

June 20, 2023

Stora Enso C/O John T. Kolaga, Esq. Rupp Pfalzgraf, LLC 1600 Liberty Building Buffalo, New York 14202

RE: PERIODIC REVIEW REPORT – June 2023 Vails Gate Manufacturing, LLC Vails Gate, New York, NYSDEC Site No. 336065

Dear Mr. Kolaga:

In response to the New York State Department of Environmental Conservation ("NYSDEC") letter dated June 16, 2023, Leader Consulting Services, Inc. ("Leader") is pleased to provide Rupp Pfalzgraf, LLC, on behalf of Stora Enso, with this Site Management Plan ("SMP") Periodic Review Report summarizing the Remediation and Sampling Activities at the former Vails Gate Manufacturing ("VGM") faiility at 1073 Route 94 in Vails Gate, New York (hereafter referred to as "the Site") through May 2023. The Site is currently identified as the Vails Gate Business Center ("VGBC").

1.0 BACKGROUND

Leader was retained to implement the NYSDEC-approved Remedial Action Work Plan ("RAWP") that was developed for Area of Concern 6 ("AOC 6") at the Site. As identified in the approved RAWP, In-situ bioremediation was the selected remedial alternative identified in the NYSDEC-approved Corrective Measure Study ("CMS").

The Site-specific Standards, Criteria and Guidance ("SCGs") applicable to the RAWP were developed to meet the Remedial Action Objectives ("RAOs") of the CMS. An "unrestricted use remedy" has been established for the Site, which is based on the regulatory standard values for Class GA groundwater identified in 6 NYCRR Part 703.5. The RAWP was developed to address the SCGs and RAOs for the Site. The RAWP has been implemented in accordance with NYSDEC Department of Environmental Remediation ("DER") Guidance Document DER-10, *Technical Guidance for Site Investigation and Remediation*.

The In-Situ Bioremediation program identified in the RAWP was based on the March 2012 Phase II RCRA Facility Investigation ("RFI") and the 2013 CMS. Quarterly sampling and laboratory analyses of groundwater samples from four (4) groundwater monitoring wells (MW-14, MW-5A/AR, MW-16 and MW-CHA-RFI-7) was required per the RAWP.

A Site Management Plan ("SMP") was approved by NYSDEC after the final Quarterly Sampling event was completed. This SMP required the following to be completed during the 2020/2021 heating season: 1) Evaluation and repair (if needed) of existing Sub Slab Depressurization System ("SSDS") in Space 15; 2) Indoor Air Sampling and Testing in the Tesla Space (formerly Solar City); and 3) Groundwater sampling and testing of MW-5A/AR and MW-14.

Location: 305 Spindrift Drive, Williamsville, New York 14221 Mailing Address: PO Box 296, Clarence, New York 14031 Phone: 716-565-0963 Leadercs.com John T. Kolaga, Esq. June 20, 2023 Page 2

A subsequent September 2021 Remedial Monitoring/Closure Assessment Work Plan was prepared by Leader and approved by NYSDEC. This Plan involved: 1) groundwater monitoring well assessment, sampling and testing; 2) SSDS air sampling and testing; and 3) assessment of SSDS pressures including deactivation/reactivation. This program was completed in the Spring of 2023.

2.0 SCOPE-OF-WORK

The scope of work for this Periodic Review Report was based on DER-10 and is to summarize the status of Remedial Actions accomplished through May 2023 and the results of the Remedial Monitoring/Closure Assessment Work Plan involving the activities conducted in the Spring of 2023.

3.0 PROGRESS THROUGH APRIL 2023

Groundwater sampling was conducted at the Site from June 2011 through February 2023. The sampling events were designed to evaluate the success of the Bioremediation Activities. The Post–Remediation sampling and analysis included the typical parameters of volatile organic compounds ("VOCs"), sulfate, total organic carbon ("TOC"), and dissolved iron ("DI") and the field parameters of dissolved oxygen ("DO"), pH, oxidation reduction potential ("redox"), temperature and turbidity. Groundwater sample locations at MW-CHA-RFI-7 meet the Class GA groundwater standards as of the August 2017 sampling event and were not sampled during subsequent sampling events.

For the purpose of assessing the continued viability of the bioremediation medium, periodic sampling of the groundwater was conducted. Laboratory data were reviewed to evaluate analyte concentrations from groundwater samples from three (3) of the on-Site monitoring wells. The results were compared to previous data generated during RAWP implementation (i.e, bioremediation sampling and analysis) and the SCGs.

The February 2023 sampling event involved the collection of groundwater samples from monitoring wells MW-5A/AR, MW-14 and MW-16. Each of the three (3) samples were analyzed by Pace Laboratories for Target Compound List ("TCL") VOCs and 1,4 Dioxane. The laboratory report is included in Attachment A. MW-5A/AR and MW-14 were in satisfactory operating condition; however, MW-14 is in a depressed area of the parking lot; however, appears to be functioning satisfactorily. The concrete floor above the area where bio-remediation material had been injected was in good condition.

Indoor Air Sampling is conducted periodically to assess the adequacy of the vapor mitigation system. Leader sampled the Indoor Air in February 2023 after the Sub Slab Depressurization System ("SDSS") had been off for over ten (10) months. Air sample results were below the NYSDOH 2003 Indoor Air Study of VOCs in Air of Oil Fueled Homes Guidelines for the contaminants potentially related to this Remedial Action. The laboratory results are included in Attachment B.

Engineering Controls include the SSDS which was installed in Space 15 in February 2010. The vapor mitigation system was inspected by Alpine Environmental Services, Inc. in June 2011, April 2012, February 2018, March 2020, January 2021, March 2022, March 2023 and April 2023. The March and April 2023 vapor mitigation system inspections assessed the operating conditions and

John T. Kolaga, Esq. June 20, 2023 Page 3

involved maintenance and repair of the system. The SSDS pressure readings from April 2023 are included in Attachment C.

During the March 2023 inspection, Alpine observed that the vacuum fan wasn't operating and rescheduled inspection and fan replacement for April 2023. Alpine replaced the fan with a new Radonaway GX5 and then started the system, followed by collection of pressure readings.

Institutional Controls ("IC") were previously implemented to prevent future exposure to the remaining contamination and limit the development of the Site.

4.0 REMEDIAL ACTION OBJECTIVES

The RAOs for the Site are listed in the CMS and RAWP dated February and July 2014, respectively. They identify the Site specific Standards, Criteria and Guidance ("SCGs") applicable to the Site and have been selected to meet the overall RAOs of the CMS. An unrestricted use remedy has been established for the Site, which is based on the regulatory standard values for Class GA groundwater identified in 6 NYCRR Part 703.5. This detailed In-situ bioremediation RAWP was designed to address the SCGs and the RAOs for the Site.

- 4.1 Groundwater RAOs for Public Health Protection
 - Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
 - Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

The groundwater is not used as a public drinking water supply or used as process water within the facility. Therefore, the above RAOs have been met.

- **4.2** Groundwater RAOs for Environmental Protection
 - Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
 - Prevent the discharge of contaminants to surface water.
 - Remove the source of ground or surface water contamination.

The Site is in the post-bioremediation phase. There is no release of groundwater into the surface waters.

- **4.3** Soil RAOs for Public Health Protection
 - Prevent ingestion/direct contact with contaminated soil.
 - Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

A portion of the oil/water separator and 500-gallon overflow tank was removed along with the excavation of the surrounding contaminated soils. The impact to the groundwater is being bio remediated and monitored.

- **4.4** Soil RAOs for Environmental Protection
 - Prevent migration of contaminants that would result in groundwater or surface water contamination.
 - Prevent impacts to biota from ingestion/direct contact with soil causing toxicity or impacts from bioaccumulation through the terrestrial food chain.
 - The area where the remediation activities occurred is covered in asphalt or concrete. There is no direct contact with or migration from the former remediation area.
- **4.5** Soil Vapor RAOs

The RAOs established for sub-slab and indoor air samples collected within the Main Building at the Site are based on the decision matrices that are presented in the New York State Department of Health ("NYSDOH") October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York, and screening levels specified in the 2001 USEPA Indoor Air Building Assessment and Survey Evaluation ("BASE") Database, 90th Percentile of Indoor Air Results. In general, the RAO for Public Health Protection is to mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a Site. The February 2023 Indoor Sir Sampling results in the Tesla Space indicate that levels are below applicable NYSDOH guidelines for the VOCs related to this Remedial Action. Because the SSDS had been off for over ten (10) months, it is recommended that the system be deactivated and closed.

Based on the activities conducted to date, all of the ROAs have been satisfied.

5.0 2023 GROUNDWATER AND INDOOR AIR SAMPLING RESULTS

This section includes the results related to the Groundwater and Indoor Air Sampling testing activities conducted in the Spring of 2023. All field activities were implemented in general accordance with the NYSDEC approved QAPP and HASP.

5.1 Groundwater Sampling Results

GWM Well MW-5A/AR

Chloroethane concentrations decreased from 35 parts per billion ("ppb") in the September 2022 groundwater sampling event to 7.1 ppb in the February 2023 groundwater sampling event. Chloroethane is above the GA groundwater standard of 5 ppb.

1,4-Dioxane concentrations decreased from 21.9 ppb in the September 2022 groundwater sampling event to 9.6 ppb in the February 2023 groundwater sampling event. 1,4-Dioxane is above the GA groundwater standard of 1ppb.

The no other VOC analytes were detected within the February 2023 sample.

John T. Kolaga, Esq. June 20, 2023 Page 5

GWM Well MW-14

Chloroethane concentrations increased from non-detected ("ND") in the September 2022 groundwater sampling event to 1.8 ppb in the February 2023 groundwater sampling event. This concentration is below the Class GA groundwater standard of 5 ppb.

1,1-dichloroethane concentrations decreased from 11.8 ppb in the September 2022 groundwater sampling event to 4.6 ppb in the February 2023 groundwater sampling event which is below the Class GA groundwater standard of 5 ppb.

1,1-dichloroethene concentrations decreased from 1.4 ppb in September 2022 groundwater sampling event to 1.0 ppb in the February 2023 groundwater sampling event which is below the Class GA groundwater standard of 5 ppb.

1,4-Dioxane concentrations decreased from 143 ppb in the September 2022 groundwater sampling event to 128 ppb in the February 2023 groundwater sampling event. 1,4-Dioxane is above the GA NYSDEC guidance values groundwater standard of 1 ppb.

No other VOC analytes were detected within the February 2023 samples.

GWM Well MW-16

The 1,1-dichloroethane concentration decreased from 2.6 ppb in September 2022 groundwater sampling event to 1.1 ppb in the February 2023 groundwater sampling event which is below the Class GA groundwater standards of 5 ppb.

1,4-Dioxane concentrations increased from 0.28 ppb in the September 2022 groundwater sampling event to 1.5 ppb in the February 2023 groundwater sampling event. 1,4-Dioxane is above the GA groundwater standard of 1 ppb.

No other VOC analytes were detected within the February 2023 samples.

GWM Well MW-CHA-RFI-7

This monitoring well was not sampled in February 2023 in the groundwater sampling event.

The updated Groundwater Sampling Results spreadsheet and an updated Figure 4 are included in Attachment D (Tables 1a, 1b, 1c, Table 2 Field Data, and Table 3 Reductive Dechlorination).

5.2 Indoor Air Quality Results

An indoor air sample was collected in the Tesla Space near MW-5R/AR. The sample was analyzed by Centek Laboratories (See Attachment C).

The February 2023 indoor air sampling results are summarized below in Table 1. All Levels detected were below applicable guidance values or standards.

John T. Kolaga, Esq. June 20, 2023 Page 6

Table 1 - February	2023 Indoor	Air Ouality	Sampling Results
Table 1 - February	2025 muoor	An Quanty	Sampning Results

VOC	– Vails Gate (µg/r				NYSDOH 2003 BASE
	1-VG-Dup Storage and Shelving Area	1-VG MS/MSD Storage and Shelving Area	Detection Limits	NYSDOH Indoor Air Guideline (μg/m³)	Levels (µg/m ³)
				-	95 th Percentile
1,1-dichlorethene	ND	ND	0.16	NA	0.7
1,1,1- trichloroethane	ND	ND	0.82	NA	6.9
1,2,4- Trimethylbenzene	2.9	3.0	0.74	NA	18
1,3,5- Trimethylbenzene	0.98	0.98	0.74	NA	6.5
2,2,4- trimethylpentane	ND	ND	0.70J	NA	Not Established
4-ethyltoluene	1.3	1.4	0.74	NA	3.6
Acetone	18	14	NA	NA	140
Benzene	1.4	1.3	NA	NA	29
Carbon tetrachloride	0.44	0.44	NA	NA	1.1
Chloromethane	1.3	1.3	NA	NA	5.2
Cyclohexane	1.5	1.3	NA	NA	19
Ethyl acetate	ND	ND	NA	NA	Not established
Ethylbenzene	0.52	0.52	0.65	NA	13
Freon 11	1.3	1.4	NA	NA	Not Established
Freon 12	ND	ND	NA	NA	Not Established
Heptane	0.98	1.1	NA	NA	Not Established
Hexane	0.74	0.74	NA	NA	Not Established
Isopropyl alcohol	5.4	4.5	NA	NA	Not Established
m&p-Xylene	1.4	1.5	NA	NA	21
Methyl Ethyl Ketone	3.7	3.3	NA	NA	39
Methyl Isobutyl Ketone	ND	ND	1.2	NA	5.3
Methylene chloride	0.97	0.94	NA	60	45
o-Xylene	0.56	0.61	NA	NA	13
Styrene	0.85	0.85	NA	NA	2.3
Toluene	2.9	3.1	NA	NA	110

Location: 305 Spindrift Drive, Williamsville, New York 14221 Mailing Address: PO Box 296, Clarence, New York 14031 Phone: 716-565-0963 Leadercs.com

6.0 SUMMARY

The following summarizes the tasks that were completed in the Spring of 2023 and the Status of Remedial Actions:

- 1) The indoor air was sampled and a visual evaluation of the remedial measures was completed in February 21, 2023;
- 2) The SSDS system evaluation and repair was conducted on April 19, 2023; and,
- 3) The groundwater sampling and testing program was conducted on February 15, 2023.

Below is a summary of the contaminants that exceeded the GA groundwater standards in February 2023.

Monitoring Well	Analyte	Result	GA Standard
MW-5A/AR	Chloroethane	7.1 μg/l	5 µg/l
MW-5A/AR	1-4 Dioxane	9.6 μg/l	1 µg/l
MW-14	1-4 Dioxane	128 µg/l	1 µg/l
MW-16	1-4 Dioxane	1.5 μg/l	1 µg/l

The overall VOC levels have remained relatively constant since 2017 with only marginal exceedances. The remedial system is achieving the RAOs.

The Indoor Air Monitoring concentrations in the Tesla Space were below applicable guidance values. The indoor air at the facility satisfies the ROAs. The SSDS is currently in good operating condition; however, it appears unnecessary based on the indoor air quality data. Because the SSDS system had been off for over ten (10) months prior to the February 2023 sampling event, Leader recommended that the system be deactivated and closed. However, NYSDEC's June 16, 2023 letter requires concurrent indoor and subslab air samples to be collected in the winter heating season of 2023/2024 in the Unit 15 US Mint and Unit A1 Solar City/Tesla spaces, along with a completed Building Questionnaire and Product Inventory. An assessment of the need for the SSDS may be considered thereafter.

Additionally, the NYSDEC letter requires continued groundwater sampling and testing for volatile organic compounds, including 1,4-dioxane at MW-5/AR, MW-14 and MW-16. Groundwater and air sampling efforts are tentatively scheduled for February 2024. If you need any additional information, please contact the undersigned at (716) 565-0963.

Very truly yours, Leader Consulting Services, Inc.

Affrey a. Wittinger

Jeffrey A. Wittlinger, P.E., BCEE President

Location: 305 Spindrift Drive, Williamsville, New York 14221 Mailing Address: PO Box 296, Clarence, New York 14031 Phone: 716-565-0963 Leadercs.com

Attachment A

Groundwater Analytical Data

S		CHI	CHAIN-OF-CUSTODY Analytical	STODY.	Analytic	al Requ	Request Document	ument	-		LIO#: 70246603	03	rkorder	vrkorder Number or MTJL Log-
Face Analytical °		;					1							
Company: Leader Professional Services		5 	Chain-of-Custody is a LEGAL DOCUMENT- Complete all relevant tielos Billing Information:	Is a LEGAL :	DOCUMENT	- Complet	all relevan	t tields	T				USE	USE ONLY
								-		10+20/	200	Lab Pr	Lab Project Manager:	
Address: 2813 Wehrle Drive, Suite 1 Williamsville, NY 14221	rille, NY						1	3 3						
Report To: Brian Demme bdemme@leadercs.com		ä	Email To: bdemme@leadercs.com	ne@leadercs	COT.		a u	reservative Tyf sulfate, (9) hex	les: (1) nltric a ane, (A) ascori	cld, (2) sulfuric bic acld, (B) am	** Preservative Types: (1) nitric acid. (2) suituric acid. (3) hydrochloric acid. (4) sodium hydroxide, (5) zinc acetate, (6) methanol. (1) sodium bydroxide (6) zinc acetate, (6) methanol. (1) sodium thiosulfate, (9) hosane, (A) accorbic acid. (B) ammonium suifate, (c) ammonium hydroxide. (D) TSP. (U) Unpreserved. (O) Other	n hydroxide, (5) zinc a oxide, (D) TSP, (U) Un	acetate, (6) methanol, (7 1preserved, (0) Other	/) sodium pisulfate, (ø) sodium
Сору То:		Site	Site Collection Info/Address:	Address:						Ana	Analyses		LAB Profile/Line:	
Customer Project Name/Number: Vails Gate Manufacturing	Ifacturin		State NY County/City	ricity	Time Z(Time Zone Collected EST	d EST		00,%			C C	LAB Sample Receipt Checklist: Custody Seals Present/Intact	tact (
Phone: 716-565-0963 Fax:	Site/Facility ID #	lity ID #		Complia [] Yes	Compliance Monitoring? [] Yes [] No	ing?			dibid			00	Custody Signatures Present Collector Signature Present	2 2 90
cted by (print): Matt Broker (PACE)	Purchase Order #	: Order #		DW PWS ID #:	:# CI				ın1,				Bottles Intact Correct Bottles	zz
	Quote #		to Docuited.		DW Location Code #:				ֆշորւ			ŭ ŭ ŭ	Sufficient Volume Samples received on ice	2 2 D
Collected py/signamet:					tely Packed c	on Ice?			10J -			> >	VOA - Headspace Acceptable USDA Regulated Soils	z_z >}<
posal: as appropriate [] Return	RUSH: Same Di	ay NextI	RUSH: Same Day Next Day 2		Field Filtered (if applicable []Yes []No	cable):			oədS,			<i>ω</i> α.	Samples in holding time Residual Chiorine Present	
[] Archive	Day 3 D (Expedite	Day 4 Da Charges /	Iy 5 Day ∖pply)	Analysis:				-	4∃'c			0 0	Cl Strips: Sample pH Acceptable	N NA
Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product Iss to mitrori v wine (WP) air (AR). Tissue (TS), Bioassav (B), Vapor (V), Other (OT)	Water (D)	W), Groun /apor (V), (d Water (GW), Other (OT)	Wastewater	(WW), Produ	ict (P), Soil/Solld	-	10T 9r	lmə]			<u></u>	pH Strips: Sulfide Present	N YA
			Collected					-	L'H				Lead Acetate Strips:	-1
Customer Sample ID	Matrix"	Comp/	(or Composite Start)	_	Composite End	Res CI	# of Ctris	Dio:	d-p					
			Date Time	ie Date	Time		_	_	Fie			↓ LAE Lab Sar	↓ LAB USE ONLY: ↓ Lab Sample # / Comments	
MW-5A/AR MS/MSD	GW	G 21	2/15/23 1205	v		1	5	××	×					
MW-14	В	G Z	2/12/23/123	35			5	x x	×					
MW-16	ß	G 2	2/15/13/1230	0			5	x x	×					
Trip Blank	3	C 2	- Isha -				2	×						
			9											
				_				_						
Customer Remarks/ Special Conditions/ Possible Hazards: NYSDEC DER-10 EQUIS EDD. Category ASP B	azards:	New Mark	Type oNce Used: Wet [] JBlue [] Dry []	Dry [] None []		SHORT H	OLDS PRES	SHORT HOLDS PRESENT (< 72 hours):	nrs):	N N/A	-	LAB Sample Te Temp	LAB Sample Temperature Info: Temp Blank receivedt	V V
C Hrs		je	olong Material U:		LAB.Trad	LAB Tracking #: S6 31	5624	16 21 h	36		MTJL LAB USE ONLY	Therm ID#		2 2
		Ra ₹	Radchem sample(s) screened: (<500 cpm): [] Y [] N [] NA) screened:	Samples r FEDEX	Samples received via: FEDEX [] UPS	[]Client [] Courler		[] Pace Courler	=	Table # ACCT #	Cooler	Cooler 1 Therm Corr. Factor Cooler 1 Therm Corr. Factor	1-51
Relinque for dy Company : (Signature)		Date/Time:	24 160	Redeived b	d by/Company :	iy : (Signature)	(1) CT		Date/Time	23 1000	1150	Cooler 1 Co Comments:	ted Te	
Refinquished by/Company : (Signature)		Date/Time:		Rebeived	bycon	ny : (Signature)	Ire)		D#te/Time:		Prelogin:	Trip Blank Received: HCL MeOH	Y N TSP	N/A Other
Relinquished by/Company : (Signature)		Date/Time:		Receive	Received by/Company	ıy : (Signature)	ire)		Date/Time:		PB:	10		Page of
Relinquished by/Company : (Signature)		Date/Time:		Receive	Received by/Company	ny : (Signature)	lire)		Date/Time:					

F-ALL-C-010-rev 00, 05Jul2018

Client: Project: Vell ID.:	Vails Ga	er Consultin te Manufactu A/AR MS/MS	uring		PAC	EID			
Condition of We	II:N	letal cap can't c	lose		Locked:		Yes		
Method of Evacu	uation:	Peristaltic Pum	p		Lock ID:		Flush		
Method of Samp	oling:	Peristaltic Pum	ıp						
↑ ↑ ↑	— A →	A.	Diameter	of Well			2.00	in	ches
	TOP	В.	Well Dept	th Measu	ured	,	6.50	fe	et
		C.	Depth to \				0.00	– fe	et
		D,	Length of		Column (c	alculated)	6.50	– fe	
B ♠	WATER	Β.	Conversio				0.16		
	LEVEL						1.04	-	allons
	Same .		Well Volu					_ ^{ya}	anons
			No. of Vo			1	3	-1	
			Total Volu			ited	3.12		allons
			Actual Vo	lume Ev	acuated	5	3.50	_ ga	allons
F	SILT	E.	Installed \	Well Dep	oth (if kno	wn)	N/A	– ^{fe}	et
↓ ↓		F.	Depth of \$	Silt (calc	ulated		N/A	_ fe	et
ield	Initial		inal			% Rechar	ge:		
Measurements	Evacuation	5	ampling			Initial Dep	th to Water	0	feet
Date Time	2/15/23			15/23 2:05	-	Recharge D	epth to Water	6.41	feet
EH	-104		-87		mV				
emperature	12.1		11.7		С	2nd water	column height		%
н	6.75		6.91		SU	1st water	column height		
Specific Cond. Turbidity	<u>1292</u> 153		1392 101	2	uS NTU	Elovation/Tr	op of Casing)	N/A	feet
Dissolved Oxygen	2.72			3.13	_ 110	G.W. Elev		N/A	feet
ppearance	cloudy		cl	oudy		G.W.Elevati	on =Top of Case E	ev-Total	Depth
Veather: 0bservations: clo	oudy, was dry arour	12C sunny nd well but had c		rt		Sampler: Signature		Broker	

W0#:70246603

Due Date: 03/02/23

PM: GFD

CLIENT: LCS

lient: roject: /ell ID.:	Vails Gate	r Consultin Manufactu /IW-14		_	PAC	EID			
Condition of We	II:	Good			Locked:		Yes		
Method of Evacu	uation:	Bailer			Lock ID;		Flush	_	
Method of Samp	oling:	Bailer							
↑ ↑ ↑	<u>— A</u> →	A.	Diameter	of Well			2.00	ind	ches
	ТОР	В.	Well Dep	th Meas	ured		13.00	fe	et
Ċ		C.	Depth to			-	3.61	 fe	et
		D.			Column (c	- alculated)	9.39	– fe	et
В ↑	WATER	Β.	Conversi			-	0.16	-	
	LEVEL		Well Volu				1.50	-	allons
	Sec. Sec.			·				_ 9ª	
			No. of Vo				3	_	ана. И е и е
	and the second		Total Vol			ted	4.50	_	allons
1			Actual Vo	olume Ev	acuated		Dry @ 2	_ ga	allons
F	SILT	Ε.	Installed	Well De	oth (if kno	wn) .	N/A	_ fe	et
↓ ↓		F.	Depth of	Silt (calc	ulated	,	N/A	fe	et
ield	Initial		Final	6		% Rechar	ge:		
leasurements	Evacuation		Sampling			Initial Dep	th to Water	3.61	feet
ate ïme	2/15/23			15/23 2:35	-	Recharge De	epth to Water	7.92	feet
н	-100		-45		mV				
emperature	17.2		17.8	3	C	2nd water	column height		%
н	6.58		6.73	3	SU	1st water	column height		
pecific Cond. urbidity	<u>1522</u> 40.4		1146		uS NTU	Elevation(To	op of Casing)	N/A	fee
issolved Oxygen ppearance	2.43 cloudy			2.73 loudy	-	G.W. Elev	vation= on =Top of Case E	N/A lev-Total	fee Depth
/eather:	lioudy					Sampler:			
	ell between piller 2 ar		vell			Signature		Broker	

ient: oject: /ell ID.:		der Consulting ate Manufactu MW-16		PAC	EID			
Condition of We	əll:	Good	.)	Locked		Yes		
Method of Evac	uation:	Peristaltic Pum	р	Lock ID	:	Flush		
Method of Samp	oling:	Peristaltic Pum	р					
↑ ↑ ↑□	— A →	A.	Diameter of W	ell		2.00	inch	ies
	TOP	В.	Well Depth Me	asured		13.63	feet	
		C.	Depth to Wate	r		3.05	 feet	
		D.	Length of Wate		calculated)	10.58	— feet	
В ↓	WATER		Conversion Fa		,	0.16		
Ė	LEVEL		Well Volume (1.69	— galle	ons
			No. of Volume		uated	3	_	i.
			Total Volume t			5.07	— galle	ons
+ + + 	a dense Room		Actual Volume	Evacuated		Dry @ 1.5	gall	
F	SILT	Е,	Installed Well	Depth (if kno	wn)	N/A	feet	
\downarrow \downarrow		F _x	Depth of Silt (c	alculated		N/A	feet	
eld	Initial		nal		% Rechar	ge:		
easurements	Evacuation	Sa	ampling		Initial Dep	th to Water	3.05 f	feet
ate me	2/15/23	a	2/15/23 12:30		Rochargo D	epth to Water	13.27 f	feet
-	31		44	mV	Recharge D		10.27	
emperature	14.3		12.4	C	2nd water	column height		%
1	6.94		7.01	SU		column height	**	
becific Cond.	1645		1629	uS				
ırbidity	6.82		96	NTU	Elevation(To	p of Casing)	N/A	fee
ssolved Oxygen	2.23		2.14		G.W. Elev		N/A	fee
opearance	clear		cloudy		G.W.Elevati	on =Top of Case E	lev-Total De	epth
eather:	and a stand	12C sunny			Sampler:		Dest	
servations: <u>sa</u>	mple cloudy				Signature		Broker	

WO#:70246603 PM: GFD Due Date: 03/02/23 CLIENT: LCS

PACE ANALYICAL INC. FIELD CALIBRATION SHEET

DATE:	2/15/23	SITE:	Vails Gate Manufacturing	
TECHNICIAN:	Matt Broker	WEATHER:	12C sunny	

INSTRUMENT:

PHMyron Ultrameter II 6PFCeCONDUCTIVITYMyron Ultrameter II 6PFCeTEMPERATUREMyron Ultrameter II 6PFCeDISSOLVED OXYGENSper Scientific 850041TURBIDITYHanna HI 98703

INSTRUMENT	STANDARD	INTIAL	ADJUSTED	TIME	NOTES
ANALYTE		READING	READING		
Ph	4.00	4.03	4.00	1102	
	7.00	7.03	7.00	1100	
	10.00	9.98	10.00	1104	
Conductivity	1413	1425	1413	1105	
Turbidity	<0.10	0.11	<0.10	1106	
	15	15.4	15	1107	
	100	107	100	1108	
	750	760	750	1109	

NOTES:

Attachment B

Indoor Air Data

Centek/SanAir Laboratories

Client	: Leader Consulting	Project:	Vails Gate	9	SDG:	C2302047
				YES	NO	<u>NA</u>
Analytical Results	Present and Complete			~		
FIC's Present	Present and Complete					<u> </u>
	Holdin Times Met					
Comments:						** *** * ****
				·····		
Chain of Custody	Present and Complete			Encourant.		
Surrogate	Present and Complete			*		
	Recoveries within Limits			\geq		
	Sample(s) reanalyzed					
Internal Standards	Present and Complete			<u>></u>	<u></u>	
Recovery	Recoveries within Limits			****		
	Sample(s) reanalyzed					<u> </u>
Comments:						
		26 JITE 18 JII 19 JI	Anna a state a succession and a succession of the succession of the succession of the succession of the success			
Lab Control Sample	Present and Complete			\sim		
LCS)	Recoveries within Limits			<u> </u>		100708/0000
ab Control Sample Dupe	Present and Complete			<u>\</u>		
(LCSD)	Recoveries within Limits			<u> </u>		
MS/MSD	Present and Complete			~		
·	Recoveries within Limits				40.000 PE	
Comments:						
			e trans e norte en la companya de la	****		
Sample Raw Data	Precent and Complete			~		
Sample Raw Data	Present and Complete Spectra present		ч та т т т т т т т т т т т т т т т т т т	\sum		_

Centek/SanAir Laboratories

Centek/SanAir Laboratories TO-15 Package Review CheckList

Centek Laboratorijes	ent: Leader Consulting	Project:	Vails Gate	SDG	: C2302047
				<u>YES N</u>	IO NA
Standards Data Intial Calibration				< N	
Intial Calloration	Present and Complete Calibration meets criteria			<u> </u>	
Continuing Calibration	Present and Complete				<u></u>
contrading canoration	Calibration meets criteria				
Standards Raw Data	Present and Complete			<u> </u>	
Comments:					
Raw Quality Control Data					
Tune Criteria Report	Present and Complete				
Method Blank Data	MB Results <pql< td=""><td></td><td></td><td></td><td></td></pql<>				
	Associated results flagged "	8"			
LCS Sample Data	Present and Complete			<u> </u>	
LCSD Sample Data	Present and Complete			·····	<u></u>
MS/MSD Sample Data	Present and Complete				
Comments:					
					• • • • • • • • • • • • • • • • • • •
Logbooks					
Injection Log				<u>``</u>	
Standards Log				<u> </u>	
Can Cleaning Log				<u> </u>	
Calculation Sheet				<u>></u>	
DL's					
Canister Order Form					
Sample Tracking Form				<u> </u>	10/LL
Additional Comments:	JEE CASE	MARR	ITWE		

Section Supervisor:	rill-	Date:	3/36/	23	
QC Supervisor:	Full Dati	Date:	3/30/	2023	

Page 2 of 201

 143 Midler Park Drive * Syracuse, NY 13206

 Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752

 NYSDOH ELAP
 Certificate No. 11830

Analytical Report

Brian Demme Leader Consulting Services 305 Spindrift Drive Williamsville, NY 14221 Tuesday, February 28, 2023 Order No.: C2302047

TEL: 716-565-0963 FAX RE: Vails Gate - Tesla

Dear Brian Demme:

Centek/SanAir Technologies Laboratory received 3 sample(s) on 2/22/2023 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek/SanAir Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek/SanAir Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

Centek/SanAir Laboratories

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

Wall Dott.

William Dobbin Lead Technical Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek/SanAir as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, tetrahydrofuran, 4-PCH, sulfur derived and silcon series compounds.

Centek/SanAir Laboratories - Terms and Conditions

Chain of Custody Chain of Custody must be completed in full. Lack of any missing information will affect your Turn Around Times (TAT) Internal Chain of Custody provided when you notify Centek/SanAir Laboratories

Sample Submission

All samples sent to Centek/SanAir Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.Centek/SanAirLabs.us. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in a canister or a Tedlar bag. Depending on your analytical needs, Centek/SanAir Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek/SanAir Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any damages of equipment. **Any sampling equipment that exceeds holding times, cancellation of job or non-notice of rescheduling is subject to restocking fees**

Turn Around time (TAT)

Centek/SanAir Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis (add 10%/sample for Cat B). Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples:

Same day TAT = 200% Next business day TAT by Noon = 150% Next business day TAT by 6:00pm = 100% Second business day TAT by 6:00pm = 75% Third business day TAT by 6:00pm = 50% Fourth business day TAT by 6:00pm = 35% Fifth business day = Standard

Statement of Confidentiality

Centek/SanAir Laboratories is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek/SanAir Laboratories warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek/SanAir Laboratories. In no event shall Centek/SanAir Laboratories be liable for direct, indirect, special, punitive, incidental, exemplary

Centek/SanAir Laboratories

or consequential damages, or any damages whatsoever, even if Centek/SanAir Laboratories has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

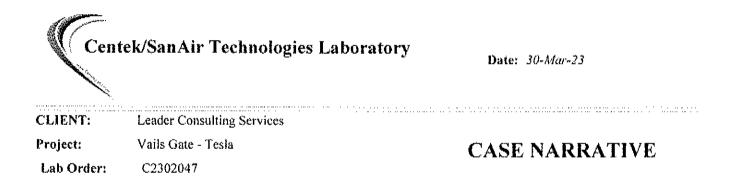
ASP CAT B DELIVERABLE PACKAGE Table of Contents

1. Package Review Check List

2. Case Narrative

- a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a, Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation

8. Sample Data


a. Form I (if requested) TIC's b. Quantitation Report with Spectra

9. Standards Data

- a. Initial Calibration with Quant Report
- b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD

12. Log Books

- a. Injection Log Book
- b. Standards Log Book
- c. QC Canister Log Book

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (\pm 2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (\pm 1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg, \pm 1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

See Corrective Action: [4605] Regulator ID number not listed on COC.

Page 1 of 1

Corrective Action Report

Date Initiated: Initiated By:	22-Feb-23 Robin Gushlaw	Corrective Action Report ID: 4605 Department: LOGIN
	Correc	ctive Action Description
CAR Summary:	Regulator ID number n	-
Description of Nonconformanc Root/Cause(s):	Regulator #1149 was r e	not listed on COC for C2302047, Leader Consulting services.
Description of Corrective Actio w/Proposed C.A	n	equested, regulator number (not listed on coc) 1149.
Performed By:	Robin Gushlaw	Completion Date: 23-Feb-23
		Client Notification
Client Notificatic Comment:	n Required: No	Notified By:
	Qua	lity Assurance Review
lonconformance		

			······································	
	Approv	al and Closure		
Technical Director / Deputy Tech. Dir.:		• ••••••	Close Date:	30-Mar-23
	William Dob			
QA Officer Approval:	Kju Russell Pelles	Irino	QA Date:	23-Feb-23
Last Updated BY robin	Updated:	30-Mar-2023 9:20 AM		D-Mar-2023 9:20 AM

Page 9 of 201

Project 7 550.4 / Tex 1491 Dollar
Canister Order #: 7673
Cost May Scarces
·
HILEMSALIP NY
1) Leveler X. 19.14
5 BOAR
Analysis R
190 TU-15
70-15
S1 - 24
Signature
Level 1. H. Save
Az ~ 40
of Balle

Centek/SanAir Laboratories

Page 10 of 201

***Chain of Custody must be completed in full. Lack of any missing information will affect your Turn Around Times (TAT) *** By signing CentekiSanAir Labs Chain of Custody, you are accepting the Terms and Conditions listed on the reverse side.

			Date: 30	-Mar-23
Cent	tek/SanAir Technolo	gies Laborat	tory	
CLIENT: Project: Lab Order:	Leader Consulting Services Vails Gate - Tesła C2302047		Work Orde	r Sample Summary
Lab Sample ID	Cfient Sample ID	Tag Number	Collection Date	Date Received
C2302047-001A	Summa #1 -Dup	211	2/21/2023	2/22/2023
C2302047-002A	Summa (MS-MSD)	1200	2/21/2023	2/22/2023
C2302047-003A	Trip Blank	483	2/21/2023	2/22/2023

Client Name LEADER CONSULT	P14122					
Work Order Number C2302047	ING			Date and Tin		2/22/202:
	- Ain	1 J		Received by:	RG	
Checklist completed by 140 %	Jisklew	2/23/2	3	Reviewed by		2/13/23
Signature		*Date			inilials	Date
Matrix:	Carrie	name: <u>Drop C</u>	<u>)ff</u>			
Shipping container/cooler in good o	condition?	Yes		No	Not Present	· <u>···</u> :
Custody seals intact on shippping	container/cooler?	Yes		No	Not Present	Z
Custody seals intact on sample bo	tties?	Yes .		No	Not Present	~
Chain of custody present?		Yes 3		No		
COC signed when relinquished and	d received?	Yes	Č.	No		
COC agrees with sample labels?		Yes	2	No		
COC completely filled out?		Yes		No 🖌		
Sample containers intact?		Yes N	Ż	No		
Sufficient sample volume for indica	ted test?	Yes	2	No		
All samples received within holding	time?	Yes S	2	No		
Container/Temp Blank temperature	in compliance?	Yes 3	2	No		
Nater - VOA vials have zero heads	pace? No VOA via	als submitted	2	Yes 🔛	No 🗔	
Vater - pH acceptable upon receip	t?	Yes 🌶	2	No		
	Adjusted?		С	hecked by		
Any No and/or NA (not applicable) (n contacted	Brian From CC.
Contacted by: Robin	Regardino:	Rooul	atro	-# Mis	SIMP.	from Co.
	······································	I'll gal			d	· · · · · · · · · · · · · · · · · · ·
Comments:						

boratory	
Labor	
ogies]	
chnol	
Air Te	
anA	
tek/S	
en	

Centek/Sa	Centek/SanAir Technologies Laboratory	s Laboratory		30-Mar-23	30-Mar-23	33	
Lab Order: C23 Client: Lea Project: Vai	C2302047 Leader Consulting Services Vails Gate - Tesla			DATES REPORT	DATE	DATES REPORT	
Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prep Date	Analysis Date
C2302047-001A	Summa #1 -Dup	2/21/2023	Air	lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1, fDCE			2/25/2023
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE			2/25/2023
C2302047-002A	Summa (MS-MSD)			lug/mJ w/ 0.2ug/MS CT-TCE-VC-DCE- 1, IDCE			2/25/2023
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE. 1,1DCE			225/2023
C2302047-003A	Frip Blank			lug/m3 w/ 0.2ng/M3 CT-FCE-VC-DCE- 1,1DCE			2/24/2023

Centek/SanAir Laboratories

CANISTER ORDER

Centek/SanAir Technologies Laboratory Are Quality Tearing, Ars a tias 143 Midler Park Drive * Syracuse, NY 13206 TEL: 315-431-9730 * FAX: 315-431-9731

9673

30-Mar-23

SHIPPED TO:

Company:	Leader Consulting Services	Submitted By:	
Contact: Address:	Brian Demme 305 Spindrift Drive	MadeBy: rip	
	Williamsville, NY 14221	Ship Date: 2/20/2023	
Phone:	716-565-0963	VIA: Pick Up	
Quote ID: Project: PO:	0	Due Date: 2/20/2023	
Bottle Code	Bottle Type	TEST(s)	QTY
MC1400CC	1.4L Mini-Can	1ug/M3 by Method TO15	3
Can / Reg ID	•		
211	1.4L Mini-Can - 1117 VI		
483	1.4L Mini-Can - 1365 VI		
1149	Time-Set Reg-2833 IAQ		
1200	1.4L Mini-Can - 1355 VI		

Comments: 1 1.4L @ 24hr + 1 1.4L dupe (w/T) + TB + Will P/U around 11am WAC 123022 C-D

1 of 1

Centek/SanAir Laboratories

.

.

.

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

ANALYTICAL RESULTS

.

.

.

Page 15 of 201

.

Centek/SanAir	Technologies	Laboratory
---------------	--------------	------------

Date: 23-Mar-23

CLIENT:	Leader Consulting Se			Client Sample		a #1 -Dup
Lab Order:	C2302047			Tag Numl		· · · •
				Collection D		0.22
Project:	Vails Gate - Tesla					.040
Lab ID:	C2302047-001A			Mat	rix: AlR	
Analyses		Result	ÐL Q	ual Units	ÐF	Date Analyzed
FIELD PARAM	ETERS		FLD			Analyst:
Lab Vacuum In		0		"Hg		2/22/2023
Lab Vacuum Oi	ət	-30		"Hg		2/22/2023
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	TO-15	i		Analyst: RJP
1,1,1-Trichloroe	thane	< 0.15	0.15	γddð	1	2/25/2023 12:39:00 AM
1,1,2,2-Tetrachi	oroethane	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
1,1,2-Trichloroe	thane	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
1,1-Dichloroetha	ane	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
1,1-Dichloroethe	ene	< 0.040	0.040	ppbV	1	2/25/2023 12:39:00 AM
1,2,4-Trichlorob	enzene	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
1,2,4-Trimethylt	enzene	0.58	0,15	ppbV	1	2/25/2023 12:39:00 AM
1,2-Dibromoetha	ane	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
1,2-Dichloroben	zene	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
1,2-Dichloroetha	ane	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
1,2-Dichloroprop	oane	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
1,3,5-Trimethylb	oonzene	0.20	0.15	ppbV	1	2/25/2023 12:39:00 AM
1,3-butadiene		< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
1,3-Dichloroben	zene	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
1,4-Dichloroben		< 0.15	0.15	ppb∨	1	2/25/2023 12:39:00 AM
1,4-Dioxane		< 0.30	0.30	Vdqq	1	2/25/2023 12:39:00 AM
2,2,4-trimethylp	entane	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
4-ethyltoluene		0.26	0.15	ppbV	1	2/25/2023 12:39:00 AM
Acetone		7.6	3.0	ppbV	10	2/25/2023 2:59:00 PM
Allyl chloride		< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
Benzene		0.43	0.15	ppbV	1	2/25/2023 12:39:00 AM
Benzyl chloride		< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
Bromodichlorom	ethane	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
Bromoform	(otherine)	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
Bromomethane		< 0.15	0.15		1	2/25/2023 12:39:00 AM
Carbon disulfide		< 0.15	0.15	ppbV	1	
Carbon tetrachic		0.070	0.15	ppbV	•	2/25/2023 12:39:00 AM
Chlorobenzene	11146 1			ppbV opbV	1	2/25/2023 12:39:00 AM
Chloroethane		< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM
Chloroform		< 0.15 < 0.16	0.15	ppbV	1	2/25/2023 12:39:00 AM
		< 0.16	0.15	ppb∨	1	2/25/2023 12:39:00 AM
Chloromethane	-	0.61	0.15	ppbV	1	2/25/2023 12:39:00 AM
cis-1,2-Dichloroe		< 0.040	0.040	Vdqq	1	2/25/2023 12:39:00 AM
cis-1,3-Dichlorop	nobsus	< 0.15	0.15	ppb∨	1	2/25/2023 12:39:00 AM
Cyclohexane		0.43	0.15	Vaqq	1	2/25/2023 12:39:00 AM
Dibromochlorom	lemane.	< 0.15	0.15	ppb∨	1	2/25/2023 12:39:00 AM
Ethyl acetate		< 0.15	0.15	ρρον	1	2/25/2023 12:39:00 AM

Qualifiers:	Results reported are not blank corrected

DI. Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated,

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J — Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Sub-Contracted

SC

Date: 23-Mar-23

	and a second		· · · · ·	·····	· · · · · · · · · · · · · · ·		
CLIENT:	Leader Consulting Se	rvices		C	Hient Sample ID:	: Sumn	na #1 -Dup
Lab Order:	C2302047				Tag Number:	211	
Project:	Vails Gate - Tesla				Collection Date:	2/21/2	2023
Lab ID:	C2302047-001A				Matrix:	AIR	
Analyses		Result	ÐL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	то	-15			Analyst: RJP
Ethylbenzene		0.12	0.15	J	ppbV	1	2/25/2023 12:39:00 AM
Freon 11		0.24	0.15		ppbV	1	2/25/2023 12:39:00 AM
Erona 113		10.10					

0.24 < 0.15 < 0.15 < 0.15 0.24	0.15 0.15 0.15 0.15		ppbV ppbV	1	2/25/2023 12:39:00 AM 2/25/2023 12:39:00 AM
< 0,15 < 0,15	0.15		•••	1	
< 0,15			anh\/		
	0.15		ppbV	1	2/25/2023 12:39:00 AM
0.24			ppbV	1	2/25/2023 12:39:00 AM
	0,15		ppbV	1	2/25/2023 12:39:00 AM
< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AM
0.21	0.15		ppbV	1	2/25/2023 12:39:00 AM
2.2	1.5		ppbV	10	2/25/2023 2:59:00 PM
0.32	0.30		opbV	1	2/25/2023 12:39:00 AM
< 0.30	0.30		Vdqq	1	2/25/2023 12:39:00 AM
1.3	0.30		ppbV	1	2/25/2023 12:39:00 AM
< 0.30	0.30		ppbV	1	2/25/2023 12:39:00 AM
< 0.15	0.15		Vdqq	1	2/25/2023 12:39:00 AM
0.28	0.15		ppbV	1	2/25/2023 12:39:00 AM
0.13	Ö.15	J	ppbV	1	2/25/2023 12:39:00 AM
< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AM
0.20	0.15		ppbV	1	2/25/2023 12:39:00 AM
< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AM
< 0,15	0.15		ppbV	1	2/25/2023 12:39:00 AM
0.78	0.15		Vdqq	1	2/25/2023 12:39:00 AM
< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AM
< 0.15	0.15		ppb∨	1	2/25/2023 12:39:00 AM
< 0.030	0.030		ppbV	1	2/25/2023 12:39:00 AM
< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AM
< 0.15	0.15		Vdqq	1	2/25/2023 12:39:00 AM
< 0.040	0.040		opbV	1	2/25/2023 12:39:00 AM
93.0	47-124		%REC	t	2/25/2023 12:39:00 AM
	0.21 2.2 0.32 < 0.30 1.3 < 0.30 < 0.15 0.28 0.13 < 0.15 0.20 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.030 < 0.15 < 0.030 < 0.15 < 0.040	$\begin{array}{c cccc} 0.21 & 0.15 \\ 2.2 & 1.5 \\ 0.32 & 0.30 \\ < 0.30 & 0.30 \\ 1.3 & 0.30 \\ < 0.30 & 0.30 \\ < 0.15 & 0.15 \\ 0.28 & 0.15 \\ 0.28 & 0.15 \\ 0.28 & 0.15 \\ 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.16 & 0.140 \\ \end{array}$	$\begin{array}{c ccccc} 0.21 & 0.15 \\ 2.2 & 1.5 \\ 0.32 & 0.30 \\ < 0.30 & 0.30 \\ 1.3 & 0.30 \\ < 0.30 & 0.30 \\ < 0.15 & 0.15 \\ 0.28 & 0.15 \\ 0.28 & 0.15 \\ 0.15 & 0.15 \\ 0.28 & 0.15 \\ 0.15 & 0.15 \\ 0.20 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.15 & 0.15 \\ < 0.16 & 0.15 \\ < 0.16 & 0.15 \\ < 0.040 & 0.040 \\ \end{array}$	0.21 0.15 ppbV 2.2 1.5 ppbV 0.32 0.30 ppbV <0.30	0.21 0.15 ppbV 1 2.2 1.5 ppbV 10 0.32 0.30 ppbV 1 < 0.30

Qualifiers:

. Results reported are not blank corrected DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 2 of 6

Date: 23-Mar-23

CLIENT:	Leader Consulting Ser	vices		С	lient Sampl	e ID: Sumn	na #1 -Dup		
Lab Order:	C2302047			Tag Number: 211					
Project:	Vails Gate - Tesla C2302047-001A			1	Collection	Date: 2/21/2			
Lab ID:						atrix: AIR			
Analyses	· ····· ·	Result	DL	Quał	Units	ÐF	Date Analyzed		
IUG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	τc	0-15			Analyst: RJP		
1,1,1-Trichloroet	thane	< 0,82	0.82		ug/m3	1	2/25/2023 12:39:00 AM		
1,1,2,2-Tetrachi	oroethane	< 1.0	1.0		ug/m3	1	2/25/2023 12:39:00 AM		
1,1,2-Trichloroe	thane	< 0.82	0.82		ug/m3	1	2/25/2023 12:39:00 AN		
1,1-Dichloroetha	ne	< 0.61	0.61		ug/m3	1	2/25/2023 12:39:00 AN		
1,1-Dichloroethe	me	< 0.16	0.16		ug/m3	1	2/25/2023 12:39:00 AN		
1.2,4-Trichlorob	enzene	< 1.1	1.1		ug/m3	1	2/25/2023 12:39:00 AN		
1.2.4-Trimethylb	enzene	2.9	0.74		ug/m3	1	2/25/2023 12:39:00 AM		
1,2-Dibromoetha	ane	< 1.2	1.2		ug/m3	1	2/25/2023 12:39:00 AN		
1,2-Dichloroben:	zene	< 0.90	0.90		ug/m3	1	2/25/2023 12:39:00 AM		
1.2-Dichloroetha	inė	< 0.61	0.61		ug/m3	1	2/25/2023 12:39:00 AN		
1,2-Dichloroprop	ane	< 0.69	0.69		ug/m3	1	2/25/2023 12:39:00 AN		
1,3,5-Trimethylb		0.98	0.74		ug/m3	1	2/25/2023 12:39:00 AN		
1,3-butadiene		< 0.33	0.33		ug/m3	1	2/25/2023 12:39:00 AN		
1,3-Dichlorobenz	zene	< 0.90	0.90		ug/m3	1	2/25/2023 12:39:00 AN		
1.4-Dichlorobena		< 0.90	0.90		ug/m3	, t	2/25/2023 12:39:00 AN		
1,4-Dioxane		< 1,1	1.1		ug/m3	, 1	2/25/2023 12:39:00 AM		
2,2,4-trimethylpe	entane	< 0.70	0.70		ug/m3	, 1	2/25/2023 12:39:00 AN		
4-ethyltoluene		1.3	0.74			1			
Acetone		18	7.1		ug/m3 ug/m3	10	2/25/2023 12:39:00 AN		
Allyi chioride		< 0.47	0.47		ug/m3 va/m3		2/25/2023 2:59:00 PM		
Benzene		~ 0.47	0.47		ug/m3	t	2/25/2023 12:39:00 AM		
Benzyl chloride		< 0.86			ug/m3	1	2/25/2023 12:39:00 AM		
Bromodichlorom	othaga	< 1.0	0.86		ug/m3	1	2/25/2023 12:39:00 AN		
Bromoform	GUIANG	< 1.6	1.0		ug/m3	1	2/25/2023 12:39:00 AM		
Bromomethane			1.6		ug/m3	1	2/25/2023 12:39:00 AM		
Carbon disulfide		< 0.58	0.58		ug/m3	1	2/25/2023 12:39:00 AM		
Carbon tetrachio	rida	< 0.47	0.47		ug/m3	1	2/25/2023 12:39:00 AM		
Chlorobenzene	nue	0.44	0.19		ug/m3	1	2/25/2023 12:39:00 AM		
		< 0.69	0.69		ug/m3	1	2/25/2023 12:39:00 AM		
Chloroethane		< 0.40	0.40		ug/m3	1	2/25/2023 12:39:00 AM		
Chloroform		< 0.73	0.73		ug/m3	1	2/25/2023 12:39:00 AM		
Chloromethane		1.3	0.31		ug/m3	1	2/25/2023 12:39:00 AM		
cis-1,2-Dichloroe		< 0,16	0.16		ug/m3	1	2/25/2023 12:39:00 AM		
cis-1,3-Dichlorop	ropene	< 0.68	0.68		ug/m3	1	2/25/2023 12:39:00 AM		
Cyclohexane		1.5	0.52		ug/m3	1	2/25/2023 12:39:00 AM		
Dibromochlorom	ethane	< 1.3	1.3	1	ug/m3	1	2/25/2023 12:39:00 AM		
Ethyl acetate		< 0.54	0.54		ug/m3	1	2/25/2023 12:39:00 AM		
Ethylbenzene		0.52	0.65	J	ug/m3	1	2/25/2023 12:39:00 AM		
Freon 11		1.3	0.84		ug/m3	1	2/25/2023 12:39:00 AM		
Freon 113		< 1.1	1.1	I	ug/m3	1	2/25/2023 12:39:00 AM		
Freon 114		< 1.0	1.0	I	ug/m3	1	2/25/2023 12:39:00 AM		
Qualifiers: ,	Results reported are not blan	ik corrected		13	Anatyre de	acceed in the as	sociated Method Blank		
D1.	Detection Limit			E Estimated Value above quantitation range					
H	Holding times for preparati	on or analysis exce	eded	,			antitation limit		

JN Non-routine analyte, Quantitation estimated.

 \mathbf{S} Spike Recovery outside accepted recovery limits ND Not Detected at the Limit of Detection SC Sub-Contracted

Page 1 of 6

Date: 23-Mar-23

CLIENT:	Leader Consulting Services		Client Sample 1D	: Summa /	41 -Dup
Lab Order:	C2302047		Tag Number	211	
Project:	Vails Gate - Testa		Collection Date:	: 2/21/202	3
Lab ID:	C2302047-001A		Matrix	AIR	
Analyses	Result	DL Q	Jual Units	DF	Date Analyzed

1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	TO-15	i		Analyst: RJP
Freon 12	< 0.74	0.74	ug/m3	1	2/25/2023 12:39:00 AM
Heptane	0.98	0.61	ug/m3	1	2/25/2023 12:39:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	2/25/2023 12:39:00 AM
Hexane	0.74	0.53	ug/m3	1	2/25/2023 12:39:00 AM
isopropyl alcohol	5.4	3.7	ug/m3	10	2/25/2023 2:59:00 PM
m&p-Xylene	1.4	1.3	ug/m3	1	2/25/2023 12:39:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	2/25/2023 12:39:00 AM
Methyl Ethyl Ketone	3.7	0.88	ug/m3	1	2/25/2023 12:39:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	2/25/2023 12:39:00 AM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	2/25/2023 12:39:00 AM
Methylene chloride	0.97	0.52	ug/m3	1	2/25/2023 12:39:00 AM
o-Xylena	0.56	0.65	J ug/m3	1	2/25/2023 12:39:00 AM
Propylene	< 0.26	0.26	ug/m3	1	2/25/2023 12:39:00 AM
Styrene	0.85	0.64	ug/m3	1	2/25/2023 12:39:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	2/25/2023 12:39:00 AM
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	2/25/2023 12:39:00 AM
Toluene	2,9	0.57	ug/m3	1	2/25/2023 12:39:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	2/25/2023 12:39:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	2/25/2023 12:39:00 AM
Trichloroethene	< 0.16	0.16	ug/m3	1	2/25/2023 12:39:00 AM
Vinyl acetate	< 0.53	0.53	ug/m3	1	2/25/2023 12:39:00 AM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	2/25/2023 12:39:00 AM
Vinyl chloride	< 0,10	0.10	ug/m3	1	2/25/2023 12:39:00 AM

Qualifiers:

. Results reported are not blank corrected

OL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

(E) Estimated Value above quantitation range

J — Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Date: 23-Mar-23

CLIENT:	Leader Consulting Ser							
Lab Order:	C2302047	VICES		Client Sample IE		ia (mo-moi)		
		Tag Number: 4 Collection Date: 2						
Project:	Vails Gate - Tesla					2023		
Lab ID:	C2302047-002A			Matrix	: AIR	AIR		
Analyses		Result	ÐĿ (Qual Units	DF	Date Analyzed		
	ETERS		FLC)	******	Analyst:		
Lab Vacuum In		-2		"Hg		2/22/2023		
Lab Vacuum Ou	<i>i</i> t	-30		"Hg		2/22/2023		
1UG/M3 W/ 0.21	UG/M3 CT-TCE-VC-DCE	-1,1DCE	TO-1	5		Analyst: RJP		
1,1,1-Trichloroel	thane	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
1,1,2,2-Tetrachi	oroethane	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
1,1,2-Trichloroet		< 0.15	0.15	ppb∨	1	2/25/2023 1:23:00 AM		
1,1-Dichloroetha	ane	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
1,1-Dichloroethe	ene	< 0.040	0.040	ppbV	1	2/25/2023 1:23:00 AM		
1,2,4-Trichlorob	enzene	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
1,2,4-Trimethylb	oenzene	0.61	0.15	ppbV	1	2/25/2023 1:23:00 AM		
1,2-Dibromoetha	ane	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
1,2-Dichloroben:	zene	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
1,2-Dichloroetha	sne	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
1,2-Dichloroprop)ane	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
1,3,5-Trimethylb	enzene	0.20	0.15	ppbV	1	2/25/2023 1:23:00 AM		
1,3-butadiene		< 0.15	0,15	ppb∨	1	2/25/2023 1:23:00 AM		
1,3-Dichloroben:	zene	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
1.4-Dichloroben	zene	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
1,4-Dioxane		< 0.30	0.30	ppb∨	1	2/25/2023 1:23:00 AM		
2,2,4-trimethylps	entane	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
4-ethyitoluene		0.28	0.15	ppb∨	1	2/25/2023 1:23:00 AM		
Acetone		6.1	3.0	ppbV	10	2/25/2023 3:43:00 PM		
Allyl chloride		< 0.15	0.15	Vdqq	1	2/25/2023 1:23:00 AM		
Benzene		0.42	0.15	ppbV	1	2/25/2023 1:23:00 AM		
Benzyl chloride		< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
Bromodichlorom	lethane	< 0.15	0.15	Vaqq	1	2/25/2023 1:23:00 AM		
Bromoform		< 0.15	0,15	ppbV	1	2/25/2023 1:23:00 AM		
Bromomethane		< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
Carbon disulfide	1	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
Carbon tetrachic	oride	0.070	0.030	ppbV	1	2/25/2023 1:23:00 AM		
Chlorobenzene		< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
Chloroethane		< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
Chloroform		< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
Chloromethane		0.64	0.15	ppbV	1	2/25/2023 1:23:00 AM		
cis-1,2-Dichloroe	ethene	< 0.040	0.040	ppbV	1	2/25/2023 1:23:00 AM		
cis-1,3-Dichlorop		< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
Cyclohexane		0.39	0.15	ppbV	1	2/25/2023 1:23:00 AM		
Dibromochlorom	ethane	< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		
Ethyl acetate		< 0.15	0.15	ppbV	1	2/25/2023 1:23:00 AM		

 Qualifiers:
 Results reported are not blank corrected

 DL
 Detection Limit

 H
 Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Date: 23-Mar-23

CLIENT: Lab Order: Project: Lab ID:	Leader Consulting Ser C2302047 Vails Gate - Tesla C2302047-002A	vices		(Tag Number: Collection Date: Matrix:	2/21/2023	
Analyses		Result	ÐL	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс)-15			Analyst: RJI
Ethylbonzene		0.12	0.15	J	ppb∨	1	2/25/2023 1:23:00 AM
Freon 11		0.25	0.15		ppb∨	1	2/25/2023 1:23:00 AM
Freon 113		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Freon 114		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Freon 12		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Heptane		0.26	0.15		ppbV	1	2/25/2023 1:23:00 AM
Hexachloro-1,3-	butadiene	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Hexane		0.21	0.15		ppbV	1	2/25/2023 1:23:00 AM
Isopropyl alcoho	bi l	1.8	0.15		ppbV	1	2/25/2023 1:23:00 AM
m&p-Xylene		0.34	0.30		ррьV	1	2/25/2023 1:23:00 AM
Methyl Butyl Ket	lone	< 0.30	0.30		ppbV	1	2/25/2023 1:23:00 AM
Methyl Ethyl Ket	ione	1,1	0.30		ppbV	1	2/25/2023 1:23:00 AM
Methyl Isobutyl I	Ketone	< 0.30	0.30		ppbV	1	2/25/2023 1:23:00 AM
Methyl tert-butyl		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Methylene chlori	ide	0.27	0.15		ppbV	1	2/25/2023 1:23:00 AM
o-Xylene		0.14	0.15	J	ppbV	1	2/25/2023 1:23:00 AM
Propylene		< 0.15	0.15	-	ppbV	1	2/25/2023 1:23:00 AM
Styrene		0.20	0.15		ppbV	1	Z/25/2023 1:23:00 AM
Tetrachioroethyl	ene	< 0.15	0.15		pddA	, 1	2/25/2023 1:23:00 AM
Tetrahydrofuran		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Toluene		0.82	0.15		ppbV	1	2/25/2023 1:23:00 AM
trans-1,2-Dichlor	roethene	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
trans-1,3-Dichlor	ropropene	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Trichloroethene		< 0.030	0.030		ppbV	1	2/25/2023 1:23:00 AM
Vinyl acetate		< 0,15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Vinyl Bromide		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Vinyl chloride		< 0.040	0.040		ppbV	t	2/25/2023 1:23:00 AM
Surr: Bromofil	Jorobenzene	93.0	47-124		%REC	, 1	2/25/2023 1:23:00 AM

Qua	lił	īer	8:

. Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Date: 23-Mar-23

Analyses	Result	DL Qual Units	DF Date Analyzed
Lab ID:	C2302047-002A	Matrix:	AIR
Project:	Vails Gate - Tesla	Collection Date:	2/21/2023
Lab Order:	C2302047	Tag Number:	1200
CLIENT:	Leader Consulting Services	Client Sample 1D:	Summa (MS-MSD)
·····			

UG/M3 W/ 0.2UG/M3 CT-TCE-VC	TO-1!	5		Analyst: RJF	
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	2/25/2023 1:23:00 AN
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	2/25/2023 1:23:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	2/25/2023 1:23:00 AN
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	2/25/2023 1:23:00 AN
1,1-Dichloroethene	< 0.16	0,16	ug/m3	1	2/25/2023 1:23:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	2/25/2023 1:23:00 AN
1,2,4-Trimethylbenzene	3.0	0.74	ug/m3	1	2/25/2023 1:23:00 AN
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	2/25/2023 1:23:00 AN
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/25/2023 1:23:00 AN
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	2/25/2023 1:23:00 AN
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	2/25/2023 1:23:00 AN
1,3,5-Trimethylbenzene	0.98	0.74	ug/m3	1	2/25/2023 1:23:00 AN
1,3-butadiene	< 0.33	0.33	ug/m3	1	2/25/2023 1:23:00 AN
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/25/2023 1:23:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/25/2023 1:23:00 AN
1,4-Dioxane	< 1.1	1.1	ug/m3	1	2/25/2023 1:23:00 AN
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	2/25/2023 1:23:00 AM
4-ethyltoluene	1.4	0.74	ug/m3	1	2/25/2023 1:23:00 AN
Acetone	14	7.1	ug/m3	10	2/25/2023 3:43:00 PN
Allyl chloride	< 0.47	0.47	սց/m3	1	2/25/2023 1:23:00 AM
Benzene	1.3	0.48	ug/m3	1	2/25/2023 1:23:00 AN
Benzyl chloride	< 0.86	0.86	ug/m3	1	2/25/2023 1:23:00 AN
Bromodichloromethane	< 1.0	1.0	ug/m3	1	2/25/2023 1:23:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	2/25/2023 1:23:00 AN
Bromomethane	< 0.58	0.58	ug/m3	1	2/25/2023 1:23:00 AM
Carbon disulfide	< 0.47	0.47	ug/m3	1	2/25/2023 1:23:00 AM
Carbon tetrachloride	0.44	0.19	ug/m3	1	2/25/2023 1:23:00 AN
Chlorobenzene	< 0.69	0.69	ug/m3	1	2/25/2023 1:23:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	2/25/2023 1:23:00 AN
Chloroform	< 0.73	0.73	ug/m3	1	2/25/2023 1:23:00 AM
Chloromethane	1.3	0.31	ug/m3	1	2/25/2023 1:23:00 AN
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	2/25/2023 1:23:00 AN
cis-1,3-Dichlaropropene	< 0.68	0.68	ug/m3	1	2/25/2023 1:23:00 AM
Cyclohexane	1.3	0.52	ug/m3	1	2/25/2023 1:23:00 AN
Dibromochloromethane	< 1,3	1.3	ug/m3	1	2/25/2023 1:23:00 AN
Ethyl acetate	< 0.54	0.54	ug/m3	1	2/25/2023 1:23:00 AM
Ethylbenzene	0.52	0.65	J ug/m3	1	2/25/2023 1:23:00 AN
Freon 11	1,4	0.84	ug/m3	1	2/25/2023 1:23:00 AN
Freon 113	< 1.1	1.1	սց/m3	1	2/25/2023 1:23:00 AN
Freon 114	< 1.0	1.0	ug/m3	1	2/25/2023 1:23:00 AN

Qualifiers: . Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B — Analyte detected in the associated Method Blank

E — Estimated Value above quantitation range

J Analyte detected below quantitation limit

SC Sub-Contracted

ND Not Detected at the Limit of Detection

Page 3 of 6

Date: 23-Mar-23

Centek/Sa)	nAir Technologie	es Laborat	ory		Date:	23-M	(1)-23
CLIENT; Lab Order: Project: Lab ID:	Leader Consulting Ser C2302047 Vails Gate - Tesla C2302047-002A	rvices		C	lient Sample ID: Tag Number: Collection Date: Matrix:	Sumn 1200 2/21/2	
Analyses		Result	ÐL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.28	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс)-15			Analyst: RJP
Freon 12		< 0.74	0,74		ug/m3	1	2/25/2023 1:23:00 AM
Heptane		1.1	0.61		ug/m3	1	2/25/2023 1:23:00 AM
Hexachloro-1.3-	butadiene	< 1.6	1.6		ug/m3	1	2/25/2023 1:23:00 AM
Hexane		0.74	0.53		ug/m3	1	2/25/2023 1:23:00 AM
Isopropyl alcoho	pi	4,5	0.37		ug/m3	1	2/25/2023 1:23:00 AM
m&p-Xylene		1.5	1.3		ug/m3	1	2/25/2023 1:23:00 AM
Methyl Butyl Ket	ione	< 1.2	1.2		ug/m3	1	2/25/2023 1:23:00 AM
Methyl Ethyl Ket	lone	3.3	0.88		ug/m3	1	2/25/2023 1:23:00 AM
Methyl Isobutyl i	Ketone	< 1.2	1.2		ug/m3	1	2/25/2023 1:23:00 AM
Methyl tert-butyl	ether	< 0.54	0.54		ug/m3	1	2/25/2023 1:23:00 AM
Methylene chlori	ide	0.94	0.52		ug/m3	1	2/25/2023 1:23:00 AM
o-Xylene		0.61	0.65	Ŀ	ug/m3	1	2/25/2023 1:23:00 AM
Propylene		< 0.26	0.26		ug/m3	1	2/25/2023 1:23:00 AM
Styrene		0.85	0.64		ug/m3	1	2/25/2023 1:23:00 AM
Tetrachloroethyl	ene	< 1.0	1.0		ug/m3	1	2/25/2023 1:23:00 AM
Tetrahydrofuran		< 0.44	0.44		ug/m3	1	2/25/2023 1:23:00 AM
Toluene		3.1	0.57		ug/m3	1	2/25/2023 1:23:00 AM
trans-1,2-Dichlor	roethene	< 0.59	0.59		ug/m3	1	2/25/2023 1:23:00 AM
trans-1,3-Dichlor	ropropene	< 0.68	0.68		ug/m3	1	2/25/2023 1:23:00 AM
Trichloroethene		< 0.16	0.16		ug/m3	1	2/25/2023 1:23:00 AM

0.53

0.66

0.10

ug/m3

ug/m3

ug/m3

< 0.53

< 0.66

< 0.10

Qualifiers:

Vinyl acetate

Vinyl Bromide

Vinyl chloride

Results reported are not blank corrected

DL Detection Limit

н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- \mathbf{S} Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

1

1

ŧ

J. Analyte detected below quantitation limit

Not Detected at the Limit of Detection ND

SC Sub-Contracted 2/26/2023 1:23:00 AM

2/25/2023 1:23:00 AM

2/25/2023 1:23:00 AM

Centek/Sa	nAir Technologie	es Labora	tory		Date:	23-M	ar-23
CLIENT: Lab Order: Project: Lab ID:	Leader Consulting Se C2302047 Vails Gate - Tesla C2302047-003A	rvices		c	Client Sample ID: Tag Number: Collection Date: Matrix:	Trip H 483 2/21/2	
Analyses		Result	DL	Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		FL	D			Analyst:
Lab Vacuum In	à	+24			"Hg		2/22/2023
Lab Vacuum O	out	+24			"Hg		2/22/2023
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	TO-	15			Analyst: RJP
1,1,1-Trichloroe	ethane	< 0.15	0.15		Vdqq	1	2/24/2023 11:55:00 PM
1,1.2,2-Tetrach	loroethane	< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
1,1,2-Trichloroe	ethane	< 0.15	0.15		ррбV	1	2/24/2023 11:55:00 PM
1.1-Dichloroeth	ane	< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
1.1-Dichloroeth	ene	< 0.040	0.040		ppbV	1	2/24/2023 11:55:00 PM
1,2,4-Trichlorob	penzene	< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
1,2,4-Trimethyl	benzene	< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
1,2-Dibromoeth	ane	< 0.15	0.15		Vdqq	1	2/24/2023 11:55:00 PM
1,2-Dichlorober	1zene	< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
1,2-Dichloroeth	ane	< 0.15	0.15		γdqq	1	2/24/2023 11:55:00 PM
1,2-Dichloropro	pane	< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
1,3,5-Trimethyli	benzene	< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
1,3-butadiene		< 0.15	0.15		Vđqq	3	2/24/2023 11:55:00 PM
1,3-Dichlorober	тгепе	< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
1,4-Dichlorober	nzene	< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
1,4-Dioxane		< 0.30	0.30		ррб∨	1	2/24/2023 11:55:00 PM
2,2,4-trimethytp	entane	< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
4-ethyltoluene		< 0.15	0.15		ppb∨	1	2/24/2023 11:55:00 PM
Acetone		0.12	0.30	J	ppbV	1	2/24/2023 11:55:00 PM
Ally! chloride		< 0.15	0.15		vaqq	1	2/24/2023 11:55:00 PM
Benzene		< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
Benzyl chloride		< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
Bromodichloron		< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
Bromoform		< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
Bromomethane		< 0,15	0.15		ppbV	1	2/24/2023 11:55:00 PM
Carbon disulfide	9	< 0.15	0,15		ppbV	1	2/24/2023 11:55:00 PM
Carbon tetrachi	oride	< 0.030	0.030		ppbV	1	2/24/2023 11:55:00 PM
Chlorobenzene		< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
Chloroethane		< 0.15	0.15		ppbV	1	2/24/2023 11:55:00 PM
Chloroform		< 0.16	0.15		ppbV	1	2/24/2023 11:55:00 PM
Chloromethane		< 0.15	0,15		ppbV	1	2/24/2023 11:55:00 PM
cis-1,2-Dichloro		< 0.040	0.040		ppbV	1	2/24/2023 11:55:00 PM
aia 1 7 Diabian					FF	•	

0.15

0.15

0.15

0.15

ppb∨

ppbV

ppbV

ppbV

Ethyl acetate < 0.15 Qualifiers:

cis-1,3-Dichloropropene

Dibromochloromethane

Cyclohexane

Qualifiers:		Results reported are not blank corrected
	DL	Detection Limit
	14	Holding times for preparation or analysis exceeded
	JN	Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

< 0.15

< 0.15

< 0.15

8 Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

1

1

1

1

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection SC

Sub-Contracted

Page 5 of 6

2/24/2023 11:55:00 PM

2/24/2023 11:55:00 PM

2/24/2023 11:55:00 PM

2/24/2023 11:55:00 PM

Date: 23-Mar-23

CLIENT: Lab Order: Project: Lab ID:	Leader Consulting Ser C2302047 Vails Gate - Tesla C2302047-003A			Client Sample Tag Num Collection I	iber: 483	
Analyses		Result	DL O	Qual Units	DF	Date Analyzed
IUG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	TO-	5		Analyst: RJF
Ethylbenzene		< 0.15	0.15	ppb∨	1	2/24/2023 11:55:00 PM
Freon 11		< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PN
Freon 113		< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PN
Freon 114		< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PN
Freon 12		< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM
Heptane		< 0.15	0.15	ppb∨	1	2/24/2023 11:55:00 PN
Hexachloro-1,3	-butadiene	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM
Hexane		< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM
isopropyl alcohe	ot	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM
m&p-Xylene		< 0.30	0.30	Vdqq	1	2/24/2023 11:55:00 PN
Methyl Butyl Ke	tone	< 0.30	0.30	Vdqq	1	2/24/2023 11:55:00 PM
Methyl Ethyl Ke	tone	< 0.30	0.30	ppbV	1	2/24/2023 11:55:00 PM
Methyl Isobutyl	Keton e	< 0.30	0.30	ppbV	1	2/24/2023 11:55:00 PN
Methyl tert-buty	lether	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM
Methylene chlor	ide	< 0.15	0.15	Vđąq	1	2/24/2023 11:55:00 PM
o-Xylene		< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM
Propylene		< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM
Styrene		< 0.15	0.15	ppb∨	1	2/24/2023 11:55:00 PM
Tetrachloroethy	lene	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM
Tetrahydrofuran		< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM
Toluene		< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM

0.15

0.15

0.030

0,15

0.15

0.040

47-124

Vdqq

ppbV

ppbV

Vďqq

ppbV

ppbV

%REC

< 0.15

< 0.15

< 0.030

< 0.15

< 0.15

< 0.040

75.0

Qualifiers:

.

.

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Sutr: Bromofluorobenzene

Trichloroethene

Vinyl acetate

Vinyl Bromide

Vinyl chloride

Results reported are not blank corrected.

DL Detection Limit

H Folding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B — Analyte detected in the associated Method Blank

1

1

1

1

1

t

1

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 6 of 6

2/24/2023 11:55:00 PM

Date: 23-Mar-23

CLIENT:					nk	
Lab Order:	C2302047		Tag Number:	•		
Project:	Vails Gate - Testa		Collection Date:	2/21/202	3	
Lab ID:	C2302047-003A		Matrix:	AIR		
Analyses	Resu	t ĐL	Qual Units	ÐF	Date Analyzed	

UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15	5		Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	2/24/2023 11:55:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	2/24/2023 11:55:00 PN
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	2/24/2023 11:55:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	2/24/2023 11:55:00 PN
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	2/24/2023 11:55:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	2/24/2023 11:55:00 PM
1,2,4-Trimelhylbenzene	< 0.74	0.74	ug/m3	1	2/24/2023 11:55:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	2/24/2023 11:55:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/24/2023 11:55:00 PM
1.2-Dichloroethane	< 0.61	0.61	ug/m3	1	2/24/2023 11:55:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	2/24/2023 11:55:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	2/24/2023 11:55:00 PN
.3-butadiene	< 0.33	0.33	ug/m3	1	2/24/2023 11:55:00 PN
,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/24/2023 11:55:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	սց/m3	1	2/24/2023 11:55:00 PM
I,4-Dioxane	< 1.1	1.1	ug/m3	1	2/24/2023 11:55:00 PM
2,2.4-trimethylpentane	< 0.70	0.70	ug/m3	1	2/24/2023 11:55:00 PM
l-ethyltoluene	< 0.74	0.74	ug/m3	1	2/24/2023 11:55:00 PM
Acetone	0.28	0.71 .	J ug/m3	1	2/24/2023 11:55:00 PM
Ny chloride	< 0.47	0.47	ug/m3	1	2/24/2023 11:55:00 PM
Benzene	< 0.48	0.48	ug/m3	1	2/24/2023 11:55:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	2/24/2023 11:55:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	2/24/2023 11:55:00 PM
3romoform	< 1,6	1.6	ug/m3	1	2/24/2023 11:55:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	2/24/2023 11:55:00 PM
Carbon disulfide	< 0,47	0.47	ug/m3	1	2/24/2023 11:55:00 PM
Carbon tetrachloride	< 0.19	0.19	ug/m3	1	2/24/2023 11:55:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	2/24/2023 11:55:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	2/24/2023 11:55:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	2/24/2023 11:55:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	2/24/2023 11:55:00 PM
is-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	2/24/2023 11:55:00 PM
is-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	2/24/2023 11:55:00 PN
Syclohexane	< 0.52	0.52	ug/m3	1	2/24/2023 11:55:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	2/24/2023 11:55:00 PN
Ethyl acetate	< 0.54	0.54	ug/m3	1	2/24/2023 11:55:00 PM
thylbenzene	< 0.65	0.65	ug/m3	1	2/24/2023 11:55:00 PN
reon 11	< 0.84	0,84	ug/m3	1	2/24/2023 11:55:00 PM
reon 113	< 1.1	1.1	ug/m3	1	2/24/2023 11:55:00 PM
reon 114	< 1.0	1.0	ug/m3	1	2/24/2023 11:55:00 PM

DL Detection Limit

H - Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E — Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 5 of 6

Date: 23-Mar-23

..... CLIENT: Leader Consulting Services Client Sample ID: Trip Blank Lab Order: C2302047 Tag Number: 483 Project: Vails Gate - Tesla Collection Date: 2/21/2023 Lab ID: C2302047-003A Matrix: AIR Analyses Result \mathbf{DL} Qual Units ÐF **Date Analyzed**

					Dute Anatyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	DOCE-1,1DCE	TO-15	5		Analyst: RJP
Freon 12	< 0.74	0.74	ug/m3	1	2/24/2023 11:55:00 PM
Heptane	< 0.61	0.61	ug/m3	1	2/24/2023 11:55:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	2/24/2023 11:55:00 PM
Hexane	< 0.53	0.53	ug/m3	1	2/24/2023 11:55:00 PM
isopropyl alcohol	< 0.37	0.37	ug/m3	1	2/24/2023 11:55:00 PM
m&p-Xylene	< 1.3	1.3	ug/m3	1	2/24/2023 11:55:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	2/24/2023 11:55:00 PM
Methyl Ethyl Ketone	< 0.88	0.88	ug/m3	1	2/24/2023 11:55:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	2/24/2023 11:55:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	2/24/2023 11:55:00 PM
Methylene chloride	< 0.52	0.52	ug/m3	1	2/24/2023 11:55:00 PM
o-Xylene	< 0.65	0.65	ug/m3	1	2/24/2023 11:55:00 PM
Propylene	< 0.26	0.26	ug/m3	1	2/24/2023 11:55:00 PM
Styrene	< 0.64	0.64	ug/m3	1	2/24/2023 11:55:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	2/24/2023 11:55:00 PM
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	2/24/2023 11:55:00 PM
Toluene	< 0.57	0.57	ug/m3	1	2/24/2023 11:55:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	2/24/2023 11:55:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	2/24/2023 11:55:00 PM
Trichloroethene	< 0.16	0.16	ug/m3	1	2/24/2023 11:55:00 PM
Vinyi acetate	< 0.63	0.53	ug/m3	7	2/24/2023 11:55:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	2/24/2023 11:55:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	2/24/2023 11:55:00 PM

Qualifiers:

. Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated,

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E — Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC

Sub-Contracted

Centek/SanAir Laboratories

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

QUALITY CONTROL SUMMARY

Date: 23-Mar-23

Centek/SanAir Technologies Laboratory

QC SUMMARY REPORT SURROGATE RECOVERIES

Work Order: Project:	Leader Co C2302047 Vails Gate TO-15		ervices Matrix	:: A			
Sample ID		BR4FBZ					
ALCSIUG-022423		104		9		 1.1.1.1.1	
ALCS1UG-022523		105	······		· · · · · · ·	 · · · · ·	
ALCS1UGD-022423	5	103				 	
AMB1UG-022423		82.0				 	 and the second second
AMB1UG-022523		80.0	1				
C2302047-001A		93.0					
C2302047-002A		93.0					
C2302047-002A MS		107		ан алаан 1			
C2302047-002A MS	D	110		· · · · · · · · · · · · · · · · · · ·		 	
C2302047-003A		75,0					

Acronym	Surrogate	QC Limits	1
BR4F8Z	= Bromofluorobenzene	47-124	
			:
* Surr	ogate recovery outside acceptance	e limits	

l

Centek/SanAir Laboratories GC/MS QA-QC Check Report			
Tune File : C:\msdchem\l\data2\AU022402.D Tune Time : 24 Feb 2023 9:14 am)		
Daily Calibration File : C:\msdchem\l\dat	a2\AU022402.D		
(BFB)	(IS1) 63299	(IS2) 380547	(IS3) 313937
File Sample Surrogate Recovery %	Internal Star	ndard Respo	nses
AU022403.D ALCS1UG~022423 104	64082	381255	306499
AU022404.D AMB1UG-022423 82	59155	331717	245093
AU022422.D C2302047-003A 75	54664	303851	216169
AU022423.D C2302047-002A 93	61532	231021	761937
AU022424.D	61681	338132	260262
AU022425.D C2302047-001A MS 107	64490	360651	298299
AU022426.D C2302047-001A MSD 110	64945	365660	300494
AU022427.D ALCS1UGD-022423 103	61494	351305	292575
(fails) - fails 24hr time check * - fai			aa e .a

Created: Thu Mar 23 08:43:44 2023 Instrument 1

Centek/SanAir Laboratories			
Tune File : C:\msdchem\l\data2\AU022502.D Tune Time : 25 Feb 2023 10:44 am			
Daily Calibration File : C:\msdchem\1\data2\	AU022502.D		
(BFB)		(IS2) 326838	
File Sample Surrogate Recovery & ====================================	======================================	324992	273447
AU022504.p AMB1UG-022523 80	52714	273032	
AU022508.D	53202	282234	228712
AU022509.D C2302047-002 lox 85	52746	271711	214717
(fails) - fails 24hr time check * - fails (criteria		

Created: Thu Mar 23 08:49:16 2023 Instrument 1

1									
CLIENT: Work Order: Project:	Leader Consulting C2302047 Vails Gate - Tesła	Leader Consulting Services C2302047 Vails Gate - Testa					TestCode: 0	0.20_NYS	
Sample ID: AMB11G-022423	16-022423	SamuTune MBLK	TaciCoda	TedCode: 0.20 NVC	t inder anhl	Oren Pate		Direction 20040	
Client ID: 22222		Batch ID: R20049	TestNo	o: T0-15			2/24/2023	Nultivit, 20045 SecNo: 229636	
Analyte		Result	POL	SPK value	SPK Ref Val	. Q/	HighLimit RPD Ref Val	%RPD RPDLimit	Quai
1,1,1-Trichkoroethane	ane.	< 0.15	0.15						
1,1,2,2-Tetrachioroethane	oethane	< 0.15	0.15						
1,1,2-Trichloroethane	ane	< 0.15	0.15						
1, 1-Dichioroethane	¢)	< 0.15	D.15						
1,1-Dichloroethene	0)	< 0.040	0.040						
1,2,4-Frichlorobenzene	zene	< 0.15	0.15						
1,2,4-Trimethylbenzene	Izene	< 0.15	0.15						
1,2-Dibromoethane	Ð	< 0.15	0.15						
1,2-Dichlorobenzene	Яe	< 0.15	0.15						
1,2-Dichloroethane	01	< 0.15	0.15						
1,2-Dichloropropane	ne	< 0.15	0.15						
1,3,5-Trimethylbenzene	Sere	< 0.15	0.15						
1,3-butadiene		< 0.15	0.15						
1,3-Dichlorobenzene	ne	< 0.15	0.15						
1,4-Dichlorobenzene	ทย	< 0.15	0.15						
1.4-Dioxane		< 0.30	0:30						
2,2,4-trimethyipentane	tane	< 0.15	0.15						
4-ethyltoluene		< 0.15	0.15						
Acelone		< 0.30	0:30						
Allyl chioride		< 0.15	0.15						
Benzene		< 0.15	0,15						
Benzyl chłoride		< 0.15	0.15						
Bromodichloromethane	hane	< 0.15	0.15						
Bromoform		< 0.15	0.15						
Bromomethane		< 0.15	0.15						
Qualifiers:	Results report	Results reported are not blank corrected	:	DL Detec	Detection Limit		E Estimated Value al	Estimated Value above quantitation range	
		Holding times for arcagenting or analysis everated	الماليدين		Analyte detected below anantitation limit		_		
		and the second s	~~~~		the second secon			INVERSE OF COMPARENT OF EXPLORITION	

Date: 23-Mar-23

Work Order: C2302047 Project: Vails Gate - Tesla	C2302047 Vails Gate - Tesla					TestCode: 0	0.20_NYS	
Sample ID: AMB1UG-022423 Client ID: ZZZZ	SampType: MBLK Batch ID: R20049	TestCode: 0.20_NYS TestNo: TO-15	1.20_NYS 0-15	Units: ppbV	Prep Date: Analysis Date:	2/24/2023	RunNo: 20049 SeqNo: 229636	
Analyte	Result	POL	SPK value S	SPK Rei Val	%REC LowLimit Hi	HighLimit RPD Ref Vai	%RPD RPDLimit	it Quai
Carbon disulfide	< 0.15	0.15						
Carbon tetrachloride	< 0.030	0:030						
Chlorobenzene	< 0.15	0.15						
Chloroethane	< 0.15	0.15						
Chloroform	< 0.15	0.15						
Chloramethane	< 0.15	0.15						
cis-1,2-Dichloroethene	< 0.040	0.040						
cis-1,3-Dichloropropene	< 0.15	0.15						
Cyclohexane	< 0.15	0.15						
Dibromochloromethane	< 0.15	0.15						
Ethyl acetate	< 0.15	0.15						
Ethyltenzene	< 0.15	0.15						
Freon 11	< 0.15	0.15						
Freon 113	< 0.15	0.15						
Freon 114	< 0.55	0.15						
Freon 12	< 0.15	0.15						
Heptane	< 0.15	0.15						
Hexachloro-1,3-butadiene	< 0.15	0.15						
Hexane	< 0.15	0.15						
sopropyi alcohol	< 0.15	0.15						
m&p-Xylene	< 0.30	0:30						
Methyl Butyl Ketone	< 0.30	0:30						
Methyl Ethyl Ketone	< 0.30	0.30						
Methyl isobutyj Ketore	< 0.30	0:30						
Methyl tert-butyt ether	< 0.15	0.15						
Methylene chloride	< 0.15	0.15						
o-Xylene	< 0.15	0.15						
Propylene	< 0.15	0.15						
Slyrene	< 0.15	0.15						
Tetrachioroethylene	< 0.15	0.15						
Tetrahydrofuran	< 0.15	0.15						
Qualifiers: Results repo	Results reported are not blank corrected	าด	C Detection Limit	Limit · · · ·		E Estimated Value a	Estimated Value above quantifation range	
H Holding tim	Holding times for preparation or analysis exceeded	cceded 3		Analyte detected helow quantitation limit	ion lienit	ND Not Detected at th	Net Detected at the Limit of Detection	

Strates in AMBFL/G-023413 Sam/Type MELK TerrClea. (LJJ, MS Units Delay TerrDlam Random	CLJENT: Work Order: Project:	Leader Consulting C2302047 Vails Gate - Tesla	Leader Consulting Services C2302047 Vails Gate - Tesla						TestCode: 0.20_NYS	0.20_NYS	
Result PQL SPK retr Val %REC LowLinnt RPD Ret Val %RPD RPDIL PMDIL PMDIL <th>Sample ID: AMB1(Client ID: ZZZZ</th> <th>JG-022423</th> <th>SampType: MBLK Batch ID: R20049</th> <th>TestCoc TestN</th> <th>le: 0.20_NYS o: TO-15</th> <th>Units: ppbV</th> <th></th> <th>Prep Dati Jalysis Dati</th> <th>11</th> <th>RunNo: 20049 SeqNo: 229636</th> <th></th>	Sample ID: AMB1(Client ID: ZZZZ	JG-022423	SampType: MBLK Batch ID: R20049	TestCoc TestN	le: 0.20_NYS o: TO-15	Units: ppbV		Prep Dati Jalysis Dati	11	RunNo: 20049 SeqNo: 229636	
1 <	Analyle		Result	PQL	SPK value	SPK Ref Val					Qual
me c.015 0.15 e-015 0.15 0.15 c.016 0.15 0.15 c.015 0.15 0.15 c.016 0.15 0.15 c.016 0.15 0.15 c.016 0.16	Foiuene		< 0.15	0.15							
end C015 0.13 < 0130	trans-1,2-Dichloroet	hene	< 0.15	0.15							
< 0.030 0.030 <	trans-1.3-Dichleropi	anago'	< 0.15	0.15							
< 0.15 0.	Trichloroethene		0000 >	0:030							
< < 0.15 <	Vinyl acetate		< 0,15	0.15							
< 0.040 0.040 740 0.040 202523 Samp1ype MBLK TestCode: 0.20_MYS Units: pBU PanNo: 20051 202523 Samp1ype MBLK TestCode: 0.20_MYS Units: pBU PanNo: 20051 2020_MS1 PCU SPK value SPK AeMVal XmBX: Decision 202523 SepU SepU PSPLum 201 0.15 Ambysis Data PAD PAD PSPLum	Vinyi Bromide		< 0.15	0.15							
72223 Samp1/yer. MBLK TestCode. 0.20_MYS Units. ppbV Pep Date: Runko. 20051 9atch 10. R20163 TestNo. 10-15 TestNo. 10-15 Analysis Date: Seqho. 225667 Seqho. 220567 8atual PQL SPK value SPK Ref Val MREC LowLint HghLint RPD Ref Val Seqho. 225667 Analysis Date: <015	Viny! chloride		< 0.040	0.040							
Batch ID. R2061 Testive. <	Sample ID: AMB1U	G-022523	SampType: MBLK	TestCod	e: 0.20 NYS	Units: ppbV		Prep Date		Runho: 20051	
Result PCI SPK rear Value SPK Rear Val %REC LowLimit HghLimit ReD Ret Val %RPD RPD Ret Val %RPD RPD Limit ane < 0.15			Batch ID: R20051	TestN	o: TO-15		Å	natysis Date		SegNo: 229657	
Alle < 0.15 0.15 and < 0.15	Analyte		Resut	PQL		SPK Ref Val				%RPD RPDLimit	Qual
and < 0.15 0.15 < 0.15	1,1,1-Trichtoroethan	e	< 0.15	0.15							
< 0.15 0.15 $< < 0.15$ $< < < 0.15$ $< < < < 0.16$ $< < < < 0.16$ $< < < < < < < < < < < < < < < < < < <$	1, 1, 2, 2-Tetrachioroe	thane	< 0.15	0.15							
< 0.15 0.15 · · · · · · · · · · · · · · · · · · ·	1, 1, 2 Frichloroethan	Q.	< 0.15	0.15							
< 0.40 0.040 < 0.040 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.16 < 0.16 < 0.15 0.16 < 0.16 < 0.15 <td< td=""><td>1,1-Dichloroethane</td><td></td><td>< 0.15</td><td>0.15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1,1-Dichloroethane		< 0.15	0.15							
i < 0.15 0.15 e < 0.15 0.15 0.15 < 0.15 0.15 0.15 0.15 < 0.15 0.15 0.15 0.15 < 0.15 0.15 0.15 1.11 < 0.15 0.15 1.11 1.11 < 0.15 0.15 1.11 1.11 < 0.15 0.15 1.11 1.11 < 0.15 0.15 1.11 1.11 < 0.15 0.15 1.11 1.11 < 0.15 0.15 1.11 1.11 < 0.15 0.15 1.11 1.11 < 0.15 0.15 1.11 1.11 < 0.15 0.15 1.11 1.11 1.11 < 0.15 0.15 1.11 1.11 1.11 1.11 < 0.15 0.15 1.11 1.11 1.11 1.11 < 0.15 0.15 1.11 1.11 1.11 1.11 1.11 1.11	1,1-Dichloroethene		< 0.040	0.040							
e < 0.15 0.15 0.15 < 0.15	1.2,4-Trichlorobenzt	31e	< 0.15	0.15							
< 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 < 0.15 0.15 < 0.15 </td <td>1,2,4-Trimethytbenz</td> <td>ene</td> <td>< 0.15</td> <td>0.15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2,4-Trimethytbenz	ene	< 0.15	0.15							
< 0.15 0.15 $< < 0.150.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< < 0.15< $	1.2-Dibromoethane		< 0.15	0.15							
< 0.150.150.15< 0.15	 2-Dichlorobenzeni 	65	< 0.15	0.15							
< 0.15 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15	1,2-Dichloroethane		< 0.15	0.15							
e < 0.15 0.15 < 0.15	1.2-Dichloropropane	" .	< 0.15	0.15							
< 0.15	1,3,5- ³ rimethylbenz	ene	< 0.15	0.15							
 < 0.15 < 0.1	1,3-butadiene		< 0.15	0.15							
 < 0.15 < 0.15 < 0.30 < 0.30 < 0.30 < 0.35 < 0.45 < 0.4000 constants < 0.4000 constants < 0.45 < 0.4000 constants < 0.45 <	1,3-Dichlorobenzenk	m	< 0.15	0.15							
 c 0.30 c 0.30 c 0.45 0.45 c 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47<	1,4-Dichlorobenzen(< 0.15	0.15							
 < 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.17 0.18 0.19 0.19 0.19 0.19 0.1	1.4-Dioxane		< 0.30	0.30							
ene < 0.15 0.15 0.15 Results reported are not blank corrected Dl. Detection Limit E Estimated Value above quantitation range H Holding times for preparation or analysis exceeded J Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R R PD outside accepted neovery limits S Spike Recovery outside accepted tecovery limits	2.2.4-trimethylpenta	пe	< 0.15	0.15							
Results reported are not blank corrected Dl. Detection Limit E Estimated Value above quantitation range H Holding times for preparation or analysis exceeded J Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R RPD outside accepted network limits S Splake Recovery outside accepted recovery limits ND	4-ethyttoluene		< 0.15	0.15							
Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit MD Not Detected at the Limit of Detection RPD outside accepted network limits S Spike Recovery outside accepted recovery limits	Qualifiers:	Results report	ted are not blank corrected			ua Estimát	:	:		wwe quantitation range	
RPD outside accepted netwery limits S Spike Recovery outside accepted recovery limits	H	Holding time.	s for preparation or analysis exc	ceded		detected below quant.	itatène femét			: Limit of Detection	
	æ	RPD outside:	accepted networy limits			ecovery outside accep	ted recovery	limits		5	29-2-40

rder:	Leader Consulting Services C2302047								
Project: Vails	Vails Gate - Tesla					-	TestCode: 0	0.20_NYS	
Sample ID: AMB1UG-022523 Client ID: ZZZZ	23 SampType: MBLK Batch ID: R20051	TestCod	TestCode: 0.20_NYS TestNo: TO-15	Units: ppbV	Prep Date: Anatysis Date:	late: late: 2/25/2023	023	RunNo: 20051 SeqNo: 229657	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	mit Qual
Acetone	< 0.30	0.30							
Aliyi chloride	< 0.15	0.15							
Benzene	< 0.15	0.15							
Benzyf chloride	< 0.15	0.15							
Bromodichloromethane	< 0.15	0.15							
Bromoform	< 0.15	0.15							
Bromomethane	< 0.15	0.15							
Carbon disulfide	< 0.15	0.15							
Carbon tetrachioride	< 0.030	0:030							
Chlorobenzene	< 0.15	0.15							
Chloroethane	< 0.15	0.15							
Chloroform	< 0.15	0.15							
Chloromethane	< 0.15	0.15							
cis-1,2-Dichloroethene	< 0.040	0.040							
cis-1.3-Dichloropropere	< 0.15	0.15							
Cyclohexane	< 0.15	0.15							
Dibromochloromethane	< 0.15	0.15							
Ethyl acetate	< 0.15	0.15							
Ethylbenzene	< 0.15	0.15							
Freon 11	< 0.15	0.15							
Freon 113	< 0.15	0.15							
Freon 114	< 0.15	0.15							
Freon 12	< 0.15	0.15							
Heptane	< 0.15	0.15							
Hexachloro-1,3-butadiene	< 0.15	0.15							
Hexane	< 0.15	0.15							
Isopropyl aicehot	< 0.15	0.15							
m&p-Xy le ne	< 0.30	0:30							
Methyl Bułyl Ketone	< 0.30	0.30							
Methyl Ethyl Ketone	< 0.30	0.30							
Methyl Isobutyl Ketone	< 0.30	0:30							
	Results reported are not blank corrected		DL Detection Linsi	i Linsi	: :	: ш	istimated Value at	Estimated Value above quantitation range	:
H Holding	Holding times for preparation or analysis exceeded	ceeded	J Analyte d	Analyte detected below quantitation limit	on limit	QN	vot Detected at the	Not Detected at the Limit of Detection	
and the first									

CLJENT: Leader Consulting Work Order: C2302047 Project: Vails Gate - Tesla	Leader Consulting Services C2302047 Vails Gate - Tesla							TestCode:	TestCode: 0.20_NYS		
Sample ID: AMB1UG-022523 Citent ID: ZZZZ	SampType: MBLK Batch ID: R20051	TestCo	TestCode: 0.20_NYS TestNo: 70-15	Units: ppbV		Prep Date: Analysis Date:	ate: ate: 2/25/2023	5202	RunNo: 20051 SeqNo: 229657		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	t RPD Ref Val	%RPD RPDLimit	timit Qual	
Methyl tert-butyl ether	< 0.15	0.15									7
Methylene chloride	< 0.15	0.15									
o-Xylene	< 0.15	0.15									
Propylene	< 0.15	0.15									
Styrene	< 0.15	0.15									
i etrachioroethylene Tetrahvokofuran	< 0.15 < 0.15	0,15									
t or our you wat an international to the second	21.0 %	0.15 0.15									
trace.t 2-Dichlomethene	 40.13 60.15 	5 0 2 2									
trans-1.3-Dichleropropene	< 0.15	0.15									
Trichloroethene	< 0.030	0:030									
Vinyl acetate	< 0.15	0.15									
Vinyl Bromide	< 0.15	0.15									
Vinyl chtoride	< 0.040	0.040									
	Resuits reported are not blank corrected	:		n Limit			Ξ	Estimated Value :	Estimated Value above quantitation range		:
H Holding time R RPD outside	Holding times for preparation or analysis exceeded RPD outside accepted recovery limits	ceeded	J Analyte S Spike Re	Analyte detected below quantitation limit Spike Recovery outside accepted recovery limits	tation limi ed recever	t v äanits	2	Not Detected at th	Not Desected at the Limit of Detection	ı.	ļ
				- Januar Annothing Street (Page 5 of 5	ς,ο

Page 5 of 5

23-Mar-23	
Date:	

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

CLIENT:	Leader Con	Leader Consulting Services	
Work Order:	C2302047		
Project:	Vails Gate - Tesla	- Tesla	
Sample ID: ALCS1UG-022423	11UG-022423	SampType: LCS	TestCode: 0.20
		Catab (D: Canado	Tauthas TO

Sample ID: ALCS1UG-022423	SampType: LCS	TestCod	TestCode: 0.20_NYS	Units: ppbV		Prep Date	i.i.	RunNo: 20049	
Client ID: 22222	Batch ID: R20049	TestN	TestNo: TO-15			Anatysis Date:	e: 2/24/2023	SeqNo: 229637	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Lowinat	Hight imit RPD Ref Val	%RPD RPDLimit Qu	Quat
1,1,1-Trichloroethane	006610	0.15	4411	¢	0.69	63.7	152		
1.1,2,2-Fetrachloroethane	006510	0.15	V er	Φ	66.0	62.1	132		
1,1,2-Trichloroethane	0.9800	0.15	474	¢	<u>9</u> 8.0	64.3	132		
1,1-Dichloroethane	0.9800	0.15	÷	0	<u>98.0</u>	67.9	123		
1,1-Dichloroethene	1.000	0.040	A ar	0	100	59.4	122		
1,2,4-Trichlorobenzene	1.090	0.15	4×11	¢	109	55	133		
1,2,4-Trimethylbenzene	1.000	0.15	, .	0	100	64.1	128		
1,2-Dibromoethane	1.000	0.15	¥~	¢	100	64.9	134		
1.2-Dichlorobenzene	0.9600	0.15	***	Ð	96.0	57.8	158		
1,2-Dichloroethane	0.9900	0.15		0	0.82	78. B	127		
1,2-Dichloropropane	0.9800	0.15	¥r.	Ð	98.0	56.9	128		
1.3.5-Trimethyłbenzene	1.060	0.15	1	ð	106	70	133		
1,3-butadiene	0.9100	0.15	+	0	91.0	71.1	138		
1,3-Dichlorobenzene	1.000	0.15	~~	Û	100	66.2	137		
1.4-Dichlorobenzene	1.120	0.15	۴m	Ō	112	68.2	139		
1,4-Dioxane	0.9400	0.30		Ð	94.0	67.7	119		
2.2,4-trimethylpentane	0.9900	0.15	÷	O	0.99	57	127		
4-ethyltoluene	1.040	0.15	₩.	0	104	67.9	131		
Acetone	1.120	0:30	4 70.	0	112	47.6	146		
Aliyi chloride	1.000	0.15	4171	Ð	100	56.1	116		
Benzene	0066.0	0.15	ţun	Ċ	63.0	66.2	126		
Benzyl chloride	0.8900	0.15	ψa	÷	89.0	34.9	155		
Bromodichloromethane	1.000	0.15	4	0	100	69.69	133		
Bromoform	1.040	0.15	ţ.,	o	104	44.1	152		
Bromomethane	00660	0.15	4	0	66.0	64.9	155		
Qualifiers; Results report	Results reported are not blank corrected	•	DL Detection	Detection Limit			E Estimated Vatue	Estimated Vatue above quantitation range	
H Holding titter	Holding times for preparation or analysis exceeded	ceeded	J Analyte	Analyte detected below grantitution light	litution limi		ND Not Detected at th	Not Detected at the Limit of Detection	
R RPD outside :	RPD outside accepted recovery limits		S Spike R	Spike Recovery outside accepted recovery limits	ned recover	y limits		Deres	1 165
	•			1				28n 1	rager up a

Sample ID Accession Catabook Tendence Data Runker. 20045 Runker. 20045 <thrunker. 20045<="" th=""> <thrunker. 20045<="" th=""></thrunker.></thrunker.>												
D: Z222 Balch Die Fehlt: D-1 Amyein Date Z222020 Sedity Z647 Z647 <thz647< th=""> Z647 <thz647< th=""> <thz647< th=""> <thz647< th=""></thz647<></thz647<></thz647<></thz647<>	Sample ID: ALCS1U	IG-022423	SampType: LCS	TestCot	te: 0.20_NYS	Units: ppbV		Prep Date	'n	RunNo: 26)049	
Real CQ Syrverule SyrCec Louding Report Not R			Batch ID: R20049	Test	lo: TO-15		·	Analysis Date		SeqNo: 22	29637	
0,9600 0,15 1 0 96.0 64 111 0,9900 0,15 1 0 90.0 62.7 143 0,9900 0,15 1 0 90.0 77.1 126 0,9900 0,15 1 0 90.0 77.1 126 1,000 0,15 1 0 96.0 77.7 131 1,000 0,15 1 0 96.0 77.7 131 1,000 0,15 1 0 96.0 55.4 136 1,000 0,15 1 0 96.0 55.5 146 1,000 0,15 1 0 100 74.5 136 1,000 0,15 1 0 100 75.5 146 1,000 0,15 1 0 100 75.5 146 0,9900 0,15 1 0 100 75.5 146 0,9900	Anaiyie		Resul	PQI	SPK value	SPK Ref Val	%REC					Qual
1020 0030 1 0 122 413 166 0.9900 0.15 1 0 99.0 65.3 125 0.9900 0.15 1 0 99.0 65.3 126 0.9900 0.15 1 0 91.0 77.1 126 0.9000 0.15 1 0 100 57.4 136 0.1000 0.15 1 0 106 57.4 136 0.1000 0.15 1 0 106 57.4 136 0.1000 0.15 1 0 106 57.4 136 0.1000 0.15 1 0 106 56.5 126 0.9000 0.15 1 0 97.0 136 126 0.9000 0.15 1 0 97.0 136 126 0.9000 0.15 1 0 97.0 136 126 0.9000	Carbon disulfide		0.9600	0,15	-	٥	96.0	64	113			
09000 015 1 0 900 653 125 09000 015 1 0 960 73 146 1010 015 1 0 960 73 146 1010 015 1 0 101 743 146 1000 015 1 0 100 57.1 126 1000 015 1 0 100 52.4 126 1000 015 1 0 100 52.6 126 1020 015 1 0 100 52.6 126 1020 015 1 0 100 52.6 126 1020 015 1 0 100 53.6 146 1020 015 1 0 126 126 126 09000 015 1 0 100 53.6 146 09000 015 1	Carbon tetrachtoride		1.020	0.030	***	Q	102	41.3	166			
0 5800 0 15 1 0 920 62.7 148 1 0100 0.15 1 0 030 77.1 126 1 0100 0.15 1 0 030 77.1 126 1 000 0.15 1 0 100 57.4 136 1 000 0.15 1 0 900 57.4 136 0 1000 0.15 1 0 900 57.4 136 0 1000 0.15 1 0 900 56.5 128 0 1000 0.15 1 0 900 56.5 128 0 1000 0.15 1 0 900 71.5 128 0 2900 0.15 1 0 97.3 141 128 0 2900 0.15 1 0 96.0 71.3 151 0 2900 0.16 1 0 96.0 71.3 151 0 2900	Chlorobenzene		0.9900	0.15	•	0	0.66	66.3	129			
0 9800 0.15 1 0 80.0 77.1 125 1 1000 0.45 1 0 103 57.4 136 1 1000 0.45 1 0 100 57.4 136 1 1000 0.15 1 0 95.0 56.5 124 1 000 0.15 1 0 96.0 56.5 129 1 000 0.15 1 0 96.0 56.5 129 1 000 0.15 1 0 96.0 71.3 14 1 000 0.15 1 0 97.0 71.3 14 0 9900 0.16 1 0 97.0 71.3 14 0 9900 0.16 1 0 97.0 71.3 14 0 9900 0.16 1 0 97.0 71.3 14 0 9900 0.16 1 0 97.0 71.3 14 0 9900	Chloroethane		0.9900	0.15		Ð	99.0	62.7	148			
1010 015 1 0 101 74 16 1080 0.040 1 0 108 57.7 13 1000 0.15 1 0 108 57.7 13 1080 0.15 1 0 96.0 56.5 128 0.9800 0.15 1 0 96.0 56.5 128 1060 0.15 1 0 105 75.5 146 1060 0.15 1 0 96.0 75.5 148 0.9900 0.15 1 0 97.0 75.5 146 0.9900 0.15 1 0 96.0 75.3 141 120 0.9900 0.15 1 0 96.0 75.3 145 126 0.9900 0.15 1 0 96.0 75.3 141 120 0.9900 0.15 1 0 96.0 75.3 125 </td <td>Chloroform</td> <td></td> <td>0.9600</td> <td>0.15</td> <td>•</td> <td>0</td> <td>98.0</td> <td>17.1</td> <td>126</td> <td></td> <td></td> <td></td>	Chloroform		0.9600	0.15	•	0	98.0	17.1	126			
1080 0.040 1 0 103 57.4 131 1000 0.15 1 0 96.0 55.6 124 1.080 0.15 1 0 96.0 56.5 124 1.080 0.15 1 0 96.0 56.5 124 1.080 0.15 1 0 96.0 56.5 124 1.080 0.15 1 0 97.0 71.5 144 0.9700 0.15 1 0 97.0 71.5 128 0.9600 0.15 1 0 95.0 67.3 151 126 0.9600 0.15 1 0 95.0 71.3 151 126 0.9600 0.15 1 0 95.0 67.3 126 126 0.9600 0.15 1 0 95.0 71.3 126 126 0.9600 0.15 1 0 126	Chloromethane		1.010	0.15	۳ ۳	0	101	74.9	146			
1000 015 1 0 57.4 136 1060 015 1 0 96.0 56.6 124 1060 015 1 0 96.0 56.6 124 1050 015 1 0 96.0 56.6 126 1050 015 1 0 97.0 75.5 146 0.9700 015 1 0 97.0 75.5 146 0.9600 015 1 0 97.0 75.5 146 0.9600 015 1 0 96.0 71.3 151 0.9600 015 1 0 96.0 71.3 151 0.9600 015 1 0 96.0 71.3 151 0.9900 015 1 0 96.0 71.3 124 0.9900 0.30 1 0 97.3 125 125 0.9900 0.30 1 <td>cis-1,2-Dichloroether</td> <td>ጅ</td> <td>1.080</td> <td>0.040</td> <td>v=</td> <td>G</td> <td>108</td> <td>57.7</td> <td>131</td> <td></td> <td></td> <td></td>	cis-1,2-Dichloroether	ጅ	1.080	0.040	v =	G	108	57.7	131			
0.9600 0.15 1 0 96.0 53.8 124 1.000 0.15 1 0 96.0 56.8 139 1.020 0.15 1 0 910 56.8 139 1.020 0.15 1 0 910 55.5 146 1.020 0.15 1 0 97.0 71.5 151 0.9900 0.15 1 0 95.0 73 141 0.9900 0.15 1 0 95.0 73 151 0.9900 0.15 1 0 95.0 67.3 152 0.9900 0.15 1 0 95.0 67.3 152 0.9900 0.15 1 0 95.0 152 152 0.9900 0.15 1 0 123 122 123 0.9900 0.15 1 0 100 126 124 0.9900 <t< td=""><td>cis-1,3-Dichloroprope</td><td>ene</td><td>1.000</td><td>0.15</td><td>*"</td><td>0</td><td>100</td><td>57.4</td><td>136</td><td></td><td></td><td></td></t<>	cis-1,3-Dichloroprope	ene	1.000	0.15	*"	0	100	57.4	136			
1.080 0.15 1 0 105 55.5 139 1.020 0.15 1 0 95.0 55.5 146 1.020 0.15 1 0 102 66.8 125 0.9700 0.15 1 0 97.0 71.5 128 0.9700 0.15 1 0 97.0 71.5 128 0.9800 0.15 1 0 95.0 71.3 151 0.9800 0.15 1 0 95.0 67.3 141 0.9800 0.15 1 0 95.0 67.3 126 1.120 0.15 1 0 96.0 73 126 1.120 0.15 1 0 96.0 73 126 1.120 0.15 1 0 96.0 73 126 1.120 0.130 1 0 96.0 73 127 1.120	Cyclohexane		0.9600	0.15	ţm	0	36.0	59.8	124			
0.8800 0.15 1 0 98.0 56.5 122 1.1220 0.15 1 0 102 68.8 125 1.1260 0.15 1 0 97.0 71.5 146 0.9900 0.15 1 0 96.0 71.3 151 0.9900 0.15 1 0 96.0 71.3 141 0.9900 0.15 1 0 96.0 71.3 151 0.9900 0.15 1 0 96.0 71.3 151 0.9900 0.15 1 0 96.0 73 126 1.120 0.15 1 0 98.0 57.3 128 1.120 0.15 1 1 126 126 1.120 0.15 1 1 127 127 0.9900 0.30 1 0 99.1 127 1.000 0.30 1 1 <t< td=""><td>Dibromochlorometha</td><td>ine</td><td>1.060</td><td>0.15</td><td>Ŷ</td><td>0</td><td>106</td><td>58.8</td><td>139</td><td></td><td></td><td></td></t<>	Dibromochlorometha	ine	1.060	0.15	Ŷ	0	106	58.8	139			
1020 015 1 0 102 66.8 125 1050 015 1 0 97.0 71.5 146 0.9700 015 1 0 97.0 71.5 128 0.9600 015 1 0 95.0 71.3 151 0.9600 015 1 0 95.0 71.3 151 0.9600 015 1 0 95.0 71.3 151 0.9600 015 1 0 95.0 67.3 126 0.9600 015 1 0 95.0 67.3 126 1120 0.15 1 0 96.0 73 126 0.9900 0.30 1 0 97.3 126 126 0.9900 0.30 1 0 99.0 67.3 127 127 0.9900 0.30 1 0 99.0 67.2 129 126	Ethyl acetate		0.9800	0.15	۹	0	98.0	56.5	129			
1.050 0.15 1 0 105 7.5 146 0.9700 0.15 1 0 97.0 71.5 128 0.9600 0.15 1 0 96.0 71.3 141 0.9600 0.15 1 0 96.0 71.3 141 0.9600 0.15 1 0 96.0 67.9 135 0.9800 0.15 1 0 96.0 67.9 135 0.9800 0.15 1 0 96.0 67.9 135 0.9800 0.15 1 0 96.0 7.3 126 0.9900 0.30 2 0 97.0 127 0.9900 0.30 1 0 90.0 135 0.9900 0.45 1 0 90.0 54.1 127 0.9900 0.45 1 0 90.0 54.4 137 0.9900 0.55 1	Ëthylbenzene		1.020	0.15	4	0	102	66.8	125			
0.3700 0.15 1 0 97.0 71.5 728 0.9600 0.15 1 0 96.0 71.3 151 0.9600 0.15 1 0 96.0 71.3 151 0.9600 0.15 1 0 96.0 64.1 123 0.9600 0.15 1 0 96.0 64.1 126 1.120 0.15 1 0 98.0 57.3 125 1.120 0.15 1 0 99.0 64.1 127 2.060 0.30 1 0 99.0 57.3 125 1.120 0.15 1 0 99.0 57.3 127 2.0960 0.30 1 0 99.0 57.3 127 1.120 0.30 0.3 1 127 127 1.000 0.30 1 0 91.0 58.2 125 1.0100 0.15	Freon 11		1.050	0.15	40-	0	105	75.5	145			
0.9600 0.15 1 0 96.0 71.3 151 0.9600 0.15 1 0 96.0 73 141 0.9600 0.15 1 0 96.0 61.1 120 0.9600 0.15 1 0 96.0 67.3 141 0.9600 0.15 1 0 96.0 57.3 125 1.1200 0.16 1 0 98.0 57.3 125 1.1200 0.30 1 0 99.0 57.3 126 0.9900 0.30 1 0 99.0 57.3 127 1.000 0.30 1 0 99.0 57.3 127 1.000 0.30 1 0 99.0 56.1 127 0.9900 0.15 1 0 91.0 56.2 131 1.000 0.16 1 0 91.0 56.2 126 1.100	Freon 113		0.9700	0.15	4	Q	97.0	71.5	128			
0.9600 0.15 1 0 96.0 73 141 0.9800 0.15 1 0 99.0 61.1 120 0.9800 0.15 1 0 98.0 57.3 135 1.120 0.15 1 0 98.0 57.3 135 1.120 0.30 2 0 112 60.3 136 2.060 0.30 1 0 99.0 42.5 149 0.9900 0.30 1 0 99.0 42.5 149 1.000 0.30 1 0 99.0 55.6 131 1.000 0.30 1 0 99.0 56.6 131 1.000 0.15 1 0 99.0 56.2 130 1.1000 0.15 1 0 90.0 56.6 131 1.1010 0.15 1 0 91.0 56.6 132 1.1010	Freon 114		0.9600	0.15	•	0	96 .0	71.3	151			
0.3900 0.15 1 0 99.0 64.1 120 0.3600 0.15 1 0 98.0 57.3 125 1.120 0.15 1 0 98.0 57.3 125 1.120 0.15 1 0 98.0 57.3 126 1.120 0.15 1 0 91.0 57.3 129 1.120 0.30 1 0 91.0 57.3 126 0.39900 0.30 1 0 91.0 56.3 131 1.000 0.30 1 0 91.0 56.3 131 1.000 0.30 0.16 1 0 131 1.000 0.15 1 0 91.0 131 1.010 0.15 1 0 102 127 1.020 0.15 1 0 102 127 1.010 0.15 1 1 127 1	Freon 12		0,9600	0.15	v	0	96.0	73	141			
0.9600 0.15 1 0 96.0 67.3 135 1.120 0.15 1 0 98.0 57.3 125 1.120 0.15 1 0 98.0 57.3 125 1.120 0.15 1 0 91.0 425 149 2.0900 0.30 1 0 99.0 425 149 1.000 0.30 1 0 99.0 56 131 1.000 0.15 1 0 94.0 50.8 133 1.000 0.15 1 0 94.0 56.8 133 1.010 0.15 1 0 94.0 56.8 133 1.010 0.15 1 0 101 45.7 125 1.020 0.15 1 0 104 67 125 1.010 0.15 1 0 104 67 125 1.040 0.15<	Heptane		0.9900	0.15	A m.	¢	66.0	64.1	120			
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	Hexachloro-1,3-butar	diene	0.9600	0.15	ę	o	35 .0	67.9	135			
1.120 0.15 1 0 112 60.3 139 ne 0.9900 0.30 1 0 99.0 42.5 149 ne 0.9900 0.30 1 0 99.0 56 131 etone 0.9900 0.30 1 0 99.0 56 131 etone 0.9900 0.30 1 0 94.0 56.8 133 etone 0.9400 0.15 1 0 94.0 58.2 130 etone 1.010 0.15 1 0 94.0 58.2 130 etone 0.9900 0.15 1 0 94.0 58.2 130 etone 0.9900 0.15 1 0 91.0 102 74 129 etone 0.9900 0.15 1 0 90.0 54.4 129 etone 0.9900 0.15 1 0 90.0 54.4 129 etone 0.9900 0.15 1 0 90.0	Hexane		0.9800	0.15	W.	0	98.0	57.3	125			
2.060 0.30 2 0 103 71 127 0.9900 0.30 1 0 99.0 42.5 149 0.9900 0.30 1 0 99.0 56 131 1.000 0.30 1 0 99.0 56 13 1.000 0.30 1 0 94.0 56.8 133 0.9400 0.15 1 0 94.0 58.2 130 1.010 0.15 1 0 94.0 58.2 125 1.010 0.15 1 0 101 45.7 125 1.040 0.15 1 0 90.0 54.4 125 0.9900 0.15 1 0 90.0 54.4 125 0.9900 0.15 1 0 90.0 54.4 125 0.9900 0.15 1 0 90.0 54.4 125 0.9900 0.15 1 0 90.0 54.4 127 0.9900 0.15<	Isopropyi alcohol		1.120	0.15	4	Q	112	60.3	139			
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	m&p-Xylene		2.060	0:30	3	Q	103	2	127			
0.9900 0.30 1 0 99.0 56 131 1.000 0.30 1 0 100 50.8 133 0.9800 0.15 1 0 96.0 51.2 130 0.9400 0.15 1 0 94.0 58.2 120 1.020 0.15 1 0 91.0 58.2 125 1.020 0.15 1 0 101 45.7 129 1.040 0.15 1 0 104 67 127 0.9900 0.15 1 0 90.0 54.4 12 0.9900 0.15 1 0 90.0 54.4 12 0.9900 0.15 1 0 90.0 54.4 12 0.9900 0.15 1 1 1 1 1 0.9900 0.15	Methyl Butyl Kelone		0.9900	0.30	***	0	0.99	42.5	149			
1.000 0.30 1 0 100 50.8 13 0.9800 0.15 1 0 98.0 61.2 130 0.9400 0.15 1 0 94.0 58.2 130 1.020 0.15 1 0 94.0 58.2 125 1.020 0.15 1 0 101 45.7 129 1.010 0.15 1 0 104 125 127 0.9900 0.15 1 0 90.0 65.6 132 0.9900 0.15 1 0 90.0 65.6 132 0.9900 0.15 1 0 90.0 64.4 72 0.9900 0.15 1 0 90.0 64.4 72 0.9900 0.15 1 0 90.0 64.4 72 0.9900 0.15 1 0 90.0 64.4 72 0.9900 0.15 1 0 90.0 64.4 72 0.1000 0.10	Methyl Ethyl Ketone		0.9900	0:30	•	0	99.0	56	131			
	Methyl Isobutyl Ketor	1e	1.000	0:30	£	0	100	50.8	133			
e chloride 0.9400 0.15 1 0 94.0 58.2 125 1.020 0.15 1 0 102 72.4 129 1.010 0.15 1 0 101 45.7 129 reethylene 1.040 0.15 1 0 101 45.7 127 roethylene 0.9900 0.15 1 0 90.0 65.6 132 roethylene 0.9900 0.15 1 0 99.0 65.6 132 roethylene 0.9900 0.15 1 0 99.0 54.4 120 roethylene 0.9900 0.15 1 0 99.0 54.4 120 statist reported are not blank corrected 0.15 1 0 99.0 54.4 120 statist reported are not blank corrected J J J J J J statist reported are not blank corrected J J J J <td< td=""><td>Methyl tert-butyl ethe</td><td>ř</td><td>0.9800</td><td>0.15</td><td>-</td><td>0</td><td><u> 98.0</u></td><td>61.2</td><td>130</td><td></td><td></td><td></td></td<>	Methyl tert-butyl ethe	ř	0.9800	0.15	-	0	<u> 98.0</u>	61.2	130			
a 1.020 0.15 1 0 102 72.4 129 a 1.010 0.15 1 0 101 45.7 127 roethylene 1.040 0.15 1 0 104 67 132 roethylene 0.9900 0.15 1 0 99.0 65.6 133 roethylene 0.9900 0.15 1 0 99.0 54.4 120 roethylene floking times for preparation or analysis exceeded J Analyte detected below quantitation limit ND No Detected at the Limit of Detection R RPD outside accepted recovery limits S Skik Recovery outside accepted recovery binits ND No Detected at the Limit of Detection	Methylene chloride		0.9400	0.15	-	0	94.0	58.2	125			
le1.0100.151010145.71271.0400.151010467132oroethylene0.99000.151099.065.6133drofuran0.99000.151099.054.4120rs.Results reported are not blank correctedJAnalyte detected below quantitation limit ND Not Detected at the Limit of DetectionRR/D outside accepted recovery limitsSSpike Recovery outside accepted recovery limitsNDNot Detected at the Limit of Detection	o-Xylene		1.020	0.15	-	0	102	72.4	129			
1.040 0.15 1 0 104 67 132 drofuran 0.9900 0.15 1 0 99.0 65.6 133 drofuran 0.9900 0.15 1 0 99.0 65.6 133 rs: Results reported are not blank corrected 0.15 1 0 99.0 54.4 120 rs: Results reported are not blank corrected D. D. 99.0 54.4 120 rs: Results reported are not blank corrected D. D. 99.0 54.4 120 rs: Results reported are not blank corrected D. D. 99.0 54.4 120 rs: Results reported are not blank corrected J. Analyte detected below quantitation limit ND. Not Detected at the Limit of Detection R R PD outside accepted recovery limits S. Spike Recovery outside accepted recovery limits S. Spike Recovery outside accepted recovery limits	Propylene		1.010	0.15	-	0	101	45.7	127			
0.9900 0.15 1 0 99.0 65.6 133 0.9900 0.15 1 0 99.0 54.4 120 Results reported are not blank corrected 0.15 1 0 99.0 54.4 120 Results reported are not blank corrected 0 1 0 99.0 54.4 120 Results reported are not blank corrected 1 Analyte detection Limit E Estimated Value above quantitation range Robing times for preparation or analysis exceeded 1 Analyte detected below quantitation limit ND Not Detected at the Limit of Detection RPD outside accepted recovery limits 5 Spike Recovery outside accepted recovery limits ND Not Detected at the Limit of Detection	Styrene		1.040	0.15	F	0	104	67	132			
0.9900 0.15 1 0 99.0 54.4 120 Results reported are not blank corrected DL Detection Limit E Estimated Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits ND Not Detected at the Limit of Detection	Tetrachioroethylene		0.9900	0.15		0	0.99	65.6	133			
 Results reported are not blank corrected DE Detection Limit Results reported are not blank corrected J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R PD outside accepted recovery limits S Spike Recovery outside accepted recovery limits 	Tetrahydrofuran		0.9900	0.15	-	0	0.99.0	54.≰				
 H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits 	Qualifiers:	Results report	ted are not blank corrected		- E	tan Limit				ed Value above quantitati		
RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits		Holding time	s for preparation or analysis exc	ceded		e detected behw quan	titation lim	i		sected at the Limit of Dete	xtion	
	Я	RPD cutside.	accented recovery limits			knovery outside areel	bled recove	ry limits			^o d	بت کی مرج

CLIENT: Leader Consulting Services

CLJENT: Leader Consulting Work Order: C2302047 Project: Vails Gate - Tesla	Leader Consulting Services C2302047 Vails Gate - Tesla						Test(TestCode: 0.20	0.20_NYS	
l ö	SampType: LCS	TestCod	TestCode: 0.20 NYS	Units: ppbV		Prep Date	11		RunNo: 20049	
Criemt (U): 22222	Batch IU: R20049	lestiv	Festive: TO-15			Analysis Date:	e: 2/24/2023		SeqNo: 229637	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPC	RPD Ref Vai	%RPD RPDLimit	Qual
Toluene	1.000	0.15	4pm.	o	100 1	62.5	128			
trans-1,2-Dichloroethene	1.000	0.15	Ψr	Φ	100	63.6	126			
trans-1,3-Dichioropropene	0.9900	0.15	***	0	99.0	45	155			
Trichloroethene	0.8600	0:030		Ð	86.0	54.2	140			
Vinyl acelate	1.010	0.15	4	0	101	49	122			
Viryi Bromide Virut chloride	1,150 1,110	0.15 0.040	÷ +	0 C	115	65.8 62.7	150 146			
			-	.	12	1.20	7 ±1			
Sample ID: ALCS1UG-022523	SampType: LCS	TestCod	TestCode: 0.20 NYS	Units: ppbV		Prep Date	24		RunNo: 20051	
Client ID: ZZZZ	Batch ID: R20051	TestN	TestNo: TO-15			Analysis Date:	2/25/2023	÷,	SegNo: 229658	
Anaiyie	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD	RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	1.090	0.15	÷	D	109	63.7	152			
1,1,2,2-Tetrachloroethane	1.080	0.15	۲	0	108	62.1	132			
1,1.2-Frichkoroethane	1.100	0,15	£	0	110	64.3	132			
1, 1-Dichloroethane	1.050	0.15	-	0	105	67.9	123			
1,1-Dichloroethene	1.090	0.040	-	0	109	59.4	\$22			
1,2.4-Trichlorobenzene	1.050	0.15	÷	0	105	55	133			
1,2,4-Trimethylbenzene	0.9700	0.15	-	0	97.0	64.1	128			
1,2-Dibromoethane	1.040	0.15	-	0	104	64.9	134			
1,2-Dichlorobenzene	1.050	0.15	-	0	105	57.8	158			
1,2-Uichloroethane	1.040	0.15	- -	0 0	104	78.8	127			
1,4-Ukuluviopiopario 1,4 & Trimathulbonzaro	00000	21-0 21-0	- •			5.60 NY	122			
1.3-bitadiene	1 070	0.15		, c	107	111	138			
1.3-Dichlorobenzene	1.040	0.15	·	0	104	66.2	137			
1,4-Dichlorobenzene	1.110	0.15	-	0	111	68.2	139			
1,4-Dioxane	0.9700	0.30	۲	0	97.0	67.7	119			
2.2,4-trimethylpentane	1.060	0,15	-	0	1 5	51	127			
4-ethyttoluene	1.010	0.15	-	0	101	67.9	131			
	Results reported are not blank corrected			Detection Limit				ted Value above quan	Estimated Value above quantitation stage	
	Holding times for preparation or analysis exceeded	ceded	J Analyte	Analyte detected helow quantitation limit	tritation lim	it Krite	ND Na Dr	tected at the f.	Not Detected at the fainit of Detection	
K KI'L GUISUC	KI'U autside accepted recovery mants			Spike Kuravery ouiside arcepied fectovery amilie	ріса єссоле	ty Bruce				Page 3 of 5

Work Order:	C2302047									
Project:	Vails Gate - Tesla	- Tesla						TestCo	TestCode: 0.20_NYS	
Sample ID: ALCS1UG-022523	1UG-022523	SampType: LCS	TestCod	TestCode: 0.20_NYS	Units: ppbV		Prep Date		RunNo: 20051	
Client ID: ZZZZ	N	Batch ID: R20051	TestN	Vo: TO-15			Anatysis Date:	e: 2/25/2023	SeqNo: 229658	
Analyte		Result	PQL	SPK value	SPK Reî Val	%REC	LowLimit	HighLimit RPD Ref Val	ef Vat %RPD RPDLimit	mit Quat
Acetone	n	1.020	0.30	4	0	102	47.6	145		
Ally! chloride		0.9700	0.15	+	0	97.0	56.1	116		
Benzene		1.060	0.15	-	Ċ	106	66.2	126		
Benzyl chloride		1.010	0.15	-	ð	101	34.9	155		
Bromodichloromethane	thane	1.080	0.15	-	Ð	108	69.69	133		
Bramolorm		0.9700	0.15	۲	Ċ	97.0	44.1	152		
Bromomethane		1.060	0,15	-	ð	106	64.9	155		
Carbon disulfide		1.000	0.15	-	ð	100	64	11		
Carbon tetrachloride	de	1.030	0.030	-	0	103	41.3	166		
Chlorobenzene		1.000	0.15	-	0	100	66.3	129		
Chioroethane		1.130	0.15	-	Ċ	113	62.7	148		
Chloroform		1.030	0.15	-	Ð	103	77.1	126		
Chioromethane		1.120	0.15	-	Ð	112	74.9	146		
cis-1,2-Dichloroethene	1010	0.9700	0.040	-	0	0.72	57.7	131		
cis-1.3-Dicheropropene	apene	1.050	0.15	-	0	105	57.4	136		
Cyclohexane		1.000	0.15	-	ð	100	59.8	124		
Dibromochloromethane	hane	0026.0	0.15	-	0	97.0	58.8	139		
Ethyl acetate		1.050	0,15	-	ð	105	56.5	129		
Ethylbenzene		1.010	0.15	-	ð	105	66.8	125		
Freon 11		1.100	0.15	-	Ð	110	75.5	146		
Freon 113		1.040	0.15	-	Ð	104	71.5	128		
Freon 114		1.090	0.15	, ~	Ð	109	71.3	151		
Freon 12		1.090	0.15	-	0	109	73	141		
Heptane		1.060	0.15	÷	0	106	64.1	120		
Hexachloro-1,3-butadiene	Iladiene	1.020	0.15	÷	Ð	102	67.9	135		
Hexane		0.9900	0.15	¥rr	Ð	0.66	57.3	125		
Isopropyt alcohol		1.080	0.15	**	¢	<u>†</u> 08	60.3	139		
m&p-Xylene		2.050	0.30	2	0	103	71	127		
Methyl Butyl Ketone	16	1.060	0:30	* "	Ð	106	42.5	149		
Methyl Ethyl Ketone	Te	1.000	0:30	¥	¢	\$00	56	131		
Methyl Isobutył Ketone	tone	1.060	0.30	ų	0	106	50.8	133		
Qualifiers;	Results repor	Results reported are not blank corrected		DL Detection	Detection Limit	:		E Estimated	Estimated Value above quantitation cange	, , ,
Н		Holding times for preparation or analysis exceeded	ceeded	J Anzlyte	Analyse detected below quantitation limit	titation lim	ţ.	ND Not Detec	Not Detected at the Limit of Detection	
œ		RPD outside accepted recovery limits		S Spike H	Spike Recovery outside accepted recovery limits	pted receve	cy limits			$P_{AGO} \downarrow of f$
										- ビュー コンション

A CONTRACTOR OF A CONTRACTOR O

CLIENT: Leader Consulting Services

Leader Consulting Services

CLIENT: Leader Co Work Order: C2302047	Leader Consulting Services									
	- +						F			
Project: Vails Gate - Tesla	e - Tesla						Test	FestCode: 0	0.20 NYS	
Sample ID: ALCS1UG-022523	SampType: LCS	TestCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date	te:		RunNo: 20051	
Client ID: ZZZZ	Batch ID: R20051	Test	TestNo: TO-15			Analysis Date:	te: 2/25/2023		SeqNo: 229658	
Anaiyłe	Result	Pat	SPK value	SPK Ref Vat	%REC	LowLimit	HighLimit RPC	RPD Ref Val	%RPD RPDLimit	1 Qual
Methyl lert-butyl ether	0066:0	0.15	-	Q	99.0	61.2	130			
Methylene chloride	1.000	0.15	***	¢	\$00	58.2	125			
o-Xylene	0.9900	0.15	**	0	99.0	72.4	129			
Propytene	1.100	0.15	¥27	0	110	45.7	127			
Styrene	1.040	0.15	Ψn	0	104	67	132			
Tetrachioroethylene	1.020	0.15	* ***	¢	102	65.6	133			
i etrativdrofuran	1.050	0.15	Are.	¢	105	54,4	120			
រ្មី ០រំនេទរe	0.9900	0.15	Yeur	0	0.99.0	62.5	128			
Irans-1,2-Dichloroethene	1.070	0.15	щили	¢	107	63.6	126			
trans-1,3-Dichloropropene	1.050	0.15	4 10.	¢	105	4	155			
Trichloroethene	0.9100	0.030	Ann.	0	91.0	54.2	140			
Vinyt acetate	0.9900	0.15	ų	¢	99.0	49	122			
Vinyl Bromide	1.090	0.15	free	¢	109	65.8	150			
Vinyi chloride	1.160	0.040	ψu.	Û	116	62.7	146			
Qualifiers: Results repo	Results reported are not blank corrected		Dl. Detecti	Detection Limit			E Estim	issated Value a	Estimated Value above quantitation range	:
	Holding times for prepuration or analysis exceeded	ceeded		Analyte detected helow quantization limit	stitation lim	li	-	berected at the	Not Detected at the Limit of Detection	
R RPD outside	RPD outside accepted recovery limits		S SpikeF	Spike Recovery outside accepted recovery limits	spited recove	ay limits				Page 5 of 5

23-Mar-23	
Date:	

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Sample ID: ALCS1UGD-022423 SampType: LCS0 Client ID: ZZZZZ Batch ID: Result Analyte Result 1.070 1,1,1-Trichloroethane 1.070 1,1,2-Trichloroethane 1.020 1,1,2-Trichloroethane 1.020 1,1-Dichloroethane 1.060 1,1-Dichloroethane 1.060 1,1-Dichloroethane 1.060 1,1-Dichloroethane 1.060 1,2-Trichloroethane 1.060 1,2-Dichloroethane 1.060 1,2-Dichloroethane 1.060 1,2-Trichloroethane 1.060 1,2-Trichloroethane 1.060 1,2-Dichloroethane 1.060 1,2-Dichlorobenzene 1.060	* = 0.0.0.0	TestCode: 0.20_NYS				-	TestCode: 0	0.20_NYS		
 22222 22222 ichloroethane T etrachloroethane ichloroethane ichloroethane inforoethane ichlorobenzene inforobenzene inforobenzene 	4 66686		Units: ppbV		Prep Date			RunNo: 20049	49	
ichloroethane Telrachloroethane ichloroethane noroethane incoethene imethylbenzene omoethane omoethane		165(N0) 10-15		đ.	Analysis Date:	2/25/2023	23	SeqNo: 229638	638	
ane Te	999999 9999	SPK value S	SPK Ref Val	%REC	LowLimit	Highilimit	RPD Ref Val	Q48%	RPOLimit	Qual
ethane ae ene cene e		-	0	107	64.3	142	0.99	1.17	20.6	
erne Prine P		q ua	0	t02	57.4	134	0.99	2.99	24.7	
ene cerre e		4	Ð	106	62.8	133	0.98	7,84	22.5	
ene Ethe B		ą.m.	ð	104	64.1	123	0.98	5.94	15.9	
	Ċ	۴	0	104	55	126	-	3.92	19.1	
មាច ខ	,	÷	Ð	116	56.5	129	1.09	6.22	34.6	
U	Ö	÷	0	102	62.6	127	4 m.	1.98	20.4	
		-	0	101	62.7	134	ų	0.995	16.3	
		4	0	98.0	62.3	\$44	0.96	2.06	25	
,2-Dichloroethane		۲	0	105	64.2	134	96.0	6.90	19.5	
.2-Dichloropropare		،	0	103	55	132	0.98	4.98	24.1	
.3.5-Trimethyltxenzene		۲	a	103	71.3	133	1.06	2.87	26.9	
.3-butadiene	1.070 D.15	۲	0	107	54.8	148	0.91	16.2	26.4	
, 3-Dichłorobenzere	1.020 0.15	-	0	102	68.1	134	-	1.98	19.7	
1,4-Dichkorobenzene	1.160 0.15	***	¢	116	67.7	138	1,12	3.51	21.6	
1,4-Dioxane	1.010 0.30	ţm	0	101	51	144	0.94	7.18	22	
2,2,4-tritnethylpentane	1.060 0.15	W ata	0	106	57.6	125	0.99	6.83	15.7	
4-ethyltotuene		¥117	0	105	67	131	1.04	0.957	26.5	
Acetone	1.190 0.30	4014 1	0	119	50.4	148	1.12	6.06	49.5	
Aliyi chloride	1.060 0.15	۴u	Ċ	108	50.7	120	-	7.69	20	
Benzene	1.040 0.15	4n-	0	104	65.4	124	0.99	4.93	12.8	
Benzyt chloride	0.9300 0.15	4 m1	Ð	93.0	29.1	153	0.89	4.40	29.3	
Bromodichloromethane	1.080 0.15	ya.	Ð	108	60.4	138	~	7.69	24	
Bramoform	1.000 0.15	1	ð	100	30.8	160	1.04	3.92	23.7	
Bromomethane	1.070 0.15	-	Ð	107	55.8	153	0.99	1.77	22.7	
Qualifiers: Results reported are not blank corrected	k corrected	Di. Detection Limit	r		•	មា ក្រ	stimated Value al	Estimated Value above quantitation range	า โรลครูเร	1
H Holding times for preparation or analysis exceeded	1 or analysis exceeded		Analyte detected holow quantitation limit	titation limit		N QN	of Detected at the	Not Detected at the Limit of Detection	ion	
R PD outside accepted recovery limits	ry limits	S Spike Ru	Spike Recovery outside accepted recovery limits	Hed REOVER	listets				d	Pore l of

Centek/SanAir Laboratories

Page 42 of 201

Page 1 of 3

Leader Consulting Services	C2302047
CLJENT:	Work Order:

C2302047

Project: Vails Gate - Tesla	Tesla						ţ	TestCode: 0	0.20_NVS		
Sample ID: ALCS1UGD-022423	SampType: LCSD	TestCod	TestCode: 0.20_NYS	Units: ppbV		Prep Date:			RunNo: 20049	49	
Client ID. ZZZZZ	Batch ID: R20049	TestN	TestNo: TO-15			Anaiysis Date:	2/25/2023	23	SeqNo: 229638	638	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Carbon disulfide	1.000	0.15	~	D	100	63.4	110	0.96	4.08	15.4	
Carbon tetrachloride	1.050	0.030	-	0	105	30	170	1.02	2.90	22.3	
Chlorobenzene	0.9900	0.15	-	0	33 .0	66.5	126	0.99	0	13.1	
Chloroethane	1,140	0.15	-	o	114	55.3	345	0.99	14.1	22.4	
Chloroform	1.040	0.15	-	0	104	68.2	128	0.98	5.94	14.2	
Chloromethane	1.100	0.15	-	٥	110	60.2	146	1.01	8.53	20.6	
cis-1,2-Dichloroethene	1.130	0.040	-	0	113	51.8	131	1.08	4.52	15.8	
cis-1,3-Dichloropropene	1.070	0.15		0	107	54.7	139	***	6.76	20.3	
Cyclohexane	1.040	0.15	-	0	104	61.2	122	96-D	8.00	16.3	
Dibromochloromethane	1.010	0.15	-	0	101	47.8	145	1.05	4.83	20.1	
Ethyl acetate	1.040	0.15		Q	104	52.8	129	0.98	5.94	18.4	
Ethyltenzene	1.020	0.15	,	٥	10 2	64.5	126	1.02	0	14.4	
Freon 11	1.100	0.15	•	¢	110	60.7	152	1.05	4.65	21.8	
Freon 113	1.000	0.15		0	100	67.8	129	0.97	3.05	14.3	
Freon 114	1.100	0.15		0	0 €‡	58.6	153	0.96	13.6	23.2	
Freon 12	1.100	0.15	4.	0	110	65.6	143	0,96	13.6	19.7	
Heptane	1.090	0.15	4 7 7	0	109	59.4	123	0.99	9.62	21.5	
Hexachlorc-1,3-butadiene	0.9800	0.15	чө ттт	Ģ	96.0	53	155	0.96	o	24.6	
Hexane	1.020	0.15	4717	Q	t02	55.4	123	0.98	4.00	22.5	
Isopropy! alcohol	1.230	0.15	۰.	Ģ	123	56.6	147	£.12	9.36	49.3	
m&p-Xylene	2.070	0.30	2	c	£04	70.3	127	2.06	0.484	515	
Methyl Butyl Ketone	1.030	0:30	4nun	Ģ	t03	55.1	123	0.99	3.96	25.7	
Methyl Ethyl Ketone	1.020	0.30	447	0	102	51.5	132	0.99	2.99	18.3	
Methyl Isobutyl Ketone	1.050	0:30	¥~*	0	105	41.6	137	-	4.88	26.8	
Methyl tert-butyf ether	1.020	0.15	٣	Q	102	52	138	0.98	4.00	21.9	
Methylene chloride	0025.0	0.15	¥	Q	97.0	55.9	129	0.94	3.14	18.5	
o-Xylene	1.050	0.15	Υm	¢	105	2	130	1.02	2.90	22.2	
Propylene	1.150	0.15	F RT	Q	115	49.2	128	1 <u>0</u> 1	13.0	26.8	
Styrene	1.050	0.15	¥"'	0	105	67.9	131	1.04	0.957	23.3	
Tetrachloroethylene	1.000	0.15		Q	ţ00	56.2	132	6610	1.01	13.9	
Tetrahydrofuran	1.020	0.15	4	0	102	47	124	6610	2.99	20.2	
Qualifiers: Results reporte	Results reported are not blank corrected		DL Detection Limit	a Linnit			н Ц	Estimated Value above quantitation range	bove quantitatio	n sange	
H Holding times	Holding times for preparation or analysis exceeded	ceeded	J Analyte	Analyse detected below quantitation Jimit	itation Jimi		QN	Not Detected at the Limit of Detection	e Limit of Detec	tion	
R RPD misule a	RPD natside accepted recovery limits		5 Spike R	Spike Recovery outside accepted neavery limits	ted recover	y limits				e.	Puge 2 of 3

Leader Consulting Services C2302047 Work Order: CUENT:

Project: Vails Gate - Tesla

TestCode: 0.20_NYS

Sample ID: ALCS1UGD-022423 SampType: LCSD	SampType: LCSD	TestCot	TestCode: 0.20_NYS	Units: ppbV		Prep Date:	Đ		RunNo: 20049	049	
Client ID: 2222	Batch ID: R20049	Tesh	TestNo: TO-15		-	Analysis Date: 2/25/2023	le: 2/25/20	23	SegNo: 229638	9638	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%8РD	%RPD RPDLimit	Qual
Toluene	1.010	0.15	-	0	101	62.6	126	-	0.995	17.2	
trans-1,2-Dichloroethene	1.050	0.15	-	0	105	60.2	125	-	4.88	16.8	
Irans-1,3-Dichloropropene	1.060	0.15	ų	¢	106	34.2	157	0.99	5.83	21.5	
Trichtoroethene	0.9000	0:030	*~	Ċ	90.06	57.8	133	0.86	4.55	21.8	
Vinyl acetate	1.040	0.15	÷	ð	104	42.5	127	1.01	2.93	53	
Vinyl Bromide	1.220	0.15	-	0	122	55.1	1 48	1.15	5.91	22	
Vinyl chloride	1.130	0.040	L	0	113	51.9	146	1.01	11.2	22	

Page 3 of 3 į Estimated Value above quantitation range
 ND Nut Detected at the Limit of Detection Nut Detected at the Limit of Detection Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit D.L. Detection Limit
 J. Analyte detected ht
 S. Spike Recovery out Holding times for preparation or analysis exceeded Results reported are not blank corrected RPD outside accepted recovery limits , Qualifiers:

Centek/SanAir Laboratories

23-Mar-23	
Date:	

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Control Control <t< th=""><th>jer</th><th>1185 3014102</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	jer	1185 3014102								
Valid Calle - Tesh Test Code: 0.20 0.20 0.20 0.20 0.20 NS 0. C2000047:0024M IS SampTyper MS SampTyper MS TestCode: 0.20 MNS TestCode: 0.20 MNS 200 <	-									
		èsla							0.20_NYS	
D: Summa (MS-MSD) Batch (D: Techto: Techto: Techto: Techto: Zist/mode Section Sectin Section		SampType: MS	TestCode	: 0.20_NYS	Units: ppbV		Prep Date		RunNo: 20049	
Result PQL SPK value SPK value SPK value SPK value Value High, Imt MSD Ret Value MSD Ret Value<		Batch ID: R20049	TestNo	: TO-15		-	4nalysis Date		SeqNo: 229654	
effance 1.100 0.15 1 0 100 51.3 146 hloroeffance 1.050 0.15 1 0 105 59.4 121 ethane 1.050 0.15 1 0 106 59.1 128 ethane 1.040 0.15 1 0 102 55.3 121 hene 1.020 0.015 1 0 128 72 186 hene 1.020 0.15 1 0 128 72 186 hene 1.040 0.15 1 0 107 0 128 12 hane 1.070 0.15 1 0 107 0 128 128 hane 1.140 0.15 1 0 114 47.6 128 hane 1.070 0.15 1 0 113 0 128 hane 1.150 0.15 1 0	Analyte	Result	PQL		PK Ref Val	%REC				it Quai
Inforcethane 1.650 0.15 1 0 105 59.4 121 Inforcethane 1.060 0.15 1 0 106 59.1 128 Informe 1.040 0.15 1 0 102 55.3 121 Informe 1.020 0.040 1 0 128 55.3 121 Informe 1.020 0.040 1 0 128 55.3 121 Informe 1.020 0.15 1 0 128 55.3 128 Informe 1.040 0.15 1 0 128 55.3 128 Informe 1.140 0.15 1 0 128 57.3 128 Informe 1.140 0.15 1 0 106 57.6 127 Intof 1.140 0.15 1 0 135 57 128 Intof 1.140 0.15 1 0 <t< td=""><td> 1, 1-T richlor oethane </td><td>1.100</td><td>0.15</td><td></td><td>Ð</td><td>110</td><td>51.3</td><td>146</td><td></td><td></td></t<>	 1, 1-T richlor oethane 	1.100	0.15		Ð	110	51.3	146		
ethane 1.060 0.15 1 0 106 53.1 128 hene 1.040 0.15 1 0 102 55.3 121 hene 1.020 0.040 1 0 102 55.3 121 hene 1.020 0.040 1 0 128 55.3 121 hene 1.020 0.15 1 0 128 55.3 121 hene 1.040 0.15 1 0 144 67.5 127 hene 1.040 0.15 1 0.14 67.5 127 hene 1.040 0.15 1 0 144 47.6 127 hene 1.040 0.15 1 0 1017 0 124 127 hene 1.330 0.15 1 0 1017 67.5 127 hene 1.330 0.15 1 <th0< th=""> 10.5 127</th0<>	f.1.2,2-Fetrachloroethane	1.050	0.15	ų	¢	105	59.4	121		
hane 1.240 0.15 1 0 104 67.5 114 hane 1.200 0.040 1 0 102 55.3 124 benzene 1.200 0.040 1 0 102 55.3 124 benzene 1.290 0.15 1 0 107 55.1 155 benzene 1.040 0.15 1 0 104 67.5 124 benzene 1.040 0.15 1 0 107 67.5 127 opane 1.070 0.15 1 0 114 47.6 127 opane 1.070 0.15 1 0 107 67.5 127 opane 1.130 0.15 1 0 107 67.5 127 opane 1.130 0.15 1 0 117 67.7 124 opane 1.130 0.15 1 0 111 <	1,1,2-Trichloroethane	1.060	0.15	*	Ð	¢06	59.1	128		
hene 1.020 0.040 1 0 102 5.5 12 henrzene 1.280 0.15 1 0 128 72 184 thenzene 1.280 0.15 1 0 128 55.1 155 hene 1.040 0.15 1 0 104 61.9 124 hene 1.040 0.15 1 0 107 67.5 124 hane 1.070 0.15 1 0 107 67.5 124 hane 1.150 0.15 1 0 116 126	1,1-Dichloroethane	1.040	0.15	+	D	104	67.5	118		
Dencene 1280 0.15 1 0 128 55.1 165 bane 1040 0.15 1 0.61 128 55.1 165 bane 1140 0.15 1 0.61 174 61.9 124 arcene 1140 0.15 1 0 144 61.9 125 hane 1070 0.15 1 0 144 61.9 126 opane 1310 0.15 1 0 114 61.5 127 opane 1310 0.15 1 0 126 126 opane 1310 0.15 1 0 135 61.1 opane 1310 0.15 1 0 126 67.5 126 opane 1310 0.15 1 0 135 62 136 opane 1320 0.15 1 0 127 62 126	1,1-Dichloroethene	1.020	0.040	t	ð	†02	55.3	121		
thencence 1.890 0.15 1 0.61 128 55.1 155 hane 1.040 0.15 1 0 104 61.9 128 157 157 hane 1.140 0.15 1 0 107 67.5 127 hane 1.070 0.15 1 0 107 6.19 128 hane 1.070 0.15 1 0 107 6.75 127 hane 1.070 0.15 1 0 167 67.5 128 opane 1.150 0.15 1 0 107 67.5 128 opane 1.150 0.15 1 0 116 0 128 128 opane 1.150 0.15 1 0 116 23 24 23 opane 1.150 0.15 1 0 111 0 123 25 128 opane	1,2,4-Trichlorobenzene	1.280	0.15	4	Ð	128	72	184		
hane 1.040 0.15 1 0 104 619 124 hane 1.140 0.15 1 0 107 67.5 127 hane 1.070 0.15 1 0 107 67.5 127 hane 1.070 0.15 1 0 107 67.5 127 hane 1.050 0.15 1 0 107 67.5 127 opane 1.310 0.15 1 0 107 67.5 127 opane 1.350 0.15 1 0 116 0 126 127 opane 1.350 0.15 1 0 116 0 117 54.6 136 opaniane 1.150 0.15 1 0 102 117 54.6 126 opaniane 1.110 0.15 1 0 102 102 117 55.4 136 opaniane <td>t,2,4-Trimethylbenzene</td> <td>1.890</td> <td>0.15</td> <td>-</td> <td>0.61</td> <td>128</td> <td>55.1</td> <td>165</td> <td></td> <td></td>	t,2,4-Trimethylbenzene	1.890	0.15	-	0.61	128	55.1	165		
Internet 1.140 0.15 1 0 144 47.6 45.5 15.7 hane 1.070 0.15 1 0 107 67.5 12.2 opane 1.070 0.15 1 0 107 67.5 12.2 opane 1.310 0.15 1 0 135 6.1 137 obenzene 1.150 0.15 1 0 135 6.2 134 obenzene 1.150 0.15 1 0 135 6.2 134 interne 1.150 0.15 1 0 135 6.1 136 interne 1.150 0.15 1 0 136 6.7 136 interne 1.110 0.15 1 0 101 6.7 136 interne 1.110 0.15 1 7.8 80.9 30.4 165 interne 1.040 0.15 1 0 <td>t_2-Dibromoethane</td> <td>1.040</td> <td>0.15</td> <td>-</td> <td>0</td> <td>104</td> <td>61.9</td> <td>124</td> <td></td> <td></td>	t_2-Dibromoethane	1.040	0.15	-	0	104	61.9	124		
hane 1.070 0.15 1 0 107 67.5 57.6 127 opane 1.050 0.15 1 0 105 57.6 127 opane 1.310 0.15 1 0 105 57.6 57.6 127 opane 1.310 0.15 1 0 115 61.7 134 opane 1.150 0.15 1 0 115 62 174 nzene 1.150 0.15 1 0 123 64.1 136 nzene 1.150 0.15 1 0 123 64.1 136 nzene 1.100 0.15 1 0 122 62 126 pentane 1.110 0.15 1 0 122 62 136 nzene 1.020 0.15 1 7.8 80.0 30.4 160 e 1.100 0.15 1 0.2 <td> 2-Dichlorobenzene </td> <td>1.140</td> <td>0.15</td> <td>۲</td> <td>0</td> <td>114</td> <td>47.6</td> <td>157</td> <td></td> <td></td>	 2-Dichlorobenzene 	1.140	0.15	۲	0	114	47.6	157		
opane 1.050 0.15 1 0 105 57.6 127 obenzene 1.310 0.15 1 0.2 111 54.6 146 obenzene 1.310 0.15 1 0 135 62 17 nzene 1.350 0.15 1 0 135 62 17 nzene 1.150 0.15 1 0 123 64.1 136 nzene 1.020 0.30 1 0 102 123 64.1 136 nzene 1.020 0.30 1 0 102 62 125 pentane 1.110 0.15 1 7.8 80.9 30.4 160 nethane 1.040 0.15 1 7.8 80.9 30.4 47.5 142 nethane 1.040 0.15 1 0 104 47.5 142 e 1.040 0.15 1	1,2-Dichloroethane	1.070	0.15	۲	0	107	67.5	122		
theorene 1310 0.15 1 0.2 111 54.6 346 theorene 1350 0.15 1 0 135 62 77 miscene 1.150 0.15 1 0 115 67.7 134 miscene 1.150 0.15 1 0 115 67.7 134 miscene 1.230 0.15 1 0 115 67.7 134 miscene 1.150 0.15 1 0 123 64.1 136 pentane 1.110 0.15 1 0 112 65 146 pentane 1.110 0.15 1 7.8 80.0 30.4 160 pentane 1.1040 0.15 1 7.8 80.0 30.4 165 146 e 1.170 0.15 1 0 117 35.4 131 methane 1.1600 0.15 1 0 </td <td>1,2-Dichloropropane</td> <td>1.050</td> <td>0,15</td> <td>-</td> <td>0</td> <td>105</td> <td>57.6</td> <td>127</td> <td></td> <td></td>	1,2-Dichloropropane	1.050	0,15	-	0	105	57.6	127		
nzene 1350 0.15 1 0 135 62 77 nzene 1.150 0.15 1 0 135 63.1 134 nzene 1.150 0.15 1 0 135 63.1 134 nzene 1.230 0.15 1 0 135 64.1 136 nzene 1.020 0.30 1 0 123 64.1 136 pentane 1.110 0.15 1 0 111 65 123 pentane 1.110 0.15 1 0 132 64.1 136 pentane 1.170 0.15 1 0 111 65 142 e 1.170 0.15 1 0 146 25.2 133 e 1.170 0.15 1 0 10 26.4 26.5 26.5 e 1.170 0.15 1 0 10.4	1.3.5-Trimefhylbenzene	1.310	0.15	-	0.2	111	54.6	§46		
In Zerie 1.150 0.15 1 0 115 67.7 734 in Zerie 1.230 0.15 1 0 123 64.1 136 in Zerie 1.020 0.30 1 0 102 62 125 pentane 1.110 0.15 1 0 111 65 125 pentane 1.110 0.15 1 0 111 65 125 pentane 1.110 0.15 1 0 111 65 125 section 1.040 0.15 1 7.8 80.9 30.4 47.5 in ethane 1.170 0.15 1 0 107 35.4 187 methane 1.060 0.15 1 0 117 35.4 131 e 1.170 0.15 1 0 104 47.5 145 methane 1.060 0.15 1 0 164	1,3-butadiene	1.350	0.15	-	0	135	62	\$74		
Interne 1230 0.15 1 0 123 64.1 136 pentane 1.020 0.30 1 0 102 62 125 pentane 1.110 0.15 1 0 111 65 125 pentane 1.110 0.15 1 0 111 65 125 fendane 1.110 0.15 1 0.28 0.30 142 142 fendane 1.040 0.15 1 0.24 156 142 nethane 1.170 0.15 1 0 104 47.5 142 e 1.170 0.15 1 0 104 47.5 142 methane 1.040 0.15 1 0 104 65.6 133 e 1.170 0.15 1 0 104 64.5 145 methane 1.040 0.15 1 0 104 64.5	1,3-Dichlorobenzene	1.150	0.15	-	0	115	67.7	134		
$ \begin{array}{ccccccc} 1.020 & 0.30 & 1 & 0 & 102 & 62 & 125 \\ \mbox{pentane} & 1.110 & 0.15 & 1 & 0 & 111 & 65 & 128 \\ 1.500 & 0.15 & 1 & 0.28 & 122 & 32.2 & 179 \\ 8.600 & 0.30 & 1 & 7.8 & 80.0 & 30.4 & 160 \\ 1.040 & 0.15 & 1 & 0 & 104 & 47.5 & 142 \\ 1.170 & 0.15 & 1 & 0 & 104 & 42.1 & 152 \\ \mbox{methane} & 1.040 & 0.15 & 1 & 0 & 104 & 42.1 & 152 \\ \mbox{methane} & 1.040 & 0.15 & 1 & 0 & 104 & 42.1 & 152 \\ \mbox{methane} & 1.040 & 0.15 & 1 & 0 & 104 & 24.5 & 133 \\ \mbox{methane} & 1.040 & 0.15 & 1 & 0 & 104 & 24.5 & 133 \\ \mbox{methane} & 1.040 & 0.15 & 1 & 0 & 104 & 24.6 & 133 \\ \mbox{methane} & 1.040 & 0.15 & 1 & 0 & 104 & 24.5 & 133 \\ \mbox{methane} & 1.040 & 0.15 & 1 & 0 & 104 & 24.6 & 133 \\ \mbox{methane} & 1.000 & 0.15 & 1 & 0 & 104 & 24.5 & 133 \\ \mbox{methane} & 1.000 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 1.000 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 1.000 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 1.000 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 1.000 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 1.000 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 1.000 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 1.000 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 1.000 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 0.100 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 0.100 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 0.100 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 0.100 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 0.100 & 0.15 & 1 & 0 & 100 & 25.8 & 146 \\ \mbox{methane} & 0.100 & 0.15 & 1 & 0 & 100 & 0 & 100 & 0 & 100 & 0 & $	1,4-Dichlorobenzene	1.230	0.15	-	0	123	64.1	136		
$ \begin{array}{c ccccc} \mbox{pentane} & 1,110 & 0,15 & 1 & 0 & 111 & 65 & 128 \\ 1.500 & 0,15 & 1 & 0.28 & 122 & 32.2 & 179 \\ 8.600 & 0,15 & 1 & 7.8 & 80.0 & 30.4 & 75 \\ 1.040 & 0,15 & 1 & 0 & 104 & 47.5 & 142 \\ 1.170 & 0,15 & 1 & 0 & 117 & 35.4 & 181 \\ methane & 1.040 & 0,15 & 1 & 0 & 104 & 54.5 & 133 \\ methane & 1.040 & 0,15 & 1 & 0 & 104 & 54.5 & 133 \\ methane & 0,9700 & 0,15 & 1 & 0 & 170 & 53.9 & 146 \\ e & & & & & & & & & & & & & & & & & &$	1,4-Dioxane	1.020	0.30	-	0	102	62	125		
1500 0.15 1 0.28 122 32.2 179 8.600 0.30 1 7.8 80.9 30.4 160 1.040 0.15 1 0 104 47.5 142 1.040 0.15 1 0 104 47.5 142 1.040 0.15 1 0 104 47.5 142 Interhane 1.170 0.15 1 0 117 35.4 181 Interhane 1.040 0.15 1 0 104 42.5 133 Interhane 1.000 0.15 1 0 107 35.4 133 Interhane 1.000 0.15 1 0 107 35.4 146 Results reported are not blask corrected 0.15 1 0 104 54.5 133 Results reported are not blask corrected 0.15 1 0 100 53.9 125 Results reported are not blask corrected I D 100 53.9 125	2.2.4-trimethylpentane	1.110	0.15	-	0	111	65	128		
$ \begin{array}{c ccccc} 8.600 & 0.30 & 1 & 7.8 & 80.9 & 30.4 & 760 \\ 1040 & 0.15 & 1 & 0 & 104 & 47.5 & 142 \\ 1.460 & 0.15 & 1 & 0.42 & 104 & 47.5 & 142 \\ 1.170 & 0.15 & 1 & 0 & 117 & 35.4 & 181 \\ 1.040 & 0.15 & 1 & 0 & 104 & 54.5 & 133 \\ 1.090 & 0.15 & 1 & 0 & 97.0 & 25.8 & 146 \\ 1.000 & 0.15 & 1 & 0 & 100 & 63.9 & 125 \\ 1.000 & 0.15 & 1 & 0 & 100 & 63.9 & 125 \\ 1.000 & 0.15 & 1 & 0 & 100 & 63.9 & 125 \\ 1.000 & 0.15 & 1 & 0 & 100 & 63.9 & 125 \\ 1.000 & 0.15 & 1 & 0 & 100 & 63.9 & 125 \\ 1.000 & 0.15 & 1 & 0 & 0.15 & 146 \\ 1.000 & 0.15 & 1 & 0 & 100 & 63.9 & 125 \\ 1.000 & 0.15 & 1 & 0 & 0.15 & 146 \\ 1.000 & 0.15 & 1 & 0 & 0.16 & 146 \\ 1.000 & 0.15 & 1 & 0 & 0.15 & 146 \\ 1.000 & 0.15 & 100 & 0.15 & 146 \\ 1.000 & 0.15 & 100 & 0.15 & 146 \\ 1.000 & 0.15 & 100 & 0.15 & 146 \\ 1.000 & 0.15 & 100 & 0.15 & 146 \\ 1.000 & 0.15 & 100 & 0.15 & 146 \\ 1.000 & 0.15 & 100 & 0.15 & 146 \\ 1.000 & 0.15 & 100 & 0.15 & 146 \\ 1.000 & 0.15 & 100 & 0.15 & 146 \\ 1.000 & 0.15 & 100 & 0.15 & 146 \\ 1.000 & 0.15 & 100 & 0.15 & 146 \\ 1.000 & 0.15 & 0.15 & 146 \\ 1.000 & 0.15 & 146 & 146 & 146 & 146 & 146 & 146 \\ 1.000 & 0.15 & 146 & 14$	4-ethyltoluene	1.500	0.15	-	0.28	122	32.2	6/1		
1040 0.15 1 0 104 47.5 742 1.460 0.15 1 0.42 104 42.1 152 1.460 0.15 1 0.42 104 42.1 152 1.170 0.15 1 0 117 35.4 381 1.040 0.15 1 0 117 35.4 381 1.040 0.15 1 0 117 35.4 381 1.040 0.15 1 0 117 35.4 313 0.9700 0.15 1 0 97.0 25.8 146 stafts reported are not blank corrected 0.15 1 0 120 125 stafts reported are not blank corrected J. Analyte detection Limit 1 1 1 1 1 stafts reported are not blank corrected J. Analyte detection Limit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Acetone	8.609	0:30	-	7.8	80.9	30.4	\$60		
1 460 0.15 1 0.42 104 42.1 152 1.170 0.15 1 0 117 35.4 181 1.040 0.15 1 0 117 35.4 181 1.040 0.15 1 0 177 35.4 181 1.040 0.15 1 0 107 54.5 133 0.9700 0.15 1 0 97.0 25.8 146 subs reported are not blank corrected 0.15 1 0 100 63.9 125 subs reported are not blank corrected DL Detection Limit 0 100 63.9 125 ding times for preparation or analysis exceeded J Analyte detected below quaartitation limit ND ND	Ailyl chloride	1.040	0.15	۲	0	104	47.5	142		
1.170 0.15 1 0 117 35.4 381 1.040 0.15 1 0 104 54.5 133 0.9700 0.15 1 0 704 54.5 133 0.9700 0.15 1 0 704 54.5 133 1.069 0.15 1 0 70 25.8 146 sults reported are not blank corrected 0.15 1 0 125 125 sults reported are not blank corrected DL Detection Limit 1	Benzene	1.460	0.15	-	0.42	104	42.1	152		
1.040 0.15 1 0 104 54.5 133 0.9700 0.15 1 0 97.0 25.8 146 1.000 0.15 1 0 97.0 25.8 146 1.000 0.15 1 0 170 63.9 125 sults reported are not blank corrected 0.15 1 0 100 63.9 125 diang times for preparation or analysis exceeded J Analyte detected below quantitation limit E ND ND	Benzyl chłoride	170	0.15	۲	o	117	35.4	\$81		
0.9700 0.15 1 0 97.0 25.8 145 1.000 0.15 1 0 100 63.9 125 Results reported are not blank corrected 0.15 1 Dt. Detection Limit E H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND	Bromodichloromethane	1.040	0.15	-	0	104	54.5	133		
1.000 0.15 1 0 100 63.9 125 Results reported are not blank corrected DL. Detection Limit E Fl Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND	Bromoform	0.9700	0.15	-	0	97.0	25.8	146		
Results reported are not blank corrected DL. Detection Limit E. Helding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND	Bromomethane	1.000	0.15	-	0	100	63.9	125		
Helding times for preparation or analysis exceeded I Analyte detected below quantitation limit ND		are not blank corrected		•				:	above quantitation range	
		e preparation or analysis ex	ceeded		ietected heliuw quan	citation limi	_		he Limit of Detection	
R RPD outside accepted recovery limits 5 Spike Recovery nutside accepted recovery himits		epted recovery limits			covery matside acce	pted secores	y limits			Doce I of S

Centek/SanAir Laboratories

Page 45 of 201

Project: Valis Gue: -Tola TractCode: 0.10_MYS TractCode: 0.10_MYS Sample ID: Cattorer 401: Mis Sample ID: Cattorer 401: Mis Sample ID: Cattorer 401: Mis Fample ID: Cattorer 401: Mis		- Tesia						TestCode:	0.20_NYS	
C. CONDOXT-002.M MS TestCond: D/3 Febr Pres Pres Ranke:										
Summa (MS-KN) Delta (I): FGOM Textor Textor Textor Textor Textor Textor Servic Servic Servic Servic Textor Servic Textor Servic Textor Servic Servic Servic Textor Textor Textor Textor Textor Textor Textor Textor Textor <	Sample ID: C2302047-002A MS	SampType: MS	TestCo	de: 0.20_NYS	Units: ppbV		Prep Date		RunNo: 20049	
Readity Foll SPK rativ kai		Batch ID: R20049	Test	4o: TO-15			Anatysis Date		SeqNo: 229654	
Inflet 100 0.51 1 0 100 55 115 enclothete 0.800 0.15 1 0 900 65.9 117 enclothete 0.800 0.15 1 0 900 65.9 117 enclothete 0.800 0.15 1 0 916 50.7 140 horooppene 1.000 0.15 1 0.800 936 143 horooppene 1.000 0.15 1 0.81 127 555 133 horooppene 1.000 0.15 1 0.91 127 545 143 horooppene 1.100 0.15 1 0.74 23 143 horooppene 1.120 0.15 1 0.74 173 173 horooppene 1.120 0.15 1 0.74 173 173 horooppene 1.120 0.15 1 0.74 173 173	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC			%RPD	
cacholole 100 0.00 1 0.07 01 20.3 172 cacholole 100 015 1 0 99.0 69.0 147 read 1000 015 1 0 912 64.6 126 ne 1200 015 1 0 926 129 horochrene 0 015 1 0 926 136 horochrene 0 015 1 0 926 136 horochrene 1 0 16 1 0 107 106 136 14 horochrene 1 0 170 0 126 126 136 136 horochrene 1 0 16 1 0 127 126 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 <td< td=""><td>Carbon disulfide</td><td>1.000</td><td>0.15</td><td>-</td><td>•</td><td>19</td><td>-95</td><td>115</td><td></td><td></td></td<>	Carbon disulfide	1.000	0.15	-	•	19	-95	115		
me 0.900 0.15 1 0 950 651 17 me 1.000 0.15 1 0 105 50.1 140 me 1.000 0.15 1 0 102 55.1 140 meme 1.000 0.15 1 0 102 55.6 133 meme 1.000 0.15 1 0 102 55.6 133 memorphane 1.010 0.15 1 0 102 55.6 133 memorphane 1.170 0.15 1 0 102 55.6 133 me 1.170 0.15 1 0 102 114 127 133 me 1.170 0.15 1 0 123 133 133 me 1.130 0.15 1 0 127 133 133 me 1.300 0.15 1 1 1 1<1 </td <td>Carbon letrachloride</td> <td>1.080</td> <td>0.030</td> <td>•</td> <td>0.07</td> <td>101</td> <td>20.3</td> <td>172</td> <td></td> <td></td>	Carbon letrachloride	1.080	0.030	•	0.07	101	20.3	172		
int 1000 013 1 0 105 013 1 0 105 103	Chlorobenzene	0.9900	0.15	***	0	0.99	65.9	117		
1 1200 015 1 0 122 0 123 0 123 13 14 Introfilene 1300 015 1 0 900 555 133 Introfilene 1300 015 1 0 107 555 133 Introfilene 1320 015 1 0 117 51 129 Introfilene 1320 015 1 0 122 643 133 Introfilene 1320 015 1 0 122 124 123 Introfilene 1320 015 1 0 123 133 130 Introfilene 1320 015 1 0 122 123 123 Introfilene 1320 015 1 0 123 133 130 Introfilene 1320 015 1 0 123 123 123 Introfilene 1320 </td <td>Chloroethane</td> <td>1.050</td> <td>0.15</td> <td>444.</td> <td>0</td> <td>105</td> <td>50.7</td> <td>140</td> <td></td> <td></td>	Chloroethane	1.050	0.15	4 44.	0	105	50.7	140		
mean 1820 0.15 1 0.64 8.0 3.54 148 Informatione 1.070 0.13 1 0 9.00 59.6 119 informatione 1.070 0.15 1 0 107 5.5 13 informatione 1.070 0.15 1 0 107 5.5 13 informatione 1.170 0.15 1 0 117 2.5 103 informatione 1.170 0.15 1 0 117 2.5 103 130 informatione 1.170 0.15 1 0 102 12.3 130 informatione 1.170 0.15 1 0 102 12.3 130 information 1.130 0.15 1 0 102 12.3 130 information 1.120 0.15 1 0 12.2 133 130 infor 1.120 0.15 <td>Chloroform</td> <td>1.020</td> <td>0.15</td> <td>4m.</td> <td>Q</td> <td>102</td> <td>64.6</td> <td>126</td> <td></td> <td></td>	Chloroform	1.020	0.15	4m.	Q	102	64.6	126		
	Chloromethane	1.620	0.15	4-	0.64	98.0	35.4	148		
Incorroopene 1070 015 1 0 07 5.5 133 Incorroopene 1 1 0 10 10 23 166 Incorroopene 1 1 0 15 1 0 165 13 169 Incorroopene 1 1 0 15 1 0 165 13 130 Incorroopene 1 1 0 15 1 0 17 13 130 Incorroopene 1 0 15 1 0 105 14 17 133 Incorroopene 1 0 130 0 14 17 133 Incorroopene 1 1 0 102 133 133 133 Incorroopene 1 1 0 1 1 12 133 133 Incorroopene 1 1 1 1 1<1	cis-1,2-Dichloroethene	0.9900	0.040	~~	ð	99.0	59.6	119		
ne 1430 015 1 0.39 104 23 166 former/hame 1120 015 1 0 122 45 133 former/hame 1140 0.15 1 0 122 143 123 former/hame 1140 0.15 1 0.12 123 133 133 133 for 1320 0.15 1 0.25 107 14.7 173 for 1320 0.15 1 0.26 133 133 for 132 133 143 143 143 for 132 143 143 143 for 132 143 143 143 <tr< td=""><td>cis-1, 3-Dichioropropene</td><td>1.070</td><td>0.15</td><td>-</td><td>ð</td><td>107</td><td>55.5</td><td>133</td><td></td><td></td></tr<>	cis-1, 3-Dichioropropene	1.070	0.15	-	ð	107	55.5	133		
	Cyclohexane	1.430	0.15	-	0.39	104	23	168		
Interpreted 1170 013 1 0 117 57.1 129 Interpreted 1320 0.15 1 0.12 107 12.7 130 Interpreted 1320 0.15 1 0.25 107 12.7 133 Interpreted 1320 0.15 1 0.25 12.6 133 Interpreted 1326 0.15 1 0.26 107 12.7 133 Interpreted 1.120 0.15 1 0 122 56.7 149 123 Interpreted 1.136 0.15 1 0.26 133 134 134 133 134	Dibromochforomethane	1.020	0.15	-	Ō	102	44.5	143		
Image: 1140 0.15 1 0.12 102 61.3 1330 1.320 0.15 1 0.25 107 1.4.7 17.3 1.320 0.15 1 0 102 17.4 17.3 1.320 0.15 1 0 102 47.5 15.3 1.120 0.15 1 0 102 47.5 13.3 1.1300 0.15 1 0.26 103 47.5 13.3 1.1300 0.15 1 0.26 102 47.5 13.3 1.1400 0.15 1 0.26 103 47.5 13.3 1.1400 0.15 1 0.26 17.3 15.2 14.3 1.1400 0.20 0.15 1 1.12 0.12 1.13 15.2 1.1400 0.20 1 1 1 1.13 1.11 1.15 1.14 1.1400006 1.180 0.16 <	Ethy! acetate	1.170	0.15	-	Ð	117	57.1	129		
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	Ethylbenzene	1.140	0.15	-	0.12	102	61.3	130		
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	Freen 11	1.320	0.15	-	0.25	107	14.7	173		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Freon 113	1.030	0.15	-	0	103	71.4	127		
1020 015 1 0 102 47.5 33 r13-butaclene 1.320 0.15 1 0.26 109 43.9 137 r13-butaclene 1.120 0.15 1 0 112 56.7 149 r13-butaclene 1.120 0.15 1 0 112 56.7 149 r14 1.120 0.15 1 1.12 0.7 54.5 152 r14 2.480 0.30 1 1.1 1.1 152 156 r14 2.480 0.30 1 1.1 1.1 1.1 1.1 1.1 r14 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 r14 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 r14 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 r10 1.1 1.1	Freon 114	1.020	0.15	-	0	102	52.6	153		
	Freon 12	1.020	0.15		0	102	47.5	133		
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	Heptane	1,350	0.15	•	0.26	109	49.9	137		
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	filexachforo-1,3-butadiene	1.120	0.15	T	٥	112	56.7	149		
	Plexane	1.190	0.15	yea r	0.21	98.0	40.7	152		
e 2.480 0.30 2 0.34 107 54.5 138 yl Ketone 1.200 0.30 1 0 120 41.5 156 yl Ketone 2.260 0.30 1 1.11 115 26.1 145 butyl Ketone 2.260 0.30 1 0 120 45.7 129 butyl Ketone 1.180 0.30 1 0 97.0 57 129 butyl Ketone 1.180 0.15 1 0 97.0 57 129 butyl Ketone 1.180 0.15 1 0.27 91.0 46.7 129 butyl ether 0.370 0.15 1 0.27 56.1 142 choloride 1.210 0.15 1 0.7 56.1 142 butyl ketone 1.330 0.15 1 0 207 64.8 224 butyl ketone 1.030 0.15 1 0 <td< td=""><td>Isopropyi alcohol</td><td>2.950</td><td>0.15</td><td>97-18</td><td>1.82</td><td>113</td><td>8.56</td><td>176</td><td></td><td></td></td<>	Isopropyi alcohol	2.950	0.15	97-18	1.82	113	8.56	176		
yl Ketone 1:200 0:30 1 1.11 1.15 26.1 156 vl Ketone 2:260 0:30 1 1.11 115 26.1 145 butyl Ketone 1.180 0:30 1 1.11 115 26.1 145 butyl ketone 1.180 0:30 1 0 97.0 57 129 butyl ketone 1.180 0.15 1 0 97.0 57 129 butyl ketone 1.130 0.15 1 0 97.0 57.1 129 chloride 1.330 0.15 1 0.27 91.0 49.6 120 chloride 1.330 0.15 1 0 207 64.8 224 kethylene 1.330 0.15 1 0 103 132 kethylene 1.030 0.15 1 0 103 123 kethylene 1.030 0.15 1 0 103	ពា &p-Xylene	2.480	0.30	2	0.34	107	54.5	138		
v/l Ketone 2.260 0.30 1 1.11 115 26.1 145 butyl Ketone 1.180 0.30 1 0 118 48.7 129 butyl Retone 1.180 0.15 1 0 97.0 57 129 butyl Retone 1.180 0.15 1 0.27 91.0 49.6 120 chloride 1.210 0.15 1 0.14 107 55.1 142 chloride 1.330 0.15 1 0.27 91.0 49.6 120 chloride 1.330 0.15 1 0.2 113 224 kethylene 1.030 0.15 1 0 126 126 kus 1.32 1.32 1.32 1.32 132 132 kethylene 1.080 0.15 1 0 103 6.1 126 kus 1.030 0.15 1 0 132 128	Methyl Butyl Ketone	1.200	0.30	ψm	Q	120	41.5	156		
Juryl Ketone1.180 0.30 1.180 0.30 1.180 0.16 1.29 129 buryl ether 0.9700 0.15 1 0.070 57 129 buryl ether 1.180 0.15 1 0.27 91.0 57 129 chloride 1.130 0.15 1 0.27 91.0 49.6 120 chloride 1.210 0.15 1 0.27 64.8 224 1.230 0.15 1 0.2 113 60.3 132 ethylene 1.030 0.15 1 0.2 113 60.3 132 tuan 1.080 0.15 1 0.2 103 68.1 126 Kush reported arc not blank corrected 0.15 1 0.2 103 68.1 126 Roults fing times for preparation or analysis exceeded 3 $Aarlyte detected below quantitation limitNDNot Detected at the Limit of DetectionRRPD outside accepted recovery limitsSSpike Recovery outside accepted recovery limitsNDNot Detected at the Limit of Detection$	Methyl Ethyl Kelone	2.260	0:30	4.m	11	115	26.1	145		
	Methyl Isobutyl Ketone	1.180	0:30	Ψ	0	§18	46.7	129		
chloride 1.380 0.15 1 0.27 91.0 49.6 120 1.210 0.16 1 0.14 107 55.1 142 2.070 0.15 1 0 207 64.8 224 2.070 0.15 1 0 207 64.8 224 ethylene 1.030 0.15 1 0 103 66.3 132 turan 1.080 0.15 1 0 103 68.1 126 keults reported are not blank corrected 1. 0 103 68.1 126 H Holding times for preparation or analysis exceeded 3 Analyte detected below quantitation limit F Estimated Value above quantitation range R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limit ND Not Detected at the Limit of Detection	Methyl tert-butyt ether	0.9700	0.15	***	o	97.0	57	129		
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	Methylene chloride	1.180	0.15	+-	0.27	910	49.6	120		
2.070 0.15 1 0 207 64.8 224 1.330 0.15 1 0.2 113 60.3 132 lethylene 1.030 0.15 1 0.2 103 68.1 125 furant 1.080 0.15 1 0 103 68.1 126 Kesults reported are not blank corrected 0.15 1 0 108 27.9 162 H Holding times for preparation or analysis exceeded 10.1 Detection Limit 162 162 162 R RPD outside accepted recovery limits 5 5 5 162 16	o-Xylene	1.210	0.15	*	0.14	£03	55.1	142		
1.330 0.15 1 0.2 113 60.3 132 lethylene 1.030 0.15 1 0 103 68.1 126 furan 1.080 0.15 1 0 108 27.9 162 Results reported are not blank corrected 0.15 1 0 108 27.9 162 H Holding times for preparation of analysis exceeded 10. Detection Limit 8 810 ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits 5 Spike Recovery outside accepted recovery limits ND Not Detected at the Limit of Detection	Propyiene	2.070	0.15	**	0	207	64.8	224		
Jethylene 1.030 0.15 1 0 103 68.1 126 furan 1.080 0.15 1 0 108 27.9 162 Results reported arc not blank corrected D1. Detection Limit 0 108 27.9 162 H Holding times for preparation or analysis exceeded J Analyre detected below quantitation limit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits	Styrene	1.330	0.15	**	0.2	1 3	60.3	132		
Ituran 1.080 0.15 1 0 \$08 27.9 \$62 Results reported are not blank corrected D1. Detection Limit E Estimated Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation jimit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits	Tetrachloroethylene	1.030	0.15	***	Ģ	103	68.1	126		
Results reported are not blank corrected DJ. Detection Limit E Estimated Value above quantitation range H Hotding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits	Tetrahydrofuran	1.080	0.15	-	0	‡0\$	27.9	162		
Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit more and the Limit of Detection RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits		ied are not blank corrected			sh Limit				e above quantitation rang	
RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits		s for preparation of analysis ex-	ceeded		detected below guan	ilation lissi	-		the Limit of Detection	
		accepted recovery limits			convery outside accep	pted recover	y limits			6

CLIENT: Leader Consulting Services

Leader Consulting Services

Strate List Conditioner Summer (MS-MAGSI) Teaction 0.20, MYS Interface 0.20, MYS Inte	Work Order: C23 Project: Vai	Leader Consumme C2302047 Vails Gate - Tesla	Leauer Consulung Services C2302047 Vails Gate - Tesla						ţ	TestCode: (SYN_02.0		
Missanis Balch () R.G004 Teshke TO-15 Analysis Canc 2252023 SeqNo. 23664 ne 1000 015 1 0.82 10 412 447 NRPD RepUnit RPD RepUnit SeqNo. 23664 NRPD RepUnit RPD RepUnit RPD RepUnit NRPD NRPD RepUnit NRPD RepUnit NRPD RepUnit NRPD NRPD <td< th=""><th>Sample ID: C2302047-0</th><th>002A MS</th><th>SampType: MS</th><th>TestCoo</th><th>le: 0.20 NYS</th><th></th><th></th><th>Prep Dat</th><th></th><th></th><th>RunNo: 201</th><th>049</th><th></th></td<>	Sample ID: C2302047-0	002A MS	SampType: MS	TestCoo	le: 0.20 NYS			Prep Dat			RunNo: 201	049	
		S-MSD)	Batch ID: R20049	Test	le: TO-15			Analysis Dat		023	SeqNo: 22	9654	
me 1.800 0.15 1 0.82 104 41.2 141 0.910 0.15 1 0 91.0 66.3 148 0.910 0.15 1 0 91.0 66.3 148 0.910 0.15 1 0 91.0 66.3 144 1.120 0.13 1 0 91.0 66.3 144 1.120 0.16 1 0 91.0 66.3 144 1.120 0.15 1 0 106 166 166 173 0.015 1 0 107 60.5 144 111 200.5 Moralysis Barch Disk XRSD Yras barc Xras yras barc 500.5 2365 153 Moralysis Barch Disk Xras yras barc 1070 015 112 107 108 113 Moralysis 1020 015 1 102 116 116 113 <	Anaiyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	Q4A%	RPDLimit	Qual
Interpret 100 015 1 0 100 613 11 146 0.9100 0.015 1 0 110 015 1 166 0.9100 0.015 1 0 112 8.27 175 1.1200 0.015 1 0 106 5.5. 130 0.02A MS SampType: MSD TestCole: 0.23, MS Junks: polV Family in the stand in th	Toluene		1.860	0.15		0.82	102	41.2	147				
ete 1000 015 1 0 501 146 1.1200 0.13 1 0 91.0 46 57.1 141 1.1200 0.13 1 0 91.0 54.5 130 1.1200 0.140 1 0 106 57.1 141 1.050 0.140 1 0 105 54.5 130 .002A NS TestOcae 0.20 1 0 106 57.1 141 .002A NS TestOcae 0.20 1 0 105 54.5 130 .0040 TestOcae 0.15 1 0 107 50.5 144 17 .0050 0.15 1 0 107 50.5 144 17 276 125 .0101 0.15 1 0 107 50.5 144 17 276 125 .0102 0.15 1 0 107 50.5 </td <td>Irans-1,2-Dichloroethene</td> <td>6)</td> <td>1.000</td> <td>0.15</td> <td>din r</td> <td>Û</td> <td>100</td> <td>46.3</td> <td>148</td> <td></td> <td></td> <td></td> <td></td>	Irans-1,2-Dichloroethene	6)	1.000	0.15	din r	Û	100	46.3	148				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	trans-1,3-Dichleropropen	ne	1.090	0.15	*	¢	109	50.1	146				
1120 0.15 1 0 122 8.27 177 1060 0.15 1 0 105 57.1 171 1050 0.040 1 0 105 54.5 101 0024 NS Samp ¹ /yee. MSD TestCode: 0.20_MVS Units. pbV Prep Date: RunNo. 20045 65-MSD N TestCode: 0.20_MVS Units. pbV Analysis Date. 22562032 SeqNo. 20045 65-MSD N FestCode: 0.20_MVS Units. pbV Analysis Date. 2256203 SeqNo. 20045 65-MSD N FestCode: 0.15 1 0 105 51.5 117 105 125 65-MSD N 0.15 1 0 102 53.5 124 127 126 10200 0.15 1 0 102 53.5 124 116 278 135 are 1030 0.15 1 0 105 53.5 126 131 131 131 131 131	Trichloroethene		0.9100	0.030	-	Ö	91.0	46	136				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Vinyl acetate		1,120	0.15	÷	O	112	8.27	177				
Induction <	Vinyl Bromide Vinsi ablade		1.060	0.15	·	0	106	57.1	141				
ODZA MS SampType: MSD TestCoore. Dunits ppDV Prep Date: Runto. Z0048 MS-MSD Batch ID: R20048 TestCoore. 0.23_MVS Units ppDV Rep Date: 75-000: 2365655 MS-MSD Batch ID: R20048 TestCoore. 0.15 1 0 107 0.55 144 1.1 2.76 135 arre 1.070 0.15 1 0 107 55.6 124 1.17 106 3.85 135 arre 1.020 0.15 1 0 107 55.6 124 1.1 0 113 arre 1.020 0.15 1 0 102 55.6 124 1.2 141 1.1 1.0 0 113 arre 1.030 0.15 1 0 103 57.6 124 1.1 1.1 1.2 1.1 1.2 1.1 1.2 1.2 1.1 1.2	viritys chiokae		9cD.1	0.040	-	0	105	54.5	130				
Michaeling Balch ID: R2004 Testivit Doll Splite 2126/2023 Septior 229655 Result PQL SPK value SPK Ref Val %REC Low time HighLimi RPD Ref Val %RP0 RPD Limit area 1070 0.15 1 0 107 50.5 144 1.1 2.76 13.5 area 1030 0.15 1 0 107 50.5 144 1.1 2.76 13.5 area 1030 0.15 1 0 107 50.5 144 1.1 2.76 14.5 16.5 area 1.300 0.15 1 0 102 57.5 2.86 15.7 14.1 2.76 14.3 14.3 area 1.300 0.15 1 0 102 2.90 16.6 14.4 17.7 10.7 2.84 14.3 area 1.300 0.15 1 0 11.6 2.	Sample ID: C2302047-0	102A MS	SampType: MSD	TestCod	le: 0.20_NYS	Units: ppbV		Prep Dat	i			749	
Result PQL SPK value SPK Raf Val %REC Low Limit RPD Raf Val %RPD RPDLimit ane 1.070 0.15 1 0 107 50.5 1.44 1.1 2.76 15 ane 1.020 0.15 1 0 107 56.5 1.44 1.1 2.76 113 1.020 0.15 1 0 103 58.4 117 1.06 3.85 156 1.050 0.040 1 0 103 58.4 117 1.06 3.85 156 166 155 167 1.050 0.040 1 0 103 58.4 117 1.02 3.85 156 165 165 167		(dsw-s	Balch ID: R20049	TestN	lo: TO-15			Analysis Dal		123	SeqNo: 229	1655	
International (1070) 0.15 1 0 107 50.5 144 1.1 2.76 12.3 and 1.050 0.15 1 0 105 61.9 117 1.05 0 113 2.76 135 1.020 0.15 1 0 105 61.9 117 1.05 0 106 3.85 135 141 132 135	Analyte		Resutt	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	0da%	RPDLimit	Quai
ane 1050 0.15 1 0 105 61.9 117 1.05 0 13 1 1020 0.15 1 0 102 55.5 124 1.06 3.85 135 1 1050 0.040 1 0 102 55.5 145 106 3.85 135 1 1050 0.040 1 0 103 56.3 124 106 3.85 155 1 1060 0.15 1 0 103 56.3 124 155 155 1 1010 0.15 1 0 115 35.5 169 114 0.873 411 1 1010 0.15 1 0 115 124 128 0 133 1 1150 0.15 1 0 117 101 233 124 141 1 1100 0.15 1 0 116<	 1, 1-Trichioroethane 		1.070	0.15	-	ō	107	50.5	144	1.1	2.76	12.3	
1.020 0.15 1 0 102 59.5 124 1.06 3.85 131 1.030 0.15 1 0 103 58.4 117 1.04 0.966 3.68 1.030 0.15 1 0 103 58.4 117 1.04 0.966 3.68 1.030 0.15 1 0 103 57.6 115 1.65 16 1.010 0.15 1 0 103 57.6 1.69 1.75 16 16 3.75 1.150 0.15 1 0 116 1.28 1.75 1.69 1.13 1.160 0.15 1 0 116 1.17 1.07 2.84 3.73 1.160 0.15 1 0 116 1.17 1.07 2.84 3.23 1.160 0.15 1 0 1.17 1.07 2.84 3.13 1.160 0.15 <t< td=""><td>1,1,2,2-Tetrachloroethan</td><td>à</td><td>1.050</td><td>0.15</td><td>Ł</td><td>0</td><td>105</td><td>61.9</td><td>117</td><td>1.05</td><td>Q</td><td>*</td><td></td></t<>	1,1,2,2-Tetrachloroethan	à	1.050	0.15	Ł	0	105	61.9	117	1.05	Q	*	
1000 0.15 1 0 103 58.4 117 1.04 0.966 9.68 1030 0.15 1 0 105 57.6 115 1.02 2.90 168 1030 0.15 1 0 130 37.5 2.46 1.28 1.55 192 2.90 168 11010 0.15 1 0 130 37.5 2.46 1.28 0.57 4.13 11010 0.15 1 0 101 12 12 12 12 130 0.15 11 0.75 2.94 147 1.14 0.873 4.13 11020 0.15 1 0 102 5.4 147 1.37 0.766 1.38 2.94 1.13 2.94 1.13 2.94 1.13 2.94 1.13 2.94 1.13 2.94 1.14 1.27 1.26 0.146 1.13 2.94 1.13 2.94 1.14 1	1,1,2-Trichioroethane		1.020	0.15	-	0	102	59.5	124	1.06	3.85	13.9	
$ \begin{array}{c ccccc} 1056 & 0.040 & 1 & 0 & 105 & 57.6 & 115 & 102 & 2.90 & 16.8 \\ \hline & 1.300 & 0.15 & 1 & 0 & 130 & 37.5 & 248 & 1.28 & 155 & 19 \\ \hline & 1.300 & 0.15 & 1 & 0 & 130 & 37.5 & 248 & 1.28 & 155 & 19 \\ \hline & 1.1610 & 0.15 & 1 & 0 & 101 & 61.3 & 120 & 1.04 & 2.93 & 6.77 \\ \hline & 1.150 & 0.15 & 1 & 0 & 104 & 71.8 & 117 & 1.07 & 2.84 & 9.42 \\ \hline & 1.1040 & 0.15 & 1 & 0 & 102 & 56.3 & 127 & 1.14 & 0.873 & 411 \\ \hline & 1.100 & 0.15 & 1 & 0 & 102 & 56.3 & 127 & 1.14 & 0.873 & 411 \\ \hline & 1.100 & 0.15 & 1 & 0 & 102 & 56.3 & 127 & 1.16 & 0.865 & 118 \\ \hline & 1.100 & 0.15 & 1 & 0 & 102 & 56.3 & 127 & 1.15 & 0.866 & 118 \\ \hline & 1.100 & 0.15 & 1 & 0 & 120 & 24.6 & 233 & 1.35 & 118 & 291 \\ \hline & 1.100 & 0.15 & 1 & 0 & 121 & 70.1 & 129 & 1.23 & 1.36 & 118 \\ \hline & 1.100 & 0.15 & 1 & 0 & 121 & 70.1 & 129 & 1.23 & 1.36 & 118 \\ \hline & 1.100 & 0.15 & 1 & 0 & 121 & 70.1 & 129 & 1.23 & 1.36 & 118 \\ \hline & 1.100 & 0.15 & 1 & 0 & 102 & 64.4 & 124 & 1.02 & 0.866 & 118 \\ \hline & 1.100 & 0.15 & 1 & 0 & 102 & 64.4 & 124 & 1.02 & 0.966 & 118 \\ \hline & 1.100 & 0.15 & 1 & 0 & 102 & 64.4 & 124 & 1.02 & 0.966 & 118 \\ \hline & 1.100 & 0.15 & 1 & 0 & 121 & 70.1 & 129 & 123 & 1.94 & 118 \\ \hline & 1.100 & 0.15 & 1 & 0 & 121 & 70.1 & 129 & 1.23 & 1.64 & 1118 \\ \hline & 1.100 & 0.15 & 1 & 0 & 110 & 72.2 & 121 & 1.11 & 0.905 & 13.7 \\ \hline & 1.100 & 0.15 & 1 & 0 & 110 & 72.2 & 121 & 1.11 & 0.905 & 13.7 \\ \hline & 1.100 & 0.15 & 1 & 0 & 0.16 & 121 & 0.069 & 13.7 \\ \hline & 1.100 & 0.15 & 1 & 0 & 0.16 & 121 & 0.069 & 13.7 \\ \hline & 1.100 & 0.15 & 1 & 0 & 0.16 & 121 & 0.069 & 13.7 \\ \hline & 1.100 & 0.15 & 1 & 0 & 0 & 0.16 & 121 & 0.069 & 13.7 \\ \hline & 1.100 & 0.15 & 1 & 0 & 0.16 & 0.16 & 0.16 & 0.066 & 110 & 0.066 & 0.06$	1, 1-Dichloroethane		1.030	0.15		0	103	68.4	<u></u> 17	1.04	0.965	9.68	
3 1,300 0,15 1 0 130 37.5 248 1.58 1.55 15 e 1,800 0.15 1 0.61 128 58.6 16.2 1.89 0 6.13 1 1.100 0.15 1 0.61 128 58.6 16.2 1.89 0 6.73 4.11 1 1.150 0.15 1 0 1.15 35.6 1.69 1.14 0.873 4.11 1 1.150 0.15 1 0 1.15 35.6 1.69 1.14 0.873 4.11 1 1.00 0.15 1 0 1.02 1.02 1.13 0.873 4.11 1 1.100 0.15 1 0 1.12 1.17 1.07 2.84 1.13 2.93 1 1.160 0.15 1 0 1.12 2.73 1.25 1.16 1.18 2.93 <t< td=""><td>1,1-Dichloroethene</td><td></td><td>1.050</td><td>0.040</td><td>1</td><td>Q</td><td>105</td><td>57.6</td><td>÷15</td><td>1.02</td><td>2.90</td><td>16.8</td><td></td></t<>	1,1-Dichloroethene		1.050	0.040	1	Q	105	57.6	÷15	1.02	2.90	16.8	
e 1.890 0.15 1 0.61 128 58.6 162 139 0 16.6 1.010 0.15 1 0 101 61.3 120 104 2.93 6.77 1.150 0.15 1 0 115 35.6 169 1.14 0.873 41.1 1.150 0.15 1 0 104 71.8 117 1.07 2.84 9.42 1.020 0.15 1 0 102 56.3 127 1.05 2.90 11.3 1.020 0.15 1 0 102 56.3 127 1.16 0.756 14.3 1.160 0.15 1 0 121 0 164 11.8 2.91 1.160 0.15 1 0 121 127 1.15 0.766 11.8 1.160 0.15 1 0 121 121 122 1.28 1.164 11.	1,2,4-Trichlorobenzene		1.300	0.15	¥۳	Q	130	37.5	248	1.28	1.55	<u>5</u>	
1.010 0.15 1 0 101 61.3 120 104 2.93 6.73 1.150 0.15 1 0 104 71.8 117 107 2.84 9.42 1.040 0.15 1 0 104 71.8 117 107 2.84 9.42 1.020 0.15 1 0 102 56.3 127 1.05 2.90 11.3 e 1.300 0.15 1 0 102 56.3 127 1.16 2.91 14.9 1.160 0.15 1 0 120 24.5 2.33 1.16 0.765 14.9 1.160 0.15 1 0 121 70.1 122 1.16 0.865 11.16 1.160 0.15 1 0 121 70.1 122 1.64 11.8 2.91 1.160 0.15 1 0 121 70.1 129 1.64 13.1 1.160 0.15 1 0 121 70.1	1.2.4-Trimethylbenzene		1.890	0.15	401 8 .	0.61	128	58.6	162	1.89	0	16.5	
1.150 0.15 1 0 115 35.6 169 1.14 0.873 41.1 1.040 0.15 1 0 104 71.8 117 1.07 2.84 9.42 1.020 0.15 1 0 102 56.3 127 1.05 2.90 113 e 1.300 0.15 1 0 120 59.4 147 1.31 0.766 143 e 1.300 0.15 1 0 120 24.5 233 1.35 11.8 29.1 1.160 0.15 1 0 120 24.5 233 1.35 11.8 29.1 1.160 0.15 1 0 121 70.1 129 1.44 1.15 0.3665 13.7 1.160 0.15 1 0 121 70.1 129 1.23 1.44 1.15 0.365 13.1 1.160 0.15 1 0 121 70.1 129 1.23 1.54 1.16 1.33 1.34 <td>1,2-Dibromcethane</td> <td></td> <td>1.010</td> <td>0.15</td> <td>**</td> <td>¢</td> <td>101</td> <td>61.3</td> <td>120</td> <td>₹.04</td> <td>2.93</td> <td>6.77</td> <td></td>	1,2-Dibromcethane		1.010	0.15	**	¢	101	61.3	120	₹.04	2.93	6.77	
1.040 0.15 1 0 104 71.8 117 1.07 2.84 9.42 1 1.020 0.15 1 0 102 56.3 127 1.05 2.90 11.3 1 1.00 0.15 1 0 102 56.3 127 1.05 2.90 11.3 1 1.300 0.15 1 0 120 24.6 2.33 1.35 11.8 2.91 1.160 0.15 1 0 120 24.6 7.33 1.35 11.8 2.91 1.160 0.15 1 0 121 7.01 122 1.16 11.8 2.91 1.160 0.15 1 0 121 7.01 122 1.16 11.8 2.91 1.160 0.15 1 0 121 7.01 122 1.16 11.8 2.91 1.100 0.15 1 0 110 7.22 121 1.16 1.16 1.16 1.100 0.15 1	1,2-Dichlarobenzene		1.150	0.15	-	0	115	35.6	169	<u>5.14</u>	0.873	41.1	
1.020 0.15 1 0 102 56.3 127 1.05 2.90 113 e 1.300 0.15 1 0.2 110 59.4 147 1.31 0.766 149 1.1200 0.15 1 0.2 116 59.4 147 1.31 0.766 149 1.160 0.15 1 0 121 73.3 127 1.15 0.9666 11.8 291 1.160 0.15 1 0 121 70.1 129 1.16 11.8 211.18 291 1.160 0.15 1 0 110 73.3 127 1.16 0.137 1.18 211.18 291 1.1020 0.30 1 0 110 72.3 121 1.23 1.64 11.8 291 1.1020 0.30 1 0 110 72.2 121 1.75 0.669 18.7 1.1020 0.1	1,2-Dichloroethane		1.040	0.15	-	Ō	104	71.8	117	1.07	2.84	9.42	
e 1.300 0.15 1 0.2 110 59.4 147 1.31 0.766 14.9 1.200 0.15 1 0 120 24.6 233 1.35 11.8 29.1 1.200 0.15 1 0 116 73.3 127 1.15 0.866 11.8 1.210 0.15 1 0 121 70.1 129 1.23 164 11.8 1.210 0.15 1 0 121 70.1 129 1.23 1.64 11.8 1.210 0.30 1 0 102 64.4 129 1.23 1.64 11.8 1.100 0.30 1 0 110 72.2 121 1.11 0.905 13.1 1.490 0.15 1 0.28 121 27.2 167 1.5 0.669 18.7 1.490 0.15 1 27.2 121 1.5 0.669 18.7 1.100 0.15 1 27.2 164 1.16 0.	3,2-Uichloropropane		1.620	0.15	-	0	102	56.3	127	1.05	2.90	11.3	
1.200 0.15 1 0 120 24.6 233 1.35 11.8 29.1 1.160 0.15 1 0 116 73.3 127 1.45 0.866 11.8 1.160 0.15 1 0 121 70.1 129 1.45 0.866 11.8 1.210 0.15 1 0 121 70.1 129 1.23 1.64 11.8 1.020 0.30 1 0 110 72.2 121 1.1 0 13.7 1.102 0.15 1 0 110 72.2 121 1.1 0 13.7 1.490 0.15 1 0 110 72.2 157 1.5 0.669 18.7 estlis reported are not blank corrected D1. Detection Limit 11.0 72.2 157 1.5 0.669 18.7 10 outside arcepted are not blank corrected D1. D.28 121 27.2 157 1.5 0.669 18.7 10 outside arcepted recovery outside accepted blow qnantita	1.3.5-1 nmethylbenzene		1.300	0.15	,	0.2	110	59.4	147	1.31	0.766	14.9	
1.160 0.15 1 0 116 73.3 127 1.15 0.866 11.8 1.210 0.15 1 0 121 70.1 129 1.23 1.64 11.8 1.210 0.15 1 0 121 70.1 129 1.23 1.64 11.8 1.210 0.30 1 0 110 72.2 121 1.11 0.305 13.1 1.1020 0.30 1 0 110 72.2 121 1.11 0.305 13.1 1.1020 0.15 1 0 110 72.2 121 1.11 0.305 13.1 1.490 0.15 1 0.28 121 27.2 167 1.5 0.669 18.7 estells reported are not blank corrected D1. Detection Limit E Estimated Value above quantitation range olding times for preparation or analysis exceeded J 3.7 3.67 1.5 0.669 18.7 O outside accepted recovery limits S Spike Recovery outside accepted recovery limits ND Not Detected at the Limit of Detection	i s-outaciene		1.200	0.15	•	o	120	24.5	233	1.35	11.8	29.1	
1.210 0.15 1 0 121 70.1 129 1.23 1.64 11.8 1.020 0.30 1 0 102 64.4 124 1.02 0 13.7 1.020 0.30 1 0 110 72.2 121 1.11 0 13.7 1.100 0.15 1 0 110 72.2 121 1.11 0 13.1 1.490 0.15 1 0 110 72.2 167 1.5 0.669 18.7 estimated are not blank corrected D1. Detection Limit 27.2 167 1.5 0.669 18.7 edding times for preparation or analysis exceeded D1. Detected below quantitation timit E Estimated Value above quantitation range PD outside accepted recovery limits ND Not Detected at the Limit of Detection Protection PD outside accepted recovery limits S Splike Recovery every every funits ND ND Not Detected at the Limit of Detection	1.3-Dichlorobenzene		1.160	0.15	-	D	115	73.3	127	1.15	0.866	11.8	
1.020 0.30 1 0 102 64.4 32.4 1.02 0 13.7 1.100 0.15 1 0 110 72.2 121 1.11 0.905 13.3 1.100 0.15 1 0 110 72.2 121 1.11 0.905 13.3 1.100 0.15 1 0 110 72.2 121 1.11 0.905 13.3 1.490 0.15 1 0.28 121 27.2 167 1.5 0.669 18.7 estails reported are not blank corrected D1. Detection Limit 27.2 167 1.5 0.669 18.7 estimated Nalue above quantitation range D1. Detected below quantitation range E Estimated Value above quantitation range P10 outside accepted recovery limits ND Not Detected at the Limit of Detection Placetion P10 outside accepted recovery limits S Spike Recovery eutside accepted recovery limits ND Not Detected at the Limit of Detection <td>1,4-Dichlorobenzene</td> <td></td> <td>1.210</td> <td>0.15</td> <td>-</td> <td>o</td> <td>121</td> <td>70.1</td> <td>129</td> <td>1.23</td> <td>1.64</td> <td>11.8</td> <td></td>	1,4-Dichlorobenzene		1.210	0.15	-	o	121	70.1	129	1.23	1.64	11.8	
1.100 0.15 1 0 110 72.2 121 1.11 0.905 13.1 1.490 0.15 1 0.28 121 27.2 167 1.5 0.669 18.7 evelts reported are not blank corrected 0.15 1 Detection Limit E Estimated Value above quantitation range colding times far preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection Proceeding times far preparation or analysis	1,4-Dioxane		1.020	0.30	-	D	102	64.4	124	1.02	0	13.7	
ene 1.490 0.15 1 0.28 121 27.2 167 1.5 0.669 18.7 Results reported are not blank corrected D1. Detection Linuit E Estimated Value above quantitation range 13 Hedding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R RP1D outside accepted recovery limits S Spike Recovery eutside accepted recovery limits	2,2,4-trimethylpentane		1.100	0.15	e	¢	110	72.2	121	1.11	0.905	13.5	
Results reported are not blank corrected D1. Detection Linut E Estimated Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S pike Recovery entside accepted recovery limits	≰-ethyitoiuene		1.490	0.15	₩r=	0.28	121	27.2	\$67	1.5	0.669	18.7	
Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection RPD outside accepted accepted recovery limits S Spike Recovery outside accepted recovery limits	:	elis reporte	d are not blank corrected			on Lizzeit		•		Estimated Value a	bove quantitatio	าร์แขม ป	
RPD outside accepted recovery limits S Spike Revovery entside accepted recovery limits		ding taras	for preparation of analysis ex	ceeded		e detected below gaan	litation limi			Vot Detected at th	e Limit of Detect	lich a	
) outside at	ccepted recovery limits			Parametri outside acces	stod moneta	والمسالية					

CLENT: Leader Consulting Services Work Order: C2302047 Project: Vails Gate - Testa

Project: Vails Gate - Tesla	- Tesla						Г	TestCode: (0.20_NYS		
Sample ID: C2302047-002A MS	SampType: MSD	TestCod	TestCode: 0.20_NYS	Units: ppbV		Prep Date			RunNo: 20049	49	
Client ID: Summa (MS-MSD)	Batch ID: R20049	TestN	TestNo: TO-15			Anatysis Date:	2/25/2023	23	SeqNo: 229655	655	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimi	RPD Ref Val	MRPD	RPDLimit	Quai
Acetone	8.360	0.30	-	7.8	56.0	-3.52	152	8.6	2.83	18.7	
Aliyi chloride	1,090	0.15	***	Q	109	63	124	1.04	4.69	12.1	
Benzene	1.430	0.15	.	0.42	101	50	143	1.46	2.08	20.8	
Benzył chloride	1.220	0.15	•	0	\$22	36.9	180	1.17	4,18	18.7	
Bromodichloromethane	1.020	0.15	ψn	0	‡02	55.5	135	1.04	1.94	13.2	
Bromoform	0.9900	0.15	****	Ð	39.0	27.8	144	0.97	2.04	7.99	
Bromomethane	1.010	0.15	•	0	101	57.3	131	F	0.995	16.2	
Carbon disulfide	0.9900	0.15	F	0	99.0	53.8	120	-	1.01	10.2	
Carbon tetrachloride	1.070	0.030	-	0.07	100	28.9	156	1.08	0.930	14.4	
Chlorobenzene	1.010	0.15	-	0	101	68.4	112	0.99	2.00	6,19	
Chloroethane	1.050	0.15	-	0	105	47.7	145	1.05	Q	18.6	
Chloroform	1,000	0.15	-	0	100	64.1	123	1.02	1.98	8.53	
Chloromethane	1.550	0.15	-	0.64	95.0	36.8	143	1.62	1.87	21.2	
cis-1,2-Dichloroethene	0.9800	0.040	-	0	98.0	64.6	41	0.99	1.02	8.13	
cis-1,3-Dichloropropene	1,030	0.15	•	0	103	53.3	135	1.07	3.81	12.8	
Cyclofiexane	1.410	0.15	-	0.39	102	22.8	171	1.43	1.41	38.2	
Dibromochloromethane	1,060	0.15	•	0	106	44.5	140	1.02	3.85	6.88	
Ethyl acetate	1, 180	0.15	¥1.75	Ģ	18	64.4	124	1.17	0.851	11.6	
Ethylbenzene	1.160	0.15	¥=*	0.12	104	65.3	125	1.14	1,74	11.1	
Freon 11	1.280	0.15	4.0	0.25	103	57.1	130	1.32	3.08	10.4	
Freon 113	1.020	0.15	4 .02	0	<u>†02</u>	70.9	122	1.03	0.976	11.7	
Freon 114	1.010	0.50	*	0	101	46.7	158	1.02	0.985	14.9	
Freon 12	1.010	0.15	+	Ċ	101	48.2	132	1.02	0.985	14.4	
Heptane	1.320	0.5	***	0.26	106	43.6	143	1.35	2.25	13.3	
Hexachloro-1,3-butadiene	1.100	0.15	4	0	110	65.2	135	1,12	1.80	12.6	
Hexane	1.150	0.15	4	0.21	34.0	57.2	136	19	3.42	10.9	
isopropyl alcohoi	2.850	0.15	-	1.82	103	32.5	143	2.95	3.45	38.2	
m&p-Xylene	2.490	0.30	2	0.34	108	60	130	2.48	0.402	15.8	
Methyl Butyl Ketone	1.150	0.30	-	0	115	46.2	153	1.2	4.26	10.1	
Methyt Ethyt Ketone	1.590	0.30	-	1. 1	48.0	55.6	113	2.26	34.8	18.5	SR
Methyl Isobutyl Ketone	1.170	0:30	-	o	117	63	119	1.18	0.851	25.9	
Qualifiers: Results report	Results reported are not blank corrected		DL Detecti	Detection Limit			ш Ш	Estimated Value above quantitation range	bove quassistatio	រ ជារម្មខ	
Holding times	Holding times for preparation or analysis exceeded	cected	🧎 Analyıc	Analyte detected below quantitations lishit	itatione liseni	I	N Q	Not Detected at the Limit of Detection	e Limit of Detect	សេត	
R RPD outside :	RPD outside accepted recovery limits		S Spike R	Spike Recovery outside accepted recovery limits	eted secore	y limits				, d	معم با مرح
										÷ .	r io kaspu

Leader Consulting Services CLIENT:

тала то волити и полити и волити и волити полити и волити полити полити полити полити волити и полити полити. В тали и полити и волити и волити полити и волити полити полити полити полити полити волити полити.

C2302047 Work Order:

Sample ID: Sample	Project: Vails Gate - Tesla	- Tesla						T	TestCode: 0.20_NYS	SAN_02		
MSD) Batch ID: R20045 TestNo: TO-15 Analysis Date: 2/55/2023 SeqNo: Z396A Fesutt PQL SPK ret Value SPK Ret Value SPK Ret Value MSPD RepD RPD RPD <td< th=""><th>le ID: C2302047-002A MS</th><th></th><th>TestCo</th><th>de: 0,20_NYS</th><th>Units: ppbV</th><th></th><th>Prep Dat</th><th>نة</th><th></th><th>RunNo: 200</th><th>049</th><th></th></td<>	le ID: C2302047-002A MS		TestCo	de: 0,20_NYS	Units: ppbV		Prep Dat	نة		RunNo: 200	049	
Result PQL SPK kalue SPK Ref Val % REC LowLinit HighLinit RPD Ref Val % RPD RPDLinit 0.96600 0.15 1 0 96.0 64.6 123 0.97 1.04 15.6 1.200 0.15 1 0.27 93.0 56.1 1.18 1.168 10.4 1.200 0.15 1 0 7 1.18 1.168 10.7 1.200 0.15 1 0.27 93.0 54.4 1.23 2.23 10.4 1.200 0.15 1 0.27 93.0 54.4 1.23 2.23 1.2 1.360 0.15 1 0.2 116 1.2 1.03 1.2 1.03 2.23 1.4 1.360 0.15 1 0.2 1.10 1.17 5.3 2.23 2.1 2.23 1.4 1.390 0.15 1 0.2 1.10 1.17 5.3 2.4 1	ID: Summa (MS-MSD)	Batch ID: R20049	Test	Vo: TO-15			Anatysis Dat		23	SeqNo: 225	9655	
0.9600 0.15 1 0 96.0 64.6 123 0.97 1.04 15.6 1.200 0.15 1 0.27 93.0 50.1 11.8 1.16 1.68 10.4 1.230 0.15 1 0.14 10.2 93.0 50.1 11.8 1.16 1.68 10.4 1.230 0.15 1 0.14 10.2 93.0 54.8 127 1.16 16.8 1.360 0.15 1 0.16 1 0.14 10.7 9.07 9.07 1.360 0.15 1 0.16 1 0.22 170 127 1.33 2.23 122 1.100 0.15 1 0.21 10.1 55.2 130 1.03 1.22 1.22 1.100 0.15 1 0.21 175 152 130 1.03 2.23 122 1.100 0.15 1 0.220 392 156 1.08 1.83 2.29 0.9200 0.15 1 0.820 392 152 1.08 1.63 2.29 0.9200 0.15 1 0 90.0 50.1 127 1.86 1.63 2.99 0.9200 0.15 1 0 0.06 0.090 0.16 0.91 1.08 1.08 1.04 0.9000 0.015 1 0 0.01 0.91 0.91 1.07 0.91 1.07 0.9000 <th>ŧ</th> <th>Result</th> <th>PQL</th> <th>SPK value</th> <th>SPK Ref Val</th> <th>%REC</th> <th>Lowtimit</th> <th>HighLimit</th> <th></th> <th>%RPD</th> <th>RPDLimit</th> <th>Quai</th>	ŧ	Result	PQL	SPK value	SPK Ref Val	%REC	Lowtimit	HighLimit		%RPD	RPDLimit	Quai
1.200 0.15 1 0.27 930 50.1 118 1.18 1.68 10.4 1.230 0.15 1 0.16 1 1 0.16 1 1 1.64 16.8 1.230 0.15 1 0 166 1.21 1.64 10.7 9.07 1.860 0.15 1 0 186 $8.2.3$ 2.49 2.07 10.7 9.07 1.860 0.15 1 1 0 166 1.77 1.33 2.23 1.2 1.010 0.15 1 0 101 55.2 130 1.03 1.23 1.42 1.1010 0.15 1 0 011 17.5 154 1.08 1.68 1.42 1.100 0.15 1 0 011 17.5 156 1.08 1.68 1.42 1.100 0.15 1 0 0.16 110 17.5 156 1.68 1.63 1.100 0.15 1 0 0.16 110 0.12 110 17.5 1.26 1.68 0.9200 0.15 1 0.16 1 0.820 0.921 100 1.08 1.68 1.63 0.9200 0.15 1 0 0.16 0.16 0.16 0.91 1.12 0.91 1.12 0.9200 0.15 1 0 0.16 0.91 0.91 1.10 0.91 1.10	vl tert-butyt ether	0.9600	0.15	-	0	96.0	64.6	123	0.97	2	15.6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	riene chloride	1.200	0.15	Ψ ^{III}	0.27	93.0	50.1	118	1.18	1.68	10.4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ene	1.230	0.15	***	0.14	60¢	54.8	138	121	1.64	16.8	
1.360 0.15 1 0.2 116 64 127 1.33 2.23 1.010 0.15 1 0 101 55.2 130 1.03 1.96 1.100 0.15 1 0 110 17.5 154 1.03 1.63 1.100 0.15 1 0 110 17.5 154 1.08 1.63 1.830 0.15 1 0.82 101 21.3 364 1.86 1.63 0.9200 0.15 1 0.82 101 21.3 364 1.86 1.63 0.9200 0.15 1 0.920 392 553 1 8.33 0.9000 0.050 0.15 1 0 90.0 50.1 128 0.91 1.16 1.110 0.15 1 0 90.0 50.1 128 0.91 1.16 1.050 0.15 1 0 100 50.1 128 0.91 1.16 1.050 0.15 1 0 100 51.4 147 1.06 0.948 1.040 0.940 1 0.940 1.04 48 135 1.05 0.948	iene	1.860	0.15	-	¢	186	82.3	249	2.07	10.7	9.07	<u>cc</u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	je	1.360	0.15	4	0.2	116	64	127	1.33	2.23	12	
1.100 0.15 1 0 110 17.5 15.4 1.08 1.63 1.830 0.15 1 0.82 101 21.3 36.4 1.08 1.63 1.830 0.15 1 0.82 101 21.3 36.4 1.86 1.63 0.9200 0.15 1 0.820 39.2 55.3 1 8.33 0.9200 0.15 1 0 90.6 43.5 55.2 1.09 2.79 0.9000 0.030 1 0 90.0 50.1 128 0.91 1.10 1.110 0.15 1 0 90.0 50.1 128 0.91 1.10 1.110 0.15 1 0 111 65.6 1.65 0.948 1.04 0.940 1 0 105 0.948 0.948 1.04 0.940 1 0 104 105 0.948 0.957 <td>chloroethylene</td> <td>1.010</td> <td>0.15</td> <td>-</td> <td>ð</td> <td>101</td> <td>55.2</td> <td>130</td> <td>1.03</td> <td>1.96</td> <td>9.19</td> <td></td>	chloroethylene	1.010	0.15	-	ð	101	55.2	130	1.03	1.96	9.19	
1830 0.15 1 0.82 101 21.3 364 1.86 1.63 0.9200 0.15 1 0 92.0 39.2 153 1 8.33 1.060 0.15 1 0 92.0 39.2 153 1 8.33 1.060 0.15 1 0 106 43.5 152 1.09 2.79 0.9000 0.030 1 0 106 50.1 128 0.91 1.10 1.110 0.15 1 0 111 65.6 136 1.12 0.897 1.050 0.15 1 0 105 51.4 147 1.06 0.948 1.040 0.040 1 0 104 48 135 1.05 0.957	iydrofuran	1.100	0.15	-	0	110	17.5	154	1.08	1.83	14.2	
0.9200 0.15 1 0 92.0 39.2 153 1 8.33 1.060 0.15 1 0 106 43.5 152 1.09 2.79 0.9000 0.030 1 0 106 43.5 152 1.09 2.79 1.110 0.15 1 0 111 65.6 136 1.12 0.897 1.150 0.15 1 0 111 65.6 136 1.12 0.897 1.050 0.15 1 0 105 51.4 147 1.06 0.948 1.040 0.040 1 0 104 48 135 1.05 0.957	De l	1.830	0.15	-	0.82	101	21.3	364	1.86	1.63	22.9	
1.060 0.15 1 0 106 43.5 152 1.09 2.79 0.9000 0.030 1 0 90.0 50.1 128 0.91 1.10 1.110 0.15 1 0 91.1 65.6 136 1.12 0.897 1.050 0.15 1 0 111 65.6 136 1.12 0.897 1.050 0.15 1 0 105 51.4 147 1.06 0.948 1.040 0.040 1 0 104 48 135 1.05 0.957	1,2-Dichloroethene	0.9200	0,15	~	0	92.0	39.2	153	¥~	8.33	34.5	
ne 0.9000 0.030 1 0 90.0 50.1 128 0.91 1.10 1.110 0.15 1 0 111 65.6 136 1.12 0.897 1.1050 0.15 1 0 111 65.6 136 1.12 0.897 1.1040 0.15 1 0 105 51.4 147 1.06 0.948	1,3-Dichloropropene	1.060	0.15	ر	0	106	43.5	152	1.09	2.79	8.82	
1.110 0.15 1 0 111 65.6 136 1.12 0.897 1.050 0.15 1 0 105 51.4 147 1.06 0.948 1.040 0.040 1 0 104 48 135 1.05 0.948	oroethene	0.9000	0.030	4.00	0	90.0	50.1	128	0.91	1.10	9.89	
1.050 0.15 1 0 105 51.4 147 1.06 0.948 1.040 0.040 1 0 104 48 135 1.05 0.957	acetaie	1.110	0.15	¥**.	0	4	65.6	136	1.12	0.897	27.2	
1.040 0.040 1 0 104 48 135 1.05 0.957	Bromide	1.050	0.15	¥	Ð	105	53.4	147	1.06	0.948	18.3	
	chloride	1.D40	0.040	**	0	104	48	135	1.05	0.957	14.5	

Page 5 of 5 E Estimated Value above quantitation range ND Not Detected at the Limit of Detection Spike Recovery outside accepted recovery limits -Analyte detected below quantitation kimit Detection Limit ii S Holding times for preparation or analysis exceeded Results reported are not blank corrected RPD outside accepted recovery limits · = ~ ; Qualifiers:

Centek/SanAir Laboratories

0.3 0.31 0.33 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.33 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.34 0.35 0.34 0.34	Compound	Amt	14 TO	IDL #2	IDL #3	DL #4	S# 101	94 JOI	1DT #2	AVG	StdDev	%Rec	Ы
0.3 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31	pylene	0.3	0.31	0.33	0.32	0.26	0.3	0.31	0.33	0.31	0.02	102.9%	0.076
0.3 0.31 0.31 0.31 0.31 0.31 0.32 0.34 0.33 0.31 0.31 0.31 0.31 0.32 0.33 0.31 0.31 0.31 0.32 0.33 0.31 0.31 0.33 0.31 0.32 0.33 0.31 0.32 0.33 0.31 0.33 0.31 0.33 0.31 0.33 0.31 0.33 0.31 0.33 0.31 0.33 0.31 0.31 0.31 0.31 0.33 0.31	ion 12	0.3	0.33	0.31	0.31	0.31	0.32	0.31	0.31	0.31	0.01	104.8%	0.025
0.3 0.32 0.32 0.32 0.32 0.33 0.34 0.3 0.34 0.32 0.33 0.33 0.33 0.31 0.3 0.31 0.32 0.33 0.33 0.33 0.31 0.3 0.33 0.33 0.33 0.33 0.33 0.31 0.3 0.33 0.33 0.33 0.33 0.33 0.31 0.3 0.33 0.33 0.33 0.33 0.33 0.31 0.3 0.33 0.34 0.3 0.33 0.33 0.36 0.3 0.34 0.33 0.33 0.33 0.35 0.36 0.3 0.34 0.35 0.33 0.36 0.36 0.36 0.3 0.34 0.35 0.33 0.31 0.36 0.36 0.3 0.34 0.36 0.33 0.36 0.36 0.36 0.3 0.33 0.34 0.36 0.36 0.36 0	loromethane	0.3	0.31	0.31	0.3	0.26	0.31	0.34	0.33	0.31	0.03	102.9%	0.080
0.3 0.34 0.32 0.31 0.33 0.33 0.33 0.31 0.33 0.31 0.33 0.31 0.31 0.33 0.31 0.33 0.31 0.31 0.31 0.31 0.33 0.31 0.31 0.31 0.33 0.33 0.33 0.33 0.31 0.33 0.31 0.33 0.31 0.33 0.31 0.31 0.31 0.31 0.33 0.33 0.33 0.33 0.31 0.31 0.31 0.31 0.31 0.33 0.33 0.31 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.34 0.35 0.35 0.34 0.35 0.34 0.35 0.34 0.34 0.34 0.35 0.34 0.34 0.35 0.34 0.35 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34	ion 114	0.3	0.32	0.32	0.32	0.32	0.34	0.32	0.33	0.32	0.01	108.1%	0.025
0.3 0.31 0.32 0.33 0.3<	yl Chloride	0.3	0.34	0.32	0.31	0.33	0.31	0.31	0.3	0.32	0.01	105.7%	0.043
0.3 0.34 0.33 0.33 0.34 0.33 0.33 0.34 0.33 0.35 0.33 0.35 0.33 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.36 0.35 0.36 0.35 0.36 0.35 0.36 0.35 0.36 0.35 0.36 0.35 0.36 0.35 0.36 0.37 0.36	ane	0.3	0.31	0.32	0.33	0.3	0.31	0.32	0.33	0,32	0.01	105.7%	0.035
0.3 0.31 0.33 0.33 0.33 0.33 0.33 0.36 0.37	-butadiene	0.3	0.33	0.33	0.33	0.28	0.39	0,36	0.35	0.34	0.03	112.9%	0,106
0.3 0.39 0.29 0.29 0.36 0.28 0.3 0.34 0.3 0.3 0.35 0.35 0.35 0.3 0.33 0.28 0.3 0.3 0.35 0.35 0.35 0.3 0.33 0.33 0.35 0.34 0.35 0.35 0.35 0.35 0.3 0.33 0.33 0.35 0.33 0.34 0.35 0.37 0.35 0.3 0.33 0.33 0.35 0.31 0.31 0.37 0.37 0.3 0.3 0.33 0.31 0.32 0.31 0.31 0.37 0.3 0.3 0.35 0.31 0.32 0.31 0.37 0.31 0.3 0.3 0.35 0.31 0.32 0.33 0.34 0.3 0.3 0.35 0.31 0.32 0.31 0.32 0.3 0.3 0.33 0.33 0.33 0.33 0.33 <tr< td=""><td>momethane</td><td>0.3</td><td>0.33</td><td>0.31</td><td>0.33</td><td>0.33</td><td>0.36</td><td>0.34</td><td>0.31</td><td>0.33</td><td>0.02</td><td>110.0%</td><td>0.054</td></tr<>	momethane	0.3	0.33	0.31	0.33	0.33	0.36	0.34	0.31	0.33	0.02	110.0%	0.054
0.3 0.34 0.3 0.36 0.36 0.35 0.36 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.37 0.35 0.35 0.37 0.36 0.35 0.37 0.36 0.35 0.37 0.36 0.37 0.36 0.37 0.37 0.36 0.37 0.33 0.33 0	oroethane	0.3	0.39	0.29	0.29	0.35	0.28	0.32	0.34	0.32	0.04	107.6%	0.125
0.3 0.33 0.28 0.27 0.28 0.25 0.3 0.34 0.35 0.33 0.34 0.35 0.33 0.35 0.3 0.34 0.35 0.33 0.34 0.35 0.34 0.35 0.3 0.39 0.37 0.33 0.34 0.35 0.34 0.35 0.3 0.39 0.27 0.31 0.31 0.31 0.31 0.35 0.3 0.3 0.31 0.27 0.31 0.31 0.34 0.35 0.3 0.3 0.31 0.32 0.31 0.32 0.34 0.35 0.3 0.35 0.31 0.32 0.31 0.32 0.34 0.3 0.34 0.31 0.32 0.33 0.33 0.34 0.3 0.35 0.31 0.32 0.33 0.33 0.34 0.3 0.35 0.33 0.33 0.33 0.33 0.33 0.3 0.	anoj	0.3	0.34	0.3	0.3	0.26	0.35	0.28	0.34	0.31	0.03	103.3%	0.107
0.3 0.34 0.35 0.33 0.34 0.35 0.33 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.33	olein	0.3	0.33	0.28	0.27	0.28	0.25	0.3	0.23	0.28	0.03	92.4%	0.102
0.3 0.32 0.33 0.34 0.31 0.34 0.31 0.34 0.31 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.31 0.34 0.31 0.34 0.31 0.31 0.34 0.31 0.34 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.32 0.31 0.32 0.34 0.31 0.32 0.34 0.31 0.32 0.34 0.31 0.32 0.31 0.32 0.32 0.32 0.32 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.33 0.33 0.33 0.33 0.34 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33	yl Bromide	0.3	0.34	0.35	0.33	0.34	0.35	0.33	0.32	0.34	0.01	112.4%	0.035
0.3 0.39 0.27 0.31 0.3 0.27 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.32 0.32 0.32 0.32 0.33 0	on 11	0.3	0.32	0.33	0.34	0.31	0,34	0.31	0.32	0.32	0.01	108.1%	0.040
0.3 0.29 0.29 0.29 0.27 0.31 0.3 0.3 0.31 0.32 0.34 0.34 0.3 0.3 0.31 0.32 0.34 0.34 0.3 0.32 0.31 0.32 0.34 0.34 0.3 0.32 0.31 0.32 0.31 0.34 0.3 0.32 0.31 0.32 0.31 0.34 0.3 0.35 0.35 0.31 0.32 0.34 0.3 0.35 0.35 0.31 0.33 0.33 0.3 0.34 0.33 0.33 0.33 0.33 0.3 0.34 0.33 0.33 0.33 0.33 0.3 0.34 0.33 0.33 0.33 0.33 0.3 0.34 0.33 0.33 0.33 0.33 0.3 0.33 0.33 0.33 0.33 0.33 0.3 0.31 0.31 0.29	stone	0.3	0,39	0.27	0.31	0.3	0.27	0.33	0.26	0.30	0.05	101.4%	0.143
0.3 0.3 0.28 0.28 0.28 0.26 0.3 0.3 0.31 0.32 0.34 0.34 0.34 0.3 0.3 0.31 0.32 0.31 0.32 0.34 0.3 0.32 0.31 0.32 0.31 0.32 0.34 0.3 0.35 0.35 0.31 0.32 0.34 0.32 0.3 0.35 0.35 0.31 0.32 0.31 0.32 0.3 0.29 0.29 0.29 0.29 0.26 0.33 0.3 0.28 0.31 0.33 0.33 0.33 0.33 0.3 0.28 0.3 0.33 0.33 0.33 0.33 0.3 0.34 0.33 0.33 0.33 0.33 0.33 0.3 0.34 0.33 0.33 0.33 0.33 0.33 0.3 0.3 0.3 0.3 0.3 0.3 0.3	ntane	0.3	0.29	0.29	0.29	0.27	0.31	0.39	0.29	0:30	0.04	101.4%	0.124
0.3 0.3 0.31 0.32 0.3 0.34 0.3 0.32 0.31 0.32 0.31 0.32 0.34 0.3 0.32 0.31 0.32 0.31 0.32 0.34 0.3 0.32 0.31 0.32 0.31 0.32 0.34 0.3 0.35 0.35 0.31 0.33 0.29 0.29 0.3 0.35 0.33 0.33 0.33 0.33 0.33 0.3 0.34 0.33 0.33 0.33 0.33 0.33 0.3 0.28 0.33 0.33 0.33 0.33 0.33 0.3 0.28 0.3 0.33 0.33 0.33 0.33 0.3 0.29 0.29 0.29 0.31 0.33 0.3 0.3 0.3 0.3 0.33 0.33 0.33 0.3 0.3 0.29 0.29 0.29 0.31 0.3 0.3	propyl alcohol	0.3	0.3	0.28	0.28	0.28	0.26	0.27	0.26	0.28	0.01	91.9%	0.044
0.3 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33	-dichloroethene	0.3	0.3	0.31	0.32	0.3	0.34	0.31	0.32	0.31	0.01	104.8%	0.044
0.3 0.28 0.3 0.29 0.26 0.29 0.3 0.35 0.35 0.31 0.33 0.33 0.3 0.35 0.35 0.31 0.33 0.33 0.3 0.35 0.35 0.31 0.33 0.33 0.3 0.34 0.33 0.33 0.33 0.33 0.3 0.34 0.33 0.33 0.33 0.33 0.3 0.28 0.3 0.31 0.29 0.31 0.3 0.28 0.3 0.29 0.31 0.3 0.3 0.28 0.3 0.29 0.31 0.3 0.3 0.31 0.29 0.27 0.3 0.3 0.3 0.31 0.29 0.27 0.3 0.3 0.3 0.31 0.34 0.26 0.3 0.3 0.3 0.31 0.3 0.34 0.3 0.3 0.3 0.31 0.3 0.34 0.26 0.3 0.3 0.3 0.3 0.3 0.3 0.3 </td <td>on 113</td> <td>0.3</td> <td>0.32</td> <td>0.31</td> <td>0.32</td> <td>0.31</td> <td>0.32</td> <td>0.31</td> <td>0.31</td> <td>0.31</td> <td>0.01</td> <td>104.8%</td> <td>0.017</td>	on 113	0.3	0.32	0.31	0.32	0.31	0.32	0.31	0.31	0.31	0.01	104.8%	0.017
0.3 0.35 0.31 0.33 0.31 0.26 0.31 0.26 0.31 0.26 0.31 0.26 0.31 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.32 0.32 0.32 0.31 0.32 0.31 0.32 0.32 0.32 0.31 0.32 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	tyl alcohoł	0.3	0.28	0.3	0.29	0.26	0.29	0.27	0.3	0.28	0.02	94.8%	0.048
0.3 0.29 0.29 0.29 0.29 0.27 0.26 0.3 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.3 0.3 0.33 0.33 0.33 0.33 0.33 0.33 0.3 0.28 0.3 0.31 0.29 0.31 0.31 0.3 0.31 0.28 0.3 0.29 0.31 0.3 0.3 0.31 0.27 0.29 0.31 0.3 0.3 0.3 0.31 0.28 0.29 0.27 0.3 0.3 0.3 0.31 0.28 0.29 0.27 0.29 0.3 0.3 0.34 0.34 0.3 0.26 0.36 0.36 0.3 0.28 0.29 0.27 0.26 0.36 0.36 0.3 0.34 0.34 0.36 0.26 0.36 0.36 0.3 0.31 0.3 0.31 0.3	thylene chloride	0.3	0.35	0.35	0.31	0.33	0.33	0.34	0.33	0.33	0.01	111.4%	0.044
ne 0.3 0.34 0.33 0.31 0.31 0.29 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.	l chloride	0.3	0.29	0.29	0.29	0.27	0.26	0.23	0.29	0.27	0.02	91.4%	0.072
ne 0.3 0.28 0.3 0.29 0.31 0.3 0.28 0.3 0.29 0.31 0.29 0.31 0.3 0.31 0.27 0.29 0.31 0.31 0.31 0.3 0.31 0.27 0.29 0.31 0.31 0.3 0.31 0.27 0.29 0.31 0.3 0.28 0.29 0.31 0.3 0.28 0.29 0.31 0.3 0.28 0.29 0.29 0.3 0.34 0.3 0.28 0.3 0.34 0.36 0.28 0.3 0.28 0.29 0.26 0.36 0.3 0.28 0.29 0.26 0.36 0.3 0.28 0.29 0.26 0.26 0.3 0.29 0.29 0.29 0.29 0.3 0.31 0.3 0.31 0.3	bon disulfide	0.3	0.34	0.33	0.33	0.33	0,33	0.3	0.31	0.32	0.01	108.1%	0.044
0.3 0.28 0.3 0.29 0.27 0.3 0.3 0.31 0.27 0.28 0.29 0.31 0.3 0.31 0.27 0.29 0.31 0.3 0.28 0.29 0.27 0.29 0.3 0.28 0.29 0.21 0.29 0.3 0.31 0.3 0.29 0.21 0.3 0.35 0.34 0.2 0.28 0.3 0.34 0.3 0.28 0.28 0.3 0.29 0.26 0.35 0.28 0.3 0.28 0.29 0.26 0.35 0.3 0.28 0.29 0.26 0.29 0.3 0.28 0.29 0.26 0.29 0.3 0.29 0.29 0.26 0.29 0.3 0.31 0.3 0.31 0.3	is-1,2-dichloroethene	0.3	0.28	0.3	0.31	0,29	0.31	0.28	0.3	0:30	0.01	98.6%	0.040
0.3 0.31 0.27 0.28 0.29 0.31 0.3 0.28 0.28 0.29 0.31 0.29 0.31 0.3 0.31 0.28 0.29 0.27 0.29 0.31 0.3 0.31 0.3 0.28 0.29 0.29 0.29 0.3 0.31 0.3 0.29 0.29 0.28 0.29 0.3 0.35 0.34 0.36 0.26 0.35 0.3 0.28 0.29 0.26 0.36 0.3 0.28 0.29 0.26 0.26 0.3 0.29 0.27 0.26 0.26 0.3 0.29 0.27 0.26 0.29 0.3 0.28 0.29 0.26 0.29 0.3 0.31 0.3 0.31 0.3	thy! tert-buty! ether	0.3	0.28	0.3	0.29	0.27	0.3	0.27	0.29	0.29	0.01	95.2%	0.040
0.3 0.28 0.28 0.29 0.27 0.29 0.3 0.31 0.3 0.34 0.3 0.28 0.3 0.35 0.34 0.3 0.28 0.28 0.3 0.35 0.34 0.3 0.28 0.36 0.3 0.28 0.34 0.26 0.35 0.3 0.28 0.29 0.26 0.36 0.3 0.28 0.29 0.26 0.26 0.3 0.28 0.29 0.26 0.29 0.3 0.29 0.27 0.26 0.29 0.3 0.29 0.29 0.26 0.29 0.3 0.31 0.3 0.31 0.3	dichloroethane	0.3	0,31	0.27	0.28	0.29	0.31	0.29	0.28	0.29	0.02	96.7%	0.048
0.3 0.31 0.3 0.34 0.3 0.28 0.3 0.35 0.34 0.3 0.26 0.35 0.3 0.28 0.34 0.26 0.35 0.35 0.3 0.28 0.29 0.27 0.25 0.36 0.3 0.28 0.29 0.27 0.26 0.36 0.3 0.28 0.29 0.26 0.26 0.26 0.3 0.28 0.29 0.26 0.26 0.26 0.3 0.29 0.29 0.26 0.26 0.26 0.3 0.31 0.3 0.31 0.3 0.32	yl acetate	0.3	0.28	0.28	0.29	0.27	0.29	0.26	0.29	0.28	0.01	93.3%	0.036
0.3 0.35 0.34 0.34 0.26 0.35 0.3 0.28 0.29 0.27 0.25 0.26 0.3 0.28 0.28 0.29 0.26 0.26 0.3 0.28 0.28 0.29 0.26 0.29 0.3 0.21 0.23 0.29 0.26 0.29 0.3 0.21 0.29 0.26 0.29	thyi Ethyl Ketone	0.3	0.31	0.3	0.34	0.3	0.28	0.29	0.25	0.30	0.03	98.6%	0.087
te 0.3 0.28 0.29 0.27 0.25 0.26 1 0.3 0.28 0.28 0.29 0.26 0.29 1 0.3 0.31 0.3 0.31 0.3 0.32 1	1,2-dichloroethene	0.3	0.35	0.34	0.34	0.26	0.35	0.27	0.27	0.31	0.04	103.8%	0.133
te 0.3 0.28 0.28 0.29 0.26 0.29 1 0.3 0.31 0.3 0.31 0.3 0.32 1	ເສກe	0.3	0.28	0.29	0.27	0.25	0.26	0.24	0.27	0.27	0.02	88.6%	0.054
0.3 0.31 0.3 0.31 0.3 0.32	yl acetate	0.3	0.28	0.28	0.29	0.26	0.29	0.24	0.27	0.27	0.02	91.0%	0.057
	oroform	0.3	0.31	0.3	0.31	0.3	0.32	0.29	0.29	0.30	0.01	101.0%	0.035
0.29 0.3 0.29 0.29 0.27	ahydrofuran	-0.3	0,29	0.3	0.29	0.29	0.27	0.27	0.31	0.29	0.01	96.2%	0.046

SanAir/Centek Laboratory IDL Study

Confidential

....

	SanAir/Centek Laboratory IDL Study				บิทุ	1ug/m3 Detection Limit January 2023	ion Limit 023					Metho	Method TO-15 Units=ppb
	Compound	Amt	IDF #1	IDL #2	IDL #3	1DL #4	IDL #5	9# JOI	101 #2	AVG	StdDev	%Rec	DL
	1,2-dichloroethane	0.3	0.3	0,26	0.3	0.29	0.32	0.28	0.29	0.29	0.02	97.1%	0.059
	1,1,1-trichloroethane	0.3	0.3	0.29	0.29	0.32	0.31	0.34	0.32	0.31	0.02	103.3%	0.057
	Cyclohexane	0.3	0.27	0.29	0.29	0.3	0.29	0.31	0.31	0.29	0.01	98.1%	0.044
	Carbon tetrachloride	0.3	0.31	0.3	0.29	0.34	0.31	0.36	0.32	0.32	0.02	106.2%	0.076
	Benzene	0.3	0.32	0.3	0.3	0.32	0.32	0.34	0.32	0.32	0.01	105.7%	0.043
	Methyl methacrylate	0.3	0.31	0.31	0.3	0.31	0.31	0.27	0.26	0.30	0.02	98.6%	0.068
	1,4-dioxane	0.3	0.28	0.29	0.29	0.28	0.29	0.29	0.28	0.29	0.01	95.2%	0.017
	2,2,4-trimethylpentane	0.3	0.29	0.29	0.28	0.3	0.29	0,3	0.3	0.29	0,01	97.6%	0.024
	Heptane	0.3	0.28	0.27	0.27	0.26	0.29	0.29	0.29	0.28	0.01	92.9%	0.038
	Trichloroethene	0.3	0.33	0,32	0.3	0.34	0.32	0.35	0.32	0.33	0.02	108.6%	0.051
	1,2-dichloropropane	0.3	0.31	0.3	0.29	0.33	0.31	0.34	0.32	0.31	0.02	104.8%	0.054
	Bromodichloromethane	0.3	0.31	0.29	0.28	0.32	0.3	0.34	0.31	0.31	0,02	102.4%	0.062
	cis-1,3-dichloropropene	0.3	0.28	0.25	0.25	0.27	0.26	0.29	0.26	0.27	0.02	88.6%	0.048
	trans-1,3-dichloropropene	0.3	0.27	0.25	0.25	0.25	0.26	0.27	0.28	0.26	0.01	87.1%	0.038
	1,1,2-trichloroethane	0.3	0.31	0.31	0.31	0.32	0.32	0.33	0.31	0.32	0.01	105.2%	0.025
	Toluene	0.3	0.29	0.3	0.3	0.3	0.29	0.31	0.3	0.30	0.01	99.5%	0.022
	Methyl Isobutyl Ketone	0.3	0.29	0.27	0.29	0,29	0.28	0.31	0,32	0.29	0.02	97.6%	0.054
	Dibromochloromethane	0.3	0.31	0.28	0.28	0.32	0.27	0.33	0.32	0.30	0.02	100.5%	0.076
	Methyl Butyl Ketone	0.3	0.27	0.28	0.29	0.27	0.28	0.26	0.27	0.27	0.01	91.4%	0.031
	1,2-dibromoethane	0.3	0.28	0.3	0.28	0.31	0.27	0.33	0.33	0.30	0.02	100.0%	0.077
	Tetrachloroethytene	0.3	0.35	0.33	0.32	0.35	0.31	0.36	0.36	0.34	0.02	113.3%	0.063
	Chlorobenzene	0.3	0.32	0.31	0.29	0.31	0.3	0.32	0.33	0.31	0.01	103.8%	0.042
	Ethylbenzene	0,3	0,28	0.29	0.26	0.27	0.28	0.28	0.29	0.28	0.01	92.9%	0.034
	m&p-xylene	0.6	0.56	0.55	0.52	0.53	0.55	0.56	0.55	0.55	0.02	91.0%	0.048
	Nonane	0.3	0.27	0.26	0.25	0.26	0,26	0.27	0.28	0.26	0.01	88,1%	0.031
F	Styrene	0.3	0,28	0.24	0.25	0.25	0.25	0.28	0.3	0,26	0.02	88.1%	0.070
Pag	Bromoform	0.3	0.32	0.25	0.25	0.3	0.26	0.33	0.32	0.29	0.04	96.7%	0.112
je (o-xylene	0.3	0.3	0.27	0.25	0.31	0.27	0.32	0.33	0.29	0.03	97,6%	0.094
51	Cumene	0.3	0.27	0.23	0.23	0.27	0.23	0.27	0.27	0.25	0.02	84,3%	0,067
of	1,1,2,2-tetrachloroethane	0.3	0.32	0.29	0.29	0.34	0,29	0.34	0.34	0.32	0.03	105.2%	0.079
20	Propyłbenzene	0.3	0.26	0.23	0.22	0.26	0.23	0.27	0.27	0.25	0.02	82.9%	0.066
1	2-Chlorotoluene	0.3	0.27	0.24	0.25	0.29	0.24	0.29	0.3	0.27	0.03	89.5%	0.080
	4-ethyltoluene	0.3	0.25	0.22	0.23	0,26	0.21	0.27	0.27	0.24	0.02	81.4%	0.077
	Confidential												2

Centek/SanAir Laboratories

SanAir/Centek Laboratory IDL Study				1ug	lug/m3 Detection Limit January 2023	tion Limit 2023					Metho	Method TO-15 Units≕ppb
Compound	Amt	IDL #1	IDL #2	IDL #3	101 #4	IDL #5	9# TO	IDI #7	AVG	Stilley	6/ Doo	ŝ
1,3,5-trimethylbenzene	0.3	0.28	0.24	0.26	0.28	0.24	0.29	0.34	0.97	0.03		0C
1,2,4-trimethylbenzene	0.3	0.28	0.22	0.23	0.26	0.22	0.26	202	1210	000 0	80.0%	790'N
1, 3-dichlorobenzene	0.3	0.29	0.26	0.27	0.29	0.25	, r 0	13.0		70.0	07.527	0.078
benzyl chloride	0.3	0.24	0.28	0 33	0.00		202	70.0	07.0	0.02	94,3%	0.076
1 A_dichlorohoorooo				20.0	67.0	0.60	17.0	0.29	0.27	0.03	91.4%	0.097
	5 .0	0.28	0.24	0.26	0.31	0.23	0.29	0.32	0.28	0.03	91,9%	0.107
1,2,3-trimethyloenzene	0'3	0.26	0.25	0.24	0.24	0.19	0.27	0.27	0.25	0.03	81.9%	0.087
1,2-dichiorobenzene	0.3	0.32	0.27	0.26	0.3	0.25	0.32	0.32	0.29	0.03	97 t%	0.097
1,2,4-trichlorobenzene	0.3	0.26	0.31	0.3	0.28	0.3	0.3	0.31	0.29	0.02	98.1%	0.057
Naphthalene	0.3	0.27	0.32	0.26	0.26	0.29	0.28	0.26	0.28	0.02	92.4%	0.070
Hexachioro-1,3-butadiene	0.3	0.35	0.31	0.33	0.34	0.31	0.36	0.37	0.34	0.02	112.9%	0.074
								•				

Centek/SanAir Laboratories

Confidential

ری .

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

....

where: Ax = area of the characteristic ion for the compound being measured
 Ais = area of the characteristic ion for the specific internal standard of the compound being measured
 Cx = concentration of the compound being measured (ppbv)
 Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

Percent Difference (%D)

% D =
$$(RRFc - mean RRFi) * 100$$

mean RRFi

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

$$ppbv = Ax * Is * Df$$

Ais * RRF

where: Ax = area of the characteristic ion for the compound being measured
 Ais = area of the characteristic ion for the specific internal standard of the compound being measured
 Is = Concentration of the internal standard injected (ppbv)

RRF= relative response factor for the compound being measured.

Df = Dilution factor

Centek/SanAir Laboratories

.

.

.

.

•

.

GC/MS VOLATILES-WHOLE AIR

,

. •

•

,

۰.

METHOD TO-15

SAMPLE DATA

.

CLIENT:	Leader Consulting Sea	rvices		C	lient Sample ID:	Summ	na #1 -Dup
Lab Order:	C2302047				Tag Number:		
Project:	Vails Gate - Tesla				Collection Date:		0023
							• (/ x+ 2/
Lab ID:	C2302047-001A				Matrix:	AIK	
Analyses		Result	DĿ	Qual	Units	ÐF	Date Analyzed
IELD PARAMI	ETERS		F	LD			Analyst:
Lab Vacuum In		0			"Hg		2/22/2023
Lab Vacuum Ou	ut	-30			"Hg		2/22/2023
UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс)-15			Analyst: RJP
1,1,1-Trichloroe	thane	< 0.15	0.15		Vdqq	1	2/25/2023 12:39:00 AN
1,1,2,2-Tetrachi	loroethane	< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AM
1,1,2-Trichloroe	thane	< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AM
1.1-Dichloroetha	ane	< 0.15	0.15		Vdqq	1	2/25/2023 12:39:00 AM
1,1-Dichloroethe	ene	< 0.040	0.040		ppbV	1	2/25/2023 12:39:00 AN
1,2,4-Trichlorob	enzene	< 0.15	0.15		Vdqq	1	2/25/2023 12:39:00 AN
1,2,4-Trimethylb	penzene	0.58	0.15		ρpbV	1	2/25/2023 12:39:00 AN
1,2-Dibromoetha	ane	< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AN
1,2-Dichloroben	zene	< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AN
1,2-Dichloroetha	ane	< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AN
1,2-Dichloroprop	pane	< 0,15	0.15		ppb∨	1	2/25/2023 12:39:00 AN
1,3,5-Trimethylb	Denzene	0.20	0.15		ppb∨	1	2/25/2023 12:39:00 AM
1,3-butadiene		< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AN
1,3-Dichloroben	Zene	< 0.15	0.15		ррҌѴ	1	2/25/2023 12:39:00 AN
1,4-Dichloroben	zene	< 0.15	0.15		рръ∨	1	2/25/2023 12:39:00 AN
1,4-Dioxane		< 0.30	0.30		ppb∨	1	2/25/2023 12:39:00 AN
2,2,4-trimethylpe	entane	< 0.15	0.15		ppb∨	1	2/25/2023 12:39:00 AM
4-ethyltoluene		0.26	0.15		¢¢bV	1	2/25/2023 12:39:00 AM
Acetone		7.6	3.0		Vdqq	10	2/25/2023 2:59:00 PM
Allyl chloride		< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AM
Benzene		0.43	0.15		ppbV	1	2/25/2023 12:39:00 AM
Benzyl chloride		< 0.15	0.15		ρρόν	1	2/25/2023 12:39:00 AM
Bromodichlorom	nethane	< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AM
Bromoform		< 0.15	0.15		opbV	1	2/25/2023 12:39:00 AM
Bromomethane		< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AN
Carbon disulfide	•	< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AM
Carbon tetrachic	oride	0.070	0.030		ppbV	1	2/25/2023 12:39:00 AN
Chlorobenzene		< 0.15	0.15		Vdqq	1	2/25/2023 12:39:00 AM
Chloroethane		< 0.15	0.15		Vdqq	1	2/25/2023 12:39:00 AN
Chloroform		< 0.15	0.15		Vdqiq	1	2/25/2023 12:39:00 AN
Chloromethane		0.61	0.15		ppbV	1	2/25/2023 12:39:00 AM
cis-1,2-Dichloroe	ethene	< 0.040	0.040		ррь∨	1	2/25/2023 12:39:00 AM
cis-1,3-Dichlorop	propene	< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AN
Cyclohexane		0.43	0.15		ppbV	1	2/25/2023 12:39:00 AN
Dibromochlorom	nethane	< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AM
Ethyl acetate		< 0.15	0.15		ppbV	1	2/25/2023 12:39:00 AM

		e e e e e e e e e e e e e e e e e e e	
Qualifiers:		Results reported are not blank corrected	
	DI.	Detection Limit	
	Н	Holding times for preparation or analysis exceede	ed

JN. Non-routine analyte. Quantitation estimated.

- \mathbf{S} Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

£ Estimated Value above quantitation range

I. Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection Sub-Contracted

SC

Page 1 of 6

Page 55 of 201

Date: 23-Mar-23

CLIENT:	Leader Consulting Services			ient Sample ID:	Summa	#1 -Dup
Lab Order:	C2302047			Tag Number:		
Project:	Vails Gate - Tesla		1	Collection Date:	2/21/203	23
Lab ID:	C2302047-001A			Matrix:	AIR	
Analyses		esult DL	Qual		ÐF	Date Analyzed

UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-1	5	Analyst: RJP		
Ethylbenzene	0.12	0.15	J ppbV	1	2/25/2023 12:39:00 AM	
Freon 11	0.24	0.15	ppbV	1	2/25/2023 12:39:00 AM	
Freon 113	< 0.15	0.15	ppb∨	1	2/25/2023 12:39:00 AM	
Freon 114	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM	
Freen 12	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM	
Heptane	0.24	0.15	ppbV	1	2/25/2023 12:39:00 AM	
Hexachloro-1,3-butadiene	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM	
Hexane	0.21	0.15	ppb∨	1	2/25/2023 12:39:00 AM	
isopropyl alcohol	2,2	1.5	ppbV	10	2/25/2023 2:59:00 PM	
m&p-Xylene	0.32	0.30	ppbV	1	2/25/2023 12:39:00 AM	
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	2/25/2023 12:39:00 AM	
Methyl Ethyl Ketone	1.3	0.30	ppbV	1	2/25/2023 12:39:00 AM	
Methyl Isobutyl Ketone	< 0.30	0.30	ppbV	1	2/25/2023 12:39:00 AM	
Methyl tert-butyl ether	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM	
Methylene chloride	0.28	0,15	Vaqq	3	2/25/2023 12:39:00 AM	
o-Xylene	0.13	0.15	J ppbV	1	2/25/2023 12:39:00 AM	
Propylene	< 0.15	0.15	Vdqq	1	2/25/2023 12:39:00 AM	
Styrene	0.20	0.15	ppb∨	1	2/25/2023 12:39:00 AM	
Tetrachloroethylene	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM	
Tetrahydrofuran	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM	
Toluene	0.78	0.15	ppbV	1	2/25/2023 12:39:00 AM	
trans-1,2-Dichloroethene	< 0.15	0.15	₽₽bV	1	2/25/2023 12:39:00 AM	
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM	
Trichloroethene	< 0.030	0.030	ppbV	1	2/25/2023 12:39:00 AM	
Vinyl acetate	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM	
Vinyl Bromide	< 0.15	0.15	ppbV	1	2/25/2023 12:39:00 AM	
Vinyl chloride	< 0.040	0.040	ppb∨	1	2/25/2023 12:39:00 AM	
Surr: Bromofluorobenzene	93.0	47-124	%REC	1	2/25/2023 12:39:00 AM	

Qualifiers:

. Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- Spike Recovery outside accepted recovery limits S
- 8 Analyte detected in the associated Method Blank

Б Estimated Value above quantitation range

j. Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection SC

Sub-Contracted

Date: 23-Mar-23

CLIENT:	Leader Consulting Services		Client Samp	ie ID: Sur	mma #1 -Dup	
Lab Order:	C2302047		Tag Nur	nber: 21	1	
Project:	Vails Gate - Tesla		Collection	Date: 2/2	1/2023	
Lab ID:	C2302047-001A		M	atrix: All	R	
Analyses	Re	sult DL	Qual Units	ÐF	Date Analyze	d

UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	2/25/2023 12:39:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	2/25/2023 12:39:00 AN
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	2/25/2023 12:39:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	2/25/2023 12:39:00 AM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	2/25/2023 12:39:00 AN
1.2.4-Trichlorobenzene	< 1.1	1,1	ug/m3	1	2/25/2023 12:39:00 AM
1,2,4-Trimethyibenzene	2.9	0.74	ug/m3	1	2/25/2023 12:39:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	2/25/2023 12:39:00 AN
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/25/2023 12:39:00 AM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	2/25/2023 12:39:00 AM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	2/25/2023 12:39:00 AN
1,3,5-Trimethylbenzene	0.98	0.74	ug/m3	1	2/25/2023 12:39:00 AM
1,3-butadiene	< 0.33	0.33	ug/m3	1	2/25/2023 12:39:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/25/2023 12:39:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/25/2023 12:39:00 AM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	2/25/2023 12:39:00 AM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	2/25/2023 12:39:00 AM
4-ethyltoluene	1.3	0.74	ug/m3	1	2/25/2023 12:39:00 AN
Acetone	18	7.1	ug/m3	10	2/25/2023 2:59:00 PM
Ally! chloride	< 0.47	0.47	ug/m3	1	2/25/2023 12:39:00 AM
Benzene	1.4	0.48	ug/m3	1	2/25/2023 12:39:00 AM
Benzyl chloride	< 0.86	0.86	ug/m3	1	2/25/2023 12:39:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	2/25/2023 12:39:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	2/25/2023 12:39:00 AM
Bromomethane	< 0.58	0.58	սց/m3	1	2/25/2023 12:39:00 AM
Carbon disulfide	< 0.47	0.47	ug/m3	1	2/25/2023 12:39:00 AM
Carbon tetrachloride	0.44	0.19	ug/m3	1	2/25/2023 12:39:00 AM
Chlorobenzene	< 0.69	0.69	ug/m3	1	2/25/2023 12:39:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	2/25/2023 12:39:00 AM
Chloroform	< 0.73	0.73	ug/m3	1	2/25/2023 12:39:00 AM
Chloromethane	1.3	0.31	ug/m3	1	2/25/2023 12:39:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	2/25/2023 12:39:00 AN
tis-1,3-Dichloropropene	< 0.68	0.68	មព្វ/ភា3	1	2/25/2023 12:39:00 AN
Cyclohexane	1.5	0.52	ug/m3	1	2/25/2023 12:39:00 AN
Dibromochloromethane	< 1.3	1.3	ug/m3	1	2/25/2023 12:39:00 AM
Ethyl acelate	< 0.54	0.54	ug/m3	1	2/25/2023 12:39:00 AN
Ethylbenzene	0.52	0.65	l ug/m3	1	2/25/2023 12:39:00 AM
Freon 11	1.3	0.84	ug/m3	1	2/25/2023 12:39:00 AN
Freon 113	< 1.1	1.1	ug/m3	1	2/25/2023 12:39:00 AN
Freon 114	< 1.0	1.0	ug/m3	1	2/25/2023 12:39:00 AN

Qualifiers: . . . Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

 βN = Non-routine analyte. Quantitation estimated,

S — Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

 $\langle E\rangle$. Estimated Value above quantitation range

J — Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection SC Sub-Contracted

Page 1 of 6

Date: 23-Mar-23

Analyses	Result	DL Qual Units DF Date A	nalyzed
Lab ID:	C2302047-001A	Matrix: AIR	
Project:	Vails Gate - Tesla	Collection Date: 2/21/2023	
Lab Order:	C2302047	Tag Number: 211	
CLIENT:	Leader Consulting Services	Client Sample ID: Summa #1 -Dup	

JG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15	i		Analyst: RJ
Freon 12	< 0.74	0.74	ug/m3	1	2/25/2023 12:39:00 A
Heptane	0.98	0.61	ug/m3	1	2/25/2023 12:39:00 A
texachioro-1,3-butadiene	< 1.6	1.6	ug/m3	1	2/25/2023 12:39:00 A
texane	0.74	0.53	ug/m3	1	2/25/2023 12:39:00 A
sopropyl alcohol	5.4	3.7	ug/m3	10	2/25/2023 2:59:00 PM
n&p-Xylene	1.4	1.3	ug/m3	1	2/25/2023 12:39:00 A
flethyl Butyl Ketona	< 1.2	1.2	ug/m3	1	2/25/2023 12:39:00 A
Aethyl Ethyl Ketone	3.7	0.88	ug/m3	1	2/25/2023 12:39:00 A
/lethyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	2/25/2023 12:39:00 A
Aethyl tert-butyl ether	< 0.54	0.54	ug/m3	1	2/25/2023 12:39:00 A
Aethylene chloride	0.97	0.52	ug/m3	1	2/25/2023 12:39:00 A
-Xylene	0.56	0.65 .	J ug/m3	1	2/25/2023 12:39:00 A
Propylene	< 0.26	0.26	ug/m3	1	2/25/2023 12:39:00 A
Styrene	0.85	0.64	ug/m3	1	2/25/2023 12:39:00 A
etrachloroethylene	< 1.0	1.0	ug/m3	1	2/25/2023 12:39:00 A
etrahydrofuran	< 0.44	0.44	ug/m3	1	2/25/2023 12:39:00 A
oluene	2.9	0.57	ug/m3	1	2/25/2023 12:39:00 A
rans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	2/25/2023 12:39:00 A
tans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	2/25/2023 12:39:00 A
richloroethene	< 0.16	0.16	ug/m3	1	2/25/2023 12:39:00 A
/inyl acetate	< 0.53	0.53	ug/m3	1	2/25/2023 12:39:00 A
/inyl Bromide	< 0.66	0.66	ug/m3	1	2/25/2023 12:39:00 A
/inyl chloride	< 0.10	0.10	ug/m3	1	2/25/2023 12:39:00 A

Qualifiers:

Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B — Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

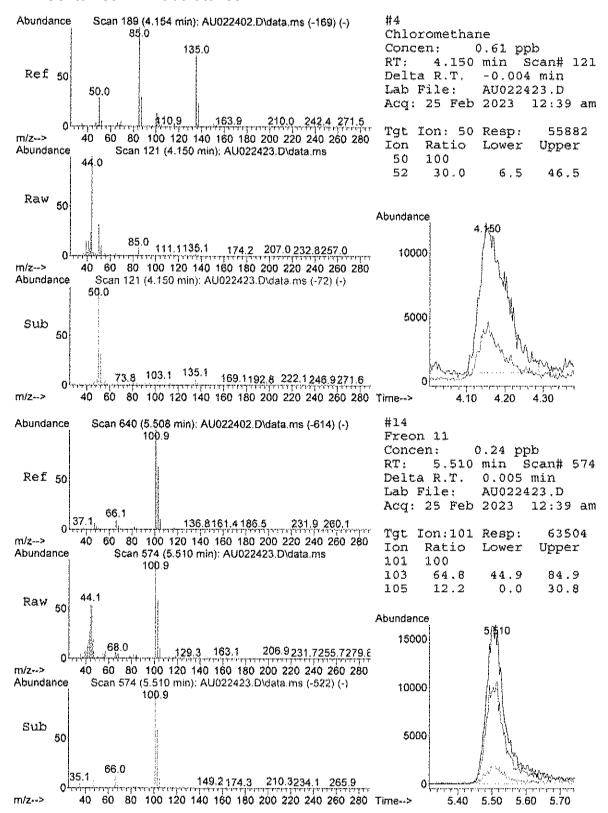
ND Not Detected at the Limit of Detection

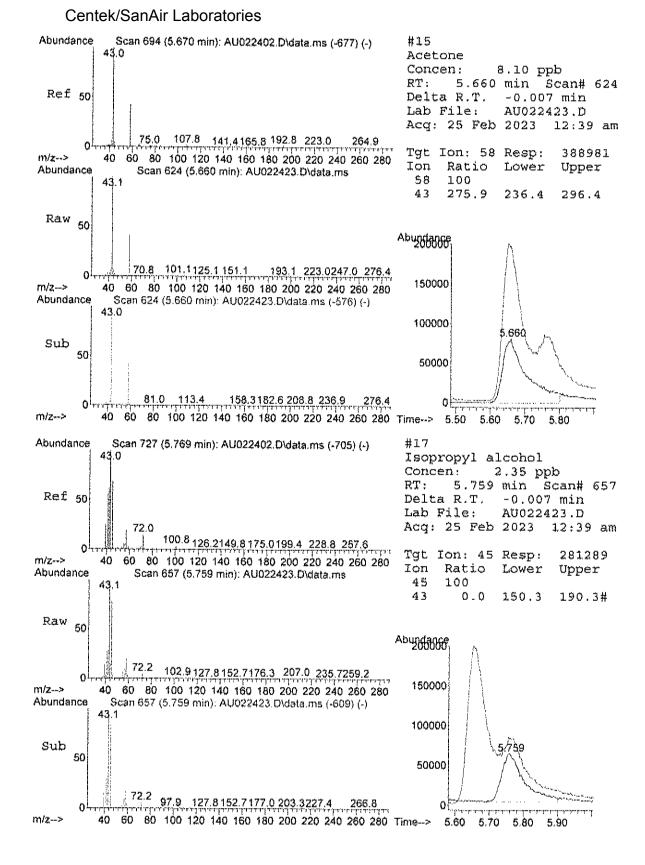
Sub-Contracted

SC

Page 2 of 6

Centek/SanAir Laboratori	es antitation	Report	. (QT Rev	iewed)		
Data Path : C:\msdchem\l\data Data File : AU022423.D Acq On : 25 Feb 2023 12:39 Operator : RJP Sample : C2302047-001A Misc : A223_1UG ALS Vial : 16 Sample Multip	9 am					
Quant Time: Feb 25 09:29:48 20 Quant Method : C:\msdchem\l\m Quant Title : TO-15 VOA Star QLast Update : Fri Feb 24 08:2 Response via : Initial Calibra	ethods\A223 ndards for 23:48 2023	3_1UG.M 5 poir	4 ht calibrati	on		
Compound	R.T.	QION	Response C	onc Units	Dev (Min)
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.349 11.646 16.434	128 114 117	61532 331931 261837	1.00 ppb 1.00 ppb 1.00 ppb		0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.190 Range 70	95 - 130	144973 Recovery	0.93 ppb = 93.	.00%	0.03
<pre>Target Compounds 4) Chloromethane 14) Freon 11 15) Acetone 17) Isopropyl alcohol 21) Methylene chloride 28) Methyl Ethyl Ketone 30) Hexane 31) Ethyl acetate 37) Cyclohexane 38) Carbon tetrachloride 39) Benzene 43) Heptane 44) Trichloroethene 51) Toluene 58) Ethylbenzene 59) m&p-xylene 61) Styrene 63) o-xylene 69) 4-ethyltoluene 70) 1,3,5-trimethylbenzene</pre>	5.759 6.675 8.479 8.536 9.067 11.027 10.964 10.934 12.174 12.300	45 84 72 57 43 56 117 78 43 92 91 104 91 105	55882 63504 388981 281289 29477 60837 40260 24905 72870m 12781 145485 39277 3617 172681 53862 110702 47861 53716 106685m 84277m	2.35 ppb 0.28 ppb 1.26 ppb 0.21 ppb 0.43 ppb 0.43 ppb 0.43 ppb 0.43 ppb 0.24 ppb 0.24 ppb	+ + +	1 97 85 79 93 91 94
71) 1,2,4-trimethylbenzene	19.430	105	201455	0.58 ppb		99

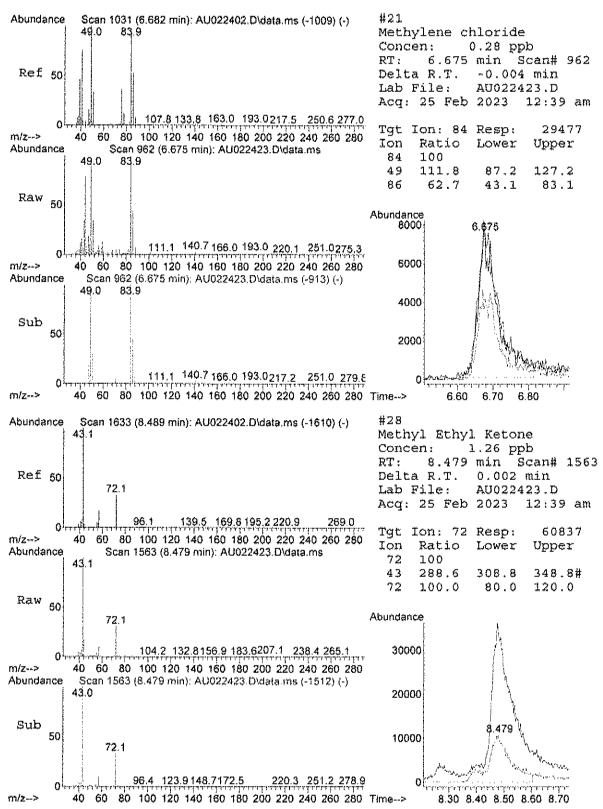

(#) = qualifier out of range (m) = manual integration (+) = signals summed

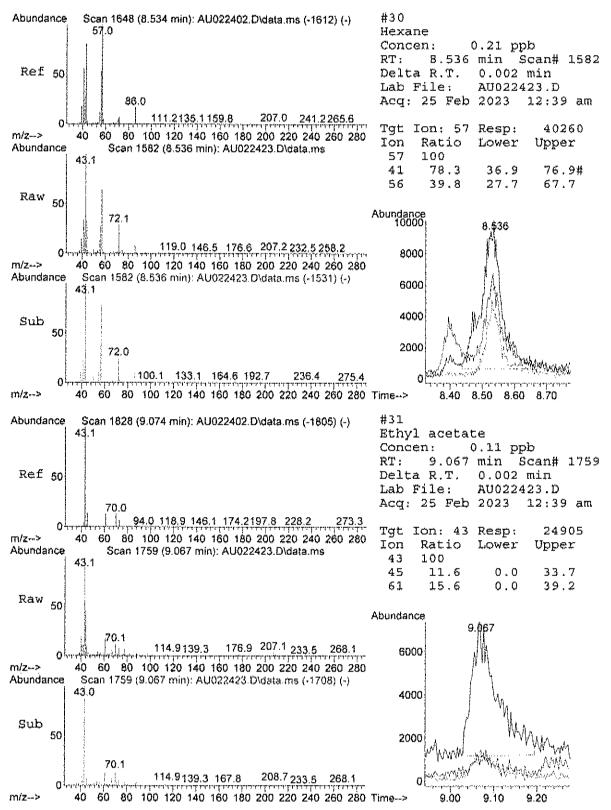

21.00 20.00 \sim Page: 1.eneznedivritemm-4.5,1 19.00 ។,onesnedលើស្រាស់អាមេន-+ 18.00 2,eneraedoroutionoi8 T, at the way to 17.00 T, ensiyx-qısm T, ensiyx-qısm i,čb-ensznadowidO 16.00 TIC: AU022423.D/data.ms 15.00 ∓,enauioT 14.00 Quant Time: Feb 25 09:29:48 2023 Quant Method : C:\msdchem\1\methods\A223_1UG.M Owant Title : TO-15 VOA Standards for 5 point calibration 13.00 T,onscisoroliticit 12.00 (,enstradorou)to-A, l 11.00 T.obnow Mike Monda 10.00 Fri Feb 24 08:23:48 2023 Bromochloromethane,I 9.6 A223_1UG 16 Sample Multiplier: Т,ејејере (үн/Э : Initial Calibration an T, enoteX ivitEddig 2023 8.00 C:\msdchem\l\data2\ 12:39 07:31:23 7.00 C2302047-001A 25 Feb 2023 T, abholdt analyrifaM AU022423.D 6.00 23 T, Indote T, Proposi A223 JUG.M Thu Mar RJP5.00 Response via QLast Update ... Data Path Data File T.onsdianoosolii..... 4.00 Operator ALS Vial 1600000 1000000 Acq On 3800000 3600000 3400000 3200000 3000009 2400000 2200000 2000000 1200000 200000 Sample Abundance 1800000 400000 800000 600000 2860000 2600000 400000 Time--> Misc

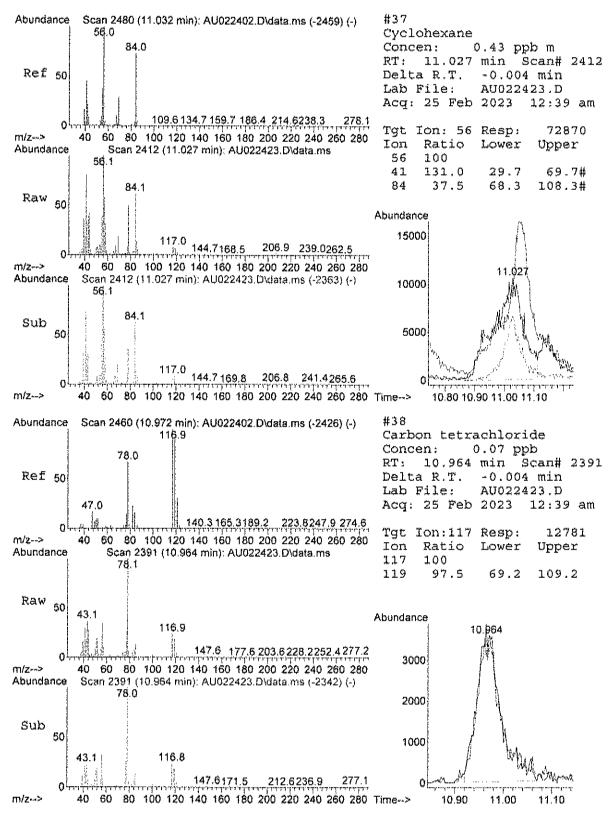
Page 60 of 201

23.00

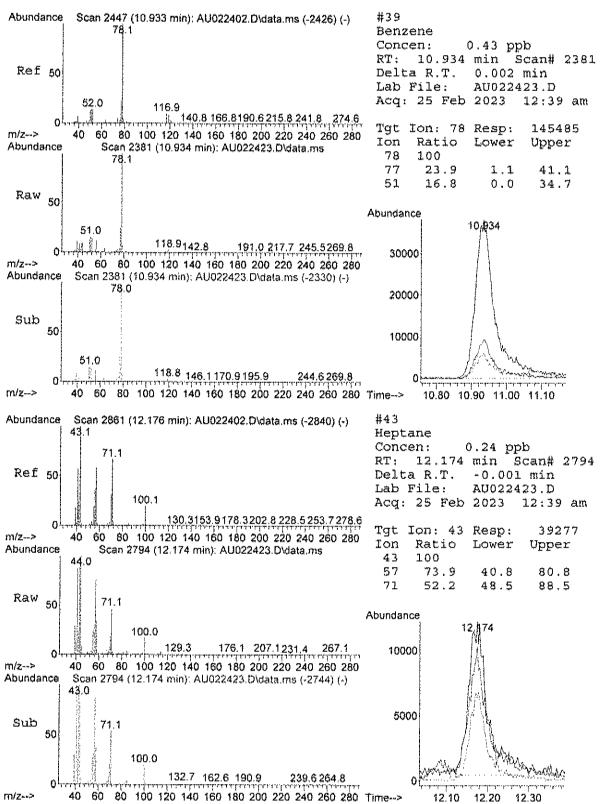
22.00

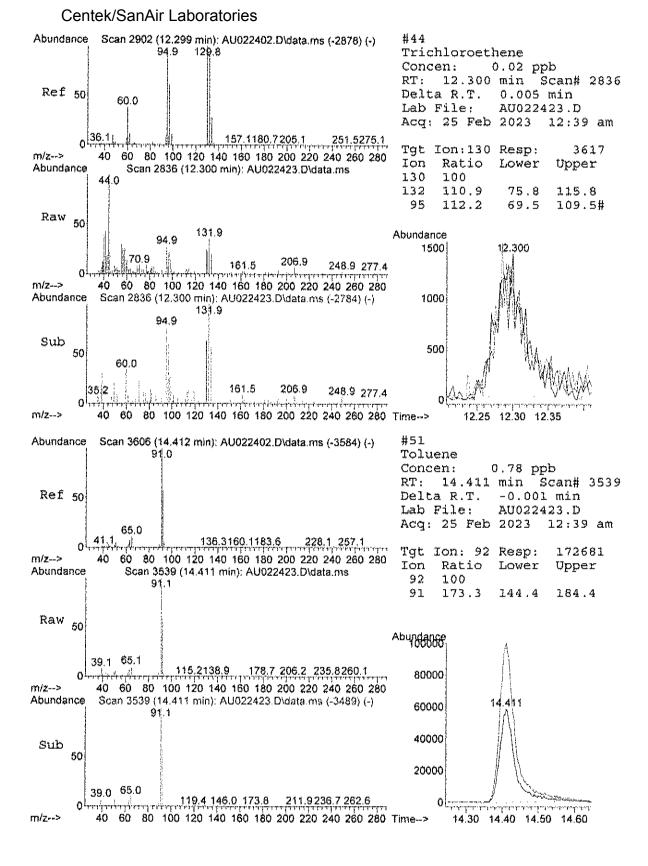


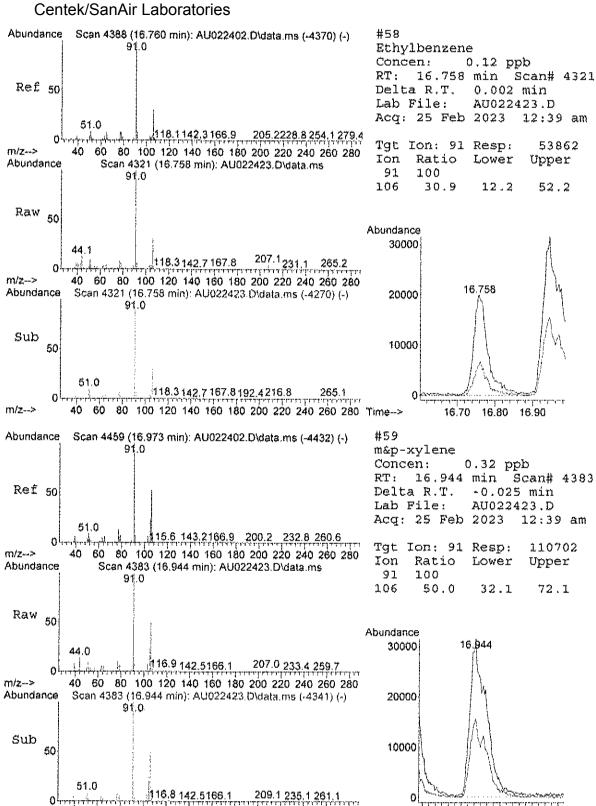



AU022423.D A223_1UG.M Thu Mar 23 07:31:25 2023

Page 62 of 201



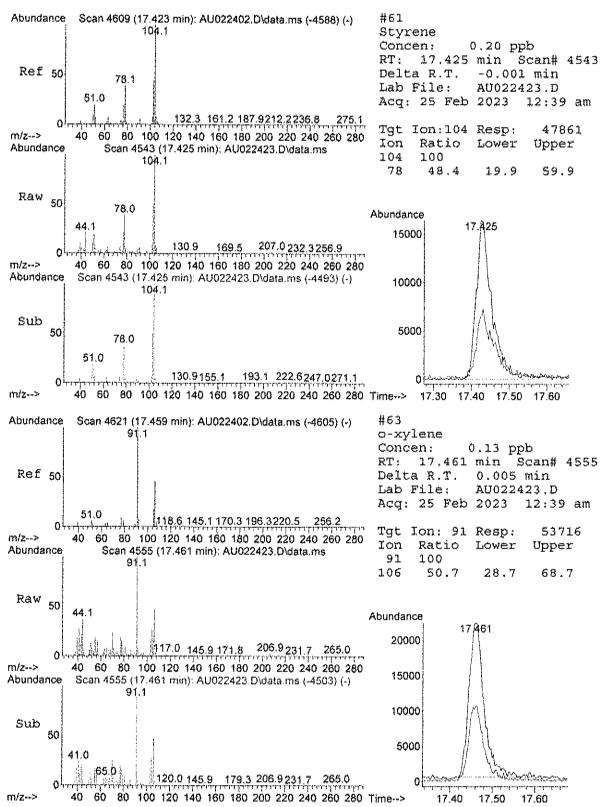




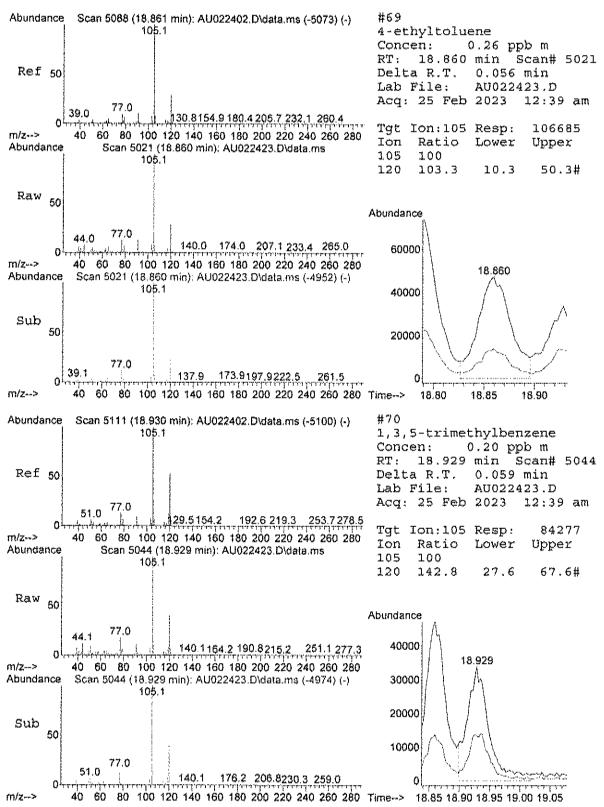
0

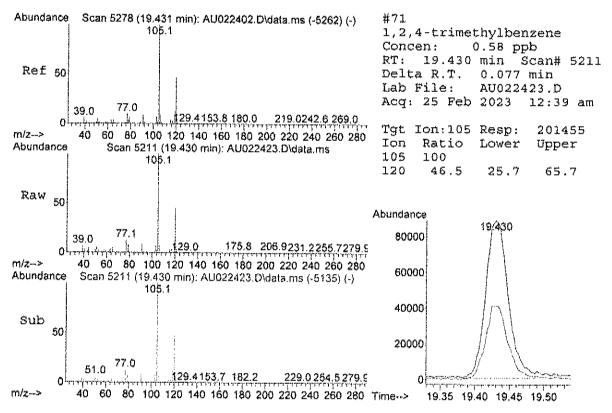
Yan waataa

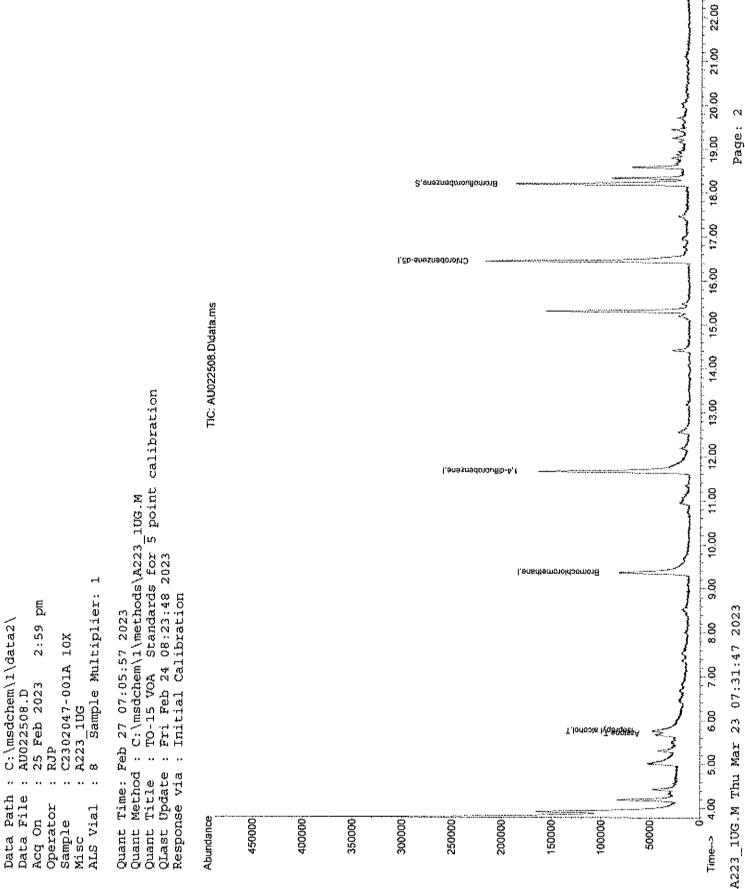
16.80 16.90 17.00 17.10


et la carla

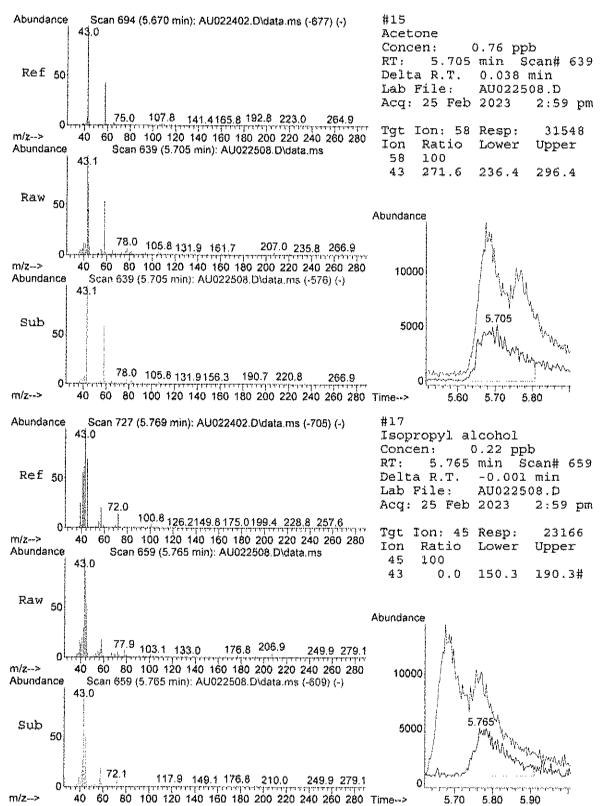
40 60 80 100 120 140 160 180 200 220 240 260 280 Time-->


m/z-->


Page 68 of 201



Centek/SanAir Laborato	ories Quantitation	Repor	t (QTR	eviewed)		
Data Path : C:\msdchem\l\dat Data File : AU022508.D Acq On : 25 Feb 2023 2:						
Operator : RJP Sample : C2302047-001A 10 Misc : A223_1UG ALS Vial : 8 Sample Multi)X plier: 1					
Quant Time: Feb 27 07:05:57 Quant Method : C:\msdchem\1\ Quant Title : TO-15 VOA St QLast Update : Fri Feb 24 08 Response via : Initial Calib	methods\A223 andards for :23:48 2023	10G. 5 poi	M nt calibra	tion		
Compound	R.T.	QION	Response	Conc Uni	ts Dev	(Min)
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.365 11.658	128 114	53202 282214	1.00 p 1.00 p	dq	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.193 Range 70	95 - 130	117494 Recove:	0.86 p ry =	pb 86.00%	0.03
Target Compounds 15) Acetone 17) Isopropyl alcohol	5.705 5.765	58 45	31548 23166	0.76 p 0.22 p	svQ dq # dq	alue 97 1
(#) = qualifier out of rang						



Page 73 of 201

-

23.00

Date: 23-Mar-23

CLIENT:	Leader Consulting Set	vices	. '		lient Sample ID:		na (MS-MSD)
Lab Order:	C2302047				Tag Number:		ч р
Project:	Vails Gate - Tesla				Collection Date:		2023
Lab ID:	C2302047-002A				Matrix:		
	C.4302047-002A				WEATTX:	AIK	
Analyses	*****	Result	DL	Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		FI	D			Analyst:
Lab Vacuum In		-2			"Нд		2/22/2023
Lab Vacuum Ot	ut	-30			"Hg		2/22/2023
UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	та	-15			Analyst: RJP
1,1,1-Trichloroe		< 0.15	0.15		ppb∨	1	2/25/2023 1:23:00 AM
1,1,2,2-Tetrachi	oroethane	< 0,15	0.15		ppbV	1	2/25/2023 1:23:00 AM
1,1,2-Trichloroet		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
1,1-Dichioroetha	300	< 0.15	0.15		ррь∨	1	2/25/2023 1:23:00 AM
1,1-Dichloroethe	ene	< 0.040	0.040		ppbV	1	2/25/2023 1:23:00 AM
1,2,4-Trichlorob	enzene	< 0.15	0.15		ρpbV	1	2/25/2023 1:23:00 AM
1,2,4-Trimethylb	enzene	0.61	0.15		ppbV	1	2/25/2023 1:23:00 AM
1,2-Dibromoetha	300	< 0.15	0.15		Vdqq	1	2/25/2023 1:23:00 AM
1.2-Dichloroben:	zene	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
1,2-Dichloroetha	ine	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
1,2-Dichloroprop	ane	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
1,3,5-Trimethylb	enzene	0.20	0.15		ppbV	1	2/25/2023 1:23:00 AM
1,3-butadiene		< 0.15	0.15		Vdqq	1	2/25/2023 1:23:00 AM
1,3-Dichloroben:	zene	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
1,4-Dichloroben;	zene	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
1,4-Dioxane		< 0.30	0.30		ppbV	1	2/25/2023 1:23:00 AM
2,2,4-trimethylpe	entane	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
4-ethyltoluene		0.28	0.15		ppbV	1	2/25/2023 1:23:00 AM
Acetone		6,1	3.0		ppbV	10	2/25/2023 3:43:00 PM
Allyl chloride		< 0.15	0,15		ppbV	1	2/25/2023 1:23:00 AM
Benzene		0.42	0.15		ppbV	1	2/25/2023 1:23:00 AM
Benzyl chloride		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Bromodichlorom	ethane	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Bromoform	we have	< 0.15	0.15		ppbV		
Bromomethane		< 0.15				1	2/25/2023 1:23:00 AM
Carbon disulfide			0.15		ppbV	1	2/25/2023 1:23:00 AM
Carbon tetrachio		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Chlorobenzene		0.070	0.030		ppbV	1	2/25/2023 1:23:00 AM
Chloroethane		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Chloroform		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Chloromethane		< 0.15	0.15		ppb∨	1	2/25/2023 1:23:00 AM
		0.64	0,15		Vdqq	1	2/25/2023 1:23:00 AM
cis-1,2-Dichloroe		< 0.040	0.040		ppbV	1	2/25/2023 1:23:00 AM
cis-1,3-Dichlorop	ropene	< 0.15	0.16		ppbV	1	2/25/2023 1:23:00 AM
Cyclohexane		0.39	0.15		ppbV	1	2/25/2023 1:23:00 AM
Dibromochlorom	ethane	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Ethyl acetate		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM

Qualifiers:		Results reported are not blank corrected
-------------	--	--

DL Detection Limit

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J — Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 3 of 6

Date: 23-Mar-23

Centek/Sa	nAir Technologi	es Laborat	tory		Date:	23-W	ar=23
CLIENT: Lab Order: Project: Lab ID:	Leader Consulting Se C2302047 Vails Gate - Tesla C2302047-002A			C	Client Sample 1D: Tag Number: Collection Date: Matrix:	1200 2/21/:	
Analyses		Result	DL	Quai	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс	-15			Analyst: RJP
Ethylbenzene		0.12	0.15	J	ppbV	1	2/25/2023 1:23:00 AM
Freon 11		0.25	0.15		ppbV	1	2/25/2023 1:23:00 AM
Freon 113		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Freon 114		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Freon 12		< 0.15	0.15		opbV	1	2/25/2023 1:23:00 AM
Heptane		0.26	0.15		Vdqq	1	2/25/2023 1:23:00 AM
Hexachloro-1,3	-butadiene	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Hexane		0.21	0.15		ppbV	1	2/25/2023 1:23:00 AM
Isopropyl alcoh	ol	1.8	0.15		ррЪ∨	1	2/25/2023 1:23:00 AM
m&p-Xylene		0.34	0.30		Vđqq	1	2/25/2023 1:23:00 AM
Methyl Butyl Ke	tone	< 0.30	0.30		ppbV	1	2/25/2023 1:23:00 AM
Methyl Ethyl Ke	tone	1.1	0.30		ppbV	1	2/25/2023 1:23:00 AM
Methyl Isobutyl		< 0.30	0.30		ppbV	1	2/25/2023 1:23:00 AM
Methyl tert-buty	l ether	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Methylene chlor	ride	0.27	0.15		ppbV	1	2/25/2023 1:23:00 AM
o-Xylene		0.14	0.15	J	ррbV	1	2/25/2023 1:23:00 AM
Propylene		< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM
Styrene		0.20	0.15		ppbV	1	2/25/2023 1:23:00 AM
Tetrachloroethy	lene	< 0.15	0.15		ppbV	1	2/25/2023 1:23:00 AM

0,15

0.15

0.15

0.15

0.030

0.15

0.15

0.040

47-124

ppbV

Vdqq

ppbV

ppbV

γ¢qq

ppbV

ppbV

ppbV

%REC

< 0.15

< 0,15

< 0.15

< 0.030

< 0.15

< 0.15

< 0.040

93.0

0.82

Qualifiers:	
-------------	--

Tetrahydrofuran

Trichloroethene

Vinyl acetate

Vinyl Bromide

Vinyl chloride

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Surr: Bromofluorobenzene

.

Toluene

Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

1

1

1

1

1

1

1

1

1

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

2/25/2023 1:23:00 AM

Date: 23-Mar-23

CLIENT:	Leader Consulting Services	
Lab Order:	C2302047	Tag Number: 1200
Project:	Vails Gate - Tesla	Collection Date: 2/21/2023
Lab ID:	C2302047-002A	Matrix: AlR
Analyses	Result	DL Qual Units DF Date Analyzed

UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15	5		Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	2/25/2023 1:23:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1,0	ug/m3	1	2/25/2023 1:23:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	2/25/2023 1:23:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	2/25/2023 1:23:00 AM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	2/25/2023 1:23:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	2/25/2023 1:23:00 AM
1,2,4-Trimethylbenzene	3.0	0.74	ug/m3	1	2/25/2023 1:23:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	2/25/2023 1:23:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/25/2023 1:23:00 AM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	2/25/2023 1:23:00 AM
1.2-Dichloropropane	< 0.69	0.69	ug/m3	1	2/25/2023 1:23:00 AM
1,3,5-Trimethylbenzene	0.98	0.74	ug/m3	1	2/25/2023 1:23:00 AM
1,3-butadiene	< 0.33	0.33	ug/m3	1	2/25/2023 1:23:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	2/25/2023 1:23:00 AM
1.4-Dichlorobenzene	< 0.90	0.90	սց/ու3	1	2/25/2023 1:23:00 AM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	2/25/2023 1:23:00 AM
2.2.4-trimethylpentane	< 0.70	0.70	ug/m3	1	2/25/2023 1:23:00 AM
4-ethyltoluene	1.4	0.74	ug/m3	1	2/25/2023 1:23:00 AM
Acetone	14	7,1	ug/m3	10	2/25/2023 3:43:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	2/25/2023 1:23:00 AM
Benzene	1.3	0.48	ug/m3	1	2/25/2023 1:23:00 AM
Benzyl chloride	< 0.86	0.86	ug/m3	1	2/25/2023 1:23:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	2/25/2023 1:23:00 AM
Bromoform	< 1,6	1.6	ug/m3	1	2/25/2023 1:23:00 AM
Bromomethane	< 0.58	0.58	ug/m3	1	2/25/2023 1:23:00 AM
Carbon disulfide	< 0.47	0.47	ug/m3	1	2/25/2023 1:23:00 AM
Carbon tetrachloride	0.44	0.19	ug/m3	1	2/25/2023 1:23:00 AM
Chlorobenzene	< 0.69	0.69	vg/m3	1	2/25/2023 1:23:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	2/25/2023 1:23:00 AM
Chloroform	< 0.73	0.73	ug/m3	1	2/25/2023 1:23:00 AM
Chioromethane	t.3	0.31	ug/m3	1	2/25/2023 1:23:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	2/25/2023 1:23:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	2/25/2023 1:23:00 AM
Cyclohexane	1.3	0.52	ug/m3	1	2/25/2023 1:23:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	2/25/2023 1:23:00 AM
Ethyl acetate	< 0.54	0.54	ug/m3	1	2/25/2023 1:23:00 AM
Ethylbenzene	0.52	0.65	ug/m3	1	2/25/2023 1:23:00 AM
Freon 11	1.4	0.84	ug/m3	1	2/25/2023 1:23:00 AM
Freon 113	< 1.1	1.1	ug/m3	1	2/25/2023 1:23:00 AM
Freon 114	< 1,0	1.0	ug/n13	1	2/25/2023 1:23:00 AM

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits E Estimated Value above quantitation range

J Analyte detected below quantitation timit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 3 of 6

..... CLIENT: Leader Consulting Services Lab Order: C2302047 VallerCa Ducia mounts

Date: 23-Mar-23

Client Sample ID: Summa (MS-MSD)

Tag Number: 1200

Project:	Vails Gate - Tesla				Collection Dat	e: 2/21/2	2023
Lab ID:	C2302047-002A				Matri	x: AIR	
Analyses		Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.	2UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс)-15			Analyst: RJF
Freon 12		< 0.74	0.74		ug/m3	1	2/25/2023 1:23:00 AM
Heptane		1.1	0.61		ug/m3	1	2/25/2023 1:23:00 AM
Hexachioro-1,	3-butadiene	< 1.6	1,6		ug/m3	1	2/25/2023 1:23:00 AM
Hexane		0.74	0.53		ug/m3	1	2/25/2023 1:23:00 AM
Isopropyl alco	hol	4.5	0.37		ug/m3	1	2/25/2023 1:23:00 AM
m&p-Xylene		1.5	1.3		ug/m3	1	2/25/2023 1:23:00 AM
Methyl Butyl K	Cetone	< 1.2	1.2		ug/m3	1	2/25/2023 1:23:00 AM
Methyl Ethyl K	letone	3.3	0.88		ug/m3	1	2/25/2023 1:23:00 AM
Methyl (sobut)	/I Ketone	< 1.2	1.2		ug/m3	1	2/25/2023 1:23:00 AM
Methyl tart-but	tyl ether	< 0.54	0.64		ug/m3	1	2/25/2023 1:23:00 AM
Methylene chi	oride	0.94	0.52		ug/m3	1	2/25/2023 1:23:00 AM
o-Xylene		0.61	0.65	J	ug/m3	1	2/25/2023 1:23:00 AM
Propylene		< 0.26	0.26		ug/m3	1	2/25/2023 1:23:00 AM
Styrene		0.85	0.64		ug/m3	1	2/25/2023 1:23:00 AM
Tetrachloroeth	ylene	< 1.0	1,0		ug/m3	1	2/25/2023 1:23:00 AM
Tetrahydrofura	n	< 0.44	0.44		սց/m3	1	2/25/2023 1:23:00 AM
Toluene		3.1	0.57		ug/m3	1	2/25/2023 1:23:00 AM
trans-1,2-Dich	loroethene	< 0.59	0.69		ug/m3	t	2/25/2023 1:23:00 AM
trans-1,3-Dich	loropropene	< 0.68	0.68		ug/m3	1	2/25/2023 1:23:00 AM
Trichloroethen	lė.	< 0.16	0.16		ug/m3	1	2/25/2023 1:23:00 AM
Vinyl acetate		< 0.53	0.53		ug/m3	1	2/25/2023 1:23:00 AM
Vinyl Bromide		< 0.66	0.66		ug/m3	1	2/25/2023 1:23:00 AM
Vinyl chloride		< 0.10	0.10		ug/m3	1	2/25/2023 1:23:00 AM

Qualifiers:

.

Results reported are not blank corrected

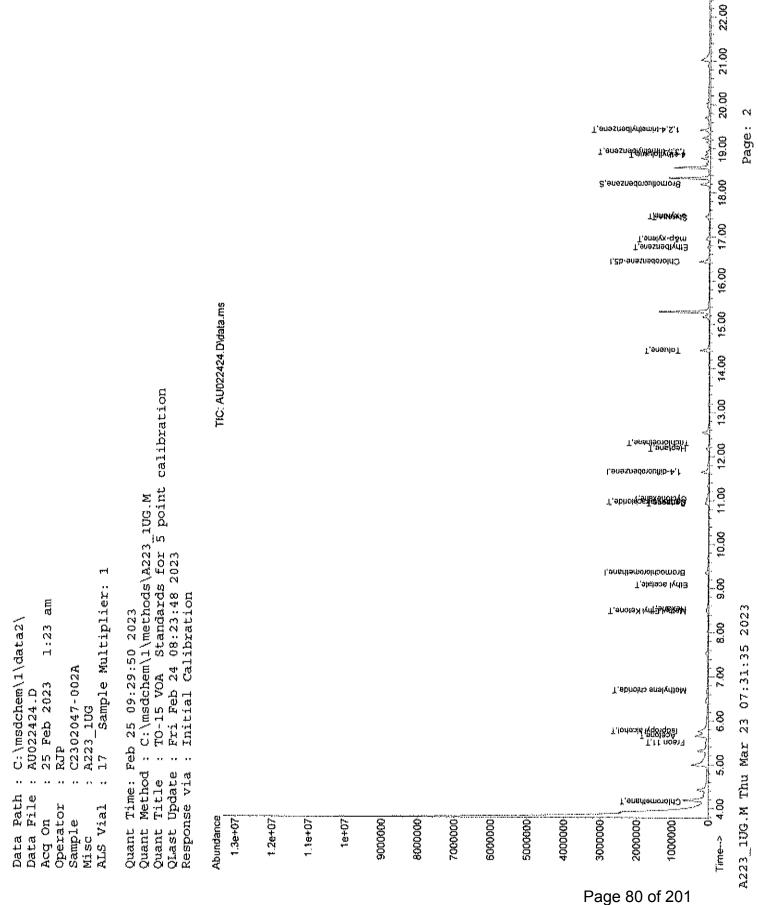
DL. Detection Limit

11 Holding times for preparation or analysis exceeded.

JN Non-routine analyte, Quantitation estimated,

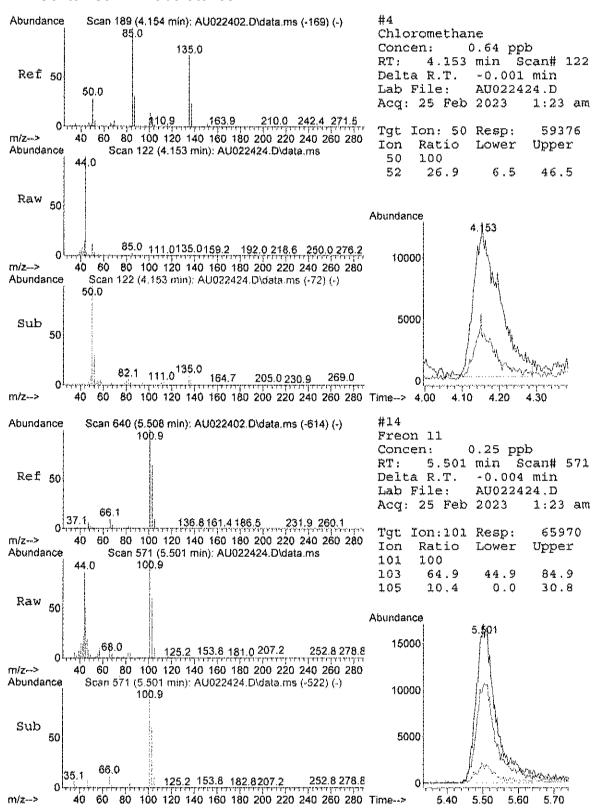
- S Spike Recovery outside accepted recovery limits
- 8 Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

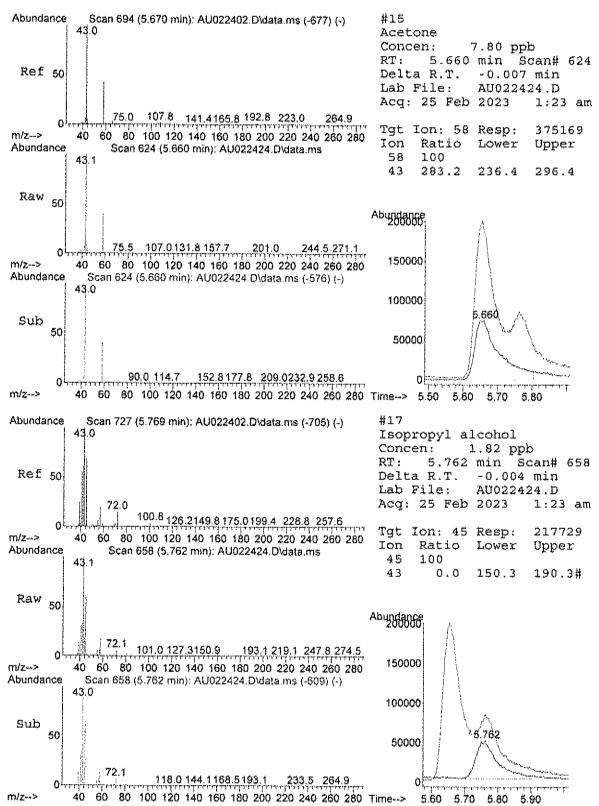

ş Analyte detected below quantitation limit

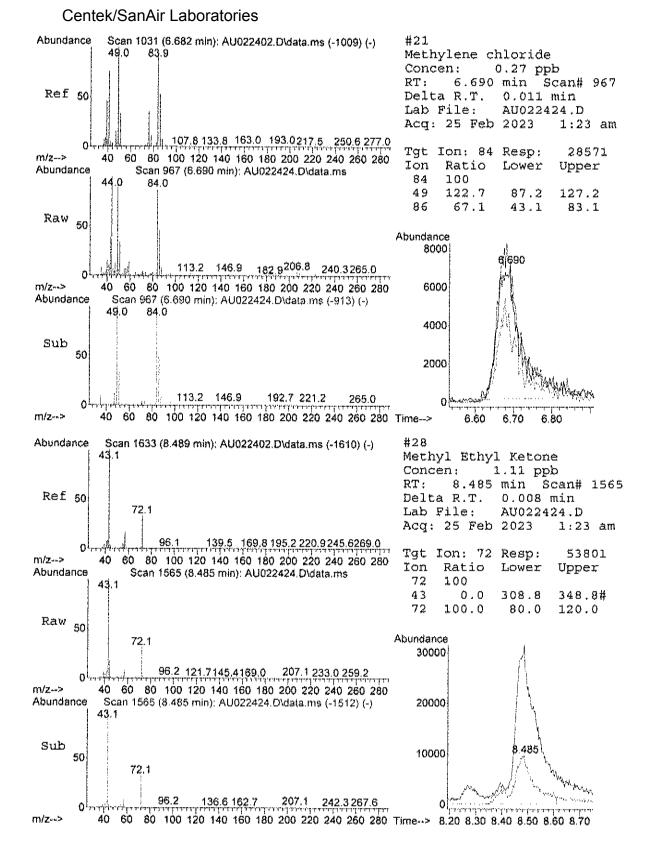
ND Not Detected at the Limit of Detection SC

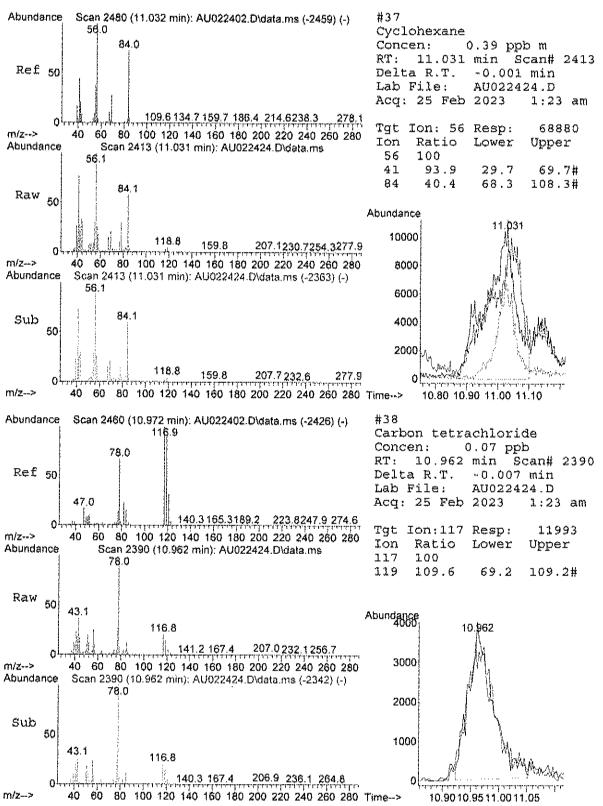
Sub-Contracted


Centek/SanAir Laborator	ies antitation	Report	L (QT Rev	iewed)	
Data Path : C:\msdchem\l\data Data File : AU022424.D Acq On : 25 Feb 2023 1:2 Operator : RJP Sample : C2302047-002A Misc : A223_lUG ALS Vial : 17 Sample Multi	3 am				
Quant Time: Feb 25 09:29:50 2 Quant Method : C:\msdchem\1\m Quant Title : TO-15 VOA Sta QLast Update : Fri Feb 24 08: Response via : Initial Calibr	ethods\A221 ndards for 23:48 2023	3_1UG.N 5 poir	4 ht calibrati	on	
Compound	R.T.	QIon	Response C	onc Units	Dev(Min)
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5					
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.190 Range 70	95 - 130	143853 Recovery	0.93 ppb = 93.	0.03 00%
<pre>21) Methylene chloride 28) Methyl Ethyl Ketone 30) Hexane 31) Ethyl acetate 37) Cyclohexane 38) Carbon tetrachloride 39) Benzene 43) Heptane 44) Trichloroethene 51) Toluene 58) Ethylbenzene 59) m&p-xylene 61) Styrene 63) o-xylene 63) o-xylene 69) 4-ethyltoluene 70) 1,3,5-trimethylbenzene</pre>	6.690 8.485 8.527 9.076 11.031 10.962 10.938 12.174 12.301 14.408 16.755 16.942 17.434 17.458 18.863 18.929	43 84 72 57 43 56 117 78 43 130 92 91 104 91 105 105	28571 53801 39469 27485 68880m 11993 147808 42348 3861 180589 53512 114920 48821 58147 114195m 83859m	0.27 ppb 1.11 ppb 0.21 ppb 0.21 ppb 0.12 ppb 0.39 ppb 0.42 ppb 0.42 ppb 0.42 ppb 0.26 ppb 0.26 ppb 0.26 ppb 0.22 ppb 0.34 ppb 0.34 ppb 0.34 ppb 0.34 ppb 0.20 ppb 0.12 ppb 0.32 ppb 0.34 ppb 0.34 ppb 0.34 ppb 0.34 ppb 0.34 ppb 0.34 ppb	# 1 89 # 1 96 # 78 94 77 # 86 93 100 98 91 97
71) 1,2,4-trimethylbenzene	19.430	105	213243	0.61 ppb	99

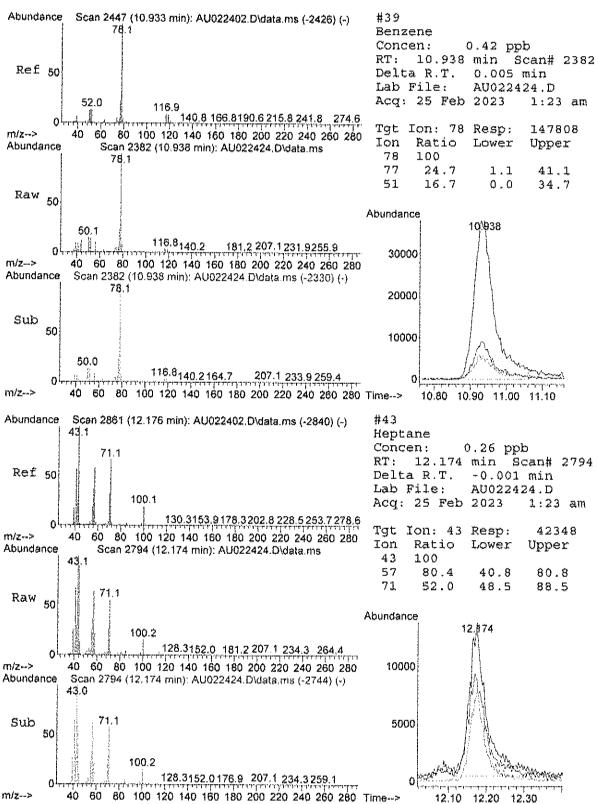
(#) = qualifier out of range (m) = manual integration (+) = signals summed

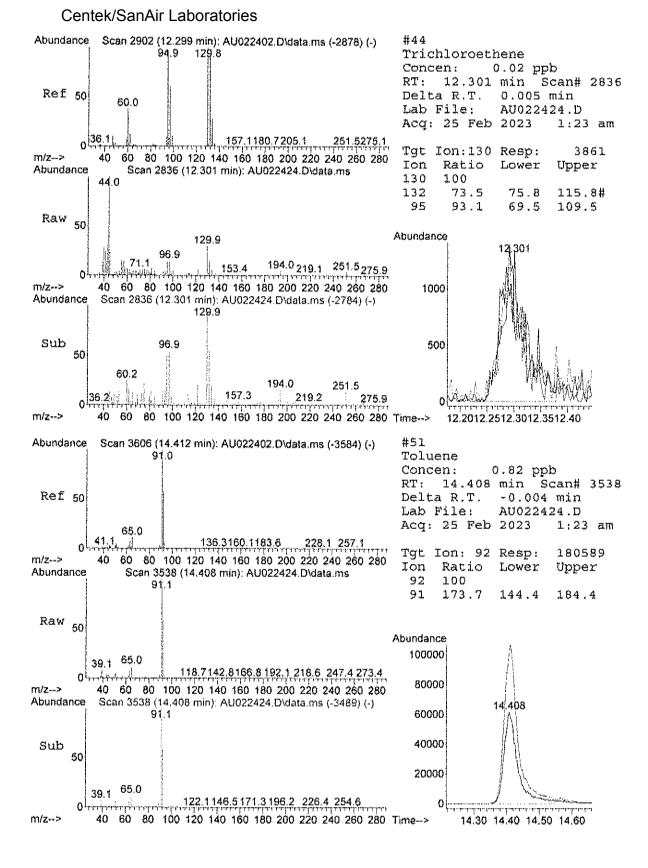


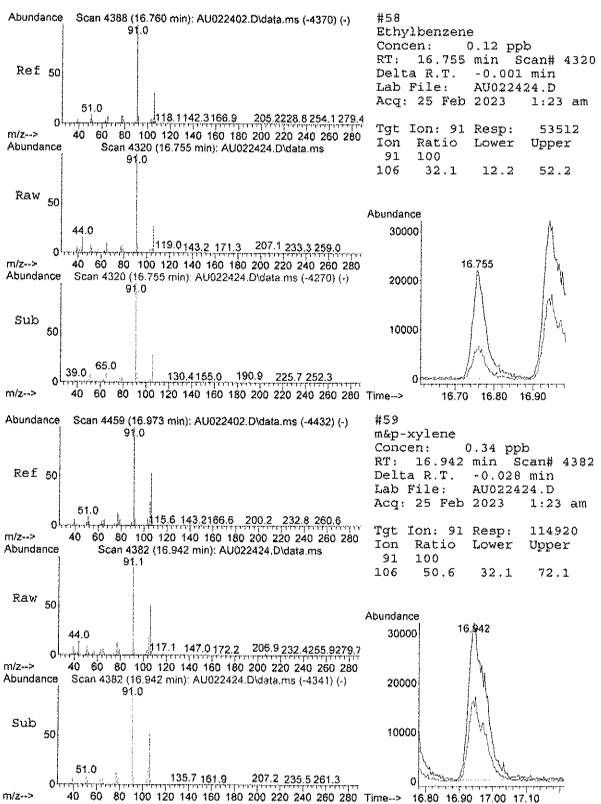

23.00

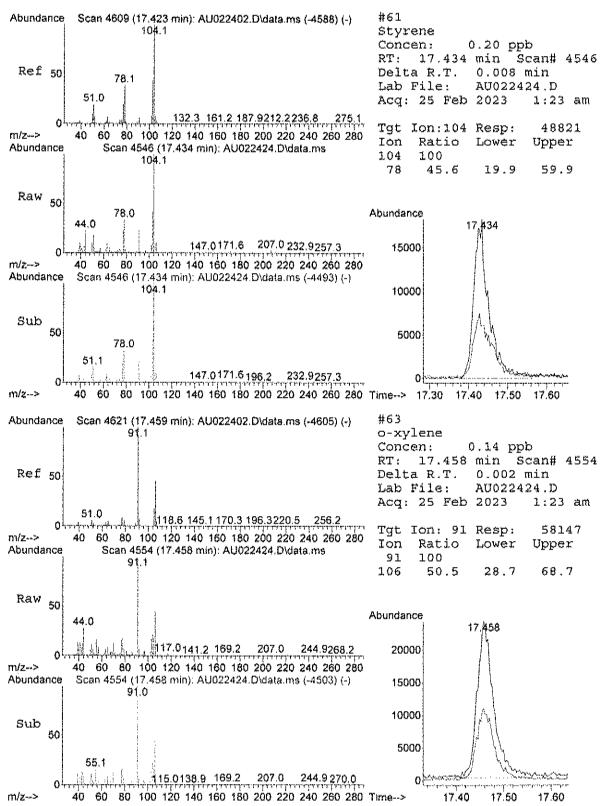


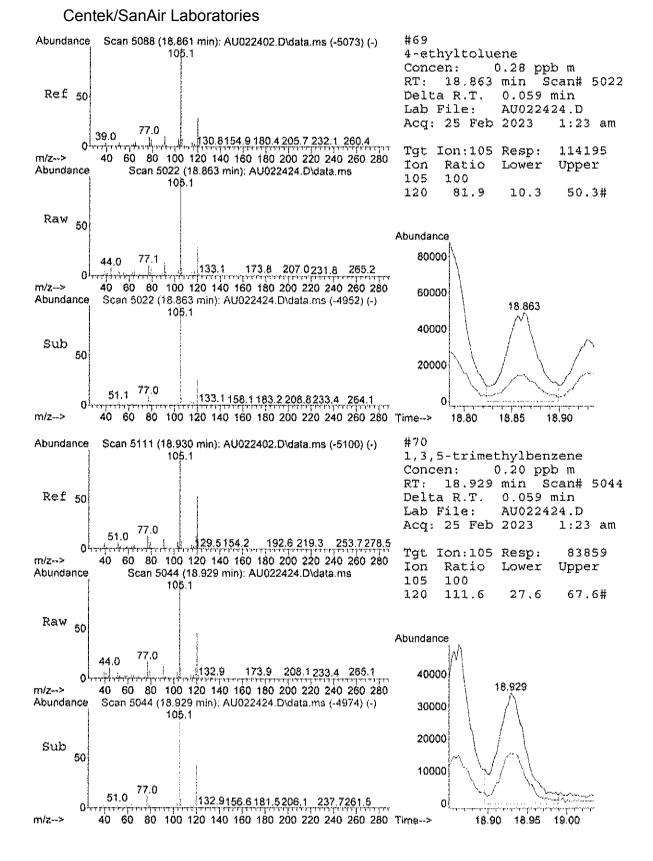
AU022424.D A223_1UG.M Thu Mar 23 07:31:38 2023

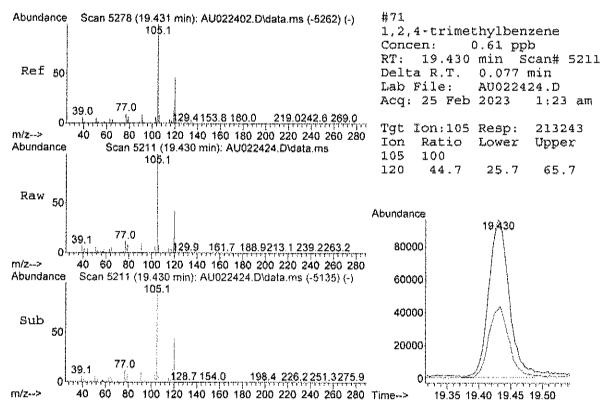


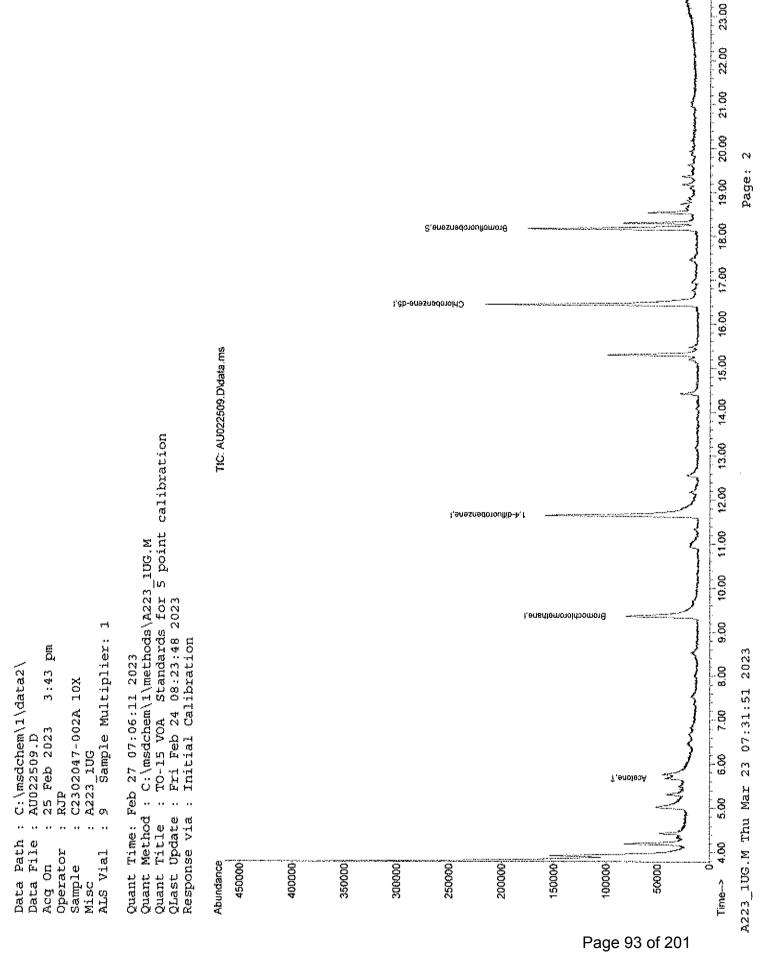






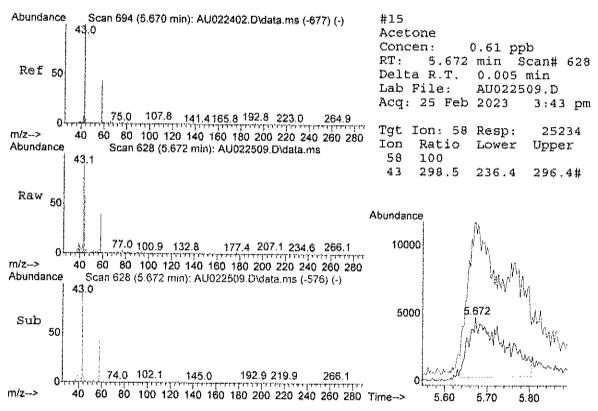

AU022424.D A223_1UG.M Thu Mar 23 07:31:41 2023





Page 12

Page 90 of 201



Centek/SanAir Laborator	ies uantitation	Repor	t (QT Rev	iewed)	
Data Path : C:\msdchem\1\data Data File : AU022509.D Acq On : 25 Feb 2023 3:4					
Operator : RJP Sample : C2302047-002A 101 Misc : A223_1UG ALS Vial : 9 Sample Multip	43 pm K				
MISC : A223_1UG ALS Vial : 9 Sample Multip	plier: 1				
Quant Time: Feb 27 07:06:11 2 Quant Method : C:\msdchem\1\r Quant Title : TO-15 VOA Sta QLast Update : Fri Feb 24 08 Response via : Initial Caliba	nethods\A22 andards for 23:48 2023	3_1UG.: 5 poi:	M nt calibrati	on	
<i>a</i> 1					
Compound	R.T.	QION	Response C	onc Units	Dev(Min)
Compound Internal Standards					
Internal Standards					
Internal Standards					
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5					
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds	9.359 11.649 16.440	128 114 117	52746 271711 214717	1.00 ppb 1.00 ppb 1.00 ppb	0.00 0.00 0.00
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds 65) Bromofluorobenzene	9.359 11.649 16.440 18.172	128 114 117 95	52746 271711 214717 108162	1.00 ppb 1.00 ppb 1.00 ppb	
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.359 11.649 16.440 18.172	128 114 117 95	52746 271711 214717 108162	1.00 ppb 1.00 ppb 1.00 ppb	
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000 Target Compounds	9.359 11.649 16.440 18.172 Range 70	128 114 117 95 - 130	52746 271711 214717 108162 Recovery	1.00 ppb 1.00 ppb 1.00 ppb 0.85 ppb = 85	0.00 0.00 0.00 0.01
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000 Target Compounds	9.359 11.649 16.440 18.172 Range 70	128 114 117 95 - 130	52746 271711 214717 108162 Recovery	1.00 ppb 1.00 ppb 1.00 ppb 0.85 ppb = 85	0.00 0.00 0.00 0.01
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000 Target Compounds	9.359 11.649 16.440 18.172 Range 70 5.672	128 114 117 - 95 - 130 58	52746 271711 214717 108162 Recovery 25234	1.00 ppb 1.00 ppb 1.00 ppb 0.85 ppb = 85 0.61 ppb	0.00 0.00 0.09 0.01 00% Qvalue # 82

- Indian

Date: 23-Mar-23

CLIENT: Lab Order:	Leader Consulting Se C2302047	rvices		Client Saw Tag N	umber: 48		ık
Project:	Vails Gate - Tesla			Collectio	n Date: 2/	21/202	3
Lab 1D:	C2302047-003A				Matrix: A		
Analyses		Result	ÐL	Qual Units	D	F	Date Analyzed
IELD PARAME	TERS		FL	D			Analyst:
Lab Vacuum In		+24		"Hg			2/22/2023
Lab Vacuum Out		+24		"Hg			2/22/2023
UG/M3 W/ 0.2U	G/M3 CT-TCE-VC-DCE	-1,1DCE	то-	15			Analyst: RJF
1,1,1-Trichloroeth		< 0.15	0.15	Vđqq	1		2/24/2023 11:55:00 PN
1,1,2,2-Tetrachio	roethane	< 0.15	0.15	ppbV	1		2/24/2023 11:55:00 PM
1,1,2-Trichloroeth	าอกอ	< 0.15	0.15	ppbV	1		2/24/2023 11:55:00 PN
1,1-Dichloroethar	ne -	< 0.15	0.15	ppbV	1		2/24/2023 11:55:00 PN
1,1-Dichloroether	10	< 0.040	0.040	ppbV	1		2/24/2023 11:55:00 PN
1,2,4-Trichlorobe	nzene	< 0.15	0.15	ppb∨	1		2/24/2023 11:55:00 PN
1,2,4-Trimethylbe	nzene	< 0.15	0.15	₽₽₽V	1		2/24/2023 11:55:00 PN
1,2-Dibromoethal	ne	< 0.15	0.15	Vdqq	1		2/24/2023 11:55:00 PM
1,2-Dichlorobenze	ene	< 0.15	0.15	ppbV	1		2/24/2023 11:55:00 PM
1,2-Dichloroethar	10	< 0.15	0.15	ppbV	1		2/24/2023 11:55:00 PM
1,2-Dichloropropa		< 0.15	0.15	Vdqq	1		2/24/2023 11:55:00 PM
1,3,5-Trimethylbe		< 0.15	0.15	ppbV	1		2/24/2023 11:55:00 PN
1,3-butadiene		< 0.15	0.15	ppbV	, 1		2/24/2023 11:55:00 PM
1,3-Dichlorobenze	ene	< 0.15	0.15	ppbV	1		2/24/2023 11:55:00 PN
1.4-Dichlorobenze	∋ue	< 0.15	0.15	ppbV	1		2/24/2023 11:55:00 PM
1,4-Dioxane		< 0.30	0.30	ppbV	, 1		2/24/2023 11:55:00 PN
2,2,4-trimethylper	itane	< 0.15	0.15	ppb√	1		2/24/2023 11:55:00 PN
4-ethyltoluene		< 0.15	0.15	ppbV	, 1		2/24/2023 11:55:00 PN
Acetone		0.12	0.30	J ppbV	1		2/24/2023 11:55:00 PN
Ailyl chloride		< 0.15	0.15	- ppb∨	1		2/24/2023 11:55:00 PM
Benzene		< 0.15	0.15	ppbl	1		2/24/2023 11:55:00 PN
Benzyl chloride		< 0.15	0.15	ppb∨	1		2/24/2023 11:55:00 PN
Bromodichlorome	thane	< 0.15	0.15	ppbV	, 1		2/24/2023 11:55:00 PM
Bromoform		< 0.15	0.15	ppbV	1		2/24/2023 11:55:00 PM
Bromomethane		< 0.15	0.15	ppbV	, 1		2/24/2023 11:55:00 PN
Carbon disulfide		< 0.15	0.15	ppbV	1		2/24/2023 11:55:00 PM
Carbon tetrachiori	de	< 0.030	0.030	ppbV	1		2/24/2023 11:55:00 PM
Chlorobenzene		< 0.15	0.000	voqq Voqq	1		2/24/2023 11:55:00 PM
Chloroethane		< 0.15	0.15	Vaqq	1		2/24/2023 11:55:00 PM
Chloroform		< 0.15	0.15	ppbV	1		2/24/2023 11:55:00 PM
Chloromethane		< 0.15	0.15	ppbV	1		2/24/2023 11:55:00 PM
sis-1,2-Dichloroet	hene	< 0.040	0.040	ppbV	1		2/24/2023 11:55:00 PM
is-1,3-Dichloropr		< 0.15	0.040	ppbV ppbV	1		24/2023 11:55:00 PM
Cyclohexane		< 0.15	0.15	voqq Vdqq	, 1		24/2023 11:55:00 PM
Dibromochlorome	thane	< 0.15	0.15	vaqq Vaqq	י 1		24/2023 11:55:00 PM
Ethyl acetate		< 0.15	0,15	ppbV	1		224/2023 11:55:00 PM

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits S

E — Estimated Value above quantitation range

1 Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 5 of 6

Date: 23-Mar-23

CLIENT: Leader Consult Lab Order: C2302047 Project: Vails Gate - Te				ie ID: Trip E nber: 483 Date: 2/21/2	483		
Lab ID: C2302047-003	A		Ma	atrix: AIR			
Analyses	Result	DL Q	ual Units	DF	Date Analyzed		
UG/M3 W/ 0.2UG/M3 CT-TCE-V	C-DCE-1,1DCE	TO-1:	5		Analyst: RJP		
Ethylbenzene	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Freon 11	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Freon 113	< 0.15	0.15	Vdqq	1	2/24/2023 11:55:00 PM		
Freon 114	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Freon 12	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Heptane	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Hexachloro-1,3-butadiene	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Hexane	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
isopropyl alcohol	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
m&p-Xylene	< 0.30	0.30	ppbV	1	2/24/2023 11:55:00 PM		
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	2/24/2023 11:55:00 PM		
Methyl Ethyl Ketone	< 0.30	0.30	ppbV	1	2/24/2023 11:65:00 PM		
Methyl Isobutyl Ketone	< 0.30	0.30	ppbV	1	2/24/2023 11:55:00 PM		
Methyl tert-butyl ether	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Methylene chloride	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
o-Xylene	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Propylene	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Styrene	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Tetrachloroethylene	< 0,15	0.15	ppbV	3	2/24/2023 11:55:00 PM		
Tetrahydrofuran	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Toluene	< 0.15	0.15	Vdqq	1	2/24/2023 11:55:00 PM		
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
trans-1,3-Dichloropropene	< 0.15	0.15	Vdqq	1	2/24/2023 11:55:00 PM		
Trichloroethene	< 0.030	0.030	ppbV	1	2/24/2023 11:55:00 PM		
Vinyl acetate	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Vinyl Bromide	< 0.15	0.15	ppbV	1	2/24/2023 11:55:00 PM		
Vinyl chloride	< 0.040	0.040	ppbV	1	2/24/2023 11:55:00 PM		
Surr: Bromofluorobenzene	75.0	47-124	%REC	1	2/24/2023 11:55:00 PM		

Qualifiers:

- Results reported are not blank corrected
- DL Detection Limit
- H Holding times for preparation or analysis exceeded
- JN = Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

SC Sub-Contracted

Date: 23-Mar-23

CLIENT:	Leader Consultin	g Services		С	lient Sampl	e ID: Trip I	Blank
Lab Order:	C2302047					ber: 483	
Project:	Vails Gate - Tesh	1			Collection I		2023
Lab ID:	C2302047-003A					trix: AIR	
Analyses	······	Result	ÐL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-	DCE-1,1DCE	тс)-15			Analyst: RJP
1,1,1-Trichloroe	thane	< 0.82	0.82		ug/m3	1	2/24/2023 11:55:00 PM
1,1,2,2-Tetrachi	oroethane	< 1.0	1.0		ug/m3	1	2/24/2023 11:55:00 PM
1,1,2-Trichloroe	thane	< 0.82	0.82		ug/m3	1	2/24/2023 11:55:00 PM
1,1-Dichloroetha	ane	< 0.61	0.61		ug/m3	1	2/24/2023 11:55:00 PM
1.1-Dichloroethe	ène	< 0.16	0.16		ug/m3	1	2/24/2023 11:55:00 PM
1.2.4-Trichlorob	enzene	< 1.1	1,1		ug/m3	1	2/24/2023 11:55:00 PM
1,2,4-Trimethyft	enzene	< 0.74	0.74		ug/m3	1	2/24/2023 11:55:00 PM
1,2-Dibromoeth	äne	< 1.2	1.2		ug/m3	1	2/24/2023 11:55:00 PM
1,2-Dichloroben	zene	< 0.90	0.90		ug/m3	1	2/24/2023 11:55:00 PM
1.2-Dichloroetha	ne	< 0.61	0.61		นฐ/กา3	1	2/24/2023 11:55:00 PM
1,2-Dichloroprop	bane	< 0.69	0.69		ug/m3	1	2/24/2023 11:55:00 PM
1.3.5-Trimethylb	enzene	< 0.74	0.74		ug/m3	1	2/24/2023 11:55:00 PM
1,3-butadiene		< 0.33	0.33		ug/m3	1	2/24/2023 11:55:00 PM
1,3-Dichloroben	zene	< 0.90	0.90		ug/m3	1	2/24/2023 11:55:00 PM
1,4-Dichloroben	2ene	< 0.90	0,90		บg/กา3	1	2/24/2023 11:55:00 PM
1,4-Dioxane		< 1.1	1.1		ug/m3	1	2/24/2023 11:55:00 PM
2,2,4-trimethylpe	entane	< 0.70	0.70		ug/m3	1	2/24/2023 11:55:00 PM
4-ethyltoluene		< 0.74	0.74		ug/m3	1	2/24/2023 11:55:00 PM
Acetone		0.28	0.71	Ŀ	ug/m3	1	2/24/2023 11:55:00 PM
Allyl chloride		< 0.47	0.47	5	ug/m3	1	2/24/2023 11:55:00 PM
Benzene		< 0.48	0.48		ug/m3	1	2/24/2023 11:55:00 PM
Benzyl chloride		< 0.86	0.86		ug/m3	1	2/24/2023 11:55:00 PM
Bromodichlorom	ethane	< 1.0	1.0		ug/m3	1	
Bromoform	001010	< 1.6	1.6		-		2/24/2023 11:55:00 PM
Bromomethane		< 0.58	0.58		ug/m3	1	2/24/2023 11:55:00 PM
Carbon disulfide		< 0.47	0.58		ug/m3	1	2/24/2023 11:55:00 PM
Carbon tetrachic	ride	< 0.19			ug/m3	1	2/24/2023 11:55:00 PM
Chlorobenzene	inde		0.19		ug/m3	1	2/24/2023 11:55:00 PM
Chloroethane		< 0.69	0.69		ug/m3	1	2/24/2023 11:55:00 PM
Chloreform		< 0.40	0.40		ug/m3	1	2/24/2023 11:55:00 PM
Chloromethane		< 0.73	0.73		ug/m3	1	2/24/2023 11:55:00 PM
	***	< 0.31	0.31		ug/m3	1	2/24/2023 11:55:00 PM
cis-1,2-Dichloroe		< 0.16	0.16		ug/m3	1	2/24/2023 11:55:00 PM
cis-1,3-Dichlorop	ropene	< 0.68	0.68		ug/m3	1	2/24/2023 11:55:00 PM
Cyclohexane		< 0.52	0.52		ug/m3	1	2/24/2023 11:55:00 PM
Dibromochlorom	emane	< 1,3	1.3		ug/m3	1	2/24/2023 11:55:00 PM
Ethyl acetate		< 0.54	0.54		ug/m3	1	2/24/2023 11:55:00 PM
Ethylbenzene		< 0.65	0.65		ug/m3	1	2/24/2023 11:55:00 PM
Freon 11		< 0.84	0.84		ug/m3	1	2/24/2023 11:55:00 PM
Freon 113		< 1.1	1,1		ug/m3	1	2/24/2023 11:55:00 PM
Freon 114		< 1.0	1.0		ug/m3	1	2/24/2023 11:56:00 PM
Qualifiers:	Results reported are no	of blank corrected		ŀ	 B Analyte de	tected in the as	sociated Method Blank
DI	-			t.			antitation range
H	Holding times for pret	paration or analysis exce	eded	J			antitation limit
JN		Juantitation estimated.	- + 1-	N		ed at the Limit	
S	Spike Recovery outsid					ee at the ranne	Page 5 of

Date: 23-Mar-23

Gate - Tesla 2047-003A		Collection Date: Matrix:		1
				}
2047		Tag Number:	483	
r Consulting Services		Client Sample ID:	Trip Blanl	k
,	-	r Consulting Services	r Consulting Services Client Sample ID:	r Consulting Services Client Sample ID: Trip Blan

1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15	5		Analyst: RJP
Freon 12	< 0.74	0.74	ug/m3	1	2/24/2023 11:55:00 PM
Heptane	< 0.61	0.61	ug/m3	1	2/24/2023 11:55:00 PM
Hexachloro-1,3-butadiene	< 1.6	1,6	ug/m3	1	2/24/2023 11:55:00 PM
Hexane	< 0.53	0.53	ug/m3	1	2/24/2023 11:55:00 PM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	2/24/2023 11:55:00 PM
m&p-Xylene	< 1.3	1,3	ug/m3	1	2/24/2023 11:55:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	2/24/2023 11:55:00 PM
Methyl Ethyl Ketone	< 0.88	0.88	ug/m3	t	2/24/2023 11:55:00 PM
Methyl isobutyl Ketone	< 1.2	1.2	ug/m3	1	2/24/2023 11:55:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	2/24/2023 11:55:00 PM
Methylene chloride	< 0.52	0.52	ug/m3	1	2/24/2023 11:55:00 PM
o-Xylene	< 0.65	0.65	ug/m3	1	2/24/2023 11:55:00 PM
Propylene	< 0.26	0.26	ug/m3	1	2/24/2023 11:55:00 PM
Styrene	< 0.64	0.64	ug/m3	1	2/24/2023 11:55:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	2/24/2023 11:55:00 PM
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	2/24/2023 11:55:00 PM
Toluene	< 0.57	0.57	ug/m3	1	2/24/2023 11:55:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	2/24/2023 11:55:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	2/24/2023 11:55:00 PM
Trichloroethene	< 0.16	0.16	ug/m3	1	2/24/2023 11:55:00 PM
Vinyl acetate	< 0.53	0.53	ug/m3	1	2/24/2023 11:55:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	2/24/2023 11:55:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	2/24/2023 11:55:00 PM

Qualifiers:

Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

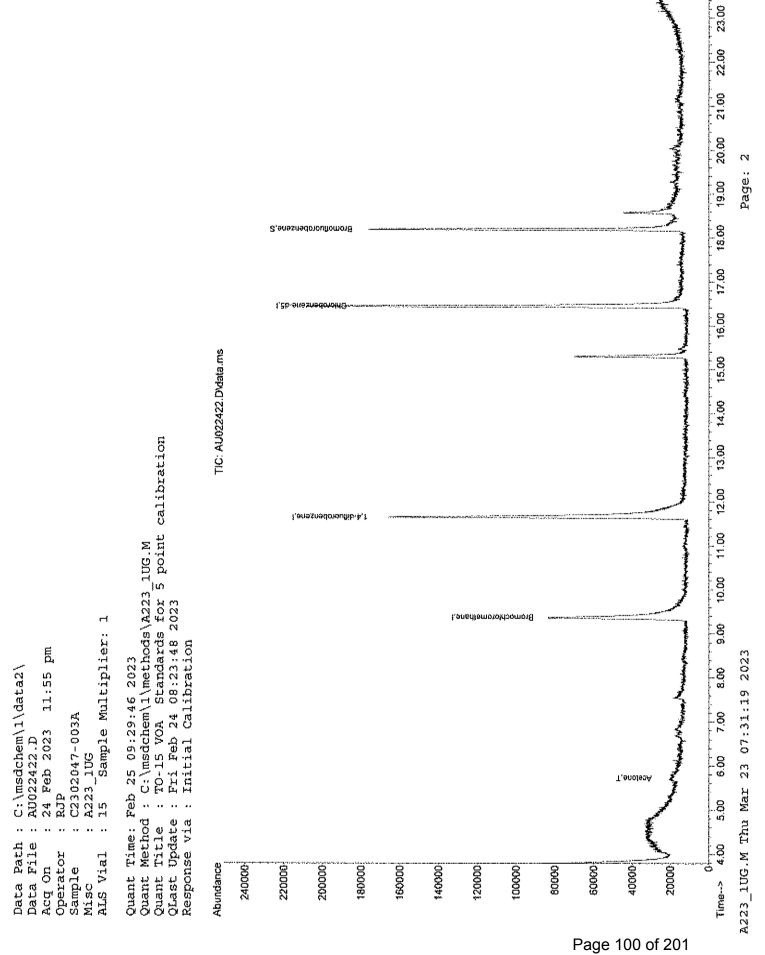
JN = Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

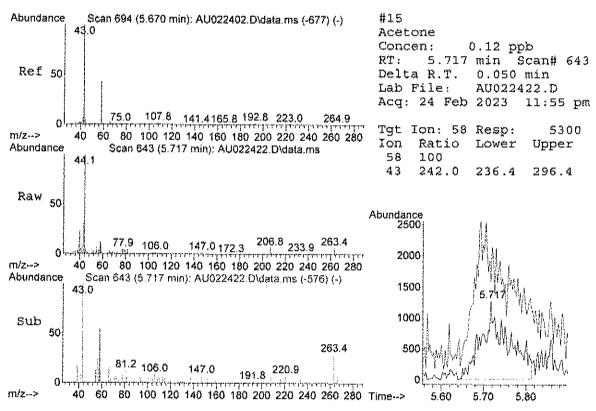
42 Estimated Value above quantitation range

J — Analyte detected below quantitation limit


ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 6 of 6


Centek/SanAir Laboratorio	es Intitation Report	(QT Reviewed)	
Data Path : C:\msdchem\l\data2 Data File : AU022422.D Acq On : 24 Feb 2023 11:55 Operator : RJP Sample : C2302047-003A Misc : A223_1UG ALS Vial : 15 Sample Multip Quant Time: Feb 25 09:29:46 20) pm plier: 1		
Quant Method : C:\msdchem\1\me Quant Title : TO-15 VOA Stan QLast Update : Fri Feb 24 08:2 Response via : Initial Calibra	thods\A223_1UG.M dards for 5 poin 3:48 2023	t calibration	
Compound		Response Conc Units	
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5			
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.190 95 Range 70 - 130	96399 0.75 ppb Recovery = 75.	0.03 00%
Target Compounds 15) Acetone	5.717 58	5300 0.12 ppb	Qvalue 87
(#) = qualifier out of range			

Centek/SanAir Laboratories

Centek/SanAir Laboratories

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

STANDARDS DATA

.

.

ı

Page 102 of 201

.

.

GC/MS VOLATILES-WHOLE AIR

÷

METHOD TO-15

.

.

INITIAL CALIBRATION

.

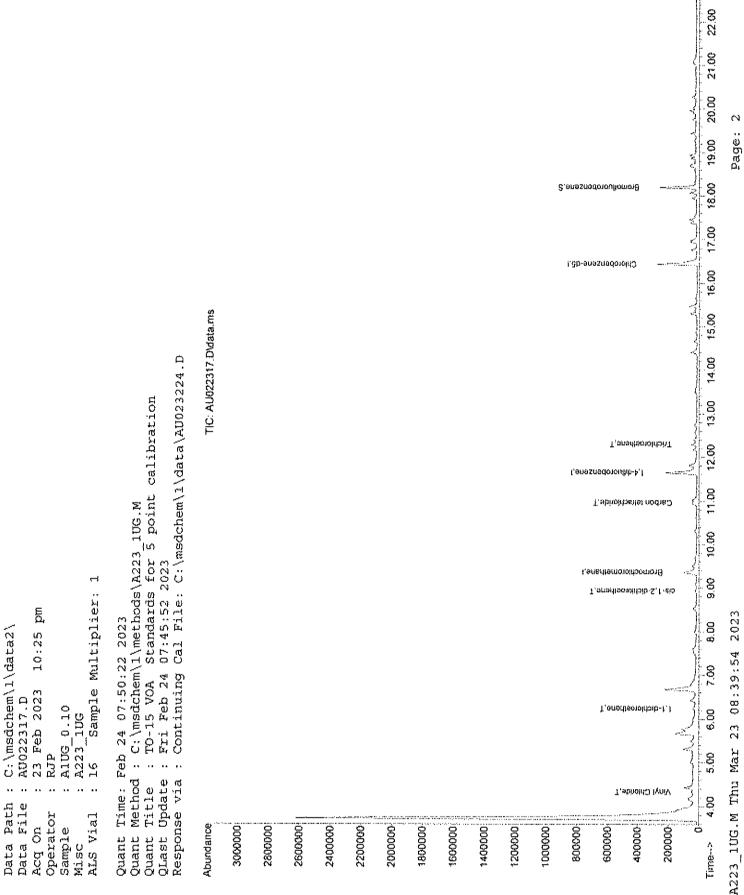
Page 103 of 201

Response Factor Report Instrument 1

.75=AU023223.D		
5.D		2.41 3.43
AU02322		0.604 0.516
0.50=	000000000000000000000000000000000000000	0.591 0.508
221.D	8404886677488668967488668968466686668666686	0.600 0.510
= AU023	00000000000000000000000000000000000000	0.602 0.516
0.30		0.596 0.492
3220.D	- 14 - 4 - 1 - 0 - 0 - 1 - 0	0.507
ion 15=AU02 0 =AU02	二年11年11日の1000日400101440144014010000mm10 1055544946105000418010550100480105840000000000	0.602
calibration 17.D 0.15= 26.D 2.0 =		0.538
		0.547
2023 2023 50= .50=	3 2.218 3 2.218	
em/1/methods/ M Standards for 03 13:46:17 20 03 13:46:17 20 Calibration AU023218.D 0.1 AU023225.D 1.5	1.168 1.443 2.403	
<pre>msdchem\1\metho 3_1UG.M VOA Standards i Mar 03 13:46: itial Calibrati 1.25=AU023218.D 1.25=AU023225.D</pre>	ane sene sene	
Isdch 10G VOA . Mar .tial .04= 25=	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	cnlor
	Bromochlorometh Propylene Freon 12 Chloromethane Freon 14 Vinyl Chloride Butane 1,3-butadiene Bromomethane Chloroethane Ethanol Acrolein Vinyl Bromide Freon 11 Acrolein Vinyl Bromide Freon 11 Actonel A	L, L, L-TTICDIOY Cyclohexane
Method Path Method File Title : Last Update Response Via Calibration 1.0 =AU02322		
Method Method Title Last Ur Respons Calibra 0.03≝AU 1.0 ≞AU		

r-1

Page:


A223_1UG.M Thu Mar 23 08:37:55 2023

Response Factor Report Instrument 1

3,75 10,73 3,95 4,10 2,73 2,73 2,73 2,73 2,73 2,93	004 04	, n a o o o o u 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	801941W0490
ion 4 1.031 0.526 0.524 0.521 0.533 0.530 0.520 4 1.031 1.024 1.031 1.024 1.022 1.023 1.031 1 0.274 0.286 0.307 0.301 0.309 0.311 0.300 7 1.629 1.606 1.601 1.589 1.603 1.598 1.595 7 1.629 1.606 1.601 1.589 1.603 1.598 1.595 2 0.476 0.486 0.499 0.492 0.503 0.508 0.490 4 0.427 0.426 0.423 0.415 0.417 0.419 0.483 8 0.407 0.390 0.402 0.387 0.391 0.391 0.403 9 0.588 0.584 0.575 0.591 0.592 0.596 0.584	7 0.396 0.406 0.420 0.424 0.433 0.443 0.41 2 0.279 0.300 0.305 0.313 0.327 0.332 0.30 1 0.427 0.417 0.413 0.416 0.415 0.408 0.41 	4 0.576 0.574 0.584 0.611 0.574 1 0.576 0.541 0.568 0.568 0.558 0.558 1 0.553 0.561 0.568 0.568 0.558 0.558 0.558 2 0.659 0.656 0.568 0.558 0.558 0.558 0.558 7 0.596 0.579 0.556 0.554 0.556 0.546 0.57 3 1.100 1.092 1.085 1.085 1.086 1.09 3 1.100 1.092 1.085 1.779 1.836 1.824 1.75 4 1.283 1.328 1.334 1.351 1.379 1.399 1.30 3 0.823 0.841 0.835 0.875 0.874 0.82	3 0.907 0.933 0.931 0.964 1.004 1.045 0.922 5 0.457 0.469 0.479 0.494 0.516 0.538 0.476 6 1.932 1.972 1.568 1.554 1.591 1.623 1.552 6 1.932 1.972 1.948 2.001 2.050 2.124 1.963 1 0.596 0.626 0.631 0.624 0.661 0.676 0.595 8 1.044 1.036 1.038 1.037 1.067 1.067 1.036 6 0.482 0.474 0.475 0.480 0.521 0.535 0.567 0.497 3 0.464 0.474 0.475 0.480 0.521 0.521 0.472 1.521 1.648 1.674 1.667 1.780 1.854 1.594	3 1.450 1.635 1.647 1.659 1.538 1.642 1.611 8 1.291 1.364 1.358 1.396 1.465 1.576 1.336 8 0.702 0.757 0.773 0.802 0.847 0.901 0.739 6 0.188 0.238 0.295 0.330 0.369 0.329 0.265 0 0.620 0.692 0.710 0.724 0.792 0.865 0.674 2 1.355 1.432 1.430 1.453 1.530 1.631 1.386 7 0.700 0.748 0.752 0.806 0.853 0.850 0.730 6 0.181 0.143 0.191 0.174 0.211 0.208 0.167 4 0.397 0.347 0.332 0.376 0.456 0.457 0.371 2 0.675 0.684 0.675 0.686 0.713 0.738 0.685
<pre>m\l\methods\ M Standards for 5 point calibrat . 0.466 0.522 0.516 0.513 0.54 . 0.251 0.36 . 0.238 0.23 . 0.549 0.754 0.607 0.439 0.43 . 0.546 0.546 0.59</pre>	. 384 0.3 . 278 0.2 . 423 0.4 . 423 0.4 - ISTD	524 0.5 539 0.6 677 0.6 603 0.6 603 0.6 116 1.1 116 1.1 145 1.2 1739 0.7	766 0.8 418 0.4 407 1.5 579 1.5 558 0.5 999 1.0 415 0.4 1415 0.5 1415 0.5 1	1.754 1.55 1.040 1.19 0.521 0.60 0.521 0.17 0.444 0.54 1.042 1.21 0.515 0.61 0.346 0.314 0.312 0.314 0.312 0.655 0.65
<pre>Path : C:\msdche File : A223_1UG.</pre>	cis-1,3-dichlo trans-1,3-dich 1,1,2-trichlor Chlorobenzene-d5 Toluene Methyl Isobuty	Dibromochlorow Methyl Butyl K 1,2-dibromoethane Tetrachloroeth Chlorobenzene Ethylbenzene m&p-xylene Nonane	Styrene Bromoform o-xylene Cumene Bromofluoroben 1,1,2,2-tetrac Propylbenzene 2-Chlorotoluene 4-ethyltoluene	<pre>1,3,5.trimetny 1,2,4-trimethy benzyl chloride 1,4-dichlorobe 1,2,3-trimethy 1,2,4-trichlor Naphthalene Hexachloro-1,3 Out of Range</pre>
Wethod Wethod Wethod 71t1e 33) T 33) T 42) T 42) T 45] T 45] T 45] T 7	447) 49,47 550 11,17 71 71 71 71 71 71 71 71 71 71 71 71 7		6680 2680 2680 2680 2680 2680 2680 2680	

ies antitation	Repor	t (QT Re	eviewed)	
5 mm				
ethods\A22 ndards for 45:52 2023	5 poi	nt calibrat		
R.T.	QIon	Response	Conc Units	3 Dev(Min)
9.360 11.650	128 114	63211 364973	1.00 pp 1.00 pp	
18.194 Range 70	95 - 130	151390 Recover	1qq 00.0 90 = v	0.00 0.00%
4.331 6.231 8.927 10.963 12.301 22.796	62 96 61 117 130 128	9391 9897 14023m 18824 22153m 9697m	0.12 ppt 0.10 ppt 0.12 ppt 0.10 ppt 0.14 ppt 0.10 ppt	Qvalue 96 93 93 93 93
	2\ 5 pm plier: 1 023 ethods\A222 ndards for 45:52 2023 File: C:\r R.T. 9.360 11.650 16.435 18.194 Range 70	antitation Repor 2\ 5 pm plier: 1 023 ethods\A223_1UG. ndards for 5 poi 45:52 2023 File: C:\msdchen R.T. QIon 9.360 128 11.650 114 16.435 117 18.194 95 Range 70 - 130	antitation Report (QT Re 2\ 5 pm plier: 1 023 ethods\A223 lUG.M ndards for 5 point calibrat 45:52 2023 File: C:\msdchem\l\data\At R.T. QIon Response 9.360 128 63211 11.650 114 364973 16.435 117 280628 18.194 95 151390 Range 70 - 130 Recover	antitation Report (QT Reviewed) 2 5 pm plier: 1 023 ethods\A223_1UG.M ndards for 5 point calibration 45:52_2023 File: C:\msdchem\1\data\AU023224.D R.T. QIon Response Conc Units 9.360_128_632111.00 ppf

(#) = qualifier out of range (m) = manual integration (+) = signals summed

23.00

T,ensientrigeM

Data Path : C:\msdchem\1\data2\ Data File : AU022318.D Acq On : 23 Feb 2023 11:07 pm Operator : RJP Sample : A1UG_0.04 Misc : A223 lUG Misc : A223 1UG ALS Vial : 17 Sample Multiplier: 1 Quant Time: Feb 24 07:49:58 2023 Quant Method : C:\msdchem\l\methods\A223_1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\l\data\AU023224.D Compound R.T. QIon Response Conc Units Dev(Min)

 Internal Standards
 1) Bromochloromethane
 9.365
 128
 59612
 1.00 ppb
 0.01

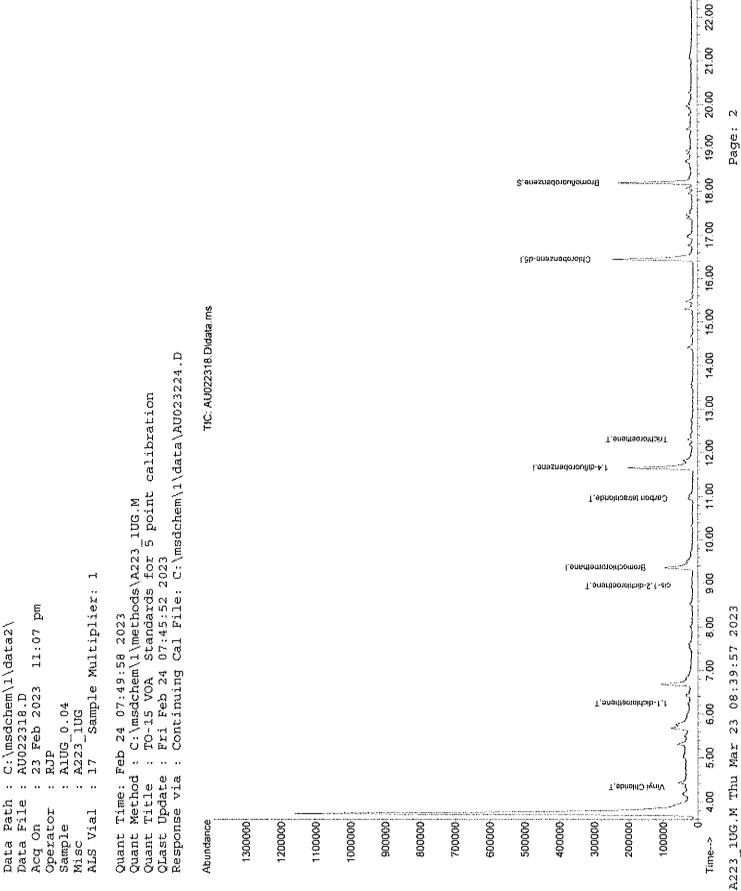
 35) 1,4-difluorobenzene
 11.653
 114
 347162
 1.00 ppb
 0.00

 50) Chlorobenzene-d5
 16.441
 117
 267185
 1.00 ppb
 0.00

 System Monitoring Compounds 65) Bromofluorobenzene 18.197 95 141518 0.88 ppb 0.01 Spiked Amount 1.000 Range 70 - 130 Recovery = 88.00% Target Compounds Ovalue

 6) Vinyl Chloride
 4.334
 62
 2786
 0.04 ppb
 72

 18) 1,1-dichloroethene
 6.246
 96
 3441
 0.04 ppb
 95


 29) cis-1,2-dichloroethene
 8.942
 61
 5729m
 0.05 ppb

 38) Carbon tetrachloride
 10.954
 117
 7255
 0.04 ppb
 96

 44) Trichloroethene
 12.301
 130
 10465
 0.07 ppb
 93

(#) = qualifier out of range (m) = manual integration (+) = signals summed

23.00

Centek/SanAir Laboratorio ونیع	es Intitation	Repor	t (QT Rev:	Lewed)			
Data Path : C:\msdchem\l\data2 Data File : AU022319.D Acq On : 23 Feb 2023 11:49 Operator : RJP Sample : AlUG_0.03 Misc : A223_1UG ALS Vial : 18 Sample Multip	מרני (
Quant Time: Feb 24 07:49:19 20 Quant Method : C:\msdchem\1\me Quant Title : TO-15 VOA Star QLast Update : Fri Feb 24 07:4 Response via : Continuing Cal)23 thods\A22 dards for 15:52 2023	5 poi	nt calibratio		D		
Compound	R.T.						
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-dS			59534 342642 262998				2 2 0
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18,200 Range 70	95 - 130	140089 Recovery	0.89 	dqq . 88	0.02 00%	
Target Compounds 38) Carbon tetrachloride 44) Trichloroethene	10.978 12.311	117 130	4794 5642m A	0.03	dqq dqq	Qvalue 82	
(#) = qualifier out of range	(m) = man	ual in	tegration (+)	• = 9j	.gnal	s summed	

23.00 22.00 21.00 20.00 ŝ 19.00 18.00 2,enesnedoroullomota 17.00 t,db-enesnederoldO 16.00 15.00 TIC: AU022319.D\data.ms 14.00 : Continuing Cal File: C:\msdchem\l\data\AU023224.D Feb 24 07:49:19 2023
1 : C:\msdchem\l\methods\A223 1UG.M
 : T0-15 VOA Standards for 5 point calibration 13.00 Τ. αθαρίασια αιτά τη τ 12.00 Lanagradoroublo-P.P 11.00 T ebnokhoenet nooteů 10.00 Fri Feb 24 07:45:52 2023 (,aned)amoral/panara8 AIUG_0.03 A223_1UG 18 Sample Multiplier: 1 00.6 Бġ 23 D8:40:01 2023 8.00 C:\msdchem\l\data2\ 11:49 7.00 23 Feb 2023 AU022319.D 6.00 A223 lUG.M Thu Mar 5.00 RJP .. Quant Method Qlast Update Response via Quant Time: Title ٠. ٠. 4 08 Data Path Data File Operator ALS Vial 800000 700000 1000000 900006 400000 300000 200000 100000 600000 500000 ò Acq On Sample Abundance 1200000 100000 Quant Time--> Misc

Page 111 of 201

Page:

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\l\data2\ Data File : AU022320.D Acg On : 24 Feb 2023 12:32 am Operator : RJP Sample : AlUG_0.15 Misc : A223_1UG ALS Vial : 19 Sample Multiplier: 1 Quant Time: Feb 24 07:48:58 2023 Quant Method : C:\msdchem\l\methods\A223_1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\l\data\AU023224.D Compound R.T. QIon Response Conc Units Dev(Min) ·
 Internal Standards
 9.363
 128
 63111
 1.00
 ppb
 0.00

 35)
 1,4-difluorobenzene
 11.647
 114
 358589
 1.00
 ppb
 0.00

 50)
 Chlorobenzene-d5
 16.438
 117
 275654
 1.00
 ppb
 0.00
 System Monitoring Compounds 65) Bromofluorobenzene 18.191 95 153867 0.93 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 93.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 93.00%

 Target Compounds
 Qvalue

 2) Propylene
 3.908
 41
 10483m
 0.15 ppb

 3) Freon 12
 4.151
 85
 46139
 0.18 ppb
 97

 4) Chloromethane
 4.157
 50
 14651
 0.18 ppb
 98

 6) Vinyl Chloride
 4.340
 62
 14966
 0.19 ppb
 93

 7) Butane
 4.439
 39
 10929
 0.22 ppb
 91

 9) Bronomethane
 4.758
 94
 1404
 0.18 ppb
 81

 12) Accolein
 5.672
 18661
 0.17 ppb
 81

 11) Ethanol
 5.772
 45
 18661
 0.14 ppb

 13) Vinyl Bromide
 5.2741
 106
 13880
 0.19 ppb
 100

 14) Freon 11
 5.502
 101
 46805
 0.19 ppb
 11

 13) Rotone
 6.431
 101
 41380
 0.18 ppb
 11

 16) Pentane
 5.772
 Target Compounds Qvalue

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\l\data2\ Data File : AU022320.D Acq On : 24 Feb 2023 12:32 am Operator : RJP Sample : A1UG_0.15 Misc : A223_1UG ALS Vial : 19 Sample Multiplier: 1 Quant Time: Feb 24 07:48:58 2023 Quant Method : C:\msdchem\l\methods\A223 lUG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\1\data\AU023224.D CompoundR.T. QionResponseConc Units Dev(Min)45)1,2-dichloropropane12.40763233670.16 ppb9446)Bromodichloromethane12.74383293440.14 ppb9747)cis-1,3-dichloropropene13.57775206560.13 ppb9348)trans-1,3-dichloropropene14.34675149710.13 ppb9747)1,1,2-trichloroethane14.41892359040.17 ppb9751)Toluene14.41892359040.17 ppb9752)Methyl Isobutyl Ketone13.49643229710.16 ppb9153)Dibromochloromethane15.38212921660m0.14 ppb54)Methyl Butyl Ketone14.86543222970.16 ppb9155)1,2-dibromoethane15.478164249240.17 ppb9257)Chlorobenzene16.75991667780.14 ppb9958)Ethylbenzene16.75991647780.14 ppb9961)Styrene17.37543305440.14 ppb9962)Monane17.37543305440.14 ppb9963)o-xylene17.46291581940.14 ppb9964)Cumene18.678120177800.13 ppb9465)1,2,2-tetrachloroethane18.678120177800.13 ppb9465)1 Compound R.T. QIon Response Conc Units Dev(Min)

(#) = qualifier out of range (m) = manual integration (+) = signals summed

22.00 21.00 T.onoshedoroldoib-S.f 20.00 T.onexnedovotral brinding tystold T.onexnedivraenin-6,S,T ጠ Page: T.onesnedly/homid-A.S.F 19.00 ទាំកម្ពុជាទាំងអំពីអំពីចក្រុងវិនិត្យទេ; T ស្រុងស្រុងវិនិងអំពីអំពីមក្រុងវិនិត នេ; T 18.00 2,enesnedoroultomor8 T.aneniaonoidaesiai-S.S.r.r T,eneryT,8nergeterviz 17.00 T.onotyx-q.8m T.enesnediyritä T,enaznedoroldD 1,0b-ensinedereinO 16.00 Femeriloomordib-S.f TIC: AU022320 Didata ms 15.00 T. apagagaga pintabib-£. L-soss 14.00 C:\msdchem\l\data\AU023224.D **产创始的药的助的船**-软型够 point calibration 13.00 ា អង្គសំពេល ។ - ពីពុងស្រែលសំពេល ។ - ពីក្នុងសំពេលសំពេល ។ - សំពេលសំពេល ។ - ក្លាយ ។ - ក្រោយ ។ - ក្រាយ ។ - ក្រាយ ។ - ក្រាយ ។ - ក្រោយ ។ - ក្រាយ ។ - ក្រាយ ។ - ក្រាយ ។ - ក្រោយ ។ - ក្រាយ ។ - កា 12.00 T,ensineq(vitemhi-k.S,S Tanaznadorouñib-P,f 11.00 T.abirgiக்கூத்திருகுகுடு 112 A. 10G.N T, sonstheorotholds, S, S T. sensel somothow-1.1.1.1 10.00 (L/) C:/msdchem/1/methods/A223 7.motoroform.7 etranydrofuana,7 Standards for 07:45:52 2023 Lenstlemoxeldcomor6 9.00 Ч Cistina (Conterestinate) (Conterentia) (Contenentia) (Cont Cal File: Sample Multiplier: T, enoteX Ivd33Bitettati aill 2023 24 07:48:58 2023 8.00 T, ene @ puede de la vera C:\msdchem\l\data2\ 12:32 T. Siymatten before S. Netwood 08:40:05 2.0 Continuing Feb 24 T, 1-dichiorodhane.T T, 1-dichiorodhane.T MiykuthiyidmeTchioriae.T Carbon disulide,T TO-15 VOA Feb 2023 AU022320.D 0.15 6.00 100 23 T.Joriush#Teppe T. LT. DODY3 DDL2[V00033] dH8/GL3 Ц. Д Alug_(A223_] T, abimos 6 IyniV Мат 5.00 RJP Feb 34 പ്പ T,ensihemomota T,ensiheoroidO .. + + ThuUpdate Response via Method T,90E的#fromtHT Viry的目的的Lanet Time: Title 4.00 Data Path Data File រី ,ទារទម្រុបលាំង... 1UG.M Operator ALS Vial 160000 600009 200000 180000 120000 100000 80000 40000 Acq On 320000 300000 280000 260000 240000 220000 20000 Sample Abundance 40000 ċ Qlast Quant Quant Quant Misc Time--> A223

T, ensibetud-5. f-otoldoexeH

23.00

T,anskedingev

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\1\data2\ Data File : AU022321.D Acg On : 24 Feb 2023 1:13 am Operator : RJP Sample : AlUG_0.30 Misc : A223_lUG ALS Vial : 20 Sample Multiplier: 1 Quant Time: Feb 24 07:48:34 2023 Quant Method : C:\msdchem\1\methods\A223_1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\1\data\AU023224.D Compound R.T. QIon Response Conc Units Dev(Min) • • • Internal Standards 1) Bromochloromethane9.357128622451.00ppb0.0035) 1.4-difluorobenzene11.6441143594471.00ppb0.0050) Chlorobenzene-d516.4381172814511.00ppb0.00 System Monitoring Compounds65) Bromofluorobenzene18.186951607280.95ppb0.00Spiked Amount1.000Range70 - 130Recovery=95.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 95.00%

 Target Compounds
 Ovalue

 2) Propylene
 3.911
 41
 24339
 0.36 ppb
 98

 3) Freon 12
 4.154
 85
 91513
 0.37 ppb
 99

 4) Chloromethane
 4.151
 50
 29718
 0.36 ppb
 94

 5) Freon 114
 4.154
 85
 91513
 0.37 ppb
 99

 6) Vinyl Chloride
 4.325
 62
 28244
 0.37 ppb
 96

 80 Enomesthane
 4.427
 43
 31397
 0.38 ppb
 96

 10) Chloroethane
 4.911
 64
 11701m
 0.32 ppb
 91

 11) Ethanol
 5.759
 56
 5612m
 0.37 ppb
 92

 13) Vinyl Bromide
 5.776
 42
 29021
 0.40 ppb #
 1

 14) Freon 11
 5.508
 101
 93 ppb
 91
 1

 15) Pactone
 5.775
 42
 29021
 0.40 ppb #
 18 Target Compounds Qvalue

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\l\data2\ Data File : AU022321.D Acq On : 24 Feb 2023 1:13 am Operator : RJP Sample : A1UG_0.30 Misc : A223_1UG ALS Vial : 20 Sample Multiplier: 1 Quant Time: Feb 24 07:48:34 2023 Quant Method : C:\msdchem\l\methods\A223_1UG.M Quant Title : TO-15 VOA Standards for $\overline{5}$ point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\1\data\AU023224.D CompoundR.T. QIONResponseConc Units Dev(Min)45)1,2-dichloropropane12,40763450780.32 ppb9946)Bromodichloromethane12.74683646280.32 ppb9947)cis-1,3-dichloropropene13.57575428470.28 ppb9948)trans-1,3-dichloropropene14.35275303670.26 ppb9049)1,1,2-trichloroethane14.66797454270.30 ppb9751)Toluene14.41292732580.33 ppb9352)Methyl Isobutyl Ketone13.49643609600.32 ppb9053)Dibromochloromethane15.649107533550.32 ppb9654)Methyl Butyl Ketone15.4472164520860.35 ppb9655)1,2-dibromoethane15.64910753550.32 ppb9856)Tetrachloroethylene16.760911443840.31 ppb9959)mdp-xylene16.786912117580.59 ppb9660)Nonane17.37843667290.30 ppb10061)Styrene17.432104695090.28 ppb9962)Bromoform17.540173367060.39 ppb9463)0-xylene18.66110511607680.31 ppb9964)Cumene18.61051600780.31 ppb9965)1,1 Compound R.T. QION Response Conc Units Dev(Min) (#) = qualifier out of range (m) = manual integration (+) = signals summed

8,enernedorouftomor8 T, Sharmi Doorointsenitai-S, S, F, F l, motomotB 1<u>,580%</u>92% ~r+ououAre-T,enslyx-qi8m Т.опохнойүйэЭ Τ, επαχησιατοίας. t,db-sttexnedorold@ T, enertheornordib-S, f T, so sity theorophologies T . T. ອາກະເນືອບກອງອີຟລອກກອງໜູດ. TIC: AU022321.D/data.ms T.anetheoroldona 1,1,2-trichtoroetheorol 7. Melhyl Bulyl Kelone,7 -.... T,eneuto F. enoroxycarolitzib-6, t.-eruett C:\msdchem\1\data\AU023224.D F. ARGIB & WHASH MP 20 The second calibration T, angrading (1990) T, an T,oostroglydlomid-A.S.S I,enesnedoroulfib-A,I 5 point IUG, M T,enedteoroldoib-S,I T,enecteorolicom-1,1.1 ໂອຕຣຕ່)ອດກວດກ່າວວາກອາງ [.ຄາດອ່ອກອ່ອງ [.ຄາດອ່ອກອ່ອງດີນີ້] [.ຄາດສາງປອກອາງແລະກາງ] C:\msdchem\1\methods\A223 Standards for 07:45:52 2023 Cle-1.2-dichtoroethene.T Cal File: Sample Multiplier: TEBORA MINE Hoteo Man аш 24 07:48:34 2023 T.OngWateredgesRe(6)4 C:\msdchem\l\data2\ 1:13 Feb 24 Continuing T, sbabaolex stitrtess, -T, sbabaolex stitrtess, -T, sbalkuzin nodne.C TO-15 VOA 4 Feb 2023 T.CIT ROMANOOM WINS ... AU022321.D кч. Alue_0... ~~_10e T, enertheuriolithaie-1, F 0.30 T, Ioriopie Tyluwerkish Fri L POSIBIS T, FE NOORS Viny! Bromide, T reb R.J.P T,energenorg T,energenord 20 •• Method Response via QLast Update T. anai00.1.600814.0 Work Title Time: T,ennetterrounkiO Data Path Data File Lieneivgens. Operator ALS Vial 2000000 180000 160000 40000 120000 240000 220000-80000 40000 20000 Abundance 360000 340000 320000 300000 280000 260000 60000 Acq On Sample 0000000 Quant Quant Quant Misc

T,enelbatud-6.1-moldbexet-(

Page: 3

23.00

22.00

21.00

20.00

19.00

18,00

17.00

16.00

15.00

14.00

13.00

12.00

11.00

10.00

9.00

8.00

6.00

5.00

4.00

Time-->

2023

0 7.00 08:40:09

2

Mar

A223_1UG.M Thu

T, enexnertovoktoirt-A,S,1T, annindittqn/

T.sonorts ivs

T,enesnedonotdolb-S, f

T.onexnediy/tiemht-5.3(fexter/ord/callab.5, t T.onexnediy/tiemht-5.3(fexter/ord/callab.5,

T, enexnedly dremint A, S, f

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\1\data2\ Data File : AU022322.D Acg On : 24 Feb 2023 1:55 am Operator : RJP Sample : A1UG_0.50 Misc : A223_1UG ALS Vial : 21 Sample Multiplier: 1 Quant Time: Feb 24 07:48:16 2023 Quant Method : C:\msdchem\l\methods\A223 lUG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\l\data\AU023224.D Compound R.T. QION Response Conc Units Dev(Min) Internal Standards
 1) Bromochloromethane
 9.360
 128
 63571
 1.00 ppb
 0.00

 35) 1,4-difluorobenzene
 11.644
 114
 372947
 1.00 ppb
 0.00

 50) Chlorobenzene-d5
 16.435
 117
 294935
 1.00 ppb
 0.00
 System Monitoring Compounds 65) Bromofluorobenzene 18.191 95 175722 0.99 ppb 0.00 Spiked Amount 1.000 Range 70 ~ 130 Recovery = 99.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 2
 99.00%

 Target Compounds
 Ovalue

 2) Propylene
 3.911
 41
 39757
 0.58
 ppb
 100

 3) Freon 12
 4.154
 85
 144540
 0.57
 ppb
 99

 4) Chloromethane
 4.151
 50
 49715
 0.59
 ppb
 94

 5) Freon 114
 4.154
 45
 144540
 0.57
 ppb
 95

 6) Vinyl Chloride
 4.331
 62
 47138
 0.60
 ppb
 92

 70
 1.3-butadiene
 4.427
 43
 46917
 0.59
 ppb
 92

 9) Bronmethane
 4.914
 64
 20603
 0.56
 ppb
 93

 11) Ethanol
 5.769
 45
 69879
 0.60
 ppb
 149

 14) Freon 11
 5.502
 101
 136044
 0.57
 ppb
 93

 15) Acetone
 5.679
 58
 2886
 0.60
 p

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\l\data2\ Data File : AU022322.D Acq On : 24 Feb 2023 1:55 am Operator : RJP Sample : AlUG_0.50 Misc : A223_1UG ALS Vial : 21 Sample Multiplier: 1 Quant Time: Feb 24 07:48:16 2023 Quant Method : C:\msdchem\l\methods\A223 1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\1\data\AU023224.D CompoundR.T. QionResponseConc Units Dev(Min)45)1,2-dichloropropane12.40163758830.51 ppb9346)Bromodichloromethane12.743831095640.51 ppb9747)cis-1,3-dichloropropene13.57175738980.46 ppb9748)trans-1,3-dichloropropene14.34375521160.43 ppb8749)1,1,2-trichloroethane14.412921250470.54 ppb9451)Toluene14.412921250470.55 ppb9953)Dibromochloromethane15.38412984921m0.51 ppb54)Methyl Eutyl Ketone14.86243793100.52 ppb9255)1,2-dibromoethane15.646107971540.55 ppb9956)Tetrachloroethylene16.472164879330.57 ppb9657)Chlorobenzene16.472164879330.57 ppb9958)Ethylbenzene16.973913784411.01 ppb9950)Nonane17.381431213920.52 ppb9862)Bromoform17.546173674500.50 ppb9363)o-xylene17.426104137270.51 ppb8862)Bromoform17.546173674500.50 ppb9363)o-xylene17.945831538960.53 ppb9464)1.1,2 Compound R.T. QION Response Conc Units Dev(Min) ~ ______ 79) Hexachloro-1,3-butadiene 22.742 225 99588 0.51 ppb 99 (#) = qualifier out of range (m) = manual integration (+) = signals summed

A223_1UG.M Thu Mar 23 08:40:12 2023

a

1:55

24 Feb 2023

0.50

AlUG A223

RJP

Operator

Sample

Misc

Acq On

TUG

AU022322.D

Data Path Data File

C:\msdchem\l\data2\

23.00 T,ensibelud-C.1-onsideexeH T.enelerardev T. ene snedoroldoni-4.5 f 22,00 80 2 T, an experimentation T, t20,00 F.anesoadly/ttomb/-C.S.F T,enoznedoroholo-C.1f.eneznedoroholo.i... ന T, an a zoadly than in the S. f Page: 19.00 ្រឈូរងរ៉ូវវិវិជ័យអ្វីរអូវអ្វីរអ្វីរទេបseve'T S-CPig**អានអូវទាំង**ថាe'T Z, enesting of only one of the state of the 18.00 Eromotorm, T 7.900lyx-&nenol. 17.00 T,enstreativn)∃ T.snolyx-q&m ("gp-auazuario.o/u)) 16.00 T, anadieomordib-S, F 7.snolydropidaeutaT .T.aneritamoraldaomorald. TIC: AU022322.D'data.ms 15.00 T.engaN IgtoB IgtheM T,enedieosoidobhS.F.F T, an enlot Lanaquadominab.E.t. ensit 14.00 C:\msdchem\1\data\AU023224.D T. Y.SHBAJAHHSHAKEP.eto Standards for 5 point calibration 13.00 7, Series (1997) 1, Statos (2000) 1, Statos (2 12.00 t,anasnadolouliib-⊁,t 7.8nainaqiyriisrinii-⊁,S.S 11.00 T. abirp<u>ยกลูกสูงสูงสูง</u>ชื่อ C:\msdchem\1\methods\A223 1UG.M T,soerloorolfab.5,1 ${\mathfrak T}, {\mathfrak {sherilocrolinoid}}, {\mathfrak T}, {\mathfrak T}$ t0.00 leftahydrofuran, 1 Chloroform,1 Chloroform,1 07:45:52 2023 Ч 9.00 T.enertrecholotics: T.enertrecholotics: T.eleises Sample Multiplier: Cal File: T, antex J, protex Availably that the 2023 24 07:48:16 2023 8.00 ∓.pnsdt¥ce3stenie-Iviti√ 1.003វេទានមារប្រសាសរុបសារ 08:40:13 7.00 Feb 24 Continuing T.ebhohlb strattpattat/M/A TO-15 VOA T.ET1 nosh-tunostartytu9-t----7, anorheonoldaib-1, f 6.00 33 T.Ionool67(visconquis) Fri 1.9481895 T,IT noon? T,obimor8 lynW Маг Feb 5.00 Т,елелентотки8 Т.епенеотоки; ., 21 ThuMethod Response via Update T, analdand and and true Quant Time: Title 4.00 T.ons@############ T,900lyqon3.... 1UG.M ALS Vial 200000 50000 400000 350000 300000 150000 ő Abundance 250000 100000 QLast Quant Quant Time--> A223

Centek/SanAir Laboratori	es antitation	Report	t (QT Rev	iewed)	
Data Path : C:\msdchem\l\data Data File : AU022323.D Acq On : 24 Feb 2023 2:3 Operator : RJP Sample : AlUG_0.75 Misc : A223_1UG ALS Vial : 22 Sample Multip	8 am				
Quant Time: Feb 24 07:47:46 20 Quant Method : C:\msdchem\1\mo Quant Title : TO-15 VOA Star QLast Update : Fri Feb 24 07:4 Response via : Continuing Cal	ethods\A223 ndards for 45:52 2023 File: C:\n	5 poir Asdcher	nt calibrati n\1\data\AU0	23224.D	
Compound	R.T.	QIon	Response C	onc Units	Dev(Min)
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds	9.363 11.650 16.435	128 114 117	63315 381458 309815	1.00 ppb 1.00 ppb 1.00 ppb	0.00 0.00 0.00
65) Bromofluorobenzene Spiked Amount 1.000	18.188 Range 70	95 - 130	193805 Recovery	1.04 ppb = 104	0.00
3) Freon 12 4) Chloromethane 5) Freon 114 6) Viguel Chloride	4.157 4.154 4.157	85 50 85	59845 222235 72083 222235 69835 74075 40625m 66799 32653 100915 12503 63526	0.89 ppb 0.86 ppb 0.89 ppb	99 99 97
 14) Freon 11 15) Acetone 16) Pentane 17) Isopropyl alcohol 18) 1,1-dichloroethene 19) Freon 113 20) t-Butyl alcohol 21) Methylene chloride 	5.502	TOT	TOT##010	0.77 ppb 0.78 ppb 0.85 ppb 0.71 ppb 0.87 ppb 0.85 ppb 0.85 ppb 0.86 ppb 0.87 ppb	
<pre>22) Allyl chloride 23) Carbon disulfide 24) trans-1,2-dichloroethene 25) methyl tert-butyl ether 26) 1,1-dichloroethane 27) Vinyl acetate 28) Methyl Ethyl Ketone 29) cis-1,2-dichloroethene 30) Hexane 31) Ethyl acetate 32) Chloroform 33) Tetrahydrofuran 34) 1,2-dichloroethane 36) 1,1,1-trichloroethane 37) Cyclohexane 38) Carbon tetrachloride 39) Benzene 40) Methyl methacrylate 41) 1,4-dioxane</pre>	6.670 6.835 7.591 7.603 8.009 8.003 8.480 8.915 8.531 9.074 9.519 9.675 10.611 10.323 11.032 10.963 10.939 12.542 12.551	47613322173322767818 1791748	81411 192652m 84870m 237482 165907 82858 38983 87141m 149268 182703 182457 75032 99042 173985 145031 150584 292961 81829 61506	0.89 ppb 0.79 ppb 0.72 ppb 0.84 ppb 0.87 ppb 0.87 ppb 0.88 ppb 0.85 ppb 0.85 ppb 0.83 ppb 0.83 ppb 0.84 ppb 0.82 ppb 0.82 ppb 0.78 ppb 0.78 ppb 0.79 ppb 0.79 ppb 0.77 ppb 0.76 ppb 0.77 ppb 0.77 ppb 0.76 ppb	# 50 99 97 96 # 1 97 96 99 93 94 98 99 94 98 95 85 96
42) 2,2,4-trimethylpentane 43) Heptane 44) Trichloroethene	11,818 12,175 12,293	57 43 130	459472 139112 121813	0.76 ppb 0.74 ppb 0.76 ppb	100 97 95

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\1\data2\ Data File : AU022323.D Acq On : 24 Feb 2023 2:38 am Operator : RJP Sample : AlUG_0.75 Misc : A223_1UG ALS Vial : 22 Sample Multiplier: 1 Quant Time: Feb 24 07:47:46 2023 Quant Method : C:\msdchem\1\methods\A223 1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\1\data\AU023224.D CompoundR.T. QIONResponseConc Units Dev(Min)45)1,2-dichloropropane12.401631116760.74 ppb9846)Bromodichloromethane12.743831671410.77 ppb9947)cis-1,3-dichloropropene13.565751161610.71 ppb9848)trans-1,3-dichloropropene14.34375059620.70 ppb9749)1,1,2-trichloroethane14.667971191860.75 ppb9851)Toluene14.412921950850.81 ppb9552)Methyl Isobutyl Ketone13.484431704200.82 ppb9953)Dibromochloromethane15.6461071523860.82 ppb9954)Methyl Butyl Ketone15.44721641344570.82 ppb9955)1,2-dibromoethane15.6461071523860.80 ppb9856)Tetrachloroethylene16.759914073830.79 ppb9957)Chlorobenzene16.673916171541.57 ppb9958)Ethylbenzene17.4291042166780.79 ppb9861)Styrene17.4291042166780.79 ppb9962)Bromoform17.5461731090710.77 ppb9463)o-xylene18.6611054582410.80 ppb9764)Cumene18.661105379855m0.80 ppb97 Compound R.T. QIon Response Conc Units Dev(Min)

(#) = qualifier out of range (m) = manual integration (+) = signals summed

		T,ensibe)ud-£,1-¢×	əldə bxəl (1999 (1997) - 1996 (1996) - 1996 (1996)	1911, 2014, 1. Autorita and Autor	ar an ains an 1970 an 197	ana na ⁿ anana ka na 194	1790-04 (2011) (2013-02			thoroport T,anali	2414456N		23.00	
											1				22.00	
						. fauer								1	21.00	
					ក្រោយផ្សារ ក្រសួសស្រួតប	Tiona e,s.r Tie	2000030) 0062000 208000	ichoid-1, J Bandichib-				<u>ወቅዚ</u> ው እላታ	uea	3	20.00	۳
			T,enesne	Trenessie alvereite	aninikuna- ukensere	Þ		na ang ang ang ang ang ang ang ang ang a						<u> </u>	19.00	.0200
						nediocroin adoroulior									18.00	
					7,90 1,90 1,90	lezceqt/vit	9	simi-2007.007.007.007		271. J. J. 2017 THE LOCAL					17.00	
				-		;p-eu4200				Tensitia	ornondib-S				16.00	
	lata.ms			T.	anaiyriadi	Tetrachio				uoggoou L'eu			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		15.00	
24.D	TIC: AU022323.D\data.ms							T,sneulo1	L viciona				5UØ3))	14.00	
int calibration em/l\data\AU023224	IC: AU02								1 200		0000010			J	13.00	
calibration \data\AU023	<u>}</u>				,	(anstrood)	រារគារកុរ	r. 2.2.4	L'ENERGY L'ENERGY L'ENERGY L'ENERGY L'ENERGY	Solfshillin Solfshillin					12.00	
int ca em\l\đ							yau		isrikçõnti Dunid-le l)	11.00	
5 po									7,991	nteorota:	int-1,1,1				10.00	
C 32 to											សំដែលខេត់កំខុត (16, 1 (16, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10				9.00 1	
Standards 07:45:52 Cal File:										T,ອກຍະ		nosuten	3 tyrnem	1	.00	
-								<u>stoimu</u>	AKIKATAKA (DA)	a sytherre	û)	7.00 8.	
TO-15 VOA Fri Feb 24 Continuing							1,51	t noor9	t:louos	10.14198-1-	chioroella #horoella sullice,1) 		00 7	
TO-15 Fri Fr Contin									L	T.t. Igrio:Tog	പറഞ്ചി	ទទាពារថាទ រ.ឆ្			e I	5
Title : Update : se via :							1.90%	0.000 the second	¥97-i -	T.,	aneittehride T,en		i <u>vniv</u> - noti - nisorotico -		0 5.00	1110 M min. Mars
Tit Upo	nce DO	Ś	<u>9</u> 0	ġ	00	000				9	8			20000	4.00	
Quant Ti Qlast Up Response	Abundance 700000	650000	60000	55000	50000	450000	402000	35000	30000	25000	200000	150000	10000	500	Time>	11 6664

Data Path : C:\msdchem\1\data2\
Data File : AU022323.D
Acg On : 24 Feb 2023 2:38 am
Operator : RJP
Sample : AlUG_0.75
Misc : A223_IUG
ALS Vial : 22 Sample Multiplier: 1

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\1\data2\ Data File : AU022324.D Acq On : 24 Feb 2023 3:22 am Operator : RJP Sample : AlUG_1.0 Misc : A223_1UG ALS Vial : 23 Sample Multiplier: 1 Quant Time: Feb 24 07:46:11 2023 Quant Method : C:\msdchem\l\methods\A223 1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\1\data\AU023224.D Compound R.T. QION Response Conc Units Dev(Min) Internal Standards
 1) Bromochloromethane
 9.354
 128
 65617
 1.00 ppb
 0.00

 35) 1,4-difluorobenzene
 11.647
 114
 390251
 1.00 ppb
 0.00

 50) Chlorobenzene-d5
 16.432
 117
 324683
 1.00 ppb
 0.00
 System Monitoring Compounds 65) Bromofluorobenzene 18.185 95 204910 1.05 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 105.00% 0.00
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 105.00%

 Target Compounds
 0value

 2) Propylene
 3.917
 41
 79459
 1.12 ppb
 95

 3) Preon 12
 4.157
 85
 284761
 1.09 ppb
 95

 4) Chloromethane
 4.157
 85
 284761
 1.09 ppb
 95

 6) Vinyl Chloride
 4.334
 62
 93171
 1.14 ppb
 98

 7) Butane
 4.430
 39
 60135
 1.15 ppb
 78

 8) Brommethane
 4.764
 94
 94559
 1.16 ppb
 98

 10) Chloroethane
 4.923
 64
 43503
 1.14 ppb
 97

 11) Ethanol
 5.763
 45
 125250
 0.99 ppb
 42

 13) Vinyl Bromide
 5.238
 106
 87188
 1.14 ppb
 99

 13) Acetone
 5.661
 58
 452551
 0.91 ppb #
 1

 16) Pentane
 5.763
 45
 125250
 1.16 ppb #
 Target Compounds

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\1\data2\ Data File : AU022324.D Acq On : 24 Feb 2023 3:22 am Operator : RJP Sample : AlUG 1.0 Misc : A223_1UG ALS Vial : 23 Sample Multiplier: 1 Quant Time: Feb 24 07:46:11 2023 Quant Method : C:\msdchem\l\methods\A223_lUG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\1\data\AU023224.D
 Compound
 R.T. QION
 Response
 Conc Units Dev(Min)

 45)
 1,2-dichloropropane
 12.401
 63
 156741
 1.01
 ppb
 97

 46)
 Bromodichloromethane
 12.743
 83
 224553
 1.01
 ppb
 98

 47)
 cis-1,3-dichloropropene
 13.565
 75
 163807
 0.98
 ppb
 93

 49)
 1,1,2-trichloroethane
 14.664
 97
 161283
 0.99
 ppb
 93

 51)
 Toluene
 14.409
 92
 268191
 1.06
 ppb
 93

 52)
 Methyl Exotone
 14.464
 97
 161283
 0.99
 ppb
 97

 51)
 1.2-dibromoethane
 15.472
 14856
 182006
 1.08
 ppb
 99

 56)
 Tetrachloroethylene
 15.472
 164
 180468
 1.05
 ppb
 90

 57)
 Chlorobenzene
 16.489
 112
 352391
 1.05
 ppb
 90

 59)
 mexprespresprespr Compound R.T. QIon Response Conc Units Dev(Min) ****** (#) = qualifier out of range (m) = manual integration (+) = signals summed

ന

Page:

2023

08:40:21

23

Mar

Thu

A223 1UG.M

C:\msdchem\l\data2\

Data Path

23.00 T,anaibatud.E,I-oroidoaxeH T.enslishtdasN T.anaxnedovoktohr-b,S,F 22.00 21.00 T, enexnadoxokholb-S, h 20.00 T.ensanodiy/dramol-E,S,F Τ, θηθ χηθάριο (Ποριατικής) Γ (μιθ χηθαρικής) Γ (μιθ χηθαρικής) Γ (μιθ χηθαρικής) Γ (μιθ χηθαρικής) Γ (μιθ χηθ χηθαρικής) Γ (μιθ χηθ χηθ χηθ χηθικής) Γ (μιθ χηθ χηθ χηθ χηθικής) Γ (μιθ χηθ χηθικής) Γ (μιθ χηθ χηθικής) Γ (μιθ χηθικής) Γ (μιθικής) Γ (μιθικής) Γ (μιθ γ η η η η η η η η η η η T, ortes nective farmint - 4, S, F 19.00 2.Cfilesetbehagere.T 4.cfilesetbehagere.T T.9nertlaonotharagenes5 2.9n951912,2,2,1,1 — 18.00 T,anarnuO T,molomoi8 LOUGHON 1.9031615 17.00 T.analyx qan T,anosnadiydra T.anoveReeses \$6.00 T, sheri somordib-S, P T,analydiaonoldoana1 T.anichemotoldoomotol. TIC: AU022324.D\data.ms 15.00 Methyl Budyl Ketore, T. 1.2-Michioloofinal, T T,ensuloT .T.eneqoxqoxottolb-&.L.eden 14.00 C:\msdchem\1\data\AU023224.D 1. Profestokikeliserie: 5 point calibration 13.00 7.snsdtargomfajbome18 1.9163398161319121 1.99156138161319121 1.99156138161131912 12.00 11,000 T.abopiganyakikikiki C:\msdchem\1\methods\A223 lUG.M T_onerheorolitaib-S,t T.enertsonoldohl-t,t.1 10.00 Standards for 07:45:52 2023 9.00 T.anarbaoroidaib S.T.sio T.anarbao ityii3 Cal File: Sample Multiplier: an T, and supplier to the second of the second 24 07:46:11 2023 8.00 3:22 T, SPERITE SHIPPER BARRIER T,Xentherdippediatelyiby@advector1 -7.00 Feb 24 Continuing TO-15 VOA 24 Feb 2023 u mananana di T,ETT noglithoole ignoby AU022324.D Tuananseonomonia-tut 6.00 1.0 100 T. Joricols, Weinstages 1,69,8,873 T, M novi AluG A223 T, solmor8 iverV Feb RJP 5.00 33 .. T,enerthemorpoid T,enertheoroid Method Update Response via Tionel Chergettering Time: Title 4.00), enនកំរី**ងុំ៥**ដំហារ៨ទៅ Data File T,9n9luq015l...... Operator ALS Vial Abundance Acg On sample 1000000 900006 800000 700005 600000 500000 300000 400000 100000 200000 Quant QLast Quant Quant Misc Time-->

Centek/SanAir Laboratorio	es Intitation	Repor	t (QT Rev.	iewed)						
Data Path : C:\msdchem\l\data2 Data File : AU022325.D Acq On : 24 Feb 2023 4:07 Operator : RJP Sample : AlUG_1.25 Misc : A223_LUG ALS Vial : 24 Sample Multip										
Quant Time: Feb 24 07:46:35 2023 Quant Method : C:\msdchem\l\methods\A223_1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\l\data\AU023224.D										
Compound	R.T.	QION	Response Co	onc Units	Dev	(Min)				
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.357 11.650 16.432	128 114 117	65527 394374 326617	1.00 ppb 1.00 ppb 1.00 ppb		0.00 0.00 0.00				
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.188 Range 70	95 ~ 130	203811 Recovery	1.04 ppb = 104	.00%	0.00				
Target Compounds					OV	alue				
2) Propylene 3) Freon 12 4) Chloromethane 5) Freon 114 6) Vinyl Chloride	3.914	41	97944	1.39 ppb	* .	95				
3) Freon 12 4) Chloromethane	4.157	85	351695	1.35 ppb		98 96				
5) Freen 114	4.157	85	351695	מקק 2.34 מסס 25.1		96				
6) Vinyl Chloride	4.337	62	103071m	1.27 ppb						
7) Butane	4.436	43	111669	1.30 ppb		95				
8) 1,3-butadiene 9) Bromomethane	4.433	39 94	80674 113913	1.54 ppp 1 39 ppb		89 98				
10) Chloroethane	4.923	64	103071m 111669 80674 113913 52601 156274 22003 107655 340784 55644	1.38 ppb		96				
11) Ethanol	5.766	45	156274	1.17 ppb	#	62				
12) Acroleín 13) Vinyl Bromide	5.583	56	22003	1.39 ppb		86				
14) Freon 11	5.241	100	340784	1.40 ppp		100				
15) Acetone	5.667	58	55644	1.12 ppb	#	1				
16) Pentane	5.763	42	102310	add er T	Ħ	94,0				
17) Isopropyl alcohol 18) 1,1-dichloroethene	5.766 6.238	45 96	156274 142693	1.45 ppb 1.33 ppb		62 95				
19) Freen 113	6.433	101	335046	1.37 ppb		93				
20) t-Butyl alcohol	6.451	59	270478	1.42 ppb		98				
21) Methylene chloride 22) Allyl chloride	6,679 6,667	84 41	130062 136732	1.38 ppb 1.44 ppb		95 95				
23) Carbon disulfide	6.835	76	363892	1.44 ppb		95				
24) trans-1,2-dichloroethene	e 7.591	61	176145	1.44 ppb		94				
25) methyl tert-butyl ether	7.603 8.009	73 63	405697	1.39 ppb 1.38 ppb		98 95				
26) l,l-dichloroethane 27) Vinyl acetate	8.003	43	272699 138062	1.40 ppb		100				
28) Methyl Ethyl Ketone	8.480	72	67609	1.47 ppb	#	1				
29) cis-1,2-dichloroethene	8.921	61	160401m 🕅	1.36 ppb		0.0				
30) Hexane 31) Ethyl acetate	8.528 9.065	57 43	254478 309693	1.40 ppb 1.35 ppb		99 97				
32) Chloroform	9.522	83	307987	1.38 ppb		99				
33) Tetrahydrofuran	9.678	42	129206	1.50 ppb		94				
34) 1,2-dichloroethane 36) 1,1,1-trichloroethane	10.605 10.323	62 97	166992 296964	1,34 ppb 1.29 ppb		94 96				
37) Cyclohexane	11.029	56	254357	1.33 ppb		89				
38) Carbon tetrachloride	10.966	117	256849	1.27 ppb		92				
39) Benzene 40) Methyl methacrylate	10.930 12.539	78 41	504790 148376	1.27 ppb 1.23 ppb		96 84				
40) Methyi methacrylate 41) 1,4-dioxane	12.539	41 L 88	105516	1.20 ppb		96				
42) 2,2,4-trimethylpentane	11.818	57	783260	1.26 ppb		100				
43) Heptane	12.175	43	242564	1.25 ppb		98 95				
44) Trichloroethene	12.296	130	204792	1.24 ppb		95				

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\1\data2\ Data File : AU022325.D Acg On : 24 Feb 2023 41:07 am Operator : RJP Sample : A1UG_1.25 Misc : A223_1UG ALS Vial : 24 Sample Multiplier: 1 Quant Time: Feb 24 07:46:35 2023 Quant Method : C:\msdchem\l\methods\A223 1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\1\data\AU023224.D CompoundR.T. QIONResponseConc Units Dev(Min)45)1,2-dichloropropane12.398631910151.22 ppb9946)Bromodichloromethane12.743832912371.29 ppb10047)cis-1,3-dichloropropene13.562752089841.24 ppb9848)trans-1,3-dichloropropene14.343751544281.21 ppb9549)1,1,2-trichloroethane14.664972049361.25 ppb9651)Toluene14.412923442271.35 ppb9552)Methyl Isobutyl Ketone13.478432380251.37 ppb9153)Dibromochloromethane15.6491072667181.36 ppb9854)Methyl Butyl Ketone15.4471642260171.31 ppb9855)Tetrachloroethylene16.4891124428811.32 ppb9856)Tetrachloroethylene16.9709111035552.67 ppb9857)Chlorobenzene16.49711035551.36 ppb9751)Styrene17.3763337481.36 ppb9761)Styrene17.5461732014851.35 ppb9863)O-xylene17.4231043937481.36 ppb9761)Styrene17.459916453511.30 ppb9664)Cumene18.0711058171531.35 ppb9761)< Compound R.T. QION Response Conc Units Dev(Min) (#) = qualifier out of range (m) = manual integration (+) = signals summed

(ግ

Page:

2023

08:40:25

23

Thu Mar

IUG.M

A223

C:\msdchem\l\data2\

Data Path

23,00 T,eneiberud-E,?-oroldonzoH Г, эпејвлицем T, anasosdoroinbot-A, S, I 22.00 21.00 T, ensanedorolinoib-S, F 20.00 T, anosnodivitiomid-6, S, F 1,3-dichlorobenzene, T T.enesnediyitianii\-4,S,f 19.00 CHRANKIBBBBB T. ດີຈະເຊິ່ງໃນໃນໃນອີນສົ່ນອີ້ນີ້. 18.00 T,enemuO 1-0966962-0 T.molomoi8 17.00 f,enelyx-qions T.anasnadiyibB T.enssnedorงหรือ eresnedoroผาว. 16.00 T_onis/heomondib_S,f T, ensigneoroloosing leng. T.angelia(BogoldpomojdiG TIC: AU022325.D\data.ms 15.00 Mediyi Butyi Ketone,T T, anertreoroinaru-S, L. h T,onouloT .T.anaqoiqoiolilaib.E.t.eney 14.00 C:\msdchem\l\data\AU023224.D T. 9 PUBHBASHUSSERIADIEM - 810 calibration 13.00 f,enediemoral/hobomor8 12.00 T,ensmediyritemist-#,S.S LenesnedotouRib-P,I 11.00 5 point T. abity grant and a second 10G.M T.onedtaonoldoib-S.t T,ensiteorotidoht-F.F.F. 10.00 + 24 07:46:35 2023 C:\msdchem\1\methods\A223 Втоглоспіостаризале. П. П. Спіостаризал. Т. вітаруцітаризал. Standards for 07:45:52 2023 00.6 T,enertheoroidease, T Cis-1,2,-dichtoroetheoroit Cityl acetais, T Cal File: Sample Multiplier: T, amaxilition of a subjuict symbol. ащ 8.00 4:07Y,onehimmonralignis/ TEAR CONTRACTOR STATE 7.00 Feb 24 Continuing TO-15 VOA T,obhiðiðeiðeið (de T,obhiðiðið noð is O Feb 2023 T.CTT napphoole hybrid in AU022325.D T, anartheoroldoib-1, t 1.25 6.00 JUG T,fortooleTtemmentes Fri ⊥′9чяказХ T.13 ROON 7 AluG A223 T,ebimora tvoiV reb Teb RJP 5.00 42 T.enertiamomorB T.enertianerD •• Method Qlast Update Response via T anaime Superior (VII) Quant Time: Title ₹.00 T.ent?%ethmobi3 Data File T, snalvonSt Operator ALS Vial Acq On Abundance 1300000 1200000 1100000 000000 000006 800000 700000 600000 500000 400000 100000 Sample 300000 200009 Quant Quant Misc Time-->

Centek/SanAir Laboratorie	S Intitation	Report	t (QT Rev	iewed)					
Data Path : C:\msdchem\l\data2 Data File : AU022326.D Acq On : 24 Feb 2023 4:53 Operator : RJP Sample : A1UG_1.50 Misc : A223_1UG ALS Vial : 25 Sample Multip	2 \								
Quant Time: Feb 24 07:46:59 2023 Quant Method : C:\msdchem\l\methods\A223_lUG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\l\data\AU023224.D									
Compound	R.T.	QION	Response Co	one Units	Dev (Min)			
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.357 11.644 16.432	128 114 117	66561 396787 329130	1.00 ppb 1.00 ppb 1.00 ppb		0.00 0.00 0.00			
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.188	95	217457	1.10 ppb	^	0.00			
Spiked Amount 1.000	Range 70	- 130	Recovery	= 110.	00%				
Target Compounds 2) Propylene 3) Freon 12					Qva	lue			
3) Freon 12	$3.914 \\ 4.151$	41.	117803 434173	1.64 ppb		96 100			
4) Chloromethane	$4.151 \\ 4.151$	50	434173 145738 434173	1.65 ppb		96			
5) Freon 114			434173	1.65 ppb		96			
6) Vinyl Chloride 7) Butane	4.331	62	138325	1.67 ppb		97			
8) 1,3-butadiene	4,430	43 39	138966	1.59 ppp		90			
9) Bromomethane	4.758	94	141473	1.70 ppb		98 98			
10) Chloroethane	4.917	64	63928	1.65 ppb		99			
11) Ethanol	5.757	45	181052	1.33 ppb	样	83			
12) Acrolein 13) Vinyl Bromide	5.568	56	24192	1.51 ppb		100			
14) Freon 11	5.499	108	434173 138325 138966 93793 141473 63928 181052 24192 131607 407983 62627	1.70 ppp 1.65 ppb		100			
15) Acetone	5.670	58	62627	1.24 ppb	#	100			
16) Pentane	5.769	42	116233	1.50 ppb	#	57			
17) Isopropyl alcohol	5.757		181052	1.66 ppb	#				
18) 1,1-dichloroethene 19) Freon 113	6.235 6.424	96 101	181461 409136	1.67 ppb		96 94			
20) t-Butyl alcohol	6.448	59		1.64 ppb 1.72 ppb		94 96			
21) Methylene chloride	6.673	84	160655	1.68 ppb		96			
22) Allyl chloride	6.661	41	165492	1.71 ppb	仹	47			
23) Carbon disulfide 24) trans-1,2-dichloroethene	6.826 7.588	76 61	#30ATT	1.71 ppb		93 94			
25) methyl tert-butyl ether	7.603	73	493749	1.73 ppb 1.67 ppb		94 98			
26) l,l-dichloroethane	8.003	63	335156	1.67 ppb		96			
27) Vinyl acetate	7.994	43	172694	1.72 ppb		98			
28) Methyl Ethyl Ketone 29) cis-1,2-dichloroethene	8.483 8.915	72 61	81310 197259m 🖊	1.74 ppb	#	l			
30) Hexane	8.531	61 57	311808	1.65 ppb 1.69 ppb		97			
31) Ethyl acetate	9.068	43	388282	1.67 ppb		96			
32) Chloroform	9.516	83	375127	1.65 ppb		99			
33) Tetrahydrofuran 34) 1,2-dichloroethane	9.669 10.611	42	157060	1.79 ppb		93			
36) 1,1,1-trichloroethane		62 97		1.64 ppb 1.54 ppb		96 98			
37) Cyclohexane	11.023	56	303253	1.58 ppb		87			
38) Carbon tetrachloride	10.969		317378	1.56 ppb		94			
39) Benzene 40) Methyl methacrylate	10.930	78	608011 19200F	1.52 ppb	11	95 96			
40) Methyl methaciylate 41) 1,4-dioxane	12.536 12.542	41 88		1.52 ppb 1.47 ppb	林	86 98			
42) 2,2,4-trimethylpentane	11.815			1.52 ppb		100			
43) Heptane	12.172	43	299431	1.53 ppb		99			
44) Trichloroethene	12.293	230	248358	1.49 ppb		95			

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\l\data2\ Data File : AU022326,D Acq On : 24 Feb 2023 4:53 am Operator : RJP Sample : AlUG_1.50 Misc : A223_1UG ALS Vial : 25 Sample Multiplier: 1 Quant Time: Feb 24 07:46:59 2023 Quant Method : C:\msdchem\1\methods\A223 1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\1\data\AU023224.D CompoundR.T. QIonResponseConc Units Dev(Min)45)1.2-dichloropropane12.398632329361.48 ppb9646)Bromodichloromethane12.743833520721.55 ppb9947)cis-1.3-dichloropropene13.568752574191.52 ppb9948)trans-1.3-dichloropropene14.340751945831.51 ppb9749)1.1.2-trichloroethane14.664972470211.50 ppb9551)Toluene14.409924181901.63 ppb9452)Methyl Isobutyl Ketone13.484433672971.66 ppb9953)Dibromochloromethane15.6431073241451.64 ppb9856)Tetrachloroethylene15.6471073241451.64 ppb9857)Chlorobenzene16.4861125449241.61 ppb9858)Ethylbenzene16.9739113618053.26 ppb9759)m&p-xylene17.4231044954641.70 ppb8862)Bromoform17.46291<78508</td>1.60 ppb9463)o-xylene17.4231044954641.70 ppb8863)C-xylene18.06810510122851.66 ppb9661)1.1,2,2-tetrachloroethane18.061105878794m1.62 ppb9661)1.1,2,2-tetrachloroethane18.610587794m1.62 ppb9 Compound R.T. QION Response Conc Units Dev(Min) ****** (#) = qualifier out of range (m) = manual integration (+) = signals summed

aili

4:53

Feb 2023

40

1.50

Alug

RJP

Operator

Sample

Misc

Acq On

IUG

A223

AU022326.D

C:\msdchem\1\data2\

Data Path Data File

23.00 T, analogical-C, t-oraldomest-how T, presnodorothot-4, S, t T, analschildeN 8 23 21.00 T,eneznedotolrioto-S,h 20.00 T,enesnediydremat-2,5,1 T,enesnediydremat-2,5,1 T,enesnediydremat-2,5,1 T, an a shadiy filomith 0, 5, F 19.00 ັງ ເວລາວາວເອງ ເຊິ່ງ ເ ເຊິ່ງ ເຊິ່ 18.00 ຂີ່,ຈາກສະກອດຈາຍມາຄິດຕາດານີ TanomuD T, anertiaoroliticariat-S, S, L, L Т, ппототнотя T. analyge V. A. A. CONTRACTOR OF A 17.00 T.onelyx-q&m T,enexpediy/dtB -----Т.епохозфоюйО. 1.0b.anexnedenoldQ. 8 ģ 7,enortheornondib-S,f T,ensitriteraethylene,T T,anaritanoroinaonosul. TIC: AU022326.Didata.ms 15.00 Tionenio T J.anaqoxqoyofrab-6.1.2064 C:\msdchem\1\data\AU023224.D 14.00 T. enp this by hope in the property of the signal of the s 5 point calibration 13.00 1 2014914 1 20120101011 1 201201010101 1 2012010101010101 1 201201010101010100000 1 2012010101010100000 f2.00 Tionstradiy/diamrd-F.S.S r'ouszuogolongio-Fit 11.00 T. SDPOHARSANA SOURCE STORE JUG. M T. anadiaonoidaio-S. F T.enentroorolitoiti-t.t.t 10.00 C:/msdchem/1/methods/A223 Bromochloromethane. T.m.oromethorom.T. T.elrahydrotenan.T. Standards for 07:45:52 2023 00.6 Cis-1.2-dichloroethene.T Cal File: Sample Multiplier: T, sniktaiqoteX lanua.ivotet 24 07:46:59 2023 B.00 T, anotheleterski tenV 1. of grading (solution) and a second s 2.8 24 Continuing T.ethotdockingthttetwords.T. TO-15 VOA Feb T.ETT READ NO. 1970 1970 T, anarilaciolitoib-F, F 6.00 T, lodobie Tuttagerates FΥΊ 工品的 7,13 poor3 T.abimon8 IveV 5.00 Feb ц) С ٠. 7.อกเหนือการกายไป ไ.อุณธศาสงางได้ไ Method Update Via T,enoib**arabit**igirti ty<u>niv</u> Time: Title 4.00 T, られ部環境がのの時に3 1 'eueixaasa Response ALS Vial 1500000 1400000 300000 200000 1000001 0000000 000006 800000 700000 600000 400000 Abundance 160000 500000 300000 200000 000000 QLast Quant Quant Quant Time->

ሞን

Page:

2023

08:40:29

53

Mar

Thu

10G.M

A223

Data Path : C:\madchem\L\data2\ Data File : AU0237.p Acg On : 24 Feb 2023 5:41 am Operator : RJP Sample : AU02_10 ALS Vial : 26 Sample Multiplier: 1 Quant Method : C:\madchem\L\methods\A223_UG.M Quant Title : TD-15 VOA Standards for 5 point calibration QLast Opdate : Fr1 Feb 24 07:47:24 2023 Quant Method : C:\medchem\L\methods\A223_UG.M Quant Title : TD-15 VOA Standards for 5 point calibration QLast Opdate : Fr1 Feb 24 07:45:52 2023 Response Via : Continuing Cal File: C:\medchem\L\data\AU023224.D Thermal Standards Internal Stan		Centek/SanAir Laboratorie	S ntitation	Repor	t (QT Rev:	iewed)		
Quant Method : C:\a223_1UG_M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Pri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\madchem\l\data\AU023224.D Thernal Standards Internal Standards Internal Standards Internal Standards Internal Standards S0 14:4-difluorobenzene 11.650 114 400855 1.00 ppb 0.00 350 14:4-difluorobenzene 11.650 114 400855 1.00 ppb 0.00 System Monitoring Compounds 651 Bromofluorobenzene 18.159 95 226273 1.13 ppb -0.03 Spiked Amount 1.000 Range 70 - 130 Recovery = 113.00% Target Compounds 631 Bromofluorobenzene 18.159 95 226273 1.13 ppb -0.03 Spiked Amount 1.000 Range 70 - 130 Recovery = 113.00% Target Compounds 631 Chlorobenzene 4.154 85 574276 2.17 ppb 90 64 Chloromethane 4.154 85 574276 2.17 ppb 90 75 Freon 124 4.154 85 574276 2.21 ppb 93 75 Freon 124 4.154 85 574276 2.22 ppb 100 40 Chloromethane 4.154 85 574276 2.21 ppb 93 75 Recovery = 113.00% 71 Butane 4.433 39 122591 2.36 ppb 85 91 Dionomethane 4.56 94 180581 2.17 ppb 97 76 Vinyl Chloride 4.337 62 183970 2.22 ppb 85 91 OC Chloroethane 4.568 56 33652 2.09 ppb 85 91 OC Chloroethane 5.568 56 33652 2.09 ppb 93 14) Freon 11 5.766 45 24906 1.63 ppb 97 12 21 Acrolein 5.568 56 13652 2.017 ppb 93 14) Freon 11 5.775 42 156454 2.01 ppb 94 14) Freon 11 5.775 42 156454 2.01 ppb 94 14) Freon 11 5.775 42 156454 2.01 ppb 94 14) Freon 11 5.775 42 156454 2.01 ppb 94 15) Acetone 5.677 88 7430 0.773 ppb 94 11 16) Pentane 5.775 42 156454 2.01 ppb 94 120 Chloroethane 6.232 96 239016 2.20 ppb 97 138 J.1-dichloroethene 7.592 61 284769 2.28 ppb 93 14) Freon 113 6.433 101 53754 2.21 ppb 94 120 Chloroethane 8.547 51 27378 2.22 ppb 95 130 Vinyl Bromide 5.548 76 570300 2.22 ppb 95 131 Sthyl acetate 7.641 4377 72 11677 72 1267 92 95 132 Carbon disulfide 6.654 41 220805 2.28 ppb 97 138 J.1-dichloroethane 7.592 61 284769 2.28 ppb 97 139 Freon 113 6.633 101 537544 2.20 ppb 97 130 Hexae 140 Pentane 9.066 43 524404 2.25 ppb 99 130 Hexae 141 J.4-dickane 8.534 67 7122 11677 J.20 ppb 95 131 J.1-dichloroethane 8.524 61 26	Data Acq O Opera	Path : C:\msdchem\l\data2 File : AU022327.D n : 24 Feb 2023 5:41 for : RJP	\ am					
Internal Standards 1) Bromochloromethane 9.357 128 66737 1.00 ppb 0.00 55) 1,4 difluorobenzene 16.635 117 334665 1.00 ppb 0.00 50) Chlorobenzene-d5 16.159 95 226273 1.13 ppb -0.03 Spiked Amount 1.000 Range 70 - 130 Recovery a 113.00% Target Compounds 0 154044 2.14 ppb 96 3) Freon 12 4.154 85 574276 2.17 ppb 97 6) Unyl Chloride 4.37 62 183770 2.22 ppb 97 97 6) Vinyl Chloride 4.337 92 183770 2.22 ppb 100 7) Bucane 4.433 39 125512 2.36 ppb 85 9) J. Ohloroethane 4.923 64 82352 2.19 ppb 97 11) Ethanol 5.766 45 249906 1.83 ppb 72 12) Acrolein 5.688 56 3352 2.19 ppb 96 13) Vinyl Bromide 5.238 106 17318 2.20 ppb </td <td>Quant Quant QLast</td> <td>Method : C:\msdchem\l\me Title : TO-15 VOA Stan Update : Fri Feb 24 07:4</td> <td>thods\A22: dards for 5:52 2023</td> <td>5 poi</td> <td>nt calibratio</td> <td></td> <td></td> <td></td>	Quant Quant QLast	Method : C:\msdchem\l\me Title : TO-15 VOA Stan Update : Fri Feb 24 07:4	thods\A22: dards for 5:52 2023	5 poi	nt calibratio			
INternal Standards 1) Bromochloromethame 9.157 128 66737 1.00 ppb 0.00 50) Chlorobenzene 16.435 1.17 334665 1.00 ppb 0.00 System Monitoring Compounds 65 Bromofluorobenzene 18.159 95 226273 1.13 ppb -0.03 Spiked Anount 1.000 Range 70 -130 Recovery = 113.00% Target Compounds 2 Propylene 3.920 41 154044 2.14 ppb 96 3) Freen 12 4.154 85 574276 2.17 ppb 97 6) Vinyl Chloride 4.354 50 19943 2.21 ppb #87 7) Burane 4.433 39 193219 2.21 ppb #87 8) 1.3-butadiene 4.758 94 180581 2.17 ppb 97 10) Chloroethane 4.923 64 32352 2.13 ppb #72 12) Acrolein 5.668 563 3652 2.09 ppb #71		Compound	R.T.	QIon	Response Co	one Units	Dev	(Min)
Target CompoundsQvalue2) Propylene 3.920 41 154044 2.14 ppb963) Freon 12 4.154 85 574276 2.17 ppb1004) Chloromethane 4.154 50 189943 2.15 ppb995) Freon 114 4.154 85 574276 2.17 ppb976) Vinyl Chloride 4.337 62 18370 2.22 ppb1007) Butane 4.433 43 193219 2.21 ppb#878) 1, 3-butadiene 4.433 43 125591 2.36 ppb#859) Bromomethane 4.923 64 82835 2.13 ppb9710) Chloroethane 4.923 64 82835 2.09 ppb9613) Vinyl Bromide 5.568 56 33652 2.09 ppb9613) Vinyl Bromide 5.667 58 87430 1.73 ppb#116) Pentane 5.775 4249906 2.28 ppb#116) Pentane 5.776 45 249906 2.28 ppb#718) $1, 1$ -dichloroethene 6.232 96 23016 2.20 ppb9621) Methylene chloride 6.643 57 570390 2.22 ppb9714) Freon 113 6.443 59 436440 2.55 ppb9820) t-Butyl alcohol 6.435 76 570390 2.22 ppb9323) Carb	1) 35) 50)	rnal Standards Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5	9.357 11.650 16.435	128 114 117	66737 400855 334665	1.00 ppb 1.00 ppb 1.00 ppb		0.00 0.00 0.00
Target CompoundsQvalue2) Propylene 3.920 41 154044 2.14 ppb963) Freon 12 4.154 85 574276 2.17 ppb1004) Chloromethane 4.154 50 189943 2.15 ppb995) Freon 114 4.154 85 574276 2.17 ppb976) Vinyl Chloride 4.337 62 18370 2.22 ppb1007) Butane 4.433 43 193219 2.21 ppb#878) 1, 3-butadiene 4.433 43 125591 2.36 ppb#859) Bromomethane 4.923 64 82835 2.13 ppb9710) Chloroethane 4.923 64 82835 2.09 ppb9613) Vinyl Bromide 5.568 56 33652 2.09 ppb9613) Vinyl Bromide 5.667 58 87430 1.73 ppb#116) Pentane 5.775 4249906 2.28 ppb#116) Pentane 5.776 45 249906 2.28 ppb#718) $1, 1$ -dichloroethene 6.232 96 23016 2.20 ppb9621) Methylene chloride 6.643 57 570390 2.22 ppb9714) Freon 113 6.443 59 436440 2.55 ppb9820) t-Butyl alcohol 6.435 76 570390 2.22 ppb9323) Carb	Syst 65) Sp	em Monitoring Compounds Bromofluorobenzene iked Amount 1.000	18.159 Range 70	95 - 130	226273 Recovery	1.13 ppb	0.0%	-0.03
2) Propylene 3.920 41 154044 2.14 ppb 96 3) Freon 12 4.154 85 574276 2.17 ppb 100 4) Chloromethane 4.154 85 574276 2.17 ppb 97 6) Vinyl Chloride 4.337 62 18370 2.22 ppb #87 8) 1.3-butadiene 4.433 43 193219 2.21 ppb #87 8) 1.3-butadiene 4.433 39 125591 2.36 ppb 99 9) Bromomethane 4.923 64 82835 2.13 ppb 97 11) Ethanol 5.568 56 33652 2.09 ppb 96 13) Vinyl Bromide 5.238 106 173318 2.23 ppb 99 14) Freon 11 5.505 501 53622 2.09 ppb 41 15) Acetone 5.667 58 87430 1.73 ppb 11 16) Pentane 5.775 42 156454 2.01 ppb 97 18)				200	necovery			
3) Freon 12 4.154 85 574276 2.17 ppb 100 4) Chloromethane 4.154 85 574276 2.17 ppb 99 5) Freon 114 4.154 85 574276 2.17 ppb 97 6) Vinyl Chloride 4.337 62 183970 2.22 ppb 100 7) Butane 4.433 39 125591 2.36 ppb 85 9) Bromomethane 4.758 94 180561 2.17 ppb 99 10) Chloroethane 4.923 64 82835 2.13 ppb 97 11) Ethanol 5.766 45 249906 1.83 ppb 97 12) Acrolein 5.667 58 574276 2.17 ppb 100 15) Acetone 5.667 58 74300 1.73 ppb 10 16) Pentane 5.238 106 17318 2.23 ppb 90 16) Pentane 5.757 42 156454 2.01 ppb # 45 17) Isopr			3 000	4.1	354044	0 14	Qva	alue
6) VINYI Chloride 4.433 43 193219 2.22 ppb # 87 8) 1,3-butadiene 4.433 39 125591 2.36 ppb 85 9) Bromomethane 4.758 94 180581 2.17 ppb 99 10) Chloroethane 4.923 64 82835 2.13 ppb 97 11) Ethanol 5.766 45 249906 1.83 ppb # 72 12) Acrolein 5.568 56 33652 2.09 ppb 99 14) Freon 11 5.667 58 87430 1.73 ppb # 10 15) Acetone 5.667 58 87430 1.73 ppb # 10 16) Pentane 5.776 42 156454 2.01 ppb # 45 17) Isopropyl alcohol 5.766 45 249906 2.28 ppb 94 20) t-Butyl alcohol 6.433 101 537584 2.15 ppb 94 21) Methylene chloride 6.664 41 <	3)	Freon 12	4.154	41 85	574276	2.14 ppp		100
6) VINYI Chloride 4.433 43 193219 2.22 ppb # 87 8) 1,3-butadiene 4.433 39 125591 2.36 ppb 85 9) Bromomethane 4.758 94 180581 2.17 ppb 99 10) Chloroethane 4.923 64 82835 2.13 ppb 97 11) Ethanol 5.766 45 249906 1.83 ppb # 72 12) Acrolein 5.568 56 33652 2.09 ppb 99 14) Freon 11 5.667 58 87430 1.73 ppb # 10 15) Acetone 5.667 58 87430 1.73 ppb # 10 16) Pentane 5.776 42 156454 2.01 ppb # 45 17) Isopropyl alcohol 5.766 45 249906 2.28 ppb 94 20) t-Butyl alcohol 6.433 101 537584 2.15 ppb 94 21) Methylene chloride 6.664 41 <	4)	Chloromethane	4.154	50	189943	2.15 ppb		99
11) Ethanol 5,766 45 249906 1.83 ppb 97 12) Acrolein 5.568 56 33652 2.09 ppb 96 13) Vinyl Bromide 5.238 106 17318 2.23 ppb 99 14) Freon 11 5.505 101 536252 2.17 ppb 100 15) Acetone 5.667 58 87430 1.73 ppb # 1 16) Pentane 5.775 42 156454 2.01 ppb # 45 17) Isopropyl alcohol 5.766 45 249906 2.28 ppb 97 19) Freon 113 6.433 101 537584 2.15 ppb 94 20 t-Butyl alcohol 6.448 59 436440 2.25 ppb 93 21 Methylene chloride 6.679 84 208391 2.17 ppb 96 22) Allyl chloride 6.664 41 20805 2.28 ppb 97 <td></td> <td>Freen 114</td> <td>4.154</td> <td>85</td> <td>574276</td> <td>2.17 ppb</td> <td></td> <td>97</td>		Freen 114	4.154	85	574276	2.17 ppb		97
11) Ethanol 5,766 45 249906 1.83 ppb 97 12) Acrolein 5.568 56 33652 2.09 ppb 96 13) Vinyl Bromide 5.238 106 17318 2.23 ppb 99 14) Freon 11 5.505 101 536252 2.17 ppb 100 15) Acetone 5.667 58 87430 1.73 ppb # 1 16) Pentane 5.775 42 156454 2.01 ppb # 45 17) Isopropyl alcohol 5.766 45 249906 2.28 ppb 97 19) Freon 113 6.433 101 537584 2.15 ppb 94 20 t-Butyl alcohol 6.448 59 436440 2.25 ppb 93 21 Methylene chloride 6.679 84 208391 2.17 ppb 96 22) Allyl chloride 6.664 41 20805 2.28 ppb 97 <td></td> <td>Viñyl Chloride Butane</td> <td>4.337</td> <td>62</td> <td>183970</td> <td>2.22 ppb</td> <td>ц</td> <td>100</td>		Viñyl Chloride Butane	4.337	62	183970	2.22 ppb	ц	100
11) Ethanol 5,766 45 249906 1.83 ppb 97 12) Acrolein 5.568 56 33652 2.09 ppb 96 13) Vinyl Bromide 5.238 106 17318 2.23 ppb 99 14) Freon 11 5.505 101 536252 2.17 ppb 100 15) Acetone 5.667 58 87430 1.73 ppb # 1 16) Pentane 5.775 42 156454 2.01 ppb # 45 17) Isopropyl alcohol 5.766 45 249906 2.28 ppb 97 19) Freon 113 6.433 101 537584 2.15 ppb 94 20 t-Butyl alcohol 6.448 59 436440 2.25 ppb 93 21 Methylene chloride 6.679 84 208391 2.17 ppb 96 22) Allyl chloride 6.664 41 20805 2.28 ppb 97 <td></td> <td>1.3-butadiene</td> <td>4.433</td> <td>4) 79</td> <td>125593</td> <td>2.21 ppp</td> <td>Ħ</td> <td>87</td>		1.3-butadiene	4.433	4) 79	125593	2.21 ppp	Ħ	87
11) Ethanol 5,766 45 249906 1.83 ppb 97 12) Acrolein 5.568 56 33652 2.09 ppb 96 13) Vinyl Bromide 5.238 106 17318 2.23 ppb 99 14) Freon 11 5.505 101 536252 2.17 ppb 100 15) Acetone 5.667 58 87430 1.73 ppb # 1 16) Pentane 5.775 42 156454 2.01 ppb # 45 17) Isopropyl alcohol 5.766 45 249906 2.28 ppb 97 19) Freon 113 6.433 101 537584 2.15 ppb 94 20 t-Butyl alcohol 6.448 59 436440 2.25 ppb 93 21 Methylene chloride 6.679 84 208391 2.17 ppb 96 22) Allyl chloride 6.664 41 20805 2.28 ppb 97 <td></td> <td>Bromomethane</td> <td>4.758</td> <td>94</td> <td>180581</td> <td>2.17 ppb</td> <td></td> <td>99</td>		Bromomethane	4.758	94	180581	2.17 ppb		99
15)Acetone5.805101582522.17ppb10015)Acetone5.66758874301.73ppb#116)Pentane5.775421564542.01ppb#4517)Isopropyl alcohol5.766452499062.28ppb#7118)1,1-dichloroethene6.232962390162.20ppb#9420)t-Butyl alcohol6.4331015375842.15ppb9420)t-Butyl alcohol6.448594364402.25ppb9821)Methylene chloride6.679842083912.17ppb9722)Allyl chloride6.664412208052.28ppb9323)Carbon disulfide6.835765703902.22ppb9524)trans-1,2-dichloroethene7.592612847692.28ppb9726)1,1-dichloroethane8.006634447182.21ppb9727)Vinyl acetate7.991432332802.32ppb9928)Methyl Ethyl Ketone8.477721116772.38ppb#129)cis-1,2-dichloroethene8.92461264697m2.20ppb9931)Ethyl acetate9.066435244042.25ppb9832)Chloroform9.513		Chloroethane	4.923	64	82835	2.13 ppb		97
15)Acetone5.805101582522.17ppb10015)Acetone5.66758874301.73ppb#116)Pentane5.775421564542.01ppb#4517)Isopropyl alcohol5.766452499062.28ppb#7118)1,1-dichloroethene6.232962390162.20ppb#9420)t-Butyl alcohol6.4331015375842.15ppb9420)t-Butyl alcohol6.448594364402.25ppb9821)Methylene chloride6.679842083912.17ppb9722)Allyl chloride6.664412208052.28ppb9323)Carbon disulfide6.835765703902.22ppb9524)trans-1,2-dichloroethene7.592612847692.28ppb9726)1,1-dichloroethane8.006634447182.21ppb9727)Vinyl acetate7.991432332802.32ppb9928)Methyl Ethyl Ketone8.477721116772.38ppb#129)cis-1,2-dichloroethene8.92461264697m2.20ppb9931)Ethyl acetate9.066435244042.25ppb9832)Chloroform9.513		Ethanol	5.766	45	249906	1.83 ppb	#	72
15)Acetone5.805101582522.17ppb10015)Acetone5.66758874301.73ppb#116)Pentane5.775421564542.01ppb#4517)Isopropyl alcohol5.766452499062.28ppb#7118)1,1-dichloroethene6.232962390162.20ppb#9420)t-Butyl alcohol6.4331015375842.15ppb9420)t-Butyl alcohol6.448594364402.25ppb9821)Methylene chloride6.679842083912.17ppb9722)Allyl chloride6.664412208052.28ppb9323)Carbon disulfide6.835765703902.22ppb9524)trans-1,2-dichloroethene7.592612847692.28ppb9726)1,1-dichloroethane8.006634447182.21ppb9727)Vinyl acetate7.991432332802.32ppb9928)Methyl Ethyl Ketone8.477721116772.38ppb#129)cis-1,2-dichloroethene8.92461264697m2.20ppb9931)Ethyl acetate9.066435244042.25ppb9832)Chloroform9.513		Acrolein Vinvl Bromide	5,568	56	33652	2.09 ppb		96
15) Acetone 5.667 58 87430 1.73 ppb # 1 16) Pentane 5.775 42 156454 2.01 ppb # 45 17) Isopropyl alcohol 5.766 42 156454 2.01 ppb # 71 18) 1,1-dichloroethene 6.232 96 239016 2.20 ppb 97 19) Freon 113 6.433 101 537584 2.15 ppb 94 20) t-Butyl alcohol 6.448 59 436440 2.25 ppb 96 21) Methylene chloride 6.679 84 208391 2.17 ppb 96 22) Allyl chloride 6.664 41 20805 2.28 ppb 93 23) Carbon disulfide 6.664 41 208391 2.02 ppb 97 24) trans-1,2-dichloroethene 7.507 3 2528 ppb 94 25) methyl text-butyl ether 7.607 3 52891 2.02 <td></td> <td>Freon 11</td> <td>5.505</td> <td>100</td> <td>+/3348 536252</td> <td>2.23 ppp</td> <td></td> <td>100</td>		Freon 11	5.505	100	+/3348 536252	2.23 ppp		100
16) Pentane 5.775 42 156454 2.01 ppb # 45 17) Isopropyl alcohol 5.766 45 249906 2.28 ppb # 71 18) 1,1-dichloroethene 6.232 96 239016 2.20 ppb 97 19) Freon 113 6.433 101 537584 2.15 ppb 94 20) t-Butyl alcohol 6.448 59 436440 2.25 ppb 96 21) Methylene chloride 6.679 84 208391 2.17 ppb 96 22) Allyl chloride 6.644 1 20805 2.28 ppb 93 23) Carbon disulfide 6.935 76 570390 2.22 ppb 97 24) trans-1,2-dichloroethene 7.592 61 284769 2.28 ppb 97 25) methyl tetr-butyl ether 7.607 73 652891 2.20 ppb 97 26) 1,1-dichloroethane 8.0066 444718 2.21					87430	1.73 ppb	Ħ	1
18) 1,1-dichloroethene 6.232 96 239016 2.20 ppb 97 19) Freon 113 6.433 101 537584 2.15 ppb 94 20) t-Butyl alcohol 6.448 59 436440 2.25 ppb 98 21) Methylene chloride 6.679 84 208391 2.17 ppb 96 22) Allyl chloride 6.664 41 20805 2.28 ppb 93 23) Carbon disulfide 6.835 76 570390 2.22 ppb 95 24) trans-1,2-dichloroethene 7.592 61 284769 2.28 ppb 97 25) methyl tetr-butyl ether 7.607 73 652891 2.20 ppb 97 26) 1,1-dichloroethane 8.006 63 444718 2.21 ppb 97 27) Vinyl acetate 7.991 43 233280 2.32 ppb 99 28) Methyl Ethyl Ketone 8.477 72 111677 2.38	16)	Pentane	5.775			2.01 ppb	#	45
19)Freon 1136.4331015375842.15ppb9420)t-Butyl alcohol6.448594364402.25ppb9821)Methylene chloride6.679842083912.17ppb9622)Allyl chloride6.664412208052.28ppb9323)Carbon disulfide6.835765703902.22ppb9524)trans-1,2-dichloroethene7.592612847692.28ppb9425)methyl tert-butyl ether7.607736528912.20ppb9726)1,1-dichloroethane8.00634447182.21ppb9727)Vinyl acetate7.991432332802.32ppb9928)Methyl Ethyl Ketone8.477721116772.38ppb#129)cis-1,2-dichloroethene8.92461264697m2.20ppb9930)Hexane8.534574162672.26ppb9832)Chloroform9.51834919202.16ppb9933)Tetrahydrofuran9.669422062142.35ppb9834)1,2-dichloroethane10.612622750632.17ppb9536)1,1,1-trichloroethane10.323974740702.03ppb9837)Cyclohexane11.032564069							#	
20) t-Butyl alcohol6.448594364402.25ppb9821) Methylene chloride6.679842083912.17ppb9622) Allyl chloride6.664412208052.28ppb9323) Carbon disulfide6.835765703902.22ppb9524) trans-1,2-dichloroethene7.592612847692.28ppb9425) methyl tert-butyl ether7.607736528912.20ppb9726) 1,1-dichloroethane8.006634447182.21ppb9727) Vinyl acetate7.991432332802.32ppb9928) Methyl Ethyl Ketone8.477721116772.38ppb#129) cis-1,2-dichloroethene8.92461264697m/2.20ppb9930) Hexane8.54574162672.26ppb9931) Ethyl acetate9.066435244042.25ppb9832) Chloroform9.513834919202.16ppb9933) Tetrahydrofuran9.669422062142.35ppb9234) 1,2-dichloroethane10.612622750632.17ppb9536) 1,1,1-trichloroethane10.323974740702.03ppb8837) Cyclohexane11.032564069352.10ppb8738) Carbon tetrachloride10.969117425017								
21)Methylene chloride6.679842083912.17ppb9622)Allyl chloride6.664412208052.28ppb9323)Carbon disulfide6.835765703902.22ppb9524)trans-1,2-dichloroethene7.592612847692.28ppb9425)methyl tert-butyl ether7.607736528912.20ppb9726)1,1-dichloroethane8.006634447182.21ppb9727)Vinyl acetate7.991432332802.32ppb9928)Methyl Ethyl Ketone8.477721116772.38ppb#129)cis-1,2-dichloroethene8.92461264697m /*2.20ppb9930)Hexane8.534574162672.26ppb9931)Ethyl acetate9.066435244042.25ppb9832)Chloroform9.513834919202.16ppb9933)Tetrahydrofuran9.669422062142.35ppb9234)1,2-dichloroethane10.612622750632.17ppb9536)1,1.1-trichloroethane10.323974740702.03ppb9639)Benzene10.933788197712.03ppb9639)Benzene10.93378819771<								
23) Carbon disulfide6.835765703902.22ppb9524) trans-1,2-dichloroethene7.592612847692.28ppb9425) methyl tert-butyl ether7.607736528912.20ppb9726) 1,1-dichloroethane8.006634447182.21ppb9727) Vinyl acetate7.991432332802.32ppb9928) Methyl Ethyl Ketone8.477721116772.38ppb#29) cis~1,2~dichloroethene8.92461264697m /2.20ppb9930) Hexane8.534574162672.26ppb9931) Ethyl acetate9.066435244042.25ppb9832) Chloroform9.513834919202.16ppb9933) Tetrahydrofuran9.669422062142.35ppb9234) 1,2-dichloroethane10.612622750632.17ppb9536) 1,1,1-trichloroethane10.323974740702.03ppb9837) Cyclohexane11.032564069352.10ppb8738) Carbon tetrachloride10.9691174250172.04ppb9239) Benzene10.933788197712.03ppb9640) Methyl methacrylate12.536412491572.04ppb#8641) 1,4-dioxane12.542881725961.93p			6.679			2.17 ppb		96
24)trans-1,2-dichloroethene7.592612847692.28ppb9425)methyl tert-butyl ether7.607736528912.20ppb9726)1,1-dichloroethane8.006634447182.21ppb9727)Vinyl acetate7.991432332802.32ppb9928)Methyl Ethyl Ketone8.477721116772.38ppb#129)cis-1,2-dichloroethene8.92461264697m2.20ppb9930)Hexane8.534574162672.26ppb9931)Ethyl acetate9.066435244042.25ppb9832)Chloroform9.513834919202.16ppb9933)Tetrahydrofuran9.669422062142.35ppb9234)1,2-dichloroethane10.612622750632.17ppb9536)1,1,1-trichloroethane10.323974740702.03ppb9837)Cyclohexane11.032564069352.10ppb8738)Carbon tetrachloride10.9691174250172.07ppb9239)Benzene10.933788197712.03ppb9640)Methyl methacrylate12.542881725961.93ppb9642)2,2,4+trimethylpentane12.818								
25)methyl tert-butyl ether7.607736528912.20ppb9726)1,1-dichloroethane8.006634447182.21ppb9727)Vinyl acetate7.991432332802.32ppb9928)Methyl Ethyl Ketone8.477721116772.38ppb#129)cis-1,2-dichloroethene8.92461264697m2.20ppb9930)Hexane8.534574162672.26ppb9931)Ethyl acetate9.066435244042.25ppb9832)Chloroform9.513834919202.16ppb9933)Tetrahydrofuran9.669422062142.35ppb9234)1,2-dichloroethane10.612622750632.17ppb9536)1,1,1-trichloroethane10.323974740702.03ppb9837)Cyclohexane11.032564069352.10ppb8738)Carbon tetrachloride10.9691174250172.07ppb9239)Benzene10.933788197712.03ppb9640)Methyl methacrylate12.536412491572.04ppb4641)1,4-dioxane12.542881725961.93ppb9642)2,2,4+trimethylpentane11.818571								
26)1,1-dichloroethane8.006634447182.21ppb9727)Vinyl acetate7.991432332802.32ppb9928)Methyl Ethyl Ketone8.477721116772.38ppb#129)cis~1,2-dichloroethene8.92461264697m2.20ppb9930)Hexane8.534574162672.26ppb9931)Ethyl acetate9.066435244042.25ppb9832)Chloroform9.513834919202.16ppb9933)Tetrahydrofuran9.669422062142.35ppb9234)1,2-dichloroethane10.612622750632.17ppb9536)1,1.1-trichloroethane10.323974740702.03ppb9837)Cyclohexane11.032564069352.10ppb8738)Carbon tetrachloride10.9691174250172.07ppb9239)Benzene10.933788197712.03ppb9640)Methyl methacrylate12.542881725961.93ppb9641)1,4-dioxane12.542881725961.93ppb9642)2,2,4+trimethylpentane11.8185712811852.02ppb10043)Heptane12.17643407306 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
28) Methyl Ethyl Ketone 8.477 72 111677 2.38 ppb # 1 29) cis-1,2-dichloroethene 8.924 61 264697m 2.20 ppb 30) Hexane 8.534 57 416267 2.26 ppb 99 31) Ethyl acetate 9.066 43 524404 2.25 ppb 98 32) Chloroform 9.513 83 491920 2.16 ppb 99 33) Tetrahydrofuran 9.669 42 206214 2.35 ppb 92 34) 1,2-dichloroethane 10.612 62 275063 2.17 ppb 95 36) 1,1,1-trichloroethane 10.323 97 474070 2.03 ppb 98 37) Cyclohexane 11.032 56 406935 2.10 ppb 92 38) Carbon tetrachloride 10.969 117 425017 2.07 ppb 92 39) Benzene 10.933 78 819771 2.03 ppb 96 40) Methyl methacrylate 12.542 88 172596 1.93	26)	1,1-dichloroethane				2.21 ppb		
29)cis-1,2-dichloroethene8.92461264697m /2.20ppb30)Hexane8.534574162672.26ppb9931)Ethyl acetate9.066435244042.25ppb9832)Chloroform9.513834919202.16ppb9933)Tetrahydrofuran9.669422062142.35ppb9234)1,2-dichloroethane10.612622750632.17ppb9536)1,1,1-trichloroethane10.323974740702.03ppb9837)Cyclohexane11.032564069352.10ppb8738)Carbon tetrachloride10.9691174250172.07ppb9239)Benzene10.933788197712.03ppb9640)Methyl methacrylate12.536412491572.04ppb8641)1,4-dioxane12.542881725961.93ppb9642)2,2,4+trimethylpentane11.8185712811852.02ppb10043)Heptane12.176434073062.06ppb98								
30) Hexane8.534574162672.26ppb9931) Ethyl acetate9.066435244042.25ppb9832) Chloroform9.513834919202.16ppb9933) Tetrahydrofuran9.669422062142.35ppb9234) 1,2-dichloroethane10.612622750632.17ppb9536) 1,1,1-trichloroethane10.323974740702.03ppb9837) Cyclohexane11.032564069352.10ppb8738) Carbon tetrachloride10.9691174250172.07ppb9239) Benzene10.933788197712.03ppb9640) Methyl methacrylate12.536412491572.04ppb8641) 1,4-dioxane12.542881725961.93ppb9642) 2,2,4+trimethylpentane11.8185712811852.02ppb10043) Heptane12.176434073062.06ppb98							#	1.
31) Ethyl acetate9.066435244042.25 ppb9832) Chloroform9.513834919202.16 ppb9933) Tetrahydrofuran9.669422062142.35 ppb9234) 1,2-dichloroethane10.612622750632.17 ppb9536) 1,1,1-trichloroethane10.323974740702.03 ppb9837) Cyclohexane11.032564069352.10 ppb8738) Carbon tetrachloride10.9691174250172.07 ppb9239) Benzene10.933788197712.03 ppb9640) Methyl methacrylate12.536412491572.04 ppb#41) 1,4-dioxane12.542881725961.93 ppb9642) 2,2,4+trimethylpentane11.8185712811852.02 ppb10043) Heptane12.176434073062.06 ppb98								99
32)Chloroform9.513834919202.16ppb9933)Tetrahydrofuran9.669422062142.35ppb9234)1,2-dichloroethane10.612622750632.17ppb9536)1,1,1-trichloroethane10.323974740702.03ppb9837)Cyclohexane11.032564069352.10ppb8738)Carbon tetrachloride10.9691174250172.07ppb9239)Benzene10.933788197712.03ppb9640)Methyl methacrylate12.536412491572.04ppb#41)1,4-dioxane12.542881725961.93ppb9642)2,2,4+trimethylpentane11.8185712811852.02ppb10043)Heptane12.176434073062.06ppb98								
34)1,2-dichloroethane10.612622750632.17ppb9536)1,1,1-trichloroethane10.323974740702.03ppb9837)Cyclohexane11.032564069352.10ppb8738)Carbon tetrachloride10.9691174250172.07ppb9239)Benzene10.933788197712.03ppb9640)Methyl methacrylate12.536412491572.04ppb8641)1,4-dioxane12.542881725961.93ppb9642)2,2,4+trimethylpentane11.8185712811852.02ppb10043)Heptane12.176434073062.06ppb98						2.16 ppb		
36)1,1,1-trichloroethane10.323974740702.03ppb9837)Cyclohexane11.032564069352.10ppb8738)Carbon tetrachloride10.9691174250172.07ppb9239)Benzene10.933788197712.03ppb9640)Methyl methacrylate12.536412491572.04ppb8641)1,4-dioxane12.542881725961.93ppb9642)2,2,4+trimethylpentane11.8185712811852.02ppb10043)Heptane12.176434073062.06ppb98								
37)Cyclohexane11.032564069352.10ppb8738)Carbon tetrachloride10.9691174250172.07ppb9239)Benzene10.933788197712.03ppb9640)Methyl methacrylate12.536412491572.04ppb#8641)1,4-dioxane12.542881725961.93ppb9642)2,2,4+trimethylpentane11.8185712811852.02ppb10043)Heptane12.176434073062.06ppb98						2.17 ppb		
38) Carbon tetrachloride10.9691174250172.07ppb9239) Benzene10.933788197712.03ppb9640) Methyl methacrylate12.536412491572.04ppb#8641) 1,4-dioxane12.542881725961.93ppb9642) 2,2,4+trimethylpentane11.8185712811852.02ppb10043) Heptane12.176434073062.06ppb98								
40) Methyl methacrylate12.536412491572.04ppb#8641) 1,4-dioxane12.542881725961.93ppb9642) 2,2,4-trimethylpentane11.8185712811852.02ppb10043) Heptane12.176434073062.06ppb98					425017	2.07 ppb		
41) 1,4-dioxane 12.542 88 172596 1.93 ppb 96 42) 2,2,4+trimethylpentane 11.818 57 1281185 2.02 ppb 100 43) Heptane 12.176 43 407306 2.06 ppb 98								
42) 2,2,4-trimethylpentane 11.818 57 1281185 2.02 ppb 100 43) Heptane 12.176 43 407306 2.06 ppb 98							#	
43) Heptane 12.176 43 407306 2.06 ppb 98								
	43)	Heptane				2.06 ppb		
W P.	44)	Trichloroethene	12.296	130	335921	1.99 ppb		95

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\1\data2\ Data File : AU022327.D Acq On : 24 Feb 2023 5:41 am Operator : RJP Sample : A1UG_2.0 Misc : A223_1UG ALS Vial : 26 Sample Multiplier: 1 Quant Time: Feb 24 07:47:24 2023 Quant Method : C:\msdchem\1\methods\A223 1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 07:45:52 2023 Response via : Continuing Cal File: C:\msdchem\1\data\AU023224.D CompoundR.T. QIONResponseConc Units Dev(Min)45)1,2-dichloropropane12,404633136151.97 ppb9746)Bromodichloromethane12.743834780602.09 ppb10047)cis-1,3-dichloropropene13.568753550122.08 ppb9948)trans-1,3-dichloropropene14.364752659702.05 ppb9549)1,1,2-trichloroethane14.664973273561.97 ppb9751)Toluene14.412925700112.19 ppb9853)Dibromochloromethane15.382129409205m2.16 ppb54)Methyl Butyl Ketone14.847433921922.27 ppb9251)1,2-dibromoethane15.64310741318022.14 ppb9856)Tetrachloroethylene16.48611127270672.11 ppb9856)Tetrachloroethylene16.9709118734354.42 ppb9958)Ethylbenzene16.9709118734354.42 ppb9950)map-xylene17.4261046995162.36 ppb8761)Styrene17.4261046995162.36 ppb9661)Styrene17.4261046995162.36 ppb9661)styrene18.64710514219752.30 ppb9862)Bromoform17.5401733603022.37 ppb93< Compound R.T. QION Response Conc Units Dev(Min) _ _____

(#) = qualifier out of range (m) = manual integration (+) = signals summed

23.00 T, analogind-C, L-oroldsexett T,enespedorold∋öt⊳k,S,t ∛,enelettingeM 22.00 21,00 ĝ ₹,enesnedoro#onb-S,≹ T, on osnooly dramm t. S, S, t20 ('auszusgalojubia') m Page: T, sees subdiversation (1, sees 2, t 19.00 T,ອກອ່ວນຜູ້ຟູຟິຜີທີ່ກ່ວວກວ່າ T,ອກອວກອດໄດ້ເສີຍສິມສິນຊີບູຊັກສາລີ T,ອກອວກອດໄດ້ເສີຍສິນສິນຊີບູຊັກສາລີ 18.00 2.ensznadoroultamar6 T,onemuQ T. sourteeroshpene)-S.S.t.t L.miotomon8 LISONANA 1.01/18: 17.00 Τ.9n9iγx+q&m T.onesnediyma T.enescenterold() Chlarabenzene.d5.L. 16.00 T.orischeornordio-S.T T, anaity it a contraction of the second state ມີພາດກາວວ່າກ່ວງກາວເປັນເອີ້ມ TIC: AU022327.Didata.ms 15.00 T,anertieonoliciti2.5,1,7 T.oneuloT Tamququpplib, E. L. stell 14.00 C:\msdchem\1\data\AU023224.D T. STP WARDER WARDER LAID calibration 13,00 12.00 T, adiatroadtyrttlamist-A, S, S 11.00 5 point Leong Hand Hand 1UG.M T,enschorphabs, L T, anardrooraldoist-1,1,3 10:00 C:\msdchem\1\methods\A223 Standards for 07:45:52 2023 9.00 Cis-1,2-dichloroethene,T Cal File: Sample Multiplier: A SOLLAR KOLARD KOLARD TAREA am 2023 24 07:47:24 2023 8.00 C:\msdchem\l\data2\ T, entrated and address hybrid 5:41 Turnense rejubitisk testen 08:40:33 7.00 Feb 24 Continuing TO-15 VOA Feb 2023 T,CTT, Indexts, Iviu9-1 AU022327.D T_senantportointalb-f,f 6.00 2.0 TUG 33 T, lorioola Tytamatka) T.M. nosi- T.M. 1993 Fri Aluc A223 T, sbimora lyniV A223 1UG.M Thu Mar Feb 5.00 RJP .. T,eneritemorrosB T,eneritenorrolstC 24 38 Method Response via Update T.onsi的局的設備的 tynix Time: Title T,9netwaterobild 4,68 Data Path Data File T, enelytens..... Operator ALS Vial Acq On Sample 1600000 800000 Abundance 2200000 2060000 1800000 1400000 1200000 000000 600000 400000 200000 Quant QLast Quant Quant Misc Time-->

.

.

,

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

CALIBRATION VERIFICATION

.

.

i.

Page 136 of 201

Data Path : C:\msdchem\1\data2\ Data File : AU022402.D Acq On : 24 Feb 2023 9:14 am Operator : RJP Sample : AlUG_1.0 Misc : A223_1UG ALS Vial : 2 Sample Multiplier: 1 Quant Time: Feb 24 09:44:06 2023

Quant Method : C:\msdchem\1\methods\A223 1UG.M Quant Title : TO~15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 08:23:48 2023 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

_		Compound	AvgRF	CCRF	%Dev A:	reas	Dev(min)
	I	Bromochloromethane	1.000	1.000	0.0	96	0.00
2	т	Propylene	1,208	1.236	-2.3	98	0.00
3	T	Freon 12	4.536	4.416	2.6	98	0.00
4	т	Chloromethane	1,499	1.558	-3.9	103	0.01
- 5	т	Freon 114	4.536	4.416	2.6	98	0.00
6	T	Vinyl Chloride	1.414	1.455	~2.9	99	0.01
7	Ţ	Butane	1.524	1.839	-20.7	114	0,01
8	Ť	1,3-butadiene	0.981	0.954	2.8	100	0.01
9		Bromomethane	1.449	1.430	1.3	95	0.00
10		Chloroethane	0.649	0.637	1.8	93	0.00
11		Ethanol	2.017	1,974	2.1	100	0.01
12		Acrolein	0,259	0.220	15.1	89	0.00
13		Vinyl Bromide	1.362	1.359	0.2	99	0.01
14		Freon 11	4.362		1.6	100	0.01
15		Acetone	0.780	0.731	6.3	102	0.02
16		Pentane	1,355	1.337	1.3	98	0.02
17		Isopropyl alcohol	1.944	1.974	-1.5	100	0.01
18		1,1-dichloroethene	1,738	1.800	∽3.6	95	0.00
19		Freon 113	4.198	4.229	-0.7	98	0.02
20		t-Butyl alcohol	3.321	3.295	0.8	96	0.02
21		Methylene chloride	1.708	1.609	5.8	94	0.00
22		Allyl chloride	1.646	1.602	2.7	95	0.00
23		Carbon disulfide	4.556	4.514	0.9	99	0.00
24		trans-1,2-dichloroethene	2.093	2.132	-1.9	97	0.00
25		methyl tert-butyl ether	4.955	4.985	-0.6	96	0.00
26 27		1,1-dichloroethane	3.381	3.426	-1.3	99	0.00
28		Vinyl acetate Methyl Ethyl Ketone	1.633	1.595	2.3	90	0.02
20 29		cis-1,2-dichloroethene	0.785 2.067	0.791	-0.8	98	0,01
30		Hexane	2.087	1.954 3.062	5.5 0.7	96 96	0.01 0.01
31		Ethyl acetate	3.085	3.745	0.3	94	0.00
32		Chloroform	3.792	3.795	-0.1	98	0.00
33		Tetrahydrofuran	1.530		-0.8	103	0.00
34		1,2-dichloroethane	2.059	2.050	0.4	±03 96	0.00
с• п.	-	1,2 didniorocchand		2.000	0.4	50	0.00
35	r	1,4-difluorobenzene	1.000	1.000	0.0	98	0.00
36		1,1,1-trichloroethane	0.604	0.603	0.2	99	0.00
37		Cyclohexane	0.516	0.498	3.5	99	0.01
38		Carbon tetrachloride	0.520	0.535	-2.9	99	0.01
39	T	Benzene	1.031	1.011	1.9	96	0.00
40		Methyl methacrylate	0.300	0.293	2.3	93	0.01
41		1,4-dioxane	0,220	0.211	4.1	93	0.00
42		2,2,4-trimethylpentane	1.595	1.568	1.7	96	0.00
43	Т	Heptane	0.490	0.494	-0.8	96	0.00
44	r	Trichloroethene	0.483	0.415	14.1	96	0.00
45	Т	1,2-dichloropropane	0.403	0.398	1.2	97	0.00
46	T	Bromodichloromethane	0.584	0.580	0.7	98	0.00
47	.Т.	cis-1,3-dichloropropene	0.413	0.416	-0,7	97	0.00

A223_1UG.M Thu Mar 23 08:42:00 2023

Data Path : C:\msdchem\1\data2\ Data File : AU022402.D Acq On : 24 Feb 2023 9:14 am Operator : RJP Sample : AlUG_1.0 Misc : A223_lUG ALS Vial : 2 Sample Multiplier: 1 Quant Time: Feb 24 09:44:06 2023

Quant Method : C:\msdchem\l\methods\A223_1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 08:23:48 2023 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

	Compound	AvgRF		\$Dev.		Dev(min)
48 T	trans-1,3-dichloropropene	0,302				
49 T	1,1,2-trichloroethane	0.418	0.414	1.0	98	0.00
so r	Chlorobenzene-d5	1.000	1.000	0.0	97	0.00
51 T	Toluene	0.849	0.830	2.2	97	0.00
52 T	Methyl Isobutyl Ketone	0.730	0.718	1.6	96	0.00
53 T	Dibromochloromethane	0.577	0.595	- 3 . 1	100	0.00
54 T	Methyl Butyl Ketone	0.552	0.541	2.0	93	0.00
55 T	1,2-dibromoethane	0.653	0.642	1.7	96	0.00
56 T	Tetrachloroethylene	0.576	0.561	2.6	98	0.00
57 T	Chlorobenzene	1.096	1.077	1.7		0.00
58 T	Ethylbenzene	1,753		-0.3	96	0.00
59 T	m&p-xylene	1.309		-0.6		0.00
60 T	Nonane	0.829		-0.6		0.00
61 T	Styrene	0,922				0.00
62 T	Bromoform	0.476				0.00
63 T	o-xylene	1.552	1.545			0.00
64 T	Cumene	1.963			97	0.00
65 S	Bromofluorobenzene	0.595	0.616	-3.5		0.00
66 T	1,1,2,2-tetrachloroethane	1.036	1.037			0.00
67 T	Propylbenzene	0.497	0.491	1.2		0.00
68 T	2-Chlorotoluene	0.472	0.459			0.00
69 T	4-ethyltoluene	1.594		-1.8		0.00
70 T	1,3,5-trimethylbenzene	1.611	1.595	1.0		0.00
71 T	1,2,4-trimethylbenzene	1,336	1.306	2.2		0.00
72 T	1,3-dichlorobenzene	0.739	0.745	-0.8		0.00
73 T	benzyl chloride	0.265	0.281	-6.0		0.00
74 T	l,4-dichlorobenzene	0.674	0.724	-7.4		0.00
75 T	1,2,3-trimethylbenzene	1.386	1.339			0.00
76 T	1,2-dichlorobenzene	0.730		5.3		0.00
77 T	1,2,4-trichlorobenzene					
78 T	Naphthalene	0.371				
79 T	Mexachloro-1,3-butadiene			1.9		0.00

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

Centek/SanAir Laboratorie	es Intitation	Report	t (QT Rev	iewed)		
Data Path : C:\msdchem\l\data2 Data File : AU022402.D Acq On : 24 Feb 2023 9:14 Operator : RJP Sample : A1UG_1.0 Misc : A223_1UG ALS Vial : 2 Sample Multipl	am					
Quant Time: Feb 24 09:44:06 20 Quant Method : C:\msdchem\1\me Quant Title : TO-15 VOA Stan QLast Update : Fri Feb 24 08:2 Response via : Initial Calibra	thods\A22 dards for 3:48 2023 tion	5 poir	nt calibratio			
Compound	R.T.	QIon	Response Co	onc Units	Dev	(Mín)
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds	9.360 11.650 16.435	128 114 117	63299 380547 313937	1.00 ppb 1.00 ppb 1.00 ppb		0.00 0.00 0.00
65) Bromofluorobenzene Spiked Amount 1.000	18.188 Range 70	95 - 1.30	193264 Recovery	1.03 ppb = 103	.00%	0.03
Target Compounds 2) Propylene 3) Freon 12 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) Butane 8) 1,3-butadiene 9) Bromomethane 10) Chloroethane 11) Ethanol 12) Acrolein 13) Vinyl Bromide 14) Freon 11 15) Acetone 16) Pentane 17) Isopropyl alcohol 18) 1,1-dichloroethene 19) Freon 113 20) t-Butyl alcohol 21) Methylene chloride 22) Allyl chloride 23) Carbon disulfide 24) trans-1,2-dichloroethene 25) methyl tert-butyl ether 26) 1,1-dichloroethane 27) Vinyl acetate 28) Methyl Ethyl Ketone 29) cis-1,2-dichloroethene 30) Hexane 31) Ethyl acetate 32) Chloroform 33) Tetrahydrofuran 34) 1,2-dichloroethane 36) 1,1,1-trichloroethane 37) Cyclohexane 38) Carbon tetrachloride 39) Benzene	4.154 4.154 4.340 4.436 4.442 4.758 4.917 5.769 5.571 5.570 5.570 5.769 5.7789 5.769 5.769 5.769 5.2356 6.457 6.682 6.832	48505239445661825619416133321733227678 178	279541 98619 279541 92096 116382 60385 90537 40337 124940 13905 86045 271623	1.02 ppb 0.97 ppb 1.04 ppb 0.97 ppb 1.03 ppb 1.21 ppb 0.97 ppb 0.99 ppb 0.98 ppb 0.98 ppb 0.98 ppb 0.98 ppb 0.98 ppb 0.98 ppb 1.00 ppb 0.99 ppb 1.02 ppb 1.00 ppb 1.00 ppb 1.00 ppb 1.00 ppb 1.00 ppb	***	alue 97 96 96 98 98 98 98 98 98 98 98 98 98 98 98 96 98 98 98 96 98 96 98 96 98 96 98 96 98 96 98 96 98 96 98 96 96 98 96 96 96 96 96 96 96 96 96 96 96 96 96
40) Methyl methacrylate 41) 1,4-dioxane 42) 2,2,4-trimethylpentane 43) Heptane 44) Trichloroethene	12.542 12.551 11.815 12.176 12.299	41 88 57 43 130	111606 80167 596873 187924 158035	0.98 ppb 0.96 ppb 0.98 ppb 1.01 ppb 0.86 ppb		86 96 99 98 95

Centek/SanAir Laboratories Quantitation Report (QT Reviewed)	
Data Path : C:\msdchem\1\data2\ Data File : AU022402.D Acq On : 24 Feb 2023 9:14 am Operator : RJP Sample : AlUG_1.0 Misc : A223_1UG ALS Vial : 2 Sample Multiplier: 1	
Quant Time: Feb 24 09:44:06 2023 Quant Method : C:\msdchem\l\methods\A223_1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 08:23:48 2023 Response via : Initial Calibration	
Compound R.T. Qion Response Conc Units Dev(M	in)
45)1,2-dichloropropane12.404631515030.99ppb46)Bromodichloromethane12.743832205900.99ppb47)cis-1,3-dichloropropene13.565751582591.01ppb48)trans-1,3-dichloropropene14.343751157241.01ppb49)1,1,2-trichloroethane14.667971577090.99ppb51)Toluene14.412922605130.98ppb52)Methyl Isobutyl Ketone13.484432252770.98ppb53)Dibromochloromethane15.388129186660m1.03ppb54)Methyl Butyl Ketone14.850431699190.98ppb55)1,2-dibromoethane15.6431072017000.98ppb56)Tetrachloroethylene15.4721641759970.97ppb57)Chlorobenzene16.760915518031.00ppb58)Ethylbenzene16.973918267782.01ppb60)Nonane17.381432617751.01ppb61)Styrene17.4231042913941.01ppb62)Bromoform17.459914849881.00ppb63)o-xylene17.459914849881.00ppb64)Cumene18.0681056110990.99ppb66)1,1,2,2-tet	
70)1,3,5-trimethylbenzene18.930105500834m0.99ppb71)1,2,4-trimethylbenzene19.4311054098560.98ppb72)1,3-dichlorobenzene19.7551462337581.01ppb73)benzylchloride19.84391881091.06ppb74)1,4-dichlorobenzene19.906146227244m1.07ppb75)1,2,3-trimethylbenzene19.9601054204140.97ppb76)1,2-dichlorobenzene20.2691462169790.95ppb77)1,2,4-trichlorobenzene22.40918055589m1.06ppb78)Naphthalene22.607128129655m1.11ppb79)Hexachloro-1,3-butadiene22.7362252109570.98ppb	99 99 94 98 98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

аn

9:14

24 Feb 2023

RJP

Operator

Sample

Acq On

AIUG I.O

AU022402.D

C:\msdchem\1\data2\

Data Path Data File

23,00 T eneigerud 6.1-orotópasot (T,enslerundeM WB WYAT ------T, snexnedorothont-b, S, t 22.00 21.00 T,enesnedonoldo/b-S.P 20.00 T, engangdroidraib-C, t T, engangdroidraib-C, S, t T, engangdoidraib-6, t സ Page: T.prigsnedity/benahr-6,S,1 19,00 T,ទneznediytibantigiytibiytiba.4 T,eneznediytibantigiytibiytiba.4 7, and floor of the state of th 18.00 T.enemuO Т.аД*М*(Д.()ом T,miolomori L'ANGLÁIS COM 17.00 T.anetyx-q&ro T,anoznadiyrt9 T, 4A33A458063493040 16.00 T.ppedteomordih-S. Tettachiorochylerte.T ...ມື່ມສຸດສາງສາງຄາດກ່າວດາກດາດເບິ່ TIC: AU022402.D/data.ms 15.00 Methyl Butyt Kelone,T Τ, οι σουίο Τ΄ Lanagongeneitzib-E.L-zneit 14.00 1'adding tennessing tensa calibration 13.00 T.anelosti 12.03 11.00 point LUG. M T.enerlieoroirloib-S.f T.enertleoroldon)-F.F.F.F 10.00 |₽0 C:\msdchem\1\methods\A223 Bromochlorona Bromie ar Chloroinn, F ar Chloroinn, F Standards for 08:23:48 2023 <u> 8</u> 8 Ч Sample Multiplier: Calibration T, answitcheroreXLivitaM 23 08:42:21 2023 24 09:44:06 2023 8.00 T, entrifogradetetypit/ T, see that and universite Qriterian u 7.00 Feb 24 Tablet Astronomic Carlocade (TO-15 VOA T,ELT nostil.tortople.tytu8-training Initial T, anorheorokhoib+t, ł 6.00 IUG T, loncols T(ppmpp) Fra 1. 64689392 T.Ff neev3 A223 Feb Τισοίσισι Βιγάν A223_1UG.M Thu Mar 5.00 •• T,ensittemomotil T,anariteoiolil \sim Method Update Response via Time: Title 4.00 了,9加速調整來の均能過 T,onelytorS. ALS Vial Abundance 1000000 900009 800000 700000 600000 5000000 100000 400000 300000 200000 Quant QLast Quant Quant Misc Time--->

Data Path : C:\msdchem\l\data2\ Data File : AU022502.D Acq On : 25 Feb 2023 10:44 am Operator : RJP Sample : A1UG_1.0 Misc : A223_1UG ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 25 ll:13:12 2023 Quant Method : C:\msdchem\1\methods\A223_1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 08:23:48 2023 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	*Dev Area	% Dev(min)
1 I	Bromochloromethane	1.000			8 0.00
2 T	Propylene	1.208			1 0.00
3 T	Freon 12	4.536		-5.7 9	
4 T	Chloromethane	1.499	1.661	-10.8 10	
5 T	Freon 114	4.536			7 0.00
6 T	Vinyl Chloride	1.414			8 0.00
ž ř	Butane	1.524			6 0.00
8 T	1,3-butadiene	0.981	1 005	-24 9	7 0.00
9 T	Bromomethane	1.449	1.644	-13.5 10	
10 T	Chloroethane	0.649	0.781	-20.3 10	
11 T	Ethanol	2.017	1.973	2.2 9	1 0.00
12 T	Acrolein	0.259		-6.2 10	
13 T	Vinyl Bromide	1.362		-13.1 10	
14 T	Freon 11	4.362			
15 T	Acetone	0.780			4 0.02
16 T	Pentane	1.355		3.4 8	8 0.00
17 T	Isopropyl alcohol	1.944			1 0.00
18 T	1,1-dichloroethene				1 0.00
19 T	Freon 113	4.198			4 0.00
20 t	t-Butyl alcohol	3.321			0 0.00
20 E 21 T	Methylene chloride				1 0.00
22 Ť	Allyl chloride	1.646	1.662		0 0.00
23 T	Carbon disulfide	4.556	4.648	-2.0 9	3 0.00
24 T	trans-1,2-dichloroethene	2.093		-6.7 9	3 0.00
25 T	methyl tert-butyl ether	4 955	4.859		6 0.00
26 T	1 1-dichloroethane	3.381	3.549	-5.0 \$	4 0.00
27 T	1,1-dichloroethane Vinyl acetate	1.633	1.590	2.6 8	2 0.01
28 T	Methyl Ethyl Ketone	0.785			4 0.00
29 T	cis-1,2-dichloroethene	2.067			0 0.00
30 T	Hexane	3.085			7 0.00
31 T	Ethyl acetate	3.756		-4.0 9	0 0.00
32 T	Chloroform	3.792	3.912	-3.2 5	2 0.00
33 T	Tetrahydrofuran	1.530			4 0.00
34 T	1,2-dichloroethane	2.059			4 0.00
., . .	1, 2-dichioroschane		4-102	0.1 9	
35 I	1,4-difluorobenzene	1.000	1,000	0.0 8	4 0.00
36 T	1,1,1-trichloroethane				1 0.00
37 T	Cyclohexane	0.516			1. 0.00
38 T	Carbon tetrachloride	0.520			4 0.00
39 T	Benzene	1.031	1.078		8 0.00
40 T	Methyl methacrylate	0.300	0.316		6 0.00
41 T	1,4-dioxane	0.220	0.213		1 0.00
42 T	2,2,4-trimethylpentane	1.595	1.663		7 0.00
43 T	Heptane	0.490	0.518		7 0.00
44 T	Trichloroethene	0.483	0.432		6 0.00
45 T	1,2-dichloropropane	0.403	0.432		0.00
45 I 46 T	Bromodichloromethane	0,584	0.605		8 0.00
40 I 47 T	cis-1,3-dichloropropene	0.413	0.430		6 0.00
	Ata the development	0.473	0.400	··· ·	

Data F Acq On Operat Sample Misc	or : RJP : AlUG_1.0	3.				
Quant Quant QLast	Time: Feb 25 ll:13:12 2023 Method : C:\msdchem\l\method Title : TO-15 VOA Standard Update : Fri Feb 24 08:23:48 se via : Initial Calibration	s for 5 po 2023		bration		
Min. R Max. R	RF : 0.000 Min. Rel. RF Dev : 30% Max. Rel.			R.T. Dev ().33	min
	Compound	AvgRF	CCRF	%Dev Ar€	as	Dev(min)
48 T 49 T	trans-1,3-dichloropropene 1,1,2-trichloroethane	0.302 0.418	0.314 0.445	~4.0 -6.5	86 90	0.00 0.00
555555555555555555555555555555555555555	Toluene Methyl Isobutyl Ketone Dibromochloromethane Methyl Butyl Ketone 1,2-dibromoethane Tetrachloroethylene Chlorobenzene Ethylbenzene m&p-xylene Nonane Styrene Bromoform o-xylene Cumene Bromofluorobenzene 1,1,2,2-tetrachloroethane Propylbenzene 2-Chlorotoluene 4-ethyltoluene 1,3,5-trimethylbenzene 1,2,4-trimethylbenzene benzyl chloride	0.552 0.653 0.576 1.096 1.753 1.309 0.829 0.922 0.476 1.552 1.963 0.595 1.036 0.497 0.497 1.594 1.594 1.336 0.739 0.265	0.563 0.5678 0.572 1.095 1.783 1.335 0.862 0.954 0.454 1.527 1.930 0.639 1.114 0.485 0.470 1.581 1.602 1.301 0.760 0.274	2.9 -5.5 2.4 -6.3 -3.8 0.1 -1.7 -2.0 -3.6 1.7 -7.5 4.6 1.7 -7.5 4.6 2.8 -2.8 0.2 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2	8989086655871346124031491	-0.01 0.00 -0.01 -0.01 -0.01 -0.03 0.00
74 T 75 T 76 T 77 T 78 T 79 T	1,4-dichlorobenzene 1,2,3-trimethylbenzene 1,2-dichlorobenzene 1,2,4-trichlorobenzene Naphthalene Hexachloro-1,3-butadiene	0.2074 1.385 0.730 0.167 0.371 0.685	0.762 1.319 0.718 0.131 0.269 0.675	-13.1 4.8 1.6 21.6 27.5 1.5	91 78 81 58 69 85	0.00 -0.01 ~0.01 0.00 0.00 0.00
	A	<i></i>			~	

(#) = Out of Range SPCC's out = 0 CCC's out = 0

	Centek/SanAir Laboratori	es ntitation	Report	t (QT Rev:	iewed)		
Data : Acq 0: Opera	Path : C:\msdchem\l\data2 File : AU022502.D n : 25 Feb 2023 10:44 tor : RJP e : A1UG_1.0 : A223_1UG ial : 2 Sample Multipl	am					
Quant Quant QLast	Time: Feb 25 11:13:12 20 Method : C:\msdchem\l\me Title : TO-15 VOA Stan Update : Fri Feb 24 08:2 nse via : Initial Calibra	thods\A22 dards for 3:48 2023 tion	5 poin	nt calibrati¢			
	Compound	R.T.	QION	Response Co	onc Units	Dev	(Min)
Inte: 1) 35) 50)	rnal Standards Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5						
65)	em Monitoring Compounds Bromofluorobenzene iked Amount 1.000	18.172 Range 70	95 - 130	176593 Recovery	1.07 ppb = 107	.00%	0.01
T =						~	
	et Compounds Propylene	ר ה ב	47	72641	3 04 mmh	QVζ	lue 100
	Freon 12	4.153	85	277170	1.06 ppb		97
	Chloromethane	4.150	50	96057	1.11 ppb		95
	Freon 114	4.153	85	277170 96057 277170	1.06 ppb		99
	Vinyl Chloride	4.330	62	91510 98238 58094 95048	1.12 ppb		96
	Butane	4.429	43	98238	1.11 ppb		95
	1,3-butadiene	4.432	39	58094	1.02 ppb		76
-	Bromomethane	4.759	94	95048	1.13 ppp		98
	Chloroethane	4.916	64	45175	1.20 ppb	45	100 67
	Ethanol Acrolein	5.76Z E EQQ	45 64	15929m /	0.98 ppb	Ŧŧ	67
	Vinyl Bromide	5,000	106	45175 114064 15929m 89059m 275452	1,13 DD		
	Freon 11	5.501	101	275452	1.09 ppb		1.00
	Acetone	5.675	58	42435	0.94 ppb	#	1
	Pentane	5,771	42	75666	0.97 ppb	#	59
17)	Isopropyl alcohol	5.762	45	114064	1.01 ppb	Ħ	66
	1,1-dichloroethene	6.236		109746	1.09 ppb		97
	Freon 113	6.426	101	257336	1.06 ppb		97
	t-Butyl alcohol Methylene chloride	6.450		195452 97811	1.02 ppb 0.99 ppb		95 94
	Allyl chloride	6.681 6.663		96106	1.01 ppb		98
	Carbon disulfide	6.822		268787	1.02 ppb		93
-	trans-1,2-dichloroethene			129100	1.07 ppb		93
	methyl tert-butyl ether	7.599	73	280987	0.98 ppb		98
	1,1-dichloroethane	8.002		205226	1.05 ppb		97
	Vinyl acetate	7.999		91953	0.97 ppb		98
	Methyl Ethyl Ketone	8.482		47716	1.05 ppb	# #	1
	cis-1,2-dichloroethene Hexane	8.917 8.530		116297m / 174765	0.97 ppb 0.98 ppb		97
-	Ethyl acetate	9.067		225891	1.04 ppb		98
	Chloroform	9.515		226213	1.03 ppb		100
	Tetrahydrofuran	9.674		89350	1.01 ppb		98
	1,2-dichloroethane	10.610		126370	1.06 ppb		97
	1,1,1-trichloroethane	10.322		210651	1.07 ppb		98
	Cyclohexane	11.025		175810	1.04 ppb		92
	Carbon tetrachloride	10.967		172285	1.01 ppb		93
	Benzene Methyl methacrylate	10.934		352440	1.05 ppb 1.05 ppb		93 90
	Methyl methacrylate 1,4-dioxane	12.541 12.547		103281 69713	1.05 ppb 0.97 ppb		90 93
	2,2,4-trimethylpentane	12.547 11.814		543688	1.04 ppb		98
	Heptane	12.174		169394	1.06 ppb		98
	Trichloroethene	12.294		141323	0.90 ppb		94

Centek/SanAir Laboratories	itation	Repor	t (QT Re	viewed)	
Data Path : C:\msdchem\l\data2\ Data File : AU022502.D Acq On : 25 Feb 2023 10:44 a Operator : RJP Sample : A1UG_1.0 Misc : A223_1UG ALS Vial : 2 Sample Multiplie	ım				
Quant Time: Feb 25 11:13:12 2023 Quant Method : C:\msdchem\1\meth Quant Title : TO-15 VOA Standa QLast Update : Fri Feb 24 08:23: Response via : Initial Calibrati	ods\A22: irds for 48 2023	3_1UG. 5 poi	M nt calibrat	ion	
Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
<pre>45) 1,2-dichloropropane 46) Bromodichloromethane 47) cis-1,3-dichloropropene 48) trans-1,3-dichloropropene 49) 1,1,2-trichloroethane 51) Toluene 52) Methyl Isobutyl Ketone 53) Dibromochloromethane 54) Methyl Butyl Ketone 55) 1,2-dibromoethane 56) Tetrachloroethylene 57) Chlorobenzene 58) Ethylbenzene 59) m&p-xylene 60) Nonane</pre>	12.402 12.745 13.567 14.342 14.663 14.411 13.483 15.386 14.855 15.645 15.473 16.488 16.761 16.971 17.377	83 75 97 92 43 129 43 107 164 91 112 91 43	227517 212751 155440m 162002 187194 158019 302484 492405 737417 238078	1.04 ppb 1.04 ppb 1.07 ppb 0.97 ppb 1.05 ppb 1.05 ppb 1.06 ppb 1.06 ppb 1.04 ppb 1.00 ppb 1.02 ppb 1.02 ppb 2.04 ppb 1.04 ppb	98 97 92 98 98 98 98 98 99 98 98 100
<pre>61) Styrene 62) Bromoform 63) o-xylene 64) Cumene 66) 1,1,2,2-tetrachloroethane 67) Propylbenzene 68) 2-Chlorotoluene</pre>	17.425 17.539 17.458 18.061 17.935 18.662 18.701	173 91 105 83 120	263430 125458 421872 533094 307771 133976 129808	1.03 ppb 0.95 ppb 0.98 ppb 0.98 ppb	93 96 99 96 ∦ 1
 69) 4-ethyltoluene 70) 1,3,5-trimethylbenzene 71) 1,2,4-trimethylbenzene 72) 1,3-dichlorobenzene 73) benzyl chloride 	18.848 18.920 19.418 19.748 19.829	105 105 105 146 91	436741m/ 442573m 359387 209889 75649 210367m	0.99 ppb 0.99 ppb 0.97 ppb 1.03 ppb 1.03 ppb	# 1 99 99 99
<pre>74) 1,4-dichlorobenzene 75) 1,2,3-trimethylbenzene 76) 1,2-dichlorobenzene 77) 1,2,4-trichlorobenzene 78) Naphthalene 79) Hexachloro-1,3-butadiene</pre>	19.898 19.949 20.259 22.408 22.612 22.744	146 105 146 180 128 225	364360 198426 36057 74285 186565	0.95 ppb 0.98 ppb 0.98 ppb 0.78 ppb 0.73 ppb 0.99 ppb	98 97 96 98 98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Operator

Sample

Misc

Acq On

AU022502.D

QLast Update Response via

800000 850000 800000 750000 700000 650000 600000

Abundance

Method

Quant Quant

Title

Quant Time:

ALS Vial

C:\msdchem\1\data2\

•••

Data Path Data File

T,eneitxsurd-6.1-o rainexxy I T,eneitxsurd-6.1-o rainexxy I	
(**************************************	
T, anasynadivatiernin, E, S, Pi , anasodarolichih, E, t T, anasodaytaternin, E, S, Pi , anasodarolocobarsanatiernin, E, S, Pi , anasodarolichih, S, L	
T,909Xn9div(h)mid-A,S,? · · · · · · · · · · · · · · · · · · ·	
Т.я <u>тукую</u> еской П. с. Т.а∩эҳлэайүлэйАрдурудаэ-	
t,ensileoroirias))9,2,2,1,1 (t.ensileoroirias))9,2,2,1,1 (t.ensileoroirias)) (t.ensileoroirias) (t.ensileor	
Т.элБор <mark>у</mark> дэіхх -5	
Ţ,9n9chz-q&m	
T, on43B60930850000000000000000000000000000000000	
7,ອກອໂຫຼກ່ອດγດໃດອາດໄປສາງອ⊺	
Methyl Butyl Ketene, T	
T. energenergenergenergenergenergenergener	iosi
Bromodichioromethane.T 	
Т.ельлізептою/поіболюяВ	
T, Station Station (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Т.опфлодусліяттог-А.S.S. Т.опрідаді	
T	
1, et al 846,616,868,169,169	
T.arichtorothia.t.t.t	
אויא ארי מער אין איין איין איין איין איין איין איין	IONÉ (EVIAT
T, Srichlorodhair S, Srichter T, Srichter J, Srichter	
T_{i} ons \overline{N} 4 \overline{N} ons \overline{N} 4 \overline{N}	ізулаемі
Τ, 9 και Πουπέκτρων για για τη	<u> </u>
了,為我的時期在7月1日。 第二十章 我的時期在7月1日(1月) 第二章 我的時期在7月1日(1月) 第二章 我们的时候,	
T,611 noskönosertettettettettettettettettettettettette	
T,enartisonokinki, t,	
Ereon 11.1 	<u>r 7480</u> 8
Т. оріткозб	se ivniv
T.onertjamor , sone	
Christian anne. T	Viny: C

4.00 ó Time-->

50000 100000

23.00

22.00

21.00

20.00 r)

18.00

17.00

16.00

15.00

14.00

13.00

12.00

11.00

10.00

9.00

8.00

7.00

.....

Page: 19.00

13:56:26 2023 6.00 30 A223_1UG.M Thu Mar 5.00

Page 146 of 201

TTURERY

T.anerijamomor9 7.anerijeorolri(

totratio:3

200000 150000

250000

T, er ERNDernsonstell

450000 40000D 350000 300000

550000 500000

,

.

٠

· .

.

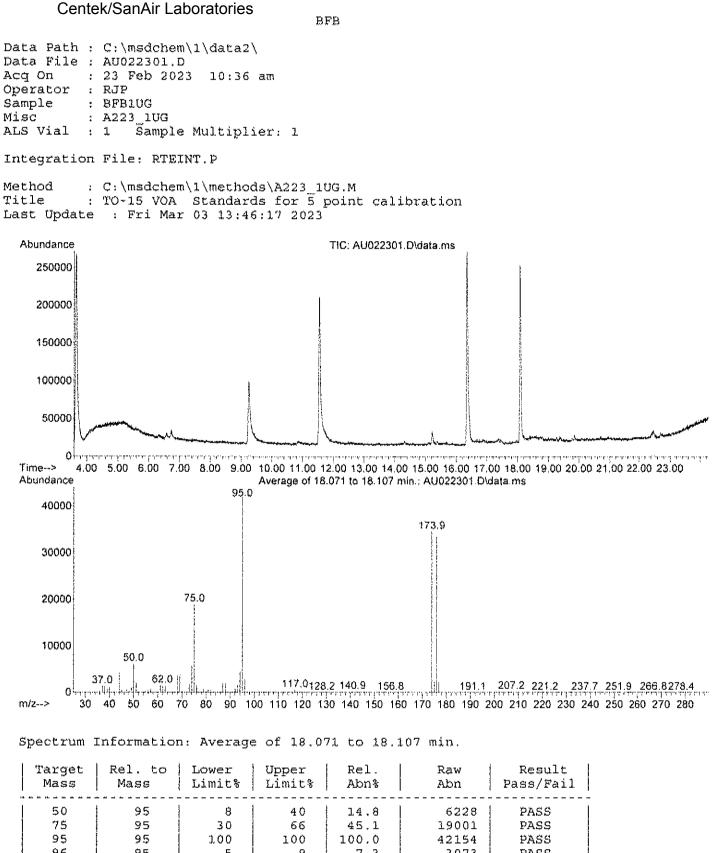
GC/MS VOLATILES-WHOLE AIR

.

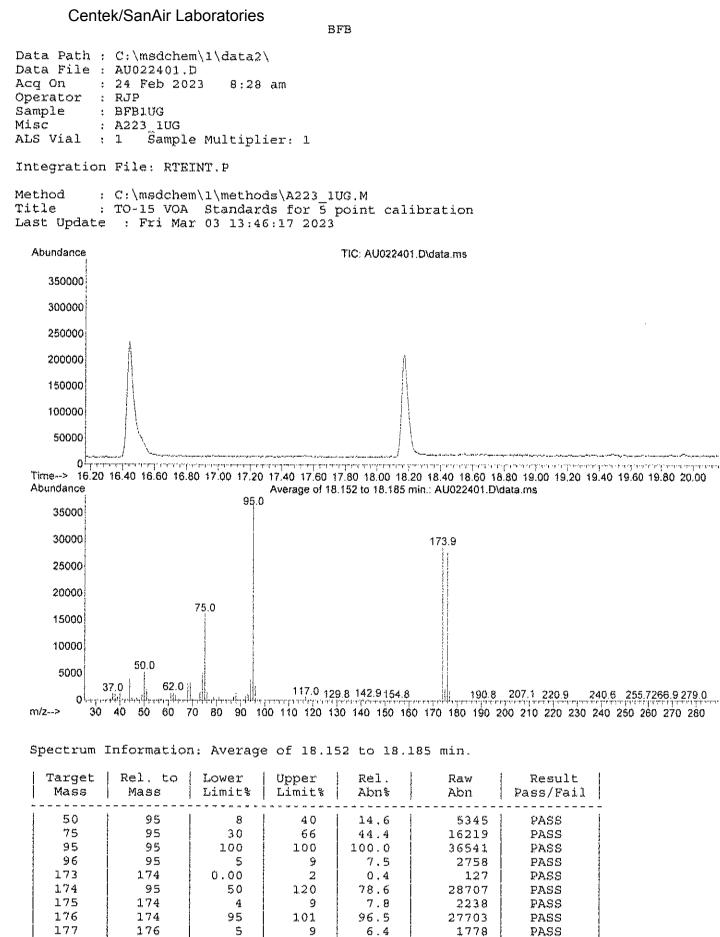
,

METHOD TO-15

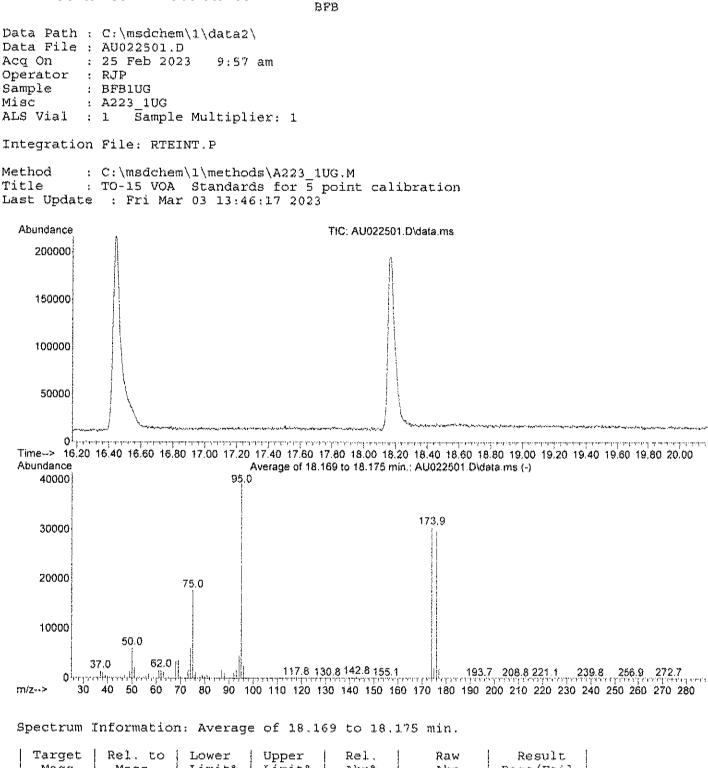
RAW DATA


.

Page 147 of 201


.

,


•

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
 50	95	8	40	14.8	6228	PASS
75	95	30	40 66	45.1	19001	PASS
95	95	1.00	100	100.0	42154	PASS
96	95	5	9	7.3	3073	PASS
173	174	0.00	2	0.5	163	PASS
174	95	50	120	82.2	34654	PASS
175	174	4	9	6.8	2369	PASS
176	174	95	101	96.9	33579	PASS
177	176	5	9	6.4	2162	PASS

A223_1UG.M Thu Mar 23 08:41:39 2023

Target Mass	Rel. to Mass	Lower Limit%	Upper Límit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	15.5	6139	PASS
75	95	30	ĜĞ	45.1	17800	PASS
95	95	100	1,00	100.0	39499	PASS
96	95	5	9	6.5	2580	PASS
173	174 .	0.00	2	0.4	123	PASS
174	95	50	120	77.4	30568	PASS
175	174	4	9	7.1	2181	PASS
176	174	95	101	97.4	29784	PASS
177	176	5	9	6.6	1951	PASS

GC/MS VOLATILES-WHOLE AIR

.

.

METHOD TO-15

RAW QC DATA

.

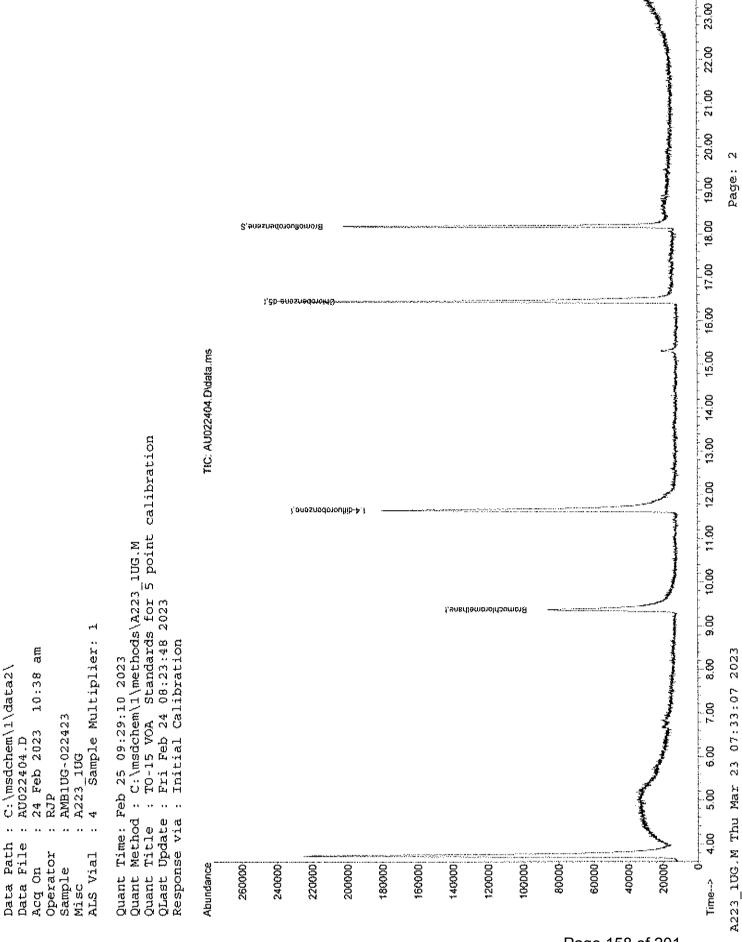
Page 151 of 201

CENTEK LAB	CENTEK LABORATORIES, LLC	ပု						
						ANALYTICAL QC SUMMARY REPORT	IMARY REPOR	<u></u>
	Leader Consulting Services							
	- Tesla					TestCode: 0	0.20_NYS	
Sample ID: AMB1UG-022423	SampType: MBLK	TestCode:	TestCode: 0.20_NYS	Units: ppbV	Prep Date:	Date:	RunNo: 20049	
Client ID: ZZZZ	Batch ID: R20049	TestNo: TO-15	TO-15		Analysis Date:	Date: 2/24/2023	SeqNo: 229636	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC LowLimit	it HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	< 0,15	0.15]
1,1,2,2-Tetrachloroethane	< 0.15	0.15						
1,1,2-Trichloroethane	< 0.15	0.15						
1,1-Dichloroethane	< 0.15	0.15						
1,1-Dichloroethene	< 0.040	0.040						
1,2,4-Trichlorobenzene	< 0.15	0.15						
1.2.4-Trimethylbenzene	< 0.15	0.15						
1,2-Dibromoethane	< 0.15	0.15						
1,2-Dichlorobenzene	< 0.15	0.15						
t_2-Dichloroethane	< 0.15	0.15						
1,2-Dichioropropane	< 0.15	0.15						
1.3.5-Trimethylbenzene	< 0.15	0.15						
1,3-buţadiene	< 0.15	0.15						
1, 3-Dichtorobenzene	< 0.15	0.15						
1,4-Dichkorobenzene	< 0.15	0.15						
1,4-Dioxane	< 0.30	0.30						
2,2,4-trimethylpentane	< 0.15	0.15						
4-ethyttottene	< 0.15	0.15						
Acetone	< 0.30	0.30						
Allyi chloride	< 0.15	0.15						
Вепzепе	< 0.15	0.15						
Benzyi chloride	< 0.15	0.15						
Bromodichloromethane	< 0.15	0.15						
Bromotorm	< 0.15	0.15						
Bromomethane	< 0.15	0.15						
Qualifiers: Results repor	Results reported are not blank corrected		DL Detection Litteit	n Litteit		E Estimated Value al	Estimated Value above quantitation range	
Helding time	Holding times for preparation or analysis exceeded	eeded	J Analyte	Analyte detected below quantitation fimit	lation fimit	ND Not Detected at the	Not Detected at the Limit of Detection	
R RPD outside	RPD outside accepted recovery limits		S Spike R	Spike Recovery outside accepted recovery limits	od recovery lämits		Pa	Page L of 5

Date: 23-Mar-23

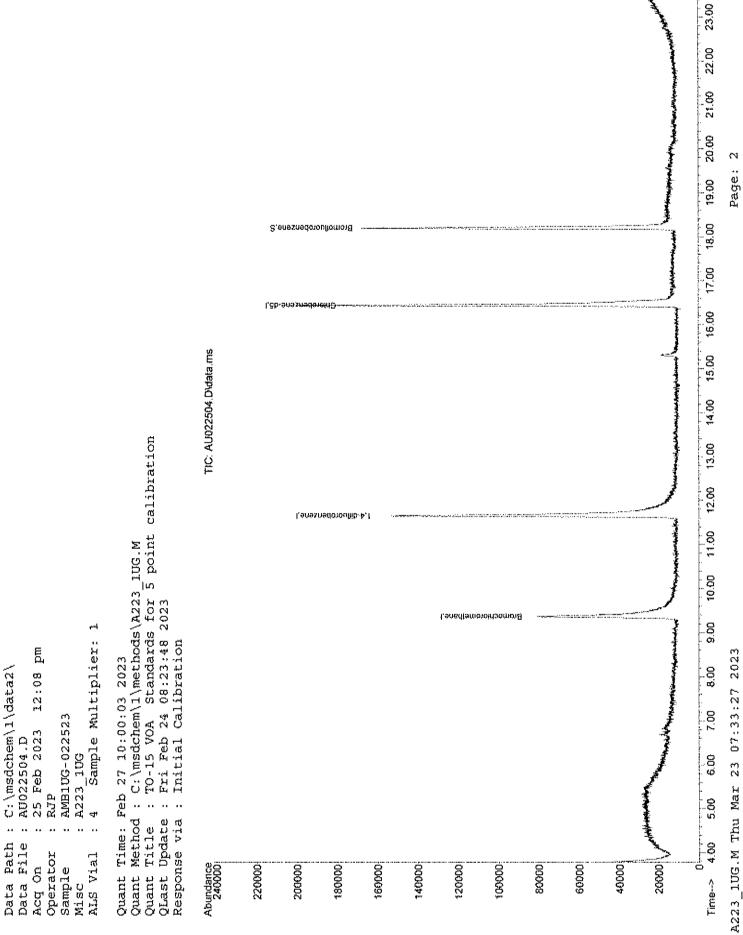
Page I of 5

work Urder: C.2302047 Project: Vails Gate -	e - Tesla					TestCode: (0.20_NYS	
Sample ID: AMB1UG-022423 Client ID: ZZZZ	SampType: MBLK Batch ID: R20049	TestCode	TestCode: 0.20_NYS TestNo: TO-15	Units: ppbV	Prep Date: Analysis Date:	2/24/2023	RunNo: 20049 SeqNo: 229636	
Ånalyte	Result	PQL	SPK value	SPK Ref Val	%REC LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit	Quai
Carbon disulfide	< 0.15	0.15						
Carbon tetrachloride	< 0.030	0:030						
Chlorobenzene	< 0.15	0.15						
Chloroethane	< 0.15	0.15						
Chloroform	< 0.15	0.15						
Chloromethane	< 0.15	0.15						
cis-1,2-Dichloroethene	< 0.040	0.040						
cis-1,3-Dichloropropene	< 0.15	0.15						
Cyclohexane	< 0.15	0.15						
Dibromechloromethane	< 0.15	0.15						
Ethyl aceiate	< 0.15	0.15						
Ethylbenzeae	< 0.15	0.15						
Freon 11	< 0.15	0.15						
Freon 113	< 0.15	0.15						
Freon 114	< 0.15	0.15						
Freon 12	< 0.15	0.15						
Heplane	< 0.15	0.15						
Hexachloro-1,3-buladiene	< 0.15	0,15						
Hexare	< 0.15	0.15						
isopropyl alcohoi	< 0.15	0,15						
m&p-Xylene	< 0.30	0.30						
Methyl Butyl Ketone	< 0.30	0.30						
Methyt Ethyl Ketone	< 0.30	0.30						
Meihyi Isobulyi Kelone	< 0.30	0.30						
Methyl tert-butyl ether	< 0.15	D.15						
Methylene chloride	< 0.15	0.15						
o-Xylene	< 0.15	0.15						
Propylene	< 0.15	0.15						
Slyrene	< 0.15	0.15						
Tetrachloroethylene	< 0.15	0.15						
Tetrahydrofuran	< 0.15	0.15						
Qualifiers: Results repo	Results reported are not blank corrected		DL Detection Limit	t Limit		E Estimated Value B	Estámated Value above quantitation range	
H Holding titte	Holding times for preparation or analysis exceeded	created	J Analyte	Analyte detected below quantitation limit	tion limit	ND Not Detected at th	Not Detected at the Limit of Detection	
R RPD cutside	00D outcide accented records timite			Cuil-a Decorem estriale assessed records (invite	t teorem limite			


Sample MetLuctazza Sample MetLuctazza Sample MetLuctazza Sample MetLuctazza Rander Terticon Date Dat	CLIENT: Work Order: Project:	Leader Consulting C2302047 Vails Gate - Tesla	Leader Consulting Services C2302047 Vails Gate - Tesla						TestCode:	TestCode: 0.20_NYS																																																																																																																																																																																																																																																													
Result PQL SPK RetVale SREC LowLmint RPD RetVal SRP0 RPD. RPD. RPD RPD.	Sample ID: AMB: Client ID: 2222	UG-022423	SampType: MBLK Batch ID: R20049	TestCode TestNo	8: 0.20_NYS x TO-15	Units: ppbV	¥		2/24/2023	RunNo: 20049 SeqNo: 229636																																																																																																																																																																																																																																																													
ne < 015	Analyte		Result	PQL		SPK Ref Val																																																																																																																																																																																																																																																																	
me C10 013 < 015	Toluene		< 0.15	0.15																																																																																																																																																																																																																																																																			
etc 015 015 < 015	trans-1,2-Dichloro	ethene	< 0.15	0.15																																																																																																																																																																																																																																																																			
< 6.0.00 0.0.00 <	trans-1,3-Dichloro	copene	< 0.15	0.15																																																																																																																																																																																																																																																																			
< 015	Trichloroethene		< 0.030	0:030																																																																																																																																																																																																																																																																			
< 0.15 0.15 < 0.040	Vinyf acetate		< 0.15	0.15																																																																																																																																																																																																																																																																			
Q22523 SampType MBLK TestCode: Q20_MIS: DPMS TestRode: Q20_MIS: DPMS RunNo: 20651 Batch ID: R22061 TestRoc To-15 Dill Spect Date: 225/2023 SeqNo: 226657 Result PQL SPK velue SPK RetVal %RED LowLinni RPD RetVal %RPD RPDLinni Result 015 015 015 SeqNo: 226657 SeqNo: 226657 Result 015 015 015 SeqNo: 226657 SeqNo: 226657 Result 015 015 SeqNo: 226657 SeqNo: 226657 Result 015 015 015 SeqNo: 226657 SeqNo: 226657 Result 015 015 015 %RPD Result	Viryl Bromide Vinyl chloride		< 0.15 < 0.040	0,15 0.040																																																																																																																																																																																																																																																																			
Automotion Ferto Date: Number Sectore: Number Sectore: Remultice Remultice<	Same D. And	10 000500																																																																																																																																																																																																																																																																					
Batch ID: R20051 TestNo:: Tot-15 Analysis Date: 225/2023 SeqNo: 223657 Result PQL SPX value SPX Ret Val %RED LowLimt Hghtimit RPD Ret Val %RPD RPDLimit ane <0.15	- odition and the MINDI	676770-00	Samprype: MBLK	i est code	SYN UZU	Units: ppbV		Prep Date:		RunNo: 20051																																																																																																																																																																																																																																																													
Result POL SPK Net Val %RED LowLinnt RPD Ref Val %RPD RPD Interval ame < 0.15			Batch ID: R20051	TestNo	c TO-15		Å		2/25/2023	SeqNo: 229657																																																																																																																																																																																																																																																													
< 0.15 0.15 ane < 0.15	Analyte		Result			SPK Ref Val						ane < 0.15 0.15 < 0.15	1, t. 1-Trichloroeths	rie	< 0.15	0.15								< 0.15 0.15	1.1.2.2-Tetrachior	xethane	< 0.15	0.15								< 0.15 0.15 < 0.040	1,1,2-Trichloroeths	en e	< 0.15	0.15								< 0.040 0.040 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15	1,1-Dichloroethane		< 0.15	0.15								c c 0.15 0.15 e c 0.15 0.15 c 0.15 0.15	1.1-Dichloroethene		< 0.040	0.040								e < 0.15 0.15 0.15 < 0.15	3,2,4-Trichloroben	zene	< 0.15	0,15								< 0.15 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15	1.2.4-Trimethylben	Serie	< 0.15	0.15								< 0.15	1,2-Dibromoethan		< 0.15	0.15								< 0.150.150.15< 0.15	1,2-Dichlorobenze	le	< 0.15	0.15								< 0.15 0.15 < 0.15	1,2-Dichloroethane	<i>.</i>	< 0.15	0.15								e< 0.150.150.15< 0.15	1,2-Dichloropropar	ē	< 0.15	0.15								$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1,3.5-Trimethylben	zene	< 0.15	0.15								 0.15 0.15 0.15 0.15 0.15 0.13 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.17 0.18 0.18 0.19 0.15 0.	1,3-butadiene		< 0.15	0.15								 0.15 0.16 	1,3-Dichlorobenzei	£	< 0.15	0.15								 < 0.30 0.30 < 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.17 0.18 0.16 0.17 0.18 0.16 0.17 0.18 0.18 0.19 0.16 0.17 0.18 0.18 0.19 0.19 0.16 0.16 0.16 0.17 0.18 0.18 0.19 0.19	1,4-Dichlorobenzei	ĩe	< 0.15	0.15								 < 0.15 0.15 0.15 C.15 0.15 C.	1,4-Dioxane		< 0.30	0:30								ene < 0.15 0.15 Results reported are not blank corrected DL Detection Limit R Holding times for preparation or analysis exceeded J R RPD outside accepted recovery limits S	2,2,4-trimethylpent	ane	< 0.15	0.15								 Results reported are not blank corrected DL Detection Limit E Estimated Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery finits 	4-ethylioluene		< 0.15	0.15								Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection RPD outside accepted recovery limits 5 Spike Recovery outside accepted recovery limits	Qualifiers:	Results report	ed are not blank corrected					:	:	above quantitation range		RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits	Η	Holding time:	s for preparation or analysis ev-	ceeded		detected below quarti-	itation limit			the Limit of Detection			¥	RPD outside :	accepted recovery limits			wovery outside accept	ted recovery	lėmėls			$B_{max} = \frac{1}{2} \sqrt{2}$
Analyte		Result			SPK Ref Val																																																																																																																																																																																																																																																																		
ane < 0.15 0.15 < 0.15	1, t. 1-Trichloroeths	rie	< 0.15	0.15																																																																																																																																																																																																																																																																			
< 0.15 0.15	1.1.2.2-Tetrachior	xethane	< 0.15	0.15																																																																																																																																																																																																																																																																			
< 0.15 0.15 < 0.040	1,1,2-Trichloroeths	en e	< 0.15	0.15																																																																																																																																																																																																																																																																			
< 0.040 0.040 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15	1,1-Dichloroethane		< 0.15	0.15																																																																																																																																																																																																																																																																			
c c 0.15 0.15 e c 0.15 0.15 c 0.15 0.15	1.1-Dichloroethene		< 0.040	0.040																																																																																																																																																																																																																																																																			
e < 0.15 0.15 0.15 < 0.15	3,2,4-Trichloroben	zene	< 0.15	0,15																																																																																																																																																																																																																																																																			
< 0.15 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15	1.2.4-Trimethylben	Serie	< 0.15	0.15																																																																																																																																																																																																																																																																			
< 0.15	1,2-Dibromoethan		< 0.15	0.15																																																																																																																																																																																																																																																																			
< 0.150.150.15< 0.15	1,2-Dichlorobenze	le	< 0.15	0.15																																																																																																																																																																																																																																																																			
< 0.15 0.15 < 0.15	1,2-Dichloroethane	<i>.</i>	< 0.15	0.15																																																																																																																																																																																																																																																																			
e< 0.150.150.15< 0.15	1,2-Dichloropropar	ē	< 0.15	0.15																																																																																																																																																																																																																																																																			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1,3.5-Trimethylben	zene	< 0.15	0.15																																																																																																																																																																																																																																																																			
 0.15 0.15 0.15 0.15 0.15 0.13 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.17 0.18 0.18 0.19 0.15 0.	1,3-butadiene		< 0.15	0.15																																																																																																																																																																																																																																																																			
 0.15 0.16 	1,3-Dichlorobenzei	£	< 0.15	0.15																																																																																																																																																																																																																																																																			
 < 0.30 0.30 < 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.17 0.18 0.16 0.17 0.18 0.16 0.17 0.18 0.18 0.19 0.16 0.17 0.18 0.18 0.19 0.19 0.16 0.16 0.16 0.17 0.18 0.18 0.19 0.19	1,4-Dichlorobenzei	ĩe	< 0.15	0.15																																																																																																																																																																																																																																																																			
 < 0.15 0.15 0.15 C.15 0.15 C.	1,4-Dioxane		< 0.30	0:30																																																																																																																																																																																																																																																																			
ene < 0.15 0.15 Results reported are not blank corrected DL Detection Limit R Holding times for preparation or analysis exceeded J R RPD outside accepted recovery limits S	2,2,4-trimethylpent	ane	< 0.15	0.15																																																																																																																																																																																																																																																																			
 Results reported are not blank corrected DL Detection Limit E Estimated Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery finits 	4-ethylioluene		< 0.15	0.15																																																																																																																																																																																																																																																																			
Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection RPD outside accepted recovery limits 5 Spike Recovery outside accepted recovery limits	Qualifiers:	Results report	ed are not blank corrected					:	:	above quantitation range																																																																																																																																																																																																																																																													
RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits	Η	Holding time:	s for preparation or analysis ev-	ceeded		detected below quarti-	itation limit			the Limit of Detection																																																																																																																																																																																																																																																													
	¥	RPD outside :	accepted recovery limits			wovery outside accept	ted recovery	lėmėls			$B_{max} = \frac{1}{2} \sqrt{2}$																																																																																																																																																																																																																																																												

CLIENT: Leader Consulting Work Order: C2302047 Project: Vails Gate - Tesla	Leader Consulting Services C2302047 Vails Gate - Tesla						TestCode: 0	TestCode: 0.20_NYS	
Sample ID: AMB1UG-022523 Client ID: ZZZZ	SampType: MBLK Batch ID: R20051	TestCode: 0.20_1 TestNo: TO-15	TestCode: 0.20_NYS TestNo: TO-15	Units: ppbV	Prep Date: Analysis Date:)ate:)ate: 2/25/2023	023	RunNo: 20051 SeqNo: 229657	
Analyte	Result	5 TO4	SPK value S	SPK Ref Val 🦿	%REC LowLimit	t HighLimit	RPD Ref Val	%RPD RPDLimit	hit Qual
Aceione	< 0.30	0.30							
Allyl chforide	< 0.15	0.15							
Benzene	< 0.15	0.15							
Benzyl chloride	< 0.15	0.15							
Bromodichloromethane	< 0.15	0.15							
Bromotorm	< 0.15	0.15							
Bromomethane	< 0.15	0.15							
Carbon disulfide	< 0.15	0.15							
Carbon tetrachloráte	< 0.030	0:030							
Chlorobenzene	< 0.15	0.15							
Chloroethane	< 0.15	0.15							
Chleroform	< 0.15	0.15							
Chloromethane	< 0.15	0.15							
cis-1,2-Dichloroethene	< 0.040	0.040							
cis-1.3-Dichloropropene	< 0.15	0.15							
Cyclahexane	< 0.15	0.15							
Dibromochloromethane	< 0.15	0.15							
Ethyl acetate	< 0.15	0.15							
Ethylbenzene	< 0.15	0.15							
Freon 11	< 0.15	0.15							
Freon 113	< 0.15	0.15							
Freon 114	< 0.15	0.15							
Freon 12	< 0.15	0.15							
Heptane	< 0.15	0.15							
Hexachloro-1,3-butadiene	< 0.15	0.15							
Hexane	< 0.15	0.15							
Isopropyl alcohoł	< 0.15	0.15							
m&p-Xylene	< 0.30	0.30							
Methyf Butyi Ketone	< 0.30	0:30							
Methyl Ethyl Ketone	< 0.30	0.30							
Methyl Isobutyl Ketone	< 0.30	0.30							
Qualifiers: Results repor	Results reported are not blank corrected		Dl. Detection Limit	Limit		і ці	Estimated Value at	Estimated Value above quantitation range	
H Holding time	Holding times for preparation or analysis exceeded		J Analyted	Analyte detected below quantitation limit	ion limit	ΟN	Not Detected at the	Not Detected at the Limit of Extection	
R RPD outside	RPD outside accepted recovery limits			Spike Recovery outside accepted recovery limits	recovery limits				Proc 1 of 5
									r ngu ngu n

CLIENT: Leader Consulting Work Order: C2302047 Project: Vails Gate - Tesla	Leader Consulting Services r: C2302047 Vails Gate - Tesla						Ţ	TestCode: 0.20_N	0.20_NYS		
Sample ID: AMB1UG-022523 Client ID: ZZZZ	SampType: MBLK Batch ID: R20051	TestCox	TestCode: 0.20_NYS TestNo: TO-15	Units: ppbV	Å	Prep Date: Anafysis Date:	2/25/2023	e	RunNo: 20051 SeqNo: 229657	0051 29657	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit h	HighLimit	RPD Ref Val	048%	RPDLimit	Qual
Methyl tert-butyf either	< 0.15	0.15									
Methylene chloride	< 0.15	0.15									
o-Xylene	< 0.15	0.15									
Propylene Street	< 0.15	0.15									
Silyrene Tetterellererte tette	< 0.15	0.15									
l etrachloroethyjene 7	< 0.15	0.15									
Tertanyaronuran	< 0.15	0.15									
I Oldene	< 0.15	0.15									
trans-1,2-Ukthloroethene	< 0.15	0.15									
Irans-1,3-Dichloropropene	< 0.15	0.15									
Trichloroethene	< 0.030	0.030									
Vinyl acetate	< 0.15	0.15									
Vinyl Bromide	< 0.15	0.15									
Vinyl chloride	< 0.040	0.040									
Qualifiers: Results reports	Results reported are not blank corrected		DL Driectio	Detection Limit	•		EES	Estimated Value above cuantitation range	ove calabilities	on range	
H Holding times	Holding times for preparation or analysis exceeded	peeded	J Analyte	Analyse detected below quantitation himi:	ilation himit			Not Detected at the Limit of Detection	Limit of Deter	clion	
	KPLP outside accepted recovery limits			Spike Recovery outside accepted recovery limits	ted recovery:	limits				e,	$D_{add} \in \mathcal{A} \in \mathcal{A}$


Page 5 of 5

Centek/SanAir Laboratori	es intitation	Report	t (QT Rev	iewed)		
Data Path : C:\msdchem\l\data Data File : AU022404.D Acq On : 24 Feb 2023 10:38 Operator : RJP Sample : AMB1UG-022423 Misc : A223_1UG ALS Vial : 4 Sample Multip	3 am					
Quant Time: Feb 25 09:29:10 20 Quant Method : C:\msdchem\l\me Quant Title : TO-15 VOA Star QLast Update : Fri Feb 24 08:2 Response via : Initial Calibra	ethods\A223 ndards for 23:48 2023 ation	5 poir	nt calibrati			
Compound	R.T.	QION	Response C	onc Uni	ts Dev((Min)
Internal Standards						
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.369 11.650 16.441	128 114 117	59155 331717 245093	1.00 p 1.00 p 1.00 p	dd dd dd	0.01 0.00 0.00
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 Chlorobenzene-d5 System Monitoring Compounds Bromofluorobenzene Spiked Amount 1,000 	18.167	95	119497	0.82 p	dq	
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.167 Range 70	95 - 1.30	119497	0.82 p	рр 82.00%	

Page 158 of 201

Qua	es Intitation	Repor	t (QT Rev	iewed)	
Data Path : C:\msdchem\l\data Data File : AU022504.D Acq On : 25 Feb 2023 12:00 Operator : RJP Sample : AMB1UG-022523 Misc : A223_1UG ALS Vial : 4 Sample Multip	mq 8				
Quant Time: Feb 27 10:00:03 20 Quant Method : C:\msdchem\1\me Quant Title : TO-15 VOA Star QLast Update : Fri Feb 24 08:3 Response via : Initial Calibra	ethods\A22 ndards for 23:48 2023			on	
Compound	R.T.	QIon	Response C	one Units	= Dev(Min)
					5 M/GY (FIMKK)
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5					
Internal Standards	9.365 11.652 16.440 18.196	128 114 117 95	52114 273032 217883 103739	ומק 00.1 וקק 00.1 ומק 00.1	5 # 0.00 5 0.00 5 0.00
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds 65) Bromofluorobenzene	9.365 11.652 16.440 18.196 Range 70	128 114 117 95 - 130	52114 273032 217883 103739 Recovery	1.00 pp 1.00 pp 1.00 pp 1.00 pp 0.80 pp 80	b # 0.00 b 0.00 b 0.00 b 0.04 b.00%

Page 160 of 201

23-Mar-23	
Date:	

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

CLIENT: Leader Con Work Order: C2302047	Leader Consulting Services C2302047										
	- Tesla						TestCo	TestCode: 0.20_NYS	SAN		
Sample ID: ALCS1UG-022423	SampType: LCS	TestCod	TestCode: 0.20_NYS	Units: ppbV		Prep Date:	āj		RunNo: 20049	49	
Client ID: ZZZZZ	Batch ID: R20049	TestN	TestNo: TO-15			Analysis Date:	e: 2/24/2023	0)	SegNo: 229637	637	
Analyte	Result	POL	SPK value	SPK Ref Vat	%REC	LowLimit	HighLinst RPD F	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.9900	0.15	4	0	0.66	63.7	152				
1,1,2,2-Tetrachloroethane	0.9900	0.15	***	0	0.69	62.1	132				
1,1,2-Trichloroethane	0.9800	0.15	ţ	Ģ	98.0	64.3	132				
1,1-Dichloroethane	0.9800	0.15	***	e	0.86	67.9	123				
1,1-Dichloroethene	1.000	0.040	÷-	Ð	100	59.4	122				
 2,4-Trichlorobenzene 	1.090	0.15	1	0	109	55	133				
1,2,4-Trimethylbenzene	1.000	0.15	•	Ü	100	64.1	128				
t.2-Dibromoethane	1.000	0.15	-	Ð	100	64.9	134				
1,2-Dichlorobenzene	0.9600	0.15	-	ð	96.0	57.8	158				
1,2-Dichloroethane	0.9800	0.15	-	ð	98.0	78.8	127				
 2-Dicfiloropropane 	0.9800	0.15	-	0	98.0	59.9	128				
1,3,5-Trimethylbenzene	1.060	0.15	-	0	106	70	133				
1,3-bulaciene	0.9100	0.15	-	0	91.0	71.1	138				
1,3-Dichiorobenzene	1.000	0.15	-	D	100	66.2	137				
1,4-Dichlorobenzene	1.120	0.15	-	0	112	68.2	139				
1,4-Dioxane	0.9400	00.0	-	0	94.0	67.7	119				
2,2.4-trimethytpentane	0.9900	0.15	-	D	0.99	57	\$27				
4-ethyltoluene	1.040	0.15	-	Ð	104	67.9	131				
Acetone	1.120	0:30	-	0	112	47.6	146				
Ailyl chioride	1.000	0.15	-	0	100	56.1	116				
Benzene	0.9900	0.15	-	0	0.66	66.2	126				
Benzyl chłoride	0.8900	0.15	-	0	89.0	34.9	155				
Bromodichtoromethane	1.000	0.15	-	Ð	100	69.6	133				
Bromoform	1.040	0.15	-	ð	104	44.1	152				
Bromomethane		0.15	-	0	0.99	64.9	155				
Qualifiers: Results report	Results reported are not blank corrected		DL. Detecti	Detection Linni			E Estimate	Estimated Value above quantitation marge	e quantitation	ntitation range	
Η	Holding times for preparation or analysis exceeded	ceeded	J Analyte	Analyte detected below quastriation limit	titation lim		ND Not Dete	Not Detected at the Linuit of Detection	met of Detect	tion	
R RPD outside a	RPD outside accepted recovery limits		S SpikeB	Spike Recovery outside accepted recovery littits	pled recove	ry Handles				Ğ	$P_{abc} = I_{abc} S_{bc}$

Work Order: Project:	C2302047 Vails Gate - Tesla	C2302047 Vails Gate - Tesla						TestCode:	le: 0.20_NYS		
Sample ID: ALCS1UG-022423 Client ID: 22222	stUG-022423 Z	SampType: LCS Batch ID: R20049	TestCor Testh	TestCode: 0.20_NYS TestNo: TO-15	Units: ppbV		Prep Date: Analvsis Date:		Runtio: 20049 Sectio: 230637	049	
Anaiyle		Resul	PQL	he	SPK Ref Val	%REC	LowLimit	<u>0</u>		RPDLimit	Qual
Carbon disulfide		0 9600	0.15	***	- C	090					
Carbon tetrachioride	ide	1.020	0.030	v yna) ¢	102	413	166			
Chlorobenzene		0066'0	0.15		, ¢	0.66	65.3	129			
Chloroethane		0066:0	0.15	ţ	¢	3 9.0	62.7	148			
Chloroform		0.9800	0.15	*-	Q	96.0	77.1	126			
Chloromethane		1.010	0.15	***	0	101	74.9	146			
cis-1,2-Dichk/roethene	thene	1.080	0.040	4	¢	103	57.7	131			
cis-1,3-Dichloropropene	opene	1.500	0.15	4	0	100	57.4	136			
Cyclohexane		0.9600	0.15	F	Ð	96.0	59.8	124			
Dibromochloromethane	share	1.060	0.15	-	ð	105	58.8	139			
Ethy! acetate		0.9800	0.15	-	Ð	98.0	56.5	129			
Ethylbenzene		1.020	0.15	-	ð	102	66.8	125			
Freon 11		1.050	0.15	-	o	105	75.5	146			
Freon 113		0.9700	0.15	1	0	97.0	71.5	128			
Freen 114		0.9600	0.15	-	0	96.0	71.3	151			
Freon 12		0.9600	0.15	-	0	96.0	73	§41			
Heptane		0.9900	0.15	-	0	0.99	64.1	120			
Hexachloro-1,3-butadiene	utadiene	0.9600	0.15	-	0	96.0	67.9	\$35			
Hexane		0.9800	0.15	-	0	98.0	57.3	125			
Isopropyl akohol		1.120	0.15	-	0	112	60.3	139			
m&p-Xylene		2 060	0.30	2	0	103	71	127			
Methyl Butyl Ketone	ite	0.9900	0.30	-	0	99.0	42.5	149			
Methyl Ethyl Ketone	ne	0.9900	0.30	-	0	0.66	56	131			
Methyl Isobutyl Ketone	etone	1.000	0.30	-	0	100	50.8	133			
Methyl tert-butyl ether	ther	0.9800	0.15	-	0	98.0	61.2	130			
Methylene chloride	ē	0.9400	0.15	-	D	94.0	58.2	125			
o-Xyiene		1.020	0.15	-	0	102	72.4	129			
Propylene		1.010	0.15	-	0	101	45.7	\$27			
Styrene		1.040	0.15	-	٥	104	67	132			
Tetrachioroethylene	Tie	0.9900	0.15	-	0	0.66	65.6	133			
Tetrahydrofuran		0.9900	0.15	•	0	0.99.0	54.4	120			
Qualifiers:	Results report	Results reported are net blank corrected		,	Detection Limit				Estimated Value above quantitation range	អា ជោព្នុះ	
æ		Holding times for preparation or analysis exceeded	ceeded	J Analyte	Analyte detected below quantitation limit	litation limi	-	ND Not Detects	Not Detected at the Limit of Detection	tion	
i		the second and the second and and the			the second secon						

Page 162 of 201

CLJENT: Leader Consulting Work Order: C2302047 Project: Vails Gate - Tesla	Leader Consulting Services C2302047 Vails Gate - Tesla						TestCode: 0.20_N	λS	
Sample ID: ALCS1UG-022423	SampType: LCS	TestCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date.	a	RunNo: 20049	
Client ID: ZZZZ	Batch ID: R20049	Testh	TestNo: TO-15			Analysis Date:	e: 2/24/2023	SeqNo: 229637	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	%RPO RPOLimit	Qual
Toluene	1.000	0.15	.	0	100 100	62.5	128		
trans-1,2-Dichloroethene	1.000	0.15	-	0	100	63.6	126		
trans-1,3-Dichloropropene	0.9900	0.15	-	¢	99.0	41	155		
Trichloroethere	0.8600	0:030	4 /101	0	36. 0	54.2	140		
Vinyi acetate	1.010	0.15	ŗ	¢	101	49	122		
Vinyî Bromide Vinyî chloride	1.150 1.010	0.15 0.040	977 90 7	0 0	115 101	65.8 62.7	150 146		
Samla ID: ALCC411C, 000504	SamoTuna: FC	TeefCo	TaciOntia 0.20 NVS	i Inite: anhV		Pren Date	÷	Runklor 20055	
			10 IN 07 0 10	Course, phone					
Client ID: ZZZZ	Batch ID: R20051	Testh	TestNo: TO-15			Analysis Date:	e: 2/25/2023	SeqNo: 229658	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LevLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Quai
1, 1, 1-Frichloroethane	1.090	0.15	¥	0	109	63.7	152		
1, 1, 2, 2-Tetrachloroethane	1.080	0.15	۳.	0	108	62.1	132		
1, f, 2- Frichleroethane	1.300	0.15	-	0	10	5 4.3	132		
1, f-Dichioroethane	1.050	0.15	•	G	105	67.9	123		
1,1-Dichloroethene	1.090	0.040	-	¢	109	59.4	122		
1,2,4-Trichlorobenzene	1.050	0.15	-	0	\$05	55	133		
1.2.4-Trimethylbenzene	0.9700	0.15	~	0	97.0	64.1	128		
1,2-Dibromoethane	1.040	0.15	-	Q	104	64.9	134		
1,2-Dichlorobenzene	1.050	0.15	-	Q	105	57.8	158		
1,2-Dichtoroethane	1-040	0.15	-	0	104	78.8	127		
1,2-Dichloropropane	1.080	0.15	-	٥	108	59.9	128		
1,3,5-Trimethylbenzene	0.9800	0.15	-	٥	98.0	70	133		
1,3-butadiene	1.070	0.15	-	0	107	71,1	138		
1,3-Dichlotobenzene	1.040	0.15	-	0	104	66.2	137		
t,4-Dichlorobenzene	1.110	0.15	-	0	111	68.2	139		
1,4-Dioxane	0.9700	0:30	-	0	97.0	67.7	119		
2,2,4-Inimethy/pentane	1.060	0.15	-	0	106	57	127		
4-ethylioluene	1.010	0.15	~	0	101	67.9	131		
Qualifiers: Results reported	Results reported are not blank corrected		Di. Detect	Detection Limit			1	Estimated Value above quantitation range	
	Holding times for preparation or analysis exceeded	ceeded	y Analyt	Analyte detected helow quantitation limit	atitation hea	ŝ	ND NM Detected at	Not Detected at the Limit of Detection	
R RPD outside a	RPD outside accepted recovery limits			Spike Recovery outside accepted recovery limits	spited record	rry limits			Page 3 of 5

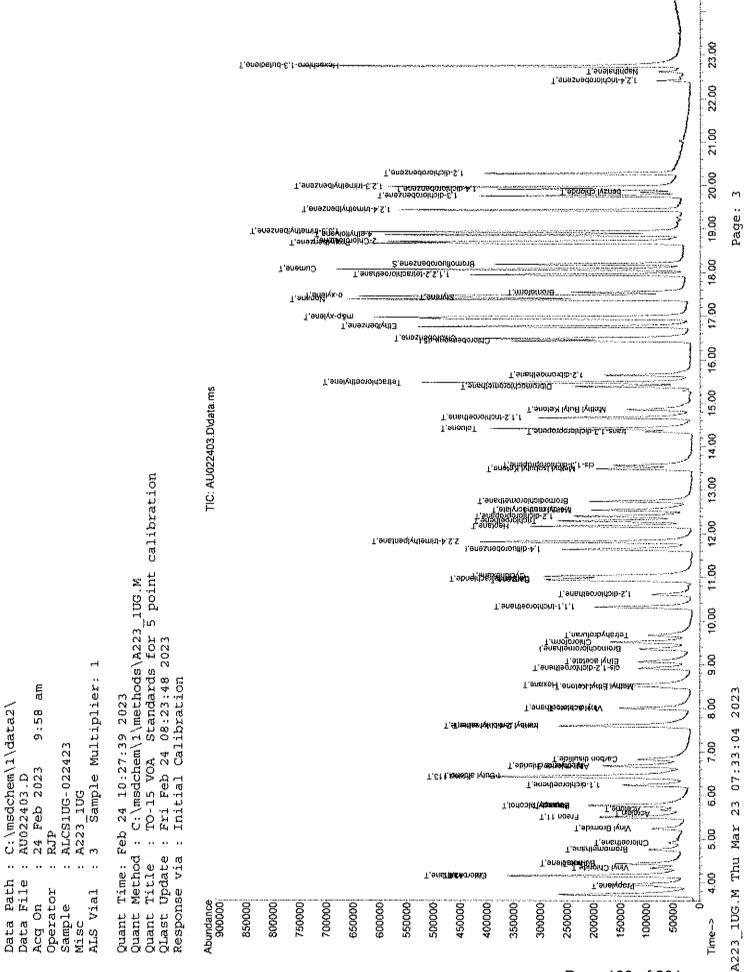
CLIENT: Leader Consulting Work Order: C2302047 Project: Vails Gate - Tesla	Leader Consulting Services C2302047 Vails Gate - Tesla						TestCode:	0.20_NYS	
Sample ID: ALCS1UG-022523	SampType: LCS	TestCoc	TestCode: 0.20_NYS	Units: ppbV		Prep Date:		RunNo: 20051	
Client ID: 22222	Batch ID: R20051	Test	TestNo: TO-15		-	Anatysis Date:	2/25/2023	SegNo: 229658	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD RPDLimit	Quat
Acelone	1.020	0.30	-	0	102	47.6	146		
Ailyt chloride	0.9700	0.15	-	0	97.0	56.1	116		
Benzene	1.060	0.15	۲	0	106	66.2	126		
Benzyl chloride	1,010	0.15	£	0	101	34.9	155		
Bromodichloromethane	1.080	0.15	۴	0	108	69.69	133		
Bromotorm	0.9700	0,15	-	0	97.0	44.1	152		
Bromomethane	1.060	0.15	-	0	168	64.9	155		
Carbon disuifide	1.000	0.15	-	0	100	64	111		
Carbon tetrachloride	1.030	0:030	-	0	103	41.3	166		
Chiorobenzene	1.000	0.15	4	Û	100	66.3	129		
Chioroethane	1.130	0.15		Ð	113	62.7	148		
Chloroform	1.030	0.15	~~	ð	103	77.1	126		
Chloromethane	1.120	0.15	*	0	112	74.9	145		
cis-1,2-Dichloroethene	0.9700	0.040	*	0	97.0	57.7	131		
cis-1.3-Dichloropropene	1.050	0.15	***	Ċ	105	57.4	136		
Cyclohexane	1.000	0.15	V	¢	100	59.8	124		
Dibromochloromethane	0.9700	0.15	ųm	0	97.0	58.8	139		
Ethyl acetate	1.050	0.15	1017	¢	105	56.5	129		
Ethylbenzene	1.010	0.15	ų	0	101	66.8	125		
Freon 11	1.100	0.15	y	Ģ	110	75.5	146		
Freon 113	1.040	0.15		Q	104	71.5	128		
Freon 114	1.090	0.15	~	o	109	71.3	151		
Freon 12	1,090	0.15	-	0	109	73	141		
Heptane	1,060	0.15	-	0	106	64.1	120		
Hexachloro-1,3-butadiene	1.020	0.15	-	0	102	67.9	135		
Hexane	0.9900	0.15	-	0	0.66	57.3	125		
Isopropyl alcohoł	1.080	0.15	-	0	108	60.3	139		
m&p-Xyiene	2.050	0:30	N	Ö	103	71	127		
Methyl Butyl Ketone	1.060	0:30	-	ð	106	42.5	149		
Methyl Ethyl Ketone	1.000	0:30	7	¢	100	56	131		
Methyl Isobulyl Ketone	1.060	0.30	-	0	106	50.8	133		
Oualifiers: Results report	Results renorted are not blank corrected		DL Detecti	Detection Limit			E Estimated Value	Estimated Value above quanitations range	
	Holding titues for preparation or anglysis exceeded	receded		Analyte detected below quantitation limit	ditation lim		ND Not Detected at	Not Detected at the Limit of Detection	
	RPD outside accepted recovery limits		S Spike R	Spike Recovery outside accepted recovery limits	pted recove	cy limits		· • • •	Pape 4 of 5
								1	- 1. · · · · · · ·

CLIENT: Les	Leader Consulting Services										
	C2042097 Vails Gate - Tesla						TestCo	ode: 0.	TestCode: 0.20 NYS		
									t		
Sample ID: ALCS1UG-022523	022523 SampType: LCS	TesiCo	TesiCode: 0.20_NYS	Units: ppbV		Prep Date:	6		RunNo: 20051		
Client ID: ZZZZ	Batch ID: R20051	Test	TestNo: TO-15			Analysis Date:	le: 2/25/2023		SeqNo: 229658		
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD F	RPD Ref Val	%RPD RP	RPDLimit C	Quai
Methyl tert-builyl ether	0.9900	0.15	+	0	660	61.2	130				
Methylene chloride	1.000	0.15	4	ð	100	58.2	125				
o-Xylene	0066'0	0.15	~~	0	0.66	72.4	129				
Propylene	1.100	0.15	***	0	110	45.7	127				
Styrene	1.040	0.15	4	0	<u>10</u>	67	132				
Tetrachioroetinylene	1.020	0.15	***	¢	102	65.6	133				
Tetrahydrofuran	1.050	0.15	*-	o	105	54.4	120				
Taluene	0.9900	0.15	**	0	99.0	62.5	128				
Irans-1,2-Dichloroethene	1.070	0.15	4	0	‡07	63.6	126				
trans-1,3-Dichloropropene	he 1.050	0.15	ų	¢	±05	41	155				
Trichloroethene	0.9100	0:030	•	0	910	54.2	140				
Vinyi acetale	0.9900	0.15	ęил.	Q	0.66	6	122				
Vinyi Bromide	1.090	0.15	- Farm	Q	109	65.8	150				
Vinyl chloride	1.160	0.040	•	0	116	62.7	146				
		:							tana ang ang ang ang ang ang ang ang ang		
Qualifiers: Rec H Ho	Results reported are not blank corrected Holding times for preparation or analysis exceeded	iceeded	DL Detect J Analy	Detection Limit Analyte detected behow quantitation limit	atitation lin	.i	L: Estimate ND Not Det	ected at the	Estimated vatue above quantitation fange Not Detected at the Limit of Detection	1êc	

Page 165 of 201

Page 5 of 3

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit


~ ~

RPD outside accepted recovery limits

H 22

	Centek/SanAir Laboratorie					
	Qua	ntitation	Report	: (QT Revi	ewed)	
Data	Path : C:\msdchem\1\data2	\				
Aca O	File : AU022403.D n : 24 Feb 2023 9:58	am				
Opera	tor : RJP					
Sampl	e : ALCS1UG-022423					
ALS V	tor : RJP e : ALCS1UG-022423 ; A223_1UG ial : 3 Sample Multipl	ier: 1				
	Time: Feb 24 10:27:39 20					
Quant	Method : C:\msdchem\1\me	thods\A22:				
	Title : TO-15 VOA Stan Update : Fri Feb 24 08:2		5 poir	nt calibratio	п	
Respo	nse via : Initial Calibra	tion				
	Compound	io m	റ്റ്ഹാ	Peenonee Co	Nna tinite	Dev (Min)
	Compound					
Inte:	rnal Standards Bromochloromethane	9 360	128	64092	3 00 pph	0.00
35)	Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5	11.644	114	381255	1.00 ppb	0.00
50)	Chlorobenzene-d5	16.435	117	306499	dqq 00.1	0.00
Syste	em Monitoring Compounds					
65)	Bromofluorobenzene iked Amount 1.000	18.188	95	190422	1.04 ppb	0.03
sp	iked Amount 1.000	Range 70	- 130	Recovery	= 104	.00*
	et Compounds					Qvalue
	Propylene Freon 12	3.920	41	78088 280423	1.01 ppb	97
-	Chloromethane	4.157	50	97294	1.01 ppb	97
	Freon 114	4.157	85	97294 280423 91306 94773	0.96 ppb	96
	Vinyl Chloride Butane	4.340	62 43	91306 94773	1.01 ppb	99
	1,3-butadiene	4.436	39	57004	0.91 ppb	80
	Bromomethane	4.763	94	92192	0.99 ppb	96
	Chloroethane Ethanol	4,914 5,763	64 45	94773 57004 92192 41010 139609 17822m 100770 294582	dqq 80.1	4 1
12)	Acroleín	5.586	56	17822m 🕅	1.07 ppb	
13)	Vinyl Bromide Freon ll	5.247	106	100770	1.15 ppb	98
15)	Acetone	5.682	58	55829	1.12 ppb	# 1
16)	Pentane	5.775	42	99308	1.14 ppb	# 43
	Isopropyl alcohol 1,1-dichloroethene	5.763 6.237	45 96	139609 111910	1.12 ppb 1.00 ppb	# 57 95
	Freon 113	6.427	1.01	259699	0.97 ppb	
	t-Butyl alcohol	6.448	59	209581	0.98 ppb	# 94
	Methylene chloride Allyl chloride	6.679 6.667	84 41	102556 105801	0.94 ppb 1.00 ppb	96 97
23)	Carbon disulfide	6.832	76	278905	0.96 ppb	95
	trans-1,2-dichloroethene methyl tert-butyl ether	7.594 7.597	61 73	134379 311242	dqq 00.1 dqq 80.0	94 99
	1,1-dichloroethane	8.006	63	213005	dqq 80.0	
	Vinyl acetate	7.997	43	105752	1.01 ppb	100
	Methyl Ethyl Ketone cis-1,2-dichloroethene	8.492 8.918	72 61	49723 142757	0.99 ppb 1.08 ppb	# 1 92
30)	Hexane	8.531	57	193562	0.98 ppb	98
31)	Ethyl acetate Chloroform	9.071 9.510	43 83	235964 239347	dqq 80.0 dqq 80.0	94 99
	Tetrahydrofuran	9.669	42	97410	dqq 86.0	94
34)	1,2-dichloroethane	10.608	62	129463	0.98 ppb	94
	l,l,l-trichloroethane Cyclohexane	10.323 11.032	97 56	228166 189858	0.99 ppb 0.96 ppb	98 88
	Carbon tetrachloride	10.963	117	201654	1.02 ppb	92
	Benzene Methyl methacrylate	10,939	78 41	391159 131904	0.99 ppb 0.98 ppb	97 88
	Methyl methacrylate 1,4-dioxane	12.545 12.545	41 88	111904 78625	0.98 ppb 0.94 ppb	
42)	2,2,4-trimethylpentane	11.818	57	600406	0.99 ppb	99
43) 44)	Heptane Trichloroethene	12.172 12.292	43 130	185687 159113	0.99 ppb 0.86 ppb	
					···· #***	

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\1\data2\ Data File : AU022403.D Acq On : 24 Feb 2023 9:58 am Operator : RJP Sample : ALCS1UG-022423 Misc : A223_1UG ALS Vial : 3 Sample Multiplier: 1 Quant Time: Feb 24 10:27:39 2023 Quant Method : C:\msdchem\1\methods\A223 1UG.M Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 08:23:48 2023 Response via : Initial Calibration CompoundR.T. QionResponseConc Units Dev(Min)45)1,2-dichloropropane12.398631499790.98 ppb10046)Bromodichloromethane12.746832230671.00 ppb10047)cis-1,3-dichloropropene13.568751569401.00 ppb10048)trans-1,3-dichloropropene14.343751135610.99 ppb9349)1,1,2-trichloroethane14.667971562710.98 ppb9751)Toluene14.412922593961.00 ppb9852)Methyl Butyl Ketone14.853431667140.99 ppb9354)Methyl Butyl Ketone14.853431667140.99 ppb9355)1,2-dibromoethane15.6461071996491.00 ppb9156)Tetrachloroethylene16.4721641739470.99 ppb9057)Chlorobenzene16.970918284082.06 ppb9959)mdp-xylene17.37843269751.03 ppb9861)Styrene17.4261042948821.04 ppb8962)Browoform17.5401731509751.04 ppb9463)0-xylene18.6751201537351.01 ppb9163)0-xylene18.6751201537351.01 ppb9164)1.3,5-trimethylbenzene19.908160507518m1.04 ppb< R.T. QION Response Conc Units Dev(Min) Compound (#) = qualifier out of range (m) = manual integration (+) = signals summed

Centek/SanAir Laboratories						
Quan	ititation	Report	ב (QT Reי	viewed)		
Data Path : C:\msdchem\1\data2\ Data File : AU022503,D						
Acg On : 25 Feb 2023 11:29	am					
Operator : RJP Sample : ALCS1UG-022523						
Misc : A223_1UG ALS Vial : 3 Sample Multipli						
ALS Vial : 3 Sample Multipli	er: 1					
Quant Time: Feb 27 09:44:45 202						
Quant Method : C:\msdchem\1\met Quant Title : TO-15 VOA Stand	lards for	ilug.r 100 5	4 ht calibrat:	ion		
QLast Update : Fri Feb 24 08:23 Response via : Initial Calibrat	:48 2023	•				
-						
Compound	R.T.	QION	Response (Conc Units	Dev(Min)	
Internal Standards						
J) Bromochloromethane 35) 1,4-difluorobenzene	9.362	128 114	57978 324992	1.00 ppb 1.00 ppb	0.00	
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	16.437	117	273447	1.00 ppb	0.00	
System Monitoring Compounds						
65) Bromofluorobenzene Spiked Amount 1.000 R	18.187	95 120	170157	1.05 ppb	0.03	
	ange 70	- 130	Recovery	/ = 105	.003	
Target Compounds 2) Propylene 3) Freon 12	2 916	41	77097	1 10 mmh	Qvalue	
3) Freon 12	4.156	85	77097 286743	1.09 ppb	98 98	
					99	
5) Freon 114 6) Vinyl Chloride	4.156	85	96957 286743 95156 103387 60687 89155 42602 121775	1.09 ppb	100	
7) Butane	4.426	43	103387	1.17 ppb	100	
8) 1,3-butadiene	4.432	39	60687	1.07 ppb	81	
9) Bromomethane	4.760	94	89155	1.06 ppb	95	
10) Chloroethane 11) Ethanol	4.916	64	42602	1.13 ppb	81 95 100 # 68	
12) Acrolein	5.588	45	18538	1.04 ppp	# 58 86	
13) Vinyl Bromide	5.234	106	18538 86272 277542	1.09 ppo	99	
14) Freon 11	5.504	101	277542	1.10 ppb	"86 99 99	
15) Acetone	5.660	58	46227	1.02 ppb	# 1	
16) Pentane 17) Isopropyl alcohol	5.765 5.768	42 45	81878 121775	1.04 ppb 1.08 ppb	# 54 # 67	
18) 1,1-dichloroethene	6.237	96	109953	1.09 ppb		
19) Freon 113	6.429	101	253061	1.04 ppb	95	
20) t-Butyl alcohol	6.453	59	196441	1.02 ppb		
21) Methylene chloride 22) Allyl chloride	6.678 6.660	84 41	98564 92204	1.00 ppb 0.97 ppb	95 90	
23) Carbon disulfide	~ ~ ~ ·		264122	1.00 ppb	97	
24) trans-1,2-dichloroethene		61	129563	1.07 ppb	93	
25) methyl tert-butyl ether 26) 1,1-dichloroethane			283782	0.99 ppb		
27) Vinyl acetate	8.005 7.999	63 43	205179 93945	1.05 ppb 0.99 ppb		
28) Methyl Ethyl Ketone	8.485		45314	1.00 ppb		
29) cis-1,2-dichloroethene	8.917		116493m A	0.97 ppb		
30) Hexane 31) Ethyl acetate	8.533	57	177822	0.99 ppb	97	
32) Chloroform	9.064 9.512	43 83	228546 227385	1.05 ppb 1.03 ppb	98 99	
33) Tetrahydrofuran	9.671		93157	1.05 ppb		
34) 1,2-dichloroethane	10.610		123623	1.04 ppb	95	
36) 1,1,1-trichloroethane	10.325	97	213274	1.09 ppb		
37) Cyclohexane 38) Carbon tetrachloride	11.028 10.968		167116 174249	1.00 ppb 1.03 ppb	88 92	
39) Benzene	10.935	78	356218	1.06 ppb	94	
40) Methyl methacrylate	12.544	41	101442	1.04 ppb	87	
41) 1,4-dioxane	12.547		69306 548504	0.97 ppb		
42) 2,2,4-trimethylpentane 43) Heptane	$11.814 \\ 12.172$		548504 169566	1.06 ppb 1.06 ppb		
44) Trichloroethene	12.301		142375	0.91 ppb		

Centek/SanAir Laboratories Quantitation Report (QT Reviewed) Data Path : C:\msdchem\1\data2\ Data File : AU022503.D Acq On : 25 Feb 2023 11:29 am Operator : RJP Sample : ALCS1UG-022523 : A223 1UG Misc ALS Vial : 3 Sample Multiplier: 1 Quant Time: Feb 27 09:44:45 2023 Quant Method : C:\msdchem\1\methods\A223_1UG.M Quant Title : TO-15 VOA Standards for $\overline{5}$ point calibration QLast Update : Fri Feb 24 08:23:48 2023 Response via : Initial Calibration CompoundR.T. QionResponseConc Units Dev(Min)45)1,2-dichloropropane12.400631407821.08 ppb9646)Bromodichloromethane12.739832049641.08 ppb9847)cis-1,3-dichloropropene13.564751411801.05 ppb9848)trans-1,3-dichloropropene14.342751026151.05 ppb9449)1,1,2-trichloroethane14.666971489191.10 ppb9551)Toluene14.408922304250.99 ppb9352)Methyl Isobutyl Ketone14.855431604311.06 ppb9651)1,2-dibromoethane15.6421071860261.04 ppb9756)Tetrachloroethylene15.4711641598781.02 ppb9857)Chlorobenzene16.4911123010891.00 ppb10058)Ethylbenzene16.972917330252.05 ppb9961)Styrene17.4281042612911.04 ppb8762)Bromoform17.5451731262240.97 ppb9563)0.411.2,2-tetrachloroethane18.6711201346470.99 ppb9164)1.1,2,2-tetrachloroethane18.932105438436m1.01 ppb9764)Cumene18.6711201346470.99 ppb91165)1,2,2-tetrachloroethane18.932105</t R.T. QIon Response Conc Units Dev(Min) Compound _____

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Ē

Page:

2023

07:33:23

33

Thu Mar

A223 10G.M

23.00 T,ensibelud-E,F-oto815ex914 1,2,4-trichtorobenzene,T T,adaladingeN 22.00 21.00 T, snaznodorolnnik-S. f 20.00 T,enexnediv/ffemul-E,S,t 1.ensinerobensers; dichlorobensers; dichlorobensers; T,enesnedivritemint-#,S,t 19.00 18.00 8,eneznedorouñomorB T.anomuO T,enerlieoroirtoertet-S,S,t,t rmolomoit т.епередлеіух-о ະ**ມ**່ອນອ*ະ*ດຳສະະະ 17.00 T,ອແອ່ນູx ບຸລິເກ T.enesnediy/di3 T. Scheller States Construction 16.00 T, ensitie emotorio 2, t T.onely/decretesteT L.soundiamojoincomojaiQ. TIC: AU022503.D\data.ms 15.00 T, ansidrootoktoti 2. t. 2. trichloroothking, T, Anotoyi Butyi Ketone, T T,anauloT Lans, 1, 3, dichloropropene. 14.80 calibration 13.00 12.00 T, and nagly diamin-4, S, S Lanaznadorouhib-A.1 11.00 point T. SPIRE SET BARAGE 10G.M T,ensitteorolitajo-S, T,enertrechologials, t, t 10.00 es) C:\msdchem\1\methods\A223 Standards for Bromochloromelhane, i Chloroform, i Tetrahydroforan, i 2023 .03 T.enertecoldoib-S.t.-slo T.etetetetet 08:23:48 Sample Multiplier: Calibration ащ T,ensxelfenorekikaläuvak 27 09:44:45 2023 8.00 C:\msdchem\1\data2\ 11:29 T,onedfoornaded.htmlV T. seered spreak that have been and the ALCS10G-022523 2.8 45 TO-15 VOA T, sbindfaction T, sbinder to more O 5 Feb 2023 Feb AU022503.D Initial T.ETT RODITIONOMENTED 31 T, enadteorolitaib-t, t 6.00 A223 10G Fri T, forloole Tylagangidies? 1 3.000 T,Fr roerF RJP Feb Т.ебіттот8 іүліМ 5.00 ", ອາເອເນອເກດແທງສີ 7, ອາເອກໂອດາວ⊮ m Method Response via Olast Update Time: Title T,eneibäjatusbijohtiO t<u>voiv</u> 6.00 Data File T, or (EMID IT WOOR (U Data Path Operator <u>។</u> (១០៩០៩៩៩ ALS Vial 50000 350000 Abundance 9000006 850000 800000 750000 700000 650000 600000 550000 500000 450000 400000 300000 250000 150000 00000 Acq On Sample 200000 Quant Quant Quant Time--> Misc

Date: 23-Mar-23

CENTEK LABORATORIES, LLC

ANALYTICAL OC SUMMARY REPORT 24.7 22.5 15.9 19. 34.6 20.4 16.3 33 19.5 24.1 26.9 26.4 19.7 21.5 3 15.7 26.5 49.5 12.8 29.3 RPDLimit 20.6 20 2 SeqNo: 229638 RunNo: 20049 %RPD 2.99 7.84 5.94 3.92 6.22 1.98 0.995 2.06 6.90 4.98 2.87 16.2 1.98 7,18 6.83 0.957 6.06 7.69 4.93 4.40 7.69 3.51 7.77 TestCode: 0.20 NYS 0.99 0.98 0.98 0.98 0.98 1.06 1.12 0.99 8 1.12 0.89 RPD Ref Val 0.96 0.910.94 0.99 0,99 1.09 2/25/2023 HighLimit 33 23 126 23 ş 44 2 32 33 48 2 38 4 125 ñ 48 120 124 153 138 142 134 27 Analysis Date: Prep Date: LowLimit 62.8 <u>6</u> 56.6 62.6 62.7 62.3 64.2 71.3 54.8 57.4 55 68.1 57.6 50.4 50.7 29.1 60.4 ŝ 54.3 67.7 ŝ 65.4 6 %REC 98.0 93.0 106 ₫ ₫ 116 102 101 105 103 103 105 105 105 116 101 106 **105** 19 108 108 107 102 104 Units: ppbV 57 0 0 \mathbf{O} 0 0 o 0 \circ 0 0 0 Q Ċ SPK Ref Val festCode: 0.20_NYS SPK vaite TestNo: TO-15 0.15 0.15 0.15 0.040 0.15 0.15 0.15 0.15 0.15 0,15 0.15 0.15 0.15 0.30 0.15 0.15 0.300.15 0.15 0.15 0.15 PO 0.15 0.15 Batch ID: R20049 Result 1.010 1.010 1.060 1.040 1.040 1.160 1.020 0.9800 1.050 1.030 1.030 1.070 1.020 t. 160 1.060 1.050 t. 190 1.080 1.0400.9300 1.080 1.070 1.020 SampType: LCSD Leader Consulting Services Vails Gate - Tesla Sample ID: ALCS1UGD-022423 C2302047 1,1,2,2-Fetrachioroethane 1,2,4-Trimethylbenzene .3,5-Trimethylbenzene Bromodichipromethane 1,2,4-Trichlorobenzene 2,2,4-Inmethylpentane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,4-Dichlorobenzene .2-Dichlorobenzene .3-Dichlorobenzene 2-Dichloropropane 1,2-Dibromoethane 1,1-Dichloroethane 2-Dichloroethane 22222 I,1-Dichloroethene Work Order: Benzyl chłoride 4-ethyltoluene 1,3-bulaciene Allyl chioride 1.4-Dioxane CLIENT: Client ID: Project: Benzene Acetone Analyle

Centek/SanAir Laboratories

Quat

Bromomethane

Qualifiers:

Bromoform

Page 1 of 3

22.7

7.77

0.99

55.8

2

160 153

30.8

<u>3</u>0

Φ

0.15 0.15

1.000 1.070 Estimated Value above quantitation range

Not Detected at the Linnst of Detection

QZ 44

> Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit

Detection Limit

ň

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

<u>64</u> T.

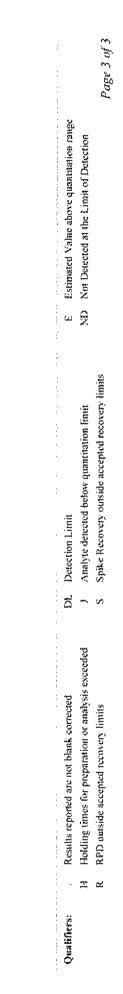
Results reported are not blank corrected

23.7

3.92

Leader Consulting Services CLIENT:

C2302047 Vails Gate -Work Order: Project:


Project: Vails Gate - Tesla	. Tesla						fered.	TestCode: (0.20_NYS		
Sample ID: ALCS1UGD-022423	SampType: LCSD	TestCoc	TestCode: 0.20_NYS	Units: ppbV		Prep Date	- 		RunNo: 20049	49	
Client ID: ZZZZ	Batch ID: R20049	Testh	TestNo: TO-15			Analysis Date;	e: 2/25/2023	23	SeqNo: 229638	638	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimi	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon dísulfide	1.000	0.15	***	0	00	63.4	1#0	96.0	4.08	15.4	
Carbon tetrachioride	1.050	0.030	÷.	0	105	30	170	1.02	2.90	22.3	
Chlorobenzene	0.9900	0.15	4	0	0.69	66.5	125	66 0	٥	13.1	
Chloroethane	1.140	0.15	÷	Q	114	55.3	145	0.99	14.1	22.4	
Chloroform	1.040	0.15	-	0	104	68.2	128	0.98	5.94	14.2	
Chloromethane	1.100	0.15	-	0	110	60.2	146	1.01	8.53	20.6	
cis-1,2-Dichioroethene	1.130	0.040	-	Ð	113	51.8	131	1.08	4.52	15.8	
cis-1,3-Dichloropropene	1.070	0.15	-	0	107	54.7	139	£	6.76	20.3	
Cyclohexane	1.040	0.15	-	Ð	104	61.2	122	0.96	8.00	16.3	
Dibromochloromethane	1.010	0.15	-	D	101	47.8	145	1.06	4.83	20.1	
Elthyl acetate	1.040	0.15	-	D	104	52.8	129	0.98	5.94	18.4	
Ethytbenzene	1.020	0.15	-	0	102	64.5	126	1.02	0	14.4	
Freon 11	1.100	0.15	•	0	110	60.7	152	1.05	4,65	21.8	
Freon 113	1.000	0.15	F	D	100	67.8	129	0.97	3.05	14.3	
Freon 134	1.100	0.15	* ***	0	110	58.6	153	96.0	13.6	23.2	
Freon 12	1.100	0.15	v٣	٥	110	55.6	143	0.96	13.6	19.7	
Heptane	1.090	0.15	¥17	0	109	59.4	123	0.99	9.62	21.5	
Hexachloro-1,3-butadiene	0.9600	0.15	4×4*	¢	96.0	53	155	0.96	0	24.6	
stexane	1.020	0.15	*"	0	‡02	55.4	123	96-0	4.00	22.5	
isopropyl alcohol	1.230	0.15	*	Q	123	56.6	147	ŧ.12	9.36	49.3	
m&p-Xylene	2.070	0.30	2	0	104	70.3	127	2.06	0.484	17.5	
Methyl Butyl Ketone	1.030	0.30	***	0	103	55.1	123	0.99	3.96	25.7	
Methyl Ethyl Ketone	1.020	0.30	4	¢	102	51.5	132	0.99	2.99	18.3	
Methyl isobutyl Kelone	1.050	0.30	***	O	105	41.6	137	Ľ	4.88	26.8	
Methyl tert-bulyl ether	1.020	0.15		0	102	52	138	0.98	4.00	21.9	
Methylene chloride	0.9700	0.15	÷	¢	<u>97.0</u>	55.9	129	0.94	3.14	18.5	
o-Xylene	1.050	0.15	۲	¢	105	11	130	1.02	2.90	22.2	
Propylene	1.150	0.15	-	¢	115	49.2	128	1.01	13.0	26.8	
Styrene	1.050	0.15	-	0	105	67.9	131	1.04	0.957	23.3	
Tetrachloroethylene	1.000	0.15	۲	0	100	66.2	132	0.99	1.01	13.9	
Tetrahydrofuran	1.020	0.15	-	0	102	47	124	0.99	2.99	22	
Qualifiers: Results reporte	Results reported are not blank corrected		DI. Detectio	Detection Limit			· •	Estimated Value above quantitation range	bove quantitation	ा त्याहरू इ. त्याहरू	:
Helding times	Holding times for preparation or analysis exceeded	papa	J Analyte	Analyte detected below guantitation fimit	itation Entr	L	A QN	Not Detected at the Limit of Detection	e Limit of Defect	ion	
R RPD outside a	RPD outside accepted recovery limits		S Spike R	Spike Recovery outside accepted recovery limits	ited recover	y limits				P_{G}	Page 2 of 3
										· ·	

Leader Consulting Services C2302047 Work Order: CLIENT:

Project: Vails Gate - Tesla

TestCode: 0.20_NVS

Sample ID: ALCS1UGD-022423 SampType: LCSD	SampType: LCSD	TestCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date:	ġ.		RunNo: 20049	14 9	
Client ID: ZZZZ	Balch ID: R20049	Test	TestNo: TO-15		1	Analysis Date: 2/25/2023	le: 2/25/20	123	SeqNo: 229638	9638	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Quai
Toluene	1.010	0.15	****	Ð	ţ0‡	62.6	126	-	0.995	17.2	
frans-f,2-Dichloroethene	1.050	0.15	**	0	105	60.2	125	•	4.88	16.8	
trans-1,3-Dichloropropene	1.060	0.15	,	0	106	34.2	157	0.99	6.83	21.5	
Trichforoethene	0.9000	0:030	-	0	90.06	57.8	133	0.86	4.55	21.8	
Vinyl acetate	1.040	0.15	-	D	104	42.5	127	1.01	2.93	23	
Vinyl Bromide	1.220	0.15	-	0	122	55.1	148	1.15	5.91	22	
Vinyl chloride	1.130	0.040	-	0	113	51.9	146	1.01	11.2	22	

Centek/SanAir Laboratories

Centek/SanAir Laborator		Report	: (QT Rev	iewed)	
Data Path : C:\msdchem\l\data2 Data File : AU022427.D Acq On : 25 Feb 2023 3:49 Operator : RJP Sample : ALCS1UGD-022423 Misc : A223_1UG ALS Vial : 20 Sample Multip	2\) am	-			
Quant Time: Feb 25 09:29:56 20 Quant Method : C:\msdchem\1\me Quant Title : TO-15 VOA Star QLast Update : Fri Feb 24 08:2 Response via : Initial Calibra	thods\A223 dards for 13:48 2023			ón	
Compound	R.T.	QIon	Response C	onc Units	Dev(Min)
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	9.359 11.646 16.434	128 114 117	61494 351305 292575	1.00 ppb 1.00 ppb 1.00 ppb	# 0.00 0.00 0.00
<pre>Target Compounds 2) Propylene 3) Freon 12 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) Butane 8) 1,3-butadiene 9) Bromomethane 10) Chloroethane 11) Ethanol 12) Acrolein 13) Vinyl Bromide 14) Freon 11 15) Acetone 16) Pentane 17) Isopropyl alcohol 18) 1,1-dichloroethene 19) Freon 113 20) t-Butyl alcohol 21) Methylene chloride 23) Carbon disulfide 24) trans-1,2-dichloroethene 25) methyl tert-butyl ether 26) 1,1-dichloroethane 27) Vinyl acetate 28) Methyl Ethyl Ketone 29) cis-1,2-dichloroethene 30) Hexane 31) Ethyl acetate 32) Chloroform 33) Tetrahydrofuran 34) 1,2-dichloroethane 37) Cyclohexane 38) Carbon tetrachloride</pre>	5.771 5.768 6.237 6.426 6.444 6.675 6.657 6.831	4850523944566182561941613332173322767 11054561941613332173322767	85103 307349 101057 307349 97925 101914 64581 95350 45408 147286 25474 102433 296015 56930 101686 147286 111588 258785 203752 101757 109497 279602 1350726 216247 104842 49399 144074 193433 240774 241509 96384 132850 227813 189253 192732	1.15 ppb 1.10 ppb 1.10 ppb 1.10 ppb 1.13 ppb 1.09 ppb 1.07 ppb 1.07 ppb 1.07 ppb 1.07 ppb 1.19 ppb 1.22 ppb 1.22 ppb 1.23 ppb 1.22 ppb 1.23 ppb 1.23 ppb 1.23 ppb 1.20 ppb 1.20 ppb 1.20 ppb 1.20 ppb 1.22 ppb 1.23 ppb 1.25 ppb 1.06 ppb 1.05 ppb 1.02 ppb 1.02 ppb 1.02 ppb 1.02 ppb 1.02 ppb 1.02 ppb 1.03 ppb 1.04 ppb 1.02 ppb 1.04 ppb 1.02 ppb 1.05 ppb 1.05 ppb 1.05 ppb 1.05 ppb 1.05 ppb 1.05 ppb	94 99 99 98 80 57 99 88 99 99 88 99 99 88 99 99 99 99 99
39) Benzene 40) Methyl methacrylate 41) 1,4-dioxane 42) 2,2,4-trimethylpentane 43) Heptane 44) Trichloroethene	10.926 12.535 12.550 11.814 12.171 12.294	78 41 88 57 43 130	377569 110090 78096 596586 187838 153077	1.04 ppb 1.04 ppb 1.01 ppb 1.06 ppb 1.09 ppb 0.90 ppb	94 88 96 99 99 94

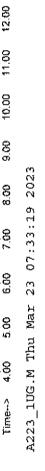
Centek/SanAir Laboratories	itation	Repor	t (QTR	eviewed)	
Data Path : C:\msdchem\l\data2\ Data File : AU022427.D Acq On : 25 Feb 2023 3:49 a Operator : RJP Sample : ALCS1UGD-022423 Misc : A223_1UG ALS Vial : 20 Sample Multipli					
Quant Time: Feb 25 09:29:56 2023 Quant Method : C:\msdchem\1\meth Quant Title : TO-15 VOA Standa QLast Update : Fri Feb 24 08:23: Response via : Initial Calibrati	rds for 48 2023 on	5 poi	nt calibra		
Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Compound 45) 1,2-dichloropropane 46) Bromodichloromethane 47) cis-1,3-dichloropropene 48) trans-1,3-dichloropropene 49) 1,1,2-trichloroethane 51) Toluene 52) Methyl Isobutyl Ketone 53) Dibromochloromethane 54) Methyl Butyl Ketone 55) 1,2-dibromoethane 56) Tetrachloroethylene 57) Chlorobenzene 58) Ethylbenzene 59) m&p-xylene 60) Nonane 61) Sturane	12.400 12.739	63 83	146368 220565	1.03 ppb 1.08 ppb	99 100
47) cis-1,3-dichloropropene	13.561	75 നട	155710	1.07 ppb	98 91
49) 1,1,2-trichloroethane	14.660	97	155484	1.06 ppb	94 94
51) Toluene	14.408	92	252008	1.01 ppb	95
52) Methyl Isobutyl Ketone	13.480	43	223457	1.05 ppb	98
53) Dibromochloromethane	15.384	129	171278m	1.01 ppb	
54) Methyl Butyl Ketone	14.852	43	165707	1.03 ppb	93
55) 1,2-dipromoetnane	15.642	107	192065	1.01 ppb	98
57) Chlorobenzene	15.471	104	709133	1.00 ppp	98 97
58) Ethylbenzene	10,400 16 744	41	522008	1 02 ppb	98
59) m&p-xvlene	16.969	91	794846	2.07 ppb	99
<pre>69) map-xylene 60) Nonane 61) Styrene 62) Bromoform 63) o-xylene 64) Cumene 66) 1,1,2,2-tetrachloroethane 67) Propylbenzene 68) 2-Chlorotoluene 69) Asethyltoluene</pre>	17.377	43	262334	1.08 ppb	100
61) Styrene	17.425	104	282154	1.05 ppb	83
62) Bromoform	17.545	173	139028	1.00 ppb	93
63) o-xylene	17.455	91	474742	1.05 ppb	94
64) Cumene	18.070	105	591074	1.03 ppb	98
66) 1,1,2,2-tetrachloroethane	17.947	83	310609	1 02 ppb	97
67) Propyidenzene	18.671	120	144280	add 66'0	# 1
68) 2-Chiorotoluene 69) 4-ethyltoluene	18.710	126	491467	1.03 ppp	# 1 99
				f 1.03 ppb	22
71) 1,2,4-trimethylbenzene	19.430	105	398879) 1.02 ppb	97
72) 1,3-dichlorobenzene	19.751	146	220248	1.02 ppb	99
73) benzyl chloride	19.635	91	72280	0.93 ppb	97
74) 1,4-dichlorobenzene	19.907	146	228208m	1.16 ppb	
75) 1,2,3-trimethylbenzene	19.959	105	416868	1.03 ppb	99
76) 1,2-dichlorobenzene	20.268	146	209802	0.98 ppb	98
77) 1,2,4-trichlorobenzene	22.402	180	5681.3m j		
78) Naphthalene	22,612	128	117341m i	N 4	
79) Hexachloro-1,3-butadiene	22.738	225	193014	0.96 ppb	98
(#) = qualifier out of range (m) ≂ man	al in	tegration	(+) = signal	s summed

S.-ChuRkeekkeekkeers ກ່ອງການເບັດເຊິ່ງຊີ່ເປັນການເບື້ອງການເອົາເອົາອີກ ເບັ້ນອີກເບັດເຊັ່ງຊີ່ເປັນການເອົາເປັນເອົາເອົາເອົາເອົາເອົາເອົາເອົາເ F.ensitreorothserral-2.5.1.1 -6.enstreamercale.6 T,anamuQ T,molomone) 7.4°96842-0 _____touolAig___ T,onotyx-q&m ្តិ , ១០១៩០១៨/សូរ ភ្ T, ana Métaganalata. T, enterfloornordib-S, f ...T.emethemutolitaomordiQ. TIC: AU022427.D'data.ms T,enoisX Ruby Ketone,T T, anishter roldom-S, L, L Toluene, T cis. 1 Median (Solarcy Steeros T calibration 1,9160(2010) 1,01 T.andnaqlythoinid-P,S.S l,ensinedoroumb-A,f point C:\msdchem\1\methods\A223 1UG.M <u>Т. Франколика (Банка педералание</u> T.ensr/sector/holb-S.f T,enerteopoinens-t,t,t ഹ Standards for 08:23:48 2023 Ч 7,9nerheonoldole-S, f-aio T,9lefece lyritä Sample Multiplier: Calibration am Т.элехон Т.элехдудд дийем 25 09:29:56 2023 3:49 C:\msdchem\1\data2\ T,onsciencialsplate/writV T, SHORE OUT OF FIND POLICIES I ALCS1UGD~022423 24 TO-15 VOA T,ebitofda **Fragioglaw**yllA ------T,óbillusib gocheO 25 Feb 2023 Feb AU022427.D Initial T.S.F.J. Indexilie: IvyuBar T, energeorotriaib «L, f A223_1UG Fri T,toricolrif (yapatentis) 1 (49) T, H roon3 Feb RJP Τ.ορίτηστΘ ΙγιτίΥ 20 •• T,ອາງສາກອຸດາວແກງອີ T,ອາງສາກອ່າງ Method Update Response via • • Time: Title T, ane the write the province in the Data Path Data File TBARHINDON/O///) T.soalyqoy3. Operator ALS Vial Abundance 900000 850000 800000 750000 700000 650000 600000 550000 500000 450000 400000 350000 300000 Acq On Sample 200000 150000 250000 Quant Quant QLast Quant Misc

T, snalbstud-5, 1-oroldoexel+

T.ensznedivrttemin-6.S.t

T.onesnediv/hemini-4.S.1


T.anasnadaroldałb-S.t

T, arrexnedorotroto-E, t T, anexnedorotrotroit

Page 177 of 201

50000

00000

m Page:

23.00

22.00

21.00

20.00

19.00

18.00

17.00

16.00

15.00

t4.00

13.00

I, analerthogen T, 909X0900101/15/1-4.S.1

23-Mar-23	
Date: 2	

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

CLIENT:	Leader Consulting Services
Work Order:	C2302047
Project:	Vaik Gate - Tecla

(

Project: V	Vails Gate - Tesla	. Tesla						TestCode:	0.20_NYS	
Sample ID: C2302047-002A MS	7-002A MS	SampType: MS	TestCor	TestCode: 0.20_NYS	Units: ppbV		Prep Date	j.	RunNo: 20049	
Client (D: Summa (MS-MSD)	(OSM-SM	Batch ID: R20049	Testh	TestNo: TO-15		-	Analysis Date:	e: 2/25/2023	SegNo: 229654	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	el %RPD RPDLimit	mît Qual
1,1,1-Trichloroethane		1.100	0.15	-	0	110	51.3	146		
1,1,2,2-Tetrachloroethane	ane	1.050	0.15	-	0	105	59.4	\$21		
1, 1, 2-Trichioroethane		1.060	0.15	-	0	36	59.1	† 28		
1, 1-Dichloroethane		1.040	0.15	-	٥	104	67.5	138		
1,1-Dichloroethene		1.020	0.040	-	0	102	55.3	121		
1,2.4-Trichlorobenzene	œ	1.280	0.15	-	0	128	22	184		
1.2,4-Trimethylbenzene	ē	1.890	0.55		0.61	128	55.1	165		
1,2-Dibromoethane		1.040	0.15	ųση.	Q	‡04	61.9	124		
1,2-Dichlorobenzene		1.140	0.15	¥.a	0	134	47.6	157		
1,2-Dichloroethane		1.070	0.15	*	0	107	67.5	122		
1,2-Dichloropropane		1.050	0.15	*	0	105	57.6	127		
1,3,5-Trimethyibenzene	وَمِ ا	1.310	0.15	**	0.2	112	54.5	146		
1,3-butadiene		1.350	0.15		0	135	62	174		
1,3-Dichlorobenzene		1.150	0,15	-	ð	115	67.7	134		
1.4-Dichlorobenzene		1.230	0,15	-	0	123	64.1	136		
1,4-Dioxane		1.020	0:30	-	0	102	53	125		
2,2,4-trimethylpentane		1,110	0,15	-	0	111	65	128		
4-ethylioluene		1.500	0,15	Ļ	0.28	122	32.2	\$79		
Acetone		8.600	0.30	-	7.8	80.0	30.4	160		
Ailyl chloride		1.040	0.15	-	0	104	47,5	142		
Benzene		1.460	0.15	-	0.42	104	42.1	152		
Benzyl chłoride		1.170	0.15	-	0	117	35.4	181		
Bromodichloromethane	Ð	1.040	0.15	L	0	104	54,5	133		
Bromoform		0.9700	0.15	ſ	0	97.0	25.8	146		
Bromomethane		1.000	0.15	T	0	100	63.9	125		
Qualifiers: R	esetts reports	Results reported are not blank corrected		DL Detect	Detection Limit	•		E Estimated Value	Estimated Value above quantitation range	:
	loiding times	Holding titles for preparation or analysis exceeded	cecded		Analyte detected below quantitation limit	itation limi		ND Not Detected a	Not Detected at the Limit of Detection	
R R	(PD outside a	RPD outside accepted recovery limits		S Spikel	Spike Recovery outside accepted recovery limits	ынд тесочы	y limits			Page 1 of 5

Puge I of S

Project: Vails Gate - Tesla	Tesla						TestCode:	TestCode: 0.20 NYS	
								F	
Sample ID: C2302047-002A MS	SampType: MS	TestCoc	TestCode: 0.20_NYS	Units: ppbV		Prep Date:		RunNo: 20049	
Client ID: Summa (MS-MSD)	Batch ID: R20049	Test	TesiNo: TO-15			Anatysis Date:	2/25/2023	SegNo: 229654	
Analyte	Result	PQI	SPK value	SPK Ref Val	%REC	LowLinnit	HighLimil RPD Ref Val	al %RPD RPDLimit	mit Quai
Carbon disulfide	1.000	0.15	-	0	100	£	115		
Carbon letrachloride	1.080	0.030	-	0.07	101	20.3	172		
Chlorobenzen e	0.9900	0.15	L	0	0.66	62.9	117		
Chloroethane	1.050	0.15	-	0	105	50.7	140		
Chloroform	1.020	0.15	v	Ç	102	64.6	126		
Chloromethane	1.620	0.15	<i>۳</i> ۰	0.64	98.0	35.4	148		
cis-1,2-Dichloroethene	0.9900	0.040	**	¢	0.65	59.6	119		
cis-1,3-Dichloropropene	1.070	0.15	***	0	107	55.5	133		
Cyclohexane	1.430	0.15	1	0.39	10	23	168		
Dibromochloromethane	1.020	0.15	÷	Ð	102	44.5	143		
Eltryí acetate	1.170	0.15	F	Ð	117	57.1	129		
Ethylbenzene	1.140	0.15	-	0.12	102	61.3	130		
Freon 11	1.320	0.15	-	0.25	107	34.7	173		
Freon §13	1.030	0.15	-	0	103	71,4	127		
Frean î14	1.020	0.15	-	0	102	52.6	153		
Frean 12	1.020	0.15	-	o	102	47.5	133		
Heptane	1.350	0.15		0.26	109	49.9	137		
Hexachloro-1.3-butadiene	1.120	0.15	•	Ģ	112	56.7	149		
Hexane	1.190	0.15	¥**	0.21	98.0	40.7	152		
isopropyi alcohol	2.950	0.15	ų.	1.82	113	8.56	175		
m &p-Xylene	2.480	0:30	~	0.34	107	54.5	138		
Methyl Bulyl Ketone	1.200	0:30	•	¢	120	41.5	156		
Methyl Ethyl Ketone	2.260	0:30	4	1,11	115	26.1	145		
Methył isobutył Ketone	1.180	0.30	4	O	118	48.7	129		
Methyl tert-butyl ether	0.9700	0,15	-	0	0.72	57	129		
Methyłene ciloride	1.180	0.15	F	0.27	91.0	49.6	120		
o-Xylene	1.210	0.15	4	0.14	107	55.1	142		
Propylene	2.070	0.15	-	ð	207	64.8	224		
Styrene	1.330	0,15	-	0.2	113	60.3	132		
Tetrachloroethylene	1.030	0.15	-	D	103	68.1	126		
Tetrahydrofiaran	1.080	0.15	-	0	108	27.9	162		
Qualifiers: Results reporte	Results reported are not blank corrected	- - - - - - - -	DL Detection Limit	a Limit			E Estimated Val	Estimated Value above quantitation range	
H Holding times	Holding times for preparation or analysis exceeded	ceeded		Analyte detected helow quantitation limit	itation limit		ND Not Detected a	Not Detected at the Limit of Detection	
R RPD outside av	RPD outside accented nycreets limits		C Called D						

CLIENT: Leader Consulting Services

Page 179 of 201

CLIENT: Leader Con Wark Order: C3302047	Leader Consulting Services										
	- Tesla						نه ست	TestCode: 0	0.20_NYS		
Sample ID: C2302047-002A MS	SampType: MS	TestCod	festCode: 0.20_NYS	Units: ppbV		Prep Date	ii		RunNo: 20049	49	
Client (D: Summa (MS-MSD)	Batch ID: R20049	TestN	TestNo: TO-15			Analysis Date:	ie: 2/25/2023		SeqNo: 229654	1654	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Vai	0d2%	RPDLimit	Qual
Toluene	1.860	0.15	***	0.82	104	41.2	147				
trans-1,2-Dichloroethene	1.000	0.15	4100	0	100	46.3	148				
trans-1,3-Dichloropropene	1.090	0.15	*	0	109	50.1	146				
Trichloroethese	0.9100	0.030	*	¢	91.0	46	136				
Vinyl acetate	1.120	0.15	-	Ð	112	8.27	177				
Vinyi Bramide	1.060	0.15	-	Ċ	106	57.4	141				
Vinyl chloride	1.050	0.040	1	Ü	105	54.5	130				
Sample ID: C2302047-002A MS	SampType: MSD	TestCod	TestCode: 0.20_NYS	Units: ppbv		Prep Date:			RunNo: 20049	49	
Client ID: Summa (MS-MSD)	Batch ID: R20049	TestN	TestNo: TO-15			Analysis Date:	e: 2/25/2023		SeqNo: 229655	655	
Anaiyle	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Vai	Oda%	RPDLimit	Qual
1,1,1-Trichloroethane	1.070	0.15		0	107	50.5	144	1.1	2.76	12.3	
1,1.2.2-Tetrachloroethane	1.050	0.15	417	0	\$0\$	51.9	117	1.05	Ċ	11	
1,1,2-Trichloroethane	1.020	0.15	42.01	Q	1 02	59.5	124	1.06	3.85	13.9	
1,1-Dichloroethane	1.030	0.15	4 108	Q	103	68.4	117	1.04	0.966	9.68	
1.1-Dichloroethene	1.050	0,040	ų.a.	0	t05	57.6	115	1.02	2.90	£6.8	
3,2,4-Trichlorobenzene	1.300	0.15	***	0	130	37.5	248	1.28	1.55	19	
f,2,4-Trimethylbenzene	1.890	0.15	*	0.61	128	58.6	162	1,89 1	0	\$6.6	
1,2-Dibromoethane	1.010	0.15	÷	0	101	61.3	120	1.04	2.93	6.77	
1,2-Dichlorobenzene	1.150	0.15	-	C7	115	35.6	169	1.14	0.873	41.1	
1,2-Dichloroethane	1.040	0.15	-	0	104	71.8	117	1.07	2.84	9.42	
1,2-Dichloropropane	1.020	0.15	-	0	102	56.3	127	1.05	2.90	11.3	
1,3,5-Trimethylbenzene	1.300	0,15	-	0.2	110	59.4	147	1.31	0.756	14.9	
1,3-buladiene	1.200	0.15	-	Ð	120	24.6	233	1.35	11.8	29.1	
1.3-Dichlorobenzene	1.160	0.15	-	0	115	73.3	127	1, 15	0.866	11.8	
1,4-Dichlorobenzene	1.210	0.15	-	0	121	70.1	129	1.23	1.54	11.8	
1,4-Dioxane	1.020	0:30	-	Ð	102	64.4	124	1.02	Q	13.7	
2,2.4-trimethytpentare	1.100	0.15	۲	0	110	72.2	121	1.33	0.905	13.1	
4-ethyltoluene	1.490	0.15	-	0.28	121	27.2	167	5.	0.569	18.7	
Qualifiers: Results report	Results reported are not blank corrected		DL Detect	Detection Limit		:	E Ba	imated Value al	Estimated Value above quantisation range	ា ខេតមួច	
H Holding times	Holding times for preparation or analysis exceeded	seeded	tytany. Ł	Analyte detected befow quantitation limit	titation lim	ii	ND NO	1 Detected at the	Not Detected at the Limit of Detection	tion	
R RPD outside a	RPD outside accepted recovery limits		S Spikel	Spike Recovery outside accepted recovery limits	pied recove	ry lêmits				, L	Page 3 of 5

Centek/SanAir Laboratories

Page 180 of 201

Leader Consulting Services CLIENT:

C2302047 Vails Gate -Work Order: Project[.]

Project:	Vails Gate - Tesla	Tesla						Ţ	TestCode: 0	0.20_NYS		
Sample ID: C	Sample ID: C2302047-002A MS	SampType: MSD	TestCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date:			RunNo: 20049	049	
Client ID: S1	Summa (MS-MSD)	Batch ID: R20049	Test	TesiNo: TO-15		·	Analysis Date:	2/25/2023	8	SeqNo: 229655	9655	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acetone		8.360	0.30		7.8	56.0	-3.52	152	8.5	2,83	18.7	
Ally! chloride		1.090	0.15	•	0	109	63	124	1.04	4.69	12.1	
Benzene		1.430	0.15	-	0.42	101	50	143	1.46	2.08	20.8	
Benzył chloride	<u>a</u>	1.220	0.15	ų.	Û	122	36.9	180	1,17	4,18	18.7	
Bromodichloromethane	methane	1.020	0.15	ų	0	102	55.5	131	1.04	1.94	13.2	
Bromoform		0.9900	0.15	1	0	0'66	27.8	144	0.97	2.04	7.99	
Bromomethane	ē.	1.010	0.15	*	Û	101	57.3	131	-	0.995	16.2	
Carbon disulfide	de	0.9900	0.15	-	0	39.0	53.8	120	-	1.01	10.2	
Carbon tetrachloride	hloride	1.070	0.030	1	0.07	100	28.9	156	1.08	0:630	14.4	
Chiorobenzene	S	1.010	0.15	-	Ð	101	68.4	112	0.99	2.00	6.19	
Chloroethane		1.050	0.15	-	0	105	47.7	145	1.05	0	18.6	
Chloroform		1.000	0.15	٢	0	100	64.1	123	1.02	1.98	8.53	
Chloromethane	Ð	1.590	0.15	-	0.64	95.0	36.8	143	1.62	1.87	21.2	
cis-1,2-Dichloroethene	roethene	0.9800	0.040	-	0	98.0	64.6	115	0.99	1.02	8.13	
cis-1,3-Dichloropropene	opropene	1.030	0.15	-	0	103	53.3	135	1.07	3.81	12.8	
Cyclohexane		1.410	0.15	-	0.39	102	22.8	171	1.43	1.41	38.2	
Dibromochloromethane	methane	1.060	0.15	٢	0	1 8	44.5	140	1.02	3.85	6.88	
Ethyl acetate		1,180	0.15	۲	0	118	54.4	124	1.17	0.851	11.6	
Ethylbenzene		1.160	0.15	٢	0.12	104	65.3	125	1.14	1,74	11.†	
Freon 11		1.280	0.15	-	0.25	103	57.1	130	1.32	3.08	10.4	
Freon 113		1.020	0.15	***	0	102	20.9	122	1.03	0.976	11.7	
Freon †14		1.010	0.15	***	Q	101	46.7	158	1.02	0.985	14.9	
Freon 12		1.010	0.15	***	0	101	48.2	132	1.02	0.985	14.4	
Heptane		1.320	0.15		0.26	106	43.6	<u>1</u> 43	1,35	2.25	13.3	
Hexachloro-1,3-butadiene	3-butadiene	1.100	0.15	4	Q	110	65.2	135	1.12	1,80	12.5	
Hexane		1.150	0.15		0.21	94.0	57.2	136	1.19	3.42	10.9	
Isopropy! alcohof	hof	2.850	0.15	£	1.82	103	32.5	143	2.95	3.45	38.2	
m&p-Xylene		2.490	0.30	2	0.34	1 08	60	130	2.48	0.402	15.8	
Methyl Butyl Ketone	letone	1.150	0.30		Q	†15	46.2	153	1.2	4,26	10.1	
Methyl Ethyl Ketone	etone	1.590	0.30	80	*. 11	46.0	55.6	113	2.26	34.8	18.5	SR
Methyl isobuty! Ketone	ił Ketone	1.170	0.30	-W.	0	117	ន	119	1,18	0.851	25.9	
Qualifiers:	Resetts reported	Results reported are not blank corrected		DL Detecti	Delection Limit			ш ш	Estimated Value above quamitation range	sove quamitatio	មានពេល	
	H Holding times 1	Holding times for preparation or analysis exceeded	ceeded	J Analyse	Analyse detected below quantitation limit	titation limi		N ON	Not Detected at the Linni of Detection	: Limit of Detec	1600	
	R RPD outside ac	RPD outside accepted recovery limits		S Spike 5	Spike Recovery outside accepted recovery limits	pted recover	y limits				đ.	Pace i of i
											•	age a cit o

Leader Consulting Services CLIENT:

C2302047 Vaile Gate Work Order: Project:

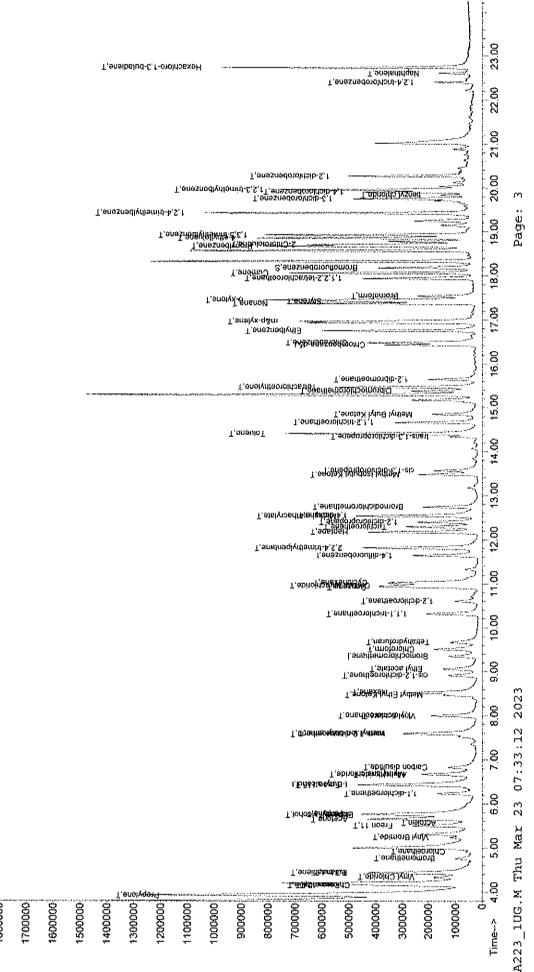
-F

. c f

Project: Vails Gate - Tesla	- Tesla						Г	TestCode: 0.20_NYS	NYS_NYS		
Sample ID: C2302047-002A MS SampType: MSD	SampType: MSD	TestCor	TestCode: 0.20_NYS	Units: ppbV		Prep Date			RunNo: 20049	149 149	
Client ID: Summa (MS-MSD)	Batch ID: R20049	Tesh	TesNo: TO-15			Anałysis Date: 2/25/2023	: 2/25/20	123	SeqNo: 229655	1655	
Analyte	Result	DOL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Methyl tert-butyl ether	0096.0	0.15	-	Q	0.96	64.6	123	0.97	1.64	15.6	
Methylene chloride	1.200	0.15	۲	0.27	93.0	50.1	138	1.18	1.68	10.4	
c-Xylene	1.230	0.15		0.14	109	54.8	138	1.21	1.64	16.8	
Propylene	1.860	0.15	v	¢	186	82.3	249	2.07	10.7	9.07	œ
Styrene	1.360	0.15	ç an	0.2	116	64	127	1.33	2.23	12	
Tetrachioroethylene	1.010	0.15	÷	đ	101	55.2	130	1.03	1.96	9.19	
Tetrahydrofuran	1.100	0.15	*	0	110	17.5	72	1.08	1.83	14.2	
Foitene	1.830	0.15	1	0.82	101	21.3	164	1.86	1.63	22.9	
trans-f.2-Dichforoethene	0.9200	0.15	-	0	92.0	39.2	153		8.33	34.5	
trans-1,3-Dichtoropropene	1.060	0.15	-	0	106	43.5	152	1.09	2.79	8.82	
Trichloroethene	0.9000	0:030	F	0	90.0	50.1	128	0.91	1.10	9.89	
Vinyl acetate	1.110	0.15	-	0	111	65.6	136	1.12	0.897	27.2	
Vinyl Bromide	1.050	0.15	-	0	105	51.4	147	1.05	0.948	18.3	
Vinyl chtoride	1.040	0.040	-	0	104	4 ₿	135	1.05	0.957	14.5	

Page 5 of 5 Estimated Value above quantitation range
 ND Not Detected at the Limit of Detection Spike Recovery outside accepted recovery limits Analyte detected helow quantitation limit Detection Limit പ്നം ഗ Holding times for preparation or analysis exceeded Results reported are not blank corrected RPD outside accepted recovery limits ± ≃ . Qualifiers:

Centek/SanAir Laboratories


Data Path : C:\madchem\l\data2\ Data Pile : AUG2445.D Acq On : 25 Feb 2023 2:13 am Operator : RUP Sample : C230247-002A MS Misc : 2230247-002A MS Misc : 2230247		Centek/SanAir Laborator		Report	: (QT Revi	Lewed)		
Quant Title : TO-15 VOA Standards for 5 point calibration Quant Title : TO-15 VOA Standards for 5 point calibration QLast Update : Fri Feb 24 08:23:48 2023 Response via : Initial Calibration Termal Standards 1) Bromechloromethane 9.353 128 64490 1.00 ppb 0.00 350 Chlorobenzene 11.640 114 360651 1.00 ppb 0.00 System Monitoring Compounds 65) Fromofluorobenzene 18.184 95 189031 1.07 ppb 0.03 Spiked Amount 1.000 Range 70 - 130 Recovery = 107.00% Target Compounds 72 Propylene 3.916 41 161139m 2 2.07 ppb 96 4) Chloromethane 4.150 50 155740 1.62 ppb 96 4) Chloromethane 4.336 62 95712 1.03 ppb 96 6) Vinyl Chloride 4.336 62 95712 1.05 ppb 96 6) Vinyl Chloride 4.336 62 95712 1.05 ppb 96 8) J.3-butadiene 4.432 39 85512m 0 1.35 ppb 97 10 Chloromethane 4.760 94 93362 1.00 ppb 97 10 Chlorotehane 4.760 54 53822 2.44 ppb # 1 12) Acrolein 5.564 56 289812 2.64 ppb 97 10 Chlorotehane 5.771 16 52713 1.66 ppb 99 14) Freon 11 5.501 101 370245 1.32 ppb 98 13) Vinyl Bromide 5.237 1.06 592713 1.06 ppb 97 10) Chlorotehane 4.710 65 44 93362 1.00 ppb 97 10) Chlorotehane 4.710 65 44 9405 4.73 ppb 98 8) J.3-butadiene 4.550 54 56 58912 2.84 ppb # 1 12) Acrolein 5.564 56 28995 1.73 ppb 91 13) Vinyl Bromide 5.237 1.06 592713 1.06 ppb 97 14) Freon 11 5.501 101 370245 1.32 ppb 98 15) Acctone 5.648 58 432755 0 8.60 ppb 4 79 16) Pentane 5.771 42 24765m 0 8.60 ppb 4 79 16) Pentane 5.771 42 24765m 0 8.60 ppb 4 79 16) Pentane 5.641 59 304406 1.42 ppb # 1 18) 1,1-dichloroethene 6.321 96 114774 1.02 ppb 98 20) L-Butyl alcohol 6.441 59 304406 1.42 ppb # 33 22) Allyl chloride 6.672 71 320 0.95 ppb 97 23) Methyl methoride 6.672 71 320 0.95 ppb 97 24) Letartouryl actarte 7.996 63 30004 0.97 ppb 93 25) Acctone 8.644 81 312035m 0.96 ppb 93 26) L-Butyl actore 7.990 63 219777 1.12 ppb 96 26) J.1-dichloroethane 7.990 63 226780 1.43 ppb 96 26) L-Butyl Ethyl Ketone 8.67 72 114322 77 1.26 ppb 97 27) Winyl acctarte 7.990 63 226780 1.00 ppb 95 26) Letare 9.661 43 283161 1.17 ppb 96 37) Cyclohexane 9.661 43 283161 1.17 ppb	Data Acq O Opera Sampl	Path : C:\msdchem\l\data2 File : AU022425.D n : 25 Feb 2023 2:13 tor : RJP e : C2302047-002A MS	2\ 6 am	-				
Internal Standards 1) Bromochloromethame 9.153 128 64490 1.00 ppb 0.00 50) Chlorobenzene 16.434 117 29229 1.00 ppb 0.00 System Monitoring Compounds 65 Bromofluorobenzene 18.184 95 189031 1.07 ppb 0.03 Spiked Amount 1.000 Range 70 - 130 Recovery = 107.00% Qvalue 2) Propylene 3.916 1 161139m 2.07 ppb 94 4) Chloromethane 4.156 85 29863 1.02 ppb 95 3) Freon 112 4.156 85 29863 1.02 ppb 95 6) Vinyl Chloride 4.332 33 85512m 1.05 ppb 96 7) Burane 4.432 34 464905 4.0334 1.05 ppb 97 10) Chloroethane 4.916 64 4034 1.05 ppb 97 10) Chloroethane 5.641 <td>Quant Quant QLast</td> <td>Method : C:\msdchem\l\me Title : TO-15 VOA Star Update : Fri Feb 24 08:2</td> <td>thods\A22: dards for 23:48 2023</td> <td>3_1UG.M 5 poir</td> <td>4 it calibratic</td> <td>n</td> <td></td> <td></td>	Quant Quant QLast	Method : C:\msdchem\l\me Title : TO-15 VOA Star Update : Fri Feb 24 08:2	thods\A22: dards for 23:48 2023	3_1UG.M 5 poir	4 it calibratic	n		
Internal Standards 1) Bromochloromethame 9.153 128 64490 1.00 ppb 0.00 50) Chlorobenzene 16.434 117 29229 1.00 ppb 0.00 System Monitoring Compounds 65 Bromofluorobenzene 18.184 95 189031 1.07 ppb 0.03 Spiked Amount 1.000 Range 70 - 130 Recovery = 107.00% Qvalue 2) Propylene 3.916 1 161139m 2.07 ppb 94 4) Chloromethane 4.156 85 29863 1.02 ppb 95 3) Freon 112 4.156 85 29863 1.02 ppb 95 6) Vinyl Chloride 4.332 33 85512m 1.05 ppb 96 7) Burane 4.432 34 464905 4.0334 1.05 ppb 97 10) Chloroethane 4.916 64 4034 1.05 ppb 97 10) Chloroethane 5.641 <td></td> <td>Compound</td> <td>R.T.</td> <td>QION</td> <td>Response Co</td> <td>one Units</td> <td>Dev(</td> <td>Min)</td>		Compound	R.T.	QION	Response Co	one Units	Dev(Min)
Target Compounds Qvalue 2) Propylene 3.916 41 161139m 2.07 ppb 3) Freon 12 4.156 65 298863 1.02 ppb 96 4) Chloromethane 4.150 50 156740 1.62 ppb 94 5) Freon 114 4.156 65 298863 1.02 ppb 99 6) Vinyl Chloride 4.336 62 95712 1.05 ppb 96 7) Butane 4.432 43 464905 4.73 ppb 98 8) 1, 3-butadiene 4.432 43 464905 4.73 ppb 91 9) Bromowethane 4.760 94 9362 1.00 ppb 97 10) Chloroethane 4.916 64 44034 1.05 ppb 97 11) Ethanol 5.750 45 369812 2.84 ppb # 1 12) Acrolein 5.664 56 28955 1.73 ppb 81 13) Vinyl Bromide 5.237 106 92713 1.06 ppb 99 16) Pentane 5.714 42 2470570 2.83 ppb 1 <	Inte 1) 35) 50)	rnal Standards Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5	9,353 11.640 16.434	128 114 117	64490 360651 298299	1.00 ppb 1.00 ppb 1.00 ppb		0.00 0.00 0.00
Target Compounds Qvalue 2) Propylene 3.916 41 161139m 2.07 ppb 3) Freon 12 4.156 65 298863 1.02 ppb 96 4) Chloromethane 4.150 50 156740 1.62 ppb 94 5) Freon 114 4.156 65 298863 1.02 ppb 99 6) Vinyl Chloride 4.336 62 95712 1.05 ppb 96 7) Butane 4.432 43 464905 4.73 ppb 98 8) 1, 3-butadiene 4.432 43 464905 4.73 ppb 91 9) Bromowethane 4.760 94 9362 1.00 ppb 97 10) Chloroethane 4.916 64 44034 1.05 ppb 97 11) Ethanol 5.750 45 369812 2.84 ppb # 1 12) Acrolein 5.664 56 28955 1.73 ppb 81 13) Vinyl Bromide 5.237 106 92713 1.06 ppb 99 16) Pentane 5.714 42 2470570 2.83 ppb 1 <	65) 5p.	Bromofluorobenzene iked Amount 1.000	18.184 Range 70	95 - 130	189031 Recovery	1.07 ppb = 107.	00%	0.03
2) Fropylene 3.916 41 161139m 2.07 ppb 3) Freon 12 4.156 65 298663 1.02 ppb 94 4) Chloromethane 4.155 55 1.56740 1.62 ppb 94 5) Freon 114 4.156 85 298863 1.02 ppb 96 6) Vinyl Chloride 4.336 62 95712 1.05 ppb 96 7) Butane 4.432 39 85512m 0 1.35 ppb 97 10) Chloroethane 4.916 64 44034 1.05 ppb 97 11) Ethanol 5.750 45 36942 2.84 ppb 91 12) Acrolein 5.664 56 28995 1.73 ppb 98 13) Vinyl Bromide 5.237 106 92713 1.06 ppb 99 14) Freon 113 5.601 13707245 1.32 ppb 98 15) Acetone <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
3) Freon 12 4.156 85 298863 1.02 ppb 96 4) Chloromethane 4.150 50 156740 1.62 ppb 94 5) Freon 114 4.156 62 95712 1.05 ppb 96 7) Butane 4.336 62 95712 1.05 ppb 97 8) 1,3-butadiene 4.32 39 85512m 1.35 ppb 97 10) Chloroethane 4.916 64 4034 1.05 ppb 97 11) Ethanol 5.750 45 369812 2.84 ppb 91 12) Acrolein 5.664 56 28955 1.73 ppb 98 13) Vinyl Bromide 5.237 106 92713 1.06 ppb 98 14) Freon 11 5.601 101 370245 1.32 ppb 98 15) Acetone 5.648 508127 0 8.60 ppb 91 16) Pentane <td></td> <td>Propylene</td> <td>3,916</td> <td>41</td> <td>161139m 🖗</td> <td>daa 70.2</td> <td></td> <td></td>		Propylene	3,916	41	161139m 🖗	daa 70.2		
4) Chloromethane 4.150 50 156740 1.62 ppb 94 5) Freen 114 4.156 65 29863 1.02 ppb 96 Vinyl Chloride 4.336 62 95712 1.05 ppb 96 8) 1,3-butadiene 4.432 43 464905 4.73 ppb 98 8) 1,3-butadiene 4.432 38 85512m 1.05 ppb 97 9) Bromomethane 4.760 94 93362 1.00 ppb 97 10) Chloroethane 4.936 64 4034 1.05 ppb 97 11) Ethanol 5.750 45 369812 2.84 ppb # 1 12) Acrolein 5.648 56 28957 1.32 ppb 98 98 13) Vinyl Bromide 5.771 42 247052m 2.83 ppb 79 16) Pentane 5.771 42 304405 1.42 ppb 99 91 17) Isopropyl alcohol 6.423 101 277679 1.03 ppb 95 <td>3)</td> <td>attal a second and attal</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>96</td>	3)	attal a second and attal						96
16) Pentane 5.771 42 247052m 2.93 ppb 17) Isopropyl alcohol 5.770 45 369812 2.95 ppb # 18) 1,1-dichloroethene 6.231 96 114774 1.02 ppb 94 19) Freon 113 6.423 101 277879 1.03 ppb # 20) t-Butyl alcohol 6.441 59 304406 1.42 ppb # 90 21) Methylene chloride 6.672 84 130351 1.16 ppb 98 23) Carbon disulfide 6.825 76 294653 1.00 ppb 97 25) methyl tert-butyl ether 7.596 73 309094 0.97 ppb 97 26) 1,1-dichloroethane 7.990 43 117737 1.12 ppb 97 27) Vinyl acetate 7.990 43 117737 1.12 ppb 97 29) cis-1,2-dichloroethene 8.914 61 132095m 0.99 ppb		Chloromethane	4.150	50	156740	1.62 ppb		94
16) Pentane 5.771 42 247052m 2.93 ppb 17) Isopropyl alcohol 5.770 45 369812 2.95 ppb # 18) 1,1-dichloroethene 6.231 96 114774 1.02 ppb 94 19) Freon 113 6.423 101 277879 1.03 ppb # 20) t-Butyl alcohol 6.441 59 304406 1.42 ppb # 90 21) Methylene chloride 6.672 84 130351 1.16 ppb 98 23) Carbon disulfide 6.825 76 294653 1.00 ppb 97 25) methyl tert-butyl ether 7.596 73 309094 0.97 ppb 97 26) 1,1-dichloroethane 7.990 43 117737 1.12 ppb 97 27) Vinyl acetate 7.990 43 117737 1.12 ppb 97 29) cis-1,2-dichloroethene 8.914 61 132095m 0.99 ppb	5)	Freon 114	4.156	85	298863	1.02 ppb		99
16) Pentane 5.771 42 247052m 2.93 ppb 17) Isopropyl alcohol 5.770 45 369812 2.95 ppb # 18) 1,1-dichloroethene 6.231 96 114774 1.02 ppb 94 19) Freon 113 6.423 101 277879 1.03 ppb # 20) t-Butyl alcohol 6.441 59 304406 1.42 ppb # 90 21) Methylene chloride 6.672 84 130351 1.16 ppb 98 23) Carbon disulfide 6.825 76 294653 1.00 ppb 97 25) methyl tert-butyl ether 7.596 73 309094 0.97 ppb 97 26) 1,1-dichloroethane 7.990 43 117737 1.12 ppb 97 27) Vinyl acetate 7.990 43 117737 1.12 ppb 97 29) cis-1,2-dichloroethene 8.914 61 132095m 0.99 ppb		Vinyl Chloride	4.336	62	95712	1.05 ppb		96
16) Pentane 5.771 42 247052m 2.93 ppb 17) Isopropyl alcohol 5.770 45 369812 2.95 ppb # 18) 1,1-dichloroethene 6.231 96 114774 1.02 ppb 94 19) Freon 113 6.423 101 277879 1.03 ppb # 20) t-Butyl alcohol 6.441 59 304406 1.42 ppb # 90 21) Methylene chloride 6.672 84 130351 1.16 ppb 98 23) Carbon disulfide 6.825 76 294653 1.00 ppb 97 25) methyl tert-butyl ether 7.596 73 309094 0.97 ppb 97 26) 1,1-dichloroethane 7.990 43 117737 1.12 ppb 97 27) Vinyl acetate 7.990 43 117737 1.12 ppb 97 29) cis-1,2-dichloroethene 8.914 61 132095m 0.99 ppb	•	Butane	4.432	43	464905	4.73 ppb		98
16) Pentane 5.771 42 247052m 2.93 ppb 17) Isopropyl alcohol 5.770 45 369812 2.95 ppb # 18) 1,1-dichloroethene 6.231 96 114774 1.02 ppb 94 19) Freon 113 6.423 101 277879 1.03 ppb # 20) t-Butyl alcohol 6.441 59 304406 1.42 ppb # 90 21) Methylene chloride 6.672 84 130351 1.16 ppb 98 23) Carbon disulfide 6.825 76 294653 1.00 ppb 97 25) methyl tert-butyl ether 7.596 73 309094 0.97 ppb 97 26) 1,1-dichloroethane 7.990 43 117737 1.12 ppb 97 27) Vinyl acetate 7.990 43 117737 1.12 ppb 97 29) cis-1,2-dichloroethene 8.914 61 132095m 0.99 ppb		Browowethane	4.434	עכ	85512m //	1.35 ppb		97
16) Pentane 5.771 42 247052m 2.93 ppb 17) Isopropyl alcohol 5.770 45 369812 2.95 ppb # 18) 1,1-dichloroethene 6.231 96 114774 1.02 ppb 94 19) Freon 113 6.423 101 277879 1.03 ppb # 20) t-Butyl alcohol 6.441 59 304406 1.42 ppb # 90 21) Methylene chloride 6.672 84 130351 1.16 ppb 98 23) Carbon disulfide 6.825 76 294653 1.00 ppb 97 25) methyl tert-butyl ether 7.596 73 309094 0.97 ppb 97 26) 1,1-dichloroethane 7.990 43 117737 1.12 ppb 97 27) Vinyl acetate 7.990 43 117737 1.12 ppb 97 29) cis-1,2-dichloroethene 8.914 61 132095m 0.99 ppb		Chloroethane	4.916	54	44034	1.05 ppb		97
16) Pentane 5.771 42 247052m 2.93 ppb 17) Isopropyl alcohol 5.770 45 369812 2.95 ppb # 18) 1,1-dichloroethene 6.231 96 114774 1.02 ppb 94 19) Freon 113 6.423 101 277879 1.03 ppb # 20) t-Butyl alcohol 6.441 59 304406 1.42 ppb # 90 21) Methylene chloride 6.672 84 130351 1.16 ppb 98 23) Carbon disulfide 6.825 76 294653 1.00 ppb 97 25) methyl tert-butyl ether 7.596 73 309094 0.97 ppb 97 26) 1,1-dichloroethane 7.990 43 117737 1.12 ppb 97 27) Vinyl acetate 7.990 43 117737 1.12 ppb 97 29) cis-1,2-dichloroethene 8.914 61 132095m 0.99 ppb		Ethanol	5.750	45	369812	2.84 ppb	#	1
16) Pentane 5.771 42 247052m 2.93 ppb 17) Isopropyl alcohol 5.770 45 369812 2.95 ppb # 18) 1,1-dichloroethene 6.231 96 114774 1.02 ppb 94 19) Freon 113 6.423 101 277879 1.03 ppb # 20) t-Butyl alcohol 6.441 59 304406 1.42 ppb # 90 21) Methylene chloride 6.672 84 130351 1.16 ppb 98 23) Carbon disulfide 6.825 76 294653 1.00 ppb 97 25) methyl tert-butyl ether 7.596 73 309094 0.97 ppb 97 26) 1,1-dichloroethane 7.990 43 117737 1.12 ppb 97 27) Vinyl acetate 7.990 43 117737 1.12 ppb 97 29) cis-1,2-dichloroethene 8.914 61 132095m 0.99 ppb	-	Acrolein	5,564	56	28995	1.73 ppb		81
16) Pentane 5.771 42 247052m 2.93 ppb 17) Isopropyl alcohol 5.770 45 369812 2.95 ppb # 18) 1,1-dichloroethene 6.231 96 114774 1.02 ppb 94 19) Freon 113 6.423 101 277879 1.03 ppb # 20) t-Butyl alcohol 6.441 59 304406 1.42 ppb # 90 21) Methylene chloride 6.672 84 130351 1.16 ppb 98 23) Carbon disulfide 6.825 76 294653 1.00 ppb 97 25) methyl tert-butyl ether 7.596 73 309094 0.97 ppb 97 26) 1,1-dichloroethane 7.990 43 117737 1.12 ppb 97 27) Vinyl acetate 7.990 43 117737 1.12 ppb 97 29) cis-1,2-dichloroethene 8.914 61 132095m 0.99 ppb		Vinyl Bromide	5.237	106	92713	1.06 ppb		99
16) Pentane 5.771 42 247052m 2.93 ppb 17) Isopropyl alcohol 5.770 45 369812 2.95 ppb # 18) 1,1-dichloroethene 6.231 96 114774 1.02 ppb 94 19) Freon 113 6.423 101 277879 1.03 ppb # 20) t-Butyl alcohol 6.441 59 304406 1.42 ppb # 90 21) Methylene chloride 6.672 84 130351 1.16 ppb 98 23) Carbon disulfide 6.825 76 294653 1.00 ppb 97 25) methyl tert-butyl ether 7.596 73 309094 0.97 ppb 97 26) 1,1-dichloroethane 7.990 43 117737 1.12 ppb 97 27) Vinyl acetate 7.990 43 117737 1.12 ppb 97 29) cis-1,2-dichloroethene 8.914 61 132095m 0.99 ppb	14)	Freon 11	5.501	101	370245	1.32 ppb		98
17)Isopropyl alconol5.750453698122.95pb#118)1,1-dichloroethene6.231961147741.02ppb9419)Freon1136.4231012778791.03ppb9520)t-Butyl alcohol6.441593044061.42ppb#9021)Methylene chloride6.6672841303511.18ppb9322)Allyl chloride6.6660411103811.04ppb9624)trans-1,2-dichloroethene7.584611350241.00ppb9725)methyl tert-butyl ether7.596733090940.97ppb9126)1,1-dichloroethane7.999632267801.04ppb9727)Vinyl acetate7.990431177371.12ppb9528)Methyl Ethyl Ketone8.476721143922.26ppb9729)cis-1,2-dichloroethene8.91461132095m0.99ppb9631)Bthyl acetate9.601432831611.17ppb9732)Chloroethane10.601621415781.07ppb9633)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.601621415781.07ppb9636)1,1,1-trichloroethane<					432765 A	<u></u>	#	79
17)Isopropyl alconol5.750453698122.95pb#118)1,1-dichloroethene6.231961147741.02ppb9419)Freon1136.4231012778791.03ppb9520)t-Butyl alcohol6.441593044061.42ppb#9021)Methylene chloride6.6672841303511.18ppb9322)Allyl chloride6.6660411103811.04ppb9624)trans-1,2-dichloroethene7.584611350241.00ppb9725)methyl tert-butyl ether7.596733090940.97ppb9126)1,1-dichloroethane7.999632267801.04ppb9727)Vinyl acetate7.990431177371.12ppb9528)Methyl Ethyl Ketone8.476721143922.26ppb9729)cis-1,2-dichloroethene8.91461132095m0.99ppb9631)Bthyl acetate9.601432831611.17ppb9732)Chloroethane10.601621415781.07ppb9633)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.601621415781.07ppb9636)1,1,1-trichloroethane<					247052m 🖓			_
19)Freen 1136.4231012778791.03ppb9520)t-Butyl alcohol6.441593044061.42ppb#9021)Methylene chloride6.672841303511.18ppb9322)Allyl chloride6.660411103811.04ppb9823)Carbon disulfide6.825762946531.00ppb9624)trans-1,2-dichloroethene7.584611350241.00ppb9725)methyl tert-butyl ether7.596733090940.97ppb9726)1,1-dichloroethane7.999632267801.04ppb9528)Methyl Ethyl Ketone8.476721143922.26ppb9729)cis-1,2-dichloroethene8.91461132095m0.99ppb9631)Hexane8.527572361321.19ppb9632)Chloroform9.509832498371.02ppb9833)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.601621415781.07ppb9837)Cyclohexane11.022562672061.43ppb9038)Carbon tetrachloride10.9251172022371.08ppb9339)Benzene10.92678543205					369812		#	
20)t-Butyl alcohol6.441593044061.42ppb#9021)Methylene chloride6.672841303511.18ppb9322)Allyl chloride6.660411103811.04ppb9823)Carbon disulfide6.825762946531.00ppb9624)trans-1,2-dichloroethene7.584611350241.00ppb9725)methyl tert-butyl ether7.596733090940.97ppb9126)1,1-dichloroethane7.999632267801.04ppb9727)Vinyl acetate7.990431177371.12ppb9528)Methyl Ethyl Ketone8.476721143922.26ppb9729)cis-1,2-dichloroethene8.91461132095m0.99ppb30)Hexane8.527572361321.19ppb9631)Ethyl acetate9.061432831611.17ppb9732)Chloroform9.674421062081.08ppb9834)1,2-dichloroethane10.601621415781.07ppb9633)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.313972387831.10ppb9636)1,1,1-trichloroethane10.9591172								+ -
21)Methylene chloride6.672841303511.18ppb9322)Allyl chloride6.660411103811.04ppb9823)Carbon disulfide6.825762946531.00ppb9624)trans-1,2-dichloroethene7.584611350241.00ppb9125)methyl tert-butyl ether7.596733090940.97ppb9126)1,1-dichloroethane7.999632267801.04ppb9727)Vinyl acetate7.990431177371.12ppb9528)Methyl Ethyl Ketone8.476721143922.26ppb9729)cis-1,2-dichloroethene8.91461132095m0.99ppb9631)Ethyl acetate9.061432831611.17ppb9732)Chloroform9.509832498371.02ppb9833)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.313972387831.10ppb9837)Cyclohexane11.022562672061.43ppb9038)Carbon tetrachloride10.9591172022371.08ppb9339)Benzene10.926785432051.46ppb9640)Methyl methacrylate12.535413							¥	
22)Allyl chloride6.660411103811.04ppb9823)Carbon disulfide6.825762946531.00ppb9624)trans-1,2-dichloroethene7.584611350241.00ppb9725)methyl tert-butyl ether7.596733090940.97ppb9126)1,1-dichloroethane7.999632267801.04ppb9727)Vinyl acetate7.990431177371.12ppb9528)Methyl Ethyl Ketone8.476721143922.26ppb9729)cis-1,2-dichloroethene8.91461132095m0.99ppb30)Hexane8.527572361321.19ppb9631)Ethyl acetate9.061432831611.17ppb9732)Chloroform9.509832496371.02ppb9833)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.313972387831.10ppb9636)1,1,1-trichloroethane10.313972387831.10ppb9339)Benzene10.926785432051.46ppb9339)Benzene10.926785432051.46ppb9640)Methyl methacrylate12.535413284853.04							11	
24)trans-1,2-dichloroethene7.584611350241.00ppb9725)methyl tert-butyl ether7.596733090940.97ppb9126)1,1-dichloroethane7.999632267801.04ppb9727)Vinyl acetate7.990431177371.12ppb9528)Methyl Ethyl Ketone8.476721143922.26ppb9729)cis-1,2-dichloroethene8.91461132095m0.99ppb9630)Hexane8.527572361321.19ppb9631)Ethyl acetate9.061432831611.17ppb9732)Chloroform9.509832498371.02ppb9833)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.601621415781.07ppb9636)1,1,1-trichloroethane10.313972387831.10ppb9837)Cyclohexane11.022562672061.43ppb9038)Carbon tetrachloride10.926785432051.46ppb9640)Methyl methacrylate12.535413284853.04ppb9241)1,4-dioxane12.54488809591.02ppb9042)2,2,4-trimethylpentane11.81457								
25)methyl tert-butyl ether7.596733090940.97ppb9126)1,1-dichloroethane7.999632267801.04ppb9727)Vinyl acetate7.990431177371.12ppb9528)Methyl Ethyl Ketone8.476721143922.26ppb9729)cis-1,2-dichloroethene8.91461132095m0.99ppb9630)Hexane8.527572361321.19ppb9631)Ethyl acetate9.061432831611.17ppb9732)Chloroform9.509832498371.02ppb9833)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.601621415781.07ppb9636)1,1,1-trichloroethane10.313972387831.10ppb9837)Cyclohexane11.022562672061.43ppb9038)Carbon tetrachloride10.9591172022371.08ppb9339)Benzene10.926785432051.46ppb9640)Methyl methacrylate12.535413284853.04ppb9241)1,4-dioxane12.54488809591.02ppb9943)Heptane12.174432388691.35 <t< td=""><td></td><td></td><td></td><td></td><td>294653</td><td></td><td></td><td></td></t<>					294653			
26)1,1-dichloroethane7.999632267801.04 ppb9727)Vinyl acetate7.990431177371.12 ppb9528)Methyl Ethyl Ketone8.476721143922.26 ppb9729)cis-1,2-dichloroethene8.91461132095m0.99 ppb9630)Hexane8.527572361321.19 ppb9631)Ethyl acetate9.061432831611.17 ppb9732)Chloroform9.509832498371.02 ppb9833)Tetrahydrofuran9.674421062081.08 ppb9834)1,2-dichloroethane10.601621415781.07 ppb9636)1,1,1-trichloroethane10.313972387831.10 ppb9837)Cyclohexane11.022562672061.43 ppb9038)Carbon tetrachloride10.9591172022371.08 ppb9339)Benzene10.926785432051.46 ppb9640)Methyl methacrylate12.535413284853.04 ppb9241)1,4-dioxane12.54488809591.02 ppb9042)2,2,4-trimethylpentane11.814576410641.11 ppb9943)Heptane12.174432388691.35 ppb97								
27)Vinyl acetate7.990431177371.12pb9528)Methyl Ethyl Ketone8.476721143922.26ppb9729)cis-1,2-dichloroethene8.91461132095m0.99ppb9630)Hexane8.527572361321.19ppb9631)Ethyl acetate9.061432831611.17ppb9732)Chloroform9.509832498371.02ppb9833)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.601621415781.07ppb9636)1,1,1-trichloroethane10.313972387831.10ppb9837)Cyclohexane11.022562672061.43ppb9038)Carbon tetrachloride10.9591172022371.08ppb9339)Benzene10.926785432051.46ppb9640)Methyl methacrylate12.535413284853.04ppb9241)1,4-dioxane12.54488809591.02ppb9042)2,2,4-trimethylpentane11.814576410641.11ppb9943)Heptane12.174432388691.35ppb97								
28)Methyl Ethyl Ketone8.476721143922.26ppb9729)cis-1,2-dichloroethene8.91461132095m0.99ppb9630)Hexane8.527572361321.19ppb9631)Ethyl acetate9.061432831611.17ppb9732)Chloroform9.509832498371.02ppb9833)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.601621415781.07ppb9636)1,1,1-trichloroethane10.313972387831.10ppb9837)Cyclohexane11.022562672061.43ppb9038)Carbon tetrachloride10.9591172022371.08ppb9339)Benzene10.926785432051.46ppb9640)Methyl methacrylate12.535413284853.04ppb9241)1,4-dioxane12.54488809591.02ppb9042)2,2,4-trimethylpentane11.814576410641.11ppb9943)Heptane12.174432388691.35ppb97								
29)cis-1,2-dichloroethene8.91461132095m0.99ppb30)Hexane8.527572361321.19ppb9631)Ethyl acetate9.061432831611.17ppb9732)Chloroform9.509832498371.02ppb9833)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.601621415781.07ppb9636)1,1,1-trichloroethane10.313972387831.10ppb9837)Cyclohexane11.022562672061.43ppb9038)Carbon tetrachloride10.9591172022371.08ppb9339)Benzene10.926785432051.46ppb9640)Methyl methacrylate12.535413284853.04ppb9241)1,4-dioxane12.54488809591.02ppb9042)2,2,4-trimethylpentane11.814576410641.11ppb9943)Heptane12.174432388691.35ppb97								
30)Ackanc30.527372301321.19ppb9631)Ethyl acetate9.061432831611.17ppb9732)Chloroform9.509832498371.02ppb9833)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.601621415781.07ppb9636)1,1.1-trichloroethane10.313972387831.10ppb9837)Cyclohexane11.022562672061.43ppb9038)Carbon tetrachloride10.9591172022371.08ppb9339)Benzene10.926785432051.46ppb9640)Methyl methacrylate12.535413284853.04ppb9241)1,4-dioxane12.54488809591.02ppb9042)2,2,4-trimethylpentane11.814576410641.11ppb9943)Heptane12.174432388691.35ppb97					132095m			
31)Ethyl acetate9.061432831611.17 ppb9732)Chloroform9.509832498371.02 ppb9833)Tetrahydrofuran9.674421062081.08 ppb9834)1,2-dichloroethane10.601621415781.07 ppb9636)1,1,1-trichloroethane10.313972387831.10 ppb9837)Cyclohexane11.022562672061.43 ppb9038)Carbon tetrachloride10.9591172022371.08 ppb9339)Benzene10.926785432051.46 ppb9640)Methyl methacrylate12.535413284853.04 ppb9241)1,4-dioxane12.54488809591.02 ppb9042)2,2,4-trimethylpentane11.814576410641.11 ppb9943)Heptane12.174432388691.35 ppb97		Hexane			236132			96
33)Tetrahydrofuran9.674421062081.08ppb9834)1,2-dichloroethane10.601621415781.07ppb9636)1,1,1-trichloroethane10.313972387831.10ppb9837)Cyclohexane11.022562672061.43ppb9038)Carbon tetrachloride10.9591172022371.08ppb9339)Benzene10.926785432051.46ppb9640)Methyl methacrylate12.535413284853.04ppb9241)1,4-dioxane12.54488809591.02ppb9042)2,2,4-trimethylpentane11.814576410641.11ppb9943)Heptane12.174432388691.35ppb97	32)	Ethyl acetate						97
34)1,2-dichloroethane10.601621415781.07ppb9636)1,1,1-trichloroethane10.313972387831.10ppb9837)Cyclohexane11.022562672061.43ppb9038)Carbon tetrachloride10.9591172022371.08ppb9339)Benzene10.926785432051.46ppb9640)Methyl methacrylate12.535413284853.04ppb9241)1,4-dioxane12.54488809591.02ppb9042)2,2,4-trimethylpentane11.814576410641.11ppb9943)Heptane12.174432388691.35ppb97								
36)1,1,1-trichloroethane10.313972387831.10ppb9837)Cyclohexane11.022562672061.43ppb9038)Carbon tetrachloride10.9591172022371.08ppb9339)Benzene10.926785432051.46ppb9640)Methyl methacrylate12.535413284853.04ppb9241)1,4-dioxane12.54488809591.02ppb9042)2,2,4-trimethylpentane11.814576410641.11ppb9943)Heptane12.174432388691.35ppb97								
37)Cyclohexane11.022562672061.43ppb9038)Carbon tetrachloride10.9591172022371.08ppb9339)Benzene10.926785432051.46ppb9640)Methyl methacrylate12.535413284853.04ppb9241)1,4-dioxane12.54488809591.02ppb9042)2,2,4-trimethylpentane11.814576410641.11ppb9943)Heptane12.174432388691.35ppb97								
38) Carbon tetrachloride10.9591172022371.08ppb9339) Benzene10.926785432051.46ppb9640) Methyl methacrylate12.535413284853.04ppb9241) 1,4-dioxane12.54488809591.02ppb9042) 2,2,4-trimethylpentane11.814576410641.11ppb9943) Heptane12.174432388691.35ppb97								
39) Benzene10.926785432051.46ppb9640) Methyl methacrylate12.535413284853.04ppb9241) 1,4-dioxane12.54488809591.02ppb9042) 2,2,4-trimethylpentane11.814576410641.11ppb9943) Heptane12.174432388691.35ppb97								
40)Methyl methacrylate12.535413284853.04ppb9241)1,4-dioxane12.54488809591.02ppb9042)2,2,4-trimethylpentane11.814576410641.11ppb9943)Heptane12.174432388691.35ppb97								
41) 1,4-dioxane 12.544 88 80959 1.02 ppb 90 42) 2,2,4-trimethylpentane 11.814 57 641064 1.11 ppb 99 43) Heptane 12.174 43 238869 1.35 ppb 97								
42) 2,2,4-trimethylpentane 11.814 57 641064 1.11 ppb 99 43) Heptane 12.174 43 238869 1.35 ppb 97								
43) Heptane 12.174 43 238869 1.35 ppb 97								99
44) Trichloroethene 12.289 130 157605 0.91 ppb 94	43)	Heptane				1.35 ppb		
	44)	Trichloroethene	12.289	130	157605	0.91 ppb		94

A223_1UG.M Thu Mar 23 07:33:11 2023

Centek/SanAir Laboratories		Repor	t (QT	Revi	.ewed)		
Data Path : C:\msdchem\l\data2\							
Data File : AU022425.D Acq On : 25 Feb 2023 2:13 a	m						
Operator : RJP							
Sample : C2302047-002A MS Misc : A223_1UG							
ALS Vial : 18 Sample Multipli	er: l						
Quant Time: Feb 25 09:29:52 2023 Quant Method : C:\msdchem\l\meth Quant Title : TO-15 VOA Standa QLast Update : Fri Feb 24 08:23: Response via : Initial Calibrati	ods\A223 rds for 48 2023	9_1UG. 5 poi	M nt calibr	atic	ori		
Compound	R.T.	QION	Response	Co	nc Units	Dev(Min)
45) 1,2-dichloropropane		63	151770		1.05 ppb		97
(c) Bromodiablementheme	10 770	0.7	010400		1 04		99
<pre>46) Brombulchioromethane 47) cis-1,3-dichloropropene 48) trans-1,3-dichloropropene 49) l,l,2-trichloroethane 51) Toluene 52) Mothul Trabutul Katara</pre>	13.561	7.5	158857		1.07 ppb		98
48) trans-1,3-dichloropropene	14.339	75	118336		1,09 ppb		88
49) 1,1,2-trichloroethane	14.663	97	159503		1.06 ppb		93
51) Toluene	14.408	92	470918		1.86 ppb		94
52) Methyl Isobutyl Ketone 53) Dibromochloromethane 54) Methyl Butyl Ketone	13.477	43	256119	Q	aqq sı.ı		99
53) Dibromochloromethane	15.381	129	175753m	n ₽	1.02 ppb		
54) Methyl Butyl Ketone	14.846	43	197622		1.20 ppb		94
55) 1,2-dibromoethane	15.642	3.07	201871		1.04 ppb		97
55) 1,2-dibromoethane 56) Tetrachloroethylene 57) Chlorobenzene	15.468	164	177766		1.03 ppb		98
57) Chioropenzene	16.485	112	324513		0.99 ppb		100
58) Ethylbenzene	16.755	91 07	597247		1.14 ppb		99
59) m&p-xylene	16.969	21	967302 297439 364268		2.48 ppb		98
60) Nonane 61) Styrene	17.377	43	297439		1.20 ppb		100
62) Bromoform	17.422	104	138047		1.33 ppb 0.97 ppb		85 94
63) o-xylene					1.21 ppb		96
	18.067	105	561491 623638		1.07 ppb		99 99
66) 1 1 2 2-tetrachloroethane	37 947	.05	324661		1.05 ppb		97
64) Cumene 66) 1,1,2,2-tetrachloroethane 67) Propylbenzene	18 674	120	189987		1.28 ppb		1
68) 2-Chlorotoluene	18.713				1.08 ppb		1
69) 4-ethyltoluene	18,857	105	151809 712586π	p	1.50 ppb	11	
70) 1,3,5-trimethylbenzene	18.926	105	630329m		1.31 ppb		
71) 1,2,4-trimethylbenzene	19.427	105	754382		1.89 ppb		99
72) 1,3-dichlorobenzene	19.754	146	254491	}	1.15 ppb		99
73) benzyl chloride	19.835	91	92111m	ı]	1.17 ppb		
74) 1,4-dichlorobenzene	19.907	146	246229m	18#	1.23 ppb		
75) 1,2,3-trimethylbenzene	19.956	105	519792		1.26 ppb		98
76) 1,2-dichlorobenzene	20.265	146	247610		1.14 ppb		97
77) 1,2,4-trichlorobenzene	22.402	180	63911		1.28 ppb		94
78) Naphthalene	22.606	128	143656		1.30 ppb		98
79) Hexachloro-1,3-butadiene	22.738	225	229197		1.12 ppb		99
(#) = qualifier out of range (m							

(#) = qualifier out of range (m) = manual integration (+) = signals summed

TIC: AU022425.D\data.ms calibration 5 point 1UG.N C:\msdchem\1\methods\A223 Standards for 08:23:48 2023 Sample Multiplier: Calibration аш 25 09:29:52 2023 C:\msdchem\1\data2\ 2:13 C2302047-002A MS Fri Feb 24 TO-15 VOA 25 Feb 2023 AU022425.D Initial A223_1UG reb Feb RJP $\frac{1}{2}$ Method Response via QLast Update Quant Time: Title Data Path Data File Operator ALS Vial ő Sample Abundance 1800000 Quant Quant Misc Acq

Centek/SanAir Laboratorie		Report	: (QT Rev	lewed)	
Data Path : C:\msdchem\1\data2	١				
Data File : AU022426.D					
Acq On : 25 Feb 2023 3:05 Operator : PTP	am				
Operator : RJP Sample : C2302047-002A MSD					
Misc : A223_1UG ALS Vial : 19 Sample Multip					
ALS VIAL : 19 Sample Multip	lier: 1				
Quant Time: Feb 25 09:29:54 20					
Quant Method : C:\msdchem\l\me Quant Title : TO-15 VOA Stan	tnods\A22. dards for	3_10G.8 5 poir	4 nt calìbrati	on	
QLast Update : Fri Feb 24 08:2	3:48 2023	-			
Response via : Initíal Calibra	LION				
Compound	R.T.	QIon	Response C	onc Units	Dev(Mìn)
Internal Standards					
1) Bromochloromethane	9.356	128	64945	1.00 ppb	# 0.00
 Bromochloromethane 1,4-dífluorobenzene Chlorobenzene-d5 	16.434	117	300494	1.00 ppb	-0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18,181	95	196610	dag 01.1	0.02
Spiked Amount 1.000	Range 70	- 130	Recovery	= 110.	00\$
Target Compounds 2) Propylene 3) Freon 12			Δ.		Qvalue
2) Propylene	3.916 4.159	41	146167m Ø 296481	1.86 ppb	-
3) Freen 12 4) Chloromethane	4.159 4.159	85 50	296481 146257	1.01 ppb	100
5) Freon 114	4.159	85	296481	1.01 ppb	98
5) Freon 114 6) Vinyl Chloride	4.330	62	95383	1.04 ppb	96
7) Butane 8) 1,3-butadiene	4.435	43	455906 76593m ()	4.61 ppb	94
9) Bromomethane	4.757	35 94	296481 155257 296481 95383 455906 76592m // 95413 44227 259419	1.01 ppb	100
10) Chloroethane	4.913	64	44227	1.05 ppb	93
ll) Éthanol 12) Acrolein					
13) Vinyl Bromide	5.243	106	27292 92520 362256	1.02 ppb	96
14) Freon 11	5.501	101	362256	1.28 ppb	1.00
15) Acetone 16) Pentane	5.654 5.768	58 42	423557	8.36 ppb	# 78 # 12
17) Isopropyl alcohol	5.756	42	179476 359619	2.04 ppb 2.85 ppb	
18) 1,1-dichloroethene	6.230	96	118444	1.05 ppb	96
19) Freon 113	6.429		278768	1.02 ppb	96
20) t-Butyl alcohol 21) Methylene chloride	$6.441 \\ 6.681$	59 84	312183 133029	1.45 ppb 1.20 ppb	# 79 96
22) Allyl chloride	6.663	41	116364	1.09 ppb	99
23) Carbon disulfide 24) trans-1,2-dichloroethene	6.828	76	291643	0.99 ppb	97 95
25) methyl tert-butyl ether	7.593 7.599	61. 73	124915 308230	0.92 ppb 0.96 ppb	95 89
26) 1,1-dichloroethane	8.005	63	226655	1.03 ppb	96
27) Vinyl acetate	7.996	43	117712	1.11 ppb	96
28) Methyl Ethyl Ketone 29) cis-1,2-dichloroethene	8.467 8.914	72 61	81113 132046m Ø	1.59 ppb 0.98 ppb	# 35
30) Hexane	8.527	57	231136	1.15 ppb	98
31) Ethyl acetate	9.055	43	287369	1.18 ppb	96
32) Chloroform 33) Tetrahydrofuran	9.509 9.665	83 42	246084 109086	1.00 ppb 1.10 ppb	100 98
34) 1,2-dichloroethane	10.607	62	139466	1.04 ppb	96
36) 1,1,1-trichloroethane	10.319	97 56	237268	1.07 ppb	98
37) Cyclohexane 38) Carbon tetrachloride	11.025 10.965	56 117	265941 204342	1.41 ppb 1.07 ppb	89 95
39) Benzene	10.929	78	539679	1.43 ppb	95
40) Methyl methacrylate	12,535	41	326179	2.97 ppb	92 93
41) 1,4-dioxane 42) 2,2,4-trimethylpentane	12.544 11.811		81824 641355	1.02 ppb 1.10 ppb	99
43) Heptane	12.174	43	235873	1.32 ppb	98
44) Trichloroethene	12.291	130	158371	0.90 ppb	94

A223_1UG.M Thu Mar 23 07:33:14 2023

Centek/SanAir Laboratories	itation	Repor	t (QT R	eviewed)	
Data Path : C:\msdchem\l\data2\ Data File : AU022426.D Acq On : 25 Feb 2023 3:05 a Operator : RJP Sample : C2302047-002A MSD Misc : A223_1UG ALS Vial : 19 Sample Multipli					
Quant Time: Feb 25 09:29:54 2023 Quant Method : C:\msdchem\l\meth Quant Title : TO-15 VOA Standa QLast Update : Fri Feb 24 08:23: Response via : Initial Calibrati	ods\A22: rds for 48 2023	3_1UG. 5 poi	M nt calibra	tion	
Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
<pre>45) 1,2-dichloropropane 46) Bromodichloromethane 47) cis-1,3-dichloropropene 48) trans-1,3-dichloropropene 49) 1,1,2-trichloroethane 51) Toluene 52) Methyl Isobutyl Ketone 53) Dibromochloromethane 54) Methyl Butyl Ketone 55) 1,2-dibromoethane 56) Tetrachloroethylene 57) Chlorobenzene 58) Ethylbenzene 59) m&p-xylene 60) Nonane 61) Styrene 62) Bromoform 63) o-xylene 64) Cumene 66) 1,1,2,2-tetrachloroethane 67) Propylbenzene 68) 2-Chlorotoluene 69) 4-ethyltoluene 70) 1,2,5 feinesthylbenzene</pre>	12.397 12.736 13.567 14.336 14.666 14.405 13.480 15.383 14.846 15.639 15.474 16.485 16.485 16.758 16.969 17.377 17.425 17.539 17.455 18.067 17.947 18.671	63 83 75 97 92 43 92 429 107 107 107 107 107 107 107 107 105 105 105 120	149595 218140 156129 117208 155388 467671 256003 183296 191250 199051 174213 331444 612223 979861 300993 375285 141859 571713 637533 326365 195248	1.02 ppb 1.02 ppb 1.03 ppb 1.06 ppb 1.06 ppb 1.83 ppb 1.17 ppb 1.06 ppb 1.15 ppb 1.01 ppb 1.01 ppb 1.01 ppb 1.01 ppb 1.21 ppb 1.21 ppb 1.22 ppb 1.23 ppb 1.23 ppb 1.05 ppb 1.05 ppb 1.31 ppb	99 100 98 91 96 95 99 97 92 98 99 98 99 98 99 98 99 99 99 99 99 97 1
<pre>68) 2-Chlorotoluene 69) 4-ethyltoluene 70) 1,3,5-trimethylbenzene</pre>	18.707 18.857 18.926	126 105 105	151432 711801m # 628099m	1.07 ppb 1.49 ppb 1.30 ppb	# 1.
 71) 1,2,4-trimethylbenzene 72) 1,3-dichlorobenzene 73) benzyl chloride 74) 1,4-dichlorobenzene 	19.430 19.754 19.835 19.904	105 146 91 146	759175 257951 96879m 245932m	1.21 ppb	100 98
 75) 1,2,3-trimethylbenzene 76) 1,2-dichlorobenzene 77) 1,2,4-trichlorobenzene 78) Naphthalene 79) Hexachloro~1,3-butadiene 	19.958 20.268 22.405 22.606 22.738	105 146 180 128 225	515075 251581 65485 143728 226623	1.24 ppb 1,15 ppb 1.30 ppb 1.29 ppb 1.10 ppb	98 98 94 98 97
 73) benzyl chloride 74) 1,4-dichlorobenzene 75) 1,2,3-trimethylbenzene 76) 1,2-dichlorobenzene 77) 1,2,4-trichlorobenzene 78) Naphthalene 	19.835 19.904 19.958 20.268 22.405 22.606 22.738	91 146 105 146 180 128 225	96879m 245932m 515075 251581 65485 143728 226623	1.22 ppb 1.21 ppb 1.24 ppb 1.15 ppb 1.30 ppb 1.29 ppb 1.10 ppb	98 98 94 98 97

T,snesnedhyiteminf.(29) Manadoroldayiteminf.(29) Anadoroldayiteminf.(29) T,anaznadiyritomiri-4.S, t ChloroBonaeviernzene. T ChloroBonaeviernzene. T T, motomore T, analyzightrooM.T. analyzic. T, onexnediyrilā T, enolyx-q.om T, WARREN LAND T,entrateomoralb-S,i TIC: AU022426.Didata.ms 7,1,2-trichloroethane,7 Methyl Bulyl Ketone,1 T.oneulo T Tanaqongeneldaib-Ed-angu T. P. BRALINGRAN KAR calibration T,ensitismovoiribiomot 1,enetnedtyrbernn)-P.S.S point C:\msdchem\l\methods\A223_1UG.M TO-15 VOA Standards for 5 point T.ebnorgaggggggggggg T, onsitrooroldaib-S.-T, anishtrantolitain-t, t, t ιουμοςτίοτομαιος; Οθοιοίοτομα.Τ Τέξισηγάτοξυτάς,Τ 24 08:23:48 2023 T, enerti sprojdalb, S, f, eja T, enerti sprojdalb, S, f, eja T, enerti sprojdal (vrit E Sample Multiplier: Calibration a 1 anotal sure 25 09:29:54 2023 C:\msdchem\1\data2\ 3:05 T, enterDanketetnith(b)M C2302047-002A MSD T.olineteenhitinstakitiviteen T,១៦ពីជាស្ថាក្នុវទំពាំស្តាក់ (ស្តាក់ T,១៦៣៤ខ្លាំ (ស្តាក់ (ស្តាក់) T,១៦៣៤ខ្លាំ (ស្តាក់) 25 Feb 2023 Feb AU022426.D Initial A223_10G Fri T, In nost J, main and the most J, main and the most J, main and the most of t Feb RJP T.ebimor8 lyniV_ 19 •• T,engritemenera T,engritemenera Quant Method Response via Update Quant Time: Title T. anniberration Any Chionde. Data Path File T,ensi**menom**a Operator fansivgens, Als vial 800000 Acq On Sample Abundance 2200000 +400000 200000 10000000 600000 200000 2000000 600000 400000 800000 QLast Quant Data Misc

T.ensibstud-6,1-molificexeH

Page 188 of 201

23.00

22.00

21.00

20.00

19.00

18.00

17.00

16.00

15.00

14.00

13.00

12.00

11.00

10.00

9.00

8,00

7,00

6.00 3

5.00

4,00

Time-->

2023

07:33:15

Маг

Thu

A223 10G.M

ŝ

Page:

T. enolethroteM T, shasnadonokichi, 4, 5, f

T, sbrouda, T

T,ensznedotołdo/b-S,T

Centek/SanAir Laboratories

.

I.

,

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

INJECTION LOG

÷

Page 189 of 201

.

			lise aument //		i		
			Homal Standar	d Stock #	A\$58	C ,	
			Standard Sto	ok <i>il</i>	543	7	
			Standard Sto LOS Stock #		5534	ő	
			Nothed Ref.	SPATO	- <u>157Jar</u>	ĩ <u>. 1999</u>	
259) AU022313.D Alug_1.0	A223_1UG	12	1.000	23 F@	b 2023	7:23	២ឃ
260) AU022314.D							
A1UG_1.25	A223_1UG	13	1.000	23 Fe	b 2023	8:07	pm
261) AU022315.D AlUG_1.50	A223_1UG	14	1.000	23 Fe	Ъ 2023	8:53	pm
262) AU022316.D							
A1UG_2.0	A223_1UG	15	1.000	23 Fe	b 2023 	9:41	քա
263) AU022317.D Alug_0.lo	A223 1UG	16	1.000	23 Fe	b 2023	10:25	ma
264) AU022318.D							•
A1UG_0.04	A223_1UG	17	1.000	23 Fe	Б 2023	11:07	թո
265) AU022319.D							
A1UG_0.03	A223_1UG	18	1.000	23 Fe	ь 2023 	11:49	pm
266) AU022320.D Alug 0.15	A223 10G	10	1 000	24 FØ	h 2023	12.12	am
AlUG_0.15							
267) AU022321.D A1UG_0.30	A223_1UG	50	1.000	24 F@	b 2023	1:13	am
260) ATT022222 D							
A1UG_0.50	A223_1UG	21	1.000	24 Fe	b 2023	1:55	ភាភ
269) AU022323.D							
A1UG_0.75 270) AU022324.D							
Alug_1.0	A223_1UG	23	1.000	24 Fe	b 2023	3:22	am
271) AU022325.D							
A1UG_1.25	A223_1UG	24	1.000	24 F@	b 2023	4:07	am
272) AU022326.D Alug 1.50	A223 1UG	25	1.000	24 Fe	b 2023	4:53	am
A1UG_1.50 273) AU022327.D					~~~~~		
A1UG_2.0	A223_1UG	26	1.000	24 Fe	b 2023	5:41	am
274) AU022401.D							
BFB1UG	A223_1UG	1 	1.000	24 Fe	b 2023	8:28	a៣
275) AU022402.D Alug_1.0	A223_1UG	2	1,000	24 Fe	ь 2023	9:14	am
276) AU022403.D				200 AN 100 NO 100 AN 100		******	
ALCS1UG-022423	A223_1UG	3	1.000	24 Fe	b 2023	9:58	лљ
277) AU022404.D AMB1UG-022423							
278) AU022405.D							
WAC022424A	A223_1UG	5	1.000	24 Fe	b 2023	11:42	am
279) AU022406.D WAC022425B							
280) AU022407.D	· · · ·						

				<i>11.</i>	1	
			donal Stand Standard S	1910 2100	K だいがつ ごう	€.
				••	H 2" 15	
WAC022426C	A223_1UG	7	1,000 2	4 Feb	2023 7/15	06 pm 9
281) AU022408.D			1.000 2			
282) AU022409.D			1.000 2			
283) AU022410.D WAC022426F	A223_1UG	3	1.000 2	4 Feb	2023 3:	12 pm
284) AU022411.D WAC022425G	A223_1UG					54 pm
285) AU022412.D	A223_1UG	5	1.000 2	4 Feb	2023 4:	36 pm
286) AU022413.D	A223 1UG	б	1.000 2			
287) AU022414.D C2302049~001A				4 feb	2023 6:	03 pm
288) AU022415.D C2302049-002A	A223_10G	8 .	1.000 2	4 Feb	2023 6:	47 pm
289) AU022416.D C2302049~003A	A223_1UG	9	1.000 2	4 Feb	2023 71	31 pm
290) AU022417.D C2302036-001A	A223 1UG	10	1.000 2	4 Feb	2023 8:	15 pm
291) AU022418.D C2302036-002A		11	1.000 2	4 Feb	2023 9:	mq 00
292) AU022419.D	A223_10G		1.000 2			44 pm
293) AU022420.D C2302036~004A	A223_1UG	13	1.000 2	4 Feb	2023 10:	28 pm
294) AU022421.D C2302036-005A	A223_1UG	14	1.000 2	4 Feb	2023 11:	13 pm
295) AU022422.D	A223 1UG					
296) AU022423.D	A223 1UG					
297) AU022424.D C2302047-002A	A223_1UG					
298) AU022425.D C2302047-002A MS						
299) AU022426.D	A223_1UG					
300) AU022427.D	A223_1UG					
301) AU022428.D						

				in. Januara a.	[
				in Lorinatian Genal Standard Standard Stor 1703 Storok II	1 Stock # 71 54	<u>j34</u>
				1,019 (Stock II	55	-35
302) AU022429.D C2302049-002A lox	A223_1UG	22	1.000	Alebico (lei) 25 Feb		380. (1999) 4 am
303) AU022430.D	A223_1UG	23	1.000	25 F@b	2023 5:5	7 am
304) AU022431.D C2302036-001A 10X	A223_1UG	24	1.000	25 Feb	2023 6:4	0 am
305) AU022432.D C2302036-002A 10X	A223_1UG	25	1.000	25 Feb	2023 7:2	3 am
306) AU022433.D C2302036-003A 10X	A223 1UG		1.000	25 Feb		6 am
307) AU022434.D	A223_1UG-004A 10X	27	1.000	25 Feb	2023 8:5	0 am
308) AU022501.D	A223_1UG					7 am
309) AU022502,D	A223_10G					4 am
310) AU022503.D	A223_1UG					
311) AU022504.D	A223_1UG			25 Feb		
312) AU022505.D	A223_1UG					
313) AU022506.D C2302036-004A 40X						mg 8
314) AU022507.D C2302036-005A 10X	A223_1UG	7		25 Feb		.6 pm
	A223_1UG		1.000	25 Feb	2023 2:5	9 pm
316) AU022509.D	A223_1UG					
317) AU022701.D	A223_1UG					
318) AU022702.D	A223_1UG					
319) AU022703.D	y553"1nd					
320) AU022704.D AMB1UG-022723						
321) AU022801.D	A223_1UG					
322) AU022802.D	A223_1UG					
323) AU022803.D Alug	A223_10G			28 Feb		

Centek/SanAir Laboratories

.

.

τ.

.

GC/MS VOLATILES-WHOLE AIR

.

.

-

METHOD TO-15

STANDARDS LOG

.

.

Page 193 of 201

Stor# Date Pres Da	ek	Centek Laboratories, LLC	ries, LLC	t)			GC/MS Ce	alibration Sta	GC/MS Calibration Standards Logbook			
31291az HS TOIS ILLE TS A49as 50 ppb 0.9 45 1	1	Date Prep	<u>ب</u>	Descrij	otion	Stock #	Stock Conc	Initial Vol (psig	Finlal Vol (psia)	Final Conc (ppb)	Prep by	Chkd by
$\sqrt{15}$ $\sqrt{16}$ $\frac{570}{16}$ $\frac{1}{1002}$ $\sqrt{10}$ $\frac{570}{10}$ $\frac{1}{1002}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{10000000000000000000000000000000000$	\circ	<u> 3 29 29 29 29 29 29 29 </u>	4 IS 20	TOIS IN	e tỳ	A4920	YOOD	0,9	4))	-	153	
$$ $$ $\frac{1}{15}$ <					Q45	મિયજા						
HS HIS HIS HS	~	\rightarrow	ال	J	531	Ceph4	≯		Ş			
(77) AtaleT Ti L (7) AtaleT Ti L (7) (12) <td>3</td> <td>415/23</td> <td>HIB</td> <td></td> <td>SH</td> <td>AHDILL</td> <td>1001</td> <td>[.5</td> <td>202</td> <td></td> <td>) 3</td> <td></td>	3	415/23	HIB		SH	AHDILL	1001	[.5	202) 3	
LCS AH24.8 V L L V <th< td=""><td>\rightarrow</td><td></td><td></td><td></td><td>573</td><td>AMAGT</td><td></td><td></td><td></td><td></td><td>-</td><td></td></th<>	\rightarrow				573	AMAGT					-	
4 4PC4 R399,3 Losspin L47 30 50 1 4,0000 F76,000 50,000 3.0 30 50 1 F76,000 10,3,000 0,3,000 3.0 30 50 1 1 10,3,000 10,3,000 1,47 30 50 1 1 1 1 1,47 30 50 1 1 1 1,47 30 50 1 1 1,47 30 50 1 1 1,47 30 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>10</td> <td></td> <td></td> <td></td> <td>LCS</td> <td>A4268</td> <td>></td> <td></td> <td>-></td> <td>7</td> <td></td> <td></td>	10				LCS	A4268	>		->	7		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ہ				HPCH	A3992	(a)Soom	(TH.)	30	50		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					4 POIS	A4936	qaog	3.0	30	5		
1 5100K A3623 500 300 500 310 500 310 500 310 500 300 500 1 1 1 1 500 1 300 500 1 1 1 500 1 300 500 1 1 1 500 1 300 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6				Foen	A379A	10.3 com	0,23	HS H	ß		
Surf Angale Ippm I.S. 30 50 50 $H \ge 5$ $H \ge 5$ $H \ge 5$ $H \ge 10.3$ pm $I.S \ge 30$ 500 500 V $H \ge 5$ $H = 10.3$ pm $I.S \ge 30$ 300 500 500 V $H \ge 5$ $H = 10.3$ pm $I.S \ge 300$ 300 300 500 500 $TO = 106.2$ $H = 10.3$ $I.V = 125.3$ $H = 10.3$ $I.V = 125.3$ $I.V = 125.$	σ_{-}		``		You!S	A 25-74 Aaled 3	Seo abb	3.54	30	ß		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	P				-Thu'S	A3926	100	1.5 2	30	3		
V H H2530 H4441 Scorpt 3.0 3.0 3.0 3.0 3.0 3.0 5.0 V V V V V V V V V V 3139/23 570 7015 14633 570 570 0.9 US 1 1 V V V LCS 14934 V V V V 3139/23 7015 TOIS TOS TOIS TOIS TOIS 2570 FF-531165 LINDE 2000 psi/s 1.0 prom 318/22 318/23 TOIS LCS AUGU 1.prom AUGU7 2.1 NDE 2200 psi/s 1.0 prom 1.0 prom 1 L J V L V V V V 1 L J Nous LCS AUGU7 L V V V L J P L V V V V					Hz.S	AZZA	10.2 nom	۲۲,I	30	5780		
TO IS TUG TO IS TUG TO IS TUG TO IS TUG TO IS A4933 SOPAL 0.9 US L 3130/237 V V V V V V V V V 3130/237 TO IS TUG TS A4935 V V V V V 3130/237 TO IS TS FF-531165 LINDE 2000 psi/2 1.0 Pom 318/28 318/237 TO IS LCS A496/7 1.0 Pom A406/7 LS NOUS 1/12/23 41 Max TO IS LCS A404/7 1.0 Pom 1.5 320 520 V V V L L LS A404/7 L L V	a			->	H2532H	PH44	Jun out	3.0	30	3		
	m			TOIS 14	ST B	A4933	Sond	٥.٩	45	7		
V V L Lcs A4935 V					<u>کر</u>	Augh	11		,	erman		
3 3 3 3 3 3 3 3 3 3 4 3 3 4 3 7 0 15 TS 17 - 53 1 65 1 10 PC 2000 PS 3 1 3 4 3 7 0 15 57 7 17 53 1 15 7 1 1 10 PC 2000 PS 4 1 0 PC 1 2 3 8 3 7 0 15 2 7 10 15 7 10 15 7 10 15 7 10 15 7 10 15 1 1 0 PC 1 1 0 PC 1 1 1 2 1 2 4 1 1 2 1 2 4 1 1 2 1 2 4 1 1 2 1 2	5	7	->7		LC.	A4935	Ŷ	-> `	_>	>		
3/8/33 3/8/33 TO 15 577 7F-53/1157 2/NDE 2200 psig 1.0 pm 6 3/8/32 3/8/33 TO 15 2CS A46/7 1 ppm A46/7 IS Now3 2CS 20 1/12/22 4/18/23 TO 15 IS A4446 1/ppm 1.5 30 50 50 10	_0	3 30/23	3 30 33	TOIS -	۲ ۲	FF-531	الأن	CINDE	2000psi a	<u> </u>]	5	
318122 318123 TOIS LÉS A4967 100m A4867 IS Now LEST		<u> 3 8 að</u>	3 8 23	1015 4	A	FF-531	157	LINDE	2200 psig	Ľζ	<u>(</u> 3	
112122 41 ADD TOIS IS AUGUE 1/0 PPM 1.5 30 50 50	∞	318(22	1	1	5	A4967	/noo/	Gub()		1537	3	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	<u>1112122</u>		TOIS ,	FS FS	Augul	mdd/1	l.S	30	22	5	
	\mathcal{D}	~	\uparrow	Ŷ	45	44947		4			->	

Page 194 of 201

FORM 153

59

Page #__

Centek/SanAir Laboratories

C	Cent	ek	/Sa	an/	١r	La	boı	ato	ries	; 			1						1									
	Prep by Chkd by					 																						
	Prep by	A.	3								⇒	/- '-3							-							+>		
20	Final Conc (ppb)	Ś	2	2			205	0 9	Ļ		1	, (2	50	15		20	20	50	000	05		-			
GC/MS Calibration Standards Logoon	Contract Vol (nsin) Finial Vol (psia)		f 1	30	, ,	.20	30	30	5				30			21)	ž į	<u>8</u>	51	30	30	4	2) ĉ		Ĵ.			ľ,
bration Sta	itiat Wal (nsin)	Right In A IBIII	0000	50 20 20	0 \ r	Ċ,	[. 5]	3.0	50			>	- <u>S</u>		->			2,0	0.30	0,0	, ', ', 	<u> </u>	60-	3.0	; ;		>	
GC/MS Cali		Stock Conc In	NOC SII	1.	400 000	1 COM	8.02 Ann					5	2001			>	1.020 (20.1	<u>لاوم کر</u> ا	M.00 C.11	40 51	8		U1	20075	<u>dag ozt a</u>			
<u> </u>		Stock #	A (23.5)	1 2300 H	A2633	A506.3	オンシャ				T			Aucu'l	1722 B	9 HANAL	Ī	5 N5529	1	145.30C	-	1	2022	2145534	4 6 IS A526	5 10 145521	5 145528	
		Description	Ci vah		SILUX	Sur		111.	05/11	TOIS 146 15	3	S T	101 43			rc.S	4904	HPCH	1 Nº Nº 2		XmS	SULF	27H	V IIZSS	TOS ING ZS	×	~ LC	
ies, LLC		Data Exp	_	<u>2 al a</u>									1 26 20 0	1													~	
Contols Laboratories, LLC		Dote Bran		2114123	-								-															
Cantals 1			Std #	A- 5518	5219		A. 50000	A. 5531	A. 5523	A. 5533	16.7.7		A A	A-55-36	A-5387	× 553 ×	0000		9, CC-4	A-5531	A-5533	1533	6234	LUCC-A		ACC'N CCC-N	No.	

GC/MS Calibration Standards Logbook

Ì

ĺ

FORM 153

Ĥ

Page # ___

Centek/SanAir Laboratories

٠

·

.

.

. .

GC/MS VOLATILES-WHOLE AIR

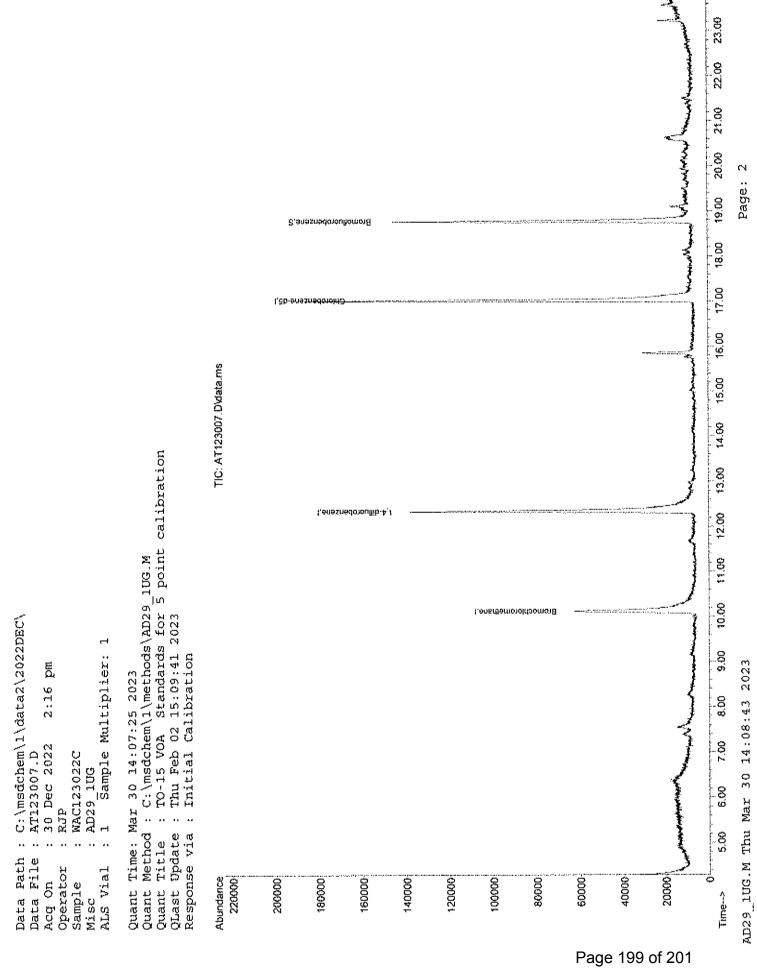
,

.

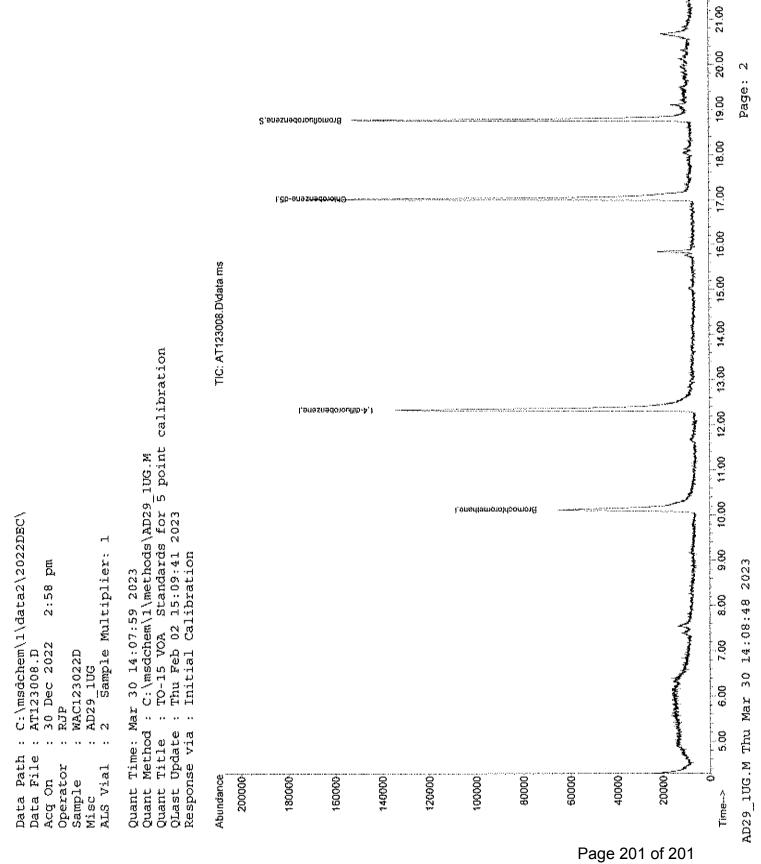
METHOD TO-15

CANISTER CLEANING LOG

.


TLC
Centek Laboratories,

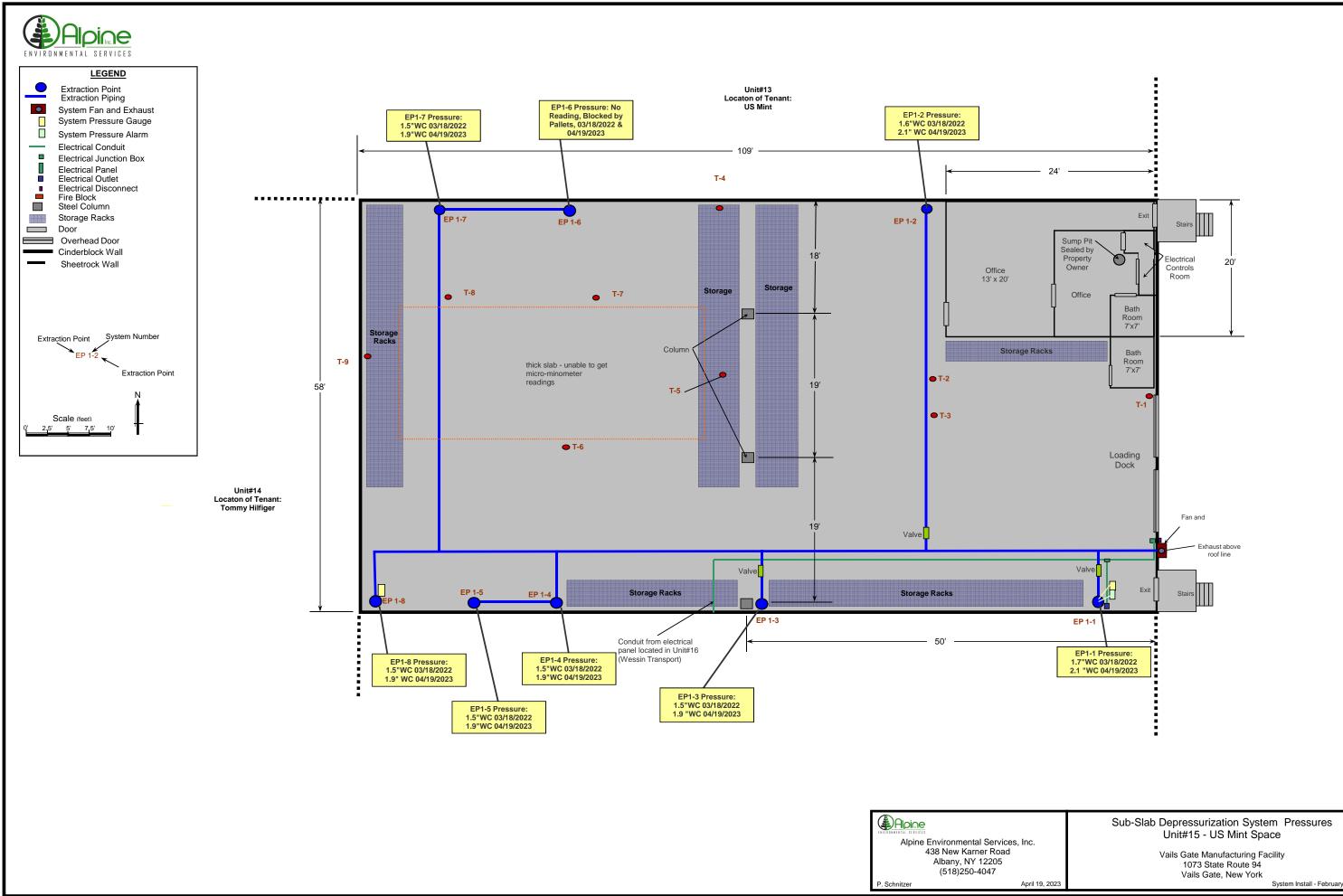
QC Canister Cleaning Logbook


.....

.					,					,	,								···· ,·	,				,		
	Leak Test 24hr int & Date	+ 30 + 36	+ 30 + 1	+ 30 +	+ 30	+ 30	+ 30 +	+ 30 +	+ 30	+ 30	+ 30 +	+ 30 +	+ 30 + +	+ 30 + +	+ 30 +	+ 30 +	+ 30 +	+ 30	+ 30 + +	+ 30 + +	+ 30 +	+ 30 +	+ 000000000000000000000000000000000000	+ 30 +	+ 30 +	+ 30 + *
	Detection Limits	123+0201		- T						•		••••														4
	QC Batch Number	WAC/20622A					-9	>				U					¢	\$				24				2
	Int & Date Cleaned	1245/22															44.2017 (ANTRUE 1999 - 1999) 1997 - 1999 - 1999 1997 - 1999 - 1999									*
	# of Cycles	30	Į																							2
0	Canister Size QC Can Number	। २म२				7	11 87				-3	130	e				567				4	111				,
Entech 3100	Canister Size	L																								•
Instrument: Ei	Canister Number	550	4011	326	7511	1545	૩૧૩	242	1131	419	11 51	239	પ્રરો	369	U TY	8	Ŧ	ч 362 Р	کور age		567			56	318	. 1.1

Centek/SanAir Laborator	ies antitation	Report	L (QT Rev:	iewed)		
Data Path : C:\msdchem\l\data Data File : AT123007.D Acq On : 30 Dec 2022 2:10 Operator : RJP Sample : WAC123022C Misc : AD29_1UG ALS Vial : 1 Sample Multip	6 pm					
Quant Time: Mar 30 14:07:25 2 Quant Method : C:\msdchem\1\m Quant Title : TO-15 VOA Sta QLast Update : Thu Feb 02 15: Response via : Initial Calibr	ethods\AD29 ndards for 09:41 2023 ation	5 poli	nt calibratio			
Compound	R.T.	QIon	Response Co	onc Un	its Dev((Min)
Internal Standards 1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5						
System Monitoring Compounds						
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.768 Range 70	95 - 130	86885 Recovery	0.80 =	ppb 80.00%	0.00
65) Bromofluorobenzene Spiked Amount 1.000 Target Compounds					Ova	alue

Centek/SanAir Laborator	ies Intitation	Report	L (QT Rev	lewed)		
Data Path : C:\msdchem\l\data2 Data File : AT123008.D Acq On : 30 Dec 2022 2:58 Operator : RJP Sample : WAC123022D Misc : AD29_1UG ALS Vial : 2 Sample MultipA	mg 6					
Quant Time: Mar 30 14:07:59 20 Quant Method : C:\msdchem\1\me Quant Title : TO-15 VOA Star QLast Update : Thu Feb 02 15:0 Response via : Initial Calibra	ethods\AD29 ndards for)9:41 2023 Ation	5 poir	nt calibrati			
Compound	R.T.	QION	Response C	onc Un	its	Dev(Min)
Internal Standards 1) Bromochloromethane						
<pre>35) 1,4-difluorobenzene 50) Chlorobenzene-d5</pre>	12.338 17.021	114 117	210538 174318	1.00 1.00 1.00	dqq dqq	# 0.00 0.00 0.00
 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000 	12.338 17.021 18.762	114 117 95	210538 174318 93910	1.00 1.00	dqq dqq dqq	0.00 0.00
35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds 65) Bromofluorobenzene	12.338 17.021 18.762 Range 70	114 117 95 - 130	210538 174318 93910 Recovery	1.00 1.00 0.89 =	dqq dqq dqq 89.	00.00 0.00 00.00 \$00.



23.00

22.00

Attachment C

SSDS Pressure Data

System Install - February 16, 2010

Attachment D

Groundwater Summary Tables and Figure

TABLE 3

Groundwater Monitoring Well Sample Laboratory Analytical Data

	MW-	5A/AR	MV	V-14	MV	V-16	Proposed Guidance Values for PFOA, PFOS and 1,4-Dioxane (3)
Analyte ⁽¹⁾	September 2022	February 2023	September 2022	February 2023	September 2022	February 2023	
Quarterly Sampling							
Parameters							
Volatiles							
1,4-Dioxane	21.9	9.6	143	128	0.28	1.5	1.0

NOTES:

(1) All analyte values expressed as parts per billion ("ppb").

(2) A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

(3) NYSEC Proposed Guidance Values for PFOA, PFOS and 1,4-Dioxane

TABLE 1c - MW-16

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

MW-16																Class GA Groundwater Standard (ppb)			
Analyte ⁽¹⁾	June 2011	November 2011	July 2012	January 2013	August 2014 ⁽⁶⁾	November 2014 ⁽⁷⁾	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	February 2017	August 2017	October 2021	September 2022	February 2023	
Quarterly Sampling Parameters																			
Volatiles																			
cetone	ND	ND	ND	ND	2 ⁽²⁾⁽⁸⁾	ND	ND	4.6 ⁽²⁾	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 (4)
hlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
hloroethane	ND	ND	ND	ND	ND	ND	ND	ND	3.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,1-dichloroethane	17	7.9	33	14	14	19	7.18	14	73	8.4	5.2	ND	9.1	1.4	2.6	1.8	2.6	1.1	5
,1-dichloroethene	3 (2)	2.4 (2)	8.7	5.6	7	9 ⁽²⁾	1.73	5.6	33	4.2	1.8	ND	4.5	ND	ND	1.2	ND	ND	5
is-1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	3.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,4-dioxane ⁽¹⁴⁾	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2	ND	ND	1 ⁽⁵⁾
etrachloroethene	ND	ND	3.2 (2)	3.9 ⁽²⁾	2 (2)	3 ⁽²⁾⁽¹⁰⁾	1.42	2.2	11	4.5	2.5	1.3 (13)	2.4	1.4	ND	ND	ND	ND	5
oluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,1,1-trichloroethane	ND	13	2.2 (2)	ND	1 (2)	2 (2)	ND	ND	5.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
inyl chloride	ND	ND	ND	ND	ND	ND	ND	1	7.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
-butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 ⁽⁴⁾
-methyl-2-pentanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
aphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10 ⁽⁴⁾
-propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,2,3 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
exachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
,2,4 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,3,5 trimethylbenzene/P																			5
thyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	DN	ND	ND	5
ec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	DN	ND	ND	5
,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	DN	ND	ND	0.6
richloroethene	ND	ND	ND	ND	ND	3 (2)	ND	ND	1.2	ND	ND	ND	ND	ND	ND	DN	ND	ND	5
hloroform	ND	ND	ND	ND	ND	ND	1.85	4.9	ND	ND	ND	ND	ND	ND	ND	DN	ND	ND	7
Wet Chemistry and Dissolved Metals																			
ulfate	NA	NA	NA	NA	14,400	17,900	18,800	20,500	25,300	13,000	10,900	3,570 ⁽²⁾	8,670	<5,000	6,400	NA	NA	NA	250,000
otal organic carbon (TOC)	NA	NA	NA	NA	8,650	10,800	4,220	11,700	28,000	6,180	4,940	2,700	5,510	1,500	5,500	NA	NA	NA	NS
issolved iron	NA	NA	NA	NA	ND	231	1,470	30.9 ⁽²⁾	12.2 ⁽²⁾	1,460	1,250	<100	310	220	433	NA	NA	NA	as low as possible, NTE 500,000
							<u> </u>												<u> </u>
																	+		

NOTES:

(1) All analyte values expressed as parts per billion ("ppb").

(2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.

(3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.

(4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.

(5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.

(6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.

(7) November 2014 sampling event reflects first post-bioremediation data.

(8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.

(9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.

(10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.

(11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.

(12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.

(13) The analyte was "c" flagged, indicating that the calibration acceptability criteria were exceeded, and the value should be considered estimated.

(14) NYSDEC mcc for drinking water is 1ppb.

NA -Contaminant was not included for analysis during RFI.

A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

TABLE 1b - MW-14

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

										MW	/-14										Class GA Groundwater Standard (p
Analyte ⁽¹⁾	June 2011	November 2011	July 2012	January 2013	August 2014 (6)	November 2014 ⁽⁷⁾	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	February 2017	August 2017	April 2020	March 2021	October 2021	September 2022	February 2023	
Quarterly Sampling Parameters																					
Volatiles																					
tone	19	45	35	11	19 ⁽⁹⁾	ND	27.3	16.0	12.0	12.0	12.0	8.2 (2)	15 (13)	ND	19.5	9.4	ND	ND	11.9	6.1	50 ⁽⁴⁾
orobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
proethane	ND	ND	ND	ND	1(2)	ND	ND	2.1	8.0	7.3	6.6	ND	8.9	3.1	4.4	ND	ND	ND	ND	1.8	5
romethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	3.8	ND	ND	ND	5
dichloroethane	86	79	67	53	47	1 (2)	43	48	31	22	16	26	12	28.3	5.7	18.7	6.1	15.1	11.8	4.6	5
dichloroethene	5.2	3.1 (2)	4.6 (2)	2.7 (2)	3 (2)	2 (2)	3.51	3.1	3.6	3.5	1.7	2.3	3.7	2.4	1.8	1.9	1.4	1.9	1.4	1.0	5
1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
dioxane ⁽¹⁴⁾	420	620	490	270	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	108	ND	ND	1 ⁽⁵⁾
achloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
ene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	5
2-trichloroethane	ND	ND	ND	ND	ND	ND 2 ⁽²⁾⁽¹⁰⁾	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND		ND	ND	1
chloride	5.2	4.6 (2)	2.3 (2)	2.1 (2)	3 ⁽²⁾	-	2.79	2.8	3.1	2.7	1.6	ND	3.1	2.5	1.5	1.6	1.3	ND	ND	ND	2
itanone (MEK)	ND	ND	ND	ND	2 (2)	3 ⁽²⁾⁽¹⁰⁾	ND	2.2 (2)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 ⁽⁴⁾
ethyl-2-pentanone	ND	ND	ND	ND	1 (2)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
hthalene	ND	ND	ND	ND	2 ⁽²⁾⁽⁸⁾	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10 ⁽⁴⁾
opylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
3 trichlorobenzene	ND	ND	ND	ND	2 ⁽²⁾⁽⁸⁾	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
achlorobutadiene	ND	ND	ND	ND	4 ⁽²⁾⁽⁸⁾	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
4 trichlorobenzene	ND	ND	ND	ND	1(2)(8)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
5 trimethylbenzene/P														ND	ND	ND	ND	ND	ND	ND	5
/ltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								5
butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
loroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
roform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Wet Chemistry and			Ì																		
Dissolved Metals	<u> </u>		I		44.005	25 700	24.200	24.000	5 000	10.000	42.000	24.000		5 000							250.000
te	NA	NA	NA	NA	14,900 4.150	25,700	31,200 35.800	31,000 39,800	<5,000 50.300	18,000 47,400	13,600 40,200	21,800	<5,000 96	<5,000	<5,000 44.400	NA NA	NA NA	NA	NA	NA	250,000 NS
organic carbon (TOC)	NA NA	NA	NA	NA	4,150	45,900 16,200	35,800	39,800 9.130	9,920	47,400	40,200	35,400 12,500	35.000	1,500	44,400	NA	NA	NA	NA	NA	NS as low as possible. NTE 500.0
iveu ii 011	INA	INA	INA	INA	0,130	10,200	0,410	9,130	9,920	19,500	21,300	12,300	55,000	0,000	50,700	INA	NA	INA	INA	INA	as low as possible, NTE 500,0
	1		+ +		1	1		+	+	+	+						1		1		

NOTES:

(1) All analyte values expressed as parts per billion ("ppb").
 (2) The analyte was "!" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.

(3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.

(4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used. (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.

(6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
(7) November 2014 sampling event reflects first post-bioremediation data.
(8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.

(9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.

(10) The analyte was "2" Hagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
 (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
 (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.

(13) the analyte was "c" flagged, indicating that the calibration acceptability ciriteria was exceeded for this analyte. The value is estimated.

(14) NYSDEC mcc for drinking water is 1ppb.
 NA -Contaminant was not included for analysis during RFI.
 A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

TABLE 1a - MW-5A/AR

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

									MW-5A	/AR											Class GA Groundwater Standar (ppb) ⁽³⁾
Analyte (1)	June 2011	November 2011	July 2012	January 2013	August 2014 ⁽⁶⁾	November 2014 ⁽⁷⁾	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	February 2017	August 2017	April 2020	March 2021	October 2021	September 2022	February 2023	
Quarterly Sampling																					
Parameters																					
Volatiles																					
etone	ND	ND	ND	ND	ND	440 ⁽⁹⁾	407	77(11)	110	ND	6.1	ND	ND	ND	ND	ND	ND	ND	5.1	ND	50 ⁽⁴⁾
nlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
hloroethane	280	290	520	150	250 ⁽⁹⁾	590 ⁽⁹⁾⁽¹⁰⁾	1010	470 ⁽¹¹⁾	540 ⁽¹¹⁾	290 ⁽¹¹⁾	68	110	320 ⁽¹¹⁾	118	178	72.6	1.2	35	ND	7.1	5
,1-dichloroethane	650	1000	830	280	660 ⁽⁹⁾	110	325	41	3.5	ND	ND	8.6	76	14.2	ND	7.4	ND	8.8	ND	ND	5
,1-dichloroethene	ND	110 (2)	29 ⁽²⁾	11 (2)	22	ND	8.62	1.9	ND	1.1	ND	ND	2.9	ND	ND	ND	ND	ND	ND	ND	5
is-1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,4-dioxane ⁽¹⁵⁾	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	75.7	ND	ND	1 (5)
etrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
oluene	ND	ND	ND	ND	ND	ND	ND	ND	2.8	2.6	ND	ND	1.4	ND	1.2	ND	ND	1.3	ND	ND	5
,1,1-trichloroethane	890	3000	440	210	750 ⁽⁹⁾	33	200	ND	ND	ND	ND	5.2	42	ND	ND	1.1	ND	2.1	ND	ND	5
,1,2-trichloroethane	ND	ND	ND (2)	ND	ND	ND (2)(10)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
inyl chloride	ND	ND	15 (2)	ND	14	6 ⁽²⁾⁽¹⁰⁾	3.59	2.4	ND	ND	ND	ND	2.3	ND	ND	ND	ND	ND	ND	ND	2
-butanone (MEK)	ND	ND	ND	ND	ND	190(10)	82.1	4.5 ⁽²⁾	ND	ND	8.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 ⁽⁴⁾
-methyl-2-pentanone	ND	ND	ND	ND	ND	3 (2)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
aphthalene	ND	ND	ND	ND	ND	ND	ND	ND	2.7	2.2	ND	ND	1.8	ND	ND	ND	ND	ND	ND	ND	10 ⁽⁴⁾
-propylbenzene 2.3 trichlorobenzene	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	1.5 ND	1.4 ND	ND ND	ND ND	1.4 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
exachlorobutadiene .,2,4 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	2.1	5.1	5.4	2.5	2.2	5.3	1.7	ND	ND	ND	ND	ND	ND	5
,3,5 trimethylbenzene/P																					
thyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	5
,2,4,5 tetramethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	5 ⁽⁴⁾
-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2 (13)	ND	ND	ND	ND	ND	ND	ND	5
ec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	1.1	1.2	1.3	ND	ND	1.7 (14)	1.2	ND	ND	ND	ND	ND	ND	5
,4-diethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	(5)
,2 dichloroethane	ND	ND	ND	ND	1 (2)	2 (2)	ND	ND	ND	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
richloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
hloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Wet Chemistry and			1																		
Dissolved Metals	<u> </u>																				
ulfate	NA	NA	NA	NA	31,500	<5,000	<5,000	700 (2)	<5,000	<5,000	3,240	1,020 (2)	< 5,000	24,800	<5,000	NA	NA	NA	NA	NA	250,000
otal organic carbon (TOC)	NA	NA	NA	NA	3,410	288,000	95,400	48,900	30,200	25,600	14,600	6,640	10,200	5,000	8,900	NA	NA	NA	NA	NA	NS
issolved iron	NA	NA	NA	NA	ND	50,600	42,900	5,780	6,050	30,700	14,400	10,900	13,900	3,120	5,190	NA	NA	NA	NA	NA	as low as possible, NTE 500,000

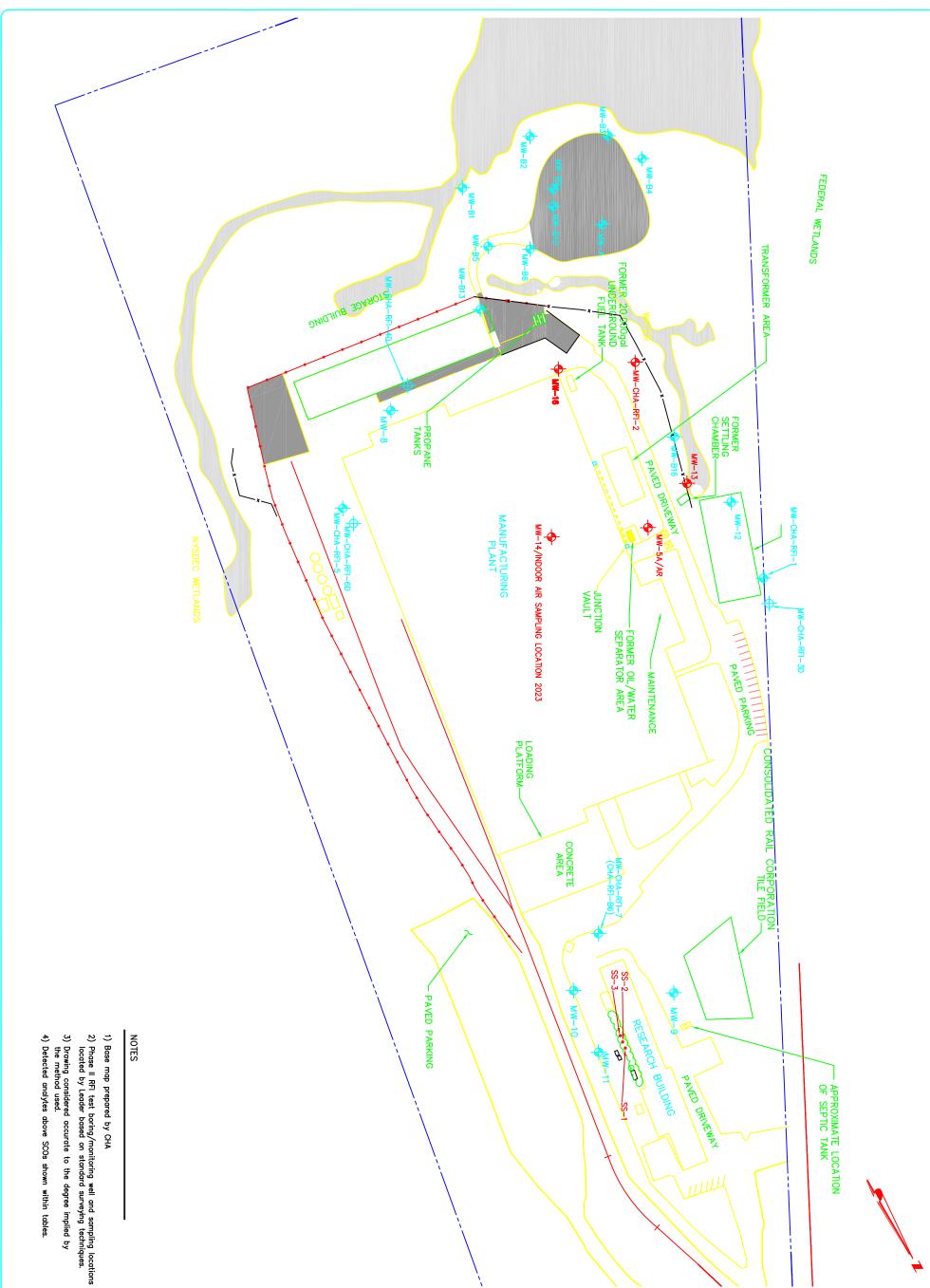
NOTES:

(1) All analyte values expressed as parts per billion ("ppb").
 (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.

(3) Standard is identified in 6 NVCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
 (4) Standard is not identified in 6 NVCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
 (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated, or is excluded within current regulations

(6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.

(7) November 2014 sampling event reflects first post-bioremediation data.
 (8) The analyte was "8" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.


(9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
 (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
 (11) The analyte was "D" flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
 (11) The analyte was "D" flagged, indicating that it esurrogate concentration was diluted outside the laboratory acceptance criteria.

(12) The analyte was "L" lagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
 (13) The analyte was "Cs" flagged, indicating that the calibration acceptability criteria was exceeded, and the value is estimated. The recovery is outside the limits for this analyte.
 (14) The recovery is outside the control limits for this analyte.

(15) NYSDEC mcc for drinking water is 1ppb.

NA -Contaminant was not included for analysis during RFI.

A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

No.	Submittal / Revision	App'd	Ву	Date
1	Phase II RFI	кк	ΗК	9/2011
2	Interim Site Management Plan	кк	нк	1/2017
3	Site Management Plan	кк	ΗК	9/2018
4	Site Management Plan	кк	нк	9/2022

VAILS GATE MANUFACTURING FACILITY VAILS GATE, NEW YORK

FINAL EN	GINEERING R	EPORT		LEADER CONSULT 2813 Wehrle Drive, Suite Phone: (716) 565-096	e 1, Williamsville,	NY 14221
Remaining (Groundwater Ex	ceedances		UNAUTHORIZED	. ,	Date: 01/12/06
Ŭ				TO THIS DOCUMENT IS A VIOLATION OF	Drawn By: CHA	Date: 01/10/06
sue Date: 9/20/17	Project No. 737.006	Scale: NTS]	APPLICABLE STATE AND/OR LOCAL LAWS.	Revised by: Leader Consulting Services, In:	Date: 09/20/22

Figure No.	
4	