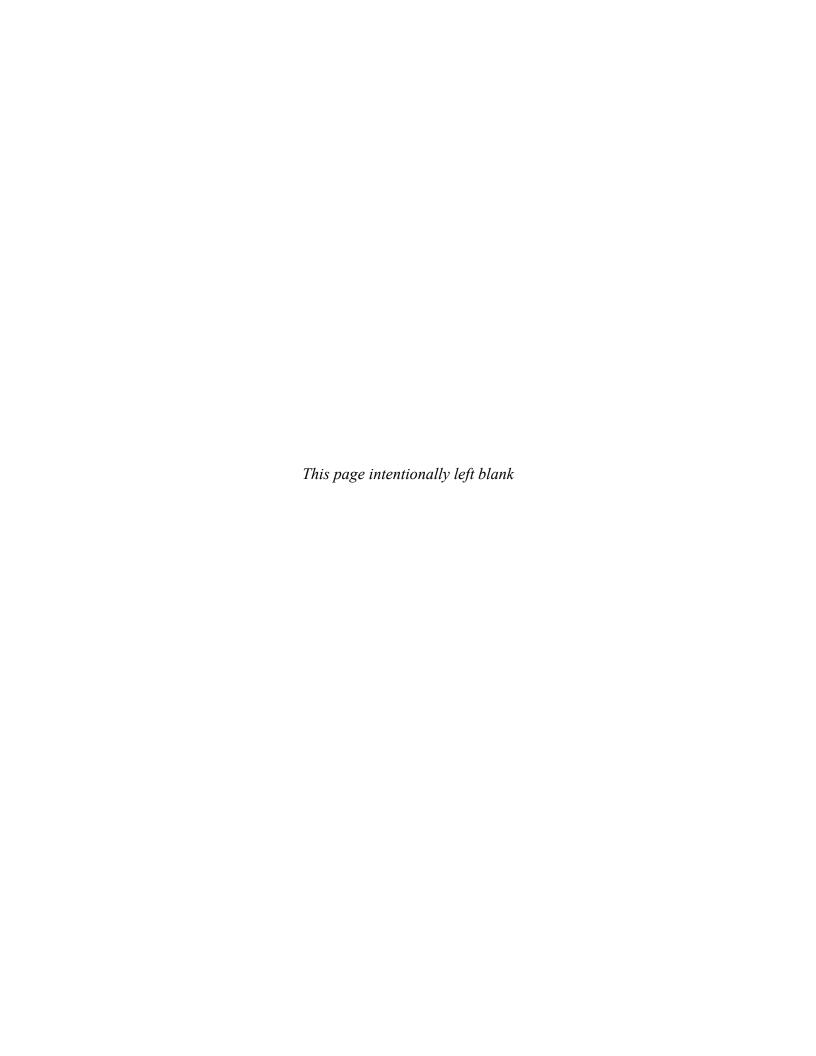
New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 269 W. Jefferson Street Syracuse, New York 13202 (315) 431-4610

Donald Conan, P.E., P.G., Program Manager

Date


EA Engineering, P.C.

17 March 2022

Christopher Schroer, Project Manager EA Science and Technology

Date

March 2022 Version: FINAL EA Project No. 1602523.0015

Page i March 2022

TABLE OF CONTENTS

			<u>Page</u>	
LIST	Γ OF FIG	GURES	iii	
		RONYMS AND ABBREVIATIONS		
ES.	EXECU	TIVE SUMMARY	ES-1	
1.	INTE	ODUCTION	1-1	
	1.1	SITE LOCATION, OWNERSHIP, AND DESCRIPTION		
	1.2	REMEDIAL INVESTIGATION AND REMEDIAL ACTIONS		
	1.3	REMAINING CONTAMINATION		
	1.4	REGULATORY REQUIREMENTS/REMEDIAL GOALS		
	1.5	INSTITUTIONAL AND ENGINEERING CONTROL PLAN COMPLIAN		
		1.5.1 Institutional Controls		
		1.5.2 Engineering Controls		
	1.6	SITE INSPECTION AND MONITORING WELL INSPECTION	1-5	
2.	GROUNDWATER MONITORING AND SURFACE WATER RESULTS SUMMAR			
	•••••		2-1	
		2.1.1 Groundwater Gauging		
		2.1.2 Groundwater Sampling		
		2.1.3 Groundwater Sampling Results		
		2.1.4 Surface Water Sampling		
		2.1.5 Surface Water Sampling Results	2-2	
3.	GRE	EN REMEDIATION AND CLIMATE CHANGE RESILIENCE	3-1	
	3.1	GREEN REMEDIATION ASSESSMENT	3-1	
		3.1.1 Electric Usage		
		3.1.2 Fossil Fuel Usage		
		3.1.3 Water Usage		
		3.1.4 Air Emissions		
		3.1.5 Consumption of Materials and Generation of Waste		
	3.2	CLIMATE CHANGE VULNERABILITY ASSESSMENT		
	3.3	CONSIDERATIONS FOR OPTIMIZATION OF PHYSICAL SYSTEMS	3-3	
4.	CON	CLUSIONS AND RECOMMENDATIONS	4-1	
	4.1	CONCLUSIONS	4-1	
	4.2	RECOMMENDATIONS		
5.	REFI	ERENCES	5-1	

Version: FINAL

EA Engineering, P.C. and Its Affiliate

EA Science and Technology

Page ii March 2022

APPENDIX A: SITE INSPECTION CHECKLIST

APPENDIX B: INSTITUTIONAL/ENGINEERING CONTROL CERTIFICATION APPENDIX C: GROUNDWATER PURGE LOGS AND PHOTOGRAPHIC LOG

APPENDIX D: LABORATORY ANALYTICAL REPORT

Version: FINAL

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Page iii March 2022

LIST OF FIGURES

<u>Number</u>	<u>Title</u>		
1	Site Location		
2	1993 Groundwater Elevation Contour Map		
3	Site Layout		
4	August 2021 Groundwater Sampling Results Per-and Polyfluoroalkyl Substances		
5	Sheen Location		

LIST OF TABLES

Number	<u>Title</u>	
ES.1	Site Summary	
1	Summary of PFAS Concentrations in Groundwater Samples (November 2017 and May 2018)	
2	Summary of PFAS Concentrations in Groundwater Samples (August 2021)	
3	Summary of Analyte Concentrations in Surface Water Sheen Sample	

Version: FINAL

EA Engineering, P.C. and Its Affiliate

Page iv EA Science and Technology March 2022

LIST OF ACRONYMS AND ABBREVIATIONS

µg/kg Microgram(s) per kilogram(s)

Microgram(s) per liter μg/L

AST Aboveground storage tank Aztech Environmental Services Aztech

DER Division of Environmental Remediation

EA EA Engineering, P.C. and its affiliate EA Science and Technology

U.S. Environmental Protection Agency **EPA**

FS Feasibility study

ft Foot (feet)

GRO Gasoline range organics

IRM Interim Remedial Measure

MCL Maximum containment level

ng/L Nanogram(s) per liter

No. Number

NYSDEC New York State Department of Environmental Conservation

PCB Poly-chlorinated biphenyl P.E. Professional Engineer

Per- and polyfluoroalkyl substances **PFAS**

PFOA Perfluorooctanoic acid

PFOS Perfluorooctane sulfonic acid P.G. Professional Geologist

PRR Periodic Review Report

RI Remedial investigation **ROD** Record of Decision

SCO Soil cleanup objective

Site inspection SI

SVOC Semi-volatile organic compound

TCL Target Compound List

UST Underground storage tank VOC Volatile organic compound

Version: FINAL Page ES-1 March 2022

ES. EXECUTIVE SUMMARY

Table ES-1. Site Summary

Table ES-1. Site Summary					
Category	Summary/Results				
Site Name/Site Number	Napanoch Paper Mill (356014)				
Engineering Control	Fencing around the property.				
Institutional Control	No commercial, industrial, or residential use				
	No building, roads, or signs				
	No satellite dishes, no docks, structures, or any improvements				
	No dumping of waste				
	No dredging, mining, or harvest of trees, or filling of drainage ways				
	No use of toxic chemicals				
	No motorized vehicles				
	No leasing of the property				
Site Management Plan	No Site Management Plan is currently in place at this site.				
Certification/Reporting					
Period	This report covers the period 30 December 1997 to 31 December 2021.				
Inspection	Frequency				
Site Inspection	As needed				
Monitoring	Frequency				
Groundwater	As needed				
Prior Periodic Review					
Report (PRR)	This is the first known PRR to be completed for this site.				
Recommendations					
Site Management	2017 Groundwater sampling event				
Activities	2018 Groundwater sampling event				
	• Site inspection (SI): 22 June 2021				
	2021 Groundwater sampling event				
SI Findings/Concerns	The SI checklist and photographic log can be found in Appendix A . A sheen was observed during the June 2021 SI that EA Engineering, P.C. and its affiliate EA Science and Technology (EA) then followed-up with a surface water sampling event. In the surface water sample that contained a sheen, only low levels of carbon disulfide (0.73 micrograms per liter $[\mu g/L]$) and gasoline range organics (16 $\mu g/L$) were detected. No other issues were identified during the 2021 SI.				
Groundwater	Based on a review of the results from the 2017 and 2018 groundwater sampling event, the				
Monitoring	following conclusions can be made:				
Findings/Results	Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) exceeded the New York State Department of Environmental Conservation guidance values in groundwater samples collected from four monitoring wells: MW-4, MW-6, MW-7, and MW-8. The elevated concentrations of per- and polyfluoroalkyl substances are limited to the southeastern area of the site.				
	• In 2018, 1,4-dioxane was detected in two of the seven monitoring wells. Both detected concentrations of 1,4-dioxane were below the New York State Department of Environmental Conservation guidance value of 1 µg/L. Thus 1,4-dioxane is not a constituent of concern at the site.				
	Based on a review of results from the August 2021 groundwater sampling event, the following conclusions can be made:				
	• In the groundwater sample collected from MW-7, PFOA and PFOS concentrations were detected at concentrations exceeding the New York State Department of Environmental				

Version: FINAL Page ES-2 March 2022

	Conservation guidance values. However, PFOA and PFOS were not detected in groundwater above guidance values in samples collected from downgradient monitoring wells MW-10 and MW-10S.
Recommendations	 No additional groundwater monitoring. No additional surface water sampling. A visual inspection of the bank area of Rondout Creek be conducted when the local vegetation has died back, where the sheen on the surface water was previously observed, to determine if there is an upland source of the sheen. Delist the site, provided the findings of the above bank area inspection do not identify a sheen source upland at the site.

Page 1-1 March 2022

EA Engineering, P.C. and Its Affiliate EA Science and Technology

1. INTRODUCTION

EA Engineering, P.C. and its affiliate EA Science and Technology (EA) was tasked by the New York State Department of Environmental Conservation (NYSDEC) under State Superfund Standby Contract Work Assignment Number (No.) D009806-23 to prepare a Periodic Review Report (PRR) for the Napanoch Paper Mill Site. The purpose of this PRR is to summarize and evaluate the remedy implemented at the site, relative to the requirements of the Record of Decision (ROD) dated March 1994 (NYSDEC 1994).

The information provided in this report covers the period from 30 December 1997 to 31 December 2021. This report was prepared in accordance with the NYSDEC Division of Environmental Remediation (DER)-10, Technical Guidance for Site Investigation and Remediation. A site summary and applicable remedial program information are summarized in the sections below.

1.1 SITE LOCATION, OWNERSHIP, AND DESCRIPTION

The Napanoch Paper Mill Site (formerly the Rondout Paper Mill) is located on NY Route 55 in the Hamlet of Napanoch, Town of Wawarsing, Ulster County, New York (**Figure 1**). The site occupies an area of approximately 19 acres. It is bounded on the south and west by Rondout Creek, the east by private property, and on the north by NY Route 55. There are currently no structures onsite, only remnants of former buildings associated with the paper mill and shallow bedrock outcrops. There is a dam located on Rondout Creek that has created an area of ponded water and sediment on the southwestern end of the property.

The Napanoch Paper Mill (originally the Rondout Paper Mill) was built in 1833–1884. The mill had multiple owners and company names over the years; Napanoch Mills, Frost and Sons, Ulster Tissue Mills, and Rondout Paper Mill. The mill primarily made wrapping paper through approximately 1914. It is uncertain what activities took place onsite between 1914 to 1949. However, at various times the mill produced several forms of paper products. Multiple fires occurred at the plant during its operating history. In 1959, the company was reorganized as Rondout Corporation and was involved in the production of packing and wrapping paper.

In September 1972, a portion of the mill was closed after two small buildings were destroyed by fire. Approximately 7,000 gallons of No. 6 fuel oil from an aboveground tank spilled onsite and resulted in a tank explosion. Approximately 400 gallons of oil remained in the creek and was later contained and removed by NYSDEC, the Ulster Department of Health, and the Town of Wawarsing. Following another series of owner transfers and foreclosures, the plant was completely destroyed by fire in May 1977.

Hazardous waste, containing polychlorinated biphenyls (PCBs), was generated at the site from 1949 to 1977. Part of the paper mill processes included discharge of wastewater into lagoons located on the site. Hazardous waste was discharged with the process water into the lagoons. The likely sources of the hazardous waste were waste oils from equipment maintenance and from the actual pulp paper production process. The overflow from the process wastewater lagoons

March 2022

ultimately discharged into Rondout Creek (NYSDEC 1994). The lagoons were confirmed to have contained sludge contaminated with PCBs, VOCs, and SVOCs.

The site is currently owned by:

Patricia and Tadasuke Kuwayama 119 22nd Street New York, New York 10011

1.2 REMEDIAL INVESTIGATION AND REMEDIAL ACTIONS

1986—In 1986, Engineering-Science, Inc completed a Phase 1 Investigation of the site and found evidence of PCB and volatile organic compound (VOC) contamination in surface water, sediment, and the lagoons (Engineering-Science, Inc 1994).

1990—NYSDEC commenced a sitewide investigation to determine the extent of PCB contamination in 1990 (Aztech 2015).

1991—An Interim Remedial Measure (IRM) was conducted from July 1991 through October 1992. A total of 7,438 tons of contaminated sludge and 900,000 gallons of contaminated water (from dewatering sludge and soil) were removed from the site (Aztech 2015).

1992–1994—A Remedial Investigation (RI)/Feasibility Study (FS) was completed by Engineering-Science Inc., between 1992 and 1994. The RI/FS concluded that PCBs were present in surface soil and sediment along Rondout Creek (Engineering-Science, Inc. 1994). In addition, surface water upstream and downstream of the site were contaminated with lead and groundwater was contaminated with VOCs and metals. Although groundwater quality standards were exceeded for selected organics and metals, the threat of offsite migration is low since groundwater flows towards the creek. Groundwater contour maps (prepared by Engineering Science, Inc.) (Figure 2) and water level data suggest that groundwater does not flow from the site towards the residential wells. Groundwater contour maps show that shallow groundwater from the site ultimately discharges to Rondout Creek.

The IRM, which was completed in 1992, included the excavation of six areas or former lagoons (Areas 1 through 6) across a distance of approximately 700 feet (ft). These areas ranged from approximately 150 to 250 ft in width (Engineering-Science, Inc 1994).

1993—In September 1993, NYSDEC excavated approximately 3,000 cubic yards of petroleum contaminated soil located in the area of a No. 6 fuel oil aboveground storage tank (AST). During the remedial action, an additional underground storage tank (UST) was discovered and removed (Aztech 2015).

1994—The NYSDEC approved ROD was issued for the site. The remedial action required by the ROD included the removal of PCB-contaminated paper rolls from the site, excavation and removal of PCB-contaminated soil and pond sediment containing concentrations of 1.0 part per million or

March 2022

greater as well as the treatment of any contaminated groundwater and wastewater resulting from these activities (NYSDEC 1994).

2002—In April 2002, an Administrative Order of Consent in the Matter of the Napanoch Paper Mill Site Town of Wawarsing, Ulster County, New York was issued by the NYSDEC that restricts the use of the property to scenic and open space (NYSDEC 2002).

2011—In 2011, Aztech Environmental Services (Aztech) collected concrete, surface water, groundwater samples, and surface and subsurface soil samples to determine if any contamination remained onsite. The sample locations were determined based on extensive research that targeted areas around the site where contamination had been identified historically, as well as along the limits of previous remedial excavations. The sampling event consisted of 4 concrete, 8 surface water, 13 groundwater, 4 subsurface soil, and 33 surface soil samples. Concrete samples were sent for laboratory analysis for PCBs only. All other samples were analyzed for PCBs, full list VOCs, semi-volatile organic compound (SVOCs), and metals. The results of the investigation were reported in *The Napanoch Paper Mill Site Sampling and Investigation Report* (Aztech 2012).

PCBs were detected in 5 soil samples at concentrations between 1 milligram per kilogram (mg/kg) and 63.7 mg/kg. PCBs were detected in one surface water sample at a concentration of 3.13 milligrams per liter. The study found arsenic, chromium, lead and mercury in soil samples at concentrations above the soil cleanup objectives (SCOs) for Residential Use.

2012—A meeting was held between Aztech and NYSDEC in April 2012 to discuss an approach to delineate the extent of remaining contamination identified in the soil at the site. An agreement was made to conduct a delineation soil sampling event at 11 locations previously identified to contain concentrations of PCBs, arsenic, chromium, lead, and/or mercury above their respective SCO (Aztech 2015).

A supplemental investigation was completed by Aztech in June 2012 to delineate areas for excavation. The investigation consisted of collecting soil samples at 11 locations at depths of 6 and 18 inches below surface grade where shallow bedrock was not a constraint. Additional samples were collected at radial distances of 10, 25, and 35 ft away from the original location in four compass directions to delineate the extent of contamination. The results of the 2012 supplemental investigation identified 8 of the 11 locations required excavation and removal (Aztech 2015).

2014—Between June and September 2014, NYSDEC completed 8 additional soil excavations. A total of 1,390 tons of soil were removed from the site and disposed of as hazardous waste and 626 tons were removed as non-hazardous waste. Approximately 80,000 gallons of impacted water from the lagoon areas was treated using 50 micron filters and activated carbon prior to being discharged at the site (Aztech 2015).

1.3 REMAINING CONTAMINATION

After the excavations in 2014 were completed, low levels of metals at concentrations above restricted use SCO criteria¹ remained in soil.

Forty-six post-excavation samples were collected from seven excavation areas. The exceedances are summarized below:

- Arsenic was detected in seven post-excavation soil samples at concentrations greater than the SCO ranging from 16.6 to 77.9 mg/kg. The SCO for arsenic is 16 mg/kg.
- Chromium was detected in one sample at a concentration of 65.1 mg/kg. The SCO for chromium is 36 mg/kg.
- Lead was detected in one sample at a concentration of 3,080 mg/kg. The SCO criteria for lead is 400 mg/kg.
- Mercury was detected in three soil samples at concentrations greater than the SCO ranging from 1.4 to 7 mg/kg. The SCO criteria for mercury is 0.81 mg/kg.
- PCBs were detected in one soil sample at concentrations of 1,800 micrograms per kilogram (μg/kg). The SCO criteria for total PCBs is 1,000 μg/kg.

REGULATORY REQUIREMENTS/REMEDIAL GOALS

As specified in the 1994 ROD (NYSDEC 1994), the remediation goals for the site are to:

- Reduce, control, or eliminate the contamination present, within the soils on site.
- Eliminate the potential for direct human contact with the contaminated soils on site.
- Eliminate the threat to surface water by eliminating any future contaminated surface run-off from the contaminated soils onsite.
- Eliminate the impact to fish and wildlife and surface waters by eliminating any future releases from contaminated sediments.

¹ Restricted Use SCO are NYSDEC Subpart 375-6.8(a) or NYSDEC CP-51 SCO (NYSDEC 2010)

1.5 INSTITUTIONAL AND ENGINEERING CONTROL PLAN COMPLIANCE

1.5.1 Institutional Controls

The following controls are outlined in the 2002 Administrative Order on Consent (NYSDEC 2002) and Deed Restrictions:

- No commercial, industrial, or residential use
- No building, roads, or signs
- No satellite dishes, no docks, structures, or any improvements
- No dumping of waste
- No dredging, mining, or harvest of trees, or filling of drainage ways
- No use of toxic chemicals
- No motorized vehicles
- No leasing of the property

1.5.2 Engineering Controls

Engineering controls are a physical barrier or method employed to actively or passively contain, stabilize, or monitor contamination restricted the movement of contamination to ensure the long-term effectiveness of a remedial program. The site is currently surrounded by a secured chain-link fences to prevent access to the property.

1.6 SITE INSPECTION AND MONITORING WELL INSPECTION

On 22 June 2021, an initial site inspection (SI) and monitoring well inspection was completed by EA (**Appendix A**), and a summary of the observations is provided below.

Monitoring Well	Was the monitoring well locked?	Did the well have a cover?	Well Condition Comments
MW-1	Yes	Yes	Tubing in well. Replaced lock with combination lock.
MW-1S	Yes	Yes	Bailer in well. Replaced lock with combination lock.
MW-2	No	Yes	Tubing in well
MW-3	No	Yes	Tubing in well
MW-4	No	Yes	Tubing in well
MW-5	No	Yes	Tubing in well
MW-6	No	Yes	No comment
MW-7	No	Yes	Tubing in well
MW-8	No	Yes	No comment
MW-9	No	Yes	Tubing in well
MW-9S	No	Yes	Tubing in well
MW-10	No	Yes	Tubing in well
MW-10S	No	Yes	Tubing and bailer in well

Version: FINAL Page 1-6 March 2022

EA Engineering, P.C. and Its Affiliate EA Science and Technology

The monitoring wells located outside of the site fencing (MW-1 and MW-1S) were locked but wells within the site fencing did not have locks. Tubing and bailers, if found within the monitoring well, were removed and disposed of by EA.

During the SI in June 2021, the fencing around the site was observed to be intact and the site has remained an open space. During an inspection of Rondout Creek, a sheen was observed on the water near the area of the former No. 6 fuel oil tank (**Figure 3**).

The results of the June 2021 site inspection will be used to complete the Engineering *Controls - Standby Consultant/Contractor Certification Form* in **Appendix B**.

2. GROUNDWATER MONITORING AND SURFACE WATER RESULTS SUMMARY

In 2017 and 2018 as part of the Emerging Contaminant Sampling Initiative, 13 onsite monitoring wells were sampled for per- and polyfluoroalkyl substances (PFAS), and 4 monitoring wells were sampled for 1,4-dioxane (**Table 1**). In 2021, three onsite monitoring wells were sampled for PFAS as a continuation of the Emerging Contaminant Sampling Initiative, to verify that PFAS was not migrating offsite (**Table 2**). The monitoring wells sampled in 2021 included MW-7, MW-10, and MW-10S.

2.1.1 Groundwater Gauging

On 4 August 2021, groundwater elevation measurements were collected from 3 monitoring wells (MW-7, MW-10 and MW-10S) after samples had been collected. This was done to prevent possible cross-contamination of the groundwater with PFAS from the water-level meter. The depth to groundwater ranged from 8.72 ft (MW-10) to 18.07 ft (MW-7) below the top of well casings.

2.1.2 Groundwater Sampling

On 29 and 30 November 2017, groundwater samples were collected from monitoring wells MW-1D, MW-1S, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, and MW-8 and analyzed for PFAS. On 22 May 2018, groundwater samples were collected from monitoring wells MW-7, MW-9D, MW-9S, MW-10S, MW-10D and analyzed for PFAS, and groundwater samples collected from MW-1D, MW-3, MW-4, MW-6, MW-7, MW-10D and MW-10S were analyzed for 1,4-dioxne. On 4 August 2021, EA collected groundwater samples from monitoring wells MW-7, MW-10, and MW-10S and analyzed for PFAS (**Figure 3**).

Groundwater sampling methods in 2017 and 2018 were not readily available. Monitoring wells MW-7, MW-10, and MW-10S were purged prior to sample collection using a peristaltic pump with dedicated high-density polyethylene tubing. Purge water was screened using a multi-parameter probe with Horbia U-22 flow-through cell. The wells were purged until values for temperature, pH, and oxidation-reduction potential reached stabilization and turbidity was measured to be below 50 nephelometric turbidity unit(s). Purge water was discharged to the ground surface in the vicinity of the well as directed by the NYSDEC.

Once purging was complete, groundwater samples were collected, placed into appropriate, laboratory-provided containers, and immediately placed in a cooler with ice to maintain a temperature no greater than 4 degrees Celsius.

Non-dedicated sampling equipment was decontaminated between wells. The Monitoring Well Purging and Sampling Records are provided in **Appendix C**.

2.1.3 Groundwater Sampling Results

Groundwater sampling results for 2017 and 2018 are presented on **Table 1**, and groundwater sampling results for 2021 are presented on **Table 2** and **Figure 4**. In 2017 and 2018,

Page 2-2 March 2022

perfluorooctane sulfonic acid (PFOS) concentrations ranged from non-detect to 110 nanograms per liter (ng/L) (MW-7 in 2017). PFOS was detected at concentrations greater than the NYSDEC guidance value of 10 ng/L in four monitoring wells: MW-4, MW-6, MW-7, and MW-8. Perfluorooctanoic acid (PFOA) concentrations ranged from non-detect to a maximum of 16 ng/L observed at MW-6 and MW-7 in 2017, exceeding the NYSDEC guidance value of 10 ng/L at these two locations. Other PFAS concentrations detected in 2017 or 2018 (excluding PFOS and PFOA) were less than 100 ng/L. Perfluoropentanoic Acid was the highest detected PFAS (excluding PFOS and PFOA) at 9.9 ng/L (MW-9S in 2018).

1,4-dioxane was detected in two of the seven monitoring wells sampled in 2018 at concentrations ranging from 0.11 micrograms per liter (μ g/L) (MW-7) to 0.29 μ g/L (MW-4), which are below the NYSDEC guidance value of 1 μ g/L.

In 2021, PFOS concentrations ranged from 0.36 ng/L (MW-10S) to 78 ng/L (MW-07) and PFOA concentrations ranged from non-detect to 12 ng/L (MW-7). The NYSDEC guidance values for PFOS and PFOA were exceeded in only one sample at concentrations of 78 ng/L and 12 ng/L, respectively, collected from MW-7. The PFOS concentration observed in 2021 at this location was slightly lower than those observed during previous sampling (110 ng/l and 70 ng/L in 2017 and 2018, respectively). However, the PFOA concentrations were consistent during all sampling events (16 ng/L, 12 ng/L, and 12 ng/L in 2017, 2018, and 2021, respectively). In 2021, other PFAS (excluding PFOS and PFOA) were detected at concentrations less than 3 ng/L. Perfluorohexanesulfonic acid was the highest detected PFAS (excluding PFOS and PFOA) at 2.9 ng/L (MW-7).

Based on the low concentrations of PFAS compounds observed in groundwater from the northern and western portions of the site, PFAS appears to be isolated to the southeastern portion of the site. However, because groundwater from MW-10 and MW-10S (downgradient of MW-7) was consistently low across all sampling events, it is unlikely PFAS compounds are migrating offsite.

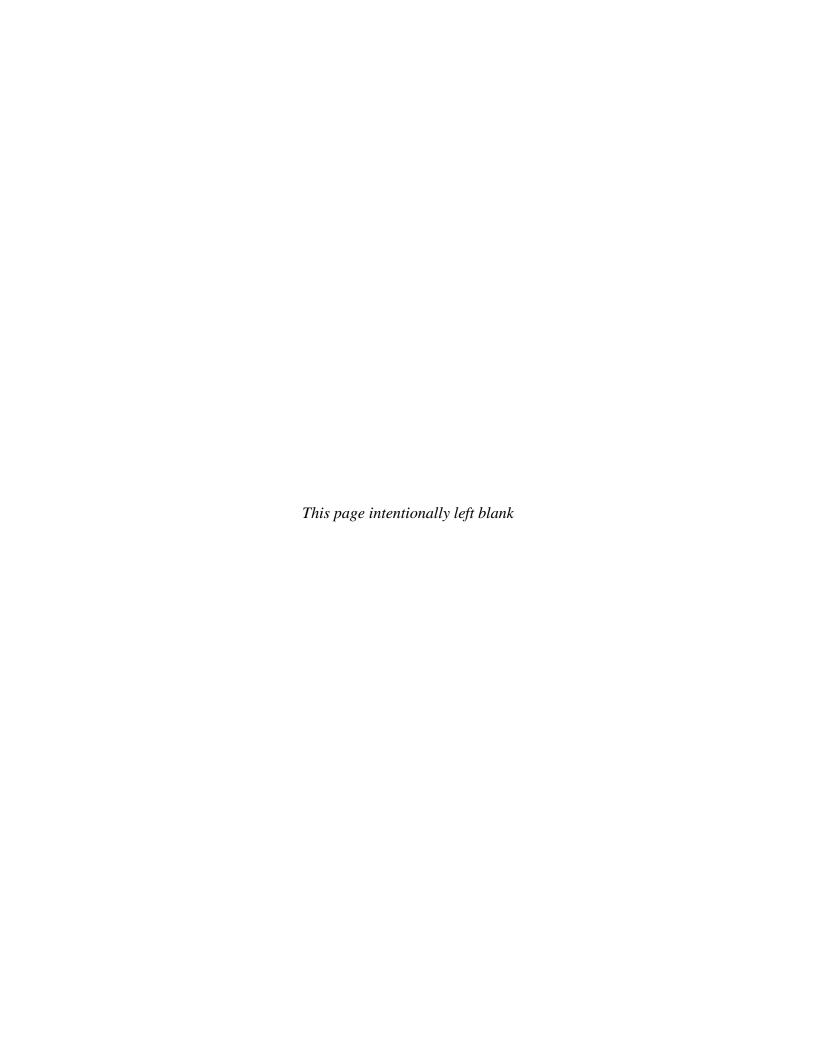
Groundwater sampling forms are provided in **Appendixes** C. Laboratory analytical reports are included in **Appendix D**.

2.1.4 Surface Water Sampling

To characterize the composition of the sheen that was observed in Rondout Creek during the SI in June 2021, a surface water sample containing the sheen was collected on 4 August 2021. A grab sample was collected and submitted for analysis of Target Compound List (TCL) VOCs, TCL SVOCs, PCBs, diesel range organics, and gasoline range organics (GRO). The location of the surface sheen is shown on **Figure 5.**

2.1.5 Surface Water Sampling Results

In the surface water sample that contained the sheen, only low levels of carbon disulfide $(0.73 \mu g/L)$ and GRO $(16 \mu g/L)$ were detected (**Table 3**). Based on the low concentrations of carbon disulfide and GRO, and no detections of site-related compounds, no additional surface


Version: FINAL

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Page 2-3 March 2022

water sampling is recommended at this time. It is recommended that a visual inspection of the bank area of Rondout Creek be conducted, where the sheen on the surface water was previously observed, when the local vegetation has died back, to determine if there is an upland source of the sheen.

A photographic log of the sheen observation is provided in **Appendix C**. Laboratory analytical reports are included in **Appendix D**.

Page 3-1

March 2022

3. GREEN REMEDIATION AND CLIMATE CHANGE RESILIENCE

Consistent with NYSDEC DER-31 Green Remediation Policy, this section provides a brief summary and qualitative assessment of the overall environmental impacts or environmental footprint of the site for the current reporting period. In accordance with the NYSDEC's Executive Order No. 24, consideration has been given to reducing the consumption of energy and materials; and thereby, reducing the production of greenhouse gases, in the operation and maintenance of the site. Implementation of NYSDEC DER-31 and Executive Order No. 24 have not compromised the selected remedy's protectiveness of public health and the environment, nor has it hindered achievement of the remedial goals established for the site.

As each discrete step of any site operation and maintenance activity consumes resources and energy, consideration has been given to reducing/eliminating those activities which may not be critical to the protectiveness of the selected remedy.

A critical infrastructure vulnerability assessment (of the monitoring wells and fencing) was not completed during this certifying period. Such an assessment could generally be utilized to evaluate the potential consequences climate changes may have on a site, as well as any ongoing site management activities.

3.1 GREEN REMEDIATION ASSESSMENT

In accordance with the NYSDEC's DER-31 Green Remediation Policy, the following section provides a qualitative assessment of the overall environmental impacts, or environmental footprint associated with the remedy.

3.1.1 Electric Usage

Implementation of the selected remedy does not directly use electricity as part of site management.

3.1.2 Fossil Fuel Usage

Implementation of the selected remedy does not directly use fossil fuels as part of site management.

Indirect fossil fuel use results from completion of the following site-related activities:

- Transportation to and from the site for inspection and sampling
- Offsite transportation and shipment of samples collected for laboratory analysis.
- Disposal of waste (e.g., tubing, gloves, paper towels) generated during sampling.

3.1.3 Water Usage

Implementation of the selected remedy does not directly require the use water at this site. However, a *de minimis* quantity of water is used during sampling events for equipment decontamination.

Page 3-2 March 2022

3.1.4 Air Emissions

Implementation of the selected remedy does not directly emit contaminants to the air, nor impact air quality other than through the combustion of fossil fuels in vehicles and use in generators, as described above.

3.1.5 Consumption of Materials and Generation of Waste

Monitoring, maintenance, and reporting activities associated with groundwater sampling events result in material consumption and the generation of waste. A summary of the current material consumption and waste generation activities for the site are summarized below:

- Personal protective equipment associated with groundwater sampling, such as nitrile gloves, etc.
- Consumables associated with groundwater sampling such as polyethylene tubing, paper towels, trash bags, etc.
- Packaging material and ice used to pack and preserve samples to be submitted for laboratory analysis.
- Paper and office supplies associated with site logs, monitoring logs and report preparation.

3.2 CLIMATE CHANGE VULNERABILITY ASSESSMENT

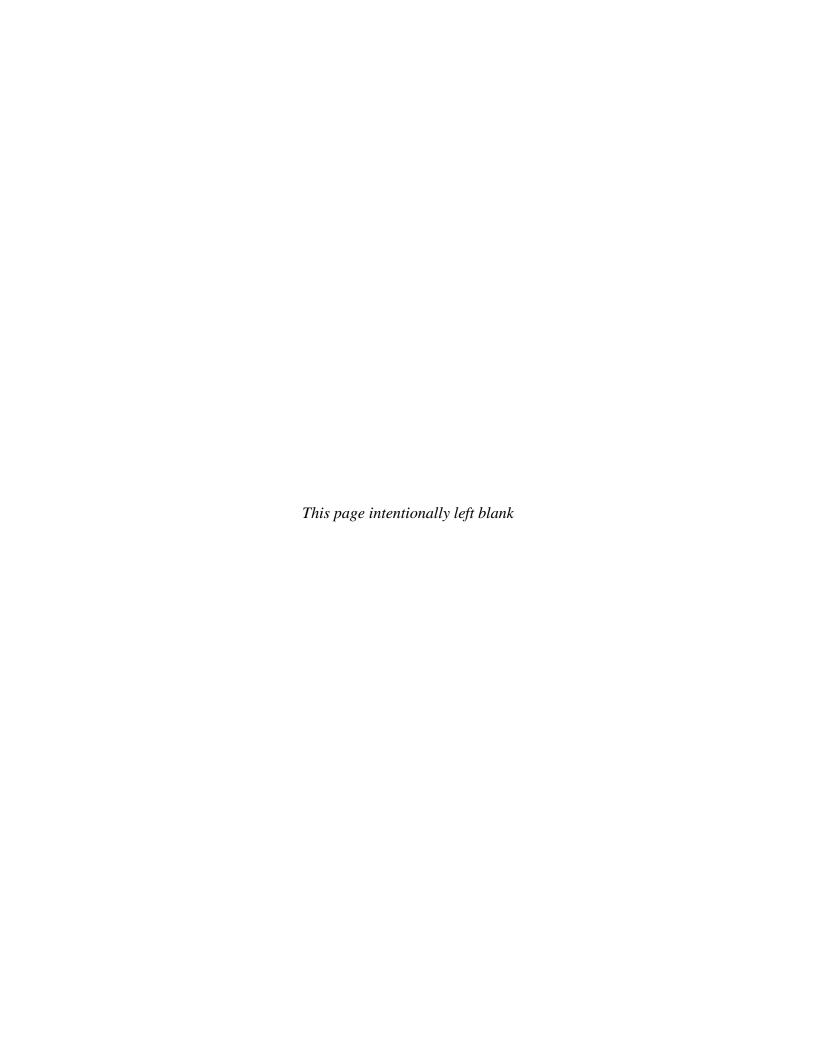
Increases in both the severity and frequency of storms and weather events, an increase in sea-level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuations, resulting from global climate change and instability, have the potential to significantly impact the performance, effectiveness, and protectiveness of a given site remedy. The intent of this vulnerability assessment is to provide information to allow the site remedy to better prepare for the impacts of the increasing frequency and intensity of severe storms, weather events, and associated flooding brought on by global climate changes and instabilities, in order to ultimately enhance the remedy's resilience to such events.

This section briefly summarizes the vulnerability of the site and/or the remedy to severe storms, weather events, and associated flooding.

This assessment included consideration of the following:

- *Flood Plain*—The site is in a flood plain and low-lying area.
- Site Drainage and Stormwater Management—The site has the potential for flooding or damage to the monitoring well network during severe rain events.

Version: FINAL


Page 3-3

EA Engineering, P.C. and Its Affiliate EA Science and Technology March 2022

- Erosion—Areas of the site may be susceptible to erosion during periods of severe rain events, which may damage the monitoring well network.
- *High Wind*—The observation wells are stick-ups and are susceptible to damage from the wind itself or falling objects, such as trees or utility structures during periods of high wind.

CONSIDERATIONS FOR OPTIMIZATION OF PHYSICAL SYSTEMS 3.3

Environmental and energy conservation measures and other methods to reduce energy consumption, resource usage, waste generation, and water usage have been considered. During the certifying period, three groundwater sampling events were conducted, which required the purging of water from the observation wells prior to sampling. If future events were required, use of HydraSleeves would significantly reduce or negate the need for purging observation wells and would reduce or negate the need for associated equipment and energy/fuel consumption.

Page 4-1 March 2022

4. CONCLUSIONS AND RECOMMENDATIONS

4.1 **CONCLUSIONS**

Based on a review of results from 2017, 2018, and 2021 groundwater sampling events, and the June 2021 SI, the following conclusions can be made:

- In 2017 and 2018, PFOS and PFOA exceeded the NYSDEC guidance values in groundwater samples collected from four monitoring wells: MW-4, MW-6, MW-7, and MW-8. The elevated concentrations of PFAS are limited to the southeastern area of the site.
- In 2021, PFOA and PFOS exceeded the NYSDEC guidance values in the groundwater sample collected from MW-7. PFOA and PFOS were less than the NYSDEC guidance values in the downgradient monitoring wells MW-10 and MW-10S. Therefore, it is unlikely that PFAS are migrating offsite.
- In 2018, 1,4-dioxane was detected in two of the seven monitoring wells. Both detected concentrations of 1,4-dioxane were below the NYSDEC guidance value of 1 µg/L. Thus 1,4-dioxane is not a constituent of concern at the site.
- In the surface water sample that contained sheen, no site-related contaminants were detected, only low levels of carbon disulfide (0.73 µg/L) and GRO (16 µg/L) were observed. Thus, the sheen does not indicate gross contamination and does not appear to be site-related.

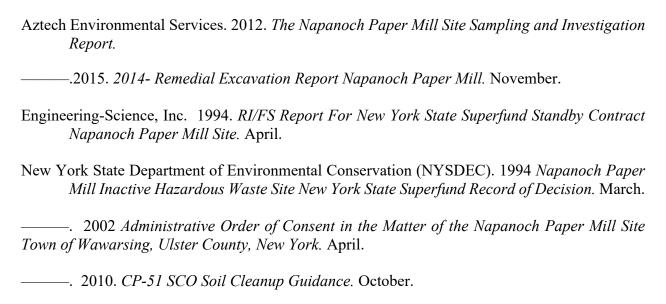
4.2 RECOMMENDATIONS

Based on the June 2021 SI and the results of the 2017, 2018, and 2021 groundwater sampling events, the following actions are recommended for the Napanoch Paper Mill Site:

- No additional groundwater monitoring.
- No additional surface water sampling.
- A visual inspection of the bank area of Rondout Creek be conducted when the local vegetation has died back, where the sheen on the surface water was previously observed, to determine if there is an upland source of the sheen.
- Delist the site, provided the findings of the above bank area inspection do not identify a sheen source upland at the site.

Version: FINAL

Page 4-2 March 2022

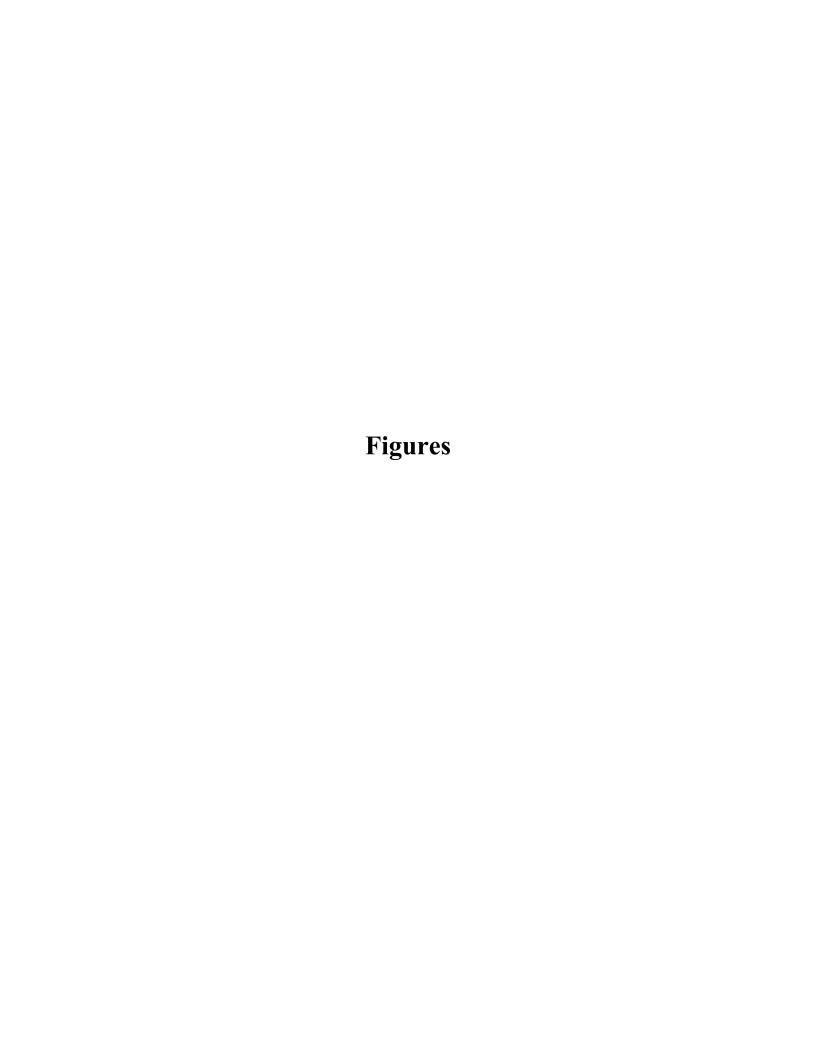

EA Engineering, P.C. and Its Affiliate EA Science and Technology

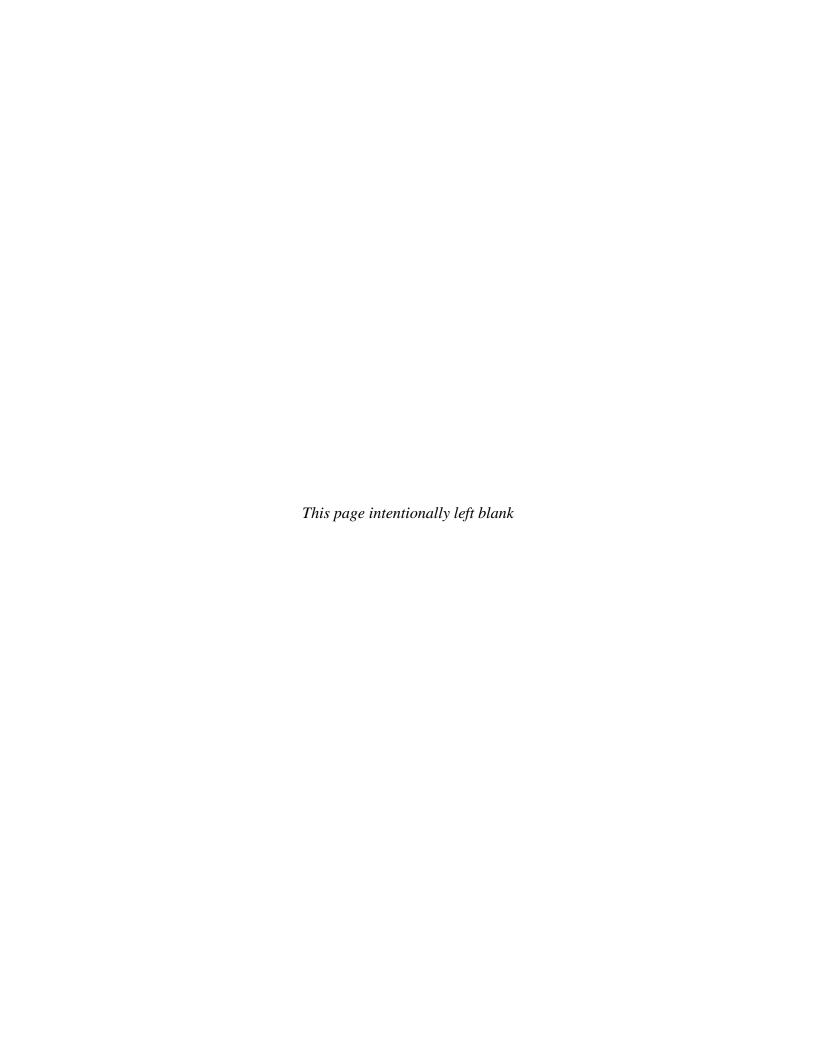
This page left intentionally blank

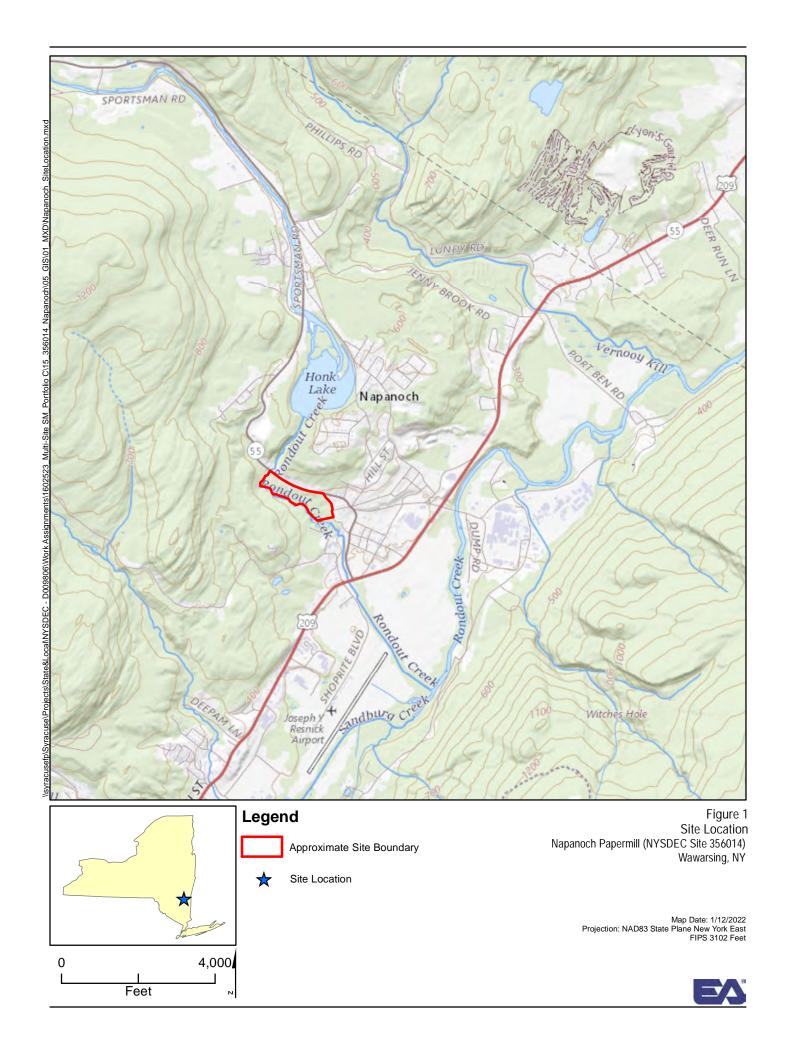
EA Engineering, P.C. and Its Affiliate EA Science and Technology

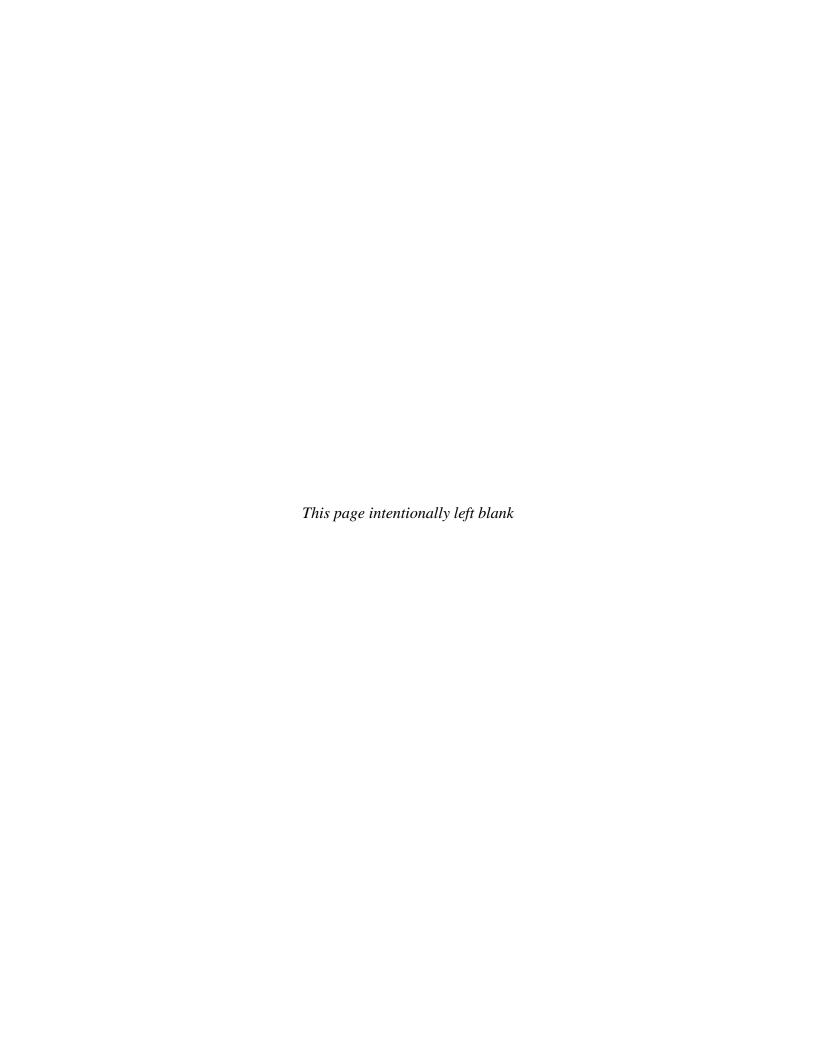
Version: FINAL Page 5-1 March 2022

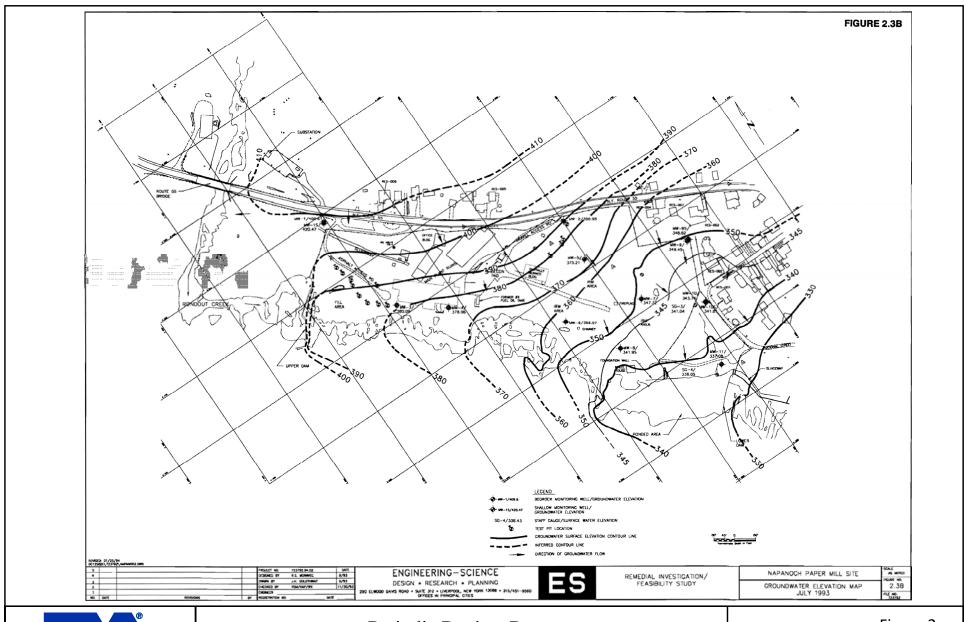
5. REFERENCES

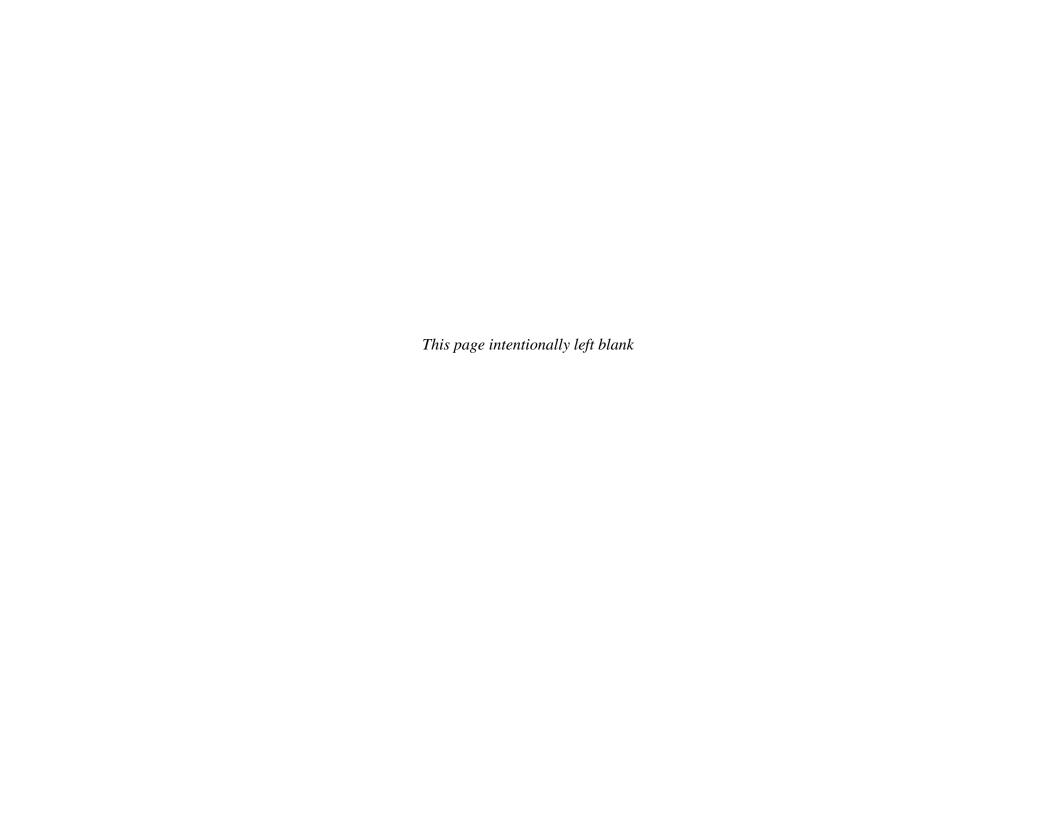


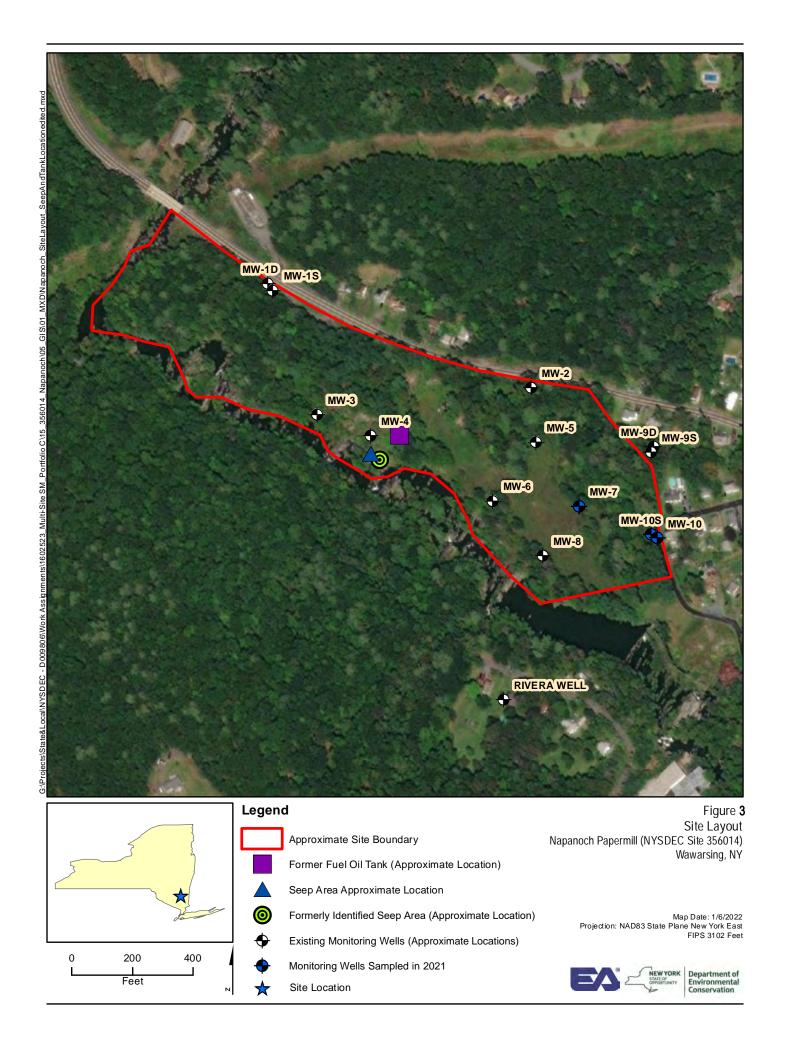

Version: FINAL

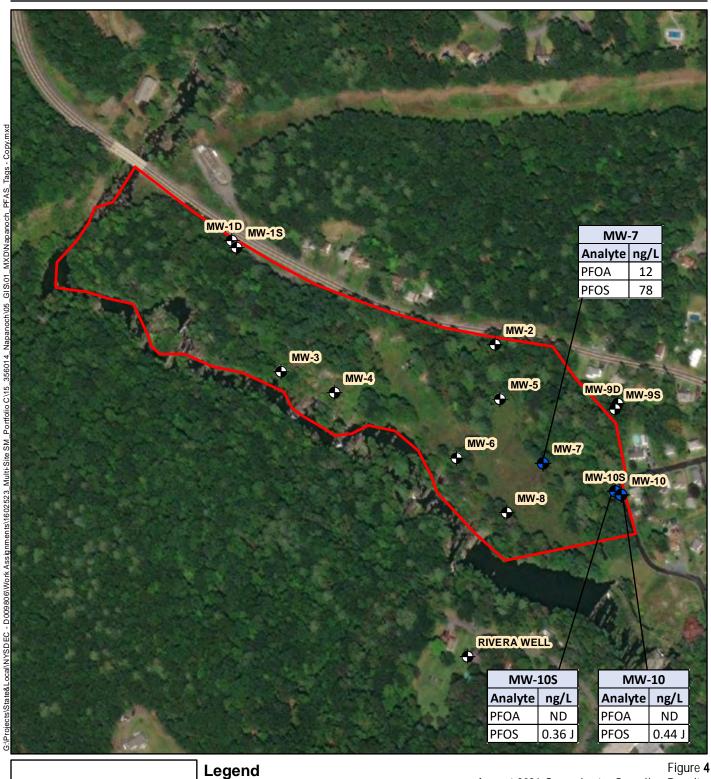

Page 5-2 March 2022

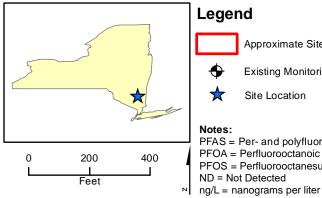

EA Engineering, P.C. and Its Affiliate EA Science and Technology


This page is intentionally left blank.









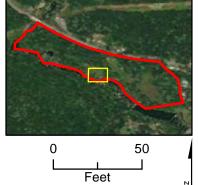
Periodic Review Report Napanoch Papermill (NYSDEC Site 356014) Wawarsing, NY Figure 2 1993 Groundwater Elevation Contour Map

Approximate Site Boundary

Existing Monitoring Wells (Approximate Locations)

Site Location

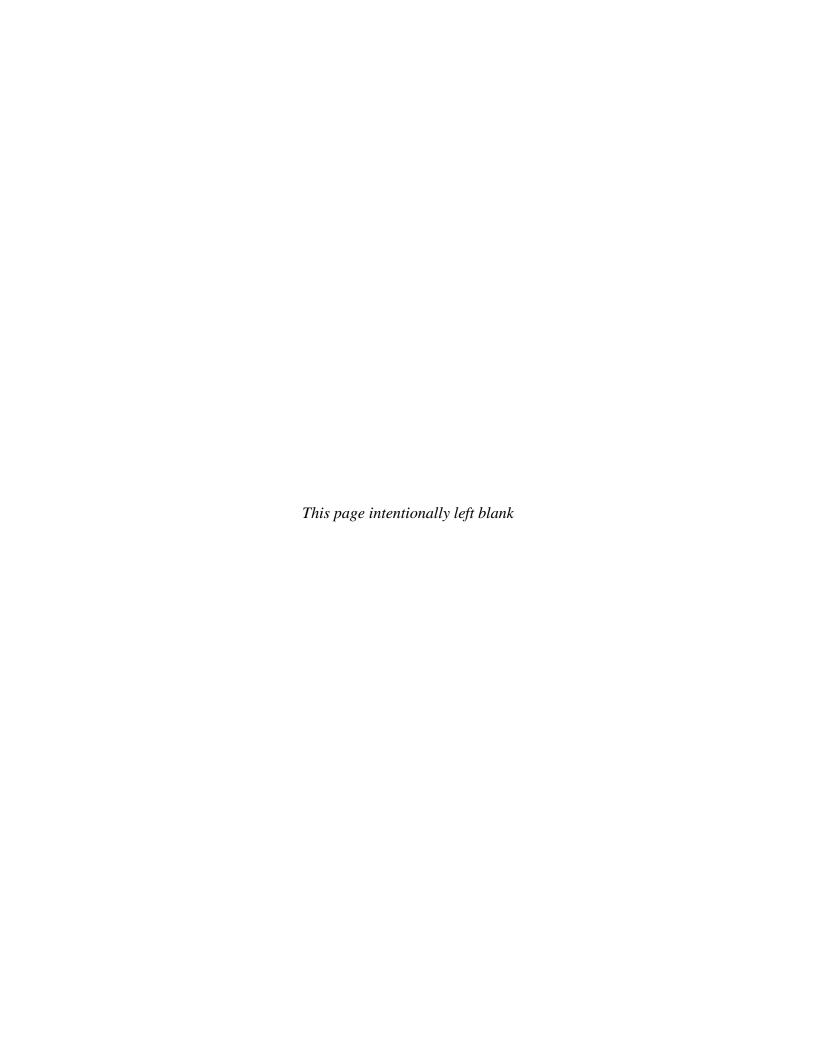
Notes:

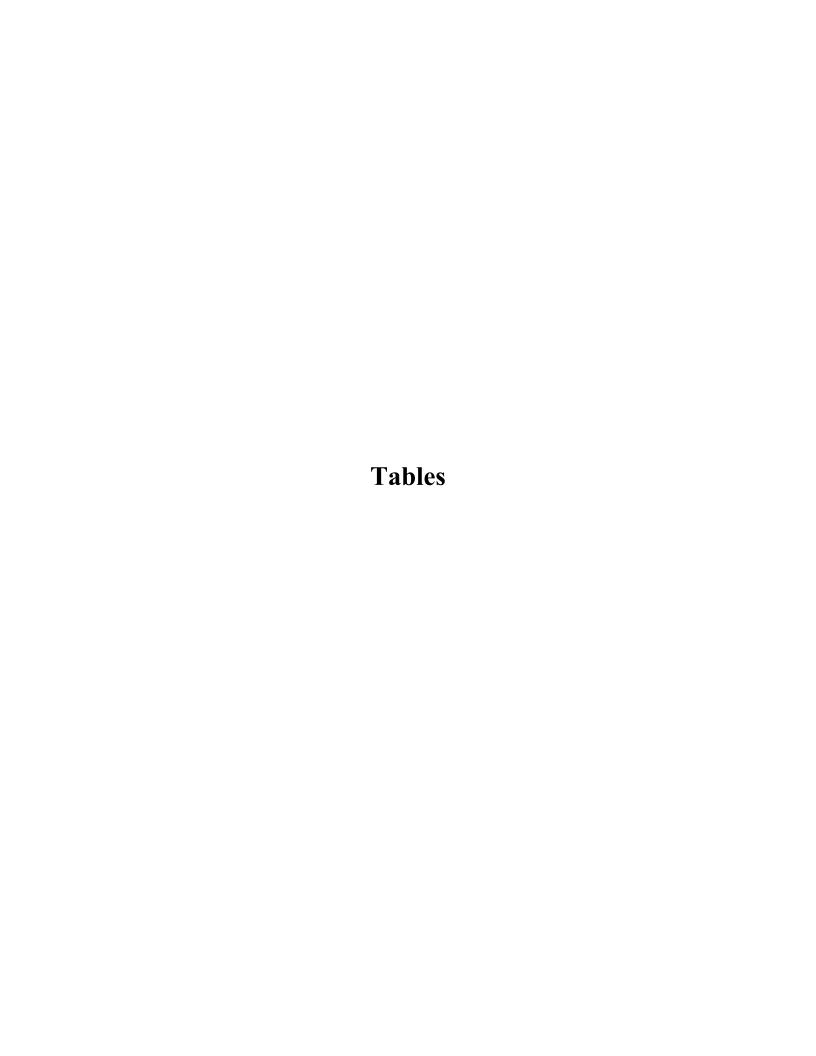

PFAS = Per- and polyfluoroalkyl substances PFOA = Perfluorooctanoic acid PFOS = Perfluorooctanesulfonic acid ND = Not Detected

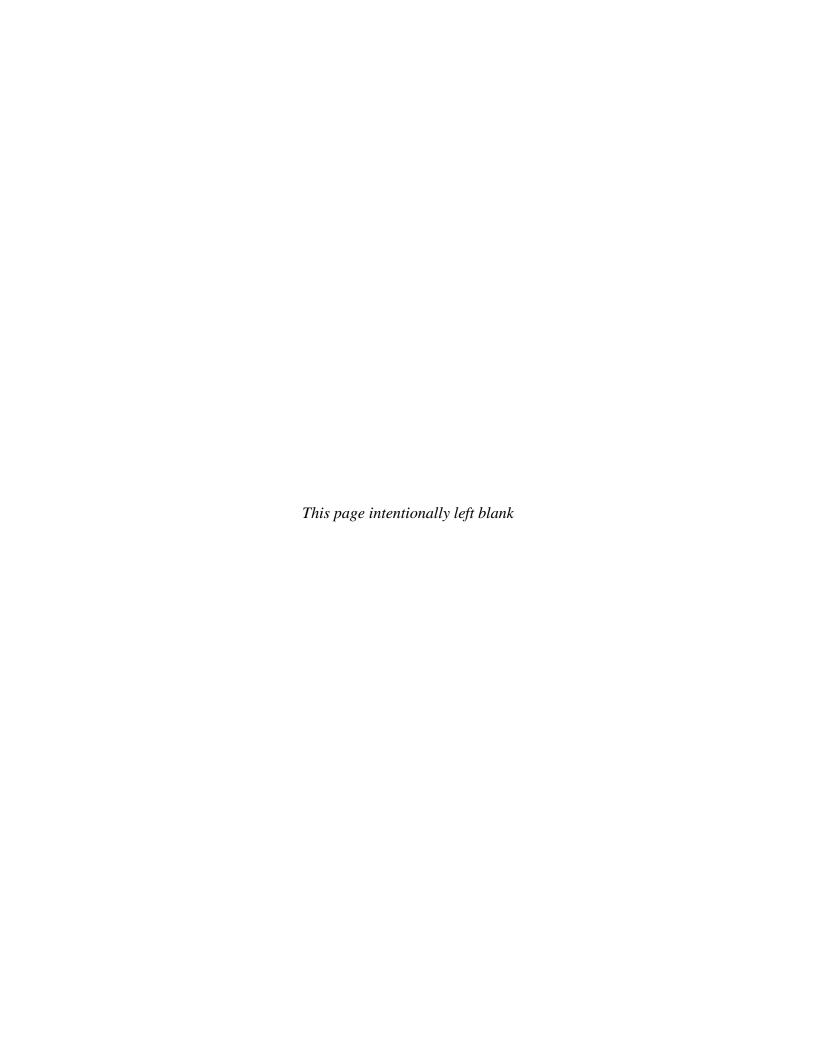
August 2021 Groundwater Sampling Results Per-and Polyfluoroalkyl Substances Napanoch Papermill (NYSDEC Site 356014) Wawarsing, NY

Approximate Site Boundary

Sheen Location Napanoch Papermill (NYSDEC Site 356014) Wawarsing, NY


Approximate Location of Former Fuel Tank (Removed 1993)


Former Oil Seep


Sheen Sample Location (Collected 8/4/2021)

Map Date: 9/29/2021 Projection: NAD83 State Plane New York East FIPS 3102 Feet

Table 1. Summary of PFAS Concentrations in Groundwater Samples (November 2017 and May 2018)

						Table 1.	Summary of Fi	'AS Concentrati	ons in Grounds	vater Samples (November 2017	and May 2016	,							
		Sample Name	MW-1-20171129	MW-1D-20180522	MW-1S-20171129	MW-2-20171129	MW-3-20171130	MW-3-20180522	MW-4-20171129	MW-4-20180522	MW-5-20171130	MW-6-20171130	MW-6-20180522	MW-7-20171130	MW-7-20180522	MW-8-20171130	MW-9D-20180522	MW-9S-20180522	MW-10D-20180522	MW-10S-20180522
	Groundwater	Parent Sample ID																		
Analyte	Screening Level	Sample Date	11/29/2017	5/22/2018	11/29/2017	11/29/2017	11/30/2017	5/22/2018	11/29/2017	5/22/2018	11/30/2017	11/30/2017	5/22/2018	11/30/2017	5/22/2018	11/30/2017	5/22/2018	5/22/2018	5/22/2018	5/22/2018
								1,4-	Dioxane via EPA M	1ethod 8270										
1,4-Dioxane	1	μg/L	NS	<0.19 U	NS	NS	NS	0.13 J	NS	0.29	NS	NS	<0.20 U	NS	0.11 J	NS	NS	NS	<0.20 U	<0.19 U
									PFAS via EPA Me	thod 537										
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid (6:2 FTS)	NSL	ng/L	< 20 U	NS	< 21 U	< 20 U	< 20 U	NS	< 21 U	NS	< 20 U	<21 U	NS	< 19 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid (8:2 FTS)	NSL	ng/L	< 20 U	NS	< 21 U	< 20 U	< 20 U	NS	< 21 U	NS	< 20 U	< 21 U	NS	< 19 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U
2-(N-methyl perfluorooctanesulfonamido) acetic acid	NSL	ng/L	< 20 U	NS	< 21 U	< 20 U	< 20 U	NS	< 21 U	NS	< 20 U	< 21 U	NS	< 19 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U
N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine	NSL	ng/L	< 20 U	NS	< 21 U	< 20 U	< 20 U	NS	< 21 U	NS	< 20 U	< 21 U	NS	1.8 J	2.4 J	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U
Perfluorobutanesulfonic acid (PFBS)	NSL	ng/L	< 2.0 U	NS	< 2.1 U	0.69 J	< 2.0 U	NS	2.7	NS	0.25 J	2.2	NS	0.69 J	0.65 J	< 2.0 U	< 2.0 U	2.6	< 2.0 U	0.62 J
Perfluorobutanoic Acid (PFBA)	NSL	ng/L	< 2.0 U	NS	< 2.1 U	0.38 BJ	0.67 BJ	NS	2.8 B	NS	0.74 BJ	8.5 B	NS	1.3 BJ	1.2 BJ	1.8 BJ	0.43 BJ	4.4 B	0.76 BJ	5.6 B
Perfluorodecane Sulfonic Acid	NSL	ng/L	< 2.0 U	NS	< 2.1 U	< 2.0 U	< 2.0 U	NS	< 2.1 U	NS	< 2.0 U	< 2.1 U	NS	< 1.9 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Perfluorodecanoic acid (PFDA)	NSL	ng/L	< 2.0 U	NS	< 2.1 U	< 2.0 U	< 2.0 U	NS	< 2.1 U	NS	< 2.0 U	< 2.1 U	NS	< 1.9 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Perfluorododecanoic acid (PFDoA)	NSL	ng/L	< 2.0 U	NS	< 2.1 U	< 2.0 U	< 2.0 U	NS	< 2.1 U	NS	< 2.0 U	< 2.1 U	NS	< 1.9 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Perfluoroheptane Sulfonate (PFHPS)	NSL	ng/L	< 2.0 U	NS	< 2.1 U	< 2.0 U	< 2.0 U	NS	< 2.1 U	NS	< 2.0 U	0.45 J	NS	1.6 J	1.1 J	0.34 J	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Perfluoroheptanoic acid (PFHpA)	NSL	ng/L	< 2.0 U	NS	< 2.1 U	< 2.0 U	< 2.0 U	NS	0.43 J	NS	< 2.0 U	3.2	NS	1.6 J	1.3 J	0.95 J	< 2.0 U	0.28 J	< 2.0 U	< 2.0 U
Perfluorohexanesulfonic acid (PFHxS)	NSL	ng/L	0.29 BJ	NS	0.26 BJ	0.83 BJ	0.33 BJ	NS	0.75 BJ	NS	0.37 BJ	2.1 B	NS	3.5 B	2.4 B	1.3 BJ	0.33 BJ	0.78 BJ	0.36 BJ	0.53 BJ
Perfluorohexanoic acid (PFHxA)	NSL	ng/L	< 2.0 U	NS	< 2.1 U	< 2.0 U	< 2.0 U	NS	< 2.1 U	NS	< 2.0 U	3.2	NS	0.73 J	< 2.0 U	0.95 J	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Perfluorononanoic acid (PFNA)	NSL	ng/L	< 2.0 U	NS	< 2.1 U	< 2.0 U	< 2.0 U	NS	< 2.1 U	NS	< 2.0 U	1.0 J	NS	0.87 J	0.75 J	0.27 J	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Perfluorooctane Sulfonamide (FOSA)	NSL	ng/L	< 2.0 U	NS	0.37 J	< 2.0 U	1.4	NS	< 2.1 U	NS	< 2.0 U	< 2.1 U	NS	0.53 J	< 2.0 U	0.86 J	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Perfluorooctanesulfonic acid (PFOS)	10	ng/L	< 2.0 U	NS	< 2.1 U	0.71 J	3.0	NS	12	NS	1.0 J	14	NS	110	70	16	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Perfluorooctanoic acid (PFOA)	10	ng/L	< 2.0 U	NS	< 2.1 U	0.88 J	0.95 J	NS	1.7	NS	< 2.0 U	16	NS	16	12	5.4	< 2.0 U	1.6 J	< 2.0 U	< 2.0 U
Perfluoropentanoic Acid (PFPeA)	NSL	ng/L	< 2.0 U	NS	< 2.1 U	< 2.0 U	< 2.0 U	NS	< 2.1 U	NS	< 2.0 U	2.5	NS	< 1.9 U	< 2.0 U	< 2.0 U	< 2.0 U	9.9	< 2.0 U	0.99 J
Perfluorotetradecanoic acid (PFTA)	NSL	ng/L	< 2.0 U	NS	< 2.1 U	< 2.0 U	< 2.0 U	NS	< 2.1 U	NS	< 2.0 U	< 2.1 U	NS	< 1.9 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Perfluorotridecanoic Acid (PFTriA)	NSL	ng/L	< 2.0 U	NS	< 2.1 U	< 2.0 U	< 2.0 U	NS	< 2.1 U	NS	< 2.0 U	< 2.1 U	NS	< 1.9 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Perfluoroundecanoic Acid (PFUnA)	NSL	ng/L	< 2.0 U	NS	< 2.1 U	< 2.0 U	< 2.0 U	NS	< 2.1 U	NS	< 2.0 U	< 2.1 U	NS	< 1.9 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U

Guidance values for PFAS outlined in the NYSDEC's Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), under NYSDEC's part 375 Remedial

Programs, June 2021

²Data was collect by NYSDEC in November of 2018. Wells were tested for Total Metals and PFAS. µg/L=Microgram(s) per liter ng/L = Nanogram(s) per liter B = Analyte is detected in associated blank EPA = U.S. Environmental Protection Agency

ID = Identification

J = Estimated value
U = Not detected

U = Not detected
NS = Not sampled
NSL = No screening level available
NYSDEC = New York State Department of Environmental Conservation
PFAS = Per- and polyfluoroalkyl substance
Groundwater Screening Level = NYSDEC Screening criteria
Detected results are bold.

Results exceeding the Groundwater Screening Levels are bolded and shaded gray

Table 2. Summary of PFAS Concentrations in Groundwater Samples (August 2021)

	Sample L	ocation ID			MW-10	9	MW-10S		DUP-0804	21	
		Sample ID		V-7	356014-MW	-10	356014-MW-		356014-DUP-(
		Sample ID							356014-MW-10S		
	Sa	mple Date	8/4/2021		8/4/2021		8/4/2021	8/4/2021		8/4/2021	
	Groundwater										
Analyte	Screening Levels	Unit	Concentration	Q	Concentration	Q	Concentration	Q	Concentration	Q	
	PFAS (E	PA Method	537 modified)								
Perfluorobutanoic acid (PFBA)	NSL	ng/L	2.2	BJ	1.1	BJ	1.7	BJ	1.7	BJ	
Perfluoropentanoic acid (PFPeA)	NSL	ng/L	0.71	J	< 1.8	U	< 1.7	U	0.49	J	
Perfluorohexanoic acid (PFHxA)	NSL	ng/L	0.87	J	< 1.8	U	< 1.7	U	< 1.8	U	
Perfluoroheptanoic acid (PFHpA)	NSL	ng/L	1.4	J	< 1.8	U	< 1.7	U	< 1.8	U	
Perfluorooctanoic acid (PFOA)	10	ng/L	12		< 1.8	U	< 1.7	U	< 1.8	U	
Perfluornonanoic acid (PFNA)	NSL	ng/L	0.77	J	< 1.8	U	< 1.7	U	< 1.8	U	
Perfluorodecanoic acid (PFDA)	NSL	ng/L	<2.0	U	< 1.8	U	< 1.7	U	< 1.8	U	
Perfluoroundecanoic acid (PFUnA)	NSL	ng/L	<2.0	U	< 1.8	U	< 1.7	U	< 1.8	U	
Perfluorododecanoic acid (PFDoA)	NSL	ng/L	<2.0	U	< 1.8	U	< 1.7	U	< 1.8	U	
Perfluorotridecanoic acid (PFTriA)	NSL	ng/L	<2.0	U	< 1.8	U	< 1.7	U	< 1.8	U	
Perfluorotetradecanoic acid (PFTeA)	NSL	ng/L	<2.0	U	< 1.8	U	< 1.7	U	< 1.8	U	
Perfluorobutanesulfonic acid (PFBS)	NSL	ng/L	1.1	J	0.35	J	0.94	J	0.89	J	
Perfluorohexanesulfonic acid (PFHxS)	NSL	ng/L	2.9		< 1.8	U	0.29	J	0.27	J	
Perfluoroheptanesulfonic acid (PFHpS)	NSL	ng/L	1.3	J	< 1.8	U	< 1.7	U	< 1.8	U	
Perfluorodecanesulfonic acid (PFDS)	NSL	ng/L	<2.0	U	< 1.8	U	< 1.7	U	< 1.8	U	
Perfluorooctanesulfonic acid (PFOS)	10	ng/L	78		0.44	J	0.36	J	0.36	J	
Perfluorooctanesulfonamide (FOSA)	NSL	ng/L	<2.0	U	< 1.8	U	< 1.7	U	< 1.8	U	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	NSL	ng/L	<4.9	U	< 4.5	U	<4.4	U	<4.4	U	
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	NSL	ng/L	1.9	J	< 4.5	U	<4.4	U	<4.4	U	
6:2 FTS	NSL	ng/L	<4.9	U	< 4.5	U	<4.4	U	<4.4	U	
8:2 FTS	NSL	ng/L	<2.0	U	< 1.8	U	< 1.7	U	< 1.8	U	

Notes:

NSL = No screening level available

ng/L = Nanogram(s) per liter

B = Compound was found in blank and sample

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

PFAS = Per- and polyfluoroalkyl substances

Q = Qualifier

U = Not Detected Above reporting limit

Detected results are bold.

Shaded and Bold Values exceed Groundwater Screening Levels for PFAS.

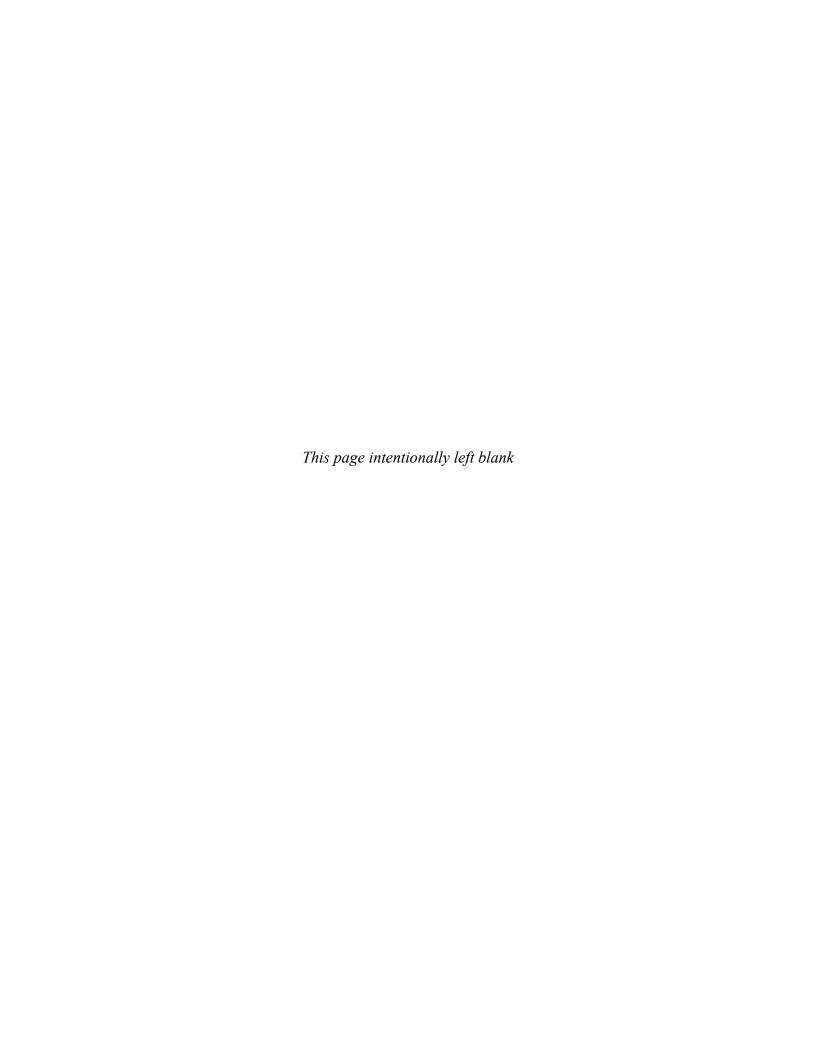
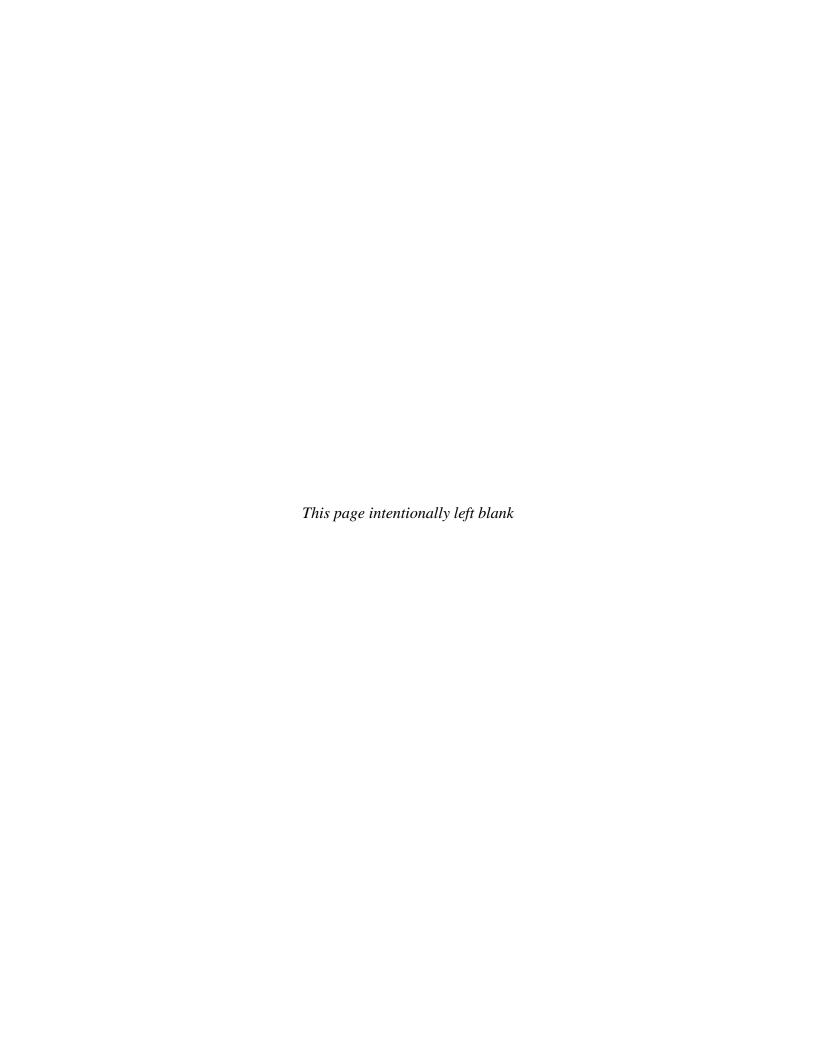
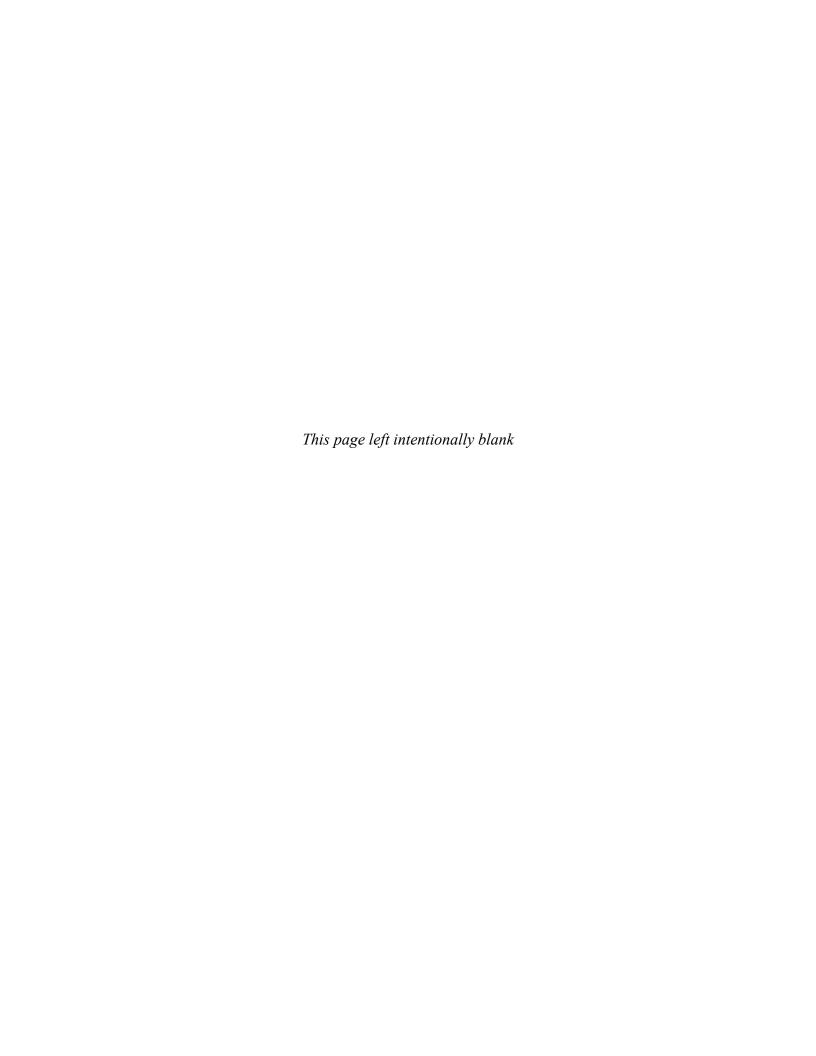

Groundwater Screening Level = NYSDEC Ambient Water Quality Standard Class GA (Standard/guidance values) (Technical and Operational Guidance Series [TOGS]) 1.1.1).

Table 3. Summary of Analyte Concentrations in Surface Water Sheen Sample


256014 SHEET							
330014-311EE	N-080421						
8/4/202	1						
Concentration	Qualifier						
0.73 J	J						
SVOCs (8270D)							
SVOCs (8270D) TICs							
22	THJ						
13	THJ						
11	THJ						
GRO (8015D)							
16	JВ						
	0.73 J) ICs 22 13 11						

Notes:

- μ g/L = Microgram(s) per liter
- B = Compound was found in blank and sample
- DRO = Diesel range organics
- GRO = Gasoline range organics
- H = Sample was prepped or analyzed beyond the specified holding time
- ID = Identification
- J = Estimated value
- PCB = Polychlorinated biphenyl
- T = Result is a tentatively identified compound (TIC) and an estimated value.
- TIC = Tentatively identified compound
- SVOC = Semi-volatile organic compound
- VOC = Volatile organic compound


Appendix A Site Inspection Checklist

Site Inspection Chec	cklist					
Site Name (Number): Nap	anoch Paper Mill 356014	1	Date/Time:	6/22/2021 11:00		
Site Address (nearest cros	s street): 77 NYS Route 5	55, Wawarsing	g, NY			
	_					
Weather: rainy, cloud	,	Personnel:	Liane Desantis, No	ah Robinson, Haley Young		
Site property description	(.e.g, buildings, fencing,	gates, etc)				
Building(s): Remanats	Stories: N/A	In Use/Activ				
Bldg material:	Stone and concrete	Area Use (R,	/C/I): I			
Fenced (Y/N) (material):	Y; chain link	Gate(s):	4 Lock(s):	3 combo, 1 keyed		
Nearest adjacent building	s (and descriptions):					
Residences across the stre	eet (Rt. 55)					
Site Surface Hydrology						
Surface water drainage/In	npoundments:	N/A	Creeks/Streams:	Rondout Creek		
Ponds/Water front	N					
Site Features						
Asphalt/Concrete (%):	1 - 2 % Condition:	Poor - building foundation remants				
Slope/Direction (steep/fla	t,hilly, etc.)	Site slopes generally to the south				
Vegetation (grassy/trees/	shrubs; overgrown, etc.)		overgrown with gra	ss, trees, and shrubs		
Overhead Utilities (electri	c/data/phone):	No				
Subsurface Utilities and Lo	ocations: unknown					
Monitoring Wells (see att	ached checklist).					
Notes/Other Observation:	s:					
L. DeSantis, H. Young and N.	-	-				
Napanoch, NY. EA was able t	= :			· ·		
cutting the lock and replacin	g with a combination lock v	vith code 6014.	The site was very over	grown with tall grasses.		

L. DeSantis, H. Young and N. Robinson arrived at Napanoch Papermill site, near 77 State Route 55, Napanoch, NY. EA was able to access the site gate by MW-2 (between 77 and 100 State Route 55) by cutting the lock and replacing with a combination lock with code 6014. The site was very overgrown with tall grasses, weeds, trees, and had several wet areas. EA was able to find wells MW-7, MW-8, MW-6, the Oil Seep area, MW-4, MW-3, MW-5, MW-2, MW-1, MW-1S, MW-10 and MW-10D. EA was unable to find PW-1, or access MW-9, MW-9S, RES-2, and Rivera Well because they are on residential properties. An oil sheen was noted by the oil seep location as well as a large plastic tank north of MW-4 and the Oil Seep location. Bailers and/or tubing were found in all located wells except MW-6 and MW-8. Coordinates for MW-7 and MW-3 were not accurate to the in field well location, new coordinates were recorded in the field. MW-01 and MW-01S were located at the northern most part of the site, just outside the fenced area, before the bridge. EA cut the locks on those wells and replaced them with combination locks as well. Those were the only wells with locks, likely because they are outside of the fenced area. MW-10 and MW-10D were accessed from another gate located on Water St. (south of the corner of National St. and Water St.). EA cut the lock on that gate and replaced it with a combination lock. All combination locks were set to the same code, 6014. Tubing and bailers were found in some of the wells. (1500) EA offsite.

ketch		

Appendix B Institutional/Engineering Control Certification

Enclosure 1 Engineering Controls - Standby Consultant/Contractor Certification Form

Sit	e No.	356014	S	ite Details			Box 1
Sit	e Name Na	apanoch Par	er Mill				
Cit Co	e Address: y/Town: W unty: Ulster e Acreage:	awarsing	Zip Code: 12489				
Re	porting Peri	iod: Decemb	er 30, 1997 to Dec	ember 31, 2021			
						YES	NO
1.	Is the info	rmation above	e correct?			×	
	If NO, incl	ude handwritt	en above or on a s	separate sheet.			
2.				site property been sold, su nent during this Reporting F			×
3.			there been any ch SNYCRR 375-1.11(ange of use at the site dur (d))?	ing this		X
4.				e, and/or local permits (e.g. rty during this Reporting P			又
				u 4, include documentati y submitted with this cer			
5.	To your kr	nowledge is th	e site currently un	dergoing development?			×
							Box 2
				·) .		YES	NO
6.				use(s) listed below? nercial, and Industrial		X	
7.	Are all ICs	/ECs in place	and functioning as	s designed?		X.	
				t 7 IS NO, sign and date be rective Measures Work Pla			ues.
Sig	nature of St	andby Consul	ant/Contractor		Date		·

SITE NO. 356014

Box 3

Description of Institutional Controls

<u>Parcel</u>

<u>Owner</u>

83.10-1-1.1 Tadasuke Kuwayama

Institutional Control

Landuse Restriction

Ground Water Use Restriction

Box 4

Description of Engineering Controls

None Required

Not Applicable/No EC's

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification, including data and material prepared by previous contractors for the current certifying period, if any;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) nothing has occurred that would constitute a failure to comply with the Site Management Plan,
	or equivalent if no Site Management Plan exists. YES NO
	× □
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and contact the DEC PM regarding the development of a Corrective Measures Work Plan to address these issues.
	Signature of Standby Consultant/Contractor Date

IC/EC CERTIFICATIONS

Signature

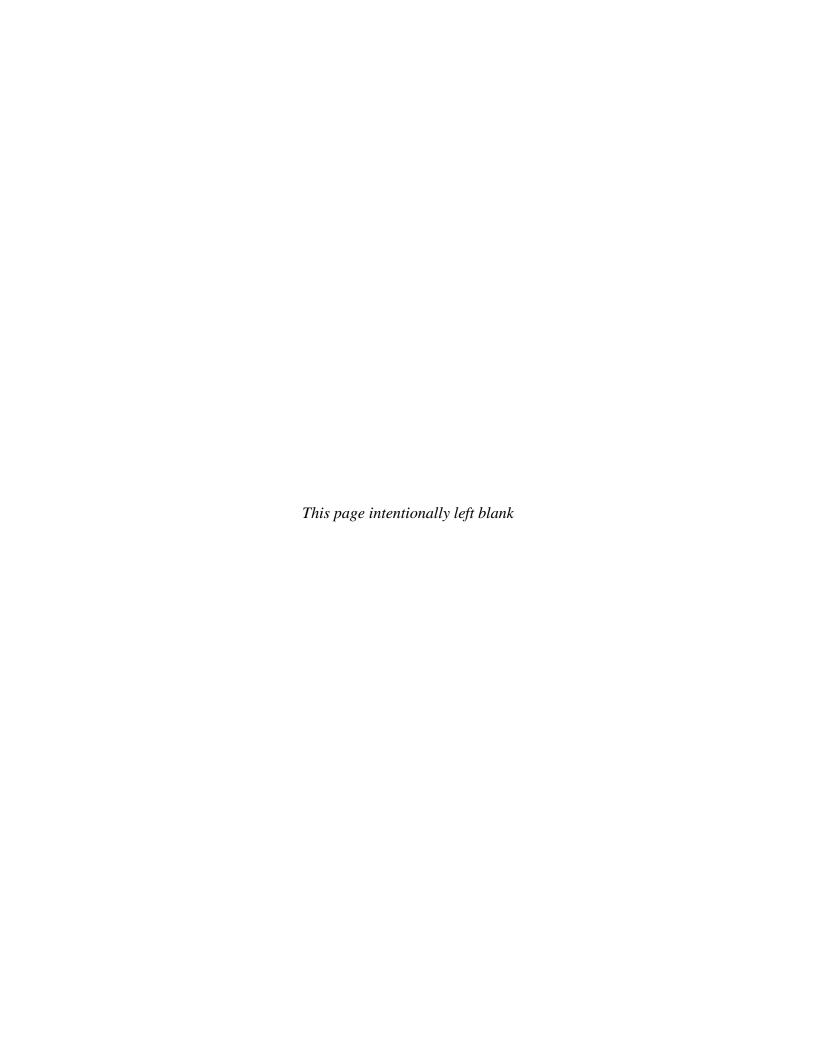
I certify that all information in Boxes 2 through 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

JAMES C. HAYWARD at 269 WEST JEFFERSON ST print name

SYRACUSE, NY 13202

(EN ENGINEERING, P.C.)

am certifying as a.
Professional Engineer


Signature of

Signature of
James C Hayward

3/17/2022

Appendix C

Groundwater Purge Logs and Photographic Log

®	Project			Project No
	Subject			Sheet No Drawing No
\$4	Computed by	Date	Checked by	Dat
Naponoch Papes m		er an'.		
09,802.A (L. Buchman Low	e, H. Young, M. Robinso) arrive onsite o	nt Cal Irale	equipment
0945 EA set up	on mulo		,	
1004 Begin purge m	wto	r		
LOSENR 116 Suns	D mwlowith,	MS/MSD		
1131 Setup and	best purse at mu-	los		
(W-los W/ Dup-			
1220 FA mobilize	to mw-7			
1240 EA set up =	ne begin prese Mu	-7		
1323 (Sample) /	n W-7	,		
1340 (Semple) F	B-080421			
1346 (Somple) 1	EQ-080421			
MOD EX MOBILIZE	to oil steep loca	atu		
EA Fines	heen			
1420 FA Symple)	Bhoen-08042	λ		
1445 FA aft	enot fodelive h	NOKE Notes to pr	operation of 100 de	()
1530 FA 8	45/2			

not all

FIELD CALIBRATION FORM

YSI 3800 pH, CONDUCTIVITY, TEMPERATURE, TURBIDITY, ORP, AND DISSOVED OXYGEN

CALIBRAT	ION
DATE: 8 4 Z	
TIME: 0925	·
METER ID: \$41878	

pH CALIBRATION

pH STANDARD 4.0	initial reading 4.13	FINAL READING
7.0		
10.0		

CONDUCTIVITY CALIBARATION

CONDUCTIVITY STANDARD	STANDARD READING	FINAL READING
1.413 4.49	4,88	4.48

TURBIDITY CALIBRATION

STANDARD	INITIAL READING	FINAL READING
DITHUBILES		m/ m/
0 NTU	11.0	\ \(\mathcal{D}\).\(\O\)
		
126 NTU		<u></u>

ORP CALIBRATION

STANDARD	FINAL READING
240 millivolts	

DISSOLVED OXYGEN CALIBRATION

STANDARD	INTITIAL READING	FINAL READING
100% AIR SATURATION	8.92	9.02

COMMENTS

XIBLX—
SIGNATURE

FIELD CALIBRATION FORM

Site Name: Mpenoch

INSTRUMENT: MINITRUMENT ID No:
OPERATOR: N. Robinson WEATHER: 64° FOVErCast
INSTRUMENT: M'N', RAE 320 INSTRUMENT ID NO: OPERATOR: N. Robinson WEATHER: G4°FOVERCOST SPAN GAS TYPE: Footylere (00ppm DATE: 8/4/2)
CALIBRATION NOTES:
Zero Cal:, O.O PPM
Zero Cal: O.O PPM Span Cal: Woodppm
COMMENTS:
SIGNATURE: MAN DATE: 8/H/Z)

CTION DATA Screened Interval Nominal Borehole REMENTS			950	
Screened Interval Nominal Borehole REMENTS				
Screened Interval Nominal Borehole REMENTS				
Screened Interval Nominal Borehole REMENTS				
Screened Interval Nominal Borehole REMENTS				
Nominal Borehole REMENTS				
REMENTS	Diameter (in.			
) 6		
7 11			-	
Jahons per toot o	f depth 📆 🧘	740B) 6	,653	
Static water level	(ft) 8-72			
Water column hei	ght (ft) 💯 -	72		
	llons) [3	,S3		
MATION				
the second secon	ter Type / ID	Hariba C:	- STR OUI	
			<u> </u>	
	<u>```</u>	Colection	SC Darther	
			<i>32 (100.0)</i>	
Volume removed (L) [9.5				
L/min) Restart Purge Time				
			·	
	Turbidity	DO		
emp. ORP	(NTU) +/-10% or		Depth to Water	
- 3%) (+/- 10)	<5 NTU	<0.5 mg/L	(ft below TOC)	
8.02 155	75,4	8.81	<u> </u>	
12. 106	0.0	3.0	-	
0.24 94				
	6,0			
1 1 4		1.21		
4.87 L/7		1.31		
4.81 47	6.0	1,00		
4.85 - 7	0,0	0.88		
4.88 - 7 4.81 -75	0,0 0,0	0.88		
4.85 - 7 4.81 -75 4.80 -108	6,0 0,0 0,0	1.00 0.88 1.02 1.72		
4.85 - 7 4.81 -75 4.80 -108 4.3 -122	0.0 0.0 0.0	1.02 0.88 1.02 1.72 0.90		
4.85 - 7 4.81 -75 4.80 -108	6,0 0,0 0,0	1.00 0.88 1.02 1.72		
W I W I W I W I W I W I W I W I W I W I	Water volume (Gaman Mation Water Quality Melow-Thru Cell Vappearance/Odor Appearance/Odor Otal Drawdown (Material Pump Time (Water volume (Gallons) Water Quality Meter Type / ID low-Thru Cell Volume (L) Appearance/Odor (Start) Appearance/Odor (End) Otal Drawdown (ft) WA Volume rem Restart Purg Otal Pump Time (min) ORP (NTU) -3%) (+/-10) <5 NTU -3%) (+/-10) < 5 NTU -3.02 155 75.4 -1.12 106 0.0	Water volume (Gallons) Water Quality Meter Type / ID Proba Color (Start) Suppearance / Odor (Start) Suppearance / Odor (End) Suppearance / Odor (End) Volume removed (L) Notal Drawdown (ft) Restart Purge Time Sotal Pump Time (min) ORP (NTU) (mg/L) (my/) (m	

WELL PURGING AND SAMPLING RECORD

Site Nam	ne/Locati	on			***	Project No: P				Page 7 of 7	
Well ID					(Date	Time			
Well Site		. /		- 0	Pa				<u>'</u>		
Weather			and	~5	1) 1						
Field Ted			NI.								
_				WELL	CONSTR	UCTIO	N DATA				
TOC Ele	vation (f	t amsl)					ned Interval	(ft bgs)			
Well Dia						Nomir	nal Borehol	e Diameter (i	in.)		
				ELLE.	LD MEAS	SUREMI	ENTS		<u>-</u>		
Well Dea	oth (oang	ge after sam	nling) (ft)	TIE	DD 1133231		s per foot	of depth			
Depth to			pring) (re)					(ft) \$.72			
Product of							column he				
Product							volume (G				
1100001	, o 1 a					l					
<u></u>	/		<u> </u>	PU.	RGE INF						
Pump Ty		4.70)						eter Type / II	<u>, </u>	·-	
Pump In		tn (ft)			 -		Thru Cell V				
Purge Sta							rance/Odo				
Purge Er							rance/Odor			·	
_		ate (mL/mi	n)	a. m'		Total Drawdown (ft)					
Well We		Y/N)		Stop Tin		Volume removed (L)					
Recovery				Recovery	y Rate (mI						
Total Vo	lume Re	moved (L)	,	.		Total Pump Time (min)					
Date	Time	Purge Rate (mL/min)	Volume Removed (LPM)	pH (+/-0.1)	Cond. (µS/cm) (+- 3%)	Temp. (°C) (+-3%)	ORP (mV) (+/- 10)	Turbidity (NTU) +/-10% or <5 NTU	DO (mg/L) +/-10% or <0.5 mg/L	Depth to Water (ft below TOC)	
8/4/21	100	0.30	16.5	6,98	0,476	14,52	-141	0,0	0,67		
<u> </u>	1105	6,30	18,0	7,00	81470	14,81	-143	010	0.71	_	
	1110	0.30	19.5	7,00	0.468	14.89	-148	0,0	17.0	_	
	V 10_	0.70	1-620	2,00	0.00	, (20(1 05				
				<u> </u>							
					ļ <u>.</u>						
COMN	ÆNTS .										
											
	-			S	SAMPLE						
Sample			-			Sampl	e Time	ι0			
Sampl						1		103			
	C Collect	ted / ID		$\overline{}$	~~ ?	Sampl	e Appearar	de/Odor			
Analys				<u>)</u> /43	JE / 1	100	7)/	<u> </u>			
Sample	er			1000	, —	Signat	ure	1			

Site Nan	ie/Locati	on Nagar	code					: 1602523/		of (
Well ID	mw-	(05					Date 81	4/21	Time	1130
Well Site										
Weather	Temp/	73°F 50	nny							
Field Te	chnician		<u> </u>							<u> </u>
					~~~~~					
				WELL	CONSTR			(0.1)		
TOC Ele			<b>0</b> ( )				ed Interval		<b>\</b>	
Well Dia	ımeter (ir	1.) 2	Sticku	<b>.</b>		Nomin	ial Borehol	e Diameter (i	in.)	
				DID	LD MEAS	TMTOTMT	PTTC			
Wall Day	ath (cour	ge after sam	nling) (A)				s per foot	of denth A	9-163	
Depth to				18.003			(ft) 10.50			
		eight (ft)				Water	column be	ight (ft) 5,06		
Product			NA			Water	volume (G	allons) 5.0	Y CD D	825
110000	, oranie (	Cunonsy	<i>J</i> ~ <i>J</i> \						K NC U	
				PU	RGE INF	ORMAT	ION			
Pump Ty	pe / ID	Pec	: 193W	?	· · · · · ·	Water	Quality M	eter Type / II	Hochus	2 04/070
Pump In			<u>. , , , , , , , , , , , , , , , , , , ,</u>			Flow-7	Thru Cell V	olume (L)		
Purge St			w <u>-</u> ·			Appea	rance/Odo	(Start) Doc	hbran to	45
Purge Er	nd Time	1,210				Appea	rance/Odo	(End) (Lea	IT, coluitess	Odestess
Average	Purge R	ate (mL/mir	n)			Total I	Drawdown	(ft) <u> </u>		
Well We	nt Dry (	Y/N) /	/-	Stop Tin		Volume removed (L)				
Recover		_		Recover	y Rate (mI	/min) — Restart Purge Time —				
Total Vo	lume Re	moved (L)	9,0			Total Pump Time (min) 3				
		ž D.,	Volume	.0.1		Torre	ORP	Turbidity (NTU)	DO (mg/L)	
		Purge Rate	Removed	pH	(µS/em)	Temp.	(mV)	+/-10% or	+/-10% or	Depth to Water
Date	Time	(mL/min)	(LPM)	(+/-0.1)	(+- 3%)	(+- 3%)	(+/- 10)	<5 NTU	<0.5 mg/L	(ft below TOC)
6/4/24	1133	0,30	~_	7,14	0,449	17,46	u	71000	4,29	
	ા[38	0,30	<u>เร</u>	692	0,458	1646	-49	62	0-89	
	11363	0/30	300	6.87	0,460	16.35	-83	0.0	0.83	
	1148	050	4.5	6.85	0,477	16.58	- 84	0.0	0.77	
	ાક્સ	0-30	6.0	6,93	0.516	16.64	-88	0,0	0.67	
	1158	0.30	7.5	6.8	0,517	16.70	189	0,0	064	
	1203	0.30	9,0	6.79	0.523	16.62	-92	0,0	0,64	~_
					1					
		<u> </u>	<u> </u>	ı	1		<u> </u>	1		<u> </u>
COMN	MENTS .	Nο	waterhere	1 during	prze a	int no	gars re	until after	- Sungling	due to:
		<u> PFA</u>	3			•				
		•			CANADE TO	COLLEG	CTION			
<u> </u>		<i>a</i> 1 –			SAMPLE					
		8/4/21				Sampl	e Time 17	03		
		N-105	. n. net - :			10. 1	- A	/01		_ [
		ted/ID Du	16- 0204-	2(		Sampl	e Appearar	ice/Odor cle	a Color less	s gor less
	ses PF		<u> </u>			10: :	<del></del>	1001		
Sampl	er NK	LIHY LI	<u>5∟</u>			Signature had Malm				



Cita Nias	na/Tasati	۔ ماہ ۔۔	0.000		·		Project No	11 296141.	Page	of )
Site Nai	ne/Locan	on Nap	anoch			Project No: USUS/005 Page of Date 8/2/21 Time 1240				
	WM-=		. <b>(R</b> .1	<u>.</u>	<u> </u>	31	Date 8/5	<u> </u>	Time (	770
	e Descrip		te ray		Papern	w leg		<del></del>		
Weather	Temp (	)vercas		F				<u> </u>		
Field Te	chnician	18L, 1	IK, HY							
		· .		WELL	CONSTR					1.0
	evation (fl						ed Interval	·	225-31	
Well Di	ameter (ir	) A				Nomii	al Borehol	e Diameter (in	l.)	
		Į.		FIE	LD MEAS	SUREMI	ENTS			
Well De	pth (gaug	e after sam	oling) (ft)	34.11	10 C	Gallor	s per foot o	of depth O	.653	
Depth to	product	(ft) NA		<i></i>	Static	water level	(ft) \$\$-07	TOC		
Product	column h	eight (ft)	VA			Water	column hei	ght (ft) 14	٠.04	
Product	volume (	Gallons)	NA			Water	volume (G	allons)	1,47	
			··	PIT	RGE INF	ORMAT	TON			
Pump T	ype / ID	Peri	1951		AND BUILD			eter Type / ID	Horer lane	USZ OUL
	take Dept		, 10 -	<i>1</i> 8			Thru Cell V		-	C-
	tart Time			<u> </u>			rance/Odor		ar (slorloce	odorless
	nd Time	1670		·						
		nte (mL/mir				Appearance/Odor (End) (lear, color less odor less Total Drawdown (ft)				
	ent Dry (\)		-9	Stop Tin	ne	Volume removed (L)				
Recover					y Rate (mL					
		noved (L)		1000 102	, rate (III	Total Pump Time (min) 35				
Total V	Jame 100	10.00 (2)			ï .	10000		Turbidity	DO	
		Purge	Volume	_	Cond.	Temp.	ORP	(NTU)	(mg/L)	
Date	Time	Rate (mL/min)	Removed (LPM)	pH (+/-0.1)	(μS/cm) (+- 3%)	(℃) (+- 3%)	(mV) (+/- 10)	+/-10% or <5·NTU	+/-10% or <0.5 mg/L	Depth to Water (ft below TOC)
	1248	0.30		7.06	Ø.302	21,59	65	10.9	4.29	
	1253	Ø.30	1.8	6.25	0.328		69	00	1.03	_
	1258	5,30	3.0	6.19	Ø.349	1811	73	Ø.Ø	0.85	
				6.17	0.353	114.	75	<del></del>	0.79	
	1203	0,30	45							
	1308	0.30	620	6.10	0.360	17.29	55	0.0	0.72	
	1313	0.30	7.5	6.11	Ø 368	11.12	-[	0.0	Ø.68	
	1318	0,70	9,0		Ø.38t		-1	$\phi \cdot \varphi$	Ø, 65	
	1323	0-30	10.5	6.08	0.380	16-19	-9	Ø.Ø	\$.62	
СОМІ	MENTS _	raid:	63.7	ppm						
					n A la district	COLLE	COTTON T	<u>-</u>		
G. 1	l. D. e	1111-1			SAMPLE			? <b>5</b> 3		
	le Date &					Sampl	e Time	<u> 327 </u>		
Sampl		(W-)				10. 1		/0.1- /0.1		- 1
		ed/ID'~	_			Sampl	e Appearan	ce/Odor Cla	ur, courses	S oboles
Analy	ses ++	2K	* . * .			10.	<del></del>	1 /2/ 1		
Samp	ler A	LAL	<u>HY</u>			Signat	ure //w/	SIMAL	$\rightarrow$	



Site Nan	ne/Location	on Mil	langeh				Project No	: 16	Page	of \
	90:14	- 000	Sheer			Date 8/4/21 Time 1415				
	e Descrip		1 see ,			<b>-</b>	.,			
Weather		73%	Partle	Clarly						
	chnician	NRE	BJ NR	BL V	ty					-
				WELL	CONSTR	RUCTIO	N DATA			
TOC Ele	evation (ft	amsl)	_				ned Interval	(ft bgs)		
	ameter (in		<del>''</del>					e Diameter (ir	n.) —	
		<u> </u>		FILE	LD MEAS	SUREM	ENTS		<u> </u>	
Well De	nth (gang	e after sam	nling) (ft)		1,22,1			of depth -		
	pur (gaug product (		<u>₩</u>				water level			<del>_</del>
	column h	· · · · · · · · · · · · · · · · · · ·	NA				r column he	<u> </u>		
	volume (		NA					allons)		
Troduct	votume (	запопој	100			1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	O) viiiiii.			
				PU	RGE INF					
	ype/ID (							eter Type / ID	Heriby by	-82 04670
	take Dept		Δ				Thru Cell V			
	tart Time	MA					arance/Odor	· · · /	VA	
Purge E		$\sim$ 4			<u> </u>		arance/Odoi			<u> </u>
		ite (mL/mii	n) WA			Total	Drawdown	·; ·		
	ent Dry (Y		νA	Stop Tin		Volume removed (L)				
Recover		<u>.</u>	<b>/</b> +	Recover	y Rate (mI			Restart Purg	ge Time	
Total Vo	olume Rer	noved (L)	NA			Total	Pump Time			
		Purge Rate	Volume Removed	pH	Cond. (µS/cm)	Temp.	ORP (mV)	Turbidity (NTU) +/-10% or <5 NTU	DO (mg/L) +/-10% or <0.5 mg/L	Depth to Water (ft below TOC)
Date	Time	(mL/min)	(LPM)	7.08	(+- 3%)	(+-3%)	(+/- 10) +15	0.0	7.94	(It below TOC)
08/04/a1	1429			1.00	0.424	23.41	TID	7.0	1,-1-1	
				ļ		<del>                                     </del>	-			-
				<u> </u>		ļ				
				<u> </u>						
				<u> </u>		<u> </u>	<u> </u>			
COMI	MENTS _	Show	en obsi	erves,	not break	ang ag	part			
										-
					SAMPLE					
	le Date	814/2				Samp	le Time լ	420		
Samp		Sheen -	082121							
QA/Q	C Collect	ed/ID _				Samp	le Appearar	ice/Odor Si	neer	
Analy	ses Voc	ITPH-D	8,78H-C	DO PCB	5, 5voe	·				
Samp.	ler /\subsection()	LIBL	Ηλ		<i>t</i>	Signa	ture And	Mahar		

# Appendix D Laboratory Analytical Report



## **ANALYTICAL REPORT**

**America** 

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-188006-1 Client Project/Site: SMP C - Napanoch

For:

eurofins 🙀

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Sarah Saucier

Wyst Bloton

Authorized for release by: 8/18/2021 4:14:19 PM Wyatt Watson, Project Management Assistant I Wyatt.Watson@Eurofinset.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868
Judy.Stone@Eurofinset.com

·····LINKS ······

Review your project results through
Total Access

**Have a Question?** 



Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Wyst Bloton

6

Wyatt Watson Project Management Assistant I 8/18/2021 4:14:19 PM Q

9

10

4.6

13

15

## **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	8
Client Sample Results	10
Surrogate Summary	21
Isotope Dilution Summary	23
QC Sample Results	25
QC Association Summary	40
Lab Chronicle	42
Certification Summary	44
Method Summary	45
Sample Summary	46
Chain of Custody	47
Receipt Checklists	50

### **Definitions/Glossary**

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

### **Qualifiers**

### **GC/MS VOA**

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

### **GC/MS Semi VOA**

Qualifier Qualifier Description

H Sample was prepped or analyzed beyond the specified holding time

### **GC/MS Semi VOA TICs**

H Sample was prepped or analyzed beyond the specified holding time

J Indicates an Estimated Value for TICs

T Result is a tentatively identified compound (TIC) and an estimated value.

**GC VOA** 

Qualifier Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

### **GC Semi VOA**

S1+ Surrogate recovery exceeds control limits, high biased.

**LCMS** 

Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

### **Glossary**

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

Eurofins TestAmerica, Buffalo

Page 4 of 51 8/18/2021

3

А

_

8

9

10

12

13

45

## **Definitions/Glossary**

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

### **Glossary (Continued)**

Abbreviation	These commonly used abbreviations may or may not be present in this report.
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

4

5

6

8

10

4.0

13

15

### **Case Narrative**

Client: New York State D.E.C.
Project/Site: SMP C - Napanoch

Job ID: 480-188006-1

Laboratory: Eurofins TestAmerica, Buffalo

**Narrative** 

Job Narrative 480-188006-1

### Comments

No additional comments.

### Receipt

The samples were received on 8/5/2021 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.0° C.

### GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-592370 recovered above the upper control limit for Carbon tetrachloride, 2-Hexanone and Chlorodibromomethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: TB-080421 (480-188006-8).

Method 8260C: The laboratory control sample (LCS) for analytical batch 480-592370 recovered outside control limits for the following analytes: 2-Hexanone, Chlorodibromomethane and 1,2-Dibromo-3-Chloropropane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated sample is impacted: TB-080421 (480-188006-8).

Method 8260C: The laboratory control sample (LCS) for analytical batch 480-592317 recovered outside control limits for the following analytes: Chlorodibromomethane, Bromoform and 1,2-Dibromo-3-Chloropropane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated sample is impacted: SHEEN-080421 (480-188006-7).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-592317 recovered above the upper control limit for Carbon tetrachloride, Chlorodibromomethane, and 1,2-Dibromo-3-Chloropropane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: SHEEN-080421 (480-188006-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-592784 recovered outside acceptance criteria, low biased, for multiple analytes. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method 8270D: The following sample was diluted due to color, appearance, and viscosity: SHEEN-080421 (480-188006-7). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

### GC Semi VOA

Method 8015D: The surrogate recovery for the blank associated with preparation batch 480-591924 and analytical batch 480-592129 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### LCMS

Method 537 (modified): The method blank for preparation batch 200-169967 and analytical batch 200-169997 contained Perfluorobutanoic acid (PFBA) above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Job ID: 480-188006-1

J

4

5

6

8

4.0

11

13

#### **Case Narrative**

Client: New York State D.E.C. Project/Site: SMP C - Napanoch

Job ID: 480-188006-1

Job ID: 480-188006-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **Organic Prep**

Method 3510C: The following sample was re-prepared outside of preparation holding time due to QC failure. SHEEN-080421 (480-188006-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

9

4

5

0

8

9

11

40

14

15

Client: New York State D.E.C. Job ID: 480-188006-1 Project/Site: SMP C - Napanoch

Client Sample ID: MW-10	Lab Sample ID: 480-188006-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	1.1	J B	4.5	0.80	ng/L	1	_	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.35	J	1.8	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.44	J	1.8	0.26	ng/L	1		537 (modified)	Total/NA

## Client Sample ID: MW-10S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorobutanoic acid (PFBA)	1.7	J B	4.4	0.78	ng/L		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.94	J	1.7	0.22	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.29	J	1.7	0.26	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.36	J	1.7	0.25	ng/L	1	537 (modified)	Total/NA

## Client Sample ID: MW-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	2.2	JB	4.9	0.88	ng/L	1	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	0.71	J	2.0	0.47	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	0.87	J	2.0	0.44	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.4	J	2.0	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	12		2.0	0.42	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.77	J	2.0	0.28	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.1	J	2.0	0.25	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.9		2.0	0.30	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	1.3	J	2.0	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	78		2.0	0.29	ng/L	1		537 (modified)	Total/NA
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	1.9	J	4.9	0.73	ng/L	1		537 (modified)	Total/NA

#### Client Sample ID: FB-080421

No Detections.

## Client Sample ID: EB-080421

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	0.83	JB	4.3	0.76	ng/L	1	_	537 (modified)	Total/NA

## Client Sample ID: DUP-080421

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	1.7	JB	4.4	0.79	ng/L	1	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	0.49	J	1.8	0.42	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.89	J	1.8	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.27	J	1.8	0.27	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.36	J	1.8	0.26	ng/L	1		537 (modified)	Total/NA

## Client Sample ID: SHEEN-080421

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Carbon disulfide	0.73	J	1.0	0.19	ug/L	1	8260C	Total/NA
Gasoline Range Organics	16	JB	25	4.2	ug/L	1	8015D	Total/NA
(GRO)-C6-C10								

This Detection Summary does not include radiochemical test results.

8/18/2021

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-188006-2

Lab Sample ID: 480-188006-3

Lab Sample ID: 480-188006-4

Lab Sample ID: 480-188006-5

Lab Sample ID: 480-188006-6

Lab Sample ID: 480-188006-7

# **Detection Summary**

Client: New York State D.E.C.

Project/Site: SMP C - Napanoch

Job ID: 480-188006-1

Client Sample ID: TB-080421

Lab Sample ID: 480-188006-8

No Detections.

4

5

7

Ŏ

10

13

15

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

**Client Sample ID: MW-10** Lab Sample ID: 480-188006-1 Date Collected: 08/04/21 11:10 **Matrix: Water** 

Date Received: 08/05/21 10:00

Method: 537 (modified) - Fluor Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	1.1	JB	4.5	0.80	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluoropentanoic acid (PFPeA)	ND		1.8	0.42	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.40	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.21	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.38	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.27	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.31	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.34	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.39	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.56	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluorobutanesulfonic acid (PFBS)	0.35	J	1.8	0.22	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.27	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.21	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.27	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluorooctanesulfonic acid (PFOS)	0.44	J	1.8	0.26	ng/L		08/09/21 10:04	08/09/21 21:51	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.51	ng/L		08/09/21 10:04	08/09/21 21:51	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	0.81	ng/L		08/09/21 10:04	08/09/21 21:51	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	0.66	ng/L		08/09/21 10:04	08/09/21 21:51	1
6:2 FTS	ND		4.5	0.98	ng/L		08/09/21 10:04	08/09/21 21:51	1
8:2 FTS	ND		1.8	0.35	ng/L		08/09/21 10:04	08/09/21 21:51	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 FOSA	99		25 - 150				08/09/21 10:04	08/09/21 21:51	1
13C4 PFBA	89		25 - 150				08/09/21 10:04	08/09/21 21:51	1
13C5 PFPeA	103		25 - 150				08/09/21 10:04	08/09/21 21:51	1
13C2 PFHxA	102		50 - 150				08/09/21 10:04	08/09/21 21:51	1
13C4 PFHpA	101		50 - 150				08/09/21 10:04	08/09/21 21:51	1
13C4 PFOA	106		50 - 150				08/09/21 10:04	08/09/21 21:51	1
13C5 PFNA	99		50 - 150				08/09/21 10:04	08/09/21 21:51	1
13C2 PFDA	98		50 - 150				08/09/21 10:04	08/09/21 21:51	1
13C2 PFUnA	97		50 - 150				08/09/21 10:04	08/09/21 21:51	1
13C2 PFDoA	92		50 - 150				08/09/21 10:04	08/09/21 21:51	1
13C2 PFTeDA	90		50 - 150				08/09/21 10:04	08/09/21 21:51	1
13C3 PFBS	106		50 - 150				08/09/21 10:04	08/09/21 21:51	1
1802 PFHxS	107		50 - 150				08/09/21 10:04	08/09/21 21:51	1
13C4 PFOS	101		50 - 150				08/09/21 10:04	08/09/21 21:51	1
d3-NMeFOSAA	95		50 - 150				08/09/21 10:04	08/09/21 21:51	1
d5-NEtFOSAA	92		50 - 150				08/09/21 10:04	08/09/21 21:51	1
M2-6:2 FTS	114		25 - 150				08/09/21 10:04	08/09/21 21:51	1
M2-8:2 FTS	99		25 - 150					08/09/21 21:51	1

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

**Client Sample ID: MW-10S** Lab Sample ID: 480-188006-2 Date Collected: 08/04/21 12:03 **Matrix: Water** 

Date Received: 08/05/21 10:00

Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)		JB	4.4	0.78	-			08/09/21 22:16	
Perfluoropentanoic acid (PFPeA)	ND		1.7	0.41	•			08/09/21 22:16	
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.39	ng/L		08/09/21 10:04	08/09/21 22:16	
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.21	ng/L		08/09/21 10:04	08/09/21 22:16	
Perfluorooctanoic acid (PFOA)	ND		1.7	0.37	ng/L		08/09/21 10:04	08/09/21 22:16	
Perfluorononanoic acid (PFNA)	ND		1.7	0.25	ng/L		08/09/21 10:04	08/09/21 22:16	
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		08/09/21 10:04	08/09/21 22:16	
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.30	ng/L		08/09/21 10:04	08/09/21 22:16	
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.34	ng/L		08/09/21 10:04	08/09/21 22:16	
Perfluorotridecanoic acid (PFTriA)	ND		1.7	0.38	ng/L		08/09/21 10:04	08/09/21 22:16	
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.55	ng/L		08/09/21 10:04	08/09/21 22:16	
Perfluorobutanesulfonic acid (PFBS)	0.94	J	1.7	0.22	ng/L		08/09/21 10:04	08/09/21 22:16	•
Perfluorohexanesulfonic acid (PFHxS)	0.29	J	1.7	0.26			08/09/21 10:04	08/09/21 22:16	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.20	_		08/09/21 10:04	08/09/21 22:16	
Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.27			08/09/21 10:04	08/09/21 22:16	
Perfluorooctanesulfonic acid (PFOS)	0.36	J	1.7	0.25	ng/L			08/09/21 22:16	•
Perfluorooctanesulfonamide (FOSA)	ND		1.7		ng/L		08/09/21 10:04	08/09/21 22:16	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	0.79				08/09/21 22:16	
N-ethylperfluorooctanesulfonamidoac	ND		4.4	0.65	ng/L		08/09/21 10:04	08/09/21 22:16	
etic acid (NEtFOSAA) 6:2 FTS	ND		4.4	0.96	ng/L		08/09/21 10:04	08/09/21 22:16	
8:2 FTS	ND		1.7	0.34	ng/L		08/09/21 10:04	08/09/21 22:16	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C8 FOSA	95		25 - 150					08/09/21 22:16	
13C4 PFBA	82		25 - 150					08/09/21 22:16	
13C5 PFPeA	100		25 - 150					08/09/21 22:16	
13C2 PFHxA	98		50 - 150					08/09/21 22:16	
13C4 PFHpA	98		50 - 150					08/09/21 22:16	
13C4 PFOA	103		50 ₋ 150					08/09/21 22:16	
13C5 PFNA	98		50 - 150					08/09/21 22:16	
13C2 PFDA	100		50 - 150 50 - 150					08/09/21 22:16	
13C2	91		50 - 150					08/09/21 22:16	
13C2 PFDoA	89		50 ₋ 150					08/09/21 22:16	
13C2 PFTeDA	88		50 ₋ 150					08/09/21 22:16	
13C3 PFBS	103		50 - 150					08/09/21 22:16	
1802 PFHxS	106		50 - 150					08/09/21 22:16	
13C4 PFOS	98		50 - 150					08/09/21 22:16	
d3-NMeFOSAA	101		50 - 150					08/09/21 22:16	
d5-NEtFOSAA	88		50 - 150					08/09/21 22:16	
M2-6:2 FTS	110		25 - 150				08/09/21 10:04	08/09/21 22:16	
M2-8:2 FTS	108		25 - 150				08/09/21 10:04	08/09/21 22:16	

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

Date Received: 08/05/21 10:00

**Client Sample ID: MW-7** Lab Sample ID: 480-188006-3 Date Collected: 08/04/21 13:23

**Matrix: Water** 

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	2.2	JB	4.9	0.88	ng/L		08/09/21 10:04	08/09/21 22:24	•
Perfluoropentanoic acid (PFPeA)	0.71	J	2.0	0.47	ng/L		08/09/21 10:04	08/09/21 22:24	
Perfluorohexanoic acid (PFHxA)	0.87	J	2.0	0.44	ng/L		08/09/21 10:04	08/09/21 22:24	
Perfluoroheptanoic acid (PFHpA)	1.4	J	2.0	0.23	ng/L		08/09/21 10:04	08/09/21 22:24	
Perfluorooctanoic acid (PFOA)	12		2.0	0.42	ng/L		08/09/21 10:04	08/09/21 22:24	
Perfluorononanoic acid (PFNA)	0.77	J	2.0	0.28	ng/L		08/09/21 10:04	08/09/21 22:24	
Perfluorodecanoic acid (PFDA)	ND		2.0	0.30	ng/L		08/09/21 10:04	08/09/21 22:24	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.34	ng/L		08/09/21 10:04	08/09/21 22:24	
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.38	ng/L		08/09/21 10:04	08/09/21 22:24	
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.43	ng/L		08/09/21 10:04	08/09/21 22:24	
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.62	ng/L		08/09/21 10:04	08/09/21 22:24	
Perfluorobutanesulfonic acid (PFBS)	1.1	J	2.0		ng/L			08/09/21 22:24	1
Perfluorohexanesulfonic acid (PFHxS)	2.9		2.0	0.30	ng/L		08/09/21 10:04	08/09/21 22:24	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.3	J	2.0		ng/L		08/09/21 10:04	08/09/21 22:24	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.30	ng/L		08/09/21 10:04	08/09/21 22:24	
Perfluorooctanesulfonic acid (PFOS)	78		2.0	0.29	ng/L		08/09/21 10:04	08/09/21 22:24	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0		ng/L			08/09/21 22:24	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.9	0.89	ng/L		08/09/21 10:04	08/09/21 22:24	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	1.9	J	4.9		ng/L		08/09/21 10:04	08/09/21 22:24	1
6:2 FTS	ND		4.9	1.1	ng/L		08/09/21 10:04	08/09/21 22:24	1
8:2 FTS	ND		2.0	0.38	ng/L		08/09/21 10:04	08/09/21 22:24	•
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C8 FOSA	98		25 - 150				08/09/21 10:04	08/09/21 22:24	
13C4 PFBA	73		25 - 150				08/09/21 10:04	08/09/21 22:24	
13C5 PFPeA	94		25 - 150				08/09/21 10:04	08/09/21 22:24	
13C2 PFHxA	99		50 - 150				08/09/21 10:04	08/09/21 22:24	
13C4 PFHpA	100		50 - 150				08/09/21 10:04	08/09/21 22:24	
13C4 PFOA	108		50 ₋ 150				08/09/21 10:04	08/09/21 22:24	
13C5 PFNA	103		50 - 150				08/09/21 10:04	08/09/21 22:24	
13C2 PFDA	103		50 ₋ 150				08/09/21 10:04	08/09/21 22:24	
13C2 PFUnA	101		50 ₋ 150				08/09/21 10:04	08/09/21 22:24	
13C2 PFDoA	101		50 - 150				08/09/21 10:04	08/09/21 22:24	
13C2 PFTeDA	99		50 ₋ 150					08/09/21 22:24	
13C3 PFBS	102		50 - 150					08/09/21 22:24	
1802 PFHxS	108		50 ₋ 150					08/09/21 22:24	
13C4 PFOS	102		50 - 150					08/09/21 22:24	
	102		50 - 150 50 - 150					08/09/21 22:24	
d3-NMeFOSAA									
d3-NMeFOSAA d5-NFtFOSAA									
d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS	103 102 120		50 - 150 25 - 150				08/09/21 10:04	08/09/21 22:24 08/09/21 22:24	1

Page 12 of 51

Client: New York State D.E.C. Job ID: 480-188006-1 Project/Site: SMP C - Napanoch

Client Sample ID: FB-080421

Lab Sample ID: 480-188006-4

Date Collected: 08/04/21 13:40 **Matrix: Water** Date Received: 08/05/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		4.6	0.83	ng/L		08/09/21 10:04	08/09/21 22:32	•
Perfluoropentanoic acid (PFPeA)	ND		1.9	0.44	ng/L		08/09/21 10:04	08/09/21 22:32	•
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.42	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.22	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.39	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.26	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.28	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.32	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.36	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.40	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.59	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.23	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.28	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	0.22	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	0.28	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.27	ng/L		08/09/21 10:04	08/09/21 22:32	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9		ng/L		08/09/21 10:04	08/09/21 22:32	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	0.84	ng/L		08/09/21 10:04	08/09/21 22:32	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	0.69	ng/L		08/09/21 10:04	08/09/21 22:32	1
6:2 FTS	ND		4.6	1.0	ng/L		08/09/21 10:04	08/09/21 22:32	1
8:2 FTS	ND		1.9	0.36	ng/L		08/09/21 10:04	08/09/21 22:32	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 FOSA	78		25 - 150				08/09/21 10:04	08/09/21 22:32	
13C4 PFBA	97		25 - 150				08/09/21 10:04	08/09/21 22:32	1
13C5 PFPeA	103		25 - 150				08/09/21 10:04	08/09/21 22:32	1
13C2 PFHxA	103		50 - 150				08/09/21 10:04	08/09/21 22:32	
13C4 PFHpA	102		50 - 150				08/09/21 10:04	08/09/21 22:32	1
13C4 PFOA	106		50 - 150				08/09/21 10:04	08/09/21 22:32	1
13C5 PFNA	100		50 - 150				08/09/21 10:04	08/09/21 22:32	
13C2 PFDA	100		50 - 150				08/09/21 10:04	08/09/21 22:32	1
13C2 PFUnA	99		50 - 150				08/09/21 10:04	08/09/21 22:32	1
13C2 PFDoA	92		50 - 150				08/09/21 10:04	08/09/21 22:32	
13C2 PFTeDA	78		50 - 150				08/09/21 10:04	08/09/21 22:32	1
13C3 PFBS	107		50 - 150				08/09/21 10:04	08/09/21 22:32	1
1802 PFHxS	108		50 - 150					08/09/21 22:32	
13C4 PFOS	104		50 - 150					08/09/21 22:32	1
d3-NMeFOSAA	99		50 - 150				08/09/21 10:04	08/09/21 22:32	1
d5-NEtFOSAA	94		50 - 150					08/09/21 22:32	
M2-6:2 FTS	107		25 - 150					08/09/21 22:32	1
M2-8:2 FTS	104		25 - 150					08/09/21 22:32	1

Client: New York State D.E.C. Job ID: 480-188006-1 Project/Site: SMP C - Napanoch

Client Sample ID: EB-080421 Date Collected: 08/04/21 13:46

Date Received: 08/05/21 10:00

Lab Sample ID: 480-188006-5

**Matrix: Water** 

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	0.83	JB	4.3	0.76	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluoropentanoic acid (PFPeA)	ND		1.7	0.40	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.39	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.20	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluorooctanoic acid (PFOA)	ND		1.7	0.36	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluorononanoic acid (PFNA)	ND		1.7	0.24	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.29	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.33	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluorotridecanoic acid (PFTriA)	ND		1.7	0.37	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.54	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.21	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.26	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.20	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.26	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.25	ng/L		08/09/21 10:04	08/09/21 22:41	
Perfluorooctanesulfonamide (FOSA)	ND		1.7		ng/L		08/09/21 10:04	08/09/21 22:41	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3	0.77	ng/L		08/09/21 10:04	08/09/21 22:41	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	0.63	ng/L		08/09/21 10:04	08/09/21 22:41	
6:2 FTS `	ND		4.3	0.94	ng/L		08/09/21 10:04	08/09/21 22:41	
8:2 FTS	ND		1.7	0.33	ng/L		08/09/21 10:04	08/09/21 22:41	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C8 FOSA	86		25 - 150				08/09/21 10:04	08/09/21 22:41	
13C4 PFBA	93		25 - 150				08/09/21 10:04	08/09/21 22:41	
13C5 PFPeA	102		25 - 150				08/09/21 10:04	08/09/21 22:41	
13C2 PFHxA	96		50 - 150				08/09/21 10:04	08/09/21 22:41	
13C4 PFHpA	103		50 - 150				08/09/21 10:04	08/09/21 22:41	
13C4 PFOA	107		50 - 150				08/09/21 10:04	08/09/21 22:41	
13C5 PFNA	96		50 - 150				08/09/21 10:04	08/09/21 22:41	
13C2 PFDA	105		50 - 150				08/09/21 10:04	08/09/21 22:41	
13C2 PFUnA	104		50 - 150				08/09/21 10:04	08/09/21 22:41	
13C2 PFDoA	96		50 - 150				08/09/21 10:04	08/09/21 22:41	
13C2 PFTeDA	83		50 - 150				08/09/21 10:04	08/09/21 22:41	
13C3 PFBS	103		50 - 150				08/09/21 10:04	08/09/21 22:41	
1802 PFHxS	103		50 - 150				08/09/21 10:04	08/09/21 22:41	
13C4 PFOS	101		50 - 150				08/09/21 10:04	08/09/21 22:41	
d3-NMeFOSAA	103		50 - 150				08/09/21 10:04	08/09/21 22:41	
d5-NEtFOSAA	95		50 ₋ 150					08/09/21 22:41	
M2-6:2 FTS	116		25 - 150					08/09/21 22:41	
M2-8:2 FTS	107		25 - 150					08/09/21 22:41	

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

Client Sample ID: DUP-080421 Lab Sample ID: 480-188006-6 Date Collected: 08/04/21 00:00

**Matrix: Water** 

Date Received: 08/05/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	1.7	JB	4.4	0.79	ng/L		08/09/21 10:04	08/09/21 22:49	1
Perfluoropentanoic acid (PFPeA)	0.49	J	1.8	0.42	ng/L		08/09/21 10:04	08/09/21 22:49	1
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.40	ng/L		08/09/21 10:04	08/09/21 22:49	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.21	ng/L		08/09/21 10:04	08/09/21 22:49	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.37	-		08/09/21 10:04	08/09/21 22:49	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	_		08/09/21 10:04	08/09/21 22:49	1
Perfluorodecanoic acid (PFDA)	ND		1.8		ng/L		08/09/21 10:04	08/09/21 22:49	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.30	J		08/09/21 10:04	08/09/21 22:49	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.34	ng/L		08/09/21 10:04	08/09/21 22:49	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		08/09/21 10:04	08/09/21 22:49	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L			08/09/21 22:49	1
Perfluorobutanesulfonic acid (PFBS)	0.89	J	1.8	0.22	Ū			08/09/21 22:49	1
Perfluorohexanesulfonic acid (PFHxS)	0.27	J	1.8	0.27	ng/L		08/09/21 10:04	08/09/21 22:49	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.21	ng/L		08/09/21 10:04	08/09/21 22:49	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.27	na/L		08/09/21 10:04	08/09/21 22:49	1
Perfluorooctanesulfonic acid (PFOS)	0.36	J	1.8		ng/L			08/09/21 22:49	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.51	na/l		08/09/21 10:04	08/09/21 22:49	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	0.80	Ū			08/09/21 22:49	1
N-ethylperfluorooctanesulfonamidoac	ND		4.4	0.66	ng/L		08/09/21 10:04	08/09/21 22:49	1
etic acid (NEtFOSAA)	113			0.00	119/12		00/00/21 10:01	00/00/21 22:10	•
6:2 FTS	ND		4.4	0.97	ng/L		08/09/21 10:04	08/09/21 22:49	1
8:2 FTS	ND		1.8	0.34	ng/L		08/09/21 10:04	08/09/21 22:49	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 FOSA	98	- Qualifier	<u>25 - 150</u>				08/09/21 10:04		1
13C4 PFBA	86		25 - 150					08/09/21 22:49	1
13C5 PFPeA	98		25 ₋ 150					08/09/21 22:49	1
13C2 PFHxA	103		50 - 150					08/09/21 22:49	
13C4 PFHpA	103		50 - 150 50 - 150					08/09/21 22:49	1
13C4 PFOA	104		50 - 150 50 - 150					08/09/21 22:49	1
13C5 PFNA	100		50 - 150 50 - 150					08/09/21 22:49	
13C2 PFDA	97		50 - 150 50 - 150					08/09/21 22:49	1
	93							08/09/21 22:49	1
13C2 PFUnA			50 - 150						
13C2 PFDoA	93		50 ₋ 150					08/09/21 22:49	1
13C2 PFTeDA	87		50 - 150					08/09/21 22:49	1
13C3 PFBS	110		50 - 150					08/09/21 22:49	1
1802 PFHxS	104		50 - 150					08/09/21 22:49	1
13C4 PFOS	103		50 - 150					08/09/21 22:49	1
d3-NMeFOSAA	89		50 - 150					08/09/21 22:49	1
d5-NEtFOSAA	90		50 - 150				08/09/21 10:04	08/09/21 22:49	1
140 0 0 ETO	110		25 - 150				08/09/21 10:04	08/09/21 22:49	1
M2-6:2 FTS	118		25 - 150				00/03/21 10:01	00/00/21/22:10	•

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

Client Sample ID: SHEEN-080421

Date Collected: 08/04/21 14:20 Date Received: 08/05/21 10:00 Lab Sample ID: 480-188006-7

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			08/10/21 14:08	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			08/10/21 14:08	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			08/10/21 14:08	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			08/10/21 14:08	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			08/10/21 14:08	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			08/10/21 14:08	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			08/10/21 14:08	
1,2-Dibromo-3-Chloropropane	ND	*+	1.0	0.39	ug/L			08/10/21 14:08	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			08/10/21 14:08	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			08/10/21 14:08	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			08/10/21 14:08	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			08/10/21 14:08	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			08/10/21 14:08	
2-Butanone (MEK)	ND		10	1.3	ug/L			08/10/21 14:08	
2-Hexanone	ND		5.0	1.2	ug/L			08/10/21 14:08	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			08/10/21 14:08	
Acetone	ND		10	3.0	ug/L			08/10/21 14:08	
Benzene	ND		1.0	0.41	ug/L			08/10/21 14:08	
Bromodichloromethane	ND		1.0	0.39	ug/L			08/10/21 14:08	
Bromoform	ND	*+	1.0		ug/L			08/10/21 14:08	
Bromomethane	ND		1.0		ug/L			08/10/21 14:08	
Carbon disulfide	0.73		1.0	0.19	ug/L			08/10/21 14:08	
Carbon tetrachloride	ND		1.0		ug/L			08/10/21 14:08	
Chlorobenzene	ND		1.0		ug/L			08/10/21 14:08	
Dibromochloromethane	ND	*+	1.0	0.32				08/10/21 14:08	
Chloroethane	ND		1.0	0.32	_			08/10/21 14:08	
Chloroform	ND		1.0	0.34	-			08/10/21 14:08	
Chloromethane	ND		1.0	0.35				08/10/21 14:08	
cis-1,2-Dichloroethene	ND		1.0	0.81	-			08/10/21 14:08	
cis-1,3-Dichloropropene	ND		1.0		ug/L			08/10/21 14:08	
Cyclohexane	ND		1.0	0.18	ug/L			08/10/21 14:08	
Dichlorodifluoromethane	ND		1.0	0.68	-			08/10/21 14:08	
Ethylbenzene	ND		1.0	0.74	ug/L			08/10/21 14:08	
1,2-Dibromoethane	ND		1.0		ug/L			08/10/21 14:08	
Isopropylbenzene	ND		1.0	0.79	-			08/10/21 14:08	
Methyl acetate	ND		2.5		ug/L			08/10/21 14:08	
Methyl tert-butyl ether	ND		1.0		ug/L			08/10/21 14:08	
Methylcyclohexane	ND		1.0		ug/L			08/10/21 14:08	
Methylene Chloride	ND		1.0		ug/L			08/10/21 14:08	
Styrene	ND		1.0		ug/L			08/10/21 14:08	
Tetrachloroethene	ND		1.0		ug/L			08/10/21 14:08	
Toluene	ND		1.0		ug/L			08/10/21 14:08	
trans-1,2-Dichloroethene	ND		1.0		ug/L			08/10/21 14:08	
trans-1,3-Dichloropropene	ND		1.0		ug/L			08/10/21 14:08	
Trichloroethene	ND		1.0		ug/L			08/10/21 14:08	
Trichlorofluoromethane	ND		1.0		ug/L			08/10/21 14:08	
Vinyl chloride	ND		1.0		ug/L			08/10/21 14:08	
Xylenes, Total	ND		2.0		ug/L			08/10/21 14:08	

Eurofins TestAmerica, Buffalo

Page 16 of 51

6

4

6

8

10

12

14

Client: New York State D.E.C. Job ID: 480-188006-1 Project/Site: SMP C - Napanoch

Client Sample ID: SHEEN-080421

Lab Sample ID: 480-188006-7

**Matrix: Water** 

Date Collected: 08/04/21 14:20 Date Received: 08/05/21 10:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	80 - 120	<u> </u>	3/10/21 14:08	1
1,2-Dichloroethane-d4 (Surr)	105	77 - 120	08	3/10/21 14:08	1
4-Bromofluorobenzene (Surr)	96	73 - 120	08	3/10/21 14:08	1
Dibromofluoromethane (Surr)	99	75 - 123	08	3/10/21 14:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	H	25	3.3	ug/L		08/12/21 16:25	08/13/21 22:13	į
bis (2-chloroisopropyl) ether	ND	Н	25	2.6	ug/L		08/12/21 16:25	08/13/21 22:13	į
2,4,5-Trichlorophenol	ND	Н	25	2.4	ug/L		08/12/21 16:25	08/13/21 22:13	Ę
2,4,6-Trichlorophenol	ND	Н	25	3.1	ug/L		08/12/21 16:25	08/13/21 22:13	
2,4-Dichlorophenol	ND	Н	25	2.6	ug/L		08/12/21 16:25	08/13/21 22:13	Ę
2,4-Dimethylphenol	ND	Н	25	2.5	ug/L		08/12/21 16:25	08/13/21 22:13	į
2,4-Dinitrophenol	ND	Н	50	11	ug/L		08/12/21 16:25	08/13/21 22:13	
2,4-Dinitrotoluene	ND	Н	25	2.2	ug/L		08/12/21 16:25	08/13/21 22:13	į
2,6-Dinitrotoluene	ND	Н	25	2.0	ug/L		08/12/21 16:25	08/13/21 22:13	į
2-Chloronaphthalene	ND	Н	25	2.3	ug/L		08/12/21 16:25	08/13/21 22:13	
2-Chlorophenol	ND	Н	25	2.7	ug/L		08/12/21 16:25	08/13/21 22:13	į
2-Methylphenol	ND	Н	25	2.0	ug/L		08/12/21 16:25	08/13/21 22:13	į
2-Methylnaphthalene	ND	Н	25	3.0	ug/L		08/12/21 16:25	08/13/21 22:13	
2-Nitroaniline	ND	Н	50	2.1	ug/L		08/12/21 16:25	08/13/21 22:13	į
2-Nitrophenol	ND	Н	25	2.4	ug/L		08/12/21 16:25	08/13/21 22:13	į
3,3'-Dichlorobenzidine	ND	Н	25	2.0	ug/L		08/12/21 16:25	08/13/21 22:13	
3-Nitroaniline	ND	Н	50	2.4	ug/L		08/12/21 16:25	08/13/21 22:13	į
4,6-Dinitro-2-methylphenol	ND	Н	50	11	ug/L		08/12/21 16:25	08/13/21 22:13	į
4-Bromophenyl phenyl ether	ND	Н	25	2.3	ug/L		08/12/21 16:25	08/13/21 22:13	
4-Chloro-3-methylphenol	ND	Н	25	2.3	ug/L		08/12/21 16:25	08/13/21 22:13	į
4-Chloroaniline	ND	Н	25	3.0	ug/L		08/12/21 16:25	08/13/21 22:13	į
4-Chlorophenyl phenyl ether	ND	Н	25	1.8	ug/L		08/12/21 16:25	08/13/21 22:13	
4-Methylphenol	ND	Н	50	1.8	ug/L		08/12/21 16:25	08/13/21 22:13	į
4-Nitroaniline	ND	Н	50	1.3	ug/L		08/12/21 16:25	08/13/21 22:13	į
4-Nitrophenol	ND	Н	50		ug/L		08/12/21 16:25	08/13/21 22:13	
Acenaphthene	ND	Н	25	2.1	ug/L		08/12/21 16:25	08/13/21 22:13	į
Acenaphthylene	ND	Н	25	1.9	ug/L		08/12/21 16:25	08/13/21 22:13	į
Acetophenone	ND	Н	25		ug/L		08/12/21 16:25	08/13/21 22:13	
Anthracene	ND	Н	25		ug/L		08/12/21 16:25	08/13/21 22:13	į
Atrazine	ND	Н	25		ug/L		08/12/21 16:25	08/13/21 22:13	į
Benzaldehyde	ND	Н	25				08/12/21 16:25	08/13/21 22:13	
Benzo[a]anthracene	ND	Н	25	1.8			08/12/21 16:25	08/13/21 22:13	į
Benzo[a]pyrene	ND	Н	25	2.4	ug/L		08/12/21 16:25	08/13/21 22:13	į
Benzo[b]fluoranthene	ND	Н	25				08/12/21 16:25	08/13/21 22:13	
Benzo[g,h,i]perylene	ND	Н	25		ug/L		08/12/21 16:25	08/13/21 22:13	į
Benzo[k]fluoranthene	ND	Н	25		ug/L		08/12/21 16:25	08/13/21 22:13	į
Bis(2-chloroethoxy)methane	ND		25		ug/L			08/13/21 22:13	
Bis(2-chloroethyl)ether	ND		25		ug/L			08/13/21 22:13	į
Bis(2-ethylhexyl) phthalate	ND		25		ug/L			08/13/21 22:13	į
Butyl benzyl phthalate	ND		25		ug/L			08/13/21 22:13	
Caprolactam	ND		25		ug/L			08/13/21 22:13	į
Carbazole	ND		25		ug/L			08/13/21 22:13	į
Chrysene	ND		25		ug/L			08/13/21 22:13	

Eurofins TestAmerica, Buffalo

Page 17 of 51

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

Client Sample ID: SHEEN-080421

Lab Sample ID: 480-188006-7

Date Collected: 08/04/21 14:20 **Matrix: Water** Date Received: 08/05/21 10:00

Analyte	Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND	Н	25	2.1	ug/L		08/12/21 16:25	08/13/21 22:13	
Di-n-butyl phthalate	ND	Н	25	1.6	ug/L		08/12/21 16:25	08/13/21 22:13	5
Di-n-octyl phthalate	ND	Н	25	2.4	l ug/L		08/12/21 16:25	08/13/21 22:13	5
Dibenzofuran	ND	Н	50	2.6	ug/L		08/12/21 16:25	08/13/21 22:13	5
Diethyl phthalate	ND	Н	25	1.1	ug/L		08/12/21 16:25	08/13/21 22:13	5
Dimethyl phthalate	ND	Н	25	1.8	3 ug/L		08/12/21 16:25	08/13/21 22:13	5
Fluoranthene	ND	Н	25	2.0	ug/L		08/12/21 16:25	08/13/21 22:13	5
Fluorene	ND	Н	25	1.8	B ug/L		08/12/21 16:25	08/13/21 22:13	5
Hexachlorobenzene	ND	Н	25	2.6	ug/L		08/12/21 16:25	08/13/21 22:13	
Hexachlorobutadiene	ND	Н	25	3.4	l ug/L		08/12/21 16:25	08/13/21 22:13	5
Hexachlorocyclopentadiene	ND	Н	25	3.0	ug/L		08/12/21 16:25	08/13/21 22:13	5
Hexachloroethane	ND	Н	25		ug/L		08/12/21 16:25	08/13/21 22:13	
Indeno[1,2,3-cd]pyrene	ND	Н	25		l ug/L		08/12/21 16:25	08/13/21 22:13	Ę
Isophorone	ND	Н	25		2 ug/L		08/12/21 16:25	08/13/21 22:13	Ę
N-Nitrosodi-n-propylamine	ND	Н	25		ug/L			08/13/21 22:13	
N-Nitrosodiphenylamine	ND	Н	25		ug/L		08/12/21 16:25	08/13/21 22:13	Ę
Naphthalene	ND		25		ug/L			08/13/21 22:13	5
Nitrobenzene	ND		25		ug/L			08/13/21 22:13	
Pentachlorophenol	ND		50		ug/L			08/13/21 22:13	5
Phenanthrene	ND		25		ug/L			08/13/21 22:13	5
Phenol	ND		25		ug/L			08/13/21 22:13	
Pyrene	ND		25		ug/L			08/13/21 22:13	5
, ,					3				
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	22	THJ	ug/L		5.02		08/12/21 16:25	08/13/21 22:13	
Unknown	13	THJ	ug/L		6.11		08/12/21 16:25	08/13/21 22:13	į
Unknown	11	THJ	ug/L	1	1.74		08/12/21 16:25	08/13/21 22:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	73		46 - 120				08/12/21 16:25	08/13/21 22:13	
Phenol-d5 (Surr)	46		22 - 120				08/12/21 16:25	08/13/21 22:13	
p-Terphenyl-d14 (Surr)	73		60 - 148				08/12/21 16:25	08/13/21 22:13	
2,4,6-Tribromophenol (Surr)	74		41 - 120				08/12/21 16:25	08/13/21 22:13	
2-Fluorobiphenyl	83		48 - 120				08/12/21 16:25	08/13/21 22:13	į
2-Fluorophenol (Surr)	56		35 - 120				08/12/21 16:25	08/13/21 22:13	
Method: 8015D - Gasoline Ra	nge Organio	s (GRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	16	JB	25	4.2	ug/L		<u> </u>	08/09/21 13:35	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene	93		72 - 125					08/09/21 13:35	
Method: 8015D - Diesel Rang	e Organics (	DRO) (GO	<b>C</b> )						
Analyte		Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics [C10-C28]	ND		0.50	0.3	mg/L		08/05/21 15:15	08/09/21 08:01	
Crimanata	%Recovery	Qualifior	Limits				Prepared	Analyzed	Dil Fac
Surrogate	/ordecovery	Qualifier	LIIIIIG				i repareu	Allalyzeu	Dii i a

Eurofins TestAmerica, Buffalo

8/18/2021

Client: New York State D.E.C. Job ID: 480-188006-1 Project/Site: SMP C - Napanoch

Client Sample ID: SHEEN-080421

Lab Sample ID: 480-188006-7

Date Collected: 08/04/21 14:20 **Matrix: Water** Date Received: 08/05/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		08/09/21 09:09	08/10/21 18:53	1
PCB-1221	ND		0.50	0.18	ug/L		08/09/21 09:09	08/10/21 18:53	1
PCB-1232	ND		0.50	0.18	ug/L		08/09/21 09:09	08/10/21 18:53	1
PCB-1242	ND		0.50	0.18	ug/L		08/09/21 09:09	08/10/21 18:53	1
PCB-1248	ND		0.50	0.18	ug/L		08/09/21 09:09	08/10/21 18:53	1
PCB-1254	ND		0.50	0.25	ug/L		08/09/21 09:09	08/10/21 18:53	1
PCB-1260	ND		0.50	0.25	ug/L		08/09/21 09:09	08/10/21 18:53	1
PCB-1262	ND		0.50	0.25	ug/L		08/09/21 09:09	08/10/21 18:53	1
PCB-1268	ND		0.50	0.25	ug/L		08/09/21 09:09	08/10/21 18:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	58		39 - 121				08/09/21 09:09	08/10/21 18:53	1
Tetrachloro-m-xylene	63		39 - 121				08/09/21 09:09	08/10/21 18:53	1
DCB Decachlorobiphenyl	40		19 - 120				08/09/21 09:09	08/10/21 18:53	1
DCB Decachlorobiphenyl	36		19 - 120				08/09/21 09:09	08/10/21 18:53	1

Lab Sample ID: 480-188006-8 Client Sample ID: TB-080421

Date Collected: 08/04/21 00:00 **Matrix: Water** 

Date Received: 08/05/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			08/11/21 02:53	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			08/11/21 02:53	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			08/11/21 02:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			08/11/21 02:53	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			08/11/21 02:53	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			08/11/21 02:53	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			08/11/21 02:53	1
1,2-Dibromo-3-Chloropropane	ND	*+	1.0	0.39	ug/L			08/11/21 02:53	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			08/11/21 02:53	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			08/11/21 02:53	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			08/11/21 02:53	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			08/11/21 02:53	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			08/11/21 02:53	1
2-Butanone (MEK)	ND		10	1.3	ug/L			08/11/21 02:53	1
2-Hexanone	ND	*+	5.0	1.2	ug/L			08/11/21 02:53	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			08/11/21 02:53	1
Acetone	ND		10	3.0	ug/L			08/11/21 02:53	1
Benzene	ND		1.0	0.41	ug/L			08/11/21 02:53	1
Bromodichloromethane	ND		1.0	0.39	ug/L			08/11/21 02:53	1
Bromoform	ND		1.0	0.26	ug/L			08/11/21 02:53	1
Bromomethane	ND		1.0	0.69	ug/L			08/11/21 02:53	1
Carbon disulfide	ND		1.0	0.19	ug/L			08/11/21 02:53	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			08/11/21 02:53	1
Chlorobenzene	ND		1.0	0.75	ug/L			08/11/21 02:53	1
Dibromochloromethane	ND	*+	1.0	0.32	ug/L			08/11/21 02:53	1
Chloroethane	ND		1.0	0.32	ug/L			08/11/21 02:53	1
Chloroform	ND		1.0	0.34	ug/L			08/11/21 02:53	1
Chloromethane	ND		1.0	0.35	ug/L			08/11/21 02:53	1

Eurofins TestAmerica, Buffalo

Page 19 of 51

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

Date Received: 08/05/21 10:00

Dibromofluoromethane (Surr)

Client Sample ID: TB-080421 Date Collected: 08/04/21 00:00

Lab Sample ID: 480-188006-8

**Matrix: Water** 

Analyte	Result (	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/11/21 02:53	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			08/11/21 02:53	1
Cyclohexane	ND		1.0	0.18	ug/L			08/11/21 02:53	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			08/11/21 02:53	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/11/21 02:53	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			08/11/21 02:53	1
Isopropylbenzene	ND		1.0	0.79	ug/L			08/11/21 02:53	1
Methyl acetate	ND		2.5	1.3	ug/L			08/11/21 02:53	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			08/11/21 02:53	1
Methylcyclohexane	ND		1.0	0.16	ug/L			08/11/21 02:53	1
Methylene Chloride	ND		1.0	0.44	ug/L			08/11/21 02:53	1
Styrene	ND		1.0	0.73	ug/L			08/11/21 02:53	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/11/21 02:53	1
Toluene	ND		1.0	0.51	ug/L			08/11/21 02:53	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/11/21 02:53	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			08/11/21 02:53	1
Trichloroethene	ND		1.0	0.46	ug/L			08/11/21 02:53	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			08/11/21 02:53	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/11/21 02:53	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/11/21 02:53	1
Surrogate	%Recovery (	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120					08/11/21 02:53	1
1,2-Dichloroethane-d4 (Surr)	106		77 - 120					08/11/21 02:53	1
4-Bromofluorobenzene (Surr)	99		73 - 120					08/11/21 02:53	1

75 - 123

103

08/11/21 02:53

Client: New York State D.E.C. Job ID: 480-188006-1 Project/Site: SMP C - Napanoch

Method: 8260C - Volatile Organic Compounds by GC/MS

**Matrix: Water Prep Type: Total/NA** 

			Pe	rcent Surre	ogate Reco
		TOL	DCA	BFB	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)
480-188006-7	SHEEN-080421	99	105	96	99
480-188006-8	TB-080421	98	106	99	103
LCS 480-592317/5	Lab Control Sample	100	101	95	99
LCS 480-592370/6	Lab Control Sample	99	102	96	100
MB 480-592317/7	Method Blank	99	105	98	100
MB 480-592370/8	Method Blank	98	102	100	102
Surrogate Legend					

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

**Matrix: Water** Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)								
		NBZ	PHL	TPHd14	TBP	FBP	2FP			
Lab Sample ID	Client Sample ID	(46-120)	(22-120)	(60-148)	(41-120)	(48-120)	(35-120)			
480-188006-7 - RE	SHEEN-080421	73	46	73	74	83	56			
LCS 480-592707/2-A	Lab Control Sample	73	48	102	98	90	63			
MB 480-592707/1-A	Method Blank	68	40	93	70	84	56			

#### Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

TFT = a,a,a-Trifluorotoluene

## Method: 8015D - Gasoline Range Organics (GRO) (GC)

**Matrix: Water** Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		TFT2	
Lab Sample ID	Client Sample ID	(72-125)	
480-188006-7	SHEEN-080421	93	
LCS 480-592143/6	Lab Control Sample	90	
LCSD 480-592143/7	Lab Control Sample Dup	91	
MB 480-592143/5	Method Blank	93	

Method: 8015D - Diesel Range Organics (DRO) (GC)

**Matrix: Water** Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTPH	
Lab Sample ID	Client Sample ID	(51-120)	
480-188006-7	SHEEN-080421	87	

Eurofins TestAmerica, Buffalo

Page 21 of 51 8/18/2021

## **Surrogate Summary**

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

**Matrix: Water** Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		ОТРН	
Lab Sample ID	Client Sample ID	(51-120)	
LCS 480-591924/2-A	Lab Control Sample	114	
LCSD 480-591924/3-A	Lab Control Sample Dup	114	
MB 480-591924/1-A	Method Blank	121 S1+	
Surrogate Legend			
OTPH = o-Terphenyl			

# Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

**Matrix: Water** Prep Type: Total/NA

_			Pe	ercent Surre	ogate Reco
		TCX1	TCX2	DCBP1	DCBP2
Lab Sample ID	Client Sample ID	(39-121)	(39-121)	(19-120)	(19-120)
480-188006-7	SHEEN-080421	63	58	36	40
LCS 480-592150/2-A	Lab Control Sample	76	79	55	61
MB 480-592150/1-A	Method Blank	79	80	51	59
Surrogate Legend					
TCX = Tetrachloro-m-	xylene				

DCBP = DCB Decachlorobiphenyl

Job ID: 480-188006-1

Client: New York State D.E.C. Project/Site: SMP C - Napanoch

# Method: 537 (modified) - Fluorinated Alkyl Substances

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFOSA	PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA
₋ab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
180-188006-1	MW-10	99	89	103	102	101	106	99	98
180-188006-1 MS	MW-10	101	92	106	104	105	106	104	101
180-188006-1 MSD	MW-10	103	92	104	104	104	105	106	98
180-188006-2	MW-10S	95	82	100	98	98	103	98	100
180-188006-3	MW-7	98	73	94	99	100	108	103	103
180-188006-4	FB-080421	78	97	103	103	102	106	100	100
180-188006-5	EB-080421	86	93	102	96	103	107	96	105
180-188006-6	DUP-080421	98	86	98	103	103	104	100	97
_CS 200-169967/2-A	Lab Control Sample	87	99	108	104	104	106	106	115
MB 200-169967/1-A	Method Blank	70	79	84	83	83	84	80	84
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFUnA	PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFO
₋ab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
180-188006-1	MW-10	97	92	90	106	107	101	95	92
180-188006-1 MS	MW-10	96	93	91	106	110	104	108	92
180-188006-1 MSD	MW-10	97	89	92	106	107	104	94	91
180-188006-2	MW-10S	91	89	88	103	106	98	101	88
180-188006-3	MW-7	101	101	99	102	108	102	103	102
180-188006-4	FB-080421	99	92	78	107	108	104	99	94
180-188006-5	EB-080421	104	96	83	103	103	101	103	95
180-188006-6	DUP-080421	93	93	87	110	104	103	89	90
_CS 200-169967/2-A	Lab Control Sample	101	94	92	107	109	102	111	91
MB 200-169967/1-A	Method Blank	76	71	69	85	86	85	80	69

		M262FTS	M282FTS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)
480-188006-1	MW-10	114	99
480-188006-1 MS	MW-10	117	103
480-188006-1 MSD	MW-10	116	102
480-188006-2	MW-10S	110	108
480-188006-3	MW-7	120	112
480-188006-4	FB-080421	107	104
480-188006-5	EB-080421	116	107
480-188006-6	DUP-080421	118	104
LCS 200-169967/2-A	Lab Control Sample	116	125
MB 200-169967/1-A	Method Blank	87	88

#### **Surrogate Legend**

PFOSA = 13C8 FOSA

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

Page 23 of 51

8/18/2021

# **Isotope Dilution Summary**

Client: New York State D.E.C. Project/Site: SMP C - Napanoch

C3PFBS = 13C3 PFBS
PFHxS = 18O2 PFHxS
PFOS = 13C4 PFOS
d3NMFOS = d3-NMeFOSAA
d5NEFOS = d5-NEtFOSAA
M262FTS = M2-6:2 FTS
M282FTS = M2-8:2 FTS

Job ID: 480-188006-1

3

4

8

9

11

13

14

I.e

Client: New York State D.E.C.

Project/Site: SMP C - Napanoch

Job ID: 480-188006-1

RL

**MDL** Unit

D

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB Result Qualifier

ND

Lab Sample ID: MB 480-592317/7

**Matrix: Water** 

Isopropylbenzene

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Methyl acetate

Styrene

Toluene

Analyte

Analysis Batch: 592317

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

Dil Fac

Allalyte	Result	Qualifier	NL.	IVIDE	Ullit	U	riepaieu	Allalyzeu	DIIFac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			08/10/21 13:14	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			08/10/21 13:14	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			08/10/21 13:14	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			08/10/21 13:14	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			08/10/21 13:14	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			08/10/21 13:14	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			08/10/21 13:14	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			08/10/21 13:14	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			08/10/21 13:14	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			08/10/21 13:14	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			08/10/21 13:14	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			08/10/21 13:14	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			08/10/21 13:14	1
2-Butanone (MEK)	ND		10	1.3	ug/L			08/10/21 13:14	1
2-Hexanone	ND		5.0	1.2	ug/L			08/10/21 13:14	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			08/10/21 13:14	1
Acetone	ND		10	3.0	ug/L			08/10/21 13:14	1
Benzene	ND		1.0	0.41	ug/L			08/10/21 13:14	1
Bromodichloromethane	ND		1.0	0.39	ug/L			08/10/21 13:14	1
Bromoform	ND		1.0	0.26	ug/L			08/10/21 13:14	1
Bromomethane	ND		1.0	0.69	ug/L			08/10/21 13:14	1
Carbon disulfide	ND		1.0	0.19	ug/L			08/10/21 13:14	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			08/10/21 13:14	1
Chlorobenzene	ND		1.0	0.75	ug/L			08/10/21 13:14	1
Dibromochloromethane	ND		1.0	0.32	ug/L			08/10/21 13:14	1
Chloroethane	ND		1.0	0.32	ug/L			08/10/21 13:14	1
Chloroform	ND		1.0	0.34	ug/L			08/10/21 13:14	1
Chloromethane	ND		1.0	0.35	ug/L			08/10/21 13:14	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/10/21 13:14	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			08/10/21 13:14	1
Cyclohexane	ND		1.0	0.18	ug/L			08/10/21 13:14	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			08/10/21 13:14	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/10/21 13:14	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			08/10/21 13:14	1

1.0

2.5

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

0.79 ug/L

1.3 ug/L

0.16 ug/L

0.16 ug/L

0.44 ug/L

0.73 ug/L

0.36 ug/L

0.51 ug/L

0.90 ug/L

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

Eurofins TestAmerica, Buffalo

08/10/21 13:14

08/10/21 13:14

08/10/21 13:14

08/10/21 13:14

08/10/21 13:14

08/10/21 13:14

08/10/21 13:14

08/10/21 13:14

08/10/21 13:14

08/10/21 13:14

08/10/21 13:14

08/10/21 13:14

08/10/21 13:14

08/10/21 13:14

Page 25 of 51 8/18/2021

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-592317/7

**Matrix: Water** 

**Analysis Batch: 592317** 

**Client Sample ID: Method Blank** 

**Prep Type: Total/NA** 

	IVID IVID				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	80 - 120		08/10/21 13:14	1
1,2-Dichloroethane-d4 (Surr)	105	77 - 120		08/10/21 13:14	1
4-Bromofluorobenzene (Surr)	98	73 - 120		08/10/21 13:14	1
Dibromofluoromethane (Surr)	100	75 - 123		08/10/21 13:14	1

Lab Sample ID: LCS 480-592317/5

An

Client	Sample	ID:	Lab	<b>Control</b>	Sample
			Dro	Type:	Total/NA

Matrix: Water		Prep Type: Total/NA
Analysis Batch: 592317		

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	24.6		ug/L		98	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	25.6		ug/L		102	76 - 120	
1,1,2-Trichloroethane	25.0	24.3		ug/L		97	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.1		ug/L		93	61 - 148	
ne								
1,1-Dichloroethane	25.0	22.9		ug/L		92	77 - 120	
1,1-Dichloroethene	25.0	21.8		ug/L		87	66 - 127	
1,2,4-Trichlorobenzene	25.0	21.7		ug/L		87	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	37.5	*+	ug/L		150	56 - 134	
1,2-Dichlorobenzene	25.0	22.5		ug/L		90	80 - 124	
1,2-Dichloroethane	25.0	22.8		ug/L		91	75 - 120	
1,2-Dichloropropane	25.0	24.0		ug/L		96	76 - 120	
1,3-Dichlorobenzene	25.0	22.8		ug/L		91	77 - 120	
1,4-Dichlorobenzene	25.0	23.5		ug/L		94	80 - 120	
2-Butanone (MEK)	125	138		ug/L		110	57 - 140	
2-Hexanone	125	141		ug/L		112	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	130		ug/L		104	71 - 125	
Acetone	125	119		ug/L		96	56 - 142	
Benzene	25.0	23.5		ug/L		94	71 - 124	
Bromodichloromethane	25.0	28.0		ug/L		112	80 - 122	
Bromoform	25.0	33.8	*+	ug/L		135	61 - 132	
Bromomethane	25.0	21.7		ug/L		87	55 - 144	
Carbon disulfide	25.0	20.8		ug/L		83	59 - 134	
Carbon tetrachloride	25.0	30.1		ug/L		121	72 - 134	
Chlorobenzene	25.0	23.3		ug/L		93	80 - 120	
Dibromochloromethane	25.0	35.0	*+	ug/L		140	75 - 125	
Chloroethane	25.0	22.9		ug/L		92	69 - 136	
Chloroform	25.0	22.4		ug/L		90	73 - 127	
Chloromethane	25.0	21.0		ug/L		84	68 - 124	
cis-1,2-Dichloroethene	25.0	22.0		ug/L		88	74 - 124	
cis-1,3-Dichloropropene	25.0	26.6		ug/L		106	74 - 124	
Cyclohexane	25.0	24.5		ug/L		98	59 - 135	
Dichlorodifluoromethane	25.0	24.7		ug/L		99	59 - 135	
Ethylbenzene	25.0	23.5		ug/L		94	77 - 123	
1,2-Dibromoethane	25.0	26.2		ug/L		105	77 - 120	
Isopropylbenzene	25.0	24.1		ug/L		96	77 - 122	
Methyl acetate	50.0	50.7		ug/L		101	74 - 133	
Methyl tert-butyl ether	25.0	21.4		ug/L		85	77 - 120	
Methylcyclohexane	25.0	25.2		ug/L		101	68 - 134	
	20.0	20.2		~g, <b>∟</b>		101	00 <b>-</b> 10 <del>-</del>	

Eurofins TestAmerica, Buffalo

8/18/2021

Page 26 of 51

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-592317/5

**Matrix: Water** 

**Analysis Batch: 592317** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
25.0	21.7		ug/L		87	75 - 124	
25.0	24.0		ug/L		96	80 - 120	
25.0	24.0		ug/L		96	74 - 122	
25.0	23.6		ug/L		95	80 - 122	
25.0	22.5		ug/L		90	73 - 127	
25.0	28.1		ug/L		112	80 - 120	
25.0	23.6		ug/L		94	74 - 123	
25.0	23.7		ug/L		95	62 - 150	
	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Added         Result           25.0         21.7           25.0         24.0           25.0         24.0           25.0         23.6           25.0         22.5           25.0         28.1           25.0         23.6	Added         Result         Qualifier           25.0         21.7           25.0         24.0           25.0         24.0           25.0         23.6           25.0         22.5           25.0         28.1           25.0         23.6	Added         Result         Qualifier         Unit           25.0         21.7         ug/L           25.0         24.0         ug/L           25.0         24.0         ug/L           25.0         23.6         ug/L           25.0         22.5         ug/L           25.0         28.1         ug/L           25.0         23.6         ug/L	Added         Result         Qualifier         Unit         D           25.0         21.7         ug/L         ug/L           25.0         24.0         ug/L         ug/L           25.0         23.6         ug/L         ug/L           25.0         22.5         ug/L         ug/L           25.0         28.1         ug/L         ug/L           25.0         23.6         ug/L         ug/L	Added         Result         Qualifier         Unit         D         %Rec           25.0         21.7         ug/L         87           25.0         24.0         ug/L         96           25.0         24.0         ug/L         96           25.0         23.6         ug/L         95           25.0         22.5         ug/L         90           25.0         28.1         ug/L         112           25.0         23.6         ug/L         94	Added         Result         Qualifier         Unit         D         %Rec         Limits           25.0         21.7         ug/L         87         75 - 124           25.0         24.0         ug/L         96         80 - 120           25.0         24.0         ug/L         96         74 - 122           25.0         23.6         ug/L         95         80 - 122           25.0         22.5         ug/L         90         73 - 127           25.0         28.1         ug/L         112         80 - 120           25.0         23.6         ug/L         94         74 - 123

21.9

ug/L

25.0

LCS LCS

,	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		80 - 120
1,2-Dichloroethane-d4 (Surr)	101		77 - 120
4-Bromofluorobenzene (Surr)	95		73 - 120
Dibromofluoromethane (Surr)	99		75 - 123

**Client Sample ID: Method Blank** 

65 - 133

Prep Type: Total/NA

**Matrix: Water** 

Vinyl chloride

**Analysis Batch: 592370** 

Lab Sample ID: MB 480-592370/8

MB MB

	1410	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			08/11/21 01:21	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			08/11/21 01:21	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			08/11/21 01:21	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			08/11/21 01:21	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			08/11/21 01:21	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			08/11/21 01:21	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			08/11/21 01:21	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			08/11/21 01:21	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			08/11/21 01:21	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			08/11/21 01:21	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			08/11/21 01:21	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			08/11/21 01:21	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			08/11/21 01:21	1
2-Butanone (MEK)	ND		10	1.3	ug/L			08/11/21 01:21	1
2-Hexanone	ND		5.0	1.2	ug/L			08/11/21 01:21	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			08/11/21 01:21	1
Acetone	ND		10	3.0	ug/L			08/11/21 01:21	1
Benzene	ND		1.0	0.41	ug/L			08/11/21 01:21	1
Bromodichloromethane	ND		1.0	0.39	ug/L			08/11/21 01:21	1
Bromoform	ND		1.0	0.26	ug/L			08/11/21 01:21	1
Bromomethane	ND		1.0	0.69	ug/L			08/11/21 01:21	1
Carbon disulfide	ND		1.0	0.19	ug/L			08/11/21 01:21	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			08/11/21 01:21	1
Chlorobenzene	ND		1.0	0.75	ug/L			08/11/21 01:21	1
Dibromochloromethane	ND		1.0	0.32	ug/L			08/11/21 01:21	1
Chloroethane	ND		1.0	0.32	ug/L			08/11/21 01:21	1
Chloroform	ND		1.0	0.34	ug/L			08/11/21 01:21	1

Eurofins TestAmerica, Buffalo

Page 27 of 51

8/18/2021

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-592370/8

**Matrix: Water** 

Chloromethane

Cyclohexane

Ethylbenzene

1,2-Dibromoethane

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Isopropylbenzene

Methyl acetate

Styrene

Toluene

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Analyte

**Analysis Batch: 592370** 

Client Sample ID: Method Blank

Prep Type: Total/NA

08/11/21 01:21

08/11/21 01:21

08/11/21 01:21

08/11/21 01:21

08/11/21 01:21

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac ND 1.0 0.35 ug/L 08/11/21 01:21 ND 1.0 0.81 ug/L 08/11/21 01:21 ND 1.0 0.36 ug/L 08/11/21 01:21 ND 1.0 0.18 ug/L 08/11/21 01:21 ND 1.0 0.68 ug/L 08/11/21 01:21 ND 1.0 0.74 ug/L 08/11/21 01:21 ND 1.0 0.73 ug/L 08/11/21 01:21 ND 1.0 0.79 ug/L 08/11/21 01:21 1.3 ug/L ND 2.5 08/11/21 01:21 ND 1.0 0.16 ug/L 08/11/21 01:21 ND 1.0 0.16 ug/L 08/11/21 01:21 ND 0.44 ug/L 08/11/21 01:21 1.0 0.73 ug/L 08/11/21 01:21 ND 1.0 1.0 ND 0.36 ug/L 08/11/21 01:21 ND 1.0 0.51 ug/L 08/11/21 01:21 ND 1.0 0.90 ug/L 08/11/21 01:21

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

MB MB

ND

ND

ND

ND

ND

Surrogate %Recovery Limits Prepared Dil Fac Qualifier Analyzed Toluene-d8 (Surr) 98 80 - 120 08/11/21 01:21 1,2-Dichloroethane-d4 (Surr) 102 77 - 120 08/11/21 01:21 4-Bromofluorobenzene (Surr) 100 73 - 120 08/11/21 01:21 Dibromofluoromethane (Surr) 102 75 - 123 08/11/21 01:21

1.0

1.0

1.0

1.0

2.0

Lab Sample ID: LCS 480-592370/6

**Matrix: Water** 

Analysis Batch: 592370

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	25.7		ug/L		103	73 - 126
1,1,2,2-Tetrachloroethane	25.0	25.9		ug/L		104	76 - 120
1,1,2-Trichloroethane	25.0	24.9		ug/L		100	76 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.9		ug/L		96	61 - 148
ne							
1,1-Dichloroethane	25.0	24.5		ug/L		98	77 - 120
1,1-Dichloroethene	25.0	23.6		ug/L		94	66 - 127
1,2,4-Trichlorobenzene	25.0	22.9		ug/L		92	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	38.4	*+	ug/L		153	56 - 134
1,2-Dichlorobenzene	25.0	23.0		ug/L		92	80 - 124
1,2-Dichloroethane	25.0	23.0		ug/L		92	75 - 120
1,2-Dichloropropane	25.0	24.7		ug/L		99	76 - 120
1,3-Dichlorobenzene	25.0	23.3		ug/L		93	77 - 120
1,4-Dichlorobenzene	25.0	23.8		ug/L		95	80 - 120
2-Butanone (MEK)	125	141		ug/L		112	57 - 140
2-Hexanone	125	160	*+	ug/L		128	65 - 127

Eurofins TestAmerica, Buffalo

Page 28 of 51

2

3

5

7

9

10

12

14

15

Spike

LCS LCS

Job ID: 480-188006-1

Client: New York State D.E.C. Project/Site: SMP C - Napanoch

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-592370/6

**Matrix: Water** 

**Analysis Batch: 592370** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

%Rec.

	Spike	LUS	LUS			/₀Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
4-Methyl-2-pentanone (MIBK)	125	139		ug/L		71 - 125	
Acetone	125	126		ug/L	101	56 - 142	
Benzene	25.0	23.7		ug/L	95	71 - 124	
Bromodichloromethane	25.0	28.4		ug/L	114	80 - 122	
Bromoform	25.0	31.2		ug/L	125	61 - 132	
Bromomethane	25.0	24.7		ug/L	99	55 - 144	
Carbon disulfide	25.0	24.8		ug/L	99	59 - 134	
Carbon tetrachloride	25.0	29.6		ug/L	118	72 - 134	
Chlorobenzene	25.0	23.5		ug/L	94	80 - 120	
Dibromochloromethane	25.0	34.0	*+	ug/L	136	75 - 125	
Chloroethane	25.0	25.8		ug/L	103	69 - 136	
Chloroform	25.0	23.1		ug/L	92	73 - 127	
Chloromethane	25.0	24.2		ug/L	97	68 - 124	
cis-1,2-Dichloroethene	25.0	22.4		ug/L	90	74 - 124	
cis-1,3-Dichloropropene	25.0	24.7		ug/L	99	74 - 124	
Cyclohexane	25.0	25.3		ug/L	101	59 - 135	
Dichlorodifluoromethane	25.0	29.0		ug/L	116	59 - 135	
Ethylbenzene	25.0	23.7		ug/L	95	77 - 123	
1,2-Dibromoethane	25.0	26.3		ug/L	105	77 - 120	
Isopropylbenzene	25.0	23.9		ug/L	96	77 - 122	
Methyl acetate	50.0	50.5		ug/L	101	74 - 133	
Methyl tert-butyl ether	25.0	22.9		ug/L	92	77 - 120	
Methylcyclohexane	25.0	24.6		ug/L	98	68 - 134	
Methylene Chloride	25.0	24.7		ug/L	99	75 - 124	
Styrene	25.0	24.3		ug/L	97	80 - 120	
Tetrachloroethene	25.0	23.1		ug/L	92	74 - 122	
Toluene	25.0	23.9		ug/L	95	80 - 122	
trans-1,2-Dichloroethene	25.0	23.2		ug/L	93	73 - 127	
trans-1,3-Dichloropropene	25.0	26.3		ug/L	105	80 - 120	
Trichloroethene	25.0	23.9		ug/L	96	74 - 123	
Trichlorofluoromethane	25.0	27.6		ug/L	110	62 - 150	
Vinyl chloride	25.0	25.7		ug/L	103	65 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	102		77 - 120
4-Bromofluorobenzene (Surr)	96		73 - 120
Dibromofluoromethane (Surr)	100		75 - 123

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-592707/1-A

**Matrix: Water** 

Analysis Batch: 592784

**Client Sample ID: Method Blank Prep Type: Total/NA** 

Prep Batch: 592707

8/18/2021

•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		5.0	0.65	ug/L		08/12/21 16:25	08/13/21 14:06	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		08/12/21 16:25	08/13/21 14:06	1
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		08/12/21 16:25	08/13/21 14:06	1

Eurofins TestAmerica, Buffalo

Page 29 of 51

Client: New York State D.E.C. Job ID: 480-188006-1 Project/Site: SMP C - Napanoch

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-592707/1-A

**Matrix: Water** 

**Analysis Batch: 592784** 

**Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 592707** 

	MB	MB							
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
nenol	ND		5.0	0.61	ug/L		08/12/21 16:25	08/13/21 14:06	1
nol	ND		5.0	0.51	ug/L		08/12/21 16:25	08/13/21 14:06	1
enol	ND		5.0	0.50	ug/L		08/12/21 16:25	08/13/21 14:06	1
ol	ND		10	2.2	ug/L		08/12/21 16:25	08/13/21 14:06	1
ne	ND		5.0	0.45	ug/L		08/12/21 16:25	08/13/21 14:06	1
ne	ND		5.0	0.40	ug/L		08/12/21 16:25	08/13/21 14:06	1
alene	ND		5.0	0.46	ug/L		08/12/21 16:25	08/13/21 14:06	1
	ND		5.0	0.53	ug/L		08/12/21 16:25	08/13/21 14:06	1
	ND		5.0	0.40	ug/L		08/12/21 16:25	08/13/21 14:06	1
alene	ND		5.0	0.60	ug/L		08/12/21 16:25	08/13/21 14:06	1
	ND		10	0.42	ug/L		08/12/21 16:25	08/13/21 14:06	1
	ND		5.0		ug/L		08/12/21 16:25	08/13/21 14:06	1
zidine	ND		5.0		ug/L		08/12/21 16:25	08/13/21 14:06	1
	ND		10	0.48	-		08/12/21 16:25	08/13/21 14:06	1
thylphenol	ND		10		ug/L			08/13/21 14:06	1
phenyl ether	ND		5.0	0.45			08/12/21 16:25	08/13/21 14:06	1
ylphenol	ND		5.0	0.45	-			08/13/21 14:06	1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND		5.0		ug/L			08/13/21 14:06	1
phenyl ether	ND		5.0		ug/L			08/13/21 14:06	
priority curior	ND		10	0.36	•			08/13/21 14:06	1
	ND		10		ug/L			08/13/21 14:06	1
	ND		10		ug/L			08/13/21 14:06	 1
	ND ND		5.0		ug/L ug/L			08/13/21 14:06	1
	ND ND		5.0		ug/L ug/L			08/13/21 14:06	1
	ND		5.0					08/13/21 14:06	1
	ND ND		5.0		ug/L			08/13/21 14:06	
					ug/L				1
	ND		5.0		ug/L			08/13/21 14:06	
	ND		5.0		ug/L			08/13/21 14:06	1
ene	ND		5.0		ug/L			08/13/21 14:06	1
	ND		5.0		ug/L			08/13/21 14:06	
thene	ND		5.0		ug/L			08/13/21 14:06	1
lene	ND		5.0		ug/L			08/13/21 14:06	1
hene	ND		5.0		ug/L			08/13/21 14:06	
xy)methane	ND		5.0		ug/L			08/13/21 14:06	1
l)ether	ND		5.0	0.40	-			08/13/21 14:06	1
) phthalate	ND		5.0		ug/L			08/13/21 14:06	1
halate	ND		5.0		ug/L			08/13/21 14:06	1
	ND		5.0		ug/L			08/13/21 14:06	1
	ND		5.0		ug/L			08/13/21 14:06	1
	ND		5.0		ug/L			08/13/21 14:06	1
racene	ND		5.0		ug/L		08/12/21 16:25	08/13/21 14:06	1
late	ND		5.0	0.31	ug/L		08/12/21 16:25	08/13/21 14:06	1
ate	ND		5.0	0.47	ug/L		08/12/21 16:25	08/13/21 14:06	1
	ND		10	0.51	ug/L		08/12/21 16:25	08/13/21 14:06	1
e	ND		5.0	0.22	ug/L		08/12/21 16:25	08/13/21 14:06	1
ate	ND		5.0	0.36	ug/L		08/12/21 16:25	08/13/21 14:06	1
	ND		5.0	0.40	ug/L		08/12/21 16:25	08/13/21 14:06	1
	ND		5.0	0.36	ug/L		08/12/21 16:25	08/13/21 14:06	1
ate e	ND ND ND ND		5.0 10 5.0 5.0 5.0	0.47 0.51 0.22 0.36 0.40 0.36	ug/L ug/L ug/L ug/L ug/L		08/12/21 16:25 08/12/21 16:25 08/12/21 16:25 08/12/21 16:25 08/12/21 16:25	08/13 08/13 08/13 08/13 08/13	3/21 14:06 3/21 14:06 3/21 14:06 3/21 14:06 3/21 14:06 3/21 14:06

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

## Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

**Matrix: Water** 

Analysis Batch: 592784

**Client Sample ID: Method Blank** 

**Prep Type: Total/NA** 

Prep Batch: 592707

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobutadiene	ND		5.0	0.68	ug/L		08/12/21 16:25	08/13/21 14:06	1
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		08/12/21 16:25	08/13/21 14:06	1
Hexachloroethane	ND		5.0	0.59	ug/L		08/12/21 16:25	08/13/21 14:06	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		08/12/21 16:25	08/13/21 14:06	1
Isophorone	ND		5.0	0.43	ug/L		08/12/21 16:25	08/13/21 14:06	1
N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		08/12/21 16:25	08/13/21 14:06	1
N-Nitrosodiphenylamine	ND		5.0	0.51	ug/L		08/12/21 16:25	08/13/21 14:06	1
Naphthalene	ND		5.0	0.76	ug/L		08/12/21 16:25	08/13/21 14:06	1
Nitrobenzene	ND		5.0	0.29	ug/L		08/12/21 16:25	08/13/21 14:06	1
Pentachlorophenol	ND		10	2.2	ug/L		08/12/21 16:25	08/13/21 14:06	1
Phenanthrene	ND		5.0	0.44	ug/L		08/12/21 16:25	08/13/21 14:06	1
Phenol	ND		5.0	0.39	ug/L		08/12/21 16:25	08/13/21 14:06	1
Pyrene	ND		5.0	0.34	ug/L		08/12/21 16:25	08/13/21 14:06	1

MB MB

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	226	TJ	ug/L		3.14		08/12/21 16:25	08/13/21 14:06	1
Unknown	1.79	ΤJ	ug/L		4.25		08/12/21 16:25	08/13/21 14:06	1
Unknown	44.4	TJ	ug/L		5.04		08/12/21 16:25	08/13/21 14:06	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	68	46 - 120	08/12/21 16:25	08/13/21 14:06	1
Phenol-d5 (Surr)	40	22 - 120	08/12/21 16:25	08/13/21 14:06	1
p-Terphenyl-d14 (Surr)	93	60 - 148	08/12/21 16:25	08/13/21 14:06	1
2,4,6-Tribromophenol (Surr)	70	41 - 120	08/12/21 16:25	08/13/21 14:06	1
2-Fluorobiphenyl	84	48 - 120	08/12/21 16:25	08/13/21 14:06	1
2-Fluorophenol (Surr)	56	35 - 120	08/12/21 16:25	08/13/21 14:06	1

**Client Sample ID: Lab Control Sample** 

Matrix: Water

Analysis Batch: 592784

Lab Sample ID: LCS 480-592707/2-A

Prep Type: Total/NA Prep Batch: 592707

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Biphenyl	32.0	28.6		ug/L		89	59 - 120
bis (2-chloroisopropyl) ether	32.0	19.7		ug/L		62	21 - 136
2,4,5-Trichlorophenol	32.0	30.1		ug/L		94	65 - 126
2,4,6-Trichlorophenol	32.0	29.0		ug/L		91	64 - 120
2,4-Dichlorophenol	32.0	27.9		ug/L		87	63 - 120
2,4-Dimethylphenol	32.0	26.4		ug/L		82	47 - 120
2,4-Dinitrophenol	64.0	43.0		ug/L		67	31 - 137
2,4-Dinitrotoluene	32.0	31.6		ug/L		99	69 - 120
2,6-Dinitrotoluene	32.0	32.4		ug/L		101	68 - 120
2-Chloronaphthalene	32.0	28.3		ug/L		88	58 - 120
2-Chlorophenol	32.0	24.9		ug/L		78	48 - 120
2-Methylphenol	32.0	24.3		ug/L		76	39 - 120
2-Methylnaphthalene	32.0	26.3		ug/L		82	59 - 120
2-Nitroaniline	32.0	28.5		ug/L		89	54 - 127
2-Nitrophenol	32.0	27.8		ug/L		87	52 - 125
3,3'-Dichlorobenzidine	64.0	53.8		ug/L		84	49 - 135

Eurofins TestAmerica, Buffalo

Page 31 of 51

Spike

Client: New York State D.E.C.

Project/Site: SMP C - Napanoch

Job ID: 480-188006-1

LCS LCS

# Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-592707/2-A

**Matrix: Water** 

Hexachlorobenzene

Hexachloroethane

Isophorone

Naphthalene

Nitrobenzene

Phenanthrene

Phenol

Pyrene

Pentachlorophenol

Hexachlorobutadiene

Indeno[1,2,3-cd]pyrene

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Hexachlorocyclopentadiene

**Analysis Batch: 592784** 

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

Prep Type: Total/NA Prep Batch: 592707

	Spike	LUS	LUS		%Rec.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
3-Nitroaniline	32.0	26.4	ug/L	82	51 - 120	
4,6-Dinitro-2-methylphenol	64.0	54.3	ug/L	85	46 - 136	
4-Bromophenyl phenyl ether	32.0	33.2	ug/L	104	65 - 120	
4-Chloro-3-methylphenol	32.0	29.1	ug/L	91	61 - 123	
4-Chloroaniline	32.0	25.3	ug/L	79	30 - 120	
4-Chlorophenyl phenyl ether	32.0	31.5	ug/L	99	62 - 120	
4-Methylphenol	32.0	24.0	ug/L	75	29 - 131	
4-Nitroaniline	32.0	28.9	ug/L	90	65 - 120	
4-Nitrophenol	64.0	46.6	ug/L	73	45 - 120	
Acenaphthene	32.0	29.0	ug/L	91	60 - 120	
Acenaphthylene	32.0	28.9	ug/L	90	63 - 120	
Acetophenone	32.0	25.1	ug/L	78	45 - 120	
Anthracene	32.0	29.9	ug/L	93	67 - 120	
Atrazine	64.0	68.1	ug/L	106	71 - 130	
Benzaldehyde	64.0	49.1	ug/L	77	10 - 140	
Benzo[a]anthracene	32.0	32.6	ug/L	102	70 - 121	
Benzo[a]pyrene	32.0	29.5	ug/L	92	60 - 123	
Benzo[b]fluoranthene	32.0	30.8	ug/L	96	66 - 126	
Benzo[g,h,i]perylene	32.0	32.8	ug/L	103	66 - 150	
Benzo[k]fluoranthene	32.0	31.2	ug/L	98	65 - 124	
Bis(2-chloroethoxy)methane	32.0	26.0	ug/L	81	50 - 128	
Bis(2-chloroethyl)ether	32.0	23.6	ug/L	74	44 - 120	
Bis(2-ethylhexyl) phthalate	32.0	32.7	ug/L	102	63 - 139	
Butyl benzyl phthalate	32.0	33.0	ug/L	103	70 - 129	
Caprolactam	64.0	23.0	ug/L	36	22 - 120	
Carbazole	32.0	30.6	ug/L	96	66 - 123	
Chrysene	32.0	31.1	ug/L	97	69 - 120	
Dibenz(a,h)anthracene	32.0	33.0	ug/L	103	65 - 135	
Di-n-butyl phthalate	32.0	32.0	ug/L	100	69 - 131	
Di-n-octyl phthalate	32.0	32.4	ug/L	101	63 - 140	
Dibenzofuran	32.0	29.0	ug/L	91	66 - 120	
Diethyl phthalate	32.0	30.8	ug/L	96	59 - 127	
Dimethyl phthalate	32.0	31.4	ug/L	98	68 - 120	
Fluoranthene	32.0	30.6	ug/L	96	69 - 126	
Fluorene	32.0	29.9	ug/L	93	66 - 120	

32.0

32.0

32.0

32.0

32.0

32.0

32.0

32.0

32.0

32.0

64.0

32.0

32.0

32.0

30.8

27.3

14.5

22.6

32.3

26.6

24.8

30.4

26.0

25.4

43.7

30.8

16.3

31.8

ug/L

Eurofins TestAmerica, Buffalo

96

85

45

71

101

83

78

95

81

79

68

96

51

61 - 120

35 - 120

31 - 120

43 - 120

69 - 146

55 - 120

32 - 140

61 - 120

57 - 120

53 - 123

29 - 136

68 - 120

17 - 120

70 - 125

Page 32 of 51

-

3

O —

8

9

11

13

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

	LCS	LCS		
Surrogate	%Recovery	Qualifier	Limits	
Nitrobenzene-d5 (Surr)	73		46 - 120	
Phenol-d5 (Surr)	48		22 - 120	
p-Terphenyl-d14 (Surr)	102		60 - 148	
2,4,6-Tribromophenol (Surr)	98		41 - 120	
2-Fluorobiphenyl	90		48 - 120	
2-Fluorophenol (Surr)	63		35 - 120	

#### Method: 8015D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 480-592143/5 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA** Analysis Batch: 592143

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 25 16.4 J 4.2 ug/L 08/09/21 10:34 Gasoline Range Organics (GRO)-C6-C10

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac a,a,a-Trifluorotoluene 72 - 125 08/09/21 10:34 9.3

Lab Sample ID: LCS 480-592143/6 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** 

**Analysis Batch: 592143** 

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec I imits 200 Gasoline Range Organics 161 ug/L 80 66 - 120 (GRO)-C6-C10

LCS LCS %Recovery Qualifier Surrogate Limits a,a,a-Trifluorotoluene 72 - 125 90

Lab Sample ID: LCSD 480-592143/7 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 592143** 

Spike LCSD LCSD %Rec. **RPD** Added Limits Result Qualifier D %Rec RPD Limit **Analyte** Unit 200 66 - 120 Gasoline Range Organics 166 ug/L 83

(GRO)-C6-C10

LCSD LCSD %Recovery Qualifier Surrogate Limits a,a,a-Trifluorotoluene 91 72 - 125

#### Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 480-591924/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 592129 Prep Batch: 591924** MB MB

RL Analyte Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac Diesel Range Organics [C10-C28] ND 0.50 0.31 mg/L 08/05/21 15:15 08/09/21 10:25

Eurofins TestAmerica, Buffalo

Page 33 of 51

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 480-591924/1-A **Matrix: Water** 

Analysis Batch: 592129

Client Sample ID: Method Blank

Unit

mg/L

Unit

mg/L

Prep Type: Total/NA **Prep Batch: 591924** 

MB MB

Limits Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 08/05/21 15:15 08/09/21 10:25 o-Terphenyl 121 S1+ 51 - 120

LCS LCS

LCSD LCSD

6.78

Result Qualifier

6.46

Result Qualifier

Spike

Added

Limits

51 - 120

Spike

Added

6.00

6.00

Lab Sample ID: LCS 480-591924/2-A

**Matrix: Water** 

Diesel Range Organics

**Matrix: Water** 

**Analysis Batch: 592129** 

Analysis Batch: 592129

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA **Prep Batch: 591924** 

%Rec.

D %Rec 108

Limits

57 - 120

Limits

57 - 120

[C10-C28]

**Analyte** 

LCS LCS

%Recovery Qualifier Surrogate o-Terphenyl 114

Client Sample ID: Lab Control Sample Dup

%Rec

113

Prep Type: Total/NA

**Prep Batch: 591924** 

%Rec. **RPD** 

5

RPD Limit

30

Diesel Range Organics

Lab Sample ID: LCSD 480-591924/3-A

[C10-C28]

Analyte

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 114 51 - 120

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-592150/1-A

**Matrix: Water** 

Analysis Batch: 592364

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

**Prep Batch: 592150** 

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		08/09/21 09:09	08/10/21 15:03	1
PCB-1221	ND		0.50	0.18	ug/L		08/09/21 09:09	08/10/21 15:03	1
PCB-1232	ND		0.50	0.18	ug/L		08/09/21 09:09	08/10/21 15:03	1
PCB-1242	ND		0.50	0.18	ug/L		08/09/21 09:09	08/10/21 15:03	1
PCB-1248	ND		0.50	0.18	ug/L		08/09/21 09:09	08/10/21 15:03	1
PCB-1254	ND		0.50	0.25	ug/L		08/09/21 09:09	08/10/21 15:03	1
PCB-1260	ND		0.50	0.25	ug/L		08/09/21 09:09	08/10/21 15:03	1
PCB-1262	ND		0.50	0.25	ug/L		08/09/21 09:09	08/10/21 15:03	1
PCB-1268	ND		0.50	0.25	ua/L		08/09/21 09:09	08/10/21 15:03	1

мв мв
-------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	80	39 - 121	08/09/21 09:09	8/10/21 15:03	1
Tetrachloro-m-xylene	79	39 - 121	08/09/21 09:09 0	8/10/21 15:03	1
DCB Decachlorobiphenyl	59	19 - 120	08/09/21 09:09 0	8/10/21 15:03	1
DCB Decachlorobiphenyl	51	19 - 120	08/09/21 09:09 0	08/10/21 15:03	1

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-188006-1

LCS LCS

4.21

3.80

Result Qualifier

**MDL** Unit

0.58 ng/L

0.90 ng/L

0.74 ng/L

1.1 ng/L

0.39 ng/L

Unit

ug/L

ug/L

Project/Site: SMP C - Napanoch

## Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Spike

Added

4.00

4.00

Lab Sample ID: LCS 480-592150/2-A

**Matrix: Water** 

Analyte

PCB-1016

PCB-1260

Analysis Batch: 592364

**Client Sample ID: Lab Control Sample** 

95

Prepared

Prep Type: Total/NA

**Prep Batch: 592150** 

%Rec. D %Rec Limits 105 62 - 130

56 - 123

LCS LCS

MB MB

Result Qualifier

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	79		39 - 121
Tetrachloro-m-xylene	76		39 - 121
DCB Decachlorobiphenyl	61		19 - 120
DCB Decachlorobiphenyl	55		19 - 120

#### Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 200-169967/1-A

**Matrix: Water** 

Analyte

**Analysis Batch: 169997** 

Perfluorooctanesulfonamide (FOSA)

cetic acid (NMeFOSAA)

etic acid (NEtFOSAA)

6:2 FTS

8:2 FTS

N-methylperfluorooctanesulfonamidoa

N-ethylperfluorooctanesulfonamidoac

**Client Sample ID: Method Blank** 

Analyzed

Prep Type: Total/NA

**Prep Batch: 169967** 

Dil Fac

Perfluorobutanoic acid (PFBA) 1.00 5.0 0.89 na/L 08/09/21 10:04 08/09/21 21:01 Perfluoropentanoic acid (PFPeA) ND 2.0 0.47 ng/L 08/09/21 10:04 08/09/21 21:01 08/09/21 10:04 08/09/21 21:01 Perfluorohexanoic acid (PFHxA) ND 2.0 0.45 ng/L Perfluoroheptanoic acid (PFHpA) ND 2.0 08/09/21 10:04 08/09/21 21:01 0.24 ng/L Perfluorooctanoic acid (PFOA) 2.0 0.42 ng/L 08/09/21 10:04 08/09/21 21:01 ND ND 2.0 Perfluorononanoic acid (PFNA) 0.28 ng/L 08/09/21 10:04 08/09/21 21:01 Perfluorodecanoic acid (PFDA) ND 2.0 0.30 ng/L 08/09/21 10:04 08/09/21 21:01 Perfluoroundecanoic acid (PFUnA) ND 2.0 08/09/21 10:04 08/09/21 21:01 0.34 ng/L Perfluorododecanoic acid (PFDoA) ND 2.0 0.39 ng/L 08/09/21 10:04 08/09/21 21:01 Perfluorotridecanoic acid (PFTriA) ND 2.0 0.43 ng/L 08/09/21 10:04 08/09/21 21:01 Perfluorotetradecanoic acid (PFTeA) ND 2.0 0.63 ng/L 08/09/21 10:04 08/09/21 21:01 Perfluorobutanesulfonic acid (PFBS) ND 2.0 0.25 ng/L 08/09/21 10:04 08/09/21 21:01 2.0 Perfluorohexanesulfonic acid (PFHxS) ND 0.30 ng/L 08/09/21 10:04 08/09/21 21:01 Perfluoroheptanesulfonic Acid ND 2.0 0.23 ng/L 08/09/21 10:04 08/09/21 21:01 (PFHpS) Perfluorodecanesulfonic acid (PFDS) ND 2.0 0.31 ng/L 08/09/21 10:04 08/09/21 21:01 ND 2.0 08/09/21 10:04 08/09/21 21:01 Perfluorooctanesulfonic acid (PFOS) 0.29 ng/L

2.0

5.0

5.0

5.0

2.0

RL

MB MB

ND

ND

ND

ND

ND

ı							
	Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	13C8 FOSA	70		25 - 150	08/09/21 10:04	08/09/21 21:01	1
	13C4 PFBA	79		25 - 150	08/09/21 10:04	08/09/21 21:01	1
	13C5 PFPeA	84		25 - 150	08/09/21 10:04	08/09/21 21:01	1
	13C2 PFHxA	83		50 - 150	08/09/21 10:04	08/09/21 21:01	1
	13C4 PFHpA	83		50 - 150	08/09/21 10:04	08/09/21 21:01	1
	13C4 PFOA	84		50 - 150	08/09/21 10:04	08/09/21 21:01	1
	13C5 PFNA	80		50 - 150	08/09/21 10:04	08/09/21 21:01	1

Eurofins TestAmerica, Buffalo

08/09/21 10:04 08/09/21 21:01

08/09/21 10:04 08/09/21 21:01

08/09/21 10:04 08/09/21 21:01

08/09/21 10:04 08/09/21 21:01

08/09/21 10:04 08/09/21 21:01

Page 35 of 51

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

## Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 200-169967/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 169997 Prep Batch: 169967** 

	MB	MR				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFDA	84		50 - 150	08/09/21 10:04	08/09/21 21:01	1
13C2 PFUnA	76		50 - 150	08/09/21 10:04	08/09/21 21:01	1
13C2 PFDoA	71		50 - 150	08/09/21 10:04	08/09/21 21:01	1
13C2 PFTeDA	69		50 - 150	08/09/21 10:04	08/09/21 21:01	1
13C3 PFBS	85		50 - 150	08/09/21 10:04	08/09/21 21:01	1
18O2 PFHxS	86		50 - 150	08/09/21 10:04	08/09/21 21:01	1
13C4 PFOS	85		50 - 150	08/09/21 10:04	08/09/21 21:01	1
d3-NMeFOSAA	80		50 - 150	08/09/21 10:04	08/09/21 21:01	1
d5-NEtFOSAA	69		50 - 150	08/09/21 10:04	08/09/21 21:01	1
M2-6:2 FTS	87		25 - 150	08/09/21 10:04	08/09/21 21:01	1
M2-8:2 FTS	88		25 - 150	08/09/21 10:04	08/09/21 21:01	1

Lab Sample ID: LCS 200-169967/2-A **Client Sample ID: Lab Control Sample** 

doacetic acid (NEtFOSAA)

6:2 FTS

8:2 FTS

Matrix: Water							Prep Type: Total/NA
Analysis Batch: 169997							Prep Batch: 169967
	Spike		LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	40.0	45.8		ng/L		114	50 - 150
Perfluoropentanoic acid (PFPeA)	40.0	43.1		ng/L		108	50 - 150
Perfluorohexanoic acid (PFHxA)	40.0	45.0		ng/L		112	70 - 130
Perfluoroheptanoic acid (PFHpA)	40.0	42.9		ng/L		107	70 - 130
Perfluorooctanoic acid (PFOA)	40.0	43.3		ng/L		108	70 - 130
Perfluorononanoic acid (PFNA)	40.0	44.4		ng/L		111	70 - 130
Perfluorodecanoic acid (PFDA)	40.0	39.5		ng/L		99	70 - 130
Perfluoroundecanoic acid	40.0	45.8		ng/L		115	70 - 130
(PFUnA)				-			
Perfluorododecanoic acid	40.0	42.7		ng/L		107	70 - 130
(PFDoA)							
Perfluorotridecanoic acid	40.0	41.7		ng/L		104	70 - 130
(PFTriA)	40.0	00.0				00	70 100
Perfluorotetradecanoic acid (PFTeA)	40.0	39.2		ng/L		98	70 - 130
Perfluorobutanesulfonic acid	35.4	38.7		ng/L		109	70 - 130
(PFBS)	55.4	30.7		iig/L		100	70-130
Perfluorohexanesulfonic acid	36.4	37.6		ng/L		103	70 - 130
(PFHxS)				Ü			
Perfluoroheptanesulfonic Acid	38.1	44.6		ng/L		117	50 - 150
(PFHpS)							
Perfluorodecanesulfonic acid	38.6	38.3		ng/L		99	50 - 150
(PFDS)	<u></u> . <u>.</u>						
Perfluorooctanesulfonic acid	37.1	38.9		ng/L		105	70 - 130
(PFOS)	40.0	42.8		n a /l		107	50 - 150
Perfluorooctanesulfonamide (FOSA)	40.0	42.0		ng/L		107	50 - 150
N-methylperfluorooctanesulfona	40.0	44.4		ng/L		111	70 - 130
midoacetic acid (NMeFOSAA)	70.0	7-7-7		9/ =			10-100
N-ethylperfluorooctanesulfonami	40.0	49.3		ng/L		123	70 - 130

Eurofins TestAmerica, Buffalo

50 - 150

50 - 150

110

115

Page 36 of 51

41.6

44.2

ng/L

ng/L

37.9

38.3

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

# Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

		LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C8 FOSA	87		25 - 150
13C4 PFBA	99		25 - 150
13C5 PFPeA	108		25 - 150
13C2 PFHxA	104		50 - 150
13C4 PFHpA	104		50 - 150
13C4 PFOA	106		50 - 150
13C5 PFNA	106		50 - 150
13C2 PFDA	115		50 - 150
13C2 PFUnA	101		50 - 150
13C2 PFDoA	94		50 - 150
13C2 PFTeDA	92		50 - 150
13C3 PFBS	107		50 - 150
1802 PFHxS	109		50 - 150
13C4 PFOS	102		50 - 150
d3-NMeFOSAA	111		50 - 150
d5-NEtFOSAA	91		50 - 150
M2-6:2 FTS	116		25 - 150
M2-8:2 FTS	125		25 - 150

Lab Sample ID: 480-188006-1 MS

**Matrix: Water** 

**Analysis Batch: 169997** 

N-ethylperfluorooctanesulfonami

doacetic acid (NEtFOSAA)

ND

**Client Sample ID: MW-10** Prep Type: Total/NA

**Prep Batch: 169967** 

Analysis Buton. 100007	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	1.1	JB	36.5	44.5		ng/L		119	40 - 160
Perfluoropentanoic acid (PFPeA)	ND		36.5	40.5		ng/L		111	40 - 160
Perfluorohexanoic acid (PFHxA)	ND		36.5	40.2		ng/L		110	40 - 160
Perfluoroheptanoic acid (PFHpA)	ND		36.5	39.8		ng/L		109	40 - 160
Perfluorooctanoic acid (PFOA)	ND		36.5	41.0		ng/L		112	40 - 160
Perfluorononanoic acid (PFNA)	ND		36.5	41.1		ng/L		113	40 - 160
Perfluorodecanoic acid (PFDA)	ND		36.5	39.9		ng/L		109	40 - 160
Perfluoroundecanoic acid (PFUnA)	ND		36.5	44.4		ng/L		122	40 - 160
Perfluorododecanoic acid (PFDoA)	ND		36.5	38.9		ng/L		106	40 - 160
Perfluorotridecanoic acid (PFTriA)	ND		36.5	38.4		ng/L		105	40 - 160
Perfluorotetradecanoic acid (PFTeA)	ND		36.5	43.9		ng/L		120	40 - 160
Perfluorobutanesulfonic acid (PFBS)	0.35	J	32.3	38.3		ng/L		118	40 - 160
Perfluorohexanesulfonic acid (PFHxS)	ND		33.2	35.6		ng/L		107	40 - 160
Perfluoroheptanesulfonic Acid (PFHpS)	ND		34.7	41.2		ng/L		119	40 - 160
Perfluorodecanesulfonic acid (PFDS)	ND		35.2	35.1		ng/L		100	40 - 160
Perfluorooctanesulfonic acid (PFOS)	0.44	J	33.9	36.8		ng/L		107	40 - 160
Perfluorooctanesulfonamide (FOSA)	ND		36.5	43.7		ng/L		120	40 - 160
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		36.5	37.5		ng/L		103	40 - 160

Eurofins TestAmerica, Buffalo

40 - 160

42.0

ng/L

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

## Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 480-188 Matrix: Water Analysis Batch: 16999								Clie	ent Sample ID: MW-10 Prep Type: Total/NA Prep Batch: 169967
•	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
6:2 FTS	ND		34.6	37.0		ng/L		107	40 - 160
8:2 FTS	ND		35.0	42.4		ng/L		121	40 - 160
	MS	MS							
Isotope Dilution	%Recovery	Qualifier	Limits						
13C8 FOSA	101		25 - 150						
13C4 PFBA	92		25 - 150						
13C5 PFPeA	106		25 - 150						
13C2 PFHxA	104		50 - 150						
13C4 PFHpA	105		50 - 150						
13C4 PFOA	106		50 - 150						
13C5 PFNA	104		50 - 150						
13C2 PFDA	101		50 - 150						
13C2 PFUnA	96		50 - 150						
13C2 PFDoA	93		50 - 150						
13C2 PFTeDA	91		50 - 150						
13C3 PFBS	106		50 - 150						
18O2 PFHxS	110		50 - 150						
13C4 PFOS	104		50 - 150						
d3-NMeFOSAA	108		50 - 150						
d5-NEtFOSAA	92		50 - 150						
M2-6:2 FTS	117		25 - 150						
M2-8:2 FTS	103		25 - 150						

Lab Sample ID: 480-188006-1 MSD

Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 169997									Prep Ba	atch: 16	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	1.1	JB	36.6	45.0		ng/L		120	40 - 160	1	30
Perfluoropentanoic acid (PFPeA)	ND		36.6	42.2		ng/L		115	40 - 160	4	30
Perfluorohexanoic acid (PFHxA)	ND		36.6	41.7		ng/L		114	40 - 160	4	20
Perfluoroheptanoic acid (PFHpA)	ND		36.6	42.1		ng/L		115	40 - 160	5	20
Perfluorooctanoic acid (PFOA)	ND		36.6	42.1		ng/L		115	40 - 160	3	20
Perfluorononanoic acid (PFNA)	ND		36.6	40.8		ng/L		112	40 - 160	1	20
Perfluorodecanoic acid (PFDA)	ND		36.6	41.6		ng/L		114	40 - 160	4	20
Perfluoroundecanoic acid (PFUnA)	ND		36.6	41.6		ng/L		114	40 - 160	6	20
Perfluorododecanoic acid (PFDoA)	ND		36.6	43.4		ng/L		119	40 - 160	11	20
Perfluorotridecanoic acid (PFTriA)	ND		36.6	41.3		ng/L		113	40 - 160	7	20
Perfluorotetradecanoic acid (PFTeA)	ND		36.6	45.2		ng/L		124	40 - 160	3	20
Perfluorobutanesulfonic acid (PFBS)	0.35	J	32.3	37.2		ng/L		114	40 - 160	3	20
Perfluorohexanesulfonic acid (PFHxS)	ND		33.3	38.6		ng/L		116	40 - 160	8	20
Perfluoroheptanesulfonic Acid (PFHpS)	ND		34.8	40.5		ng/L		116	40 - 160	2	30
Perfluorodecanesulfonic acid (PFDS)	ND		35.3	36.5		ng/L		104	40 - 160	4	30

Client Sample ID: MW-10

Page 38 of 51

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

Lab Sample ID: 480-188006-1 MSD

## Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Water Analysis Batch: 169997									Prep Ty Prep Ba	•	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorooctanesulfonic acid (PFOS)	0.44	J	34.0	37.6		ng/L		110	40 - 160	2	20
Perfluorooctanesulfonamide (FOSA)	ND		36.6	43.2		ng/L		118	40 - 160	1	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		36.6	45.9		ng/L		126	40 - 160	20	20
N-ethylperfluorooctanesulfonami	ND		36.6	45.9		ng/L		126	40 - 160	9	20

ng/L

ng/L

114

119

40 - 160

40 - 160

6

2

doacetic acid (NEtFOSAA)			
6:2 FTS	ND		34.7
8:2 FTS	ND		35.1
	MSD	MSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C8 FOSA	103		25 - 150
13C4 PFBA	92		25 - 150
13C5 PFPeA	104		25 - 150
13C2 PFHxA	104		50 - 150
13C4 PFHpA	104		50 - 150
13C4 PEOA	105		50 - 150

13C8 FOSA	103	25 - 150
13C4 PFBA	92	25 - 150
13C5 PFPeA	104	25 - 150
13C2 PFHxA	104	50 - 150
13C4 PFHpA	104	50 - 150
13C4 PFOA	105	50 - 150
13C5 PFNA	106	50 - 150
13C2 PFDA	98	50 - 150
13C2 PFUnA	97	50 - 150
13C2 PFDoA	89	50 - 150
13C2 PFTeDA	92	50 - 150
13C3 PFBS	106	50 - 150
1802 PFHxS	107	50 - 150
13C4 PFOS	104	50 - 150
d3-NMeFOSAA	94	50 - 150
d5-NEtFOSAA	91	50 - 150
M2-6:2 FTS	116	25 - 150
M2-8:2 FTS	102	25 - 150

**Client Sample ID: MW-10** 

30

# **QC Association Summary**

Client: New York State D.E.C.

Project/Site: SMP C - Napanoch

Job ID: 480-188006-1

## **GC/MS VOA**

Analy	vsis	Batch:	592317
,a.	, 0.0	Datoiii	OO_O

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188006-7	SHEEN-080421	Total/NA	Water	8260C	
MB 480-592317/7	Method Blank	Total/NA	Water	8260C	
LCS 480-592317/5	Lab Control Sample	Total/NA	Water	8260C	

#### Analysis Batch: 592370

<b>Lab Sample ID</b> 480-188006-8	Client Sample ID TB-080421	Prep Type Total/NA	Matrix Water	Method 8260C	Prep Batch
MB 480-592370/8	Method Blank	Total/NA	Water	8260C	
LCS 480-592370/6	Lab Control Sample	Total/NA	Water	8260C	

## **GC/MS Semi VOA**

#### **Prep Batch: 592707**

Lab Sample ID 480-188006-7 - RE	Client Sample ID SHEEN-080421	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
MB 480-592707/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-592707/2-A	Lab Control Sample	Total/NA	Water	3510C	

#### Analysis Batch: 592784

Lab Sample ID 480-188006-7 - RE	Client Sample ID SHEEN-080421	Prep Type Total/NA	Matrix Water	Method 8270D	Prep Batch 592707
MB 480-592707/1-A	Method Blank	Total/NA	Water	8270D	592707
LCS 480-592707/2-A	Lab Control Sample	Total/NA	Water	8270D	592707

#### **GC VOA**

#### **Analysis Batch: 592143**

Lab Sample ID 480-188006-7	Client Sample ID SHEEN-080421	Prep Type Total/NA	Matrix Water	Method 8015D	Prep Batch
MB 480-592143/5	Method Blank	Total/NA	Water	8015D	
LCS 480-592143/6	Lab Control Sample	Total/NA	Water	8015D	
LCSD 480-592143/7	Lab Control Sample Dup	Total/NA	Water	8015D	

#### **GC Semi VOA**

#### **Prep Batch: 591924**

Lab Sample ID 480-188006-7	Client Sample ID SHEEN-080421	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
MB 480-591924/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-591924/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-591924/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

#### **Analysis Batch: 592129**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188006-7	SHEEN-080421	Total/NA	Water	8015D	591924
MB 480-591924/1-A	Method Blank	Total/NA	Water	8015D	591924
LCS 480-591924/2-A	Lab Control Sample	Total/NA	Water	8015D	591924
LCSD 480-591924/3-A	Lab Control Sample Dup	Total/NA	Water	8015D	591924

#### **Prep Batch: 592150**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188006-7	SHEEN-080421	Total/NA	Water	3510C	

Eurofins TestAmerica, Buffalo

Page 40 of 51 8/18/2021

2

5

6

0

9

4 4

12

13

# **QC Association Summary**

Client: New York State D.E.C.

Project/Site: SMP C - Napanoch

Job ID: 480-188006-1

GC Semi VOA (Continued)

Prep Batch: 592150 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-592150/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-592150/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 592364

Lab Sample ID 480-188006-7	Client Sample ID SHEEN-080421	Prep Type Total/NA	Matrix Water	Method 8082A	Prep Batch 592150
MB 480-592150/1-A	Method Blank	Total/NA	Water	8082A	592150
LCS 480-592150/2-A	Lab Control Sample	Total/NA	Water	8082A	592150

LCMS

**Prep Batch: 169967** 

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188006-1	MW-10	Total/NA	Water	3535	
480-188006-2	MW-10S	Total/NA	Water	3535	
480-188006-3	MW-7	Total/NA	Water	3535	
480-188006-4	FB-080421	Total/NA	Water	3535	
480-188006-5	EB-080421	Total/NA	Water	3535	
480-188006-6	DUP-080421	Total/NA	Water	3535	
MB 200-169967/1-A	Method Blank	Total/NA	Water	3535	
LCS 200-169967/2-A	Lab Control Sample	Total/NA	Water	3535	
480-188006-1 MS	MW-10	Total/NA	Water	3535	
480-188006-1 MSD	MW-10	Total/NA	Water	3535	

**Analysis Batch: 169997** 

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188006-1	MW-10	Total/NA	Water	537 (modified)	169967
480-188006-2	MW-10S	Total/NA	Water	537 (modified)	169967
480-188006-3	MW-7	Total/NA	Water	537 (modified)	169967
480-188006-4	FB-080421	Total/NA	Water	537 (modified)	169967
480-188006-5	EB-080421	Total/NA	Water	537 (modified)	169967
480-188006-6	DUP-080421	Total/NA	Water	537 (modified)	169967
MB 200-169967/1-A	Method Blank	Total/NA	Water	537 (modified)	169967
LCS 200-169967/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	169967
480-188006-1 MS	MW-10	Total/NA	Water	537 (modified)	169967
480-188006-1 MSD	MW-10	Total/NA	Water	537 (modified)	169967

3

4

6

10

13

16

8/18/2021

#### Lab Chronicle

1

Client: New York State D.E.C. Project/Site: SMP C - Napanoch

Lab Sample ID: 480-188006-1

Job ID: 480-188006-1

**Client Sample ID: MW-10** Date Collected: 08/04/21 11:10 Date Received: 08/05/21 10:00

**Matrix: Water** 

Batch Dilution Batch Method **Prep Type** Type Run **Factor** 

3535

537 (modified)

Batch **Prepared** or Analyzed Number Analyst Lab 169967 08/09/21 10:04 TAL BUR 169997 08/09/21 21:51 ND TAL BUR

Client Sample ID: MW-10S

Prep

Analysis

Total/NA

Total/NA

Lab Sample ID: 480-188006-2

Date Collected: 08/04/21 12:03 Date Received: 08/05/21 10:00

**Matrix: Water** 

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Number or Analyzed Run **Factor** Analyst Lab TAL BUR Total/NA Prep 3535 169967 08/09/21 10:04 СМ Total/NA 08/09/21 22:16 ND TAL BUR Analysis 537 (modified) 169997 1

Client Sample ID: MW-7 Lab Sample ID: 480-188006-3

**Matrix: Water** 

Date Collected: 08/04/21 13:23 Date Received: 08/05/21 10:00

Batch Batch Dilution Batch **Prepared** Method Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab Total/NA Prep 3535 169967 08/09/21 10:04 CM TAL BUR Total/NA Analysis 537 (modified) 169997 08/09/21 22:24 ND TAL BUR 1

Client Sample ID: FB-080421 Lab Sample ID: 480-188006-4

**Matrix: Water** 

Date Collected: 08/04/21 13:40 Date Received: 08/05/21 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			169967	08/09/21 10:04	СМ	TAL BUR
Total/NA	Analysis	537 (modified)		1	169997	08/09/21 22:32	ND	TAL BUR

Lab Sample ID: 480-188006-5 Client Sample ID: EB-080421

Date Collected: 08/04/21 13:46 **Matrix: Water** 

Date Received: 08/05/21 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			169967	08/09/21 10:04	CM	TAL BUR
Total/NA	Analysis	537 (modified)		1	169997	08/09/21 22:41	ND	TAL BUR

Client Sample ID: DUP-080421 Lab Sample ID: 480-188006-6

Date Collected: 08/04/21 00:00 **Matrix: Water** 

Date Received: 08/05/21 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			169967	08/09/21 10:04	СМ	TAL BUR
Total/NA	Analysis	537 (modified)		1	169997	08/09/21 22:49	ND	TAL BUR

Page 42 of 51

#### **Lab Chronicle**

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

Client Sample ID: SHEEN-080421

Lab Sample ID: 480-188006-7 Date Collected: 08/04/21 14:20 **Matrix: Water** Date Received: 08/05/21 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	592317	08/10/21 14:08	ATG	TAL BUF
Total/NA	Prep	3510C	RE		592707	08/12/21 16:25	CMC	TAL BUF
Total/NA	Analysis	8270D	RE	5	592784	08/13/21 22:13	RJS	TAL BUF
Total/NA	Analysis	8015D		1	592143	08/09/21 13:35	JLS	TAL BUF
Total/NA	Prep	3510C			591924	08/05/21 15:15	CMC	TAL BUF
Total/NA	Analysis	8015D		1	592129	08/09/21 08:01	MAN	TAL BUF
Total/NA	Prep	3510C			592150	08/09/21 09:09	JMP	TAL BUF
Total/NA	Analysis	8082A		1	592364	08/10/21 18:53	W1T	TAL BUF

Client Sample ID: TB-080421

Lab Sample ID: 480-188006-8 Date Collected: 08/04/21 00:00

**Matrix: Water** 

Date Received: 08/05/21 10:00

Batch Batch Dilution Batch Prepared Method **Factor** Number **Prep Type** Type Run or Analyzed Analyst Lab Total/NA Analysis 8260C 592370 08/11/21 02:53 CRL TAL BUF

**Laboratory References:** 

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = Eurofins TestAmerica, Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

# **Accreditation/Certification Summary**

Client: New York State D.E.C. Job ID: 480-188006-1

Project/Site: SMP C - Napanoch

537 (modified)

#### Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	<b>Expiration Date</b>
New York	NELAP	10026	04-01-22

#### Laboratory: Eurofins TestAmerica, Burlington

3535

3535

3535

3535

3535

3535

3535

Water

Water

Water

Water

Water

Water

Water

ıthority	<u>F</u>	Program	Identification Number	Expiration Date
ew York	1	IELAP	10391	04-01-22
The following analytes	s are included in this re	port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
the agency does not o	offer certification.			
Analysis Method	Prep Method	Matrix	Analyte	
537 (modified)	3535	Water	6:2 FTS	
537 (modified)	3535	Water	8:2 FTS	
537 (modified)	3535	Water	N-ethylperfluorooctanesulfor	namidoacetic
			acid (NEtFOSAA)	
537 (modified)	3535	Water	N-methylperfluorooctanesulf	onamidoacetic
/			acid (NMeFOSAA)	(2220)
537 (modified)	3535	Water	Perfluorobutanesulfonic acid	(PFBS)
537 (modified)	3535	Water	Perfluorobutanoic acid (PFB	A)
537 (modified)	3535	Water	Perfluorodecanesulfonic acid	d (PFDS)
537 (modified)	3535	Water	Perfluorodecanoic acid (PFD	DA)
537 (modified)	3535	Water	Perfluorododecanoic acid (P	FDoA)
537 (modified)	3535	Water	Perfluoroheptanesulfonic Ac	id (PFHpS)
537 (modified)	3535	Water	Perfluoroheptanoic acid (PF	HpA)
537 (modified)	3535	Water	Perfluorohexanesulfonic acid	d (PFHxS)
537 (modified)	3535	Water	Perfluorohexanoic acid (PFI	IxA)
537 (modified)	3535	Water	Perfluorononanoic acid (PFN	,

Perfluorooctanesulfonamide (FOSA)

Perfluorooctanesulfonic acid (PFOS)

Perfluorotetradecanoic acid (PFTeA)

Perfluorotridecanoic acid (PFTriA)

Perfluoroundecanoic acid (PFUnA)

Perfluorooctanoic acid (PFOA)

Perfluoropentanoic acid (PFPeA)

# **Method Summary**

Client: New York State D.E.C. Project/Site: SMP C - Napanoch

Job ID: 480-188006-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Gasoline Range Organics (GRO) (GC)	SW846	TAL BUF
8015D	Diesel Range Organics (DRO) (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL BUR
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL BUF
3535	Solid-Phase Extraction (SPE)	SW846	TAL BUR
5030C	Purge and Trap	SW846	TAL BUF

#### **Protocol References:**

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = Eurofins TestAmerica, Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

3

4

5

7

8

**4** C

11

12

13

15

# **Sample Summary**

Client: New York State D.E.C. Project/Site: SMP C - Napanoch

Job ID: 480-188006-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-188006-1	MW-10	Water	08/04/21 11:10	08/05/21 10:00
480-188006-2	MW-10S	Water	08/04/21 12:03	08/05/21 10:00
480-188006-3	MW-7	Water	08/04/21 13:23	08/05/21 10:00
480-188006-4	FB-080421	Water	08/04/21 13:40	08/05/21 10:00
480-188006-5	EB-080421	Water	08/04/21 13:46	08/05/21 10:00
480-188006-6	DUP-080421	Water	08/04/21 00:00	08/05/21 10:00
480-188006-7	SHEEN-080421	Water	08/04/21 14:20	08/05/21 10:00
480-188006-8	TB-080421	Water	08/04/21 00:00	08/05/21 10:00

4

5

6

Ω

9

10

46

13

14

Ver: 06/08/2021

# **Chain of Custody Record**

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

structing Environment Testing America

Client Information	Sampler:	Dorise		Lab PM				Camer Tra	Camer Tracking No(s):	Ĭ	COC No:	
Client Contact:	Phone:	5		Stone F-Mail	Stone, Judy L						480-163373-35903.1	03.1
Liane DeSantis Company	315-30	15-7	(83	Judy.S	tone@Eu	Judy.Stone@Eurofinset.com	E	State of Origin:			Page: Page 1 of 1	
EA Engineering, Science, and Technology			PWSID:				Analysis	8			Job# 1602523	3/00/2
Address: 269 West Jefferson St. Suite 104	Due Date Requested:	ij			7						Preservation Codes	
Crty: Syracuse	TAT Requested (days	ys):									A - HCL B - NaOH	M - Hexane N - None
State, Zip: NY, 13202	্ ) ধুদ্রুপ Compliance Project:	A Yes	Δ No	T				(:			C - Zn Acetate D - Nitric Acid	0 - AsNaO2 P - Na2O4S
Phone: 518-402-9662(Tel)	PO#: CallOut SMPC0001	901		T				nalytes	-			G - Nazsos R - Nazs203 S - H2S04
Email: Idesantis@eaest.com	#OM				C			A 12) 1				T - TSP Dodecahydrate U - Acetone
Project Name: SMP C - Napanoch	Project #: 48024061			30%	1. 12 m/s/			isil bri			J - DI Water K - EDTA L - EDA	V - MCAA W - pH 4-5 Z - other (specify)
Site:	SSOW#:			Signates.				sbristic				
			Sample		i sw			PFAS,		per of		
Sample Identification	Sample Date	Sample	_		ilii blei I San	DT - AS80 DT - G07s	75_0210 2T - 2082	FC_IDA -		muN isto		
	X	X	7 (0)		X	8 z	8 <	d z		)T>	Special In	Special Instructions/Note:
01-MW	12/4/8	1110	C	Water N	>			. ×		0	MS /w	
Mw - 105	17/1/8	1203	3	Water N	5			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		9 6	1.3/MCSD	
トレース	12/4/8	1323	0	Water	5		-	- X		1	E	
1/2	17/4/8	1340	2	Water /	N							
124080-03	8401	1346	S	Water N	3			×				
(2h0Q0-dn a	8/4/21		S	Water N	5			×			Custody	Custody
Sheen -080421	8/4/21	1420	S	Water	×	×	×			480-10	0000	
16-070821	12/82/2			Water /	2		X			2 -	Jah pronch	Trink h
				Water							7 1 1 2 1	1
Possible Hazard Identification												
Non-Hazard  Flammable Skin Irritant	Poison B Unknown		Radiological		Sample	le Disposaí ( A f Return To Client	(A fee n	Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)	if samples a	re retained	d longer than 1	month)
. ≡,	MYSDEC F	12			Special	Instruction	Is/QC Re	Special Instructions/QC Requirements:	n ran	ACE	AICIIVE FOI	Months
		Date:			Time:		-	Meth	Method of Shipment:			
Reinquished by Rob roson May Mah	Date/Time: 08/04 (2)	174		Company	Rec	Received by	llu		DateRime	16/5	100p	Company 3
	Date/Time:		<u>5</u>	Company	Rece	Received by:			Date/Time	io.		Company
Kelindushed by:	Date/Time:		Co	Company	Rece	Received by:			Date/Time:	ioi		Company
Custody Seals Intact: Custody Seal No.:  Δ Yes Δ No					Coo	er Temperatu	ıre(s) °C and	Cooler Temperature(s) °C and Other Remarks:	7	0		
					$\frac{1}{1}$				-	7	2	

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, VY 14228-2298 Phone: 716-691-3600 Fay: 716-691-7001	0	Chain c	of Cus	n of Custody Record	cord							rofins   Environment Testing   America	esting
	Sampler			- NO de			480-188	480-188006 Chain of Custody	Custody				
ormation (Sub Contract Lab)				Stone,	Stone, Judy L				(none		5621.1	Ψ.	
ad: /Receiving	Phone:			E-Mail: Judy.S	E-Mail: Judy.Stone@Eurofinset.com	ofinset.cor	=	New	New York		Page 1 of 1	-	
Company: TestAmerica Laboratories, Inc.				ě Z	Accreditations Required (See note): NFI AP - New York	Required (Se	e note):				Job #:		
ie 11.	Due Date Requested: 8/18/2021	<u>.</u>					Analys	Dog a	3		Preservation Codes:	on Codes:	
	TAT Requested (days):	s):		*			Alialys	Aliaiysis hequested		F	A-HCL		
South Burlington State, Zip:											C - Zn Acetate	n - None ite O - AsNaO2 d P - Na2O4S	
	# 0				**								
60-1990(Tel) 802-660-1919(Fax)	# #			. e. II	ni ni					-	G - Amchlor		drate
	:# OM			- N 40	(0)			-			II- Ice		, , , , , , , , , , , , , , , , , , ,
Project Name: Site Management Portfolio C	Project #: 48024061			SOA)	1 10 B						$\mathbf{x}$	W - pH 4-5 Z - other (specify)	
	SSOW#:			ejume	eV) G						f conf		
			Sample	T	SW/SW						o 1edr		
Sample Identification - Client ID /I sh ID	2	Sample	Type (C=comp,	(W=water, S=solid, C= O=waste/oil, G= O=	erform I FC_IDA/3 nalytes)						nuN listo		
Campro recumination - Onem in Crain in C	Salliple Date		Preserva	Preservation Code:	а X Ч		\$ p		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1)	Special Instructions/Note:	:i-
MW-10 (480-188006-1)	8/4/21	11:10		Water	×			*	1		S		
MW-10 (480-188006-1MS)	8/4/21	11:10 Factorn	MS	Water	×						2		
MW-10 (480-188006-1MSD)	8/4/21	11:10 Factorn	MSD	Water	×						2		
MW-10S (480-188006-2)	8/4/21	12:03 Fastern		Water	×						2		
MW-7 (480-188006-3)	8/4/21	13:23 Fastern		Water	×						2		
FB-080421 (480-188006-4)	8/4/21	13:40 Fastern		Water	×						7		
EB-080421 (480-188006-5)	8/4/21	13:46 Fastern		Water	×	<del> </del>	F				2		
DUP-080421 (480-188006-6)	8/4/21	Eastern		Water	×					-	Z		
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica altertions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	places the ownership eing analyzed, the sar ate, return the signed	of method, an nples must be Chain of Cust	alyte & accrec shipped back ody attesting to	itation compliance to the Eurofins Te said complicance	upon out su stAmerica la to Eurofins	bcontract lab boratory or o TestAmerica	oratories. T	nis sample ship ons will be prov	ment is forwar ided. Any cha	ded under ch	nain-of-custody. If the	le laboratory does not currild be brought to Eurofins	intly
Possible Hazard Identification		ļ			Sample	Disposal	A fee m	y be asses	sed if sam	ples are re	Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)	han 1 month)	
equested: I, II, IV, Other (specify)	Primary Deliverable Rank:	ole Rank: 2			Special	Special Instructions/QC Requirements	ient s/QC Req	Dispo: uirements:	Disposal By Lab		Archive For	Months	
Empty Kit Relinquist ed by:		Date:		- 	Time:				Method of Shipment:	pment:			T
alem mon	Date/Time 8 / 5	111	99	Company	Recei	N Y N		1111	1 1	Date Till	0/0/	Contraction	0,
	Date/Time:			Company	Received t		2	7	_	Date/Time:	2	Company	2
Relinquished by:	Date/Time:			Company	Recei	Received by:			۵	Date/Time:		Company	
Custody Seals Intact: Custody Seal No.:  Δ Yes Δ No				À	Coole	Temperatur	e(s) °C and	Cooler Temperature(s) °C and Other Remarks:					
												Ver: 06/08/2021	
				<b>15</b>	14	13			9	7	<ul><li>5</li><li>6</li></ul>		

ORIGIN ID:DKKA (716) 691-2600 SAMPLE RECEIPT EUROFINS TESTAMERICA BUFFALO 10 HAZELWOOD DR

SHIP DATE: 05AUG21 ACTWGT: 23.70 LB CAD: 848654/CAFE3409 DIMS: 22x14x11 IN

BILL SENDER

AMHERST, NY 14228 UNITED STATES US

SAMPLE MGT. TA BURLINGTON 530 COMMUNITY DRIVE SUITE 11 **SOUTH BURLINGTON VT 05403** 

(802) 923 - 1026

**REF: TA BURLINGTON** 



FedEx Express

1 of 2 TRK# 1888 3864 7240 ## MASTER ##

06 AUG 10:30A PRIORITY OVERNIGHT

IL BTVA

05403 VT-US BTV



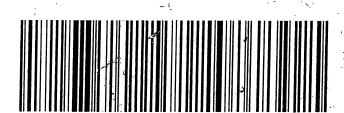
ORIGIN ID:DKKA (716) 691-2600 SAMPLE RECEIPT EUROFINS TESTAMERICA BUFFALO 10 HAZELWOOD DR

SHIP DATE: 05AUG21 ACTWGT: 47.30 LB CAD: 846654/CAFE34 DIMS: 26x15x14 IN

BILL SENDER

AMHERST, NY 14228-UNITED STATES US SAMPLE MGT. JA BURLINGTON 530 COMMUNITY DRIVE

SUITE 11


SOUTH*BURLINGTON VT 05403 (802) 923-1026



FedEx Express

2 of 2 MPS# 1888 3864 7251

05403 VT-US BTV



0201

Page 49 of 51

Client: New York State D.E.C.

Job Number: 480-188006-1

Login Number: 188006 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Yeager, Brian A

Creator. reager, Briair A		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	EA
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Client: New York State D.E.C.

Job Number: 480-188006-1

Login Number: 188006

List Number: 2

Creator: Sofio, Michael G

List Source: Eurofins TestAmerica, Burlington

List Creation: 08/06/21 11:57 AM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	1513435,1513434
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.1°C,1.1°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

