Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

July 11, 2016

Stora Enso C/O John T. Kolaga, Esq. Rupp Baase Pfalzgraf Cunningham LLC 1600 Liberty Building Buffalo, New York 14202

RE: IN-SITU BIOREMEDIATION MONITORING REPORT,
VAILS GATE MANUFACTURING, LLC, VAILS GATE,
NEW YORK, NYSDEC SITE No. 336065

Dear Mr. Kolaga:

Leader Consulting Services, Inc. ("Leader") is pleased to provide Rupp Baase Pfalzgraf Cunningham, LLC ("RBFC"), on behalf of Stora Enso, with this report summarizing the results of the In-Situ Bioremediation Quarterly Monitoring completed at the former Vails Gate Manufacturing facility ("VGM") at 1073 Route 94 in Vails Gate, New York (hereafter referred to as "the Site"). The Site is currently identified as the Vails Gate Business Center ("VGBC"). This is the seventh Quarterly Monitoring Report required under the Remedial Action Work Plan ("RAWP"). It includes the field and laboratory results from the seventh quarterly sampling event.

1.0 BACKGROUND AND PURPOSE

Leader was retained to implement the New York State Department of Environmental Conservation ("NYSDEC")-approved RAWP that was developed for Area of Concern 6 ("AOC 6") at the Site. As identified in the approved RAWP, In-situ bioremediation was the selected remedial alternative identified in the NYSDEC-approved Corrective Measure Study ("CMS"). The Site-specific Standards, Criteria and Guidance ("SCGs") applicable to the RAWP were developed to meet the Remedial Action Objectives ("RAOs") of the CMS. An "unrestricted use remedy" has been established for the Site, which is based on the regulatory standard values for Class GA groundwater identified in 6 NYCRR Part 703.5. The RAWP was developed to address the SCGs and RAOs for the Site. The RAWP has been implemented in accordance with NYSDEC Department of Environmental Remediation ("DER") Guidance Document DER-10, *Technical Guidance for Site Investigation and Remediation*.

2.0 SCOPE-OF-WORK

The scope of work for the In-Situ Bioremediation program identified in the RAWP was based on the March 2012 Phase II RCRA Facility Investigation ("RFI") and the 2013 CMS. Quarterly sampling and laboratory analyses of groundwater samples from four (4) groundwater monitoring wells (MW-14, MW-5A/AR, MW-16 and MW-CHA-RFI-7) are required per the RAWP. Included in this report are the seventh quarterly sampling event Analytical Laboratory Results and Summary Tables (Attachment A) and a Data Validation Summary (Attachment B). Figure 1

John Kolaga, Esq. July 11, 2016 Page 2

Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

includes the approximate Injection Point ("IP") locations used to apply bioremediation solutions into the subsurface at AOC 6, and the location of the monitoring wells.

3.0 QUARTERLY SAMPLING PROGRAM

The seventh quarterly sampling event of the bioremediation program was conducted on May 9, 2016. The laboratory parameters for the quarterly samples included analysis for volatile organic compounds ("VOCs"), sulfate, total organic carbon ("TOC"), and dissolved iron. The field parameters included dissolved oxygen ("DO"), pH, oxidation reduction potential ("redox"), temperature and turbidity. Laboratory and field data were reviewed to evaluate VOC concentrations and field data parameters from groundwater samples from each of the wells to assess the impact of biotreatment activity within AOC 6.

4.0 FIELD AND LABORATORY GROUNDWATER SAMPLE RESULTS

4.1 GROUNDWATER SAMPLE FIELD DATA RESULTS

The DO concentrations within the samples collected from the four (4) wells ranged from 1,780 parts per billion ("ppb") to 2,800 ppb. The pH levels within the samples collected from the four (4) wells ranged from 6.90 standard units ("SUs") to 7.58 SUs. Redox values of the samples collected from the four (4) wells ranged from -62 milliVolts ("mVs") to 73 mVs. Data interpretation is discussed in Section 4.0.

4.2 GROUNDWATER SAMPLE LABORATORY ANALYTICAL DATA RESULTS

GWM Well MW-5A/AR

Acetone concentrations decreased from 6.1 ppb in February 2016, to non-detect ("ND") in May 2016, remaining below the Class GA groundwater standard of 50 ppb. Chloroethane concentrations increased from 68 ppb in February 2016 to a value of 110 ppb in May 2016, which is above the Class GA groundwater standard of 5 ppb. 1,1-dichloroethane concentrations increased from ND in February 2016 to 8.6 ppb in May 2016, above the Class GA groundwater standard of 5 ppb. 1,1,1-trichloroethane concentrations increased from ND in February 2016 to 5.2 ppb in May 2016, slightly above the Class GA groundwater standard of 5 ppb. 2-butanone concentrations decreased from 8.6 ppb in February 2016 to ND in May 2016, remaining below the Class GA groundwater standard of 50 ppb. 1,2,4 trimethylbenzene concentrations decreased from 2.5 ppb in February 2016 to 2.25 ppb in May 2016, remaining below the Class GA groundwater standard of 5 ppb. The remaining VOC analytes were not detected within the May 2016 sample.

GWM Well MW-14

Acetone was detected within the 7th Quarter (May 2016) sample from MW-14 at a "J" flagged (estimated) value of 8.2 ppb, exhibiting a decrease in concentration from the 12 ppb detected in February 2016, remaining below the Class GA groundwater standard of 50 ppb. Chloroethane concentrations decreased slightly from 6.6 ppb in February 2016 to ND in May 2016, below the Class GA groundwater standard of 5 ppb. 1,1- dichloroethane concentrations increased from 16

John Kolaga, Esq. July 11, 2016 Page 3

Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

ppb in February 2016 to 26 ppb in May 2016, above the Class GA standard of 5 ppb. 1,1-dichloroethene concentrations increased slightly from 1.7 ppb in February 2016 to 2.3 ppb in May 2016, remaining below the Class GA standard of 5 ppb. Vinyl chloride concentrations decreased from 1.6 ppb in February 2016 to ND in May 2016, remaining below the Class GA groundwater standard of 2 ppb. The remaining VOC analytes were not detected within the May 2016 sample.

GWM Well MW-16

1,1- dichloroethane concentrations decreased from 5.2 ppb in February 2016 to ND in May 2016, now below the Class GA standard of 5 ppb. 1,1- dichloroethene concentrations also decreased, from 1.8 ppb in February 2016 to ND in May 2016, remaining below the Class GA groundwater standard of 5 ppb. Tetrachloroethene concentrations decreased from 2.5 ppb in February 2016 to the ("c") flagged (estimated) value of 1.3 ppb in May 2016, and remains below the Class GA groundwater standard of 5 ppb. The remaining VOC analytes were not detected within the May 2016 sample.

GWM Well MW-CHA-RFI-7

Each of the VOC concentrations from the sample collected from MW-CHA-RFI-7 during the May 2016 sampling event were non-detectable.

5.0 DATA INTERPRETATION

5.1 FIELD DATA

TOC concentrations remain sufficiently high in monitoring wells MW-5A/AR and MW-14 to allow for continuing microbial activity. Groundwater pH levels indicate an environment conducive to continued microbial activity. Though not fluctuating significantly since media injection, the redox values indicate that reducing conditions exist for dechlorination.

5.2 LABORATORY DATA

Dissolved iron and sulfate concentrations remain within ranges to support dechlorination. Well MW-5A/AR currently exhibits two (2) analyte concentrations (choloroethane and 1,1-dichloroethane) above Class GA groundwater standards, and one (1) analyte concentration (1,1-trichloroethane) slightly above Class GA groundwater standards. Well MW-14 currently exhibits one (1) analyte concentration (1,1-dichloroethane) above the Class GA groundwater standard. Well MW-16 currently exhibits no analyte concentrations above the Class GA groundwater standard.

There were no detected VOC analytes within the groundwater sample collected in May 2016 from MW-CHA-RFI-7. This groundwater monitoring well was included in this sampling program as it represents a "background" well, hydraulically upgradient and outside of the influence of AOC 6.

John Kolaga, Esq. July 11, 2016 Page 4

Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

It is important to note that the upcoming August 2016 sampling event will mark the completion of the scheduled 24 month remediation project. The August sampling event will include additional bioremediation indicator parameter laboratory analysis, identical to the baseline laboratory analysis completed in August 2014, and will provide the necessary data to further assess the effectiveness of the biotreatment media.

If you need any additional information, please contact the undersigned at (716) 565-0963.

Very truly yours,

Leader Consulting Services, Inc.

eith D. Heller

Keith D. Keller Project Manager

Jeffrey A. Wittlinger, P.E., BCEE

Principal

Attachment A

Analytical Laboratory Results and Summary Tables

TABLE 1a - MW-5A/AR

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

					MW-5A	/AR							Class GA Groundwater Standard (ppb) (3)
Analyte ⁽¹⁾	June 2011	November 2011	July 2012	January 2013	August 2014 (6)	November 2014 (7)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	
Quarterly Sampling Parameters													
Volatiles													
acetone	ND	ND	ND	ND	ND	440 ⁽⁹⁾	407	77 ⁽¹¹⁾	110	ND	6.1	ND	50 ⁽⁴⁾
chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroethane	280	290	520	150	250 ⁽⁹⁾	590 ⁽⁹⁾⁽¹⁰⁾	1010	470 ⁽¹¹⁾	540 ⁽¹¹⁾	290 ⁽¹¹⁾	68	110	5
I,1-dichloroethane	650	1000	830	280	660 ⁽⁹⁾	110	325	41	3.5	ND	ND	8.6	5
L,1-dichloroethene	ND	110 (2)	29 ⁽²⁾	11 (2)	22	ND	8.62	1.9	ND	1.1	ND	ND	5
cis-1,2 dichloroethene	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	5
L.4-dioxane	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	(5)
etrachloroethene	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	5
oluene	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	2.8	2.6	ND	ND	5
I,1,1-trichloroethane	890	3000	440	210	750 ⁽⁹⁾	33	200	ND	ND	ND ND	ND	5.2	5
L.1.2-trichloroethane	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	1
vinyl chloride	ND	ND	15 ⁽²⁾	ND ND	14	6 ⁽²⁾⁽¹⁰⁾	3.59	2.4	ND ND	ND	ND ND	ND	2
2-butanone (MEK)	ND ND	ND	ND	ND ND	ND	190 ⁽¹⁰⁾	82.1	4.5 (2)	ND ND	ND	8.6	ND ND	50 ⁽⁴⁾
	1					3 ⁽²⁾				1			(5)
1-methyl-2-pentanone	ND	ND	ND	ND	ND	_	ND	ND	ND	ND	ND	ND	10 ⁽⁴⁾
naphthalene	ND	ND	ND	ND	ND	ND ND	ND	ND ND	2.7	2.2	ND	ND	5
n-propylbenzene	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	1.5	1.4	ND ND	ND	5
1,2,3 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
nexachlorobutadiene	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	
1,2,4 trichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 2.1	ND 5.1	ND 5.4	ND 2.5	ND 2.2	5 5
1,3,5 trimethylbenzene/P	ND	ND	ND	ND	ND	ND	ND	2.1	5.1	5.4	2.5	2.2	
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	5
ec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	1.1	1.2	1.3	ND	ND	5
1,2-dichloroethane	ND	ND	ND	ND	1 (2)	2 (2)	ND	ND	ND	1.8	ND	ND	0.6
richloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Wet Chemistry and													
Dissolved Metals													
sulfate	NA	NA	NA	NA	31,500	<5,000	<5,000	700 ⁽²⁾	<5,000	<5,000	3,240	1,020 (2)	250,000
otal organic carbon (TOC)	NA	NA	NA	NA	3,410	288,000	95,400	48,900	30,200	25,600	14,600	6,640	NS
dissolved iron	NA	NA	NA	NA	ND	50,600	42,900	5,780	6,050	30,700	14,400	10,900	as low as possible, NTE 500,000
	1												

NOTES:

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
- (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- NA -Contaminant was not included for analysis during RFI.
- A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

TABLE 1b - MW-14

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

					MW	-14							Class GA Groundwater Standard (ppb) ⁽³⁾
Analyte ⁽¹⁾	June 2011	November 2011	July 2012	January 2013	August 2014 (6)	November 2014 (7)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	(bbs)
Quarterly Sampling Parameters													
Volatiles													
acetone	19	45	35	11	19 ⁽⁹⁾	ND	27.3	16.0	12.0	12.0	12.0	8.2 (2)	50 ⁽⁴⁾
chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroethane	ND	ND	ND	ND	1 ⁽²⁾	ND	ND	2.1	8.0	7.3	6.6	ND	5
1,1-dichloroethane	86	79	67	53	47	1 (2)	43	48	31	22	16	26	5
1,1-dichloroethene	5.2	3.1 (2)	4.6 (2)	2.7 (2)	3 (2)	2 (2)	3.51	3.1	3.6	3.5	1.7	2.3	5
cis-1,2 dichloroethene	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	5
1.4-dioxane	420	620	490	270	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	(5)
tetrachloroethene	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	5
toluene	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	5
1,1,1-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
vinyl chloride	5.2	4.6 ⁽²⁾	2.3 (2)	2.1 (2)	3 (2)	2(2)(10)	2.79	2.8	3.1	2.7	1.6	ND	2
2-butanone (MEK)	ND	ND	ND	ND	2 (2)	3(2)(10)	ND	2.2 (2)	ND	ND	ND	ND	50 ⁽⁴⁾
4-methyl-2-pentanone	ND	ND	ND	ND	1 (2)	ND	ND	ND	ND	ND	ND	ND	(5)
naphthalene	ND	ND	ND	ND	2 ⁽²⁾⁽⁸⁾	ND	ND	ND	ND	ND	ND	ND	10 ⁽⁴⁾
n-propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3 trichlorobenzene	ND	ND	ND	ND	2 ⁽²⁾⁽⁸⁾	ND	ND	ND	ND	ND	ND	ND	5
hexachlorobutadiene	ND	ND	ND	ND	4 ⁽²⁾⁽⁸⁾	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
1,2,4 trichlorobenzene	ND	ND	ND	ND	1(2)(8)	ND	ND	ND	ND	ND	ND	ND	5
1,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5 trimethylbenzene/P													5
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_
sec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
trichloroethene	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	5
chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Wet Chemistry and	1				<u> </u>								
Dissolved Metals													
sulfate	NA	NA	NA	NA	14,900	25,700	31,200	31,000	<5,000	18,000	13,600	21,800	250,000
total organic carbon (TOC)	NA	NA	NA	NA	4,150	45,900	35,800	39,800	50,300	47,400	40,200	35,400	NS
dissolved iron	NA	NA	NA	NA	6,130	16,200	8,410	9,130	9,920	19,500	21,900	12,500	as low as possible, NTE 500,000
													
													1
										 			╂
			l		l .				l	<u> </u>			

NOTES

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
- (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- NA -Contaminant was not included for analysis during RFI.
- A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value

TABLE 1c - MW-16

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

						MW-16							Class GA Groundwater Standard (ppb) ⁽³⁾
Analyte ⁽¹⁾	June 2011	November 2011	July 2012	January 2013	August 2014 ⁽⁶⁾	November 2014 (7)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	
Quarterly Sampling Parameters													
Volatiles													
acetone	ND	ND	ND	ND	2 ⁽²⁾⁽⁸⁾	ND	ND	4.6 ⁽²⁾	ND	ND	ND	ND	50 ⁽⁴⁾
chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	3.7	ND	ND	ND	5
1,1-dichloroethane	17	7.9	33	14	14	19	7.18	14	73	8.4	5.2	ND	5
1,1-dichloroethene	3 (2)	2.4 (2)	8.7	5.6	7	9 ⁽²⁾	1.73	5.6	33	4.2	1.8	ND	5
cis-1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	3.4	ND	ND	ND	5
1,4-dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
tetrachloroethene	ND	ND	3.2 (2)	3.9 (2)	2 (2)	3(2)(10)	1.42	2.2	11	4.5	2.5	1.3 (13)	5
toluene	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	5
1.1.1-trichloroethane	ND	13	2.2 (2)	ND	1 (2)	2 (2)	ND	ND	5.6	ND	ND	ND ND	5
1,1,2-trichloroethane	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	1.9	ND ND	ND ND	ND ND	1
vinyl chloride	ND	ND ND	ND	ND	ND ND	ND ND	ND	1	7.6	ND ND	ND ND	ND ND	2
2-butanone (MEK)	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	50 ⁽⁴⁾
4-methyl-2-pentanone	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	(5)
													10 ⁽⁴⁾
naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	
n-propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	<u>5</u>
1,2,3 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
1,2,4 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	5
1,2,4 trimethylbenzene 1,3,5 trimethylbenzene/P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
sec-butylbenzene	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,2-dichloroethane	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.6
trichloroethene	ND	ND ND	ND	ND	ND ND	3 (2)	ND	ND ND	1.2	ND ND	ND ND	ND ND	5
chloroform	ND	ND	ND	ND	ND	ND	1.85	4.9	ND ND	ND ND	ND ND	ND ND	7
Wet Chemistry and Dissolved Metals													
sulfate	NA	NA	NA	NA	14,400	17,900	18,800	20,500	25,300	13,000	10,900	3,570 ⁽²⁾	250,000
total organic carbon (TOC)	NA NA	NA NA	NA NA	NA NA	8,650	10,800	4,220	11,700	28,000	6,180	4,940	2,700	NS NS
dissolved iron	NA	NA	NA	NA	ND	231	1,470	30.9 (2)	12.2 (2)	1,460	1,250	<100	as low as possible, NTE 500,000
	l	 						 	 			 	1

NOTES:

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
- (10) The analyte was "2"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U" flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- 13) The analyte was "c" flagged, indicating that the calibration acceptability criteria were exceeded, and the value should be considered estimated.
- NA -Contaminant was not included for analysis during RFI.

A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

TABLE 1d - MW-CHA-RFI-7

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

				MW-CHA-RI	il-7						Class GA Groundwater Standard (ppb) (3)
Analyte ⁽¹⁾	June 2011	November 2011	August 2014 ⁽⁶⁾	November 2014 ⁽⁷⁾	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016	W. V
Quarterly Sampling Parameters											
Volatiles											
acetone	ND	ND	1(2)(8)	ND	ND	2.7 (2)	ND	ND	ND	ND	50 ⁽⁴⁾
chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1-dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,4-dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
tetrachloroethene	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	5
toluene	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	5
1,1,1-trichloroethane	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	5
1,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
2-butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 ⁽⁴⁾
4-methyl-2-pentanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10 ⁽⁴⁾
n-propylbenzene	110	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	5
1,2,3 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	5
hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	0.5 ⁽⁴⁾
1,2,4 trichlorobenzene	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	5
1,2,4 trimethylbenzene	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	5
1,3,5 trimethylbenzene/P											
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
sec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Wet Chemistry and											
Dissolved Metals											
sulfate	NA	NA	38,100	42,800	39,900	39,900	32,700	39,600	39,800	38,600	250,000
total organic carbon (TOC)	NA	NA	938	42,800	746	1,200	584	550	843	ND	NS
dissolved iron	NA	NA	ND	1,450	124	184	100 (12)	215	247	185	as low as possible, NTE 500,000

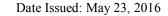
NOTES

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
- (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- NA -Contaminant was not included for analysis during RFI.

A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

TABLE 2
GROUNDWATER MONITORING WELL SAMPLE FIELD DATA

				M\	N-5A/AR			
Analyte	August 2014 (4)	November 2014 ⁽⁵⁾	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016
dissolved oxygen ⁽¹⁾	1,150	1,860	1,910	910	300	500	1,500	2,200
pH ⁽²⁾	7.66	7.07	6.74	6.43	6.61	6.63	6.43	6.90
redox ⁽³⁾	-137	-90	-42	-73	-88	-44	-124	-62


	MW-14 August 2014 (4) November 2014 (5) February 2015 May 2015 August 2015 November 2015 February 2016 May 2016 1,940 2,110 1,720 1,280 1,100 700 2,700 2,010 7.19 7.41 6.98 6.58 6.68 6.65 6.45 6.91												
Analyte	August 2014 (4)	November 2014 (5)	February 2015	November 2015	February 2016	May 2016							
dissolved oxygen ⁽¹⁾	1,940	2,110	1,720	1,280	1,100	700	2,700	2,010					
pH ⁽²⁾	7.19	7.41	6.98	6.58	6.68	6.65	6.45	6.91					
redox ⁽³⁾	7	-1	47	0	0	-7	-44	5					

	MW-16 August 2014 (4) November 2014 (5) February 2015 May 2015 August 2015 November 2015 February 2016 May 2016 990 2,210 2,750 2,150 400 2,200 2,800 2,800 7,12 6,86 6,94 6,66 6,28 6,92 6,74 7,58													
Analyte	August 2014 (4) November 2014 (5) February 2015 May 2015 August 2015 November 2015 February 2016 1) 990 2,210 2,750 2,150 400 2,200 2,800 7.12 6.86 6.94 6.66 6.28 6.92 6.74													
dissolved oxygen ⁽¹⁾	990	2,210	2,750	2,150	400	2,200	2,800	2,800						
pH ⁽²⁾	7.12	6.86	6.94	6.66	6.28	6.92	6.74	7.58						
redox ⁽³⁾	24	-14	12	151	49	48	45	73						
			•											

				MW-	CHA-RFI-7			
Analyte	August 2014 (4)	November 2014 (5)	February 2015	May 2015	August 2015	November 2015	February 2016	May 2016
dissolved oxygen ⁽¹⁾	1,440	1,220	1,760	1,660	600	700	1,200	1,780
pH ⁽²⁾	7.55	7.38	7.55	7.01	7.41	7.52	7.12	7.28
redox ⁽³⁾	-36	-1	73	35	20	48	-90	31

NOTES:

- (1) Value expressed as parts per billion ("ppb").
- (2) Value expressed as Standard Unit.
- (3) Value expressed as milliVolts (mV).
- (4) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014
- (5) November 2014 sampling event reflects first post-bioremediation data.

Pace Analytical e-Report

*Issuance of this report is prior to full data package.

Report prepared for:

LEADER CONSULTING SERVICES, INC.

2813 WEHRLE DRIVE

SUITE 1

WILLIAMSVILLE, NY 14221 CONTACT: KEITH KELLER

Project ID: VAILS GATE MANUFACTURING

Sampling Date(s): May 09, 2016 Lab Report ID: 16050187

Client Service Contact: Nick Nicholas (518) 346-4592

Analysis Included:

Misc Field Analysis

Dissolved Metals E200.7 - Sub Pace LI

VOCs E8260C - Sub Pace LI Sulfate E300.0 - Sub Pace LI Total Organic Carbon

Test results meet all National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted in the case narrative. The results contained within the document relate only to the samples included in this report. Pace Analytical is responsible only for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Roy Smith Technical Director TNI

Certifications: New York (EPA: NY00906, ELAP: 11078), New Jersey (NY026), Connecticut (PH-0337), Massachusetts (M-NY906), Virginia (460241)

Pace Analytical Services, Inc. | 2190 Technology Drive | Schenectady, NY 12308 Phone: 518.346.4592 | internet: www.pacelabs.com This page intentionally left blank.

Table of Contents

Section 1: QUALIFIERS	4
Section 2: SAMPLE CHAIN OF CUSTODY	6
Section 3: SAMPLE RECEIPT	14
Section 4: Wet Chemistry - TOC/DTOC.	17
Section 5: Field Analysis	23
Section 6: Quality Control Samples (Lab)	28
Section 7: Subcontract Analysis	31

1

2

4

5

6

7

QUALIFIERS

Definitions

- B Denotes analyte observed in associated method blank or extraction blank. Analyte concentration should be considered as estimated.
- D Surrogate was diluted. The analysis of the sample required a dilution such that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- E Denotes analyte concentration exceeded calibration range of instrument. Sample could not be reanalyzed at secondary dilution due to insufficient sample amount, quick turn-around request, sample matrix interference or hold time excursion. Concentration result should be considered as estimated.
- J Denotes an estimated concentration. The concentration result is greater than or equal to the Method Detection Limit (MDL) but less than the Practical Quantitation Limit (PQL).
- MDL Adjusted Method Detection Limit.
- P Indicates relative percent difference (RPD) between primary and secondary gas chromatograph (GC) column analysis exceeds 40 % or indicates percent difference (PD) between primary and secondary gas chromatograph (GC) column analysis exceeds 25 %.
- PQL Practical Quantitation Limit. PQLs are adjusted for sample weight/volume and dilution factors.
- RL Reporting Limit Denotes lowest analyte concentration reportable for the sample based on regulatory or project specific limits.
- U Denotes analyte not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- Z Chromatographic interference due to polychlorinated biphenyl (PCB) co-elution.
- * Value not within control limits.

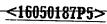
SAMPLE CHAIN OF CUSTODY

New York Office 2190 Technology Dr. Schenectady, NY 12308 (518) 346-4592

CHAIN-OF-CUSTODY / Analytical Request Document

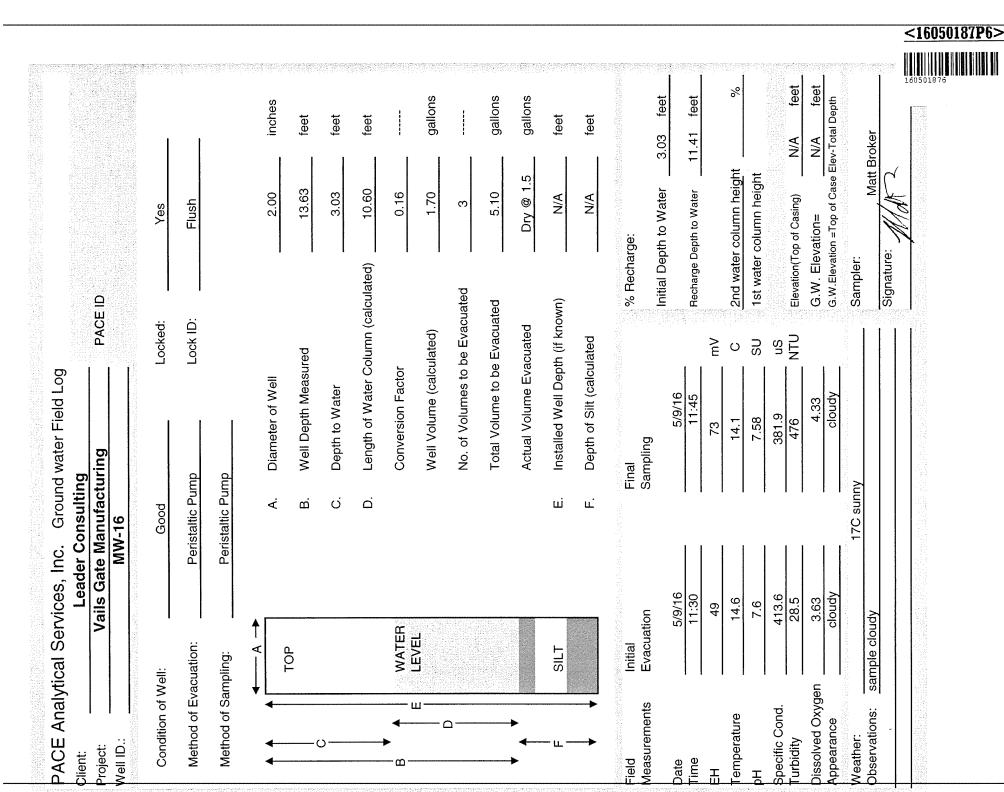
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Section B Required Client Information: Required Proje	ect Information:	Section C Invoice Information:						Page	e: 1	of	1
Company: Leader Professional Services Report To: Ke	eith Keller	Attention: Ke	ith Keller			RE	GULATORY PROG	RAM			
Address: 2813 Wehrle Drive, Suite 1 Copy To: na		Company Name: Lea	ader Profess	ional Services	☐ NPDES ☐ G	ROUND WATER	T DRINKING WATER			200	
Williamsville, NY 14221		Address:			FUST FR	CRA T	OTHER				
Email To: Purchase Order No.:		Pace Quote Reference:	#00012704		SITE		NI				
Phone: 716-565-0963 Fax: na Project Name:	Vails Gate Manufactur	Pace Project Manager:	Nicholas Ni	cholas	LOCATION	1	ive	w York Sta	te		
Requested Due Date/TAT: Standard 2-Week Project Number:		Dana Daniila II				Filtered (Y/N)			fy Metals/Inc	organic	s:
		Pace Profile #:				REQUESTED ANAL	YSES	Iron			
Section D Required MATRIX CODE Client Information	СОМР	LECTION	ERS	Preservatives	Fe Carbor ist	E C					
SAMPLE ID SAMPLE ID SAMPLE ID SOURCE (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE TISSUE DW WATER WAY WATER WAY WATER WA WATE WATE WA WATE WA WA WA TO SOURCE SOURCE OR OR OR OR TISSUE TS	SAMPLE TYPE G=GRAB C=COMP TAU	SAMPLE TEMP AT COLLECTIO	# OF CONTAINERS Unpreserved H ₂ SO ₄	HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol	Other Dissolved Fe Sulfate Total Organic Carbor 8260 Full List Field- DO, Conductivi	Temp, pH, I		F	'ace Labora	itory I.	D.
Field Duplicate-01 w	1 G 5/9/16	1213	7 x	x x	x x x x x			ATO	0700		
2 MW-5A/AR wi	1 G S/9/14	1213	7 x	x x	x x x x x	x x		AT	10701		
MW-14 W1	G 5/9/16	1200	7 x	x x	x x x x x	x x		TA	10701		
4 MW-16 w	1 G 3/9/16	1145	7 x	x x		x x		AT	10703		
5. MW-CHA-RFI-7 MS/MSD wi	1 G 54/16	1336	17 x	x x	x x x x x	x x		ATTI	0704	ſ	
6 Trip Blank-01 w	1 G 5/9/16	N/A	2	x	x				10705		
7											
8											
9	-										
10											
12											
	UISHED BY / AFFILIA	TION DATE	TIME	ACCEPTED BY	Y / AFFILIATION	DATE	TIME	s	AMPLE COND	ITIONS	
NYSDEC DER-10 EQuIS EDD) PACE	5/9/16	1520	//H	2.	5/9/16	15:20	8.76		Y'N Y(N	Y/N (BAN
										X.X	/\ N/\
										// Y/N	//N //
		ER NAME AND SIGN	ATURE					ပ္			
		Name of SAMPLER: TURE of SAMPLER:	Matt Broker	(PACE)	DATE Signed (MM / DD / YY);	-/a/s		Temp in °C	Received	Custody Sealed Cooler	samples Intact


Sample Condition Upon Receipt

						CLIENT	NAME:	Leade/		
						PROJEC	$CT: \mathcal{V}$	rails Gate		
COURIER: FedEx UPS C	ient 🗆	Pace _∕ ∞∠	Other							
TRACKING #		CUSTODY	SEAL PRESEN	T: Yes 🗆	No 🔊	~ IN	NTACT: Yes	No 🗆	N	I/A⊅ z ∽
PACKING MATERIAL: Bubble Wrap □	Bubble Bags	0	None 🗆	Other 🗆		ICE USE	ED: Wet, 🕾	_ Blue □_	No	ne 🗆
THERMOMETER USED: #164 □ IR Gu	n 03⁄2\	#122087	′967 □		COOLER TE	MPERAT	TURE (°C):	<u>8-7°</u>	Ç	
BIOLOGICAL TISSUE IS FROZEN: Yes	No □	N/AXS				Temp:	should be	above freezing	to 6°C	
COMMENTS:					Temperatu	re is Acc	eptable?	j∕Él¥es	□No	
Chain of Custody Present:	V ELYes	□No		1.						
Chain of Custody Filled Out:	⊘ Z ÍYes	□No		2.						
Chain of Custody Relinquished:	ANYes	□No		3.	CWO1					
Sampler Name / Signature on COC:	'XX Yes	□No		4.						
Samples Arrived within Hold Time:	Yes	□No		5.						
Short Hold Time Analysis (<72hr):	□Yes	æNo		6.						
Rush Turn Around Time Requested:	□Yes	∀ 21100		7.						
Sufficient Volume:	Æ⊒Yes	□No		8.						
Correct Containers Used:	Σ⊟Yes	□No		9.						
- Pace Containers Used:	⊁ ⊟Yes	□No								
Containers Intact:	¥⊟Yes	□No		10.						
Filtered volume received for Dissolved tes	ts:′ _{□Yes}	□No	Æ N/A	11.						
Sample Labels match COC:	≻EYes	□No		12.						
 Includes date/time/ID/Analysis 										
All containers needing preservation have been checked:	□Yes	□No	A\N ₽	13.						
All containers needing preservation are in	□Yes	□No	>€N/A							
compliance with EPA recommendation:			•	Initial whe	n					
- Exceptions that are not checked: TOC, VOA, Subcor	ntract Analyses			completed	: <u>N/4</u>	Lot # o	of added p	reservative:	J/A	
Headspace in VOA Vials (>6mm):	□Yes	∕2 1No	XBN/A ()R	14.				-		
Trip Blank Present:	Y≝Yes	□No	DNA OR	15.						
Trip Blank Custody Seals Present:	y ⊡ Yes	□No	TENIA COR							
Pace Trip Blank Lot #:	16-0717TB	•	, 20(
Sample Receipt form filled in: $fAw 5/ol$	16	Line-Out	(Includes Cop	ying Shippi	ng Documei	nts and	verifying	sample pH):	<u>ar</u>	5/,10,116
		Log In (In	cludes notifyi	ing PM of ar	ny discrepad	cies and	d documei	nting in LIMS):	AJB	5/9/16
		Labeling (Includes Scar	nning Bottle	s and enter	ring LAB	B IDs into p	pH logbook):	<u>ar</u>	5/10/16

Document Control# F-NY-C-034-rev 00 (15July2015)


								XX 4 2 44 7 47	S	**************************************	v	S				<u>.</u>	# 	%		1605 • • • • • • • • • • • • • • • • • • •	01873	
	1	l		inches	feet	feet	feet	1	gallons	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	gallons	gallons	feet	feet		0 feet	23.76 feet			N/A f	N/A f	oker
	Yes	Flush		2.00	41.67	0.00	d) 41.67	0.16	6.67	3	20.01	15.00	N/A	N/A	% Recharge:	Initial Depth to Water	Recharge Depth to Water 23	2nd water column height	1st water column height	Elevation(Top of Casing)	G.W. Elevation= N/A fea	Sampler: Matt Broker
PACE ID	 * ∺	ا ت					(calculate			cuated	Jated	70	(uwot		% Re	Initia	Reche	2nd)	1st w	Eleva	G.W.	Sampler:
nsulting nufacturing PA(7 MS/MSD	Locked:	Lock ID:			sured		Column	ō	lculated)	o be Eva	be Evacı	vacuated	epth (if kr	culated			} 	≧ ∪ I	ns I	Sn I	1 1	
g iring MSD		d	d	Diameter of Well	Well Depth Measured	Depth to Water	Length of Water Column (calculated)	Conversion Factor	Well Volume (calculated)	No. of Volumes to be Evacuated	Total Volume to be Evacuated	Actual Volume Evacuated	Installed Well Depth (if known)	Depth of Silt (calculated	Final	5/9/16	13:30	2 2 2	7.28	1489	1.78 clear	
Leader Consulting /ails Gate Manufacturing MW-CHA-RFI-7 MS/MSD	Good	Peristaltic Pump	Peristaltic Pump	ď.	ю́	o'	Ö.						ш	ιĽ								18C sunny
Nient: Leader C Vails Gate N Vell ID: MW-CHA-RI	:H:	uation:	pling:	A	TOP			WATER					SILT		Initial	5/9/16	12:30	14.7	7.22	1536		sample clear
Olient: Project: Well ID.:	Condition of Well:	Method of Evacuation:	Method of Sampling:	↓		υ		— ·	ш			→	— <u>"</u>	→	Field	Date	Time	En Temperature	PH PG REGIO	Specific Cond. Turbidity	, Dissolved Oxygen Appearance	 .;;

										TARRY.						PER SERVE				gerater,				1605	1874
						inches	feet	feet	feet		gallons		gallons	gallons	feet	feet		3.84 feet	9.15 feet	%		N/A feet	N/A feet		roker
			Yes	Flush		2.00	13.00	3.84	9.16	0.16	1.47	က	4.41	Dry @ 2.0	N/A	N/A	je:			2nd water column height	1st water column height	of Casing)			Matt Broker
	PACE ID		ö	ة		ı	í	ı	(calculated)	1	ı	acuated		T)	(uwot		% Recharge:	Initial Depth to Water	Recharge Depth to Water	2nd water o	1st water o	Elevation(Top of Casing)	G.W. Elevation=	Sampler:	Signature:
go-	_ <u>^</u> _		Locked:	Lock ID:		=	asured	<u>.</u>	er Column	ctor	salculated)	s to be Eva	o be Evacı	Evacuated	Jepth (if kr	alculated				€ 0	ns 	Su		2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 3. 2 3	
Ground water Field Log	g ıring					Diameter of Well	Well Depth Measured	Depth to Water	Length of Water Column (calculated)	Conversion Factor	Well Volume (calculated)	No. of Volumes to be Evacuated	Total Volume to be Evacuated	Actual Volume Evacuated	Installed Well Depth (if known)	Depth of Silt (calculated	Final Sampling	5/9/16	12:20	16.9	6.91	1526 82	2.01	Same Characters and the standard	slow recharge oily sheen ted in Unit 4-5
	Leader Consulting Vails Gate Manufacturing	MW-14	Good	Bailer	Bailer	ď.	ю́	Ö	Ö						ш	щ	E Š							17C sunny	2 and 3 slow recharge Well located in Unit 4-5
Services, Inc.	Leade Vails Gat			in:		†				WATER					-		Initial Evacuation	5/9/16	11:05	-94	7.38	1681	1.82	and the particular and area	Well between piller 2 a
ACE Analytical			Condition of Well:	Method of Evacuation:	Method of Sampling:	↓	<u> </u>			—— r	n			+	SIF.							ond.	ssolved Oxygen		
ACE	llent: roject:	ell ID.:	Condit	Metho	Metho	4		ر——د ——		► -a-			-	←	— ш —		eld easurements	a t	e e	٦ emperature	_	pecific Condurbidity	ssolved O	eather:	oservations:

ition of Well: MW-5AAR Field Dupe 1		Leader Consulting				
Condition of Well: Good Lock ID: Flush Method of Sampling: Peristatilic Pump Lock ID: Flush Method of Sampling: Peristatilic Pump Lock ID: Flush C. Depth to Water C. Depth to Water 6.20 feet C. Depth to Water C. Depth to Water 0.16 C. Depth to Water Column (calculated) 0.29 gallo D. Length of Water Column (calculated) 0.99 gallo D. Length of Water Column (calculated) 0.99 gallo D. Length of Sitt (calculated) 0.99 gallo D. Signific (calculated) 0.99 sampling		s Gate Manufact -5A/AR Field Du		PACE ID		
Method of Evacuation: Peristatic Pump Lock ID: Flush Method of Sampling: Peristatic Pump A. Diameter of Well 2.00 inch leat C. Depth to Water C. Depth to Water Column (calculated) 6.20 feet C. Depth to Water Column (calculated) 6.20 feet D. Length of Water Column (calculated) 0.99 gallo No. of Volumes to be Evacuated 2.97 gallo No. of Volumes to be Evacuated 3.00 gallo Actual Volume Evacuated 2.97 gallo Actual Volume Evacuated 3.00 gallo Actual Volume Evacuated 2.97 gallo Actual Volume Evacuated 2.97 gallo Actual Volume Evacuated 3.00 gallo Actual Volume Evacuated 2.97 gallo Actual Volume Evacuated 3.00 gallo Actual Volume Evacuated 2.97 gallo Actual Volume Evacuated 2.97 gallo Actual Volume Evacuated 3.00 gallo Actual Volume Evacuated 3	Condition of Well:	Good	Loc	ked:	Yes	
Method of Sampling: Peristatilic Pump A. Diameter of Well 200 inche C Depth to Water C. Depth to Water Column (calculated) 6.20 feet C Depth to Water Column (calculated) 6.20 feet C Depth to Water Column (calculated) 6.20 feet C Depth to Water Column (calculated) 0.16 D Length of Water Column (calculated) 0.39 gallo No. of Volumes to be Evacuated 3 Total Volume (calculated) 0.39 gallo Actual Volume (salculated) 0.39 gallo Actual Volume (salculated) 0.39 gallo F Depth of Sift (calculated) 3 Actual Volume Evacuated 3.00 gallo feet F Depth of Sift (calculated) N/A feet F Finitial Depth of Sift (calculated) N/A feet F Forestall Volume Evacuated 3.00 gallo F Forestall Volume (salculated) 2.90	Method of Evacuation:	Peristaltic Pur		k D:	Flush	
MATER A	Method of Sampling:	Peristaltic Pur	du			
C	↑ ∀ ↓ ↓	V	Diameter of Well		2.00	inches
WATER Conversion Factor 0.30 feet	<u></u>	œ.	Well Depth Measured		6.50	feet
WATER Conversion Factor Conversion Conversion Factor Conversion Conversion Factor Conversion)——	Ö	Depth to Water		0.30	- feet
WATER WATER Conversion Factor O.16		Ö	Length of Water Colum	nn (calculated)		- feet
F SILT E. Installed Well Volume to be Evacuated 3.00 gallo	B WATER		Conversion Factor		0.16	
No. of Volumes to be Evacuated 3	C		Well Volume (calculate	(p;	0.99	gallons
Total Volume to be Evacuated 2.97 gallo			No. of Volumes to be E	vacuated	က	
SILT E. Installed Well Depth (if known) N/A feet			Total Volume to be Eva	acuated	2.97	gallons
SILT E. Installed Well Depth (if Known) NJA feet			Actual Volume Evacua	ted	3.00	gallons
The parameter Final Final Final Sampling Final Final	SILT	ш	Installed Well Depth (if	known)	N/A	feet
id Initial Final % Recharge: asurements Evacuation Sampling Initial Depth to Water 0.3 fe e 5/9/16 5/9/16 Recharge Depth to Water 2.2 fe nperature 11:50 -62 mV 2.2 fe nperature 13:9 14:9 C 2nd water column height roffic Cond. 208.3 6:9 SU 1st water column height roffic Cond. 208.3 762.8 uS Elevation(Top of Casing) N/A solved Oxygen 1.78 LO.8 NTU G.W. Elevation = Top of Case Elev-Total Department of Case Elev-Total		ш	Depth of Silt (calculate	Ð	N/A	feet
Exercise	lirements	E 0	inal Samolina	% Rech		
11:50				Initial D	epth to Water	
nperature 13.9 -62 mV mV Independent of the column second of the colu			5/9/16 12:13	Recharge	Depth to Water	2
nperature 13.9 14.9 C 2nd water column height and the column height at the column heig						
colific Cond. 208.3 6.9 SU 1st water column height bidity 225 uS Elevation(Top of Casing) N/A solved Oxygen 1.78 2.2 G.W. Elevation = N/A searance cloudy clear G.W. Elevation = Top of Case Elev-Total Degrather: ather: 17C sunny Sampler: servations: Silty bottom thick grey while purging then cleared up Signature:	nperature				er column height	%
208.3 762.8 uS uS NTU Elevation(Top of Casing) N/A /gen 1.78 2.2 G.W. Elevation = N/A cloudy clear G.W. Elevation = Top of Case Elev-Total Degration = Top of Case Elev-Total Degration 3ilty bottom thick grey while purging then cleared up Sampler: Matt Broker Signature: Signature:					er column height	
/gen 1.78 2.2 G.W. Elevation= N/A cloudy clear G.W. Elevation = Top of Case Elev-Total Degration = Top of Case Elev-Total Degrature = Top					(Top of Casing)	
Sampler: Silty bottom thick grey while purging then cleared up Signature:			2.2 clear	G.W. El G.W.Elev	evation= ation =Top of Case E	N/A feet lev-Total Depth
Signature:		17C sunny	// / / / / / / / / / / / / / / / / / /	Sample		Brokor
	.	gieg wille puiging	מסוסוסוסוסוסוסוסוסוסוסוסוסוסוסוסוסוסוסו	Signatu		Di Onei

<16050187P7> 100101037

FIELD CALIBRATION SHEET PACE ANALYICAL INC.

Vails Gate Manufacturing 16C sunny SITE: 5/9/16 DATE:

WEATHER: Matt Broker

TECHNICIAN:

INSTRUMENT:

Myron Ultrameter II 6PFCe Myron Ultrameter II 6PFCe DISSOLVED OXYGEN TEMPERATURE CONDUCTIVITY 표

Myron Ultrameter II 6PFCe Sper Scientific 850041 Hanna HI 98703

TURBIDITY

 INSTRUMENT STANDARD ANALYTE	INTIAL READING	ADJUSTED READING	TIME	NOTES
4.00	4.04	4.00	1056	
7.00	7.21	7.00	1055	
10.00	10.04	10.00	1057	
1413	1421	1413	1058	
<0.10	0.13	<0.10	1059	
15	15.4	15	1100	
100	97	100	1101	
750	750	750	1102	

NOTES:

SAMPLE RECEIPT

SAMPLE RECEIPT REPORT 16050187

Pace Analytical Services, Inc. 2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

CLIENT: LEADER CONSULTING SERVICES, INC.

PROJECT: VAILS GATE MANUFACTURING

LRF: 16050187

REPORT: DATA PACKAGE

EDD: YES LRF TAT: 2 WEEK **RECEIVED DATE:** 05/09/2016 15:20

SAMPLE SEALS INTACT: NA SHIPPED VIA: PICK UP 1, SAMPLES PRESERVED PER METHOD GUIDANCE: YES

³ SAMPLES REC'D IN HOLDTIME: YES SHIPPING ID:

DISPOSAL: BY LAB (45 DAYS) NUMBER OF COOLERS: 1 CUSTODY SEAL INTACT: NA **COC DISCREPANCY: NO**

COOLER STATUS: CHILLED **TEMPERATURE(S):** \$.7 (IR) °C

COMMENTS:

CLIENT ID (LAB ID)	TAT-DUE Date	DATE-TIME SAMPLED	MATRIX	METHOD	TEST DESCRIPTION	QC REQUES
FIELD DUPLICATE-01 (AT10700)	2 WEEK 05-23-16	05/09/2016 12:15	Water	E200.7	Dissolved Metals E200.7 - Sub Pace LI	
	2 WEEK 05-23-16	05/09/2016 12:15	Water	Misc Field Analysis	Misc Field Analysis	
	2 WEEK 05-23-16	05/09/2016 12:15	Water	SM 5310B-00,-11	Total Organic Carbon	
	2 WEEK 05-23-16	05/09/2016 12:15	Water	Sulfate E300.0	Sulfate E300.0 - Sub Pace LI	
	2 WEEK 05-23-16	05/09/2016 12:15	Water	VOCs E8260C	VOCs E8260C - Sub Pace LI	
MW-5A/AR (AT10701)	2 WEEK 05-23-16	05/09/2016 12:13	Water	E200.7	Dissolved Metals E200.7 - Sub Pace LI	
	2 WEEK 05-23-16	05/09/2016 12:13	Water	Misc Field Analysis	Misc Field Analysis	
	2 WEEK 05-23-16	05/09/2016 12:13	Water	SM 5310B-00,-11	Total Organic Carbon	
	2 WEEK 05-23-16	05/09/2016 12:13	Water	Sulfate E300.0	Sulfate E300.0 - Sub Pace LI	
	2 WEEK 05-23-16	05/09/2016 12:13	Water	VOCs E8260C	VOCs E8260C - Sub Pace LI	
MW-14 (AT10702)	2 WEEK 05-23-16	05/09/2016 12:20	Water	E200.7	Dissolved Metals E200.7 - Sub Pace LI	
	2 WEEK 05-23-16	05/09/2016 12:20	Water	Misc Field Analysis	Misc Field Analysis	
	2 WEEK 05-23-16	05/09/2016 12:20	Water	SM 5310B-00,-11	Total Organic Carbon	
	2 WEEK 05-23-16	05/09/2016 12:20	Water	Sulfate E300.0	Sulfate E300.0 - Sub Pace LI	
	2 WEEK 05-23-16	05/09/2016 12:20	Water	VOCs E8260C	VOCs E8260C - Sub Pace LI	
MW-16 (AT10703)	2 WEEK 05-23-16	05/09/2016 11:45	Water	E200.7	Dissolved Metals E200.7 - Sub Pace LI	
	2 WEEK 05-23-16	05/09/2016 11:45	Water	Misc Field Analysis	Misc Field Analysis	
	2 WEEK 05-23-16	05/09/2016 11:45	Water	SM 5310B-00,-11	Total Organic Carbon	
	2 WEEK 05-23-16	05/09/2016 11:45	Water	Sulfate E300.0	Sulfate E300.0 - Sub Pace LI	
	2 WEEK 05-23-16	05/09/2016 11:45	Water	VOCs E8260C	VOCs E8260C - Sub Pace LI	
MW-CHA-RFI-7 (AT10704)	2 WEEK 05-23-16	05/09/2016 13:30	Water	E200.7	Dissolved Metals E200.7 - Sub Pace LI	MS, MSD
	2 WEEK 05-23-16	05/09/2016 13:30	Water	Misc Field Analysis	Misc Field Analysis	
	2 WEEK 05-23-16	05/09/2016 13:30	Water	SM 5310B-00,-11	Total Organic Carbon	MS, MSD
	2 WEEK 05-23-16	05/09/2016 13:30	Water	Sulfate E300.0	Sulfate E300.0 - Sub Pace LI	MS, MSD
	2 WEEK 05-23-16	05/09/2016 13:30	Water	VOCs E8260C	VOCs E8260C - Sub Pace LI	MS, MSD
TRIP BLANK-01 (AT10705)	2 WEEK 05-23-16	05/09/2016	Water	VOCs E8260C	VOCs E8260C - Sub Pace LI	

¹The pH preservation check of Oil and Grease (Method 1664) and Total Organic Carbon (Method 5310B) are performed as soon as possible after sample receipt and may not be included in this report.

Reporting Parameters and Lists

Misc Field Analysis - Misc Field Analysis - (mg/L)

Dissolved Oxygen (\$)

Flow (\$) pH (\$)

Reduction Potential (\$)

Specific Conductance (\$)

Misc Field Analysis - Misc Field Analysis - (mg/L)

Static Water Level (\$)

Sulfite (\$)

Temperature (\$)

Total Residual Chlorine (\$)

Turbidity (\$)

This report may not be reproduced except in full, without the written approval of Pace Analytical Services, Inc.

Page 1 of 2

The pH preservation check of aqueous volatile samples is not performed until after the analysis of the sample to maintain zero headspace and is not included in this report.

3 Samples received for pH analysis are not marked as a hold time exceedance here. SW-846 methods suggests analysis to be done within 15 minutes of sample collection. Because of transportation time it 4 is not possible for the laboratory to perform the test in that time. Sample Certificates of Analysis reports are noted as such.

Samples arriving at the laboratory after 4:00 pm are assigned a due date as if they arrived the following business day unless other arrangements have been made

The due date represents the date the lab report is expected to be completed on or before 5:00 pm (EST) for the date specified.

⁵All samples which require thermal preservation shall be considered acceptable when received greater than 6 degrees Celsius if they are collected on the same day as received and there is evidence that the chilling process has begun, such as arrival on ice. Control limits are between 0-6 Degrees Celsius. Control limits do not apply for metals analysis.

⁶Samples requesting analysis for Orthophosphate (SM 4500-P E-99,-11) require the samples to be filtered in the field within 15 minutes of the sampling event. Samples that are received unfiltered will be noted as not method compliant on the Certificates of Analysis.

SAMPLE RECEIPT REPORT 16050187

Pace Analytical Services, Inc. 2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Total Organic Carbon

16050187 - Page 16 of 61

Wet Chemistry - TOC/DTOC

Job Number: 16050187

Pace Analytical Services, Inc. 2190 Technology Drive

Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: FIELD DUPLICATE-01

Lab Sample ID: 16050187-01 (AT10700)

Collection Date: 05/09/2016 12:15

Sample Matrix: WATER

Received Date: 05/09/2016 15:20

Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column	
Analysis 1:	885	SM 5310B	05/17/2016 14:08	JS	NA	NA	NA	
Analyte		CAS No.	Result (mg/L)	PQL	Dilution Fact	or Flags	File ID	
Total Organic		OC002	6.67	1.00	1.00		885	-

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16050187

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

885

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-5A/AR

Total Organic Carbon

Lab Sample ID: 16050187-02 (AT10701)

Collection Date: 05/09/2016 12:13

Sample Matrix: WATER

Received Date: 05/09/2016 15:20

1.00

Percent Solid: N/A

Analyte		CAS No.	Result (mg/L)	PQL	Dilution Fact	tor Flags	File ID
Analysis 1:	885	SM 5310B	05/17/2016 14:21	JS	NA	NA	NA
	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column

1.00

6.64

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

OC002

Job Number: 16050187

Pace Analytical Services, Inc. 2190 Technology Drive

Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

885

Client: LEADER CONSULTING SERVICES, INC. Collection Date: 05/09/2016 12:20

Project: VAILS GATE MANUFACTURING

Sample Matrix: WATER

Client Sample ID: MW-14 Received Date: 05/09/2016 15:20

35.4

Lab Sample ID: 16050187-03 (AT10702) **Percent Solid:** N/A

Analysis 1: Analyte	885	CAS No.	05/17/2016 14:37 Result (mg/L)	PQL	Dilution Fac	tor Flogs	File ID	_
Augloria 1	Batch ID	Method	Date		Init Wt./Vol.	Final Vol.	Column	

1.00

1.00

ND: Denotes analyte not detected at a concentration greater than the PQL.

Total Organic Carbon

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

OC002

Job Number: 16050187

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-16

Lab Sample ID: 16050187-04 (AT10703)

Collection Date: 05/09/2016 11:45

Sample Matrix: WATER

Received Date: 05/09/2016 15:20

Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column	
Analysis 1:	885	SM 5310B	05/17/2016 14:53	JS	NA	NA	NA	
Analyte		CAS No.	Result (mg/L)	PQL	Dilution Fact	tor Flags	File ID	

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Total Organic Carbon

Analytical Sample Results

Job Number: 16050187

Pace Analytical Services, Inc. 2190 Technology Drive

Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

885

Client: LEADER CONSULTING SERVICES, INC. Collection Date: 05/09/2016 13:30

Project: VAILS GATE MANUFACTURING

Sample Matrix: WATER

Client Sample ID: MW-CHA-RFI-7 Received Date: 05/09/2016 15:20

ND

Lab Sample ID: 16050187-05 (AT10704) **Percent Solid:** N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	885	SM 5310B	05/17/2016 15:05	JS	NA	NA	NA
Analyte		CAS No.	Result (mg/L)	PQL	Dilution Fac	tor Flags	File ID

1.00

1.00

U

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

OC002

Field Analysis

Job Number: 16050187

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC. Collection Date: 05/09/2016 12:13

Project: VAILS GATE MANUFACTURING

Sample Matrix: WATER

Client Sample ID: MW-5A/AR Received Date: 05/09/2016 15:20

Lab Sample ID: 16050187-02 (AT10701) **Percent Solid:** N/A

Batch ID	Method	Date	Analyst		nal Vol.	Column
Analysis 1: Field Test	Field Analysis	05/09/2016 12:13	MEB	NA	NA	NA
Analyte	CAS No.	Result	PQL	Dilution Factor	Flags	File ID
Dissolved Oxygen (\$)	7782-44-7	2.20 (mg/L)	0.00	1.00		Field Test
pH (\$)	NA	6.90 (pH)	0.00	1.00		Field Test
Reduction Potential (\$)	NA	-62.0 (mV)	0.00	1.00		Field Test
Specific Conductance (\$)	NA	763 (umhos/cn	0.00	1.00		Field Test
Static Water Level (\$)	NA	0.300 (ft btmp)	0.00	1.00		Field Test
Temperature (\$)	NA	14.9 (°C)	0.00	1.00		Field Test
Turbidity (\$)	NA	10.8 (NTU)	0.00	1.00		Field Test

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Note: This is field generated data. (\$) NYSDOH-ELAP does not currently offer NELAC certification for this parameter.

Job Number: 16050187

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-14

Lab Sample ID: 16050187-03 (AT10702)

Collection Date: 05/09/2016 12:20

Sample Matrix: WATER

Received Date: 05/09/2016 15:20

Percent Solid: N/A

Batch ID	Method	Date	Analyst		nal Vol.	Column
Analysis 1: Field Test	Field Analysis	05/09/2016 12:20	MEB	NA	NA	NA
Analyte	CAS No.	Result	PQL	Dilution Factor	Flags	File ID
Dissolved Oxygen (\$)	7782-44-7	2.01 (mg/L)	0.00	1.00		Field Test
pH (\$)	NA	6.91 (pH)	0.00	1.00		Field Test
Reduction Potential (\$)	NA	5.00 (mV)	0.00	1.00		Field Test
Specific Conductance (\$)	NA	1530 (umhos/cn	0.00	1.00		Field Test
Static Water Level (\$)	NA	3.84 (ft btmp)	0.00	1.00		Field Test
Temperature (\$)	NA	16.9 (°C)	0.00	1.00		Field Test
Turbidity (\$)	NA	82.0 (NTU)	0.00	1.00		Field Test

ND: Denotes analyte not detected at a concentration greater than the PQL.

Note: This is field generated data. (\$) NYSDOH-ELAP does not currently offer NELAC certification for this parameter.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16050187

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-16

Lab Sample ID: 16050187-04 (AT10703)

Collection Date: 05/09/2016 11:45

Sample Matrix: WATER

Received Date: 05/09/2016 15:20

Percent Solid: N/A

Batch ID	Method	Date	Analyst		nal Vol.	Column
Analysis 1: Field Test	Field Analysis	05/09/2016 11:45	MEB	NA	NA	NA
Analyte	CAS No.	Result	PQL	Dilution Factor	Flags	File ID
Dissolved Oxygen (\$)	7782-44-7	4.33 (mg/L)	0.00	1.00		Field Test
pH (\$)	NA	7.58 (pH)	0.00	1.00		Field Test
Reduction Potential (\$)	NA	73.0 (mV)	0.00	1.00		Field Test
Specific Conductance (\$)	NA	382 (umhos/cm	0.00	1.00		Field Test
Static Water Level (\$)	NA	3.03 (ft btmp)	0.00	1.00		Field Test
Temperature (\$)	NA	14.1 (°C)	0.00	1.00		Field Test
Turbidity (\$)	NA	476 (NTU)	0.00	1.00		Field Test

ND: Denotes analyte not detected at a concentration greater than the PQL.

Note: This is field generated data. (\$) NYSDOH-ELAP does not currently offer NELAC certification for this parameter.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Analytical Sample Results

Job Number: 16050187

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-CHA-RFI-7

Lab Sample ID: 16050187-05 (AT10704)

Collection Date: 05/09/2016 13:30

Sample Matrix: WATER

Received Date: 05/09/2016 15:20

Percent Solid: N/A

Batch ID	Method	Date	Analyst		nal Vol.	Column
Analysis 1: Field Test	Field Analysis	05/09/2016 13:30	MEB	NA	NA	NA
Analyte	CAS No.	Result	PQL	Dilution Factor	Flags	File ID
Dissolved Oxygen (\$)	7782-44-7	1.78 (mg/L)	0.00	1.00		Field Test
pH (\$)	NA	7.28 (pH)	0.00	1.00		Field Test
Reduction Potential (\$)	NA	31.0 (mV)	0.00	1.00		Field Test
Specific Conductance (\$)	NA	1490 (umhos/cn	0.00	1.00		Field Test
Static Water Level (\$)	NA	0.00 (ft btmp)	0.00	1.00		Field Test
Temperature (\$)	NA	15.2 (°C)	0.00	1.00		Field Test
Turbidity (\$)	NA	6.19 (NTU)	0.00	1.00		Field Test

ND: Denotes analyte not detected at a concentration greater than the PQL.

Note: This is field generated data. (\$) NYSDOH-ELAP does not currently offer NELAC certification for this parameter.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Quality Control Samples (Lab)

Quality Control Results Method Blank

Job Number: 16050187

Pace Analytical Services, Inc. 2190 Technology Drive

Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC.
Project: VAILS GATE MANUFACTURING
Client Sample ID: Method Blank (AT10700B)

Lab Sample ID: BLANK-01

Collection Date: N/A Sample Matrix: WATER Received Date: N/A Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	885	SM 5310B	05/17/2016 13:41	JS	NA	NA	NA
Analyte		CAS No.	Result (mg/L)	PQL	Dilution Fact	tor Flags	File ID

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Quality Control Results Lab Control Sample (LCS)

Job Number: 16050187

Pace Analytical Services, Inc. 2190 Technology Drive

Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: LEADER CONSULTING SERVICES, INC. Project: VAILS GATE MANUFACTURING

Client Sample ID: Lab Control Sample (AT10700L)

Lab Sample ID: LCS-01

Collection Date: N/A Sample Matrix: WATER Received Date: N/A Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	885	SM 5310B	05/17/2016 13:54	JS	NA	NA	NA

		Added	LCS	LCS	Limits
Analyte Spiked	CAS No.	(mg/L)	(mg/L)	% Rec.	Q (%)
Total Organic Carbon	OC002	10.0	10.1	101	85.0-115

¹ Qualifier column where '*' denotes value outside the control limits. Note: RPD criteria does not apply if either the sample and duplicate sample are not detected.

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Subcontract Analysis

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436

Website: www.pacelabs.com

Case Narrative

WO#: **1605941**Date: **5/23/2016**

CLIENT: Pace Analytical Services Inc.

Project: 16050187 LEADER VGM

Upon receipt at Long Island lab sample -002C was improperly preserved due to misidentification of sample bottle. As per sampler identification it was clarified that sample -002C was the same sample as Duplicate -001C. Sample -001C was poured off and aliquot was analyzed as sample -002C.

TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

Pace Analytical Services Inc. 2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10700

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method:	E200.7 :						Analyst: JA
Parameter(s)	<u> 1</u>	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
on		11,000		1	ug/L	05/21/2016 1:49 AM	Container-01 of 01

Lab No. : 1605941-001

Client Sample ID: FIELD DUPLICATE-01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

 \ensuremath{c} = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager : Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 2 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received : 5/11/2016 10:14:00 AM AT10700

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Lab No. : 1605941-001 Type : Aqueous Client Sample ID: FIELD DUPLICATE-01

Origin:

Collected By CLIENT					
Analytical Method: SW8260C:	<u>Pre</u>	o Method: 5030	C		Analyst: KG
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Analyzed:</u>	Container:
1,1,1,2-Tetrachloroethane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,1,1-Trichloroethane	10	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,1,2-Trichloroethane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,1-Dichloroethane	14	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,1-Dichloroethene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,1-Dichloropropene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,2,3-Trichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,2,3-Trichloropropane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,2,4-Trimethylbenzene	2.2	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,2-Dibromoethane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,2-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,2-Dichloroethane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,2-Dichloropropane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,3-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,3-Dichloropropane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
1,4-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
2,2-Dichloropropane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
2-Butanone	< 5.0 c	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
2-Chloroethylvinyl ether	NR	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
2-Chlorotoluene/4-Chlorotoluene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
2-Hexanone	< 5.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
4-Isopropyltoluene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
4-Methyl-2-pentanone	< 5.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Acetone	< 10	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Benzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10700

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1605941-001 Sample Information: Type : Aqueous

Client Sample ID: FIELD DUPLICATE-01

Origin:

Collected By CLIENT					
Analytical Method: SW8260C:	<u>Prep M</u>	<u>Method:</u> 50300			Analyst: KG
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Bromobenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Bromochloromethane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Bromodichloromethane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Bromoform	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Bromomethane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Carbon disulfide	< 10	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Carbon tetrachloride	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Chlorobenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Chloroethane	110	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Chloroform	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Chloromethane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Dibromochloromethane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Dibromomethane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Dichlorodifluoromethane	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Ethylbenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Hexachlorobutadiene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Isopropylbenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
m,p-Xylene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Methyl tert-butyl ether	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Methylene chloride	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Naphthalene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
n-Butylbenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
n-Propylbenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
o-Xylene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
sec-Butylbenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Styrene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
tert-Butylbenzene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03
Tetrachloroethene	< 1.0	1	μg/L	05/18/2016 11:39 AM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 4 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10700

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:		Prep M	1ethod: 5030	С				Analyst: KG
Parameter(s)	Results Q	ualifier	<u>D.F.</u>	<u>Units</u>			Analyzed:	Container:
Toluene	< 1.0		1	μg/L			05/18/2016 11:39 AM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0		1	μg/L			05/18/2016 11:39 AM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0		1	μg/L			05/18/2016 11:39 AM	Container-01 of 03
Trichloroethene	< 1.0		1	μg/L			05/18/2016 11:39 AM	Container-01 of 03
Trichlorofluoromethane	< 1.0		1	μg/L			05/18/2016 11:39 AM	Container-01 of 03
Vinyl acetate	< 10		1	μg/L			05/18/2016 11:39 AM	Container-01 of 03
Vinyl chloride	< 1.0		1	μg/L			05/18/2016 11:39 AM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	82.2		1	%Rec	Limit	68-153	05/18/2016 11:39 AM	Container-01 of 03
Surr: 4-Bromofluorobenzene	105		1	%Rec	Limit	79-124	05/18/2016 11:39 AM	Container-01 of 03
Surr: Toluene-d8	93.8		1	%Rec	Limit	69-124	05/18/2016 11:39 AM	Container-01 of 03

Lab No. : 1605941-001

Client Sample ID: FIELD DUPLICATE-01

NOTES:

NR=Analyte not reportable due to improper sample preservation.

Analytical Method: E300.0:						Analyst: bka
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Sulfate	1.33	J	1	mg/L	05/20/2016 5:55 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

 \ensuremath{c} = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 5 of 26

TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

Pace Analytical Services Inc. 2190 Technology Drive

Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10701

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method:	E200.7 :					Analyst: JA
Parameter(s)	Resu	ts Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron	10,9	00	1	ug/L	05/21/2016 1:55 AM	Container-01 of 01

Lab No. : 1605941-002

Client Sample ID: MW-5A/AR

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

 \ensuremath{c} = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 6 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10701

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1605941-002

Client Sample ID: MW-5A/AR

Sample Information:

Type: Aqueous

Origin:

Collected By CLIENT					
Analytical Method: SW8260C:	Pr	ep Method: 5030	OC		Analyst: KG
Parameter(s)	Results Qualifie	<u>er D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,1,1-Trichloroethane	5.2	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,1,2-Trichloroethane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,1-Dichloroethane	8.6	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,1-Dichloroethene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,1-Dichloropropene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,2,3-Trichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,2,3-Trichloropropane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,2,4-Trimethylbenzene	2.2	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,2-Dibromoethane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,2-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,2-Dichloroethane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,2-Dichloropropane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,3,5-Trimethylbenzene/P-ethyltoluene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,3-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,3-Dichloropropane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
1,4-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
2,2-Dichloropropane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
2-Butanone	< 5.0 c	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
2-Chloroethylvinyl ether	NR	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
2-Chlorotoluene/4-Chlorotoluene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
2-Hexanone	< 5.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
4-Isopropyltoluene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
4-Methyl-2-pentanone	< 5.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Acetone	< 10	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Benzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 7 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10701

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1605941-002

Client Sample ID: MW-5A/AR

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep I	Method: 5030	C		Analyst: KG
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Bromobenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Bromochloromethane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Bromodichloromethane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Bromoform	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Bromomethane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Carbon disulfide	< 10	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Carbon tetrachloride	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Chlorobenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Chloroethane	110	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Chloroform	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Chloromethane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Dibromochloromethane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Dibromomethane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Dichlorodifluoromethane	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Ethylbenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Hexachlorobutadiene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Isopropylbenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
m,p-Xylene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Methyl tert-butyl ether	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Methylene chloride	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Naphthalene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
n-Butylbenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
n-Propylbenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
o-Xylene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
sec-Butylbenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Styrene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
tert-Butylbenzene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03
Tetrachloroethene	< 1.0	1	μg/L	05/18/2016 11:57 AM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Pangarella
Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 8 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10701

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:		Prep Method: 5030	С			Analyst: KG
Parameter(s)	Results Qu	alifier D.F.	<u>Units</u>		Analyzed:	Container:
Toluene	< 1.0	1	μg/L		05/18/2016 11:57 AM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0	1	μg/L		05/18/2016 11:57 AM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0	1	μg/L		05/18/2016 11:57 AM	Container-01 of 03
Trichloroethene	< 1.0	1	μg/L		05/18/2016 11:57 AM	Container-01 of 03
Trichlorofluoromethane	< 1.0	1	μg/L		05/18/2016 11:57 AM	Container-01 of 03
Vinyl acetate	< 10	1	μg/L		05/18/2016 11:57 AM	Container-01 of 03
Vinyl chloride	< 1.0	1	μg/L		05/18/2016 11:57 AM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	82.5	1	%Rec	Limit 68-153	05/18/2016 11:57 AM	Container-01 of 03
Surr: 4-Bromofluorobenzene	107	1	%Rec	Limit 79-124	05/18/2016 11:57 AM	Container-01 of 03
Surr: Toluene-d8	95.4	1	%Rec	Limit 69-124	05/18/2016 11:57 AM	Container-01 of 03

Lab No. : 1605941-002

Client Sample ID: MW-5A/AR

NOTES:

NR=Analyte not reportable due to improper sample preservation.

Analytical Method: E300.0:					<u>Analy</u>	<u>/st:</u> bka
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Analyzed: Co	ntainer:
Sulfate	1.02	J	1	mg/L	05/20/2016 6:09 AM Conta	ainer-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 9 of 26

TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478 www.pacelabs.com

Pace Analytical Services Inc. 2190 Technology Drive

Schenectady, NY 12308 Attn To: William A. Kotas

Collected :5/9/2016

AT10702 Received :5/11/2016 10:14:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7 :						Analyst: JA
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron	12,500		1	ug/L	05/21/2016 2:01 AM	Container-01 of 01

Lab No. : 1605941-003

Client Sample ID: MW-14

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported: 5/23/2016

Cathlin Panzarella

Project Manager : Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 10 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10702

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Lab No. : 1605941-003 Type : Aqueous Client Sample ID: MW-14

Origin:

Analytical Method: SW8260C:	Pre	ep Method: 5030	OC		Analyst: KG
Parameter(s)	Results Qualifie	<u>r D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,1,1-Trichloroethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,1,2-Trichloroethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,1-Dichloroethane	26	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,1-Dichloroethene	2.3	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,1-Dichloropropene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,2,3-Trichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,2,3-Trichloropropane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,2,4-Trimethylbenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,2-Dibromoethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,2-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,2-Dichloroethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,2-Dichloropropane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,3,5-Trimethylbenzene/P-ethyltoluene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,3-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,3-Dichloropropane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
1,4-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
2,2-Dichloropropane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
2-Butanone	< 5.0 c	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
2-Chloroethylvinyl ether	NR	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
2-Chlorotoluene/4-Chlorotoluene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
2-Hexanone	< 5.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
4-Isopropyltoluene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
4-Methyl-2-pentanone	< 5.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Acetone	8.2 J	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Benzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

 \ensuremath{c} = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 11 of 26

TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478 www.pacelabs.com

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected :5/9/2016

AT10702 :5/11/2016 10:14:00 AM Received

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information: Lab No. : 1605941-003

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep N	Method: 5030	OC		Analyst: KG
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Bromobenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Bromochloromethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Bromodichloromethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Bromoform	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Bromomethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Carbon disulfide	< 10	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Carbon tetrachloride	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Chlorobenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Chloroethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Chloroform	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Chloromethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Dibromochloromethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Dibromomethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Dichlorodifluoromethane	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Ethylbenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Hexachlorobutadiene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Isopropylbenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
m,p-Xylene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Methyl tert-butyl ether	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Methylene chloride	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Naphthalene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
n-Butylbenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
n-Propylbenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
o-Xylene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
sec-Butylbenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Styrene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
tert-Butylbenzene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03
Tetrachloroethene	< 1.0	1	μg/L	05/18/2016 12:15 PM	Container-01 of 03

Client Sample ID: MW-14

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported: 5/23/2016

Cathlin Panzarella Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 12 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received : 5/11/2016 10:14:00 AM AT10702

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:		Prep M	<u>1ethod:</u> 5030	OC				Analyst: KG
Parameter(s)	Results Qu	<u>ıalifier</u>	<u>D.F.</u>	<u>Units</u>			Analyzed:	Container:
Toluene	< 1.0		1	μg/L			05/18/2016 12:15 PM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0		1	μg/L			05/18/2016 12:15 PM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0		1	μg/L			05/18/2016 12:15 PM	Container-01 of 03
Trichloroethene	< 1.0		1	μg/L			05/18/2016 12:15 PM	Container-01 of 03
Trichlorofluoromethane	< 1.0		1	μg/L			05/18/2016 12:15 PM	Container-01 of 03
Vinyl acetate	< 10		1	μg/L			05/18/2016 12:15 PM	Container-01 of 03
Vinyl chloride	1.9		1	μg/L			05/18/2016 12:15 PM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	83.5		1	%Rec	Limit	68-153	05/18/2016 12:15 PM	Container-01 of 03
Surr: 4-Bromofluorobenzene	106		1	%Rec	Limit	79-124	05/18/2016 12:15 PM	Container-01 of 03
Surr: Toluene-d8	94.9		1	%Rec	Limit	69-124	05/18/2016 12:15 PM	Container-01 of 03

Lab No. : 1605941-003

Client Sample ID: MW-14

NOTES:

NR=Analyte not reportable due to improper sample preservation.

Analytical Method: E300.0:					Analyst: bka
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Sulfate	21.8	1	mg/L	05/20/2016 6:22 AM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 13 of 26

TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

Pace Analytical Services Inc. 2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10703

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7 :						Analyst: JA
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron	< 100		1	ug/L	05/21/2016 2:07 AM	Container-01 of 01

Lab No. : 1605941-004

Client Sample ID: MW-16

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager : Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 14 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10703

Collected By CLIENT

LABORATORY RESULTS

Lab No. : 1605941-004

Client Sample ID: MW-16

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Collected By CLIENT				
Analytical Method: SW8260C :	<u>Pre</u>	ep Method: 5030	С	Analyst: KG
Parameter(s)	Results Qualifie	<u>r D.F.</u>	<u>Units</u>	Analyzed: Container:
1,1,1,2-Tetrachloroethane	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,1,1-Trichloroethane	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,1,2-Trichloroethane	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,1-Dichloroethane	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,1-Dichloroethene	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,1-Dichloropropene	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,2,3-Trichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,2,3-Trichloropropane	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,2,4-Trimethylbenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,2-Dibromoethane	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,2-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,2-Dichloroethane	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,2-Dichloropropane	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,3-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,3-Dichloropropane	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
1,4-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
2,2-Dichloropropane	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
2-Butanone	< 5.0 c	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
2-Chloroethylvinyl ether	NR	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
2-Chlorotoluene/4-Chlorotoluene	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
2-Hexanone	< 5.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
4-Isopropyltoluene	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
4-Methyl-2-pentanone	< 5.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
Acetone	< 10	1	μg/L	05/18/2016 12:34 PM Container-01 of 03
Benzene	< 1.0	1	μg/L	05/18/2016 12:34 PM Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager : Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 15 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10703

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Lab No. : **1605941-004** Type : Aqueous

Origin:

Analytical Method: SW8260C:		Prep Method: 5030	OC		Analyst: KG
Parameter(s)	Results Qua	lifier D.F.	<u>Units</u>	Analyzed:	Container:
Bromobenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Bromochloromethane	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Bromodichloromethane	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Bromoform	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Bromomethane	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Carbon disulfide	< 10	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Carbon tetrachloride	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Chlorobenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Chloroethane	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Chloroform	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Chloromethane	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Dibromochloromethane	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Dibromomethane	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Dichlorodifluoromethane	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Ethylbenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Hexachlorobutadiene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Isopropylbenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
m,p-Xylene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Methyl tert-butyl ether	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Methylene chloride	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Naphthalene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
n-Butylbenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
n-Propylbenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
o-Xylene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
sec-Butylbenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Styrene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
tert-Butylbenzene	< 1.0	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03
Tetrachloroethene	1.3	1	μg/L	05/18/2016 12:34 PM	Container-01 of 03

Client Sample ID: MW-16

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlen Pangarella
Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 16 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received : 5/11/2016 10:14:00 AM AT10703

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep I	Method: 5030	OC			Analyst: KG
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Toluene	< 1.0	1	μg/L		05/18/2016 12:34 PM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0	1	μg/L		05/18/2016 12:34 PM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0	1	μg/L		05/18/2016 12:34 PM	Container-01 of 03
Trichloroethene	< 1.0	1	μg/L		05/18/2016 12:34 PM	Container-01 of 03
Trichlorofluoromethane	< 1.0	1	μg/L		05/18/2016 12:34 PM	Container-01 of 03
Vinyl acetate	< 10	1	μg/L		05/18/2016 12:34 PM	Container-01 of 03
Vinyl chloride	< 1.0	1	μg/L		05/18/2016 12:34 PM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	83.1	1	%Rec	Limit 68-153	05/18/2016 12:34 PM	Container-01 of 03
Surr: 4-Bromofluorobenzene	105	1	%Rec	Limit 79-124	05/18/2016 12:34 PM	Container-01 of 03
Surr: Toluene-d8	94.7	1	%Rec	Limit 69-124	05/18/2016 12:34 PM	Container-01 of 03

Lab No. : 1605941-004

Client Sample ID: MW-16

NOTES:

NR=Analyte not reportable due to improper sample preservation.

Analytical Method: E300.0:					Analyst: b	oka
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Analyzed: Container	<u>r:</u>
Sulfate	3.57	J	1	mg/L	05/20/2016 6:36 AM Container-0	1 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

 \ensuremath{c} = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panyarella
Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 17 of 26

TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478 www.pacelabs.com

Pace Analytical Services Inc. 2190 Technology Drive

Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10704

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7 :					Analyst: JA
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Iron	185	1	ug/L	05/21/2016 2:13 AM	Container-01 of 03

Lab No. : 1605941-005

Client Sample ID: MW-CHA-RFI-7

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager : Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 18 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10704

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1605941-005

Client Sample ID: MW-CHA-RFI-7

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	<u>Pre</u> r	Method: 5030	OC		Analyst: KG
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,1,1-Trichloroethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,1,2,2-Tetrachloroethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,1,2-Trichloroethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,1-Dichloroethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,1-Dichloroethene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,1-Dichloropropene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,2,3-Trichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,2,3-Trichloropropane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,2,4-Trichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,2,4-Trimethylbenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,2-Dibromo-3-chloropropane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,2-Dibromoethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,2-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,2-Dichloroethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,2-Dichloropropane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,3-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,3-Dichloropropane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
1,4-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
2,2-Dichloropropane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
2-Butanone	< 5.0 c	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
2-Chloroethylvinyl ether	NR	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
2-Chlorotoluene/4-Chlorotoluene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
2-Hexanone	< 5.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
4-Isopropyltoluene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
4-Methyl-2-pentanone	< 5.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Acetone	< 10	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Benzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 19 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10704

Collected By CLIENT

LABORATORY RESULTS

Lab No. : 1605941-005

Client Sample ID: MW-CHA-RFI-7

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep I	Method: 5030	C		Analyst: KG
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Bromobenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Bromochloromethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Bromodichloromethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Bromoform	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Bromomethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Carbon disulfide	< 10	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Carbon tetrachloride	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Chlorobenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Chloroethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Chloroform	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Chloromethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
cis-1,2-Dichloroethene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
cis-1,3-Dichloropropene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Dibromochloromethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Dibromomethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Dichlorodifluoromethane	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Ethylbenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Hexachlorobutadiene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Isopropylbenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
m,p-Xylene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Methyl tert-butyl ether	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Methylene chloride	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Naphthalene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
n-Butylbenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
n-Propylbenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
o-Xylene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
sec-Butylbenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Styrene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
tert-Butylbenzene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09
Tetrachloroethene	< 1.0	1	μg/L	05/18/2016 12:52 PM	Container-01 of 09

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Pangarella
Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 20 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received : 5/11/2016 10:14:00 AM AT10704

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C :	Prep N	Method: 5030	С			Analyst: KG
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Toluene	< 1.0	1	μg/L		05/18/2016 12:52 PM	Container-01 of 09
trans-1,2-Dichloroethene	< 1.0	1	μg/L		05/18/2016 12:52 PM	Container-01 of 09
trans-1,3-Dichloropropene	< 1.0	1	μg/L		05/18/2016 12:52 PM	Container-01 of 09
Trichloroethene	< 1.0	1	μg/L		05/18/2016 12:52 PM	Container-01 of 09
Trichlorofluoromethane	< 1.0	1	μg/L		05/18/2016 12:52 PM	Container-01 of 09
Vinyl acetate	< 10	1	μg/L		05/18/2016 12:52 PM	Container-01 of 09
Vinyl chloride	< 1.0	1	μg/L		05/18/2016 12:52 PM	Container-01 of 09
Surr: 1,2-Dichloroethane-d4	83.0	1	%Rec	Limit 68-153	05/18/2016 12:52 PM	Container-01 of 09
Surr: 4-Bromofluorobenzene	105	1	%Rec	Limit 79-124	05/18/2016 12:52 PM	Container-01 of 09
Surr: Toluene-d8	94.4	1	%Rec	Limit 69-124	05/18/2016 12:52 PM	Container-01 of 09

Lab No. : 1605941-005

Client Sample ID: MW-CHA-RFI-7

NOTES:

NR=Analyte not reportable due to improper sample preservation.

Analytical Method: E300.	0 :				<u>Analyst:</u> bka
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Sulfate	38.6	1	mg/L	05/20/2016 6:49 AM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panyarella
Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 21 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10705

Collected By CLIENT

LABORATORY RESULTS

Lab No. : 1605941-006

Client Sample ID: TRIP BLANK-01

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Trip Blank

Origin:

Analytical Method: SW8260C :	<u>Pr</u>	ep Method: 503	0C		Analyst: KG
Parameter(s)	Results Qualifie	<u>r D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,1,1-Trichloroethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,1,2,2-Tetrachloroethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,1,2-Trichloroethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,1-Dichloroethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 0
1,1-Dichloroethene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 0
1,1-Dichloropropene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 0
1,2,3-Trichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,2,3-Trichloropropane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,2,4-Trichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,2,4-Trimethylbenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,2-Dibromo-3-chloropropane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,2-Dibromoethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,2-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,2-Dichloroethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,2-Dichloropropane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 0
1,3-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 0
1,3-Dichloropropane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 0
1,4-Dichlorobenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 0
2,2-Dichloropropane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
2-Butanone	< 5.0 c	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
2-Chloroethylvinyl ether	NR	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
2-Chlorotoluene/4-Chlorotoluene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 0
2-Hexanone	< 5.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
4-Isopropyltoluene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 0
4-Methyl-2-pentanone	< 5.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Acetone	< 10	1	μg/L	05/18/2016 11:21 AM	Container-01 of 0
Benzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 0

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 22 of 26

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 5/9/2016

Received :5/11/2016 10:14:00 AM AT10705

Collected By CLIENT

LABORATORY RESULTS

Lab No. : 1605941-006

Client Sample ID: TRIP BLANK-01

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Trip Blank

Origin:

Analytical Method: SW8260C:	Prep I	Method: 5030	С		Analyst: KG
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Bromobenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Bromochloromethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Bromodichloromethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Bromoform	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Bromomethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Carbon disulfide	< 10	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Carbon tetrachloride	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Chlorobenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Chloroethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Chloroform	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Chloromethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
cis-1,2-Dichloroethene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
cis-1,3-Dichloropropene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Dibromochloromethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Dibromomethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Dichlorodifluoromethane	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Ethylbenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Hexachlorobutadiene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Isopropylbenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
m,p-Xylene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Methyl tert-butyl ether	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Methylene chloride	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Naphthalene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
n-Butylbenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
n-Propylbenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
o-Xylene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
sec-Butylbenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Styrene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
tert-Butylbenzene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02
Tetrachloroethene	< 1.0	1	μg/L	05/18/2016 11:21 AM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported : 5/23/2016

Cathlin Pangarella
Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 23 of 26

TEL: (631) 694-3040 FAX: (631) 420-8436 NYSDOH ID#10478 www.pacelabs.com

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected :5/9/2016

AT10705 Received :5/11/2016 10:14:00 AM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Trip Blank

Origin:

Analytical Method: SW8260C :	Prep I	Method: 5030	С			Analyst: KG
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Toluene	< 1.0	1	μg/L		05/18/2016 11:21 AM	Container-01 of 02
trans-1,2-Dichloroethene	< 1.0	1	μg/L		05/18/2016 11:21 AM	Container-01 of 02
trans-1,3-Dichloropropene	< 1.0	1	μg/L		05/18/2016 11:21 AM	Container-01 of 02
Trichloroethene	< 1.0	1	μg/L		05/18/2016 11:21 AM	Container-01 of 02
Trichlorofluoromethane	< 1.0	1	μg/L		05/18/2016 11:21 AM	Container-01 of 02
Vinyl acetate	< 10	1	μg/L		05/18/2016 11:21 AM	Container-01 of 02
Vinyl chloride	< 1.0	1	μg/L		05/18/2016 11:21 AM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	82.0	1	%Rec	Limit 68-153	05/18/2016 11:21 AM	Container-01 of 02
Surr: 4-Bromofluorobenzene	105	1	%Rec	Limit 79-124	05/18/2016 11:21 AM	Container-01 of 02
Surr: Toluene-d8	95.6	1	%Rec	Limit 69-124	05/18/2016 11:21 AM	Container-01 of 02

Lab No. : 1605941-006

Client Sample ID: TRIP BLANK-01

NOTES:

NR=Analyte not reportable due to improper sample preservation.

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method Date Reported: 5/23/2016

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 24 of 26

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747

Sample Receipt Checklist

TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.pacelabs.com</u>

Client Name PACE-N	ΙΥ			Date and I	ime Received:	5/11/2016 10:14:00 AM
Work Order Number: 1	605941 Rcp	tNo: 1		Received b	y Paige Dohe	erty
Completed by:	aige Doher	ly	Revi	lewed by: Ca	thinT	Panzarella
Completed Date:	5/11/2016 1:00:32 PM	-	Revi	ewed Date:		<u>3 11:12:40 AM</u>
Carrier name: FedEx						
Chain of custody present	t?	Yes	✓	No 🗌		
Chain of custody signed	when relinquished and recei	ved? Yes	✓	No 🗌		
Chain of custody agrees	with sample labels?	Yes	✓	No 🗌		
Are matrices correctly id-	entified on Chain of custody?	? Yes	✓	No \square		
Is it clear what analyses	were requested?	Yes	✓	No 🗌		
Custody seals intact on s	sample bottles?	Yes		No 🗌	Not Present	✓
Samples in proper conta	iner/bottle?	Yes	✓	No \square		
Were correct preservativ	es used and noted?	Yes	✓	No \square	NA	
Preservative added to bo	ottles:					
Sample Condition?		Intact	✓	Broken	Leaking	
Sufficient sample volume	e for indicated test?	Yes	✓	No 🗌		
Were container labels co	omplete (ID, Pres, Date)?	Yes	✓	No 🗌		
All samples received with	nin holding time?	Yes	✓	No 🗆		
Was an attempt made to	cool the samples?	Yes	✓	No 🗌	NA	
All samples received at a	a temp. of > 0° C to 6.0° C?	Yes	✓	No 🗌	NA	
Response when tempera	ature is outside of range:					
Sample Temp. taken and	d recorded upon receipt?	Yes	✓	No 🗌	To 1	1.2 °
Water - Were bubbles at	osent in VOC vials?	Yes	✓	No 🗆	No Vials	
Water - Was there Chlor	ine Present?	Yes		No 🗆	NA	\checkmark
Water - pH acceptable u	pon receipt?	Yes	✓	No \square	No Water	
Are Samples considered	acceptable?	Yes	✓	No 🗌		
Custody Seals present?		Yes	✓	No 🗆		
Airbill or Sticker?		Air Bil	✓	Sticker	Not Present	<u>.</u>
Airbill No:		6661 5				
Case Number:	SDG:		ç	SAS:		
Case Hamber.	PACE-NY45	5	•	5710.		
Any No response should	d be detailed in the comment	s section below if appl	icable	•		
				 ======		========
Client Contacted?	☐ Yes ☐ No 🗹	NA Person Conta	acted:			
Contact Mode:	Phone: Fax:	Email:		In Person:		
Client Instructions:						
Date Contacted:		Contacted By:				
Regarding:		•				
Comments:						
	ot verified at Schenectady la	ıb.				
						As per sampler identification it quot was analyzed as sample -
CorrectiveAction:						

 $\frac{\text{WorkOrder:}}{1605941}$

Certifications

STATE	CERTIFICATION #
NEW YORK	10478
NEW JERSEY	NY158
CONNECTICUT	PH-0435
MARYLAND	208
MASSACHUSETTS	M-NY026
NEW HAMPSHIRE	2987
RHODE ISLAND	LAO 00340
PENNSYLVANIA	68-00350

Page 26 of 26

DY CE-CI

S:YOGINIMDICOCS 8 - Other (Na2SO3) OTHER NOTES: Data Package [LEVEL-4] EDD: EQUIS-DEC-DER PRESERVATIVE KEY DAR JOST TO 5 - Zn. Acetate 7 - NaHSO4 3 - H2SO4 6 - MeOH 2 - HN03 4 - NaOH 0 - ICE 1 - HCL DISPOSAL REQUIREMENTS: (To be filled in by Client) REMARKS ENTER ANALYSIS AND METHOD NUMBER REQUESTED Additional charges incurred for disposal (if hazardous) or archival. RINTED NAME DISPOSAL BY RECEIVING LAB ARCHIVAL BY RECEIVING LAB DATE/TIME MS/MSD RETURN TO CLIENT RELINQUISHED BY HDPE 250ML RINTED NAME (0.00E) ^{@]@][n}S SIGNATURE 3X VIAL DATE/TIME COMPANY 40ML z (0₉₂₈₎ 201 HDPE 250ML × × × (7.005) NOPA .2210 RECVD W/I HOLDING TIMES. PRESERVATIVE CODE: × × × BOTTLE TYPE: PROPERLY PRESERVED: BOTTLE SIZE: × × × (LAB USE ONLY) DATE/TIME 15 Ω. 2 2 2 NUMBER OF CONTAINERS 5/23/2016 LRF # 16050187 (LAB USE ONLY) PAGE 10F 1 SAMPLE ID LAB RELINQUISHED BY AT10700 AT10702 GRAB | AT10703 GRAB | AT10704 GRAB | AT10705 AT10701 \in OCATION (CITY/STATE) ADDRESS REQUIRED TURN AROUND TIME GRAB NAME OF COURIER (IF USED) GRAB GRAB PROJECT#/PROJECT NAME: RINTED NAME GRAB/ COMP SIGNATURE 2190 Technology Drive, Schenectady, NY 12308 Telephone (518) 346-4592 Fax (518) 381-6055 DATE/TIME OMPANY Pace Analytical Services, Inc. COC DISCREPANCIES: 16050187 CHAIN OF CUSTODY RECORD MATRIX COC TAPE: ž S nicholas.nicholas@pacelabs.com RECEIVED BY AMPLES FOR DISSOLVED METALS ANALYSIS ARE FIELD FILTERTED. SAMPLE RESERVATION NOT VERIFIED AT SCHENECTADY LAB. Nicole. Johnson@pacelabs.com EADER PROFESSIONAL SERVICES: VAILS GATE MANUFACTURING TIME B 5/9/16 5/9/16 5/9/16 5/9/16 5/9/16 5/9/16 ATE/TIME DATE OMPANY TEMP: (C) CLIENT (REPORTS TO BE SENT TO): www.pacelabs.com RECEIVED BROKEN OR LEAKING: IELD DUPLICATE-01 ELECTRONIC RESULTS SAMPLE ID Nick Nicholas MBIENT OR CHILLED: ROJECT MANAGER WW-CHA-RFI-7 TRIP BLANK-01 S/10 JW-5A/AR PACE MW-14 **MW-15**

1.11. 5000 73/1.1.

samples intact

Sealed Coole Custody

Received on Ice

O° ni qmeT

DATE Signed (MM / DD / YY);

PRINT Name of SAMPLER: Matt Broker (PACE)

SIGNATURE of SAMPLER:

SAMPLER NAME AND SIGNATURE

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

*Specify Metals/Inorganics: New York State Page: REGULATORY PROGRAM DRINKING WATER [8] OTHER Filtered (Y/N) GROUND WATER F RCRA LOCATION SITE € NPDES TSU _ Company Name: Leader Professional Services Vails Gate Manufactur Pace Project Manager. Nicholas Nicholas Pace Quote Reference: #00012704 Keith Keller Invoice Information: Section C Attention: Address: Section B Required Project Information: Report To: Keith Keller Copy To: na Project Name: Purchase Order No.: Company: Leader Professional Services 2813 Wehrle Drive, Suite 1 Williamsville, NY 14221 Fax: na Required Client Information: 716-565-0963 Section A ddress: Email To: Phone:

Specify Interais/Interganics:			Pace Laboratory I.D.			POPPAN PROPRIEST TO THE									SAMPLE CONDITIONS	N/A N/A			N/A N/A
															TIME				
	D ANALYSES																-		
	REQUESTED	ist ivitoub	8260 Full L Field- DO, Con Temp, pH, I Turbidity	××××	x x x x	××××	x x x x	××××	×						DATE				
			Dissolved Dissolved Dissolved Dissolved	×	×××	× ×	X X X	×××							ACCEPTED BY / AFFILIATION				
		Preservatives	HUO3 NAOH NA ₂ S ₂ O3 Methanol	×	×	×	× ×	×	×						ACCEPTED (-		
			SAMPLE TEMP AT CO	7 ×	, 7 x	7 x	× 2	17 x	5						TIME				
Pace Profile #:			SAMPLE							-					TION DATE				
		СОМР	© SAMPLE DATE												RELINQUISHED BY / AFFILIATION			j	
Project Number:		3c	NATRIX COL	WT G	WT G	WT G	WT G	WT G	WT G						RELINQUISE				
Requested Due Date/TAT: Standard 2-Week Project Number:		Sab	SAMPLE ID FORGATOR NATIONAL STATEMENTS WAS WASTERVATED FORGATOR STATEMENT ST	Field Duplicate-01	W-5A/AR	8 MW-14	MW-16	MW-CHA-RFI-7 MS/MSD	Trip Blank-01	 7	(T)	01	11	12	ADDITIONAL COMMENTS	NYSDEC DER-10 EQuIS EDD	1	· ·	

2190 Technology Dr. Schenectady, NY 12308 (518) 346-4592

Pace Analytical

New York Office

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

<16050187P2>

N/A N/A peguli seidure *Specify Metals/Inorganics: Iron Pace Laboratory I.D. SAMPLE CONDITIONS elooO belses N/X N/A N/A Custody 90| NV JWA N/A Received on New York State 8.742 Page: O° ni qmeT REGULATORY PROGRAM TORINKING WATER TIME 500 OTHER GROUND WATER DATE (MM / DD / YY): S/9/K × Turbidity × ××× × RCRA Temp, pH, Eh, × ×××× LOCATION × × Field- DO, Conductivi ××× SITE 1814 Full List × × Total Organic Carbor × ACCEPTED BY / AFFILIATION × NPDES Sulfate TSU ___ 2 × Dissolved Fe × × × × ther lethanol Leader Professional Services eOs2ssbl Preservatives HOP PRINT Name of SAMPLER: Matt Broker (PACE) Vails Gate Manufactul Pace Project Manager. Nicholas Nicholas EON Pace Quote Reference: #00012704 *OS² 3251 TIME Keith Keller SAMPLER NAME AND SIGNATURE 17 # OF CONTAINERS MPLE TEMP AT COLLECTIO 1/4/1/ DATE SIGNATURE of SAMPLER: Invoice Information: Сотралу Name: SAMPLE Pace Profile #: TIME Section C 5121 1330 123 N/A 1145 Attention: Address: RELINQUISHED BY / AFFILIATION PREK SAMPLE 5/9/16 DATE 3/19/16 54116 3/0/5 राधार 51916 Required Project Information: Report To: Keith Keller SAMPLE TYPE G=GAAB C=CO G G G G g G WT WT WT M ₹ ¥ MATRIX CODE Copy To: na Standard 2-Week Project Number Project Name: Section B Purchase Order No.: 3000 Valid Matrix Codes MATRIX MW-CHA-RFI-7 MS/MSD Company: Leader Professional Services Field Duplicate-01 Address: 2813 Wehrle Drive, Suite 1 Trip Blank-01 MW-5A/AR ADDITIONAL COMMENTS Williamsville, NY 14221 MW-16 (A-Z, 0-9 / .-) Sample IDs MUST BE UNIQUE Fax: na AYSDEC DER-10 EQuIS EDD SAMPLE ID Requested Due Date/TAT: Required Client Information: 716-565-0963 Section D Clent Information Email To: Phone: # M3TI

2190 Technology Dr. Schenectady, NY 12308

Pace Analytical

New York Office

(518) 346-4592

Sample Condition Upon Receipt

					CLIENT NAME:	Leadel		
					PROJECT:	vails Gate		
dEx 🗆	Client	Pace &	Other		1	ı	- 4)
TRACKING#	1	CUSTODY SEAL PRESENT: Yes	AL PRESENT	: Yes □ No Ø	☑ INTACT: Yes □		NAM	Á
PACKING MATERIAL: Bubble Wrap	Bubble Bags	ags No	None 🗆	Other	ICE USED: Wet	Blue	None □	
THERMOMETER USED: #164 [] IR	IR Gun 03/3	#122087967	7	COOLE	COOLER TEMPERATURE (°C):	8.75		
BIOLOGICAL TISSUE IS FROZEN: Yes	□ oN	N/A/N			Temp should be	Femp should be above freezing to 6℃	to 6°C	
COMMENTS:				Tempe	Temperature is Acceptable?) ∕D ¥es	ON	
Chain of Custody Present:	CALVes	□No		1.				
Chain of Custody Filled Out:	.Σζίγes	ON [2.				
Chain of Custody Relinquished:	ÆYes	□No		3.				
Sampler Name / Signature on COC:	` X İ'Yes	□No	,	4.				
Samples Arrived within Hold Time:	X Yes	□No		5.				
Short Hold Time Analysis (<72hr):	□Yes	ØÅN₀		6.				
Rush Turn Around Time Requested:	□Yes			7.				
Sufficient Volume:	.e.}Yes	□No	50	8.				
Correct Containers Used:	TYes	□No		9.				
- Pace Containers Used:	知Yes	□No						
Containers Intact:	Æ9Yes	No		10.				
Filtered volume received for Dissolved tests: □ves	tests:'□ _{Yes}	× °N□	AZIN'A	11.				
Sample Labels match COC:	Ares	ONO		12.	-			
- Includes date/time/ID/Analysis		-						
All containers needing preservation have been checked:	en 🗆 Yes	× °N □	ANA ANA	13.				
All containers needing preservation are in	□Yes	₹ °N□	AND Y					
compliance with EPA recommendation:				Initial when		-	\$	
- Exceptions that are not checked: TOC, VOA, Subcontract Analyses	bcontract Analyses		J	completed: N/A	Lot # of added preservative:	reservative:	1/t	
Headspace in VOA Vials (>6mm):	□Yes		WIE CR	14.				
Trip Blank Present:	首Yes	₹ <u>8</u> 0	YEAR COR	15.				
Trip Blank Custody Seals Present: 1000×1000	87 LITO- 21 POSO	% □	西斯岛					
			cludes Copy	ing Shipping Docu	Line-Out (Includes Copying Shipping Documents and verifying sample pH):	sample pH):	8	91/01/5
		Log In (Inclu	des notifyir	ig PM of any discr	Log In (Includes notifying PM of any discrepacies and documenting in LIMS)	nting in LIMS):	A38 5	11/6/16
		Labeling (Inc	ludes Scan	ning Bottles and e	Labeling (Includes Scanning Bottles and entering LAB IDs into pH logbook):	pH logbook):	<u>ar</u> 5	1/0//10

Attachment B Data Validation Summary

ME Holvey Consulting, LLC

Data Usability Summary Report – July 2016 Vails Gate 737.004

Data Usability

The Quality Assurance Project Plan ("QAPP") was prepared for this project by Clough Harbor & Associates, LLP. The QAPP presents the policies, organization, objectives, functional activities, and specific Quality Assurance ("QA") and Quality Control ("QC") measures designed to achieve the data quality goals associated with this investigation. The QAPP identifies procedures for sample preparation and handling, sample chain-of-custody, laboratory analyses, and reporting that were implemented during this investigation to ensure the accuracy and integrity of the data generated during the investigation.

Leader Consulting Services, Inc. conducted the Site Investigation and Remedial Activities of the Vails Gate site.

Data Summary

The Data Usability Review and Data Validation Compliance Chart has been completed for the laboratory deliverable packages generated by Pace Analytical Laboratories, Inc. ("Pace"), pertaining to samples collected at the Vails Gate Site on May 9, 2016. A total of four (4) samples were collected during the May 2016 sampling event and analyzed for VOCs, metals, and wet chemistry. The following USEPA Methodologies were used to analyze these samples for the following analytes:

Volatiles (VOCs) USEPA Method 8260

Dissolved Iron by ICP USEPA Method 200.7 Rev. 4.4

Miscellaneous Field Analysis Dissolved Oxygen, pH, Reduction Potential, Temperature, Turbidity

Total Organic Carbon ("TOC") USEPA SM 5310B-00.11

Sulfate USEPA 300.0

Trip blank, field duplicate, surrogates, internal standards, reference samples, matrix spikes, and matrix spike duplicates were included and processed.

Samples were collected and received on the following schedule:

Sample Package ID	Date Collected	Date Received by Pace	Sample Matrix	Requested Analyses	Sample Temperature (°C)
16050187	05/09/2016	05/09/2016 (Schenectady) 05/11/2016 (Long Island)	Water	TCL 8260 Metals Misc. Field Analysis TOC Sulfate	8.7

Data usability and validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Inorganic and Organic Data Review. The following items were reviewed:

- Data Completeness;
- Custody Documentation;
- Holding Times;
- Sample Blanks Review;
- Field Duplicate Samples;
- Matrix Spike Samples and Duplicates; and
- Control Spike/Laboratory Control Samples.

Those items showing deficiencies, if any, are discussed in the attached Data Validation Compliance Chart. All others were found to be acceptable as outlined in the above-mentioned usability procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the reported data, and generated in compliance with protocol requirements.

The following sample results are acceptable but positive results may be considered estimated due to continuing calibration:

➤ MW-16 for tetrachloroethylene was flagged as estimated due to the calibration acceptability criteria was exceeded.

In summary, sample processing was conducted with compliance to protocol requirements and with adherence to quality criteria and the reported results are considered "usable".

The Data Validation Compliance Chart is also included with this report.

Custody Documentation

Chain of Custody (COC) forms are used to document the history of sample possession from the time the sample containers leave their point of origin (usually the laboratory performing the analyses) to the time the samples are received by the laboratory. COCs are considered legal documents.

The Chain of Custody accurately documents the sample collection.

Accuracy, Precision, and Sensitivity of Analyses

The fundamental QA objective with respect to the accuracy, precision, and sensitivity of analytical data is to achieve the QC acceptance of each analytical protocol. Accuracy and precision are determined using matrix spike ("MS") and matrix spike duplicate ("MSD") samples.

Accuracy is a measure of the difference of a set of analytical results to the accepted or expected values. Accuracy was assessed by using the MS/MSD and surrogate spike recovery data. Recovery values were reported within the QC limits for each analytical parameter group.

Precision is a measure of the mutual agreement between measurements of the same parameter.

The sample results for the Vails Gate Project are considered "usable".

Completeness, Representativeness, and Comparability of Data

Completeness is the measure of the amount of valid data obtained from a measurement system compared with the amount expected to be obtained under normal conditions. Review of the analytical data packages provided by Pace indicates that the requested parameters were analyzed for and reported by the laboratory for each sample submitted under proper chain-of-custody procedures. Based upon MEHC's review of the laboratory data, a usable data level was achieved.

Representativeness of the data is obtained through the design of the sampling program and the adherence to established sample collection procedures, sample-handling SOPs, and analytical procedures. The sampling program outlined in the Work Plan was designed to provide for data representative of site conditions taking into consideration past disposal practices, existing data from past studies, and the physical site setting. Each of the monitoring wells was installed in accordance with established industry and regulatory protocols.

The laboratory maintained all holding times for the specific analytical protocols.

Comparability of the data is derived from the evaluation of field duplicate samples and the adherence to established sampling and analytical procedures. A field duplicate is an independent sample collected as close as possible to the original aliquot from the same sampling point. All of the groundwater samples were analyzed utilizing standardized USEPA methodologies performed in accordance with the latest version of the NYSDEC ASP protocols.

Quality Control Checks

Holding/Storage Blanks

Holding blanks are samples of reagent water prepared by the laboratory and carried through the field sampling and sample handling and shipping process. Holding blanks are analyzed as separate samples to evaluate the level of contamination associated with the collection, handling, and/or shipping of the VOC sample aliquots.

For this investigation, a holding blank was not submitted with samples collected on May 9, 2016.

Trip Blanks

A trip blank is provided with each shipping container of samples to be analyzed for volatile organic compounds (VOCs). Analysis of trip blanks determines whether a sample bottle was contaminated during shipment from the manufacturer, while in bottle storage, in shipment to the laboratory, or during analysis at a laboratory. Trip blanks consist of an aliquot of distilled water sealed in a sample bottle, prepared by the analytical laboratory prior to shipping the sample bottles. A Trip blank was included with the shipment of aqueous samples for VOC analysis.

For this investigation, a trip blank was submitted with the VOC aliquot of the groundwater samples collected on May 9, 2016. No VOC compounds were detected in the trip blank analyzed during this investigation.

Field Blanks

Given that dedicated sampling equipment was utilized for the collection of each groundwater sample, field blanks were not collected or analyzed during this sampling event.

Method Blanks

A method blank is a sample of reagent water, which is carried through the analytical procedure alongside the project samples to determine the level of laboratory background and reagent contamination.

For this investigation, a method blank was submitted with the VOC aliquot of the groundwater samples collected on May 9, 2016. No VOC compounds were detected in the method blank analyzed during this investigation.

Matrix Spike/Matrix Spike Duplicate Samples

For the Vails Gate project, one (1) MS/MSD was collected and analyzed. The following sample results are acceptable:

Sample MW-CHA-RFI-7 was submitted for matrix spike/ matrix spike duplicate (MS/MSD) analysis, and a lab-fortified blank (LFB) was analyzed. All percent recoveries were within or above QC limits. Spike recoveries showed 14 out 132 outside limits.

These results are detailed in the Data Validation Compliance Chart.

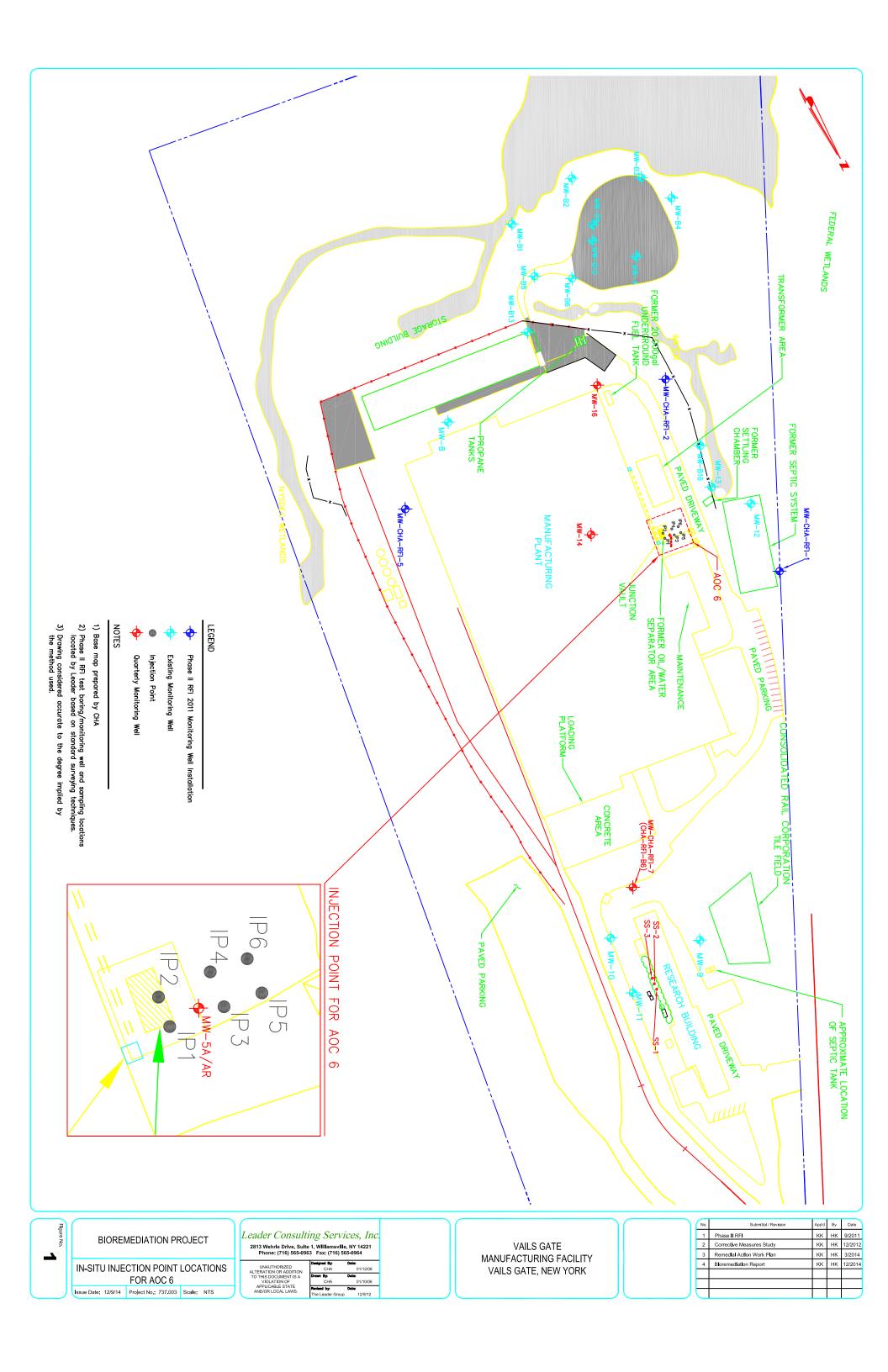
Surrogate Analyses

Surrogates are compounds added directly to every standard, blank, MS/MSD, and sample at a known concentration, prior to extraction or analysis; and used to evaluate the analytical efficiency by measuring percent recovery of those compounds upon analysis. The laboratory reported surrogate recoveries were within established QC limits for the surrogates in each analyzed sample.

The sample results for the Vails Gate Project are considered "usable".

Data Validation Compliance Chart Vails Gate

May 6, 2016 Sampling Event


Sample ID	16050187 Water					
Matrix						
Analysis	TCL 8260	Metals (Dissolved Iron Only)	Miscellaneous Field Parameters	Wet Chemistry:		
Holding Times	Samples were analyzed within USEPA holding times.	Samples were analyzed within USEPA holding times	Samples were analyzed in the field.	Samples were analyzed within USEPA holding times		
Calibration	In the initial calibrations, average response factors were employed as applicable, and regression functions were used for the compounds with an RSD above 20%. In the continuing calibration verification(s) (CCV), the variability for some compounds was above 20%. MW-16 result for tetrachloroethylene was flagged due to calibration acceptability, the result is considered estimated. All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.		
Method Blanks	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.		
Matrix Spike/Matrix Spike Duplicate	Sample MW-CHA-RFI-7 was submitted for matrix spike/ matrix spike duplicate (MS/MSD) analysis. 14 out of 132 percent recoveries were outside of QC limits. All RPDs were met. All percent recoveries were within or above QC limits. All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.		
Surrogates	All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.		

Data Validation Compliance Chart Vails Gate

Sample ID	16050187					
Matrix	Water					
Analysis	TCL 8260	Metals (Dissolved Iron Only)	Miscellaneous Field Parameters	Wet Chemistry:		
Internal Standards	All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.		
Reference Sample	All laboratory internal quality control samples were within acceptable ranges.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.		
Data Usability	Data is acceptable.	Data is acceptable.	Data is acceptable.	Data is acceptable.		

Attachment C

Figure 1

