Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

April 8, 2016

Stora Enso C/O John T. Kolaga, Esq. Rupp Baase Pfalzgraf Cunningham LLC 1600 Liberty Building Buffalo, New York 14202

RE: IN-SITU BIOREMEDIATION MONITORING REPORT,
VAILS GATE MANUFACTURING, LLC, VAILS GATE,
NEW YORK, NYSDEC SITE No. 336065

Dear Mr. Kolaga:

Leader Consulting Services, Inc. ("Leader") is pleased to provide Rupp Baase Pfalzgraf Cunningham, LLC ("RBFC"), on behalf of Stora Enso, with this report summarizing the results of the In-Situ Bioremediation Quarterly Monitoring completed at the former Vails Gate Manufacturing facility ("VGM") at 1073 Route 94 in Vails Gate, New York (hereafter referred to as "the Site"). The Site is currently identified as the Vails Gate Business Center ("VGBC"). This is the sixth Quarterly Monitoring Report required under the Remedial Action Work Plan ("RAWP"). It includes the field and laboratory results from the sixth quarterly sampling event.

1.0 BACKGROUND AND PURPOSE

Leader was retained to implement the New York State Department of Environmental Conservation ("NYSDEC")-approved RAWP that was developed for Area of Concern 6 ("AOC 6") at the Site. As identified in the approved RAWP, In-situ bioremediation was the selected remedial alternative identified in the NYSDEC-approved Corrective Measure Study ("CMS"). The Site-specific Standards, Criteria and Guidance ("SCGs") applicable to the RAWP were developed to meet the Remedial Action Objectives ("RAOs") of the CMS. An "unrestricted use remedy" has been established for the Site, which is based on the regulatory standard values for Class GA groundwater identified in 6 NYCRR Part 703.5. The RAWP was developed to address the SCGs and RAOs for the Site. The RAWP has been implemented in accordance with NYSDEC Department of Environmental Remediation ("DER") Guidance Document DER-10, *Technical Guidance for Site Investigation and Remediation*.

2.0 SCOPE-OF-WORK

The scope of work for the In-Situ Bioremediation program identified in the RAWP was based on the March 2012 Phase II RCRA Facility Investigation ("RFI") and the 2013 CMS. Quarterly sampling and laboratory analyses of groundwater samples from four (4) groundwater monitoring wells (MW-14, MW-5A/AR, MW-16 and MW-CHA-RFI-7) are required per the RAWP. Included in this report are the sixth quarterly sampling event Analytical Laboratory Results and Summary Tables (Attachment A) and a Data Validation Summary (Attachment B). Figure 1 includes the approximate Injection Point ("IP") locations used to apply bioremediation solutions into the subsurface at AOC 6, and the location of the monitoring wells.

Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

3.0 QUARTERLY SAMPLING PROGRAM

The sixth quarterly sampling event of the bioremediation program was conducted on February 12, 2016. The laboratory parameters for the quarterly samples included analysis for volatile organic compounds ("VOCs"), sulfate, total organic carbon ("TOC"), and dissolved iron. The field parameters included dissolved oxygen ("DO"), pH, oxidation reduction potential ("redox"), temperature and turbidity. Laboratory and field data were reviewed to evaluate VOC concentrations and field data parameters from groundwater samples from each of the wells to assess the impact of biotreatment activity within AOC 6.

4.0 FIELD AND LABORATORY GROUNDWATER SAMPLE RESULTS

4.1 GROUNDWATER SAMPLE FIELD DATA RESULTS

The DO concentrations within the samples collected from the four (4) wells ranged from 1,200 parts per billion ("ppb") to 2,800 ppb. The pH levels within the samples collected from the four (4) wells ranged from 6.43 standard units ("SUs") to 7.12 SUs. Redox values of the samples collected from the four (4) wells ranged from -124 milliVolts ("mVs") to 45 mVs. Data interpretation is discussed in Section 4.0.

4.2 GROUNDWATER SAMPLE LABORATORY ANALYTICAL DATA RESULTS

GWM Well MW-5A/AR

Acetone concentrations increased from non-detect ("ND") in November 2015 to a value of 6.1 ppb in February 2016, remaining below the Class GA groundwater standard of 50 ppb. Chloroethane concentrations decreased from 290 ppb in November 2015 to a value of 68 ppb in February 2016, which is above the Class GA groundwater standard of 5 ppb. 1,1- dichloroethene decreased from 1.1 ppb in November 2015, to ND in February 2016, remaining below the Class GA standard of 5 ppb. 2-butanone concentrations increased from ND in November 2015 to 8.6 ppb in February 2016, while remaining below the Class GA groundwater standard of 50 ppb. 1,2,4 trimethylbenzene concentrations decreased from 5.4 ppb in November 2015 to 2.5 ppb in February 2016, below the Class GA groundwater standard of 5 ppb. The remaining VOC analytes were not detected within the February 2016 sample.

GWM Well MW-14

Acetone was detected within the 6th Quarter (February 2016) sample from MW-14 at 12 ppb, unchanged from the 5th Quarter (November 2015) sampling event, and remains below the Class GA groundwater standard of 50 ppb. Chloroethane concentrations decreased slightly from 7.3 ppb in November 2015 to 6.6 ppb in February, remaning slightly above the Class GA groundwater standard of 5 ppb. 1,1- dichloroethane concentrations decreased from 22 ppb in November to 16 ppb in February 2016, but remain above the Class GA standard of 5 ppb. 1,1-dichloroethene concentrations decreased from 3.5 ppb in November 2015 to 1.7 ppb in February, and continue to be below the Class GA standard. Vinyl chloride concentrations decreased from 2.7 ppb in November 2015 to 1.6 ppb in February 2016, now below the Class GA groundwater

John Kolaga, Esq. April 8, 2016 Page 3

Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

standard of 2 ppb. The remaining VOC analytes were not detected within the February 2016 sample.

GWM Well MW-16

1,1- dichloroethane concentrations decreased from 8.4 ppb in November 2015 to 5.2 ppb in February 2016, but remain slightly above the Class GA standard of 5 ppb. 1,1- dichloroethene concentrations also decreased, from 4.2 ppb in November to 1.8 ppb in February, and remain below the Class GA groundwater standard of 5 ppb. Tetrachloroethene concentrations decreased from 4.5 ppb in November to 2.5 ppb in February, and remain below the Class GA groundwater standard of 5 ppb. The remaining VOC analytes were not detected within the February 2016 sample.

GWM Well MW-CHA-RFI-7

Each of the VOC concentrations from the sample collected from MW-CHA-RFI-7 during the February 2016 sampling event were non-detectable.

5.0 DATA INTERPRETATION

5.1 FIELD DATA

TOC concentrations remain high in monitoring wells MW-5A/AR and MW-14, indicating continuing microbial activity. Groundwater pH levels indicate an environment conducive to continued microbial activity. Though not fluctuating significantly since media injection, the redox values indicate that reducing conditions exist for dechlorination.

5.2 LABORATORY DATA

Dissolved iron and sulfate concentrations are within ranges to support dechlorination. Monitoring wells MW-5A/AR and MW-16 each exhibit decreases in the number of VOC analytes detected, and in the concentrations of the detected VOCs, indicating that biodegradation is progressing. Well MW-5A/AR currently exhibits only one (1) analyte concentration (chloroethane) above Class GA groundwater standards, as opposed to seven (7) analytes, with significantly higher concentrations during the February 2015 sampling event. Chloroethane and 1,1-dichloroethane concentrations within MW-14 are the only two (2) analytes detected above the Class GA groundwater standard, but the concentrations are decreasing over time, as are the concentrations of 1,1-dichloroethene and vinyl chloride. Well MW-16 exhibits only one (1) analyte concentration (1,1-dichloroethane) above the Class GA groundwater standard, compared to six (6) analytes during the August 2015 sampling event. 1,1-dichloroethene and tetrachloroethene concentrations within Well MW-16 are decreasing, and remain below the Class GA groundwater standard.

As anticipated, as the VOC concentrations within MW-5A/AR decrease, the concentrations of VOC daughter products within MW-16 are also decreasing over time.

John Kolaga, Esq. April 8, 2016 Page 4

Confidential Communication Attorney/Client/Privileged Work Product Prepared for Counsel

There were no detected VOC analytes within the groundwater sample collected in February 2016 from MW-CHA-RFI-7. This groundwater monitoring well was included in this sampling program as it represents a "background" well, hydraulically upgradient and outside of the influence of AOC 6.

If you need any additional information, please contact the undersigned at (716) 565-0963.

Very truly yours,

Leader Consulting Services, Inc.

eith D. Heller

Keith D. Keller Project Manager

Jeffrey A. Wittlinger, P.E., BCEE

Principal

Attachment A

Analytical Laboratory Results and Summary Tables

TABLE 1a - MW-5A/AR

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

					MW-5A/	AR						Class GA Groundwater Standard (ppk
Analyte ⁽¹⁾	June 2011	November 2011	July 2012	January 2013	August 2014 (6)	November 2014 ⁽⁷⁾	February 2015	May 2015	August 2015	November 2015	February 2016	
Quarterly Sampling Parameters												
Volatiles												
acetone	ND	ND	ND	ND	ND	440 ⁽⁹⁾	407	77 ⁽¹¹⁾	110	ND	6.1	50 ⁽⁴⁾
chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroethane	280	290	520	150	250 ⁽⁹⁾	590 ⁽⁹⁾⁽¹⁰⁾	1010	470 ⁽¹¹⁾	540 ⁽¹¹⁾	290 ⁽¹¹⁾	68	5
1,1-dichloroethane	650	1000	830	280	660 ⁽⁹⁾	110	325	41	3.5	ND	ND	5
1,1-dichloroethene	ND	110 ⁽²⁾	29 ⁽²⁾	11 ⁽²⁾	22	ND	8.62	1.9	ND	1.1	ND	5
cis-1,2 dichloroethene	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	5
1,4-dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
toluene	ND	ND	ND	ND	ND	ND	ND	ND	2.8	2.6	ND	5
1,1,1-trichloroethane	890	3000	440	210	750 ⁽⁹⁾	33	200	ND	ND	ND	ND	5
1,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
vinyl chloride	ND	ND	15 ⁽²⁾	ND	14	6 ⁽²⁾⁽¹⁰⁾	3.59	2.4	ND	ND	ND	2
2-butanone (MEK)	ND	ND	ND	ND	ND	190 ⁽¹⁰⁾	82.1	4.5 ⁽²⁾	ND	ND	8.6	50 ⁽⁴⁾
4-methyl-2-pentanone	ND	ND	ND	ND	ND	3 (2)	ND	ND	ND	ND	ND	(5)
naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	2.7	2.2	ND	10 ⁽⁴⁾
n-propylbenzene	ND	ND	ND	ND ND	ND	ND	ND	ND ND	1.5	1.4	ND	5
1,2,3 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
1,2,4 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	2.1	5.1	5.4	2.5	5
1,3,5 trimethylbenzene/P												5
ethyltoluene	ND	ND	ND	ND	ND	ND ND	ND	ND 1.1	1.4	ND	ND	
sec-butylbenzene	ND	ND	ND	ND	ND 1 ⁽²⁾	ND	ND	1.1	1.2	1.3	ND	5
1,2-dichloroethane	ND ND	ND	ND	ND ND		2 ⁽²⁾ ND	ND ND	ND ND	ND ND	1.8	ND ND	0.6
trichloroethene chloroform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5 7
CHIOTOTOTHI	ND	ND	ND	NU	IND	IND	NU	ND	IND	ND	IND	<u>'</u>
Wet Chemistry and Dissolved												
Metals												
sulfate	NA	NA	NA	NA	31,500	<5,000	<5,000	700 (2)	<5,000	<5,000	3,240	250,000
total organic carbon (TOC)	NA	NA	NA	NA	3,410	288,000	95,400	48,900	30,200	25,600	14,600	NS
dissolved iron	NA	NA	NA	NA	ND	50,600	42,900	5,780	6,050	30,700	14,400	as low as possible, NTE 500,000

NOTES:

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
- (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U" flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.

the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.

NA -Contaminant was not included for analysis during RFI.

A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

					MW	-14						Class GA Groundwater Standard (ppb) (3)
Analyte (1)	June 2011	November 2011	July 2012	January 2013	August 2014 (6)	November 2014 (7)	February 2015	May 2015	August 2015	November 2015	February 2016	
Quarterly Sampling Parameters												
Volatiles												
acetone	19	45	35	11	19 ⁽⁹⁾	ND	27.3	16.0	12.0	12.0	12.0	50 ⁽⁴⁾
chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroethane	ND	ND	ND	ND	1 ⁽²⁾	ND	ND	2.1	8.0	7.3	6.6	5
1,1-dichloroethane	86	79	67	53	47	1 (2)	43	48	31	22	16	5
1,1-dichloroethene	5.2	3.1 (2)	4.6 (2)	2.7 (2)	3 (2)	2 (2)	3.51	3.1	3.6	3.5	1.7	5
cis-1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,4-dioxane	420	620	490	270	ND	ND	ND	ND	ND	ND	ND	(5)
tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
vinyl chloride	5.2	4.6 ⁽²⁾	2.3 (2)	2.1 (2)	3 (2)	2(2)(10)	2.79	2.8	3.1	2.7	1.6	2
2-butanone (MEK)	ND	ND	ND	ND	2 (2)	3 ⁽²⁾⁽¹⁰⁾	ND	2.2 (2)	ND	ND	ND	50 ⁽⁴⁾
4-methyl-2-pentanone	ND	ND	ND	ND	1 (2)	ND	ND	ND	ND	ND	ND	(5)
naphthalene	ND	ND	ND	ND	2 ⁽²⁾⁽⁸⁾	ND	ND	ND	ND	ND	ND	10 ⁽⁴⁾
n-propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,3 trichlorobenzene	ND	ND	ND	ND	2 ⁽²⁾⁽⁸⁾	ND	ND	ND	ND	ND	ND	5
hexachlorobutadiene	ND	ND	ND	ND	4 ⁽²⁾⁽⁸⁾	ND	ND	ND	ND	ND	ND	0.5 ⁽⁴⁾
1,2,4 trichlorobenzene	ND	ND	ND	ND	1(2)(8)	ND	ND	ND	ND	ND	ND	5
1,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5 trimethylbenzene/P						·						5
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
sec-butylbenzene 1.2-dichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	5 0.6
1,2-dichioroethane trichloroethene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.6 5
chloroform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7
	···								1			
Wet Chemistry and												
Dissolved Metals												
sulfate	NA	NA	NA	NA	14,900	25,700	31,200	31,000	<5,000	18,000	13,600	250,000
total organic carbon (TOC)	NA	NA	NA	NA	4,150	45,900	35,800	39,800	50,300	47,400	40,200	NS
dissolved iron	NA	NA	NA	NA	6,130	16,200	8,410	9,130	9,920	19,500	21,900	as low as possible, NTE 500,000
		•										
	<u> </u>								<u> </u>			

NOTES:

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "I" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- $(6) \ Sampling \ date \ of \ August \ 11, \ 2014, \ reflects \ pre-bioremediation \ injection \ date \ of \ August \ 13 \ and \ 14, \ 2014.$
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
- (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- NA -Contaminant was not included for analysis during RFI.

A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

TABLE 1c - MW-16

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

						MW-16						Class GA Groundwater Standard (ppb) (3)
Analyte ⁽¹⁾	June 2011	November 2011	July 2012	January 2013	August 2014 (6)	November 2014 ⁽⁷⁾	February 2015	May 2015	August 2015	November 2015	February 2016	
Quarterly Sampling Parameters												
Volatiles												
acetone	ND	ND	ND	ND	2 ⁽²⁾⁽⁸⁾	ND	ND	4.6 (2)	ND	ND	ND	50 ⁽⁴⁾
chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	3.7	ND	ND	5
1,1-dichloroethane	17	7.9	33	14	14	19	7.18	14	73	8.4	5.2	5
1.1-dichloroethene	3 (2)	2.4 (2)	8.7	5.6	7	9 ⁽²⁾	1.73	5.6	33	4.2	1.8	5
cis-1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	3.4	ND	ND	5
1,4-dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
tetrachloroethene	ND	ND	3.2 (2)	3.9 (2)	2 (2)	3(2)(10)	1.42	2.2	11	4.5	2.5	5
toluene	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	5
1.1.1-trichloroethane	ND	13	2.2 (2)	ND	1 (2)	2 ⁽²⁾	ND	ND ND	5.6	ND	ND ND	5
1,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND ND	ND ND	1.9	ND ND	ND ND	1
vinyl chloride	ND	ND ND	ND	ND	ND	ND ND	ND ND	1	7.6	ND	ND ND	2
2-butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 ⁽⁴⁾
4-methyl-2-pentanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	(5)
naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	10 ⁽⁴⁾
n-propylbenzene	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	5
1,2,3 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5(4)
1,2,4 trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4 trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,3,5 trimethylbenzene/P												5
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
sec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
trichloroethene	ND	ND	ND	ND	ND	3 (2)	ND	ND	1.2	ND	ND	5
chloroform	ND	ND	ND	ND	ND	ND	1.85	4.9	ND	ND	ND	7
Wet Chemistry and Dissolved Metals												
sulfate	NA	NA	NA	NA	14,400	17,900	18,800	20,500	25,300	13,000	10,900	250,000
total organic carbon (TOC)	NA	NA	NA	NA	8,650	10,800	4,220	11,700	28,000	6,180	4,940	NS
dissolved iron	NA	NA	NA	NA	ND	231	1,470	30.9 ⁽²⁾	12.2 (2)	1,460	1,250	as low as possible, NTE 500,000
											1	

NOTES:

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
- (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U" flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- NA -Contaminant was not included for analysis during RFI.
- A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

TABLE 1d - MW-CHA-RFI-7

GROUNDWATER MONITORING WELL SAMPLE LABORATORY ANALYTICAL DATA SUMMARY - DECTECTED PARAMETERS

				MW-CHA-RF	:1-7					Class GA Groundwater Standard (ppb) (3)
Analyte ⁽¹⁾	June 2011	November 2011	August 2014 (6)	November 2014 ⁽⁷⁾	February 2015	May 2015	August 2015	November 2015	February 2016	William
Quarterly Sampling Parameters										
Volatiles										
acetone	ND	ND	1(2)(8)	ND	ND	2.7 (2)	ND	ND	ND	50 ⁽⁴⁾
chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1-dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2 dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,4-dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
2-butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	50 ⁽⁴⁾
4-methyl-2-pentanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	(5)
naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	10 ⁽⁴⁾
n-propylbenzene	110	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	5
1,2,3 trichlorobenzene	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	5
hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5(4)
1.2.4 trichlorobenzene	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	5
1,2,4 trimethylbenzene	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	5
1,3,5 trimethylbenzene/P										_
ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
sec-butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Wet Chemistry and Dissolved Metals										
sulfate	NA	NA	38,100	42,800	39,900	39,900	32,700	39,600	39,800	250,000
total organic carbon (TOC)	NA	NA	938	42,800	746	1,200	584	550	843	NS
dissolved iron	NA	NA	ND	1,450	124	184	100 (12)	215	247	as low as possible, NTE 500,000
			-							
										

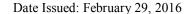
NOTES:

- (1) All analyte values expressed as parts per billion ("ppb").
- (2) The analyte was "J" flagged, indicating that it was detected below the laboratory quantification limits, and should be considered estimated.
- (3) Standard is identified in 6 NYCRR, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater.
- (4) Standard is not identified in 6 NYCRR, Part 703.5, Table 1. NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations has been used.
- (5) Analyte Standard does not exist in Part 703.5, Table 1. Analyte is identified in TOGS 1.1.1, Table 3 as unregulated.
- (6) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (7) November 2014 sampling event reflects first post-bioremediation data.
- (8) The analyte was "B" flagged, indicating that it was detected in the laboratory method blank, and should be considered estimated.
- (9) The analyte was "E"flagged, indicating that the concentration exceeded the calibration range of the laboratory instrument, and should be considered an estimate.
- (10) The analyte was "Z"flagged, indicating that it did not meet the variability criteria for the continuous calibration check (CCV) of 20%, and the value should be considered estimated.
- (11) The analyte was "D" flagged, indicating that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- (12) The analyte was "U " flagged, indicating that the analyte was not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- NA -Contaminant was not included for analysis during RFI.

A value identified in red indicates a concentration of the analyte in excess of the 6 NYCRR, Part 703.5 Table 1 standard or NYSDEC TOGS 1.1.1 guidance value.

TABLE 2
GROUNDWATER MONITORING WELL SAMPLE FIELD DATA

				MW-5A/AR			
Analyte	August 2014 (4)	November 2014 (5)	February 2015	May 2015	August 2015	November 2015	February 2016
dissolved oxygen ⁽¹⁾	1,150	1,860	1,910	910	300	500	1,500
рН ⁽²⁾	7.66	7.07	6.74	6.43	6.61	6.63	6.43
redox ⁽³⁾	-137	-90	-42	-73	-88	-44	-124


				MW-14			
Analyte	August 2014 (4)	November 2014 (5)	February 2015	May 2015	August 2015	November 2015	February 2016
dissolved oxygen ⁽¹⁾	1,940	2,110	1,720	1,280	1,100	700	2,700
рН ⁽²⁾	7.19	7.41	6.98	6.58	6.68	6.65	6.45
redox ⁽³⁾	7	-1	47	0	0	-7	-44

				MW-16			
Analyte	August 2014 (4)	November 2014 (5)	February 2015	May 2015	August 2015	November 2015	February 2016
dissolved oxygen ⁽¹⁾	990	2,210	2,750	2,150	400	2,200	2,800
pH ⁽²⁾	7.12	6.86	6.94	6.66	6.28	6.92	6.74
redox ⁽³⁾	24	-14	12	151	49	48	45

				MW-CHA-RFI	-7		
Analyte	August 2014 (4)	November 2014 (5)	February 2015	May 2015	August 2015	November 2015	February 2016
dissolved oxygen ⁽¹⁾	1,440	1,220	1,760	1,660	600	700	1,200
рН ⁽²⁾	7.55	7.38	7.55	7.01	7.41	7.52	7.12
redox ⁽³⁾	-36	-1	73	35	20	48	-90

NOTES:

- (1) Value expressed as parts per billion ("ppb").
- (2) Value expressed as Standard Unit.
- (3) Value expressed as milliVolts (mV).
- (4) Sampling date of August 11, 2014, reflects pre-bioremediation injection date of August 13 and 14, 2014.
- (5) November 2014 sampling event reflects first post-bioremediation data.

Pace Analytical e-Report

*Issuance of this report is prior to full data package.

Report prepared for:

Leader Consulting Services, Inc.

2813 Wehrle Drive

Suite 1

Williamsville, NY 14221 CONTACT: Keith Keller

Project ID: VAILS GATE MANUFACTURING

Sampling Date(s): February 12, 2016

Lab Report ID: 16020343

Client Service Contact: Nick Nicholas (518) 346-4592

Analysis Included:

Misc Field Analysis Dissolved Metals 200.7 - Sub Pace LI VOCs E8260C - Sub Pace LI Sulfate 300.0 - Sub Pace LI Total Organic Carbon

Test results meet all National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted in the case narrative. The results contained within the document relate only to the samples included in this report. Pace Analytical is responsible only for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Roy Smith Technical Director TNI

Certifications: New York (EPA: NY00906, ELAP: 11078), New Jersey (NY026), Connecticut (PH-0337), Massachusetts (M-NY906), Virginia (1884)

Pace Analytical Services, Inc. | 2190 Technology Drive | Schenectady, NY 12308 Phone: 518.346.4592 | internet: www.pacelabs.com This page intentionally left blank.

Table of Contents

Section 1: QUALIFIERS	4
Section 2: SAMPLE CHAIN OF CUSTODY	6
Section 3: SAMPLE RECEIPT	14
Section 4: Wet Chemistry - TOC/DTOC.	16
Section 5: Field Analysis	22
Section 6: Quality Control Samples (Lab)	27
Section 7: Subcontract Analysis	30

1

2

3

4

5

6

QUALIFIERS

Definitions

- B Denotes analyte observed in associated method blank or extraction blank. Analyte concentration should be considered as estimated.
- D Surrogate was diluted. The analysis of the sample required a dilution such that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- E Denotes analyte concentration exceeded calibration range of instrument. Sample could not be reanalyzed at secondary dilution due to insufficient sample amount, quick turn-around request, sample matrix interference or hold time excursion. Concentration result should be considered as estimated.
- J Denotes an estimated concentration. The concentration result is greater than or equal to the Method Detection Limit (MDL) but less than the Practical Quantitation Limit (PQL).
- MDL Adjusted Method Detection Limit.
- P Indicates relative percent difference (RPD) between primary and secondary gas chromatograph (GC) column analysis exceeds 40 % or indicates percent difference (PD) between primary and secondary gas chromatograph (GC) column analysis exceeds 25 %.
- PQL Practical Quantitation Limit. PQLs are adjusted for sample weight/volume and dilution factors.
- RL Reporting Limit Denotes lowest analyte concentration reportable for the sample based on regulatory or project specific limits.
- U Denotes analyte not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- Z Chromatographic interference due to polychlorinated biphenyl (PCB) co-elution.
- * Value not within control limits.

SAMPLE CHAIN OF CUSTODY

New York Office 2190 Technology Dr. Schenectady, NY 12308 (518) 346-4592

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. <16020343P1>

	1230 146-4592	18																															
Section A Required Client Information:	Section B Required P		Inforr	mation:	Section C	ition:															•	1€02	0343	1			•"	_	Page	1	of		1
Company: Leader Professional Services	Report To:	Keiti	h Ke	ller	Attention:	Kei	th K	eller						I								RE	GUL	_AT	ORY	PF	ROG	RAN	Λ				
Address: 2813 Wehrle Drive, Suite 1	Copy To:	na			Company Name	: Lea	der	Prof	ess	ional	Se	rvice	s	Γ	Ĭ N	PDES	3	Γ (GRO	M DNC	/ATEF	7	Γι	DRIN	IKING	i W	ATER	1					
Williamsville, NY 14221					Address:				***************************************						Γų	JST	1		RCRA	4		2000	Ö	THE	R								
Email To:	Purchase Order No.:	***************************************			Pace Quote Ref	erence:	#00	0127	'04								SIT	Έ									A 1 -		01 - 4	_			
Phone: 716-565-0963 Fax: na	Project Name	: '	Vails	Gate Manufactu	Pace Project Ma	anager:	Nicl	rola	s Ni	chol	as			ı		L	OCA	TIO	N								иe	W Y	ork Stat	е			
		4500	itist 6		18.49.64.42	kalviši	. Sikiri	A.255	\$1.45°	Fire	64/9		252			7.1	1 1		1 1	Filt	ered (Y/N)						1 1		y Metals	/Inorgar	nics:	
Requested Due Date/TAT: Standard 2-Week	Project Numb	er:			Pace Profile #:									ŀ	Ш	ΥL	Ш		BE	QUES	TED A	NAL	YSES	\perp s	Ш				Iron				
Section D Required MATRIX Clent Information	CODE	DE	TYPE C=COMP			COLLECTION	ERS			Prese	ervati	ives				Pe	Carbor	nductivi	E)	Α						T							
SAMPLE ID SAMPLE ID (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE TOSOL-SOLO ON WHE AR OTHER TOSOL-SOLO ON WHE AR TOSOL-SOLO ON TOSOL-SOLO ON TOSOL-SOLO ON TOSOL-SOLO ON TOSOLO TOSOL-SOLO TOSOLO TOSOLO	DW WIT WW P St. OL WP AR OT TS	MATRIX CODE	SAMPLE TY G=GRAB C=	SAMPLE DATE	SAMPLE TIME	TEMP AT	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HO3,	NaOH	Na ₂ S ₂ O ₃	Methanol	Omer		Dissolved Fe Sulfate	Total Organic Carbor	Field- DO, Cor	Temp, pH,	Turbidit									P	ace Lab	oratory	l.D.	
Field Duplicate-01		WT	G	zhh	1125		7	×		x x						x x	x :	хх	х	х					П			П	ATO 3	382			
2 MW-5A/AR		wT	G	2/12/16	1120		7	x		x x				T		хх	x :	x x	х	х			T					П		383			
3 MW-14		WT	G	2/12/16	1157		7	×		x x				T		хх	x :	x x	х	х			\top	T	\sqcap	十		\prod	ATO	384	***************************************		
4 MW-16		WT	G	2/12/16	1147		7	x	\sqcap	x x		\Box	1	T	$\top \uparrow$	хх	x :	x x	х	х		\Box	\top	T	$\dagger \dagger$	\top		\Box	ATO	3385			
5 MW-CHA-RFI-7 MS/MSD		wT	G	zhh	1316		17	1	\sqcap	x x		\sqcap		T		хх	x :	x x	х	х			\top	T	$\dagger \dagger$	\top		\Box		3386			
6 Trip Blank-01		wT	G	2/12/16			2		\Box		1	$\dagger \dagger$	\top	T	\top	\top	$\dagger \dagger$	x	\prod			T	\dagger	\dagger	$\dagger \dagger$	十		TT	ATO3		***************************************		
7		\dashv		2112110				\Box	\sqcap	 	\top	\Box	\top	†	+	$\neg \vdash$	$\dagger \dagger$	\dagger	$\dagger \dagger$		\top	\Box	十	\dagger	$\dagger \dagger$	十	T	III		30 /			
8		_								\dashv	+	$\dagger \dagger$	\top	\dagger	\top	\top	H	+	\Box		\top	Н	\dashv	\dagger	$\dagger \dagger$	+		\Box	1				
9		\dashv							\sqcap	\dashv	\dagger	$\dagger \dagger$	+	\dagger	+	\top	$\dagger \dagger$	\dagger	H			\Box	\dashv	\dagger	$\dagger \dagger$	\dagger	+	H	1				
10									\sqcap	+	\dagger	$\dagger \dagger$	+	\dagger		\dashv	$\dagger \dagger$	+	$\dagger \dagger$			T	\dagger	+	$\dagger \dagger$	+		H	1			***************************************	
11		\dashv							\sqcap	+	+	$\dagger \dagger$	-	\dagger	$\dashv \dashv$	\dashv	T	+	H		\vdash	$\dagger \dagger$	+	+	$\dagger \dagger$	+	-	$\dag \dag$	1			***************************************	
12		-							\vdash	\dashv	+-	H		\dagger	$\dashv \dashv$	\dashv	$\dagger \dagger$	\dagger	H	+		H	+	+	$\dagger\dagger$	+	-	H	1				
ADDITIONAL COMMENTS	RELI	NQU	ISHE	I ED BY / AFFILIA	ATION D	ATE		IME		A	CCE	PTE	D BY		AFFIL	IATIC	N				ATE				TIM	12			S.	MPLE C	ONDITION	IS	
NYSDEC DER-10 EQuIS EDD		Jan San San San San San San San San San S	7		टीट		7	54	0	1/1	1_		9	_							12/1		15	٠,٠					2.1/FA	Z.	E		N/X
	714	<u>VI</u>	<u></u>	PACE	12/12	2116	/ -		+	[<i>127</i>]		A jelani	-		······				\dashv	del	1-16	6	£ 3	-				\dashv	LILFA	N.	N.	╁) NV
	<u> </u>								\dashv				***************************************			***************************************			\dashv									\dashv		Z X X	N/		Y/N Y
			*************						\dashv						 				\dashv			-						\dashv	·	N X	N N		X/N/
				SAMP	ER NAME AND	SIGNA	THE	= 1) to 2							3.3							Jan.			5			
				1	Name of SAMP				ker	(PAC	E)					- 1							733						Temp in °C	Received or	Custody Sealed Cooler		Samples Intact
				SIGNA	TURE of SAMP	LER:	N	He	7		· ·					DA (M	TE Sig	ned / YY):	21	/n/	6							\dashv	Теп	Rece	CL		Samp

Sample Condition Upon Receipt

						CLIENT NAME:	Leader	
						PROJECT :	irails gat	.e
COURIER: FedEx UPS O	Client □	Pace 🖈	Other				,	
TRACKING #		CUSTODY	SEAL PRESENT	Γ: Yes □	No ⊯—	INTACT: Ye	s 🗆 No 🗆	N/Ax
PACKING MATERIAL: Bubble Wrap □	Bubble Bags		None⊠	Other 🗆		ICE USED: Wet	(P)	None □
THERMOMETER USED: #164 IR G	un 03⊅∕	#122087	967 🗆		COOLER TE	MPERATURE (°C)	: <u> </u>	
BIOLOGICAL TISSUE IS FROZEN: Yes 🗆	No □	N/A)¤				Temp should be	e above freezing	to 6°C
COMMENTS:		_			Temperatu	re is Acceptable?	,Ā¥es	□No
Chain of Custody Present:	⊠Yes	□No		1.				
Chain of Custody Filled Out:	Ø√Yes	□No		2.				
Chain of Custody Relinquished:	ÆİYes	□No		3.				
Sampler Name / Signature on COC:	Yes	□No		4.				
Samples Arrived within Hold Time:	. ØYes ,	□ <u>N</u> o		5.				
Short Hold Time Analysis (<72hr):	Keres/Av (¥ZNo)		6.				
Rush Turn Around Time Requested:	□Yes	√ZNo		7.				
Sufficient Volume:)≰∐Yes	□№		8.				
Correct Containers Used:	- □ (Yes	□No		9.				
- Pace Containers Used:	Yes	□No						
Containers Intact:	ØYes	□No		10.				
Filtered volume received for Dissolved te	sts: gres	□No	□n/A	11.				
Sample Labels match COC:	Yes	□No		12.				
 Includes date/time/ID/Analysis 	V							
All containers needing preservation have been checked:	n □Yes	□No	MNA	13.				
All containers needing preservation are in	□Yes	□No	MN/A					
compliance with EPA recommendation:			Ü	Initial whe	n/h			. 11
- Exceptions that are not checked: TOC, VOA, Subc	ontract Analyses			completed	1/4 :	Lot # of added	preservative:	N/A
Headspace in VOA Vials (>6mm):	□Yes	No	□n/a	14.				
Trip Blank Present:	Yes	□No	□n/a	15. Not (custody-	created Trip	blanks.	
Trip Blank Custody Seals Present:	□Yes	□No	TXIN/A		J	,		
Pace Trip Blank Lot #: 02/3/6 - 08/3	> - ,							X 1.0
Sample Receipt form filled in: $AJB 2/1$	3/16					nts and verifyin		AJB 2113/16
l	,						enting in LIMS):	AJB 2/12/16
		Labeling ((Includes Scar	nning Bottle	es and ente	ring LAB IDs into	pH logbook):	NJB 2/13/16

FIELD CALIBRATION SHEET PACE ANALYICAL INC.

Vails Gate Manufacturing SITE: Matt Broker 2/12/16 TECHNICIAN: DATE:

-9C sunny

WEATHER:

INSTRUMENT:

TEMPERATURE CONDUCTIVITY

DISSOLVED OXYGEN

TURBIDITY

Myron Ultrameter II 6PFCe

Myron Ultrameter II 6PFCe Myron Ultrameter II 6PFCe Sper Scientific 850041 Hanna HI 98703

NOTES										
TIME	1025	1026	1027	1028		1029	1030	1031	1032	
ADJUSTED READING	4.00	7.00	10.00	1413		<0.10	15	100	750	
INTIAL	4.03	7.13	10.22	1428		0.11	15.2	102	752	
STANDARD	4.00	7.00	10.00	1413		<0.10	15	100	750	
INSTRUMENT STANDARD ANALYTE	Ph			Conductivity		Turbidity			, 644, 640	

NOTES:

<16020343P4> 160203434

Ground water Field Log PACE Analytical Services, Inc. Client:

Vails Gate Manufacturing MW-5A/AR Field Dupe 1 Leader Consulting

PACE ID

Locked: Good

Peristaltic Pump Peristaltic Pump

Method of Evacuation:

Condition of Well:

Method of Sampling:

Flush

Lock ID:

Yes

N C	Diameter of Well Well Depth Measured	; ю	
5.	Diameter of Well	Ą	

TOP

inches

8

feet

20

feet

0.81

feet

0.16

Depth to Water $\ddot{\circ}$

5.69 Length of Water Column (calculated) \Box

Well Volume (calculated) Conversion Factor

WATER LEVEL

No. of Volumes to be Evacuated

Installed Well Depth (if known) Actual Volume Evacuated

gallons

2.73

Total Volume to be Evacuated

က

gallons

0.91

gallons

3.00

feet

Ϋ́

feet

Ϋ́

Depth of Silt (calculated

ட்

ш

SILT

% Recharge:

feet 0.81 Initial Depth to Water

feet 4.27 Recharge Depth to Water

<u>Е</u>

-124

-103

4.6

Temperature

H

2/12/16

2/12/16

Time Date

Ш

Sampling

Final

Initial Evacuation

Measurements

Field

2nd water column height 1st water column height

S \circ

6.43 5.3

6.63

1604

82

394

%

feet Ϋ́ Ϋ́ Elevation(Top of Casing) G.W. Elevation= SN DTN

Sampler:

G.W. Elevation = Top of Case Elev-Total Depth

cloudy ι

Silty bottom thick grey while purging then cleared up ±9C sunny Observations:

cloudy

7.

Dissolved Oxygen

Appearance

Weather:

Specific Cond.

Turbidity

Matt Broke Signature:

Well ID.:

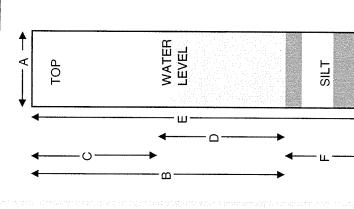
Project:

Condition of Well: Condition of Well: Method of Evacuation: Method of Sampling: Bailer A. Diameter of Well B. Well Depth Measured C. Depth to Water Conversion Factor Well Volume to be Evacuated Field Initial Measurements E. Installed Well Depth (if kn) F. Depth of Silt (calculated) Final Measurements SILT F. Depth of Silt (calculated) Final Measurements E. Installed Well Depth (if kn) F. Depth of Silt (calculated) Sampling	Locked: Lock ID: Lock ID: Diameter of Well Well Depth Measured Depth to Water Length of Water Column (calculated) Conversion Factor Well Volume (calculated) No. of Volumes to be Evacuated Total Volume to be Evacuated Actual Volume Evacuated	Yes 2.00 13.00 4.20 8.80 0.16 1.41	inches feet feet feet gallons gallons
ethod of Evacuation: ethod of Sampling: Bailer Bailer A. A. A. A. A. A. A. A. A. A	Locked: Lock ID: assured er Column (calculated) calculated) so to be Evacuated to be Evacuated to be Evacuated er Column (calculated) so to be Evacuated to be Evacuated er Evacuated	Yes Flush 13.00 4.20 8.80 0.16 1.41	
ethod of Evacuation: Ethod of Sampling: A. TOP WATER LEVEL Bailer A. A	lell sasured easured er Column (calculated) calculated) so to be Evacuated to be Evacuated to be Evacuated so be Evacuated to be Evacuated so be Evacuated so be Evacuated	2.00 13.00 4.20 8.80 0.16 1.41	inches feet feet feet gallons
ethod of Sampling: A. A	easured easured er Column (calculated) calculated) so to be Evacuated to be Evacuated e Evacuated e Evacuated	2.00 13.00 4.20 8.80 0.16 1.41	inches feet feet feet gallons
A. TOP WATER LEVEL D SILT SILT Initial Saruments Evacuation 2/12/16	easured ====================================	2.00 13.00 4.20 8.80 0.16 1.41	feet feet feet feet gallons
wATER WATER UEVEL D SILT SILT Surements Evacuation 2/12/16	easured er Column (calculated) actor calculated) so to be Evacuated to be Evacuated be Evacuated to be Evacuated	13.00 4.20 8.80 0.16 1.41	feet feet feet gallons
WATER WATER LEVEL D SILT SILT SILT Surements Evacuation 2/12/16	er Column (calculated)actor calculated) is to be Evacuated to be Evacuated e Evacuated	8.80 0.16 1.41	feet feet gallons
WATER WATER LEVEL D SILT SILT SILT F SILT SIL	er Column (calculated)actor calculated) ss to be Evacuated to be Evacuated Evacuated	0.16	feet gallons
wATER LEVEL D SILT SILT Initial surements Evacuation 2/12/16	actor calculated) s to be Evacuated to be Evacuated Evacuated	0.16	gallons
D SILT SILT F SILT F SILT SILT F SILT SILT F SILT Surements Evacuation Sar	calculated) ss to be Evacuated to be Evacuated Evacuated Evacuated	1.41	gallons
F SILT E. Initial surements Evacuation 2/12/16	ss to be Evacuated to be Evacuated Evacuated	8	
SILT SILT F SILT F Initial surements Evacuation 2/12/16	to be Evacuated	CC •	Sholler
SILT F SILT F Initial Sar 2/12/16	Evacuated	4.23	gail
F SILT E. Initial Fin surements Evacuation Sar 2/12/16		Dry @ 2.0	gallons
Initial Fin Sar Sar 2/12/16	Installed Well Depth (if known)	N/A	feet
Initial Final surements Evacuation Sampling 2/12/16	calculated	N/A	feet
surements Evacuation sampling 2/12/16	% Recharge:		
2/12/16	Initial Depth to Water	to Water 4.2	2 feet
	S Recharge Depth to Water	th to Water 9.95	
-31	\mu \		
		2nd water column height	%
6.82 6.45		1st water column height	
Specific Cond. 1641 1623 Turbidity 112 166	uS	of Casing) N/A	A feet
Dissolved Oxygen 3.1 2.7 Appearance cloudy cloudy	1	G.W. Elevation= N/A fear. G.W. Elevation = Top of Case Elev-Total Depth	A feet otal Depth
06 4	Sampler:	10 to 8 d	
Observations: Well between piller 2 and 3 slow recharge only sheen Well located in Unit 4-5	Signature:	Mail Dioke	שׁ

<16020343P6>

Ground water Field Log PACE Analytical Services, Inc. Client:

Leader Consulting


Vails Gate Manufacturing MW-16

PACE ID

Lock ID: Locked: Peristaltic Pump Peristaltic Pump Good Method of Evacuation: Method of Sampling: Condition of Well:

Flush

Yes

Diameter of Well Ċ

inches

2.00

feet

13.63

feet

3.51

feet

Well Depth Measured Depth to Water Ö œ

10.12 Length of Water Column (calculated) \Box

Conversion Factor

0.16

Well Volume (calculated)

gallons

1.62

က

gallons

4.86

gallons

Dry @ 1.5

feet

Ϋ́

feet

₹ Z

No. of Volumes to be Evacuated Total Volume to be Evacuated

Installed Well Depth (if known)

ш

Actual Volume Evacuated

Depth of Silt (calculated

ய்

% Recharge:

feet feet 11.36 3.51 Initial Depth to Water Recharge Depth to Water

2/12/16

2/12/16

Time Date

毌

9 7.9

Sampling

Evacuation

Measurements

Initial

Final

11:47

2nd water column height

m >

45 6.2

%

feet feet Α V Ϋ́ 1st water column height Elevation(Top of Casing) G.W. Elevation=

SN OTN

641.2 6.74

636.1 6.63

Specific Cond.

Turbidity

Temperature

46.8

646

SU \circ

Sampler:

G.W. Elevation = Top of Case Elev-Total Depth

cloudy

cloudy

2.1

Dissolved Oxygen

Appearance

-8C sunny

sample cloudy

Observations:

Weather:

2,8

Signature:

Pace Analytical Services, Inc.

Well ID.:

Project:

Ground water Field Log PACE Analytical Services, Inc. Client:

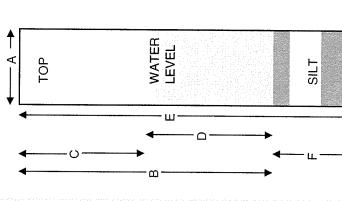
-eader Consulting

Vails Gate Manufacturing MW-CHA-RFI-7 MS/MSD

PACE ID

_ocked: Lock D: Peristaltic Pump Good Method of Evacuation:

Condition of Well:


Well ID.:

Project:

Yes

Flush

Peristaltic Pump Method of Sampling:

Diameter of Well Æ

inches

2.00

feet

41.67

Well Depth Measured

В

Depth to Water

S

41.55 Length of Water Column (calculated) \Box

feet

feet

0.12

Conversion Factor

0.16

No. of Volumes to be Evacuated Well Volume (calculated)

gallons

6.65

ന

gallons

19.92

gallons

15.00

feet

Ϋ́

feet

Υ Ζ

Total Volume to be Evacuated

Installed Well Depth (if known)

ші

Actual Volume Evacuated

Depth of Silt (calculated

ட்

% Recharge:

feet feet 24.16 0.12 Initial Depth to Water Recharge Depth to Water

> 2/12/16 13:10

2/12/16 2:10

-127

Sampling

Evacuation

Measurements

Field

Initial

Final

Έ

9 9.

%

2nd water column height 1st water column height

feet feet G.W.Elevation = Top of Case Elev-Total Depth ΑX Ϋ́ Elevation(Top of Casing) G.W. Elevation=

SN UTN

1548 7.12

1542

Specific Cond.

Turbidity

Temperature

Time Date

Ш

6.91 9.1

21.8

9.07

S \circ

Sampler:

clear 7.

slightly cloudy

Dissolved Oxygen

Appearance Weather:

7C sunny

sample clear

Observations:

Matt Broker Signature:

Pace Analytical Services, Inc.

SAMPLE RECEIPT

SAMPLE RECEIPT REPORT 16020343

Pace Analytical Services, Inc. 2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

CLIENT: LEADER CONSULTING SERVICES, INC.

PROJECT: VAILS GATE MANUFACTURING

LRF: 16020343

REPORT: DATA PACKAGE

EDD: YES LRF TAT: 2 WEEK **RECEIVED DATE:** 02/12/2016 15:40

SAMPLE SEALS INTACT: NA SHIPPED VIA: PICK UP 1, SAMPLES PRESERVED PER METHOD GUIDANCE: YES

³ SAMPLES REC'D IN HOLDTIME: YES SHIPPING ID:

NUMBER OF COOLERS: 1 CUSTODY SEAL INTACT: NA COOLER STATUS: CHILLED **TEMPERATURE(S):** ⁵2.1 (IR) °C

DISPOSAL: BY LAB (45 DAYS) **COC DISCREPANCY: NO**

COMMENTS:

SAMPLE PRESERVATION OF SUBCONTRACT ANALYSES NOT VERIFIED AT SCHENECTADY LAB.

CLIENT ID (LAB ID)	TAT-DUE Date ⁴	DATE-TIME SAMPLED	MATRIX	METHOD	TEST DESCRIPTION	QC REQUEST
FIELD DUPLICATE-01 (AT03382)	2 WEEK 02-26-16	02/12/2016 11:25	Water		Sulfate 300.0 - Sub Pace LI	
	2 WEEK 02-26-16	02/12/2016 11:25	Water	E200.7	Dissolved Metals 200.7 - Sub Pace LI	
	2 WEEK 02-26-16	02/12/2016 11:25	Water	E8260C	VOCs 8260C - Sub Pace LI	
	2 WEEK 02-26-16	02/12/2016 11:25	Water	SM 5310B-00,-11	Total Organic Carbon	
MW-5A/AR (AT03383)	2 WEEK 02-26-16	02/12/2016 11:20	Water		Sulfate 300.0 - Sub Pace LI	
	2 WEEK 02-26-16	02/12/2016 11:20	Water	E200.7	Dissolved Metals 200.7 - Sub Pace LI	
	2 WEEK 02-26-16	02/12/2016 11:20	Water	E8260C	VOCs 8260C - Sub Pace LI	
	2 WEEK 02-26-16	02/12/2016 11:20	Water	Misc Field Analysis	Misc Field Analysis	
	2 WEEK 02-26-16	02/12/2016 11:20	Water	SM 5310B-00,-11	Total Organic Carbon	
MW-14 (AT03384)	2 WEEK 02-26-16	02/12/2016 11:51	Water		Sulfate 300.0 - Sub Pace LI	
	2 WEEK 02-26-16	02/12/2016 11:51	Water	E200.7	Dissolved Metals 200.7 - Sub Pace LI	
	2 WEEK 02-26-16	02/12/2016 11:51	Water	E8260C	VOCs 8260C - Sub Pace LI	
	2 WEEK 02-26-16	02/12/2016 11:51	Water	Misc Field Analysis	Misc Field Analysis	
	2 WEEK 02-26-16	02/12/2016 11:51	Water	SM 5310B-00,-11	Total Organic Carbon	
MW-16 (AT03385)	2 WEEK 02-26-16	02/12/2016 11:47	Water		Sulfate 300.0 - Sub Pace LI	
	2 WEEK 02-26-16	02/12/2016 11:47	Water	E200.7	Dissolved Metals 200.7 - Sub Pace LI	
	2 WEEK 02-26-16	02/12/2016 11:47	Water	E8260C	VOCs 8260C - Sub Pace LI	
	2 WEEK 02-26-16	02/12/2016 11:47	Water	Misc Field Analysis	Misc Field Analysis	
	2 WEEK 02-26-16	02/12/2016 11:47	Water	SM 5310B-00,-11	Total Organic Carbon	
MW-CHA-RFI-7 MS/MSD (AT03386)	2 WEEK 02-26-16	02/12/2016 13:10	Water		Sulfate 300.0 - Sub Pace LI	MS, MSD
	2 WEEK 02-26-16	02/12/2016 13:10	Water	E200.7	Dissolved Metals 200.7 - Sub Pace LI	MS, MSD
	2 WEEK 02-26-16	02/12/2016 13:10	Water	E8260C	VOCs 8260C - Sub Pace LI	MS, MSD
	2 WEEK 02-26-16	02/12/2016 13:10	Water	Misc Field Analysis	Misc Field Analysis	,
	2 WEEK 02-26-16	02/12/2016 13:10	Water	SM 5310B-00,-11	Total Organic Carbon	MS, MSD
TRIP BLANK-01 (AT03387)	2 WEEK 02-26-16	02/12/2016	Water	E8260C	VOCs 8260C - Sub Pace LI	

The pH preservation check of Oil and Grease (Method 1664) and Total Organic Carbon (Method 5310B) are performed as soon as possible after sample receipt and may not be included in this report.

Reporting Parameters and Lists

Misc Field Analysis - Misc Field Analysis - (mg/L)

Dissolved Oxygen (\$) pH (\$)

Reduction Potential (\$) Specific Conductance (\$) Static Water Level (\$)

Misc Field Analysis - Misc Field Analysis - (mg/L)

Temperature (\$) Turbidity (\$)

SM 5310B-00,-11 - Total Organic Carbon - (mg/L)

Total Organic Carbon

This report may not be reproduced except in full, without the written approval of Pace Analytical Services, Inc.

February 29, 2016

Page 1 of 1

The pH preservation check of aqueous volatile samples is not performed until after the analysis of the sample to maintain zero headspace and is not included in this report.

Samples received for pH analysis are not marked as a hold time exceedance here. SW-846 methods suggests analysis to be done within 15 minutes of sample collection. Because of transportation time it 4is not possible for the laboratory to perform the test in that time. Sample Certificates of Analysis reports are noted as such.

Samples arriving at the laboratory after 4:00 pm are assigned a due date as if they arrived the following business day unless other arrangements have been made.

The due date represents the date the lab report is expected to be completed on or before 5:00 pm (EST) for the date specified.

⁵All samples which require thermal preservation shall be considered acceptable when received greater than 6 degrees Celsius if they are collected on the same day as received and there is evidence that the chilling process has begun, such as arrival on ice. Control limits are between 0-6 Degrees Celsius. Control limits do not apply for metals analysis.

⁶Samples requesting analysis for Orthophosphate (SM 4500-P E-99₃-11) require the samples to be filtered in the field within 15 minutes of the sampling event. Samples that are received unfiltered will be noted as not method compliant on the Certificates of Analysis.

Wet Chemistry - TOC/DTOC

Job Number: 16020343

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: Leader Consulting Services, Inc.

Project: VAILS GATE MANUFACTURING

Client Sample ID: FIELD DUPLICATE-01

Lab Sample ID: 16020343-01 (AT03382)

Collection Date: 02/12/2016 11:25

Sample Matrix: WATER

Received Date: 02/12/2016 15:40

Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column	
Analysis 1:	864	SM 5310B	02/24/2016 21:11	JS	NA	NA	NA	
Analyte		CAS No.	Result (mg/L)	PQL	Dilution Fact	or Flags	File ID	

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16020343

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

864

Client: Leader Consulting Services, Inc.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-5A/AR

Total Organic Carbon

Lab Sample ID: 16020343-02 (AT03383)

Collection Date: 02/12/2016 11:20

Sample Matrix: WATER

Received Date: 02/12/2016 15:40

2.00

Percent Solid: N/A

Analyte		CAS No.	Result (mg/L)	PQL	Dilution Fac	tor Flags	File ID
Analysis 1:	864	SM 5310B	02/24/2016 21:28	JS	NA	NA	NA
	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column

1.00

14.6

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

OC002

Job Number: 16020343

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: Leader Consulting Services, Inc. **Project: VAILS GATE MANUFACTURING**

Lab Sample ID: 16020343-03 (AT03384)

Client Sample ID: MW-14

Collection Date: 02/12/2016 11:51

Sample Matrix: WATER

Received Date: 02/12/2016 15:40

Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	864	SM 5310B	02/24/2016 21:42	JS	NA	NA	NA
Analyte		CAS No.	Result (mg/L)	PQL	Dilution Fact	tor Flags	File ID

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16020343

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: Leader Consulting Services, Inc.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-16

Lab Sample ID: 16020343-04 (AT03385)

Collection Date: 02/12/2016 11:47

Sample Matrix: WATER

Received Date: 02/12/2016 15:40

Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	864	SM 5310B	02/24/2016 21:58	JS	NA	NA	NA
Analyte		CAS No.	Result (mg/L)	PQL	Dilution Fact	or Flags	File ID
	ic Carbon	OC002	4.94	0.500	1.00		864

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16020343

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

864

Client: Leader Consulting Services, Inc.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-CHA-RFI-7 MS/MSD

Lab Sample ID: 16020343-05 (AT03386)

Total Organic Carbon

Collection Date: 02/12/2016 13:10

Sample Matrix: WATER

Received Date: 02/12/2016 15:40

1.00

Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	864	SM 5310B	02/24/2016 22:11	JS	NA	NA	NA
Analyte		CAS No.	Result (mg/L)	POL	Dilution Fac	tor Flags	File ID

0.843

0.500

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

OC002

Field Analysis

Job Number: 16020343

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: Leader Consulting Services, Inc. **Project: VAILS GATE MANUFACTURING**

Client Sample ID: MW-5A/AR

Lab Sample ID: 16020343-02 (AT03383)

Collection Date: 02/12/2016 11:20

Sample Matrix: WATER

Received Date: 02/12/2016 15:40

Percent Solid: N/A

Batch ID	Method	Date	Analyst		inal Vol.	Column
Analysis 1: Field Test	Field Analysis	02/12/2016 11:20	MEB	NA	NA	NA
Analyte	CAS No.	Result	PQL	Dilution Factor	Flags	File ID
Dissolved Oxygen (\$)	7782-44-7	1.50 (mg/L)	0.00	1.00		Field Test
pH (\$)	NA	6.43 (pH)	0.00	1.00		Field Test
Reduction Potential (\$)	NA	-124 (mV)	0.00	1.00		Field Test
Specific Conductance (\$)	NA	1600 (umhos/cn	0.00	1.00		Field Test
Static Water Level (\$)	NA	0.810 (ft)	0.00	1.00		Field Test
Temperature (\$)	NA	5.30 (°C)	0.00	1.00		Field Test
Turbidity (\$)	NA	82.0 (NTU)	0.00	1.00		Field Test

ND: Denotes analyte not detected at a concentration greater than the PQL.

Note: This is field generated data. (\$) NYSDOH-ELAP does not currently offer NELAC certification for this parameter.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16020343

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: Leader Consulting Services, Inc. **Project: VAILS GATE MANUFACTURING**

Client Sample ID: MW-14

Lab Sample ID: 16020343-03 (AT03384)

Collection Date: 02/12/2016 11:51

Sample Matrix: WATER

Received Date: 02/12/2016 15:40

Percent Solid: N/A

Batch ID	Method	Date	Analyst		nal Vol.	Column
Analysis 1: Field Test	Field Analysis	02/12/2016 11:57	MEB	NA	NA	NA
Analyte	CAS No.	Result	PQL	Dilution Factor	Flags	File ID
Dissolved Oxygen (\$)	7782-44-7	2.70 (mg/L)	0.00	1.00		Field Test
pH (\$)	NA	6.45 (pH)	0.00	1.00		Field Test
Reduction Potential (\$)	NA	-44.0 (mV)	0.00	1.00		Field Test
Specific Conductance (\$)	NA	1620 (umhos/cn	0.00	1.00		Field Test
Static Water Level (\$)	NA	4.20 (ft)	0.00	1.00		Field Test
Temperature (\$)	NA	8.40 (°C)	0.00	1.00		Field Test
Turbidity (\$)	NA	166 (NTU)	0.00	1.00		Field Test

ND: Denotes analyte not detected at a concentration greater than the PQL.

Note: This is field generated data. (\$) NYSDOH-ELAP does not currently offer NELAC certification for this parameter.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Job Number: 16020343

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: Leader Consulting Services, Inc. **Project:** VAILS GATE MANUFACTURING

Client Sample ID: MW-16

Lab Sample ID: 16020343-04 (AT03385)

Collection Date: 02/12/2016 11:47

Sample Matrix: WATER

Received Date: 02/12/2016 15:40

Percent Solid: N/A

Batch ID Analysis 1: Field Test	Method Field Analysis	Date 02/12/2016 11:47	Analyst MEB	Init Wt./Vol. Fin	nal Vol.	Column
Analyte	CAS No.	Result	PQL	Dilution Factor	Flags	File ID
Dissolved Oxygen (\$)	7782-44-7	2.80 (mg/L)	0.00	1.00		Field Test
pH (\$)	NA	6.74 (pH)	0.00	1.00		Field Test
Reduction Potential (\$)	NA	45.0 (mV)	0.00	1.00		Field Test
Specific Conductance (\$)	NA	641 (umhos/cn	0.00	1.00		Field Test
Static Water Level (\$)	NA	3.51 (ft)	0.00	1.00		Field Test
Temperature (\$)	NA	6.20 (°C)	0.00	1.00		Field Test
Turbidity (\$)	NA	646 (NTU)	0.00	1.00		Field Test

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Note: This is field generated data. (\$) NYSDOH-ELAP does not currently offer NELAC certification for this parameter.

Job Number: 16020343

Pace Analytical Services, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592

Fax: 518.381.6055

Client: Leader Consulting Services, Inc.

Project: VAILS GATE MANUFACTURING

Client Sample ID: MW-CHA-RFI-7 MS/MSD

Lab Sample ID: 16020343-05 (AT03386)

Collection Date: 02/12/2016 13:10

Sample Matrix: WATER

Received Date: 02/12/2016 15:40

Percent Solid: N/A

Batch ID	Method	Date	Analyst		nal Vol.	Column
Analysis 1: Field Test	Field Analysis	02/12/2016 13:10	MEB	NA	NA	NA
Analyte	CAS No.	Result	PQL	Dilution Factor	Flags	File ID
Dissolved Oxygen (\$)	7782-44-7	1.20 (mg/L)	0.00	1.00		Field Test
pH (\$)	NA	7.12 (pH)	0.00	1.00		Field Test
Reduction Potential (\$)	NA	-90.0 (mV)	0.00	1.00		Field Test
Specific Conductance (\$)	NA	1550 (umhos/cm	0.00	1.00		Field Test
Static Water Level (\$)	NA	0.120 (ft)	0.00	1.00		Field Test
Temperature (\$)	NA	9.10 (°C)	0.00	1.00		Field Test
Turbidity (\$)	NA	9.07 (NTU)	0.00	1.00		Field Test

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Note: This is field generated data. (\$) NYSDOH-ELAP does not currently offer NELAC certification for this parameter.

Quality Control Samples (Lab)

Quality Control Results Method Blank

Job Number: 16020343

Pace Analytical Services, Inc. 2190 Technology Drive

Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: Leader Consulting Services, Inc.
Project: VAILS GATE MANUFACTURING
Client Sample ID: Method Blank (AT03311B)

Lab Sample ID: BLANK-01

Collection Date: N/A Sample Matrix: WATER Received Date: N/A Percent Solid: N/A

	Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
Analysis 1:	864	SM 5310B	02/24/2016 16:47	JS	NA	NA	NA
Analyte		CAS No.	Result (mg/L)	PQL	Dilution Facto	or Flags	File ID
Total Organi	ic Carbon	OC002	ND	0.500	1 00	IJ	864

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Quality Control Results Lab Control Sample (LCS)

Job Number: 16020343

Pace Analytical Services, Inc. 2190 Technology Drive

Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

Client: Leader Consulting Services, Inc.Collection Date: N/AProject: VAILS GATE MANUFACTURINGSample Matrix: WATERClient Sample ID: Lab Control Sample (AT03311L)Received Date: N/A

Lab Sample ID: LCS-01 Percent Solid: N/A

		Batch ID	Method	Date	Analyst	Init Wt./Vol.	Final Vol.	Column
ı	Analysis 1:	864	SM 5310B	02/24/2016 17:00	JS	NA	NA	NA

		Added	LCS	LCS	Lim	nits
Analyte Spiked	CAS No.	(mg/L)	(mg/L)	% Rec.	$\mathbf{Q}^{'}$ (%	(o)
Total Organic Carbon	OC002	10.0	9.81	98.1	80.0	-120

¹ Qualifier column where '*' denotes value outside the control limits. Note: RPD criteria does not apply if either the sample and duplicate sample are not detected.

ND: Denotes analyte not detected at a concentration greater than the PQL.

PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

Subcontract Analysis

AT03382

Pace Analytical Services Inc. 2190 Technology Drive

Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 2/12/2016 11:25:00 AM

Received : 2/16/2016 3:45:00 PM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-001

Client Sample ID: FIELD DUPLICATE-01

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7 :						Analyst: CM
Parameter(s)	Results	Qualifier	D.F. Units	<u>PQL</u>	Analyzed:	Container:
Iron	14,500		1 ug/L	100	02/26/16 11:46 AM	Container-01 of 01

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: BL
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,1,1-Trichloroethane	4.4	С	1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,1,2-Trichloroethane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,1-Dichloroethane	5.5		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,1-Dichloroethene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,1-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,2,3-Trichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,2,3-Trichloropropane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,2,4-Trimethylbenzene	2.7		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,2-Dibromoethane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,2-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,2-Dichloroethane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,2-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,3-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,3-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
1,4-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
2,2-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
2-Butanone	6.2		1	μg/L	5.0	02/17/16 7:15 PM	Container-01 of 03
2-Chloroethylvinyl ether	< 10	S	1	μg/L	10	02/17/16 7:15 PM	Container-01 of 03
2-Chlorotoluene/4-Chlorotoluene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
2-Hexanone	< 5.0		1	μg/L	5.0	02/17/16 7:15 PM	Container-01 of 03
4-Isopropyltoluene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
4-Methyl-2-pentanone	< 5.0		1	μg/L	5.0	02/17/16 7:15 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported :

Cathlin Panzarella
Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 20

AT03382

Pace Analytical Services Inc. 2190 Technology Drive

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 2/12/2016 11:25:00 AM

Collected : 2/12/2016 11:25:00 AM Received : 2/16/2016 3:45:00 PM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-001

Client Sample ID: FIELD DUPLICATE-01

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: BL
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Acetone	4.5	J	1	μg/L	10	02/17/16 7:15 PM	Container-01 of 03
Benzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Bromobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Bromochloromethane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Bromodichloromethane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Bromoform	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Bromomethane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Carbon disulfide	< 10		1	μg/L	10	02/17/16 7:15 PM	Container-01 of 03
Carbon tetrachloride	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Chlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Chloroethane	92		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Chloroform	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Chloromethane	< 1.0	С	1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Dibromochloromethane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Dibromomethane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Dichlorodifluoromethane	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Ethylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Hexachlorobutadiene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Isopropylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
m,p-Xylene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Methyl tert-butyl ether	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Methylene chloride	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Naphthalene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
n-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
n-Propylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
o-Xylene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
sec-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Styrene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
tert-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03
Tetrachloroethene	< 1.0		1	μg/L	1.0	02/17/16 7:15 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

Date Reported:

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

This report shall not be reproduced except in full, without the written approval of the laboratory.

Test results meet the requirements of NELAC unless otherwise noted.

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Page 2 of 20

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 2/12/2016 11:25:00 AM

Received : 2/16/2016 3:45:00 PM AT03382

Collected By CLIENT

Sulfate

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-001

Client Sample ID: FIELD DUPLICATE-01

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C						Analyst: BL
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	PQL		Analyzed:	Container:
Toluene	< 1.0		1	μg/L	1.0		02/17/16 7:15 PM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0		1	μg/L	1.0		02/17/16 7:15 PM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0		1	μg/L	1.0		02/17/16 7:15 PM	Container-01 of 03
Trichloroethene	< 1.0		1	μg/L	1.0		02/17/16 7:15 PM	Container-01 of 03
Trichlorofluoromethane	< 1.0		1	μg/L	1.0		02/17/16 7:15 PM	Container-01 of 03
Vinyl acetate	< 10		1	μg/L	10		02/17/16 7:15 PM	Container-01 of 03
Vinyl chloride	< 1.0		1	μg/L	1.0		02/17/16 7:15 PM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	121		1	%Rec		Limit 53-183	02/17/16 7:15 PM	Container-01 of 03
Surr: 4-Bromofluorobenzene	113		1	%Rec		Limit 63-140	02/17/16 7:15 PM	Container-01 of 03
Surr: Toluene-d8	99.9		1	%Rec		Limit 60-135	02/17/16 7:15 PM	Container-01 of 03
Analytical Method: E300.0:								Analyst: bka
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	PQL		Analyzed:	Container:

mg/L

5.00

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

4.31

J

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cothlin Panyarella
Project Manager: Caitlin Panzarella

02/24/16 1:18 AM

Container-01 of 01

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 20

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected: 2/12/2016 11:20:00 AM

Received : 2/16/2016 3:45:00 PM AT03383

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-002

Client Sample ID: MW-5A/AR

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7 :						Analyst: CM
Parameter(s)	<u>Results</u>	Qualifier	D.F. Units	<u>PQL</u>	Analyzed:	Container:
Iron	14,400		1 ug/L	100	02/26/16 11:52 AM	Container-01 of 01

Analytical Method: SW8260C :	Prep Method:	5030C					Analyst: BL
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,1,1-Trichloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,1,2-Trichloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,1-Dichloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,1-Dichloroethene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,1-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,2,3-Trichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,2,3-Trichloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,2,4-Trimethylbenzene	2.5		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,2-Dibromoethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,2-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,2-Dichloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,2-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,3-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,3-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
1,4-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
2,2-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
2-Butanone	8.6		1	μg/L	5.0	02/17/16 8:04 PM	Container-01 of 03
2-Chloroethylvinyl ether	< 10	S	1	μg/L	10	02/17/16 8:04 PM	Container-01 of 03
2-Chlorotoluene/4-Chlorotoluene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
2-Hexanone	< 5.0		1	μg/L	5.0	02/17/16 8:04 PM	Container-01 of 03
4-Isopropyltoluene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
4-Methyl-2-pentanone	< 5.0		1	μg/L	5.0	02/17/16 8:04 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 4 of 20

William A. Kotas

:2/16/2016 3:45:00 PM

575 Broad Hollow Road , Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436
NYSDOH ID#10478 www.pacelabs.com

AT03383

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Collected : 2/12/2016 11:20:00 AM

Collected By CLIENT

Attn To:

Received

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-002

Client Sample ID: MW-5A/AR

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: BL
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Acetone	6.1	J	1	μg/L	10	02/17/16 8:04 PM	Container-01 of 03
Benzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Bromobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Bromochloromethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Bromodichloromethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Bromoform	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Bromomethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Carbon disulfide	< 10		1	μg/L	10	02/17/16 8:04 PM	Container-01 of 03
Carbon tetrachloride	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Chlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Chloroethane	68		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Chloroform	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Chloromethane	< 1.0	С	1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Dibromochloromethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Dibromomethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Dichlorodifluoromethane	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Ethylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Hexachlorobutadiene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Isopropylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
m,p-Xylene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Methyl tert-butyl ether	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Methylene chloride	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Naphthalene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
n-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
n-Propylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
o-Xylene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
sec-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Styrene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
tert-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03
Tetrachloroethene	< 1.0		1	μg/L	1.0	02/17/16 8:04 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported :

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 5 of 20

AT03383

Pace Analytical Services Inc. 2190 Technology Drive

Schenectady, NY 12308

Attn To: William A. Kotas

Received : 2/16/2016 3:45:00 PM

:2/12/2016 11:20:00 AM

Collected By CLIENT

Collected

Sulfate

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-002

Client Sample ID: MW-5A/AR

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C						Analyst: BL
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>		Analyzed:	Container:
Toluene	< 1.0		1	μg/L	1.0		02/17/16 8:04 PM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0		1	μg/L	1.0		02/17/16 8:04 PM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0		1	μg/L	1.0		02/17/16 8:04 PM	Container-01 of 03
Trichloroethene	< 1.0		1	μg/L	1.0		02/17/16 8:04 PM	Container-01 of 03
Trichlorofluoromethane	< 1.0		1	μg/L	1.0		02/17/16 8:04 PM	Container-01 of 03
Vinyl acetate	< 10		1	μg/L	10		02/17/16 8:04 PM	Container-01 of 03
Vinyl chloride	< 1.0		1	μg/L	1.0		02/17/16 8:04 PM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	124		1	%Rec		Limit 53-183	02/17/16 8:04 PM	Container-01 of 03
Surr: 4-Bromofluorobenzene	111		1	%Rec		Limit 63-140	02/17/16 8:04 PM	Container-01 of 03
Surr: Toluene-d8	91.0		1	%Rec		Limit 60-135	02/17/16 8:04 PM	Container-01 of 03
Analytical Method: E300.0:								Analyst: bka
Parameter(s)	Results	Qualifier	D.F.	<u>Units</u>	PQL		Analyzed:	Container:

mg/L

5.00

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

3.24

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella

02/24/16 1:59 AM

Container-01 of 01

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 6 of 20

Pace Analytical Services Inc. 2190 Technology Drive

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 2/12/2016 11:51:00 AM

Received : 2/16/2016 3:45:00 PM AT03384

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-003

Client Sample ID: MW-14

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7 :						Analyst: CM
Parameter(s)	<u>Results</u>	Qualifier	D.F. Units	<u>PQL</u>	Analyzed:	Container:
Iron	21.900		1 ua/L	100	02/26/16 11:58 AM	Container-01 of 01

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: BL
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,1,1-Trichloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,1,2-Trichloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,1-Dichloroethane	16		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,1-Dichloroethene	1.7		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,1-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,2,3-Trichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,2,3-Trichloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,2,4-Trimethylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,2-Dibromoethane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,2-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,2-Dichloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,2-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,3-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,3-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
1,4-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
2,2-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
2-Butanone	< 5.0		1	μg/L	5.0	02/17/16 8:28 PM	Container-01 of 03
2-Chloroethylvinyl ether	< 10	S	1	μg/L	10	02/17/16 8:28 PM	Container-01 of 03
2-Chlorotoluene/4-Chlorotoluene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
2-Hexanone	< 5.0		1	μg/L	5.0	02/17/16 8:28 PM	Container-01 of 03
4-Isopropyltoluene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
4-Methyl-2-pentanone	< 5.0		1	μg/L	5.0	02/17/16 8:28 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported :

Cathlim Panyarella
Project Manager: Caitlin Panzarella

Froject Mariager . Caltilli Falizareli

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 7 of 20

AT03384

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 2/12/2016 11:51:00 AM

Received : 2/16/2016 3:45:00 PM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-003

Client Sample ID: MW-14

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: BL
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Acetone	12		1	μg/L	10	02/17/16 8:28 PM	Container-01 of 03
Benzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Bromobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Bromochloromethane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Bromodichloromethane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Bromoform	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Bromomethane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Carbon disulfide	< 10		1	μg/L	10	02/17/16 8:28 PM	Container-01 of 03
Carbon tetrachloride	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Chlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Chloroethane	6.6		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Chloroform	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Chloromethane	< 1.0	С	1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Dibromochloromethane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Dibromomethane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Dichlorodifluoromethane	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Ethylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Hexachlorobutadiene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Isopropylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
m,p-Xylene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Methyl tert-butyl ether	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Methylene chloride	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Naphthalene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
n-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
n-Propylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
o-Xylene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
sec-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Styrene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
tert-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03
Tetrachloroethene	< 1.0		1	μg/L	1.0	02/17/16 8:28 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported :

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 8 of 20

AT03384

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 2/12/2016 11:51:00 AM

Received : 2/16/2016 3:45:00 PM

Collected By CLIENT

Sulfate

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-003

Client Sample ID: MW-14

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C						Analyst: BL
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>		Analyzed:	Container:
Toluene	< 1.0		1	μg/L	1.0		02/17/16 8:28 PM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0		1	μg/L	1.0		02/17/16 8:28 PM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0		1	μg/L	1.0		02/17/16 8:28 PM	Container-01 of 03
Trichloroethene	< 1.0		1	μg/L	1.0		02/17/16 8:28 PM	Container-01 of 03
Trichlorofluoromethane	< 1.0		1	μg/L	1.0		02/17/16 8:28 PM	Container-01 of 03
Vinyl acetate	< 10		1	μg/L	10		02/17/16 8:28 PM	Container-01 of 03
Vinyl chloride	1.6		1	μg/L	1.0		02/17/16 8:28 PM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	135		1	%Rec		Limit 53-183	02/17/16 8:28 PM	Container-01 of 03
Surr: 4-Bromofluorobenzene	105		1	%Rec		Limit 63-140	02/17/16 8:28 PM	Container-01 of 03
Surr: Toluene-d8	90.7		1	%Rec		Limit 60-135	02/17/16 8:28 PM	Container-01 of 03
Analytical Method: E300.0 :								Analyst: bka
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>		Analyzed:	Container:

mg/L

5.00

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

13.6

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Carolin Panyarella
Project Manager: Caitlin Panyarella

02/24/16 2:13 AM

Container-01 of 01

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 9 of 20

AT03385

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 2/12/2016 11:47:00 AM

Received : 2/16/2016 3:45:00 PM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-004

Client Sample ID: MW-16

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7 :						Analyst: CM
Parameter(s)	<u>Results</u>	Qualifier	D.F. Units	<u>PQL</u>	Analyzed:	Container:
Iron	1,250		1 ug/L	100	02/26/16 12:04 PM	Container-01 of 01

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: BL
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,1,1-Trichloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,1,2-Trichloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,1-Dichloroethane	5.2		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,1-Dichloroethene	1.8		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,1-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,2,3-Trichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,2,3-Trichloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,2,4-Trimethylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,2-Dibromoethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,2-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,2-Dichloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,2-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,3-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,3-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
1,4-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
2,2-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
2-Butanone	< 5.0		1	μg/L	5.0	02/17/16 8:52 PM	Container-01 of 03
2-Chloroethylvinyl ether	< 10	S	1	μg/L	10	02/17/16 8:52 PM	Container-01 of 03
2-Chlorotoluene/4-Chlorotoluene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
2-Hexanone	< 5.0		1	μg/L	5.0	02/17/16 8:52 PM	Container-01 of 03
4-Isopropyltoluene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
4-Methyl-2-pentanone	< 5.0		1	μg/L	5.0	02/17/16 8:52 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported :

Cathlim Panzarella
Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 10 of 20

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 2/12/2016 11:47:00 AM

Received : 2/16/2016 3:45:00 PM AT03385

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-004

Client Sample ID: MW-16

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: BL
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Acetone	< 10		1	μg/L	10	02/17/16 8:52 PM	Container-01 of 03
Benzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Bromobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Bromochloromethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Bromodichloromethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Bromoform	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Bromomethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Carbon disulfide	< 10		1	μg/L	10	02/17/16 8:52 PM	Container-01 of 03
Carbon tetrachloride	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Chlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Chloroethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Chloroform	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Chloromethane	< 1.0	С	1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Dibromochloromethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Dibromomethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Dichlorodifluoromethane	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Ethylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Hexachlorobutadiene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Isopropylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
m,p-Xylene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Methyl tert-butyl ether	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Methylene chloride	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Naphthalene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
n-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
n-Propylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
o-Xylene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
sec-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Styrene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
tert-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03
Tetrachloroethene	2.5		1	μg/L	1.0	02/17/16 8:52 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 11 of 20

AT03385

Results

10.9

Qualifier

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas
Collected: 2/12/2016 11:47:00 AM

Received : 2/16/2016 3:45:00 PM

Collected By CLIENT

Parameter(s)

Sulfate

LABORATORY RESULTS

Results are only for the samples and analytes requested.

PQL

5.00

Units

mg/L

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-004

Client Sample ID: MW-16

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C						Analyst: BL
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	PQL		Analyzed:	Container:
Toluene	< 1.0		1	μg/L	1.0		02/17/16 8:52 PM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0		1	μg/L	1.0		02/17/16 8:52 PM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0		1	μg/L	1.0		02/17/16 8:52 PM	Container-01 of 03
Trichloroethene	< 1.0		1	μg/L	1.0		02/17/16 8:52 PM	Container-01 of 03
Trichlorofluoromethane	< 1.0		1	μg/L	1.0		02/17/16 8:52 PM	Container-01 of 03
Vinyl acetate	< 10		1	μg/L	10		02/17/16 8:52 PM	Container-01 of 03
Vinyl chloride	< 1.0		1	μg/L	1.0		02/17/16 8:52 PM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	139		1	%Rec		Limit 53-183	02/17/16 8:52 PM	Container-01 of 03
Surr: 4-Bromofluorobenzene	103		1	%Rec		Limit 63-140	02/17/16 8:52 PM	Container-01 of 03
Surr: Toluene-d8	89.8		1	%Rec		Limit 60-135	02/17/16 8:52 PM	Container-01 of 03
Analytical Method: E300.0 :								Analyst: bka

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported :

Analyzed:

02/24/16 2:26 AM

Container:

Container-01 of 01

Test results meet the requirements of NELAC

unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 12 of 20

AT03386

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas :2/12/2016 1:10:00 PM Collected

Received :2/16/2016 3:45:00 PM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-005

Client Sample ID: MW-CHA-RFI-7 MS/MSD

Sample Information:

Type: Aqueous

Origin:

Analytical Method: E200.7 :						Analyst: CM
Parameter(s)	Results	Qualifier	D.F. Units	<u>PQL</u>	Analyzed:	Container:
Iron	247		1 ug/L	100	02/26/16 12:10 PM	Container-01 of 01

Analytical Method: SW8260C :	Prep Method:	5030C					Analyst: BL
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,1,1-Trichloroethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,1,2-Trichloroethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,1-Dichloroethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,1-Dichloroethene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,1-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,2,3-Trichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,2,3-Trichloropropane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,2,4-Trichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,2,4-Trimethylbenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,2-Dibromo-3-chloropropane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,2-Dibromoethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,2-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,2-Dichloroethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,2-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,3-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,3-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
1,4-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
2,2-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
2-Butanone	< 5.0		1	μg/L	5.0	02/17/16 9:16 PM	Container-01 of 09
2-Chloroethylvinyl ether	< 10	S	1	μg/L	10	02/17/16 9:16 PM	Container-01 of 09
2-Chlorotoluene/4-Chlorotoluene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
2-Hexanone	< 5.0		1	μg/L	5.0	02/17/16 9:16 PM	Container-01 of 09
4-Isopropyltoluene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
4-Methyl-2-pentanone	< 5.0		1	μg/L	5.0	02/17/16 9:16 PM	Container-01 of 09

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC

This report shall not be reproduced except in full, without the written approval of the laboratory.

unless otherwise noted.

Page 13 of 20

16020343 - Page 43 of 53

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas :2/12/2016 1:10:00 PM Collected

AT03386 Received :2/16/2016 3:45:00 PM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-005

Client Sample ID: MW-CHA-RFI-7 MS/MSD

Origin:

Sample Information:

Type: Aqueous

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: BL
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Acetone	< 10		1	μg/L	10	02/17/16 9:16 PM	Container-01 of 09
Benzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Bromobenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Bromochloromethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Bromodichloromethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Bromoform	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Bromomethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Carbon disulfide	< 10		1	μg/L	10	02/17/16 9:16 PM	Container-01 of 09
Carbon tetrachloride	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Chlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Chloroethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Chloroform	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Chloromethane	< 1.0	С	1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
cis-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
cis-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Dibromochloromethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Dibromomethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Dichlorodifluoromethane	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Ethylbenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Hexachlorobutadiene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Isopropylbenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
m,p-Xylene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Methyl tert-butyl ether	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Methylene chloride	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Naphthalene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
n-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
n-Propylbenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
o-Xylene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
sec-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Styrene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
tert-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09
Tetrachloroethene	< 1.0		1	μg/L	1.0	02/17/16 9:16 PM	Container-01 of 09

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 14 of 20

AT03386

Results

39.8

Qualifier

Pace Analytical Services Inc. 2190 Technology Drive

Schenectady, NY 12308

Attn To: William A. Kotas :2/12/2016 1:10:00 PM

Received :2/16/2016 3:45:00 PM

Collected By CLIENT

Parameter(s)

Sulfate

Collected

LABORATORY RESULTS

Results are only for the samples and analytes requested.

PQL

5.00

Units

mg/L

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-005

Client Sample ID: MW-CHA-RFI-7 MS/MSD

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C						Analyst: BL
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>		Analyzed:	Container:
Toluene	< 1.0		1	μg/L	1.0		02/17/16 9:16 PM	Container-01 of 09
trans-1,2-Dichloroethene	< 1.0		1	μg/L	1.0		02/17/16 9:16 PM	Container-01 of 09
trans-1,3-Dichloropropene	< 1.0		1	μg/L	1.0		02/17/16 9:16 PM	Container-01 of 09
Trichloroethene	< 1.0		1	μg/L	1.0		02/17/16 9:16 PM	Container-01 of 09
Trichlorofluoromethane	< 1.0		1	μg/L	1.0		02/17/16 9:16 PM	Container-01 of 09
Vinyl acetate	< 10		1	μg/L	10		02/17/16 9:16 PM	Container-01 of 09
Vinyl chloride	< 1.0		1	μg/L	1.0		02/17/16 9:16 PM	Container-01 of 09
Surr: 1,2-Dichloroethane-d4	137		1	%Rec		Limit 53-183	02/17/16 9:16 PM	Container-01 of 09
Surr: 4-Bromofluorobenzene	106		1	%Rec		Limit 63-140	02/17/16 9:16 PM	Container-01 of 09
Surr: Toluene-d8	90.7		1	%Rec		Limit 60-135	02/17/16 9:16 PM	Container-01 of 09
Analytical Method: E300.0:								Analyst: bka

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella Project Manager: Caitlin Panzarella

Analyzed:

02/24/16 2:40 AM

Container

Container-01 of 01

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 15 of 20

AT03387

Pace Analytical Services Inc. 2190 Technology Drive

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 2/12/2016

Received :2/16/2016 3:45:00 PM

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Lab No. : 1602A81-006

Client Sample ID: TRIP BLANK-01

Origin:

Sample Information:

Type: Aqueous

Orig

Analytical Method: SW8260C :	Prep Method:	5030C					Analyst: BL
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,1,1-Trichloroethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,1,2-Trichloroethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,1-Dichloroethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,1-Dichloroethene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,1-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,2,3-Trichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,2,3-Trichloropropane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,2,4-Trichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,2,4-Trimethylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,2-Dibromo-3-chloropropane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,2-Dibromoethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,2-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,2-Dichloroethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,2-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,3,5-Trimethylbenzene/P- ethyltoluene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,3-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,3-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
1,4-Dichlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
2,2-Dichloropropane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
2-Butanone	< 5.0		1	μg/L	5.0	02/17/16 7:40 PM	Container-01 of 02
2-Chloroethylvinyl ether	< 10	S	1	μg/L	10	02/17/16 7:40 PM	Container-01 of 02
2-Chlorotoluene/4-Chlorotoluene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
2-Hexanone	< 5.0		1	μg/L	5.0	02/17/16 7:40 PM	Container-01 of 02
4-Isopropyltoluene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
4-Methyl-2-pentanone	< 5.0		1	μg/L	5.0	02/17/16 7:40 PM	Container-01 of 02
Acetone	< 10		1	μg/L	10	02/17/16 7:40 PM	Container-01 of 02
Benzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Bromobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Bromochloromethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Bromodichloromethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 16 of 20

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 2/12/2016

Received : 2/16/2016 3:45:00 PM AT03387

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Lab No. : **1602A81-006** Type : Aqueous

Client Sample ID: TRIP BLANK-01

Origin:

Analytical Method: SW8260C:	Prep Method:	5030C					Analyst: BL
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>	Analyzed:	Container:
Bromoform	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Bromomethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Carbon disulfide	< 10		1	μg/L	10	02/17/16 7:40 PM	Container-01 of 02
Carbon tetrachloride	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Chlorobenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Chloroethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Chloroform	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Chloromethane	< 1.0	С	1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
cis-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
cis-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Dibromochloromethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Dibromomethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Dichlorodifluoromethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Ethylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Hexachlorobutadiene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Isopropylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
m,p-Xylene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Methyl tert-butyl ether	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Methylene chloride	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Naphthalene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
n-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
n-Propylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
o-Xylene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
sec-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Styrene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
tert-Butylbenzene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Tetrachloroethene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Toluene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
trans-1,2-Dichloroethene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
trans-1,3-Dichloropropene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Trichloroethene	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02
Trichlorofluoromethane	< 1.0		1	μg/L	1.0	02/17/16 7:40 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported :

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 17 of 20

Pace Analytical Services Inc.

2190 Technology Drive Schenectady, NY 12308

Attn To: William A. Kotas

Collected : 2/12/2016

Received : 2/16/2016 3:45:00 PM AT03387

Collected By CLIENT

LABORATORY RESULTS

Results are only for the samples and analytes requested.

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: SW8260C :	Prep Method:	5030C						Analyst: BL
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>PQL</u>		Analyzed:	Container:
Vinyl acetate	< 10		1	μg/L	10		02/17/16 7:40 PM	Container-01 of 02
Vinyl chloride	< 1.0		1	μg/L	1.0		02/17/16 7:40 PM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	129		1	%Rec		Limit 53-183	02/17/16 7:40 PM	Container-01 of 02
Surr: 4-Bromofluorobenzene	105		1	%Rec		Limit 63-140	02/17/16 7:40 PM	Container-01 of 02
Surr: Toluene-d8	83.9		1	%Rec		Limit 60-135	02/17/16 7:40 PM	Container-01 of 02

Lab No. : 1602A81-006

Client Sample ID: TRIP BLANK-01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

c = Calibration acceptability criteria exceeded for this analyte. Value estimated

H = Received/analyzed outside of analytical holding time

J = Estimated value - below calibration range

M-, M+ = Matrix Spike recovery below / above control limit

N = Indicates presumptive evidence of compound

P = Duplicate RPD outside of control limit

r = Reporting limit below calibration range. Value estimated.

S = Recovery outside of control limits for this analyte

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

Date Reported:

Cathlin Panzarella

Project Manager: Caitlin Panzarella

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 18 of 20

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747

Sample Receipt Checklist

TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.pacelabs.com</u>

Client Name PACE-NY			Date and T	ime Received:	2/16/2016 3:45:00 PM
1002/101	tNo: 1		Received b	y Marissa Fre	eking
Completed by: Jackyn Ku	ri	Reviewed b	y: Ca	then I	Panzarella
Completed Date: <u>2/16/2016 4:40:03 PM</u>		Reviewed D	ate:	2/18/201	6 1:22:57 PM
Carrier name: FedEx					
Chain of custody present? Chain of custody signed when relinquished and receive Chain of custody agrees with sample labels? Are matrices correctly identified on Chain of custody? Its it clear what analyses were requested? Custody seals intact on sample bottles? Samples in proper container/bottle? Were correct preservatives used and noted? Preservative added to bottles: Sample Condition?	ved? Yes	V V V V Broi	No	Not Present NA Leaking	
Sufficient sample volume for indicated test?		✓	No 🗌	-	
Were container labels complete (ID, Pres, Date)? All samples received within holding time?	Yes Yes	✓	No 🗌		
Was an attempt made to cool the samples? All samples received at a temp. of > 0° C to 6.0° C? Response when temperature is outside of range:	Yes Yes		No 🗌	NA NA	
Sample Temp. taken and recorded upon receipt?		✓	No 🗌		.1 °
Water - Were bubbles absent in VOC vials? Water - Was there Chlorine Present?	Yes Yes		No □ No □	No Vials NA	<u>✓</u>
Water - pH acceptable upon receipt?	Yes	✓	No \square	No Water	
Are Samples considered acceptable?	Yes	✓	No \square		
Custody Seals present?	Yes	✓	No \square		
Airbill or Sticker?	Air Bil	✓ Stic	ker 🗆	Not Present	
Airbill No:	6661 5	913 2481			
Case Number: SDG: PACE-NY423	3	SAS:			
Any No response should be detailed in the comment	s section below, if appl	icable.			
Client Contacted? Yes No V Contact Mode: Phone: Fax: Client Instructions: Date Contacted: Regarding: Comments: SAMPLE PRESERVATION NOT VERIFIED AT SO	NA Person Contacted By: CONTACTED BY:		Person:		
CorrectiveAction:					

WorkOrder: 1602A81

Certifications

STATE	CERTIFICATION #
NEW YORK	10478
NEW JERSEY	NY158
CONNECTICUT	PH-0435
MARYLAND	208
MASSACHUSETTS	M-NY026
NEW HAMPSHIRE	2987
RHODE ISLAND	LAO 00340
PENNSYLVANIA	68-00350

Page 20 of 20

PACE-NY423

CHAIN OF CUSTODY RECORD	CUSTO	DY RI	ECORD		PAGE 1 OF 1			<u>ا</u>	SPOSAL REC	I IREMENTS:	DISPOSAL RECHIREMENTS: (To be filled in by Clinat)	Clicati
Pace Analytical Convices Inc	Airel C		1 000	Ç						RETURN TO CLIENT		(Healt)
2190 Technology D	rive, Sche	nectac	רמט, לא אל	308 308	LRF# 16020343					DISPOSAL BY RECEIVING LAB	EIVING LAB	
Telephone (518) 346-4592 Fax (518) 381-605 www.pacelabs.com	16-4592	Fax (518) 381.	-6055		(LAB USE ONLY)		<u> ₹ ७</u>	Additional charges incu	Additional charges incurred for disposal (if hazardous) or archival. Call for details.	EIVING LAB zardous) or archival.	
CLIENT (REPORTS TO BE SENT TO):			PROJECT#/PROJECT	DJECT NAME:				ENTE	R ANALYSIS AN	D METHOD NUMI	ENTER ANALYSIS AND METHOD NUMBER REQUESTED	
PACE			16020343			PRESEF	PRESERVATIVE CODE:	ODE:				PRESERVATIVE KEY
			LOCATION (CITY/STAT	Y/STATE) ADI	E) ADDRESS:	ВОТ	BOTTLE TYPE:	Ë				0 - ICE
FKOJECI MANAGEK:						BO	BOTTLE SIZE:	iii				1 - HCL
NICK NICHOIAS			> Z			SA		\	\	<u></u>		7 2 - HNO3
Project:			REQUIRED TURN AROUND TIME	RN AROUND TI	ME: 2/26/2016			(4:00		\ \ \	\ \ \	4 - NaOH
Notes:		zale			o o i i			\ (2) 3:	/	\	<u></u>	5 - Zn. Acetate
SAMPLE PRESERVATION NOT VERIFIED AT SUBCONTRACT LAB. DISSOLVED METALS ARE FIELD FILTERED.	JBCONTRACT LAB. DI	SSOLVED	NAME OF COURIER (IF	RIER (IF USED):		R OF C	***************************************	* O3A 7088/C	elellus Solfate	\	\	6 - MeOH 7 - NaHSO4
ELECTRONIC RESULTS	nicholas.nicholas@pacelabs.com)pacelabs.co	ε		LAB	381	, 	' 		\ \ \	\	o - Ourer (Nazsous)
	Nicole. Johnson@pacelabs.com	acelabs.com		GRAB/	SAMPLE ID	\(\n)	`	`	_	\ \ \		
SAMPLE ID	DATE	TIME	MATRIX	COMP	(LAB USE ONLY)	V	_	\	\		/ REI	REMARKS:
FIELD DUPLICATE-01	2/12/16	11:25	7	GRAB	AT03382	5	×	×	×		1602AS	8
MW-5A/AR	2/12/16	11:20	Г	GRAB	AT03383	5	×	×	×			
MW-14	2/12/16	11:51	_	GRAB	AT03384	5	×	×	×			
MW-16	2/12/16	11:47	_	GRAB	AT03385	5	×	X	×			
MW-CHA-RFI-7 MS/MSD	2/12/16	13:10	٦	GRAB	AT03386	11	×	×	×		MS/MSD	
TRIP BLANK-01	2/12/16			GRAB	AT03387	2		×				
	AP:		COC TAPE:	z	ı	PROPERLY PRESERVED:	PRESERVE): Y	Z	OTHER NOTES: [OTHER NOTES: Data Package [LEVEL-4] EDD: EQUIS-DEC-DER	EDD: EQUIS-DEC-DER
RECEIVED BROKEN OR LEAKING:	z >		COC DISCREPANCIES:		Z	RECVD W/I HOLDING TIMES:	HOLDING T	MES:	Z }			
SIGNATIIRE 1		RECEIVED BY		ľ	RELINQUISHED BY		RECEIVED BY	lk lk		RELINQUISHED BY		RECEIVED BY
DENTI-NAME ALLOCA	VA V	VO X	7) tulianis	DSK	MOUS	30 V	Joben	SIGNATURE		SIGNATURE	
V. BITTIS				KIN I ED NAME		MH2 1884	SA F	FREMING			PRINTED NAME	
200	COMPANY			COMPANY		COMPANY THE E-LI	~ \/\	1			COMPANY	
DATE 11/5/16 16:00	DATE/TIME			DATE/TIME		DATE/TIME 2/16/16		Shisi	DATE/TIME		DATE/TIME	
												S:\LOGIN\MDLCOCS

1822 5613 5481

	-

N/A N/A

ampies intact

Sealed Coole

*Specify Metals/Inorganics: Iron Pace Laboratory I.D. SAMPLE CONDITIONS Ø٧ N/A N/A N/J AT03385 AT03383 ATO 3392 AT03384 AT03386 AT03387 N/A Received on New York State O° ni qmeT REGULATORY PROGRAM CHAIN-OF-CUSTODY / Analytical Request Document DRINKING WATER TIME OTHER 167.90 GROUND WATER DATE DATE Signed (MM / DD / YY): 2/12/14 Turbidity x x x x x x × × × × × × × Temp, pH, Eh, LOCATION Field- DO, Conductiv SITE ××× 8260 Full List Total Organic Carbor NPDES ACCEPTED BY / AFFILIATION Sulfate T UST × × Dissolved Fe Leader Professional Services HOP Vails Gate Manufactur Pace Project Manager: Nicholas Nicholas PRINT Name of SAMPLER: Matt Broker (PACE) IOI FONF Pace Quote Reference: #00012704 1220 POS² Keith Keller TIME SAMPLER NAME AND SIGNATURE 17 # OF CONTAINERS SOLUE TEMP AT COLLECTION Invoice Information: DATE 2/12/16 SIGNATURE of SAMPLER: Сотралу Name: SAMPLE Pace Profile #: Section C TIME 92/ 1310 Attention: 22/1 11511 747 Address: RELINQUISHED BY / AFFILIATION SAMPLE PAKE shalle 2/12/16 DATE 12/12/K 3/12/12 2/12/16 Required Project Information: Report To: Keith Keller SAMPLE TYPE G=CO BARD=D C=COMP g മ G G ŋ G M WT ¥ × Μ ¥ Copy To: na MATRIX CODE Schenectady, NY 12308 Section B Standard 2-Week Project Number Project Name: 2190 Technology Dr. Purchase Order No.: (518) 346-4592 New York Office SODE Company: Leader Professional Services MW-CHA-RFI-7 MS/MSD Valid Matrix MATRIX 2813 Wehrle Drive, Suite 1 Field Duplicate-01 Trip Blank-01 MW-5A/AR Williamsville, NY 14221 ADDITIONAL COMMENTS MW-14 MW-16 Fax: na (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE SAMPLE ID IYSDEC DER-10 EQUIS EDD Requested Due Date/TAT: Required Client Information: 716-565-0963 Section D Clent Information Section A ddress: Email To: hone: 10

Sample Condition Upon Receipt

CLIENT NAME:

					P.	PROJECT:	ils gate		
COURIER: FedEx □ UPS □ C	Client \square	Pace 🖟	Other))		
TRACKING #		CUSTODY	CUSTODY SEAL PRESENT: Yes	IT: Yes	NoM	INTACT: Yes	No □	N/AX	
PACKING MATERIAL: Bubble Wrap	Bubble Bags □	gs □	None区	Other	2	ICE USED: Wet¢⊈	Blue	None	
THERMOMETER USED: #164 \Box IR Gu	IR Gun 03	#122087967	□ 296		OOLER TEMPI	COOLER TEMPERATURE (°C): 🔔	701		
BIOLOGICAL TISSUE IS FROZEN: Yes	No 🗆	N/AB			Te	Temp should be above freezing to 6°C	e freezing to (وړ	
COMMENTS:				Ţ	Temperature is Acceptable?	Acceptable?	∑ sə⊼⊜	ONO	
Chain of Custody Present:	⊠Yes	ON0		1.			•		
Chain of Custody Filled Out:	©dYes €	ONO		2.					
Chain of Custody Relinquished:	M Yes	oN 🗆		3.					
Sampler Name / Signature on COC:	(A)	oN 🗆		4.					
Samples Arrived within Hold Time:	, ØYes	ONO		5.					
Short Hold Time Analysis (<72hr):	人然深地	(OND)		6.					
Rush Turn Around Time Requested:	□Yes	ON EN		7.					٦
Sufficient Volume:	≯dYes	oN 🗆	-	8.		4		-	\exists
Correct Containers Used:	C Effes	oN 🗆		9.			,		\neg
- Pace Containers Used:) MYes	ON							
Containers Intact:	D Ýes	ONO		10.					T
Filtered volume received for Dissolved tests:	Sts: Spres	oN 🗆	□N/A	11.					
Sample Labels match COC:	Myes	°N □		12.					
- Includes date/time/ID/Analysis	~								
All containers needing preservation have been checked:	ן ⊡Yes	_N	M INIA	13.					•
All containers needing preservation are in	□Yes	° □	DY.NA						
compliance with EPA recommendation:			5	Initial when	7/12			¥/ -	·
- Exceptions that are not checked: TOC, VOA, Subcontract	ontract Analyses			completed:		Lot # of added preservative:	vative:	N/N	
Headspace in VOA Vials (>6mm):	□Yes	NZ Z	□N⁄A	14.	-				
Trip Blank Present:	Myes.	°N □	N/A	15. Not Co	stady-ca	15. Not Custody-consted Trip blanks	iks.		
Trip Blank Custody Seals Present: Pace Trip Blank Lot #: 031316 - 0913	□ Yes	oN □	DANIA		<i>)</i>				
Sample Receipt form filled in: $\lambda J b 2/13$	7/16	Line-Out (Includes Cop	ying Shipping	Documents	Line-Out (Includes Copying Shipping Documents and verifying sample pH):	ole pH):	AJB 2031	917
	_	Log In (Inc	cludes notify	ing PM of any	discrepacies	Log In (Includes notifying PM of any discrepacies and documenting in LIMS)	in LIMS):	416 2/13/16	JO.
		Labeling (Includes Sca	nning Bottles	and entering	Labeling (Includes Scanning Bottles and entering LAB IDs into pH logbook):	gbook):	136 3/13/1	97

Document Control# F-NY-C-034-rev.00 (15July2015)

Attachment B Data Validation Summary

ME Holvey Consulting, LLC

Data Usability Summary Report – April 2016 Vails Gate 737.004

Data Usability

The Quality Assurance Project Plan ("QAPP") prepared for this project by Clough Harbor & Associates, LLP, presents the policies, organization, objectives, functional activities, and specific Quality Assurance ("QA") and Quality Control ("QC") measures designed to achieve the data quality goals associated with this investigation. The QAPP identifies procedures for sample preparation and handling, sample chain-of-custody, laboratory analyses, and reporting that were implemented during this investigation to ensure the accuracy and integrity of the data generated during the investigation.

Leader Consulting Services, Inc. conducted the Site Investigation and Remedial Activities of the Vails Gate site.

Data Summary

The Data Usability Review and Data Validation Compliance Chart has been completed for the laboratory deliverable packages generated by Pace Analytical Laboratories, Inc. ("Pace"), pertaining to samples collected at the Vails Gate Site on February 12, 2016. A total of six (6) samples were collected during the February 2016 sampling event and analyzed for VOCs, metals, and wet chemistry. The following USEPA Methodologies were used to analyze these samples for the following analytes:

Volatiles (VOCs) USEPA Method 8260

Dissolved Iron by ICP USEPA Method 200.7 Rev. 4.4

Miscellaneous Field Analysis Dissolved Oxygen, pH, Reduction Potential, Temperature, Turbidity

Total Organic Carbon ("TOC") USEPA SM 5310B-00.11

Sulfate USEPA 300.0

Trip/Holding blanks, field duplicate, surrogates, internal standards, reference samples, matrix spikes, and matrix spike duplicates were included and processed.

Samples were collected and received on the following schedule:

Sample Package ID	Date Collected	Date Received by Pace	Sample Matrix	Requested Analyses	Sample Temperature (°C)
16020343	02/12/2016	02/12/2016 (Schenectady) 02/16/2016 (Long Island)	Water	TCL 8260 Metals Misc. Field Analysis TOC Sulfate	2.1

Data usability and validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Inorganic and Organic Data Review. The following items were reviewed:

- Data Completeness;
- Custody Documentation;
- Holding Times;
- Sample Blanks Review;
- Field Duplicate Samples;
- Matrix Spike Samples and Duplicates; and
- Control Spike/Laboratory Control Samples.

Those items showing deficiencies, if any, are discussed in the attached Data Validation Compliance Chart. All others were found to be acceptable as outlined in the above-mentioned usability procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the reported data, and generated in compliance with protocol requirements.

In summary, sample processing was conducted with compliance to protocol requirements and with adherence to quality criteria and the reported results are considered "usable".

The Data Validation Compliance Chart is also included with this report.

Custody Documentation

Chain of Custody (COC) forms are used to document the history of sample possession from the time the sample containers leave their point of origin (usually the laboratory performing the analyses) to the time the samples are received by the laboratory. COCs are considered legal documents.

The Chain of Custody accurately documents the sample collection.

Accuracy, Precision, and Sensitivity of Analyses

The fundamental QA objective with respect to the accuracy, precision, and sensitivity of analytical data is to achieve the QC acceptance of each analytical protocol. Accuracy and precision are determined using matrix spike ("MS") and matrix spike duplicate ("MSD") samples.

Accuracy is a measure of the difference of a set of analytical results to the accepted or expected values. Accuracy was assessed by using the MS/MSD and surrogate spike recovery data. Recovery values were reported within the QC limits for each analytical parameter group.

Precision is a measure of the mutual agreement between measurements of the same parameter.

The sample results for the Vails Gate Project are considered "usable".

Completeness, Representativeness, and Comparability of Data

Completeness is the measure of the amount of valid data obtained from a measurement system compared with the amount expected to be obtained under normal conditions. Review of the analytical data packages provided by Pace indicates that the requested parameters were analyzed for and reported by the laboratory for each sample submitted under proper chain-of-custody procedures. Based upon MEHC's review of the laboratory data, a usable data level was achieved.

Representativeness of the data is obtained through the design of the sampling program and the adherence to established sample collection procedures, sample-handling SOPs, and analytical procedures. The sampling program outlined in the Work Plan was designed to provide for data representative of site conditions taking into consideration past disposal practices, existing data from past studies, and the physical site setting. Each of the monitoring wells was installed in accordance with established industry and regulatory protocols.

The laboratory maintained all holding times for the specific analytical protocols.

Comparability of the data is derived from the evaluation of field duplicate samples and the adherence to established sampling and analytical procedures. A field duplicate is an independent sample collected as close as possible to the original aliquot from the same sampling point. All of the groundwater samples were analyzed utilizing standardized USEPA methodologies performed in accordance with the latest version of the NYSDEC ASP protocols.

Ouality Control Checks

Holding/Storage Blanks

Holding blanks are samples of reagent water prepared by the laboratory and carried through the field sampling and sample handling and shipping process. Holding blanks are analyzed as separate samples to evaluate the level of contamination associated with the collection, handling, and/or shipping of the VOC sample aliquots.

For this investigation, a holding blank was not submitted with samples collected on February 12, 2016.

Trip Blanks

A trip blank is provided with each shipping container of samples to be analyzed for volatile organic compounds (VOCs). Analysis of trip blanks determines whether a sample bottle was contaminated during shipment from the manufacturer, while in bottle storage, in shipment to the laboratory, or during analysis at a laboratory. Trip blanks consist of an aliquot of distilled water sealed in a sample bottle, prepared by the analytical laboratory prior to shipping the sample bottles. A Trip blank was included with the shipment of aqueous samples for VOC analysis.

For this investigation, a trip blank was submitted with the VOC aliquot of the groundwater samples collected on February 12, 2016. No VOC compounds were detected in the trip blank analyzed during this investigation.

Field Blanks

Given that dedicated sampling equipment was utilized for the collection of each groundwater sample, field blanks were not collected or analyzed during this sampling event.

Method Blanks

A method blank is a sample of reagent water, which is carried through the analytical procedure alongside the project samples to determine the level of laboratory background and reagent contamination.

For this investigation, a method blank was submitted with the VOC aliquot of the groundwater samples collected on February 12, 2016. No VOC compounds were detected in the method blank analyzed during this investigation.

Matrix Spike/Matrix Spike Duplicate Samples

For the Vails Gate project, one (1) MS/MSD was collected and analyzed. The following sample results are acceptable:

Sample MW-CHA-RFI-7 was submitted for matrix spike/ matrix spike duplicate (MS/MSD) analysis, and a lab-fortified blank (LFB) was analyzed. All percent recoveries were within or above QC limits. Spike recoveries showed 31 out 132 outside limits.

These results are detailed in the Data Validation Compliance Chart.

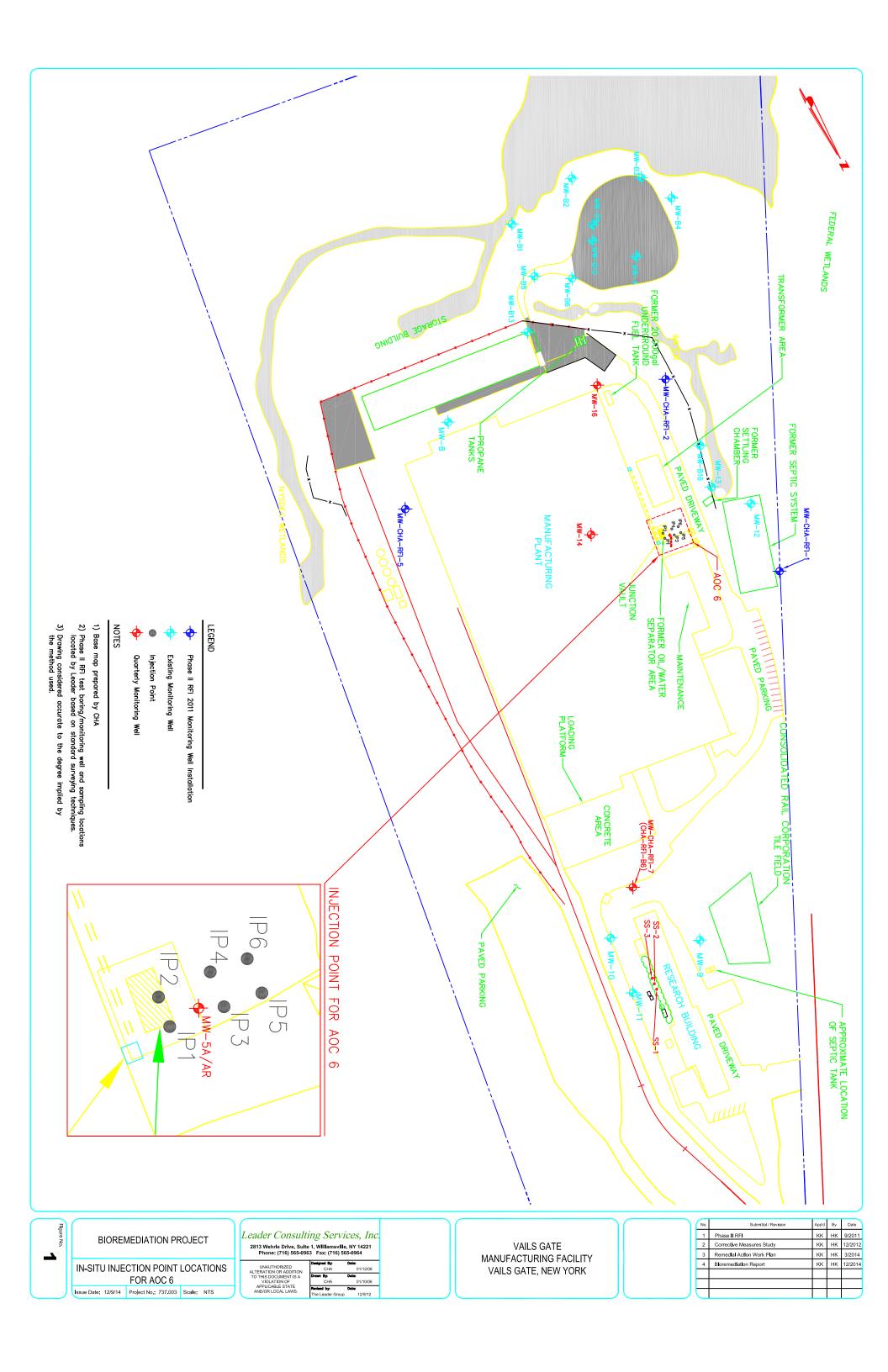
Surrogate Analyses

Surrogates are compounds added directly to every standard, blank, MS/MSD, and sample at a known concentration, prior to extraction or analysis; and used to evaluate the analytical efficiency by measuring percent recovery of those compounds upon analysis. The laboratory reported surrogate recoveries were within established QC limits for the surrogates in each analyzed sample.

The sample results for the Vails Gate Project are considered "usable".

Data Validation Compliance Chart Vails Gate

February 12, 2016 Sampling Event


Sample ID		15110056		
Matrix		Water		
Analysis	TCL 8260	Metals (Dissolved Iron Only)	Miscellaneous Field Parameters	Wet Chemistry:
Holding Times	Samples were analyzed within USEPA holding times.	Samples were analyzed within USEPA holding times	Samples were analyzed in the field.	Samples were analyzed within USEPA holding times
Calibration	In the initial calibrations, average response factors were employed as applicable, and regression functions were used for the compounds with an RSD above 20%. In the continuing calibration verification(s) (CCV), the variability for some compounds was above 20%. Results for these analytes are regarded estimated and are flagged with "Z" in the LFB. They were not found in the samples. All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	Sample ID AS34713 was reanalyzed at a secondary dilution to bring all target analyte concentrations within the calibration range of the instrument. All quality assurance parameters were met for these analyses.
Method Blanks	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.
Matrix Spike/Matrix Spike Duplicate	Sample MW-CHA-RFI-7 was submitted for matrix spike/ matrix spike duplicate (MS/MSD) analysis, and a lab-fortified blank (LFB) was analyzed. All percent recoveries were within or above QC limits, except no recovery was obtained for 2-chloroethylvinyl ether in all three extracts. Data reported for this analyte are suspect and are flagged with the qualifier "X". The five compounds that had recoveries above the Q. C. limits in the LFB were not found in the samples, and no data are therefore affected. All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.

Data Validation Compliance Chart Vails Gate

Sample ID		15110056		
Matrix		Water		
Analysis	TCL 8260	Metals (Dissolved Iron Only)	Miscellaneous Field Parameters	Wet Chemistry:
Surrogates	All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.
Internal Standards	All data quality objectives were satisfied.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.
Reference Sample	All laboratory internal quality control samples were within acceptable ranges.	All quality assurance parameters were met for these analyses.	All quality assurance parameters were met for these analyses.	Note that Sample AS23667 was re-analyzed at a secondary dilution to bring all target analyte concentration within the calibration range of the instrument. All quality assurance parameters were met for these analyses.
Data Usability	Data is acceptable.	Data is acceptable.	Data is acceptable.	Data is acceptable.

Attachment C

Figure 1

