2022-2023 Monitoring Report and Periodic Review Report

Location:

Former Consolidated Iron and Metals Site EPA Site No. NY0002455756 NYSDEC BCP Site No. 336055 1 Washington Street City of Newburgh Orange County, New York

Prepared for:

City of Newburgh 83 Broadway Newburgh, New York 12550

LaBella Project No. 2231596

June 2023

21 Fox Street, Suite 201 | Poughkeepsie, NY 12601 | p 845-454-3980 | f 845-454-4026

Table of Contents

1.0 1.1	EXECUTIVE SUMMARY Site History	
1.2	Site Management	2
2.0 2.1	ENGINEERING AND INSTITUTIONAL CONTROLS	
2.2	Site Monitoring	4
3.0 3.1	MONITORING RESULTS	
3.2	Water Quality Parameters	6
3.3	Volatile Organic Compounds – April 19, 2023 Data	7
3.4	Semi-Volatile Organic Compounds – April 19, 2023 Data	8
3.5	Lead and Arsenic	8
3.6	PCBs and Pesticides	8
3.7	QA/QC Sampling Results	9
4.0 4.1	DATA REVIEW	
4.2	SVOCs	10
4.3	Lead and Arsenic	11
5.0 5.1	SITE EVALUATION	
5.2	Recommendations	14
Figure	Figure 1 – Site Location Map	
rigure	Figure 1 – Site Location Map Figure 2 – Site Topography Map Figure 3 – Groundwater Elevation Map	

TablesTable 1 – Laboratory Analytical Results for VOCsTable 2 – Laboratory Analytical Results for SVOCsTable 3 – Laboratory Analytical Results for Metals

Appendix AField Sampling Data Sheets, Site Inspection Forms, Photo LogAppendix BEngineering Control / Institutional Control Certification FormsAppendix CLaboratory Data Reports (April 2023)

5

1.0 EXECUTIVE SUMMARY

At the request of the City of Newburgh, LaBella Associates (LaBella) has prepared this Periodic Review Report (PRR) for submission to the United States Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC). The report was prepared for the Former Consolidated Iron and Metal Property (the "Site"), located at 1 Washington Street, City of Newburgh, Orange County, New York. A Site Location Map is included as **Figure 1**.

The PRR was prepared in compliance with NYSDEC DER-10 and the general requirements of the Site Management Plan (SMP) prepared by CT Male, Inc. as approved by the EPA on June 27, 2014. This is the seventh PRR prepared for the Site since completion of the Remedial Action Program.

The required sampling event was conducted in April 2023 in order to obtain data for analysis prior to the required reporting due date of June 15, 2023, which also accommodates the City's fiscal year for project budgeting.

The Site is an approximately 8.3-acre parcel of vacant land abutting the western shore of the Hudson River. It is bounded by an active marina to the north, CSX railway and Water Street to the west, and the City Sewer Treatment plant to the south. The site is relatively flat with a slight gentle slope from west to east and an 8-foot high steep embankment at the river's edge. During 2022-2023, the site has continued to be used passively as a mowed public access area and provides a location for a fenced sanitary sewer pumping station at the southwest corner.

1.1 Site History

An extensive history of Site operations, investigations, and remedial actions performed to date is included in the approved Site Management Plan. A brief summary is included below:

The Site was historically used as a shipyard from the early 1900s through the 1940s and then for scrap metal collection and reclamation until 1999. The scrap metal operation resulted in the on-site accumulation of hazardous compounds that included volatile and semi-volatile organic compounds, polychlorinated biphenyls, and EPA Priority Pollutant metals.

A number of investigations and removal actions were performed by EPA and NYSDEC between 1998 and 2013 resulting in the removal of above-grade waste and debris, and targeted excavation and off-site disposal of impacted soils from grade to six feet below grade or the water table.

A demarcation barrier-layer and protective clean soil cover system was placed across the site to restrict potential human contact with residually-impacted soils. Original soils remaining on site in areas where excavation was not required meets or is less than Restricted-Residential Use Soil Clean-up Objectives pf 6 NYCRR 375-6.8(b).

G

Residual groundwater impacts have remained at the Site that exceed ambient water quality standards. Groundwater in the area is not used for potable drinking water and there are no significant downgradient ecological resources.

Potential Soil Vapor Intrusion (SVI) was evaluated during the remedial investigations. There are no on-site buildings at this time. The potential for SVI to adversely impact off-site buildings was determined to be insignificant.

Based on the remedial work completed, the Site was reclassified in August 2014 from Class 2 to Class 4 in the New York State Registry of Inactive Hazardous Waste Sites. This indicates that remediation has been completed to the point where the site no longer poses an immediate threat to human health or the environment. Continued site management is required until all on-site media achieve the Remedial Action Objectives established in the ROD.

1.2 Site Management

The detailed requirements for Site Management are specified in the SMP and are summarized as follows:

- Periodic visual inspection of approved Engineering Controls and appropriate maintenance as warranted;
- Compliance with the approved Institutional Controls with appropriate notification and implementation of protective measures if site uses are altered;
- Periodic monitoring of environmental media to evaluate the continued effectiveness of the remedy; and,
- Periodic reporting

Based on the currently approved schedule included in the SMP, each of the above tasks is completed once annually.

2.0 ENGINEERING AND INSTITUTIONAL CONTROLS

A detailed description of the Engineering and Institutional Controls (EC/ICs) for the Site is included in the SMP and are summarized below.

The ECs include:

- A soil cover system (including the shoreline erosion control blanket and drainage); and,
- A site perimeter fence to restrict site access.

The ICs include:

- An environmental easement that requires;
 - Periodic inspection and maintenance (as required) of the ECs,
 - Periodic monitoring of on-site media;
 - Restrictions on future Site development and uses;
 - Requirements for modifications to future site uses;
 - Requirements for notification and approval of modifications/disturbance to the ECs;
 - Requirements for evaluation of potential vapor impacts associated with future redevelopment of the Site; and,
- Periodic evaluation of the effectiveness of the remedy.

A visual assessment of ECs for the site was conducted by LaBella personnel on April 19, 2023 and is described in Section 2.1. Periodic sampling of groundwater also occurred on April 19, 2023. The sampling methods and procedures are described in Section 2.2. Laboratory analysis was provided by York Environmental Laboratories. The laboratory results are discussed in Section 3.

The required EC/IC certification is attached in Appendix B.

2.1 Site Inspection

The site is rectangular vacant parcel approximately 450 feet wide (east to west) and 800 feet long (north to south) abutting the western shore of the Hudson River. It is a relatively planar site with a gentle dip from west to east. The site is mowed and has pedestrian trails allowing controlled use of the property d as a low-impact public access area. There is a standard 96"-high perimeter security fence on the upland northern, western, and southern property boundary with access gates near the northwest and southwest corners. The shoreline along the river is open but not readily accessible (no landing, with a steep rip-rap embankment). A public access gate is located along the northern security fence.

Visual inspection of the site was performed by LaBella personnel on April 19, 2023. Commencing at the northwest corner of the site, the site perimeter was followed in a counterclockwise direction to observe the condition of the perimeter fence and erosion control blanket along the river front.

G

Interior areas were inspected while traversing the site to access the monitoring wells for sampling. A site map with approximate locations of the traverses and photos are included in **Appendix A**.

The following observations were noted during the site walk:

- The perimeter fence appeared to be intact with no evidence of tampering or damage. Vegetation in some areas could damage the fence if allowed to continue to grow but has not yet caused an issue.
- The eastern boundary abutting the Hudson is steeply sloped with a heavy rip-rap erosion blanket approximately 25 feet wide. Based on the topographic survey, the rip-rap extends from an elevation 8 feet AMSL to approximately 0 feet AMSL. Accumulated driftwood parallel to the shoreline is present up to about 9 feet AMSL. No evidence was observed of any significant scouring or sloughing of the soils from surface drainage or development of surface drainage channels.
- The perimeter of the site is vegetated with small trees and shrubs along the fence line and top of bank along the riverfront. The interior is predominantly an open field with wild grass, flowers, and weeds with a few small scrub bushes. No heavy growth or deep rooting brush, thickets, or trees were observed in the field.
- A gravel walking path installed in 2017 extends from the northern fence line to the shore. Several picnic tables with grills and bleacher seats are located within open mowed areas. The footpaths show no adverse impact of the underlying soil cover system.
- There is a fenced sanitary sewer pumping station on the site near the southwest corner within the perimeter. LaBella understands this station was installed as part a municipal sewer system upgrade completed by the City of Newburgh in 2017.

No evidence of vermin, burrows, or warrens that could potentially damage the protective cover were observed on-site.

2.2 Site Monitoring

One full round of groundwater samples was collected from eight existing on-site groundwater monitoring wells, consistent with the SMP on April 19, 2023. Two other wells, MW-05 and MW-10, were removed from the annual sampling program in September 2019 with the consent of NYSDEC.

Prior to the sampling event, wells were visually inspected for evidence of damage and/or tampering. They appeared to be intact with no evidence of damage and were secured with locks, locking caps, and friction caps in-place. The depths to water were then measured with an electronic interface probe to the nearest 0.01 feet and recorded on the field sampling logs.

Ģ,

Monitoring wells were sampled using low-flow methods using a peristaltic pump at pumping rates ranging from 0.05 to 0.08 gallons per minute, limiting drawdown and allowing sample collection upon documentation of stabilized field parameters. Dedicated sample tubing was used for purging and sample collection at each well.

During the low-flow sampling, the depths to water in the well and Water Quality Parameters (WQPs) were measured and recorded every five-minutes. The WQPs (temperature, pH, specific conductance, oxidation-reduction potential, and dissolved oxygen) were measured with an YSI Professional Plus multi-parameter water quality meter. Pumping continued until drawdown and the WQPs stabilized. The data were recorded on the sampling logs attached in **Appendix A**.

Groundwater samples were collected from the wells into laboratory supplied sample containers, recorded on the chain-of-custody, and placed in ice filled coolers, then transferred to a secure sample refrigerator. Samples were transported directly to the laboratory by courier service. The lab reported that all samples arrived at the lab within the specified holding time and at appropriate temperature.

The groundwater samples were submitted for laboratory analysis in compliance with the sampling and analysis plan included in the SMP. With the approval of NYSDEC effective September 2019 (and modified in 2020), the sampling parameters and methods required for monitoring were changed to include:

CP-51 list of VOCs by Method 8260C CP-51 list of SVOCs by Method 8270D Total lead Total Arsenic (at MW-02 only)

Samples were analyzed using ASP methods with standard Class A data deliverables.

Quality Control/Quality Assurance samples were collected to evaluate data quality. One Trip Blank, a field duplicate, and a Matrix Spike and Matrix Spike Duplicate were collected during the sampling event. The field duplicate and the MS/MSD samples for all analyses were collected from MW-01.

3.0 MONITORING RESULTS

3.1 Water Table

The depths to water from the surveyed measuring point elevations for each well on April 19, 2023, were used to determine the water table elevation in each well. The results are included in the table below.

		Water 19-April			
Well	Measuring Point (ft AMSL)	Ground (Surface (ft AMSL)	Stick- Up (feet)	Depth To Water (ft)	Water Table Elevation
MW-01	18.01	15.00	3.01	14.30	3.71
MW-02	13.99	11.17	2.82	12.49	1.50
MW-03	13.26	10.15	3.10	12.12	1.14
MW-04	11.74	8.77	2.98	10.41	1.33
MW-05	11.52	8.45	3.07	10.42	1.10
MW-06	10.50	7.84	2.66	9.53	0.97
MW-07	10.76	7.99	2.77	9.58	1.18
MW-08	10.85	8.14	2.71	9.67	1.18
MW-09	15.69	12.35	3.34	13.41	2.28
MW-10	11.13	8.47	2.66	9.99	1.14
	n in NAVD 88 Above Mean S	Sea Level			

The data (shaded yellow) were plotted on **Figure 3** using the site survey map for reference elevations. A site survey is included as **Figure 2**.

Based on available Hudson River tidal data for Newburgh, NY the tidal range for April 19, 2023 was:

low tide: 6:30 am	-0.3 ft
high tide: 12:10 pm	3.3 ft
low tide: 6:43 pm	-0.3 ft

Tidal influences on water levels have not been evaluated. However, all groundwater elevations fall within the tidal range except for the upland-most well MW-01. This suggests net groundwater flow is consistently from west to east through the site towards the Hudson River. **Figure 3** shows a site water table interpretation, confirming net groundwater gradients toward the tidal Hudson River.

3.2 Water Quality Parameters

G.

Water quality parameters were collected multiple times at each sample location during the sampling event using a hand-held YSI multi-parameter water quality meter. The results are included on the sampling data sheets included in Appendix A.

		April 19, 20	23 Samplin	g Event							
Well ID	Temp (°C)	рН	SC (µS∕cm)	ORP (mV)	DO (mg/l)	Site Area					
MW-01	11.9	6.78	2248	-83.3	0.61						
MW-02	10.7	6.45	1634	-89.8	0.55	North					
MW-05		Exempt from Monitoring									
MW-06	11.2	7.44	769	46.5	6.03	Area					
MW-10		Exemp	t from Mon	itoring							
MW-03	10.5	6.83	865	-141.9	1.14						
MW-04	11.1	6.89	1366	-90.4	0.69	South					
MW-07	10.4	7.10	1088	-113.1	0.61	Site					
MW-08	9.4	6.90	806	15.6	0.75	Area					
MW-09	14.2	7.04	1557	-44.5	0.90						

The final WQPs collected at each well just prior to sampling are included in the table below.

The groundwater chemistry has previously been noted to differentiate geographically into two areas, with five monitoring wells in each area and separated by the deep soil excavation area running east-west across the middle of the Site. Wells in the northern area include MW-1, MW-2, MW-5, MW-6 and MW-10 and wells in the southern area are MW-3, MW-4, MW-7, MW-8 and MW-9.

During the April 2023 sampling event, the average WQPs in the north and south groups were very similar with the exception of the DO which in MW-6 was once again higher than during prior sampling events. ORP also differed in MW-6 relative to other site monitoring wells. These parameters can be observed further in future sampling events.

3.3 Volatile Organic Compounds – April 19, 2023 Data

A "hit" summary table for VOCs is included below.

Sample ID		MW-1		MW-2	2	MW-:	3	MW-	4	MW-;	7	MW-	8	MW-9		
Compound	AWQS	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	
CP-51 VOCs	ug/L	ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		
Benzene	1	2.0	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	2.0		
Ethyl Benzene	5	120		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	
Isopropylbenzene	5	38		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	
MTBE	10	7.1		0.40	J	2.3		2.3		2.1		0.25	J	0.25	J	
Naphthalene	10	30		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	
n-Butylbenzene	5	4.8		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	
n-Propylbenzene	5	89		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	
Sec-Butylbenzene	5	5.9		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	
Toluene	5	2.3	J	0.20	0.20 U		U	0.20	U	0.20	U	0.20	U	0.20	U	

<u>L</u>

The table includes any VOC compound detected at any concentration that exceeded the method detection limits, including estimated concentrations. No compounds were detected in MW-6.

The laboratory results for all VOCs and qualifier descriptions are included in **Table 1**.

3.4 Semi-Volatile Organic Compounds – April 19, 2023 Data

A "hit" summary table for SVOCs is included below.

Sample ID		MW-1	L	MW-	7
Date	AWQS	4/19/20	023	4/19/2	023
Compound		Result	Q	Result	Q
CP-51 SVOCs	ug/L	ug/L		ug/L	
Acenaphthene	20	0.100		0.280	
Anthracene	50	0.0500	U	0.0500	J
Benzo(a)anthrancene	0.002	0.0500	U	0.0500	U
Benzo(a)pyrene	0.002	0.0500	U	0.0500	U
Benzo(b)fluoranthene	0.002	0.0500	U	0.0500	U
Benzo(k)fluoranthene	0.002	0.0500	U	0.0500	U
Chrysene	0.002	0.0500	U	0.0500	U
Fluoranthene	50	0.0500	J	0.150	
Fluorene	50	0.0500	U	0.130	
Indeno(1,2,3- cd)pyrene	0.002	0.0500	U	0.0500	U
Naphthalene	10	2.96		0.0500	U
Phenanthrene	50	0.0500	J	0.460	
Pyrene	50	0.0500	J	0.150	

The table includes any SVOC compound detected at any concentration that exceeded the applicable ambient water quality standard (AWQS). Each of the eight samples collected during this event were non-detectable for the six polyaromatic hydrocarbons (PAHs) shown above, however, the laboratory method detection limit (MDL) was greater than the applicable AWQS of 0.002 μ g/l for these compounds.

The laboratory results for all SVOCs and qualifier descriptions are included in **Table 2**.

3.5 Lead and Arsenic

The laboratory results for metals and qualifier descriptions are included in Table 3.

Total Lead was detected in only one of the eight samples at a concentration exceeding the quantification limit of 5.56 μ g/l. The result for this sample, collected from well MW-08, was slightly over the standard of 25 μ g/L.

Arsenic was detected in well MW-02 at a concentration of 16.7 ug/L, below the standard of 25 ug/L.

3.6 PCBs and Pesticides

G

Sample analysis for PCBs and/or pesticides was not performed nor required. These parameters were removed from the monitoring program in September 2019 with NYSDEC's approval.

3.7 QA/QC Sampling Results

No VOCs were reported in the Trip Blank.

The results for the field duplicate (CIM-FD-001) and the parent sample (CIM-MW-01) were very similar, generally within approximately 10% of one another. There were only exceptions: one was for Benzene, which was non-detect at 2.0 ug/L in the primary sample and detected at 12.0 ug/L in the duplicate, and the other was for Naphthalene (on the SVOC run), which exhibited a difference of 85.6%. The Naphthalene results from the VOC run, however, were identical in both samples.

Analysis of MS/MSD samples indicated good recoveries and comparable results.

The data appears to be representative of actual groundwater conditions on the date of the sampling event. The data have not been independently validated by a third-party chemist, nor is it required.

4.0 DATA REVIEW

The site compounds of concern specified in the SMP include BTEX and MTBE, SVOCs, PCBs, lead and cadmium. Prior annual sampling events therefore included analyses for TCL-VOCs, TCL-SVOCs, and TAL-Metals, and PCBs. On the basis of monitoring relief approved following the 2019 PRR submittal, the well network of 8 specified monitoring wells was analyzed for the 2023 PRR for the CP-51 lists of VOCs and SVOCs, and Lead. Arsenic was also included in the analysis for well MW-02.

Results for the last four sampling events (May 2020, March/April 2021, October 2021, and April 2023) are compared in the following sections.

4.1 VOCs

Site monitoring well MW-01 is the only well exhibiting a consistent VOC presence over many years. The analyte detections in April of 2023 were below levels detected in 2018 although over those of 2020 and March 2021, and generally consistent with or modestly declining relative to data collected since 2015.

Monitoring Well ID	AWQS	MW-01														
Sampling Date	,μg∕L)	5/12/20	20	3/31/20	021	10/11/20	021	4/19/23								
Compound		Result	Q	Result	Q	Result	Q	Result	Q							
Benzene	1	2.1		2.0		14		2.0	U							
Ethyl Benzene	5	23		32		100		120								
Isopropylbenzene	5	5.8		6.9		47		38								
p- & m- Xylenes	5	0.60	U	0.50	U	4.0		5.0	U							
Toluene	5	0.42	J	0.49	J	3.4		2.3	J							

The MTBE historically detected in wells MW-03 and MW-07 at concentrations greater than the applicable standard 10 μ g/l have been less the AWQS standard since 2015 as summarized below. The MTBE concentrations in MW-7 continues to decrease and the concentration in MW-3 remains low

Date		MW-03	MW-07		
Summary of MTBE detections	AWQS (µg∕L)	(µg∕L)	(µg∕L)		
5/12/2020		1.1	3.9		
3/31/2021	10	< 0.20	2.5		
10/11/2021	10	1.0	2.2		
4/19/2023		2.3	2.1		

Benzene was again detected in MW-09 during the April 2023 sampling event, at a concentration of 2.0 μ g/L, which is lower than that detected in October 2021. Benzene has only periodically been detected in this well.

4.2 SVOCs

G.

PAHs were not detected in the any of the samples during the April 2023 sampling event, with detection limits of 0.0500 to 0.0526 ug/L. These detection limits exceed the water quality standard of 0.002 ug/L. These results are lower than those from 2021, and suggest that elevated results from 2021 sampling events may have been anomalous.

Naphthalene, a gasoline-range SVOC, was reported at 2.96 µg/L in April 2023 in the sample collected from MW-01. This result is within the same order of magnitude as the historical record. Naphthalene, along with associated BTEX (benzene, toluene, ethyl benzene, xylenes) compounds, have consistently remained below standards in on-site wells located downgradient from MW-01, suggesting controlled natural attenuation of organic compounds.

4.3 Lead and Arsenic

The concentrations of lead from the last five consecutive sampling events are included below. The lead is compared to the AWQS of 25 μ g/L with concentrations in excess of the standard highlighted. Concentrations marked with a "B" flag were identified at trace concentrations in the analytical method blank.

		LEA	D: AWC	S =	25 µg/L	-								
Monitoring Well	Oct 20	Oct 2018		L8 May 2020			Apri 202:		Oct 20	021	Apr 202			
MW-01 MW-02	2.380 1.11	U	1.11 1.11	U U	1.11 1.11	U U	NS NS		1.50 1.11	U	5.56 5.56	U U		
MW-03	23.8		4.51		50.9		57.6 52.7	Di	3.94		5.56	U		
MW-04 MW-05	53.3 1.49		5.37 NS		1.11 NS	U	NS NS		2.43 NS		5.56 NS	U		
MW-06 MW-07	99.6 13.3		3.37 4.75		3.07 17.2		NS NS		7.39 45.4		5.56 5.56	U U		
MW-08	32.1		54.0		742		45.1 39.5	Di	8.78 6.19	Di	26.5			
MW-09 MW-10	1.11 U 1.11 U		1.45 NS		1.11 NS	U	NS NS		7.72 NS		5.56 NS	U		
Hits	3		1		2		2		1		1			
Total	226		73		815		102.	7	76		26.5	5		
Average	32		32 12				136		51.3	5	13		3.31	L

The 2023 results for lead are below concentrations previously recorded in most locations with the exception of well MW-08. The result from this location is within the historic range of values for this well.

Arsenic analysis was resumed at MW-02 starting during the March 2021 sampling event. Arsenic was detected at 16.7 ug/L in April 2023, which lower than most other recent results. Previous elevated data at this location suggest that slightly elevated Arsenic may be present in the location of MW-02, and ongoing monitoring remains warranted.

Other metals that are not site contaminants of concern that had consistently been reported at levels exceeding AWQSs include magnesium, manganese, and sodium. The source of

<u>L</u>

these metals has not been confirmed; however, they were generally considered benign and have been removed from the monitoring requirements for the Site.

5.0 SITE EVALUATION

5.1 Conclusions

The Remedial Action Objective for the site is to reduce or eliminate the potential threat to human health and the environment from direct contact with impacted soils and to protect groundwater and surface water from the migration of dissolved site related COCs.

The ECs/ICs implemented appear to be functioning as anticipated.

The soil cover system remains in-place with no evidence of excess erosion, the erosion blanket along the river is intact with no observable evidence of failure or excess erosion. Since the last PRR was completed in 2020, no evidence of soil disturbance was observed within a fenced-in area.

Overall groundwater quality with respect to site related compounds of concern has remained generally stable since the remedy was completed.

There are no active remediation units or systems on site that require evaluation, modification, or maintenance.

The lack of detection of BTEX compounds downgradient from upgradient perimeter wells MW-01 and MW-09 suggests that the standards will be achieved site-wide for BTEX once they are achieved at these wells.

MTBE has not been detected or has remained below the groundwater standard in all site wells since 2015, suggesting that natural attenuation of MTBE is occurring at the site.

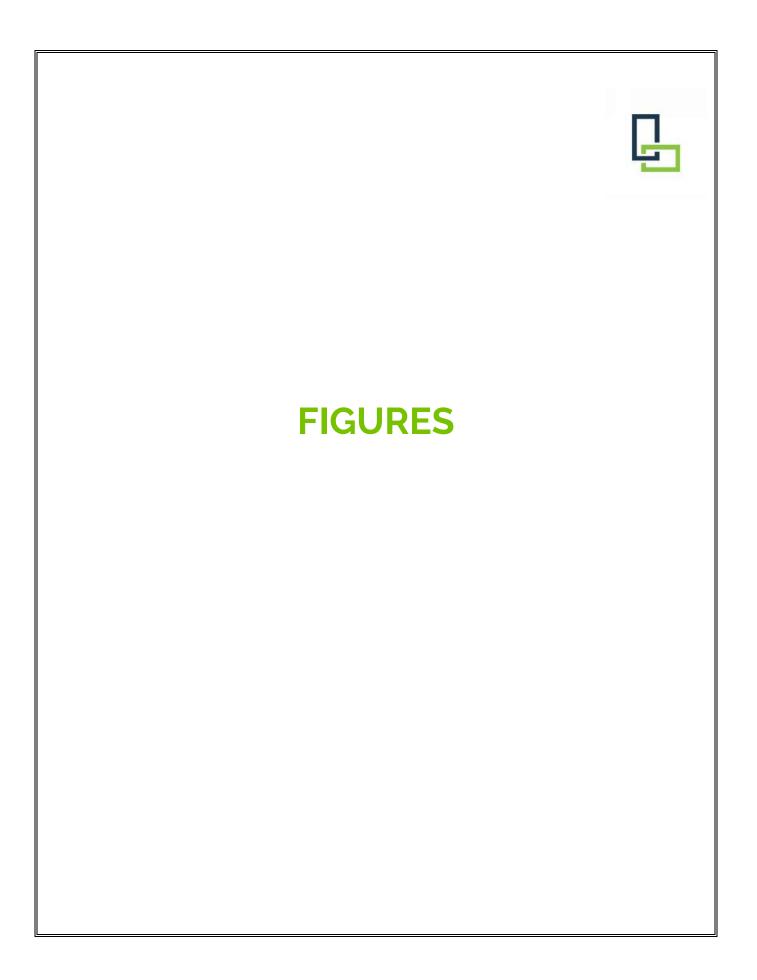
SVOCs (including PAHs) in MW-8 near the shoreline and in upgradient well MW-1 have fallen below standards.

Elevated lead was only noted in one monitoring well, MW-08, of the eight on-site wells sampled in April 2023, and arsenic persists in MW-02 but has fallen below the water quality standard.

The existing ICs for the site prohibit the use of on-site groundwater as potable water. Additionally, the immediately downgradient receptor of groundwater discharge is the Hudson River. Consequently, site-wide groundwater impacts that exceed applicable AWQSs do not pose a potential threat to human health from potential contact or consumption.

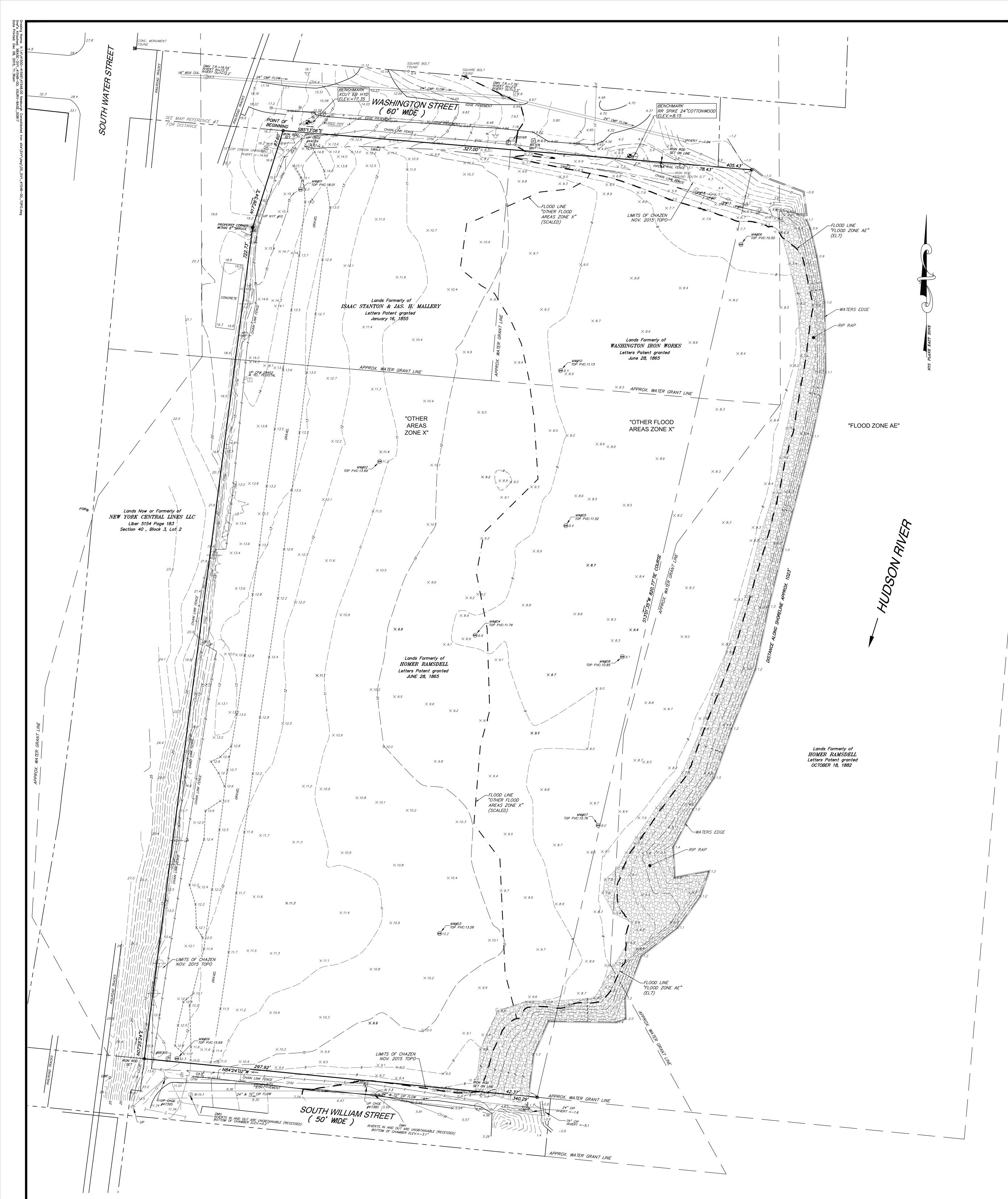
There are no known/previously identified sensitive ecological resources downgradient of the site that could be impacted by the migration of the groundwater. Consequently, site-wide groundwater impacts that exceed applicable AWQSs do not pose a potential threat to the environment.

Based on the data and known site conditions, the EC/ICs for the site are protective and effective at meeting the Remedial Action Goals for the Site. Continued monitoring to document stable or improving conditions is warranted and sufficient.



5.2 Recommendations

Significant modifications to the SMP were recommended in the 2018 PRR and approved in September 2019. Resumed analysis of arsenic at MW-02 was proposed in May 2020 and approved later in 2020.

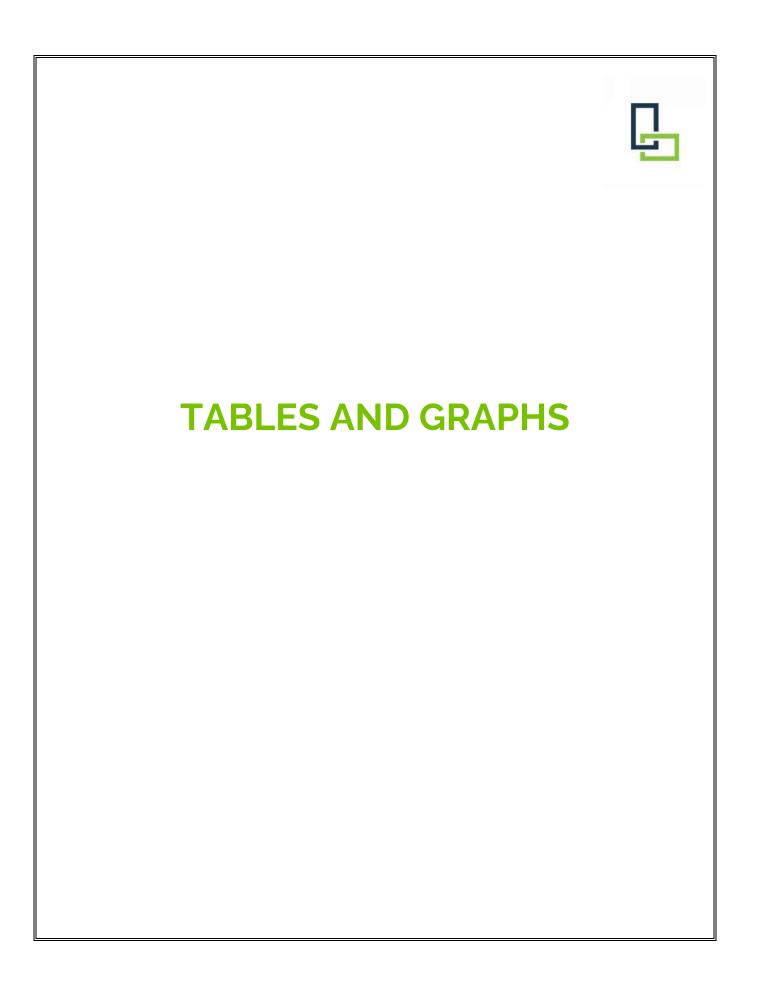

LaBella recommends continuing the analytical program, as modified, and also continuing annual site inspections. Samples intended for metals analysis where field turbidity readings exceed 50 NTU will continue to be field filtered.

B:\GLOBAL\LEGACY\CHAZEN\PROJECTS\41500-41599\41548.00 NEWBURGH CONSOLIDATED IRON SITE\PRR\2023\2023 REPORT\2231596_CON IRON_2023 PRR_DRAFT.DOCX

Data Source: Orange County 2023, USGS 2020-2023; LaBella 2015-2023.

LEGEND:		MAP REFERENCES:	FLOOD ZONE NOTE:		
NO PHYSICAL BOUNDS ADJACENT PROPERTY LINE	EXISTING TREE W/ WIRE EXISTING UNKNOWN MANHOLE	1. REFERENCE IS HEREBY MADE TO A MAP ENTITLED "LANDS OF THE CITY OF NEWBURG TAX LOT 4 IN SECTION 37 BLOCK 4", PREPARED BY GREVAS AND HILDRETH, P.C., DATED JULY 17, 1989 AND ON FILE IN THE CITY OF NEWBURGH OFFICE OF MAP ARCHIVES.	PORTIONS OF SUBJECT PARCEL ARE LOCATED IN 1. FLOOD ZONE AE (EL7) 2. OTHER FLOOD AREAS ZONE X & 3. OTHER AREAS ZONE X AS SHOWN ON FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA) NATIONAL FLOOD INSURANCE		
EXISTING BUILDING	 Ø EXISTING UTILITY POLE (EXISTING GUY WIRE 	2. REFERENCE IS HEREBY MADE TO A MAP ENTITLED "PLAT PLAN OF SURVEY FOR REAL ESTATE ACQUISITION BY CITY OF NEWBURGH, NEW YORK", PREPARED BY HERBERT L. KARTIGANER P.E., L.S., DATED MARCH 20, 1961 AND ON FILE IN THE CITY OF NEWBURGH OFFICE OF MAP ARCHIVES.	PROGRAM (NFIP) FLOOD INSURANCE RATE MAP (FIRM) ORANGE COUNTY, CITY OF NEWBURGH COMMUNITY NUMBER 360626, MAP NUMBER 36071C0332E, EFFECTIVE DATE AUGUST 3, 2009. NOTES:		
	℃ EXISTING HYDRANT IRF ○ EXISTING IRON ROD	3. REFERENCE IS HEREBY MADE TO A MAP ENTITLED "CONSOLIDATED IRON", MAP 61–13–29. DATED 1898 AND ON FILE IN THE CITY OF NEWBURGH OFFICE	UNAUTHORIZED ALTERATION OR ADDITION TO A SURVEY MAP BEARING A LICENSED LAND SURVEYOR'S SEAL IS A VIOLATION OF SECTION 7209, SUBDIVISION 2 OF THE NEW YORK STATE EDUCATION LAW.		
w EXISTING WATER LINE		OF MAP ARCHIVES. 4. REFERENCE IS HEREBY MADE TO A MAP ENTITLED "CONSOLIDATED IRON",	ONLY COPIES FROM THE ORIGINAL OF THIS SURVEY MARKED WITH AN ORIGINAL OF THE LAND SURVEYOR'S INKED SEAL OR HIS EMBOSSED SEAL SHALL BE CONSIDERED TO BE VALID TRUE COPIES.	DEED REFERENCE:	TAX PARCEL NUMBER:
	EXISTING MONUMENT	DEPICTING WATER GRANT PARCELS BEING A MAP OBTAINED FROM THE NYS OFFICE OF GENERAL SERVICES AND ON FILE IN THE CITY OF NEWBURGH OFFICE OF MAP ARCHIVES.	THE CONTRACTOR SHALL COMPLY WITH NEW YORK STATE INDUSTRIAL CODE RULE 53 – 48 HOURS PRIOR TO DIGGING CALL DIG SAFE NEW YORK 1-800-962-7962 TO HAVE PUBLIC UTILITY LOCATIONS PAINTED.	CITY OF NEWBURGH, (TAX SALE) TO	CITY OF NEWBURGH, ORANGE COUNTY, NEW YORK SECTION 40, BLOCK 3, LOT 3
	S EXISTING SANITARY MANHOLE⊗ EXISTING WATER VALVE	5. REFERENCE IS HEREBY MADE TO A MAP ENTITLED "STATION MAP—TRACK & STRUCTURES, ERIE RAILROAD COMPANY, NEW YORK DIVISION, NEWBURGH BRANCH", DATED OCT 17, 1960.	UNDERGROUND WATERLINE AND ELECTRIC FACILITIES SHOWN HEREON WERE TAKEN FROM DATA OBTAINED FROM UTILITY MARKOUT OF UNKNOWN SOURCE. ALL ABOVE GROUND STRUCTURES AND SURFACE FEATURES SHOWN HEREON ARE THE RESULT OF A FIELD SURVEY UNLESS OTHERWISE NOTED. THERE MAY BE OTHER UNDERGROUND UTILITIES, THE EXISTENCE OF WHICH ARE NOT KNOWN OR CERTIFIED BY	CITY OF NEWBURGH APRIL 12, 2005 LIBER 11808 PAGE 1648	AREA: 8.33 ACRES
EXISTING EDGE OF WATER	EXISTING SIGN EXISTING MONITORING WELL	6. REFERENCE IS HEREBY MADE TO A MAP ENTITLED "RIGHT OF WAY MAP, WEST SHORE RAILROAD:, DATED JUNE 17, 1917.	THE UNDERSIGNED. SIZE AND LOCATION OF ALL UNDERGROUND UTILITIES AND STRUCTURES MUST BE VERIFIED BY THE APPROPRIATE AUTHORITIES. THE UNDERGROUND FACILITIES PROTECTIVE ORGANIZATION MUST BE NOTIFIED PRIOR TO CONDUCTING TEST BORINGS, EXCAVATION AND CONSTRUCTION.	CERTIFICATIONS:	
		7. REFERENCE IS HEREBY MADE TO A MAP ENTITLED "TOPOGRAPHIC SURVEY CONSOLIDATED IRON AND METAL SITE" COMPLETED BY LARSEN ENGINEERS IN 2004. TOPOGRAPHY FOR THE SPIT OF LAND JUTTING IN TO THE HUDSON RIVER WAS TAKEN FROM THIS MAP.	TOPOGRAPHY SHOWN HEREON WITHIN THE LIMIT LIMIT LINE "LIMITS OF CHAZEN NOV. 2015 TOPO" IS A RESULT OF A FIELD SURVEY COMPLETED BY THE CHAZEN COMPANIES ON NOVEMBER 12, 2015, TOPOGRAPHY OUTSIDE THOSE LIMITS ALSO COMPLETED BY THE CHAZEN COMPANIES ON MARCH 17, 2008. CONTOUR INTERVAL IS ONE FOOT VERTICAL DATION IS NAVDAR (CONVERSION TO NOVD 20 VERTICAL DATION IS +0.01 FEET.)	TO: CITY OF NEWBURGH	
DRAFT			FOOT. VERTICAL DATUM IS NAVD88. (CONVERSION TO NGVD 29 VERTICAL DATUM IS +0.91 FEET.)		
MAP	CONSOLIDATED IRON AND METAL CO. I OF TOPOGRAPHIC SUR PREPARED FOR CITY OF NEWBURGH	VEY	Hudson Valley Office 21 Fox Street, Suite 201 Powered by partnership. P: (845) 486-1520 F: (845) 454-4026	ALL RIGHTS RESERVED. COPY OR REP OR ANY PORTION, THEREOF IS PROHIBIT PERMISSION OF THE DESIGN ENGINEER, S UNAUTHORIZED ALTERATION OR ADDITION A LICENSED LAND SURVEYOR'S SEAL IS 7209, SUBDIVISION 2 OF THE NEW YOR I HEREBY CERTIFY THAT THIS SURVEY MA FIELD SURVEY COMPLETED NOV. 12, 2015 MAP WAS MADE BY ME OR UNDER MY ID WITH THE MINIMUM STANDARD OF PRACT YORK STATE ASSOCIATION OF PROFESS	ED WITHOUT THE WRITTEN SURVEYOR, OR ARCHITECT. TO A SURVEY MAP BEARING A VIOLATION OF SECTION STATE EDUCATION LAW. P IS BASED ON AN ACTUAL AND THAT THIS SURVEY IRECTION, AND CONFORMS CE ADOPTED BY THE NEW

MAP REFERENCES


FLOOD ZONE NOTE

Creator: EJO

Data Source: Orange County 2023, bing.com 2020-2023; LaBella 2015-2023.

TABLE 1 CP-51 VOC RESULTS

Sample ID York ID	/ork ID		MW-0 23D1180	-01	MW-0 23D1180	-02	MW-0 23D1180	-03	MW-0 23D1180	-04	MW-06 23D1180-05		MW-0 23D1180	-06	MW-08 23D1180-07		MW-09 23D1180-08				Trip Blank 23D1180-10	
Sampling Date		AWQS*	19-Apr-	-	19-Apr-	-	19-Apr-	-	19-Apr-	-	19-Apr-	-	19-Apr-	-	19-Apr-23		19-Apr-	-	19-Apr-	-	18-Apr-	-
Client Matrix	CAS Number		Water Result	r Q	Wate Result	r Q	Wate Result	r Q	Wate Result	r Q	Water Result	r Q	Wate Result	r Q	Wate Result	r Q	Wate Result	r Q	Wate Result	r Q	Wate Result	er Q
Compound CP-51 VOCS	CAS Number	ug/L	ug/L	Q	ug/L	Q	ug/L	Q	ug/L	Q	ug/L	Q	ug/L	Q	ug/L	Q	ug/L	Q	ug/L	Q	ug/L	Q
Dilution Factor		ug/L	10 ug/ L		1 ug/ L		1 ug/ L		ug/∟ 1		1 ug/ L		1 ug/ L		ug/∟ 1		1 ug/ L		1 ug/ L		ug/∟ 1	
1,2,4-Trimethylbenzene	95-63-6	5	2.0	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	2.0	U	0.20	U
1,3,5-Trimethylbenzene	108-67-8	5	2.0	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	2.0	U	0.20	U
Benzene	71-43-2	1	2.0	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	2.0		12		0.20	U
Ethyl Benzene	100-41-4	5	120		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	120		0.20	U
Isopropylbenzene	98-82-8	5	38		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	37		0.20	U
MTBE	1634-04-4	10	7.1		0.40	J	2.3		2.3		0.20	U	2.1		0.25	J	0.25	J	7.2		0.20	U
Naphthalene	91-20-3	10	30		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	30		1.0	U
n-Butylbenzene	104-51-8	5	4.8		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	6.9		0.20	U
n-Propylbenzene	103-65-1	5	89		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	88		0.20	U
o-Xylene	95-47-6	5	2.0	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	2.0	U	0.20	U
p- & m- Xylenes	179601-23-1	5	5.0	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	5.0	U	0.50	U
p-Isopropyltoluene	99-87-6	5	2.0	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	2.0	U	0.20	U
sec-Butylbenzene	135-98-8	5	5.9		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	5.6		0.20	U
tert-Butylbenzene	98-06-6	5	2.0	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	2.0	U	0.20	U
Toluene	108-88-3	5	2.3	J	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	2.3	J	0.20	U
Xylenes, Total	1330-20-7	5	6.0	U	0.60	U	0.60	U	0.60	U	0.60	U	0.60	U	0.60	U	0.60	U	6.0	U	0.60	U

NOTES:

Any Regulatory Exceedences are color coded by Regulation

AWQS* = ambient Water Quality standards, Togs v 1.1.1

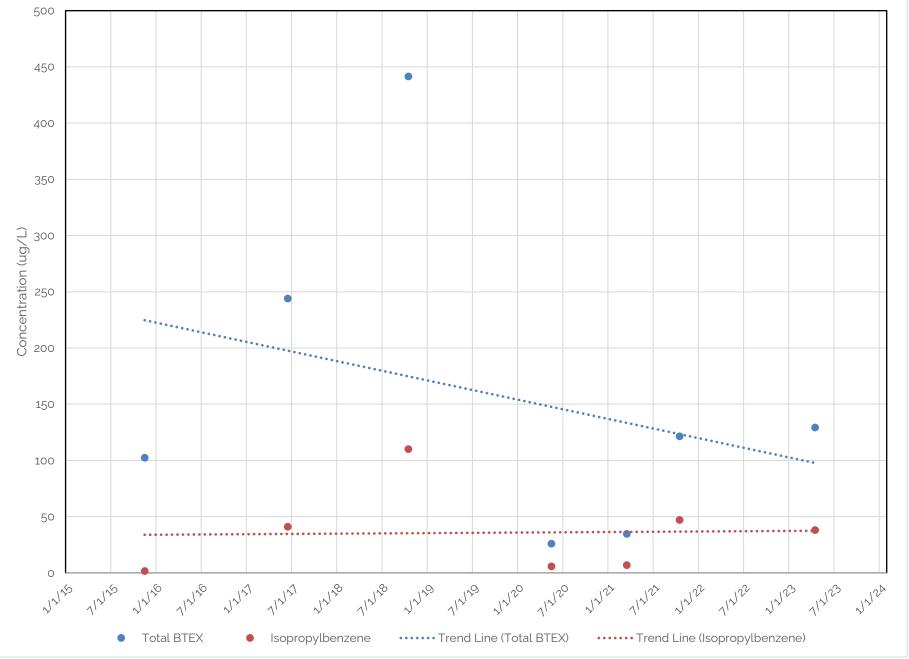
Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank


E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

Table 1, Graph 1: Select VOC Concentrations in Well MW-01

Consolidated Iron and Metals Site, Washington Avenue, City of Newburgh, Orange County, New York

LaBella Associates, DPC

Sample ID York ID		23D11		MW-01 23D1180-01 4/19/2023		'-01) -09	23D1180	MW-02 23D1180-02 4/19/2023		MW-03 23D1180-03		MW-04 23D1180-04		6 -05	-		,		MW-09 23D1180-08	
Sampling Date				-	4/19/20	_		_	4/19/20		4/19/20		4/19/20	_	4/19/20		4/19/20	_	4/19/2	-
Compound	CAS No.		Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
CP-51 SVOCs		ug/L	ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L	
Acenaphthene	83-32-9	20	0.100		0.162		0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.280		0.0526	U	0.0526	U
Acenaphthylene	208-96-8	~	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0526	U	0.0526	U
Anthracene	120-12-7	50	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	J	0.0526	U	0.0526	U
Benzo(a)anthracene	56-55-3	0.002	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0526	U	0.0526	U
Benzo(a)pyrene	50-32-8	0.002	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0526	U	0.0526	U
Benzo(b)fluoranthene	205-99-2	0.002	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0526	U	0.0526	U
Benzo(g,h,i)perylene	191-24-2	~	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0526	U	0.0526	U
Benzo(k)fluoranthene	207-08-9	0.002	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0526	U	0.0526	U
Chrysene	218-01-9	0.002	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0526	U	0.0526	U
Dibenzo(a,h)anthracene	53-70-3	~	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0526	U	0.0526	U
Fluoranthene	206-44-0	50	0.0500	J	0.0757		0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.150		0.0526	U	0.0526	U
Fluorene	86-73-7	50	0.0500	U	0.0649		0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.130		0.0526	U	0.0526	U
Indeno(1,2,3-cd)pyrene	193-39-5	0.002	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0526	U	0.0526	U
Naphthalene	91-20-3	10	2.96		7.39		0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.0526	U	0.0526	U
Phenanthrene	85-01-8	50	0.0500	J	0.0973		0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.460		0.0526	U	0.0526	U
Pyrene	129-00-0	50	0.0500	J	0.0757		0.0500	U	0.0500	U	0.0500	U	0.0500	U	0.150		0.0526	U	0.0526	U

TABLE 2 CP-51 SVOC Results

NOTES:

Any Regulatory Exceedences are color coded by Regulation

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J-analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

~=this indicates that no regulatory limit has been established for this analyte

TABLE 3 Results for Metals

Sample Date	19-Apr-23	
Lead by EPA 6010		
AWQS	25	µg∕L

Well ID	R	Q
MW-01	5.56	U
Dup (MW-01)	5.56	U
MW-02	5.56	U
MW-03	5.56	U
MW-04	5.56	U
MW-05	Not Sampled	
MW-06	5.56	U
MW-07	5.56	U
MW-08	26.5	
MW-09	5.56	U
MW-10	Not Sampled	

Sample Date	19-Apr-23	
Arsenic by EPA 6010		
AWQS	25	µg∕L

Well ID	R	Q
MW-02	16.7	U

NOTES:

Regulatory Exceedences bold and shaded NS = No sample

Q is the Qualifier Column with definitions as follows:

U=analyte not detected at or above the level indicated

APPENDIX A

Field Data Sheets, Site Inspection Forms and Photo Log

SAMPLE	INFORM	ATION:										
Sample I	D:	CIM-M\	W-01 0423		Sample 7	Time:	10	:18		Sample Matr	X (circle) :	
Well ID:		M	W-01	-	Sample [Date:	4/19.	/2023		Groundwater	1	Soil
Project N	lame:	Consoli	dated Iron	_	Sample 7	Tech(s):	Orlc	owski		Surface Water	-	Air
Sample I	_ocation:	Newb	urgh, NY	-		nd Task #:		1596		Drinking Water		Other:
					Project №	1anager:	Orlc	owski				
WELL IN	FORMAT	ION:										
Well Cor	ndition:	Good										
Lock Typ	be:	Master					Key #:	3303				
PURGE D	DATA:					•						
Measurin		то	C-PVC		(B)		Purge Me	thod:		Low Flow - Peris	taltic	
Depth to	Bottom:	2	2.46	Pipe Width	Gal/Foot		Start Date	2		4/19/2023		
Depth to			4.30	1.0"	0.041		Start Time	9:		9:47		
	olumn He	•	8.16	1.5"	0.092		Stop Time:			10:17		-
(depth to bo	ottom - dept	h to water)		2.0"	0.163		Purge Rate (gpm):			0.050		-
# of Volu	imes to b	e Duraed [.]	(\mathbf{C})	2.5"	0.255		•	⁻ ime (min): Purged (#):		30		-
# of Volumes to be Purged: <i>(C)</i> NA			3.0" 4.0 "	0.367 0.653		Purge Vol	•		0.28		-	
				4.0 6.0"	1.469		Well wen	Ū	No	Yes	1.5 Voc	
Gal. to be Purged: (AxBxC)				8.0"	2.611		Condition	-	No Odor	1	Odor	
	0		NA	<u> </u>		J			Clear	Slightly-Turbio		Turbid
FIELD RE										•		
Gal	Date &	Depth	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
purged	Time	to	remp	opeend	Cond.	ranolally	100	Cuor	DO	Pri	OIN	
pargea		Water										
gal		ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0.00	9:47	14.3	11.6	2255	1679	Clear	1.4625	wx. petrol.	1.25	6.52	22.6	
0.25	9:52	14.48	11.8	2250	1685	4.40	1.4625	wx. petrol.	0.91	6.66	-22.2	
0.50	9:57	14.56	11.8	2253	1686	0.90	1.4625	wx. petrol.	0.70	6.79	-49.9	
0.75	10:02	14.65	11.9	2252	1687	0.67	1.4625	wx. petrol.	0.91	6.74	-64.0	
1.00	10:07	14.77	11.9	2254	1689	0.41	1.4625	wx. petrol.	0.71	6.70	-75.4	
1.25	10:12	14.87	11.9	2251	1687	0.20	1.4625	wx. petrol.	0.65	6.70	-79.5	
1.50	10:17	14.99	11.9	2248	1685	0.02	1.4625	wx. petrol.	0.61	6.78	-83.3	
	INFORM											
Sample N			istaltic			, Dedicated or	Disp. Bailer, W	Vaterra, Dir. Ins	trument Re	eading, etc.)		
Sample 7	• •		Composite		Sample [-				
Weather		Cloudy	'	-	Baromet			-	Wind:	Breezy (5-10 mp	oh from	NE)
Notes:				-	Air Temp).(⁻ ⊢):	50ish	-				
Notes.	MS/MS[) set also	collected he	ere.								
	wx. Petro	ol. = weath	ered petrol	eum								
			i									
LAB REQ												
	ory Name:				Analysis,	/Method:				Turn Around Time:		
	ork Analyt				-	CP-51 VOC	s			Standa	ard	
						CP-51 SVO		-				
						Total Lead	k	-				
QA/QC:	Duplicat	e	Equip. Blan	ık		Field Blan	<		Trip Bla	ank		
			-									

App C_Field Sheets_04 2023.xlsx

SAMPLE	INFORM	ATION:	,			1						
Sample I	D:	CIM-MV	W-02 0423		Sample T	Гime:	12	2:52	_	Sample Mati	rix (circle) :	
Well ID:		M	W-02	1	Sample [Date:	4/19	/2023	r	Groundwater	1	Soil
Project N	lame:	Consoli	idated Iron		Sample T	Fech(s):	Orlo	owski	· -	Surface Water	_	Air
Sample L	_ocation:	Newb	urgh, NY		Project a	ind Task #:	223	2231596		Drinking Water		Other:
					Project M	1anager:	Orlo	owski	-			
WELL IN	IFORMAT	ION:										
Well Con	ndition:	Good										
		<u></u>					14 14.					
Lock Typ		Master					Key #:	3303				
PURGE D												
Measurin			C-PVC	T	(B)	1	Purge Me		,	Low Flow - Peris		
Depth to			9.63	Pipe Width		4	Start Date			4/19/2023		
Depth to	o water: olumn He		2.40	1.0"	0.041	1	Start Time Stop Time			12:11		
		· ·	7.23	1.5" 2.0"	0.092 0.163	1	Purge Rat			0.060	12:51	
(depinto bo	(depth to bottom - depth to water)			2.0 2.5"	0.103	1	0	Time (min):		40		
# of Volumes to be Purged: (C)			(C)	2.5 3.0"	0.255	1	•	Purged (#):	-	0.51		
		0	NA	4.0 "	0.653		Purge Vol	•	•	2.40		
				6.0"	1.469	1	Well went dry? No			Yes		
Gal. to be	e Purged:	(AxBxC)		8.0"	2.611	1	Condition	· ·	No Odor		Odor	
	0		NA	<u> </u>		ł			Clear	Slightly-Turbi		Turbid
FIELD RE												
Gal	Date &	Depth	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
	Time	to	тепр	Speona	Cona.	TUDUCty	105	Uuui		μц		
purged		Water	1		1	1			i I			
gal		ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0.00	12:11	12.40	10.6	1431	1038	Clear	0.9295	Swampy	8.54	6.59	-32.6	
0.30	12:16	12.60	10.5	1428	1033	3.90	0.9295	Swampy	9.12	6.54	-51.0	
0.60	12:21	12.57	10.5	1452	1052	5.50	0.9490	Swampy	3.77	6.48	-60.4	
0.90	12:26	12.53	10.5	1512	1094	4.13	0.9815	Swampy	1.63	6.44	-68.7	
1.20	12:31	12.51	10.5	1557	1125	4.76	1.0140	Swampy	1.23	6.49	-74.6	
1.50	12:36	12.50	10.5	1584	1147	5.29	1.0270	Swampy	0.92	6.49	-80.1	
1.80	12:41	12.48	10.5	1609	1166	6.42	1.0465	Swampy	0.66	6.44	-84.0	
2.10	12:46	12.48	10.7	1622	1176	5.98	1.0530	Swampy	0.60	6.49	-87.3	
2.40	12:51	12.48	10.7	1634	1187	4.96	1.0595	Swampy	0.55	6.45	-89.8	
L:4~	±2,0-	<u>⊥∟.ч</u> ~	10.,	1004	110,	4.3~	ل،دین				0910	
SAMPLE	INFORM/	ATION:		L		<u> </u>	4	<u> </u>	<u> </u>			l
Sample N			istaltic	(Peristaltic, :	Submersible	e, Dedicated or	Disp. Bailer, W	Vaterra, Dir. Ins	strument Re	ading, etc.)		
Sample T			Composite		Sample [·			-		
Weather	Clou	ıdy/breaks	s of sun		Barometr	ric Pres.:		-	Wind:	Breezy (5-15 m	ph from I	NE)
·				1	Air Temp	».(°F):	50s	-	-		<u>.</u>	
Notes:				ļ.				-				

LAB REQUESTS:			
Laboratory Name:		Analysis/Method:	Turn Around Time:
York Analytical		CP-51 VOCs	Standard
		CP-51 SVOCs	
		Total Lead, Total Arsenic	
QA/QC: Duplicate	Equip. Blank	Field Blank	Trip Blank

App C_Field Sheets_04 2023.xlsx

SAMPLE	INFORM	ATION:										
Sample I	D:	CIM-MV	√-03 0423		Sample 7	Fime:	14	:51		Sample Ma	atrix (circle) :	
Well ID:		M١	W-03	-	Sample [Date:	4/19/	/2023	-	Groundwater		Soil
Project N	lame:	Consoli	dated Iron	-	Sample 7	Fech(s):	Orlo	owski	- •	Surface Water		Air
Sample L	_ocation:	Newb	urgh, NY		Project a	nd Task #:	223:	1596	_	Drinking Water		Other:
					Project №	lanager:	Orlc	owski	_			
WELL IN	FORMAT	ION:										
Well Con	ndition:	Good										
Lock Typ)e:	Master					Key #:	3303				
PURGE D												
Measurin	•		C-PVC		(B)	I	Purge Me		-	Low Flow - Pe		
Depth to				Pipe Width	Gal/Foot		Start Date:			4/19/2023		
-	epth to Water: 11.79 ater Column Height: (A) 7.71			1.0"	0.041		Start Time:			14:15		
		•	7.71	1.5"	0.092		Stop Time: Purge Rate (gpm):		0.060			
(αεριπιο δο	lepth to bottom - depth to water)			2.0" 2.5"	0.163 0.255		Elapsed T		-	35		
# of Volumes to be Purged: (C)			2.5 3.0"	0.367		Well Vol.):	0.42			
NA			NA	4.0"	0.653		Purge Vol. (gal):			2.1		
				6.0"	1.469		Well went	t dry?	No	Yes		
Gal. to be	e Purged:	(AxBxC)		8.0"	2.611		Condition	S:	No Odor		Odor	
			NA						Clear	Slightly-Tur	bid	Turbid
FIELD RE	SULTS:											
Gal	Date &	Depth	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
purged	Time	to										
		Water										
gal		ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0.00	14:15	11.79	10.9	854	622	Clear	0.5525	Sulfur	9.39	7.01	-37.1	
0.30	14:20	12.24	10.7	833	604	6.51	0.5395	Sulfur	4.13	6.84	-83.6	
0.60	14:25	12.26	10.5	829	599	6.39	0.5395	Sulfur	4.00	6.89	-103.2	
0.90	14:30	12.27	10.4	832	601	5.19	0.5395	Sulfur	3.08	6.80	-115.3	
1.20	14:35	12.30	10.5	836	604	5.78	0.5460	Sulfur	2.02	6.86	-124.0	
1.50	14:40	12.32	10.3	845	607	5.58	0.5525	Sulfur	1.12	6.81	-131.8	
1.80	14:45	12.32	10.4	853	616	5.49	0.5525	Sulfur	1.17	6.85	-137.4	
2.10	14:50	12.30	10.5	865	625	5.74	0.5590	Sulfur	1.14	6.83	-141.9	
				-	-							
SAMPLE	INFORM	ATION:		1				I	1 1			
Sample N			staltic	(Peristaltic, s	Submersible	, Dedicated or	Disp. Bailer, W	/aterra, Dir. In	strument Rea	ding, etc.)		
Sample T		Grab	Composite		Sample [
Weather		Partly Sur	iny	_	Baromet	ric Pres.:			Wind:	Breezy (5-15	mph from N	NE)
				_	Air Temp	o.(°F):	60ish	-	-			
Notes:												

LAB REQUESTS:				
Laboratory Name:		Analysis/Method:	Turn Around Time:	
York Analytical		CP-51 VOCs	Standard	
		CP-51 SVOCs		
		Total Lead		
QA/QC: Duplicate	Equip. Blank	Field Blank	Trip Blank	

App C_Field Sheets_04 2023.xlsx

Well ID:MW-04Sample Date:4/19/2023GroundwaterProject Name:Consolidated IronSample Tech(s):OrlowskiSurface Water	
Project Name: Consolidated Iron Sample Tech(s): Orlowski Surface Wate	
	r Air
Sample Location: Newburgh, NY Project and Task #: 2231596 Drinking Wate	er Other:
Project Manager: Orlowski	
WELL INFORMATION:	
Well Condition: Good	
Lock Type: Master Key #: 3303	
PURGE DATA:	
Measuring Point: TOC-PVC (B) Purge Method: Low Flow	- Peristaltic
	/2023
	01
	26
	060
	2 <u>5</u>
	50
6.0" 1.469 Well went dry? No Yes	
Gal. to be Purged:(AxBxC)8.0"2.611Conditions:No Odor	Odor
NA Clear Slightly	
FIELD RESULTS:	
Gal Date & Depth Temp SpCond Cond. Turbidity TDS Odor DO pH	ORP
purged Time to	ON
Water	
gal ft deg C uS/cm ^c NTU g/L mg/L	mV
0.00 16:01 10.40 11.5 1366 1014 Moderate 0.8905 SL Swampy 7.42 6.82	-11.1
0.30 16:06 10.82 11.2 1401 1031 126.4 0.9100 SL Swampy 7.30 6.75	-51.6
0.60 16:11 10.82 11.1 1379 1014 49.11 0.8970 SL Swampy 1.82 6.84	-68.0
0.90 16:16 10.81 11.2 1375 1012 55.74 0.8965 SL Swampy 0.71 6.87	-78.2
1.20 16:21 10.83 11.1 1370 1006 14.16 0.8905 SL Swampy 0.71 6.88	-86.7
1.50 16:26 10.84 11.1 1366 1003 9.05 0.8905 SL Swampy 0.69 6.89	-90.4
SAMPLE INFORMATION:	
Sample Method: Peristaltic (Peristaltic, Submersible, Dedicated or Disp. Bailer, Waterra, Dir. Instrument Reading, etc.)	
Sample Type: Grab Composite Sample Depth(ft):	
	5-10 mph from NE)
Air Temp.(°F): 60ish	- <u> </u>
Notes:	

LAB REQUESTS:				
Laboratory Name:		Analysis/Method:	Turn Around Time:	
York Analytical		CP-51 VOCs	Standard	
		CP-51 SVOCs		
		Total Lead		
QA/QC: Duplicate	Equip. Blank	Field Blank	Trip Blank	

App C_Field Sheets_04 2023.xlsx

SAMPLE	INFORM	ATION:										
Sample II	D:	CIM-M\	W-06 0423		Sample ⁻	Time:	18	:04		Sample M	latrix (circle) :	
Well ID:		M	W-06	-	Sample [Date:	4/19/2023			Groundwater		Soil
Project N	lame:	Consoli	dated Iron	-	Sample ⁻	Tech(s):	Orlo	wski	L	Surface Water		Air
Sample L	_ocation:	Newb	urgh, NY	-	Project a	nd Task #:	2231596		-	Drinking Water		Other:
				-	Project M	1anager:	Orlo	owski	_			
WELL IN	FORMAT	ION:										
Well Con	ndition:	Good										
Lock Typ	e:	Master					Key #:	3303	3			
PURGE D	DATA:											
Measurin	ig Point:	ТО	C-PVC		(B)	_	Purge Me	thod:		Low Flow - Pe	eristaltic	
Depth to	Bottom:	1	6.90	Pipe Width	Gal/Foot		Start Date	2.	-	4/19/20	23	
Depth to		9.76		1.0"	0.041		Start Time:			17:38		_
Water Co		•	7.14	1.5"	0.092		Stop Time:			18:03		
(depth to bo	ottom - dept	h to water)		2.0"	0.163		Purge Rat	÷.	-	0.060	-	
# of Volumes to be Purged: (C)			2.5"	0.255		Elapsed T		-	25		-	
NA				3.0" 4.0 "	0.367 0.653		Well Vol.	•). -	0.32		-
			INA	4.0 6.0"	1.469		Purge Vol. (gal): Well went dry? No			1.50 Yes		-
Gal. to be	e Puraed [.]	(AxBxC)		8.0"	2.611		Condition		No Odor	163	Odor	
	or argoa	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NA	0.0	2.011	J	Condition	5.	Clear	Slightly-Tu		Turbid
				_						5,		
FIELD RE		Devetle	Taiaaia	Cia Cia ia d	Carad	Tu uda i ality d	TDC	Odar	DO			
Gal	Date &	Depth	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
purged	Time	to Water										
gal		ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0.00	17:38	9.76	11.3	768	567	Clear	0.5005	None	13.66	7.44	50.0	
0.30	17:43	10.24	11.2	771	568	6.79	0.5005	None	11.02	7.45	46.7	
0.60	17:48	10.45	11.2	771	568	2.47	0.5005	None	7.80	7.46	45.7	
0.90	17:53	10.61	11.2	770	567	1.32	0.5005	None	6.90	7.44	45.9	
								None			46.1	
1.20	17:58	10.75	11.2	769	567	1.74	0.5005		6.43	7.45		
1.50	18:03	10.87	11.2	769	566	0.89	0.5005	None	6.03	7.44	46.5	
SAMPLE	INFORM	ATION:		1		I	<u>I</u>	1			<u> </u>	I
Sample N			istaltic	(Peristaltic, S	Submersible	, Dedicated or	Disp. Bailer, W	/aterra, Dir. Ir	strument Rea	ding, etc.)		
Sample T	Гуре:	Grab	Composite		Sample [Depth(ft):						
Weather		Mostly su	nny	_	Baromet	ric Pres.:			Wind:	Breezy (5-10	mph from	NE)
				_	Air Temp	o.(°F):	low 60s	-	-			
Notes:												

LAB REQUESTS:				
Laboratory Name:		Analysis/Method:	Turn Around Time:	
York Analytical		CP-51 VOCs	Standard	
		CP-51 SVOCs		
		Total Lead		
QA/QC: Duplicate	Equip. Blank	Field Blank	Trip Blank	

App C_Field Sheets_04 2023.xlsx

SAMPLE	INFORM	ATION:										
Sample I	D:	CIM-MV	W-07 0423		Sample ⁻	Time:	15	:46		Sample M	atrix (circle) :	
Well ID:		M١	W-07	-	Sample I	Date:	4/19/2023		Groundwater		Soil	
Project N	lame:	Consoli	dated Iron	-	Sample ⁻	Tech(s):	Orlc	Orlowski		Surface Water		Air
Sample L	_ocation:	Newb	urgh, NY		Project a	nd Task #:	2231596			Drinking Water		Other:
					Project N	1anager:	Orlo	owski	_			
WELL IN	FORMAT	ION:										
Well Cor	ndition:	Good										
Lock Typ	e:	Master				-	Key #:	3303	3			
PURGE D	ATA:											
Measurin	g Point:	ТОС	C-PVC		(B)	_	Purge Me	thod:	_	Low Flow - Pe	ristaltic	
Depth to		1	8.52	Pipe Width	Gal/Foot		Start Date		_	4/19/202	23	
Depth to).29	1.0"	0.041		Start Time		_	15:05		
Water Co		•	9.23	1.5"	0.092		Stop Time		-	15:45		
(depth to bc	ottom - dept	h to water)		2.0"	0.163		Purge Rat	÷.	-	0.060		
# of Volu	imes to h	e Purged:	(\mathbf{C})	2.5" 3.0"	0.255 0.367		Elapsed T Well Vol.		_	40 0.40		
		0	NA	3.0 4.0 "	0.307		Purge Vol	•	<i>.</i>	2.40		
				4.0 6.0"	1.469		Well wen	0	No	Yes		
Gal. to be	e Purged:	(AxBxC)		8.0"	2.611		Condition		No Odor		Odor	
	C		NA	<u> </u>		1			Clear	Slightly-Tur		Turbid
FIELD RE												
Gal	Date &	Depth	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
purged	Time	to	remp	opeend	Cond.	raibiaity	100	Ouor	DU	pri	OIU	
puiged		Water										
gal		ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0.00	15:05	9.29	10.4	1064	767	Clear	0.6890	Sl. Sulfur	6.90	7.01	-40.4	
0.30	15:10	9.9	10.1	1044	747	6.66	0.6760	Sl. Sulfur	6.82	7.14	-87.5	
0.60	15:15	9.92	10.3	1032	743	7.1	0.6695	Sl. Sulfur	3.54	7.08	-106.0	
0.90	15:20	9.91	10.4	1038	750	6.66	0.6760	Sl. Sulfur	2.23	7.18	-111.0	
1.20	15:25	9.91	10.4	1053	758	8.43	0.6825	Sl. Sulfur	1.48	7.07	-112.6	
1.50	15:30	9.91	10.5	1061	766	3.92	0.6890	Sl. Sulfur	0.90	7.03	-112.9	
1.80	15:35	9.92	10.4	1073	773	1.53	0.6955	Sl. Sulfur	0.61	7.11	-112.8	
2.10	15:40	9.93	10.4	1078	778	1.01	0.7020	Sl. Sulfur	0.61	7.08	-112.9	
2.40	15:45	9.96	10.4	1088	785	0.77	0.7085	Sl. Sulfur	0.61	7.10	-113.1	
SAMPLE	INFORM	ATION:							<u> </u>		I	
Sample N			istaltic		Submersible	, Dedicated or	Disp. Bailer, W	Vaterra, Dir. In	strument Read	ding, etc.)		
Sample 1			Composite		Sample I	•		-				
Weather		Partly Sur	nny	_	Baromet			-	Wind:	Breezy (5-15	mph from N	NE)
				-	Air Temp	o.(°F):	60ish	-				
Notes:												

LAB REQUESTS:				
Laboratory Name:		Analysis/Method:	Turn Around Time:	
York Analytical		CP-51 VOCs	Standard	
		CP-51 SVOCs		
		Total Lead		
QA/QC: Duplicate	Equip. Blank	Field Blank	Trip Blank	

App C_Field Sheets_04 2023.xlsx

SAMPLE	INFORM	ATION:										
Sample I	D:	CIM-M\	W-08 0423		Sample 7	Time:	17	/:11		Sample M	latrix (circle) :	
Well ID:		M	W-08	-	Sample [Date:	4/19/2023			Groundwater		Soil
Project N	lame:	Consoli	dated Iron	-	Sample 7	Tech(s):	Orlc	wski	- •	Surface Water		Air
Sample L	_ocation:	Newb	urgh, NY	-	Project a	nd Task #:	223	1596	_	Drinking Water		Other:
				-	Project M	1anager:	Orlo	owski	_			
WELL IN	FORMAT	ION:										
Well Cor	ndition:	Good										
Lock Typ	be:	Master					Key #:	3303	3			
PURGE D	DATA:											
Measurin	ng Point:	TO	C-PVC		(B)		Purge Me	thod:		Low Flow - Pe	eristaltic	
Depth to	Bottom:	1	7.60	Pipe Width	Gal/Foot		Start Date	<u>)</u>		4/19/20	23	
Depth to			9.66	1.0"	0.041		Start Time):	-	16:45		
Water Co		•	7.94	1.5"	0.092		Stop Time		-	17:10		
(depth to bo	ottom - dept	h to water)		2.0"	0.163		Purge Rat		-	0.060		-
# of \/olu	imac ta b	Durand		2.5"	0.255		Elapsed T		-	25		
	imes to c	e Purged:		3.0"	0.367		Well Vol.	•):	0.29		
			NA	4.0" 6.0"	0.653 1.469		Purge Vol Well went	•	No	1.50 Yes		-
Gal to be	- Puraed [.]	(AxBxC)		8.0"	2.611		Condition	•	No Odor	163	Odor	
	or argoa.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NA	0.0	2.011	J	Condition	5.	Clear	Slightly-Tu		Turbid
				-						e		
FIELD RE			-				TDO				0.00	
Gal	Date &	Depth	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
purged	Time	to										
gal		Water ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0.00	16:45	9.66	10.0	843	601	Clear	0.5460	None	9.18	7.05	32.2	
0.30	16:50	10.06	9.5	796	561	8.84	0.5200	None	5.38	6.92	22.7	
0.60	16:55	10.15	9.4	806	559	10.09	0.5200	None	1.41	6.88	19.3	
0.90	17:00	10.18	9.4	796	558	11.76	0.5200	None	0.82	6.88	18.2	
							-					
1.20	17:05	10.21	9.4	800	557	4.66	0.5200	None	0.76	6.86	17.0	
1.50	17:10	10.22	9.4	806	565	2.38	0.5265	None	0.75	6.90	15.6	
SAMPLE	INFORM	L ATION:	l			l	l	1	1		<u> </u>	l
Sample N			istaltic	(Peristaltic,	Submersible	, Dedicated or	Disp. Bailer, W	Vaterra, Dir. In	nstrument Rea	ding, etc.)		
Sample T		Grab	Composite		Sample [
Weather	·	Mostly su	nny	_	Baromet	ric Pres.:		-	Wind:	Breezy (5-10	mph from	NE)
				-	Air Temp	o.(°F):	low 60s	-	-			
Notes:												

LAB REQUESTS:				
Laboratory Name:		Analysis/Method:	Turn Around Time:	
York Analytical		CP-51 VOCs	Standard	
		CP-51 SVOCs		
		Total Lead		
QA/QC: Duplicate	Equip. Blank	Field Blank	Trip Blank	

App C_Field Sheets_04 2023.xlsx

SAMPLE	INFORM	ATION:										
Sample I	D:	CIM-M\	W-09 0423		Sample ⁻	Time:	11	:46		Sample M	atrix (circle) :	
Well ID:		M	W-09	-	Sample I	Date:	4/19/2023			Groundwater		Soil
Project N	lame:	Consoli	dated Iron	-	Sample ⁻	Tech(s):	Orlo	owski	Surface Water			Air
Sample L	_ocation:	Newb	urgh, NY	-	Project a	nd Task #:	223	1596	-	Drinking Water		Other:
				-	Project N	1anager:	Orlo	owski	-			
WELL IN	FORMAT	ION:										
Well Cor	ndition:	Good										
Lock Typ	e:	Master					Key #:	3303	}			
PURGE D	DATA:											
Measurin	ig Point:	TO	C-PVC		(B)		Purge Me	thod:		Low Flow - Pe	eristaltic	
Depth to	Bottom:	2	0.88	Pipe Width	Gal/Foot		Start Date	2	-	4/19/202	23	
Depth to	Water:	1	<u>3.30</u>	1.0"	0.041		Start Time	9:	-	11:20		
Water Co	olumn He	eight: (A)	7.58	1.5"	0.092		Stop Time		-	11:45		
(depth to bo	ottom - dept	h to water)		2.0"	0.163		Purge Rat	÷.	-	0.060		
# af \/al.	un o o to la			2.5"	0.255			Time (min):	-	25		
	imes lo L	e Purged:		3.0"	0.367			Purged (#)): -	0.30		
			NA	4.0 "	0.653		Purge Vol Well wen	•	No	1.50 Yes		
Gal to be	Purapd	(AxBxC)		6.0"	1.469 2.611		Condition	•	No Odor	res	Odor	
	er urgeu.		NA	8.0"	2.011		Condition	5.		Slightly-Tur		Turbid
				_					otoai	Sugnity Fu		Tarbia
FIELD RE			_									
Gal	Date &	Depth	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
purged	Time	to										
gal		Water ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0.00	11:20	13.30	14.0	1597	1262	8.69	1.0400	Sulfur	10.31	7.10	13.7	
						-	-	Sl. Sulfur				
0.30	11:25	13.38	14.2	1563	1240	4.31	1.0140		13.06	7.08	-14.2	
0.60	11:30	13.39	14.1	1559	1235	3.42	1.0140	Sl. Sulfur	2.76	7.06	-27.5	
0.90	11:35	13.39	14.1	1560	1234	2.88	1.0140	Sl. Sulfur	1.10	7.09	-35.7	
1.20	11:40	13.39	14.2	1558	1235	1.46	1.0140	Sl. Sulfur	0.99	7.08	-40.4	
1.50	11:45	13.38	14.2	1557	1235	0.34	1.0140	Sl. Sulfur	0.90	7.04	-44.5	
	ļ				ļ							
							 					
SAMPLE			intolt:-		o. l				,	<i></i>		
Sample N			istaltic Composito			, Dedicated or	Disp. Bailer, W	Vaterra, Dir. In	strument Rea	dıng, etc.)		
Sample T		Grab	Composite ,		Sample I	-		-	\V/ind	Droot / C co	mph frame	
Weather		Cloudy	/	-	Baromet Air Temp			-	Wind:	Breezy (5-10	mpn from	NE)
Notes:				-	Air remp	л. ГЛ.	50s	-				
INOLES.												

LAB REQUESTS:				
Laboratory Name:		Analysis/Method:	Turn Around Time:	
York Analytical		CP-51 VOCs	Standard	
		CP-51 SVOCs		
		Total Lead		
QA/QC: Duplicate	Equip. Blank	Field Blank	Trip Blank	

App C_Field Sheets_04 2023.xlsx

CONSOLIDATED IRON AND METAL SITE SITE MANAGEMENT PLAN SITE WIDE INSPECTION FORM

Page 1 of 4

Date: 04/19/2023

Inspection Personnel: Eric J. Orlowski, PG

Weather Conditions: Cloudy to mostly sunny, 50s to low 60s, breezy (5 to 15 mph from the NE)

Subsurface soils are contaminated by cadmium, lead, total PCBs and VOCs (BTEX-MTBE) at levels exceeding restricted residential Soil Cleanup Objectives (SCOs). Currently, protection of public health and the environment to contaminated media is provided by an engineered cover system consisting of between 3.5 and more than 10 feet of clean fill underlain by a demarcation barrier. The location of the cover system is depicted on Figure 1 of the Site Management Plan (SMP). Shoreline stabilization measures have been employed to limit the potential for erosion.

Cover System Inspection

Has the overall condition of the cover system changed from	Yes	No_X_
the previous inspection (if first inspection, respond with N/A)?		
If Yes, provide detail and identify on Site Plan		

Is soil cover system adequately vegetated to prevent erosion? Yes_X_ No_____ If No, identify locations and provide detail on attached Site Plan

CONSOLIDATED IRON AND METAL SITE SITE MANAGEMENT PLAN SITE WIDE INSPECTION FORM

Page 2 of 4

Is there evidence that the soil cover system has been eroded Yes____ No_X_ by wind, water and/or planned or unplanned construction activities?

If Yes, identify locations and provide detail on attached Site Plan

Is there evidence that the soil cover system has been breached Yes____ No_X (i.e., areas where surface appears patched, signs of excavation)

If Yes, identify locations and provide detail on attached Site Plan

Is there evidence that the shoreline stabilization measures have been Yes_____ No_X_ breached (i.e., areas where shoreline appears to be eroded our unstabile)? If Yes, identify locations and provide detail on attached Site Plan

CONSOLIDATED IRON AND METAL SITE SITE MANAGEMENT PLAN SITE WIDE INSPECTION FORM

Page 3 of 4

Have photographs been taken of the cover system and shoreline for inclusion in the site inspection report.	Yes_X_	No
If No, give reason		
Are the existing groundwater monitoring wells intact and accessible? If No, please describe the condition	Yes_X	No
Were the groundwater monitoring wells sampled during this inspection?	Yes <u>X</u>	No
If No, why and when is the next scheduled monitoring well sampling even	nt?	
Are there any violations of the use restrictions observed	Yes	No <u>X</u>
(e.g., non-community vegetable gardens)?Are the remedy components positistitutional controls, and that shall also	st-construction,	such as
Has there been any change in the use restrictions on the site or	Yes	No <u>X</u>
the necessary provisions for ensuring that the easement covenant remains effective? If Yes, list and/or identify	in place and is	
in 2 co, not and/or identify		

CONSOLIDATED IRON AND METAL SITE SITE MANAGEMENT PLAN SITE WIDE INSPECTION FORM

Page 4 of 4

Are there any changes to site operations and maintenance requirements Yes_____ No_X_ for the components of the remedy? If Yes, please describe

Data Source: Orange County 2023, bing.com 2020-2023; LaBella 2015-2023.

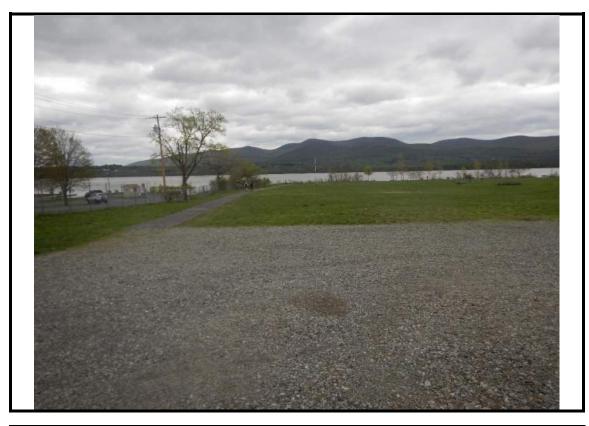


Photo #1

Description: View of northern field area of Site, facing east from NW entrance.

Photo #3 Description: View of monitoring well MW-09 in sewer pumping station, facing south.

Photo #5 Description: View of well MW-02 in central area of site, with groundwater sampling apparatus in place. View faces southeast.

Photo #7

Description: View of eastern Site area, facing southeast, and rip-rap erosion blanket installed along Hudson River frontage.

APPENDIX B

IC/EC Certification Forms for 2023

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	336055	Site Details		Box 1	
		ensolidated Iron & Meta	I			
Site Cit		1 Washington Street wburgh e	Zip Code: 12550			
Re	porting Peric	od: May 16, 2022 to May	16, 2023			
					YES	NO
1.	Is the inform	mation above correct?			X	
	If NO, inclu	ide handwritten above or	on a separate sheet.			
2.		or all of the site property nendment during this Re	been sold, subdivided, mergeo porting Period?	d, or undergone a		X
3.		been any change of use a RR 375-1.11(d))?	at the site during this Reporting	g Period		X
4.	•	ederal, state, and/or loca e property during this Rep	l permits (e.g., building, discha porting Period?	arge) been issued		X
			s 2 thru 4, include document viously submitted with this c			
5.	Is the site o	currently undergoing deve	elopment?			X
					Box 2	
					YES	NO
6.		ent site use consistent wit Residential, Commercial	h the use(s) listed below? , and Industrial		X	
7.	Are all ICs	in place and functioning	as designed?	X		
	IF TH		QUESTION 6 OR 7 IS NO, sign IE REST OF THIS FORM. Othe		Ind	
AC	Corrective M	easures Work Plan mus	t be submitted along with this	form to address th	nese iss	ues.
Sig	nature of Ow	ner, Remedial Party or De	esignated Representative	Date		

SITE NO. 336055		Box 3
Description of	Institutional Controls	
<u>Parcel</u>	Owner	Institutional Control
40-3-3	City of Newburgh	Oracia d Water Line Destriction
		Ground Water Use Restriction Soil Management Plan
		Monitoring Plan
		Site Management Plan
		Landuse Restriction
1. Groundwater Use	restriction - Groundwater must be treated	before use.
2. Land Use - Land	may be used for no use more stringent th	an restricted residential.
below the demarcation lead present in the g		an to monitor the levels of VOC, Cadmium, and luation and, if needed, the installation of a
		Box 4
Description of	f Engineering Controls	
Parcel	Engineering Control	
40-3-3		
	Cover System Fencing/Access Cor	atral
	Subsurface Barriers	

			Box 5
	Periodic Review Report (PRR) Certification Statements		
	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the dire reviewed by, the party making the Engineering Control certification; 	ction of,	and
	b) to the best of my knowledge and belief, the work and conclusions described is are in accordance with the requirements of the site remedial program, and generative provide a state of the site remedial program.		
	engineering practices; and the information presented is accurate and compete.	YES	NO
		X	
	For each Engineering control listed in Box 4, I certify by checking "YES" below that all following statements are true:	of the	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Deplace.	partmer	ıt;
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and
	 (c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control; 		
	(d) nothing has occurred that would constitute a violation or failure to comply wire Site Management Plan for this Control; and	th the	
	(e) if a financial assurance mechanism is required by the oversight document fo mechanism remains valid and sufficient for its intended purpose established in the		
		YES	NO
		X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
	A Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	sues.
-	Signature of Owner, Remedial Party or Designated Representative Date		

Γ

	IC CERTIFICATIONS SITE NO. 336055	
		Box 6
I certify that all information and	OR DESIGNATED REPRESENTATIV statements in Boxes 1,2, and 3 are tru hable as a Class "A" misdemeanor, pu	e. I understand that a false
I Todd Venning	and the second sec	ay Newburgh, NY 12550 ,
print name	print business ad	ldress
am certifying as	Owner	(Owner or Remedial Party)
for the Site named in the Site D Signature of Owner, Remedial I Rendering Certification ≯ P₂	Party, or Designated Representative	<u>6/13/23</u> Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

1 Christopher Lapine at 21 Fox Street, Youghkeepsie; NY 12601 print name print business address am certifying as a Qualified Environmental Professional for the (Owner of Remedial Party) NE VEER CE hex La Signature of Qualified Environmental Professional, for Stamp Date the Owner or Remedial Party, Rendering Certification Required for

APPENDIX C

April 2023 Laboratory Analytical Report

Technical Report

prepared for:

LaBella Associates (Poughkeepsie) 21 Fox Street Poughkeepsie NY, 12601 Attention: Eric Orlowski

Report Date: 05/01/2023 Client Project ID: 2231596 CONSOLIDATED IRON York Project (SDG) No.: 23D1180

Revision No. 1.0

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Report Date: 05/01/2023 Client Project ID: 2231596 CONSOLIDATED IRON York Project (SDG) No.: 23D1180

LaBella Associates (Poughkeepsie)

21 Fox Street Poughkeepsie NY, 12601 Attention: Eric Orlowski

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on April 20, 2023 and listed below. The project was identified as your project: **2231596 CONSOLIDATED IRON**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	<u>Client Sample ID</u>	Matrix	Date Collected	Date Received
23D1180-01	CIM-MW-01 0423	Water	04/19/2023	04/20/2023
23D1180-02	CIM-MW-02 0423	Water	04/19/2023	04/20/2023
23D1180-03	CIM-MW-03 0423	Water	04/19/2023	04/20/2023
23D1180-04	CIM-MW-04 0423	Water	04/19/2023	04/20/2023
23D1180-05	CIM-MW-06 0423	Water	04/19/2023	04/20/2023
23D1180-06	CIM-MW-07 0423	Water	04/19/2023	04/20/2023
23D1180-07	CIM-MW-08 0423	Water	04/19/2023	04/20/2023
23D1180-08	CIM-MW-09 0423	Water	04/19/2023	04/20/2023
23D1180-09	CIM-FD-01 0423	Water	04/19/2023	04/20/2023
23D1180-10	TRIP BLANK 0423	Water	04/18/2023	04/20/2023

General Notes for York Project (SDG) No.: 23D1180

- The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to 1. the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made. 2.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further 5. information.

- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York 8. Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By: Och I Most

Cassie L. Mosher Laboratory Manager Date: 05/01/2023

CIM-MW-01 0423 Client Sample ID:

Client Sample ID: CIM-MV	V-01 0423		York Sample ID:	23D1180-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 10:28 am	04/20/2023

<u>Volatile C</u>	Organics, CP-51 (STARS) Low le	vel			<u>Log-in</u>	Notes:		Sam	ple Note	e <u>s:</u>		
Sample Prepar CAS N	ed by Method: EPA 5030B o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 20:02 0854,NELAC-NY120	SMA 58,NJDEP,PAI
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 20:02 0854,NELAC-NY120	SMA 58,NJDEP,PAI
71-43-2	Benzene	ND		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 20:02 0854,NELAC-NY120	SMA 58,NJDEP,PAI
100-41-4	Ethyl Benzene	120		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 PH-0723,NELAC-NY1	04/21/2023 20:02 0854,NELAC-NY120	SMA)58,NJDEP,PA
98-82-8	Isopropylbenzene	38		ug/L	2.0	5.0	10	EPA 8260C Certifications:		04/21/2023 12:30 PH-0723,NELAC-NY1	04/21/2023 20:02	SMA
1634-04-4	Methyl tert-butyl ether (MTBE)	7.1		ug/L	2.0	5.0	10	EPA 8260C Certifications:		04/21/2023 12:30 PH-0723,NELAC-NY1	04/21/2023 20:02	SMA
91-20-3	Naphthalene	30		ug/L	10	20	10	EPA 8260C Certifications:		04/21/2023 12:30	04/21/2023 20:02	SMA
104-51-8	n-Butylbenzene	4.8	J	ug/L	2.0	5.0	10	EPA 8260C Certifications:		04/21/2023 12:30 PH-0723,NELAC-NY1	04/21/2023 20:02	SMA
103-65-1	n-Propylbenzene	89		ug/L	2.0	5.0	10	EPA 8260C Certifications:		04/21/2023 12:30 PH-0723,NELAC-NY1	04/21/2023 20:02	SMA
95-47-6	o-Xylene	ND		ug/L	2.0	5.0	10	EPA 8260C Certifications:		04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 20:02	SMA
179601-23-1	p- & m- Xylenes	ND		ug/L	5.0	10	10	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 20:02 0854,NELAC-NY120	SMA 58,PADEP
99-87-6	p-Isopropyltoluene	ND		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 20:02 0854,NELAC-NY120	SMA 58,NJDEP,PAI
135-98-8	sec-Butylbenzene	5.9		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 PH-0723,NELAC-NY1	04/21/2023 20:02 0854,NELAC-NY120	SMA)58,NJDEP,PA
98-06-6	tert-Butylbenzene	ND		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 20:02 0854,NELAC-NY120	SMA 58,NJDEP,PAI
108-88-3	Toluene	2.3	J	ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 PH-0723,NELAC-NY1	04/21/2023 20:02 0854,NELAC-NY120	SMA)58,NJDEP,PA
1330-20-7	Xylenes, Total	ND		ug/L	6.0	15	10	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 20:02 0854,NELAC-NY120	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	99.7 %			81-117							
460-00-4	Surrogate: SURR:	97.3 %			79-122							

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

p-Bromofluorobenzene

Sample Prepared by Method: EPA 3510C

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH	DRIVE	STRATFORD, C	T 06615			132	2-02 89th AV	ENUE	RICHMOND HILI	_, NY 11418	
www.YORKLAB.c	om	(203) 325-1371				FAX	X (203) 357-	0166	ClientServices@	Page 4	of 41

Log-in Notes:

Sample Notes: EXT-EM

Client Sample ID:	CIM-MW-01 0423		York Sample ID:	23D1180-01
York Project (SDG) No	<u>Client Project ID</u>	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 10:28 am	04/20/2023

	tiles, CP-51 (formerly STARS)- d by Method: EPA 3510C	Low Level			<u>Log-in</u>	Notes:		<u>Sam</u>	<u>iple Note</u>	es: EXT-EM		
CAS No	-	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
83-32-9	Acenaphthene	0.100		ug/L	0.0500	0.0500	1	EPA 8270D		04/25/2023 15:08	04/27/2023 14:03	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
208-96-8	Acenaphthylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 14:03 854,NJDEP,PADEP	KH
120-12-7	Anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 14:03 854,NJDEP,PADEP	KH
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 14:03 854,NJDEP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 14:03 854,NJDEP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 14:03 854,NJDEP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 14:03 854,NJDEP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 14:03 854,NJDEP,PADEP	KH
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 14:03 854,NJDEP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 14:03 854,NJDEP,PADEP	KH
206-44-0	Fluoranthene	0.0500	J	ug/L	0.0500	0.0500	1	EPA 8270D		04/25/2023 15:08	04/27/2023 14:03	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
86-73-7	Fluorene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 14:03 854,NJDEP,PADEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 14:03 854,NJDEP,PADEP	KH
91-20-3	Naphthalene	2.96		ug/L	0.0500	0.0500	1	EPA 8270D		04/25/2023 15:08	04/27/2023 14:03	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
85-01-8	Phenanthrene	0.0500	J	ug/L	0.0500	0.0500	1	EPA 8270D		04/25/2023 15:08	04/27/2023 14:03	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
129-00-0	Pyrene	0.0500	J	ug/L	0.0500	0.0500	1	EPA 8270D		04/25/2023 15:08	04/27/2023 14:03	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	45.0 %	S-08		50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	40.6 %			39.9-105							

Lead by EPA 6010

1718-51-0

Sample Prepared by Method: EPA 3015A

Surrogate: SURR: Terphenyl-d14

41.8 %

Date/Time Date/Time Reported to LOQ Dilution CAS No. Parameter Result Flag Units **Reference Method** Prepared Analyzed Analyst 7439-92-1 ND mg/L 0.00556 EPA 6010D 04/28/2023 08:30 04/28/2023 19:51 CW Lead 1 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP Certifications: 120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418** www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 5 of 41

Log-in Notes:

Sample Notes:

30.7-106

Client Sample ID: CIM-MV	V-01 0423		York Sample ID:	23D1180-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 10:28 am	04/20/2023

Sample Information

Client Sample ID: CIM-M	W-02 0423		<u>York Sample ID:</u>	23D1180-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 12:52 pm	04/20/2023

Volatile Organics, CP-51 (STARS) Low level Sample Prepared by Method: EPA 5030B			<u>Log-in Notes:</u>				Sample Notes:				
CAS No	•	Result Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		ate/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,NJDEP,PA
108-67-8	1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,NJDEP,PA
71-43-2	Benzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,NJDEP,PA
100-41-4	Ethyl Benzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:		:4/2023 09:00 ,NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,NJDEP,PA
98-82-8	Isopropylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,NJDEP,PA
634-04-4	Methyl tert-butyl ether (MTBE)	0.40 J	ug/L	0.20	0.50	1	EPA 8260C		4/2023 09:00	04/24/2023 12:59	SMA
91-20-3	Naphthalene	ND	ug/L	1.0	2.0	1	Certifications: EPA 8260C Certifications:	04/2	4/2023 09:00	10854,NELAC-NY120 04/24/2023 12:59 12058,NJDEP,PADEP	SMA
104-51-8	n-Butylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,NJDEP,PA
103-65-1	n-Propylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,NJDEP,PA
95-47-6	o-Xylene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,PADEP
179601-23-1	p- & m- Xylenes	ND	ug/L	0.50	1.0	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,PADEP
99-87-6	p-Isopropyltoluene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,NJDEP,PA
135-98-8	sec-Butylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,NJDEP,PA
98-06-6	tert-Butylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,NJDEP,PA
108-88-3	Toluene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,NJDEP,PA
1330-20-7	Xylenes, Total	ND	ug/L	0.60	1.5	1	EPA 8260C Certifications:		4/2023 09:00 NELAC-NY1	04/24/2023 12:59 0854,NELAC-NY120	SMA 58,NJDEP
	Surrogate Recoveries	Result	Acc	eptance Rang	e						
7060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	102 %		69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	99.3 %		81-117							
120 RES	EARCH DRIVE	STRATFORD, CT 0661	5		132	2-02 89th A	VENUE	RICH		LL, NY 11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 6 of 41

				Sampic	momma	uon						
<u>Client San</u>	nple ID: CIM-MW-02 0423									<u>York Sample</u>	<u>ID:</u> 23	D1180-02
York Proje	ect (SDG) No.	Client	Project II	<u>D</u>			Ma	<u>atrix</u>	Colle	ction Date/Time	Date	e Received
23	3D1180	2231596 CONS	OLIDAT	ED IRON			W	ater	April 19	9, 2023 12:52 pm	n (04/20/2023
					Log in 1	Notos		Sam	nla Nata			
	Drganics, CP-51 (STARS) Low ed by Method: EPA 5030B	level			Log-in 1	Notes:		<u>5am</u>	ple Note	<u>s:</u>		
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	96.2 %			79-122							
<u>Semi-Vola</u>	ntiles, CP-51 (formerly STARS	S)-Low Level			Log-in]	Notes:		<u>Sam</u>	ple Note	<u>s:</u> EXT-EM		
Sample Prepare	ed by Method: EPA 3510C									Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
208-96-8	Acenaphthylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 I-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
120-12-7	Anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 1-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
206-44-0	Fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
86-73-7	Fluorene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 1-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
91-20-3	Naphthalene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
85-01-8	Phenanthrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
129-00-0	Pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 1-0723,NELAC-NY108	04/27/2023 14:33 54,NJDEP,PADEP	КН
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	31.8 %	S-08		50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	44.7 %			39.9-105							
1718-51-0	Surrogate: SURR: Terphenyl-d14	49.8 %			30.7-106							

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@ Page

Page 7 of 41

<u>Client Sample ID:</u> CIM-MW	/-02 0423		York Sample ID:	23D1180-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 12:52 pm	04/20/2023

Arsenic by EPA 601	<u>10</u>				<u>Log-in Notes:</u>		Sample Note	<u>s:</u>		
Sample Prepared by Method:	EPA 3015A									
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2 Arsenic		ND		mg/L	0.0167	1	EPA 6010D Certifications: CTDOH-PI	04/28/2023 08:30 H-0723,NELAC-NY10	04/28/2023 20:07 854,NJDEP,PADEP	CW
Lead by EPA 6010					<u>Log-in Notes:</u>		Sample Note	<u>s:</u>		
Sample Prepared by Method:	EPA 3015A									
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1 Lead		ND		mg/L	0.00556	1	EPA 6010D Certifications: CTDOH-PI	04/28/2023 08:30 I-0723,NELAC-NY10	04/28/2023 20:07 854,NJDEP,PADEP	CW

Sample Information

Client Sample ID: CIM-M	W-03 0423		<u>York Sample ID:</u>	23D1180-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 2:51 pm	04/20/2023

<u>Volatile O</u>	olatile Organics, CP-51 (STARS) Low level			<u>Log-in</u>	Notes:		Samp	ole Notes:		
Sample Prepare	ed by Method: EPA 5030B									
CAS No	o. Parameter	Result Flag	g Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Date/Time Method Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/24/2023 09:00 CTDOH-PH-0723,NELAC-NY10	04/24/2023 13:28 0854,NELAC-NY120	SMA 58,NJDEP,PAI
108-67-8	1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/24/2023 09:00 CTDOH-PH-0723,NELAC-NY10	04/24/2023 13:28 0854,NELAC-NY120	SMA 58,NJDEP,PAI
71-43-2	Benzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/24/2023 09:00 CTDOH-PH-0723,NELAC-NY10	04/24/2023 13:28 0854,NELAC-NY120	SMA 58,NJDEP,PAI
100-41-4	Ethyl Benzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/24/2023 09:00 CTDOH-PH-0723,NELAC-NY10	04/24/2023 13:28 0854,NELAC-NY120	SMA 58,NJDEP,PAI
98-82-8	Isopropylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/24/2023 09:00 CTDOH-PH-0723,NELAC-NY10	04/24/2023 13:28 0854,NELAC-NY120	SMA 58,NJDEP,PAI
1634-04-4	Methyl tert-butyl ether (MTBE)	2.3	ug/L	0.20	0.50	1	EPA 8260C	04/24/2023 09:00	04/24/2023 13:28	SMA
							Certifications:	CTDOH-PH-0723,NELAC-NY1	0854,NELAC-NY120	058,NJDEP,PA
91-20-3	Naphthalene	ND	ug/L	1.0	2.0	1	EPA 8260C Certifications:	04/24/2023 09:00 NELAC-NY10854,NELAC-NY1	04/24/2023 13:28 2058,NJDEP,PADEP	SMA
104-51-8	n-Butylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/24/2023 09:00 CTDOH-PH-0723,NELAC-NY10	04/24/2023 13:28 0854,NELAC-NY120	SMA 58,NJDEP,PAI
103-65-1	n-Propylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/24/2023 09:00 CTDOH-PH-0723,NELAC-NY10	04/24/2023 13:28 0854,NELAC-NY120	SMA 58,NJDEP,PAI
95-47-6	o-Xylene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/24/2023 09:00 CTDOH-PH-0723,NELAC-NY10	04/24/2023 13:28 0854,NELAC-NY120	SMA 58,PADEP
179601-23-1	p- & m- Xylenes	ND	ug/L	0.50	1.0	1	EPA 8260C Certifications:	04/24/2023 09:00 CTDOH-PH-0723,NELAC-NY10	04/24/2023 13:28 0854,NELAC-NY120	SMA 58,PADEP
120 RES	EARCH DRIVE	STRATFORD, CT 0661	5		13	2-02 89th A	AVENUE	RICHMOND HIL	L, NY 11418	
www.YO	RKLAB.com	(203) 325-1371			FA	X (203) 35	7-0166	ClientServices@	Page 8	of 41

Client Sample ID: CIM-MW-03 0423

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 2:51 pm	04/20/2023

<u>Volatile (</u>	Organics, CP-51 (STARS) Low le	vel			Log-in 1	Notes:		<u>San</u>	nple Note	<u>:s:</u>		
Sample Prepar	red by Method: EPA 5030B	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/24/2023 09:00 H-0723,NELAC-NY10	04/24/2023 13:28 854,NELAC-NY1205	SMA 58,NJDEP,PAI
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/24/2023 09:00 H-0723,NELAC-NY10	04/24/2023 13:28 854,NELAC-NY1205	SMA 58,NJDEP,PAI
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/24/2023 09:00 H-0723,NELAC-NY10	04/24/2023 13:28 854,NELAC-NY1205	SMA 58,NJDEP,PAI
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/24/2023 09:00 H-0723,NELAC-NY10	04/24/2023 13:28 854,NELAC-NY1205	SMA 58,NJDEP,PAI
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH-PI	04/24/2023 09:00 H-0723,NELAC-NY10	04/24/2023 13:28 854,NELAC-NY1205	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	99.2 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.2 %			79-122							

Log-in Notes:

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Sample Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	KH
208-96-8	Acenaphthylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	KH
120-12-7	Anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
206-44-0	Fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
86-73-7	Fluorene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	KH
120 RES	SEARCH DRIVE	STRATFORD, CT	06615			132	-02 89th A	VENUE		RICHMOND HIL	L, NY 11418	

FAX (203) 357-0166

RICHMOND HILL, NY 11418 Page 9 of 41

ClientServices@

York Sample ID:

Sample Notes: EXT-EM

23D1180-03

Client Sample ID: CIM-MW-03 0423

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 2:51 pm	04/20/2023

York Sample ID:

23D1180-03

	ni-Volatiles, CP-51 (formerly STARS)-Low Level le Prepared by Method: EPA 3510C				<u>Log-in Notes:</u>			Sample Notes: EXT-EM				
Sample Prepar	-	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
91-20-3	Naphthalene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
85-01-8	Phenanthrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
129-00-0	Pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:04 854,NJDEP,PADEP	КН
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	6.44 %	S-09		50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	30.4 %	S-09		39.9-105							
1718-51-0	Surrogate: SURR: Terphenyl-d14	36.2 %			30.7-106							

Lead by EPA 601	<u>D</u>				Log-in Notes:		Sample Note	es:		
Sample Prepared by Metho	d: EPA 3015A									
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1 Lead		ND		mg/L	0.00556	1	EPA 6010D Certifications: CTDOH-P	04/28/2023 08:30 H-0723,NELAC-NY10	04/28/2023 20:16 0854,NJDEP,PADEP	CW

Sample Information

Client Sample ID: CIM-MW	-04 0423		York Sample ID:	23D1180-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 4:27 pm	04/20/2023

	Dlatile Organics, CP-51 (STARS) Low level aple Prepared by Method: EPA 5030B					Notes:	Sample Notes:					
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 0854,NELAC-NY120	SMA 58,NJDEP,PAI
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 0854,NELAC-NY120	SMA 58,NJDEP,PAI
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 0854,NELAC-NY120	SMA 58,NJDEP,PAI
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 0854,NELAC-NY120	SMA 58,NJDEP,PAI
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 0854,NELAC-NY120	SMA 58,NJDEP,PAI
120 RES	SEARCH DRIVE	STRATFORD, CT	06615			132	2-02 89th A	VENUE		RICHMOND HIL	L, NY 11418	
www.YC	RKLAB.com	(203) 325-1371				FA	X (203) 35	7-0166		ClientServices@	Page 10	of 41

Client Sample ID: CIM-MW-04 0423

Client Sample ID: CIM-MV	V-04 0423		York Sample ID:	23D1180-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 4:27 pm	04/20/2023

-	Drganics, CP-51 (STARS) Low le ed by Method: EPA 5030B	vel			<u>Log-in</u>	<u>Notes:</u>		Sample Notes:				
CAS No	•	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	2.3		ug/L	0.20	0.50	1	EPA 8260C		04/21/2023 12:30	04/21/2023 21:29	SMA
								Certifications:	CTDOH-F	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP,PA
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-N	04/21/2023 12:30 Y10854,NELAC-NY12	04/21/2023 21:29 2058,NJDEP,PADEP	SMA
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 854,NELAC-NY120	SMA 58,NJDEP,PAI
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 854,NELAC-NY120	SMA 58,NJDEP,PAI
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 854,NELAC-NY120	SMA 58,PADEP
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 854,NELAC-NY120	SMA 58,PADEP
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 854,NELAC-NY120	SMA 58,NJDEP,PAI
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 854,NELAC-NY120	SMA 58,NJDEP,PAI
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 854,NELAC-NY120	SMA 58,NJDEP,PAI
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 854,NELAC-NY120	SMA 58,NJDEP,PAI
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:29 854,NELAC-NY120	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acco	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	105 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	99.3 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	100 %			79-122							

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes: EXT-EM

Sample Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND	ι	ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 I-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	KH
208-96-8	Acenaphthylene	ND	ι	ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 I-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	КН
120-12-7	Anthracene	ND	ι	ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 I-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	KH
56-55-3	Benzo(a)anthracene	ND	ι	ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	КН
50-32-8	Benzo(a)pyrene	ND	ι	ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 I-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	КН
205-99-2	Benzo(b)fluoranthene	ND	ι	ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	КН
120 RES	EARCH DRIVE	STRATFORD, CT (06615			132	-02 89th A	VENUE	F	RICHMOND HIL	L, NY 11418	
www.YO	RKLAB.com	(203) 325-1371				FAX	((203) 35 ⁻	7-0166	(ClientServices@	Page 11	of 41

Client Sample ID:	CIM-MW-04 0423
--------------------------	----------------

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 4:27 pm	04/20/2023

York Sample ID:

23D1180-04

<u>Semi-Vola</u>	atiles, CP-51 (formerly STARS)-1		Log-in 1	Notes:		<u>Sample Notes:</u> EXT-EM						
Sample Prepare	ed by Method: EPA 3510C o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	КН
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	KH
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	КН
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	KH
86-73-7	Fluorene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	KH
85-01-8	Phenanthrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	KH
129-00-0	Pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-PH	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 15:34 854,NJDEP,PADEP	KH
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	49.8 %	S-08		50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	45.5 %			39.9-105							
1718-51-0	Surrogate: SURR: Terphenyl-d14	37.1 %			30.7-106							

Lead by El	Lead by EPA 6010					Log-in Notes:		otes:			
Sample Prepared	l by Method: E	PA 3015A									
CAS No.		Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Metho	Date/Time d Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		ND		mg/L	0.00556	1	EPA 6010D Certifications: CTDO	04/28/2023 08:30 H-PH-0723,NELAC-NY10	04/28/2023 20:19 0854,NJDEP,PADEP	CW

Sample Information

<u>Client Sample ID:</u> C	IM-MW-06 0423		<u>York Sample ID:</u>	23D1180-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 6:04 pm	04/20/2023

 Volatile Organics, CP-51 (STARS) Low level
 Log-in Notes:
 Sample Notes:

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@ Page 12 of 41

<u>Client Sample ID:</u> C	IM-MW-06 0423		<u>York Sample ID:</u>	23D1180-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 6:04 pm	04/20/2023

Sample Prepared by Method: EPA 5030B

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP,PAI
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP,PAI
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP,PAI
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP,PAI
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP,PAI
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP,PAI
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-N	04/21/2023 12:30 Y10854,NELAC-NY1	04/21/2023 21:58 2058,NJDEP,PADEP	SMA
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP,PAI
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP,PAI
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,padep
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,padep
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP,PAI
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP,PAI
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP,PAI
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP,PAI
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 21:58 0854,NELAC-NY120	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	99.8 %			81-117							
460-00-4	Surrogate: SURR:	99.9 %			79-122							

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

p-Bromofluorobenzene

Log-in Notes:

Sample Notes: EXT-EM

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		ate/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:		5/2023 15:08 NELAC-NY10	04/27/2023 16:04 854,NJDEP,PADEP	КН
08-96-8	Acenaphthylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:		5/2023 15:08 NELAC-NY1(04/27/2023 16:04 854,NJDEP,PADEP	КН
120 RESEARCH DRIVE		STRATFORD, C1	STRATFORD, CT 06615			132-02 89th AVENUE			RICHMOND HILL, NY 11418			
www.YO	RKLAB.com	(203) 325-1371				FAX	(203) 35 [°]	7-0166	Client	Services@	Page 13	of 41

Client Sample ID:	CIM-MW-06 0423
-------------------	----------------

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
	· · · · · · · · · · · · · · · · · · ·			
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 6:04 pm	04/20/2023

	ntiles, CP-51 (formerly STARS)-I ed by Method: EPA 3510C		Log-in	Notes:		<u>Sam</u>	iple Note					
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-12-7	Anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	КН
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	КН
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	КН
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	КН
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	КН
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	КН
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	КН
206-44-0	Fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	КН
86-73-7	Fluorene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	КН
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	КН
91-20-3	Naphthalene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	КН
85-01-8	Phenanthrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	КН
129-00-0	Pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:04 0854,NJDEP,PADEP	KH
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	71.5 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	35.2 %	S-08		39.9-105							
1718-51-0	Surrogate: SURR: Terphenyl-d14	38.2 %			30.7-106							

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method	: EPA 3015A										
CAS N	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		ND		mg/L	0.00556	1	EPA 6010D Certifications:	CTDOH-PI	04/28/2023 08:30 H-0723,NELAC-NY10	04/28/2023 20:22 854,NJDEP,PADEP	CW

132-02 89th AVENUE FAX (203) 357-0166 York Sample ID:

23D1180-05

<u>Client Sample ID:</u> C	M-MW-07 0423		York Sample ID:	23D1180-06
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 3:46 pm	04/20/2023

	rganics, CP-51 (STARS) Low lo	evel			<u>Log-in Notes:</u>							
CAS No	d by Method: EPA 5030B Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
5-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,NJDEP,P
08-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,NJDEP,P
1-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,NJDEP,P
00-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,NJDEP,P
8-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,NJDEP,P
634-04-4	Methyl tert-butyl ether (MTBE)	2.1		ug/L	0.20	0.50	1	EPA 8260C		04/21/2023 12:30	04/21/2023 22:27	SMA
								Certifications:	CTDOH-P	H-0723,NELAC-NY1		
1-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-N	04/21/2023 12:30 Y10854,NELAC-NY1	04/21/2023 22:27 2058,NJDEP,PADEP	SMA
04-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,NJDEP,P.
03-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,NJDEP,P
5-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,PADEP
79601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,PADEP
9-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,NJDEP,P
35-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,NJDEP,P
8-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,NJDEP,P
08-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,NJDEP,P
330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 22:27 0854,NELAC-NY120	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
7060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							
037-26-5	Surrogate: SURR: Toluene-d8	99.4 %			81-117							
60-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.2 %			79-122							
Semi-Vola	tiles, CP-51 (formerly STARS)-	Low Level			Log-in]	Notes:		Sam	ple Note	<u>s:</u> EXT-EM		
ample Prepared	d by Method: EPA 3510C											
CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@ Page 15 of 41

<u>Client Sample ID:</u> C	M-MW-07 0423		York Sample ID:	23D1180-06
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 3:46 pm	04/20/2023

	tiles, CP-51 (formerly STARS)-	Low Level			Log-in	Notes:		<u>San</u>	<u>iple Note</u>	es: EXT-EM		
Sample Prepare CAS No	d by Method: EPA 3510C D. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
83-32-9	Acenaphthene	0.280		ug/L	0.0500	0.0500	1	EPA 8270D		04/25/2023 15:08	04/27/2023 16:35	KH
								Certifications:	CTDOH-I	PH-0723,NELAC-NY1	0854,NJDEP,PADEP	
208-96-8	Acenaphthylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:35 0854,NJDEP,PADEP	KH
120-12-7	Anthracene	0.0500	J	ug/L	0.0500	0.0500	1	EPA 8270D		04/25/2023 15:08	04/27/2023 16:35	KH
								Certifications:	CTDOH-H	PH-0723,NELAC-NY1	0854,NJDEP,PADEP	
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:35 0854,NJDEP,PADEP	КН
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:35 0854,NJDEP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:35 0854,NJDEP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:35 0854,NJDEP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:35 0854,NJDEP,PADEP	KH
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:35 0854,NJDEP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:35 0854,NJDEP,PADEP	KH
206-44-0	Fluoranthene	0.150		ug/L	0.0500	0.0500	1	EPA 8270D		04/25/2023 15:08	04/27/2023 16:35	KH
								Certifications:	CTDOH-H	PH-0723,NELAC-NY1	0854,NJDEP,PADEP	
86-73-7	Fluorene	0.130		ug/L	0.0500	0.0500	1	EPA 8270D		04/25/2023 15:08	04/27/2023 16:35	KH
								Certifications:	CTDOH-H	PH-0723,NELAC-NY1	0854,NJDEP,PADEP	
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:35 0854,NJDEP,PADEP	КН
91-20-3	Naphthalene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH-P	04/25/2023 15:08 H-0723,NELAC-NY10	04/27/2023 16:35 0854,NJDEP,PADEP	KH
85-01-8	Phenanthrene	0.460		ug/L	0.0500	0.0500	1	EPA 8270D		04/25/2023 15:08	04/27/2023 16:35	KH
								Certifications:	CTDOH-I	PH-0723,NELAC-NY1	0854,NJDEP,PADEP	
129-00-0	Pyrene	0.150		ug/L	0.0500	0.0500	1	EPA 8270D		04/25/2023 15:08	04/27/2023 16:35	KH
								Certifications:	CTDOH-H	PH-0723,NELAC-NY1	0854,NJDEP,PADEP	
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	35.2 %	S-09		50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	27.2 %	S-09		39.9-105							

Lead by	<u>EPA 6010</u>					<u>Log-in Notes:</u>		Sam	ple Notes:	<u>.</u>		
Sample Prepa	ured by Method: EPA 30)15A										
CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilutior	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		ND		mg/L	0.00556	1	EPA 6010D Certifications:		04/28/2023 08:30)723,NELAC-NY10	04/28/2023 20:25 854,NJDEP,PADEP	CW
120 RE	SEARCH DRIVE		STRATFORD, C	Г 06615		132	-02 89th	AVENUE	RI	CHMOND HIL	L, NY 11418	
www.Y	ORKLAB.com		(203) 325-1371			FAX	(203) 35	57-0166	CI	ientServices@	Page 16	of 41

30.7-106

34.1 %

Surrogate: SURR: Terphenyl-d14

1718-51-0

<u>Client Sample ID:</u> CIM-MW	-07 0423		York Sample ID:	23D1180-06
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 3:46 pm	04/20/2023

Sample Information

<u>Client Sample ID:</u> CIM-N	1W-08 0423		<u>York Sample ID:</u>	23D1180-07
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 5:11 pm	04/20/2023

	Organics, CP-51 (STARS) Low	level		<u>Log-in</u>	Notes:		<u>Sam</u>	ple Notes:		
CAS No	ed by Method: EPA 5030B o. Parameter	Result Fla	ag Unit	Reported to S LOD/MDL	LOQ	Dilution	Reference	Date/Time e Method Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,NJDEP,PA
108-67-8	1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,NJDEP,PA
71-43-2	Benzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,NJDEP,PA
100-41-4	Ethyl Benzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,NJDEP,PA
98-82-8	Isopropylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,NJDEP,PA
1634-04-4	Methyl tert-butyl ether (MTBE)	0.25	J ug/L	0.20	0.50	1	EPA 8260C	04/21/2023 12:30	04/21/2023 22:56	SMA
							Certifications:	CTDOH-PH-0723,NELAC-NY		
91-20-3	Naphthalene	ND	ug/L	1.0	2.0	1	EPA 8260C Certifications:	04/21/2023 12:30 NELAC-NY10854,NELAC-NY1	04/21/2023 22:56 2058,NJDEP,PADEP	SMA
104-51-8	n-Butylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,NJDEP,PA
103-65-1	n-Propylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,NJDEP,PA
95-47-6	o-Xylene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,PADEP
179601-23-1	p- & m- Xylenes	ND	ug/L	0.50	1.0	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,PADEP
99-87-6	p-Isopropyltoluene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,NJDEP,PA
135-98-8	sec-Butylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,NJDEP,PA
98-06-6	tert-Butylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,NJDEP,PA
108-88-3	Toluene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,NJDEP,PA
1330-20-7	Xylenes, Total	ND	ug/L	0.60	1.5	1	EPA 8260C Certifications:	04/21/2023 12:30 CTDOH-PH-0723,NELAC-NY1	04/21/2023 22:56 0854,NELAC-NY120	SMA 58,NJDEP
	Surrogate Recoveries	Result	1	Acceptance Rang	ge					
7060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	104 %		69-130						
2037-26-5	Surrogate: SURR: Toluene-d8	99.4 %		81-117						
120 RES	SEARCH DRIVE	STRATFORD, CT 066	15		13	2-02 89th A	AVENUE	RICHMOND HIL	L, NY 11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 17 of 41

				Sampic	mom	ition						
<u>Client Sa</u>	mple ID: CIM-MW-08 0423									<u>York Sample</u>	<u>ID:</u> 23	D1180-07
York Proj	ject (SDG) No.	Client	Project II	D			Ma	atrix	Colle	ction Date/Time	Date	e Received
	23D1180	2231596 CONS	SOLIDAT	ED IRON			W	ater	April 1	9, 2023 5:11 pm	ı (04/20/2023
	Organics, CP-51 (STARS) Low	level			Log-in	Notes:		<u>Sam</u>	ple Note	<u>es:</u>		
Sample Prepa	red by Method: EPA 5030B				Reported to					Date/Time	Date/Time	
CAS N		Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.3 %			79-122							
<u>Semi-Vol</u>	latiles, CP-51 (formerly STARS	5)-Low Level			Log-in	Notes:		Sam	ple Note	<u>:s:</u>		
Sample Prepa	red by Method: EPA 3510C									Date/Time	Date/Time	
CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	КН
208-96-8	Acenaphthylene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	КН
120-12-7	Anthracene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	КН
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	КН
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	КН
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	КН
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108:	04/24/2023 23:05 54,NJDEP,PADEP	КН
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108:	04/24/2023 23:05 54,NJDEP,PADEP	КН
218-01-9	Chrysene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108:	04/24/2023 23:05 54,NJDEP,PADEP	КН
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	КН
206-44-0	Fluoranthene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	КН
86-73-7	Fluorene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	КН
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	КН
85-01-8	Phenanthrene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	KH
129-00-0	Pyrene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY108	04/24/2023 23:05 54,NJDEP,PADEP	КН
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	71.2 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	66.4 %			39.9-105							
1718-51-0	Surrogate: SURR: Terphenyl-d14	69.9 %			30.7-106							

Client Sample ID: CIM-MV	V-08 0423		York Sample ID:	23D1180-07
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 5:11 pm	04/20/2023

Lead by I	<u>EPA 6010</u>					Log-in Notes:		Sample No	tes:		
Sample Prepar	red by Method:	EPA 3015A									
CAS N	lo.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		0.0265		mg/L	0.00556	1	EPA 6010D Certifications: CTDOH	04/28/2023 08:30 -PH-0723,NELAC-NY1	04/28/2023 20:27 0854,NJDEP,PADEP	CW

Sample Information

Client Sample ID: CIM-M	W-09 0423		York Sample ID:	23D1180-08
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 11:46 am	04/20/2023

Log-in Notes:

Sample Notes:

Volatile Organics,	CP-51	(STARS)	Low level

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA 58,NJDEP,PAI
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA 58,NJDEP,PAI
71-43-2	Benzene	2.0		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 23:25 0854,NELAC-NY120	SMA 58,NJDEP,PA
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA 58,NJDEP,PAI
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA 58,NJDEP,PAI
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA 58,NJDEP,PAI
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-NY	04/21/2023 12:30 (10854,NELAC-NY12	04/21/2023 23:25 2058,NJDEP,PADEP	SMA
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA 58,NJDEP,PAI
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA 58,NJDEP,PAI
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA 58,PADEP
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA 58,PADEP
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA 58,NJDEP,PAI
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA 58,NJDEP,PAI
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	СТДОН-РЕ	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:25 854.NELAC-NY120 ⁴	SMA 58.NJDEP.PAI

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@ Page 19 of 41

Client Sample ID:	CIM-MW-09 0423		<u>York Sample ID:</u>	23D1180-08
York Project (SDG) No	<u>Client Project ID</u>	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 11:46 am	04/20/2023

<u>Volatile</u>	Volatile Organics, CP-51 (STARS) Low level						Log-in Notes:			Sample Notes:		
Sample Prepa	Sample Prepared by Method: EPA 5030B											
CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA 58,NJDEP,PAI
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 23:25 854,NELAC-NY1205	SMA i8,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	104 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	100 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	99.3 %			79-122							

Log-in Notes:

Sample Notes:

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Sample Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
33-32-9	Acenaphthene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
208-96-8	Acenaphthylene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
120-12-7	Anthracene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
218-01-9	Chrysene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
206-44-0	Fluoranthene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
86-73-7	Fluorene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
91-20-3	Naphthalene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-PI	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 854,NJDEP,PADEP	КН
85-01-8	Phenanthrene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:		04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35	КН
120 RES	EARCH DRIVE	STRATFORD, C	T 06615			132	-02 89th A	VENUE		RICHMOND HILI	_, NY 11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 20 of 41

<u>Client Sa</u>	ample ID:	CIM-MW-09 0423			-						<u>York Sample</u>	<u>e ID:</u> 23	D1180-08
York Project (SDG) No.			Client Project ID					Matrix		Collection Date/Time		Date Received	
23D1180		2231596 CONS	OLIDAT	ED IRON	Ň		W	ater	April 1	9, 2023 11:46 at	m (04/20/2023	
	latiles, CP-	51 (formerly STARS EPA 3510C)-Low Level			<u>Log-in</u>	Notes:		Sam	iple Note	<u>es:</u>		
CAS		Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
129-00-0	Pyrene		ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH-P	04/23/2023 09:00 H-0723,NELAC-NY10	04/24/2023 23:35 0854,NJDEP,PADEP	КН
		Surrogate Recoveries	Result		Acc	ceptance Rang	ge						
4165-60-0	Surrogate:	SURR: Nitrobenzene-d5	60.9 %			50.2-113							
321-60-8	Surrogate:	SURR: 2-Fluorobiphenyl	59.9 %			39.9-105							
1718-51-0	Surrogate:	SURR: Terphenyl-d14	47.4 %			30.7-106							
<u>Lead by</u>	<u>EPA 6010</u>					<u>Log-in</u>	Notes:		Sam	iple Note	<u>es:</u>		
Sample Prepa	red by Method:	EPA 3015A											
CAS N	Ňo.	Parameter	Result	Flag	Units		Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		ND		mg/L		0.00556	1	EPA 6010D Certifications:	CTDOH-P	04/28/2023 08:30 H-0723,NELAC-NY10	04/28/2023 20:31 0854,NJDEP,PADEP	CW

	Sample Information			
Client Sample ID: CIM-FD-01 0423			York Sample ID:	23D1180-09
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 3:00 pm	04/20/2023

Volatile Organics, CP-51 (STARS) Low level						Log-in Notes:			ple Note			
Sample Prepare	ed by Method: EPA 5030B											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 23:54 0854,NELAC-NY1205	SMA 58,NJDEP,PAI
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-PI	04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 23:54 0854,NELAC-NY1205	SMA 58,NJDEP,PAI
71-43-2	Benzene	12		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 PH-0723,NELAC-NY1	04/21/2023 23:54 0854,NELAC-NY120	SMA 58,NJDEP,PA
100-41-4	Ethyl Benzene	120		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 PH-0723,NELAC-NY1	04/21/2023 23:54 0854,NELAC-NY120	SMA 58,NJDEP,PA
98-82-8	Isopropylbenzene	37		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 PH-0723,NELAC-NY1	04/21/2023 23:54 0854,NELAC-NY120	SMA 58,NJDEP,PA
1634-04-4	Methyl tert-butyl ether (MTBE)	7.2		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 PH-0723,NELAC-NY1	04/21/2023 23:54 0854.NELAC-NY120	SMA 58.NJDEP.PA
91-20-3	Naphthalene	30		ug/L	10	20	10	EPA 8260C Certifications:		04/21/2023 12:30	04/21/2023 23:54	SMA
104-51-8	n-Butylbenzene	6.9		ug/L	2.0	5.0	10	EPA 8260C Certifications:		04/21/2023 12:30 PH-0723,NELAC-NY1	04/21/2023 23:54	SMA
120 RES	BEARCH DRIVE	STRATFORD, CT	06615			132	2-02 89th A	VENUE		RICHMOND HIL	L, NY 11418	
www.YC	RKLAB.com	(203) 325-1371				FA	X (203) 35	7-0166		ClientServices@	Page 21	of 41

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 3:00 pm	04/20/2023

York Sample ID:

Sample Notes: EXT-EM

ClientServices@

23D1180-09

Volatile Organics, CP-51 (STARS) Low level						Log-in Notes:			ple Note			
Sample Prepar	red by Method: EPA 5030B											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
103-65-1	n-Propylbenzene	88		ug/L	2.0	5.0	10	EPA 8260C	CTDOUR	04/21/2023 12:30	04/21/2023 23:54	SMA
95-47-6	o-Xylene	ND		ug/L	2.0	5.0	10	Certifications: EPA 8260C Certifications:		H-0723,NELAC-NY10 04/21/2023 12:30 H-0723,NELAC-NY10	04/21/2023 23:54	SMA
179601-23-1	p- & m- Xylenes	ND		ug/L	5.0	10	10	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:54 854,NELAC-NY1205	SMA 58,PADEP
99-87-6	p-Isopropyltoluene	ND		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:54 854,NELAC-NY1205	SMA 58,NJDEP,PAI
135-98-8	sec-Butylbenzene	5.6		ug/L	2.0	5.0	10	EPA 8260C		04/21/2023 12:30	04/21/2023 23:54	SMA
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP,PA
98-06-6	tert-Butylbenzene	ND		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:54 854,NELAC-NY1205	SMA 58,NJDEP,PAI
108-88-3	Toluene	2.3	J	ug/L	2.0	5.0	10	EPA 8260C		04/21/2023 12:30	04/21/2023 23:54	SMA
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP,PA
1330-20-7	Xylenes, Total	ND		ug/L	6.0	15	10	EPA 8260C Certifications:	CTDOH-PH	04/21/2023 12:30 I-0723,NELAC-NY10	04/21/2023 23:54 854,NELAC-NY1205	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	99.7 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	95.3 %			79-122							

Log-in Notes:

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Sample Prepared by Method: EPA 3510C Date/Time Date/Time Reported to CAS No. Parameter Result Flag Units Dilution **Reference Method** Prepared Analyzed Analyst L00 LOD/MDL 04/25/2023 15:08 83-32-9 Acenaphthene 0.162 ug/L 0.0541 0.0541 EPA 8270D 04/27/2023 17:05 KH 1 Certifications: CTDOH-PH-0723.NELAC-NY10854.NJDEP.PADEP 04/25/2023 15:08 04/27/2023 17:05 208-96-8 Acenaphthylene ND ug/L 0.0541 0.0541 1 EPA 8270D KH CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP Certifications: 120-12-7 0.0541 0.0541 EPA 8270D 04/25/2023 15:08 04/27/2023 17:05 KH Anthracene ND ug/L 1 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP Certifications: 0.0541 0.0541 04/25/2023 15:08 04/27/2023 17:05 56-55-3 1 EPA 8270D Benzo(a)anthracene ND ug/L KH CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP Certifications: 50-32-8 ug/L 0.0541 0.0541 1 EPA 8270D 04/25/2023 15:08 04/27/2023 17:05 KН Benzo(a)pyrene ND Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP 0.0541 0.0541 EPA 8270D 04/25/2023 15:08 04/27/2023 17:05 205-99-2 Benzo(b)fluoranthene ND ug/L 1 кн Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP 04/25/2023 15:08 04/27/2023 17:05 191-24-2 Benzo(g,h,i)perylene ND ug/L 0.0541 0.0541 1 EPA 8270D KH Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP 207-08-9 Benzo(k)fluoranthene ND ug/L 0.0541 0.0541 1 EPA 8270D 04/25/2023 15:08 04/27/2023 17:05 KH CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP Certifications: 218-01-9 0.0541 0.0541 1 EPA 8270D 04/25/2023 15:08 04/27/2023 17:05 Chrysene ND ug/L KH CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP Certifications: 120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418** www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 Page 22 of 41

Sample Information

Client Sample ID:	CIM-FD-01 0423
-------------------	----------------

23D1180 2231596 CONSOL IDATED IRON Water April 19 2023 3:00 pm 04/2	York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
	23D1180	2231596 CONSOLIDATED IRON	Water	April 19, 2023 3:00 pm	04/20/2023

York Sample ID:

23D1180-09

Semi-Vola	emi-Volatiles, CP-51 (formerly STARS)-Low Level				Log-in	Notes:	es: <u>Sample Notes:</u> EXT-EM					
Sample Prepare	ed by Method: EPA 3510C											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH-PI	04/25/2023 15:08 I-0723,NELAC-NY10	04/27/2023 17:05 0854,NJDEP,PADEP	КН
206-44-0	Fluoranthene	0.0757		ug/L	0.0541	0.0541	1	EPA 8270D		04/25/2023 15:08	04/27/2023 17:05	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
86-73-7	Fluorene	0.0649		ug/L	0.0541	0.0541	1	EPA 8270D		04/25/2023 15:08	04/27/2023 17:05	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D		04/25/2023 15:08	04/27/2023 17:05	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10)854,NJDEP,PADEP	
91-20-3	Naphthalene	7.39		ug/L	2.70	5.41	1	EPA 8270D		04/25/2023 15:08	04/26/2023 14:31	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
85-01-8	Phenanthrene	0.0973		ug/L	0.0541	0.0541	1	EPA 8270D		04/25/2023 15:08	04/27/2023 17:05	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
129-00-0	Pyrene	0.0757		ug/L	0.0541	0.0541	1	EPA 8270D		04/25/2023 15:08	04/27/2023 17:05	KH
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	70.1 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	63.7 %			39.9-105							
1718-51-0	Surrogate: SURR: Terphenvl-d14	21.9 %	S-08		30.7-106							
	5 F											

Lead by EPA 6010					<u>Log-in Notes:</u>		Sample Note	<u>es:</u>			
Sample Prepare	ed by Method: I	EPA 3015A									
CAS No	D.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		ND		mg/L	0.00556	1	EPA 6010D Certifications: CTDOH-PI	04/28/2023 08:30 H-0723,NELAC-NY10	04/28/2023 20:34 0854,NJDEP,PADEP	CW

Sample Information

<u>Client Sample ID:</u> TRIP	BLANK 0423		York Sample ID:	23D1180-10
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 18, 2023 6:10 pm	04/20/2023

Volatile Organics, CP-51 (STARS) Low level			Log-in 1	Notes:		Sample Notes:						
Sample Prepa	ared by Method: EPA 5030B											
CAS	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	TDOH-PH-	04/21/2023 12:30 0723,NELAC-NY10	04/21/2023 19:33 854,NELAC-NY1205	SMA 8,NJDEP,PAI
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	TDOH-PH-	04/21/2023 12:30 0723,NELAC-NY10	04/21/2023 19:33 854,NELAC-NY1205	SMA 8,NJDEP,PAI
120 RE	ESEARCH DRIVE	STRATFORD, C	T 06615			132	2-02 89th A	VENUE	R	ICHMOND HILI	L, NY 11418	
www.Y	ORKLAB.com	(203) 325-1371				FA	X (203) 35	7-0166	С	lientServices@	Page 23	of 41

Sample Information

Client Sample ID: TRIP B	LANK 0423		York Sample ID:	23D1180-10
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23D1180	2231596 CONSOLIDATED IRON	Water	April 18, 2023 6:10 pm	04/20/2023

	Volatile Organics, CP-51 (STARS) Low level Sample Prepared by Method: EPA 5030B				<u>Log-in</u>	Log-in Notes: Sample Notes:						
CAS N	•	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,NJDEP,PAI
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,NJDEP,PAI
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,NJDEP,PAI
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,NJDEP,PAI
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-N	04/21/2023 12:30 Y10854,NELAC-NY1	04/21/2023 19:33 2058,NJDEP,PADEP	SMA
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,NJDEP,PAI
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,NJDEP,PAI
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,padep
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,PADEP
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,NJDEP,PAI
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,NJDEP,PAI
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,NJDEP,PAI
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,NJDEP,PAI
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH-P	04/21/2023 12:30 H-0723,NELAC-NY1	04/21/2023 19:33 0854,NELAC-NY120	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	99.4 %			81-117							
460-00-4	Surrogate: SURR:	100 %			79-122							

Surrogate: SURR: p-Bromofluorobenzene

Analytical Batch Summary

Batch ID: BD31468	Preparation Method:	EPA 5030B	Prepared By:	FTR
YORK Sample ID	Client Sample ID	Preparation Date		
23D1180-01	CIM-MW-01 0423	04/21/23		
23D1180-04	CIM-MW-04 0423	04/21/23		
23D1180-05	CIM-MW-06 0423	04/21/23		
23D1180-06	CIM-MW-07 0423	04/21/23		
23D1180-07	CIM-MW-08 0423	04/21/23		
23D1180-08	CIM-MW-09 0423	04/21/23		
23D1180-09	CIM-FD-01 0423	04/21/23		
23D1180-10	TRIP BLANK 0423	04/21/23		
BD31468-BLK1	Blank	04/21/23		
BD31468-BS1	LCS	04/21/23		
BD31468-BSD1	LCS Dup	04/21/23		
BD31468-MS1	Matrix Spike	04/21/23		
BD31468-MSD1	Matrix Spike Dup	04/21/23		
Batch ID: BD31480	Preparation Method:	EPA 3510C	Prepared By:	moa
YORK Sample ID	Client Sample ID	Preparation Date		
23D1180-07	CIM-MW-08 0423	04/23/23		
23D1180-08	CIM-MW-09 0423	04/23/23		
BD31480-BLK1	Blank	04/23/23		
BD31480-BS1	LCS	04/23/23		
BD31480-BSD1	LCS Dup	04/23/23		
2201100 2021	Les Dup	0.1.20.20		
Batch ID: BD31540	Preparation Method:	EPA 5030B	Prepared By:	SMA
YORK Sample ID	Client Sample ID	Preparation Date		
23D1180-02	CIM-MW-02 0423	04/24/23		
23D1180-03	CIM-MW-03 0423	04/24/23		
BD31540-BLK1	Blank	04/24/23		
BD31540-BS1	LCS	04/24/23		
BD31540-MS1	Matrix Spike	04/24/23		
BD31540-MSD1	Matrix Spike Dup	04/24/23		
Batch ID: BD31636	Preparation Method:	EPA 3510C	Prepared By:	JM
YORK Sample ID	Client Sample ID	Preparation Date		
23D1180-01	CIM-MW-01 0423	04/25/23		
23D1180-02	CIM-MW-01 0423	04/25/23		
23D1180-03	CIM-MW-03 0423	04/25/23		
23D1180-04	CIM-MW-04 0423	04/25/23		
23D1180-05	CIM-MW-06 0423	04/25/23		
23D1180-06	CIM-MW-07 0423	04/25/23		
23D1180-00	CIM-FD-01 0423	04/25/23		
BD31636-BLK1	Blank	04/25/23		
		07 <i>123123</i>		
120 RESEARCH DRIVE	STRATFORD, CT 06615	■ 132-02 89th AVENUE	RICHMO	ND HILL, NY 11418
www.YORKLAB.com	(203) 325-1371	FAX (203) 357-0166	ClientSer	vices@ Page 25 of 41

BD31636-BS1	LCS	04/25/23
BD31636-MS1	Matrix Spike	04/25/23
BD31636-MSD1	Matrix Spike Dup	04/25/23

Batch ID: BD31955	Preparation Method:	EPA 3015A	Prepared By:	MCS
YORK Sample ID	Client Sample ID	Preparation Date		
23D1180-01	CIM-MW-01 0423	04/28/23		
23D1180-02	CIM-MW-02 0423	04/28/23		
23D1180-03	CIM-MW-03 0423	04/28/23		
23D1180-04	CIM-MW-04 0423	04/28/23		
23D1180-05	CIM-MW-06 0423	04/28/23		
23D1180-06	CIM-MW-07 0423	04/28/23		
23D1180-07	CIM-MW-08 0423	04/28/23		
23D1180-08	CIM-MW-09 0423	04/28/23		
23D1180-09	CIM-FD-01 0423	04/28/23		
BD31955-BLK1	Blank	04/28/23		
BD31955-BS1	LCS	04/28/23		
BD31955-DUP1	Duplicate	04/28/23		
BD31955-MS1	Matrix Spike	04/28/23		
BD31955-PS1	Post Spike	04/28/23		

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31468 - EPA 5030B											
Blank (BD31468-BLK1)							Prep	ared & Anal	yzed: 04/21/	/2023	
1,2,4-Trimethylbenzene	ND	0.50	ug/L								
1,3,5-Trimethylbenzene	ND	0.50	"								
Benzene	ND	0.50	"								
Ethyl Benzene	ND	0.50	"								
Isopropylbenzene	ND	0.50	"								
Methyl tert-butyl ether (MTBE)	ND	0.50	"								
Naphthalene	ND	2.0	"								
n-Butylbenzene	ND	0.50	"								
n-Propylbenzene	ND	0.50	"								
o-Xylene	ND	0.50	"								
p- & m- Xylenes	ND	1.0	"								
p-Isopropyltoluene	ND	0.50	"								
sec-Butylbenzene	ND	0.50	"								
tert-Butylbenzene	ND	0.50	"								
Toluene	ND	0.50	"								
Xylenes, Total	ND	1.5	"								
Surrogate: SURR: 1,2-Dichloroethane-d4	10.5		"	10.0		105	69-130				
Surrogate: SURR: Toluene-d8	9.95		"	10.0		99.5	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.85		"	10.0		98.5	79-122				
LCS (BD31468-BS1)							Prep	ared & Anal	yzed: 04/21/	2023	
1,2,4-Trimethylbenzene	10		ug/L	10.0		102	82-132				
1,3,5-Trimethylbenzene	9.9		"	10.0		98.8	80-131				
Benzene	11		"	10.0		108	85-126				
Ethyl Benzene	11		"	10.0		107	80-131				
Isopropylbenzene	10		"	10.0		99.7	76-140				
Methyl tert-butyl ether (MTBE)	9.9		"	10.0		99.0	76-135				
Naphthalene	8.6		"	10.0		85.5	70-147				
n-Butylbenzene	9.4		"	10.0		93.8	79-132				
n-Propylbenzene	10		"	10.0		99.8	78-133				
o-Xylene	11		"	10.0		106	78-130				
p- & m- Xylenes	22		"	20.0		110	77-133				
p-Isopropyltoluene	10		"	10.0		102	81-136				
sec-Butylbenzene	10		"	10.0		102	79-137				
tert-Butylbenzene	10		"	10.0		102	77-138				
Toluene	11			10.0		106	80-127				
Surrogate: SURR: 1,2-Dichloroethane-d4	10.1		"	10.0		101	69-130				
Surrogate: SURR: Toluene-d8	9.96		"	10.0		99.6	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.38		"	10.0		93.8	79-122				

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31468 - EPA 5030B											
LCS Dup (BD31468-BSD1)							Prep	ared & Analy	zed: 04/21/	2023	
1,2,4-Trimethylbenzene	9.7		ug/L	10.0		96.9	82-132		4.74	30	
,3,5-Trimethylbenzene	9.3		"	10.0		93.4	80-131		5.62	30	
Benzene	10		"	10.0		104	85-126		3.50	30	
Ethyl Benzene	10		"	10.0		102	80-131		4.68	30	
sopropylbenzene	9.4		"	10.0		93.5	76-140		6.42	30	
Methyl tert-butyl ether (MTBE)	10		"	10.0		101	76-135		1.90	30	
Japhthalene	8.8		"	10.0		88.5	70-147		3.45	30	
n-Butylbenzene	8.8		"	10.0		87.7	79-132		6.72	30	
n-Propylbenzene	9.4		"	10.0		94.2	78-133		5.77	30	
o-Xylene	10		"	10.0		102	78-130		3.57	30	
o- & m- Xylenes	21		"	20.0		105	77-133		4.84	30	
o-Isopropyltoluene	9.5		"	10.0		95.3	81-136		6.40	30	
ec-Butylbenzene	9.5		"	10.0		95.1	79-137		6.51	30	
ert-Butylbenzene	9.6		"	10.0		95.7	77-138		5.98	30	
foluene	10		"	10.0		102	80-127		4.33	30	
urrogate: SURR: 1,2-Dichloroethane-d4	10.3		"	10.0		103	69-130				
Surrogate: SURR: Toluene-d8	9.88		"	10.0		98.8	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.28		"	10.0		92.8	79-122				
Matrix Spike (BD31468-MS1)	*Source sample: 2.	3D1180-01 (CI	M-MW-01					oared: 04/21/20)23 Analyz	red: 04/22/2	2023
1,2,4-Trimethylbenzene	13	501100 01 (01	ug/L	10.0	0.0	128	72-129				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13		ug/L "	10.0	0.0	128	69-126	High Bias			
Benzene	15		"	10.0	0.0	127	38-155	High Bias			
Ethyl Benzene	26		"	10.0	120	NR	72-128	Low Bias			
sopropylbenzene	20 17		"	10.0	38	NR	66-139	Low Bias			
Methyl tert-butyl ether (MTBE)	17		"	10.0	38 7.1	72.1	75-128	Low Blas			
Naphthalene	14		"	10.0	7.1 30	72.1 NR	75-128 39-158	Low Blas			
n-Butylbenzene	13			10.0	30 4.8	60.3	61-138	Low Blas			
n-Propylbenzene	21			10.0	4.8 89	00.3 NR	66-134	Low Blas			
	21 14		"	10.0	89 0.0	NR 142	69-134 69-126	High Bias			
- A m- Xylenes	14 29		"	20.0	0.0 4.0		69-126 67-130	ringii Dids			
- & m- Ayrenes -Isopropyltoluene	29 12			20.0 10.0	4.0 0.0	125 119	67-130 64-137				
ec-Butylbenzene	12			10.0	0.0 5.9		64-137 53-155				
ec-Butylbenzene						71.3					
Foluene	13			10.0	0.0	134	65-139	High Bias			
	15			10.0	2.3	124	76-123	Tigii Dias			
Surrogate: SURR: 1,2-Dichloroethane-d4	10.2		"	10.0		102	69-130				
arrogate. Solut. 1,2 Diemoroeinane ar											
Surrogate: SURR: Toluene-d8	9.86		"	10.0		98.6	81-117				

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31468 - EPA 5030B											

Matrix Spike Dup (BD31468-MSD1)	*Source sample: 23D1180	0-01 (CIM-MW-01	0423)			Prep	ared: 04/21/20	023 Analyze	ed: 04/22/2023
1,2,4-Trimethylbenzene	13	ug/L	10.0	0.0	125	72-129		2.44	30
1,3,5-Trimethylbenzene	12	"	10.0	0.0	124	69-126		3.03	30
Benzene	16	"	10.0	0.0	162	38-155	High Bias	1.06	30
Ethyl Benzene	25	"	10.0	120	NR	72-128	Low Bias	NR	30
Isopropylbenzene	17	"	10.0	38	NR	66-139	Low Bias	NR	30
Methyl tert-butyl ether (MTBE)	15	"	10.0	7.1	74.6	75-128	Low Bias	3.41	30
Naphthalene	14	"	10.0	30	NR	39-158	Low Bias	NR	30
n-Butylbenzene	11	"	10.0	4.8	57.2	61-138	Low Bias	5.28	30
n-Propylbenzene	21	"	10.0	89	NR	66-134	Low Bias	NR	30
o-Xylene	14	"	10.0	0.0	141	69-126	High Bias	0.354	30
p- & m- Xylenes	29	"	20.0	4.0	123	67-130		1.49	30
p-Isopropyltoluene	12	"	10.0	0.0	116	64-137		2.82	30
sec-Butylbenzene	13	"	10.0	5.9	68.6	53-155		3.86	30
tert-Butylbenzene	13	"	10.0	0.0	131	65-139		1.66	30
Toluene	15	"	10.0	2.3	125	76-123	High Bias	1.29	30
Surrogate: SURR: 1,2-Dichloroethane-d4	10.1	"	10.0		101	69-130			
Surrogate: SURR: Toluene-d8	9.86	"	10.0		98.6	81-117			
Surrogate: SURR: p-Bromofluorobenzene	9.51	"	10.0		95.1	79-122			

Batch BD31540 - EPA 5030B

Blank (BD31540-BLK1)						Prepared & Analyzed: 04/24/2023
1,2,4-Trimethylbenzene	ND	0.50	ug/L			
1,3,5-Trimethylbenzene	ND	0.50	"			
Benzene	ND	0.50	"			
Ethyl Benzene	ND	0.50	"			
Isopropylbenzene	ND	0.50	"			
Methyl tert-butyl ether (MTBE)	ND	0.50	"			
Naphthalene	ND	2.0	"			
n-Butylbenzene	ND	0.50	"			
n-Propylbenzene	ND	0.50	"			
o-Xylene	ND	0.50	"			
p- & m- Xylenes	ND	1.0	"			
p-Isopropyltoluene	ND	0.50	"			
sec-Butylbenzene	ND	0.50	"			
tert-Butylbenzene	ND	0.50	"			
Toluene	ND	0.50	"			
Xylenes, Total	ND	1.5	"			
Surrogate: SURR: 1,2-Dichloroethane-d4	10.1		"	10.0	101	69-130
Surrogate: SURR: Toluene-d8	9.99		"	10.0	99.9	81-117
Surrogate: SURR: p-Bromofluorobenzene	9.87		"	10.0	98.7	79-122

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31540 - EPA 5030B											
LCS (BD31540-BS1)							Prej	bared & Analy	yzed: 04/24/	/2023	
1,2,4-Trimethylbenzene	10		ug/L	10.0		99.7	82-132				
1,3,5-Trimethylbenzene	9.6		"	10.0		95.9	80-131				
Benzene	10		"	10.0		103	85-126				
Ethyl Benzene	10		"	10.0		104	80-131				
sopropylbenzene	9.6		"	10.0		96.0	76-140				
Methyl tert-butyl ether (MTBE)	9.6		"	10.0		95.6	76-135				
Japhthalene	8.9		"	10.0		89.2	70-147				
-Butylbenzene	8.1		"	10.0		80.7	79-132				
n-Propylbenzene	9.8		"	10.0		97.7	78-133				
o-Xylene	10			10.0		103	78-130				
o- & m- Xylenes	21		"	20.0		107	77-133				
o-Isopropyltoluene	10		"	10.0		101	81-136				
ec-Butylbenzene	10		"	10.0		101	79-137				
ert-Butylbenzene	9.9		"	10.0		98.9	77-138				
Toluene	10		"	10.0		102	80-127				
Surrogate: SURR: 1,2-Dichloroethane-d4	10.0		"	10.0		100	69-130				
Surrogate: SURR: Toluene-d8	9.93		"	10.0		<i>99.3</i>	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.30		"	10.0		93.0	79-122				
Matrix Spike (BD31540-MS1)	*Source sample: 2	3D1238-03 (Mati	rix Spike`)			Prep	pared & Analy	yzed: 04/24/	/2023	
1,2,4-Trimethylbenzene	12		ug/L	10.0	0.0	119	72-129				
,3,5-Trimethylbenzene	12		"	10.0	0.0	116	69-126				
Benzene	15										
			"	10.0	0.0	147	38-155				
Ethyl Benzene	13		"	10.0 10.0	0.0 0.0	147 134	38-155 72-128	High Bias			
•								High Bias			
sopropylbenzene	13		"	10.0	0.0	134	72-128	High Bias High Bias			
sopropylbenzene Aethyl tert-butyl ether (MTBE)	13 12		 	10.0 10.0	0.0 0.0	134 124 129	72-128 66-139 75-128	-			
sopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene	13 12 13 10		" "	10.0 10.0 10.0	0.0 0.0 0.0	134 124 129 104	72-128 66-139 75-128 39-158	-			
oopropylbenzene Aethyl tert-butyl ether (MTBE) Vaphthalene I-Butylbenzene	13 12 13		"" "	10.0 10.0 10.0 10.0	0.0 0.0 0.0 0.0	134 124 129	72-128 66-139 75-128 39-158 61-138	-			
ospropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene h-Butylbenzene h-Propylbenzene	13 12 13 10 8.8		"" " "	10.0 10.0 10.0 10.0 10.0	0.0 0.0 0.0 0.0 0.0	134 124 129 104 88.1	72-128 66-139 75-128 39-158	High Bias			
Aethyl tert-butyl ether (MTBE) Methyl tert-butyl ether (MTBE) Naphthalene H-Butylbenzene H-Propylbenzene D-Xylene	13 12 13 10 8.8 12			10.0 10.0 10.0 10.0 10.0 10.0	0.0 0.0 0.0 0.0 0.0 0.0	134 124 129 104 88.1 119	72-128 66-139 75-128 39-158 61-138 66-134	-			
Aethyl tert-butyl ether (MTBE) Methyl tert-butyl ether (MTBE) Naphthalene h-Butylbenzene h-Propylbenzene h-Xylene h- & m- Xylenes	13 12 13 10 8.8 12 14		" " " "	10.0 10.0 10.0 10.0 10.0 10.0 10.0	0.0 0.0 0.0 0.0 0.0 0.0 0.38	134 124 129 104 88.1 119 132	72-128 66-139 75-128 39-158 61-138 66-134 69-126	High Bias High Bias			
Aethyl tert-butyl ether (MTBE) Methyl tert-butyl ether (MTBE) Naphthalene h-Butylbenzene h-Propylbenzene h-Xylene h- & m- Xylenes h-Isopropyltoluene	13 12 13 10 8.8 12 14 27		"" " " "	10.0 10.0 10.0 10.0 10.0 10.0 20.0 10.0	0.0 0.0 0.0 0.0 0.0 0.0 0.38 0.25	134 124 129 104 88.1 119 132 135 112	72-128 66-139 75-128 39-158 61-138 66-134 69-126 67-130 64-137	High Bias High Bias			
Asopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene h-Butylbenzene h-Propylbenzene b-Xylene b- & m- Xylenes b-Isopropyltoluene eec-Butylbenzene	13 12 13 10 8.8 12 14 27 11 12		"" "" "	10.0 10.0 10.0 10.0 10.0 10.0 20.0	0.0 0.0 0.0 0.0 0.0 0.0 0.38 0.25 0.0	134 124 129 104 88.1 119 132 135 112 118	72-128 66-139 75-128 39-158 61-138 66-134 69-126 67-130 64-137 53-155	High Bias High Bias			
Aethyl tert-butyl ether (MTBE) Naphthalene I-Butylbenzene I-Propylbenzene D-Xylene D- & m- Xylenes D-Isopropyltoluene ec-Butylbenzene ert-Butylbenzene	13 12 13 10 8.8 12 14 27 11			10.0 10.0 10.0 10.0 10.0 10.0 20.0 10.0 1	0.0 0.0 0.0 0.0 0.0 0.0 0.38 0.25 0.0 0.37	134 124 129 104 88.1 119 132 135 112	72-128 66-139 75-128 39-158 61-138 66-134 69-126 67-130 64-137	High Bias High Bias			
sopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene h-Butylbenzene b-Arpopylbenzene b-Xylene b-& m- Xylenes b-Isopropyltoluene sec-Butylbenzene ert-Butylbenzene Foluene	13 12 13 10 8.8 12 14 27 11 12 13 14			10.0 10.0 10.0 10.0 10.0 10.0 20.0 10.0 1	0.0 0.0 0.0 0.0 0.0 0.38 0.25 0.0 0.37 0.27	134 124 129 104 88.1 119 132 135 112 118 123 136	72-128 66-139 75-128 39-158 61-138 66-134 69-126 67-130 64-137 53-155 65-139 76-123	High Bias High Bias High Bias			
Aethyl tert-butyl ether (MTBE) Naphthalene I-Butylbenzene I-Propylbenzene D-Xylene D- & m- Xylenes D-Isopropyltoluene ec-Butylbenzene ert-Butylbenzene	13 12 13 10 8.8 12 14 27 11 12 13			10.0 10.0 10.0 10.0 10.0 10.0 20.0 10.0 1	0.0 0.0 0.0 0.0 0.0 0.38 0.25 0.0 0.37 0.27	134 124 129 104 88.1 119 132 135 112 118 123	72-128 66-139 75-128 39-158 61-138 66-134 69-126 67-130 64-137 53-155 65-139	High Bias High Bias High Bias			

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31540 - EPA 5030B											
Matrix Snike Dun (BD31540-MSD1)	*Source sample: 23	D1238-03 (M	atrix Snike	Dup)			Pren	ared & Anal	vzed: 04/24/	/2023	

*Source sample: 23D1238	8-03 (Matrix Spike	Dup)			Pre	pared & Analy	zed: 04/24/2	023
12	ug/L	10.0	0.0	116	72-129		2.47	30
11	"	10.0	0.0	113	69-126		2.27	30
15	"	10.0	0.0	146	38-155		0.546	30
13	"	10.0	0.0	131	72-128	High Bias	1.96	30
12	"	10.0	0.0	121	66-139		2.12	30
13	"	10.0	0.0	129	75-128	High Bias	0.0777	30
11	"	10.0	0.0	108	39-158		3.60	30
9.1	"	10.0	0.0	91.0	61-138		3.24	30
12	"	10.0	0.0	117	66-134		1.44	30
13	"	10.0	0.38	129	69-126	High Bias	2.15	30
27	"	20.0	0.25	133	67-130	High Bias	1.64	30
11	"	10.0	0.0	113	64-137		0.178	30
12	"	10.0	0.37	118	53-155		0.679	30
12	"	10.0	0.27	121	65-139		1.88	30
13	"	10.0	0.0	133	76-123	High Bias	2.16	30
10.2	"	10.0		102	69-130			
9.77	"	10.0		97.7	81-117			
9.43	"	10.0		94.3	79-122			
	12 11 15 13 12 13 11 9.1 12 13 27 13 27 11 12 13 27 13 27 13 27 13 27 13 27 13 27 27 11 12 13 27 13 27 27 13 27 27 27 27 27 27 27 27 27 27	12 ug/L 11 " 15 " 13 " 13 " 13 " 13 " 13 " 13 " 13 " 13 " 11 " 9.1 " 12 " 13 " 12 " 13 " 12 " 13 " 12 " 13 " 12 " 13 " 13 " 13 " 10.2 " 9.77 "	11 " 10.0 15 " 10.0 13 " 10.0 12 " 10.0 13 " 10.0 13 " 10.0 13 " 10.0 13 " 10.0 13 " 10.0 11 " 10.0 12 " 10.0 13 " 10.0 12 " 10.0 12 " 10.0 13 " 10.0 12 " 10.0 12 " 10.0 13 " 10.0 13 " 10.0 10.2 " 10.0 9.77 " 10.0	12 ug/L 10.0 0.0 11 " 10.0 0.0 11 " 10.0 0.0 15 " 10.0 0.0 13 " 10.0 0.0 13 " 10.0 0.0 13 " 10.0 0.0 12 " 10.0 0.0 13 " 10.0 0.0 11 " 10.0 0.0 11 " 10.0 0.0 12 " 10.0 0.0 12 " 10.0 0.0 13 " 10.0 0.38 27 " 20.0 0.25 11 " 10.0 0.37 12 " 10.0 0.27 13 " 10.0 0.0 10.2 " 10.0 0.0 9.77 " 10.0 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 ug/L 10.0 0.0 116 72-129 11 " 10.0 0.0 113 69-126 15 " 10.0 0.0 113 69-126 15 " 10.0 0.0 113 69-126 15 " 10.0 0.0 113 69-126 15 " 10.0 0.0 146 38-155 13 " 10.0 0.0 121 66-139 13 " 10.0 0.0 129 75-128 11 " 10.0 0.0 108 39-158 9.1 " 10.0 0.0 117 66-134 12 " 10.0 0.0 117 66-134 13 " 10.0 0.38 129 69-126 27 " 20.0 0.25 133 67-130 11 " 10.0 0.37 118 53-155	12 ug/L 10.0 0.0 116 72-129 11 " 10.0 0.0 113 69-126 15 " 10.0 0.0 113 69-126 15 " 10.0 0.0 113 69-126 15 " 10.0 0.0 146 38-155 13 " 10.0 0.0 121 66-139 13 " 10.0 0.0 129 75-128 High Bias 11 " 10.0 0.0 108 39-158 9.1 " 10.0 0.0 117 66-134 12 " 10.0 0.0 117 66-134 13 " 10.0 0.38 129 69-126 High Bias 27 " 20.0 0.25 133 67-130 High Bias 11 " 10.0 0.0 113 64-137 12 12 <t< td=""><td>12ug/L10.00.0116$72-129$2.4711"10.00.011369-1262.2715"10.00.014638-1550.54613"10.00.0131$72-128$High Bias1.9612"10.00.012166-1392.1213"10.00.0129$75-128$High Bias0.077711"10.00.010839-1583.609.1"10.00.011766-1341.4413"10.00.011766-1341.4413"10.00.011364-1370.17811"10.00.011364-1370.17812"10.00.3711853-1550.67912"10.00.2712165-1391.8813"10.00.013376-123High Bias2.1610.2"10.00.013376-123High Bias2.1610.2"10.00.013376-123High Bias2.1610.2"10.097.781-1171.88</td></t<>	12ug/L10.00.0116 $72-129$ 2.4711"10.00.011369-1262.2715"10.00.014638-1550.54613"10.00.0131 $72-128$ High Bias1.9612"10.00.012166-1392.1213"10.00.0129 $75-128$ High Bias0.077711"10.00.010839-1583.609.1"10.00.011766-1341.4413"10.00.011766-1341.4413"10.00.011364-1370.17811"10.00.011364-1370.17812"10.00.3711853-1550.67912"10.00.2712165-1391.8813"10.00.013376-123High Bias2.1610.2"10.00.013376-123High Bias2.1610.2"10.00.013376-123High Bias2.1610.2"10.097.781-1171.88

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31480 - EPA 3510C											
Blank (BD31480-BLK1)							Prep	ared: 04/23/2	2023 Analyz	ed: 04/24/2	2023
Acenaphthene	ND	0.0500	ug/L								
Acenaphthylene	ND	0.0500	"								
Anthracene	ND	0.0500	"								
Benzo(a)anthracene	ND	0.0500									
Benzo(a)pyrene	ND	0.0500									
Benzo(b)fluoranthene	ND	0.0500	"								
Benzo(g,h,i)perylene	ND	0.0500	"								
Benzo(k)fluoranthene	ND	0.0500	"								
Chrysene	ND	0.0500	"								
Dibenzo(a,h)anthracene	ND	0.0500	"								
Fluoranthene	ND	0.0500	"								
Fluorene	ND	0.0500	"								
ndeno(1,2,3-cd)pyrene	ND	0.0500	"								
Japhthalene	ND	0.0500	"								
Phenanthrene	ND	0.0500	"								
yrene	ND	0.0500	"								
Surrogate: SURR: Nitrobenzene-d5	12.9		"	25.0		51.5	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	11.8		"	25.0		47.1	39.9-105				
Surrogate: SURR: Terphenyl-d14	15.0		"	25.0		60.2	30.7-106				
LCS (BD31480-BS1)							Prepa	ared: 04/23/2	2023 Analyz	ed: 04/24/2	2023
Acenaphthene	10.5	0.0500	ug/L	25.0		41.9	24-114				
Acenaphthylene	10.0	0.0500	"	25.0		40.0	26-112				
Anthracene	11.2	0.0500	"	25.0		44.9	35-114				
Benzo(a)anthracene	11.7	0.0500	"	25.0		46.8	38-127				
Benzo(a)pyrene	10.6	0.0500	"	25.0		42.6	30-146				
Benzo(b)fluoranthene	12.0	0.0500	"	25.0		48.2	36-145				
Benzo(g,h,i)perylene	12.3	0.0500	"	25.0		49.1	10-163				
Benzo(k)fluoranthene	12.5	0.0500	"	25.0		49.8	16-149				
Chrysene	11.9	0.0500	"	25.0		47.6	33-120				
Dibenzo(a,h)anthracene	11.9	0.0500	"	25.0		47.6	10-149				
Fluoranthene	11.7	0.0500	"	25.0		46.8	33-126				
Fluorene	11.2	0.0500		25.0		44.8	28-117				
ndeno(1,2,3-cd)pyrene	11.4	0.0500		25.0		45.4	10-150				
Naphthalene	10.3	0.0500		25.0		41.2	30-99				
Phenanthrene	11.5	0.0500		25.0		46.0	31-112				
Pyrene	11.2	0.0500	"	25.0		44.7	42-125				
Surrogate: SURR: Nitrobenzene-d5	20.1		"	25.0		80.4	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	18.5		"	25.0		74.0	39.9-105				
Surrogate: SURR: Terphenyl-d14	22.0		"	25.0		87.9	30.7-106				

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31480 - EPA 3510C											
LCS Dup (BD31480-BSD1)							Prepa	ared: 04/23/2	2023 Analyz	ed: 04/24/	2023
Acenaphthene	16.4	0.0500	ug/L	25.0		65.8	24-114		44.3	20	Non-dir.
Acenaphthylene	15.4	0.0500	"	25.0		61.6	26-112		42.5	20	Non-dir.
Anthracene	18.4	0.0500	"	25.0		73.6	35-114		48.5	20	Non-dir.
Benzo(a)anthracene	18.8	0.0500	"	25.0		75.1	38-127		46.4	20	Non-dir.
Benzo(a)pyrene	17.1	0.0500	"	25.0		68.4	30-146		46.5	20	Non-dir.
Benzo(b)fluoranthene	19.2	0.0500	"	25.0		76.6	36-145		45.6	20	Non-dir.
Benzo(g,h,i)perylene	19.5	0.0500	"	25.0		77.9	10-163		45.4	20	Non-dir.
Benzo(k)fluoranthene	19.8	0.0500	"	25.0		79.2	16-149		45.6	20	Non-dir.
Chrysene	18.9	0.0500	"	25.0		75.7	33-120		45.6	20	Non-dir.
Dibenzo(a,h)anthracene	18.9	0.0500	"	25.0		75.8	10-149		45.7	20	Non-dir.
Fluoranthene	18.8	0.0500	"	25.0		75.2	33-126		46.6	20	Non-dir.
Fluorene	17.8	0.0500	"	25.0		71.2	28-117		45.5	20	Non-dir.
Indeno(1,2,3-cd)pyrene	18.3	0.0500	"	25.0		73.0	10-150		46.6	20	Non-dir.
Naphthalene	16.2	0.0500	"	25.0		64.8	30-99		44.7	20	Non-dir.
Phenanthrene	18.3	0.0500	"	25.0		73.2	31-112		45.7	20	Non-dir.
Pyrene	17.8	0.0500		25.0		71.0	42-125		45.5	20	Non-dir.
Surrogate: SURR: Nitrobenzene-d5	21.0		"	25.0		84.2	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	19.1		"	25.0		76.2	39.9-105				
Surrogate: SURR: Terphenyl-d14	23.0		"	25.0		92.1	30.7-106				
Batch BD31636 - EPA 3510C											
Dlamb (DD21626 DI V1)							D	1.04/25/2	0022 Analyz	1.04/20	2022

Blank (BD31636-BLK1)						Prepared: 04/25/2023 Analyzed: 04/26/2023
Acenaphthene	ND	0.0500	ug/L			
Acenaphthylene	ND	0.0500	"			
Anthracene	ND	0.0500	"			
Benzo(a)anthracene	ND	0.0500	"			
Benzo(a)pyrene	ND	0.0500	"			
Benzo(b)fluoranthene	ND	0.0500	"			
Benzo(g,h,i)perylene	ND	0.0500	"			
Benzo(k)fluoranthene	ND	0.0500	"			
Chrysene	ND	0.0500	"			
Dibenzo(a,h)anthracene	ND	0.0500	"			
Fluoranthene	ND	0.0500	"			
Fluorene	ND	0.0500	"			
Indeno(1,2,3-cd)pyrene	ND	0.0500	"			
Naphthalene	ND	0.0500	"			
Phenanthrene	ND	0.0500	"			
Pyrene	ND	0.0500	"			
Surrogate: SURR: Nitrobenzene-d5	12.5		"	25.0	50.2	50.2-113
Surrogate: SURR: 2-Fluorobiphenyl	11.8		"	25.0	47.1	39.9-105
Surrogate: SURR: Terphenyl-d14	14.6		"	25.0	58.4	30.7-106

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31636 - EPA 3510C											
LCS (BD31636-BS1)							Prep	oared: 04/25/2	2023 Analyz	ed: 04/26/2	2023
Acenaphthene	14.3	0.0500	ug/L	25.0		57.2	24-114				
Acenaphthylene	13.7	0.0500	"	25.0		54.9	26-112				
Anthracene	16.3	0.0500	"	25.0		65.1	35-114				
Benzo(a)anthracene	16.2	0.0500	"	25.0		64.7	38-127				
Benzo(a)pyrene	15.5	0.0500	"	25.0		62.2	30-146				
Benzo(b)fluoranthene	16.6	0.0500	"	25.0		66.6	36-145				
Benzo(g,h,i)perylene	16.1	0.0500	"	25.0		64.5	10-163				
Benzo(k)fluoranthene	17.1	0.0500	"	25.0		68.4	16-149				
Chrysene	16.1	0.0500	"	25.0		64.4	33-120				
Dibenzo(a,h)anthracene	16.0	0.0500	"	25.0		63.9	10-149				
Fluoranthene	16.0	0.0500	"	25.0		64.2	33-126				
Fluorene	15.7	0.0500	"	25.0		62.8	28-117				
Indeno(1,2,3-cd)pyrene	15.6	0.0500	"	25.0		62.4	10-150				
Naphthalene	14.4	0.0500	"	25.0		57.6	30-99				
Phenanthrene	15.6	0.0500	"	25.0		62.5	31-112				
Pyrene	15.0	0.0500	"	25.0		59.9	42-125				
Surrogate: SURR: Nitrobenzene-d5	15.0		"	25.0		60.1	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	14.3		"	25.0		57.1	39.9-105				
Surrogate: SURR: Terphenyl-d14	16.6		"	25.0		66.4	30.7-106				
Matrix Spike (BD31636-MS1)	*Source sample: 2	3D1180-01 (CI	IM-MW-01	0423)			Prep	oared: 04/25/2	2023 Analyz	ed: 04/26/2	2023
Acenaphthene	19.5	0.0500	ug/L	25.0	0.100	77.6	17-132				
Acenaphthylene	18.2	0.0500	"	25.0	ND	72.9	13-124				
Anthracene	23.1	0.0500	"	25.0	ND	92.4	40-105				
Benzo(a)anthracene	23.4	0.0500	"	25.0	ND	93.7	23-141				
Benzo(a)pyrene	21.4	0.0500	"	25.0	ND	85.7	46-118				
Benzo(b)fluoranthene	23.3	0.0500	"	25.0	ND	93.2	22-133				
Benzo(g,h,i)perylene	22.8	0.0500	"	25.0	ND	91.3	10-126				
Benzo(k)fluoranthene	23.9	0.0500	"	25.0	ND	95.5	18-152				
Chrysene	23.0	0.0500	"	25.0	ND	91.9	30-127				
\mathbf{D} 'h · · · · · (- h) · · · · · · · ·											
Dibenzo(a,n)anthracene	22.3	0.0500	"	25.0	ND	89.2	10-131				
		0.0500 0.0500		25.0 25.0	ND 0.0500	89.2 91.3	10-131 29-123				
Fluoranthene	22.3										
Fluoranthene Fluorene	22.3 22.9	0.0500	"	25.0	0.0500	91.3	29-123				
Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	22.3 22.9 21.6	0.0500 0.0500	"	25.0 25.0	0.0500 ND	91.3 86.6	29-123 20-133	High Bias			
Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	22.3 22.9 21.6 21.9	0.0500 0.0500 0.0500	" "	25.0 25.0 25.0	0.0500 ND ND	91.3 86.6 87.6	29-123 20-133 10-130	High Bias			
Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	22.3 22.9 21.6 21.9 32.5	0.0500 0.0500 0.0500 0.0500		25.0 25.0 25.0 25.0	0.0500 ND ND 2.96	91.3 86.6 87.6 118	29-123 20-133 10-130 26-104	High Bias			
Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	22.3 22.9 21.6 21.9 32.5 22.2	0.0500 0.0500 0.0500 0.0500 0.0500		25.0 25.0 25.0 25.0 25.0	0.0500 ND ND 2.96 0.0500	91.3 86.6 87.6 118 88.4	29-123 20-133 10-130 26-104 29-121	High Bias			
Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	22.3 22.9 21.6 21.9 32.5 22.2 22.3	0.0500 0.0500 0.0500 0.0500 0.0500		25.0 25.0 25.0 25.0 25.0 25.0 25.0	0.0500 ND ND 2.96 0.0500	91.3 86.6 87.6 118 88.4 89.1	29-123 20-133 10-130 26-104 29-121 34-129	High Bias			

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	
Batch BD31636 - EPA 3510C												
Matrix Spike Dup (BD31636-MSD1)	*Source sample: 23I	D1180-01 (CI	M-MW-01	Prepared: 04/25/2023 Analyzed: 04/26/2023								
Acenaphthene	12.8	0.0500	ug/L	25.0	0.100	50.7	17-132		41.8	20	Non-dir.	
Acenaphthylene	11.8	25.0	ND	47.1	13-124		42.9	20	Non-dir.			

Acenaphthylene	11.8	0.0500	"	25.0	ND	47.1	13-124	42.9	20	Non-dir.
Anthracene	19.6	0.0500	"	25.0	ND	78.6	40-105	16.1	20	
Benzo(a)anthracene	21.3	0.0500	"	25.0	ND	85.4	23-141	9.34	20	
Benzo(a)pyrene	19.4	0.0500	"	25.0	ND	77.8	46-118	9.69	20	
Benzo(b)fluoranthene	21.2	0.0500	"	25.0	ND	85.0	22-133	9.20	20	
Benzo(g,h,i)perylene	20.7	0.0500	"	25.0	ND	82.9	10-126	9.64	20	
Benzo(k)fluoranthene	21.6	0.0500	"	25.0	ND	86.4	18-152	10.0	20	
Chrysene	21.1	0.0500	"	25.0	ND	84.4	30-127	8.53	20	
Dibenzo(a,h)anthracene	20.4	0.0500	"	25.0	ND	81.7	10-131	8.75	20	
Fluoranthene	20.8	0.0500	"	25.0	0.0500	83.2	29-123	9.28	20	
Fluorene	15.6	0.0500	"	25.0	ND	62.2	20-133	32.8	20	Non-dir.
Indeno(1,2,3-cd)pyrene	20.0	0.0500	"	25.0	ND	79.8	10-130	9.27	20	
Naphthalene	18.4	0.0500	"	25.0	2.96	61.8	26-104	55.5	20	Non-dir.
Phenanthrene	18.9	0.0500	"	25.0	0.0500	75.2	29-121	16.0	20	
Pyrene	20.0	0.0500	"	25.0	0.0500	79.6	34-129	11.2	20	
Surrogate: SURR: Nitrobenzene-d5	11.8		"	25.0		47.3	50.2-113			
Surrogate: SURR: 2-Fluorobiphenyl	11.4		"	25.0		45.4	39.9-105			
Surrogate: SURR: Terphenyl-d14	22.4		"	25.0		89.7	30.7-106			

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD					
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag				
Batch BD31955 - EPA 3015A															
Blank (BD31955-BLK1)							Prep	ared & Anal	yzed: 04/28/	2023					
Arsenic	ND	0.0167	mg/L												
Lead	ND	0.00556													
LCS (BD31955-BS1)							Prep	ared & Anal	yzed: 04/28/	2023					
Arsenic	1.71		ug/mL	2.00		85.5	80-120								
Lead	0.450			0.500		90.1	80-120								
Duplicate (BD31955-DUP1)	*Source sample: 23	3D1180-01 (Cl	M-MW-01	0423)			Prep	ared & Anal	yzed: 04/28/	2023					
Arsenic	ND	0.0167	mg/L		ND		20								
Lead	ND	0.00556			ND		20								
Matrix Spike (BD31955-MS1)	* Source sample: 23D1180-01 (CIM-MW-01 0423)									Prepared & Analyzed: 04/28/2023					
Arsenic	2.03	0.0167	mg/L	2.22	ND	91.3	75-125								
Lead	0.487	0.00556		0.556	ND	87.6	75-125								
Post Spike (BD31955-PS1)	*Source sample: 23	3D1180-01 (Cl	M-MW-01	0423)			Prep	ared & Anal	yzed: 04/28/	2023					
Arsenic	2.15		ug/mL	2.00	-0.00745	108	75-125								
Lead	0.515		"	0.500	-0.00341	103	75-125								

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
23D1180-01	CIM-MW-01 0423	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23D1180-02	CIM-MW-02 0423	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23D1180-03	CIM-MW-03 0423	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23D1180-04	CIM-MW-04 0423	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23D1180-05	CIM-MW-06 0423	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23D1180-06	CIM-MW-07 0423	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23D1180-07	CIM-MW-08 0423	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23D1180-08	CIM-MW-09 0423	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23D1180-09	CIM-FD-01 0423	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23D1180-10	TRIP BLANK 0423	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect confirmed by

S-08 The recovery of this surrogate was outside of QC limits. OM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data are acceptable. Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration. EXT-EM The sample exhibited emulsion formation during the extraction process. This may affect surrogate recoveries. CCVH The value reported is estimated due to its behavior during continuing calibration verification (>20% difference for average RF or >20% drift for linear or quadratic fit.) This value may be biased high. **Definitions and Other Explanations** Analyte is not certified or the state of the samples origination does not offer certification for the Analyte. NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL) ND RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve. LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest LOQ point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses. LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846. MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods. This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the Reported to LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only. NR Not reported RPD Relative Percent Difference Wet The data has been reported on an as-received (wet weight) basis Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias. High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias. Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons. If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

120 RESEARCH DRIVE www.YORKLAB.com

S-09

re-extraction and re-analysis of the sample.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

Revision Description: This report has been revised to report original run for SVOC samples -03 and -06.

111		Field (Chain-of-	Custor	Chain-of-Custody Borord	YORK Project No.
		555		(2010)	is incruia	-
A AMARTICAL LABORATORIES INC.		k Analytical Laboratories This document serves a	s, Inc. (YORK)'s Standard T s your written authorization	erms & Conditions ar for YORK to proceed	York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below.	tent. UNITO
			ir signature binds you to YC	RK's Standard Term	s & Conditions.	
	132-02 89th Ave Queens, NY 11418	56 Church Hill Rd	.#2 Newtown, CT 06470 clientser	clientservices@yorklab.com	www.yorklab.com 800-306-YORK	×
		Keport Io:	Invoice To:	e To:	YOUR Project Number	r Turn-Around Time
Company: Labelly	Company: LABELLA	4N	Company CABELLA	٨	7731596	RUSH - Next Day
Address:	Address;		Address		< < > > > > > > > > > > > > > > > > > >	RUSH - Two Day
					YOUR Project Name	RUSH - Three Day
Phone.:	Phone.:		Phone.:		Content INATEN RAN	RUSH - Four Day
Contact: GRIC URLOWSH	t Genc	Orlousid	Acets	PAYABLE	-DI Ven	RUSH - Five Day
E-mail:	E-mail:		E-mait:		YOUR PO#:	Standard (6-9 Day)
Please print clearly and legibly. All information must be complete. Samples will not be located in and the turn and time clear will not	n must be complete.	Matrix Codes	Samples From	Report /	Report / EDD Type (circle selections)	YORK Reg. Comp.
begin until any questions by YORK are resolved.	Juliu-Unite CIOCK Will NO.	S - soil / solid	New York	Summary Report	CT RCP EQuIS (Standard)	
ERIC ORIGINA		GW - groundwater	New Jersey	QA Report	CT RCP DQA/DUE NYSDEC EQUIS	Regulation(s): (please fill in)
right 1:		DW - drinking water	Connecticut	CMDP	lced	
turner		WW - wastewater	Pennsylvania	Standard Excel EDD	Deliverables NJDEP SRP HazSite	azSite
Samples Collected by: (print AND sign your name)	ign your name)	O - Oil Other	Other:	NY ASP B Package	Other:	
Sample Identification	Ę	Sample Matrix	Date/Time Sampled		Analyses Requested	Container Type No.
CIM-MU-DI 0423		6 W	4/19/2023 1018	CP-ST VOCS, (VOCS, CP-SI SVOG, TOTAL Ph	Friebach Sandile :
CIM-MW-01-MS 0423	423	-	1 1023			IL Amber 2
CIM-HW-OI-MSD 0423	0413		8201			2SDWLPL 1
CIM-MUJ-02 0423			122		-104	A
CIM-MM-03 0423			Ishi			
CIM-MW-04 0423			16231			
CIM-MM-06-0423			1804			
CIM-MM-07 0423			9451			
CIM-MN-08 0423			1711	1		
CIM-MW-09 0423		V	V 1146	7	> >	
Comments:				Preserva	Preservation: (check all that apply)	Special Instruction
					HNO3 / H2SO4 NaOH	Field Filtered
		Samples iced/chilled at time of	ckup? circle Yes or No	ZnAc Ascorbic Acid	Acid Other: 4%	Lab to Filter
Wilson (4Berra	4/19/2023 1915	1. Samples Received by / Company SECURE RUDUE	r Labeua	1-20-25	2. Samples, Relinquished by / Company	ul Jer-25 12
2. Samply Recorded by Company DataTime	Startine	3. Samples Relinquished by / Company	Sompany	Date/Time	3. Samples Received by / Company	Date/Time
4. Samples Relinquished by / Company	Date/Time	4. Samples Received by / Company		Date/Time	Samples Received in LAB by Date/Til	Date/Time Temperature
					- the	

Page 40 of 41

YORK Project No.	2301140		Page 2 of 2	Turn-Around Time	RUSH - Next Day	RUSH - Three Dav	RUSH - Four Day	RUSH - Five Day	Standard (6-9 Day)	YORK Reg. Comp.	Compared to the following Regulation(s): (please fill in)		- 1	Container Type No.	2411-11×220-11-13×4001-	40 mL VOA 3		Special Instruction	Lab to Filter	23 / 120		Date/Time Temperature
Chain-of-Custody Record	iment.	_	ORK	ject Number	223 S96 RU	YOUR Project Name RU		Consolidated (KON RU	YOUR PO#: Sta	Report / EDD Type (circle selections) YC	CT RCP EQUIS (Standard) Corr CT RCP DQA/DUE VYSDEC EQUIS	NJDEP Reduced NJDKQP Deliverables NJDEP SRP HazSite	Other:		CP-ST SVOGS, TOTAL P.b. 241	40		eck all that apply)	Other: 4°C	th th	pany	Samples Received in LAB by MI 20123 112
Puetod	ms & Conditions are li	or YORK to proceed wi XK's Standard Terms &	clientservices@yorklab.com		LA LA			PAVARLE		Report / El	Summary Report	CMDP Standard Excel EDD	NY ASP B Package	A	cp-si vucs, c	*			ZnAc Ascorbic Acid	420-23 8.50	Date/Time	Date/Time
h-in-of-	In all I-OI-	your written authorization fo signature binds vou to YOR	#2 Newtown, CT 06470 clientservic		Company: LABELLA		Phone	Acrt		Samples From	New York New Jersey	Connecticut Pennsylvania	Other:	Date/Time Sampled	4/19/2023 XAYX	4/18/2023 1810	-		Samples load/chilled at time of lab pickup? circle Yes or No	FRIDGE CLABELLA 42	ompany	yneq
C PICIE	Analytical I aboratories	Analyucal Laboratories, I his document serves as Y Your	56 Church Hill Rd. #2 Newto	Report To:				Millionsori		Matrix Codes	S O	DW - drinking water WW - wastewater	0 - Oil Other	Sample Matrix	600	DI			Samples iced/chilled at time of	1. Samples Received by / Company SECUPE FRIDGE	3. Samples Relinquished by / Company	4. Samples Received by / Company
	Vork		132-02 89th Ave Queens NY 11418 56 Church Hill Rd. I	Repo	2	Address	Phone :	Con	E-mail:	on must be complete.	round-time clock will not lved. S Iz I	140	sian vour name)	on	3	r3				4/19/2023 1915	Date/Time	Date/Time
	A OA	AVALIFICAL LABORATORIES INC	130 Desearch Drive Stratford CT 06815 132-02 8	-	4	Address:	Dhone -		E-mail:	Please print clearly and legibly. All information must be complete.	Samples will not be logged in and the turn-around-time clock will not begin until any questions by YORK are resolved.	CALC UPLAN	Samples Collected by: (print AND sign your name)	Sample Identification	CIM-FD-01 0423	1		Comments:		1. Samples Reinguished by / Company ZIPP, Onlin 11, USBEUA	2 Sartigles Received by / Company Date Time Date Time	4. Samples Relinquished by / Company

Page 41 of 41