Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

November 10, 2016

Stora Enso C/O John T. Kolaga, Esq. Rupp Baase Pfalzgraf Cunningham LLC 1600 Liberty Building Buffalo, New York 14202

RE: IN-SITU BIOREMEDIATION MONITORING REPORT,
VAILS GATE MANUFACTURING, LLC, VAILS GATE,
NEW YORK, NYSDEC SITE No. 336065

Dear Mr. Kolaga:

Leader Consulting Services, Inc. ("Leader") is pleased to provide Rupp Baase Pfalzgraf Cunningham, LLC ("RBFC"), on behalf of Stora Enso, with this report summarizing the results of the In-Situ Bioremediation Quarterly Monitoring completed at the former Vails Gate Manufacturing facility ("VGM") at 1073 Route 94 in Vails Gate, New York (hereafter referred to as "the Site"). The Site is currently identified as the Vails Gate Business Center ("VGBC"). This is the eighth Quarterly Monitoring Report required under the Remedial Action Work Plan ("RAWP"). It includes the field and laboratory results from the eighth quarterly sampling event.

1.0 BACKGROUND AND PURPOSE

Leader was retained to implement the New York State Department of Environmental Conservation ("NYSDEC")-approved RAWP that was developed for Area of Concern 6 ("AOC 6") at the Site. As identified in the approved RAWP, In-situ bioremediation was the selected remedial alternative identified in the NYSDEC-approved Corrective Measure Study ("CMS"). The Site-specific Standards, Criteria and Guidance ("SCGs") applicable to the RAWP were developed to meet the Remedial Action Objectives ("RAOs") of the CMS. An "unrestricted use remedy" has been established for the Site, which is based on the regulatory standard values for Class GA groundwater identified in 6 NYCRR Part 703.5. The RAWP was developed to address the SCGs and RAOs for the Site. The RAWP has been implemented in accordance with NYSDEC Department of Environmental Remediation ("DER") Guidance Document DER-10, *Technical Guidance for Site Investigation and Remediation*.

2.0 SCOPE-OF-WORK

The scope of work for the In-Situ Bioremediation program identified in the RAWP was based on the March 2012 Phase II RCRA Facility Investigation ("RFI") and the 2013 CMS. Quarterly sampling and laboratory analyses of groundwater samples from four (4) groundwater monitoring wells (MW-14, MW-5A/AR, MW-16 and MW-CHA-RFI-7) are required per the RAWP. Included in this report are the eighth quarterly sampling event Analytical Laboratory Results and Summary Tables (Attachment A) and a Data Validation Summary (Attachment B). Figure 1

Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

includes the approximate Injection Point ("IP") locations used to apply bioremediation solutions into the subsurface at AOC 6, and the location of the monitoring wells.

3.0 QUARTERLY SAMPLING PROGRAM

The eighth quarterly sampling event of the bioremediation program was conducted on August 8, 2016. This sampling effort is the last sampling and analysis event proposed in the 2014 RAWP. The laboratory parameters for the quarterly samples included analysis for volatile organic compounds ("VOCs"), sulfate, total organic carbon ("TOC"), and dissolved iron ("DO"). The field parameters included dissolved oxygen ("DO"), pH, oxidation reduction potential ("redox"), temperature and turbidity. Laboratory and field data were reviewed to evaluate VOC concentrations and field data parameters from groundwater samples from each of the wells to assess the impact of biotreatment activity within AOC 6. For the purpose of assessing the continued viability of the bioremediation medium, the eighth quarterly sampling and analysis event includes a laboratory analytical regime to mirror the baseline (pre-injection) sampling and analysis effort completed on August 11, 2014. Therefore, the additional laboratory parameters of nitrate, total iron, total manganese, dissolved manganese, dissolved methane, dissolved ethane and dissolved ethene were selected for laboratory analysis.

4.0 FIELD AND LABORATORY GROUNDWATER SAMPLE RESULTS

4.1 GROUNDWATER SAMPLE FIELD DATA RESULTS

The DO concentrations within the samples collected from the four (4) wells ranged from 1,720 parts per billion ("ppb") to 4,270 ppb. The pH levels within the samples collected from the four (4) wells ranged from 6.59 standard units ("SUs") to 7.53 SUs. Redox values of the samples collected from the four (4) wells ranged from -78 milliVolts ("mVs") to 31 mVs. Data interpretation is discussed in Section 5.0.

4.2 GROUNDWATER SAMPLE LABORATORY ANALYTICAL DATA RESULTS

GWM Well MW-5A/AR

Chloroethane concentrations increased from 110 ppb in May 2016 to a value of 320 ppb in August 2016, which remains above the Class GA groundwater standard of 5 ppb. 1,1-dichloroethane concentrations increased from 8.6 ppb in May 2016 to 76 ppb in August 2016, above the Class GA groundwater standard of 5 ppb. 1,1-dichloroethene concentrations increased from ND in May 2016 to 2.9 ppb in August 2016, remaining below the Class GA groundwater standard of 5 ppb. Toluene concentrations increased from ND in May 2016 to 1.4 ppb in August 2016, remaining below the Class GA groundwater standard of 5 ppb. 1,1,1, trichloroethane concentrations increased from 5.2 ppb in May 2016 to 42 ppb in August 2016, remaining above the Class GA groundwater standard of 5 ppb. Vinyl chloride concentrations increased from ND in May 2016 to 2.3 ppb in August 2016, slightly above the Class GA groundwater standard of 2 ppb. Naphthalene concentrations increased from ND in May 2016 to 1.8 ppb in August 2016, remaining below the Class GA groundwater standard of 5 ppb. N-propylbenzene concentrations increased from ND in May 2016 to 1.4 ppb in August 2016, remaining below the Class GA groundwater standard of 5 ppb. 1,2,4 trimethylbenzene concentrations increased from 2.2 ppb in

Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

May 2016 to 5.3 ppb in August 2016, slightly above the Class GA groundwater standard of 5 ppb. 1,3,5 trimethylbenzene/P ethyltoluene concentrations increased from ND in May 2016 to 1.49 ppb in August 2016, remaining below the Class GA groundwater standard of 5 ppb. N-butylbenzene concentrations increased from ND in May 2016 to 1.2 ppb (estimated value) in August 2016, remaining below the Class GA groundwater standard of 5 ppb. Sec-butylbenzene concentrations increased from ND in May 2016 to 1.7 ppb (estimated value) in August 2016, remaining below the Class GA groundwater standard of 5 ppb. The remaining VOC analytes were not detected within the August 2016 sample.

GWM Well MW-14

Acetone concentrations increased from 8.2 ppb (estimated value) in May, 2016 to 15 ppb in August 2016, remaining below the Class GA groundwater standard of 50 ppb. Chloroethane concentrations increased from ND in May 2016 to 8.9 ppb in August 2016, above the Class GA groundwater standard of 5 ppb. 1,1- dichloroethane concentrations decreased from 26 ppb in May 2016 to 12 ppb in August 2016, remaining above the Class GA standard of 5 ppb. 1,1-dichloroethene concentrations increased slightly from 2.3 ppb in May 2016 to 3.7 ppb in August 2016, remaining below the Class GA standard of 5 ppb. Vinyl chloride concentrations increased from ND in May 2016 to 3.1 ppb in August 2016, now above the Class GA groundwater standard of 2 ppb. The remaining VOC analytes were not detected within the August 2016 sample.

GWM Well MW-16

1,1- dichloroethane concentrations increased from ND in May 2016 to 9.1 ppb in August 2016, above the Class GA standard of 5 ppb. 1,1- dichloroethene concentrations increased, from ND in May 2016 to 4.5 in August 2016, remaining below the Class GA groundwater standard of 5 ppb. Tetrachloroethene concentrations increased from 1.3 ppb (estimated value) in May 2016 to the 2.4 ppb in August 2016, and remains below the Class GA groundwater standard of 5 ppb. The remaining VOC analytes were not detected within the August 2016 sample.

GWM Well MW-CHA-RFI-7

Each of the VOC concentrations from the sample collected from MW-CHA-RFI-7 during the Augusty 2016 sampling event were non-detectable.

5.0 DATA INTERPRETATION

5.1 FIELD DATA

TOC concentrations remain sufficiently high in monitoring wells MW-5A/AR and MW-14 to allow for continuing microbial activity. Groundwater pH levels indicate an environment conducive to continued microbial activity. Redox values indicate that reducing conditions, (i.e. anaerobic conditions) exist for dechlorination.

Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

5.2 LABORATORY DATA - VOLATILE ORGANIC COMPOUNDS

Groundwater samples collected from Well MW-5A/AR experienced a slight increase in VOC concentrations in eleven (11) compounds. Five (5) analyte concentrations are above the Class GA groundwater standards (chloroethane, 1,1 dichloroethane, 1,1,1, trichloroethane, 1,2,4 trimethylbenzene and vinyl chloride). Seven (7) analyte concentrations increased, but remain below the Class GA groundwater standards (1,1 dichlorothene, toluene, naphthalene, n-propylbenzene, 1,3,5 trimethylbenzene P ethyltoluene, n-butylbenzene and sec-butylbenzene).

Groundwater samples collected from Well MW-14 experienced a slight increase in VOC concentrations in three (3) compounds. Two (2) analyte concentrations increased and are above the Class GA groundwater standards (chloroethane and vinyl chloride). Two (2) analyte concentrations increased, but remain below the Class GA groundwater standards (acetone and 1,1, dichlorethene). One analyte concentration decreased, but remains above the Class GA standard (1,1 dichloroethane).

Groundwater samples collected from Well MW-16 experienced a slight increase in VOC concentrations in three (3) compounds. One (1) analyte concentration is above the Class GA groundwater standard (1,1, dichloroethane). Two (2) analyte concentrations increased, but remain below the Class GA groundwater standards (1,1, dichloroethene and tetrachloroethene).

There were no detected VOC analytes within the groundwater sample collected in August 2016 from MW-CHA-RFI-7. This groundwater monitoring well was included in this sampling program as it represents a "background" well, hydraulically upgradient and outside of the influence of AOC 6.

5.3 LABORATORY DATA - REDUCTIVE DECHLORINATION ACTIVITY INDICATOR PARAMETERS

Table 3 provides the results of reductive indicator parameter sampling and analysis. The groundwater samples analyzed for these parameters were collected on August 11, 2014 and August 8, 2016. A comparison of analytical results between August 11, 2014 and August 8, 2016 provide an indication of the current viability of the bioremediation process. Based on comparison of the nitrate and total dissolved iron concentrations, and the oxidation reduction potential (redox) values in Table 2, it appears that subsurface anaerobic conditions conducive to continued bioremediation exist. However, the dissolved ethene and dissolved ethane concentrations in Table 3 were lower than baseline values within wells MW-5A/AR, MW-14 and MW-16, and VOC concentrations are showing an upward trend (Tables 1a-1d), indicating that the efficacy of the 3DMe and BDI bioremediation media application is waning, as chlorinated solvent degradation is slowing.

Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

If you need any additional information, please contact the undersigned at (716) 565-0963.

Very truly yours,

Leader Consulting Services, Inc.

Reith D. Heller Keith D. Keller Project Manager

Jeffrey A. Wittlinger, P.E., BCEE

Principal

Attachment A

Analytical Laboratory Results and Summary Tables

TABLE 1a - MW-5A/AR

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

					MW-5A	ı/AR								Class GA Groundwater Standard (ppb) (3)
Analyte ⁽¹⁾	June 2011	November 2011	July 2012	January 2013	August 2014 ⁽⁶⁾	November 2014 (7)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	
Quarterly Sampling Parameters														
Volatiles														
acetone	ND	ND	ND	ND	ND	440 ⁽⁹⁾	407	77 ⁽¹¹⁾	110	ND	6.1	ND	ND	50 ⁽⁴⁾
chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroethane	280	290	520	150	250 ⁽⁹⁾	590 ⁽⁹⁾⁽¹⁰⁾	1010	470 ⁽¹¹⁾	540 ⁽¹¹⁾	290 ⁽¹¹⁾	68	110	320(11)	5
1,1-dichloroethane	650	1000	830	280	660 ⁽⁹⁾	110	325	41	3.5	ND	ND	8.6	76	5
1.1-dichloroethene	ND	110 (2)	29 ⁽²⁾	11 ⁽²⁾	22	ND	8.62	1.9	ND	1.1	ND	ND	2.9	5
cis-1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	5
1,4-dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
toluene	ND	ND	ND	ND	ND	ND	ND	ND	2.8	2.6	ND	ND	1.4	5
1,1,1-trichloroethane	890	3000	440	210	750 ⁽⁹⁾	33	200	ND	ND	ND	ND	5.2	42	5
1,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
vinyl chloride	ND	ND	15 ⁽²⁾	ND	14	6 ⁽²⁾⁽¹⁰⁾	3.59	2.4	ND	ND	ND	ND	2.3	2
2-butanone (MEK)	ND	ND	ND	ND	ND	190 ⁽¹⁰⁾	82.1	4.5 ⁽²⁾	ND	ND	8.6	ND	ND	50 ⁽⁴⁾
4-methyl-2-pentanone	ND	ND	ND	ND	ND	3 (2)	ND	ND	ND	ND	ND	ND	ND	(5)
naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	2.7	2.2	ND	ND	1.8	10 ⁽⁴⁾
n-propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	1.5	1.4	ND	ND	1.4	5
1,2,3 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
1,2,4 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	2.1	5.1	5.4	2.5	2.2	5.3	5
1,3,5 trimethylbenzene/P														5
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	1.4	
n-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2 (13)	5
sec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	1.1	1.2	1.3	ND	ND	1.7 (14)	5
1,2-dichloroethane	ND	ND	ND	ND	1 ⁽²⁾	2 (2)	ND	ND	ND	1.8	ND	ND	ND	0.6
trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Wet Chemistry and Dissolved Metals														
sulfate	NA	NA	NA	NA	31,500	<5,000	<5,000	700 ⁽²⁾	<5,000	<5,000	3,240	1,020 (2)	< 5,000	250,000
total organic carbon (TOC)	NA NA	NA NA	NA NA	NA NA	31,500	288,000	95,400	48,900	30,200	25,600	14,600	6,640	10,200	NS
dissolved iron	NA NA	NA NA	NA NA	NA NA	ND	50,600	42,900	5,780	6,050	30,700	14,400	10,900	13,900	as low as possible, NTE 500,000
														
	1	1							1	<u> </u>			1	

NOTES

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
- (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- (13) The analyte was "cS" flagged, indicating that the calibration acceptability criteria was exceeded, and the value is estilmated. The recovery is outside the limits for this analyte.
- (14) The recovery is outside the control limits for this analyte.
- NA -Contaminant was not included for analysis during RFI.

TABLE 1b - MW-14

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

					MW	-14								Class GA Groundwater Standard (ppb) (3)
Analyte (1)	June 2011	November 2011	July 2012	January 2013	August 2014 (6)	November 2014 (7)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	
Quarterly Sampling Parameters														
Volatiles														
acetone	19	45	35	11	19 ⁽⁹⁾	ND	27.3	16.0	12.0	12.0	12.0	8.2 (2)	15 (13)	50 ⁽⁴⁾
chlorobenzene	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	5
chloroethane	ND	ND	ND	ND	1 ⁽²⁾	ND	ND	2.1	8.0	7.3	6.6	ND	8.9	5
1.1-dichloroethane	86	79	67	53	47	1 (2)	43	48	31	22	16	26	12	5
1.1-dichloroethene	5.2	3.1 (2)	4.6 (2)	2.7 (2)	3 (2)	2 (2)	3.51	3.1	3.6	3.5	1.7	2.3	3.7	5
cis-1,2 dichloroethene	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	5
1.4-dioxane	420	620	490	270	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	(5)
tetrachloroethene	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	5
toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
vinyl chloride	5.2	4.6 (2)	2.3 (2)	2.1 (2)	3 (2)	2 ⁽²⁾⁽¹⁰⁾	2.79	2.8	3.1	2.7	1.6	ND	3.1	2
2-butanone (MEK)	ND	ND	ND	ND	2 (2)	3(2)(10)	ND	2.2 (2)	ND	ND	ND	ND	ND	50 ⁽⁴⁾
4-methyl-2-pentanone	ND	ND	ND	ND	1 (2)	ND	ND	ND	ND	ND	ND	ND	ND	(5)
naphthalene	ND	ND	ND	ND	2(2)(8)	ND	ND	ND	ND	ND	ND	ND	ND	10 ⁽⁴⁾
n-propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3 trichlorobenzene	ND	ND	ND	ND	2(2)(8)	ND	ND	ND	ND	ND	ND	ND	ND	5
hexachlorobutadiene	ND	ND	ND	ND	4 ⁽²⁾⁽⁸⁾	ND	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
1,2,4 trichlorobenzene	ND	ND	ND	ND	1 (2)(8)	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5 trimethylbenzene/P														-
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
sec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Wet Chemistry and					 									
Dissolved Metals									1					
sulfate	NA	NA	NA	NA	14,900	25,700	31,200	31,000	<5,000	18,000	13,600	21,800	<5,000	250,000
total organic carbon (TOC)	NA	NA	NA	NA	4,150	45,900	35,800	39,800	50,300	47,400	40,200	35,400	96	NS
dissolved iron	NA	NA	NA	NA	6,130	16,200	8,410	9,130	9,920	19,500	21,900	12,500	35,000	as low as possible, NTE 500,000

NOTES:

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
- (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- (13) the analyte was "c" flagged, indicating that the calibration acceptability ciriteria was exceeded for this analyte. The value is estimated.
- NA -Contaminant was not included for analysis during RFI.

TABLE 1c - MW-16

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

						MW-16								Class GA Groundwater Standa (ppb) ⁽³⁾
Analyte ⁽¹⁾	June 2011	November 2011	July 2012	January 2013	August 2014 (6)	November 2014 ⁽⁷⁾	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	
Quarterly Sampling Parameters														
Volatiles														
acetone	ND	ND	ND	ND	2(2)(8)	ND	ND	4.6 (2)	ND	ND	ND	ND	ND	50 (4)
chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	5
chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	3.7	ND	ND	ND	ND	5
L,1-dichloroethane	17	7.9	33	14	14	19	7.18	14	73	8.4	5.2	ND	9.1	5
I,1-dichloroethene	3 (2)	2.4 (2)	8.7	5.6	7	9 ⁽²⁾	1.73	5.6	33	4.2	1.8	ND	4.5	5
cis-1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	3.4	ND	ND	ND	ND	5
I,4-dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
etrachloroethene	ND	ND	3.2 (2)	3.9 (2)	2 (2)	3 ⁽²⁾⁽¹⁰⁾	1.42	2.2	11	4.5	2.5	1.3 (13)	2.4	5
oluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
I.1.1-trichloroethane	ND	13	2.2 (2)	ND	1 (2)	2 (2)	ND	ND	5.6	ND	ND	ND	ND	5
I,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND ND	ND	1.9	ND ND	ND ND	ND ND	ND ND	1
rinyl chloride	ND	ND	ND	ND	ND	ND	ND	1	7.6	ND	ND	ND	ND	2
2-butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 ⁽⁴⁾
1-methyl-2-pentanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10 ⁽⁴⁾
n-propylbenzene	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	5
1,2,3 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
nexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5(4)
1,2,4 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5 trimethylbenzene/P														5
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
ec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
richloroethene	ND	ND	ND	ND	ND	3 (2)	ND	ND	1.2	ND	ND	ND	ND	5
chloroform	ND	ND	ND	ND	ND	ND	1.85	4.9	ND	ND	ND	ND	ND	7
Wet Chemistry and Dissolved Metals														
sulfate	NA	NA	NA	NA	14.400	17,900	18.800	20.500	25.300	13.000	10.900	3.570 ⁽²⁾	8,670	250,000
otal organic carbon (TOC)	NA NA	NA NA	NA NA	NA NA	8.650	10.800	4.220	11.700	28,000	6.180	4.940	2.700	5,510	NS
dissolved iron	NA NA	NA NA	NA NA	NA NA	ND	231	1,470	30.9 ⁽²⁾	12.2 (2)	1,460	1,250	<100	310	as low as possible, NTE 500,00
							•				-			

NOTES:

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
- (10) The analyte was "2"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- 13) The analyte was "c" flagged, indicating that the calibration acceptability criteria were exceeded, and the value should be considered estimated.
- NA -Contaminant was not included for analysis during RFI.

TABLE 1d - MW-CHA-RFI-7

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

				MW-CHA-RFI	-7							Class GA Groundwater Standard (ppb) (3)
Analyte ⁽¹⁾	June 2011	November 2011	August 2014 (6)	November 2014 ⁽⁷⁾	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016	
Quarterly Sampling												
Parameters												
Volatiles												
icetone	ND	ND	1 ⁽²⁾⁽⁸⁾	ND	ND	2.7 (2)	ND	ND	ND	ND	ND	50 ⁽⁴⁾
hlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
hloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,1-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,1-dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
is-1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
.4-dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
etrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
oluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,1,1-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
inyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
!-butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 ⁽⁴⁾
I-methyl-2-pentanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10 ⁽⁴⁾
n-propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
.,2,3 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
nexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
,2,4 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5 trimethylbenzene/P									ND			_
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
ec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
richloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
hloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Wet Chemistry and		1	<u> </u>				<u> </u>	<u> </u>				
Dissolved Metals												
ulfate	NA	NA	38,100	42,800	39,900	39,900	32,700	39,600	39,800	38,600	36,400	250,000
otal organic carbon (TOC)	NA	NA	938	42,800	746	1,200	584	550	843	ND	ND	NS NS
dissolved iron	NA	NA	ND	1,450	124	184	100 (12)	215	247	185	150	as low as possible, NTE 500,000
			<u> </u>									

NOTES:

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate
- (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- NA -Contaminant was not included for analysis during RFI.

TABLE 2
GROUNDWATER MONITORING WELL SAMPLE FIELD DATA

					MW-5A/AR	l			
Analyte	August 2014 ⁽⁴⁾	November 2014 ⁽⁵⁾	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016
dissolved oxygen ⁽¹⁾	1,150	1,860	1,910	910	300	500	1,500	2,200	2,470
pH ⁽²⁾	7.66	7.07	6.74	6.43	6.61	6.63	6.43	6.90	6.84
redox ⁽³⁾	-137	-90	-42	-73	-88	-44	-124	-62	-65

					MW-14				
Analyte	August 2014 (4)	November 2014 (5)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016
dissolved oxygen ⁽¹⁾	1,940	2,110	1,720	1,280	1,100	700	2,700	2,010	2,410
pH ⁽²⁾	7.19	7.41	6.98	6.58	6.68	6.65	6.45	6.91	6.59
redox ⁽³⁾	7	-1	47	0	0	-7	-44	5	-78

					MW-16				
Analyte	August 2014 (4)	November 2014 (5)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016
dissolved oxygen ⁽¹⁾	990	2,210	2,750	2,150	400	2,200	2,800	2,800	4,270
pH ⁽²⁾	7.12	6.86	6.94	6.66	6.28	6.92	6.74	7.58	7.03
redox ⁽³⁾	24	-14	12	151	49	48	45	73	31

					MW-CHA-RFI	-7			
Analyte	August 2014 (4)	November 2014 (5)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	August 2016
dissolved oxygen ⁽¹⁾	1,440	1,220	1,760	1,660	600	700	1,200	1,780	1,720
pH ⁽²⁾	7.55	7.38	7.55	7.01	7.41	7.52	7.12	7.28	7.53
redox ⁽³⁾	-36	-1	73	35	20	48	-90	31	-5

NOTES:

- (1) Value expressed as parts per billion ("ppb").
- (2) Value expressed as Standard Unit.
- (3) Value expressed as milliVolts (mV).
- (4) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014
- (5) November 2014 sampling event reflects first post-bioremediation data.

TABLE 3

REDUCTIVE DECHLORINATION ACTIVITY INDICATOR PARAMETERS

	MW-5	5A/AR	M	W-14	M	N-16	MW-0	CHA-RFI-7
Analyte ⁽¹⁾	August 2014 ⁽³⁾	August 2016						
Pre/Post Injection Parameters								
nitrate	ND	ND	ND	ND	ND	ND	ND	ND
total iron	3,850	14,300	223,000	95,000	1,860	5,040	5,430	513
dissolved iron	ND	13,900	6,130	35,000	ND	310	ND	150
total manganese	2,410	2,890	18,200	17,800	7,380	1,550	1,680	1,570
dissolved manganese	2,310	2,810	7,120	12,800	5,490	2,060	1,450	1,610
dissolved methane	2,300	9,700	890	5,200	370	40	2.8	2.7
dissolved ethane	14	2.9	0.24	0.064 ⁽²⁾	0.10 ⁽²⁾	0.027 ⁽²⁾	0.016 ⁽²⁾	0.0053 ⁽²⁾
dissolved ethene	2.1	0.059 ⁽²⁾	0.21	0.45	0.64	0.066 ⁽²⁾	0.024 ⁽²⁾	0.20 ⁽⁴⁾

NOTES:

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Sampling date of August 11, 2014 reflects pre-bioremediation injection dates of August 13 and 14, 2014.
- (4) The analytes was "U" flagged, indicating that it was not detected at or above the noted concentration.
- ND Analyte was not detected above analytical laboratory detection limits.

Pace Analytical e-Report

*Issuance of this report is prior to full data package.

Report prepared for:

LEADER CONSULTING SERVICES, INC.

2813 WEHRLE DRIVE

SUITE 1

WILLIAMSVILLE, NY 14221 CONTACT: KEITH KELLER

Project ID: VAILS GATE MANUFACTURING

Sampling Date(s): August 08, 2016

Lab Report ID: 16080179

Client Service Contact: Nick Nicholas (518) 346-4592

Analysis Included:

RSK-175 - Subcontracted Misc Field Analysis Dissolved Metals E200.7 - Sub Pace LI VOCs E8260C - Sub Pace LI Metals E200.7 - Sub Pace LI

Sulfate E300.0 - Sub Pace LI

Nitrate (NO3)

Total Organic Carbon

Test results meet all National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted in the case narrative. The results contained within the document relate only to the samples included in this report. Pace Analytical is responsible only for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Roy Smith Technical Director TNI

Certifications: New York (EPA: NY00906, ELAP: 11078), New Jersey (NY026), Connecticut (PH-0337), Massachusetts (M-NY906), Virginia (460241)

Pace Analytical Services, Inc. | 2190 Technology Drive | Schenectady, NY 12308 Phone: 518.346.4592 | internet: www.pacelabs.com This page intentionally left blank.

Table of Contents

Section 1: QUALIFIERS	4
Section 2: SAMPLE CHAIN OF CUSTODY	6
Section 3: SAMPLE RECEIPT	14
Section 4: Wet Chemistry - TOC/DTOC	17
Section 5: Wet Chemistry - Nitrate-Nitrite	23
Section 6: Field Analysis	29
Section 7: Quality Control Samples (Field)	34
Section 8: Quality Control Samples (Lab)	37
Section 9: Subcontract Analysis	42

1

2

5

6

/

8

Q

QUALIFIERS

Definitions

- B Denotes analyte observed in associated method blank or extraction blank. Analyte concentration should be considered as estimated.
- D Surrogate was diluted. The analysis of the sample required a dilution such that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- E Denotes analyte concentration exceeded calibration range of instrument. Sample could not be reanalyzed at secondary dilution due to insufficient sample amount, quick turn-around request, sample matrix interference or hold time excursion. Concentration result should be considered as estimated.
- J Denotes an estimated concentration. The concentration result is greater than or equal to the Method Detection Limit (MDL) but less than the Practical Quantitation Limit (PQL).
- MDL Adjusted Method Detection Limit.
- P Indicates relative percent difference (RPD) between primary and secondary gas chromatograph (GC) column analysis exceeds 40 % or indicates percent difference (PD) between primary and secondary gas chromatograph (GC) column analysis exceeds 25 %.
- PQL Practical Quantitation Limit. PQLs are adjusted for sample weight/volume and dilution factors.
- RL Reporting Limit Denotes lowest analyte concentration reportable for the sample based on regulatory or project specific limits.
- U Denotes analyte not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- Z Chromatographic interference due to polychlorinated biphenyl (PCB) co-elution.
- * Value not within control limits.

SAMPLE CHAIN OF CUSTODY

New York Office 2190 Technology Dr. Schenectady, NY 12308 (518) 346-4592

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	_
160801791	

Required Professional Services Report No. Keith Keller Astronom.
Address: 2813 Wehrle Drive, Suite 1 Copy To: na
Williamsville, NY 14221
Procest Proc
Project Name Valis Gate Manufacture Pace Project Manager Nicholas Nicholas
Section D Required MATRIX CODE CODE
Section D Required MATRIX CODE
Section D Required MATRIX CODE CODE
Field Duplicate-01
2 MW-5A/AR WT G E/8/16 1130 12 x x x x x x x x x x x x x x x x x x
MW-14 WT G G/8/16 1/15 12 x x x x x x x x x x x x x x x x x x x
4 MW-16 WT G 8/8/16 1215 12 x x x x x x x x x x x x x x x x x x
5 MW-CHA-RFI-7 MS/MSD WT G RIBING 1330 22 X X X X X X X X X X X X X X X X X X
12
ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS
NYSDEC DER-10 EQUIS EDD. MOTO PACE & 18/16 1515 MYN PACE 8/18/16 1515 8.2 3 5 3
7,700
CANDIED NAVE AND DICNATURE
PRINT Name of SAMPLER: Matt Broker (PACE)
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Matt Broker (PACE) SIGNATURE of SAMPLER: Matt Broker (PACE) DATE Signed (MM/DD/YY): ABILC

Sample Condition Upon Receipt

						CLIENT NAME: Leade	- Profess:	ional Services
						PROJECT: Veils Cate	Menufacti	<u>~~~</u>
COURIER: FedEx UPS Cli	ent 🗆	Pace 🕱	Other					.)
TRACKING# P/A		CUSTODY	Y SEAL PRESEN	T: Yes □	No 🕱	INTACT: Yes 🗆	No⊏	N/AX
PACKING MATERIAL: Bubble Wrap	Bubble Bag		None 🗷	Other 🗆		ICE USED: Wet 🗹	Blue 🗆	None □
THERMOMETER USED: #164 🗵 IR Gun 03 🗆	_		0239773-PRE	S - (COOLER TE	MPERATURE (°C): 🕳 🖰	۲	
BIOLOGICAL TISSUE IS FROZEN: Yes	No 🗆	N/A 🗷						
COMMENTS:				-	Гетрегаtu	re is Acceptable?	⊠Yes	□No
Chain of Custody Present:	Mayes	□No		1.				
Chain of Custody Filled Out:	⊠Yes	□No		2.				
Chain of Custody Relinquished:	⊠ Yes	□No		3.				
Sampler Name / Signature on COC:	⊠Yes	□No		4.				
Samples Arrived within Hold Time:	⊠ Yes	□No		5.				
Short Hold Time Analysis (<72hr):	⊠Yes	□No		6. Vitrate				
Rush Turn Around Time Requested:	□Yes	⊠No		7. z ~vec	Ks		<u></u>	
Sufficient Volume:	⊠ Yes	□No		8.				
Correct Containers Used:	2 Yes	□No		9.				
- Pace Containers Used:	Maryes	□No						
Containers Intact:	⊠Yes	□No		10.				
Filtered volume received for Dissolved tes	ts □ _{Yes}	□No	™ N/A	11.				
Sample Labels match COC:	⊠ Yes	□No		12. No dat	e /time	indicated on sample	ا کائیداد ا	
 Includes date/time/ID/Analysis 								
All containers needing preservation have been checked:	□Yes	□no	⊠ N/A	13.				
All containers needing preservation are in	□Yes	□No	⊠ N/A					
compliance with EPA recommendation:				Initial wher				
- Exceptions that are not checked: TOC, VOA, Subco	ntract Analyses			completed	1 /A-	Lot # of added prese	ervative:	<i>λ/</i> δ
Headspace in VOA Vials (>6mm):	□Yes	⊠ No	□n/a	14.	-v			
Trip Blank Present:	¥Yes	□No	□n/a	15 .				
Trip Blank Custody Seals Present:	□Yes	M No	□n/a					
Pace Trip Blank Lot #:								
Sample Receipt form filled in: D8 8/10/16		Line-Ou	t (Includes Co	pying Shippi	ng Docum	ents and verifying san	nple pH):	DB 818/16
		Log In (l	ncludes notif	ying PM of a	ny discrep	acies and documentin	ig in LIMS):	DB 878716
		Labeling	g (Includes Sca	anning Bottle	s and ent	ering LAB IDs into pH	iognook):	

	inches feet feet	gallons gallons feet feet	eight Sase Elev-Total Depth	
Yes	2.00 6.50 0.35 0.35	0.16 0.98 3.00 3.00 N/A	e: oth to Wate column h olumn he ation= n = Top of (2
Log PACE ID Locked: Lock ID:	Diameter of Well Well Depth Measured Depth to Water Length of Water Column (calculated)	Conversion Factor Well Volume (calculated) No. of Volumes to be Evacuated Total Volume to be Evacuated Actual Volume Evacuated Installed Well Depth (if known) Depth of Silt (calculated		
Ground water Field Log consulting lanufacturing Field Dupe 1 Good istaltic Pump		Conversion Factor Well Volume (calculated) No. of Volumes to be Evact Total Volume to be Evact Actual Volume Evacuate E. Installed Well Depth (if ki	Final Sampling 8/8/16 11:30 -65 -65 25.1 6.84 15.2 2.47 2.47 clear sunny	
Leader Consulting Vails Gate Manufacturing MW-5A/AR Field Dupe 1 Good Registaltic Pump	Peristaltic Pump A. A. C.		10:56 -75 24.8 6.83 956.6 94.8 2.57 cloudy 26C clear	
ralytical Se of well:	d of Sampling:	WATER D SILT	Loxygen Cond cons Cloudy to c	
Pace Analytical Services, Inc.	Methods with the control of the cont	September 22, 2016 Revision 1	Field Measurement Date Date Time EH Chapterature PH Specific Conc Turbidity Dissolved Ox Appearance Weather: Observations	37

										der styl Carlot		oodresser V				ī		6080		. 111	ì		1	
	ļ	ı		inches	feet	feet	feet		gallons	1	gallons	gallons	feet	feet	3 99 feet	1		01794		1	ov-Total Depth	oker		
	Yes	Flush		2.00	13.00	3.99	d) 9.01	0.16	1.44	ဇ	4.32	Dry @ 2.0	N/A	N/A	charge:	de Deoth to Water		2nd water column height	Ward countries	ing)	G.W. Elevation = Top of Case Elev-Total Depth	oler: Matt Broker	MAT	
g 	Locked:	Lock ID:			sured		Length of Water Column (calculated)	or	Iculated)	of Volumes to be Evacuated	be Evacuated	vacuated	epth (if known)	Iculated	% Rec) E		N NS OS OS	NTU Elevat		Sampler:	Signature:	
er Field Lo				Diameter of Well	Well Depth Measured	Depth to Water	Length of Water	Conversion Factor	Well Volume (calculated)	No. of Volumes t	Total Volume to be Evacuated	Actual Volume Evacuated	Installed Well Depth (if known)	Depth of Silt (calculated	Final Sampling	8/8/16		21.8	1737		2.41 grey	noods vijo opsed	siow recharge only sheen ed in Unit 4-5	e sampling
- a ò	Good	Bailer	Bailer	ď	æ	o o	O						шi	ιĽ	Fin							56(Well located in Unit	Changed bailers before sampling
Se	Well:	vacuation:	ampling:	A I	do D			WATER	il CENE				SILT		Initial Evacuation	8/8/16	-33	23.3	6.53	4.96	rgen 2.12	a Cilica Ca		Oil all over bailer. Che
PACE Analytical Client: Project: Well ID.:	tion of	Method of Ev	Method of \$a	4		υ		→ → = m-		Ω		+	— ш		Field Measurements	Date Timo		Temperature	pH Specific Cond	Turbidity	Dissolved Oxygi Appearance	Weather:	Observations	

				inches	feet	feet	feet		gallons		gallons	gallons	feet	feet		feet	feet	<160801		(9P5)	ا ا	al Depth					
	Yes	Flush		2.00 ir	13.63 fe	2.81	10.82	0.16	1.73	က	5.19	Dry @ 1.5	N/A	N/A		Initial Depth to Water 2.81	Recharge Depth to Water 12.25	2nd water column height	1st water column height	Elevation(Top of Casing) N/A	Elevation= N/A	G.W. Elevation = Top of Case Elev-Total Depth	Matt Broker	1	, ,,,,		
Log PACE ID	Locked:	Lock ID:		Well	Aeasured	ter	Length of Water Column (calculated)	Factor	(calculated)	of Volumes to be Evacuated	Total Volume to be Evacuated	Actual Volume Evacuated	Installed Well Depth (if known)	(calculated	% Recharge:		:	mV ————————————————————————————————————		uS NTU Elevation(Sampler:	Signature:		 	
ervices, Inc. Ground water Field Log Leader Consulting Vails Gate Manufacturing MW-16	Good	Peristaltic Pump	Peristaltic Pump	A. Diameter of Well	B. Well Depth Measured	C. Depth to Water	D. Length of We	Conversion Factor	Well Volume (calculated)	No. of Volum	Total Volume	Actual Volum	E. Installed We	F. Depth of Silt (calculated	Final Sampling	8/8/16	12:1	31	7.03	705.3	4.27	cloudy	27C sunny				
8	Well:	evacuation: Per	Sampling: Pe	↑ V	do_			WATER	1 1 1 1 1 1				SILT		Initial Evacuation	8/8/16	11:46	-76	7.01	583.2		cloudy	sample cloudy				
PACE Analytical Client: Project: Well ID::	tion of	Method of Eva	Method of San	V		υ		—————————————————————————————————————		Δ		+	— ц-		Field Field Measurements	Date	Time	HH H	nemperature DH	Specific Cond	Dissolved Oxygen	9	Weather: Observations:				

<16080179P6>

	1			inches	teet .	feet	feet		gallons		gallons	gallons	feet	feet			24.03 feet	1608017	96	N/A	N/A leet	ev-Total Deptin	Matt Broker				
	Yes	Flush		2.00	41.67	0.00	41.67	0.16	6.67	ဇ	20.01	15.00	N/A	N/A	narge:	Initial Depth to water	Recharge Depth to Water	2nd water column height	1st water column height	Elevation(Top of Casing)	. Elevation=	G.W.Elevation = Top of Case Elev-Total Deptin		ure: Marg	· ///		
ield Log	Locked:	Lock ID:		r of Well	Well Depth Measured	Water	Length of Water Column (calculated)	Conversion Factor	Well Volume (calculated)	of Volumes to be Evacuated	Total Volume to be Evacuated	Actual Volume Evacuated	Installed Well Depth (if known)	Depth of Silt (calculated	% Recharge:	8/8/16	3:30	è 0	ns 	Sn	1.72	clear G.W.Ele	Odilipiei.	Signature:		 	
ervices, Inc. Ground water Field Log Leader Consulting Vails Gate Manufacturing MW-CHA-RFI-7 MS/MSD	Good	Peristaltic Pump	Peristaltic Pump	A. Diameter of Well	B. Well Dep	C. Depth to Water	D. Length o	Convers	Well Vol	No. of V	Total Vo	Actual V	E. Installed	F. Depth of	Final Sampling			-5-	7.53	1473			Z/C sunny				
Analytical Services, Inc. Leader C Vails Gate N MW-CHA-RI	Well:	ıtion:		↑ V	TOP			WATER	TEVET				SILT		Initial S Evaçuation	8/8/16	12:22	18.8	7.29	1487	ygen 1.62	clear Service Control of the control	sample clear			 	
PACE Anal Client: Project: Well ID::	Condition of Well:	Method of E		—————————————————————————————————————		0-		→ →	111	Δ-		+	Ш		Field Measurements	a to C	Time	EH	I	Specific Cond.		Appearance	Weather: Observations:				

	Vails Gate Manufacturing				NOTES												2
L INC.	SITE: VE	വ	Myron Ultrameter II 6PFCe Myron Ultrameter II 6PFCe	c 850041 703	TIME	1031	1030	1032	1033		1034	1035	1036	1037			
PACE ANALYICAL INC.		Myron Ultran	Myron Ultrar Myron Ultrar	Sper Scientific 850041 Hanna HI 98703	ADJUSTED READING	4.00	7.00	10,00	1413		<0.10	15	100	750			шининин
PACE FIELD C			. IRE	OXYGEN	INTIAL	4.06	7.21	10.23	1385		0.12	15.1	66	753			
	8/8/16	Matt Bloke	CONDUCTIVITY TEMPERATURE	DISSOLVED OXYGEN TURBIDITY	STANDARD	4.00	7.00	10.00	1413		<0.10	15	100	750			
	DATE:	I ECHNICIAN:			INSTRUMENT STANDARD ANALYTE		-		Conductivity		Turbidity				NOTES		

SAMPLE RECEIPT

SAMPLE RECEIPT REPORT 16080179

Pace Analytical Services, Inc. 2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

CLIENT: LEADER CONSULTING SERVICES, INC.

PROJECT: VAILS GATE MANUFACTURING

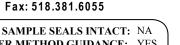
LRF: 16080179

REPORT: DATA PACKAGE

EDD: YES LRF TAT: 2 WEEK

RECEIVED DATE: 08/08/2016 15:15 SAMPLE SEALS INTACT: NA SHIPPED VIA: PICK UP 1. SAMPLES PRESERVED PER METHOD GUIDANCE: YES

SHIPPING ID: M. BROKER ³ SAMPLES REC'D IN HOLDTIME: YES


DISPOSAL: BY LAB (45 DAYS) NUMBER OF COOLERS: 1 COC DISCREPANCY: NO CUSTODY SEAL INTACT: NA

COOLER STATUS: CHILLED TEMPERATURE(S): ⁵8.2 °C

COMMENTS:

NO DATE/TIME INDICATED ON SAMPLE LABELS.

CLIENT ID (LAB ID)	TAT-DUE Date	DATE-TIME SAMPLED	MATRIX	METHOD	TEST DESCRIPTION	QC REQUEST
FIELD DUPLICATE-01 (AT20447)	2 WEEK 08-22-16	08/08/2016 11:32	Water		RSK-175 - Subcontracted	
	2 WEEK 08-22-16	08/08/2016 11:32	Water	Dissolved Metals E200.7	Dissolved Metals E200.7 - Sub Pace LI	
	2 WEEK 08-22-16	08/08/2016 11:32	Water	EPA 353.2 Rev. 2.0	Nitrate (NO3)	
	2 WEEK 08-22-16	08/08/2016 11:32	Water	Metals E200.7	Metals E200.7 - Sub Pace LI	
	2 WEEK 08-22-16	08/08/2016 11:32	Water	SM 5310B-00,-11	Total Organic Carbon	
	2 WEEK 08-22-16	08/08/2016 11:32	Water	Sulfate E300.0	Sulfate E300.0 - Sub Pace LI	
	2 WEEK 08-22-16	08/08/2016 11:32	Water	VOCs E8260C	VOCs E8260C - Sub Pace LI	
MW-5A/AR (AT20448)	2 WEEK 08-22-16	08/08/2016 11:30	Water		RSK-175 - Subcontracted	
	2 WEEK 08-22-16	08/08/2016 11:30	Water	Dissolved Metals E200.7	Dissolved Metals E200.7 - Sub Pace LI	
	2 WEEK 08-22-16	08/08/2016 11:30	Water	EPA 353.2 Rev. 2.0	Nitrate (NO3)	
	2 WEEK 08-22-16	08/08/2016 11:30	Water	Metals E200.7	Metals E200.7 - Sub Pace LI	
	2 WEEK 08-22-16	08/08/2016 11:30	Water	Misc Field Analysis	Misc Field Analysis	
	2 WEEK 08-22-16	08/08/2016 11:30	Water	SM 5310B-00,-11	Total Organic Carbon	
	2 WEEK 08-22-16	08/08/2016 11:30	Water	Sulfate E300.0	Sulfate E300.0 - Sub Pace LI	
	2 WEEK 08-22-16	08/08/2016 11:30	Water	VOCs E8260C	VOCs E8260C - Sub Pace LI	
MW-14 (AT20449)	2 WEEK 08-22-16	08/08/2016 11:15	Water		RSK-175 - Subcontracted	
	2 WEEK 08-22-16	08/08/2016 11:15	Water	Dissolved Metals E200.7	Dissolved Metals E200.7 - Sub Pace LI	
	2 WEEK 08-22-16	08/08/2016 11:15	Water	EPA 353.2 Rev. 2.0	Nitrate (NO3)	
	2 WEEK 08-22-16	08/08/2016 11:15	Water	Metals E200.7	Metals E200.7 - Sub Pace LI	
	2 WEEK 08-22-16	08/08/2016 11:15	Water	Misc Field Analysis	Misc Field Analysis	
	2 WEEK 08-22-16	08/08/2016 11:15	Water	SM 5310B-00,-11	Total Organic Carbon	
	2 WEEK 08-22-16	08/08/2016 11:15	Water	Sulfate E300.0	Sulfate E300.0 - Sub Pace LI	
	2 WEEK 08-22-16	08/08/2016 11:15	Water	VOCs E8260C	VOCs E8260C - Sub Pace LI	
MW-16 (AT20450)	2 WEEK 08-22-16	08/08/2016 12:15	Water		RSK-175 - Subcontracted	
	2 WEEK 08-22-16	08/08/2016 12:15	Water	Dissolved Metals E200.7	Dissolved Metals E200.7 - Sub Pace LI	
	2 WEEK 08-22-16	08/08/2016 12:15	Water	EPA 353.2 Rev. 2.0	Nitrate (NO3)	
	2 WEEK 08-22-16	08/08/2016 12:15	Water	Metals E200.7	Metals E200.7 - Sub Pace LI	
	2 WEEK 08-22-16	08/08/2016 12:15	Water	Misc Field Analysis	Misc Field Analysis	
	2 WEEK 08-22-16	08/08/2016 12:15	Water	SM 5310B-00,-11	Total Organic Carbon	
	2 WEEK 08-22-16	08/08/2016 12:15	Water	Sulfate E300.0	Sulfate E300.0 - Sub Pace LI	
	2 WEEK 08-22-16	08/08/2016 12:15	Water	VOCs E8260C	VOCs E8260C - Sub Pace LI	

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308

Phone: 518.346.4592

CLIENT: LEADER CONSULTING SERVICES, INC.

Pace Analytical [®]

PROJECT: VAILS GATE MANUFACTURING

LRF: 16080179

REPORT: DATA PACKAGE

EDD: YES LRF TAT: 2 WEEK RECEIVED DATE: 08/08/2016 15:15

SHIPPED VIA: PICK UP 1, SAMPLES PRESERVED PER METHOD GUIDANCE: YES

SHIPPING ID: M. BROKER ³ SAMPLES REC'D IN HOLDTIME: YES

NUMBER OF COOLERS: 1 **DISPOSAL:** BY LAB (45 DAYS)

COOLER STATUS: CHILLED TEMPERATURE(S): ⁵8.2 °C

CUSTODY SEAL INTACT: NA **COC DISCREPANCY: NO**

COMMENTS:

NO DATE/TIME INDICATED ON SAMPLE LABELS.

CLIENT ID (LAB ID)	TAT-DUE Date ⁴	DATE-TIME SAMPLED	MATRIX	METHOD	TEST DESCRIPTION	QC REQUEST
MW-CHA-RFI-7 (AT20451)	2 WEEK 08-22-16	08/08/2016 13:30	Water		RSK-175 - Subcontracted	MS, MSD
	2 WEEK 08-22-16	08/08/2016 13:30	Water	Dissolved Metals E200.7	Dissolved Metals E200.7 - Sub Pace LI	MS, MSD
	2 WEEK 08-22-16	08/08/2016 13:30	Water	EPA 353.2 Rev. 2.0	Nitrate (NO3)	MS, MSD
	2 WEEK 08-22-16	08/08/2016 13:30	Water	Metals E200.7	Metals E200.7 - Sub Pace LI	MS, MSD
	2 WEEK 08-22-16	08/08/2016 13:30	Water	Misc Field Analysis	Misc Field Analysis	
	2 WEEK 08-22-16	08/08/2016 13:30	Water	SM 5310B-00,-11	Total Organic Carbon	MS, MSD
	2 WEEK 08-22-16	08/08/2016 13:30	Water	Sulfate E300.0	Sulfate E300.0 - Sub Pace LI	MS, MSD
	2 WEEK 08-22-16	08/08/2016 13:30	Water	VOCs E8260C	VOCs E8260C - Sub Pace LI	MS, MSD
TRIP BLANK-01 (AT20452)	2 WEEK 08-22-16	08/08/2016	Water	VOCs E8260C	VOCs E8260C - Sub Pace LI	

¹The pH preservation check of Oil and Grease (Method 1664) and Total Organic Carbon (Method 5310B) are performed as soon as possible after sample receipt and may not be included in this report.

Reporting Parameters and Lists

EPA 353.2 Rev. 2.0 - Nitrate (NO3) - (mg/L)

Nitrate

Nitrate-Nitrite

Nitrite

Misc Field Analysis - Misc Field Analysis - (mg/L)

Dissolved Oxygen (\$)

pH (\$)

Reduction Potential (\$)

Specific Conductance (\$)

Static Water Level (\$)

Temperature (\$)

Turbidity (\$)

SM 5310B-00,-11 - Total Organic Carbon - (mg/L)

Total Organic Carbon

This report may not be reproduced except in full, without the written approval of Pace Analytical Services, Inc.

The pH preservation check of aqueous volatile samples is not performed until after the analysis of the sample to maintain zero headspace and is not included in this report.

Samples received for pH analysis are not marked as a hold time exceedance here. SW-846 methods suggests analysis to be done within 15 minutes of sample collection. Because of transportation time 4it is not possible for the laboratory to perform the test in that time. Sample Certificates of Analysis reports are noted as such.

Samples arriving at the laboratory after 4:00 pm are assigned a due date as if they arrived the following business day unless other arrangements have been made.

The due date represents the date the lab report is expected to be completed on or before 5:00 pm (EST) for the date specified.

⁵All samples which require thermal preservation shall be considered acceptable when received greater than 6 degrees Celsius if they are collected on the same day as received and there is evidence that the chilling process has begun, such as arrival on ice. Control limits are between 0-6 Degrees Celsius. Control limits do not apply for metals analysis.

⁶Samples requesting analysis for Orthophosphate (SM 4500-P E-99,-11) require the samples to be filtered in the field within 15 minutes of the sampling event. Samples that are received unfiltered will be noted as not method compliant on the Certificates of Analysis.

Wet Chemistry - TOC/DTOC

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC. Collection Date: 08/08/2016 11:32

Project: VAILS GATE MANUFACTURING Sample Matrix: WATER

Client Sample ID: FIELD DUPLICATE-01 Received Date: 08/08/2016 15:15

Lab Sample ID: 16080179-01 (AT20447) **Percent Solid:** N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	913	SM 5310B	08/16/2016 22:23	JS	NA	NA	NA

Analyte	CAS No.	Result (mg/L)	PQL	Dilution Factor	Flags	File ID
Total Organic Carbon	OC002	9.79	1.00	1.00		913

ND: Denotes analyte not detected at a concentration greater than the PQL.

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-5A/AR

Lab Sample ID: 16080179-02 (AT20448)

Collection Date: 08/08/2016 11:30

Sample Matrix: WATER

Received Date: 08/08/2016 15:15

Percent Solid: N/A

Batch	ID Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1: 913	SM 5310B	08/16/2016 22:37	JS	NA	NA	NA

Analyte	CAS No.	Result (mg/L)	PQL	Dilution Factor	Flags File ID	
Total Organic Carbon	OC002	10.2	1.00	1.00	913	

ND: Denotes analyte not detected at a concentration greater than the PQL.

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-14

Lab Sample ID: 16080179-03 (AT20449)

Collection Date: 08/08/2016 11:15

Sample Matrix: WATER

Received Date: 08/08/2016 15:15

Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	913	SM 5310B	08/16/2016 22:52	JS	NA	NA	NA

Analyte	CAS No.	Result (mg/L)	PQL	Dilution Factor	Flags File ID	
Total Organic Carbon	OC002	96.0	20.0	20.00	913	

ND: Denotes analyte not detected at a concentration greater than the PQL.

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-16

Lab Sample ID: 16080179-04 (AT20450)

Collection Date: 08/08/2016 12:15

Sample Matrix: WATER

Received Date: 08/08/2016 15:15

Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	913	SM 5310B	08/16/2016 23:08	JS	NA	NA	NA
				_			

Analyte	CAS No.	Result (mg/L)	PQL	Dilution Factor	Flags File ID	
Total Organic Carbon	OC002	5.51	1.00	1.00	913	

ND: Denotes analyte not detected at a concentration greater than the PQL.

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-CHA-RFI-7

Lab Sample ID: 16080179-05 (AT20451)

Collection Date: 08/08/2016 13:30

Sample Matrix: WATER

Received Date: 08/08/2016 15:15

Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	913	SM 5310B	08/16/2016 23:24	JS	NA	NA	NA

Analyte	CAS No.	Result (mg/L)	PQL	Dilution Factor	Flags	File ID	
Total Organic Carbon	OC002	ND	1.00	1.00	U	913	

ND: Denotes analyte not detected at a concentration greater than the PQL.

Wet Chemistry - Nitrate-Nitrite

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: FIELD DUPLICATE-01

Lab Sample ID: 16080179-01 (AT20447)

Collection Date: 08/08/2016 11:32

Sample Matrix: WATER

Received Date: 08/08/2016 15:15

Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	517	Nitrate - 353.2	08/09/2016 16:39	JS	NA	NA	NA

Analyte	CAS No.	Result (mg/L)	PQL	Dilution Factor	Flags	File ID
Nitrate	NA	ND	0.165	1.00	U	517

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-5A/AR

Lab Sample ID: 16080179-02 (AT20448)

Collection Date: 08/08/2016 11:30

Sample Matrix: WATER

Received Date: 08/08/2016 15:15

Percent Solid: N/A

Ba	ch ID Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1: 517	Nitrate - 353	08/09/2016 16:41	JS	NA	NA	NA

Analyte	CAS No.	Result (mg/L)	PQL	Dilution Factor	Flags	File ID
Nitrate	NA	ND	0.165	1.00	U	517

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-14

Lab Sample ID: 16080179-03 (AT20449)

Collection Date: 08/08/2016 11:15

Sample Matrix: WATER

Received Date: 08/08/2016 15:15

Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	517	Nitrate - 353.2	08/09/2016 16:42	JS	NA	NA	NA

Analyte	CAS No.	Result (mg/L)	PQL	Dilution Factor	Flags	File ID
Nitrate	NA	ND	0.165	1.00	U	517

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-16

Lab Sample ID: 16080179-04 (AT20450)

Collection Date: 08/08/2016 12:15

Sample Matrix: WATER

Received Date: 08/08/2016 15:15

Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	517	Nitrate - 353.2	08/09/2016 16:43	JS	NA	NA	NA

Analyte	CAS No.	Result (mg/L)	PQL	Dilution Factor	Flags	File ID
Nitrate	NA	ND	0.165	1.00	U	517

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-CHA-RFI-7

Lab Sample ID: 16080179-05 (AT20451)

Collection Date: 08/08/2016 13:30

Sample Matrix: WATER

Received Date: 08/08/2016 15:15

Percent Solid: N/A

Analysis 1, 517 Nitrato 252.2 00/00/2016 16/44 IS NA NA NA	J	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Alialysis 1. 31/ Nitrate - 333.2 08/09/2010 10.44 JS NA NA	Analysis 1: 5		Nitrate - 353.2	08/09/2016 16:44	JS	NA	NA	NA

Analyte	CAS No.	Result (mg/L)	PQL	Dilution Factor	Flags	File ID
Nitrate	NA	ND	0.165	1.00	U	517

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Field Analysis

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC. Colle

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-5A/AR

Lab Sample ID: 16080179-02 (AT20448)

Collection Date: 08/08/2016 11:30

Sample Matrix: WATER

Received Date: 08/08/2016 15:15

Percent Solid: N/A

Batch ID Analysis 1: Field Test	Method Field Analysis	Date 08/08/2016 11:30	Analyst MEB	Init Wt./Vol. Fin	nal Vol.	Column NA
Analyte	CAS No.	Result	PQL	Dilution Factor	Flags	File ID
Dissolved Oxygen (\$)	7782-44-7	2.47 (mg/L)	0.00	1.00		Field Test
pH (\$)	NA	6.84 (pH)	0.00	1.00		Field Test
Reduction Potential (\$)	NA	-65.0 (mV)	0.00	1.00		Field Test
Specific Conductance (\$)	NA	1110 (umhos/cn	0.00	1.00		Field Test
Static Water Level (\$)	NA	0.350 (ft btmp)	0.00	1.00		Field Test
Temperature (\$)	NA	25.1 (°C)	0.00	1.00		Field Test
Turbidity (\$)	NA	15.2 (NTU)	0.00	1.00		Field Test

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-14

Lab Sample ID: 16080179-03 (AT20449)

Collection Date: 08/08/2016 11:15

Sample Matrix: WATER

Received Date: 08/08/2016 15:15

Percent Solid: N/A

	Batch ID	Method Field Analysis		Date 08/08/2016 11:15	Analyst MEB	Init Wt./Vol.	Final Vol.	Column
Analyte		CAS No.	Resu	lt	PQL	Dilution Fact	or Flags	File ID
Dissolved Oxyge	en (\$)	7782-44-7	2.41	(mg/L)	0.00	1.00		Field Test
pH (\$)		NA	6.59	(pH)	0.00	1.00		Field Test
Reduction Poten	tial (\$)	NA	-78.0	(mV)	0.00	1.00		Field Test
Specific Conduc	tance (\$)	NA	1740	(umhos/cn	0.00	1.00		Field Test
Static Water Lev	rel (\$)	NA	3.99	(ft btmp)	0.00	1.00		Field Test
Temperature (\$)		NA	21.8	(°C)	0.00	1.00		Field Test
Turbidity (\$)		NA	979	(NTU)	0.00	1.00		Field Test

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16080179

Pace Analytical Services, Inc. 2190 Technology Drive

Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC. Collection Date: 08/08/2016 12:15

Project: VAILS GATE MANUFACTURING Sample Matrix: WATER

Client Sample ID: MW-16 Received Date: 08/08/2016 15:15

Lab Sample ID: 16080179-04 (AT20450) **Percent Solid:** N/A

Batch ID Analysis 1: Field Test	Method Field Analysis	Dat 08/08/2016		Init Wt./Vol. F	inal Vol.	Column
Analyte	CAS No.	Result	PQL	Dilution Factor	Flags	File ID
Dissolved Oxygen (\$)	7782-44-7	4.27 (mg/L)	0.00	1.00		Field Test
pH (\$)	NA	7.03 (pH)	0.00	1.00		Field Test
Reduction Potential (\$)	NA	31.0 (mV)	0.00	1.00		Field Test
Specific Conductance (\$)	NA	705 (umhos/	/cm 0.00	1.00		Field Test
Static Water Level (\$)	NA	2.81 (ft btmp	0.00	1.00		Field Test
Temperature (\$)	NA	23.2 (°C)	0.00	1.00		Field Test
Turbidity (\$)	NA	396 (NTU)	0.00	1.00		Field Test

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-CHA-RFI-7

Lab Sample ID: 16080179-05 (AT20451)

Collection Date: 08/08/2016 13:30

Sample Matrix: WATER

Received Date: 08/08/2016 15:15

Percent Solid: N/A

Batch ID Analysis 1: Field Test	Method Field Analysis	Date 08/08/2016 13:30	Analyst MEB	Init Wt./Vol. Fin	nal Vol.	Column
Analyte	CAS No.	Result	PQL	Dilution Factor	Flags	File ID
Dissolved Oxygen (\$)	7782-44-7	1.72 (mg/L)	0.00	1.00		Field Test
pH (\$)	NA	7.53 (pH)	0.00	1.00		Field Test
Reduction Potential (\$)	NA	-5.00 (mV)	0.00	1.00		Field Test
Specific Conductance (\$)	NA	1470 (umhos/cn	0.00	1.00		Field Test
Static Water Level (\$)	NA	0.00 (ft btmp)	0.00	1.00		Field Test
Temperature (\$)	NA	23.3 (°C)	0.00	1.00		Field Test
Turbidity (\$)	NA	7.87 (NTU)	0.00	1.00		Field Test

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Quality Control Samples (Field)

Quality Control Results Matrix Spike Sample (MS)

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC. Project: VAILS GATE MANUFACTURING Client Sample ID: MW-CHA-RFI-7 MS Lab Sample ID: 16080179-05M (AT20451M)

Collection Date: N/A
Sample Matrix: WATER
Received Date: N/A
Percent Solid: N/A

	Batch ID	Method			Date		alyst I	nit Wt./Vol.	Fin	al Vol.	Column
Analysis 1: Analyte		Nitrate - 353.2 CAS No.			(mg/L)	245 JS PQ	L I	NA Dilution Fa	ctor	Flags	File ID
Nitrate		NA		3.	.84	0.1	65	1.00			
Analyte Spike	ed	CAS No.	Sam		dded mg/L)	MS (mg/L)	MS % Rec	1	Limits (%)		
Nitrate		NA		4.0	0 3	.84	96.0	Ç	0.0-110)	

¹ Qualifier column where '*' denotes value outside the control limits. Note: RPD criteria does not apply if either the sample and duplicate sample are not detected.

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Quality Control Results Matrix Spike Duplicate (MSD)

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.
Project: VAILS GATE MANUFACTURING
Client Sample ID: MW-CHA-RFI-7 MSD
Lab Sample ID: 16080179-05K (AT20451K)

Collection Date: N/A
Sample Matrix: WATER
Received Date: N/A
Percent Solid: N/A

Batch I			Date		alyst Ini	it Wt./Vo	l. Fina	l Vol.	(Columi	1
Analysis 1:	Nitrate - 353.2		08/09/2016	16:47 JS		NA		NA		NA	
Analyte	CAS No.	Re	esult (mg/L) P(QL Di	ilution Fa	actor	Flags	File	ID	
Nitrate	NA		3.85	0.1	.65	1.00					
									Prec	ision	
		Sample	Added	MSD	MSD		Limits	MS		1	Limits
Analyte Spiked	CAS No.	(mg/L)	(mg/L)	(mg/L)	% Rec.	$\mathbf{Q}^{^{1}}$	(%)	% Rec.	RPD	$\mathbf{Q}^{^{1}}$	(%)
Nitrate	NA		4.00	3.85	96.3		90.0-110	96.0	0.260	·	20

¹ Qualifier column where '*' denotes value outside the control limits. Note: RPD criteria does not apply if either the sample and duplicate sample are not detected.

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Quality Control Samples (Lab)

Quality Control Results Method Blank

Job Number: 16080179

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

913

Client: LEADER CONSULTING SERVICES, INC.
Project: VAILS GATE MANUFACTURING
Client Sample ID: Method Blank (AT20278B)

Lab Sample ID: BLANK-01

Total Organic Carbon

Collection Date: N/A Sample Matrix: WATER Received Date: N/A Percent Solid: N/A

1.00

U

Analyte		CAS No.	Result (mg/L)	PQL	Dilution Fact	tor Flags	File ID
Analysis 1:	913	SM 5310B	08/16/2016 19:09	JS	NA	NA	NA
	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column

ND

1.00

ND: Denotes analyte not detected at a concentration greater than the PQL.

OC002

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Quality Control Results Lab Control Sample (LCS)

Job Number: 16080179

Pace Analytical Services, Inc. 2190 Technology Drive

Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: Lab Control Sample (AT20278L)

Client Sample ID: VAILS GATE MANUFACTURING

Client Sample ID: Lab Control Sample (AT20278L)

Client Sample ID: VAILS GATE MANUFACTURING

Received Date: N/A

Lab Sample ID: LCS-01 Percent Solid: N/A

		Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
An	alysis 1:	913	SM 5310B	08/16/2016 19:22	JS	NA	NA	NA

		Added	LCS	LCS	, Li	mits
Analyte Spiked	CAS No.	(mg/L)	(mg/L)	% Rec.	$\mathbf{Q}^{'}$ (9	%)
Total Organic Carbon	OC002	10.0	10.3	103	85.	.0-115

¹ Qualifier column where '*' denotes value outside the control limits. Note: RPD criteria does not apply if either the sample and duplicate sample are not detected.

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Quality Control Results Method Blank

Job Number: 16080179

Pace Analytical Services, Inc. 2190 Technology Drive

Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING
Client Sample ID: Method Blank (AT20447B)

Client Sample ID: Method Blank (AT20447B)

Client Sample ID: Method Blank (AT20447B)

Collection Date: N/A

Sample Matrix: WATER

Received Date: N/A

Lab Sample ID: BLANK-28 Percent Solid: N/A

			Final Vol.	0.010,1111
Analysis 1: 517 Nitrate - 353.2 08/09/2016 16:36	JS	NA	NA	NA

Analyte	CAS No.	Result (mg/L)	PQL	Dilution Factor	Flags	File ID
Nitrate	NA	ND	0.165	1.00	U	517

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Quality Control Results Lab Control Sample (LCS)

Job Number: 16080179

Pace Analytical Services, Inc. 2190 Technology Drive

Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.
Project: VAILS GATE MANUFACTURING
Client Sample ID: Lab Control Sample (AT20447L)

Lab Sample ID: LCS-28

Collection Date: N/A Sample Matrix: WATER Received Date: N/A Percent Solid: N/A

[
	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	517	Nitrate - 353.2	08/09/2016 16:37	JS	NA	NA	NA

Analyte Spiked	CAS No.	Added (mg/L)	LCS (mg/L)	LCS % Rec.	\mathbf{Q}^{1}	Limits (%)
Nitrate	NA	4.00	4.13	103		90.0-110

¹ Qualifier column where '*' denotes value outside the control limits. Note: RPD criteria does not apply if either the sample and duplicate sample are not detected.

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Subcontract Analysis

AT20447

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: :8/8/2016 11:32:00 AM

Received :8/10/2016 9:35:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-001

Client Sample ID: FIELD DUPLICATE-01

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7:	Prep Method:	E200.7			<u> </u>	Prep Date: 08/22/16	Analyst: JA
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Iron	14,100		1	ug/L	100	08/22/16 1:47 PM	Container-01 of 01
Manganese	2,820		1	ug/L	15.0	08/22/16 1:47 PM	Container-01 of 01

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: KG
Parameter(s)	Results	Qualifier	D.F.	Units	PQL	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0	<u> </u>		μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,1,1-Trichloroethane	45		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,1,2-Trichloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,1-Dichloroethane	73		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,1-Dichloroethene	3.1		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,1-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,2,3-Trichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,2,3-Trichloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,2,4-Trimethylbenzene	5.6		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,2-Dibromoethane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,2-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,2-Dichloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,2-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,3,5-Trimethylbenzene/P- ethyltoluene	1.4		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,3-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,3-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
1,4-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
2,2-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
2-Butanone	< 5.0		1	μg/L	5.0	08/11/16 1:35 PM	Container-01 of 03
2-Chloroethylvinyl ether	NR	S	1	μg/L	10	08/11/16 1:35 PM	Container-01 of 03
2-Chlorotoluene/4-Chlorotoluene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
2-Hexanone	< 5.0		1	μg/L	5.0	08/11/16 1:35 PM	Container-01 of 03
4-Isopropyltoluene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Carolin Panyarella
Project Manager: Caitlin Panyarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 20

William A. Kotas

:8/10/2016 9:35:00 AM

575 Broad Hollow Road , Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

AT20447

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Collected :8/8/2016 11:32:00 AM

Collected By CLIENT

Attn To:

Received

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-001

Client Sample ID: FIELD DUPLICATE-01

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: KG
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
4-Methyl-2-pentanone	< 5.0		1	μg/L	5.0	08/11/16 1:35 PM	Container-01 of 03
Acetone	< 10		1	μg/L	10	08/11/16 1:35 PM	Container-01 of 03
Benzene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Bromobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Bromochloromethane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Bromodichloromethane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Bromoform	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Bromomethane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Carbon disulfide	< 10		1	μg/L	10	08/11/16 1:35 PM	Container-01 of 03
Carbon tetrachloride	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Chlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Chloroethane	330	D	5	μg/L	5.0	08/15/16 11:38 AM	Container-02 of 03
Chloroform	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Chloromethane	< 1.0	С	1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Dibromochloromethane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Dibromomethane	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Dichlorodifluoromethane	< 1.0	С	1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Ethylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Hexachlorobutadiene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Isopropylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
m,p-Xylene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Methyl tert-butyl ether	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Methylene chloride	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Naphthalene	1.8		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
n-Butylbenzene	1.3	cS	1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
n-Propylbenzene	1.5		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
o-Xylene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
sec-Butylbenzene	1.7	S	1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
Styrene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03
tert-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:35 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cothlin Panyarella
Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 2 of 20

William A. Kotas

:8/10/2016 9:35:00 AM

575 Broad Hollow Road , Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

AT20447

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Collected : 8/8/2016 11:32:00 AM

Collected By CLIENT

Attn To:

Received

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-001

Client Sample ID: FIELD DUPLICATE-01

Type: Aqueous

Sample Information:

Origin:

C

Analytical Method: SW8260C:	Prep Method:	5030C						Analyst: KG
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>		Analyzed:	Container:
Tetrachloroethene	< 1.0		1	μg/L	1.0		08/11/16 1:35 PM	Container-01 of 03
Toluene	1.4		1	μg/L	1.0		08/11/16 1:35 PM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0		1	μg/L	1.0		08/11/16 1:35 PM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0		1	μg/L	1.0		08/11/16 1:35 PM	Container-01 of 03
Trichloroethene	< 1.0		1	μg/L	1.0		08/11/16 1:35 PM	Container-01 of 03
Trichlorofluoromethane	< 1.0		1	μg/L	1.0		08/11/16 1:35 PM	Container-01 of 03
Vinyl acetate	< 10		1	μg/L	10		08/11/16 1:35 PM	Container-01 of 03
Vinyl chloride	2.3		1	μg/L	1.0		08/11/16 1:35 PM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	89.4		1	%Rec		Limit 68-153	08/11/16 1:35 PM	Container-01 of 03
Surr: 4-Bromofluorobenzene	85.7		1	%Rec		Limit 79-124	08/11/16 1:35 PM	Container-01 of 03
Surr: Toluene-d8	83.8		1	%Rec		Limit 69-124	08/11/16 1:35 PM	Container-01 of 03

NOTES:

NR=Analyte not reportable due to improper sample preservation.

Analytical Method: E300.0:						Analyst: bka
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	D.F. Units	<u>PQL</u>	Analyzed:	Container:
Sulfate	< 5.00		1 ma/l	5.00	08/19/16 5:36 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported :

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 20

AT20448

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas :8/8/2016 11:30:00 AM Collected

Received :8/10/2016 9:35:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested

Lab No. : 1608986-002

Client Sample ID: MW-5A/AR

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7:	Prep Method:	E200.7			<u>P</u>	Prep Date: 08/22/16	Analyst: JA
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Iron	14,300		1	ug/L	100	08/22/16 1:54 PM	Container-01 of 01
Manganese	2,890		1	ug/L	15.0	08/22/16 1:54 PM	Container-01 of 01

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: KG
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,1,1-Trichloroethane	42		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,1,2-Trichloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,1-Dichloroethane	76		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,1-Dichloroethene	2.9		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,1-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,2,3-Trichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,2,3-Trichloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,2,4-Trimethylbenzene	5.3		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,2-Dibromoethane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,2-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,2-Dichloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,2-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,3,5-Trimethylbenzene/P- ethyltoluene	1.4		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,3-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,3-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
1,4-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
2,2-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
2-Butanone	< 5.0		1	μg/L	5.0	08/11/16 1:53 PM	Container-01 of 03
2-Chloroethylvinyl ether	NR	S	1	μg/L	10	08/11/16 1:53 PM	Container-01 of 03
2-Chlorotoluene/4-Chlorotoluene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
2-Hexanone	< 5.0		1	μg/L	5.0	08/11/16 1:53 PM	Container-01 of 03
4-Isopropyltoluene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Date Reported: Page 4 of 20

William A. Kotas

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478 www.pacelabs.com

AT20448

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

:8/8/2016 11:30:00 AM Collected Received :8/10/2016 9:35:00 AM

Collected By CLIENT

Attn To:

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested

Lab No. : 1608986-002

Client Sample ID: MW-5A/AR

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: KG
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
4-Methyl-2-pentanone	< 5.0		1	μg/L	5.0	08/11/16 1:53 PM	Container-01 of 03
Acetone	< 10		1	μg/L	10	08/11/16 1:53 PM	Container-01 of 03
Benzene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Bromobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Bromochloromethane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Bromodichloromethane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Bromoform	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Bromomethane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Carbon disulfide	< 10		1	μg/L	10	08/11/16 1:53 PM	Container-01 of 03
Carbon tetrachloride	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Chlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Chloroethane	320	D	5	μg/L	5.0	08/15/16 11:20 AM	Container-02 of 03
Chloroform	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Chloromethane	< 1.0	С	1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Dibromochloromethane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Dibromomethane	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Dichlorodifluoromethane	< 1.0	С	1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Ethylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Hexachlorobutadiene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Isopropylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
m,p-Xylene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Methyl tert-butyl ether	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Methylene chloride	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Naphthalene	1.8		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
n-Butylbenzene	1.2	cS	1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
n-Propylbenzene	1.4		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
o-Xylene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
sec-Butylbenzene	1.7	S	1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
Styrene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03
tert-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:53 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 5 of 20

Date Reported:

William A. Kotas

575 Broad Hollow Road , Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

AT20448

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Collected : 8/8/2016 11:30:00 AM

Received :8/10/2016 9:35:00 AM

Collected By CLIENT

Attn To:

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-002

Client Sample ID: MW-5A/AR

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C						Analyst: KG
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>		Analyzed:	Container:
Tetrachloroethene	< 1.0		1	μg/L	1.0		08/11/16 1:53 PM	Container-01 of 03
Toluene	1.4		1	μg/L	1.0		08/11/16 1:53 PM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0		1	μg/L	1.0		08/11/16 1:53 PM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0		1	μg/L	1.0		08/11/16 1:53 PM	Container-01 of 03
Trichloroethene	< 1.0		1	μg/L	1.0		08/11/16 1:53 PM	Container-01 of 03
Trichlorofluoromethane	< 1.0		1	μg/L	1.0		08/11/16 1:53 PM	Container-01 of 03
Vinyl acetate	< 10		1	μg/L	10		08/11/16 1:53 PM	Container-01 of 03
Vinyl chloride	2.3		1	μg/L	1.0		08/11/16 1:53 PM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	89.3		1	%Rec		Limit 68-153	08/11/16 1:53 PM	Container-01 of 03
Surr: 4-Bromofluorobenzene	83.2		1	%Rec		Limit 79-124	08/11/16 1:53 PM	Container-01 of 03
Surr: Toluene-d8	83.4		1	%Rec		Limit 69-124	08/11/16 1:53 PM	Container-01 of 03

NOTES:

NR=Analyte not reportable due to improper sample preservation.

Analytical Method: E300.0:						Analyst: bka
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	D.F. Units	<u>PQL</u>	Analyzed:	Container:
Sulfate	< 5.00	•	1 mg/l	5.00	08/19/16 5:49 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported :

Cathlin Panyarella
Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 6 of 20

AT20449

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: :8/8/2016 11:15:00 AM

Received :8/10/2016 9:35:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-003

Client Sample ID: MW-14

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7:	Prep Method:	E200.7			<u>!</u>	Prep Date: 08/22/16	Analyst: JA
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Iron	95,900		1	ug/L	100	08/22/16 2:00 PM	Container-01 of 01
Manganese	17,800		1	ug/L	15.0	08/22/16 2:00 PM	Container-01 of 01

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: KG
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,1,1-Trichloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,1,2-Trichloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,1-Dichloroethane	12		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,1-Dichloroethene	3.7		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,1-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,2,3-Trichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,2,3-Trichloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,2,4-Trimethylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,2-Dibromoethane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,2-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,2-Dichloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,2-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,3-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,3-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
1,4-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
2,2-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
2-Butanone	< 5.0		1	μg/L	5.0	08/11/16 2:10 PM	Container-01 of 03
2-Chloroethylvinyl ether	NR	S	1	μg/L	10	08/11/16 2:10 PM	Container-01 of 03
2-Chlorotoluene/4-Chlorotoluene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
2-Hexanone	< 5.0		1	μg/L	5.0	08/11/16 2:10 PM	Container-01 of 03
4-Isopropyltoluene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Carolin Panyarella
Project Manager: Caitlin Panyarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 7 of 20

William A. Kotas

:8/10/2016 9:35:00 AM

575 Broad Hollow Road , Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

AT20449

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Collected : 8/8/2016 11:15:00 AM

Collected By CLIENT

Attn To:

Received

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-003

Client Sample ID: MW-14

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: KG
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
4-Methyl-2-pentanone	< 5.0		1	μg/L	5.0	08/11/16 2:10 PM	Container-01 of 03
Acetone	15	С	1	μg/L	10	08/11/16 2:10 PM	Container-01 of 03
Benzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Bromobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Bromochloromethane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Bromodichloromethane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Bromoform	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Bromomethane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Carbon disulfide	< 10		1	μg/L	10	08/11/16 2:10 PM	Container-01 of 03
Carbon tetrachloride	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Chlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Chloroethane	8.9		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Chloroform	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Chloromethane	< 1.0	С	1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Dibromochloromethane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Dibromomethane	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Dichlorodifluoromethane	< 1.0	С	1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Ethylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Hexachlorobutadiene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Isopropylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
m,p-Xylene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Methyl tert-butyl ether	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Methylene chloride	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Naphthalene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
n-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
n-Propylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
o-Xylene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
sec-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
Styrene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03
tert-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:10 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlem Panyarella
Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC

unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 8 of 20

AT20449

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 8/8/2016 11:15:00 AM

Received :8/10/2016 9:35:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-003

Client Sample ID: MW-14

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C : Parameter(s)	Prep Method: Results	5030C Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>		Analyzed:	Analyst: KG Container:
Tetrachloroethene	< 1.0		1	μg/L	1.0		08/11/16 2:10 PM	Container-01 of 03
Toluene	< 1.0		1	μg/L	1.0		08/11/16 2:10 PM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0		1	μg/L	1.0		08/11/16 2:10 PM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0		1	μg/L	1.0		08/11/16 2:10 PM	Container-01 of 03
Trichloroethene	< 1.0		1	μg/L	1.0		08/11/16 2:10 PM	Container-01 of 03
Trichlorofluoromethane	< 1.0		1	μg/L	1.0		08/11/16 2:10 PM	Container-01 of 03
Vinyl acetate	< 10		1	μg/L	10		08/11/16 2:10 PM	Container-01 of 03
Vinyl chloride	3.1		1	μg/L	1.0		08/11/16 2:10 PM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	88.1		1	%Rec		Limit 68-153	08/11/16 2:10 PM	Container-01 of 03
Surr: 4-Bromofluorobenzene	85.3		1	%Rec		Limit 79-124	08/11/16 2:10 PM	Container-01 of 03
Surr: Toluene-d8	84.9		1	%Rec		Limit 69-124	08/11/16 2:10 PM	Container-01 of 03

NOTES:

NR=Analyte not reportable due to improper sample preservation.

Analytical Method: E300.0:						Analyst: bka
Parameter(s)	<u>Results</u>	Qualifier	D.F. Units	<u>PQL</u>	Analyzed:	Container:
Sulfate	< 5.00		1 mg/l	5.00	08/19/16 6:03 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlem Panyarella
Project Manager: Caitlin Panyarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 9 of 20

William A. Kotas

TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478 www.pacelabs.com

AT20450

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

:8/8/2016 12:15:00 PM Collected Received :8/10/2016 9:35:00 AM

Collected By CLIENT

Attn To:

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested

Lab No. : 1608986-004

Client Sample ID: MW-16

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7:	Prep Method:	E200.7				Prep Date: 08/22/16	Analyst: JA
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Iron	5,040		1	ug/L	100	08/22/16 2:06 PM	Container-01 of 01
Manganese	1,550		1	ug/L	15.0	08/22/16 2:06 PM	Container-01 of 01

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: KG
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,1,1-Trichloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,1,2-Trichloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,1-Dichloroethane	9.1		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,1-Dichloroethene	4.5		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,1-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,2,3-Trichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,2,3-Trichloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,2,4-Trimethylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,2-Dibromoethane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,2-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,2-Dichloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,2-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,3-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,3-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
1,4-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
2,2-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
2-Butanone	< 5.0		1	μg/L	5.0	08/11/16 2:28 PM	Container-01 of 03
2-Chloroethylvinyl ether	NR	S	1	μg/L	10	08/11/16 2:28 PM	Container-01 of 03
2-Chlorotoluene/4-Chlorotoluene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
2-Hexanone	< 5.0		1	μg/L	5.0	08/11/16 2:28 PM	Container-01 of 03
4-Isopropyltoluene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 10 of 20

AT20450

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: :8/8/2016 12:15:00 PM

Received :8/10/2016 9:35:00 AM Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-004

Client Sample ID: MW-16

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: KG
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
4-Methyl-2-pentanone	< 5.0		1	μg/L	5.0	08/11/16 2:28 PM	Container-01 of 03
Acetone	< 10		1	μg/L	10	08/11/16 2:28 PM	Container-01 of 03
Benzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Bromobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Bromochloromethane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Bromodichloromethane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Bromoform	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Bromomethane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Carbon disulfide	< 10		1	μg/L	10	08/11/16 2:28 PM	Container-01 of 03
Carbon tetrachloride	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Chlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Chloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Chloroform	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Chloromethane	< 1.0	С	1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Dibromochloromethane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Dibromomethane	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Dichlorodifluoromethane	< 1.0	С	1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Ethylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Hexachlorobutadiene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Isopropylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
m,p-Xylene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Methyl tert-butyl ether	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Methylene chloride	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Naphthalene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
n-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
n-Propylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
o-Xylene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
sec-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
Styrene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03
tert-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:28 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlem Panyarella
Project Manager: Caitlin Panyarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 11 of 20

TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478 www.pacelabs.com

AT20450

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas :8/8/2016 12:15:00 PM Collected

Received :8/10/2016 9:35:00 AM Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested

Lab No. : 1608986-004

Client Sample ID: MW-16

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C : Parameter(s)	Prep Method: Results	5030C Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>		Analyzed:	Analyst: KG Container:
Tetrachloroethene	2.4		1	μg/L	1.0		08/11/16 2:28 PM	Container-01 of 03
Toluene	< 1.0		1	μg/L	1.0		08/11/16 2:28 PM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0		1	μg/L	1.0		08/11/16 2:28 PM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0		1	μg/L	1.0		08/11/16 2:28 PM	Container-01 of 03
Trichloroethene	< 1.0		1	μg/L	1.0		08/11/16 2:28 PM	Container-01 of 03
Trichlorofluoromethane	< 1.0		1	μg/L	1.0		08/11/16 2:28 PM	Container-01 of 03
Vinyl acetate	< 10		1	μg/L	10		08/11/16 2:28 PM	Container-01 of 03
Vinyl chloride	< 1.0		1	μg/L	1.0		08/11/16 2:28 PM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	88.3		1	%Rec		Limit 68-153	08/11/16 2:28 PM	Container-01 of 03
Surr: 4-Bromofluorobenzene	82.0		1	%Rec		Limit 79-124	08/11/16 2:28 PM	Container-01 of 03
Surr: Toluene-d8	84.4		1	%Rec		Limit 69-124	08/11/16 2:28 PM	Container-01 of 03

NOTES:

NR=Analyte not reportable due to improper sample preservation.

Analytical Method: E300.0:							Analyst: bka
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Sulfate	8.67		1	mg/L	5.00	08/19/16 6:16 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 12 of 20

AT20451

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 8/8/2016 1:30:00 PM

Received :8/10/2016 9:35:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-005

Client Sample ID: MW-CHA-RFI-7 MS/MSD

\riain.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7:	Prep Method:	E200.7			<u> </u>	Prep Date: 08/22/16	Analyst: JA
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Iron	513		1	ug/L	100	08/22/16 2:12 PM	Container-01 of 01
Manganese	1.570		1	ua/L	15.0	08/22/16 2:12 PM	Container-01 of 01

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: KG
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,1,1-Trichloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,1,2-Trichloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,1-Dichloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,1-Dichloroethene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,1-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,2,3-Trichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,2,3-Trichloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,2,4-Trichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,2,4-Trimethylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,2-Dibromo-3-chloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,2-Dibromoethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,2-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,2-Dichloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,2-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,3-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,3-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
1,4-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
2,2-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
2-Butanone	< 5.0		1	μg/L	5.0	08/11/16 2:46 PM	Container-01 of 06
2-Chloroethylvinyl ether	NR	S	1	μg/L	10	08/11/16 2:46 PM	Container-01 of 06
2-Chlorotoluene/4-Chlorotoluene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06
2-Hexanone	< 5.0		1	μg/L	5.0	08/11/16 2:46 PM	Container-01 of 06
4-Isopropyltoluene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 06

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Carolim Panyarella
Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 13 of 20

:8/10/2016 9:35:00 AM

575 Broad Hollow Road , Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

AT20451

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 8/8/2016 1:30:00 PM

Collected By CLIENT

Received

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-005

Client Sample ID: MW-CHA-RFI-7 MS/MSD

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: KG
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
4-Methyl-2-pentanone	< 5.0		1	μg/L	5.0	08/11/16 2:46 PM	Container-01 of 0
Acetone	< 10		1	μg/L	10	08/11/16 2:46 PM	Container-01 of 0
Benzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Bromobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Bromochloromethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Bromodichloromethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Bromoform	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Bromomethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Carbon disulfide	< 10		1	μg/L	10	08/11/16 2:46 PM	Container-01 of 0
Carbon tetrachloride	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Chlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Chloroethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Chloroform	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Chloromethane	< 1.0	С	1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
cis-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
cis-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Dibromochloromethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Dibromomethane	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Dichlorodifluoromethane	< 1.0	С	1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Ethylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Hexachlorobutadiene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Isopropylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
m,p-Xylene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Methyl tert-butyl ether	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Methylene chloride	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Naphthalene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
n-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
n-Propylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
o-Xylene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
sec-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
Styrene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0
tert-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 2:46 PM	Container-01 of 0

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported :

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 14 of 20

TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478 www.pacelabs.com

AT20451

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas Collected :8/8/2016 1:30:00 PM

Received :8/10/2016 9:35:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested

Lab No. : 1608986-005

Client Sample ID: MW-CHA-RFI-7 MS/MSD

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C : Parameter(s)	Prep Method: Results	5030C <u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>		Analyzed:	Analyst: KG Container:
Tetrachloroethene	< 1.0		1	μg/L	1.0		08/11/16 2:46 PM	Container-01 of 06
Toluene	< 1.0		1	μg/L	1.0		08/11/16 2:46 PM	Container-01 of 06
trans-1,2-Dichloroethene	< 1.0		1	μg/L	1.0		08/11/16 2:46 PM	Container-01 of 06
trans-1,3-Dichloropropene	< 1.0		1	μg/L	1.0		08/11/16 2:46 PM	Container-01 of 06
Trichloroethene	< 1.0		1	μg/L	1.0		08/11/16 2:46 PM	Container-01 of 06
Trichlorofluoromethane	< 1.0		1	μg/L	1.0		08/11/16 2:46 PM	Container-01 of 06
Vinyl acetate	< 10		1	μg/L	10		08/11/16 2:46 PM	Container-01 of 06
Vinyl chloride	< 1.0		1	μg/L	1.0		08/11/16 2:46 PM	Container-01 of 06
Surr: 1,2-Dichloroethane-d4	90.5		1	%Rec		Limit 68-153	08/11/16 2:46 PM	Container-01 of 06
Surr: 4-Bromofluorobenzene	84.1		1	%Rec		Limit 79-124	08/11/16 2:46 PM	Container-01 of 06
Surr: Toluene-d8	84.8		1	%Rec		Limit 69-124	08/11/16 2:46 PM	Container-01 of 06

NOTES:

NR=Analyte not reportable due to improper sample preservation.

Analytical Method: E300.0:						Analyst: bka
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	D.F. Units	<u>PQL</u>	Analyzed:	Container:
Sulfate	36.4		1 ma/l	5.00	08/19/16 6:30 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 15 of 20

AT20452

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 8/8/2016

Received : 8/10/2016 9:35:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-006 Sample Information:

Type : Aqueous

Lab No. : 1608986-006 Type : Aqueous Client Sample ID: TRIP BLANK-01

Orio

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: KG
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,1,1-Trichloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,1,2-Trichloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,1-Dichloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,1-Dichloroethene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,1-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,2,3-Trichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,2,3-Trichloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,2,4-Trichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,2,4-Trimethylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,2-Dibromo-3-chloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,2-Dibromoethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,2-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,2-Dichloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,2-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,3-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,3-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
1,4-Dichlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
2,2-Dichloropropane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
2-Butanone	< 5.0		1	μg/L	5.0	08/11/16 1:17 PM	Container-01 of 02
2-Chloroethylvinyl ether	NR	S	1	μg/L	10	08/11/16 1:17 PM	Container-01 of 02
2-Chlorotoluene/4-Chlorotoluene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
2-Hexanone	< 5.0		1	μg/L	5.0	08/11/16 1:17 PM	Container-01 of 02
4-Isopropyltoluene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
4-Methyl-2-pentanone	< 5.0		1	μg/L	5.0	08/11/16 1:17 PM	Container-01 of 02
Acetone	< 10		1	μg/L	10	08/11/16 1:17 PM	Container-01 of 02
Benzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Bromobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Bromochloromethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Bromodichloromethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Caillim Panyarella
Project Manager: Caitlin Panyarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 16 of 20

AT20452

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 8/8/2016

Received : 8/10/2016 9:35:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-006

Client Sample ID: TRIP BLANK-01

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C			201	Anahmadı	Analyst: KG
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	<u>Container:</u>
Bromoform	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Bromomethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Carbon disulfide	< 10		1	μg/L	10	08/11/16 1:17 PM	Container-01 of 02
Carbon tetrachloride	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Chlorobenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Chloroethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Chloroform	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Chloromethane	< 1.0	С	1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
cis-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
cis-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Dibromochloromethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Dibromomethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Dichlorodifluoromethane	< 1.0	С	1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Ethylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Hexachlorobutadiene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Isopropylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
m,p-Xylene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Methyl tert-butyl ether	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 03
Methylene chloride	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Naphthalene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
n-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
n-Propylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
o-Xylene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
sec-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Styrene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
tert-Butylbenzene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Tetrachloroethene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 03
Toluene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
trans-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Trichloroethene	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02
Trichlorofluoromethane	< 1.0		1	μg/L	1.0	08/11/16 1:17 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlem Panyarella
Project Manager: Caitlin Panyarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 17 of 20

AT20452

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 8/8/2016

Received :8/10/2016 9:35:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608986-006

Client Sample ID: TRIP BLANK-01

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C						Analyst: KG
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>		Analyzed:	Container:
Vinyl acetate	< 10		1	μg/L	10		08/11/16 1:17 PM	Container-01 of 02
Vinyl chloride	< 1.0		1	μg/L	1.0		08/11/16 1:17 PM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	90.4		1	%Rec		Limit 68-153	08/11/16 1:17 PM	Container-01 of 02
Surr: 4-Bromofluorobenzene	83.7		1	%Rec		Limit 79-124	08/11/16 1:17 PM	Container-01 of 02
Surr: Toluene-d8	84.4		1	%Rec		Limit 69-124	08/11/16 1:17 PM	Container-01 of 02

NOTES:

NR=Analyte not reportable due to improper sample preservation.

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported :

Caillim Panyarella
Project Manager: Caitlin Panyarella

, 0

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 18 of 20

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747

Sample Receipt Checklist

TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.pacelabs.com</u>

Client Name PACE-NY			Date and	Time Received:	8/10/2016 9:35:00 AM
Work Order Number: 1608986 RcptNo: 1			Received	by Paige Dohe	erty
Completed by: Paige Doherty Completed Date: 8/10/2016 12:54:41 PM			ewed by:		Panzarella 6 1:03:48 PM
Carrier name: FedEx					
Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Are matrices correctly identified on Chain of custody? Is it clear what analyses were requested? Custody seals intact on sample bottles? Samples in proper container/bottle? Were correct preservatives used and noted?	Yes Yes Yes Yes Yes Yes Yes Yes	>>>>	No	Not Present	
Preservative added to bottles: Sample Condition? Sufficient sample volume for indicated test? Were container labels complete (ID, Pres, Date)? All samples received within holding time?	Intact Yes Yes Yes	> > > > > >	Broken No No No No	Leaking	
Was an attempt made to cool the samples? All samples received at a temp. of > 0° C to 6.0° C? Response when temperature is outside of range:	Yes Yes	✓	No 🗌 No 🗌	NA NA	
Sample Temp. taken and recorded upon receipt? Water - Were bubbles absent in VOC vials? Water - Was there Chlorine Present? Water - pH acceptable upon receipt? Are Samples considered acceptable? Custody Seals present?	Yes Yes Yes Yes Yes	>>>>	No	To C No Vials NA No Water	0.6°
Airbill or Sticker? Airbill No:	Air Bil 6903 0	✓	Sticker	Not Present	
Case Number: SDG: PACE-NY423			SAS:		
Any No response should be detailed in the comments section	below, if appl	licable	·		
Client Contacted? Yes No No NA Contact Mode: Phone: Fax: Client Instructions: Date Contacted: Contact Regarding: Comments:	Person Cont Email:	acted:		=	
Sample preservation not verified at Schenectady lab. CorrectiveAction:					

<u>WorkOrder :</u> 1608986

Certifications

STATE	CERTIFICATION#
NEW YORK	10478
NEW JERSEY	NY158
CONNECTICUT	PH-0435
MARYLAND	208
MAS S ACHUS ETTS	MNY026
NEW HAMPS HIRE	2987
RHODE IS LAND	LAO00340
PENNS YLVANIA	68-00350

Page 20 of 20

Jace - Lt

8 - Other (Na2SO3) PRESERVATIVE KEY OTHER NOTES: Data Package (LEVEL-4) EDD: EQUIS-DEC-DER DISPOSAL REQUIREMENTS: (To be filled in by Client) 5 - Zn. Acetate 7 - NaHS04 3 - H2SO4 2 - HNO3 4 - NaOH 6 - MeOH 1-HCL REMARKS: MSM/SSM ENTER ANALYSIS AND METHOD NUMBER REQUESTED Additional charges incurred for disposal (if hazardous) or archival. DISPOSAL BY RECEIVING LAB ARCHIVAL BY RECEIVING LAB RETURN TO CLIENT · 0.00^{E3} e^{jellu}S Metals E200.7, × × × × × Call for details. ,000 E8260C × × × × , 7.0053 eleteM bewloseld PRESERVATIVE CODE: RECVD W/I HOLDING TIMES: × × × × × × BOTTLE TYPE: BOTTLE SIZE: PROPERLY PRESERVED: × × × × (LAB USE ONLY) NUMBER OF CONTAINERS 8/22/2016 LRF# 16080179 (LAB USE ONLY) SAMPLE ID PAGE 10F GRAB | AT20448 AT20449 AT20450 AT20447 AT20452 AT20451 OCATION (CITY/STATE) ADDRESS REQUIRED TURN AROUND TIME NAME OF COURIER (IF USED) GRAB GRAB GRAB GRAB GRAB PROJECT#/PROJECT NAME: GRAB/ COMP 2190 Technology Drive, Schenectady, NY 12308 Telephone (518) 346-4592 Fax (518) 381-6055 Pace Analytical Services, Inc. COC DISCREPANCIES: 16080179 CHAIN OF CUSTODY RECORD MATRIX COC TAPE: ż nicholas.nicholas@pacelabs.com Nicole. Johnson@pacelabs.com 11:32 11:30 11:15 12:15 13:30 TIME RESERVATION NOT VERIFIED AT SCHENECTADY LAB. IETALS: FE, MN; DISSOLVED METALS: FE, MN. 8/8/16 8/8/16 8/8/16 8/8/16 8/8/16 8/8/16 DATE TEMP: , CLIENT (REPORTS TO BE SENT TO): www.pacelabs.com ECEIVED BROKEN OR LEAKING: AW-CHA-RFI-7 MS/MSD IELD DUPLICATE-01 ELECTRONIC RESULTS SAMPLE ID Nick Nicholas MBIENT OR CHILLED: ROJECT MANAGER **TRIP BLANK-01** MW-5A/AR PACE WW-14 **JW-16** VGM Project: otes;

6903 0826 5783

RECEIVED BY

SIGNATURE

RELINQUISHED BY

RELINQUISHED BY

RINTED NAME

INTED NAME

INTED NAME

YNAMMC ATE/TIME

ATE/TIME

OMPANY

COMPANY DATE/TIME

SIGNATURE

RECEIVED BY

IGNATURE

RINTED NAME

RINTED NAME

JATE/TIME COMPANY

DATE/TIME COMPANY

1770118

SATE/TIME

7

Manganese *** Methane, Ethane, & Ethene (RSK-175) N/A N/A samples Intact *Specify Metals/Inorganics: Iron Pace Laboratory I.D. SAMPLE CONDITIONS 4TZOULY 7 elooU belbes ATZOLIU8 QA Y N/A MIZOHIA Custody A 2020 14720572 A COUSI Hecelved on NØ N/A N/X New York State 7 O° ni qmeT REGULATORY PROGRAM <16080179P1> DRINKING WATER TIME T OTHER 15 15 REQUESTED ANALYSES CHAIN-OF-CUSTODY / Analytical Request Document GROUND WATER 911818 DATE The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. DATE Signed (MM / DD / YY): 8/8 // \$ LOCATION 1sil IluR 09\$8 x x x x x x x SITE RSK-175 (Gases)*** x x x x x x x x x x x Total Organic Carbor ACCEPTED BY / AFFILIATION NPDES Sulfate T UST Dissolved Fe & Mn PACC nM & e4 lstoT Nitrate Leader Professional Services 200 HOe Vails Gate Manufactul Pace Project Manager. Nicholas Nicholas PRINT Narre of SAMPLER: Matt Broker (PACE) IOF FON × × × ace Quote Reference: #00012704 Keith Keller 2151 pevieseiqu × TIME 22 12 SAMPLER NAME AND SIGNATURE # ФЕ СОИТАІИЕРЯ SAMPLE TEMP AT COLLECTIO 819116 nvoice Information DATE SIGNATURE of SAMPLER: сотралу Nате: Pace Profile # SAMPLE Section C TIME 1215 132 Attention: 30 530 2 Address: RELINQUISHED BY / AFFILIATION SAMPLE DATE SB R अधि। 6 2/8/16 8/8/16 व हिड़ि १६ 3/8/3 D 6 3/8/16 Required Project Information: Report To: Keith Keller SAMPLE TYPE DD=D BARR=D G ¥ ¥ M Copy To: na ΜŢ × ¥ MATRIX CODE 2190 Technology Dr. Schenectady, NY 12308 Standard 2-Week Project Number Section B Project Name: Purchase Order No.: New York Office 9年3年11月3年21日日 Company: Leader Professional Services MW-CHA-RFI-7 MS/MSD 2813 Wehrle Drive, Suite 1 Vafol Matr MATRIX Field Duplicate-01 Trip Blank-01 Williamsville, NY 14221 MW-5A/AR Face Analytical MW-16 MW-14 ADDITIONAL COMMENTS Fах: na (A-Z, 0-9 / ,-) hile IDs MUST BE UNIQUE SAMPLE ID NYSDEC DER-10 EQuIS EDD Requested Due Date/TAT: Section A Required Client Information: 716-565-0963 Section D Clent Information Address: Email To: Phone: # ₩∃11 12

Document Control# F-NY-C-034-rev.01 (24May2016)

Sample Condition Upon Receipt

				J	CLIENT NAME: Leader Professional Services	Professione	500000
				E	PROJECT : V2.15 Gate	MenuBackaning	
COURIER: FedEx □ UPS □ Cli	Client	Pace 🗹	Other		DINTACT: Vos	C C	N/AX
TRACKING # 17 A	-	CUSTODY S	CUSTODY SEAL PRESENT: Yes	X) ON	INTEGER WORLD		None
PACKING MATERIAL: Bubble Wrap 🗅	But		None 🗷	Other 🗆	ICE USED: Well to		
THERMOMETER USED: #164 ≤ IR Gun 03 □			#160239773-PKB		Enai One (v):		
BIOLOGICAL TISSUE IS FROZEN: Yes	No 🗆	N/A M			6 - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
COMMENTS:				Temperature	Temperature is Acceptable?	M Yes	DNI
Chain of Custody Present:	M¥es	ON0	Fi				
Chain of Custody Filled Out:	ĭ¥Yes	□No	2.				
Chain of Custody Relinquished:	Ka Yes	oN□	.,,	3.			
Sampler Name / Signature on COC:	M Yes	oN []	7	4.			
Samples Arrived within Hold Time:	⊠ Yes	ONO		5.			
Short Hold Time Analysis (<72hr):	⊠Yes	ONO		6. Mitrate			
Rush Turn Around Time Requested:	□Yes	MNo		7. 2-40048			
Sufficient Volume:	. Zyves	□No		8.			
Correct Containers Used:	M Yes	ON [1	9.			
- Pace Containers Used:	X Yes	ONO					
Containors Intact	X.	oN□		10.			
Collidations interesting for Dissolved too	te I var	SN C	MAN/A	11.			
Filtered volume received for Dissolved tests Lives	ors Lives			No Act of the	sizze i slymes on betazish	، كايجادة	
Sample Labels match COC:	Z √es	<u>8</u>		1011			
 Includes date/time/ID/Analysis 							
All containers needing preservation have been checked:	□Yes	on		Commence of the commence of th			
All containers peeding preservation are in	□Yes	°N □	AN/A				
compliance with EPA recommendation:					o+ # of added preservative:	Native.	4
- Exceptions that are not checked: TOC, VOA, Subcontract Analyses	ontract Analyses			npleted: 2/A	Of # Ol added piese	Ц	
Headsnace in VOA Vials (>6mm):	□Yes	ON NO	□N/A	14.			
Trip Blank Present:	M √es	% □	DN/A	15.			
Trip Blank Custody Seals Present:	□Yes	No.	□N/A				
Pace Trip Blank Lot #: 12 CA						1	A CACAIL
Comple Deceipt form filled in:		Line-Out	(Includes Cop	Line-Out (Includes Copying Shipping Documents and verifying sample pri):	ts and verifying san	pie pri):	On O State.
Saliple never programmed in the saliple never programmed in th	ı	Log In (In	cludes notifyi	Log In (Includes notifying PM of any discrepacies and documenting in LIMS):	ies and documentin	g in LIMS):	man of stree
		Labeling (Includes Scar	Labeling (Includes Scanning Bottles and entering LAB IDs into pH logbook):	ng LAB IDs into pH	ogbook):	DB 81816

575 Broad Hollow Road , Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

AT20447

Pace Analytical Services Inc. 2190 Technology Drive

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 8/8/2016 11:32:00 AM

Received :8/10/2016 9:35:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608A07-001

Client Sample ID: FIELD DUPLICATE-01

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7:							Analyst: JA
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Iron	13,600		1	ug/L	100	08/22/16 12:35 PM	Container-01 of 01
Manganese	2,720		1	ug/L	15.0	08/22/16 12:35 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Date Reported: Page 1 of 7

575 Broad Hollow Road , Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

AT20448

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: :8/8/2016 11:30:00 AM

:8/10/2016 9:35:00 AM

Collected By CLIENT

Received

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

LABORATORY RESULTS

Lab No. : 1608A07-002

Client Sample ID: MW-5A/AR

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7:							Analyst: JA
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Iron	13,900		1	ug/L	100	08/22/16 12:41 PM	Container-01 of 01
Manganese	2,810		1	ug/L	15.0	08/22/16 12:41 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Data Departed :

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Date Reported: Page 2 of 7

Pace Analytical Sevices, Inc. September 22, 2016 Revision 1 16080179 - Page 67 of 87

575 Broad Hollow Road , Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

AT20449

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected: 8/8/2016 11:15:00 AM

Received : 8/10/2016 9:35:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608A07-003

Client Sample ID: MW-14

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7:							Analyst: JA
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Iron	35,400		1	ug/L	100	08/22/16 12:47 PM	Container-01 of 01
Manganese	12,800		1	ug/L	15.0	08/22/16 12:47 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 7

William A. Kotas

:8/10/2016 9:35:00 AM

575 Broad Hollow Road , Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

AT20450

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Collected : 8/8/2016 12:15:00 PM

Collected By CLIENT

Attn To:

Received

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1608A07-004

Client Sample ID: MW-16

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7:							Analyst: JA
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Iron	310		1	ug/L	100	08/22/16 12:53 PM	Container-01 of 01
Manganese	2,060		1	ug/L	15.0	08/22/16 12:53 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 4 of 7

Pace Analytical Sevices, Inc. September 22, 2016 Revision 1 16080179 - Page 69 of 87

:8/10/2016 9:35:00 AM

TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478 www.pacelabs.com

Pace Analytical Services Inc. 2190 Technology Drive

Schenectady, NY 12308

Attn To: William A. Kotas :8/8/2016 1:30:00 PM Collected

Collected By CLIENT

Received

AT20451

LABORATORY RESULTS Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested

Lab No. : 1608A07-005

Client Sample ID: MW-CHA-RFI-7 MS/MSD

Type: Aqueous

Sample Information:

Origin:

•							
Analytical Method: E200.7:							Analyst: JA
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Iron	150		1	ug/L	100	08/22/16 12:59 PM	Container-01 of 01
Manganese	1 610		1	ua/l	15.0	08/22/16 12:59 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 5 of 7

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747

TEL: (631) 694-3040 FAX: (631) 420-8436

Sample Receipt Checklist

Website: <u>www.pacelabs.com</u>

Client Name PACE-NY		Date	e and Time Received: 8/10/2016 9:35:00 AM
Work Order Number: 1608A07 RcptNo: 1		Rec	ceived by Paige Doherty
Completed by: Paige Doharly		Reviewed by:	Cathlin Panzarella
Completed Date: 8/10/2016 12:55:10 PM		Reviewed Date:	8/15/2016 1:17:22 PM
Carrier name: FedEx			
Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Are matrices correctly identified on Chain of custody? Is it clear what analyses were requested? Custody seals intact on sample bottles? Samples in proper container/bottle? Were correct preservatives used and noted? Preservative added to bottles: Sample Condition?	Yes Yes Yes Yes Yes Yes Yes Intact	No N	□ Not Present □ NA □ □ Leaking □
Sufficient sample volume for indicated test? Were container labels complete (ID, Pres, Date)? All samples received within holding time?	Yes	✓ No [✓ No [✓ No [
Was an attempt made to cool the samples? All samples received at a temp. of > 0° C to 6.0° C? Response when temperature is outside of range:		✓ No [✓ No [—
Sample Temp. taken and recorded upon receipt? Water - Were bubbles absent in VOC vials? Water - Was there Chlorine Present? Water - pH acceptable upon receipt? Are Samples considered acceptable?	Yes Yes Yes	✓ No [No [No [✓ No [✓ No [No Vials ✓ NA ✓ No Water
Custody Seals present? Airbill or Sticker? Airbill No:	Air Bil	✓ No [✓ Sticker [326 5783	
Case Number: SDG: PACE-NY504F		SAS:	
Any No response should be detailed in the comments section	n below, if applic	cable.	
Client Contacted? ☐ Yes ☐ No ✔ NA Contact Mode: ☐ Phone: ☐ Fax: Client Instructions:	Person Conta	icted:	rson:
	acted By:		

 $\frac{\text{WorkOrder:}}{1608A07}$

Certifications

STATE	CERTIFICATION#
NEW YORK	10478
NEW JERSEY	NY158
CONNECTICUT	PH-0435
MARYLAND	208
MAS S ACHUS ETTS	MNY026
NEW HAMPS HIRE	2987
RHODE IS LAND	LAO00340
PENNS YLVANIA	68-00350

Page 7 of 7

Pace-Lt

8 - Other (Na2SO3) PRESERVATIVE KEY OTHER NOTES: Data Package (LEVEL-4) EDD: EQUIS-DEC-DER DISPOSAL REQUIREMENTS: (To be filled in by Client) 5 - Zn. Acetate 7 - NaHS04 3 - H2SO4 2 - HNO3 4 - NaOH 6 - MeOH 1-HCL REMARKS: RECEIVED BY MSM/SSM ENTER ANALYSIS AND METHOD NUMBER REQUESTED Additional charges incurred for disposal (if hazardous) or archival. RINTED NAME DISPOSAL BY RECEIVING LAB ARCHIVAL BY RECEIVING LAB SIGNATURE JATE/TIME COMPANY RETURN TO CLIENT RELINQUISHED BY · 0.00^{E3} e^{jellu}S Metals E200.7, RINTED NAME DATE/TIME COMPANY × × × × × Call for details. ,000 E8260C × × × × 7 , 7.0053 eleteM bewloseld 1770118 PRESERVATIVE CODE: RECVD W/I HOLDING TIMES: × × × × × × BOTTLE TYPE: BOTTLE SIZE: PROPERLY PRESERVED: × × × × (LAB USE ONLY) SATE/TIME NUMBER OF CONTAINERS 8/22/2016 LRF# 16080179 (LAB USE ONLY) SAMPLE ID PAGE 10F RELINQUISHED BY GRAB | AT20448 AT20449 AT20450 AT20447 AT20452 AT20451 OCATION (CITY/STATE) ADDRESS REQUIRED TURN AROUND TIME NAME OF COURIER (IF USED) GRAB GRAB GRAB GRAB GRAB PROJECT#/PROJECT NAME: RINTED NAME GRAB/ COMP 2190 Technology Drive, Schenectady, NY 12308 Telephone (518) 346-4592 Fax (518) 381-6055 SIGNATURE COMPANY DATE/TIME Pace Analytical Services, Inc. COC DISCREPANCIES: 16080179 CHAIN OF CUSTODY RECORD MATRIX COC TAPE: ż nicholas.nicholas@pacelabs.com Nicole. Johnson@pacelabs.com 11:32 11:30 11:15 12:15 13:30 RECEIVED BY TIME RESERVATION NOT VERIFIED AT SCHENECTADY LAB. IETALS: FE, MN; DISSOLVED METALS: FE, MN. INTED NAME 8/8/16 IGNATURE 8/8/16 8/8/16 8/8/16 8/8/16 8/8/16 ATE/TIME DATE OMPANY TEMP: , CLIENT (REPORTS TO BE SENT TO): www.pacelabs.com ECEIVED BROKEN OR LEAKING: AW-CHA-RFI-7 MS/MSD IELD DUPLICATE-01 ELECTRONIC RESULTS SAMPLE ID Nick Nicholas MBIENT OR CHILLED: ROJECT MANAGER **TRIP BLANK-01** MW-5A/AR INTED NAME PACE WW-14 **JW-16** VGM YNAMMC ATE/TIME Project: otes;

6903 0826 5783

4:25

Manganese *** Methane, Ethane, & Ethene (RSK-175) N/A N/A samples Intact *Specify Metals/Inorganics: Iron Pace Laboratory I.D. SAMPLE CONDITIONS 4TZOULY 7 elooU belbes ATZOLIU8 QA Y N/X N/A MIZOHIA Custody A 2020 14720572 A COUSI Hecelved on NØ N/A N/X New York State 7 O° ni qmeT REGULATORY PROGRAM <16080179P1> DRINKING WATER TIME T OTHER 15 15 REQUESTED ANALYSES CHAIN-OF-CUSTODY / Analytical Request Document GROUND WATER 911818 DATE The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. DATE Signed (MM / DD / YY): 8/8 // \$ LOCATION 1sil IluR 09\$8 x x x x x x x SITE HSK 175 (Gases)*** x x x x x x x x x x x Total Organic Carbor ACCEPTED BY / AFFILIATION NPDES Sulfate T UST Dissolved Fe & Mn PACC nM & e4 lstoT Nitrate Leader Professional Services 200 HOe Vails Gate Manufactul Pace Project Manager. Nicholas Nicholas PRINT Narre of SAMPLER: Matt Broker (PACE) IOF FON × × × Pace Quote Reference: #00012704 Keith Keller 2151 pevieseiqu × TIME 22 12 SAMPLER NAME AND SIGNATURE # ФЕ СОИТАІИЕРЯ SAMPLE TEMP AT COLLECTIO 819116 nvoice Information DATE SIGNATURE of SAMPLER: сотралу Nате: Pace Profile # SAMPLE Section C TIME 1215 132 Attention: 30 530 2 Address: RELINQUISHED BY / AFFILIATION SERV. SAMPLE DATE अधि। 6 2/8/16 8/8/16 व हिड़ि १६ 3/8/3 D 6 3/8/16 Required Project Information: Report To: Keith Keller SAMPLE TYPE DD=D BARR=D G ¥ ¥ M Copy To: na ΜŢ × ¥ MATRIX CODE 2190 Technology Dr. Schenectady, NY 12308 Standard 2-Week Project Number Section B Project Name: Purchase Order No.: New York Office 9年3年11月3年21日日 Company: Leader Professional Services MW-CHA-RFI-7 MS/MSD 2813 Wehrle Drive, Suite 1 Vafol Matr MATRIX Field Duplicate-01 Trip Blank-01 Williamsville, NY 14221 MW-5A/AR Face Analytical MW-16 MW-14 ADDITIONAL COMMENTS Fах: na (A-Z, 0-9 / ,-) hile IDs MUST BE UNIQUE SAMPLE ID NYSDEC DER-10 EQuIS EDD Requested Due Date/TAT: Section A Required Client Information: 716-565-0963 Section D Clent Information Address: Email To: Phone: # ₩∃11 12

Document Control# F-NY-C-034-rev.01 (24May2016)

Sample Condition Upon Receipt

160801792
150801792
160801792
160801792

					CLIENT NAME: Leader fro factional Services	Professional	500000
						1	
COURIER: FedEx □ UPS □ Cli	Client	Pace 🗹	Other		. !	1	X 1/14
TBACKING # 27 A		CUSTODY SE	CUSTODY SEAL PRESENT: Yes	Yes □ No 🕱	INTACT: Yes	□ 0N	Ø 4/N
=	Bubble Bags		None 🗷	Other \square	ICE USED: Wet 🗹	Blue 🗆	None
THERMOMETER USED: #164 🖄 IR Gun 03 🗆		П	#160239773-PRB	COOLER TE	COOLER TEMPERATURE (°C): 🚿 🕹		
BIOLOGICAL TISSUE IS FROZEN: Yes	No 🗆	N/A 🖾					
COMMENTS:				Temperatu	Temperature is Acceptable?	ĭ⊈Yes □No	0
Chain of Custody Present:	M¥∕es	ON0	1				
Chain of Custody Filled Out:	⊠ Yes	□No	2.				
Chain of Custody Relinquished:	⊠ Yes	□No	33				
Sampler Name / Signature on COC:	™ Yes	ON [4				
Samples Arrived within Hold Time:	⊠ Yes	□No	\$				
Short Hold Time Analysis (<72hr):	⊠Yes	ONO	9	6. Hitraste			
Rush Turn Around Time Requested:	□Yes	KINO	7	2 - UCOKS			
Sufficient Volume:		ON [∞.				
Correct Containers Used:	M Yes	ON 🗆	<u>6</u>				
- Pare Containers Used:	M Yes	ON []					
Containers Intact:	X Yes	oN□	1	10.		ŀ	
Collidations introduced for Dissolved tes	ts 🗆 vae	oN L	ZKVA 1	11.			
Filtered Volume Teceived Tol. Dissolved Tests	83 3			12. No date / time	entering on somple interior	، يحاججه إ	
Sample Labels match CUC:	X Yes	S I					
- Includes date/time/ID/Analysis			Ī				
All containers needing preservation have been checked:	□Yes	ON []	M/A	 		The state of the s	
in and motion and in a second in	□Yes	oN □	M/A				
All containers needing preservation are in compliance with EPA recommendation:					Cooker to the state of the stat	W/W.	
- Exceptions that are not checked: TOC, VOA, Subcontract Analyses	ontract Analyses	٠.	_	completed: भ्राक्र-	Lot # of audeu preservative:	Ŋ	
Headsnace in VOA Vials (>6mm):	□Yes	ON SO	□N/A	14.			
Trip Blank Present:	X ∀es	oN □	N/A	15.			
Trip Blank Custody Seals Present:	□Yes	No.	□N/A				
Pace Trin Blank Lot #: 15 F							the calesor
County Docoint form filled in:		Line-Out (ncludes Copy	ring Shipping Docum	Line-Out (Includes Copying Shipping Documents and verifying sample pH):	١	Child State
Sample Neception in the same and same		Log In (Inc	ludes notifyii	ng PM of any discrep	Log In (includes notifying PM of any discrepacies and documenting in LIMS):	'	Carl distin
		Labeling (ncludes Scan	ning Bottles and ent	Labeling (Includes Scanning Bottles and entering LAB IDs into pH logbook):	'	NB 81816

August 19, 2016

Pace Analytical Energy Services LLC 220 William Pitt Way Pittsburgh, PA 15238

> Phone: (412) 826-5245 Fax: (412) 826-3433

Nicholas Nicholas Pace Analytical Services, Inc. 2190 Technology Drive Schenectady, NY 12308

RE: VGM / 16080179

Pace Workorder:

19867

Dear Nicholas Nicholas:

Enclosed are the analytical results for sample(s) received by the laboratory on Wednesday, August 10, 2016. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Welds

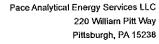
Ruth Welsh 08/19/2016 Ruth.Welsh@pacelabs.com

Customer Service Representative

Enclosures

As a valued client we would appreciate your comments on our service.

Please email info@microseeps.com.


Total Number of Pages ____

Report ID: 19867 - 826915

Page 1 of 15

CERTIFICATE OF ANALYSIS

Phone: (412) 826-5245 Fax: (412) 826-3433

LABORATORY ACCREDITATIONS & CERTIFICATIONS

Accreditor: Pennsylvania Department of Environmental Protection, Bureau of Laboratories

Accreditation ID: 02-00538

Scope: NELAP Non-Potable Water and Solid & Hazardous Waste

Accreditor: South Carolina Department of Health and Environmental Control, Office of Environmental

Laboratory Certification

Accreditation ID: 89009003

Scope: Clean Water Act (CWA); Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: New Jersey, Department of Environmental Protection

Accreditation ID: PA026

Scope: Non-Potable Water; Solid and Chemical Materials

Accreditor: NELAP: New York, Department of Health Wadsworth Center

Accreditation ID: 11815

Scope: Non-Potable Water, Solid and Hazardous Waste

Accreditor: State of Connecticut, Department of Public Health, Division of Environmental Health

Accreditation ID: PH-0263

Scope: Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: Texas, Commission on Environmental Quality

Accreditation ID: T104704453-09-TX Scope: Non-Potable Water

Accreditor: State of New Hampshire

Accreditation ID: 299409

Scope: Non-potable water

Accreditor: State of Georgia

Accreditation ID: Chapter 391-3-26

Scope: As per the Georgia EPD Rules and Regulations for Commercial Laboratories, PAES is

accredited by the Pennsylvania Department of Environmental Protection Bureau of Laboratories under the National Environmental Laboratory Approval Program (NELAC).

Report ID: 19867 - 826915

Page 2 of 15

CERTIFICATE OF ANALYSIS

> Phone: (412) 826-5245 Fax: (412) 826-3433

SAMPLE SUMMARY

Workorder: 19867 VGM / 16080179

Lab ID	Sample ID	Matrix	Date Collected	Date Received
198670001	FIELD DUPLICATE-01	Water	8/8/2016 11:32	8/10/2016 11:00
198670002	MW-5A/AR	Water	8/8/2016 11:30	8/10/2016 11:00
198670003	MW-14	Water	8/8/2016 11:15	8/10/2016 11:00
198670004	MW-16	Water	8/8/2016 12:15	8/10/2016 11:00
198670005	MW-CHA-RFI-7	Water	8/8/2016 13:30	8/10/2016 11:00
198670006	MW-CHA-RFI-7 MS	Water	8/8/2016 13:30	8/10/2016 11:00
198670007	MW-CHA-RFI-7 MSD	Water	8/8/2016 13:30	8/10/2016 11:00

Report ID: 19867 - 826915

Page 3 of 15

CERTIFICATE OF ANALYSIS

> Phone: (412) 826-5245 Fax: (412) 826-3433

PROJECT SUMMARY

Workorder: 19867 VGM / 16080179

Workorder Comments

The samples 19867 (0001-0007) were collected in an alternate container type, than that assigned to PAES method RSK175. Sample container was hydrochloric acid preserved.

Batch Comments

Batch: DISG/5554 - RSK175 QC

Due to a mechanical failure, the laboratories room temperature increased beyond the method maximum temperature of 27 degrees Celsius, for sample preparation and analysis. As a result, the concentrations reported may be biased low by approximately 5 to 6 percent

Report ID: 19867 - 826915

Page 4 of 15

CERTIFICATE OF ANALYSIS

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 19867 VGM / 16080179

Lab ID:

198670001

Date Received: 8/10/2016 11:00

Matrix: Water

Sample ID:

FIELD DUPLICATE-01

Date Collected: 8/8/2016 11:32

Parameters	Results Units	PQL 	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES	,					
Analysis Desc. EPA RS	K175 Analyl	ical Method: El	PA RSK175			
Analysis Desc: EPA RS	K175 Analyti 8100 ug/l	ica) Method: El 50	PA RSK175 1.9 100	8/17/2016 12:43	B AK	d,B
Analysis Desc: EPA RS Methane Ethane	K175 Analyti 8100 ug/l 3.2 ug/l	ica) Method: El 50 0.20	PA RSK175 1.9 100 0.0050 1	8/17/2016 12:43 8/17/2016 09:05	S AK	d,B

Report ID: 19867 - 826915

Page 5 of 15

CERTIFICATE OF ANALYSIS

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 19867 VGM / 16080179

Lab ID:

198670002

Date Received: 8/10/2016 11:00

Matrix:

Water

Sample ID: MW-5A/AR Date Collected: 8/8/2016 11:30

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
	C175 Analyti	ical Method: El	PARSK175			
Analysis Desc: EPA RSI Methane Ethane	C175 Analyti	ical Method: El 50 0.20	PA RSK175 1.9 100 0.0050 1	8/17/2016 12:5 8/17/2016 09:1	3 AK	d,B

Report ID: 19867 - 826915

Page 6 of 15

CERTIFICATE OF ANALYSIS

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 19867 VGM / 16080179

Lab ID:

198670003

Date Received: 8/10/2016 11:00

Matrix: Water

Sample ID: MW-14 Date Collected: 8/8/2016 11:15

Sample to.					•	
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES	(175 Analyti	cal Method: E	PA RSK175	Algorio in Maramana (sa.	ur. reserve «Tuleico»	
Methane	(175 Analyti 5200 ug/l	50	1.9 100	8/17/2016 13:04	AK	d ,B
Ethane	0.064J ug/l	0.20	0.0050 1	8/17/2016 09:26	AK	
Ethene	0.45 ug/l	0.20	0.0070 1	8/17/2016 09:26	AK	

Report ID: 19867 - 826915

Page 7 of 15

CERTIFICATE OF ANALYSIS

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 19867 VGM / 16080179

Lab ID:

198670004

Date Received: 8/10/2016 11:00

Matrix:

Water

Sample ID: MW-16 Date Collected: 8/8/2016 12:15

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
DIOK DATE						
RISK - PAES	C175	ical Method: El	PARSK175		ight Apparaist (Ab	
Analysis Desc. EPA RSI	(175 Analyt	ical Method: El	PA RSK175 0.019 1	8/17/2016 09:36	6 AK	B
Analysis Desc: EPA RSI Methane Ethane	(175 Analyt 40 ug/l 0.027J ug/l	ical Method: El 0.50 0.20	0.019 1 0.0050 1	8/17/2016 09:36 8/17/2016 09:36) AN	В

Report ID: 19867 - 826915

Page 8 of 15

CERTIFICATE OF ANALYSIS

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 19867 VGM / 16080179

Lab ID:

198670005

Date Received: 8/10/2016 11:00

Matrix:

Water

Sample ID: MW-CHA-RFI-7 Date Collected: 8/8/2016 13:30

Sample ID:	MW-CHA-RFI-7			Date Conce	ica. 0/0/2010 10.	00	
Parameters	Result	Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES	c: FPA RSK175	Analyti	cal Method: El	PARSK175 ···		. a. mendellik ikki.	
Methane	2,	/ ug/l	0.50	0.019 1	8/17/2016 09:48	3 AK	B
Ethane	0.0053	J ug/l	0.20	0.0050 1	8/17/2016 09:4	3 AK	

Report ID: 19867 - 826915

Page 9 of 15

CERTIFICATE OF ANALYSIS

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 19867 VGM / 16080179

Lab ID:

198670006

Date Received: 8/10/2016 11:00

Matrix:

Water

Sample ID:

MW-CHA-RFI-7 MS

Date Collected: 8/8/2016 13:30

Parameters	Results Units	PQL	MDL DF	Analyzed	By	Qualifiers
RISK - PAES						
ALILIEDE A EDADON	47E	ioni Mathad: El	DA DOL/175	ere mana tatalagi	auko orotan alaasi A	evelopio do n ice ferente e e e e onorio
Analysis Desc. EPA RSK	175 Analyti	ical Method: EF	PA RSK175	8/17/2016 09:59	AK	B
Analysis Desc: EPA RSK Methane Ethane	175 Analyti 38 ug/l 67 ug/l	ical Method: El 0.50 0.20	0.019 1 0.0050 1	8/17/2016 09:59 8/17/2016 09:59	+ AK	Taraya Baran B

Report ID: 19867 - 826915

Page 10 of 15

CERTIFICATE OF ANALYSIS

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 19867 VGM / 16080179

Lab ID:

198670007

Date Received: 8/10/2016 11:00

Matrix:

Water

Sample ID:

MW-CHA-RFI-7 MSD

Date Collected: 8/8/2016 13:30

Sample ID:	MW-CHA-RFI-7 MSD	Date Collected. Cros2010 10:00				
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES	c: EPA RSK175 Analytic	cal Method: E	PA RSK175			
Methane		0.50	0.019 1	8/17/2016 10:	12 AK	В
Ethane	66 ug/l	0.20	0.0050 1	8/17/2016 10:	12 AK	
Ethene	64 ug/l	0.20	0.0070 1	8/17/2016 10:	12 AK	

Report ID: 19867 - 826915

Page 11 of 15

CERTIFICATE OF ANALYSIS

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS QUALIFIERS

Workorder: 19867 VGM / 16080179

DEFINITIONS/QUALIFIERS

MDL. Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.

PQL Practical Quantitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.

ND Not detected at or above reporting limit.

DF Dilution Factor.

S Surrogate.

RPD Relative Percent Difference.

% Rec Percent Recovery.

U Indicates the compound was analyzed for, but not detected at or above the noted concentration.

J Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL).

B The analyte was detected in the associated blank.

d The analyte concentration was determined from a dilution.

Report ID: 19867 - 826915

Page 12 of 15

CERTIFICATE OF ANALYSIS

Attachment B Data Validation Summary

ME Holvey Consulting, LLC

Data Usability Summary Report – November 2016 Vails Gate 737.004

Data Usability

The Quality Assurance Project Plan ("QAPP") was prepared for this project by Clough Harbor & Associates, LLP. The QAPP presents the policies, organization, objectives, functional activities, and specific Quality Assurance ("QA") and Quality Control ("QC") measures designed to achieve the data quality goals associated with this investigation. The QAPP identifies procedures for sample preparation and handling, sample chain-of-custody, laboratory analyses, and reporting that were implemented during this investigation to ensure the accuracy and integrity of the data generated during the investigation.

Leader Consulting Services, Inc. conducted the Site Investigation and Remedial Activities of the Vails Gate site.

Data Summary

The Data Usability Review and Data Validation Compliance Chart has been completed for the laboratory deliverable packages generated by Pace Analytical Laboratories, Inc. ("Pace"), pertaining to samples collected at the Vails Gate Site on August 8, 2016. A total of four (4) samples were collected during the August 2016 sampling event and analyzed for VOCs, metals, and wet chemistry. The following USEPA Methodologies were used to analyze these samples for the following analytes:

Volatiles (VOCs) USEPA Method 8260

Dissolved Iron & Manganese by ICP USEPA Method 200.7 Rev. 4.4

Miscellaneous Field Analysis Dissolved Oxygen, pH, Reduction Potential, Temperature,

Turbidity

Total Organic Carbon ("TOC") USEPA SM 5310B-00.11

Sulfate USEPA 300.0

Trip blank, field duplicate, surrogates, internal standards, reference samples, matrix spikes, and matrix spike duplicates were included and processed.

Samples were collected and received on the following schedule:

Sample Package ID	Date Collected	Date Received by Pace	Sample Matrix	Requested Analyses	Sample Temperature (°C)
16080179	08/08/2016	08/08/2016 (Schenectady) 08/10/2016 (Long Island)	Water	TCL 8260 Metals Misc. Field Analysis TOC Sulfate	8.2

Data usability and validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Inorganic and Organic Data Review. The following items were reviewed:

- Data Completeness;
- Custody Documentation;
- Holding Times;
- Sample Blanks Review;
- Field Duplicate Samples;
- Matrix Spike Samples and Duplicates; and
- Control Spike/Laboratory Control Samples.

Those items showing deficiencies, if any, are discussed in the attached Data Validation Compliance Chart. All others were found to be acceptable as outlined in the above-mentioned usability procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the reported data, and generated in compliance with protocol requirements.

The following sample results are acceptable but positive results may be considered estimated due to continuing calibration:

➤ MW-5A/AR for n-butylbenzene was flagged as estimated due to the calibration acceptability criteria was exceeded for that analyte.

In summary, sample processing was conducted with compliance to protocol requirements and with adherence to quality criteria and the reported results are considered "usable".

The Data Validation Compliance Chart is also included with this report.

Custody Documentation

Chain of Custody (COC) forms are used to document the history of sample possession from the time the sample containers leave their point of origin (usually the laboratory performing the analyses) to the time the samples are received by the laboratory. COCs are considered legal documents.

The Chain of Custody accurately documents the sample collection.

Accuracy, Precision, and Sensitivity of Analyses

The fundamental QA objective with respect to the accuracy, precision, and sensitivity of analytical data is to achieve the QC acceptance of each analytical protocol. Accuracy and precision are determined using matrix spike ("MS") and matrix spike duplicate ("MSD") samples.

Accuracy is a measure of the difference of a set of analytical results to the accepted or expected values. Accuracy was assessed by using the MS/MSD and surrogate spike recovery data. Recovery values were reported within the QC limits for each analytical parameter group.

Precision is a measure of the mutual agreement between measurements of the same parameter.

The sample results for the Vails Gate Project are considered "usable".

Completeness, Representativeness, and Comparability of Data

Completeness is the measure of the amount of valid data obtained from a measurement system compared with the amount expected to be obtained under normal conditions. Review of the analytical data packages provided by Pace indicates that the requested parameters were analyzed for and reported by the laboratory for each sample submitted under proper chain-of-custody procedures. Based upon MEHC's review of the laboratory data, a usable data level was achieved.

Representativeness of the data is obtained through the design of the sampling program and the adherence to established sample collection procedures, sample-handling SOPs, and analytical procedures. The sampling program outlined in the Work Plan was designed to provide for data representative of site conditions taking into consideration past disposal practices, existing data from past studies, and the physical site setting. Each of the monitoring wells was installed in accordance with established industry and regulatory protocols.

The laboratory maintained all holding times for the specific analytical protocols.

Comparability of the data is derived from the evaluation of field duplicate samples and the adherence to established sampling and analytical procedures. A field duplicate is an independent sample collected as close as possible to the original aliquot from the same sampling point. All of the groundwater samples were analyzed utilizing standardized USEPA methodologies performed in accordance with the latest version of the NYSDEC ASP protocols.

Quality Control Checks

Holding/Storage Blanks

Holding blanks are samples of reagent water prepared by the laboratory and carried through the field sampling and sample handling and shipping process. Holding blanks are analyzed as separate samples to evaluate the level of contamination associated with the collection, handling, and/or shipping of the VOC sample aliquots.

For this investigation, a holding blank was not submitted with samples collected on August 8, 2016.

Trip Blanks

A trip blank is provided with each shipping container of samples to be analyzed for volatile organic compounds (VOCs). Analysis of trip blanks determines whether a sample bottle was contaminated during shipment from the manufacturer, while in bottle storage, in shipment to the laboratory, or during analysis at a laboratory. Trip blanks consist of an aliquot of distilled water sealed in a sample bottle, prepared by the analytical laboratory prior to shipping the sample bottles. A Trip blank was included with the shipment of aqueous samples for VOC analysis.

For this investigation, a trip blank was submitted with the VOC aliquot of the groundwater samples collected on August 8, 2016. No VOC compounds were detected in the trip blank analyzed during this investigation.

Field Blanks

Given that dedicated sampling equipment was utilized for the collection of each groundwater sample, field blanks were not collected or analyzed during this sampling event.

Method Blanks

A method blank is a sample of reagent water, which is carried through the analytical procedure alongside the project samples to determine the level of laboratory background and reagent contamination.

For this investigation, a method blank was submitted with the VOC aliquot of the groundwater samples collected on August 8, 2016. No VOC compounds were detected in the method blank analyzed during this investigation.

Matrix Spike/Matrix Spike Duplicate Samples

For the Vails Gate project, one (1) MS/MSD was collected and analyzed. The following sample results are acceptable:

Sample MW-CHA-RFI-7 was submitted for matrix spike/ matrix spike duplicate (MS/MSD) analysis, and a lab-fortified blank (LFB) was analyzed. All percent recoveries were within or above QC limits with the exception of no recovery for chloroethylvinylether due to the addition of preservative to the samples and LFBs. Spike recoveries showed 13 out 132 outside limits.

These results are detailed in the Data Validation Compliance Chart.

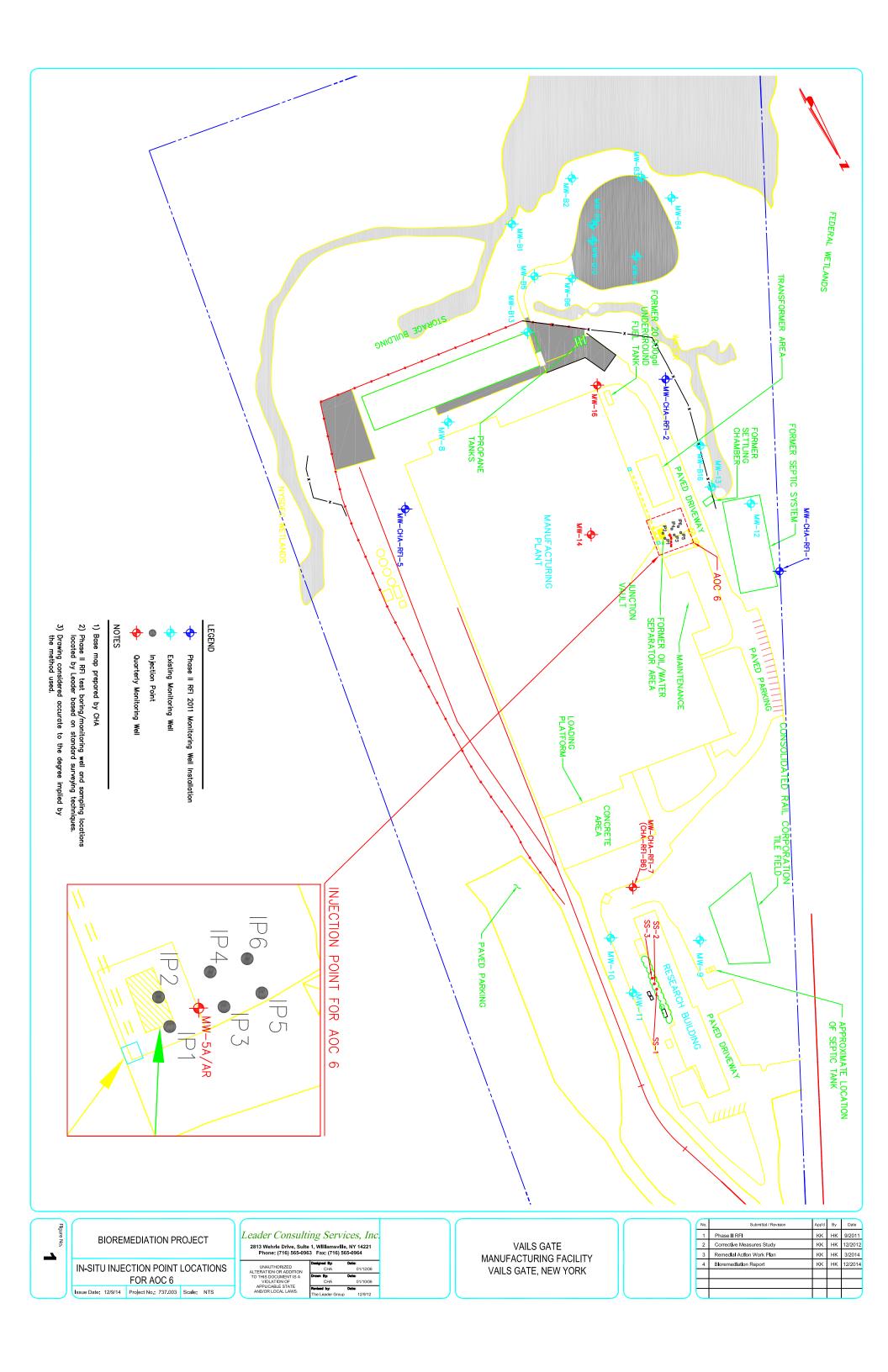
Surrogate Analyses

Surrogates are compounds added directly to every standard, blank, MS/MSD, and sample at a known concentration, prior to extraction or analysis; and used to evaluate the analytical efficiency by measuring percent recovery of those compounds upon analysis. The laboratory reported surrogate recoveries were within established QC limits for the surrogates in each analyzed sample.

The sample results for the Vails Gate Project are considered "usable".

Data Validation Compliance Chart Vails Gate

August 8, 2016 Sampling Event


Sample ID	16080179							
Matrix		Water						
Analysis	TCL 8260	Metals (Dissolved Iron and Manganese)	Miscellaneous Field Parameters	Wet Chemistry:				
Holding Times	Samples were analyzed within USEPA holding times.	Samples were analyzed within USEPA holding times	Samples were analyzed in the field.	Samples were analyzed within USEPA holding times				
Calibration	In the initial calibrations, average response factors were employed as applicable, and regression functions were used for the compounds with an RSD above 20%. In the continuing calibration verification(s) (CCV), the variability for some compounds was above 20%. MW-5A/AR result for n-butylbenzene was flagged due to calibration acceptability, the result is considered estimated. All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.				
Method Blanks	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.				
Matrix Spike/Matrix Spike Duplicate	Sample MW-CHA-RFI-7 was submitted for matrix spike/ matrix spike duplicate (MS/MSD) analysis. 13 out of 132 percent recoveries were outside of QC limits with the exception of no recovery for chloroethylvinylether due to the addition of preservative to the samples and LFBs. All RPDs were met. All percent recoveries were within or above QC limits. All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.				

Data Validation Compliance Chart Vails Gate

Sample ID	16080179							
Matrix		Water						
Analysis	TCL 8260	Metals (Dissolved Iron and Manganese)	Miscellaneous Field Parameters	Wet Chemistry:				
Surrogates	All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.				
Internal Standards	All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.				
Reference Sample	All laboratory internal quality control samples were within acceptable ranges.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.				
Data Usability	Data is acceptable.	Data is acceptable.	Data is acceptable.	Data is acceptable.				

Attachment C

Figure 1

