

October 20, 2017

Stora Enso C/O John T. Kolaga, Esq. Rupp Baase Pfalzgraf Cunningham LLC 1600 Liberty Building Buffalo, New York 14202

RE: POST-REMEDIATION GROUNDWATER MONITORING REPORT,
VAILS GATE MANUFACTURING, LLC, VAILS GATE,
NEW YORK, NYSDEC SITE No. 336065

Dear Mr. Kolaga:

Leader Consulting Services, Inc. ("Leader") is pleased to provide Rupp Baase Pfalzgraf Cunningham, LLC ("RBFC"), on behalf of Stora Enso, with this report summarizing the results of the second round of post-remediation groundwater monitoring completed at the former Vails Gate Manufacturing facility ("VGM") at 1073 Route 94 in Vails Gate, New York (hereafter referred to as "the Site") on August 10, 2017. The Site is currently identified as the Vails Gate Business Center ("VGBC").

1.0 BACKGROUND AND PURPOSE

Leader was retained to implement the New York State Department of Environmental Conservation ("NYSDEC")-approved RAWP that was developed for Area of Concern 6 ("AOC 6") at the Site. As identified in the approved RAWP, In-situ bioremediation was the selected remedial alternative identified in the NYSDEC-approved Corrective Measure Study ("CMS"). The Site-specific Standards, Criteria and Guidance ("SCGs") applicable to the RAWP were developed to meet the Remedial Action Objectives ("RAOs") of the CMS. An "unrestricted use remedy" has been established for the Site, which is based on the regulatory standard values for Class GA groundwater identified in 6 NYCRR Part 703.5. The RAWP was developed to address the SCGs and RAOs for the Site. The RAWP has been implemented in accordance with NYSDEC Department of Environmental Remediation ("DER") Guidance Document DER-10, Technical Guidance for Site Investigation and Remediation. Per the RAWP, groundwater monitoring data collected at the end of the eighth quarter sampling round were evaluated to assess the need for continued monitoring and/or additional application of bioremediation medium to the subsurface AOC 6. Based on discussions between Mr. John Miller, P.E. of NYSDEC and Mr. Kolaga, two (2) more rounds of groundwater monitoring was recommended, concurrent with the development of an Interim Site Management Plan ("ISMP") for the Site.

2.0 SCOPE-OF-WORK

The In-Situ Bioremediation program identified in the RAWP was based on the March 2012 Phase II RCRA Facility Investigation ("RFI") and the 2013 CMS. Quarterly sampling and laboratory analyses of groundwater samples from four (4) groundwater monitoring wells (MW-14, MW-5A/AR, MW-16 and MW-CHA-RFI-7) was required per the RAWP. The scope of work identified for this Post-Remediation Sampling Program is identical to the sampling program in the RAWP, with the exception of the schedule. Two (2) rounds of sampling of the four (4) monitoring wells will occur. The first sampling round was requested by NYSDEC to be completed in the first quarter of 2017. The second round was to be completed six (6) months from the date of the first round. Information included in this report includes data associated with the second round sampling event. Included in this report are the Analytical Laboratory Results and Summary Tables (Attachment A) and a Data Validation Summary (Attachment B). Figure 1 includes the approximate Injection Point ("IP") locations used to apply bioremediation solutions into the subsurface at AOC 6, and the location of the monitoring wells.

3.0 SECOND ROUND SAMPLING PROGRAM

The second round sampling event was conducted on August 10, 2017. The second round of Post–Remediation sampling and analysis included a laboratory analytical regime that included the typical quarterly parameters of volatile organic compounds ("VOCs"), sulfate, total organic carbon ("TOC"), and dissolved iron ("DI") and the field parameters of dissolved oxygen ("DO"), pH, oxidation reduction potential ("redox"), temperature and turbidity. For the purpose of assessing the continued viability of the bioremediation medium, the second round of Post–Remediation sampling and analysis also included a laboratory analytical regime to mirror the baseline (pre-injection) sampling and analysis effort completed on August 11, 2014. Therefore, the additional laboratory parameters of nitrate, total iron, total manganese, dissolved manganese, dissolved methane, dissolved ethane and dissolved ethene were included for analysis. Laboratory and field data were reviewed to evaluate analyte concentrations and field data parameters from groundwater samples from each of the wells. The results were compared to previous data generated during RAWP implementation (i.e, bioremediation sampling and analysis).

4.0 FIELD AND LABORATORY GROUNDWATER SAMPLE RESULTS

4.1 GROUNDWATER SAMPLE FIELD DATA RESULTS

The DO concentrations within the samples collected from the four (4) wells ranged from 2,970 parts per billion ("ppb") to 7,080 ppb. The pH levels within the samples collected from the four (4) wells ranged from 6.84 standard units ("SUs") to 7.86 SUs. Redox values of the samples collected from the four (4) wells ranged from -108 milliVolts ("mVs") to 29 mVs. Data interpretation is discussed in Section 5.0.

4.2 GROUNDWATER SAMPLE LABORATORY ANALYTICAL DATA RESULTS

GWM Well MW-5A/AR

Chloroethane concentrations increased slightly from 118 ppb in February 2017 to a value of 178 ppb in August 2017, which remains above the Class GA groundwater standard of 5 ppb. 1,1dichloroethane concentrations decreased from 14.2 ppb in February 2017 to non-detect ("ND") in August 2017, below the Class GA groundwater standard of 5 ppb. Toluene concentrations increased slightly from ND in February 2017 to 1.2 ppb in August 2017, remaining below the Class GA groundwater standard of 5 ppb since June 2011. 1,2,4 trimethylbenzene concentrations decreased from 1.7 ppb in February 2017 to ND in August 2017, remaining below the Class GA groundwater standard of 5 ppb. Concentrations of this analyte have been below or just slightly above (5.1 ppb in August 2015 and 5.4 ppb in November 2015) the Class GA groundwater standard of 5 ppb since June 2011. 1,2,4,5 tetramethylbenzene concentrations have decreased from 1.7 ppb in February 2017 to ND in August 2017, remaining below the Class GA groundwater standard of 5 ppb. This analyte has been detected only once within MW-5A/AR. 1,4-diethylbenzene concentrations have decreased from 1.4 ppb in February 2017 to ND in August 2017, remaining below the Class GA groundwater standard of 5 ppb. This analyte has been detected only once within MW-5A/AR. The remaining VOC analytes were not detected within the August 2017 sample.

GWM Well MW-14

Acetone concentrations increased from ND in February 2017 to 19.5 ppb in August 2017, but remain below the Class GA groundwater standard of 50 ppb and have not exceeded the standard since June 2011. Chloroethane concentrations increased slightly from 3.1 ppb in February 2017 to 4.4 ppb in August 2017, but remain below the Class GA groundwater standard of 5 ppb. Chloromethane was detected for the first time in the August 2017 groundwater sample at a concentration of 2.5 ppb, below the Class GA groundwater standard of 5 ppb. 1,1-dichloroethane concentrations decreased from 28.3 ppb in February 2017 to 5.7 ppb in August 2017, just slightly above the Class GA groundwater standard of 5ppb. 1,1- dichloroethene concentrations decreased from 2.4 ppb in February 2017 to 1.8 ppb in August 2017, and have not exceeded the Class GA groundwater standard of 5 ppb since November 2011. Vinyl chloride concentrations decreased from 2.5 ppb in February 2017 to 1.5 ppb in August 2017, now below the Class GA groundwater standard of 2 ppb. The remaining VOC analytes were not detected within the August 2017 sample.

GWM Well MW-16

1,1- dichloroethane concentrations increased slightly from 1.4 ppb in February 2017 to 2.6 ppb in August 2017, remaining below the Class GA standard of 5 ppb. Tetrachloroethene concentrations decreased from 1.4 ppb in February 2017 to ND in August 2017, and have not exceeded the Class GA groundwater standard of 5 ppb since August 2015. The remaining VOC analytes were not detected within the February 2017 sample.

GWM Well MW-CHA-RFI-7

Acetone concentrations increased from ND in February 2017 to 20 ppb in August 2017, but remain below the Class GA groundwater standard of 50 ppb, and have not exceeded the standard since June 2011 The remaining VOC analytes were not detected within the February 2017 sample.

5.0 DATA INTERPRETATION

5.1 FIELD DATA

A review of the field data (Table 2 of the Summary Tables included in Attachment A) indicates that TOC concentrations remain sufficiently high in monitoring wells MW-5A/AR and MW-14 to allow for continued microbial activity; groundwater pH levels remain conducive to continued microbial activity; and Redox values indicate that reducing conditions (i.e. anaerobic conditions) still exist for dechlorination.

5.2 LABORATORY DATA - VOLATILE ORGANIC COMPOUNDS

The groundwater sample collected from Well MW-5A/AR currently indicates that the concentration of only one (1) analyte, chloroethane (178 ppb), remains above the Class GA groundwater standard of 5.0 ppb.

The groundwater sample collected from Well MW-14 currently indicates that only one (1) analyte, 1,1 dichloroethane, remains slightly above (5.7 ppb) Class GA groundwater standard of 5.0 ppb.

Groundwater samples collected from Well MW-16 currently indicate that no analyte concentrations are above Class GA groundwater standards.

There were two (2) detected VOC analytes within the groundwater sample collected in August 2017 from MW-CHA-RFI-7. Acetone (20 ppb) was detected below the Class GA groundwater standard of 50 ppb, and choloromethane was detected for the first time from this well at 4.8 ppb, below the Class GA standard of 5.0 ppb. This groundwater monitoring well was included in this sampling program as it represents a "background" well, hydraulically upgradient and outside of the influence of AOC 6. The presence of acetone and chloromethane, commonly referred to as methyl chloride (Chemical Abstract No. 74-87-3), within this sample may not be indicative of groundwater quality within the monitoring well, but may reflect introduction of the contaminant during sampling activities or within the laboratory.

5.3 LABORATORY DATA - REDUCTIVE DECHLORINATION ACTIVITY INDICATOR PARAMETERS

Table 3 provides the results of reductive indicator parameter sampling and analysis. The groundwater samples analyzed for these parameters were collected on August 10, 2017. A comparison of analytical results between August 2014, August 2016 and August 2017 provide an indication of the current viability of the bioremediation process. Based on comparison of the

John Kolaga, Esq. October 20, 2017 Page 5

Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

nitrate and total dissolved iron concentrations, and the oxidation reduction potential (redox) values in Table 2, it appears that subsurface anaerobic conditions conducive to continued bioremediation exist. However, the dissolved ethene and dissolved ethane concentrations in Table 3 were lower than baseline values within wells MW-5A/AR, MW-14 and MW-16, indicating that the Regenesis Corporation 3D micro-emulsion Factory Emulsified[®] ("3DMe") and Bio-Dechlor INOCULUM Plus[®] ("BDI") bioremediation media are beyond their effective end dates.

If you need any additional information, please contact the undersigned at (716) 565-0963.

Very truly yours,

Leader Consulting Services, Inc.

eith D. Heller

Keith D. Keller Project Manager

Jeffrey A. Wittlinger, P.E., BCEE

Principal

Attachment A

Analytical Laboratory Results and Summary Tables

TABLE 1a - MW-5A/AR

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

									MW-5	A/AR						Class GA Groundwater Standar (ppb) ⁽³⁾
Analyte ⁽¹⁾	June 2011	November 2011	July 2012	January 2013	August 2014 (6)	November 2014 (7)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	February 2017	August 2017	
Quarterly Sampling Parameters																
Volatiles						(0)		(44)								(4)
acetone	ND	ND	ND	ND	ND	440 ⁽⁹⁾	407	77 ⁽¹¹⁾	110	ND	6.1	ND	ND	ND	ND	50 (4)
chlorobenzene	ND	ND	ND	ND	ND (9)	ND (9)(10)	ND	ND (11)	ND	ND (11)	ND	ND	ND	ND	ND	5
chloroethane	280	290	520	150	250 ⁽⁹⁾	590 ⁽⁹⁾⁽¹⁰⁾	1010	470 ⁽¹¹⁾	540 ⁽¹¹⁾	290 ⁽¹¹⁾	68	110	320 ⁽¹¹⁾	118	178	5
,1-dichloroethane	650	1000	830	280	660 ⁽⁹⁾	110	325	41	3.5	ND	ND	8.6	76	14.2	ND	5
,1-dichloroethene	ND	110 ⁽²⁾	29 ⁽²⁾	11 ⁽²⁾	22	ND	8.62	1.9	ND	1.1	ND	ND	2.9	ND	ND	5
cis-1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
I,4-dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
oluene	ND	ND	ND	ND	ND	ND	ND	ND	2.8	2.6	ND	ND	1.4	ND	1.2	5
I,1,1-trichloroethane	890	3000	440	210	750 ⁽⁹⁾	33	200	ND	ND	ND	ND	5.2	42	ND	ND	5
I,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
rinyl chloride	ND	ND	15 ⁽²⁾	ND	14	6 ⁽²⁾⁽¹⁰⁾	3.59	2.4	ND	ND	ND	ND	2.3	ND	ND	2
!-butanone (MEK)	ND	ND	ND	ND	ND	190 ⁽¹⁰⁾	82.1	4.5 ⁽²⁾	ND	ND	8.6	ND	ND	ND	ND	50 ⁽⁴⁾
1-methyl-2-pentanone	ND	ND	ND	ND	ND	3 (2)	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	2.7	2.2	ND	ND	1.8	ND	ND	10 ⁽⁴⁾
n-propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	1.5	1.4	ND	ND	1.4	ND	ND	5
1,2,3 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
nexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
1,2,4 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	2.1	5.1	5.4	2.5	2.2	5.3	1.7	ND	5
1,3,5 trimethylbenzene/P																5
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	1.4	ND	ND	
1,2,4,5 tetramethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND (12)	1.7	ND	5 ⁽⁴⁾
n-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2 (13)	ND	ND	5
ec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	1.1	1.2	1.3	ND	ND	1.7 (14)	1.2	ND	5
1,4-diethylbenzene	ND	ND	ND	ND	ND	ND (a)	ND	ND	ND	ND	ND	ND	ND	1.4	ND	(5)
1,2 dichloroethane	ND	ND	ND	ND	1 (2)	2 (2)	ND	ND	ND	1.8	ND	ND	ND	ND	ND	0.6
richloroethene :hloroform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 7
Wet Chemistry and						<u> </u>							<u> </u>			
Dissolved Metals																
ulfate	NA	NA	NA	NA	31,500	<5,000	<5,000	700 (2)	<5,000	<5,000	3,240	1,020 (2)	< 5,000	24,800	<5,000	250,000
otal organic carbon (TOC)	NA	NA	NA	NA	3,410	288,000	95,400	48,900	30,200	25,600	14,600	6,640	10,200	5,000	8,900	NS
issolved iron	NA	NA	NA	NA	ND	50,600	42,900	5,780	6,050	30,700	14,400	10,900	13,900	3,120	5,190	as low as possible, NTE 500,00
																1

NOTES

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated, or is excluded within current regulations
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate
- (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria
- (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable
- (13) The analyte was "cS" flagged, indicating that the calibration acceptability criteria was exceeded, and the value is estimated. The recovery is outside the limits for this analyte
- (14) The recovery is outside the control limits for this analyte.
- NA -Contaminant was not included for analysis during RFI.

A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value

TABLE 1b - MW-14

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

									P	/W-14						Class GA Groundwater Standard (ppb) ⁽³⁾
Analyte (1)	June 2011	November 2011	July 2012	January 2013	August 2014 (6)	November 2014 (7)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	February 2017	August 2017	
Quarterly Sampling Parameters																
Volatiles																
acetone	19	45	35	11	19 ⁽⁹⁾	ND	27.3	16.0	12.0	12.0	12.0	8.2 (2)	15 ⁽¹³⁾	ND	19.5	50 ⁽⁴⁾
chlorobenzene	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	5
chloroethane	ND	ND	ND	ND	1(2)	ND	ND	2.1	8.0	7.3	6.6	ND	8.9	3.1	4.4	5
chloromethane	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	2.5	5
1.1-dichloroethane	86	79	67	53	47	1 (2)	43	48	31	22	16	26	12	28.3	5.7	5
1.1-dichloroethene	5.2	3.1 (2)	4.6 (2)	2.7 (2)	3 (2)	2 (2)	3.51	3.1	3.6	3.5	1.7	2.3	3.7	2.4	1.8	5
cis-1.2 dichloroethene	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,4-dioxane	420	620	490	270	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	(5)
tetrachloroethene	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	5
toluene	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	5
1,1,1-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
vinyl chloride	5.2	4.6 (2)	2.3 (2)	2.1 (2)	3 (2)	2(2)(10)	2.79	2.8	3.1	2.7	1.6	ND	3.1	2.5	1.5	2
2-butanone (MEK)	ND	ND	ND	ND	2 (2)	3(2)(10)	ND	2.2 (2)	ND	ND	ND	ND	ND	ND	ND	50 ⁽⁴⁾
4-methyl-2-pentanone	ND	ND	ND	ND	1 (2)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
naphthalene	ND	ND	ND	ND	2(2)(8)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10(4)
n-propylbenzene	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	5
1.2.3 trichlorobenzene	ND	ND	ND	ND	2(2)(8)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
hexachlorobutadiene	ND	ND ND	ND	ND	4(2)(8)	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	0.5 ⁽⁴⁾
1.2.4 trichlorobenzene	ND	ND ND	ND	ND	1(2)(8)	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	5
1,2,4 trichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	5
1,3,5 trimethylbenzene/P	140	NU	140	NU	140	140	140	ND	ND	ND	140	IND	140			
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
sec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	5
1,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Wet Chemistry and Dissolved Metals																
sulfate	NA	NA	NA	NA	14,900	25,700	31,200	31,000	<5,000	18,000	13,600	21,800	<5,000	<5,000	<5,000	250,000
total organic carbon (TOC)	NA	NA	NA	NA	4,150	45,900	35,800	39,800	50,300	47,400	40,200	35,400	96	1,500	44,400	NS
dissolved iron	NA	NA	NA	NA	6,130	16,200	8,410	9,130	9,920	19,500	21,900	12,500	35,000	8,800	30,700	as low as possible, NTE 500,000

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
- (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U "flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable. (13) the analyte was "c" flagged, indicating that the calibration acceptability ciriteria was exceeded for this analyte. The value is estimated.
- NA -Contaminant was not included for analysis during RFI.
- A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

TABLE 1c - MW-16

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

										MW-16						Class GA Groundwater Standard (ppb) ⁽³⁾
Analyte (1)	June 2011	November 2011	July 2012	January 2013	August 2014 (6)	November 2014 (7)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	February 2017	August 2017	
Quarterly Sampling Parameters																
Volatiles																
acetone	ND	ND	ND	ND	2(2)(8)	ND	ND	4.6 (2)	ND	ND	ND	ND	ND	ND	ND	50 ⁽⁴⁾
chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	3.7	ND	ND	ND	ND	ND	ND	5
1,1-dichloroethane	17	7.9	33	14	14	19	7.18	14	73	8.4	5.2	ND	9.1	1.4	2.6	5
1,1-dichloroethene	3 (2)	2.4 (2)	8.7	5.6	7	9 (2)	1.73	5.6	33	4.2	1.8	ND	4.5	ND	ND	5
cis-1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	3.4	ND	ND	ND	ND	ND	ND	5
1.4-dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
tetrachloroethene	ND	ND	3.2 (2)	3.9 (2)	2 (2)	3(2)(10)	1.42	2.2	11	4.5	2.5	1.3 (13)	2.4	1.4	ND	5
toluene	ND	ND	ND	ND	ND	ND	ND.	ND ND	ND	ND	ND ND	ND	ND	ND	ND	5
1.1.1-trichloroethane	ND	13	2.2 (2)	ND	1 (2)	2 (2)	ND	ND	5.6	ND ND	ND	ND	ND	ND	ND	5
L.1.2-trichloroethane	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	1.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
vinyl chloride	ND	ND ND	ND	ND	ND	ND ND	ND ND	1	7.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2
2-butanone (MEK)	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	50 ⁽⁴⁾
	ND ND	ND ND	ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	(5)
4-methyl-2-pentanone					ND											10 ⁽⁴⁾
naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
n-propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_
hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
1,2,4 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5 trimethylbenzene/P																5
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	-
sec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	5 0.6
1,2-dichloroethane	ND	ND	ND	ND	ND	ND - (2)	ND	ND	ND	ND	ND		ND	ND	1	5
trichloroethene	ND	ND	ND	ND	ND	3 (2)	ND	ND	1.2	ND	ND	ND	ND	ND	ND	
chloroform	ND	ND	ND	ND	ND	ND	1.85	4.9	ND	ND	ND	ND	ND	ND	ND	7
Wet Chemister and	1															
Wet Chemistry and Dissolved Metals																
sulfate	NA	NA	NA	NA	14,400	17,900	18,800	20,500	25,300	13,000	10,900	3,570 ⁽²⁾	8,670	<5,000	6,400	250,000
otal organic carbon (TOC)	NA	NA	NA	NA	8,650	10,800	4,220	11,700	28,000	6,180	4,940	2,700	5,510	1,500	5,500	NS
dissolved iron	NA	NA	NA	NA	ND	231	1,470	30.9 ⁽²⁾	12.2 (2)	1,460	1,250	<100	310	220	433	as low as possible, NTE 500,000
	1															
	1															-
	1		1			1			1							

- (1) All analyte values expressed as parts per billion ("ppb"]
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimate
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwate
 (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been use
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulate
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014
- (7) November 2014 sampling event reflects first post-bioremediation data

- (7) November 2014 Sampling event: retest in a post-uncentenation due (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimate

 (9) The analyte was "C"flagged, indicating that it was detected in the laboratory mange of the laboratory instrument, and should be considered an estimat

 (10) The analyte was "C"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimate

 (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteri
- (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicat
- 13) The analyte was "c" flagged, indicating that the calibration acceptability criteria were exceeded, and the value should be considered estimate
- NA -Contaminant was not included for analysis during RFI.
- A value identified inred indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value

TABLE 1d - MW-CHA-RFI-7

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

							MW	/-CHA-RFI-7						Class GA Groundwater Standard (ppb) ⁽³⁾
Analyte (1)	June 2011	November 2011	August 2014 (6)	November 2014 (7)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	February 2017	August 2017	
Quarterly Sampling Parameters														
Volatiles														
acetone	ND	ND	1(2)(8)	ND	ND	2.7 (2)	ND	ND	ND	ND	ND	ND	20	50 ⁽⁴⁾
chlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	5
chloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
chloromethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.8	5
1,1-dichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	5
1.1-dichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
cis-1.2 dichloroethene	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	5
1,4-dioxane	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	(5)
tetrachloroethene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
toluene	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,1,1-trichloroethane	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	1
vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
2-butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 ⁽⁴⁾
4-methyl-2-pentanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10 ⁽⁴⁾
n-propylbenzene	113	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
1,2,4 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5 trimethylbenzene/P							ND		NO.	ND	ND	ND	ND	-
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
sec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Wet Chemistry and Dissolved Metals														
sulfate	NA	NA	38,100	42,800	39,900	39,900	32,700	39,600	39,800	38,600	36,400	39,300	38,500	250,000
total organic carbon (TOC)	NA	NA	938	42,800	746	1,200	584	550	843	ND	ND	ND	1,300	NS
dissolved iron	NA	NA	ND	1,450	124	184	100 (12)	215	247	185	150	220	172	as low as possible, NTE 500,000

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
 (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.

 (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.

the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable. NA -Contaminant was not included for analysis during RFI.

A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

TABLE 2
GROUNDWATER MONITORING WELL SAMPLE FIELD DATA

						MW-5A/AR					
Analyte	August 2014 (4)	November 2014 (5)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	February 2017	August 2017
dissolved oxygen ⁽¹⁾	1,150	1,860	1,910	910	300	500	1,500	2,200	2,470	3,120	3,170
pH ⁽²⁾	7.66	7.07	6.74	6.43	6.61	6.63	6.43	6.90	6.84	6.64	7.2
redox ⁽³⁾	-137	-90	-42	-73	-88	-44	-124	-62	-65	-73	-108

						MW-14					
Analyte	August 2014 ⁽⁴⁾	November 2014 ⁽⁵⁾	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	February 2017	August 2017
dissolved oxygen ⁽¹⁾	1,940	2,110	1,720	1,280	1,100	700	2,700	2,010	2,410	3,160	2,970
pH ⁽²⁾	7.19	7.41	6.98	6.58	6.68	6.65	6.45	6.91	6.59	6.47	6.84
redox ⁽³⁾	7	-1	47	0	0	-7	-44	5	-78	24	-80

						MW-16					
Analyte	August 2014 ⁽⁴⁾	November 2014 ⁽⁵⁾	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	February 2017	August 2017
dissolved oxygen ⁽¹⁾	990	2,210	2,750	2,150	400	2,200	2,800	2,800	4,270	5,090	7,080
pH ⁽²⁾	7.12	6.86	6.94	6.66	6.28	6.92	6.74	7.58	7.03	7.05	7.6
redox ⁽³⁾	24	-14	12	151	49	48	45	73	31	96	29

						MW-CHA-RFI	-7				
Analyte	August 2014 ⁽⁴⁾	November 2014 ⁽⁵⁾	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	February 2017	August 2017
dissolved oxygen ⁽¹⁾	1,440	1,220	1,760	1,660	600	700	1,200	1,780	1,720	5,020	4,470
pH ⁽²⁾	7.55	7.38	7.55	7.01	7.41	7.52	7.12	7.28	7.53	6.73	7.86
redox ⁽³⁾	-36	-1	73	35	20	48	-90	31	-5	-48	-18

NOTES:

- (1) Value expressed as parts per billion ("ppb").
- (2) Value expressed as Standard Unit.
- (3) Value expressed as milliVolts (mV).
- (4) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (5) November 2014 sampling event reflects first post-bioremediation data.

TABLE 3

REDUCTIVE DECHLORINATION ACTIVITY INDICATOR PARAMETERS

		MW-5A/AR			MW-14			MW-16			i-7	
Analyte ⁽¹⁾	August 2014 ⁽³⁾	August 2016	August 2017	August 2014 ⁽³⁾	August 2016	August 2017	August 2014 ⁽³⁾	August 2016	August 2017	August 2014 ⁽³⁾	August 2016	August 2017
Pre/Post Injection Parameters												
nitrate	ND	ND	ND	ND	ND	ND	ND	ND	0.61	ND	ND	ND
total iron	3,850	14,300	6,090	223,000	95,000	37,200	1,860	5,040	2,480	5,430	513	456
dissolved iron	ND	13,900	5,190	6,130	35,000	30,700	ND	310	433	ND	150	172
total manganese	2,410	2,890	1,800	18,200	17,800	13,200	7,380	1,550	1,160	1,680	1,570	1,630
dissolved manganese	2,310	2,810	1,800	7,120	12,800	12,000	5,490	2,060	658	1,450	1,610	1,610
dissolved methane	2,300	9,700	4,400	890	5,200	4,000	370	40	1.0	2.8	2.7	2.2
dissolved ethane	14	2.9	3.3	0.24	0.064 ⁽²⁾	ND	0.10 ⁽²⁾	0.027 ⁽²⁾	ND	0.016 ⁽²⁾	0.0053 ⁽²⁾	ND
dissolved ethene	2.1	0.059(2)	ND	0.21	0.45	ND	0.64	0.066 ⁽²⁾	ND	0.024 ⁽²⁾	0.20 ⁽⁴⁾	ND

NOTES:

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated
- (3) Sampling date of August 11, 2014 reflects pre-bioremediation injection dates of August 13 and 14, 2014
- (4) The analytes was "U" flagged, indicating that it was not detected at or above the noted concentration
- ND Analyte was not detected above analytical laboratory detection limits.

August 28, 2017

Keith Keller Leader Professional Services 2813 Wehrle Drive, Suite 1 Buffalo, NY 14221

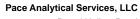
RE: Project: Vails Gate Manufacture

Pace Project No.: 7026978

Dear Keith Keller:

Enclosed are the analytical results for sample(s) received by the laboratory on August 11, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.


If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Aracri for Caitlin Panzarella caitlin.panzarella@pacelabs.com (631)694-3040 Project Manager

Enclosures

575 Broad Hollow Road Melville, NY 11747 (631)694-3040

CERTIFICATIONS

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Long Island Certification IDs

575 Broad Hollow Rd, Melville, NY 11747

New York Certification #: 10478 Primary Accrediting Body

New Jersey Certification #: NY158 Pennsylvania Certification #: 68-00350 Connecticut Certification #: PH-0435

Maryland Certification #: 208

Rhode Island Certification #: LAO00340 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: FIELD DUPLICATE-01	Lab ID: 702	6978001	Collected: 08/10/1	7 11:20	Received: 08	/11/17 09:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	nod: EPA 2	00.7 Preparation Met	hod: EP	A 200.7			
ron	6230	ug/L	20.0	1	08/24/17 10:49	08/25/17 18:53	7439-89-6	
Manganese	1820	ug/L	10.0	1	08/24/17 10:49	08/25/17 18:53	7439-96-5	
200.7 Metals, Dissolved	Analytical Meth	nod: EPA 2	00.7					
ron, Dissolved	5170	ug/L	20.0	1		08/22/17 15:10	7439-89-6	
Manganese, Dissolved	1820	ug/L	10.0	1		08/22/17 15:10	7439-96-5	
8260C Volatile Organics	Analytical Meth	nod: EPA 8	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		08/22/17 11:50	630-20-6	L1
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		08/22/17 11:50	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		08/22/17 11:50		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		08/22/17 11:50		
1,1-Dichloroethane	1.6	ug/L	1.0	1		08/22/17 11:50		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		08/22/17 11:50		
1,1-Dichloropropene	<1.0	ug/L	1.0	1		08/22/17 11:50		
1,2,3-Trichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 11:50		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		08/22/17 11:50		
1,2,4-Trichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 11:50		
I,2,4-Trimethylbenzene	<1.0	ug/L	1.0	1		08/22/17 11:50		
I,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		08/22/17 11:50		
I,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		08/22/17 11:50		
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 11:50		
,2-Dichloroethane	<1.0	ug/L	1.0	1		08/22/17 11:50		
I,2-Dichloropropane	<1.0	ug/L	1.0	1		08/22/17 11:50		
1,3,5-Trimethylbenzene	<1.0	ug/L	1.0	1		08/22/17 11:50		
1,3-Dichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 11:50		
1,3-Dichloropropane	<1.0	ug/L	1.0	1		08/22/17 11:50		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 11:50		
2,2-Dichloropropane	<1.0	ug/L	1.0	1		08/22/17 11:50		
2-Butanone (MEK)	<5.0	ug/L	5.0	1		08/22/17 11:50		
2-Chloroethylvinyl ether	<1.0	ug/L	1.0	1		08/22/17 11:50		L2,c2
2-Chlorotoluene	<1.0	ug/L	1.0	1		08/22/17 11:50		LZ,02
2-Hexanone	<5.0	ug/L	5.0	1		08/22/17 11:50		
4-Chlorotoluene	<1.0	ug/L	1.0	1		08/22/17 11:50		L1
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		08/22/17 11:50		
Acetone	<5.0	ug/L	5.0	1		08/22/17 11:50		
Benzene	<1.0	ug/L	1.0	1		08/22/17 11:50		
Bromobenzene	<1.0 <1.0	ug/L ug/L	1.0	1		08/22/17 11:50		L1
Bromochloromethane	<1.0 <1.0	ug/L ug/L	1.0	1		08/22/17 11:50		LI
Bromodichloromethane	<1.0 <1.0	ug/L ug/L	1.0	1		08/22/17 11:50		
Bromoform	<1.0 <1.0	ug/L ug/L	1.0	1		08/22/17 11:50		
Bromomethane	<1.0 <1.0	•	1.0	1		08/22/17 11:50		СС
		ug/L						
Carbon disulfide	<1.0	ug/L	1.0	1		08/22/17 11:50		
Carbon tetrachloride	<1.0	ug/L	1.0	1		08/22/17 11:50		
Chlorobenzene	<1.0	ug/L	1.0	1		08/22/17 11:50	100-90-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: FIELD DUPLICATE-01	Lab ID:	7026978001	Collected: 08/10/	17 11:20	Received: (08/11/17 09:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C					
Chloroform	<1.0	0 ug/L	1.0	1		08/22/17 11:50	67-66-3	
Chloromethane	<1.0	0 ug/L	1.0	1		08/22/17 11:50	74-87-3	CC
Dibromochloromethane	<1.0	0 ug/L	1.0	1		08/22/17 11:50	124-48-1	
Dibromomethane	<1.0	0 ug/L	1.0	1		08/22/17 11:50	74-95-3	
Dichlorodifluoromethane	<1.0	0 ug/L	1.0	1		08/22/17 11:50	75-71-8	
Ethylbenzene	<1.0	0 ug/L	1.0	1		08/22/17 11:50	100-41-4	
Hexachloro-1,3-butadiene	<1.0	0 ug/L	1.0	1		08/22/17 11:50	87-68-3	
sopropylbenzene (Cumene)	<1.0	0 ug/L	1.0	1		08/22/17 11:50	98-82-8	
Methyl-tert-butyl ether	<1.0	0 ug/L	1.0	1		08/22/17 11:50	1634-04-4	
Methylene Chloride	<1.0	0 ug/L	1.0	1		08/22/17 11:50	75-09-2	
Naphthalene	<1.0	0 ug/L	1.0	1		08/22/17 11:50	91-20-3	
Styrene	<1.0	0 ug/L	1.0	1		08/22/17 11:50	100-42-5	
Tetrachloroethene	<1.0	0 ug/L	1.0	1		08/22/17 11:50	127-18-4	
Toluene	1.1	1 ug/L	1.0	1		08/22/17 11:50	108-88-3	
Trichloroethene	<1.0	0 ug/L	1.0	1		08/22/17 11:50	79-01-6	
Trichlorofluoromethane	<1.0	0 ug/L	1.0	1		08/22/17 11:50	75-69-4	
/inyl acetate	<1.0	_	1.0	1		08/22/17 11:50	108-05-4	
/inyl chloride	<1.0		1.0	1		08/22/17 11:50	75-01-4	
(ylene (Total)	<2.0	0 ug/L	2.0	1		08/22/17 11:50	1330-20-7	
cis-1,2-Dichloroethene	<1.0	_	1.0	1		08/22/17 11:50	156-59-2	
cis-1,3-Dichloropropene	<1.0	_	1.0	1		08/22/17 11:50	10061-01-5	
n&p-Xylene	<2.0	_	2.0	1		08/22/17 11:50	179601-23-1	
n-Butylbenzene	<1.0	0 ug/L	1.0	1		08/22/17 11:50	104-51-8	
n-Propylbenzene	<1.0	_	1.0	1		08/22/17 11:50	103-65-1	
o-Xylene	<1.0	_	1.0	1		08/22/17 11:50	95-47-6	
o-Isopropyltoluene	<1.0	_	1.0	1		08/22/17 11:50		L1
sec-Butylbenzene	<1.0	_	1.0	1		08/22/17 11:50		
ert-Butylbenzene	<1.0		1.0	1		08/22/17 11:50	98-06-6	L1
rans-1,2-Dichloroethene	<1.0	_	1.0	1		08/22/17 11:50	156-60-5	
rans-1,3-Dichloropropene	<1.0	J	1.0	1		08/22/17 11:50		
Surrogates								
1,2-Dichloroethane-d4 (S)	94	4 %.	68-153	1		08/22/17 11:50	17060-07-0	
1-Bromofluorobenzene (S)	102	2 %.	79-124	1		08/22/17 11:50	460-00-4	
Toluene-d8 (S)	100	0 %.	69-124	1		08/22/17 11:50	2037-26-5	
800.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00					
Sulfate	<5.0	0 mg/L	5.0	1		08/24/17 20:56	14808-79-8	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2					
Nitrate-Nitrite (as N)	<0.050	0 mg/L	0.050	1		08/12/17 02:15	7727-37-9	
353.2 Nitrogen, NO2	Analytical	Method: EPA 3	53.2					
Nitrite as N	<0.050	0 mg/L	0.050	1		08/11/17 23:21	14797-65-0	
0060A TOC as NPOC	Analytical	Method: EPA 9	060A					
Total Organic Carbon	8.8	8 mg/L	1.0	1		08/18/17 19:34	1 7440-44-0	
5		J. –					-	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: FIELD DUPLICATE-01	Lab ID: 702	6978001	Collected: 08/10/1	17 11:20	Received: 0	8/11/17 09:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9060A TOC as NPOC	Analytical Met	hod: EPA 9060	DA .					
Total Organic Carbon	8.9	mg/L	1.0	1		08/18/17 19:34	7440-44-0	
Total Organic Carbon	9.0	mg/L	1.0	1		08/18/17 19:34	7440-44-0	
Total Organic Carbon	8.8	mg/L	1.0	1		08/18/17 19:34	7440-44-0	
Mean Total Organic Carbon	8.9	mg/L	1.0	1		08/18/17 19:34	7440-44-0	

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: MW-5A/AR	Lab ID: 702	6978002	Collected: 08/10/	17 11:15	Received: 08	/11/17 09:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation Me	thod: EP	A 200.7			
ron	6090	ug/L	20.0	1	08/24/17 10:49	08/25/17 18:58	7439-89-6	
Manganese	1800	ug/L	10.0	1	08/24/17 10:49	08/25/17 18:58	7439-96-5	
200.7 Metals, Dissolved	Analytical Meth	nod: EPA 20	0.7					
ron, Dissolved	5190	ug/L	20.0	1		08/22/17 15:15	7439-89-6	
Manganese, Dissolved	1800	ug/L	10.0	1		08/22/17 15:15	7439-96-5	
3260C Volatile Organics	Analytical Meth	nod: EPA 82	60C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		08/22/17 12:08	630-20-6	L1
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		08/22/17 12:08	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		08/22/17 12:08	79-34-5	
I,1,2-Trichloroethane	<1.0	ug/L	1.0	1		08/22/17 12:08	79-00-5	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		08/22/17 12:08	75-34-3	
,1-Dichloroethene	<1.0	ug/L	1.0	1		08/22/17 12:08		
,1-Dichloropropene	<1.0	ug/L	1.0	1		08/22/17 12:08		
,2,3-Trichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:08		
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		08/22/17 12:08		
,2,4-Trichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:08		
,2,4-Trimethylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:08		
,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		08/22/17 12:08		
,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		08/22/17 12:08		
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:08		
,2-Dichloroethane	<1.0	ug/L	1.0	1		08/22/17 12:08		
,2-Dichloropropane	<1.0	ug/L	1.0	1		08/22/17 12:08		
,3,5-Trimethylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:08		
,3-Dichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:08		
,3-Dichloropropane	<1.0	ug/L	1.0	1		08/22/17 12:08		
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:08		
2,2-Dichloropropane	<1.0	ug/L ug/L	1.0	1		08/22/17 12:08		
P-Butanone (MEK)	<5.0	-	5.0	1		08/22/17 12:08		
2-Chloroethylvinyl ether	<1.0	ug/L ug/L	1.0	1		08/22/17 12:08		L2,c2
2-Chlorotoluene	<1.0	-	1.0	1		08/22/17 12:08		L2,02
?-Hexanone	<5.0	ug/L	5.0	1		08/22/17 12:08		
l-Chlorotoluene	<1.0	ug/L	1.0	1		08/22/17 12:08		L1
	<5.0	ug/L	5.0	1				LI
I-Methyl-2-pentanone (MIBK)	<5.0 <5.0	ug/L	5.0	•		08/22/17 12:08 08/22/17 12:08		
Acetone		ug/L		1				
Benzene	<1.0	ug/L	1.0	1		08/22/17 12:08		1.4
Bromobenzene	<1.0	ug/L	1.0	1		08/22/17 12:08		L1
Bromochloromethane	<1.0	ug/L	1.0	1		08/22/17 12:08		
Bromodichloromethane	<1.0	ug/L	1.0	1		08/22/17 12:08		
Bromoform	<1.0	ug/L	1.0	1		08/22/17 12:08		00
Bromomethane	<1.0	ug/L	1.0	1		08/22/17 12:08		CC
Carbon disulfide	<1.0	ug/L	1.0	1		08/22/17 12:08		
Carbon tetrachloride	<1.0	ug/L	1.0	1		08/22/17 12:08		
Chlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:08		
Chloroethane	178	ug/L	1.0	1		08/22/17 12:08	75-00-3	CC

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: MW-5A/AR	Lab ID: 702	6978002	Collected: 08/10/1	7 11:15	Received:	08/11/17 09:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
Chloroform	<1.0	ug/L	1.0	1		08/22/17 12:08	3 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		08/22/17 12:08	3 74-87-3	CC
Dibromochloromethane	<1.0	ug/L	1.0	1		08/22/17 12:08	3 124-48-1	
Dibromomethane	<1.0	ug/L	1.0	1		08/22/17 12:08	3 74-95-3	
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		08/22/17 12:08	3 75-71-8	
Ethylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 100-41-4	
Hexachloro-1,3-butadiene	<1.0	ug/L	1.0	1		08/22/17 12:08	87-68-3	
sopropylbenzene (Cumene)	<1.0	ug/L	1.0	1		08/22/17 12:08	3 98-82-8	
Methyl-tert-butyl ether	<1.0	ug/L	1.0	1		08/22/17 12:08	3 1634-04-4	
Methylene Chloride	<1.0	ug/L	1.0	1		08/22/17 12:08	3 75-09-2	
Naphthalene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 91-20-3	
Styrene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 100-42-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 127-18-4	
Toluene	1.2	ug/L	1.0	1		08/22/17 12:08	3 108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		08/22/17 12:08	3 75-69-4	
/inyl acetate	<1.0	ug/L	1.0	1		08/22/17 12:08	3 108-05-4	
'inyl chloride	<1.0	ug/L	1.0	1		08/22/17 12:08	3 75-01-4	
(ylene (Total)	<2.0	ug/L	2.0	1		08/22/17 12:08	3 1330-20-7	
is-1,2-Dichloroethene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 156-59-2	
is-1,3-Dichloropropene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 10061-01-5	
n&p-Xylene	<2.0	ug/L	2.0	1		08/22/17 12:08	3 179601-23-1	
-Butylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 104-51-8	
-Propylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 103-65-1	
-Xylene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 95-47-6	
-Isopropyltoluene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 99-87-6	L1
ec-Butylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 135-98-8	
ert-Butylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 98-06-6	L1
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 156-60-5	
rans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		08/22/17 12:08	3 10061-02-6	
Surrogates								
,2-Dichloroethane-d4 (S)	96	%.	68-153	1		08/22/17 12:08		
I-Bromofluorobenzene (S)	101	%.	79-124	1		08/22/17 12:08		
oluene-d8 (S)	99	%.	69-124	1		08/22/17 12:08	3 2037-26-5	
00.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
Sulfate	<5.0	mg/L	5.0	1		08/24/17 21:09	9 14808-79-8	
53.2 Nitrogen, NO2/NO3 pres.	Analytical Meth	nod: EPA 3	53.2					
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		08/12/17 02:16	7727-37-9	
53.2 Nitrogen, NO2	Analytical Meth	nod: EPA 3	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		08/11/17 23:22	2 14797-65-0	
0060A TOC as NPOC	Analytical Meth	nod: EPA 90	060A					
otal Organic Carbon	8.9	mg/L	1.0	1		08/18/17 19:4	5 7440-44-0	
<u> </u>		ŭ						

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: MW-5A/AR	Lab ID: 702	6978002	Collected: 08/10/1	7 11:15	Received: 08	3/11/17 09:50 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9060A TOC as NPOC	Analytical Met	nod: EPA 906	0A					
Total Organic Carbon	8.9	mg/L	1.0	1		08/18/17 19:45	7440-44-0	
Total Organic Carbon	8.8	mg/L	1.0	1		08/18/17 19:45	7440-44-0	
Total Organic Carbon	8.8	mg/L	1.0	1		08/18/17 19:45	7440-44-0	
Mean Total Organic Carbon	8.9	mg/L	1.0	1		08/18/17 19:45	7440-44-0	

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: MW-14	Lab ID: 7026	6978003	Collected: 08/10	/17 11:30	Received: 08	8/11/17 09:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation M	ethod: EF	PA 200.7			
ron	37200	ug/L	20.0	1	08/24/17 10:49	08/25/17 19:03	7439-89-6	
Manganese	13200	ug/L	10.0	1	08/24/17 10:49	08/25/17 19:03	7439-96-5	
200.7 Metals, Dissolved	Analytical Meth	nod: EPA 20	0.7					
ron, Dissolved	30700	ug/L	20.0	1		08/22/17 15:20	7439-89-6	
Manganese, Dissolved	12000	ug/L	100	10		08/23/17 12:01	7439-96-5	
8260C Volatile Organics	Analytical Meth	nod: EPA 82	60C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		08/22/17 12:26	630-20-6	L1
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		08/22/17 12:26	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		08/22/17 12:26	79-34-5	
I,1,2-Trichloroethane	<1.0	ug/L	1.0			08/22/17 12:26		
1,1-Dichloroethane	5.7	ug/L	1.0			08/22/17 12:26		
1,1-Dichloroethene	1.8	ug/L	1.0			08/22/17 12:26		
I,1-Dichloropropene	<1.0	ug/L	1.0			08/22/17 12:26		
,2,3-Trichlorobenzene	<1.0	ug/L	1.0			08/22/17 12:26		
,2,3-Trichloropropane	<1.0	ug/L	1.0			08/22/17 12:26		
,2,4-Trichlorobenzene	<1.0	_	1.0			08/22/17 12:26		
		ug/L				08/22/17 12:26		
,2,4-Trimethylbenzene	<1.0	ug/L	1.0					
,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0			08/22/17 12:26		
,2-Dibromoethane (EDB)	<1.0	ug/L	1.0			08/22/17 12:26		
,2-Dichlorobenzene	<1.0	ug/L	1.0			08/22/17 12:26		
,2-Dichloroethane	<1.0	ug/L	1.0			08/22/17 12:26		
,2-Dichloropropane	<1.0	ug/L	1.0			08/22/17 12:26		
,3,5-Trimethylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:26		
,3-Dichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:26	541-73-1	
,3-Dichloropropane	<1.0	ug/L	1.0	1		08/22/17 12:26	142-28-9	
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:26	106-46-7	
2,2-Dichloropropane	<1.0	ug/L	1.0	1		08/22/17 12:26	594-20-7	
P-Butanone (MEK)	<5.0	ug/L	5.0	1		08/22/17 12:26	78-93-3	
2-Chloroethylvinyl ether	<1.0	ug/L	1.0	1		08/22/17 12:26	110-75-8	L2,c2
2-Chlorotoluene	<1.0	ug/L	1.0	1		08/22/17 12:26	95-49-8	
2-Hexanone	<5.0	ug/L	5.0	1		08/22/17 12:26	591-78-6	
1-Chlorotoluene	<1.0	ug/L	1.0	1		08/22/17 12:26		L1
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0			08/22/17 12:26		
Acetone	19.5	ug/L	5.0			08/22/17 12:26		
Benzene	<1.0	ug/L	1.0			08/22/17 12:26		
Bromobenzene	<1.0	ug/L	1.0			08/22/17 12:26		L1
Bromochloromethane	<1.0	ug/L ug/L	1.0			08/22/17 12:26		L1
Bromodichloromethane	<1.0	ug/L ug/L	1.0			08/22/17 12:26		
Bromoform	<1.0 <1.0		1.0			08/22/17 12:26		
		ug/L						CC
Bromomethane	<1.0	ug/L	1.0			08/22/17 12:26		CC
Carbon disulfide	<1.0	ug/L	1.0			08/22/17 12:26		
Carbon tetrachloride	<1.0	ug/L	1.0			08/22/17 12:26		
Chlorobenzene	<1.0	ug/L	1.0			08/22/17 12:26		
Chloroethane	4.4	ug/L	1.0	1		08/22/17 12:26	75-00-3	CC

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: MW-14	Lab ID: 702	6978003	Collected: 08/10/1	7 11:30	Received:	08/11/17 09:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
Chloroform	<1.0	ug/L	1.0	1		08/22/17 12:26	6 67-66-3	
Chloromethane	2.5	ug/L	1.0	1		08/22/17 12:26	6 74-87-3	CC
Dibromochloromethane	<1.0	ug/L	1.0	1		08/22/17 12:26	5 124-48-1	
Dibromomethane	<1.0	ug/L	1.0	1		08/22/17 12:26	6 74-95-3	
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		08/22/17 12:26	5 75-71-8	
Ethylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:26	6 100-41-4	
Hexachloro-1,3-butadiene	<1.0	ug/L	1.0	1		08/22/17 12:26	87-68-3	
sopropylbenzene (Cumene)	<1.0	ug/L	1.0	1		08/22/17 12:26	98-82-8	
Methyl-tert-butyl ether	<1.0	ug/L	1.0	1		08/22/17 12:26	6 1634-04-4	
Methylene Chloride	<1.0	ug/L	1.0	1		08/22/17 12:26	75-09-2	
Naphthalene	<1.0	ug/L	1.0	1		08/22/17 12:26	91-20-3	
Styrene	<1.0	ug/L	1.0	1		08/22/17 12:26	6 100-42-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		08/22/17 12:26	6 127-18-4	
Toluene	<1.0	ug/L	1.0	1		08/22/17 12:26	5 108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		08/22/17 12:26	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		08/22/17 12:26	75-69-4	
/inyl acetate	<1.0	ug/L	1.0	1		08/22/17 12:26	6 108-05-4	
inyl chloride	1.5	ug/L	1.0	1		08/22/17 12:26	5 75-01-4	
(ylene (Total)	<2.0	ug/L	2.0	1		08/22/17 12:26	6 1330-20-7	
is-1,2-Dichloroethene	<1.0	ug/L	1.0	1		08/22/17 12:26	5 156-59-2	
is-1,3-Dichloropropene	<1.0	ug/L	1.0	1		08/22/17 12:26	6 10061-01-5	
n&p-Xylene	<2.0	ug/L	2.0	1		08/22/17 12:26	5 179601-23-1	
-Butylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:26	6 104-51-8	
-Propylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:26	5 103-65-1	
-Xylene	<1.0	ug/L	1.0	1		08/22/17 12:26	95-47-6	
-Isopropyltoluene	<1.0	ug/L	1.0	1		08/22/17 12:26	99-87-6	L1
ec-Butylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:26	3 135-98-8	
ert-Butylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:26	98-06-6	L1
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		08/22/17 12:26	5 156-60-5	
ans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		08/22/17 12:26	6 10061-02-6	
Surrogates								
,2-Dichloroethane-d4 (S)	96	%.	68-153	1		08/22/17 12:26	5 17060-07-0	
-Bromofluorobenzene (S)	101	%.	79-124	1		08/22/17 12:26		
oluene-d8 (S)	100	%.	69-124	1		08/22/17 12:26	5 2037-26-5	
00.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
Sulfate	<5.0	mg/L	5.0	1		08/24/17 21:23	3 14808-79-8	
53.2 Nitrogen, NO2/NO3 pres.	Analytical Meth	nod: EPA 3	53.2					
litrate-Nitrite (as N)	<0.050	mg/L	0.050	1		08/12/17 02:17	7 7727-37-9	
53.2 Nitrogen, NO2	Analytical Meth	nod: EPA 3	53.2					
litrite as N	<0.050	mg/L	0.050	1		08/11/17 23:23	3 14797-65-0	
0060A TOC as NPOC	Analytical Meth	nod: EPA 90	060A					
otal Organic Carbon	44.4	mg/L	1.0	1		08/18/17 19:58	3 7440-44-0	
-		3					-	

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: MW-14	Lab ID: 702	6978003	Collected: 08/10/1	7 11:30	Received: 08	3/11/17 09:50 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9060A TOC as NPOC	Analytical Meth	nod: EPA 906	0A					
Total Organic Carbon	45.4	mg/L	1.0	1		08/18/17 19:58	7440-44-0	
Total Organic Carbon	44.6	mg/L	1.0	1		08/18/17 19:58	7440-44-0	
Total Organic Carbon	45.0	mg/L	1.0	1		08/18/17 19:58	7440-44-0	
Mean Total Organic Carbon	44.9	mg/L	1.0	1		08/18/17 19:58	7440-44-0	

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: MW-16	Lab ID: 702	6978004	Collected: 08/10/1	7 12:10	Received: 08	/11/17 09:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	nod: EPA 2	00.7 Preparation Met	hod: EP	A 200.7			
Iron	2480	ug/L	20.0	1	08/24/17 10:49	08/25/17 19:09	7439-89-6	
Manganese	1160	ug/L	10.0	1	08/24/17 10:49	08/25/17 19:09	7439-96-5	
200.7 Metals, Dissolved	Analytical Meth	nod: EPA 2	00.7					
ron, Dissolved	433	ug/L	20.0	1		08/22/17 15:56	7439-89-6	
Manganese, Dissolved	658	ug/L	10.0	1		08/22/17 15:56	7439-96-5	
8260C Volatile Organics	Analytical Meth	nod: EPA 8	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		08/22/17 12:44	630-20-6	L1
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		08/22/17 12:44	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		08/22/17 12:44		
I,1,2-Trichloroethane	<1.0	ug/L	1.0	1		08/22/17 12:44		
1,1-Dichloroethane	2.6	ug/L	1.0	1		08/22/17 12:44		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		08/22/17 12:44		
1,1-Dichloropropene	<1.0	ug/L	1.0	1		08/22/17 12:44		
1,2,3-Trichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:44		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		08/22/17 12:44		
1,2,4-Trichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:44		
1,2,4-Trimethylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:44		
I,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		08/22/17 12:44		
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		08/22/17 12:44		
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:44		
,2-Dichloroethane	<1.0	ug/L	1.0	1		08/22/17 12:44		
I,2-Dichloropropane	<1.0	ug/L	1.0	1		08/22/17 12:44		
1,3,5-Trimethylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:44		
1,3-Dichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:44		
1,3-Dichloropropane	<1.0	ug/L	1.0	1		08/22/17 12:44		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:44		
2,2-Dichloropropane	<1.0	ug/L	1.0	1		08/22/17 12:44		
2-Butanone (MEK)	<5.0	ug/L	5.0	1		08/22/17 12:44		
2-Chloroethylvinyl ether	<1.0	ug/L	1.0	1		08/22/17 12:44		L2,c2
2-Chlorotoluene	<1.0	ug/L	1.0	1		08/22/17 12:44		LZ,02
2-Hexanone	<5.0	ug/L	5.0	1		08/22/17 12:44		
4-Chlorotoluene	<1.0	ug/L	1.0	1		08/22/17 12:44		L1
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		08/22/17 12:44		
Acetone	<5.0	ug/L	5.0	1		08/22/17 12:44		
Benzene	<1.0	ug/L ug/L	1.0	1		08/22/17 12:44		
Bromobenzene	<1.0 <1.0	ug/L ug/L	1.0	1		08/22/17 12:44		L1
Bromochloromethane	<1.0 <1.0	•	1.0	1		08/22/17 12:44		LI
Bromodichloromethane	<1.0 <1.0	ug/L ug/L	1.0	1		08/22/17 12:44		
Bromoform	<1.0 <1.0	ug/L ug/L	1.0	1		08/22/17 12:44		
Bromomethane	<1.0 <1.0	•	1.0	1		08/22/17 12:44		СС
Bromometnane Carbon disulfide		ug/L						
	<1.0	ug/L	1.0	1		08/22/17 12:44		
Carbon tetrachloride	<1.0	ug/L	1.0	1		08/22/17 12:44		
Chlorobenzene	<1.0	ug/L	1.0	1		08/22/17 12:44	100-90-7	

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: MW-16	Lab ID: 70	26978004	Collected: 08/10/1	7 12:10	Received: (08/11/17 09:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260C Volatile Organics	Analytical Me	ethod: EPA 8	260C/5030C					
Chloroform	<1.0	ug/L	1.0	1		08/22/17 12:44	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		08/22/17 12:44	74-87-3	CC
Dibromochloromethane	<1.0	ug/L	1.0	1		08/22/17 12:44	124-48-1	
Dibromomethane	<1.0	ug/L	1.0	1		08/22/17 12:44	74-95-3	
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		08/22/17 12:44	75-71-8	
Ethylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:44	100-41-4	
Hexachloro-1,3-butadiene	<1.0	ug/L	1.0	1		08/22/17 12:44	87-68-3	
sopropylbenzene (Cumene)	<1.0	ug/L	1.0	1		08/22/17 12:44	98-82-8	
Methyl-tert-butyl ether	<1.0	ug/L	1.0	1		08/22/17 12:44	1634-04-4	
Methylene Chloride	<1.0	ug/L	1.0	1		08/22/17 12:44	75-09-2	
Naphthalene	<1.0	ug/L	1.0	1		08/22/17 12:44	91-20-3	
Styrene	<1.0	ug/L	1.0	1		08/22/17 12:44		
Tetrachloroethene	<1.0	ug/L	1.0	1		08/22/17 12:44	127-18-4	
Toluene	<1.0	ug/L	1.0	1		08/22/17 12:44	108-88-3	
Γrichloroethene	<1.0	ug/L	1.0	1		08/22/17 12:44	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		08/22/17 12:44	75-69-4	
/inyl acetate	<1.0	ug/L	1.0	1		08/22/17 12:44	108-05-4	
/inyl chloride	<1.0	ug/L	1.0	1		08/22/17 12:44	75-01-4	
(ylene (Total)	<2.0	ug/L	2.0	1		08/22/17 12:44	1330-20-7	
sis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		08/22/17 12:44	156-59-2	
sis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		08/22/17 12:44	10061-01-5	
n&p-Xylene	<2.0	ug/L	2.0	1		08/22/17 12:44	179601-23-1	
n-Butylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:44	104-51-8	
n-Propylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:44	103-65-1	
o-Xylene	<1.0	ug/L	1.0	1		08/22/17 12:44	95-47-6	
o-Isopropyltoluene	<1.0	ug/L	1.0	1		08/22/17 12:44	99-87-6	L1
ec-Butylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:44	135-98-8	
ert-Butylbenzene	<1.0	ug/L	1.0	1		08/22/17 12:44	98-06-6	L1
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		08/22/17 12:44	156-60-5	
rans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		08/22/17 12:44	10061-02-6	
Surrogates								
,2-Dichloroethane-d4 (S)	96	%.	68-153	1		08/22/17 12:44		
I-Bromofluorobenzene (S)	101	%.	79-124	1		08/22/17 12:44		
Toluene-d8 (S)	100	%.	69-124	1		08/22/17 12:44	2037-26-5	
00.0 IC Anions 28 Days	Analytical Me	ethod: EPA 3	0.00					
Sulfate	6.4	mg/L	5.0	1		08/24/17 21:36	14808-79-8	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Me	ethod: EPA 3	53.2					
Nitrate-Nitrite (as N)	0.61	mg/L	0.050	1		08/12/17 08:35	7727-37-9	
353.2 Nitrogen, NO2	Analytical Me	ethod: EPA 3	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		08/11/17 23:25	14797-65-0	
0060A TOC as NPOC	Analytical Me	ethod: EPA 9	060A					
Total Organic Carbon	5.5	mg/L	1.0	1		08/18/17 20:11	7440-44-0	
=		-						

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: MW-16	Lab ID: 702	6978004	Collected: 08/10/1	7 12:10	Received: 08	8/11/17 09:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9060A TOC as NPOC	Analytical Met	nod: EPA 906	0A					
Total Organic Carbon	5.4	mg/L	1.0	1		08/18/17 20:11	7440-44-0	
Total Organic Carbon	5.5	mg/L	1.0	1		08/18/17 20:11	7440-44-0	
Total Organic Carbon	5.5	mg/L	1.0	1		08/18/17 20:11	7440-44-0	
Mean Total Organic Carbon	5.5	mg/L	1.0	1		08/18/17 20:11	7440-44-0	

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: MW-CHA-RFI-7	Lab ID: 7020	6978005	Collected:	08/10/1	7 13:20	Received: 08	/11/17 09:50	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	od: EPA 20	00.7 Prepara	tion Metl	nod: EP	A 200.7			
Iron	456	ug/L		20.0	1	08/24/17 10:49	08/25/17 19:14	7439-89-6	
Manganese	1630	ug/L		10.0	1	08/24/17 10:49	08/25/17 19:14	7439-96-5	M1
200.7 Metals, Dissolved	Analytical Meth	od: EPA 20	00.7						
Iron, Dissolved	172	ug/L		20.0	1		08/22/17 15:25	7439-89-6	
Manganese, Dissolved	1610	ug/L		10.0	1		08/22/17 15:25	7439-96-5	
8260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C						
1,1,1,2-Tetrachloroethane	<1.0	ug/L		1.0	1		08/22/17 13:02	2 630-20-6	L1,M0
1,1,1-Trichloroethane	<1.0	ug/L		1.0	1		08/22/17 13:02	2 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L		1.0	1		08/22/17 13:02	2 79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L		1.0	1		08/22/17 13:02	2 79-00-5	
1,1-Dichloroethane	<1.0	ug/L		1.0	1		08/22/17 13:02	2 75-34-3	
1,1-Dichloroethene	<1.0	ug/L		1.0	1		08/22/17 13:02	75-35-4	
1,1-Dichloropropene	<1.0	ug/L		1.0	1		08/22/17 13:02	2 563-58-6	
1,2,3-Trichlorobenzene	<1.0	ug/L		1.0	1		08/22/17 13:02	87-61-6	M1
1,2,3-Trichloropropane	<1.0	ug/L		1.0	1		08/22/17 13:02	96-18-4	
1,2,4-Trichlorobenzene	<1.0	ug/L		1.0	1		08/22/17 13:02	2 120-82-1	
1,2,4-Trimethylbenzene	<1.0	ug/L		1.0	1		08/22/17 13:02	95-63-6	
,2-Dibromo-3-chloropropane	<1.0	ug/L		1.0	1		08/22/17 13:02	96-12-8	
1,2-Dibromoethane (EDB)	<1.0	ug/L		1.0	1		08/22/17 13:02	2 106-93-4	
1,2-Dichlorobenzene	<1.0	ug/L		1.0	1		08/22/17 13:02	95-50-1	
1,2-Dichloroethane	<1.0	ug/L		1.0	1		08/22/17 13:02	2 107-06-2	
1,2-Dichloropropane	<1.0	ug/L		1.0	1		08/22/17 13:02	2 78-87-5	
1,3,5-Trimethylbenzene	<1.0	ug/L		1.0	1		08/22/17 13:02	2 108-67-8	
1,3-Dichlorobenzene	<1.0	ug/L		1.0	1		08/22/17 13:02	2 541-73-1	
1,3-Dichloropropane	<1.0	ug/L		1.0	1		08/22/17 13:02	142-28-9	
1,4-Dichlorobenzene	<1.0	ug/L		1.0	1		08/22/17 13:02		
2,2-Dichloropropane	<1.0	ug/L		1.0	1		08/22/17 13:02		
2-Butanone (MEK)	<5.0	ug/L		5.0	1		08/22/17 13:02		
2-Chloroethylvinyl ether	<1.0	ug/L		1.0	1		08/22/17 13:02		L2,M0, c2
2-Chlorotoluene	<1.0	ug/L		1.0	1		08/22/17 13:02	95-49-8	M1
2-Hexanone	<5.0	ug/L		5.0	1		08/22/17 13:02	591-78-6	
4-Chlorotoluene	<1.0	ug/L		1.0	1		08/22/17 13:02	2 106-43-4	L1,M0
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L		5.0	1		08/22/17 13:02	2 108-10-1	
Acetone	20.0	ug/L		5.0	1		08/22/17 13:02	2 67-64-1	
Benzene	<1.0	ug/L		1.0	1		08/22/17 13:02	2 71-43-2	
Bromobenzene	<1.0	ug/L		1.0	1		08/22/17 13:02	2 108-86-1	L1,M0
Bromochloromethane	<1.0	ug/L		1.0	1		08/22/17 13:02	2 74-97-5	•
Bromodichloromethane	<1.0	ug/L		1.0	1		08/22/17 13:02		
Bromoform	<1.0	ug/L		1.0	1		08/22/17 13:02		
Bromomethane	<1.0	ug/L		1.0	1		08/22/17 13:02		CC
Carbon disulfide	<1.0	ug/L		1.0	1		08/22/17 13:02		
Carbon tetrachloride	<1.0	ug/L		1.0	1		08/22/17 13:02		
Chlorobenzene	<1.0	ug/L		1.0	1		08/22/17 13:02		M1
Chloroethane	<1.0	ug/L		1.0	1		08/22/17 13:02		CC

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: MW-CHA-RFI-7	Lab ID:	7026978005	Collected: 08/10/	17 13:20	Received:	08/11/17 09:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical	Method: EPA 82	260C/5030C					
Chloroform	<1.0	u g/L	1.0	1		08/22/17 13:02	2 67-66-3	
Chloromethane	4.8	3 ug/L	1.0	1		08/22/17 13:02	2 74-87-3	CC
Dibromochloromethane	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 124-48-1	
Dibromomethane	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 74-95-3	
Dichlorodifluoromethane	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 75-71-8	
Ethylbenzene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 100-41-4	M1
Hexachloro-1,3-butadiene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 87-68-3	
sopropylbenzene (Cumene)	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 98-82-8	
Methyl-tert-butyl ether	<1.0	0 ug/L	1.0	1		08/22/17 13:02		
Methylene Chloride	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 75-09-2	
Naphthalene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 91-20-3	
Styrene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 100-42-5	
Tetrachloroethene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 127-18-4	
Toluene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 108-88-3	
Trichloroethene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 79-01-6	
Trichlorofluoromethane	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 75-69-4	
√inyl acetate	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 108-05-4	
/inyl chloride	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 75-01-4	
Xylene (Total)	<2.0	0 ug/L	2.0	1		08/22/17 13:02		
cis-1,2-Dichloroethene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 156-59-2	
cis-1,3-Dichloropropene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 10061-01-5	
m&p-Xylene	<2.0	0 ug/L	2.0	1		08/22/17 13:02	2 179601-23-1	
n-Butylbenzene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 104-51-8	M1
n-Propylbenzene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 103-65-1	
o-Xylene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	95-47-6	
o-Isopropyltoluene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	99-87-6	L1,M0
sec-Butylbenzene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 135-98-8	M1
ert-Butylbenzene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 98-06-6	L1,M0
rans-1,2-Dichloroethene	<1.0	0 ug/L	1.0	1		08/22/17 13:02		
rans-1,3-Dichloropropene	<1.0	0 ug/L	1.0	1		08/22/17 13:02	2 10061-02-6	
Surrogates								
1,2-Dichloroethane-d4 (S)	94		68-153	1		08/22/17 13:02		
4-Bromofluorobenzene (S)	100		79-124	1		08/22/17 13:02		
Toluene-d8 (S)	90	0 %.	69-124	1		08/22/17 13:02	2 2037-26-5	
800.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.00					
Sulfate	38.5	5 mg/L	5.0	1		08/24/17 13:38	3 14808-79-8	
353.2 Nitrogen, NO2/NO3 pres.	Analytical	Method: EPA 3	53.2					
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		08/12/17 08:36	7727-37-9	
353.2 Nitrogen, NO2	Analytical	Method: EPA 3	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		08/11/17 23:26	14797-65-0	
9060A TOC as NPOC	Analytical	Method: EPA 90	060A					
Total Organic Carbon	1.3	3 mg/L	1.0	1		08/18/17 20:30	7440-44-0	

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: MW-CHA-RFI-7	Lab ID: 702	6978005	Collected: 08/10/1	7 13:20	Received: 08	3/11/17 09:50 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9060A TOC as NPOC	Analytical Met	nod: EPA 906	60A					
Total Organic Carbon	1.4	mg/L	1.0	1		08/18/17 20:30	7440-44-0	
Total Organic Carbon	1.3	mg/L	1.0	1		08/18/17 20:30	7440-44-0	
Total Organic Carbon	1.2	mg/L	1.0	1		08/18/17 20:30	7440-44-0	
Mean Total Organic Carbon	1.3	mg/L	1.0	1		08/18/17 20:30	7440-44-0	

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: TRIP BLANK-01	Lab ID:	7026978006	Collected: 08/10/1	7 00:00	Received: (08/11/17 09:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical N	Method: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		08/22/17 11:32	2 630-20-6	L1
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		08/22/17 11:32	2 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		08/22/17 11:32	2 79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		08/22/17 11:32	2 79-00-5	
,1-Dichloroethane	<1.0	ug/L	1.0	1		08/22/17 11:32	2 75-34-3	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		08/22/17 11:32	2 75-35-4	
,1-Dichloropropene	<1.0	ug/L	1.0	1		08/22/17 11:32	2 563-58-6	
1,2,3-Trichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 11:32	2 87-61-6	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		08/22/17 11:32	2 96-18-4	
1,2,4-Trichlorobenzene	<1.0	ug/L	1.0	1		08/22/17 11:32	2 120-82-1	
1,2,4-Trimethylbenzene	<1.0		1.0	1		08/22/17 11:32	2 95-63-6	
1,2-Dibromo-3-chloropropane	<1.0	_	1.0	1		08/22/17 11:32	2 96-12-8	
1,2-Dibromoethane (EDB)	<1.0	-	1.0	1		08/22/17 11:32	2 106-93-4	
,2-Dichlorobenzene	<1.0	•	1.0	1		08/22/17 11:32		
.2-Dichloroethane	<1.0	J	1.0	1		08/22/17 11:32	2 107-06-2	
,2-Dichloropropane	<1.0	_	1.0	1		08/22/17 11:32		
,3,5-Trimethylbenzene	<1.0	_	1.0	1		08/22/17 11:32		
,3-Dichlorobenzene	<1.0	J	1.0	1		08/22/17 11:32		
,3-Dichloropropane	<1.0	•	1.0	1		08/22/17 11:32		
,4-Dichlorobenzene	<1.0	J	1.0	1		08/22/17 11:32		
2,2-Dichloropropane	<1.0		1.0	1		08/22/17 11:32		
2-Butanone (MEK)	<5.0	_	5.0	1		08/22/17 11:32		
2-Chloroethylvinyl ether	<1.0	J	1.0	1		08/22/17 11:32		L2,c2
2-Chlorotoluene	<1.0	•	1.0	1		08/22/17 11:32		,
2-Hexanone	<5.0	J	5.0	1		08/22/17 11:32		
1-Chlorotoluene	<1.0	_	1.0	1		08/22/17 11:32		L1
4-Methyl-2-pentanone (MIBK)	<5.0	_	5.0	1		08/22/17 11:32		LI
Acetone	<5.0 <5.0	•	5.0	1		08/22/17 11:32		
Benzene	<1.0	_	1.0	1		08/22/17 11:32		
Bromobenzene	<1.0	J	1.0	1		08/22/17 11:32		L1
Bromochloromethane	<1.0 <1.0		1.0	1		08/22/17 11:32		LI
Bromodichloromethane	<1.0 <1.0	J	1.0	1		08/22/17 11:32		
Bromoform	<1.0	J	1.0	1		08/22/17 11:32	-	
Bromomethane	<1.0	J	1.0	1		08/22/17 11:32		CC
Carbon disulfide	<1.0 <1.0	J	1.0	1		08/22/17 11:32		CC
		J						
Carbon tetrachloride	<1.0	Ū	1.0	1		08/22/17 11:32		
Chlorobenzene	<1.0	ŭ	1.0	1		08/22/17 11:32		00
Chloroethane	<1.0	Ū	1.0	1		08/22/17 11:32		CC
Chloroform	<1.0	-	1.0	1		08/22/17 11:32		00
Chloromethane	<1.0	J	1.0	1		08/22/17 11:32		CC
Dibromochloromethane	<1.0	J	1.0	1		08/22/17 11:32	_	
Dibromomethane	<1.0	ŭ	1.0	1		08/22/17 11:32		
Dichlorodifluoromethane	<1.0	Ū	1.0	1		08/22/17 11:32		
Ethylbenzene	<1.0	J	1.0	1		08/22/17 11:32		
lexachloro-1,3-butadiene	<1.0	J	1.0	1		08/22/17 11:32		
sopropylbenzene (Cumene)	<1.0	J	1.0	1		08/22/17 11:32		
Methyl-tert-butyl ether	<1.0	ug/L	1.0	1		08/22/17 11:32	2 1634-04-4	

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Sample: TRIP BLANK-01	Lab ID: 702	6978006	Collected: 08/10/1	7 00:00	Received: 08	3/11/17 09:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
Methylene Chloride	<1.0	ug/L	1.0	1		08/22/17 11:32	75-09-2	
Naphthalene	<1.0	ug/L	1.0	1		08/22/17 11:32	91-20-3	
Styrene	<1.0	ug/L	1.0	1		08/22/17 11:32	100-42-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		08/22/17 11:32	127-18-4	
Toluene	<1.0	ug/L	1.0	1		08/22/17 11:32	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		08/22/17 11:32	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		08/22/17 11:32	75-69-4	
Vinyl acetate	<1.0	ug/L	1.0	1		08/22/17 11:32	108-05-4	
/inyl chloride	<1.0	ug/L	1.0	1		08/22/17 11:32	75-01-4	
Xylene (Total)	<2.0	ug/L	2.0	1		08/22/17 11:32	1330-20-7	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		08/22/17 11:32	156-59-2	
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		08/22/17 11:32	10061-01-5	
m&p-Xylene	<2.0	ug/L	2.0	1		08/22/17 11:32	179601-23-1	
n-Butylbenzene	<1.0	ug/L	1.0	1		08/22/17 11:32	104-51-8	
n-Propylbenzene	<1.0	ug/L	1.0	1		08/22/17 11:32	103-65-1	
o-Xylene	<1.0	ug/L	1.0	1		08/22/17 11:32	95-47-6	
o-Isopropyltoluene	<1.0	ug/L	1.0	1		08/22/17 11:32	99-87-6	L1
sec-Butylbenzene	<1.0	ug/L	1.0	1		08/22/17 11:32	135-98-8	
tert-Butylbenzene	<1.0	ug/L	1.0	1		08/22/17 11:32	98-06-6	L1
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		08/22/17 11:32	156-60-5	
rans-1,3-Dichloropropene Surrogates	<1.0	ug/L	1.0	1		08/22/17 11:32	10061-02-6	
1,2-Dichloroethane-d4 (S)	96	%.	68-153	1		08/22/17 11:32	17060-07-0	
1-Bromofluorobenzene (S)	101	%.	79-124	1		08/22/17 11:32	460-00-4	
Toluene-d8 (S)	100	%.	69-124	1		08/22/17 11:32	2037-26-5	

Project: Vails Gate Manufacture

Pace Project No.: 7026978

QC Batch: 36242 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Dissolved

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005

METHOD BLANK: 168998 Matrix: Water

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005

Blank Reporting Parameter Result Limit Qualifiers Units Analyzed Iron, Dissolved <20.0 20.0 08/22/17 14:45 ug/L Manganese, Dissolved ug/L <10.0 10.0 08/22/17 14:45

LABORATORY CONTROL SAMPLE: 168999

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers ug/L Iron, Dissolved 2000 1960 98 85-115 Manganese, Dissolved ug/L 250 251 100 85-115

MATRIX SPIKE SAMPLE: 169035 7026978005 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Iron, Dissolved 172 2000 1840 70-130 ug/L 83 1610 Manganese, Dissolved ug/L 250 1810 82 70-130

SAMPLE DUPLICATE: 169034

Date: 08/28/2017 03:21 PM

		7026978005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Iron, Dissolved	ug/L	172	171	1	
Manganese, Dissolved	ug/L	1610	1600	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Iron

QC Batch: 36657 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005

METHOD BLANK: 170798 Matrix: Water

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005

Blank Reporting Result Limit Qualifiers Parameter Units Analyzed <20.0 20.0 08/25/17 18:43 ug/L Manganese ug/L <10.0 10.0 08/25/17 18:43

LABORATORY CONTROL SAMPLE: 170799 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers

Iron 2000 1950 97 85-115 ug/L ug/L 250 246 99 85-115 Manganese

MATRIX SPIKE SAMPLE: 170801 7026934001 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 302 2000 2220 70-130 Iron ug/L 96 128 Manganese ug/L 250 360 93 70-130

MATRIX SPIKE SAMPLE: 170803 7026978005 MS MS % Rec Spike % Rec Qualifiers Parameter Units Result Conc. Result Limits 456 Iron 2520 103 70-130 ug/L 2000 1630 1970 138 70-130 M1 Manganese ug/L 250

SAMPLE DUPLICATE: 170800 7026934001 Dup

Parameter Units Result Result RPD Qualifiers Iron ug/L 302 293 3 128 124 3 Manganese ug/L

SAMPLE DUPLICATE: 170802

Date: 08/28/2017 03:21 PM

		7026978005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Iron	ug/L	456	484	6	
Manganese	ug/L	1630	1750	7	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

QC Batch: 36189 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

7026978001, 7026978002, 7026978003, 7026978004, 7026978005, 7026978006 Associated Lab Samples:

METHOD BLANK: 168765 Matrix: Water

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005, 7026978006

, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,	Blank	Reporting	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
1,1,1,2-Tetrachloroethane	ug/L	<1.0	1.0	08/22/17 10:14		
1,1,1-Trichloroethane	ug/L	<1.0	1.0	08/22/17 10:14		
1,1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	08/22/17 10:14		
1,1,2-Trichloroethane	ug/L	<1.0	1.0	08/22/17 10:14		
1,1-Dichloroethane	ug/L	<1.0	1.0	08/22/17 10:14		
1,1-Dichloroethene	ug/L	<1.0	1.0	08/22/17 10:14		
1,1-Dichloropropene	ug/L	<1.0	1.0	08/22/17 10:14		
1,2,3-Trichlorobenzene	ug/L	<1.0	1.0	08/22/17 10:14		
1,2,3-Trichloropropane	ug/L	<1.0	1.0	08/22/17 10:14		
1,2,4-Trichlorobenzene	ug/L	<1.0	1.0	08/22/17 10:14		
1,2,4-Trimethylbenzene	ug/L	<1.0	1.0	08/22/17 10:14		
1,2-Dibromo-3-chloropropane	ug/L	<1.0	1.0	08/22/17 10:14		
1,2-Dibromoethane (EDB)	ug/L	<1.0	1.0	08/22/17 10:14		
1,2-Dichlorobenzene	ug/L	<1.0	1.0	08/22/17 10:14		
1,2-Dichloroethane	ug/L	<1.0	1.0	08/22/17 10:14		
1,2-Dichloropropane	ug/L	<1.0	1.0	08/22/17 10:14		
1,3,5-Trimethylbenzene	ug/L	<1.0	1.0	08/22/17 10:14		
1,3-Dichlorobenzene	ug/L	<1.0	1.0	08/22/17 10:14		
1,3-Dichloropropane	ug/L	<1.0	1.0	08/22/17 10:14		
1,4-Dichlorobenzene	ug/L	<1.0	1.0	08/22/17 10:14		
2,2-Dichloropropane	ug/L	<1.0	1.0	08/22/17 10:14		
2-Butanone (MEK)	ug/L	<5.0	5.0	08/22/17 10:14		
2-Chloroethylvinyl ether	ug/L	<1.0	1.0	08/22/17 10:14		
2-Chlorotoluene	ug/L	<1.0	1.0	08/22/17 10:14		
2-Hexanone	ug/L	<5.0	5.0	08/22/17 10:14		
4-Chlorotoluene	ug/L	<1.0	1.0	08/22/17 10:14		
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	08/22/17 10:14		
Acetone	ug/L	<5.0	5.0	08/22/17 10:14		
Benzene	ug/L	<1.0	1.0	08/22/17 10:14		
Bromobenzene	ug/L	<1.0	1.0	08/22/17 10:14		
Bromochloromethane	ug/L	<1.0	1.0	08/22/17 10:14		
Bromodichloromethane	ug/L	<1.0	1.0	08/22/17 10:14		
Bromoform	ug/L	<1.0	1.0	08/22/17 10:14		
Bromomethane	ug/L	<1.0	1.0	08/22/17 10:14		
Carbon disulfide	ug/L	<1.0	1.0	08/22/17 10:14		
Carbon tetrachloride	ug/L	<1.0	1.0	08/22/17 10:14		
Chlorobenzene	ug/L	<1.0	1.0	08/22/17 10:14		
Chloroethane	ug/L	<1.0	1.0	08/22/17 10:14		
Chloroform	ug/L	<1.0	1.0	08/22/17 10:14		
Chloromethane	ug/L	<1.0	1.0	08/22/17 10:14		
cis-1,2-Dichloroethene	ug/L	<1.0	1.0	08/22/17 10:14		
cis-1,2-Dichioroethene	ug/L	<1.0	1.0	00/22/17 10:14		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

METHOD BLANK: 168765 Matrix: Water

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005, 7026978006

		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
cis-1,3-Dichloropropene	ug/L	<1.0	1.0	08/22/17 10:14		
Dibromochloromethane	ug/L	<1.0	1.0	08/22/17 10:14		
Dibromomethane	ug/L	<1.0	1.0	08/22/17 10:14		
Dichlorodifluoromethane	ug/L	<1.0	1.0	08/22/17 10:14		
Ethylbenzene	ug/L	<1.0	1.0	08/22/17 10:14		
Hexachloro-1,3-butadiene	ug/L	<1.0	1.0	08/22/17 10:14		
Isopropylbenzene (Cumene)	ug/L	<1.0	1.0	08/22/17 10:14		
m&p-Xylene	ug/L	<2.0	2.0	08/22/17 10:14		
Methyl-tert-butyl ether	ug/L	<1.0	1.0	08/22/17 10:14		
Methylene Chloride	ug/L	<1.0	1.0	08/22/17 10:14		
n-Butylbenzene	ug/L	<1.0	1.0	08/22/17 10:14		
n-Propylbenzene	ug/L	<1.0	1.0	08/22/17 10:14		
Naphthalene	ug/L	<1.0	1.0	08/22/17 10:14		
o-Xylene	ug/L	<1.0	1.0	08/22/17 10:14		
p-Isopropyltoluene	ug/L	<1.0	1.0	08/22/17 10:14		
sec-Butylbenzene	ug/L	<1.0	1.0	08/22/17 10:14		
Styrene	ug/L	<1.0	1.0	08/22/17 10:14		
tert-Butylbenzene	ug/L	<1.0	1.0	08/22/17 10:14		
Tetrachloroethene	ug/L	<1.0	1.0	08/22/17 10:14		
Toluene	ug/L	<1.0	1.0	08/22/17 10:14		
trans-1,2-Dichloroethene	ug/L	<1.0	1.0	08/22/17 10:14		
trans-1,3-Dichloropropene	ug/L	<1.0	1.0	08/22/17 10:14		
Trichloroethene	ug/L	<1.0	1.0	08/22/17 10:14		
Trichlorofluoromethane	ug/L	<1.0	1.0	08/22/17 10:14		
Vinyl acetate	ug/L	<1.0	1.0	08/22/17 10:14		
Vinyl chloride	ug/L	<1.0	1.0	08/22/17 10:14		
Xylene (Total)	ug/L	<2.0	2.0	08/22/17 10:14		
1,2-Dichloroethane-d4 (S)	%.	96	68-153	08/22/17 10:14		
4-Bromofluorobenzene (S)	%.	101	79-124	08/22/17 10:14		
Toluene-d8 (S)	%.	100	69-124	08/22/17 10:14		

LABORATORY CONTROL SAMPLE:	168766					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	56.9	114	74-113 L	_1
1,1,1-Trichloroethane	ug/L	50	51.5	103	65-118	
1,1,2,2-Tetrachloroethane	ug/L	50	48.5	97	74-121	
1,1,2-Trichloroethane	ug/L	50	51.3	103	80-117	
1,1-Dichloroethane	ug/L	50	48.3	97	83-151	
1,1-Dichloroethene	ug/L	50	40.4	81	45-146	
1,1-Dichloropropene	ug/L	50	50.6	101	59-127	
1,2,3-Trichlorobenzene	ug/L	50	50.4	101	67-103	
1,2,3-Trichloropropane	ug/L	50	52.4	105	71-123	
1,2,4-Trichlorobenzene	ug/L	50	53.5	107	66-116	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

LABORATORY CONTROL SAMPLE:	168766	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trimethylbenzene	ug/L		50.3	101	68-116	
1,2-Dibromo-3-chloropropane	ug/L	50	45.8	92	74-119	
1,2-Dibromoethane (EDB)	ug/L	50	55.4	111	83-115	
1,2-Dichlorobenzene	ug/L	50	52.3	105	74-113	
1,2-Dichloroethane	ug/L	50	50.4	101	74-129	
1,2-Dichloropropane	ug/L	50	51.3	103	75-117	
1,3,5-Trimethylbenzene	ug/L	50	50.1	100	67-116	
1,3-Dichlorobenzene	ug/L	50	52.7	105	71-112	
I,3-Dichloropropane	ug/L	50	52.7	105	74-112	
1,4-Dichlorobenzene	ug/L	50	52.4	105	71-113	
2,2-Dichloropropane	ug/L	50	50.0	100	63-133	
2-Butanone (MEK)	ug/L	50	40.5	81	44-162	
2-Chloroethylvinyl ether	ug/L	50	<1.0	0	76-121 L	2
2-Chlorotoluene	ug/L	50	50.5	101	74-101	-
2-Hexanone	ug/L	50	47.5	95	32-183	
4-Chlorotoluene	ug/L	50	51.4	103	74-101 L	1
4-Methyl-2-pentanone (MIBK)	ug/L	50	47.0	94	69-132	
Acetone	ug/L	50	35.9	72	23-188	
Benzene	ug/L	50	49.9	100	73-119	
Bromobenzene	ug/L	50	52.8	106	72-102 L	1
Bromochloromethane	ug/L	50	52.3	105	81-116	
Bromodichloromethane	ug/L	50	54.0	108	78-117	
Bromoform	ug/L	50	58.4	117	65-122	
Bromomethane	ug/L	50	34.2	68	52-147 (C C
Carbon disulfide	ug/L	50	37.9	76	41-144	,0
Carbon tetrachloride	ug/L	50	51.7	103	59-120	
Chlorobenzene	ug/L	50	55.1	110	75-113	
Chloroethane	ug/L	50	35.9	72	49-151 (C.
Chloroform	ug/L	50	50.1	100	72-122	,0
Chloromethane	ug/L	50	36.2	72	46-144 (C
cis-1,2-Dichloroethene	ug/L	50	50.7	101	72-121	
cis-1,3-Dichloropropene	ug/L	50	54.4	109	78-116	
Dibromochloromethane	ug/L	50	57.4	115	70-110	
Dibromomethane	ug/L	50	52.4	105	75-125	
Dichlorodifluoromethane	ug/L	50	35.8	72	22-154	
Ethylbenzene	ug/L	50	53.7	107	70-113	
Hexachloro-1,3-butadiene	ug/L	50	51.2	102	59-121	
sopropylbenzene (Cumene)	ug/L	50	50.6	101	67-115	
m&p-Xylene	ug/L	100	108	108	72-115	
Methyl-tert-butyl ether	ug/L	50	42.4	85	72-131	
Methylene Chloride	ug/L	50	39.9	80	61-142	
n-Butylbenzene	ug/L	50	51.0	102	73-107	
n-Propylbenzene	ug/L	50	50.4	101	68-116	
Naphthalene	ug/L	50	47.2	94	70-118	
o-Xylene	ug/L	50	54.5	109	73-117	
-	ug/L	50	51.8	104	73-117	1
o-Isopropyltoluene	[1(1/1	טר				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

ABORATORY CONTROL SAMPLE:	168766					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Styrene	ug/L	50	56.0	112	72-118	
rt-Butylbenzene	ug/L	50	51.4	103	68-100	L1
trachloroethene	ug/L	50	50.7	101	60-128	
luene	ug/L	50	51.6	103	72-119	
ns-1,2-Dichloroethene	ug/L	50	44.5	89	56-142	
s-1,3-Dichloropropene	ug/L	50	56.5	113	79-116	CC
hloroethene	ug/L	50	52.2	104	69-117	
hlorofluoromethane	ug/L	50	39.5	79	27-173	
l acetate	ug/L	50	44.4	89	20-158	
d chloride	ug/L	50	38.9	78	43-143	
ene (Total)	ug/L	150	163	109	71-109	
Dichloroethane-d4 (S)	%.			92	68-153	
romofluorobenzene (S)	%.			103	79-124	
uene-d8 (S)	%.			101	69-124	

ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 168767					168768					
70 Units	026978005 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qual
ug/L	<1.0	50	50	58.5	57.7	117	115	74-113	1 M0	
ug/L	<1.0	50	50	57.2	55.3	114	111	65-118	3	
ug/L	<1.0	50	50	49.4	46.7	99	93	74-121	6	
ug/L	<1.0	50	50	52.7	50.6	105	101	80-117	4	
ug/L	<1.0	50	50	45.8	50.3	92	101	83-151	9	
ug/L	<1.0	50	50	46.3	44.6	93	89	45-146	4	
ug/L	<1.0	50	50	57.2	55.0	114	110	59-127	4	
ug/L	<1.0	50	50	52.6	54.3	105	109	67-103	3 M1	
ug/L	<1.0	50	50	51.7	49.8	103	100	71-123	4	
ug/L	<1.0	50	50	55.4	55.5	111	111	66-116	0	
ug/L	<1.0	50	50	52.4	51.3	105	103	68-116	2	
ug/L	<1.0	50	50	45.0	46.6	90	93	74-119	4	
ug/L	<1.0	50	50	57.1	54.8	114	110	83-115	4	
ug/L	<1.0	50	50	53.1	53.0	106	106	74-113	0	
ug/L	<1.0	50	50	53.6	51.2	107	102	74-129	5	
ug/L	<1.0	50	50	53.7	52.0	107	104	75-117	3	
ug/L	<1.0	50	50	52.7	51.1	105	102	67-116	3	
ug/L	<1.0	50	50	54.8	54.0	110	108	71-112	1	
ug/L	<1.0	50	50	54.6	52.8	109	106	74-112	3	
ug/L	<1.0	50	50	54.6	52.7	109	105	71-113	4	
ug/L	<1.0	50	50	50.0	53.5	100	107	63-133	7	
ug/L	<5.0	50	50	39.1	40.0	78	80	44-162	2	
ug/L	<1.0	50	50	<1.0	<1.0	0	0	76-121	M0	
ug/L	<1.0	50	50	52.8	52.1	106	104	74-101	1 M1	
ug/L	<5.0	50	50	48.0	46.3	96	93	32-183	3	
ug/L	<1.0	50	50	53.0	52.4	106	105	74-101	1 M0	
	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	7026978005 Units Result ug/L <1.0	MS T026978005 Spike Conc.	Vinits MS Result MSD Spike Conc. MSD Spike Conc. Units Result Conc. Spike Conc. ug/L <1.0	MS MSD Spike MS MSD Units Result Conc. Conc. Result	MS MSD Spike Spike Conc. Result Result	MS MSD Spike Spike Conc. Conc. Result Result Result % Rec MS MSD MS MSD MS MSD MS MS	NSD NSD	To26978005	MS Spike Conc. MS Spike Spike Conc. Result Result MS MSD MSD

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

MATRIX SPIKE & MATRIX SPIKI	E DUPLICATE	E: 16876	7		168768						
			MS	MSD							
		26978005	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	50	50.2	46.9	100	94	69-132	7	
Acetone	ug/L	20.0	50	50	44.0	36.4	48	33	23-188	19	
Benzene	ug/L	<1.0	50	50	54.7	52.5	109	105	73-119	4	
Bromobenzene	ug/L	<1.0	50	50	54.6	52.3	109	105	72-102	4 M0	
Bromochloromethane	ug/L	<1.0	50	50	55.0	53.2	110	106	81-116	3	
romodichloromethane	ug/L	<1.0	50	50	56.3	54.3	113	109	78-117	4	
romoform	ug/L	<1.0	50	50	58.4	58.1	117	116	65-122	1	
Bromomethane	ug/L	<1.0	50	50	39.9	40.1	80	80	52-147	1 CC	
arbon disulfide	ug/L	<1.0	50	50	43.4	42.4	87	85	41-144	2	
Carbon tetrachloride	ug/L	<1.0	50	50	57.9	56.0	116	112	59-120	3	
Chlorobenzene	ug/L	<1.0	50	50	57.3	56.7	115	113	75-113	1 M1	
Chloroethane	ug/L	<1.0	50	50	45.6	38.7	91	77	49-151	16 CC	
Chloroform	ug/L	<1.0	50	50	53.8	51.8	108	104	72-122	4	
Chloromethane	ug/L	4.8	50	50	42.5	39.1	75	69	46-144	8 CC	
is-1,2-Dichloroethene	ug/L	<1.0	50	50	50.7	52.7	101	105	72-121	4	
is-1,3-Dichloropropene	ug/L	<1.0	50	50	56.0	54.7	112	109	78-116	2	
ibromochloromethane	ug/L	<1.0	50	50	58.1	57.2	116	114	70-120	2	
ibromomethane	ug/L	<1.0	50	50	54.4	52.0	109	104	75-125	5	
ichlorodifluoromethane	ug/L	<1.0	50	50	38.1	36.4	76	73	22-154	5	
thylbenzene	ug/L	<1.0	50	50	57.3	56.4	115	113	70-113	2 M1	
exachloro-1,3-butadiene	ug/L	<1.0	50	50	54.6	57.7	109	115	59-121	6	
sopropylbenzene (Cumene)	ug/L	<1.0	50	50	54.4	52.5	109	105	67-115	3	
n&p-Xylene	ug/L	<2.0	100	100	115	114	115	114	72-115	1	
lethyl-tert-butyl ether	ug/L	<1.0	50	50	44.0	42.1	88	84	72-131	4	
lethylene Chloride	ug/L	<1.0	50	50	41.8	40.6	84	81	61-142	3	
-Butylbenzene	ug/L	<1.0	50	50	54.6	53.8	109	108	73-107	1 M1	
-Propylbenzene	ug/L	<1.0	50	50	54.0	52.2	108	104	68-116	4	
laphthalene	ug/L	<1.0	50	50	48.5	50.4	97	101	70-118	4	
-Xylene	ug/L	<1.0	50	50	58.3	57.4	117	115	73-117	2	
-Isopropyltoluene	ug/L	<1.0	50	50	54.9	53.8	110	108	73-101	2 M0	
ec-Butylbenzene	ug/L	<1.0	50	50	54.3	53.1	109	106	72-103	2 M1	
Styrene	ug/L	<1.0	50	50	58.8	57.7	118	115	72-118	2	
ert-Butylbenzene	ug/L	<1.0	50	50	54.8	53.3	110	107	68-100	3 M0	
etrachloroethene	ug/L	<1.0	50	50	55.7	54.5	111	109	60-128	2	
oluene	ug/L	<1.0	50	50	56.1	54.1	112	108	72-119	4	
rans-1,2-Dichloroethene	ug/L	<1.0	50	50	48.9	48.8	98	98	56-142	0	
ans-1,3-Dichloropropene	ug/L	<1.0	50	50	58.1	56.9	116	114	79-116	2 CC	
richloroethene	ug/L	<1.0	50	50	57.7	55.5	115	111	69-117	4	
richlorofluoromethane	ug/L	<1.0	50	50	46.1	43.5	92	87	27-173	6	
inyl acetate	ug/L	<1.0	50	50	38.2	43.4	76	87	20-158	13	
inyl chloride	ug/L	<1.0	50	50	44.0	42.0	88	84	43-143	5	
(ylene (Total)	ug/L	<2.0	150	150	173	171	115	114	71-109	1	
,2-Dichloroethane-d4 (S)	%.		100	100			96	96	68-153	•	
-Bromofluorobenzene (S)	%.						103	104	79-124		
oluene-d8 (S)	%.						100	102	69-124		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Vails Gate Manufacture Project:

Pace Project No.: 7026978

QC Batch: 36421 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005

METHOD BLANK: 169837 Matrix: Water

169839

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005

Blank

Reporting

Parameter Limit Qualifiers Units Result Analyzed Sulfate <5.0 5.0 08/24/17 08:00 mg/L

LABORATORY CONTROL SAMPLE: 169838

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 10 9.9 90-110

_		7027140001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Sulfate	mg/L	13.0	10	22.6	96	80-120	

MATRIX SPIKE SAMPLE: 169841

		7026978005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Sulfate	mg/L	38.5	10	49.0	105	80-120	

SAMPLE DUPLICATE: 169840

MATRIX SPIKE SAMPLE:

Parameter	Units	7027140001 Result	Dup Result	RPD	Qualifiers
Sulfate	mg/L	13.0	12.9	1	

SAMPLE DUPLICATE: 169842

Date: 08/28/2017 03:21 PM

		7026978005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Sulfate	mg/L	38.5	38.4	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

QC Batch: 35105

05 Analysis Method:

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005

METHOD BLANK: 163524 Matrix: Water

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005

Blank

Reporting

EPA 353.2

Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.050 0.050 08/11/17 23:04

LABORATORY CONTROL SAMPLE: 163525

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrite as N mg/L 1.1 107 90-110

MATRIX SPIKE SAMPLE: 163526

7026978005 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 .5 0.50 100 90-110 Nitrite as N mg/L

MATRIX SPIKE SAMPLE: 163529

		7026754019	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrite as N	mg/L	<0.050	.5	0.51	103	90-110	

SAMPLE DUPLICATE: 163527

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

SAMPLE DUPLICATE: 163530

Date: 08/28/2017 03:21 PM

		7026754019	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Nitrite as N	mg/L	<0.050	<0.050		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

QC Batch: 35110 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, preserved

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005

METHOD BLANK: 163546 Matrix: Water

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005

Blank

Reporting Parameter Limit Units Result Analyzed

Qualifiers

Nitrate-Nitrite (as N) < 0.050 0.050 08/12/17 02:12 mg/L

LABORATORY CONTROL SAMPLE: 163547

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrate-Nitrite (as N) mg/L 1.0 105 90-110

MATRIX SPIKE SAMPLE: 163548

7026978005 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 .5 0.50 Nitrate-Nitrite (as N) 101 90-110 mg/L

SAMPLE DUPLICATE: 163549

Date: 08/28/2017 03:21 PM

7026978005 Dup RPD Parameter Units Result Result Qualifiers < 0.050 Nitrate-Nitrite (as N) mg/L < 0.050

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

QC Batch: 35825 Analysis Method: EPA 9060A QC Batch Method: **EPA 9060A** Analysis Description: 9060 TOC 7026978001, 7026978002, 7026978003, 7026978004, 7026978005 Associated Lab Samples:

METHOD BLANK: 166984 Matrix: Water

Associated Lab Samples: 7026978001, 7026978002, 7026978003, 7026978004, 7026978005

_		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Mean Total Organic Carbon	mg/L	<1.0	1.0	08/18/17 18:01	
Total Organic Carbon	mg/L	<1.0	1.0	08/18/17 18:01	
Total Organic Carbon	mg/L	<1.0	1.0	08/18/17 18:01	
Total Organic Carbon	mg/L	<1.0	1.0	08/18/17 18:01	
Total Organic Carbon	mg/L	<1.0	1.0	08/18/17 18:01	

LABORATORY CONTROL SAMPLE:	166985					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	10	9.9	99	85-115	
Total Organic Carbon	mg/L	10	9.9	99	85-115	
Total Organic Carbon	mg/L	10	9.9	99	85-115	
Total Organic Carbon	mg/L	10	9.9	99	85-115	
Total Organic Carbon	mg/L	10	9.9	99	85-115	

MATRIX SPIKE SAMPLE:	166986						
Parameter	Units	7026094025 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
							Qualificio
Mean Total Organic Carbon	mg/L	5.6	10	16.1	105	75-125	
Total Organic Carbon	mg/L	5.5	10	16.0	105	75-125	
Total Organic Carbon	mg/L	6.5	10	16.2	97	75-125	
Total Organic Carbon	mg/L	5.2	10	16.2	110	75-125	
Total Organic Carbon	mg/L	5.3	10	15.9	106	75-125	

MATRIX SPIKE SAMPLE:	166988						
_		7026978005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	1.3	10	11.2	99	75-125	
Total Organic Carbon	mg/L	1.2	10	11.1	99	75-125	
Total Organic Carbon	mg/L	1.3	10	11.1	99	75-125	
Total Organic Carbon	mg/L	1.4	10	11.3	99	75-125	
Total Organic Carbon	mg/L	1.3	10	11.4	101	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

5.3

5.2

1

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Total Organic Carbon

Date: 08/28/2017 03:21 PM

SAMPLE DUPLICATE: 166987 7026094025 Dup RPD Parameter Units Result Result Qualifiers Mean Total Organic Carbon 5.6 mg/L 5.3 6 6.5 **Total Organic Carbon** 18 mg/L 5.4 5.2 5.3 **Total Organic Carbon** mg/L 1 Total Organic Carbon mg/L 5.5 5.3 3

mg/L

SAMPLE DUPLICATE: 166989					
		7026978005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Mean Total Organic Carbon	mg/L	1.3	1.1	16	
Total Organic Carbon	mg/L	1.3	1.1	18	
Total Organic Carbon	mg/L	1.4	1.3	8	
Total Organic Carbon	mg/L	1.3	<1.0		
Total Organic Carbon	mg/L	1.2	1.0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Vails Gate Manufacture

Pace Project No.: 7026978

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SAMPLE QUALIFIERS

Sample: 7026978001

[1] 2-Chloroethylvinyl ether not reportable due to improper sample preservation.

Sample: 7026978002

[1] 2-Chloroethylvinyl ether not reportable due to improper sample preservation.

Sample: 7026978003

[1] 2-Chloroethylvinyl ether not reportable due to improper sample preservation.

Sample: 7026978004

[1] 2-Chloroethylvinyl ether not reportable due to improper sample preservation.

Sample: 7026978005

[1] 2-Chloroethylvinyl ether not reportable due to improper sample preservation.

Sample: 7026978006

[1] 2-Chloroethylvinyl ether not reportable due to improper sample preservation.

Sample: 168766

[1] 2-Chloroethylvinyl ether not reportable due to improper sample preservation.

Sample: 168767

[1] 2-Chloroethylvinyl ether not reportable due to improper sample preservation.

Sample: 168768

Date: 08/28/2017 03:21 PM

[1] 2-Chloroethylvinyl ether not reportable due to improper sample preservation.

QUALIFIERS

Project: Vails Gate Manufacture

Pace Project No.: 7026978

ANALYTE QUALIFIERS

Date: 08/28/2017 03:21 PM

CC	The continuing calibration for this compound is outside of method control limits. The result is estimated.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
L2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
M0	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
c2	Acid preservation may not be appropriate for the analysis of 2-Chloroethylvinyl ether.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Vails Gate Manufacture

Pace Project No.: 7026978

Date: 08/28/2017 03:21 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7026978001	FIELD DUPLICATE-01	EPA 200.7	36657	EPA 200.7	36678
7026978002	MW-5A/AR	EPA 200.7	36657	EPA 200.7	36678
7026978003	MW-14	EPA 200.7	36657	EPA 200.7	36678
7026978004	MW-16	EPA 200.7	36657	EPA 200.7	36678
7026978005	MW-CHA-RFI-7	EPA 200.7	36657	EPA 200.7	36678
7026978001	FIELD DUPLICATE-01	EPA 200.7	36242		
7026978002	MW-5A/AR	EPA 200.7	36242		
7026978003	MW-14	EPA 200.7	36242		
7026978004	MW-16	EPA 200.7	36242		
7026978005	MW-CHA-RFI-7	EPA 200.7	36242		
7026978001	FIELD DUPLICATE-01	EPA 8260C/5030C	36189		
7026978002	MW-5A/AR	EPA 8260C/5030C	36189		
7026978003	MW-14	EPA 8260C/5030C	36189		
7026978004	MW-16	EPA 8260C/5030C	36189		
7026978005	MW-CHA-RFI-7	EPA 8260C/5030C	36189		
7026978006	TRIP BLANK-01	EPA 8260C/5030C	36189		
7026978001	FIELD DUPLICATE-01	EPA 300.0	36421		
7026978002	MW-5A/AR	EPA 300.0	36421		
7026978003	MW-14	EPA 300.0	36421		
7026978004	MW-16	EPA 300.0	36421		
7026978005	MW-CHA-RFI-7	EPA 300.0	36421		
7026978001	FIELD DUPLICATE-01	EPA 353.2	35110		
7026978002	MW-5A/AR	EPA 353.2	35110		
7026978003	MW-14	EPA 353.2	35110		
7026978004	MW-16	EPA 353.2	35110		
7026978005	MW-CHA-RFI-7	EPA 353.2	35110		
7026978001	FIELD DUPLICATE-01	EPA 353.2	35105		
7026978002	MW-5A/AR	EPA 353.2	35105		
7026978003	MW-14	EPA 353.2	35105		
7026978004	MW-16	EPA 353.2	35105		
7026978005	MW-CHA-RFI-7	EPA 353.2	35105		
7026978001	FIELD DUPLICATE-01	EPA 9060A	35825		
7026978002	MW-5A/AR	EPA 9060A	35825		
7026978003	MW-14	EPA 9060A	35825		
7026978004	MW-16	EPA 9060A	35825		
7026978005	MW-CHA-RFI-7	EPA 9060A	35825		

Pace Analytical *

Schenectady, NY 12308

(518) 346-4592

2190 Technology Dr.

New York Office

CHAIN-OF-CUSTODY / Analytical Request Documen

Section C

Section B

Section A

WO#:7026978

10801

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

N/A DA Manganese *** Methane, Ethane, & Etheno (RSK-175) 0 N/A poetul saldures *Specify Metals/Inorganics: Iron Pace Laboratory I.D. SAMPLE CONDITION'S Sealed Cooler D' 0 Custody Received on 9.0(1R) New York State O° ni qmeT REGULATORY PROGRAM DRINKING WATER TIME 15:05 OTHER REQUESTED ANALYSES Filtered (Y/N) L1/01/8 GROUND WATER DATE 11/18 RCRA LOCATION ×/1 BSK-175 (Gases)*** × × × × × x x x x x SITE × × Total Organic Carbor × 1× ACCEPTED BY / AFFILIATION Sulfate NPDES UST × nM & 97 bevlossiQ ~ × × × × Total Fe & Mn × × × × × Nitrate erpsnol Leader Professional Services la₂S₂O₃ HOB PRINT Name of SAMPLER: Matt Broker (PACE) IOI × EON × *OSZ 1505 Pace Quote Reference: #00012704 6:8 TIME × Keith Keller npreserved SAMPLER NAME AND SIGNATURE 5 09 42 12 12 # OF CONTAINERS AMPLE TEMP AT COLLECTION SINIT 6/10/17 DATE Vails Gate Manufactur Pace Project Manager: Company Name: SAMPLE Pace Profile # 320 A A 1130 0/2 02 Attention: Address: RELINQUISHED BY / AFFILIATION PAC SAMPLE 8hol17 Til olla 11012 11000 DATE Plolit TI OIL Required Project Information: Report To: Keith Keller с=сомь G O G O G G SAMPLE TYPE M M M M W M MATRIX CODE na Standard 2-Week Project Number: Project Name: Copy To: Purchase Order No.: WW WY WW WY AR AR AR OLL MW-CHA-RFI-7 MS/MSD Company: Leader Professional Services Field Duplicate-01 2813 Wehrle Drive, Suite 1 Trip Blank-01 MW-5A/AR ADDITIONAL COMMENTS MW-14 MW-16 Williamsville, NY 14221 Fax: na (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE NYSDEC DER-10 EQuIS EDD SAMPLE ID Requested Due Date/TAT: Required Olient Information: 716-565-0963 Section D Client Information Address: Email To: Phone: E 4 P D **6**0 ′′ O Page 35 of 47 #100

901

DATE Signed (MM / DD / YY): 8/10/17

SIGNATURE of SAMPLER:

PACE Analytical Services, Inc. Ground water Field Log **Leader Consulting** Client: Vails Gate Manufacturing PACE ID Project: MW-5A/AR Field Dupe 1 Well ID .: Yes Locked: Good Condition of Well: Flush Peristaltic Pump Lock ID: Method of Evacuation: Peristaltic Pump Method of Sampling: inches Diameter of Well 2.00 A. TOP Well Depth Measured 6.50 feet B. feet 0.60 C. Depth to Water 5.90 feet Length of Water Column (calculated) D. Conversion Factor 0.16 WATER B Ε LEVEL 0.94 gallons Well Volume (calculated) D No. of Volumes to be Evacuated 3 Total Volume to be Evacuated 2.82 gallons Actual Volume Evacuated 3.00 gallons feet Installed Well Depth (if known) N/A E. SILT N/A feet F. Depth of Silt (calculated % Recharge: Final Field Initial Sampling Measurements Evacuation Initial Depth to Water 0.6 feet 8/10/17 8/10/17 Date 1.93 feet 11:15 Recharge Depth to Water Time 10:45 -108 mV -93 EH % C 2nd water column height Temperature 23.5 24.5 7.2 SU 1st water column height 7.15 pH 875.6 uS Specific Cond. 761.2 N/A feet NTU Elevation(Top of Casing) **Turbidity** 79.3 9.16 N/A feet 3.64 3.17 G.W. Elevation= Dissolved Oxygen G.W.Elevation =Top of Case Elev-Total Depth clear cloudy **Appearance**

23C sunny

Field Dupe 11:20

Weather:

Observations:

cloudy to clear

Sampler:

Signature:

Matt Broker

PACE Analytical Services, Inc. Ground water Field Log **Leader Consulting** Client: **Vails Gate Manufacturing** PACE ID Project: MW-14 Well ID .: Locked: Yes Good Condition of Well: Bailer Lock ID: Flush Method of Evacuation: Bailer Method of Sampling: 2.00 inches Diameter of Well A. TOP Well Depth Measured 13.00 feet B. 4.09 feet Depth to Water C. feet Length of Water Column (calculated) 8.91 D. 0.16 WATER Conversion Factor B LEVEL E gallons Well Volume (calculated) 1.43 D No. of Volumes to be Evacuated 3 Total Volume to be Evacuated 4.29 gallons Dry @ 2.0 gallons Actual Volume Evacuated feet N/A E. Installed Well Depth (if known) SILT N/A feet F. Depth of Silt (calculated % Recharge: Final Initial Field Sampling Evacuation Measurements 4.09 feet Initial Depth to Water 8/10/17 8/10/17 Date feet 11:30 Recharge Depth to Water 9.69 Time 10:30 -80 mV EH -91 % C 2nd water column height 21.9 23.2 Temperature 6.84 SU 1st water column height 6.93 pH 871.4 uS Specific Cond. 727.5 feet N/A NTU Elevation(Top of Casing) 4.71 92.2 **Turbidity** feet 3.28 2.97 G.W. Elevation= N/A Dissolved Oxygen G.W.Elevation =Top of Case Elev-Total Depth cloudy clear Appearance Sampler: 23C sunny Weather: Matt Broker Well between piller 2 and 3 slow recharge oily sheen Observations: Signature: Well located in Unit 4-5 Oil all over bailer. Changed bailers before sampling

PACE Analytical Services, Inc. Ground water Field Log **Leader Consulting** Client: Vails Gate Manufacturing PACE ID Project: MW-16 Well ID .: Yes Good Locked: Condition of Well: Flush Peristaltic Pump Lock ID: Method of Evacuation: Peristaltic Pump Method of Sampling: inches Diameter of Well 2.00 A. TOP feet B. Well Depth Measured 13.63 3.19 feet C. Depth to Water feet Length of Water Column (calculated) 10.44 D. 0.16 Conversion Factor В WATER E LEVEL Well Volume (calculated) 1.67 gallons D 3 No. of Volumes to be Evacuated gallons Total Volume to be Evacuated 5.01 gallons Actual Volume Evacuated Dry @ 1.5 N/A feet Installed Well Depth (if known) SILT E. F. N/A feet Depth of Silt (calculated Final % Recharge: Initial Field Sampling Evacuation Measurements Initial Depth to Water 3.19 feet 8/10/17 8/10/17 Date 12.96 12:10 Recharge Depth to Water Time 11:40 29 m٧ -39 EH % C 2nd water column height 22.7 Temperature 21 SU 1st water column height 7.6 7.05 pH 751.6 uS 551.6 Specific Cond. N/A feet NTU Elevation(Top of Casing) > 1000 **Turbidity** 37.4 N/A feet G.W. Elevation= Dissolved Oxygen 2.45 7.08 G.W.Elevation =Top of Case Elev-Total Depth cloudy cloudy Appearance Sampler: 23C sunny Weather: Matt Broker sample cloudy Observations: Signature:

PACE Analytical Services, Inc. Ground water Field Log **Leader Consulting** Client: **Vails Gate Manufacturing** PACE ID Project: MW-CHA-RFI-7 MS/MSD Well ID .: Yes Locked: Good Condition of Well: Flush Peristaltic Pump Lock ID: Method of Evacuation: Peristaltic Pump Method of Sampling: inches Diameter of Well 2.00 A. TOP feet B. Well Depth Measured 41.67 0.00 feet C. Depth to Water feet 41.67 Length of Water Column (calculated) D. 0.16 Conversion Factor WATER В E LEVEL 6.67 gallons Well Volume (calculated) D 3 No. of Volumes to be Evacuated gallons Total Volume to be Evacuated 20.01 gallons Actual Volume Evacuated 15.00 N/A feet Installed Well Depth (if known) E. SILT N/A feet F. Depth of Silt (calculated % Recharge: Final Initial Field Sampling Evacuation Measurements feet Initial Depth to Water 8/10/17 8/10/17 Date 25.6 13:20 Recharge Depth to Water Time 12:20 -18 mV -73 EH % 2nd water column height C 21.5 18.8 Temperature 1st water column height 7.86 SU 7.56 рН 1008 uS Specific Cond. 918.6 N/A feet NTU Elevation(Top of Casing) 6.17 **Turbidity** 5.49 N/A feet G.W. Elevation= 2.1 4.47 Dissolved Oxygen G.W.Elevation =Top of Case Elev-Total Depth clear clear **Appearance**

23C sunny

sulfur odor

Weather:

Observations:

sample clear

Matt Broker

Sampler:

Signature:

PACE ANALYICAL INC. **FIELD CALIBRATION SHEET**

DATE:

8/10/17

SITE:

Vails Gate Manufacturing

TECHNICIAN:

Matt Broker

WEATHER: 23C sunny

INSTRUMENT:

PH

Myron Ultrameter II 6PFCe

CONDUCTIVITY

Myron Ultrameter II 6PFCe

TEMPERATURE

Myron Ultrameter II 6PFCe

DISSOLVED OXYGEN

Sper Scientific 850041

TURBIDITY

Hanna HI 98703

INSTRUMENT	STANDARD	INTIAL	ADJUSTED	TIME	NOTES
ANALYTE		READING	READING	999289446	
	4.00	3.92	4.00	1001	
Ph					
	7.00	7.20	7.00	1000	
	10.00	10.03	10.00	1002	
Conductivity	1413	1432	1413	1003	
Turbidity	<0.10	0.13	<0.10	1004	
	15	15.1	15	1005	
	100	92	100	1006	
	750	757	750	1007	

NOTES:

Sample Condition Upon Receipt

Longiasins Laboratory	Client I	Jame'		Proje	WO#:7026978
	Ollette	t arrior			PM: CNP Due Date: 08/25/17
Courier: Fed Ex UPS USPS C	lient Comm	ercial \square Pa	ce Dthe	·r	CLIENT: LPS
Courier: Fed Ex OPS OSPS O	пент Поонин	croidi [] . a			OLILIVI. L. 9
Tracking #:	V DNo			Seals intact:	Yes No
Custody Seal on Cooler/Box Present:		. 🗀	Chihar	Cours mass E	Type of Ice: Wet Blue None
Packing Material: Bubble Wrap Bubble			ptner		Samples on ice, cooling process has begun
Thermometer Used: TH092		ion Factor:		1/80)	
Cooler Temperature (°C):	Cooler T	emperature	Correcte	d (°C):	Date/Time 5035A kits placed in freezer
Temp should be above freezing to 6.0°C					1 (80 8)W
USDA Regulated Soil					Is of person examining contents: OY OVV
Did samples originate in a quarantine zone within t	he United States	: AL, AR, CA,	FL, GA, ID,	LA, MS, NC,	including Hawaii and Puerto Rico)? Yes No
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?	fill out a Re	ulated Soi	Checklis	t (F-LI-C-010) an	nd include with SCUR/COC paperwork.
If fes to either question	, 1111 0 0 0 0 1 1 1 1	5			COMMENTS:
Chain of Custody Present:	Dixes	□No		1.	r
Chain of Custody Filled Out:	Yes	□No		2.	
Chain of Custody Relinquished:	Ÿes	□No		3.	
Sampler Name & Signature on COC:	Nyes	□No	□N/A	4.	
Samples Arrived within Hold Time:	DYes	□No		5.	
Short Hold Time Analysis (<72hr):	DYes	□No		6.	
Rush Turn Around Time Requested:	□Yes	No		7.	:
Sufficient Volume: (Triple volume provided for MS/	MSD DYes	□No		8.	
Correct Containers Used:	TYes	□No		9.	
²-Pace Containers Used:	. Byes	□No			
Containers Intact:	Yes	□No		10.	
Filtered volume received for Dissolved tests	Byes	□No	□N/A	11. Note if	sediment is visible in the dissolved container.
Sample Labels match COC:	QYes	□No		12.	
-Includes date/time/ID/Analysis Matrix S	(W) OIL				
All containers needing preservation have been che	cked Dyes	□No	□N/A	13. □ HN	IO ₃ □ H₂SO₄ □ NaOH □ HCI
pH paper Lot # HC601354					1
All containers needing preservation are found to be	e in			Sample #	
compliance with EPA recommendation? (HNO₃, H₂SO₄, HCI, NaOH>9 Sulfide,	□Yes	□No	□N/A		İ
NAOH>12 Cvanide)	,				
Exceptions: VOA, Coliform, TOC/DOC, Oil and GriDRO/8015 (water).	ease,			Initial when comp	pleted: Lot # of added preservative: Date/Time preservative added
Per Method, VOA pH is checked after analysis					
Samples checked for dechlorination:	□Yes	□No	DWA	14.	
Residual chlorine strips Lot #				Positive	e for Res. Chlorine? Y N
Headspace in VOA Vials (>6mm):	□Yes	DINO	□N/A	15.	
Trip Blank Present:	Dives	□No	□N/A	16.	
Trip Blank Custody Seals Present	□Yes	□No	ANA		
Pace Trip Blank Lot # (if applicable):					
Client Notification/ Resolution:				Field Data Requ	uired? Y / N
Person Contacted:				Date/	Time:
Comments/ Resolution:					

Leader Consulting Services Inc

2813 Wehrle Drive Williamsville, NY 14221

Attn To: Keith Keller

Collected :8/10/2017 11:20:00 AM Received :8/11/2017 9:50:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1708014-001

Client Sample ID: FIELD DUPLICATE-01

Sample Information:

Type: Aqueous

Origin:

Analytical Method: RSK-175 :							Analyst: MaiN
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Ethane	3.4		1	μg/L		08/12/2017 3:33 PM	Container-01 of 03
Ethene	< 1.0		1	μg/L		08/12/2017 3:33 PM	Container-01 of 03
Methane	4,100	D	215	μg/L		08/12/2017 4:57 PM	Container-01 of 03
Surr: Propene	78.0		1	%Rec	Limit 21-187	08/12/2017 3:33 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

Date Reported:

r = Reporting limit below calibration range. Value estimated.

8/28/2017

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of age 42 of 47

Leader Consulting Services Inc

2813 Wehrle Drive Williamsville, NY 14221

Collected :8/10/2017 11:15:00 AM Received :8/11/2017 9:50:00 AM

Keith Keller

Collected By CLIENT

Attn To:

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Lab No. : 1708014-002 Client Sample ID: MW-5A/AR

Analytical Method: RSK-175 : Analyst: MaiN Parameter(s) Analyzed: Container: Qualifier D.F. Results <u>Units</u> Ethane 3.3 08/12/2017 3:46 PM Container-01 of 03 1 µg/L Ethene 1 μg/L 08/12/2017 3:46 PM Container-01 of 03 < 1.0 08/12/2017 5:05 PM Container-01 of 03 Methane 4,400 D 215 µg/L Surr: Propene 68.0 1 %Rec Limit 21-187 08/12/2017 3:46 PM Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Date Reported: 8/28/2017 Page 2 of age 43 of 47

Leader Consulting Services Inc

2813 Wehrle Drive Williamsville, NY 14221

Attn To: Keith Keller Collected :8/10/2017 11:30:00 AM

:8/11/2017 9:50:00 AM

Collected By CLIENT

Received

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information: Lab No. : 1708014-003 Type: Aqueous

Client Sample ID: MW-14

Origin:

Analytical Method: RSK-175:							Analyst: MaiN
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Ethane	< 1.0		1	μg/L		08/12/2017 3:55 PM	Container-01 of 03
Ethene	< 1.0		1	μg/L		08/12/2017 3:55 PM	Container-01 of 03
Methane	4,000	D	510	μg/L		08/12/2017 5:25 PM	Container-01 of 03
Surr: Propene	104		1	%Rec	Limit 21-187	08/12/2017 3:55 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

Date Reported:

r = Reporting limit below calibration range. Value estimated.

8/28/2017

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of age 44 of 47

Leader Consulting Services Inc

2813 Wehrle Drive Williamsville, NY 14221

Collected :8/10/2017 12:10:00 PM Received :8/11/2017 9:50:00 AM

Keith Keller

Collected By CLIENT

Attn To:

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Lab No. : 1708014-004 Type: Aqueous

Origin:

Analytical Method: RSK-175:						Analyst: MaiN
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Ethane	< 1.0	1	μg/L		08/12/2017 4:04 PM	Container-01 of 03
Ethene	< 1.0	1	μg/L		08/12/2017 4:04 PM	Container-01 of 03
Methane	1.0	1	μg/L		08/12/2017 4:04 PM	Container-01 of 03
Surr: Propene	72.0	1	%Rec	Limit 21-187	08/12/2017 4:04 PM	Container-01 of 03

Client Sample ID: MW-16

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Date Reported: 8/28/2017 Page 4 of age 45 of 47

:8/11/2017 9:50:00 AM

NYSDOH ID#10478 www.pacelabs.com

Leader Consulting Services Inc

2813 Wehrle Drive Williamsville, NY 14221

Attn To: Keith Keller Collected :8/10/2017 1:20:00 PM

Collected By CLIENT

Received

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: RSK-175:						Analyst: MaiN
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Ethane	< 1.0	1	μg/L		08/12/2017 4:12 PM	Container-01 of 09
Ethene	< 1.0	1	μg/L		08/12/2017 4:12 PM	Container-01 of 09
Methane	2.2	1	μg/L		08/12/2017 4:12 PM	Container-01 of 09
Surr: Propene	52.0	1	%Rec	Limit 21-187	08/12/2017 4:12 PM	Container-01 of 09

Lab No. : 1708014-005

Client Sample ID: MW-CHA-RFI-7

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Date Reported: 8/28/2017 Page 5 of age 46 of 47

WorkOrder:

1708014

Certifications

STATE	CERTIFICATION#
NEW YORK	10478
NEW JERSEY	NY158
CONNECTICUT	PH-0435
MARYLAND	208
MAS S ACHUS ETTS	MNY026
NEW HAMPS HIRE	2987
RHODE IS LAND	LAO00340
PENNS YLVANIA	68-00350

Page 6 of 6

Attachment B Data Validation Summary

Data Usability Summary Report August 2017 Vails Gate 737,004

Data Usability

The Quality Assurance Project Plan ("QAPP") was prepared for this project by Clough Harbor & Associates, LLP. The QAPP presents the policies, organization, objectives, functional activities, and specific Quality Assurance ("QA") and Quality Control ("QC") measures designed to achieve the data quality goals associated with this investigation. The QAPP identifies procedures for sample preparation and handling, sample chain-of-custody, laboratory analyses, and reporting that were implemented during this investigation to ensure the accuracy and integrity of the data generated during the investigation.

Leader Consulting Services, Inc. conducted the Site Investigation and Remedial Activities of the Vails Gate site.

Data Summary

The Data Usability Review and Data Validation Compliance Chart has been completed for the laboratory deliverable packages generated by Pace Analytical Laboratories, Inc. ("Pace"), pertaining to samples collected at the Vails Gate Site on August 10, 2017. A total of four (4) samples were collected during the August 2017 sampling event and analyzed for VOCs, metals, and wet chemistry. The following USEPA Methodologies were used to analyze these samples for the following analytes:

Volatiles (VOCs) USEPA Method 8260

Dissolved Iron & Manganese by ICP USEPA Method 200.7 Rev. 4.4

Miscellaneous Field Analysis Dissolved Oxygen, pH, Reduction Potential, Temperature,

Turbidity

Total Organic Carbon ("TOC") USEPA SM 5310B-00.11

Sulfate USEPA 300.0 Dissolved Gases RSK-175

Trip blank, field duplicate, surrogates, internal standards, reference samples, matrix spikes, and matrix spike duplicates were included and processed.

Samples were collected and received on the following schedule:

Sample Package	Date Collected	Date Received by	Sample Matrix	Requested Analyses	Sample Temperature
ID °		Pace		J	(°C)
7026978	08/10/2017	08/10/2017 (Schenectady) 08/11/2017 (Long Island)	Water	TCL 8260 Metals Misc. Field Analysis TOC Sulfate Dissolved Gases	1.0°C (08/10/2017) 1.0°C (08/11/2017)

Data usability and validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Inorganic and Organic Data Review. The following items were reviewed:

- Data Completeness;
- Custody Documentation;
- Holding Times;
- Sample Blanks Review;
- Field Duplicate Samples;
- Matrix Spike Samples and Duplicates; and
- Control Spike/Laboratory Control Samples.

Those items showing deficiencies, if any, are discussed in the attached Data Validation Compliance Chart. All others were found to be acceptable as outlined in the above-mentioned usability procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the reported data, and generated in compliance with protocol requirements.

The following sample results are acceptable but positive results may be considered estimated due to continuing calibration:

- ➤ MW-14: Chloroethane and chloromethane
- ➤ MW-5A/AR: Chloroethane
- ➤ MW-CHA-RFI-7: Chloromethane

There were detectable (or positive) levels of chloroethane and chloromethane in the collected samples.

In summary, sample processing was conducted with compliance to protocol requirements and with adherence to quality criteria and the reported results are considered "usable".

The Data Validation Compliance Chart is also included with this report.

Custody Documentation

Chain of Custody (COC) forms are used to document the history of sample possession from the time the sample containers leave their point of origin (usually the laboratory performing the analyses) to the time the samples are received by the laboratory. COCs are considered legal documents.

The Chain of Custody accurately documents the sample collection.

Accuracy, Precision, and Sensitivity of Analyses

The fundamental QA objective with respect to the accuracy, precision, and sensitivity of analytical data is to achieve the QC acceptance of each analytical protocol. Accuracy and precision are determined using matrix spike ("MS") and matrix spike duplicate ("MSD") samples.

Accuracy is a measure of the difference of a set of analytical results to the accepted or expected values. Accuracy was assessed by using the MS/MSD and surrogate spike recovery data. Recovery values were reported within the QC limits for each analytical parameter group.

Precision is a measure of the mutual agreement between measurements of the same parameter.

The sample results for the Vails Gate Project are considered "usable".

Completeness, Representativeness, and Comparability of Data

Completeness is the measure of the amount of valid data obtained from a measurement system compared with the amount expected to be obtained under normal conditions. Review of the analytical data packages provided by Pace indicates that the requested parameters were analyzed for and reported by the laboratory for each sample submitted under proper chain-of-custody procedures. Based upon MEHC's review of the laboratory data, a usable data level was achieved.

Representativeness of the data is obtained through the design of the sampling program and the adherence to established sample collection procedures, sample-handling SOPs, and analytical procedures. The sampling program outlined in the Work Plan was designed to provide for data representative of site conditions taking into consideration past disposal practices, existing data from past studies, and the physical site setting. Each of the monitoring wells was installed in accordance with established industry and regulatory protocols.

The laboratory maintained all holding times for the specific analytical protocols.

However, due to improper sample preservation, 2-chlorovinyl ether is not reportable. This is not an issue as this is not a contaminant of concern on this project site.

Comparability of the data is derived from the evaluation of field duplicate samples and the adherence to established sampling and analytical procedures. A field duplicate is an independent sample collected as close as possible to the original aliquot from the same sampling point. All of the groundwater samples were analyzed utilizing standardized USEPA methodologies performed in accordance with the latest version of the NYSDEC ASP protocols.

Quality Control Checks

Holding/Storage Blanks

Holding blanks are samples of reagent water prepared by the laboratory and carried through the field sampling and sample handling and shipping process. Holding blanks are analyzed as separate samples to evaluate the level of contamination associated with the collection, handling, and/or shipping of the VOC sample aliquots.

For this investigation, a holding blank was not submitted with samples collected on August 10, 2017.

Trip Blanks

A trip blank is provided with each shipping container of samples to be analyzed for volatile organic compounds (VOCs). Analysis of trip blanks determines whether a sample bottle was contaminated during shipment from the manufacturer, while in bottle storage, in shipment to the laboratory, or during analysis at a laboratory. Trip blanks consist of an aliquot of distilled water sealed in a sample bottle, prepared by the analytical laboratory prior to shipping the sample bottles. A Trip blank was included with the shipment of aqueous samples for VOC analysis.

For this investigation, a trip blank was submitted with the VOC aliquot of the groundwater samples collected on August 10, 2017. No VOC compounds were detected in the trip blank analyzed during this investigation.

Field Blanks

Given that dedicated sampling equipment was utilized for the collection of each groundwater sample, field blanks were not collected or analyzed during this sampling event.

Method Blanks

A method blank is a sample of reagent water, which is carried through the analytical procedure alongside the project samples to determine the level of laboratory background and reagent contamination.

For this investigation, a method blank was submitted with the VOC aliquot of the groundwater samples collected on August 10, 2017. No VOC compounds were detected in the method blank analyzed during this investigation.

Matrix Spike/Matrix Spike Duplicate Samples

For the Vails Gate project, one (1) MS/MSD was collected and analyzed. The following sample results are acceptable:

- Sample MW-CHA-RFI-7 was submitted for matrix spike/ matrix spike duplicate (MS/MSD) analysis. Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits for 1,1,1,2-tetrachloroethane, 2-chloroethylvinyl ether, 4-chlorotoluene, bromobenzene, p-isopropyltoluene, tert-butylbenzene. There were no detectable levels of these compounds in the samples.
- Matrix spike recovery exceeded QC limits for 1,2,3-trichlorobenzene, 2-chlorotoluene, chlorobenzene, ethylbenzene, n-butylbenzene, sec-butylbenzene. Batch accepted based on laboratory control sample (LCS) recovery.

These results are detailed in the Data Validation Compliance Chart.

Surrogate Analyses

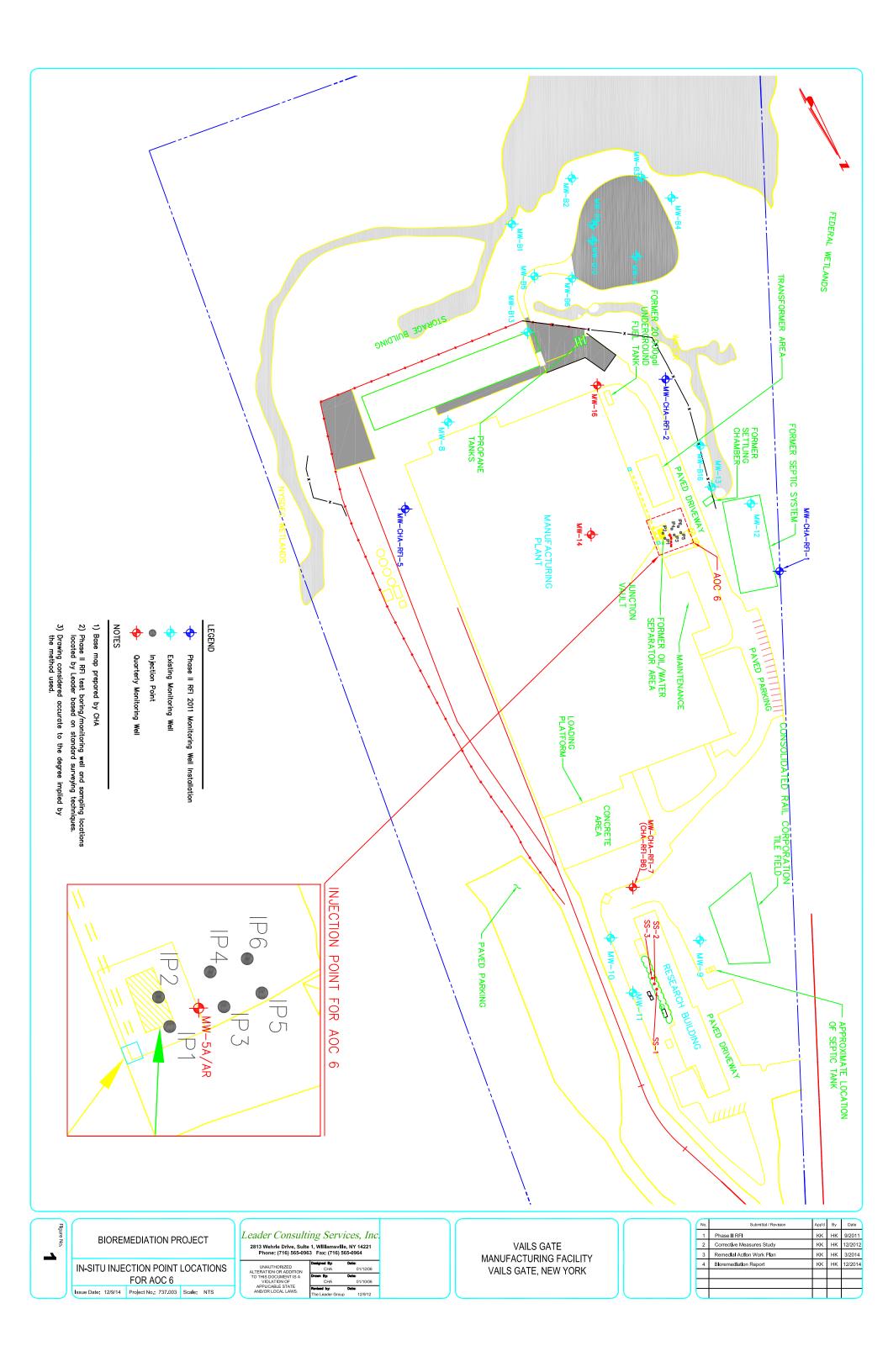
Surrogates are compounds added directly to every standard, blank, MS/MSD, and sample at a known concentration, prior to extraction or analysis; and used to evaluate the analytical efficiency by measuring percent recovery of those compounds upon analysis. The laboratory reported surrogate recoveries were within established QC limits for the surrogates in each analyzed sample.

The sample results for the Vails Gate Project are considered "usable".

Data Validation Compliance Chart Vails Gate

August 10, 2017 Sampling Event

Sample ID	7026978					
Matrix	Water					
Analysis	TCL 8260/RSK-175	Metals (Dissolved Iron and Manganese)	Miscellaneous Field Parameters	Wet Chemistry:		
Holding Times	Samples were analyzed within USEPA holding times.	Samples were analyzed within USEPA holding times	Samples were analyzed in the field.	Samples were analyzed within USEPA holding times		
Calibration	 In the initial calibrations, all criteria were within method requirements. In the continuing calibration for the following compounds are outside of method control limits. The results are estimated: MW-14: bromomethane, chloroethane, and chloromethane MW-16: bromomethane, chloroethane, and chloromethane MW-5A/AR: bromomethane, chloroethane, chloroethane, and chloromethane MW-CHA-RFI-7: bromomethane Trip Blank: bromomethane, chloroethane, and chloromethane LCS: bromomethane, chloroethane, chloromethane, and trans-1,3-dichloropropene MS/MSD: bromomethane, chloroethane, chloromethane, and trans-1,3-dichloropropene All data quality objectives were satisfied. 	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.		


Data Validation Compliance Chart Vails Gate

Sample ID	7026978					
Matrix	Water					
Analysis	TCL 8260/RSK-175	Metals (Dissolved Iron and Manganese)	Miscellaneous Field Parameters	Wet Chemistry:		
Method Blanks	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.		
Matrix Spike/Matrix Spike Duplicate	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits for 1,1,1,2-tetrachloroethane, 2-chloroethylvinyl ether, 4-chlorotoluene, bromobenzene, p-isopropyltoluene, tert-butylbenzene. Matrix spike recovery exceeded QC limits for 1,2,3-trichlorobenzene, 2-chlorotoluene, chlorobenzene, ethylbenzene, n-butylbenzene, sec-butylbenzene. Batch accepted based on laboratory control sample (LCS) recovery. All other data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.		
Surrogates	All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.		
Internal Standards	All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.		

Data Validation Compliance Chart Vails Gate

Sample ID	7026978					
Matrix	Water					
Analysis	TCL 8260/RSK-175	Metals (Dissolved Iron and Manganese)	Miscellaneous Field Parameters	Wet Chemistry:		
Reference Sample	The following analytes were outside the LCS spike sample: 1,1,1,2-tetrachloroethane, 4-chlorotoluene, bromobenzene, p-isopropyltoluene, tert-butylbenzene The 2-chloroethylvinyl ether had a low recovery, however, this compound was excluded due to improper sample preservation. All other laboratory internal quality control samples were within acceptable ranges.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.		
Data Usability	Data is acceptable.	Data is acceptable.	Data is acceptable.	Data is acceptable.		

Attachment C Figure 1

