APPENDIX J DATA USABILITY SUMMARY REPORTS

DATA USABILITY SUMMARY REPORT

REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase I Remedial Design/ Remedial Action

Prepared by:

Quality Assurance Associates (QAA, L.L.C.)
1007 Francis Drive
College Station, TX 77840
www.qaallc.com
979-694-7199

September 22, 2012

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	1
2.0	PRO	CEDUR	ES	4
3.0	DAT	A VALID	ATION RESULTS	5
	3.1	PRECI	ISION	5
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	5
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	5
		3.1.3	Field Duplicate (FD) Precision	5
	3.2	ACCU	RACY	6
		3.2.1	Laboratory Control Spike (LCS) Accuracy	6
		3.2.2	Matrix Spike (MS) Accuracy	6
		3.2.3	Serial Dilution (SD) %Difference	6
		3.2.4	Surrogate (SU) Recovery	7
	3.3	REPRI	ESENTATIVENESS	7
		3.3.1	Chain-of-Custody and Analysis Requests	7
		3.3.2	Sample Preservation and Holding Time	8
		3.3.3	Laboratory and Method Selection	8
		3.3.4	Blanks (Laboratory and Field)	9
		3.3.5	Analytical Procedures	10
	3.4	COMP	LETENESS	10
		3.4.1	Laboratory Deliverables Completeness	10
		3.4.2	EDD Correctness	
		3.4.3	Analytical Completeness	12
	3.5	COMP	ARABILITY	

LIST OF TABLES

- Table 1 Samples Collected and Tests Performed
- Table 2 Data Validation Qualifiers (DVQs)
- Table 3 QC Deficiencies and Data Qualification Actions
- Table 4 Qualified Results for Field Samples
- Table 5 Field Duplicate Results

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting and Refining Site Operable Unit 1 in Middletown, New York. The independent data review was completed in accord with the *Phase I Remedial Design/ Remedial Action Workplan* (Revision 1, December 2011), hereinafter called the Workplan, using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The data include 262 investigative soil samples plus the associated field QC samples, which were collected by ENTACT in March through May 2012 with the intended use of verifying that remediation goals have been achieved in excavated grids and confirming that backfill materials are suitable for use on-site. A complete listing of the samples collected and tests performed is shown in Table 1. QAA performed a full validation of the data and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010) as specified in section 5.9 of the Workplan. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Data Review* (October 2004) and *National Functional Guidelines for Superfund Organic Methods Data Review* (June 2008), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The Workplan stipulates that the precision control limits will be dictated by the analytical method and the limits are 10-30 RPD, depending upon the test. The validator assessed precision using the laboratory and field duplicates. The laboratory prepared laboratory control spike duplicates (LCSD) using reagent water or sand for the HERB and VOC tests plus two or more unspiked matrix duplicates (MD) or matrix spike duplicates (MSD) using a sample from the site for every test. All LCS/LCSD RPDs are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects. The RPDs for the matrix duplicates are within the limits, which indicates good precision for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the duplicate. Of the 6,047 total results, only 65 results (all of which are detects for metals) are qualified as estimated (J) based on laboratory duplicate precision. Additionally, the sampler collected 15 field duplicates with the 262 samples and the RPDs are within the limits, which indicates good precision for the sampling and analytical technique on the given matrix, or the validator qualified the results for the original and duplicate sample. Only four of the 235 pairs of results are qualified as estimated (J or UJ) based on field duplicate precision. For each qualified pair, the higher result (i.e., from either the original or duplicate sample) should be used for project decisions. This gives a conservative approach relative to protection of the environment. (For field duplicate pairs that pass the precision criteria, the value should be selected based on accepted convention for the site and/or agency requirements, e.g., select the value reported for the original sample, the average of the two values, etc.)
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field

samples and calculation of the percent recovery of the known value. The Workplan stipulates that the accuracy control limits will be dictated by the analytical method. For most tests, the analytical method stipulates that the laboratory calculate in-house performance criteria. In order to better assess data usability, limits of 50-200% were employed where the laboratory limit for a spiked analyte falls outside these values. The validator assessed accuracy using the laboratory spikes and matrix spikes. The laboratory prepared a laboratory control spike (LCS) using reagent water or sand with each analytical batch and reported the recovery for every target compound except the multi-component pesticide technical Chlordane and five of the seven multi-component PCB Aroclors. The laboratory also prepared a laboratory control spike duplicate (LCSD) with each HERB analytical batch and several of the VOC analytical batches. All LCS/LCSD recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects. Additionally, the laboratory prepared several matrix spikes (MS) and matrix spike duplicates (MSD) plus serial dilutions (SD) for the metals analyses using a sample from the site, including two or more for every test. The MS/MSD recoveries are within the laboratory limits, which indicates good accuracy for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the MS/MSD. Likewise, the SD %differences are within the laboratory limits, which indicates there is no matrix interference affecting the accuracy of the metals results, or the validator qualified the results for similar samples in the same analytical batch as the SD. Eight non-detect results for Pentachlorophenol are qualified as rejected (R) due to extremely low matrix spike recovery (less than 10%). Of the remaining 6,039 results, only 99 results (most of which are for volatile organic compounds) are qualified as estimated based on matrix spike recovery. The qualification includes the expected direction of bias where known (i.e., J+ for high MS/MSD recovery and J- for low MS/MSD recovery). Additionally, the laboratory utilized one or more surrogate spikes for each organic analysis. The surrogate recoveries are within the laboratory limits for all samples but one SVOC sample (BF-3230c-001-0'-4.5') and one Pesticide sample (BF-2985c-001-0'-8'). Both samples are all non-detect and the validator qualified the results as estimated (UJ).

Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, investigative samples were collected as required in the approved sampling and analysis plan with the exception of deviations that were approved by NYSDEC (e.g., sidewalls that will be excavated in Phase 2 were not sampled, the north and west sidewalls of grid 16 were considered one sidewall due to slope, grid 43 was deferred to Phase 2, etc.). All other planned samples were collected in addition to a number of unplanned samples (e.g., additional confirmation samples were collected due to unanticipated excavations, additional floor samples were collected based on the grid floor square footage, etc.). Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory and field blanks, and analytical instrument setup (i.e., tuning, calibration, interference correction, etc.) For all samples, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. Also, the laboratory prepared and analyzed a method blank with each analytical batch and the sampler collected four trip blanks with the VOC samples. The laboratory and field blanks show no contamination, which indicates the samples were not affected by laboratory or field procedures, or the validator qualified the samples associated with the blank that have a concentration similar to that in the blank. The qualified results are for TCLP Lead (8 of the 140 results qualified

due to laboratory leachate blank contamination), Acetone (48 of the 92 results qualified due to laboratory blank contamination, which includes all but eight of the 56 detects), and Methylene Chloride (82 of the 92 results qualified due to laboratory and/or trip blank contamination, which includes all but six of the 88 detects). Per the NFG, the validator qualified detects above the reporting limit with a J+ flag while detects below the reporting limit (i.e., laboratory J-values) were qualified with a U flag. Results with a U flag should be considered not detected at the reporting limit, and thus the validator replaced the concentration reported by the laboratory with the reporting limit. Additionally, proper analytical procedures were used and calibration results met the method requirements or the validator qualified the affected samples. All of the 1,4-Dioxane results, which are all non-detects, are qualified as estimated (UJ) due to low instrument response. Additionally, 42 results are qualified due to calibration drift.

- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed with a specific matrix and/or analysis. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. All analyses of investigative samples produced valid analytical measurements, with the exception of eight non-detect results for Pentachlorophenol. With 6,047 total results, this gives a completeness of 99.9%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions or revisions were provided by the laboratory upon request.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples selected for validation were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated. Note that results are reported in mg/kg with dry-weight correction for total metals and inorganics, in µg/L for TCLP metals, and in µg/kg with dry-weight correction for organics for all laboratory job numbers except 460-38653-1. The analytical results for organics are reported in mg/kg with dry-weight correction for this job number.

DATA USABILITY

The results for Pentachlorophenol in eight backfill samples are qualified as rejected (R) and thus are not suitable for use. The absence or presence of this analyte cannot be confirmed in the qualified samples due to extremely low matrix spike recovery (less than 10%). All other results for the investigative samples are acceptable for use with the qualifications shown in Table 4. Results that are qualified with a UJ should be considered not present above the reporting limit; however the reporting limit is an estimated value. Results that are qualified with a J- (biased low) can be used for determining the presence of the analyte and as an indication that the concentration of the analyte exceeds a given criterion. However, the concentration reported for detects may be low. Results that are qualified with a J+ (biased high) can be used for determining the presence of the analyte and as an indication that the concentration of the analyte is less than a given criterion. However, the concentration reported for detects may be high. Similarly, results that are qualified with a J (estimated) may be either low or high. For results qualified with a U (blank contamination), the analyte should be considered not detected at the reporting limit.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables, which include hardcopy data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms and the EQuIS format electronic data deliverable (EDD). The laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- Data Package Completeness,
- EDD Correctness,
- · Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- Laboratory and Method Selection,
- Instrument Tuning and Initial Calibration,
- Continuing Calibration Verification,
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- Matrix Duplicates (MD),
- Field Duplicates (FD),
- Surrogates (SU), and
- Internal Standards (IS).

Additionally, the validator examined the raw data for 10% of the sample batches (randomly selected by the validator across the various analysis dates and tests) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of all laboratory narrative comments and how each affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are typically the laboratory-derived recovery control limits based on historical performance (but not less than 50% lower limit or greater than 200% upper limit)
- Laboratory Precision the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which range from 10-30 RPD
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. Data rejection limits of 30% for inorganics, 20% for purgeable organics (VOC), and 10% for extractable organics were used. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U-flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD) and matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

The laboratory analyzed an LCSD for every analytical batch (maximum 20 samples) and reported RPDs for all target compounds for each HERB batch and the VOC batches without an MS/MSD prepared using a sample from the site. All RPDs are at or below the control limit.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every inorganics analytical batch (maximum 20 samples) and an MSD for every organics analytical batch (maximum 20 samples) and reported RPDs for MD and MSD prepared using a sample from the site. A total of 29 different soil samples from the site were used to prepare an MD or MSD for one or more tests. With a total of 262 investigative soil samples, this meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Additionally, the validator noted that two or more MD or MSD are reported for each type of analytical test and sample media (i.e., backfill, excavation confirmation, or documentation).

Some MD and MSD RPDs are above the control limit and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that, for cases where either result for the duplicate pair is non-detect, the check does not apply as the laboratory reported the RPD as NC (not calculable) in the hardcopy report and as 0 in the EDD. Additionally, the validator considered samples of the same media (i.e., backfill, excavation confirmation, or documentation) to be of similar matrix (e.g., if deficiencies were noted for a MD or MSD prepared using a backfill sample, all backfill samples in the same analytical batch were qualified).

3.1.3 FIELD DUPLICATE (FD) PRECISION

The samplers collected 15 FD with the 262 investigative samples, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Results for the field duplicates are summarized in Table 5.

Four pairs of results are outside the field precision criteria and the validator qualified the data as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the remaining 235 pairs of FD results meet the criteria, which indicates good overall precision, and thus the validator only qualified the original and duplicate sample for the four FD deficiencies.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD), matrix spikes (MS/MSD), serial dilutions (SD), and surrogate (SU) spikes. LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique on the given sample matrix. Surrogates are added to each sample before preparation and analysis and provide an indication of accuracy for each individual sample analysis.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

The laboratory analyzed a LCS and/or LCSD for every analytical batch (maximum 20 samples) as required and reported recoveries for all target compounds except the multi-component pesticide technical Chlordane and five of the seven multi-component PCB Aroclors. All recoveries are within the control limits.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS for every inorganics analytical batch (maximum 20 samples) and an MS/MSD for every organics analytical batch (maximum 20 samples) and reported recoveries for MS and MSD prepared using a sample from the site. A total of 29 different soil samples from the site were used to prepare a matrix spike for one or more tests. With a total of 262 investigative soil samples, this meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Additionally, the validator noted that two or more matrix spikes are reported for each type of analytical test and sample media (i.e., backfill, excavation confirmation, or documentation).

Some MS and MSD recoveries are outside the control limits and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that if an analyte was detected in the unspiked parent sample at a concentration well above (greater than four times) the concentration of spike added to the sample, thereby rendering the recoveries inconclusive, the check was waived and the validator did not qualify the data. For cases where the MS or MSD recovery is outside the control limits but greater than the data rejection limit (30% for inorganics, 20% for purgeable organics (VOC), and 10% for extractable organics) and the average MS/MSD recovery is in control, the validator did not qualify the data. The validator also did not qualify the data for cases where the MS or MSD recovery is outside the control limits (i.e., the laboratory-derived recovery control limits based on historical performance or 50-200%, whichever is more stringent) but within 70-130% since this is considered within the inherent method error and suitable for the intended use. Additionally, the validator considered samples of the same media (i.e., backfill, excavation confirmation, or documentation) to be of similar matrix (e.g., if deficiencies were noted for a MS/MSD prepared using a backfill sample, all backfill samples in the same analytical batch were qualified).

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all target compounds detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit.

3.2.4 SURROGATE (SU) RECOVERY

The laboratory spiked each organic sample with one or more surrogates before preparation and analysis.

A few surrogate recoveries are outside the control limits and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

All samples were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records, which confirms that sample integrity was maintained. The validator noted the following regarding the custody records and sample log-in at the laboratory:

- All samples were received within two days of collection as recommended in DER-10 except those in laboratory job numbers 460-39364-1 and 460-39365-1, which were received three days after collection in good condition.
- Custody seals were only used on the sample shipping containers for a few of the laboratory job numbers; however
 for all laboratory job numbers the laboratory sample custodian noted that the coolers and samples did not appear to
 have been compromised or tampered with.
- The samplers did not enter any of the trip blanks (laboratory sample IDs 460-38653-43, 460-38653-44, 460-38780-39, and 460-38859-28) on the custody records. All trip blanks were logged in for VOC analysis upon receipt at the laboratory per ENTACT.
- The sampler did not enter the time relinquished on the custody record for laboratory job numbers 460-38859-1 and 460-39614-1. The date relinquished and release signature are present.
- The laboratory sample custodian did not enter the date/time relinquished on the second page of the custody record for laboratory job number 460-39845-1. The release signature is present and the date/time is entered on the first page.
- Samples IDs for the following required correction/clarification as follows:

Lab ID	Field ID	Date/Time Sampled	Action
460-38859-16	BF-2996g-001-0'-5'	04/05/12 13:35:00	The laboratory logged in an incorrect sample ID (BF-2996c-001-0'-5'). A revised report and EDD was submitted with the correct ID.
460-38947-1	ECS-SSA11-SER1-0"-6"	04/10/12 13:25:00	The laboratory logged in an incorrect sample ID (ECS-SSA11-SER1-0"-6'). A revised report and EDD was submitted with the correct ID.
460-38947-2	ECS-SSA13-SSR1-0"-6"	04/10/12 13:30:00	The laboratory logged in an incorrect sample ID (ECS-SSA13-SSR1-0"-6'). A revised report and EDD was submitted with the correct ID.

Lab ID	Field ID	Date/Time Sampled	Action
460-39135-5	ECS-27-F	04/16/12 13:50:00	The sample label reads DS-27-SW. The laboratory logged in the sample using the ID on the custody record, which was confirmed correct by the ENTACT field crew.
460-39136-7	DS-16-SN	04/16/12 15:25:00	The sample label reads DS-20-SW while the jar top reads DS-16-SN. The laboratory logged in the sample using the ID on the custody record, which was confirmed correct by the ENTACT field crew.
460-39249-1	BF-2981c-001x-0-5'	04/18/12 08:55:00	The laboratory logged in an incorrect sample ID (BF-2981c-001v-0-5'). A revised report was submitted with the correct ID. The EDD was created after the correction.
460-39614-12	ECS-BF-DEC-001R-F5-0-1'	04/27/12 13:50:00	The sampler entered an incorrect sample ID (ECS-BF-DEC-001R-F5-0-1") on the custody record. A revised report and EDD was submitted with the correct ID.
460-39845-1	ECS-SSA23-SS-0-6"	05/03/12 13:35:00	The laboratory logged in an incorrect sample ID (ECS-SSA23-SS-0-6-"). A revised report and EDD was submitted with the correct ID.
460-39845-2	ECS-SSA23-SE1-0-6"	05/03/12 13:40:00	The laboratory logged in an incorrect sample ID (ECS-SSA23-SE1-0-6-"). A revised report and EDD was submitted with the correct ID.

All field samples were analyzed for the tests requested on the chain-of-custody except as follows:

- Total Arsenic and Lead was cancelled per ENTACT's instructions on 4/16/12 for all samples in laboratory job number 460-39092-1.
- For sample BF-2994g-002-0'-6.5', only VOCs were requested. The laboratory inadvertently also reported all the other DER-10 analytes excluding Mercury and Trivalent Chromium (i.e., Total DER-10 Metals, Cr VI, PEST, PCB, HERB, SVOC, and CN).
- For samples ECS-1-F, ECS-2-F, and ECS-2-Fx, the laboratory reported Total Arsenic and Lead as requested by ENTACT after the samples were received.
- For sample ECS-BF-DEC-001R-F2-0-1', the laboratory reported Total TAL Metals including Mercury instead of Total Arsenic and Lead as requested by ENTACT after the samples were received.
- For the backfill composite samples and the associated QC samples in laboratory job number 460-38780-1, the
 laboratory inadvertently reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor
 epoxide, Methoxychlor, and Toxaphene) instead of the DER-10 analytes as requested.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

All samples were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (TestAmerica-Edison NYSDOH (NELAP) #11452, NYSDOH (ELAP) #11452)

QAA, *L.L.C*.

As required per Section 5.7.2 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. (For VOCs, the validator noted that the VOC soil samples were collected in 4-oz jars using a bulk technique and analyzed using a low-level deionized water extraction (on day 1 to day 5) with heated purge-n-trap per the Workplan rather than using closed system purge-n-trap or methanol extraction as indicated by the preparation method (SW-846 5035) referenced by the laboratory.)

For the backfill samples, the target analyte list includes all DER-10 analytes and the nominal reporting limits (i.e., without dryweight correction or sample dilution and based on the standard sample weight and final volume) are at or below the levels of concern (i.e., the Allowable Constituent Levels (ACLs) for imported fill or soil from Appendix 5 of the DER-10), except as follows:

- DER-10 Appendix 5 lists m-Cresol(s), o-Cresol(s), and p-Cresol(s). The laboratory reported m & p-Cresols and o-Cresol as it is not possible to separate m-Cresol and p-Cresol using method 8270C.
- DER-10 Appendix 5 lists Chlordane (alpha). The laboratory reported technical Chlordane, which is a commercial mixture that contains alpha-Chlordane and gamma-Chlordane along with other related compounds.
- The nominal reporting limit for Pentachlorophenol of 1 mg/kg is slightly above the ACL of 0.8 mg/kg. Note however that the laboratory reported any confirmed detects above the method detection limit (MDL) but below the reporting limit (i.e., J-values) and the laboratory's MDL for Pentachlorophenol is well below the ACL at 0.099 mg/kg.

For the excavation confirmation and documentation samples, the target analyte list includes total Arsenic, total Lead, and/or TCLP Lead as requested and all Contract Laboratory Program (CLP) metals for the TAL metals. The nominal reporting limits are below the levels of concern (i.e., the remedial goals) for total Arsenic, total Lead, and TCLP Lead. There are no established levels of concern for TAL metals. The nominal reporting limits comply with the requirements in the ASP for TAL metals with the exception of Iron, which has a nominal reporting limit of 30 mg/kg for the soil samples that is above the ASP reporting limit of 20 mg/kg.

(Note: The laboratory dilutes all total metals samples 2-4x before analysis as standard practice. All Revere samples were diluted 4x and thus nominal reporting limits were determined at this dilution rate. The laboratory also dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank (and leachate blank for TCLP) for every analytical batch (maximum 20 samples) and a calibration blank for every 10 metals analyses as required per the analytical methodology. Additionally, a trip blank was included with each shipment of VOC samples except that for laboratory job number 460-39249-1. This is a variance as the Workplan calls for one trip blank for every cooler of VOC samples submitted to the laboratory for analysis. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used.

Several detects are reported in the laboratory and trip blanks, primarily at concentrations between the MDL and RL (i.e., laboratory J-values) and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator calculated a blank equivalent concentration taking into account the sample weight, moisture content, and dilution factor for each sample when determining if the contamination in the blank is near that in the sample, and thus if data quality is affected for that sample. When comparing aqueous blank concentrations (e.g., for trip blanks) to solid samples, the validator assumed that all contamination found in the aqueous blank aliquot analyzed is potentially present in the solid sample aliquot analyzed.

3.3.5 ANALYTICAL PROCEDURES

The analytical procedures (instrument tuning and initial calibration, continuing calibration verification, and internal standards), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method with some exceptions primarily for the VOC analyte 1,4-Dioxane. The validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

Additionally, no issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes 91 analytical batches and the validator re-calculated sample results and QC check parameters for nine batches and made the following observations from the review of the raw data:

- Total As and Pb batch 107756 The laboratory reports the RPD for matrix duplicates (MD) as NC (not calculable) if either result is less than the reporting limit and the serial dilution (SD) %difference as NC (not calculable) if the undiluted result is less than 50x MDL since the checks are waived below these levels.
- TCLP Pb batch 112164 No additional observations.
- Hg batch 109333 No additional observations.
- PEST batch 110152 The laboratory used dual column confirmation for all GC analyses (including PEST, PCB, and HERB). For field and QC analyses, the laboratory reports the result from the column with the higher concentration, provided that the RPD between the two columns is less than 40%. If the RPD is greater than 40%, the column with the lower concentration is reported with a note in the narrative and the result is reported with a P flag. There is just one case where the RPD exceeded 40% for this data set (for the surrogate Decachlorobiphenyl in sample BF-2981c-001-0'-5').
- PCB batch 112607 The laboratory quantitates the Aroclors using eight characteristic peaks, which is beyond the
 minimum three required by the method and the five recommended by the method. Qualitative identification may be
 made with fewer peaks if there is a good pattern match, which is consistent with the analytical method.
- HERB batch 108882 No additional observations.
- VOC batch 110443 The laboratory prepares all bulk soil samples for both a deionized (DI) water and a methanol extraction and uses the DI water extract where possible for lower reporting limits. All samples for this data set, which were collected as bulk soils in 4-oz jars, were analyzed as low level DI extracts. Additionally, the laboratory determined that the peaks at 12.5 and 14.0 on the VOC chromatograms are column bleed and therefore are not reported as TICs.
- SVOC batch 108130 No additional observations.
- CN batch 110661 No additional observations.

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

The Level 4 data packages and EDD contain all necessary information or the laboratory submitted a revision upon request as follows:

QAA, L.L.C.

Laboratory Job No.	Action
460-38437-1	A revised package was submitted with the correct dilution factor for the PDS of total metals sample 23 and with consistent units for the TCLP field samples and QC samples to obtain correct reporting of the PDS and SD of TCLP sample 15.
460-38653-1	A revised package and EDD were submitted with missing recovery data for 8270 LCS 460108130/2A.
460-38859-1	A revised package and EDD were submitted with correct Sample IDs per Section 3.3.1 and with missing method blank and LCS data for 8081 batch 108736.
460-38947-1	A revised package and EDD were submitted with correct Sample IDs per Section 3.3.1.
460-39091-1	A revised package was submitted with missing raw data.
460-39092-1	A revised package was submitted with missing raw data.
460-39249-1	A revised package was submitted with correct Sample IDs per Section 3.3.1 and with missing raw data. A revised package and EDD was submitted with extraneous 7196 results removed.
460-39363-1	A revised package was submitted with missing raw data.
460-39614-1	A revised package and EDD were submitted with correct Sample IDs per Section 3.3.1.
460-39845-1	A revised package was submitted with the correct dilution factor for the PDS of total metals sample 9. A revised package and EDD were submitted with correct Sample IDs per Section 3.3.1.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Lab ID	Field ID	Date/Time Sampled	Action
460-39614-13	ECS-BF-DEC-001R-SS2-0-6"	04/27/2012 13:55:00	The validator changed the sample ID in
			sys_sample_code, sample_name, and
			sys_loc_code from ECS-BF-DEC-001R-SS2-
			0-6' to ECS-BF-DEC-001R-SS2-0-6" to
			match that on the custody record and in the
			data package.
460-39614-14	ECS-BF-DEC-001R-F6-0-1'	04/27/2012 14:00:00	The validator changed the sample ID in
			sys_sample_code, sample_name, and
			sys_loc_code from ECS-BF-DEC-001R-F6-
			0-1" to ECS-BF-DEC-001R-F6-0-1' to match
			that on the custody record and in the data
			package.
460-39614-16	ECS-BF-DEC-001R-SW2-0-6"	04/27/2012 14:25:00	The validator changed the sample ID in
			sys_sample_code, sample_name, and
			sys_loc_code from ECS-BF-DEC-001R-
			SW2-0-6 to ECS-BF-DEC-001R-SW2-0-6" to
			match that on the custody record and in the
100 000 00 10	T: 5: 14	0.4/0.0/0.40.00.00	data package.
460-38653-43	Trip Blank1	04/03/2012 00:00:00	The validator changed the
460-38653-44	Trip Blank2	04/03/2012 00:00:00	sample_matrix_code from SO to WQ and the
			sample_type_code from N to TB to match
			that on the custody record and in the data
100 00001 0	50.40.004	0.4/4.0/0.04.0.4.0.0	package.
460-39364-2	DS-13-SW	04/18/2012 16:14:00	The validator changed the
			sample_type_code from MS to N to match
			that on the custody record and in the data
			package.

QAA, L.L.C.

Lab ID	Field ID	Date/Time Sampled	Action
460-38653-9	BF-2972c-002-0'-8'	04/03/2012 09:40:00	The validator changed the composite_yn
460-38653-27	BF-2973c-001-0'-4'	04/03/2012 13:05:00	from N to Y and/or the composite_desc from blank to Comp to match that on the custody
460-38653-30	BF-2974c-001-0'-3.5'	04/03/2012 13:29:00	record and in the data package.
460-38653-12	BF-2975c-001-0'-4'	04/03/2012 10:25:00	
460-38653-24	BF-2976c-001-0'-7.5'	04/03/2012 12:45:00	
460-38653-33	BF-2977c-001-0'-3.5'	04/03/2012 13:45:00	
460-38653-15	BF-2978c-001-0'-6'	04/03/2012 10:43:00	
460-38653-21	BF-2979c-001-0'-8.5'	04/03/2012 11:18:00	
460-39249-6	BF-2981c-001x-0-5'	04/18/2012 08:55:00	
460-38653-18	BF-2982c-001-0'-5'	04/03/2012 11:03:00	
460-38653-36	BF-2983c-001-0'-9'	04/03/2012 14:12:00	
460-39249-9	BF-2985c-001-0'-8'	04/18/2012 09:25:00	
460-38653-39	BF-2986c-001-0'-13.5'	04/03/2012 14:41:00	
460-39249-24	BF-2989c-001-1'-4'	04/18/2012 13:20:00	
460-38653-42	BF-2990c-001-0'-7.5'	04/03/2012 15:00:00	
460-39249-27	BF-2993c-001-1'-6'	04/18/2012 13:40:00	
460-38780-26	BF-2995c-001-0'-4.5'	04/04/2012 14:30:00	
460-39249-30	BF-2997c-001-1'-6'	04/18/2012 13:58:00	
460-39249-12	BF-3000c-001-0'-8'	04/18/2012 09:47:00	
460-39249-21	BF-3224c-001-1'-4'	04/18/2012 13:03:00	
460-38780-32	BF-3225c-001-0'-3'	04/04/2012 15:17:00	
460-39249-15	BF-3228c-001-1'-7'	04/18/2012 12:35:00	
460-39249-18	BF-3232c-001-1'-5'	04/18/2012 12:52:00	
460-38859-6	BF-3234c-001-0'-5'	04/05/2012 10:34:00]
460-38859-27	BF-3236c-001-0'-6'	04/05/2012 14:37:00	
460-38859-25	BF-3236g-001-0'-6'	04/05/2012 14:35:00	The validator changed the composite_yn from Y to N and the composite_desc from Comp to blank to match that on the custody record and in the data package.

3.4.3 ANALYTICAL COMPLETENESS

The validator rejected eight non-detect results for Pentachlorophenol due to extremely low matrix spike recovery (less than 10%). With 6,047 total results, this gives a completeness of 99.9%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which a target analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which a target analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size and include dry-weight correction for all soil samples as required per Section 5.7.1 of the Workplan. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results for the investigative samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in µg/L for TCLP metals, and in µg/kg with dry-weight correction for organics for all laboratory job numbers except 460-38653-1. The analytical results for organics are reported in mg/kg with dry-weight correction for this job number. (For the 7196A analyses, Trivalent Chromium is shown as not dry-weight corrected by TestAmerica-Edison and as dry-weight corrected by TestAmerica-Pittsburgh, which performed the 7196A analyses for laboratory job number 460-39249-1. Trivalent Chromium is calculated from the results for Hexavalent Chromium and total Chromium, which are dry-weight corrected, and thus the Trivalent Chromium is not directly dry-weight corrected but is on a dry-weight basis.)

The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated.

TABLE 1 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase I Remedial Design/ Remedial Action

SAMPLES COLLECTED AND TESTS PERFORMED

Lab ID	Field ID	Sample Date	Sample Type	Sample Media	Sample Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-38437-1	ECS-SSA1-F	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-2	ECS-SSA1-SW	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-3	ECS-SSA1-SN	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-4	ECS-SSA1-SE	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-5	ECS-SSA1-SS	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-6	ECS-SSA2-F	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-7	ECS-SSA2-SN	3/28/12	INV	ECS	Soil	Х	Χ										
460-38437-8	ECS-SSA2-SE	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-9	ECS-SSA2-SS	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-10	ECS-SSA2-SW	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-11	ECS-SSA32-SN	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-12	ECS-SSA32-SW	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-13	ECS-SSA32-SE	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-13LR	ECS-SSA32-SE_LR	3/28/12	MD	ECS	Soil		Х										
460-38437-13MS	ECS-SSA32-SE_MS	3/28/12	MS	ECS	Soil		Χ										
460-38437-14	ECS-SSA32-SS	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-15	ECS-SSA32-F	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-15LR	ECS-SSA32-F_LR	3/28/12	MD	ECS	Soil	Х	Х										
460-38437-15MS	ECS-SSA32-F_MS	3/28/12	MS	ECS	Soil	Х	Х										
460-38437-16	ECS-SSA13-F	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-17	ECS-SSA13-F-FD	3/28/12	FD	ECS	Soil	Х	Х										
460-38437-18	ECS-SSA13-SN	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-19	ECS-SSA13-SE	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-20	ECS-SSA13-SS	3/28/12	INV	ECS	Soil	Х	X										
460-38437-21	ECS-SSA13-SW	3/28/12	INV	ECS	Soil	Х	X										
460-38437-22	ECS-SSA11-F	3/28/12	INV	ECS	Soil	Х	X										
460-38437-23	ECS-SSA11-SN	3/28/12	INV	ECS	Soil	Х	Χ										
460-38437-23LR	ECS-SSA11-SN_LR	3/28/12	MD	ECS	Soil		Х										
460-38437-23MS	ECS-SSA11-SN_MS	3/28/12	MS	ECS	Soil		Х										
460-38437-24	ECS-SSA11-SE	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-25	ECS-SSA11-SS	3/28/12	INV	ECS	Soil	Х	Х										
460-38437-26	ECS-SSA11-SW	3/28/12	INV	ECS	Soil	Х	Χ										

Lab ID	Field ID	Sample Date	Sample Type	Sample Media	Sample Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-38653-1	BF-2972g-001-0'-8'	4/3/12	INV	BF	soil										Х		
460-38653-2	BF-2972g-002-0'-8'	4/3/12	INV	BF	soil										Х		
460-38653-3	BF-2972g-003-0'-8'	4/3/12	INV	BF	soil										Х		
460-38653-4	BF-2972g-004-0'-8'	4/3/12	INV	BF	soil										Х		
460-38653-5	BF-2972g-005-0'-8'	4/3/12	INV	BF	soil										Х		
460-38653-6	BF-2972g-006-0'-8'	4/3/12	INV	BF	soil										Х		
460-38653-7	BF-2972g-007-0'-8'	4/3/12	INV	BF	soil										Х		
460-38653-8MS	BF-2972c-001-0'-8'_MS	4/3/12	MS	BF	soil							Х	Х				
460-38653-8SD	BF-2972c-001-0'-8'_SD	4/3/12	MSD	BF	soil							Х	Х				
460-38653-9	BF-2972c-002-0'-8'	4/3/12	INV	BF	soil				Χ	Х	Х	Х	Х	Х		Х	Х
460-38653-8	BF-2972c-001-0'-8'	4/3/12	INV	BF	soil				Χ	Х	Х	Х	Х	Х		Х	Х
460-38653-10	BF-2975g-001-0'-4'	4/3/12	INV	BF	soil										Х		
460-38653-11	BF-2975g-002-0'-4'	4/3/12	INV	BF	soil										Х		
460-38653-12	BF-2975c-001-0'-4'	4/3/12	INV	BF	soil				Χ	Х	Χ	Х	Х	Х		Х	Х
460-38653-13	BF-2978g-001-0'-6'	4/3/12	INV	BF	soil										Х		
460-38653-14	BF-2978g-002-0'-6'	4/3/12	INV	BF	soil										Х		
460-38653-15	BF-2978c-001-0'-6'	4/3/12	INV	BF	soil				Χ	Х	Χ	Х	Х	Х		Х	Х
460-38653-15MS	BF-2978c-001-0'-6'_MS	4/3/12	MS	BF	soil												Х
460-38653-15SD	BF-2978c-001-0'-6'_SD	4/3/12	MSD	BF	soil												Х
460-38653-16	BF-2982g-001-0'-5'	4/3/12	INV	BF	soil										Х		
460-38653-17	BF-2982g-002-0'-5'	4/3/12	INV	BF	soil										Х		
460-38653-18	BF-2982c-001-0'-5'	4/3/12	INV	BF	soil				Χ	Χ	Χ	Х	Х	Х		Χ	Х
460-38653-19	BF-2979g-001-0'-8.5'	4/3/12	INV	BF	soil										Х		
460-38653-20	BF-2979g-002-0'-8.5'	4/3/12	INV	BF	soil										Х		
460-38653-21	BF-2979c-001-0'-8.5'	4/3/12	INV	BF	soil				Χ	Χ	Χ	Х	Х	Х		Χ	Х
460-38653-22	BF-2976g-001-0'-7.5'	4/3/12	INV	BF	soil										Х		
460-38653-23	BF-2976g-002-0'-7.5'	4/3/12	INV	BF	soil										Х		
460-38653-24	BF-2976c-001-0'-7.5'	4/3/12	INV	BF	soil				Χ	Χ	Χ	Х	Х	Х		Χ	Х
460-38653-25	BF-2973g-001-0'-4'	4/3/12	INV	BF	soil										Х		
460-38653-26	BF-2973g-002-0'-4'	4/3/12	INV	BF	soil										Х		
460-38653-27	BF-2973c-001-0'-4'	4/3/12	INV	BF	soil				Χ	Х	Х	Х	Х	Х		Х	Х
460-38653-27LR	BF-2973c-001-0'-4'_LR	4/3/12	MD	BF	soil					Χ							
460-38653-27MS	BF-2973c-001-0'-4'_MS	4/3/12	MS	BF	soil					X							
460-38653-28	BF-2974g-001-0'-3.5'	4/3/12	INV	BF	soil										Х		
460-38653-29	BF-2974g-002-0'-3.5'	4/3/12	INV	BF	soil										Х		
460-38653-30	BF-2974c-001-0'-3.5'	4/3/12	INV	BF	soil				Χ	X	Χ	Х	Х	Х		Х	Х
460-38653-31	BF-2977g-001-0'-3.5'	4/3/12	INV	BF	soil										Х		
460-38653-32	BF-2977g-002-0'-3.5'	4/3/12	INV	BF	soil										Х		
460-38653-33	BF-2977c-001-0'-3.5'	4/3/12	INV	BF	soil				Χ	Χ	Х	Х	Х	Х		Χ	Х

460-38653-34

BF-2983g-001-0'-9'

4/3/12

INV

soil

BF

Χ

Lab ID	Field ID	Sample Date	Sample Type	Sample Media	Sample Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-38653-35	BF-2983g-002-0'-9'	4/3/12	INV	BF	soil										Χ		
460-38653-36	BF-2983c-001-0'-9'	4/3/12	INV	BF	soil				Χ	X	Χ	Х	Χ	Χ		Χ	X
460-38653-36MS	BF-2983c-001-0'-9'_MS	4/3/12	MS	BF	soil									Х			Х
460-38653-36SD	BF-2983c-001-0'-9'_SD	4/3/12	MSD	BF	soil									Χ			Х
460-38653-37	BF-2986g-001-0'-13.5'	4/3/12	INV	BF	soil										Χ		
460-38653-38	BF-2986g-002-0'-13.5'	4/3/12	INV	BF	soil										Χ		
460-38653-39	BF-2986c-001-0'-13.5'	4/3/12	INV	BF	soil				Χ	X	Χ	X	Χ	Χ		Χ	Х
460-38653-40	BF-2990g-001-0'-7.5'	4/3/12	INV	BF	soil										Χ		
460-38653-41	BF-2990g-002-0'-7.5'	4/3/12	INV	BF	soil										Χ		
460-38653-42	BF-2990c-001-0'-7.5'	4/3/12	INV	BF	soil				Χ	Χ	Χ	X	Χ	Χ		Χ	Х
460-38653-42LR	BF-2990c-001-0'-7.5'_LR	4/3/12	MD	BF	soil				Χ								
460-38653-42MS	BF-2990c-001-0'-7.5'_MS	4/3/12	MS	BF	soil				Χ								
460-38653-43	Trip Blank1	4/3/12	TB	TB	water										Χ		
460-38653-44	Trip Blank2	4/3/12	TB	TB	water										Χ		
460-38780-1	BF-2994g-001-0'-6.5'	4/4/12	INV	BF	soil										Χ		
460-38780-2	BF-2994g-002-0'-6.5'	4/4/12	INV	BF	soil					Χ	Χ	X	Χ	Χ	Χ	Χ	Х
460-38780-2MS	BF-2994g-002-0'-6.5'_MS	4/4/12	MS	BF	soil												Х
460-38780-2SD	BF-2994g-002-0'-6.5'_SD	4/4/12	MSD	BF	soil												Х
460-38780-3	BF-2994c-001-0'-6.5'	4/4/12	INV	BF	soil				Χ	Χ	Χ	X	Χ	Χ		Χ	Х
460-38780-4	BF-2991g-001-0'-6'	4/4/12	INV	BF	soil										Χ		
460-38780-5	BF-2991g-002-0'-6'	4/4/12	INV	BF	soil										Χ		
460-38780-6	BF-2991c-001-0'-6'	4/4/12	INV	BF	soil				Χ	Х	Χ	X	Χ	Χ		Χ	Х
460-38780-7	BF-2987g-001-0'-8.5'	4/4/12	INV	BF	soil										Χ		
460-38780-8	BF-2987g-002-0'-8.5'	4/4/12	INV	BF	soil										Χ		
460-38780-9	BF-2987c-001-0'-8.5'	4/4/12	INV	BF	soil				Χ	Х	Χ	X	Χ	Χ		Χ	Х
460-38780-10	BF-2987g-001x-0'-8.5'	4/4/12	FD	BF	soil										Χ		
460-38780-11	BF-2987c-001x-0'-8.5'	4/4/12	FD	BF	soil				Χ	Х	Χ	X	Χ	Χ		Χ	Х
460-38780-12	BF-2984g-001-0'-10'	4/4/12	INV	BF	soil										Χ		
460-38780-13	BF-2984g-002-0'-10'	4/4/12	INV	BF	soil										Χ		
460-38780-14	BF-2984c-001-0'-10'	4/4/12	INV	BF	soil				Χ	Х	Χ	X	Χ	Χ		Χ	X
460-38780-15	BF-2980g-001-0'-7.5'	4/4/12	INV	BF	soil										Χ		
460-38780-16	BF-2980g-002-0'-7.5'	4/4/12	INV	BF	soil										Χ		
460-38780-17	BF-2980c-001-0'-7.5'	4/4/12	INV	BF	soil				Χ	Χ	Χ	Х	Χ	Χ		Χ	Х
460-38780-18	BF-2988g-001-0'-7.5'	4/4/12	INV	BF	soil										Χ		
460-38780-19	BF-2988g-002-0'-7.5'	4/4/12	INV	BF	soil										Χ		
460-38780-20	BF-2988c-001-0'-7.5'	4/4/12	INV	BF	soil				Χ	Χ	Χ	Х	X	Х		Χ	Χ
460-38780-21	BF-2992g-001-0'-7'	4/4/12	INV	BF	soil										Χ		
460-38780-22	BF-2992g-002-0'-7'	4/4/12	INV	BF	soil										Χ		
460-38780-23	BF-2992c-001-0'-7'	4/4/12	INV	BF	soil				Χ	Х	Χ	Х	Х	Х		Χ	Χ
460-38780-24	BF-2995g-001-0'-4.5'	4/4/12	INV	BF	soil										Χ		

Lab ID	Field ID	Sample Date	Sample Type	Sample Media	Sample Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-38780-24MS	BF-2995g-001-0'-4.5'_MS	4/4/12	MS	BF	soil										Х		
460-38780-24SD	BF-2995g-001-0'-4.5'_SD	4/4/12	MSD	BF	soil										Х		
460-38780-25	BF-2995g-002-0'-4.5'	4/4/12	INV	BF	soil										Х		
460-38780-25MS	BF-2995g-002-0'-4.5'_MS	4/4/12	MS	BF	soil										Х		
460-38780-25SD	BF-2995g-002-0'-4.5'_SD	4/4/12	MSD	BF	soil										Х		
460-38780-26	BF-2995c-001-0'-4.5'	4/4/12	INV	BF	soil				Χ	Χ	Χ	Х	Х	Х		Х	Х
460-38780-26LR	BF-2995c-001-0'-4.5'_LR	4/4/12	MD	BF	soil				Χ	Χ	Χ						
460-38780-26MS	BF-2995c-001-0'-4.5'_MS	4/4/12	MS	BF	soil				Χ	Χ	Χ	Х	Х	Х		Х	Х
460-38780-26SD	BF-2995c-001-0'-4.5'_SD	4/4/12	MSD	BF	soil							Х	Х	Х		Х	Х
460-38780-27	BF-2998g-001-0'-3.5'	4/4/12	INV	BF	soil										Х		
460-38780-28	BF-2998g-002-0'-3.5'	4/4/12	INV	BF	soil										Х		
460-38780-29	BF-2998c-001-0'-3.5'	4/4/12	INV	BF	soil				Χ	Х	Χ	Х	Х	Х		Х	Х
460-38780-30	BF-3225g-001-0'-3'	4/4/12	INV	BF	soil										Х		
460-38780-31	BF-3225g-002-0'-3'	4/4/12	INV	BF	soil										Х		
460-38780-32	BF-3225c-001-0'-3'	4/4/12	INV	BF	soil				Χ	Χ	Χ	Х	Х	X		Χ	Х
460-38780-32MS	BF-3225c-001-0'-3'_MS	4/4/12	MS	BF	soil									X			
460-38780-32SD	BF-3225c-001-0'-3'_SD	4/4/12	MSD	BF	soil									X			
460-38780-33	BF-3226g-001-0'-3'	4/4/12	INV	BF	soil										Х		
460-38780-34	BF-3226g-002-0'-3'	4/4/12	INV	BF	soil										Х		
460-38780-35	BF-3226c-001-0'-3'	4/4/12	INV	BF	soil				Χ	Χ	Χ	Х	Х	X		Х	Х
460-38780-36	BF-3229g-001-0'-5'	4/4/12	INV	BF	soil										Χ		
460-38780-37	BF-3229g-002-0'-5'	4/4/12	INV	BF	soil										Χ		
460-38780-38	BF-3229c-001-0'-5'	4/4/12	INV	BF	soil				Χ	Χ	Χ	Χ	Χ	Χ		Χ	Х
460-38780-39	Trip Blank	4/4/12	TB	TB	water										Χ		
460-38859-1	BF-3233g-001-0'-6'	4/5/12	INV	BF	soil										Χ		
460-38859-2	BF-3233g-002-0'-6'	4/5/12	INV	BF	soil										Χ		
460-38859-3	BF-3233c-001-0'-6'	4/5/12	INV	BF	soil				Χ	Χ	Χ	Χ	Χ	Х		Χ	Х
460-38859-3MS	BF-3233c-001-0'-6'_MS	4/5/12	MS	BF	soil											Χ	Х
460-38859-3SD	BF-3233c-001-0'-6'_SD	4/5/12	MSD	BF	soil											Χ	X
460-38859-4	BF-3234g-001-0'-5'	4/5/12	INV	BF	soil										Χ		
460-38859-5	BF-3234g-002-0'-5'	4/5/12	INV	BF	soil										Χ		
460-38859-6	BF-3234c-001-0'-5'	4/5/12	INV	BF	soil				Χ	Χ	Χ	Χ	Х	X		Χ	Χ
460-38859-6LR	BF-3234c-001-0'-5'_LR	4/5/12	MD	BF	soil				Χ		Χ						
460-38859-6MS	BF-3234c-001-0'-5'_MS	4/5/12	MS	BF	soil				Χ		Χ						
460-38859-7	BF-3230g-001-0'-4.5'	4/5/12	INV	BF	soil										X		
460-38859-8	BF-3230g-002-0'-4.5'	4/5/12	INV	BF	soil										X		
460-38859-9	BF-3230c-001-0'-4.5'	4/5/12	INV	BF	soil				Χ	Χ	Χ	Χ	Х	X		Χ	Χ
460-38859-10	BF-3227g-001-0'-6'	4/5/12	INV	BF	soil										X		
460-38859-11	BF-3227g-002-0'-6'	4/5/12	INV	BF	soil										X		
460-38859-12	BF-3227c-001-0'-6'	4/5/12	INV	BF	soil				Χ	Х	Χ	Χ	Χ	X		Х	Χ

Lab ID	Field ID	Sample Date	Sample Type	Sample Media	Sample Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-38859-13	BF-2999g-001-0'-5'	4/5/12	INV	BF	soil										Х		
460-38859-14	BF-2999g-002-0'-5'	4/5/12	INV	BF	soil										Х		
460-38859-15	BF-2999c-001-0'-5'	4/5/12	INV	BF	soil				Х	Х	Х	Х	Х	Х		Х	Х
460-38859-16	BF-2996g-001-0'-5'	4/5/12	INV	BF	soil										Х		
460-38859-17	BF-2996g-002-0'-5'	4/5/12	INV	BF	soil										Х		
460-38859-18	BF-2996c-001-0'-5'	4/5/12	INV	BF	soil				Χ	Х	Х	Х	Х	Х		Х	Х
460-38859-19	BF-3235g-001-0'-6'	4/5/12	INV	BF	soil										Х		
460-38859-20	BF-3235g-002-0'-6'	4/5/12	INV	BF	soil										Х		
460-38859-21	BF-3235c-001-0'-6'	4/5/12	INV	BF	soil				Χ	Х	Х	Х	Х	Х		Х	Х
460-38859-22	BF-3231g-001-0'-8'	4/5/12	INV	BF	soil										Х		
460-38859-23	BF-3231g-002-0'-8'	4/5/12	INV	BF	soil										Х		
460-38859-24	BF-3231c-001-0'-8'	4/5/12	INV	BF	soil				Χ	Х	Χ	Х	Х	Х		Х	Х
460-38859-25	BF-3236g-001-0'-6'	4/5/12	INV	BF	soil										Х		
460-38859-26	BF-3236g-002-0'-6'	4/5/12	INV	BF	soil										Χ		
460-38859-27	BF-3236c-001-0'-6'	4/5/12	INV	BF	soil				Χ	Χ	Χ	Χ	Χ	X		Χ	X
460-38859-28	ТВ	4/5/12	TB	TB	water										X		
460-38947-1	ECS-SSA11-SER1-0"-6"	4/10/12	INV	ECS	soil	X		Χ	Χ								
460-38947-2	ECS-SSA13-SSR1-0"-6"	4/10/12	INV	ECS	soil	Х	Χ										
460-39091-1	ECS-SSA7-F-1'	4/13/12	INV	ECS	soil	X	Х										
460-39091-2	ECS-SSA2-FR1-1.5'	4/13/12	INV	ECS	soil	X	Χ										
460-39092-1	ECS-36-F	4/13/12	INV	ECS	soil	X											
460-39092-2	ECS-40-F	4/13/12	INV	ECS	soil	X											
460-39092-3	ECS-39-F	4/13/12	INV	ECS	soil	X											
460-39092-4	ECS-42-F	4/13/12	INV	ECS	soil	Х											
460-39092-5	ECS-38-F	4/13/12	INV	ECS	soil	Х											
460-39092-6	ECS-33-F	4/13/12	INV	ECS	soil	X											
460-39092-7	ECS-33-FX	4/13/12	FD	ECS	soil	X											
460-39092-8	ECS-34-F	4/13/12	INV	ECS	soil	Х											
460-39092-9	ECS-35-F	4/13/12	INV	ECS	soil	Х											
460-39092-10	ECS-31-F	4/13/12	INV	ECS	soil	Х											
460-39092-11	ECS-30-F	4/13/12	INV	ECS	soil	X											
460-39092-11LR	ECS-30-F_LR	4/13/12	MD	ECS	soil	Х											
460-39092-11MS	ECS-30-F_MS	4/13/12	MS	ECS	soil	X											
460-39092-12	ECS-29-F	4/13/12	INV	ECS	soil	X											
460-39092-13	ECS-28-F	4/13/12	INV	ECS	soil	X											
460-39092-14	ECS-24-F	4/13/12	INV	ECS	soil	X											
460-39092-15	ECS-25-F	4/13/12	INV	ECS	soil	Х		X	Χ								
460-39092-16	ECS-26-F	4/13/12	INV	ECS	soil	Х											
460-39092-17	ECS-22-F	4/13/12	INV	ECS	soil	Х											
460-39092-18	ECS-21-F	4/13/12	INV	ECS	soil	X											

QAA, L.L.C.

Lab ID	Field ID	Sample Date	Sample Type	Sample Media	Sample Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-39092-19	ECS-20-F	4/13/12	INV	ECS	soil	Х											
460-39092-19LR	ECS-20-F_LR	4/13/12	MD	ECS	soil	Х											
460-39092-19MS	ECS-20-F_MS	4/13/12	MS	ECS	soil	Х											
460-39135-1	ECS-32-F	4/16/12	INV	ECS	soil	Х											
460-39135-2	ECS-32-FX	4/16/12	FD	ECS	soil	Х											
460-39135-3	ECS-37-F	4/16/12	INV	ECS	soil	Х		Х	Χ								
460-39135-4	ECS-41-F	4/16/12	INV	ECS	soil	Х											
460-39135-5	ECS-27-F	4/16/12	INV	ECS	soil	Х											
460-39135-6	ECS-18-F	4/16/12	INV	ECS	soil	Х											
460-39135-6LR	ECS-18-F_LR	4/16/12	MD	ECS	soil	Х											
460-39135-6MS	ECS-18-F_MS	4/16/12	MS	ECS	soil	Х											
460-39136-1	DS-41-SW	4/16/12	INV	DS	soil	Х											
460-39136-2	DS-37-SW	4/16/12	INV	DS	soil	Х											
460-39136-3	DS-32-SW	4/16/12	INV	DS	soil	Х											
460-39136-4	DS-28-SW	4/16/12	INV	DS	soil	Х											
460-39136-5	DS-24-SW	4/16/12	INV	DS	soil	Х											
460-39136-6	DS-20-SW	4/16/12	INV	DS	soil	Х											
460-39136-7	DS-16-SN	4/16/12	INV	DS	soil	Х											
460-39249-1	BF-2981g-001-0'-5'	4/18/12	INV	BF	soil										Х		
460-39249-2	BF-2981g-001x-0'-5'	4/18/12	FD	BF	soil										Х		
460-39249-3	BF-2981g-002-0'5'	4/18/12	INV	BF	soil										Х		
460-39249-4	BF-2981g-002x-0'-5'	4/18/12	FD	BF	soil										Х		
460-39249-5	BF-2981c-001-0'-5'	4/18/12	INV	BF	soil				Х	Х	Χ*	Х	Х	Х		Х	Х
460-39249-6	BF-2981c-001x-0-5'	4/18/12	FD	BF	soil				Х	Х	Χ*	Х	Х	Х		Х	Х
460-39249-7	BF-2985g-001-0'-8'	4/18/12	INV	BF	soil										Х		
460-39249-8	BF-2985g-002-0'-8'	4/18/12	INV	BF	soil										X		
460-39249-9	BF-2985c-001-0'-8'	4/18/12	INV	BF	soil				Х	Х	Χ*	Х	Х	Х		Х	Х
460-39249-10	BF-3000g-001-0'-8'	4/18/12	INV	BF	soil										Х		
460-39249-10MS	BF-3000g-001-0'-8'_MS	4/18/12	MS	BF	soil										Х		
460-39249-10SD	BF-3000g-001-0'-8'_SD	4/18/12	MSD	BF	soil										Х		
460-39249-11	BF-3000g-002-0'-8'	4/18/12	INV	BF	soil										Х		
460-39249-11MS	BF-3000g-002-0'-8'_MS	4/18/12	MS	BF	soil	1								1	X		
460-39249-11SD	BF-3000g-002-0'-8'_SD	4/18/12	MSD	BF	soil	1								1	X		
460-39249-12	BF-3000c-001-0'-8'	4/18/12	INV	BF	soil	1			Х	Х	Χ*	Х	Х	Х		Х	Х
460-39249-12LR	BF-3000c-001-0'-8' LR	4/18/12	MD	BF	soil	1			Х	X	Χ*			1	1		
460-39249-12MS	BF-3000c-001-0'-8' MS	4/18/12	MS	BF	soil	1			Х	X	Χ*	Х	Х	Х	1	Х	Х
460-39249-12SD	BF-3000c-001-0'-8'_SD	4/18/12	MSD	BF	soil	1						X	X	X		X	Х
460-39249-13	BF-3228q-001-1'-7'	4/18/12	INV	BF	soil										Х		
460-39249-14	BF-3228g-002-1'-7'	4/18/12	INV	BF	soil	1								1	X		
460-39249-15	BF-3228c-001-1'-7'	4/18/12	INV	BF	soil				Х	Х	Χ*	Х	Х	Х		Х	Х

100 11000	,	•
O A	4. <i>L.L.</i>	.C.

Lab ID	Field ID	Sample Date	Sample Type	Sample Media	Sample Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-39249-16	BF-3232g-001-1'-5'	4/18/12	INV	BF	soil										Х		
460-39249-17	BF-3232g-002-1'-5'	4/18/12	INV	BF	soil										Х		
460-39249-18	BF-3232c-001-1'-5'	4/18/12	INV	BF	soil				Χ	Х	Χ*	Х	Х	Х		Х	Х
460-39249-19	BF-3224g-001-1'-4'	4/18/12	INV	BF	soil										Х		
460-39249-20	BF-3224g-002-1'-4'	4/18/12	INV	BF	soil										Х		
460-39249-21	BF-3224c-001-1'-4'	4/18/12	INV	BF	soil				Χ	Х	Χ*	Х	Х	Х		Х	Х
460-39249-22	BF-2989g-001-1'-4'	4/18/12	INV	BF	soil										Х		
460-39249-23	BF-2989g-002-1'-4'	4/18/12	INV	BF	soil										Х		
460-39249-24	BF-2989c-001-1'-4'	4/18/12	INV	BF	soil				Χ	Х	Χ*	Х	Х	Х		Х	Х
460-39249-25	BF-2993g-001-1'-6'	4/18/12	INV	BF	soil										Х		
460-39249-26	BF-2993g-002-1'-6'	4/18/12	INV	BF	soil										Х		
460-39249-27	BF-2993c-001-1'-6'	4/18/12	INV	BF	soil				Χ	Х	Χ*	Х	Х	Х		Х	Х
460-39249-28	BF-2997g-001-1'-6'	4/18/12	INV	BF	soil										Х		
460-39249-29	BF-2997g-002-1'-6'	4/18/12	INV	BF	soil										Х		
460-39249-30	BF-2997c-001-1'-6'	4/18/12	INV	BF	soil				Χ	Х	Χ*	Х	Х	Х		Х	Х
460-39254-1	ECS-15-F	4/17/12	INV	ECS	soil	Х											
460-39254-2	ECS-23-F	4/17/12	INV	ECS	soil	Х											
460-39254-3	ECS-19-F	4/17/12	INV	ECS	soil	Х											
460-39254-4	ECS-17-F	4/17/12	INV	ECS	soil	Х											
460-39254-5	ECS-14-F	4/17/12	INV	ECS	soil	Х											
460-39256-1	BF-DEC-001-0'-1'	4/18/12	INV	ECS	soil	Х	Х										
460-39256-2	BF-DEC-002-0'-1'	4/18/12	INV	ECS	soil	Х	Х										
460-39258-1	DS-15-SW	4/17/12	INV	DS	soil	Х											
460-39258-2	DS-14-SW	4/17/12	INV	DS	soil	Х											
460-39363-1	ECS-11-F	4/20/12	INV	ECS	soil	Х											
460-39363-2	ECS-11-Fx	4/20/12	FD	ECS	soil	Х											
460-39363-3	DS-11-SW	4/20/12	INV	DS	soil	Х											
460-39363-4	ECS-1-F	4/20/12	INV	ECS	soil	Х	Х										
460-39363-4LR	ECS-1-F_LR	4/20/12	MD	ECS	soil	Х	Х										
460-39363-4MS	ECS-1-F_MS	4/20/12	MS	ECS	soil	Х	Х										
460-39363-5	ECS-2-F	4/20/12	INV	ECS	soil	Х	Х										
460-39363-6	ECS-2-Fx	4/20/12	FD	ECS	soil	Х	Х										
460-39364-1	ECS-13-F	4/18/12	INV	ECS	soil	Х											
460-39364-1LR	ECS-13-F_LR	4/18/12	MD	ECS	soil	Х											
460-39364-1MS	ECS-13-F_MS	4/18/12	MS	ECS	soil	Х											
460-39364-2	DS-13-SW	4/18/12	INV	DS	soil	Х											
460-39364-3	DS-12-SW	4/18/12	INV	DS	soil	Х											
460-39364-4	DS-12-SWx	4/18/12	FD	DS	soil	Х											
460-39364-5	ECS-12-F	4/18/12	INV	ECS	soil	Х											
460-39365-1	ECS-13-F	4/18/12	INV	ECS	soil		Х										

Lab ID	Field ID	Sample Date	Sample Type	Sample Media	Sample Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-39614-1	ECS-BF-DEC-001R-F1-0-1'	4/27/12	INV	ECS	soil	Χ	Χ										<u> </u>
460-39614-2	ECS-BF-DEC-001R-F1-X-0-1	4/27/12	FD	ECS	soil	Χ	Χ										
460-39614-3	ECS-BF-DEC-001R-SW1-0-6"	4/27/12	INV	ECS	soil	Χ	Χ										
460-39614-4	ECS-BF-DEC-001R-SN1-0-6"	4/27/12	INV	ECS	soil	Χ	Χ										
460-39614-4LR	ECS-BF-DEC-001R-SN1-0-6" _LR	4/27/12	MD	ECS	soil	Х											
460-39614-4MS	ECS-BF-DEC-001R-SN1-0-6" _MS	4/27/12	MS	ECS	soil	Х											
460-39614-5	ECS-BF-DEC-001R-F2-0-1'	4/27/12	INV	ECS	soil	Χ		Χ	Χ								
`460-39614-5LR	ECS-BF-DEC-001R-F2-0-1' _LR	4/27/12	MD	ECS	soil			Х									
460-39614-5MS	ECS-BF-DEC-001R-F2-0-1' _MS	4/27/12	MS	ECS	soil			Х									
460-39614-6	ECS-BF-DEC-001R-SN2-0-6"	4/27/12	INV	ECS	soil	Х	Х										
460-39614-7	ECS-BF-DEC-001R-F3-0-1'	4/27/12	INV	ECS	soil	Х	Χ										
460-39614-8	ECS-BF-DEC-001R-SN3-0-6"	4/27/12	INV	ECS	soil	Х	Χ										
460-39614-9	ECS-BF-DEC-001R-F4-0-1'	4/27/12	INV	ECS	soil	Х	Х										
460-39614-10	ECS-BF-DEC-001R-SS3-0-6"	4/27/12	INV	ECS	soil	Х	Χ										
460-39614-11	ECS-BF-DEC-001R-SE1-0-6"	4/27/12	INV	ECS	soil	Х	Χ										
460-39614-12	ECS-BF-DEC-001R-F5-0-1'	4/27/12	INV	ECS	soil	Х	Χ										
460-39614-13	ECS-BF-DEC-001R-SS2-0-6"	4/27/12	INV	ECS	soil	Х	Х										
460-39614-14	ECS-BF-DEC-001R-F6-0-1'	4/27/12	INV	ECS	soil	Х	Χ										
460-39614-15	ECS-BF-DEC-001R-SS1-0-6"	4/27/12	INV	ECS	soil	Х	Χ										
460-39614-15LR	ECS-BF-DEC-001R-SS1-0-6" _LR	4/27/12	MD	ECS	soil	Х	Х										
460-39614-15MS	ECS-BF-DEC-001R-SS1-0-6" _MS	4/27/12	MS	ECS	soil	Х	Х										
460-39614-16	ECS-BF-DEC-001R-SW2-0-6"	4/27/12	INV	ECS	soil	Х	Χ										
460-39614-17	ECS-BF-2983-F	4/27/12	INV	ECS	soil	Х	Х										
460-39614-18	ECS-BF-2983-SS	4/27/12	INV	ECS	soil	Х	Х										
460-39614-19	ECS-BF-2983-SN	4/27/12	INV	ECS	soil	Х	Х										
460-39614-20	ECS-BF-2983-SW	4/27/12	INV	ECS	soil	Х	Х										
460-39614-21	ECS-BF-2983-SE	4/27/12	INV	ECS	soil	Х	Х										
460-39614-22	ECS-SSA2-F-R2-2'	4/25/12	INV	ECS	soil	Х	Х										
460-39775-1	ECS-10-F	5/1/12	INV	ECS	soil	Х											
460-39775-2	DS-10-SW	5/1/12	INV	DS	soil	Χ											
460-39775-3	DS-9-SW	5/1/12	INV	DS	soil	Х											
460-39775-4	ECS-9-F	5/1/12	INV	ECS	soil	Х											
460-39775-5	ECS-8-F	5/1/12	INV	ECS	soil	Х											
460-39775-6	DS-8-SW	5/1/12	INV	DS	soil	Χ											
460-39775-7	ECS-7-F	5/1/12	INV	ECS	soil	Χ											

Lab ID	Field ID	Sample Date	Sample Type	Sample Media	Sample Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-39775-8	DS-7-SW	5/1/12	INV	DS	soil	Х	1.0										
460-39775-9	ECS-6-F	5/1/12	INV	ECS	soil	X											
460-39775-10	ECS-6-F-X	5/1/12	FD	ECS	soil	X											
460-39775-11	DS-6-SW	5/1/12	INV	DS	soil	X											
460-39775-12	ECS-6-SE	5/1/12	INV	ECS	soil	X											
460-39775-12LR	ECS-6-SE_LR	5/1/12	MD	ECS	soil	X											
460-39775-12MS	ECS-6-SE MS	5/1/12	MS	ECS	soil	X											
460-39775-13	ECS-5-F	5/1/12	INV	ECS	soil	X											
460-39775-14	ECS-5-SE	5/1/12	INV	ECS	soil	Х											
460-39775-15	DS-5-SW	5/1/12	INV	DS	soil	Х											
460-39775-16	ECS-4-F	5/1/12	INV	ECS	soil	Х											
460-39775-17	ECS-4-FX	5/1/12	FD	ECS	soil	Х											
460-39775-18	ECS-4-SE	5/1/12	INV	ECS	soil	Х											
460-39775-19	ECS-3-F	5/1/12	INV	ECS	soil	Х											
460-39775-19LR	ECS-3-F_LR	5/1/12	MD	ECS	soil	Х											
460-39775-19MS	ECS-3-F_MS	5/1/12	MS	ECS	soil	Х											
460-39775-20	ECS-3-SE	5/1/12	INV	ECS	soil	Х											
460-39775-21	ECS-2-SE	5/1/12	INV	ECS	soil	Х	Х										
460-39775-22	ECS-1-SE	5/1/12	INV	ECS	soil	Х	Х										
460-39775-23	ECS-1-SN	5/1/12	INV	ECS	soil	Х		Х	Χ								
460-39845-1	ECS-SSA23-SS-0-6"	5/3/12	INV	ECS	soil	Х	Х										
460-39845-2	ECS-SSA23-SE1-0-6"	5/3/12	INV	ECS	soil	Х		Х	Χ								
460-39845-3	ECS-SSA23-F1-1'	5/3/12	INV	ECS	soil	Х	Х										
460-39845-4	ECS-SSA23-F1x-1'	5/3/12	FD	ECS	soil	Х	Х										
460-39845-5	ECS-SSA23-F2-1'	5/3/12	INV	ECS	soil	Х	Х										
460-39845-6	ECS-SSA23-SE2-0-6"	5/3/12	INV	ECS	soil	Х	Х										
460-39845-7	ECS-SSA20-SE-0-6"	5/3/12	INV	ECS	soil	Х	Χ										
460-39845-8	ECS-SSA-20-F-1'	5/3/12	INV	ECS	soil	Х	Х										
460-39845-9	ECS-SSA 19-F-1'	5/3/12	INV	ECS	soil	X	Χ										
460-39845-9LR	ECS-SSA 19-F-1'_LR	5/3/12	MD	ECS	soil	Х	Х										
460-39845-9MS	ECS-SSA 19-F-1'_MS	5/3/12	MS	ECS	soil	Х	Х										
460-39845-10	ECS-SSA 19-SE-0-6"	5/3/12	INV	ECS	soil	Х	Х										
460-39845-11	ECS-SSA-19-Sn-0-6"	5/3/12	INV	ECS	soil	Х	Х										
460-40362-1	ECS-SSA19-SE-R1-0-6"	5/16/12	INV	ECS	soil	Х	Х										
460-40362-2	ECS-SSA23-SE2-R1-0-6"	5/16/12	INV	ECS	soil	Х	Х										
460-40362-2LR	ECS-SSA23-SE2-R1-0-6" _LR	5/16/12	MD	ECS	soil		Х										
460-40362-2MS	ECS-SSA23-SE2-R1-0-6" _MS	5/16/12	MS	ECS	soil		Х										

^{*} Cr III/ VI samples subcontracted to TestAmerica-Pittburgh for laboratory job number 460-39249-1

DATA USABILITY SUMMARY REPORT

BF - Backfill Sample

DS - Documentation Sample

ECS - Excavation Confirmation Sample

FD - Field Duplicate Sample

INV - Investigative Sample

MD – Matrix Duplicate Sample (unspiked)

MS - Matrix Spike Sample

MSD - Matrix Spike Duplicate Sample

TB - Trip Blank

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

- TCLP Pb: 1311/3010A/6010B for Lead in leachates of soil samples
- Total As and Pb: 3020B/ 6010B for Arsenic and Lead in soil samples
- Total TAL Metals: 3020B/ 6010B for 22 ICP-AES Target Analyte List (TAL) Metals (Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc) in soil samples
- Hg: 7471A for total Mercury in soil samples
- Total DER10 Metals: 3020B/ 6010B for 12 ICP-AES NYSDEC DER-10 Appendix 5 Metals (Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Lead, Manganese, Nickel, Selenium, Silver, and Zinc in soil samples
- Cr III/VI: 3060A/7196A for Hexavalent Chromium and Trivalent Chromium in soil samples
- PEST: 3541/ 3620B/ 8081A for 15 NYSDEC DER-10 Appendix 5 pesticides in soil samples
- PCB: 3541/3665A/8081A for 7 Aroclors in soil samples
- HERB: 8151A for Silvex (2,4,5-TP) in soil samples
- VOC: 8260B for 30 NYSDEC DER-10 Appendix 5 volatile organic compounds (VOCs) in bulk soil samples and 5030B/ 8260B for 30 VOCs in aqueous trip blanks
- SVOC: 3541/8270C for 20 NYSDEC DER-10 Appendix 5 semivolatile organic compounds (SVOCs) plus Dibenzofuran and Hexachlorobenzene in soil samples
- CN: 9012A for Cyanide in soil samples

TABLE 2 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase I Remedial Design/ Remedial Action

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- Blank contamination. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- J- = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J-/J+ and R>UJ)

TABLE 3 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase I Remedial Design/ Remedial Action

QC DEFICIENCIES AND DATA QUALIFICATION ACTIONS

Lab ID	0	T		Method		D	ate and Tin	ne	GC	D	Amalusta	Lab	Spk	Spk	RPD	00.1	DVO- A
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
								MATRIX	DUPL	_ICA	TE (MD) PRECISION						
460-	ECS-SSA11-	MD		3020B	6010B		03/30/12	04/01/12	NA	4	LEAD	*			20	Poor lab duplicate	J/UJ to detects/NDs for ECS
38437- 23LR	SN_03/28/12LR						21:37:07	08:09:21								precision (25 RPD)	samples digested in the same
460-	BF-2973c-001-0'-	MD		3020B	6010B		04/04/12	04/05/12	NA	4	LEAD	*			20	Poor lab duplicate	J/UJ to detects/NDs for BF
38653-	4' 04/03/12LR	INID		30206	6010B		17:00:00	22:36:58	INA	4	LEAD				20	precision (22 RPD)	samples digested in the same
30053- 27LR	4_04/03/12LR						17:00:00	22:30:36								precision (22 RPD)	batch
460-	BF-2995c-001-0'-	MD		3020B	6010B		04/13/12	04/14/12	NA	4	ARSENIC	*			20	Poor lab duplicate	J/UJ to detects/NDs for BF
38780-	4.5' 04/04/12LR						07:34:43	00:04:06		-						precision (44 RPD)	samples digested in the same
26LR																,	batch
460-	BF-2995c-001-0'-	MD		3020B	6010B		04/13/12	04/14/12	NA	4	LEAD	*			20	Poor lab duplicate	J/UJ to detects/NDs for BF
38780-	4.5'_04/04/12LR						07:34:43	00:04:06								precision (35 RPD)	samples digested in the same
26LR																	batch
460-	BF-2995c-001-0'-	MD		3020B	6010B		04/13/12	04/14/12	NA	4	MANGANESE	*			20	Poor lab duplicate	J/UJ to detects/NDs for BF
38780-	4.5'_04/04/12LR						07:34:43	00:04:06								precision (57 RPD)	samples digested in the same
26LR																	batch
460-	ECS-1-F	MD		3020B	6010B		04/27/12	04/28/12	NA	4	LEAD	*			20	Poor lab duplicate	J/UJ to detects/NDs for ECS
39363-	_04/20/12LR						18:58:01	17:47:19								precision (50 RPD)	samples digested in the same
4LR																	batch
460-	ECS-BF-DEC-	MD		3020B	6010B		05/02/12	05/03/12	NA	4	MANGANESE	*			20	Poor lab duplicate	J/UJ to detects/NDs for ECS
39614-	001R-F2-0-1'						18:30:00	11:27:21								precision (29 RPD)	samples digested in the same
5LR	_04/27/12LR											<u> </u>					batch
460-	ECS-SSA 19-F-1'	MD		3020B	6010B		05/04/12	05/05/12	NA	4	LEAD	*			20	Poor lab duplicate	J/UJ to detects/NDs for ECS
39845-	_05/03/12LR						17:39:52	22:02:10								precision (71 RPD)	samples digested in the same
9LR								ATDIV ODI	VE D	IDI I	DATE (MOD) PREGIOION						batch
100	DE 0005 004 0	1400		5005	00000						CATE (MSD) PRECISION			101		D MO/MOD	Literature (DE constant
460- 38780-	BF-2995g-001-0'-	MSD		5035	8260B		04/06/12	04/12/12	NA	1	1,4-DIOXANE (P-	*	69	131	30	Poor MS/MSD	J to detects for BF samples
38780- 24SD	4.5'_04/04/12SD						23:39:24	23:07:00			DIOXANE)					precision (36.4 RPD)	analyzed in the same batch (none)
460-	BF-2995c-001-0'-	MSD		3541	8270C		04/09/12	04/12/12	NA	1	PENTACHLORO-	J*	10	112	30	Poor MS/MSD	J to detects for BF samples
38780-	4.5' 04/04/12SD	INIOD		3541	82/00		10:50:00	22:09:00	INA		PENTACHLORO- PHENOL	J	19	113	30		analyzed in the same batch
38780- 26SD	4.5 _04/04/125D						10:50:00	22:09:00			PHENUL					precision (37 RPD)	· '
2020]		1								1	1				(none)

Lab ID	Commis Code	T		Method		D	ate and Tin	ne	GC	D	Amaluta	Lab	Spk	Spk	RPD	QC Issue	DVO- Ameliad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
								FIELD I	DUPL	ICA	TE (FD) PRECISION						
460-	ECS-32-	FD	1311	3010A	6010B	04/19/12	04/24/12	04/24/12	NA	5	LEAD					Poor field duplicate	J/UJ to detects/NDs for original
39135-2	FX_04/16/12					16:00:00	09:10:35	13:37:45								precision (49 RPD),	and duplicate sample
																use higher result	
																from field duplicate	
460-	ECS-33-	FD	1311	3010A	6010B	04/18/12	04/19/12	04/20/12	NA	5	LEAD					Poor field duplicate	J/UJ to detects/NDs for original
39092-7	FX_04/13/12					17:00:00	10:37:58	01:08:26								precision (absolute	and duplicate sample
																difference > 2xRL),	
																use higher value	
400	F00.4		1011	00404	00100	05/00/40	0=100110	05/00/40		_	1515					from field duplicate	1911
460- 39775-	ECS-4-	FD	1311	3010A	6010B	05/08/12	05/09/12	05/09/12 14:19:21	NA	5	LEAD					Poor field duplicate	J/UJ to detects/NDs for original
39775- 17	FX_05/01/12					16:00:00	08:59:04	14:19:21								precision (absolute difference > 2xRL),	and duplicate sample
17																use higher value	
																from field duplicate	
460-	ECS-6-F-	FD	1311	3010A	6010B	05/08/12	05/09/12	05/09/12	NA	5	LEAD					Poor field duplicate	J/UJ to detects/NDs for original
39775-	X 05/01/12	10	1311	30107	00100	16:00:00	08:59:04	13:50:18	INA	J	LLAD					precision (absolute	and duplicate sample
10	X_00/01/12					10.00.00	00.00.04	10.00.10								difference > 2xRL),	and duplicate sample
																use higher value	
																from field duplicate	
					L			MATE	RIX SF	PIKE	(MS) RECOVERY					•	
460-	ECS-SSA32-	MS		3020B	6010B		03/30/12	04/01/12	NA	4	LEAD	N	75	125		Low matrix spike	J-/UJ to detects/NDs for ECS
38437-	F_03/28/12MS						18:36:59	18:53:26								recovery (45%)	samples digested in the same
15MS																	batch
460-	ECS-SSA32-	MS		3020B	6010B		03/30/12	03/31/12	NA	4	LEAD	4	75	125		High matrix spike	None (checked waived because
38437-	SE_03/28/12MS						18:25:06	21:46:26								recovery (199%)	unspiked sample conc > 4x
13MS																	spike amount), PDS passes
460-	BF-2973c-001-0'-	MS		3020B	6010B		04/04/12	04/05/12	NA	4	SILVER	N	75	125		Low matrix spike	J-/UJ to detects/NDs for BF
38653-	4'_04/03/12MS						17:00:00	23:02:07								recovery (67%)	samples digested in the same
27MS																	batch
460-	BF-2995c-001-0'-	MS		3020B	6010B		04/13/12	04/14/12	NA	4	MANGANESE	4	75	125		Low matrix spike	None (checked waived because
38780-	4.5'_04/04/12MS						07:34:43	00:29:20								recovery (-6%)	unspiked sample conc > 4x
26MS																	spike amount), PDS passes
460-	BF-3000c-001-0'-	MS		3020B	6010B		04/27/12	04/27/12	NA	4	MANGANESE	4	75	125		High matrix spike	None (checked waived because
39249-	8'_04/18/12MS						07:28:42	13:23:47								recovery (138%)	unspiked sample conc > 4x
12MS	F00.4			00000	00100		0.1/0=/10	0.4/0.0/4.0			1515			40=			spike amount), PDS passes
460-	ECS-1-	MS		3020B	6010B		04/27/12	04/28/12	NA	4	LEAD	N	75	125		Low matrix spike	None (recovery within 70-130%
39363-	F_04/20/12MS						18:58:01	17:57:59								recovery (70%)	data qualification limits)
4MS	ECS-BF-DEC-	MS		30300	6010B		05/02/12	05/03/12	NA	4	ALUMINUM	4	75	125		High matrix aniles	None (checked waived because
460- 39614-	001R-F2-0-1'	IVIS		3020B	90.10B		18:30:00	11:38:11	INA	4	ALUMINUM	4	/5	125		High matrix spike	unspiked sample conc > 4x
39614- 5MS	04/27/12MS						10.30.00	11.36.11								recovery (501%)	spike amount), PDS passes
JIVIO	_04/21/121013	ı		L	l				1	I	l .	l	1	l			spine amounty, FDS passes

		_		Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460-	ECS-BF-DEC-	MS		3020B	6010B		05/02/12	05/03/12	NA	4	ANTIMONY	Ν	75	125		Low matrix spike	J-/UJ to detects/NDs for ECS
39614-	001R-F2-0-1'						18:30:00	11:38:11								recovery (67%)	samples digested in the same
5MS	_04/27/12MS																batch
460-	ECS-BF-DEC-	MS		3020B	6010B		05/02/12	05/03/12	NA	4	IRON	4	75	125		Low matrix spike	None (checked waived because
39614- 5MS	001R-F2-0-1' 04/27/12MS						18:30:00	11:38:11								recovery (-592%)	unspiked sample conc > 4x spike amount), PDS passes
460-	_04/27/12MS BF-3000c-001-0'-	MS		3541	8082		04/23/12	04/23/12	1C	1	PCB-1260 (AROCLOR	*	63	143		Low average	J-/UJ to detects/NDs for BF
39249-	8' 04/18/12MS	IVIO		3341	0002		04/23/12	10:37:00	10	'	1260)		03	143		MS/MSD recovery	samples extracted in the same
12MS	0_0 1/ 10/ 121/10						02.00.00	10.07.00			1200)					(59.5%)	batch
460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	1,2,4-	*	81	121		Low average	None (recovery within 70-130%
38780-	4.5'_04/04/12MS						23:37:26	22:43:00			TRIMETHYLBENZENE					MS/MSD recovery	data qualification limits)
24MS																(80%)	
460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	1,2-	*	80	120		Low average	None (recovery within 70-130%
38780-	4.5'_04/04/12MS						23:37:26	22:43:00			DICHLOROBENZENE					MS/MSD recovery	data qualification limits)
24MS																(74.5%)	
460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	1,3,5-	*	82	122		Low average	None (recovery within 70-130%
38780-	4.5'_04/04/12MS						23:37:26	22:43:00			TRIMETHYLBENZENE					MS/MSD recovery	data qualification limits)
24MS	DE 0005 004 01	MS		5035	8260B		04/00/40	04/12/12	NA	1	(MESITYLENE) 1.3-	*	80	120		(80.5%)	No. 2000/
460- 38780-	BF-2995g-001-0'- 4.5' 04/04/12MS	IVIS		5035	8260B		04/06/12 23:37:26	22:43:00	INA	1	DICHLOROBENZENE		80	120		Low average MS/MSD recovery	None (recovery within 70-130% data qualification limits)
24MS	4.5 _04/04/121013						23.37.20	22.43.00			DICHEOROBENZENE					(75%)	data qualification limits)
460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	1.4-	*	80	120		Low average	None (recovery within 70-130%
38780-	4.5'_04/04/12MS						23:37:26	22:43:00			DICHLOROBENZENE			-		MS/MSD recovery	data qualification limits)
24MS	_															(75.5%)	,
460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	1,4-DIOXANE (P-	*	69	131		Low matrix spike	None (average MS/MSD
38780-	4.5'_04/04/12MS						23:37:26	22:43:00			DIOXANE)					recovery (56%)	recovery passes at 69%)
24MS																	
460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	CHLOROBENZENE	*	80	120		Low average	None (recovery within 70-130%
38780-	4.5'_04/04/12MS						23:37:26	22:43:00								MS/MSD recovery	data qualification limits)
24MS 460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	CIS-1,2-	*	80	120		(79%) Low average	None (recovery within 70-130%
38780-	4.5'_04/04/12MS	IVIO		3033	0200B		23:37:26	22:43:00	INA	'	DICHLOROETHYLENE		80	120		MS/MSD recovery	data qualification limits)
24MS	1.0 _0 1/0 1/ 121/10						20.07.20	22.10.00			DIGITEORGETTTTEERE					(79%)	data quamiodion in inco)
460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	ETHYLBENZENE	*	81	121		Low average	None (recovery within 70-130%
38780-	4.5'_04/04/12MS						23:37:26	22:43:00								MS/MSD recovery	data qualification limits)
24MS																(82%)	
460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	n-BUTYLBENZENE	*	82	122		Low average	None (recovery within 70-130%
38780-	4.5'_04/04/12MS						23:37:26	22:43:00								MS/MSD recovery	data qualification limits)
24MS																(75%)	
460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	n-PROPYLBENZENE	*	81	121		Low average	None (recovery within 70-130%
38780-	4.5'_04/04/12MS						23:37:26	22:43:00								MS/MSD recovery	data qualification limits)
24MS																(79%)	

				Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	SEC-BUTYLBENZENE	*	82	122		Low average	None (recovery within 70-130%
38780-	4.5'_04/04/12MS						23:37:26	22:43:00								MS/MSD recovery	data qualification limits)
24MS																(77%)	
460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	t-BUTYLBENZENE	*	82	122		Low average	None (recovery within 70-130%
38780-	4.5'_04/04/12MS						23:37:26	22:43:00								MS/MSD recovery	data qualification limits)
24MS 460-	BF-2995g-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	TETRACHLORO-	*	80	120		(80.5%)	None (recovery within 70-130%
38780-	4.5' 04/04/12MS	IVIS		5035	8260B		23:37:26	22:43:00	INA	1	ETHYLENE(PCE)	-	80	120		Low average MS/MSD recovery	data qualification limits)
24MS	4.5 _04/04/12/03						25.57.20	22.43.00			L IIII LLINE(I OL)					(82.5%)	data qualification limits)
460-	BF-2995q-001-0'-	MS		5035	8260B		04/06/12	04/12/12	NA	1	XYLENES, TOTAL	*	82	122		Low average	None (recovery within 70-130%
38780-	4.5'_04/04/12MS						23:37:26	22:43:00			-, -					MS/MSD recovery	data qualification limits)
24MS	_															(80.5%)	·
460-	BF-2995g-002-0'-	MS		5035	8260B		04/06/12	04/13/12	NA	1	1,2,4-	*	81	121		Low average	J-/UJ to detects/NDs for BF
38780-	4.5'_04/04/12MS						23:43:20	09:08:00			TRIMETHYLBENZENE					MS/MSD recovery	samples analyzed in the same
25MS																(69.5%)	batch
460-	BF-2995g-002-0'-	MS		5035	8260B		04/06/12	04/13/12	NA	1	1,2-	*	80	120		Low average	J-/UJ to detects/NDs for BF
38780-	4.5'_04/04/12MS						23:43:20	09:08:00			DICHLOROBENZENE					MS/MSD recovery	samples analyzed in the same
25MS	DE 2005~ 002.0	MC		E02E	8260B		04/06/12	04/13/12	NA	1	4.2.5	*	82	400		(62%)	J-/UJ to detects/NDs for BF
460- 38780-	BF-2995g-002-0'- 4.5'_04/04/12MS	MS		5035	8260B		23:43:20	04/13/12	INA	1	1,3,5- TRIMETHYLBENZENE	-	82	122		Low average MS/MSD recovery	samples analyzed in the same
25MS	4.5 _04/04/12/05						25.45.20	03.00.00			(MESITYLENE)					(69.5%)	batch
460-	BF-2995g-002-0'-	MS		5035	8260B		04/06/12	04/13/12	NA	1	1,3-	*	80	120		Low average	J-/UJ to detects/NDs for BF
38780-	4.5'_04/04/12MS						23:43:20	09:08:00			DICHLOROBENZENE					MS/MSD recovery	samples analyzed in the same
25MS																(65%)	batch
460-	BF-2995g-002-0'-	MS		5035	8260B		04/06/12	04/13/12	NA	1	1,4-	*	80	120		Low average	J-/UJ to detects/NDs for BF
38780-	4.5'_04/04/12MS						23:43:20	09:08:00			DICHLOROBENZENE					MS/MSD recovery	samples analyzed in the same
25MS																(62.5%)	batch
460-	BF-2995g-002-0'-	MS		5035	8260B		04/06/12	04/13/12	NA	1	CHLOROBENZENE	*	80	120		Low average	None (recovery within 70-130%
38780- 25MS	4.5'_04/04/12MS						23:43:20	09:08:00								MS/MSD recovery (73.5%)	data qualification limits)
460-	BF-2995g-002-0'-	MS		5035	8260B		04/06/12	04/13/12	NA	1	ETHYLBENZENE	*	81	121		Low average	None (recovery within 70-130%
38780-	4.5' 04/04/12MS	IVIO		3000	02000		23:43:20	09:08:00	14/ (l '	LITTEBLINZEINE		0,	'2'		MS/MSD recovery	data qualification limits)
25MS																(74.5%)	
460-	BF-2995g-002-0'-	MS		5035	8260B		04/06/12	04/13/12	NA	1	n-BUTYLBENZENE	*	82	122		Low average	J-/UJ to detects/NDs for BF
38780-	4.5'_04/04/12MS						23:43:20	09:08:00								MS/MSD recovery	samples analyzed in the same
25MS																(59%)	batch
460-	BF-2995g-002-0'-	MS		5035	8260B		04/06/12	04/13/12	NA	1	n-PROPYLBENZENE	*	81	121		Low average	J-/UJ to detects/NDs for BF
38780-	4.5'_04/04/12MS						23:43:20	09:08:00								MS/MSD recovery	samples analyzed in the same
25MS	DE 0005 000 51	1.00		5005	00005		0.4/0.2/15	0.4/4.0/4.5		<u> </u>	050 0117// 551/35::-			460		(68%)	batch
460-	BF-2995g-002-0'-	MS		5035	8260B		04/06/12	04/13/12	NA	1	SEC-BUTYLBENZENE	*	82	122		Low average	J-/UJ to detects/NDs for BF
38780-	4.5'_04/04/12MS						23:43:20	09:08:00								MS/MSD recovery	samples analyzed in the same
25MS							1]	<u> </u>			<u> </u>	<u> </u>	<u> </u>		(64%)	batch

Lab ID	Commis Code	T		Method		D	ate and Tim	ne	GC	D	Amaluta	Lab	Spk	Spk	RPD	QC Issue	DVO- Applied
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 38780- 25MS	BF-2995g-002-0'- 4.5'_04/04/12MS	MS		5035	8260B		04/06/12 23:43:20	04/13/12 09:08:00	NA	1	t-BUTYLBENZENE	*	82	122		Low average MS/MSD recovery (69.5%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 38780- 25MS	BF-2995g-002-0'- 4.5'_04/04/12MS	MS		5035	8260B		04/06/12 23:43:20	04/13/12 09:08:00	NA	1	TETRACHLORO- ETHYLENE(PCE)	*	80	120		Low average MS/MSD recovery (76.5%)	None (recovery within 70-130% data qualification limits)
460- 38780- 25MS	BF-2995g-002-0'- 4.5'_04/04/12MS	MS		5035	8260B		04/06/12 23:43:20	04/13/12 09:08:00	NA	1	XYLENES, TOTAL	*	82	122		Low average MS/MSD recovery (75%)	None (recovery within 70-130% data qualification limits)
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	1,1,1- TRICHLOROETHANE	*	78	117		Low average MS/MSD recovery (74.5%)	None (recovery within 70-130% data qualification limits)
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	1,2,4- TRIMETHYLBENZENE	*	81	121		Low average MS/MSD recovery (66%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	1,2- DICHLOROBENZENE	*	80	120		Low average MS/MSD recovery (65%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	*	82	122		Low average MS/MSD recovery (66.5%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	1,3- DICHLOROBENZENE	*	80	120		Low average MS/MSD recovery (64.5%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	1,4- DICHLOROBENZENE	*	80	120		Low average MS/MSD recovery (64.5%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	BENZENE	*	77	117		Low average MS/MSD recovery (74%)	None (recovery within 70-130% data qualification limits)
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	CARBON TETRACHLORIDE	*	79	118		Low average MS/MSD recovery (70%)	None (recovery within 70-130% data qualification limits)
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	CHLOROBENZENE	*	80	120		Low average MS/MSD recovery (70.5%)	None (recovery within 70-130% data qualification limits)
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	ETHYLBENZENE	*	81	121		Low average MS/MSD recovery (71%)	None (recovery within 70-130% data qualification limits)
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	METHYL ETHYL KETONE (2- BUTANONE)	*	77	117		Low average MS/MSD recovery (82%)	None (recovery within 70-130% data qualification limits)

I als ID	Commis Code	T		Method		D	ate and Tin	ne	GC	D	Amaluta	Lab	Spk	Spk	RPD	001	DVO- Applied
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	n-BUTYLBENZENE	*	82	122		Low average MS/MSD recovery (59%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	n-PROPYLBENZENE	*	81	121		Low average MS/MSD recovery (63.5%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	SEC-BUTYLBENZENE	*	82	122		Low average MS/MSD recovery (62%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	t-BUTYLBENZENE	*	82	122		Low average MS/MSD recovery (65%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	TERt-BUTYL METHYL ETHER	*	78	120		Low average MS/MSD recovery (75%)	None (recovery within 70-130% data qualification limits)
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	TETRACHLORO- ETHYLENE(PCE)	*	80	120		Low average MS/MSD recovery (65.5%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	TOLUENE	*	75	115		Low average MS/MSD recovery (69.5%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	TRANS-1,2- DICHLOROETHENE	*	75	122		Low average MS/MSD recovery (78%)	None (recovery within 70-130% data qualification limits)
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	TRICHLORO- ETHYLENE (TCE)	*	79	119		Low average MS/MSD recovery (67.5%)	J-/UJ to detects/NDs for BF samples analyzed in the same batch
460- 39249- 11MS	BF-3000g-002-0'- 8'_04/18/12MS	MS		5035	8260B		04/19/12 20:03:54	04/25/12 03:25:00	NA	1	XYLENES, TOTAL	*	82	122		Low average MS/MSD recovery (71%)	None (recovery within 70-130% data qualification limits)
460- 38780- 26MS	BF-2995c-001-0'- 4.5'_04/04/12MS	MS		3541	8270C		04/09/12 10:50:00	04/12/12 21:46:00	NA	1	PENTACHLORO- PHENOL	J*	19	113		Extremely low average MS/MSD recovery (4.5%)	J-/R to detects/NDs for BF samples extracted in the same batch
460- 38859- 3MS	BF-3233c-001-0'- 6'_04/05/12MS	MS		3541	8270C		04/10/12 12:00:00	04/15/12 02:38:00	NA	1	BENZO(a)PYRENE	*	36	89		High average MS/MSD recovery (94.5%)	None (recovery within 70-130% data qualification limits)
460- 38859- 3MS	BF-3233c-001-0'- 6'_04/05/12MS	MS		3541	8270C		04/10/12 12:00:00	04/15/12 02:38:00	NA	1	PENTACHLORO- PHENOL	J*	19	113		Extremely low MSD recovery (9%), Low average MS/MSD recovery (10%)	J-/R to detects/NDs for BF samples extracted in the same batch
460- 39249- 12MS	BF-3000c-001-0'- 8'_04/18/12MS	MS		3541	8270C		04/24/12 10:00:00	04/26/12 16:36:00	NA	1	BENZO(a)PYRENE	*	36	89		High average MS/MSD recovery (92%)	None (recovery within 70-130% data qualification limits)

				Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 39249- 12MS	BF-3000c-001-0'- 8'_04/18/12MS	MS		3541	8270C		04/24/12 10:00:00	04/26/12 16:36:00	NA	1	BENZO(b)FLUOR- ANTHENE	*	33	96		High average MS/MSD recovery (102%)	None (recovery within 70-130% data qualification limits)
	ı		1		1		1				E RECOVERY	1		1			
4601082 79/1A	460108279/1A	MB		3541	8081A		04/05/12 05:25:05	04/06/12 21:06:00	1C	1	2,4,5,6- TETRACHLORO- META-XYLENE	*	40	150		High surrogate recovery (164%)	None (no effect on environmental sample results)
4601082 79/1A	460108279/1A	MB		3541	8081A		04/05/12 05:25:05	04/06/12 21:06:00	2C	1	DECACHLORO- BIPHENYL, 2,2',3,3',4,4',5,5',6,6'- (IUPAC 209)	*	53	150		High surrogate recovery (165%)	None (no effect on environmental sample results)
4601082 79/2A	460108279/2A	LCS		3541	8081A		04/05/12 05:25:05	04/06/12 17:09:00	1C	1	2,4,5,6- TETRACHLORO- META-XYLENE	*	40	150		High surrogate recovery (156%)	None (no effect on environmental sample results)
4601082 79/2A	460108279/2A	LCS		3541	8081A		04/05/12 05:25:05	04/06/12 17:09:00	2C	1	DECACHLORO- BIPHENYL, 2,2',3,3',4,4',5,5',6,6'- (IUPAC 209)	*	53	150		High surrogate recovery (159%)	None (no effect on environmental sample results)
460- 38859-9	BF-3230c-001-0'- 4.5' 04/05/12	INV		3541	8270C		04/10/12 12:00:00	04/15/12 23:15:00	NA	1	2-FLUOROPHENOL	*	37	125		Low acid surrogate recovery (36%)	J-/UJ to detects/NDs for acid analytes in this sample
460- 38859-9	BF-3230c-001-0'- 4.5'_04/05/12	INV		3541	8270C		04/10/12 12:00:00	04/15/12 23:15:00	NA	1	NITROBENZENE-D5	*	38	105		Low B/N surrogate recovery (36%)	J-/UJ to detects/NDs for B/N analytes in this sample
460- 39249-9	BF-2985c-001-0'- 8'_04/18/12	INV		3541	8081A		04/23/12 03:14:32	04/23/12 20:33:00	2C	1	DECACHLORO- BIPHENYL, 2,2',3,3',4,4',5,5',6,6'- (IUPAC 209)	*	53	150		Low surrogate recovery (51%)	J-/UJ to detects/NDs for all analytes in this sample
	•	·			•			LABORAT	TORY	BLA	NK CONTAMINATION	1					
4601079 22/1B5	460107922/1B5	PB	1311	3010A	6010B	04/02/12 15:53:40	04/03/12 11:37:45	04/03/12 16:14:52	NA	5	LEAD	J				Leach blank contamination (0.021 J mg/l)	U at RL to Js, J+ to detects <10x blank equivalent concentration for samples leached in the same batch
4601102 55/1I5	460110255/115	LB	1311	3010A	6010B	04/23/12 13:30:00	04/25/12 08:33:54	04/25/12 12:42:10	NA	5	LEAD					Leach blank contamination (28.05 ug/l)	U at RL to Js, J+ to detects <10x blank equivalent concentration for samples leached in the same batch
4601104 23/1B5	460110423/1B5	LB	1311	3010A	6010B	04/24/12 15:30:00	04/26/12 09:35:27	04/27/12 00:25:34	NA	5	LEAD					Leach blank contamination (351.1 ug/l)	U at RL to Js, J+ to detects <10x blank equivalent concentration for samples leached in the same batch (none)
4601082 50/1A	460108250/1A	PB		5035	8260B		04/04/12 22:05:34	04/07/12 08:05:00	NA	1	ACETONE	J				Preparation blank contamination (0.0065 J mg/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples prepped in the same batch

I ah ID	Comple Code	Tuma		Method		D	ate and Tim	ne	GC	D	Analysis	Lab	Spk	Spk	RPD	OC leave	DVOs Ameliad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4601082 50/1A	460108250/1A	PB		5035	8260B		04/04/12 22:05:34	04/07/12 08:05:00	NA	1	METHYLENE CHLORIDE					Preparation blank contamination (0.00142 mg/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples prepped in the same batch
4601083 14/5	460108314/5	MB			8260B			04/05/12 05:59:00	NA	1	ACETONE	J				Method blank contamination (0.00352 J mg/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch (all ND)
4601083 14/5	460108314/5	MB			8260B			04/05/12 05:59:00	NA	1	METHYLENE CHLORIDE	J				Method blank contamination (0.000401 J mg/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch (none)
4601085 40/5	460108540/5	MB			8260B			04/06/12 20:21:00	NA	1	ACETONE					Method blank contamination (0.0141 mg/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601085 40/5	460108540/5	MB			8260B			04/06/12 20:21:00	NA	1	METHYLENE CHLORIDE					Method blank contamination (0.00217 mg/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601085 67/5	460108567/5	МВ			8260B			04/07/12 08:30:00	NA	1	ACETONE	J				Method blank contamination (0.00716 J mg/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601085 67/5	460108567/5	МВ			8260B			04/07/12 08:30:00	NA	1	METHYLENE CHLORIDE	J				Method blank contamination (0.000228 J mg/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch (none)
4601086 30/5	460108630/5	MB			8260B			04/09/12 08:06:00	NA	1	ACETONE	J				Method blank contamination (0.00414 J mg/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601089 16/5	460108916/5	MB			8260B			04/11/12 07:21:00	NA	1	ACETONE	J				Method blank contamination (0.00565 J mg/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601085 52/1A	460108552/1A	PB		5035	8260B		04/06/12 23:04:59	04/12/12 21:28:00	NA	1	ACETONE	J				Preparation blank contamination (2.99 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples prepped in the same batch
4601085 52/1A	460108552/1A	PB		5035	8260B		04/06/12 23:04:59	04/12/12 21:28:00	NA	1	METHYLENE CHLORIDE	J				Preparation blank contamination (0.937 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples prepped in the same batch

Lab ID	Sample Code	Туре	Method			Date and Time			GC	D	Australia	Lab	Spk	Spk	RPD	001	DVO. A. II. I
			Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4601090 95/10	460109095/10	MB			8260B			04/12/12 11:33:00	NA	1	ACETONE	J				Method blank contamination (3.65 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601090 95/10	460109095/10	MB			8260B			04/12/12 11:33:00	NA	1	METHYLENE CHLORIDE	J				Method blank contamination (0.451 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601091 85/5	460109185/5	MB			8260B			04/12/12 21:03:00	NA	1	METHYLENE CHLORIDE					Method blank contamination (3.22 ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601092 28/5	460109228/5	MB			8260B			04/13/12 07:29:00	NA	1	METHYLENE CHLORIDE	J				Method blank contamination (0.688 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601088 75/1A	460108875/1A	PB		5035	8260B		04/10/12 17:34:50	04/13/12 10:23:00	NA	1	METHYLENE CHLORIDE	J				Preparation blank contamination (0.427 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples prepped in the same batch
4601093 62/5	460109362/5	MB			8260B			04/14/12 08:50:00	NA	1	ACETONE	J				Method blank contamination (2.41 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601093 62/5	460109362/5	MB			8260B			04/14/12 08:50:00	NA	1	METHYLENE CHLORIDE	J				Method blank contamination (0.346 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601093 95/5	460109395/5	MB			8260B			04/15/12 11:00:00	NA	1	ACETONE	J				Method blank contamination (1.83 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601093 95/5	460109395/5	MB			8260B			04/15/12 11:00:00	NA	1	METHYLENE CHLORIDE	J				Method blank contamination (0.227 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
4601099 70/1A	460109970/1A	PB		5035	8260B		04/19/12 19:40:36	04/21/12 00:05:00	NA	1	METHYLENE CHLORIDE	J				Preparation blank contamination (0.498 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples prepped in the same batch
4601101 21/5	460110121/5	MB			8260B			04/20/12 22:51:00	NA	1	ACETONE	J				Method blank contamination (1.99 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch (none)

ianiy	Assulance Associates	
	OAA . $L_{i}L_{i}C$.	

Lab ID	Sample Cade	Tyran		Method		Da	ate and Tin	ne	GC	D	Anchie	Lab	Spk	Spk	RPD	QC Issue	D\/Oo A==!!ad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4601101 21/5	460110121/5	MB			8260B			04/20/12 22:51:00	NA	1	METHYLENE CHLORIDE	J				Method blank contamination (0.364 J ug/kg)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples analyzed in the same batch
				•				TRIP	BLAN	NK C	CONTAMINATION						
460- 38780- 39	Trip Blank_04/04/12	ТВ			8260B			04/12/12 16:57:00	NA	1	CHLOROFORM	J				Trip blank contamination (0.25 J ug/l)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples shipped in the same container (none)
460- 38780- 39	Trip Blank_04/04/12	ТВ			8260B			04/12/12 16:57:00	NA	1	METHYLENE CHLORIDE					Trip blank contamination (2.3 ug/l)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples shipped in the same container
460- 38859- 28	TB_04/05/12	ТВ			8260B			04/12/12 00:46:00	NA	1	CHLOROFORM	J				Trip blank contamination (0.25 J ug/l)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples shipped in the same container (none)
460- 38859- 28	TB_04/05/12	ТВ			8260B			04/12/12 00:46:00	NA	1	METHYLENE CHLORIDE					Trip blank contamination (2.1 ug/l)	U at RL to Js, J+ to detects <2x blank equivalent concentration for samples shipped in the same container
				•				INIT	IAL C	ALII	BRATION (ICAL)						
IC 460- 107683/ 2-7	IC 460-107683/2- 7	ICAL			8260B			03/30/12 01:43:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for each ICAL standard < 0.005 advisory level (at 0.0035-0.0041), visible peak with area of 6374 counts in 100-ppb standard	J to detects/UJ to NDs for samples quantitated with this ICAL (professional judgement - RRF is advisory, clear response observed in standard at the ACL of 0.1 ppm)
IC 460- 109095/ 2-7	IC 460-109095/2- 7	ICAL			8260B			04/12/12 06:24:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for each ICAL standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard	J to detects/UJ to NDs for samples quantitated with this ICAL (professional judgement - RRF is advisory, clear response observed in standard at the ACL of 0.1 ppm)
00)//6	001//0.400	001		l	00044		CO				TION VERIFICATION (CC	V)		1		0.17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CCVIS 460- 108970/ 4	CCVIS 460- 108970/4	CCV			8081A			04/11/12 09:36:00	1C	1	METHOXYCHLOR					Calibration drift secondary column (%D= +21.1)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)

I ah ID	Samula Cada	Time		Method		D	ate and Tin	ne	GC	D	Analysta	Lab	Spk	Spk	RPD	QC Issue	DVOs Annlied
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCVIS 460- 108970/ 28	CCVIS 460- 108970/28	CCV			8081A			04/11/12 15:23:00	2C	1	ALDRIN					Calibration drift primary column (%D= +17.6)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 108970/ 28	CCVIS 460- 108970/28	CCV			8081A			04/11/12 15:23:00	2C	1	DIELDRIN					Calibration drift primary column (%D= +17)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 108970/ 28	CCVIS 460- 108970/28	CCV			8081A			04/11/12 15:23:00	2C	1	ALPHA ENDOSULFAN					Calibration drift primary column (%D= +15.1)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 108970/ 28	CCVIS 460- 108970/28	CCV			8081A			04/11/12 15:23:00	1C	1	METHOXYCHLOR					Calibration drift secondary column (%D= +21.1)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109244/ 26	CCVIS 460- 109244/26	CCV			8081A			04/12/12 20:06:00	2C	1	DELTA BHC (DELTA HEXACHLORO- CYCLOHEXANE)					Calibration drift primary column (%D= +20.3)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109244/ 26	CCVIS 460- 109244/26	CCV			8081A			04/12/12 20:06:00	2C	1	p,p'-DDD					Calibration drift primary column (%D= +20.3)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109244/ 26	CCVIS 460- 109244/26	CCV			8081A			04/12/12 20:06:00	2C	1	p,p'-DDE					Calibration drift primary column (%D= +17.4)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 108896/ 2	CCVIS 460- 108896/2	CCV			8082			04/10/12 16:43:00	2C	1	PCB-1260 (AROCLOR 1260) - Peak 6					Calibration drift primary column (%D= +33.5)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 108896/ 28	CCVIS 460- 108896/28	CCV			8082			04/10/12 23:59:00	2C	1	PCB-1260 (AROCLOR 1260) - Peak 5					Calibration drift primary column (%D= +16.2)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 108896/ 28	CCVIS 460- 108896/28	CCV			8082			04/10/12 23:59:00	2C	1	PCB-1260 (AROCLOR 1260) - Peak 6					Calibration drift primary column (%D= +30)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 108896/ 28	CCVIS 460- 108896/28	CCV			8082			04/10/12 23:59:00	1C	1	PCB-1260 (AROCLOR 1260) - Peak 7					Calibration drift secondary column (%D= -45.7)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)

Lab ID	Samula Cada	Tuma		Method		D	ate and Tin	пе	GC	D	Analysta	Lab	Spk	Spk	RPD	QC Issue	DVOs Ameliad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 109197/ 2	CCVIS 460- 109197/2	CCV			8082			04/12/12 03:52:00	2C	1	PCB-1016 (AROCLOR 1016) - Peak 4					Calibration drift primary column (%D= +16.3)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109197/ 2	CCVIS 460- 109197/2	CCV			8082			04/12/12 03:52:00	2C	1	PCB-1260 (AROCLOR 1260) - Peak 5					Calibration drift primary column (%D= +16.8)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109197/ 2	CCVIS 460- 109197/2	CCV			8082			04/12/12 03:52:00	2C	1	PCB-1260 (AROCLOR 1260) - Peak 6					Calibration drift primary column (%D= +31.5)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109197/ 2	CCVIS 460- 109197/2	CCV			8082			04/12/12 03:52:00	2C	1	PCB-1260 (AROCLOR 1260) - Peak 8					Calibration drift primary column (%D= +20.1)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109197/ 2	CCVIS 460- 109197/2	CCV			8082			04/12/12 03:52:00	1C	1	PCB-1016 (AROCLOR 1016) - Peak 7					Calibration drift secondary column (%D= -81.2)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)
CCVIS 460- 109197/ 28	CCVIS 460- 109197/28	CCV			8082			04/12/12 11:00:00	2C	1	PCB-1016 (AROCLOR 1016) - Peak 1					Calibration drift primary column (%D= +17.9)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109197/ 28	CCVIS 460- 109197/28	CCV			8082			04/12/12 11:00:00	2C	1	PCB-1016 (AROCLOR 1016) - Peak 3					Calibration drift primary column (%D= +18.5)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109197/ 28	CCVIS 460- 109197/28	CCV			8082			04/12/12 11:00:00	2C	1	PCB-1016 (AROCLOR 1016) - Peak 5					Calibration drift primary column (%D= +19.1)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109197/ 28	CCVIS 460- 109197/28	CCV			8082			04/12/12 11:00:00	2C	1	PCB-1016 (AROCLOR 1016) - Peak 7					Calibration drift primary column (%D= +20.5)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109197/ 28	CCVIS 460- 109197/28	CCV			8082			04/12/12 11:00:00	2C	1	PCB-1016 (AROCLOR 1016) - Peak 8					Calibration drift primary column (%D= +95.9)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109197/ 28	CCVIS 460- 109197/28	CCV			8082			04/12/12 11:00:00	2C	1	PCB-1260 (AROCLOR 1260) - Peak 3					Calibration drift primary column (%D= +16.5)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)

I als ID	Commis Code	T		Method		D	ate and Tin	ne	GC	D	Amaluta	Lab	Spk	Spk	RPD	00.1	DVO- Ameliad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCVIS 460- 109197/ 28	CCVIS 460- 109197/28	CCV			8082			04/12/12 11:00:00	2C	1	PCB-1260 (AROCLOR 1260) - Peak 6					Calibration drift primary column (%D= +36.5)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109197/ 28	CCVIS 460- 109197/28	CCV			8082			04/12/12 11:00:00	2C	1	PCB-1260 (AROCLOR 1260) - Peak 8					Calibration drift primary column (%D= +26.8)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109197/ 28	CCVIS 460- 109197/28	CCV			8082			04/12/12 11:00:00	1C	1	PCB-1260 (AROCLOR 1260) - Peak 6					Calibration drift secondary column (%D= +16)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 109197/ 28	CCVIS 460- 109197/28	CCV			8082			04/12/12 11:00:00	1C	1	PCB-1260 (AROCLOR 1260) - Peak 8					Calibration drift secondary column (%D= +16)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 108314/ 2	CCVIS 460- 108314/2	CCV			8260B			04/05/12 03:30:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for the CV standard < 0.005 advisory level	J to detects, UJ to NDs for samples analyzed this shift
CCVIS 460- 108540/ 2	CCVIS 460- 108540/2	CCV			8260B			04/06/12 17:50:00	NA	1	ACETONE					Calibration drift (%D= +43.4)	J+ to detects, UJ to NDs for samples analyzed this shift (all detects)
CCVIS 460- 108540/ 2	CCVIS 460- 108540/2	CCV			8260B			04/06/12 17:50:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for the CV standard < 0.005 advisory level	J to detects, UJ to NDs for samples analyzed this shift
CCVIS 460- 108567/ 2	CCVIS 460- 108567/2	CCV			8260B			04/07/12 05:08:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for the CV standard < 0.005 advisory level	J to detects, UJ to NDs for samples analyzed this shift
CCVIS 460- 108630/ 2	CCVIS 460- 108630/2	CCV			8260B			04/08/12 05:30:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for the CV standard < 0.005 advisory level	J to detects, UJ to NDs for samples analyzed this shift
CCVIS 460- 108540/ 2	CCVIS 460- 108916/2	CCV			8260B			04/11/12 04:40:00	NA	1	ACETONE					Calibration drift (%D= +35.3)	J+ to detects only since < +40% for samples analyzed this shift
CCVIS 460- 108540/ 2	CCVIS 460- 108916/2	CCV			8260B			04/11/12 04:40:00	NA	1	METHYL ETHYL KETONE (2- BUTANONE)					Calibration drift (%D= +26.4)	J+ to detects only since < +40% for samples analyzed this shift (none)

Calibration drift

(%D = +29.5)

Lab ID	C	T		Method		D	ate and Tin	ne	GC	D	Amaluta	Lab	Spk	Spk	RPD	00.1	DVO- Armlind
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCVIS 460- 108540/ 2	CCVIS 460- 108916/2	CCV			8260B			04/11/12 04:40:00	NA	1	1,2- DICHLOROETHANE					Calibration drift (%D= +21.3)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 108916/ 2	CCVIS 460- 108916/2	CCV			8260B			04/11/12 04:40:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for the CV standard < 0.005 advisory level	J to detects, UJ to NDs for samples analyzed this shift
CCVIS 460- 108540/ 2	CCVIS 460- 108916/2	CCV			8260B			04/11/12 04:40:00	NA	1	n-BUTYLBENZENE					Calibration drift (%D= +24.9)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 109185/ 2	CCVIS 460- 109185/2	CCV			8260B			04/12/12 18:22:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for the CV standard < 0.005 advisory level	J to detects, UJ to NDs for samples analyzed this shift
CCVIS 460- 109185/ 2	CCVIS 460- 109185/2	CCV			8260B			04/12/12 18:22:00	NA	1	ACETONE					Calibration drift (%D= +29.2)	J+ to detects only since < +40% for samples analyzed this shift
CCVIS 460- 109185/ 2	CCVIS 460- 109185/2	CCV			8260B			04/12/12 18:22:00	NA	1	METHYL ETHYL KETONE (2- BUTANONE)					Calibration drift (%D= +20.8)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 109228/ 2	CCVIS 460- 109228/2	CCV			8260B			04/12/12 04:50:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for the CV standard < 0.005 advisory level	J to detects, UJ to NDs for samples analyzed this shift
CCVIS 460- 109362/ 2	CCVIS 460- 109362/2	CCV			8260B			04/14/12 06:35:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for the CV standard < 0.005 advisory level	J to detects, UJ to NDs for samples analyzed this shift
CCVIS 460- 109395/ 2	CCVIS 460- 109395/2	CCV			8260B			04/15/12 07:35:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for the CV standard < 0.005 advisory level	J to detects, UJ to NDs for samples analyzed this shift
CCVIS 460- 110121/ 2	CCVIS 460- 110121/2	CCV			8260B			04/20/12 18:56:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for the CV standard < 0.005 advisory level	J to detects, UJ to NDs for samples analyzed this shift

CCV

8260B

CCVIS 460-

110121/2

CCVIS

460-

110121/

ACETONE

NA 1

04/20/12

18:56:00

J+ to detects only since < +40%

for samples analyzed this shift

I ah ID	Comple Code	Tuma		Method		Da	ate and Tin	ne	GC	D	Amelista	Lab	Spk	Spk	RPD	OC leave	DVOs Amplied
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCVIS	CCVIS 460-	CCV			8260B			04/23/12	NA	1	1,4-DIOXANE (P-					RRF for the CV	J to detects, UJ to NDs for
460-	110169/2							03:13:00			DIOXANE)					standard < 0.005	samples analyzed this shift
110169/																advisory level	
2																	
CCVIS	CCVIS 460-	CCV			8260B			04/24/12	NA	1	1,4-DIOXANE (P-					RRF for the CV	J to detects, UJ to NDs for
460-	110443/2							18:50:00			DIOXANE)					standard < 0.005	samples analyzed this shift
110443/																advisory level	
2																	
CCVIS	CCVIS 460-	CCV			8260B			04/24/12	NA	1	ACETONE					Calibration drift	J+ to detects only since < +40%
460-	110443/2							18:50:00								(%D= +35.8)	for samples analyzed this shift
110443/																	(none)
2																	
CCVIS	CCVIS 460-	CCV			8260B			04/24/12	NA	1	METHYLENE					Calibration drift	J+ to detects only since < +40%
460-	110443/2							18:50:00			CHLORIDE					(%D= +33.6)	for samples analyzed this shift
110443/																	
2																	
CCVIS	CCVIS 460-	CCV			8270C			04/12/12	NA	1	INDENO(1,2,3-					Calibration drift	J+ to detects only since < +40%
460-	109267/2							17:29:00			C,D)PYRENE					(%D= +25.7)	for samples analyzed this shift
109267/																	(none)
2																	
CCVIS	CCVIS 460-	CCV			8270C			04/12/12	NA	1	BENZO(g,h,i)					Calibration drift	J+ to detects only since < +40%
460-	109267/2							17:29:00			PERYLENE					(%D= +23)	for samples analyzed this shift
109267/																	(none)
2																	
CCVIS	CCVIS 460-	CCV			8270C				NA	1	BENZO(g,h,i)					Calibration drift	J+ to detects only since < +40%
460-	109274/2							07:40:00			PERYLENE					(%D= +21.9)	for samples analyzed this shift
109274/																	(none)
2																	

DF - Dilution Factor

LCL - Lower Control Limit

UCL - Upper Control Limit

TABLE 4 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase I Remedial Design/ Remedial Action

QUALIFIED RESULTS FOR FIELD SAMPLES

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾		DVQ	QC Issue
		TCLP META	LS			
460-38437-10	ECS-SSA2-SW_03/28/12	1311 Lead	194	ug/l	J+	Leach blank contamination (0.021 J mg/l)
460-38437-13	ECS-SSA32-SE_03/28/12	1311 Lead	106	ug/l	J+	Leach blank contamination (0.021 J mg/l)
460-38437-14	ECS-SSA32-SS_03/28/12	1311 Lead	172	ug/l	J+	Leach blank contamination (0.021 J mg/l)
460-38437-21	ECS-SSA13-SW_03/28/12	1311 Lead	107	ug/l	J+	Leach blank contamination (0.021 J mg/l)
460-39092-6	ECS-33-F_04/13/12	1311 Lead	25	U ug/l	UJ	Poor field duplicate precision (absolute difference > 2xRL), use higher value from field duplicate
460-39092-7	ECS-33-FX_04/13/12	1311 Lead	810	ug/l	J	Poor field duplicate precision (absolute difference > 2xRL), use higher value from field duplicate
460-39135-1	ECS-32-F_04/16/12	1311 Lead	506	ug/l	J	Poor field duplicate precision (49 RPD), use higher result from field duplicate
460-39135-2	ECS-32-FX_04/16/12	1311 Lead	836	ug/l	J	Poor field duplicate precision (49 RPD), use higher result from field duplicate
460-39254-1	ECS-15-F_04/17/12	1311 Lead	62.3	ug/l	J+	Leach blank contamination (28.05 ug/l)
460-39254-2	ECS-23-F_04/17/12	1311 Lead	190	ug/l	J+	Leach blank contamination (28.05 ug/l)
460-39254-4	ECS-17-F_04/17/12	1311 Lead	25	J ug/l	U	Leach blank contamination (28.05 ug/l); Result is between MDL and RL
460-39254-5	ECS-14-F_04/17/12	1311 Lead	155	ug/l	J+	Leach blank contamination (28.05 ug/l)
460-39775-9	ECS-6-F_05/01/12	1311 Lead	123	ug/l	J	Poor field duplicate precision (absolute difference > 2xRL), use higher value from field duplicate
460-39775-10	ECS-6-F-X_05/01/12	1311 Lead	319	ug/l	J	Poor field duplicate precision (absolute difference > 2xRL), use higher value from field duplicate
460-39775-16	ECS-4-F_05/01/12	1311 Lead	25	U ug/l	UJ	Poor field duplicate precision (absolute difference > 2xRL), use higher value from field duplicate
460-39775-17	ECS-4-FX_05/01/12	1311 Lead	123	ug/l	J	Poor field duplicate precision (absolute difference > 2xRL), use higher value from field duplicate
		TOTAL META	ALS			· · · · · · · · · · · · · · · · · · ·
460-39614-5	ECS-BF-DEC-001R-F2-0-1' _04/27/12	Antimony	2.3	U mg/kg	UJ	Low matrix spike recovery (67%)
460-38780-2	BF-2994g-002-0'-6.5'_04/04/12	Arsenic	7.1	mg/kg	J	Poor lab duplicate precision (44 RPD)
460-38780-3	BF-2994c-001-0'-6.5'_04/04/12	Arsenic	8.6	mg/kg	J	Poor lab duplicate precision (44 RPD)
460-38780-6	BF-2991c-001-0'-6'_04/04/12	Arsenic	8.4	mg/kg	J	Poor lab duplicate precision (44 RPD)
460-38780-9	BF-2987c-001-0'-8.5'_04/04/12	Arsenic	6.4	mg/kg	J	Poor lab duplicate precision (44 RPD)

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38780-11	BF-2987c-001x-0'-8.5'_04/04/12	Arsenic	7.7 mg/kg	J	Poor lab duplicate precision (44 RPD)
460-38780-14	BF-2984c-001-0'-10'_04/04/12	Arsenic	10.6 mg/kg	J	Poor lab duplicate precision (44 RPD)
460-38780-17	BF-2980c-001-0'-7.5'_04/04/12	Arsenic	8.4 mg/kg	J	Poor lab duplicate precision (44 RPD)
460-38780-20	BF-2988c-001-0'-7.5'_04/04/12	Arsenic	7.8 mg/kg	J	Poor lab duplicate precision (44 RPD)
460-38780-23	BF-2992c-001-0'-7'_04/04/12	Arsenic	7.5 mg/kg	J	Poor lab duplicate precision (44 RPD)
460-38780-26	BF-2995c-001-0'-4.5'_04/04/12	Arsenic	5.1 mg/kg	J	Poor lab duplicate precision (44 RPD)
460-38780-29	BF-2998c-001-0'-3.5'_04/04/12	Arsenic	4.7 mg/kg	J	Poor lab duplicate precision (44 RPD)
460-38780-32	BF-3225c-001-0'-3'_04/04/12	Arsenic	6.9 mg/kg	J	Poor lab duplicate precision (44 RPD)
460-38653-8	BF-2972c-001-0'-8'_04/03/12	Barium	30.5 J mg/kg	J	Result is between MDL and RL
460-38653-9	BF-2972c-002-0'-8'_04/03/12	Barium	29.1 J mg/kg	J	Result is between MDL and RL
460-38653-12	BF-2975c-001-0'-4'_04/03/12	Barium	29.3 J mg/kg	J	Result is between MDL and RL
460-38653-15	BF-2978c-001-0'-6'_04/03/12	Barium	29 J mg/kg	J	Result is between MDL and RL
460-38653-18	BF-2982c-001-0'-5'_04/03/12	Barium	30.6 J mg/kg	J	Result is between MDL and RL
460-38653-21	BF-2979c-001-0'-8.5'_04/03/12	Barium	36.7 J mg/kg	J	Result is between MDL and RL
460-38653-24	BF-2976c-001-0'-7.5'_04/03/12	Barium	39.9 J mg/kg	J	Result is between MDL and RL
460-38653-27	BF-2973c-001-0'-4'_04/03/12	Barium	31.3 J mg/kg	J	Result is between MDL and RL
460-38653-30	BF-2974c-001-0'-3.5'_04/03/12	Barium	32.5 J mg/kg	J	Result is between MDL and RL
460-38653-33	BF-2977c-001-0'-3.5' 04/03/12	Barium	33.2 J mg/kg	J	Result is between MDL and RL
460-38653-36	BF-2983c-001-0'-9'_04/03/12	Barium	37.8 J mg/kg	J	Result is between MDL and RL
460-38653-42	BF-2990c-001-0'-7.5'_04/03/12	Barium	34.1 J mg/kg	J	Result is between MDL and RL
460-38780-2	BF-2994g-002-0'-6.5'_04/04/12	Barium	25.7 J mg/kg	J	Result is between MDL and RL
460-38780-3	BF-2994c-001-0'-6.5'_04/04/12	Barium	36.1 J mg/kg	J	Result is between MDL and RL
460-38780-9	BF-2987c-001-0'-8.5'_04/04/12	Barium	32.1 J mg/kg	J	Result is between MDL and RL
460-38780-11	BF-2987c-001x-0'-8.5'_04/04/12	Barium	29.2 J mg/kg	J	Result is between MDL and RL
460-38780-14	BF-2984c-001-0'-10'_04/04/12	Barium	41.3 J mg/kg	J	Result is between MDL and RL
460-38780-20	BF-2988c-001-0'-7.5'_04/04/12	Barium	34.2 J mg/kg	J	Result is between MDL and RL
460-38780-29	BF-2998c-001-0'-3.5'_04/04/12	Barium	28 J mg/kg	J	Result is between MDL and RL
460-38780-32	BF-3225c-001-0'-3'_04/04/12	Barium	30.6 J mg/kg	J	Result is between MDL and RL
460-38780-35	BF-3226c-001-0'-3'_04/04/12	Barium	44.5 J mg/kg	J	Result is between MDL and RL
460-38780-38	BF-3229c-001-0'-5'_04/04/12	Barium	36.6 J mg/kg	J	Result is between MDL and RL
460-38859-6	BF-3234c-001-0'-5'_04/05/12	Barium	40.6 J mg/kg	J	Result is between MDL and RL
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Barium	37.9 J mg/kg	J	Result is between MDL and RL
460-38859-15	BF-2999c-001-0'-5'_04/05/12	Barium	38.2 J mg/kg	J	Result is between MDL and RL
460-38859-18	BF-2996c-001-0'-5'_04/05/12	Barium	39.6 J mg/kg	J	Result is between MDL and RL
460-38859-21	BF-3235c-001-0'-6'_04/05/12	Barium	46.7 J mg/kg	J	Result is between MDL and RL
460-38859-24	BF-3231c-001-0'-8'_04/05/12	Barium	33.1 J mg/kg	J	Result is between MDL and RL
460-39249-5	BF-2981c-001-0'-5'_04/18/12	Barium	38.8 J mg/kg	J	Result is between MDL and RL
460-39249-6	BF-2981c-001x-0-5'_04/18/12	Barium	42 J mg/kg	J	Result is between MDL and RL
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Barium	32.3 J mg/kg	J	Result is between MDL and RL
460-39249-18	BF-3232c-001-1'-5'_04/18/12	Barium	38.7 J mg/kg	J	Result is between MDL and RL
460-39249-27	BF-2993c-001-1'-6'_04/18/12	Barium	43.9 J mg/kg	J	Result is between MDL and RL
460-39249-30	BF-2997c-001-1'-6'_04/18/12	Barium	34.2 J mg/kg	J	Result is between MDL and RL
460-39614-5	ECS-BF-DEC-001R-F2-0-1'	Barium	42.4 J mg/kg	J	Result is between MDL and RL
	_04/27/12				
460-38653-27	BF-2973c-001-0'-4'_04/03/12	Beryllium	0.39 J mg/kg	J	Result is between MDL and RL
460-38653-33	BF-2977c-001-0'-3.5'_04/03/12	Beryllium	0.38 J mg/kg	J	Result is between MDL and RL
460-38653-36	BF-2983c-001-0'-9'_04/03/12	Beryllium	0.44 J mg/kg	J	Result is between MDL and RL
460-38780-29	BF-2998c-001-0'-3.5'_04/04/12	Beryllium	0.42 J mg/kg	J	Result is between MDL and RL
460-38859-6	BF-3234c-001-0'-5'_04/05/12	Beryllium	0.47 J mg/kg	J	Result is between MDL and RL
460-38859-21	BF-3235c-001-0'-6'_04/05/12	Beryllium	0.43 J mg/kg	J	Result is between MDL and RL
460-38859-24	BF-3231c-001-0'-8'_04/05/12	Beryllium	0.42 J mg/kg	J	Result is between MDL and RL
460-39614-5	ECS-BF-DEC-001R-F2-0-1'	Beryllium	0.41 J mg/kg	J	Result is between MDL and RL
460 206F2 20	_04/27/12	Codmium	0.21 ~~~/!	1	Popult is botween MDL and DL
460-38653-36	BF-2983c-001-0'-9'_04/03/12	Cadmium	0.31 J mg/kg	J	Result is between MDL and RL

Lab ID	Field ID_Date	Analyte		Lab esult ⁽¹⁾	DVQ	QC Issue
460-38859-12	BF-3227c-001-0'-6'_04/05/12	Cadmium	0.16	J mg/kg	J	Result is between MDL and RL
460-39092-15	ECS-25-F_04/13/12	Cadmium	0.26	J mg/kg	J	Result is between MDL and RL
460-39775-23	ECS-1-SN_05/01/12	Cadmium	0.23	J mg/kg	J	Result is between MDL and RL
460-39092-15	ECS-25-F_04/13/12	Calcium	897	J mg/kg	J	Result is between MDL and RL
460-39135-3	ECS-37-F_04/16/12	Calcium	810	J mg/kg	J	Result is between MDL and RL
460-39614-5	ECS-BF-DEC-001R-F2-0-1'	Calcium	277	J mg/kg	J	Result is between MDL and RL
	_04/27/12					
460-39775-23	ECS-1-SN_05/01/12	Calcium	1090	J mg/kg	J	Result is between MDL and RL
460-39249-15	BF-3228c-001-1'-7'_04/18/12	Chromium, Hexavalent	0.21	J mg/kg	J	Result is between MDL and RL
460-39249-18	BF-3232c-001-1'-5'_04/18/12	Chromium, Hexavalent	0.21	J mg/kg	J	Result is between MDL and RL
460-39249-21	BF-3224c-001-1'-4'_04/18/12	Chromium, Hexavalent	0.33	J mg/kg	J	Result is between MDL and RL
460-39249-27	BF-2993c-001-1'-6'_04/18/12	Chromium, Hexavalent	0.14	J mg/kg	J	Result is between MDL and RL
460-39092-15	ECS-25-F_04/13/12	Cobalt	9.9	J mg/kg	J	Result is between MDL and RL
460-39614-5	ECS-BF-DEC-001R-F2-0-1'	Cobalt	8.7	J mg/kg	J	Result is between MDL and RL
	_04/27/12					
460-39775-23	ECS-1-SN_05/01/12	Cobalt	8.9	J mg/kg	J	Result is between MDL and RL
460-39845-2	ECS-SSA23-SE1-0-6"_05/03/12	Cobalt	8	J mg/kg	J	Result is between MDL and RL
460-38437-15	ECS-SSA32-F_03/28/12	Lead	139	mg/kg	J-	Low matrix spike recovery (45%)
460-38437-21	ECS-SSA13-SW_03/28/12	Lead	128	mg/kg	J	Poor lab duplicate precision (25 RPD)
460-38437-22	ECS-SSA11-F_03/28/12	Lead	143	mg/kg	J	Poor lab duplicate precision (25 RPD)
460-38437-23	ECS-SSA11-SN_03/28/12	Lead	538	mg/kg	J	Poor lab duplicate precision (25 RPD)
460-38437-24	ECS-SSA11-SE_03/28/12	Lead	3070	mg/kg	J	Poor lab duplicate precision (25 RPD)
460-38437-25	ECS-SSA11-SS_03/28/12	Lead	174	mg/kg	J	Poor lab duplicate precision (25 RPD)
460-38437-26	ECS-SSA11-SW_03/28/12	Lead	533	mg/kg	J-	Low matrix spike recovery (45%)
460-38653-8	BF-2972c-001-0'-8'_04/03/12	Lead	25.5	mg/kg	J	Poor lab duplicate precision (22 RPD)
460-38653-9	BF-2972c-002-0'-8'_04/03/12	Lead	22.5	mg/kg	J	Poor lab duplicate precision (22 RPD)
460-38653-12	BF-2975c-001-0'-4'_04/03/12	Lead	21.5	mg/kg	J	Poor lab duplicate precision (22 RPD)
460-38653-15	BF-2978c-001-0'-6'_04/03/12	Lead	21.8	mg/kg	J	Poor lab duplicate precision (22 RPD)
460-38653-18	BF-2982c-001-0'-5'_04/03/12	Lead	20	mg/kg	J	Poor lab duplicate precision (22 RPD)
460-38653-21	BF-2979c-001-0'-8.5'_04/03/12	Lead	23	mg/kg	J	Poor lab duplicate precision (22 RPD)
460-38653-24	BF-2976c-001-0'-7.5'_04/03/12	Lead	17.1	mg/kg	J	Poor lab duplicate precision (22 RPD)
460-38653-27	BF-2973c-001-0'-4'_04/03/12	Lead	21.4	mg/kg	J	Poor lab duplicate precision (22 RPD)
460-38653-30	BF-2974c-001-0'-3.5'_04/03/12	Lead	91.1	mg/kg	J	Poor lab duplicate precision (22 RPD)
460-38653-33	BF-2977c-001-0'-3.5'_04/03/12	Lead	58.7	mg/kg	J	Poor lab duplicate precision (22 RPD)
460-38653-36	BF-2983c-001-0'-9'_04/03/12	Lead	804	mg/kg	J	Poor lab duplicate precision (22 RPD)
460-38780-2	BF-2994g-002-0'-6.5'_04/04/12	Lead	15	mg/kg	J	Poor lab duplicate precision (35 RPD)
460-38780-3	BF-2994c-001-0'-6.5'_04/04/12	Lead	28.2	mg/kg	J	Poor lab duplicate precision (35 RPD)
460-38780-6	BF-2991c-001-0'-6'_04/04/12	Lead	54.6	mg/kg	J	Poor lab duplicate precision (35 RPD)
460-38780-9	BF-2987c-001-0'-8.5'_04/04/12	Lead	23.7	mg/kg	J	Poor lab duplicate precision (35 RPD)
460-38780-11	BF-2987c-001x-0'-8.5'_04/04/12	Lead	22.9	mg/kg	J	Poor lab duplicate precision (35 RPD)
460-38780-14	BF-2984c-001-0'-10'_04/04/12	Lead	38	mg/kg	J	Poor lab duplicate precision (35 RPD)
460-38780-17	BF-2980c-001-0'-7.5'_04/04/12	Lead	114	mg/kg	J	Poor lab duplicate precision (35 RPD)
460-38780-20	BF-2988c-001-0'-7.5'_04/04/12	Lead	18.6	mg/kg	J	Poor lab duplicate precision (35 RPD)
460-38780-23	BF-2992c-001-0'-7'_04/04/12	Lead	35	mg/kg	J	Poor lab duplicate precision (35 RPD)
460-38780-26	BF-2995c-001-0'-4.5'_04/04/12	Lead	24.1	mg/kg	J	Poor lab duplicate precision (35 RPD)
460-38780-29	BF-2998c-001-0'-3.5'_04/04/12	Lead	14.1	mg/kg	J	Poor lab duplicate precision (35 RPD)
460-38780-32	BF-3225c-001-0'-3'_04/04/12	Lead	15.6	mg/kg	J	Poor lab duplicate precision (35 RPD)
460-39363-4	ECS-1-F_04/20/12	Lead	79	mg/kg	J	Poor lab duplicate precision (50 RPD)
460-39363-5	ECS-2-F_04/20/12	Lead	46.6	mg/kg	J	Poor lab duplicate precision (50 RPD)
460-39363-6	ECS-2-Fx_04/20/12	Lead	39.8	mg/kg	J	Poor lab duplicate precision (50 RPD)
460-39365-1	ECS-13-F_04/18/12	Lead	31.2	mg/kg	J	Poor lab duplicate precision (50 RPD)
460-39845-4	ECS-SSA23-F1x-1'_05/03/12	Lead	33.1	mg/kg	J	Poor lab duplicate precision (71 RPD)
460-39845-5	ECS-SSA23-F2-1'_05/03/12	Lead	146	mg/kg	J	Poor lab duplicate precision (71 RPD)
460-39845-6	ECS-SSA23-SE2-0-6"_05/03/12	Lead	611	mg/kg	J	Poor lab duplicate precision (71 RPD)

Lab ID	Field ID_Date	Analyte		Lab esult ⁽¹⁾	DVQ	QC Issue
460-39845-7	ECS-SSA20-SE-0-6"_05/03/12	Lead	722	mg/kg	J	Poor lab duplicate precision (71 RPD)
460-39845-8	ECS-SSA-20-F-1'_05/03/12	Lead	19.4	mg/kg	J	Poor lab duplicate precision (71 RPD)
460-39845-9	ECS-SSA 19-F-1'_05/03/12	Lead	35.6	mg/kg	J	Poor lab duplicate precision (71 RPD)
460-39845-10	ECS-SSA 19-SE-0-6"_05/03/12	Lead	743	mg/kg	J	Poor lab duplicate precision (71 RPD)
460-39845-11	ECS-SSA-19-Sn-0-6"_05/03/12	Lead	20.1	mg/kg	J	Poor lab duplicate precision (71 RPD)
460-38780-2	BF-2994g-002-0'-6.5'_04/04/12	Manganese	360	mg/kg	J	Poor lab duplicate precision (57 RPD)
460-38780-3	BF-2994c-001-0'-6.5'_04/04/12	Manganese	711	mg/kg	J	Poor lab duplicate precision (57 RPD)
460-38780-6	BF-2991c-001-0'-6'_04/04/12	Manganese	676	mg/kg	J	Poor lab duplicate precision (57 RPD)
460-38780-9	BF-2987c-001-0'-8.5'_04/04/12	Manganese	506	mg/kg	J	Poor lab duplicate precision (57 RPD)
460-38780-11	BF-2987c-001x-0'-8.5'_04/04/12	Manganese	612	mg/kg	J	Poor lab duplicate precision (57 RPD)
460-38780-14	BF-2984c-001-0'-10'_04/04/12	Manganese	853	mg/kg	J	Poor lab duplicate precision (57 RPD)
460-38780-17	BF-2980c-001-0'-7.5'_04/04/12	Manganese	625	mg/kg	J	Poor lab duplicate precision (57 RPD)
460-38780-20	BF-2988c-001-0'-7.5'_04/04/12	Manganese	650	mg/kg	J	Poor lab duplicate precision (57 RPD)
460-38780-23	BF-2992c-001-0'-7'_04/04/12	Manganese	985	mg/kg	J	Poor lab duplicate precision (57 RPD)
460-38780-26	BF-2995c-001-0'-4.5'_04/04/12	Manganese	767	mg/kg	J	Poor lab duplicate precision (57 RPD)
460-38780-29	BF-2998c-001-0'-3.5'_04/04/12	Manganese	438	mg/kg	J	Poor lab duplicate precision (57 RPD)
460-38780-32	BF-3225c-001-0'-3'_04/04/12	Manganese	447	mg/kg	J	Poor lab duplicate precision (57 RPD)
460-39614-5	ECS-BF-DEC-001R-F2-0-1'	Manganese	394	mg/kg	J	Poor lab duplicate precision (29 RPD)
	_04/27/12	· ·		0 0		, , ,
460-38653-21	BF-2979c-001-0'-8.5'_04/03/12	Mercury	0.028	J mg/kg	J	Result is between MDL and RL
460-38653-24	BF-2976c-001-0'-7.5'_04/03/12	Mercury	0.028	J mg/kg	J	Result is between MDL and RL
460-38653-30	BF-2974c-001-0'-3.5'_04/03/12	Mercury	0.03	J mg/kg	J	Result is between MDL and RL
460-38653-33	BF-2977c-001-0'-3.5'_04/03/12	Mercury	0.031	J mg/kg	J	Result is between MDL and RL
460-38780-9	BF-2987c-001-0'-8.5'_04/04/12	Mercury	0.03	J mg/kg	J	Result is between MDL and RL
460-38780-14	BF-2984c-001-0'-10'_04/04/12	Mercury	0.029	J mg/kg	J	Result is between MDL and RL
460-38780-23	BF-2992c-001-0'-7'_04/04/12	Mercury	0.026	J mg/kg	J	Result is between MDL and RL
460-38859-3	BF-3233c-001-0'-6'_04/05/12	Mercury	0.032	J mg/kg	J	Result is between MDL and RL
460-38859-18	BF-2996c-001-0'-5'_04/05/12	Mercury	0.034	J mg/kg	J	Result is between MDL and RL
460-38859-24	BF-3231c-001-0'-8'_04/05/12	Mercury	0.029	J mg/kg	J	Result is between MDL and RL
460-38859-27	BF-3236c-001-0'-6'_04/05/12	Mercury	0.031	J mg/kg	J	Result is between MDL and RL
460-39249-6	BF-2981c-001x-0-5'_04/18/12	Mercury	0.031	J mg/kg	J	Result is between MDL and RL
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Mercury	0.032	J mg/kg	J	Result is between MDL and RL
460-39249-12	BF-3000c-001-0'-8'_04/18/12	Mercury	0.036	J mg/kg	J	Result is between MDL and RL
460-39249-21	BF-3224c-001-1'-4'_04/18/12	Mercury	0.032	J mg/kg	J	Result is between MDL and RL
460-39249-24	BF-2989c-001-1'-4'_04/18/12	Mercury	0.032	J mg/kg	J	Result is between MDL and RL
460-39249-27	BF-2993c-001-1'-6'_04/18/12	Mercury	0.031	J mg/kg	J	Result is between MDL and RL
460-39092-15	ECS-25-F_04/13/12	Potassium	1050	J mg/kg	J	Result is between MDL and RL
460-39135-3	ECS-37-F_04/16/12	Potassium	830	J mg/kg	J	Result is between MDL and RL
460-39614-5	ECS-BF-DEC-001R-F2-0-1'	Potassium	321	J mg/kg	J	Result is between MDL and RL
	_04/27/12			0 0		
460-39775-23	ECS-1-SN_05/01/12	Potassium	732	J mg/kg	J	Result is between MDL and RL
460-38780-14	BF-2984c-001-0'-10'_04/04/12	Selenium	1.9	J mg/kg	J	Result is between MDL and RL
460-38780-38	BF-3229c-001-0'-5'_04/04/12	Selenium	2	J mg/kg	J	Result is between MDL and RL
460-38859-12	BF-3227c-001-0'-6'_04/05/12	Selenium	2.1	J mg/kg	J	Result is between MDL and RL
460-38859-27	BF-3236c-001-0'-6'_04/05/12	Selenium	1.7	J mg/kg	J	Result is between MDL and RL
460-38947-1	ECS-SSA11-SER1-0"-6" _04/10/12	Selenium	1.4	J mg/kg	J	Result is between MDL and RL
460-39249-12	BF-3000c-001-0'-8'_04/18/12	Selenium	1.5	J mg/kg	J	Result is between MDL and RL
460-38653-8	BF-2972c-001-0'-8'_04/03/12	Silver	2.3	U mg/kg	UJ	Low matrix spike recovery (67%)
460-38653-9	BF-2972c-002-0'-8'_04/03/12	Silver	2.1	U mg/kg	UJ	Low matrix spike recovery (67%)
460-38653-12	BF-2975c-001-0'-4'_04/03/12	Silver	0.25	J mg/kg	J	Low matrix spike recovery (67%);
100.05575.17	PE 0070 004 01 01 0 4/00/15	0.1	0.55			Result is between MDL and RL
460-38653-15	BF-2978c-001-0'-6'_04/03/12	Silver	0.23	J mg/kg	J	Low matrix spike recovery (67%); Result is between MDL and RL

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾ 0.31 J mg/kg		DVQ	QC Issue
460-38653-18	BF-2982c-001-0'-5'_04/03/12	Silver		J mg/kg	J	Low matrix spike recovery (67%); Result is between MDL and RL
460-38653-21	BF-2979c-001-0'-8.5'_04/03/12	Silver	2.4	U mg/kg	UJ	Low matrix spike recovery (67%)
460-38653-24	BF-2976c-001-0'-7.5'_04/03/12	Silver	2.3	U mg/kg	UJ	Low matrix spike recovery (67%)
460-38653-27	BF-2973c-001-0'-4'_04/03/12	Silver	2.4	U mg/kg	UJ	Low matrix spike recovery (67%)
460-38653-30	BF-2974c-001-0'-3.5'_04/03/12	Silver	2.2	U mg/kg	UJ	Low matrix spike recovery (67%)
460-38653-33	BF-2977c-001-0'-3.5'_04/03/12	Silver	0.22	J mg/kg	J	Low matrix spike recovery (67%); Result is between MDL and RL
460-38653-36	BF-2983c-001-0'-9'_04/03/12	Silver	2.4	U mg/kg	UJ	Low matrix spike recovery (67%)
460-39092-15	ECS-25-F_04/13/12	Silver	0.33		J	Result is between MDL and RL
460-39092-15	ECS-25-F_04/13/12	Sodium	362	J mg/kg J mg/kg	J	Result is between MDL and RL
460-39032-13	ECS-37-F_04/16/12	Sodium	357	J mg/kg	J	Result is between MDL and RL
400-39133-3	ECS-37-1_04/10/12	PESTICIDE		J IIIg/kg	J	Result is between MDL and RL
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Aldrin	8.5	II ua/ka	UJ	Low surrogato recovery (51%)
	_		8.5	U ug/kg U ug/kg		Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Alpha BHC (Alpha Hexachlorocyclohexane)			UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Alpha Endosulfan	8.5	U ug/kg	UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Beta BHC (Beta Hexachlorocyclohexane)	8.5	U ug/kg	UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Beta Endosulfan	8.5	U ug/kg	UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Chlordane	85	U ug/kg	UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Delta BHC (Delta Hexachlorocyclohexane)	8.5	U ug/kg	UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Dieldrin	8.5	U ug/kg	UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8' 04/18/12	Endosulfan Sulfate	8.5	U ug/kg	UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Endrin	8.5	U ug/kg	UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Gamma BHC (Lindane)	8.5	U ug/kg	UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	Heptachlor	8.5	U ug/kg	UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	p,p'-DDD	8.5	U ug/kg	UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	p,p'-DDE	8.5	U ug/kg	UJ	Low surrogate recovery (51%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	p,p'-DDT	8.5	U ug/kg	UJ	Low surrogate recovery (51%)
		PCB AROCLO	DRS			, , ,
460-38859-3	BF-3233c-001-0'-6'_04/05/12	PCB-1016 (Aroclor 1016)	80	U ug/kg	UJ	Calibration drift secondary column (%D= -81.2)
460-38859-6	BF-3234c-001-0'-5'_04/05/12	PCB-1016 (Aroclor 1016)	83	U ug/kg	UJ	Calibration drift secondary column (%D= -81.2)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	PCB-1016 (Aroclor 1016)	79	U ug/kg	UJ	Calibration drift secondary column (%D= -81.2)
460-38859-12	BF-3227c-001-0'-6'_04/05/12	PCB-1016 (Aroclor 1016)	80	U ug/kg	UJ	Calibration drift secondary column (%D= -81.2)
460-38859-15	BF-2999c-001-0'-5'_04/05/12	PCB-1016 (Aroclor 1016)	80	U ug/kg	UJ	Calibration drift secondary column (%D= -81.2)
460-38859-18	BF-2996c-001-0'-5'_04/05/12	PCB-1016 (Aroclor 1016)	76	U ug/kg	UJ	Calibration drift secondary column (%D= -81.2)
460-38859-21	BF-3235c-001-0'-6'_04/05/12	PCB-1016 (Aroclor 1016)	80	U ug/kg	UJ	Calibration drift secondary column (%D= -81.2)
460-38859-24	BF-3231c-001-0'-8'_04/05/12	PCB-1016 (Aroclor 1016)	79	U ug/kg	UJ	Calibration drift secondary column (%D= -81.2)
460-38859-27	BF-3236c-001-0'-6'_04/05/12	PCB-1016 (Aroclor 1016)	81	U ug/kg	UJ	Calibration drift secondary column (%D= -81.2)
460-38653-21	BF-2979c-001-0'-8.5'_04/03/12	PCB-1254 (Aroclor 1254)	0.04	J mg/kg	J	Result is between MDL and RL
460-38780-2	BF-2994g-002-0'-6.5'_04/04/12	PCB-1260 (Aroclor 1260)	80	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)

Lab ID	Field ID_Date	Analyte		Lab esult ⁽¹⁾	DVQ	QC Issue
460-38780-3	BF-2994c-001-0'-6.5'_04/04/12	PCB-1260 (Aroclor 1260)	78	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-38780-6	BF-2991c-001-0'-6'_04/04/12	PCB-1260 (Aroclor 1260)	84	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-38780-9	BF-2987c-001-0'-8.5'_04/04/12	PCB-1260 (Aroclor 1260)	82	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-38780-11	BF-2987c-001x-0'-8.5'_04/04/12	PCB-1260 (Aroclor 1260)	84	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-38780-14	BF-2984c-001-0'-10'_04/04/12	PCB-1260 (Aroclor 1260)	80	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-38780-17	BF-2980c-001-0'-7.5'_04/04/12	PCB-1260 (Aroclor 1260)	82	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-38780-20	BF-2988c-001-0'-7.5'_04/04/12	PCB-1260 (Aroclor 1260)	82	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-38780-23	BF-2992c-001-0'-7'_04/04/12	PCB-1260 (Aroclor 1260)	80	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-38780-26	BF-2995c-001-0'-4.5'_04/04/12	PCB-1260 (Aroclor 1260)	86	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-38780-29	BF-2998c-001-0'-3.5'_04/04/12	PCB-1260 (Aroclor 1260)	80	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-38780-32	BF-3225c-001-0'-3'_04/04/12	PCB-1260 (Aroclor 1260)	78	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-38780-35	BF-3226c-001-0'-3'_04/04/12	PCB-1260 (Aroclor 1260)	81	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-38780-38	BF-3229c-001-0'-5'_04/04/12	PCB-1260 (Aroclor 1260)	76	U ug/kg	UJ	Calibration drift secondary column (%D= -45.7)
460-39249-5	BF-2981c-001-0'-5'_04/18/12	PCB-1260 (Aroclor 1260)	78	U ug/kg	UJ	Low average MS/MSD recovery (59.5%)
460-39249-6	BF-2981c-001x-0-5'_04/18/12	PCB-1260 (Aroclor 1260)	78	U ug/kg	UJ	Low average MS/MSD recovery (59.5%)
460-39249-9	BF-2985c-001-0'-8'_04/18/12	PCB-1260 (Aroclor 1260)	85	U ug/kg	UJ	Low average MS/MSD recovery (59.5%)
460-39249-12	BF-3000c-001-0'-8'_04/18/12	PCB-1260 (Aroclor 1260)	77	U ug/kg	UJ	Low average MS/MSD recovery (59.5%)
460-39249-15	BF-3228c-001-1'-7'_04/18/12	PCB-1260 (Aroclor 1260)	83	U ug/kg	UJ	Low average MS/MSD recovery (59.5%)
460-39249-18	BF-3232c-001-1'-5'_04/18/12	PCB-1260 (Aroclor 1260)	80	U ug/kg	UJ	Low average MS/MSD recovery (59.5%)
460-39249-21	BF-3224c-001-1'-4'_04/18/12	PCB-1260 (Aroclor 1260)	79	U ug/kg	UJ	Low average MS/MSD recovery (59.5%)
460-39249-24	BF-2989c-001-1'-4'_04/18/12	PCB-1260 (Aroclor 1260)	79	U ug/kg	IJ	Low average MS/MSD recovery (59.5%)
460-39249-27	BF-2993c-001-1'-6'_04/18/12	PCB-1260 (Aroclor 1260)	78	U ug/kg	IJ	Low average MS/MSD recovery (59.5%)
460-39249-30	BF-2997c-001-1'-6'_04/18/12	PCB-1260 (Aroclor 1260)	73	U ug/kg	UJ	Low average MS/MSD recovery (59.5%)
	,	OLATILE ORGANIC COM	1POUNE	OS (VOC)		
460-38780-25	BF-2995g-002-0'-4.5'_04/04/12	1,2,4-Trimethylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-27	BF-2998g-001-0'-3.5'_04/04/12	1,2,4-Trimethylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-28	BF-2998g-002-0'-3.5'_04/04/12	1,2,4-Trimethylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-30	BF-3225g-001-0'-3'_04/04/12	1,2,4-Trimethylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)

Lab ID	Field ID_Date	Analyte	Re	Lab esult ⁽¹⁾	DVQ	QC Issue
460-38780-31	BF-3225g-002-0'-3'_04/04/12	1,2,4-Trimethylbenzene	1.2	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-36	BF-3229g-001-0'-5'_04/04/12	1,2,4-Trimethylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-37	BF-3229g-002-0'-5'_04/04/12	1,2,4-Trimethylbenzene	1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-39249-11	BF-3000g-002-0'-8'_04/18/12	1,2,4-Trimethylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (66%)
460-38780-25	BF-2995g-002-0'-4.5'_04/04/12	1,2-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (62%)
460-38780-27	BF-2998g-001-0'-3.5'_04/04/12	1,2-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (62%)
460-38780-28	BF-2998g-002-0'-3.5'_04/04/12	1,2-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (62%)
460-38780-30	BF-3225g-001-0'-3'_04/04/12	1,2-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (62%)
460-38780-31	BF-3225g-002-0'-3'_04/04/12	1,2-Dichlorobenzene	1.2	U ug/kg	UJ	Low average MS/MSD recovery (62%)
460-38780-36	BF-3229g-001-0'-5'_04/04/12	1,2-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (62%)
460-38780-37	BF-3229g-002-0'-5'_04/04/12	1,2-Dichlorobenzene	1	U ug/kg	UJ	Low average MS/MSD recovery (62%)
460-39249-11	BF-3000g-002-0'-8'_04/18/12	1,2-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (65%)
460-38780-25	BF-2995g-002-0'-4.5'_04/04/12	1,3,5-Trimethylbenzene (Mesitylene)	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-27	BF-2998g-001-0'-3.5'_04/04/12	1,3,5-Trimethylbenzene (Mesitylene)	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-28	BF-2998g-002-0'-3.5'_04/04/12	1,3,5-Trimethylbenzene (Mesitylene)	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-30	BF-3225g-001-0'-3'_04/04/12	1,3,5-Trimethylbenzene (Mesitylene)	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-31	BF-3225g-002-0'-3'_04/04/12	1,3,5-Trimethylbenzene (Mesitylene)	1.2	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-36	BF-3229g-001-0'-5'_04/04/12	1,3,5-Trimethylbenzene (Mesitylene)	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-37	BF-3229g-002-0'-5'_04/04/12	1,3,5-Trimethylbenzene (Mesitylene)	1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-39249-11	BF-3000g-002-0'-8'_04/18/12	1,3,5-Trimethylbenzene (Mesitylene)	1.1	U ug/kg	UJ	Low average MS/MSD recovery (66.5%)
460-38780-25	BF-2995g-002-0'-4.5'_04/04/12	1,3-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (65%)
460-38780-27	BF-2998g-001-0'-3.5'_04/04/12	1,3-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (65%)
460-38780-28	BF-2998g-002-0'-3.5'_04/04/12	1,3-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (65%)
460-38780-30	BF-3225g-001-0'-3'_04/04/12	1,3-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (65%)
460-38780-31	BF-3225g-002-0'-3'_04/04/12	1,3-Dichlorobenzene	1.2	U ug/kg	UJ	Low average MS/MSD recovery (65%)
460-38780-36	BF-3229g-001-0'-5'_04/04/12	1,3-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (65%)
460-38780-37	BF-3229g-002-0'-5'_04/04/12	1,3-Dichlorobenzene	1	U ug/kg	UJ	Low average MS/MSD recovery (65%)
460-39249-11	BF-3000g-002-0'-8'_04/18/12	1,3-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (64.5%)
460-38780-25	BF-2995g-002-0'-4.5'_04/04/12	1,4-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (62.5%)
460-38780-27	BF-2998g-001-0'-3.5'_04/04/12	1,4-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (62.5%)
460-38780-28	BF-2998g-002-0'-3.5'_04/04/12	1,4-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (62.5%)
460-38780-30	BF-3225g-001-0'-3'_04/04/12	1,4-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (62.5%)
460-38780-31	BF-3225g-002-0'-3'_04/04/12	1,4-Dichlorobenzene	1.2	U ug/kg	UJ	Low average MS/MSD recovery (62.5%)
460-38780-36	BF-3229g-001-0'-5'_04/04/12	1,4-Dichlorobenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (62.5%)
460-38780-37	BF-3229g-002-0'-5'_04/04/12	1,4-Dichlorobenzene	1	U ug/kg	UJ	Low average MS/MSD recovery (62.5%)

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-39249-11	BF-3000g-002-0'-8'_04/18/12	1,4-Dichlorobenzene	1.1 U ug/kg	UJ	Low average MS/MSD recovery (64.5%)
460-38653-1	BF-2972g-001-0'-8'_04/03/12	1,4-Dioxane (P-Dioxane)	0.052 U mg/kg		RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-2	BF-2972g-002-0'-8'_04/03/12	1,4-Dioxane (P-Dioxane)	0.055 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-3	BF-2972g-003-0'-8'_04/03/12	1,4-Dioxane (P-Dioxane)	0.054 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-4	BF-2972g-004-0'-8'_04/03/12	1,4-Dioxane (P-Dioxane)	0.049 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-5	BF-2972g-005-0'-8'_04/03/12	1,4-Dioxane (P-Dioxane)	0.052 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-6	BF-2972g-006-0'-8'_04/03/12	1,4-Dioxane (P-Dioxane)	0.052 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-7	BF-2972g-007-0'-8'_04/03/12	1,4-Dioxane (P-Dioxane)	0.048 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-10	BF-2975g-001-0'-4'_04/03/12	1,4-Dioxane (P-Dioxane)	0.05 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-11	BF-2975g-002-0'-4'_04/03/12	1,4-Dioxane (P-Dioxane)	0.052 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-13	BF-2978g-001-0'-6'_04/03/12	1,4-Dioxane (P-Dioxane)	0.05 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38653-14	BF-2978g-002-0'-6'_04/03/12	1,4-Dioxane (P-Dioxane)	0.048 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-16	BF-2982g-001-0'-5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.054 U mg/kg	υJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-17	BF-2982g-002-0'-5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.051 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-19	BF-2979g-001-0'-8.5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.054 U mg/kg	ΟĴ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-20	BF-2979g-002-0'-8.5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.055 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-22	BF-2976g-001-0'-7.5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.051 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-23	BF-2976g-002-0'-7.5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.051 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-25	BF-2973g-001-0'-4'_04/03/12	1,4-Dioxane (P-Dioxane)	0.059 U mg/kg	ΟJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-26	BF-2973g-002-0'-4'_04/03/12	1,4-Dioxane (P-Dioxane)	0.049 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-28	BF-2974g-001-0'-3.5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.051 U mg/kg	ΟĴ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-29	BF-2974g-002-0'-3.5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.054 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38653-31	BF-2977g-001-0'-3.5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.056 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level
					(at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-32	BF-2977g-002-0'-3.5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.059 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-34	BF-2983g-001-0'-9'_04/03/12	1,4-Dioxane (P-Dioxane)	0.056 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-35	BF-2983g-002-0'-9'_04/03/12	1,4-Dioxane (P-Dioxane)	0.054 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-37	BF-2986g-001-0'-13.5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.06 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-38	BF-2986g-002-0'-13.5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.049 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-40	BF-2990g-001-0'-7.5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.055 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38653-41	BF-2990g-002-0'-7.5'_04/03/12	1,4-Dioxane (P-Dioxane)	0.055 U mg/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0035-0.0043), visible peak with area of 6374 counts in 100-ppb standard
460-38780-1	BF-2994g-001-0'-6.5'_04/04/12	1,4-Dioxane (P-Dioxane)	53 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-2	BF-2994g-002-0'-6.5'_04/04/12	1,4-Dioxane (P-Dioxane)	52 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-4	BF-2991g-001-0'-6'_04/04/12	1,4-Dioxane (P-Dioxane)	53 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38780-5	BF-2991g-002-0'-6'_04/04/12	1,4-Dioxane (P-Dioxane)	59 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-7	BF-2987g-001-0'-8.5'_04/04/12	1,4-Dioxane (P-Dioxane)	53 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-8	BF-2987g-002-0'-8.5'_04/04/12	1,4-Dioxane (P-Dioxane)	56 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-10	BF-2987g-001x-0'-8.5'_04/04/12	1,4-Dioxane (P-Dioxane)	58 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-12	BF-2984g-001-0'-10'_04/04/12	1,4-Dioxane (P-Dioxane)	49 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-13	BF-2984g-002-0'-10'_04/04/12	1,4-Dioxane (P-Dioxane)	53 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-15	BF-2980g-001-0'-7.5'_04/04/12	1,4-Dioxane (P-Dioxane)	58 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-16	BF-2980g-002-0'-7.5'_04/04/12	1,4-Dioxane (P-Dioxane)	53 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-18	BF-2988g-001-0'-7.5'_04/04/12	1,4-Dioxane (P-Dioxane)	53 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-19	BF-2988g-002-0'-7.5'_04/04/12	1,4-Dioxane (P-Dioxane)	52 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-21	BF-2992g-001-0'-7'_04/04/12	1,4-Dioxane (P-Dioxane)	57 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38780-22	BF-2992g-002-0'-7'_04/04/12	1,4-Dioxane (P-Dioxane)	51 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-24	BF-2995g-001-0'-4.5'_04/04/12	1,4-Dioxane (P-Dioxane)	57 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-25	BF-2995g-002-0'-4.5'_04/04/12	1,4-Dioxane (P-Dioxane)	57 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-27	BF-2998g-001-0'-3.5'_04/04/12	1,4-Dioxane (P-Dioxane)	55 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-28	BF-2998g-002-0'-3.5'_04/04/12	1,4-Dioxane (P-Dioxane)	56 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-30	BF-3225g-001-0'-3'_04/04/12	1,4-Dioxane (P-Dioxane)	56 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-31	BF-3225g-002-0'-3'_04/04/12	1,4-Dioxane (P-Dioxane)	60 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-33	BF-3226g-001-0'-3'_04/04/12	1,4-Dioxane (P-Dioxane)	52 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-34	BF-3226g-002-0'-3'_04/04/12	1,4-Dioxane (P-Dioxane)	55 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-36	BF-3229g-001-0'-5'_04/04/12	1,4-Dioxane (P-Dioxane)	57 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38780-37	BF-3229g-002-0'-5'_04/04/12	1,4-Dioxane (P-Dioxane)	52 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38859-1	BF-3233g-001-0'-6'_04/05/12	1,4-Dioxane (P-Dioxane)	59 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-2	BF-3233g-002-0'-6'_04/05/12	1,4-Dioxane (P-Dioxane)	54 U ug/kg	ΟĴ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-4	BF-3234g-001-0'-5'_04/05/12	1,4-Dioxane (P-Dioxane)	55 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-5	BF-3234g-002-0'-5'_04/05/12	1,4-Dioxane (P-Dioxane)	57 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-7	BF-3230g-001-0'-4.5'_04/05/12	1,4-Dioxane (P-Dioxane)	49 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-8	BF-3230g-002-0'-4.5'_04/05/12	1,4-Dioxane (P-Dioxane)	57 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-10	BF-3227g-001-0'-6'_04/05/12	1,4-Dioxane (P-Dioxane)	57 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-11	BF-3227g-002-0'-6'_04/05/12	1,4-Dioxane (P-Dioxane)	57 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-13	BF-2999g-001-0'-5'_04/05/12	1,4-Dioxane (P-Dioxane)	59 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-14	BF-2999g-002-0'-5'_04/05/12	1,4-Dioxane (P-Dioxane)	53 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-16	BF-2996g-001-0'-5'_04/05/12	1,4-Dioxane (P-Dioxane)	51 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38859-17	BF-2996g-002-0'-5'_04/05/12	1,4-Dioxane (P-Dioxane)	60 U ug/kg	υJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-19	BF-3235g-001-0'-6'_04/05/12	1,4-Dioxane (P-Dioxane)	53 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-20	BF-3235g-002-0'-6'_04/05/12	1,4-Dioxane (P-Dioxane)	69 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-22	BF-3231g-001-0'-8'_04/05/12	1,4-Dioxane (P-Dioxane)	53 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-23	BF-3231g-002-0'-8'_04/05/12	1,4-Dioxane (P-Dioxane)	54 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-25	BF-3236g-001-0'-6'_04/05/12	1,4-Dioxane (P-Dioxane)	58 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38859-26	BF-3236g-002-0'-6'_04/05/12	1,4-Dioxane (P-Dioxane)	55 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-1	BF-2981g-001-0'-5'_04/18/12	1,4-Dioxane (P-Dioxane)	49 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-2	BF-2981g-001x-0'-5'_04/18/12	1,4-Dioxane (P-Dioxane)	54 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-3	BF-2981g-002-0'5'_04/18/12	1,4-Dioxane (P-Dioxane)	60 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-4	BF-2981g-002x-0'-5'_04/18/12	1,4-Dioxane (P-Dioxane)	57 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-39249-7	BF-2985g-001-0'-8'_04/18/12	1,4-Dioxane (P-Dioxane)	51 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-8	BF-2985g-002-0'-8'_04/18/12	1,4-Dioxane (P-Dioxane)	51 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-10	BF-3000g-001-0'-8'_04/18/12	1,4-Dioxane (P-Dioxane)	56 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-11	BF-3000g-002-0'-8'_04/18/12	1,4-Dioxane (P-Dioxane)	54 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-13	BF-3228g-001-1'-7'_04/18/12	1,4-Dioxane (P-Dioxane)	57 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-14	BF-3228g-002-1'-7'_04/18/12	1,4-Dioxane (P-Dioxane)	54 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-16	BF-3232g-001-1'-5'_04/18/12	1,4-Dioxane (P-Dioxane)	58 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-17	BF-3232g-002-1'-5'_04/18/12	1,4-Dioxane (P-Dioxane)	59 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-19	BF-3224g-001-1'-4'_04/18/12	1,4-Dioxane (P-Dioxane)	53 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-20	BF-3224g-002-1'-4'_04/18/12	1,4-Dioxane (P-Dioxane)	60 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-22	BF-2989g-001-1'-4'_04/18/12	1,4-Dioxane (P-Dioxane)	51 U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard

Lab ID	Field ID_Date	Analyte		Lab esult ⁽¹⁾	DVQ	QC Issue
460-39249-23	BF-2989g-002-1'-4'_04/18/12	1,4-Dioxane (P-Dioxane)	53	U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-25	BF-2993g-001-1'-6'_04/18/12	1,4-Dioxane (P-Dioxane)	51	U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-26	BF-2993g-002-1'-6'_04/18/12	1,4-Dioxane (P-Dioxane)	50	U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-28	BF-2997g-001-1'-6'_04/18/12	1,4-Dioxane (P-Dioxane)	53	U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-39249-29	BF-2997g-002-1'-6'_04/18/12	1,4-Dioxane (P-Dioxane)	56	U ug/kg	UJ	RRF for each ICAL standard and the CCV standard < 0.005 advisory level (at 0.0031-0.0045), visible peak with area of 3581 counts in 100-ppb standard
460-38653-1	BF-2972g-001-0'-8'_04/03/12	Acetone	0.01	JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.0141 mg/kg); Calibration drift (%D= +43.4); Result is between MDL and RL
460-38653-2	BF-2972g-002-0'-8'_04/03/12	Acetone	0.011	JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.0141 mg/kg); Calibration drift (%D= +43.4); Result is between MDL and RL
460-38653-3	BF-2972g-003-0'-8'_04/03/12	Acetone	0.011	JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.0141 mg/kg); Calibration drift (%D= +43.4); Result is between MDL and RL
460-38653-6	BF-2972g-006-0'-8'_04/03/12	Acetone	0.01	JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00565 J mg/kg); Calibration drift (%D= +35.3); Result is between MDL and RL
460-38653-7	BF-2972g-007-0'-8'_04/03/12	Acetone	0.0096	JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.0141 mg/kg); Calibration drift (%D= +43.4); Result is between MDL and RL
460-38653-10	BF-2975g-001-0'-4'_04/03/12	Acetone	0.01	JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00716 J mg/kg); Result is between MDL and RL

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38653-11	BF-2975g-002-0'-4'_04/03/12	Acetone	0.01 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.0141 mg/kg); Calibration drift (%D= +43.4); Result is between MDL and RL
460-38653-13	BF-2978g-001-0'-6'_04/03/12	Acetone	0.0099 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.0141 mg/kg); Calibration drift (%D= +43.4); Result is between MDL and RL
460-38653-14	BF-2978g-002-0'-6'_04/03/12	Acetone	0.0096 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.0141 mg/kg); Calibration drift (%D= +43.4); Result is between MDL and RL
460-38653-16	BF-2982g-001-0'-5'_04/03/12	Acetone	0.011 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.0141 mg/kg); Calibration drift (%D= +43.4); Result is between MDL and RL
460-38653-17	BF-2982g-002-0'-5'_04/03/12	Acetone	0.01 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00716 J mg/kg); Result is between MDL and RL
460-38653-19	BF-2979g-001-0'-8.5'_04/03/12	Acetone	0.011 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00716 J mg/kg); Result is between MDL and RL
460-38653-20	BF-2979g-002-0'-8.5'_04/03/12	Acetone	0.011 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00716 J mg/kg); Result is between MDL and RL
460-38653-22	BF-2976g-001-0'-7.5'_04/03/12	Acetone	0.01 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00565 J mg/kg); Calibration drift (%D= +35.3); Result is between MDL and RL
460-38653-23	BF-2976g-002-0'-7.5'_04/03/12	Acetone	0.01 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00716 J mg/kg); Result is between MDL and RL
460-38653-25	BF-2973g-001-0'-4'_04/03/12	Acetone	0.012 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00716 J mg/kg); Result is between MDL and RL
460-38653-26	BF-2973g-002-0'-4'_04/03/12	Acetone	0.0098 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00716 J mg/kg); Result is between MDL and RL
460-38653-28	BF-2974g-001-0'-3.5'_04/03/12	Acetone	0.01 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00716 J mg/kg); Result is between MDL and RL

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38653-29	BF-2974g-002-0'-3.5'_04/03/12	Acetone	0.011 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00716 J mg/kg); Result is between MDL and RL
460-38653-31	BF-2977g-001-0'-3.5'_04/03/12	Acetone	0.011 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00414 J mg/kg); Result is between MDL and RL
460-38653-32	BF-2977g-002-0'-3.5'_04/03/12	Acetone	0.012 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00414 J mg/kg); Result is between MDL and RL
460-38653-34	BF-2983g-001-0'-9'_04/03/12	Acetone	0.011 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00414 J mg/kg); Result is between MDL and RL
460-38653-35	BF-2983g-002-0'-9'_04/03/12	Acetone	0.011 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00414 J mg/kg); Result is between MDL and RL
460-38653-37	BF-2986g-001-0'-13.5'_04/03/12	Acetone	0.012 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00414 J mg/kg); Result is between MDL and RL
460-38653-38	BF-2986g-002-0'-13.5'_04/03/12	Acetone	0.0098 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00414 J mg/kg); Result is between MDL and RL
460-38653-40	BF-2990g-001-0'-7.5'_04/03/12	Acetone	0.011 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00414 J mg/kg); Result is between MDL and RL
460-38653-41	BF-2990g-002-0'-7.5'_04/03/12	Acetone	0.011 JB mg/kg	U	Preparation blank contamination (0.0065 J mg/kg); Method blank contamination (0.00414 J mg/kg); Result is between MDL and RL
460-38780-1	BF-2994g-001-0'-6.5'_04/04/12	Acetone	10 JB ug/kg	J	Result is between MDL and RL
460-38780-2	BF-2994g-002-0'-6.5'_04/04/12	Acetone	10 JB ug/kg	U	Preparation blank contamination (2.99 J ug/kg); Method blank contamination (3.65 J ug/kg); Result is between MDL and RL
460-38780-4	BF-2991g-001-0'-6'_04/04/12	Acetone	11 JB ug/kg	U	Preparation blank contamination (2.99 J ug/kg); Method blank contamination (3.65 J ug/kg); Result is between MDL and RL
460-38780-7	BF-2987g-001-0'-8.5'_04/04/12	Acetone	11 JB ug/kg	U	Preparation blank contamination (2.99 J ug/kg); Method blank contamination (3.65 J ug/kg); Result is between MDL and RL
460-38780-12	BF-2984g-001-0'-10'_04/04/12	Acetone	9.8 JB ug/kg	U	Preparation blank contamination (2.99 J ug/kg); Calibration drift (%D= +29.2); Result is between MDL and RL
460-38780-15	BF-2980g-001-0'-7.5'_04/04/12	Acetone	12 JB ug/kg	U	Preparation blank contamination (2.99 J ug/kg); Calibration drift (%D= +29.2); Result is between MDL and RL

Lab ID	Field ID_Date	Analyte	R	Lab esult ⁽¹⁾	DVQ	QC Issue
460-38780-16	BF-2980g-002-0'-7.5'_04/04/12	Acetone	11	JB ug/kg	U	Preparation blank contamination (2.99 J ug/kg); Calibration drift (%D= +29.2); Result is between MDL and RL
460-38780-18	BF-2988g-001-0'-7.5'_04/04/12	Acetone	11	JB ug/kg	U	Preparation blank contamination (2.99 J ug/kg); Calibration drift (%D= +29.2); Result is between MDL and RL
460-38780-19	BF-2988g-002-0'-7.5'_04/04/12	Acetone	10	JB ug/kg	U	Preparation blank contamination (2.99 J ug/kg); Calibration drift (%D= +29.2); Result is between MDL and RL
460-38780-24	BF-2995g-001-0'-4.5'_04/04/12	Acetone	11	JB ug/kg	U	Preparation blank contamination (2.99 J ug/kg); Calibration drift (%D= +29.2); Result is between MDL and RL
460-38780-25	BF-2995g-002-0'-4.5'_04/04/12	Acetone	11	JB ug/kg	U	Preparation blank contamination (2.99 J ug/kg); Result is between MDL and RL
460-38780-27	BF-2998g-001-0'-3.5'_04/04/12	Acetone	11	JB ug/kg	U	Preparation blank contamination (2.99 J ug/kg); Result is between MDL and RL
460-38780-28	BF-2998g-002-0'-3.5'_04/04/12	Acetone	8.1	JB ug/kg	J	Result is between MDL and RL
460-38780-34	BF-3226g-002-0'-3'_04/04/12	Acetone	11	JB ug/kg	U	Preparation blank contamination (2.99 J ug/kg); Calibration drift (%D= +29.2); Result is between MDL and RL
460-38780-37	BF-3229g-002-0'-5'_04/04/12	Acetone	2.9	JB ug/kg	J	Result is between MDL and RL
460-38859-1	BF-3233g-001-0'-6'_04/05/12	Acetone	12	JB ug/kg	U	Method blank contamination (2.41 J ug/kg); Result is between MDL and RL
460-38859-2	BF-3233g-002-0'-6'_04/05/12	Acetone	11	JB ug/kg	U	Method blank contamination (2.41 J ug/kg); Result is between MDL and RL
460-38859-4	BF-3234g-001-0'-5'_04/05/12	Acetone	11	JB ug/kg	U	Method blank contamination (2.41 J ug/kg); Result is between MDL and RL
460-38859-5	BF-3234g-002-0'-5'_04/05/12	Acetone	11	JB ug/kg	U	Method blank contamination (2.41 J ug/kg); Result is between MDL and RL
460-38859-7	BF-3230g-001-0'-4.5'_04/05/12	Acetone	9.8	JB ug/kg	U	Method blank contamination (2.41 J ug/kg); Result is between MDL and RL
460-38859-8	BF-3230g-002-0'-4.5'_04/05/12	Acetone	11	JB ug/kg	U	Method blank contamination (2.41 J ug/kg); Result is between MDL and RL
460-38859-10	BF-3227g-001-0'-6'_04/05/12	Acetone	11	JB ug/kg	U	Method blank contamination (2.41 J ug/kg); Result is between MDL and RL
460-38859-11	BF-3227g-002-0'-6'_04/05/12	Acetone	11	JB ug/kg	U	Method blank contamination (2.41 J ug/kg); Result is between MDL and RL
460-38859-25	BF-3236g-001-0'-6'_04/05/12	Acetone	4.8	JB ug/kg	J	Result is between MDL and RL
460-38859-26	BF-3236g-002-0'-6'_04/05/12	Acetone	11	JB ug/kg	U	Method blank contamination (1.83 J ug/kg); Result is between MDL and RL
460-39249-16	BF-3232g-001-1'-5'_04/18/12	Acetone	17	B ug/kg	J+	Calibration drift (%D= +29.5)
460-38780-5	BF-2991g-002-0'-6'_04/04/12	Methyl Ethyl Ketone (2-Butanone)	2.8	J ug/kg	J	Result is between MDL and RL
460-38653-1	BF-2972g-001-0'-8'_04/03/12	Methylene Chloride	0.002		J+	Preparation blank contamination (0.00142 mg/kg); Method blank contamination (0.00217 mg/kg)
460-38653-2	BF-2972g-002-0'-8'_04/03/12	Methylene Chloride		I B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg); Method blank contamination (0.00217 mg/kg)
460-38653-3	BF-2972g-003-0'-8'_04/03/12	Methylene Chloride	0.0024	B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg); Method blank contamination (0.00217 mg/kg)

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38653-6	BF-2972g-006-0'-8'_04/03/12	Methylene Chloride	0.0024 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38653-10	BF-2975g-001-0'-4'_04/03/12	Methylene Chloride	0.0027 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38653-11	BF-2975g-002-0'-4'_04/03/12	Methylene Chloride	0.0021 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg); Method blank contamination (0.00217 mg/kg)
460-38653-13	BF-2978g-001-0'-6'_04/03/12	Methylene Chloride	0.004 B mg/kg	J+	Method blank contamination (0.00217 mg/kg)
460-38653-14	BF-2978g-002-0'-6'_04/03/12	Methylene Chloride	0.0033 B mg/kg	J+	Method blank contamination (0.00217 mg/kg)
460-38653-16	BF-2982g-001-0'-5'_04/03/12	Methylene Chloride	0.0029 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg); Method blank contamination (0.00217 mg/kg)
460-38653-19	BF-2979g-001-0'-8.5'_04/03/12	Methylene Chloride	0.0017 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38653-20	BF-2979g-002-0'-8.5'_04/03/12	Methylene Chloride	0.0019 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38653-23	BF-2976g-002-0'-7.5'_04/03/12	Methylene Chloride	0.0027 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38653-25	BF-2973g-001-0'-4'_04/03/12	Methylene Chloride	0.0026 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38653-26	BF-2973g-002-0'-4'_04/03/12	Methylene Chloride	0.0021 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38653-28	BF-2974g-001-0'-3.5'_04/03/12	Methylene Chloride	0.0028 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38653-31	BF-2977g-001-0'-3.5'_04/03/12	Methylene Chloride	0.0016 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38653-32	BF-2977g-002-0'-3.5'_04/03/12	Methylene Chloride	0.0019 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38653-34	BF-2983g-001-0'-9'_04/03/12	Methylene Chloride	0.0011 JB mg/kg	U	Preparation blank contamination (0.00142 mg/kg); Result is between MDL and RL
460-38653-35	BF-2983g-002-0'-9'_04/03/12	Methylene Chloride	0.0011 JB mg/kg	U	Preparation blank contamination (0.00142 mg/kg); Result is between MDL and RL
460-38653-37	BF-2986g-001-0'-13.5'_04/03/12	Methylene Chloride	0.0018 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38653-38	BF-2986g-002-0'-13.5'_04/03/12	Methylene Chloride	0.0022 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38653-40	BF-2990g-001-0'-7.5'_04/03/12	Methylene Chloride	0.0011 JB mg/kg	U	Preparation blank contamination (0.00142 mg/kg); Result is between MDL and RL
460-38653-41	BF-2990g-002-0'-7.5'_04/03/12	Methylene Chloride	0.0022 B mg/kg	J+	Preparation blank contamination (0.00142 mg/kg)
460-38780-1	BF-2994g-001-0'-6.5'_04/04/12	Methylene Chloride	1.2 B ug/kg	J+	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg)
460-38780-2	BF-2994g-002-0'-6.5'_04/04/12	Methylene Chloride	1 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Result is between MDL and RL
460-38780-4	BF-2991g-001-0'-6'_04/04/12	Methylene Chloride	2.4 B ug/kg	J+	Trip blank contamination (2.3 ug/l)

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38780-5	BF-2991g-002-0'-6'_04/04/12	Methylene Chloride	1.2 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (0.451 J ug/kg); Result is between MDL and RL
460-38780-7	BF-2987g-001-0'-8.5'_04/04/12	Methylene Chloride	1.2 B ug/kg	J+	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg)
460-38780-8	BF-2987g-002-0'-8.5'_04/04/12	Methylene Chloride	1.3 B ug/kg	J+	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg)
460-38780-10	BF-2987g-001x-0'-8.5'_04/04/12	Methylene Chloride	1.8 B ug/kg	J+	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg)
460-38780-12	BF-2984g-001-0'-10'_04/04/12	Methylene Chloride	1.2 B ug/kg	J+	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg)
460-38780-13	BF-2984g-002-0'-10'_04/04/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg); Result is between MDL and RL
460-38780-15	BF-2980g-001-0'-7.5'_04/04/12	Methylene Chloride	1.2 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg); Result is between MDL and RL
460-38780-16	BF-2980g-002-0'-7.5'_04/04/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg); Result is between MDL and RL
460-38780-18	BF-2988g-001-0'-7.5'_04/04/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg); Result is between MDL and RL
460-38780-19	BF-2988g-002-0'-7.5'_04/04/12	Methylene Chloride	1 B ug/kg	J+	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg)
460-38780-21	BF-2992g-001-0'-7'_04/04/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg); Result is between MDL and RL
460-38780-22	BF-2992g-002-0'-7'_04/04/12	Methylene Chloride	1 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg); Result is between MDL and RL

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38780-24	BF-2995g-001-0'-4.5'_04/04/12	Methylene Chloride	1.1 B ug/kg	J+	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg)
460-38780-25	BF-2995g-002-0'-4.5'_04/04/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (0.688 J ug/kg); Result is between MDL and RL
460-38780-27	BF-2998g-001-0'-3.5'_04/04/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (0.688 J ug/kg); Result is between MDL and RL
460-38780-28	BF-2998g-002-0'-3.5'_04/04/12	Methylene Chloride	1.2 B ug/kg	J+	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (0.688 J ug/kg)
460-38780-30	BF-3225g-001-0'-3'_04/04/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (0.688 J ug/kg); Result is between MDL and RL
460-38780-31	BF-3225g-002-0'-3'_04/04/12	Methylene Chloride	1.2 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (0.688 J ug/kg); Result is between MDL and RL
460-38780-33	BF-3226g-001-0'-3'_04/04/12	Methylene Chloride	1 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg); Result is between MDL and RL
460-38780-34	BF-3226g-002-0'-3'_04/04/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (3.22 ug/kg); Result is between MDL and RL
460-38780-36	BF-3229g-001-0'-5'_04/04/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (0.688 J ug/kg); Result is between MDL and RL
460-38780-37	BF-3229g-002-0'-5'_04/04/12	Methylene Chloride	1.2 B ug/kg	J+	Trip blank contamination (2.3 ug/l); Preparation blank contamination (0.937 J ug/kg); Method blank contamination (0.688 J ug/kg)
460-38859-1	BF-3233g-001-0'-6'_04/05/12	Methylene Chloride	1.2 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Method blank contamination (0.346 J ug/kg); Result is between MDL and RL

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38859-2	BF-3233g-002-0'-6'_04/05/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Method blank contamination (0.346 J ug/kg); Result is between MDL and RL
460-38859-4	BF-3234g-001-0'-5'_04/05/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Method blank contamination (0.346 J ug/kg); Result is between MDL and RL
460-38859-5	BF-3234g-002-0'-5'_04/05/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Method blank contamination (0.346 J ug/kg); Result is between MDL and RL
460-38859-7 460-38859-8	BF-3230g-001-0'-4.5'_04/05/12 BF-3230g-002-0'-4.5'_04/05/12	Methylene Chloride Methylene Chloride	1 B ug/kg 1.1 JB ug/kg	J+ U	Trip blank contamination (2.1 ug/l) Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Method blank contamination (0.346 J ug/kg); Result is between MDL and RL
460-38859-10	BF-3227g-001-0'-6'_04/05/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Method blank contamination (0.346 J ug/kg); Result is between MDL and RL
460-38859-11	BF-3227g-002-0'-6'_04/05/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Result is between MDL and RL
460-38859-13	BF-2999g-001-0'-5'_04/05/12	Methylene Chloride	1.2 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Method blank contamination (0.227 J ug/kg); Result is between MDL and RL
460-38859-14	BF-2999g-002-0'-5'_04/05/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Result is between MDL and RL
460-38859-16 460-38859-17	BF-2996g-001-0'-5'_04/05/12 BF-2996g-002-0'-5'_04/05/12	Methylene Chloride Methylene Chloride	1.1 B ug/kg 1.2 JB ug/kg	J+ U	Trip blank contamination (2.1 ug/l) Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Method blank contamination (0.227 J ug/kg); Result is between MDL and RL
460-38859-19	BF-3235g-001-0'-6'_04/05/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Result is between MDL and RL
460-38859-20	BF-3235g-002-0'-6'_04/05/12	Methylene Chloride	1.4 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Method blank contamination (0.227 J ug/kg); Result is between MDL and RL

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38859-22	BF-3231g-001-0'-8'_04/05/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Method blank contamination (0.227 J ug/kg); Result is between MDL and RL
460-38859-23	BF-3231g-002-0'-8'_04/05/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Method blank contamination (0.227 J ug/kg); Result is between MDL and RL
460-38859-25	BF-3236g-001-0'-6'_04/05/12	Methylene Chloride	1.2 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Result is between MDL and RL
460-38859-26	BF-3236g-002-0'-6'_04/05/12	Methylene Chloride	1.1 JB ug/kg	U	Trip blank contamination (2.1 ug/l); Preparation blank contamination (0.427 J ug/kg); Result is between MDL and RL
460-39249-1	BF-2981g-001-0'-5'_04/18/12	Methylene Chloride	0.98 JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Method blank contamination (0.364 J ug/kg); Result is between MDL and RL
460-39249-2	BF-2981g-001x-0'-5'_04/18/12	Methylene Chloride	1.1 JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Method blank contamination (0.364 J ug/kg); Result is between MDL and RL
460-39249-3	BF-2981g-002-0'5'_04/18/12	Methylene Chloride	1.2 JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Method blank contamination (0.364 J ug/kg); Result is between MDL and RL
460-39249-4	BF-2981g-002x-0'-5'_04/18/12	Methylene Chloride	1.1 JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Method blank contamination (0.364 J ug/kg); Result is between MDL and RL
460-39249-7	BF-2985g-001-0'-8'_04/18/12	Methylene Chloride	1 JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Method blank contamination (0.364 J ug/kg); Result is between MDL and RL
460-39249-8	BF-2985g-002-0'-8'_04/18/12	Methylene Chloride	1 JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Method blank contamination (0.364 J ug/kg); Result is between MDL and RL
460-39249-10	BF-3000g-001-0'-8'_04/18/12	Methylene Chloride	1.1 JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Method blank contamination (0.364 J ug/kg); Result is between MDL and RL
460-39249-11	BF-3000g-002-0'-8'_04/18/12	Methylene Chloride	1.1 JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Calibration drift (%D=+33.6); Result is between MDL and RL
460-39249-13	BF-3228g-001-1'-7'_04/18/12	Methylene Chloride	1.1 JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Method blank contamination (0.364 J ug/kg); Result is between MDL and RL

Lab ID	Field ID_Date	Analyte	R	Lab esult ⁽¹⁾	DVQ	QC Issue
460-39249-14	BF-3228g-002-1'-7'_04/18/12	Methylene Chloride	1.1	JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Method blank contamination (0.364 J ug/kg); Result is between MDL and RL
460-39249-19	BF-3224g-001-1'-4'_04/18/12	Methylene Chloride	1.1	JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Method blank contamination (0.364 J ug/kg); Result is between MDL and RL
460-39249-20	BF-3224g-002-1'-4'_04/18/12	Methylene Chloride	1.2	JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Method blank contamination (0.364 J ug/kg); Result is between MDL and RL
460-39249-23	BF-2989g-002-1'-4'_04/18/12	Methylene Chloride	1.1	JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Result is between MDL and RL
460-39249-26	BF-2993g-002-1'-6'_04/18/12	Methylene Chloride	1	JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Result is between MDL and RL
460-39249-28	BF-2997g-001-1'-6'_04/18/12	Methylene Chloride	1.1	JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Result is between MDL and RL
460-39249-29	BF-2997g-002-1'-6'_04/18/12	Methylene Chloride	1.1	JB ug/kg	U	Preparation blank contamination (0.498 J ug/kg); Result is between MDL and RL
460-38780-25	BF-2995g-002-0'-4.5'_04/04/12	n-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (59%)
460-38780-27	BF-2998g-001-0'-3.5'_04/04/12	n-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (59%)
460-38780-28	BF-2998g-002-0'-3.5'_04/04/12	n-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (59%)
460-38780-30	BF-3225g-001-0'-3'_04/04/12	n-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (59%)
460-38780-31	BF-3225g-002-0'-3'_04/04/12	n-Butylbenzene	1.2	U ug/kg	UJ	Low average MS/MSD recovery (59%)
460-38780-36	BF-3229g-001-0'-5'_04/04/12	n-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (59%)
460-38780-37	BF-3229g-002-0'-5'_04/04/12	n-Butylbenzene	1	U ug/kg	UJ	Low average MS/MSD recovery (59%)
460-39249-11	BF-3000g-002-0'-8'_04/18/12	n-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (59%)
460-38780-25	BF-2995g-002-0'-4.5'_04/04/12	n-Propylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (68%)
460-38780-27	BF-2998g-001-0'-3.5'_04/04/12	n-Propylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (68%)
460-38780-28	BF-2998g-002-0'-3.5'_04/04/12	n-Propylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (68%)
460-38780-30	BF-3225g-001-0'-3'_04/04/12	n-Propylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (68%)
460-38780-31	BF-3225g-002-0'-3'_04/04/12	n-Propylbenzene	1.2	U ug/kg	UJ	Low average MS/MSD recovery (68%)
460-38780-36	BF-3229g-001-0'-5'_04/04/12	n-Propylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (68%)
460-38780-37	BF-3229g-002-0'-5'_04/04/12	n-Propylbenzene	1	U ug/kg	UJ	Low average MS/MSD recovery (68%)
460-39249-11	BF-3000g-002-0'-8'_04/18/12	n-Propylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (63.5%)
460-38780-25	BF-2995g-002-0'-4.5'_04/04/12	sec-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (64%)
460-38780-27	BF-2998g-001-0'-3.5'_04/04/12	sec-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (64%)
460-38780-28	BF-2998g-002-0'-3.5'_04/04/12	sec-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (64%)
460-38780-30	BF-3225g-001-0'-3'_04/04/12	sec-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (64%)
460-38780-31	BF-3225g-002-0'-3'_04/04/12	sec-Butylbenzene	1.2	U ug/kg	UJ	Low average MS/MSD recovery (64%)
460-38780-36	BF-3229g-001-0'-5'_04/04/12	sec-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (64%)
460-38780-37	BF-3229g-002-0'-5'_04/04/12	sec-Butylbenzene	1	U ug/kg	UJ	Low average MS/MSD recovery (64%)
460-39249-11	BF-3000g-002-0'-8'_04/18/12	sec-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (62%)
460-38780-25	BF-2995g-002-0'-4.5'_04/04/12	t-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-27	BF-2998g-001-0'-3.5'_04/04/12	t-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)
460-38780-28	BF-2998g-002-0'-3.5'_04/04/12	t-Butylbenzene	1.1	U ug/kg	UJ	Low average MS/MSD recovery (69.5%)

Lab ID	Field ID_Date	Analyte		Lab sult ⁽¹⁾	DVC	QC Issue
460-38780-30	BF-3225g-001-0'-3'_04/04/12	t-Butylbenzene	1.1	U ug/l	kg UJ	Low average MS/MSD recovery (69.5%)
460-38780-31	BF-3225g-002-0'-3'_04/04/12	t-Butylbenzene	1.2	U ug/l	kg UJ	Low average MS/MSD recovery (69.5%)
460-38780-36	BF-3229g-001-0'-5'_04/04/12	t-Butylbenzene	1.1	U ug/l	kg UJ	Low average MS/MSD recovery (69.5%)
460-38780-37	BF-3229g-002-0'-5'_04/04/12	t-Butylbenzene	1	U ug/l	kg UJ	Low average MS/MSD recovery (69.5%)
460-39249-11	BF-3000g-002-0'-8'_04/18/12	t-Butylbenzene	1.1	U ug/l	kg UJ	Low average MS/MSD recovery (65%)
460-39249-11	BF-3000g-002-0'-8'_04/18/12	Tetrachloroethylene (PCE)	1.1	U ug/l	kg UJ	Low average MS/MSD recovery (65.5%)
460-38780-5	BF-2991g-002-0'-6'_04/04/12	Toluene	0.27	J ug/l	(g J	Result is between MDL and RL
460-38780-7	BF-2987g-001-0'-8.5'_04/04/12	Toluene	0.29	J ug/l	(g J	Result is between MDL and RL
460-38780-18	BF-2988g-001-0'-7.5'_04/04/12	Toluene	0.21	J ug/l	kg J	Result is between MDL and RL
460-38780-31	BF-3225g-002-0'-3'_04/04/12	Toluene	0.23	J ug/l	(g J	Result is between MDL and RL
460-39249-1	BF-2981g-001-0'-5'_04/18/12	Toluene	0.18	J ug/l	ιg J	Result is between MDL and RL
460-39249-11	BF-3000g-002-0'-8'_04/18/12	Toluene	1.1	U ug/l	kg UJ	Low average MS/MSD recovery (69.5%)
460-39249-11	BF-3000g-002-0'-8'_04/18/12	Trichloroethylene (TCE)	1.1	U ug/l	kg UJ	Low average MS/MSD recovery (67.5%)
	SEM	MIVOLATILE ORGANIC CO	OMPOUN	IDS (SV	OC)	
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	2-Methylphenol (o- Cresol)	390	U ug/l	kg UJ	Low acid surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Acenaphthene	390	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Acenaphthylene	390	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Anthracene	390	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Benzo(a)Anthracene	39	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Benzo(a)Pyrene	39	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38653-36	BF-2983c-001-0'-9'_04/03/12	Benzo(b)Fluoranthene	0.014	J mg/	kg J	Result is between MDL and RL
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Benzo(b)Fluoranthene	39	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Benzo(g,h,i)Perylene	390	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38653-36	BF-2983c-001-0'-9'_04/03/12	Benzo(k)Fluoranthene	0.0083	J mg/	kg J	Result is between MDL and RL
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Benzo(k)Fluoranthene	39	U ug/l	(g UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Chrysene	390	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Cresols, m & p	390	U ug/l	kg UJ	Low acid surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Dibenz(a,h)Anthracene	39	U ug/	kg UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Dibenzofuran	390	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Fluoranthene	390	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Fluorene	390	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Hexachlorobenzene	39	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38653-36	BF-2983c-001-0'-9'_04/03/12	Indeno(1,2,3-C,D) Pyrene	0.01	J mg/	kg J	Result is between MDL and RL
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Indeno(1,2,3-C,D) Pyrene	39	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Naphthalene	390	U ug/l	kg UJ	Low B/N surrogate recovery (36%)
460-38780-26	BF-2995c-001-0'-4.5'_04/04/12	Pentachlorophenol	1300	U ug/l	kg R	Extremely low average MS/MSD recovery (4.5%)
460-38780-32	BF-3225c-001-0'-3'_04/04/12	Pentachlorophenol	1200	U ug/l		Extremely low average MS/MSD recovery (4.5%)
460-38859-3	BF-3233c-001-0'-6'_04/05/12	Pentachlorophenol	1200	U ug/l		Extremely low MSD recovery (9%), Low average MS/MSD recovery (10%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Pentachlorophenol	1200	U ug/l	kg R	Extremely low MSD recovery (9%), Low average MS/MSD recovery (10%); Low acid surrogate recovery (36%)

QAA, L.L.C.

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-38859-12	BF-3227c-001-0'-6'_04/05/12	Pentachlorophenol	1200 U ug/kg	R	Extremely low MSD recovery (9%),
					Low average MS/MSD recovery (10%)
460-38859-18	BF-2996c-001-0'-5'_04/05/12	Pentachlorophenol	1100 U ug/kg	R	Extremely low MSD recovery (9%),
					Low average MS/MSD recovery (10%)
460-38859-21	BF-3235c-001-0'-6'_04/05/12	Pentachlorophenol	1200 U ug/kg	R	Extremely low MSD recovery (9%),
					Low average MS/MSD recovery (10%)
460-38859-24	BF-3231c-001-0'-8'_04/05/12	Pentachlorophenol	1200 U ug/kg	R	Extremely low MSD recovery (9%),
					Low average MS/MSD recovery (10%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Phenanthrene	390 U ug/kg	UJ	Low B/N surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Phenol	390 U ug/kg	UJ	Low acid surrogate recovery (36%)
460-38859-9	BF-3230c-001-0'-4.5'_04/05/12	Pyrene	390 U ug/kg	UJ	Low B/N surrogate recovery (36%)

¹⁾ Results in red have been elevated to the reporting limit per the NFG. The laboratory reported a detect between the MDL and RL for this analyte, but the result has been qualified (U flag) and raised to the reporting limit due to laboratory or field contamination.

TABLE 5 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase I Remedial Design/ Remedial Action

FIELD DUPLICATE RESULTS

Original Sample	Field Duplicate	Field ID_Date	Analyte	Original Sample	Field Duplicate	Abs Diff	2xRL	RPD	Pass
Lab ID	Lab ID			Lab Result	Lab Result				
460-38437-16	460-38437-17	ECS-SSA13-F_03/28/12	1311 Lead	344 ug/l	362 ug/l	NA	NA	5.1	у
460-38437-16	460-38437-17	ECS-SSA13-F_03/28/12	Arsenic	12.2 mg/kg	14.6 mg/kg	NA	NA	17.9	У
460-38437-16	460-38437-17	ECS-SSA13-F_03/28/12	Lead	453 mg/kg	541 mg/kg	NA	NA	17.7	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	1,1,1-Trichloroethane	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	1,1-Dichloroethane	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	1,1-Dichloroethene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	1,2,4-Trimethylbenzene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	1,2-Dichlorobenzene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	1,2-Dichloroethane	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	1,3,5-Trimethylbenzene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
			(Mesitylene)						
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	1,3-Dichlorobenzene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	1,4-Dichlorobenzene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	1,4-Dioxane (P-Dioxane)	53 U ug/kg	58 U ug/kg	5	116	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Acetone	2.3 JB ug/kg	12 U ug/kg	9.7	24	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Benzene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Carbon Tetrachloride	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Chlorobenzene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Chloroform	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	cis-1,2-Dichloroethylene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Ethylbenzene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Methyl Ethyl Ketone (2-	11 U ug/kg	12 U ug/kg	1	24	NA	у
		•	Butanone)						,
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Methylene Chloride	1.2 B ug/kg	1.8 B ug/kg	0.6	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	n-Butylbenzene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	У
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	n-Propylbenzene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	У
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	sec-Butylbenzene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	t-Butylbenzene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Tert-Butyl Methyl Ether	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	У
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Tetrachloroethylene(PCE)	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	У
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Toluene	0.29 J ug/kg	1.2 U ug/kg	0.91	2.4	NA	у

Original Sample	Field Duplicate	Field ID Date	Analyte	Original Sample	Field Duplicate	Abs Diff	2xRL	RPD	Pass
Lab ID	Lab ID		7	Lab Result	Lab Result	7.50 2			
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	trans-1,2-Dichloroethene	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Trichloroethylene (TCE)	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Vinyl Chloride	1.1 U ug/kg	1.2 U ug/kg	0.1	2.4	NA	у
460-38780-7	460-38780-10	BF-2987g-001-0'-8.5'_04/04/12	Xylenes, Total	3.2 U ug/kg	3.5 U ug/kg	0.3	7	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Arsenic	6.4 mg/kg	7.7 mg/kg	NA	NA	18.4	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Barium	32.1 J mg/kg	29.2 J mg/kg	2.9	93	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Beryllium	0.48 mg/kg	0.57 mg/kg	0.09	0.94	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Cadmium	1.2 U mg/kg	1.1 U mg/kg	0.1	2.4	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Chromium, Total	13.3 mg/kg	13.8 mg/kg	NA	NA	3.7	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Copper	23.5 mg/kg	23.1 mg/kg	0.4	11.6	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Lead	23.7 mg/kg	22.9 mg/kg	NA	NA	3.4	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Manganese	506 mg/kg	612 mg/kg	NA	NA	19.0	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Nickel	19.3 mg/kg	19.8 mg/kg	0.5	18.6	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Selenium	2.3 U mg/kg	2.3 U mg/kg	0	4.6	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Silver	2.3 U mg/kg	2.3 U mg/kg	0	4.6	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Zinc	55.8 mg/kg	55.9 mg/kg	NA	NA	0.2	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Chromium III	13.3 mg/kg	13.8 mg/kg	NA	NA	3.7	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Chromium, Hexavalent	2.5 U mg/kg	2.6 U mg/kg	0.1	5.2	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Mercury	0.03 J mg/kg	0.041 U mg/kg	0.011	0.082	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Aldrin	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Alpha BHC (Alpha	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	у
			Hexachlorocyclohexane)						
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Alpha Endosulfan	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Beta BHC (Beta	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	У
			Hexachlorocyclohexane)						
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Beta Endosulfan	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Chlordane	82 U ug/kg	84 U ug/kg	2	168	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Delta BHC (Delta	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	У
			Hexachlorocyclohexane)						
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Dieldrin	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Endosulfan Sulfate	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Endrin	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Endrin Aldehyde	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Endrin Ketone	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Gamma BHC (Lindane)	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Heptachlor	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Heptachlor Epoxide	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Methoxychlor	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	У

Original Sample	Field Duplicate	Field ID_Date	Analyte	Original Sample	Field Duplicate	Abs Diff	2xRL	RPD	Pass
Lab ID	Lab ID			Lab Result	Lab Result				
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	p,p'-DDD	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	p,p'-DDE	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	p,p'-DDT	8.2 U ug/kg	8.4 U ug/kg	0.2	16.8	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Toxaphene	82 U ug/kg	84 U ug/kg	2	168	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	PCB-1016 (Aroclor 1016)	82 U ug/kg	84 U ug/kg	2	168	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	PCB-1221 (Aroclor 1221)	82 U ug/kg	84 U ug/kg	2	168	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	PCB-1232 (Aroclor 1232)	82 U ug/kg	84 U ug/kg	2	168	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	PCB-1242 (Aroclor 1242)	82 U ug/kg	84 U ug/kg	2	168	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	PCB-1248 (Aroclor 1248)	82 U ug/kg	84 U ug/kg	2	168	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	PCB-1254 (Aroclor 1254)	82 U ug/kg	84 U ug/kg	2	168	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	PCB-1260 (Aroclor 1260)	82 U ug/kg	84 U ug/kg	2	168	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Silvex (2,4,5-TP)	21 U ug/kg	21 U ug/kg	0	42	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	2-Methylphenol (o-Cresol)	400 U ug/kg	410 U ug/kg	10	820	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Acenaphthene	400 U ug/kg	410 U ug/kg	10	820	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Acenaphthylene	400 U ug/kg	410 U ug/kg	10	820	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Anthracene	400 U ug/kg	410 U ug/kg	10	820	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Benzo(a)Anthracene	40 U ug/kg	41 U ug/kg	1	82	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Benzo(a)Pyrene	40 U ug/kg	41 U ug/kg	1	82	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Benzo(b)Fluoranthene	40 U ug/kg	41 U ug/kg	1	82	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Benzo(g,h,i)Perylene	400 U ug/kg	410 U ug/kg	10	820	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Benzo(k)Fluoranthene	40 U ug/kg	41 U ug/kg	1	82	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Chrysene	400 U ug/kg	410 U ug/kg	10	820	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Cresols, m & p	400 U ug/kg	410 U ug/kg	10	820	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Dibenz(a,h)Anthracene	40 U ug/kg	41 U ug/kg	1	82	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Dibenzofuran	400 U ug/kg	410 U ug/kg	10	820	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Fluoranthene	400 U ug/kg	410 U ug/kg	10	820	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Fluorene	400 U ug/kg	410 U ug/kg	10	820	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Hexachlorobenzene	40 U ug/kg	41 U ug/kg	1	82	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Indeno(1,2,3-C,D)Pyrene	40 U ug/kg	41 U ug/kg	1	82	NA	у
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Naphthalene	400 U ug/kg	410 U ug/kg	10	820	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5' 04/04/12	Pentachlorophenol	1200 U ug/kg	1200 U ug/kg	0	2400	NA	v
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Phenanthrene	400 U ug/kg	410 U ug/kg	10	820	NA	У
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Phenol	400 U ug/kg	410 U ug/kg	10	820	NA	v
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5' 04/04/12	Pyrene	400 U ug/kg	410 U ug/kg	10	820	NA	v
460-38780-9	460-38780-11	BF-2987c-001-0'-8.5'_04/04/12	Cyanide	0.61 U mg/kg	0.63 U mg/kg	0.02	1.26	NA	У
460-39092-6	460-39092-7	ECS-33-F_04/13/12	1311 Lead	25 U ug/l	810 ug/l	785	50	NA	NO
460-39135-1	460-39135-2	ECS-32-F 04/16/12	1311 Lead	506 ug/l	836 ug/l	NA	NA	49.2	NO
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	1,1,1-Trichloroethane	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У

Original Sample	Field Duplicate	Field ID_Date	Analyte	Original Sample	Field Duplicate	Abs Diff	2xRL	RPD	Pass
Lab ID 460-39249-1	Lab ID 460-39249-2	BF-2981g-001-0'-5' 04/18/12	1,1-Dichloroethane	Lab Result 0.98 U ug/kg	Lab Result 1.1 U ug/kg	0.12	2.2	NA	v
460-39249-1	460-39249-2	BF-2981g-001-0-5_04/18/12	1,1-Dichloroethene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	V
		<u> </u>		0 0				NA NA	
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	1,2,4-Trimethylbenzene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2		у
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	1,2-Dichlorobenzene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	1,2-Dichloroethane	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	у
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	1,3,5-Trimethylbenzene (Mesitylene)	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	1,3-Dichlorobenzene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	1,4-Dichlorobenzene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	1,4-Dioxane (P-Dioxane)	49 U ug/kg	54 U ug/kg	5	108	NA	у
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Acetone	9.8 U ug/kg	11 U ug/kg	1.2	22	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Benzene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Carbon Tetrachloride	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Chlorobenzene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Chloroform	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	cis-1,2-Dichloroethylene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	у
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Ethylbenzene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Methyl Ethyl Ketone (2- Butanone)	9.8 U ug/kg	11 U ug/kg	1.2	22	NA	у
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Methylene Chloride	0.43 JB ug/kg	0.32 JB ug/kg	0.11	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	n-Butylbenzene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981q-001-0'-5' 04/18/12	n-Propylbenzene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	V
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	sec-Butylbenzene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	t-Butylbenzene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Tert-Butyl Methyl Ether	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	V
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Tetrachloroethylene(PCE)	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	V
460-39249-1	460-39249-2	BF-2981q-001-0'-5' 04/18/12	Toluene	0.18 J ug/kg	1.1 U ug/kg	0.92	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	trans-1,2-Dichloroethene	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	у
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Trichloroethylene (TCE)	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	У
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Vinyl Chloride	0.98 U ug/kg	1.1 U ug/kg	0.12	2.2	NA	у
460-39249-1	460-39249-2	BF-2981g-001-0'-5'_04/18/12	Xylenes, Total	2.9 U ug/kg	3.2 U ug/kg	0.3	6.4	NA	V
460-39249-3	460-39249-4	BF-2981g-002-0'5' 04/18/12	1.1.1-Trichloroethane	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	V
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	1,1-Dichloroethane	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	У
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	1,1-Dichloroethene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	V
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	1,2,4-Trimethylbenzene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	V
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	1,2-Dichlorobenzene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	У
460-39249-3	460-39249-4	BF-2981g-002-0'5' 04/18/12	1.2-Dichloroethane	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	V

Original Sample Lab ID	Field Duplicate Lab ID	Field ID_Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	1,3,5-Trimethylbenzene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
			(Mesitylene)						
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	1,3-Dichlorobenzene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	1,4-Dichlorobenzene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	1,4-Dioxane (P-Dioxane)	60 U ug/kg	57 U ug/kg	3	120	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Acetone	12 U ug/kg	11 U ug/kg	1	24	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Benzene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Carbon Tetrachloride	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Chlorobenzene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Chloroform	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	cis-1,2-Dichloroethylene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Ethylbenzene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Methyl Ethyl Ketone (2-	12 U ug/kg	11 U ug/kg	1	24	NA	у
			Butanone)						
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Methylene Chloride	0.36 JB ug/kg	0.37 JB ug/kg	0.01	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	n-Butylbenzene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	n-Propylbenzene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	sec-Butylbenzene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	t-Butylbenzene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Tert-Butyl Methyl Ether	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Tetrachloroethylene(PCE)	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Toluene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	trans-1,2-Dichloroethene	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Trichloroethylene (TCE)	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Vinyl Chloride	1.2 U ug/kg	1.1 U ug/kg	0.1	2.4	NA	у
460-39249-3	460-39249-4	BF-2981g-002-0'5'_04/18/12	Xylenes, Total	3.6 U ug/kg	3.4 U ug/kg	0.2	7.2	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Arsenic	7.6 mg/kg	8.1 mg/kg	NA	NA	6.4	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Barium	38.8 J mg/kg	42 J mg/kg	3.2	92.4	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Beryllium	0.58 mg/kg	0.56 mg/kg	0.02	0.92	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Cadmium	1.2 U mg/kg	1.1 U mg/kg	0.1	2.4	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Chromium, Total	17.8 mg/kg	17.1 mg/kg	NA	NA	4.0	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Copper	27.8 mg/kg	29.9 mg/kg	2.1	11.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Lead	29.8 mg/kg	41.3 mg/kg	NA	NA	32.3	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Manganese	887 mg/kg	719 mg/kg	NA	NA	20.9	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Nickel	25.2 mg/kg	26.1 mg/kg	0.9	18.4	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Selenium	2.3 U mg/kg	2.3 U mg/kg	0	4.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Silver	2.3 U mg/kg	2.3 U mg/kg	0	4.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Zinc	64.5 mg/kg	65.4 mg/kg	NA	NA	1.4	у

Original Sample	Field Duplicate	Field ID Date	Analista	Original Sample	Field Duplicate	Also Diff	2xRL	RPD	Pass
Lab ID	Lab ID	Field ID_Date	Analyte	Lab Result	Lab Result	Abs Diff	ZXKL	KPD	Pass
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Chromium III	17.8 mg/kg	17.1 mg/kg	NA	NA	4.0	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Chromium, Hexavalent	0.46 U mg/kg	0.46 U mg/kg	0	0.92	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Mercury	0.047 mg/kg	0.031 J mg/kg	0.016	0.078	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Aldrin	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Alpha BHC (Alpha	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
			Hexachlorocyclohexane)						
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Alpha Endosulfan	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Beta BHC (Beta	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
			Hexachlorocyclohexane)						
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Beta Endosulfan	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Chlordane	78 U ug/kg	78 U ug/kg	0	156	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Delta BHC (Delta	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
			Hexachlorocyclohexane)						
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Dieldrin	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Endosulfan Sulfate	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Endrin	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Gamma BHC (Lindane)	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Heptachlor	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	p,p'-DDD	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	p,p'-DDE	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	p,p'-DDT	7.8 U ug/kg	7.8 U ug/kg	0	15.6	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	PCB-1016 (Aroclor 1016)	78 U ug/kg	78 U ug/kg	0	156	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	PCB-1221 (Aroclor 1221)	78 U ug/kg	78 U ug/kg	0	156	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	PCB-1232 (Aroclor 1232)	78 U ug/kg	78 U ug/kg	0	156	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	PCB-1242 (Aroclor 1242)	78 U ug/kg	78 U ug/kg	0	156	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	PCB-1248 (Aroclor 1248)	78 U ug/kg	78 U ug/kg	0	156	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	PCB-1254 (Aroclor 1254)	78 U ug/kg	78 U ug/kg	0	156	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	PCB-1260 (Aroclor 1260)	78 U ug/kg	78 U ug/kg	0	156	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Silvex (2,4,5-TP)	20 U ug/kg	20 U ug/kg	0	40	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	2-Methylphenol (o-Cresol)	390 U ug/kg	390 U ug/kg	0	780	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Acenaphthene	390 U ug/kg	390 U ug/kg	0	780	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Acenaphthylene	390 U ug/kg	390 U ug/kg	0	780	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Anthracene	390 U ug/kg	390 U ug/kg	0	780	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Benzo(a)Anthracene	39 U ug/kg	39 U ug/kg	0	78	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Benzo(a)Pyrene	39 U ug/kg	39 U ug/kg	0	78	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Benzo(b)Fluoranthene	39 U ug/kg	39 U ug/kg	0	78	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Benzo(g,h,i)Perylene	390 U ug/kg	390 U ug/kg	0	780	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Benzo(k)Fluoranthene	39 U ug/kg	39 U ug/kg	0	78	NA	у

Original Sample Lab ID	Field Duplicate Lab ID	Field ID_Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Chrysene	390 U ug/kg	390 U ug/kg	0	780	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Cresols, m & p	390 U ug/kg	390 U ug/kg	0	780	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Dibenz(a,h)Anthracene	39 U ug/kg	39 U ug/kg	0	78	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Dibenzofuran	390 U ug/kg	390 U ug/kg	0	780	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Fluoranthene	390 U ug/kg	390 U ug/kg	0	780	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Fluorene	390 U ug/kg	390 U ug/kg	0	780	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Hexachlorobenzene	39 U ug/kg	39 U ug/kg	0	78	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Indeno(1,2,3-C,D)Pyrene	39 U ug/kg	39 U ug/kg	0	78	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Naphthalene	390 U ug/kg	390 U ug/kg	0	780	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Pentachlorophenol	1200 U ug/kg	1200 U ug/kg	0	2400	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Phenanthrene	390 U ug/kg	390 U ug/kg	0	780	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Phenol	390 U ug/kg	390 U ug/kg	0	780	NA	У
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Pyrene	390 U ug/kg	390 U ug/kg	0	780	NA	у
460-39249-5	460-39249-6	BF-2981c-001-0'-5'_04/18/12	Cyanide	0.58 U mg/kg	0.59 U mg/kg	0.01	1.18	NA	У
460-39363-1	460-39363-2	ECS-11-F_04/20/12	1311 Lead	144 ug/l	167 ug/l	NA	NA	14.8	У
460-39363-5	460-39363-6	ECS-2-F_04/20/12	1311 Lead	68.9 ug/l	57.4 ug/l	11.5	50	NA	у
460-39363-5	460-39363-6	ECS-2-F_04/20/12	Arsenic	8.9 mg/kg	8.1 mg/kg	NA	NA	9.4	у
460-39363-5	460-39363-6	ECS-2-F_04/20/12	Lead	46.6 mg/kg	39.8 mg/kg	NA	NA	15.7	У
460-39364-3	460-39364-4	DS-12-SW_04/18/12	1311 Lead	112000 B ug/l	137000 B ug/l	NA	NA	20.1	у
460-39614-1	460-39614-2	ECS-BF-DEC-001R-F1-0-1'_04/27/12	1311 Lead	30.8 ug/l	37.1 ug/l	6.3	50	NA	у
460-39614-1	460-39614-2	ECS-BF-DEC-001R-F1-0-1'_04/27/12	Arsenic	7.2 mg/kg	7.4 mg/kg	NA	NA	2.7	У
460-39614-1	460-39614-2	ECS-BF-DEC-001R-F1-0-1'_04/27/12	Lead	20.6 mg/kg	19.7 mg/kg	NA	NA	4.5	у
460-39775-16	460-39775-17	ECS-4-F_05/01/12	1311 Lead	25 U ug/l	123 ug/l	98	50	NA	NO
460-39775-9	460-39775-10	ECS-6-F_05/01/12	1311 Lead	123 ug/l	319 ug/l	196	50	NA	NO
460-39845-3	460-39845-4	ECS-SSA23-F1-1'_05/03/12	1311 Lead	69.7 ug/l	43.4 ug/l	26.3	50	NA	У
460-39845-3	460-39845-4	ECS-SSA23-F1-1'_05/03/12	Arsenic	7.3 mg/kg	7.7 mg/kg	NA	NA	5.3	У
460-39845-3	460-39845-4	ECS-SSA23-F1-1'_05/03/12	Lead	35.1 mg/kg	33.1 mg/kg	NA	NA	5.9	У

ATTACHMENT A VALIDATOR'S CHECKLISTS

SVOC, CN YES X X Custody (C	QC Le Labora Date C Method	vel: IV story Jo checked	er/ Manager: E7976/ Jenny Self b No: see below l: 6/15/12 1/6010B, 6010B/7470A/7471A, 7196A, 8081A, 8082, 8151A, 8260B,
X X X Custody (C	Date C Method 8270C	tory Johnson Checked ds: 131 , 9012A	l: 6/15/12 1/6010B, 6010B/7470A/7471A, 7196A, 8081A, 8082, 8151A, 8260B,
X X X Custody (C	Date C Method 8270C	hecked ds: 131 , 9012A	l: 6/15/12 1/6010B, 6010B/7470A/7471A, 7196A, 8081A, 8082, 8151A, 8260B,
X X X Custody (C	Method 8270C	ds: 131 [.] , 9012A	1/6010B, 6010B/7470A/7471A, 7196A, 8081A, 8082, 8151A, 8260B,
X X X Custody (C	8270C	, 9012A	
x x x Custody (C	NO	N/A	
x x Custody (C			(CRITERIA) COMMENT
x Custody (C			NYDOH (NELAP) #11452, NYDOH (ELAP) #11452
Custody (C			
			See Narrative Comments
	OC)/ Sa	ample R	eceipt
Х			
х			
Х			(Workplan Table 2 - all soils, no preserv required)
	Х		see Comment no. 1
	Х		(DER10 - recommended) 460-39364-1, 460-39365-1 rec'd day 3
Analytica	al Resul	ts	
	х		see Comment no. 1A
х			
х			
х			
x			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'quantitation_limit' = 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' (SQL), J-values reported NOTE: For metal in soils, MDL 0.47 & MQL = 0.5 ppm for Arsenic so SDL=SQL for some
х			(Workplan Table 3 and/or DER-10 App 5 plus CLP TAL) se Comment no. 2
	х		(ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3
х			Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
			(Workplan Table 2 and/or ASP Exh D) see Comment no. 4
Y			(ASP Exh D) see Comment no. 4A
-			
_			
	х		Organics in mg/L and mg/kg for laboratory job number 460-38653- and in ug/L and ug/kg for rest; Inorganics in mg/kg or ug/L (TCLI except QC for laboratory job number 460-38437-1, which is in mg/L)
X**			(Workplan Table 2, SW846 for those not in table per ASP Exh I, which gives only aq HTs)
X**			same as above
kplan Section	n 5.3.6	and 2/2	29/12 mod letter)
le		NA	only disposable equipment used
/	х		No trip blank analyzed with the VOC samples in laboratory job numbe 460-39249-1 (BF samples collected on 4/18/12)
		NA	
rix x			Total samples = 130 confirmation + 43 BF composite + 89 BF grab 262; Total FD = 15
he x			MS/LR used for inorganics (ICP, Hg, Cr VI, CN); 262 total sample: 29 LR/MS or MS/SD with at least 1 per 20 for every test
х	1	1	(Workplan Section 5.3.3 - 100%) 6039/6047=99.9%
	Notes		1, , , , , , , , , , , , , , , , , , ,
	1	x	not included
	1		-
	<u> </u>		
	†		
,	x x x x x x x x x x x x x x x x x x x	Analytical Resul X X X X X X X X X X X X X	Analytical Results

Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification; COI - Compound of Interest; %D - Percent Difference, DL - Detection Limit; DUP - Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasma; ICV - Initial Calibration Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Matrix Spike Duplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response Factor; RT - Retention Time; RSD - Relative Standard Deviation; TA - Target Analyte

COMMENTS

Laboratory Job No: 460-38437-1, 460-38653-1, 460-38780-1, 460-38859-1, 460-38947-1, 460-39091-1, 460-39092-1, 460-39135-1, 460-39136-1, 460-39249-1, 460-39254-1, 460-39256-1, 460-39258-1, 460-39363-1, 460-39364-1, 460-39365-1, 460-39256-1, 460-39258-1, 460-39258-1, 460-39363-1, 460-39364-1, 460-39365-1, 460-39258-1, 460-39258-1, 460-39258-1, 460-39258-1, 460-39258-1, 460-39258-1, 460-39258-1, 460-39258-1, 460-39258-1, 460-39268-1, 460-39268-1, 460-39268-1, 460-39258-1, 460-39258-1, 460-39258-1, 460-39258-1, 460-39268-1, 460-39268-1, 460-39268-1, 460-39258-1, 460-39258-1, 460-39258-1, 460-39268-1,

*For the 7196A analyses, Cr III is shown as not dry-weight corrected for TALED and as dry-weight corrected for TALPITTS. For both labs, Cr III is calculated from the results for Cr VI and Total Cr, which are dry-weight corrected, and thus the Cr III is not directly dry-weight corrected but is on a dry-weight basis.

** The holding time was calculated using dates only with regard to the time of day since all holding times are greater than 24 hours.

1. Issues for custody records:

No seals on the shipping coolers for several laboratory job numbers 460-38437-1, 460-38859-1, 460-38947-1, 460-39249-1, 460-39254-1, 460-39256-1, 460-39258-1, 460-39363-1, 460-39364-1, 460-39365-1, 460-39775-1, 460-39845-1, and 460-40362-1). In each case, the laboratory sample custodian noted that the cooler and the samples did not appear to have been compromised or tampered with.

The sampler did not enter any of the trip blanks (lab sample ID 460-38653-43, 460-38653-44, 460-38780-39, and 460-38859-28) on the custody records. All trip blanks were logged in for VOC analysis upon receipt at the laboratory per Entact.

The sampler did not enter the time relinquinshed on the custody record for laboratory job numbers 460-38859-1 and 460-39614-1. The date relinquished and release signature are present.

The laboratory sample custodian did not enter the date/time relinquished on page 2 of the custody record for laboratory job number 460-39845-1. The release signature is present and the date/time is entered on page 1.

Samples IDs for the following required correction/clarification as follows:

Lab Sample ID	Client Sample ID	Date/Time Sampled	Action
460-38859-16	BF-2996g-001-0'-5'		The laboratory logged in an incorrect sample ID (BF-2996c-001-0'-5'). Corrected to match the custody record.
460-38947-1	ECS-SSA11-SER1-0"-6"		The laboratory logged in an incorrect sample ID (ECS-SSA11-SER1-0"-6'). Corrected to match the custody record.
460-38947-2	ECS-SSA13-SSR1-0"-6"		The laboratory logged in an incorrect sample ID (ECS-SSA13-SSR1-0"-6'). Corrected to match the custody record.
460-39135-5	ECS-27-F	04/16/2012 13:50:00	The sample label reads DS-27-SW. Logged in with the sample ID on the custody record. Confirmed correct by Entact field crew.
460-39136-7	DS-16-SN	04/16/2012 15:25:00	The sample label reads DS-20-SW while the jar top reads DS-16-SN. Logged in with the sample ID on the custody record. Confirmed correct by Entact field crew.
460-39249-1	BF-2981c-001x-0-5'	04/18/2012 08:55:00	The laboratory logged in an incorrect sample ID (BF-2981c-001v-0-5'). Corrected to match the custody record.
460-39614-12	ECS-BF-DEC-001R-F5-0-1'	04/27/2012 13:50:00	The sampler entered an incorrect sample ID (ECS-BF-DEC-001R-F5-0-1") on the custody record. Corrected to match collection data.
460-39845-1	ECS-SSA23-SS-0-6"	05/03/2012 13:35:00	The laboratory logged in an incorrect sample ID (ECS-SSA23-SS-0-6-"). Corrected to match the custody record.
460-39845-2	ECS-SSA23-SE1-0-6"		The laboratory logged in an incorrect sample ID (ECS-SSA23-SE1-0-6-"). Corrected to match the custody record.

The following changes were made at the laboratory per Entact's instructions: Total Lead/Arsenic was cancelled on 4/16/12 for all samples in laboratory job number 460-39092-1

1A. Analysis Requests:

For sample BF-2994g-002-0'-6.5', only VOCs were requested. The laboratory inadvertently also reported all DER-10 analytes excluding mercury and Cr III.

For samples ECS-1-F, ECS-2-F, and ECS-2-Fx, the laboratory reported Total Lead/Arsenic per Entact's request after the samples were received.

For sample ECS-BF-DEC-001R-F2-0-1', the laboratory reported TAL metals instead of only Total Pb/As per Entact's request after the samples were received.

For all 8081 composite samples and the associated QC samples in laboratory job number 460-38780-1, the laboratory inadvertently reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) instead of just the DER-10 analytes as requested.

For all 8081 QC samples in laboratory job number 460-38780-1, the laboratory inadvertently reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) instead of just the DER-10 analytes as requested and reported for the 8081 composite samples.

For 7196 samples in laboratory job number 460-39249-1 (analyzed by TALPITT), the EDD does not include records for the LB, soluble BS, insoluble BS, or insoluble MS. Results for these QC samples are included in the hardcopy report and all pass the criteria and thus no further action was taken.

2. Analyte List:

Workplan Table 3 and DER10 App5 list m-cresol, o-cresol, and p-cresol separately. The laboratory reported m,p-cresol and o-cresol as it is not possible to separate m-cresol and p-cresol using method 8270C. WP Table 3 also mistakenly lists Antimony. This metal does not appear in DER10 Appendix 5 and was not reported by the laboratory for the backfill samples.

For all BF samples, the laboratory reported technical Chlordane rather than Chlordane (alpha) as listed in the workplan and DER10 Appendix 5.

- 3. The MQL (Unadj) for several DER-10 analytes is above the CRQL, but in each case, it is below the Allowable Constituent Level in DER10 App 5 except for Pentachlorophenol. The actual lab RL is above the CRQL and the ACL in DER10 App5 for this analyte. The MDL is < 1/8 the ACL and J-values are reported, so NDs for undiluted samples may show conformance. Additionally, the MQL (Unadj) for the TAL metal Iron is above the CRQL. There are no action levels for this analyte.</p>
- 4. VOCs in soil collected in 4-oz jars using bulk technique and analyzed using a low-level DI water extraction (on day 1 to day 5) with heated purge-n-trap per workplar rather than using closed system purge-n-trap or methanol extraction as indicated by preparation method (5035) referenced by the laboratory.
- 4A. Per laboratory, Florisil cleanup (SW3620B) used for Pesticide analyses and sulfuric acid cleanup (SW3665A) used for PCB analyses (not indicated in package or EDD). No cleanup used for SVOC or Herbicides.

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
	All for this event	TCLP Metals	All analyses	Diluted 5x before analysis as standard practice	noted in QA report narrative
		Total Metals	All analyses	Diluted 2-4x before analysis as standard practice	noted in QA report narrative
			All samples	Required 4x dilution prior to analysis; RLs adjusted accordingly	noted in QA report narrative
EN206	460-38437-1	TCLP Metals	107922	Lead >MDL but <rl 'b'<="" associated="" blank,="" detects="" flagged="" in="" leach="" samples="" td=""><td>Associated samples flagged per NFG</td></rl>	Associated samples flagged per NFG
			460-38221-9	Lead > RPD limit for the duplicate of this non-project sample	none required (non-project QC)
			460-38444-5	Lead > RPD limit for the duplicate of this non-project sample	none required (non-project QC)
		Total Metals	107847	Lead > %R limit for MS of sample 460-38437-13, '4' qualifier indicates conc of unspiked > 4x spike amout	none required (QC check inconclusive)
			107826	Lead < %R limit for MS of sample 460-38437-15	Associated samples flagged per NFG
			460-38437-23	Lead > RPD limit for the duplicate of this project sample	Associated samples flagged per NFG
EN207	460-38653-1	Pesticides	108279	Both SUs high for MB and LCS	none required (sample results not affected)
		VOCs	108250	Methylene chloride >RL in leach blank, detects in associated samples flagged 'B'	Associated samples flagged per NFG
			108250	Acetone >MDL but <rl 'b'<="" associated="" blank,="" detects="" flagged="" in="" leach="" samples="" td=""><td>Associated samples flagged per NFG</td></rl>	Associated samples flagged per NFG
			108314	Acetone and methylene chloride >MDL but <rl 'b'<="" associated="" blank,="" detects="" flagged="" in="" method="" samples="" td=""><td>Associated samples flagged per NFG</td></rl>	Associated samples flagged per NFG
			108450	Acetone and methylene chloride >RL in method blank, detects in associated samples flagged 'B'	Associated samples flagged per NFG
			108567	Acetone and methylene chloride >MDL but <rl 'b'<="" associated="" blank,="" detects="" flagged="" in="" method="" samples="" td=""><td>Associated samples flagged per NFG</td></rl>	Associated samples flagged per NFG
			108630	Acetone >MDL but <rl 'b'<="" associated="" blank,="" detects="" flagged="" in="" method="" samples="" td=""><td>Associated samples flagged per NFG</td></rl>	Associated samples flagged per NFG
			108916	Acetone >MDL but <rl 'b'<="" associated="" blank,="" detects="" flagged="" in="" method="" samples="" td=""><td>Associated samples flagged per NFG</td></rl>	Associated samples flagged per NFG
			460-38653-7,13	Peaks at 12.5 and 14.0 are column bleed and therefore not reported as TICs	noted in QA report narrative
			460-38653-14,16	Peak at 12.5 is column bleed and therefore not reported as TIC	noted in QA report narrative
EN208	460-38780-1	Total Metals	109442	Manganese < %R limit for MS of sample 460-38780-26	none required (QC check inconclusive)
			460-38780-26	Arsenic, Lead, Manganese > RPD limit for the duplicate of this project sample	Associated samples flagged per NFG
		Pesticides	108970	alpha-BHC, Aldrin, Endo I, Dieldrin on primary column and Methoxychlor on the secondary	Associated samples flagged per NFG
				column > %R limit for the closing CCV; associated samples ND for these analytes, thus data reported	
		VOCs	108552	Acetone and methylene chloride >MDL but <rl associated<="" blank,="" detects="" in="" leach="" td=""><td>Associated samples flagged per NFG</td></rl>	Associated samples flagged per NFG
				samples flagged 'B'	
			109095	Acetone >RL in method blank, detects in associated samples flagged 'B'	Associated samples flagged per NFG
			109095	Methylene chloride >MDL but <rl associated="" blank,="" detects="" flagged<="" in="" method="" samples="" td=""><td>(actually >MDL, <rl)< td=""></rl)<></td></rl>	(actually >MDL, <rl)< td=""></rl)<>
				'B'	. 66 .
			109185 109228	Methylene chloride >RL in method blank, detects in associated samples flagged 'B' Methylene chloride >MDL but <rl associated="" blank,="" detects="" flagged<="" in="" method="" samples="" td=""><td>Associated samples flagged per NFG</td></rl>	Associated samples flagged per NFG
				'B'	. 66 .
			109185	Several analytes < %R limit for MS/MSD of sample 460-38780-24	Associated samples flagged per NFG
			109185	1,4-Dioxane > RPD limit for MS/MSD of sample 460-38780-24	Associated samples flagged per NFG
		C)/OC-	109228		Associated samples flagged per NFG
ENICOO	460 200E0 4	SVOCs		Pentachlorophenol < %R limit, > RPD limit for MS/MSD of sample 460-38790-26	Associated samples flagged per NFG
EN209	460-38859-1	Pesticides	109244	4,4-DDD and Endrin ketone on primary column > %R limit for the closing CCV; associated samples ND for these analytes, thus data reported	samples
		VOCs	108875	Methylene chloride >MDL but <rl 'e<="" associated="" blank,="" detects="" flagged="" in="" leach="" samples="" td=""><td>BAssociated samples flagged per NFG</td></rl>	BAssociated samples flagged per NFG

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
			109228	Methylene chloride >MDL but <rl 'b'<="" associated="" blank,="" detects="" flagged="" in="" method="" samples="" td=""><td></td></rl>	
			109362	Acetone >RL in method blank, detects in associated samples flagged 'B'	Associated samples flagged per NFG (actually >MDL, <rl)< td=""></rl)<>
			109362	Methylene chloride >MDL but <rl 'b'<="" associated="" blank,="" detects="" flagged="" in="" method="" samples="" td=""><td>, ,</td></rl>	, ,
			109395	Acetone and methylene chloride >MDL but <rl 'b'<="" associated="" blank,="" detects="" flagged="" in="" method="" samples="" td=""><td>Associated samples flagged per NFG</td></rl>	Associated samples flagged per NFG
		SVOCs	460-38859-9	2-Fluorophenol, Nitrobenzene-d5 < %R limit for this sample	Sample flagged per NFG
				Pentachlorophenol < %R limit for MS/MSD of sample 460-38859-3	Associated samples flagged per NFG
			" '	Benzo(a)pyrene > %R limit for MS/MSD of sample 460-38859-3	Associated samples flagged per NFG
EN210	460-38947-1	-	-	No deficiencies noted	NA
EN211	460-39091-1	Total Metals	460-39091-2	Required 100x dilution prior to analysis; RLs adjusted accordingly	NA - result is not non-detect
EN212	460-39092-1	-	-	No deficiencies noted	NA
EN213	460-39135-1	-	-	No deficiencies noted	NA
EN214	460-39136-1	TCLP Metals	460-39136-4,5,6,7	Required 50-500x dilution prior to analysis; RLs adjusted accordingly	NA - result is not non-detect
			110255	Lead >RL in leach blank, detects in associated samples flagged 'B'	Associated samples flagged per NFG
EN215	460-39249-1	Total Metals	110413	Sb, Ca < %R limit for MS of sample 460-39249-12	none required (not target metals)
			110413	AI, Fe, Mg, Mn > %R limit for MS of sample 460-39249-12	Associated samples flagged per NFG (only Mn is a target analyte)
			460-39249-12	Ca > RPD limit for duplicate of this project sample	none required (not a target metal)
			460-39308-3	Cr > RPD limit for duplicate of this non-project sample	none required (non-project QC)
		Pesticides	460-39249-9	DCB < %R limit for this sample	Sample flagged per NFG
		PCBs	110233	Ar 1260 < %R limit for MS/MSD of sample 460-39249-12	Associated samples flagged per NFG
		VOCs	109970	Methylene chloride >MDL but <rl 'e<="" associated="" blank,="" detects="" flagged="" in="" leach="" samples="" td=""><td>Associated samples flagged per NFG</td></rl>	Associated samples flagged per NFG
			110121	Acetone and methylene chloride >MDL but <rl 'b'<="" associated="" blank,="" detects="" flagged="" in="" method="" samples="" td=""><td>Associated samples flagged per NFG</td></rl>	Associated samples flagged per NFG
			110443	Several analytes < %R limit for MS/MSD of sample 460-39249-11, '4' qualifier indicates conc of unspiked > 4x spike amout	Associated samples flagged per NFG
			460-39249-17,22,23	Peaks at 12.5 and 14.0 are column bleed and therefore not reported as TICs	noted in QA report narrative
			460-39249-28	Peak at 12.5 is column bleed and therefore not reported as TIC	noted in QA report narrative
		SVOCs	110818	Benzo(a)pyrene, Benzo(b)fluoranthene > %R limit for MS/MSD of sample 460-39249-12	Associated samples flagged per NFG
EN216	460-39254-1	-	-	No deficiencies noted	NA
EN217	460-39256-1	-	-	No deficiencies noted	NA
EN218	460-39258-1	TCLP Metals	460-39258-1,2	Required 20-100x dilution prior to analysis; RLs adjusted accordingly	NA - result is not non-detect
			110255	Lead >RL in leach blank, detects in associated samples flagged 'B'	Associated samples flagged per NFG
EN220	460-39363-1	TCLP Metals		Lead >MDL in method blank, conc < 5% of sample conc, thus re-extraction not performed	Associated samples flagged per NFG
			460-39363-5,6	Insufficient samples to perform leaching with required 100-g. Volume of leaching fluid adjusted to maintain 20:1 ratio, RLs not affected.	NA - RLs not affected
		Total Metals	NA	Lead < %R limit for MS of sample 460-39363-4	none required (recovery within 70-130%)
			460-39363-4	Lead > RPD limit for duplicate of this project sample	Associated samples flagged per NFG
EN221	460-39364-1	TCLP Metals	110423	Lead >RL in leach blank, detects in associated samples flagged 'B'	Associated samples flagged per NFG
			460-39364-2,4	Required 100x dilution prior to analysis; RLs adjusted accordingly	NA - result is not non-detect
EN222	460-39365-1	-	-	No deficiencies noted	NA

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
EN223	460-39614-1	Total Metals	111379	Sb, Fe < %R limit for MS of sample 460-39614-5	Associated samples flagged per NFG
					(QC check inconclusive for Fe)
			111379	Al > %R limit for MS of sample 460-39614-5	none required (QC check inconclusive)
			460-39614-5	Mn > RPD limit for the duplicate of this project sample	Associated samples flagged per NFG
EN224	460-39775-1	TCLP Metals	s 460-39775-2,3,6,8	Required 20-100x dilution prior to analysis; RLs adjusted accordingly	NA - result is not non-detect
EN225	460-39845-1	Total Metals	460-39845-9	Lead > RPD limit for the duplicate of this project sample	Associated samples flagged per NFG
EN226	460-40362-1	-	-	No deficiencies noted	NA

Client Na	ame: Entact	Projec	t Numb	oer/ Ma	nager: E7976/ Jenny Self			
Site Nan	ne: Revere Smelting and Refining	QC Le	vel: IV		•			
	ory: TestAmerica (Edison, NJ)	Laboratory Job No: see below						
	r: Taryn Scholz	Date C	hecke	d: 6/15	5/12			
Paramet	ers: TCLP Pb, Metals, CrIII/VI, CN	Metho			0B, 6010B/7470A/7471A, 7196A, 9012A			
	%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT			
	Method blank data included in Lab Package?	Х						
100	Criteria met? ($<$ MDL, \ge -RL)		Χ		see QC Deficiencies			
100	Criteria met for field blanks? (< MDL)			Х				
	QC check samples/LCS data included in lab package?	Х						
	All project COCs or TAs included?	Х						
100	%R criteria met?	Х			method (lab but within 50-200%)			
	Matrix spike data included in lab package?	Х						
100	%R criteria met?		Χ		method (75-125%) see QC Deficiencies			
	Sample duplicate data included in lab package?	Х						
100	RPD criteria met?		Χ		method (20% if >10xMDL) see QC Deficiencies			
					ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +			
100	Field dup RPD criteria met? (individual, mean, and overall)		Χ		2RL sol if either ≤5RL)			
	Instrument Tune for ICP-MS included in lab package?			Х				
NA	Instrument Tune method criteria met? (±5 RSD, ±0.1 amu)			Х				
	Initial calibration documentation included in lab package?	Х						
	All target analytes included?	Х						
	blank/1 std (ICP), blank/ 5 stds (Hg)	Х						
100	Corr coeff (r) criteria met? (>0.995)	Х						
	Calibration verification data included in lab package?	Х						
	ICB/CCB criteria met? (<rl, td="" ≥-rl)<=""><td>Х</td><td></td><td></td><td></td></rl,>	Х						
	ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115)	Х						
	CCV %R criteria met? (ICP 90-110%, Hg 80-120%)	Х						
100	LLCCV %R criteria met? (50-150% Sb/Pb/Tl,70-130%)			Х	CL per ASP Exh E - not reported			
100	Dilution test data included?	Х						
100	Results within criteria if >50xMDL? (max 10%, qualify 15%)	Х						
100	Post digestion spike included?	Х						
100	%R criteria met?	Х		ļ	method (75-125%)			
100	Interference check sample data included (ICP/MS only)?	Х						
100	%R criteria met? (80-120%, unspk <2RL,>2-RL)	Х		ļ	2RL per ASP Exh E			
NA	Internal standard data included in lab package?			Х				
NA	Intensities within limits? (min 30-120% of calib std)			Х				
10	Analyte quantitation/RLs correct?							
10 COMME	QC parameters calculated correctly?							
	ory Job No: 460-38437-1, 460-38653-1, 460-38780-1, 460-3885	0-1 460-	38047	-1 460	1.30001-1 460-30002-1 460-30135-1 460-30136.			
	49-1, 460-39254-1, 460-39256-1, 460-39258-1, 460-39363-1, 4							
100-332	+0-1, +00-3323+-1, +00-33230-1, +00-33230-1, +00-33303-1, +	-00-000-	-1, -0	0-0000	95-1, 400-33014-1, 400-33113-1, 400-33043-1, 40			
No OC	reported for Chromium III, which is calculated from the Total Chr	omium o	nd Chr	omium	VI regult			
NO QC	reported for Chromium in, which is calculated from the Total Chi	Official a	iu Cili	Officiali	Vi lesuit.			
ΓΩΤΔΙ Ν	METALS VS LEACHED - all leach results < max possible							
OTALI	VIETALO VO LEAGITED - all leagit results < max possible							

Data '	Validation Checklist: Leachates								
	me: Entact	Projec	t Numb	er/ Ma	nager: E7976/ Jenny Self				
	e: Revere Smelting and Refining		vel: IV						
	ry: TestAmerica (Edison, NJ)	Laboratory Job No: see below							
	: Taryn Scholz		Checked						
Paramete	ers: TCLP Pb	Methods: 1311/6010B							
	%PERFORMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT				
	Was a ZHE vessel without leaks used for VOAs?			Х					
	Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve)			х					
	Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately			х					
	Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)	x							
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	х							
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)	Х							
	Was the correct weight of fluid used? (20x solid weight)	Х							
100	Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)	Х			rpm NA				
	No preservation for aqueous sample aliquots?			Х					
	Proper preservation for leachates?	Х			(method pH <2)				
100	Holding time to leaching not expired?	Х			(method 180-days)				
	Leach blank data included in Lab Package? (1/20)	Х							
100	Criteria met? (< MDL)		Х		see QC Deficiencies				
COMMEN									
	ry Job No: 460-38437-1, 460-38947-1, 460-39091-1, 460-39092-1, 460-39364-1, 460-39365-1, 460-39614-1, 460-39775-1, 460								

Client Na	me: Entact		Proiec	t Numb	oer/ Ma	anager: E7976/ Jenny Self
	e: Revere Smelting and Refini	na		vel: IV		gen = rondroomly com
	ry: TestAmerica (Edison, NJ)	<u> </u>				see below
	: Taryn Scholz			Checke		
	ers: Pesticide, PCB, Herbicide					082, 8151A
	%PERFORM	MED/ ITEM		NO		(CRITERIA) COMMENT
	Method blank data included		Х			
100	Criteria met? (<mdl)< td=""><td> Lab : donago:</td><td>X</td><td></td><td></td><td></td></mdl)<>	Lab : donago:	X			
100	Criteria met for field blanks?	(<mdl)< td=""><td></td><td></td><td>х</td><td></td></mdl)<>			х	
100	QC check samples/LCS data		х			
	QO check samples/200 data	illicidded iil iab package:				With the exception of multi-component Chlordan
	All project COIs or TAs inclu	х			(technical) andToxaphene	
	%R criteria met?		Х			method (lab but within 50-200%)
100	RPD criteria met?		Х			
	Matrix spike data included in	lab package?	х			
	%R criteria met?			Х		method (lab but within 50-200%) see QC Deficiencies
100	RPD criteria met?		Х			method (lab but within 40%)
	Surrogate data included in la	b package?	Х			,
	Required surrogates include		Х			
100	%R criteria met?			Х		method (lab but within 50-200%) see QC Deficiencies
100	Field dup RPD criteria met?	х			ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2R sol if either <5RL)	
100			х			8 peaks used for all multi-comp Pest/PCB
	Initial calibration documentation included in lab package? All target analytes included? %RSD criteria met? (max 20% or min r/COD 0.99)					o peaks used for all multi-comp Pest/PCB
100						
100			X			
100	DDT/Endrin %breakdown ma		Х			
400	Calibration verification data i		Х			00 D-f-ii
100	%R criteria met? (max +/-15			Х		see QC Deficiencies
100		nation data incl in lab package?	Х			
100	%Difference criteria met? (<	,	Х			
10	Analyte qualitative ID criteria					
10	Analyte quantitation/RLs cor					
10	QC parameters calculated of					
	Surrogate	Control Limits				
PEST/	Decachlorobiphenyl					
PCB	Tetrachloro-m-xylene					
HERB	2,4-DCPA					
OMME		2722 4 400 00050 4 400 00040				
aborato	ry Job No: 460-38653-1, 460-3	88780-1, 460-38859-1, 460-39249-1	l			

Data	Validation Chec	klist: GC/MS				
	ame: Entact		Projec	t Numb	oer/ Ma	anager: E7976/ Jenny Self
	ne: Revere Smelting and R		QC Le	evel: IV		
	ry: TestAmerica (Edison,	NJ)				see below
	r: Taryn Scholz			Checke		
Paramete	ers: VOC, SVOC			ds: 826	,	
		PRMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT
	Method blank data includ	led in Lab Package?	Х			
100	Criteria met? (<mdl)< td=""><td>0 (MBI)</td><td></td><td>Х</td><td></td><td>see QC Deficiencies</td></mdl)<>	0 (MBI)		Х		see QC Deficiencies
100	Criteria met for field blank			Х		see QC Deficiencies
	All project COIs or TAs in	data included in lab package?	X			
100	%R criteria met?	iciuded?	X			mothod (lab but within 50 2009/)
100 100	RPD criteria met?		X X			method (lab but within 50-200%) method (lab but within 40%)
100	Matrix spike data include	d in lah nackage?	X			metrod (lab but within 4076)
100	%R criteria met?	u iii lab package :		Х		method (lab but within 50-200%) see QC Deficiencies
100	RPD criteria met?			X		method (lab but within 40%) see QC Deficiencies
100	Surrogate data included i	n lab package?	Х			metrica (lab bat Wallin 1070) coo de Bellelelicios
	Required surrogates inclu		X			
100	%R criteria met?			Х		method (lab but within 10-200%) see QC Deficiencies
						73.77
100	Field dup RPD criteria me	et? (individual, mean, and overall)	Х			20% aq, 35% solid (+/-2RL aq, +/-3RL sol if either≤5RL)
		or GC/MS included in lab package?	х			V V = /
100	Instrument Tune method		Х			_
	Initial calibration docume	ntation included in lab package?	Х			
	All target analytes include	ed at min 5 levels w low< RL?	Х			
	RRF met SPCCs/14Dioxa	ane(advisory)/PoorPerf/TAs				
	(*/0.005/0.01/0.05)?			Х		*11DCA 0.1, CB 0.3; SVOC 0.05, see QC Deficiencies
		CCCs/TAs? (30% max for CCC, 15%	х			
100		urve min r 0.99, 20% qualify)				
		ata included in lab package?	Х			
		ane(advisory)/PoorPerf/TAs				**************************************
100	(*/0.005/0.01/0.05)?	TA 62 (200) may 250/ qualify		X		*11DCA 0.1, CB 0.3; SVOC 0.05, see QC Deficiencies see QC Deficiencies
100	Internal standard data inc	TAs? (20% max, 25% qualify)	.,	Х		see QC Deliciencies
100 100		i -50/+100% of last calib check)?	X			for CCV and samples
100		c diff from last calib check)?	X			ioi cev and samples
10	Analyte qualitative ID crite		_^			
10	Analyte quantitation/RLs					
10	QC parameters calculate					
	Surrogate	Control Limits				
VOC	1,2-Dichloroethane-d4					
	Dibromofluoromethane					
	Toluene-d8					
	Bromofluorobenzene					
SVOC	2,4,6-Tribromophenol					
	Terphenyl-d14				<u> </u>	
	2-Fluorobiphenyl			-	ļ	
	Nitrobenzene-d5			<u> </u>	ļ	
	2-Fluorophenol Phenol-d5			-	1	
COMME						
		60-38780-1, 460-38859-1, 460-39249-	1			
Laborato	ily Job No. 400-30033-1, 4	00-36760-1, 400-36839-1, 400-39249-	1			
	-					
-						

DATA USABILITY SUMMARY REPORT

REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-A Remedial Design/ Remedial Action

Prepared by:

Quality Assurance Associates (QAA, L.L.C.)
1007 Francis Drive
College Station, TX 77840
www.qaallc.com
979-694-7199

April 1, 2013

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	1
2.0	PRO	CEDURE	ES	2
3.0	DAT	A VALID	ATION RESULTS	6
	3.1	PRECI	ISION	6
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	6
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	6
		3.1.3	Field Duplicate (FD) Precision	6
	3.2	ACCU	RACY	7
		3.2.1	Laboratory Control Spike (LCS) Accuracy	7
		3.2.2	Matrix Spike (MS) Accuracy	7
		3.2.3	Serial Dilution (SD) %Difference	8
		3.2.4	Surrogate (SU) Recovery	
	3.3	REPRI	ESENTATIVENESS	
		3.3.1	Chain-of-Custody and Analysis Requests	
		3.3.2	Sample Preservation and Holding Time	
		3.3.3	Laboratory and Method Selection	
		3.3.4	Blanks (Laboratory and Field)	
		3.3.5	Analytical Procedures	10
	3.4	COMP	PLETENESS	
		3.4.1	Laboratory Deliverables Completeness	
		3.4.2	EDD Correctness	
		3.4.3	Analytical Completeness	
	3.5		ARABILITY	
	0.0	C C . 711	· · · · · - · - · · · · · · · · · · · ·	

LIST OF TABLES

- Table 1 Samples Collected and Tests Performed
- Table 2 Data Validation Qualifiers (DVQs)
- Table 3 QC Deficiencies and Data Qualification Actions
- Table 4 Qualified Results for Field Samples
- Table 5 Field Duplicate Results

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting and Refining Site Operable Unit 1 in Middletown, New York. The independent data review was completed in accord with the Phase I Remedial Design/ Remedial Action Workplan (Revision 1, December 2011), hereinafter called the P1 Workplan, and the Phase II-A Remedial Design/ Remedial Action Workplan (August 2012), hereinafter called the P2A Workplan, using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The data include 84 investigative soil samples plus the associated field QC samples, which were collected by ENTACT in August through December 2012 with the intended use of verifying that remediation goals have been achieved in excavated grids (Phase I), confirming that backfill materials are suitable for use on-site (Phase I), and confirming that containment cell materials are suitable for use (Phase II-A). A complete listing of the samples collected and tests performed is shown in Table 1. QAA performed a full validation of the data and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 Technical Guidance for Site Investigation and Remediation (May 2010) as specified in Section 5.9 of the P1 Workplan and Section 4.9 of the P2A Workplan. The validation procedures are derived from the U.S. EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) and National Functional Guidelines for Superfund Organic Methods Data Review (June 2008), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplans.

PARCC EVALUATION

Section 5.3 of the P1 Workplan and Section 4.3 of the P2A Workplan present data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The Workplans stipulate that the precision control limits will be dictated by the analytical method and the limits are 10-30 RPD, depending upon the test. The validator assessed precision using the laboratory and field duplicates. The laboratory prepared laboratory control spike duplicates (LCSD) using reagent water or sand for the HERB and VOC tests plus at least one unspiked matrix duplicate (MD) or matrix spike duplicate (MSD) using a sample from the site for every test. All LCS/LCSD RPDs are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects. The RPDs for the matrix duplicates are within the limits, which indicates good precision for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the duplicate. Of the 2,287 total results for field samples (investigative samples and field duplicates), only 18 results (all of which are for metals) are qualified as estimated (UJ or J) based on laboratory duplicate precision. Additionally, the sampler collected 10 field duplicates with the 84 investigative samples and the RPDs are within the limits, which indicates good precision for the sampling and analytical technique on the given matrix, or the validator qualified the results for the original and duplicate sample. Only three of the 325 pairs of results are qualified as estimated (J) based on field duplicate precision. For each qualified pair, the higher result (i.e., from either the original or duplicate sample) should be used for project decisions. This gives a conservative approach relative to protection of the environment. (For field duplicate pairs that pass the precision criteria, the value should be selected based on accepted convention for the site and/or agency requirements, e.g., select the value reported for the original sample, the average of the two values, etc.)

- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The Workplans stipulate that the accuracy control limits will be dictated by the analytical method. For most tests, the analytical method stipulates that the laboratory calculate in-house performance criteria. In order to better assess data usability, limits of 50-200% were employed where the laboratory limit for a spiked analyte falls outside these values. The validator assessed accuracy using the laboratory spikes and matrix spikes. The laboratory prepared a laboratory control spike (LCS) using reagent water or sand with each analytical batch and reported the recovery for every target compound except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, one SVOC target analyte (m,p-Cresol), and Chromium III (which is a calculated rather than measured result). The laboratory also prepared a laboratory control spike duplicate (LCSD) with each HERB analytical batch and several of the VOC analytical batches. All LCS/LCSD recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects, with minor exceptions. Two non-detects for Pyrene are qualified as estimated (UJ) due to marginally low laboratory spike recovery (49%). Additionally, the laboratory prepared several matrix spikes (MS) and matrix spike duplicates (MSD) plus serial dilutions (SD) for the metals analyses using a sample from the site, including at least one for every test. All SD %differences are within the laboratory limits, which indicates there is no matrix interference affecting the accuracy of metals results that are substantially above the reporting limit. The MS/MSD recoveries are within the laboratory limits, which indicates good accuracy for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the MS/MSD. Of the 2,287 total results for field samples, 66 results (most of which are for volatile organic compounds) are qualified as estimated based on matrix spike recovery. The qualification includes the expected direction of bias where known (i.e., J+ for high MS/MSD recovery and J- for low MS/MSD recovery). Additionally, the laboratory utilized one or more surrogate spikes for each organic analysis. The surrogate recoveries are within the laboratory limits for all field samples.
- Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplans state that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, investigative samples were collected as required in the approved sampling and analysis plans with the exception of deviations that were approved by NYSDEC (e.g., sidewalls that will be excavated in Phase II-B were not sampled). All other planned samples were collected in addition to a number of unplanned samples (e.g., additional confirmation samples were collected due to unanticipated excavations, additional floor samples were collected based on the grid floor square footage, etc.). Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory and field QC blanks, and analytical instrument setup (i.e., tuning, calibration, interference correction, etc.) For all samples, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank with each analytical batch and the sampler collected three trip blanks with the VOC samples. The laboratory and field QC blanks show no contamination, which indicates the samples were not affected by laboratory or field procedures, or the validator qualified the samples associated with the blank that have a concentration similar to that in the blank. The qualified results are for Acetone (which was detected in 28 of the 35

VOC soil samples and all 28 detects are qualified due to laboratory blank contamination) and Methylene Chloride (which was detected in all 35 VOC soil samples and 21 detects are qualified due to laboratory and/or trip blank contamination while the remaining detects are qualified as estimated with a high bias (J+) due to high matrix spike recovery or positive calibration drift). Per the NFG, the validator qualified detects above the reporting limit with a J+ flag while detects below the reporting limit (i.e., laboratory J-values) were qualified with a U flag. Results with a U flag should be considered not detected at the reporting limit, and thus the validator replaced the concentration reported by the laboratory with the reporting limit. Proper analytical procedures were used and calibration results met the method requirements or the validator qualified the affected samples. Fourteen (14) non-detect results for 1,4-Dioxane are qualified as rejected (R) due to extremely low instrument response (relative response factor (RRF) less than the 0.005 advisory level and no discernible peak on the chromatogram for the 100-ppb standard). The remaining 21 non-detect results for 1,4-Dioxane are qualified as estimated (UJ) due to low instrument response (RRF less than the 0.005 advisory level with a discernible peak and adequate area count on the chromatogram for the 100-ppb or lower standard). Additionally, 35 results (for Acetone, Methylene Chloride, and Aroclor 1260) are qualified due to calibration drift.

- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplans state that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. All analyses of field samples produced valid analytical measurements, with the exception of 14 non-detect results for 1,4-Dioxane. With 2,287 total results for field samples, this gives a completeness of 99.4%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions or revisions were provided by the laboratory upon request.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplans. The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated. Note that results are reported in mg/kg with dry-weight correction for total metals and inorganics, in μg/L for TCLP metals, and in μg/kg with dry-weight correction for organics for all field samples.

DATA USABILITY

The results for 1,4-Dioxane in 14 backfill samples are qualified as rejected (R) and thus are not suitable for use. The absence or presence of this analyte cannot be confirmed in the qualified samples due to extremely low instrument response. All other results for the samples are acceptable for use with the qualifications shown in Table 4. Results that are qualified with a UJ should be considered not present above the reporting limit; however the reporting limit is an estimated value. Results that are qualified with a J- (biased low) can be used for determining the presence of the analyte and as an indication that the concentration of the analyte exceeds a given criterion. However, the concentration reported for detects may be low. Results that are qualified with a J+ (biased high) can be used for determining the presence of the analyte and as an indication that the concentration of the analyte is less than a given criterion. However, the concentration reported for detects may be high. Similarly, results that are qualified with a J (estimated) may be either low or high. For results qualified with a U (blank contamination), the analyte should be considered not detected at the reporting limit.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include hardcopy data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). The laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- · Laboratory Deliverables Completeness,
- EDD Correctness,
- · Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- Laboratory and Method Selection,
- Instrument Tuning and Initial Calibration,
- Continuing Calibration Verification,
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- Matrix Duplicates (MD),
- Field Duplicates (FD),
- Dual Column Confirmation,
- Surrogates (SU), and
- Internal Standards (IS).

Additionally, the validator examined the raw data for 10% of the sample batches (randomly selected by the validator across the various analysis dates and tests) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are typically the laboratory-derived recovery control limits based on historical performance (but not less than 50% lower limit or greater than 200% upper limit)
- Laboratory Precision the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which range from 10-30 RPD
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. Data rejection limits of 30% for inorganics, 20% for purgeable organics (VOC), and 10% for extractable organics were used. The data

validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U-flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

The laboratory analyzed an LCSD and reported RPDs for all target compounds for each HERB batch (maximum 20 samples) and the VOC batches that do not include an MS/MSD prepared using a sample from the site. All RPDs are at or below the control limit.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every inorganics analytical batch (maximum 20 samples) and an MSD for every organics analytical batch (maximum 20 samples) and reported RPDs for MD and MSD prepared using a sample from the site. Eight soil samples (as designated by the sampler on the custody record) were used to prepare an MD or MSD for each test requested for the sample. With a total of 84 investigative soil samples, this meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Additionally, the validator noted that at least one MD or MSD is reported for each type of analytical test and sample media (i.e., backfill, containment cell, or excavation confirmation).

Some MD and MSD RPDs are above the control limit and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that, for cases where either result for the duplicate pair is non-detect, the check does not apply and the laboratory reported the RPD as NC (not calculable) in the hardcopy report and as 0 in the EDD. Additionally, the validator considered samples of the same media (i.e., backfill, containment cell, or excavation confirmation) to be of similar matrix (e.g., if deficiencies were noted for a MD or MSD prepared using a backfill sample, all backfill samples in the same analytical batch were qualified).

3.1.3 FIELD DUPLICATE (FD) PRECISION

The samplers collected 10 FD with the 84 investigative samples, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Results for the field duplicates are summarized in Table 5.

Three pairs of results are outside the field precision criteria and the validator qualified the data as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the remaining 322 pairs of FD results meet the criteria, which indicates good overall precision, and thus the validator only qualified the original and duplicate sample for the three FD deficiencies.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD), matrix spikes (MS/MSD), serial dilutions (SD), and surrogate (SU) spikes. LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit. Surrogates are added to each sample before preparation and analysis and provide an indication of accuracy for each individual sample analysis.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

The laboratory analyzed a LCS and/or LCSD for every analytical batch (maximum 20 samples) as required and reported recoveries for all target compounds except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, one SVOC target analyte (m,p-Cresol), and Chromium III (which is a calculated rather than measured result).

Some LCS recoveries are outside the control limits and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

Note that the following cases required professional judgment to assess data quality:

- For HERB prep batch 460-132013, Silvex (2,4,5-TP) was not recovered in the LCS or LCSD on the primary column. The laboratory noted interference on this column due to the presence of Pentachlorophenol. (Pentachlorophenol is a SVOC target analyte for the Revere site. It is also a laboratory analyte for HERB method 8151. For method 8151, it requires a separate calibration due to interference issues but it is included in the multi-analyte LCS spiking solution.) The validator reviewed the LCS chromatogram and verified that interference is present on the primary column. The LCS and LCSD recoveries pass on the secondary column, which validates the analysis and thus the validator determined that no data qualification is necessary.
- For PEST prep batch 460-132123, Methoxychlor was not recovered in the LCS on the primary column. The
 validator reviewed the LCS chromatogram and determined that the peak is present but was missed due to a data
 system and/or analyst error. The LCS recovery passes on the secondary column and no unidentified peaks are
 present for the field samples analyzed with the LCS. Thus, the validator determined that no data qualification is
 necessary.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS for every inorganics analytical batch (maximum 20 samples) and an MS/MSD for every organics analytical batch (maximum 20 samples) and reported recoveries for MS and MSD prepared using a sample from the site. Eight soil samples from the site were used to prepare a matrix spike for each test requested for the sample. With a total of 84 investigative soil samples, this meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Additionally, the validator noted that at least one matrix spike is reported for each type of analytical test and sample media (i.e., backfill, containment cell, or excavation confirmation).

Some MS and MSD recoveries are outside the control limits and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that if an analyte was detected in the unspiked parent sample at a concentration well above (greater than four times) the concentration of spike added to the sample, thereby rendering the recoveries inconclusive, the check was waived and the validator did not qualify the data. For cases where the MS or MSD recovery is outside the control limits but greater than the data rejection limit (30% for inorganics, 20% for purgeable organics (VOC), and 10% for extractable organics) and the average MS/MSD recovery is in control, the validator did not qualify the data. The validator also did not qualify the data for cases where the MS or MSD recovery is outside the control limits (i.e., the laboratory-derived recovery control limits based on historical performance or 50-200%, whichever is more stringent) but within 70-130% since this is considered within the inherent method error and suitable for the intended use. Additionally, the validator considered samples of the same media (i.e., backfill, containment cell, or excavation confirmation) to be of similar matrix (e.g., if deficiencies were noted for a MS/MSD prepared using a backfill sample, all backfill samples in the same analytical batch were qualified).

Note that the following case required professional judgment to assess data quality:

For HERB prep batch 460-132013, Silvex (2,4,5-TP) was not recovered in the MS or MSD on the primary column. The laboratory noted interference on this column due to the presence of Pentachlorophenol. (Pentachlorophenol is a SVOC target analyte for the Revere site. It is also a laboratory analyte for HERB method 8151. For method 8151, it requires a separate calibration due to interference issues but it is included in the multi-analyte LCS spiking solution.) The validator reviewed the MS and MSD chromatograms and verified that interference is present on the primary column. The MS and MSD recoveries pass on the secondary column, which validates the analysis and thus the validator determined that no data qualification is necessary.

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all target compounds detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit.

3.2.4 SURROGATE (SU) RECOVERY

The laboratory spiked each organic sample with one or more surrogates before preparation and analysis.

A few surrogate recoveries are outside the control limits for some QC samples (i.e., LCS or MS) as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Data quality for field samples was evaluated based on the recovery of spiked analytes for these LCS and MS, and thus the validator determined no further data qualification is required.

3.3 **REPRESENTATIVENESS**

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

All samples were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records, which confirms that sample integrity was maintained. The validator noted the following regarding the custody records and sample log-in at the laboratory:

- All samples were received within two days of collection as recommended in DER-10 except those in laboratory job numbers 460-45895-1, 460-45896-1, and 460-46911-1 (samples 1 through 11 only), which were received three days after collection in good condition.
- Custody seals were not used on the shipping coolers but were used on the individual sample containers.
 Additionally, the laboratory sample custodian noted that the coolers and the samples did not appear to have been compromised or tampered with.
- The sampler did not enter one of the trip blanks (lab ID 460-45384-22) on the custody record. This trip blank was logged in for VOC analysis upon receipt at the laboratory per ENTACT.
- The sampler did not enter the time relinquished on the custody record for laboratory job number 460-45896-1. The date relinquished and release signature are present.
- The laboratory sample custodian did not sign or enter the date/time relinquished on the second page of the custody record for laboratory job number 460-47389-1. The release signature and the date/time are entered on the first page. Note that the only sample on the second page is a trip blank.

All field samples were analyzed for the tests requested on the chain-of-custody except as follows:

For all of the backfill composite samples and cell containment samples, the laboratory inadvertently reported TAL
Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene)
instead of the DER-10 analytes as requested.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

All samples were properly preserved and analyzed within the holding times listed in Table 2 of the P1 Workplan, Table 1 of the P2A Workplan, and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the P1 Workplan and Section 4.4 of the P2A Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (TestAmerica-Edison NYSDOH (NELAP) #11452, NYSDOH (ELAP) #11452)

As required per Section 5.7.2 of the P1 Workplan and Section 4.7.2 of the P2A Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the P1 Workplan or Table 1 of the P2A Workplan were used for the sample analyses. (For VOCs, the validator noted that the VOC soil samples were collected in 4-oz jars using a bulk technique and analyzed using a low-level deionized water extraction (on day 1 to day 5) with heated purge-n-trap per the Workplan rather than using closed system purge-n-trap or methanol extraction as indicated by the preparation method (SW-846 5035) referenced by the laboratory.)

For the backfill and containment cell samples, the target analyte list includes all DER-10 analytes and the nominal reporting limits (i.e., without dry-weight correction or sample dilution and based on the standard sample weight and final volume) are at

or below the levels of concern (i.e., the Allowable Constituent Levels (ACLs) for imported fill or soil from Appendix 5 of the DER-10), except as follows:

- DER-10 Appendix 5 lists m-Cresol(s), o-Cresol(s), and p-Cresol(s). The laboratory reported m & p-Cresols and o-Cresol as it is not possible to separate m-Cresol and p-Cresol using method 8270C.
- DER-10 Appendix 5 lists Chlordane (alpha). The laboratory reported technical Chlordane, which is a commercial mixture that contains alpha-Chlordane and gamma-Chlordane along with other related compounds.
- The nominal reporting limit for Pentachlorophenol of 1 mg/kg is slightly above the ACL of 0.8 mg/kg. Note however that the laboratory reported any confirmed detects above the method detection limit (MDL) but below the reporting limit (i.e., J-values) and the laboratory's MDL for Pentachlorophenol is well below the ACL at 0.099 mg/kg.

For the excavation confirmation samples, the target analyte list includes total Arsenic, total Lead, and/or TCLP Lead as requested and all Contract Laboratory Program (CLP) metals for the TAL metals. The nominal reporting limits are below the levels of concern (i.e., the remedial goals) for total Arsenic, total Lead, and TCLP Lead. There are no established levels of concern for TAL metals. The nominal reporting limits comply with the requirements in the ASP for TAL metals with the exception of Iron, which has a nominal reporting limit of 30 mg/kg for the soil samples that is above the ASP reporting limit of 20 mg/kg.

(Note: The laboratory dilutes all total metals samples 2-4x before analysis as standard practice. All Revere samples were diluted 4x and thus nominal reporting limits were determined at this dilution rate. The laboratory also dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank (and leachate blank for TCLP) for every analytical batch (maximum 20 samples) and a calibration blank for every 10 metals analyses as required per the analytical methodology. Additionally, a trip blank was included with each shipment of VOC samples, which meets the Workplan requirement. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used.

Several detects are reported in the laboratory and trip blanks, primarily at concentrations between the MDL and RL (i.e., laboratory J-values) and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator calculated a blank equivalent concentration taking into account the sample weight, moisture content, and dilution factor for each sample when determining if the contamination in the blank is near that in the sample, and thus if data quality is affected for that sample. When comparing aqueous blank concentrations (e.g., for trip blanks) to solid samples, the validator assumed that all contamination found in the aqueous blank aliquot analyzed is potentially present in the solid sample aliquot analyzed.

3.3.5 ANALYTICAL PROCEDURES

The analytical procedures (instrument tuning and initial calibration, continuing calibration verification, dual column confirmation, and internal standards), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method with some exceptions primarily for the VOC analyte 1,4-Dioxane. The validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

Additionally, the validator noted the following regarding the analytical procedures:

QAA, L.L.C.

- For PCB, the validator did not delineate cases where one of the seven or eight peaks used for Aroclor identification
 has a continuing calibration verification (CCV) %difference above the control limit on just one column since all of the
 field samples are non-detect for Aroclor and thus data quality is not affected. These cases are identified in the
 validator's checklist.
- For HERB, the validator did not delineate cases where the surrogate has a continuing calibration verification (CCV)
 %difference above the control limit on just one column since surrogate recoveries for each sample are evaluated
 separately and the sample results are not affected by high CCV %difference for the surrogate. These cases are
 identified in the validator's checklist.
- For samples 1 through 9 in work order 460-43348-1, approximately 50-g of sample was used to perform the TCLP leaching procedure because insufficient sample was provided to use 100-g as specified in the method. Likewise, for samples 1 through 9 in work order 460-43377-1, approximately 35-g of sample was used for the TCLP procedure. In each case, the volume of leaching fluid was adjusted proportionally to maintain a 20:1 ratio of fluid to sample weight, and thus the validator determined that no data qualification is necessary.
- For laboratory job no. 460-47389-1, Form X (Identification Summary) for HERB shows a dual column confirmation %difference of 0.0 for the LCS, LCSD, MS, and MSD rather than the calculated value. The validator calculated the %difference from the raw data and found it passes in each case and thus determined that no further action is necessary.
- For laboratory job no. 460-48738-1, the TCLP batch worksheet has an incorrect batch end date. The correct date is shown on the TCLP batch worksheet for samples in job no. 460-48739-1, which were leached in the same batch (140868), and thus the validator determined that no further action is necessary.

No issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes 50 analytical batches and the validator re-calculated sample results and QC check parameters for five batches and made the following observations from the review of the raw data:

- Total As and Pb batch 140888 The laboratory reports the RPD for matrix duplicates (MD) as NC (not calculable) if either result is less than the reporting limit and the serial dilution (SD) %difference as NC (not calculable) if the undiluted result is less than 50x MDL since the checks are waived below these levels.
- PEST batch 130663 The laboratory used dual column confirmation for all GC analyses (including PEST, PCB, and HERB) selecting the result from either the first column or second column for each analysis (unless chromatographic performance is better on one column and it is therefore used for all analyses). For field and QC analyses, the laboratory reports the result from the column with the higher concentration, provided that the RPD between the two columns is less than 40%. If the RPD is greater than 40%, the column with the lower concentration is reported with a note in the narrative and the result is reported with a P flag. There are no cases where the RPD exceeded 40% for this data set.
- HERB batch 132259 All results were reported from the DB-5 column.
- VOC batch 137271 The laboratory prepares all bulk soil samples for both a deionized (DI) water and a methanol
 extraction and uses the DI water extract where possible for lower reporting limits. All samples for this data set,
 which were collected as bulk soils in 4-oz jars, were analyzed as low level DI extracts. Additionally, the laboratory
 determined that the peaks at 12.5 and 14 minutes on the VOC chromatograms are column bleed and therefore
 would not be reported as TICs. This is also noted for other batches analyzed on this instrument (MS12).
- CN batch 136819 No additional observations.

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

The Level 4 data packages and EDD contain all necessary information or the laboratory submitted a revision upon request as follows:

Laboratory Job No.	Action
460-43348-1	A revised package and EDD were submitted with TCLP results reported in μg/L and with the correct MDL.
460-45384-1	A revised package was submitted with missing raw data (the 10/9/12 ICAL on GC3 for HERB).
460-45895-1	A revised package was submitted with missing QC results (laboratory blank and LCS results for PCB batch
	132122) and missing raw data (the 10/9/12 ICAL on GC3 for HERB).
460-45896-1	A revised package was submitted with missing raw data (the 10/9/12 ICAL on GC3 for HERB).

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Job No.	Sample(s)	EDD Field(s)	Action
460-45384-1 460-45895-1 460-45896-1	all field and QC samples	analysis_date sample_date sample_receipt_date prep_date	The validator changed the format from text (yyyy/mm/dd hh:mm:ss) to date (mm/dd/yyyy hh:mm:ss)
460-43348-1 460-45377-1 460-46911-1 460-47389-1 460-48738-1 460-48739-1	all field and QC samples	sampling_technique	The validator changed the entry from null to the default entry (UN) to meet NYSDEC requirements.
460-43348-1	ECS-1A-F ECS-1B-F ECS-2A-F ECS-2B-F ECS-3A-F ECS-3B-F ECS-4A-F ECS-5A-F ECS-6A-F	sampling_company_code	The validator changed the entry from UNK to ENTACT for consistency with other job numbers.
460-43348-1	all field and QC samples	task_code	The validator changed the entry from SM to RC for consistency with other job numbers.

Laboratory Job No.	Sample(s)	EDD Field(s)	Action
460-43348-1	ECS-1A-F ECS-1B-F ECS-2A-F ECS-2B-F ECS-3A-F ECS-3B-F ECS-4A-F ECS-5A-F ECS-6A-F	lab_matrix_code	The validator changed the entry for the TCLP results from WL to SO for consistency with other job numbers.
460-43348-1	all field and QC samples	qc_level	The validator corrected the entry from SCREEN to QUANT to agree with the analytical methods used.

3.4.3 ANALYTICAL COMPLETENESS

The validator rejected 14 non-detect results for 1,4-Dioxane due to extremely low instrument response. With 2,287 total results for field samples (investigative samples and field duplicates), this gives a completeness of 99.4%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplans and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which a target analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which a target analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size and include dry-weight correction for all soil samples as required per Section 5.7.1 of the P1 Workplan and Section 4.7.1 of the P2A Workplan. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results for the investigative samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in µg/L for TCLP metals, and in µg/kg with dry-weight correction for organics. (For the 7196A analyses, Trivalent Chromium is shown as not dry-weight corrected. Trivalent Chromium is calculated from the results for Hexavalent Chromium and total Chromium, which are dry-weight corrected, and thus the Trivalent Chromium is not directly dry-weight corrected but is on a dry-weight basis.)

The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated.

TABLE 1 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase I and II-A Remedial Design/ Remedial Action

SAMPLES COLLECTED AND TESTS PERFORMED

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-43348-1	ECS-1A-F	8/9/12	INV	ECS	Soil	Х	Х										
460-43348-1LR	ECS-1A-FLR	8/9/12	MD	ECS	Soil	Х											
460-43348-1MS	ECS-1A-FMS	8/9/12	MS	ECS	Soil	Х											
460-43348-2	ECS-1B-F	8/9/12	INV	ECS	Soil	Х	Х										
460-43348-3	ECS-2A-F	8/9/12	INV	ECS	Soil	Х	Х										
460-43348-4	ECS-2B-F	8/9/12	INV	ECS	Soil	Х	Х										
460-43348-5	ECS-3A-F	8/9/12	INV	ECS	Soil	Х	Х										
460-43348-6	ECS-3B-F	8/9/12	INV	ECS	Soil	Х	Х										
460-43348-7	ECS-4A-F	8/9/12	INV	ECS	Soil	Х	Х										
460-43348-8	ECS-5A-F	8/9/12	INV	ECS	Soil	Х	Х										
460-43348-9	ECS-6A-F	8/9/12	INV	ECS	Soil	Х	Х										
460-45377-1	ECS-Hill-1-F	10/3/12	INV	ECS	Soil	Х	Х										
460-45377-2	ECS-Hill-2-F	10/3/12	INV	ECS	Soil	Х	Х										
460-45377-3	ECS-Hill-3-F	10/3/12	INV	ECS	Soil	Х	Х										
460-45377-4	ECS-Hill-4-F	10/3/12	INV	ECS	Soil	Х	Х										
460-45377-5	ECS-Hill-5-F	10/3/12	INV	ECS	Soil	Х	Х										
460-45377-6	ECS-Hill-6-F	10/3/12	INV	ECS	Soil	Х	Х										
460-45377-7	ECS-Hill-7-F	10/3/12	INV	ECS	Soil	Х	Х										
460-45377-8	ECS-Hill-8-F	10/3/12	INV	ECS	Soil	Х	Х										
460-45377-9	ECS-Hill-8-F-X	10/3/12	FD	ECS	Soil	Х	Х										
460-45384-1	BF-4003G-001-1-7'	10/3/12	INV	BF	Soil										х		
460-45384-2	BF-4003G-002-1-7'	10/3/12	INV	BF	Soil										х		
460-45384-3	BF-4003C-001-1-7'	10/3/12	INV	BF	Soil				Х	Х	Х	Х	Х	Х		Х	х
460-45384-4	BF-4003G-001X-1-7'	10/3/12	FD	BF	Soil										Х		
460-45384-5	BF-4003G-002X-1-7'	10/3/12	FD	BF	Soil										Х		
460-45384-6	BF-4003C-001X-1-7'	10/3/12	FD	BF	Soil				Х	Х	Х	х	х	Х		Х	Х
460-45384-7	BF-4004G-001-1-7'	10/3/12	INV	BF	Soil										Х		
460-45384-8	BF-4004G-002-1-7'	10/3/12	INV	BF	Soil										Х		
460-45384-9	BF-4004C-001-1-7'	10/3/12	INV	BF	Soil				Х	Х	Х	х	х	х		Х	Х
460-45384-10	BF-4005G-001-1-6'	10/3/12	INV	BF	Soil										Х		
460-45384-10MS	BF-4005G-001-1-6'MS	10/3/12	MS	BF	Soil										Х		
460-45384-10SD	BF-4005G-001-1-6'SD	10/3/12	MSD	BF	Soil										х		

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-45384-11	BF-4005G-002-1-6'	10/3/12	INV	BF	Soil										х		
460-45384-11MS	BF-4005G-002-1-6'MS	10/3/12	MS	BF	Soil										х		
460-45384-11SD	BF-4005G-002-1-6'SD	10/3/12	MSD	BF	Soil										х		
460-45384-12	BF-4000G-001-1-7'	10/3/12	INV	BF	Soil										х		
460-45384-13	BF-4000G-002-1-7'	10/3/12	INV	BF	Soil										х		
460-45384-14	BF-4000C-001-1-7'	10/3/12	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	х
460-45384-15	BF-4001G-001-1-7'	10/3/12	INV	BF	Soil										х		
460-45384-16	BF-4001G-002-1-7'	10/3/12	INV	BF	Soil										х		
460-45384-17	BF-4001C-001-1-7'	10/3/12	INV	BF	Soil				Х	Х	Х	Х	х	Х		х	Х
460-45384-18	BF-4002G-001-1-6'	10/3/12	INV	BF	Soil										х		
460-45384-19	BF-4002G-002-1-6'	10/3/12	INV	BF	Soil										х		
460-45384-20	BF-4002C-001-1-6'	10/3/12	INV	BF	Soil				Х	Х	Х	Х	х	Х		х	Х
460-45384-21	BF-4005C-001-1-6'	10/3/12	INV	BF	Soil				Х	Х	Х	Х	х	Х		х	Х
460-45384-21LR	BF-4005C-001-1-6'LR	10/3/12	MD	BF	Soil				Х	Х	Х						
460-45384-21MS	BF-4005C-001-1-6'MS	10/3/12	MS	BF	Soil				Х	Х	Х	Х	х	Х		Х	х
460-45384-21SD	BF-4005C-001-1-6'SD	10/3/12	MSD	BF	Soil							Х	х	Х		х	х
460-45384-22	TRIPBLANK	10/3/12	TB	TB	Water										х		
460-45895-1	CC-BL-1G-001	10/12/12	INV	CC	Soil										Х		
460-45895-2	CC-BL-1G-002	10/12/12	INV	CC	Soil										х		
460-45895-3	CC-BL-1G-003	10/12/12	INV	CC	Soil										х		
460-45895-4	CC-BL-1G-004	10/12/12	INV	CC	Soil										х		
460-45895-5	CC-BL-1G-005	10/12/12	INV	CC	Soil										х		
460-45895-6	CC-BL-1G-006	10/12/12	INV	CC	Soil										Х		
460-45895-7	CC-BL-1G-007	10/12/12	INV	CC	Soil										х		
460-45895-8	CC-BL-1C-001	10/12/12	INV	CC	Soil				Х	Х	Х	Х	Х	Х		Х	х
460-45895-9	CC-BL-1C-002	10/12/12	INV	CC	Soil				Х	Х	Х	Х	Х	Х		Х	Х
460-45895-10	CC-BL-2G-001	10/12/12	INV	CC	Soil										Х		
460-45895-11	CC-BL-2G-002	10/12/12	INV	CC	Soil										Х		
460-45895-12	CC-BL-2C-001	10/12/12	INV	CC	Soil				Х	Х	Х	Х	Х	Х		Х	Х
460-45896-1	CC-BL-3G-001	10/12/12	INV	CC	Soil										Х		
460-45896-2	CC-BL-3G-001X	10/12/12	FD	CC	Soil										Х		
460-45896-3	CC-BL-3G-002	10/12/12	INV	CC	Soil										Х		
460-45896-4	CC-BL-3C-001	10/12/12	INV	CC	Soil				Х	Х	Х	Х	х	Х		х	Х
460-45896-5	CC-BL-3C-001X	10/12/12	FD	CC	Soil				Х	Х	Х	Х	Х	Х		Х	Х
460-45896-6	CC-BL-4G-001	10/12/12	INV	CC	Soil										х		
460-45896-6MS	CC-BL-4G-001MS	10/12/12	MS	CC	Soil										Х		
460-45896-6SD	CC-BL-4G-001SD	10/12/12	MSD	CC	Soil										х		
460-45896-7	CC-BL-4G-002	10/12/12	INV	CC	Soil										х		
460-45896-8	CC-BL-4C-001	10/12/12	INV	CC	Soil				Х	Х	Х	Х	х	х		х	Х
460-45896-8LR	CC-BL-4C-001LR	10/12/12	MD	CC	Soil				х	Х	Х						

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-45896-8MS	CC-BL-4C-001MS	10/12/12	MS	CC	Soil				х	Х	Х	Х	х	Х		Х	х
460-45896-8SD	CC-BL-4C-001SD	10/12/12	MSD	CC	Soil							х	х	Х		Х	х
460-45896-9	TB-10/12/12	10/12/12	TB	TB	Water										х		
460-46911-1	ECS-7+75-F	11/7/12	INV	ECS	Soil		Х*										
460-46911-2	ECS-7+75-SN	11/7/12	INV	ECS	Soil		Х*										
460-46911-3	ECS-7+75-SW	11/7/12	INV	ECS	Soil		Х*										
460-46911-4	ECS-7+75-SE	11/7/12	INV	ECS	Soil		х*										
460-46911-5	ECS-7+75-SS	11/7/12	INV	ECS	Soil		х*										
460-46911-6	ECS-7+25-F	11/7/12	INV	ECS	Soil		х*										
460-46911-7	ECS-7+25-FX	11/7/12	FD	ECS	Soil		х*										
460-46911-8	ECS-7+25-SS	11/7/12	INV	ECS	Soil		х*										
460-46911-9	ECS-7+25-SE	11/7/12	INV	ECS	Soil		х*										
460-46911-10	ECS-7+25-SW	11/7/12	INV	ECS	Soil		х*										
460-46911-11	ECS-7+25-SN	11/7/12	INV	ECS	Soil		х*										
460-46911-12	ECS-4+50-F	11/9/12	INV	ECS	Soil		х*										
460-46911-13	ECS-4+50-SN	11/9/12	INV	ECS	Soil		х*										
460-46911-14	ECS-4+50-SS	11/9/12	INV	ECS	Soil		х*										
460-46911-15	ECS-4+50-SE	11/9/12	INV	ECS	Soil		х*										
460-46911-16	ECS-4+50-SW	11/9/12	INV	ECS	Soil		х*										
460-47389-1	CC-PSL-1g-001	11/19/12	INV	CC	Soil										х		
460-47389-2	CC-PSL-1g-002	11/19/12	INV	CC	Soil										х		
460-47389-3	CC-PSL-1c-001	11/19/12	INV	CC	Soil				Х	Х	Х	Х	х	Х		Х	х
460-47389-4	CC-PSL-2g-001	11/19/12	INV	CC	Soil										х		
460-47389-5	CC-PSL-2g-001x	11/19/12	FD	CC	Soil										х		
460-47389-6	CC-PSL-2g-002	11/19/12	INV	CC	Soil										х		
460-47389-7	CC-PSL-2c-001	11/19/12	INV	CC	Soil				Х	Х	Х	х	х	Х		Х	х
460-47389-8	CC-PSL-2c-001x	11/19/12	FD	CC	Soil				Х	Х	Х	х	х	Х		Х	х
460-47389-9	CC-PSL-3g-001	11/19/12	INV	CC	Soil										х		
460-47389-10	CC-PSL-3g-002	11/19/12	INV	CC	Soil										х		
460-47389-10MS	CC-PSL-3g-002MS	11/19/12	MS	CC	Soil										х		
460-47389-10SD	CC-PSL-3g-002SD	11/19/12	MSD	CC	Soil										х		
460-47389-11	CC-PSL-3c-001	11/19/12	INV	CC	Soil				Х	Х	Х	х	х	х		х	х
460-47389-11LR	CC-PSL-3c-001LR	11/19/12	MD	CC	Soil				Х	Х	Х						
460-47389-11MS	CC-PSL-3c-001MS	11/19/12	MS	CC	Soil				Х	Х	Х	х	х	х		х	х
460-47389-11SD	CC-PSL-3c-001SD	11/19/12	MSD	CC	Soil							х	х	х		х	х
460-47389-12	TB-11/19/12	11/19/12	TB	TB	Water										Х		
460-48738-1	ECS-1C-F	12/18/12	INV	ECS	Soil	х	х										
460-48738-2	ECS-2C-F	12/19/12	INV	ECS	Soil	х	х										
460-48738-2LR	ECS-2C-FLR	12/19/12	MD	ECS	Soil	х	х										
460-48738-2MS	ECS-2C-FMS	12/19/12	MS	ECS	Soil	х	х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-48739-1	ECS-SSA29-F	12/18/12	INV	ECS	Soil	Х		Х	Х								
460-48739-2	ECS-SSA29-SS	12/18/12	INV	ECS	Soil	Х	Х										
460-48739-3	ECS-SSA29-SW	12/18/12	INV	ECS	Soil	Х	Х										
460-48739-4	ECS-SSA29-SN	12/18/12	INV	ECS	Soil	Х	Х										
460-48739-5	ECS-SSA29-SE	12/18/12	INV	ECS	Soil	Х	Х										
460-48739-6	ECS-SSA29-SE-X	12/18/12	FD	ECS	Soil	Х	Х										

^{*} For Total Lead only

BF - Backfill Sample

CC - Containment Cell Sample

ECS - Excavation Confirmation Sample

FD - Field Duplicate Sample

INV - Investigative Sample

MD - Matrix Duplicate Sample (unspiked)

MS - Matrix Spike Sample

MSD - Matrix Spike Duplicate Sample

TB - Trip Blank

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

- TCLP Pb: 1311/3010A/6010B for Lead in leachates of soil samples
- Total As and Pb: 3020B/ 6010B for Arsenic and Lead in soil samples
- Total TAL Metals: 3020B/ 6010B for 22 ICP-AES Target Analyte List (TAL) Metals (Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper,
 Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc) in soil samples
- Hg: 7471A for total Mercury in soil samples
- Total DER10 Metals: 3020B/ 6010B for 12 ICP-AES NYSDEC DER-10 Appendix 5 Metals (Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Lead, Manganese, Nickel, Selenium, Silver, and Zinc in soil samples
- Cr III/VI: 3060A/7196A for Trivalent Chromium and Hexavalent Chromium in soil samples
- PEST: 3541/3620B/8081A for 15 NYSDEC DER-10 Appendix 5 pesticides plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene in soil samples
- PCB: 3541/3665A/8081A for 7 Aroclors in soil samples
- HERB: 8151A for Silvex (2,4,5-TP) in soil samples
- VOC: 8260B for 30 NYSDEC DER-10 Appendix 5 volatile organic compounds (VOCs) in bulk soil samples and 5030B/ 8260B for 30 VOCs in aqueous trip blanks
- SVOC: 3541/8270C for 20 NYSDEC DER-10 Appendix 5 semivolatile organic compounds (SVOCs) plus Dibenzofuran and Hexachlorobenzene in soil samples
- CN: 9012A for Cyanide in soil samples

TABLE 2 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1

Phase I and II-A Remedial Design/ Remedial Action

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- Blank contamination. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- J- = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J-/J+ and R>UJ)

TABLE 3 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase I and II-A Remedial Design/ Remedial Action

QC DEFICIENCIES AND DATA QUALIFICATION ACTIONS

Lab ID	Sample Code	T		Method		D	ate and Tin	ne	GC	D	Amaluta	Lab	Spk	Spk	RPD	QC Issue	D\/O- A11
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
								MATRIX	DUPL	ICA	TE (MD) PRECISION						
460- 45896- 8LR	CC-BL-4C- 001_10/12/12LR	MD		3020B	6010B		10/16/12 08:16:30	10/17/12 16:53:39	NA	4	SELENIUM	٦			20	Poor lab duplicate precision (30 RPD)	J/UJ to detects/NDs for CC samples digested in the same batch
460- 47389- 11LR	CC-PSL-3c- 001_11/19/12LR	MD		3020B	6010B		11/29/12 18:16:21	11/29/12 23:56:17	NA	4	LEAD				20	Poor lab duplicate precision (21 RPD)	J/UJ to detects/NDs for CC samples digested in the same batch
460- 48738- 2LR	ECS-2C- F_12/19/12LR	MD	1311	3010A	6010B	12/21/12 15:33:00	12/24/12 09:21:10	12/24/12 14:20:20	NA	5	LEAD				20	Poor lab duplicate precision (25 RPD)	J/UJ to detects/NDs for ECS samples digested in the same batch
							М	ATRIX SPI	KE DL	JPLI	CATE (MSD) PRECISION						
460- 45384- 21SD	BF-4005C-001-1- 6'_10/03/12SD	MSD		3546	8081A		10/05/12 08:12:15	10/06/12 23:42:00	1C	1	P,P'-DDD	*	63	150	30	Poor MS/MSD precision (48 RPD)	J to detects for BF samples analyzed in the same batch (all ND)
460- 45384- 11SD	BF-4005G-002-1- 6'_10/03/12SD	MSD		5035	8260B		10/04/12 18:36:19	10/09/12 10:42:00	NA	1	1,4-DIOXANE (P- DIOXANE)	*	69	131	30	Poor MS/MSD precision (39 RPD)	J to detects for BF samples analyzed in the same batch (all ND)
FIELD DU	IPLICATE (FD) PRE	CISION	I														
460- 45896-5	CC-BL-3C- 001X_10/12/12	FD		3020B	6010B		10/16/12 08:16:30	10/17/12 17:15:34	NA	4	MANGANESE				35	Poor field duplicate precision (51 RPD), use higher result from original sample	J/UJ to detects/NDs for original and duplicate sample
460- 45896-5	CC-BL-3C- 001X_10/12/12	FD		3541	8270C		10/17/12 08:27:50	10/18/12 15:06:00	NA	1	NAPHTHALENE	J			35	Poor field duplicate precision (absolute difference > 2xRL), use higher value from original sample	J/UJ to detects/NDs for original and duplicate sample

	0			Method		D	ate and Tin	ne	GC	D	A 1	Lab	Spk	Spk	RPD	001	DVC A CUICA
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 46911-7	ECS-7+25- FX_11/07/12	FD		3020B	6010B		11/13/12 08:06:44	11/13/12 17:43:22	NA	4	LEAD				35	Poor field duplicate precision (110 RPD), use higher result from field duplicate	J/UJ to detects/NDs for original and duplicate sample
			1	1						TRO	L SPIKE (LCS) ACCURAC					Ī	
4601320 13/ 2A/3A	460132013/ 2A/3A	LCS/ LCS D		METH OD	8151A		10/15/12 10:15:49	10/16/12 11:22:00/ 11:50:00	1C	1	SILVEX (2,4,5-TP)	U*	73	148	30	Laboratory control spike not recovered on primary column	None (PCP interference noted on primary column, recovery passes at 111% on secondary column)
4601321 23/2A	460132123/2A	LCS		3546	8081A		10/16/12 05:33:41	10/16/12 06:50:00	1C	1	METHOXYCHLOR	U*	42	150		Laboratory control spike not recovered on primary column	None (missed peak on primary column, recovery passes at 101% on secondary column, no peaks on sample chromatograms)
4601322 30/2A	460132230/2A	LCS		3541	8270C		10/16/12 15:06:56	10/17/12 14:41:00	NA	1	PYRENE		49	116		Low laboratory control spike recovery (49%)	J-/UJ to detects/NDs for samples digested in the same batch
4601372 71/3	460137271/3	LCS			8260B			11/28/12 09:11:00	NA	1	METHYL ETHYL KETONE (2- BUTANONE)	*	77	117		High laboratory control spike recovery (140%)	J+ to detects for samples digested in the same batch (all ND)
4601322 07/3	460132207/3	LCS			8260B			10/16/12 12:10:00	NA	1	ACETONE	*	45	156		High laboratory control spike recovery (187%) - QC for TB only	none (analytes ND in this TB, samples results not affected)
4601322 07/3	460132207/3	LCS			8260B			10/16/12 12:10:00	NA	1	METHYL ETHYL KETONE (2- BUTANONE)	*	65	114		High laboratory control spike recovery (129%) - QC for TB only	none (analytes ND in this TB, samples results not affected)
								MATR	RIX SF	PIKE	(MS) ACCURACY						
460- 45384- 21MS	BF-4005C-001-1- 6'_10/03/12MS	MS		3020B	6010B		10/05/12 08:08:08	10/05/12 23:24:54	NA	4	MANGANESE	4	75	125		Low matrix spike recovery (68%)	None (checked waived because unspiked sample conc > 4x spike amount), PDS passes
460- 45896- 8MS	CC-BL-4C- 001_10/12/12MS	MS		3020B	6010B		10/16/12 08:16:30	10/17/12 17:04:41	NA	4	MANGANESE	4	75	125		Low matrix spike recovery (-139%)	None (checked waived because unspiked sample conc > 4x spike amount), PDS passes
460- 47389- 11MS	CC-PSL-3c- 001_11/19/12MS	MS		3020B	6010B		11/29/12 18:16:21	11/30/12 00:07:18	NA	4	MANGANESE	4	75	125		High matrix spike recovery (226%)	None (checked waived because unspiked sample conc > 4x spike amount), PDS passes
460- 45384- 21MS/ SD	BF-4005C-001-1- 6'_10/03/12 MS/SD	MS/ MSD		3546	8081A		10/05/12 08:12:15	10/06/12 23:28:00/ 23:42:00	1C	1	P,P'-DDD	E*	63	150		High average MS/MSD recovery (218.5%)	J+ to detects for BF samples digested in the same batch (all ND)

I als ID	Camania Carla	T		Method		D	ate and Tim	ne	GC	D	Amaluta	Lab	Spk	Spk	RPD	00 1	DVO- Ameliad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 45895- 8MS/SD	CC-BL-1C- 001_10/12/12 MS/SD	MS/ MSD		METH OD	8151A		10/15/12 10:15:49	10/16/12 12:17:00/ 12:44:00	1C	1	SILVEX (2,4,5-TP)	U*	73	148	30	Matrix spike not recovered on primary column	None (PCP interference noted on primary column, recovery passes at 112% on secondary column)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	1,1,1- TRICHLOROETHANE	*	78	117		Low average MS/MSD recovery (75.5%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	1,1- DICHLOROETHANE	*	76	125		Low average MS/MSD recovery (72.5%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	1,2,4- TRIMETHYLBENZENE	*	81	121		Low average MS/MSD recovery (73%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	1,2- DICHLOROBENZENE	*	80	120		Low average MS/MSD recovery (73.5%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	*	82	122		Low average MS/MSD recovery (72.5%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	1,3- DICHLOROBENZENE	*	80	120		Low average MS/MSD recovery (73%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	1,4- DICHLOROBENZENE	*	80	120		Low average MS/MSD recovery (72.5%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	BENZENE	*	77	117		Low average MS/MSD recovery (74%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	CARBON TETRACHLORIDE	*	79	118		Low average MS/MSD recovery (74.5%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	CHLOROBENZENE	*	80	120		Low average MS/MSD recovery (77%)	None (recovery within 70-130% data qualification limits)

I ah ID	Samula Cada	T		Method		D	ate and Tim	ne	GC	D	Amalusta	Lab	Spk	Spk	RPD	QC Issue	DVOs Applied
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	CIS-1,2- DICHLOROETHYLENE	*	80	120		Low average MS/MSD recovery (75.5%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	ETHYLBENZENE	*	81	121		Low average MS/MSD recovery (73%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	N-BUTYLBENZENE	*	82	122		Low average MS/MSD recovery (65.5%)	J-/UJ to detects/NDs for BF samples digested in the same batch
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	N-PROPYLBENZENE	*	81	121		Low average MS/MSD recovery (73.5%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	SEC-BUTYLBENZENE	*	82	122		Low average MS/MSD recovery (71%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	T-BUTYLBENZENE	*	82	122		Low average MS/MSD recovery (71%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	TERT-BUTYL METHYL ETHER	*	78	120		Low average MS/MSD recovery (76%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	TETRACHLORO- ETHYLENE(PCE)	*	80	120		Low average MS/MSD recovery (76%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	TOLUENE	*	75	115		Low average MS/MSD recovery (71%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	TRANS-1,2- DICHLOROETHENE	*	75	122		Low average MS/MSD recovery (73.5%)	None (recovery within 70-130% data qualification limits)
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	TRICHLORO- ETHYLENE (TCE)	*	79	119		Low average MS/MSD recovery (76%)	None (recovery within 70-130% data qualification limits)

				Method		n	ate and Tim	10	GC	D		Lab	Spk	Spk	RPD		1
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	VINYL CHLORIDE	*	67	133		Low average MS/MSD recovery (58%)	J-/UJ to detects/NDs for BF samples digested in the same batch
460- 45384- 10MS/ SD	BF-4005G-001-1- 6'_10/03/12 MS/SD	MS/ MSD		5035	8260B		10/04/12 18:27:21/ 18:29:36	10/08/12 12:27:00/ 12:48:00	NA	1	XYLENES, TOTAL	*	82	122		Low average MS/MSD recovery (75.5%)	None (recovery within 70-130% data qualification limits)
460- 45384- 11MS	BF-4005G-002-1- 6'_10/03/12MS	MS		5035	8260B		10/04/12 18:35:12	10/09/12 11:09:00	NA	1	1,1- DICHLOROETHANE	*	76	125		Low MS recovery (75%)	None (recovery within 70-130% data qualification limits)
460- 45384- 11MS	BF-4005G-002-1- 6'_10/03/12MS	MS		5035	8260B		10/04/12 18:35:12	10/09/12 11:09:00	NA	1	1,2,4- TRIMETHYLBENZENE	*	81	121		Low MS recovery (73%)	None (recovery within 70-130% data qualification limits)
460- 45384- 11MS	BF-4005G-002-1- 6'_10/03/12MS	MS		5035	8260B		10/04/12 18:35:12	10/09/12 11:09:00	NA	1	1,2- DICHLOROBENZENE	*	80	120		Low MS recovery (79%)	None (recovery within 70-130% data qualification limits)
460- 45384- 11MS	BF-4005G-002-1- 6'_10/03/12MS	MS		5035	8260B		10/04/12 18:35:12	10/09/12 11:09:00	NA	1	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	*	82	122		Low MS recovery (73%)	None (recovery within 70-130% data qualification limits)
460- 45384- 11MS	BF-4005G-002-1- 6'_10/03/12MS	MS		5035	8260B		10/04/12 18:35:12	10/09/12 11:09:00	NA	1	1,3- DICHLOROBENZENE	*	80	120		Low MS recovery (78%)	None (recovery within 70-130% data qualification limits)
460- 45384- 11MS	BF-4005G-002-1- 6'_10/03/12MS	MS		5035	8260B		10/04/12 18:35:12	10/09/12 11:09:00	NA	1	1,4- DICHLOROBENZENE	*	80	120		Low MS recovery (79%)	None (recovery within 70-130% data qualification limits)
460- 45384- 11MS	BF-4005G-002-1- 6'_10/03/12MS	MS		5035	8260B		10/04/12 18:35:12	10/09/12 11:09:00	NA	1	BENZENE	*	77	117		Low MS recovery (76%)	None (recovery within 70-130% data qualification limits)
460- 45384- 11MS	BF-4005G-002-1- 6'_10/03/12MS	MS		5035	8260B		10/04/12 18:35:12	10/09/12 11:09:00	NA	1	CHLOROBENZENE	*	80	120		Low MS recovery (79%)	None (recovery within 70-130% data qualification limits)
460- 45384- 11MS	BF-4005G-002-1- 6'_10/03/12MS	MS		5035	8260B		10/04/12 18:35:12	10/09/12 11:09:00	NA	1	CIS-1,2-DICHLORO- ETHYLENE	*	80	120		Low MS recovery (77%)	None (recovery within 70-130% data qualification limits)
460- 45384- 11MS	BF-4005G-002-1- 6'_10/03/12MS	MS		5035	8260B		10/04/12 18:35:12	10/09/12 11:09:00	NA	1	ETHYLBENZENE	*	81	121		Low MS recovery (73%)	None (recovery within 70-130% data qualification limits)
460- 45384- 11MS	BF-4005G-002-1- 6'_10/03/12MS	MS		5035	8260B		10/04/12 18:35:12	10/09/12 11:09:00	NA	1	N-BUTYLBENZENE	*	82	122		Low MS recovery (72%)	None (recovery within 70-130% data qualification limits)
460- 45384- 11MS	BF-4005G-002-1- 6'_10/03/12MS	MS		5035	8260B		10/04/12 18:35:12	10/09/12 11:09:00	NA	1	N-PROPYLBENZENE	*	81	121		Low MS recovery (72%)	None (recovery within 70-130% data qualification limits)

				Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460-	BF-4005G-002-1-	MS		5035	8260B		10/04/12	10/09/12	NA	1	SEC-BUTYLBENZENE	*	82	122		Low MS recovery	None (recovery within 70-130%
45384-	6'_10/03/12MS						18:35:12	11:09:00								(75%)	data qualification limits)
11MS																	
460-	BF-4005G-002-1-	MS		5035	8260B		10/04/12	10/09/12	NA	1	T-BUTYLBENZENE	*	82	122		Low MS recovery	None (recovery within 70-130%
45384-	6'_10/03/12MS						18:35:12	11:09:00								(73%)	data qualification limits)
11MS																	
460-	BF-4005G-002-1-	MS		5035	8260B		10/04/12	10/09/12	NA	1	TETRACHLORO-	*	80	120		Low MS recovery	None (recovery within 70-130%
45384-	6'_10/03/12MS						18:35:12	11:09:00			ETHYLENE(PCE)					(79%)	data qualification limits)
11MS 460-	BF-4005G-002-1-	MS		5035	8260B		10/04/12	10/09/12	NA	1	TOLUENE	*	75	115		Low MS recovery	No (
45384-	6' 10/03/12MS	IVIS		5035	8260B		18:35:12	10/09/12	NA	1	TOLUENE	-	75	115		(71%)	None (recovery within 70-130% data qualification limits)
11MS	6_10/03/121013						10.33.12	11.09.00								(7 1 70)	data qualification limits)
460-	BF-4005G-002-1-	MS		5035	8260B		10/04/12	10/09/12	NA	1	TRICHLORO-	*	79	119		Low MS recovery	None (recovery within 70-130%
45384-	6' 10/03/12MS	1110		0000	02000		18:35:12	11:09:00	'''	ļ .	ETHYLENE (TCE)		, 0			(76%)	data qualification limits)
11MS	0_10/00/12M0						.0.002				(,					(1.070)	auta quamicanion immo)
460-	BF-4005G-002-1-	MS		5035	8260B		10/04/12	10/09/12	NA	1	VINYL CHLORIDE	*	67	133		Low MS recovery	None (average MS/MSD
45384-	6'_10/03/12MS						18:35:12	11:09:00								(61%)	recovery (71%) within 70-130%
11MS																	data qualification limits)
460-	BF-4005G-002-1-	MS		5035	8260B		10/04/12	10/09/12	NA	1	XYLENES, TOTAL	*	82	122		Low MS recovery	None (recovery within 70-130%
45384-	6'_10/03/12MS						18:35:12	11:09:00								(76%)	data qualification limits)
11MS																	
460-	CC-BL-4G-	MS/		5035	8260B		10/17/12	10/18/12	NA	1	1,2,4-	*	81	121		Low average	None (recovery within 70-130%
45896-	001_10/12/12	MSD					09:23:26/	14:11:00/			TRIMETHYLBENZENE					MS/MSD recovery	data qualification limits)
6MS/SD	MS/SD						09:25:44	14:36:00								(73%)	
460-	CC-BL-4G-	MS/		5035	8260B		10/17/12	10/18/12	NA	1	1,2-	*	80	120		Low average	J-/UJ to detects/NDs for CC
45896-	001_10/12/12	MSD					09:23:26/	14:11:00/			DICHLOROBENZENE					MS/MSD recovery	samples digested in the same
6MS/SD	MS/SD CC-BL-4G-	MS/		5035	00000		09:25:44 10/17/12	14:36:00 10/18/12	NA	1	405	*	00	100		(68.5%)	batch
460- 45896-	001 10/12/12	MSD		5035	8260B		09:23:26/	10/18/12	NA	1	1,3,5- TRIMETHYLBENZENE		82	122		Low average MS/MSD recovery	None (recovery within 70-130% data qualification limits)
6MS/SD	MS/SD	IVISD					09.25.26/	14:11:00/			(MESITYLENE)					(77%)	data qualification limits)
460-	CC-BL-4G-	MS/		5035	8260B		10/17/12	10/18/12	NA	1	1.3-	*	80	120		Low average	J-/UJ to detects/NDs for CC
45896-	001 10/12/12	MSD		0000	02000		09:23:26/	14:11:00/	'''	ļ .	DICHLOROBENZENE		00	120		MS/MSD recovery	samples digested in the same
6MS/SD	MS/SD						09:25:44	14:36:00			5.02005222					(61%)	batch
460-	CC-BL-4G-	MS/		5035	8260B		10/17/12	10/18/12	NA	1	1,4-	*	80	120		Low average	J-/UJ to detects/NDs for CC
45896-	001_10/12/12	MSD					09:23:26/	14:11:00/			DICHLOROBENZENE					MS/MSD recovery	samples digested in the same
6MS/SD	MS/SD	<u> </u>					09:25:44	14:36:00				<u> </u>			<u> </u>	(61%)	batch
460-	CC-BL-4G-	MS/		5035	8260B		10/17/12	10/18/12	NA	1	CHLOROBENZENE	*	80	120		Low average	None (recovery within 70-130%
45896-	001_10/12/12	MSD					09:23:26/	14:11:00/								MS/MSD recovery	data qualification limits)
6MS/SD	MS/SD						09:25:44	14:36:00								(76%)	
460-	CC-BL-4G-	MS/		5035	8260B		10/17/12	10/18/12	NA	1	ETHYLBENZENE	*	81	121		Low average	None (recovery within 70-130%
45896-	001_10/12/12	MSD					09:23:26/	14:11:00/								MS/MSD recovery	data qualification limits)
6MS/SD	MS/SD						09:25:44	14:36:00								(76.5%)	

	Lab ID	Commis Code	T		Method		D	ate and Tim	ne	GC	D	Amaluta	Lab	Spk	Spk	RPD	QC Issue	DVO - Ameliad
45986	Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
MS/SD MS/SD					5035	8260B				NA	1		*	77	117			None (recovery within 70-130%
460	45896-	_	MSD									,					,	data qualification limits)
4888- 001,101/21/2 MSD 0.02/3.28/c 14:11:00/ 0.02/3.28/c 14:10:00/ 0.02/3.28/c	-																` '	
BMSSD MSSD MSSD S035 82608 1017172 018312 0923245 1411000 101812 0923245 1411000					5035	8260B				NA	1	N-BUTYLBENZENE	*	82	122		•	
A60- CC-BL-4G MS/		_	MSD														,	' '
A6896																	, ,	
BMS/SD					5035	8260B				NA	1	N-PROPYLBENZENE	*	81	121		•	` ,
A60- CC-BL-4G- MS/	1	_	MSD														,	data qualification limits)
4896- OC-PSL-3g- MS/SD S260B 11/23/12 11/28/12 NA 1 S.939 OC-PSL-3g- MS/SD S260B	-										_						` '	
BMS/SD MS/SD MS/SD A60- CC-BL4G- MS/ MSD 5035 8260B 10/17/12 10/18/12 NA 1 TETRACHLORO- 80 120 Low average None (recovery within 70-130% data qualification limits) MS/SD MS					5035	8260B				NA	1	SEC-BUTYLBENZENE	*	82	122		•	1
460		_	MSD														,	data qualification limits)
45896- 001_101/212 MS/D MS/SD MS/SD MS/SD MS/SD 092:32:6/ 14:11:00/ 092:32:6/ 14:13:00/ 15:59:37 15:41:00/ 16:06:00 15:59:37 15:41:00/ 16:06:00 15:59:37 15:41:00/ 16:06:00 16			140/			00000						TETD 4 01 II 0 D 0	_		100		` '	N. (
6MS/SD					5035	8260B				NA	1		*	80	120		· ·	,
460- CC-BL-4G- MS/	1	_	MSD									ETHYLENE(PCE)					,	data qualification limits)
45896- MS/SD MS/	-		140/			00000						\0.4 ENEO TOTAL	_		400		` '	N. (
6MS/SD MS/SD MS/					5035	8260B				NA	1	XYLENES, TOTAL	_	82	122		•	, ,
A60- A7389- A73	1	_	MSD														,	data qualification limits)
47389- 1002_11/19/12 MS/SD SD SD SD SD SD SD SD			140/		5005	00000				NIA.	_	444		70	447		` '	1
10MS/ SD 16:06:00		J			5035	8260B				NA	1	, ,	,	78	117		0	
SD		_	MSD					15:59:37				TRICHLORUETHANE					,	,
460- CC-PSL-3g- MS/ MS/BD S035 8260B 11/23/12 11/28/12 NA 1 1,1- 76 125 High average MS/MSD recovery digested in the same batch MS/MSD recovery (194%) MS/BD		IVIS/3D							16:06:00								(184.5%)	ND)
47389- 10MS/ SD	-	CC DSL 2a	MC/		E02E	9260B		11/22/12	11/20/12	NΙΛ	1	1.1	*	76	125		High overego	Li to detecto for CC comples
10MS/ SD 16:06:00 16:06:00 16:06:00 16:06:00 16:06:00 16:06:00	1	•			5035	0200B				INA	1	,		70	123		0	
SD		_	IVISD					15.59.57				DICHLORUETHAINE						digested in the same batch
460- 47389- 10MS/ SD CC-PSL-3g- MS/SD MS/ MSD MS/ MSD MS/ MSD 5035 8260B 11/23/12 15:59:37 11/28/12 15:59:37 NA 1 1 10/3/12 15:59:37 NA 1 1 15:59:37 NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	WO/OD							10.00.00								(13470)	
47389- 002_11/19/12 MS/SD SD MS/SD MS/SD SD MS/MSD SD SD SD SD SD SD SD	-	CC-PSL-3g-	MS/		5035	8260B		11/23/12	11/28/12	ΝΔ	1	1 1-	*	71	126		High average	I+ to detects for CC samples
10MS/ SD		•			5000	02000				14/ (,		′ '	120		0 0	
SD		_	WOD					10.00.07				DIONEONOEMIENE					,	algoriod in the came baton
47389- 10MS/ SD 002_11/19/12 MS/SD MSD 15:59:37 15:41:00/ 16:06:00 TRIMETHYLBENZENE MS/MSD recovery (130%) data qualification limits) 460- 47389- 10MS/ SD CC-PSL-3g- MS/SD MS/ MSD 5035 MS/SD 8260B 11/23/12 11/23/12 15:59:37 NA 1 15:41:00/ 16:06:00 1 1/2- DICHLOROBENZENE * 80 MS/MSD recovery (129%) 120 MS/MSD recovery (129%) High average MS/MSD recovery (129%) None (recovery within 70-130% data qualification limits) 460- 460- 47389- 17389																	(10=70)	
47389- 10MS/ SD 002_11/19/12 MS/SD MSD 15:59:37 15:41:00/ 16:06:00 TRIMETHYLBENZENE MS/MSD recovery (130%) data qualification limits) 460- 47389- 10MS/ MS/SD CC-PSL-3g- MS/SD MS/ MS/SD MS/ MS/SD MS/ MS/SD 5035 8260B 11/23/12 15:59:37 NA 1 15:41:00/ 16:06:00 NA 1 16:06:00 1,2- MS/MSD recovery (129%) MS/MSD recovery (129%) None (recovery within 70-130% data qualification limits) 460- 460- 47389- 17389-		CC-PSL-3a-	MS/		5035	8260B		11/23/12	11/28/12	NA	1	1.2.4-	*	81	121		High average	None (recovery within 70-130%
10MS/ MS/SD		•			-							, ,		-			0	,
460- CC-PSL-3g- MS/ MSD		_															,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
47389- 10MS/ SD 002_11/19/12 MS/SD MSD 15:59:37 15:41:00/ 16:06:00 DICHLOROBENZENE MS/MSD recovery (129%) data qualification limits) 460- 47389- 47389- 47389- CC-PSL-3g- 002_11/19/12 MSD MS/ 5035 5035 8260B 11/23/12 15:59:37 NA 15:41:00/ 15:59:37 1 1,2- DICHLOROETHANE * 76 MS/MSD recovery MS/MSD recovery digested in the same batch (all	SD																,	
47389- 002_11/19/12 MSD 15:59:37 15:41:00/ 16:06:00 DICHLOROBENZENE MS/MSD recovery (129%) data qualification limits) MS/MSD recovery (129%) data qualification limits) 460- CC-PSL-3g- MS/ 5035 8260B 11/23/12 11/28/12 NA 1 1,2- * 76 118 High average MS/MSD recovery digested in the same batch (all	460-	CC-PSL-3g-	MS/		5035	8260B		11/23/12	11/28/12	NA	1	1,2-	*	80	120		High average	None (recovery within 70-130%
10MS/ MS/SD	47389-	•	MSD					15:59:37	15:41:00/			DICHLOROBENZENE						` '
460- CC-PSL-3g- MS/ 5035 8260B 11/23/12 11/28/12 NA 1 1,2- * 76 118 High average MS/MSD recovery digested in the same batch (all	10MS/	MS/SD							16:06:00								(129%)	,
47389- 002_11/19/12 MSD 15:59:37 15:41:00/ DICHLOROETHANE MS/MSD recovery digested in the same batch (all	SD																	
	460-	CC-PSL-3g-	MS/		5035	8260B		11/23/12	11/28/12	NA	1	1,2-	*	76	118		High average	J+ to detects for CC samples
	47389-	002_11/19/12	MSD					15:59:37	15:41:00/			DICHLOROETHANE					MS/MSD recovery	digested in the same batch (all
10MS/ MS/SD 16:06:00 (172%) ND)	10MS/	MS/SD							16:06:00								(172%)	ND)
SD SD	SD																	

460-	Sample Code CC-PSL-3q-	Туре	Leach						GC	D	A mal: 4a	Lab	Spk	Spk	RPD		DVOs Assiled
	CC-PSL-3a-		Leacil	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
	002_11/19/12	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/	NA	1	1,3,5- TRIMETHYLBENZENE	*	82	122		High average MS/MSD recovery	J+ to detects for CC samples digested in the same batch (all
10MS/ SD	MS/SD							16:06:00			(MESITYLENE)					(133.5%)	ND)
	CC-PSL-3g-	MSD		5035	8260B		11/23/12	11/28/12	NA	1	1,3-	*	80	120	30	High MSD recovery	None (recovery within 70-130%
47389- 00 10SD	002_11/19/12SD						15:59:37	16:06:00			DICHLOROBENZENE					(124%)	data qualification limits)
	CC-PSL-3g-	MSD		5035	8260B		11/23/12	11/28/12	NA	1	1,4-	*	80	120	30	High MSD recovery	None (recovery within 70-130%
47389- 00 10SD	002_11/19/12SD						15:59:37	16:06:00			DICHLOROBENZENE					(122%)	data qualification limits)
	CC-PSL-3g-	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/	NA	1	1,4-DIOXANE (P-	*	69	131		High average MS/MSD recovery	J+ to detects for CC samples
47389- 0 10MS/	002_11/19/12 MS/SD	MSD					15:59:37	16:06:00			DIOXANE)					(215.5%)	digested in the same batch (all ND)
SD	00 DOL 0-	MC/		5005	00000		44/00/40	44/00/40	NA	_	ACETONE	*	07	404		I Balancia	l. to detects for 00 commission
1	CC-PSL-3g- 002_11/19/12	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/	NA	1	ACETONE	•	27	164		High average MS/MSD recovery	J+ to detects for CC samples digested in the same batch
10MS/ SD	MS/SD							16:06:00								(302%)	-
1	CC-PSL-3g-	MS/		5035	8260B		11/23/12	11/28/12	NA	1	BENZENE	*	77	117		High average	J+ to detects for CC samples
47389- (10MS/	002_11/19/12 MS/SD	MSD					15:59:37	15:41:00/ 16:06:00								MS/MSD recovery (167%)	digested in the same batch (all ND)
SD																	,
1	CC-PSL-3g- 002 11/19/12	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/	NA	1	CARBON TETRACHLORIDE	*	79	118		High average MS/MSD recovery	J+ to detects for CC samples digested in the same batch (all
10MS/	MS/SD	WOD .					10.00.01	16:06:00			TETTOTEORIBE					(184%)	ND)
SD 460-	CC-PSL-3q-	MS/		5035	8260B		11/23/12	11/28/12	NA	1	CHLOROBENZENE	*	80	120		High average	J+ to detects for CC samples
47389-	002_11/19/12	MSD					15:59:37	15:41:00/								MS/MSD recovery	digested in the same batch (all
10MS/ SD	MS/SD							16:06:00								(144%)	ND)
1	CC-PSL-3g-	MS/		5035	8260B		11/23/12	11/28/12	NA	1	CHLOROFORM	*	77	120		High average	J+ to detects for CC samples
47389- 0 10MS/	002_11/19/12 MS/SD	MSD					15:59:37	15:41:00/ 16:06:00								MS/MSD recovery (191%)	digested in the same batch (all ND)
SD																	
	CC-PSL-3g- 002 11/19/12	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/	NA	1	CIS-1,2-DICHLORO- ETHYLENE	*	80	120		High average MS/MSD recovery	J+ to detects for CC samples digested in the same batch (all
10MS/ SD	MS/SD							16:06:00								(182.5%)	ND)
	CC-PSL-3g-	MS/		5035	8260B		11/23/12	11/28/12	NA	1	ETHYLBENZENE	*	81	121		High average	J+ to detects for CC samples
1	002_11/19/12 MS/SD	MSD					15:59:37	15:41:00/								MS/MSD recovery	digested in the same batch (all
10MS/ SD	IVIO/OU							16:06:00								(147.5%)	ND)

				Method		n	ate and Tin	10	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	METHYL ETHYL KETONE (2- BUTANONE)	*	77	117		High average MS/MSD recovery (232%)	J+ to detects for CC samples digested in the same batch (all ND)
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	METHYLENE CHLORIDE	*	74	137		High average MS/MSD recovery (210.5%)	J+ to detects for CC samples digested in the same batch
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	N-BUTYLBENZENE	*	82	122	30	High MSD recovery (123%)	None (recovery within 70-130% data qualification limits)
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	N-PROPYLBENZENE	*	81	121		High average MS/MSD recovery (132%)	J+ to detects for CC samples digested in the same batch (all ND)
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	SEC-BUTYLBENZENE	*	82	122		High average MS/MSD recovery (137.5%)	J+ to detects for CC samples digested in the same batch (all ND)
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	T-BUTYLBENZENE	*	82	122		High average MS/MSD recovery (149.5%)	J+ to detects for CC samples digested in the same batch (all ND)
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	TERT-BUTYL METHYL ETHER	*	78	120		High average MS/MSD recovery (178%)	J+ to detects for CC samples digested in the same batch (all ND)
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	TETRACHLORO- ETHYLENE(PCE)	*	80	120		High average MS/MSD recovery (151.5%)	J+ to detects for CC samples digested in the same batch (all ND)
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	TOLUENE	*	75	115		High average MS/MSD recovery (151.5%)	J+ to detects for CC samples digested in the same batch (all ND)
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	TRANS-1,2- DICHLOROETHENE	*	75	122		High average MS/MSD recovery (172.5%)	J+ to detects for CC samples digested in the same batch (all ND)
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	TRICHLORO- ETHYLENE (TCE)	*	79	119		High average MS/MSD recovery (168.5%)	J+ to detects for CC samples digested in the same batch (all ND)

				Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	VINYL CHLORIDE	*	67	133		High average MS/MSD recovery (163.5%)	J+ to detects for CC samples digested in the same batch (all ND)
460- 47389- 10MS/ SD	CC-PSL-3g- 002_11/19/12 MS/SD	MS/ MSD		5035	8260B		11/23/12 15:59:37	11/28/12 15:41:00/ 16:06:00	NA	1	XYLENES, TOTAL	*	82	122		High average MS/MSD recovery (141%)	J+ to detects for CC samples digested in the same batch (all ND)
460- 45384- 21SD	BF-4005C-001-1- 6'_10/03/12SD	MSD		3541	8270C		10/05/12 09:19:37	10/13/12 21:20:00	NA	1	BENZO(A)PYRENE	*	36	89	30	High MSD recovery (94%)	None (recovery within 70-130% data qualification limits)
460- 45896- 8MS/SD	CC-BL-4C- 001_10/12/12 MS/SD	MS/ MSD		3541	8270C		10/16/12 15:06:56	10/17/12 16:04:00/ 16:25:00	NA	1	PENTACHLORO- PHENOL		19	113		Low average MS/MSD recovery (38%)	J-/UJ to detects/NDs for CC samples digested in the same batch
								SUR	ROG/	ΑΤΕ	(SU) RECOVERY						
4601306 63/2A	460130663/2A	LCS		3546	8081A		10/05/12 08:12:15	10/06/12 23:14:00	2C	1	DECACHLORO- BIPHENYL, 2,2',3,3',4,4',5,5',6,6'- (IUPAC 209)	*	53	150		High surrogate recovery (157%)	None (no effect on environmental sample results)
4601310 33/3A	460131033/3A	LCS D		METH OD	8151A		10/08/12 10:17:35	10/09/12 10:38:00	1C	1	2,4- DICHLOROPHENYL- ACETIC ACID	*	54	150		High surrogate recovery (164%)	None (no effect on environmental sample results)
460- 45384- 21MS	BF-4005C-001-1- 6'_10/03/12MS	MS		METH OD	8151A		10/08/12 10:17:35	10/09/12 11:05:00	1C	1	2,4- DICHLOROPHENYL- ACETIC ACID	*	54	150		High surrogate recovery (152%)	None (no effect on environmental sample results)
			•	•				LABORAT	ORY	BLA	NK CONTAMINATION						
4601305 95/1A	460130595/1A	PB		5035	8260B		10/04/12 18:10:34	10/08/12 13:31:00	NA	1	ACETONE	J				Preparation blank contamination (2.89 J ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples prepared in the same batch
4601305 95/1A	460130595/1A	PB		5035	8260B		10/04/12 18:10:34	10/08/12 13:31:00	NA	1	METHYLENE CHLORIDE	J				Preparation blank contamination (0.437 J ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples prepared in the same batch
4601310 41/5	460131041/5	MB			8260B			10/08/12 10:49:00	NA	1	METHYLENE CHLORIDE	J				Method blank contamination (0.378 J ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples analyzed in the same batch
4601311 53/5	460131153/5	MB			8260B			10/09/12 09:38:00	NA	1	ACETONE	J				Method blank contamination (2.96 J ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples analyzed in the same batch

				Method		D	ate and Tim	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4601311 53/5	460131153/5	MB			8260B			10/09/12 09:38:00	NA	1	METHYLENE CHLORIDE					Method blank contamination (10.9 ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples analyzed in the same batch
4601324 38/1A	460132438/1A	PB		5035	8260B		10/17/12 17:28:45	10/18/12 01:17:00	NA	1	ACETONE	J				Preparation blank contamination (2.31 J ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples prepared in the same batch
4601324 38/1A	460132438/1A	PB		5035	8260B		10/17/12 17:28:45	10/18/12 01:17:00	NA	1	METHYLENE CHLORIDE	J				Preparation blank contamination (0.453 J ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples prepared in the same batch
4601324 63/5	460132463/5	MB			8260B			10/17/12 21:32:00	NA	1	ACETONE	J				Method blank contamination (2.3 J ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples analyzed in the same batch
4601324 63/5	460132463/5	MB			8260B			10/17/12 21:32:00	NA	1	METHYLENE CHLORIDE					Method blank contamination (1.13 ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples analyzed in the same batch
4601325 04/6	460132504/6	MB			8260B			10/18/12 08:21:00	NA	1	ACETONE	J				Method blank contamination (2.27 J ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples analyzed in the same batch
4601325 04/6	460132504/6	МВ			8260B			10/18/12 08:21:00	NA	1	METHYLENE CHLORIDE					Method blank contamination (5.13 ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples analyzed in the same batch
4601323 27/1A	460132327/1A	РВ		5035	8260B		10/17/12 09:11:52	10/18/12 17:30:00	NA	1	METHYLENE CHLORIDE					Preparation blank contamination (1.6 ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples prepared in the same batch
4601326 46/5	460132646/5	MB			8260B			10/18/12 20:58:00	NA	1	ACETONE	J				Method blank contamination (1.71 J ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples analyzed in the same batch
4601326 46/5	460132646/5	MB			8260B			10/18/12 20:58:00	NA	1	METHYLENE CHLORIDE	J				Method blank contamination (0.293 J ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples analyzed in the same batch
4601372 71/6	460137271/6	MB			8260B			11/28/12 11:52:00	NA	1	ACETONE	J				Method blank contamination (4.77 J ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples analyzed in the same batch

1 15	0			Method		Da	ate and Tin	ne	GC	D	A 1	Lab	Spk	Spk	RPD	001	DVO A CUICA
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4601372 71/6	460137271/6	MB			8260B			11/28/12 11:52:00	NA	1	METHYLENE CHLORIDE					Method blank contamination (1.51 ug/kg)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples analyzed in the same batch
								TRIP	BLA	NK (CONTAMINATION						
460- 45384- 22	TRIPBLANK_10/ 03/12	ТВ			8260B			10/05/12 16:20:00	NA	1	CHLOROFORM	J				Trip blank contamination (0.17 J ug/l)	U at RL to Js, J+ to detects <2x RL or < 1x blank equivalent concentration for samples shipped in the same container (all ND)
460- 45384- 22	TRIPBLANK_10/ 03/12	TB			8260B			10/05/12 16:20:00	NA	1	METHYLENE CHLORIDE					Trip blank contamination (2 ug/l)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples shipped in the same container
460- 45896-9	TB- 10/12/12_10/12/1 2	ТВ			8260B			10/16/12 17:11:00	NA	1	CHLOROFORM	J				Trip blank contamination (0.21 J ug/l)	U at RL to Js, J+ to detects <2x RL or < 1x blank equivalent concentration for samples shipped in the same container (all ND)
460- 45896-9	TB- 10/12/12_10/12/1 2	ТВ			8260B			10/16/12 17:11:00	NA	1	METHYLENE CHLORIDE					Trip blank contamination (1.6 ug/l)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples shipped in the same container
460- 47389- 12	TB- 11/19/12_11/19/1 2	ТВ			8260B			11/27/12 23:55:00	NA	1	CHLOROFORM	J				Trip blank contamination (0.26 J ug/l)	U at RL to Js, J+ to detects <2x RL or < 1x blank equivalent concentration for samples shipped in the same container (all ND)
460- 47389- 12	TB- 11/19/12_11/19/1 2	TB			8260B			11/27/12 23:55:00	NA	1	METHYLENE CHLORIDE					Trip blank contamination (1.9 ug/l)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples shipped in the same container
			1	ı	F				_		BRATION (ICAL)					T	T
IC 460- 125812/ 2-7	IC 460-125812/2- 7	ICAL			8260B	MS9		08/27/12 20:51:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for each ICAL standard <0.005 advisory level (at 0.0029-0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard	J to detects/R to NDs for samples quantitated with this ICAL

	0			Method		D	ate and Tim	ne	GC	D	A 1 4 .	Lab	Spk	Spk	RPD	001	DVG - A - III-I
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
IC 460- 131361/ 2-7	IC 460-131361/2- 7	ICAL			8260B	MS12		10/10/12 04:19:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for each ICAL standard <0.005 advisory level (at 0.0034-0.0047), visible peak with area of 2725 counts in 50-ppb standard	J to detects/UJ to NDs for samples quantitated with this ICAL (professional judgment - RRF is advisory, clear response observed in standard below the ACL of 0.1 ppm)
IC 460- 137240/ 2-7	IC 460-137240/2- 7	ICAL			8260B	MS12		11/28/12 01:25:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for each ICAL standard <0.005 advisory level (at 0.0042-0.0049), visible peak with area of 4374 counts in 50-ppb standard	J to detects/UJ to NDs for samples quantitated with this ICAL (professional judgment - RRF is advisory, clear response observed in standard below the ACL of 0.1 ppm)
							COI	NTINUING (_	RAT	TION VERIFICATION (CC)	V)					
460- 130916/ 2	CCVRT 460- 130916/2	CCV			8082			10/06/12 13:43:00	2C	1	PCB-1260 (AROCLOR 1260) - peak 6			15		Calibration drift primary column (%D= -18.8%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV
CCVRT 460- 130916/ 28	CCVRT 460- 130916/28	CCV			8082			10/06/13 20:50:00	2C	1	PCB-1260 (AROCLOR 1260) - peak 1			15		Calibration drift primary column (%D= -59.5%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV
CCVRT 460- 130916/ 28	CCVRT 460- 130916/28	CCV			8082			10/06/13 20:50:00	2C	1	PCB-1260 (AROCLOR 1260) - peak 6			15		Calibration drift primary column (%D= -16.4%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV
CCVRT 460- 130916/ 28	CCVRT 460- 130916/28	CCV			8082			10/06/13 20:50:00	1C	1	PCB-1260 (AROCLOR 1260) - peak 5			15		Calibration drift secondary column (%D= -16.1%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV
CCVRT 460- 130916/ 28	CCVRT 460- 130916/28	CCV			8082			10/06/13 20:50:00	1C	1	PCB-1260 (AROCLOR 1260) - peak 7			15		Calibration drift secondary column (%D= -24.5%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV
CCVIS 460- 131041/ 1	CCVIS 460- 131041/1	CCV			8260B			10/08/12 07:39:00	NA	1	1,4-DIOXANE (P- DIOXANE)					RRF for the CV standard < 0.005 advisory level	J to detects, UJ to NDs for samples analyzed this shift

				Method		D	ate and Tin	10	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCVIS	CCVIS 460-	CCV			8260B			10/08/12	NA	1	METHYL ETHYL			20		Calibration drift	J+ to detects only since < +40%
460-	131041/1							07:39:00			KETONE (2-					(%D= +32.2%)	for samples analyzed this shift
131041/											BUTANONE)						(all ND)
1																	
CCVIS	CCVIS 460-	CCV			8260B			10/09/12	NA	1	1,4-DIOXANE (P-					RRF for the CV	J to detects, UJ to NDs for
460-	131153/2							07:34:00			DIOXANE)					standard < 0.005	samples analyzed this shift
131153/																advisory level	
2																	
CCVIS	CCVIS 460-	CCV			8260B			10/09/12	NA	1	METHYLENE			20		Calibration drift	J+ to detects only since < +40%
460-	131153/2							07:34:00			CHLORIDE					(%D= +32.9%)	for samples analyzed this shift
131153/																	
2	CCVIS 460-	CCV			8260B			10/17/12	NA	1	4.4 DIOVANE (D					RRF for the CV	Ltc detects LLLtc NDc for
CCVIS 460-	132463/2	CCV			8260B			18:15:00	NA	1	1,4-DIOXANE (P- DIOXANE)					standard < 0.005	J to detects, UJ to NDs for
132463/	132403/2							16:15:00			DIOXANE)					advisory level	samples analyzed this shift
2																advisory level	
CCVIS	CCVIS 460-	CCV			8260B			10/17/12	NA	1	ACETONE			20		Calibration drift	J+ to detects only since < +40%
460-	132463/2				02000			18:15:00	100	ļ .	AGETONE					(%D= +31%)	for samples analyzed this shift
132463/																(/== /=/////	
2																	
CCVIS	CCVIS 460-	CCV			8260B			10/17/12	NA	1	METHYL ETHYL			20		Calibration drift	J+ to detects only since < +40%
460-	132463/2							18:15:00			KETONE (2-					(%D= +28.7%)	for samples analyzed this shift
132463/											BUTANONE)						(all ND)
2																	
CCVIS	CCVIS 460-	CCV			8260B			10/17/12	NA	1	METHYLENE			20		Calibration drift	J+ to detects only since < +40%
460-	132463/2							18:15:00			CHLORIDE					(%D= +34.9%)	for samples analyzed this shift
132463/																	
2	00/40 400	001/			00000			404-40		_	TERT BUT A METUNA					0 111 11 116	1
CCVIS	CCVIS 460-	CCV			8260B			10/17/12	NA	1	TERT-BUTYL METHYL			20		Calibration drift	J+ to detects only since < +40%
460- 132463/	132463/2							18:15:00			ETHER					(%D= +21.5%)	for samples analyzed this shift (all ND)
2																	(all ND)
CCVIS	CCVIS 460-	CCV			8260B			10/18/12	NA	1	1,4-DIOXANE (P-					RRF for the CV	J to detects, UJ to NDs for
460-	132504/2	001			02000			06:04:00	14/1	l '	DIOXANE)					standard < 0.005	samples analyzed this shift
132504/	10200 1/2							00.01.00			DIO/G ((12)					advisory level	campios analyzed the crim
2																,	
CCVIS	CCVIS 460-	CCV			8260B			10/18/12	NA	1	METHYLENE			20		Calibration drift	J+ to detects only since < +40%
460-	132504/2							06:04:00			CHLORIDE					(%D= +21.2%)	for samples analyzed this shift
132504/																	
2																	
CCVIS	CCVIS 460-	CCV			8260B			10/18/12	NA	1	1,4-DIOXANE (P-					RRF for the CV	J to detects, UJ to NDs for
460-	132646/2							19:01:00			DIOXANE)					standard < 0.005	samples analyzed this shift
132646/																advisory level	
2															<u> </u>		

Lab ID	Sample Code	Tumo		Method		D	ate and Tin	пе	GC	D	Δnalvte I	Analyte Lab S	Lab Spk Spk	Spk RPD	QC Issue	DVQs Applied	
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F		Qual	Qual LCL	UCL	CL	QC ISSUE	DVQS Applied
CCVIS	CCVIS 460-	CCV			8260B			11/28/12	NA	1	ACETONE			20		Calibration drift	J+ to detects only since < +40%
460-	137271/2							08:36:00								(%D= +33.9%)	for samples analyzed this shift
137271/																	
2																	
CCVIS	CCVIS 460-	CCV			8260B			11/28/12	NA	1	METHYL ETHYL			20		Calibration drift	J+ to detects only since < +40%
460-	137271/2							08:36:00			KETONE (2-					(%D= +25.9%)	for samples analyzed this shift
137271/											BUTANONE)						(all ND)
2																	

CL – Control Limit

DF - Dilution Factor

LCL - Lower Control Limit

UCL - Upper Control Limit

QAA, L.L.C.

TABLE 4 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase I and Phase II-A Remedial Design/ Remedial Action

QUALIFIED RESULTS FOR FIELD SAMPLES

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
		TCLP METALS	3	•	
460-43348-7	ECS-4A-F_08/09/12	1311 Lead	20.5 J ug/l	J	Result is between MDL and RL
460-43348-8	ECS-5A-F_08/09/12	1311 Lead	23.5 J ug/l	J	Result is between MDL and RL
460-43348-9	ECS-6A-F_08/09/12	1311 Lead	24.4 J ug/l	J	Result is between MDL and RL
460-45377-7	ECS-Hill-7-F_10/03/12	1311 Lead	21.7 J ug/l	J	Result is between MDL and RL
460-48738-1	ECS-1C-F_12/18/12	1311 Lead	68.7 ug/l	J	Poor lab duplicate precision (25 RPD)
460-48738-2	ECS-2C-F_12/19/12	1311 Lead	22.4 J ug/l	J	Poor lab duplicate precision (25 RPD); Result is between MDL and RL
460-48739-1	ECS-SSA29-F_12/18/12	1311 Lead	25.0 U ug/l	UJ	Poor lab duplicate precision (25 RPD)
460-48739-2	ECS-SSA29-SS_12/18/12	1311 Lead	61.1 ug/l	J	Poor lab duplicate precision (25 RPD)
460-48739-3	ECS-SSA29-SW_12/18/12	1311 Lead	121 ug/l	J	Poor lab duplicate precision (25 RPD)
460-48739-4	ECS-SSA29-SN_12/18/12	1311 Lead	25.9 ug/l	J	Poor lab duplicate precision (25 RPD)
460-48739-5	ECS-SSA29-SE_12/18/12	1311 Lead	90.0 ug/l	J	Poor lab duplicate precision (25 RPD)
460-48739-6	ECS-SSA29-SE-X_12/18/12	1311 Lead	66.3 ug/l	J	Poor lab duplicate precision (25 RPD)
		TOTAL METAL	.S		
460-45384-3	BF-4003C-001-1-7'_10/03/12	Barium	42.2 J mg/kg	J	Result is between MDL and RL
460-45384-9	BF-4004C-001-1-7'_10/03/12	Barium	33.2 J mg/kg	J	Result is between MDL and RL
460-45384-14	BF-4000C-001-1-7'_10/03/12	Barium	32.0 J mg/kg	J	Result is between MDL and RL
460-45384-17	BF-4001C-001-1-7'_10/03/12	Barium	32.2 J mg/kg	J	Result is between MDL and RL
460-45384-20	BF-4002C-001-1-6'_10/03/12	Barium	38.6 J mg/kg	J	Result is between MDL and RL
460-45384-21	BF-4005C-001-1-6'_10/03/12	Barium	35.7 J mg/kg	J	Result is between MDL and RL
460-47389-3	CC-PSL-1c-001_11/19/12	Barium	39.9 J mg/kg	J	Result is between MDL and RL
460-47389-7	CC-PSL-2c-001_11/19/12	Barium	38.5 J mg/kg	J	Result is between MDL and RL
460-47389-11	CC-PSL-3c-001_11/19/12	Barium	34.9 J mg/kg	J	Result is between MDL and RL
460-45895-8	CC-BL-1C-001_10/12/12	Beryllium	0.20 J mg/kg	J	Result is between MDL and RL
460-45895-9	CC-BL-1C-002_10/12/12	Beryllium	0.29 J mg/kg	J	Result is between MDL and RL
460-45895-12	CC-BL-2C-001_10/12/12	Beryllium	0.17 J mg/kg	J	Result is between MDL and RL
460-45896-4	CC-BL-3C-001_10/12/12	Beryllium	0.17 J mg/kg	J	Result is between MDL and RL
460-45896-5	CC-BL-3C-001X_10/12/12	Beryllium	0.15 J mg/kg	J	Result is between MDL and RL
460-45896-8	CC-BL-4C-001_10/12/12	Beryllium	0.20 J mg/kg	J	Result is between MDL and RL
460-47389-3	CC-PSL-1c-001_11/19/12	Beryllium	0.15 J mg/kg	J	Result is between MDL and RL
460-47389-8	CC-PSL-2c-001x_11/19/12	Beryllium	0.14 J mg/kg	J	Result is between MDL and RL
460-47389-3	CC-PSL-1c-001_11/19/12	Cadmium	0.40 J mg/kg	J	Result is between MDL and RL
460-47389-7	CC-PSL-2c-001_11/19/12	Cadmium	0.33 J mg/kg	J	Result is between MDL and RL
460-47389-8	CC-PSL-2c-001x_11/19/12	Cadmium	0.34 J mg/kg	J	Result is between MDL and RL
460-47389-11	CC-PSL-3c-001_11/19/12	Cadmium	0.27 J mg/kg	J	Result is between MDL and RL
460-48739-1	ECS-SSA29-F_12/18/12	Calcium	274 J mg/kg	J	Result is between MDL and RL
460-48739-1	ECS-SSA29-F_12/18/12	Cobalt	7.5 J mg/kg	J	Result is between MDL and RL
460-45895-9	CC-BL-1C-002_10/12/12	Copper	5.3 J mg/kg	J	Result is between MDL and RL

Lab ID	Field ID_Date	Analyte		Lab sult ⁽¹⁾	DVQ	QC Issue
460-45895-12	CC-BL-2C-001_10/12/12	Copper	5.0	J mg/kg	J	Result is between MDL and RL
460-45896-5	CC-BL-3C-001X_10/12/12	Copper	4.5	J mg/kg	J	Result is between MDL and RL
460-46911-6	ECS-7+25-F_11/07/12	Lead	11.2	mg/kg	J	Poor field duplicate precision (110 RPD), use higher result from field duplicate
460-46911-7	ECS-7+25-FX_11/07/12	Lead	38.1	mg/kg	J	Poor field duplicate precision (110 RPD), use higher result from field duplicate
460-47389-3	CC-PSL-1c-001_11/19/12	Lead	4.4	mg/kg	٦	Poor lab duplicate precision (21 RPD)
460-47389-7	CC-PSL-2c-001_11/19/12	Lead	4.0	mg/kg	J	Poor lab duplicate precision (21 RPD)
460-47389-8	CC-PSL-2c-001x_11/19/12	Lead	4.3	mg/kg	J	Poor lab duplicate precision (21 RPD)
460-47389-11	CC-PSL-3c-001_11/19/12	Lead	3.8	mg/kg	٦	Poor lab duplicate precision (21 RPD)
460-45896-4	CC-BL-3C-001_10/12/12	Manganese	372	mg/kg	J	Poor field duplicate precision (51 RPD), use higher result from original sample
460-45896-5	CC-BL-3C-001X_10/12/12	Manganese	221	mg/kg	J	Poor field duplicate precision (51 RPD), use higher result from original sample
460-45896-5	CC-BL-3C-001X_10/12/12	Nickel	7.1	J mg/kg	J	Result is between MDL and RL
460-47389-3	CC-PSL-1c-001_11/19/12	Nickel	8.3	J mg/kg	J	Result is between MDL and RL
460-47389-7	CC-PSL-2c-001_11/19/12	Nickel	6.8	J mg/kg	J	Result is between MDL and RL
460-47389-11	CC-PSL-3c-001_11/19/12	Nickel	6.7	J mg/kg	J	Result is between MDL and RL
460-48739-1	ECS-SSA29-F_12/18/12	Potassium	390	J mg/kg	7	Result is between MDL and RL
460-45895-8	CC-BL-1C-001_10/12/12	Selenium	2.1	U mg/kg	UJ	Poor lab duplicate precision (30 RPD)
460-45895-9	CC-BL-1C-002_10/12/12	Selenium	4.5	mg/kg	J	Poor lab duplicate precision (30 RPD)
460-45895-12	CC-BL-2C-001_10/12/12	Selenium	2.2	U mg/kg	UJ	Poor lab duplicate precision (30 RPD)
460-45896-4	CC-BL-3C-001_10/12/12	Selenium	2.2	mg/kg	J	Poor lab duplicate precision (30 RPD)
460-45896-5	CC-BL-3C-001X_10/12/12	Selenium	2.0	U mg/kg	UJ	Poor lab duplicate precision (30 RPD)
460-45896-8	CC-BL-4C-001_10/12/12	Selenium	2.1	mg/kg	٦	Poor lab duplicate precision (30 RPD)
460-48739-1	ECS-SSA29-F_12/18/12	Selenium	1.6	J mg/kg	J	Result is between MDL and RL
460-45384-6	BF-4003C-001X-1-7'_10/03/12	Mercury	0.035	J mg/kg	J	Result is between MDL and RL
460-45384-20	BF-4002C-001-1-6'_10/03/12	Mercury	0.033	J mg/kg	J	Result is between MDL and RL
460-48739-1	ECS-SSA29-F_12/18/12	Mercury	0.030	J mg/kg	J	Result is between MDL and RL
		PCB AROCLO	RS			
460-45384-3	BF-4003C-001-1-7'_10/03/12	PCB-1260 (Aroclor 1260)	76	U ug/kg	UJ	Calibration drift primary column (peak %D= -16.4%, -18.8%, -59.5%); Calibration drift secondary column (peak %D= -16.1%, -24.5%)
460-45384-6	BF-4003C-001X-1-7'_10/03/12	PCB-1260 (Aroclor 1260)	76	U ug/kg	UJ	Calibration drift primary column (peak %D= -16.4%, -18.8%, -59.5%); Calibration drift secondary column (peak %D= -16.1%, -24.5%)

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-45384-9	BF-4004C-001-1-7'_10/03/12	PCB-1260 (Aroclor 1260)	75 U ug/kg	UJ	Calibration drift primary column (peak %D= -16.4%, -18.8%, -59.5%); Calibration drift secondary column (peak %D= -16.1%, -24.5%)
460-45384-14	BF-4000C-001-1-7'_10/03/12	PCB-1260 (Aroclor 1260)	75 U ug/kg	UJ	Calibration drift primary column (peak %D= -16.4%, -18.8%, -59.5%); Calibration drift secondary column (peak %D= -16.1%, -24.5%)
460-45384-17	BF-4001C-001-1-7'_10/03/12	PCB-1260 (Aroclor 1260)	76 U ug/kg	UJ	Calibration drift primary column (peak %D= -16.4%, -18.8%, -59.5%); Calibration drift secondary column (peak %D= -16.1%, -24.5%)
460-45384-20	BF-4002C-001-1-6'_10/03/12	PCB-1260 (Aroclor 1260)	80 U ug/kg	UJ	Calibration drift primary column (peak %D= -16.4%, -18.8%, -59.5%); Calibration drift secondary column (peak %D= -16.1%, -24.5%)
460-45384-21	BF-4005C-001-1-6'_10/03/12	PCB-1260 (Aroclor 1260)	75 U ug/kg	UJ	Calibration drift primary column (peak %D= -16.4%, -18.8%, -59.5%); Calibration drift secondary column (peak %D= -16.1%, -24.5%)
	VC	DLATILE ORGANIC COMP	OUNDS (VOC)		,
460-45895-10	CC-BL-2G-001_10/12/12	1,2-Dichlorobenzene	0.92 U ug/kg	UJ	Low average MS/MSD recovery (68.5%)
460-45895-11	CC-BL-2G-002_10/12/12	1,2-Dichlorobenzene	0.96 U ug/kg	UJ	Low average MS/MSD recovery (68.5%)
460-45896-1	CC-BL-3G-001_10/12/12	1,2-Dichlorobenzene	0.95 U ug/kg	UJ	Low average MS/MSD recovery (68.5%)
460-45896-2	CC-BL-3G-001X_10/12/12	1,2-Dichlorobenzene	0.93 U ug/kg	UJ	Low average MS/MSD recovery (68.5%)
460-45896-3	CC-BL-3G-002_10/12/12	1,2-Dichlorobenzene	1.1 U ug/kg	UJ	Low average MS/MSD recovery (68.5%)
460-45896-7	CC-BL-4G-002_10/12/12	1,2-Dichlorobenzene	1.2 U ug/kg	UJ	Low average MS/MSD recovery (68.5%)
460-45895-1	CC-BL-1G-001_10/12/12	1,2-Dichloroethane	0.45 J ug/kg	J	Result is between MDL and RL
460-45895-2	CC-BL-1G-002_10/12/12	1,2-Dichloroethane	0.35 J ug/kg	J	Result is between MDL and RL
460-45895-4	CC-BL-1G-004_10/12/12	1,2-Dichloroethane	0.34 J ug/kg	J	Result is between MDL and RL
460-45895-5	CC-BL-1G-005_10/12/12	1,2-Dichloroethane	0.46 J ug/kg	J	Result is between MDL and RL
460-45895-6	CC-BL-1G-006_10/12/12	1,2-Dichloroethane	0.17 J ug/kg	J	Result is between MDL and RL
460-45895-10	CC-BL-2G-001_10/12/12	1,2-Dichloroethane	0.34 J ug/kg	J	Result is between MDL and RL
460-45895-11	CC-BL-2G-002_10/12/12	1,2-Dichloroethane	0.31 J ug/kg	J	Result is between MDL and RL
460-45895-10	CC-BL-2G-001_10/12/12	1,3-Dichlorobenzene	0.92 U ug/kg	UJ	Low average MS/MSD recovery (61%)
460-45895-11	CC-BL-2G-002_10/12/12	1,3-Dichlorobenzene	0.96 U ug/kg	UJ	Low average MS/MSD recovery (61%)
460-45896-1	CC-BL-3G-001_10/12/12	1,3-Dichlorobenzene	0.95 U ug/kg	UJ	Low average MS/MSD recovery (61%)
460-45896-2	CC-BL-3G-001X_10/12/12	1,3-Dichlorobenzene	0.93 U ug/kg	UJ	Low average MS/MSD recovery (61%)
460-45896-3	CC-BL-3G-002_10/12/12	1,3-Dichlorobenzene	1.1 U ug/kg	UJ	Low average MS/MSD recovery (61%)

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-45896-7	CC-BL-4G-002_10/12/12	1,3-Dichlorobenzene	1.2 U ug/kg	UJ	Low average MS/MSD recovery (61%)
460-45895-10	CC-BL-2G-001_10/12/12	1,4-Dichlorobenzene	0.92 U ug/kg	UJ	Low average MS/MSD recovery (61%)
460-45895-11	CC-BL-2G-002_10/12/12	1,4-Dichlorobenzene	0.96 U ug/kg	UJ	Low average MS/MSD recovery (61%)
460-45896-1	CC-BL-3G-001_10/12/12	1,4-Dichlorobenzene	0.95 U ug/kg	UJ	Low average MS/MSD recovery (61%)
460-45896-2	CC-BL-3G-001X_10/12/12	1,4-Dichlorobenzene	0.93 U ug/kg	UJ	Low average MS/MSD recovery (61%)
460-45896-3	CC-BL-3G-002_10/12/12	1,4-Dichlorobenzene	1.1 U ug/kg	UJ	Low average MS/MSD recovery (61%)
460-45896-7	CC-BL-4G-002_10/12/12	1,4-Dichlorobenzene	1.2 U ug/kg	UJ	Low average MS/MSD recovery (61%)
460-45384-1	BF-4003G-001-1-7'_10/03/12	1,4-Dioxane (p-Dioxane)	56 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-2	BF-4003G-002-1-7'_10/03/12	1,4-Dioxane (p-Dioxane)	51 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-4	BF-4003G-001X-1-7'_10/03/12	1,4-Dioxane (p-Dioxane)	55 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-5	BF-4003G-002X-1-7'_10/03/12	1,4-Dioxane (p-Dioxane)	52 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-7	BF-4004G-001-1-7'_10/03/12	1,4-Dioxane (p-Dioxane)	47 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-8	BF-4004G-002-1-7'_10/03/12	1,4-Dioxane (p-Dioxane)	53 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-45384-10	BF-4005G-001-1-6'_10/03/12	1,4-Dioxane (p-Dioxane)	50 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-11	BF-4005G-002-1-6'_10/03/12	1,4-Dioxane (p-Dioxane)	55 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-12	BF-4000G-001-1-7'_10/03/12	1,4-Dioxane (p-Dioxane)	49 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-13	BF-4000G-002-1-7'_10/03/12	1,4-Dioxane (p-Dioxane)	54 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-15	BF-4001G-001-1-7'_10/03/12	1,4-Dioxane (p-Dioxane)	55 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-16	BF-4001G-002-1-7'_10/03/12	1,4-Dioxane (p-Dioxane)	52 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-18	BF-4002G-001-1-6'_10/03/12	1,4-Dioxane (p-Dioxane)	51 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-19	BF-4002G-002-1-6'_10/03/12	1,4-Dioxane (p-Dioxane)	57 U ug/kg	R	RRF for each ICAL standard <0.005 advisory level (at 0.0029- 0.0043), peak not visible on hardcopy chromatogram and area below 5000 counts for 100-ppb standard; RRF for the CV standard < 0.005 advisory level

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-45895-1	CC-BL-1G-001_10/12/12	1,4-Dioxane (p-Dioxane)	52 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45895-2	CC-BL-1G-002_10/12/12	1,4-Dioxane (p-Dioxane)	45 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45895-3	CC-BL-1G-003_10/12/12	1,4-Dioxane (p-Dioxane)	44 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45895-4	CC-BL-1G-004_10/12/12	1,4-Dioxane (p-Dioxane)	47 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45895-5	CC-BL-1G-005_10/12/12	1,4-Dioxane (p-Dioxane)	49 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45895-6	CC-BL-1G-006_10/12/12	1,4-Dioxane (p-Dioxane)	46 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45895-7	CC-BL-1G-007_10/12/12	1,4-Dioxane (p-Dioxane)	61 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45895-10	CC-BL-2G-001_10/12/12	1,4-Dioxane (p-Dioxane)	46 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45895-11	CC-BL-2G-002_10/12/12	1,4-Dioxane (p-Dioxane)	48 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-45896-1	CC-BL-3G-001_10/12/12	1,4-Dioxane (p-Dioxane)	47 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45896-2	CC-BL-3G-001X_10/12/12	1,4-Dioxane (p-Dioxane)	46 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45896-3	CC-BL-3G-002_10/12/12	1,4-Dioxane (p-Dioxane)	57 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45896-6	CC-BL-4G-001_10/12/12	1,4-Dioxane (p-Dioxane)	57 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45896-7	CC-BL-4G-002_10/12/12	1,4-Dioxane (p-Dioxane)	58 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0034- 0.0047), visible peak with area of 2725 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-47389-1	CC-PSL-1g-001_11/19/12	1,4-Dioxane (p-Dioxane)	49 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0042- 0.0049), visible peak with area of 4374 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-47389-2	CC-PSL-1g-002_11/19/12	1,4-Dioxane (p-Dioxane)	45 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0042- 0.0049), visible peak with area of 4374 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-47389-4	CC-PSL-2g-001_11/19/12	1,4-Dioxane (p-Dioxane)	46 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0042- 0.0049), visible peak with area of 4374 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-47389-5	CC-PSL-2g-001x_11/19/12	1,4-Dioxane (p-Dioxane)	48 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0042- 0.0049), visible peak with area of 4374 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-47389-6	CC-PSL-2g-002_11/19/12	1,4-Dioxane (p-Dioxane)	47 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0042- 0.0049), visible peak with area of 4374 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-47389-9	CC-PSL-3g-001_11/19/12	1,4-Dioxane (p-Dioxane)	52 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0042- 0.0049), visible peak with area of 4374 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-47389-10	CC-PSL-3g-002_11/19/12	1,4-Dioxane (p-Dioxane)	47 U ug/kg	UJ	RRF for each ICAL standard <0.005 advisory level (at 0.0042- 0.0049), visible peak with area of 4374 counts in 50-ppb standard; RRF for the CV standard < 0.005 advisory level
460-45384-5	BF-4003G-002X-1-7'_10/03/12	Acetone	10 JB ug/kg	U	Preparation blank contamination (2.89 J ug/kg)
460-45384-7	BF-4004G-001-1-7'_10/03/12	Acetone	9.4 JB ug/kg	U	Preparation blank contamination (2.89 J ug/kg)
460-45384-8	BF-4004G-002-1-7'_10/03/12	Acetone	11 JB ug/kg	U	Preparation blank contamination (2.89 J ug/kg)
460-45384-11	BF-4005G-002-1-6'_10/03/12	Acetone	11 JB ug/kg	U	Preparation blank contamination (2.89 J ug/kg); Method blank contamination (2.96 J ug/kg)
460-45384-13	BF-4000G-002-1-7'_10/03/12	Acetone	11 JB ug/kg	U	Preparation blank contamination (2.89 J ug/kg)
460-45384-15	BF-4001G-001-1-7'_10/03/12	Acetone	11 JB ug/kg	U	Preparation blank contamination (2.89 J ug/kg)
460-45384-16	BF-4001G-002-1-7'_10/03/12	Acetone	27 B ug/kg	J+	Preparation blank contamination (2.89 J ug/kg)
460-45895-1	CC-BL-1G-001_10/12/12	Acetone	28 B ug/kg	J+	Preparation blank contamination (2.31 J ug/kg); Method blank contamination (2.3 J ug/kg); Calibration drift (%D= +31%)
460-45895-2	CC-BL-1G-002_10/12/12	Acetone	9.0 B ug/kg	J+	Preparation blank contamination (2.31 J ug/kg); Method blank contamination (2.3 J ug/kg); Calibration drift (%D= +31%)
460-45895-3	CC-BL-1G-003_10/12/12	Acetone	8.9 JB ug/kg	U	Preparation blank contamination (2.31 J ug/kg); Method blank contamination (2.3 J ug/kg); Calibration drift (%D= +31%)
460-45895-4	CC-BL-1G-004_10/12/12	Acetone	11 B ug/kg	J+	Preparation blank contamination (2.31 J ug/kg); Method blank contamination (2.3 J ug/kg); Calibration drift (%D= +31%)
460-45895-5	CC-BL-1G-005_10/12/12	Acetone	12 B ug/kg	J+	Preparation blank contamination (2.31 J ug/kg); Method blank contamination (2.3 J ug/kg); Calibration drift (%D= +31%)

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-45895-6	CC-BL-1G-006_10/12/12	Acetone	9.2 JB ug/kg	U	Preparation blank contamination (2.31 J ug/kg); Method blank contamination (2.3 J ug/kg); Calibration drift (%D= +31%)
460-45895-7	CC-BL-1G-007_10/12/12	Acetone	12 JB ug/kg	U	Preparation blank contamination (2.31 J ug/kg); Method blank contamination (2.3 J ug/kg); Calibration drift (%D= +31%)
460-45895-10	CC-BL-2G-001_10/12/12	Acetone	10 B ug/kg	J+	Preparation blank contamination (2.31 J ug/kg); Method blank contamination (2.27 J ug/kg)
460-45895-11	CC-BL-2G-002_10/12/12	Acetone	9.6 JB ug/kg	U	Preparation blank contamination (2.31 J ug/kg); Method blank contamination (2.27 J ug/kg)
460-45896-1	CC-BL-3G-001_10/12/12	Acetone	9.5 JB ug/kg	U	Method blank contamination (2.27 J ug/kg)
460-45896-2	CC-BL-3G-001X_10/12/12	Acetone	9.3 JB ug/kg	U	Method blank contamination (2.27 J ug/kg)
460-45896-3	CC-BL-3G-002_10/12/12	Acetone	11 JB ug/kg	U	Method blank contamination (2.27 J ug/kg)
460-45896-6	CC-BL-4G-001_10/12/12	Acetone	11 JB ug/kg	U	Method blank contamination (1.71 J ug/kg)
460-45896-7	CC-BL-4G-002_10/12/12	Acetone	12 JB ug/kg	U	Method blank contamination (2.27 J ug/kg)
460-47389-1	CC-PSL-1g-001_11/19/12	Acetone	9.7 JB ug/kg	U	Method blank contamination (4.77 J ug/kg); Calibration drift (%D= +33.9%); High average MS/MSD recovery (302%)
460-47389-2	CC-PSL-1g-002_11/19/12	Acetone	9.1 JB ug/kg	U	Method blank contamination (4.77 J ug/kg); Calibration drift (%D= +33.9%); High average MS/MSD recovery (302%)
460-47389-4	CC-PSL-2g-001_11/19/12	Acetone	9.2 JB ug/kg	U	Method blank contamination (4.77 J ug/kg); Calibration drift (%D= +33.9%); High average MS/MSD recovery (302%)
460-47389-5	CC-PSL-2g-001x_11/19/12	Acetone	9.5 JB ug/kg	U	Method blank contamination (4.77 J ug/kg); Calibration drift (%D= +33.9%); High average MS/MSD recovery (302%)
460-47389-6	CC-PSL-2g-002_11/19/12	Acetone	9.4 JB ug/kg	U	Method blank contamination (4.77 J ug/kg); Calibration drift (%D= +33.9%); High average MS/MSD recovery (302%)
460-47389-9	CC-PSL-3g-001_11/19/12	Acetone	10 JB ug/kg	U	Method blank contamination (4.77 J ug/kg); Calibration drift (%D= +33.9%); High average MS/MSD recovery (302%)
460-47389-10	CC-PSL-3g-002_11/19/12	Acetone	9.3 JB ug/kg	U	Method blank contamination (4.77 J ug/kg); Calibration drift (%D= +33.9%); High average MS/MSD recovery (302%)
460-45384-1	BF-4003G-001-1-7'_10/03/12	Methylene Chloride	1.1 JB ug/kg	U	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-45384-2	BF-4003G-002-1-7'_10/03/12	Methylene Chloride	1.0 JB ug/kg	U	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)
460-45384-4	BF-4003G-001X-1-7'_10/03/12	Methylene Chloride	1.1 JB ug/kg	U	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)
460-45384-5	BF-4003G-002X-1-7'_10/03/12	Methylene Chloride	1.0 JB ug/kg	U	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)
460-45384-7	BF-4004G-001-1-7'_10/03/12	Methylene Chloride	1.9 B ug/kg	J+	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)
460-45384-8	BF-4004G-002-1-7'_10/03/12	Methylene Chloride	2.7 B ug/kg	J+	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)
460-45384-10	BF-4005G-001-1-6'_10/03/12	Methylene Chloride	0.99 JB ug/kg	U	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)
460-45384-11	BF-4005G-002-1-6'_10/03/12	Methylene Chloride	1.1 B ug/kg	J+	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (10.9 ug/kg); Trip blank contamination (2 ug/l); Calibration drift (%D= +32.9%)
460-45384-12	BF-4000G-001-1-7'_10/03/12	Methylene Chloride	0.98 JB ug/kg	U	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)
460-45384-13	BF-4000G-002-1-7'_10/03/12	Methylene Chloride	1.1 JB ug/kg	U	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)
460-45384-15	BF-4001G-001-1-7'_10/03/12	Methylene Chloride	1.1 JB ug/kg	U	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)
460-45384-16	BF-4001G-002-1-7'_10/03/12	Methylene Chloride	1.0 JB ug/kg	U	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)
460-45384-18	BF-4002G-001-1-6'_10/03/12	Methylene Chloride	1.0 JB ug/kg	U	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)
460-45384-19	BF-4002G-002-1-6'_10/03/12	Methylene Chloride	1.1 JB ug/kg	U	Preparation blank contamination (0.437 J ug/kg); Method blank contamination (0.378 J ug/kg); Trip blank contamination (2 ug/l)
460-45895-1	CC-BL-1G-001_10/12/12	Methylene Chloride	24 B ug/kg	J+	Calibration drift (%D= +34.9%)
460-45895-2	CC-BL-1G-002_10/12/12	Methylene Chloride	16 B ug/kg	J+	Calibration drift (%D= +34.9%)
460-45895-3	CC-BL-1G-003_10/12/12	Methylene Chloride	12 B ug/kg	J+	Calibration drift (%D= +34.9%)

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-45895-4	CC-BL-1G-004_10/12/12	Methylene Chloride	26 B ug/kg	J+	Calibration drift (%D= +34.9%)
460-45895-5	CC-BL-1G-005_10/12/12	Methylene Chloride	17 B ug/kg	J+	Calibration drift (%D= +34.9%)
460-45895-6	CC-BL-1G-006_10/12/12	Methylene Chloride	15 B ug/kg	J+	Calibration drift (%D= +34.9%)
460-45895-7	CC-BL-1G-007_10/12/12	Methylene Chloride	1.9 B ug/kg	J+	Preparation blank contamination (0.453 J ug/kg); Method blank contamination (1.13 ug/kg); Trip blank contamination (1.6 ug/l); Calibration drift (%D= +34.9%)
460-45895-10	CC-BL-2G-001_10/12/12	Methylene Chloride	16 B ug/kg	J+	Calibration drift (%D= +21.2%)
460-45895-11	CC-BL-2G-002_10/12/12	Methylene Chloride	18 B ug/kg	J+	Calibration drift (%D= +21.2%)
460-45896-1	CC-BL-3G-001_10/12/12	Methylene Chloride	14 B ug/kg	J+	Calibration drift (%D= +21.2%)
460-45896-2	CC-BL-3G-001X_10/12/12	Methylene Chloride	13 B ug/kg	J+	Calibration drift (%D= +21.2%)
460-45896-3	CC-BL-3G-002_10/12/12	Methylene Chloride	7.6 B ug/kg	J+	Method blank contamination (5.13 ug/kg); Calibration drift (%D= +21.2%)
460-45896-6	CC-BL-4G-001_10/12/12	Methylene Chloride	1.8 B ug/kg	J+	Preparation blank contamination (1.6 ug/kg); Method blank contamination (0.293 J ug/kg); Trip blank contamination (1.6 ug/l)
460-45896-7	CC-BL-4G-002_10/12/12	Methylene Chloride	1.9 B ug/kg	J+	Preparation blank contamination (1.6 ug/kg); Method blank contamination (5.13 ug/kg); Trip blank contamination (1.6 ug/l); Calibration drift (%D= +21.2%)
460-47389-1	CC-PSL-1g-001_11/19/12	Methylene Chloride	0.97 JB ug/kg	U	Method blank contamination (1.51 ug/kg); Trip blank contamination (1.9 ug/l); High average MS/MSD recovery (210.5%)
460-47389-2	CC-PSL-1g-002_11/19/12	Methylene Chloride	2.1 B ug/kg	J+	Method blank contamination (1.51 ug/kg); Trip blank contamination (1.9 ug/l); High average MS/MSD recovery (210.5%)
460-47389-4	CC-PSL-2g-001_11/19/12	Methylene Chloride	4.1 B ug/kg	J+	High average MS/MSD recovery (210.5%)
460-47389-5	CC-PSL-2g-001x_11/19/12	Methylene Chloride	4.7 B ug/kg	J+	High average MS/MSD recovery (210.5%)
460-47389-6	CC-PSL-2g-002_11/19/12	Methylene Chloride	4.4 B ug/kg	J+	High average MS/MSD recovery (210.5%)
460-47389-9	CC-PSL-3g-001_11/19/12	Methylene Chloride	1.0 JB ug/kg	U	Method blank contamination (1.51 ug/kg); Trip blank contamination (1.9 ug/l); High average MS/MSD recovery (210.5%)
460-47389-10	CC-PSL-3g-002_11/19/12	Methylene Chloride	5.9 B ug/kg	J+	High average MS/MSD recovery (210.5%)
460-45384-1	BF-4003G-001-1-7'_10/03/12	n-Butylbenzene	1.1 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-45384-2	BF-4003G-002-1-7'_10/03/12	n-Butylbenzene	1.0 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-45384-4	BF-4003G-001X-1-7'_10/03/12	n-Butylbenzene	1.1 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-45384-5	BF-4003G-002X-1-7'_10/03/12	n-Butylbenzene	1.0 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-45384-7	BF-4004G-001-1-7'_10/03/12	n-Butylbenzene	0.94 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)

Lab ID	Field ID_Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-45384-8	BF-4004G-002-1-7'_10/03/12	n-Butylbenzene	1.1 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-45384-10	BF-4005G-001-1-6'_10/03/12	n-Butylbenzene	0.99 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-45384-12	BF-4000G-001-1-7'_10/03/12	n-Butylbenzene	0.98 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-45384-13	BF-4000G-002-1-7'_10/03/12	n-Butylbenzene	1.1 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-45384-15	BF-4001G-001-1-7'_10/03/12	n-Butylbenzene	1.1 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-45384-16	BF-4001G-002-1-7'_10/03/12	n-Butylbenzene	1.0 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-45384-18	BF-4002G-001-1-6'_10/03/12	n-Butylbenzene	1.0 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-45384-19	BF-4002G-002-1-6'_10/03/12	n-Butylbenzene	1.1 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-45895-10	CC-BL-2G-001_10/12/12	n-Butylbenzene	0.92 U ug/kg	UJ	Low average MS/MSD recovery (60.5%)
460-45895-11	CC-BL-2G-002_10/12/12	n-Butylbenzene	0.96 U ug/kg	UJ	Low average MS/MSD recovery (60.5%)
460-45896-1	CC-BL-3G-001_10/12/12	n-Butylbenzene	0.95 U ug/kg	UJ	Low average MS/MSD recovery (60.5%)
460-45896-2	CC-BL-3G-001X_10/12/12	n-Butylbenzene	0.93 U ug/kg	UJ	Low average MS/MSD recovery (60.5%)
460-45896-3	CC-BL-3G-002_10/12/12	n-Butylbenzene	1.1 U ug/kg	UJ	Low average MS/MSD recovery (60.5%)
460-45896-7	CC-BL-4G-002_10/12/12	n-Butylbenzene	1.2 U ug/kg	UJ	Low average MS/MSD recovery (60.5%)
460-45895-1	CC-BL-1G-001_10/12/12	Toluene	0.32 J ug/kg	J	Result is between MDL and RL
460-45895-2	CC-BL-1G-002_10/12/12	Toluene	0.21 J ug/kg	J	Result is between MDL and RL
460-45895-4	CC-BL-1G-004_10/12/12	Toluene	0.22 J ug/kg	J	Result is between MDL and RL
460-45895-5	CC-BL-1G-005_10/12/12	Toluene	0.30 J ug/kg	J	Result is between MDL and RL
460-45895-10	CC-BL-2G-001_10/12/12	Toluene	0.26 J ug/kg	J	Result is between MDL and RL
460-45895-11	CC-BL-2G-002_10/12/12	Toluene	0.20 J ug/kg	J	Result is between MDL and RL
460-45384-1	BF-4003G-001-1-7'_10/03/12	Vinyl Chloride	1.1 U ug/kg	UJ	Low average MS/MSD recovery (58%)
460-45384-2	BF-4003G-002-1-7'_10/03/12	Vinyl Chloride	1.0 U ug/kg	UJ	Low average MS/MSD recovery (58%)
460-45384-4	BF-4003G-001X-1-7'_10/03/12	Vinyl Chloride	1.1 U ug/kg	UJ	Low average MS/MSD recovery (58%)
460-45384-5	BF-4003G-002X-1-7'_10/03/12	Vinyl Chloride	1.0 U ug/kg	UJ	Low average MS/MSD recovery (58%)
460-45384-7	BF-4004G-001-1-7'_10/03/12	Vinyl Chloride	0.94 U ug/kg	UJ	Low average MS/MSD recovery (58%)
460-45384-8	BF-4004G-002-1-7'_10/03/12	Vinyl Chloride	1.1 U ug/kg	UJ	Low average MS/MSD recovery (58%)
460-45384-10	BF-4005G-001-1-6'_10/03/12	Vinyl Chloride	0.99 U ug/kg	UJ	Low average MS/MSD recovery (58%)
460-45384-12	BF-4000G-001-1-7'_10/03/12	Vinyl Chloride	0.98 U ug/kg	UJ	Low average MS/MSD recovery (58%)
460-45384-13	BF-4000G-002-1-7'_10/03/12	Vinyl Chloride	1.1 U ug/kg	UJ	Low average MS/MSD recovery (58%)
460-45384-15	BF-4001G-001-1-7'_10/03/12	Vinyl Chloride	1.1 U ug/kg	UJ	Low average MS/MSD recovery (58%)

QAA, L.L.C.

Lab ID	Field ID_Date	Analyte	Lab	DVQ	QC Issue
	55 40040 000 4 54 40400440		Result (1)		
460-45384-16	BF-4001G-002-1-7'_10/03/12	Vinyl Chloride	1.0 U ug/kg	UJ	Low average MS/MSD recovery
400 45004 40	DE 4000C 004 4 CL 40/00/40	Viscol Oblasida	4.0 11	111	(58%)
460-45384-18	BF-4002G-001-1-6'_10/03/12	Vinyl Chloride	1.0 U ug/kg	UJ	Low average MS/MSD recovery (58%)
460-45384-19	BF-4002G-002-1-6'_10/03/12	Vinyl Chloride	1.1 U ug/kg	UJ	Low average MS/MSD recovery (58%)
	SEMI	OLATILE ORGANIC COI	MPOUNDS (SVOC)		
460-45896-4	CC-BL-3C-001_10/12/12	Acenaphthene	57 J ug/kg	J	Result is between MDL and RL
460-45896-4	CC-BL-3C-001_10/12/12	Naphthalene	1000 ug/kg	J	Poor field duplicate precision (absolute difference > 2xRL), use higher value from original sample
460-45896-5	CC-BL-3C-001X_10/12/12	Naphthalene	110 J ug/kg	J	Poor field duplicate precision (absolute difference > 2xRL), use higher value from original sample; Result is between MDL and RL
460-45895-8	CC-BL-1C-001_10/12/12	Pentachlorophenol	1000 U ug/kg	UJ	Low average MS/MSD recovery (38%)
460-45896-8	CC-BL-4C-001_10/12/12	Pentachlorophenol	1000 U ug/kg	UJ	Low average MS/MSD recovery (38%)
460-45895-8	CC-BL-1C-001_10/12/12	Pyrene	340 U ug/kg	UJ	Low laboratory control spike recovery (49%)
460-45896-8	CC-BL-4C-001_10/12/12	Pyrene	340 U ug/kg	UJ	Low laboratory control spike recovery (49%)
		CYANIDE		•	
460-45384-3	BF-4003C-001-1-7'_10/03/12	Cyanide	0.075 J mg/kg	J	Result is between MDL and RL
460-45384-6	BF-4003C-001X-1-7'_10/03/12	Cyanide	0.070 J mg/kg	J	Result is between MDL and RL
460-45384-9	BF-4004C-001-1-7'_10/03/12	Cyanide	0.067 J mg/kg	J	Result is between MDL and RL
460-45384-14	BF-4000C-001-1-7'_10/03/12	Cyanide	0.062 J mg/kg	J	Result is between MDL and RL
460-45384-17	BF-4001C-001-1-7'_10/03/12	Cyanide	0.064 J mg/kg	J	Result is between MDL and RL
460-45384-21	BF-4005C-001-1-6'_10/03/12	Cyanide	0.087 J mg/kg	J	Result is between MDL and RL
460-45895-8	CC-BL-1C-001_10/12/12	Cyanide	0.068 J mg/kg	J	Result is between MDL and RL
460-45895-9	CC-BL-1C-002_10/12/12	Cyanide	0.20 J mg/kg	J	Result is between MDL and RL
460-45896-4	CC-BL-3C-001_10/12/12	Cyanide	0.15 J mg/kg	J	Result is between MDL and RL
460-45896-5	CC-BL-3C-001X_10/12/12	Cyanide	0.29 J mg/kg	J	Result is between MDL and RL
460-45896-8	CC-BL-4C-001_10/12/12	Cyanide	0.083 J mg/kg	J	Result is between MDL and RL

¹⁾ Results in red have been elevated to the reporting limit per the NFG. The laboratory reported a detect between the MDL and RL for this analyte, but the result has been qualified (U flag) and raised to the reporting limit due to laboratory or field contamination.

TABLE 5

REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1

Phase I and II-A Remedial Design/ Remedial Action

FIELD DUPLICATE RESULTS

Original Sample Lab ID	Field Duplicate Lab ID	Field ID_Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-45377-8	460-45377-9	ECS-Hill-8-F_10/03/12	1311 Lead	564 ug/l	572 ug/l	NA	NA	1.4	у
460-45377-8	460-45377-9	ECS-Hill-8-F_10/03/12	Arsenic	9.7 mg/kg	8.4 mg/kg	NA	NA	14	у
460-45377-8	460-45377-9	ECS-Hill-8-F_10/03/12	Lead	238 mg/kg	208 mg/kg	NA	NA	13	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	1,1,1-Trichloroethane	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	1,1-Dichloroethane	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	1,1-Dichloroethene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	1,2,4-Trimethylbenzene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	1,2-Dichlorobenzene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	1,2-Dichloroethane	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	1,3,5-Trimethylbenzene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	У
			(Mesitylene)						
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	1,3-Dichlorobenzene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	1,4-Dichlorobenzene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	1,4-Dioxane (p-Dioxane)	56 U ug/kg	55 U ug/kg	1	112	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Acetone	11 U ug/kg	11 U ug/kg	0	22	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Benzene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Carbon Tetrachloride	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Chlorobenzene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Chloroform	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	У
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	cis-1,2-Dichloroethylene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Ethylbenzene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Methyl Ethyl Ketone (2-Butanone)	11 U ug/kg	11 U ug/kg	0	22	NA	У
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Methylene Chloride	0.38 JB ug/kg	0.44 JB ug/kg	0.06	2.2	NA	У
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	n-Butylbenzene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	n-Propylbenzene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	sec-Butylbenzene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	t-Butylbenzene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	tert-Butyl Methyl Ether	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Tetrachloroethylene(PCE)	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Toluene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	trans-1,2-Dichloroethene	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у

Original Sample	Field Duplicate	Field ID Date	Analyte	Original Sample	Field Duplicate	Abs Diff	2xRL	RPD	Pass
Lab ID	Lab ID	_	,	Lab Result	Lab Result				1 433
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Trichloroethylene (TCE)	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Vinyl Chloride	1.1 U ug/kg	1.1 U ug/kg	0	2.2	NA	у
460-45384-1	460-45384-4	BF-4003G-001-1-7'_10/03/12	Xylenes, Total	3.4 U ug/kg	3.3 U ug/kg	0.1	6.8	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	1,1,1-Trichloroethane	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	1,1-Dichloroethane	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	1,1-Dichloroethene	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	1,2,4-Trimethylbenzene	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	1,2-Dichlorobenzene	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	1,2-Dichloroethane	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	1,3,5-Trimethylbenzene (Mesitylene)	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	1,3-Dichlorobenzene	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	1,4-Dichlorobenzene	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	1,4-Dioxane (p-Dioxane)	51 U ug/kg	52 U ug/kg	1	104	NA	У
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Acetone	10 U ug/kg	2.3 JB ug/kg	7.7	20	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Benzene	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Carbon Tetrachloride	1 U ug/kg	1 U ug/kg	0	2	NA	У
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Chlorobenzene	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Chloroform	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	cis-1,2-Dichloroethylene	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Ethylbenzene	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Methyl Ethyl Ketone (2-Butanone)	10 U ug/kg	10 U ug/kg	0	20	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Methylene Chloride	0.4 JB ug/kg	0.31 JB ug/kg	0.09	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	n-Butylbenzene	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	n-Propylbenzene	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	sec-Butylbenzene	1 U ug/kg	1 U ug/kg	0	2	NA	У
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	t-Butylbenzene	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	tert-Butyl Methyl Ether	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Tetrachloroethylene(PCE)	1 U ug/kg	1 U ug/kg	0	2	NA	У
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Toluene	1 U ug/kg	1 U ug/kg	0	2	NA	У
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	trans-1,2-Dichloroethene	1 U ug/kg	1 U ug/kg	0	2	NA	y
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Trichloroethylene (TCE)	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Vinyl Chloride	1 U ug/kg	1 U ug/kg	0	2	NA	у
460-45384-2	460-45384-5	BF-4003G-002-1-7'_10/03/12	Xylenes, Total	3.1 U ug/kg	3.1 U ug/kg	0	6.2	NA	y
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Arsenic	8.6 mg/kg	9.7 mg/kg	NA	NA	12	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Barium	42.2 J mg/kg	45.2 mg/kg	3	87.8	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Beryllium	0.69 mg/kg	0.71 mg/kg	0.02	0.88	NA	y
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Cadmium	1.1 U mg/kg	1.1 U mg/kg	0	2.2	NA	У

Original Sample Lab ID	Field Duplicate Lab ID	Field ID_Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Chromium, Total	21.3 mg/kg	21.4 mg/kg	NA	NA	0.5	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Copper	26.4 mg/kg	31.8 mg/kg	5.4	11	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Lead	20 mg/kg	21.1 mg/kg	NA	NA	5.4	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Manganese	540 mg/kg	639 mg/kg	NA	NA	17	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Nickel	31.4 mg/kg	29.9 mg/kg	1.5	17.6	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Selenium	2.2 U mg/kg	2.2 U mg/kg	0	4.4	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Silver	2.2 U mg/kg	2.2 U mg/kg	0	4.4	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Zinc	74.6 mg/kg	79.6 mg/kg	NA	NA	6.5	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Chromium III	21.3 mg/kg	21.4 mg/kg	NA	NA	0.5	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Chromium, Hexavalent	2.2 U mg/kg	2.2 U mg/kg	0	4.4	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Mercury	0.037 mg/kg	0.035 J mg/kg	0.002	0.072	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Aldrin	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	alpha BHC (alpha Hexachlorocyclohexane)	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	alpha Endosulfan	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	beta BHC (beta Hexachlorocyclohexane)	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	beta Endosulfan	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Chlordane	76 U ug/kg	75 U ug/kg	1	152	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	delta BHC (delta	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	у
			Hexachlorocyclohexane)						
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Dieldrin	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Endosulfan Sulfate	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Endrin	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Endrin Aldehyde	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Endrin Ketone	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	gamma BHC (Lindane)	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Heptachlor	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Heptachlor Epoxide	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Methoxychlor	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	p,p'-DDD	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	p,p'-DDE	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	p,p'-DDT	7.6 U ug/kg	7.5 U ug/kg	0.1	15.2	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Toxaphene	76 U ug/kg	75 U ug/kg	1	152	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	PCB-1016 (Aroclor 1016)	76 U ug/kg	76 U ug/kg	0	152	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	PCB-1221 (Aroclor 1221)	76 U ug/kg	76 U ug/kg	0	152	NA	У
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	PCB-1232 (Aroclor 1232)	76 U ug/kg	76 U ug/kg	0	152	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	PCB-1242 (Aroclor 1242)	76 U ug/kg	76 U ug/kg	0	152	NA	У

Original Sample	Field Duplicate	Field ID_Date	Analyte	Original Sample	Field Duplicate	Abs Diff	2xRL	RPD	Pass
Lab ID	Lab ID		<u> </u>	Lab Result	Lab Result				
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	PCB-1248 (Aroclor 1248)	76 U ug/kg	76 U ug/kg	0	152	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	PCB-1254 (Aroclor 1254)	76 U ug/kg	76 U ug/kg	0	152	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	PCB-1260 (Aroclor 1260)	76 U ug/kg	76 U ug/kg	0	152	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Silvex (2,4,5-TP)	19 U ug/kg	19 U ug/kg	0	38	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	2-Methylphenol (o-Cresol)	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Acenaphthene	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Acenaphthylene	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Anthracene	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Benzo(a)Anthracene	37 U ug/kg	37 U ug/kg	0	74	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Benzo(a)Pyrene	37 U ug/kg	37 U ug/kg	0	74	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Benzo(b)Fluoranthene	37 U ug/kg	37 U ug/kg	0	74	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Benzo(g,h,i)Perylene	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Benzo(k)Fluoranthene	37 U ug/kg	37 U ug/kg	0	74	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Chrysene	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Cresols, m & p	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Dibenz(a,h)Anthracene	37 U ug/kg	37 U ug/kg	0	74	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Dibenzofuran	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Fluoranthene	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Fluorene	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Hexachlorobenzene	37 U ug/kg	37 U ug/kg	0	74	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Indeno(1,2,3-C,D)Pyrene	37 U ug/kg	37 U ug/kg	0	74	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Naphthalene	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Pentachlorophenol	1100 U ug/kg	1100 U ug/kg	0	2200	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Phenanthrene	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Phenol	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Pyrene	370 U ug/kg	370 U ug/kg	0	740	NA	у
460-45384-3	460-45384-6	BF-4003C-001-1-7'_10/03/12	Cyanide	0.075 J mg/kg	0.07 J mg/kg	0.005	1.14	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	1,1,1-Trichloroethane	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	1,1-Dichloroethane	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	1,1-Dichloroethene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	1,2,4-Trimethylbenzene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	1,2-Dichlorobenzene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	1,2-Dichloroethane	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	1,3,5-Trimethylbenzene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
			(Mesitylene)						
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	1,3-Dichlorobenzene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	1,4-Dichlorobenzene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	1,4-Dioxane (p-Dioxane)	47 U ug/kg	46 U ug/kg	1	94	NA	у

Original Sample	Field Duplicate	Field ID Date	Analyte	Original Sample	Field Duplicate	Abs Diff	2xRL	RPD	Pass
Lab ID	Lab ID		Allalyte	Lab Result	Lab Result	ווים פמא	ZAINL	יאו ט	1 033
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Acetone	4.2 JB ug/kg	4.3 JB ug/kg	0.1	19	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Benzene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	У
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Carbon Tetrachloride	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	У
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Chlorobenzene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	У
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Chloroform	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	У
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	cis-1,2-Dichloroethylene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	У
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Ethylbenzene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	У
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Methyl Ethyl Ketone (2-Butanone)	9.5 U ug/kg	9.3 U ug/kg	0.2	19	NA	У
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Methylene Chloride	14 B ug/kg	13 B ug/kg	NA	NA	7.4	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	n-Butylbenzene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	У
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	n-Propylbenzene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	У
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	sec-Butylbenzene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	У
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	t-Butylbenzene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	tert-Butyl Methyl Ether	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Tetrachloroethylene(PCE)	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Toluene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	trans-1,2-Dichloroethene	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	У
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Trichloroethylene (TCE)	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Vinyl Chloride	0.95 U ug/kg	0.93 U ug/kg	0.02	1.9	NA	у
460-45896-1	460-45896-2	CC-BL-3G-001_10/12/12	Xylenes, Total	2.8 U ug/kg	2.8 U ug/kg	0	5.6	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Arsenic	3.7 mg/kg	2.2 mg/kg	1.5	2	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Barium	69 mg/kg	52.9 mg/kg	16.1	83.2	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Beryllium	0.17 J mg/kg	0.15 J mg/kg	0.02	0.84	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Cadmium	1 U mg/kg	1 U mg/kg	0	2	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Chromium, Total	6.3 mg/kg	5 mg/kg	1.3	4.2	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Copper	6.8 mg/kg	4.5 J mg/kg	2.3	10.4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Lead	5.2 mg/kg	3.9 mg/kg	1.3	2	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Manganese	372 mg/kg	221 mg/kg	NA	NA	51	NO
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Nickel	10.6 mg/kg	7.1 J mg/kg	3.5	16.6	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Selenium	2.2 mg/kg	2 U mg/kg	0.2	4.2	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Silver	2.1 U mg/kg	2 U mg/kg	0.1	4.2	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Zinc	24 mg/kg	16.8 mg/kg	7.2	12.4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Chromium III	6.3 mg/kg	5 mg/kg	1.3	4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Chromium, Hexavalent	2.1 U mg/kg	2 U mg/kg	0.1	4.2	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Mercury	0.035 U mg/kg	0.034 U mg/kg	0.001	0.07	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Aldrin	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	alpha BHC (alpha	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	у
			Hexachlorocyclohexane)						

Original Sample	Field Duplicate	Field ID Date	Analyte	Original Sample	Field Duplicate	Abs Diff	2xRL	RPD	Pass
Lab ID	Lab ID	Tield ID_Date	Allalyte	Lab Result	Lab Result	ADS DIII	ZAIL	NI D	1 033
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	alpha Endosulfan	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	beta BHC (beta	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	У
			Hexachlorocyclohexane)						<u> </u>
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	beta Endosulfan	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Chlordane	72 U ug/kg	69 U ug/kg	3	144	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	delta BHC (delta	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	у
			Hexachlorocyclohexane)						<u> </u>
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Dieldrin	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Endosulfan Sulfate	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Endrin	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Endrin Aldehyde	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Endrin Ketone	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	gamma BHC (Lindane)	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Heptachlor	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Heptachlor Epoxide	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Methoxychlor	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	p,p'-DDD	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	p,p'-DDE	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	p,p'-DDT	7.2 U ug/kg	6.9 U ug/kg	0.3	14.4	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Toxaphene	72 U ug/kg	69 U ug/kg	3	144	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	PCB-1016 (Aroclor 1016)	72 U ug/kg	69 U ug/kg	3	144	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	PCB-1221 (Aroclor 1221)	72 U ug/kg	69 U ug/kg	3	144	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	PCB-1232 (Aroclor 1232)	72 U ug/kg	69 U ug/kg	3	144	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	PCB-1242 (Aroclor 1242)	72 U ug/kg	69 U ug/kg	3	144	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	PCB-1248 (Aroclor 1248)	72 U ug/kg	69 U ug/kg	3	144	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	PCB-1254 (Aroclor 1254)	72 U ug/kg	69 U ug/kg	3	144	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	PCB-1260 (Aroclor 1260)	72 U ug/kg	69 U ug/kg	3	144	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Silvex (2,4,5-TP)	18 U ug/kg	17 U ug/kg	1	36	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	2-Methylphenol (o-Cresol)	360 U ug/kg	340 U ug/kg	20	720	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Acenaphthene	57 J ug/kg	340 U ug/kg	283	720	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Acenaphthylene	360 U ug/kg	340 U ug/kg	20	720	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Anthracene	360 U ug/kg	340 U ug/kg	20	720	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Benzo(a)Anthracene	36 U ug/kg	34 U ug/kg	2	72	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Benzo(a)Pyrene	36 U ug/kg	34 U ug/kg	2	72	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Benzo(b)Fluoranthene	36 U ug/kg	34 U ug/kg	2	72	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Benzo(g,h,i)Perylene	360 U ug/kg	340 U ug/kg	20	720	NA	У
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Benzo(k)Fluoranthene	36 U ug/kg	34 U ug/kg	2	72	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Chrysene	360 U ug/kg	340 U ug/kg	20	720	NA	у

Original Sample Lab ID	Field Duplicate Lab ID	Field ID_Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Cresols, m & p	360 U ug/kg	340 U ug/kg	20	720	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Dibenz(a,h)Anthracene	36 U ug/kg	34 U ug/kg	2	72	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Dibenzofuran	360 U ug/kg	340 U ug/kg	20	720	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Fluoranthene	360 U ug/kg	340 U ug/kg	20	720	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Fluorene	360 U ug/kg	340 U ug/kg	20	720	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Hexachlorobenzene	36 U ug/kg	34 U ug/kg	2	72	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Indeno(1,2,3-C,D)Pyrene	36 U ug/kg	34 U ug/kg	2	72	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Naphthalene	1000 ug/kg	110 J ug/kg	890	720	NA	NO
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Pentachlorophenol	1100 U ug/kg	1000 U ug/kg	100	2200	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Phenanthrene	360 U ug/kg	340 U ug/kg	20	720	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Phenol	360 U ug/kg	340 U ug/kg	20	720	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Pyrene	360 U ug/kg	340 U ug/kg	20	720	NA	у
460-45896-4	460-45896-5	CC-BL-3C-001_10/12/12	Cyanide	0.15 J mg/kg	0.29 J mg/kg	0.14	1.08	NA	у
460-46911-6	460-46911-7	ECS-7+25-F_11/07/12	Lead	11.2 mg/kg	38.1 mg/kg	NA	NA	109	NO
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	1,1,1-Trichloroethane	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	1,1-Dichloroethane	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	1,1-Dichloroethene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	1,2,4-Trimethylbenzene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	1,2-Dichlorobenzene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	1,2-Dichloroethane	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	1,3,5-Trimethylbenzene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
			(Mesitylene)						
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	1,3-Dichlorobenzene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	1,4-Dichlorobenzene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	1,4-Dioxane (p-Dioxane)	46 U ug/kg	48 U ug/kg	2	96	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Acetone	2.4 JB ug/kg	1.9 JB ug/kg	0.5	19	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Benzene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	У
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Carbon Tetrachloride	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Chlorobenzene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	У
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Chloroform	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	cis-1,2-Dichloroethylene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Ethylbenzene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Methyl Ethyl Ketone (2-Butanone)	9.2 U* ug/kg	9.5 U* ug/kg	0.3	19	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Methylene Chloride	4.1 B ug/kg	4.7 B ug/kg	0.6	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	n-Butylbenzene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	n-Propylbenzene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	sec-Butylbenzene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	t-Butylbenzene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	у

Original Sample Lab ID	Field Duplicate Lab ID	Field ID_Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	tert-Butyl Methyl Ether	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	V
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Tetrachloroethylene(PCE)	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	v
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Toluene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	v
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	trans-1,2-Dichloroethene	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	У
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Trichloroethylene (TCE)	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	v
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Vinyl Chloride	0.92 U ug/kg	0.95 U ug/kg	0.03	1.9	NA	v
460-47389-4	460-47389-5	CC-PSL-2g-001_11/19/12	Xylenes, Total	2.8 U ug/kg	2.9 U ug/kg	0.1	5.8	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Arsenic	2.6 mg/kg	3.6 mg/kg	1	1.98	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Barium	38.5 J mg/kg	46 mg/kg	7.5	79	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Beryllium	0.39 U mg/kg	0.14 J mg/kg	0.25	0.78	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Cadmium	0.33 J mg/kg	0.34 J mg/kg	0.01	1.98	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Chromium, Total	4.5 mg/kg	6.1 mg/kg	1.6	4	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Copper	6 mg/kg	5.7 mg/kg	0.3	9.8	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Lead	4 mg/kg	4.3 mg/kg	0.3	1.98	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Manganese	271 mg/kg	262 mg/kg	NA	NA	3.4	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Nickel	6.8 J mg/kg	8.4 mg/kg	1.6	15.8	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Selenium	2 U mg/kg	1.9 U mg/kg	0.1	4	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Silver	2 U mg/kg	1.9 U mg/kg	0.1	4	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Zinc	29.5 mg/kg	19.4 mg/kg	10.1	11.8	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Chromium III	4.5 mg/kg	6.1 mg/kg	1.6	4	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Chromium, Hexavalent	2.1 U mg/kg	2 U mg/kg	0.1	4.2	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Mercury	0.031 U mg/kg	0.03 U mg/kg	0.001	0.062	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Aldrin	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	alpha BHC (alpha Hexachlorocyclohexane)	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	alpha Endosulfan	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	beta BHC (beta Hexachlorocyclohexane)	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	beta Endosulfan	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Chlordane	68 U ug/kg	68 U ug/kg	0	136	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	delta BHC (delta Hexachlorocyclohexane)	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Dieldrin	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Endosulfan Sulfate	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Endrin	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Endrin Aldehyde	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Endrin Ketone	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	gamma BHC (Lindane)	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	У

Original Sample	Field Duplicate	Field ID_Date	Analyte	Original Sample	Field Duplicate	Abs Diff	2xRL	RPD	Pass
Lab ID	Lab ID	Field ID_Date	Allalyte	Lab Result	Lab Result	ADS DIII	ZXNL	KFD	газэ
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Heptachlor	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Heptachlor Epoxide	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Methoxychlor	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	p,p'-DDD	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	p,p'-DDE	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	p,p'-DDT	6.8 U ug/kg	6.8 U ug/kg	0	13.6	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Toxaphene	68 U ug/kg	68 U ug/kg	0	136	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	PCB-1016 (Aroclor 1016)	68 U ug/kg	68 U ug/kg	0	136	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	PCB-1221 (Aroclor 1221)	68 U ug/kg	68 U ug/kg	0	136	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	PCB-1232 (Aroclor 1232)	68 U ug/kg	68 U ug/kg	0	136	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	PCB-1242 (Aroclor 1242)	68 U ug/kg	68 U ug/kg	0	136	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	PCB-1248 (Aroclor 1248)	68 U ug/kg	68 U ug/kg	0	136	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	PCB-1254 (Aroclor 1254)	68 U ug/kg	68 U ug/kg	0	136	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	PCB-1260 (Aroclor 1260)	68 U ug/kg	68 U ug/kg	0	136	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Silvex (2,4,5-TP)	17 U ug/kg	17 U ug/kg	0	34	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	2-Methylphenol (o-Cresol)	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Acenaphthene	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Acenaphthylene	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Anthracene	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Benzo(a)Anthracene	33 U ug/kg	34 U ug/kg	1	68	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Benzo(a)Pyrene	33 U ug/kg	34 U ug/kg	1	68	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Benzo(b)Fluoranthene	33 U ug/kg	34 U ug/kg	1	68	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Benzo(g,h,i)Perylene	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Benzo(k)Fluoranthene	33 U ug/kg	34 U ug/kg	1	68	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Chrysene	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Cresols, m & p	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Dibenz(a,h)Anthracene	33 U ug/kg	34 U ug/kg	1	68	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Dibenzofuran	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Fluoranthene	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Fluorene	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Hexachlorobenzene	33 U ug/kg	34 U ug/kg	1	68	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Indeno(1,2,3-C,D)Pyrene	33 U ug/kg	34 U ug/kg	1	68	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Naphthalene	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Pentachlorophenol	1000 U ug/kg	1000 U ug/kg	0	2000	NA	у
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Phenanthrene	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Phenol	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Pyrene	330 U ug/kg	340 U ug/kg	10	680	NA	У
460-47389-7	460-47389-8	CC-PSL-2c-001_11/19/12	Cyanide	0.1 U mg/kg	0.1 U mg/kg	0	0.2	NA	У

α	•		α
QAA,	L.	L.	C.

Original Sample Field Duplicate Lab ID Lab ID		Field ID_Date	Analyte	Original Sample Lab Result			Duplicate Result	Abs Diff		RPD	Pass
460-48739-	5 460-48739-6	ECS-SSA29-SE_12/18/12	1311 Lead	90	ug/l	66.3	ug/l	23.7	50	NA	у
460-48739-	5 460-48739-6	ECS-SSA29-SE_12/18/12	Arsenic	5.2	mg/kg	4.5	mg/kg	0.7	2.4	NA	у
460-48739-	5 460-48739-6	ECS-SSA29-SE 12/18/12	Lead	35.6	mg/kg	25.5	mg/kg	NA	NA	33	٧

ATTACHMENT A VALIDATOR'S CHECKLISTS

	II IOJECI IV	unnu	er/ Manager: E7976/ Jenny Self				
Client Name: Entact Site Name: Revere Smelting and Refining (Phase 2A)							
	QC Level: IV Laboratory Job No: see below						
	Methods: 1311/6010B, 6010B/7470A/7471A, 7196A, 8081A, 8082, 8151A, 8260B,						
	8270C, 9012A						
YES	NO	N/A	(CRITERIA) COMMENT				
Х			NYDOH (NELAP) #11452, NYDOH (ELAP) #11452				
	00\/0	I F	See Narrative Comments				
	OC)/ Sam	ipie r	receipt T				
	-		(D4 M/D Table 2, D24 M/D Table 4, all sails are present required)				
x			(P1 WP Table 2, P2A WP Table 1 - all soils, no preserv required)				
	Х		see Comment no. 1				
	х		(DER10 - recommended) 460-45895-1, 460-45896-1, 460-46911-1 s 1-11 rec'd day 3				
Analytica	al Results		· · · · · · · · · · · · · · · · · · ·				
Х							
Х							
х							
х							
x			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'quantitation_limit' = 'minimum_detectable_conc' (SDL' reporting_detection_limit' (SQL), J-values reported NOTE: For metal in soils, MDL 0.47 & MQL = 0.5 ppm for Arsenic so SDL=SQL fc some. Also, interpreted_qualifiers field does not include all QC flag (i.e., * and 4)				
х			(P1 WP Table 3, P2A WP Table 2 and/or DER-10 App 5 plus CL TAL) see Comment no. 2				
	х		(ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3				
х			Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP				
			(P1 WP Table 2, P2A WP Table 1, and/or ASP Exh D) see Commer no. 4				
×			(ASP Exh D) see Comment no. 4A				
	-		(NOT EXITE) GOO COMMINENTIES. IN				
х			Organics in ug/L (TBs) and ug/kg for rest; Inorganics in mg/kg or ug/(TCLP)				
X**			(Workplan Table 2, SW846 for those not in table per ASP Exh I, which gives only aq HTs)				
X**			same as above				
rkplan Sectio	n 5.3.6 ar	nd 2/2	29/12 mod letter)				
ble		NA	only disposable equipment used				
ry x	1						
	 	NA					
atriv	+ +	. 1/7	Total samples = 39 confirmation + 18 BF + 27 BF grab = 84; Total FI				
Х			= 10				
the x			MS/LR used for metals (ICP, Hg, Cr VI - $\%$ R not reported for calc CIII); 84 total samples, 8 LR/MS or MS/SD with at least 1 per 20 fc				
Х			(Workplan Section 5.3.3 - 100%) 2273/2287=99.4%				
Field	Notes						
		Х	not included				
		Х					
		Х					
of the contract of the contrac	X	YES NO	YES NO				

Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification; COI - Compound of Interest; %D - Percent Difference, DL - Detection Limit; DUP - Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasma; ICV - Initial Calibration Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Matrix Spike Duplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response Factor; RT - Retention Time; RSD - Relative Standard Deviation; TA - Target Analyte

COMMENTS

Laboratory Job No: 460-43348-1, 460-45377-1, 460-45384-1, 460-45895-1, 460-45896-1, 460-46911-1, 460-47389-1, 460-48738-1, 460-48739-1

*For the 7196A analyses, Cr III is shown as not dry-weight corrected. However, Cr III is calculated from the results for Cr VI and Total Cr, which are dry-weight corrected, and thus the Cr III is not directly dry-weight corrected but is on a dry-weight basis.

^{**} The holding time was calculated using dates only with regard to the time of day since all holding times are greater than 24 hours. Also, note that Cr III is a calculated result and the holding time check does not apply for this analyte.

1. Issues for custody records:

Seals were not used on the shipping coolers but seals were used on the samples themselves. Also, the laboratory sample custodian noted that the coolers and the samples did not appear to have been compromised or tampered with.

The sampler did not enter one of the trip blanks (lab sample ID 460-45384-22) on the custody record. This trip blank was logged in for VOC analysis upon receipt at the laboratory per Entact.

The sampler did not enter the time relinquished on the custody record for laboratory job number 460-45896-1. The date relinquished and release signature are present. The laboratory sample custodian did not sign or enter the date/time relinquished on page 2 of the custody record for laboratory job number 460-47389-1. The release signature and the date/time is entered on page 1. Note that the only sample on page 2 is a trip blank.

2. Analyte List:

P1 WP Table 3, P2A WP Table 2, and DER10 App5 list m-cresol, o-cresol, and p-cresol separately. The laboratory reported m,p-cresol and o-cresol as it is not possible to separate m-cresol and p-cresol using method 8270C. P1 WP Table 3, which only lists RLs for the DER-10 metals and not the 23 TAL metals, also mistakenly lists Antimony. This metal does not appear in DER10 Appendix 5 and was not reported by the laboratory for the P1 backfill samples.

For all BF and CC samples (and the associated QC), the laboratory reported technical Chlordane rather than Chlordane (alpha) as listed in the workplan and DER10 Appendix 5.

For all BF and CC samples (and the associated QC), the laboratory inadvertently reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) instead of just the DER-10 analytes as requested. FYI - These extra analytes are all ND in the samples.

Note: The analyte names in the hardcopy report differ from those in the EDD for some analytes.

- 3. The MQL (Unadj) for several DER-10 analytes is above the CRQL, but in each case, it is below the Allowable Constituent Level in DER10 App 5 except for Pentachlorophenol. The actual lab RL is above the CRQL and the ACL in DER10 App5 for this analyte. The MDL is < 1/8 the ACL and J-values are reported, so NDs for undiluted samples may show conformance. Additionally, the MQL (Unadj) for the TAL metal Iron is above the CRQL. There are no action levels for this analyte.
- 4. VOCs in soil collected in 4-oz jars using bulk technique and analyzed using a low-level DI water extraction (on day 1 to day 5) with heated purge-n-trap per workplan rather than using closed system purge-n-trap or methanol extraction as indicated by preparation method (5035) referenced by the laboratory.
- 4A. Per laboratory, Florisil cleanup (SW3620B) used for Pesticide analyses and sulfuric acid cleanup (SW3665A) used for PCB analyses (not indicated in package or EDD). No cleanup used for SVOC or Herbicides.

	Lab Job No.	Test	Batch/Sample	Issue	Resolution
All	All	TCLP Metals		Diluted 5x before analysis as standard practice	noted in QA report narrative
		Total Metals		Diluted 2-4x before analysis as standard practice	noted in QA report narrative
=	100 100 10 1	Total Metals		Required 4x dilution prior to analysis; RLs adjusted accordingly	noted in QA report narrative
EN336		TCLP Metals		Insufficient sample to leach 100-g, fluid volume adjusted to maintain 20:1	noted in QA report narrative
EN337	460-45377-1	NA	NA	no issues noted	NA
EN338	460-45384-1	Total Metals		MS %R low for Mn	none required (QC check inconclusive)
		Pesticides	130663/LCS	SU %R high for DCB on 1° col, TCMX passes, data qualified and reported	none required (sample results not affected)
		Pesticides	130663/21	MS/D %R out for DDD, LCS passes	Associated samples flagged per NFG
		Pesticides	130663/21	MSD RPD out for DDD, non-homog sample suspected	Associated samples flagged per NFG
		Pesticides	131076/CCV-24	CCV %R out for End Sulf on 2nd column, 1° column passes, data qualified and reported	NA (passes with rounding)
		Pesticides	131076/CCV-44	CCV %R hi for Endr Ald on 1° col, samples all ND, data reported	NA (passes with rounding)
		Herbicides	131195/CCVRT-1	CCVRT %R hi for SU, samples all ND, data reported	none required (sample results not affected)
		Herbicides	131195/CCV-10	Closing CCV %R hi for SU, samples all ND, data reported	none required (sample results not affected)
			LCSD, 21 MS	SU %R hi, samples did not contain any TAs so no re-extraction/re-analysis	none required (sample results not affected)
		VOCs	130595/LB3-1A	Blank contains Acetone/MeCl2 >MDL but <rl, samples="">MDL but <rl b-flagged<="" td=""><td>Associated samples flagged per NFG</td></rl></rl,>	Associated samples flagged per NFG
		VOCs	131041/MB-5	Blank contains MeCl2 >MDL but <rl, samples="">MDL but <rl b-flagged<="" td=""><td>Associated samples flagged per NFG</td></rl></rl,>	Associated samples flagged per NFG
		VOCs	131153/MB-5	Blank contains Acetone/MeCl2 >RL, samples >MDL but <rl b-flagged<="" th=""><th>Associated samples flagged per NFG</th></rl>	Associated samples flagged per NFG
		VOCs	130595/10	MS/D %R out for many, LCS passes	Associated samples flagged per NFG
		VOCs	131153/NA (11)	MS %R out for many, LCS passes	Associated samples flagged per NFG
		VOCs	131153/NA (11)	MSD RPD out for 1,4Dioxane, LCS passes	Associated samples flagged per NFG
FNICO	400 45005 4	SVOCs	130676/NA (21)	MSD %R out for B(a)p, LCS passes	Associated samples flagged per NFG
EN339	460-45895-1	Pesticides	132123/LCS	LCS %R low for Methoxychlor	Associated samples flagged per NFG
		Herbicides	132149/CCV-6	Closing CCV %R hi for SU, samples all ND, data reported	none required (sample results not affected)
		Herbicides Herbicides	132191/CCVRT-1 132191/CCV-14	CCVRT %R hi for SU, samples all ND, data reported Closing CCV %R hi for PCP, samples all ND, data reported	none required (sample results not affected) NA (this CCV does not apply since PCP not
		neibicides	132191/001-14	Closing CCV 76K III for FCF, samples all ND, data reported	a 8151 target analyte)
		Herbicides	132191/CCV-13	Closing CCV %R hi for SU, samples all ND, data reported	none required (sample results not affected)
		Herbicides	132191/LCS/D	LCS/D - Silvex not detected on 1° col due to interference of PCP, 2nd col passes, data	none required since interference noted and
		Horbidado	102101/200/2	qualified and reported	second column passes
		Herbicides	132191/8	MS/D - Silvex not detected on 1° col due to interference of PCP, 2nd col passes, data	none required since interference noted and
				qualified and reported	second column passes
		Herbicides	NA	'4' qualifier indicates conc in unspiked sample > 4x spiking amount	NA
		VOCs	132438/LB3-1A	Blank contains Acetone/MeCl2 >MDL but <rl, samples="">MDL but <rl b-flagged<="" th=""><th>Associated samples flagged per NFG</th></rl></rl,>	Associated samples flagged per NFG
		VOCs	132463/MB-5	Blank contains Acetone/MeCl2 >RL, samples >MDL but <rl b-flagged<="" th=""><th>Associated samples flagged per NFG</th></rl>	Associated samples flagged per NFG
		VOCs	132504/MB-6	Blank contains Acetone/MeCl2 >RL, samples >MDL but <rl b-flagged<="" th=""><th>Associated samples flagged per NFG</th></rl>	Associated samples flagged per NFG
		VOCs	1-6	Peak at 12.484 min is column bleed and therefore not reported as TIC	noted in QA report narrative
		VOCs	10,11	Peaks at 12.484 and 14.031 min is column bleed and therefore not reported as TIC	noted in QA report narrative
EN340	460-45896-1	Total Metals	132504/8	MS %R low for Mn	none required (QC check inconclusive)
		Herbicides	132506/CCVRT-1	CCVRT %R hi for SU, samples all ND, data reported	none required (sample results not affected)
		Herbicides	132506/CCV-11	Closing CCV %R hi for SU, samples all ND, data reported	none required (sample results not affected)
		Herbicides	132508/CCVRT-1	CCVRT %R hi for SU, samples all ND, data reported	none required (sample results not affected)
		Herbicides	132508/CCV-9	Closing CCV %R hi for SU, samples all ND, data reported	none required (sample results not affected)
		VOCs	132327/LB3-1A	Blank contains MeCl2 >RL, samples >MDL but <rl b-flagged<="" th=""><th>Associated samples flagged per NFG</th></rl>	Associated samples flagged per NFG
		VOCs	132504/MB-6	Blank contains Acetone/MeCl2 >RL, samples >MDL but <rl b-flagged<="" th=""><th>Associated samples flagged per NFG</th></rl>	Associated samples flagged per NFG
		VOCs	132646/MB-5	Blank contains Acetone/MeCl2 >MDL but <rl, samples="">MDL but <rl b-flagged<="" th=""><th>Associated samples flagged per NFG</th></rl></rl,>	Associated samples flagged per NFG
		VOCs	132504/6	MS/D %R low for many, hi for 2-Butanone	Associated samples flagged per NFG
		VOCs	1-2	Peak at 12.484 min is column bleed and therefore not reported as TIC	noted in QA report narrative
		VOCs	NA	'4' qualifier indicates conc in unspiked sample > 4x spiking amount	NA () I () NIB : (I : TB
		VOCs	132207 (TB only)	LCS %R out for Acetone/2-Butanone, MS/D passes	none (analytes ND in this TB, samples
EN341	460-46911-1	NA	NA	no issues noted	results not affected) NA
EN341 EN342	460-47389-1		all	bulk soils in jars, not 5035	noted in QA report narrative
LINO42	TUU-T1 303-1	v O O S	all	buin solis iii jais, tiol soos	noted in QA report nariative

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
		Total Metals	137271/11	MS %R high for Mn	none required (QC check inconclusive)
		Herbicides	136893/CCVRT-1	CCVRT %R hi for SU, samples all ND, data reported	none required (sample results not affected)
		Herbicides	136893/CCV-12	Closing CCV %R hi for SU, samples all ND, data reported	none required (sample results not affected)
		Herbicides	136899/CCVRT-1	CCVRT %R hi for SU, samples all ND, data reported	none required (sample results not affected)
		VOCs	2,4,5,6	Peak at 12.484 min is column bleed and therefore not reported as TIC	noted in QA report narrative
		VOCs	137271/MB-6	Blank contains MeCl2 >RL, samples >MDL but <rl b-flagged<="" th=""><th>Associated samples flagged per NFG</th></rl>	Associated samples flagged per NFG
		VOCs	137271/MB-6	Blank contains Acetone >MDL but <rl, samples="">MDL but <rl b-flagged<="" th=""><th>Associated samples flagged per NFG</th></rl></rl,>	Associated samples flagged per NFG
		VOCs	137271/LCS	LCS %R high for 2-Butanone, samples all ND, data reported	Associated samples flagged per NFG
		VOCs	137271/NA (10)	MS/D %R out for many, LCS passes exc for 2-Butanone	Associated samples flagged per NFG
EN343	460-48738-1	NA	NA	no issues noted	NA
EN344	460-48739-1	NA	NA	no issues noted	NA

Revere Smelting and Refining (Phase 2A)	Projec	t Numl	oer/ Ma	anager: E7976/ Jenny Self					
TestAmerica (Edison, NJ)	Laboratory Job No: see DURC								
aryn Scholz	Date Checked: 2/21/13								
: TCLP Pb, Metals, CrIII/VI, CN			1311/6010B, 6010B/7471A, 7196A, 9012A						
%PERFORMED/ ITEM		NO	N/A	(CRITERIA) COMMENT					
	X								
			X						
o check samples/200 data meldded in lab package:				With the exception of Cr III, which is a calculated					
Loroject COCs or TAs included?	Х			value					
	Х			method (lab but within 50-200%)					
	_								
R criteria met?		Х		method (75-125%) see Table 3					
	х								
PD criteria met?		Х		method (20% if >10xMDL) see Table 3					
				ASP for lab dup - 20% ag, 35% solid (+/-RL ag, +/					
eld dup RPD criteria met? (individual, mean, and overall)		Х		2RL sol if either <5RL) see Table 3					
strument Tune for ICP-MS included in lab package?			Х	·					
strument Tune method criteria met? (±5 RSD, ±0.1 amu)			Х						
	Х								
0 ,	Х								
	Х								
			х	CL per ASP Exh E - not reported					
ilution test data included?	х								
esults within criteria if >50xMDL? (max 10%, qualify 15%)	Х								
ost digestion spike included?	Х								
R criteria met?	Х			method (75-125%)					
	Х								
	Х			2RL per ASP Exh E					
	-		X						
,			Х						
, ,									
S	^		_						
ring I la la F els sill a class; con la la talante	ethod blank data included in Lab Package? iteria met? (< MDL, ≥ -RL) iteria met for field blanks? (< MDL) C check samples/LCS data included in lab package? project COCs or TAs included? R criteria met? atrix spike data included in lab package? R criteria met? Imple duplicate data included in lab package? C criteria met? Indid dup RPD criteria met? (individual, mean, and overall) Strument Tune for ICP-MS included in lab package? Strument Tune method criteria met? (±5 RSD, ±0.1 amu) Itial calibration documentation included in lab package? Indication the strument? (≥0.995) Indication verification data included in lab package? B/CCB criteria met? (<rl, %r="" (50-150%="" (icp="" 80-120%)="" 80-120,cn="" 85-115)="" 90-110%,="" 90-110,hg="" ccv="" criteria="" cv="" data="" hg="" in="" included="" included?="" indi<="" indication="" lab="" met?="" package?="" pb="" sb="" spike="" td="" test="" tl,70-130%)="" v="" ≥-rl)=""><td>tethod blank data included in Lab Package? iteria met? (< MDL, ≥ -RL) iteria met for field blanks? (< MDL) C check samples/LCS data included in lab package? x project COCs or TAs included? R criteria met? R criteria met? R criteria met? Imple duplicate data included in lab package? In criteria met? In column to the for ICP-MS included in lab package? In criteria met? In column to the for ICP-MS included in lab package? In column to the for ICP-MS included in la</td><td>tetriod blank data included in Lab Package? iteria met? (< MDL, ≥ -RL) iteria met for field blanks? (< MDL) C check samples/LCS data included in lab package? project COCs or TAs included? R criteria met? R criteria met? R criteria met? R criteria met? Imple duplicate data included in lab package? PD criteria met? Imple duplicate data included in lab package? PD criteria met? Imple duplicate data included in lab package? R criteria met? Imple duplicate data included in lab package? Imple duplicate data included? Imple duplicate data included in lab package? Imple duplicate data included? Imple duplicate data included in lab package? Imple duplicate data included? Imple duplicate data included in lab package? Imple duplicate da</td><td>atteria met? (< MDL, ≥ -RL) iteria met for field blanks? (< MDL) C check samples/LCS data included in lab package? A criteria met? R crit</td></rl,>	tethod blank data included in Lab Package? iteria met? (< MDL, ≥ -RL) iteria met for field blanks? (< MDL) C check samples/LCS data included in lab package? x project COCs or TAs included? R criteria met? R criteria met? R criteria met? Imple duplicate data included in lab package? In criteria met? In column to the for ICP-MS included in lab package? In criteria met? In column to the for ICP-MS included in lab package? In column to the for ICP-MS included in la	tetriod blank data included in Lab Package? iteria met? (< MDL, ≥ -RL) iteria met for field blanks? (< MDL) C check samples/LCS data included in lab package? project COCs or TAs included? R criteria met? R criteria met? R criteria met? R criteria met? Imple duplicate data included in lab package? PD criteria met? Imple duplicate data included in lab package? PD criteria met? Imple duplicate data included in lab package? R criteria met? Imple duplicate data included in lab package? Imple duplicate data included? Imple duplicate data included in lab package? Imple duplicate data included? Imple duplicate data included in lab package? Imple duplicate data included? Imple duplicate data included in lab package? Imple duplicate da	atteria met? (< MDL, ≥ -RL) iteria met for field blanks? (< MDL) C check samples/LCS data included in lab package? A criteria met? R crit					

			Project Number/ Manager: E7976/ Jenny Self						
ite Nan	ne: Revere Smelting and Refining (Phase 2A)	QC Level: IV							
aborato	ory: TestAmerica (Edison, NJ)	Labora	atory Jo	b No:	see DURC				
Reviewe	r: Taryn Scholz	Date C	Checked	d: 2/21	/13				
aramet	ers: TCLP Pb	Metho	ds: 131	1/6010)B				
	%PERFORMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT				
	Was a ZHE vessel without leaks used for VOAs?			Х					
	Was particle size reduced as necessary? (capable of passing			х					
	through a 9.5 mm (0.375 inch) standard sieve)			X					
	Were multi-phasic waste samples properly analyzed? (if <0.5%								
	solids->analyze filtered waste, if >0.5%->leach solids, combine			x					
	with filtered liquid if compatible or analyze separately								
	Was the correct extraction fluid used? (TCLP - #1 for VOA and if				No. 1 for all				
	pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for	х							
	soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-	^							
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-	.,							
	2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	Х							
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)		Х		see Comment no. 1				
	Was the correct weight of fluid used? (20x solid weight)	Х							
100	Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)	Х			see Comment no. 2				
	No preservation for aqueous sample aliquots?			Х					
	Proper preservation for leachates?	х			(method pH <2)				
100	Holding time to leaching not expired?	Х			(method 180-days)				
	Leach blank data included in Lab Package? (1/20)	х							
100	Criteria met? (< MDL)	Х							
ОММЕ	INTS								
CLP Ba	atches: 8/13 16:30; 10/5 18:30; 12/21 15:31								
,									
	3348-1: not enough sample for 1-9, approx 50-g used with 1000 mls ϵ								
60-433	77-1: not enough sample for 1-9, approx 35-g used with 700 mls extra	action f	luid ->n	o flags	since 20/1 ratio maintained				
	8738-1: the TCLP batch worksheet has an incorrect batch end date.	The c	orrect c	late is	shown on the TCLP batch worksheet for t				
amples	in 460-48739-1, which were leached in the same batch (140868).								

Data \	Validation Checkl	ist: GC				
	me: Entact		Proiec	t Num	ber/ Ma	anager: E7976/ Jenny Self
	e: Revere Smelting and Refini	ing (Phase 2A)		vel: IV		anagor. Er or o, cominy com
	y: TestAmerica (Edison, NJ)	J ()				see DURC
Reviewer:	: Taryn Scholz				ed: 2/21	
Paramete	rs: Pesticide, PCB, Herbicide		Metho	ds: 80	81A, 80	082, 8151A
	%PERFORM		YES	NO	N/A	(CRITERIA) COMMENT
	Method blank data included	in Lab Package?	Х			
100	Criteria met? (<mdl)< td=""><td>3</td><td>Х</td><td></td><td></td><td></td></mdl)<>	3	Х			
100	Criteria met for field blanks?	(<mdl)< td=""><td></td><td></td><td>х</td><td></td></mdl)<>			х	
	QC check samples/LCS data		Х			
	All project COIs or TAs inclu	. ,	х			With the exception of multi-component pesticides Chlordane (technical) andToxaphene; only two multi-component Aroclors (1016 and 1260) spiked per method recommendations
	%R criteria met?			Х		method (lab but within 50-200%) see Table 3
100	RPD criteria met?	Х				
	Matrix spike data included in	lab package?	Х			
1	%R criteria met?			Х		method (lab but within 50-200%) see Table 3
100	RPD criteria met?			Х		method (lab but within 40%) see Table 3
1	Surrogate data included in la	1 0	Х			
	Required surrogates include	d?	Х			
100	%R criteria met?			х		method (lab but within 10-200%) see Table 3
100	Field dup RPD criteria met?	(individual, mean, and overall)	х			ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2RL sol if either <5RL)
	Initial calibration documentat	tion included in lab package?	Х			7-8 peaks used for all multi-comp Pest/PCB
	All target analytes included?		Х			
100	%RSD criteria met? (max 20		Х			
100	DDT/Endrin %breakdown ma	ax 15%?	Х			
	Calibration verification data i		Х			
100	%R criteria met? (max +/-15			Х		see Comment no. 1 and Table 3
100		nation data incl in lab package?	х			
100	%Difference criteria met? (<		Х			see Comment no. 2
10	Analyte qualitative ID criteria	,	Х			
10	Analyte quantitation/RLs cor		Х			
10	QC parameters calculated co		Х			
	Surrogate	Control Limits				
PEST/	Decachlorobiphenyl	53-150/30-150				
PCB	Tetrachloro-m-xylene	40-150				
HERB	2,4-DCPA	54-150				
COMMEN						
This occur	rred for the following CCV: 13 1, the validator did not deline	0916/2, 130916/28, 132218/22, 132 eate cases where the surrogate has	2286/2, 13 s a high %	32286/ 6D on	17, 136 one co	high %D on just one column since all of the samples are ND. 1954/17 Slumn (DB-5) since surrogate recoveries for each sample are stress. This occurred for the following CCV: 131195/1, 131195/10,
		96/1, 132506/11, 132508/1, 132508/				
	0-47389-1, Form X for 8151 H in each case.	erb shows 0.0 RPD for the BS/BD/I	MS/SD ra	ther th	an the	calculated value. The validator calculated the RPD and found

	Validation Chec	Milot. Co/Mic	-			
	ame: Entact					anager: E7976/ Jenny Self
	ne: Revere Smelting and Re			evel: IV		DUDO
	ory: TestAmerica (Edison, Ner: Taryn Scholz	NJ)		atory Jo Checke		see DURC
	ers: VOC, SVOC			ods: 826		
Paramet	,	DRMED/ ITEM	YES	NO		(CRITERIA) COMMENT
	Method blank data include		X	NO	IN/A	(CRITERIA) COMMENT
100	Criteria met? (<mdl)< td=""><td>ed III Lab i ackage:</td><td>_^</td><td>Х</td><td></td><td>see Table 3</td></mdl)<>	ed III Lab i ackage:	_^	Х		see Table 3
100	Criteria met for field blank	:s? (<mdl)< td=""><td></td><td>X</td><td></td><td>see Table 3</td></mdl)<>		X		see Table 3
		lata included in lab package?	Х			
	All project COIs or TAs in			х		m,p-Cresol not spiked
100	%R criteria met?			х		method (lab but within 50-200%) see Table 3
100	RPD criteria met?		Х			method (lab but within 40%)
	Matrix spike data included	d in lab package?	Х			
100	%R criteria met?			Х		method (lab but within 50-200%) see Table 3
100	RPD criteria met?			Х		method (lab but within 40%) see Table 3
	Surrogate data included in		Х			
	Required surrogates inclu	ded?	Х			
100	%R criteria met?		Х	<u> </u>	-	method (lab but within 10-200% extr, 20-200% purg)
400	Elektrica DDD 12 1	(O finally delication of the control				20% aq, 35% solid (+/-2RL aq, +/-3RL sol if either <5RL
100		et? (individual, mean, and overall)		Х		see Table 3
100	Instrument Tune (12-hr) to	or GC/MS included in lab package?	X	-	-	
100		ntation included in lab package?	X			
		ed at min 5 levels w low< RL?	X			
		ane(advisory)/PoorPerf/TAs	_^			
	(*/0.005/0.01/0.05)?	ane(advisory)/1 don en/1743		х		*11DCA 0.1, CB 0.3; SVOC 0.05, see Table 3
	(CCs/TAs? (30% max for CCC, 15% max		_ ~		1120/(0.1), 02 0.0, 0400 0.00, 000 14310 0
100	(mean) for TAs or curve n	•	Х			
	Calibration verification da	ta included in lab package?	Х			
	RRF met SPCCs/14Dioxa	ane(advisory)/PoorPerf/TAs				
	(*/0.005/0.01/0.05)?			х		*11DCA 0.1, CB 0.3; SVOC 0.05, see Table 3
100	%D criteria met for CCC/1			Х		see Table 3
100	Internal standard data inc		Х			
100		-50/+100% of last calib check)?	Х			for CCV and samples
100		diff from last calib check)?	Х			
10	Analyte qualitative ID crite Analyte quantitation/RLs		X			
10 10	QC parameters calculated		X			
10	Surrogate	Control Limits	Α			
VOC	1,2-Dichloroethane-d4	70-130				
V O O	Toluene-d8	70-130				
	Bromofluorobenzene	70-130				
SVOC	2,4,6-Tribromophenol	10-120				
	Terphenyl-d14	16-151			L	
	2-Fluorobiphenyl	40-109				
	Nitrobenzene-d5	38-105				
	2-Fluorophenol	37-125				
001111	Phenol-d5	41-118				
COMME	N12					
			_		•	
			_		_	

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-A Remedial Design/ Remedial Action Post-Stabilization Verification Samples for Phase I Staging Pile and CAMU Material

December 2012 to April 2013

Prepared by:

Quality Assurance Associates (QAA, L.L.C.)

1007 Francis Drive College Station, TX 77840 www.qaallc.com 979-694-7199

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	1
2.0	PRO	CEDURI	ES	3
3.0	DAT	A VALID	ATION RESULTS	4
	3.1	PREC	ISION	4
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	4
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	4
		3.1.3	Field Duplicate (FD) Precision	4
	3.2	ACCU	RACY	4
		3.2.1	Laboratory Control Spike (LCS) Accuracy	4
		3.2.2	Matrix Spike (MS) Accuracy	4
		3.2.3	Serial Dilution (SD) %Difference	5
	3.3	REPRI	ESENTATIVENESS	5
		3.3.1	Chain-of-Custody and Analysis Requests	5
		3.3.2	Sample Preservation and Holding Time	5
		3.3.3	Laboratory and Method Selection	5
		3.3.4	Blanks (Laboratory and Field)	5
		3.3.5	Analytical Procedures	6
	3.4	COMP	PLETENESS	6
		3.4.1	Laboratory Deliverables Completeness	6
		3.4.2	EDD Correctness	6
		3.4.3	Analytical Completeness	7
	3.5	COMP	ARABILITY	7

LIST OF TABLES

- Table 1 Samples and Tests Selected for Validation
- Table 2 Data Validation Qualifiers (DVQs)
- Table 3 Qualified Results for Validated Samples
- Table 4 Field Duplicate Results for Validated Samples

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The data include 19 investigative soil samples plus a field duplicate sample as shown in Table 1. The samples comprise 10% of the Phase II-A post-stabilization verification (PSV) samples. A total of 191 PSV samples were collected in December 2012 to April 2013 by ENTACT from the stabilized material stockpiles and analyzed for Toxicity Characteristic Leaching Procedure (TCLP) metals to ensure that the stabilized material meets the appropriate criteria for disposal in the on-site containment cell. Per the *Phase II-A Remedial Design/Remedial Action Workplan* (August 2012), hereinafter called the Workplan, the PSV data are considered Level 2 and require minimal data review. Per ENTACT's request, QAA performed a full validation of the selected samples and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). QAA completed the validation using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Data Review* (October 2004), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplans.

PARCC EVALUATION

Section 4.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The validator assessed precision using the laboratory and field duplicates. For the PSV samples selected for validation, the laboratory prepared one unspiked matrix duplicate (MD) using a sample from the site with each analytical batch and the RPDs are at or below the limit, which indicates good precision for the analytical technique on the given sample matrix. Additionally, the sampler collected one field duplicate with the 19 investigative samples and the RPDs are within the limits, which indicates good precision for the sampling and analytical technique on the given matrix.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The validator assessed accuracy using the laboratory spikes and matrix spikes. For the PSV samples selected for validation, the laboratory prepared a laboratory control spike (LCS) using reagent water with each analytical batch and reported the recovery for every analyte. The LCS recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects. Additionally, the laboratory prepared one matrix spike (MS) plus one serial dilution (SD) using a sample from the site with each analytical batch. The MS recoveries are within the laboratory limits, which indicates good accuracy for the analytical technique on the given sample matrix, and the SD %differences are within the laboratory limits, which indicates there is no matrix interference affecting the accuracy of metals results that are substantially above the reporting limit.
- 3. Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative

parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, PSV samples were collected as required in the approved sampling and analysis plan. Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory blanks, and analytical instrument setup (i.e., calibration, interference correction, etc.) For the PSV samples selected for validation, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank with each analytical batch and the blanks show no contamination, which indicates the samples were not affected by laboratory procedures. Additionally, proper analytical procedures were used and calibration results met the method requirements.

- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. For the PSV samples selected for validation, all analyses produced valid analytical measurements, which gives a completeness of 100%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD for the samples selected for validation and found all necessary analytical documentation is present.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The PSV analytical results are classified as Level 2 data with a full review and validation of 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated. Note that results are reported in µg/L for all field samples.

DATA USABILITY

Table 3 lists all qualified results for the PSV samples selected for validation. No QC deficiencies were noted and the reviewer did not apply any data quality flags except to results between the MDL and RL (i.e., laboratory J-values). These results should be considered estimates and the actual value is not expected to exceed the sample MDL.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include hardcopy data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). For the samples selected for validation, the laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- · Laboratory Deliverables Completeness,
- EDD Correctness,
- · Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- · Laboratory and Method Selection,
- Initial Calibration,
- Continuing Calibration Verification,
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- · Matrix Duplicates (MD), and
- Field Duplicates (FD).

Additionally, the validator examined the raw data for one of the two sample batches (randomly selected by the validator) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are 80-120% for laboratory accuracy and 75-125% for matrix accuracy for metals analyses.
- Laboratory Precision the control limit (20 RPD) as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. A data rejection limit of 30% was used for these inorganic analyses. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U-flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

No LCSD were analyzed (or required) with the samples selected for validation.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

For the PSV samples selected for validation, the laboratory analyzed an MD for every analytical batch (maximum 20 samples) and reported RPDs for MD prepared using a sample from the site. Two of the 19 soil samples (as designated by the sampler on the custody record) were used to prepare an MD, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. All MD RPDs are at or below the control limit.

3.1.3 FIELD DUPLICATE (FD) PRECISION

For the PSV samples selected for validation, the samplers collected one FD with the 19 investigative samples, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Results for the field duplicates are summarized in Table 5. All FD results are within the field precision criteria.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD) and matrix spikes (MS/MSD) plus serial dilutions (SD). LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

For the PSV samples selected for validation, the laboratory analyzed a LCS for every analytical batch (maximum 20 samples) as required and reported recoveries for all analytes. All LCS recoveries are within the control limits.

3.2.2 MATRIX SPIKE (MS) ACCURACY

For the PSV samples selected for validation, the laboratory analyzed an MS for every analytical batch (maximum 20 samples) and reported recoveries for MS prepared using a sample from the site. Two of the 19 soil samples (as designated by the sampler on the custody record) were used to prepare an MS, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. All MS recoveries are within the control limits.

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all metals detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The PSV samples selected for validation were hand-delivered to the laboratory or delivered by an overnight, commercial carrier with properly executed chain-of-custody records and custody seals, which confirms that sample integrity was maintained. Additionally, the information on the custody record is complete, no issues were noted during sample log-in at the laboratory, and all field samples were analyzed for the tests requested on the chain-of-custody.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

The PSV samples selected for validation were properly preserved and analyzed within the holding times listed in Table 1 of the Workplan and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 4.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (TestAmerica-Edison NYSDOH (NELAP) #11452, NYSDOH (ELAP) #11452)

As required per Section 4.7.2 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 1 of the Workplan were used for the sample analyses. The analyte list includes TCLP Antimony, TCLP Arsenic, TCLP Cadmium, and TCLP Lead as requested and the nominal reporting limits are below the levels of concern (i.e., the treatment goals) for each analyte.

(Note: The laboratory dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank and leachate blank for every analytical batch (maximum 20 samples) plus a calibration blank for every 10 metals analyses as required per the analytical methodology. Field rinsate blanks were

not collected as only dedicated and/or disposable sampling equipment was used. No analytes were detected in the laboratory blanks.

3.3.5 ANALYTICAL PROCEDURES

For the samples selected for validation, the analytical procedures (initial calibration, continuing calibration verification, and interference correction), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method, except as follows:

 For the 13 samples in work order 460-52914-1, approximately 35-g of sample was used for the TCLP procedure because insufficient sample was provided to use 100-g as specified in the method. In each case, the volume of leaching fluid was adjusted proportionally to maintain a 20:1 ratio of fluid to sample weight, and thus the validator determined that no data qualification is necessary.

Additionally, no issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes two analytical batches and the validator re-calculated sample results and QC check parameters for one batch and made the following observation from the review of the raw data:

 TCLP Metals batch 152760 – The laboratory reports the RPD for matrix duplicates (MD) as NC (not calculable) if either result is less than the reporting limit and the serial dilution (SD) %difference as NC (not calculable) if the undiluted result is less than 50x MDL since the checks are waived below these levels.

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

For the PSV samples selected for validation, the NYSDEC Category B data packages and EDD contain all necessary information except as follows:

• For laboratory work order 460-52914-1, the data package does not include a separate certification page. Similar certification language is included on the signed front cover for this Level 2 data and thus no further action was taken.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Job No.	Sample(s)	EDD Field(s)	Action
460-50311-1 460-52914-1	all QC samples	sampling_technique	The validator changed the entry from null to the default entry (UN) to meet NYSDEC requirements.

3.4.3 ANALYTICAL COMPLETENESS

For the samples selected for validation, the validator did not reject any of the results, which gives a completeness of 100%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which an analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which an analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J-flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results are reported in μ g/L and are classified as Level 2 data for TCLP metals with a full review and validation of 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated.

TABLE 1 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-A Remedial Design/ Remedial Action

Post-Stabilization Verification Samples

SAMPLES AND TESTS SELECTED FOR VALIDATION

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Metals
460-50311-1	PSV-24R	2/4/13	INV	PSV	Soil	Х
460-50311-2	PSV-36	2/4/13	INV	PSV	Soil	Х
460-50311-2LR	PSV-36LR	2/4/13	MD	PSV	Soil	х
460-50311-2MS	PSV-36MS	2/4/13	MS	PSV	Soil	х
460-50311-3	PSV-37	2/4/13	INV	PSV	Soil	Х
460-50311-4	PSV-38	2/4/13	INV	PSV	Soil	Х
460-50311-5	PSV-39	2/4/13	INV	PSV	Soil	Х
460-50311-6	PSV-40	2/4/13	INV	PSV	Soil	х
460-50311-7	PSV-41	2/4/13	INV	PSV	Soil	х
460-52914-1	PSV-92	3/24/13	INV	PSV	Soil	х
460-52914-2	PSV-93	3/24/13	INV	PSV	Soil	Х
460-52914-2LR	PSV-93LR	3/24/13	MD	PSV	Soil	х
460-52914-2MS	PSV-93MS	3/24/13	MS	PSV	Soil	Х
460-52914-3	PSV-94	3/24/13	INV	PSV	Soil	Х
460-52914-4	PSV-95	3/24/13	INV	PSV	Soil	х
460-52914-5	PSV-95-X	3/24/13	FD	PSV	Soil	х
460-52914-6	PSV-96	3/24/13	INV	PSV	Soil	х
460-52914-7	PSV-97	3/24/13	INV	PSV	Soil	х
460-52914-8	PSV-98	3/24/13	INV	PSV	Soil	х
460-52914-9	PSV-99	3/24/13	INV	PSV	Soil	Х
460-52914-10	PSV-100	3/24/13	INV	PSV	Soil	Х
460-52914-11	PSV-101	3/24/13	INV	PSV	Soil	Х
460-52914-12	PSV-102	3/24/13	INV	PSV	Soil	Х
460-52914-13	PSV-103	3/24/13	INV	PSV	Soil	Х

FD - Field Duplicate Sample

INV - Investigative Sample

MD - Matrix Duplicate Sample (unspiked)

MS - Matrix Spike Sample

PSV - Post-Stabilization Verification Sample

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

• TCLP Metals: 1311/3010A/6010B for Antimony, Arsenic, Cadmium, and Lead in leachates of soil samples

TABLE 2 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-A Remedial Design/ Remedial Action

Post-Stabilization Verification Samples

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- U = Blank contamination. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- *J* = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J-/J+ and R>UJ)

QAA, L.L.C.

TABLE 3 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-A Remedial Design/ Remedial Action Post-Stabilization Verification Samples

QUALIFIED RESULTS FOR VALIDATED SAMPLES

Lab ID	Field ID_Date	Analyte	Lab Result	DVQ	QC Issue
460-50311-1	PSV-24R_02/04/13	1311 Lead	23.6 J μg/l	J	Result is between MDL and RL
460-50311-6	PSV-40_02/04/13	1311 Arsenic	22.0 J μg/l	J	Result is between MDL and RL
460-52914-9	PSV-99_03/24/13	1311 Arsenic	24.7 J μg/l	J	Result is between MDL and RL

TABLE 4 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 II-A Remedial Design/ Remedial Action Post-Stabilization Verification Samples

FIELD DUPLICATE RESULTS FOR VALIDATED SAMPLES

Original Sample	Field Duplicate	Field ID Date	Analyte	Original Sample	Field Duplicate	Abs Diff	2xRL	RPD	Pass
Lab ID	Lab ID	Field ID_Date	Allalyte	Lab Result	Lab Result	ADS DIII	ZXKL	KFD	газз
460-52914-4	460-52914-5	PSV-95_03/24/13	1311 Antimony	605 μg/l	615 μg/l	NA	NA	1.6	у
460-52914-4	460-52914-5	PSV-95_03/24/13	1311 Arsenic	143 μg/l	179 μg/l	NA	NA	22	у
460-52914-4	460-52914-5	PSV-95_03/24/13	1311 Cadmium	25 U μg/l	25 U μg/l	0	50	NA	у
460-52914-4	460-52914-5	PSV-95_03/24/13	1311 Lead	29 μg/l	25 U μg/l	4	50	NA	у

ATTACHMENT A VALIDATOR'S CHECKLISTS

Data Validation Checklist - General							
Client Name: Entact	Project Number/ Manager: E7976/ Jenny Self						
Site Name: Revere Smelting and Refining (Phase 2A PSV)	QC Level: II						
Laboratory: TestAmerica (Edison, NJ)				Laboratory Job No: 600-50311-1, 600-52914-1 (10%, selected by Entact)			
Reviewer: Taryn Scholz				Date Checked: 4/19/13			
Parameters: TCLP Metals		Methods: 1311/6010B					
ITEM	YES		N/A	(CRITERIA) COMMENT			
Laboratory NELAP/ELAP accredited?	Х			NYDOH (NELAP) #11452, NYDOH (ELAP) #11452			
Signed Narrative included?	Х			see Comment no. 1			
Narrative issues noted by lab?		х		see NarrativeComments			
Chain of Custody	(COC)/	Sample	Receip	ot			
Date/time of sample collection included?	х						
Sample temp upon receipt 2-6 C?	Х						
Proper containers/preservation?	х			(WP Table 1 - all soils, no preserv required)			
COCs properly executed and seals used?	Х						
Samples received within 2 days?	х			(DER10 - recommended)			
·	vtical Res	sults		,			
All requested analyses reported?	х						
Field, Laboratory, and Batch ID included?	Х						
Date of sample collection/receipt included?	X						
Date of sample preparation/analysis included?	X		1				
				Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL),			
NDs at DL or QL and J-values as needed?	х			J-values reported; EDD - NDs blank with 'method_ detection_limit' = 'quantitation_limit' = 'minimum_ detectable_conc' (SDL), 'reporting_detection_limit' (SQL),			
Target analyte list complete?	, , , , , , , , , , , , , , , , , , ,			J-values reported (WP Table 2)			
- · · · · · · · · · · · · · · · · · · ·	Х			(ASP Exh C Part III and/or WP criteria)			
RLs acceptable?	Х			,			
No elevated RLs for NDs?	Х			Note: 5x std dilution for TCLP			
Prep/Analysis method references included and approved?	Х			(WP Table 1 and/or ASP Exh D)			
If analytical cleanup used, method ref included and approved?			Х	(ASP Exh D)			
Sample matrix included?	Х			Note: Used WL for leachates rather than SO as previously			
Soils on dry weight basis?			Х				
Correct and consistent units?	Х			ug/L (TCLP)			
Holding time to analysis not expired?	Х			(WP Table 1)			
Holding time to preparation not expired?			Х				
QC Samples (Workplan Se		.6 and 2	2/29/12	· · · · · · · · · · · · · · · · · · ·			
Rinsate Blank - 1 per day of sampling using non-dedicated, non-disposable sampling equipment			NA	only disposable equipment used			
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory			NA				
Filter blank - 1 per week of time-integrated air monitoring			NA	Total complex 40 DCV/, Total ED 4			
Field duplicate samples - 1 for every 20 or fewer samples per sample matrix (excluding air samples)	Х			Total samples = 19 PSV; Total FD = 1			
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix from the	×			MS/LR used for metals; 20 total samples, 2 LR/MS			
same batch as the project samples to the extent possible	^						
Completeness criteria met?	Х			(Workplan Section 4.3.3 - 100%) 88/88=100%			
	ield Note	S					
Agree with custody records?			Х	not included			
Field instruments calibrated daily?			Х				
Well conditions constant before sampling?		L	х				
Samples filtered? If so, give turbid/size			Х				
Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification DUP - Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plast Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response	sma; ICV x Spike/M	′ - Initia Iatrix Sp	i Calibr oike Dur	ation Verification; IDL - Instrument Detection Limit; LCS - plicate; QL - Quantitation Limit; %R - Percent Recovery; RL			
COMMENTS				, 3			
OMMENTO							
Work order 460-52914-1 does not include the signed certification page.	Similar la	anguage	on the	signed front cover for this Level II set so no further action			
<u> </u>							

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
All	All	TCLP Metals	s All analyses	Diluted 5x before analysis as standard practice	noted in QA report narrative
EN346	460-52914-1	TCLP Metals	s 1-13	Insufficient sample to leach 100-g, fluid volume adjusted to maintain 20:1	noted in QA report narrative

Revere Smelting and Refining (Phase 2A PVS) TestAmerica (Edison, NJ) Taryn Scholz : TCLP Metals **PERFORMED/ITEM** lethod blank data included in Lab Package? riteria met? (< MDL, ≥ -RL) riteria met for field blanks? (< MDL) C check samples/LCS data included in lab package?	QC Le Labora Date C	vel: II atory Jo Checke ds: 13°	ob No: ed: 4/19	
aryn Scholz : TCLP Metals **PERFORMED/ ITEM* lethod blank data included in Lab Package? riteria met? (< MDL, ≥ -RL) riteria met for field blanks? (< MDL)	Date 0 Metho YES	Checke ds: 13	ed: 4/19 11/6010	/13 DB
: TCLP Metals **RERFORMED/ITEM lethod blank data included in Lab Package? riteria met? (< MDL, ≥ -RL) riteria met for field blanks? (< MDL)	Metho YES x	ds: 13	11/6010)B
%PERFORMED/ ITEM lethod blank data included in Lab Package? riteria met? (< MDL, ≥ -RL) riteria met for field blanks? (< MDL)	YES			
lethod blank data included in Lab Package? riteria met? (< MDL, ≥ -RL) riteria met for field blanks? (< MDL)	Х	NO	N/A	(CRITERIA) COMMENT
riteria met? (< MDL, ≥ -RL) riteria met for field blanks? (< MDL)				
riteria met for field blanks? (< MDL)	Х			
			-	
C. check samples/LCS data inclined in lan hackage?			Х	
· · · · · · · · · · · · · · · · · · ·	X			
Il project COCs or TAs included?	Х			
R criteria met?	X			method (lab 80-120%)
	_			method (75-125%)
PD criteria met?	Х			method (20% if >10xMDL)
	х			ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +
			-	2RL sol if either <u><</u> 5RL)
	-			
			X	
•			-	
():				
			1	
			1	
	^		×	CL per ASP Exh E - not reported
,	х			Of portion that is not reported
R criteria met?	X			method (75-125%)
	х			
	Х			2RL per ASP Exh E
iternal standard data included in lab package?			х	
itensities within limits? (min 30-120% of calib std)			х	
nalyte quantitation/RLs correct?	Х			
C parameters calculated correctly?	Х			
S				
	atrix spike data included in lab package? R criteria met? Imple duplicate data included in lab package? PD criteria met? and dup RPD criteria met? (individual, mean, and overall) astrument Tune for ICP-MS included in lab package? astrument Tune method criteria met? (±5 RSD, ±0.1 amu) atial calibration documentation included in lab package? ank/1 std (ICP), blank/ 5 stds (Hg) arc coeff (r) criteria met? (≥0.995) alibration verification data included in lab package? B/CCB criteria met? (ICP 90-110,Hg 80-120,CN 85-115) B/C %R criteria met? (ICP 90-110%, Hg 80-120%) CCV %R criteria met? (50-150% Sb/Pb/TI,70-130%) aution test data included? aution test data included? ast digestion spike included? R criteria met? arcriteria met? arcriteria met? (80-120%, unspk <2RL,≥2-RL) arcriteria tandard data included in lab package? and tandard data included in lab package? arcriteria met? (80-120%, unspk <2RL,≥2-RL) arcriteria standard data included in lab package? arcriteria within limits? (min 30-120% of calib std) analyte quantitation/RLs correct?	atrix spike data included in lab package? R criteria met? R criteria met	atrix spike data included in lab package? R criteria met? Imple duplicate data included in lab package? Imple duplicate data included? Imple duplicate data included in lab package? Imple duplicate data included? Imple duplicate data included in lab package? Imple duplicate data included in lab packa	atrix spike data included in lab package? R criteria met? R criteria met? (individual, mean, and overall) R criteria met true for ICP-MS included in lab package? R criteria met true method criteria met? (±5 RSD, ±0.1 amu) X tall calibration documentation included in lab package? X target analytes included? X target analytes included? X criteria met? (≥0.995) X dibration verification data included in lab package? R criteria met? (ICP 90-95) X D CCB criteria met? (ICP 90-110,Hg 80-120,CN 85-115) X CCV %R criteria met? (ICP 90-110%, Hg 80-120%) X CCV %R criteria met? (ICP 90-110%, Hg 80-120%) X criteria met? (ICP 90-110%, Hg 80-120%) X criteria met? (ICP 90-150% Sb/Pb/TI,70-130%) X criteria met? (ICP 90-150% Sb/Pb/TI,70-130%) X criteria met? R criteria met? R criteria met? R criteria met? (80-120%, unspk <2RL,≥2-RL) R criteria met? (80-120%, unspk <2RL,≥2-RL) R criteria met? (80-120%, unspk <2RL,≥2-RL) R criteria met? (80-120% of calib std) X criteria metrandard data included in lab package? X criteria metrandardardardardardardardardardardardarda

Data '	Validation Checklist: Leachates						
Client Name: Entact			Project Number/ Manager: E7976/ Jenny Self				
Site Name: Revere Smelting and Refining (Phase 2A PVS)		QC Level: II					
Laboratory: TestAmerica (Edison, NJ)		Laboratory Job No: 600-50311-1, 600-52914-1 (10%, selected by Entact)					
Reviewer: Taryn Scholz		Date Checked: 4/19/13					
Parameters: TCLP Metals		Methods: 1311/6010B					
	%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT		
	Was a ZHE vessel without leaks used for VOAs?			Х			
	Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve)			х			
	Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids,			х			
	combine with filtered liquid if compatible or analyze separately Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)	х			No. 1 for all		
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	х					
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)		Х		see Comment no. 1		
	Was the correct weight of fluid used? (20x solid weight)	Х					
100	Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)	Х					
	No preservation for aqueous sample aliquots?			х			
	Proper preservation for leachates?	Х			(method pH <2)		
100	Holding time to leaching not expired?	Х			(method 180-days)		
	Leach blank data included in Lab Package? (1/20)	х					
100	Criteria met? (< MDL)	Х					
COMMEN							
TCLP Ba	tches: 2/5 16:45; 3/25 17:00						
1. 460-52	2914-1: not enough sample for 1-13, approx 35-g used with 700 r	nls ext	raction	fluid ->	no flags since 20/1 ratio maintained		

DATA USABILITY SUMMARY REPORT

REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action May 2013 to September 2013

Prepared by:

Quality Assurance Associates (QAA, L.L.C.)
1007 Francis Drive
College Station, TX 77840
www.qaallc.com
979-694-7199

December 20, 2013

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	1			
2.0	PRO	CEDURI	ES	4			
3.0	DAT	A VALID	ATION RESULTS	6			
	3.1	PRECISION					
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	6			
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	6			
		3.1.3	Field Duplicate (FD) Precision	6			
	3.2	ACCU	RACY	7			
		3.2.1	Laboratory Control Spike (LCS) Accuracy	7			
		3.2.2	Matrix Spike (MS) Accuracy	7			
		3.2.3	Serial Dilution (SD) %Difference	8			
		3.2.4	Surrogate (SU) Recovery	8			
	3.3	REPRI	ESENTATIVENESS	8			
		3.3.1	Chain-of-Custody and Analysis Requests	8			
		3.3.2	Sample Preservation and Holding Time	g			
		3.3.3	Laboratory and Method Selection	g			
		3.3.4	Blanks (Laboratory and Field)	10			
		3.3.5	Analytical Procedures	10			
	3.4	COMP	PLETENESS	11			
		3.4.1	Laboratory Deliverables Completeness	11			
		3.4.2	EDD Correctness				
		3.4.3	Analytical Completeness	11			
	3.5	COMP	PARABILITY	12			

LIST OF TABLES

- Table 1 Samples Collected and Tests Performed
- Table 2 Data Validation Qualifiers (DVQs)
- Table 3 QC Deficiencies and Data Qualification Actions
- Table 4 Qualified Results for Field Samples
- Table 5 Field Duplicate Results

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting and Refining Site Operable Unit 1 in Middletown, New York. The independent data review was completed in accord with the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The data include 145 investigative soil samples plus the associated field QC samples, which were collected by ENTACT in May through October 2013 with the intended use of verifying that remediation goals have been achieved in excavated grids and confirming that backfill materials are suitable for use on-site. A complete listing of the samples collected and tests performed is shown in Table 1. QAA performed a full validation of the data and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010) as specified in Section 5.9 of the Workplan. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Data Review* (October 2004) and *National Functional Guidelines for Superfund Organic Methods Data Review* (June 2008), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The Workplan stipulates that the precision control limits will be dictated by the analytical method and the limits are 20-30 RPD, depending upon the test. The validator assessed precision using the laboratory and field duplicates. The laboratory prepared laboratory control spike duplicates (LCSD) using reagent water or sand for the Herbicides and VOC tests plus at least one unspiked matrix duplicate (MD) or matrix spike duplicate (MSD) using a sample from the site for each test except Pesticides, PCBs, VOCs, and Cyanide for the backfill samples. All LCS/LCSD RPDs are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects. The RPDs for the matrix duplicates are within the limits, which indicates good precision for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the duplicate. Of the 2,338 total results for field samples (investigative samples and field duplicates), only eight results (all of which are for metals) are qualified as estimated (J) based on laboratory duplicate precision. Additionally, the sampler collected eight field duplicates with the 145 investigative samples and the RPDs are within the limits, which indicates good precision for the sampling and analytical technique on the given matrix, or the validator qualified the results for the original and duplicate sample. Four of the 104 pairs of results are qualified as estimated (J) based on field duplicate precision.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The Workplan stipulates that the accuracy control limits will be dictated by the analytical method. For most tests, the analytical method stipulates that the laboratory calculate in-house performance criteria. In order to better assess data usability, limits of 50-200% were employed where the laboratory limit for a spiked analyte falls outside these values. The validator assessed accuracy using the laboratory spikes and matrix spikes. The laboratory prepared a laboratory control spike (LCS) using reagent water or sand with each analytical batch and reported the recovery for every target compound except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB

Aroclors, and Chromium III (which is a calculated rather than measured result). The laboratory also prepared a laboratory control spike duplicate (LCSD) with each Herbicides and VOC analytical batch. All LCS/LCSD recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects, with minor exceptions. Two results for Antimony are qualified as estimated (J- or UJ) due to low laboratory spike recovery. Additionally, the laboratory prepared several matrix spikes (MS) and matrix spike duplicates (MSD) plus several serial dilutions (SD) for the metals analyses using a sample from the site. All SD %differences are within the laboratory limits, which indicates there is no matrix interference affecting the accuracy of metals results that are substantially above the reporting limit. The MS/MSD recoveries are within the laboratory limits, which indicates good accuracy for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the MS/MSD. Of the 2,338 total results for field samples, 12 results are qualified as estimated based on matrix spike recovery. The qualification includes the expected direction of bias where known (i.e., J+ for high MS/MSD recovery and J- for low MS/MSD recovery). Additionally, the laboratory utilized one or more surrogate spikes for each organic analysis. The surrogate recoveries are within the laboratory limits for all field samples, with minor exceptions. Six detects for Pesticides are qualified as estimated (J+) due to high surrogate recovery.

- Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, investigative samples were collected as required in the approved sampling and analysis plans with the exception of deviations that were approved by NYSDEC. All other planned samples were collected in addition to a number of unplanned samples (e.g., additional confirmation samples were collected due to unanticipated excavations, additional floor samples were collected based on the grid floor square footage, etc.). Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory and field QC blanks, and analytical instrument setup (i.e., tuning, calibration, interference correction, etc.) For all samples, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank with each analytical batch and the sampler collected three trip blanks with the VOC samples. The laboratory and field QC blanks show no contamination, which indicates the samples were not affected by laboratory or field procedures, or the validator qualified the samples associated with the blank that have a concentration similar to that in the blank. Eight detects for Acetone, six detects for TCLP Lead, and six detects for Methylene Chloride are qualified due to laboratory and/or trip blank contamination. Per the NFG, the validator qualified detects above the reporting limit with a J+ flag while detects below the reporting limit (i.e., laboratory J-values) were qualified with a U flag. Results with a U flag should be considered not detected at the reporting limit, and thus the validator replaced the concentration reported by the laboratory with the reporting limit. Proper analytical procedures were used and calibration results met the method requirements or the validator qualified the affected samples. Twenty-five (25) results (for Acetone, Heptachlor, PCB-1260 (Aroclor 1260), Dibenz(a,h)anthracene, and Vinyl Chloride) are qualified due to calibration drift. Additionally, the non-detect for 1,4-Dioxane in sample BF-SER-RAMP D-DD-5g-002 is qualified as rejected (R) due to low internal standard recovery. This is the only rejected result for the data set.
- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. All analyses of field samples

QAA, *L.L.C*.

- produced valid analytical measurements, with the exception of one non-detect result for 1,4-Dioxane. With 2,338 total results for field samples, this gives a completeness of 99.96%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions or revisions were provided by the laboratory upon request.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated. Note that results are reported in mg/kg with dry-weight correction for total metals and inorganics, in μg/L for TCLP metals, and in μg/kg with dry-weight correction for organics for all field samples.

DATA USABILITY

The non-detect for 1,4-Dioxane in BF-SER-RAMP D-DD-5g-002 is qualified as rejected (R) and thus is not suitable for use. The absence or presence of this analyte cannot be confirmed in the sample due to low internal standard response. All other results for the samples are acceptable for use with the qualifications shown in Table 4. Results that are qualified with a UJ should be considered not present above the reporting limit; however the reporting limit is an estimated value. Results that are qualified with a J- (biased low) can be used for determining the presence of the analyte and as an indication that the concentration of the analyte exceeds a given criterion. However, the concentration reported for detects may be low. Results that are qualified with a J+ (biased high) can be used for determining the presence of the analyte and as an indication that the concentration of the analyte is less than a given criterion. However, the concentration reported for detects may be high. Similarly, results that are qualified with a J (estimated) may be either low or high. For results qualified with a U (potentially contaminated), the analyte should be considered not detected at the reporting limit. For results qualified due to field duplicate precision, the higher result (i.e., from either the original or duplicate sample) should be used for project decisions. This gives a conservative approach relative to protection of the environment. (For field duplicate pairs that pass the precision criteria, the value should be selected based on accepted convention for the site and/or agency requirements, e.g., select the value reported for the original sample, the average of the two values, etc.) For results qualified solely because the concentration is between the MDL and RL, the actual value is not expected to exceed the sample RL.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include pdf data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). The laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- · Laboratory Deliverables Completeness,
- EDD Correctness,
- · Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- Laboratory and Method Selection,
- Instrument Tuning and Initial Calibration,
- Continuing Calibration Verification,
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- Matrix Duplicates (MD),
- Field Duplicates (FD),
- · Dual Column Confirmation,
- Surrogates (SU), and
- Internal Standards (IS).

Additionally, the validator examined the raw data for 10% of the sample batches (randomly selected by the validator across the various analysis dates and tests) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are typically the laboratory-derived recovery control limits based on historical performance (but not less than 50% lower limit or greater than 200% upper limit)
- Laboratory Precision the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which range from 20-30 RPD
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. Data rejection limits of 30% for inorganics, 20% for purgeable organics (VOC), and 10% for extractable organics were used. The data

validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U-flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

The laboratory analyzed an LCSD and reported RPDs for all target compounds for each Herbicides and VOC batch (maximum 20 samples). All RPDs are at or below the control limit.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every inorganics analytical batch (maximum 20 samples) and an MSD for every organics analytical batch (maximum 20 samples) and reported RPDs for MD and MSD prepared using a sample from the site. Five excavation confirmation soil samples (as designated by the sampler on the custody record) were used to prepare an MD or MSD for TCLP Metals and/or Total Metals. With a total of 145 investigative soil samples, this does not meet the Workplan requirement of one per 20 or fewer samples per sample matrix. Additionally, no soil samples were designated by the sampler for MSD for the backfill samples. The laboratory selected a backfill sample for batch QC for one or more MSD for Total Metals, Herbicides, SVOCs, and Chromium (VI). No MSD were prepared using a backfill sample for Pesticides, PCBs, VOCs, or Cyanide.

Some MD and MSD RPDs are above the control limit and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that, for cases where either result for the duplicate pair is non-detect, the check does not apply and the laboratory reported the RPD as NC (not calculable) in the pdf report and as 0 in the EDD. Additionally, the validator considered samples of the same media (i.e., backfill or excavation confirmation) to be of similar matrix (e.g., if deficiencies were noted for a MD or MSD prepared using a backfill sample, all backfill samples in the same analytical batch were qualified).

3.1.3 FIELD DUPLICATE (FD) PRECISION

The samplers collected eight FD with the 145 investigative samples, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Six FD were collected with the excavation confirmation samples and analyzed for TCLP Metals and/or Total Metals, one FD was collected with the backfill grab samples and analyzed for VOCs, and one FD was collected with the backfill composite samples and analyzed for the remaining DER-10 tests. Results for the field duplicates are summarized in Table 5.

Four pairs of results are outside the field precision criteria and the validator qualified the data as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4

lists all qualified results for the field samples. Note that the remaining 100 pairs of FD results meet the criteria, which indicates good overall precision, and thus the validator only qualified the original and duplicate sample for the four FD deficiencies.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD), matrix spikes (MS/MSD), serial dilutions (SD), and surrogate (SU) spikes. LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit. Surrogates are added to each sample before preparation and analysis and provide an indication of accuracy for each individual sample analysis.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

The laboratory analyzed a LCS and/or LCSD for every analytical batch (maximum 20 samples) as required and reported recoveries for all target compounds except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result).

Some LCS recoveries are outside the control limits and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator did not qualify the data for cases where the LCS or LCSD recovery is outside the control limits (i.e., the laboratory-derived recovery control limits based on historical performance or 50-200%, whichever is more stringent) but within 70-130% since this is considered within the inherent method error and suitable for the intended use.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS for every inorganics analytical batch (maximum 20 samples) and an MS/MSD for every organics analytical batch (maximum 20 samples) and reported recoveries for MS and MSD prepared using a sample from the site. Five excavation confirmation soil samples (as designated by the sampler on the custody record) were used to prepare an MS for TCLP Metals and/or Total Metals. With a total of 145 investigative soil samples, this does not meet the Workplan requirement of one per 20 or fewer samples per sample matrix. Additionally, no soil samples were designated by the sampler for MS/MSD for the backfill samples. The laboratory selected a backfill sample for batch QC for one or more MS/MSD for Total Metals, Herbicides, SVOCs, and Chromium (VI). No MS/MSD were prepared using a backfill sample for Pesticides, PCBs, VOCs, or Cyanide.

Some MS and MSD recoveries are outside the control limits and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that if an analyte was detected in the unspiked parent sample at a concentration well above (greater than four times) the concentration of spike added to the sample, thereby rendering the recoveries inconclusive, the check was waived and the validator did not qualify the data. For cases where the MS or MSD recovery is outside the control limits but greater than the data rejection limit (30% for inorganics, 20% for purgeable organics (VOC), and 10% for extractable organics) and the average MS/MSD recovery is in control, the

validator did not qualify the data. The validator also did not qualify the data for cases where the MS or MSD recovery is outside the control limits (i.e., the laboratory-derived recovery control limits based on historical performance or 50-200%, whichever is more stringent) but within 70-130% since this is considered within the inherent method error and suitable for the intended use. Additionally, the validator considered samples of the same media (i.e., backfill or excavation confirmation) to be of similar matrix (e.g., if deficiencies were noted for a MS/MSD prepared using a backfill sample, all backfill samples in the same analytical batch were qualified).

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all target compounds detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit.

3.2.4 SURROGATE (SU) RECOVERY

The laboratory spiked each organic sample with one or more surrogates before preparation and analysis.

Some surrogate recoveries are outside the control limits and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

All samples were delivered to the laboratory by the sampler or an overnight, commercial carrier with properly executed chain-of-custody records, which confirms that sample integrity was maintained. The validator noted the following regarding the custody records and sample log-in at the laboratory:

- All samples were received within two days of collection as recommended in DER-10 except those in laboratory job numbers 460-59430-1, which were received three days after collection in good condition.
- For job no. 460-55575-1, 460-55575-2, and 460-59818-1, the laboratory sample receipt check form indicates a custody seal was not present, but in each case, the number of the custody seal appears on the custody record as entered by the laboratory upon receipt.
- For job no. 460-55575-1, 460-55958-1,460-58750-1, 460-59430-1, 460-59467-1, and 460-59818-1, the sample IDs for some samples were updated from that on the custody record per Entact's request as delineated in the laboratory case narratives.

All samples were analyzed for the tests requested on the chain-of-custody except as follows:

- For work order work order 460-55575-1, TAL metals analysis was added for sample ECS-104-F per Entact's request and the results are reported in work order 460-55575-2.
- For job no. 460-60831-1, a trip blank is listed on the custody record but was not received and thus it was not logged
 in or analyzed.

and made no changes.

For the four backfill composite samples in laboratory job no. 460-58750-12, the laboratory reported an original result 7/1/13 prep date) and re-extracted/re-analyzed result (7/3/13 prep date) for Chromium (VI). The samples were re-extracted/ re-analyzed due to deficiencies for the MS/MSD, which was prepared using a sample from another site and thus does not reflect on data quality for the backfill samples. The validator did not find any QC deficiencies for either set of results and all results are non-detect. In the EDD, the laboratory reported the original set with a

reportable_result of Yes and the second set with a reportable_result of No. The validator confirmed this selection

For the two backfill composite samples in laboratory job no. 460-60831-3, the laboratory reported an original result (8/12/13 prep date) and re-extracted/re-analyzed result (8/13/13 prep date) for Chromium (VI). The samples were re-extracted/ re-analyzed due to deficiencies for the MS/MSD, which was prepared using a sample from the site and thus the original results are qualified due to low MS recovery. The validator did not find any QC deficiencies requiring qualification for the second set of results and all results are non-detect. In the EDD, the laboratory reported the original set with a reportable_result of Yes and the second set with a reportable_result of No. The validator determined that the QC is better for the second set of results and thus changed the reportable_result to No for the original set and to Yes for the second set.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

All samples were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan, and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (TestAmerica-Edison NYSDOH (NELAP) #11452, NYSDOH (ELAP) #11452)

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. (In some cases, the method update number used by the laboratory may differ from that in the Workplan. For example, method 8081A was used rather than 8081B for the Pesticides for all backfill samples except those in job no. 460-63880-1.)

For the backfill samples, the target analyte list includes all DER-10 analytes and the nominal reporting limits (i.e., without dryweight correction or sample dilution and based on the standard sample weight and final volume) are at or below the levels of concern (i.e., the Allowable Constituent Levels (ACLs) for imported fill or soil from Appendix 5 of the DER-10), except as follows:

- DER-10 Appendix 5 lists m-Cresol(s), o-Cresol(s), and p-Cresol(s). The laboratory reported m & p-Cresols and o-Cresol as it is not possible to separate m-Cresol and p-Cresol using method 8270C.
- DER-10 Appendix 5 lists Chlordane (alpha). The laboratory reported technical Chlordane, which is a commercial mixture that contains alpha-Chlordane and gamma-Chlordane along with other related compounds.
- The laboratory inadvertently reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) for the backfill samples instead of the DER-10 analytes as requested.
- The nominal reporting limit for Pentachlorophenol of 1 mg/kg is slightly above the ACL of 0.8 mg/kg. Note however that the laboratory reported any confirmed detects above the method detection limit (MDL) but below the reporting limit (i.e., J-values) and the laboratory's MDL for Pentachlorophenol is well below the ACL at 0.099 mg/kg.

d/or TCLP Lead as

For the excavation confirmation samples, the target analyte list includes total Arsenic, total Lead, and/or TCLP Lead as requested and all Contract Laboratory Program (CLP) metals for the TAL metals. The nominal reporting limits are below the levels of concern (i.e., the remedial goals) for total Arsenic, total Lead, and TCLP Lead. There are no established levels of concern for TAL metals. The nominal reporting limits comply with the requirements in the ASP for TAL metals with the exception of Iron, which has a nominal reporting limit of 30 mg/kg for the soil samples that is above the ASP reporting limit of 20 mg/kg.

(Note: The laboratory dilutes all total metals samples 2-4x before analysis as standard practice. All Revere samples were diluted 4x and thus nominal reporting limits were determined at this dilution rate. The laboratory also dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank (and leachate blank for TCLP) for every analytical batch (maximum 20 samples) and a calibration blank for every 10 metals analyses as required per the analytical methodology. Additionally, a trip blank was included with three of the six shipments of VOC samples, which does not meet the Workplan requirement of one for every cooler of VOC samples. A trip blank was not included with the backfill samples in job no. 460-56528-1, 460-60831-1, and 460-63880-1, and thus potential contamination with VOCs during shipment could not be evaluated for these samples. (Methylene Chloride was detected in one of the three trip blanks collected with the other samples.) Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used.

Some detects are reported in the laboratory and trip blanks, primarily at concentrations between the MDL and RL (i.e., laboratory J-values) and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator calculated a blank equivalent concentration taking into account the sample weight, moisture content, and dilution factor for each sample when determining if the contamination in the blank is near that in the sample, and thus if data quality is affected for that sample. When comparing aqueous blank concentrations (e.g., for trip blanks) to solid samples, the validator assumed that all contamination found in the aqueous blank aliquot analyzed is potentially present in the solid sample aliquot analyzed.

3.3.5 ANALYTICAL PROCEDURES

The analytical procedures (instrument tuning and initial calibration, continuing calibration verification, dual column confirmation, and internal standards), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method with some exceptions. The validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator did not delineate cases where the surrogate has a continuing calibration verification (CCV) %difference above the control limit for the organic analyses, since surrogate recoveries for each sample are evaluated separately.

Additionally, the validator noted the following regarding the analytical procedures:

• For sample 460-60768-1, the TCLP batch worksheet indicates fluid no. 2 was used though the sample pH is <5 after the addition of HCl. The laboratory confirmed that fluid no. 1 was used as confirmed by the fluid pH of 4.92.

No issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes 98 analytical batches and the validator re-calculated sample results and QC check parameters for 10 batches and made the following observations from the review of the raw data:

• The laboratory used dual column confirmation for all GC analyses (including Pesticides, PCBs, and Herbicides). For surrogates and spiked analytes, the laboratory reports the results from both columns (only in the pdf report and not the EDD for work order 460-56528-1). For target analytes in field samples, the laboratory reports the result from the column with the higher concentration (unless chromatographic performance is better on one column and it is therefore used for all analyses), provided that the RPD between the two columns is less than 40%. If the RPD is greater than 40%, the column with the lower concentration is reported with a note in the narrative and the result is reported with a P flag. The RPD exceeded 40% in four cases for this data set but data qualification was not required as detailed in Table 3.

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

The Level 4 data packages and EDD contain all necessary information or the laboratory submitted a revision upon request as detailed in the case narratives.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Job No.	Sample(s)	EDD Field(s)	Action
All	all field and QC samples	sampling_technique	The validator changed the entry from null to the default entry (UN) to meet NYSDEC requirements.
460-56528-1	all backfill composite	composite_yn	The validator changed the entry from N to Y
460-58750-1	samples (*c-001 and *c-002)		based on the custody record.
460-60019-1			
460-60831-1			
460-60942-1			
460-63880-1			

3.4.3 ANALYTICAL COMPLETENESS

The validator rejected one non-detect result for 1,4-Dioxane due to low internal standard response. With 2,338 total results for field samples (investigative samples and field duplicates), this gives a completeness of 99.96%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which a target analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which a target analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size and include dry-weight correction for all soil samples as required per Section 5.7.1 of the Workplan. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results for the investigative samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in µg/L for TCLP metals, and in µg/kg with dry-weight correction for organics. (For the 7196A analyses, Trivalent Chromium is shown as not dry-weight corrected. Trivalent Chromium is calculated from the results for Hexavalent Chromium and total Chromium, which are dry-weight corrected, and thus the Trivalent Chromium is not directly dry-weight corrected but is on a dry-weight basis.)

The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated.

TABLE 1 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action

SAMPLES COLLECTED AND TESTS PERFORMED

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-55575-1	ECS-14B-F	5/7/13	INV	ECS	Soil	х											
460-55575-2	ECS-15B-F	5/7/13	INV	ECS	Soil	Х											
460-55575-3	ECS-16-F	5/7/13	INV	ECS	Soil	Х											
460-55575-4	ECS-17B-F	5/7/13	INV	ECS	Soil	Х											
460-55575-5	ECS-122-F	5/7/13	INV	ECS	Soil	Х											
460-55575-6	ECS-123-F	5/7/13	INV	ECS	Soil	Х											
460-55575-7	ECS-103-F	5/7/13	INV	ECS	Soil	Х											
460-55575-8	ECS-103-F-X	5/7/13	FD	ECS	Soil	Х											
460-55575-9	ECS-104-F	5/7/13	INV	ECS	Soil	Х		Х	Х								
460-55575-10	ECS-107-F	5/7/13	INV	ECS	Soil	Х											
460-55576-1	DS-14-SN	5/7/13	INV	ECS	Soil	Х											
460-55576-2	DS-123-SW	5/7/13	INV	ECS	Soil	Х											
460-55576-3	DS-122-SW	5/7/13	INV	ECS	Soil	Х											
460-55576-4	DS-16-SW	5/7/13	INV	ECS	Soil	Х											1
460-55576-4MS	DS-16-SWMS	5/7/13	MS	ECS	Soil	Х											
460-55576-4LR	DS-16-SWLR	5/7/13	MD	ECS	Soil	Х											
460-55958-1	ECS-14B-F-R	5/13/13	INV	ECS	Soil	Х											
460-55958-2	ECS-122-F-R	5/13/13	INV	ECS	Soil	Х											
460-55958-3	ECS-103-F-R	5/13/13	INV	ECS	Soil	Х											
460-55958-4	ECS-104-F-R	5/13/13	INV	ECS	Soil	Х											
460-56076-1	ECS-18B-F	5/14/13	INV	ECS	Soil	Х											
460-56528-1	BF-SER-RAMPD-DD-1g- 001	5/21/13	INV	BF	Soil										х		
460-56528-2	BF-SER-RAMPD-DD-1g- 002	5/21/13	INV	BF	Soil										х		
460-56528-3	BF-SER-RAMPD-DD-1g- 003	5/21/13	INV	BF	Soil										х		
460-56528-4	BF-SER-RAMPD-DD-1g- 004	5/21/13	INV	BF	Soil										х		
460-56528-5	BF-SER-RAMPD-DD-1g- 005	5/21/13	INV	BF	Soil										х		
460-56528-6	BF-SER-RAMPD-DD-1g- 006	5/21/13	INV	BF	Soil										х		

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-56528-7	BF-SER-RAMPD-DD-1g- 007	5/21/13	INV	BF	Soil										х		
460-56528-8	BF-SER-RAMPD-DD-1c- 001	5/21/13	INV	BF	Soil				х	Х	х	x	Х	х		х	х
460-56528-8MS	BF-SER-RAMPD-DD-1c- 001MS	5/21/13	MS	BF	Soil				х					х			
460-56528-8LR	BF-SER-RAMPD-DD-1c- 001LR	5/21/13	MD	BF	Soil				х								
460-56528-8SD	BF-SER-RAMPD-DD-1c- 001SD	5/21/13	MSD	BF	Soil									х			
460-56528-9	BF-SER-RAMPD-DD-1c- 002	5/21/13	INV	BF	Soil				х	Х	х	X	Х	х		х	х
460-56528-9MS	BF-SER-RAMPD-DD-1c- 002MS	5/21/13	MS	BF	Soil						х						
460-56528-9LR	BF-SER-RAMPD-DD-1c- 002LR	5/21/13	MD	BF	Soil						х						
460-57026-1	ECS-44-F	5/30/13	INV	ECS	Soil	х	х										
460-57026- 1MSMS	ECS-44-FMS	5/30/13	MS	ECS	Soil	х	х										
460-57026- 1LRLR	ECS-44-FLR	5/30/13	MD	ECS	Soil	х	х										
460-57026-2	ECS-45-F	5/30/13	INV	ECS	Soil	Х	Х										
460-57026-3	ECS-46-F	5/30/13	INV	ECS	Soil	Х	Х										
460-57026-4	ECS-48-F	5/30/13	INV	ECS	Soil	Х	Х										
460-57026-5	ECS-49-F	5/30/13	INV	ECS	Soil	Х	Х										
460-57129-1	ECS-52-F	5/31/13	INV	ECS	Soil	х	Х										
460-57129-1MS	ECS-52-FMS	5/31/13	MS	ECS	Soil	х											
460-57129-1LR	ECS-52-FLR	5/31/13	MD	ECS	Soil	х											
460-57129-2	ECS-53-F	5/31/13	INV	ECS	Soil	х	х										
460-57129-3	ECS-54-F	5/31/13	INV	ECS	Soil	х	Х										
460-57129-4	ECS-55-F	5/31/13	INV	ECS	Soil	х	Х										
460-57129-5	ECS-59-F	5/31/13	INV	ECS	Soil	х		Х	Х								
460-57129-6	ECS-60-F	5/31/13	INV	ECS	Soil	х	Х								1		
460-57129-7	ECS-61-F	5/31/13	INV	ECS	Soil	х	Х								1		
460-57129-7MS	ECS-61-FMS	5/31/13	MS	ECS	Soil			Х							1		
460-57129-7LR	ECS-61-FLR	5/31/13	MD	ECS	Soil			X							1		
460-57129-8	ECS-61-F-X	5/31/13	FD	ECS	Soil	х	х										
460-57258-1	ECS-47-F	6/4/13	INV	ECS	Soil	х	х										
460-57258-2	ECS-58-F	6/4/13	INV	ECS	Soil	х	х										
460-57258-3	ECS-65-F	6/4/13	INV	ECS	Soil	X									1		
460-57258-4	ECS-66-F	6/4/13	INV	ECS	Soil	X											

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-57258-5	ECS-67-F	6/4/13	INV	ECS	Soil	Х	Х										
460-57258-6	ECS-68-F	6/4/13	INV	ECS	Soil	Х	Х										
460-57258-7	ECS-114-F	6/4/13	INV	ECS	Soil	Х											
460-57258-7MS	ECS-114-FMS	6/4/13	MS	ECS	Soil	Х											
460-57258-7LR	ECS-114-FLR	6/4/13	MD	ECS	Soil	Х											
460-57258-8	ECS-113-F	6/4/13	INV	ECS	Soil	Х											
460-57341-1	ECS-112-F	6/5/13	INV	ECS	Soil	Х											
460-57341-2	ECS-110-F	6/5/13	INV	ECS	Soil	Х											
460-57341-3	ECS-111-F	6/5/13	INV	ECS	Soil	Х											
460-57341-4	ECS-109-F	6/5/13	INV	ECS	Soil	Х											
460-57341-5	ECS-108-F	6/5/13	INV	ECS	Soil	Х											
460-57472-1	ECS-64-F	6/6/13	INV	ECS	Soil	Х											
460-57472-2	ECS-105-F	6/6/13	INV	ECS	Soil	Х											
460-57911-1	ECS-48-F-R	6/13/13	INV	ECS	Soil	Х	Х										
460-57911-2	ECS-52-F-R	6/13/13	INV	ECS	Soil	Х	Х										
460-57911-3	ECS-60-F-R	6/13/13	INV	ECS	Soil	Х	Х										
460-58360-1	ECS-71-F	6/21/13	INV	ECS	Soil	Х											
460-58360-2	ECS-74-F	6/21/13	INV	ECS	Soil	Х											
460-58360-3	ECS-75-F	6/21/13	INV	ECS	Soil	Х	Х										
460-58502-1	ECS-72-F	6/25/13	INV	ECS	Soil	Х											
460-58502-2	ECS-73-F	6/25/13	INV	ECS	Soil	Х											
460-58750-1	BF-SER-RAMP D-DD- 2g-001	6/28/13	INV	BF	Soil										х		
460-58750-2	BF-SER-RAMP D-DD- 2g-002	6/28/13	INV	BF	Soil										х		
460-58750-3	BF-SER-RAMP D-DD- 2c-001	6/28/13	INV	BF	Soil				х	х	х	х	х	х		х	х
460-58750-3	BF-SER-RAMP D-DD- 2c-001	6/28/13	INV RE	BF	Soil						х						
460-58750-3MS	BF-SER-RAMP D-DD- 2c-001MS	6/28/13	MS	BF	Soil									х			
460-58750-3SD	BF-SER-RAMP D-DD- 2c-001SD	6/28/13	MSD	BF	Soil									х			
460-58750-4	BF-SER-RAMP D-DD- 3g-001	6/28/13	INV	BF	Soil										х		
460-58750-5	BF-SER-RAMP D-DD- 3g-002	6/28/13	INV	BF	Soil										х		
460-58750-6	BF-SER-RAMP D-DD- 3c-001	6/28/13	INV	BF	Soil				х	Х	х	х	х	х		х	х
460-58750-6	BF-SER-RAMP D-DD- 3c-001	6/28/13	INV RE	BF	Soil						Х						

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-58750-6MS	BF-SER-RAMP D-DD-	6/28/13	MS	BF	Soil				х								
400 50750 OLD	3c-001MS	0/00/40	145	- DE	0 "												
460-58750-6LR	BF-SER-RAMP D-DD- 3c-001LR	6/28/13	MD	BF	Soil				Х								
460-58750-7	BF-SER-RAMP D-DD- 4g-001	6/28/13	INV	BF	Soil										х		
460-58750-8	BF-SER-RAMP D-DD- 4g-002	6/28/13	INV	BF	Soil										х		
460-58750-9	BF-SER-RAMP D-DD- 4c-001	6/28/13	INV	BF	Soil				х	х	х	х	Х	х		х	Х
460-58750-9	BF-SER-RAMP D-DD- 4c-001	6/28/13	INV RE	BF	Soil						х						
460-58750-10	BF-SER-RAMP D-DD- 5g-001	6/28/13	INV	BF	Soil										х		
460-58750-11	BF-SER-RAMP D-DD- 5g-002	6/28/13	INV	BF	Soil										х		
460-58750-12	BF-SERV-RAMP D-DD- 5c-001	6/28/13	INV	BF	Soil				х	х	х	х	х	х		х	х
460-58750-12	BF-SERV-RAMP D-DD- 5c-001	6/28/13	INV RE	BF	Soil						х						
460-58750-13	TB-6/28/13	6/28/13	TB	ТВ	Water										х		
460-59430-1	ECS-106-F	7/12/13	INV	ECS	Soil	Х											
460-59430-2	ECS-125-F	7/12/13	INV	ECS	Soil	Х											
460-59430-3	ECS-102-F	7/12/13	INV	ECS	Soil	Х											
460-59430-4	ECS-97-F	7/12/13	INV	ECS	Soil	Х											
460-59430-5	ECS-123-F-EFA	7/12/13	INV	ECS	Soil	Х		Х	Х								
460-59430-5MS	ECS-123-F-EFAMS	7/12/13	MS	ECS	Soil				х								
460-59430-5LR	ECS-123-F-EFALR	7/12/13	MD	ECS	Soil				Х								
460-59467-1	ECS-81-F	7/15/13	INV	ECS	Soil	х											
460-59467-2	ECS-81-F-X	7/15/13	FD	ECS	Soil	х											
460-59467-3	ECS-82-F	7/15/13	INV	ECS	Soil	х											
460-59467-4	ECS-88-F	7/15/13	INV	ECS	Soil	х											
460-59467-5	ECS-121-F	7/15/13	INV	ECS	Soil	х											
460-59467-6	ECS-122-F-EFA	7/15/13	INV	ECS	Soil	х											
460-59818-1	ECS-55-F-R	7/20/13	INV	ECS	Soil	х	х										
460-59818-1MS	ECS-55-F-RMS	7/20/13	MS	ECS	Soil	х	х										
460-59818-1LR	ECS-55-F-RLR	7/20/13	MD	ECS	Soil	х	Х										
460-59818-2	ECS-93-F	7/20/13	INV	ECS	Soil	х											
460-59818-3	ECS-97-F-R	7/20/13	INV	ECS	Soil	х											
460-60019-1	BF-SER-RAMPD-DD-6g- 001	7/24/13	INV	BF	Soil										х		

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-60019-2	BF-SER-RAMPD-DD-6g- 002	7/24/13	INV	BF	Soil										х		
460-60019-3	BF-SER-RAMPD-DD-6c- 001	7/24/13	INV	BF	Soil				х	х	х	х	х	х		х	х
460-60019-3MS	BF-SER-RAMPD-DD-6c- 001MS	7/24/13	MS	BF	Soil									х		Х	
460-60019-3SD	BF-SER-RAMPD-DD-6c- 001SD	7/24/13	MSD	BF	Soil									х		х	
460-60019-4	BF-SER-RAMPD-DD-7g- 001	7/24/13	INV	BF	Soil										х		
460-60019-5	BF-SER-RAMPD-DD-7g- 002	7/24/13	INV	BF	Soil										х		
460-60019-6	BF-SER-RAMPD-DD-7c- 001	7/24/13	INV	BF	Soil				х	х	х	х	Х	X		X	х
460-60019-6MS	BF-SER-RAMPD-DD-7c- 001MS	7/24/13	MS	BF	Soil					х							
460-60019-6LR	BF-SER-RAMPD-DD-7c- 001LR	7/24/13	MD	BF	Soil					х							
460-60019-7	TB-7/24/13	7/24/13	TB	TB	Water										Х		
460-60394-4	ECS-79-F	7/31/13	INV	ECS	Soil	Х											
460-60394-5	ECS-80-F	7/31/13	INV	ECS	Soil	Х											
460-60394-6	ECS-86-F	7/31/13	INV	ECS	Soil	х											
460-60394-7	ECS-87-F	7/31/13	INV	ECS	Soil	Х											
460-60394-8	ECS-92-F	7/31/13	INV	ECS	Soil	Х											
460-60768-1	ECS-86-F-R	8/6/13	INV	ECS	Soil	Х											
460-60831-1	BF-SER-RAMPD-DD-8g- 001	8/7/13	INV	BF	Soil										х		
460-60831-2	BF-SER-RAMPD-DD-8g- 002	8/7/13	INV	BF	Soil										х		
460-60831-3	BF-SER-RAMPD-DD-8c- 001	8/7/13	INV	BF	Soil				х	х	х	х	Х	х		х	х
460-60831-3	BF-SER-RAMPD-DD-8c- 001	8/7/13	INV RE	BF	Soil						х						
460-60831-3MS	BF-SER-RAMPD-DD-8c- 001MS	8/7/13	MS	BF	Soil									Х			
460-60831-3SD	BF-SER-RAMPD-DD-8c- 001SD	8/7/13	MSD	BF	Soil									х			
460-60831-4	BF-SER-RAMPD-DD-9g- 001	8/7/13	INV	BF	Soil										х		
460-60831-5	BF-SER-RAMPD-DD-9g- 002	8/7/13	INV	BF	Soil										х		

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-60831-6	BF-SER-RAMPD-DD-9c- 001	8/7/13	INV	BF	Soil				х	х	х	х	х	х		х	х
460-60831-6	BF-SER-RAMPD-DD-9c- 001	8/7/13	INV RE	BF	Soil						х						
460-60831-6MS	BF-SER-RAMPD-DD-9c- 001MS	8/7/13	MS	BF	Soil				х	Х	х					х	
460-60831-6MS	BF-SER-RAMPD-DD-9c- 001MS	8/7/13	MS RE	BF	Soil						х						
460-60831-6LR	BF-SER-RAMPD-DD-9c- 001LR	8/7/13	MD	BF	Soil				х	х	х						
460-60831-6LR	BF-SER-RAMPD-DD-9c- 001LR	8/7/13	MD RE	BF	Soil						х						
460-60831-6SD	BF-SER-RAMPD-DD-9c- 001SD	8/7/13	MSD	BF	Soil											х	
460-60942-1	BF-SER-RAMPD-DD- 10g-001	8/8/13	INV	BF	Soil										х		
460-60942-2	BF-SER-RAMPD-DD- 10g-002	8/8/13	INV	BF	Soil										х		
460-60942-3	BF-SER-RAMPD-DD- 10c-001	8/8/13	INV	BF	Soil				х	х	х	х	х	х		х	х
460-60942-3LR	BF-SER-RAMPD-DD- 10c-001LR	8/8/13	MD	BF	Soil				х	х							
460-60942-3MS	BF-SER-RAMPD-DD- 10c-001MS	8/8/13	MS	BF	Soil				х	х						х	
460-60942-3SD	BF-SER-RAMPD-DD- 10c-001SD	8/8/13	MSD	BF	Soil											х	
460-60942-4	BF-SER-RAMPD-DD- 11g-001	8/8/13	INV	BF	Soil										х		
460-60942-5	BF-SER-RAMPD-DD- 11g-002	8/8/13	INV	BF	Soil										х		
460-60942-6	BF-SER-RAMPD-DD- 11c-001	8/8/13	INV	BF	Soil				х	х	х	х	х	х		х	х
460-60942-7	BF-SER-RAMPD-DD- 11g-001x	8/8/13	FD	BF	Soil										х		
460-60942-8	BF-SER-RAMPD-DD- 11c-001x	8/8/13	FD	BF	Soil				х	х	х	х	х	х		х	х
460-60942-8MS	BF-SER-RAMPD-DD- 11c-001xMS	8/8/13	MS	BF	Soil						х						
460-60942-8LR	BF-SER-RAMPD-DD- 11c-001xLR	8/8/13	MD	BF	Soil						х						

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-60942-9	BF-SER-RAMPD-DD- 12g-001	8/8/13	INV	BF	Soil										Х		
460-60942-10	BF-SER-RAMPD-DD- 12g-002	8/8/13	INV	BF	Soil										x		
460-60942-11	BF-SER-RAMPD-DD- 12c-001	8/8/13	INV	BF	Soil				х	х	х	х	Х	х		Х	х
460-60942-11MS	BF-SER-RAMPD-DD- 12c-001MS	8/8/13	MS	BF	Soil									х			
460-60942-11SD	BF-SER-RAMPD-DD- 12c-001SD	8/8/13	MSD	BF	Soil									х			
460-60942-12	TB-8/8/13	8/8/13	TB	TB	Water										х		
460-61374-1	ECS-70-F	8/15/13	INV	ECS	Soil	Х		Х	Х								
460-61374-1MS	ECS-70-FMS	8/15/13	MS	ECS	Soil				Х								
460-61374-1LR	ECS-70-FLR	8/15/13	MD	ECS	Soil				Х								
460-61374-2	ECS-78-F	8/15/13	INV	ECS	Soil	Х											
460-61374-2MS	ECS-78-FMS	8/15/13	MS	ECS	Soil	Х											
460-61374-2LR	ECS-78-FLR	8/15/13	MD	ECS	Soil	Х											
460-61374-3	ECS-91-F	8/15/13	INV	ECS	Soil	Х											
460-61374-4	ECS-85-F	8/15/13	INV	ECS	Soil	Х											
460-61374-5	ECS-91-F-X	8/15/13	FD	ECS	Soil	Х											
460-61488-1	ECS-101-F	8/16/13	INV	ECS	Soil	Х											
460-61488-2	ECS-96-F	8/16/13	INV	ECS	Soil	Х											
460-61488-3	ECS-99-F	8/16/13	INV	ECS	Soil	Х											
460-61488-4	ECS-98-F	8/16/13	INV	ECS	Soil	Х											
460-61488-5	ECS-100-F	8/16/13	INV	ECS	Soil	Х											
460-62377-1	ECS-96-F-R	9/4/13	INV	ECS	Soil	Х											
460-62377-2	ECS-95-F	9/4/13	INV	ECS	Soil	Х											
460-62377-3	ECS-94-F	9/4/13	INV	ECS	Soil	Х											
460-62377-4	ECS-90-F	9/4/13	INV	ECS	Soil	Х											
460-62377-5	ECS-84-F	9/4/13	INV	ECS	Soil	Х											
460-62377-6	ECS-95-F-X	9/4/13	FD	ECS	Soil	Х											
460-62755-1	ECS-83-F	9/10/13	INV	ECS	Soil	Х											
460-62755-2	ECS-89-F	9/10/13	INV	ECS	Soil	Х											
460-62905-1	ECS-76-F	9/12/13	INV	ECS	Soil	Х											
460-63151-1	ECS-77-F	9/17/13	INV	ECS	Soil	Х											
460-63151-2	ECS-63-F	9/17/13	INV	ECS	Soil	Х											
460-63302-1	ECS-69-F	9/19/13	INV	ECS	Soil	Х											
460-63302-1MS	ECS-69-FMS	9/19/13	MS	ECS	Soil	Х											
460-63302-1LR	ECS-69-FLR	9/19/13	MD	ECS	Soil	Х											
460-63302-2	ECS-62-F	9/19/13	INV	ECS	Soil	Х											
460-63302-3	ECS-62-F-X	9/19/13	FD	ECS	Soil	Х											

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-63399-1	ECS-56-F	9/20/13	INV	ECS	Soil	Х		Х	Х								
460-63399-2	ECS-50-F	9/20/13	INV	ECS	Soil	Х	Х										
460-63399-3	ECS-57-F	9/20/13	INV	ECS	Soil	Х											
460-63399-4	ECS-51-F	9/20/13	INV	ECS	Soil	Х											
460-63880-1	BF-SER-RAMPD-DD- 13g-001	9/30/13	INV	BF	Soil										х		
460-63880-2	BF-SER-RAMPD-DD- 13g-002	9/30/13	INV	BF	Soil										х		
460-63880-3	BF-SER-RAMPD-DD- 13c-001	9/30/13	INV	BF	Soil				х	х	х	х	Х	х		х	х
460-63880-3MS	BF-SER-RAMPD-DD- 13c-001MS	9/30/13	MS	BF	Soil				х					х			
460-63880-3LR	BF-SER-RAMPD-DD- 13c-001LR	9/30/13	MD	BF	Soil				х								
460-63880-3SD	BF-SER-RAMPD-DD- 13c-001SD	9/30/13	MSD	BF	Soil									х			
460-63880-4	BF-SER-RAMPD-DD- 14g-001	9/30/13	INV	BF	Soil										х		
460-63880-5	BF-SER-RAMPD-DD- 14g-002	9/30/13	INV	BF	Soil										х		
460-63880-6	BF-SER-RAMPD-DD- 14c-001	9/30/13	INV	BF	Soil				х	х	х	х	Х	х		х	х

BF - Backfill Sample

ECS - Excavation Confirmation Sample

FD - Field Duplicate Sample

INV - Investigative Sample

MD - Matrix Duplicate Sample (unspiked)

MS - Matrix Spike Sample

MSD - Matrix Spike Duplicate Sample

RE - Reextracted/Reanalyzed Sample

TB - Trip Blank

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

- TCLP Pb: 1311/3010A/6010B for Lead in leachates of soil samples
- Total As and Pb: 3050B/ 6010B for Arsenic and Lead in soil samples
- Total TAL Metals: 3050B/ 6010B for 22 ICP-AES Target Analyte List (TAL) Metals (Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc) in soil samples
- Hg: 7471A (7471B for job no. 460-63880-1) for total Mercury in soil samples

DATA USABILITY SUMMARY REPORT

- Total DER10 Metals: 3050B/ 6010B (6010C for job no. 460-63880-1) for 12 ICP-AES NYSDEC DER-10 Appendix 5 Metals (Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Lead, Manganese, Nickel, Selenium, Silver, and Zinc in soil samples
- Cr III/VI: 3060A/7196A for Trivalent Chromium and Hexavalent Chromium in soil samples
- PEST: 3546/ 3620B/ 8081A (8081B for job no. 460-63880-1) for 15 NYSDEC DER-10 Appendix 5 pesticides plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene in soil samples
- PCB: 3546/3665A/8082 (8082A for job no. 460-63880-1) for 7 Aroclors in soil samples
- HERB: 8151A for Silvex (2,4,5-TP) in soil samples
- VOC: 5035/8260B (8260C for job no. 460-63880-1) for 30 NYSDEC DER-10 Appendix 5 volatile organic compounds (VOCs) in soil samples and 5030B/ 8260B for 30 VOCs in aqueous trip blanks
- SVOC: 3541/8270C (8270D for job no. 460-63880-1) for 20 NYSDEC DER-10 Appendix 5 semivolatile organic compounds (SVOCs) plus Dibenzofuran and Hexachlorobenzene in soil samples
- CN: 9012A (9012B for job no. 460-63880-1) for Cyanide in soil samples

TABLE 2 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- J- = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J-/J+ and R>UJ)

TABLE 3 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action

QC DEFICIENCIES AND DATA QUALIFICATION ACTIONS

Lab ID	Sample Code	Туре		Method		D	ate and Tim	ne	GC	D	Analyte	Lab	Spk	Spk	RPD	QC Issue	DVQs Applied
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Allalyte	Qual	LCL	UCL	CL	QC ISSUE	DVQS Applied
							LA	BORATOR	RY DU	PLI	CATE (LCSD) PRECISION	I					
4601687	460168702/3A	BD		METH	8151A		07/02/13	07/03/13	1C	1	SILVEX (2,4,5-TP)				30	RPD reported as	none (manually calculated RPD
02/3A				OD			11:44:00	14:20:00								NaN rather than	(4.3%) within criteria)
																calculated value	
4601687	460168702/3A	BD		METH	8151A		07/02/13	07/03/13	2C	1	SILVEX (2,4,5-TP)				30	RPD reported as	none (manually calculated RPD
02/3A				OD			11:44:00	14:20:00								NaN rather than	(2.1%) within criteria)
																calculated value	
		1	1	1						_	ATE (MD) PRECISION	1				T	
460-	ECS-61-F-	LR		SW30	6010B		06/03/13	06/04/13	NA	4	ARSENIC				20	Poor lab duplicate	J/UJ to detects/NDs for ECS
57129-	20130531LR			20B			11:55:00	12:30:00								precision (42 RPD)	samples digested in the same
7LR																	batch
			1	ı		1					ICATE (MSD) PRECISION	1	1	1	ı	T	T
460-	BF-SER-	SD		METH	8151A		08/08/13	08/12/13	2C	1	SILVEX (2,4,5-TP)				30	Poor MS/MSD	J to detects for BF samples
60831-	RAMPD-DD-8c-			OD			23:20:00	11:14:00								precision (42 RPD)	analyzed in the same batch
3SD	001-20130807SD																(none)
			1	ı		1					TE (FD) PRECISION	1	1	1	ı	T	T
460-	ECS-103-F-X-	N	1311	SW30	6010B	05/07/20	05/08/13		NA	5	LEAD				35	Poor field duplicate	J/UJ to detects/NDs for original
55575-8	20130507			10A		13	10:10:20	15:30:06								precision (150	and duplicate sample
						18:00:00										RPD), use higher result from original	
																sample	
460-	ECS-61-F-X-	N	1311	SW30	6010B	06/17/20	06/19/13	06/19/13	NA	5	LEAD				35	Poor field duplicate	J/UJ to detects/NDs for original
57129-8	20130531	'`	1011	10A	0010B	13	08:14:00	15:11:00	14/ (LLND				00	precision (absolute	and duplicate sample
020 0	20.0000.					18:30:00	0011 1100	10111100								difference > 2xRL),	and depredate campie
																use higher value	
																from duplicate	
																sample	
460-	ECS-61-F-X-	N		SW30	6010B		06/03/13	06/04/13	NA	4	LEAD				35	Poor field duplicate	J/UJ to detects/NDs for original
57129-8	20130531			20B			11:55:00	13:34:00								precision (75 RPD),	and duplicate sample
																use higher result	
																from duplicate	
																sample	

	0			Method		D	ate and Tin	ne	GC	D	A 1	Lab	Spk	Spk	RPD	001	DVO. A. J. J.
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 62377-6	ECS-95-F-X- 20130904	N	1311	SW30 10A	6010B	09/05/20 13 17:00:00	09/06/13 08:30:00	09/06/13 23:29:00	NA	5	LEAD				35	Poor field duplicate precision (120 RPD), use higher result from original sample	J/UJ to detects/NDs for original and duplicate sample
							LAB	ORATORY	CON	TRO	L SPIKE (LCS) ACCURAC	CY					
4601638 50/2A4	460163850/2A4	BS		SW30 20B	6010B		06/03/13 11:55:00	06/04/13 12:41:00	NA	4	ANTIMONY		20.8	252. 5		LCS recovery (37.9%) within lab limits but <50%	J-/UJ to detects/NDs for samples digested in the same batch
4601827 252A4	4601827252A4	BS		SW30 20B	6010B		09/23/13 14:34:00	09/24/13 09:37:00	NA	4	ANTIMONY		20.8	252. 5		LCS recovery (46.1%) within lab limits but <50%	J-/UJ to detects/NDs for samples digested in the same batch
4601731 772A	4601731772A	BS		METH OD	8151A		07/29/13 11:08:00	07/30/13 08:17:00	1C	1	SILVEX (2,4,5-TP)		79	148		Low LCS recovery (72%) on primary column	None (recovery within 70-130% data qualification limits)
4601731 773A	4601731773A	BD		METH OD	8151A		07/29/13 11:08:00	07/30/13 08:39:00	1C	1	SILVEX (2,4,5-TP)		79	148	30	Low LCSD recovery (75%) on primary column	None (recovery within 70-130% data qualification limits)
4601634 62/4	460163462/4	BS			8260B			05/31/13 08:33:00	NA	1	1,2- DICHLOROETHANE		76	118		High LCS recovery (124%)	None (recovery within 70-130% data qualification limits)
4601634 62/7	460163462/7	BD			8260B			05/31/13 10:33:00	NA	1	1,2- DICHLOROETHANE		76	118	30	High LCSD recovery (119%)	None (recovery within 70-130% data qualification limits)
4601757 404	4601757404	BS			8260B			08/12/13 15:31:00	NA	1	1,1,1- TRICHLOROETHANE		78	117		High LCS recovery (120%)	None (recovery within 70-130% data qualification limits)
								MATE	RIX SF	IKE	(MS) ACCURACY						
460- 55576- 4MS	DS-16-SW- 20130507MS	MS	1311	SW30 10A	6010B	05/07/20 13 18:00:00	05/09/13 08:35:57	05/09/13 14:59:10	NA	1 0 0	LEAD		75	125		Low MS recovery (- 466%)	None (checked waived because unspiked sample conc > 4x spike amount), PDS passes
460- 57026- 1MSMS	ECS-44-F- 20130530MS	MS		SW30 20B	6010B		05/31/13 18:50:00	06/02/13 17:52:00	NA	4	LEAD	N	75	125		High MS recovery (335%)	J+ to detects for ECS samples digested in the same batch
460- 57129- 7MS	ECS-61-F- 20130531MS	MS		SW30 20B	6010B		06/03/13 11:55:00	06/04/13 12:55:00	NA	4	ALUMINUM		75	125		High MS recovery (443%)	None (checked waived because unspiked sample conc > 4x spike amount), PDS passes
460- 57129- 7MS	ECS-61-F- 20130531MS	MS		SW30 20B	6010B		06/03/13 11:55:00	06/04/13 12:55:00	NA	4	ANTIMONY	N	75	125		Low MS recovery (37%)	J-/UJ to detects/NDs for ECS samples digested in the same batch
460- 57129- 7MS	ECS-61-F- 20130531MS	MS		SW30 20B	6010B		06/03/13 11:55:00	06/04/13 12:55:00	NA	4	IRON		75	125		Low MS recovery (- 1342%)	None (checked waived because unspiked sample conc > 4x spike amount), PDS passes
460- 57129- 7MS	ECS-61-F- 20130531MS	MS		SW30 20B	6010B		06/03/13 11:55:00	06/04/13 12:55:00	NA	4	MANGANESE		75	125		Low MS recovery (27%)	None (checked waived because unspiked sample conc > 4x spike amount), PDS passes

				Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 60019- 6MS	BF-SER- RAMPD-DD-7c- 001- 20130724MS	MS		SW30 20B	6010B		07/26/13 08:07:00	07/26/13 22:29:00	NA	4	MANGANESE		75	125		High MS recovery (160%)	None (checked waived because unspiked sample conc > 4x spike amount), PDS passes
460- 60942- 3MS	BF-SER- RAMPD-DD-10c- 001- 20130808MS	MS		SW30 20B	6010B		08/12/13 05:45:00	08/12/13 09:42:00	NA	4	MANGANESE		75	125		High MS recovery (167%)	None (checked waived because unspiked sample conc > 4x spike amount), PDS passes
460- 60831- 6MS	BF-SER- RAMPD-DD-9c- 001- 20130807MS	MS		SW30 60A	7196A		08/12/13 10:35:00	08/13/13 08:23:00	NA	5	CHROMIUM, HEXAVALENT	N	75	125		Low insoluble MS recovery (57%)	J-/UJ to detects/NDs for BF samples digested in the same batch
460- 60831- 6MS	BF-SER- RAMPD-DD-9c- 001- 20130807MS	MS		SW30 60A	7196A		08/12/13 10:35:00	08/13/13 08:23:00	NA	1	CHROMIUM, HEXAVALENT	N	75	125		Low soluble MS recovery (69%), PDS passes at 90%	J-/UJ to detects/NDs for BF samples digested in the same batch
460- 60831- 6MS	BF-SER- RAMPD-DD-9c- 001- 20130807MS	MS RE		SW30 60A	7196A		08/13/13 09:05:00	08/13/13 11:34:00	NA	5	CHROMIUM, HEXAVALENT	N	75	125		Low insoluble MS recovery (70%)	None (recovery within 70-130% data qualification limits)
460- 60831- 6MS	BF-SER- RAMPD-DD-9c- 001- 20130807MS	MS RE		SW30 60A	7196A		08/13/13 09:05:00	08/13/13 11:34:00	NA	1	CHROMIUM, HEXAVALENT	N	75	125		Low soluble MS recovery (72%), PDS passes at 89%	None (recovery within 70-130% data qualification limits)
460- 58750- 3SD	BF-SER-RAMP D-DD-2c-001- 20130628SD	SD		METH OD	8151A		07/02/13 11:44:00	07/03/13 12:11:00	1C	1	SILVEX (2,4,5-TP)		79	148	30	High MSD recovery (76%) on primary column	None (recovery within 70-130% data qualification limits)
460- 60019- 3MS	BF-SER- RAMPD-DD-6c- 001- 20130724MS	MS		METH OD	8151A		07/29/13 11:08:00	07/30/13 10:27:00	1C	1	SILVEX (2,4,5-TP)		79	148		Low MS recovery (65%) on primary column	J-/UJ to detects/NDs for BF samples digested in the same batch
460- 60019- 3SD	BF-SER- RAMPD-DD-6c- 001-20130724SD	SD		METH OD	8151A		07/29/13 11:08:00	07/30/13 10:48:00	1C	1	SILVEX (2,4,5-TP)		79	148	30	Low MSD recovery (61%) on primary column	J-/UJ to detects/NDs for ECS samples digested in the same batch
460- 60019- 3SD	BF-SER- RAMPD-DD-6c- 001-20130724SD	SD		METH OD	8151A		07/29/13 11:08:00	07/30/13 10:48:00	2C	1	SILVEX (2,4,5-TP)		79	148	30	Low MSD recovery (76%) on secondary column	None (recovery within 70-130% data qualification limits)
460- 63880- 3MS	BF-SER- RAMPD-DD-13c- 001- 20130930MS	MS		METH OD	8151A		10/01/13 11:14:00	10/02/13 15:02:00	1C	1	SILVEX (2,4,5-TP)	Р	79	148		Low MS recovery (73%) on primary column	None (recovery within 70-130% data qualification limits)
460- 63880- 3SD	BF-SER- RAMPD-DD-13c- 001-20130930SD	SD		METH OD	8151A		10/01/13 11:14:00	10/02/13 16:26:00	1C	1	SILVEX (2,4,5-TP)	Р	79	148	30	Low MSD recovery (69%) on primary column	None (average MS/MSD recovery (71%) within 70-130% data qualification limits)

1 .1 15	0			Method		D	ate and Tin	ne	GC	D	A I	Lab	Spk	Spk	RPD	001	DVQ A A UE I
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460-	BF-SER-	MS		SW35	8270C		07/27/13	07/31/13	NA	1	BENZO(G,H,I)		43	106		High MS recovery	None (recovery within 70-130%
60019-	RAMPD-DD-6c-			41			09:09:00	16:25:00			PERYLENE					(111%)	data qualification limits)
3MS	001-																
	20130724MS																
460-	BF-SER-	SD		SW35	8270C		07/27/13	07/31/13	NA	1	BENZO(G,H,I)		43	106	30	High MSD recovery	None (recovery within 70-130%
60019-	RAMPD-DD-6c-			41			09:09:00	16:47:00			PERYLENE					(115%)	data qualification limits)
3SD	001-20130724SD																
460-	BF-SER-	MS		SW35	8270C		07/27/13	07/31/13	NA	1	DIBENZ(A,H)		43	107		High MS recovery	None (recovery within 70-130%
60019-	RAMPD-DD-6c-			41			09:09:00	16:25:00			ANTHRACENE					(116%)	data qualification limits)
3MS	001-																
	20130724MS																
460-	BF-SER-	SD		SW35	8270C		07/27/13	07/31/13	NA	1	DIBENZ(A,H)		43	107	30	High MSD recovery	None (recovery within 70-130%
60019-	RAMPD-DD-6c-			41			09:09:00	16:47:00			ANTHRACENE					(119%)	data qualification limits)
3SD	001-20130724SD																
460-	BF-SER-	MS		SW35	8270C		07/27/13	07/31/13	NA	1	INDENO(1,2,3-C,D)		43	109		High MS recovery	J+ to detects for BF samples
60019-	RAMPD-DD-6c-			41			09:09:00	16:25:00			PYRENE					(131%)	digested in the same batch
3MS	001-																(none)
	20130724MS																
460-	BF-SER-	SD		SW35	8270C		07/27/13	07/31/13	NA	1	INDENO(1,2,3-C,D)		43	109	30	High MSD recovery	J+ to detects for BF samples
60019-	RAMPD-DD-6c-			41			09:09:00	16:47:00			PYRENE					(135%)	digested in the same batch
3SD	001-20130724SD																(none)
460-	BF-SER-	SD		SW35	8270C		07/27/13	07/31/13	NA	1	PENTACHLORO-		19	113	30	MSD recovery	J-/UJ to detects/NDs for BF
60019-	RAMPD-DD-6c-			41			09:09:00	16:47:00			PHENOL					(46%) within lab	samples digested in the same
3SD	001-20130724SD															limits but <50%	batch
460-	BF-SER-	MS		SW35	8270C		08/09/13	08/14/13	NA	1	BENZO(A)PYRENE		36	89		High MS recovery	None (recovery within 70-130%
60831-	RAMPD-DD-9c-			41			08:55:00	22:36:00								(99%)	data qualification limits)
6MS	001-																
	20130807MS																
460-	BF-SER-	SD		SW35	8270C		08/09/13	08/14/13	NA	1	BENZO(A)PYRENE		36	89	30	High MSD recovery	None (recovery within 70-130%
60831-	RAMPD-DD-9c-			41			08:55:00	22:58:00								(92%)	data qualification limits)
6SD	001-20130807SD																
460-	BF-SER-	MS		SW35	8270C		08/09/13	08/14/13	NA	1	BENZO(G,H,I)		43	106		High MS recovery	None (recovery within 70-130%
60831-	RAMPD-DD-9c-			41			08:55:00	22:36:00			PERYLENE					(114%)	data qualification limits)
6MS	001-																
	20130807MS																
460-	BF-SER-	SD		SW35	8270C		08/09/13	08/14/13	NA	1	BENZO(G,H,I)		43	106	30	High MSD recovery	None (recovery within 70-130%
60831-	RAMPD-DD-9c-			41			08:55:00	22:58:00			PERYLENE					(111%)	data qualification limits)
6SD	001-20130807SD																
460-	BF-SER-	MS		SW35	8270C		08/09/13	08/14/13	NA	1	CRESOLS, M & P		47	103		High MS recovery	None (recovery within 70-130%
60831-	RAMPD-DD-9c-			41			08:55:00	22:36:00								(107%)	data qualification limits)
6MS	001-																
	20130807MS																

				Mathad	1		oto and Tim		00	_		16	Contr	CI-	DDD		
Lab ID	Sample Code	Туре	Leach	Method Prep	Analy	Leach	ate and Tim	ne Analy	GC Col	D F	Analyte	Lab Qual	Spk LCL	Spk UCL	RPD CL	QC Issue	DVQs Applied
460-	BF-SER-	SD	Leacii	SW35	8270C	Leacii	08/09/13	08/14/13	NA	1	CRESOLS. M & P	Quai	47	103	30	High MSD recovery	None (recovery within 70-130%
60831-	RAMPD-DD-9c-	OB		41	02/00		08:55:00	22:58:00		•	Orteodeo, in a r		.,	100	00	(105%)	data qualification limits)
6SD	001-20130807SD						00.00.00	22.00.00								(10070)	data quamication innito)
460-	BF-SER-	MS		SW35	8270C		08/09/13	08/14/13	NA	1	NAPHTHALENE		53	94		High MS recovery	None (recovery within 70-130%
60831-	RAMPD-DD-9c-			41			08:55:00	22:36:00		•						(96%)	data qualification limits)
6MS	001-															(5575)	, , , , , , , , , , , , , , , , , , , ,
00	20130807MS																
460-	BF-SER-	SD		SW35	8270C		08/09/13	08/14/13	NA	1	PENTACHLORO-		19	113	30	MSD recovery	None (average MS/MSD
60831-	RAMPD-DD-9c-			41			08:55:00	22:58:00			PHENOL		-	-		(43%) within lab	recovery (70%) within 70-130%
6SD	001-20130807SD															limits but <50%	data qualification limits)
					1		1	SUR	ROGA	TE ((SU) RECOVERY	1					
460-	BF-SERV-RAMP	N		SW35	8081A		07/01/13	07/03/13	1C	1	2.4.5.6-		37	150		High SU recovery	J+ to detects for all analytes in
58750-	D-DD-5c-001-	.,		46	000171		04:30:00	15:36:00		•	TETRACHLORO-		0,	100		(194%) on	this sample
12	20130628			10			01.00.00	10.00.00			META-XYLENE					secondary column	uno campio
460-	BF-SER-RAMP	N		SW35	8081A		07/01/13	07/03/13	1C	1	2,4,5,6-		37	150		High SU recovery	J+ to detects for all analytes in
58750-9	D-DD-4c-001-	.,		46	000171		04:30:00	15:22:00		•	TETRACHLORO-		0,	100		(152%) on	this sample
30730 3	20130628			40			04.00.00	10.22.00			META-XYLENE					secondary column	uno sample
460-	BF-SER-	N		SW35	8081A		08/09/13	08/09/13	1C	1	2,4,5,6-		37	150		High SU recovery	J+ to detects for all analytes in
60831-3	RAMPD-DD-8c-			46	000171		03:59:00	15:43:00	10	'	TETRACHLORO-		01	100		(156%) on	this sample (none)
000010	001-20130807			10			00.00.00	10.10.00			META-XYLENE					secondary column	uno campio (nono)
460-	BF-SER-	N		SW35	8081A		08/09/13	08/09/13	1C	1	DECACHLORO-		60	150		High SU recovery	J+ to detects for all analytes in
60831-3	RAMPD-DD-8c-	.,		46	000171		03:59:00	15:43:00		•	BIPHENYL.		00	100		(152%) on	this sample (none)
000010	001-20130807			10			00.00.00	10.10.00			2,2',3,3',4,4',5,5',6,6'-					secondary column	uno campio (nono)
											(IUPAC 209)						
460-	BF-SER-	N		SW35	8081A		08/13/13	08/13/13	1C	1	2,4,5,6-		37	150		High SU recovery	J+ to detects for all analytes in
60942-8	RAMPD-DD-11c-			46			05:22:00	13:31:00			TETRACHLORO-					(154%) on	this sample (none)
	001x-20130808										META-XYLENE					secondary column	. , ,
460-	BF-SER-	N		SW35	8081A		08/13/13	08/13/13	1C	1	DECACHLORO-		60	150		High SU recovery	J+ to detects for all analytes in
60942-8	RAMPD-DD-11c-			46			05:22:00	13:31:00			BIPHENYL,					(153%) on	this sample (none)
	001x-20130808										2,2',3,3',4,4',5,5',6,6'-					secondary column	
											(IUPAC 209)						
4601757	4601757772A	BS		METH	8151A		08/12/13	08/14/13	1C	1	2,4-		53	150		High SU recovery	None (no effect on
772A				OD			22:17:00	11:27:00			DICHLOROPHENYL-					(267%) on primary	environmental sample results)
											ACETIC ACID					column	
4601757	4601757773A	BD		METH	8151A		08/12/13	08/14/13	1C	1	2,4-		53	150		High SU recovery	None (no effect on
773A				OD			22:17:00	11:48:00			DICHLOROPHENYL-					(253%) on primary	environmental sample results)
											ACETIC ACID					column	
460-	BF-SER-	N		METH	8151A		08/12/13	08/14/13	1C	1	2,4-		53	150		High SU recovery	J+ to detects for all analytes in
60942-3	RAMPD-DD-10c-			OD			22:17:00	13:04:00			DICHLOROPHENYL-					(151%) on primary	this sample (none)
	001-20130808										ACETIC ACID					column	
460-	BF-SER-	N		METH	8151A		08/12/13	08/14/13	2C	1	2,4-		53	150		High SU recovery	J+ to detects for all analytes in
60942-3	RAMPD-DD-10c-			OD			22:17:00	13:04:00			DICHLOROPHENYL-					(151%) on	this sample (none)
	001-20130808										ACETIC ACID					secondary column	

	0			Method		D	ate and Tin	ne	GC	D	A 1	Lab	Spk	Spk	RPD	001	DVO - A II - I
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4601842	4601842281A	LB		SW35	8081B		10/02/13	10/03/13	2C	1	2,4,5,6-		37	150		Low SU recovery	None (no effect on
281A				46			08:18:00	11:34:00			TETRACHLORO-					(52.1%) on	environmental sample results)
											META-XYLENE					secondary column	
4601842	4601842281A	LB		SW35	8081B		10/02/13	10/03/13	2C	1	DECACHLORO-		60	150		Low SU recovery	None (no effect on
281A				46			08:18:00	11:34:00			BIPHENYL,					(54.5%) on	environmental sample results)
											2,2',3,3',4,4',5,5',6,6'-					secondary column	
											(IUPAC 209)						
								LABORAT	ORY	BLA	NK CONTAMINATION						
4601708	460170864/1C5	LB	1311	SW30	6010B	07/16/20	07/17/13	07/17/13	NA	5	LEAD	J				Leachate blank	U at RL to Js, J+ to detects <10x
64/1C5				10A		13	10:44:00	15:16:00								contamination	blank equivalent concentration
						14:16:00										(24.14 J ug/l)	for samples leached in the same
																	batch
4601634	460163462/10	LB			8260B			05/31/13	NA	1	ACETONE	J				Method blank	U at RL to Js, J+ to detects <4x
62/10								11:55:00								•	RL or < 2x blank equivalent
																J ug/kg)	concentration for samples
																	shipped in the same container
4601634	460163462/10	LB			8260B			05/31/13	NA	1	METHYLENE	J				Method blank	U at RL to Js, J+ to detects <4x
62/10								11:55:00			CHLORIDE					contamination	RL or < 2x blank equivalent
																(0.303 J ug/kg)	concentration for samples
																	shipped in the same container
4004707	1001707107				00000			07/04/40		_	40570115						(all ND)
4601737	4601737167	LB			8260B			07/31/13	NA	1	ACETONE	J				Method blank	U at RL to Js, J+ to detects <4x
167								20:07:00								,	RL or < 2x blank equivalent
																J ug/kg)	concentration for samples
4601852	4601852876	LB			8260C			10/08/13	NA	1	ACETONE	J				Method blank	shipped in the same container U at RL to Js, J+ to detects <4x
876	4001032070	LD			02000			08:24:00	INA	'	ACETONE	J					RL or < 2x blank equivalent
070								00.24.00								J ug/kg)	concentration for samples
																J ug/kg)	shipped in the same container
																	(all ND)
			1	1	1			TRIP	RLAN	NK C	CONTAMINATION	<u> </u>	1	I.			(a 112)
460-	TB-8/8/13-	ТВ			8260B			08/16/13	NA	1	METHYLENE					Trip blank	U at RL to Js, J+ to detects <4x
60942-	20130808				02000			10:28:00		ļ .	CHLORIDE					contamination (2	RL or < 2x blank equivalent
12	20.00000							.0.20.00			01.201.1.52					ug/l)	concentration for samples
																~g/./	shipped in the same container
					1			INIT		ΔΙΙ	BRATION (ICAL)			L		L	
IC 460-	IC 460-	ICAL			8260C			10/04/13	NA	1	ACETONE				15	Poor calibration fit	None (%RSD below 40% data
184822/	184822/3,4,6-9	IOAL			02000			18:50:00	137		/ NOL TOINL				10	(20 %RSD)	qualification limit for this poor
3,4,6-9	101022/0, 1,0 0							10.00.00								(20 /01(02)	performer)
IC 460-	IC 460-	ICAL			8260C			10/04/13	NA	1	VINYL CHLORIDE				15	Poor calibration fit	None (%RSD below 40% data
184822/	184822/3,4,6-9	,			=====			18:50:00	''''							(16 %RSD)	qualification limit for this poor
3,4,6-9								. 5.55.50								(12 /01.02)	performer)
., ,		1	•	•			CO	NTINI IING 4	CALIE	RAT	ΓΙΟΝ VERIFICATION (CC ⁾	\/\		ı		L	- /
L							001	VI DVIIOVII V	OALIE	/\\\	TION VEINITOATION (CC	v <i>j</i>					

				Method		D:	ate and Tim	ne.	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCV 460- 163246/ 22	CCV 460- 163246/22	CCV 2			8081A		·	05/30/13 11:28:00	1C	1	ALPHA BHC (ALPHA HEXACHLOROCYCLO HEXANE)	*		15		Calibration drift secondary column (%D= +18.2%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 163364/ 22	CCV 460- 163364/22	CCV 2			8081A			05/30/13 11:28:00	1C	1	ALPHA BHC (ALPHA HEXACHLOROCYCLO HEXANE)	*		15		Calibration drift secondary column (%D= +18.2%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 169054/ 11	CCV 460- 169054/11	CCV 2			8081A			07/03/13 08:18:00	1C	1	HEPTACHLOR	*		15		Calibration drift secondary column (%D= -16.4%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)
CCV 460- 169054/ 38	CCV 460- 169054/38	CCV 1			8081A			07/03/13 16:07:00	2C	1	ALDRIN	*		15		Calibration drift primary column (%D= +20.5%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 169054/ 38	CCV 460- 169054/38	CCV 1			8081A			07/03/13 16:07:00	2C	1	DELTA BHC (DELTA HEXACHLOROCYCLO HEXANE)	*		15		Calibration drift primary column (%D= +22.8%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 169054/ 38	CCV 460- 169054/38	CCV 1			8081A			07/03/13 16:07:00	2C	1	ALPHA ENDOSULFAN	*		15		Calibration drift primary column (%D= +16.9%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 169054/ 38	CCV 460- 169054/38	CCV 1			8081A			07/03/13 16:07:00	2C	1	BETA BHC (BETA HEXACHLOROCYCLO HEXANE)	*		15		Calibration drift primary column (%D= +32.1%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 168572/ 23	CCV 460- 168572/23	CCV 2			8082			07/01/13 15:46:00	2C	1	PCB-1260 (AROCLOR 1260) - Peak 4	*		15		Calibration drift secondary column (%D= -30.5%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)
CCV 460- 168572/ 49	CCV 460- 168572/49	CCV 2			8082			07/02/13 00:03:00	2C	1	PCB-1260 (AROCLOR 1260) - Peak 4	*		15		Calibration drift secondary column (%D= -41.5%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)
CCV 460- 172693/ 2	CCV 460- 172693/2	CCV 2			8082			07/26/13 07:51:00	2C	1	PCB-1016 (AROCLOR 1016) - Peak 1	*		15		Calibration drift secondary column (%D= -15.9%)	None (only LB,BS on this shift, no effect on sample TA results)
CCV 460- 172694/ 2	CCV 460- 172694/2	CCV 2			8082			07/26/13 07:55:00	2C	1	PCB-1260 (AROCLOR 1260) - Peak 5	*		15		Calibration drift secondary column (%D= +16.4%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)

Lab ID	Commis Code	T		Method		D	ate and Tin	ne	GC	D	Analida	Lab	Spk	Spk	RPD	001	DVO- Amuliad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCV 460- 172693/ 14	CCV 460- 172693/14	CCV 1			8082			07/26/13 12:14:00	1C	1	PCB-1016 (AROCLOR 1016) - Peak 5	*		15		Calibration drift primary column (%D= +16.8%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 172693/ 14	CCV 460- 172693/14	CCV 1			8082			07/26/13 12:14:00	1C	1	PCB-1260 (AROCLOR 1260) - Peak 3	*		15		Calibration drift primary column (%D= +16.6%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 176200/ 42	CCV 460- 176200/42	CCV 2			8082			08/15/13 00:36:00	1C	1	PCB-1016 (AROCLOR 1016) - Peak 4	*		15		Calibration drift secondary column (%D= +17%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 176200/ 42	CCV 460- 176200/42	CCV 2			8082			08/15/13 00:36:00	1C	1	PCB-1260 (AROCLOR 1260) - Peak 3	*		15		Calibration drift secondary column (%D= +18.5%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCVIS 460- 163462/ 3	CCVIS 460- 163462/3	CCV			8260B			05/31/13 07:55:00	NA	1	1,2- DICHLOROETHANE			20		Calibration drift (%D= +26.4%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 163462/ 3	CCVIS 460- 163462/3	CCV			8260B			05/31/13 07:55:00	NA	1	ACETONE			20		Calibration drift (%D= +26.2%)	J+ to detects only since < +40% for samples analyzed this shift
CCVIS 460- 163462/ 3	CCVIS 460- 163462/3	CCV			8260B			05/31/13 07:55:00	NA	1	CARBON TETRACHLORIDE			20		Calibration drift (%D= +25.3%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 169743/ 3	CCVIS 460- 169743/3	CCV			8260B			07/09/13 21:36:00	NA	1	1,2,4- TRIMETHYLBENZENE			20		Calibration drift (%D= +20.5%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 169743/ 3	CCVIS 460- 169743/3	CCV			8260B			07/09/13 21:36:00	NA	1	O-XYLENE (1,2- DIMETHYLBENZENE)			20		Calibration drift (%D= +22%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 175740/ 2	CCVIS 460- 175740/2	CCV			8260B			08/12/13 13:55:00	NA	1	ACETONE			20		Calibration drift (%D= -23.4%)	J- to detects, UJ to NDs samples analyzed this shift
CCVIS 460- 175740/ 2	CCVIS 460- 175740/2	CCV			8260B			08/12/13 13:55:00	NA	1	CARBON TETRACHLORIDE			20		Calibration drift (%D= +26.3%)	J+ to detects only since < +40% for samples analyzed this shift (none)

Lab ID	Sample Code	T		Method		D	ate and Tin	ne	GC	D	Analyte	Lab	Spk	Spk	RPD	QC Issue	DVQs Applied
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQS Applied
CCVIS 460-	CCVIS 460- 175585/3	CCV			8260B			08/12/13 05:59:00	NA	1	ACETONE			20		Calibration drift (%D= +21.6%)	J+ to detects only since < +40% for samples analyzed this shift
175585/ 3																	(none)
CCVIS	CCVIS 460-	CCV			8260C			10/08/13	NA	1	VINYL CHLORIDE	*		20		Calibration drift	J- to detects, UJ to NDs samples
460- 185287/	185287/2							05:45:00								(%D= -21.9%)	analyzed this shift (all ND)
2																	
CCVIS	CCVIS 460-	CCV			8270C			08/14/13	NA	1	DIBENZ(A,H)	*		20		Calibration drift	J- to detects, UJ to NDs samples
460-	176210/2							15:38:00			ANTHRACENE					(%D= -22.5%)	analyzed this shift (all ND)
176210/ 2																	
								INTERI	NAL S	TAN	I IDARD RESPONSE	1					
460-	BF-SER-RAMP	N		SW50	8260B		06/29/13	07/10/13			1,4-DIOXANE-D8		50	200		Low internal	R to the ND for the analyte
58750-	D-DD-5g-002-			35			14:48:00	07:00:00								standard response	quantitated with this IS (1,4-
11	20130628															(26.6%)	Dioxane) in this sample
400	55 055 / 5 445		l	014/05			07/04/40				CONFIRMATION						In , , , , , , , , , , , , , , , , , , ,
460- 58750-	BF-SERV-RAMP D-DD-5c-001-	N		SW35 46	8081A		07/01/13 04:30:00	07/03/13 15:36:00	2C	1	2,4,5,6- TETRACHLORO-	Р			40	Poor precision for secondary column	None (no effect on sample TA results)
12	20130628			40			04.30.00	13.30.00			META-XYLENE					result (46 RPD),	results)
																laboratory reported	
																the lower value	
460-	BF-SER-	MS		METH	8151A		08/08/13	08/12/13	1C	1	SILVEX (2,4,5-TP)	Р			40	Poor precision for	None (no effect on sample TA
60831- 3MS	RAMPD-DD-8c- 001-			OD			23:20:00	10:52:00								secondary column result (43 RPD),	results)
Sivio	20130807MS															laboratory reported	
																the lower value	
460-	BF-SER-	MS		METH	8151A		10/01/13	10/02/13	1C	1	SILVEX (2,4,5-TP)	Р			40	Poor precision for	None (no effect on sample TA
63880- 3MS	RAMPD-DD-13c- 001-			OD			11:14:00	15:02:00								secondary column result (45 RPD),	results)
SIVIS	20130930MS															laboratory reported	
	20.000000															the lower value	
460-	BF-SER-	SD		METH	8151A		10/01/13	10/02/13	1C	1	SILVEX (2,4,5-TP)	Р			40	Poor precision for	None (no effect on sample TA
63880-	RAMPD-DD-13c-			OD			11:14:00	16:26:00								secondary column	results)
3SD	001-20130930SD															result (50 RPD), laboratory reported	
																the lower value	

CL - Control Limit

DF - Dilution Factor

LCL - Lower Control Limit

UCL - Upper Control Limit

TABLE 4 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase Phase II-B Remedial Design/ Remedial Action

QUALIFIED RESULTS FOR FIELD SAMPLES

Lab ID	Field ID-Date	Analyte	Lab Result	(1)	DVQ	QC Issue
		TCLP METAL	_S			
460-55575-7	ECS-103-F-20130507	1311 LEAD	10200	ug/l	J	Poor field duplicate precision (150 RPD), use higher result from original sample
460-55575-8	ECS-103-F-X-20130507	1311 LEAD	1590	ug/l	J	Poor field duplicate precision (150 RPD), use higher result from original sample
460-57129-7	ECS-61-F-20130531	1311 LEAD	62.9	ug/l	J	Poor field duplicate precision (absolute difference > 2xRL), use higher value from duplicate sample
460-57129-8	ECS-61-F-X-20130531	1311 LEAD	243	ug/l	J	Poor field duplicate precision (absolute difference > 2xRL), use higher value from duplicate sample
460-59430-1	ECS-106-F-20130712	1311 LEAD	229 B	ug/l	J+	Leachate blank contamination (24.14 J ug/l)
460-59430-2	ECS-125-F-20130712	1311 LEAD	103 B	ug/l	J+	Leachate blank contamination (24.14 J ug/l)
460-59430-3	ECS-102-F-20130712	1311 LEAD	25.1 B	ug/l	J+	Leachate blank contamination (24.14 J ug/l)
460-59467-3	ECS-82-F-20130715	1311 LEAD	52.6 B	ug/l	J+	Leachate blank contamination (24.14 J ug/l)
460-59467-4	ECS-88-F-20130715	1311 LEAD	83.0 B	ug/l	J+	Leachate blank contamination (24.14 J ug/l)
460-59467-6	ECS-122-F-EFA-20130715	1311 LEAD	110 B	ug/l	J+	Leachate blank contamination (24.14 J ug/l)
460-62377-2	ECS-95-F-20130904	1311 LEAD	1350	ug/l	J	Poor field duplicate precision (120 RPD), use higher result from original sample
460-62377-6	ECS-95-F-X-20130904	1311 LEAD	353	ug/l	J	Poor field duplicate precision (120 RPD), use higher result from original sample
		TOTAL META	LS			
460-55575-9	ECS-104-F-20130507	CADMIUM	0.68 J i	mg/kg	J	Result between MDL and RL
460-55575-9	ECS-104-F-20130507	POTASSIUM		mg/kg	J	Result between MDL and RL
460-57026-1	ECS-44-F-20130530	LEAD	_	mg/kg	J+	High MS recovery (335%)
460-57026-2	ECS-45-F-20130530	LEAD	141 1	mg/kg	J+	High MS recovery (335%)
460-57026-3	ECS-46-F-20130530	LEAD	40.2	mg/kg	J+	High MS recovery (335%)
460-57026-4	ECS-48-F-20130530	LEAD	1160 i	mg/kg	J+	High MS recovery (335%)
460-57026-5	ECS-49-F-20130530	LEAD	19.3 ı	mg/kg	J+	High MS recovery (335%)
460-57129-1	ECS-52-F-20130531	ARSENIC		mg/kg	J	Poor lab duplicate precision (42 RPD)
460-57129-2	ECS-53-F-20130531	ARSENIC	6.3	mg/kg	J	Poor lab duplicate precision (42 RPD)
460-57129-3	ECS-54-F-20130531	ARSENIC	5.0	mg/kg	J	Poor lab duplicate precision (42 RPD)
460-57129-4	ECS-55-F-20130531	ARSENIC	16.0 r	mg/kg	J	Poor lab duplicate precision (42 RPD)
460-57129-5	ECS-59-F-20130531	ANTIMONY	3.8	mg/kg	J-	LCS recovery (37.9%) within lab limits but <50%; Low MS recovery (37%)
460-57129-5	ECS-59-F-20130531	ARSENIC	11.9	mg/kg	J	Poor lab duplicate precision (42 RPD)

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-57129-5	ECS-59-F-20130531	CADMIUM	0.56 J mg/kg	J	Result between MDL and RL
460-57129-5	ECS-59-F-20130531	POTASSIUM	1030 J mg/kg	J	Result between MDL and RL
460-57129-6	ECS-60-F-20130531	ARSENIC	5.8 mg/kg	J	Poor lab duplicate precision (42 RPD)
460-57129-7	ECS-61-F-20130531	ARSENIC	5.7 mg/kg	J	Poor lab duplicate precision (42 RPD)
460-57129-7	ECS-61-F-20130531	LEAD	18.0 mg/kg	J	Poor field duplicate precision (75 RPD), use higher result from duplicate sample
460-57129-8	ECS-61-F-X-20130531	ARSENIC	6.5 mg/kg	J	Poor lab duplicate precision (42 RPD)
460-57129-8	ECS-61-F-X-20130531	LEAD	39.6 mg/kg	J	Poor field duplicate precision (75 RPD), use higher result from duplicate sample
460-58750-6	BF-SER-RAMP D-DD-3c-001- 20130628	BERYLLIUM	0.41 J mg/kg	J	Result between MDL and RL
460-59430-5	ECS-123-F-EFA-20130712	BARIUM	39.4 J mg/kg	J	Result between MDL and RL
460-59430-5	ECS-123-F-EFA-20130712	CALCIUM	611 J mg/kg		Result between MDL and RL
460-60019-3	BF-SER-RAMPD-DD-6c-001- 20130724	BARIUM	38.2 J mg/kg	J	Result between MDL and RL
460-60019-3	BF-SER-RAMPD-DD-6c-001- 20130724	BERYLLIUM	0.40 J mg/kg	J	Result between MDL and RL
460-60019-6	BF-SER-RAMPD-DD-7c-001- 20130724	BARIUM	41.9 J mg/kg	J	Result between MDL and RL
460-60831-3	BF-SER-RAMPD-DD-8c-001- 20130807	BERYLLIUM	0.43 J mg/kg	J	Result between MDL and RL
460-60942-3	BF-SER-RAMPD-DD-10c-001- 20130808	BERYLLIUM	0.40 J mg/kg	J	Result between MDL and RL
460-60942-6	BF-SER-RAMPD-DD-11c-001- 20130808	CADMIUM	0.20 J mg/kg	J	Result between MDL and RL
460-60942-6	BF-SER-RAMPD-DD-11c-001- 20130808	SILVER	0.27 J mg/kg	J	Result between MDL and RL
460-60942-8	BF-SER-RAMPD-DD-11c-001x- 20130808	CADMIUM	0.19 J mg/kg	J	Result between MDL and RL
460-60942-8	BF-SER-RAMPD-DD-11c-001x- 20130808	SILVER	0.25 J mg/kg	J	Result between MDL and RL
460-60942-11	BF-SER-RAMPD-DD-12c-001- 20130808	CADMIUM	0.17 J mg/kg	J	Result between MDL and RL
460-61374-1	ECS-70-F-20130815	CALCIUM	557 J mg/kg	J	Result between MDL and RL
460-61374-1	ECS-70-F-20130815	POTASSIUM	915 J mg/kg		Result between MDL and RL
460-61374-1	ECS-70-F-20130815	SELENIUM	2.0 J mg/kg	J	Result between MDL and RL
460-63399-1	ECS-56-F-20130920	ANTIMONY	1.9 U mg/kg	UJ	LCS recovery (46.1%) within lab limits but <50%
460-63399-1	ECS-56-F-20130920	CALCIUM	643 J mg/kg		Result between MDL and RL
460-63399-1	ECS-56-F-20130920	POTASSIUM	761 J mg/kg	J	Result between MDL and RL
		CHROMIUM V	′ I		
460-60831-3	BF-SER-RAMPD-DD-8c-001- 20130807	CHROMIUM, HEXAVALENT	2.3 U mg/kg	UJ	Low insoluble MS recovery (57%)
460-60831-6	BF-SER-RAMPD-DD-9c-001- 20130807	CHROMIUM, HEXAVALENT	2.1 U mg/kg	UJ	Low soluble MS recovery (69%), PDS passes at 90%
		PESTICIDES	1		1
460-58750-3	BF-SER-RAMP D-DD-2c-001- 20130628	HEPTACHLOR	7.5 U ug/kg	UJ	Calibration drift secondary column (%D= -16.4%)
460-58750-6	BF-SER-RAMP D-DD-3c-001- 20130628	HEPTACHLOR	7.5 U ug/kg	UJ	Calibration drift secondary column (%D= -16.4%)
460-58750-9	BF-SER-RAMP D-DD-4c-001- 20130628	HEPTACHLOR	7.6 U ug/kg	UJ	Calibration drift secondary column (%D= -16.4%)
460-58750-9	BF-SER-RAMP D-DD-4c-001- 20130628	P,P'-DDD	200 ug/kg	J+	High SU recovery (152%) on secondary column

Lab ID	Field ID-Date	Analyte	Re	Lab esult ⁽¹⁾	DVQ	QC Issue
460-58750-9	BF-SER-RAMP D-DD-4c-001- 20130628	P,P'-DDE	39	ug/kg	J+	High SU recovery (152%) on secondary column
460-58750-9	BF-SER-RAMP D-DD-4c-001- 20130628	P,P'-DDT	48	ug/kg	J+	High SU recovery (152%) on secondary column
460-58750-12	BF-SERV-RAMP D-DD-5c-001- 20130628	P,P'-DDD	320	ug/kg	J+	High SU recovery (194%) on secondary column
460-58750-12	BF-SERV-RAMP D-DD-5c-001- 20130628	P,P'-DDE	44	ug/kg	J+	High SU recovery (194%) on secondary column
460-58750-12	BF-SERV-RAMP D-DD-5c-001- 20130628	HEPTACHLOR	7.5	U ug/kg	UJ	Calibration drift secondary column (%D= -16.4%)
460-58750-12	BF-SERV-RAMP D-DD-5c-001- 20130628	P,P'-DDT	77	ug/kg	J+	High SU recovery (194%) on secondary column
		PCB AROCLOR	rs			
460-58750-3	BF-SER-RAMP D-DD-2c-001- 20130628	PCB-1260 (AROCLOR 1260)	75	U ug/kg	UJ	Calibration drift secondary column (%D= -30.5%), Calibration drift secondary column (%D= -41.5%)
460-58750-6	BF-SER-RAMP D-DD-3c-001- 20130628	PCB-1260 (AROCLOR 1260)	75	U ug/kg	UJ	Calibration drift secondary column (%D= -30.5%), Calibration drift secondary column (%D= -41.5%)
460-58750-9	BF-SER-RAMP D-DD-4c-001- 20130628	PCB-1260 (AROCLOR 1260)	76	U ug/kg	UJ	Calibration drift secondary column (%D= -30.5%), Calibration drift secondary column (%D= -41.5%)
460-58750-12	BF-SERV-RAMP D-DD-5c-001- 20130628	PCB-1260 (AROCLOR 1260)	75	U ug/kg	UJ	Calibration drift secondary column (%D= -30.5%), Calibration drift secondary column (%D= -41.5%)
		HERBICIDES			ı	,
460-60019-3	BF-SER-RAMPD-DD-6c-001- 20130724	SILVEX (2,4,5-TP)	18	U ug/kg	UJ	Low MS recovery (65%) on primary column; Low MSD
460-60019-6	BF-SER-RAMPD-DD-7c-001- 20130724	SILVEX (2,4,5-TP)	19	U ug/kg	UJ	recovery (61%) on primary column Low MS recovery (65%) on primary column; Low MSD recovery (61%) on primary column
	VC	DLATILE ORGANIC COMP	OUNDS	(VOC)	ı	
460-56528-1	BF-SER-RAMPD-DD-1g-001- 20130521	ACETONE	10	B ug/kg	J+	Method blank contamination (8.23 J ug/kg); Calibration drift (%D=+26.2%)
460-56528-2	BF-SER-RAMPD-DD-1g-002- 20130521	ACETONE	9.5	BJ ug/kg	U	Method blank contamination (8.23 J ug/kg); Calibration drift (%D= +26.2%)
460-56528-3	BF-SER-RAMPD-DD-1g-003- 20130521	ACETONE	11	B ug/kg	J+	Method blank contamination (8.23 J ug/kg); Calibration drift (%D= +26.2%)
460-56528-4	BF-SER-RAMPD-DD-1g-004- 20130521	ACETONE	12	B ug/kg	J+	Method blank contamination (8.23 J ug/kg); Calibration drift (%D= +26.2%)
460-56528-5	BF-SER-RAMPD-DD-1g-005- 20130521	ACETONE	12	B ug/kg	J+	Method blank contamination (8.23 J ug/kg); Calibration drift (%D= +26.2%)
460-56528-6	BF-SER-RAMPD-DD-1g-006- 20130521	ACETONE	11	B ug/kg	J+	Method blank contamination (8.23 J ug/kg); Calibration drift (%D=+26.2%)
460-56528-7	BF-SER-RAMPD-DD-1g-007- 20130521	ACETONE	8.7	BJ ug/kg	U	Method blank contamination (8.23 J ug/kg); Calibration drift (%D=+26.2%)
460-58750-5	BF-SER-RAMP D-DD-3g-002- 20130628	ACETONE	4.5	J ug/kg	J	Result between MDL and RL
460-58750-11	BF-SER-RAMP D-DD-5g-002- 20130628	1,4-DIOXANE (P-DIOXANE)	42	U ug/kg	R	Low internal standard response (26.6%)
460-60019-1	BF-SER-RAMPD-DD-6g-001- 20130724	ACETONE	24	B ug/kg	J+	Method blank contamination (2.44 J ug/kg)

Lab ID	Field ID-Date	Analyte		Lab sult ⁽¹⁾	DVQ	QC Issue
460-60019-1	BF-SER-RAMPD-DD-6g-001- 20130724	METHYLENE CHLORIDE	0.52	J ug/kg	J	Result between MDL and RL
460-60019-4	BF-SER-RAMPD-DD-7g-001- 20130724	METHYLENE CHLORIDE	0.75	J ug/kg	J	Result between MDL and RL
460-60831-1	BF-SER-RAMPD-DD-8g-001- 20130807	ACETONE	97	ug/kg	J-	Calibration drift (%D= -23.4%)
460-60831-2	BF-SER-RAMPD-DD-8g-002- 20130807	ACETONE	7.5	J ug/kg	J	Calibration drift (%D= -23.4%); Result between MDL and RL
460-60831-4	BF-SER-RAMPD-DD-9g-001- 20130807	ACETONE	18	ug/kg	J-	Calibration drift (%D= -23.4%)
460-60831-4	BF-SER-RAMPD-DD-9g-001- 20130807	METHYLENE CHLORIDE	0.71	J ug/kg	J	Result between MDL and RL
460-60831-5	BF-SER-RAMPD-DD-9g-002- 20130807	ACETONE	5.2	J ug/kg	J	Calibration drift (%D= -23.4%); Result between MDL and RL
460-60942-1	BF-SER-RAMPD-DD-10g-001- 20130808	METHYLENE CHLORIDE	0.90	J ug/kg	U	Trip blank contamination (2 ug/l)
460-60942-2	BF-SER-RAMPD-DD-10g-002- 20130808	METHYLENE CHLORIDE	0.87	J ug/kg	U	Trip blank contamination (2 ug/l)
460-60942-4	BF-SER-RAMPD-DD-11g-001- 20130808	METHYLENE CHLORIDE	1.1	ug/kg	J+	Trip blank contamination (2 ug/l)
460-60942-7	BF-SER-RAMPD-DD-11g-001x- 20130808	METHYLENE CHLORIDE	0.85	J ug/kg	U	Trip blank contamination (2 ug/l)
460-60942-9	BF-SER-RAMPD-DD-12g-001- 20130808	METHYLENE CHLORIDE	0.85	J ug/kg	U	Trip blank contamination (2 ug/l)
460-60942-10	BF-SER-RAMPD-DD-12g-002- 20130808	METHYLENE CHLORIDE	0.83	J ug/kg	U	Trip blank contamination (2 ug/l)
460-63880-1	BF-SER-RAMPD-DD-13g-001- 20130930	VINYL CHLORIDE	0.97	U ug/kg	UJ	Calibration drift (%D= -21.9%)
460-63880-2	BF-SER-RAMPD-DD-13g-002- 20130930	CHLOROBENZENE	0.19	J ug/kg	J	Result between MDL and RL
460-63880-2	BF-SER-RAMPD-DD-13g-002- 20130930	VINYL CHLORIDE	0.97	U ug/kg	UJ	Calibration drift (%D= -21.9%)
460-63880-4	BF-SER-RAMPD-DD-14g-001- 20130930	VINYL CHLORIDE	0.83	U ug/kg	UJ	Calibration drift (%D= -21.9%)
460-63880-5	BF-SER-RAMPD-DD-14g-002- 20130930	VINYL CHLORIDE	0.87	U ug/kg	UJ	Calibration drift (%D= -21.9%)
		OLATILE ORGANIC CO	MPOUND	S (SVOC)		
460-56528-8	BF-SER-RAMPD-DD-1c-001- 20130521	BENZO(G,H,I) PERYLENE	36	J ug/kg	J	Result between MDL and RL
460-56528-8	BF-SER-RAMPD-DD-1c-001- 20130521	BENZO(K) FLUORANTHENE	34	J ug/kg	J	Result between MDL and RL
460-56528-8	BF-SER-RAMPD-DD-1c-001- 20130521	CHRYSENE	44	J ug/kg	J	Result between MDL and RL
460-56528-8	BF-SER-RAMPD-DD-1c-001- 20130521	FLUORANTHENE	84	J ug/kg	J	Result between MDL and RL
460-56528-8	BF-SER-RAMPD-DD-1c-001- 20130521	PYRENE	73	J ug/kg	J	Result between MDL and RL
460-56528-9	BF-SER-RAMPD-DD-1c-002- 20130521	BENZO(G,H,I) PERYLENE	36	J ug/kg	J	Result between MDL and RL
460-56528-9	BF-SER-RAMPD-DD-1c-002- 20130521	BENZO(K) FLUORANTHENE	25	J ug/kg	J	Result between MDL and RL
460-56528-9	BF-SER-RAMPD-DD-1c-002- 20130521	CHRYSENE	51	J ug/kg	J	Result between MDL and RL
460-56528-9	BF-SER-RAMPD-DD-1c-002- 20130521	DIBENZ(A,H) ANTHRACENE	13	J ug/kg	J	Result between MDL and RL
460-56528-9	BF-SER-RAMPD-DD-1c-002- 20130521	FLUORANTHENE	95	J ug/kg	J	Result between MDL and RL
460-56528-9	BF-SER-RAMPD-DD-1c-002- 20130521	PHENANTHRENE	59	J ug/kg	J	Result between MDL and RL
460-56528-9	BF-SER-RAMPD-DD-1c-002- 20130521	PYRENE	91	J ug/kg	J	Result between MDL and RL

Lab ID	Field ID-Date	Analyte	Re	Lab sul	t ⁽¹⁾	DVQ	QC Issue
460-58750-12	BF-SERV-RAMP D-DD-5c-001- 20130628	BENZO(K) FLUORANTHENE	34		ug/kg	J	Result between MDL and RL
460-58750-12	BF-SERV-RAMP D-DD-5c-001- 20130628	CHRYSENE	87	J	ug/kg	J	Result between MDL and RL
460-58750-12	BF-SERV-RAMP D-DD-5c-001- 20130628	FLUORANTHENE	260	J	ug/kg	J	Result between MDL and RL
460-58750-12	BF-SERV-RAMP D-DD-5c-001- 20130628	PHENANTHRENE	220	J	ug/kg	J	Result between MDL and RL
460-58750-12	BF-SERV-RAMP D-DD-5c-001- 20130628	PYRENE	220	J	ug/kg	J	Result between MDL and RL
460-60019-3	BF-SER-RAMPD-DD-6c-001- 20130724	NAPHTHALENE	65	J	ug/kg	J	Result between MDL and RL
460-60019-3	BF-SER-RAMPD-DD-6c-001- 20130724	PENTACHLORO- PHENOL	1100	U	ug/kg	UJ	MSD recovery (46%) within lab limits but <50%
460-60019-6	BF-SER-RAMPD-DD-7c-001- 20130724	PENTACHLORO- PHENOL	1100	U	ug/kg	UJ	MSD recovery (46%) within lab limits but <50%
460-60831-3	BF-SER-RAMPD-DD-8c-001- 20130807	BENZO(A) ANTHRACENE	28	J	ug/kg	J	Result between MDL and RL
460-60831-3	BF-SER-RAMPD-DD-8c-001- 20130807	BENZO(A)PYRENE	15	J	ug/kg	J	Result between MDL and RL
460-60831-3	BF-SER-RAMPD-DD-8c-001- 20130807	BENZO(B) FLUORANTHENE	21	J	ug/kg	J	Result between MDL and RL
460-60831-3	BF-SER-RAMPD-DD-8c-001- 20130807	BENZO(K) FLUORANTHENE	14	J	ug/kg	J	Result between MDL and RL
460-60831-3	BF-SER-RAMPD-DD-8c-001- 20130807	DIBENZ(A,H) ANTHRACENE	40	U	ug/kg	UJ	Calibration drift (%D= -22.5%)
460-60831-3	BF-SER-RAMPD-DD-8c-001- 20130807	INDENO(1,2,3-C,D) PYRENE	13	J	ug/kg	J	Result between MDL and RL
460-60831-6	BF-SER-RAMPD-DD-9c-001- 20130807	BENZO(A) ANTHRACENE	26	J	ug/kg	J	Result between MDL and RL
460-60831-6	BF-SER-RAMPD-DD-9c-001- 20130807	BENZO(A)PYRENE	20	J	ug/kg	J	Result between MDL and RL
460-60831-6	BF-SER-RAMPD-DD-9c-001- 20130807	BENZO(B) FLUORANTHENE	28		ug/kg	J	Result between MDL and RL
460-60831-6	BF-SER-RAMPD-DD-9c-001- 20130807	DIBENZ(A,H) ANTHRACENE	35	U	ug/kg	UJ	Calibration drift (%D= -22.5%)
460-60831-6	BF-SER-RAMPD-DD-9c-001- 20130807	INDENO(1,2,3-C,D) PYRENE	20	J	ug/kg	J	Result between MDL and RL
460-60831-6	BF-SER-RAMPD-DD-9c-001- 20130807	PYRENE	48	J	ug/kg	J	Result between MDL and RL

¹⁾ Results in red have been elevated to the reporting limit per the NFG. The laboratory reported a detect between the MDL and RL for this analyte, but the result has been qualified (U flag) and raised to the reporting limit due to laboratory or field contamination.

TABLE 5 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action

FIELD DUPLICATE RESULTS

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-55575-7	460-55575-8	ECS-103-F-20130507	1311 LEAD	10200 ug/l	1590 ug/l	NA	NA	150	NO
460-57129-7	460-57129-8	ECS-61-F-20130531	1311 LEAD	62.9 ug/l	243 ug/l	180.1	50	NA	NO
460-57129-7	460-57129-8	ECS-61-F-20130531	ARSENIC	5.7 mg/kg	6.5 mg/kg	NA	NA	13	у
460-57129-7	460-57129-8	ECS-61-F-20130531	LEAD	18 mg/kg	39.6 mg/kg	NA	NA	75	NO
460-59467-1	460-59467-2	ECS-81-F-20130715	1311 LEAD	25 U ug/l	25 U ug/l	0	50	NA	у
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	1,1,1-TRICHLOROETHANE	0.98 U ug/kg	0.85 U ug/kg	0.13	1.96	NA	У
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	1,1-DICHLOROETHANE	0.98 U ug/kg	0.85 U ug/kg	0.13	1.96	NA	у
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	1,1-DICHLOROETHENE	0.98 U ug/kg	0.85 U ug/kg	0.13	1.96	NA	У
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	1,2,4-TRIMETHYLBENZENE	0.98 U ug/kg	0.85 U ug/kg	0.13	1.96	NA	У
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	1,2-DICHLOROBENZENE	0.98 U ug/kg	0.85 U ug/kg	0.13	1.96	NA	у
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	1,2-DICHLOROETHANE	0.98 U ug/kg	0.85 U ug/kg	0.13	1.96	NA	У
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	0.98 U ug/kg	0.85 U ug/kg	0.13	1.96	NA	У
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	1,3-DICHLOROBENZENE	0.98 U ug/kg	0.85 U ug/kg	0.13	1.96	NA	у
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	1,4-DICHLOROBENZENE	0.98 U ug/kg	0.85 U ug/kg	0.13	1.96	NA	у
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	1,4-DIOXANE (P-DIOXANE)	49 U ug/kg	43 U ug/kg	6	98	NA	у
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	ACETONE	9.8 U ug/kg	8.5 U ug/kg	1.3	19.6	NA	У
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	BENZENE	0.98 U ug/kg	0.85 U ug/kg	0.13	1.96	NA	У
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g- 001-20130808	CARBON TETRACHLORIDE	0.98 U ug/kg	0.85 U ug/kg	0.13	1.96	NA	У

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original S	•			plicate esult	Abs Diff	2xRL	RPD	Pass
460-60942-4		BF-SER-RAMPD-DD-11g-	CHLOROBENZENE	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	У
		001-20130808			0 0			0 0				′
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	CHLOROFORM	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	У
		001-20130808			0 0			0 0				
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	CIS-1,2-DICHLOROETHYLENE	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	у
		001-20130808										'
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	ETHYLBENZENE	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	У
		001-20130808										
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	METHYL ETHYL KETONE	9.8 U	ug/kg	8.5	U	ug/kg	1.3	19.6	NA	у
		001-20130808	(2-BUTANONE)									
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	METHYLENE CHLORIDE	1.1	ug/kg	0.39	J	ug/kg	0.71	1.96	NA	у
		001-20130808										
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	N-BUTYLBENZENE	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	у
		001-20130808										
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	N-PROPYLBENZENE	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	У
		001-20130808										
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	SEC-BUTYLBENZENE	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	У
		001-20130808										
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	T-BUTYLBENZENE	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	у
		001-20130808										
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	TERT-BUTYL METHYL ETHER	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	У
		001-20130808										
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	TETRACHLOROETHYLENE	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	У
		001-20130808	(PCE)									
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	TOLUENE	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	У
		001-20130808										
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	TRANS-1,2-DICHLOROETHENE	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	У
		001-20130808										
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	TRICHLOROETHYLENE (TCE)	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	У
		001-20130808										
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	VINYL CHLORIDE	0.98 U	ug/kg	0.85	U	ug/kg	0.13	1.96	NA	У
		001-20130808										
460-60942-4	460-60942-7	BF-SER-RAMPD-DD-11g-	XYLENES, TOTAL	2.9 U	ug/kg	2.6	U	ug/kg	0.3	5.8	NA	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	ARSENIC	7	mg/kg	7.7		mg/kg	NA	NA	9.5	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	BARIUM	48.8	mg/kg	48.1		mg/kg	0.7	84.2	NA	у
		001-20130808										

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	_	nal Sample b Result			plicate esult	Abs Diff	2xRL	RPD	Pass
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	BERYLLIUM	0.44	mg/kg	0.44		mg/kg	0	0.84	NA	У
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	CADMIUM	0.2	J mg/kg	0.19	J	mg/kg	0.01	2.2	NA	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	CHROMIUM, TOTAL	17.4	mg/kg	17.6		mg/kg	NA	NA	1.1	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	COPPER	30.4	mg/kg	34		mg/kg	NA	NA	11	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	LEAD	16.2	mg/kg	18.4		mg/kg	NA	NA	13	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	MANGANESE	761	mg/kg	826		mg/kg	NA	NA	8.2	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	NICKEL	27.7	mg/kg	28.3		mg/kg	0.6	16.8	NA	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	SELENIUM	2.1	U mg/kg	2.1	U	mg/kg	0	4.2	NA	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	SILVER	0.27	J mg/kg	0.25	J	mg/kg	0.02	4.2	NA	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	ZINC	75.7	mg/kg	77.9		mg/kg	NA	NA	2.9	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	CHROMIUM III	17.4	mg/kg	17.6		mg/kg	NA	NA	1.1	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	CHROMIUM, HEXAVALENT	2.2	U mg/kg	2.1	U	mg/kg	0.1	4.4	NA	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	MERCURY	0.028	mg/kg	0.026		mg/kg	0.002	0.036	NA	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	ALDRIN	7.1	U ug/kg	7.2	U	ug/kg	0.1	14.4	NA	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	ALPHA BHC (ALPHA	7.1	U ug/kg	7.2	U	ug/kg	0.1	14.4	NA	у
		001-20130808	HEXACHLOROCYCLOHEXANE)									
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	ALPHA ENDOSULFAN	7.1	U ug/kg	7.2	U	ug/kg	0.1	14.4	NA	у
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	BETA BHC (BETA	7.1	U ug/kg	7.2	U	ug/kg	0.1	14.4	NA	У
		001-20130808	HEXACHLOROCYCLOHEXANE)								<u> </u>	
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	BETA ENDOSULFAN	7.1	U ug/kg	7.2	U	ug/kg	0.1	14.4	NA	У
		001-20130808										
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	CHLORDANE	71	U ug/kg	72	U	ug/kg	1	144	NA	У
		001-20130808			_	1						

Lab ID	Original Sample Lab ID	Field Duplicate	Field ID-Date	Analyte	Original Sample Lab Result					plicate	Abs Diff	2xRL	RPD	Pass
460-60942-6		Lab ID		DELTA DUO (DELTA							0.4	111	1	
460-60942-6	460-60942-6	460-60942-8		`	7.1	U	ug/kg	1.2	U	ug/kg	0.1	14.4	NA	У
Mathematical Control of State Mathematical Control of Stat	400 000 40 0	400 000 40 0		,	7.4			7.0			0.4	444	NIA	
460-60942-6	460-60942-6	460-60942-8		DIELDRIN	7.1	U	ug/kg	7.2	U	ug/kg	0.1	14.4	NA	У
Mathematical Control 1988														-
460-60942-6	460-60942-6	460-60942-8		ENDOSULFAN SULFATE	7.1	U	ug/kg	7.2	U	ug/kg	0.1	14.4	NA	У
Methodology														_
460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-001-20130808 ENDRIN ALDEHYDE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-001-20130808 ENDRIN KETONE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-001-20130808 ENDRIN KETONE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-001-20130808 ENDRIN KETONE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-001-20130808 ENDRIN KETONE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-001-20130808 ENDRIN KETONE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-001-20130808 ENDRIN KETONE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-001-20130808 ENDRIN KETONE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-001-20130808 ENDRIN KETONE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-001-20130808 ENSER-RAMPD-DD-11c-001-20130808 ENSER-RAMPD-DD-11c-001-20130808 ENSER-RAMPD-DD-11c-001-20130808 ENSER-RAMPD-DD-11c-001-20130808 BF-SER-RAMPD-DD-11c-001-20130808 ENSER-RAMPD-DD-11c-001-20130808 ENSER-RAMP	460-60942-6	460-60942-8		ENDRIN	7.1	U	ug/kg	7.2	U	ug/kg	0.1	14.4	NA	У
Mathematical Research Mathematical Responsibility Mathematical Research Mathematical Responsibility Mathematical Responsibility Mathematical Responsibility Mathematical Research Mathematical Responsibility Mathematical Research Mathematical Responsibility Mathematical Research Mathematical Responsibility Mathematical Research Mathematic														
## 460-60942-6 ## 460-60942-8 ## BF-SER-RAMPD-DD-11c-	460-60942-6	460-60942-8		ENDRIN ALDEHYDE	7.1	U	ug/kg	7.2	U	ug/kg	0.1	14.4	NA	У
Mathematical Research Math														-
460-60942-6	460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	ENDRIN KETONE	7.1	U	ug/kg	7.2	U	ug/kg	0.1	14.4	NA	У
Methon M			001-20130808											ļ
460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-001-20130808 HEPTACHLOR 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-01-20130808 HEPTACHLOR EPOXIDE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-01-11c-01-20130808 METHOXYCHLOR 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-01-1-20130808 P,P-DDD 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-01-1-20130808 P,P-DDE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-01-1-20130808 P,P-DDT 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-01-1-20130808 D ug/kg 7.2 <td< td=""><td>460-60942-6</td><td>460-60942-8</td><td>BF-SER-RAMPD-DD-11c-</td><td>GAMMA BHC (LINDANE)</td><td>7.1</td><td>U</td><td>ug/kg</td><td>7.2</td><td>U</td><td>ug/kg</td><td>0.1</td><td>14.4</td><td>NA</td><td>У</td></td<>	460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	GAMMA BHC (LINDANE)	7.1	U	ug/kg	7.2	U	ug/kg	0.1	14.4	NA	У
001-20130808 BF-SER-RAMPD-DD-11c-			001-20130808											
HEPTACHLOR EPOXIDE T.1 U ug/kg T.2 U ug/kg 0.1 14.4 NA	460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	HEPTACHLOR	7.1	U	ug/kg	7.2	U	ug/kg	0.1	14.4	NA	У
METHOXYCHLOR 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA			001-20130808											
460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-001-20130808 METHOXYCHLOR 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-01-11c-01-20130808 P,P'-DDE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-01-11c-01-20130808 P,P'-DDE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-01-11c-01-20130808 P,P'-DDT 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-01-11c-01-20130808 TOXAPHENE 71 U ug/kg 72 U ug/kg 1 144 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-01-20130808 PCB-1016 (AROCLOR 1016) 71 U ug/kg 72 U ug/kg 1 144 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c-01-20130808 PCB-1232 (AROCLOR 1232)	460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	HEPTACHLOR EPOXIDE	7.1	U	ug/kg	7.2	U	ug/kg	0.1	14.4	NA	у
001-20130808			001-20130808											
460-60942-6	460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	METHOXYCHLOR	7.1	U	ug/kg	7.2	U	ug/kg	0.1	14.4	NA	У
001-20130808			001-20130808											
460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 P,P'-DDE 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 P,P'-DDT 7.1 U ug/kg 7.2 U ug/kg 0.1 14.4 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 TOXAPHENE 71 U ug/kg 72 U ug/kg 1 144 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 PCB-1016 (AROCLOR 1016) 71 U ug/kg 72 U ug/kg 1 144 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 PCB-1221 (AROCLOR 1221) 71 U ug/kg 72 U ug/kg 1 144 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 PCB-1232 (AROCLOR 1232) 71 U ug/kg 72 U ug/kg 1 144 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 PCB-1242 (AROCLOR 1242)	460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	P,P'-DDD	7.1	U	ug/kg	7.2	U	ug/kg	0.1	14.4	NA	у
Mathematical Control of State Mathematical Control of Stat			001-20130808											
Mathematical Control of State Mathematical Control of Stat	460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	P,P'-DDE	7.1	U	ug/kg	7.2	U	ug/kg	0.1	14.4	NA	у
Mathematical Control of State Mathematical Control of Stat			001-20130808											
460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 TOXAPHENE 71 U ug/kg 72 U ug/kg 1 144 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 PCB-1016 (AROCLOR 1016) 71 U ug/kg 72 U ug/kg 1 144 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 PCB-1221 (AROCLOR 1221) 71 U ug/kg 72 U ug/kg 1 144 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 PCB-1232 (AROCLOR 1232) 71 U ug/kg 72 U ug/kg 1 144 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 PCB-1242 (AROCLOR 1242) 71 U ug/kg 72 U ug/kg 1 144 NA	460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	P,P'-DDT	7.1	U	ug/kg	7.2	U	ug/kg	0.1	14.4	NA	у
Mathematical Control of State Mathematical Control of Stat			001-20130808											-
Mathematical Control of State Mathematical Control of Stat	460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	TOXAPHENE	71	U	ug/kg	72	U	ug/kg	1	144	NA	у
Mathematical Control of Series Mathematical Control of Series			001-20130808				5 5			0 0				'
Mathematical Control of Series Mathematical Control of Series	460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	PCB-1016 (AROCLOR 1016)	71	U	ua/ka	72	U	ua/ka	1	144	NA	у
460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 PCB-1221 (AROCLOR 1221) 71 U ug/kg 72 U ug/kg 1 144 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 PCB-1232 (AROCLOR 1232) 71 U ug/kg 72 U ug/kg 1 144 NA 460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 PCB-1242 (AROCLOR 1242) 71 U ug/kg 72 U ug/kg 1 144 NA			001-20130808	, , , , , , , , , , , , , , , , , , , ,			3. 3			3.3				'
Mathematical Control of Control	460-60942-6	460-60942-8		PCB-1221 (AROCLOR 1221)	71	U	ua/ka	72	U	ua/ka	1	144	NA	у
460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- 001-20130808 BF-SER-RAMPD-DD-11c- 001-20130808 PCB-1242 (AROCLOR 1232) 71 U ug/kg 72 U ug/kg 1 144 NA 001-20130808 PCB-1242 (AROCLOR 1242) 71 U ug/kg 72 U ug/kg 1 144 NA 001-20130808			001-20130808			_	-99	. –	_	-9/19				'
001-20130808 460-60942-6	460-60942-6	460-60942-8		PCB-1232 (AROCLOR 1232)	71	U	ua/ka	72	U	ua/ka	1	144	NA	у
460-60942-6 460-60942-8 BF-SER-RAMPD-DD-11c- PCB-1242 (AROCLOR 1242) 71 U ug/kg 72 U ug/kg 1 144 NA 001-20130808	.55 555 12 5	.55 550 12 0		((00201(1202)	''	Ŭ	שיי שי		Ü	~5,1,8	· .		','	'
001-20130808	460-60942-6	460-60942-8		PCB-1242 (AROCLOR 1242)	71	U	ua/ka	72	U	ua/ka	1	144	NA	у
	.50 000 12 0	.55 555 12 6		((((((((((((((((((((''	•	~9,··9		Ü	~g,g			''''	'
	460-60942-6	460-60942-8		PCB-1248 (AROCLOR 1248)	71	П	ua/ka	72	IJ	ua/ka	1	144	NA	у
001-20130808	700 00072-0	-00 000 1 2 0		. 55 1240 (/11002010 1240)	′'	J	ug/Ng	12	U	ug/Ng	'	1-7-7	14/7	, y

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Field ID-Date Analyte	Original Sample Lab Result					plicate esult	Abs Diff	2xRL	RPD	Pass
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	PCB-1254 (AROCLOR 1254)	71	U	ug/kg	72	U	ug/kg	1	144	NA	У
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	PCB-1260 (AROCLOR 1260)	71	U	ug/kg	72	U	ug/kg	1	144	NA	у
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	SILVEX (2,4,5-TP)	18	U	ug/kg	18	U	ug/kg	0	36	NA	у
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	2-METHYLPHENOL (O-CRESOL)	350	U	ug/kg	350	U	ug/kg	0	700	NA	У
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	ACENAPHTHENE	350	U	ug/kg	350	U	ug/kg	0	700	NA	У
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	ACENAPHTHYLENE	350	U	ug/kg	350	U	ug/kg	0	700	NA	У
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	ANTHRACENE	350	U	ug/kg	350	U	ug/kg	0	700	NA	У
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	BENZO(A)ANTHRACENE	35	U	ug/kg	35	U	ug/kg	0	70	NA	у
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	BENZO(A)PYRENE	35	U	ug/kg	35	U	ug/kg	0	70	NA	У
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	BENZO(B)FLUORANTHENE	35	U	ug/kg	35	U	ug/kg	0	70	NA	у
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	BENZO(G,H,I)PERYLENE	350	U	ug/kg	350	U	ug/kg	0	700	NA	у
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	BENZO(K)FLUORANTHENE	35	U	ug/kg	35	U	ug/kg	0	70	NA	у
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	CHRYSENE	350	U	ug/kg	350	U	ug/kg	0	700	NA	У
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	CRESOLS, M & P	350	U	ug/kg	350	U	ug/kg	0	700	NA	у
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	DIBENZ(A,H)ANTHRACENE	35	U	ug/kg	35	U	ug/kg	0	70	NA	У
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	DIBENZOFURAN	350	U	ug/kg	350	U	ug/kg	0	700	NA	У
		001-20130808											
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	FLUORANTHENE	350	U	ug/kg	350	U	ug/kg	0	700	NA	У
		001-20130808											↓
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	FLUORENE	350	U	ug/kg	350	U	ug/kg	0	700	NA	У
		001-20130808								1			↓
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c-	HEXACHLOROBENZENE	35	U	ug/kg	35	U	ug/kg	0	70	NA	У
		001-20130808										İ	

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Lab R	•			plicate esult	Abs Diff	2xRL	RPD	Pass
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c- 001-20130808	INDENO(1,2,3-C,D)PYRENE	35 U	ug/kg	35	U	ug/kg	0	70	NA	у
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c- 001-20130808	NAPHTHALENE	350 U	ug/kg	350	U	ug/kg	0	700	NA	у
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c- 001-20130808	PENTACHLOROPHENOL	1100 U	ug/kg	1100	U	ug/kg	0	2200	NA	у
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c- 001-20130808	PHENANTHRENE	350 U	ug/kg	350	U	ug/kg	0	700	NA	у
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c- 001-20130808	PHENOL	350 U	ug/kg	350	U	ug/kg	0	700	NA	у
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c- 001-20130808	PYRENE	350 U	ug/kg	350	U	ug/kg	0	700	NA	у
460-60942-6	460-60942-8	BF-SER-RAMPD-DD-11c- 001-20130808	CYANIDE	0.11 U	mg/kg	0.11	U	mg/kg	0	0.22	NA	У
460-61374-3	460-61374-5	ECS-91-F-20130815	1311 LEAD	192	ug/l	179		ug/l	NA	NA	7.0	у
460-62377-2	460-62377-6	ECS-95-F-20130904	1311 LEAD	1350	ug/l	353		ug/l	NA	NA	120	NO
460-63302-2	460-63302-3	ECS-62-F-20130919	1311 LEAD	31.7	ug/l	81.5		ug/l	49.8	50	NA	у

Note: The RPD test (≤35%) applies if both results are greater than 5x RL. Otherwise, the absolute difference test (≤ 2x RL) applies.

ATTACHMENT A VALIDATOR'S CHECKLISTS

			Project Number/ Manager: E7976B/ Jenny Self					
Site Name: Revere Smelting and Refining (Phase 2B)		QC Le						
Laboratory: TestAmerica (Edison, NJ)		Labora	tory Jo	b No: see below				
Reviewer: Taryn Scholz		Date C	hecked	d: 11/17/13				
Parameters: TCLP Pb, Metals, CrIII/VI, Pesticide, PCB, Herbicide, V	/OC,	Method	ds: 131	1/6010B, 6010B&C/7471A&B, 7196A, 8081A&B, 8082&A, 8151A,				
SVOC, CN		5035/8	260B&	C, 8270C&D, 9012A				
ITEM	YES	NO	N/A	(CRITERIA) COMMENT				
Laboratory NELAP/ELAP accredited?	Х			NYDOH (NELAP) #11452, NYDOH (ELAP) #11452				
Signed Narrative included?	Х			see Comment no. 0				
Narrative issues noted by lab?	Х			See Narrative Comments				
Chain c	of Custo	dy (CO	C)/ Sar	mple Receipt				
Date/time of sample collection included?	Х							
Sample temp upon receipt 2-6 C?	Х							
Proper containers/preservation?	Х			(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required)				
COCs properly executed and seals used?		Х		some hand-delivered; see Comment no. 1				
Samples received within 2 days?		Х		(DER10 - recommended) 460-59430-1 rec'd day 3				
· · · · · · · · · · · · · · · · · · ·	An	alytical	Results	3				
All requested analyses reported?		Х		see Comment no. 1A				
Field, Laboratory, and Batch ID included?	Х							
Date of sample collection/receipt included?	Х	İ						
Date of sample preparation/analysis included?	Х							
NDs at DL or QL and J-values as needed?	х			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' iquantitation_limit' = 'minimum_detectable_conc' (SDL) 'reporting_detection_limit' (SQL), J-values reported NOTE: For metal in soils, MDL 0.47 & MQL = 0.5 ppm for Arsenic so SDL=SQL fo some.				
Target analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLF TAL) see Comment no. 2				
RLs acceptable?		Х		(ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3				
No elevated RLs for NDs?	х			Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP				
Prep/Analysis method references included and approved?	х			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D); (5035 user for VOC soils this phase) see Comment no. 4				
If analytical cleanup used, method ref included and approved?	х			(ASP Exh D) see Comment no. 4A				
Sample matrix included?	х							
Soils on dry weight basis?	x*							
Correct and consistent units?	х			Organics in ug/L (TBs) and ug/kg for rest; Inorganics in mg/kg or ug/ (TCLP)				
Holding time to analysis not expired?	X**			(Workplan Table 2, SW846 for those not in table per ASP Exh I, whic gives only ag HTs) Hg 28-d, Herb 14/40-d, Cr VI 30/7-d, CN 14-d				
Holding time to preparation not expired?	x**			same as above				
	rkplan	Section	5.3.6 a	and 2/29/12 mod letter)				
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment			NA	only disposable equipment used				
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory		х		No trip blank for BF samples in 460-56528-1, 460-60831-1 or 460 63880-1				
Filter blank - 1 per week of time-integrated air monitoring		<u> </u>	NA					
Field duplicate samples - 1 for every 20 or fewer samples per sample matrix (excluding air samples)	х		101	Total samples = 97/26 (TCLP/Total) confirmation + 15 BF comp + 3 BF grab = 171; Total FD = 9 (6/1 conf + 1 comp + 1 grab)				
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix from the same batch as the project samples to the extent possible	x			MS/LR used for metals (ICP, Hg, Cr VI - %R not reported for calc C IIII); met for conf (5/2 conf) but no field MS/MSD for BF and project sample not selected for lab MS/MSD for Pest, PCB, VOC, or CN				
Completeness criteria met?	х	İ		(Workplan Section 5.3.3 - 100%) 2337/2338=99.96%				
•	-	Field N	otes	1,				
Agree with custody records?			х	not included				
Field instruments calibrated daily?		İ	Х					
								
Well conditions constant before sampling?			Х					

Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification; COI - Compound of Interest; %D - Percent Difference, DL - Detection Limit; DUP - Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasma; ICV - Initial Calibration Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Matrix Spike Duplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response Factor; RT - Retention Time; RSD - Relative Standard Deviation; TA - Target Analyte

COMMENTS

Laboratory Job No: 460-55575-1, 460-55575-2, 460-55576-1, 460-55958-1, 460-56076-1, 460-56528-1, 460-57026-1, 460-57129-1, 460-57258-1, 460-57341-1, 460-57472-1, 460-57911-1, 460-58360-1, 460-58502-1, 460-58750-1, 460-59430-1, 460-59467-1, 460-59818-1, 460-60019-1, 460-60394-1, 460-60768-1, 460-60831-1, 460-60942-1, 460-61374-1, 460-61488-1, 460-62377-1, 460-62755-1, 460-62905-1, 460-63151-1, 460-63302-1, 460-63399-1, 460-63880-1

*For the 7196A analyses, Cr III is shown as not dry-weight corrected. However, Cr III is calculated from the results for Cr VI and Total Cr, which are dry-weight corrected, and thus the Cr III is not directly dry-weight corrected but is on a dry-weight basis.

- ** The holding time was calculated using dates only with regard to the time of day since all holding times are greater than 24 hours. Also, note that Cr III is a calculated result and the holding time check does not apply for this analyte.
- 0. Several work orders do not include the signed certification page. Similar language on the signed front cover so no further action taken.

1. Issues for custody records:

For work order work order 460-55575-1, TAL metals analysis was added for sample ECS-104-F per Entact's request and the results are reported in work order 460-55575-2.

For work orders 460-55575-1/2 and 460-59818-1, the Sample Receipt Check indicates a custody seal was not present, but in each case, the number of the custody seal appears on the custody record as entered by the laboratory upon receipt.

For work orders 460-55575-1, 460-55958-1,460-58750-1, 460-59430-1, 460-59467-1, and 460-59818-1, the sample IDs for some samples were updated from that on the custody record per Entact's request as delineated in the laboratory case narratives.

1A. For work order 460-60831-1, a trip blank is listed on the custody record but was not received and thus not logged in or analyzed.

Analyte List:

P1 WP Table 3, P2A/B WP Table 2/4, and DER10 App5 list m-cresol, o-cresol, and p-cresol separately. The laboratory reported m,p-cresol and o-cresol as it is not possible to separate m-cresol and p-cresol using method 8270C. P1 WP Table 3, which only lists RLs for the DER-10 metals and not the 23 TAL metals, also mistakenly lists Antimony. This metal does not appear in DER10 Appendix 5 and was not reported by the laboratory for the P1 backfill samples.

For all BF samples (and the associated QC), the laboratory reported technical Chlordane rather than Chlordane (alpha) as listed in the workplan and DER10 Appendix 5.

For all BF samples (and the associated QC), the laboratory inadvertently reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) instead of just the DER-10 analytes as requested. Note: These extra analytes are all ND in the samples.

For the LB/BS/BD in EN366,EN376,EN386,EN396 - the lab reported m,p-Xylene and o-Xylene. For the LB, Xylenes (total) is also reported.

Note: The analyte names in the hardcopy report differ from those in the EDD for some analytes.

- 3. The MQL (Unadj) for several DER-10 analytes is above the CRQL, but in each case, it is below the Allowable Constituent Level in DER10 App 5 except for Pentachlorophenol. The actual lab RL is above the CRQL and the ACL in DER10 App5 for this analyte. The MDL is < 1/8 the ACL and J-values are reported, so NDs for undiluted samples may show conformance. Additionally, the MQL (Unadj) for the TAL metal Iron is above the CRQL. There are no action levels for this analyte.
- 4. Update III Pest/PCB methods (8081A/8082) used for BF samples except those in 63880 instead of Update IV as per WP; Update IV methods (6010C,7471B,8260C, 8270D) used for 63880 (last work order) instead of Update III as in WP and for earlier sets
- 4A. Per laboratory, Florisil cleanup (SW3620B/C) used for Pesticide analyses and sulfuric acid cleanup (SW3665A) used for PCB analyses (not indicated in package exc on prep log or EDD). No cleanup used for SVOC or Herbicides.

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
All	All	TCLP Metals	All analyses	Diluted 5x before analysis as standard practice, further dilution may be required, refer to	noted in QA report narrative
				results forms	
All	All	Total Metals	-	Diluted 2-4x before analysis as standard practice	noted in QA report narrative
All	All	Total Metals	•	Required 4x dilution prior to analysis; RLs adjusted accordingly	noted in QA report narrative
EN360		NA	NA	no issues noted	NA
EN361	460-55575-2			MD RPD out for Mn	none required (non-project (not reported) MD)
EN362	460-55576-1			MS %R out for Pb	see QC Deficiencies
	460-55576-1			'4' qualifier indicates conc in unspiked sample > 4x spiking amount	NA
EN1004	460-55576-1		, ,	Required 100x, 300x, 100x dilution prior to analysis; RLs adjusted accordingly	NA - result is not non-detect
EN364	460-55958-1		NA	no issues noted	NA
EN365	460-56076-1		NA	no issues noted	NA
EN366				CCVRT %R out for SU (DCB) on 2° column, data qualified and reported	none required (sample TA results not affected)
	460-56528-1 460-56528-1	Pesticides		CCVRT %R hi for a-BHC, samples all ND, data reported	see QC Deficiencies
		Pesticides Pesticides		SU (DCB) %R hi for CCVRT on 2° column, TCX in control, data qualified and reported	none required (sample results not affected)
			163364/CCV-44	CCV %R hi for SU (DCB) on 2° column, TCX in control, data qualified and reported	none required (sample TA results not affected)
	460-56528-1 460-56528-1		163462 163462	Blank contains Acetone/MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged LCS/LCSD %R hi for 12DCA</rl,>	see QC Deficiencies see QC Deficiencies
EN367	460-57026-1			MS %R out for Pb, LCS passes	see QC Deficiencies
EN368	460-57129-1			MS %R out for Sb, LCS passes	see QC Deficiencies
LINSOO	460-57129-1			MS %R low for Sb, Fe and Mn; hi for Al	see QC Deficiencies
	460-57129-1			MD RPD hi for As	see QC Deficiencies
	460-57129-1			Required 20x dilution prior to analysis; RLs adjusted accordingly	NA - result is not non-detect
EN369	460-57258-1		NA	no issues noted	NA
EN370	460-57341-1		NA	no issues noted	NA
EN371	460-57472-1		NA	no issues noted	NA
EN373	460-57911-1	NA	NA	no issues noted	NA
EN374	460-58360-1		NA	no issues noted	NA
EN375	460-58502-1	NA	NA	no issues noted	NA
EN376	460-58750-1	HexCr	168660/NA	MSS %R out due to sample matrix, samples RE per method, LCSS/LCSI pass	none required (non-project (not reported) MS)
	460-58750-1	HexCr	169031/NA	MSS %R for reprep out due to sample matrix, LCSS/LCSI pass, both data sets reported	none required (non-project (not reported) MS)
	460-58750-1	Pesticides	169054/CCV-38	CCV %R hi for multi TAs on 1° column, samples all ND, data qualified and reported	see QC Deficiencies
	460-58750-1	Pesticides	169054/CCVRT-11	CCV %R out for Hept on 2° column, 1° column passes, data qualified and reported	see QC Deficiencies
	460-58750-1	Pesticides	9	SU (TCX) %R hi	see QC Deficiencies
	460-58750-1	VOCs	11	IS (14Dioxd8) response out, reanalyzed with same results	see QC Deficiencies
EN378	460-59430-1			Blank contains Pb >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
EN379	460-59467-1			Blank contains Pb >MDL but <rl, <5%="" conc="" level,="" reg="" samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
EN380	460-59818-1		NA	no issues noted	NA
EN381		Total Metals		MS %R hi for Mn	see QC Deficiencies
	460-60019-1		173534/3	MSD %R low for Silvex	see QC Deficiencies
	460-60019-1		173716	Blank contains Acetone >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
	460-60019-1		173696/3	MS %R hi for bz(ghi)p, dibz(ah)a, ind(123cd)p	see QC Deficiencies
ENIOGO	460-60019-1		173188?/3	MSD %R hi for bz(ghi)p, dibz(ah)a, ind(123cd)p	see QC Deficiencies
EN382	460-60394-1 460-60768-1		NA	no issues noted	NA NA
EN383 EN384	460-60831-1		NA 175752/NA	no issues noted MSS/MSI %R out due to sample matrix, samples RE per method, LCSS/LCSI pass	see QC Deficiencies
EN304	460-60831-1		176210?/6	MS %R low	see QC Deficiencies
			3	SU %R hi, sample ND so no RE	see QC Deficiencies
		Pesticides	60439-2 (extant)	SU %R hi for MSD, SU %R for LCS, MS within limits, data qualified and reported	none required (sample results not affected, non-
	-00 00001°1	· conolues	55 705 2 (GAIGIII)	20 /orthinal mob, 00 /orthor 200, mo within limits, data qualified and reported	project MSD)
	460-60831-1	Herbicides	175471?/3	MSD RPD hi for Silvex	see QC Deficiencies
	460-60831-1		175740	LCS %R hi for 111TCA, samples all ND, data reported	see QC Deficiencies
	460-60831-1		175280/NA	MS/MSD %R out for several TAs, LCS passes	see QC Deficiencies
				•	

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
	460-60831-1	Total CN	175471/NA	MSD RPD hi, sample non-homog suspected, LCSD RPD passes, '4' qualifier indicates cond	none required (non-project (not reported) MSD)
				in unspiked sample > 4x spiking amount	
EN386	460-60942-1	Total Metals	175830/3	MS %R hi for Mn	see QC Deficiencies
	460-60942-1	Pesticides	175878	SU %R (DCB) out for closing CCV, data qualified and reported	none required (sample results not affected)
	460-60942-1	Pesticides	8	SU %R hi on 2° column, sample ND so no RE	see QC Deficiencies
	460-60942-1	Pesticides	175830/60644-5 (extant)	MS %R hi for Heptachlor	none required (non-project MS)
	460-60942-1	Pesticides	,	MSD %R hi for several analytes	none required (non-project MSD)
	460-60942-1	Herbicides	NA	SU %R hi on 1° column for LCS/LCSD, 2° column passes, data reported	none required (sample results not affected)
	460-60942-1	Herbicides	3	SU %R hi, sample ND so no RE	see QC Deficiencies
	460-60942-1	VOCs	176451/61002-1 (extant)	MS/MSD %R low for Acetone, '4' qualifier indicates conc in unspiked sample > 4x spiking amount	none required (non-project MS/MSD for TB only)
EN387	460-61374-1	TCLP Metals	176683/NA	MS %R out for Sb, LCS passes	none required (non-project (not reported) MS)
	460-61374-1	Total Metals	61334-20 (extant)	MS %R out for several analytes, '4' qualifier indicates conc in unspiked sample > $4x$ spiking amount	
EN388	460-61488-1	NA	NA	no issues noted	NA
EN389	460-62377-1	NA	NA	no issues noted	NA
EN390	460-62755-1	NA	NA	no issues noted	NA
EN391	460-62905-1	NA	NA	no issues noted	NA
EN392	460-63151-1	NA	NA	no issues noted	NA
EN393	460-63302-1	NA	NA	no issues noted	NA
EN395	460-63399-1	TCLP Metals	182725?/NA	MS %R out for Sb, Cd, Ag; LCS passes	none required (non-project (not reported) MS)
	460-63399-1	TCLP Metals	182733/NA	MD RPD out for As due to sample nonhomog	none required (non-project (not reported) MD)
	460-63399-1	TCLP Metals	9 +PDS,SD,MS,MD	Required dilution due to sample matrix (high iron), elevated RLs	NA - result is not non-detect
	460-63399-1	Total Metals	NA/63389-9	MS %R low for Sb, Cd, Ag and hi for Al, Cr, Fe, Mn; '4' qualifier indicates conc in unspiked	none required (non-project MS)
			(extant)	sample > 4x spiking amount	, ,
	460-63399-1	Total Metals	NA/63204-7 (extant)	MD RPD out for As	none required (non-project MD)
EN396	460-63880-1	HexCr	NA/63481-3 (extant)	MD RPD out	none required (non-project MD)
	460-63880-1	Pesticides	63766-1	SU %R hi, sample ND so no RE	none required (non-project sample)
	460-63880-1	Pesticides	184228	SU (DCB and TCX) %R hi for MB on 2° column, 1° column in control, all assoc samples ND so data reported	none required (sample results not affected)
	460-63880-1	Pesticides	184303/63776-1 (extant)	SU (DCB AND TCX) %R hi for MSD	none required (sample results not affected, non-project MSD)
	460-63880-1	Pesticides	184521	Closing CCV %R out for multiple analytes on † column; samples ND, data qualified and reported	none required (only one non-TA (alpha- Chlordane) out)
	460-63880-1	Pesticides	184521	Closing CCV %R out for DDE, Heptachlor on 2 column; data qualified and reported	none required (none actually out)
	460-63880-1	Herbicides	184071/NA	MS/MSD %R out for Silvex, LCS passes	see QC Deficiencies
	460-63880-1	Herbicides	NA	'4' qualifier indicates conc in unspiked sample > 4x spiking amount	NA
	460-63880-1	Herbicides	184303	CCV %R out for SU (DCAA), data qualified and reported	none required (sample TA results not affected)
	460-63880-1	Herbicides	184303	Closing CCV %R out for SU (DCAA), data qualified and reported	none required (sample TA results not affected)
	460-63880-1	VOCs	185287	Blank contains Acetone >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
	460-63880-1	VOCs	185287	CCV %R out for Vinyl Chloride, samples ND, data reported	see QC Deficiencies
	460-63880-1	SVOCs	184664/163979-3 (extant)	MS %R hi for b(a)p	none required (non-project MS)
	460-63880-1	SVOCs	,	MSD %R hi for b(a)p	none required (non-project MSD)
	460-63880-1	SVOCs	,	LCS/MS/MSD did not come from same source as calibration standards	none required (sample results not affected)

	Projec	t Numl	oer/ Ma	anager: E7976B/ Jenny Self
e: Revere Smelting and Refining (Phase 2B)	QC Le	vel: IV		
y: TestAmerica (Edison, NJ)				see DURC
Taryn Scholz			d: 11/1	
rs: TCLP Pb, Metals, CrIII/VI, CN				0B, 6010B&C/7471A&B, 7196A, 9012A
%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT
	x			With the exception of Cr III, which is a calculat
•				value
		Х	.,	see QC Deficiencies
` '			X	
QC check samples/LCS data included in lab package?	X			With the expention of Cr III, which is a coloulat
All project COCs or TAs included?	х			With the exception of Cr III, which is a calculativalue
		Х		method (lab but within 50-200%) see QC Def
		.,		mathed (7F 12F0/) and OC Definionning
	· ·	Х		method (75-125%) see QC Deficiencies
· · ·	X		-	as LR
RPD criteria met?		Х		method (20% if >10xMDL) see QC Deficiencies
Field due DDD editorio mesto (in dividual escape and escapell)				ASP for lab dup - 20% aq, 35% solid (+/-RL aq,
		Х		2RL sol if either <u><</u> 5RL) see QC Deficiencies
			Х	
9 ,				
	_			
			×	CL per ASP Exh E - not reported
	х			or por rice. Extra motroported
	Х			
%R criteria met?	Х			method (75-125%)
	х			,
%R criteria met? (80-120%, unspk <2RL,>2-RL)	Х			2RL per ASP Exh E
Internal standard data included in lab package?			Х	
Intensities within limits? (min 30-120% of calib std)			Х	
	Х			
QC parameters calculated correctly?	Х			
	nterference check sample data included (ICP/MS only)? %R criteria met? (80-120%, unspk <2RL,≥2-RL) nternal standard data included in lab package? ntensities within limits? (min 30-120% of calib std) Analyte quantitation/RLs correct?	Active delay and the properties of the properti	All project COCs or TAs included in lab package? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included in lab package? All project COCs or TAs included in lab package? All project COCs or TAs included in lab package? All project COCs or TAs included in lab package? All target analytes included in lab package? All target analytes included in lab package? All target analytes included in lab package? All target analytes included in lab package? All target analytes included in lab package? All target analytes included in lab package? All target analytes included in lab package? All target analyte	All project COCs or TAs included in lab package? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All project COCs or TAs included? All target analytes data included in lab package? All target analytes included? All target analytes included? All target analytes included? Corr coeff (r) criteria met? (≥0.995) Collaibration verification data included in lab package? CB/CCB criteria met? (≥0.995) CCC %R criteria met? (ICP 90-110, Hg 80-120, CN 85-115) CCC %R criteria met? (ICP 90-110, Hg 80-120, CN 85-115) CCC %R criteria met? (SO-150% Sb/Pb/TI,70-130%) All target analytes included? Results within criteria if >50xMDL? (max 10%, qualify 15%) All corrected the criteria met? All corrected the criteria met? All target analytes included in lab package? All target analytes included. All target analytes included. All target analytes included. All target analytes included. All

Data	Validation Checklist: Leachates				
Client Na	ame: Entact	Projec	t Numb	er/ Ma	nager: E7976B/ Jenny Self
Site Nam	ne: Revere Smelting and Refining (Phase 2B)	QC Le	vel: IV		
Laborato	ry: TestAmerica (Edison, NJ)	Labora	atory Jo	b No:	see DURC
Reviewer	r: Taryn Scholz	Date C	Checke	d: 11/1	7/13, 1/3/14
Paramete	ers: TCLP Pb	Metho	ds: 131	1/6010	В
	%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT
	Was a ZHE vessel without leaks used for VOAs?			Х	
	Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve)			х	
	Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately			х	
	Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)	х			No. 1 for all; see Comment no.1
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	х			pH of fluid not reported but pH of LB leachate 4.86-5.0
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)	Х			
	Was the correct weight of fluid used? (20x solid weight)	Х			
100	Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)		Х		see Comment no. 2
	No preservation for aqueous sample aliquots?			Х	
	Proper preservation for leachates?	Х			(method pH <2)
100	Holding time to leaching not expired?	х			(method 180-days)
	Leach blank data included in Lab Package? (1/20)	х			
100	Criteria met? (< MDL)		Х		see QC Deficiencies
COMME	NTS				
	atches: 5/7 18:00, 5/13 17:00 (2), 5/15 16:52, 6/6 14:00, 6/16 14:00, 22 17:00, 8/1 17:00, 8/8 16:54, 8/11 14:00, 8/18 14:00, 8/19 16:49, 24 17:00		•	, ,	
1. Batch	167429 (EN374) - LB initial pH 2.92, leachate pH 2.80. Benchsheet re	evised	12/23/	13 to sh	now correct pH of 4.92/4.86
	5182 (EN383) - worksheet indicates fluid no. 2 used when pH<5 ->				
pH of 4.9				(
2. Batch	176735 (EN388) and 176924 (EN387) max temp 25.8 C - ok, no effe	ct			

Site Name: Revere Smelting and Refining (Phase 2B)
Reviewer: Taryn Scholz Parameters: Pesticide, PCB, Herbicide **RPERFORMED/ITEM **RPERFORMED/ITEM **RPERFORMED/ITEM **Rethod blank data included in Lab Package? Criteria met? (-MDL) OC check samples/LCS data included in lab package? All project COIs or TAs included? **Re criteria met? **Required surrogate data included in lab package? **Required surrogates included? **Required surrogates included? **Required surrogates included? **Required surrogates included? **Intial calibration documentation included in lab package? All target analytes included? **Intial calibration documentation included in lab package? **A
Reviewer: Taryn Scholz Parameters: Pesticide, PCB, Herbicide **RPERFORMED/ITEM **RPERFORMED/ITEM **RPERFORMED/ITEM **Rethod blank data included in Lab Package? Criteria met? (-MDL) OC check samples/LCS data included in lab package? All project COIs or TAs included? **Re criteria met? **Required surrogate data included in lab package? **Required surrogates included? **Required surrogates included? **Required surrogates included? **Required surrogates included? **Intial calibration documentation included in lab package? All target analytes included? **Intial calibration documentation included in lab package? **A
Parameters: Pesticide, PCB, Herbicide Method blank data included in Lab Package? X
Method blank data included in Lab Package? Criteria met? (<mdl) **="" ***="" **<="" all="" check="" cois="" criteria="" data="" in="" included="" included?="" lab="" lcs="" matrix="" met?="" or="" package?="" project="" qc="" rein="" required="" rpd="" samples="" spike="" surrogate="" surrogates="" tas="" td=""></mdl)>
Triteria met? (<mdl) %breakdown="" (1016="" (<mdl)="" (individual,="" 1="" 1260)="" 15%?="" all="" analytes="" and="" arcclors="" blanks?="" calibration="" cois="" comment="" criteria="" data="" ddt="" deficiencies="" deficiencies<="" documentation="" dup="" endrin="" field="" for="" in="" included="" included?="" initial="" lab="" matrix="" max="" mean,="" met="" met?="" mrsd="" no.="" or="" overall)="" package?="" per="" project="" qc="" recommendations="" required="" rpd="" see="" spike="" spiked="" surrogate="" surrogates="" target="" tas="" td="" tield="" verification="" x=""></mdl)>
Criteria met for field blanks? (<mdl) %r="" (+="" (1016="" (lab="" (technical)="" +="" -="" -rl="" 10-200%)="" 1260)="" 20%="" 35%="" 40%)="" 50-200%)="" all="" analytes="" and="" andtoxaphene;="" aq,="" but="" calibration="" check="" cois="" criteria="" data="" deficiencies="" deficient="" documentation="" dup="" either="" exception="" for="" in="" included="" included?="" initial="" lab="" lcs="" met?="" method="" multi-caroclors="" multi-comp="" multi-component="" of="" only="" or="" package?="" pcb="" pcb<="" peaks="" per="" pest="" pesticides="" project="" qc="" recommendations="" required="" samples="" see="" solid="" spiked="" surrogate="" surrogates="" target="" tas="" td="" the="" two="" used="" with="" within="" x="" ≤srl)=""></mdl)>
QC check samples/LCS data included in lab package? All project COIs or TAs included? X With the exception of multi-component pesticides (technical) andToxaphene; only two multi-captor
All project COIs or TAs included? All project COIs or TAs included? X X X X X X X X X X X X X
All project COIs or TAs included? All project COIs or TAs included? X X X X X X X X X X X X X
RPD criteria met?
Matrix spike data included in lab package? %R criteria met? RPD criteria met? RPD criteria met? RPD criteria met? Required surrogate data included? 100 %R criteria met? Field dup RPD criteria met? (individual, mean, and overall) Initial calibration documentation included in lab package? All target analytes included? 100 %RSD criteria met? (max 20% or min r/COD 0.99) 100 DDT/Endrin %breakdown max 15%? Calibration verification data included in lab package? %R criteria met for TAs? (max +/-15%) Dual column/detector confirmation data incl in lab package? x method (lab but within 10-200%) see QC Deficiencies x method (lab but within 10-200%) see QC Deficiencies x method (lab but within 10-200%) see QC Deficiencies x method (lab but within 10-200%) see QC Deficiencies x peaks used for lab dup - 20% aq, 35% solid (+/-RL aq, +/-either ≤5RL) 5 peaks used for all multi-comp Pest/PCB x peaks used for all multi-comp Pest/PCB
%R criteria met? x method (lab but within 50-200%) see QC Deficiencies 100 RPD criteria met? x method (lab but within 40%) see QC Deficiencies Surrogate data included in lab package? x method (lab but within 40%) see QC Deficiencies Required surrogates included? x method (lab but within 10-200%) see QC Deficiencies 100 %R criteria met? x method (lab but within 10-200%) see QC Deficiencies 100 %R SP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-either ≤5RL) Initial calibration documentation included in lab package? x 5 peaks used for all multi-comp Pest/PCB All target analytes included? x 5 peaks used for all multi-comp Pest/PCB 100 %RSD criteria met? (max 20% or min r/COD 0.99) x x 100 DDT/Endrin %breakdown max 15%? x see Comment no. 1 and QC Deficiencies 100 WR criteria met for TAs? (max +/-15%) x see Comment no. 1 and QC Deficiencies
RPD criteria met? X method (lab but within 40%) see QC Deficiencies
Surrogate data included in lab package? Required surrogates included? %R criteria met? Field dup RPD criteria met? (individual, mean, and overall) Initial calibration documentation included in lab package? All target analytes included? %RSD criteria met? (max 20% or min r/COD 0.99) DDT/Endrin %breakdown max 15%? Calibration verification data included in lab package? %R criteria met for TAs? (max +/-15%) Dual column/detector confirmation data incl in lab package? x method (lab but within 10-200%) see QC Deficiencienciency ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-either ≤5RL) 5 peaks used for all multi-comp Pest/PCB x Calibration verification data included in lab package? x see Comment no. 1 and QC Deficiencies
Required surrogates included? 100 %R criteria met?
Toology We criteria met? X method (lab but within 10-200%) see QC Deficient
Field dup RPD criteria met? (individual, mean, and overall) ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-either ≤5RL) Initial calibration documentation included in lab package?
Pield dup RPD criteria met? (Individual, mean, and overall) X either ≤5RL)
Initial calibration documentation included in lab package? All target analytes included? %RSD criteria met? (max 20% or min r/COD 0.99) DDT/Endrin %breakdown max 15%? Calibration verification data included in lab package? %R criteria met for TAs? (max +/-15%) Dual column/detector confirmation data incl in lab package? x 5 peaks used for all multi-comp Pest/PCB x See Comment no. 1 and QC Deficiencies
All target analytes included? %RSD criteria met? (max 20% or min r/COD 0.99) DDT/Endrin %breakdown max 15%? Calibration verification data included in lab package? %R criteria met for TAs? (max +/-15%) Dual column/detector confirmation data incl in lab package? x see Comment no. 1 and QC Deficiencies
100 %RSD criteria met? (max 20% or min r/COD 0.99) x
100 DDT/Endrin %breakdown max 15%? Calibration verification data included in lab package? 100 %R criteria met for TAs? (max +/-15%) Dual column/detector confirmation data incl in lab package? x see Comment no. 1 and QC Deficiencies
Calibration verification data included in lab package? NR criteria met for TAs? (max +/-15%) Dual column/detector confirmation data incl in lab package? X see Comment no. 1 and QC Deficiencies X see Comment no. 1 and QC Deficiencies
100 %R criteria met for TAs? (max +/-15%) x see Comment no. 1 and QC Deficiencies 100 Dual column/detector confirmation data incl in lab package? x
100 Dual column/detector confirmation data incl in lab package? x
100 %Difference criteria met? (<40%) x see QC Deficiencies
10 Analyte qualitative ID criteria met?
10 Analyte quantitation/RLs correct? x
10 QC parameters calculated correctly? x
Surrogate Control Limits
PEST/ Decachlorobiphenyl 60-150/45-138 bold updated from P2A
PCB Tetrachloro-m-xylene 37-150 bold updated from P2A
HERB 2,4-DCPA 53 -150
,

Data	Validation Chec	klist: GC/MS				
Client Na	me: Entact		Projec	t Numb	oer/ Ma	anager: E7976B/ Jenny Self
Site Nam	e: Revere Smelting and Re					,
		NJ)				
Paramete	,					•
			YES	NO	N/A	(CRITERIA) COMMENT
		ed in Lab Package?	Х			
100		0 (1101)		_		
100				Х		see QC Deficiencies
100		ciudea?	X	.,		method (lab but within EQ 2009/) and QC Defininging
				^		,
100		t in lah nackage?				method (lab but within 40 %)
100		in lab package:				method (lab but within 50-200%) see OC Deficiencies
100			×	_^		
100		n lab package?				metriod (lab but within 4070)
100						method (lab but within 10-200% extr. 20-200% purg)
100	Field dup RPD criteria me	et? (individual, mean, and overall)	Х			20% aq, 35% solid (+/-2RL aq, +/-3RL sol if either≤5RL)
			х			,
100			Х			
			Х			
			Х			
	RRF met SPCCs/14Dioxa	ane(advisory)/PoorPerf/TAs	~			
	(*/0.005/0.01/0.05)?					*11DCA 0.1, CB 0.3; SVOC 0.05
100				Х		see QC Deficiencies
			Х			
		ane(advisory)/PoorPerf/TAs	x			
400		FA = 0 (000(=== ===)				
100				Х		see QC Deliciencies
100			X			for CCV and camples: see OC deficiencies
100				^		101 CCV and samples, see QC deliciencies
100						
10						
10						
		Control Limits				
VOC		70-130				
	Toluene-d8	70-130				
	Bromofluorobenzene	70-130			Ĺ	
	Dibromofluoromethane	70-130				
SVOC	2,4,6-Tribromophenol	10-120				
	Terphenyl-d14	16-151				
	_ ' '	40-109				
						_
COMME		41-118				
COMME	0 Criteria met? (∠MDL)					
	· · · · · · · · · · · · · · · · · · ·					
		1				
<u> </u>						
-						
<u> </u>						

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action Post-Stabilization Verification Samples

May 2013 to October 2013

Prepared by:

Quality Assurance Associates (QAA, L.L.C.)

1007 Francis Drive College Station, TX 77840 www.qaallc.com 979-694-7199

January 3, 2014

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	1
2.0	PRO	CEDUR	ES	3
			A=1011 ==0111 =0	_
3.0	DAT	A VALID	ATION RESULTS	4
	3.1	PRECI	ISION	4
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	
		3.1.3	Field Duplicate (FD) Precision	
	3.2	ACCU	RACY	
		3.2.1	Laboratory Control Spike (LCS) Accuracy	4
		3.2.2	Matrix Spike (MS) Accuracy	5
		3.2.3	Serial Dilution (SD) %Difference	5
	3.3	REPRI	ESENTATIVENESS	5
		3.3.1	Chain-of-Custody and Analysis Requests	5
		3.3.2	Sample Preservation and Holding Time	5
		3.3.3	Laboratory and Method Selection	5
		3.3.4	Blanks (Laboratory and Field)	6
		3.3.5	Analytical Procedures	6
	3.4	COMP	PLETENESS	6
		3.4.1	Laboratory Deliverables Completeness	6
		3.4.2	EDD Correctness	
		3.4.3	Analytical Completeness	7
	3.5	COMP	PARABILITY	7

LIST OF TABLES

- Table 1 Samples and Tests Selected for Validation
- Table 2 Data Validation Qualifiers (DVQs)
- Table 3 Qualified Results for Validated Samples
- Table 4 Field Duplicate Results for Validated Samples

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The data include 21 investigative soil samples plus two field duplicate samples as shown in Table 1. The samples comprise more than 10% of the Phase II-B post-stabilization verification (PSV) samples. A total of 156 PSV samples were collected in May 2013 to October 2013 by ENTACT from the stabilized material stockpiles and analyzed for Toxicity Characteristic Leaching Procedure (TCLP) metals to ensure that the stabilized material meets the appropriate criteria for disposal in the on-site containment cell. Per the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, the PSV data are considered Level 2 and require minimal data review. Per ENTACT's request, QAA performed a full validation of the selected samples and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). QAA completed the validation using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Data Review* (October 2004), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The validator assessed precision using the laboratory and field duplicates. For the PSV samples selected for validation, the laboratory prepared two unspiked matrix duplicates (MD) using a sample from the site and the RPDs are at or below the limit, which indicates good precision for the analytical technique on the given sample matrix. Additionally, the sampler collected two field duplicates with the 21 investigative samples and the RPDs are within the limits for Antimony, Arsenic, and Cadmium, which indicates good precision for the sampling and analytical technique on the given matrix. The validator qualified the Lead results for the original and duplicate samples as estimated (J) based on field duplicate precision.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The validator assessed accuracy using the laboratory spikes and matrix spikes. For the PSV samples selected for validation, the laboratory prepared a laboratory control spike (LCS) using reagent water with each analytical batch and reported the recovery for every analyte. The LCS recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects. Additionally, the laboratory prepared two matrix spikes (MS) plus two serial dilutions (SD) using a sample from the site. The MS recoveries are within the laboratory limits, which indicates good accuracy for the analytical technique on the given sample matrix, and the SD %differences are within the laboratory limits, which indicates there is no matrix interference affecting the accuracy of metals results that are substantially above the reporting limit.
- 3. Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the

representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, PSV samples were collected as required in the approved sampling and analysis plan. Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory blanks, and analytical instrument setup (i.e., calibration, interference correction, etc.) For the PSV samples selected for validation, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank and leachate blank with each analytical batch and the blanks show no contamination, which indicates the samples were not affected by laboratory procedures. Additionally, proper analytical procedures were used and calibration results met the method requirements.

- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. For the PSV samples selected for validation, all analyses produced valid analytical measurements, which gives a completeness of 100%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions or revisions were provided by the laboratory upon request.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The PSV analytical results are classified as Level 2 data with a full review and validation of 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated. Note that results are reported in µg/L for all field samples.

DATA USABILITY

All sample results are acceptable for use with the qualifications shown in Table 3. Some results are qualified with a J (estimated) and may be either low or high. For results qualified due to field duplicate precision, the higher result (i.e., from either the original or duplicate sample as indicated in Table 3) should be used for project decisions. This gives a conservative approach relative to protection of the environment. (For field duplicate pairs that pass the precision criteria, the value should be selected based on accepted convention for the site and/or agency requirements, e.g., select the value reported for the original sample, the average of the two values, etc.) Note that both the lower result and the higher result are below the regulatory limit for the qualified field duplicate pairs. For results qualified solely because the concentration is between the MDL and RL, the actual value is not expected to exceed the sample RL.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include hardcopy data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). For the samples selected for validation, the laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- Laboratory Deliverables Completeness,
- EDD Correctness,
- · Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- · Laboratory and Method Selection,
- Initial Calibration,
- Continuing Calibration Verification,
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- · Matrix Duplicates (MD), and
- Field Duplicates (FD).

Additionally, the validator examined the raw data for one of the seven sample batches (randomly selected by the validator) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are 80-120% for laboratory accuracy and 75-125% for matrix accuracy for metals analyses.
- Laboratory Precision the control limit (20 RPD) as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. A data rejection limit of 30% was used for these inorganic analyses. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U-flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

No LCSD were analyzed (or required) with the samples selected for validation.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

For the PSV samples selected for validation, the laboratory analyzed an MD for every analytical batch (maximum 20 samples) and reported RPDs for MD prepared using a sample from the site. Two of the 21 soil samples (as designated by the sampler on the custody record) were used to prepare an MD, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. All MD RPDs are at or below the control limit. Note that, for cases where either result for the duplicate pair is non-detect, the check does not apply and the laboratory reported the RPD as NC (not calculable) in the pdf report and as 0 in the EDD.

3.1.3 FIELD DUPLICATE (FD) PRECISION

For the PSV samples selected for validation, the samplers collected two FD with the 21 investigative samples, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Results for the field duplicates are summarized in Table 4 and are within the criteria, except as follows:

• Both pairs of results are outside the field precision criteria for Lead and the validator qualified the original and duplicate sample results as estimated (J). Table 3 lists all qualified results for the field samples.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD) and matrix spikes (MS/MSD) plus serial dilutions (SD). LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

For the PSV samples selected for validation, the laboratory analyzed a LCS for every analytical batch (maximum 20 samples) as required and reported recoveries for all analytes. All LCS recoveries are within the control limits.

3.2.2 MATRIX SPIKE (MS) ACCURACY

For the PSV samples selected for validation, the laboratory analyzed an MS for every analytical batch (maximum 20 samples) and reported recoveries for MS prepared using a sample from the site. Two of the 21 soil samples (as designated by the sampler on the custody record) were used to prepare an MS, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. All MS recoveries are within the control limits.

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all metals detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The PSV samples selected for validation were delivered to the laboratory by the sampler or an overnight, commercial carrier with properly executed chain-of-custody records and custody seals, which confirms that sample integrity was maintained. Additionally, the information on the custody records is complete, no issues were noted during sample log-in at the laboratory, and all field samples were analyzed for the tests requested on the chain-of-custody, except as follows:

 For work order 460-59222-1, sample PSV-251 was received in a broken container and thus was not logged in or analyzed.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

The PSV samples selected for validation were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (TestAmerica-Edison NYSDOH (NELAP) #11452, NYSDOH (ELAP) #11452)

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. The analyte list includes TCLP Antimony, TCLP Arsenic, TCLP Cadmium, and TCLP Lead as requested and the nominal reporting limits are below the levels of concern (i.e., the treatment goals) for each analyte.

(Note: The laboratory dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank and leachate blank for every analytical batch (maximum 20 samples) plus a calibration blank for every 10 metals analyses as required per the analytical methodology. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used. No analytes were detected in the laboratory blanks.

3.3.5 ANALYTICAL PROCEDURES

For the samples selected for validation, the analytical procedures (initial calibration, continuing calibration verification, and interference correction), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method.

Additionally, no issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes seven analytical batches and the validator re-calculated sample results and QC check parameters for one batch and made the following observation from the review of the raw data:

• For sample 460-60394-3, the leachate batch worksheet indicates the sample pH after addition of HCl is 151. The laboratory confirmed this should be 1.51.

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

For the PSV samples selected for validation, the NYSDEC Category B data packages and EDD contain all necessary information or the laboratory submitted a revision upon request as detailed in the case narratives.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Job No.	Sample(s)	EDD Field(s)	Action
All	all field and QC samples	sampling_technique	The validator changed the entry from null to
			the default entry (UN) to meet NYSDEC
			requirements.

3.4.3 ANALYTICAL COMPLETENESS

For the samples selected for validation, the validator did not reject any of the results, which gives a completeness of 100%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which an analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which an analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J-flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results are reported in μ g/L and are classified as Level 2 data for TCLP metals with a full review and validation of 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated.

TABLE 1 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Post-Stabilization Verification Samples

SAMPLES AND TESTS SELECTED FOR VALIDATION

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Metals
460-55899-1	PSV-190	5/10/13	INV	PSV	Soil	Х
460-55899-2	PSV-190-X	5/10/13	FD	PSV	Soil	х
460-55899-3	PSV-191	5/10/13	INV	PSV	Soil	х
460-55899-4	PSV-192	5/10/13	INV	PSV	Soil	х
460-57592-1	PSV-208	6/10/13	INV	PSV	Soil	Х
460-57592-2	PSV-209	6/10/13	INV	PSV	Soil	х
460-57592-3	PSV-210	6/10/13	INV	PSV	Soil	Х
460-57592-4	PSV-211	6/10/13	INV	PSV	Soil	х
460-59222-6	PSV-253	7/10/13	INV	PSV	Soil	х
460-59222-6MS	PSV-253MS	7/10/13	MS	PSV	Soil	х
460-59222-6LR	PSV-253LR	7/10/13	MD	PSV	Soil	Х
460-59222-1	PSV-248	7/10/13	INV	PSV	Soil	х
460-59222-2	PSV-249	7/10/13	INV	PSV	Soil	Х
460-59222-3	PSV-250	7/10/13	INV	PSV	Soil	х
460-59222-5	PSV-252	7/10/13	INV	PSV	Soil	Х
460-60394-1	PSV-283	7/31/13	INV	PSV	Soil	Х
460-60394-2	PSV-284	7/31/13	INV	PSV	Soil	х
460-60394-3	PSV-285	7/31/13	INV	PSV	Soil	Х
460-60832-1	PSV-286	8/7/13	INV	PSV	Soil	Х
460-60832-2	PSV-287	8/7/13	INV	PSV	Soil	Х
460-60832-3	PSV-288	8/7/13	INV	PSV	Soil	х
460-60832-4	PSV-289	8/7/13	INV	PSV	Soil	Х
460-63303-2	PSV-319	9/19/13	INV	PSV	Soil	Х
460-63303-3	PSV-319X	9/19/13	FD	PSV	Soil	Х
460-63303-1	PSV-318	9/19/13	INV	PSV	Soil	Х
460-63303-1MS	PSV-318MS	9/19/13	MS	PSV	Soil	Х
460-63303-1LR	PSV-318LR	9/19/13	MD	PSV	Soil	Х

FD - Field Duplicate Sample

INV - Investigative Sample

MD - Matrix Duplicate Sample (unspiked)

MS - Matrix Spike Sample

PSV - Post-Stabilization Verification Sample

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

TCLP Metals: 1311/3010A/6010B for Antimony, Arsenic, Cadmium, and Lead in leachates of soil samples

TABLE 2 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Post-Stabilization Verification Samples

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- U = Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- *J* = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J-/J+ and R>UJ)

QAA, L.L.C.

TABLE 3 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Post-Stabilization Verification Samples

QUALIFIED RESULTS FOR VALIDATED SAMPLES

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-55899-1	PSV-190-20130510	1311 LEAD	2370 u	g/l J	Poor field duplicate precision (130
					RPD), use higher result from
					original sample
460-55899-2	PSV-190-X-20130510	1311 LEAD	526 u	g/l J	Poor field duplicate precision (130
					RPD), use higher result from
					original sample
460-57592-1	PSV-208-20130610	1311 LEAD	20.9 J u	g/l J	Result between MDL and RL
460-59222-1	PSV-248-20130710	1311 ARSENIC	20.6 J u	g/l J	Result between MDL and RL
460-63303-1	PSV-318-20130919	1311 CADMIUM	13.6 J u	g/l J	Result between MDL and RL
460-63303-2	PSV-319-20130919	1311 LEAD	402 u	g/l J	Poor field duplicate precision (40
					RPD), use higher result from
					duplicate sample
460-63303-3	PSV-319X-20130919	1311 LEAD	602 u	g/l J	Poor field duplicate precision (40
					RPD), use higher result from
					duplicate sample

TABLE 4 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Post-Stabilization Verification Samples

FIELD DUPLICATE RESULTS FOR VALIDATED SAMPLES

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-55899-1	460-55899-2	PSV-190-20130510	1311 ANTIMONY	1750 ug/l	2450 ug/l	NA	NA	33	у
460-55899-1	460-55899-2	PSV-190-20130510	1311 ARSENIC	62.2 ug/l	77.7 ug/l	15.5	50	NA	у
460-55899-1	460-55899-2	PSV-190-20130510	1311 CADMIUM	25 U ug/l	25 U ug/l	0	50	NA	у
460-55899-1	460-55899-2	PSV-190-20130510	1311 LEAD	2370 ug/l	526 ug/l	NA	NA	130	NO
460-63303-2	460-63303-3	PSV-319-20130919	1311 ANTIMONY	184 ug/l	166 ug/l	18	100	NA	у
460-63303-2	460-63303-3	PSV-319-20130919	1311 ARSENIC	25 U ug/l	25 U ug/l	0	50	NA	у
460-63303-2	460-63303-3	PSV-319-20130919	1311 CADMIUM	25 U ug/l	25 U ug/l	0	50	NA	у
460-63303-2	460-63303-3	PSV-319-20130919	1311 LEAD	402 ug/l	602 ug/l	NA	NA	40	NO

Note: The RPD test (≤35%) applies if both results are greater than 5x RL. Otherwise, the absolute difference test (≤ 2x RL) applies.

ATTACHMENT A VALIDATOR'S CHECKLISTS

Client Name: Entact		Projec	t Numb	er/ Manager: E7976B/ Jenny Self			
Site Name: Revere Smelting and Refining (Phase 2B PSV)		QC Level: II					
Laboratory: TestAmerica (Edison, NJ)				b No: see below			
Reviewer: Taryn Scholz		Date Checked: 11/17/13, 1/3/14					
Parameters: TCLP Metals				1/3010A/6010B			
ITEM	YES	NO	N/A	(CRITERIA) COMMENT			
Laboratory NELAP/ELAP accredited?	Х			NYDOH (NELAP) #11452, NYDOH (ELAP) #11452			
Signed Narrative included? Narrative issues noted by lab?	X X			see Comment no. 1 See Narrative Comments			
		dy (CO	C)/ Sar	nple Receipt			
Date/time of sample collection included?	Х	l (CC	C)/ Cai				
Sample temp upon receipt 2-6 C?	Х						
Proper containers/preservation?	х			(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required)			
COCs properly executed and seals used?	Х						
Samples received within 2 days?	х						
,	An	alytical	Results				
All requested analyses reported?		Х		see Comment no. 1A			
Field, Laboratory, and Batch ID included?	Х						
Date of sample collection/receipt included?	Х						
Date of sample preparation/analysis included?	Х						
NDs at DL or QL and J-values as needed?	х			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'quantitation_limit' = 'minimum_detectable_conc' (SDL 'reporting_detection_limit' (SQL), J-values reported NOTE: For metal in soils, MDL 0.47 & MQL = 0.5 ppm for Arsenic so SDL=SQL for some.			
Target analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CL TAL)			
RLs acceptable?	х			(ASP Exh C Part III and/or DER-10 App 5)			
No elevated RLs for NDs?	х			Note: 5x std dilution for TCLP			
Prep/Analysis method references included and approved?	х			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D)			
If analytical cleanup used, method ref included and approved?			х	(ASP Exh D)			
Sample matrix included?	Х						
Soils on dry weight basis?			Х				
Correct and consistent units?	Х			in ug/L			
Holding time to analysis not expired?	Х			(Workplan Table 2)			
Holding time to preparation not expired?	Х			(Workplan Table 2)			
	rkplan	Section	5.3.6 a	nd 2/29/12 mod letter)			
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment			NA	only disposable equipment used			
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory			NA				
Filter blank - 1 per week of time-integrated air monitoring			NA				
Field duplicate samples - 1 for every 20 or fewer samples per	,,			Total samples = 21 PSV; Total FD = 2 PSV			
sample matrix (excluding air samples)	Х						
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix	v			MS/LR used for all metals - 2 PSV for 21 samples			
from the same batch as the project samples to the extent possible	Х						
Completeness criteria met?	Х	Field N	otes	(Workplan Section 5.3.3 - 100%) 100%			
Agree with custody records?			Х	not included			
Field instruments calibrated daily?			Х				
Well conditions constant before sampling?			Х				
Samples filtered? If so, give turbid/size			Х				
Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plas	sma; IC Spike/M	V - Init atrix Sp	ial Calil oike Du	propound of Interest; %D - Percent Difference, DL - Detection Limit; DUP pration Verification; IDL - Instrument Detection Limit; LCS - Laborato plicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Time: RSD - Relative Standard Deviation: TA - Target Analyte			

1. Work orders 460-60832-1, 460-63303-1 do not include the signed certification page. Similar language on the signed front cover so no further action taken

1A. For work order 460-59222-1, sample PSV-251 was received in broken container and thus not logged in or analyzed.

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
All	All	TCLP Metals	All analyses	Diluted 5x before analysis as standard practice, further dilution may be required, refer to	noted in QA report narrative
				results forms	
EN363	460-55899-1	NA	NA	no issues noted	NA
EN372	460-57592-1	NA	NA	no issues noted	NA
EN377	460-59222-1	TCLP Metals	170300/24C	Blank contains Pb >RL, samples >MDL or > RL B-flagged	no action (blank does not apply - see blank 1C)
EN382	460-60394-1	NA	NA	no issues noted	NA
EN385	460-60832-1	NA	NA	no issues noted	NA
EN394	460-63303-1	NA	NA	no issues noted	NA

evere Smelting and Refining (Phase 2B PSV) estAmerica (Edison, NJ) yn Scholz CLP As,Cd,Pb,Sb **PERFORMED/ ITEM* nod blank data included in Lab Package? eria met? (< MDL, ≥ -RL) eria met for field blanks? (< MDL) check samples/LCS data included in lab package? roject COCs or TAs included? criteria met? ix spike data included in lab package? criteria met?	Date 0 Metho	atory Jo Checke	d: 11/1 11/301	see DURC (7/13, 1/3/14 0A/6010B (CRITERIA) COMMENT
yn Scholz CLP As,Cd,Pb,Sb **PERFORMED/ ITEM* nod blank data included in Lab Package? pria met? (< MDL, ≥ -RL) pria met for field blanks? (< MDL) check samples/LCS data included in lab package? roject COCs or TAs included? criteria met? ix spike data included in lab package?	Date (Metho YES X X X	Checke ds: 13	d: 11/1 11/301 N/A	7/13, 1/3/14 0A/6010B
CLP As,Cd,Pb,Sb **PERFORMED/ ITEM nod blank data included in Lab Package? bria met? (< MDL, ≥ -RL) bria met for field blanks? (< MDL) check samples/LCS data included in lab package? roject COCs or TAs included? criteria met? ix spike data included in lab package?	Metho YES X X	ds: 13′	11/301(N/A	0A/6010B
## WPERFORMED/ ITEM The proof blank data included in Lab Package? ## Proof in the proof in the proof in the package? ## Proof in the proof in the package? ## Proof in the proof in the package? ## Proof in the proof in the package? ## Proof in the package? ## Proof in the package? ## Proof in the package? ## Proof in the package?	X X X		N/A	
nod blank data included in Lab Package? sria met? (< MDL, ≥ -RL) sria met for field blanks? (< MDL) check samples/LCS data included in lab package? roject COCs or TAs included? criteria met? ix spike data included in lab package?	x x x	NO		(CRITERIA) COMMENT
eria met? (< MDL, ≥ -RL) eria met for field blanks? (< MDL) check samples/LCS data included in lab package? roject COCs or TAs included? criteria met? ix spike data included in lab package?	X X X		Х	
eria met for field blanks? (< MDL) Check samples/LCS data included in lab package? roject COCs or TAs included? criteria met? ix spike data included in lab package?	X		х	
check samples/LCS data included in lab package? roject COCs or TAs included? criteria met? ix spike data included in lab package?	Х		Х	
roject COCs or TAs included? criteria met? ix spike data included in lab package?	Х			
criteria met? ix spike data included in lab package?				
ix spike data included in lab package?	Х			
				method (lab but within 50-200%)
	Х			
CHIEHA HEL!	Х			method (75-125%)
ple duplicate data included in lab package?	х			as LR
criteria met?	X			method (20% if >10xMDL)
ontona mot:				ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +
dun RPD criteria met? (individual mean and overall)		~		2RL sol if either <5RL) see QC Deficiencies
		^	_	ZIVE SOI II eliner SIVE) see QC Deliciencies
			1	
• ,				
	_			
,			×	CL per ASP Exh E - not reported
	x			er por rior Exire Horroportos
, , ,	_			
•				method (75-125%)
				2RL per ASP Exh E
			х	<u>'</u>
nsities within limits? (min 30-120% of calib std)			х	
yte quantitation/RLs correct?	х			
parameters calculated correctly?	Х			
	dup RPD criteria met? (individual, mean, and overall) ument Tune for ICP-MS included in lab package? ument Tune method criteria met? (±5 RSD, ±0.1 amu) I calibration documentation included in lab package? urget analytes included? v/1 std (ICP), blank/ 5 stds (Hg) coeff (r) criteria met? (≥0.995) varion verification data included in lab package? CCB criteria met? (ICP 90-110,Hg 80-120,CN 85-115) %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115) %R criteria met? (ICP 90-110%, Hg 80-120%) CV %R criteria met? (50-150% Sb/Pb/TI,70-130%) ion test data included? ults within criteria if >50xMDL? (max 10%, qualify 15%) digestion spike included? criteria met? ference check sample data included (ICP/MS only)? criteria met? (80-120%, unspk <2RL,≥2-RL) nal standard data included in lab package? usties within limits? (min 30-120% of calib std)	I dup RPD criteria met? (individual, mean, and overall) ument Tune for ICP-MS included in lab package? ument Tune method criteria met? (±5 RSD, ±0.1 amu) I calibration documentation included in lab package? x reget analytes included? x/1 std (ICP), blank/ 5 stds (Hg) coeff (r) criteria met? (≥0.995) x ration verification data included in lab package? x CCB criteria met? (ICP 90-110,Hg 80-120,CN 85-115) x/R criteria met? (ICP 90-110%, Hg 80-120%) x CV %R criteria met? (50-150% Sb/Pb/TI,70-130%) ion test data included? ults within criteria if >50xMDL? (max 10%, qualify 15%) x digestion spike included? criteria met? ference check sample data included (ICP/MS only)? criteria met? (80-120%, unspk <2RL,≥2-RL) nal standard data included in lab package? sities within limits? (min 30-120% of calib std) yte quantitation/RLs correct?	dup RPD criteria met? (individual, mean, and overall) x x x x x x x x x	I dup RPD criteria met? (individual, mean, and overall) x ument Tune for ICP-MS included in lab package? x ument Tune method criteria met? (±5 RSD, ±0.1 amu) x I calibration documentation included in lab package? x urget analytes included? x v/1 std (ICP), blank/ 5 stds (Hg) x coeff (r) criteria met? (≥0.995) x oration verification data included in lab package? x CCB criteria met? (ICP 90-110,Hg 80-120,CN 85-115) x %R criteria met? (ICP 90-110%, Hg 80-120%) x CV %R criteria met? (50-150% Sb/Pb/Tl,70-130%) x ion test data included? x ults within criteria if >50xMDL? (max 10%, qualify 15%) x digestion spike included? x criteria met? x ference check sample data included (ICP/MS only)? x criteria met? (80-120%, unspk <2RL,≥2-RL)

		Flojec	tinumb	er/ ivia	nager: E7976B/ Jenny Self					
	3 ()				QC Level: II					
			Laboratory Job No: see DURC							
Reviewer				7/13, 1/3/14						
aramete	Methods: 1311/3010A/6010B									
	%PERFORMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT					
	Was a ZHE vessel without leaks used for VOAs?			Х						
	Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve)			х						
	Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately			х						
	Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)	х			No. 1 for all; see Comment no.1					
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	х			pH of fluid not reported but pH of LB leachate 4.86-5.0					
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)	Х								
	Was the correct weight of fluid used? (20x solid weight)	Х								
100	Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)		Х		see Comment no. 2					
	No preservation for aqueous sample aliquots?			Х						
	Proper preservation for leachates?	Х			(method pH <2)					
100	Holding time to leaching not expired?	Х			(method 180-days)					
	Leach blank data included in Lab Package? (1/20)	х								
100	Criteria met? (< MDL)		Х		see QC Deficiencies					
CLP Bat	NTS tches: 5/13 17:00, 6/17 18:30, 7/12 17:00, 8/1 17:00, 8/11 14:00, 9/2:	2 14:00								
	0300 (EN377) - LB initial pH 2.92, leachate pH 2.78. Fluid no. not ind 3959 (EN382) - sx 3 pH after adding acid shown as 151 -> should be				evised 12/23/13 to show correct pH of 4.94					

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action Post-Stabilization Verification Samples and Stockpile Characterization Samples

April 2014 to October 2014

Prepared by:

Quality Assurance Associates (QAA, L.L.C.)

1007 Francis Drive College Station, TX 77840 www.qaallc.com 979-694-7199

November 14, 2014

TABLE OF CONTENTS

1.0	PRO	JECT O	/ERVIEW AND SUMMARY	. 1				
2.0	PRO	CEDURE	ES	. 3				
3.0	DAT	A VALID	ATION RESULTS	. 4				
	3.1	PRECI	SION	. 4				
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	. 4				
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	. 4				
		3.1.3	Field Duplicate (FD) Precision	. 4				
	3.2	ACCU	RACY	. 4				
		3.2.1	Laboratory Control Spike (LCS) Accuracy	. 4				
		3.2.2	Matrix Spike (MS) Accuracy	. 5				
		3.2.3	Serial Dilution (SD) %Difference	. 5				
	3.3	REPRI	ESENTATIVENESS	. 5				
		3.3.1	Chain-of-Custody and Analysis Requests	. 5				
		3.3.2	Sample Preservation and Holding Time					
		3.3.3	Laboratory and Method Selection					
		3.3.4	Blanks (Laboratory and Field)					
		3.3.5	Analytical Procedures					
	3.4	COMPLETENESS						
		3.4.1	Laboratory Deliverables Completeness					
		3.4.2	EDD Correctness					
		3.4.3	Analytical Completeness					
	3.5	COMP	ARABILITY					

LIST OF TABLES

- Table 1 Samples and Tests Selected for Validation
- Table 2 Data Validation Qualifiers (DVQs)
- Table 3 Qualified Results for Validated Samples
- Table 4 Field Duplicate Results for Validated Samples

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The data include four investigative soil samples plus two field duplicate samples as shown in Table 1. The samples comprise 10% of the Phase II-B post-stabilization verification (PSV) samples and 10% of the stockpile characterization samples collected during April 2014 to October 2014. (A total of 20 PSV samples and 23 stockpile characterization samples were collected during this period.) The PSV samples were collected by ENTACT from the stabilized material stockpiles and analyzed for Toxicity Characteristic Leaching Procedure (TCLP) metals to ensure that the stabilized material meets the appropriate criteria for disposal in the on-site containment cell. The stockpile characterization samples were collected by ENTACT from the excavated soil stockpiles and analyzed for TCLP lead to determine if the excavated soil would require treatment to render the material non-hazardous prior to disposal in the containment cell. These soils were excavated from the ecological areas of the site where source material, which requires treatment, is not necessarily present based on the results from the remedial investigation.

Per the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, these data are considered Level 2 and require minimal data review. Per ENTACT's request, QAA performed a full validation of the selected samples and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). QAA completed the validation using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Superfund Data Review* (October 2013), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The validator assessed precision using the field duplicates. (No laboratory duplicates were prepared using one of the selected samples from the site.) For the samples selected for validation, the sampler collected one field duplicate with the two PSV investigative samples and one field duplicate with the two stockpile characterization investigative samples, and the RPDs are within the limits for all metals, which indicates good precision for the sampling and analytical technique on the given matrices.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The validator assessed accuracy using the laboratory spikes. (No matrix spikes were prepared using one of the selected samples from the site.) For the samples selected for validation, the laboratory prepared a laboratory control spike (LCS) using reagent water with each analytical batch and reported the recovery for every analyte. The LCS recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects.
- 3. Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the

representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, PSV and stockpile characterization samples were collected as required in the approved sampling and analysis plan. Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory blanks, and analytical instrument setup (i.e., calibration, interference correction, etc.) For the samples selected for validation, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank and leachate blank with each analytical batch and the blanks show no contamination, which indicates the samples were not affected by laboratory procedures. Additionally, proper analytical procedures were used and calibration results met the method requirements.

- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. For the samples selected for validation, all analyses produced valid analytical measurements, which gives a completeness of 100%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The PSV and stockpile characterization analytical results are classified as Level 2 data with a full review and validation of 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated. Note that results are reported in μg/L for all field samples.

DATA USABILITY

All sample results are acceptable for use. As shown in Table 3, two results are qualified solely because the concentration is between the MDL and RL. The actual value is not expected to exceed the sample RL. No other data quality issues were noted.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). For the samples selected for validation, the laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- Laboratory Deliverables Completeness,
- EDD Correctness,
- Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- · Laboratory and Method Selection,
- Initial Calibration,
- Continuing Calibration Verification,
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- · Matrix Duplicates (MD), and
- Field Duplicates (FD).

Additionally, the validator examined the raw data for one of the three sample batches (randomly selected by the validator) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are 80-120% for laboratory accuracy and 75-125% for matrix accuracy for metals analyses.
- Laboratory Precision the control limit (20 RPD) as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. A data rejection limit of 30% was used for these inorganic analyses. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U-flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

No LCSD were analyzed (or required) with the samples selected for validation.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every analytical batch (maximum 20 samples) and reported RPDs for all analytes. All MD RPDs are at or below the control limit. For the samples selected for validation, none of the MD were prepared using a sample from the site. Note that non-project MD results are included in the data packages but not in the EDD.

3.1.3 FIELD DUPLICATE (FD) PRECISION

For the samples selected for validation, the samplers collected one FD with the two PSV investigative samples and one FD with the two stockpile characterization investigative samples, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Results for the field duplicates are summarized in Table 4 and are within the criteria.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD) and matrix spikes (MS/MSD) plus serial dilutions (SD). LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

For the samples selected for validation, the laboratory analyzed a LCS for every analytical batch (maximum 20 samples) as required and reported recoveries for all analytes. All LCS recoveries are within the control limits.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS for every analytical batch (maximum 20 samples) and reported recoveries for all analytes. All MS recoveries are within the control limits. For the samples selected for validation, none of the MS were prepared using a sample from the site. Note that non-project MS results are included in the data packages but not in the EDD.

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all metals detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples selected for validation were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records and custody seals, which confirms that sample integrity was maintained. Additionally, the information on the custody records is complete, no issues were noted during sample log-in at the laboratory, and all field samples were analyzed for the tests requested on the chain-of-custody.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

The samples selected for validation were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (TestAmerica-Edison NYSDOH (NELAP) #11452, NYSDOH (ELAP) #11452)

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. The analyte list includes TCLP Antimony, TCLP Arsenic, TCLP Cadmium, and/or TCLP Lead as requested and the nominal reporting limits are below the levels of concern (i.e., the treatment goals) for each analyte.

(Note: The laboratory dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank and leachate blank for every analytical batch (maximum 20 samples) plus a calibration blank for every 10 metals analyses as required per the analytical methodology. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used. No analytes were detected in the laboratory blanks.

3.3.5 ANALYTICAL PROCEDURES

For the samples selected for validation, the analytical procedures (initial calibration, continuing calibration verification, and interference correction), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method.

Additionally, no issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes three analytical batches and the validator re-calculated sample results and QC check parameters for one batch (batch 460-243250 in work order 460-81077-1).

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

For the samples selected for validation, the NYSDEC Category B data packages and EDD contain all necessary information.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Job No.	Sample(s)	EDD Field(s)	Action
All	all field and QC samples	sampling_technique	The validator changed the entry from null to
			the default entry (UN) to meet NYSDEC requirements.

3.4.3 ANALYTICAL COMPLETENESS

For the samples selected for validation, the validator did not reject any of the results, which gives a completeness of 100%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and

provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which an analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which an analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J-flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results are reported in μ g/L and are classified as Level 2 data for TCLP metals with a full review and validation of 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated.

TABLE 1

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Post-Stabilization Verification Samples and Stockpile Characterization Samples April 2014 to October 2014

SAMPLES AND TESTS SELECTED FOR VALIDATION

Lab ID	Field ID	Dete	Time	Media	Matrix	TCLP	TCLP
Lab ID	rieid iD	Date	Туре	wedia		Sb, As, Cd, Pb	Pb
460-74178-1	PSV-323	4/9/14	INV	PSV	Soil	х	
460-81077-1	PSV-338	8/13/14	INV	PSV	Soil	х	
460-81077-2	PSV-338-X	8/13/14	FD	PSV	Soil	х	
460-84592-1	C-AREA2-Stockpile-11	10/15/14	INV	SC	Soil		Х
460-84592-2	C-AREA4-Stockpile-1	10/15/14	INV	SC	Soil		х
460-84592-3	C-AREA4-Stockpile-1-X	10/15/14	FD	SC	Soil		Х

FD - Field Duplicate Sample

INV - Investigative Sample

PSV - Post-Stabilization Verification Sample

SC - Stockpile Characterization Sample

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

• TCLP Metals: 1311/3010A/6010B for Antimony, Arsenic, Cadmium, and/or Lead in leachates of soil samples

TABLE 2

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Post-Stabilization Verification Samples and Stockpile Characterization Samples April 2014 to October 2014

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- U = Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- *J* = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J/J+ and R>UJ)

QAA, L.L.C.

TABLE 3

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Post-Stabilization Verification Samples and Stockpile Characterization Samples April 2014 to October 2014

QUALIFIED RESULTS FOR VALIDATED SAMPLES

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-74178-1	PSV-323-20140409	1311 ARSENIC	33.7 J ug/l	J	Result between MDL and RL
460-81077-1	PSV-338-20140813	1311 LEAD	25.3 J ug/l	J	Result between MDL and RL

TABLE 4

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Post-Stabilization Verification Samples and Stockpile Characterization Samples April 2014 to October 2014

FIELD DUPLICATE RESULTS FOR VALIDATED SAMPLES

Original Sample Lab ID	Field Duplicate Lab ID Field ID-Date Analyte Original Sample Lab Result		Analyte Lab Result Lab Result		Abs Diff	2xRL	RPD	Pass	
460-81077-1	460-81077-2	PSV-338-20140813	1311 ANTIMONY	463 ug/l	445 ug/l	18	200	NA	У
460-81077-1	460-81077-2	PSV-338-20140813	1311 ARSENIC	134 ug/l	153 ug/l	19	150	NA	У
460-81077-1	460-81077-2	PSV-338-20140813	1311 CADMIUM	20 U ug/l	20 U ug/l	0	40	NA	У
460-81077-1	460-81077-2	PSV-338-20140813	1311 LEAD	25.3 J ug/l	53.1 ug/l	27.8	100	NA	У
460-84592-2	460-84592-3	C-AREA4-Stockpile-1-20141015	1311 LEAD	23800 ug/l	17800 ug/l	NA	NA	29	у

Note: The RPD test (≤35%) applies if both results are greater than 5x RL. Otherwise, the absolute difference test (≤ 2x RL) applies.

ATTACHMENT A

VALIDATOR'S CHECKLISTS

lient Name: Entact ite Name: Revere Smelting and Refining (Phase 2B PSV/SC 201		Project	t Numh	er/ Manager: E7976H/ Jenny Self						
ite Name: Revere Smelting and Refining (Phase 2B PSV/SC 201	4)		QC Level: II							
aboratory: TestAmerica (Edison, NJ)	•,	Laboratory Job No: 460-74178-1, 460-81077-1, 460-84592-1								
eviewer: Taryn Scholz		Date Checked: 11/10/14								
,			Methods: 1311/3010A/6010B							
ITEM	YES	NO	N/A	(CRITERIA) COMMENT						
aboratory NELAP/ELAP accredited?	х			NYDOH (NELAP) #11452, NYDOH (ELAP) #11452						
igned Narrative included?	Х			see Comment no. 1						
arrative issues noted by lab?		Х								
	of Custo	dy (CO	C)/ Sar	mple Receipt						
ate/time of sample collection included?	Х									
ample temp upon receipt 2-6 C?	Х									
roper containers/preservation?	Х			(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required)						
OCs properly executed and seals used?	Х									
amples received within 2 days?	Х									
	An	alytical	Results	3						
Il requested analyses reported?	Х									
eld, Laboratory, and Batch ID included?	Х									
ate of sample collection/receipt included?	х									
ate of sample preparation/analysis included?	х	<u> </u>	<u> </u>							
Ds at DL or QL and J-values as needed?	х			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported						
arget analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CL TAL)						
Ls acceptable?	Х			(ASP Exh C Part III and/or DER-10 App 5)						
o elevated RLs for NDs?	Х			Note: 5x std dilution for TCLP						
rep/Analysis method references included and approved?	х			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D)						
analytical cleanup used, method ref included and approved?			Х	(ASP Exh D)						
ample matrix included?	х			(
oils on dry weight basis?			Х							
orrect and consistent units?	х			in ug/L						
olding time to analysis not expired?	Х			(Workplan Table 2)						
olding time to preparation not expired?	х			(Workplan Table 2)						
	orkplan	Section	5.3.6 a	and 2/29/12 mod letter)						
insate Blank - 1 per day of sampling using non-dedicated, non-	1			only disposable equipment used						
sposable sampling equipment			NA							
rip Blank - 1 for every cooler of VOC samples submitted to the boratory			NA							
Iter blank - 1 per week of time-integrated air monitoring			NA							
eld duplicate samples - 1 for every 20 or fewer samples per ample matrix (excluding air samples)	х			Total samples = 2 PSV, 2 SC; Total FD = 1 PSV, 1 SC						
eld MS/MSD - 1 for every 20 or fewer samples per sample matrix om the same batch as the project samples to the extent possible	(х		none for PSV or SC, all non-project and in HC only not EDD						
ompleteness criteria met?	х	1	†	(Workplan Section 5.3.3 - 100%) 100%						
		Field N	lotes	11 - 1						
gree with custody records?			Х	not included						
eld instruments calibrated daily?			х							
/ell conditions constant before sampling?			Х							
gree with custody records? led instruments calibrated daily? fell conditions constant before sampling? lamples filtered? If so, give turbid/size efinitions: AA - Atomic Absorption; CCV - Continuing Calibration uplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Pla	Verificatesma; IC	tion; CC	x x x DI - Con ial Calil	not included npound of Interest; %D - Percent Difference, DL - Detection Limit; Detection Verification; IDL - Instrument Detection Limit; LCS - Laboraplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Repo						

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
EN416	460-74178-1	NA	NA	no issues noted	NA
EN417	460-81077-1	NA	NA	no issues noted	NA
EN418	460-84592-1	NA	NA	no issues noted	NA

	ne: Entact	Project Number/ Manager: E7976H/ Jenny Self							
	e: Revere Smelting and Refining (Phase 2B PSV/SC 2014)	QC Level: II							
.aboratory	y: TestAmerica (Edison, NJ)	Laboratory Job No: 460-74178-1, 460-81077-1, 460-84592-1							
	Taryn Scholz	Date Checked: 11/10/14							
arameter	rs: TCLP As,Cd,Pb,Sb and TCLP Pb	Methods: 1311/3010A/6010B							
	%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT				
	Method blank data included in Lab Package?	Х							
100	Criteria met? (< MDL, ≥ -RL)	Х							
100	Criteria met for field blanks? (< MDL)			х					
ľ	QC check samples/LCS data included in lab package?	Х							
	All project COCs or TAs included?	Х							
100	%R criteria met?	Х			method (lab but within 50-200%)				
	Matrix spike data included in lab package?	Х			all non-project, only in HC not EDD				
	%R criteria met?			Х	method (75-125%)				
	Sample duplicate data included in lab package?	Х			as LR; all non-project, only in HC not EDD				
	RPD criteria met?			х	method (20% if >10xMDL)				
100	IN D CHICHA HICE:				ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +				
	Field dup RPD criteria met? (individual, mean, and overall)	Х			2RL sol if either <5RL)				
	Instrument Tune for ICP-MS included in lab package?			Х					
	Instrument Tune method criteria met? (±5 RSD, ±0.1 amu)			Х					
	Initial calibration documentation included in lab package?	Х		-					
	All target analytes included?	Х		1					
	blank/1 std (ICP), blank/ 5 stds (Hg)	Х		1					
	Corr coeff (r) criteria met? (≥0.995)	Х							
	Calibration verification data included in lab package?	Х							
	ICB/CCB criteria met? (<rl,>-RL)</rl,>	Х		1					
	ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115)	Х		1					
	CCV %R criteria met? (ICP 90-110%, Hg 80-120%)	Х			OL AOD Fish F				
	LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%) Dilution test data included?	Х			CL per ASP Exh E				
		X		-					
	Results within criteria if >50xMDL? (max 10%, qualify 15%)	X		-					
	Post digestion spike included? %R criteria met?	X		1	mothod (75, 1359/)				
		X		1	method (75-125%)				
	Interference check sample data included (ICP/MS only)?	X		-	2RL per ASP Exh E				
	%R criteria met? (80-120%, unspk <2RL,≥2-RL) Internal standard data included in lab package?	Х			ZRL pei ASP EXII E				
	Internal standard data included in lab package? Intensities within limits? (min 30-120% of calib std)			X					
	Analyte quantitation/RLs correct?			Х					
	QC parameters calculated correctly?	X							
	TS	X							

Data	Validation Checklist: Leachates						
Client Na	me: Entact	Project Number/ Manager: E7976H/ Jenny Self					
Site Nam	ne: Revere Smelting and Refining (Phase 2B PSV/SC 2014)	QC Level: II					
	ry: TestAmerica (Edison, NJ)	Laboratory Job No: 460-74178-1, 460-81077-1, 460-84592-1					
Reviewe	r: Taryn Scholz	Date 0	Checke	d: 11/1	0/14		
Paramete	ers: TCLP As,Cd,Pb,Sb and TCLP Pb	Metho	ds: 131	1/3010	0A/6010B		
	%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT		
	Was a ZHE vessel without leaks used for VOAs?			Х			
	Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve)			х			
	Were multi-phasic waste samples properly analyzed? (if <0.5%						
	solids->analyze filtered waste, if >0.5%->leach solids, combine			х			
	with filtered liquid if compatible or analyze separately						
	Was the correct extraction fluid used? (TCLP - #1 for VOA and if				No. 1 for all		
	pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for	x					
	soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-	^					
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93;				pH of fluid not reported but pH of LB leachate		
	SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	Х			4.88-4.90		
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)	х					
	Was the correct weight of fluid used? (20x solid weight)	х					
100	Leaching conditions correct? (30+2 rpm, 18+2 hrs, 23+2 C)		х		see Comment no. 1		
	No preservation for aqueous sample aliquots?			х			
	Proper preservation for leachates?	х			(method pH <2)		
100	Holding time to leaching not expired?	Х			(method 180-days)		
	Leach blank data included in Lab Package? (1/20)	х					
100	Criteria met? (< MDL)	Х					
COMME							
TCLP Ba	tches: 4/13 14:00, 8/15 18:00, 10/19 13:00						
Commen							
Temp rar	nge for batches 19.5 - 25.3 C -> no significant effect						

DATA USABILITY SUMMARY REPORT

REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples

May 2014 to October 2014

Prepared by:

Quality Assurance Associates (QAA, L.L.C.)
1007 Francis Drive
College Station, TX 77840
www.qaallc.com

979-694-7199

December 31, 2014

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	1
2.0	PRO	CEDURI	ES	6
0.0	DAT	A \/ALID	ATION DECLIETO	
3.0	DAT	A VALID	ATION RESULTS	
	3.1	PREC	ISION	8
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	8
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	8
		3.1.3	Field Duplicate (FD) Precision	8
	3.2	ACCU	RACY	9
		3.2.1	Laboratory Control Spike (LCS) Accuracy	9
		3.2.2	Matrix Spike (MS) Accuracy	9
		3.2.3	Serial Dilution (SD) %Difference	10
		3.2.4	Surrogate (SU) Recovery	10
	3.3	REPR	ESENTATIVENESS	10
		3.3.1	Chain-of-Custody and Analysis Requests	10
		3.3.2	Sample Preservation and Holding Time	12
		3.3.3	Laboratory and Method Selection	12
		3.3.4	Blanks (Laboratory and Field)	13
		3.3.5	Analytical Procedures	13
	3.4	COMP	PLETENESS	14
		3.4.1	Laboratory Deliverables Completeness	14
		3.4.2	EDD Correctness	14
		3.4.3	Analytical Completeness	16
	3.5	COMP	PARABILITY	16

LIST OF TABLES

Table 1 - Sample Summary

Table 2 - Data Validation Qualifiers (DVQs)

Table 3 – QC Deficiencies and Data Qualification Actions

Table 4 – Qualified Results for Field Samples

Table 5 - Field Duplicate Results

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting and Refining Site Operable Unit 1 in Middletown, New York. The independent data review was completed in accord with the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The data include 191 investigative soil samples plus the associated field QC samples, which were collected by ENTACT in May through October 2014 with the intended use of confirming that backfill materials are suitable for use on-site and verifying that remediation goals have been achieved in excavated grids. A complete listing of the samples collected and tests performed is shown in Table 1. QAA performed a full validation of the data and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010) as specified in Section 5.9 of the Workplan. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Superfund Data Review* (October 2013) and *National Functional Guidelines for Superfund Organic Methods Data Review* (October 2013), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The Workplan stipulates that the precision control limits will be dictated by the analytical method. For inorganics, the method RPD limit is 20%. For organics, the analytical methods stipulate that the laboratory calculate in-house performance criteria (which range from 12%-50% for this data set). In order to better assess data usability, an RPD limit of 40% was employed where the method limit for an analyte falls above this value. The validator assessed precision using the laboratory and field duplicates. The laboratory prepared a laboratory control spike duplicate (LCSD) using reagent water for each VOC analytical batch plus at least one unspiked matrix duplicate (MD) or matrix spike duplicate (MSD) using a sample from the site for each test except VOCs for the backfill samples. All LCS/LCSD RPDs are within the limits, which indicates good precision for the analytical technique on a sample free of matrix effects. The RPDs for the matrix duplicates are within the limits, which indicates good precision for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the duplicate. Of the 5,666 total results for field samples (investigative samples and field duplicates), just one result is qualified as estimated (J) based on matrix duplicate precision. Additionally, the sampler collected seven field duplicates with the 191 investigative samples and the RPDs are within the limits, which indicates good precision for the sampling and analytical technique on the given matrix, or the validator qualified the results for the original and duplicate sample. Three (one for Lead and two for Acetone) of the 198 pairs of results are qualified as estimated (UJ for non-detects and J for detects) based on field duplicate precision.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The Workplan stipulates that the accuracy control limits will be dictated by the analytical method. For inorganics, the method recovery limits are 75-125% or the manufacturer's established control limit for solid reference materials (which range from 0%-252% for this data

QAA, L.L.C.

set). For organics, the analytical methods stipulate that the laboratory calculate in-house performance criteria (which range from 10%-162% for this data set). In order to better assess data usability, limits of 50-200% were employed where the method limits for a spiked analyte falls outside these values. The validator assessed accuracy using the laboratory spikes and matrix spikes. The laboratory prepared a laboratory control spike (LCS) using reagent water or sand with each analytical batch and reported the recovery for every target compound except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result). The laboratory also prepared a laboratory control spike duplicate (LCSD) with each VOC analytical batch and one of the Total Metals batches. For this Total Metals batch, the laboratory was not able to report acceptable results for Antimony for the LCS/LCSD. Thus, the validator qualified the non-detect result for Antimony for the sample in this batch as rejected (R) due to inadequate QC. The recoveries for all other LCS/LCSD are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects, with a few exceptions. Most of exceedances did not result in data qualification (i.e., the recovery was above the limit indicating a potential bias for detected results and the analyte was not detected in any of the associated samples). However, one result (a non-detect for Antimony) is qualified as rejected (R) due to extremely low laboratory spike recovery (less than 40%). Note that the recovery is within the laboratory limits and thus the laboratory did not take any corrective action. A second result is qualified as estimated (J) due to laboratory spike recovery. Additionally, the laboratory prepared several matrix spikes (MS) and matrix spike duplicates (MSD) plus several post digestion spikes (PDS) and serial dilutions (SD) for the metals analyses using a sample from the site. All SD %differences are within the laboratory limits, which indicates there is no matrix interference affecting the accuracy of metals results that are substantially above the reporting limit. The MS/MSD/PDS recoveries are within the laboratory limits, which indicates good accuracy for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the spike samples. Of the 5,666 total results for field samples, 15 results are qualified as estimated based on matrix spike recovery. The qualification includes the expected direction of bias where known (i.e., J+ for high MS/MSD recovery and J- for low MS/MSD recovery with no other non-directional QC issues). Additionally, the laboratory utilized one or more surrogate spikes for each organic analysis. The surrogate recoveries are within the laboratory limits for all field samples, with a few exceptions. Most of the exceedances did not result in data qualification (i.e., the recovery was affected by sample dilution or was above the limit indicating a potential bias for detected results and the sample results are all non-detect). Eighteen (18) detects for VOCs are qualified due to high surrogate recovery.

3. Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, investigative samples were collected as required in the approved sampling and analysis plans. (Note that sampling is an on-going process at the site and all samples may not be reflected in this validation batch.) Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratories are properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory and field QC blanks, and analytical instrument setup (i.e., tuning, calibration, interference correction, etc.) For all samples, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank with each analytical batch and the sampler collected 13 trip blanks with the VOC samples. The laboratory and field QC blanks show no contamination, which indicates the samples were not affected by laboratory or field procedures, or the validator qualified the samples associated with the blank that have a concentration similar to that in the blank. Twelve (12)

detects for Acetone and seven detects for Methylene Chloride are qualified as potentially contaminated (U) due to laboratory and/or trip blank contamination. Per the NFG, detects below the reporting limit (i.e., laboratory J-values) with a U flag should be considered not detected at the reporting limit. This is the case for one of the Methylene Chloride results, and thus the validator replaced the concentration reported by the laboratory with the reporting limit. Detects above the reporting limit should be considered not detected at the sample result per the NFG, and thus no replacement was made for the remaining cases. Proper analytical procedures were used and calibration results met the method requirements or the validator qualified the affected samples. Three detects for Zinc are qualified as estimated (J) due to poor calibration curve fit. Sixty-eight (68) results (for various organic analytes) are qualified due to calibration drift. One non-detect result for Sodium is qualified as rejected (R) due to extremely low interference check standard (ICS) recovery (less than 50%). Additionally, several VOC results are qualified based on internal standard response. Two-hundred-thirty-two (232) VOC results are qualified as estimated (UJ for non-detects, J for detects below the reporting limit, and J+ for detects above the reporting limit) due to low laboratory response. Twenty-five (25) VOC results are qualified as rejected (R) due to extremely low internal standard response (less than 20%). The affected results are the non-detects for nine analytes in three samples. Note that the laboratory reanalyzed all samples with inadequate internal standard response and found concurring results.

- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. The analyses of field samples produced valid analytical measurements, with the exception of 28 non-detect results. With 5,666 total results for field samples, this gives a completeness of 99.5%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions or revisions were provided by the laboratory upon request.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated. Note that results for all field samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in μg/L for TCLP metals, and in μg/kg with dry-weight correction for organics.

DATA USABILITY

The following non-detect results are qualified as rejected (R) and thus are not suitable for use:

Lab ID	Field ID	Test	Analyte(s)	Result	DVQ	QC Issue
460-82849-1	ECS-AZ5-F	ICP	Antimony	10.5 U mg/kg	R	Acceptable result not available to report in
						the LCS/LCSD
		ICP	Sodium	211 U mg/kg	R	Extremely low ICS recovery (2%)
460-84193-1	ECS-AREA2-	ICP	Antimony	3.8 U mg/kg	R	Extremely low laboratory control spike
	Q16-F					recovery (39.3%)
460-82730-3	BF-5L-UT-4g-	VOC	1,2-Dichlorobenzene	1.5 U ug/kg	R	Extremely low internal standard response
	02		1,3,5-Trimethylbenzene	1.5 U ug/kg	R	(14.8%)
			1,3-Dichlorobenzene	1.5 U ug/kg	R	
			1,4-Dichlorobenzene	1.5 U ug/kg	R	
			n-Butylbenzene	1.5 U ug/kg	R	
			n-Propylbenzene	1.5 U ug/kg	R	
			sec-Butylbenzene	1.5 U ug/kg	R	
			t-Butylbenzene	1.5 U ug/kg	R	

QAA, L.L.C.

Lab ID	Field ID	Test	Analyte(s)	Result	DVQ	QC Issue
460-82735-1	BF-ORI-WT-	VOC	1,2,4-Trimethylbenzene	1.7 U ug/kg	R	Extremely low internal standard response
	3g-01		1,2-Dichlorobenzene	1.7 U ug/kg	R	(14.6%)
			1,3,5-Trimethylbenzene	1.7 U ug/kg	R	
			1,3-Dichlorobenzene	1.7 U ug/kg	R	
			1,4-Dichlorobenzene	1.7 U ug/kg	R	
			n-Butylbenzene	1.7 U ug/kg	R	
			n-Propylbenzene	1.7 U ug/kg	R	
			sec-Butylbenzene	1.7 U ug/kg	R	
			t-Butylbenzene	1.7 U ug/kg	R	
460-82735-2	BF-ORI-WT-	VOC	1,2-Dichlorobenzene	1.7 U ug/kg	R	Extremely low internal standard response
	3g-02		1,3,5-Trimethylbenzene	1.7 U ug/kg	R	(16.3%)
			1,3-Dichlorobenzene	1.7 U ug/kg	R	
			1,4-Dichlorobenzene	1.7 U ug/kg	R	
			n-Butylbenzene	1.7 U ug/kg	R	
			n-Propylbenzene	1.7 U ug/kg	R	
			sec-Butylbenzene	1.7 U ug/kg	R	
			t-Butylbenzene	1.7 U ug/kg	R	

In each case, the absence or presence of the analyte cannot be confirmed in the sample due to serious QC issues.

All other results for the samples are acceptable for use with the qualifications shown in Table 4. Results that are qualified with a UJ should be considered not present above the reporting limit; however the reporting limit is an estimated value. Results that are qualified with a J- (biased low) can be used for determining the presence of the analyte and as an indication that the concentration of the analyte exceeds a given criterion. However, the concentration reported for detects may be low. The following J- results are of particular note because in each case the analyte was detected, and thus the result was not rejected, but the analyte recovery in the MS/MSD prepared using the sample is extremely low (a negative recovery indicates that the analyte was not recovered above the sum of the amount of spike added and the amount in the unspiked sample):

Lab ID	Field ID	Test	Analyte(s)	Result	DVQ	QC Issue
460-82584-3	BF-ORI-	SVOC	Benzo(a)anthracene	1600	J-	Extremely low matrix spike recovery (12%),
	WT-2c-01			ug/kg		Extremely low matrix spike duplicate recovery (4%)
			Benzo(a)pyrene	1600	J-	Extremely low matrix spike recovery (9%), Extremely
				ug/kg		low matrix spike duplicate recovery (4%)
			Benzo(b)fluoranthene	2300	J-	Extremely low matrix spike recovery (-7%), Extremely
				ug/kg		low matrix spike duplicate recovery (-17%)
			Chrysene	1600	J-	Extremely low matrix spike recovery (5%), Extremely
				ug/kg		low matrix spike duplicate recovery (-1%)
			Pyrene	2300	J-	Extremely low matrix spike recovery (-18%),
				ug/kg		Extremely low matrix spike duplicate recovery (-23%)

Results that are qualified with a J+ (biased high) can be used for determining the presence of the analyte and as an indication that the concentration of the analyte is less than a given criterion. However, the concentration reported for detects may be high. Similarly, results that are qualified with a J (estimated) may be either low or high. For results qualified with a U (potentially contaminated), the analyte should be considered not detected at the reported value. For results qualified due to field duplicate precision, the higher result (i.e., from either the original or duplicate sample) should be used for project decisions. This gives a conservative approach relative to protection of the environment. (For field duplicate pairs that pass the precision criteria, the value should be selected based on accepted convention for the site and/or agency requirements,

Quality Assurance Associates *QAA, L.L.C.*

DATA USABILITY SUMMARY REPORT

e.g., select the value reported for the original sample, the average of the two values, etc.) For results qualified solely because the concentration is between the MDL and RL, the actual value is not expected to exceed the sample RL.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include pdf data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). The laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- · Laboratory Deliverables Completeness,
- EDD Correctness,
- · Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- Laboratory and Method Selection,
- Instrument Tuning and Initial Calibration,
- Calibration Verification,
- Interference Check Standards (ICS),
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- Matrix Duplicates (MD),
- Field Duplicates (FD),
- Dual Column Confirmation,
- Surrogates (SU), and
- Internal Standards (IS).

Additionally, the validator examined the raw data for 10% of the sample batches (randomly selected by the validator across the various analysis dates and tests) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are either specific numerical values or the laboratory-derived recovery control limits based on historical performance (but not less than 50% lower limit or greater than 200% upper limit)
- Laboratory Precision the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are either specific numerical values or the laboratory-derived recovery control limits based on historical performance (but not greater than 40%)
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator

Quality Assurance Associates *QAA, L.L.C.*

DATA USABILITY SUMMARY REPORT

considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. Data rejection limits of 40% and 30% for inorganics laboratory and matrix spikes, and 30%, 20% and 10% for organics laboratory, matrix and surrogate spikes were used. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

The laboratory analyzed an LCSD and reported RPDs for all target compounds for each VOC batch (maximum 20 samples). All RPDs are at or below the criteria.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every inorganics analytical batch (maximum 20 samples) and an MSD for every organics analytical batch (maximum 20 samples) and reported RPDs for MD and MSD prepared using a sample from the site. Three excavation confirmation soil (ECS) samples (two of which were designated by the sampler on the custody record) were used to prepare an MD for TCLP Metals and Total Metals. With a total of 59 investigative ECS samples, this meets the Workplan requirement of one per 20 or fewer samples per sample matrix. No soil samples were designated by the sampler for MD or MSD for the backfill samples. The laboratory selected a backfill sample for batch QC for one or more MD/MSD for Total Metals, Chromium (VI), Pesticides, PCBs, Herbicides, SVOCs, and Cyanide. No MSD were prepared using a backfill sample for VOCs.

Some MD and MSD RPDs are above the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that, for cases where either result for the duplicate pair is non-detect, the check does not apply and the laboratory reported the RPD as NC (not calculable) in the pdf report and as 0 in the EDD. Additionally, the validator considered samples of the same media (i.e., backfill or excavation confirmation) and source to be of similar matrix (e.g., if deficiencies were noted for a MD or MSD prepared using a backfill sample from a particular source, all backfill samples from that source in the same analytical batch were qualified).

3.1.3 FIELD DUPLICATE (FD) PRECISION

The samplers collected seven FD with the 191 investigative samples, which does not meet the Workplan requirement of one per 20 or fewer samples per sample matrix. This is due to only two field duplicates being collected with the 95 investigative backfill grab samples that were analyzed for VOCs. Sufficient field duplicates were collected with the backfill composite samples that were analyzed for the remaining DER-10 tests and with the ECS samples. Results for the field duplicates are summarized in Table 5.

Three pairs of results are outside the field precision criteria and the validator qualified the data as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4

lists all qualified results for the field samples. Note that the remaining 195 pairs of FD results meet the criteria, which indicates good overall precision, and thus the validator only qualified the original and duplicate sample for the three FD deficiencies.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD), matrix spikes including post digestion spikes (MS/MSD/PDS), serial dilutions (SD), and surrogate (SU) spikes. LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD/PDS are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit. Surrogates are added to each sample before preparation and analysis and provide an indication of accuracy for each individual sample analysis.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

The laboratory analyzed a LCS and/or LCSD for every analytical batch (maximum 20 samples) as required and reported recoveries for all target compounds except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result). Additionally, the laboratory was not able to report acceptable results for Antimony for the LCS/LCSD for Total Metals batch 490-192308. Thus, the validator qualified the non-detect result for Antimony for the sample in this batch (ECS-AZ5-F) as rejected (R) due to inadequate QC.

Some LCS/LCSD recoveries are outside the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator did not qualify the data for cases where the LCS or LCSD recovery for an organic analyte is outside the criteria (i.e., the laboratory-derived recovery control limits based on historical performance or 50-200%, whichever is more stringent) but within 70-130% since this is considered within the inherent method error and suitable for the intended use.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS/PDS for every inorganics analytical batch (maximum 20 samples) and an MS/MSD for every organics analytical batch (maximum 20 samples) and reported recoveries for MS and MSD prepared using a sample from the site. Three excavation confirmation soil (ECS) samples (two of which were designated by the sampler on the custody record) were used to prepare an MS for TCLP Metals and Total Metals. With a total of 59 investigative ECS samples, this meets the Workplan requirement of one per 20 or fewer samples per sample matrix. No soil samples were designated by the sampler for MS/MSD for the backfill samples. The laboratory selected a backfill sample for batch QC for one or more MS/MSD for Total Metals, Chromium (VI), Pesticides, PCBs, Herbicides, SVOCs, and Cyanide. No MS/MSD were prepared using a backfill sample for VOCs.

Some MS/MSD/PDS recoveries are outside the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that if an analyte was detected in the unspiked parent sample at a concentration well above (greater than four times for inorganics or greater than one times for organics)

QAA, L.L.C.

the concentration of spike added to the sample, thereby rendering the recoveries inconclusive, the check was waived and the validator did not qualify the data. For cases where the MS or MSD recovery is outside the criteria but greater than the data rejection limit (30% for inorganics and 20% for organics) and the average MS/MSD recovery is in control, the validator did not qualify the data. The validator also did not qualify the data for cases where the MS or MSD recovery for an organic analytes is outside the criteria (i.e., the laboratory-derived recovery control limits based on historical performance or 50-200%, whichever is more stringent) but within 70-130% since this is considered within the inherent method error and suitable for the intended use. Additionally, the validator considered samples of the same media (i.e., backfill or excavation confirmation) and source to be of similar matrix (e.g., if deficiencies were noted for a MS/MSD prepared using a backfill sample from a particular source, all backfill samples from that source in the same analytical batch were qualified).

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all target compounds detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit (10%).

3.2.4 SURROGATE (SU) RECOVERY

The laboratory spiked each organic sample with one or more surrogates before preparation and analysis.

Some surrogate recoveries are outside the control limits and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records, which confirms that sample integrity was maintained. The validator noted the following regarding the custody records and sample log-in at the laboratory:

- All samples were received within two days of collection as recommended in DER-10 except those in laboratory job numbers 460-828491-1 and 460-84379-1, which were received three days after collection in good condition.
- For work order 460-78812-1, TestAmerica-Edison in Edison, NJ sent the Pesticide sample aliquots to TestAmerica-Buffalo in Amherst, NY for performance of the 8081B analyses. Likewise, for work orders 460-82461-1, 460-82584-1, 460-82585-1, 460-82730-1, and 460-82735-1, TestAmerica-Edison sent the SVOC sample aliquots to TestAmerica-Nashville in Nashville, TN for performance of the 8270D analyses. TestAmerica-Nashville also performed the 6010C ICP Metals analyses for work order 460-82849-1.
- For work orders 460-75773-1, 460-79992-1, 460-80009-1, 460-80015-1, 460-80075-1, and 460-80130-1, the documentation indicates that no custody seals were used for the transfer of the samples from the field to the laboratory. The samples were transferred by commercial, overnight courier and were received in good condition, and thus no further action was taken.

- QAA, L.L.C.
- For work orders 460-82461-1, 460-82584-1, 460-82585-1, 460-82730-1, and 460-82735-1, the documentation indicates that no custody seals were used for the transfer of the SVOC sample aliquots from TestAmerica-Edison to TestAmerica-Nashville. The samples were transferred by commercial, overnight courier and were received in good condition, and thus no further action was taken.
- For work order 460-80015-1, the sampler did not sign and date the custody record upon release of the samples to the overnight courier. The laboratory signed upon receipt from the courier and the samples were received in good condition, and thus no further action was taken.
- For work orders 460-80075-1 and 460-82461-1, some containers were received broken. Samples were transferred to new containers upon receipt. Analyses were performed for metals and non-volatile organics only, and thus this is not considered to significantly affect data quality.
- For work order 460-81828-1, one of the two 8-ounce jars collected on 8/27/14 was received broken with contents emptied into the cooler. A second aliquot was collected on 9/3/14 and sent to the laboratory to be used as needed. All analyses were performed using the remaining unbroken container from 8/27/14.
- For work order 460-82730-1, the VOC vial containing methanol was received broken for sample BF-5L-UT-4g-01. Low-level VOC analysis was performed using the remaining vials.

The information on the custody record is correct and agrees with that reported in the analytical results except as follows:

- For work order 460-80075-1, the sampler entered 7/24/14 as the relinquished date on the custody record. The actual date is 7/25/14 per the sample collection and laboratory receipt dates. Likewise, for work order 460-80130-1, the sampler entered 7/24/14 as the relinquished date on the custody record. The actual date is 7/28/14 per the sample collection and laboratory receipt dates.
- For work order 460-81232-1, the laboratory entered 8/15/14 as the received date on the custody record. The actual date is 8/16/14 per the sample collection and relinquish dates and as shown in the laboratory report. Likewise, for work orders 460-82584-1 and 460-82585-1, the laboratory entered 9/10/14 as the received date on the custody record. The actual date is 9/11/14 per the sample collection and relinquish dates and as shown in the laboratory report.
- For laboratory work order 460-82155-1, the custody record indicates the trip blank is a water matrix. The results for
 the trip blank are reported in mg/Kg and the matrix is shown as solid in the pdf report. Two methanol containers
 were received for this blank with no low level (DI water) containers and thus it was analyzed as a high level soil with
 results reported in soil units.
- For work order 460-83792-1, sample BF-ORI-HS-5c-01 is reported with a sample collection time of 13:05. The actual time as shown on the custody record is 15:05. The sample collection date is correctly reported as 10/1/2014 and the pass/fail status for the holding time checks is not affected, and thus no further action was taken.
- For work order 460-84428-1, the field IDs on the custody record do not match those on the sample labels. The sampler revised the custody record to include the correct IDs as shown on the labels.

All samples were analyzed for the tests requested on the chain-of-custody except as follows:

- For work order 460-82585-1, a trip blank is listed on the custody record but was not received and thus not logged in or analyzed.
- For work orders 460-79992-1, 460-80075-1, and 460-80130-1, results for the post stabilization verification (PSV) samples that appear on the custody record are reported separately per ENTACT's request.
- For the three backfill composite samples in laboratory work orders 460-82155-1 and 460-83311-1, the laboratory reported an original result (9/5/14 and 9/25/14 prep dates) and re-extracted/re-analyzed result (9/7/14 and 9/26/14 prep dates) for Chromium (VI). The samples were re-extracted/ re-analyzed due to deficiencies for the MS/MSD, which were prepared using samples from another site and thus do not reflect on data quality for the backfill

- samples. The sample results for both sets are all non-detect and the validator did not find any QC deficiencies for either set. In the EDD, the laboratory reported the original set with a reportable_result of Yes and the second set with a reportable_result of No. The validator confirmed this selection and made no changes.
- For the one backfill composite sample in laboratory work order 460-83792-1, the laboratory reported an original result (10/8/14 prep date) and re-extracted/re-analyzed result (10/9/14 prep date) for Chromium (VI). The samples were re-extracted/ re-analyzed due to deficiencies for the MS/MSD, which also was prepared using a sample from another site and thus does not reflect on data quality for the backfill samples. The sample results for both sets are all non-detect; however, the QC results for the laboratory blanks and spikes are not reported for the first set of results. The validator did not find any QC deficiencies requiring qualification for the second set of results. In the EDD, the laboratory reported the original set with a reportable_result of Yes and the second set with a reportable_result of No. Due to the missing QC results, the validator changed the reportable_result to No for the original set and to Yes for the second set.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

All samples were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan, and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratories are accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (no. 11452 for TestAmerica-Edison, no. 10026 for TestAmerica-Buffalo and no. 11342 for TestAmerica-Nashville).

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. (In some cases, the method update number used by the laboratory may differ from that in the Workplan. For example, method 8260C was used rather than 8260B for the VOCs for all backfill samples.)

For the backfill samples, the target analyte list includes all DER-10 analytes and the nominal reporting limits (i.e., without dryweight correction or sample dilution and based on the standard sample weight and final volume) are at or below the levels of concern (i.e., the Allowable Constituent Levels (ACLs) for imported fill or soil from Appendix 5 of the DER-10), except as follows:

- DER-10 Appendix 5 lists m-Cresol(s), o-Cresol(s), and p-Cresol(s). The laboratory reported m & p-Cresols and o-Cresol as it is not possible to separate m-Cresol and p-Cresol using method 8270D.
- DER-10 Appendix 5 lists Chlordane (alpha). The laboratory reported technical Chlordane, which is a commercial mixture that contains alpha-Chlordane and gamma-Chlordane along with other related compounds.
- The laboratories inadvertently reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) for the backfill samples instead of the DER-10 analytes as requested.
- TestAmerica-Nashville's nominal reporting limit for Pentachlorophenol of 0.830 mg/kg is slightly above the ACL of
 0.8 mg/kg. Note however that the laboratory reported any confirmed detects above the method detection limit
 (MDL) but below the reporting limit (i.e., J-values) and the laboratory's MDL for Pentachlorophenol is well below the
 ACL at 0.130 mg/kg.

Five backfill samples required dilution due to matrix effects and have elevated reporting limits for one or more non-detect results, as follows:

Lab ID	Field ID	Test	Dilution Rate
460-78812-8	BF-ORI-HS-1C-01	8081B Pesticides	20
460-78812-9	BF-ORI-HS-1C-02	8081B Pesticides	20
460-82155-8	BF-5L-WT-1c-01	8270D SVOCs	2
460-82155-9	BF-5L-WT-1c-02	8270D SVOCs	2
460-82735-5	BF-ORI-WT-3c-01-X	8270D SVOCs	5

For the excavation confirmation samples, the target analyte list includes total Arsenic, total Lead, and/or TCLP Lead as requested and all Contract Laboratory Program (CLP) metals for the TAL metals. The nominal reporting limits are below the levels of concern (i.e., the remedial goals) for total Arsenic, total Lead, and TCLP Lead. There are no established levels of concern for TAL metals. The nominal reporting limits comply with the requirements in the ASP for TAL metals with the exception of Iron, which has a nominal reporting limit of 30 mg/kg for the TestAmerica-Edison soil samples and a nominal reporting limit of 40 mg/kg for the TestAmerica-Nashville soil samples, both of which are above the ASP reporting limit of 20 mg/kg.

None of the excavation confirmation samples have elevated reporting limits for a non-detect result. (Note: The laboratory dilutes all total metals samples 2-4x before analysis as standard practice. All Revere samples were diluted 4x and thus nominal reporting limits were determined at this dilution rate. The laboratory also dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank (and leachate blank for TCLP) for every analytical batch (maximum 20 samples) and a calibration blank for every 10 metals analyses as required per the analytical methodology. Additionally, a trip blank was included with 13 of the 21 shipments of VOC samples, which does not meet the Workplan requirement of one for every cooler of VOC samples. A trip blank was not included with the backfill samples in work orders 460-80767-1, 460-81561-1, 460-82584-1, 460-82585-1, 460-82735-1, 460-83311-1, 460-83792-1, and 460-84432-1, and thus potential contamination with VOCs during shipment could not be evaluated for these samples. (Acetone, Chloroform, and/or Methylene Chloride were detected in one or more of the 13 trip blanks collected with the other samples.) Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used.

Some detects are reported in the laboratory and trip blanks and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator calculated a blank equivalent concentration taking into account the sample weight, moisture content, and dilution factor for each sample when determining if the contamination in the blank is near that in the sample, and thus if data quality is affected for that sample. When comparing aqueous blank concentrations (e.g., for trip blanks) to solid samples, the validator assumed that all contamination found in the aqueous blank aliquot analyzed is potentially present in the solid sample aliquot analyzed.

3.3.5 ANALYTICAL PROCEDURES

The analytical procedures (instrument tuning and initial calibration, calibration verification, interference check standards, dual column confirmation, and internal standards), including the leaching procedures for the method-defined parameter TCLP,

met the requirements in the analytical method with some exceptions. The validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator did not delineate cases where the surrogate has a continuing calibration verification (CCV) %difference above the control limit for the organic analyses, since surrogate recoveries for each sample are evaluated separately.

No issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes 165 analytical batches and the validator re-calculated sample results and QC check parameters for 16 batches and made the following observations from the review of the raw data:

• The laboratory used dual column confirmation for all GC analyses (including Pesticides, PCBs, and Herbicides). For surrogates and spiked analytes, the laboratory reports the results from both columns. For target analytes in blanks and field samples, the laboratory reports the result from the column with the higher concentration (unless chromatographic performance is better on one column and it is therefore used for all analyses), provided that the RPD between the two columns is less than 40%. If the RPD is greater than 40%, the column with the lower concentration is reported with a note in the narrative and the result is reported with a P flag. The RPD did not exceed 40% for any field samples in this data set.

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

The Level 4 data packages and EDD contain all necessary information or the laboratory submitted a revision upon request as detailed in the case narratives.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Work Order(s)	Sample(s)	EDD Field(s)	Action
All	all laboratory QC	sampling_technique	The validator changed the entry from null to the
	samples		default entry (UN) to meet NYSDEC requirements.
460-82730-1	460-82730-4	sample_matrix_code	The validator changed the entry from WG or WQ to
460-84428-1	460-84428-1		SO for these soil samples.
	460-84428-2		
	460-84428-3		
460-82730-1	460-82730-6	sample_matrix_code	The validator changed the entry from WG to WQ for this trip blank.

Laboratory	Sample(s)	EDD Field(s)	Action
Work Order(s)			The velidator above ad the control frame N to V be and
460-76301-1	all backfill	composite_yn	The validator changed the entry from N to Y based
460-78812-1	composite samples		on the custody record.
460-80009-1	(*c-001 and *c-002)		
460-80015-1			
460-80767-1 460-80768-1			
460-82155-1			
460-82461-1			
460-82584-1			
460-82585-1			
460-82730-1			
460-81828-1	all 6010C Total	n non months and	The velidator about and the mostle of reference from
All		prep_method	The validator changed the method reference from
	metals samples		SW3020B to SW3050B based on the pdf analytical
400 70040 4	100 70010 0		results and as confirmed by the laboratory.
460-78812-1	460-78812-8	analysis_date	The validator changed the date for the SW7196A
	460-78812-9		analysis from 7/7/14 to 7/8/14 based on the pdf
			analytical results and as confirmed in the raw data.
460-80009-1	4602391191B (LB)	reportable_result	The SW8081B surrogate results from both columns
460-81552-1	4602391192B (BS)		were set to not reportable. The validator changed
460-83312-1	4602516551A (LB)		the entry for the higher concentration for each
460-84428-1	4602516552A (BS)		surrogate from No to Yes per the laboratory
460-84432-1	4602559721A (LB)		standard procedure as confirmed in the pdf
	4602559722A (BS)		analytical results.
	460-80009-8		
	460-80009-9		
	460-81552-8		
	460-83312-3		
	460-83312-6		
	460-83312-9		
	460-84428-3		
	460-84432-3		
	460-84432-6		
	460-84432-6MS		
	460-84432-6SD		
460-83311-1	460-83311-3SD	reportable_result	The SW8151A surrogate results from both columns
			were set to not reportable. The validator changed
			the entry for the higher concentration for the
			surrogate from No to Yes per the laboratory
			standard procedure as confirmed in the pdf
			analytical results.

$\mathbf{A} \mathbf{A}$	T	T	
<i>QAA</i> ,	L.	L.	C.

Laboratory Work Order(s)	Sample(s)	EDD Field(s)	Action
460-76301-1	460-76301-3	method_detection_limit	The validator changed the value from 0 to 2 based
460-78812-1	460-76301-6	minimum_detectable_conc	on the pdf analytical results.
	460-76301-9		
	460-76301-12		
	460-76301-15		
	460-78812-8		
	460-78812-9		

3.4.3 ANALYTICAL COMPLETENESS

The validator rejected two non-detect results for Antimony due to extremely low laboratory control spike recovery or lack of laboratory control spike data, one non-detect result for Sodium due to extremely low interference check standard recovery, and 25 non-detect results for various VOC analytes due to extremely low internal standard response. With 5,666 total results for field samples (investigative samples and field duplicates), this gives a completeness of 99.5%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which a target analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which a target analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size and include dry-weight correction for all soil samples as required per Section 5.7.1 of the Workplan. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results for the investigative samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in µg/L for TCLP metals, and in µg/kg with dry-weight correction for organics. (For the 7196A analyses, Trivalent Chromium is shown as not dry-weight corrected. Trivalent Chromium is calculated from the results for Hexavalent Chromium and total Chromium, which are dry-weight corrected, and thus the Trivalent Chromium is not directly dry-weight corrected but is on a dry-weight basis.)

The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated.

TABLE 1

REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1

Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples May 2014 to October 2014

SAMPLE SUMMARY

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-75773-1	ECS-116-F	05/07/14	INV	ECS	Soil	Х											
460-75773-2	DS-116-SW	05/07/14	INV	ECS	Soil	Х											
460-75773-2LR	DS-116-SWLR	05/07/14	MD	ECS	Soil	Х											
460-75773-2MS	DS-116-SWMS	05/07/14	MS	ECS	Soil	Х											
460-75773-3	DS-116-SS	05/07/14	INV	ECS	Soil	Х											
460-75773-4	DS-115-SW	05/07/14	INV	ECS	Soil	Х											
460-75773-5	DS-115-SS	05/07/14	INV	ECS	Soil	Х											
460-75773-6	ECS-115-F	05/07/14	INV	ECS	Soil	Х											
460-75773-7	ECS-43-F	05/07/14	INV	ECS	Soil	Х											
460-76301-1	BF-SER-RAMPD-DD- 15g-001	05/16/14	INV	BF	Soil										х		
460-76301-2	BF-SER-RAMPD-DD- 15g-002	05/16/14	INV	BF	Soil										х		
460-76301-3	BF-SER-RAMPD-DD- 15c-001	05/16/14	INV	BF	Soil				х	Х	х	х	х	х		х	х
460-76301-3MS	BF-SER-RAMPD-DD- 15c-001MS	05/16/14	MS	BF	Soil							х		х			х
460-76301-3SD	BF-SER-RAMPD-DD- 15c-001SD	05/16/14	MSD	BF	Soil							х		х			х
460-76301-4	BF-SER-RAMPD-DD- 16g-001	05/16/14	INV	BF	Soil										х		
460-76301-5	BF-SER-RAMPD-DD- 16g-002	05/16/14	INV	BF	Soil										х		
460-76301-6	BF-SER-RAMPD-DD- 16c-001	05/16/14	INV	BF	Soil				х	х	х	х	х	х		х	х
460-76301-7	BF-SER-RAMPD-DD- 17g-001	05/16/14	INV	BF	Soil										х		
460-76301-8	BF-SER-RAMPD-DD- 17g-002	05/16/14	INV	BF	Soil										х		

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-76301-9	BF-SER-RAMPD-DD- 17c-001	05/16/14	INV	BF	Soil				х	х	х	х	х	х		х	х
460-76301-10	BF-SER-RAMPD-DD- 18g-001	05/16/14	INV	BF	Soil										х		
460-76301-11	BF-SER-RAMPD-DD- 18g-002	05/16/14	INV	BF	Soil										х		
460-76301-12	BF-SER-RAMPD-DD- 18c-001	05/16/14	INV	BF	Soil				х	х	х	х	Х	х		х	х
460-76301-13	BF-SER-RAMPD-DD- 19g-001	05/16/14	INV	BF	Soil										х		
460-76301-14	BF-SER-RAMPD-DD- 19g-002	05/16/14	INV	BF	Soil										х		
460-76301-15	BF-SER-RAMPD-DD- 19c-001	05/16/14	INV	BF	Soil				х	х	х	х	Х	х		х	х
460-76301-16	TB-5/16/14	05/16/14	TB	TB	Water										Х		
460-78812-1	BF-ORI-HS-1g-01	07/02/14	INV	BF	Soil										х		
460-78812-2	BF-ORI-HS-1g-02	07/02/14	INV	BF	Soil										х		
460-78812-3	BF-ORI-HS-1g-03	07/02/14	INV	BF	Soil										Х		
460-78812-4	BF-ORI-HS-1g-04	07/02/14	INV	BF	Soil										Х		
460-78812-5	BF-ORI-HS-1g-05	07/02/14	INV	BF	Soil										х		
460-78812-6	BF-ORI-HS-1g-06	07/02/14	INV	BF	Soil										х		
460-78812-7	BF-ORI-HS-1g-07	07/02/14	INV	BF	Soil										х		
460-78812-8	BF-ORI-HS-1C-01	07/02/14	INV	BF	Soil				Х	Х	Х	x ⁽¹⁾	х	Х		Х	Х
460-78812-8MS	BF-ORI-HS-1C-01MS	07/02/14	MS	BF	Soil							x ⁽¹⁾					
460-78812-8SD	BF-ORI-HS-1C-01SD	07/02/14	MSD	BF	Soil							x ⁽¹⁾					
460-78812-9	BF-ORI-HS-1C-02	07/02/14	INV	BF	Soil				Х	Х	Х	x ⁽¹⁾	х	Х		Х	Х
460-78812-9LR	BF-ORI-HS-1C-02LR	07/02/14	MD	BF	Soil					Х							
460-78812-9MS	BF-ORI-HS-1C-02MS	07/02/14	MS	BF	Soil					Х							
460-78812-10	TB-7/2/14	07/02/14	TB	ТВ	Water										х		
460-79992-1	DS-115-SS	07/24/14	INV	ECS	Soil	Х	Х										
460-79992-2	ECS-Area2-E1-F	07/24/14	INV	ECS	Soil	Х	Х										
460-79992-3	DS-Area2-E1-SS	07/24/14	INV	ECS	Soil	Х	Х										
460-80009-1	BF-ORI-UT-1g-01	07/24/14	INV	BF	Soil										х		
460-80009-2	BF-ORI-UT-1g-02	07/24/14	INV	BF	Soil										х		
460-80009-3	BF-ORI-UT-1g-03	07/24/14	INV	BF	Soil										х		
460-80009-4	BF-ORI-UT-1g-04	07/24/14	INV	BF	Soil										х		
460-80009-5	BF-ORI-UT-1g-05	07/24/14	INV	BF	Soil										х		
460-80009-6	BF-ORI-UT-1g-06	07/24/14	INV	BF	Soil										х		
460-80009-7	BF-ORI-UT-1g-07	07/24/14	INV	BF	Soil										х		
460-80009-8	BF-ORI-UT-1c-01	07/24/14	INV	BF	Soil				Х	Х	Х	х	х	х		х	х
460-80009-9	BF-ORI-UT-1c-02	07/24/14	INV	BF	Soil				Х	Х	х	Х	х	Х		Х	Х

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-80009-10	TB 7/24/14	07/24/14	TB	ТВ	Water										Х		1
460-80015-1	BF-ORI-WT-1g-01	07/24/14	INV	BF	Soil										Х		1
460-80015-2	BF-ORI-WT-1g-02	07/24/14	INV	BF	Soil										х		
460-80015-3	BF-ORI-WT-1g-03	07/24/14	INV	BF	Soil										х		
460-80015-4	BF-ORI-WT-1g-04	07/24/14	INV	BF	Soil										х		
460-80015-5	BF-ORI-WT-1g-05	07/24/14	INV	BF	Soil										Х		1
460-80015-6	BF-ORI-WT-1g-06	07/24/14	INV	BF	Soil										х		
460-80015-7	BF-ORI-WT-1g-07	07/24/14	INV	BF	Soil										х		
460-80015-8	BF-ORI-WT-1c-01	07/24/14	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	х
460-80015-9	BF-ORI-WT-1c-02	07/24/14	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	х
460-80015-10	TB 7/24/14	07/24/14	TB	ТВ	Water										Х		1
460-80075-1	ECS-Area 2-E2-F	07/25/14	INV	ECS	Soil	Х	Х										1
460-80075-1LR	ECS-Area 2-E2-FLR	07/25/14	MD	ECS	Soil	Х											1
460-80075-1MS	ECS-Area 2-E2-FMS	07/25/14	MS	ECS	Soil	х											
460-80130-1	ECS-Area 2-E3-F	07/28/14	INV	ECS	Soil	х	Х										
460-80767-1	BF-ORI-HS-2g-01	08/07/14	INV	BF	Soil										х		
460-80767-2	BF-ORI-HS-2g-02	08/07/14	INV	BF	Soil										х		
460-80767-3	BF-ORI-HS-2c-01	08/07/14	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	х
460-80767-3MS	BF-ORI-HS-2c-01MS	08/07/14	MS	BF	Soil											Х	
460-80767-3SD	BF-ORI-HS-2c-01SD	08/07/14	MSD	BF	Soil											Х	1
460-80768-1	BF-ETETZ-CF-1g-01	08/07/14	INV	BF	Soil										Х		1
460-80768-2	BF-ETETZ-CF-1g-02	08/07/14	INV	BF	Soil										Х		1
460-80768-3	BF-ETETZ-CF-1g-03	08/07/14	INV	BF	Soil										х		
460-80768-4	BF-ETETZ-CF-1g-04	08/07/14	INV	BF	Soil										Х		
460-80768-5	BF-ETETZ-CF-1g-05	08/07/14	INV	BF	Soil										Х		1
460-80768-6	BF-ETETZ-CF-1g-06	08/07/14	INV	BF	Soil										Х		1
460-80768-7	BF-ETETZ-CF-1g-07	08/07/14	INV	BF	Soil										х		
460-80768-8	BF-ETETZ-CF-1c-01	08/07/14	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	х
460-80768-8LR	BF-ETETZ-CF-1c-01LR	08/07/14	MD	BF	Soil						Х						1
460-80768-8MS	BF-ETETZ-CF-1c-01MS	08/07/14	MS	BF	Soil						Х			Х			1
460-80768-8SD	BF-ETETZ-CF-1c-01SD	08/07/14	MSD	BF	Soil									Х			1
460-80768-9	BF-ETETZ-CF-1c-02	08/07/14	INV	BF	Soil				Х	Х	Х	х	х	Х		Х	х
460-80768-10	TB-8/7/14	08/07/14	TB	TB	Water										Х		
460-80888-1	ECS-Area20-119-F	08/11/14	INV	ECS	Soil	х											
460-80888-2	ECS-Area20-120-F	08/11/14	INV	ECS	Soil	х											
460-80888-3	ECS-Area20-118-F	08/11/14	INV	ECS	Soil	х											
460-80888-4	DS-Area20-120-SS	08/11/14	INV	ECS	Soil	х											
460-80888-5	DS-Area20-118-SS	08/11/14	INV	ECS	Soil	х											
460-80971-1	ECS-Area20-117-F	08/12/14	INV	ECS	Soil	х											
460-80971-1LR	ECS-Area20-117-FLR	08/12/14	MD	ECS	Soil	х											

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-80971-1MS	ECS-Area20-117-FMS	08/12/14	MS	ECS	Soil	Х											
460-80971-2	DS-Area20-117-SS	08/12/14	INV	ECS	Soil	Х											
460-81078-1	DS-AREA 20-117-SN	08/12/14	INV	ECS	Soil	Х											
460-81232-1	ECS-AREA 11-G6-F	08/15/14	INV	ECS	Soil		Х										
460-81232-2	ECS-AREA 11-G5-F	08/15/14	INV	ECS	Soil		Х										
460-81232-3	ECS-AREA 11-G5-F-X	08/15/14	FD	ECS	Soil		х										
460-81552-1	BF-5L-UT-1g-01	08/21/14	INV	BF	Soil										х		
460-81552-2	BF-5L-UT-1g-02	08/21/14	INV	BF	Soil										х		
460-81552-3	BF-5L-UT-1g-03	08/21/14	INV	BF	Soil										Х		
460-81552-4	BF-5L-UT-1g-04	08/21/14	INV	BF	Soil										х		
460-81552-5	BF-5L-UT-1g-05	08/21/14	INV	BF	Soil										х		
460-81552-6	BF-5L-UT-1g-06	08/21/14	INV	BF	Soil										х		
460-81552-7	BF-5L-UT-1g-07	08/21/14	INV	BF	Soil										х		
460-81552-8	BF-5L-UT-1c-01	08/21/14	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	х
460-81552-8MS	BF-5L-UT-1c-01MS	08/21/14	MS	BF	Soil							Х	х				
460-81552-8SD	BF-5L-UT-1c-01SD	08/21/14	MSD	BF	Soil							Х	х				
460-81552-9	BF-5L-UT-1c-02	08/21/14	INV	BF	Soil				Х	Х	Х	х	х	Х		х	х
460-81552-9MS	BF-5L-UT-1c-02MS	08/21/14	MS	BF	Soil												х
460-81552-9SD	BF-5L-UT-1c-02SD	08/21/14	MSD	BF	Soil												х
460-81552-10	TB-8/21/14	08/21/14	TB	ТВ	Water										х		
460-81561-1	BF-ORI-HS-3g-01	08/21/14	INV	BF	Soil										х		
460-81561-2	BF-ORI-HS-3g-02	08/21/14	INV	BF	Soil										х		
460-81561-3	BF-ORI-HS-3c-01	08/21/14	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	х
460-81634-1	ECS-AREA 8-H3/4-F	08/22/14	INV	ECS	Soil			Х	Х								
460-81634-2	ECS-AREA 8-H4/5-F	08/22/14	INV	ECS	Soil		Х										
460-81634-2LR	ECS-AREA 8-H4/5-FLR	08/22/14	MD	ECS	Soil		Х										
460-81634-2MS	ECS-AREA 8-H4/5-FMS	08/22/14	MS	ECS	Soil		Х										
460-81749-1	ECS-AREA7-M5/6-F	08/26/14	INV	ECS	Soil		Х										
460-81749-2	ECS-AREA7-L5-F	08/26/14	INV	ECS	Soil		Х										
460-81749-3	ECS-AREA7-K5-F	08/26/14	INV	ECS	Soil		Х										
460-81828-1	SF-ETETZ-TB-1g-01	8/27/14	INV	BF	Soil										х		
460-81828-2	SF-ETETZ-TB-1g-02	8/27/14	INV	BF	Soil										х		
460-81828-3	SF-ETETZ-TB-1g-03	8/27/14	INV	BF	Soil										х		
460-81828-4	SF-ETETZ-TB-1g-04	8/27/14	INV	BF	Soil										х		
460-81828-5	SF-ETETZ-TB-1g-05	8/27/14	INV	BF	Soil										х		
460-81828-6	SF-ETETZ-TB-1g-06	8/27/14	INV	BF	Soil										х		
460-81828-7	SF-ETETZ-TB-1g-07	8/27/14	INV	BF	Soil										х		
460-81828-8	SF-ETETZ-TB-1c-01	8/27/14	INV	BF	Soil				Х	х	Х	х	х	х		х	Х
460-81828-8MS	SF-ETETZ-TB-1c-01MS	8/27/14	MS	BF	Soil									х			
460-81828-8SD	SF-ETETZ-TB-1c-01SD	8/27/14	MSD	BF	Soil									х			

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-81828-9	SF-ETETZ-TB-1c-02	8/27/14	INV	BF	Soil				х	Х	Х	Х	х	х		Х	х
460-81828-10	TB-8/27/14	8/27/14	TB	TB	Water										х		
460-82155-1	BF-5L-WT-1g-01	09/03/14	INV	BF	Soil										х		
460-82155-2	BF-5L-WT-1g-02	09/03/14	INV	BF	Soil										х		
460-82155-3	BF-5L-WT-1g-03	09/03/14	INV	BF	Soil										х		
460-82155-4	BF-5L-WT-1g-04	09/03/14	INV	BF	Soil										х		
460-82155-5	BF-5L-WT-1g-05	09/03/14	INV	BF	Soil										х		
460-82155-6	BF-5L-WT-1g-06	09/03/14	INV	BF	Soil										х		
460-82155-7	BF-5L-WT-1g-07	09/03/14	INV	BF	Soil										х		
460-82155-8	BF-5L-WT-1c-01	09/03/14	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	х
460-82155-8	BF-5L-WT-1c-01	09/03/14	INV RE	BF	Soil						Х						
460-82155-8LR	BF-5L-WT-1c-01LR	09/03/14	MD	BF	Soil					х							
460-82155-8MS	BF-5L-WT-1c-01MS	09/03/14	MS	BF	Soil					X		х	Х				
460-82155-8SD	BF-5L-WT-1c-01SD	09/03/14	MSD	BF	Soil							X	X				
460-82155-9	BF-5L-WT-1c-02	09/03/14	INV	BF	Soil				х	х	Х	X	X	х		х	х
460-82155-9	BF-5L-WT-1c-02	09/03/14	INV RE	BF	Soil						X						Α
460-82155-10	TB-9/3/14	09/03/14	TB	ТВ	Water*										х		
460-82246-1	ECS-AREA 6-Q8/9-F	09/04/14	INV	ECS	Soil		х										
460-82246-2	ECS-AREA 6-Q7-F	09/04/14	INV	ECS	Soil		X										
460-82246-3	ECS-AREA 6-P7-F	09/04/14	INV	ECS	Soil		X										
460-82246-4	ECS-AREA 6-07-F	09/04/14	INV	ECS	Soil		X										
460-82246-5	ECS-AREA 13-F/G-9-F	09/04/14	INV	ECS	Soil		X										
460-82246-6	ECS-AREA 12-H10-F	09/04/14	INV	ECS	Soil		X										
460-82461-1	SF-ETETZ-TB-2g-01	09/09/14	INV	BF	Soil										х		
460-82461-2	SF-ETETZ-TB-2g-02	09/09/14	INV	BF	Soil										х		
460-82461-3	SF-ETETZ-TB-2c-01	09/09/14	INV	BF	Soil				Х	Х	Х	х	х	х		x ⁽²⁾	Х
460-82461-3MS	SF-ETETZ-TB-2c-01MS	09/09/14	MS	BF	Soil												х
460-82461-3SD	SF-ETETZ-TB-2c-01SD	09/09/14	MSD	BF	Soil												х
460-82461-4	TB-9/9/14	09/09/14	ТВ	ТВ	Water										х		
460-82584-1	BF-ORI-WT-2g-01	09/10/14	INV	BF	Soil										х		
460-82584-2	BF-ORI-WT-2g-02	09/10/14	INV	BF	Soil										х		
460-82584-3	BF-ORI-WT-2c-01	09/10/14	INV	BF	Soil				Х	х	Х	х	х	х		x ⁽²⁾	Х
460-82584-3MS	BF-ORI-WT-2c-01MS	09/10/14	MS	BF	Soil											x ⁽²⁾	Х
460-82584-3SD	BF-ORI-WT-2c-01SD	09/10/14	MSD	BF	Soil											x ⁽²⁾	х
460-82585-1	BF-5L-UT-2g-01	09/10/14	INV	BF	Soil										х		
460-82585-2	BF-5L-UT-2g-02	09/10/14	INV	BF	Soil										х		
460-82585-3	BF-5L-UT-2c-01	09/10/14	INV	BF	Soil				Х	х	Х	х	х	х		x ⁽²⁾	х
460-82585-3MS	BF-5L-UT-2c-01MS	09/10/14	MS	BF	Soil												Х

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-82585-3SD	BF-5L-UT-2c-01SD	09/10/14	MSD	BF	Soil												х
460-82585-4	BF-5L-UT-3g-01	09/10/14	INV	BF	Soil										х		
460-82585-5	BF-5L-UT-3g-02	09/10/14	INV	BF	Soil										Х		
460-82585-6	BF-5L-UT-3c-01	09/10/14	INV	BF	Soil				Х	Х	Х	Х	х	Х		x ⁽²⁾	х
460-82657-1	ECS-K18-F	09/11/14	INV	ECS	Soil		Х										
460-82657-2	ECS-AREA5-W12-F	09/11/14	INV	ECS	Soil		Х										
460-82657-2LR	ECS-AREA5-W12-FLR	09/11/14	MD	ECS	Soil		Х										
460-82657-2MS	ECS-AREA5-W12-FMS	09/11/14	MS	ECS	Soil		Х										
460-82657-3	ECS-AREA5-X13-F	09/11/14	INV	ECS	Soil		Х										
460-82730-1	BF-5L-UT-4g-01	09/12/14	INV	BF	Soil										х		
460-82730-2	BF-5L-UT-4g-01X	09/12/14	FD	BF	Soil										х		
460-82730-3	BF-5L-UT-4g-02	09/12/14	INV	BF	Soil										х		
460-82730-4	BF-5L-UT-4c-01	09/12/14	INV	BF	Soil				х	Х	Х	Х	Х	Х		x ⁽²⁾	х
460-82730-5	BF-5L-UT-4c-01X	09/12/14	FD	BF	Soil				Х	Х	Х	Х	х	Х		x ⁽²⁾	х
460-82730-6	TB-9/12/14	09/12/14	TB	TB	Water										х		
460-82735-1	BF-ORI-WT-3g-01	09/12/14	INV	BF	Soil										х		
460-82735-2	BF-ORI-WT-3g-02	09/12/14	INV	BF	Soil										х		
460-82735-3	BF-ORI-WT-3g-02-X	09/12/14	FD	BF	Soil										х		
460-82735-4	BF-ORI-WT-3c-01	09/12/14	INV	BF	Soil				Х	Х	Х	Х	х	Х		x ⁽²⁾	х
460-82735-4MS	BF-ORI-WT-3c-01MS	09/12/14	MS	BF	Soil												х
460-82735-4SD	BF-ORI-WT-3c-01SD	09/12/14	MSD	BF	Soil												х
460-82735-5	BF-ORI-WT-3c-01-X	09/12/14	FD	BF	Soil				Х	Х	Х	Х	х	Х		x ⁽²⁾	х
460-82849-1	ECS-AZ5-F	09/13/14	INV	ECS	Soil			x ⁽²⁾	Х								
460-82904-1	ECS-AREA 3-U/V15-F	09/16/14	INV	ECS	Soil		Х										
460-82904-2	ECS-AREA 3-V16-F	09/16/14	INV	ECS	Soil		Х										
460-82904-3	ECS-AREA 3-V16-F-X	09/16/14	FD	ECS	Soil		Х										
460-82904-4	ECS-AREA 3-U16/17-F	09/16/14	INV	ECS	Soil		Х										
460-82981-1	ECS-AREA 3-T17-F	09/17/14	INV	ECS	Soil		Х										
460-83056-1	ECS-AREA3-S17-F	09/18/14	INV	ECS	Soil		Х										
460-83311-1	BF-ORI-HS-4g-01	09/23/14	INV	BF	Soil										х		
460-83311-2	BF-ORI-HS-4g-02	09/23/14	INV	BF	Soil										х		
460-83311-3	BF-ORI-HS-4c-01	09/23/14	INV	BF	Soil				Х	Х	Х	Х	х	х		х	Х
460-83311-3	BF-ORI-HS-4c-01	09/23/14	INV RE	BF	Soil						х						
460-83311-3MS	BF-ORI-HS-4c-01MS	09/23/14	MS	BF	Soil							х		х			
460-83311-3SD	BF-ORI-HS-4c-01SD	09/23/14	MSD	BF	Soil							X		х			\vdash
460-83312-1	BF-5L-WT-2g-01	09/23/14	INV	BF	Soil										х		\vdash
460-83312-2	BF-5L-WT-2g-02	09/23/14	INV	BF	Soil										X		
460-83312-3	BF-5L-WT-2c-01	09/23/14	INV	BF	Soil				х	х	х	х	х	х		х	Х
460-83312-4	BF-5L-WT-3g-01	09/23/14	INV	BF	Soil										х		

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-83312-5	BF-5L-WT-3g-02	09/23/14	INV	BF	Soil										х		
460-83312-6	BF-5L-WT-3c-01	09/23/14	INV	BF	Soil				Х	Х	Х	х	х	Х		Х	х
460-83312-7	BF-5L-WT-4g-01	09/23/14	INV	BF	Soil										х		
460-83312-8	BF-5L-WT-4g-02	09/23/14	INV	BF	Soil										х		
460-83312-9	BF-5L-WT-4c-01	09/23/14	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	х
460-83312-10	TB-9/23/14	09/23/14	TB	TB	Water										х		
460-83693-1	ECS-AREA2-P12-F	09/30/14	INV	ECS	Soil		Х										
460-83693-2	ECS-AREA2-P13-F	09/30/14	INV	ECS	Soil		Х										
460-83693-3	ECS-AREA2-Q12-F	09/30/14	INV	ECS	Soil		Х										
460-83781-1	BF-5L-UT-5g-01	10/01/14	INV	BF	Soil										х		
460-83781-2	BF-5L-UT-5g-02	10/01/14	INV	BF	Soil										Х		
460-83781-3	BF-5L-UT-5c-01	10/01/14	INV	BF	Soil				Х	Х	Х	х	х	Х		Х	х
460-83781-4	BF-5L-UT-6g-01	10/01/14	INV	BF	Soil										х		
460-83781-5	BF-5L-UT-6g-02	10/01/14	INV	BF	Soil										х		
460-83781-6	BF-5L-UT-6c-01	10/01/14	INV	BF	Soil				Х	Х	Х	х	х	Х		Х	х
460-83781-7	TB-10/1/14	10/01/14	TB	TB	Water										х		
460-83792-1	BF-ORI-HS-5g-01	10/01/14	INV	BF	Soil										х		
460-83792-2	BF-ORI-HS-5g-02	10/01/14	INV	BF	Soil										х		
460-83792-3	BF-ORI-HS-5c-01	10/01/14	INV	BF	Soil				Х	Х	Х	х	х	Х		Х	х
460-83792-3	BF-ORI-HS-5c-01	10/01/14	INV	BF	Soil						Х						
			RE														
460-83792-3MS	BF-ORI-HS-5c-01MS	10/01/14	MS	BF	Soil							Х					
460-83792-3SD	BF-ORI-HS-5c-01SD	10/01/14	MSD	BF	Soil							Х					
460-83871-1	ECS-AREA2-R13-F	10/02/14	INV	ECS	Soil		Х										
460-83871-1LR	ECS-AREA2-R13-FLR	10/02/14	MD	ECS	Soil		Х										
460-83871-1MS	ECS-AREA2-R13-FMS	10/02/14	MS	ECS	Soil		Х										
460-83871-2	ECS-AREA2-Q13-F	10/02/14	INV	ECS	Soil		Х										
460-84043-1	ECS-Area 2-O14/15-F	10/06/14	INV	ECS	Soil		Х										
460-84043-2	ECS-Area 2-P14-F	10/06/14	INV	ECS	Soil		Х										
460-84043-3	ECS-Area 2-Q14-F	10/06/14	INV	ECS	Soil		Х										
460-84043-4	ECS-Area 2-R14-F	10/06/14	INV	ECS	Soil		Х										
460-84043-5	ECS-Area 2-O15-F	10/06/14	INV	ECS	Soil		Х										
460-84043-6	ECS-Area 2-P15-F	10/06/14	INV	ECS	Soil		Х										
460-84043-7	ECS-Area 2-Q15-F	10/06/14	INV	ECS	Soil		Х										
460-84193-1	ECS-AREA2-Q16-F	10/08/14	INV	ECS	Soil			Х	Х								
460-84379-1	ECS-AREA2-R15-F	10/10/14	INV	ECS	Soil		Х										
460-84379-2	ECS-AREA2-R15-F-X	10/10/14	FD	ECS	Soil		х										
460-84379-3	ECS-AREA2-P16-F	10/10/14	INV	ECS	Soil		х										
460-84428-1	BF-ORI-HS-6g-01	10/13/14	INV	BF	Soil										х		
460-84428-2	BF-ORI-HS-6g-02	10/13/14	INV	BF	Soil										Х		

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-84428-3	BF-ORI-HS-6c-01	10/13/14	INV	BF	Soil				Х	Х	Х	Х	Х	Х		Х	Х
460-84428-3MS	BF-ORI-HS-6c-01MS	10/13/14	MS	BF	Soil								х				
460-84428-3SD	BF-ORI-HS-6c-01SD	10/13/14	MSD	BF	Soil								х				
460-84428-4	TB-10/13/14	10/13/14	TB	TB	Water										х		
460-84432-1	BF-5L-WT-5g-01	10/13/14	INV	BF	Soil										х		
460-84432-2	BF-5L-WT-5g-02	10/13/14	INV	BF	Soil										х		
460-84432-3	BF-5L-WT-5c-01	10/13/14	INV	BF	Soil				Х	Х	Х	х	х	Х		Х	х
460-84432-3LR	BF-5L-WT-5c-01LR	10/13/14	MD	BF	Soil				Х								
460-84432-3MS	BF-5L-WT-5c-01MS	10/13/14	MS	BF	Soil				Х								
460-84432-4	BF-5L-WT-6g-01	10/13/14	INV	BF	Soil										х		
460-84432-5	BF-5L-WT-6g-02	10/13/14	INV	BF	Soil										х		
460-84432-6	BF-5L-WT-6c-01	10/13/14	INV	BF	Soil				Х	Х	Х	х	х	Х		Х	х
460-84432-6MS	BF-5L-WT-6c-01MS	10/13/14	MS	BF	Soil							х					
460-84432-6SD	BF-5L-WT-6c-01SD	10/13/14	MSD	BF	Soil							х					
460-84593-1	ECS-AREA2-O16-F	10/15/14	INV	ECS	Soil		Х										
460-84593-2	ECS-AREA2-R16-F	10/15/14	INV	ECS	Soil		Х										

^{*} Two methanol containers were received for this trip blank with no low level (DI water) containers and thus it was analyzed as a high level soil with results reported in soil units.

- 1) Analysis performed by TestAmerica-Buffalo
- 2) Analysis performed by TestAmerica-Nashville

BF - Backfill Sample

ECS - Excavation Confirmation Sample

FD - Field Duplicate Sample

INV - Investigative Sample

MD – Matrix Duplicate Sample (unspiked)

MS - Matrix Spike Sample

MSD - Matrix Spike Duplicate Sample

RE - Reextracted/Reanalyzed Sample

TB - Trip Blank

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

- TCLP Pb: 1311/3010A/6010C for Lead in leachates of soil samples
- Total As and Pb: 3050B/ 6010C for Arsenic and Lead in soil samples
- Total TAL Metals: 3050B (3051 for TestAmerica-Nashville)/ 6010C for 22 ICP-AES Target Analyte List (TAL) Metals (Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc) in soil samples
- Hg: 7471B for total Mercury in soil samples

- Total DER10 Metals: 3050B/ 6010C for 12 ICP-AES NYSDEC DER-10 Appendix 5 Metals (Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Lead, Manganese, Nickel, Selenium, Silver, and Zinc in soil samples
- Cr III/VI: 3060A/7196A for Trivalent Chromium and Hexavalent Chromium in soil samples
- PEST: 3546/ 3620C (3550C for TestAmerica-Buffalo)/ 8081B for 15 NYSDEC DER-10 Appendix 5 pesticides plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene in soil samples
- PCB: 3546/ 3665A/ 8082A for 7 Aroclors in soil samples
- HERB: 8151A for Silvex (2,4,5-TP) in soil samples
- VOC: 5035/8260C for 30 NYSDEC DER-10 Appendix 5 volatile organic compounds (VOCs) in soil samples and 5030B/ 8260C for 30 VOCs in aqueous trip blanks
- SVOC: 3541 prior to October 2014 and 3546 after October 2014 (3550C for TestAmerica-Nashville)/ 8270D for 20 NYSDEC DER-10 Appendix 5 semivolatile organic compounds (SVOCs) plus Dibenzofuran and Hexachlorobenzene in soil samples
- CN: 9012B for Cyanide in soil samples

TABLE 2 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- J- = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J-/J+ and R>UJ)

TABLE 3 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples May 2014 to October 2014

QC DEFICIENCIES AND DATA QUALIFICATION ACTIONS

Lab ID	Sample Code	Туре		Method		D	ate and Tin	ne	GC	D	Analyte	Lab	Spk	Spk	RPD	QC Issue	DVQs Applied
Labib	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC 135UC	DV 43 Applied
							1	MATRIX	DUPL	IC/	ATE (MD) PRECISION		,			1	_
460-	ECS-AREA2-	LR		3050B	6010C		10/3/14	10/4/14	NA	4	ARSENIC	*			20	Poor lab duplicate	J/UJ to detects/NDs for ECS
83871-	R13-F-						17:47	16:48								precision (31 RPD)	samples digested in the same
1LR	20141002LR																batch
							M	ATRIX SPI		_	CATE (MSD) PRECISION		,			1	_
460-	BF-ORI-HS-1C-	SD		3550C	8081B		7/10/14	7/11/14	1C	2	BETA BHC (BETA	*	36	139	19	Poor MS/MSD	J to detects for BF-ORI samples
78812-	01-20140702SD						15:00	9:54		0	HEXACHLOROCYCLO					precision (21 RPD)	analyzed in the same batch
8SD											HEXANE)						(none)
							1			_	TE (FD) PRECISION		,			1	_
460-	ECS-AREA 11-	N		3050B	6010C		8/18/14	8/21/14	NA	4	LEAD					Poor field duplicate	J/UJ to detects/NDs for original
81232-3	G5-F-X-						14:37	18:55								precision (51 RPD),	and duplicate sample
	20140815															use higher result	
																from original	
																sample	
460-	BF-5L-UT-4g-01-	N		5035	8260C		9/13/14	9/18/14	NA	1	ACETONE	U				Poor field duplicate	J/UJ to detects/NDs for original
82730-1	20140912						15:03	8:24								precision (absolute	and duplicate sample
																difference > 2xRL),	
																use higher value	
																from field duplicate	
460-	BF-ORI-WT-3g-	N		5035	8260C		9/13/14	9/18/14	NA	1	ACETONE	В				Poor field duplicate	J to detects for original and
82735-3	02-X-20140912						15:03	10:27								precision (49 RPD),	duplicate sample
																use higher result	
																from original	
																sample	
							LAB	ORATORY	CON	TRO	L SPIKE (LCS) ACCURAC	CY					
4602551	4602551242A4	BS		3050B	6010C		10/10/14	10/12/14	NA	4	ANTIMONY		0	209.		Extremely low	J-/R to detects/NDs for samples
242A4							17:57	12:42						5		laboratory control	digested in the same batch
																spike recovery	(assoc sample is ND)
																(39.3%) - within lab	
																limits but below	
																50%	

				Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	1C	1	ALDRIN	*	53	126		High laboratory control spike	J+ to detects for samples digested in the same batch
1926							12.40	21.32								recovery (133%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	2C	1	ALDRIN	*	53	126		High laboratory	J+ to detects for samples
192B							12:40	21:32								control spike recovery (131%)	digested in the same batch (none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	1C	1	ALPHA BHC (ALPHA	*	50	129		High laboratory	J+ to detects for samples
192B							12:40	21:32			HEXACHLOROCYCLO					control spike	digested in the same batch
											HEXANE)					recovery (140%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	2C	1	ALPHA BHC (ALPHA	*	50	129		High laboratory	J+ to detects for samples
192B							12:40	21:32			HEXACHLOROCYCLO					control spike	digested in the same batch
4000004	4602391192B	BS		25.40	8081B		7/00/4.4	7/28/14	40	_	HEXANE) ALPHA ENDOSULFAN	*	53	127		recovery (137%)	(none)
4602391 192B	4602391192B	82		3546	8081B		7/28/14 12:40	21:32	1C	1	ALPHA ENDOSULFAN		53	127		High laboratory control spike	J+ to detects for samples digested in the same batch
1920							12.40	21.32								recovery (142%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	2C	1	ALPHA ENDOSULFAN	*	53	127		High laboratory	J+ to detects for samples
192B	10020011020			0010	00012		12:40	21:32	20	ļ ·	TELL TITLE COOL THE		00			control spike	digested in the same batch
																recovery (138%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	1C	1	BETA BHC (BETA	*	51	131		High laboratory	J+ to detects for samples
192B							12:40	21:32			HEXACHLOROCYCLO					control spike	digested in the same batch
											HEXANE)					recovery (137%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	1C	1	BETA ENDOSULFAN	*	52	127		High laboratory	J+ to detects for samples
192B							12:40	21:32								control spike	digested in the same batch
4000004	4000004400D			05.40	00045		7/00/4.4	7/00/44	-00	_	DETA FAIDOOULEAN			407		recovery (140%)	(none)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	2C	1	BETA ENDOSULFAN	_	52	127		High laboratory control spike	J+ to detects for samples digested in the same batch
1920							12.40	21.32								recovery (135%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	1C	1	DELTA BHC (DELTA	*	40	130		High laboratory	J+ to detects for samples
192B	10020011020			0010	00012		12:40	21:32		l .	HEXACHLOROCYCLO		10	100		control spike	digested in the same batch
											HEXANE)					recovery (147%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	2C	1	DELTA BHC (DELTA	*	40	130		High laboratory	J+ to detects for samples
192B							12:40	21:32			HEXACHLOROCYCLO					control spike	digested in the same batch
											HEXANE)					recovery (136%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	1C	1	DIELDRIN	*	48	126		High laboratory	J+ to detects for samples
192B							12:40	21:32								control spike	digested in the same batch
4000000	40000011225	D.0		05.10	00015		7/06/11	7/05//		Ļ	DIEL CO		40	460		recovery (144%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	2C	1	DIELDRIN		48	126		High laboratory	J+ to detects for samples
192B							12:40	21:32								control spike recovery (140%)	digested in the same batch (none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	1C	1	ENDOSULFAN	*	52	124		High laboratory	J+ to detects for samples
192B							12:40	21:32			SULFATE					control spike	digested in the same batch
										L		<u></u>				recovery (140%)	(none)

				Method	1	D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	2C	1	ENDOSULFAN SULFATE	*	52	124		High laboratory control spike recovery (131%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	1C	1	ENDRIN	*	48	126		High laboratory control spike recovery (135%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	2C	1	ENDRIN	*	48	126		High laboratory control spike recovery (130%)	none (recovery within 70-130% data qualification limits)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	1C	1	ENDRIN ALDEHYDE	*	57	124		High laboratory control spike recovery (125%)	none (recovery within 70-130% data qualification limits)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	1C	1	ENDRIN KETONE	*	55	124		High laboratory control spike recovery (147%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	2C	1	ENDRIN KETONE	*	55	124		High laboratory control spike recovery (131%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	1C	1	GAMMA BHC (LINDANE)	*	52	129		High laboratory control spike recovery (147%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	2C	1	GAMMA BHC (LINDANE)	*	52	129		High laboratory control spike recovery (132%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	1C	1	HEPTACHLOR	*	52	128		High laboratory control spike recovery (152%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	2C	1	HEPTACHLOR	*	52	128		High laboratory control spike recovery (129%)	none (recovery within 70-130% data qualification limits)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	1C	1	HEPTACHLOR EPOXIDE	*	53	122		High laboratory control spike recovery (137%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	2C	1	HEPTACHLOR EPOXIDE	*	53	122		High laboratory control spike recovery (128%)	none (recovery within 70-130% data qualification limits)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	1C	1	METHOXYCHLOR	*	47	126		High laboratory control spike recovery (153%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B	BS		3546	8081B		7/28/14 12:40	7/28/14 21:32	2C	1	METHOXYCHLOR	*	47	126		High laboratory control spike recovery (133%)	J+ to detects for samples digested in the same batch (none)

1 .1 15	0			Method		D	ate and Tin	ne	GC	D	A 1	Lab	Spk	Spk	RPD	001	DVC A LUE I
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	1C	1	P,P'-DDD	*	50	131		High laboratory	J+ to detects for samples
192B							12:40	21:32								control spike	digested in the same batch
																recovery (157%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	2C	1	P,P'-DDD	*	50	131		High laboratory	J+ to detects for samples
192B							12:40	21:32								control spike	digested in the same batch
																recovery (151%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	1C	1	P,P'-DDE	*	49	130		High laboratory	J+ to detects for samples
192B							12:40	21:32								control spike	digested in the same batch
																recovery (143%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	2C	1	P,P'-DDE	*	49	130		High laboratory	J+ to detects for samples
192B							12:40	21:32								control spike	digested in the same batch
																recovery (140%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	1C	1	P,P'-DDT	*	48	132		High laboratory	J+ to detects for samples
192B							12:40	21:32								control spike	digested in the same batch
																recovery (155%)	(none)
4602391	4602391192B	BS		3546	8081B		7/28/14	7/28/14	2C	1	P,P'-DDT	*	48	132		High laboratory	J+ to detects for samples
192B							12:40	21:32								control spike	digested in the same batch
																recovery (142%)	(none)
4602391	4602391192B RA	BS		3546	8081B		7/28/14	7/29/14	1C	1	ALDRIN	*	53	126		High laboratory	J+ to detects for samples
192B							12:40	13:05								control spike	digested in the same batch
										<u> </u>		*				recovery (145%)	(none)
4602391	4602391192B RA	BS		3546	8081B		7/28/14	7/29/14	2C	1	ALDRIN	*	53	126		High laboratory	J+ to detects for samples
192B							12:40	13:05								control spike	digested in the same batch
										<u> </u>						recovery (140%)	(none)
4602391	4602391192B RA	BS		3546	8081B		7/28/14	7/29/14	1C	1	ALPHA BHC (ALPHA	*	50	129		High laboratory	J+ to detects for samples
192B							12:40	13:05			HEXACHLOROCYCLO					control spike	digested in the same batch
1000001	4000004400D DA	D0		0540	00045		7/00/4 4	7/00/44	-00	_	HEXANE)			400		recovery (147%)	(none)
4602391	4602391192B RA	BS		3546	8081B		7/28/14	7/29/14	2C	1	ALPHA BHC (ALPHA	*	50	129		High laboratory	J+ to detects for samples
192B							12:40	13:05			HEXACHLOROCYCLO					control spike	digested in the same batch
4602204	4602391192B RA	BS		3546	8081B		7/00/4 4	7/29/14	1C	4	HEXANE) ALPHA ENDOSULFAN	*	53	107		recovery (139%)	(none)
4602391	4602391192B RA	82		3546	80818		7/28/14		10	1	ALPHA ENDOSULFAN		53	127		High laboratory	J+ to detects for samples
192B							12:40	13:05								control spike	digested in the same batch
4602391	4602391192B RA	BS		3546	8081B		7/28/14	7/29/14	2C	1	ALPHA ENDOSULFAN	*	53	127		recovery (150%) High laboratory	(none) J+ to detects for samples
4602391 192B	4002331132D KA	D3		3340	00018		12:40	13:05	20	'	ALFIIA ENDUSULFAN		55	121		control spike	digested in the same batch
1920							12.40	13.03								recovery (142%)	(none)
4602391	4602391192B RA	BS		3546	8081B		7/28/14	7/29/14	1C	1	BETA BHC (BETA	*	51	131		High laboratory	J+ to detects for samples
192B	7002331132D KA	00		3340	0001B		12:40	13:05		'	HEXACHLOROCYCLO		31	131		control spike	digested in the same batch
1320							12.40	13.03			HEXACHLOROC (CLO					recovery (145%)	(none)
4602391	4602391192B RA	BS		3546	8081B		7/28/14	7/29/14	2C	1	BETA BHC (BETA	*	51	131		High laboratory	J+ to detects for samples
192B	7002331132D KA	00		3340	0001B		12:40	13:05	20	'	HEXACHLOROCYCLO		31	131		control spike	digested in the same batch
1320							12.40	13.03			HEXACHLOROC (CLO					recovery (133%)	(none)
				l	l				1		HEARINE)					recovery (133%)	(HOHE)

				Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	BETA ENDOSULFAN	*	52	127		High laboratory control spike recovery (140%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	BETA ENDOSULFAN	*	52	127		High laboratory control spike recovery (147%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	DELTA BHC (DELTA HEXACHLOROCYCLO HEXANE)	*	40	130		High laboratory control spike recovery (158%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	DELTA BHC (DELTA HEXACHLOROCYCLO HEXANE)	*	40	130		High laboratory control spike recovery (148%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	DIELDRIN	*	48	126		High laboratory control spike recovery (149%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	DIELDRIN	*	48	126		High laboratory control spike recovery (146%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	ENDOSULFAN SULFATE	*	52	124		High laboratory control spike recovery (157%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	ENDOSULFAN SULFATE	*	52	124		High laboratory control spike recovery (169%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	ENDRIN	*	48	126		High laboratory control spike recovery (145%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	ENDRIN	*	48	126		High laboratory control spike recovery (145%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	ENDRIN ALDEHYDE	*	57	124		High laboratory control spike recovery (138%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	ENDRIN ALDEHYDE	*	57	124		High laboratory control spike recovery (135%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	ENDRIN KETONE	*	55	124		High laboratory control spike recovery (156%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	ENDRIN KETONE	*	55	124		High laboratory control spike recovery (150%)	J+ to detects for samples digested in the same batch (none)

				Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	GAMMA BHC (LINDANE)	*	52	129		High laboratory control spike recovery (153%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	GAMMA BHC (LINDANE)	*	52	129		High laboratory control spike recovery (147%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	HEPTACHLOR	*	52	128		High laboratory control spike recovery (155%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	HEPTACHLOR	*	52	128		High laboratory control spike recovery (159%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	HEPTACHLOR EPOXIDE	*	53	122		High laboratory control spike recovery (147%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	HEPTACHLOR EPOXIDE	*	53	122		High laboratory control spike recovery (147%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	METHOXYCHLOR	*	47	126		High laboratory control spike recovery (162%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	METHOXYCHLOR	*	47	126		High laboratory control spike recovery (150%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	P,P'-DDD	*	50	131		High laboratory control spike recovery (151%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	P,P'-DDD	*	50	131		High laboratory control spike recovery (155%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	P,P'-DDE	*	49	130		High laboratory control spike recovery (151%)	J+ to detects for samples digested in the same batch
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	P,P'-DDE	*	49	130		High laboratory control spike recovery (152%)	J+ to detects for samples digested in the same batch
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	1C	1	P,P'-DDT	*	48	132		High laboratory control spike recovery (157%)	J+ to detects for samples digested in the same batch (none)
4602391 192B	4602391192B RA	BS		3546	8081B		7/28/14 12:40	7/29/14 13:05	2C	1	P,P'-DDT	*	48	132		High laboratory control spike recovery (163%)	J+ to detects for samples digested in the same batch (none)

		T_		Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		5V2 A II I
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4602493 582A	4602493582A	BS		3546	8081B		9/16/14 11:36	9/18/14 16:16	1C	1	ENDRIN KETONE	*	55	124		High laboratory control spike recovery (130%)	none (recovery within 70-130% data qualification limits)
4602400 503	4602400503	BS			8260C			8/1/14 6:21	NA	1	METHYLENE CHLORIDE	*	75	124		High laboratory control spike recovery (130%)	none (recovery within 70-130% data qualification limits)
4602400 504	4602400504	BD			8260C			8/1/14 6:45	NA	1	METHYLENE CHLORIDE		75	124	30	NA (within control)	NA
4602520 533	4602520533	BS			8260C			9/26/14 17:18	NA	1	METHYL ETHYL KETONE (2- BUTANONE)	*	58	140		High laboratory control spike recovery (141%)	none (average LCS/LCSD recovery (137%) passes)
4602520 534	4602520534	BD			8260C			9/26/14 17:42	NA	1	METHYL ETHYL KETONE (2- BUTANONE)		58	140	30	NA (within control)	NA
4602358 884	4602358884	BS			8260C			7/12/14 6:24	NA	1	ACETONE		58	139		NA (within control)	NA
4602358 885	4602358885	BD			8260C			7/12/14 6:55	NA	1	ACETONE	*	58	139	30	High laboratory control spike duplicate recovery (144%)	none (average LCS/LCSD recovery (130.5%) passes)
4602391 964	4602391964	BD			8260C			7/28/14 22:55	NA	1	N-BUTYLBENZENE	*	60	138	30	High laboratory control spike duplicate recovery (142%) - QC for TB only	none (analyte ND in this TB, samples results not affected)
4602391 963	4602391963	BS			8260C			7/28/14 22:30	NA	1	SEC-BUTYLBENZENE	*	63	130		High laboratory control spike recovery (131%) - QC for TB only	none (analyte ND in this TB, samples results not affected)
4602391 964	4602391964	BD			8260C			7/28/14 22:55	NA	1	SEC-BUTYLBENZENE	*	63	130	30	High laboratory control spike duplicate recovery (133%) - QC for TB only	none (analyte ND in this TB, samples results not affected)
4602400 453	4602400453	BS			8260C			8/1/14 6:28	NA	1	ACETONE	*	26	150		High laboratory control spike recovery (153%) - QC for TB only	analyte detected in this TB - do not flag samples based on TB result
4602448 933	4602448933	BS			8260C			8/25/14 20:24	NA	1	TRANS-1,2- DICHLOROETHENE	*	79	120		High laboratory control spike recovery (121%) - QC for TB only	none (recovery within 70-130% data qualification limits)

				Method		D:	ate and Tin	16	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4602462 504	4602462504	BS		•	8260C		·	9/2/14 6:55	NA	1	METHYLENE CHLORIDE	*	76	123		High laboratory control spike recovery (125%) - QC for TB only	none (recovery within 70-130% data qualification limits)
4602523 904	4602523904	BS			8260C			9/29/14 6:55	NA	1	1,4-DIOXANE (P- DIOXANE)	*	46	150		High laboratory control spike recovery (161%) - QC for TB only	none (analyte ND in this TB, samples results not affected)
4602565 193	4602565193	BS			8260C			10/17/14 11:18	NA	1	TRICHLORO- ETHYLENE (TCE)	*	74	120		High laboratory control spike recovery (161%) - QC for TB only	none (analyte ND in this TB, samples results not affected)
4602565 194	4602565194	BD			8260C			10/17/14 11:43	NA	1	TRICHLORO- ETHYLENE (TCE)	*	74	120	30	High laboratory control spike duplicate recovery (167%) - QC for TB only	none (analyte ND in this TB, samples results not affected)
4602572 583A	4602572583A	BS		3546	8270D		10/21/14 7:57	10/21/14 13:41	NA	1	BENZO(A)PYRENE	*	36	89		High laboratory control spike recovery (98%)	none (recovery within 70-130% data qualification limits)
								MATE	RIX SF	IKE	(MS) ACCURACY	•					
460- 78812- 9MS	BF-ORI-HS-1C- 02-20140702MS	MS		3050B	6010C		7/6/14 17:57	7/7/14 15:28	NA	4	MANGANESE	*	75	125		Low matrix spike recovery (30%)	none (checked waived because unspiked sample conc > 4x spike amount), PDS passes
460- 78812- 9PDS	BF-ORI-HS-1C- 02- 20140702PDS	PDS		3050B	6010C		7/6/14 17:57	7/7/14 15:32	NA	4	MANGANESE	*	75	125		Low post digestion spike recovery (73%)	J-/UJ to detects/NDs for BF-ORI samples digested in the same batch
460- 82155- 8MS	BF-5L-WT-1c-01- 20140903MS	MS		3050B	6010C		9/4/14 16:37	9/6/14 16:27	NA	4	MANGANESE	*	75	125		Extremely low matrix spike recovery (-119%)	none (checked waived because unspiked sample conc > 4x spike amount), PDS passes
460- 78812- 8MS	BF-ORI-HS-1C- 01-20140702MS	MS		3550C	8081B		7/10/14 15:00	7/11/14 9:36	1C	0	ENDRIN ALDEHYDE	*	20	120		Extremely low matrix spike recovery (0%)	none (recovery affected by 20x dilution of MS)
460- 78812- 8SD	BF-ORI-HS-1C- 01-20140702SD	SD		3550C	8081B		7/10/14 15:00	7/11/14 9:54	1C	0	ENDRIN ALDEHYDE	*	20	120	47	Extremely low matrix spike duplicate recovery (0%)	none (recovery affected by 20x dilution of MSD)
460- 84432- 6MS	BF-5L-WT-6c-01- 20141013MS	MS		3546	8081B		10/15/14 8:05	10/16/14 15:06	1C	1	BETA BHC (BETA HEXACHLOROCYCLO HEXANE)	*	67	137		Low matrix spike recovery (56%)	J-/UJ to detects/NDs for BF-5L samples digested in the same batch
460- 84432- 6SD	BF-5L-WT-6c-01- 20141013SD	SD		3546	8081B		10/15/14 8:05	10/16/14 15:20	1C	1	BETA BHC (BETA HEXACHLOROCYCLO HEXANE)	*	67	137	30	Low matrix spike duplicate recovery (65%)	J-/UJ to detects/NDs for BF-5L samples digested in the same batch

Lat ID	Commis Code	T		Method		D	ate and Tin	ne	GC	D	Amaluta	Lab	Spk	Spk	RPD	00.1	DVO- Ameliad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460-	BF-5L-WT-6c-01-	MS		3546	8081B		10/15/14	10/16/14	2C	1	BETA BHC (BETA	*	67	137		Low matrix spike	J-/UJ to detects/NDs for BF-5L
84432-	20141013MS						8:05	15:06			HEXACHLOROCYCLO					recovery (60%)	samples digested in the same
6MS											HEXANE)						batch
460-	BF-5L-WT-6c-01-	SD		3546	8081B		10/15/14	10/16/14	2C	1	BETA BHC (BETA	*	67	137	30	Low matrix spike	J-/UJ to detects/NDs for BF-5L
84432-	20141013SD						8:05	15:20			HEXACHLOROCYCLO					duplicate recovery	samples digested in the same
6SD	BF-ORI-HS-2c-	MS		3541	0070D		0/44/44	8/12/14	NA	1	HEXANE)	*	37	00		(65%)	J-/UJ to detects/NDs for BF-ORI
460- 80767-	01-20140807MS	IVIS		3541	8270D		8/11/14 10:09	12:05	NA	1	PENTACHLORO- PHENOL		3/	99		Low matrix spike recovery (33%)	samples digested in the same
3MS	01-20140807W3						10.09	12.05			PHENOL					recovery (33%)	batch
460-	BF-ORI-HS-2c-	SD		3541	8270D		8/11/14	8/12/14	NA	1	PENTACHLORO-		37	99	30	Low matrix spike	J-/UJ to detects/NDs for BF-ORI
80767-	01-20140807SD						10:09	12:29			PHENOL					duplicate recovery	samples digested in the same
3SD																(40%)	batch
460-	BF-ORI-WT-2c-	MS		3550C	8270D		9/15/14	9/16/14	NA	1	BENZO(A)	*	23	120		Extremely low	J-/R to detects/NDs for BF-ORI
82584-	01-20140910MS						10:54	20:52			ANTHRACENE					matrix spike	samples digested in the same
3MS																recovery (12%)	batch (assoc sample has detect)
460-	BF-ORI-WT-2c-	SD		3550C	8270D		9/15/14	9/16/14	NA	1	BENZO(A)	*	23	120	50	Extremely low	J-/R to detects/NDs for BF-ORI
82584- 3SD	01-20140910SD						10:54	21:15			ANTHRACENE					matrix spike	samples digested in the same
350																duplicate recovery (4%)	batch (assoc sample has detect)
460-	BF-ORI-WT-2c-	MS		3550C	8270D		9/15/14	9/16/14	NA	1	BENZO(A)PYRENE	*	15	128		Extremely low	J-/R to detects/NDs for BF-ORI
82584-	01-20140910MS						10:54	20:52								matrix spike	samples digested in the same
3MS																recovery (9%)	batch (assoc sample has detect)
460-	BF-ORI-WT-2c-	SD		3550C	8270D		9/15/14	9/16/14	NA	1	BENZO(A)PYRENE	*	15	128	50	Extremely low	J-/R to detects/NDs for BF-ORI
82584-	01-20140910SD						10:54	21:15								matrix spike	samples digested in the same
3SD																duplicate recovery	batch (assoc sample has detect)
																(4%)	
460-	BF-ORI-WT-2c-	MS		3550C	8270D		9/15/14	9/16/14	NA	1	BENZO(B)		12	133		Extremely low	J-/R to detects/NDs for BF-ORI
82584- 3MS	01-20140910MS						10:54	20:52			FLUORANTHENE					matrix spike recovery (-7%)	samples digested in the same batch (assoc sample has detect)
460-	BF-ORI-WT-2c-	SD		3550C	8270D		9/15/14	9/16/14	NA	1	BENZO(B)	*	12	133	50	Extremely low	J-/R to detects/NDs for BF-ORI
82584-	01-20140910SD	30		33300	02700		10:54	21:15	INA	'	FLUORANTHENE		12	133	30	matrix spike	samples digested in the same
3SD	01-201409100D						10.54	21.10			TEOORANTIENE					duplicate recovery	batch (assoc sample has detect)
002																(-17%)	batton (access cample has detect)
460-	BF-ORI-WT-2c-	MS		3550C	8270D		9/15/14	9/16/14	NA	1	BENZO(G,H,I)		22	120		Low matrix spike	J-/UJ to detects/NDs for BF-ORI
82584-	01-20140910MS						10:54	20:52			PERYLENE					recovery (33%)	samples digested in the same
3MS																	batch
460-	BF-ORI-WT-2c-	SD		3550C	8270D	·	9/15/14	9/16/14	NA	1	BENZO(G,H,I)		22	120	50	Low matrix spike	J-/UJ to detects/NDs for BF-ORI
82584-	01-20140910SD						10:54	21:15			PERYLENE					duplicate recovery	samples digested in the same
3SD																(26%)	batch
460-	BF-ORI-WT-2c-	MS		3550C	8270D		9/15/14	9/16/14	NA	1	BENZO(K)		28	120		Low matrix spike	J-/UJ to detects/NDs for BF-ORI
82584-	01-20140910MS						10:54	20:52			FLUORANTHENE					recovery (32%)	samples digested in the same
3MS		<u> </u>															batch

		_		Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		51/2 4 11 1
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460-	BF-ORI-WT-2c-	SD		3550C	8270D		9/15/14	9/16/14	NA	1	BENZO(K)		28	120	45	Low matrix spike	J-/UJ to detects/NDs for BF-ORI
82584-	01-20140910SD						10:54	21:15			FLUORANTHENE					duplicate recovery	samples digested in the same
3SD	DE ODLANT 0-	MC		25500	0070D		0/45/44	0/40/44	NIA	4	CHDYCENE	*	00	400		(31%)	batch
460- 82584-	BF-ORI-WT-2c- 01-20140910MS	MS		3550C	8270D		9/15/14 10:54	9/16/14 20:52	NA	1	CHRYSENE	^	20	120		Extremely low matrix spike	J-/R to detects/NDs for BF-ORI samples digested in the same
3MS	01-201409101013						10.54	20.32								recovery (5%)	batch (assoc sample has detect)
460-	BF-ORI-WT-2c-	SD		3550C	8270D		9/15/14	9/16/14	NA	1	CHRYSENE	*	20	120	49	Extremely low	J-/R to detects/NDs for BF-ORI
82584-	01-20140910SD			00000	02.02		10:54	21:15		·	0			.20	.0	matrix spike	samples digested in the same
3SD																duplicate recovery	batch (assoc sample has detect)
																(-1%)	
460-	BF-ORI-WT-2c-	MS		3550C	8270D		9/15/14	9/16/14	NA	1	FLUORANTHENE	*	10	143		Extremely low	none (checked waived because
82584-	01-20140910MS						10:54	20:52								matrix spike	unspiked sample conc > 1x
3MS	DE 001117 0	0.0		0==00	20725		0/4=/4.4	0/40/44			ELLIOD ANTIJENE	_	- 10	4.40		recovery (-31%)	spike amount)
460-	BF-ORI-WT-2c-	SD		3550C	8270D		9/15/14 10:54	9/16/14	NA	1	FLUORANTHENE	*	10	143	50	Extremely low	none (checked waived because
82584- 3SD	01-20140910SD						10:54	21:15								matrix spike duplicate recovery	unspiked sample conc > 1x spike amount)
300																(-42%)	Spike amounty
460-	BF-ORI-WT-2c-	MS		3550C	8270D		9/15/14	9/16/14	NA	1	INDENO(1,2,3-C,D)		22	121		Low matrix spike	J-/UJ to detects/NDs for BF-ORI
82584-	01-20140910MS						10:54	20:52			PYRENE					recovery (35%)	samples digested in the same
3MS																	batch
460-	BF-ORI-WT-2c-	SD		3550C	8270D		9/15/14	9/16/14	NA	1	INDENO(1,2,3-C,D)		22	121	50	Low matrix spike	J-/UJ to detects/NDs for BF-ORI
82584-	01-20140910SD						10:54	21:15			PYRENE					duplicate recovery	samples digested in the same
3SD	BF-ORI-WT-2c-	MS		3550C	8270D		9/15/14	9/16/14	NA	1	PENTACHLORO-		19	145		(30%) Low matrix spike	batch J-/UJ to detects/NDs for BF-ORI
460- 82584-	01-20140910MS	IVIS		3550C	82700		9/15/14	9/16/14 20:52	NA	1	PENTACHLORO- PHENOL		19	145		recovery (39%)	samples digested in the same
3MS	01 20140310IVIO						10.04	20.02			THENOE					10000019 (0070)	batch
460-	BF-ORI-WT-2c-	SD		3550C	8270D		9/15/14	9/16/14	NA	1	PENTACHLORO-		19	145	50	Low matrix spike	J-/UJ to detects/NDs for BF-ORI
82584-	01-20140910SD						10:54	21:15			PHENOL					duplicate recovery	samples digested in the same
3SD																(40%)	batch
460-	BF-ORI-WT-2c-	MS		3550C	8270D		9/15/14	9/16/14	NA	1	PHENANTHRENE		21	122		Low matrix spike	J-/UJ to detects/NDs for BF-ORI
82584-	01-20140910MS						10:54	20:52								recovery (32%)	samples digested in the same
3MS																	batch
460-	BF-ORI-WT-2c-	SD		3550C	8270D		9/15/14	9/16/14	NA	1	PHENANTHRENE		21	122	50	Low matrix spike	J-/UJ to detects/NDs for BF-ORI
82584-	01-20140910SD						10:54	21:15								duplicate recovery	samples digested in the same
3SD																(25%)	batch
460-	BF-ORI-WT-2c-	MS		3550C	8270D		9/15/14	9/16/14	NA	1	PYRENE	*	20	123		Extremely low	J-/R to detects/NDs for BF-ORI
82584-	01-20140910MS						10:54	20:52								matrix spike	samples digested in the same
3MS																recovery (-18%)	batch (assoc sample has detect)
460-	BF-ORI-WT-2c-	SD		3550C	8270D		9/15/14	9/16/14	NA	1	PYRENE	*	20	123	50	Extremely low	J-/R to detects/NDs for BF-ORI
82584-	01-20140910SD						10:54	21:15								matrix spike	samples digested in the same
3SD																duplicate recovery	batch (assoc sample has detect)
																(-23%)	

Lab ID	Commis Code	T		Method		D	ate and Tin	пе	GC	D	Amaluta	Lab	Spk	Spk	RPD	001	DVO- Analist
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
								SUR	ROG/	ATE ((SU) RECOVERY						
460-	BF-ORI-HS-1C-	MS		3550C	8081B		7/10/14	7/11/14	1C	2	2,4,5,6-	*	30	124		Extremely low	none (recovery affected by 20x
78812-	01-20140702MS						15:00	9:36		0	TETRACHLORO-					surrogate spike	dilution of sample)
8MS											META-XYLENE					recovery (0%)	
460-	BF-ORI-HS-1C-	MS		3550C	8081B		7/10/14	7/11/14	1C	2	DECACHLORO	*	32	136		Extremely low	none (recovery affected by 20x
78812-	01-20140702MS						15:00	9:36		0	BIPHENYL,					surrogate spike	dilution of sample)
8MS											2,2',3,3',4,4',5,5',6,6'-					recovery (0%)	
400	DE ODI HO 40	МС		25500	0004D		7/40/44	7/44/44	200		(IUPAC 209)	*	20	404		Fortuna and to large	
460- 78812-	BF-ORI-HS-1C- 01-20140702MS	MS		3550C	8081B		7/10/14 15:00	7/11/14 9:36	2C	2	2,4,5,6- TETRACHLORO-		30	124		Extremely low	none (recovery affected by 20x dilution of sample)
8MS	01-20140702IVIS						15:00	9.30		U	META-XYLENE					surrogate spike recovery (0%)	dilution of sample)
460-	BF-ORI-HS-1C-	MS		3550C	8081B		7/10/14	7/11/14	2C	2	DECACHLORO	*	32	136		Extremely low	none (recovery affected by 20x
78812-	01-20140702MS	IVIO		33300	00010		15:00	9:36	20	0	BIPHENYL,		32	130		surrogate spike	dilution of sample)
8MS	01 201407021110						10.00	3.50			2,2',3,3',4,4',5,5',6,6'-					recovery (0%)	didition of sample)
00											(IUPAC 209)						
460-	BF-ORI-HS-1C-	SD		3550C	8081B		7/10/14	7/11/14	1C	2	2,4,5,6-	*	30	124		Extremely low	none (recovery affected by 20x
78812-	01-20140702SD						15:00	9:54		0	TETRACHLORO-					surrogate spike	dilution of sample)
8SD											META-XYLENE					recovery (0%)	. ,
460-	BF-ORI-HS-1C-	SD		3550C	8081B		7/10/14	7/11/14	1C	2	DECACHLORO	*	32	136		Extremely low	none (recovery affected by 20x
78812-	01-20140702SD						15:00	9:54		0	BIPHENYL,					surrogate spike	dilution of sample)
8SD											2,2',3,3',4,4',5,5',6,6'-					recovery (0%)	
											(IUPAC 209)						
460-	BF-ORI-HS-1C-	SD		3550C	8081B		7/10/14	7/11/14	2C	2	2,4,5,6-	*	30	124		Extremely low	none (recovery affected by 20x
78812-	01-20140702SD						15:00	9:54		0	TETRACHLORO-					surrogate spike	dilution of sample)
8SD											META-XYLENE					recovery (0%)	
460-	BF-ORI-HS-1C-	SD		3550C	8081B		7/10/14	7/11/14	2C	2	DECACHLORO	*	32	136		Extremely low	none (recovery affected by 20x
78812-	01-20140702SD						15:00	9:54		0	BIPHENYL,					surrogate spike	dilution of sample)
8SD											2,2',3,3',4,4',5,5',6,6'- (IUPAC 209)					recovery (0%)	
460-	BF-ORI-HS-1C-	N		3550C	8081B		7/10/14	7/11/14	1C	2	2,4,5,6-	*	30	124		Extremely low	none (recovery affected by 20x
78812-8	01-20140702						15:00	10:11		0	TETRACHLORO-					surrogate spike	dilution of sample)
											META-XYLENE					recovery (0%)	
460-	BF-ORI-HS-1C-	N		3550C	8081B		7/10/14	7/11/14	1C	2	DECACHLORO	*	32	136		Extremely low	none (recovery affected by 20x
78812-8	01-20140702						15:00	10:11		0	BIPHENYL,					surrogate spike	dilution of sample)
											2,2',3,3',4,4',5,5',6,6'-					recovery (0%)	
400	DE ODI 110 40			05500	00045		7/40/44	7/44/44	-00	_	(IUPAC 209)		-00	404		F ((to 11 00
460- 78812-8	BF-ORI-HS-1C- 01-20140702	N		3550C	8081B		7/10/14 15:00	7/11/14 10:11	2C	2	2,4,5,6- TETRACHLORO-	_	30	124		Extremely low	none (recovery affected by 20x
10012-0	01-20140702						15.00	10.11		U	META-XYLENE					surrogate spike recovery (0%)	dilution of sample)
460-	BF-ORI-HS-1C-	N		3550C	8081B		7/10/14	7/11/14	2C	2	DECACHLORO	*	32	136		Extremely low	none (recovery affected by 20x
78812-8	01-20140702	IN		33300	00010		15:00	10:11	20	0	BIPHENYL,		52	130		surrogate spike	dilution of sample)
7 30 12 0	01 20140102						10.00	10.11			2,2',3,3',4,4',5,5',6,6'-					recovery (0%)	and of sample)
											(IUPAC 209)						

		_		Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460-	BF-ORI-HS-1C-	N		3550C	8081B		7/10/14	7/11/14	1C	2	2,4,5,6-	*	30	124		Extremely low	none (recovery affected by 20x
78812-9	02-20140702						15:00	10:29		0	TETRACHLORO-					surrogate spike	dilution of sample)
											META-XYLENE					recovery (0%)	
460-	BF-ORI-HS-1C-	N		3550C	8081B		7/10/14	7/11/14	1C	2	DECACHLORO	*	32	136		Extremely low	none (recovery affected by 20x
78812-9	02-20140702						15:00	10:29		0	BIPHENYL,					surrogate spike	dilution of sample)
											2,2',3,3',4,4',5,5',6,6'-					recovery (0%)	
											(IUPAC 209)						
460-	BF-ORI-HS-1C-	N		3550C	8081B		7/10/14	7/11/14	2C	2	2,4,5,6-	*	30	124		Extremely low	none (recovery affected by 20x
78812-9	02-20140702						15:00	10:29		0	TETRACHLORO-					surrogate spike	dilution of sample)
											META-XYLENE					recovery (0%)	
460-	BF-ORI-HS-1C-	N		3550C	8081B		7/10/14	7/11/14	2C	2	DECACHLORO	*	32	136		Extremely low	none (recovery affected by 20x
78812-9	02-20140702						15:00	10:29		0	BIPHENYL,					surrogate spike	dilution of sample)
											2,2',3,3',4,4',5,5',6,6'-					recovery (0%)	. ,
											(IUPAC 209)					, (111)	
460-	BF-SER-	N		METH	8151A		5/20/14	5/22/14	2C	1	2.4-DICHLORO	*	69	150		High surrogate	J+ to detects for all analytes in
76301-9	RAMPD-DD-17c-			OD			21:40	7:34			PHENYLACETIC ACID					spike recovery	this sample (none)
	001-20140516															(165%)	
460-	BF-SER-	N		METH	8151A		5/20/14	5/22/14	2C	1	2,4-DICHLORO	*	69	150		High surrogate	J+ to detects for all analytes in
76301-	RAMPD-DD-18c-	''		OD	0.0.7		21:40	7:55		-	PHENYLACETIC ACID			.00		spike recovery	this sample (none)
12	001-20140516			0.5			2									(169%)	and dample (nems)
460-	BF-SER-	N		METH	8151A		5/20/14	5/22/14	1C	1	2,4-DICHLORO	*	69	150		High surrogate	J+ to detects for all analytes in
76301-	RAMPD-DD-19c-	'`		OD	010171		21:40	5:02			PHENYLACETIC ACID		00	100		spike recovery	this sample (none)
15	001-20140516			OB			21.40	0.02			THENTEROETIONOID					(155%)	uno sample (none)
460-	BF-SER-	N		METH	8151A		5/20/14	5/22/14	2C	1	2,4-DICHLORO	*	69	150		High surrogate	J+ to detects for all analytes in
76301-	RAMPD-DD-19c-	'		OD	OISIA		21:40	5:02	20	'	PHENYLACETIC ACID		03	130		spike recovery	this sample (none)
15	001-20140516			OB			21.40	0.02			THENTEROETIONOID					(170%)	uno sample (none)
460-	BF-ORI-HS-1C-	N		METH	8151A		7/7/14	7/10/14	1C	1	2,4-DICHLORO	*	69	150		High surrogate	J+ to detects for all analytes in
78812-8	01-20140702	'`		OD	010171		18:35	11:02	10	١.	PHENYLACETIC ACID		0.5	100		spike recovery	this sample (none)
70012-0	01-20140702			OD			10.55	11.02			THENTEACETIC ACID					(159%)	this sample (none)
460-	BF-ORI-HS-1C-	N		METH	8151A		7/7/14	7/10/14	1C	1	2.4-DICHLORO	*	69	150		High surrogate	J+ to detects for all analytes in
78812-9	02-20140702	'		OD	OISIA		18:35	11:24	10	١.	PHENYLACETIC ACID		03	130		spike recovery	this sample (none)
70012-9	02-20140702			OD			10.55	11.24			FILINILACE NO ACID					(158%)	this sample (none)
460-	BF-ORI-HS-1C-	N		METH	8151A		7/7/14	7/10/14	2C	1	2,4-DICHLORO	*	69	150		High surrogate	Lute detects for all analytes in
78812-9	02-20140702	IN		OD	0131A		18:35	11:24	20	'	PHENYLACETIC ACID		69	150		spike recovery	J+ to detects for all analytes in this sample (none)
70012-9	02-20140702			OD			10.33	11.24			PHENTLACETIC ACID					(152%)	this sample (none)
460-	BF-ORI-UT-1c-	N		METH	8151A		7/20/4 4	7/29/14	1C	1	2.4-DICHLORO	*	69	150		,	J+ to detects for all analytes in
		IN		OD	AICIO		7/28/14 10:29	15:47	10		,		69	150		High surrogate	•
80009-8	01-20140724			OD			10:29	15:47			PHENYLACETIC ACID					spike recovery (178%)	this sample (none)
460	DE ODLUT 4-	N		NACT!!	04544		7/00/4 4	7/00/4 4	10	1	2.4 DICH ODG	*	60	150		,	Li to doto do for all analytics in
460-	BF-ORI-UT-1c-	IN		METH	8151A		7/28/14	7/29/14	1C	Т	2,4-DICHLORO		69	150		High surrogate	J+ to detects for all analytes in
80009-9	02-20140724			OD			10:29	16:08			PHENYLACETIC ACID					spike recovery	this sample (none)
100	DE OD! WE:				0454		7/20//	=/00/4:		_	0.4.010111.000	_		4=0		(169%)	
460-	BF-ORI-WT-1c-	N		METH	8151A		7/28/14	7/29/14	1C	1	2,4-DICHLORO	*	69	150		High surrogate	J+ to detects for all analytes in
80015-9	02-20140724			OD			10:29	16:51			PHENYLACETIC ACID					spike recovery	this sample (none)
										<u> </u>						(167%)	

		Ι		Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 81552-8	BF-5L-UT-1c-01- 20140821	N		METH OD	8151A		8/26/14 20:58	8/28/14 9:26	2C	1	2,4-DICHLORO PHENYLACETIC ACID	*	69	150		High surrogate spike recovery (154%)	J+ to detects for all analytes in this sample (none)
460- 81828-8	SF-ETETZ-TB- 1c-01-20140827	N		METH OD	8151A		8/29/14 3:10	8/29/14 21:18	1C	1	2,4-DICHLORO PHENYLACETIC ACID	*	69	150		High surrogate spike recovery (178%)	J+ to detects for all analytes in this sample (none)
460- 81828-8	SF-ETETZ-TB- 1c-01-20140827	N		METH OD	8151A		8/29/14 3:10	8/29/14 21:18	2C	1	2,4-DICHLORO PHENYLACETIC ACID	*	69	150		High surrogate spike recovery (158%)	J+ to detects for all analytes in this sample (none)
460- 82461-3	SF-ETETZ-TB- 2c-01-20140909	N		METH OD	8151A		9/11/14 0:14	9/11/14 16:30	2C	1	2,4-DICHLORO PHENYLACETIC ACID	*	69	150		High surrogate spike recovery (157%)	J+ to detects for all analytes in this sample (none)
460- 82735-4	BF-ORI-WT-3c- 01-20140912	N		METH OD	8151A		9/15/14 23:33	9/16/14 18:59	2C	1	2,4-DICHLORO PHENYLACETIC ACID	*	69	150		High surrogate spike recovery (353%)	J+ to detects for all analytes in this sample (none)
460- 82735-5	BF-ORI-WT-3c- 01-X-20140912	N		METH OD	8151A		9/15/14 23:33	9/16/14 19:21	2C	1	2,4-DICHLORO PHENYLACETIC ACID	*	69	150		High surrogate spike recovery (237%)	J+ to detects for all analytes in this sample (none)
460- 83312-3	BF-5L-WT-2c-01- 20140923	N		METH OD	8151A		9/24/14 21:06	9/25/14 15:38	2C	1	2,4-DICHLORO PHENYLACETIC ACID	*	69	150		High surrogate spike recovery (264%)	J+ to detects for all analytes in this sample (none)
460- 83781-3	BF-5L-UT-5c-01- 20141001	N		METH OD	8151A		10/3/14 10:54	10/5/14 2:34	1C	1	2,4-DICHLORO PHENYLACETIC ACID	*	69	150		High surrogate spike recovery (182%)	J+ to detects for all analytes in this sample (none)
460- 83781-6	BF-5L-UT-6c-01- 20141001	N		METH OD	8151A		10/3/14 10:54	10/5/14 2:56	1C	1	2,4-DICHLORO PHENYLACETIC ACID	*	69	150		High surrogate spike recovery (167%)	J+ to detects for all analytes in this sample (none)
460- 83781-6	BF-5L-UT-6c-01- 20141001	N		METH OD	8151A		10/3/14 10:54	10/5/14 2:56	2C	1	2,4-DICHLORO PHENYLACETIC ACID	*	69	150		High surrogate spike recovery (152%)	J+ to detects for all analytes in this sample (none)
460- 83792-3	BF-ORI-HS-5c- 01-20141001	N		METH OD	8151A		10/3/14 10:54	10/4/14 23:42	1C	1	2,4-DICHLORO PHENYLACETIC ACID	*	69	150		High surrogate spike recovery (179%)	J+ to detects for all analytes in this sample (none)
460- 83792-3	BF-ORI-HS-5c- 01-20141001	N		METH OD	8151A		10/3/14 10:54	10/4/14 23:42	2C	1	2,4-DICHLORO PHENYLACETIC ACID	*	69	150		High surrogate spike recovery (152%)	J+ to detects for all analytes in this sample (none)
460- 80009-1	BF-ORI-UT-1g- 01-20140724	N		5035	8260C		7/25/14 15:31	8/1/14 9:07	NA	1	1,2-DICHLORO ETHANE-D4	*	70	130		High surrogate spike recovery (149%)	J+ to detects for all analytes in this sample
460- 80009-1	BF-ORI-UT-1g- 01-20140724	N		5035	8260C		7/25/14 15:31	8/1/14 9:07	NA	1	4-BROMO FLUOROBENZENE	*	70	130		High surrogate spike recovery (135%)	J+ to detects for all analytes in this sample

		_		Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		51/2 4 11 1
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 80009-2	BF-ORI-UT-1g- 02-20140724	N		5035	8260C		7/25/14 15:31	8/1/14 5:26	NA	1	4-BROMO FLUOROBENZENE	*	70	130		High surrogate spike recovery (155%)	J+ to detects for all analytes in this sample
460- 80009-3	BF-ORI-UT-1g- 03-20140724	N		5035	8260C		7/25/14 15:32	8/1/14 9:56	NA	1	4-BROMO FLUOROBENZENE	*	70	130		High surrogate spike recovery (145%)	J+ to detects for all analytes in this sample
460- 80009-4	BF-ORI-UT-1g- 04-20140724	N		5035	8260C		7/25/14 15:32	8/1/14 6:15	NA	1	4-BROMO FLUOROBENZENE	*	70	130		High surrogate spike recovery (147%)	J+ to detects for all analytes in this sample
460- 80009-6	BF-ORI-UT-1g- 06-20140724	N		5035	8260C		7/25/14 15:33	8/1/14 8:17	NA	1	4-BROMO FLUOROBENZENE	*	70	130		High surrogate spike recovery (143%)	J+ to detects for all analytes in this sample
460- 80009-7	BF-ORI-UT-1g- 07-20140724	N		5035	8260C		7/25/14 15:34	8/1/14 8:42	NA	1	4-BROMO FLUOROBENZENE	*	70	130		High surrogate spike recovery (140%)	J+ to detects for all analytes in this sample
460- 82155-7	BF-5L-WT-1g-07- 20140903	N		5035	8260C		9/4/14 15:59	9/11/14 10:41	NA	1	1,2-DICHLORO ETHANE-D4	*	70	130		High surrogate spike recovery (136%)	J+ to detects for all analytes in this sample (none)
460- 82730-1	BF-5L-UT-4g-01- 20140912	N		5035	8260C		9/13/14 15:03	9/18/14 8:24	NA	1	1,2-DICHLORO ETHANE-D4	*	70	130		High surrogate spike recovery (135%)	J+ to detects for all analytes in this sample (none)
460- 82730-1	BF-5L-UT-4g-01- 20140912	N		5035	8260C		9/13/14 15:03	9/18/14 8:24	NA	1	4-BROMO FLUOROBENZENE	*	70	130		High surrogate spike recovery (136%)	J+ to detects for all analytes in this sample (none)
460- 82730-2	BF-5L-UT-4g- 01X-20140912	N		5035	8260C		9/13/14 15:04	9/18/14 8:49	NA	1	4-BROMO FLUOROBENZENE	*	70	130		High surrogate spike recovery (148%)	J+ to detects for all analytes in this sample
460- 82730-3	BF-5L-UT-4g-02- 20140912	N		5035	8260C		9/13/14 15:05	9/18/14 9:14	NA	1	1,2-DICHLORO ETHANE-D4	*	70	130		High surrogate spike recovery (137%)	J+ to detects for all analytes in this sample
460- 82730-3	BF-5L-UT-4g-02- 20140912	N		5035	8260C		9/13/14 15:05	9/18/14 9:14	NA	1	4-BROMO FLUOROBENZENE	*	70	130		High surrogate spike recovery (169%)	J+ to detects for all analytes in this sample
460- 82730-3	BF-5L-UT-4g-02- 20140912	N		5035	8260C		9/13/14 15:05	9/18/14 9:14	NA	1	TOLUENE-D8	*	70	130		High surrogate spike recovery (147%)	J+ to detects for all analytes in this sample
460- 82735-1	BF-ORI-WT-3g- 01-20140912	N		5035	8260C		9/13/14 15:01	9/18/14 9:38	NA	1	1,2-DICHLORO ETHANE-D4	*	70	130		High surrogate spike recovery (137%)	J+ to detects for all analytes in this sample
460- 82735-1	BF-ORI-WT-3g- 01-20140912	N		5035	8260C		9/13/14 15:01	9/18/14 9:38	NA	1	4-BROMO FLUOROBENZENE	*	70	130		High surrogate spike recovery (177%)	J+ to detects for all analytes in this sample

		T		Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		51/2 4 11 1
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460-	BF-ORI-WT-3g-	N		5035	8260C		9/13/14	9/18/14	NA	1	TOLUENE-D8	*	70	130		High surrogate	J+ to detects for all analytes in
82735-1	01-20140912						15:01	9:38								spike recovery (162%)	this sample
460-	BF-ORI-WT-3g-	N		5035	8260C		9/13/14	9/18/14	NA	1	4-BROMO	*	70	130		High surrogate	J+ to detects for all analytes in
82735-2	02-20140912						15:02	10:03			FLUOROBENZENE					spike recovery (142%)	this sample
460-	BF-ORI-WT-3g-	N		5035	8260C		9/13/14	9/18/14	NA	1	TOLUENE-D8	*	70	130		High surrogate	J+ to detects for all analytes in
82735-2	02-20140912						15:02	10:03								spike recovery (138%)	this sample
460-	BF-ORI-HS-5g-	N		5035	8260C		10/2/14	10/9/14	NA	1	DIBROMOFLUOROME	*	70	130		High surrogate	J+ to detects for all analytes in
83792-2	02-20141001						18:34	9:42			THANE					spike recovery (135%)	this sample (none)
				1				L	ABOF	RAT	ORY BLANKS						
4901923	4901923081A	LB		3051	6010C		9/22/14	9/22/14	NA	1	LEAD	J				Preparation blank	U at RL to Js, J+ to detects <10x
081A							13:11	19:01								contamination	blank equivalent concentration
																(0.634 J mg/kg)	for samples prepared in the same batch (none)
4901923	4901923081A	LB		3051	6010C		9/22/14	9/22/14	NA	1	MANGANESE					Preparation blank	U at RL to Js, J+ to detects <10x
081A							13:11	19:01								contamination (7.6	blank equivalent concentration
																mg/kg)	for samples prepared in the same batch (none)
4901923	4901923081A	LB		3051	6010C		9/22/14	9/22/14	NA	1	SELENIUM	J				Preparation blank	U at RL to Js, J+ to detects <10x
081A							13:11	19:01								contamination (1.15	blank equivalent concentration
																J mg/kg)	for samples prepared in the same batch (none - all ND)
4901923	4901923081A	LB		3051	6010C		9/22/14	9/22/14	NA	1	SODIUM					Preparation blank	U at RL to Js, J+ to detects <10x
081A							13:11	19:01								contamination	blank equivalent concentration
																(777.6 mg/kg)	for samples prepared in the same batch (none - all ND)
4602259	4602259206	LB			8260C			5/22/14	NA	1	ACETONE					Method blank	U at RL to Js, U to detects < 2x
206								8:41								contamination (5.5	blank equivalent concentration
																ug/kg)	for samples prepared in the same batch (none)
4602260	4602260946	LB			8260C			5/22/14	NA	1	ACETONE					Method blank	U at RL to Js, U to detects < 2x
946								19:13								contamination (6.08	blank equivalent concentration
																ug/kg)	for samples prepared in the same batch
4602358	4602358887	LB			8260C			7/12/14	NA	1	ACETONE					Method blank	U at RL to Js, U to detects < 2x
887								7:54								contamination (7.29	blank equivalent concentration
																ug/kg)	for samples prepared in the
																	same batch

	0			Method		D	ate and Tin	ne	GC	D	A	Lab	Spk	Spk	RPD	001	DVG A A SIE I
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4602400 486	4602400486	LB			8260C			8/1/14 4:37	NA	1	ACETONE					Method blank contamination (8.28 ug/kg)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples prepared in the same batch
4602400 486	4602400486	LB			8260C			8/1/14 4:37	NA	1	METHYLENE CHLORIDE	J				Method blank contamination (0.21 J ug/kg)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples prepared in the same batch (none - all ND)
4602400 506	4602400506	LB			8260C			8/1/14 7:51	NA	1	ACETONE					Method blank contamination (6.57 ug/kg)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples prepared in the same batch (none - all ND)
4602400 506	4602400506	LB			8260C			8/1/14 7:51	NA	1	METHYLENE CHLORIDE	J				Method blank contamination (0.268 J ug/kg)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples prepared in the same batch (none - all ND)
4602466 256	4602466256	LB			8260C			9/3/14 20:25	NA	1	METHYLENE CHLORIDE	J				Method blank contamination (0.284 J ug/kg)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples prepared in the same batch (none)
4602490 056	4602490056	LB			8260C			9/15/14 8:16	NA	1	ACETONE	J				Method blank contamination (3.61 J ug/kg)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples prepared in the same batch (none)
4602498 967	4602498967	LB			8260C			9/18/14 5:05	NA	1	ACETONE	J				Method blank contamination (3.85 J ug/kg)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples prepared in the same batch (none)
4602521 606	4602521606	LB			8260C			9/27/14 7:40	NA	1	ACETONE	J				Method blank contamination (2.29 J ug/kg)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples prepared in the same batch (none)
4602564 196	4602564196	LB			8260C			10/16/14 19:47	NA	1		J				Method blank contamination (4.55 J ug/kg)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples prepared in the same batch (none)
				1						1	DBLANKS						
460- 78812- 10	TB-7/2/14- 20140702	ТВ			8260C			7/9/14 8:17	NA	1	ACETONE					Trip blank contamination (18 ug/l)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples shipped in the same container

uanty	Assulance Associates
	QAA, L.L.C.

				Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyto	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 80009- 10	TB 7/24/14- 20140724	TB		-	8260C			7/29/14 3:37	NA	1	ACETONE					Trip blank contamination (20 ug/l)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples shipped in the same container
460- 80015- 10	TB 7/24/14- 20140724	TB			8260C			8/1/14 11:53	NA	1	ACETONE					Trip blank contamination (21 ug/l)	none (TB result affected by high LCS recovery (153%) - possibly lab contamination for aqueous batch only)
460- 80768- 10	TB-8/7/14- 20140807	TB			8260C			8/14/14 18:27	NA	1	CHLOROFORM	J				Trip blank contamination (0.19 J ug/l)	U at RL to Js, U to detects < 1x blank equivalent concentration for samples shipped in the same container (none - all ND)
460- 80768- 10	TB-8/7/14- 20140807	TB			8260C			8/14/14 18:27	NA	1	METHYLENE CHLORIDE					Trip blank contamination (1.2 ug/l)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples shipped in the same container
460- 81552- 10	TB-8/21/14- 20140821	TB			8260C			8/26/14 1:53	NA	1	CHLOROFORM	J				Trip blank contamination (0.24 J ug/l)	U at RL to Js, U to detects < 1x blank equivalent concentration for samples shipped in the same container (none - all ND)
460- 81552- 10	TB-8/21/14- 20140821	TB			8260C			8/26/14 1:53	NA	1	METHYLENE CHLORIDE					Trip blank contamination (1.2 ug/l)	U at RL to Js, U to detects < 2x blank equivalent concentration for samples shipped in the same container
				•				·	INITIA	AL C	CALIBRATION					•	
249434	460249434	ICAL			6010C			9/16/14 10:39	NA	1	ZINC		0.99 8			Poor calibration curve fit (0.992 r)	J/UJ to detects/NDs for samples quantitated with this ICAL
40352	40352	ICAL			8270D			6/25/14 18:51	NA	1	ACENAPHTHENE		0.90			RRF (0.8661) below method requirement for highest ICAL standard (10 ug/ml)	None (lower standards within criteria indicating adequate sensitivity)
								CAL		TIO	N VERIFICATION						
CCV 460- 239208/ 45	CCV 460- 239208/45	CCV 2			8081B			7/29/14 2:02	1C	1	P,P'-DDD	*	-20	20		Calibration drift secondary column (%D= +35.4%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 239208/ 45	CCV 460- 239208/45	CCV 2			8081B			7/29/14 2:02	2C	1	P,P'-DDD	*	-20	20		Calibration drift primary column (%D= +32%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)

				Method		D	ate and Tim	10	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCV	CCV 460-	CCV			8081B		- 1	8/12/14	2C	1	ENDOSULFAN	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	242165/22	2						11:34			SULFATE					primary column	column for samples analyzed
242165/																(%D= +20.5%)	after and before this CCV (none)
22	201/ 100	001/			22215			0/40/44			51/B00/# 541/	_				0 111 11 116	
CCV	CCV 460-	CCV			8081B			8/12/14	2C	1	ENDOSULFAN	*	-20	20		Calibration drift	J+ to detects quantitated on this
460- 242175/	242175/22	1						11:34			SULFATE					primary column (%D= +20.5%)	column for samples analyzed after and before this CCV (none)
242173/																(%D= +20.5%)	arter and before this CCV (none)
CCV	CCV 460-	CCV			8081B			8/12/14	1C	1	ENDOSULFAN	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	242175/45	2			00012			11:34	10	•	SULFATE					secondary column	column for samples analyzed
242175/		_									552					(%D= +26.2%)	after and before this CCV (none)
45																,	, ,
CCV	CCV 460-	CCV			8081B			8/12/14	2C	1	ENDOSULFAN	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	242175/45	2						11:34			SULFATE					primary column	column for samples analyzed
242175/																(%D= +28.6%)	after and before this CCV (none)
45																	
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	DELTA BHC (DELTA	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/13	1						10:42			HEXACHLOROCYCLO					secondary column	column for samples analyzed
248337/ 13											HEXANE)					(%D= +21.7%)	after and before this CCV (none)
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	ENDRIN KETONE	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/13	1			00015			10:42	10	•	ENDININ RETONE		-20	20		secondary column	column for samples analyzed
248337/	210001710	·						10.12								(%D= +20.6%)	after and before this CCV (none)
13																(**	,
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	ALDRIN	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2						14:36								secondary column	column for samples analyzed
248337/																(%D= +21.6%)	after and before this CCV (none)
33																	
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	ALPHA BHC (ALPHA	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2						14:36			HEXACHLOROCYCLO					secondary column	column for samples analyzed
248337/											HEXANE)					(%D= +27.4%)	after and before this CCV (none)
33 CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	ALPHA ENDOSULFAN	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2			00015			14:36	10	•	ALI TIA LINDOGOLI AIN		-20	20		secondary column	column for samples analyzed
248337/	210001700	_						11.00								(%D= +22%)	after and before this CCV (none)
33																(**	,
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	DELTA BHC (DELTA	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2						14:36			HEXACHLOROCYCLO					secondary column	column for samples analyzed
248337/											HEXANE)					(%D= +30.7%)	after and before this CCV (none)
33																	
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	DIELDRIN	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2						14:36								secondary column	column for samples analyzed
248337/																(%D= +20.6%)	after and before this CCV (none)
33											<u> </u>	l	l	l			

	0			Method		Da	ate and Tin	ne	GC	D	A 1 4 .	Lab	Spk	Spk	RPD	001	DVQ - A II - I
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCV 460-	CCV 460- 248337/33	CCV 2			8081B			9/11/14 14:36	1C	1	ENDOSULFAN SULFATE	*	-20	20		Calibration drift	J+ to detects quantitated on this
248337/	240337/33	2						14:30			SULFATE					secondary column (%D= +30%)	column for samples analyzed after and before this CCV (none)
33																(700=10070)	and before this GOV (none)
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	ENDRIN KETONE	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2						14:36								secondary column	column for samples analyzed
248337/																(%D= +31.5%)	after and before this CCV (none)
33																	
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	GAMMA BHC	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2						14:36			(LINDANE)					secondary column	column for samples analyzed
248337/																(%D= +27.4%)	after and before this CCV (none)
33	201/100	001/			00015			0/44/44								0 111 11 116	
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	HEPTACHLOR	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2						14:36								secondary column	column for samples analyzed
248337/ 33																(%D= +22.6%)	after and before this CCV (none)
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	HEPTACHLOR	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2			00015			14:36	10	'	EPOXIDE		-20	20		secondary column	column for samples analyzed
248337/	240001700	_						14.00			LIONIDE					(%D= +20.2%)	after and before this CCV (none)
33																(705-120.270)	and and bolore the CCV (none)
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	METHOXYCHLOR	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2						14:36								secondary column	column for samples analyzed
248337/																(%D= +22%)	after and before this CCV (none)
33																	
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	P,P'-DDD	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2						14:36								secondary column	column for samples analyzed
248337/																(%D= +28.1%)	after and before this CCV (none)
33												*					
CCV	CCV 460-	CCV			8081B			9/11/14	1C	1	P,P'-DDE	*	-20	20		Calibration drift	J+ to detects quantitated on this
460- 248337/	248337/33	2						14:36								secondary column	column for samples analyzed after and before this CCV (none)
33																(%D= +21.8%)	after and before this CCV (none)
CCV	CCV 460-	CCV			8081B			9/11/14	2C	1	ALPHA BHC (ALPHA	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2			00015			14:36	20	Ċ	HEXACHLOROCYCLO		20	20		primary column	column for samples analyzed
248337/	210001700	_									HEXANE)					(%D= +25.2%)	after and before this CCV (none)
33											,					(()
CCV	CCV 460-	CCV			8081B			9/11/14	2C	1	ENDOSULFAN	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2						14:36			SULFATE					primary column	column for samples analyzed
248337/																(%D= +23.9%)	after and before this CCV (none)
33																	
CCV	CCV 460-	CCV	1]	8081B			9/11/14	2C	1	ENDRIN KETONE	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	248337/33	2						14:36								primary column	column for samples analyzed
248337/																(%D= +21.6%)	after and before this CCV (none)
33																	

				Method		D	ate and Tim	16	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCV 460- 248337/ 33	CCV 460- 248337/33	CCV 2			8081B		·	9/11/14 14:36	2C	1	P,P'-DDD	*	-20	20		Calibration drift primary column (%D= +20.5%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 249363/ 53	CCV 460- 249363/53	CCV 2			8081B			9/16/14 16:08	1C	1	ENDOSULFAN SULFATE	*	-20	20		Calibration drift secondary column (%D= +20.8%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 249363/ 53	CCV 460- 249363/53	CCV 2			8081B			9/16/14 16:08	1C	1	ENDRIN KETONE	*	-20	20		Calibration drift secondary column (%D= +25.8%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 256293/ 15	CCV 460- 256293/15	CCV 2			8081B			10/16/14 10:34	1C	1	ENDRIN	*	-20	20		Calibration drift secondary column (%D= +21%)	J+ to detects quantitated on this column for samples analyzed after and before this CCV (none)
CCV 460- 256369/ 67	CCV 460- 256369/67	CCV 2			8081B			10/16/14 18:59	1C	1	ENDOSULFAN SULFATE	*	-20	20		Calibration drift secondary column (%D= -21.3%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)
CCV 460- 256369/ 67	CCV 460- 256369/67	CCV 2			8081B			10/16/14 18:59	1C	1	ENDRIN ALDEHYDE	*	-20	20		Calibration drift secondary column (%D= -21.7%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)
CCV 460- 256369/ 67	CCV 460- 256369/67	CCV 2			8081B			10/16/14 18:59	1C	1	ENDRIN KETONE	*	-20	20		Calibration drift secondary column (%D= -29.4%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)
CCV 460- 256369/ 67	CCV 460- 256369/67	CCV 2			8081B			10/16/14 18:59	1C	1	METHOXYCHLOR	*	-20	20		Calibration drift secondary column (%D= -37.4%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)
CCV 460- 256369/ 67	CCV 460- 256369/67	CCV 2			8081B			10/16/14 18:59	1C	1	P,P'-DDT	*	-20	20		Calibration drift secondary column (%D= -41.8%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)
CCV 460- 256369/ 67	CCV 460- 256369/67	CCV 2			8081B			10/16/14 18:59	2C	1	ENDOSULFAN SULFATE	*	-20	20		Calibration drift primary column (%D= -20.7%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)
CCV 460- 256369/ 67	CCV 460- 256369/67	CCV 2			8081B			10/16/14 18:59	2C	1	ENDRIN ALDEHYDE	*	-20	20		Calibration drift primary column (%D= -20.8%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)

	0			Method		D	ate and Tin	ne	GC	D	A 1 . c .	Lab	Spk	Spk	RPD	001	DVO. A. J. J.
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCV	CCV 460-	CCV			8081B			10/16/14	2C	1	ENDRIN KETONE	*	-20	20		Calibration drift	J- to detects quantitated on this
460-	256369/67	2						18:59								primary column	column, UJ to NDs for samples
256369/																(%D= -23%)	analyzed after and before this
67											==						CCV (all NDs)
CCV	CCV 460-	CCV			8081B			10/16/14	2C	1	METHOXYCHLOR	*	-20	20		Calibration drift	J- to detects quantitated on this
460- 256369/	256369/67	2						18:59								primary column (%D= -31.3%)	column, UJ to NDs for samples analyzed after and before this
67																(%D= -31.3%)	CCV (all NDs)
CCV	CCV 460-	CCV			8081B			10/16/14	2C	1	P,P'-DDT	*	-20	20		Calibration drift	J- to detects quantitated on this
460-	256369/67	2			00012			18:59	20	•	1,1 221					primary column	column, UJ to NDs for samples
256369/																(%D= -37.3%)	analyzed after and before this
67																,	CCV (all NDs)
CCV	CCV 460-	CCV			8082A			5/19/14	2C	1	PCB-1260 (AROCLOR	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	225373/29	1						22:57			1260) - Peak 1					primary column	column for samples analyzed
225373/																(%D= +29.7%)	after and before this CCV (none)
29																	
CCV	CCV 460-	CCV			8082A			5/19/14	2C	1	PCB-1260 (AROCLOR	*	-20	20		Calibration drift	J- to detects quantitated on this
460-	225373/29	1						22:57			1260) - Peak 4					primary column	column, UJ to NDs for samples
225373/																(%D= -25.5%)	analyzed after and before this
29 CCV	CCV 460-	CCV			8082A			5/20/14	2C	1	PCB-1260 (AROCLOR	*	-20	20		Calibration drift	CCV (all NDs) J- to detects quantitated on this
460-	225373/55	2			000ZA			7:57	20	'	1260) - Peak 4		-20	20		primary column	column, UJ to NDs for samples
225373/	223373/33	_						7.57			1200) - 1 Cak 4					(%D= -26.8%)	analyzed after and before this
55																(702 201070)	CCV (all NDs)
CCV	CCV 460-	CCV			8082A			10/3/14	1C	1	PCB-1260 (AROCLOR	*	-20	20		Calibration drift	J- to detects quantitated on this
460-	253613/31	1						21:44			1260) - Peak 3					secondary column	column, UJ to NDs for samples
253613/																(%D= -100%)	analyzed after and before this
31																	CCV (all NDs)
CCV	CCV 460-	CCV			8151A			7/29/14	1C	1	SILVEX (2,4,5-TP)	*	-20	20		Calibration drift	J- to detects quantitated on this
460-	239416/20	2						17:35								primary column	column, UJ to NDs for samples
239416/																(%D= -23.1%)	analyzed after and before this
20 CCV	CCV 460-	CCV			8151A			9/14/14	1C	1	SILVEX (2,4,5-TP)	*	-20	20		Calibration drift	CCV (all NDs) J- to detects quantitated on this
460-	248899/16	2			0131A			2:00	10	'	SILVEX (2,4,5-1P)		-20	20		primary column	column, UJ to NDs for samples
248899/	240033/10	_						2.00								(%D= -22.3%)	analyzed after and before this
16																(702 22.070)	CCV (all NDs)
CCV	CCV 460-	CCV			8151A			9/16/14	1C	1	SILVEX (2,4,5-TP)	*	-20	20		Calibration drift	J- to detects quantitated on this
460-	249414/22	2						20:48			,					primary column	column, UJ to NDs for samples
249414/																(%D= -28.8%)	analyzed after and before this
22																	CCV (all NDs)
CCV	CCV 460-	CCV			8151A			10/18/14	1C	1	SILVEX (2,4,5-TP)	*	-20	20		Calibration drift	J+ to detects quantitated on this
460-	256684/1	1						6:54								primary column	column for samples analyzed
256684/																(%D= +37.1%)	after and before this CCV (none)
1																	

L ele ID	Committee Contra	T		Method		Da	ate and Tim	ie	GC	D	Analista	Lab	Spk	Spk	RPD	001	DVO- Ameliad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCVIS 460- 235888/ 3	CCVIS 460- 235888/3	CCV			8260C			7/12/14 6:00	NA	1	ACETONE	*	-20	20		Calibration drift (%D= +37.6%)	J+ to detects only since < +40% for samples analyzed this shift
CCVIS 460- 246625/ 2	CCVIS 460- 246625/2	CCV			8260C			9/3/14 18:11	NA	1	CARBON TETRACHLORIDE	*	-20	20		Calibration drift (%D= +24.9%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 247296/ 2	CCVIS 460- 247296/2	CCV			8260C			9/7/14 6:30	NA	1	CARBON TETRACHLORIDE	*	-20	20		Calibration drift (%D= +22.7%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 248229/ 2	CCVIS 460- 248229/2	CCV			8260C			9/11/14 6:37	NA	1	CARBON TETRACHLORIDE	*	-20	20		Calibration drift (%D= +28.6%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 252053/ 2	CCVIS 460- 252053/2	CCV			8260C			9/26/14 16:54	NA	1	METHYL ETHYL KETONE (2- BUTANONE)	*	-20	20		Calibration drift (%D= +36.9%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 252160/ 2	CCVIS 460- 252160/2	CCV			8260C			9/27/14 5:45	NA	1	METHYL ETHYL KETONE (2-BUTANONE)	*	-20	20		Calibration drift (%D= +33.2%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 254055/ 3	CCVIS 460- 254055/3	CCV			8260C			10/6/14 17:30	NA	1	ACETONE	*	-20	20		Calibration drift (%D= -28.4%)	J- to detects, UJ to NDs samples analyzed this shift (all detects)
CCVIS 460- 256419/ 2	CCVIS 460- 256419/2	CCV			8260C			10/16/14 17:59	NA	1	1,4-DIOXANE (P- DIOXANE)	*	-20	20		Calibration drift (%D= +22.6%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 256419/ 2	CCVIS 460- 256419/2	CCV			8260C			10/16/14 17:59	NA	1	METHYL ETHYL KETONE (2-BUTANONE)	*	-20	20		Calibration drift (%D= +29.9%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCV 460- 225468/ 3	CCV 460- 225468/3	CCV			8270D			5/20/14 12:28	NA	1	BENZO(G,H,I) PERYLENE	*	-20	20		Calibration drift (%D= +22.8%)	J+ to detects only since < +40% for samples analyzed this shift
CCV 460- 225468/ 3	CCV 460- 225468/3	CCV			8270D			5/20/14 12:28	NA	1	PENTACHLORO- PHENOL	*	-20	20		Calibration drift (%D= +25.6%)	J+ to detects only since < +40% for samples analyzed this shift (none)

				Method		Da	ate and Tim	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCV 460- 225607/ 2	CCV 460- 225607/2	CCV			8270D			5/21/14 2:45	NA	1	BENZO(G,H,I) PERYLENE	*	-20	20		Calibration drift (%D= +23.2%)	None (only LB,BS on this shift, no effect on sample TA results)
CCV 460- 225607/ 2	CCV 460- 225607/2	CCV			8270D			5/21/14 2:45	NA	1	PENTACHLORO- PHENOL	*	-20	20		Calibration drift (%D= +26.5%)	None (only LB,BS on this shift, no effect on sample TA results)
CCVIS 460- 235836/ 2	CCVIS 460- 235836/2	CCV			8270D			7/11/14 17:44	NA	1	INDENO(1,2,3-C,D) PYRENE	*	-20	20		Calibration drift (%D= +26%)	J+ to detects only since < +40% for samples analyzed this shift
CCVIS 460- 235836/ 2	CCVIS 460- 235836/2	CCV			8270D			7/11/14 17:44	NA	1	PENTACHLORO- PHENOL	*	-20	20		Calibration drift (%D= +25.4%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 242005/ 2	CCVIS 460- 242005/2	CCV			8270D			8/12/14 2:44	NA	1	BENZO(G,H,I) PERYLENE	*	-20	20		Calibration drift (%D= +22%)	J+ to detects only since < +40% for samples analyzed this shift
CCVIS 460- 242005/ 2	CCVIS 460- 242005/2	CCV			8270D			8/12/14 2:44	NA	1	CRESOLS, M & P	*	-20	20		Calibration drift (%D= -22.5%)	J- to detects, UJ to NDs samples analyzed this shift (all ND)
CCVIS 460- 242005/ 2	CCVIS 460- 242005/2	CCV			8270D			8/12/14 2:44	NA	1	DIBENZ(A,H) ANTHRACENE	*	-20	20		Calibration drift (%D= +20.5%)	J+ to detects only since < +40% for samples analyzed this shift
CCVIS 460- 246255/ 2	CCVIS 460- 246255/2	CCV			8270D			9/2/14 8:28	NA	1	INDENO(1,2,3-C,D) PYRENE	*	-20	20		Calibration drift (%D= +53.9%)	J+ to detects, UJ to NDs for samples analyzed this shift
CCVIS 460- 246255/ 2	CCVIS 460- 246255/2	CCV			8270D			9/2/14 8:28	NA	1	BENZO(G,H,I) PERYLENE	*	-20	20		Calibration drift (%D= +26.2%)	J+ to detects only since < +40% for samples analyzed this shift
CCVIS 460- 246255/ 2	CCVIS 460- 246255/2	CCV			8270D			9/2/14 8:28	NA	1	DIBENZ(A,H) ANTHRACENE	*	-20	20		Calibration drift (%D= +28.7%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 246423/ 2	CCVIS 460- 246423/2	CCV			8270D			9/3/14 1:16	NA	1	DIBENZ(A,H) ANTHRACENE	*	-20	20		Calibration drift (%D= +23.6%)	None (only LB,BS on this shift, no effect on sample TA results)

				Method		Da	ate and Tim	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCVIS	CCVIS 460-	CCV			8270D			9/3/14	NA	1	INDENO(1,2,3-C,D)	*	-20	20		Calibration drift	None (only LB,BS on this shift,
460-	246423/2							1:16			PYRENE					(%D= +31%)	no effect on sample TA results)
246423/																	
2																	
CCVIS	CCVIS 460-	CCV			8270D			9/10/14	NA	1	INDENO(1,2,3-C,D)	*	-20	20		Calibration drift	None (only LB,BS on this shift,
460-	247919/2							8:09			PYRENE					(%D= +22.8%)	no effect on sample TA results)
247919/																	
2 CCVIS	CCVIS 460-	CCV			8270D			9/26/14	NA	1	INDENO(1,2,3-C,D)	*	-20	20		Calibration drift	J+ to detects only since < +40%
460-	251895/2	CCV			021UD			4:46	INA	,	PYRENE		-20	20		(%D= +26%)	for samples analyzed this shift
251895/	231093/2							4.40			TINENE					(70D= +2070)	Tor samples analyzed this shift
2																	
CCVIS	CCVIS 460-	CCV			8270D			9/26/14	NA	1	BENZO(B)	*	-20	20		Calibration drift	J+ to detects only since < +40%
460-	251895/2							4:46			FLUORANTHENE					(%D= +21.4%)	for samples analyzed this shift
251895/																	
2																	
CCVIS	CCVIS 460-	CCV			8270D			9/26/14	NA	1	DIBENZ(A,H)	*	-20	20		Calibration drift	J+ to detects only since < +40%
460-	251895/2							4:46			ANTHRACENE					(%D= +23.4%)	for samples analyzed this shift
251895/																	
2																	
CCVIS	CCVIS 460-	CCV			8270D			10/19/14	NA	1	FLUORANTHENE	*	-20	20		Calibration drift	J- to detects, UJ to NDs samples
460-	256915/2							14:33								(%D= -22.9%)	analyzed this shift (all ND)
256915/ 2																	
				l				INTERE	I REN	CF C	CHECK STANDARDS						
ICSAB	ICSAB 490-	ICSA			6010C			9/23/14	NA	1	SODIUM		80	120		Extremely low ICS	J-/R to detects/NDs for samples
490-	192608/16	В			00.00			11:22		·	002.0		00	.20		recovery (2%)	analyzed on the same shift
192608/		_														(=,0,	(assoc sample is ND)
16																	. ,
								DUAL	COL	JMN	CONFIRMATION						
460-	BF-ORI-HS-1C-	MS		3550C	8081B		7/10/14	7/11/14	1C	2	DIELDRIN		0	40	,	High secondary	none (deficiency for QC sample,
78812-	01-20140702MS						15:00	9:36		0						column RPD	environmental samples qualified
8MS																(43.4%)	based on spike recovery, no
																	significant additional effect on
							_,,,,,,,										environmental sample results)
460-	BF-ORI-HS-1C-	MS		3550C	8081B		7/10/14	7/11/14	1C	2	HEPTACHLOR		0	40		High secondary	none (deficiency for QC sample,
78812-	01-20140702MS						15:00	9:36		0	EPOXIDE					column RPD	environmental samples qualified
8MS																(42.6%)	based on spike recovery, no
																	significant additional effect on
																	environmental sample results)

			1	Method			ate and Tin						0.1	0.1	222		T
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	GC Col	D F	Analyte	Lab Qual	Spk LCL	Spk UCL	RPD CL	QC Issue	DVQs Applied
460- 78812- 8MS	BF-ORI-HS-1C- 01-20140702MS	MS		3550C	8081B		7/10/14 15:00	7/11/14 9:36	1C	2	METHOXYCHLOR		0	40		High secondary column RPD (89.9%)	none (deficiency for QC sample, environmental samples qualified based on spike recovery, no significant additional effect on environmental sample results)
460- 78812- 8SD	BF-ORI-HS-1C- 01-20140702SD	SD		3550C	8081B		7/10/14 15:00	7/11/14 9:54	1C	2 0	BETA BHC (BETA HEXACHLOROCYCLO HEXANE)		0	40		High secondary column RPD (53.5%)	none (deficiency for QC sample, environmental samples qualified based on spike recovery, no significant additional effect on environmental sample results)
460- 78812- 8SD	BF-ORI-HS-1C- 01-20140702SD	SD		3550C	8081B		7/10/14 15:00	7/11/14 9:54	1C	0	DIELDRIN		0	40		High secondary column RPD (46.4%)	none (deficiency for QC sample, environmental samples qualified based on spike recovery, no significant additional effect on environmental sample results)
								11	NTERI	NAL	STANDARDS						
460- 80009-1	BF-ORI-UT-1g- 01-20140724	N		5035	8260C		7/25/14 15:31	8/1/14 9:07	NA	1	Chlorobenzene-d5	*	50	200		Low internal standard response (49.2%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80009-1	BF-ORI-UT-1g- 01-20140724	N		5035	8260C		7/25/14 15:31	8/1/14 9:07	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (29.2%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80009-2	BF-ORI-UT-1g- 02-20140724	N		5035	8260C		7/25/14 15:31	8/1/14 5:26	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (37.5%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80009-2	BF-ORI-UT-1g- 02-20140724	N		5035	8260C		7/25/14 15:31	8/1/14 5:26	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (29.4%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80009-3	BF-ORI-UT-1g- 03-20140724	N		5035	8260C		7/25/14 15:32	8/1/14 9:56	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (39.2%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80009-3	BF-ORI-UT-1g- 03-20140724	N		5035	8260C		7/25/14 15:32	8/1/14 9:56	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (34.1%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80009-4	BF-ORI-UT-1g- 04-20140724	N		5035	8260C		7/25/14 15:32	8/1/14 6:15	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (24.2%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80009-4	BF-ORI-UT-1g- 04-20140724	N		5035	8260C		7/25/14 15:32	8/1/14 6:15	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (34.2%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80009-6	BF-ORI-UT-1g- 06-20140724	N		5035	8260C		7/25/14 15:33	8/1/14 8:17	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (43.2%)	J+ to detects/UJ to NDs for analytes quantitated with this IS

	0			Method		D	ate and Tin	ne	GC	D	A 1 . c .	Lab	Spk	Spk	RPD	001:	DVQ - A II - I
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 80009-6	BF-ORI-UT-1g- 06-20140724	N		5035	8260C		7/25/14 15:33	8/1/14 8:17	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (49.1%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80009-7	BF-ORI-UT-1g- 07-20140724	N		5035	8260C		7/25/14 15:34	8/1/14 8:42	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (30.8%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80009-7	BF-ORI-UT-1g- 07-20140724	N		5035	8260C		7/25/14 15:34	8/1/14 8:42	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (49.8%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-1	BF-ORI-WT-1g- 01-20140724	N		5035	8260C		7/25/14 15:34	8/1/14 8:16	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (34.3%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-1	BF-ORI-WT-1g- 01-20140724	N		5035	8260C		7/25/14 15:34	8/1/14 8:16	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (45.8%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-2	BF-ORI-WT-1g- 02-20140724	N		5035	8260C		7/25/14 15:35	8/1/14 8:40	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (41.3%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-2	BF-ORI-WT-1g- 02-20140724	N		5035	8260C		7/25/14 15:35	8/1/14 8:40	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (42.8%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-3	BF-ORI-WT-1g- 03-20140724	N		5035	8260C		7/25/14 15:35	8/1/14 9:04	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (41.1%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-3	BF-ORI-WT-1g- 03-20140724	N		5035	8260C		7/25/14 15:35	8/1/14 9:04	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (42.6%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-4	BF-ORI-WT-1g- 04-20140724	N		5035	8260C		7/25/14 15:36	8/1/14 9:28	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (40.8%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-4	BF-ORI-WT-1g- 04-20140724	N		5035	8260C		7/25/14 15:36	8/1/14 9:28	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (46%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-5	BF-ORI-WT-1g- 05-20140724	N		5035	8260C		7/25/14 15:36	8/1/14 9:52	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (38.9%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-5	BF-ORI-WT-1g- 05-20140724	N		5035	8260C		7/25/14 15:36	8/1/14 9:52	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (42.3%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-6	BF-ORI-WT-1g- 06-20140724	N		5035	8260C		7/25/14 15:37	8/1/14 10:16	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (40.3%)	J+ to detects/UJ to NDs for analytes quantitated with this IS

	0			Method		D	ate and Tin	ne	GC	D	A 1 . c .	Lab	Spk	Spk	RPD	001::	DVQ - A II - I
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 80015-6	BF-ORI-WT-1g- 06-20140724	N		5035	8260C		7/25/14 15:37	8/1/14 10:16	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (39.5%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-7	BF-ORI-WT-1g- 07-20140724	N		5035	8260C		7/25/14 15:37	8/1/14 10:40	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (34.9%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80015-7	BF-ORI-WT-1g- 07-20140724	N		5035	8260C		7/25/14 15:37	8/1/14 10:40	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (38.5%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 80767-2	BF-ORI-HS-2g- 02-20140807	N		5035	8260C		8/8/14 13:33	8/12/14 23:40	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (47.6%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 81552-5	BF-5L-UT-1g-05- 20140821	N		5035	8260C		8/22/14 12:51	8/25/14 12:26	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (42.8%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82155-1	BF-5L-WT-1g-01- 20140903	N		5035	8260C		9/4/14 15:55	9/7/14 13:45	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (25.6%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82155-2	BF-5L-WT-1g-02- 20140903	N		5035	8260C		9/4/14 15:56	9/7/14 14:10	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (39.6%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82584-1	BF-ORI-WT-2g- 01-20140910	N		5035	8260C		9/12/14 9:44	9/15/14 15:16	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (37.7%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82584-1	BF-ORI-WT-2g- 01-20140910	N		5035	8260C		9/12/14 9:44	9/15/14 15:16	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (40.2%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82584-2	BF-ORI-WT-2g- 02-20140910	N		5035	8260C		9/12/14 9:45	9/15/14 15:40	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (41.8%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82585-2	BF-5L-UT-2g-02- 20140910	N		5035	8260C		9/12/14 9:43	9/15/14 14:04	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (49.1%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82585-4	BF-5L-UT-3g-01- 20140910	N		5035	8260C		9/12/14 9:43	9/15/14 14:28	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (49.9%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82585-5	BF-5L-UT-3g-02- 20140910	N		5035	8260C		9/12/14 9:44	9/15/14 14:52	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (49.8%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82730-2	BF-5L-UT-4g- 01X-20140912	N		5035	8260C		9/13/14 15:04	9/18/14 8:49	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (47.6%)	J+ to detects/UJ to NDs for analytes quantitated with this IS

				Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460- 82730-2	BF-5L-UT-4g- 01X-20140912	N		5035	8260C		9/13/14 15:04	9/18/14 8:49	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (37.3%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82730-3	BF-5L-UT-4g-02- 20140912	N		5035	8260C		9/13/14 15:05	9/18/14 9:14	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Extremely low internal standard response (14.8%)	J+ to detects/R to NDs for analytes quantitated with this IS
460- 82730-3	BF-5L-UT-4g-02- 20140912	N		5035	8260C		9/13/14 15:05	9/18/14 9:14	NA	1	Chlorobenzene-d5	*	50	200		Low internal standard response (34.2%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82735-1	BF-ORI-WT-3g- 01-20140912	N		5035	8260C		9/13/14 15:01	9/18/14 9:38	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (45.2%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82735-1	BF-ORI-WT-3g- 01-20140912	N		5035	8260C		9/13/14 15:01	9/18/14 9:38	NA	1	Chlorobenzene-d5	*	50	200		Low internal standard response (32.4%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82735-1	BF-ORI-WT-3g- 01-20140912	N		5035	8260C		9/13/14 15:01	9/18/14 9:38	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Extremely low internal standard response (14.6%)	J+ to detects/R to NDs for analytes quantitated with this IS
460- 82735-2	BF-ORI-WT-3g- 02-20140912	N		5035	8260C		9/13/14 15:02	9/18/14 10:03	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (46.8%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82735-2	BF-ORI-WT-3g- 02-20140912	N		5035	8260C		9/13/14 15:02	9/18/14 10:03	NA	1	Chlorobenzene-d5	*	50	200		Low internal standard response (37%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 82735-2	BF-ORI-WT-3g- 02-20140912	N		5035	8260C		9/13/14 15:02	9/18/14 10:03	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Extremely low internal standard response (16.3%)	J+ to detects/R to NDs for analytes quantitated with this IS
460- 82735-3	BF-ORI-WT-3g- 02-X-20140912	N		5035	8260C		9/13/14 15:03	9/18/14 10:27	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (38.1%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 83312-1	BF-5L-WT-2g-01- 20140923	N		5035	8260C		9/24/14 12:36	9/27/14 8:07	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (38.5%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 83312-2	BF-5L-WT-2g-02- 20140923	N		5035	8260C		9/24/14 12:36	9/27/14 8:31	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (45%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 83312-2	BF-5L-WT-2g-02- 20140923	N		5035	8260C		9/24/14 12:36	9/27/14 8:31	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal standard response (46%)	J+ to detects/UJ to NDs for analytes quantitated with this IS
460- 83312-4	BF-5L-WT-3g-01- 20140923	N		5035	8260C		9/24/14 12:37	9/27/14 8:56	NA	1	1,4-Dioxane-d8	*	50	200		Low internal standard response (46%)	J+ to detects/UJ to NDs for analytes quantitated with this IS

Lab ID	Sample Code	Tuma		Method		Da	ate and Tim	ie	GC	D	Analyse	Lab	Spk	Spk	RPD	QC Issue	DVOs Ameliad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460-	BF-5L-WT-3g-02-	Ν		5035	8260C		9/24/14	9/27/14	NA	1	1,4-Dioxane-d8	*	50	200		Low internal	J+ to detects/UJ to NDs for
83312-5	20140923						12:38	9:20								standard response	analytes quantitated with this IS
																(49%)	
460-	BF-5L-WT-3g-02-	Ν		5035	8260C		9/24/14	9/27/14	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal	J+ to detects/UJ to NDs for
83312-5	20140923						12:38	9:20								standard response	analytes quantitated with this IS
																(45.1%)	

CL - Control Limit

DF - Dilution Factor

LCL - Lower Control Limit

UCL - Upper Control Limit

QAA, L.L.C.

TABLE 4

REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1

Phase Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples May 2014 to October 2014

QUALIFIED RESULTS FOR FIELD SAMPLES

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
		TCLP METALS	3		
460-80888-1	ECS-Area20-119-F-20140811	1311 LEAD	45.3 J ug/l	J	Result between MDL and RL
460-80888-3	ECS-Area20-118-F-20140811	1311 LEAD	46.1 J ug/l	J	Result between MDL and RL
	,	TOTAL METAL			,
460-76301-3	BF-SER-RAMPD-DD-15c-001- 20140516	SILVER	0.48 J mg/kg	J	Result between MDL and RL
460-76301-6	BF-SER-RAMPD-DD-16c-001- 20140516	SILVER	0.54 J mg/kg	J	Result between MDL and RL
460-76301-9	BF-SER-RAMPD-DD-17c-001- 20140516	SILVER	0.50 J mg/kg	J	Result between MDL and RL
460-76301-12	BF-SER-RAMPD-DD-18c-001- 20140516	SILVER	0.51 J mg/kg	J	Result between MDL and RL
460-78812-8	BF-ORI-HS-1C-01-20140702	BARIUM	44.2 J mg/kg	J	Result between MDL and RL
460-78812-8	BF-ORI-HS-1C-01-20140702	BERYLLIUM	0.42 J mg/kg	J	Result between MDL and RL
460-78812-8	BF-ORI-HS-1C-01-20140702	MANGANESE	782 mg/kg	J-	Low post digestion spike recovery (73%)
460-78812-9	BF-ORI-HS-1C-02-20140702	BARIUM	45.0 J mg/kg	J	Result between MDL and RL
460-78812-9	BF-ORI-HS-1C-02-20140702	BERYLLIUM	0.44 J mg/kg	J	Result between MDL and RL
460-78812-9	BF-ORI-HS-1C-02-20140702	MANGANESE	830 mg/kg	J-	Low post digestion spike recovery (73%)
460-80009-8	BF-ORI-UT-1c-01-20140724	ARSENIC	2.9 J mg/kg	J	Result between MDL and RL
460-80009-9	BF-ORI-UT-1c-02-20140724	ARSENIC	3.3 J mg/kg	J	Result between MDL and RL
460-80015-8	BF-ORI-WT-1c-01-20140724	BERYLLIUM	0.42 J mg/kg	J	Result between MDL and RL
460-80767-3	BF-ORI-HS-2c-01-20140807	BARIUM	44.1 J mg/kg	J	Result between MDL and RL
460-80767-3	BF-ORI-HS-2c-01-20140807	BERYLLIUM	0.44 J mg/kg	J	Result between MDL and RL
460-80767-3	BF-ORI-HS-2c-01-20140807	SILVER	0.47 J mg/kg	J	Result between MDL and RL
460-80768-8	BF-ETETZ-CF-1c-01-20140807	SILVER	0.69 J mg/kg	J	Result between MDL and RL
460-80768-9	BF-ETETZ-CF-1c-02-20140807	SILVER	0.65 J mg/kg	J	Result between MDL and RL
460-81232-2	ECS-AREA 11-G5-F-20140815	LEAD	92.1 mg/kg	J	Poor field duplicate precision (51 RPD), use higher result from original sample
460-81232-3	ECS-AREA 11-G5-F-X-20140815	LEAD	61.6 mg/kg	J	Poor field duplicate precision (51 RPD), use higher result from original sample
460-81561-3	BF-ORI-HS-3c-01-20140821	BARIUM	45.5 J mg/kg	J	Result between MDL and RL
460-81561-3	BF-ORI-HS-3c-01-20140821	BERYLLIUM	0.41 J mg/kg	J	Result between MDL and RL
460-81634-1	ECS-AREA 8-H3/4-F-20140822	COBALT	4.4 J mg/kg	J	Result between MDL and RL
460-81634-1	ECS-AREA 8-H3/4-F-20140822	POTASSIUM	937 J mg/kg	J	Result between MDL and RL
460-81634-1	ECS-AREA 8-H3/4-F-20140822	SODIUM	322 J mg/kg	J	Result between MDL and RL
460-81828-8	SF-ETETZ-TB-1c-01-20140827	BARIUM	31.5 J mg/kg	J	Result between MDL and RL
460-81828-8	SF-ETETZ-TB-1c-01-20140827	CADMIUM	0.29 J mg/kg	J	Result between MDL and RL
460-81828-9	SF-ETETZ-TB-1c-02-20140827	BARIUM	29.2 J mg/kg	J	Result between MDL and RL
460-82461-3	SF-ETETZ-TB-2c-01-20140909	BARIUM	35.6 J mg/kg	J	Result between MDL and RL
460-82461-3	SF-ETETZ-TB-2c-01-20140909	BERYLLIUM	0.39 J mg/kg	J	Result between MDL and RL
460-82461-3	SF-ETETZ-TB-2c-01-20140909	SILVER	0.65 J mg/kg	J	Result between MDL and RL
460-82584-3	BF-ORI-WT-2c-01-20140910	ARSENIC	3.8 J mg/kg	J	Result between MDL and RL
460-82584-3	BF-ORI-WT-2c-01-20140910	ZINC	89.3 mg/kg	J	Poor calibration curve fit (0.992 r)
460-82585-3	BF-5L-UT-2c-01-20140910	ZINC	70.5 mg/kg	J	Poor calibration curve fit (0.992 r)
460-82585-6	BF-5L-UT-3c-01-20140910	SILVER	0.48 J mg/kg	J	Result between MDL and RL
460-82585-6	BF-5L-UT-3c-01-20140910	ZINC	70.5 mg/kg	J	Poor calibration curve fit (0.992 r)

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-82657-1	ECS-K18-F-20140911	ARSENIC	2.9 J mg/kg	J	Result between MDL and RL
460-82657-2	ECS-AREA5-W12-F-20140911	ARSENIC	2.7 J mg/kg	J	Result between MDL and RL
460-82730-4	BF-5L-UT-4c-01-20140912	SILVER	0.38 J mg/kg	J	Result between MDL and RL
460-82735-5	BF-ORI-WT-3c-01-X-20140912	BERYLLIUM	0.34 J mg/kg	J	Result between MDL and RL
460-82849-1	ECS-AZ5-F-20140913	ANTIMONY	10.5 U mg/kg	R	Acceptable result not available to report in the LCS/LCSD
460-82849-1	ECS-AZ5-F-20140913	SODIUM	211 U mg/kg	R	Extremely low ICS recovery (2%)
460-82904-1	ECS-AREA 3-U/V15-F-20140916	ARSENIC	3.6 J mg/kg	J	Result between MDL and RL
460-82904-4	ECS-AREA 3-U16/17-F- 20140916	ARSENIC	2.6 J mg/kg	J	Result between MDL and RL
460-83311-3	BF-ORI-HS-4c-01-20140923	BARIUM	46.4 J mg/kg	J	Result between MDL and RL
460-83311-3	BF-ORI-HS-4c-01-20140923	BERYLLIUM	0.40 J mg/kg	J	Result between MDL and RL
460-83312-3	BF-5L-WT-2c-01-20140923	ARSENIC	3.5 J mg/kg	J	Result between MDL and RL
460-83312-3	BF-5L-WT-2c-01-20140923	CADMIUM	0.49 J mg/kg	J	Result between MDL and RL
460-83312-6	BF-5L-WT-3c-01-20140923	ARSENIC	4.2 J mg/kg	J	Result between MDL and RL
460-83312-9	BF-5L-WT-4c-01-20140923	BERYLLIUM	0.35 J mg/kg	J	Result between MDL and RL
460-83792-3	BF-ORI-HS-5c-01-20141001	CADMIUM	0.56 J mg/kg	J	Result between MDL and RL
460-83871-1	ECS-AREA2-R13-F-20141002	ARSENIC	7.6 mg/kg	J	Poor lab duplicate precision (31 RPD)
460-84193-1	ECS-AREA2-Q16-F-20141008	ANTIMONY	3.8 U mg/kg	R	Extremely low laboratory control spike recovery (39.3%)
460-84193-1	ECS-AREA2-Q16-F-20141008	CALCIUM	742 J mg/kg	J	Result between MDL and RL
460-84193-1	ECS-AREA2-Q16-F-20141008	COBALT	5.8 J mg/kg	J	Result between MDL and RL
460-84193-1	ECS-AREA2-Q16-F-20141008	COPPER	2.7 J mg/kg	J	Result between MDL and RL
460-84193-1	ECS-AREA2-Q16-F-20141008	POTASSIUM	602 J mg/kg	J	Result between MDL and RL
460-84428-3	BF-ORI-HS-6c-01-20141013	BARIUM	44.5 J mg/kg	J	Result between MDL and RL
460-84428-3	BF-ORI-HS-6c-01-20141013	BERYLLIUM	0.43 J mg/kg	J	Result between MDL and RL
460-84432-3	BF-5L-WT-5c-01-20141013	SILVER	0.83 J mg/kg	J	Result between MDL and RL
460-84432-6	BF-5L-WT-6c-01-20141013	SILVER	0.76 J mg/kg	J	Result between MDL and RL
		CHROMIUM V			
460-76301-3	BF-SER-RAMPD-DD-15c-001- 20140516	CHROMIUM, HEXAVALENT	0.87 J mg/kg	J	Result between MDL and RL
460-76301-6	BF-SER-RAMPD-DD-16c-001- 20140516	CHROMIUM, HEXAVALENT	0.58 J mg/kg	J	Result between MDL and RL
460-78812-9	BF-ORI-HS-1C-02-20140702	CHROMIUM, HEXAVALENT	1.3 J mg/kg	J	Result between MDL and RL
		PESTICIDES			
460-80009-8	BF-ORI-UT-1c-01-20140724	P,P'-DDE	4.3 J ug/kg	J	High laboratory control spike recovery (151% and 152%); Result between MDL and RL
460-84428-3	BF-ORI-HS-6c-01-20141013	CHLORDANE	47 J ug/kg	J	Result between MDL and RL
460-84428-3	BF-ORI-HS-6c-01-20141013	ENDOSULFAN SULFATE	8.5 U ug/kg	UJ	Calibration drift primary column (%D= -20.7%); Calibration drift secondary column (%D= -21.3%)
460-84428-3	BF-ORI-HS-6c-01-20141013	ENDRIN ALDEHYDE	8.5 U ug/kg	UJ	Calibration drift primary column (%D= -20.8%); Calibration drift secondary column (%D= -21.7%)
460-84428-3	BF-ORI-HS-6c-01-20141013	ENDRIN KETONE	8.5 U ug/kg	UJ	Calibration drift primary column (%D= -23%); Calibration drift secondary column (%D= -29.4%)
460-84428-3	BF-ORI-HS-6c-01-20141013	METHOXYCHLOR	8.5 U ug/kg	UJ	Calibration drift primary column (%D= -31.3%); Calibration drift secondary column (%D= -37.4%)
460-84428-3	BF-ORI-HS-6c-01-20141013	P,P'-DDE	8.3 J ug/kg	J	Result between MDL and RL
460-84428-3	BF-ORI-HS-6c-01-20141013	P,P'-DDT	8.5 U ug/kg	UJ	Calibration drift primary column (%D= -37.3%); Calibration drift secondary column (%D= -41.8%)
460-84432-3	BF-5L-WT-5c-01-20141013	BETA BHC (BETA HEXACHLOROCYCLO HEXANE)	2.4 U ug/kg	UJ	Low matrix spike recovery (56% and 60%), Low matrix spike duplicate recovery (65% and 65%)

Lab ID	Field ID-Date	Analyte	Lab	DVQ	QC Issue
460-84432-3	BF-5L-WT-5c-01-20141013	ENDOSULFAN	Result (1) 8.2 U ug/kg	UJ	Calibration drift primary column
		SULFATE			(%D= -20.7%); Calibration drift secondary column (%D= -21.3%)
460-84432-3	BF-5L-WT-5c-01-20141013	ENDRIN ALDEHYDE	8.2 U ug/kg	UJ	Calibration drift primary column (%D= -20.8%); Calibration drift secondary column (%D= -21.7%)
460-84432-3	BF-5L-WT-5c-01-20141013	ENDRIN KETONE	8.2 U ug/kg	UJ	Calibration drift primary column (%D= -23%); Calibration drift secondary column (%D= -29.4%)
460-84432-3	BF-5L-WT-5c-01-20141013	METHOXYCHLOR	8.2 U ug/kg	UJ	Calibration drift primary column (%D= -31.3%); Calibration drift secondary column (%D= -37.4%)
460-84432-3	BF-5L-WT-5c-01-20141013	P,P'-DDE	4.2 J ug/kg	J	Result between MDL and RL
460-84432-3	BF-5L-WT-5c-01-20141013	P,P'-DDT	8.2 U ug/kg	UJ	Calibration drift primary column (%D= -37.3%); Calibration drift secondary column (%D= -41.8%)
460-84432-6	BF-5L-WT-6c-01-20141013	BETA BHC (BETA HEXACHLOROCYCLO HEXANE)	2.4 U ug/kg	UJ	Low matrix spike recovery (56% and 60%), Low matrix spike duplicate recovery (65% and 65%)
460-84432-6	BF-5L-WT-6c-01-20141013	ENDOSULFAN SULFATE	8.2 U ug/kg	UJ	Calibration drift primary column (%D= -20.7%); Calibration drift secondary column (%D= -21.3%)
460-84432-6	BF-5L-WT-6c-01-20141013	ENDRIN ALDEHYDE	8.2 U ug/kg	UJ	Calibration drift primary column (%D= -20.8%); Calibration drift secondary column (%D= -21.7%)
460-84432-6	BF-5L-WT-6c-01-20141013	ENDRIN KETONE	8.2 U ug/kg	UJ	Calibration drift primary column (%D= -23%); Calibration drift secondary column (%D= -29.4%)
460-84432-6	BF-5L-WT-6c-01-20141013	METHOXYCHLOR	8.2 U ug/kg	UJ	Calibration drift primary column (%D= -31.3%); Calibration drift secondary column (%D= -37.4%)
460-84432-6	BF-5L-WT-6c-01-20141013	P,P'-DDE	4.3 J ug/kg	J	Result between MDL and RL
460-84432-6	BF-5L-WT-6c-01-20141013	P,P'-DDT	8.2 U ug/kg	UJ	Calibration drift primary column (%D= -37.3%); Calibration drift secondary column (%D= -41.8%)
		PCB AROCLOR		1	
460-76301-3	BF-SER-RAMPD-DD-15c-001- 20140516	PCB-1260 (AROCLOR 1260)	79 U ug/kg	UJ	Calibration drift primary column (%D= -25.5%); Calibration drift primary column (%D= -26.8%)
460-76301-6	BF-SER-RAMPD-DD-16c-001- 20140516	PCB-1260 (AROCLOR 1260)	78 U ug/kg	ΟJ	Calibration drift primary column (%D= -25.5%); Calibration drift primary column (%D= -26.8%)
460-76301-9	BF-SER-RAMPD-DD-17c-001- 20140516	PCB-1260 (AROCLOR 1260)	77 U ug/kg	UJ	Calibration drift primary column (%D= -25.5%); Calibration drift primary column (%D= -26.8%)
460-76301-12	BF-SER-RAMPD-DD-18c-001- 20140516	PCB-1260 (AROCLOR 1260)	80 U ug/kg	UJ	Calibration drift primary column (%D= -25.5%); Calibration drift primary column (%D= -26.8%)
460-76301-15	BF-SER-RAMPD-DD-19c-001- 20140516	PCB-1260 (AROCLOR 1260)	79 U ug/kg	UJ	Calibration drift primary column (%D= -25.5%); Calibration drift primary column (%D= -26.8%)
460-83792-3	BF-ORI-HS-5c-01-20141001	PCB-1260 (AROCLOR 1260) HERBICIDES	95 U ug/kg	UJ	Calibration drift secondary column (%D= -100%)
460-80009-8	BF-ORI-UT-1c-01-20140724	SILVEX (2,4,5-TP)	23 U ug/kg	UJ	Calibration drift primary column (%D= -23.1%)
460-80009-9	BF-ORI-UT-1c-02-20140724	SILVEX (2,4,5-TP)	23 U ug/kg	UJ	Calibration drift primary column (%D= -23.1%)
460-80015-8	BF-ORI-WT-1c-01-20140724	SILVEX (2,4,5-TP)	21 U ug/kg	UJ	Calibration drift primary column (%D= -23.1%)
460-80015-9	BF-ORI-WT-1c-02-20140724	SILVEX (2,4,5-TP)	20 U ug/kg	UJ	Calibration drift primary column (%D= -23.1%)

Lab ID	Field ID-Date	Analyte	Re	Lab esult ⁽¹⁾	DVQ	QC Issue
460-82584-3	BF-ORI-WT-2c-01-20140910	SILVEX (2,4,5-TP)	27	U ug/kg	UJ	Calibration drift primary column (%D= -22.3%)
460-82585-3	BF-5L-UT-2c-01-20140910	SILVEX (2,4,5-TP)	20	U ug/kg	UJ	Calibration drift primary column (%D= -22.3%)
460-82585-6	BF-5L-UT-3c-01-20140910	SILVEX (2,4,5-TP)	22	U ug/kg	UJ	Calibration drift primary column (%D= -22.3%)
460-82730-4	BF-5L-UT-4c-01-20140912	SILVEX (2,4,5-TP)	22	U ug/kg	UJ	Calibration drift primary column (%D= -28.8%)
460-82730-5	BF-5L-UT-4c-01X-20140912	SILVEX (2,4,5-TP)	20	U ug/kg	UJ	Calibration drift primary column (%D= -28.8%)
460-82735-4	BF-ORI-WT-3c-01-20140912	SILVEX (2,4,5-TP)	32	U ug/kg	UJ	Calibration drift primary column (%D= -28.8%)
460-82735-5	BF-ORI-WT-3c-01-X-20140912	SILVEX (2,4,5-TP)	27	U ug/kg	UJ	Calibration drift primary column (%D= -28.8%)
	VC	LATILE ORGANIC COMP	OUNDS	(VOC)	1	,
460-76301-2	BF-SER-RAMPD-DD-15g-002- 20140516	METHYLENE CHLORIDE	0.61	J ug/kg	J	Result between MDL and RL
460-76301-5	BF-SER-RAMPD-DD-16g-002- 20140516	METHYLENE CHLORIDE	0.41	J ug/kg	J	Result between MDL and RL
460-76301-7	BF-SER-RAMPD-DD-17g-001- 20140516	METHYLENE CHLORIDE	0.24	J ug/kg	J	Result between MDL and RL
460-76301-8	BF-SER-RAMPD-DD-17g-002- 20140516	METHYLENE CHLORIDE	0.40	J ug/kg	J	Result between MDL and RL
460-76301-10	BF-SER-RAMPD-DD-18g-001- 20140516	METHYL ETHYL KETONE (2- BUTANONE)	0.99	J ug/kg	J	Result between MDL and RL
460-76301-11	BF-SER-RAMPD-DD-18g-002- 20140516	ACETONE	8.7	B ug/kg	U	Method blank contamination (6.08 ug/kg)
460-76301-11	BF-SER-RAMPD-DD-18g-002- 20140516	METHYL ETHYL KETONE (2- BUTANONE)	0.65	J ug/kg	J	Result between MDL and RL
460-76301-13	BF-SER-RAMPD-DD-19g-001- 20140516	METHYL ETHYL KETONE (2- BUTANONE)	0.91	J ug/kg	J	Result between MDL and RL
460-76301-14	BF-SER-RAMPD-DD-19g-002- 20140516	METHYL ETHYL KETONE (2- BUTANONE)	2.1	J ug/kg	J	Result between MDL and RL
460-76301-14	BF-SER-RAMPD-DD-19g-002- 20140516	METHYLENE CHLORIDE	0.26	J ug/kg	J	Result between MDL and RL
460-78812-1	BF-ORI-HS-1g-01-20140702	ACETONE	16	B ug/kg	U	Method blank contamination (7.29 ug/kg); Trip blank contamination (18 ug/l); Calibration drift (%D= +37.6%)
460-78812-2	BF-ORI-HS-1g-02-20140702	ACETONE	19	B ug/kg	U	Trip blank contamination (18 ug/l); Calibration drift (%D= +37.6%)
460-78812-3	BF-ORI-HS-1g-03-20140702	ACETONE	70	B ug/kg	J+	Calibration drift (%D= +37.6%)
460-78812-3	BF-ORI-HS-1g-03-20140702	METHYL ETHYL KETONE (2- BUTANONE)	1.9	J ug/kg	J	Result between MDL and RL
460-78812-4	BF-ORI-HS-1g-04-20140702	ACETONE	50	B ug/kg	J+	Calibration drift (%D= +37.6%)
460-78812-5	BF-ORI-HS-1g-05-20140702	ACETONE	54	B ug/kg	U	Trip blank contamination (18 ug/l); Calibration drift (%D= +37.6%)
460-78812-6	BF-ORI-HS-1g-06-20140702	ACETONE	41	B ug/kg	U	Trip blank contamination (18 ug/l); Calibration drift (%D= +37.6%)
460-78812-7	BF-ORI-HS-1g-07-20140702	ACETONE	38	B ug/kg	U	Trip blank contamination (18 ug/l); Calibration drift (%D= +37.6%)
460-80009-1	BF-ORI-UT-1g-01-20140724	1,2,4- TRIMETHYLBENZENE	0.32	J ug/kg	J	High surrogate spike recovery (149% and 135%); Low internal standard response (29.2%); Result between MDL and RL
460-80009-1	BF-ORI-UT-1g-01-20140724	1,2- DICHLOROBENZENE	1.8	U ug/kg	UJ	Low internal standard response (29.2%)

Lab ID	Field ID-Date	Analyte	Re	Lab sult ⁽¹⁾	DVQ	QC Issue
460-80009-1	BF-ORI-UT-1g-01-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.8	U ug/kg	UJ	Low internal standard response (29.2%)
460-80009-1	BF-ORI-UT-1g-01-20140724	1,3- DICHLOROBENZENE	1.8	U ug/kg	UJ	Low internal standard response (29.2%)
460-80009-1	BF-ORI-UT-1g-01-20140724	1,4- DICHLOROBENZENE	1.8	U ug/kg	UJ	Low internal standard response (29.2%)
460-80009-1	BF-ORI-UT-1g-01-20140724	ACETONE	520	B ug/kg	J+	High surrogate spike recovery (149% and 135%)
460-80009-1	BF-ORI-UT-1g-01-20140724	BENZENE	0.44	J ug/kg	J	High surrogate spike recovery (149% and 135%); Low internal standard response (49.2%); Result between MDL and RL
460-80009-1	BF-ORI-UT-1g-01-20140724	CHLOROBENZENE	1.8	U ug/kg	UJ	Low internal standard response (49.2%)
460-80009-1	BF-ORI-UT-1g-01-20140724	ETHYLBENZENE	1.8	U ug/kg	UJ	Low internal standard response (49.2%)
460-80009-1	BF-ORI-UT-1g-01-20140724	METHYL ETHYL KETONE (2- BUTANONE)	35	ug/kg	J+	High surrogate spike recovery (149% and 135%)
460-80009-1	BF-ORI-UT-1g-01-20140724	N-BUTYLBENZENE	1.8	U ug/kg	UJ	Low internal standard response (29.2%)
460-80009-1	BF-ORI-UT-1g-01-20140724	N-PROPYLBENZENE	1.8	U ug/kg	UJ	Low internal standard response (29.2%)
460-80009-1	BF-ORI-UT-1g-01-20140724	SEC-BUTYLBENZENE	1.8	U ug/kg	UJ	Low internal standard response (29.2%)
460-80009-1	BF-ORI-UT-1g-01-20140724	T-BUTYLBENZENE	1.8	U ug/kg	UJ	Low internal standard response (29.2%)
460-80009-1	BF-ORI-UT-1g-01-20140724	TETRACHLORO ETHYLENE(PCE)	1.8	U ug/kg	UJ	Low internal standard response (49.2%)
460-80009-1	BF-ORI-UT-1g-01-20140724	TOLUENE	1.9	ug/kg	J+	High surrogate spike recovery (149% and 135%); Low internal standard response (49.2%)
460-80009-1	BF-ORI-UT-1g-01-20140724	XYLENES, TOTAL	3.7	U ug/kg	UJ	Low internal standard response (49.2%)
460-80009-2	BF-ORI-UT-1g-02-20140724	1,2,4- TRIMETHYLBENZENE	1.3	U ug/kg	UJ	Low internal standard response (29.4%)
460-80009-2	BF-ORI-UT-1g-02-20140724	1,2- DICHLOROBENZENE	1.3	U ug/kg	UJ	Low internal standard response (29.4%)
460-80009-2	BF-ORI-UT-1g-02-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.3	U ug/kg	UJ	Low internal standard response (29.4%)
460-80009-2	BF-ORI-UT-1g-02-20140724	1,3- DICHLOROBENZENE	1.3	U ug/kg	UJ	Low internal standard response (29.4%)
460-80009-2	BF-ORI-UT-1g-02-20140724	1,4- DICHLOROBENZENE	1.3	U ug/kg	UJ	Low internal standard response (29.4%)
460-80009-2	BF-ORI-UT-1g-02-20140724	1,4-DIOXANE (P- DIOXANE)	26	U ug/kg	UJ	Low internal standard response (37.5%)
460-80009-2	BF-ORI-UT-1g-02-20140724	ACETONE	16	B ug/kg	U	Method blank contamination (8.28 ug/kg); Trip blank contamination (20 ug/l); High surrogate spike recovery (155%)
460-80009-2	BF-ORI-UT-1g-02-20140724	N-BUTYLBENZENE	1.3	U ug/kg	UJ	Low internal standard response (29.4%)
460-80009-2	BF-ORI-UT-1g-02-20140724	N-PROPYLBENZENE	1.3	U ug/kg	UJ	Low internal standard response (29.4%)
460-80009-2	BF-ORI-UT-1g-02-20140724	SEC-BUTYLBENZENE	1.3	U ug/kg	UJ	Low internal standard response (29.4%)
460-80009-2	BF-ORI-UT-1g-02-20140724	T-BUTYLBENZENE	1.3	U ug/kg	UJ	Low internal standard response (29.4%)
460-80009-3	BF-ORI-UT-1g-03-20140724	1,2,4- TRIMETHYLBENZENE	1.4	U ug/kg	UJ	Low internal standard response (34.1%)

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-80009-3	BF-ORI-UT-1g-03-20140724	1,2- DICHLOROBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.1%)
460-80009-3	BF-ORI-UT-1g-03-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.4 U ug/kg	UJ	Low internal standard response (34.1%)
460-80009-3	BF-ORI-UT-1g-03-20140724	1,3- DICHLOROBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.1%)
460-80009-3	BF-ORI-UT-1g-03-20140724	1,4- DICHLOROBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.1%)
460-80009-3	BF-ORI-UT-1g-03-20140724	1,4-DIOXANE (P- DIOXANE)	28 U ug/kg	UJ	Low internal standard response (39.2%)
460-80009-3	BF-ORI-UT-1g-03-20140724	ACETONE	11 B ug/kg	U	Method blank contamination (8.28 ug/kg); Trip blank contamination (20 ug/l); High surrogate spike recovery (145%)
460-80009-3	BF-ORI-UT-1g-03-20140724	N-BUTYLBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.1%)
460-80009-3	BF-ORI-UT-1g-03-20140724	N-PROPYLBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.1%)
460-80009-3	BF-ORI-UT-1g-03-20140724	SEC-BUTYLBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.1%)
460-80009-3	BF-ORI-UT-1g-03-20140724	T-BUTYLBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.1%)
460-80009-4	BF-ORI-UT-1g-04-20140724	1,2,4- TRIMETHYLBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.2%)
460-80009-4	BF-ORI-UT-1g-04-20140724	1,2- DICHLOROBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.2%)
460-80009-4	BF-ORI-UT-1g-04-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.4 U ug/kg	UJ	Low internal standard response (34.2%)
460-80009-4	BF-ORI-UT-1g-04-20140724	1,3- DICHLOROBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.2%)
460-80009-4	BF-ORI-UT-1g-04-20140724	1,4- DICHLOROBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.2%)
460-80009-4	BF-ORI-UT-1g-04-20140724	1,4-DIOXANE (P- DIOXANE)	28 U ug/kg	UJ	Low internal standard response (24.2%)
460-80009-4	BF-ORI-UT-1g-04-20140724	ACETONE	11 B ug/kg	U	Method blank contamination (8.28 ug/kg); Trip blank contamination (20 ug/l); High surrogate spike recovery (147%)
460-80009-4	BF-ORI-UT-1g-04-20140724	N-BUTYLBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.2%)
460-80009-4	BF-ORI-UT-1g-04-20140724	N-PROPYLBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.2%)
460-80009-4	BF-ORI-UT-1g-04-20140724	SEC-BUTYLBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.2%)
460-80009-4	BF-ORI-UT-1g-04-20140724	T-BUTYLBENZENE	1.4 U ug/kg	UJ	Low internal standard response (34.2%)
460-80009-5	BF-ORI-UT-1g-05-20140724	ACETONE	13 B ug/kg	U	Method blank contamination (8.28 ug/kg); Trip blank contamination (20 ug/l)
460-80009-6	BF-ORI-UT-1g-06-20140724	1,2,4- TRIMETHYLBENZENE	1.4 U ug/kg	UJ	Low internal standard response (49.1%)
460-80009-6	BF-ORI-UT-1g-06-20140724	1,2- DICHLOROBENZENE	1.4 U ug/kg	UJ	Low internal standard response (49.1%)
460-80009-6	BF-ORI-UT-1g-06-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.4 U ug/kg	UJ	Low internal standard response (49.1%)
460-80009-6	BF-ORI-UT-1g-06-20140724	1,3- DICHLOROBENZENE	1.4 U ug/kg	UJ	Low internal standard response (49.1%)
460-80009-6	BF-ORI-UT-1g-06-20140724	1,4- DICHLOROBENZENE	1.4 U ug/kg	UJ	Low internal standard response (49.1%)

Lab ID	Field ID-Date	Analyte	La Resi	ab ult ⁽¹⁾	DVQ	QC Issue
460-80009-6	BF-ORI-UT-1g-06-20140724	1,4-DIOXANE (P- DIOXANE)		U ug/kg	UJ	Low internal standard response (43.2%)
460-80009-6	BF-ORI-UT-1g-06-20140724	ACETONE	12 E	B ug/kg	U	Method blank contamination (8.28 ug/kg); Trip blank contamination (20 ug/l); High surrogate spike recovery (143%)
460-80009-6	BF-ORI-UT-1g-06-20140724	N-BUTYLBENZENE	1.4 l	U ug/kg	UJ	Low internal standard response (49.1%)
460-80009-6	BF-ORI-UT-1g-06-20140724	N-PROPYLBENZENE	1.4 l	U ug/kg	UJ	Low internal standard response (49.1%)
460-80009-6	BF-ORI-UT-1g-06-20140724	SEC-BUTYLBENZENE	1.4 l	U ug/kg	UJ	Low internal standard response (49.1%)
460-80009-6	BF-ORI-UT-1g-06-20140724	T-BUTYLBENZENE	1.4 l	U ug/kg	UJ	Low internal standard response (49.1%)
460-80009-7	BF-ORI-UT-1g-07-20140724	1,2,4- TRIMETHYLBENZENE	1.3 l	U ug/kg	UJ	Low internal standard response (49.8%)
460-80009-7	BF-ORI-UT-1g-07-20140724	1,2- DICHLOROBENZENE	1.3 l	U ug/kg	UJ	Low internal standard response (49.8%)
460-80009-7	BF-ORI-UT-1g-07-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.3 l	U ug/kg	UJ	Low internal standard response (49.8%)
460-80009-7	BF-ORI-UT-1g-07-20140724	1,3- DICHLOROBENZENE	1.3 l	U ug/kg	UJ	Low internal standard response (49.8%)
460-80009-7	BF-ORI-UT-1g-07-20140724	1,4- DICHLOROBENZENE	1.3 l	U ug/kg	UJ	Low internal standard response (49.8%)
460-80009-7	BF-ORI-UT-1g-07-20140724	1,4-DIOXANE (P- DIOXANE)	25 l	U ug/kg	UJ	Low internal standard response (30.8%)
460-80009-7	BF-ORI-UT-1g-07-20140724	ACETONE	9.7 E	B ug/kg	U	Method blank contamination (8.28 ug/kg); Trip blank contamination (20 ug/l); High surrogate spike recovery (140%)
460-80009-7	BF-ORI-UT-1g-07-20140724	N-BUTYLBENZENE	1.3 l	U ug/kg	UJ	Low internal standard response (49.8%)
460-80009-7	BF-ORI-UT-1g-07-20140724	N-PROPYLBENZENE	1.3 l	U ug/kg	UJ	Low internal standard response (49.8%)
460-80009-7	BF-ORI-UT-1g-07-20140724	SEC-BUTYLBENZENE	1.3 l	U ug/kg	UJ	Low internal standard response (49.8%)
460-80009-7	BF-ORI-UT-1g-07-20140724	T-BUTYLBENZENE	1.3 l	U ug/kg	UJ	Low internal standard response (49.8%)
460-80015-1	BF-ORI-WT-1g-01-20140724	1,2,4- TRIMETHYLBENZENE	1.9 l	U ug/kg	UJ	Low internal standard response (45.8%)
460-80015-1	BF-ORI-WT-1g-01-20140724	1,2- DICHLOROBENZENE	1.9 l	U ug/kg	UJ	Low internal standard response (45.8%)
460-80015-1	BF-ORI-WT-1g-01-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.9 l	U ug/kg	UJ	Low internal standard response (45.8%)
460-80015-1	BF-ORI-WT-1g-01-20140724	1,3- DICHLOROBENZENE	1.9 l	U ug/kg	UJ	Low internal standard response (45.8%)
460-80015-1	BF-ORI-WT-1g-01-20140724	1,4- DICHLOROBENZENE	1.9 l	U ug/kg	UJ	Low internal standard response (45.8%)
460-80015-1	BF-ORI-WT-1g-01-20140724	1,4-DIOXANE (P- DIOXANE)	37 l	U ug/kg	UJ	Low internal standard response (34.3%)
460-80015-1	BF-ORI-WT-1g-01-20140724	N-BUTYLBENZENE	1.9 l	U ug/kg	UJ	Low internal standard response (45.8%)
460-80015-1	BF-ORI-WT-1g-01-20140724	N-PROPYLBENZENE	1.9 l	U ug/kg	UJ	Low internal standard response (45.8%)
460-80015-1	BF-ORI-WT-1g-01-20140724	SEC-BUTYLBENZENE	1.9 l	U ug/kg	UJ	Low internal standard response (45.8%)
460-80015-1	BF-ORI-WT-1g-01-20140724	T-BUTYLBENZENE	1.9 l	U ug/kg	UJ	Low internal standard response (45.8%)
460-80015-2	BF-ORI-WT-1g-02-20140724	1,2,4- TRIMETHYLBENZENE	1.8 l	U ug/kg	UJ	Low internal standard response (42.8%)

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-80015-2	BF-ORI-WT-1g-02-20140724	1,2- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.8%)
460-80015-2	BF-ORI-WT-1g-02-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.8 U ug/kg	UJ	Low internal standard response (42.8%)
460-80015-2	BF-ORI-WT-1g-02-20140724	1,3- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.8%)
460-80015-2	BF-ORI-WT-1g-02-20140724	1,4- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.8%)
460-80015-2	BF-ORI-WT-1g-02-20140724	1,4-DIOXANE (P- DIOXANE)	36 U ug/kg	UJ	Low internal standard response (41.3%)
460-80015-2	BF-ORI-WT-1g-02-20140724	N-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.8%)
460-80015-2	BF-ORI-WT-1g-02-20140724	N-PROPYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.8%)
460-80015-2	BF-ORI-WT-1g-02-20140724	SEC-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.8%)
460-80015-2	BF-ORI-WT-1g-02-20140724	T-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.8%)
460-80015-3	BF-ORI-WT-1g-03-20140724	1,2,4- TRIMETHYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.6%)
460-80015-3	BF-ORI-WT-1g-03-20140724	1,2- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.6%)
460-80015-3	BF-ORI-WT-1g-03-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.8 U ug/kg	UJ	Low internal standard response (42.6%)
460-80015-3	BF-ORI-WT-1g-03-20140724	1,3- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.6%)
460-80015-3	BF-ORI-WT-1g-03-20140724	1,4- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.6%)
460-80015-3	BF-ORI-WT-1g-03-20140724	1,4-DIOXANE (P- DIOXANE)	36 U ug/kg	UJ	Low internal standard response (41.1%)
460-80015-3	BF-ORI-WT-1g-03-20140724	N-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.6%)
460-80015-3	BF-ORI-WT-1g-03-20140724	N-PROPYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.6%)
460-80015-3	BF-ORI-WT-1g-03-20140724	SEC-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.6%)
460-80015-3	BF-ORI-WT-1g-03-20140724	T-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.6%)
460-80015-4	BF-ORI-WT-1g-04-20140724	1,2,4- TRIMETHYLBENZENE	1.9 U ug/kg	UJ	Low internal standard response (46%)
460-80015-4	BF-ORI-WT-1g-04-20140724	1,2- DICHLOROBENZENE	1.9 U ug/kg	UJ	Low internal standard response (46%)
460-80015-4	BF-ORI-WT-1g-04-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.9 U ug/kg	UJ	Low internal standard response (46%)
460-80015-4	BF-ORI-WT-1g-04-20140724	1,3- DICHLOROBENZENE	1.9 U ug/kg	UJ	Low internal standard response (46%)
460-80015-4	BF-ORI-WT-1g-04-20140724	1,4- DICHLOROBENZENE	1.9 U ug/kg	UJ	Low internal standard response (46%)
460-80015-4	BF-ORI-WT-1g-04-20140724	1,4-DIOXANE (P- DIOXANE)	38 U ug/kg	UJ	Low internal standard response (40.8%)
460-80015-4	BF-ORI-WT-1g-04-20140724	N-BUTYLBENZENE	1.9 U ug/kg	UJ	Low internal standard response (46%)
460-80015-4	BF-ORI-WT-1g-04-20140724	N-PROPYLBENZENE	1.9 U ug/kg	UJ	Low internal standard response (46%)
460-80015-4	BF-ORI-WT-1g-04-20140724	SEC-BUTYLBENZENE	1.9 U ug/kg	UJ	Low internal standard response (46%)
460-80015-4	BF-ORI-WT-1g-04-20140724	T-BUTYLBENZENE	1.9 U ug/kg	UJ	Low internal standard response (46%)

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-80015-5	BF-ORI-WT-1g-05-20140724	1,2,4- TRIMETHYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.3%)
460-80015-5	BF-ORI-WT-1g-05-20140724	1,2- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.3%)
460-80015-5	BF-ORI-WT-1g-05-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.8 U ug/kg	UJ	Low internal standard response (42.3%)
460-80015-5	BF-ORI-WT-1g-05-20140724	1,3- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.3%)
460-80015-5	BF-ORI-WT-1g-05-20140724	1,4- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.3%)
460-80015-5	BF-ORI-WT-1g-05-20140724	1,4-DIOXANE (P- DIOXANE)	35 U ug/kg	UJ	Low internal standard response (38.9%)
460-80015-5	BF-ORI-WT-1g-05-20140724	N-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.3%)
460-80015-5	BF-ORI-WT-1g-05-20140724	N-PROPYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.3%)
460-80015-5	BF-ORI-WT-1g-05-20140724	SEC-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.3%)
460-80015-5	BF-ORI-WT-1g-05-20140724	T-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (42.3%)
460-80015-6	BF-ORI-WT-1g-06-20140724	1,2,4- TRIMETHYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (39.5%)
460-80015-6	BF-ORI-WT-1g-06-20140724	1,2- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (39.5%)
460-80015-6	BF-ORI-WT-1g-06-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.8 U ug/kg	UJ	Low internal standard response (39.5%)
460-80015-6	BF-ORI-WT-1g-06-20140724	1,3- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (39.5%)
460-80015-6	BF-ORI-WT-1g-06-20140724	1,4- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (39.5%)
460-80015-6	BF-ORI-WT-1g-06-20140724	1,4-DIOXANE (P- DIOXANE)	37 U ug/kg	UJ	Low internal standard response (40.3%)
460-80015-6	BF-ORI-WT-1g-06-20140724	N-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (39.5%)
460-80015-6	BF-ORI-WT-1g-06-20140724	N-PROPYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (39.5%)
460-80015-6	BF-ORI-WT-1g-06-20140724	SEC-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (39.5%)
460-80015-6	BF-ORI-WT-1g-06-20140724	T-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (39.5%)
460-80015-7	BF-ORI-WT-1g-07-20140724	1,2,4- TRIMETHYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (38.5%)
460-80015-7	BF-ORI-WT-1g-07-20140724	1,2- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (38.5%)
460-80015-7	BF-ORI-WT-1g-07-20140724	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.8 U ug/kg	UJ	Low internal standard response (38.5%)
460-80015-7	BF-ORI-WT-1g-07-20140724	1,3- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (38.5%)
460-80015-7	BF-ORI-WT-1g-07-20140724	1,4- DICHLOROBENZENE	1.8 U ug/kg	UJ	Low internal standard response (38.5%)
460-80015-7	BF-ORI-WT-1g-07-20140724	1,4-DIOXANE (P- DIOXANE)	36 U ug/kg	UJ	Low internal standard response (34.9%)
460-80015-7	BF-ORI-WT-1g-07-20140724	N-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (38.5%)
460-80015-7	BF-ORI-WT-1g-07-20140724	N-PROPYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (38.5%)
460-80015-7	BF-ORI-WT-1g-07-20140724	SEC-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (38.5%)

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-80015-7	BF-ORI-WT-1g-07-20140724	T-BUTYLBENZENE	1.8 U ug/kg	UJ	Low internal standard response (38.5%)
460-80767-2	BF-ORI-HS-2g-02-20140807	1,4-DIOXANE (P- DIOXANE)	26 U ug/kg	UJ	Low internal standard response (47.6%)
460-80768-1	BF-ETETZ-CF-1g-01-20140807	1,2,4- TRIMETHYLBENZENE	0.13 J ug/kg	J	Result between MDL and RL
460-80768-6	BF-ETETZ-CF-1g-06-20140807	METHYLENE CHLORIDE	1.8 ug/kg	U	Trip blank contamination (1.2 ug/l)
460-80768-7	BF-ETETZ-CF-1g-07-20140807	METHYLENE CHLORIDE	1.3 ug/kg	U	Trip blank contamination (1.2 ug/l)
460-81552-2	BF-5L-UT-1g-02-20140821	METHYLENE CHLORIDE	3.8 ug/kg	U	Trip blank contamination (1.2 ug/l)
460-81552-3	BF-5L-UT-1g-03-20140821	METHYLENE CHLORIDE	1.3 J ug/kg	U	Trip blank contamination (1.2 ug/l)
460-81552-4	BF-5L-UT-1g-04-20140821	METHYLENE CHLORIDE	2.6 ug/kg	U	Trip blank contamination (1.2 ug/l)
460-81552-5	BF-5L-UT-1g-05-20140821	1,4-DIOXANE (P- DIOXANE)	25 U ug/kg	UJ	Low internal standard response (42.8%)
460-81552-6	BF-5L-UT-1g-06-20140821	METHYLENE CHLORIDE	2.6 ug/kg	U	Trip blank contamination (1.2 ug/l)
460-81552-7	BF-5L-UT-1g-07-20140821	METHYLENE CHLORIDE	1.8 ug/kg	U	Trip blank contamination (1.2 ug/l)
460-82155-1	BF-5L-WT-1g-01-20140903	1,4-DIOXANE (P- DIOXANE)	31 U ug/kg	UJ	Low internal standard response (25.6%)
460-82155-2	BF-5L-WT-1g-02-20140903	1,4-DIOXANE (P- DIOXANE)	28 U ug/kg	UJ	Low internal standard response (39.6%)
460-82584-1	BF-ORI-WT-2g-01-20140910	1,2,4- TRIMETHYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (40.2%)
460-82584-1	BF-ORI-WT-2g-01-20140910	1,2- DICHLOROBENZENE	1.5 U ug/kg	UJ	Low internal standard response (40.2%)
460-82584-1	BF-ORI-WT-2g-01-20140910	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.5 U ug/kg	UJ	Low internal standard response (40.2%)
460-82584-1	BF-ORI-WT-2g-01-20140910	1,3- DICHLOROBENZENE	1.5 U ug/kg	UJ	Low internal standard response (40.2%)
460-82584-1	BF-ORI-WT-2g-01-20140910	1,4- DICHLOROBENZENE	1.5 U ug/kg	UJ	Low internal standard response (40.2%)
460-82584-1	BF-ORI-WT-2g-01-20140910	1,4-DIOXANE (P- DIOXANE)	30 U ug/kg	UJ	Low internal standard response (37.7%)
460-82584-1	BF-ORI-WT-2g-01-20140910	N-BUTYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (40.2%)
460-82584-1	BF-ORI-WT-2g-01-20140910	N-PROPYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (40.2%)
460-82584-1	BF-ORI-WT-2g-01-20140910	SEC-BUTYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (40.2%)
460-82584-1	BF-ORI-WT-2g-01-20140910	T-BUTYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (40.2%)
460-82584-2	BF-ORI-WT-2g-02-20140910	1,2,4- TRIMETHYLBENZENE	1.7 U ug/kg	UJ	Low internal standard response (41.8%)
460-82584-2	BF-ORI-WT-2g-02-20140910	1,2- DICHLOROBENZENE	1.7 U ug/kg	UJ	Low internal standard response (41.8%)
460-82584-2	BF-ORI-WT-2g-02-20140910	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.7 U ug/kg	UJ	Low internal standard response (41.8%)
460-82584-2	BF-ORI-WT-2g-02-20140910	1,3- DICHLOROBENZENE	1.7 U ug/kg	UJ	Low internal standard response (41.8%)
460-82584-2	BF-ORI-WT-2g-02-20140910	1,4- DICHLOROBENZENE	1.7 U ug/kg	UJ	Low internal standard response (41.8%)
460-82584-2	BF-ORI-WT-2g-02-20140910	N-BUTYLBENZENE	1.7 U ug/kg	UJ	Low internal standard response (41.8%)

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-82584-2	BF-ORI-WT-2g-02-20140910	N-PROPYLBENZENE	1.7 U ug/kg	UJ	Low internal standard response (41.8%)
460-82584-2	BF-ORI-WT-2g-02-20140910	SEC-BUTYLBENZENE	1.7 U ug/kg	UJ	Low internal standard response (41.8%)
460-82584-2	BF-ORI-WT-2g-02-20140910	T-BUTYLBENZENE	1.7 U ug/kg	UJ	Low internal standard response (41.8%)
460-82585-2	BF-5L-UT-2g-02-20140910	1,4-DIOXANE (P- DIOXANE)	21 U ug/kg	UJ	Low internal standard response (49.1%)
460-82585-4	BF-5L-UT-3g-01-20140910	1,4-DIOXANE (P- DIOXANE)	20 U ug/kg	UJ	Low internal standard response (49.9%)
460-82585-5	BF-5L-UT-3g-02-20140910	1,4-DIOXANE (P- DIOXANE)	19 U ug/kg	UJ	Low internal standard response (49.8%)
460-82730-1	BF-5L-UT-4g-01-20140912	ACETONE	4.8 U ug/kg	UJ	Poor field duplicate precision (absolute difference > 2xRL), use higher value from field duplicate
460-82730-2	BF-5L-UT-4g-01X-20140912	1,2,4- TRIMETHYLBENZENE	1.2 U ug/kg	UJ	Low internal standard response (37.3%)
460-82730-2	BF-5L-UT-4g-01X-20140912	1,2- DICHLOROBENZENE	1.2 U ug/kg	UJ	Low internal standard response (37.3%)
460-82730-2	BF-5L-UT-4g-01X-20140912	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.2 U ug/kg	UJ	Low internal standard response (37.3%)
460-82730-2	BF-5L-UT-4g-01X-20140912	1,3- DICHLOROBENZENE	1.2 U ug/kg	UJ	Low internal standard response (37.3%)
460-82730-2	BF-5L-UT-4g-01X-20140912	1,4- DICHLOROBENZENE	1.2 U ug/kg	UJ	Low internal standard response (37.3%)
460-82730-2	BF-5L-UT-4g-01X-20140912	1,4-DIOXANE (P- DIOXANE)	23 U ug/kg	UJ	Low internal standard response (47.6%)
460-82730-2	BF-5L-UT-4g-01X-20140912	ACETONE	18 B ug/kg	J	Poor field duplicate precision (absolute difference > 2xRL), use higher value from field duplicate; High surrogate spike recovery (148%)
460-82730-2	BF-5L-UT-4g-01X-20140912	N-BUTYLBENZENE	1.2 U ug/kg	UJ	Low internal standard response (37.3%)
460-82730-2	BF-5L-UT-4g-01X-20140912	N-PROPYLBENZENE	1.2 U ug/kg	UJ	Low internal standard response (37.3%)
460-82730-2	BF-5L-UT-4g-01X-20140912	SEC-BUTYLBENZENE	1.2 U ug/kg	UJ	Low internal standard response (37.3%)
460-82730-2	BF-5L-UT-4g-01X-20140912	T-BUTYLBENZENE	1.2 U ug/kg	UJ	Low internal standard response (37.3%)
460-82730-3	BF-5L-UT-4g-02-20140912	1,2,4- TRIMETHYLBENZENE	1.3 J ug/kg	J	Extremely low internal standard response (14.8%); High surrogate spike recovery (137%, 169% and 147%); Result between MDL and RL
460-82730-3	BF-5L-UT-4g-02-20140912	1,2- DICHLOROBENZENE	1.5 U ug/kg	R	Extremely low internal standard response (14.8%)
460-82730-3	BF-5L-UT-4g-02-20140912	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.5 U ug/kg	R	Extremely low internal standard response (14.8%)
460-82730-3	BF-5L-UT-4g-02-20140912	1,3- DICHLOROBENZENE	1.5 U ug/kg	R	Extremely low internal standard response (14.8%)
460-82730-3	BF-5L-UT-4g-02-20140912	1,4- DICHLOROBENZENE	1.5 U ug/kg	R	Extremely low internal standard response (14.8%)
460-82730-3	BF-5L-UT-4g-02-20140912	ACETONE	53 B ug/kg	J+	High surrogate spike recovery (137%, 169% and 147%)
460-82730-3	BF-5L-UT-4g-02-20140912	BENZENE	1.5 U ug/kg	UJ	Low internal standard response (34.2%)
460-82730-3	BF-5L-UT-4g-02-20140912	CHLOROBENZENE	1.5 U ug/kg	UJ	Low internal standard response (34.2%)

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-82730-3	BF-5L-UT-4g-02-20140912	ETHYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (34.2%)
460-82730-3	BF-5L-UT-4g-02-20140912	N-BUTYLBENZENE	1.5 U ug/kg	R	Extremely low internal standard response (14.8%)
460-82730-3	BF-5L-UT-4g-02-20140912	N-PROPYLBENZENE	1.5 U ug/kg	R	Extremely low internal standard response (14.8%)
460-82730-3	BF-5L-UT-4g-02-20140912	SEC-BUTYLBENZENE	1.5 U ug/kg	R	Extremely low internal standard response (14.8%)
460-82730-3	BF-5L-UT-4g-02-20140912	T-BUTYLBENZENE	1.5 U ug/kg	R	Extremely low internal standard response (14.8%)
460-82730-3	BF-5L-UT-4g-02-20140912	TETRACHLORO ETHYLENE(PCE)	1.5 U ug/kg	UJ	Low internal standard response (34.2%)
460-82730-3	BF-5L-UT-4g-02-20140912	TOLUENE	1.5 ug/kg	J+	High surrogate spike recovery (137%, 169% and 147%); Low internal standard response (34.2%)
460-82730-3	BF-5L-UT-4g-02-20140912	XYLENES, TOTAL	3.0 U ug/kg	UJ	Low internal standard response (34.2%)
460-82735-1	BF-ORI-WT-3g-01-20140912	1,2,4- TRIMETHYLBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (14.6%)
460-82735-1	BF-ORI-WT-3g-01-20140912	1,2- DICHLOROBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (14.6%)
460-82735-1	BF-ORI-WT-3g-01-20140912	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.7 U ug/kg	R	Extremely low internal standard response (14.6%)
460-82735-1	BF-ORI-WT-3g-01-20140912	1,3- DICHLOROBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (14.6%)
460-82735-1	BF-ORI-WT-3g-01-20140912	1,4- DICHLOROBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (14.6%)
460-82735-1	BF-ORI-WT-3g-01-20140912	1,4-DIOXANE (P- DIOXANE)	33 U ug/kg	UJ	Low internal standard response (45.2%)
460-82735-1	BF-ORI-WT-3g-01-20140912	ACETONE	46 B ug/kg	J+	High surrogate spike recovery (137%, 177% and 162%)
460-82735-1	BF-ORI-WT-3g-01-20140912	BENZENE	1.7 U ug/kg	UJ	Low internal standard response (32.4%)
460-82735-1	BF-ORI-WT-3g-01-20140912	CHLOROBENZENE	1.7 U ug/kg	UJ	Low internal standard response (32.4%)
460-82735-1	BF-ORI-WT-3g-01-20140912	ETHYLBENZENE	1.7 U ug/kg	UJ	Low internal standard response (32.4%)
460-82735-1	BF-ORI-WT-3g-01-20140912	N-BUTYLBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (14.6%)
460-82735-1	BF-ORI-WT-3g-01-20140912	N-PROPYLBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (14.6%)
460-82735-1	BF-ORI-WT-3g-01-20140912	SEC-BUTYLBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (14.6%)
460-82735-1	BF-ORI-WT-3g-01-20140912	T-BUTYLBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (14.6%)
460-82735-1	BF-ORI-WT-3g-01-20140912	TETRACHLORO ETHYLENE(PCE)	1.7 U ug/kg	UJ	Low internal standard response (32.4%)
460-82735-1	BF-ORI-WT-3g-01-20140912	TOLUENE	1.4 J ug/kg	J	High surrogate spike recovery (137%, 177% and 162%); Low internal standard response (32.4%); Result between MDL and RL
460-82735-1	BF-ORI-WT-3g-01-20140912	XYLENES, TOTAL	3.3 U ug/kg	UJ	Low internal standard response (32.4%)
460-82735-2	BF-ORI-WT-3g-02-20140912	1,2,4- TRIMETHYLBENZENE	1.4 J ug/kg	J	Extremely low internal standard response (16.3%); High surrogate spike recovery (142% and 138%); Result between MDL and RL
460-82735-2	BF-ORI-WT-3g-02-20140912	1,2- DICHLOROBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (16.3%)

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-82735-2	BF-ORI-WT-3g-02-20140912	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.7 U ug/kg	R	Extremely low internal standard response (16.3%)
460-82735-2	BF-ORI-WT-3g-02-20140912	1,3- DICHLOROBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (16.3%)
460-82735-2	BF-ORI-WT-3g-02-20140912	1,4- DICHLOROBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (16.3%)
460-82735-2	BF-ORI-WT-3g-02-20140912	1,4-DIOXANE (P- DIOXANE)	34 U ug/kg	UJ	Low internal standard response (46.8%)
460-82735-2	BF-ORI-WT-3g-02-20140912	ACETONE	46 B ug/kg	J	Poor field duplicate precision (49 RPD), use higher result from original sample; High surrogate spike recovery (142% and 138%)
460-82735-2	BF-ORI-WT-3g-02-20140912	BENZENE	1.7 U ug/kg	UJ	Low internal standard response (37%)
460-82735-2	BF-ORI-WT-3g-02-20140912	CHLOROBENZENE	1.7 U ug/kg	UJ	Low internal standard response (37%)
460-82735-2	BF-ORI-WT-3g-02-20140912	ETHYLBENZENE	1.7 U ug/kg	UJ	Low internal standard response (37%)
460-82735-2	BF-ORI-WT-3g-02-20140912	N-BUTYLBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (16.3%)
460-82735-2	BF-ORI-WT-3g-02-20140912	N-PROPYLBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (16.3%)
460-82735-2	BF-ORI-WT-3g-02-20140912	SEC-BUTYLBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (16.3%)
460-82735-2	BF-ORI-WT-3g-02-20140912	T-BUTYLBENZENE	1.7 U ug/kg	R	Extremely low internal standard response (16.3%)
460-82735-2	BF-ORI-WT-3g-02-20140912	TETRACHLORO ETHYLENE(PCE)	1.7 U ug/kg	UJ	Low internal standard response (37%)
460-82735-2	BF-ORI-WT-3g-02-20140912	TOLUENE	1.7 U ug/kg	UJ	Low internal standard response (37%)
460-82735-2	BF-ORI-WT-3g-02-20140912	XYLENES, TOTAL	3.4 U ug/kg	UJ	Low internal standard response (37%)
460-82735-3	BF-ORI-WT-3g-02-X-20140912	1,2,4- TRIMETHYLBENZENE	1.0 U ug/kg	UJ	Low internal standard response (38.1%)
460-82735-3	BF-ORI-WT-3g-02-X-20140912	1,2- DICHLOROBENZENE	1.0 U ug/kg	UJ	Low internal standard response (38.1%)
460-82735-3	BF-ORI-WT-3g-02-X-20140912	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.0 U ug/kg	UJ	Low internal standard response (38.1%)
460-82735-3	BF-ORI-WT-3g-02-X-20140912	1,3- DICHLOROBENZENE	1.0 U ug/kg	UJ	Low internal standard response (38.1%)
460-82735-3	BF-ORI-WT-3g-02-X-20140912	1,4- DICHLOROBENZENE	1.0 U ug/kg	UJ	Low internal standard response (38.1%)
460-82735-3	BF-ORI-WT-3g-02-X-20140912	ACETONE	28 B ug/kg	J	Poor field duplicate precision (49 RPD), use higher result from original sample
460-82735-3	BF-ORI-WT-3g-02-X-20140912	N-BUTYLBENZENE	1.0 U ug/kg	UJ	Low internal standard response (38.1%)
460-82735-3	BF-ORI-WT-3g-02-X-20140912	N-PROPYLBENZENE	1.0 U ug/kg	UJ	Low internal standard response (38.1%)
460-82735-3	BF-ORI-WT-3g-02-X-20140912	SEC-BUTYLBENZENE	1.0 U ug/kg	UJ	Low internal standard response (38.1%)
460-82735-3	BF-ORI-WT-3g-02-X-20140912	T-BUTYLBENZENE	1.0 U ug/kg	UJ	Low internal standard response (38.1%)
460-83311-1	BF-ORI-HS-4g-01-20140923	METHYLENE CHLORIDE	0.52 J ug/kg	J	Result between MDL and RL
460-83312-1	BF-5L-WT-2g-01-20140923	1,2,4- TRIMETHYLBENZENE	1.7 U ug/kg	UJ	Low internal standard response (38.5%)
460-83312-1	BF-5L-WT-2g-01-20140923	1,2- DICHLOROBENZENE	1.7 U ug/kg	UJ	Low internal standard response (38.5%)

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-83312-1	BF-5L-WT-2g-01-20140923	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.7 U ug/kg	UJ	Low internal standard response (38.5%)
460-83312-1	BF-5L-WT-2g-01-20140923	1,3- DICHLOROBENZENE	1.7 U ug/kg	UJ	Low internal standard response (38.5%)
460-83312-1	BF-5L-WT-2g-01-20140923	1,4- DICHLOROBENZENE	1.7 U ug/kg	UJ	Low internal standard response (38.5%)
460-83312-1	BF-5L-WT-2g-01-20140923	N-BUTYLBENZENE	1.7 U ug/kg	UJ	Low internal standard response (38.5%)
460-83312-1	BF-5L-WT-2g-01-20140923	N-PROPYLBENZENE	1.7 U ug/kg	UJ	Low internal standard response (38.5%)
460-83312-1	BF-5L-WT-2g-01-20140923	SEC-BUTYLBENZENE	1.7 U ug/kg	UJ	Low internal standard response (38.5%)
460-83312-1	BF-5L-WT-2g-01-20140923	T-BUTYLBENZENE	1.7 U ug/kg	UJ	Low internal standard response (38.5%)
460-83312-2	BF-5L-WT-2g-02-20140923	1,2,4- TRIMETHYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (46%)
460-83312-2	BF-5L-WT-2g-02-20140923	1,2- DICHLOROBENZENE	1.5 U ug/kg	UJ	Low internal standard response (46%)
460-83312-2	BF-5L-WT-2g-02-20140923	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.5 U ug/kg	UJ	Low internal standard response (46%)
460-83312-2	BF-5L-WT-2g-02-20140923	1,3- DICHLOROBENZENE	1.5 U ug/kg	UJ	Low internal standard response (46%)
460-83312-2	BF-5L-WT-2g-02-20140923	1,4- DICHLOROBENZENE	1.5 U ug/kg	UJ	Low internal standard response (46%)
460-83312-2	BF-5L-WT-2g-02-20140923	1,4-DIOXANE (P- DIOXANE)	29 U ug/kg	UJ	Low internal standard response (45%)
460-83312-2	BF-5L-WT-2g-02-20140923	N-BUTYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (46%)
460-83312-2	BF-5L-WT-2g-02-20140923	N-PROPYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (46%)
460-83312-2	BF-5L-WT-2g-02-20140923	SEC-BUTYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (46%)
460-83312-2	BF-5L-WT-2g-02-20140923	T-BUTYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (46%)
460-83312-4	BF-5L-WT-3g-01-20140923	1,4-DIOXANE (P- DIOXANE)	29 U ug/kg	UJ	Low internal standard response (46%)
460-83312-5	BF-5L-WT-3g-02-20140923	1,2,4- TRIMETHYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (45.1%)
460-83312-5	BF-5L-WT-3g-02-20140923	1,2- DICHLOROBENZENE	1.5 U ug/kg	UJ	Low internal standard response (45.1%)
460-83312-5	BF-5L-WT-3g-02-20140923	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.5 U ug/kg	UJ	Low internal standard response (45.1%)
460-83312-5	BF-5L-WT-3g-02-20140923	1,3- DICHLOROBENZENE	1.5 U ug/kg	UJ	Low internal standard response (45.1%)
460-83312-5	BF-5L-WT-3g-02-20140923	1,4- DICHLOROBENZENE	1.5 U ug/kg	UJ	Low internal standard response (45.1%)
460-83312-5	BF-5L-WT-3g-02-20140923	1,4-DIOXANE (P- DIOXANE)	31 U ug/kg	UJ	Low internal standard response (49%)
460-83312-5	BF-5L-WT-3g-02-20140923	N-BUTYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (45.1%)
460-83312-5	BF-5L-WT-3g-02-20140923	N-PROPYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (45.1%)
460-83312-5	BF-5L-WT-3g-02-20140923	SEC-BUTYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (45.1%)
460-83312-5	BF-5L-WT-3g-02-20140923	T-BUTYLBENZENE	1.5 U ug/kg	UJ	Low internal standard response (45.1%)
460-83781-1	BF-5L-UT-5g-01-20141001	ACETONE	21 ug/kg	J-	Calibration drift (%D= -28.4%)
460-83781-2	BF-5L-UT-5g-02-20141001	ACETONE	17 ug/kg	J-	Calibration drift (%D= -28.4%)

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-83781-4	BF-5L-UT-6g-01-20141001	ACETONE	26 ug/kg	J-	Calibration drift (%D= -28.4%)
460-83781-5	BF-5L-UT-6g-02-20141001	ACETONE	26 ug/kg	J-	Calibration drift (%D= -28.4%)
100 70001 0		VOLATILE ORGANIC CON			I December 1991
460-76301-3	BF-SER-RAMPD-DD-15c-001- 20140516	ACENAPHTHENE	120 J ug/kg	J	Result between MDL and RL
460-76301-3	BF-SER-RAMPD-DD-15c-001- 20140516	ANTHRACENE	250 J ug/kg	J	Result between MDL and RL
460-76301-3	BF-SER-RAMPD-DD-15c-001- 20140516	BENZO(G,H,I) PERYLENE	240 J ug/kg	J	Calibration drift (%D= +22.8%); Result between MDL and RL
460-76301-3	BF-SER-RAMPD-DD-15c-001- 20140516	DIBENZ(A,H) ANTHRACENE	25 J ug/kg	J	Result between MDL and RL
460-76301-3	BF-SER-RAMPD-DD-15c-001- 20140516	DIBENZOFURAN	62 J ug/kg	J	Result between MDL and RL
460-76301-3	BF-SER-RAMPD-DD-15c-001- 20140516	FLUORENE	140 J ug/kg	J	Result between MDL and RL
460-76301-6	BF-SER-RAMPD-DD-16c-001- 20140516	ANTHRACENE	94 J ug/kg	J	Result between MDL and RL
460-76301-6	BF-SER-RAMPD-DD-16c-001- 20140516	BENZO(G,H,I) PERYLENE	150 J ug/kg	J	Calibration drift (%D= +22.8%); Result between MDL and RL
460-76301-6	BF-SER-RAMPD-DD-16c-001- 20140516	CHRYSENE	350 J ug/kg	J	Result between MDL and RL
460-76301-6	BF-SER-RAMPD-DD-16c-001- 20140516	DIBENZ(A,H) ANTHRACENE	16 J ug/kg	J	Result between MDL and RL
460-76301-9	BF-SER-RAMPD-DD-17c-001- 20140516	BENZO(G,H,I) PERYLENE	150 J ug/kg	J	Calibration drift (%D= +22.8%); Result between MDL and RL
460-76301-9	BF-SER-RAMPD-DD-17c-001- 20140516	CHRYSENE	270 J ug/kg	J	Result between MDL and RL
460-76301-9	BF-SER-RAMPD-DD-17c-001- 20140516	DIBENZ(A,H) ANTHRACENE	21 J ug/kg	J	Result between MDL and RL
460-76301-9	BF-SER-RAMPD-DD-17c-001- 20140516	FLUORANTHENE	310 J ug/kg	J	Result between MDL and RL
460-76301-9	BF-SER-RAMPD-DD-17c-001- 20140516	PHENANTHRENE	140 J ug/kg	J	Result between MDL and RL
460-76301-12	BF-SER-RAMPD-DD-18c-001- 20140516	BENZO(G,H,I) PERYLENE	69 J ug/kg	J	Calibration drift (%D= +22.8%); Result between MDL and RL
460-76301-12	BF-SER-RAMPD-DD-18c-001- 20140516	CHRYSENE	97 J ug/kg	J	Result between MDL and RL
460-76301-12	BF-SER-RAMPD-DD-18c-001- 20140516	DIBENZ(A,H) ANTHRACENE	25 J ug/kg	J	Result between MDL and RL
460-76301-12	BF-SER-RAMPD-DD-18c-001- 20140516	FLUORANTHENE	92 J ug/kg	J	Result between MDL and RL
460-76301-12	BF-SER-RAMPD-DD-18c-001- 20140516	PYRENE	110 J ug/kg	J	Result between MDL and RL
460-76301-15	BF-SER-RAMPD-DD-19c-001- 20140516	BENZO(G,H,I) PERYLENE	53 J ug/kg	J	Calibration drift (%D= +22.8%); Result between MDL and RL
460-76301-15	BF-SER-RAMPD-DD-19c-001- 20140516	CHRYSENE	110 J ug/kg	J	Result between MDL and RL
460-76301-15	BF-SER-RAMPD-DD-19c-001- 20140516	DIBENZ(A,H) ANTHRACENE	17 J ug/kg	J	Result between MDL and RL
460-76301-15	BF-SER-RAMPD-DD-19c-001- 20140516	FLUORANTHENE	180 J ug/kg	J	Result between MDL and RL
460-76301-15	BF-SER-RAMPD-DD-19c-001- 20140516	PHENANTHRENE	120 J ug/kg	J	Result between MDL and RL
460-76301-15	BF-SER-RAMPD-DD-19c-001- 20140516	PYRENE	180 J ug/kg	J	Result between MDL and RL
460-78812-8	BF-ORI-HS-1C-01-20140702	BENZO(A) ANTHRACENE	24 J ug/kg	J	Result between MDL and RL
460-78812-8	BF-ORI-HS-1C-01-20140702	BENZO(A)PYRENE	19 J ug/kg	J	Result between MDL and RL
460-78812-8	BF-ORI-HS-1C-01-20140702	BENZO(B) FLUORANTHENE	27 J ug/kg	J	Result between MDL and RL

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-78812-8	BF-ORI-HS-1C-01-20140702	INDENO(1,2,3-C,D) PYRENE	15 J ug/kg	J	Calibration drift (%D= +26%); Result between MDL and RL
460-78812-9	BF-ORI-HS-1C-02-20140702	BENZO(A) ANTHRACENE	22 J ug/kg	J	Result between MDL and RL
460-78812-9	BF-ORI-HS-1C-02-20140702	BENZO(A)PYRENE	20 J ug/kg	J	Result between MDL and RL
460-78812-9	BF-ORI-HS-1C-02-20140702	BENZO(B) FLUORANTHENE	31 J ug/kg	J	Result between MDL and RL
460-78812-9	BF-ORI-HS-1C-02-20140702	BENZO(K) FLUORANTHENE	9.3 J ug/kg	J	Result between MDL and RL
460-80009-8	BF-ORI-UT-1c-01-20140724	BENZO(G,H,I) PERYLENE	220 J ug/kg	J	Result between MDL and RL
460-80009-8	BF-ORI-UT-1c-01-20140724	PHENANTHRENE	93 J ug/kg	J	Result between MDL and RL
460-80009-8	BF-ORI-UT-1c-01-20140724	PYRENE	430 J ug/kg	J	Result between MDL and RL
460-80009-9	BF-ORI-UT-1c-02-20140724	ACENAPHTHYLENE	59 J ug/kg	J	Result between MDL and RL
460-80009-9	BF-ORI-UT-1c-02-20140724	ANTHRACENE	140 J ug/kg	J	Result between MDL and RL
460-80009-9	BF-ORI-UT-1c-02-20140724	BENZO(G,H,I) PERYLENE	150 J ug/kg	J	Result between MDL and RL
460-80009-9	BF-ORI-UT-1c-02-20140724	CHRYSENE	420 J ug/kg	J	Result between MDL and RL
460-80009-9	BF-ORI-UT-1c-02-20140724	FLUORANTHENE	260 J ug/kg	J	Result between MDL and RL
460-80009-9	BF-ORI-UT-1c-02-20140724	PHENANTHRENE	76 J ug/kg	J	Result between MDL and RL
460-80009-9	BF-ORI-UT-1c-02-20140724	PYRENE	230 J ug/kg	J	Result between MDL and RL
460-80015-8	BF-ORI-WT-1c-01-20140724	BENZO(G,H,I) PERYLENE	190 J ug/kg	J	Result between MDL and RL
460-80015-8	BF-ORI-WT-1c-01-20140724	CHRYSENE	340 J ug/kg	J	Result between MDL and RL
460-80015-8	BF-ORI-WT-1c-01-20140724	FLUORANTHENE	250 J ug/kg	J	Result between MDL and RL
460-80015-8	BF-ORI-WT-1c-01-20140724	PYRENE	140 J ug/kg	J	Result between MDL and RL
460-80015-9	BF-ORI-WT-1c-02-20140724	BENZO(G,H,I) PERYLENE	91 J ug/kg	J	Result between MDL and RL
460-80015-9	BF-ORI-WT-1c-02-20140724	CHRYSENE	190 J ug/kg	J	Result between MDL and RL
460-80015-9	BF-ORI-WT-1c-02-20140724	DIBENZ(A,H) ANTHRACENE	28 J ug/kg	J	Result between MDL and RL
460-80015-9	BF-ORI-WT-1c-02-20140724	FLUORANTHENE	220 J ug/kg	J	Result between MDL and RL
460-80015-9	BF-ORI-WT-1c-02-20140724	PYRENE	99 J ug/kg	J	Result between MDL and RL
460-80767-3	BF-ORI-HS-2c-01-20140807	BENZO(G,H,I) PERYLENE	74 J ug/kg	J	Calibration drift (%D= +22%); Result between MDL and RL
460-80767-3	BF-ORI-HS-2c-01-20140807	BENZO(K) FLUORANTHENE	31 J ug/kg	J	Result between MDL and RL
460-80767-3	BF-ORI-HS-2c-01-20140807	CHRYSENE	78 J ug/kg	J	Result between MDL and RL
460-80767-3	BF-ORI-HS-2c-01-20140807	CRESOLS, M & P	410 U ug/kg	UJ	Calibration drift (%D= -22.5%)
460-80767-3	BF-ORI-HS-2c-01-20140807	DIBENZ(A,H) ANTHRACENE	36 J ug/kg	J	Calibration drift (%D= +20.5%); Result between MDL and RL
460-80767-3	BF-ORI-HS-2c-01-20140807	FLUORANTHENE	73 J ug/kg	J	Result between MDL and RL
460-80767-3	BF-ORI-HS-2c-01-20140807	PENTACHLORO- PHENOL	830 U ug/kg	UJ	Low matrix spike recovery (33%), Low matrix spike duplicate recovery (40%)
460-80767-3	BF-ORI-HS-2c-01-20140807	PYRENE	47 J ug/kg	J	Result between MDL and RL
460-80768-8	BF-ETETZ-CF-1c-01-20140807	BENZO(A)PYRENE	8.6 J ug/kg	J	Result between MDL and RL
460-80768-8	BF-ETETZ-CF-1c-01-20140807	CRESOLS, M & P	340 U ug/kg	UJ	Calibration drift (%D= -22.5%)
460-80768-9	BF-ETETZ-CF-1c-02-20140807	CRESOLS, M & P	340 U ug/kg	UJ	Calibration drift (%D= -22.5%)
460-81552-8	BF-5L-UT-1c-01-20140821	ACENAPHTHENE	220 J ug/kg	J	Result between MDL and RL
460-81552-8	BF-5L-UT-1c-01-20140821	BENZO(A)PYRENE	32 J ug/kg	J	Result between MDL and RL
460-81552-8	BF-5L-UT-1c-01-20140821	BENZO(G,H,I) PERYLENE	32 J ug/kg	J	Result between MDL and RL
460-81552-8	BF-5L-UT-1c-01-20140821	FLUORANTHENE	67 J ug/kg	J	Result between MDL and RL
460-81552-8	BF-5L-UT-1c-01-20140821	FLUORENE	130 J ug/kg	J	Result between MDL and RL
460-81552-8	BF-5L-UT-1c-01-20140821	INDENO(1,2,3-C,D) PYRENE	32 J ug/kg	J	Result between MDL and RL
460-81552-8	BF-5L-UT-1c-01-20140821	PHENANTHRENE	180 J ug/kg	J	Result between MDL and RL
460-81552-8	BF-5L-UT-1c-01-20140821	PYRENE	82 J ug/kg	J	Result between MDL and RL
460-81552-9	BF-5L-UT-1c-02-20140821	ACENAPHTHENE	280 J ug/kg	J	Result between MDL and RL
460-81552-9	BF-5L-UT-1c-02-20140821	ANTHRACENE	180 J ug/kg	J	Result between MDL and RL

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-81552-9	BF-5L-UT-1c-02-20140821	BENZO(G,H,I) PERYLENE	71 J ug/kg	J	Result between MDL and RL
460-81552-9	BF-5L-UT-1c-02-20140821	CHRYSENE	100 J ug/kg	J	Result between MDL and RL
460-81552-9	BF-5L-UT-1c-02-20140821	FLUORANTHENE	170 J ug/kg	J	Result between MDL and RL
460-81552-9	BF-5L-UT-1c-02-20140821	FLUORENE	290 J ug/kg	J	Result between MDL and RL
460-81552-9	BF-5L-UT-1c-02-20140821	NAPHTHALENE	100 J ug/kg	J	Result between MDL and RL
460-81552-9	BF-5L-UT-1c-02-20140821	PYRENE	280 J ug/kg	J	Result between MDL and RL
460-81561-3	BF-ORI-HS-3c-01-20140821	BENZO(G,H,I)	70 J ug/kg	J	Calibration drift (%D= +26.2%);
		PERYLENE			Result between MDL and RL
460-81561-3	BF-ORI-HS-3c-01-20140821	CHRYSENE	69 J ug/kg	J	Result between MDL and RL
460-81561-3	BF-ORI-HS-3c-01-20140821	FLUORANTHENE	96 J ug/kg	J	Result between MDL and RL
460-81561-3	BF-ORI-HS-3c-01-20140821	INDENO(1,2,3-C,D) PYRENE	73 ug/kg	J+	Calibration drift (%D= +53.9%)
460-81561-3	BF-ORI-HS-3c-01-20140821	PYRENE	87 J ug/kg	J	Result between MDL and RL
460-82155-8	BF-5L-WT-1c-01-20140903	BENZO(G,H,I) PERYLENE	71 J ug/kg	J	Result between MDL and RL
460-82155-8	BF-5L-WT-1c-01-20140903	BENZO(K) FLUORANTHENE	75 J ug/kg	J	Result between MDL and RL
460-82155-8	BF-5L-WT-1c-01-20140903	CHRYSENE	150 J ug/kg	J	Result between MDL and RL
460-82155-8	BF-5L-WT-1c-01-20140903	DIBENZ(A,H) ANTHRACENE	21 J ug/kg	J	Result between MDL and RL
460-82155-8	BF-5L-WT-1c-01-20140903	FLUORANTHENE	140 J ug/kg	J	Result between MDL and RL
460-82155-8	BF-5L-WT-1c-01-20140903	PYRENE	81 J ug/kg	J	Result between MDL and RL
460-82155-9	BF-5L-WT-1c-02-20140903	BENZO(G,H,I) PERYLENE	72 J ug/kg	J	Result between MDL and RL
460-82155-9	BF-5L-WT-1c-02-20140903	BENZO(K) FLUORANTHENE	60 J ug/kg	J	Result between MDL and RL
460-82155-9	BF-5L-WT-1c-02-20140903	CHRYSENE	130 J ug/kg	J	Result between MDL and RL
460-82155-9	BF-5L-WT-1c-02-20140903	DIBENZ(A,H) ANTHRACENE	20 J ug/kg	J	Result between MDL and RL
460-82155-9	BF-5L-WT-1c-02-20140903	FLUORANTHENE	140 J ug/kg	J	Result between MDL and RL
460-82155-9	BF-5L-WT-1c-02-20140903	INDENO(1,2,3-C,D) PYRENE	81 J ug/kg	J	Result between MDL and RL
460-82155-9	BF-5L-WT-1c-02-20140903	PYRENE	100 J ug/kg	J	Result between MDL and RL
460-82584-3	BF-ORI-WT-2c-01-20140910	BENZO(A) ANTHRACENE	1600 ug/kg	J-	Extremely low matrix spike recovery (12%), Extremely low matrix spike duplicate recovery (4%)
460-82584-3	BF-ORI-WT-2c-01-20140910	BENZO(A)PYRENE	1600 ug/kg	J-	Extremely low matrix spike recovery (9%), Extremely low matrix spike duplicate recovery (4%)
460-82584-3	BF-ORI-WT-2c-01-20140910	BENZO(B) FLUORANTHENE	2300 ug/kg	J-	Extremely low matrix spike recovery (-7%), Extremely low matrix spike duplicate recovery (-17%)
460-82584-3	BF-ORI-WT-2c-01-20140910	BENZO(G,H,I) PERYLENE	1200 ug/kg	J-	Low matrix spike recovery (33%), Low matrix spike duplicate recovery (26%)
460-82584-3	BF-ORI-WT-2c-01-20140910	BENZO(K) FLUORANTHENE	770 ug/kg	J-	Low matrix spike recovery (32%), Low matrix spike duplicate recovery (31%)
460-82584-3	BF-ORI-WT-2c-01-20140910	CHRYSENE	1600 ug/kg	J-	Extremely low matrix spike recovery (5%), Extremely low matrix spike duplicate recovery (-1%)
460-82584-3	BF-ORI-WT-2c-01-20140910	INDENO(1,2,3-C,D) PYRENE	1100 ug/kg	J-	Low matrix spike recovery (35%), Low matrix spike duplicate recovery (30%)

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-82584-3	BF-ORI-WT-2c-01-20140910	PENTACHLORO- PHENOL	1300 U ug/kg	UJ	Low matrix spike recovery (39%), Low matrix spike duplicate recovery (40%)
460-82584-3	BF-ORI-WT-2c-01-20140910	PHENANTHRENE	990 ug/kg	J-	Low matrix spike recovery (32%), Low matrix spike duplicate recovery (25%)
460-82584-3	BF-ORI-WT-2c-01-20140910	PYRENE	2300 ug/kg	J-	Extremely low matrix spike recovery (-18%), Extremely low matrix spike duplicate recovery (-23%)
460-82585-3	BF-5L-UT-2c-01-20140910	BENZO(B) FLUORANTHENE	41 J ug/kg	J	Result between MDL and RL
460-82585-3	BF-5L-UT-2c-01-20140910	FLUORANTHENE	51 J ug/kg	J	Result between MDL and RL
460-82585-3	BF-5L-UT-2c-01-20140910	PHENANTHRENE	67 J ug/kg	J	Result between MDL and RL
460-82585-3	BF-5L-UT-2c-01-20140910	PYRENE	50 J ug/kg	J	Result between MDL and RL
460-82585-6	BF-5L-UT-3c-01-20140910	FLUORANTHENE	49 J ug/kg	J	Result between MDL and RL
460-82730-5	BF-5L-UT-4c-01X-20140912	FLUORANTHENE	44 J ug/kg	J	Result between MDL and RL
460-82730-5	BF-5L-UT-4c-01X-20140912	PYRENE	42 J ug/kg	J	Result between MDL and RL
460-83311-3	BF-ORI-HS-4c-01-20140923	BENZO(B) FLUORANTHENE	120 ug/kg	J+	Calibration drift (%D= +21.4%)
460-83311-3	BF-ORI-HS-4c-01-20140923	BENZO(K) FLUORANTHENE	40 J ug/kg	J	Result between MDL and RL
460-83311-3	BF-ORI-HS-4c-01-20140923	CHRYSENE	86 J ug/kg	J	Result between MDL and RL
460-83311-3	BF-ORI-HS-4c-01-20140923	FLUORANTHENE	140 J ug/kg	J	Result between MDL and RL
460-83311-3	BF-ORI-HS-4c-01-20140923	INDENO(1,2,3-C,D) PYRENE	110 ug/kg	J+	Calibration drift (%D= +26%)
460-83311-3	BF-ORI-HS-4c-01-20140923	PHENANTHRENE	82 J ug/kg	J	Result between MDL and RL
460-83311-3	BF-ORI-HS-4c-01-20140923	PYRENE	93 J ug/kg	J	Result between MDL and RL
460-83312-3	BF-5L-WT-2c-01-20140923	BENZO(B) FLUORANTHENE	280 ug/kg	J+	Calibration drift (%D= +21.4%)
460-83312-3	BF-5L-WT-2c-01-20140923	BENZO(G,H,I) PERYLENE	210 J ug/kg	J	Result between MDL and RL
460-83312-3	BF-5L-WT-2c-01-20140923	CHRYSENE	170 J ug/kg	J	Result between MDL and RL
460-83312-3	BF-5L-WT-2c-01-20140923	DIBENZ(A,H) ANTHRACENE	54 ug/kg	J+	Calibration drift (%D= +23.4%)
460-83312-3	BF-5L-WT-2c-01-20140923	FLUORANTHENE	270 J ug/kg	J	Result between MDL and RL
460-83312-3	BF-5L-WT-2c-01-20140923	INDENO(1,2,3-C,D) PYRENE	230 ug/kg	J+	Calibration drift (%D= +26%)
460-83312-3	BF-5L-WT-2c-01-20140923	PHENANTHRENE	100 J ug/kg	J	Result between MDL and RL
460-83312-3	BF-5L-WT-2c-01-20140923	PYRENE	210 J ug/kg	J	Result between MDL and RL
460-83312-6	BF-5L-WT-3c-01-20140923	BENZO(B) FLUORANTHENE	1100 ug/kg	J+	Calibration drift (%D= +21.4%)
460-83312-6	BF-5L-WT-3c-01-20140923	BENZO(G,H,I) PERYLENE	330 J ug/kg	J	Result between MDL and RL
460-83312-6	BF-5L-WT-3c-01-20140923	DIBENZ(A,H) ANTHRACENE	120 ug/kg	J+	Calibration drift (%D= +23.4%)
460-83312-6	BF-5L-WT-3c-01-20140923	FLUORANTHENE	330 J ug/kg	J	Result between MDL and RL
460-83312-6	BF-5L-WT-3c-01-20140923	INDENO(1,2,3-C,D) PYRENE	420 ug/kg	J+	Calibration drift (%D= +26%)
460-83312-6	BF-5L-WT-3c-01-20140923	PHENANTHRENE	75 J ug/kg	J	Result between MDL and RL
460-83312-6	BF-5L-WT-3c-01-20140923	PYRENE	330 J ug/kg	J	Result between MDL and RL
460-83312-9	BF-5L-WT-4c-01-20140923	BENZO(B) FLUORANTHENE	120 ug/kg	J+	Calibration drift (%D= +21.4%)
460-83312-9	BF-5L-WT-4c-01-20140923	BENZO(G,H,I) PERYLENE	110 J ug/kg	J	Result between MDL and RL
460-83312-9	BF-5L-WT-4c-01-20140923	CHRYSENE	90 J ug/kg	J	Result between MDL and RL
460-83312-9	BF-5L-WT-4c-01-20140923	FLUORANTHENE	130 J ug/kg	J	Result between MDL and RL
460-83312-9	BF-5L-WT-4c-01-20140923	INDENO(1,2,3-C,D) PYRENE	90 ug/kg	J+	Calibration drift (%D= +26%)
460-83312-9	BF-5L-WT-4c-01-20140923	PHENANTHRENE	80 J ug/kg	J	Result between MDL and RL
460-83312-9	BF-5L-WT-4c-01-20140923	PYRENE	82 J ug/kg	J	Result between MDL and RL

Lab ID	Field ID-Date	Analyte	Lab Result ⁽¹⁾	DVQ	QC Issue
460-83781-3	BF-5L-UT-5c-01-20141001	FLUORANTHENE	15 J ug/kg	J	Result between MDL and RL
460-83781-3	BF-5L-UT-5c-01-20141001	PYRENE	19 J ug/kg	J	Result between MDL and RL
460-83781-6	BF-5L-UT-6c-01-20141001	BENZO(B) FLUORANTHENE	17 J ug/kg	J	Result between MDL and RL
460-83781-6	BF-5L-UT-6c-01-20141001	FLUORANTHENE	18 J ug/kg	J	Result between MDL and RL
460-83781-6	BF-5L-UT-6c-01-20141001	PYRENE	24 J ug/kg	J	Result between MDL and RL
460-83792-3	BF-ORI-HS-5c-01-20141001	BENZO(G,H,I) PERYLENE	28 J ug/kg	J	Result between MDL and RL
460-83792-3	BF-ORI-HS-5c-01-20141001	CHRYSENE	110 J ug/kg	J	Result between MDL and RL
460-83792-3	BF-ORI-HS-5c-01-20141001	FLUORANTHENE	190 J ug/kg	J	Result between MDL and RL
460-83792-3	BF-ORI-HS-5c-01-20141001	FLUORENE	17 J ug/kg	J	Result between MDL and RL
460-83792-3	BF-ORI-HS-5c-01-20141001	INDENO(1,2,3-C,D) PYRENE	35 J ug/kg	J	Result between MDL and RL
460-83792-3	BF-ORI-HS-5c-01-20141001	PHENANTHRENE	94 J ug/kg	J	Result between MDL and RL
460-83792-3	BF-ORI-HS-5c-01-20141001	PYRENE	120 J ug/kg	J	Result between MDL and RL
460-84428-3	BF-ORI-HS-6c-01-20141013	BENZO(A)PYRENE	30 J ug/kg	J	Result between MDL and RL
460-84428-3	BF-ORI-HS-6c-01-20141013	BENZO(K) FLUORANTHENE	23 J ug/kg	J	Result between MDL and RL
460-84428-3	BF-ORI-HS-6c-01-20141013	CHRYSENE	44 J ug/kg	J	Result between MDL and RL
460-84428-3	BF-ORI-HS-6c-01-20141013	FLUORANTHENE	33 J ug/kg	J	Calibration drift (%D= -22.9%);
					Result between MDL and RL
460-84428-3	BF-ORI-HS-6c-01-20141013	PYRENE	29 J ug/kg	J	Result between MDL and RL
460-84432-3	BF-5L-WT-5c-01-20141013	BENZO(G,H,I) PERYLENE	46 J ug/kg	J	Result between MDL and RL
460-84432-3	BF-5L-WT-5c-01-20141013	BENZO(K) FLUORANTHENE	32 J ug/kg	J	Result between MDL and RL
460-84432-3	BF-5L-WT-5c-01-20141013	CHRYSENE	65 J ug/kg	J	Result between MDL and RL
460-84432-3	BF-5L-WT-5c-01-20141013	FLUORANTHENE	110 J ug/kg	J	Calibration drift (%D= -22.9%); Result between MDL and RL
460-84432-3	BF-5L-WT-5c-01-20141013	PHENANTHRENE	53 J ug/kg	J	Result between MDL and RL
460-84432-3	BF-5L-WT-5c-01-20141013	PYRENE	110 J ug/kg	J	Result between MDL and RL
460-84432-6	BF-5L-WT-6c-01-20141013	BENZO(G,H,I) PERYLENE	23 J ug/kg	J	Result between MDL and RL
460-84432-6	BF-5L-WT-6c-01-20141013	CHRYSENE	100 J ug/kg	J	Result between MDL and RL
460-84432-6	BF-5L-WT-6c-01-20141013	CRESOLS, M & P	49 J ug/kg	J	Result between MDL and RL
460-84432-6	BF-5L-WT-6c-01-20141013	FLUORANTHENE	170 J ug/kg	J	Result between MDL and RL
460-84432-6	BF-5L-WT-6c-01-20141013	FLUORENE	10 J ug/kg	J	Result between MDL and RL
460-84432-6	BF-5L-WT-6c-01-20141013	INDENO(1,2,3-C,D) PYRENE	31 J ug/kg	J	Result between MDL and RL
460-84432-6	BF-5L-WT-6c-01-20141013	PHENANTHRENE	76 J ug/kg	J	Result between MDL and RL
460-84432-6	BF-5L-WT-6c-01-20141013	PYRENE	110 J ug/kg	J	Result between MDL and RL
		CYANIDE			
460-78812-8	BF-ORI-HS-1C-01-20140702	CYANIDE	0.10 J mg/kg	J	Result between MDL and RL
460-78812-9	BF-ORI-HS-1C-02-20140702	CYANIDE	0.093 J mg/kg	J	Result between MDL and RL
460-80767-3	BF-ORI-HS-2c-01-20140807	CYANIDE	0.083 J mg/kg	J	Result between MDL and RL
460-83781-6	BF-5L-UT-6c-01-20141001	CYANIDE	0.11 J mg/kg	J	Result between MDL and RL

¹⁾ Results in red have been elevated to the reporting limit per the NFG. The laboratory reported a detect between the MDL and RL for this analyte, but the result has been qualified (U flag) and raised to the reporting limit due to laboratory or field contamination.

TABLE 5 REVERE SMELTING AND REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples May 2014 to October 2014

FIELD DUPLICATE RESULTS

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-81232-2	460-81232-3	ECS-AREA 11-G5-F-	ARSENIC	6.2 mg/kg	4 mg/kg	2.2	7.4	NA	У
		20140815							
460-81232-2	460-81232-3	ECS-AREA 11-G5-F-	LEAD	92.1 mg/kg	61.6 mg/kg	30.5	5	40	NO
		20140815							
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	1,1,1-TRICHLOROETHANE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	1,1-DICHLOROETHANE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	1,1-DICHLOROETHENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	1,2,4-TRIMETHYLBENZENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	1,2-DICHLOROBENZENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	1,2-DICHLOROETHANE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	у
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	1,3-DICHLOROBENZENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	1,4-DICHLOROBENZENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	1,4-DIOXANE (P-DIOXANE)	19 U ug/kg	23 U ug/kg	4	46	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	ACETONE	4.8 U ug/kg	18 B ug/kg	13.2	11.6	NA	NO
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	BENZENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	CARBON TETRACHLORIDE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	CHLOROBENZENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	CHLOROFORM	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	CIS-1,2-DICHLOROETHYLENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	ETHYLBENZENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	METHYL ETHYL KETONE (2- BUTANONE)	4.8 U ug/kg	5.8 U ug/kg	1	11.6	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	METHYLENE CHLORIDE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	N-BUTYLBENZENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	N-PROPYLBENZENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	SEC-BUTYLBENZENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	T-BUTYLBENZENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	TERT-BUTYL METHYL ETHER	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	TETRACHLOROETHYLENE(PCE)	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	TOLUENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	у

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	TRANS-1,2-DICHLOROETHENE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	TRICHLOROETHYLENE (TCE)	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	VINYL CHLORIDE	0.97 U ug/kg	1.2 U ug/kg	0.23	2.4	NA	У
460-82730-1	460-82730-2	BF-5L-UT-4g-01-20140912	XYLENES, TOTAL	1.9 U ug/kg	2.3 U ug/kg	0.4	4.6	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	ARSENIC	5.5 mg/kg	4.4 mg/kg	1.1	5.8	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	BARIUM	82.6 mg/kg	70.5 mg/kg	12.1	76.6	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	BERYLLIUM	0.62 mg/kg	0.52 mg/kg	0.1	0.76	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	CADMIUM	0.77 U mg/kg	0.74 U mg/kg	0.03	1.54	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	CHROMIUM, TOTAL	19.5 mg/kg	19 mg/kg	0.5	3.8	2.6	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	COPPER	22 mg/kg	18.8 mg/kg	3.2	9.6	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	LEAD	22.2 mg/kg	17.4 mg/kg	4.8	3.8	24	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	MANGANESE	719 mg/kg	551 mg/kg	168	5.8	26	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	NICKEL	22.3 mg/kg	22.3 mg/kg	0	15.4	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	SELENIUM	3.8 U mg/kg	3.7 U mg/kg	0.1	7.6	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	SILVER	0.38 J mg/kg	1.9 U mg/kg	1.52	3.8	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	ZINC	80.5 mg/kg	72.2 mg/kg	8.3	11.6	11	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	CHROMIUM, HEXAVALENT	2.6 U mg/kg	2.4 U mg/kg	0.2	5.2	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	CHROMIUM III	19.5 mg/kg	19 mg/kg	0.5	4	2.6	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	MERCURY	0.057 mg/kg	0.053 mg/kg	0.004	0.04	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	ALDRIN	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXANE)	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	ALPHA ENDOSULFAN	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	BETA BHC (BETA	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
			HEXACHLOROCYCLOHEXANE)						,
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	BETA ENDOSULFAN	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	CHLORDANE	85 U ug/kg	79 U ug/kg	6	170	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	DELTA BHC (DELTA HEXACHLOROCYCLOHEXANE)	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	DIELDRIN	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	ENDOSULFAN SULFATE	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	ENDRIN	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	ENDRIN ALDEHYDE	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	ENDRIN KETONE	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	GAMMA BHC (LINDANE)	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	HEPTACHLOR	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	HEPTACHLOR EPOXIDE	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	METHOXYCHLOR	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	P,P'-DDD	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	P,P'-DDE	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	P,P'-DDT	8.5 U ug/kg	7.9 U ug/kg	0.6	17	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	TOXAPHENE	85 U ug/kg	79 U ug/kg	6	170	NA	У

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	PCB-1016 (AROCLOR 1016)	85 U ug/kg	79 U ug/kg	6	170	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	PCB-1221 (AROCLOR 1221)	85 U ug/kg	79 U ug/kg	6	170	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	PCB-1232 (AROCLOR 1232)	85 U ug/kg	79 U ug/kg	6	170	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	PCB-1242 (AROCLOR 1242)	85 U ug/kg	79 U ug/kg	6	170	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	PCB-1248 (AROCLOR 1248)	85 U ug/kg	79 U ug/kg	6	170	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	PCB-1254 (AROCLOR 1254)	85 U ug/kg	79 U ug/kg	6	170	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	PCB-1260 (AROCLOR 1260)	85 U ug/kg	79 U ug/kg	6	170	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	SILVEX (2,4,5-TP)	22 U ug/kg	20 U ug/kg	2	44	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	2-METHYLPHENOL (O-CRESOL)	420 U ug/kg	390 U ug/kg	30	840	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	ACENAPHTHENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	ACENAPHTHYLENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	ANTHRACENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	BENZO(A)ANTHRACENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	BENZO(A)PYRENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	BENZO(B)FLUORANTHENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	BENZO(G,H,I)PERYLENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	BENZO(K)FLUORANTHENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	CHRYSENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	CRESOLS, M & P	420 U ug/kg	390 U ug/kg	30	840	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	DIBENZ(A,H)ANTHRACENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	DIBENZOFURAN	420 U ug/kg	390 U ug/kg	30	840	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	FLUORANTHENE	84 U ug/kg	44 J ug/kg	40	168	NA	у
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	FLUORENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	HEXACHLOROBENZENE	420 U ug/kg	390 U ug/kg	30	840	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	INDENO(1,2,3-C,D)PYRENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	NAPHTHALENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	PENTACHLOROPHENOL	1000 U ug/kg	980 U ug/kg	20	2000	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	PHENANTHRENE	84 U ug/kg	79 U ug/kg	5	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	PHENOL	420 U ug/kg	390 U ug/kg	30	840	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	PYRENE	84 U ug/kg	42 J ug/kg	42	168	NA	У
460-82730-4	460-82730-5	BF-5L-UT-4c-01-20140912	CYANIDE	0.16 mg/kg	0.13 mg/kg	0.03	0.26	NA	У
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	1,1,1-TRICHLOROETHANE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	У
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	1,1-DICHLOROETHANE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	У
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	1,1-DICHLOROETHENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	У
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	1,2,4-TRIMETHYLBENZENE	1.4 J ug/kg	1 U ug/kg	0.4	3.4	NA	У
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	1,2-DICHLOROBENZENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	У
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	1,2-DICHLOROETHANE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	У
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	У
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	1,3-DICHLOROBENZENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	1,4-DICHLOROBENZENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	1,4-DIOXANE (P-DIOXANE)	34 U ug/kg	20 U ug/kg	14	68	NA	у

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	ACETONE	46 B ug/kg	28 B ug/kg	18	17.2	49	NO
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	BENZENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	CARBON TETRACHLORIDE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	CHLOROBENZENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	CHLOROFORM	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	CIS-1,2-DICHLOROETHYLENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	ETHYLBENZENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	METHYL ETHYL KETONE (2- BUTANONE)	8.6 U ug/kg	5.1 U ug/kg	3.5	17.2	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	METHYLENE CHLORIDE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	N-BUTYLBENZENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	N-PROPYLBENZENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	SEC-BUTYLBENZENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	T-BUTYLBENZENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	TERT-BUTYL METHYL ETHER	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	TETRACHLOROETHYLENE(PCE)	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	TOLUENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	TRANS-1,2-DICHLOROETHENE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	TRICHLOROETHYLENE (TCE)	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	VINYL CHLORIDE	1.7 U ug/kg	1 U ug/kg	0.7	3.4	NA	у
460-82735-2	460-82735-3	BF-ORI-WT-3g-02-20140912	XYLENES, TOTAL	3.4 U ug/kg	2 U ug/kg	1.4	6.8	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	ARSENIC	4.9 mg/kg	4.6 mg/kg	0.3	9	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	BARIUM	76.6 mg/kg	84.8 mg/kg	8.2	121.2	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	BERYLLIUM	0.61 U mg/kg	0.34 J mg/kg	0.27	1.22	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	CADMIUM	1.2 U mg/kg	0.95 U mg/kg	0.25	2.4	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	CHROMIUM, TOTAL	12.3 mg/kg	15.4 mg/kg	3.1	6	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	COPPER	36.6 mg/kg	27.3 mg/kg	9.3	15.2	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	LEAD	27.8 mg/kg	26.1 mg/kg	1.7	6	6.3	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	MANGANESE	570 mg/kg	575 mg/kg	5	9	0.87	У
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	NICKEL	15.6 mg/kg	16.5 mg/kg	0.9	24.2	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	SELENIUM	6.1 U mg/kg	4.8 U mg/kg	1.3	12.2	NA	У
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	SILVER	3 U mg/kg	2.4 U mg/kg	0.6	6	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	ZINC	106 mg/kg	97.3 mg/kg	8.7	18.2	8.6	У
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	CHROMIUM, HEXAVALENT	3.8 U mg/kg	3.2 U mg/kg	0.6	7.6	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	CHROMIUM III	12.3 mg/kg	15.4 mg/kg	3.1	4	22	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	MERCURY	0.047 mg/kg	0.043 mg/kg	0.004	0.058	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	ALDRIN	13 U ug/kg	11 U ug/kg	2	26	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXANE)	13 U ug/kg	11 U ug/kg	2	26	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	ALPHA ENDOSULFAN	13 U ug/kg	11 U ug/kg	2	26	NA	У
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	13 U ug/kg	11 U ug/kg	2	26	NA	у

Lab D	Original Sample	Field Duplicate	Field ID-Date	Analyte	Original Sample	Field Duplicate	Abs Diff	2xRL	RPD	Pass
460-82735-4				•			ADS DIII			1 433
460-82735-5					13 U ug/kg			26	NA	у
## 460-82735-5 BF-ORI-WT-3c-01-20140912 ENDOSULFAN SULFATE 13 U	460-82735-4					0 0		260	NA	у
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIELDRIN 13 U ug/kg 11 U ug/kg 2 26 NA	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912		13 U ug/kg	11 U ug/kg	2	26	NA	У
460-82735-4										
460-82735-4										_
460-82735-4										у
460-82735-4		460-82735-5	BF-ORI-WT-3c-01-20140912		0 0	0 0				у
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 HEPTACHLOR 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 HEPTACHLOR 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 HEPTACHLOR EPOXIDE 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 METHOXYCHLOR 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDD 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDD 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDD 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDD 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDD 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 13 U ug/kg 11 U ug/kg 2 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 13 U ug/kg 11 U ug/kg 2 0 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 13 U ug/kg 11 U ug/kg 2 0 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 13 U ug/kg 11 U ug/kg 2 0 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 13 U ug/kg 11 U ug/kg 2 0 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 13 U ug/kg 11 U ug/kg 2 0 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 13 U ug/kg 11 U ug/kg 2 0 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 13 U ug/kg 11 U ug/kg 2 0 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 13 U ug/kg 11 U ug/kg 2 0 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 13 U ug/kg 11 U ug/kg 2 0 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 13 U ug/kg 2 0 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 14 U ug/kg 2 0 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.PDDT 14 U ug/kg 2 0 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-2014			BF-ORI-WT-3c-01-20140912		0					у
460-82735-4										У
460-82735-4		460-82735-5	BF-ORI-WT-3c-01-20140912			<u> </u>		_		у
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 METHOXYCHLOR 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.P-DDD 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.P-DDT 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.P-DDT 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.P-DDT 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.P-DDT 13 U ug/kg 11 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.CB-1221 (AROCLOR 12c1) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.CB-1222 (AROCLOR 12c1) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.CB-1224 (AROCLOR 12c1) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.CB-1224 (AROCLOR 12c2) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.CB-1226 (AROCLOR 12c2) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.CB-1260 (AROCLOR 12c2) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.CB-1260 (AROCLOR 12c0) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.CB-1260 (AROCLOR 12c0) 130 U ug/kg 20 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (LAS-TP) 32 U ug/kg 20 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	HEPTACHLOR			2			у
460-82735-4			BF-ORI-WT-3c-01-20140912	HEPTACHLOR EPOXIDE	0 0	<u> </u>	2	26		У
460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 P,P-DDE 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 TOXAPHENE 130 U ug/kg 110 U ug/kg 2 26 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 PCB-1281 (AROCLOR 1016) 130 U ug/kg 1110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 PCB-1281 (AROCLOR 1016) 130 U ug/kg 1110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 PCB-1281 (AROCLOR 1016) 130 U ug/kg 1110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 PCB-1281 (AROCLOR 1221) 130 U ug/kg 1110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 PCB-1281 (AROCLOR 1232) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 PCB-1284 (AROCLOR 1242) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 PCB-1284 (AROCLOR 1242) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 PCB-1284 (AROCLOR 1248) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 PCB-1284 (AROCLOR 1284) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 PCB-1280 (AROCLOR 1264) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 PCB-1280 (AROCLOR 1264) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 PCB-1260 (AROCLOR 1264) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 SILVEX (2,4,5-TP) 32 U ug/kg 27 U ug/kg 50 U ug/kg 50 NA y 460-82735-5 BF-ORI-WT-3-01-20140912 SILVEX (2,4,5-TP) 32 U ug/kg 50 U ug/kg 93 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 BENZO(NAMTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 BENZO(NAMTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3-01-20140912 BENZO(NAMTHENE 130 U	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	METHOXYCHLOR				26	NA	у
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 P.P-DDT 13 U ug/kg 11 U ug/kg 2 26 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 TOXAPHENE 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1016 (AROCLOR 1016) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1221 (AROCLOR 1221) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1232 (AROCLOR 1221) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1232 (AROCLOR 1221) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1242 (AROCLOR 1242) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1248 (AROCLOR 1248) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1260 (AROCLOR 1248) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1260 (AROCLOR 1260) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2,4.5-TP) 32 U ug/kg 27 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2,4.5-TP) 32 U ug/kg 2600 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)EULORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y	460-82735-4			,		0 0				у
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1016 (AROCLOR 1016) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1016 (AROCLOR 1021) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1221 (AROCLOR 1221) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1232 (AROCLOR 1232) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1242 (AROCLOR 1232) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1242 (AROCLOR 1242) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1242 (AROCLOR 1242) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1260 (AROCLOR 1264) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1260 (AROCLOR 1260) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1260 (AROCLOR 1260) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (24,5TP) 32 U ug/kg 27 U ug/kg 20 260 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (24,5TP) 32 U ug/kg 27 U ug/kg 5 64 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 20 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLURANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20				P,P'-DDE	13 U ug/kg		2	26	NA	у
460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1016 (AROCLOR 1016) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1221 (AROCLOR 1221) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1232 (AROCLOR 1232) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1232 (AROCLOR 1242) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1248 (AROCLOR 1242) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1248 (AROCLOR 1242) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1248 (AROCLOR 1242) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1248 (AROCLOR 1264) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1269 (AROCLOR 1260) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2,4,5-TP) 32 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2,4,5-TP) 32 U ug/kg 27 U ug/kg 5 64 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)AN	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	P,P'-DDT	13 U ug/kg			26	NA	у
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1221 (AROCLOR 1221) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1232 (AROCLOR 1222) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1242 (AROCLOR 1242) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1248 (AROCLOR 1242) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1248 (AROCLOR 1248) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1254 (AROCLOR 1264) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1260 (AROCLOR 1260) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2.4,5-TP) 32 U ug/kg 27 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2.4,5-TP) 32 U ug/kg 27 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 10	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912				20	260	NA	У
460-82735-4	460-82735-4				130 U ug/kg		20	260	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1242 (AROCLOR 1242) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1284 (AROCLOR 1248) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1254 (AROCLOR 1254) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1260 (AROCLOR 1254) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1260 (AROCLOR 1260) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2,4,5-TP) 32 U ug/kg 27 U ug/kg 5 64 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2,4,5-TP) 32 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)PYRENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)PYRENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(C)BFLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(C)BFLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(C)BFLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(B) DIBEN	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	PCB-1221 (AROCLOR 1221)	130 U ug/kg		20	260	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1248 (AROCLOR 1248) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1254 (AROCLOR 1254) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1260 (AROCLOR 1260) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2,4,5-TP) 32 U ug/kg 27 U ug/kg 5 64 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2,4,5-TP) 32 U ug/kg 27 U ug/kg 5 64 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CHRYSENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(A, H), NA P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(A, H), NA	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	PCB-1232 (AROCLOR 1232)	130 U ug/kg	110 U ug/kg	20	260	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1254 (AROCLOR 1254) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1260 (AROCLOR 1260) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2,4,5-TP) 32 U ug/kg 27 U ug/kg 5 64 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 2-METHYLPHENOL (O-CRESOL) 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	PCB-1242 (AROCLOR 1242)	130 U ug/kg	110 U ug/kg	20	260	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 PCB-1260 (AROCLOR 1260) 130 U ug/kg 110 U ug/kg 20 260 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2,4,5-TP) 32 U ug/kg 27 U ug/kg 5 64 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 2-METHYLPHOL (O-CRESOL) 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)PYRENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)PYRENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)PYRENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(G,H,I)PERYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(G,H,I)PERYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(G,H,I)PERYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(F,H)NT-HREE 130 U ug/kg 520 U	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	PCB-1248 (AROCLOR 1248)	130 U ug/kg		20	260	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 SILVEX (2,4,5-TP) 32 U ug/kg 27 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 2-METHYLPHENOL (O-CRESOL) 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)PYRENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)PYRENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B,I)PERYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(K)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(K)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(BENZONE 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(B	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	PCB-1254 (AROCLOR 1254)	130 U ug/kg			260		У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)PYRENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(K)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(K)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(A,H)ANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(A,H)ANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZO(A,H)A	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	PCB-1260 (AROCLOR 1260)	130 U ug/kg		20	260		У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(K)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CHRYSENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-5 BF-ORI-WT-3c-01-20140912 CHRYSENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(B,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(B,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZOHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZOHENE	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	SILVEX (2,4,5-TP)	32 U ug/kg	27 U ug/kg	5	64	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ACENAPHTHYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)PYRENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(G,H,I)PERYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(K)FLUORANTHENE 130 U ug/kg 520	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	2-METHYLPHENOL (O-CRESOL)	620 U ug/kg	2600 U ug/kg	1980	5200	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(G,H,I)PERYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(G,H,I)PERYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(G,H,I)PERYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CHRYSENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 HEXACHLOROBENZENE 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-O	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	ACENAPHTHENE	130 U ug/kg		390	1040	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)PYRENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(G,H,I)PERYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(G,H,I)PERYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CHRYSENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 HEXACHLOROBENZENE 620 U ug/kg 2600 U ug/kg 1980 5200 NA y	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	ACENAPHTHYLENE	130 U ug/kg	520 U ug/kg	390	1040	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(A)PYRENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(G,H,I)PERYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(K)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CHRYSENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CHRYSENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZOFURAN 620 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZOFURAN 620 U ug/kg 2600 U ug/kg 390 1040 NA y <	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	ANTHRACENE	130 U ug/kg	520 U ug/kg	390	1040	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(B)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(K)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CHRYSENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CHRYSENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZOFURAN 620 U ug/kg 2600 U ug/kg	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	BENZO(A)ANTHRACENE	130 U ug/kg	520 U ug/kg	390	1040	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(G,H,I)PERYLENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(K)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CHRYSENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZOFURAN 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORANTHENE 130 U ug/kg 520 U ug/kg <td>460-82735-4</td> <td>460-82735-5</td> <td>BF-ORI-WT-3c-01-20140912</td> <td>BENZO(A)PYRENE</td> <td>130 U ug/kg</td> <td></td> <td>390</td> <td>1040</td> <td>NA</td> <td>У</td>	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	BENZO(A)PYRENE	130 U ug/kg		390	1040	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 BENZO(K)FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CHRYSENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZOFURAN 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORANTHENE 130 U ug/kg 520 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORENE 130 U ug/kg 520 U ug/kg <td< td=""><td>460-82735-4</td><td>460-82735-5</td><td>BF-ORI-WT-3c-01-20140912</td><td>BENZO(B)FLUORANTHENE</td><td>130 U ug/kg</td><td></td><td>390</td><td>1040</td><td>NA</td><td>у</td></td<>	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	BENZO(B)FLUORANTHENE	130 U ug/kg		390	1040	NA	у
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CHRYSENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZOFURAN 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORENE 130 U ug/kg 520 U ug/kg 390	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	BENZO(G,H,I)PERYLENE	130 U ug/kg	520 U ug/kg	390	1040	NA	у
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 CRESOLS, M & P 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZOFURAN 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 HEXACHLOROBENZENE 620 U ug/kg 2600 U ug/kg 19	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	BENZO(K)FLUORANTHENE	130 U ug/kg	520 U ug/kg	390	1040	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZ(A,H)ANTHRACENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZOFURAN 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 HEXACHLOROBENZENE 620 U ug/kg 2600 U ug/kg 1980 5200 NA y				CHRYSENE	130 U ug/kg		390	1040		У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 DIBENZOFURAN 620 U ug/kg 2600 U ug/kg 1980 5200 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 HEXACHLOROBENZENE 620 U ug/kg 2600 U ug/kg 1980 5200 NA y	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	CRESOLS, M & P	620 U ug/kg	2600 U ug/kg	1980	5200	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORANTHENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 HEXACHLOROBENZENE 620 U ug/kg 2600 U ug/kg 1980 5200 NA y	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	DIBENZ(A,H)ANTHRACENE			390	1040		У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 FLUORENE 130 U ug/kg 520 U ug/kg 390 1040 NA y 460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 HEXACHLOROBENZENE 620 U ug/kg 2600 U ug/kg 1980 5200 NA y	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	DIBENZOFURAN	620 U ug/kg	2600 U ug/kg	1980	5200	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 HEXACHLOROBENZENE 620 U ug/kg 2600 U ug/kg 1980 5200 NA y	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	FLUORANTHENE	130 U ug/kg	520 U ug/kg	390	1040	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 HEXACHLOROBENZENE 620 U ug/kg 2600 U ug/kg 1980 5200 NA y	460-82735-4		BF-ORI-WT-3c-01-20140912	FLUORENE			390	1040	NA	У
460-82735-4 460-82735-5 BF-ORI-WT-3c-01-20140912 INDENO(1,2,3-C,D)PYRENE 130 U ug/kg 520 U ug/kg 390 1040 NA v	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	HEXACHLOROBENZENE			1980	5200	NA	у
	460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	INDENO(1,2,3-C,D)PYRENE	130 U ug/kg	520 U ug/kg	390	1040	NA	у

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	NAPHTHALENE	130 U ug/kg	520 U ug/kg	390	1040	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	PENTACHLOROPHENOL	1600 U ug/kg	6500 U ug/kg	4900	13000	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	PHENANTHRENE	130 U ug/kg	520 U ug/kg	390	1040	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	PHENOL	620 U ug/kg	2600 U ug/kg	1980	5200	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	PYRENE	130 U ug/kg	520 U ug/kg	390	1040	NA	у
460-82735-4	460-82735-5	BF-ORI-WT-3c-01-20140912	CYANIDE	0.22 mg/kg	0.22 mg/kg	0	0.38	NA	у
460-82904-2	460-82904-3	ECS-AREA 3-V16-F- 20140916	ARSENIC	4 mg/kg	3.9 mg/kg	0.1	6.4	NA	У
460-82904-2	460-82904-3	ECS-AREA 3-V16-F- 20140916	LEAD	13.3 mg/kg	14.2 mg/kg	0.9	4.2	6.5	у
460-84379-1	460-84379-2	ECS-AREA2-R15-F- 20141010	ARSENIC	11.3 mg/kg	12.4 mg/kg	1.1	7.2	NA	у
460-84379-1	460-84379-2	ECS-AREA2-R15-F- 20141010	LEAD	15.5 mg/kg	14.4 mg/kg	1.1	4.8	7.4	у

Note: The RPD test (≤35%) applies if both results are greater than 5x RL. Otherwise, the absolute difference test (≤ 2x RL) applies.

ATTACHMENT A VALIDATOR'S CHECKLISTS

Client Name: Entact		Project	t Numb	er/ Manager: E7976G/ Jenny Self
Site Name: Revere Smelting and Refining (Phase 2B PSV/SC 2014	l)	QC Le	vel: IV	,
Laboratory: TestAmerica (Edison, Buffalo, Nashville)		Labora	atory Jo	b No: see below
Reviewer: Taryn Scholz				d: 11/5/14
Parameters: TCLP Pb, Metals, CrIII/VI, Pesticide, PCB, Herbicide, V	VOC,			1/6010C, 6010C/7471B, 7196A, 8081B, 8082A, 8151A, 5035/8260C,
SVOC, CN		8270D	, 9012E	
ITEM	YES	NO	N/A	(CRITERIA) COMMENT
Laboratory NELAP/ELAP accredited?	Х			#11452 for Edison, 10026 for Buffalo and 11342 for Nashville
Signed Narrative included?	Х			see Comment no. 1
Narrative issues noted by lab?	X	1 (00	0)/0	See Narrative Comments
		ay (CO	C)/ Sar	mple Receipt
Date/time of sample collection included? Sample temp upon receipt 2-6 C?	X			see Comment no. 1 A
Sample temp upon receipt 2-6 C?	Х			(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required)
Proper containers/preservation?	х			see Comment no. 1B
COCs properly executed and seals used?		Х		see Comment no. 2
Samples received within 2 days?		Х		(DER10 - recommended) 460-82849-1 & 460-84379-1 rec'd day 3
	An	alytical	Results	
All requested analyses reported?		Х		see Comment no. 2A, 2B
Field, Laboratory, and Batch ID included?	Х	<u> </u>		
Date of sample collection/receipt included?	Х			
Date of sample preparation/analysis included?	Х			Hardware NDs at OOL with IMDH (ODL) and IDH (OOL). Instant
NDs at DL or QL and J-values as needed?	х			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-values reported; EDD - NDs blank with 'method_detection_limit' = 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' = 'quantitation_limit' (SQL), J-values reported
Target analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLF TAL) see Comment no. 3
RLs acceptable?		х		(ASP Exh C Part III and/or DER-10 App 5) see Comment no. 4
No elevated RLs for NDs?		х		Two TALBUFF 8081 sx at 20x (460-78812-8 & 9); two 8270 sx at 20x (460-82155-8 & -9) and one at 5x (460-82735-5) Note: 4x std dilution for total metals in soil (TALED), 5x std dilution for TCLP
Prep/Analysis method references included and approved?	х			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D); (5035 used for VOC soils this phase) see Comment no. 5
If analytical cleanup used, method ref included and approved?	х			(ASP Exh D) see Comment no. 6
Sample matrix included?	Х			see Comment no. 7
Soils on dry weight basis?	х*			
Correct and consistent units?	х			Organics in ug/L (TBs) and ug/kg for rest exc 8270 SU 2-FP fo TALNASH in mg/kg; Inorganics in mg/kg or ug/L (TCLP)
Holding time to analysis not expired?	X**			(Workplan Table 2, SW846 for those not in table per ASP Exh I, which gives only aq HTs) Hg 28-d, Herb 14/40-d, Cr VI 30/7-d, CN 14-d
Holding time to preparation not expired?	X**			same as above
		Section	5.3.6 a	and 2/29/12 mod letter)
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment			NA	only disposable equipment used
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory		х		No trip blank for BF samples in 460-80767-1, 460-81561-1, 460-82584 1, 460-82585-1, 460-82735-1, 460-83311-1, 460-83792-1, 460-84432-
Filter blank - 1 per week of time-integrated air monitoring			NA	, 100 02000 1, 100 02100 1, 100 00011 1, 400 00102 1, 400-04402-
Field duplicate samples - 1 for every 20 or fewer samples per sample matrix (excluding air samples)		х		Total samples = 59 confirmation (20/44 TCLP/Total) + 35 BF comp - 88 BF grab = 182; Total FD = 7 (0/3 conf + 2 comp + 2 grab) -> Low fo BF grab 8260
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix from the same batch as the project samples to the extent possible		х		MS/LR used for metals (ICP, Hg, Cr VI - %R not reported for calc C III); only 2 field MS/MSD (conf for Total As/Pb) - met for all with lal MS/MSD except TAL Metals and VOCs each with no MS/MSD
Completeness criteria met?	Х			(Workplan Section 5.3.3 - 100%) 5638/5666=99.5%
		Field N	otes	
Agree with custody records?		<u> </u>	Х	not included
Field instruments calibrated daily?			Х	
Well conditions constant before sampling?			х	
Samples filtered? If so, give turbid/size				

Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification; COI - Compound of Interest; %D - Percent Difference, DL - Detection Limit; DUP - Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasma; ICV - Initial Calibration Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Matrix Spike Duplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response Factor; RT - Retention Time; RSD - Relative Standard Deviation; TA - Target Analyte

COMMENTS

Laboratory Job No: 460-75773-1, 460-76301-1, 460-78812-1, 460-79992-1, 460-80009-1, 460-80015-1, 460-80075-1, 460-80130-1, 460-80767-1, 460-80768-1, 460-80888-1, 460-80971-1, 460-81078-1, 460-81232-1, 460-81552-1, 460-81561-1, 460-81634-1, 460-81749-1, 460-81828-1, 460-82155-1, 460-82246-1, 460-82461-1, 460-82584-1, 460-82585-1, 460-82657-1, 460-82730-1, 460-82735-1, 460-82849-1, 460-82904-1, 460-82981-1, 460-83056-1, 460-83311-1, 460-83693-1, 460-83781-1, 460-83792-1, 460-83871-1, 460-84043-1, 460-84193-1, 460-84379-1, 460-84428-1, 460-84432-1, 460-84593-1

*For the 7196A analyses, Cr III is shown as not dry-weight corrected. However, Cr III is calculated from the results for Cr VI and Total Cr, which are dry-weight corrected, and thus the Cr III is not directly dry-weight corrected but is on a dry-weight basis.

- ** The holding time was calculated using dates only without regard to the time of day since all holding times are greater than 24 hours. Also, note that Cr III is a calculated result and the holding time check does not apply for this analyte.
- 1. Signature is on the cover page with certification statement. Some work orders also include separate signed certification page. Language is similar on both so no further action taken.
- 1A. For work order 460-83792-1, sample BF-ORI-HS-5c-01 is reported with a sample collection time of 13:05. The actual time as shown on the custody record is 15:05. The sample collection date is correctly reported as 10/1/2014 and the pass/fail status for the holding time checks is not affected, and thus no further action was taken
- 1B. For work orders 460-80075-1 and 460-82461-1, some containers were received broken. Samples were transferred to new containers upon receipt. Analyses performed for metals and non-volatile organics, and thus this is not considered to significantly affect data quality and no further action was taken. For work order 460-82730-1, the VOC vial containing methanol was received broken for sample BF-5L-UT-4g-01. Low-level VOC analysis was performed using remaining vials. For work order 460-81828-1, one of the two 8-ounce jars collected on 8/27/14 was received broken with contents emptied into cooler. A second aliquot was collected on 9/3/14 and sent to the laboratory to be used as needed. All analyses were performed using the remaining container from 8/27/14.

2. Issues for custody records:

For work orders 460-75773-1, 460-79992-1, 460-80009-1, 460-80015-1, 460-80075-1, and 460-80130-1, the documentation indicates that no custody seals were used for the transfer of the samples from the field to the laboratory. The samples were transferred by commercial, overnight courier and were received in good condition, and thus no further action was taken.

For work order 460-80015-1, the sampler did not sign and date the custody record upon release of the samples to the overnight courier. The laboratory signed upon receipt from the courier and the samples were received in good condition, and thus no further action was taken.

For work order 460-80075-1, the sampler entered 7/24/14 as the relinquished date on the custody record. The actual date is 7/25/14 per the sample collection and laboratory receipt dates. For work order 460-80130-1, the sampler entered 7/24/14 as the relinquished date on the custody record. The actual date is 7/28/14 per the sample collection and laboratory receipt dates.

For work order 460-81232-1, the laboratory entered 8/15/14 as the received date on the custody record. The actual date is 8/16/14 per the sample collection and relinquish dates and as shown in the laboratory report. For work orders 460-82584-1 and 460-82585-1, the laboratory entered 9/10/14 as the received date on the custody record. The actual date is 9/11/14 per the sample collection and relinquish dates and as shown in the laboratory report.

For work orders 460-82461-1, 460-82584-1, 460-82585-1, 460-82730-1, and 460-82735-1, the documentation indicates that no custody seals were used for the transfer of the SVOC sample aliquots from TestAmerica-Edison to TestAmerica-Nashville. The samples were transferred by commercial, overnight courier and were received in good condition, and thus no further action was taken.

For work order 460-84428-1, the sample IDs on the custody record do not match those on the sample labels. The sampler revised the custody record to include the correct IDs as shown on the labels.

- 2A. For work order 460-82585-1, a trip blank is listed on the custody record but was not received and thus not logged in or analyzed. For work orders 460-79992-1, 460-80075-1, and 460-80130-1, results for the post stabilization verification (PSV) samples that appear on the custody record are reported separately per ENTACT's request.
- 2B. For work order 460-78812-1, the 8081B Pesticide analyses were performed by TestAmerica-Buffalo in Amherst, NY. For work orders 460-82461-1, 460-82584 1, 460-82585-1, 460-82730-1, and 460-82735-1, the 8270D SVOC analyses were performed by TestAmerica-Nashville. TestAmerica-Nashville also performed the 6010C ICP Metals analyses for work order 460-82849-1.

3. Analyte List:

P1 WP Table 3, P2A/B WP Table 2/4, and DER10 App5 list m-cresol, o-cresol, and p-cresol separately. The laboratory reported m,p-cresol and o-cresol as it is not possible to separate m-cresol and p-cresol using method 8270D. P1 WP Table 3, which only lists RLs for the DER-10 metals and not the 23 TAL metals, also mistakenly lists Antimony. This metal does not appear in DER10 Appendix 5 and was not reported by the laboratory for the backfill samples.

For all BF samples (and the associated QC), the laboratory reported technical Chlordane rather than Chlordane (alpha) as listed in the workplan and DER10 Appendix 5.

For all BF samples (and the associated QC), the laboratory inadvertently reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) instead of just the DER-10 analytes as requested. Note: These extra analytes are all ND in the samples.

For the LB/BS/BD - the lab reported m,p-Xylene and o-Xylene. For the LB, Xylenes (total) is also reported.

Note: The analyte names in the hardcopy report differ from those in the EDD for some analytes.

4. The MQL (Unadj) for several DER-10 analytes is above the CRQL, but in each case, it is below the Allowable Constituent Level in DER10 App 5 except for Pentachlorophenol for the TALNASH samples. The actual lab RL is above the CRQL and the ACL in DER10 App5 for this analyte/lab. The MDL is < 1/6 the ACL and J-values are reported, so NDs for undiluted samples may show conformance. Additionally, the MQL (Unadj) for the TAL metal Iron is above the CRQL (for TALED and TALNASH). There are no action levels for this analyte.

- 5. Update IV methods (6010C, 7471B, 8260C, 8270D) used instead of Update III as in WP. Prep method for 6010C total metals in soils shown as SW3020B in EDD, validator changed all to SW3050B per the pdf report and as confirmed correct by the laboratory.
- 6. Per laboratory, Florisil cleanup (SW3620C) used for Pesticide analyses and sulfuric acid cleanup (SW3665A) used for PCB analyses (not indicated in package exc on prep log nor in EDD). Hg cleanup also used for 8081 samples in 460-80009-1. No cleanup used for SVOC or Herbicides.
- 7. For laboratory work order 460-82155-1, the results for the trip blank are reported in mg/Kg and the matrix is shown as solid in the pdf report. Two MeOH containers were received for this blank with no low level (DI water) containers and thus was analyzed as a high level soil with results reported in soil units.

	Lab Job No.	Test	Batch/Sample	Issue	Resolution
All	All	Total Metals	•	Required 4x dilution prior to analysis; RLs adjusted accordingly	noted in QA report narrative
EN419	460-75773-1	TCLP Metals		'4' qualifier indicates conc in unspiked sample > 4x spiking amount	NA
EN1400	100 70004 4	TCLP Metals		Required 50-100x dilution prior to analysis; RLs adjusted accordingly	NA - result is not non-detect
EN420	460-76301-1	VOCs	225920 &226094	Blank contains Acetone >RL, samples >MDL or >RL B-flagged	see QC Deficiencies
		VOCs SVOCs	225818 225114	CCV %R out for Acetone, samples ND, data reported	none required (applies for trip blank only)
		Herbicides	225594/3	LCS/MS/MSD did not come from same source as calibration standards SU %R hi on 1° column for MS, samples ND, data reported	none required (sample results not affected) none required (sample results not affected)
		Herbicides	15	SU %R hi, sample ND so no RE	see QC Deficiencies
		Herbicides	9,12	SU %R hi on 2° column, sample ND so no RE	see QC Deficiencies
EN421	460-78812-1	Pesticides	All samples	All 1° data reported from RTX-CLPI	NA
LIN4ZI	400-70012-1	Pesticides	192314/CCV-12	CCV %R low for SU (DCB) on 1° column indicating low bias	none required (sample TA results not affected)
			8,8MS,8MSD,9	Required 3620C Florisil cleanup to reduce matrix interferences	noted in QA report narrative
		Pesticides	8,8MS,8MSD,9	Required 20x dilution prior to analysis due to matrix effect; RLs adjusted accordingly	noted in QA report narrative
		Pesticides	8,8MS,8MSD,9	SU %R low	see QC Deficiencies
		Pesticides	8,8MS,8MSD,9	SU recoveries not reported or not representative due to dilution	see QC Deficiencies
		Pesticides	192314/8	MS/MSD %R low for Endrin aldehyde	see QC Deficiencies
		Pesticides	192314/8	MSD RPD high for beta-BHC	see QC Deficiencies
		Pesticides	192314/8	MS/MSD recoveries not reported or not representative due to dilution	see QC Deficiencies
		Pesticides	NA	'4' qualifier indicates conc in unspiked sample > 4x spiking amount	NA
		VOCs	235888/CCVIS-3	CCV %R out for Acetone, samples flagged and reported	see QC Deficiencies
		VOCs	235888	LCSD %R high for Acetone, data flagged and reported	see QC Deficiencies
		VOCs	235888	Blank contains Acetone >RL, samples >MDL or >RL B-flagged	see QC Deficiencies
		SVOCs	235836	CCV %R out for Indeno(1,2,3-cd)pyrene and PCP, CCVLL in control, samples analyzed	see QC Deficiencies (CCVLL not reported)
				per method, detects should be considered estimated	
		Herbicides	8,9	SU %R hi, sample ND so no RE	see QC Deficiencies
		Total Metals		MS %R low for Mn	see QC Deficiencies
EN422	460-79992-1	Total Metals		nothing noted	NA
EN423	460-80009-1	VOCs	239196	CCV %R out for sec-Butylbenzene, n-Butylbenzene and 2-Butanone, samples ND, data reported	none required (applies for trip blank only)
		VOCs	239196	LCS/LCSD %R hi for sec-Butylbenzene and n-Butylbenzene, samples ND, data reported	none required (QC for trip blank only)
		VOCs	1,2,3,4,6,7	IS response and SU recovery out, sample re-analyzed with concurring results	see QC Deficiencies
		Pesticides	8,9	Required Hg cleanup to reduce matrix interference caused by sulfur	noted in QA report narrative
		Pesticides	239119	LCS %R hi for multiple analytes, samples ND, data reported	see QC Deficiencies
		Pesticides	239119	LB and LCS %R hi for SU (TCMX), samples ND, data reported	none required (sample TA results not affected)
		Pesticides	239208/CCV-45	CCV %R hi for Endrin ketone on 2 column, samples all ND, data qualified and reported	none required (%D=20.2, no significant effect)
		Herbicides	239096	LB, LCS and MS/MSD %R hi for SU, samples ND, data reported	none required (sample TA results not affected)
		Herbicides		CCV %R hi for PCP on 1° column, samples ND, data reported	NA (analyte not reported for 8151 samples)
		Herbicides	239416/CCV-20	CCV %R hi for Silvex on 1° column, 2° column passes, samples ND, data reported	see QC Deficiencies (actually low)
		Herbicides	8,9	SU %R hi on 1° column, sample ND so no RE	see QC Deficiencies
EN424	460-80015-1	VOCs	1-7	IS response out, sample ND so no RE	see QC Deficiencies
		VOCs	240045	CCV %R out for Acetone, samples flagged and reported	none required (applies for trip blank only)
		VOCs	240045	LCS %R high for Acetone, data flagged and reported	none required (QC for trip blank only)
		VOCs	240050	LCS %R high for MeCl2, samples ND, data reported	see QC Deficiencies
		VOCs	240050	Blank contains Acetone >RL, samples >MDL or >RL B-flagged	see QC Deficiencies
		VOCs	240050	Blank contains MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
		Pesticides	239119	LCS %R hi for multiple analytes, samples ND, data reported	see QC Deficiencies
		Pesticides	239119	LB and LCS %R hi for SU (TCMX), samples ND, data reported	none required (sample TA results not affected)
		Pesticides	239208/CCV-45	CCV %R hi for Endrin ketone on 2 column, samples all ND, data qualified and reported	none required (%D=20.2, no significant effect)
		Herbicides	239096	LB, LCS and MS/MSD %R hi for SU, samples ND, data reported	none required (sample TA results not affected)
		Herbicides	239303/CCV-4 & 13	CCV %R hi for PCP on 1° column, samples ND, data reported	NA (analyte not reported for 8151 samples)

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
		Herbicides	9	SU %R hi on 1° column, sample ND so no RE	see QC Deficiencies
EN425	460-80075-1	Total Metals	NA	nothing noted	NA
EN426		Total Metals		nothing noted	NA
EN427		VOCs	2	IS (1,4-Dioxane-d8) response out, only assoc TA (1,4-Dioxane) ND, data reported	see QC Deficiencies
		SVOCs	242005	CCV %R out for Benzo(g,h,i)perylene,3&4Methylphenol and Dibenz(a,h)anthracene,	see QC Deficiencies (CCVLL not reported)
				CCVLL in control, samples analyzed per method, detects/NDs should be considered	
				estimated	
		SVOCs	242005/3	MS %R low for PCP	see QC Deficiencies
		Pesticides	242165/CCV-22	CCV %R hi for End sulfate, samples ND, data reported	see QC Deficiencies
		Pesticides	242175/CCV-22	CCV %R hi for End sulfate and DDD on 1° column, samples ND, data reported	see QC Deficiencies (DDD actually passes)
		Pesticides	242175/CCV-45	CCV %R hi for End sulfate on both column, samples ND, data reported	see QC Deficiencies
EN428	460-80768-1	SVOCs	242005	CCV %R out for Benzo(g,h,i)perylene,3&4Methylphenol and Dibenz(a,h)anthracene,	see QC Deficiencies (CCVLL not reported)
				CCVLL in control, samples analyzed per method, detects/NDs should be considered	,
				estimated	
		SVOCs	242005/80767-3	MS %R low for PCP	see QC Deficiencies
		Pesticides	242175/CCV-22	CCV %R hi for End sulfate and DDD on 1° column, samples ND, data reported	see QC Deficiencies (DDD actually passes)
		Pesticides	242175/CCV-45	CCV %R hi for End sulfate on both column, samples ND, data reported	see QC Deficiencies
EN429	460-80888-1	TCLP Metals	5	Required 50x dilution prior to analysis; RLs adjusted accordingly	NA - result is not non-detect
EN430	460-80971-1	TCLP Metals	NA	nothing noted	NA
EN431	460-81078-1	TCLP Metals	1	Required 25x dilution prior to analysis; RLs adjusted accordingly	NA - result is not non-detect
EN432	460-81232-1	Total Metals	NA	nothing noted	NA
EN433	460-81552-1	VOCs	5	IS (1,4-Dioxane-d8) response out, only assoc TA (1,4-Dioxane) ND, data reported	see QC Deficiencies
		VOCs	244893	LCS %R hi for trans-1,2-DCE, samples ND, data reported	none required (QC for trip blank only)
		Herbicides	8	SU %R hi, sample ND so no RE	see QC Deficiencies
		Herbicides	245178	SU %R hi for LB	none required (sample TA results not affected)
EN434	460-81561-1	SVOCs	246255	CCV %R out for Benzo(g,h,i)perylene, Dibenz(a,h)anthracene and Indeno(1,2,3-	see QC Deficiencies
				cd)perylene, samples analyzed per method, detects should be considered estimated	
		Herbicides	245178	SU %R hi for LB	none required (sample TA results not affected)
EN435		Total Metals		nothing noted	NA
EN436		Total Metals		nothing noted	NA CORP (I I I
EN461	460-81828-1	VOCs	246625	Blank contains MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
		VOCs	246625/CCVIS-2	CCV %R out for CCI4, samples ND, data reported	see QC Deficiencies
		VOCs SVOCs	246250 246423	LCS %R high for MeCl2, samples ND, data reported	none required (QC for trip blank only)
		37008	240423	CCV %R out for Dibenz(a,h)anthracene and Indeno(1,2,3-cd)perylene, samples analyzed per method, detects should be considered estimated	see QC Deliciencies
		Herbicides	8	SU %R hi on both columns, sample ND so no RE	see QC Deficiencies
EN437	460-82155-1	VOCs	10	Two MeOH containers rec'd for this trip blank, no low level (DI water) containers	noted in QA report narrative
211101	100 02 100 1	VOCs	247296/CCVIS-2	CCV %R out for CCI4, samples ND, data reported	see QC Deficiencies
		VOCs	1,2	IS (1,4-Dioxane-d8) response out, only assoc TA (1,4-Dioxane) ND, data reported	see QC Deficiencies
		VOCs	7	SU %R hi, sample ND so no RE	see QC Deficiencies
		SVOCs	247919	CCV %R out for Indeno(1,2,3-cd)perylene, samples analyzed per method, detects should	
				be considered estimated	
		SVOCs	8,9	Required 2x dilution prior to analysis; RLs adjusted accordingly	noted in QA report narrative
		Total Metals	247272/8	MS %R low for Mn	see QC Deficiencies
		HexCr	247078	Batch re-prepped due to low MSS %R	none required (MS is non-project)
		HexCr	247330	MSS/MSI %R low, re-prep of 247078, LCSS/LCSI pass, both data sets reported	noted in QA report narrative
EN438	460-82246-1	Total Metals	NA	nothing noted	NA
EN439	460-82461-1	VOCs	248229	CCV %R out for CCl4, samples ND, data reported	see QC Deficiencies
		Pesticides	248337/CCV-13	CCV %R hi for Endrin ketone and delta-BHC on 2 column, samples ND, data reported	see QC Deficiencies
		Pesticides	248337/CCV-33	CCV %R hi for multiple TAs, samples ND, data reported	see QC Deficiencies
		Herbicides	3	SU %R hi	see QC Deficiencies
		Herbicides	248194	SU %R hi for LB	none required (sample TA results not affected)

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
EN440	460-82584-1	VOCs	249005	Blank contains Acetone >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
		VOCs	1,2	IS response out, sample re-analyzed with concurring results, original run reported	see QC Deficiencies
		SVOCs	190624/3	MS/MSD %R low for several analytes, matrix interference and/or non-homog since LCS within limits	see QC Deficiencies
		Pesticides	249363/CCV-53	CCV %R hi for a-BHC, d-BHC, Endrin ketone and Endrin aldehyde samples ND, data reported	see QC Deficiencies (actually just Endosulfan sulfate and Endrin ketone)
		Herbicides	248899/CCV-16	CCV %R hi for Silvex (and non-TA 2,4,5-T) on † column, 2° column passes, samples ND, data reported	see QC Deficiencies (actually low)
EN441	460-82585-1	VOCs	249005	Blank contains Acetone >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
	.00 02000 .	VOCs	2,4,5	IS (1,4-Dioxane-d8) response out, only assoc TA (1,4-Dioxane) ND, data reported	see QC Deficiencies
		SVOCs	190624/82584-3	MS/MSD %R low for several analytes, matrix interference and/or non-homog since LCS within limits	see QC Deficiencies
		Pesticides	249363/CCV-53	CCV %R hi for a-BHC, d-BHC, Endrin ketone and Endrin aldehyde samples ND, data reported	see QC Deficiencies (actually just Endosulfan sulfate and Endrin ketone)
		Herbicides	248899/CCV-16	CCV %R hi for Silvex (and non-TA 2,4,5-T) on † column, 2° column passes, samples ND, data reported	see QC Deficiencies (actually low)
EN442	460-82657-1	Total Metals	NA	nothing noted	NA
EN443	460-82730-1	VOCs	249896	Blank contains Acetone >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
		VOCs	2,3	IS response out, sample re-analyzed with concurring results, original run reported	see QC Deficiencies
		VOCs	1,2,3	SU %R hi for 1-3 surrogates	see QC Deficiencies
		Pesticides	249358	LCS %R hi for Endrin ketone on 2 column, samples ND, data reported	see QC Deficiencies
EN444	460-82735-1	VOCs	249896	Blank contains Acetone >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
		VOCs	3	IS response out, sample re-analyzed with concurring results, original run reported	see QC Deficiencies
		VOCs	1,2	IS response out and SU recovery hi, sample re-analyzed with concurring results, original run reported	see QC Deficiencies
		SVOCs	5	Required 5x dilution prior to analysis due to nature of sample; RLs adjusted accordingly	noted in QA report narrative
		Pesticides	249358	LCS %R hi for Endrin ketone on 2 column, samples ND, data reported	see QC Deficiencies
EN445	460 92940 4	Herbicides Total Metals	4,5	SU %R hi, sample ND so no RE	see QC Deficiencies see QC Deficiencies
EN445	460-82849-1	Total Metals		Blank contains Mn > RL, samples >10x blank value so no RE Blank contains Pb >MDL but <rl no="" re<="" so="" td=""><td>see QC Deficiencies</td></rl>	see QC Deficiencies
		Total Metals		Blank contains Mn, Na >RL and Pb, Se >MDL; samples >MDL or >RL B-flagged	see QC Deficiencies
EN446	460-82904-1	Total Metals		nothing noted	NA
EN447	460-82981-1	Total Metals		nothing noted	NA
EN448	460-83056-1	Total Metals		nothing noted	NA
EN449	460-83311-1	VOCs	252053	CCV %R hi for 2-Butanone, samples ND, data reported	see QC Deficiencies
		VOCs	252053	LCS %R hi for 2-Butanone, samples ND, data reported	see QC Deficiencies
		SVOCs	251895	CCV %R out for Indeno(1,2,3-cd)perylene, Benzo(b)fluoranthene and	see QC Deficiencies
				Dibenz(a,h)anthracene, CCVLL in control, samples analyzed per method, detects should be considered estimated	
		HexCr	251851	Batch re-prepped due to low MSS %R, LCSS/LCSI pass	none required (MS is non-project)
EN1450	400 00040 4	HexCr	252007	MSS %R low, re-prep of 251851, LCSS/LCSI pass, both data sets reported	noted in QA report narrative
EN450	460-83312-1	VOCs	252160	Blank contains Acetone >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
		VOCs VOCs	252390 252390	LCS %R hi for 1,4-Dioxane, samples ND, data reported CCV %R out for Acetone and 1,4-Dioxane, samples ND, data reported	none required (QC for trip blank only)
		VOCs	1,2,5	IS response out, sample re-analyzed with concurring results, original run reported	none required (applies for trip blank only) see QC Deficiencies
		VOCs	4	IS (1,4-Dioxane-d8) response out, only assoc TA (1,4-Dioxane) ND, data reported	see QC Deficiencies
		VOCs	252160	CCV %R hi for 2-Butanone, samples ND, data reported	see QC Deficiencies
		SVOCs	251895	CCV %R out for Indeno(1,2,3-cd)perylene, Benzo(b)fluoranthene and	see QC Deficiencies
		-		Dibenz(a,h)anthracene, CCVLL in control, samples analyzed per method, detects should be considered estimated	
		Herbicides	3	SU %R hi, sample ND so no RE	see QC Deficiencies
EN451	460-83693-1	Total Metals	NA	nothing noted	NA

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
EN452	460-83781-1	VOCs	254055	CCV %R out for Acetone, samples 1-5 impacted	see QC Deficiencies
		Herbicides	253511	SU %R hi for LB on both columns, samples ND, data reported	none required (sample TA results not affected)
		Herbicides	253511	SU %R hi for LCS on 1° column, samples ND, data reported	none required (sample TA results not affected)
		Herbicides	3.6	SU %R hi, sample ND so no RE	see QC Deficiencies
EN453	460-83792-1	VOCs	2	SU %R hi for 1 surrogate, other 3 pass so no RE	see QC Deficiencies
		Herbicides	253511	SU %R hi for LB on both columns, samples ND, data reported	none required (sample TA results not affected)
		Herbicides	253511	SU %R hi for LCS on 1° column, samples ND, data reported	none required (sample TA results not affected)
		Herbicides	3	SU %R hi, sample ND so no RE	see QC Deficiencies
		HexCr	254731	Batch re-prepped due to low MS %R	none required (MS is non-project)
		HexCr	254857	MSS %R out, re-prep of 254731, LCSS/LCSI pass, both data sets reported	noted in QA report narrative
EN454	460-83871-1	Total Metals	NA	nothing noted	NA
EN455	460-84043-1	Total Metals	NA	nothing noted	NA
EN456	460-84193-1	Total Metals	NA	nothing noted	NA
EN457	460-84379-1	Total Metals	NA	nothing noted	NA
EN458	460-84428-1	VOCs	256419	Blank contains Acetone >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
		VOCs	256419	CCV %R hi for 2-Butanone and 1,4-Dioxane, samples ND, data reported	see QC Deficiencies
		VOCs	256519	LCS/D %R hi for TCE, samples ND, data reported	none required (QC for trip blank only)
		Pesticides	256369/CCV-67	CCV %R out for multiple analytes due to sample matrix, results confirmed by RE, data	see QC Deficiencies
				reported	
		Pesticides	256369/84432-6	MS/D %R low for beta-BHC	see QC Deficiencies
		Herbicides	256456	SU %R hi for LB, LCS on 1° column, samples ND, data reported	none required (sample TA results not affected)
		Herbicides	256684/CCV-1	CCV %R hi for Silvex (and non-TA 2,4,5-T) on 1° column, samples ND, data reported	see QC Deficiencies
		Herbicides	256684/CCV-1	CCV %R hi for SU on 1° column, 2° column passes, data reported	none required (sample TA results not affected)
EN459	460-84432-1	VOCs	256419	Blank contains Acetone >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
		VOCs	256419	CCV %R hi for 2-Butanone and 1,4-Dioxane, samples ND, data reported	see QC Deficiencies
		Pesticides	256369/CCV-67	CCV %R out for multiple analytes due to sample matrix, results confirmed by RE, data	see QC Deficiencies
				reported	
		Pesticides	256369/6	MS/D %R low for beta-BHC	see QC Deficiencies
		Herbicides	256456	SU %R hi for LB, LCS on 1° column, samples ND, data reported	none required (sample TA results not affected)
		Herbicides	256684/CCV-1	CCV %R hi for Silvex (and non-TA 2,4,5-T) on 1° column, samples ND, data reported	see QC Deficiencies
		Herbicides	256684/CCV-1	CCV %R hi for SU on 1° column, 2° column passes, data reported	none required (sample TA results not affected)
		SVOCs	256915	CCV %R out for Fluoranthene, CCVLL in control, samples analyzed per method, detects	see QC Deficiencies
				should be considered estimated	
		SVOCs	257258	LCS %R out for Benzo(a)pyrene, lab SOP allows up to 5 out for this full list spike	see QC Deficiencies
EN460	460-84593-1	Total Metals	NA	nothing noted	NA

	ame: Entact			er/ Ma	anager: E7976G/ Jenny Self
Site Nan	ne: Revere Smelting and Refining (Phase 2B PSV/SC 2014)	QC Le	vel: IV		
aborato	ory: TestAmerica (Edison, Buffalo, Nashville)	Labora	atory Jo	ob No:	see DURC
	r: Taryn Scholz	Date C	Checke	d: 11/5	5/14
Paramet	ers: TCLP Pb, Metals, CrIII/VI, CN				0A/6010C, 3050B**/6010C, 7471B, 3060A/7196A,
	%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT
	Method blank data included in Lab Package?	X*			
100	Criteria met? ($<$ MDL, \ge -RL)		Χ		see QC Deficiencies
100	Criteria met for field blanks? (< MDL)			Х	
	QC check samples/LCS data included in lab package?	X*			
	All project COCs or TAs included?	Х*			
100	%R criteria met?		Х		method (lab*** but within 50-200%) see QC Def
	Matrix spike data included in lab package?	Χ*			
100	%R criteria met?		х		method (75-125%) see QC Deficiencies
	Sample duplicate data included in lab package?	X*			as LR
100	RPD criteria met?		Х		method (20% if >10xMDL) see QC Deficiencies
					ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2F
100	Field dup RPD criteria met? (individual, mean, and overall)		Х		sol if either ≤5RL) see QC Deficiencies
	Instrument Tune for ICP-MS included in lab package?			Х	
NA	Instrument Tune method criteria met? (±5 RSD, ±0.1 amu)			Х	
	Initial calibration documentation included in lab package?	Х			
	All target analytes included?	Х			
	blank/1 std (ICP), blank/ 5 stds (Hg)	Х			
100	correl coeff criteria met? (r > 0.998 ICP, r > 0.995 AA/Hg)		Х		see QC Deficiencies
	Calibration verification data included in lab package?	Х			
	ICB/CCB criteria met? (<rl, td="" ≥-rl)<=""><td>Х</td><td></td><td></td><td></td></rl,>	Х			
	ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115)	Х			
	CCV %R criteria met? (ICP 90-110%, Hg 80-120%)	Х			
100	LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%)	Х			CL per ASP Exh E
100	Dilution test data included?	Х			
100	Results within criteria if >50xMDL? (max 10%, qualify 15%)	Х			
100	Post digestion spike included?	Х			
100	%R criteria met?		Х		method (75-125%) see QC Deficiencies
100	Interference check sample data included (ICP/MS only)?	Х			
100	%R criteria met? (80-120%, unspk <2RL,≥2-RL)		Х		2RL per ASP Exh E
NA	Internal standard data included in lab package?			Х	
NA	Intensities within limits (within ≥ 70% of calib std)?			Х	
10	Analyte quantitation/RLs correct?	Х			
10	QC parameters calculated correctly?	Х			
OMME			1.01		N/I I
NO QC	reported for Chromium III, which is calculated from the Total Ch	iromium a	ına Cni	omiun	n vi resuit.
*****	CIL wood area mother 2051 for CO10C total motels and work				
TALINA	ASH used prep method 3051 for 6010C total metals analyses.				
**	DMa (aslid LCC) the manufacturers established limits as remort	مطالبيط لمم	اما ا		For agree 1.00 mothed limit is 90.4200/
F01 51	RMs (solid LCS), the manufacturer's established limits as report	ed by the	iab are	usea.	. For aqueous LCS, method limit is 80-120%.
OTAL N	METALS VS LEACHED - all leach results < max possible				
OTAL	VIETALS VS LEACHED - all leach results < max possible				
					.

lient Name: Entact			Project Number/ Manager: E7976G/ Jenny Self					
ite Nan	ne: Revere Smelting and Refining (Phase 2B PSV/SC 2014)	QC Level: IV Laboratory Job No: see DURC						
.aborato	ory: TestAmerica (Edison, Buffalo, Nashville)							
Reviewe	r: Taryn Scholz	Date 0	Checke	d: 11/5/	/14			
Paramet	ers: TCLP Pb	Metho	ds: 131	1/3010	0A/6010C			
	%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT			
	Was a ZHE vessel without leaks used for VOAs?			Х				
	Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve)			х				
	Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately			х				
	Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)	х			No. 1 for all			
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	х			pH of fluid not reported but pH of LB leachate 4.89-4.92			
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)	Х						
	Was the correct weight of fluid used? (20x solid weight)	Х						
100	Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)		Х		see Comment no. 1			
	No preservation for aqueous sample aliquots?			Х				
	Proper preservation for leachates?	Х			(method pH <2)			
100	Holding time to leaching not expired?	х			(method 180-days)			
	Leach blank data included in Lab Package? (1/20)	х						
100	Criteria met? (< MDL)	Х						
ОММЕ								
	239576 (EN422), 238946 (EN425), and 239690 (EN426) max temp 2 242210 (EN429), 242507 (EN430), and 242988 (EN431) min temp 19							

merica (Edison, Buffacholz cholz cide, PCB, Herbicide %PERFORN blank data included i met? (<mdl) blanks?="" ck="" cois="" data="" ect="" eria="" field="" for="" include="" lcs="" met="" met?="" met?<="" or="" samples="" tas="" teria="" th=""><th>IED/ ITEM In Lab Package? (<mdl) ided="" ided?="" in="" included="" lab="" package?="" package?<="" th=""><th>Date C</th><th>atory Jo Checke</th><th>d: 11/5 16*/808</th><th>With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies</th></mdl)></th></mdl)>	IED/ ITEM In Lab Package? (<mdl) ided="" ided?="" in="" included="" lab="" package?="" package?<="" th=""><th>Date C</th><th>atory Jo Checke</th><th>d: 11/5 16*/808</th><th>With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies</th></mdl)>	Date C	atory Jo Checke	d: 11/5 16*/808	With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies	
cholz cide, PCB, Herbicide %PERFORN blank data included i met? (<mdl) blanks?="" ck="" cois="" data="" ect="" eria="" field="" for="" included="" lcs="" met="" met?="" met?<="" or="" samples="" tas="" td="" teria=""><td>IED/ ITEM In Lab Package? (<mdl) ided="" ided?="" in="" included="" lab="" package?="" package?<="" td=""><td>Date C Metho YES X X X X X</td><td>x</td><td>d: 11/5 16*/808 N/A</td><td>With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-component Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies</td></mdl)></td></mdl)>	IED/ ITEM In Lab Package? (<mdl) ided="" ided?="" in="" included="" lab="" package?="" package?<="" td=""><td>Date C Metho YES X X X X X</td><td>x</td><td>d: 11/5 16*/808 N/A</td><td>With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-component Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies</td></mdl)>	Date C Metho YES X X X X X	x	d: 11/5 16*/808 N/A	With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-component Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies	
bide, PCB, Herbicide **PERFORN** blank data included i met? (<mdl) blanks?="" ck="" cois="" data="" ect="" eria="" field="" for="" included="" lcs="" met="" met?="" met?<="" or="" samples="" tas="" td="" teria=""><td>n Lab Package? (<mdl) b="" ded?="" in="" included="" l?<="" lab="" package?="" td=""><td>Metho YES X X X X X</td><td>x</td><td>16*/808 N/A X</td><td>With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies</td></mdl)></td></mdl)>	n Lab Package? (<mdl) b="" ded?="" in="" included="" l?<="" lab="" package?="" td=""><td>Metho YES X X X X X</td><td>x</td><td>16*/808 N/A X</td><td>With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies</td></mdl)>	Metho YES X X X X X	x	16*/808 N/A X	With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies	
wPERFORN blank data included i met? (<mdl) blanks?="" ck="" cois="" data="" ect="" eria="" field="" for="" included="" lcs="" met="" met?="" met?<="" or="" samples="" tas="" td="" teria=""><td>n Lab Package? (<mdl) b="" ded?="" in="" included="" l?<="" lab="" package?="" td=""><td>X X X X X</td><td>X</td><td>x</td><td>With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies</td></mdl)></td></mdl)>	n Lab Package? (<mdl) b="" ded?="" in="" included="" l?<="" lab="" package?="" td=""><td>X X X X X</td><td>X</td><td>x</td><td>With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies</td></mdl)>	X X X X X	X	x	With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies	
blank data included i met? (<mdl) blanks?="" ck="" cois="" data="" ect="" eria="" field="" for="" in="" included="" includeria="" lcs="" met="" met?="" met?<="" or="" pike="" samples="" tas="" td="" teria=""><td>n Lab Package? (<mdl) b="" ded?="" in="" included="" l?<="" lab="" package?="" td=""><td>x x x</td><td>x</td><td>x</td><td>With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies</td></mdl)></td></mdl)>	n Lab Package? (<mdl) b="" ded?="" in="" included="" l?<="" lab="" package?="" td=""><td>x x x</td><td>x</td><td>x</td><td>With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies</td></mdl)>	x x x	x	x	With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies	
met? (<mdl) ate="" blanks?="" ck="" cois="" data="" ect="" eria="" field="" for="" in="" included="" includeria="" laid="" lcs="" met="" met?="" met?<="" or="" pike="" samples="" surrogates="" tas="" td="" teria=""><td>(<mdl) 1?<="" b="" ded?="" in="" included="" lab="" package?="" td=""><td>x x x x x x x x</td><td>Х</td><td></td><td>(technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies</td></mdl)></td></mdl)>	(<mdl) 1?<="" b="" ded?="" in="" included="" lab="" package?="" td=""><td>x x x x x x x x</td><td>Х</td><td></td><td>(technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies</td></mdl)>	x x x x x x x x	Х		(technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies	
met for field blanks? ck samples/LCS data ect COIs or TAs includeria met? teria met? spike data included in laria met? teria met? teria met? teria met? ate data included in laria di surrogates included eria met?	included in lab package? ded? lab package? b package? l?	x x x	Х		(technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies	
ect COIs or TAs includeria met? teria met? ate data included in laid surrogates included teria met?	included in lab package? ded? lab package? b package? l?	x	Х		(technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies	
ect COIs or TAs includeria met? teria met? spike data included in eria met? teria met? teria met? te data included in laid surrogates included eria met?	lab package? b package?	x	Х	x	(technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies	
eria met? teria met? ipike data included in eria met? teria met? tte data included in la id surrogates included eria met?	lab package? b package? l?	x	Х	X	(technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per methor recommendations method (lab but within 50-200%) see QC Deficiencies	
teria met? pike data included in eria met? teria met? te data included in la ed surrogates included eria met?	b package? 1?	Х	Х	х		
pike data included in eria met? teria met? tte data included in la d surrogates included eria met?	b package? 1?	Х		X	method (lab but within 50-200%) see OC Deficiencies	
eria met? teria met? tte data included in la d surrogates included eria met?	b package? 1?	Х			method (lab but within 50-200%) see OC Deficiencies	
teria met? ite data included in la id surrogates included eria met?	1?				Imethod (lab but within 50-200%) see OC Deficiencies	
ate data included in la ed surrogates included eria met?	1?		Х		metriod (lab but within 50-20070) see QC Deficiencies	
ed surrogates included eria met?	1?				/5/14 /081B, 3546/8082A, 8151A (CRITERIA) COMMENT With the exception of multi-component pesticides Chlc (technical) and Toxaphene; only two multi-comp Aroclors (1016 and 1260) spiked per m recommendations method (lab but within 50-200%) see QC Deficiencies method (lab but within 50-200%) see QC Deficiencies method (lab but within 40%) see QC Deficiencies method (lab but within 10-200%) see QC Deficiencies ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2RL either ≤5RL) 5 peaks used for all multi-comp Pest/PCB see Comment no. 1 and QC Deficiencies see QC Deficiencies bold updated from P2B 2013 (32-136 for TALBUFF) bold updated from P2B 2013 (30-124 for TALBUFF)	
eria met?		Х				
ıp RPD criteria met? (Х		method (lab but within 10-200%) see QC Deficiencies	
Field dup RPD criteria met? (individual, mean, and overall)		х			ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2RL sol either ≤5RL)	
alibration documentati	on included in lab package?	Х			5 peaks used for all multi-comp Pest/PCB	
et analytes included?		Х				
criteria met? (<20%R	SD or r ≥ 0.995 or COD ≥ 0.990)	Х				
drin %breakdown ma	x 15%?	Х				
	ncluded in lab package?	х				
			Х		see Comment no. 1 and QC Deficiencies	
Dual column/detector confirmation data incl in lab package?		Х				
			Х		see QC Deficiencies	
Analyte qualitative ID criteria met?		Х				
		_				
	,	Х				
					bold updated from P2B 2013 (30-124 for TALBUFF)	
2,4-DCPA	69 -150					
rep method 3550C for	* 8081B Pest analyses.					
•	-	ide the cı	iteria s	iince su	urrogate recoveries for each analysis are evaluated	
1	drin %breakdown maion verification data in eria met? (<20%) umn/detector confirmence criteria met? (<4 qualitative ID criteria quantitation/RLs corrameters calculated confirmence cachlorobiphenyl achloro-m-xylene 2,4-DCPA	drin %breakdown max 15%? ion verification data included in lab package? eria met? (<20%) umn/detector confirmation data incl in lab package? ence criteria met? (<40%) qualitative ID criteria met? quantitation/RLs correct? ameters calculated correctly? Surrogate Control Limits eachlorobiphenyl 76-149/53-150 achloro-m-xylene 72-136 2,4-DCPA 69-150 rep method 3550C for 8081B Pest analyses.	drin %breakdown max 15%? x ion verification data included in lab package? x eria met? (<20%) umn/detector confirmation data incl in lab package? x ence criteria met? (<40%) qualitative ID criteria met? x quantitation/RLs correct? x meters calculated correctly? x Surrogate cachlorobiphenyl 76-149/53-150 achloro-m-xylene 72-136 2,4-DCPA 69-150 rep method 3550C for 8081B Pest analyses.	drin %breakdown max 15%? ion verification data included in lab package? eria met? (<20%) umn/detector confirmation data incl in lab package? ence criteria met? (<40%) qualitative ID criteria met? quantitation/RLs correct? x ameters calculated correctly? Surrogate Control Limits acchlorobiphenyl 76-149/53-150 acchloro-m-xylene 72-136 2,4-DCPA 69-150 rep method 3550C for 8081B Pest analyses.	drin %breakdown max 15%? ion verification data included in lab package? eria met? (<20%) umn/detector confirmation data incl in lab package? ence criteria met? (<40%) qualitative ID criteria met? quantitation/RLs correct? x meters calculated correctly? Surrogate Control Limits achlorobiphenyl 76-149/53-150 achloro-m-xylene 72-136 2,4-DCPA Surogate Control Limits	

Sito Nam	Client Name: Entact					Project Number/ Manager: E7976G/ Jenny Self				
Site Name: Revere Smelting and Refining (Phase 2B PSV/SC 2014) Laboratory: TestAmerica (Edison, Buffalo, Nashville)				QC Level: IV Laboratory Job No: see DURC						
		Buffalo, Nashville)								
	r: Taryn Scholz				d: 11/5					
aramet	ers: VOC, SVOC					0C, 3541*/8270D				
		DRMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT				
	Method blank data include	ed in Lab Package?	Х							
100	Criteria met? (<mdl)< td=""><td></td><td></td><td>Х</td><td></td><td></td></mdl)<>			Х						
100	Criteria met for field blank			Х		see QC Deficiencies				
	-	ata included in lab package?								
400	All project COIs or TAs inc	cluded?	Х			and had the but within 50 0000() and 00 Deficiencies				
100	%R criteria met?			Х	1	,				
100	RPD criteria met?	lin lab maskama?				method (lab but within 40%)				
400	Matrix spike data included	in lab package?	X		-	and the different within 50 0000() and 00 Defining size				
100	%R criteria met? RPD criteria met?		.,	Х	-					
100		a lab package?			-	method (lab but within 40%)				
	Surrogate data included in Required surrogates inclu				1					
100	%R criteria met?	ueu!		V		mothod (lab but within 10 2000/ ovtr 20 2000/ pura)				
100	76K Citteria filet?			Α		method (lab but within 10-200 % exti, 20-200 % purg)				
100	Field dup PPD critoria ma	t2 (individual mean and everall)		V		20% ag 35% solid (±/-2PL ag ±/-2PL sol if oither = EPL)				
100		t? (individual, mean, and overall) or GC/MS included in lab package?	X see QC Deficiencies X see QC Deficiencies X see QC Deficiencies X x method (lab but within 50-200%) see QC Defi method (lab but within 40%) X method (lab but within 50-200%) see QC Defi method (lab but within 50-200%) see QC Defi method (lab but within 40%) X method (lab but within 40%) X x method (lab but within 40%) X x method (lab but within 10-200% extr, 20-200% x x x method (lab but within 10-200% extr, 20-200% aq. 35% solid (+/-2RL aq. +/-3RL sol if e b package? X x method (lab but within 10-200% extr, 20-200% aq. 35% solid (+/-2RL aq. +/-3RL sol if e b package? X x method (lab but within 10-200% extr, 20-200% aq. 35% solid (+/-2RL aq. +/-3RL sol if e b package? X x method (lab but within 10-200% extr, 20-200% aq. 35% solid (+/-2RL aq. +/-3RL sol if e b package? X x method (lab but within 10-200% extr, 20-200% aq. 35% solid (+/-2RL aq. +/-3RL sol if e b package? X x x method (lab but within 50-200%) see QC Deficiencies x x x x x x x x x	20 /0 ay, 30 /0 SUIIU (+/-ZNL ay, +/-3NL SUI II EITHERSORL)						
100	Instrument Tune (12-11) id				1					
100		ntation included in lab package?			1					
		d at min 5 levels w low< RL?			1					
		ect for RRF<0.05 or Table 4, whichever	^							
	lower	ot for that 40100 or fable 4, whichever		x		see QC Deficiencies				
						000 Q0 20110110100				
100	%RSD criteria met? (<20	%RSD or r ≥ 0.995 or COD ≥ 0.990)	х							
		ta included in lab package?	х							
	RRF met (Table 4)? Reject for RRF<0.05 or Table 4, whichever									
	lower %D criteria met for CCC/TAs? (20% max) Internal standard data included in lab package? Areas within limits (within -50/+100% of last calib check)? RTs within limits (<10/30(8270) s diff from ICAL midlevel)? Analyte qualitative ID criteria met?		Х							
100				Х		see QC Deficiencies				
100			х							
100				Х		for samples; see QC deficiencies				
100			х			·				
10			Х							
10	Analyte quantitation/RLs of		Х							
10	IS Areas within limits (with	nin -50/+100% of ICAL midlevel)?	Х			for CCVs				
10	QC parameters calculated		Х							
	Surrogate	Control Limits								
OC	1,2-Dichloroethane-d4	70-130								
	Toluene-d8	70-130								
	Bromofluorobenzene	70-130								
	Dibromofluoromethane	70-130								
VOC	2,4,6-Tribromophenol	19-114 (Oct 2014 10-120)								
	Terphenyl-d14	41-145 (Oct 2014 16-151)								
	2-Fluorobiphenyl	49-112 (Oct 2014 40-109)				,				
	Nitrobenzene-d5	40-106 (Oct 2014 38-105)				,				
	2-Fluorophenol	39-103 (Oct 2014 37-125)	ļ			,				
	Phenol-d5	44-104 (Oct 2014 41-118)								

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action Post-Excavation Confirmation Samples

October 2014 to December 2014

Prepared by:

Quality Assurance Associates (QAALLC)

1007 Francis Drive College Station, TX 77840 www.qaallc.com 979-694-7199

February 13, 2015

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	1				
2.0	PRO	CEDURE	ES	4				
3.0	DAT	A VALIDA	ATION RESULTS	5				
	3.1	PRECI	SION	5				
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	5				
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	5				
		3.1.3	Field Duplicate (FD) Precision	5				
	3.2	ACCURACY						
		3.2.1	Laboratory Control Spike (LCS) Accuracy	6				
		3.2.2	Matrix Spike (MS) Accuracy	6				
		3.2.3	Serial Dilution (SD) %Difference	6				
	3.3	REPRESENTATIVENESS						
		3.3.1	Chain-of-Custody and Analysis Requests	6				
		3.3.2	Sample Preservation and Holding Time	7				
		3.3.3	Laboratory and Method Selection	7				
		3.3.4	Blanks (Laboratory and Field)	8				
		3.3.5	Analytical Procedures	8				
	3.4	COMPLETENESS						
		3.4.1	Laboratory Deliverables Completeness	8				
		3.4.2	EDD Correctness	8				
		3.4.3	Analytical Completeness	9				
	3.5	COMP	ARABILITY					

LIST OF TABLES

Table 1 - Sample Summary

Table 2 - Data Validation Qualifiers (DVQs)

Table 3 – QC Deficiencies and Data Qualification Actions

Table 4 - Qualified Results for Field Samples

Table 5 - Field Duplicate Results

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The independent data review was completed in accord with the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The data include 134 investigative soil samples plus the associated field QC samples, which were collected by ENTACT in October 2014 through December 2014 with the intended use of confirming that remedial goals have been achieved in excavated grids. A complete listing of the samples collected and tests performed is shown in Table 1. QAA performed a full validation of the data and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010) as specified in Section 5.9 of the Workplan. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Superfund Data Review* (October 2013), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The Workplan stipulates that the precision control limits will be dictated by the analytical method. The validator assessed precision using the laboratory and field duplicates, and the limits are 20-35 RPD depending upon the test. The laboratory prepared eight unspiked matrix duplicates (MD) using a sample from the site for total Arsenic/Lead and three MD using a sample from the site for TCLP Lead. The RPDs for the matrix duplicates are within the limits, which indicates good precision for the analytical technique on the given sample matrix. Additionally, the sampler collected six field duplicates (FD) for total Arsenic/Lead and two FD for TCLP Lead and the RPDs are within the limits, which indicates good precision for the sampling and analytical technique on the given matrix, or the validator qualified the results for the original and duplicate sample. Two (both for Total Lead) of the 14 pairs of results are qualified as estimated (J) based on field duplicate precision.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The Workplan stipulates that the accuracy control limits will be dictated by the analytical method. The validator assessed accuracy using the laboratory spikes and matrix spike, and the limits are either 75-125%, 80-120%, or the manufacturer's established control limit for solid reference materials (which range from 0%-209.5% for this data set). In order to better assess data usability, limits of 50-200% were employed where the method limits for a spiked analyte falls outside these values. The laboratory prepared a laboratory control spike (LCS) using reagent water or sand with each analytical batch and reported the recovery for every analyte. The recoveries for the LCS are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects, with one exception. As a result, one non-detect for Antimony is qualified as estimated (UJ) due to low laboratory spike recovery. Note that the recovery is within the laboratory limits and thus the laboratory did not take any corrective action. Additionally, the laboratory prepared eight matrix spikes (MS), post digestion spikes (PDS) and serial dilutions (SD) for total Arsenic/Lead and three MS/PDS/SD for TCLP Lead plus three PDS/SD for TAL Metals using a sample from the site. All SD %differences are within the laboratory limits, which indicates there is no matrix interference affecting the accuracy

of metals results that are substantially above the reporting limit. The MS/MSD/PDS recoveries are within the laboratory limits, which indicates good accuracy for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the spike samples. Of the 431 total results for field samples, 31 results are qualified as estimated based on matrix spike or post digestion spike recovery. The qualification includes the expected direction of bias where known (i.e., J+ for high MS/PDS recovery and J- for low MS/PDS recovery with no other non-directional QC issues).

- 3. Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, investigative samples were collected as required in the approved sampling and analysis plans. (Note that sampling is an on-going process at the site and all samples may not be reflected in this validation batch.) Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory blanks, and analytical instrument setup (i.e., calibration, interference correction, etc.). For all samples, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a preparation blank with each analytical batch and a leachate blank with each TCLP batch, and the blanks show no contamination, which indicates the samples were not affected by laboratory procedures. Additionally, proper analytical procedures were used and calibration results met the method requirements.
- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results (i.e., not qualified or qualified as estimated but not rejected) to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. All analyses produced valid analytical measurements, which gives a completeness of 100%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions or revisions were provided by the laboratory upon request.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated. Note that results for all field samples are reported in mg/kg with dry-weight correction for total metals and in μg/L for TCLP metals.

DATA USABILITY

All sample results are acceptable for use with the qualifications shown in Table 4. One Antimony result is qualified with a UJ and should be considered not present above the reporting limit; however the reporting limit is an estimated value. One Manganese result is qualified with a J- (biased low) and can be used for determining the presence of the analyte and as an indication that the concentration of the analyte exceeds a given criterion. However, the concentration reported for this detect may be low. Results that are qualified with a J (estimated) may be either low or high. Thirty detects for total Lead have a J flag due to low MS recovery (53-74%) with passing PDS recovery (92-93%). For those flagged due to 53% MS recovery and 93% PDS recovery (which indicates a maximum potential 2x low bias), the concentrations (21.1-196 mg/kg) are more than 2x below the 400 mg/kg remedial goal, and thus there is negligible effect on data usabillity. For those flagged due to 74%

MS recovery and 92% PDS recovery (which indicates a maximum potential 1.5x low bias), there is one concentration (537 mg/kg) above the 400 mg/kg remedial goal while the remaining concentrations (24.4-228 mg/kg) are more than 1.5x below the 400 mg/kg remedial goal, and thus there is negligible effect on data usability. Additionally, four detects for total Lead have a J flag due to poor FD precision. For results qualified due to FD precision, the higher result (i.e., from either the original or duplicate sample) should be used for project decisions. This gives a conservative approach relative to protection of the environment. (For field duplicate pairs that pass the precision criteria, the value should be selected based on accepted convention for the site and/or agency requirements, e.g., select the value reported for the original sample, the average of the two values, etc.). The remaining results with J flags are qualified solely because the concentration is between the MDL and RL. The actual value is not expected to exceed the sample RL.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). The laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- · Laboratory Deliverables Completeness,
- EDD Correctness,
- · Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- · Laboratory and Method Selection,
- Initial Calibration,
- Continuing Calibration Verification,
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- · Matrix Duplicates (MD), and
- Field Duplicates (FD).

Additionally, the validator examined the raw data for 10% of the sample batches (randomly selected by the validator across the various analysis dates and tests) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are 80-120% for laboratory accuracy (or the manufacturer's established control limit for solid reference materials but not less than 50% lower limit or greater than 200% upper limit) and 75-125% for matrix accuracy for metals analyses.
- Laboratory Precision the control limit (20 RPD) as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD.
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. A data rejection limit of 30% was used for these inorganic analyses. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U-flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

No LCSD were analyzed (or required) with the samples.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every analytical batch (maximum 20 samples) and reported RPDs for all analytes. Nine project samples from the site (five of which were designated by the sampler on the custody record) were used to prepare an MD for one or more tests (with eight analyzed for total Arsenic/Lead and three analyzed for TCLP Lead). With a total of 134 investigative samples, this meets the Workplan requirement of one per 20 or fewer samples per sample matrix. The validator did not evaluate MD prepared with non-project samples, since they do not reflect data quality for the site. Note that non-project MD results are included in the data packages (but not in the EDD).

All project MD RPDs are at or below the control limit.

3.1.3 FIELD DUPLICATE (FD) PRECISION

The samplers collected six FD with the 134 investigative samples, which is slightly below the Workplan requirement of one per 20 or fewer samples per sample matrix. All six FD were analyzed for total Arsenic/Lead and two were analyzed for TCLP Lead. Results for the field duplicates are summarized in Table 5.

Two pairs of results are outside the field precision criteria for Total-Pb and the validator qualified the data as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the remaining 14 pairs of FD results meet the criteria, which indicates good overall precision, and thus the validator only qualified the original and duplicate sample for the three FD deficiencies.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD), matrix spikes including post digestion spikes (MS/MSD/PDS), and serial dilutions (SD). LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD/PDS are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample

and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

The laboratory analyzed a LCS for every analytical batch (maximum 20 samples) as required and reported recoveries for all analytes, with one exception:

• For the TCLP Lead analysis of 460-87286-1 (ECS-AREA2-N17-F), results for the LCS are not reported in the laboratory report, EDD, or raw data. Results in the laboratory report for a non-project MS/PDS prepared and analyzed with this sample (QC batch 268510) indicate good recovery (115% and 113%) for this non-reagent matrix, and thus laboratory performance is considered validated and no further action was taken.

For the remaining LCS, one recovery is outside the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS/PDS for every analytical batch (maximum 20 samples) and reported recoveries for all analytes. Nine project samples from the site (five of which were designated by the sampler on the custody record) were used to prepare an MS/PDS for one or more tests (with eight analyzed for total Arsenic/Lead and three analyzed for TCLP Lead). With a total of 134 investigative samples, this meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Additionally, three project samples from the site were used to prepare a PDS for TAL Metals. The validator did not evaluate MS/PDS prepared with non-project samples, since they do not reflect data quality for the site. Note that non-project MS/PDS results are included in the data packages (but not in the EDD).

Some MS/PDS recoveries are outside the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals PDS, the laboratory analyzed a SD and reported the %difference for all metals detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records and custody seals, which confirms that sample integrity was maintained. The validator noted the following regarding sample log-in at the laboratory:

- All samples were received within two days of collection as recommended in DER-10 except those in laboratory job number 460- 86780-1, which were received three days after collection in good condition.
- For laboratory job number 460-86144-1, one of two containers was received broken for sample ECS-AREA2-017-F. The aliquot was transferred to a new container upon receipt and then used for the MS and DUP metals analysis, and thus there is no effect on data quality.

The information on the custody record is correct and agrees with that reported by the laboratory except as follows:

- For laboratory job number 460-85130-1, the custody record shows an incorrect sample ID of ECS-ESTREAM-73+00-EB-R2 for sample 14. The correct sample ID (ECS-ESTREAM-73+00-WB-R2) is shown in the laboratory report per ENTACT's request.
- For laboratory job number 460-85130-1, the laboratory report shows a sample receipt time of 10:18 while the custody record shows 08:05. The sample receipt date (10/25/14) is in agreement. No action is required.
- For laboratory job number 460-85194-1, the custody record shows each of the sample IDs without the 'F' designation at the end. The correct sample IDs are shown in the laboratory report per ENTACT's request.
- For laboratory job number 460-88006-1, the analytical results, sample summary, and EDD show a sample receipt date of 12/18/14 while the custody record and laboratory narrative show 12/17/14. The validator corrected the EDD. No action was taken regarding the pdf data package.

All samples were analyzed for the tests requested on the chain-of-custody except as follows:

• For laboratory job numbers 460-85194-1, 460-85279-1, and 460-85426-1, all samples were activated for TCLP Lead analysis per ENTACT's request on 11/4/14. This analysis was not originally requested on the custody record. Results are reported separately under a -2 job number.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

The samples were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (TestAmerica-Edison NYSDOH (NELAP) #11452, NYSDOH (ELAP) #11452)

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. (In some cases, the method update number used by the laboratory may differ from that in the Workplan. For example, method 6010C was used rather than 6010B for the ICP metals analysis.)

For these excavation confirmation samples, the target analyte list includes total Arsenic, total Lead, and/or TCLP Lead as requested and all Contract Laboratory Program (CLP) metals for the TAL metals. The nominal reporting limits are below the levels of concern (i.e., the remedial goals) for total Arsenic, total Lead, and TCLP Lead. There are no established levels of concern for TAL metals. The nominal reporting limits comply with the requirements in the ASP for TAL metals with the exception of Iron with a nominal reporting limit of 30 mg/kg, which is above the ASP reporting limit of 20 mg/kg.

None of the excavation confirmation samples have elevated reporting limits for a non-detect result. (Note: The laboratory dilutes all total metals samples 2-4x before analysis as standard practice. All Revere samples were diluted 4x and thus nominal reporting limits were determined at this dilution rate. The laboratory also dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate. Note that one TCLP Lead sample (ECS-AREA2-017-F) was analyzed undiluted (1x) for this event.

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation blank (and leachate blank for TCLP) for every analytical batch (maximum 20 samples) and a calibration blank for every 10 metals analyses as required per the analytical methodology. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used. No analytes were detected in the laboratory blanks.

3.3.5 ANALYTICAL PROCEDURES

The analytical procedures (initial calibration, continuing calibration verification, and interference correction), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method.

Additionally, no issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes 34 analytical batches and the validator re-calculated sample results and QC check parameters for three batches including one for total Lead, one for TCLP Lead and one for Mercury.

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

The NYSDEC Category B packages and EDD contain all necessary information or the laboratory submitted a revision upon request as detailed in the case narratives.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Job No.	Sample(s)	EDD Field(s)	Action
All	all laboratory QC samples	sampling_technique	The validator changed the entry from null to the default entry (UN) to meet NYSDEC
			requirements.

Laboratory Job No.	Sample(s)	EDD Field(s)	Action
All	all 6010C total metals samples	prep_method	The validator changed the method reference from SW3020B to SW3050B based on the pdf analytical results and as confirmed by the laboratory.
460-88006-1	all field samples	sample_receipt_date	The validator changed the date of sample receipt from 12/18/14 to 12/17/14 based on the custody record and laboratory narrative.

3.4.3 ANALYTICAL COMPLETENESS

The validator did not reject any of the results, which gives a completeness of 100%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. The method detection limit corresponds to the lowest concentration at which an analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which an analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results are reported in mg/kg with dry-weight correction for total metals and in µg/L for TCLP metals.

The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated.

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Post-Excavation Confirmation Samples October 2014 to December 2014

SAMPLE SUMMARY

Lab ID	Field ID	Date	Туре	Media	Matrix	Total As/Pb	Total TAL Metals	Total Hg	TCLP Pb
460-84508-1	ECS-ESTREAM-70+00-F	10/14/14	INV	ECS	Soil	Х			
460-84508-2	ECS-ESTREAM-70+00-EB	10/14/14	INV	ECS	Soil	Х			
460-84508-3	ECS-ESTREAM-70+00-WB	10/14/14	INV	ECS	Soil	Х			
460-84508-4	ECS-ESTREAM-70+50-F	10/14/14	INV	ECS	Soil	Х			
460-84508-5	ECS-ESTREAM-70+50-EB	10/14/14	INV	ECS	Soil	Х			
460-84508-6	ECS-ESTREAM-70+50-WB	10/14/14	INV	ECS	Soil	Х			
460-84508-7	ECS-ESTREAM-71+00-F	10/14/14	INV	ECS	Soil	Х			
460-84508-8	ECS-ESTREAM-71+00-EB	10/14/14	INV	ECS	Soil	Х			
460-84508-9	ECS-ESTREAM-71+00-WB	10/14/14	INV	ECS	Soil	Х			
460-84508-10	ECS-ESTREAM-71+50-F	10/14/14	INV	ECS	Soil	Х			
460-84508-11	ECS-ESTREAM-71+50-EB	10/14/14	INV	ECS	Soil	Х			
460-84508-12	ECS-ESTREAM-71+50-WB	10/14/14	INV	ECS	Soil	Х			
460-84508-13	ECS-ESTREAM-72+00-F	10/14/14	INV	ECS	Soil	Х			
460-84508-14	ECS-ESTREAM-72+00-EB	10/14/14	INV	ECS	Soil	Х			
460-84508-15	ECS-ESTREAM-72+00-WB	10/14/14	INV	ECS	Soil	Х			
460-84508-16	ECS-ESTREAM-72+50-F	10/14/14	INV	ECS	Soil	Х			
460-84508-17	ECS-ESTREAM-72+50-EB	10/14/14	INV	ECS	Soil	Х			
460-84508-18	ECS-ESTREAM-73+00-F	10/14/14	INV	ECS	Soil		х	х	
460-84508-19	ECS-ESTREAM-72+50-WB	10/14/14	INV	ECS	Soil	Х			
460-84508-20	ECS-ESTREAM-73+00-EB	10/14/14	INV	ECS	Soil	Х			
460-84508-21	ECS-ESTREAM-73+00-WB	10/14/14	INV	ECS	Soil	Х			
460-84508-22	ECS-ESTREAM-72+50-F-X	10/14/14	FD	ECS	Soil	Х			
460-84818-1	ECS-ESTREAM-70+00-FR	10/21/14	INV	ECS	Soil	Х			
460-84818-2	ECS-ESTREAM-73+00 WB-R	10/21/14	INV	ECS	Soil	Х			
460-85130-1	ECS-ESTREAM-70+00-EB-R	10/24/14	INV	ECS	Soil	Х			
460-85130-2	ECS-ESTREAM-70+00-WB-R	10/24/14	INV	ECS	Soil	Х			
460-85130-3	ECS-ESTREAM-70+50-EB-R	10/24/14	INV	ECS	Soil	Х			
460-85130-4	ECS-ESTREAM-70+50-WB-R	10/24/14	INV	ECS	Soil	Х			
460-85130-5	ECS-ESTREAM-71+00-EB-R	10/24/14	INV	ECS	Soil	Х			
460-85130-6	ECS-ESTREAM-71+00-WB-R	10/24/14	INV	ECS	Soil	Х			
460-85130-7	ECS-ESTREAM-71+50-EB-R	10/24/14	INV	ECS	Soil	Х			
460-85130-8	ECS-ESTREAM-71+50-WB-R	10/24/14	INV	ECS	Soil	Х			
460-85130-9	ECS-ESTREAM-72+00-EB-R	10/24/14	INV	ECS	Soil	X			
460-85130-10	ECS-ESTREAM-72+00-WB-R	10/24/14	INV	ECS	Soil	X			
460-85130-11	ECS-ESTREAM-72+50-EB-R	10/24/14	INV	ECS	Soil	X			
460-85130-12	ECS-ESTREAM-72+50-WB-R	10/24/14	INV	ECS	Soil	х			
460-85130-13	ECS-ESTREAM-73+00-EB-R	10/24/14	INV	ECS	Soil	Х			
460-85130-14	ECS-ESTREAM-73+00-WB-R2	10/24/14	INV	ECS	Soil	Х			
460-85194-1	ECS-AREA2-S16/17-F	10/27/14	INV	ECS	Soil	х			х
460-85194-1LR	ECS-AREA2-S16/17-FLR	10/27/14	MD	ECS	Soil	X			
460-85194-1MS	ECS-AREA2-S16/17-FMS	10/27/14	MS	ECS	Soil	Х			

Lab ID	Field ID	Date	Туре	Media	Matrix	Total As/Pb	Total TAL Metals	Total Hg	TCLP Pb
460-85194-2	ECS-AREA2-S18-F	10/27/14	INV	ECS	Soil	Х			х
460-85194-3	ECS-AREA2-R17-F	10/27/14	INV	ECS	Soil	Х			х
460-85194-4	ECS-AREA2-R18-F	10/27/14	INV	ECS	Soil	Х			х
460-85194-5	ECS-AREA2-R19-F	10/27/14	INV	ECS	Soil	Х			х
460-85194-6	ECS-AREA2-Q19-F	10/27/14	INV	ECS	Soil	Х			х
460-85279-1	ECS-AREA2-Q18-F	10/28/14	INV	ECS	Soil	Х			х
460-85426-1	ECS-AREA2-Q20-F	10/30/14	INV	ECS	Soil	Х			х
460-85426-1LR	ECS-AREA2-Q20-FLR	10/30/14	MD	ECS	Soil	Х			Х
460-85426-1MS	ECS-AREA2-Q20-FMS	10/30/14	MS	ECS	Soil	Х			Х
460-85426-2	ECS-AREA2-P20-F	10/30/14	INV	ECS	Soil		х	Х	х
460-85426-3	ECS-AREA2-Q20-SS	10/30/14	INV	ECS	Soil	Х			Х
460-85426-4	ECS-AREA2-P20-SS	10/30/14	INV	ECS	Soil	X			Х
460-85426-5	ECS-AREA2-O20-F	10/30/14	INV	ECS	Soil	Х			Х
460-85426-6	ECS-AREA2-O20-F-X	10/30/14	FD	ECS	Soil	X			X
460-85426-7	ECS-AREA2-R19-SS	10/30/14	INV	ECS	Soil	X			X
460-85426-8	ECS-AREA2-S18-SS	10/30/14	INV	ECS	Soil	X			x
460-85480-1	ECS-ESTREAM-70+00-EB-R2	10/31/14	INV	ECS	Soil	X			^
460-85480-2	ECS-ESTREAM-70+00-WB-R2	10/31/14	INV	ECS	Soil	X			
460-85480-3	ECS-ESTREAM-70+50-EB-R2	10/31/14	INV	ECS	Soil	x			
460-85480-4	ECS-ESTREAM-71+00-EB-R2	10/31/14	INV	ECS	Soil	X			
460-85480-5	ECS-ESTREAM-71+50-EB-R2	10/31/14	INV	ECS	Soil	X			
460-85480-6	ECS-ESTREAM-71+50-WB-R2	10/31/14	INV	ECS	Soil				
			INV	ECS		X			
460-85480-7 460-85480-8	ECS-ESTREAM-72+00-EB-R2 ECS-ESTREAM-72+50-WB-R2	10/31/14	INV	ECS	Soil Soil	X			
		10/31/14	INV	ECS	Soil	X			
460-85480-9 460-85553-1	ECS-ESTREAM-73+00-EB-R2 ECS-AREA 2-Q17-F	11/03/14	INV	ECS	Soil	X			
460-85633-1	ECS-AREA 2-Q17-F ECS-ESTREAM-70+50-EB-R3	11/03/14	INV	ECS	Soil	Х	v	V	Х
	ECS-ESTREAM-70+30-EB-R3					.,	Х	Х	
460-85633-2		11/04/14	INV	ECS ECS	Soil	X			
460-85633-3 460-86060-1	ECS-ESTREAM-72+00-EB-R3	11/04/14			Soil	X			
	ECS-Area2-P17-F	11/11/14	INV	ECS	Soil	X			X
460-86060-2	ECS-Area2-P17-F-X	11/11/14	FD	ECS	Soil	X			X
460-86060-3	ECS-Area2-P18-F	11/11/14	INV	ECS	Soil	X			X
460-86060-4	ECS-Area2-P19-F	11/11/14	INV	ECS	Soil	X			X
460-86144-1	ECS-AREA2-017-F	11/12/14	INV	ECS	Soil	X			X
460-86144-1LR	ECS-AREA2-017-FLR	11/12/14	MD	ECS	Soil	Х			X
460-86144-1MS	ECS-AREA2-017-FMS	11/12/14	MS	ECS	Soil	Х			Х
460-86780-1	ECS-AREA2-019-F	11/22/14	INV	ECS	Soil	Х			Х
460-86780-1LR	ECS-AREA2-019-FLR	11/22/14	MD	ECS	Soil				Х
460-86780-1MS	ECS-AREA2-019-FMS	11/22/14	MS	ECS	Soil				Х
460-86780-2	ECS-AREA2-018-F	11/22/14	INV	ECS	Soil	Х			Х
460-87286-1	ECS-AREA2-N17-F	12/04/14	INV	ECS	Soil	Х			Х
460-87490-1	ECS-AREA2-NI8-F	12/09/14	INV	ECS	Soil	Х			Х
460-87659-1	ECS-Area 12-H11-SS	12/11/14	INV	ECS	Soil	Х			-
460-87832-1	ECS-AREA13-F10-SS	12/15/14	INV	ECS	Soil	Х			
460-87832-2	ECS-AREA13-G9/10-SE	12/15/14	INV	ECS	Soil	Х			
460-87832-3	ECS-AREA13-F9-SW	12/15/14	INV	ECS	Soil	Х			
460-87832-4	ECS-AREA13-G8/9-SN	12/15/14	INV	ECS	Soil	Х			
460-87832-5	ECS-AREA12-H9-SN	12/15/14	INV	ECS	Soil	Х			

Lab ID	Field ID	Date	Туре	Media	Matrix	Total As/Pb	Total TAL Metals	Total Hg	TCLP Pb
460-87832-6	ECS-AREA12-H10-SW	12/15/14	INV	ECS	Soil	Х			
460-87832-7	ECS-AREA11-G6-SE	12/15/14	INV	ECS	Soil	Х			
460-87832-8	ECS-AREA11-G6-SW	12/15/14	INV	ECS	Soil	Х			
460-87832-9	ECS-AREA11-G/F7-SS	12/15/14	INV	ECS	Soil	Х			
460-87832-10	ECS-AREA11-G5-SN	12/15/14	INV	ECS	Soil	Х			
460-87832-11	ECS-AREA8-H5-SS	12/15/14	INV	ECS	Soil		Х	Х	
460-87832-12	ECS-AREA8-G4/5-SW	12/15/14	INV	ECS	Soil	Х			
460-87832-13	ECS-AREA8-G3/4-SW	12/15/14	INV	ECS	Soil	Х			
460-87832-14	ECS-AREA8-G3-SN	12/15/14	INV	ECS	Soil	Х			
460-87832-15	ECS-AREA8-H3-SE	12/15/14	INV	ECS	Soil	Х			
460-87832-16	ECS-AREA8-I4-SE	12/15/14	INV	ECS	Soil	Х			
460-87832-17	ECS-AREA7-K5-SS	12/15/14	INV	ECS	Soil	Х			
460-87832-18	ECS-AREA7-L6-SS	12/15/14	INV	ECS	Soil	Х			
460-87832-19	ECS-AREA7-L6-SS-X	12/15/14	FD	ECS	Soil	Х			
460-87832-20	ECS-AREA7-M6-SS	12/15/14	INV	ECS	Soil	Х			
460-87832-21	ECS-AREA7-N6-SS	12/15/14	INV	ECS	Soil	Х			
460-87832-22	ECS-AREA7-N5/6-SE	12/15/14	INV	ECS	Soil	Х			
460-87832-23	ECS-AREA7-M/N5-SN	12/15/14	INV	ECS	Soil	Х			
460-87832-23LR	ECS-AREA7-M/N5-SNLR	12/15/14	MD	ECS	Soil	Х			
460-87832-23MS	ECS-AREA7-M/N5-SNMS	12/15/14	MS	ECS	Soil	Х			
460-87832-24	ECS-AREA7-L/M-5-SN	12/15/14	INV	ECS	Soil	Х			
460-87832-25	ECS-AREA7-L5-SN	12/15/14	INV	ECS	Soil	Х			
460-87832-26	ECS-AREA7-J/K-4-SW	12/15/14	INV	ECS	Soil	Х			
460-88006-1	ECS-AREA 6-07-SN	12/16/14	INV	ECS	Soil	Х			
460-88006-1LR	ECS-AREA 6-07-SNLR	12/16/14	MD	ECS	Soil	Х			
460-88006-1MS	ECS-AREA 6-07-SNMS	12/16/14	MS	ECS	Soil	Х			
460-88006-2	ECS-AREA 6-P7-SN	12/16/14	INV	ECS	Soil	Х			
460-88006-3	ECS-AREA 6-Q7-SE	12/16/14	INV	ECS	Soil	Х			
460-88006-4	ECS-AREA 6-Q8-SE	12/16/14	INV	ECS	Soil	Х			
460-88006-5	ECS-AREA 6-Q9-SS	12/16/14	INV	ECS	Soil	Х			
460-88006-6	ECS-AREA 6-P8/9-SW	12/16/14	INV	ECS	Soil	Х			
460-88006-7	ECS-AREA 6-P8-SS	12/16/14	INV	ECS	Soil	Х			
460-88006-8	ECS-AREA 6-O8-SS	12/16/14	INV	ECS	Soil	Х			
460-88006-9	ECS-AREA 5-X14-SS	12/16/14	INV	ECS	Soil	Х			
460-88006-10	ECS-AREA 5-X13-SE	12/16/14	INV	ECS	Soil	Х			
460-88006-11	ECS-AREA 5-X12-SN	12/16/14	INV	ECS	Soil	Х			
460-88006-12	ECS-AREA 5-W12-SN	12/16/14	INV	ECS	Soil	X			
460-88006-13	ECS-AREA 5-W12-SW	12/16/14	INV	ECS	Soil		х	Х	
460-88006-14	ECS-AREA 5-W12-SS	12/16/14	INV	ECS	Soil	Х			
460-88006-15	ECS-AREA 5-X13-SW	12/16/14	INV	ECS	Soil	X			
460-88006-16	ECS-AREA 3-T/U-17-SS	12/16/14	INV	ECS	Soil	X			
460-88006-17	ECS-AREA 3-T/U-17-SS-X	12/16/14	FD	ECS	Soil	X			
460-88006-18	ECS-AREA 3-U/V-17-SS	12/16/14	INV	ECS	Soil	X			
460-88006-19	ECS-AREA 3-V16-SE	12/16/14	INV	ECS	Soil	X			
460-88006-20	ECS-AREA 3-U/V-15-SE	12/16/14	INV	ECS	Soil	X			
460-88006-21	ECS-AREA 3-U14/15-SN	12/16/14	INV	ECS	Soil	X			
460-88006-22	ECS-AREA 3-S18-SS	12/16/14	INV	ECS	Soil	X			
460-88006-22LR	ECS-AREA 3-S18-SSLR	12/16/14	MD	ECS	Soil	Х			

Lab ID	Field ID	Date	Туре	Media	Matrix	Total As/Pb	Total TAL Metals	Total Hg	TCLP Pb
460-88006-22MS	ECS-AREA 3-S18-SSMS	12/16/14	MS	ECS	Soil	х			
460-88006-23	ECS-AREA 3-T16-SN	12/16/14	INV	ECS	Soil	х			
460-88006-24	ECS-AREA 3-S16-SN	12/16/14	INV	ECS	Soil	х			
460-88006-25	ECS-AREA 3-U15/16-SW	12/16/14	INV	ECS	Soil	х			
460-88033-1	ECS-AREA2-S16-SE	12/17/14	INV	ECS	Soil	Х			
460-88033-2	ECS-AREA2-S15-SE	12/17/14	INV	ECS	Soil	х			
460-88033-2LR	ECS-AREA2-S15-SELR	12/17/14	MD	ECS	Soil	х			
460-88033-2MS	ECS-AREA2-S15-SEMS	12/17/14	MS	ECS	Soil	Х			
460-88033-3	ECS-AREA2-R14-SE	12/17/14	INV	ECS	Soil	х			
460-88033-4	ECS-AREA2-R13-SE	12/17/14	INV	ECS	Soil	х			
460-88033-5	ECS-AREA2-R12-SE	12/17/14	INV	ECS	Soil	Х			
460-88033-6	ECS-AREA2-Q12-SN	12/17/14	INV	ECS	Soil		х	х	
460-88033-7	ECS-AREA2-P12-SN	12/17/14	INV	ECS	Soil	х			
460-88033-7LR	ECS-AREA2-P12-SNLR	12/17/14	MD	ECS	Soil	Х			
460-88033-7MS	ECS-AREA2-P12-SNMS	12/17/14	MS	ECS	Soil	х			
460-88033-8	ECS-AREA2-O/P13-SW	12/17/14	INV	ECS	Soil	х			
460-88033-9	ECS-AREA2-O/P13-SW-X	12/17/14	FD	ECS	Soil	Х			
460-88033-10	ECS-AREA2-O14-SW	12/17/14	INV	ECS	Soil	Х			
460-88033-11	ECS-AREA2-O15-SW	12/17/14	INV	ECS	Soil	Х			
460-88033-12	ECS-AREA2-O16-SW	12/17/14	INV	ECS	Soil	Х			
460-88033-13	ECS-AREA12-H10-SE	12/17/14	INV	ECS	Soil	Х	_		

ECS - Excavation Confirmation Sample

FD - Field Duplicate Sample

INV - Investigative Sample

MD - Matrix Duplicate Sample (unspiked)

MS - Matrix Spike Sample

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

- Total As/Pb: 3050B/ 6010C for Arsenic and Lead in soil samples
- Total TAL Metals: 3050B/ 6010C for 22 ICP-AES Target Analyte List (TAL) Metals (Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc) in soil samples
- Total Hg: 7471B for total Mercury in soil samples
- TCLP Pb: 1311/3010A/6010C for Lead in leachates of soil samples

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- U = Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- *J* = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J-/J+ and R>UJ)

TABLE 3 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Post-Excavation Confirmation Samples October 2014 to December 2014

QC DEFICIENCIES AND DATA QUALIFICATION ACTIONS

Lab ID	Sample Code	Туре		Method		D	ate and Tim	ne	D	Analyte	Lab	Spk	Spk	RPD	QC Issue	DVOs Applied
			Leach	Prep	Analy	Leach	Prep	Analy	F		Qual	LCL	UCL	CL	QC Issue	DVQs Applied
								FIELD [DUPL	LICATE (FD) PRECISION						
460- 85426-6	ECS-AREA2- O20-F-X- 20141030	N		3050B	6010C		11/01/14 16:27:00	11/03/14 12:55:00	4	LEAD				35	Poor field duplicate precision (130 RPD), use higher result from original sample	J to detects for original and duplicate sample
460- 86060-2	ECS-Area2-P17- F-X-20141111	N		3050B	6010C		11/13/14 07:18:00	11/13/14 17:53:00	4	LEAD		(38 RPD), use hi		Poor field duplicate precision (38 RPD), use higher result from field duplicate	J to detects for original and duplicate sample	
							LAB	ORATORY	CON	ITROL SPIKE (LCS) ACC	URACY	′				
4602711 552A	4602711552A	BS		3050B	6010C		12/22/14 19:07:00	12/23/14 16:20:00	4	ANTIMONY		50	200		Low laboratory control spike recovery (48.8%)	J-/UJ to detects/NDs for samples digested in the same batch
								MATR	RIX S	PIKE (MS) ACCURACY						
460- 87832- 23MS	ECS-AREA7- M/N5-SN- 20141215MS	MS		3050B	6010C		12/19/14 07:08:00	12/19/14 16:46:00	4	LEAD	Z	75	125		Low MS recovery (53%); Passing PDS recovery (93%)	J/UJ to detects/NDs for ECS samples digested in the same batch
460- 88006- 22MS	ECS-AREA 3- \$18-SS- 20141216MS	MS		3050B	6010C		12/22/14 07:41:00	12/23/14 01:49:00	4	LEAD	N	75	125		Low MS recovery (74%); Passing PDS recovery (92%)	J/UJ to detects/NDs for ECS samples digested in the same batch
			,	•					STIC	ON SPIKE (PDS) ACCURA	ACY					<u></u>
460- 88006- 22PDS	ECS-AREA 3- S18-SS- 20141216PDS	PDS		3050B	6010C		12/22/14 07:41:00	12/23/14 01:46:00	4	MANGANESE	N	80	120		Low PDS recovery (69%); MS recovery not reported since only As/Pb requested for parent sample (ECS-AREA 3-S18-SS)	J-/UJ to detects/NDs for ECS samples digested in the same batch
460- 88033- 7PDS	ECS-AREA2- P12-SN- 20141217PDS	PDS		3050B	6010C		12/23/14 07:30:00	12/24/14 13:15:00	4	LEAD		80	120		Low PDS recovery (79%)	none (recovery only slightly below limit and 12/27/14 rerun of PDS passes at 99%)

CL - Control Limit

DF - Dilution Factor

LCL - Lower Control Limit

UCL - Upper Control Limit

TABLE 4 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Post-Excavation Confirmation Samples October 2014 to December 2014

QUALIFIED RESULTS FOR FIELD SAMPLES

460-84508-3 460-84508-6	ECS-ESTREAM-70+00-WB- 20141014 ECS-ESTREAM-70+50-WB- 20141014	ARSENIC ARSENIC	1.5 J mg/kg	J	Result between MDL and RL
460-84508-6		ARSENIC			TOOGIT DOLWOON WIDE AND INC
		ANGLINIO	1.6 J mg/kg	J	Result between MDL and RL
460-84508-7	ECS-ESTREAM-71+00-F- 20141014	ARSENIC	2.5 J mg/kg	J	Result between MDL and RL
460-84508-8	ECS-ESTREAM-71+00-EB- 20141014	ARSENIC	2.9 J mg/kg	J	Result between MDL and RL
460-84508-9	ECS-ESTREAM-71+00-WB- 20141014	ARSENIC	1.7 J mg/kg	J	Result between MDL and RL
460-84508-16	ECS-ESTREAM-72+50-F- 20141014	ARSENIC	1.5 J mg/kg	J	Result between MDL and RL
460-84508-18	ECS-ESTREAM-73+00-F- 20141014	COBALT	9.1 J mg/kg	J	Result between MDL and RL
460-84508-22	ECS-ESTREAM-72+50-F-X- 20141014	ARSENIC	2.4 J mg/kg	J	Result between MDL and RL
460-84818-1	ECS-ESTREAM-70+00-FR- 20141021	ARSENIC	3.0 J mg/kg	J	Result between MDL and RL
460-84818-2	ECS-ESTREAM-73+00 WB-R- 20141021	ARSENIC	3.2 J mg/kg	J	Result between MDL and RL
460-85130-11	ECS-ESTREAM-72+50-EB-R- 20141024	ARSENIC	1.7 J mg/kg	J	Result between MDL and RL
460-85130-12	ECS-ESTREAM-72+50-WB-R- 20141024	ARSENIC	1.6 J mg/kg	J	Result between MDL and RL
460-85194-2	ECS-AREA2-S18-F-20141027	ARSENIC	2.2 J mg/kg	J	Result between MDL and RL
460-85194-3	ECS-AREA2-R17-F-20141027	ARSENIC	2.2 J mg/kg	J	Result between MDL and RL
460-85194-4	ECS-AREA2-R18-F-20141027	ARSENIC	1.7 J mg/kg	J	Result between MDL and RL
460-85194-5	ECS-AREA2-R19-F-20141027	ARSENIC	2.6 J mg/kg	J	Result between MDL and RL
460-85194-6	ECS-AREA2-Q19-F-20141027	ARSENIC	2.4 J mg/kg	J	Result between MDL and RL
460-85426-2	ECS-AREA2-P20-F-20141030	BARIUM	34.7 J mg/kg	J	Result between MDL and RL
460-85426-2	ECS-AREA2-P20-F-20141030	BERYLLIUM	0.34 J mg/kg	J	Result between MDL and RL
460-85426-2	ECS-AREA2-P20-F-20141030	CALCIUM	729 J mg/kg	J	Result between MDL and RL
460-85426-2	ECS-AREA2-P20-F-20141030	COBALT	3.8 J mg/kg	J	Result between MDL and RL
460-85426-2	ECS-AREA2-P20-F-20141030	POTASSIUM	466 J mg/kg	J	Result between MDL and RL
460-85426-2	ECS-AREA2-P20-F-20141030	SODIUM	236 J mg/kg	J	Result between MDL and RL
460-85426-5	ECS-AREA2-O20-F-20141030	LEAD	179 mg/kg	J	Poor field duplicate precision (130 RPD), use higher result from original sample
460-85426-6 E	ECS-AREA2-O20-F-X-20141030	LEAD	40.6 mg/kg	J	Poor field duplicate precision (130 RPD), use higher result from original sample
460-85426-8 I	ECS-AREA2-S18-SS-20141030	1311 LEAD	48.6 J ug/l	J	Result between MDL and RL

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-85480-4	ECS-ESTREAM-71+00-EB-R2- 20141031	ARSENIC	2.1 J mg/kg	J	Result between MDL and RL
460-85480-5	ECS-ESTREAM-71+50-EB-R2- 20141031	ARSENIC	1.8 J mg/kg	J	Result between MDL and RL
460-85480-6	ECS-ESTREAM-71+50-WB-R2- 20141031	ARSENIC	2.3 J mg/kg	J	Result between MDL and RL
460-85480-9	ECS-ESTREAM-73+00-EB-R2- 20141031	ARSENIC	2.1 J mg/kg	J	Result between MDL and RL
460-85633-1	ECS-ESTREAM-70+50-EB-R3- 20141104	CADMIUM	0.37 J mg/kg	J	Result between MDL and RL
460-85633-1	ECS-ESTREAM-70+50-EB-R3- 20141104	MERCURY	0.018 J mg/kg	J	Result between MDL and RL
460-86060-1	ECS-Area2-P17-F-20141111	1311 LEAD	48.2 J ug/l	J	Result between MDL and RL
460-86060-1	ECS-Area2-P17-F-20141111	LEAD	15.9 mg/kg	J	Poor field duplicate precision (38 RPD), use higher result from field duplicate
460-86060-2	ECS-Area2-P17-F-X-20141111	LEAD	23.4 mg/kg	J	Poor field duplicate precision (38 RPD), use higher result from field duplicate
460-86060-3	ECS-Area2-P18-F-20141111	1311 LEAD	29.9 J ug/l	J	Result between MDL and RL
460-86060-3	ECS-Area2-P18-F-20141111	ARSENIC	2.9 J mg/kg	J	Result between MDL and RL
460-86780-1	ECS-AREA2-019-F-20141122	1311 LEAD	39.0 J ug/l	J	Result between MDL and RL
460-86780-1	ECS-AREA2-019-F-20141122	ARSENIC	3.0 J mg/kg	J	Result between MDL and RL
460-87286-1	ECS-AREA2-N17-F-20141204	1311 LEAD	47.3 J ug/l	J	Result between MDL and RL
460-87490-1	ECS-AREA2-NI8-F-20141209	1311 LEAD	31.4 J ug/l	J	Result between MDL and RL
460-87832-8	ECS-AREA11-G6-SW-20141215	ARSENIC	4.4 J mg/kg	J	Result between MDL and RL
460-87832-11	ECS-AREA8-H5-SS-20141215	CADMIUM	0.68 J mg/kg	J	Result between MDL and RL
460-87832-11	ECS-AREA8-H5-SS-20141215	COBALT	4.0 J mg/kg	J	Result between MDL and RL
460-87832-11	ECS-AREA8-H5-SS-20141215	POTASSIUM	820 J mg/kg	J	Result between MDL and RL
460-87832-11	ECS-AREA8-H5-SS-20141215	SODIUM	212 J mg/kg	J	Result between MDL and RL
460-87832-14	ECS-AREA8-G3-SN-20141215	ARSENIC	3.2 J mg/kg	J	Result between MDL and RL
460-87832-17	ECS-AREA7-K5-SS-20141215	LEAD	73.0 mg/kg	J	Low MS recovery (53%); Passing PDS recovery (93%)
460-87832-18	ECS-AREA7-L6-SS-20141215	LEAD	22.8 mg/kg	J	Low MS recovery (53%); Passing PDS recovery (93%)
460-87832-19	ECS-AREA7-L6-SS-X-20141215	LEAD	21.1 mg/kg	J	Low MS recovery (53%); Passing PDS recovery (93%)
460-87832-20	ECS-AREA7-M6-SS-20141215	LEAD	196 mg/kg	J	Low MS recovery (53%); Passing PDS recovery (93%)
460-87832-21	ECS-AREA7-N6-SS-20141215	LEAD	99.9 mg/kg	J	Low MS recovery (53%); Passing PDS recovery (93%)
460-87832-22	ECS-AREA7-N5/6-SE-20141215	LEAD	137 mg/kg	J	Low MS recovery (53%); Passing PDS recovery (93%)
460-87832-23	ECS-AREA7-M/N5-SN-20141215	LEAD	87.0 mg/kg	J	Low MS recovery (53%); Passing PDS recovery (93%)
460-87832-24	ECS-AREA7-L/M-5-SN-20141215	LEAD	46.4 mg/kg	J	Low MS recovery (53%); Passing PDS recovery (93%)
460-87832-25	ECS-AREA7-L5-SN-20141215	LEAD	119 mg/kg	J	Low MS recovery (53%); Passing PDS recovery (93%)

Lab ID	Field ID-Date	Analyte	La Res		DVQ	QC Issue
460-87832-26	ECS-AREA7-J/K-4-SW-20141215	LEAD	91.3	mg/kg	J	Low MS recovery (53%); Passing PDS recovery (93%)
460-88006-5	ECS-AREA 6-Q9-SS-20141216	LEAD	537	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-6	ECS-AREA 6-P8/9-SW-20141216	LEAD	62.3	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-7	ECS-AREA 6-P8-SS-20141216	LEAD	52.1	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-8	ECS-AREA 6-08-SS-20141216	LEAD	75.1	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-9	ECS-AREA 5-X14-SS-20141216	LEAD	41.0	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-10	ECS-AREA 5-X13-SE-20141216	LEAD	193	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-11	ECS-AREA 5-X12-SN-20141216	ARSENIC	2.9	J mg/kg	J	Result between MDL and RL
460-88006-11	ECS-AREA 5-X12-SN-20141216	LEAD	24.4	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-12	ECS-AREA 5-W12-SN-20141216	ARSENIC	3.3	J mg/kg	J	Result between MDL and RL
460-88006-12	ECS-AREA 5-W12-SN-20141216	LEAD	48.7	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-13	ECS-AREA 5-W12-SW-20141216	CALCIUM	862	J mg/kg	J	Result between MDL and RL
460-88006-13	ECS-AREA 5-W12-SW-20141216	COBALT	3.8	J mg/kg	J	Result between MDL and RL
460-88006-13	ECS-AREA 5-W12-SW-20141216	LEAD	226	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-13	ECS-AREA 5-W12-SW-20141216	MANGANESE	276	mg/kg	J-	Low PDS recovery (69%); MS recovery not reported since only As/Pb requested for parent sample (ECS-AREA 3-S18-SS)
460-88006-13	ECS-AREA 5-W12-SW-20141216	NICKEL	9.4	J mg/kg	J	Result between MDL and RL
460-88006-13	ECS-AREA 5-W12-SW-20141216	POTASSIUM	412	J mg/kg	J	Result between MDL and RL
460-88006-14	ECS-AREA 5-W12-SS-20141216	ARSENIC	1.8	J mg/kg	J	Result between MDL and RL
460-88006-14	ECS-AREA 5-W12-SS-20141216	LEAD	89.0	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-15	ECS-AREA 5-X13-SW-20141216	LEAD	169	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-16	ECS-AREA 3-T/U-17-SS- 20141216	LEAD	57.9	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-17	ECS-AREA 3-T/U-17-SS-X- 20141216	LEAD	64.7	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-18	ECS-AREA 3-U/V-17-SS- 20141216	LEAD	223	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-19	ECS-AREA 3-V16-SE-20141216	LEAD	89.7	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-20	ECS-AREA 3-U/V-15-SE- 20141216	LEAD	150	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-21	ECS-AREA 3-U14/15-SN- 20141216	LEAD	158	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)
460-88006-22	ECS-AREA 3-S18-SS-20141216	LEAD	69.8	mg/kg	J	Low MS recovery (74%); Passing PDS recovery (92%)

Lab ID	Field ID-Date	Analyte		Lab Result										QC Issue
460-88006-23	ECS-AREA 3-T16-SN-20141216	LEAD	171 mg/kg		J	Low MS recovery (74%); Passing PDS recovery (92%)								
460-88006-24	ECS-AREA 3-S16-SN-20141216	LEAD	228	mg/kg		Low MS recovery (74%); Passing PDS recovery (92%)								
460-88033-6	ECS-AREA2-Q12-SN-20141217	ANTIMONY	3.8	U mg/kg	IJ	Low laboratory control spike recovery (48.8%)								
460-88033-6	ECS-AREA2-Q12-SN-20141217	CALCIUM	321	J mg/kg	J	Result between MDL and RL								
460-88033-6	ECS-AREA2-Q12-SN-20141217	POTASSIUM	797	J mg/kg	J	Result between MDL and RL								

TABLE 5 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Post-Excavation Confirmation Samples October 2014 to December 2014

FIELD DUPLICATE RESULTS

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	_	al Sample Result		Duplicate b Result	Abs Diff	Max 2xRL	RPD	Pass
460-84508-16	460-84508-22	ECS-ESTREAM-72+50-F-	ARSENIC	1.5	J mg/kg	2.4	J mg/kg	0.9	6.6	NA	Yes
		20141014									
460-84508-16	460-84508-22	ECS-ESTREAM-72+50-F-	LEAD	11.1	mg/kg	10.1	mg/kg	NA	4.4	9.4	Yes
		20141014									
460-85426-5	460-85426-6	ECS-AREA2-O20-F-20141030	ARSENIC	4.6	mg/kg	4.2	mg/kg	0.4	7.4	NA	Yes
460-85426-5	460-85426-6	ECS-AREA2-O20-F-20141030	LEAD	179	mg/kg	40.6	mg/kg	NA	5	130	NO
460-85426-5	460-85426-6	ECS-AREA2-O20-F-20141030	1311 LEAD	83.4	ug/l	50.5	ug/l	32.9	100	NA	Yes
460-86060-1	460-86060-2	ECS-Area2-P17-F-20141111	ARSENIC	3.6	mg/kg	4.2	mg/kg	0.6	6.8	NA	Yes
460-86060-1	460-86060-2	ECS-Area2-P17-F-20141111	LEAD	15.9	mg/kg	23.4	mg/kg	NA	4.6	38	NO
460-86060-1	460-86060-2	ECS-Area2-P17-F-20141111	1311 LEAD	48.2	J ug/l	64.3	ug/l	16.1	100	NA	Yes
460-87832-18	460-87832-19	ECS-AREA7-L6-SS-20141215	ARSENIC	5.5	mg/kg	5	mg/kg	0.5	7.6	NA	Yes
460-87832-18	460-87832-19	ECS-AREA7-L6-SS-20141215	LEAD	22.8	mg/kg	21.1	mg/kg	NA	5	7.7	Yes
460-88006-16	460-88006-17	ECS-AREA 3-T/U-17-SS-	ARSENIC	4.5	mg/kg	5.7	mg/kg	1.2	7.4	NA	Yes
		20141216									
460-88006-16	460-88006-17	ECS-AREA 3-T/U-17-SS-	LEAD	57.9	mg/kg	64.7	mg/kg	NA	4.8	11	Yes
		20141216									
460-88033-8	460-88033-9	ECS-AREA2-O/P13-SW-	ARSENIC	3.6	mg/kg	4.3	mg/kg	0.7	7.2	NA	Yes
		20141217									
460-88033-8	460-88033-9	ECS-AREA2-O/P13-SW-	LEAD	38	mg/kg	40.8	mg/kg	NA	4.8	7.1	Yes
		20141217									

Note: The RPD test (≤35%) applies if both results are greater than 5x RL. Otherwise, the absolute difference test (≤ 2x RL) applies.

ATTACHMENT A

VALIDATOR'S CHECKLISTS

Client Name: Entest		Drc:- ·	4 Niconali	or/Monogory F707GH/ Johny Colf			
Client Name: Entact Site Name: Revere Smelting and Refining (Phase 2B ECS Oct-Dec	2014\	QC Le		er/ Manager: E7976H/ Jenny Self			
Laboratory: TestAmerica (Edison)	2014)			b No: see below			
Reviewer: Taryn Scholz			Date Checked: 1/29/15				
Parameters: TCLP Pb, Metals			Date Checked: 1/29/15 Methods: 1311/6010C, 6010C/7471B				
ITEM	YES	NO	N/A	(CRITERIA) COMMENT			
Laboratory NELAP/ELAP accredited?	X	NO	IVA	#11452			
Signed Narrative included?	X			see Comment no. 1			
Narrative issues noted by lab?	X			See Narrative Comments			
		dv (CO	C)/ Sar	mple Receipt			
Date/time of sample collection included?	х		1				
Sample temp upon receipt 2-6 C?	X						
Proper containers/preservation?	х			(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required); see Comment no. 1A			
COCs properly executed and seals used?	х			see Comment no. 2			
Samples received within 2 days?		Х		(DER10 - recommended) 460-86780-1 rec'd day 3			
Gampios received warm 2 days.	An	alytical	Results	, , ,			
All requested analyses reported?	X	arytical	Noouite	see Comment no. 2A			
Field, Laboratory, and Batch ID included?	x	1	1	SSS SSOR NO. EX			
Date of sample collection/receipt included?	X						
Date of sample preparation/analysis included?	X						
NDs at DL or QL and J-values as needed?	х			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-values reported; EDD - NDs blank with 'method_detection_limit' = 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' = 'quantitation_limit' (SQL), J-values reported			
Target analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLF TAL)			
RLs acceptable?	х			(ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3			
No elevated RLs for NDs?	х			Note: 4x std dilution for total metals in soil (TALED), 5x std dilution for TCLP (Sample 460-86144-1 reported at 1x but DF confirmed per raw data and still ND if actually at 5x.)			
Prep/Analysis method references included and approved?	х			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D); (5035 used for VOC soils this phase) see Comment no. 4			
If analytical cleanup used, method ref included and approved?	Х			(ASP Exh D)			
Sample matrix included?	х						
Soils on dry weight basis?	х						
Correct and consistent units?	х			Inorganics in mg/kg or ug/L (TCLP)			
Holding time to analysis not expired?	x*			(Workplan Table 2, SW846 for those not in table per ASP Exh I, which gives only aq HTs) Hg 28-d, Herb 14/40-d, Cr VI 30/7-d, CN 14-d			
Holding time to preparation not expired?			Х				
	rkplan	Section	5.3.6 a	and 2/29/12 mod letter)			
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment			NA	only disposable equipment used			
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory			NA				
Filter blank - 1 per week of time-integrated air monitoring			NA				
Field duplicate samples - 1 for every 20 or fewer samples per sample matrix (excluding air samples)		х		Total samples = 134 confirmation (128 As/Pb w 23 TCLP + 6 TAL) Total FD = 6 (6 As/Pb w 2 TCLP) -> Low for Total since none for TAL			
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix from the same batch as the project samples to the extent possible	х			MS/LR used for metals (ICP, Hg) - 5 field MS/LR/PDS/SD for As/Pb w 2 TCLP plus additional lab (3 As/Pb and 1 TCLP), also 3 PDS/SD fo TAL			
Completeness criteria met?	Х		İ	(Workplan Section 5.3.3 - 100%) 431/431=100%			
		Field N	lotes	,			
Agree with custody records?			х	not included			
Field instruments calibrated daily?			Х				
,		1					
Well conditions constant before sampling?			X				

Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification; COI - Compound of Interest; %D - Percent Difference, DL - Detection Limit; DUP - Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasma; ICV - Initial Calibration Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Matrix Spike Duplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response Factor; RT - Retention Time; RSD - Relative Standard Deviation; TA - Target Analyte

COMMENTS

Laboratory Job No: 460-84508-1, 460-84818-1, 460-85130-1, 460-85194-1, 460-85194-2, 460-85279-1, 460-85279-2, 460-85426-1, 460-85426-2, 460-85480-1, 460-85553-1, 460-85633-1, 460-86060-1, 460-86144-1, 460-86780-1, 460-87286-1, 460-87490-1, 460-87659-1, 460-87832-1, 460-88006-1, 460-88033-1

The holding time was calculated using dates only without regard to the time of day since all holding times are greater than 24 hours.

- 1. Signature is on the cover page with certification statement. Some work orders also include separate signed certification page. Language is similar on both so no further action taken.
- 1A. For job number 460-86144-1, one of two containers was received broken for sample ECS-AREA2-017-F. The aliquot was transferred to a new container upon receipt. The sample was used for the MS and DUP metals analysis, and thus there is no effect on data quality.
- 2. Issues for custody records:

For job number 460-85130-1, the custody record shows an incorrect sample ID of ECS-ESTREAM-73+00-EB-R2 for sample 14. The correct sample ID (ECS-ESTREAM-73+00-WB-R2) is shown in the laboratory report per Entact's request.

For job number 460-85130-1, the laboratory report shows a sample receipt time of 10:18 while the custody record shows 08:05. The sample receipt date (10/25/14) is in agreement. No action is required.

For job number 460-85194-1, the custody record shows each of the sample IDs without the 'F' designation at the end. The correct sample IDs are shown in the laboratory report per Entact's request.

For job number 460-88006-1, the analytical results, sample summary, and EDD show a sample receipt date of 12/18/14 while the custody record and laboratory narrative show 12/17/14. The validator corrected the EDD. No action was taken regarding the hardcopy data package.

- 2A. For job numbers 460-85194-1, 460-85279-1, and 460-85426-1, all samples were activated for TCLP Pb analysis per Entact's request on 11/4/14. This analysis was not originally requested on the custody record. Results are reported separately in a -2 job number.
- 3. The MQL (Unadj) for As/Pb is above the WP RL, but in each case, it is below the Remedial Goal and Allowable Constituent Level in DER10 App 5. Additionally, the MQL (Unadj) for the TAL metal Iron is above the CRQL (for TALED). There are no action levels for this analyte.
- 4. Update IV methods (6010C, 7471B) used instead of Update III as in WP. Prep method for 6010C total metals in soils shown as SW3020B in EDD, validator changed all to SW3050B per the pdf report and as confirmed correct by the laboratory.

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
All	All	Total Metals	All samples	Required 4x dilution prior to analysis; RLs adjusted accordingly	noted in QA report narrative
EN464	460-84508-1	Total Metals	NA	nothing noted (non-project MS/LR deficiencies)	NA
EN465	460-84818-1	Total Metals	NA	nothing noted	NA
EN466	460-85130-1	Total Metals	NA	nothing noted (non-project MS deficiencies)	NA
EN467	460-85194-1	Total Metals	NA	nothing noted	NA
EN468	460-85194-2	TCLP Metals	NA	nothing noted	NA
EN469	460-85279-1	Total Metals	NA	nothing noted	NA
EN470	460-85279-2	TCLP Metals	NA	nothing noted	NA
EN471	460-85426-1	Total Metals	NA	nothing noted	NA
EN472	460-85426-2	TCLP Metals	NA	nothing noted	NA
EN473	460-85480-1	Total Metals	NA	nothing noted	NA
EN474	460-85553-1	Total Metals	NA	nothing noted (non-project LR deficiencies)	NA
		TCLP Metals	NA	nothing noted	NA
EN475	460-85633-1	Total Metals	NA	nothing noted (non-project MS/LR deficiencies)	NA
EN476	460-86060-1	Total Metals	NA	nothing noted	NA
		TCLP Metals	NA	nothing noted	NA
EN477	460-86144-1	Total Metals	NA	nothing noted	NA
		TCLP Metals	NA	nothing noted	NA
EN478	460-86780-1	Total Metals	NA	nothing noted	NA
		TCLP Metals	NA	nothing noted	NA
EN479	460-87286-1	Total Metals	NA	nothing noted	NA
		TCLP Metals	NA	nothing noted	NA
EN480	460-87490-1	Total Metals	NA	nothing noted	NA
		TCLP Metals	NA	nothing noted	NA
EN481	460-87659-1	Total Metals	NA	nothing noted	NA
EN482	460-87832-1	Total Metals	-23	MS %R low for Pb	see QC Deficiencies
EN483	460-88006-1	Total Metals	-22	MS %R low for Pb	see QC Deficiencies
		%Solids	-22	RPD out	none (lab QC report and raw data indicate within control at 0% RPD)
EN484	460-88033-1	Total Metals	NA	nothing noted	NA

	ame: Entact	Projec	t Numb	er/ Ma	anager: E7976H/ Jenny Self			
ite Nan	ne: Revere Smelting and Refining (Phase 2B ECS Oct-Dec 2014)	QC Le						
	ory: TestAmerica (Edison)	Laboratory Job No: see DURC						
	r: Taryn Scholz	Date Checked: 1/29/15						
aramet	ers: TCLP Pb, Metals				0C, 6010C/7471B			
	%PERFORMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT			
	Method blank data included in Lab Package?	Х						
100	Criteria met? $(< MDL, \ge -RL)$	Х						
100	Criteria met for field blanks? (< MDL)			Х				
	QC check samples/LCS data included in lab package?		Х		see Comment no. 1			
	All project COCs or TAs included?	Х						
100	%R criteria met?		Χ		method (lab* but within 50-200%) see QC Def			
	Matrix spike data included in lab package?	Х						
100	%R criteria met?		Х		method (75-125%) see QC Deficiencies			
	Sample duplicate data included in lab package?	Х			as LR			
100	RPD criteria met?	х			method (20% if >10xMDL)			
					ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2F			
100	Field dup RPD criteria met? (individual, mean, and overall)		х		sol if either ≤5RL) see QC Deficiencies			
	Instrument Tune for ICP-MS included in lab package?			Х				
NA	Instrument Tune method criteria met? (±5 RSD, ±0.1 amu)			Х				
	Initial calibration documentation included in lab package?	х						
	All target analytes included?	Х						
	blank/1 std (ICP), blank/ 5 stds (Hg)	Х						
100	correl coeff criteria met? (r > 0.998 ICP, r > 0.995 AA/Hg)	Х						
	Calibration verification data included in lab package?	Х						
	ICB/CCB criteria met? (<rl, td="" ≥-rl)<=""><td>Х</td><td></td><td></td><td></td></rl,>	Х						
	ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115)	Х						
	CCV %R criteria met? (ICP 90-110%, Hg 80-120%)	Х						
100	LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%)	Х			CL per ASP Exh E			
100	Dilution test data included?	Х						
100	Results within criteria if >50xMDL? (max 10%, qualify 15%)	Х						
100	Post digestion spike included?	Х						
100	%R criteria met?		Х		method (75-125%), see QC Deficiencies			
100	Interference check sample data included (ICP/MS only)?	Х						
100	%R criteria met? (80-120%, unspk <2RL, <u>></u> 2-RL)	Х			2RL per ASP Exh E			
NA	Internal standard data included in lab package?			Х				
NA	Intensities within limits (within > 70% of calib std)?			Х				
10	Analyte quantitation/RLs correct?	Х						
10	QC parameters calculated correctly?	Х						
OMME	INTS							
or SRI	Ms (solid LCS), the manufacturer's established limits as reported by	the lab	are us	ed. Fo	r aqueous LCS, method limit is 80-120%.			
For t	he TCLP-Pb analysis of 460-87286-1 (prep batch 268510), the	re is no	BS ir	the I	HC, EDD or raw data; non-project MS/PDS passes			
15%/11	3% so no further action. Additionally, for the Hg analysis of 460	0-88006	-13 (pr	ep bat	tch 270908), there is no LB or BS in the EDD. Resu			
ported	in the HC so no further action.							
I JATC	METALS VS LEACHED - all leach results < max possible							

Client Na	nme: Entact	Projec	t Numb	er/ Ma	nager: E7976H/ Jenny Self	
Site Nam	ne: Revere Smelting and Refining (Phase 2B ECS Oct-Dec 2014)	QC Level: IV				
aborato	ry: TestAmerica (Edison)	Laboratory Job No: see DURC				
	r: Taryn Scholz	Date 0	Checke	d: 1/29	/15	
Parameters: TCLP Pb				1/3010	DA/6010C	
%PERFORMED/ ITEM		YES	NO	N/A	(CRITERIA) COMMENT	
	Was a ZHE vessel without leaks used for VOAs?			х		
	Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve)			х		
	Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately			х		
	Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)	х			No. 1 for all	
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	х			pH of fluid reported as initial pH of LB	
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)	Х				
	Was the correct weight of fluid used? (20x solid weight)	Х				
100	Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)	Х				
	No preservation for aqueous sample aliquots?			х		
	Proper preservation for leachates?	Х			(method pH <2)	
100	Holding time to leaching not expired?	х			(method 180-days)	
	Leach blank data included in Lab Package? (1/20)	х				
100	Criteria met? (< MDL)	Х				
ОММЕ	NTS					
N468,4	70 - 260332					
	74 - 260618					
N476 -	262352					
N477 -	263180					
N478 -	265879					
N479 -	268335					
N480 -	268905					

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action Post-Stabilization Verification Samples and Stockpile Characterization Samples

October 2014 to February 2015

Prepared by:

Quality Assurance Associates (QAALLC)

1007 Francis Drive College Station, TX 77840 www.qaallc.com 979-694-7199

TABLE OF CONTENTS

1.0	PRO	PROJECT OVERVIEW AND SUMMARY1					
2.0	PRO	CEDURE	ES				
3.0	DATA	A VALIDA	ATION RESULTS				
	3.1	PRECI	SION				
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision				
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision				
		3.1.3	Field Duplicate (FD) Precision				
	3.2	ACCUI	RACY4				
		3.2.1	Laboratory Control Spike (LCS) Accuracy				
		3.2.2	Matrix Spike (MS) Accuracy				
		3.2.3	Serial Dilution (SD) %Difference				
	3.3	REPRI	ESENTATIVENESS				
		3.3.1	Chain-of-Custody and Analysis Requests				
		3.3.2	Sample Preservation and Holding Time				
		3.3.3	Laboratory and Method Selection				
		3.3.4	Blanks (Laboratory and Field)				
		3.3.5	Analytical Procedures				
	3.4	COMP	LETENESS				
		3.4.1	Laboratory Deliverables Completeness				
		3.4.2	EDD Correctness				
		3.4.3	Analytical Completeness				
	3.5	COMP	ARABILITY				

LIST OF TABLES

Table 1 – Samples Selected for Validation

Table 2 - Data Validation Qualifiers (DVQs)

Table 3 – Qualified Results for Validated Samples

Table 4 – Field Duplicate Results for Validated Samples

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The data include seven investigative soil samples plus two field duplicate samples as shown in Table 1. The samples comprise 10% of the Phase II-B post-stabilization verification (PSV) samples and 10% of the stockpile characterization samples collected during October 2014 to February 2015. (A total of 44 PSV samples and 16 stockpile characterization samples were collected during this period.) The PSV samples were collected by ENTACT from the stabilized material stockpiles and analyzed for Toxicity Characteristic Leaching Procedure (TCLP) metals to ensure that the stabilized material meets the appropriate criteria for disposal in the on-site containment cell. The stockpile characterization samples were collected by ENTACT from the excavated soil stockpiles and analyzed for TCLP lead to determine if the excavated soil would require treatment to render the material non-hazardous prior to disposal in the containment cell. These soils were excavated from the ecological areas of the site where source material, which requires treatment, is not necessarily present based on the results from the remedial investigation.

Per the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, these data are considered Level 2 and require minimal data review. Per ENTACT's request, QAA performed a full validation of the selected samples and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). QAA completed the validation using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Superfund Data Review* (October 2013), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The validator assessed precision using the field duplicates. (No laboratory duplicates were prepared using one of the site samples selected for validation.) For the samples selected for validation, the sampler collected two field duplicates with the PSV investigative samples, and the RPDs are within the limits for all metals, which indicates good precision for the sampling and analytical technique on the given matrices.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The validator assessed accuracy using the laboratory spikes. (No matrix spikes were prepared using one of the site samples selected for validation.) For the samples selected for validation, the laboratory prepared a laboratory control spike (LCS) using reagent water with each analytical batch and reported the recovery for every analyte. The LCS recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects.
- 3. Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a

sufficient number of investigative samples are collected. Per ENTACT, PSV and stockpile characterization samples were collected as required in the approved sampling and analysis plan. Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory blanks, and analytical instrument setup (i.e., calibration, interference correction, etc.) For the samples selected for validation, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank and leachate blank with each analytical batch and the blanks show no contamination, which indicates the samples were not affected by laboratory procedures. Additionally, proper analytical techniques were used and calibration results met the method requirements with one exception. The validator determined that the pH of the TCLP extraction fluid was below the acceptable range as stipulated in the analytical method for one of the TCLP batches containing samples that were selected for validation. The check of the TCLP leaching procedures (including extraction fluid pH, leaching time, etc.) was expanded to include 100% of the PSV and stockpile characterization samples collected over this event period, and the validator found that all other batches meet the requirements for this method-defined parameter. The validator qualified the non-detects and detects for the four PSV samples in the affected batch as estimated (UJ and J).

- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. For the samples selected for validation, all analyses produced valid analytical measurements, which gives a completeness of 100%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions or revisions were provided by the laboratory upon request.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The PSV and stockpile characterization analytical results are classified as Level 2 data with a full review and validation of 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated. Note that results are reported in µg/L for all field samples.

DATA USABILITY

All sample results are acceptable for use. As shown in Table 3, sixteen PSV results are qualified as estimated because the pH of the TCLP extraction fluid was below the method range. These results are well below the stabilization criteria (50x or more), and thus this is not considered to significantly affect data usability. Additionally, four results are qualified solely because the concentration is between the MDL and RL. The actual value is not expected to exceed the sample RL. No other data quality issues were noted.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). For the samples selected for validation, the laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- · Laboratory Deliverables Completeness,
- EDD Correctness,
- · Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- · Laboratory and Method Selection,
- Initial Calibration,
- Continuing Calibration Verification,
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- · Matrix Duplicates (MD), and
- Field Duplicates (FD).

Additionally, the validator examined the raw data for one of the four sample batches (randomly selected by the validator) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are 80-120% for laboratory accuracy and 75-125% for matrix accuracy for metals analyses.
- Laboratory Precision the control limit (20 RPD) as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. A data rejection limit of 30% was used for these inorganic analyses. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U-flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

No LCSD were analyzed (or required) with the samples selected for validation.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every analytical batch (maximum 20 samples) and reported RPDs for all analytes. All MD RPDs are at or below the control limit. For the samples selected for validation, none of the MD were prepared using a sample from the site. Note that non-project MD results are included in the data packages but not in the EDD.

3.1.3 FIELD DUPLICATE (FD) PRECISION

For the samples selected for validation, the samplers collected two FD with the seven PSV and stockpile characterization investigative samples, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Results for the field duplicates are summarized in Table 4 and are within the criteria.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD) and matrix spikes (MS/MSD) plus serial dilutions (SD). LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

For the samples selected for validation, the laboratory analyzed a LCS for every analytical batch (maximum 20 samples) as required and reported recoveries for all analytes. All LCS recoveries are within the control limits.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS for every analytical batch (maximum 20 samples) and reported recoveries for all analytes. All MS recoveries are within the control limits. For the samples selected for validation, none of the MS were prepared using a sample from the site. Note that non-project MS results are included in the data packages but not in the EDD.

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all metals detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples selected for validation were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records and custody seals, which confirms that sample integrity was maintained. No issues were noted during sample log-in at the laboratory, and all field samples were analyzed for the tests requested on the chain-of-custody. The information on the custody record is correct and agrees with that reported in the analytical results except as follows:

For work order 460-85473-1, sample PSV-346 is reported with a sample collection time of 13:15. The actual time as shown on the custody record is 13:35. Likewise, sample PSV-347 is reported with a time of 15:10 and the actual time is 17:10. The sample collection dates are correctly reported as 10/31/2014 and the pass/fail status for the holding time checks is not affected, and thus no further action was taken.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

The samples selected for validation were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (TestAmerica-Edison NYSDOH (NELAP) #11452, NYSDOH (ELAP) #11452)

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. The analyte list includes TCLP Antimony, TCLP Arsenic, TCLP Cadmium, and/or TCLP Lead as requested and the nominal reporting limits are below the levels of concern (i.e., the treatment goals) for each analyte.

(Note: The laboratory dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank and leachate blank for every analytical batch (maximum 20 samples) plus a calibration blank for every 10 metals analyses as required per the analytical methodology. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used. No analytes were detected in the laboratory blanks.

3.3.5 ANALYTICAL PROCEDURES

For the samples selected for validation, the analytical procedures (initial calibration, continuing calibration verification, and interference correction), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method, except as follows:

 For work order 460-89829-1 (which includes samples PSV-380 and PSV-380X), the laboratory worksheet for the TCLP batch indicates the pH of the extraction fluid was 4.83 SU, which is outside the acceptable range per the analytical method (4.93 +/- 0.05 SU).

TCLP is a method-defined parameter, i.e., the analytical result is wholly dependant on the process used to make the measurement. As such, changes to the method may change the end result and incorrectly identify a waste as hazardous or nonhazardous. Therefore, method 1311 is not subject to the flexibility afforded in other SW-846 methods. Section 9.1.1 (Method Performance. Ruggedness. Metals) of the method 1311 provides information about the effect of the extraction fluid pH on the leaching process, as follows:

Of the seven method variations examined, acidity of the extraction fluid had the greatest impact on the results. Four of 13 metals from an API separator sludge/electroplating waste (API/EW) mixture and two of three metals from an ammonia lime still bottom waste were extracted at higher levels by the more acidic buffer. Because of the sensitivity to pH changes, the method requires that the extraction fluids be prepared so that the final pH is within + 0.05 units as specified.

To verify the validity of the entire data set, the validator expanded the check of the leaching procedures to include 100% of the PSV and stockpile characterization samples as listed below:

Media	Field IDs	Sample Dates
Post-Stabilization	PSV-343 through PSV-386 plus field duplicates PSV-346-X, PSV-360-	10/22/14 through
Verification	X, and PSV-380-X	2/23/15
Stockpile	C-Area-2-Stockpile-12 through C-Area-2-Stockpile-17	10/22/14 through
Characterization	C-Area 8,11,12,13-Stockpile 1	1/21/15
	C-Area 22-Stockpile-1 through C-Area 22-Stockpile-4	
	C-Area 22/15-Stockpile-1 through C-Area 22/15-Stockpile-5	

The validator found that two other project samples (PSV-378 and PSV-379 from work order 460-89783-1) were included in the affected batch (TCLP batch 278962) but the TCLP leaching procedures for all of the other batches were within the method requirements.

Guidelines for qualifying TCLP results are not available in EPA's NFG, NYSDEC's DER-10 or NYDEC's ASP. The reported results the four PSV samples included in TCLP batch 278962 are shown below:

TCLP BATCH 278962							
Lab ID	Field ID	Sample Date	Laboratory Result TCLP Metals mg/L				
			As	Cd	Pb	Sb	
460-89783-1	PSV-378	01/28/15	0.0267 J	0.020 U	0.050 U	0.145	
460-89783-2	PSV-379	01/28/15	0.0267 J	0.020 U	0.0568	0.110	
460-89829-1	PSV-380	01/29/15	0.042 J	0.020 U	0.050 U	0.0839 J	
460-89829-2	PSV-380-X	01/29/15	0.0435 J	0.020 U	0.050 U	0.0859 J	
Stabilization Criteria	tabilization Criteria (40 CFR 268.49 and 40 CFR 261.24 Table 1)			1	5	11.5	

The above statement from SW846 suggests that the more acidic extraction fluid used for TCLP Batch 278962 may produce results that are biased high for detects while having no significant effect on non-detects. However, using professional judgment and given the complexity of soil chemistry, the validator qualified the non-detects as estimated (UJ) and the detects as estimated (J) for the four samples in TCLP batch 278962. Note that all of the results are well below (50x or more) the stabilization criteria, which further confirms that the results are usable though estimated.

No issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes four analytical batches and the validator re-calculated sample results and QC check parameters for one batch (batch 460-265879 in work order 460- 460-86705-1).

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

For the samples selected for validation, the NYSDEC Category B data packages and EDD contain all necessary information, except as follows:

• For work order 460-86705-1, analytical results for the leachate blank for batch 460-265879 are not reported in the QC section of the data package or in the EDD. However, results are included in the raw data section and confirm that the no metals were detected in the blank, and thus no further action was taken.

Note that revisions were submitted for work orders 460-87658-1 and 460-89829-1 as detailed in the case narratives. For 460-89829-1, the case narrative was revised to include a discussion regarding the pH of the extraction fluid for TCLP Batch 278962 and states that the analyst has been re-trained on proper procedure, which includes checking the pH of TCLP fluid prior to use to verify it is within the acceptable range or preparing a new TCLP fluid, if necessary.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Job No.	Sample(s)	EDD Field(s)	Action
All	all QC samples	sampling_technique	The validator changed the entry from null to
			the default entry (UN) to meet NYSDEC
			requirements.

3.4.3 ANALYTICAL COMPLETENESS

For the samples selected for validation, the validator did not reject any of the results, which gives a completeness of 100%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. (Note that in some cases the laboratory used a more recent version of the method specified in the Workplan, e.g. SW846 6010C was used instead of SW846 6010B.) The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which an analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which an analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J-flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results are reported in μ g/L and are classified as Level 2 data for TCLP metals with a full review and validation of 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated.

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Post-Stabilization Verification Samples and Stockpile Characterization Samples October 2014 to February 2015

SAMPLES SELECTED FOR VALIDATION

Lab ID	Field ID	Sample	Туре	Media	Matrix	TCLP	TCLP
Lab ID	i leid ib	Date	туре	Wicula	Watrix	Sb, As, Cd, Pb	Pb
460-85473-1	PSV-346	10/31/14	INV	PSV	Soil	х	
460-85473-2	PSV-346-X	10/31/14	FD	PSV	Soil	х	
460-85473-3	PSV-347	10/31/14	INV	PSV	Soil	х	
460-86705-1	PSV-362	11/21/14	INV	PSV	Soil	х	
460-86705-2	PSV-363	11/21/14	INV	PSV	Soil	х	
460-87658-1	C-Area2-Stockpile-16	12/11/14	INV	SC	Soil		х
460-87658-2	C-Area2-Stockpile-17	12/11/14	INV	SC	Soil		х
460-89829-1	PSV-380	1/29/15	INV	PSV	Soil	х	
460-89829-2	PSV-380-X	1/29/15	FD	PSV	Soil	х	

FD - Field Duplicate Sample

INV - Investigative Sample

PSV - Post-Stabilization Verification Sample

SC - Stockpile Characterization Sample

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

• TCLP Metals: 1311/3010A/6010C for Antimony, Arsenic, Cadmium, and/or Lead in leachates of soil samples

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- U = Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- *J* = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J-/J+ and R>UJ)

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Post-Stabilization Verification Samples and Stockpile Characterization Samples
October 2014 to February 2015

QUALIFIED RESULTS FOR VALIDATED SAMPLES*

Lab ID	Field ID-Date	Analyte	Lab	DVQ	QC Issue
			Result	_	
460-85473-1	PSV-346- 20141031	1311 ANTIMONY	29.3 J ug/l	J	Result between MDL and RL
460-85473-1	PSV-346-	1311 ARSENIC	22.0 J ug/l	J	Result between MDL and RL
	20141031				
460-86705-1	PSV-362-	1311 ARSENIC	61.5 J ug/l	J	Result between MDL and RL
	20141121				
460-86705-2	PSV-363- 20141121	1311 ARSENIC	22.5 J ug/l	J	Result between MDL and RL
400 00700 4		4044 ANITIMONIV	4.45//		TOLD contraction florid to LL (4.02 CLI) halous mathed
460-89783-1	PSV-378- 20150128	1311 ANTIMONY	145 ug/l	J	TCLP extraction fluid pH (4.83 SU) below method range (4.88-4.93 SU)
460-89783-1	PSV-378-	1311 ARSENIC	26.7 J ug/l	J	TCLP extraction fluid pH (4.83 SU) below method
	20150128		g/.		range (4.88-4.93 SU); Result between MDL and RL
460-89783-1	PSV-378-	1311 CADMIUM	20.0 U ug/l	UJ	TCLP extraction fluid pH (4.83 SU) below method
	20150128				range (4.88-4.93 SU)
460-89783-1	PSV-378-	1311 LEAD	50.0 U ug/l	UJ	TCLP extraction fluid pH (4.83 SU) below method
	20150128				range (4.88-4.93 SU)
460-89783-2	PSV-379-	1311 ANTIMONY	110 ug/l	J	TCLP extraction fluid pH (4.83 SU) below method
	20150128				range (4.88-4.93 SU)
460-89783-2	PSV-379-	1311 ARSENIC	26.7 J ug/l	J	TCLP extraction fluid pH (4.83 SU) below method
	20150128				range (4.88-4.93 SU); Result between MDL and RL
460-89783-2	PSV-379-	1311 CADMIUM	20.0 U ug/l	UJ	TCLP extraction fluid pH (4.83 SU) below method
	20150128				range (4.88-4.93 SU)
460-89783-2	PSV-379-	1311 LEAD	56.8 ug/l	J	TCLP extraction fluid pH (4.83 SU) below method
	20150128				range (4.88-4.93 SU)
460-89829-1	PSV-380-	1311 ANTIMONY	83.9 J ug/l	J	TCLP extraction fluid pH (4.83 SU) below method
	20150129				range (4.88-4.93 SU); Result between MDL and RL
460-89829-1	PSV-380-	1311 ARSENIC	42.0 J ug/l	J	TCLP extraction fluid pH (4.83 SU) below method
	20150129				range (4.88-4.93 SU); Result between MDL and RL
460-89829-1	PSV-380-	1311 CADMIUM	20.0 U ug/l	UJ	TCLP extraction fluid pH (4.83 SU) below method
	20150129				range (4.88-4.93 SU)
460-89829-1	PSV-380-	1311 LEAD	50.0 U ug/l	UJ	TCLP extraction fluid pH (4.83 SU) below method
	20150129				range (4.88-4.93 SU)
460-89829-2	PSV-380-X-	1311 ANTIMONY	85.9 J ug/l	J	TCLP extraction fluid pH (4.83 SU) below method
	20150129				range (4.88-4.93 SU); Result between MDL and RL
460-89829-2	PSV-380-X-	1311 ARSENIC	43.5 J ug/l	J	TCLP extraction fluid pH (4.83 SU) below method
	20150129				range (4.88-4.93 SU); Result between MDL and RL
460-89829-2	PSV-380-X-	1311 CADMIUM	20.0 U ug/l	UJ	TCLP extraction fluid pH (4.83 SU) below method
	20150129				range (4.88-4.93 SU)

Lab ID	Field ID-Date	Analyte	Lab	DVQ	QC Issue
			Result		
460-89829-2	PSV-380-X-	1311 LEAD	50.0 U ug/l	UJ	TCLP extraction fluid pH (4.83 SU) below method
	20150129				range (4.88-4.93 SU)

^{*}Includes qualified results for leaching procedure check, which was performed on 100% of the samples.

TABLE 4 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Post-Stabilization Verification Samples and Stockpile Characterization Samples October 2014 to February 2015

FIELD DUPLICATE RESULTS FOR VALIDATED SAMPLES

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-85473-1	460-85473-2	PSV-346-20141031	1311 ANTIMONY	29.3 J ug/l	27 U ug/l	2.3	200	NA	у
460-85473-1	460-85473-2	PSV-346-20141031	1311 ARSENIC	22 J ug/l	21.7 U ug/l	0.3	150	NA	у
460-85473-1	460-85473-2	PSV-346-20141031	1311 CADMIUM	5.8 U ug/l	5.8 U ug/l	0	40	NA	у
460-85473-1	460-85473-2	PSV-346-20141031	1311 LEAD	23.2 U ug/l	23.2 U ug/l	0	100	NA	у
460-89829-1	460-89829-2	PSV-380-20150129	1311 ANTIMONY	83.9 J ug/l	85.9 J ug/l	2	200	NA	у
460-89829-1	460-89829-2	PSV-380-20150129	1311 ARSENIC	42 J ug/l	43.5 J ug/l	1.5	150	NA	у
460-89829-1	460-89829-2	PSV-380-20150129	1311 CADMIUM	5.8 U ug/l	5.8 U ug/l	0	40	NA	у
460-89829-1	460-89829-2	PSV-380-20150129	1311 LEAD	23.2 U ug/l	23.2 U ug/l	0	100	NA	у

Note: The RPD test (≤35%) applies if both results are greater than 5x RL. Otherwise, the absolute difference test (≤ 2x RL) applies.

ATTACHMENT A

VALIDATOR'S CHECKLISTS

Client Name: Entact		Project	t Numb	er/ Manager: E7976H/ Jenny Self						
Site Name: Revere Smelting and Refining (Phase 2B PSV/SC Oct1-	4-Feb15)			on managen area or a coming com						
Laboratory: TestAmerica (Edison, NJ)	,	Laboratory Job No: 460-85473-1, 460-86705-1, 460-87658-1, 460-89829-1								
Reviewer: Taryn Scholz		Date Checked: 3/19/15								
Parameters: TCLP Metals		Method	Methods: 1311/3010A/6010C							
ITEM	YES	NO	N/A	(CRITERIA) COMMENT						
Laboratory NELAP/ELAP accredited?	Х			NYDOH (NELAP) #11452, NYDOH (ELAP) #11452						
Signed Narrative included?	Х									
No narrative issues noted by lab?	Х			see Narrative Comments						
Chain	of Custoo	dy (COC)/ Sam	ple Receipt						
Date/time of sample collection included?	Х									
Sample temp upon receipt 2-6 C?	Х									
Proper containers/preservation?	Х			(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required)						
COCs properly executed and seals used?	Х			see Comment no. 1						
Samples received within 2 days?	Х									
		alytical F	Results							
All requested analyses reported?	Х	ĺ								
Field, Laboratory, and Batch ID included?	Х									
Date of sample collection/receipt included?	Х			see Comment no. 2						
Date of sample preparation/analysis included?	Х									
NDs at DL or QL and J-values as needed?	х			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-values reported; EDD - NDs blank with 'method_detection_limit' = 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' = 'quantitation_limit' (SQL), J-values reported						
Target analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLP TAL)						
RLs acceptable?	Х			(ASP Exh C Part III and/or DER-10 App 5)						
No elevated RLs for NDs?	Х			Note: 5x std dilution for TCLP						
Prep/Analysis method references included and approved?	Х			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D) see no. 2						
If analytical cleanup used, method ref included and approved?			х	(ASP Exh D)						
Sample matrix included?	Х									
Soils on dry weight basis?			х							
Correct and consistent units?	Х			in ug/L						
Holding time to analysis not expired?	Х			(Workplan Table 2)						
Holding time to preparation not expired?	Х			(Workplan Table 2)						
		Section 5	5.3.6 an	d 2/29/12 mod letter)						
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment	•		NA	only disposable equipment used						
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory			NA							
Filter blank - 1 per week of time-integrated air monitoring			NA							
Field duplicate samples - 1 for every 20 or fewer samples per sample matrix (excluding air samples)	x			Total samples = 5 PSV, 2 SC; Total FD = 2 PSV						
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix from the same batch as the project samples to the extent possible		х		none for PSV or SC, all non-project and in HC only not EDD						
Completeness criteria met?	Х			(Workplan Section 5.3.3 - 100%) 100%						
		Field No	tes	<u> </u>						
Agree with custody records?			Х	not included						
Field instruments calibrated daily?			х							
Well conditions constant before sampling?			х							

Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification; COI - Compound of Interest; %D - Percent Difference, DL - Detection Limit; DUP - Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasma; ICV - Initial Calibration Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Matrix Spike Duplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response Factor; RT - Retention Time; RSD - Relative Standard Deviation; TA - Target Analyte

COMMENTS

1. For 460-85473-1, the laboratory sample receipt checklist indicates that no custody seal was used for transfer of the samples from the	e field to	the laboratory:
however, a custody seal was used as confirmed by the seal number entered by the laboratory on the custody record.		

2. For work order 460-85473-1, sample PSV-346 is reported with a sample collection time of 13:15. The actual time as shown on the custody record is 13:35
Likewise, sample PSV-347 is reported with a time of 15:10 and the actual time is 17:10. The sample collection dates are correctly reported as 10/31/2014 and th
pass/fail status for the holding time checks is not affected, and thus no further action was taken.

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue
EN490	460-85473-1	NA	NA	no issues noted
EN491	460-86705-1	NA	NA	no issues noted
EN492	460-87658-1	NA	NA	no issues noted
EN493	460-89829-1	NA	NA	TCLP pH outside range for 89829, analyst re-trained

Resolution

NA NA NA

Results qualified as estimated, check expanded to 100% of samples

	ame: Entact			oer/ Ma	anager: E7976H/ Jenny Self
	ne: Revere Smelting and Refining (Phase 2B PSV/SC Oct14-Feb15)	QC Le	vel: II		
	ry: TestAmerica (Edison, NJ)				460 - 85473 - 1, 460 - 86705 - 1, 460 - 87658 - 1, 460 - 89829 -
	r: Taryn Scholz	Date C			
aramet	ers: TCLP As,Cd,Pb,Sb and TCLP Pb				0A/6010B
	%PERFORMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT
	Method blank data included in Lab Package?	Х			
100	Criteria met? (< MDL, ≥ -RL)	Х			
100	Criteria met for field blanks? (< MDL)			Х	
	QC check samples/LCS data included in lab package?	Х			
	All project COCs or TAs included?	Х			
100	%R criteria met?	Х			method (lab but within 50-200%)
	Matrix spike data included in lab package?	Х			all non-project, only in HC not EDD
100	%R criteria met?			х	method (75-125%)
	Sample duplicate data included in lab package?	Х			as LR; all non-project, only in HC not EDD
100	RPD criteria met?			Х	method (20% if >10xMDL)
	The Desire Meth				ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +
100	Field dup RPD criteria met? (individual, mean, and overall)	Х			2RL sol if either <5RL)
	Instrument Tune for ICP-MS included in lab package?			Х	
NA	Instrument Tune method criteria met? (±5 RSD, ±0.1 amu)			Х	
	Initial calibration documentation included in lab package?	х			
	All target analytes included?	X			
	blank/1 std (ICP), blank/ 5 stds (Hg)	X			
100	Corr coeff (r) criteria met? (≥0.995)	X			
100	Calibration verification data included in lab package?	X			
	ICB/CCB criteria met? (<rl, td="" ≥-rl)<=""><td>X</td><td></td><td></td><td></td></rl,>	X			
	ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115)	X			
	CCV %R criteria met? (ICP 90-110%, Hg 80-120%)	X			
100	LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%)	X			CL per ASP Exh E
100	Dilution test data included?	X			
100	Results within criteria if >50xMDL? (max 10%, qualify 15%)	X			
100	Post digestion spike included?	Х			
100	%R criteria met?	X			method (75-125%)
100	Interference check sample data included (ICP/MS only)?	Х			
100	%R criteria met? (80-120%, unspk <2RL, >2-RL)	X			2RL per ASP Exh E
NA	Internal standard data included in lab package?			Х	
NA	Intensities within limits? (min 30-120% of calib std)			Х	
		х			
	• •				
10 10 OMME	Analyte quantitation/RLs correct? QC parameters calculated correctly? NTS	X X			

lient Na	ame: Entact	Projec	t Numb	er/ Ma	anager: E7976H/ Jenny Self					
ite Nan	ne: Revere Smelting and Refining (Phase 2B PSV/SC Oct14-Feb15)									
aborato	ry: TestAmerica (Edison, NJ)	Labora	atory Jo	ob No:	460-85473-1, 460-86705-1, 460-87658-1, 460-89829-					
eviewe	r: Taryn Scholz	Date C	hecke	d: 3/19	0/15					
aramet	ers: TCLP As,Cd,Pb,Sb and TCLP Pb	Metho	ds: 131	11/301	0A/6010C					
	%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT					
	Was a ZHE vessel without leaks used for VOAs?			Х						
	Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve)			х						
	Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately			х						
	Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)	x			No. 1 for all					
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)		v		see Comment no. 1					
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)	Х	Х		see Comment no. 1					
	Was the correct weight of fluid used? (20x solid weight)	X								
100	Leaching conditions correct? (30+2 rpm, 18+2 hrs, 23+2 C)	X								
100	No preservation for aqueous sample aliquots?			х						
	Proper preservation for leachates?	Х		_^	(method pH <2)					
100	Holding time to leaching not expired?	X			(method 180-days)					
100	Leach blank data included in Lab Package? (1/20)	X			(method 100 days)					
100	Criteria met? (< MDL)	X								
MME	\ /									
	atches: 11/3 17:00, 11/28 17:30, 12/15 17:30*, 1/31 12:00									
e 13 [.] e for	11 batch worksheet in the revised package for the work order shows a the 1311 leaching and after the start date for the digestion of the leach 19:30, which is just a few minutes before the start of the digestion. To	hates			the 3010 batch worksheet. The correct 1311 end dat					

Comment no. 1
pH of Fluid #1 for 1/31 12:00 is 4.83 -> J/UJ to samples in this batch and check expanded to include 100% of samples for this event period as follows:

Post-Stabilization Verification: PSV-343 through PSV-386 plus field duplicates PSV-346-X, PSV-360-X, and PSV-380-X, collected 10/22/14 through

Stockpile Characterization: C-Area-2-Stockpile-12 through C-Area-2-Stockpile-17, C-Area 8,11,12,13-Stockpile 1, C-Area 22-Stockpile-1 through C-Area 22-Stockpile-4, and C-Area 22/15-Stockpile-1 through C-Area 22/15-Stockpile-5, collected 10/22/14 through 1/21/15

No additional deficiencies found.

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples

December 2014 to February 2015

Prepared by:

Quality Assurance Associates (*QAALLC*) 1007 Francis Drive

College Station, TX 77840 www.qaallc.com 979-694-7199

TABLE OF CONTENTS

1.0	PRO	JECT O'	VERVIEW AND SUMMARY	1
2.0	PRO	CEDURI	ES	4
3.0	DAT	A VALID	ATION RESULTS	6
	3.1	PREC	ISION	6
	5.1	3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	
		3.1.3	Field Duplicate (FD) Precision	
	3.2	ACCU	RACY	
		3.2.1	Laboratory Control Spike (LCS) Accuracy	
		3.2.2	Matrix Spike (MS) Accuracy	
		3.2.3	Serial Dilution (SD) %Difference	
		3.2.4	Surrogate (SU) Recovery	7
	3.3	REPR	ESENTATIVENESS	8
		3.3.1	Chain-of-Custody and Analysis Requests	8
		3.3.2	Sample Preservation and Holding Time	9
		3.3.3	Laboratory and Method Selection	9
		3.3.4	Blanks (Laboratory and Field)	9
		3.3.5	Analytical Procedures	10
	3.4	COMP	PLETENESS	10
		3.4.1	Laboratory Deliverables Completeness	10
		3.4.2	EDD Correctness	10
		3.4.3	Analytical Completeness	11
	3.5	COMP	PARABILITY	11

LIST OF TABLES

Table 1 - Sample Summary

Table 2 - Data Validation Qualifiers (DVQs)

Table 3 – QC Deficiencies and Data Qualification Actions

Table 4 – Qualified Results for Field Samples

Table 5 - Field Duplicate Results

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The independent data review was completed in accord with the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The data include 65 investigative soil samples plus the associated field QC samples, which were collected by ENTACT in December 2014 through February 2015 with the intended use of confirming that backfill materials are suitable for use on-site and verifying that remediation goals have been achieved in excavated grids. A complete listing of the samples collected and tests performed is shown in Table 1. QAA performed a full validation of the data and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010) as specified in Section 5.9 of the Workplan. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Superfund Data Review* (August 2014) and *National Functional Guidelines for Superfund Organic Methods Data Review* (August 2014), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The Workplan stipulates that the precision control limits will be dictated by the analytical method. The validator assessed precision using the laboratory and field duplicates, and the limits are 20-35 RPD depending upon the test. The laboratory prepared a laboratory control spike duplicate (LCSD) using reagent water for the backfill VOC analytical batch plus one unspiked matrix duplicate (MD) for TCLP Lead and three MD for Total As/Pb using a sample from the site. All LCS/LCSD RPDs are within the limits, which indicates good precision for the analytical technique on a sample free of matrix effects, and all MD RPDs are within the limits, which indicates good precision for the analytical technique on the given sample matrix. Additionally, the sampler collected three field duplicates for Total As/Pb with the 65 investigative samples and the RPDs are within the limits, which indicates good precision for the sampling and analytical technique on the given matrix.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The Workplan stipulates that the accuracy control limits will be dictated by the analytical method. The validator assessed accuracy using the laboratory spikes and matrix spikes, and the limits are either 75-125%, 80-120%, or the manufacturer's established control limit for solid reference materials (which range from 0%-209.5% for this data set). In order to better assess data usability, limits of 50-200% were employed where the method limits for a spiked analyte falls outside these values. The laboratory prepared a laboratory control spike (LCS) using reagent water or sand with each analytical batch and reported the recovery for all spiked compounds, which included every target compound except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result). The laboratory also prepared a laboratory control spike duplicate (LCSD) with the backfill VOC analytical batch. The LCS/LCSD recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects, with a few exceptions. Most

of the exceedances did not result in data qualification (e.g., the recovery was above the limit indicating a potential bias for detected results and the analyte was not detected in any of the associated samples) with just one result (a detect for Antimony) being qualified as estimated with a low bias (J-) due to laboratory spike recovery. Additionally, the laboratory prepared one matrix spike (MS) along with a post digestion spike (PDS) and serial dilution (SD) for TCLP Pb and three MS/PDS/SD for Total As/Pb using a sample from the site. All SD %differences are within the laboratory limits, which indicates there is no matrix interference affecting the accuracy of metals results that are substantially above the reporting limit. The MS/MSD/PDS recoveries are within the laboratory limits, which indicates good accuracy for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the spike samples. Of the 365 total results for field samples, nine results are qualified as estimated based on matrix spike recovery. The qualification includes the expected direction of bias where known (i.e., J+ for high MS/MSD recovery and J- for low MS/MSD recovery with no other non-directional QC issues). Additionally, the laboratory utilized one or more surrogate spikes for each organic analysis. The surrogate recoveries are within the laboratory limits for all field samples, with a few exceptions. All of the exceedances were above the limit indicating a potential bias for detected results. Two (2) detects for Acetone are qualified due to high surrogate recovery.

- Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, investigative samples were collected as required in the approved sampling and analysis plans. (Note that sampling is an on-going process at the site and all samples may not be reflected in this validation batch.) Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory and field QC blanks, and analytical instrument setup (i.e., tuning, calibration, interference correction, etc.) For all samples, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank with each analytical batch and the sampler collected a trip blank with the VOC samples. The laboratory and field QC blanks show no contamination, which indicates the samples were not affected by laboratory or field procedures, or the validator qualified the samples associated with the blank that have a concentration similar to the blank. The detects for Acetone in both of the backfill VOC samples are qualified as potentially contaminated (U) due to laboratory blank contamination. Proper analytical procedures were used and calibration results met the method requirements or the validator qualified the affected samples. The Acetone results for both of the backfill VOC samples are qualified due to calibration drift. Additionally, the results for nine analytes (which are all non-detect) for both of the backfill VOC samples are qualified as estimated (UJ) due to low internal standard response. Note that the laboratory re-analyzed these samples due to the inadequate internal standard response and found concurring results.
- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. All analyses produced valid analytical measurements, which gives a completeness of 100%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions or revisions were provided by the laboratory upon request.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The analytical

results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated. Note that results for all field samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in μ g/L for TCLP metals, and in μ g/kg with dry-weight correction for organics.

DATA USABILITY

No major QC deficiencies were noted and all sample results are acceptable for use with the qualifications shown in Table 4.

Two (2) detects for Acetone are qualified with a U (potentially contaminated) and the analyte should be considered not detected at the reported concentration value.

Eighteen (18) VOC non-detects are qualified with a UJ (estimated) and the analyte should be considered not present above the reporting limit; however the reporting limit is an estimated value. In each case, the reporting limit (1.1-1.2 ug/kg) is well below the Allowable Constituent Level (ACL) for imported fill or soil from Appendix 5 of the DER-10 (1,100-12,000 ug/kg), and thus there is negligible effect on data quality.

One Antimony result is qualified with a J- (estimated low) and can be used for determining the presence of the analyte and as an indication that the concentration of the analyte exceeds a given criterion. However, the concentration reported for this detect may be low. There is no established level of concern for this analyte.

Results that are qualified with a J (estimated) may be either low or high. Nine detects for total Lead have a J flag due to low MS recovery (36%) with passing PDS recovery (81%), which indicates a maximum potential 3x low bias. Data quality is not affected for six of the results since the concentration is above the 400 mg/kg remedial goal. For the three results below the remedial goal, the concentrations are as follows:

Sample ID	Sample Date	Analyte	Laboratory Result
ECS-AREA TP-C16-F	2/7/2015	Lead	35.7 mg/kg
ECS-AREA TP-B15-SN	2/10/2015	Lead	17.4 mg/kg
ECS-AREA TP-B16-F	2/10/2015	Lead	159 mg/kg

For ECS-AREA TP-C16-F and ECS-AREA TP-B15-SN, the concentration is more than 3x below the 400 mg/kg remedial goal, and thus there is negligible effect on data usability. For ECS-AREA TP-B16-F, the qualification may render the result inconclusive. Other considerations such as sample location and evaluation of results for other samples may produce a conclusive result.

The remaining 23 results with J flags are qualified solely because the concentration is between the MDL and RL. The actual value is not expected to exceed the sample RL.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include pdf data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). The laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- · Laboratory Deliverables Completeness,
- EDD Correctness,
- · Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- · Laboratory and Method Selection,
- Instrument Tuning and Initial Calibration,
- Calibration Verification,
- Interference Check Standards (ICS),
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- Matrix Duplicates (MD),
- Field Duplicates (FD),
- Dual Column Confirmation,
- Surrogates (SU), and
- Internal Standards (IS).

Additionally, the validator examined the raw data for 10% of the sample batches (randomly selected by the validator across the various analysis dates and tests) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are either specific numerical values or the laboratory-derived recovery control limits based on historical performance (but not less than 50% lower limit or greater than 200% upper limit)
- Laboratory Precision the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are either specific numerical values or the laboratory-derived recovery control limits based on historical performance (but not greater than 40%)
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator

DATA USABILITY SUMMARY REPORT

considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. Data rejection limits of 40% and 30% for inorganics laboratory and matrix spikes, and 30%, 20% and 10% for organics laboratory, matrix and surrogate spikes were used. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

The laboratory analyzed an LCSD and reported RPDs for all target compounds for each VOC batch (maximum 20 samples). All LCSD RPDs are at or below the criteria.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every inorganics analytical batch (maximum 20 samples) and an MSD for every organics analytical batch (maximum 20 samples) and reported RPDs for MD and MSD prepared using a sample from the site or another site. MD/MSD prepared with a sample from another site were not evaluated, since they do not reflect data quality for the site. No soil samples were designated by the sampler for MD/MSD for the backfill samples and the laboratory did not select any of the backfill samples for batch QC. Three excavation confirmation soil (ECS) samples (two of which were designated by the sampler on the custody record) were used to prepare an MD for Total As/Pb with one of these also used for TCLP Pb. With a total of 65 investigative samples, this is slightly below the Workplan requirement of one per 20 or fewer samples per sample matrix. All RPDs for MDs prepared using a sample from the site are at or below the criteria.

3.1.3 FIELD DUPLICATE (FD) PRECISION

The samplers collected three FD with the 65 investigative samples, which is slightly below the Workplan requirement of one per 20 or fewer samples per sample matrix. The three FD were collected with the ECS samples, while no FD were collected with the backfill samples. Results for the field duplicates are summarized in Table 5. All FD are within the field precision criteria.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD), matrix spikes including post digestion spikes (MS/MSD/PDS), serial dilutions (SD), and surrogate (SU) spikes. LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD/PDS are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit. Surrogates are added to each sample before preparation and analysis and provide an indication of accuracy for each individual sample analysis.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

The laboratory analyzed a LCS and/or LCSD for every analytical batch (maximum 20 samples) as required and reported recoveries for all target compounds except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result).

Some LCS/LCSD recoveries are outside the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator did not qualify the data for cases where the LCS or LCSD recovery for an organic analyte is outside the criteria (i.e., the laboratory-derived recovery control limits based on historical performance or 50-200%, whichever is more stringent) but within 70-130% since this is considered within the inherent method error and suitable for the intended use.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS/PDS for every inorganics analytical batch (maximum 20 samples) and an MS/MSD for every organics analytical batch (maximum 20 samples) and reported recoveries for MS/PDS/MSD prepared using a sample from the site or another site. MS/PDS/MSD prepared with a sample from another site were not evaluated, since they do not reflect data quality for the site. No soil samples were designated by the sampler for MS/PDS/MSD for the backfill samples and the laboratory did not select any of the backfill samples for batch QC. Three excavation confirmation soil (ECS) samples (two of which were designated by the sampler on the custody record) were used to prepare an MS for Total As/Pb with one of these also used for TCLP Pb. With a total of 65 investigative samples, this is slightly below the Workplan requirement of one per 20 or fewer samples per sample matrix.

One of the recoveries for MS prepared using a sample from the site is outside the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. The validator considered samples of the same media (i.e., backfill or excavation confirmation) and source to be of similar matrix (e.g., if deficiencies were noted for a MS/MSD prepared using a backfill sample from a particular source, all backfill samples from that source in the same analytical batch were qualified).

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all target compounds detected above 50x the method detection limit (MDL). All %differences for SD prepared using a sample from the site are at or below the control limit (10%).

3.2.4 SURROGATE (SU) RECOVERY

The laboratory spiked each organic sample with one or more surrogates before preparation and analysis.

Some surrogate recoveries are outside the control limits and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records, which confirms that sample integrity was maintained. The validator noted the following regarding the custody records and sample log-in at the laboratory:

- All samples were received within two days of collection as recommended in DER-10 except those in laboratory job number 460-90352-1, which were held by the sampler until day three and received four days after collection in good condition.
- For work orders 460-90352-1, 460-90353-1/2, and 460-90555-1/2, the documentation indicates that no custody seals were used for the transfer of the samples from the field to the laboratory. The samples were transferred by commercial, overnight courier and were received in good condition, and thus no further action was taken.

The information on the custody record is correct and agrees with that reported in the analytical results except as follows:

- For work orders 460-89357-2, 460-89531-1, 460-89608-1, 460-89694-1, 460-89761-1, 460-90555-1/2), and 460-90660-1, the sample IDs on the custody record were recorded incorrectly. The laboratory corrected the IDs per ENTACT's request before the laboratory report was released as documented in the laboratory case narratives and/or emails from the sampler.
- For work order 460-90416-1, the sample IDs on the custody record were recorded incorrectly. The laboratory
 corrected the IDs per ENTACT's request after the laboratory report was released under revision no. 1 as detailed in
 the laboratory case narrative.

All samples were analyzed for the tests requested on the chain-of-custody except as follows:

- For work order 460-89322-2, sample number 4 is marked for both Total As/Pb and TAL Metals on the custody record. Arsenic and Lead are included in the TAL list, so no additional analysis was needed or performed.
- For work orders 460-89322-2 and 460-89357-2, results for the stockpile characterization samples that appear on the custody record are reported separately per ENTACT's request. Validation of the stockpile characterization samples is covered in a separate DUSR.
- For work orders 460-90353-1, 460-90416-1, and 460-90555-1, TCLP Pb is not requested on the custody record but was added after sample receipt per ENTACT's request. Results are reported separately under the -2 work order e.g. (460-90353-2).
- For the single backfill composite sample in laboratory work order 460-87605-1, the laboratory reported an original result (12/14/14 prep date) and re-extracted/re-analyzed result (12/15/14 prep date) for Chromium (VI). The sample was re-extracted/ re-analyzed due to deficiencies for the MS/MSD, which was prepared using a sample from another site and thus does not reflect on data quality for the backfill sample. The sample results for both sets are all non-detect and the validator did not find any QC deficiencies for either set. In the EDD, the laboratory reported the original set with a reportable_result of Yes and the second set with a reportable_result of No. The validator confirmed this selection and made no changes.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

All samples were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan, and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (no. 11452).

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. (In some cases, the method update number used by the laboratory may differ from that in the Workplan. For example, method 8260C was used rather than 8260B for the VOCs for the backfill samples.)

For the backfill samples, the target analyte list includes all DER-10 analytes and the nominal reporting limits (i.e., without dryweight correction or sample dilution and based on the standard sample weight and final volume) are at or below the levels of concern (i.e., the Allowable Constituent Levels (ACLs) for imported fill or soil from Appendix 5 of the DER-10), except as follows:

- DER-10 Appendix 5 lists m-Cresol(s), o-Cresol(s), and p-Cresol(s). The laboratory reported m & p-Cresols and o-Cresol as it is not possible to separate m-Cresol and p-Cresol using method 8270D.
- DER-10 Appendix 5 lists Chlordane (alpha). The laboratory reported technical Chlordane, which is a commercial mixture that contains alpha-Chlordane and gamma-Chlordane along with other related compounds.
- The laboratory reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) for the backfill samples instead of the DER-10 analytes as requested on the custody record.

None of the backfill samples required dilution, and thus none have elevated reporting limits.

For the excavation confirmation samples, the target analyte list includes total Arsenic, total Lead, and/or TCLP Lead as requested and all Contract Laboratory Program (CLP) metals for the TAL metals. The nominal reporting limits are below the levels of concern (i.e., the remedial goals) for total Arsenic, total Lead, and TCLP Lead. There are no established levels of concern for the TAL metals. The nominal reporting limits comply with the requirements in the ASP for TAL metals with the exception of Iron, which has a nominal reporting limit of 30 mg/kg, which is above the ASP reporting limit of 20 mg/kg.

Some of the excavation confirmation samples required dilution, but none has elevated reporting limits for a non-detect result. (Note: The laboratory dilutes all total metals samples 2-4x before analysis as standard practice. All Revere samples were diluted 4x and thus nominal reporting limits were determined at this dilution rate. The laboratory also dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank (and leachate blank for TCLP) for every analytical batch (maximum 20 samples) and a calibration blank for every 10 metals analyses as required per the analytical methodology. Additionally, a trip

blank was included with the single shipment of VOC samples, which meets the Workplan requirement of one for every cooler of VOC samples. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used.

A detect is reported in one laboratory blank and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator calculated a blank equivalent concentration taking into account the sample weight, moisture content, and dilution factor for each sample when determining if the contamination in the blank is near that in the sample, and thus if data quality is affected for that sample.

3.3.5 ANALYTICAL PROCEDURES

The analytical procedures (instrument tuning and initial calibration, calibration verification, interference check standards, dual column confirmation, and internal standards), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method with a few exceptions. The validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

No issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes 28 analytical batches and the validator re-calculated sample results and QC check parameters for three batches and made the following observations from the review of the raw data:

• The laboratory used dual column confirmation for all GC analyses (including Pesticides, PCBs, and Herbicides). For surrogates and spiked analytes, the laboratory reports the results from both columns. For target analytes in blanks and field samples, the laboratory reports the result from the column with the higher concentration (unless chromatographic performance is better on one column and it is therefore used for all analyses), provided that the RPD between the two columns is less than 40%. If the RPD is greater than 40%, the column with the lower concentration is reported with a note in the narrative and the result is reported with a P flag. The RPD did not exceed 40% for any field samples in this data set.

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

The Level 4 data packages and EDD contain all necessary information or the laboratory submitted a revision upon request as detailed in the case narratives.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Work Order(s)	Sample(s)	EDD Field(s)	Action
All	all laboratory QC samples	sampling_technique	The validator changed the entry from null to the default entry (UN) to meet NYSDEC requirements.
460-87605-1	the single backfill composite sample (BF-5L-WT-7c-01)	composite_yn	The validator changed the entry from N to Y based on the custody record.
All	all 6010C Total metals samples	prep_method	The validator changed the method reference from SW3020B to SW3050B based on the pdf analytical results and as confirmed by the laboratory.

3.4.3 ANALYTICAL COMPLETENESS

The validator did not reject any of the results, which gives a completeness of 100%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which a target analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which a target analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size and include dry-weight correction for all soil samples as required per Section 5.7.1 of the Workplan. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results for the investigative samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in µg/L for TCLP metals, and in µg/kg with dry-weight correction for organics. (For the 7196A analyses, Trivalent Chromium is shown as not dry-weight corrected. Trivalent Chromium is calculated from the results for Hexavalent Chromium and total Chromium, which are dry-weight corrected, and thus the Trivalent Chromium is not directly dry-weight corrected but is on a dry-weight basis.)

The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated.

TABLE 1

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Phase II-B Remedial Design/ Remedial Action
Backfill and Post-Excavation Confirmation Samples
December 2014 to February 2015

SAMPLE SUMMARY

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-87605-1	BF-5L-WT-7g-01	12/10/14	INV	BF	Soil										Х		
460-87605-2	BF-5L-WT-7g-02	12/10/14	INV	BF	Soil										Х		
460-87605-3	BF-5L-WT-7c-01	12/10/14	INV	BF	Soil				Х	Х	Х	Х	Х	Х		Х	х
460-87605-3	BF-5L-WT-7c-01	12/10/14	INV RE	BF	Soil						Х						ŀ
460-87605-4	TB-12/10/14	12/10/14	TB	TB	Water										Х		
460-89322-3	ECS-Area 15-B7-F	1/16/15	INV	ECS	Soil		Х										
460-89322-4	ECS-Area 15-B8-F	1/16/15	INV	ECS	Soil			Х	Х								
460-89357-4	ECS-AREA15-B7-SN	1/17/15	INV	ECS	Soil		Х										
460-89357-5	ECS-AREA15-B8-SW	1/17/15	INV	ECS	Soil		Х										
460-89357-6	ECS-AREA15-B8-SE	1/17/15	INV	ECS	Soil		Х										
460-89357-7	ECS-AREA15-B9-SW	1/17/15	INV	ECS	Soil		Х										
460-89357-8	ECS-AREA15-B9-F	1/17/15	INV	ECS	Soil		Х										
460-89357-9	ECS-AREA15-C9-SE	1/17/15	INV	ECS	Soil		Х										
460-89531-1	ECS-Area 15-C9/10-F	1/21/15	INV	ECS	Soil		Х										
460-89531-2	ECS-Area 15-C10-SE	1/21/15	INV	ECS	Soil		Х										
460-89608-1	ECS-AREA15-B10-F	1/22/15	INV	ECS	Soil		Х										
460-89608-2	ECS-AREA15-B10-SW	1/22/15	INV	ECS	Soil		Х										
460-89694-1	ECS-AREA15-B11-SS	1/23/15	INV	ECS	Soil		Х										
460-89694-2	ECS-AREA15-B11-F	1/23/15	INV	ECS	Soil		Х										
460-89694-2LR	ECS-AREA15-B11-F-2	1/23/15	MD	ECS	Soil		Х										
460-89694-2MS	ECS-AREA15-B11-F-2	1/23/15	MS	ECS	Soil		Х										
460-89694-3	ECS-AREA15-B11-SW	1/23/15	INV	ECS	Soil		Х										
460-89759-1	ECS-AREA 17-D13-SE	1/27/15	INV	ECS	Soil		Х										
460-89759-2	ECS-AREA 17-C14-SS	1/27/15	INV	ECS	Soil		Х										
460-89759-3	ECS-AREA 17-C13-F	1/27/15	INV	ECS	Soil		Х										
460-89759-4	ECS-AREA 17-C13-SN	1/27/15	INV	ECS	Soil		Х										
460-89761-1	ECS-Area 40-C12-F	1/26/15	INV	ECS	Soil		Х										
460-89761-2	ECS-Area 40-C12-SN	1/26/15	INV	ECS	Soil		Х										
460-89761-3	ECS-Area 40-C12-SE	1/26/15	INV	ECS	Soil		Х										
460-89761-4	ECS-Area 40-C12-SS	1/26/15	INV	ECS	Soil		Х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-89761-5	ECS-Area 40-C12-SW	1/26/15	INV	ECS	Soil		х										
460-89784-1	ECS-Area17-C13/14-SW	1/28/15	INV	ECS	Soil		х										
460-89830-1	ECS-AREA TP-C14-SN	1/29/15	INV	ECS	Soil			Х	Х								
460-89830-2	ECS-AREA TP-C14-F	1/29/15	INV	ECS	Soil		х										
460-89830-3	ECS-AREA TP-C14-F-X	1/29/15	FD	ECS	Soil		х										
460-89917-1	ECS-AREA TP-D14-SE	1/30/15	INV	ECS	Soil		х										
460-89917-1LR	ECS-AREA TP-D14-SELR	1/30/15	MD	ECS	Soil		Х										
460-89917-1MS	ECS-AREA TP-D14-SEMS	1/30/15	MS	ECS	Soil		х										
460-89917-2	ECS-AREA TP-C14/15-SW	1/30/15	INV	ECS	Soil			Х	Х								
460-89917-3	ECS-AREA TP-D15-SE	1/30/15	INV	ECS	Soil		х										
460-89917-4	ECS-AREA TP-D15-F	1/30/15	INV	ECS	Soil		х										
460-89917-5	ECS-AREA TP-D15-F-X	1/30/15	FD	ECS	Soil		х										
460-90352-1	ECS-AREA TP-C16-F	2/7/15	INV	ECS	Soil		х										
460-90352-2	ECS-AREA TP-C16-SS	2/7/15	INV	ECS	Soil		Х										
460-90352-3	ECS-AREA TP-C16-SN	2/7/15	INV	ECS	Soil		Х										
460-90353-1	ECS-AREA TP-B15-SN	2/10/15	INV	ECS	Soil		х										
460-90353-2	ECS-AREA TP-B15-F	2/10/15	INV	ECS	Soil			Х	Х								
460-90353-3	ECS-AREA TP-B16-SE	2/10/15	INV	ECS	Soil		х										
460-90353-4	ECS-AREA TP-B16-SE-X	2/10/15	FD	ECS	Soil		х										
460-90353-5	ECS-AREA TP-B16-F	2/10/15	INV	ECS	Soil	х	х										
460-90353-5LR	ECS-AREA TP-B16-FLR	2/10/15	MD	ECS	Soil	х	х										
460-90353-5MS	ECS-AREA TP-B16-FMS	2/10/15	MS	ECS	Soil	х	х										
460-90353-6	ECS-AREA TP-B16-SW	2/10/15	INV	ECS	Soil	х	х										
460-90416-1	ECS-AREA TP-D15-SW	2/11/15	INV	ECS	Soil		х										
460-90416-2	ECS-AREA TP-D16-SS	2/11/15	INV	ECS	Soil	х	х										
460-90416-3	ECS-AREA TP-D16-F	2/11/15	INV	ECS	Soil	х	х										
460-90416-4	ECS-AREA TP-D16-SN	2/11/15	INV	ECS	Soil	х	х										
460-90555-1	ECS-AREA TP2-D16-F	2/13/15	INV	ECS	Soil	х	х										
460-90555-2	ECS-AREA TP2-D16-SW	2/13/15	INV	ECS	Soil	х	х										
460-90555-3	ECS-AREA TP2-D16-SN	2/13/15	INV	ECS	Soil	х	х										
460-90555-4	ECS-AREA TP2-D16-SS	2/13/15	INV	ECS	Soil	х	х										
460-90660-1	ECS-AREA TP-B15-F-R	2/18/15	INV	ECS	Soil	х	Х										
460-90660-2	ECS-AREA TP-B15-SE	2/18/15	INV	ECS	Soil	Х	Х										
460-90660-3	ECS-AREA TP-B15-SW	2/18/15	INV	ECS	Soil	х	Х										
460-90660-4	ECS-AREA TP-B16N-SE	2/18/15	INV	ECS	Soil	х	х										
460-90660-5	ECS-AREA TP-B16N-F	2/18/15	INV	ECS	Soil	х	х										
460-90660-6	ECS-AREA TP-B16N-SW	2/18/15	INV	ECS	Soil	х	х										
460-90660-7	ECS-AREA TP-B16-SE-R	2/18/15	INV	ECS	Soil	х	х										
460-90660-8	ECS-AREA TP-B16E-F	2/18/15	INV	ECS	Soil	х	х										
460-90660-9	ECS-AREA TP-B16E-SS	2/18/15	INV	ECS	Soil	х	Х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-90660-10	ECS-AREA TP-B16E-SN	2/18/15	INV	ECS	Soil	Х	Х										
460-90660-11	ECS-AREA TP-C16-SN-R	2/18/15	INV	ECS	Soil	Х	Х										
460-90660-12	ECS-AREA TP-C16E-SN	2/18/15	INV	ECS	Soil	Х	Х										
460-90660-13	ECS-AREA TP-C16E-F	2/18/15	INV	ECS	Soil	Х	Х										
460-90660-14	ECS-AREA TP-C16E-SS	2/18/15	INV	ECS	Soil	Х	Х										
460-90660-15	ECS-AREA TP-D16-SE	2/18/15	INV	ECS	Soil	Х	Х										

BF - Backfill Sample

ECS - Excavation Confirmation Sample

FD - Field Duplicate Sample

INV - Investigative Sample

MD - Matrix Duplicate Sample (unspiked)

MS - Matrix Spike Sample

RE - Reextracted/Reanalyzed Sample

TB - Trip Blank

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

- TCLP Pb: 1311/3010A/6010C for Lead in leachates of soil samples
- Total As and Pb: 3050B/ 6010C for Arsenic and Lead in soil samples
- Total TAL Metals: 3050B/ 6010C for 22 ICP-AES Target Analyte List (TAL) Metals (Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc) in soil samples
- Hg: 7471B for total Mercury in soil samples
- Total DER10 Metals: 3050B/ 6010C for 12 ICP-AES NYSDEC DER-10 Appendix 5 Metals (Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Lead, Manganese, Nickel, Selenium, Silver, and Zinc) in soil samples
- Cr III/VI: 3060A/7196A for Trivalent Chromium and Hexavalent Chromium in soil samples
- PEST: 3546/ 3620C/ 8081B for 15 NYSDEC DER-10 Appendix 5 pesticides plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene in soil samples
- PCB: 3546/ 3665A/ 8082A for 7 Aroclors in soil samples
- HERB: 8151A for Silvex (2,4,5-TP) in soil samples
- VOC: 5035/8260C for 30 NYSDEC DER-10 Appendix 5 volatile organic compounds (VOCs) in soil samples and 5030B/ 8260C for 30 VOCs in aqueous trip blanks
- SVOC: 3545/8270D for 20 NYSDEC DER-10 Appendix 5 semivolatile organic compounds (SVOCs) plus Dibenzofuran and Hexachlorobenzene in soil samples
- CN: 9012B for Cyanide in soil samples

TABLE 2 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- J- = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J/J+ and R>UJ)

TABLE 3 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples December 2014 to February 2015

QC DEFICIENCIES AND DATA QUALIFICATION ACTIONS

Lab ID	Camarla Carla	T		Method		D	ate and Tin	ne	GC	D	Amelida	Lab	Spk	Spk	RPD	QC Issue	DVO- Armlind
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	F	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
							LAB	ORATORY	CON	TRO	L SPIKE (LCS) ACCURAC	CY					
4602815	4602815052A4	BS		3050B	6010C		2/13/15	2/14/15	NA	4	Antimony		0	209.5		Low laboratory	J-/UJ to detects/NDs for samples
052A4							19:07	13:45								control spike	digested in the same batch
																recovery (47.2%)	
4602699	4602699675	BD			8260C			12/17/14	NA	1	1,4-Dioxane		69	142	30	High laboratory	J+ to detects for samples
675								21:43			(p-Dioxane)					control spike	digested in the same batch
																duplicate recovery	(none)
																(156%)	
4602699	4602699675	BD			8260C			12/17/14	NA	1	Vinyl Chloride		62	132	30	High laboratory	J+ to detects for samples
675								21:43								control spike	digested in the same batch
																duplicate recovery	(none)
																(141%)	
4602688	4602688652A	BS		3546	8270D		4/28/15	12/14/14	NA	1	Benzo(a)pyrene		36	89		High laboratory	None (recovery within 70-130%
652A							15:13	7:22								control spike	data qualification limits)
								NAATE	11/ 05		(140) 40011040)/					recovery (91%)	
400	500 1D51 TD		1	00505			0/40/45				(MS) ACCURACY	T		40=			
460-	ECS-AREA TP-	MS		3050B	6010C		2/13/15	2/14/15	NA	4	Lead	N	75	125		Low matrix spike	J/UJ to detects/NDs for ECS
90353-	B16-F- 20150210MS-						19:07	13:34								recovery (36%);	samples digested in the same
5MS	20150210MS- 20150210															Passing PDS	batch
	20150210				<u> </u>			QLID	POG/	TE	I (SU) RECOVERY					recovery (81%)	
460-	BF-5L-WT-7c-01-	N		METH	8151A		12/15/14	12/16/14	1C	1	2.4-		69	150		High surrogate	J+ to detects for all analytes in
87605-3	20141210	IN		OD	OISIA		12:11	14:49	10	'	Dichlorophenylacetic		03	130		recovery (157%)	this sample (none)
070000	20141210			OB			12.11	14.40			acid					10000019 (101 70)	tino sample (none)
460-	BF-5L-WT-7g-01-	N		5035	8260C		4/28/15	12/18/14	NA	1	4-Bromofluorobenzene		70	130		High surrogate	J+ to detects for all analytes in
87605-1	20141210	.,		0000	02000		0:01	6:25			. 5.0			.00		recovery (147%)	this sample
460-	BF-5L-WT-7g-02-	N		5035	8260C		4/28/15	12/18/14	NA	1	4-Bromofluorobenzene		70	130		High surrogate	J+ to detects for all analytes in
87605-2	20141210						0:01	6:49								recovery (139%)	this sample
							·	L	ABOF	RATO	ORY BLANKS	•					· ·

				Method		D	ate and Tin	ne	GC	D		Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col		Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4602699	4602699677	LB			8260C			12/17/14	NA	1	Acetone	J				Method blank	U at RL to Js, U to detects < 2x
677								22:33								contamination	blank equivalent concentration
																(4.32 J ug/kg)	for samples prepared in the
																	same batch
								CAL	IBRA	TIOI	N VERIFICATION						
CCVIS	CCVIS 460-	CCV			8260C			12/17/14	NA	1	1,4-Dioxane		-20	+20		Calibration drift	J+ to detects, UJ to NDs for
460-	269967/3							20:49			(p-Dioxane)					(%D= +65.0%)	samples analyzed this shift
269967/																	(none)
3																	
CCVIS	CCVIS 460-	CCV			8260C			12/17/14	NA	1	Acetone		-20	+20		Calibration drift	J- to detects, UJ to NDs samples
460-	269967/3							20:49								(%D= -24.7%)	analyzed this shift
269967/																	
3																	
								11	NTER	NAL	STANDARDS						
460-	BF-5L-WT-7g-01-	N		5035	8260C		4/28/15	12/18/14	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal	J+ to detects/UJ to NDs for
87605-1	20141210						0:01	6:25								standard response	analytes quantitated with this IS
																(38%)	(all ND)
460-	BF-5L-WT-7g-02-	Ν		5035	8260C		4/28/15	12/18/14	NA	1	1,4-Dichlorobenzene-d4	*	50	200		Low internal	J+ to detects/UJ to NDs for
87605-2	20141210						0:01	6:49								standard response	analytes quantitated with this IS
																(40%)	(all ND)

CL - Control Limit

DF - Dilution Factor

LCL - Lower Control Limit

UCL - Upper Control Limit

TABLE 4

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Phase II-B Remedial Design/ Remedial Action
Backfill and Post-Excavation Confirmation Samples
December 2014 to February 2015

QUALIFIED RESULTS FOR FIELD SAMPLES

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
		TCLP METAL	S		
460-90660-12	ECS-AREA TP-C16E-SN- 20150218	1311 LEAD	25.6 J ug/	J	Result between MDL and RL
460-90660-13	ECS-AREA TP-C16E-F- 20150218	1311 LEAD	26.5 J ug/	J	Result between MDL and RL
		TOTAL METAI	_S		
460-87605-3	BF-5L-WT-7c-01-20141210	CADMIUM	0.26 J mg/l	g J	Result between MDL and RL
460-89322-4	ECS-Area 15-B8-F-20150116	ANTIMONY	1.8 J mg/l	g J	Result between MDL and RL
460-89322-4	ECS-Area 15-B8-F-20150116	CALCIUM	566 J mg/l	g J	Result between MDL and RL
460-89322-4	ECS-Area 15-B8-F-20150116	POTASSIUM	874 J mg/l	g J	Result between MDL and RL
460-89759-2	ECS-AREA 17-C14-SS- 20150127	ARSENIC	2.8 J mg/ł	g J	Result between MDL and RL
460-89759-4	ECS-AREA 17-C13-SN- 20150127	ARSENIC	3.8 J mg/k	g J	Result between MDL and RL
460-89761-4	ECS-Area 40-C12-SS-20150126	ARSENIC	2.0 J mg/l	g J	Result between MDL and RL
460-89830-1	ECS-AREA TP-C14-SN- 20150129	ANTIMONY	2.9 J mg/l	g J	Result between MDL and RL
460-89830-1	ECS-AREA TP-C14-SN- 20150129	COBALT	5.4 J mg/l	g J	Result between MDL and RL
460-89830-1	ECS-AREA TP-C14-SN- 20150129	POTASSIUM	589 J mg/l	g J	Result between MDL and RL
460-89917-2	ECS-AREA TP-C14/15-SW- 20150130	CALCIUM	544 J mg/k	g J	Result between MDL and RL
460-89917-2	ECS-AREA TP-C14/15-SW- 20150130	COBALT	5.5 J mg/ł	g J	Result between MDL and RL
460-89917-2	ECS-AREA TP-C14/15-SW- 20150130	POTASSIUM	400 J mg/ł	g J	Result between MDL and RL
460-89917-2	ECS-AREA TP-C14/15-SW- 20150130	MERCURY	0.017 J mg/k	g J	Result between MDL and RL
460-90352-1	ECS-AREA TP-C16-F-20150207	LEAD	35.7 mg/k	g J	Low matrix spike recovery (36%); Passing PDS recovery (81%)
460-90352-2	ECS-AREA TP-C16-SS- 20150207	LEAD	22200 mg/k	g J	Low matrix spike recovery (36%); Passing PDS recovery (81%)
460-90352-3	ECS-AREA TP-C16-SN- 20150207	LEAD	1480 mg/k	g J	Low matrix spike recovery (36%); Passing PDS recovery (81%)
460-90353-1	ECS-AREA TP-B15-SN- 20150210	LEAD	17.4 mg/k	g J	Low matrix spike recovery (36%); Passing PDS recovery (81%)
460-90353-2	ECS-AREA TP-B15-F-20150210	ANTIMONY	8.7 mg/k	g J-	Low laboratory control spike recovery (47.2%)
460-90353-2	ECS-AREA TP-B15-F-20150210	COBALT	8.1 J mg/l	g J	Result between MDL and RL
460-90353-2	ECS-AREA TP-B15-F-20150210	LEAD	1330 mg/k	g J	Low matrix spike recovery (36%); Passing PDS recovery (81%)
460-90353-2	ECS-AREA TP-B15-F-20150210	SODIUM	325 J mg/l	g J	Result between MDL and RL
460-90353-3	ECS-AREA TP-B16-SE- 20150210	LEAD	1160 mg/k	g J	Low matrix spike recovery (36%); Passing PDS recovery (81%)
460-90353-4	ECS-AREA TP-B16-SE-X- 20150210	LEAD	891 mg/k	g J	Low matrix spike recovery (36%); Passing PDS recovery (81%)
460-90353-5	ECS-AREA TP-B16-F-20150210	LEAD	159 mg/k	g J	Low matrix spike recovery (36%); Passing PDS recovery (81%)

Lab ID	Field ID-Date	Analyte		Lab esult	DVQ	QC Issue
460-90353-6	ECS-AREA TP-B16-SW- 20150210	LEAD	1740	mg/kg	J	Low matrix spike recovery (36%); Passing PDS recovery (81%)
		OLATILE ORGANIC COMP				T
460-87605-1	BF-5L-WT-7g-01-20141210	1,2,4- TRIMETHYLBENZENE	1.1	U ug/kg	UJ	Low internal standard response (38%)
460-87605-1	BF-5L-WT-7g-01-20141210	1,2- DICHLOROBENZENE	1.1	U ug/kg	UJ	Low internal standard response (38%)
460-87605-1	BF-5L-WT-7g-01-20141210	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.1	U ug/kg	UJ	Low internal standard response (38%)
460-87605-1	BF-5L-WT-7g-01-20141210	1,3- DICHLOROBENZENE	1.1	U ug/kg	UJ	Low internal standard response (38%)
460-87605-1	BF-5L-WT-7g-01-20141210	1,4- DICHLOROBENZENE	1.1	U ug/kg	UJ	Low internal standard response (38%)
460-87605-1	BF-5L-WT-7g-01-20141210	ACETONE	9.8	B ug/kg	U	Method blank contamination (4.32 J ug/kg); Calibration drift (%D= -24.7%); High surrogate recovery (147%)
460-87605-1	BF-5L-WT-7g-01-20141210	N-BUTYLBENZENE	1.1	U ug/kg	UJ	Low internal standard response (38%)
460-87605-1	BF-5L-WT-7g-01-20141210	N-PROPYLBENZENE	1.1	U ug/kg	UJ	Low internal standard response (38%)
460-87605-1	BF-5L-WT-7g-01-20141210	SEC-BUTYLBENZENE	1.1	U ug/kg	UJ	Low internal standard response (38%)
460-87605-1	BF-5L-WT-7g-01-20141210	T-BUTYLBENZENE	1.1	U ug/kg	UJ	Low internal standard response (38%)
460-87605-2	BF-5L-WT-7g-02-20141210	1,2,4- TRIMETHYLBENZENE	1.2	U ug/kg	UJ	Low internal standard response (40%)
460-87605-2	BF-5L-WT-7g-02-20141210	1,2- DICHLOROBENZENE	1.2	U ug/kg	UJ	Low internal standard response (40%)
460-87605-2	BF-5L-WT-7g-02-20141210	1,3,5- TRIMETHYLBENZENE (MESITYLENE)	1.2	U ug/kg	UJ	Low internal standard response (40%)
460-87605-2	BF-5L-WT-7g-02-20141210	1,3- DICHLOROBENZENE	1.2	U ug/kg	UJ	Low internal standard response (40%)
460-87605-2	BF-5L-WT-7g-02-20141210	1,4- DICHLOROBENZENE	1.2	U ug/kg	UJ	Low internal standard response (40%)
460-87605-2	BF-5L-WT-7g-02-20141210	ACETONE	7.6	B ug/kg	U	Method blank contamination (4.32 J ug/kg); Calibration drift (%D= -24.7%); High surrogate recovery (139%)
460-87605-2	BF-5L-WT-7g-02-20141210	N-BUTYLBENZENE	1.2	U ug/kg	UJ	Low internal standard response (40%)
460-87605-2	BF-5L-WT-7g-02-20141210	N-PROPYLBENZENE	1.2	U ug/kg	UJ	Low internal standard response (40%)
460-87605-2	BF-5L-WT-7g-02-20141210	SEC-BUTYLBENZENE	1.2	U ug/kg	UJ	Low internal standard response (40%)
460-87605-2	BF-5L-WT-7g-02-20141210	T-BUTYLBENZENE	1.2	U ug/kg	UJ	Low internal standard response (40%)
	SEMI	VOLATILE ORGANIC CON	POUND	S (SVOC)	1	13 7
460-87605-3	BF-5L-WT-7c-01-20141210	BENZO(G,H,I)PERYLE NE	64	J ug/kg	J	Result between MDL and RL
460-87605-3	BF-5L-WT-7c-01-20141210	CHRYSENE	160	J ug/kg	J	Result between MDL and RL
460-87605-3	BF-5L-WT-7c-01-20141210	FLUORANTHENE	260	J ug/kg	J	Result between MDL and RL
460-87605-3	BF-5L-WT-7c-01-20141210	PHENANTHRENE	100	J ug/kg	J	Result between MDL and RL
460-87605-3	BF-5L-WT-7c-01-20141210	PYRENE	200	J ug/kg	J	Result between MDL and RL

TABLE 5 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples December 2014 to February 2015

FIELD DUPLICATE RESULTS

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	_	al Sample Result		Duplicate Result	Abs Diff	2xRL	RPD	Pass
460-89830-2	460-89830-3	ECS-AREA TP-C14-F- 20150129	ARSENIC	3.6	mg/kg	3.2	mg/kg	0.4	6	NA	у
460-89830-2	460-89830-3	ECS-AREA TP-C14-F- 20150129	LEAD	19.1	mg/kg	22.2	mg/kg	NA	4	15	у
460-89917-4	460-89917-5	ECS-AREA TP-D15-F- 20150130	ARSENIC	5.6	mg/kg	4.8	mg/kg	0.8	7.2	NA	у
460-89917-4	460-89917-5	ECS-AREA TP-D15-F- 20150130	LEAD	31.9	mg/kg	34.4	mg/kg	NA	4.8	7.5	у
460-90353-3	460-90353-4	ECS-AREA TP-B16-SE- 20150210	ARSENIC	8.5	mg/kg	9.3	mg/kg	0.8	5.8	NA	у
460-90353-3	460-90353-4	ECS-AREA TP-B16-SE- 20150210	LEAD	1160	mg/kg	891	mg/kg	NA	3.8	26	у

Note: The RPD test (≤35%) applies if both results are greater than 5x RL. Otherwise, the absolute difference test (≤ 2x RL) applies.

ATTACHMENT A VALIDATOR'S CHECKLISTS

Client Name: Entact		Droico	Numbe	or/Managar: E7076H/ Janny Solf
Site Name: Revere Smelting & Refining (Phase 2B BF/ECS Dec14-	Eob1E)	QC Le		er/ Manager: E7976H/ Jenny Self
Laboratory: TestAmerica (Edison)	1 6013)		_	o No: see below
Reviewer: Taryn Scholz				: 3/20/15
Parameters: TCLP Pb, Metals, CrIII/VI, Pesticide, PCB, Herbicide, \	/OC			1/6010C, 6010C/7471B, 7196A, 8081B, 8082A, 8151A, 5035/8260C,
SVOC, CN	, 00,		, 9012B	
ITEM	YES	NO	N/A	(CRITERIA) COMMENT
Laboratory NELAP/ELAP accredited?	X		14/71	#11452 for Edison
Signed Narrative included?	X			see Comment no. 1
No narrative issues noted by lab?		х		See Narrative Comments
	of Custo		C)/ Sam	ple Receipt
Date/time of sample collection included?	Х	ľ	ĺ	
Sample temp upon receipt 2-6 C?	Х			
Proper containers/preservation?	Х			(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required)
COCs properly executed and seals used?		х		see Comment no. 2
Samples received within 2 days?		X		(DER10 - recommended) 460-90352-1 held until day 3, rec'd day 4
Campios received main 2 days:	An	alytical	Results	(221110 100011111011000) 100 00002 1 11010 011111 000 0 000 1
All requested analyses reported?	, , , ,	X		see Comment no. 2A
Field, Laboratory, and Batch ID included?	Х	-^ -		SSS SSIMILARION EXT
Date of sample collection/receipt included?	X			
Date of sample preparation/analysis included?	X			
NDs at DL or QL and J-values as needed?	x			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' iminimum_detectable_conc' (SDL), 'reporting_detection_limit' iquantitation_limit' (SQL), J-values reported
Target analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CL TAL) see Comment no. 3 $$
RLs acceptable?		х		(ASP Exh C Part III and/or DER-10 App 5) see Comment no. 4
No elevated RLs for NDs?	Х			Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Prep/Analysis method references included and approved?	х			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D); (5035 use for VOC soils this phase) see Comment no. 5
If analytical cleanup used, method ref included and approved?	Х			(ASP Exh D) see Comment no. 6
Sample matrix included?	Х			· · · · · · · · · · · · · · · · · · ·
Soils on dry weight basis?	х*			
Correct and consistent units?	х			Organics in ug/L (TBs) and ug/kg for rest; Inorganics in mg/kg or ug/(TCLP)
Holding time to analysis not expired?	X**			(Workplan Table 2, SW846 for those not in table per ASP Exh I, whice gives only ag HTs) Hg 28-d, Herb 14/40-d, Cr VI 30/7-d, CN 14-d
Holding time to preparation not expired?	x**			same as above
	rkplan S	Section	5.3.6 ar	nd 2/29/12 mod letter)
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment	•		NA	only disposable equipment used
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory	х			
Filter blank - 1 per week of time-integrated air monitoring			NA	
Field duplicate samples - 1 for every 20 or fewer samples per sample matrix (excluding air samples)	х			Total samples = 58 confirmation (24/58 TCLP/Total) + 2 BF comp + BF grab = 61; Total FD = 3 (0/3 conf + 0 comp + 0 grab) -> but non for BF
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix from the same batch as the project samples to the extent possible		х		MS/LR used for metals (ICP, Hg, Cr VI - %R not reported for calc CIII); 2 field +1 lab for conf (Total As/Pb) and 1 field for conf (TCLP) by none for BF
Completeness criteria met?	Х	Field N	otes	(Workplan Section 5.3.3 - 100%) 365/365=100%
Agree with custody records?		, icia iv	1	not included
Field instruments calibrated daily?		1	X	Hot Hiolauca
Well conditions constant before sampling?		-	X	
		1	Х	
Samples filtered? If so, give turbid/size		<u> </u>	Х	pound of Interest; %D - Percent Difference, DL - Detection Limit; DUF

Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification; COI - Compound of Interest; %D - Percent Difference, DL - Detection Limit; DUP - Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasma; ICV - Initial Calibration Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Matrix Spike Duplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response Factor; RT - Retention Time; RSD - Relative Standard Deviation; TA - Target Analyte

COMMENTS

Laboratory Job No: 460-87605-1, 460-89322-2, 460-89357-2, 460-89531-1, 460-89608-1, 460-89694-1, 460-89759-1, 460-89761-1, 460-89784-1, 460-89830-1, 460-89917-1, 460-90352-1, 460-90353-1, 460-90353-2, 460-90416-1, 460-90416-2, 460-90555-1, 460-90555-2, 460-90600-1

*For the 7196A analyses, Cr III is shown as not dry-weight corrected. However, Cr III is calculated from the results for Cr VI and Total Cr, which are dry-weight corrected, and thus the Cr III is not directly dry-weight corrected but is on a dry-weight basis.

- ** The holding time was calculated using dates only without regard to the time of day since all holding times are greater than 24 hours. Also, note that Cr III is a calculated result and the holding time check does not apply for this analyte.
- 1. Signature is on the cover page with certification statement. Some work orders also include separate signed certification page. Language is similar on both so no further action taken.

2. Issues for custody records:

For work orders 460-90352-1, 460-90353-1 (and 460-90353-2), and 460-90555-1 (and 460-90555-2), the documentation indicates that no custody seals were used for the transfer of the samples from the field to the laboratory. The samples were transferred by commercial, overnight courier and were received in good condition, and thus no further action was taken.

For work orders 460-89357-2, 460-89531-1, 460-89608-1, 460-89694-1, 460-89761-1, 460-90555-1 (and 460-90555-2), and 460-90660-1, the sample IDs on the custody record were recorded incorrectly. The laboratory corrected the IDs per ENTACT's request before the laboratory report was released as documented in the case narratives and/or emails from the sampler.

For work orders 460-90416-1, the sample IDs on the custody record were recorded incorrectly. The laboratory corrected the IDs per ENTACT's request after the laboratory report was released under revision no. 1 as detailed in the case narratives.

2A. Requested Tests

For work order 460-89322-2, sample no. 4 is marked for Total As/Pb and TAL Metals is listed on the custody record. As/Pb included in TAL list so additional analysis not needed.

For work orders 460-89322-2 and 460-89357-2, results for the stockpile characterization samples that appear on the custody record are reported separately per ENTACT's request.

For work orders 460-90353-1, 460-90416-1, and 460-90555-1, TCLP Pb is not requested on the custody record but was added after sample receipt per ENTACT's request. Results are reported separately under -2 work order.

For work order 460-90660-1, TCLP Pb is not requested on the custody record but was added after sample receipt per ENTACT's request. Results are reported under same work order.

3. Analyte List:

P1 WP Table 3, P2A/B WP Table 2/4, and DER10 App5 list m-cresol, o-cresol, and p-cresol separately. The laboratory reported m,p-cresol and o-cresol as it is not possible to separate m-cresol and p-cresol using method 8270D. P1 WP Table 3, which only lists RLs for the DER-10 metals and not the 23 TAL metals, also mistakenly lists Antimony. This metal does not appear in DER10 Appendix 5 and was not reported by the laboratory for the backfill samples.

For all BF samples (and the associated QC), the laboratory reported technical Chlordane rather than Chlordane (alpha) as listed in the workplan and DER10 Appendix 5.

For all BF samples (and the associated QC), the laboratory reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) instead of just the DER-10 analytes as requested. Note: These extra analytes are all ND in the samples.

For the LB/BS/BD - the lab reported m,p-Xylene and o-Xylene. For the LB, Xylenes (total) is also reported.

Note: The analyte names in the hardcopy report differ from those in the EDD for some analytes.

- 4. The MQL (Unadj) for several DER-10 analytes (metals) is above the CRQL, but in each case, it is below the Allowable Constituent Level in DER10 App 5. Additionally, the MQL (Unadj) for the TAL metal Iron is above the CRQL. There are no action levels for this analyte.
- 5. Update IV methods (6010C, 7471B, 8260C, 8270D) used instead of Update III as in WP. Prep method for 6010C total metals in soils shown as SW3020B in EDD, validator changed all to SW3050B per the pdf report and as confirmed correct by the laboratory.
- 6. Per laboratory, Florisil cleanup (SW3620C) used for Pesticide analyses and sulfuric acid cleanup (SW3665A) used for PCB analyses (not indicated in package exc on prep log nor in EDD). No cleanup used for SVOC or Herbicides.

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
All	All	Total Metals	All samples	Required 4x dilution prior to analysis; RLs adjusted accordingly	noted in QA report narrative
EN494	460-87605-1	VOCs-soil	269967	Acetone in MB above MDL but below RL (J-flag); B-flag to assoc so with detect	see QC Deficiencies
		VOCs-soil	269967	LCSD %R hi for VC, 14Dioxane; assoc sx ND	see QC Deficiencies
		VOCs-soil	1,2	IS response and SU %R (BFB) out; RE concurred, original set reported	see QC Deficiencies
		VOCs-soil	269967	CCV %R hi for 14Dioxane; assoc sx ND	see QC Deficiencies
		VOCs-water	268751	secButyIBz in MB above MDL but below RL (J-flag); B-flag to assoc sx with detect	cnone required (for TB only and TB is ND)
		VOCs-water	268751	MS/D %R low for TCE	none required (non-project MS/D)
		VOCs-water	268751	CCV %R hi for 124TMB; assoc sx ND	none required (for TB only and TB is ND)
		Herbicides	MB, LCS	SU %R hi, sx ND	none required (sample results not affected)
		Herbicides	PS/MS/MSD	SU %R hi, sx ND	none required (non-project MS/D)
		SVOCs	268865	LCS %R out for Benzo(a)pyrene, lab SOP allows up to 5 out for this	see QC Deficiencies
				full list spike	
		SVOCs	269077	MS/D %R low for several TAs	none required (non-project MS/D)
		SVOCs	MS/MSD	SU %R out	none required (non-project MS/D)
		Total Metals		MS %R low for Mn	none required (non-project MS)
		Total Metals		LR RPD out for Cu/Pb	none required (non-project LR)
		HexCr	269161	MSS %R out due to sample matrix, LCSS/LCSI pass	none required (non-project MS)
		HexCr	269370	MSS %R out due to sample matrix for this reprep, LCSS/LCSI	none required (non-project MS/D); original data set selected for
				pass; Both data sets reported	reporting in EDD, reviewer confirmed selection based on QC/results
EN495		Total Metals		MS %R hi for Al/Fe, RPD out for Ba	none required (non-project MS)
EN496	460-89357-2			nothing noted	NA
EN497		Total Metals		nothing noted	NA
EN498		Total Metals		nothing noted	NA
EN499		Total Metals		nothing noted	NA
EN500		Total Metals		nothing noted	NA
EN501		Total Metals		nothing noted	NA
EN502		Total Metals		nothing noted	NA
EN503		Total Metals		MS %R low for Ca/Fe, hi for Al/Ni	none required (non-project MS)
EN504		Total Metals		nothing noted	NA .
EN505	460-90352-1	Total Metals		MS %R low for Pb	see QC Deficiencies
EN506	460-90353-1	Total Metals		MS %R low for Pb	see QC Deficiencies
		Mercury	281203	MS %R hi for Hg	none required (non-project MS)
EN507	460-90353-2			nothing noted	NA
EN508		Total Metals		MD RPD out for As	none required (non-project MS)
EN509	460-90416-2			nothing noted	NA
EN510		Total Metals		nothing noted	NA
EN511		TCLP Metals		nothing noted	NA
EN512	460-90660-1	Total Metals	282527	MS %R low for As	none required (non-project MS)

Client Na	ame: Entact	Projec	t Numb	er/ Ma	nager: E7976H/ Jenny Self
Site Nan	ne: Revere Smelting & Refining (Phase 2B BF/ECS Dec14-Feb1				,
aborato	ory: TestAmerica (Edison)	Labora	atory Jo	b No:	see DURC
Reviewe	er: Taryn Scholz		Checke		
Paramet	ters: TCLP Pb, Metals, CrIII/VI, CN	Metho	ds: 131	1/3010	0A/6010C, 3050B/6010C, 7471B, 3060A/7196A, 9012B
	%PERFORMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT
	Method blank data included in Lab Package?	х*			
100	Criteria met? ($<$ MDL, \ge -RL)	Х			
100	Criteria met for field blanks? (< MDL)			Х	
	QC check samples/LCS data included in lab package?	X*			
	All project COCs or TAs included?	X*			
100	%R criteria met?		х		method (lab** but within 50-200%) see QC Def
	Matrix spike data included in lab package?	X*			,
100	%R criteria met?		Х		method (75-125%) see QC Deficiencies
	Sample duplicate data included in lab package?	X*			as LR
100	RPD criteria met?	х			method (20% if >10xMDL)
100	THE STRONG MOC.				ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2f
100	Field dup RPD criteria met? (individual, mean, and overall)	Х			sol if either ≤5RL)
. 50	Instrument Tune for ICP-MS included in lab package?			Х	
NA	Instrument Tune method criteria met? (±5 RSD, ±0.1 amu)			X	
	Initial calibration documentation included in lab package?	Х			
	All target analytes included?	X			
	blank/1 std (ICP), blank/ 5 stds (Hg)	X			
100	correl coeff criteria met? (r > 0.998 ICP, r > 0.995 AA/Hg)	X			
	Calibration verification data included in lab package?	X			
	ICB/CCB criteria met? (<rl, td="" ≥-rl)<=""><td>Х</td><td></td><td></td><td></td></rl,>	Х			
	ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115)	Х			
	CCV %R criteria met? (ICP 90-110%, Hg 80-120%)	Х			
100	LLCCV %R criteria met? (50-150% Sb/Pb/Tl,70-130%)	Х			CL per ASP Exh E
100	Dilution test data included?	Х			
100	Results within criteria if >50xMDL? (max 10%, qualify 15%)	Х			
100	Post digestion spike included?	Х			
100	%R criteria met?	Х			method (75-125%)
100	Interference check sample data included (ICP/MS only)?	Х			
100	%R criteria met? (80-120%, unspk <2RL, >2-RL)	Х			2RL per ASP Exh E
NA	Internal standard data included in lab package?			Х	
NA	Intensities within limits (within > 70% of calib std)?			Х	
10	Analyte quantitation/RLs correct?	Х			
10	QC parameters calculated correctly?	Х			
COMME	NTS				
No QC	reported for Chromium III, which is calculated from the Total Ch	romium a	ınd Chı	omium	n VI result.
*For SF	RMs (solid LCS), the manufacturer's established limits as reporte	d by the I	ab are	used. I	For aqueous LCS, method limit is 80-120%.
OTAL	METALS VS LEACHED - all leach results < max possible				

	Validation Checklist: Leachates				
	ame: Entact	,		er/ Ma	nager: E7976H/ Jenny Self
	ne: Revere Smelting & Refining (Phase 2B BF/ECS Dec14-Feb15)		vel: IV		
	ry: TestAmerica (Edison)				see DURC
Reviewe	r: Taryn Scholz		Checke		· -
Paramet	ers: TCLP Pb				DA/6010C
	%PERFORMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT
	Was a ZHE vessel without leaks used for VOAs?			Х	
	Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve)			х	
	Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately			х	
	Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)	x			No. 1 for all
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	х			(reported as initial pH of LB)
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)	Х			
	Was the correct weight of fluid used? (20x solid weight)	Х			
100	Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)	Х			
	No preservation for aqueous sample aliquots?			х	
	Proper preservation for leachates?	Х			(method pH <2)
100	Holding time to leaching not expired?	Х			(method 180-days)
	Leach blank data included in Lab Package? (1/20)	х			
100	Criteria met? (< MDL)	Х			
COMME	\ /				
Batch 28	2406 (EN507,509,511,512) and Batch 282408 (EN512)				

	me: Entact		Projec	t Numb	er/ Ma	anager: E7976H/ Jenny Self
ite Nam	e: Revere Smelting & Refining	(Phase 2B BF/ECS Dec14-Feb15)	QC Le	vel: IV		<u> </u>
aboratoı	y: TestAmerica (Edison)		Labora	atory Jo	ob No:	see DURC
	: Taryn Scholz			Checke		
'aramete	ers: Pesticide, PCB, Herbicide					1B, 3546/8082A, 8151A
	%PERFORI		YES	NO	N/A	(CRITERIA) COMMENT
	Method blank data included in	n Lab Package?	Х			
100	Criteria met? (<mdl)< td=""><td></td><td>Х</td><td></td><td></td><td></td></mdl)<>		Х			
100	Criteria met for field blanks?				Х	
	QC check samples/LCS data	included in lab package?	Х			
	All project COIs or TAs includ	led?	x			With the exception of multi-component pesticides Chlordar (technical) and Toxaphene; only two multi-compone Aroclors (1016 and 1260) spiked per method recommendations
	%R criteria met?		Х			method (lab but within 50-200%)
100	RPD criteria met?				Х	
	Matrix spike data included in	lab package?	Х			non-project only
	%R criteria met?				Х	method (lab but within 50-200%)
100	RPD criteria met?				х	method (lab but within 40%)
	Surrogate data included in lat		Х			
	Required surrogates included	l?	Х			
100	%R criteria met?			х		method (lab but within 10-200%) see QC Deficiencies
100	Field dup RPD criteria met? (individual, mean, and overall)				х	ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2RL soleither <5RL)
	Initial calibration documentation	on included in lab package?	Х			5 peaks used for all multi-comp Pest/PCB
	All target analytes included?		Х			
100	%RSD criteria met? (≤20%RS	D criteria met? (\leq 20%RSD or r \geq 0.995 or COD > 0.990)				
100	DDT/Endrin %breakdown ma	x 15%?	Х			
	Calibration verification data in	cluded in lab package?	Х			
100	%D criteria met? (<20%)		Х			see Comment no. 1
100	Dual column/detector confirm	ation data incl in lab package?	Х			
100	%Difference criteria met? (<4	0%)	Х			
10	Analyte qualitative ID criteria				х	
10	Analyte quantitation/RLs corre				х	
10	QC parameters calculated co				Х	
	Surrogate	Control Limits				
EST/	Decachlorobiphenyl	76-149/53-150				bold updated from P2B 2013
CB	Tetrachloro-m-xylene	72-136				bold updated from P2B 2013
ERB	2,4-DCPA	69 -150				

lient No	Validation Chec	· · · · · · · · · · · · · · · · · · ·	Project	Numb	er/ Ma	nager: E7976H/ Jenny Self
		ning (Phase 2B BF/ECS Dec14-Feb15)	QC Le		CI/ IVIA	mager. L797017 Jermy Jen
	ry: TestAmerica (Edison)	iiig (1 11a3c 2D D1 /200 Dcc1+ 1 cb10)			b No:	see DURC
	r: Taryn Scholz		Date C			
	ers: VOC, SVOC					OC, 3546*/8270D
aramot		ORMED/ ITEM	YES	NO		(CRITERIA) COMMENT
	Method blank data include		Х	140	IVA	(ORTERIA) COMMERT
100	Criteria met? (<mdl)< td=""><td>d III Lab I ackage:</td><td></td><td>Х</td><td></td><td>see QC Deficiencies</td></mdl)<>	d III Lab I ackage:		Х		see QC Deficiencies
100	Criteria met for field blank	s2 (-MDL)	Х	^		see QC Deliciencies
100		ata included in lab package?	X			
	All project COIs or TAs inc					
400		nuded?	Х			
100	%R criteria met? RPD criteria met?			Х		method (lab but within 50-200%) see QC Deficiencies method (lab but within 40%)
100			Х			
	Matrix spike data included	іп іав раскаде?	Х			non-project only
100	%R criteria met?				Х	method (lab but within 50-200%)
100	RPD criteria met?				Х	method (lab but within 40%)
	Surrogate data included in		Х			
	Required surrogates inclu	ded?	Х			
100	%R criteria met?			Х		method (lab but within 10-200% extr, 20-200% purg)
100	Field dup RPD criteria me	t? (individual, mean, and overall)			х	20% aq, 35% solid (+/-2RL aq, +/-3RL sol if either <5RL
		or GC/MS included in lab package?	х			, , ,
100	Instrument Tune method of		х			
		tation included in lab package?	х			
		d at min 5 levels w low < RL?	X			
		ect for RRF<0.05 or Table 4, whichever				
	lower	cot for that 40.00 or fable 4, whichever	х			
	lower					
100	%PSD criteria met2 (~20	%RSD or r ≥ 0.995 or COD ≥ 0.990)	х			
100			.,			
		a included in lab package?	Х			
	RRF met (Table 4)? Reject for RRF<0.05 or Table		х			
	lower					
100	%D criteria met for CCC/TAs? (20% max)			Х		see QC Deficiencies
100	Internal standard data incl		Х			
100		-50/+100% of last calib check)?		Х		for samples; see QC deficiencies
100	RTs within limits (<10/30	(8270) s diff from ICAL midlevel)?	Х			
10	Analyte qualitative ID crite	ria met?	Х			
10	Analyte quantitation/RLs of	orrect?	Х			
10	IS Areas within limits (with	in -50/+100% of ICAL midlevel)?	Х			for CCVs
10	QC parameters calculated	•	Х			
	Surrogate	Control Limits				
OC.	1,2-Dichloroethane-d4	70-130				
55	Toluene-d8	70-130				
	Bromofluorobenzene	70-130				
	Dibromofluoromethane	70-130	1			
SVOC	2.4.6-Tribromophenol					Pold undated from D2P 2012
,,,,,,	_ / /	19-114 (Oct 2014 10-120)				Bold updated from P2B 2013 Bold updated from P2B 2013
	Terphenyl-d14	41-145 (Oct 2014 16-151)				
	2-Fluorobiphenyl	49-112 (Oct 2014 40-109)				Bold updated from P2B 2013
	Nitrobenzene-d5	40-106 (Oct 2014 38-105)				Bold updated from P2B 2013
	2-Fluorophenol	39-103 (Oct 2014 37-125)				Bold updated from P2B 2013
	Phenol-d5	44-104 (Oct 2014 41-118)				Bold updated from P2B 2013
ОММЕ						
TALED	used 3546 beginning in Oc	ober 2014.				

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action Post-Stabilization Verification Samples and Stockpile Characterization Samples

February 2015 to July 2015

Prepared by:

Quality Assurance Associates (QAALLC)

1007 Francis Drive College Station, TX 77840 www.qaallc.com 979-694-7199

September 14, 2015

TABLE OF CONTENTS

1.0	.0 PROJECT OVERVIEW AND SUMMARY									
2.0	PRO	CEDURE	ES	. 3						
3.0	DAT	A VALID	ATION RESULTS	. 4						
	3.1	PRECI	SION	. 4						
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	. 4						
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	. 4						
		3.1.3	Field Duplicate (FD) Precision	. 4						
	3.2	ACCU	RACY	. 4						
		3.2.1	Laboratory Control Spike (LCS) Accuracy	. 4						
		3.2.2	Matrix Spike (MS) Accuracy	. 5						
		3.2.3	Serial Dilution (SD) %Difference	. 5						
	3.3	REPRI	ESENTATIVENESS	. 5						
		3.3.1	Chain-of-Custody and Analysis Requests	. 5						
		3.3.2	Sample Preservation and Holding Time							
		3.3.3	Laboratory and Method Selection							
		3.3.4	Blanks (Laboratory and Field)							
		3.3.5	Analytical Procedures							
	3.4	COMP	LETENESS							
		3.4.1	Laboratory Deliverables Completeness							
		3.4.2	EDD Correctness							
		3.4.3	Analytical Completeness							
	3.5	COMP	ARABILITY							

LIST OF TABLES

Table 1 – Samples Selected for Validation

Table 2 - Data Validation Qualifiers (DVQs)

Table 3 – Qualified Results for Validated Samples

Table 4 – Field Duplicate Results for Validated Samples

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The data include eight investigative soil samples plus one field duplicate sample as shown in Table 1. The samples comprise approximately 10% of the Phase II-B post-stabilization verification (PSV) samples and 10% of the stockpile characterization samples collected during February 2015 to July 2015. (A total of 29 PSV samples and 11 stockpile characterization samples were collected during this period.) The PSV samples were collected by ENTACT from the stabilized material stockpiles and analyzed for Toxicity Characteristic Leaching Procedure (TCLP) metals to ensure that the stabilized material meets the appropriate criteria for disposal in the on-site containment cell. The stockpile characterization samples were collected by ENTACT from the excavated soil stockpiles and analyzed for TCLP lead to determine if the excavated soil would require treatment to render the material non-hazardous prior to disposal in the containment cell. These soils were excavated from the ecological areas of the site where source material, which requires treatment, is not necessarily present based on the results from the remedial investigation.

Per the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, these data are considered Level 2 and require minimal data review. Per ENTACT's request, QAA performed a full validation of the selected samples and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). QAA completed the validation using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Superfund Data Review* (August 2014), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The validator assessed precision using the field duplicate results. (No laboratory duplicates were prepared using one of the site samples selected for validation.) For the samples selected for validation, the sampler collected one field duplicate with the PSV investigative samples, and the RPDs are within the limits for all metals, which indicates good precision for the sampling and analytical technique on the given matrices.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The validator assessed accuracy using the laboratory spikes. (No matrix spikes were prepared using one of the site samples selected for validation.) For the samples selected for validation, the laboratory prepared a laboratory control spike (LCS) using reagent water with each analytical batch and reported the recovery for every analyte. The LCS recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects.
- 3. Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the

representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, PSV and stockpile characterization samples were collected as required in the approved sampling and analysis plan. Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory blanks, and analytical instrument setup (i.e., calibration, interference correction, etc.) For the samples selected for validation, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank and leachate blank with each analytical batch and the blanks show no contamination, which indicates the samples were not affected by laboratory procedures. Additionally, proper analytical techniques were used and calibration results met the method requirements.

- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. For the samples selected for validation, all analyses produced valid analytical measurements, which gives a completeness of 100%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The PSV and stockpile characterization analytical results are classified as Level 2 data with a full review and validation of at least 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated. Note that results are reported in µg/L for all field samples.

DATA USABILITY

All sample results are acceptable for use. As shown in Table 3, ten results are qualified solely because the concentration is between the MDL and RL. The actual value is not expected to exceed the sample RL. No data quality issues were noted.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). For the samples selected for validation, the laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- Laboratory Deliverables Completeness,
- EDD Correctness,
- Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- · Laboratory and Method Selection,
- Initial Calibration,
- Continuing Calibration Verification,
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- · Matrix Duplicates (MD), and
- Field Duplicates (FD).

Additionally, the validator examined the raw data for one of the two sample batches (randomly selected by the validator) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are 80-120% for laboratory accuracy and 75-125% for matrix accuracy for metals analyses.
- Laboratory Precision the control limit (20 RPD) as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. A data rejection limit of 30% was used for these inorganic analyses. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U-flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

No LCSD were analyzed (or required) with the samples selected for validation.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every analytical batch (maximum 20 samples) and reported RPDs for all analytes. All MD RPDs are at or below the control limit. For the samples selected for validation, none of the MD were prepared using a sample from the site. Note that non-project MD results are included in the data packages but not in the EDD.

3.1.3 FIELD DUPLICATE (FD) PRECISION

For the samples selected for validation, the samplers collected one FD with the eight PSV and stockpile characterization investigative samples, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. Results for the field duplicate are summarized in Table 4 and are within the criteria.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD) and matrix spikes (MS/MSD) plus serial dilutions (SD). LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

For the samples selected for validation, the laboratory analyzed a LCS for every analytical batch (maximum 20 samples) as required and reported recoveries for all analytes. All LCS recoveries are within the control limits.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS for every analytical batch (maximum 20 samples) and reported recoveries for all analytes. All MS recoveries are within the control limits. For the samples selected for validation, none of the MS were prepared using a sample from the site. Note that non-project MS results are included in the data packages but not in the EDD.

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all metals detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples selected for validation were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records and custody seals, which confirms that sample integrity was maintained. No issues were noted during sample log-in at the laboratory, and all field samples were analyzed for the tests requested on the chain-of-custody. Additionally, the information on the custody record is correct and agrees with that reported in the analytical results.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

The samples selected for validation were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (TestAmerica-Edison NYSDOH (NELAP) #11452, NYSDOH (ELAP) #11452)

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. The analyte list includes TCLP Antimony, TCLP Arsenic, TCLP Cadmium, and/or TCLP Lead as requested and the nominal reporting limits are below the levels of concern (i.e., the treatment goals) for each analyte.

(Note: The laboratory dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank and leachate blank for every analytical batch (maximum 20 samples) plus a calibration blank for every 10 metals analyses as required per the analytical methodology. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used. No analytes were detected in the laboratory blanks.

3.3.5 ANALYTICAL PROCEDURES

For the samples selected for validation, the analytical procedures (initial calibration, continuing calibration verification, and interference correction), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method.

Additionally, no issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes two analytical batches and the validator re-calculated sample results and QC check parameters for one batch (batch 460-302255 in work order 460-95665-1).

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

For the samples selected for validation, the NYSDEC Category B data packages and EDD contain all necessary information.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Job No.	Sample(s)	EDD Field(s)	Action
All	all QC samples	sampling_technique	The validator changed the entry from null to
			the default entry (UN) to meet NYSDEC
			requirements.

3.4.3 ANALYTICAL COMPLETENESS

For the samples selected for validation, the validator did not reject any of the results, which gives a completeness of 100%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. (Note that in some cases the laboratory used a more recent version of the method

specified in the Workplan, e.g. SW846 6010C was used instead of SW846 6010B.) The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which an analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which an analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J-flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results are reported in μ g/L and are classified as Level 2 data for TCLP metals with a full review and validation of 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated.

QAALLC

TABLE 1

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Post-Stabilization Verification Samples and Stockpile Characterization Samples February 2015 to July 2015

SAMPLES SELECTED FOR VALIDATION

Lab ID	Field ID	Sample Date	Туре	Media	Matrix	TCLP Sb, As, Cd, Pb	TCLP Pb
460-95665-1	C-Area19/TP-Stockpile1	5/29/2015	INV	SC	Soil		х
460-95665-2	C-Area19/TP-Stockpile2	5/29/2015	INV	SC	Soil		х
460-96495-1	PSV-392	6/15/2015	INV	PSV	Soil	х	
460-96495-2	PSV-393	6/15/2015	INV	PSV	Soil	х	
460-96495-3	PSV-393-X	6/15/2015	FD	PSV	Soil	х	
460-96495-4	PSV-394	6/15/2015	INV	PSV	Soil	х	
460-96495-5	PSV-395	6/15/2015	INV	PSV	Soil	х	
460-96495-6	PSV-396	6/15/2015	INV	PSV	Soil	х	
460-96495-7	PSV-397	6/15/2015	INV	PSV	Soil	х	

FD - Field Duplicate Sample

INV - Investigative Sample

PSV - Post-Stabilization Verification Sample

SC - Stockpile Characterization Sample

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

• TCLP Metals: 1311/3010A/6010C for Antimony, Arsenic, Cadmium, and/or Lead in leachates of soil samples

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- U = Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- *J* = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J-/J+ and R>UJ)

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Post-Stabilization Verification Samples and Stockpile Characterization Samples February 2015 to July 2015

QUALIFIED RESULTS FOR VALIDATED SAMPLES

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-96495-1	PSV-392- 20150615	1311 ANTIMONY	72.2 J ug/l	J	Result between MDL and RL
460-96495-1	PSV-392- 20150615	1311 ARSENIC	22.9 J ug/l	J	Result between MDL and RL
460-96495-2	PSV-393- 20150615	1311 ANTIMONY	82.8 J ug/l	J	Result between MDL and RL
460-96495-3	PSV-393-X- 20150615	1311 ANTIMONY	88.7 J ug/l	J	Result between MDL and RL
460-96495-4	PSV-394- 20150615	1311 ANTIMONY	56.9 J ug/l	J	Result between MDL and RL
460-96495-4	PSV-394- 20150615	1311 ARSENIC	23.1 J ug/l	J	Result between MDL and RL
460-96495-5	PSV-395- 20150615	1311 ARSENIC	39.5 J ug/l	J	Result between MDL and RL
460-96495-6	PSV-396- 20150615	1311 ANTIMONY	80.1 J ug/l	J	Result between MDL and RL
460-96495-7	PSV-397- 20150615	1311 ANTIMONY	65.4 J ug/l	J	Result between MDL and RL
460-96495-7	PSV-397- 20150615	1311 ARSENIC	22.4 J ug/l	J	Result between MDL and RL

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Post-Stabilization Verification Samples and Stockpile Characterization Samples February 2015 to July 2015

FIELD DUPLICATE RESULTS FOR VALIDATED SAMPLES

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-96495-2	460-96495-3	PSV-393-20150615	ANTIMONY	82.8 J ug/l	88.7 J ug/l	5.9	200	NA	у
460-96495-2	460-96495-3	PSV-393-20150615	ARSENIC	22.1 U ug/l	22.1 U ug/l	0	150	NA	у
460-96495-2	460-96495-3	PSV-393-20150615	CADMIUM	11.6 U ug/l	11.6 U ug/l	0	40	NA	у
460-96495-2	460-96495-3	PSV-393-20150615	LEAD	20.8 U ug/l	20.8 U ug/l	0	100	NA	у

Note: The RPD test (≤35%) applies if both results are greater than 5x RL. Otherwise, the absolute difference test (≤ 2x RL) applies.

ATTACHMENT A

VALIDATOR'S CHECKLISTS

Data Validation Checklist - General				
Client Name: Entact		Project	Numb	er/ Manager: E7976H/ Jenny Self
Site Name: Revere Smelting and Refining (Phase 2B PSV/SC Feb1	5-Jul15)	QC Le		managen Ererer ver ver ver ver ver ver ver ver ve
Laboratory: TestAmerica (Edison, NJ)	0 000)			b No: 460-95665-1, 460-96495-1
Reviewer: Taryn Scholz				1: 9/9/15
Parameters: TCLP Metals				1/3010A/6010C
ITEM	YES	NO	N/A	(CRITERIA) COMMENT
Laboratory NELAP/ELAP accredited?	X	140	IVA	NYDOH (NELAP) #11452, NYDOH (ELAP) #11452
Signed Narrative included?	X			
No narrative issues noted by lab?	X			
·		v (COC	:)/ Sam	ple Receipt
Date/time of sample collection included?	X	1), Cam	10000.pt
Sample temp upon receipt 2-6 C?	X			
Proper containers/preservation?	X			(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required)
COCs properly executed and seals used?	X			Transit Line 2, 1 27 VB VVI Table 1/2 all solle, no process required)
Samples received within 2 days?				
Samples received within 2 days?	X	l alytical R	l a avulta	
All requested analyses reported?		ilyiicai R	esuits	
All requested analyses reported?	Х			
Field, Laboratory, and Batch ID included?	Х	<u> </u>		
Date of sample collection/receipt included?	Х	<u> </u>		
Date of sample preparation/analysis included?	Х			
NDs at DL or QL and J-values as needed?	х			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-values reported; EDD - NDs blank with 'method_detection_limit' = 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' = 'quantitation_limit' (SQL), J-values reported
Target analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLF TAL)
RLs acceptable?	Х			(ASP Exh C Part III and/or DER-10 App 5)
No elevated RLs for NDs?	х			Note: 5x std dilution for TCLP
Prep/Analysis method references included and approved?	X			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D)
If analytical cleanup used, method ref included and approved?		1	Х	(ASP Exh D)
Sample matrix included?	х		^	(Not Exite)
Soils on dry weight basis?			Х	
Correct and consistent units?			_ ^	in ug/L
Holding time to analysis not expired?	X			(Workplan Table 2)
u i	X	-		
Holding time to preparation not expired?	X	\+: 5	0.0	(Workplan Table 2)
	orkpian S	ection 5	.3.6 an	d 2/29/12 mod letter)
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment			NA	only disposable equipment used
Trip Blank - 1 for every cooler of VOC samples submitted to the			NA	
laboratory				
Filter blank - 1 per week of time-integrated air monitoring			NA	
Field duplicate samples - 1 for every 20 or fewer samples per	x			Total samples = 6 PSV, 2 SC; Total FD = 1 PSV
sample matrix (excluding air samples)	×			
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix from the same batch as the project samples to the extent possible		х		none for PSV or SC, all non-project and in HC only not EDD
Completeness criteria met?	х			(Workplan Section 5.3.3 - 100%) 100%
•		Field No	tes	/ ****
Agree with custody records?	1	1	Х	not included
Field instruments calibrated daily?			X	
Well conditions constant before sampling?		1	X	
Samples filtered? If so, give turbid/size		1	X	
Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasm Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Ma	na; ICV - I trix Spike	nitial Ca Duplica	- Complibration	Dound of Interest; %D - Percent Difference, DL - Detection Limit; DUP on Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD obletting Standard Deviction; TA - Target Applies
Relative Percent Difference; RRF - Relative Response Factor; RT -	IVEIGHINOL	i iiine; i	/OD - F	Target Analyte
COMMENTS				
			-	

Revere Smelting and Refining (Phase 2B PSV/SC Feb15-Jul15) TestAmerica (Edison, NJ) aryn Scholz TCLP As,Cd,Pb,Sb and TCLP Pb **PERFORMED/ ITEM** ethod blank data included in Lab Package?	Labora Date C	atory Jo	oh No:						
aryn Scholz TCLP As,Cd,Pb,Sb and TCLP Pb %PERFORMED/ ITEM	Date C Metho		ah Mai						
TCLP As,Cd,Pb,Sb and TCLP Pb **PERFORMED/ ITEM**	Metho	N1		460-95665-1, 460-96495-1					
%PERFORMED/ ITEM		леске	d: 9/9/	15					
	5	Methods: 1311/3010A/6010B							
ethod blank data included in Lab Package?	TES	NO	N/A	(CRITERIA) COMMENT					
	Х								
iteria met? (< MDL, ≥ -RL)	Х								
iteria met for field blanks? (< MDL)			Х						
C check samples/LCS data included in lab package?	Х								
project COCs or TAs included?	Х								
R criteria met?	Х			method (lab but within 50-200%)					
atrix spike data included in lab package?	Х			all non-project, only in HC not EDD					
R criteria met?			х	method (75-125%)					
	х			as LR; all non-project, only in HC not EDD					
			×	method (20% if >10xMDL)					
B official frict:			^	ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +,					
eld dup RPD criteria met? (individual, mean, and overall)	Х			2RL sol if either <5RL)					
1 0			Х						
			Х						
	Х								
•	Х								
· /· · · · · · · · · · · · · · · · · ·	Х								
	Х								
, ,	Х								
	Х								
, , , ,	Х								
	Х								
, ,	Х			CL per ASP Exh E					
	Х								
· · · · · · · · · · · · · · · · · · ·	Х								
•	Х								
	Х			method (75-125%)					
	Х								
	Х			2RL per ASP Exh E					
			Х						
			Х						
7 1	Х								
	Х								
	project COCs or TAs included? R criteria met? Itrix spike data included in lab package? R criteria met? mple duplicate data included in lab package? PD criteria met? Itrid dup RPD criteria met? (individual, mean, and overall) Itrument Tune for ICP-MS included in lab package? Itrument Tune method criteria met? (±5 RSD, ±0.1 amu) Italial calibration documentation included in lab package? Itrument Tune method criteria met? (±5 RSD, ±0.1 amu) Italial calibration documentation included in lab package? Itrument Tune method criteria met? (±0.995) Itrument Tune method criteria met? (±0.995) Itrument Tune method criteria met? (±0.995) Itrument Tune method criteria met? (±0.995) Itrument Tune method criteria met? (20.995) Itrument Tune method criteria met? (BP 90-110, Hg 80-120, CN 85-115) Itrument Tune method criteria met? (ICP 90-110, Hg 80-120, CN 85-115) Itrument Tune method criteria met? (50-150% Sb/Pb/TI,70-130%) Itrument Tune method criteria met? Itrument Tune method criteria met? Itrument Tune method criteria met? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument Tune method criteria method in lab package? Itrument	project COCs or TAs included? R criteria met? R criteria met? R criteria met? R criteria met? R criteria met? mple duplicate data included in lab package? D criteria met? Add dup RPD criteria met? (individual, mean, and overall) A criteria met Tune for ICP-MS included in lab package? A criteria met Tune method criteria met? (±5 RSD, ±0.1 amu) I ial calibration documentation included in lab package? I target analytes included? I nk/1 std (ICP), blank/ 5 stds (Hg) I r coeff (r) criteria met? (≥0.995) I ibration verification data included in lab package? X x x x x x x x x x x x x x x x x x x	project COCs or TAs included? R criteria met? R criteria met? R criteria met? R criteria met? R criteria met? mple duplicate data included in lab package? PD criteria met? Idd dup RPD criteria met? (individual, mean, and overall) Intrument Tune for ICP-MS included in lab package? Intrument Tune method criteria met? (±5 RSD, ±0.1 amu) Idal calibration documentation included in lab package? Intrument Tune method criteria met? (±5 RSD, ±0.1 amu) Idal calibration documentation included in lab package? Intrument Tune method criteria met? (±0.995) Intrument Tune method criteria met? (≥0.995) Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method criteria method in lab package? Intrument Tune method	project COCs or TAs included? R criteria met?					

	ame: Entact	Projec	t Numb	er/ Ma	anager: E7976H/ Jenny Self
• •		QC Le		CI/ IVIO	mager. E737011/ definity den
				b No:	460-95665-1, 460-96495-1
			hecke		
	,	Metho	ds: 131	1/3010	0A/6010C
	%PERFORMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT
	Was a ZHE vessel without leaks used for VOAs?			Х	
	Was particle size reduced as necessary? (capable of passing			х	
	through a 9.5 mm (0.375 inch) standard sieve) Were multi-phasic waste samples properly analyzed? (if <0.5%				
	solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately			х	
	illitered liquid if compatible of analyze separately				No. 1 for all
	Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)	x			INO. I IOI all
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	х			
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)	Х			
	Was the correct weight of fluid used? (20x solid weight)	X			
100	Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)	X			
	No preservation for aqueous sample aliquots?			Х	
	Proper preservation for leachates?	Х			(method pH <2)
100	Holding time to leaching not expired?	Х			(method 180-days)
	Leach blank data included in Lab Package? (1/20)	Х			(manual voc surje)
100	Criteria met? (< MDL)	Х			
СОММЕ					·
TCLP Ba	atches: 5/31 14:30, 6/17 17:30				
	·				
-					

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action

Front Lawn Area Delineation Samples and Railroad Pond Dewatering Samples

Prepared by:

Quality Assurance Associates (*QAALLC*)
1007 Francis Drive
College Station, TX 77840
www.qaallc.com

979-694-7199

October 13, 2015

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	
2.0	PRO	CEDURI	ES	3
3.0	DAT	A VALID	ATION RESULTS	4
	3.1	PREC	ISION	4
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	4
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	4
		3.1.3	Field Duplicate (FD) Precision	4
	3.2	ACCU	RACY	4
		3.2.1	Laboratory Control Spike (LCS) Accuracy	5
		3.2.2	Matrix Spike (MS) Accuracy	5
		3.2.3	Serial Dilution (SD) %Difference	5
	3.3	REPRI	ESENTATIVENESS	5
		3.3.1	Chain-of-Custody and Analysis Requests	5
		3.3.2	Sample Preservation and Holding Time	5
		3.3.3	Laboratory and Method Selection	5
		3.3.4	Blanks (Laboratory and Field)	6
		3.3.5	Analytical Procedures	6
	3.4	COMP	PLETENESS	6
		3.4.1	Laboratory Deliverables Completeness	6
		3.4.2	EDD Correctness	7
		3.4.3	Analytical Completeness	7
	3.5	COMP	PARABILITY	

LIST OF TABLES

Table 1 – Sample Summary

Table 2 – Data Validation Qualifiers (DVQs)

Table 3 – Qualified Sample Results

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York (i.e., the Site). The independent data review was completed in accord with the Phase II-B Remedial Design/ Remedial Action Workplan (February 2013), hereinafter called the Workplan, using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The data include 21 investigative soil samples and nine investigative water samples. The soil samples were collected by ENTACT during October 2013 to November 2013 to define the horizontal and vertical extent of excavation required in the Front Lawn Area (FLA) along the Ballard Road right of way and the facility entrance road by comparison to the source material and commercial use soil cleanup objectives (SCO) for the Site. The water samples are pond water collected in response to NYSDEC's request in order to allow the dewatering water from the Railroad Pond to be discharged downstream after comparison to the water quality standards applicable to the Site (i.e., 6 NYCRR Part 703(a) Class C(T)). A complete listing of the samples and the tests performed on each is shown in Table 1. Per ENTACT's request, QAA performed a full validation of the samples and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 Technical Guidance for Site Investigation and Remediation (May 2010). The validation procedures are derived from the U.S. EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (August 2014), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846, 40CFR Part 136, and Standard Methods) and the sampling objectives.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The validator assessed precision using the laboratory duplicate results. (No field duplicates were collected with the samples.) The laboratory prepared a laboratory control spike duplicate (LCSD) using reagent water with every TDS and TSS batch plus two of the 200.8 metals in water batches. All LCSD RPDs are at or below the limit, which indicates good precision for the analytical technique on a sample free of matrix effects. Additionally, the laboratory prepared an unspiked matrix duplicate (MD) or spiked matrix duplicate (MSD) with every analytical batch and reported the relative percent difference (RPD) for all analytes. As shown in Table 1, one MD for TDS, two MD for TCLP lead, one MD for 6010C metals in soil, and four spiked matrix duplicates (MSD) for 200.8 metals in water were prepared using a sample from the site. All site MD and MSD RPDs are at or below the limit, which indicates good precision for the analytical technique on the given sample matrix, except for lead in the MD for 6010C metals in soil. As a result, 13 detects for lead in the FLA samples were qualified as estimated (J).
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The validator assessed accuracy using the laboratory spikes and matrix spikes. The laboratory prepared a laboratory control spike (LCS) using reagent water or sand with every analytical batch plus a LCSD with the batches noted above and reported the recoveries for all analytes. The LCS/LCSD recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects. Additionally, the laboratory prepared a matrix spike (MS) with every metals batch plus a MSD with the batches noted above and reported the recoveries for each analyte. As shown in Table 1, one MS for 6010C metals in soil, two MS for TCLP metals, and four MS/MSD for 200.8 metals in water were prepared

- using a sample from the site. All site MS/MSD recoveries are within the limits, which indicates good accuracy for the analytical technique on the given sample matrix.
- Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, FLA and pond water samples were collected as required per the project plan. Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratories are properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory blanks, and analytical instrument setup (i.e., calibration, interference correction, etc.) The preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank with every analytical batch plus a leachate blank with each TCLP Metals batch. The blanks show no contamination, which indicates the samples were not affected by laboratory procedures, except for one TDS batch. The TDS level in this blank is well below (<10x) that in the associated sample, and thus there is no effect on data quality. Additionally, proper analytical techniques were used and calibration results met the method requirements, except for one TDS sample (WSTREAM-N OF 16A). For this sample, a constant weight was not achieved during the drying cycles before calculation of the result. The laboratory reanalyzed the sample with confirming results after the holding time had expired. The validator qualified the result as estimated (J).
- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. All analyses produced valid analytical measurements, which gives a completeness of 100%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the submissions. Some minor revisions were required to produce the final data packages as documented in the laboratory narratives.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846, 40CFR Part 136, or Standard Methods. The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated. Note that results for all field samples are reported in mg/kg with dry-weight correction for metals in soils, in μg/L for TCLP metals and metals in water, and in mg/L for TDS, TSS and BOD.

DATA USABILITY

No major QC deficiencies were noted and all sample results are acceptable for use with the qualifications shown in Table 3.

Thirteen (13) detects for total Lead have a J flag due to poor laboratory duplicate precision (22 RPD). The RPD is just slightly above the limit of 20 RPD. Data quality is not considered to be significantly affected, and the results may be used as reported. One TDS result has a J flag due to a problem with the analytical procedure. This result may be either low or high. The remaining ten results with J flags are qualified solely because the concentration is between the MDL and RL. The actual value is not expected to exceed the sample RL.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). The laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- Laboratory Deliverables Completeness,
- EDD Correctness,
- · Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- · Laboratory and Method Selection,
- Initial Calibration,
- Continuing Calibration Verification,
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- · Matrix Duplicates (MD), and
- Field Duplicates (FD).

Additionally, the validator examined the raw data for two of the 22 sample batches (randomly selected by the validator) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are between 70-130% for laboratory and matrix accuracy for metals analyses and 85-115% for TDS/TSS/BOD analyses.
- Laboratory Precision the control limit (20 RPD) as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. A data rejection limit of 30% was used for these inorganic analyses. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U-flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

The laboratory analyzed a LCSD for every TDS and TSS analytical batch (maximum 20 samples) plus two of the 200.8 metals in water batches, and reported RPDs for all analytes. All LCSD RPDs are at or below the limit.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD or MSD for every analytical batch (maximum 20 samples) and reported RPDs for all analytes. The validator only evaluated the MD and MSD prepared with a sample from the site (which includes one MD for TDS, two MD for TCLP lead, one MD for 6010C metals in soil, and four MSD for 200.8 metals in water), since those prepared with samples from another site do not reflect data quality for the Revere site. All site MD and MSD RPDs are at or below the control limit, except as follows:

 For QC batch 460-190023, the RPD for lead in the MD prepared with FLATP-1-2' is slightly above the 20% control limit at 22%.

This indicates a potential bias in results for the associated samples. Thus, the reviewer qualified the results for lead (which are all detects) for the FLA samples in the same QC batch as estimated with an unknown bias (J).

Note that non-project MD/MSD results are included in the data packages but not in the EDD.

3.1.3 FIELD DUPLICATE (FD) PRECISION

No FD were collected with the samples.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD) and matrix spikes (MS/MSD) plus serial dilutions (SD). LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

The laboratory analyzed a LCS and/or LCSD for every analytical batch (maximum 20 samples) as required and reported recoveries for all analytes. All LCS recoveries are within the control limits.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS and/or MSD for every metals batch (maximum 20 samples) and reported recoveries for each analyte. The validator only evaluated the MS/MSD prepared with a sample from the site (which includes one MS for 6010C metals in soil, two MS for TCLP metals, and four MS/MSD for 200.8 metals in water), since those prepared with samples from another site do not reflect data quality for the Revere site. All site MS/MSD recoveries are within the control limits. Note that non-project MS results are included in the data packages but not in the EDD.

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all metals detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records and custody seals, which confirms that sample integrity was maintained. No issues were noted during sample log-in at the laboratory, and all field samples were analyzed for the tests requested on the chain-of-custody. Additionally, the information on the custody record is correct and agrees with that reported in the analytical results, except as follows:

• For laboratory ID 490-78497-2, the custody record shows a sample ID of Pond Water-2. Upon the client's request, the laboratory revised the sample ID to Pond Water-5 per the sample container labels.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

The samples were properly preserved and analyzed within the holding times listed in the analytical methods, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratories are accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (TestAmerica-Edison NYSDOH (NELAP) #11452, NYSDOH (ELAP) #11452 and TestAmerica-Nashville NYSDOH (NELAP) #11342, NYSDOH (ELAP) #11342). Note that TestAmerica-Nashville performed the 200.8 metals in water, TDS, and TSS analyses for laboratory job numbers 490-78497-1, 490-82374-1, 490-83125-1, and 490-83269-1 under subcontract to TestAmerica-Edison.

Analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) were used for the metals analyses, and the nominal reporting limits are below the levels of concern (i.e., the remedial or treatment goals) for each analyte.

(Note: The laboratory dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank and leachate blank for every analytical batch (maximum 20 samples) plus a calibration blank for every 10 metals analyses as required per the analytical methodology. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used. No analytes were detected in the laboratory blanks, except as follows:

For QC batch 490-264656, TDS is reported at 8.00 J mg/L in the preparation blank.

This indicates a potential high bias for detects in the associated samples. The only sample prepared in this batch contains TDS at a level well above that in the blank (>10x), and thus the validator did not qualify the data.

3.3.5 ANALYTICAL PROCEDURES

The analytical procedures (ICP-MS tuning, initial calibration, continuing calibration verification, internal standards, and interference correction), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method, except as follows:

 For TDS sample WSTREAM-N of 16A, a constant weight was not achieved after two drying cycles and the analyst inadvertently did not determine a third weight. The laboratory reanalyzed the sample with confirming results after the holding time had expired.

The validator qualified the result as estimated (J).

Note that Form 14 ICP-MS Tune in laboratory job number 490-78497-1 shows results from 5/9/15 12:32, which are above the %RSD criteria for several masses. The validator determined that another tune was subsequently performed at 5/9/15 12:38, which was prior to the sample analyses and that passes the criteria, and thus there is no effect on data quality.

Additionally, no issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes 22 analytical batches and the validator re-calculated sample results and QC check parameters for two batches (batch 460-190023 for 6010C metals in soils in work order 460-65950-1 and batch 490-249162 for 200.8 metals in water for work order 490-78497-1).

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

The NYSDEC Category B data packages and EDD contain all necessary information.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Job No.	Sample(s)	EDD Field(s)	Action				
All	All QC samples	sampling_technique	The validator changed the entry from null to the default entry (UN) to meet NYSDEC requirements.				
460-65950-1 460-66002-1	All FLA samples	start_depth	Part of the sample identification (e.g., the 6 for sample ID FLATP-6-3') was entered as the starting depth. The validator corrected the entry from this sample identification number to 0.				
460-65950-1 460-66002-1	FLATP-2-3" FLATP-3-3" FLATP-4-3" FLATP-5-2" FLATP-9-8" FLATP-14-2" FLATP-15-3" FLATP-16-2" FLATP-18-10" FLATP-20-2" FLATP-20-2" FLATP-21-4"	depth_unit	The validator corrected the entry from ft to in based on the sample IDs.				
460-95506-1 490-78497-1 490-82374-1	Pond Water – 1 Pond Water - 5 Pond Water - 10	sample_matrix_code lab_matrix_code	The validator corrected the entry from WG (to be used for groundwater) to WS (to be used for surface water).				
490-83125-1 490-83269-1	POND WATER-1-2 POND WATER-5-2 WSTREAM-N OF 16A Test-Pond Water-7/9/15 TEST - POND WATER - 7/17/15 TEST-POND WATER-7/18/15	start_depth end_depth depth_unit	The validator removed the entries (0-0 ft) since these fields are to be used for groundwater or soil only.				

3.4.3 ANALYTICAL COMPLETENESS

The validator did not reject any of the results, which gives a completeness of 100%.

3.5 COMPARABILITY

Samples were analyzed using standard method protocols as shown in Table 1. The metals methodologies employed by the laboratory are specified for use in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which an analyte can be positively identified but not necessarily

accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which an analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J-flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results are reported in mg/kg with dry-weight correction for metals in soils, in μ g/L for TCLP metals and metals in water, and in mg/L for TDS, TSS and BOD and are classified as Level 4 data for with a full review and validation of 100% of the samples. The analytical results are considered comparable to other results similarly generated.

TABLE 1

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Front Lawn Area Delineation Samples and Railroad Pond Dewatering Samples

SAMPLE SUMMARY

Lab ID	Field ID	Sample Date	Туре	Media	Matrix	Total Recoverable Metals in Water (Sb , As, Cd, Cr, Pb)	Dissolved Metals in Water (Sb, As, Cd, Cr, Pb)	TDS	TSS	BOD	Metals in Soil (As, Pb)	TCLP Metals (Pb)
460-65950-1	FLATP-1-2'	10/30/13	INV	FLA	Soil	-					х	Х
460-65950-1LR	FLATP-1-2'	10/30/13	MD	FLA	Soil						х	Х
460-65950-1MS	FLATP-1-2'	10/30/13	MS	FLA	Soil						х	Х
460-65950-2	FLATP-2-3"	10/30/13	INV	FLA	Soil						х	Х
460-65950-3	FLATP-3-3"	10/30/13	INV	FLA	Soil						х	Х
460-65950-4	FLATP-4-3"	10/30/13	INV	FLA	Soil						х	Х
460-65950-5	FLATP-5-2"	10/30/13	INV	FLA	Soil						х	Х
460-65950-6	FLATP-6-3'	10/30/13	INV	FLA	Soil						х	Х
460-65950-7	FLATP-7-1'	10/31/13	INV	FLA	Soil						х	Х
460-65950-8	FLATP-8-2"	10/31/13	INV	FLA	Soil						х	Х
460-65950-9	FLATP-9-8"	10/31/13	INV	FLA	Soil						х	Х
460-65950-10	FLATP-10-1'	10/31/13	INV	FLA	Soil						х	Х
460-65950-11	FLATP-11-1'	10/31/13	INV	FLA	Soil						х	Х
460-65950-12	FLATP-13-1'	10/31/13	INV	FLA	Soil						х	Х
460-65950-13	FLATP-14-2"	10/31/13	INV	FLA	Soil						х	Х
460-66002-1	FLATP-12-2"	11/2/13	INV	FLA	Soil						х	Х
460-66002-2	FLATP-15-3"	11/2/13	INV	FLA	Soil						х	Х
460-66002-3	FLATP-16-2"	11/2/13	INV	FLA	Soil						x	Х
460-66002-3LR	FLATP-16-2"	11/2/13	MD	FLA	Soil							Х
460-66002-3MS	FLATP-16-2"	11/2/13	MS	FLA	Soil							Х
460-66002-4	FLATP-17-7"	11/2/13	INV	FLA	Soil						x	Х
460-66002-5	FLATP-18-10"	11/2/13	INV	FLA	Soil						Х	Х
460-66002-6	FLATP-19-1'	11/2/13	INV	FLA	Soil						х	Х
460-66002-7	FLATP-20-2"	11/2/13	INV	FLA	Soil						Х	Х
460-66002-8	FLATP-21-4"	11/2/13	INV	FLA	Soil						х	Х
460-95506-1	POND WATER-1-2	5/27/15	INV	PW	Water					Х		

Lab ID	Field ID	Sample Date	Туре	Media	Matrix	Total Recoverable Metals in Water (Sb , As, Cd, Cr, Pb)	Dissolved Metals in Water (Sb, As, Cd, Cr, Pb)	TDS	TSS	BOD	Metals in Soil (As, Pb)	TCLP Metals (Pb)
460-95506-2	POND WATER-5-2	5/27/15	INV	PW	Water					Х		
460-95506-3	WSTREAM-N OF 16A	5/27/15	INV	PW	Water			Х		х		
490-78497-1	Pond Water - 1	5/14/15	INV	PW	Water	Х	х	Х	Х			
490-78497-1LR	Pond Water - 1	5/14/15	MD	PW	Water			Х				
490-78497-1MS	Pond Water - 1	5/14/15	MS	PW	Water		x					
490-78497-1SD	Pond Water - 1	5/14/15	MSD	PW	Water		х					
490-78497-2	Pond Water - 5	5/14/15	INV	PW	Water	Х	х	Х	Х			
490-78497-3	Pond Water - 10	5/14/15	INV	PW	Water	X	x	Х	Х			
490-82374-1	Test-Pond Water-7/9/15	7/9/15	INV	PW	Water	x*	x*	Х	Х			
490-82374-1MS	Test-Pond Water-7/9/15	7/9/15	MS	PW	Water		x*					
490-82374-1SD	Test-Pond Water-7/9/15	7/9/15	MSD	PW	Water		x*					
490-83125-1	TEST - POND WATER - 7/17/15	7/17/15	INV	PW	Water	x*	x*	Х	Х			
490-83125-1MS	TEST - POND WATER - 7/17/15	7/17/15	MS	PW	Water		x *					
490-83125-1SD	TEST - POND WATER - 7/17/15	7/17/15	MSD	PW	Water		X*					
490-83269-1	TEST-POND WATER-7/18/15	7/18/15	INV	PW	Water	x*	x*	Х	Х			
490-83269-1MS	TEST-POND WATER-7/18/15	7/18/15	MS	PW	Water		х*					
490-83269-1SD	TEST-POND WATER-7/18/15	7/18/15	MSD	PW	Water		x*					

^{*} Sample analyzed for lead only

BOD - Biochemical Oxygen Demand

INV – Investigative Sample MSD – Matrix Spike Duplicate

FLA – Front Lawn Area Delineation Sample PW – Railroad Pond Dewatering Sample

MD – Matrix Duplicate TDS – Total Dissolved Solids MS – Matrix Spike TSS – Total Suspended Solids

The following analytical methods from EPA's SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW846), EPA's Clean Water Act methods (40CFR Part 136), or Standard Methods for the Examination of Water and Wastewater (Standard Methods) were used:

- Total Recoverable Metals in Water: 40CFR Part 136 Method 200.8 for Antimony, Arsenic, Cadmium, Chromium and/or Lead in aqueous samples
- Dissolved Metals in Water: 40CFR Part 136 Method 200.8 for Antimony, Arsenic, Cadmium, Chromium and/or Lead in aqueous samples following filtration of an unpreserved sample aliquot by the laboratory after sample receipt
- TDS: Standard Method 2540C in aqueous samples
- TSS: Standard Method 2540D in aqueous samples
- BOD: Standard Method 5210B in aqueous samples
- Metals in Soil: SW846 3050B/ 6010C for Arsenic and Lead in soil samples
- TCLP Metals: SW846 1311/3010A/6010C for Lead in leachates of soil sample

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- U = Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- *J* = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J/J+ and R>UJ)

TABLE 3 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Front Lawn Area Delineation Samples and Railroad Pond Dewatering Samples

QUALIFIED SAMPLE RESULTS

Lab ID	Field ID-Date	Analyte		Lab Result				DVQ	QC Issue
460-65950-1	FLATP-1-2'-20131030	Lead	73.0		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-65950-2	FLATP-2-3"-20131030	Lead	482		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-65950-3	FLATP-3-3"-20131030	Lead	683		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-65950-4	FLATP-4-3"-20131030	Lead	657		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-65950-5	FLATP-5-2"-20131030	Lead	541		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-65950-6	FLATP-6-3'-20131030	Lead	1870		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-65950-7	FLATP-7-1'-20131031	Lead	22400		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-65950-8	FLATP-8-2"-20131031	Lead	3350		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-65950-9	FLATP-9-8"-20131031	Lead	308		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-65950-10	FLATP-10-1'-20131031	Lead	10300		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-65950-11	FLATP-11-1'-20131031	Lead	2840		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-65950-12	FLATP-13-1'-20131031	Lead	26500		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-65950-13	FLATP-14-2"-20131031	Lead	1940		mg/kg	J	Poor lab duplicate precision (22 RPD)		
460-95506-3	WSTREAM-N OF 16A-	Total Dissolved	560		mg/l	J	Constant weight not achieved before		
	20150527	Solids					calculation		
490-78497-3	Pond Water - 10-20150514	Cadmium	0.58	J	ug/l	J	Result is between MDL and RL		
	(Dissolved Metals Aliquot)								
490-78497-3	Pond Water - 10-20150514	Cadmium	0.75	J	ug/l	J	Result is between MDL and RL		
	(Total Metals Aliquot)								
490-78497-3	Pond Water - 10-20150514	Chromium,	1.6	J	ug/l	J	Result is between MDL and RL		
	(Total Metals Aliquot)	Total							
490-78497-1	Pond Water - 1-20150514	Cadmium	0.44	J	ug/l	J	Result is between MDL and RL		
	(Dissolved Metals Aliquot)								
490-78497-1	Pond Water - 1-20150514	Cadmium	0.48	J	ug/l	J	Result is between MDL and RL		
	(Total Metals Aliquot)								
490-78497-1	Pond Water - 1-20150514	Chromium,	0.92	J	ug/l	J	Result is between MDL and RL		
	(Total Metals Aliquot)	Total							
490-78497-2	Pond Water - 5-20150514	Cadmium	0.47	J	ug/l	J	Result is between MDL and RL		
	(Dissolved Metals Aliquot)								
490-78497-2	Pond Water - 5-20150514	Cadmium	0.66	J	ug/l	J	Result is between MDL and RL		
	(Total Metals Aliquot)								
490-78497-2	Pond Water - 5-20150514	Chromium,	1.1	J	ug/l	J	Result is between MDL and RL		
	(Total Metals Aliquot)	Total				<u> </u>			
490-82374-1	Test-Pond Water-7/9/15-	Lead	0.99	J	ug/l	J	Result is between MDL and RL		
	20150709								
	(Dissolved Metals Aliquot)								

ATTACHMENT A

VALIDATOR'S CHECKLISTS

Client Name: Entact		Projec	t Numb	er/ Manager: E7976H/ Jenny Self
Site Name: Revere Smelting and Refining (Phase 2B FLA/PW Feb1	5-Jul15)	QC Le	vel: NA	,
Laboratory: TestAmerica (Edison, NJ) and TestAmerica (Nashville,	TN)	Labora	atory Jo	b No: see below
Reviewer: Taryn Scholz		Date C	Checked	l: 9/9/15
Parameters: Total/Dissolved Metals, TCLP Metals, TDS, TSS, BOD		Metho	ds: 305	0C/6010C & 1311/3010A/6010C; 200.8, LF 200.8, 2540C, 2540D, 5210B
ITEM	YES	NO	N/A	(CRITERIA) COMMENT
Laboratory NELAP/ELAP accredited?	х			NJ - NYDOH (NELAP) #11452, NYDOH (ELAP) #11452; Nash - NYDOI (NELAP) #11342, NYDOH (ELAP) #11342
Signed Narrative included?	Х			
No narrative issues noted by lab?		Х		see Narrative Comments
Chair	of Custo	ody (CC	C)/ Sar	nple Receipt
Date/time of sample collection included?	Х			
Sample temp upon receipt 2-6 C?	Х			
Proper containers/preservation?	х			(Methods soils - none; water - HNO3 (total metals), none (unfiltered dis metals, TDS/TSS, BOD)
COCs properly executed and seals used?	х			
Samples received within 2 days?		х		some rec'd day 3, all in good condition and within hold time
	An	alytical	Results	<u> </u>
All requested analyses reported?	Х			
Field, Laboratory, and Batch ID included?	х			Pond Water - 2 changed to Pond Water - 5 per the sample containe labels and Entact's request (490-78497-2).
Date of sample collection/receipt included?	Х			, , ,
Date of sample preparation/analysis included?	Х			
NDs at DL or QL and J-values as needed?	x			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported
Target analyte list complete?			х	
RLs acceptable?		х		(ASP Exh C Part III and/or DER-10 App 5); see comment no. 1
No elevated RLs for NDs?	Х			Note: 5x std dilution for TCLP
Prep/Analysis method references included and approved?		х		(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D); see no. 2
If analytical cleanup used, method ref included and approved?			Х	(ASP Exh D)
Sample matrix included?	Х			
Soils on dry weight basis?			Х	
Correct and consistent units?	Х			soils in mg/Kg, water in ug/L for metals, mg/L for TDS/TSS/BOD
Holding time to analysis not expired?	Х			(Methods metals (soil/water) - 180 d, TDS/TSS - 7 d, BOD - 48 h
Holding time to preparation not expired?			х	
QC	Samples	s (not lis	sted in \	Vorkplan)
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment			NA	
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory			NA	
Filter blank - 1 per week of time-integrated air monitoring			NA	
Field duplicate samples - 1 for every 20 or fewer samples per				none collected
sample matrix (excluding air samples)			NA	
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix			l	none collected
from the same batch as the project samples to the extent possible			NA	
Completeness criteria met?			NA	
1		Field N		
Agree with custody records?			х	not included
Field instruments calibrated daily?			х	
Well conditions constant before sampling?			Х	
				•

Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification; COI - Compound of Interest; %D - Percent Difference, DL - Detection Limit; DOP - Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasma; ICV - Initial Calibration Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Matrix Spike Duplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response Factor; RT - Retention Time; RSD - Relative Standard Deviation; TA - Target Analyte

COMMENTS

Laboratory Job Nos: 460-65950-1, 460-66002-1, 490-78497-1 (Nash), 460-95506-1, 490-82374-1 (Nash), 490-83125-1 (Nash), 490-83269-1 (Nash)

1. Some RLs > ASP Exh C but all below decision criteria

2. TDS/TSS/BOD by Std Methods (listed in ASP under 40CFR 136)

NarrativeComments

QAA Nc Lab Job No.	Test	Batch/Sample	Issue	Resolution
EN517 460-65950-1	TCLP Metals	7,10,12	samples req'd 20-50x dilution due to nature of sample matrix (high lead); RLs adjusted (5x std)	NA - result is not non-detect
	Total Metals	7,8,10,11,12	samples req'd 10-100x dilution prior to analysis; RLs adjusted (rest at 4x)	NA - result is not non-detect
	Total Metals	190023	65950-1MD RPD out for Lead due to sample non-homogeneity	see QC Deficiencies
EN518 460-66002-1	Total Metals	2,6	samples req'd 20-30x dilution prior to analysis; RLs adjusted (rest at 4x)	NA - result is not non-detect
	Total Metals	190487	MD RPD out for Lead due to sample non-homogeneity	None (non-project QC)
EN519 490-78497-1	Diss Metals	NA	As std practice, all non-potable samples and QC diluted 5x prior to analysis	None (all Revere samples at 1x)
	Total Metals	NA	As std practice, all non-potable samples and QC diluted 5x prior to analysis	None (all Revere samples at 1x)
	TSS	248934	78320-1MD RPD out	None (non-project QC)
EN520 460-95506-1	TDS	301699	Constant weight not achieved after 2 drying cycles for 95406-2 DUP	None (non-project QC)
	TDS	301699	Constant weight not achieved after 2 drying cycles for 95506-3, reanalyzed in 303836 w confirming results	Result qualified as estimated (J)
EN521 490-82374-1	TDS	262498	Min volume (1-ml) produced base result >200-mg for 82384-1 and its DUP, qualified per method	None (non-project DUP, no effect on sample, 50-mls used for sample with <200-mg base result)
EN522 490-83125-1	Diss Metals	NA	As std practice, all non-potable samples and QC diluted 5x prior to analysis	None (all Revere samples at 1x)
	Total Metals		As std practice, all non-potable samples and QC diluted 5x prior to analysis	None (all Revere samples at 1x)
	TSS	266086	83133-1MD RPD out	None (non-project QC)
EN523 490-83269-1		NA	As std practice, all non-potable samples and QC diluted 5x prior to analysis	None (all Revere samples at 1x)
	Total Metals		As std practice, all non-potable samples and QC diluted 5x prior to analysis	None (all Revere samples at 1x)
	TDS	264656	TDS in MB <rl, detects="" flagged<="" samples="" td="" with=""><td>see QC Deficiencies</td></rl,>	see QC Deficiencies

## aboratory: TestAmerica (Edison, NJ) and TestAmerica (Nashville, TN) Laboratory. Job No: see Validation - General eviewer: Taryn Scholz Date Checked: 9/9/15 Date Checked: 9/9	Aboratory: TestAmerica (Edison, NJ) and TestAmerica (Nashville, TN) Reviewer: Taryn Scholz Parameters: Total/TCLP Metals (soils); Total/Dissolved Metals (water) Method blank data included in Lab Package? 100 Criteria met? (< MDL, ≥ -RL) 100 Criteria met for field blanks? (< MDL) All project COCs or TAs included? 100 %R criteria met? 100 %R criteria met? 100 %R criteria met? 100 %R criteria met? 100 %R criteria met? 100 %R criteria met? 100 %R criteria met? 100 %R criteria met? 100 %R criteria met? 100 %R criteria met? 100 %R criteria met? 100 %R criteria met? 100 %R criteria met? 100 %R criteria met? 100 km criteria met criteria met? 100 km criteria met criteria met criteria met criteria met criteria met criteria met criteria met criteria met criteria met criteria met criteria met criteria met criteria met criteria met criteria met criteria met	6010C; 200.8 & LF 200.8 RITERIA) COMMENT thin 50-200% or 85-115% EPA) SW846 or 70-130% EPA) 0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
Date Checked: 9/9/15	Reviewer: Taryn Scholz Parameters: Total/TCLP Metals (soils); Total/Dissolved Metals (water) ### WPERFORMED/ ITEM ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ### WPERFORMED/ ##	6010C; 200.8 & LF 200.8 RITERIA) COMMENT thin 50-200% or 85-115% EPA) SW846 or 70-130% EPA) 0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
### According to the company of the	Parameters: Total/TCLP Metals (soils); Total/Dissolved Metals (water) **PERFORMED/ ITEM** **Method blank data included in Lab Package? **Criteria met?* **Criteria met?* **Criteria met for field blanks?* **All project COCs or TAs included?* **Matrix spike data included in lab package?* **All project COCs or TAs included?* **Matrix spike data included in lab package?* **All method (lab but wown as LR*) **Sample duplicate data included in lab package?* **All project COCs or TAs included?* **Matrix spike data included in lab package?* **Matrix spike data included in lab p	thin 50-200% or 85-115% EPA) SW846 or 70-130% EPA) 0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
## Welford blank data included in Lab Package? Method blank data included in Lab Package? X X X	%PERFORMED/ ITEM YES NO N/A (CI Method blank data included in Lab Package? x x x 100 Criteria met? (< MDL, ≥ -RL)	thin 50-200% or 85-115% EPA) SW846 or 70-130% EPA) 0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
Method blank data included in Lab Package?	Method blank data included in Lab Package? Criteria met? (< MDL, ≥ -RL) 100 Criteria met for field blanks? (< MDL) QC check samples/LCS data included in lab package? All project COCs or TAs included? 100 %R criteria met? Matrix spike data included in lab package? Sample duplicate data included in lab package? RPD criteria met? Field dup RPD criteria met? (individual, mean, and overall) Instrument Tune for ICP-MS included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Calibration verification data included in lab package? Calibration verification data included in lab package? X X Method (lab but w x method (lab but w method (75-125% as LR X method (20% if >1 ASP for lab dup X ASP for lab dup X ARL sol if either ≤ applies for 200.8 X Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) X All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? X Calibration verification data included in lab package?	thin 50-200% or 85-115% EPA) SW846 or 70-130% EPA) 0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
Criteria met? (< MDL, ≥ -RL)	100 Criteria met? (< MDL, ≥ -RL)	SW846 or 70-130% EPA) 0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
100 Criteria met for field blanks? (< MDL) X X QC check samples/LCS data included in lab package? X X Method (lab but within 50-200% or 85-115% E X Method (lab but within 50-200% or 85-115% E X Method (lab but within 50-200% or 85-115% E X Method (lab but within 50-200% or 85-115% E X Method (lab but within 50-200% or 85-115% E X Method (75-125% SW846 or 70-130% EPA) Sample duplicate data included in lab package? X Method (75-125% SW846 or 70-130% EPA) Sample duplicate data included in lab package? X Method (20% if >10xMDL); see QC Deficienci ASP for lab dup - 20% aq, 35% solid (+/-RI ASP for lab dup - 20% aq, 3	Criteria met for field blanks? (< MDL) QC check samples/LCS data included in lab package? All project COCs or TAs included? NR criteria met? Was pike data included in lab package? NR criteria met? NR method (20% if >1 as LR NR pror lab dup NR criteria met? NR criteria met? NR method (20% if >1 as LR NR method (20% if >1 as LR NR pror lab dup NR criteria met? NR method (20% if >1 as LR NR pror lab dup NR criteria met? NR pror lab dup NR pror lab du	SW846 or 70-130% EPA) 0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
OC check samples/LCS data included in lab package? All project COCs or TAs included? **X	QC check samples/LCS data included in lab package? All project COCs or TAs included? 100 %R criteria met? Matrix spike data included in lab package? 100 %R criteria met? Sample duplicate data included in lab package? X method (75-125% as LR 100 RPD criteria met? X method (20% if >1 ASP for lab dup 100 Field dup RPD criteria met? (individual, mean, and overall) Instrument Tune for ICP-MS included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Calibration verification data included in lab package? Calibration verification data included in lab package? X calibration verification data included in lab package?	SW846 or 70-130% EPA) 0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
All project COCs or TAs included? X method (lab but within 50-200% or 85-115% E	All project COCs or TAs included? 100 %R criteria met? Matrix spike data included in lab package? 100 %R criteria met? Sample duplicate data included in lab package? X method (75-125% as LR 100 RPD criteria met? NRPD criteria met? Instrument Tune for ICP-MS included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Calibration verification data included in lab package? Calibration verification data included in lab package? X method (20% if >1 ASP for lab dup X 2RL sol if either ≤ applies for 200.8 X applies for 200.8	SW846 or 70-130% EPA) 0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
Matrix spike data included in lab package? X method (lab but within 50-200% or 85-115% E	100 %R criteria met? x method (lab but w Matrix spike data included in lab package? x method (75-125% 100 %R criteria met? x method (75-125% Sample duplicate data included in lab package? x as LR 100 RPD criteria met? x method (20% if >1 100 Field dup RPD criteria met? (individual, mean, and overall) x 2RL sol if either ≤ Instrument Tune for ICP-MS included in lab package? x applies for 200.8 100 Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) x x Initial calibration documentation included in lab package? x x All target analytes included? x x blank/1 std (ICP), blank/ 5 stds (Hg) x x Calibration verification data included in lab package? x x	SW846 or 70-130% EPA) 0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
Matrix spike data included in lab package? %R criteria met? Nample duplicate data included in lab package? RPD criteria met? Nample duplicate data included in lab package? RPD criteria met? Nample duplicate data included in lab package? RPD criteria met? Namethod (20% if >10xMDL); see QC Deficienci ASP for lab dup - 20% aq, 35% solid (+/-RI ASP for lab dup -	Matrix spike data included in lab package? 100 %R criteria met? Sample duplicate data included in lab package? RPD criteria met? 100 Field dup RPD criteria met? (individual, mean, and overall) Instrument Tune for ICP-MS included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Calibration verification data included in lab package? Calibration verification data included in lab package? X method (75-125% ASP for lab dup X 2RL sol if either ≤ applies for 200.8 Applies for 200.8 X Local target analytes included? X Calibration verification data included in lab package? X Calibration verification data included in lab package? X	SW846 or 70-130% EPA) 0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
Sample duplicate data included in lab package? X	100 %R criteria met? x method (75-125% as LR 100 RPD criteria met? x as LR 100 Field dup RPD criteria met? (individual, mean, and overall) x ASP for lab dup ASP for lab dup ASP for lab dup ASP for lab dup Instrument Tune for ICP-MS included in lab package? x applies for 200.8 100 Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) x applies for 200.8 Initial calibration documentation included in lab package? x applies for 200.8 All target analytes included? x applies for 200.8 blank/1 std (ICP), blank/ 5 stds (Hg) x applies for 200.8 Calibration verification data included in lab package? x applies for 200.8	0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
Sample duplicate data included in lab package? X	100 %R criteria met? x method (75-125% as LR 100 RPD criteria met? x as LR 100 Field dup RPD criteria met? (individual, mean, and overall) x ASP for lab dup ASP for lab dup ASP for lab dup ASP for lab dup Instrument Tune for ICP-MS included in lab package? x applies for 200.8 100 Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) x applies for 200.8 101 Initial calibration documentation included in lab package? x applies for 200.8 100 Initial calibration documentation included in lab package? x applies for 200.8 100 Corr coeff (r) criteria met? (≥0.995) x applies for 200.8 100 Calibration verification data included in lab package? x applies for 200.8	0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
Sample duplicate data included in lab package? RPD criteria met? RPD criteria met? RPD criteria met? Instrument Tune for ICP-MS included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? Instrument Tune method criteria met? (≥0.995) X Instrument Tune method criteria met? (≥0.995) X Instrument Tune method criteria met? (≥0.995) X Instrument Tune method criteria met? (≥0.995) X Instrument Tune method criteria met? (≥0.995) X Instrument Tune method criteria method (ICP, banki) 5 stds (Hg) X Instrument Tune method criteria interial for 20.995) X Instrument Tune method criteria interial for 20.995 X Instrument Tune method criteria interial for 20.995 X Instrument Tune method criterial and package? X Instrument Tune method criterial and package? X Instrument Tune method criterial and package? X Instrument Tune method criterial and Lab package? X Instrument Tune method criterial and Instrument Package? X Instrument Tune method criterial and Instrument Package? X Instrument Tune method criterial and Instrument Package? X Instrument Tune method criterial and Instrument Package? X Instrument Tune method criterial and Instrument Package? X Instrument Tune method criterial and Instrument Package? X Instrument Tune method criterial methode Instrument Package? X Instrument Tune for Instrument Package? X Instrument Package? X Instrument Package? X Instrument Package? X Instrument Package? X Instrument Package? X Instrument Packa	Sample duplicate data included in lab package? 100 RPD criteria met? 100 Field dup RPD criteria met? (individual, mean, and overall) 100 Instrument Tune for ICP-MS included in lab package? 100 Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) 101 Initial calibration documentation included in lab package? 102 ASP for lab dup 2 RL sol if either ≤ 2 applies for 200.8 2 applies for 200.8 2 All target analytes included? 3 blank/1 std (ICP), blank/ 5 stds (Hg) 100 Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? X Calibration verification data included in lab package? X Calibration verification data included in lab package? X Calibration verification data included in lab package? X Calibration verification data included in lab package? X Calibration verification data included in lab package? X Calibration verification data included in lab package? X Calibration verification data included in lab package? X Calibration verification data included in lab package?	0xMDL); see QC Deficiencies 20% aq, 35% solid (+/-RL aq,
X	100 RPD criteria met? x method (20% if >1 100 Field dup RPD criteria met? (individual, mean, and overall) x 2RL sol if either ≤ 100 Instrument Tune for ICP-MS included in lab package? x applies for 200.8 100 Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) x x Initial calibration documentation included in lab package? x x All target analytes included? x x blank/1 std (ICP), blank/ 5 stds (Hg) x x 100 Corr coeff (r) criteria met? (≥0.995) x x Calibration verification data included in lab package? x x	20% aq, 35% solid (+/-RL aq,
Field dup RPD criteria met? (individual, mean, and overall) Instrument Tune for ICP-MS included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? ICB/CCB criteria met? (ICP 90-110,Hg 80-120,CN 85-115) CCV %R criteria met? (ICP 90-110,Hg 80-120,W) LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%) LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%) Results within criteria if >50xMDL? (max 10%, qualify 15%) Post digestion spike included? %R criteria met? (80-120%, unspk <2RL,≥2-RL) Interference check sample data included (ICP/MS only)? %R criteria met? (80-120%, unspk <2RL,≥2-RL) Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Analyte quantitation/RLs correct? X ASP for lab dup - 20% applies for 200.8 X ASP for lab dup - 20% applies for 200.8 ASP criteria met? (20-8 applies for 200.8 Analyte quantitation/RLs correct?	ASP for lab dup X ZRL sol if either ≤ Instrument Tune for ICP-MS included in lab package? X applies for 200.8 Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) X Initial calibration documentation included in lab package? X X X X X X X X X	20% aq, 35% solid (+/-RL aq,
Field dup RPD criteria met? (individual, mean, and overall) x 2RL sol if either ≤5RL)	Tield dup RPD criteria met? (individual, mean, and overall) Instrument Tune for ICP-MS included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? X Calibration verification data included in lab package? X Calibration verification data included in lab package? X Calibration verification data included in lab package? X Calibration verification data included in lab package?	
Instrument Tune for ICP-MS included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? ICB/CCB criteria met? (<rl, %r="" (icp="" 80-120%)="" 80-120,cn="" 85-115)="" 90-110%,="" 90-110,hg="" ccv="" criteria="" data="" dilution="" hg="" icv="" if="" included?="" llccv="" met?="" results="" test="" within="" ≥-rl)="">50xMDL? (max 10%, qualify 15%) Post digestion spike included? %R criteria met? W method (75-125%) Interference check sample data included (ICP/MS only)? W criteria met? (80-120%, unspk <2RL,≥2-RL) Internal standard data included in lab package? Internal standard data included in l</rl,>	Instrument Tune for ICP-MS included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? x applies for 200.8 x calphabetes x calph	
Instrument Tune method criteria met? (±5 RSD, ±0.1 amu)	100 Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) x Initial calibration documentation included in lab package? x All target analytes included? x blank/1 std (ICP), blank/ 5 stds (Hg) x 100 Corr coeff (r) criteria met? (≥0.995) x Calibration verification data included in lab package? x	···-/
Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? ICB/CCB criteria met? (<rl, %r="" (50-150%="" (icp="" 80-120%)="" 80-120,cn="" 85-115)="" 90-110%,="" 90-110,hg="" ccv="" criteria="" data="" dilution="" hg="" icv="" if="" included?="" llccv="" met?="" nesults="" pb="" sb="" test="" tl,70-130%)="" within="" ≥-rl)="">50xMDL? (max 10%, qualify 15%) Post digestion spike included? NR criteria met? NR criteria met? NR criteria met? NR criteria met? (80-120%, unspk <2RL,≥2-RL) Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Internal standard data included in lab package? Analyte quantitation/RLs correct? x</rl,>	Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? x Calibration verification data included in lab package?	
All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? ICB/CCB criteria met? (<rl, %r="" (50-150%="" (icp="" 80-120%)="" 80-120,cn="" 85-115)="" 90-110%,="" 90-110,hg="" ccv="" criteria="" hg="" icv="" if="" llccv="" met?="" pb="" results="" sb="" ti,70-130%)="" within="" ≥-rl)="">50xMDL? (max 10%, qualify 15%) Post digestion spike included? NR criteria met? NR c</rl,>	All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) 100 Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? x X	
blank/1 std (ICP), blank/ 5 stds (Hg)	blank/1 std (IĆP), blank/ 5 stds (Hg) 100 Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? x x	
100 Corr coeff (r) criteria met? (≥0.995) x Calibration verification data included in lab package? ICB/CCB criteria met? (<rl, td="" ≥-rl)<=""> x ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115) x CCV %R criteria met? (ICP 90-110%, Hg 80-120%) x LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%) x Dilution test data included? x Results within criteria if >50xMDL? (max 10%, qualify 15%) x Post digestion spike included? x Post digestion spike included? x Interference check sample data included (ICP/MS only)? x Interference check sample data included (ICP/MS only)? x VR criteria met? (80-120%, unspk <2RL,≥2-RL)</rl,>	100 Corr coeff (r) criteria met? (≥0.995) x Calibration verification data included in lab package? x	
Calibration verification data included in lab package? ICB/CCB criteria met? (<rl, %r="" (50-150%="" (icp="" 80-120%)="" 80-120,cn="" 85-115)="" 90-110%,="" 90-110,hg="" ccv="" criteria="" data="" dilution="" hg="" icv="" if="" included?="" llccv="" met?="" pb="" results="" sb="" test="" tl,70-130%)="" within="" ≥-rl)="">50xMDL? (max 10%, qualify 15%) Post digestion spike included? NR criteria met? WR criteria met? NR criteria met? NR criteria met? NR criteria met? NR criteria met? NR criteria met? NR criteria met? NR criteria met? NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? NR criteria met? NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR criteria met? (80-120%, unspk</rl,>	Calibration verification data included in lab package?	
ICB/CCB criteria met? (<rl, td="" ≥-rl)<=""><td>· • • • • • • • • • • • • • • • • • • •</td><td></td></rl,>	· • • • • • • • • • • • • • • • • • • •	
ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115)		
CCV %R criteria met? (ICP 90-110%, Hg 80-120%) LLCCV %R criteria met? (50-150% Sb/Pb/Tl,70-130%) Dilution test data included? Results within criteria if >50xMDL? (max 10%, qualify 15%) Post digestion spike included? NR criteria met? WR criteria met? Interference check sample data included (ICP/MS only)? WR criteria met? (80-120%, unspk <2RL,≥2-RL) Internal standard data included in lab package? Intensities within limits? (min 60-125% of calib std) Analyte quantitation/RLs correct? X CL per ASP Exh E x method (75-125%) X ZRL per ASP Exh E applies for 200.8		
100 LLCCV %R criteria met? (50-150% Sb/Pb/Tl,70-130%) x CL per ASP Exh E Dilution test data included? x 100 Results within criteria if >50xMDL? (max 10%, qualify 15%) x Post digestion spike included? x 100 %R criteria met? x method (75-125%) Interference check sample data included (ICP/MS only)? x 100 %R criteria met? (80-120%, unspk <2RL,≥2-RL)		
Dilution test data included? Results within criteria if >50xMDL? (max 10%, qualify 15%) Post digestion spike included? WR criteria met? Interference check sample data included (ICP/MS only)? WR criteria met? (80-120%, unspk <2RL,≥2-RL) Internal standard data included in lab package? Internal standard data included in lab package? Intensities within limits? (min 60-125% of calib std) Analyte quantitation/RLs correct? X X Method (75-125%) X ZRL per ASP Exh E applies for 200.8		
100 Results within criteria if >50xMDL? (max 10%, qualify 15%) x Post digestion spike included? x method (75-125%) 100 %R criteria met? x method (75-125%) Interference check sample data included (ICP/MS only)? x 2RL per ASP Exh E 100 %R criteria met? (80-120%, unspk <2RL,≥2-RL)		
Post digestion spike included? %R criteria met? Interference check sample data included (ICP/MS only)? %R criteria met? (80-120%, unspk <2RL,≥2-RL) Internal standard data included in lab package? Internal standard data included in lab package? Intensities within limits? (min 60-125% of calib std) Analyte quantitation/RLs correct? x method (75-125%) x 2RL per ASP Exh E applies for 200.8		
100 %R criteria met? x method (75-125%) Interference check sample data included (ICP/MS only)? x 2RL per ASP Exh E 100 kg criteria met? (80-120%, unspk <2RL,≥2-RL)		
Interference check sample data included (ICP/MS only)? %R criteria met? (80-120%, unspk <2RL,≥2-RL) Internal standard data included in lab package? Intensities within limits? (min 60-125% of calib std) Analyte quantitation/RLs correct? Internal standard data included in lab package? x applies for 200.8 x Analyte quantitation/RLs correct?	 	
100 %R criteria met? (80-120%, unspk <2RL,≥2-RL)		<u> </u>
Internal standard data included in lab package? Intensities within limits? (min 60-125% of calib std) Analyte quantitation/RLs correct? Intensities within limits? (min 60-125% of calib std) X Analyte quantitation/RLs correct?		
100 Intensities within limits? (min 60-125% of calib std) x Analyte quantitation/RLs correct? x		<u>E</u>
Analyte quantitation/RLs correct? x		

Site Name: Revere Smelting and Refining (Phase 2B FLA/PW Feb15-Jul15) QC Level: NA Laboratory: TestAmerica (Edison, NJ) and TestAmerica (Nashville, TN) Laboratory Job No: see Validation - General Reviewer: Taryn Scholz Date Checked: 99/15 Methods: 1311/3010A/6010C Parameters: TCLP Pb Methods: 1311/3010A/6010C Pker Swept Without leaks used for VOAs? Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve) Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH-5 before or after add 3.5 mL 1N HCl, #2 if pH-5; PRLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-) Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-50.5, #3 reagent water) Appropriate sample weight? (VOA < 25-g, rest about 100-g) Was the correct weight of fluid used? (20x solid weight) X No preservation for aqueous sample aliquots? Proper preservation for leachates? No proper preservation for leachates? No proper preservation for leachates? No proper preservation for leachates? No proper preservation for leachates? No proper preservation for leachates? No proper preservation for leachates? No proper preservation for leachates? No proper preservation for leachates? No proper preservation for leachage? (1/20) No proper preservation for leachage? (1/20) No proper preservation for leachage? (1/20) No proper preservation for leachage? (1/20) No proper preservation for leachage? (1/20) No proper preservation for leachage? (1/20) No proper preservation for leachage? (1/20) No proper preservation for leachage? (1/20) No proper preservation for leachage? (1/20) No proper preservation for leachage? (1/20) No proper preservation for leachage? (1/20) No proper preservation for leachage? (1/20) No proper preservation for leachage? (1/20) No proper pre	Client Na	ame: Entact	Project Number/ Manager: E7976H/ Jenny Self					
Laboratory: TestAmerica (Edison, NJ) and TestAmerica (Nashville, TN) Reviewer: Taryn Scholz Parameters: TCLP Pb Methods: 311/3010A/6010C Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for solis E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-) Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water) Appropriate sample weight? (VOA < 25-g, rest about 100-g) Was the correct weight of fluid used? (30+2 pm, 18+2 hrs, 23+2 C) No preservation for aqueous sample aliquots? Proper preservation for leachates? X (method pH <2) 100 Leach blank data included in Lab Package? (1/20) X (method 180-days) 100 COMMENTS				vel: NA	١	,		
Reviewer: Taryn Scholz Parameters: TCLP Pb ### Was a ZHE vessel without leaks used for VOAs? Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve) Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-) Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water) Appropriate sample weight? (VOA < 25-g, rest about 100-g) Was the correct weight of fluid used? (20x solid weight) Leaching conditions correct? (30+2 rpm, 18+2 hrs, 23+2 C) No preservation for aqueous sample aliquots? Proper preservation for leachates? 100 Holding time to leaching not expired? X Methods: 1311/3010A/6010C Methods: 1311/3010A/6010C MS N N N N (CRITERIA) COMMENT X No N/A (CRITERIA) COMMENT	aborato	ry: TestAmerica (Edison, NJ) and TestAmerica (Nashville, TN)	Labora	tory Jo	b No:	see Validation - General		
Was a ZHE vessel without leaks used for VOAs? Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve) Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH-5 before or after add 3.5 mL 1N HCl, #2 if pH-5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-) Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water) Appropriate sample weight? (VOA < 25-g, rest about 100-g) Was the correct weight of fluid used? (20x solid weight) Ueaching conditions correct? (30+2 rpm, 18+2 hrs, 23+2 C) No preservation for aqueous sample aliquots? Proper preservation for leachates? Holding time to leaching not expired? Leach blank data included in Lab Package? (1/20) Comments	Reviewe	r: Taryn Scholz						
Was a ZHE vessel without leaks used for VOAs? Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve) Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-) Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water) Appropriate sample weight? (VOA < 25-g, rest about 100-g) Was the correct weight of fluid used? (20x solid weight) 100 Leaching conditions correct? (30+2 rpm, 18+2 hrs, 23+2 C) No preservation for aqueous sample aliquots? Proper preservation for leachates? Proper preservation for leachates? Proper preservation for leachates? Proper preservation for leachates? Leach blank data included in Lab Package? (1/20) Comments	Paramete	ers: TCLP Pb	Metho	ds: 131	1/3010	DA/6010C		
Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve) Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-) Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water) Appropriate sample weight? (VOA < 25-g, rest about 100-g) Was the correct weight of fluid used? (20x solid weight) 100 Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C) No preservation for aqueous sample aliquots? Proper preservation for leachates? Proper preservation for leachates? Va (method pH <2) Holding time to leaching not expired? Leach blank data included in Lab Package? (1/20) Criteria met? (< MDL)		%PERFORMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT		
through a 9.5 mm (0.375 inch) standard sieve) Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-) Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water) Appropriate sample weight? (VOA < 25-g, rest about 100-g) Was the correct weight of fluid used? (20x solid weight) Leaching conditions correct? (30+2 rpm, 18+2 hrs, 23+2 C) No preservation for aqueous sample aliquots? Proper preservation for leachates? Holding time to leaching not expired? Leach blank data included in Lab Package? (1/20) Criteria met? (< MDL)		Was a ZHE vessel without leaks used for VOAs?			Х			
solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH-5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-) Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water) Appropriate sample weight? (VOA < 25-g, rest about 100-g) Was the correct weight of fluid used? (20x solid weight) Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C) No preservation for aqueous sample aliquots? Proper preservation for leachates? Holding time to leaching not expired? Leach blank data included in Lab Package? (1/20) Criteria met? (< MDL) COMMENTS		, , , , , ,			х			
Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-) Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water) Appropriate sample weight? (VOA < 25-g, rest about 100-g) Was the correct weight of fluid used? (20x solid weight) Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C) No preservation for aqueous sample aliquots? Proper preservation for leachates? Holding time to leaching not expired? Leach blank data included in Lab Package? (1/20) Criteria met? (< MDL) COMMENTS		solids->analyze filtered waste, if >0.5%->leach solids, combine with			х			
SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water) Appropriate sample weight? (VOA < 25-g, rest about 100-g) Was the correct weight of fluid used? (20x solid weight) 100 Leaching conditions correct? (30+2 rpm, 18+2 hrs, 23+2 C) No preservation for aqueous sample aliquots? Proper preservation for leachates? Holding time to leaching not expired? Leach blank data included in Lab Package? (1/20) Criteria met? (< MDL) COMMENTS		pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)	х			No. 1 for all		
Was the correct weight of fluid used? (20x solid weight) 100 Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C) No preservation for aqueous sample aliquots? Proper preservation for leachates? Holding time to leaching not expired? Leach blank data included in Lab Package? (1/20) Criteria met? (< MDL) X (method pH <2) X (method 180-days)			х					
100 Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C) x		Appropriate sample weight? (VOA < 25-g, rest about 100-g)	Х					
No preservation for aqueous sample aliquots? Proper preservation for leachates? 100 Holding time to leaching not expired? Leach blank data included in Lab Package? (1/20) Criteria met? (< MDL) X (method pH <2) X (method 180-days) X (method 180-days)		Was the correct weight of fluid used? (20x solid weight)	Х					
Proper preservation for leachates? 100 Holding time to leaching not expired? Leach blank data included in Lab Package? (1/20) Criteria met? (< MDL) X (method pH <2) X (method 180-days) X (construction of the proper preservation for leachates? X (method pH <2) X (method 180-days) X (construction of the proper preservation for leachates? X (method pH <2) X (construction of the proper preservation for leachates? X (method pH <2) X (construction of the proper preservation for leachates? X (construction of the proper preservation for leachates? X (construction of the proper preservation for leachates? X (construction of the proper preservation for leachates? X (construction of the proper preservation for leachates? X (construction of the proper preservation of the p	100	Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)	Х					
100 Holding time to leaching not expired? Leach blank data included in Lab Package? (1/20) Criteria met? (< MDL) COMMENTS X (method 180-days) X Commendation of the process of the		No preservation for aqueous sample aliquots?			х			
Leach blank data included in Lab Package? (1/20) 100 Criteria met? (< MDL) COMMENTS		Proper preservation for leachates?	х			(method pH <2)		
100 Criteria met? (< MDL) x	100	Holding time to leaching not expired?	Х			(method 180-days)		
COMMENTS		Leach blank data included in Lab Package? (1/20)	Х					
COMMENTS	100	Criteria met? (< MDL)	Х					
TCLP Batches: 190004, 190405	OMME	NTS						
	CLP Ba	tches: 190004, 190405						
		<u> </u>						

lient Na	ame: Entact	Proiec	t Numl	per/ Ma	anager: E7976H/ Jenny Self
Site Nan	ne: Revere Smelting and Refining (Phase 2B FLA/PW Feb15-Jul15)	QC Le			, , , , , , , , , , , , , , , , , , , ,
	ory: TestAmerica (Edison, NJ) and TestAmerica (Nashville, TN)	Labora	atory J	ob No:	see Validation - General
Reviewe	r: Taryn Scholz	Date C	Checke	d: 9/9/	15
aramet	ers: TDS, TSS, BOD	Metho	ds: 25	40C, 25	540D, 5210B
	%PERFORMED/ ITEM	YES	NO	N/A	CRITERIA
	Method blank data included in Lab Package?	Х			
100	Criteria met? (< MDL)		Х		see QC Deficiencies
100	Criteria met for field blanks? (< MDL)			Х	
	QC check samples/LCS data included in lab package?	Х			
	All project COCs or TAs included?	Х			
100	%R criteria met? (individual and overall)	Х			
	Matrix spike data included in lab package?			Х	
100	%R criteria met? (individual and overall)			Х	
	Sample duplicate data included in lab package?	Х			
100	RPD criteria met?	Х			
100	Field dup RPD criteria met? (individual, mean, and overall)			х	
	Calibration verification data included in lab package?			Х	
	ICV %R criteria met? (90-110% IC, 85-115% CN)			Х	
NA	CCV %R criteria met? (90-110% IC, 85-115% CN)			Х	
	Analyte quantitation/RLs correct?				
10	QC parameters calculated correctly?				
COMME					

Page 5 of 5 10/2/2015

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples

February 2015 to July 2015

Prepared by:

Quality Assurance Associates (*QAALLC*)
1007 Francis Drive
College Station, TX 77840
www.qaallc.com

979-694-7199

November 11, 2015

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	
2.0	PRO	CEDURI	ES	5
0.0	D.4.T.	A \ / A L ID	ATION REQUITO	_
3.0	DAT	A VALID	ATION RESULTS	
	3.1	PREC	ISION	7
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	7
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	7
		3.1.3	Field Duplicate (FD) Precision	7
	3.2	ACCU	RACY	8
		3.2.1	Laboratory Control Spike (LCS) Accuracy	8
		3.2.2	Matrix Spike (MS) Accuracy	8
		3.2.3	Serial Dilution (SD) %Difference	9
		3.2.4	Surrogate (SU) Recovery	9
	3.3	REPR	ESENTATIVENESS	9
		3.3.1	Chain-of-Custody and Analysis Requests	9
		3.3.2	Sample Preservation and Holding Time	10
		3.3.3	Laboratory and Method Selection	10
		3.3.4	Blanks (Laboratory and Field)	11
		3.3.5	Analytical Procedures	11
	3.4	COMP	PLETENESS	12
		3.4.1	Laboratory Deliverables Completeness	12
		3.4.2	EDD Correctness	12
		3.4.3	Analytical Completeness	13
	3.5	COMP	PARABILITY	13

LIST OF TABLES

Table 1 - Sample Summary

Table 2 - Data Validation Qualifiers (DVQs)

Table 3 – QC Deficiencies and Data Qualification Actions

Table 4 – Qualified Results for Field Samples

Table 5 - Field Duplicate Results

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The independent data review was completed in accord with the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The data include 200 investigative soil samples plus the associated field QC samples, which were collected by ENTACT in February 2015 through July 2015 with the intended use of confirming that backfill materials are suitable for use on-site and verifying that remediation goals have been achieved in excavated grids. A complete listing of the samples collected and tests performed is shown in Table 1. QAA performed a full validation of the data and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010) as specified in Section 5.9 of the Workplan. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Superfund Data Review* (August 2014) and *National Functional Guidelines for Superfund Organic Methods Data Review* (August 2014), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The Workplan stipulates that the precision control limits will be dictated by the analytical method. The validator assessed precision using the laboratory and field duplicates, and the limits are 20-32 RPD depending upon the test. The laboratory prepared a laboratory control spike duplicate (LCSD) using reagent water or sand for each VOC analytical batch plus at least one unspiked matrix duplicate (MD) or matrix spike duplicate (MSD) using a sample from the site for each test except Metals, Pest, PCB, Herb, and VOC for the backfill samples. All LCS/LCSD RPDs are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects. The RPDs for the matrix duplicates are within the limits, which indicates good precision for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the duplicate. Of the 1,666 total results for field samples (investigative samples and field duplicates), only fifteen (15) results (for total Lead) are qualified as estimated (J) based on matrix duplicate precision. Additionally, the sampler collected three field duplicates for TCLP Lead and eight field duplicates for total Arsenic/Lead with the 200 investigative samples and the RPDs are within the limits, which indicates good precision for the sampling and analytical technique, or the validator qualified the results for the original and duplicate sample. One (for total Lead) of the 19 pairs of results is qualified as estimated (J) based on field duplicate precision.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The Workplan stipulates that the accuracy control limits will be dictated by the analytical method. The validator assessed accuracy using the laboratory spikes and matrix spikes, and the limits are either 75-125%, 80-120%, or the laboratory/manufacturer's established control limit for soils/solid reference materials (which range from 0.1%-209.5% for this data set). In order to better assess data usability, limits of 50-200% were employed where the method limits for a spiked analyte falls outside these values. The laboratory prepared a laboratory control spike (LCS) using reagent water or sand with each analytical

batch and reported the recovery for all spiked compounds, which included every target compound except the multicomponent pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result). The laboratory also prepared a laboratory control spike duplicate (LCSD) with each VOC analytical batch. The LCS/LCSD recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects, with some exceptions for Antimony, a few VOC and SVOC analytes, and Cyanide. (Note that in each case the recoveries are within the laboratory limits or are outside the limits for only a small percentage of the total number of target analytes for the test, and thus corrective action was not required.) Most of the exceedances did not result in data qualification (e.g., the recovery was above the limit indicating a potential bias for detected results and the analyte was not detected in any of the associated samples) with just eight results (one for Antimony and seven for Cyanide) being qualified as not detected at an estimated reporting limit (UJ) due to laboratory spike recovery. Additionally, the laboratory prepared four matrix spike samples (MS) along with four post digestion spikes (PDS) and serial dilutions (SD) for TCLP Lead, eight MS/PDS/SD for total Arsenic/Lead, two MS/SD for Mercury, one MS for Chromium VI, two MS along with two matrix spike duplicate samples (MSD) for SVOC, and two MS/MSD for Cyanide using a sample from the site. All SD %differences are within the laboratory limits, which indicates there is no matrix interference affecting the accuracy of metals results that are substantially above the reporting limit. The MS/MSD/PDS recoveries are within the laboratory limits, which indicates good accuracy for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the spike samples. One result (the non-detect for Pentachlorophenol in BF-5L-GF-4c-01) is qualified as rejected (R) due to extremely low matrix spike recovery (<20%). Of the remaining 1,665 total results for field samples, only sixteen (16) results (one for 2-Methylphenol and 15 for total Lead) are qualified as estimated based on matrix spike recovery. Additionally, the laboratory utilized one or more surrogate spikes for each organic analysis. The surrogate recoveries are within the laboratory limits for all field samples except three VOC samples. Each of these exceedances is above the limit indicating a potential bias for detected results. The samples are non-detect for all VOC analytes, and thus laboratory corrective action was not required and the validator did not qualify the data.

Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, investigative samples were collected as required in the approved sampling and analysis plans. (Note that sampling is an on-going process at the site and all samples may not be reflected in this validation batch.) Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory and field QC blanks, and analytical instrument setup (i.e., tuning, calibration, interference correction, etc.) For all samples, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation with one exception. The detect for Mercury in sample ECS-WSTREAM-13+00-F is qualified as estimated (J) because the sample was received outside the temperature criteria at 6.6 C. The laboratory prepared and analyzed a method blank with each analytical batch and the sampler collected a trip blank with the VOC samples. The laboratory and field QC blanks show no contamination, which indicates the samples were not affected by laboratory or field procedures, or the validator qualified the samples associated with the blank that have a concentration similar to the blank. Six detects for Methylene Chloride (which is all the Methylene Chloride detects for this event) are qualified as potentially contaminated (U) due to laboratory blank contamination below the reporting limit but above the detection limit. Additionally, the validator qualified three detects for Cyanide due to lowlevel laboratory blank contamination using the UJ flag since the results are also associated with low laboratory

spike recovery. Proper analytical procedures were used and calibration results met the method requirements or the validator qualified the affected samples. Seventeen (17) non-detect results for Acetone, Methyl Ethyl Ketone (2-Butanone), or Tetrachloroethylene (PCE) are qualified as estimated (UJ) due to calibration drift. Note that in each case only a small percentage of the total number of target analytes for the test is affected, and thus corrective action was not required.

- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. The validator rejected just one of the 1,666 total results for field samples, which gives a completeness of 99.9%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions or revisions were provided by the laboratory upon request.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated. Note that results for all field samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in μg/L for TCLP metals, and in μg/kg with dry-weight correction for organics.

DATA USABILITY

The following non-detect result is qualified as rejected (R):

Lab ID	Field ID	Test	Analyte(s)	Result	DVQ	QC Issue
460-97323-3	BF-5L-GF-4c-01	SVOC	Pentachlorophenol	280 U μg/kg	R	Low matrix spike recovery (22%); Extremely
						low matrix spike duplicate recovery (17%)

For this result, the absence or presence of the analyte cannot be confirmed in the sample due to serious QC issues, and thus it is not suitable for use.

All other results for the samples are acceptable for use with the qualifications shown in Table 4, as follows:

- Six (6) detects for Methylene Chloride in the backfill samples are qualified with a U (potentially contaminated) and the analyte should be considered not detected at the associated value, which is the higher of the measured concentration or the sample reporting limit (RL). In each case, the associated value (0.76-0.95 μg/kg) is well below the Allowable Constituent Level (ACL) for imported fill or soil from Appendix 5 of the DER-10 (50 μg/kg), and thus there is negligible effect on data quality.
- Three (3) detects for Cyanide in the backfill samples are qualified with a UJ (potentially contaminated at an
 estimated reporting limit) and the analyte should be considered not detected at the associated value, which is an
 estimated value. In each case, the associated value (0.10-0.12 mg/kg) is well below the ACL (27 mg/kg), and thus
 there is negligible effect on data quality.
- Twenty-two (22) non-detects for Cyanide, Acetone, Methyl Ethyl Ketone (2-Butanone), Tetrachloroethylene (PCE), or 2-Methylphenol (o-Cresol) in the backfill samples are qualified with a UJ (estimated) and the analyte should be considered not present above the reporting limit; however the reporting limit is an estimated value. In each case, the sample reporting limit (RL) is well below (more than ten times) the ACL, and thus there is negligible effect on data quality, with one exception:

QAALLC

Lab ID	Field ID	Test	Analyte(s)	Result	ACL	DVQ	QC Issue
460-	BF-5L-GF-	SVOC	2-Methylphenol	350 U µg/kg	330 µg/kg	UJ	Low matrix spike recovery (52%)
97323-3	4c-01		(o-Cresol)				

Though non-detects are reported at the sample reporting limit (RL) as requested, the samples were evaluated to the method detection limit (MDL). The MDL for this sample is 15 μ g/kg, which is well below (more than ten times) the ACL and thus there is negligible effect on data quality.

- One non-detect for Antimony in an excavation confirmation sample (ECS-WSTREAM-25+00-F) is qualified with a
 UJ (estimated) and the analyte should be considered not present above the reporting limit; however the reporting
 limit is an estimated value. There is no established level of concern for this analyte.
- One detect for Mercury in an excavation sample (ECS-WSTREAM-13+00-F) is qualified with a J (estimated). This
 result can be used for determining the presence of the analyte; however, the concentration reported may be either
 high or low. There is no established level of concern for this analyte.
- Fifteen (15) detects for Lead in the excavation confirmation samples are qualified with a J (estimated). These results can be used for determining the presence of the analyte; however, the concentration reported may be either high or low. The results are flagged due to high matrix spike recovery (207%) and poor lab duplicate precision (66 RPD), which indicates a maximum potential +/-2x bias. In each case, the result is below (more than two times) the 400 mg/kg remedial goal, and thus there is minimal effect on data quality.
- Two (2) detects for Lead in excavation confirmation samples ECS-WSTREAM-25+00-SE and its field duplicate are
 qualified with a J (estimated) due to poor field duplicate precision. For a conservative approach relative to protection
 of the environment, the higher result for this pair (which is reported in the original sample ECS-WSTREAM-25+00SE for Lead) should be used for project decisions.
- The remaining 76 results with J flags are qualified solely because the concentration is between the MDL and RL. In each case, the actual value is not expected to exceed the sample RL.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include pdf data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). The laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- · Laboratory Deliverables Completeness,
- EDD Correctness,
- Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- · Laboratory and Method Selection,
- · Instrument Tuning and Initial Calibration,
- Calibration Verification,
- Interference Check Standards (ICS),
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- Matrix Duplicates (MD),
- Field Duplicates (FD),
- Dual Column Confirmation,
- Surrogates (SU), and
- Internal Standards (IS).

Additionally, the validator examined the raw data for 10% of the sample batches (randomly selected by the validator across the various analysis dates and tests) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are either specific numerical values or the laboratory-derived recovery control limits based on historical performance (but not less than 50% lower limit or greater than 200% upper limit)
- Laboratory Precision the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are either specific numerical values or the laboratory-derived recovery control limits based on historical performance (but not greater than 40%)
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator

Quality Assurance Associates QAALLC

DATA USABILITY SUMMARY REPORT

considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. Data rejection limits of 40% and 30% for inorganics laboratory and matrix spikes, and 30%, 20% and 10% for organics laboratory, matrix and surrogate spikes were used. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

The laboratory analyzed an LCSD and reported RPDs for all target compounds for each VOC batch (maximum 20 samples). All LCSD RPDs are at or below the criteria.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every inorganics analytical batch (maximum 20 samples) and an MSD for every organics analytical batch (maximum 20 samples) and reported RPDs for MD and MSD prepared using a sample from the site or another site. MD/MSD prepared with a sample from another site were not evaluated, since they do not reflect data quality for the site. No soil samples were designated by the sampler for MD/MSD for the backfill samples; however, the laboratory selected one or more backfill samples for batch QC for Mercury, Chromium VI, SVOC, and Cyanide. Eight excavation confirmation soil samples (seven of which were designated by the sampler on the custody record) were used to prepare an MD for total Arsenic/Lead and four of these were also used for TCLP Lead. With a total of 173 investigative confirmation samples, this is slightly below the Workplan requirement of one per 20 or fewer samples per sample matrix.

Two of the RPDs for MD prepared using a sample from the site are above the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that, for cases where either result for the duplicate pair is non-detect, the check does not apply and the laboratory reported the RPD as NC (not calculable) in the pdf report and as 0 in the EDD. Additionally, the validator considered samples of the same media (i.e., backfill or excavation confirmation) and source to be of similar matrix (e.g., if deficiencies were noted for a MD or MSD prepared using a backfill sample from a particular source, all backfill samples from that source in the same analytical batch were qualified).

3.1.3 FIELD DUPLICATE (FD) PRECISION

The samplers collected eight FD with the 173 investigative confirmation samples, which is slightly below the Workplan requirement of one per 20 or fewer samples per sample matrix. No FD were collected with the backfill samples. Results for the field duplicates are summarized in Table 5.

One pair of results is outside the field precision criteria and the validator qualified the data as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4

lists all qualified results for the field samples. Note that the remaining 18 pairs of FD results meet the criteria, which indicates good overall precision, and thus the validator only qualified the original and duplicate sample for the FD deficiency.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD), matrix spikes including post digestion spikes (MS/MSD/PDS), serial dilutions (SD), and surrogate (SU) spikes. LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD/PDS are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit. Surrogates are added to each sample before preparation and analysis and provide an indication of accuracy for each individual sample analysis.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

The laboratory analyzed a LCS and/or LCSD for every analytical batch (maximum 20 samples) as required and reported recoveries for all target compounds except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result).

Some LCS/LCSD recoveries are outside the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator did not qualify the data for cases where the LCS or LCSD recovery for an organic analyte is outside the criteria (i.e., the laboratory-derived recovery control limits based on historical performance or 50-200%, whichever is more stringent) but within 70-130% since this is considered within the inherent method error and suitable for the intended use. Additionally, the validator did not qualify the data for cases where the LCS or LCSD recovery is outside the criteria (but greater than the data rejection limit) but the average LCS/LCSD recovery is within control.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS/PDS for every inorganics analytical batch (maximum 20 samples) and an MS/MSD for every organics analytical batch (maximum 20 samples) and reported recoveries for MS/PDS/MSD prepared using a sample from the site or another site. MS/PDS/MSD prepared with a sample from another site were not evaluated, since they do not reflect data quality for the site. No soil samples were designated by the sampler for MS/PDS/MSD for the backfill samples; however, the laboratory selected one or more backfill samples for batch QC for Mercury, Chromium VI, SVOC, and Cyanide. Eight excavation confirmation soil samples (seven of which were designated by the sampler on the custody record) were used to prepare an MD for total Arsenic/Lead and four of these were also used for TCLP Lead. With a total of 173 investigative confirmation samples, this is slightly below the Workplan requirement of one per 20 or fewer samples per sample matrix.

Some of the recoveries for MS prepared using a sample from the site are outside the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. The validator considered samples of the same media (i.e., backfill or excavation confirmation) and source to be of similar matrix (e.g., if

deficiencies were noted for a MS/MSD prepared using a backfill sample from a particular source, all backfill samples from that source in the same analytical batch were qualified).

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all target compounds detected above 50x the method detection limit (MDL). All %differences for SD prepared using a sample from the site are at or below the control limit (10%).

3.2.4 SURROGATE (SU) RECOVERY

The laboratory spiked each organic sample with one or more surrogates before preparation and analysis.

Some surrogate recoveries are outside the control limits and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records, which confirms that sample integrity was maintained. The validator noted the following regarding the custody records and sample log-in at the laboratory:

- All samples were received within two days of collection as recommended in DER-10, except as follows:
 - o For work order 460-96096-1, the samples were received on 6/9/15, which was five days after collection due to shipment issues. All of the samples are backfill soil samples with two samples (BF-ETETZ-GF-1c-01 and BF-ETETZ-GF-1c-02) requiring analysis for DER-10 total metals including Mercury, Chromium III/VI, PEST, PCB, HERB, SVOC, and Cyanide and the rest requiring analysis for DER-10 VOC. The samples were received at proper temperature (5.7 C) on ice under custody seal; however, the VOC samples were received beyond the laboratory standard two-day holding time from collection to freezing, and thus these analyses were cancelled and the samples were re-collected on 6/10/15. The second set of VOC samples was logged in using laboratory IDs of 460-96245-1 to 460-96245-8 but are reported under the original work order (460-96096-1).
 - o For work order 460-96099-1, the samples were received on 6/9/15, which was five days after collection due to shipment issues. All of the samples are soil samples requiring analysis for total Arsenic/Lead and TCLP lead. The samples were received at proper temperature (5.7 C) on ice under custody seal and well before holding time expiration. Thus, the laboratory proceeded with analyses as requested.
- For work order 460-96096-1, the documentation indicates that no custody seals were used for the transfer of the VOC grab samples (BF-ETETZ-GF-1g-01 through BF-ETETZ-GF-1g-07) from the field to the laboratory. The samples were transferred by commercial, overnight courier and were received in good condition, and thus no further action was taken.

- For work order 460-95664-1, the container was received broken but intact for ECS-Area19-D18-F. The sample was transferred to new containers upon receipt. Analyses were performed for metals only, and thus this is not considered to significantly affect data quality and no further action was taken.
- For work order 460-96096-1, one of the two 8-ounce jars collected on 6/4/15 for BF-ETETZ-GF-1c-01 was received broken. A second aliquot was collected on 6/10/15 and sent to the laboratory to be used as needed. All analyses were performed using the remaining container from 6/4/15.

All samples were analyzed for the tests requested on the chain-of-custody, and the information on the custody record is correct and agrees with that reported in the analytical results except as follows:

- For work orders 460-96336-1, 460-98313-1, and 460-98409-1, the sample IDs for one or more samples were revised from those on the custody record per ENTACT'S request.
- For work order 460-97009-1, the sampler did not indicate any requested tests on the custody record for sample ECS-WSTREAM-25+00-SE-X. The laboratory logged in the sample for total Arsenic/Lead per ENTACT's request and the project plan.
- For work order 460-97107-1, the custody record incorrectly indicates that the trip blank was of solid matrix. The laboratory received an aqueous trip blank and proceeded with DER-10 VOC analysis as planned.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

All samples were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan, and/or SW-846, which confirms that sample results are not affected by sample degradation, except as follows:

• For work order 460-94569-1, the samples were received at 6.6 C on ice. This is above the laboratory's standard receipt requirement of ≤6 C. All of the samples in this work order are soil samples with one sample (ECS-WSTREAM-13+00-F) analyzed for TAL Metals (including Mercury) and the rest analyzed for total Arsenic/Lead only. Per the Workplan and SW846, soil samples to be analyzed for metals with the exception of Mercury and Chromium VI do not require thermal preservation; while soil samples to be analyzed for Mercury require cooling to <6 C.

As a result, the validator qualified the Mercury detect in ECS-WSTREAM-13+00-F as estimated (J). The remaining metals results were not qualified.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (no. 11452).

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. (In some cases, the method update number used by the laboratory may differ from that in the Workplan. For example, method 8260C was used rather than 8260B for the VOCs for the backfill samples.)

For the backfill samples, the target analyte list includes all DER-10 analytes and the nominal reporting limits (i.e., without dryweight correction or sample dilution and based on the standard sample weight and final volume) are at or below the levels of concern (i.e., the Allowable Constituent Levels (ACLs) for imported fill or soil from Appendix 5 of the DER-10), except as follows:

- DER-10 Appendix 5 lists m-Cresol(s), o-Cresol(s), and p-Cresol(s). The laboratory reported m & p-Cresols and o-Cresol as it is not possible to separate m-Cresol and p-Cresol using method 8270D.
- DER-10 Appendix 5 lists Chlordane (alpha). The laboratory reported technical Chlordane, which is a commercial mixture that contains alpha-Chlordane and gamma-Chlordane along with other related compounds.
- The laboratory reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) for the backfill samples instead of the DER-10 analytes as requested on the custody record.

None of the backfill samples required dilution, and thus none have elevated reporting limits.

For the excavation confirmation samples, the target analyte list includes total Arsenic, total Lead, and/or TCLP Lead as requested and all Contract Laboratory Program (CLP) metals for the TAL metals. The nominal reporting limits are below the levels of concern (i.e., the remedial goals) for total Arsenic, total Lead, and TCLP Lead. There are no established levels of concern for the TAL metals. The nominal reporting limits comply with the requirements in the ASP for TAL metals with the exception of Iron, which has a nominal reporting limit of 30 mg/kg that is above the ASP reporting limit of 20 mg/kg.

Some of the excavation confirmation samples required dilution, but none has elevated reporting limits for a non-detect result with one exception:

 The non-detect for Selenium in ECS-AREA22-N21SE-F is reported at a 10x dilution, which was required for analysis of the sample.

(Note: The laboratory dilutes all total metals samples 2-4x before analysis as standard practice. All Revere samples were diluted 4x and thus nominal reporting limits were determined at this dilution rate. The laboratory also dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank (and leachate blank for TCLP) for every analytical batch (maximum 20 samples) and a calibration blank for every 10 metals analyses as required per the analytical methodology. Additionally, a trip blank was included with the single shipment of VOC samples, which meets the Workplan requirement of one for every cooler of VOC samples. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used.

Some detects are reported in the laboratory blanks and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator calculated a blank equivalent concentration taking into account the sample weight, moisture content, and dilution factor for each sample when determining if the contamination in the blank is near that in the sample, and thus if data quality is affected for that sample.

3.3.5 ANALYTICAL PROCEDURES

The analytical procedures (instrument tuning and initial calibration, calibration verification, interference check standards, dual column confirmation, and internal standards), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method with a few exceptions. The validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

No issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes 93 analytical batches. The validator re-calculated sample results and QC check parameters for nine batches and made the following observations from the review of the raw data:

- The laboratory used dual column confirmation for all GC analyses (including Pesticides, PCBs, and Herbicides). For surrogates and spiked analytes, the laboratory reports the results from both columns in the pdf report. For target analytes in blanks and field samples (and as the reportable result in the EDD for surrogates and spiked analytes), the laboratory reports the result from the column with the higher concentration (unless chromatographic performance is better on one column and it is therefore used for all analyses), provided that the RPD between the two columns is less than 40%. If the RPD is greater than 40%, the column with the lower concentration is reported with a note in the narrative and the result is reported with a P flag. The RPD did not exceed 40% for any field or QC samples in this data set. (All field samples are non-detect.)
- For batch 305340 in work order 460-96483-1, the validator noted that the Q value is low (30-32) and the printed spectra do not show the characteristic ions for the Methylene Chloride detects in the laboratory blank and samples 1 through 6, and thus requested that the laboratory confirm the presence of this analyte. Per the laboratory, the Methylene Chloride target concentration is small and present but is co-eluting with the larger concentration of the internal standard TBA-d9, and thus the smaller target spectrum of the Methylene Chloride was obscured by the larger internal standard. No further action is required.
- For batch 305298 in work order 460-96483-1, the retention time for the 8082A Decachlorobiphenyl surrogate in samples 8 and 9 on the secondary column (CLP-2) is outside the established window (11.25-11.39) at 11.23 minutes. The retention time on the primary column is within the window and the samples are all non-detect, and thus there is no effect on data quality.

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

The Level 4 data packages and EDD contain all necessary information or the laboratory submitted a revision upon request as detailed in the case narratives.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Work Order(s)	Sample(s)	EDD Field(s)	Action
All	All laboratory QC	sampling_technique	The validator changed the entry from null to the
	samples		default entry (UN) to meet NYSDEC requirements.
460-96096-1	All backfill	composite_yn	The validator changed the entry from N to Y based
460-96483-1	composite samples		on the custody record.
460-97107-1	(*c-001 and *c-002)		
460-97323-1	,		

Laboratory Work Order(s)	Sample(s)	EDD Field(s)	Action
All	All 6010C total	prep_method	The validator changed the method reference from
	metals samples		SW3020B to SW3050B based on the pdf analytical
			results and as confirmed by the laboratory.

3.4.3 ANALYTICAL COMPLETENESS

The validator rejected one non-detect result for Pentachlorophenol due to extremely low matrix spike duplicate recovery. With 1,666 total results for field samples (investigative samples and field duplicates), this gives a completeness of 99.9%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which a target analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which a target analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size and include dry-weight correction for all soil samples as required per Section 5.7.1 of the Workplan. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results for the investigative samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in μ g/L for TCLP metals, and in μ g/kg with dry-weight correction for organics. (For the 7196A analyses, Chromium III is shown as not dry-weight corrected. Chromium III is calculated from the results for Chromium VI and total Chromium, which are dry-weight corrected, and thus the Chromium III is not directly dry-weight corrected but is on a dry-weight basis.)

The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated.

TABLE 1

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Phase II-B Remedial Design/ Remedial Action
Backfill and Post-Excavation Confirmation Samples
February 2015 to July 2015

SAMPLE SUMMARY

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-94449-1	ECS-WStream-11+00F	5/6/15	INV	ECS	Soil		Х										
460-94449-2	ECS-WStream-11+00WB	5/6/15	INV	ECS	Soil		Х										
460-94449-3	ECS-WStream-11+00EB	5/6/15	INV	ECS	Soil		Х										
460-94449-4	ECS-WStream-11+50F	5/6/15	INV	ECS	Soil		Х										
460-94449-5	ECS-WStream-11+50WB	5/6/15	INV	ECS	Soil		Х										
460-94449-6	ECS-WStream-11+50EB	5/6/15	INV	ECS	Soil		Х										
460-94449-7	ECS-WStream-12+00F	5/6/15	INV	ECS	Soil		Х										
460-94449-8	ECS-WStream-12+00WB	5/6/15	INV	ECS	Soil		Х										
460-94449-9	ECS-WStream-12+00EB	5/6/15	INV	ECS	Soil		Х										
460-94569-1	ECS-WSTREAM-12+50-F	5/7/15	INV	ECS	Soil		Х										
460-94569-2	ECS-WSTREAM-12+50-EB	5/7/15	INV	ECS	Soil		Х										
460-94569-3	ECS-WSTREAM-12+50-WB	5/7/15	INV	ECS	Soil		Х										
460-94569-3LR	ECS-WSTREAM-12+50-WB	5/7/15	MD	ECS	Soil		Х										
460-94569-3MS	ECS-WSTREAM-12+50-WB	5/7/15	MS	ECS	Soil		Х										
460-94569-4	ECS-WSTREAM-13+00-F	5/7/15	INV	ECS	Soil			Х	Х								
460-94569-5	ECS-WSTREAM-13+00-EB	5/7/15	INV	ECS	Soil		Х										
460-94569-6	ECS-WSTREAM-13+00-WB	5/7/15	INV	ECS	Soil		Х										
460-94569-7	ECS-WSTREAM-13+50-F	5/7/15	INV	ECS	Soil		Х										
460-94569-8	ECS-WSTREAM-13+50-EB	5/7/15	INV	ECS	Soil		Х										
460-94569-9	ECS-WSTREAM-13+50-EB-X	5/7/15	FD	ECS	Soil		Х										
460-94569-10	ECS-WSTREAM-13+50-WB	5/7/15	INV	ECS	Soil		Х										
460-94569-11	ECS-WSTREAM-14+00-F	5/7/15	INV	ECS	Soil		Х										
460-94569-12	ECS-WSTREAM-14+00-EB	5/7/15	INV	ECS	Soil		Х										
460-94569-13	ECS-WSTREAM-14+00-WB	5/7/15	INV	ECS	Soil		Х										
460-94614-1	ECS-WSTREAM-14+50-F	5/8/15	INV	ECS	Soil		Х										
460-94614-2	ECS-WSTREAM-14+50-WB	5/8/15	INV	ECS	Soil		х										
460-94614-2LR	ECS-WSTREAM-14+50-WB	5/8/15	MD	ECS	Soil		х										
460-94614-2MS	ECS-WSTREAM-14+50-WB	5/8/15	MS	ECS	Soil		Х										
460-94614-3	ECS-WSTREAM-15+00-F	5/8/15	INV	ECS	Soil		Х										
460-94614-4	ECS-WSTREAM-15+00-WB	5/8/15	INV	ECS	Soil		Х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-94614-5	ECS-WSTREAM-15+50-F	5/8/15	INV	ECS	Soil		Х										
460-94614-6	ECS-WSTREAM-15+50-EB	5/8/15	INV	ECS	Soil		Х										
460-94614-7	ECS-WSTREAM-15+50-WB	5/8/15	INV	ECS	Soil		Х										
460-94648-1	ECS-WSTREAM-16+00-F	5/11/15	INV	ECS	Soil		Х										1
460-94648-2	ECS-WSTREAM-16+00-F-X	5/11/15	FD	ECS	Soil		Х										1
460-94648-3	ECS-WSTREAM-16+00-EB	5/11/15	INV	ECS	Soil		Х										
460-94648-4	ECS-WSTREAM-16+00-WB	5/11/15	INV	ECS	Soil		Х										
460-94648-5	ECS-WSTREAM-16+50-F	5/11/15	INV	ECS	Soil		Х										
460-94648-6	ECS-WSTREAM-16+50-EB	5/11/15	INV	ECS	Soil		Х										
460-94648-7	ECS-WSTREAM-16+50-WB	5/11/15	INV	ECS	Soil		Х										
460-94648-7LR	ECS-WSTREAM-16+50-WB	5/11/15	MD	ECS	Soil		Х										
460-94648-7MS	ECS-WSTREAM-16+50-WB	5/11/15	MS	ECS	Soil		Х										
460-94648-8	ECS-WSTREAM-17+00-F	5/11/15	INV	ECS	Soil	Х	Х										
460-94648-9	ECS-WSTREAM-17+00-EB	5/11/15	INV	ECS	Soil	х		Х	Х								
460-94648-10	ECS-WSTREAM-17+00-WB	5/11/15	INV	ECS	Soil	Х	Х										
460-94905-1	ECS-WSTREAM-13+50-EB-R	5/14/15	INV	ECS	Soil		Х										1
460-94905-2	ECS-WSTREAM-13+50-WB-R	5/14/15	INV	ECS	Soil		Х										
460-94905-3	ECS-WSTREAM-16+00-WB-R	5/14/15	INV	ECS	Soil		Х										1
460-94905-4	ECS-WSTREAM-16+50-WB-R	5/14/15	INV	ECS	Soil		Х										
460-94905-5	ECS-WSTREAM-16+50-F-R	5/14/15	INV	ECS	Soil		х										
460-95432-1	ECS-Area 18-D16-SS	5/26/15	INV	ECS	Soil		х										
460-95503-1	ECS-AREA TP-B20S-SS	5/27/15	INV	ECS	Soil	х	х										
460-95503-2	ECS-AREA TP-B20S-SE	5/27/15	INV	ECS	Soil	х	х										
460-95503-3	ECS-AREA TP-B20S-F	5/27/15	INV	ECS	Soil	Х	Х										
460-95503-4	DS-AREA TP-B20S-SW	5/27/15	INV	ECS	Soil	х	х										
460-95503-5	ECS-AREA TP-B20N-F	5/27/15	INV	ECS	Soil	Х	Х										
460-95503-6	ECS-AREA TP-B20N-SE	5/27/15	INV	ECS	Soil	х	х										
460-95503-7	DS-AREA TP-B20N-SW	5/27/15	INV	ECS	Soil	Х	Х										
460-95503-8	ECS-AREA TP-B19S-SN	5/27/15	INV	ECS	Soil	х	х										
460-95503-9	ECS-AREA TP-B19S-SE	5/27/15	INV	ECS	Soil	х	х										
460-95503-10	ECS-AREA TP-B19S-F	5/27/15	INV	ECS	Soil	х	х										
460-95503-11	DS-AREA TP-B19S-SW	5/27/15	INV	ECS	Soil	Х	Х										
460-95599-1	DS-Area TP-B17W-SN	5/28/15	INV	ECS	Soil	х	х										
460-95599-2	DS-Area TP-B17W-SW	5/28/15	INV	ECS	Soil	х	х										
460-95599-3	ECS-Area TP-B17W-SS	5/28/15	INV	ECS	Soil	х	х										
460-95599-4	ECS-Area TP-B17W-F	5/28/15	INV	ECS	Soil	х	х										
460-95599-5	ECS-Area TP-B17E-SS	5/28/15	INV	ECS	Soil	х	х										
460-95599-6	ECS-Area TP-B17E-F	5/28/15	INV	ECS	Soil	х	х										
460-95599-7	DS-Area TP-B17E-SN	5/28/15	INV	ECS	Soil	х	х										
460-95599-8	ECS-Area TP-C17W-SS	5/28/15	INV	ECS	Soil	х	х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-95599-9	ECS-Area TP-C17W-F	5/28/15	INV	ECS	Soil	Х	Х										
460-95599-10	DS-Area TP-C17W-SN	5/28/15	INV	ECS	Soil	Х	Х										
460-95664-1	DS-Area19-D17-SN	5/29/15	INV	ECS	Soil	Х	Х										
460-95664-2	ECS-Area19-D17-F	5/29/15	INV	ECS	Soil	Х	Х										
460-95664-3	ECS-Area19-D18-F	5/29/15	INV	ECS	Soil	Х	Х										
460-95664-4	ECS-Area19-D18-SW	5/29/15	INV	ECS	Soil	Х	Х										
460-95672-1	DS-AreaTP-C17E-SN	5/30/15	INV	ECS	Soil	Х	Х										
460-95672-2	ECS-AreaTP-C17E-F	5/30/15	INV	ECS	Soil	Х	Х										
460-95672-3	ECS-AreaTP-C17E-SS	5/30/15	INV	ECS	Soil	Х	Х										
460-95672-4	ECS-Area19-D19-F	5/30/15	INV	ECS	Soil	Х	Х										
460-95672-5	ECS-Area19-D19-SW	5/30/15	INV	ECS	Soil	Х	Х										
460-95891-1	ECS-AREA19-D20-SW	6/3/15	INV	ECS	Soil	Х	Х										
460-95891-2	ECS-AREA19-D20-SW-X	6/3/15	FD	ECS	Soil	Х	Х										
460-95891-3	ECS-AREA19-D20-F	6/3/15	INV	ECS	Soil	Х		Х	Х								
460-95891-4	ECS-AREA19-D21-SW	6/3/15	INV	ECS	Soil	Х	Х										
460-95891-5	ECS-AREA19-D21-F	6/3/15	INV	ECS	Soil	Х	Х										
460-95891-5LR	ECS-AREA19-D21-F	6/3/15	MD	ECS	Soil	Х	Х		Х								
460-95891-5MS	ECS-AREA19-D21-F	6/3/15	MS	ECS	Soil	Х	Х		Х								
460-96031-1	ECS-AREA19-D-23-F	6/5/15	INV	ECS	Soil	Х	Х										
460-96031-1LR	ECS-AREA19-D-23-F	6/5/15	MD	ECS	Soil	Х	Х										1
460-96031-1MS	ECS-AREA19-D-23-F	6/5/15	MS	ECS	Soil	Х	Х										1
460-96031-2	ECS-AREA19-D23-SW	6/5/15	INV	ECS	Soil	Х	Х										
460-96096-8	BF-ETETZ-GF-1c-01	6/4/15	INV	BF	Soil				Х	Х	Х	х	х	Х		Х	х
460-96096-8MS	BF-ETETZ-GF-1c-01-2	6/4/15	MS	BF	Soil											Х	х
460-96096-8SD	BF-ETETZ-GF-1c-01-2	6/4/15	MSD	BF	Soil											Х	х
460-96096-9	BF-ETETZ-GF-1c-02	6/4/15	INV	BF	Soil				Х	Х	Х	Х	Х	Х		Х	х
460-96245-1	BF-ETETZ-GF-1g-01	6/10/15	INV	BF	Soil										Х		
460-96245-2	BF-ETETZ-GF-1g-02	6/10/15	INV	BF	Soil										х		
460-96245-3	BF-ETETZ-GF-1g-03	6/10/15	INV	BF	Soil										Х		
460-96245-4	BF-ETETZ-GF-1g-04	6/10/15	INV	BF	Soil										Х		
460-96245-5	BF-ETETZ-GF-1g-05	6/10/15	INV	BF	Soil										х		
460-96245-6	BF-ETETZ-GF-1g-06	6/10/15	INV	BF	Soil										Х		
460-96245-7	BF-ETETZ-GF-1g-07	6/10/15	INV	BF	Soil										Х		
460-96245-8	TB - 6/10/15	6/10/15	TB	TB	Water										Х		
460-96099-1	ECS-AREA 19-D22-F	6/4/15	INV	ECS	Soil	Х	Х										
460-96099-2	ECS-AREA 19-D22-F-X	6/4/15	FD	ECS	Soil	Х	Х										
460-96099-3	ECS-AREA 19-D22-SW	6/4/15	INV	ECS	Soil	Х		Х	Х								
460-96336-1	ECS-WSTREAM-20+00-F	6/11/15	INV	ECS	Soil	Х	Х										
460-96336-2	ECS-WSTREAM-20+00-SE	6/11/15	INV	ECS	Soil	Х	Х										
460-96336-3	ECS-WSTREAM-20+00-SW	6/11/15	INV	ECS	Soil	Х	Х										1

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-96336-4	ECS-WSTREAM-20+50-F	6/11/15	INV	ECS	Soil		Х										
460-96336-5	ECS-WSTREAM-20+50-SE	6/11/15	INV	ECS	Soil		Х										
460-96336-6	ECS-WSTREAM-20+50-SW	6/11/15	INV	ECS	Soil		Х										
460-96336-7	ECS-WSTREAM-21+00-F	6/11/15	INV	ECS	Soil		Х										
460-96336-8	ECS-WSTREAM-21+00-SE	6/11/15	INV	ECS	Soil		Х										
460-96336-9	ECS-WSTREAM-21+00-SW	6/11/15	INV	ECS	Soil		Х										
460-96413-1	ECS-WSTREAM-21+50-F	6/12/15	INV	ECS	Soil		Х										
460-96413-2	ECS-WSTREAM-21+50-F-X	6/12/15	FD	ECS	Soil		Х										
460-96413-3	ECS-WSTREAM-21+50-SE	6/12/15	INV	ECS	Soil			Х	Х								
460-96413-4	ECS-WSTREAM-21+50-SW	6/12/15	INV	ECS	Soil		Х										
460-96413-5	ECS-WSTREAM-22+00-F	6/12/15	INV	ECS	Soil		Х										
460-96413-6	ECS-WSTREAM-22+00-SE	6/12/15	INV	ECS	Soil		Х										
460-96413-7	ECS-WSTREAM-22+00-SW	6/12/15	INV	ECS	Soil		Х										
460-96413-7LR	ECS-WSTREAM-22+00-SW	6/12/15	MD	ECS	Soil		Х										
460-96413-7MS	ECS-WSTREAM-22+00-SW	6/12/15	MS	ECS	Soil		Х										
460-96483-1	BF-5L-GF-1g-01	6/15/15	INV	BF	Soil										х		
460-96483-2	BF-5L-GF-1g-02	6/15/15	INV	BF	Soil										х		
460-96483-3	BF-5L-GF-1g-03	6/15/15	INV	BF	Soil										х		
460-96483-4	BF-5L-GF-1g-04	6/15/15	INV	BF	Soil										х		
460-96483-5	BF-5L-GF-1g-05	6/15/15	INV	BF	Soil										х		
460-96483-6	BF-5L-GF-1g-06	6/15/15	INV	BF	Soil										х		
460-96483-7	BF-5L-GF-1g-07	6/15/15	INV	BF	Soil										х		
460-96483-8	BF-5L-GF-1c-01	6/15/15	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	х
460-96483-8MS	BF-5L-GF-1c-01-2	6/15/15	MS	BF	Soil												х
460-96483-8SD	BF-5L-GF-1c-01-2	6/15/15	MSD	BF	Soil												х
460-96483-9	BF-5L-GF-1c-02	6/15/15	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	х
460-96483-10	TB-6/15/15	6/15/15	ТВ	TB	Water										х		
460-96489-1	ECS-WSTREAM-22+50-F	6/14/15	INV	ECS	Soil		Х										
460-96489-2	ECS-WSTREAM-22+50-SE	6/14/15	INV	ECS	Soil		Х										
460-96489-3	ECS-WSTREAM-22+50-SW	6/14/15	INV	ECS	Soil		Х										
460-96489-4	ECS-WSTREAM-23+00-F	6/14/15	INV	ECS	Soil		Х										
460-96489-5	ECS-WSTREAM-23+00-SE	6/14/15	INV	ECS	Soil		Х										
460-96489-6	ECS-WSTREAM-23+00-SW	6/14/15	INV	ECS	Soil		Х										
460-96489-7	ECS-WSTREAM-23+50-F	6/14/15	INV	ECS	Soil		х										
460-96489-8	ECS-WSTREAM-23+50-SE	6/14/15	INV	ECS	Soil		Х										
460-96489-9	ECS-WSTREAM-23+50-SW	6/14/15	INV	ECS	Soil		х										
460-96494-1	DS-AREA 16B-D18-SE	6/14/15	INV	ECS	Soil	Х	х										
460-96494-2	DS-AREA 16B-E19-SW	6/14/15	INV	ECS	Soil	Х	х										
460-96494-3	DS-AREA 16B-E20-SW	6/15/15	INV	ECS	Soil	Х	х										
460-96549-1	ECS-AREA 2-N19-F	6/16/15	INV	ECS	Soil	Х	х										

ıı	1 155 til tillet	1 1 B B O C I d C B
		QAALLC

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-96549-2	ECS-WSTREAM-24+00-F	6/16/15	INV	ECS	Soil		Х										
460-96549-3	ECS-WSTREAM-24+00-SE	6/16/15	INV	ECS	Soil		Х										
460-96549-4	ECS-WSTREAM-24+00-SW	6/16/15	INV	ECS	Soil		Х										
460-96873-1	DS-AREA16B-E21-SE	6/23/15	INV	ECS	Soil	Х	Х										
460-96873-2	DS-AREA16B-E22-SE	6/23/15	INV	ECS	Soil	Х	Х										
460-96873-3	DS-AREA16B-E23-SE	6/23/15	INV	ECS	Soil	Х	Х										
460-97009-1	ECS-WSTREAM-24+50-F	6/25/15	INV	ECS	Soil		Х										
460-97009-2	ECS-WSTREAM-24+50-SE	6/25/15	INV	ECS	Soil		Х										
460-97009-3	ECS-WSTREAM-24+50-SW	6/25/15	INV	ECS	Soil		Х										
460-97009-4	ECS-WSTREAM-25+00-F	6/25/15	INV	ECS	Soil			х	Х								
460-97009-5	ECS-WSTREAM-25+00-SE	6/25/15	INV	ECS	Soil		Х										
460-97009-6	ECS-WSTREAM-25+00-SE-X	6/25/15	FD	ECS	Soil		Х										
460-97009-7	ECS-WSTREAM-25+00-SW	6/25/15	INV	ECS	Soil		Х										
460-97009-8	ECS-WSTREAM-25+50-F	6/25/15	INV	ECS	Soil		Х										
460-97009-9	ECS-WSTREAM-25+50-SE	6/25/15	INV	ECS	Soil		Х										
460-97009-10	ECS-WSTREAM-25+50-SW	6/25/15	INV	ECS	Soil		Х										
460-97106-1	ECS-WSTREAM-26+00-F	6/26/15	INV	ECS	Soil		Х										
460-97106-2	ECS-WSTREAM-26+00-SE	6/26/15	INV	ECS	Soil		Х										
460-97106-3	ECS-WSTREAM-26+00-SW	6/26/15	INV	ECS	Soil		Х										
460-97106-4	ECS-WSTREAM-26+50-F	6/26/15	INV	ECS	Soil		Х										
460-97106-5	ECS-WSTREAM-26+50-SN	6/26/15	INV	ECS	Soil		Х										
460-97106-6	ECS-WSTREAM-26+50-SS	6/26/15	INV	ECS	Soil		Х										
460-97106-6LR	ECS-WSTREAM-26+50-SS	6/26/15	MD	ECS	Soil		Х										
460-97106-6MS	ECS-WSTREAM-26+50-SS	6/26/15	MS	ECS	Soil		Х										
460-97106-7	ECS-WSTREAM-27+00-F	6/26/15	INV	ECS	Soil		Х										
460-97106-8	ECS-WSTREAM-27+00-SE	6/26/15	INV	ECS	Soil		Х										
460-97106-9	ECS-WSTREAM-27+00-SW	6/26/15	INV	ECS	Soil		Х										
460-97106-10	ECS-WSTREAM-27+50-F	6/26/15	INV	ECS	Soil		Х										
460-97106-11	ECS-WSTREAM-27+50-SE	6/26/15	INV	ECS	Soil			Х	Х								
460-97106-12	ECS-WSTREAM-27+50-SW	6/26/15	INV	ECS	Soil		Х										
460-97106-13	ECS-WSTREAM-28+00-F	6/26/15	INV	ECS	Soil		Х										
460-97106-14	ECS-WSTREAM-28+00-SE	6/26/15	INV	ECS	Soil		х										
460-97106-15	ECS-WSTREAM-28+00-SW	6/26/15	INV	ECS	Soil		Х										
460-97106-16	ECS-WSTREAM-28+50-F	6/26/15	INV	ECS	Soil		Х										
460-97106-17	ECS-WSTREAM-28+50-SE	6/26/15	INV	ECS	Soil		х										
460-97106-18	ECS-WSTREAM-28+50-SW	6/26/15	INV	ECS	Soil		Х										
460-97106-19	ECS-WSTREAM-29+00-F	6/26/15	INV	ECS	Soil		Х										
460-97106-20	ECS-WSTREAM-29+00-SE	6/26/15	INV	ECS	Soil		Х										
460-97106-21	ECS-WSTREAM-29+00-SW	6/26/15	INV	ECS	Soil		Х										
460-97106-22	ECS-WSTREAM-29+00-SW-X	6/26/15	FD	ECS	Soil		Х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-97107-1	BF-5L-GF-2g-01	6/26/15	INV	BF	Soil										х		
460-97107-2	BF-5L-GF-2g-02	6/26/15	INV	BF	Soil										х		
460-97107-3	BF-5L-GF-2c-01	6/26/15	INV	BF	Soil				Х	Х	Х	Х	Х	Х		Х	х
460-97107-3LR	BF-5L-GF-2c-01-2	6/26/15	MD	BF	Soil				Х								
460-97107-3MS	BF-5L-GF-2c-01-2	6/26/15	MS	BF	Soil				Х								
460-97107-4	BF-5L-GF-3g-01	6/26/15	INV	BF	Soil										х		
460-97107-5	BF-5L-GF-3g-02	6/26/15	INV	BF	Soil										х		
460-97107-6	BF-5L-GF-3c-01	6/26/15	INV	BF	Soil				Х	Х	Х	Х	Х	Х		Х	х
460-97107-6LR	BF-5L-GF-3c-01	6/26/15	MD	BF	Soil						Х						
460-97107-6MS	BF-5L-GF-3c-01	6/26/15	MS	BF	Soil						Х						
460-97107-7	TB-6/26/15	6/26/15	TB	TB	Water										х		
460-97162-1	ECS-AREA20-E24/25-F	6/29/15	INV	ECS	Soil	Х	Х										
460-97162-1LR	ECS-AREA20-E24/25-F	6/29/15	MD	ECS	Soil	Х											
460-97162-1MS	ECS-AREA20-E24/25-F	6/29/15	MS	ECS	Soil	Х											
460-97162-2	DS-AREA20-E25-SS	6/29/15	INV	ECS	Soil	Х	Х										
460-97313-1	ECS-WSTREAM-27+50-F-R	7/1/15	INV	ECS	Soil		Х										
460-97313-2	ECS-WSTREAM-28+50-F-R	7/1/15	INV	ECS	Soil		Х										
460-97313-3	ECS-WSTREAM-29+00-SE-R	7/1/15	INV	ECS	Soil		Х										
460-97323-1	BF-5L-GF-4g-01	7/1/15	INV	BF	Soil										х		
460-97323-2	BF-5L-GF-4g-02	7/1/15	INV	BF	Soil										х		
460-97323-3	BF-5L-GF-4c-01	7/1/15	INV	BF	Soil				Х	Х	Х	Х	х	х		х	х
460-97323-3MS	BF-5L-GF-4c-01-2	7/1/15	MS	BF	Soil											х	
460-97323-3SD	BF-5L-GF-4c-01-2	7/1/15	MSD	BF	Soil											х	
460-97323-4	TB-7/1/15	7/1/15	TB	TB	Water										х		
460-98192-1	ECS-AREA-12/13-G10-F	7/16/15	INV	ECS	Soil		Х										
460-98192-2	ECS-AREA-12/13-G10-SS	7/16/15	INV	ECS	Soil		Х										
460-98192-3	ECS-AREA-12/13-H10-SS	7/16/15	INV	ECS	Soil		Х										
460-98192-4	ECS-AREA-12-H9-SN-R	7/16/15	INV	ECS	Soil		Х										
460-98192-5	ECS-AREA-12/13-G9-SN	7/16/15	INV	ECS	Soil		Х										
460-98313-1	ECS-AREA22-O20-F	7/21/15	INV	ECS	Soil	Х	Х										
460-98313-2	ECS-AREA22-O21NW-F	7/21/15	INV	ECS	Soil	Х	Х										
460-98409-1	ECS-AREA22-N19SE-F	7/22/15	INV	ECS	Soil	х	х										
460-98409-2	ECS-AREA22-N20NE-F	7/22/15	INV	ECS	Soil	Х	Х										
460-98409-3	ECS-AREA22-N20SE-F	7/22/15	INV	ECS	Soil	Х	Х										
460-98409-4	ECS-AREA22-N21NE-F	7/22/15	INV	ECS	Soil	Х	Х										
460-98409-5	ECS-AREA22-N21SE-F	7/22/15	INV	ECS	Soil	Х		Х	Х								
460-98409-6	DS-AREA22-N21SE-SS	7/22/15	INV	ECS	Soil	Х	Х										
460-98409-7	ECS-AREA22-N21NW-F	7/22/15	INV	ECS	Soil	Х	Х										
460-98409-8	ECS-AREA22-N21NW-F-X	7/22/15	FD	ECS	Soil	Х	Х										
460-98409-9	ECS-AREA22-O21NE-F	7/22/15	INV	ECS	Soil	Х	Х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-98409-9LR	ECS-AREA22-O21NE-F	7/22/15	MD	ECS	Soil	Х	Х										
460-98409-9MS	ECS-AREA22-O21NE-F	7/22/15	MS	ECS	Soil	Х	Х										
460-98409-10	DS-AREA22-O21NE-SS	7/22/15	INV	ECS	Soil	Х	Х										
460-98409-11	DS-AREA22-O21SW-SS	7/22/15	INV	ECS	Soil	Х	Х										
460-98481-1	ECS-AREA22-N19SW-F	7/23/15	INV	ECS	Soil	Х	Х										
460-98481-2	ECS-AREA22-N20NW-F	7/23/15	INV	ECS	Soil	Х	Х										
460-98481-3	ECS-AREA22-N21SW-F	7/23/15	INV	ECS	Soil	Х	Х										
460-98481-4	DS-AREA22-N22NW-SS	7/23/15	INV	ECS	Soil	Х	Х										
460-98481-5	ECS-AREA22-N20SW-F	7/23/15	INV	ECS	Soil	Х	Х										
460-98481-6	ECS-AREA2-M19-F	7/23/15	INV	ECS	Soil	Х	Х										

BF - Backfill Sample MD – Matrix Duplicate Sample (unspiked)

ECS - Excavation Confirmation Sample MS - Matrix Spike Sample

FD - Field Duplicate Sample MSD - Matrix Spike Duplicate Sample

INV - Investigative Sample TB - Trip Blank

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

- TCLP Pb: 1311/3010A/6010C for Lead in leachates of soil samples
- Total As and Pb: 3050B/ 6010C for Arsenic and Lead in soil samples
- Total TAL Metals: 3050B/ 6010C for 22 ICP-AES Target Analyte List (TAL) Metals (Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc) in soil samples
- Hg: 7471B for total Mercury in soil samples
- Total DER10 Metals: 3050B/ 6010C for 12 ICP-AES NYSDEC DER-10 Appendix 5 Metals (Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Lead, Manganese, Nickel, Selenium, Silver, and Zinc) in soil samples
- Cr III/VI: 3060A/7196A for Trivalent Chromium and Hexavalent Chromium in soil samples
- PEST: 3546/ 3620C/ 8081B for 15 NYSDEC DER-10 Appendix 5 pesticides plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene in soil samples
- PCB: 3546/ 3665A/ 8082A for 7 Aroclors in soil samples
- HERB: 8151A for Silvex (2,4,5-TP) in soil samples
- VOC: 5035/8260C for 30 NYSDEC DER-10 Appendix 5 volatile organic compounds (VOCs) in soil samples and 5030B/ 8260C for 30 VOCs in aqueous trip blanks
- SVOC: 3546/ 8270D for 20 NYSDEC DER-10 Appendix 5 semivolatile organic compounds (SVOCs) plus Dibenzofuran and Hexachlorobenzene in soil samples
- CN: 9012B for Cyanide in soil samples

TABLE 2 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- J- = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J/J+ and R>UJ)

TABLE 3 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples February 2015 to July 2015

QC DEFICIENCIES AND DATA QUALIFICATION ACTIONS

Lab ID	Sample Code	Time		Method		D	ate and Tin	ne	GC	DF	Analyte	Lab	Spk	Spk	RPD	QC Issue	DVOs Ameliad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC ISSUE	DVQs Applied
								MATRIX	DUPL	ICA	TE (MD) PRECISION						
460-	ECS-WSTREAM-	LR		3050B	6010C		6/27/15	7/1/15	NA	4	ARSENIC				20	Poor lab duplicate	None (results <5xRL and
97106-	26+50-SS-						16:47	11:28								precision (59	absolute difference <2xRL)
6LR	20150626LR-															RPD)	
	20150626																
460-	ECS-WSTREAM-	LR		3050B	6010C		6/27/15	7/1/15	NA	4	LEAD	Т			20	Poor lab duplicate	J/UJ to detects/NDs for ECS
97106-	26+50-SS-						16:47	11:28								precision (66	samples digested in the same
6LR	20150626LR-															RPD)	batch (all detects)
	20150626																
	1				1	1				1	E (FD) PRECISION	1	ı	1			
460-	ECS-WSTREAM-	N		3050B	6010C		6/26/15	6/27/15	NA	4	LEAD				35	Poor field	J/UJ to detects/NDs for original
97009-6	25+00-SE-X-						17:17	14:59								precision (63	and duplicate sample
	20150625															RPD)	
	I		1		T					1	L SPIKE (LCS) ACCURAC	CY					
4603072	4603072582A4	BS		3050B	6010C		6/26/15	6/27/15	NA	4	ANTIMONY		0.1	201		Low laboratory	J-/UJ to detects/NDs for samples
582A4							17:17	13:20								control spike	digested in the same batch (ND)
																recovery (48.4%) -	
																within lab limits but	
1000010	4000040000				2222			0/40/45		_	1057015	Т	=-	400		<50%	
4603046	4603046633	BS			8260C			6/13/15	NA	1	ACETONE	'	58	139		High laboratory	J+ to detects for samples
633								5:03								control spike	digested in the same batch
4603046	4603046634	BD			8260C			6/13/15	NA	1	ACETONE	Т	58	139	30	recovery (157%)	(none)
634	4003040034	טט			8260C			5:28	INA		ACETONE	'	56	139	30	High laboratory control spike	J+ to detects for samples digested in the same batch
034								5.20								duplicate recovery	(none)
																(155%)	(Hone)
4603074	4603074873	BS			8260C			6/29/15	NA	1	ACETONE	Т	58	139		High laboratory	J+ to detects for samples
873								7:19								control spike	digested in the same batch
																recovery (152%)	(none)

				Method		D	ate and Tir	ne	GC			Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4603074	4603074874	BD			8260C			6/29/15	NA	1	ACETONE	Т	58	139	30	High laboratory	J+ to detects for samples
874								7:54								control spike	digested in the same batch
																duplicate recovery	(none)
																(147%)	
4603074	4603074873	BS			8260C			6/29/15	NA	1	METHYL ETHYL	Т	58	140		High laboratory	J+ to detects for samples
873								7:19			KETONE (2-					control spike	digested in the same batch
											BUTANONE)					recovery (144%)	(none)
4603074	4603074874	BD			8260C			6/29/15	NA	1	METHYL ETHYL		58	140	30	Passing laboratory	NA
874								7:54			KETONE (2-					control spike	
											BUTANONE)					duplicate recovery	
4000005	4000005450	DC			00000			7/0/45	NIA	_	TETRACIII ODO	Т	00	407		(140%)	N (
4603085 453	4603085453	BS			8260C			7/6/15 3:55	NA	1	TETRACHLORO- ETHYLENE(PCE)	'	80	127		Low laboratory control spike	None (recovery within 70-130% data qualification limits)
400								3.33			ETHTLENE(FCE)					recovery (70%)	data qualification limits)
4603085	4603085454	BD			8260C			7/6/15	NA	1	TETRACHLORO-	Т	80	127	30	Low laboratory	None (recovery within 70-130%
454	4000000404				02000			4:20	14/ (ETHYLENE(PCE)	'	00	121	50	control spike	data qualification limits)
								20								duplicate recovery	adia quamication imito)
																(72%)	
4603054	46030548224	BS			8260C			6/18/15	NA	1	1,2-	Т	79	120		Low laboratory	None (recovery within 70-130%
8224								6:40			DICHLOROETHANE					control spike	data qualification limits)
																recovery (125%)	
4603054	4603054826	BD			8260C			6/17/15	NA	1	1,1-		78	125	30	Passing laboratory	NA
826								22:53			DICHLOROETHANE					control spike	
																duplicate recovery	
																(107%)	
4603054	46030548224	BS			8260C			6/18/15	NA	1	CARBON	Т	77	137		High laboratory	None (average LCS/LCSD
8224								6:40			TETRACHLORIDE					control spike	recovery (134.5%) within control)
4000054	4000054000				2222			0/1=/1=			OARROW.			40=		recovery (141%)	
4603054	4603054826	BD			8260C			6/17/15	NA	1	CARBON		77	137	30	Passing laboratory	NA
826								22:53			TETRACHLORIDE					control spike	
																duplicate recovery (128%)	
4603089	4603089384	BS			8260C			7/7/15	NA	1	ACETONE	Т	26	150		High laboratory	None (analytes ND in this TB,
384	+000003304	50			02000			20:11	14/4	'	AOLIONE	'	20	130		control spike	samples results not affected)
504								20.11								recovery (205%) -	campios results not anected)
																QC for TB only	
4603089	4603089384	BS			8260C			7/7/15	NA	1	METHYL ETHYL	Т	52	140		High laboratory	None (analytes ND in this TB,
384								20:11			KETONE (2-					control spike	samples results not affected)
											BUTANONE)					recovery (144%) -	,
																QC for TB only	

4603044 032A 4603044032A BS 3546 823 4603077 673A 4603077673A BS 3546 823 4603077 673A 4603077673A BS 3546 823 4603041 144A20 4603041144A20 BS method 90 4603057 314A 4603057314A BS method 90 4603075 984A20 4603075984A20 BS method 90	_ Method	Date and Time GC	c	Lab Spk	Spk RPI	D
032A 4603077 4603077673A BS 3546 827 4603077 4603077673A BS 3546 827 4603041 4603041144A20 BS method 90 4603057 4603057314A BS method 90 4603075 4603075984A20 BS method 90	mple Code Type Leach Prep Analy	Leach Prep Analy Col	IDE Analyte	Qual LCL	UCL CL	OC Issue DVQs Annlied
673A 4603077 4603077673A BS 3546 827 4603041 4603041144A20 BS method 90 4603057 314A BS method 90 4603075 984A20 BS method 90	03044032A BS 3546 8270D	6/11/15 6/12/15 NA 19:09 6:58	A 1 INDENO(1,2,3- C,D)PYRENE	T 43	109	High laboratory J+ to detects for samples control spike digested in the same batch recovery (120%) (none)
673A 4603041 4603041144A20 BS method 90 4603057 4603057314A BS method 90 4603075 4603075984A20 BS method 90 984A20	03077673A BS 3546 8270D	6/30/15 7/1/15 NA 8:19 3:29	A 1 BENZO(A)PYRENE	T 36	89	High laboratory J+ to detects for samples control spike digested in the same batch recovery (105%) (none)
4603057 4603057314A BS method 90 4603075 4603075984A20 BS method 90 984A20	03077673A BS 3546 8270D	6/30/15 7/1/15 NA 8:19 3:29	FLUORANTHENE	T 33	96	High laboratory control spike recovery (107%) J+ to detects for samples digested in the same batch (none)
314A 4603075 4603075984A20 BS method 90 984A20	3041144A20 BS method 9012	6/10/15 6/10/15 NA 13:30 16:07	A 20 CYANIDE	3.5	121.4	Extremely low soil LCS-SRM recovery (21.4%) - within vendor limits but <50% Words: The low and high level LCS pass at 92% and 90%, and two MS/MSD from other batches that were prepared using a sample from the site are within control.)
984A20	03057314A BS method 9012	6/18/15 6/19/15 NA 21:30 1:01	A 10 CYANIDE	3.5	121.4	Extremely low soil LCS-SRM recovery (18.5%) - within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within control.)
4603091 4603091004A20 BS method 90	3075984A20 BS method 9012	6/29/15 6/29/15 NA 12:00 17:10	A 20 CYANIDE	3.5	121.4	Extremely low soil LCS-SRM recovery (19.6%) - within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but vendor li
004A20	3091004A20 BS method 9012	7/8/15 7/8/15 NA 8:00 11:29	A 20 CYANIDE	3.5	121.4	Extremely low soil LCS-SRM recovery (21.4%) - within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but <50% Within vendor limits but vendor

				Method		D	ate and Tir	ne	GC			Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460-	ECS-WSTREAM- 26+50-SS-	MS		3050B	6010C		6/27/15 16:47	7/1/15 11:39	NA	4	LEAD	Ν	75	125		High matrix spike	J+ to detects for ECS samples
97106- 6MS	20150626MS-	(no SD)					10.47	11.39								recovery (207%)	digested in the same batch (J flagged due to poor precision
OIVIS	20150626	30)															too)
460-	BF-5L-GF-4c-01-	MS		3546	8270D		7/6/15	7/7/15	NA	1	2-METHYLPHENOL	Т	54	117		Low matrix spike	J-/UJ to detects/NDs for BF
97323-	20150701MS	IVIO		0010	02,02		11:09	21:56	'''	l .	(O-CRESOL)	·	"			recovery (52%)	samples digested in the same
3MS											((=,,,	batch (ND)
460-	BF-5L-GF-4c-01-	SD		3546	8270D		7/6/15	7/7/15	NA	1	2-METHYLPHENOL		54	117	30	Passing matrix	NA
97323-	20150701SD						11:09	22:19			(O-CRESOL)					spike duplicate	
3SD																recovery (55%)	
460-	BF-5L-GF-4c-01-	MS		3546	8270D		7/6/15	7/7/15	NA	1	PENTACHLORO-		19	113		Low matrix spike	J-/R to detects/NDs for BF
97323-	20150701MS						11:09	21:56			PHENOL					recovery (22%)	samples digested in the same
3MS																	batch (ND)
460-	BF-5L-GF-4c-01-	SD		3546	8270D		7/6/15	7/7/15	NA	1	PENTACHLORO-	Т	19	113	30	Extremely low	J-/R to detects/NDs for BF
97323-	20150701SD						11:09	22:19			PHENOL					matrix spike	samples digested in the same
3SD																duplicate recovery	batch (ND)
									<u> </u>	L						(17%)	
	T		ı	1			I				SU) RECOVERY				ı	T	
460-	BF-ETETZ-GF-	N		5035	8260C		6/11/15	6/13/15	NA	1	DIBROMOFLUORO-	Т	70	130		High surrogate	J+ to detects for all analytes in
96245-1	1g-01-20150610			5005	00000		14:55	12:50	110		METHANE	Т	70	400		recovery (134%)	this sample (none)
460- 96245-4	BF-ETETZ-GF- 1g-04-20150610	N		5035	8260C		6/11/15 14:56	6/13/15 14:06	NA	1	DIBROMOFLUORO- METHANE	'	70	130		High surrogate recovery (140%)	J+ to detects for all analytes in this sample (none)
460-	BF-ETETZ-GF-	N		5035	8260C		6/11/15	6/13/15	NA	1	DIBROMOFLUORO-	Т	70	130		High surrogate	J+ to detects for all analytes in
96245-6	1g-06-20150610	IN		3033	0200C		14:57	14:56	INA	l '	METHANE	'	10	130		recovery (133%)	this sample (none)
002100	19 00 20100010						11.07		ABOF	RATO	RY BLANKS		l .		l .	10001019 (10070)	une campio (neno)
4603053	4603053406	LB			8260C			6/17/15	NA	1	ACETONE	J				Method blank	U at RL to Js, U to detects < 2x
406								11:06								contamination	blank equivalent concentration
																(2.87 J ug/kg)	for samples prepared in the
																	same batch (none)
4603053	4603053406	LB			8260C			6/17/15	NA	1	METHYLENE	J				Method blank	U at RL to Js, U to detects < 2x
406								11:06			CHLORIDE					contamination	blank equivalent concentration
																(0.653 J ug/kg)	for samples prepared in the
																	same batch
4603057	4603057311A	LB		method	9012		6/18/15	6/19/15	NA	1	CYANIDE	J				Preparation blank	U at RL to Js, J+ to detects <10x
311A							21:30	0:59								contamination	blank equivalent concentration
																(0.0454 J mg/kg)	for samples prepared in the
1005	400005:/				00:-		= 10 ' : =	=10		<u> </u>	0)/4:::==	<u> </u>					same batch
4603091	4603091001A	LB		method	9012		7/8/15	7/8/15	NA	1	CYANIDE	J				Preparation blank	U at RL to Js, J+ to detects <10x
001A							8:00	11:27								contamination	blank equivalent concentration
																(0.0188 J mg/kg)	for samples prepared in the
										İ		1	l		l		same batch

1	0			Method		D	ate and Tir	ne	GC		A 1 . 6 .	Lab	Spk	Spk	RPD	001:	DVQ - A I'- I
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
						1			IBRA	ΓΙΟΝ	VERIFICATION				•		
CCVL 460- 308059/ 22	CCVL 460- 308059/22	V V			6010C			7/1/15 11:57	NA	1	SELENIUM		70	130		Low calibration verification recovery (66%)	None (CCV only applies for batch QC (MB, LCS, PDS, SD), samples flagged based on QC outcomes)
CCVIS 460- 304663/ 2	CCVIS 460- 304663/2	CCV			8260C			6/13/15 4:38	NA	1	ACETONE	*	-20	+20		Calibration drift (%D= +58.2%)	J+ to detects, UJ to NDs for samples analyzed this shift (all ND)
CCVIS 460- 305482/ 4	CCVIS 460- 305482/4	CCV			8260C			6/17/15 22:05	NA	1	CARBON TETRACHLORIDE	*	-20	+20		Calibration drift (%D= +29.1%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 307487/ 2	CCVIS 460- 307487/2	CCV			8260C			6/29/15 6:55	NA	1	ACETONE		-20	+20		Calibration drift (%D= +50.0%)	J+ to detects, UJ to NDs for samples analyzed this shift (all ND)
CCVIS 460- 307487/ 2	CCVIS 460- 307487/2	CCV			8260C			6/29/15 6:55	NA	1	CARBON TETRACHLORIDE	*	-20	+20		Calibration drift (%D= +20.9%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 307487/ 2	CCVIS 460- 307487/2	CCV			8260C			6/29/15 6:55	NA	1	METHYL ETHYL KETONE (2- BUTANONE)		-20	+20		Calibration drift (%D= +40.2%)	J+ to detects, UJ to NDs for samples analyzed this shift
CCVIS 460- 308545/ 2	CCVIS 460- 308545/2	CCV			8260C			7/6/15 3:31	NA	1	N-BUTYLBENZENE	*	-20	+20		Calibration drift (%D= +21.9%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 308545/ 2	CCVIS 460- 308545/2	CCV			8260C			7/6/15 3:31	NA	1	TETRACHLORO- ETHYLENE(PCE)	*	-20	+20		Calibration drift (%D= -28.1%)	J- to detects, UJ to NDs samples analyzed this shift (all ND)
CCVIS 460- 304453/ 2	CCVIS 460- 304453/2	CCV			8270D			6/12/15 3:55	NA	1	DIBENZ(A,H) ANTHRACENE	*	-20	+20		Calibration drift (%D= +22.1%)	J+ to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 305539/ 2	CCVIS 460- 305539/2	CCV			8270D			6/18/15 6:53	NA	1	DIBENZ(A,H) ANTHRACENE	*	-20	+20		Calibration drift (%D= +21.1%)	J+ to detects only since < +40% for samples analyzed this shift (none)

DATA USABILITY SUMMARY REPORT

I als ID	Commis Codo	T		Method		D	ate and Tir	ne	GC	DF	Amaluta	Lab	Spk	Spk	RPD	00.1	DVO- Armlind
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCVIS	CCVIS 460-	CCV			8270D			7/1/15	NA	1	DIBENZ(A,H)	*	-20	+20		Calibration drift	J+ to detects only since < +40%
460-	307940/2							2:05			ANTHRACENE					(%D= +21.1%)	for samples analyzed this shift
307940/																	(none)
2																	
CCVIS	CCVIS 460-	CCV			8270D			7/1/15	NA	1	INDENO(1,2,3-	*	-20	+20		Calibration drift	J+ to detects only since < +40%
460-	307940/2							2:05			C,D)PYRENE					(%D= +21.6%)	for samples analyzed this shift
307940/																	(none)
2																	

CL - Control Limit

DF - Dilution Factor

LCL - Lower Control Limit

UCL - Upper Control Limit

TABLE 4

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Phase II-B Remedial Design/ Remedial Action
Backfill and Post-Excavation Confirmation Samples
February 2015 to July 2015

QUALIFIED RESULTS FOR FIELD SAMPLES

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
		TCLP METAL	.S		
460-94648-9	ECS-WSTREAM-17+00-EB- 20150511	TCLP LEAD	21.7 J ug/l	J	Result between MDL and RL
460-94648-10	ECS-WSTREAM-17+00-WB- 20150511	TCLP LEAD	26.5 J ug/l	J	Result between MDL and RL
460-95503-5	ECS-AREA TP-B20N-F- 20150527	TCLP LEAD	29.5 J ug/l	J	Result between MDL and RL
460-95503-6	ECS-AREA TP-B20N-SE- 20150527	TCLP LEAD	45.2 J ug/l	J	Result between MDL and RL
460-95503-10	ECS-AREA TP-B19S-F- 20150527	TCLP LEAD	25.9 J ug/l	J	Result between MDL and RL
460-95599-3	ECS-Area TP-B17W-SS- 20150528	TCLP LEAD	29.0 J ug/l	J	Result between MDL and RL
460-95891-3	ECS-AREA19-D20-F-20150603	TCLP LEAD	23.8 J ug/l	J	Result between MDL and RL
460-95891-5	ECS-AREA19-D21-F-20150603	TCLP LEAD	33.2 J ug/l	J	Result between MDL and RL
460-96031-2	ECS-AREA19-D23-SW- 20150605	TCLP LEAD	21.6 J ug/l	J	Result between MDL and RL
460-96099-1	ECS-AREA 19-D22-F-20150604	TCLP LEAD	23.4 J ug/l	J	Result between MDL and RL
460-96549-1	ECS-AREA 2-N19-F-20150616	TCLP LEAD	44.4 J ug/l	J	Result between MDL and RL
460-96873-1	DS-AREA16B-E21-SE-20150623	TCLP LEAD	48.7 J ug/l	J	Result between MDL and RL
460-98313-1	ECS-AREA22-O20-F-20150721	TCLP LEAD	33.2 J ug/l	J	Result between MDL and RL
460-98313-2	ECS-AREA22-O21NW-F- 20150721	TCLP LEAD	41.3 J ug/l	J	Result between MDL and RL
460-98409-2	ECS-AREA22-N20NE-F- 20150722	TCLP LEAD	33.5 J ug/l	J	Result between MDL and RL
460-98409-4	ECS-AREA22-N21NE-F- 20150722	TCLP LEAD	39.1 J ug/l	J	Result between MDL and RL
460-98409-5	ECS-AREA22-N21SE-F- 20150722	TCLP LEAD	32.1 J ug/l	J	Result between MDL and RL
		TOTAL META	LS	1	1
460-94449-2	ECS-WStream-11+00WB- 20150506	ARSENIC	2.7 J mg/kg	J	Result between MDL and RL
460-94449-3	ECS-WStream-11+00EB- 20150506	ARSENIC	2.0 J mg/kg	J	Result between MDL and RL
460-94449-7	ECS-WStream-12+00F- 20150506	ARSENIC	1.4 J mg/kg	J	Result between MDL and RL
460-94449-9	ECS-WStream-12+00EB- 20150506	ARSENIC	2.5 J mg/kg	J	Result between MDL and RL
460-94569-3	ECS-WSTREAM-12+50-WB- 20150507	ARSENIC	3.0 J mg/kg	J	Result between MDL and RL
460-94569-4	ECS-WSTREAM-13+00-F- 20150507	BARIUM	27.8 J mg/kg	J	Result between MDL and RL
460-94569-4	ECS-WSTREAM-13+00-F- 20150507	MERCURY	0.013 J mg/kg	J	Sample received on ice but above temperature at 6.6 C; Result between MDL and RL
460-94569-4	ECS-WSTREAM-13+00-F- 20150507	POTASSIUM	789 J mg/kg	J	Result between MDL and RL
460-94614-3	ECS-WSTREAM-15+00-F- 20150508	ARSENIC	2.7 J mg/kg	J	Result between MDL and RL

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-94614-4	ECS-WSTREAM-15+00-WB- 20150508	ARSENIC	2.0 J mg/kg	J	Result between MDL and RL
460-94648-9	ECS-WSTREAM-17+00-EB- 20150511	CADMIUM	0.62 J mg/kg	J	Result between MDL and RL
460-94648-9	ECS-WSTREAM-17+00-EB- 20150511	POTASSIUM	741 J mg/kg	J	Result between MDL and RL
460-94648-9	ECS-WSTREAM-17+00-EB- 20150511	SODIUM	104 J mg/kg	J	Result between MDL and RL
460-95432-1	ECS-Area 18-D16-SS-20150526	ARSENIC	4.4 J mg/kg	J	Result between MDL and RL
460-95891-3	ECS-AREA19-D20-F-20150603	CALCIUM	705 J mg/kg	J	Result between MDL and RL
460-95891-3	ECS-AREA19-D20-F-20150603	POTASSIUM	677 J mg/kg	J	Result between MDL and RL
460-95891-3	ECS-AREA19-D20-F-20150603	SILVER	1.4 J mg/kg	J	Result between MDL and RL
460-95891-4	ECS-AREA19-D21-SW- 20150603	ARSENIC	2.5 J mg/kg	J	Result between MDL and RL
460-95891-5	ECS-AREA19-D21-F-20150603	ARSENIC	1.4 J mg/kg	J	Result between MDL and RL
460-96096-8	BF-ETETZ-GF-1c-01-20150604	BARIUM	38.4 J mg/kg	J	Result between MDL and RL
460-96096-8	BF-ETETZ-GF-1c-01-20150604	MERCURY	0.015 J mg/kg	J	Result between MDL and RL
460-96096-9	BF-ETETZ-GF-1c-02-20150604	BARIUM	33.7 J mg/kg	J	Result between MDL and RL
460-96096-9	BF-ETETZ-GF-1c-02-20150604	MERCURY	0.013 J mg/kg	J	Result between MDL and RL
460-96099-2	ECS-AREA 19-D22-F-X- 20150604	ARSENIC	2.5 J mg/kg	J	Result between MDL and RL
460-96099-3	ECS-AREA 19-D22-SW- 20150604	BARIUM	40.1 J mg/kg	J	Result between MDL and RL
460-96099-3	ECS-AREA 19-D22-SW- 20150604	CALCIUM	770 J mg/kg	J	Result between MDL and RL
460-96099-3	ECS-AREA 19-D22-SW- 20150604	COBALT	7.7 J mg/kg	J	Result between MDL and RL
460-96099-3	ECS-AREA 19-D22-SW- 20150604	POTASSIUM	842 J mg/kg	J	Result between MDL and RL
460-96413-3	ECS-WSTREAM-21+50-SE- 20150612	BARIUM	28.1 J mg/kg	J	Result between MDL and RL
460-96413-3	ECS-WSTREAM-21+50-SE- 20150612	POTASSIUM	897 J mg/kg	J	Result between MDL and RL
460-96483-8	BF-5L-GF-1c-01-20150615	BARIUM	34.4 J mg/kg	J	Result between MDL and RL
460-96483-9	BF-5L-GF-1c-02-20150615	BARIUM	37.1 J mg/kg	J	Result between MDL and RL
460-96489-1	ECS-WSTREAM-22+50-F- 20150614	ARSENIC	1.7 J mg/kg	J	Result between MDL and RL
460-96489-2	ECS-WSTREAM-22+50-SE- 20150614	ARSENIC	1.4 J mg/kg	J	Result between MDL and RL
460-96489-3	ECS-WSTREAM-22+50-SW- 20150614	ARSENIC	2.5 J mg/kg	J	Result between MDL and RL
460-96489-6	ECS-WSTREAM-23+00-SW- 20150614	ARSENIC	1.2 J mg/kg	J	Result between MDL and RL
460-96489-9	ECS-WSTREAM-23+50-SW- 20150614	ARSENIC	1.8 J mg/kg	J	Result between MDL and RL
460-96549-3	ECS-WSTREAM-24+00-SE- 20150616	ARSENIC	2.7 J mg/kg	J	Result between MDL and RL
460-97009-1	ECS-WSTREAM-24+50-F- 20150625	ARSENIC	2.6 J mg/kg	J	Result between MDL and RL
460-97009-2	ECS-WSTREAM-24+50-SE- 20150625	ARSENIC	2.0 J mg/kg	J	Result between MDL and RL
460-97009-4	ECS-WSTREAM-25+00-F- 20150625	ANTIMONY	4.0 U mg/kg	UJ	Low laboratory control spike recovery (48.4%) - within lab limits but <50%
460-97009-4	ECS-WSTREAM-25+00-F- 20150625	ARSENIC	2.1 J mg/kg	J	Result between MDL and RL
460-97009-4	ECS-WSTREAM-25+00-F- 20150625	COBALT	8.3 J mg/kg	J	Result between MDL and RL
460-97009-4	ECS-WSTREAM-25+00-F- 20150625	POTASSIUM	995 J mg/kg	J	Result between MDL and RL

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-97009-4	ECS-WSTREAM-25+00-F- 20150625	SODIUM	103 J mg/kg	J	Result between MDL and RL
460-97009-5	ECS-WSTREAM-25+00-SE- 20150625	ARSENIC	2.6 J mg/kg	J	Result between MDL and RL
460-97009-5	ECS-WSTREAM-25+00-SE- 20150625	LEAD	28.1 mg/kg	J	Poor field precision (63 RPD)
460-97009-6	ECS-WSTREAM-25+00-SE-X- 20150625	ARSENIC	2.2 J mg/kg	J	Result between MDL and RL
460-97009-6	ECS-WSTREAM-25+00-SE-X- 20150625	LEAD	14.7 mg/kg	J	Poor field precision (63 RPD)
460-97009-8	ECS-WSTREAM-25+50-F- 20150625	ARSENIC	1.9 J mg/kg	J	Result between MDL and RL
460-97106-1	ECS-WSTREAM-26+00-F- 20150626	LEAD	13.9 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-2	ECS-WSTREAM-26+00-SE- 20150626	LEAD	13.8 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-3	ECS-WSTREAM-26+00-SW- 20150626	LEAD	17.2 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-4	ECS-WSTREAM-26+50-F- 20150626	LEAD	13.7 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-5	ECS-WSTREAM-26+50-SN- 20150626	LEAD	117 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-6	ECS-WSTREAM-26+50-SS- 20150626	LEAD	166 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-7	ECS-WSTREAM-27+00-F- 20150626	LEAD	16.8 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-8	ECS-WSTREAM-27+00-SE- 20150626	LEAD	13.9 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-9	ECS-WSTREAM-27+00-SW- 20150626	LEAD	18.5 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-10	ECS-WSTREAM-27+50-F- 20150626	LEAD	17.9 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-11	ECS-WSTREAM-27+50-SE- 20150626	LEAD	94.4 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-11	ECS-WSTREAM-27+50-SE- 20150626	MERCURY	0.017 J mg/kg	J	Result between MDL and RL
460-97106-11	ECS-WSTREAM-27+50-SE- 20150626	SODIUM	76.3 J mg/kg	J	Result between MDL and RL
460-97106-12	ECS-WSTREAM-27+50-SW- 20150626	LEAD	43.0 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-13	ECS-WSTREAM-28+00-F- 20150626	LEAD	40.2 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-14	ECS-WSTREAM-28+00-SE- 20150626	LEAD	15.2 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)
460-97106-15	ECS-WSTREAM-28+00-SW- 20150626	LEAD	17.2 mg/kg	J	High matrix spike recovery (207%); Poor lab duplicate precision (66 RPD)

460-97106-17 460-97106-18	ECS-WSTREAM-28+50-SE- 20150626	A D C E NIC		t		
		ARSENIC	1.8 J r	mg/kg	J	Result between MDL and RL
	ECS-WSTREAM-28+50-SW- 20150626	ARSENIC	1.5 J r	mg/kg	J	Result between MDL and RL
460-97106-21	ECS-WSTREAM-29+00-SW- 20150626	ARSENIC	2.5 J r	mg/kg	J	Result between MDL and RL
460-97106-22	ECS-WSTREAM-29+00-SW-X- 20150626	ARSENIC	2.1 J r	mg/kg	J	Result between MDL and RL
460-97107-6	BF-5L-GF-3c-01-20150626	BARIUM	39.6 J r	mg/kg	J	Result between MDL and RL
460-97162-1	ECS-AREA20-E24/25-F- 20150629	ARSENIC		mg/kg	J	Result between MDL and RL
460-97323-3	BF-5L-GF-4c-01-20150701	SELENIUM	1.3 J r	mg/kg	J	Result between MDL and RL
460-98409-1	ECS-AREA22-N19SE-F- 20150722	ARSENIC		mg/kg	J	Result between MDL and RL
460-98409-5	ECS-AREA22-N21SE-F- 20150722	SODIUM	217 J r	mg/kg	J	Result between MDL and RL
460-98409-7	ECS-AREA22-N21NW-F- 20150722	ARSENIC		mg/kg	J	Result between MDL and RL
460-98409-8	ECS-AREA22-N21NW-F-X- 20150722	ARSENIC		mg/kg	J	Result between MDL and RL
		LATILE ORGANIC COM				
460-96245-1	BF-ETETZ-GF-1g-01-20150610	ACETONE		ug/kg	UJ	Calibration drift (%D= +58.2%)
460-96245-2	BF-ETETZ-GF-1g-02-20150610	ACETONE		ug/kg	UJ	Calibration drift (%D= +58.2%)
460-96245-3	BF-ETETZ-GF-1g-03-20150610	ACETONE	4.1 UT	ug/kg	UJ	Calibration drift (%D= +58.2%)
460-96245-4	BF-ETETZ-GF-1g-04-20150610	ACETONE	4.0 UT	ug/kg	UJ	Calibration drift (%D= +58.2%)
460-96245-5	BF-ETETZ-GF-1g-05-20150610	ACETONE	4.3 UT	ug/kg	UJ	Calibration drift (%D= +58.2%)
460-96245-6	BF-ETETZ-GF-1g-06-20150610	ACETONE	4.0 UT	ug/kg	UJ	Calibration drift (%D= +58.2%)
460-96245-7	BF-ETETZ-GF-1g-07-20150610	ACETONE	4.2 UT	ug/kg	UJ	Calibration drift (%D= +58.2%)
460-96483-1	BF-5L-GF-1g-01-20150615	METHYLENE CHLORIDE	0.76 BJ (ug/kg	U	Method blank contamination (0.653 J ug/kg)
460-96483-2	BF-5L-GF-1g-02-20150615	METHYLENE CHLORIDE	0.84 BJ	ug/kg	U	Method blank contamination (0.653 J ug/kg)
460-96483-3	BF-5L-GF-1g-03-20150615	METHYLENE CHLORIDE	0.81 BJ	ug/kg	U	Method blank contamination (0.653 J ug/kg)
460-96483-4	BF-5L-GF-1g-04-20150615	METHYLENE CHLORIDE	0.95 B	ug/kg	U	Method blank contamination (0.653 J ug/kg)
460-96483-5	BF-5L-GF-1g-05-20150615	METHYLENE CHLORIDE	0.83 BJ	ug/kg	U	Method blank contamination (0.653 J ug/kg)
460-96483-6	BF-5L-GF-1g-06-20150615	METHYLENE CHLORIDE	0.80 BJ	ug/kg	U	Method blank contamination (0.653 J ug/kg)
460-97107-1	BF-5L-GF-2g-01-20150626	ACETONE	4.1 UT	ug/kg	UJ	Calibration drift (%D= +50.0%)
460-97107-1	BF-5L-GF-2g-01-20150626	METHYL ETHYL KETONE (2- BUTANONE)	4.1 UT	ug/kg	UJ	Calibration drift (%D= +40.2%)
460-97107-2	BF-5L-GF-2g-02-20150626	ACETONE	4.4 UT	ug/kg	UJ	Calibration drift (%D= +50.0%)
460-97107-2	BF-5L-GF-2g-02-20150626	METHYL ETHYL KETONE (2- BUTANONE)		ug/kg	UJ	Calibration drift (%D= +40.2%)
460-97107-4	BF-5L-GF-3g-01-20150626	ACETONE	4.2 UT	ug/kg	UJ	Calibration drift (%D= +50.0%)
460-97107-4	BF-5L-GF-3g-01-20150626	METHYL ETHYL KETONE (2- BUTANONE)		ug/kg	UJ	Calibration drift (%D= +40.2%)
460-97107-5	BF-5L-GF-3g-02-20150626	ACETONE	4.5 UT	ug/kg	UJ	Calibration drift (%D= +50.0%)
460-97107-5	BF-5L-GF-3g-02-20150626	METHYL ETHYL KETONE (2- BUTANONE)		ug/kg ug/kg	UJ	Calibration drift (%D= +40.2%) Calibration drift (%D= +40.2%)
460-97323-1	BF-5L-GF-4g-01-20150701	TETRACHLORO- ETHYLENE(PCE)	0.80 UT	ug/kg	UJ	Calibration drift (%D= -28.1%)
460-97323-2	BF-5L-GF-4g-02-20150701	TETRACHLORO- ETHYLENE(PCE) OLATILE ORGANIC COI	0.79 UT		UJ	Calibration drift (%D= -28.1%)

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue						
460-97323-3	BF-5L-GF-4c-01-20150701	2-METHYLPHENOL (O-CRESOL)	350 U ug/kg	UJ	Low matrix spike recovery (52%)						
460-97323-3	BF-5L-GF-4c-01-20150701	PENTACHLORO- PHENOL	280 U ug/kg	R	Low matrix spike recovery (22%); Extremely low matrix spike duplicate recovery (17%)						
CYANIDE											
460-96096-8	BF-ETETZ-GF-1c-01-20150604	CYANIDE	0.12 U mg/kg	UJ	Extremely low soil LCS-SRM recovery (21.4%) - within vendor limits but <50%						
460-96096-9	BF-ETETZ-GF-1c-02-20150604	CYANIDE	0.11 U mg/kg	UJ	Extremely low soil LCS-SRM recovery (21.4%) - within vendor limits but <50%						
460-96483-8	BF-5L-GF-1c-01-20150615	CYANIDE	0.11 BJ mg/kg	UJ	Preparation blank contamination (0.0454 J mg/kg); Extremely low soil LCS-SRM recovery (18.5%) - within vendor limits but <50%						
460-96483-9	BF-5L-GF-1c-02-20150615	CYANIDE	0.12 BJ mg/kg	UJ	Preparation blank contamination (0.0454 J mg/kg); Extremely low soil LCS-SRM recovery (18.5%) - within vendor limits but <50%						
460-97107-3	BF-5L-GF-2c-01-20150626	CYANIDE	0.11 U mg/kg	UJ	Extremely low soil LCS-SRM recovery (19.6%) - within vendor limits but <50%						
460-97107-6	BF-5L-GF-3c-01-20150626	CYANIDE	0.12 U mg/kg	UJ	Extremely low soil LCS-SRM recovery (19.6%) - within vendor limits but <50%						
460-97323-3	BF-5L-GF-4c-01-20150701	CYANIDE	0.10 BJ mg/kg	UJ	Preparation blank contamination (0.0188 J mg/kg); Extremely low soil LCS-SRM recovery (21.4%) - within vendor limits but <50%						

Results in red have been elevated to the reporting limit per the NFG. The laboratory reported a detect between the MDL and RL for this analyte, but the result has been qualified (U flag) and raised to the reporting limit due to laboratory or field contamination.

TABLE 5 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples February 2015 to July 2015

FIELD DUPLICATE RESULTS

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-94569-8	460-94569-9	ECS-WSTREAM-13+50-EB- 20150507	ARSENIC	9.9 mg/kg	9.1 mg/kg	8.0	6.4	NA	У
460-94569-8	460-94569-9	ECS-WSTREAM-13+50-EB- 20150507	LEAD	20.2 mg/kg	19.3 mg/kg	NA	4.4	4.6	у
460-94648-1	460-94648-2	ECS-WSTREAM-16+00-F- 20150511	ARSENIC	4.8 mg/kg	4.4 mg/kg	0.4	5.6	NA	у
460-94648-1	460-94648-2	ECS-WSTREAM-16+00-F- 20150511	LEAD	18.9 mg/kg	16.2 mg/kg	NA	3.8	15	У
460-95891-1	460-95891-2	ECS-AREA19-D20-SW- 20150603	ARSENIC	6.8 mg/kg	6.7 mg/kg	0.1	5.4	NA	у
460-95891-1	460-95891-2	ECS-AREA19-D20-SW- 20150603	LEAD	14.2 mg/kg	15.3 mg/kg	NA	3.6	7.5	у
460-95891-1	460-95891-2	ECS-AREA19-D20-SW- 20150603	TCLP LEAD	50 U ug/l	50 U ug/l	0	100	NA	у
460-96099-1	460-96099-2	ECS-AREA 19-D22-F- 20150604	ARSENIC	3.6 U mg/kg	2.5 J mg/kg	1.1	7.8	NA	у
460-96099-1	460-96099-2	ECS-AREA 19-D22-F- 20150604	LEAD	10.6 mg/kg	13 mg/kg	2.4	5.2	NA	У
460-96099-1	460-96099-2	ECS-AREA 19-D22-F- 20150604	TCLP LEAD	23.4 J ug/l	50 U ug/l	26.6	100	NA	У
460-96413-1	460-96413-2	ECS-WSTREAM-21+50-F- 20150612	ARSENIC	6.8 mg/kg	6.3 mg/kg	0.5	6	NA	У
460-96413-1	460-96413-2	ECS-WSTREAM-21+50-F- 20150612	LEAD	12.6 mg/kg	15.5 mg/kg	NA	4	21	У
460-97009-5	460-97009-6	ECS-WSTREAM-25+00-SE- 20150625	ARSENIC	2.6 J mg/kg	2.2 J mg/kg	0.4	5.6	NA	У
460-97009-5	460-97009-6	ECS-WSTREAM-25+00-SE- 20150625	LEAD	28.1 mg/kg	14.7 mg/kg	NA	3.6	63	NO
460-97106-21	460-97106-22	ECS-WSTREAM-29+00-SW- 20150626	ARSENIC	2.5 J mg/kg	2.1 J mg/kg	0.4	7.4	NA	у
460-97106-21	460-97106-22	ECS-WSTREAM-29+00-SW- 20150626	LEAD	11.1 mg/kg	10.7 mg/kg	0.4	4.8	NA	у

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-98409-7	460-98409-8	ECS-AREA22-N21NW-F- 20150722	ARSENIC	2.2 J mg/kg	2.4 J mg/kg	0.2	5.4	NA	У
460-98409-7	460-98409-8	ECS-AREA22-N21NW-F- 20150722	LEAD	12.2 mg/kg	11.6 mg/kg	NA	3.6	5.0	У
460-98409-7	460-98409-8	ECS-AREA22-N21NW-F- 20150722	TCLP LEAD	50 U ug/l	50 U ug/l	0	100	NA	У

Note: The RPD test (≤35%) applies if both results are greater than 5x RL. Otherwise, the absolute difference test (≤ 2x RL) applies.

ATTACHMENT A VALIDATOR'S CHECKLISTS

Data Validation Checklist - General									
Client Name: Entact				er/ Manager: E7976H/ Jenny Self					
Site Name: Revere Smelting and Refining (Phase 2B ECS/BF Feb-	Jul15)	QC Le							
Laboratory: TestAmerica (Edison)			Laboratory Job No: see below						
Reviewer: Taryn Scholz			Date Checked: 9/18/15						
Parameters: TCLP Pb, Metals, CrIII/VI, Pesticide, PCB, Herbicide, SVOC, CN	VOC,		ds: 131), 9012E	1/6010C, 6010C/7471B, 7196A, 8081B, 8082A, 8151A, 5035/8260C,					
ITEM	YES	NO	N/A	(CRITERIA) COMMENT					
Laboratory NELAP/ELAP accredited?	Х			#11452 for Edison					
Signed Narrative included?	Х			certification signature on cover page and/or separate cert statement					
No narrative issues noted by lab?		Х		See Narrative Comments					
	of Custo	ody (CO	C)/ San	nple Receipt					
Date/time of sample collection included?	Х								
Sample temp upon receipt 2-6 C?		Х		see Comment no. 1					
Proper containers/preservation?	х			(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required see Comment no. 1A					
COCs properly executed and seals used?		х		see Comment no. 2					
Samples received within 2 days?		X		(DER10 - recommended) see Comment no. 3					
Samples reserved Willin 2 days.	Ar		Results	,					
All requested analyses reported?	X	I siour	counto						
Field. Laboratory. and Batch ID included?									
Date of sample collection/receipt included?	X X	-	+						
Date of sample preparation/analysis included?									
Date of sample preparation/analysis included?	Х		-	Hardware ND at 001 at the IMDH (001) and IDH (001). In the					
NDs at DL or QL and J-values as needed?	х			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported					
Target analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CL TAL) see Comment no. 4					
RLs acceptable?		Х		(ASP Exh C Part III and/or DER-10 App 5) see Comment no. 4A					
No elevated RLs for NDs?		х		Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP; S at 10x for ECS-AREA22-N21SE-F					
Prep/Analysis method references included and approved?	х			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D); (5035 use for VOC soils this phase) see Comment no. 5					
If analytical cleanup used, method ref included and approved?	х			(ASP Exh D) see Comment no. 6					
Sample matrix included?	х								
Soils on dry weight basis?	x*								
Correct and consistent units?	х			Organics in ug/L (TBs) and ug/kg for rest; Inorganics in mg/kg or ug/(TCLP)					
Holding time to analysis not expired?	X**			(P1 WP Table 2, P2A/B WP Table 1/2 or SW846 for those not in tabl per ASP Exh I, which gives only aq HTs) Hg 28-d, Extr 14/40-d, Cr \ 30/7-d, CN 14-d, VOC 14-d (freeze within 2-d)					
Holding time to preparation not expired?	X**			same as above					
QC Sampl	es (Pha	se 2B V	Vorkpla	n Section 5.4.7)					
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment			NA	only disposable equipment used					
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory	х								
Filter blank - 1 per week of time-integrated air monitoring	İ		NA						
Field duplicate samples - 1 for every 20 or fewer samples per		х		Total samples = 173 confirmation (71/173 TCLP/Total) + 7 BF comp 20 BF grab = 200; Total FD = 8 (3/8 conf + 0 comp + 0 grab) -> On					
sample matrix (excluding air samples)				short for conf, BF comp, and BF grab MS/LR used for metals (ICP, Hq, Cr VI - %R not reported for calc 0					
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix from the same batch as the project samples to the extent possible		x		III); 7 field MS/MSD (conf for Total As/Pb w 3 also TCLP) - with la MS/MSD still one short for conf (plus no TAL) and 1 short for DE Metals, Pest, PCB, HERB, and VOC each with no MS/MSD					
Completeness criteria met?	х			(P2B WP Section 5.3.3 - 100%) 1665/1666=99.9%					
		Field N	lotes						
Agree with custody records?			Х	not included					
Field instruments calibrated daily?	Ì		х						
Well conditions constant before sampling?		1	х						
Samples filtered? If so, give turbid/size		1	Х						
			_ ^	I (1 () () () () () () () () () () () () ()					

Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification; COI - Compound of Interest; %D - Percent Difference, DL - Detection Limit; DUP - Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasma; ICV - Initial Calibration Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Matrix Spike Duplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response Factor; RT - Retention Time; RSD - Relative Standard Deviation; TA - Target Analyte

COMMENTS

Laboratory Job No: 460-94449-1, 460-94569-1, 460-94614-1, 460-94648-1, 460-94905-1, 460-95432-1, 460-95503-1, 460-95599-1, 460-95664-1, 460-95672-1, 460-95891-1, 460-96031-1, 460-96096-1, 460-96099-1, 460-96336-1, 460-96413-1, 460-96483-1, 460-96489-1, 460-96494-1, 460-96549-1, 460-96873-1, 460-97009-1, 460-97106-1, 460-97107-1, 460-97162-1, 460-97313-1, 460-97323-1, 460-98192-1, 460-98313-1, 460-98409-1, 460-98481-1

*For the 7196A analyses, Cr III is shown as not dry-weight corrected. However, Cr III is calculated from the results for Cr VI and Total Cr, which are dry-weight corrected, and thus the Cr III is not directly dry-weight corrected but is on a dry-weight basis.

** The holding time was calculated using dates only without regard to the time of day since all holding times are greater than 24 hours. Also, note that Cr III is a calculated result and the holding time check does not apply for this analyte.

1. Receipt Temp:

For work order 460-94569-1, the samples were received at 6.6 C on ice. This is above the laboratory's standard receipt requirement of ≤6 C. All of the samples in this work order are soil samples with one sample (ECS-WSTREAM-13+00-F) analyzed for TAL Metals (including mercury) and the rest analyzed for total arsenic and lead only. Per the WP and SW846, soil samples to be analyzed for metals with the exception of mercury and hexavalent chromium do not require thermal preservation; while soil samples to be analyzed for mercury require cooling to ≤ 6 C. Thus, the validator qualified the mercury result in ECS-WSTREAM-13+00-F as estimated (J or UJ). The remaining metals results were not qualified.

1A. Containers/Preservative:

For work order 460-95664-1, the container was received broken but intact for ECS-Area19-D18-F. The sample was transferred to new containers upon receipt. Analyses performed for metals only, and thus this is not considered to significantly affect data quality and no further action was taken.

For work order 460-96096-1, one of the two 8-ounce jars collected for 6/4/15 for BF-ETETZ-GF-1c-01 was received broken. A second aliquot was collected on 6/10/15 and sent to the laboratory to be used as needed. All analyses were performed using the remaining container from 6/4/15.

2. Custody Records:

For work order 460-96096-1, the documentation indicates that no custody seals were used for the transfer of the VOC grab samples (BF-ETETZ-GF-1g-01 throught BF-ETETZ-GF-1g-07) from the field to the laboratory. The samples were transferred by commercial, overnight courier and were received in good condition, and thus no further action was taken.

For work orders 460-96336-1, 460-98313-1, and 460-98409-1, the sample IDs for one or more samples were revised from those on the custody record per ENTACT'S request.

For work order 460-97009-1, the sampler did not indicate any requested tests on the custody record for sample ECS-WSTREAM-25+00-SE-X. The laboratory logged in the sample for total arsenic and lead per ENTACT's request and the project plan.

For work order 460-97107-1, the custody record incorrectly indicates that the trip blank was of solid matrix. The laboratory received an aqueous trip blank and proceeded with DER-10 VOC analysis as planned.

3. Receipt Date:

For work order 460-96096-1, the samples were received on 6/9/15, which was five days after collection due to shipment issues. All of the samples are backfill soil samples with two samples (BF-ETETZ-GF-1c-01 and BF-ETETZ-GF-1c-02) requiring analysis for DER-10 SVOC, PEST, PCB, HERB, totat metals, trivalent/hexavalent chromium, and cyanide and the rest requiring analysis for DER-10 VOC. The samples were received at proper temperature (5.7 C) on ice under custody seal; however, the VOC samples were received beyond the laboratory standard two-day holding time from collection to freezing, and thus these analyses were cancelled and the samples were re-collected on 6/10/15

For work order 460-96099-1, the samples were received on 6/9/15, which was five days after collection due to shipment issues. All of the samples are soil samples requiring analysis for total arsenic and lead, and TCLP lead. The samples were received at proper temperature (5.7 C) on ice under custody seal and well before holding time expiration. Thus, the laboratory proceeded with analyses as requested.

4. Analyte List:

P1 WP Table 3, P2A/B WP Table 2/4, and DER10 App5 list m-cresol, o-cresol, and p-cresol separately. The laboratory reported m,p-cresol and o-cresol as it is not possible to separate m-cresol and p-cresol using method 8270D. P1 WP Table 3, which only lists RLs for the DER-10 metals and not the 23 TAL metals, also mistakenly lists Antimony. This metal does not appear in DER10 Appendix 5 and was not reported by the laboratory for the backfill samples.

For all BF samples (and the associated QC), the laboratory reported technical Chlordane rather than Chlordane (alpha) as listed in the workplan and DER10 Appendix 5.

For all BF samples (and the associated QC), the laboratory inadvertently reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) instead of just the DER-10 analytes as requested. Note: These extra analytes are all ND in the samples.

For the LB/BS/BD - the lab reported m,p-Xylene and o-Xylene. For the LB, Xylenes (total) is also reported

Note: The analyte names in the hardcopy report differ from those in the EDD for some analytes.

- 4A. The MQL (Unadj) for several DER-10 analytes (metals) is above the CRQL, but in each case, it is below the Allowable Constituent Level in DER10 App 5. Additionally, the MQL (Unadj) for the TAL metal Iron is above the CRQL. There are no action levels for this analyte.
- 5. Update IV methods (6010C, 7471B, 8260C, 8270D) used instead of Update III as in WP. Prep method for 6010C total metals in soils shown as SW3020B in EDD, validator changed all to SW3050B per the pdf report and as confirmed correct by the laboratory.
- 6. Per laboratory, Florisil cleanup (SW3620C) used for Pesticide analyses and sulfuric acid cleanup (SW3665A) used for PCB analyses (not indicated in package exc on prep log nor in EDD). No cleanup used for SVOC or Herbicides.

All Total Media	QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
March Marc				•		
March Marc				•	· · · · · · · · · · · · · · · · · · ·	·
Macruy					•	
EMS26 460-94614-1 T. Total Metals NA nothing noted NA EMS27 460-94654-1 T. Total Metals NA nothing noted noted NA Mercury NA nothing noted NA NA nothing noted NA NA NA NA NA NA NA NA NA NA NA NA NA	2.1020	.00 0 .000 .				
ENS27 460-94648-1 TCLP Metals NA	FN526	460-94614-1	,		· · · · · · · · · · · · · · · · · · ·	
Total Metalls					· ·	
Mercury NA NA NA NA NA NA NA N		.00 0 .0 .0 .			· ·	
ENS28 460-94803-7 Total Metals NA nothing noted nothing no					· ·	
ENS29 460-95593 Total Metals NA nothing noted NA NA Total Metals NA nothing noted NA NA NA NA NA NA NA N	EN528	460-94905-1	•		· ·	
EN530 460-9509-1 TCLP Metals NA nothing noted noted in the test of the t		460-95432-1			· ·	
Total Metals Na Required 25x dilution prior to analysis; RLs adjusted accordingly none required (only detects reported from dilution) none required (only detects reported from dilution) none required (only detects reported from dilution) none required (only detects reported from dilution) none required (only detects reported from dilution) none required (only detects reported from dilution) none required (only detects reported from dilution) none required (only detects reported from dilution) none required (only detects reported from dilution) Na none required (only detects reported from dilution) none requ						
PNS31					•	
Final Media 1,7,10 Required 50x, 20x, 20x dilution prior to analysis; RLs adjusted accordingly none required (mly detects reported from dilution) none required (mly sinon-project)	=1.1=0.4		TCLP Metals	1	•	none required (only detects reported from
Total Metals 1,10 Required 50x, 20x, 20x dilution prior to analysis; RLs adjusted accordingly none required (only detects reported from dilution) Total Metals NA NA NA NA NA NA NA N	EN531	460-95599-1			3,	
ENS32			Total Metals	1,7,10	Required 50x, 20x, 20x dilution prior to analysis; RLs adjusted accordingly	none required (only detects reported from
EN533 460-95672-1 Total Metals NA Nothing noted NA Nothing noted NA Nothing noted Required 10x dilution prior to analysis; RLs adjusted accordingly NA none required (including noted NA NA Nothing noted NA NA Nothing noted NA NA NA NA NA NA NA N			Total Metals	NA	MD RPD hi for As	none required (MD is non-project)
EN533 460-95672-1 TCLP Metals NA Total Metals 1 nothing noted now idlution prior to analysis; RLs adjusted accordingly NA nothing noted dilution) EN534 460-95891-1 TCLP Metals NA Total Metals 303663 Mercury NA nothing noted MS %R hi for Al,Fe nonbing noted NA NA NA nothing noted EN535 460-96091-1 TCLP Metals NA Total Metals 303475 MS %R low for Pb nothing noted NA NA nothing noted EN536 460-96091-1 VCC 304663 CCS 93 %R hi for Acetone, samples ND, data reported see QC Deficiencies EN536 460-96091-1 VCC 304663 CCV %R out for Acetone, samples ND so no RE see QC Deficiencies EN536 460-96091-1 VCC 304663 CCV %R out for Acetone, samples ND, data reported see QC Deficiencies EN536 460-96091-1 NA nonbring noted NA NA nothing noted NA NA NA post NA nothing noted NA NA nothing noted NA NA NA nothing noted NA NA NA nothing noted NA NA nothing noted	EN532	460-95664-1	TCLP Metals	NA	nothing noted	NA
Total Metals 1 Required 10x dilution prior to analysis; RLs adjusted accordingly dilution on required (only detects reported from dilution) NA Total Metals 303663 MB/S RR in for Al, Fe northing noted NA NA nothing noted NA NA nothing noted NA NA nothing noted NA NA nothing noted NA NA nothing noted NA NA nothing noted NA NA NA NA NA NA NA NA NA NA NA NA NA			Total Metals	NA	nothing noted	NA
EN534	EN533	460-95672-1	TCLP Metals	NA	nothing noted	NA
Total Metals 30363					Required 10x dilution prior to analysis; RLs adjusted accordingly	
Mercury NA	EN534	460-95891-1			· ·	
EN535 460-96031-1 TCLP Metals NA nothing noted Total Metals NS %R low for Pb none required (MS is non-project) EN536 460-96096-1 VOC 304663 VOC 1,4,6 VOC 304663 VOC 304663 VOC 304663 VOC 304663 VOC 304663 VOC 304663 VOC 304663 VOC 304663 VOC 304682 VOC 304812 MSD RPD hi for 1,4-Dioxane DBFM SU %R hi, samples ND so no RE see QC Deficiencies see QC Deficiencies voc PBFM SU %R hi, samples ND, data reported see QC Deficiencies voc PBFM SU %R hi, samples ND, data reported voc PBFM SU %R hi for 1,4-Dioxane voc PBFM SU SU PBFM SU SU PBF					,	
Total Metals 303475 MS %R low for Pb 1			,		O .	
EN536	EN535	460-96031-1			•	
VOC						
VOC 304663 CCV %R out for Acetone, samples ND, data reported See QC Deficiencies ND	EN536	460-96096-1				
Pest NA nothing noted NSD km for Silvex SVOC 304403 LCS %R out for Indeno[1,2,3-cd]pyrene, SOP allows 5 out for this full spike list so no RE, see QC Deficiencies (CCVLL not reported) CCV %R out for Indeno[1,2,3-cd]pyrene, SOP allows 5 out for this full spike list so no RE, see QC Deficiencies (CCVLL not reported) CV %R out for Indeno[1,2,3-cd]pyrene, SOP allows 5 out for this full spike list so no RE, see QC Deficiencies (CCVLL not reported) CV %R out for Indeno[1,2,3-cd]pyrene, SOP allows 5 out for this full spike list so no RE, see QC Deficiencies (CCVLL not reported) CV %R out for Indeno[1,2,3-cd]pyrene, SOP allows 5 out for this full spike list so no RE, see QC Deficiencies (CCVLL not reported) CV %R out for Indeno[1,2,3-cd]pyrene, SOP allows 5 out for this full spike list so no RE, see QC Deficiencies (CCVLL not reported) CCV %R out for Indeno[1,2,3-cd]pyrene, SOP allows 5 out for this full spike list so no RE, see QC Deficiencies (CCVLL not reported) Alera Mercury NA NA NA NA NA NA NA NA NA NA NA NA NA					•	
Pest NA						
PCB NA nothing noted MSD %R hi for Silvex SVOC 304403 LCS %R out for Indeno[1,2,3-cd]pyrene, SOP allows 5 out for this full spike list so no RE, see QC Deficiencies data flagged and reported SVOC 304453 CCV %R out for Dibenz[a,h]anthracene, CCVLL in control, samples analyzed per method, see QC Deficiencies (CCVLL not reported) detects should be considered estimated Total Metals NA MD RPD hi for Mn nothing noted NA NA NA NA NA NA NA NA NA NA NA NA NA					,	TB only)
Herb 304260 MSD %R hi for Silvex LCS %R out for Indeno[1,2,3-cd]pyrene, SOP allows 5 out for this full spike list so no RE, see QC Deficiencies data flagged and reported CCV %R out for Dibenz[a,h]anthracene, CCVLL in control, samples analyzed per method, see QC Deficiencies (CCVLL not reported) detects should be considered estimated Total Metals NA Mcrcury NA nothing noted NA NA EN537 460-9609-1 TCLP Metals NA nothing noted NSP R and MD RPD out for some metals NA nothing noted NA NA NA NA NA NA NA NA NA NA NA NA NA					•	
SVOC 304403 LCS %R out for Indeno[1,2,3-cd]pyrene, SOP allows 5 out for this full spike list so no RE, see QC Deficiencies data flagged and reported CCV &R out for Dibenz[a,h]anthracene, CCVLL in control, samples analyzed per method, see QC Deficiencies (CCVLL not reported) detects should be considered estimated Total Metals NA MD RPD hi for Mn nonthing noted NA NA nothing noted NA NA nothing noted NA NA nothing noted NA NA NA NA NA NA NA NA NA NA NA NA NA					•	
data flagged and reported CCV %R out for Dibenz[a,h]anthracene, CCVLL in control, samples analyzed per method, see QC Deficiencies (CCVLL not reported) Total Metals NA MD RPD hi for Mn none required (MD is non-project) Mercury NA nothing noted NA Cr3/6 NA nothing noted NA CN NA nothing noted NA EN537 460-9609-1 TCLP Metals NA nothing noted NS %R and MD RPD out for some metals NA Total Metals NA nothing noted NA EN538 460-96336-1 TCLP Metals NA nothing noted NA EN539 460-96413-1 Total Metals NA nothing noted NA EN540 460-96413-1 Total Metals NA nothing noted NA EN559 460-96413-1 VOC 305340 Blank contains Acetone, MeCI2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies (CCVLL not reported) NA See QC Deficiencies (CCVLL not reported) NA NA NA NA NA NA NA NA NA N</rl,>						
detects should be considered estimated Total Metals NA MD RPD hi for Mn none required (MD is non-project) Mercury NA nothing noted NA Cr3/6 NA nothing noted NA CN NA nothing noted NA EN537 460-96099-1 TCLP Metals NA nothing noted NA Total Metals 304123 MS %R and MD RPD out for some metals none required (MS/MD are non-project) Mercury NA nothing noted NA EN538 460-96336-1 TCLP Metals NA nothing noted NA EN539 460-96413-1 Total Metals NA nothing noted NA EN539 460-96483-1 VOC 305340 Blank contains Acetone, MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies</rl,>					data flagged and reported	
Mercury NA nothing noted NA Cr3/6 NA nothing noted NA CN NA nothing noted NA TCLP Metals NA nothing noted NA Total Metals 304123 MS %R and MD RPD out for some metals none required (MS/MD are non-project) Mercury NA nothing noted NA EN538 460-96336-1 TCLP Metals NA nothing noted NA Total Metals NA nothing noted NA Total Metals NA nothing noted NA EN539 460-96413-1 Total Metals NA nothing noted NA EN539 460-96413-1 Total Metals NA nothing noted NA EN530 460-96483-1 VOC 305340 Blank contains Acetone, MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies</rl,>					detects should be considered estimated	
Cr3/6 NA nothing noted NA EN537 460-96099-1 TCLP Metals NA nothing noted NA Total Metals 304123 MS %R and MD RPD out for some metals none required (MS/MD are non-project) Mercury NA nothing noted NA EN538 460-96336-1 TCLP Metals NA nothing noted NA Total Metals NA nothing noted NA Total Metals NA nothing noted NA EN539 460-96413-1 Total Metals NA nothing noted NA EN539 460-96413-1 Total Metals NA nothing noted NA Mercury NA nothing noted NA Mercury NA nothing noted NA EN540 460-96483-1 VOC 305340 Blank contains Acetone, MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies</rl,>						
EN537 460-96099-1 CN NA nothing noted NA TCLP Metals NA nothing noted NA Total Metals 304123 MS %R and MD RPD out for some metals none required (MS/MD are non-project) Mercury NA nothing noted NA EN538 460-96336-1 TCLP Metals NA nothing noted NA Total Metals NA nothing noted NA Total Metals NA nothing noted NA EN539 460-96413-1 Total Metals NA nothing noted NA EN539 460-96483-1 VOC 305340 Blank contains Acetone, MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies</rl,>			•		•	
EN537 460-96099-1 TCLP Metals NA nothing noted NA Total Metals 304123 MS %R and MD RPD out for some metals none required (MS/MD are non-project) Mercury NA nothing noted NA Total Metals NA nothing noted NA Total Metals NA nothing noted NA Total Metals NA nothing noted NA EN539 460-96413-1 Total Metals NA nothing noted NA EN539 460-96483-1 VOC 305340 Blank contains Acetone, MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies</rl,>					•	
Total Metals 304123 MS %R and MD RPD out for some metals none required (MS/MD are non-project) Mercury NA nothing noted NA EN538 460-96336-1 TCLP Metals NA nothing noted NA Total Metals NA nothing noted NA EN539 460-96413-1 Total Metals NA nothing noted NA Mercury NA nothing noted NA Mercury NA nothing noted NA EN540 460-96483-1 VOC 305340 Blank contains Acetone, MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies</rl,>					•	
Mercury NA nothing noted NA EN538 460-96336-1 TCLP Metals NA nothing noted NA Total Metals NA nothing noted NA EN539 460-96413-1 Total Metals NA nothing noted NA Mercury NA nothing noted NA EN540 460-96483-1 VOC 305340 Blank contains Acetone, MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies</rl,>	EN537	460-96099-1			· ·	
EN538 460-96336-1 TCLP Metals NA nothing noted NA Total Metals NA nothing noted NA EN539 460-96413-1 Total Metals NA nothing noted NA Mercury NA nothing noted NA EN540 460-96483-1 VOC 305340 Blank contains Acetone, MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies</rl,>						
Total Metals NA nothing noted NA EN539 460-96413-1 Total Metals NA nothing noted NA Mercury NA nothing noted NA EN540 460-96483-1 VOC 305340 Blank contains Acetone, MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies</rl,>	ENISOS	400 00000 4	,		•	
EN539 460-96413-1 Total Metals NA nothing noted NA Mercury NA nothing noted NA EN540 460-96483-1 VOC 305340 Blank contains Acetone, MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies</rl,>	EN538	460-96336-1			· ·	
Mercury NA nothing noted NA EN540 460-96483-1 VOC 305340 Blank contains Acetone, MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies</rl,>	ENIESO	460 06442 4			•	
EN540 460-96483-1 VOC 305340 Blank contains Acetone, MeCl2 >MDL but <rl, samples="">MDL or >RL B-flagged see QC Deficiencies</rl,>	EN039	400-90413-1			-	
30.	ENE40	460 06492 4	•		· ·	
	E1V34U	400-30403-1				

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
		VOC	305482	CCV %R hi for CCl4, samples ND, data reported	see QC Deficiencies
		Pest	NA	nothing noted	NA
		PCB	NA	nothing noted	NA
		Herb	306066	CCV %R hi for 2,4-D on primary column, samples ND, data reported	none required (not a target analyte)
		Herb	306066	CCV %R hi for 2,4,5-T on secondary column, samples ND, data reported	none required (not a target analyte)
		SVOC	305539	MS/D %R low for PCP	none required (MS/D are non-project)
		SVOC	305539	CCV %R out for Dibenz[a,h]anthracene, samples analyzed per method, detects should be	
		0.00	000000	considered estimated	COO QO DONOIONOCO
		Total Metals	ΝΔ	MD RPD hi for As, Pb	none required (MD is non-project)
		Mercury	NA	nothing noted	NA
		Cr3/6	NA	nothing noted	NA
		CN	305731	Blank contains CN >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
EN541	460-96489-1	Total Metals		MD RPD hi for As	none required (MD is non-project)
EN542	460-96494-1	TCLP Metals		nothing noted	NA
LINDAZ	400-30434-1	Total Metals		MD RPD hi for Pb	none required (MD is non-project)
EN543	460-96549-1	TCLP Metals		nothing noted	NA
LINDAD	400-30343-1	Total Metals		nothing noted	NA
EN544	460-96873-1	TCLP Metals		nothing noted	NA NA
EN344	400-90073-1	Total Metals		nothing noted	NA NA
		%Solids		MD RPD hi	
ENIE 4E	400 07000 4		306779		none required (MD is non-project)
EN545	460-97009-1	Total Metals		MS %R low for Sb, hi for others	none required (MS is non-project)
ENE 40	400 07400 4	Mercury	NA	nothing noted	NA
EN546	460-97106-1	Total Metals		CCVL %R out for Se; due to lab error, sample not reanalyzed	see QC Deficiencies
		Total Metals		MS %R hi for Pb	see QC Deficiencies
		Total Metals		MD RPD hi for Pb	see QC Deficiencies
		Total Metals		MD RPD hi for Pb	none required (MD is non-project)
	100 07107 1	Mercury	NA	nothing noted	NA COR (III)
EN547	460-97107-1	VOC	307487	LCS/D %R hi for Acetone, MEK; samples ND, data reported	see QC Deficiencies
		VOC	307487	CCV %R hi for CCl4, samples ND, data reported	see QC Deficiencies
		Pest	NA	nothing noted	NA
		PCB	NA	nothing noted	NA
		Herb	307769	CCV %R hi for 2,4,5-T on secondary column, samples ND, data reported	none required (not a target analyte)
		Herb	307833	CCV %R hi for 2,4,5-T on secondary column, samples ND, data reported	none required (not a target analyte)
		SVOC	307767	LCS %R out for Benzo[a]pyrene, Benzo[b]fluoranthene; SOP allows 5 out for this full spike	esee QC Deficiencies
				list so no RE, data flagged and reported	
		SVOC	307940	MS/D %R and RPD out for several analytes	none required (MS/D are non-project)
		Total Metals		MS%R out for Cd, Mn	none required (MS is non-project)
		Mercury	NA	nothing noted	NA
		Cr3/6	NA	nothing noted	NA
		CN	NA	nothing noted	NA
EN548	460-97162-1	TCLP Metals		nothing noted	NA
		Total Metals		nothing noted	NA
=11=10		%Solids	307866	MD RPD hi	none required (MD is non-project)
EN549	460-97313-1	Total Metals		MD RPD hi for Pb	none required (MD is non-project)
EN550	460-97323-1	VOC	308545	LCS/D %R out for PCE; samples ND, data reported	see QC Deficiencies
		VOC	308545	CCV %R out for n-Butylbenzene (hi), PCE (low); CCVLL in control, samples analyzed per	see QC Deficiencies (CCVLL not reported)
				method, detects should be considered estimated	
		VOC	308938	LCS %R hi for Acetone, MEK; samples ND, data reported	none required (applies for TB only)
		VOC	308938	CCV %R out for 3 TAs; CCVLL in control, samples analyzed per method, detects should be considered estimated	none required (applies for TB only)
		Pest	NA	nothing noted	NA
		PCB	NA NA	nothing noted	NA NA
		FUB	INA	nothing noted	INA

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
		Herb	309232	24DCPAA SU %R hi on secondary column for LCS, primary column passes	none required (sample results not affected)
		SVOC	308762/3	MS %R low for 2-Methylphenol	see QC Deficiencies
		SVOC	308762/3	MSD %R low for PCP	see QC Deficiencies
		Total Metals	308729	MS %R hi for Mn	none required (MS is non-project)
		Mercury	NA	nothing noted	NA
		Cr3/6	NA	nothing noted	NA
		CN	309100	Blank contains CN >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
EN551	460-98192-1	Total Metals	NA	nothing noted	NA
EN552	460-98313-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	NA	nothing noted	NA
EN553	460-98409-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	5	Required 10x dilution prior to analysis; RLs adjusted accordingly	noted in QA report narrative
		Mercury	NA	nothing noted	NA
EN554	460-98481-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	NA	nothing noted	NA

Client Name: Entact			V)/Wet Chem Project Number/ Manager: E7976H/ Jenny Self								
Site Nan	ne: Revere Smelting and Refining (Phase 2B ECS/BF Feb-Jul15)				,						
aborato	ory: TestAmerica (Edison)	Labora	Laboratory Job No: see DURC								
	er: Taryn Scholz	Date 0	Date Checked: 9/18/15								
Paramet	ters: TCLP Pb, Metals, CrIII/VI, CN	Metho	ds: 131	1/301	0A/6010C, 3050B/6010C, 7471B, 3060A/7196A, 9012B						
	%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT						
	Method blank data included in Lab Package? *	х									
100	Criteria met? (< MDL, ≥ -RL)		Х		see QC Deficiencies						
100	Criteria met for field blanks? (< MDL)			Х							
	QC check samples/LCS data included in lab package? *	Х									
	All project COCs or TAs included? *	Х									
100	%R criteria met?		х		method (lab** but within 50-200%) see QC Def						
	Matrix spike data included in lab package? *	Х									
100	%R criteria met?		х		method (75-125%) see QC Deficiencies						
	Sample duplicate data included in lab package? *	Х			as LR						
					ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2F						
100	RPD criteria met?		х		sol if either ≤5RL) see QC Deficiencies						
					ASP for lab dup - 20% ag, 35% solid (+/-RL ag, +/-2F						
100	Field dup RPD criteria met? (individual, mean, and overall)		х		sol if either <5RL) see QC Deficiencies						
	Instrument Tune for ICP-MS included in lab package?			Х	_ /						
NA	Instrument Tune method criteria met? (+5 RSD, +0.1 amu)			Х							
	Initial calibration documentation included in lab package?	х									
	All target analytes included?	Х									
	blank/1 std (ICP), blank/ 5 stds (Hg)	Х									
100	correl coeff criteria met? (r > 0.998 ICP, r > 0.995 AA/Hg)	Х									
	Calibration verification data included in lab package?	Х									
	ICB/CCB criteria met? (<rl,>-RL)</rl,>	Х									
	ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115)	Х									
	CCV %R criteria met? (ICP 90-110%, Hg 80-120%)	Х									
100	LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%)	х			CL per ASP Exh E						
100	Dilution test data included?	Х									
100	Results within criteria if >50xMDL? (max 10%, qualify 15%)	Х									
100	Post digestion spike included?	Х									
100	%R criteria met?	Х			method (75-125%)						
100	Interference check sample data included (ICP/MS only)?	Х									
100	%R criteria met? (80-120%, unspk <2RL,≥2-RL)	Х			2RL per ASP Exh E						
NA	Internal standard data included in lab package?			Х							
NA	Intensities within limits (within ≥ 70% of calib std)?			Х							
10	Analyte quantitation/RLs correct?	Х									
10	QC parameters calculated correctly?	Х									
COMME											
No QC	reported for Chromium III, which is calculated from the Total Chi	omium a	and Chi	romiun	n VI result.						
*For SF	RMs (solid LCS), the manufacturer's established limits as reported	by the I	ab are	used.	For aqueous LCS, method limit is 80-120%.						
OTAL	METALS VS LEACHED - all leach results < max possible										

Client Na	ame: Entact	Project Number/ Manager: E7976H/ Jenny Self						
ite Nan	ne: Revere Smelting and Refining (Phase 2B ECS/BF Feb-Jul15)	QC Level: IV						
aborato	ory: TestAmerica (Edison)	Labora	atory Jo	b No:	see DURC			
Reviewe	r: Taryn Scholz	Date 0	Checke	d: 9/18	/15			
aramet		Metho	ds: 131	1/3010	0A/6010C			
	%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT			
	Was a ZHE vessel without leaks used for VOAs?			Х				
	Was particle size reduced as necessary? (capable of passing through a 9.5 mm (0.375 inch) standard sieve)			х				
	Were multi-phasic waste samples properly analyzed? (if <0.5% solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately			х				
	Was the correct extraction fluid used? (TCLP - #1 for VOA and if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)	х			No. 1 for all			
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	х			pH of fluid not reported but pH of LB leacha 4.89-4.98			
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)	Х						
	Was the correct weight of fluid used? (20x solid weight)	Х						
100	Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)	Х						
	No preservation for aqueous sample aliquots?			Х				
	Proper preservation for leachates?	Х			(method pH <2)			
100	Holding time to leaching not expired?	Х			(method 180-days)			
	Leach blank data included in Lab Package? (1/20)	х						
100	Criteria met? (< MDL)	Х						
OMME	NIS							

Data \	Validation Checkli	st: GC (Update IV)							
	me: Entact	· · · /	Project Number/ Manager: E7976H/ Jenny Self						
		ig (Phase 2B ECS/BF Feb-Jul15)	QC Level: IV						
	y: TestAmerica (Edison)	3 (Laboratory Job No: see DURC						
	Taryn Scholz		Date Checked: 9/18/15						
	rs: Pesticide, PCB, Herbicide					1B, 3546/8082A, 8151A			
	%PERFORM	ED/ ITEM		NO		(CRITERIA) COMMENT			
	Method blank data included in		Х			(constant) comment			
100	Criteria met? (<mdl)< td=""><td>read rackage.</td><td>X</td><td></td><td></td><td></td></mdl)<>	read rackage.	X						
100	Criteria met for field blanks?	(~MDL)	^		Х				
100	QC check samples/LCS data		х	-	^				
	All project COIs or TAs includ		x			With the exception of multi-component pesticides Chlordane (technical) and Toxaphene; only two multi-componen Aroclors (1016 and 1260) spiked per method recommendations			
	%R criteria met?		Х			method (lab but within 50-200%)			
100	RPD criteria met?				х	,			
	Matrix spike data included in	lab package?	Х			all non-project			
1	%R criteria met?				Х	method (lab but within 50-200%)			
100	RPD criteria met?		-	1	X	method (lab but within 40%)			
100	Surrogate data included in lat	nackage?	х	1		mound put within 4070)			
	Required surrogates included	. 0		 					
400		:	X	-		mostle ad (lab but within 40 0000() and 00 Deficient			
100	%R criteria met?		Х	1		method (lab but within 10-200%) see QC Deficiencies			
100	Field dup RPD criteria met? (,			х	ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2RL sol if either \leq 5RL)			
	Initial calibration documentation	on included in lab package?	Х			5 peaks used for all multi-comp Pest/PCB			
	All target analytes included?		Х						
100	%RSD criteria met? (<20%RS	SD or r <u>></u> 0.995 or COD <u>></u> 0.990)	Х						
100	DDT/Endrin %breakdown ma	x 15%?	Х						
	Calibration verification data in	cluded in lab package?	Х			only beg CCV (no end) for 8082 since IS used			
100	%D criteria met? (<20%)		Х						
100	Internal standard data include		х			used for 8082A, Form VIII in error (has DCB instead of BNB), validator used raw data to make check			
100	Areas within limits (within -50,		Х						
100	RTs within limits (<30 s diff from	om ICAL midlevel)?	Х						
100	Dual column/detector confirm	ation data incl in lab package?	х						
100	%Difference criteria met? (<4	0%)	Х						
10	Analyte qualitative ID criteria	met?	Х			see Comment no. 1			
10	Analyte quantitation/RLs corre	ect?	Х						
10	QC parameters calculated co		Х						
	Surrogate	Control Limits							
PEST/	Decachlorobiphenyl	76-149/53-150				bold updated from P2B 2013 (32-136 for TALBUFF)			
PCB	Tetrachloro-m-xylene	72-136				bold updated from P2B 2013 (30-124 for TALBUFF)			
HERB	2,4-DCPA	69 -150				2010 apaatoa 110111 22 2010 (00 121101 17122011)			
COMMEN		33 100							
COMINIEN	113								
									
The validation		ere the surrogate has a %D outside	e the crite	eria sind	ce surre	ogate recoveries for each analysis are evaluated separately -			
1 For son	nnles 160-06183-8 and 160 06	183-0 the retention time for the 90	824 DCE	Curro	iate on	the secondary column (CLP-2) is outside the window (11.2)			
11.39) at		primary column is in the window an				ND, and thus no effect on data quality. Similar issue noted for			
									

	me: Entact		Project Number/ Manager: E7976H/ Jenny Self						
		efining (Phase 2B ECS/BF Feb-Jul15)	QC Level: IV						
	ry: TestAmerica (Edison)		Laboratory Job No: see DURC						
	r: Taryn Scholz		Date Checked: 9/18/15 Methods: 5035/8260C, 3546/8270D						
aramet	ers: VOC, SVOC					•			
		DRMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT			
400	Method blank data include	ed in Lab Package?	Х			00 0 0 0 0			
100	Criteria met? (<mdl)< td=""><td>0 (MDI)</td><td></td><td>Х</td><td></td><td>see QC Deficiencies</td></mdl)<>	0 (MDI)		Х		see QC Deficiencies			
100	Criteria met for field blank		Х						
		lata included in lab package?	Х						
100	All project COIs or TAs in %R criteria met?	ciuaea?	Х			month and (lab host within 50 2000()) and OC Definionaida			
100 100	RPD criteria met?		.,	Х		method (lab but within 50-200%) see QC Deficiencies method (lab but within 40%)			
100	Matrix spike data included	l in lab package?	X			method (lab but within 40%)			
100	%R criteria met?	ппарраскауе!		.,		method (lab but within 50-200%) see QC Deficiencies			
100 100	RPD criteria met?			Х		method (lab but within 50-200%) see QC Deliciencies method (lab but within 40%)			
100	Surrogate data included in	n lah nackaga?	X			method (lab but within 40%)			
	Required surrogates inclu		X						
100	%R criteria met?	ded?		· ·		method (lab but within 10-200% extr, 20-200% purg) se			
100	%K Citteria fflet?			Х		metriod (lab but within 10-200 % exti, 20-200 % purg) se			
100	Field dup DDD oritoric	et? (individual, mean, and overall)			Х	20% aq, 35% solid (+/-2RL aq, +/-3RL sol if either≤5RL			
100		or GC/MS included in lab package?	х			20% aq, 35% solid (+/-2KL aq, +/-3KL soi il either <u><</u> 3KL			
100	Instrument Tune method		X						
100		ntation included in lab package?	X						
		d at min 5 levels w low< RL?	X						
		ect for RRF<0.05 or Table 4, whicheve							
	lower	ect for KKF<0.05 or Table 4, whicheve	х						
	lower								
100	%RSD criteria met? (<20°	%RSD or $r \ge 0.995$ or COD ≥ 0.990)	Х						
		ta included in lab package?	х						
		ect for RRF<0.05 or Table 4, whicheve	r						
	lower	, , , , , , , , , , , , , , , , , , , ,	Х						
100	%D criteria met for CCC/7	TAs? (20% max)		Х		see QC Deficiencies			
100	Internal standard data inc		Х						
100	Areas within limits (within	-50/+100% of last calib check)?	Х						
100	RTs within limits (<10/30(8270) s diff from ICAL midlevel)?	Х						
10	Analyte qualitative ID crite	eria met?	Х			see Comment no. 1			
10	Analyte quantitation/RLs	correct?	Х						
10	IS Areas within limits (with	nin -50/+100% of ICAL midlevel)?	Х			for CCVs			
10	QC parameters calculated	d correctly?	Х						
	Surrogate	Control Limits							
OC	1,2-Dichloroethane-d4	70-130							
	Toluene-d8	70-130							
	Bromofluorobenzene	70-130							
	Dibromofluoromethane	70-130							
SVOC	2,4,6-Tribromophenol	19-114 (Oct 2014 10-120)				Bold updated from P2B 2013 (10-120 TALNASH)			
	Terphenyl-d14	41-145 (Oct 2014 16-151)	1			(13-120 TALNASH)			
	2-Fluorobiphenyl	49-112 (Oct 2014 40-109)				(29-120 TALNASH)			
	Nitrobenzene-d5	40-106 (Oct 2014 38-105)	1		1	(27-120 TALNASH)			
	2-Fluorophenol Phenol-d5	39-103 (Oct 2014 37-125) 44-104 (Oct 2014 41-118)				(10-120 TALNASH)			
						(10-120 TALNASH)			

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action Post-Stabilization Verification Samples

July 2015 to September 2015

Prepared by:

Quality Assurance Associates (QAALLC)

1007 Francis Drive College Station, TX 77840 www.qaallc.com 979-694-7199

November 20, 2015

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	. 1
2.0	PRO	CEDURE	ES	.3
3.0	DAT	A VALID	ATION RESULTS	۷.
	3.1	PRECI	SION	۷.
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	۷.
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	۷.
		3.1.3	Field Duplicate (FD) Precision	۷.
	3.2	ACCU	RACY	۷.
		3.2.1	Laboratory Control Spike (LCS) Accuracy	. 5
		3.2.2	Matrix Spike (MS) Accuracy	. 5
		3.2.3	Serial Dilution (SD) %Difference	. 5
	3.3	REPRI	ESENTATIVENESS	. 5
		3.3.1	Chain-of-Custody and Analysis Requests	. 5
		3.3.2	Sample Preservation and Holding Time	
		3.3.3	Laboratory and Method Selection	
		3.3.4	Blanks (Laboratory and Field)	
		3.3.5	Analytical Procedures	
	3.4	COMP	LETENESS	.6
		3.4.1	Laboratory Deliverables Completeness	.6
		3.4.2	EDD Correctness	
		3.4.3	Analytical Completeness	
	3.5	COMP	ARABILITY	

LIST OF TABLES

Table 1 – Samples Selected for Validation

Table 2 - Data Validation Qualifiers (DVQs)

Table 3 – Qualified Results for Validated Samples

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The data include five investigative soil samples as shown in Table 1. The samples comprise approximately 10% of the Phase II-B post-stabilization verification (PSV) samples collected during July 2015 to September 2015. (A total of 40 PSV samples were collected during this period.) The PSV samples were collected by ENTACT from the stabilized material stockpiles and analyzed for Toxicity Characteristic Leaching Procedure (TCLP) metals to ensure that the stabilized material meets the appropriate criteria for disposal in the onsite containment cell.

Per the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, these data are considered Level 2 and require minimal data review. Per ENTACT's request, QAA performed a full validation of the selected samples and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). QAA completed the validation using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Superfund Data Review* (August 2014), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The validator assessed precision using the laboratory duplicate results. The laboratory prepared an unspiked matrix duplicate (MD) with every analytical batch and reported the RPD for each analyte. As shown in Table 1, one MD was prepared using a sample from the site. No data required qualification based on the MD results, which indicates good precision for the analytical technique on the given sample matrix.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The validator assessed accuracy using the laboratory spikes and matrix spikes. The laboratory prepared a laboratory control spike (LCS) using reagent water with every analytical batch and reported the recoveries for all analytes. The LCS recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects. Additionally, the laboratory prepared a matrix spike (MS) with every analytical batch and reported the recoveries for each analyte. As shown in Table 1, one MS was prepared using a sample from the site. No data required qualification based on the MS results, which indicates good accuracy for the analytical technique on the given sample matrix.
- 3. Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, PSV samples were collected as required in the approved sampling and analysis plan. Representativeness is also ensured by using the proper analytical

procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory blanks, and analytical instrument setup (i.e., calibration, interference correction, etc.) For the samples selected for validation, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank and leachate blank with each analytical batch and the blanks show no contamination, which indicates the samples were not affected by laboratory procedures. Additionally, proper analytical techniques were used and calibration results met the method requirements.

- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. For the samples selected for validation, all analyses produced valid analytical measurements, which gives a completeness of 100%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The PSV analytical results are classified as Level 2 data with a full review and validation of at least 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated. Note that results are reported in μg/L for all field samples.

DATA USABILITY

All sample results are acceptable for use. As shown in Table 3, four results are qualified solely because the concentration is between the MDL and RL. The actual value is not expected to exceed the sample RL. No data quality issues were noted.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). For the samples selected for validation, the laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- Laboratory Deliverables Completeness,
- EDD Correctness,
- Chain-of-Custody and Analysis Requests,
- · Sample Preservation and Holding Time,
- Laboratory and Method Selection,
- Initial Calibration,
- Continuing Calibration Verification,
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- · Matrix Duplicates (MD), and
- Field Duplicates (FD).

Additionally, the validator examined the raw data for one of the two sample batches (randomly selected by the validator) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are 80-120% for laboratory accuracy and 75-125% for matrix accuracy for metals analyses.
- Laboratory Precision the control limit (20 RPD) as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. Data rejection limits of 40% for laboratory spikes and 30% for matrix spikes was used for these inorganic analyses. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U-flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

No LCSD were analyzed (or required) with the samples selected for validation.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every analytical batch (maximum 20 samples) and reported RPDs for all analytes. The validator only evaluated the MD prepared with a sample from the site (of which there is one), since those prepared with a sample from another site do not reflect data quality for the Revere site. All site MD RPDs are at or below the control limit, except as follows:

 For QC batch 460-321093, the RPD for Arsenic in the MD prepared with PSV-439 is slightly above the 20% control limit at 22%.

For this duplicate pair, both results are below the reporting limit (RL) and thus the RPD test is not applicable. The absolute difference between the results is less than 2x RL, which indicates good precision and thus the validator did not qualify the data.

Note that non-project MD results are included in the data packages but not in the EDD.

3.1.3 FIELD DUPLICATE (FD) PRECISION

No field duplicates were collected with the samples selected for validation.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD) and matrix spikes (MS/MSD) plus serial dilutions (SD). LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

For the samples selected for validation, the laboratory analyzed a LCS for every analytical batch (maximum 20 samples) as required and reported recoveries for all analytes. All LCS recoveries are within the control limits.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS for every analytical batch (maximum 20 samples) and reported recoveries for all analytes. The validator only evaluated the MS prepared with a sample from the site (of which there is one), since those prepared with a sample from another site do not reflect data quality for the Revere site. All site MS recoveries are within the control limits. Note that non-project MS results are included in the data packages but not in the EDD.

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all metals detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples selected for validation were hand-delivered to the laboratory or delivered by an overnight, commercial carrier with properly executed chain-of-custody records and custody seals, which confirms that sample integrity was maintained. No issues were noted during sample log-in at the laboratory, and all field samples were analyzed for the tests requested on the chain-of-custody. Additionally, the information on the custody record is correct and agrees with that reported in the analytical results.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

The samples selected for validation were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (TestAmerica-Edison NYSDOH (NELAP) #11452, NYSDOH (ELAP) #11452)

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. The analyte list includes TCLP Antimony, TCLP Arsenic, TCLP Cadmium, and TCLP Lead and the nominal reporting limits are below the levels of concern (i.e., the treatment goals) for each analyte.

(Note: The laboratory dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank and leachate blank for every analytical batch (maximum 20 samples) plus a calibration blank for every 10 metals analyses as required per the analytical methodology. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used. No analytes were detected in the laboratory blanks.

3.3.5 ANALYTICAL PROCEDURES

For the samples selected for validation, the analytical procedures (initial calibration, continuing calibration verification, and interference correction), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method.

Additionally, no issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes two analytical batches and the validator re-calculated sample results and QC check parameters for one batch (batch 460-314473 in work order 460-98826-1).

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

For the samples selected for validation, the NYSDEC Category B data packages and EDD contain all necessary information.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Job No.	Sample(s)	EDD Field(s)	Action
All	All QC samples	sampling_technique	The validator changed the entry from null to the default entry (UN) to meet NYSDEC requirements.

3.4.3 ANALYTICAL COMPLETENESS

For the samples selected for validation, the validator did not reject any of the results, which gives a completeness of 100%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. (Note that in some cases the laboratory used a more recent version of the method specified in the Workplan, e.g. SW846 6010C was used instead of SW846 6010B.) The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which an analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which an analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J-flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results are reported in μ g/L and are classified as Level 2 data for TCLP metals with a full review and validation of 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated.

TABLE 1 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Post-Stabilization Verification Samples July 2015 to September 2015

SAMPLES SELECTED FOR VALIDATION

Lab ID	Field ID	Sample Date	Туре	Media	Matrix	TCLP Sb, As, Cd, Pb
460-98826-1	PSV-417	7/30/2015	INV	PSV	Soil	х
460-98826-2	PSV-418	7/30/2015	INV	PSV	Soil	х
460-98826-3	PSV-419	7/30/2015	INV	PSV	Soil	х
460-100647-1	PSV-438	9/2/2015	INV	PSV	Soil	х
460-100647-2	PSV-439	9/2/2015	INV	PSV	Soil	х
460-100647-2LR	PSV-439	9/2/2015	MD	PSV	Soil	х
460-100647-2MS	PSV-439	9/2/2015	MS	PSV	Soil	х

INV - Investigative Sample

MD - Matrix Duplicate Sample

MS - Matrix Spike Sample

PSV - Post-Stabilization Verification Sample

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

• TCLP Metals: 1311/3010A/6010C for Antimony, Arsenic, Cadmium, and Lead in leachates of soil samples

TABLE 2

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- U = Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- *J* = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J-/J+ and R>UJ)

TABLE 3 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Post-Stabilization Verification Samples July 2015 to September 2015

QUALIFIED RESULTS FOR VALIDATED SAMPLES

Lab ID	Field ID-Date	Analyte	Lab	DVQ	QC Issue
			Result		
460-98826-1	PSV-417-	TCLP ANTIMONY	96.9 J ug/l	J	Result between MDL and RL
	20150730				
460-98826-3	PSV-419-	TCLP ANTIMONY	57.4 J ug/l	J	Result between MDL and RL
	20150730				
460-98826-3	PSV-419-	TCLP ARSENIC	22.3 J ug/l	J	Result between MDL and RL
	20150730				
460-100647-2	PSV-439-	TCLP ARSENIC	53.9 J ug/l	J	Result between MDL and RL
	20150902				

ATTACHMENT A

VALIDATOR'S CHECKLISTS

Data Validation Checklist - General									
		Ta							
Client Name: Entact	145\		Project Number/ Manager: E7976H/ Jenny Self						
Site Name: Revere Smelting and Refining (Phase 2B PSV Jul15-Se Laboratory: TestAmerica (Edison, NJ)	eptis)	QC Level: II Laboratory Job No: 460-98826-1, 460-100647-1							
Reviewer: Taryn Scholz				d: 10/13/15					
Parameters: TCLP Metals				1/3010A/6010C					
ITEM	YES	NO	N/A	(CRITERIA) COMMENT					
Laboratory NELAP/ELAP accredited?	X	NO	IV/A	NYDOH (NELAP) #11452, NYDOH (ELAP) #11452					
Signed Narrative included?	X								
No narrative issues noted by lab?	X								
		ty (COC	:)/ Sam	ple Receipt					
Date/time of sample collection included?	X	1), Cam						
Sample temp upon receipt 2-6 C?	X								
Proper containers/preservation?	Х			(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required)					
COCs properly executed and seals used?	X			(* * * * * * * * * * * * * * * * * * *					
Samples received within 2 days?	X								
eamples received main 2 days.		alytical F	Results						
All requested analyses reported?	Х	1							
Field, Laboratory, and Batch ID included?	X								
Date of sample collection/receipt included?	X	1	1						
Date of sample preparation/analysis included?	X								
NDs at DL or QL and J-values as needed?	x			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-values reported; EDD - NDs blank with 'method_detection_limit' = 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' = 'quantitation_limit' (SQL), J-values reported					
Target analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLP TAL)					
RLs acceptable?	Х			(ASP Exh C Part III and/or DER-10 App 5, WP Remedial Goal)					
No elevated RLs for NDs?	Х			Note: 5x std dilution for TCLP					
Prep/Analysis method references included and approved?	Х			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D)					
If analytical cleanup used, method ref included and approved?			Х	(ASP Exh D)					
Sample matrix included?	Х								
Soils on dry weight basis?			Х						
Correct and consistent units?	Х			in ug/L					
Holding time to analysis not expired?	Х			(Workplan Table 2)					
Holding time to preparation not expired?	Х			(Workplan Table 2)					
	orkplan S	Section 5	5.3.6 an	nd 2/29/12 mod letter)					
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment			NA	only disposable equipment used					
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory			NA						
Filter blank - 1 per week of time-integrated air monitoring			NA						
Field duplicate samples - 1 for every 20 or fewer samples per				Total samples = 6 PSV; Total FD = 0					
sample matrix (excluding air samples)		Х							
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix from the same batch as the project samples to the extent possible	х			Total samples = 6 PSV; Total MS/MD = 1					
Completeness criteria met?	Х			(Workplan Section 5.3.3 - 100%) 100%					
		Field No	otes						
Agree with custody records?			Х	not included					
Field instruments calibrated daily?			Х						
Well conditions constant before sampling?			х						
Samples filtered? If so, give turbid/size			х						
Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasm	ia; ICV - I trix Spike	nitial Ca Duplica	- Compalibration te; QL	Dound of Interest; %D - Percent Difference, DL - Detection Limit; DUP on Verification; IDL - Instrument Detection Limit; LCS - Laboratory Controlor - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Standard Deviation: TA - Target Analyte					
COMMENTS			1						

 QAA No.
 Lab Job No.
 Test
 Batch/Sample
 Issue
 Resolution

 EN555
 460-98826-1
 NA
 NA
 NA
 NA
 NA

 EN556
 460-100647-1
 TCLP Metals -2
 MD RPD exceeded limit for As
 see QC deficiencies

Ite Name: Revere Smelling and Refining (Phase 2B PSV Jul15-Sept15)	ite Nam aborato	D 0 1/1 1D (1 1 (D) 0D D0) / 1 (1 1 0 1 1 1)				
Date Checked: 10/13/15	aborato	ie: Revere Smelting and Refining (Phase 2B PSV Jul15-Sept15)				
### According to the content of the						
## Wethord blank data included in Lab Package? Methord blank data included in Lab Package?			Date (Checke	ed: 10/1	13/15
Method blank data included in Lab Package?	aramete	ers: TCLP As,Cd,Pb,Sb and TCLP Pb	Metho	ds: 13	11/301	
Criteria met? (< MDL, ≥ -RL)			YES	NO	N/A	(CRITERIA) COMMENT
100 Criteria met for field blanks? (< MDL) X X QC check samples/LCS data included in lab package? X X Method (lab but within 50-200%)		Method blank data included in Lab Package?	Х			
OC check samples/LCS data included?	100	Criteria met? ($<$ MDL, \ge -RL)	Х			
All project COCs or TAs included? %R criteria met? Matrix spike data included in lab package? 100	100				Х	
Matrix spike data included in lab package? X method (lab but within 50-200%)			Х			
Matrix spike data included in lab package? x method (75-125%)		All project COCs or TAs included?	Х			
Sample duplicate data included in lab package? X	100	%R criteria met?	Х			method (lab but within 50-200%)
Sample duplicate data included in lab package? X		Matrix spike data included in lab package?	Х			
Sample duplicate data included in lab package? RPD criteria met? Field dup RPD criteria met? (individual, mean, and overall) NA Instrument Tune for ICP-MS included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? All target analytes included? Initial calibration verification data included in lab package? Calibration verification data included in lab package? ICB/CCB criteria met? (\$4.5 RSD, ±0.1 amu) CCV %R criteria met? (\$7.5 RL) ICV %R criteria met? (\$7.5 RL) CCV %R criteria met? (\$7.5 RSD, ±0.1 amu) ICCV %R criteria met? (\$7.5 RL) CCV %R criteria met? (\$7.5 RSD, ±0.1 amu) Dilution test data included? SX CL per ASP Exh E NA Internal standard data included in lab package? ICR (\$7.5 RSP) X CR post digestion spike included? X Internal standard data included in lab package? ICR (\$7.5 RSP) X CR por IAD VM (\$7.5 RSP) X CL per ASP Exh E NA Internal standard data included in lab package? X Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA Internal standard data included in lab package? INA INA INA INA INA INA INA IN	100	, , , , , , , , , , , , , , , , , , , ,	Х			method (75-125%)
RPD criteria met?						,
Field dup RPD criteria met? (individual, mean, and overall) Instrument Tune for ICP-MS included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/5 stds (Hg) Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? ICB/CCB criteria met? (ICP 90-110,Hg 80-120,CN 85-115) CCV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115) CCV %R criteria met? (ICP 90-110%, Hg 80-120%) LLCCV %R criteria met? (ICP 90-110%, Hg 80-120%) LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%) LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%) Post digestion spike included? %R criteria met? NA post digestion spike included (ICP/MS only)? %R criteria met? (80-120%, unspk <2RL, ≥2-RL) NA Internal standard data included in lab package?	100		_^_	_		
Field dup RPD criteria met? (individual, mean, and overall) X 2RL sol if either ≤5RL)	100	Tri D ontona met:		^	1	
Instrument Tune for ICP-MS included in lab package? Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/ 5 stds (Hg) Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? ICB/CCB criteria met? (<rl, %r="" (icp="" 80-120,cn="" 80-120,w)="" 85-115)="" 90-110,hg="" ccv="" cresults="" criteria="" icv="" if="" llccv="" met?="" within="" ≥-rl)="">50xMDL? (max 10%, qualify 15%) Na Post digestion spike included? %R criteria met? Na Internal standard data included (ICP/MS only)? Na Internal standard data included in lab package? Na Internal stand</rl,>	100	Field dup RPD criteria met? (individual, mean, and overall)			х	
NA Instrument Tune method criteria met? (±5 RSD, ±0.1 amu) Nation Initial calibration documentation included in lab package? X X X X X X X X X	100		+			ZINE SOUTH GIRTIET SOUNCY
Initial calibration documentation included in lab package? All target analytes included? blank/1 std (ICP), blank/5 stds (Hg) Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? ICB/CCB criteria met? (sRL, ≥-RL) ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115) CCV %R criteria met? (ICP 90-110%, Hg 80-120%) LLCCV %R criteria met? (ICP 90-110%, Hg 80-120%) LLCCV %R criteria met? (s0-150% Sb/Pb/TI,70-130%) Dilution test data included? Results within criteria if >50xMDL? (max 10%, qualify 15%) Post digestion spike included? NR criteria met? W method (75-125%) Interference check sample data included (ICP/MS only)? NR criteria met? (80-120%, unspk <2RL, ≥-RL) NA Internal standard data included in lab package? NA Intensities within limits? (min 30-120% of calib std) Analyte quantitation/RLs correct? X CL per ASP Exh E X method (75-125%) X ZRL per ASP Exh E X Analyte quantitation/RLs correct? X Analyte quantitation/RLs correct? X CCC parameters calculated correctly?	NΙΛ	, ,				
All target analytes included? blank/1 std (ICP), blank/5 stds (Hg) Corr coeff (r) criteria met? (≥0.995) Calibration verification data included in lab package? ICB/CCB criteria met? (<rl, %r="" (50-150%="" (icp="" 80-120%)="" 80-120,cn="" 85-115)="" 90-110%,="" 90-110,hg="" ccv="" criteria="" data="" dilution="" hg="" icv="" if="" included?="" llccv="" met?="" pb="" results="" sb="" test="" tl,70-130%)="" within="" ≥-rl)="">50xMDL? (max 10%, qualify 15%) NR criteria met? NR criteria met? NR criteria met? (80-120%, unspk <2RL,≥2-RL) Internal standard data included in lab package? NA Internal standard data included in lab package? NA Internalities within limits? (min 30-120% of calib std) Analyte quantitation/RLs correct? X CL per ASP Exh E X method (75-125%) X 2RL per ASP Exh E X Internalities within limits? (min 30-120% of calib std) X Analyte quantitation/RLs correct? X QC parameters calculated correctly?</rl,>	INA		v		^	
blank/1 std (IĆP), blank/ 5 stds (Hg)						
100 Corr coeff (r) criteria met? (≥0.995) x Calibration verification data included in lab package? ICB/CCB criteria met? (<rl, td="" ≥-rl)<=""> x ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115) x CCV %R criteria met? (ICP 90-110%, Hg 80-120%) x 100 LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%) x 100 Dilution test data included? x 100 Results within criteria if >50xMDL? (max 10%, qualify 15%) x 100 Post digestion spike included? x 100 %R criteria met? x 100 Interference check sample data included (ICP/MS only)? x 100 %R criteria met? (80-120%, unspk <2RL,≥2-RL)</rl,>						
Calibration verification data included in lab package? ICB/CCB criteria met? (<rl, %r="" (50-150%="" (icp="" 80-120%)="" 80-120,cn="" 85-115)="" 90-110%,="" 90-110,hg="" ccv="" criteria="" data="" dilution="" hg="" icv="" if="" included?="" llccv="" met?="" pb="" results="" sb="" test="" ti,70-130%)="" within="" ≥-rl)="">50xMDL? (max 10%, qualify 15%) Post digestion spike included? %R criteria met? Interference check sample data included (ICP/MS only)? %R criteria met? (80-120%, unspk <2RL,≥2-RL) NA Internal standard data included in lab package? Intensities within limits? (min 30-120% of calib std) Analyte quantitation/RLs correct? QC parameters calculated correctly?</rl,>	100					
ICB/CCB criteria met? (<rl, td="" ≥-rl)<=""><td>100</td><td></td><td></td><td></td><td>1</td><td></td></rl,>	100				1	
ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115)						
CCV %R criteria met? (ICP 90-110%, Hg 80-120%) LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%) Dilution test data included? Results within criteria if >50xMDL? (max 10%, qualify 15%) Post digestion spike included? %R criteria met? %R criteria met? NR criteria met? NR criteria met? (80-120%, unspk <2RL,≥2-RL) NR Internal standard data included in lab package? NR Intensities within limits? (min 30-120% of calib std) Analyte quantitation/RLs correct? QC parameters calculated correctly?						
100 LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%) x CL per ASP Exh E 100 Dilution test data included? x 100 Results within criteria if >50xMDL? (max 10%, qualify 15%) x 100 Post digestion spike included? x 100 %R criteria met? x method (75-125%) 100 Interference check sample data included (ICP/MS only)? x 2RL per ASP Exh E 100 %R criteria met? (80-120%, unspk <2RL,≥2-RL)				-		
100 Dilution test data included? x 100 Results within criteria if >50xMDL? (max 10%, qualify 15%) x 100 Post digestion spike included? x 100 %R criteria met? x method (75-125%) 100 Interference check sample data included (ICP/MS only)? x 2RL per ASP Exh E 100 %R criteria met? (80-120%, unspk <2RL,≥2-RL)	100					CL per ASP Evh E
100 Results within criteria if >50xMDL? (max 10%, qualify 15%) x 100 Post digestion spike included? x 100 %R criteria met? x method (75-125%) 100 Interference check sample data included (ICP/MS only)? x 2RL per ASP Exh E 100 %R criteria met? (80-120%, unspk <2RL,≥2-RL)		Dilution test data included?	_			OL PELAGI EXILE
100 Post digestion spike included? x method (75-125%) 100 %R criteria met? x method (75-125%) 100 Interference check sample data included (ICP/MS only)? x 2RL per ASP Exh E 100 %R criteria met? (80-120%, unspk <2RL,≥2-RL)				-		
100 %R criteria met? x method (75-125%) 100 Interference check sample data included (ICP/MS only)? x 2RL per ASP Exh E 100 %R criteria met? (80-120%, unspk <2RL,≥2-RL)			_			
100 Interference check sample data included (ICP/MS only)? x 100 %R criteria met? (80-120%, unspk <2RL,≥2-RL)				-		mathad (75, 125%)
100 %R criteria met? (80-120%, unspk <2RL,≥2-RL)					1	method (75-12576)
NA Internal standard data included in lab package?					1	2DL por ASD Evh E
NA Intensities within limits? (min 30-120% of calib std) 10 Analyte quantitation/RLs correct? 10 QC parameters calculated correctly? x			X	-		ZNL per AGF EXITE
10 Analyte quantitation/RLs correct?						
10 QC parameters calculated correctly?					^	
			Ι Λ		1	
OmmENTO	10	QC parameters calculated correctly?				

Client N	ame: Entact	Projec	t Numb	oer/ Ma	nager: E7976H/ Jenny Self
Site Nar	ne: Revere Smelting and Refining (Phase 2B PSV Jul15-Sept15)	QC Le	vel: II		·
aborato	ory: TestAmerica (Edison, NJ)	Labora	atory Jo	ob No:	460-98826-1, 460-100647-1
Reviewe	r: Taryn Scholz	Date C	Checke	d: 10/1	3/15
Parame	ers: TCLP As,Cd,Pb,Sb and TCLP Pb	Metho	ds: 131	1/3010	0A/6010C
	%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT
	Was a ZHE vessel without leaks used for VOAs?			Х	
	Was particle size reduced as necessary? (capable of passing			x	
	through a 9.5 mm (0.375 inch) standard sieve) Were multi-phasic waste samples properly analyzed? (if <0.5%			×	
	solids->analyze filtered waste, if >0.5%->leach solids, combine with filtered liquid if compatible or analyze separately			х	
					No. 1 for all
	Was the correct extraction fluid used? (TCLP - #1 for VOA and if	.,			
	pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for	Х			
	soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)				
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93;	х			
	SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)				
	Appropriate sample weight? (VOA < 25-g, rest about 100-g) Was the correct weight of fluid used? (20x solid weight)	X			
100	Leaching conditions correct? (30+2 rpm, 18+2 hrs, 23+2 C)	X			
100	No preservation for aqueous sample aliquots?				
	Proper preservation for leachates?	х		Х	(method pH <2)
100	Holding time to leaching not expired?				(method ph <2)
100	Leach blank data included in Lab Package? (1/20)	X			(method 160-days)
100	Criteria met? (< MDL)	X			
OMME	, ,	Χ			
	atches: 314381, 320965				
CLI D	atches. 514301, 320903				

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples

July 2015 to September 2015

Prepared by:

Quality Assurance Associates (*QAALLC***)**

1007 Francis Drive College Station, TX 77840 www.qaallc.com 979-694-7199

December 15, 2015

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	1
2.0	PRO	CEDUR	ES	6
3.0	DAT	A VALID	ATION RESULTS	8
	3.1	PREC	ISION	8
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	8
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	8
		3.1.3	Field Duplicate (FD) Precision	8
	3.2	ACCU	RACY	g
		3.2.1	Laboratory Control Spike (LCS) Accuracy	g
		3.2.2	Matrix Spike (MS) Accuracy	g
		3.2.3	Serial Dilution (SD) %Difference	10
		3.2.4	Surrogate (SU) Recovery	10
	3.3	REPR	ESENTATIVENESS	10
		3.3.1	Chain-of-Custody and Analysis Requests	10
		3.3.2	Sample Preservation and Holding Time	11
		3.3.3	Laboratory and Method Selection	
		3.3.4	Blanks (Laboratory and Field)	12
		3.3.5	Theoretical Result Values	12
		3.3.6	Analytical Procedures	13
	3.4	COMP	PLETENESS	
		3.4.1	Laboratory Deliverables Completeness	13
		3.4.2	EDD Correctness	
		3.4.3	Analytical Completeness	
	3.5	COMP	PARABILITY	

LIST OF TABLES

Table 1 – Sample Summary

Table 2 – Data Validation Qualifiers (DVQs)

Table 3 – QC Deficiencies and Data Qualification Actions

Table 4 – Qualified Results for Field Samples

Table 5 - Field Duplicate Results

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The independent data review was completed in accord with the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The data include 138 investigative soil samples plus the associated field QC samples, which were collected by ENTACT in July 2015 through September 2015 with the intended use of confirming that backfill materials are suitable for use on-site and verifying that remediation goals have been achieved in excavated grids. A complete listing of the samples collected and tests performed is shown in Table 1. QAA performed a full validation of the data and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010) as specified in Section 5.9 of the Workplan. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Superfund Data Review* (August 2014) and *National Functional Guidelines for Superfund Organic Methods Data Review* (August 2014), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The Workplan stipulates that the precision control limits will be dictated by the analytical method. The validator assessed precision using the laboratory and field duplicates, and the limits are 20-35 RPD depending upon the test. The laboratory prepared a laboratory control spike duplicate (LCSD) using reagent water or sand for each VOC analytical batch plus at least one unspiked matrix duplicate (MD) or matrix spike duplicate (MSD) using a sample from the site for each test except Metals, Chromium VI, VOC, SVOC and Cyanide for the backfill samples. All LCS/LCSD RPDs are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects. The RPDs for the matrix duplicates are within the limits, which indicates good precision for the analytical technique on the given sample matrix, with one exception. The affected analytical batch only contains the parent sample and the validator qualified the total Lead result for this sample as estimated (J). Thus, of the 1,481 total results for field samples (investigative samples and field duplicates), only one result is qualified based on matrix duplicate precision. Additionally, the sampler collected five field duplicates (FD) for TCLP Lead and total Arsenic/Lead, two FD for VOC, and one FD for Metals, Chromium VI, PEST, PCB, HERB, SVOC and Cyanide with the 138 investigative samples. The RPDs are within the limits, which indicates good precision for the sampling and analytical technique, or the validator qualified the results for the original and duplicate sample. Two (one for TCLP Lead and one for total Lead) of the 141 pairs of results are qualified as estimated (J) based on field duplicate precision.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The Workplan stipulates that the accuracy control limits will be dictated by the analytical method. The validator assessed accuracy using the laboratory spikes and matrix spikes, and the limits are either 75-125%, 80-120%, or the laboratory/manufacturer's established control limit for soils/solid reference materials (which range from 0.1%-201% for this data set). In order to better assess

data usability, limits of 50-200% were employed where the method limits for a spiked analyte falls outside these values. The laboratory prepared a laboratory control spike (LCS) using reagent water or sand with each analytical batch and reported the recovery for all spiked compounds, which included every target compound except the multicomponent pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result). The laboratory also prepared a laboratory control spike duplicate (LCSD) with each VOC analytical batch. The LCS/LCSD recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects, with some exceptions for a few VOC and SVOC analytes and Cyanide. (In each case the recoveries are within the laboratory limits or are outside the limits for only a small percentage of the total number of target analytes for the test, and thus laboratory corrective action was not required.) Most of the exceedances did not result in data qualification (e.g., the recovery was above the limit indicating a potential bias for detected results and the analyte was not detected in any of the associated samples) with fourteen (14) results (six for Methyl Ethyl Ketone (2-Butanone) and eight for Cyanide) of the 1,481 total results for field samples being qualified as not detected at an estimated reporting limit (UJ) due to laboratory spike recovery. Additionally, the laboratory prepared seven matrix spike samples (MS) along with four post digestion spikes (PDS) and serial dilutions (SD) for TCLP Lead, six MS/PDS/SD for total Arsenic/Lead, one MS/SD for Mercury, two MS along with two matrix spike duplicate samples (MSD) for PEST and PCB, and one MS/MSD for HERB using a sample from the site. All SD %differences are within the laboratory limits, which indicates there is no matrix interference affecting the accuracy of metals results that are substantially above the reporting limit. The MS/MSD/PDS recoveries are within the laboratory limits, which indicates good accuracy for the analytical technique on the given sample matrix, with a few exceptions. Most of the exceedance did not result in data qualification (e.g., the check was waived because the unspiked sample concentration is greater than four times the spike amount and the PDS passes) with one result (for total Lead) being qualified as estimated (J) due to matrix spike recovery. Additionally, the laboratory utilized one or more surrogate spikes for each organic analysis. The surrogate recoveries are within the laboratory limits for all field samples except one SVOC sample. As a result, four results are qualified as not detected at an estimated reporting limit (UJ). (The surrogate recoveries are within the laboratory limits, and thus laboratory corrective action was not required.)

Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, investigative samples were collected as required in the approved sampling and analysis plans. (Note that sampling is an on-going process at the site and all samples may not be reflected in this validation batch.) Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory and field QC blanks, theoretical result values, and analytical instrument setup (i.e., tuning, calibration, interference correction, etc.) For all samples, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank with each analytical batch and the sampler collected trip blanks with the VOC samples. The laboratory and field QC blanks show no contamination, which indicates the samples were not affected by laboratory or field procedures, with one exception. Cyanide was detected in one method blank; however, data qualification is not required because the analyte was detected in the associated field sample at a level well above (greater than ten times) that in the blank. Additionally, Methylene Chloride was detected in one trip blank; however, data qualification is not required because the analyte was not detected in the associated field samples. The validator also assessed representativeness by comparing the TCLP Lead results to the total Lead results and determined that the TCLP Lead result is above the theoretical maximum for three of the 122 pairs. Thus, three TCLP Lead results and three total Lead results are qualified as estimated (J). Proper analytical procedures were used and calibration results met the method requirements or the validator qualified the affected samples. Twenty (20) non-detect results for 1,1,1-Trichloroethane, Acetone, Carbon Tetrachloride, Methyl Ethyl Ketone (2-Butanone), Phenol, or Silvex (2,4,5-TP) are qualified as estimated (UJ) due to calibration drift. (In each case the %differences are within the laboratory limits or are outside the limits for only a small percentage of the total number of target analytes for the test, and thus laboratory corrective action was not required.)

- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. All analyses produced valid analytical measurements for this data set, which gives a completeness of 100%. (Completeness to-date for all Phase II-B backfill and post-excavation confirmation samples is 99.7%.) Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions or revisions were provided by the laboratory upon request, with the exception of the instrument raw data for the TCLP Lead testing of the three samples in work order 460-101506-1. The laboratory was unable to retrieve this data. All other QC data including sample leaching and digestion information, blank and spike results, and the sample final results are available. Two of the samples are confirmation samples (ECS-AREA25-H28-F and ECS-AREA28-J28-F), and complete data including the instrument raw data is available for the total metals testing of these samples, which confirms the samples meet the decision criteria. The third sample is a documentation sample (DS-AREA28-J28-SS) taken from a sidewall that has been lined, in order to document the concentration remaining in place.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated. Note that results for all field samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in μg/L for TCLP metals, and in μg/kg with dry-weight correction for organics.

DATA USABILITY

No major QC deficiencies were noted and all sample results are acceptable for use with the qualifications shown in Table 4, as follows:

• Twenty-six (26) non-detects for 1,1,1-Trichloroethane, 2-Methylphenol (o-Cresol), Acetone, Carbon Tetrachloride, m & p-Cresols, Cyanide, Methyl Ethyl Ketone (2-Butanone), Pentachlorophenol, Phenol, or Silvex (2,4,5-TP) in the backfill samples are qualified with a UJ (estimated) and the analyte should be considered not present above the reporting limit; however the reporting limit is an estimated value. In each case, the sample reporting limit (RL) is well below (more than ten times) the DER-10 Appendix 5 Allowable Constituent Level for Imported Fill or Soil (ACL), and thus there is negligible effect on data quality, except as follows:

Lab ID	Field ID	Test	Analyte(s)	Result (µg/kg)	MDL (µg/kg)	ACL (µg/kg)	DVQ	QC Issue
460-	BF-ORI-	VOC	Acetone	5.8 U	1.2	50	UJ	Calibration drift
98659-1	HS-7g-01							(%D= -29.5%)
460-	BF-ORI-	VOC	Acetone	6.2 U	1.3	50	UJ	Calibration drift
98659-2	HS-7g-02							(%D= -29.5%)
460-	BF-ORI-	SVOC	Phenol	520 U	17	330	UJ	Calibration drift
98659-3	HS-7c-01							(%D= -28.1%)

7) <i>A</i>	1	I	T	$\boldsymbol{\Gamma}$
ĮΑ		L	L	C

Lab ID	Field ID	Test	Analyte(s)	Result (µg/kg)	MDL (µg/kg)	ACL (µg/kg)	DVQ	QC Issue
460- 98662-3	BF-5L-GF- 5c-01	SVOC	Phenol	370 U	12	330	UJ	Calibration drift (%D= -28.1%)
460- 98662-6	BF-5L-GF- 6c-01	SVOC	Phenol	380 U	12	330	UJ	Calibration drift (%D= -28.1%)
460- 99248-3	BF-ETETZ- GF-2c-01	SVOC	2-Methylphenol (o-Cresol)	340 U	15	330	UJ	Low acid surrogate recovery (38%)
460- 99248-3	BF-ETETZ- GF-2c-01	SVOC	Cresols, m & p	340 U	9.0	330	UJ	Low acid surrogate recovery (38%)
460- 99248-3	BF-ETETZ- GF-2c-01	SVOC	Pentachlorophenol	270 U	41	800	UJ	Low acid surrogate recovery (38%)
460- 99248-3	BF-ETETZ- GF-2c-01	SVOC	Phenol	340 U	11	330	UJ	Low acid surrogate recovery (38%)

Though non-detects are reported at the sample reporting limit (RL) as requested, the samples were evaluated to the method detection limit (MDL). In each case, the MDL is well below (more than ten times) the ACL and thus the potential bias has negligible effect on data quality.

- Six (6) detects for Cyanide in the backfill samples are qualified with a J (estimated, for detects between the MDL and RL) or J- (biased low, for detects above the RL) due to extremely low (less than 40%) laboratory control spike recovery. These results can be used for determining the presence of the analyte; however, the concentration reported is likely biased low. In each case, the laboratory control spike recovery is greater than 15% and the result is well below (more than ten times) the ACL (27 mg/kg) and thus the potential low bias has negligible effect on data quality.
- Four (4) detects for TCLP Lead in the confirmation samples are qualified with a J (estimated). These results can be used for determining the presence of the analyte; however, the concentration reported may be either high or low. The results are flagged due to poor field duplicate precision (150 RPD) and/or the result being outside the theoretical balance (i.e., above the maximum leachate concentration possible based on the total Lead concentration, and the relative amounts of soil used and leachate prepared per the analytical method, assuming 100% leachability). In one case (DS-PSTREAM-51+00-SS), the sample is a documentation sample (DS) intended to document the concentrations remaining in place (i.e., in areas where remediation was terminated (e.g., a sample from the excavation sidewall of the railroad right-of-way)) as compared to the source material soil cleanup objective (SCO) of 5,000 μg/L. The sample concentration (318,000 μg/L) is greater than the maximum theoretical concentration (173,500 μg/L) calculated from the total Lead concentration at this location (3,470 mg/kg) and should be considered estimated. No other QC issues were noted for the TCLP Lead or total Lead measurements for this sample. The results for the remaining three cases, which are for excavation confirmation samples (ECS), are as follows:

Lab ID	Field ID	Test	Analyte(s)	Result (µg/L)	MDL (µg/L)	Remedial Goal (µg/L)	DVQ	QC Issue
460-	ECS-	TCLP	TCLP Lead	2660	20.8	5000	J	Metals leach-to-total
99013-9	PSTREAM-	Metals						balance greater than
	50+50-F							theoretical
460-	ECS-	TCLP	TCLP Lead	2560	20.8	5000	J	Poor field duplicate
101342-	PSTREAM-	Metals						precision (150 RPD),
5	62+00-SE							use higher result from
								original sample;
								Metals leach-to-total
								balance greater than
								theoretical
460-	ECS-	TCLP	TCLP Lead	347	20.8	5000	J	Poor field duplicate
101342-	PSTREAM-	Metals						precision (150 RPD),
13	62+00-SE-							use higher result from
	X							original sample

For results qualified due to field duplicate precision, the higher result (i.e., from either the original or duplicate sample) should be used for project decisions. This gives a conservative approach relative to protection of the environment. (For field duplicate pairs that pass the precision criteria, the value should be selected based on accepted convention for the site and/or agency requirements, e.g., select the value reported for the original sample, the average of the two values, etc.) Thus, estimated results with an unknown bias (i.e., high or low) that are below but within one half of the remedial goal have been determined for ECS-PSTREAM-50+50-F and ECS-PSTREAM-62+00-SE. Given the potential for a high or low bias and the proximity to the remedial goal, these results may be inconclusive; however, the theoretical balance and/or field duplicate comparison indicate the results are likely high. Other considerations such as sample location and evaluation of results for other samples may produce a conclusive result.

• Five (5) detects for total Lead in the confirmation samples are qualified with a J (estimated). These results can be used for determining the presence of the analyte; however, the concentration reported may be either high or low. The results are flagged due to low matrix spike recovery (45%), poor laboratory duplicate precision (27 RPD), poor field duplicate precision (71 RPD) and/or the result being outside the theoretical balance. In one case, the sample is a documentation sample (DS-PSTREAM-51+00-SS) and the total Lead concentration at this location (3,470 mg/kg) should be considered estimated based on the theoretical balance as discussed above. In the remaining four cases, which are for excavation confirmation samples (ECS), the concentration is either well above (almost ten times) or well below (more the ten times) the remedial goal (400 mg/kg) and thus the potential bias is considered to have negligible effect on data quality, with one exception:

Lab ID	Field ID	Test	Analyte(s)	Result (mg/kg)	MDL (mg/kg)	Remedial Goal (mg/kg)	DVQ	QC Issue
460-	ECS-	Total	LEAD	118	0.77	400	J	Low matrix spike recovery
100387-	AREA29-	Metals						(45%); Poor lab duplicate
6	F28-SS-							precision (27 RPD)
	20150827							

For this result, the QC outcomes indicate a potential bias of +/- two times the reported result. The result is more than three times below the remedial goal, thus this is considered to have minimal effect on data quality.

• The remaining 65 results with J flags are qualified solely because the concentration is between the MDL and RL. In each case, the actual value is not expected to exceed the sample RL.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include pdf data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). The laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- · Laboratory Deliverables Completeness,
- EDD Correctness,
- · Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- Laboratory and Method Selection,
- · Instrument Tuning and Initial Calibration,
- Calibration Verification,
- Interference Check Standards (ICS),
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- Matrix Duplicates (MD),
- Field Duplicates (FD),
- Dual Column Confirmation,
- Surrogates (SU), and
- Internal Standards (IS).

Additionally, the validator examined the raw data for 10% of the sample batches (randomly selected by the validator across the various analysis dates and tests) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are either specific numerical values or the laboratory-derived recovery control limits based on historical performance (but not less than 50% lower limit or greater than 200% upper limit)
- Laboratory Precision the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are either specific numerical values or the laboratory-derived recovery control limits based on historical performance (but not greater than 40%)
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator

Quality Assurance Associates QAALLC

DATA USABILITY SUMMARY REPORT

considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. Data rejection limits of 40% and 30% for inorganics laboratory and matrix spikes, and 30%, 20% and 10% for organics laboratory, matrix and surrogate spikes were used. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

The laboratory analyzed an LCSD and reported RPDs for all target compounds for each VOC batch (maximum 20 samples). All LCSD RPDs are at or below the criteria.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every inorganics analytical batch (maximum 20 samples) and an MSD for every organics analytical batch (maximum 20 samples) and reported RPDs for MD and MSD prepared using a sample from the site or another site. MD/MSD prepared with a sample from another site were not evaluated, since they do not reflect data quality for the site. No soil samples were designated by the sampler for MD/MSD for the backfill samples; however, the laboratory selected one or more backfill samples for batch QC for PEST, PCB, and HERB. Seven confirmation soil samples (four of which were designated by the sampler on the custody record) were used to prepare an MD for TCLP Lead and six of these were also used for total Arsenic/Lead. With a total of 117 investigative confirmation samples, this meets the Workplan requirement of one per 20 or fewer samples per sample matrix.

One of the RPDs for MD prepared using a sample from the site is above the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that, for cases where either result for the duplicate pair is non-detect, the check does not apply and the laboratory reported the RPD as NC (not calculable) in the pdf report and as 0 in the EDD. Additionally, the validator considered samples of the same media (i.e., backfill or excavation confirmation) and source to be of similar matrix (e.g., if deficiencies were noted for a MD or MSD prepared using a backfill sample from a particular source, all backfill samples from that source in the same analytical batch were qualified).

3.1.3 FIELD DUPLICATE (FD) PRECISION

The samplers collected five FD with the 117 investigative confirmation samples, which is slightly below the Workplan requirement of one per 20 or fewer samples per sample matrix for this event. Additionally, the samplers collected three FD (two grab samples for VOC only and one composite sample for the remaining DER-10 tests) with the 21 investigative backfill samples. Results for the field duplicates are summarized in Table 5.

Two pairs of results are outside the field precision criteria and the validator qualified the data as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4

lists all qualified results for the field samples. Note that the remaining 139 pairs of FD results meet the criteria, which indicates good overall precision, and thus the validator only qualified the original and duplicate sample for the FD deficiency.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD), matrix spikes including post digestion spikes (MS/MSD/PDS), serial dilutions (SD), and surrogate (SU) spikes. LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD/PDS are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit. Surrogates are added to each sample before preparation and analysis and provide an indication of accuracy for each individual sample analysis.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

The laboratory analyzed a LCS and/or LCSD for every analytical batch (maximum 20 samples) as required and reported recoveries for all target compounds except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result).

Some LCS/LCSD recoveries are outside the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator did not qualify the data for cases where the LCS or LCSD recovery for an organic analyte is outside the criteria (i.e., the laboratory-derived recovery control limits based on historical performance or 50-200%, whichever is more stringent) but within 70-130% since this is considered within the inherent method error and suitable for the intended use. Additionally, the validator did not qualify the data for cases where the LCS or LCSD recovery is outside the criteria (but greater than the data rejection limit) but the average LCS/LCSD recovery is within control (of which there are none for this data set).

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS/PDS for every inorganics analytical batch (maximum 20 samples) and an MS/MSD for every organics analytical batch (maximum 20 samples) and reported recoveries for MS/PDS/MSD prepared using a sample from the site or another site. MS/PDS/MSD prepared with a sample from another site were not evaluated, since they do not reflect data quality for the site. No soil samples were designated by the sampler for MS/PDS/MSD for the backfill samples; however, the laboratory selected one or more backfill samples for batch QC for PEST, PCB, and HERB. Seven confirmation soil samples (four of which were designated by the sampler on the custody record) were used to prepare an MS/PDS for TCLP Lead and six of these were also used for total Arsenic/Lead. With a total of 117 investigative confirmation samples, this meets the Workplan requirement of one per 20 or fewer samples per sample matrix.

A few recoveries for MS prepared using a sample from the site are outside the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that if an analyte was detected in the unspiked parent sample at a concentration well above (greater than four times) the concentration of spike added to the sample, thereby rendering the recoveries inconclusive, the check was waived and the validator did not qualify the data. For cases where the MS or MSD recovery is outside the control limits (but greater than the data rejection

limit) and the average MS/MSD recovery is in control, the validator did not qualify the data. Additionally, the validator considered samples of the same media (i.e., backfill or excavation confirmation) and source to be of similar matrix (e.g., if deficiencies were noted for a MS/MSD prepared using a backfill sample from a particular source, all backfill samples from that source in the same analytical batch were qualified).

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all target compounds detected above 50x the method detection limit (MDL). All %differences for SD prepared using a sample from the site are at or below the control limit (10%).

3.2.4 SURROGATE (SU) RECOVERY

The laboratory spiked each organic sample with one or more surrogates before preparation and analysis.

Some surrogate recoveries are outside the control limits and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, comparing sample results to theoretical values, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records, which confirms that sample integrity was maintained. The validator noted the following regarding the custody records and sample log-in at the laboratory:

- For work order 460-100831-1, the documentation indicates that no custody seals were used for the transfer of the samples from the field to the laboratory. The samples were transferred by commercial, overnight courier and were received in good condition, and thus no further action was taken.
- For work order 460-101122-1, the container for ECS-Area 24-H27-F was received with a cracked lid, which was replaced upon receipt. Analyses were performed for metals only, and thus this is not considered to significantly affect data quality and no further action was taken.

The information on the custody record is complete and correct, and agrees with that reported in the analytical results except as follows:

- For work order 460-98874-1, the sampler did not include the sample collection times on the custody record. The laboratory logged in the samples using the times on the sample containers.
- For work order 460-99248-1, the sampler did not indicate any requested tests on the custody record for the trip blank. The laboratory logged in the sample for VOC per the project plan.

 For work order 460-99999-1, the sample IDs for one or more samples were revised from those on the custody record per ENTACT'S request.

All samples were analyzed for the tests requested on the chain-of-custody and one result was reported for each target analyte except as follows:

- For the single backfill composite sample in laboratory work order 460-100389-1, the laboratory reported an original result (preparation batch 320622 09/03/2015 05:30:00) and re-extracted/re-analyzed result (preparation batch 320746 09/03/2015 19:00:00) for Chromium (VI). The sample was re-extracted/ re-analyzed due to deficiencies for the MS/MSD, which was prepared using a sample from another site and thus does not reflect on data quality for the backfill sample. The sample results for both sets are all non-detect and the validator did not find any QC deficiencies for either set. In the EDD, the laboratory reported the original set with a reportable_result of Yes and the second set with a reportable_result of No. The validator confirmed this selection and made no changes.
- For the single backfill composite sample in laboratory work order 460-100886-1, the laboratory reported an original result (preparation batch 322449 09/15/2015 09:09:00) and re-extracted/re-analyzed result (preparation batch 322593 09/15/2015 19:00:00) for Chromium (VI). The sample was re-extracted/ re-analyzed due to deficiencies for the MS/MSD, which was prepared using a sample from another site and thus does not reflect on data quality for the backfill sample. The sample results for both sets are all non-detect and the validator did not find any QC deficiencies for either set. In the EDD, the laboratory reported the original set with a reportable_result of Yes and the second set with a reportable_result of No. The validator confirmed this selection and made no changes.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

All samples were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan, and/or SW-846, which confirms that sample results are not affected by sample degradation, except as follows:

 For work order 460-98763-1, the samples were received at 15.2 C with melted ice. This is above the laboratory's standard receipt requirement of 4+/-2 C. All of the samples in this work order are soil samples analyzed for TCLP Lead and total Arsenic/Lead.

Per the WorkPlan and SW846, soil samples to be analyzed for metals (with the exception of mercury and hexavalent chromium) do not require thermal preservation. Thus, the validator did not qualify the results.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (no. 11452).

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. (In some cases, the method update number used by the laboratory may differ from that in the Workplan. For example, method 8260C was used rather than 8260B for the VOCs for the backfill samples.)

For the backfill samples, the target analyte list includes all DER-10 analytes and the nominal reporting limits (i.e., without dryweight correction or sample dilution and based on the standard sample weight and final volume) are at or below the levels of concern (i.e., the Allowable Constituent Levels for Imported Fill or Soil (ACLs) from Appendix 5 of the DER-10), except as follows:

- DER-10 Appendix 5 lists m-Cresol(s), o-Cresol(s), and p-Cresol(s). The laboratory reported m & p-Cresols and o-Cresol as it is not possible to separate m-Cresol and p-Cresol using method 8270D.
- DER-10 Appendix 5 lists Chlordane (alpha). The laboratory reported technical Chlordane, which is a commercial mixture that contains alpha-Chlordane and gamma-Chlordane along with other related compounds.
- The laboratory reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) for the backfill samples instead of the DER-10 analytes as requested on the custody record.

None of the backfill samples required dilution, and thus none have elevated reporting limits.

For the excavation confirmation samples, the target analyte list includes total Arsenic, total Lead, and/or TCLP Lead as requested and all Contract Laboratory Program (CLP) metals for the TAL metals. The nominal reporting limits are below the levels of concern (i.e., the remedial goals) for total Arsenic, total Lead, and TCLP Lead. There are no established levels of concern for the TAL metals. The nominal reporting limits comply with the requirements in the ASP for TAL metals with the exception of Iron, which has a nominal reporting limit of 30 mg/kg that is above the ASP reporting limit of 20 mg/kg.

Some of the excavation confirmation samples required dilution, but none has elevated reporting limits for a non-detect result.

(Note: The laboratory dilutes all total metals samples 2-4x before analysis as standard practice. All Revere samples were diluted 4x and thus nominal reporting limits were determined at this dilution rate. The laboratory also dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank (and leachate blank for TCLP) for every analytical batch (maximum 20 samples) and a calibration blank for every 10 metals analyses as required per the analytical methodology. Additionally, a trip blank was included with the each shipment of VOC samples, which meets the Workplan requirement of one for every cooler of VOC samples. (For work order 460-98662-1, two VOC samples are included in this work order but there is no trip blank on the custody record. These samples were shipped in the same container as the backfill VOC samples in work order 460-98659-1. Thus, the trip blank on that custody record applies for the samples in 460-98662-1.) Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used.

Some detects are reported in the laboratory and field blanks and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the validator calculated a blank equivalent concentration taking into account the sample weight, moisture content, and dilution factor for each sample when determining if the contamination in the blank is near that in the sample, and thus if data quality is affected for that sample.

3.3.5 THEORETICAL RESULT VALUES

Several samples were analyzed for both TCLP Lead and total Lead. Based on the relative amounts (100-g soil sample used to prepare 2000-ml leachate), the validator calculated the maximum theoretical TCLP Lead concentration from the total Lead concentration for each sample assuming 100% leachability.

Some TCLP Lead results exceeded the theoretical maximum (indicating a high TCLP result or low total Lead result likely due to a heterogeneous sample matrix) and the validator qualified the associated data as detailed in Table 3, which shows the

QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

3.3.6 ANALYTICAL PROCEDURES

The analytical procedures (instrument tuning and initial calibration, calibration verification, interference check standards, dual column confirmation, and internal standards), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method with a few exceptions. The validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

No issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes 100 analytical batches. The validator re-calculated sample results and QC check parameters for ten batches and made the following observations from the review of the raw data:

- The laboratory used dual column confirmation for all GC analyses (including PEST, PCB, and HERB). For surrogates and spiked analytes, the laboratory reports the results from both columns in the pdf report. For target analytes in blanks and field samples (and as the reportable result in the EDD for surrogates and spiked analytes), the laboratory reports the result from the column with the higher concentration (unless chromatographic performance is better on one column and it is therefore used for all analyses), provided that the RPD between the two columns is less than 40%. If the RPD is greater than 40%, the column with the lower concentration is reported with a note in the narrative and the result is reported with a P flag. The RPD did not exceed 40% for any field or QC samples in this data set. (All field samples are non-detect.)
- For HERB batch 313550 in work order 460-98662-1, the validator noted that the lowest ICAL level corresponds to 33 μg/kg of Silvex (2,4,5-TP) while the reporting limit (RL) is 17 μg/kg. Thus, detects between the MDL and 33 μg/kg should be considered estimates. All field samples are non-detect to the MDL so no further action is required.
- For SVOC batch 305298 in work order 460-96483-1, the retention time (RT) for the internal standard Perylene-d12 in the continuing calibration verification standard (CCV) is outside the +/-0.5 minute window from the ICAL mid-point standard (13.34 min vs. 13.88 min). The RTs for the field samples and QC samples are within the +/-0.5 minute window from the CCV, which is used to update the library, and thus no corrective action was required per the laboratory's standard operating procedure (SOP). Additionally, the validator noted that all target analytes are identified in the LCS and determined no flagging is required.

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

The Level 4 data packages and EDD contain all necessary information or the laboratory submitted a revision upon request as detailed in the case narratives, except as follows:

• For work order 460-101506-1, the data package does not include the instrument raw data for the TCLP Lead testing of the three samples in this work order (ECS-AREA25-H28-F, ECS-AREA28-J28-F, and DS-AREA28-J28-SS). The laboratory was unable to retrieve this data. All other QC data including sample leaching and digestion information, blank and spike results, and the sample final results are available.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Work Order(s)	Sample(s)	EDD Field(s)	Action
All	All laboratory QC samples	sampling_technique	The validator changed the entry from null to the default entry (UN) to meet NYSDEC requirements.
460-98662-1 460-98659-1 460-99103-1 460-99248-1 460-100886-1	All backfill composite field samples (*c-001 and *c-002)	composite_yn	The validator changed the entry from N to Y based on the custody record.
460-98662-1 460-98659-1 460-99103-1 460-99248-1 460-100389-1 460-100886-1	All backfill composite MD, MS, and MSD samples (*c-001 and *c-002)	composite_yn	The validator changed the entry from N to Y based on the custody record.
All	All 6010C total metals field samples and laboratory QC samples	prep_method	The validator changed the method reference from SW3020B to SW3050B based on the pdf analytical results and as confirmed by the laboratory.
All	All laboratory QC samples	validation_level	For the target analyte (TRG), surrogate (SUR), and spike compound (SC) records (which have validated_yn set to N), the validator changed the entry from UNKNOWN to blank to meet NYSDEC requirements.
All	All field QC samples	validation_level	For the surrogate (SUR) records (which have validated_yn set to N), the validator changed the entry from UNKNOWN to blank to meet NYSDEC requirements.

3.4.3 ANALYTICAL COMPLETENESS

The validator did not reject any of the results, which gives a completeness of 100%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which a target analyte can be

positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which a target analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size and include dry-weight correction for all soil samples as required per Section 5.7.1 of the Workplan. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results for the investigative samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in μ g/L for TCLP metals, and in μ g/kg with dry-weight correction for organics. (For the 7196A analyses, Chromium III is shown as not dry-weight corrected. Chromium III is calculated from the results for Chromium VI and total Chromium, which are dry-weight corrected, and thus the Chromium III is not directly dry-weight corrected but is on a dry-weight basis.)

The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated.

TABLE 1

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Phase II-B Remedial Design/ Remedial Action
Backfill and Post-Excavation Confirmation Samples
July 2015 to September 2015

SAMPLE SUMMARY

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-98659-1	BF-ORI-HS-7g-01	7/27/15	INV	BF	Soil										Х		
460-98659-2	BF-ORI-HS-7g-02	7/27/15	INV	BF	Soil										х		
460-98659-3	BF-ORI-HS-7c-01	7/27/15	INV	BF	Soil				Х	Х	Х	х	Х	Х		Х	х
460-98659-4	TB-7/27/15	7/27/15	TB	TB	Water										Х		
460-98662-1	BF-5L-GF-5g-01	7/27/15	INV	BF	Soil										Х		
460-98662-2	BF-5L-GF-5g-02	7/27/15	INV	BF	Soil										х		
460-98662-3	BF-5L-GF-5c-01	7/27/15	INV	BF	Soil				Х	Х	Х	х	х	Х		Х	х
460-98662-3MS	BF-5L-GF-5c-01	7/27/15	MS	BF	Soil									Х			
460-98662-3SD	BF-5L-GF-5c-01	7/27/15	MSD	BF	Soil									х			
460-98662-4	BF-5L-GF-6g-01	7/27/15	INV	BF	Soil										Х		
460-98662-5	BF-5L-GF-6g-02	7/27/15	INV	BF	Soil										Х		
460-98662-6	BF-5L-GF-6c-01	7/27/15	INV	BF	Soil				Х	Х	Х	х	х	Х		Х	х
460-98763-1	ECS-AREA22-M22NE-F	7/29/15	INV	ECS	Soil	Х	Х										
460-98763-2	DS-AREA22-M22NE-SS	7/29/15	INV	ECS	Soil	Х	Х										
460-98763-3	ECS-AREA22-M22NW-F	7/29/15	INV	ECS	Soil	Х	Х										
460-98763-3LR	ECS-AREA22-M22NW-F	7/29/15	MD	ECS	Soil	Х											
460-98763-3MS	ECS-AREA22-M22NW-F	7/29/15	MS	ECS	Soil	Х											
460-98763-4	DS-AREA22-M22SW-SS	7/29/15	INV	ECS	Soil	Х	Х										
460-98763-5	ECS-AREA22-M21SW-F	7/29/15	INV	ECS	Soil	Х	Х										
460-98763-6	ECS-AREA22-M21SE-F	7/29/15	INV	ECS	Soil	Х	Х										
460-98763-7	ECS-AREA22-M21NE-F	7/29/15	INV	ECS	Soil	Х	Х										
460-98763-7LR	ECS-AREA22-M21NE-F	7/29/15	MD	ECS	Soil		Х										
460-98763-7MS	ECS-AREA22-M21NE-F	7/29/15	MS	ECS	Soil		Х										
460-98825-1	ECS-AREA22-L22NE-F	7/30/15	INV	ECS	Soil	Х	Х										
460-98825-2	ECS-AREA22-L22NE-F-X	7/30/15	FD	ECS	Soil	Х	Х										
460-98825-3	DS-AREA22-L22SE-SS	7/30/15	INV	ECS	Soil	х	х										
460-98825-4	ECS-AREA22-M21NW-F	7/30/15	INV	ECS	Soil	х		Х	Х								
460-98825-5	ECS-AREA22-L21SE-F	7/30/15	INV	ECS	Soil	х	х										
460-98825-5LR	ECS-AREA22-L21SE-F	7/30/15	MD	ECS	Soil	х	х										
460-98825-5MS	ECS-AREA22-L21SE-F	7/30/15	MS	ECS	Soil	х	х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-98825-6	ECS-AREA22-M20SE-F	7/30/15	INV	ECS	Soil	Х	Х										
460-98825-7	ECS-AREA22-M20NE-F	7/30/15	INV	ECS	Soil	Х	Х										
460-98825-8	ECS-AREA22-L21NE-F	7/30/15	INV	ECS	Soil	Х	Х										
460-98874-1	ECS-AREA22-M20NW-F	7/31/15	INV	ECS	Soil	Х	Х										
460-98874-2	ECS-AREA22-M20SW-F	7/31/15	INV	ECS	Soil	Х	Х										
460-98931-1	ECS-AREA22-M20NW-SN	8/3/15	INV	ECS	Soil	Х	Х										
460-98931-1LR	ECS-AREA22-M20NW-SN	8/3/15	MD	ECS	Soil		Х										
460-98931-1MS	ECS-AREA22-M20NW-SN	8/3/15	MS	ECS	Soil		Х										
460-98931-2	ECS-AREA22-L21NW-SW	8/3/15	INV	ECS	Soil	х	Х										
460-98931-3	ECS-AREA2-L20-F	8/3/15	INV	ECS	Soil	Х	Х										
460-99013-1	ECS-PSTREAM-52+50-F	8/4/15	INV	ECS	Soil	Х	Х										1
460-99013-2	DS-PSTREAM-52+50-SS	8/4/15	INV	ECS	Soil	х	Х										
460-99013-3	ECS-PSTREAM-52+00-F	8/4/15	INV	ECS	Soil	х	Х										
460-99013-4	DS-PSTREAM-52+00-SS	8/4/15	INV	ECS	Soil	х	Х										
460-99013-5	ECS-PSTREAM-51+50-F	8/4/15	INV	ECS	Soil	х	Х										
460-99013-6	DS-PSTREAM-51+50-SS	8/4/15	INV	ECS	Soil	х	х										
460-99013-7	ECS-PSTREAM-51+00-F	8/4/15	INV	ECS	Soil	х	Х										
460-99013-8	DS-PSTREAM-51+00-SS	8/4/15	INV	ECS	Soil	х	Х										
460-99013-9	ECS-PSTREAM-50+50-F	8/4/15	INV	ECS	Soil	х	х										
460-99013-10	DS-PSTREAM-50+50-SS	8/4/15	INV	ECS	Soil	х	Х										
460-99097-1	ECS-AREA22-L21SW-F	8/5/15	INV	ECS	Soil	х	х										
460-99097-2	ECS-AREA22-L22NW-F	8/5/15	INV	ECS	Soil	X	Х										
460-99097-3	DS-AREA22-L22SW-SS	8/5/15	INV	ECS	Soil	х	Х										
460-99097-4	ECS-PSTREAM-50+00-F	8/5/15	INV	ECS	Soil	х	Х										
460-99097-5	DS-PSTREAM-50+00-SS	8/5/15	INV	ECS	Soil	х	Х										1
460-99103-1	BF-5L-GF-7g-01	8/5/15	INV	BF	Soil										х		†
460-99103-2	BF-5L-GF-7g-02	8/5/15	INV	BF	Soil										X		
460-99103-3	BF-5L-GF-7c-01	8/5/15	INV	BF	Soil				х	Х	Х	х	х	х		х	х
460-99103-4	BF-5L-GF-7g-01-X	8/5/15	FD	BF	Soil					_ ~					х	_ ~	<u> </u>
460-99103-5	BF-5L-GF-7g-02-X	8/5/15	FD	BF	Soil										X		†
460-99103-6	BF-5L-GF-7c-01-X	8/5/15	FD	BF	Soil				х	х	х	х	х	х		х	х
460-99103-7	TB-8/5/15	8/5/15	TB	TB	Water						_ ^	_^	_^	^	х		 ^
460-99247-1	ECS-Area 2-L21-F	8/7/15	INV	ECS	Soil	х	х								^		
460-99248-1	BF-ETETZ-GF-2g-01	8/7/15	INV	BF	Soil	^									х		
460-99248-2	BF-ETETZ-GF-2g-02	8/7/15	INV	BF	Soil										X	<u> </u>	
460-99248-3	BF-ETETZ-GF-2c-01	8/7/15	INV	BF	Soil				х	х	х	х	Х	х	^	Х	х
460-99248-4	TB-8/7/15	8/7/15	TB	TB	Water					^		_^	_^	^	Х	^	 ^
460-99873-1	ECS-AREA28-O22/23-F	8/19/15	INV	ECS	Soil	х	х								^	-	\vdash
460-99873-1LR	ECS-AREA28-O22/23-F	8/19/15	MD	ECS	Soil	X	^										+
460-99873-1MS	ECS-AREA28-O22/23-F	8/19/15	MS	ECS	Soil	X											+

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-99873-2	ECS-AREA28-N23-F	8/19/15	INV	ECS	Soil	Х	Х										
460-99873-3	DS-AREA28-O22-SN	8/19/15	INV	ECS	Soil	Х	Х										
460-99873-4	DS-AREA28-O23-SS	8/19/15	INV	ECS	Soil	Х	Х										
460-99873-5	DS-AREA28-N22-SN	8/19/15	INV	ECS	Soil	Х	Х										
460-99873-6	DS-AREA28-N23-SS	8/19/15	INV	ECS	Soil	Х	Х										
460-99999-1	ECS-AREA 28-N24-F	8/20/15	INV	ECS	Soil	Х		х	Х								
460-99999-1LR	ECS-AREA 28-N24-F	8/20/15	MD	ECS	Soil				Х								
460-99999-1MS	ECS-AREA 28-N24-F	8/20/15	MS	ECS	Soil				Х								
460-99999-2	ECS-AREA 28-M23-F	8/20/15	INV	ECS	Soil	Х	Х										
460-99999-3	DS-AREA 28-N24-SS	8/20/15	INV	ECS	Soil	Х	Х										
460-99999-4	ECS-AREA 28-M23-SN	8/20/15	INV	ECS	Soil	х	Х										
460-100059-1	ECS-AREA28-M24-F	8/21/15	INV	ECS	Soil	х	Х										
460-100059-2	ECS-AREA28-M24-F-X	8/21/15	FD	ECS	Soil	х	Х										
460-100059-3	ECS-AREA28-M25-F	8/21/15	INV	ECS	Soil	Х	Х										
460-100059-4	DS-AREA28-M25-SS	8/21/15	INV	ECS	Soil	Х	Х										
460-100059-4LR	DS-AREA28-M25-SS	8/21/15	MD	ECS	Soil	Х	Х										
460-100059-4MS	DS-AREA28-M25-SS	8/21/15	MS	ECS	Soil	Х	Х										
460-100129-1	ECS-AREA 28-L24-F	8/24/15	INV	ECS	Soil	Х		Х	Х								
460-100129-2	DS-AREA 28-L24-SN	8/24/15	INV	ECS	Soil	х	Х										
460-100129-3	ECS-AREA 28-L25-F	8/24/15	INV	ECS	Soil	Х	Х										
460-100129-4	DS-AREA 28-L26-SS	8/24/15	INV	ECS	Soil	Х	Х										
460-100129-5	ECS-AREA 28-L26-F	8/24/15	INV	ECS	Soil	Х	Х										
460-100387-1	ECS-AREA29-E27-F	8/26/15	INV	ECS	Soil	Х	Х										
460-100387-2	DS-AREA29-E27-SN	8/26/15	INV	ECS	Soil	Х	Х										
460-100387-3	ECS-AREA29-E27-SW	8/27/15	INV	ECS	Soil	Х	Х										
460-100387-4	ECS-AREA29-E27-SW-X	8/27/15	FD	ECS	Soil	Х	Х										
460-100387-5	ECS-AREA29-E28-SW	8/27/15	INV	ECS	Soil	х	х										
460-100387-6	ECS-AREA29-F28-SS	8/27/15	INV	ECS	Soil	Х	Х										
460-100387-6LR	ECS-AREA29-F28-SS	8/27/15	MD	ECS	Soil	х	х										
460-100387-6MS	ECS-AREA29-F28-SS	8/27/15	MS	ECS	Soil	Х	Х										
460-100389-1	BF-5L-WT-8g-01	8/27/15	INV	BF	Soil										х		
460-100389-2	BF-5L-WT-8g-02	8/27/15	INV	BF	Soil										Х		
460-100389-3	BF-5L-WT-8c-01	8/27/15	INV	BF	Soil				Х	Х	Х	х	х	х		х	Х
460-100389-3MS	BF-5L-WT-8c-01	8/27/15	MS	BF	Soil							х	х				
460-100389-3SD	BF-5L-WT-8c-01	8/27/15	MSD	BF	Soil							Х	x				
460-100389-4	TB-8/27/15	8/27/15	ТВ	ТВ	Water										х		
460-100495-1	ECS-AREA 29-E/F28-F	8/31/15	INV	ECS	Soil	х	х										
460-100495-2	ECS-AREA 29-F/G28-F	8/31/15	INV	ECS	Soil	x	Х										
460-100495-3	ECS-AREA 29-G28-SS	8/31/15	INV	ECS	Soil	X	Х										
460-100495-4	ECS-AREA 29-G27-F	8/31/15	INV	ECS	Soil	X	Х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-100495-5	ECS-AREA 29-F27-F	8/31/15	INV	ECS	Soil	Х	Х										
460-100831-1	ECS-AREA 27-K25-F	9/8/15	INV	ECS	Soil	Х	Х										
460-100831-1LR	ECS-AREA 27-K25-F	9/8/15	MD	ECS	Soil	Х											
460-100831-1MS	ECS-AREA 27-K25-F	9/8/15	MS	ECS	Soil	Х											
460-100831-2	ECS-AREA 27-K24-F	9/8/15	INV	ECS	Soil	Х	Х										
460-100831-3	DS-AREA 27-K24-SN	9/8/15	INV	ECS	Soil	Х	Х										
460-100831-4	DS-AREA 27-J24-SN	9/8/15	INV	ECS	Soil	Х	Х										
460-100831-5	ECS-AREA 27-J25-F	9/8/15	INV	ECS	Soil	Х	Х										
460-100831-6	DS-AREA 25-I25-SN	9/8/15	INV	ECS	Soil	Х	Х										
460-100831-7	ECS-AREA 25-I25-F	9/8/15	INV	ECS	Soil	Х	Х										
460-100831-8	ECS-AREA 28-K26-F	9/8/15	INV	ECS	Soil	Х		Х	Х								
460-100831-9	DS-AREA 28-L27-SS	9/8/15	INV	ECS	Soil	Х	Х										
460-100831-10	DS-AREA 28-K27-SS	9/8/15	INV	ECS	Soil	Х	Х										
460-100831-11	ECS-AREA 28-K27-F	9/8/15	INV	ECS	Soil	Х	Х										
460-100831-12	ECS-AREA 28-J26-F	9/8/15	INV	ECS	Soil	Х	Х										
460-100831-13	ECS-AREA 25-I26-F	9/8/15	INV	ECS	Soil	Х	Х										
460-100831-14	ECS-AREA 25-I26-F-X	9/8/15	FD	ECS	Soil	Х	Х										
460-100886-1	BF-5L-WT-9g-01	9/9/15	INV	BF	Soil										Х		
460-100886-2	BF-5L-WT-9g-02	9/9/15	INV	BF	Soil										Х		
460-100886-3	BF-5L-WT-9c-01	9/9/15	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	Х
460-100886-3MS	BF-5L-WT-9c-01	9/9/15	MS	BF	Soil							Х	х				
460-100886-3SD	BF-5L-WT-9c-01	9/9/15	MSD	BF	Soil							Х	х				
460-100886-4	TB-9/9/15	9/9/15	TB	TB	Water										Х		
460-101122-1	ECS-Area 24-H26-F	9/14/15	INV	ECS	Soil	Х	Х										
460-101122-2	DS-Area 24-H25-SN	9/14/15	INV	ECS	Soil	Х	Х										
460-101122-3	ECS-Area 29-G26-F	9/14/15	INV	ECS	Soil	Х	Х										
460-101122-4	DS-Area 29-G26-SN	9/14/15	INV	ECS	Soil	Х	Х										
460-101122-5	ECS-Area 24-H27-F	9/14/15	INV	ECS	Soil	Х	Х										
460-101258-1	ECS-PSTREAM-60+00-F	9/16/15	INV	ECS	Soil	Х	Х										
460-101258-2	ECS-PSTREAM-60+00-SE	9/16/15	INV	ECS	Soil	Х	Х										
460-101258-3	ECS-PSTREAM-60+00-SW	9/16/15	INV	ECS	Soil	Х	Х										
460-101258-4	ECS-PSTREAM-60+50-F	9/16/15	INV	ECS	Soil	х	х										
460-101258-5	ECS-PSTREAM-60+50-SE	9/16/15	INV	ECS	Soil	х	х										
460-101258-6	ECS-PSTREAM-60+50-SW	9/16/15	INV	ECS	Soil	х	х										
460-101258-7	ECS-PSTREAM-61+00-F	9/16/15	INV	ECS	Soil	х	х										
460-101258-8	ECS-PSTREAM-61+00-SE	9/16/15	INV	ECS	Soil	х	х										
460-101258-9	ECS-PSTREAM-61+00-SW	9/16/15	INV	ECS	Soil	х	х										
460-101258-10	ECS-AREA28-K27-F-R	9/16/15	INV	ECS	Soil	х	х										
460-101258-10LR	ECS-AREA28-K27-F-R	9/16/15	MD	ECS	Soil	х	х										
460-101258-10MS	ECS-AREA28-K27-F-R	9/16/15	MS	ECS	Soil	х	Х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-101342-1	ECS-PSTREAM-61+50-F	9/17/15	INV	ECS	Soil	Х	Х										
460-101342-2	ECS-PSTREAM-61+50-SE	9/17/15	INV	ECS	Soil	Х	Х										
460-101342-3	ECS-PSTREAM-61+50-SW	9/17/15	INV	ECS	Soil	Х	Х										
460-101342-4	ECS-PSTREAM-62+00-F	9/17/15	INV	ECS	Soil	Х	Х										
460-101342-5	ECS-PSTREAM-62+00-SE	9/17/15	INV	ECS	Soil	Х	Х										
460-101342-6	ECS-PSTREAM-62+00-SW	9/17/15	INV	ECS	Soil	Х		Х	Х								Ì
460-101342-7	ECS-PSTREAM-62+50-F	9/17/15	INV	ECS	Soil	Х	Х										
460-101342-8	ECS-PSTREAM-62+50-SE	9/17/15	INV	ECS	Soil	Х	Х										
460-101342-9	ECS-PSTREAM-62+50-SW	9/17/15	INV	ECS	Soil	Х	Х										
460-101342-10	ECS-PSTREAM-63+00-F	9/17/15	INV	ECS	Soil	Х	Х										
460-101342-11	ECS-PSTREAM-63+00-SE	9/17/15	INV	ECS	Soil	Х	Х										
460-101342-12	ECS-PSTREAM-63+00-SW	9/17/15	INV	ECS	Soil	Х	Х										
460-101342-13	ECS-PSTREAM-62+00-SE-X	9/17/15	FD	ECS	Soil	Х	Х										
460-101422-1	ECS-AREA27/28-J27-F	9/18/15	INV	ECS	Soil	Х	Х										
460-101422-2	ECS-AREA27-I27-F	9/18/15	INV	ECS	Soil	Х	Х										
460-101422-3	ECS-PSTREAM-63+50-F	9/18/15	INV	ECS	Soil	Х	Х										
460-101422-4	ECS-PSTREAM-63+50-SE	9/18/15	INV	ECS	Soil	Х	Х										
460-101422-5	ECS-PSTREAM-63+50-SW	9/18/15	INV	ECS	Soil	Х	Х										
460-101504-1	ECS-PSTREAM-64+00-F	9/19/15	INV	ECS	Soil	Х	Х										
460-101504-2	ECS-PSTREAM-64+00-SE	9/19/15	INV	ECS	Soil	Х	Х										
460-101504-3	ECS-PSTREAM-64+00-SW	9/19/15	INV	ECS	Soil	Х	Х										
460-101506-1	ECS-AREA25-H28-F	9/21/15	INV	ECS	Soil	Х	Х										
460-101506-2	ECS-AREA28-J28-F	9/21/15	INV	ECS	Soil	Х	Х										
460-101506-3	DS-AREA28-J28-SS	9/21/15	INV	ECS	Soil	Х	Х										
460-101572-1	ECS-PSTREAM-60+00-F-R	9/22/15	INV	ECS	Soil	х	Х										
460-101572-2	ECS-PSTREAM-60+00-SW-R	9/22/15	INV	ECS	Soil	х	Х										
460-101572-3	ECS-PSTREAM-61+00-SE-R	9/22/15	INV	ECS	Soil	Х	Х										

BF - Backfill Sample MD – Matrix Duplicate Sample (unspiked)

ECS - Excavation Confirmation Sample MS - Matrix Spike Sample

FD - Field Duplicate Sample MSD - Matrix Spike Duplicate Sample

INV - Investigative Sample TB - Trip Blank

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

- TCLP Pb: 1311/3010A/6010C for Lead in leachates of soil samples
- Total As and Pb: 3050B/ 6010C for Arsenic and Lead in soil samples
- Total TAL Metals: 3050B/ 6010C for 22 ICP-AES Target Analyte List (TAL) Metals (Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc) in soil samples
- Hg: 7471B for total Mercury in soil samples

DATA USABILITY SUMMARY REPORT

- Total DER10 Metals: 3050B/ 6010C for 12 ICP-AES NYSDEC DER-10 Appendix 5 Metals (Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Lead, Manganese, Nickel, Selenium, Silver, and Zinc) in soil samples
- Cr III/VI: 3060A/7196A for Trivalent Chromium and Hexavalent Chromium in soil samples
- PEST: 3546/ 3620C/ 8081B for 15 NYSDEC DER-10 Appendix 5 pesticides plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene in soil samples
- PCB: 3546/ 3665A/ 8082A for 7 Aroclors in soil samples
- HERB: 8151A for Silvex (2,4,5-TP) in soil samples
- VOC: 5035/8260C for 30 NYSDEC DER-10 Appendix 5 volatile organic compounds (VOCs) in soil samples and 5030B/ 8260C for 30 VOCs in aqueous trip blanks
- SVOC: 3546/ 8270D for 20 NYSDEC DER-10 Appendix 5 semivolatile organic compounds (SVOCs) plus Dibenzofuran and Hexachlorobenzene in soil samples
- CN: 9012B for Cyanide in soil samples

TABLE 2 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- J- = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J/J+ and R>UJ)

TABLE 3 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples July 2015 to September 2015

QC DEFICIENCIES AND DATA QUALIFICATION ACTIONS

Lab ID	Commis Code	T		Method		D	ate and Tin	ne	GC	DF	Analista	Lab	Spk	Spk	RPD	QC Issue	DVO- Ameliad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	DΕ	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
								MATRIX	DUPL	ICAT	E (MD) PRECISION						
460- 100387- 6LR	ECS-AREA29- F28-SS- 20150827LR- 20150827	LR		3050B	6010C		8/29/15 17:17	8/30/15 16:27	NA	4	LEAD	Т			20	Poor lab duplicate precision (27 RPD)	J/UJ to detects/NDs for ECS samples digested in the same batch
			•	•				FIELD	DUPLI	ICAT	E (FD) PRECISION						
460- 101342- 13	ECS-PSTREAM- 62+00-SE-X- 20150917	N		3050B	6010C		9/19/15 17:27	9/20/15 3:46	NA	4	LEAD					Poor field duplicate precision (71 RPD), use higher result from original sample	J/UJ to detects/NDs for original and duplicate sample
460- 101342- 13	ECS-PSTREAM- 62+00-SE-X- 20150917	N	1311	3010A	6010C	9/20/15 18:00	9/21/15 11:45	9/22/15 15:07	NA	5	LEAD					Poor field duplicate precision (150 RPD), use higher result from original sample	J/UJ to detects/NDs for original and duplicate sample
							LAB	ORATORY	CON	TROL	SPIKE (LCS) ACCURAC	CY					
4603143 404	4603143404	BD			8260C			8/3/15 15:29	NA	1	CIS-1,2-DICHLORO- ETHYLENE	Т	82	121	30	Low laboratory control spike duplicate recovery (80%)	None (recovery within 70-130% data qualification limits)
4603143 403	4603143403	BS			8260C			8/3/15 15:04	NA	1	METHYL ETHYL KETONE (2-BUTANONE)	Т	58	140		Low laboratory control spike recovery (53%)	J-/UJ to detects/NDs for samples digested in the same batch
4603143 404	4603143404	BD			8260C			8/3/15 15:29	NA	1	METHYL ETHYL KETONE (2-BUTANONE)	Т	58	140	30	Low laboratory control spike duplicate recovery (51%)	J-/UJ to detects/NDs for samples digested in the same batch

15	0			Method		D	ate and Tin	ne	GC		A 1	Lab	Spk	Spk	RPD	001	DVQ - A I' - I
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4603143 404	4603143404	BD			8260C			8/3/15 15:29	NA	1	TRANS-1,2- DICHLOROETHENE	Т	83	124	30	Low laboratory control spike duplicate recovery (81%)	None (recovery within 70-130% data qualification limits)
4603135 374	4603135374	BS			8260C			7/29/15 22:41	NA	1	METHYL ETHYL KETONE (2-BUTANONE)	Т	58	140		Low laboratory control spike recovery (52%)	J-/UJ to detects/NDs for samples digested in the same batch
4603135 375	4603135375	BD			8260C			7/29/15 23:13	NA	1	METHYL ETHYL KETONE (2-BUTANONE)	Т	58	140	30	Low laboratory control spike duplicate recovery (57%)	J-/UJ to detects/NDs for samples digested in the same batch
4603140 382A	4603140382A	BS		3546	8270D		8/1/15 2:00	8/4/15 11:51	NA	1	BENZO(G,H,I) PERYLENE	Т	43	106		High laboratory control spike recovery (110%)	None (recovery within 70-130% data qualification limits); also samples all ND
4603140 382A	4603140382A	BS		3546	8270D		8/1/15 2:00	8/4/15 11:51	NA	1	DIBENZ(A,H) ANTHRACENE	Т	43	107		High laboratory control spike recovery (121%)	None (recovery within 70-130% data qualification limits); also samples all ND
4603140 382A	4603140382A	BS		3546	8270D		8/1/15 2:00	8/4/15 11:51	NA	1	INDENO(1,2,3-C,D) PYRENE	Т	43	109		High laboratory control spike recovery (121%)	None (recovery within 70-130% data qualification limits); also samples all ND
4603159 632A	4603159632A	BS		3546	8270D		8/11/15 15:12	8/12/15 11:13	NA	1	BENZO(A)PYRENE	Т	36	89		High laboratory control spike recovery (99%)	None (recovery within 70-130% data qualification limits); also samples all ND
4603159 632A	4603159632A	BS		3546	8270D		8/11/15 15:12	8/12/15 11:13	NA	1	BENZO(B) FLUORANTHENE	Т	33	96		High laboratory control spike recovery (103%)	None (recovery within 70-130% data qualification limits); also samples all ND
4603159 642A	4603159642A	BS		3546	8270D		8/11/15 15:19	8/12/15 15:56	NA	1	BENZO(A)PYRENE	Т	36	89		High laboratory control spike recovery (92%)	None (recovery within 70-130% data qualification limits); also samples all ND
4603159 642A	4603159642A	BS		3546	8270D		8/11/15 15:19	8/12/15 15:56	NA	1	DIBENZ(A,H) ANTHRACENE	Т	43	107		High laboratory control spike recovery (111%)	None (recovery within 70-130% data qualification limits); also samples all ND
4603144 814A20	4603144814A20	BS		METH OD	9012		8/4/15 9:00	8/4/15 12:27	NA	20	CYANIDE		3.5	121.4		Extremely low soil LCS-SRM recovery (18%) - within vendor limits but <50%	J-/UJ to detects/NDs for samples digested in the same batch (Note: The low and high level LCS pass at 100% and 98%.)
4603141 504A10	4603141504A10	BS		METH OD	9012		8/2/15 14:35	8/2/15 16:07	NA	10	CYANIDE		3.5	121.4		Extremely low soil LCS-SRM recovery (23.7%) - within vendor limits but <50%	J-/UJ to detects/NDs for samples digested in the same batch (Note: The low and high level LCS pass at 106% and 110%.)

		_		Method		D	ate and Tin	ne	GC			Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
4603152 524A10	4603152524A10	BS		METH OD	9012		8/7/15 12:00	8/7/15 15:24	NA	10	CYANIDE		3.5	121.4		Extremely low soil LCS-SRM recovery (24.5%) - within vendor limits but <50%	J-/UJ to detects/NDs for samples digested in the same batch (Note: The low and high level LCS pass at 104% and 99%.)
4603154 964A10	4603154964A10	BS		METH OD	9012		8/9/15 10:30	8/9/15 13:18	NA	10	CYANIDE		3.5	121.4		Extremely low soil LCS-SRM recovery (24.7%) - within vendor limits but <50%	J-/UJ to detects/NDs for samples digested in the same batch (Note: The low and high level LCS pass at 105% and 99%.)
4603204 084A20	4603204084A20	BS		METH OD	9012		9/2/15 7:30	9/2/15 15:12	NA	20	CYANIDE		3.5	121.4		Extremely low soil LCS-SRM recovery (20.8%) - within vendor limits but <50%	J-/UJ to detects/NDs for samples digested in the same batch (Note: The low and high level LCS pass at 97% and 101%.)
4603225 054A10	4603225054A10	BS		METH OD	9012		9/15/15 11:30	9/16/15 13:35	NA	10	CYANIDE		3.5	121.4		Extremely low soil LCS-SRM recovery (18.1%) - within vendor limits but <50%	J-/UJ to detects/NDs for samples digested in the same batch (Note: The low and high level LCS pass at 103% and 107%.)
								MATE	RIX SF	IKE	(MS) ACCURACY						
460- 100059- 4MS	DS-AREA28- M25-SS- 20150821MS- 20150821	MS		3050B	6010C		8/25/15 7:31	8/25/15 16:40	NA	4	LEAD		75	125		Extremely low matrix spike recovery (-86%)	None (check waived because unspiked sample conc > 4x spike amount), PDS passes
460- 100387- 6MS	ECS-AREA29- F28-SS- 20150827MS- 20150827	MS		3050B	6010C		8/29/15 17:17	8/30/15 16:23	NA	4	LEAD	N	75	125		Low matrix spike recovery (45%)	J-/UJ to detects/NDs for ECS samples digested in the same batch
460- 100886- 3MS	BF-5L-WT-9c-01- 20150909MS	MS		3546	8082A		9/11/15 20:08	9/13/15 6:47	2C	1	PCB-1260 (AROCLOR 1260)	Т	71	150		High matrix spike recovery (152%)	None (average MS/MSD recovery (146%) within control)
460- 100886- 3SD	BF-5L-WT-9c-01- 20150909SD	SD		3546	8082A		9/11/15 20:08	9/13/15 7:02	2C	1	PCB-1260 (AROCLOR 1260)		71	150	30	Passing matrix spike duplicate recovery (140%)	NA
				1				SUR		TE (SU) RECOVERY						
460- 99248-3	BF-ETETZ-GF- 2c-01-20150807	N		3546	8270D		8/11/15 15:19	8/13/15 15:45	NA	1	PHENOL-D5	Т	41	118		Low acid surrogate recovery (38%)	J-/UJ to detects/NDs for acid analytes in this sample
460- 100389- 4	TB-8/27/15- 20150827	ТВ			8260C			9/1/15 17:45	NA	1	TOLUENE-D8	Т	74	120		High surrogate recovery (123%)	none (deficiency for trip blank, which is ND; no significant additional effect on environmental sample results)

		_		Method		D	ate and Tin	ne	GC			Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
				-			_	L	ABOF	RATO	DRY BLANKS						
4603144 811A	4603144811A	LB		METH OD	9012		8/4/15 9:00	8/4/15 12:24	NA	1	CYANIDE	J				Preparation blank contamination (0.0365 J mg/kg)	U at RL to Js, J+ to detects <10x blank equivalent concentration for samples prepared in the same batch (none)
			•			1	•		FII	ELD	BLANKS						
460- 100886- 4	TB-9/9/15- 20150909	ТВ			8260C			9/10/15 20:56	NA	1	METHYLENE CHLORIDE					Trip blank contamination (1.1 ug/l)	U at RL to Js, J+ to detects <4x RL or < 2x blank equivalent concentration for samples shipped in the same container (none, all ND)
								THEC	RETIO	CAL	RESULT VALUES						
460- 101342- 5	ECS-PSTREAM- 62+00-SE- 20150917	Z	1311	3010A	6010C	9/20/15 18:00	9/21/15 9:13	9/22/15 14:24	NA	5	LEAD					Metals leach-to- total balance greater than theoretical	J to this detect
460- 101342- 5	ECS-PSTREAM- 62+00-SE- 20150917	N		3050B	6010C		9/19/15 17:27	9/20/15 3:10	NA	4	LEAD					Metals leach-to- total balance greater than theoretical	J to this detect
460- 99013-8	DS-PSTREAM- 51+00-SS- 20150804	N	1311	3010A	6010C	8/6/15 17:00	8/7/15 9:27	8/7/15 20:01	NA	50	LEAD					Metals leach-to- total balance greater than theoretical	J to this detect
460- 99013-8	DS-PSTREAM- 51+00-SS- 20150804	N		3050B	6010C		8/6/15 7:35	8/6/15 17:27	NA	10	LEAD					Metals leach-to- total balance greater than theoretical	J to this detect
460- 99013-9	ECS-PSTREAM- 50+50-F- 20150804	N	1311	3010A	6010C	8/6/15 17:00	8/7/15 9:27	8/7/15 17:10	NA	5	LEAD					Metals leach-to- total balance greater than theoretical	J to this detect
460- 99013-9	ECS-PSTREAM- 50+50-F- 20150804	N		3050B	6010C		8/6/15 7:35	8/6/15 15:09	NA	4	LEAD					Metals leach-to- total balance greater than theoretical	J to this detect
										TION	VERIFICATION						
CCV 460- 322678/ 14	CCV 460- 322678/14	CCV			8151A			9/16/15 14:13	1C	1	SILVEX (2,4,5-TP)	*	-15	+15		Calibration drift secondary column (%D= -19.4%)	J- to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all ND)

	0			Method		D	ate and Tir	ne	GC	55	A 1	Lab	Spk	Spk	RPD	001	DVO: A : F: I
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
CCVIS 460- 314340/	CCVIS 460- 314340/2	CCV			8260C			8/3/15 14:39	NA	1	ACETONE		-20	+20		Calibration drift (%D= -29.5%)	J- to detects, UJ to NDs samples analyzed this shift (all ND)
2																	
CCVIS	CCVIS 460-	CCV			8260C			8/3/15	NA	1	METHYL ETHYL		-20	+20		Calibration drift	J- to detects, UJ to NDs samples
460- 314340/	314340/2							14:39			KETONE (2-BUTANONE)					(%D= -48.3%)	analyzed this shift (all ND)
2																	
CCVIS	CCVIS 460-	CCV			8260C			7/29/15	NA	1	ACETONE		-20	+20		Calibration drift	J- to detects, UJ to NDs samples
460- 313537/ 3	313537/3							22:16								(%D= -25.3%)	analyzed this shift (all ND)
CCVIS	CCVIS 460-	CCV			8260C			7/29/15	NA	1	METHYL ETHYL		-20	+20		Calibration drift	J- to detects, UJ to NDs samples
460-	313537/3							22:16			KETONE					(%D= -47.7%)	analyzed this shift (all ND)
313537/											(2-BUTANONE)						
CCVIS	CCVIS 460-	CCV			8260C			9/6/15	NA	1	1,1,1-	*	-20	+20		Calibration drift	J- to detects, UJ to NDs samples
460- 321131/	321131/2							17:29			TRICHLOROETHANE					(%D= -23.9%)	analyzed this shift (all ND)
2																	
CCVIS	CCVIS 460-	CCV			8260C			9/6/15	NA	1	CARBON	*	-20	+20		Calibration drift	J- to detects, UJ to NDs samples
460- 321131/	321131/2							17:29			TETRACHLORIDE					(%D= -26.3%)	analyzed this shift (all ND)
2																	
CCVIS	CCVIS 460-	CCV			8270D			8/3/15	NA	1	PENTACHLORO-	*	-20	+20		Calibration drift	J+ to detects only since < +40%
460-	314368/2							19:33			PHENOL					(%D= +22.0%)	for samples analyzed this shift
314368/																	(none)
CCVIS	CCVIS 460-	CCV			8270D			8/3/15	NA	1	PHENOL	*	-20	+20		Calibration drift	J- to detects, UJ to NDs samples
460-	314368/2							19:33								(%D= -28.1%)	analyzed this shift (all ND)
314368/																	
2																	

CL - Control Limit

DF - Dilution Factor

LCL - Lower Control Limit

UCL - Upper Control Limit

TABLE 4

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Phase II-B Remedial Design/ Remedial Action
Backfill and Post-Excavation Confirmation Samples
July 2015 to September 2015

QUALIFIED RESULTS FOR FIELD SAMPLES

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
		TCLP METAL			
460-98763-6	ECS-AREA22-M21SE-F- 20150729	TCLP LEAD	42.3 J ug/l	J	Result between MDL and RL
460-98825-8	ECS-AREA22-L21NE-F- 20150730	TCLP LEAD	34.3 J ug/l	J	Result between MDL and RL
460-99013-2	DS-PSTREAM-52+50-SS- 20150804	TCLP LEAD	42.7 J ug/l	J	Result between MDL and RL
460-99013-3	ECS-PSTREAM-52+00-F- 20150804	TCLP LEAD	21.5 J ug/l	J	Result between MDL and RL
460-99013-5	ECS-PSTREAM-51+50-F- 20150804	TCLP LEAD	25.4 J ug/l	J	Result between MDL and RL
460-99013-7	ECS-PSTREAM-51+00-F- 20150804	TCLP LEAD	28.2 J ug/l	J	Result between MDL and RL
460-99013-8	DS-PSTREAM-51+00-SS- 20150804	TCLP LEAD	318000 ug/l	J	Metals leach-to-total balance greater than theoretical
460-99013-9	ECS-PSTREAM-50+50-F- 20150804	TCLP LEAD	2660 ug/l	J	Metals leach-to-total balance greater than theoretical
460-99873-5	DS-AREA28-N22-SN-20150819	TCLP LEAD	23.8 J ug/l	J	Result between MDL and RL
460-100129-1	ECS-AREA 28-L24-F-20150824	TCLP LEAD	25.9 J ug/l	J	Result between MDL and RL
460-100129-3	ECS-AREA 28-L25-F-20150824	TCLP LEAD	28.1 J ug/l	J	Result between MDL and RL
460-100387-3	ECS-AREA29-E27-SW- 20150827	TCLP LEAD	22.1 J ug/l	J	Result between MDL and RL
460-100387-5	ECS-AREA29-E28-SW- 20150827	TCLP LEAD	26.0 J ug/l	J	Result between MDL and RL
460-100495-3	ECS-AREA 29-G28-SS- 20150831	TCLP LEAD	23.6 J ug/l	J	Result between MDL and RL
460-100495-4	ECS-AREA 29-G27-F-20150831	TCLP LEAD	36.4 J ug/l	J	Result between MDL and RL
460-100495-5	ECS-AREA 29-F27-F-20150831	TCLP LEAD	23.1 J ug/l	J	Result between MDL and RL
460-100831-14	ECS-AREA 25-I26-F-X- 20150908	TCLP LEAD	27.1 J ug/l	J	Result between MDL and RL
460-101342-4	ECS-PSTREAM-62+00-F- 20150917	TCLP LEAD	21.5 J ug/l	J	Result between MDL and RL
460-101342-5	ECS-PSTREAM-62+00-SE- 20150917	TCLP LEAD	2560 ug/l	J	Poor field duplicate precision (150 RPD), use higher result from original sample; Metals leach-to-total balance greater than theoretical
460-101342-7	ECS-PSTREAM-62+50-F- 20150917	TCLP LEAD	33.0 J ug/l	J	Result between MDL and RL
460-101342-9	ECS-PSTREAM-62+50-SW- 20150917	TCLP LEAD	42.5 J ug/l	J	Result between MDL and RL
460-101342-13	ECS-PSTREAM-62+00-SE-X- 20150917	TCLP LEAD	347 ug/l	J	Poor field duplicate precision (150 RPD), use higher result from original sample
460-101504-2	ECS-PSTREAM-64+00-SE- 20150919	TCLP LEAD	21.0 J ug/l	J	Result between MDL and RL
460-101506-1	ECS-AREA25-H28-F-20150921	TCLP LEAD	39.3 J ug/l	J	Result between MDL and RL
460-101506-3	DS-AREA28-J28-SS-20150921	TCLP LEAD	34.6 J ug/l	J	Result between MDL and RL
460-101572-1	ECS-PSTREAM-60+00-F-R- 20150922	TCLP LEAD	21.8 J ug/l	J	Result between MDL and RL

Lab ID	Field ID-Date	Analyte	Lab	DVQ	QC Issue
		·	Result		
460-101572-2	ECS-PSTREAM-60+00-SW-R- 20150922	TCLP LEAD	26.2 J ug/l	J	Result between MDL and RL
		TOTAL METAL			
460-98825-4	ECS-AREA22-M21NW-F- 20150730	COBALT	9.0 J mg/kg	J	Result between MDL and RL
460-98825-4	ECS-AREA22-M21NW-F- 20150730	POTASSIUM	807 J mg/kg	J	Result between MDL and RL
460-98825-4	ECS-AREA22-M21NW-F- 20150730	SODIUM	185 J mg/kg	J	Result between MDL and RL
460-99013-8	DS-PSTREAM-51+00-SS- 20150804	LEAD	3470 mg/kg	J	Metals leach-to-total balance greater than theoretical
460-99013-9	ECS-PSTREAM-50+50-F- 20150804	LEAD	26.5 mg/kg	J	Metals leach-to-total balance greater than theoretical
460-99999-1	ECS-AREA 28-N24-F-20150820	ARSENIC	2.5 J mg/kg	J	Result between MDL and RL
460-99999-1	ECS-AREA 28-N24-F-20150820	COBALT	5.6 J mg/kg	J	Result between MDL and RL
460-99999-1	ECS-AREA 28-N24-F-20150820	POTASSIUM	779 J mg/kg	J	Result between MDL and RL
460-99999-1	ECS-AREA 28-N24-F-20150820	SODIUM	148 J mg/kg	J	Result between MDL and RL
460-100129-1	ECS-AREA 28-L24-F-20150824	CALCIUM	691 J mg/kg	J	Result between MDL and RL
460-100129-1	ECS-AREA 28-L24-F-20150824	COBALT	8.1 J mg/kg	J	Result between MDL and RL
460-100129-1	ECS-AREA 28-L24-F-20150824	POTASSIUM	504 J mg/kg	J	Result between MDL and RL
460-100129-1	ECS-AREA 28-L24-F-20150824	SODIUM	263 J mg/kg	J	Result between MDL and RL
460-100387-6	ECS-AREA29-F28-SS-20150827	LEAD	118 mg/kg	J	Low matrix spike recovery (45%); Poor lab duplicate precision (27 RPD)
460-100495-5	ECS-AREA 29-F27-F-20150831	ARSENIC	3.6 J mg/kg	J	Result between MDL and RL
460-100831-1	ECS-AREA 27-K25-F-20150908	ARSENIC	3.0 J mg/kg	J	Result between MDL and RL
460-100831-8	ECS-AREA 28-K26-F-20150908	CALCIUM	83.7 J mg/kg	J	Result between MDL and RL
460-100831-8	ECS-AREA 28-K26-F-20150908	POTASSIUM	498 J mg/kg	J	Result between MDL and RL
460-100831-8	ECS-AREA 28-K26-F-20150908	THALLIUM	2.7 J mg/kg	J	Result between MDL and RL
460-101342-5	ECS-PSTREAM-62+00-SE- 20150917	LEAD	32.4 mg/kg	J	Poor field duplicate precision (71 RPD), use higher result from original sample; Metals leach-total balance greater than theoretical
460-101342-6	ECS-PSTREAM-62+00-SW- 20150917	COBALT	7.0 J mg/kg	J	Result between MDL and RL
460-101342-6	ECS-PSTREAM-62+00-SW- 20150917	POTASSIUM	780 J mg/kg	J	Result between MDL and RL
460-101342-6	ECS-PSTREAM-62+00-SW- 20150917	SODIUM	429 J mg/kg	J	Result between MDL and RL
460-101342-13	ECS-PSTREAM-62+00-SE-X- 20150917	LEAD	15.5 mg/kg	J	Poor field duplicate precision (71 RPD), use higher result from original sample
460-101504-2	ECS-PSTREAM-64+00-SE- 20150919	ARSENIC	2.8 J mg/kg	J	Result between MDL and RL
		HERBICIDES (HE	RB)		•
460-100886-3	BF-5L-WT-9c-01-20150909	SILVEX (2,4,5-TP)	22 U ug/kg	UJ	Calibration drift secondary column (%D= -19.4%)
	VC	LATILE ORGANIC COMP	OUNDS (VOC)		
460-98659-1	BF-ORI-HS-7g-01-20150727	ACETONE	5.8 U ug/kg	UJ	Calibration drift (%D= -29.5%)
460-98659-1	BF-ORI-HS-7g-01-20150727	METHYL ETHYL KETONE (2-BUTANONE)	5.8 UT ug/kg	UJ	Low laboratory control spike recovery (53%); Low laboratory control spike duplicate recovery (51%); Calibration drift (%D= -
				L	48.3%)
460-98659-2	BF-ORI-HS-7g-02-20150727	ACETONE	6.2 U ug/kg	UJ	Calibration drift (%D= -29.5%)
460-98659-2	BF-ORI-HS-7g-02-20150727	METHYL ETHYL KETONE (2-BUTANONE)	6.2 UT ug/kg	UJ	Low laboratory control spike recovery (53%); Low laboratory control spike duplicate recovery (51%); Calibration drift (%D= - 48.3%)

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-98662-1	BF-5L-GF-5g-01-20150727	ACETONE	4.0 U ug/l	cg UJ	Calibration drift (%D= -25.3%)
460-98662-1	BF-5L-GF-5g-01-20150727	METHYL ETHYL KETONE (2-BUTANONE)	4.0 UT ug/l	cg UJ	Low laboratory control spike recovery (52%); Low laboratory control spike duplicate recovery (57%); Calibration drift (%D= - 47.7%)
460-98662-2	BF-5L-GF-5g-02-20150727	ACETONE	3.6 U ug/l		Calibration drift (%D= -25.3%)
460-98662-2	BF-5L-GF-5g-02-20150727	METHYL ETHYL KETONE (2-BUTANONE)	3.6 UT ug/l	kg UJ	Low laboratory control spike recovery (52%); Low laboratory control spike duplicate recovery (57%); Calibration drift (%D= -47.7%)
460-98662-4	BF-5L-GF-6g-01-20150727	ACETONE	4.1 U ug/l		Calibration drift (%D= -25.3%)
460-98662-4	BF-5L-GF-6g-01-20150727	METHYL ETHYL KETONE (2-BUTANONE)	4.1 UT ug/l		Low laboratory control spike recovery (52%); Low laboratory control spike duplicate recovery (57%); Calibration drift (%D= - 47.7%)
460-98662-5	BF-5L-GF-6g-02-20150727	ACETONE	3.9 U ug/l	kg UJ	Calibration drift (%D= -25.3%)
460-98662-5	BF-5L-GF-6g-02-20150727	METHYL ETHYL KETONE (2-BUTANONE)	3.9 UT ug/l	kg UJ	Low laboratory control spike recovery (52%); Low laboratory control spike duplicate recovery (57%); Calibration drift (%D= -47.7%)
460-100389-1	BF-5L-WT-8g-01-20150827	1,1,1- TRICHLOROETHANE	0.97 U ug/l	kg UJ	Calibration drift (%D= -23.9%)
460-100389-1	BF-5L-WT-8g-01-20150827	CARBON TETRACHLORIDE	0.97 U ug/l		Calibration drift (%D= -26.3%)
460-100389-2	BF-5L-WT-8g-02-20150827	1,1,1- TRICHLOROETHANE	0.97 U ug/l		Calibration drift (%D= -23.9%)
460-100389-2	BF-5L-WT-8g-02-20150827	CARBON TETRACHLORIDE	0.97 U ug/l		Calibration drift (%D= -26.3%)
		OLATILE ORGANIC COM	,		1
460-98659-3	BF-ORI-HS-7c-01-20150727	BENZO(A)PYRENE	17 J ug/l	-	Result between MDL and RL
460-98659-3	BF-ORI-HS-7c-01-20150727	CHRYSENE	23 J ug/		Result between MDL and RL
460-98659-3	BF-ORI-HS-7c-01-20150727	FLUORANTHENE	26 J ug/l		Result between MDL and RL
460-98659-3	BF-ORI-HS-7c-01-20150727	PHENANTHRENE	19 J ug/		Result between MDL and RL
460-98659-3	BF-ORI-HS-7c-01-20150727	PHENOL	520 U ug/l		Calibration drift (%D= -28.1%)
460-98659-3 460-98662-3	BF-ORI-HS-7c-01-20150727 BF-5L-GF-5c-01-20150727	PYRENE PHENOL	27 J ug/l 370 U ug/l		Result between MDL and RL Calibration drift (%D= -28.1%)
460-98662-6	BF-5L-GF-6c-01-20150727	FLUORANTHENE	370 U ug/l 26 J ug/l	<u> </u>	Result between MDL and RL
460-98662-6	BF-5L-GF-6c-01-20150727	PHENANTHRENE	20 J ug/l		Result between MDL and RL
460-98662-6	BF-5L-GF-6c-01-20150727	PHENOL	380 U ug/l		Calibration drift (%D= -28.1%)
460-98662-6	BF-5L-GF-6c-01-20150727	PYRENE	21 J ug/l		Result between MDL and RL
460-99248-3	BF-ETETZ-GF-2c-01-20150807	2-METHYLPHENOL (O-CRESOL)	340 U ug/l		Low acid surrogate recovery (38%)
460-99248-3	BF-ETETZ-GF-2c-01-20150807	CRESOLS, M & P	340 U ug/l	g UJ	Low acid surrogate recovery (38%)
460-99248-3	BF-ETETZ-GF-2c-01-20150807	PENTACHLORO- PHENOL	270 U ug/l		Low acid surrogate recovery (38%)
460-99248-3	BF-ETETZ-GF-2c-01-20150807	PHENOL	340 U ug/	kg UJ	Low acid surrogate recovery (38%)
460-100389-3	BF-5L-WT-8c-01-20150827	BENZO(G,H,I) PERYLENE	72 J ug/l		Result between MDL and RL
460-100389-3	BF-5L-WT-8c-01-20150827	CHRYSENE	92 J ug/		Result between MDL and RL
460-100389-3	BF-5L-WT-8c-01-20150827	CRESOLS, M & P	12 J ug/l	ιg J	Result between MDL and RL
460-100389-3	BF-5L-WT-8c-01-20150827	FLUORANTHENE	150 J ug/	ιg J	Result between MDL and RL
460-100389-3	BF-5L-WT-8c-01-20150827	PHENANTHRENE	59 J ug/	ιg J	Result between MDL and RL
460-100389-3	BF-5L-WT-8c-01-20150827	PYRENE	140 J ug/	κg J	Result between MDL and RL
460-100886-3	BF-5L-WT-9c-01-20150909	BENZO(A)PYRENE	17 J ug/l		Result between MDL and RL
460-100886-3	BF-5L-WT-9c-01-20150909	BENZO(B) FLUORANTHENE	24 J ug/l	kg J	Result between MDL and RL

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-100886-3	BF-5L-WT-9c-01-20150909	CHRYSENE	18 J ug/kg	J	Result between MDL and RL
460-100886-3	BF-5L-WT-9c-01-20150909	CRESOLS, M & P	24 J ug/kg	J	Result between MDL and RL
460-100886-3	BF-5L-WT-9c-01-20150909	FLUORANTHENE	30 J ug/kg	J	Result between MDL and RL
460-100886-3	BF-5L-WT-9c-01-20150909	INDENO(1,2,3-C,D) PYRENE	40 J ug/kg	J	Result between MDL and RL
460-100886-3	BF-5L-WT-9c-01-20150909	PHENANTHRENE	13 J ug/kg	J	Result between MDL and RL
460-100886-3	BF-5L-WT-9c-01-20150909	PYRENE	20 J ug/kg	J	Result between MDL and RL
		CYANIDE			
460-98659-3	BF-ORI-HS-7c-01-20150727	CYANIDE	0.54 B mg/kg	J-	Extremely low soil LCS-SRM recovery (18%) - within vendor limits but <50%
460-98662-3	BF-5L-GF-5c-01-20150727	CYANIDE	0.027 J mg/kg	J	Extremely low soil LCS-SRM recovery (23.7%) - within vendor limits but <50%; Result between MDL and RL
460-98662-6	BF-5L-GF-6c-01-20150727	CYANIDE	0.12 U mg/kg	UJ	Extremely low soil LCS-SRM recovery (23.7%) - within vendor limits but <50%
460-99103-3	BF-5L-GF-7c-01-20150805	CYANIDE	0.016 J mg/kg	J	Extremely low soil LCS-SRM recovery (24.5%) - within vendor limits but <50%
460-99103-6	BF-5L-GF-7c-01-X-20150805	CYANIDE	0.020 J mg/kg	J	Extremely low soil LCS-SRM recovery (24.5%) - within vendor limits but <50%
460-99248-3	BF-ETETZ-GF-2c-01-20150807	CYANIDE	0.096 U mg/kg	UJ	Extremely low soil LCS-SRM recovery (24.7%) - within vendor limits but <50%
460-100389-3	BF-5L-WT-8c-01-20150827	CYANIDE	0.24 mg/kg	J-	Extremely low soil LCS-SRM recovery (20.8%) - within vendor limits but <50%
460-100886-3	BF-5L-WT-9c-01-20150909	CYANIDE	0.19 mg/kg	J-	Extremely low soil LCS-SRM recovery (18.1%) - within vendor limits but <50%

TABLE 5 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples July 2015 to September 2015

FIELD DUPLICATE RESULTS

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-98825-1	460-98825-2	ECS-AREA22-L22NE-F-	TCLP LEAD	50.0 U ug/l	50.0 U ug/l	0	100	NA	у
		20150730							
460-98825-1	460-98825-2	ECS-AREA22-L22NE-F-	ARSENIC	8.8 mg/kg	10.2 mg/kg	1.4	5.4	NA	у
		20150730							
460-98825-1	460-98825-2	ECS-AREA22-L22NE-F- 20150730	LEAD	14.0 mg/kg	15.3 mg/kg	NA	3.6	8.9	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	ARSENIC	6.3 mg/kg	7.1 mg/kg	0.8	6.6	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	BARIUM	55.2 mg/kg	51.0 mg/kg	4.2	88	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	BERYLLIUM	0.70 mg/kg	0.66 mg/kg	0.04	0.88	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	CADMIUM	0.86 U mg/kg	0.88 U mg/kg	0.02	1.76	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	CHROMIUM, TOTAL	18.8 mg/kg	17.6 mg/kg	NA	4.4	6.6	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	COPPER	29.1 mg/kg	25.8 mg/kg	3.3	11	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	LEAD	14.6 mg/kg	13.0 mg/kg	NA	4.4	12	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	MANGANESE	633 mg/kg	630 mg/kg	NA	6.6	0.48	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	NICKEL	27.3 mg/kg	25.1 mg/kg	2.2	17.6	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	SELENIUM	4.3 U mg/kg	4.4 U mg/kg	0.1	8.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	SILVER	2.2 U mg/kg	2.2 U mg/kg	0	4.4	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	ZINC	72.2 mg/kg	64.0 mg/kg	NA	13.2	12	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	CHROMIUM, HEXAVALENT	2.2 U mg/kg	2.2 U mg/kg	0	4.4	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	CHROMIUM III	18.8 mg/kg	17.6 mg/kg	NA	4	6.6	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	MERCURY	0.027 mg/kg	0.028 mg/kg	0.001	0.036	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	ALDRIN	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXANE)	2.2 U ug/kg	2.2 U ug/kg	0	4.4	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	ALPHA ENDOSULFAN	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	2.2 U ug/kg	2.2 U ug/kg	0	4.4	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	BETA ENDOSULFAN	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	CHLORDANE	74 U ug/kg	74 U ug/kg	0	148	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	DELTA BHC (DELTA HEXACHLOROCYCLOHEXANE)	2.2 U ug/kg	2.2 U ug/kg	0	4.4	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	DIELDRIN	2.2 U ug/kg	2.2 U ug/kg	0	4.4	NA	у

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	ENDOSULFAN SULFATE	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	ENDRIN	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	ENDRIN ALDEHYDE	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	ENDRIN KETONE	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	GAMMA BHC (LINDANE)	2.2 U ug/kg	2.2 U ug/kg	0	4.4	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	HEPTACHLOR	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	HEPTACHLOR EPOXIDE	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	METHOXYCHLOR	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	P,P'-DDD	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	P,P'-DDE	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	P,P'-DDT	7.4 U ug/kg	7.4 U ug/kg	0	14.8	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	TOXAPHENE	74 U ug/kg	74 U ug/kg	0	148	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	PCB-1016 (AROCLOR 1016)	74 U ug/kg	74 U ug/kg	0	148	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	PCB-1221 (AROCLOR 1221)	74 U ug/kg	74 U ug/kg	0	148	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	PCB-1232 (AROCLOR 1232)	74 U ug/kg	74 U ug/kg	0	148	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	PCB-1242 (AROCLOR 1242)	74 U ug/kg	74 U ug/kg	0	148	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	PCB-1248 (AROCLOR 1248)	74 U ug/kg	74 U ug/kg	0	148	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	PCB-1254 (AROCLOR 1254)	74 U ug/kg	74 U ug/kg	0	148	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	PCB-1260 (AROCLOR 1260)	74 U ug/kg	74 U ug/kg	0	148	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	SILVEX (2,4,5-TP)	19 U ug/kg	19 U ug/kg	0	38	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	2-METHYLPHENOL (O-CRESOL)	360 U ug/kg	360 U ug/kg	0	720	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	ACENAPHTHENE	360 U ug/kg	360 U ug/kg	0	720	NA	У
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	ACENAPHTHYLENE	360 U ug/kg	360 U ug/kg	0	720	NA	У
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	ANTHRACENE	360 U ug/kg	360 U ug/kg	0	720	NA	У
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	BENZO(A)ANTHRACENE	36 U ug/kg	36 U ug/kg	0	72	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	BENZO(A)PYRENE	36 UT ug/kg	36 UT ug/kg	0	72	NA	У
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	BENZO(B)FLUORANTHENE	36 UT ug/kg	36 UT ug/kg	0	72	NA	У
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	BENZO(G,H,I)PERYLENE	360 U ug/kg	360 U ug/kg	0	720	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	BENZO(K)FLUORANTHENE	36 U ug/kg	36 U ug/kg	0	72	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	CHRYSENE	360 U ug/kg	360 U ug/kg	0	720	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	CRESOLS, M & P	360 U ug/kg	360 U ug/kg	0	720	NA	У
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	DIBENZ(A,H)ANTHRACENE	36 U ug/kg	36 U ug/kg	0	72	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	DIBENZOFURAN	360 U ug/kg	360 U ug/kg	0	720	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	FLUORANTHENE	360 U ug/kg	360 U ug/kg	0	720	NA	У
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	FLUORENE	360 U ug/kg	360 U ug/kg	0	720	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	HEXACHLOROBENZENE	36 U ug/kg	36 U ug/kg	0	72	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	INDENO(1,2,3-C,D)PYRENE	36 U ug/kg	36 U ug/kg	0	72	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	NAPHTHALENE	360 U ug/kg	360 U ug/kg	0	720	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	PENTACHLOROPHENOL	290 U ug/kg	290 U ug/kg	0	580	NA	У
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	PHENANTHRENE	360 U ug/kg	360 U ug/kg	0	720	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	PHENOL	360 U ug/kg	360 U ug/kg	0	720	NA	у
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	PYRENE	360 U ug/kg	360 U ug/kg	0	720	NA	у

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-99103-3	460-99103-6	BF-5L-GF-7c-01-20150805	CYANIDE	0.016 J mg/kg	0.020 J mg/kg	0.004	0.24	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	1,1,1-TRICHLOROETHANE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	1,1-DICHLOROETHANE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	1,1-DICHLOROETHENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	1,2,4-TRIMETHYLBENZENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	1,2-DICHLOROBENZENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	1,2-DICHLOROETHANE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	1,3-DICHLOROBENZENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	1,4-DICHLOROBENZENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	1,4-DIOXANE (P-DIOXANE)	21 U ug/kg	18 U ug/kg	3	42	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	ACETONE	5.4 U ug/kg	4.5 U ug/kg	0.9	10.8	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	BENZENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	CARBON TETRACHLORIDE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	CHLOROBENZENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	CHLOROFORM	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	CIS-1,2-DICHLOROETHYLENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	ETHYLBENZENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	METHYL ETHYL KETONE (2-BUTANONE)	5.4 U ug/kg	4.5 U ug/kg	0.9	10.8	NA	У
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	METHYLENE CHLORIDE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	N-BUTYLBENZENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	N-PROPYLBENZENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	SEC-BUTYLBENZENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	T-BUTYLBENZENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	TERT-BUTYL METHYL ETHER	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	TETRACHLOROETHYLENE(PCE)	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	TOLUENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	TRANS-1,2-DICHLOROETHENE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	TRICHLOROETHYLENE (TCE)	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	VINYL CHLORIDE	1.1 U ug/kg	0.89 U ug/kg	0.21	2.2	NA	у
460-99103-1	460-99103-4	BF-5L-GF-7g-01-20150805	XYLENES, TOTAL	2.1 U ug/kg	1.8 U ug/kg	0.3	4.2	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	1,1,1-TRICHLOROETHANE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	1,1-DICHLOROETHANE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	1,1-DICHLOROETHENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	1,2,4-TRIMETHYLBENZENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	1,2-DICHLOROBENZENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	1,2-DICHLOROETHANE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	У
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	1,3-DICHLOROBENZENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	1,4-DICHLOROBENZENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	У
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	1,4-DIOXANE (P-DIOXANE)	18 U ug/kg	16 U ug/kg	2	36	NA	У
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	ACETONE	4.5 U ug/kg	3.9 U ug/kg	0.6	9	NA	У
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	BENZENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	У
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	CARBON TETRACHLORIDE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	У
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	CHLOROBENZENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	У
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	CHLOROFORM	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	У
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	CIS-1,2-DICHLOROETHYLENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	У
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	ETHYLBENZENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	У
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	METHYL ETHYL KETONE (2-BUTANONE)	4.5 U ug/kg	3.9 U ug/kg	0.6	9	NA	У
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	METHYLENE CHLORIDE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	N-BUTYLBENZENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	N-PROPYLBENZENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	SEC-BUTYLBENZENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	T-BUTYLBENZENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	TERT-BUTYL METHYL ETHER	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	TETRACHLOROETHYLENE(PCE)	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	TOLUENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	TRANS-1,2-DICHLOROETHENE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	TRICHLOROETHYLENE (TCE)	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	VINYL CHLORIDE	0.91 U ug/kg	0.79 U ug/kg	0.12	1.82	NA	у
460-99103-2	460-99103-5	BF-5L-GF-7g-02-20150805	XYLENES, TOTAL	1.8 U ug/kg	1.6 U ug/kg	0.2	3.6	NA	у
460-100059-1	460-100059-2	ECS-AREA28-M24-F- 20150821	TCLP LEAD	50.0 U ug/l	50.0 U ug/l	0	100	NA	у
460-100059-1	460-100059-2	ECS-AREA28-M24-F- 20150821	ARSENIC	9.0 mg/kg	6.9 mg/kg	2.1	6.6	NA	у
460-100059-1	460-100059-2	ECS-AREA28-M24-F- 20150821	LEAD	13.8 mg/kg	16.3 mg/kg	NA	4.4	17	у
460-100387-3	460-100387-4	ECS-AREA29-E27-SW- 20150827	TCLP LEAD	22.1 J ug/l	50.0 U ug/l	27.9	100	NA	у
460-100387-3	460-100387-4	ECS-AREA29-E27-SW- 20150827	ARSENIC	7.2 mg/kg	7.6 mg/kg	0.4	5.4	NA	у
460-100387-3	460-100387-4	ECS-AREA29-E27-SW- 20150827	LEAD	26.3 mg/kg	34.0 mg/kg	NA	3.6	26	у
460-100831-13	460-100831-14	ECS-AREA 25-I26-F- 20150908	TCLP LEAD	50.0 U ug/l	27.1 J ug/l	22.9	100	NA	у
460-100831-13	460-100831-14	ECS-AREA 25-I26-F- 20150908	ARSENIC	5.2 mg/kg	5.0 mg/kg	0.2	6.6	NA	у
460-100831-13	460-100831-14	ECS-AREA 25-I26-F- 20150908	LEAD	21.2 mg/kg	16.4 mg/kg	NA	4.4	26	у
460-101342-5	460-101342-13	ECS-PSTREAM-62+00-SE- 20150917	TCLP LEAD	2560 ug/l	347 ug/l	NA	100	150	NO

^	4	•	•		
1 1	7				
//	/1			ι,	
		_	_	_	

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte		al Sample Result		Duplicate Result	Abs Diff	2xRL	RPD	Pass
460-101342-5	460-101342-13	ECS-PSTREAM-62+00-SE- 20150917	ARSENIC	5.5	mg/kg	9.1	mg/kg	3.6	6	NA	У
460-101342-5	460-101342-13	ECS-PSTREAM-62+00-SE- 20150917	LEAD	32.4	mg/kg	15.5	mg/kg	NA	4	71	NO

Note: The RPD test (≤35%) applies if both results are greater than 5x RL. Otherwise, the absolute difference test (≤ 2x RL) applies.

ATTACHMENT A VALIDATOR'S CHECKLISTS

Data Validation Checklist - General								
Client Name: Entact		Droice	t Niumb	or/Managar, E7076H/ Janny Colf				
Site Name: Revere Smelting & Refining (Phase 2B ECS/BF Jul-S	ont15)	QC Le		er/ Manager: E7976H/ Jenny Self				
Laboratory: TestAmerica (Edison)	ерпэ)			h No: aga halaw				
Reviewer: Taryn Scholz		Laboratory Job No: see below Date Checked: 10/15/15						
Parameters: TCLP Pb, Metals, CrIII/VI, Pesticide, PCB, Herbicide	. \/OC							
SVOC, CN	:, voc,		us. 131 , 9012E					
ITEM	YES	NO	N/A	(CRITERIA) COMMENT				
Laboratory NELAP/ELAP accredited?		NO	IN/A	#11452 for Edison				
Signed Narrative included?	X			certification signature on cover page and/or separate cert statement				
No narrative issues noted by lab?	Х			See Narrative Comments				
	of Cust	X)C)/ Sa	Imple Receipt				
Date/time of sample collection included?		l ouy (Ct	JC)/ 38	Imple Necelpt				
Sample temp upon receipt 2-6 C?	Х	Х		see Comment no. 1				
Sample temp upon receipt 2-0 C:		_ ^		(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required);				
Proper containers/preservation?	Х			see Comment no. 2				
COCs properly executed and seals used?		Х		see Comment no. 3				
Samples received within 2 days?	Х			(DER10 - recommended)				
	Aı	nalytica	l Result	ts				
All requested analyses reported?	Х							
Field, Laboratory, and Batch ID included?	Х							
Date of sample collection/receipt included?	Х							
Date of sample preparation/analysis included?	Х							
NDs at DL or QL and J-values as needed?	х			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-values reported; EDD - NDs blank with 'method_detection_limit' = 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' = 'quantitation_limit' (SQL), J-values reported				
Target analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLP TAL) see Comment no. 4				
RLs acceptable?		Х		(ASP Exh C Part III and/or DER-10 App 5) see Comment no. 4A				
No elevated RLs for NDs?	Х			Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP				
Prep/Analysis method references included and approved?	х			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D); (5035 used for VOC soils this phase) see Comment no. 5				
If analytical cleanup used, method ref included and approved?	х			(ASP Exh D) see Comment no. 6				
Sample matrix included?	Х			(NOT EXITE) 666 Commont No. 6				
Soils on dry weight basis?	X*							
Correct and consistent units?	x			Organics in ug/L (TBs) and ug/kg for rest; Inorganics in mg/kg or ug/L (TCLP)				
Holding time to analysis not expired?	x**			(P1 WP Table 2, P2A/B WP Table 1/2 or SW846 for those not in table per ASP Exh I, which gives only aq HTs) Hg 28-d, Extr 14/40-d, Cr VI 30/7-d, CN 14-d, VOC 14-d (freeze within 2-d)				
Holding time to preparation not expired?	X**			see above				
QC Samp	les (Pha	ase 2B	Workpl	an Section 5.4.7)				
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment			NA	only disposable equipment used				
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory	х			see Comment no. 7				
Filter blank - 1 per week of time-integrated air monitoring	1	1	NA					
	 	1	. */ \	Total samples = 117/117 confirmation (TCLP/Total) + 7 BF comp + 14				
Field duplicate samples - 1 for every 20 or fewer samples per sample matrix (excluding air samples)		х		BF grab = 138; Total FD = 8 (5/5 conf + 1 comp + 2 grab) -> low for BF grab for to-date P2B				
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix from the same batch as the project samples to the extent possible		х		MS/LR used for metals (ICP, Hg, Cr VI - %R not reported for calc Ci III); 4 field MS/MSD (conf for Total As/Pb and also TCLP) - with lab MS/MSD still one short (plus no TAL) for DER Metals, Cr6, SVOC, CN and VOC each with no MS/MSD				
Completeness criteria met?	Х			(P2B WP Section 5.3.3 - 100%) 1481/1481 = 100%				
		Field I	Votes					
Agree with custody records?			Х	not included				
Field instruments calibrated daily?			х					
Well conditions constant before sampling?			х					
Samples filtered? If so, give turbid/size			х					
Definitions: AA - Atomic Absorption: CCV - Continuing Calibration	n Verific	ation: C	OI - Co	ompound of Interest; %D - Percent Difference, DL - Detection Limit; DUF				

Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification; COI - Compound of Interest; %D - Percent Difference, DL - Detection Limit; DUP Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasma; ICV - Initial Calibration Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Matrix Spike Duplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response Factor; RT - Retention Time; RSD - Relative Standard Deviation; TA - Target Analyte

COMMENT

Laboratory Job No: 460-98659-1, 460-98662-1, 460-98763-1, 460-98825-1, 460-98874-1, 460-98931-1, 460-99013-1, 460-9907-1, 460-99103-1, 460-99247-1, 460-99248-1, 460-99873-1, 460-99999-1, 460-100059-1, 460-100129-1, 460-100387-1, 460-100389-1, 460-100495-1, 460-100831-1, 460-100886-1, 460-101122-1, 460-101258-1, 460-101342-1, 460-101422-1, 460-101504-1, 460-101506-1, 460-101572-

*For the 7196A analyses, Cr III is shown as not dry-weight corrected. However, Cr III is calculated from the results for Cr VI and Total Cr, which are dry-weight corrected, and thus the Cr III is not directly dry-weight corrected but is on a dry-weight basis.

** The holding time was calculated using dates only without regard to the time of day since all holding times are greater than 24 hours. Also, note that Cr III is a calculated result and the holding time check does not apply for this analyte.

1. Receipt Temp:

For work order 460-98763-1, the samples were received at 15.2 C with melted ice. This is above the laboratory's standard receipt requirement of 4+/-2 C. All of the samples in this work order are soil samples analyzed for TCLP Lead and total Arsenic/Lead. Per the WP and SW846, soil samples to be analyzed for metals (with the exception of mercury and hexavalent chromium) do not require thermal preservation. Thus, the validator did not qualify the results.

2. Containers/Preservative:

For work order 460-101122-1, the container for ECS-Area 24-H27-F was received with a cracked lid, which was replaced upon receipt. Analyses performed for metals only, and thus this is not considered to significantly affect data quality and no further action was taken.

3. Custody Record

For work order 460-98874-1, the sampler did not include the sample collection times on the custody record. The laboratory logged in the samples using the times on the sample containers.

For work order 460-99248-1, the sampler did not indicate any requested tests on the custody record for the trip blank. The laboratory logged in the sample for VOC per the project plan.

For work order 460-99999-1, the sample IDs for one or more samples were revised from those on the custody record per ENTACT'S request.

For work order 460-100831-1, the documentation indicates that no custody seals were used for the transfer of the samples from the field to the laboratory. The samples were transferred by commercial, overnight courier and were received in good condition, and thus no further action was taken.

4. Analyte List:

P1 WP Table 3, P2A/B WP Table 2/4, and DER10 App5 list m-cresol, o-cresol, and p-cresol separately. The laboratory reported m,p-cresol and o-cresol as it is not possible to separate m-cresol and p-cresol using method 8270D. (P1 WP Table 3, which only lists RLs for the DER-10 metals and not the 23 TAL metals, also mistakenly lists Antimony. This metal does not appear in DER10 Appendix 5 and was not reported by the laboratory for the backfill samples.)

For all BF samples (and the associated QC), the laboratory reported technical Chlordane rather than Chlordane (alpha) as listed in the workplan and DER10 Appendix 5.

For all BF samples (and the associated QC), the laboratory reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) instead of just the DER-10 analytes as requested. Note: These extra analytes are all ND in the samples.

For the LB/BS/BD - the lab reported m,p-Xylene and o-Xylene. For the LB, Xylenes (total) is also reported.

Note: The analyte names in the hardcopy report differ from those in the EDD for some analytes.

- 4A. The MQL (Unadj) for several DER-10 analytes (metals) is above the CRQL, but in each case, it is below the Allowable Constituent Level in DER10 App 5. Additionally, the MQL (Unadj) for the TAL metal Iron is above the CRQL. There are no action levels for this analyte.
- 5. Update IV methods (6010C, 7471B, 8260C, 8270D) used instead of Update III as in WP. Prep method for 6010C total metals in soils shown as SW3020B in EDD, validator changed all to SW3050B per the pdf report and as confirmed correct by the laboratory.
- 6. Per laboratory, Florisil cleanup (SW3620C) used for Pesticide analyses and sulfuric acid cleanup (SW3665A) used for PCB analyses (not indicated in package exc on prep log nor in EDD). No cleanup used for SVOC or Herbicides.
- 7. For work order 460-98662-1, two VOC samples are included in this work order but there is no trip blank on the custody record. These samples were shipped in the same container as the BF samples in work order 460-98659-1. Thus, the trip blank on that custody record applies for the samples in 460-98662-1.

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
All	All		All samples	Required 4x dilution prior to analysis; RLs adjusted accordingly	noted in QA report narrative
EN557	460-98659-1	VOC	314340	LCS/D %R out for cis-1,2-DCE, MEK, trans-1,2-DCE; samples ND,	see QC Deficiencies
				data reported	
		VOC	313792/98605-7	MSD RPD hi for 14Dioxane	none required (MSD is non-project, applies for TB
					only)
		Pest	NA	nothing noted	NA
		PCB	NA	nothing noted	NA
		Herb	313550	LCS %R out for 2,4-D; samples ND, data reported	none required (not a target analyte)
		SVOC	314038	LCS %R out for Indeno[1,2,3-cd]pyrene, Benzo[g,h,i]perylene,	see QC Deficiencies
				Dibenz(a,h)anthracene; SOP allows 5 out for this full spike list so no	
				RE, data flagged and reported	
		SVOC	314368/98417-3	MS/D %R hi for Benzo[b]fluoranthene	none required (MS/D is non-project)
		SVOC	314368	CCV %R out for Phenol, PCP; CCVLL in control, samples analyzed	see QC Deficiencies (CCVLL not reported)
				per method, detects should be considered estimated	
		SVOC	314428	CCV %R out for Indeno[1,2,3-cd]pyrene, Benzo[g,h,i]perylene,	none required (applies to LCS only, %Rs high,
				Dibenz(a,h)anthracene; CCVLL in control, samples analyzed per	samples assessed based on LCS results)
				method, detects should be considered estimated	
		Total Metals	NA	nothing noted	NA
		Mercury	NA	nothing noted	NA
		Cr3/6	NA	nothing noted	NA
		CN	314481	Blank contains CN >MDL but <rl, samples="">MDL or >RL B-flagged</rl,>	see QC Deficiencies
EN558	460-98662-1	VOC	313537	LCS/D %R out for MEK; samples ND, data reported	see QC Deficiencies
		Pest	NA	nothing noted	NA
		PCB	NA	nothing noted	NA
		Herb	313550	see EN557	see EN557
		SVOC	314038	see EN557	see EN557
		SVOC	314368	see EN557	see EN557
		SVOC	314428	see EN557	see EN557
		Total Metals		nothing noted	NA
		Mercury	NA	nothing noted	NA
		Cr3/6	NA	nothing noted	NA
		CN	NA	nothing noted	NA
EN559	460-98763-1	TCLP Metals		nothing noted	NA
		Total Metals	98707-45	MD RPD hi for Lead	none required (MD is non-project)
		Total Metals	1-6	sample required 10x dilution prior to analysis	none required (only detects reported from
EN 1500	100 00005 1	TOLD 14	***		dilution)
EN560	460-98825-1	TCLP Metals		nothing noted	NA
		Total Metals	NA	nothing noted	NA
ENEC4	400 00074 4	Mercury	NA	nothing noted	NA NA
EN561	460-98874-1	TCLP Metals		nothing noted	NA NA
ENECO	400 00004 4	Total Metals		nothing noted	NA NA
EN562	460-98931-1	TCLP Metals		nothing noted	NA NA
ENECO	460 00042 4	Total Metals		nothing noted	
EN563	460-99013-1	TCLP Metals	0	sample required 50x dilution prior to analysis	none required (only detects reported from dilution)
		Total Metals	8	sample required 10x dilution prior to analysis	none required (only detects reported from
					dilution)
EN564	460-99097-1	TCLP Metals		nothing noted	NA
EN 1505	100 00100 :	Total Metals		nothing noted	NA
EN565	460-99103-1	VOC	NA	nothing noted	NA NA
		Pest	NA	nothing noted	NA NA
		PCB	NA	nothing noted	NA
		Herb	315130	LCS %R out for 2,4-D; samples ND, data reported	none required (not a target analyte)

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
		Herb	315512/99066-2	MSD %R low for Silvex	none required (MSD is non-project)
		SVOC	315963	LCS %R out for Benzo[a]pyrene, Benzo[b]fluoranthene; SOP allows 5	see QC Deficiencies
				out for this full spike list so no RE, data flagged and reported	
		SVOC	316104	CCV RT for Perylene-d12 ISTD outside +/-0.5 min from ICAL midpt;	see GCMS Validation
				samples within +/-0.5 min from CCV, no corr action required per lab SOP	
		Total Metals	316225/99045-1	MS %R hi for Mn	none required (MS is non-project)
			316225/99045-1	MD RPD hi for Mn	none required (MD is non-project)
			315972/99175-2	MS %R low for Cu, Pb	none required (MS is non-project)
		Mercury	NA	nothing noted	NA
		Cr3/6	NA	nothing noted	NA
		CN	NA	nothing noted	NA
		%Solids	315457/99047-1	MD RPD hi	none required (MD is non-project)
EN566	460-99247-1	TCLP Metals		nothing noted	NA
			315972/99175-2	see EN565	see EN565
		%Solids	315457/99047-1	see EN565	see EN565
EN567	460-99248-1	VOC	NA	nothing noted	NA
		Pest	NA	nothing noted	NA
		PCB	NA	nothing noted	NA
		Herb	NA	nothing noted	NA
		SVOC	315964	LCS %R out for Benzo[a]pyrene, Dibenz[a,h]anthracene; SOP allows	see QC Deficiencies
				5 out for this full spike list so no RE, data flagged and reported	
		SVOC	3	Phenol-d5 SU %R out; SOP allows one acid and one BN out so no	see QC Deficiencies
		T	0.4.5.0.70./0.0.00.4.0	RE, data flagged and reported	
			315972/99282-12	MS %R hi for Mn	none required (MS is non-project)
			315972/99282-12	MD RPD hi for Mn	none required (MD is non-project)
		Mercury	NA	nothing noted	NA NA
		Cr3/6	NA	nothing noted	NA NA
EN568	460-99873-1	CN TCLP Metals	NA	nothing noted	NA NA
ENODO	400-99073-1			nothing noted MS %R hi for Pb	
			318109/99947-8 & 11 318109/99947-8 & 11	MD RPD hi for Pb	none required (MS is non-project) none required (MD is non-project)
EN569	460-99999-1	TCLP Metals		nothing noted	NA
EN309	400-99999-1		NA NA	•	NA NA
		Mercury	NA NA	nothing noted nothing noted	NA NA
EN570	460-100059-1	•		nothing noted	NA NA
LINGTO	400-100033-1		318743/4	MS %R low for Pb; 4-qualifier indicates unspiked conc >4x spike	see QC Deficiencies
EN571	460-100129-1			nothing noted	NA
LINOT	400-100123-1	Total Metals		nothing noted	NA NA
		Mercury	NA	nothing noted	NA
EN572	460-100387-1			nothing noted	NA
211072	100 100007 1	Total Metals		MS %R low for Pb	see QC Deficiencies
		Total Metals		MD RPD hi for Pb	see QC Deficiencies
EN573	460-100389-1	VOC	321131	CCV %R out for CCl4, 1,1,1-TCA; CCVLL in control, samples	see QC Deficiencies (CCVLL not reported)
2.10.0			02.101	analyzed per method, detects should be considered estimated	coo do ponoiono (e o 122 not repenteu)
		VOC	320061/LCS	Toluene-d8 SU %R out; remaining 3 in control so no RE	none required (SU hi, LCS applies to TB only, TB ND)
		VOC	320061/4 (TB)	Toluene-d8 SU %R out; remaining 3 in control so no RE	see QC Deficiencies
		VOC	320061	CCV %R out for VC; CCVLL in control, samples analyzed per	none required (applies for TB only)
		Pest	NA	method, detects should be considered estimated nothing noted	NA
		PCB	NA NA	nothing noted	NA NA
		1 00	IN/A	nothing noted	IVA

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
		Herb	NA .	nothing noted	NA
		SVOC	320439/LCS	2,4,6-TBP SU %R out; SOP allows one acid and one BN out so no	none required (SU >10% (hi), sample results not
				RE, data flagged and reported	significantly affected)
		SVOC	321037/100374-1	MS/D %R and/or RPD out for several TAs	none required (MS/D is non-project)
		SVOC	321155	CCV %R out for Indeno[1,2,3-cd]pyrene, Dibenz(a,h)anthracene;	none required (no samples analzyed in this
				CCVLL in control, samples analyzed per method, detects should be	batch)
		T-1-1-1-1-1-1-	040005/400045-4	considered estimated	(100)
			319995/100315-1	MS %R hi for Mn	none required (MS is non-project)
		Mercury	NA	nothing noted	NA
		Cr3/6	320740/100198-1	MSS/MSI %R out due to sample matrix; LCSS/LCSI within control	none required (MS is non-project)
		Cr3/6	320766/100198-1	MSS/MSI %R out due to sample matrix; LCSS/LCSI within control; Reprep of 320740, both data sets reported	noted in QA report narrative
		CN	NA	nothing noted	NA
EN574	460-100495-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	NA	nothing noted	NA
EN575	460-100831-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	3,4,8	sample required 10x-20x dilution prior to analysis	none required (only detects reported from dilution)
		Total Metals	321732/100873-1	MS %R out for Sb, Al, Fe	none required (MS is non-project)
		Total Metals	321901/100880-2	MS %R out for Pb	none required (MS is non-project)
		Mercury	NA	nothing noted	NA
EN576	460-100886-1	VOC	321778	CCV %R hi for CCl4; samples ND, data reported	none required (only trip blank (ND) analyzed in this batch)
		Pest	NA	nothing noted	NA
		PCB	NA	nothing noted	NA
		Herb	322678	CCV %R hi for 2,4-D; samples ND, data reported	none required (not a target analyte)
		SVOC	NA	nothing noted	NA
		Total Metals	NA	nothing noted	NA
		Mercury	NA	nothing noted	NA
		Cr3/6	322572/200-29316-8	MSS/MSI and PDS %R out due to sample matrix; LCSS/LCSI within	none required (MS is non-project)
		Cr3/6	322596/200-29316-8	control MSS/MSI %R out due to sample matrix; LCSS/LCSI within control;	noted in QA report narrative
		013/0	322390/200-29310-0	Reprep of 322572, both data sets reported	noted in QA report namative
		CN	NA	nothing noted	NA
EN577	460-101122-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	NA	nothing noted	NA
EN578	460-101258-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	323552/101296-4	MS %R hi for Pb	none required (MS is non-project)
		Total Metals	323552/101296-4	MS RPD out for Pb	none required (MD is non-project)
EN579	460-101342-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	NA	nothing noted	NA
		Mercury	NA	nothing noted	NA
EN580	460-101422-1	TCLP Metals	NA	nothing noted	NA
		Total Metals		nothing noted	NA
EN581	460-101504-1			nothing noted	NA
			NA	nothing noted	NA
EN582	460-101506-1			nothing noted	NA
			NA	nothing noted	NA
EN583	460-101572-1			nothing noted	NA
		Total Metals	NA	nothing noted	NA

Client Name: Entact		Project Number/ Manager: E7976H/ Jenny Self									
ite Nan	ne: Revere Smelting & Refining (Phase 2B ECS/BF Jul-Sept15)	QC Level: IV									
aborato	aboratory: TestAmerica (Edison)		atory Jo	ob No:	see DURC						
eviewer: Taryn Scholz		Date (Date Checked: 10/15/15								
	ers: TCLP Pb, Metals, CrIII/VI, CN		Methods: 1311/3010A/6010C, 3050B/6010C, 7471B, 3060A/7196A, 9012B								
	%PERFORMED/ ITEM	YES		N/A	(CRITERIA) COMMENT						
	Method blank data included in Lab Package? *	Х			, ,						
100	Criteria met? ($<$ MDL, \ge -RL)		х		see QC Deficiencies						
100	Criteria met for field blanks? (< MDL)			х	300 40 201101011010						
	QC check samples/LCS data included in lab package? *	х									
	All project COCs or TAs included? *	X									
100	%R criteria met?		Х		method (lab** but within 50-200%) see QC Def						
100	Matrix spike data included in lab package? *	- V	^		Thethod (lab Dut Within 50-20076) see QC Dei						
100		Х			mathed (75 1050)) and OC Deficiencies						
100	%R criteria met?		Х		method (75-125%) see QC Deficiencies						
	Sample duplicate data included in lab package? *	Х			as LR						
					ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2F						
100	RPD criteria met?	1	Х		sol if either ≤5RL) see QC Deficiencies						
					ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2F						
100	Field dup RPD criteria met? (individual, mean, and overall)		Х		sol if either ≤5RL) see QC Deficiencies						
	Instrument Tune for ICP-MS included in lab package?			Х							
NA	Instrument Tune method criteria met? (±5 RSD, ±0.1 amu)			Х							
	Initial calibration documentation included in lab package?	Х									
	blank/1 std (ICP), blank/ 5 stds (Hg)	Х									
100	correl coeff criteria met? (r > 0.998 ICP, r > 0.995 AA/Hg)	Х									
	Calibration verification data included in lab package?	Х									
	ICB/CCB criteria met? (<rl, td="" ≥-rl)<=""><td>Х</td><td></td><td></td><td></td></rl,>	Х									
	ICV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115)	X									
	CCV %R criteria met? (ICP 90-110%, Hg 80-120%)	X									
100	LLCCV %R criteria met? (50-150% Sb/Pb/TI,70-130%)	X			CL per ASP Exh E						
100	Dilution test data included?	X			or por nor extre						
100	Results within criteria if >50xMDL? (max 10%, qualify 15%)	X									
100	Post digestion spike included?	X									
100	%R criteria met?	X			method (75-125%)						
100	Interference check sample data included (ICP/MS only)?	X			metriod (73-12370)						
100	%R criteria met? (80-120%, unspk <2RL,>2-RL)	X			2RL per ASP Exh E						
NA	Internal standard data included in lab package?			.,	ZNL per AGF EXITE						
				X							
NA 10	Intensities within limits (within ≥ 70% of calib std)? Analyte quantitation/RLs correct?	+	 	Х							
		Х									
10	All target analytes included in ICAL?	Х									
10	QC parameters calculated correctly?	Х									
OMME											
No QC	reported for Chromium III, which is calculated from the Total Ch	romium	and Cl	nromiu	m VI result.						
For SR	Ms (solid LCS), the manufacturer's established limits as reporte	d by the	lab are	e used.	For aqueous LCS, method limit is 80-120%.						
OTAL I	METALS VS LEACHED - all leach results < max possible except	three (see QC	Defici	encies)						
					<u> </u>						

Client Na	ame: Entact	Project Number/ Manager: E7976H/ Jenny Self						
Site Name: Revere Smelting & Refining (Phase 2B ECS/BF Jul-Sept15)			evel: IV		,			
	ory: TestAmerica (Edison)	Labor	atory Jo	ob No:	see DURC			
Reviewe	r: Taryn Scholz	Date (Checke	d: 10/1	5/15			
Paramet	ers: TCLP Pb	Metho	ds: 131	11/3010	0A/6010C			
	%PERFORMED/ITEM	YES	NO	N/A	(CRITERIA) COMMENT			
	Was a ZHE vessel without leaks used for VOAs?			Х				
	Was particle size reduced as necessary? (capable of passing			Х				
	through a 9.5 mm (0.375 inch) standard sieve)			^				
	Were multi-phasic waste samples properly analyzed? (if <0.5%							
	solids->analyze filtered waste, if >0.5%->leach solids, combine			х				
	with filtered liquid if compatible or analyze separately							
	Was the correct extraction fluid used? (TCLP - #1 for VOA and				No. 1 for all			
	if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP -	х						
	#1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for	^						
	any with CN-)							
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-	х			pH of fluid not reported until EN568 but initia			
	2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	^			pH of LB within range			
	Appropriate sample weight? (VOA < 25-g, rest about 100-g)	Х						
	Was the correct weight of fluid used? (20x solid weight)	Х						
100	Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)	Χ						
	No preservation for aqueous sample aliquots?			Х				
	Proper preservation for leachates?	Х			(method pH <2)			
100	Holding time to leaching not expired?	Х			(method 180-days)			
	Leach blank data included in Lab Package? (1/20)	Χ						
100	Criteria met? (< MDL)	Х						
COMME	NTS							

Data Validation Checklist: GC (Update IV) Client Name: Entact				Project Number/Manager: E7076H/ Johny Solf						
		Dhaga 2D ECC/DE 1:1 C-=445	Project Number/ Manager: E7976H/ Jenny Self							
Site Name	Site Name: Revere Smelting & Refining (Phase 2B ECS/BF Jul-Sept15) Laboratory: TestAmerica (Edison)		QC Level: IV Laboratory Job No: see DURC							
	y: TestAmerica (Edison) Taryn Scholz				d: 10/1					
	rs: Pesticide, PCB, Herbicide									
Paramete	rs: Pesticide, PCB, Herbicide **PERFORME	D/ITEM	Methods: 3546/8081B, 3546/8082A, 8151A YES NO N/A (CRITERIA) COMMENT							
	Method blank data included in			NO	IN/A	(CRITERIA) COMMENT				
100	Criteria met? (<mdl)< td=""><td>Lab Fackage?</td><td>X</td><td></td><td></td><td></td></mdl)<>	Lab Fackage?	X							
100	Criteria met for field blanks?	<mdl)< td=""><td>_ ×</td><td></td><td>х</td><td></td></mdl)<>	_ ×		х					
100			х							
	QC check samples/LCS data included in lab package? All project COIs or TAs included?		х			With the exception of multi-component pesticides Chlordan (technical) and Toxaphene; only two multi-componer Aroclors (1016 and 1260) spiked per metho recommendations				
	%R criteria met?		Х			method (lab but within 50-200%)				
100	RPD criteria met?				Х					
	Matrix spike data included in la	ab package?	Х							
	%R criteria met?			Х		method (lab but within 50-200%); see QC Deficiencies				
100	RPD criteria met?		Х			method (lab but within 40%)				
	Surrogate data included in lab		Х							
	Required surrogates included?	?	Х							
100	%R criteria met?		Х			method (lab but within 10-200%)				
100	Field dup RPD criteria met? (ir	ndividual, mean, and overall)	х			ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2RL sol i either <5RL)				
	Initial calibration documentation included in lab package?		Х			5 peaks used for all multi-comp Pest/PCB				
100	%RSD criteria met? (<20%RSD or r ≥ 0.995 or COD ≥ 0.990)		Х			·				
100			Х							
	Calibration verification data inc	cluded in lab package?	Х			only beg CCV (no end) for 8082 since IS used				
100	%D criteria met? (<20%)			Х		see QC Deficiencies				
100	Internal standard data included in lab package?		х			used for 8082A, Form VIII in error (has DCB instead o BNB), validator used raw data to make check				
100	Areas within limits (within -5	0/+100% of last calib check)?	Х			for samples				
100	RTs within limits (+/-0.07 mir		Х			for samples				
100	Dual column/detector confirma		Х							
100	%Difference criteria met? (<40)%)	х							
10	Analyte qualitative ID criteria	a met?	Х							
10	Analyte quantitation/RLs cor		Х							
10	All target analytes included in	ICAL at min 5 levels w low ≤ RL?		Х		see Comment no. 1				
10		-50/+100% of ICAL midlevel)?	Х			for CCVs				
10	IS RTs within limits (+/-0.07 i	min from ICAL midlevel)?	Х			for CCVs				
10	QC parameters calculated co	orrectly?	Х							
	Surrogate	Control Limits								
PEST/	Decachlorobiphenyl	76-149/53-150				bold updated from P2B 2013 (32-136 for TALBUFF)				
PCB	Tetrachloro-m-xylene	72-136				bold updated from P2B 2013 (30-124 for TALBUFF)				
HERB	2,4-DCPA	69 -150								
COMMEN	ITS									
The velide	stor did not dolinaata aasaa wha	ere the surregate has a 9/ D outside	the orite	rio cin	00 01155	ogate recoveries for each analysis are evaluated separately				
THE Vallue	ator did not delineate cases whe	ere the surrogate has a 70D outside	the chie	iia siii	ce suiii	ogate recoveries for each analysis are evaluated separately				
1 For Silv	rev the lowest ICAL level corres	enonde to 33 ua/ka while the RL is	17 ua/ka	ΔII ca	mnlee	are ND to the MDL so no further action.				
1. 1 01 0110	on, the lowest load level colles	pportug to 55 ag/rg write the RL IS	ir ug/kg	. 🗥 30	iiihie9	are 140 to the MIDE 30 HO TUITHEL ACTION.				

Data	Validation Chec	klist: GC/MS (Update IV))								
Client Na	me: Entact	` ·	Project Number/ Manager: E7976H/ Jenny Self								
		ning (Phase 2B ECS/BF Jul-Sept15)		QC Level: IV Laboratory Job No: see DURC							
	r: Taryn Scholz			Date Checked: 10/15/15							
Paramete	ers: VOC, SVOC					0C, 3546/8270D					
		ORMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT					
	Method blank data include Criteria met? (<mdl)< td=""><td>ed in Lab Package?</td><td>X</td><td></td><td></td><td></td></mdl)<>	ed in Lab Package?	X								
	Criteria met for field blank	(\$? (<mdi< td=""><td>Х</td><td>х</td><td></td><td>see QC Deficiencies</td></mdi<>	Х	х		see QC Deficiencies					
		data included in lab package?	Х			000 Q0 201101011010					
	All project COIs or TAs in	cluded?	х								
100	%R criteria met?			Х		method (lab but within 50-200%) see QC Deficiencies					
100	RPD criteria met?		Х			method (lab but within 40%)					
400	Matrix spike data included	d in lab package	X			H 1// 1 1 4 31 5 50 0000()					
	%R criteria met?		Х			method (lab but within 50-200%)					
100	RPD criteria met? Surrogate data included in	n lah nackage'	X		-	method (lab but within 40%)					
	Required surrogates inclu		X								
	Troquirou ourrogatoo iriolo					method (lab but within 10-200% extr, 20-200% purg) see					
100	%R criteria met?			х		QC Deficiencies					
100		et? (individual, mean, and overall)	Х	<u> </u>		20% aq, 35% solid (+/-2RL aq, +/-3RL sol if either<_5RL)					
		or GC/MS included in lab package'	Х								
100	Instrument Tune method		Х								
		ntation included in lab package	Х								
	whichever lower	Reject for RRF<0.05 or Table 4,	x								
	wnichever lower				-						
100	%RSD criteria met? (<20	0%RSD or r > 0.995 or COD > 0.990)	х								
		ta included in lab package	Х								
		Reject for RRF<0.05 or Table 4,									
	whichever lower		Х								
100	%D criteria met for CCC/			Х		see QC Deficiencies					
100	Internal standard data inc		Х								
		-50/+100% of last calib check)?	Х			for samples					
100	Analyte qualitative ID cr	0(8270) s diff from last calib check)?	X		1	for samples					
10	Analyte quantitation/RL		X								
10		ed in ICAL at min 5 levels w low≤ RL?	X								
10		vithin -50/+100% of ICAL midlevel)?		Х		for CCVs, see Comment no. 1					
10	IS RTs within limits (<10	0/30(8270) s diff from ICAL midlevel)?	Х			for CCVs					
10	QC parameters calculat		Х								
	Surrogate	Control Limits									
VOC	1,2-Dichloroethane-d4	70-130									
	Toluene-d8 Bromofluorobenzene	70-130 70-130									
	Dibromofluoromethane	70-130									
svoc	2,4,6-Tribromopheno	19-114 (Oct 2014 10-120)			1	Bold updated from P2B 2013 (10-120 TALNASH)					
	Terphenyl-d14	41-145 (Oct 2014 16-151)			1	(13-120 TALNASH)					
	2-Fluorobipheny	49-112 (Oct 2014 40-109)				(29-120 TALNASH)					
	Nitrobenzene-df	40-106 (Oct 2014 38-105)				(27-120 TALNASH)					
	2-Fluoropheno	39-103 (Oct 2014 37-125)				(10-120 TALNASH)					
001111	Phenol-d5	44-104 (Oct 2014 41-118)				(10-120 TALNASH)					
COMME	NIS										
1 CCV	RT for Parylana-d13 ISTD	outside ±/-0.5 min from ICAL midst (12	3/1 min) VC 1	3 88 m	in (13.38-14.38 window); samples and QC within +/-0.5 min					
		per lab SOP or flagging per validator since									
	., com action required p	Ser of hagging per validator since	- un 1/	.5 14011	ou ill	200 mai ominiar (1)					

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action Post-Stabilization Verification Samples

September 2015 to December 2015

Prepared by:

Quality Assurance Associates (*QAALLC*)
1007 Francis Drive
College Station, TX 77840
www.qaallc.com
979-694-7199

January 22, 2016

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	1
2.0	PRO	CEDUR	ES	3
3.0	DAT	A VALID	ATION RESULTS	4
	3.1	PRECI	ISION	
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	4
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	4
		3.1.3	Field Duplicate (FD) Precision	4
	3.2	ACCU	RACY	4
		3.2.1	Laboratory Control Spike (LCS) Accuracy	4
		3.2.2	Matrix Spike (MS) Accuracy	5
		3.2.3	Serial Dilution (SD) %Difference	5
	3.3	REPRI	ESENTATIVENESS	
		3.3.1	Chain-of-Custody and Analysis Requests	5
		3.3.2	Sample Preservation and Holding Time	
		3.3.3	Laboratory and Method Selection	
		3.3.4	Blanks (Laboratory and Field)	
		3.3.5	Analytical Procedures	
	3.4	COMP	LETENESS	6
		3.4.1	Laboratory Deliverables Completeness	6
		3.4.2	EDD Correctness	
		3.4.3	Analytical Completeness	
	3.5	COMP	ARABILITY	

LIST OF TABLES

Table 1 – Samples Selected for Validation

Table 2 - Data Validation Qualifiers (DVQs)

Table 3 – Qualified Results for Validated Samples

Table 4 – Field Duplicate Results for Validated Samples

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The data include two investigative soil samples plus one field duplicate as shown in Table 1. The samples comprise approximately 10% of the Phase II-B post-stabilization verification (PSV) samples collected during September 2015 to December 2015. (A total of fourteen PSV samples were collected during this period.) The PSV samples were collected by ENTACT from the stabilized material stockpiles and analyzed for Toxicity Characteristic Leaching Procedure (TCLP) metals to ensure that the stabilized material meets the appropriate criteria for disposal in the on-site containment cell.

Per the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, these data are considered Level 2 and require minimal data review. Per ENTACT's request, QAA performed a full validation of the selected samples and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). QAA completed the validation using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Superfund Data Review* (August 2014), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The validator assessed precision using the laboratory duplicate and field duplicate results. The laboratory prepared an unspiked matrix duplicate (MD) with every analytical batch and reported the RPD for each analyte. As shown in Table 1, one MD was prepared using a sample from the site. The RPDs for the matrix duplicate are within the limits for all metals, which indicates good precision for the analytical technique on the given sample matrix. Additionally, for the samples selected for validation, the sampler collected one field duplicate with the PSV investigative samples, and the RPDs are within the limits for all metals, which indicates good precision for the sampling and analytical technique on the given matrix.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The validator assessed accuracy using the laboratory spikes and matrix spikes. The laboratory prepared a laboratory control spike (LCS) using reagent water with every analytical batch and reported the recoveries for all analytes. The LCS recoveries are within the limits for all metals, which indicates good accuracy for the analytical technique on a sample free of matrix effects. Additionally, the laboratory prepared a matrix spike (MS) with every analytical batch and reported the recoveries for each analyte. As shown in Table 1, one MS was prepared using a sample from the site. The recoveries for the matrix spike are within the limits for all metals, which indicates good accuracy for the analytical technique on the given sample matrix.
- 3. Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative

parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, PSV samples were collected as required in the approved sampling and analysis plan. Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory blanks, and analytical instrument setup (i.e., calibration, interference correction, etc.) For the samples selected for validation, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank and leachate blank with each analytical batch and the blanks show no contamination, which indicates the samples were not affected by laboratory procedures. Additionally, proper analytical techniques were used and calibration results met the method requirements.

- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. For the samples selected for validation, all analyses produced valid analytical measurements, which gives a completeness of 100%. Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The PSV analytical results are classified as Level 2 data with a full review and validation of at least 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated. Note that results are reported in µg/L for all field samples.

DATA USABILITY

All sample results are acceptable for use. As shown in Table 3, two results are qualified solely because the concentration is between the MDL and RL. The actual value is not expected to exceed the sample RL. No data quality issues were noted.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). For the samples selected for validation, the laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- Laboratory Deliverables Completeness,
- EDD Correctness,
- Chain-of-Custody and Analysis Requests,
- · Sample Preservation and Holding Time,
- Laboratory and Method Selection,
- Initial Calibration,
- · Continuing Calibration Verification,
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- · Matrix Duplicates (MD), and
- Field Duplicates (FD).

Additionally, the validator examined the raw data for one of the two sample batches (randomly selected by the validator) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are 80-120% for laboratory accuracy and 75-125% for matrix accuracy for metals analyses.
- Laboratory Precision the control limit (20 RPD) as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. Data rejection limits of 40% for laboratory spikes and 30% for matrix spikes was used for these inorganic analyses. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U-flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

No LCSD were analyzed (or required) with the samples selected for validation.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every analytical batch (maximum 20 samples) and reported RPDs for all analytes. The validator only evaluated the MD prepared with a sample from the site (of which there is one), since those prepared with a sample from another site do not reflect data quality for the Revere site. All site MD RPDs are at or below the control limit. Note that non-project MD results are included in the data packages but not in the EDD.

3.1.3 FIELD DUPLICATE (FD) PRECISION

For the period from September 2015 to December 2015, the samplers collected two FD with the fourteen PSV investigative samples, which meets the Workplan requirement of one per 20 or fewer samples per sample matrix. One field duplicate was analyzed with the samples selected for validation. Results for the field duplicate are summarized in Table 4 and are within the criteria.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD) and matrix spikes (MS/MSD) plus serial dilutions (SD). LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

For the samples selected for validation, the laboratory analyzed a LCS for every analytical batch (maximum 20 samples) as required and reported recoveries for all analytes. All LCS recoveries are within the control limits.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS for every analytical batch (maximum 20 samples) and reported recoveries for all analytes. The validator only evaluated the MS prepared with a sample from the site (of which there is one), since those prepared with a sample from another site do not reflect data quality for the Revere site. All site MS recoveries are within the control limits. Note that non-project MS results are included in the data packages but not in the EDD.

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all metals detected above 50x the method detection limit (MDL). All SD %differences are at or below the control limit.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples selected for validation were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records and custody seals, which confirms that sample integrity was maintained. Additionally, the information on the custody record is correct and agrees with that reported in the analytical results. No issues were noted during sample log-in at the laboratory, and all field samples were analyzed for the tests requested on the chain-of-custody, except as follows:

• For job number 460-103983-1, the sampler did not check any requested analysis for the samples. The laboratory logged in the samples for TCLP (Sb, As, Cd, Pb) analysis per the project plan and ENTACT's request.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

The samples selected for validation were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan and/or SW-846, which confirms that sample results are not affected by sample degradation.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (TestAmerica-Edison NYSDOH (NELAP) #11452, NYSDOH (ELAP) #11452)

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. The analyte list includes TCLP Antimony, TCLP Arsenic, TCLP Cadmium, and TCLP Lead and the nominal reporting limits are below the levels of concern (i.e., the treatment goals) for each analyte.

(Note: The laboratory dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank and leachate blank for every analytical batch (maximum 20 samples) plus a calibration blank for every 10 metals analyses as required per the analytical methodology. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used. No analytes were detected in the laboratory blanks.

3.3.5 ANALYTICAL PROCEDURES

For the samples selected for validation, the analytical procedures (initial calibration, continuing calibration verification, and interference correction), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method.

Additionally, no issues were found with analyte identification or quantitation of sample results or calculation of QC parameters during validation of the raw data. The data set includes two analytical batches and the validator re-calculated sample results and QC check parameters for one batch (batch 460-334034 in work order 460-103983-1).

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

For the samples selected for validation, the NYSDEC Category B data packages and EDD contain all necessary information.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Job No.	Sample(s)	EDD Field(s)	Action
All	All QC samples	sampling_technique	The validator changed the entry from null to
			the default entry (UN) to meet NYSDEC
			requirements.

3.4.3 ANALYTICAL COMPLETENESS

For the samples selected for validation, the validator did not reject any of the results, which gives a completeness of 100%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. (Note that in some cases the laboratory used a more recent version of the method specified in the Workplan, e.g. SW846 6010C was used instead of SW846 6010B.) The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which an analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which an analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J-flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results are reported in μ g/L and are classified as Level 2 data for TCLP metals with a full review and validation of 10% of the samples as selected by ENTACT. The analytical results are considered comparable to other results similarly generated.

QAALLC

TABLE 1 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Post-Stabilization Verification Samples September 2015 to December 2015

SAMPLES SELECTED FOR VALIDATION

Lab ID	Field ID	Sample Date	Туре	Media	Matrix	TCLP Sb, As, Cd, Pb
460-101877-1	PSV-448-R	9/28/2015	INV	PSV	Soil	х
460-101877-2	PSV-448-R-X	9/28/2015	FD	PSV	Soil	х
460-103983-1	PSV-459	11/3/2015	INV	PSV	Soil	х
460-103983-1LR	PSV-459	11/3/2015	MD	PSV	Soil	х
460-103983-1MS	PSV-459	11/3/2015	MS	PSV	Soil	х

FD - Field Duplicate

INV - Investigative Sample

MD - Matrix Duplicate Sample

MS - Matrix Spike Sample

PSV - Post-Stabilization Verification Sample

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

• TCLP Metals: 1311/3010A/6010C for Antimony, Arsenic, Cadmium, and Lead in leachates of soil samples

TABLE 2

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- U = Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- *J* = Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- J+ = Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J-/J+ and R>UJ)

TABLE 3 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Post-Stabilization Verification Samples September 2015 to December 2015

QUALIFIED RESULTS FOR VALIDATED SAMPLES

Lab ID	Field ID-Date	Analyte	Lab	DVQ	QC Issue
			Result		
460-101877-2	PSV-448-R-X-	TCLP LEAD	27.1 J ug/l	J	Result between MDL and RL
	20150928				
460-103983-1	PSV-459-	TCLP ANTIMONY	39.3 J ug/l	J	Result between MDL and RL
	20151103				

TABLE 4 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Post-Stabilization Verification Samples September 2015 to December 2015

FIELD DUPLICATE RESULTS FOR VALIDATED SAMPLES

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Analyte Original Sample Field Duplicate Lab Result Lab Result		Abs Diff	2xRL	RPD	Pass
460-101877-1	460-101877-2	PSV-448-R-20150928	TCLP ANTIMONY	143 ug/l	141 ug/l	2	200	NA	у
460-101877-1	460-101877-2	PSV-448-R-20150928	TCLP ARSENIC	75 U ug/l	75 U ug/l	0	150	NA	у
460-101877-1	460-101877-2	PSV-448-R-20150928	TCLP CADMIUM	20 U ug/l	20 U ug/l	0	40	NA	у
460-101877-1	460-101877-2	PSV-448-R-20150928	TCLP LEAD	53.7 ug/l	27.1 J ug/l	26.6	100	NA	у

Note: The RPD test (≤35%) applies if both results are greater than 5x RL. Otherwise, the absolute difference test (≤ 2x RL) applies.

ATTACHMENT A

VALIDATOR'S CHECKLISTS

Client Name: Entact		Project Number/ Manager: E7976H/ Jenny Self						
Site Name: Revere Smelting and Refining (Phase 2B PSV Sept15-D	Dec15)	QC Level: II						
Laboratory: TestAmerica (Edison, NJ)		Laboratory Job No: 460-103983-1, 460-101877-1						
Reviewer: Taryn Scholz		Date C	Checked	d: 1/21/16				
Parameters: TCLP Metals		Method	ds: 131	1/3010A/6010C				
ITEM	YES	NO	N/A	(CRITERIA) COMMENT				
Laboratory NELAP/ELAP accredited?	Х			NYDOH (NELAP) #11452, NYDOH (ELAP) #11452				
Signed Narrative included?	Х							
No narrative issues noted by lab?	Х							
	of Custoo	dy (COC	2)/ Sam	ple Receipt				
Date/time of sample collection included?	Х							
Sample temp upon receipt 2-6 C?	Х							
Proper containers/preservation?	Х			(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required)				
COCs properly executed and seals used?		Х		see Comment no. 1				
Samples received within 2 days?	Х							
	Ana	alytical F	Results					
All requested analyses reported?	Х	1	ļ					
Field, Laboratory, and Batch ID included?	Х	1	 					
Date of sample collection/receipt included?	Х	1	<u> </u>					
Date of sample preparation/analysis included?	Х		ļ					
NDs at DL or QL and J-values as needed?	x			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported				
Target analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CL TAL)				
RLs acceptable?	Х			(ASP Exh C Part III and/or DER-10 App 5, WP Remedial Goal)				
No elevated RLs for NDs?	Х			Note: 5x std dilution for TCLP				
Prep/Analysis method references included and approved?	Х			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D)				
If analytical cleanup used, method ref included and approved?			Х	(ASP Exh D)				
Sample matrix included?	Х							
Soils on dry weight basis?			Х					
Correct and consistent units?	Х			in ug/L				
Holding time to analysis not expired?	Х			(Workplan Table 2)				
Holding time to preparation not expired?	Х			(Workplan Table 2)				
QC Samples (W	orkplan S	Section 5	5.3.6 an	d 2/29/12 mod letter)				
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment			NA	only disposable equipment used				
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory			NA					
Filter blank - 1 per week of time-integrated air monitoring			NA					
Field duplicate samples - 1 for every 20 or fewer samples per sample matrix (excluding air samples)	х			Total samples = 2 PSV; Total FD = 1				
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix from the same batch as the project samples to the extent possible	х			Total samples = 2 PSV; Total MS/MD = 1				
Completeness criteria met?	х		İ	(Workplan Section 5.3.3 - 100%) 100%				
		Field No	ites	/ ****				
Agree with custody records?			Х	not included				
Field instruments calibrated daily?			Х					
Well conditions constant before sampling?			х					
Samples filtered? If so, give turbid/size			х					
Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasm Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Mat Relative Percent Difference; RRF - Relative Response Factor; RT -	a; ICV - I rix Spike	nitial Ca Duplica	ilibration te; QL -	cound of Interest; %D - Percent Difference, DL - Detection Limit; DUP n Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD Relative Standard Deviation; TA - Target Analyte				
COMMENTS								

samples for TCLP (Sb, As, Cd, Pb) analysis per the client request.

NarrativeComments

 QAA No.
 Lab Job No.
 Test
 Batch/Sample
 Issue

 EN584
 460-101877-1
 NA
 NA
 no issues notec

 EN585
 460-103983-1
 all
 all
 no analyses checked off on chair

Resolution

noted in QA report narrative

Revere Smelting and Refining (Phase 2B PSV Sept15-Dec15) TestAmerica (Edison, NJ) Taryn Scholz TCLP As,Cd,Pb,Sb and TCLP Pb	Labora	vol: II	Project Number/ Manager: E7976H/ Jenny Self						
aryn Scholz : TCLP As,Cd,Pb,Sb and TCLP Pb		QC Level: II							
: TCLP As,Cd,Pb,Sb and TCLP Pb		Laboratory Job No: 460-103983-1, 460-101877-1							
: TCLP As,Cd,Pb,Sb and TCLP Pb	Date Checked: 1/21/16								
	Metho	ds: 13	11/3010	0A/6010B					
		NO		(CRITERIA) COMMENT					
ethod blank data included in Lab Package?	х			· ·					
riteria met? ($< MDL$, $\ge -RL$)	Х								
riteria met for field blanks? (< MDL)			Х						
C check samples/LCS data included in lab package?	Х								
I project COCs or TAs included?	Х								
R criteria met?	Х			method (80-120%)					
atrix spike data included in lab package?	х								
R criteria met?	Х			method (75-125%)					
ample duplicate data included in lab package?	х			as LR					
				method (20% if >10xMDL)					
D Ontona mot.				ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +					
eld dup RPD criteria met? (individual, mean, and overall)	Х			2RL sol if either <5RL)					
	+ 1		х	<u>_</u>					
' '			Х						
	х								
Il target analytes included?	X								
· /·									
alibration verification data included in lab package?									
CB/CCB criteria met? (<rl,>-RL)</rl,>	Х								
CV %R criteria met? (ICP 90-110,Hg 80-120,CN 85-115)	Х								
CV %R criteria met? (ICP 90-110%, Hg 80-120%)	Х								
_CCV %R criteria met? (50-150% Sb/Pb/Tl,70-130%)	Х			CL per ASP Exh E					
ilution test data included?	Х								
esults within criteria if >50xMDL? (max 10%, qualify 15%)	Х								
ost digestion spike included?	Х								
R criteria met?	Х			method (80-120%)					
	Х								
R criteria met? (80-120%, unspk <2RL, ≥2-RL)	Х			2RL per ASP Exh E					
			Х						
			Х						
	Х								
1 ,	Х								
	C check samples/LCS data included in lab package? project COCs or TAs included? R criteria met? atrix spike data included in lab package? R criteria met? ample duplicate data included in lab package? PD criteria met? and dup RPD criteria met? (individual, mean, and overall) strument Tune for ICP-MS included in lab package? strument Tune method criteria met? (±5 RSD, ±0.1 amu) tial calibration documentation included in lab package? target analytes included? ank/1 std (ICP), blank/ 5 stds (Hg) orr coeff (r) criteria met? (≥0.995) alibration verification data included in lab package? B/CCB criteria met? (<rl, %r="" (50-150%="" (icp="" 80-120,cn="" 85-115)="" 90-110,hg="" ccv="" criteria="" data="" esults="" if="" included?="" lution="" met?="" pb="" sb="" test="" ti,70-130%)="" v="" within="" ≥-rl)="">50xMDL? (max 10%, qualify 15%) ast digestion spike included?</rl,>	C check samples/LCS data included in lab package? project COCs or TAs included? R criteria met? Atrix spike data included in lab package? R criteria met? R criteria met? A criteria met? R criteria met? C project COCs or TAs included? R criteria met? A criteria met? B cock criteria met? C cock was c	C check samples/LCS data included in lab package? project COCs or TAs included? R criteria met? Atrix spike data included in lab package? R criteria met? R criteria met? R criteria met? R criteria met? R criteria met? R criteria met? R criteria met? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included? A mapple duplicate data included? A mapple duplicate data included? A mapple duplicate data included? A mapple duplicate data included? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple duplicate data included in lab package? A mapple d	C check samples/LCS data included in lab package? project COCs or TAs included? R criteria met? (individual, mean, and overall) R criteria met true for ICP-MS included in lab package? R criteria met true method criteria met? (±5 RSD, ±0.1 amu) R criteria code included? R criteria met? (ICP) solution included in lab package? R criteria met? (ICP) solution included in lab package? R criteria met? (ICP) solution included in lab package? R criteria met? (ICP) solution included in lab package? R criteria met? (ICP) solution included in lab package? R criteria met? (ICP) solution included? R criteria met					

Data Validation Checklist: Leachates							
Client Name: Entact	Project Number/ Manager: E7976H/ Jenny Self						
Site Name: Revere Smelting and Refining (Phase 2B PSV Sept15-Dec15)	QC Level: II						
Laboratory: TestAmerica (Edison, NJ)	Labora	atory Jo	ob No:	460-103983-1, 460-101877-1			
Reviewer: Taryn Scholz	Date 0	Checke	d: 1/21	/16			
Parameters: TCLP As,Cd,Pb,Sb and TCLP Pb	Metho	ds: 131	1/3010	DA/6010C			
%PERFORMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT			
Was a ZHE vessel without leaks used for VOAs?			Х				
Was particle size reduced as necessary? (capable of passing			х				
through a 9.5 mm (0.375 inch) standard sieve)			^				
Were multi-phasic waste samples properly analyzed? (if <0.5%							
solids->analyze filtered waste, if >0.5%->leach solids, combine with			х				
filtered liquid if compatible or analyze separately							
				No. 1 for all			
Was the correct extraction fluid used? (TCLP - #1 for VOA and if	×						
pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP - #1 for							
soils E of Mississippi, #2 if west, #1 for wastes, #3 for any with CN-)							
Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-2.93;	x						
SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)	^						
Appropriate sample weight? (VOA < 25-g, rest about 100-g)	Х						
Was the correct weight of fluid used? (20x solid weight)	Х						
100 Leaching conditions correct? (30±2 rpm, 18±2 hrs, 23±2 C)	Х						
No preservation for aqueous sample aliquots?			Х				
Proper preservation for leachates?	Х			(method pH <2)			
100 Holding time to leaching not expired?	Х			(method 180-days)			
Leach blank data included in Lab Package? (1/20)	Х						
100 Criteria met? (< MDL)	Х						
COMMENTS							

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples

September 2015 to February 2016

Prepared by:

Quality Assurance Associates (QAALLC)

1007 Francis Drive College Station, TX 77840 www.qaallc.com 979-694-7199

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	1
2.0	PRO	CEDURI	ES	6
3.0	DAT	A VALID	ATION RESULTS	8
	3.1	PREC	ISION	8
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	8
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	8
		3.1.3	Field Duplicate (FD) Precision	8
	3.2	ACCU	RACY	g
		3.2.1	Laboratory Control Spike (LCS) Accuracy	g
		3.2.2	Matrix Spike (MS) Accuracy	g
		3.2.3	Serial Dilution (SD) %Difference	10
		3.2.4	Surrogate (SU) Recovery	10
	3.3	REPR	ESENTATIVENESS	10
		3.3.1	Chain-of-Custody and Analysis Requests	10
		3.3.2	Sample Preservation and Holding Time	11
		3.3.3	Laboratory and Method Selection	11
		3.3.4	Blanks (Laboratory and Field)	12
		3.3.5	Theoretical Result Values	13
		3.3.6	Analytical Procedures	13
	3.4	COMP	PLETENESS	14
		3.4.1	Laboratory Deliverables Completeness	14
		3.4.2	EDD Correctness	14
		3.4.3	Analytical Completeness	15
	3.5	COMP	PARABILITY	15

LIST OF TABLES

Table 1 – Sample Summary

Table 2 – Data Validation Qualifiers (DVQs)

Table 3 – QC Deficiencies and Data Qualification Actions

Table 4 – Qualified Results for Field Samples

Table 5 - Field Duplicate Results

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The independent data review was completed in accord with the *Phase II-B Remedial Design/ Remedial Action Workplan* (February 2013), hereinafter called the Workplan, using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The data include 166 investigative soil samples plus the associated field QC samples, which were collected by ENTACT in September 2015 through February 2016 with the intended use of confirming that backfill materials are suitable for use onsite and verifying that remediation goals have been achieved in excavated grids. A complete listing of the samples collected and tests performed is shown in Table 1. QAA performed a full validation of the data and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010) as specified in Section 5.9 of the Workplan. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Superfund Data Review* (August 2014) and *National Functional Guidelines for Superfund Organic Methods Data Review* (August 2014), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The Workplan stipulates that the precision control limits will be dictated by the analytical method. The validator assessed precision using the laboratory and field duplicates, and the limits are 20-35 RPD depending upon the test. The laboratory prepared a laboratory control spike duplicate (LCSD) using reagent water or sand for each VOC analytical batch plus at least one unspiked matrix duplicate (MD) or matrix spike duplicate (MSD) using a sample from the site for each test except Metals, Chromium VI and VOC for the backfill samples. All LCS/LCSD RPDs are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects. The MD/MSD RPDs are also within the limits (or the absolute differences are less than two times the reporting limit for low-level results), which indicates good precision for the analytical technique on the given sample matrix. Additionally, the sampler collected eight field duplicates (FD) for TCLP Lead and total Arsenic/Lead with the 166 investigative samples. The RPDs are within the limits, which indicates good precision for the sampling and analytical technique, or the validator qualified the results for the original and duplicate sample. Two (one for TCLP Lead and one for total Lead) of the twenty-four (24) pairs of results are qualified as estimated (J) based on field duplicate precision.
- 2. Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The Workplan stipulates that the accuracy control limits will be dictated by the analytical method. The validator assessed accuracy using the laboratory spikes and matrix spikes, and the limits are either 75-125%, 80-120%, or the laboratory/manufacturer's established control limit for soils/solid reference materials (which range from 0.1%-201% for this data set). In order to better assess data usability, limits of 50-200% were employed where the method limits for a spiked analyte falls outside these values. The laboratory prepared a laboratory control spike (LCS) using reagent water or sand with each analytical batch and reported the recovery for all spiked compounds, which included every target compound except the multi-

component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result). The laboratory also prepared a laboratory control spike duplicate (LCSD) with each VOC analytical batch. The LCS/LCSD recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects, with two exceptions for Cyanide. (In each case the recoveries are within the laboratory limits, and thus laboratory corrective action was not required.) As a result, four Cyanide results of the 1,191 total results for field samples (investigative samples and field duplicates) are qualified as estimated (J or UJ) due to laboratory spike recovery. Additionally, the laboratory prepared nine matrix spike samples (MS) along with nine post digestion spikes (PDS) and serial dilutions (SD) for TCLP Lead, seven MS/PDS/SD for total Arsenic/Lead, two MS/PDS/SD for TAL Metals, two MS/SD for Mercury, two MS along with two matrix spike duplicate samples (MSD) for SVOC, and one MS/MSD for PEST, PCB, HERB, and Cyanide using a sample from the site. All SD %differences are within the laboratory limits, which indicates there is no matrix interference affecting the accuracy of metals results that are substantially above the reporting limit. The MS/MSD/PDS recoveries are within the laboratory limits, which indicates good accuracy for the analytical technique on the given sample matrix, or the validator qualified the results for similar samples in the same analytical batch as the spike samples. Two results (the non-detects for Pentachlorophenol in CC-PSL-4c-001 and CC-PSL-5c-001) are qualified as rejected (R) due to extremely low matrix spike recovery (<20%). These are the only rejected results for the data set. Of the remaining 1,189 total results for field samples, twenty-one (21) results (for Antimony, Calcium, and various SVOC analytes) are qualified as estimated (J, L, or UJ) based on matrix spike recovery. Additionally, the laboratory utilized one or more surrogate spikes for each organic analysis. The surrogate recoveries are within the laboratory limits for all field samples.

- Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, investigative samples were collected as required in the approved sampling and analysis plans. (Note that sampling has been an on-going process at the site and all samples may not be reflected in this validation batch.) Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory and field QC blanks, theoretical result values, and analytical instrument setup (i.e., tuning, calibration, interference correction, etc.) For all samples, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank with each analytical batch and the sampler collected trip blanks with the VOC samples. The laboratory and field QC blanks show no contamination, which indicates the samples were not affected by laboratory or field procedures. The validator also assessed representativeness by comparing the TCLP Lead results to the total Lead results and determined that the TCLP Lead result is above the theoretical maximum for four of the 146 pairs. Thus, four TCLP Lead results and four total Lead results are qualified as estimated (J). Proper analytical procedures were used and calibration results met the method requirements or the validator qualified the affected samples. Two non-detect results for Pentachlorophenol are qualified as estimated (UJ) due to calibration drift. (Since the %difference was outside the limits for only a small percentage of the total number of target analytes for the test, laboratory corrective action was not required.)
- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. All analyses produced valid

analytical measurements for this data set, with the exception of two non-detect results for Pentachlorophenol. With 1,191 total results for field samples, this gives a completeness of 99.8%. (Completeness to-date for all Phase II-B backfill and post-excavation confirmation samples is also 99.8%.) Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions or revisions were provided by the laboratory upon request.

5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated. Note that results for all field samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in μg/L for TCLP metals, and in μg/kg with dry-weight correction for organics.

DATA USABILITY

The following non-detect results are qualified as rejected (R):

Lab ID	Field ID	Test	Analyte	Result	DVQ	QC Issue
460-	CC-PSL-4c-001	SVOC	Pentachlorophenol	280 U μg/kg	R	Extremely low average MS/MSD recovery
104045-3						(18%)
460-	CC-PSL-4c-001	SVOC	Pentachlorophenol	280 U μg/kg	R	Extremely low average MS/MSD recovery
104045-6						(18%)

For each of these two results, the absence or presence of the analyte cannot be confirmed in the sample due to serious QC issues, and thus it is not suitable for use.

All other results for the samples are acceptable for use with the qualifications shown in Table 4, as follows:

• Nineteen (19) results for 2-Methylphenol (o-Cresol), Acenaphthene, Acenaphthylene, Anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzofuran, Fluorene, Hexachlorobenzene, Pentachlorophenol, or Phenanthrene in the backfill samples are qualified with a J (estimated, for detects between the method detection limit and the reporting limit), L (biased low, for detects above the reporting limit), or UJ (estimated, for non-detects) due to low matrix spike recovery and/or negative calibration drift. These results can be used for determining the absence or presence of the analyte; however, the concentration reported for detects or the reporting limit for non-detects is likely biased low. In each case, the result is well below (more than ten times) the DER-10 Appendix 5 Allowable Constituent Level for Imported Fill or Soil (ACL), and thus there is negligible effect on data quality, except as follows:

Lab ID	Field ID	Test	Analyte	Result	MDL	ACL	Units	DVQ	QC Issue
460-	BF-5L-GF-	SVOC	2-Methylphenol	370 U	16	330	μg/kg	UJ	Low average
103314-6	8c-01		(o-Cresol)						MS/MSD recovery
									(55.5%)
460-	BF-5L-GF-	SVOC	Pentachlorophenol	290 U	44	800	μg/kg	UJ	Calibration drift (%D=
103314-6	8c-01								-21.3%); Low average
									MS/MSD recovery
									(21.5%)
460-	BF-5L-WT-	SVOC	Pentachlorophenol	380 U	57	800	μg/kg	UJ	Calibration drift (%D=
103314-3	10c-01								-21.3%)

Though these non-detects are reported at the sample reporting limit (RL) as requested, the samples were evaluated to the method detection limit (MDL). In each case, the MDL is well below (more than ten times) the ACL and thus the potential low bias has negligible effect on data quality.

- Four results for Cyanide in the backfill samples are qualified with a J (estimated, for detects between the MDL and RL) or UJ (estimated, for non-detects) due to extremely low (less than 40%) laboratory control spike recovery for the vendor-supplied standard reference material (SRM) LCS with acceptable recovery for the low level and high level LCS. These results can be used for determining the absence or presence of the analyte; however, the concentration reported for detects or the reporting limit for non-detects is likely biased low. In each case, the laboratory control spike recovery is greater than 15% and the result (which range from 0.025 mg/kg to 0.12 mg/kg) is well below (more than ten times) the ACL (27 mg/kg) and thus the potential low bias has negligible effect on data quality.
- Two detects for TCLP Lead and two detects for total Lead in the confirmation samples are qualified with a J (estimated) due to field duplicate precision, as follows:

Lab ID	Field ID	Test	Analyte	Result	MDL	Comparison Criteria	Units	DVQ	QC Issue
460-	DS-AREA	TCLP	TCLP	267	20.8	5,000	μg/l	J	Poor field duplicate precision
102990-1	29-F26-SN	Metals	Lead						(absolute difference > 2xRL),
									use higher value from original
									sample
460-	DS-AREA	TCLP	TCLP	62.3	20.8	5,000	μg/l	J	Poor field duplicate precision
102990-2	29-F26-SN-	Metals	Lead						(absolute difference > 2xRL),
	X								use higher value from original
									sample
460-	ECS-	Total	Lead	13.5	0.74	400	mg/kg	J	Poor field duplicate precision (36
103393-2	AREA36-	Metals							RPD), use higher result from
	H37-F								field duplicate
460-	ECS-	Total	Lead	19.4	0.80	400	mg/kg	J	Poor field duplicate precision (36
103393-3	AREA36-	Metals							RPD), use higher result from
	H37-F-X								field duplicate

For results qualified due to field duplicate precision, the higher result (i.e., from either the original or duplicate sample) should be used for project decisions. This gives a conservative approach relative to protection of the environment. (For field duplicate pairs that pass the precision criteria, the value should be selected based on accepted convention for the site and/or agency requirements, e.g., select the value reported for the original sample, the average of the two values, etc.) Thus, for DS-AREA 29-F26-SN (which is a documentation sample (DS) intended to document the concentrations remaining in place (i.e., in areas where remediation was terminated, e.g., a sample from the excavation sidewall of the railroad right-of-way) as compared to the source material soil cleanup objective (SCO) of 5,000 μ g/l), the result from the original sample (267 μ g/l) is considered more representative. Likewise, for ECS-AREA36-H37-F, which is an excavation confirmation sample, the result from the field duplicate sample (19.4 μ g/kg) is considered more representative for comparison to the remedial goal of 400 μ g/kg.

• Four detects for TCLP Lead and four detects for total Lead in the confirmation samples are qualified with a J (estimated) because the result is outside the theoretical leach-to-total balance, as follows:

Lab ID	Field ID	Test	Analyte	Result	MDL	Remedial Goal	Units	DVQ	QC Issue
460- 103083-1	ECS- WSTREAM- 37+00-F	TCLP Metals	TCLP Lead	1940	20.8	5000	μg/l	7	Metals leach-to-total balance greater than theoretical
460- 103083-1	ECS- WSTREAM- 37+00-F	Total Metals	Lead	12.1	0.98	400	mg/kg	J	Metals leach-to-total balance greater than theoretical
460- 103967-6	ECS- WSTREAM- 45+00-SW	TCLP Metals	TCLP Lead	3220	20.8	5000	μg/l	J	Metals leach-to-total balance greater than theoretical
460- 103967-6	ECS- WSTREAM- 45+00-SW	Total Metals	Lead	15.2	0.83	400	mg/kg	J	Metals leach-to-total balance greater than theoretical

Lab ID	Field ID	Test	Analyte	Result	MDL	Remedial Goal	Units	DVQ	QC Issue	
460-	ECS-AREA	TCLP	TCLP	1420	20.8	5000	μg/l	J	Metals leach-to-total balance	
103970-3	37-I37-SE	Metals	Lead						greater than theoretical	
460-	ECS-AREA	Total	Lead	19.4	1.0	400	mg/kg	J	Metals leach-to-total balance	
103970-3	37-I37-SE	Metals							greater than theoretical	
460-	ECS-AREA	TCLP	TCLP	648	20.8	5000	μg/l	J	Metals leach-to-total balance	
104950-2	35-I35-SE	Metals	Lead						greater than theoretical	
460-	ECS-AREA	Total	Lead	9.3	0.77	400	mg/kg	J	Metals leach-to-total balance	
104950-2	35-I35-SE	Metals							greater than theoretical	

These results can be used for determining the presence of the analyte; however, the concentration reported may be either high or low. In each case, the TCLP Lead result is above the maximum leachate concentration possible based on the total Lead concentration, and the relative amounts of soil used and leachate prepared per the analytical method, assuming 100% leachability. Thus, the TCLP Lead results are potentially biased high while the total Lead results are potentially biased low. All four TCLP Lead results are below the remedial goal of $5,000 \mu g/l$ and thus the potential high bias has no effect. All four total Lead results are well below (more the ten times) the remedial goal of $400 \mu g/k$ g and thus the potential low bias has negligible effect on data quality.

• Two results for Antimony and one result for Calcium in the confirmation samples are qualified with a L (biased low, for detects above the reporting limit), or UJ (estimated, for non-detects) due to low matrix spike recovery, as follows:

Lab ID	Field ID	Test	Analyte	Result	DVQ	QC Issue
460-	ECS-AREA29-	Total	Antimony	4.3 U mg/kg	UJ	Low matrix spike recovery (51%)
101657-1	G26-F-R	Metals				
460-	ECS-WSTREAM-	Total	Antimony	3.9 U mg/kg	UJ	Low matrix spike recovery (62%)
102990-3	36+50-F	Metals				
460-	ECS-WSTREAM-	Total	Calcium	2910 mg/kg	L	Low matrix spike recovery (63%)
102990-3	36+50-F	Metals				

These results can be used for determining the absence or presence of the analyte; however, the concentration reported for detects or the reporting limit for non-detects is likely biased low. There is no remedial goal or other comparison criteria for these metals.

The remaining 147 results with J flags are qualified solely because the concentration is between the MDL and RL.
 In each case, the actual value is not expected to exceed the sample RL.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include pdf data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). The laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- · Laboratory Deliverables Completeness,
- EDD Correctness,
- Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- · Laboratory and Method Selection,
- Instrument Tuning and Initial Calibration,
- Calibration Verification,
- Interference Check Standards (ICS),
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- Matrix Duplicates (MD),
- Field Duplicates (FD),
- Dual Column Confirmation,
- Surrogates (SU), and
- Internal Standards (IS).

Additionally, the validator examined the raw data for 10% of the sample batches (randomly selected by the validator across the various analysis dates and tests) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are either specific numerical values or the laboratory-derived recovery control limits based on historical performance (but not less than 50% lower limit or greater than 200% upper limit)
- Laboratory Precision the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are either specific numerical values or the laboratory-derived recovery control limits based on historical performance (but not greater than 40%)
- Field Precision an RPD control limit of 35% (if both results are greater than 5x the reporting limit) or a control limit of ±2x the reporting limit for the difference in the two results (if either result is less than or equal to 5x the reporting limit), which is considered typical for data quality assessment of soil samples.

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator

DATA USABILITY SUMMARY REPORT

considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. Data rejection limits of 40% and 30% for inorganics laboratory and matrix spikes, and 30%, 20% and 10% for organics laboratory, matrix and surrogate spikes were used. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

The laboratory analyzed an LCSD and reported RPDs for all target compounds for each VOC batch (maximum 20 samples). All LCSD RPDs are at or below the criteria.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every inorganics analytical batch (maximum 20 samples) and an MSD for every organics analytical batch (maximum 20 samples) except VOC batches and reported RPDs for MD and MSD prepared using a sample from the site or another site. MD/MSD prepared with a sample from another site were not evaluated, since they do not reflect data quality for the site. No soil samples were designated by the sampler for MD/MSD for the backfill samples; however, the laboratory selected one or more backfill samples for batch QC for PEST, PCB, HERB, SVOC, and Cyanide. Nine confirmation soil samples (six of which were designated by the sampler on the custody record) were used to prepare an MD for TCLP Lead. Seven confirmation soil samples (five of which were designated by the sampler on the custody record) were also used to prepare an MD for total Arsenic/Lead and two confirmation soil samples (one of which was designated by the sampler on the custody record) were also used for TAL Metals including Mercury. With a total of 166 investigative confirmation samples, this meets the Workplan requirement of one per 20 or fewer samples per sample matrix.

Two of the RPDs for MD prepared using a sample from the site are above the criteria; however, data qualification was not required per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Note that, for cases where either result for the duplicate pair is non-detect, the check does not apply and the laboratory reported the RPD as NC (not calculable) in the pdf report and as 0 in the EDD.

3.1.3 FIELD DUPLICATE (FD) PRECISION

The samplers collected eight FD with the 166 investigative confirmation samples, which is slightly below the Workplan requirement of one per 20 or fewer samples per sample matrix for this event. The following shows the breakdown of all field duplicates for Phase II-B:

PHASE II-B TOTAL NUMBER OF SAMPLES

Sample Type	Investigative Samples	Field Duplicate Samples
Confirmation Sample (TCLP Metals)	502	24
Confirmation Samples (Total Metals)	692	34
Backfill Composite Samples (Metals, Cr III/VI, PEST, PCB, HERB, VOC, SVOC, Cyanide)	69	4
Backfill Grab Samples (VOC)	165	5

Results for the field duplicates for this event are summarized in Table 5. Two pairs of results are outside the field precision criteria and the validator qualified the data as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that the remaining twenty-two (22) pairs of FD results meet the criteria, which indicates good overall precision, and thus the validator only qualified the original and duplicate sample for the FD deficiencies.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD), matrix spikes including post digestion spikes (MS/MSD/PDS), serial dilutions (SD), and surrogate (SU) spikes. LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD/PDS are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit. Surrogates are added to each sample before preparation and analysis and provide an indication of accuracy for each individual sample analysis.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

The laboratory analyzed a LCS and/or LCSD for every analytical batch (maximum 20 samples) as required and reported recoveries for all target compounds except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result).

Two LCS recoveries for Cyanide are within the laboratory limits but outside the data qualification criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS/PDS for every inorganics analytical batch (maximum 20 samples) and an MS/MSD for every organics analytical batch (maximum 20 samples) and reported recoveries for MS/PDS/MSD prepared using a sample from the site or another site. MS/PDS/MSD prepared with a sample from another site were not evaluated, since they do not reflect data quality for the site. No soil samples were designated by the sampler for MS/PDS/MSD for the backfill samples; however, the laboratory selected one or more backfill samples for batch QC for PEST, PCB, HERB, SVOC, and Cyanide. Nine confirmation soil samples (six of which were designated by the sampler on the custody record) were used to prepare an MS/PDS for TCLP Lead. Seven confirmation soil samples (five of which were designated by the sampler on the custody record) were also used to prepare an MS/PDS for total Arsenic/Lead and two confirmation soil samples (one of which was designated by the sampler on the custody record) were also used for TAL Metals including Mercury. With a total of 166 investigative confirmation samples, this meets the Workplan requirement of one per 20 or fewer samples per sample matrix.

Some recoveries for MS/MSD prepared using a sample from the site are outside the criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples. Note that if an analyte was detected in the unspiked parent sample at a concentration well above (greater than four times) the concentration of spike added to the sample, thereby rendering the recoveries inconclusive, the check was waived and the validator did not

qualify the data. For cases where the MS or MSD recovery is outside the control limits (but greater than the data rejection limit) and the average MS/MSD recovery is in control, the validator did not qualify the data. Additionally, the validator considered samples of the same media (i.e., backfill or excavation confirmation) and source to be of similar matrix (e.g., if deficiencies were noted for a MS/MSD prepared using a backfill sample from a particular source, all backfill samples from that source in the same analytical batch were qualified).

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all target compounds detected above 50x the method detection limit (MDL). All %differences for SD prepared using a sample from the site are at or below the control limit (10%).

3.2.4 SURROGATE (SU) RECOVERY

The laboratory spiked each organic sample with one or more surrogates before preparation and analysis. All surrogate recoveries for field samples are within the criteria. Additionally, all surrogate recoveries for QC samples are above the data rejection limit and thus no qualification of field samples is deemed necessary.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination, comparing sample results to theoretical values, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records, which confirms that sample integrity was maintained, except as follows:

- For work order 460-102383-1, the sampler entered a company name and date but did not sign or enter a time upon sample relinquishment. The custody record includes the samplers' names and the samples were relinquished to a commercial carrier with custody seals intact and received at the laboratory with no evidence of tampering, and thus no further action was taken.
- For work orders 460-460-103796-1, 460-103860-1, and 460-104045-1, the sampler entered a date but no time upon sample relinquishment. The samples were relinquished to a commercial carrier with custody seals intact and received at the laboratory with no evidence of tampering, and thus no further action was taken.

Additionally, the validator noted the following regarding the custody records and sample log-in at the laboratory:

- For work order 460-103314-1, one of the VOA vials for BF-5L-GF-8g-02 was leaking when received by the laboratory. Analysis was performed using the remaining vials, and thus no action is required.
- For work orders 460-103322-1, 460-103391-1 and 460-103552-1, one of the two containers for one or more of the samples was received broken, and the laboratory salvaged the sample volume into a new container. Analyses were performed using the remaining uncompromised container and/or for metals only, and thus this is not considered to significantly affect data quality and no further action was taken.

- For work order 460-103967-1, the sole container for ECS-WSTREAM-45+00-SW was received broken. The
 laboratory salvaged the sample volume into a new container with minimal or no sample loss. Analyses were
 performed for metals only, and thus this is not considered to significantly affect data quality and no further action
 was taken.
- For work order 460-102202-1, the samples were received three days after collection, which is beyond the recommended period of two days. The samples were received in good condition at proper temperature, and were analyzed within the established holding times, and thus no further action was taken.

The information on the custody record is complete and correct, and agrees with that reported in the analytical results except as follows:

- For work orders 460-101657-1 and 460-102990-1, the sampler only recorded the sample date for the first sample on the custody record (i.e., there is no down arrow to extend the date to the remaining samples). The laboratory logged in the samples using the date for the first sample, which corresponds with the date on each sample container.
- For work orders 460-102990-1 and 460-103796-1, the laboratory sample receipt checklist indicates that no custody seal was used for transfer of the samples from the field to the laboratory; however, a custody seal was used as confirmed by the seal number entered on the custody record by the laboratory.
- For work order 460-103552-1, the custody record indicates a sample time of 16:35 for ECS-AREA35-H36-SS, while the sample labels indicate a sample time of 16:25. The laboratory logged in the sample using the time on the custody record. The sample date (10/27/15) on the custody record matches that on the sample labels and the holding time pass/fail status is not affected, and thus no further action was taken.

All samples were analyzed for the tests requested on the chain-of-custody and one result was reported for each target analyte except as follows:

 For work order 460-102990-1, sample number 3 is marked for both Total As/Pb and TAL Metals on the custody record. Arsenic and Lead are included in the TAL list, so no additional analysis was needed or performed.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

All samples were properly preserved and analyzed within the holding times listed in Table 2 of the Workplan, and/or SW-846, which confirms that sample results are not affected by sample degradation. Note that the holding time was calculated using dates only without regard to the time of day since all holding times are greater than 24-hours. Also, note that Chromium III is a calculated result and the holding time check does not apply for this analyte.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (no. 11452).

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 2 of the Workplan were used for the sample analyses. (In some cases, the method update number used by the laboratory may differ from that in the Workplan. For example, method 8260C was used rather than 8260B for the VOCs for the backfill samples.)

For the backfill samples, the target analyte list includes all DER-10 analytes, except as follows:

- DER-10 Appendix 5 lists m-Cresol(s), o-Cresol(s), and p-Cresol(s). The laboratory reported m & p-Cresols and o-Cresol as it is not possible to separate m-Cresol and p-Cresol using method 8270D.
- DER-10 Appendix 5 lists Chlordane (alpha). The laboratory reported technical Chlordane, which is a commercial mixture that contains alpha-Chlordane and gamma-Chlordane along with other related compounds.
- The laboratory reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) for the backfill samples instead of the DER-10 analytes as requested on the custody record.

Additionally, the nominal reporting limits (i.e., without dry-weight correction or sample dilution and based on the standard sample weight and final volume) are at or below the levels of concern (i.e., the Allowable Constituent Levels for Imported Fill or Soil (ACLs) from Appendix 5 of the DER-10), except as follows:

Analyte	Commercial or Industrial Use ACL (mg/kg)	Unrestricted Use ACL (mg/kg)	Nominal RL (mg/kg)	MDL (mg/kg)
Selenium	4	3.9	4	1.4
Chromium VI	19	1	2	0.81
Aldrin	0.19	0.005	0.0067	0.00081
4,4'-DDD	14	0.0033	0.0067	0.00088
4,4'-DDE	17	0.0033	0.0067	0.00097
4,4'-DDT	47	0.0033	0.0067	0.00069

For these six analytes, the nominal RL is at or below the Commercial or Industrial Use ACL but above the Unrestricted Use ACL. In each case, the method detection limit (MDL) is below both the Commercial or Industrial Use ACL and the Unrestricted Use ACL. Though non-detects are reported at the sample reporting limit (RL) as requested, the samples were evaluated to the (MDL).

None of the backfill samples required dilution, and thus none have elevated reporting limits.

For the excavation confirmation samples, the target analyte list includes total Arsenic, total Lead, and/or TCLP Lead as requested and all Contract Laboratory Program (CLP) metals for the TAL metals. The nominal reporting limits are below the levels of concern (i.e., the remedial goals) for total Arsenic, total Lead, and TCLP Lead. There are no established levels of concern for the TAL metals. The nominal reporting limits comply with the requirements in the ASP for TAL metals with the exception of Iron, which has a nominal reporting limit of 30 mg/kg that is above the ASP reporting limit of 20 mg/kg.

Some of the excavation confirmation samples required dilution, but none has elevated reporting limits for a non-detect result.

(Note: The laboratory dilutes all total metals samples 2-4x before analysis as standard practice. All Revere samples were diluted 4x and thus nominal reporting limits were determined at this dilution rate. The laboratory also dilutes all TCLP metals samples 5x before analysis as standard practice and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank (and leachate blank for TCLP) for every analytical batch (maximum 20 samples) and a calibration blank for every 10 metals analyses as required per the analytical methodology. Additionally, a trip

blank was included with the each shipment of VOC samples, which meets the Workplan requirement of one for every cooler of VOC samples. Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used. No detects are reported in the laboratory or trip blanks.

Note: For work order 460-102494-1, Form III Instrument Blanks includes a continuing calibration blank (CCB) for analytical batch 328555 that contains Lead above the reporting limit at 10.75 µg/L. This blank was analyzed on 10/14/15 at 02:37 and does not apply to any of the samples or QC for the site, and thus is not included as a deficiency.

3.3.5 THEORETICAL RESULT VALUES

Several samples were analyzed for both TCLP Lead and total Lead. Based on the relative amounts (100-g soil sample used to prepare 2000-ml leachate), the validator calculated the maximum theoretical TCLP Lead concentration from the total Lead concentration for each sample assuming 100% leachability.

Some TCLP Lead results exceeded the theoretical maximum (indicating a high TCLP result or low total Lead result likely due to a heterogeneous sample matrix) and the validator qualified the associated data as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

3.3.6 ANALYTICAL PROCEDURES

The analytical procedures (instrument tuning and initial calibration, calibration verification, interference check standards, dual column confirmation, and internal standards), including the leaching procedures for the method-defined parameter TCLP, met the requirements in the analytical method with a few exceptions for calibration verification. The validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

The data set includes 77 analytical batches and the validator randomly selected eight batches for a detailed raw data review including re-calculation of sample results and QC check parameters. No issues were found with analyte identification or quantitation of sample results or calculation of QC parameters, except as follows:

For PCB batch 325682 in work order 460-103314-1, the validator noted the presence of small peaks with a potential Aroclor pattern on the chromatogram for sample BF-5L-WT-10c-01, which was reported as non-detect for all Aroclors. Upon request, the laboratory re-evaluated the sample and determined that Aroclor 1248 is present at a concentration between the MDL and RL (at 0.062 mg/kg). A revised report was submitted. The validator examined the chromatograms for all of the other PCB samples for this event, and found no suspect peaks.

Additionally, the validator made the following observations from the review of the raw data:

The laboratory used dual column confirmation for all GC analyses (including PEST, PCB, and HERB). For surrogates and spiked analytes, the laboratory reports the results from both columns in the pdf report. For target analytes in blanks and field samples (and as the reportable result in the EDD for surrogates and spiked analytes), the laboratory reports the result from the column with the higher concentration (unless chromatographic performance is better on one column and it is therefore used for all analyses), provided that the RPD between the two columns is less than 40%. If the RPD is greater than 40%, the column with the lower concentration is reported with a note in the narrative and the result is reported with a P flag. The RPD did not exceed 40% for any field or QC samples in this data set. (All field samples are non-detect.)

• For HERB batch 325695 in work order 460-104045-1, the validator noted that the lowest ICAL level corresponds to 33 μg/kg of Silvex (2,4,5-TP) while the reporting limit (RL) is 17 μg/kg. Thus, detects between the MDL and 33 μg/kg should be considered estimates. All field samples are non-detect to the MDL so no further action is required.

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

The Level 4 data packages and EDD contain all necessary information or the laboratory submitted a revision upon request as detailed in the case narratives, except as follows:

- For work orders 460-103391-1 and 460-103393-1, Form 5B (PDS) for preparation batch 331486 (contains sample 460-103391-3) is missing the Spike Added and thus %Recovery. The MS for this batch passes and thus a PDS is not required. Additionally, using the standard amount (2500-ppb) for Spike Added, the %Recovery calculates as 95%, which is within the PDS control limits (80-120%).
- For work order 460-103552-1, the raw data is missing for TCLP Lead analytical batch 333037 (11/3/15 11:31 to 11/3/15 22:57). This data is available in work order 460-103667-1, and thus no further action was taken.
- For work order 460-103796-1, the instrument raw data is missing for TCLP Lead analytical batch 333241 from 11/4/15 19:09 to 11/4/15 19:54. This time range only includes the leachate blank for leach batch 332779 and the subsequent CCV/CCB/CCVL. The leachate blank (and all others for this data set) is non-detect, which means no sample results were qualified based on the blank results, and thus no further action was taken.
- For work order 460-103967-1, the laboratory report includes results for the QC samples (preparation blank, LCS, MS, MD, SD, and PDS) run under analytical batch 333465 (11/5/15) and also under analytical batch 335675 (11/16/15). The 11/16/15 PDS results appear to be in error for the Spike Amount, Result and thus %Recovery. All of the associated site samples were analyzed in batch 333465 on 11/5/15, and thus no further action was taken.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Work Order(s)	Sample(s)	EDD Field(s)	Action
All	All laboratory QC samples	sampling_technique	The validator changed the entry from null to the default entry (UN) to meet NYSDEC requirements.
460-103314-1 460-104045-1 460-108300-1	All backfill composite field samples (*c-001 and *c-002)	composite_yn	The validator changed the entry from N to Y based on the custody record.
460-103314-1 460-104045-1	All backfill composite MS and MSD samples (*c-001 and *c-002)	composite_yn	The validator changed the entry from N to Y based on the custody record.

Laboratory Work Order(s)	Sample(s)	EDD Field(s)	Action
All	All 6010C total metals field samples and laboratory QC samples	prep_method	The validator changed the method reference from SW3020B to SW3050B based on the pdf analytical results and as confirmed by the laboratory.
All	All laboratory QC samples	validation_level	For the target analyte (TRG), surrogate (SUR), and spike compound (SC) records (which have validated_yn set to N), the validator changed the entry from UNKNOWN to blank to meet NYSDEC requirements.
All	All field QC samples	validation_level	For the surrogate (SUR) records (which have validated_yn set to N), the validator changed the entry from UNKNOWN to blank to meet NYSDEC requirements.

3.4.3 ANALYTICAL COMPLETENESS

The validator rejected two non-detect results for Pentachlorophenol due to extremely low matrix spike recovery. With 1,191 total results for field samples (investigative samples and field duplicates), this gives a completeness of 99.8%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which a target analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which a target analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size and include dry-weight correction for all soil samples as required per Section 5.7.1 of the Workplan. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results for the investigative samples are reported in mg/kg with dry-weight correction for total metals and inorganics, in μ g/L for TCLP metals, and in μ g/kg with dry-weight correction for organics. (For the 7196A analyses, Chromium III is shown as not dry-weight corrected. Chromium III is calculated from the results for Chromium VI and total Chromium, which are dry-weight corrected, and thus the Chromium III is not directly dry-weight corrected but is on a dry-weight basis.)

The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated.

TABLE 1

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Phase II-B Remedial Design/ Remedial Action
Backfill and Post-Excavation Confirmation Samples
September 2015 to February 2016

SAMPLE SUMMARY

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-101657-1	ECS-AREA29-G26-F-R	9/23/15	INV	ECS	Soil	Х		Х	Х								
460-101657-1LR	ECS-AREA29-G26-F-R	9/23/15	MD	ECS	Soil			Х	Х								
460-101657-1MS	ECS-AREA29-G26-F-R	9/23/15	MS	ECS	Soil			Х	Х								
460-101657-2	ECS-AREA27-I28-F	9/23/15	INV	ECS	Soil	Х	Х										
460-101657-2LR	ECS-AREA27-I28-F	9/23/15	MD	ECS	Soil		Х										
460-101657-2MS	ECS-AREA27-I28-F	9/23/15	MS	ECS	Soil		Х										
460-101657-3	ECS-AREA27-I28-F-X	9/23/15	FD	ECS	Soil	х	Х										
460-101657-4	DS-AREA28-J29-SS	9/23/15	INV	ECS	Soil	х	Х										
460-101657-4LR	DS-AREA28-J29-SS	9/23/15	MD	ECS	Soil	х	Х										
460-101657-4MS	DS-AREA28-J29-SS	9/23/15	MS	ECS	Soil	х	Х										
460-101657-5	ECS-AREA28-I/J29-F	9/23/15	INV	ECS	Soil	х	Х										
460-102202-1	ECS-AREA 33-H34-SN	10/2/15	INV	ECS	Soil	х	Х										
460-102202-2	ECS-AREA 33-G/H34-F	10/2/15	INV	ECS	Soil	х	Х										
460-102202-3	ECS-AREA 33-G34-SN	10/2/15	INV	ECS	Soil	х	Х										
460-102202-4	ECS-AREA 33-F35-SW	10/2/15	INV	ECS	Soil	х	Х										
460-102319-1	ECS-Area 2-R19S-SS	10/6/15	INV	ECS	Soil		Х										
460-102319-2	ECS-AREA 33-G35-F	10/6/15	INV	ECS	Soil	х	Х										
460-102383-1	ECS-AREA 33-G36-F	10/7/15	INV	ECS	Soil	х	Х										
460-102383-1LR	ECS-AREA 33-G36-F	10/7/15	MD	ECS	Soil	х											
460-102383-1MS	ECS-AREA 33-G36-F	10/7/15	MS	ECS	Soil	х											
460-102383-2	ECS-AREA 33-G36-F-X	10/7/15	FD	ECS	Soil	х	Х										
460-102383-3	ECS-AREA 33-G36-SW	10/7/15	INV	ECS	Soil	х	Х										
460-102383-4	ECS-AREA 33-H35-F	10/7/15	INV	ECS	Soil	х	Х										
460-102383-5	ECS-AREA 33-H36-SS	10/7/15	INV	ECS	Soil	х		Х	Х								
460-102494-1	ECS-WSTREAM-30+00-F	10/8/15	INV	ECS	Soil	х	Х										
460-102494-2	ECS-WSTREAM-30+00-SW	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-3	ECS-WSTREAM-30+00-SE	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-4	ECS-WSTREAM-30+50-F	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-5	ECS-WSTREAM-30+50-SW	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-6	ECS-WSTREAM-30+50-SE	10/8/15	INV	ECS	Soil	Х	Х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-102494-7	ECS-WSTREAM-31+00-F	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-8	ECS-WSTREAM-31+00-SW	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-9	ECS-WSTREAM-31+00-SE	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-10	ECS-WSTREAM-31+50-F	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-11	ECS-WSTREAM-31+50-SW	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-12	ECS-WSTREAM-31+50-SE	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-13	ECS-WSTREAM-32+00-F	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-14	ECS-WSTREAM-32+00-SW	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-15	ECS-WSTREAM-32+00-SE	10/8/15	INV	ECS	Soil	Х	Х										
460-102494-16	ECS-AREA 29-G26-F-R2	10/8/15	INV	ECS	Soil	Х	Х										
460-102570-1	ECS-WSTREAM-32+50-F	10/9/15	INV	ECS	Soil	Х	Х										
460-102570-2	ECS-WSTREAM-32+50-SW	10/9/15	INV	ECS	Soil	Х	Х										
460-102570-3	ECS-WSTREAM-32+50-SE	10/9/15	INV	ECS	Soil	Х	Х										
460-102570-4	ECS-WSTREAM-33+00-F	10/9/15	INV	ECS	Soil	Х	Х										
460-102570-5	ECS-WSTREAM-33+00-SW	10/9/15	INV	ECS	Soil	Х	Х										
460-102570-6	ECS-WSTREAM-33+00-SE	10/9/15	INV	ECS	Soil	Х	Х										
460-102570-7	ECS-WSTREAM-33+50-F	10/9/15	INV	ECS	Soil	Х	Х										
460-102570-8	ECS-WSTREAM-33+50-SW	10/9/15	INV	ECS	Soil	Х	Х										
460-102570-9	ECS-WSTREAM-33+50-SE	10/9/15	INV	ECS	Soil	Х	Х										
460-102683-1	ECS-WSTREAM-34+00-SW	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-2	ECS-WSTREAM-34+00-F	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-3	ECS-WSTREAM-34+00-SE	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-4	ECS-WSTREAM-34+50-SW	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-5	ECS-WSTREAM-34+50-F	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-6	ECS-WSTREAM-34+50-SE	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-7	ECS-WSTREAM-35+00-SW	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-8	ECS-WSTREAM-35+00-F	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-9	ECS-WSTREAM-35+00-SE	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-10	ECS-WSTREAM-35+50-SW	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-11	ECS-WSTREAM-35+50-F	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-12	ECS-WSTREAM-35+50-SE	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-13	ECS-WSTREAM-36+00-SW	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-14	ECS-WSTREAM-36+00-F	10/12/15	INV	ECS	Soil	Х	Х										
460-102683-15	ECS-WSTREAM-36+00-SE	10/12/15	INV	ECS	Soil	Х	Х										
460-102990-1	DS-AREA 29-F26-SN	10/16/15	INV	ECS	Soil	Х		Х	Х								
460-102990-2	DS-AREA 29-F26-SN-X	10/16/15	FD	ECS	Soil	Х	Х										
460-102990-3	ECS-WSTREAM-36+50-F	10/16/15	INV	ECS	Soil	Х		Х	Х								
460-102990-3LR	ECS-WSTREAM-36+50-F	10/16/15	MD	ECS	Soil	Х		Х	Х								
460-102990-3MS	ECS-WSTREAM-36+50-F	10/16/15	MS	ECS	Soil	Х		Х	Х								
460-102990-4	ECS-WSTREAM-36+50-SE	10/16/15	INV	ECS	Soil	Х	Х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-102990-5	ECS-WSTREAM-36+50-SW	10/16/15	INV	ECS	Soil	Х	Х										
460-103083-1	ECS-WSTREAM-37+00-F	10/19/15	INV	ECS	Soil	Х	Х										
460-103083-2	ECS-WSTREAM-37+00-SE	10/19/15	INV	ECS	Soil	Х	Х										
460-103083-3	ECS-WSTREAM-37+00-SW	10/19/15	INV	ECS	Soil	Х	Х										
460-103083-4	ECS-WSTREAM-37+00-SW-X	10/19/15	FD	ECS	Soil	Х	х										
460-103083-5	ECS-WSTREAM-37+50-F	10/19/15	INV	ECS	Soil	Х	Х										
460-103083-5LR	ECS-WSTREAM-37+50-F	10/19/15	MD	ECS	Soil	Х	х										
460-103083-5MS	ECS-WSTREAM-37+50-F	10/19/15	MS	ECS	Soil	Х	х										
460-103083-6	ECS-WSTREAM-37+50-SE	10/19/15	INV	ECS	Soil	Х	Х										
460-103083-7	ECS-WSTREAM-37+50-SW	10/19/15	INV	ECS	Soil	Х		Х	Х								
460-103083-8	ECS-AREA29-G26-F-R3	10/19/15	INV	ECS	Soil	Х	Х										
460-103314-1	BF-5L-WT-10g-01	10/22/15	INV	BF	Soil										Х		
460-103314-2	BF-5L-WT-10g-02	10/22/15	INV	BF	Soil										Х		
460-103314-3	BF-5L-WT-10c-01	10/22/15	INV	BF	Soil				Х	Х	Х	Х	Х	Х		Х	Х
460-103314-4	BF-5L-GF-8g-01	10/22/15	INV	BF	Soil										Х		
460-103314-5	BF-5L-GF-8g-02	10/22/15	INV	BF	Soil										Х		
460-103314-6	BF-5L-GF-8c-01	10/22/15	INV	BF	Soil				Х	Х	Х	Х	Х	Х		Х	Х
460-103314-6MS	BF-5L-GF-8c-01	10/22/15	MS	BF	Soil											Х	
460-103314-6SD	BF-5L-GF-8c-01	10/22/15	MSD	BF	Soil											Х	
460-103314-7	TB-10/22/15	10/22/15	TB	TB	Water										х		
460-103322-1	ECS-WSTREAM-38+00-F	10/22/15	INV	ECS	Soil	Х	х										
460-103322-2	ECS-WSTREAM-38+00-SE	10/22/15	INV	ECS	Soil	Х	х										
460-103322-3	ECS-WSTREAM-38+00-SW	10/22/15	INV	ECS	Soil	Х	Х										
460-103322-4	ECS-WSTREAM-38+50-F	10/22/15	INV	ECS	Soil	Х	х										
460-103322-5	ECS-WSTREAM-38+50-SE	10/22/15	INV	ECS	Soil	Х	х										
460-103322-6	ECS-WSTREAM-38+50-SW	10/22/15	INV	ECS	Soil	Х	х										
460-103391-1	ECS-WSTREAM-39+00-F	10/23/15	INV	ECS	Soil	Х	х										
460-103391-2	ECS-WSTREAM-39+00-SE	10/23/15	INV	ECS	Soil	Х	х										
460-103391-3	ECS-WSTREAM-39+00-SW	10/23/15	INV	ECS	Soil	х	х										
460-103391-3LR	ECS-WSTREAM-39+00-SW	10/23/15	MD	ECS	Soil	Х											
460-103391-3MS	ECS-WSTREAM-39+00-SW	10/23/15	MS	ECS	Soil	Х											
460-103391-4	ECS-WSTREAM-39+50-F	10/23/15	INV	ECS	Soil	Х	Х										
460-103391-5	ECS-WSTREAM-39+50-SE	10/23/15	INV	ECS	Soil	Х	Х										
460-103391-6	ECS-WSTREAM-39+50-SW	10/23/15	INV	ECS	Soil	Х	х										
460-103393-1	ECS-AREA2-O16-SW-R	10/23/15	INV	ECS	Soil		Х										
460-103393-2	ECS-AREA36-H37-F	10/23/15	INV	ECS	Soil	Х	х										
460-103393-3	ECS-AREA36-H37-F-X	10/23/15	FD	ECS	Soil	х	х										
460-103393-4	ECS-AREA36-H37-SN	10/23/15	INV	ECS	Soil	х	х										
460-103393-5	ECS-AREA36-I38-SS	10/23/15	INV	ECS	Soil	х		Х	Х								
460-103393-6	ECS-AREA36-H37-SW	10/23/15	INV	ECS	Soil	Х	Х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-103533-1	ECS-WSTREAM-40+00-F	10/26/15	INV	ECS	Soil	х	Х										
460-103533-1LR	ECS-WSTREAM-40+00-F	10/26/15	MD	ECS	Soil	х	х										
460-103533-1MS	ECS-WSTREAM-40+00-F	10/26/15	MS	ECS	Soil	Х	Х										
460-103533-2	ECS-WSTREAM-40+00-SE	10/26/15	INV	ECS	Soil	Х	Х										
460-103533-3	ECS-WSTREAM-40+00-SW	10/26/15	INV	ECS	Soil	х	Х										
460-103533-4	ECS-WSTREAM-40+50-F	10/26/15	INV	ECS	Soil	х		Х	Х								
460-103533-5	ECS-WSTREAM-40+50-SE	10/26/15	INV	ECS	Soil	х	Х										
460-103533-6	ECS-WSTREAM-40+50-SW	10/26/15	INV	ECS	Soil	х	Х										
460-103533-7	ECS-WSTREAM-41+00-F	10/26/15	INV	ECS	Soil	Х	Х										
460-103533-8	ECS-WSTREAM-41+00-SE	10/26/15	INV	ECS	Soil	Х	Х										
460-103533-9	ECS-WSTREAM-41+00-SE-X	10/26/15	FD	ECS	Soil	Х	Х										
460-103533-10	ECS-WSTREAM-41+00-SW	10/26/15	INV	ECS	Soil	Х	Х										
460-103552-1	ECS-WSTREAM-41+50-F	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-2	ECS-WSTREAM-41+50-SE	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-2LR	ECS-WSTREAM-41+50-SE	10/27/15	MD	ECS	Soil	Х	Х										
460-103552-2MS	ECS-WSTREAM-41+50-SE	10/27/15	MS	ECS	Soil	Х	Х										
460-103552-3	ECS-WSTREAM-41+50-SW	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-4	ECS-WSTREAM-42+00-F	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-5	ECS-WSTREAM-42+00-SE	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-6	ECS-WSTREAM-42+00-SW	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-7	ECS-WSTREAM-42+50-F	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-8	ECS-WSTREAM-42+50-SE	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-8LR	ECS-WSTREAM-42+50-SE	10/27/15	MD	ECS	Soil		Х										
460-103552-8MS	ECS-WSTREAM-42+50-SE	10/27/15	MS	ECS	Soil		Х										
460-103552-9	ECS-WSTREAM-42+50-SW	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-10	ECS-WSTREAM-43+00-F	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-11	ECS-WSTREAM-43+00-SE	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-12	ECS-WSTREAM-43+00-SW	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-13	ECS-AREA35-H35-F	10/27/15	INV	ECS	Soil	Х		Х	Х								
460-103552-14	ECS-AREA35-H36-SS	10/27/15	INV	ECS	Soil	Х	Х										
460-103552-15	ECS-AREA35-H35-SN	10/27/15	INV	ECS	Soil	Х	Х										
460-103667-1	ECS-WSTREAM-43+50-F	10/28/15	INV	ECS	Soil	Х	Х										
460-103667-2	ECS-WSTREAM-43+50-SS	10/28/15	INV	ECS	Soil	Х	Х										
460-103667-3	ECS-WSTREAM-43+50-SN	10/28/15	INV	ECS	Soil	Х	Х										
460-103667-4	ECS-WSTREAM-44+00-F	10/28/15	INV	ECS	Soil	Х	Х										
460-103667-5	ECS-WSTREAM-44+00-SS	10/28/15	INV	ECS	Soil	Х	Х										
460-103667-6	ECS-WSTREAM-44+00-SS-X	10/28/15	FD	ECS	Soil	х	Х										
460-103667-7	ECS-WSTREAM-44+00-SN	10/28/15	INV	ECS	Soil	х	Х										
460-103796-1	ECS-WSTREAM-39+00-F-R	10/30/15	INV	ECS	Soil	х	Х										
460-103796-2	ECS-WSTREAM-39+00-SE-R	10/30/15	INV	ECS	Soil	х	Х										

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-103860-1	ECS-WSTREAM-42+00-SW-R	11/2/15	INV	ECS	Soil	Х	Х										
460-103860-2	ECS-WSTREAM-43+00-SE-R	11/2/15	INV	ECS	Soil	Х	Х										
460-103967-1	ECS-WSTREAM-44+50-SN	11/3/15	INV	ECS	Soil	Х	Х										
460-103967-2	ECS-WSTREAM-44+50-F	11/3/15	INV	ECS	Soil	Х	Х										
460-103967-3	ECS-WSTREAM-44+50-SS	11/3/15	INV	ECS	Soil	Х	Х										
460-103967-4	ECS-WSTREAM-45+00-F	11/3/15	INV	ECS	Soil	х	Х										
460-103967-5	ECS-WSTREAM-45+00-SE	11/3/15	INV	ECS	Soil	х	Х										
460-103967-6	ECS-WSTREAM-45+00-SW	11/3/15	INV	ECS	Soil	х	х										
460-103967-7	ECS-WSTREAM-45+50-F	11/3/15	INV	ECS	Soil	х	Х										
460-103967-8	ECS-WSTREAM-45+50-SW	11/3/15	INV	ECS	Soil	х	Х										
460-103967-9	ECS-WSTREAM-45+50-SE	11/3/15	INV	ECS	Soil	х	Х										
460-103967-10	ECS-WSTREAM-46+00-F	11/3/15	INV	ECS	Soil	х	Х										
460-103967-11	ECS-WSTREAM-46+00-F-X	11/3/15	FD	ECS	Soil	х	Х										
460-103967-12	ECS-WSTREAM-46+00-SE	11/3/15	INV	ECS	Soil	х	Х										
460-103967-13	ECS-WSTREAM-46+00-SW	11/3/15	INV	ECS	Soil	Х	Х										
460-103967-14	ECS-WSTREAM-46+50-F	11/3/15	INV	ECS	Soil	х	х										
460-103967-15	ECS-WSTREAM-46+50-SE	11/3/15	INV	ECS	Soil	Х	Х										
460-103967-15LR	ECS-WSTREAM-46+50-SE	11/3/15	MD	ECS	Soil	Х	Х										
460-103967-15MS	ECS-WSTREAM-46+50-SE	11/3/15	MS	ECS	Soil	Х	Х										
460-103967-16	ECS-WSTREAM-46+50-SW	11/3/15	INV	ECS	Soil	Х	Х										
460-103967-17	ECS-WSTREAM-47+00-F	11/3/15	INV	ECS	Soil	Х	Х										
460-103967-18	ECS-WSTREAM-47+00-SE	11/3/15	INV	ECS	Soil	Х	Х										
460-103967-19	ECS-WSTREAM-47+00-SW	11/3/15	INV	ECS	Soil	Х	Х										
460-103970-1	ECS-AREA 37-I37-F	11/3/15	INV	ECS	Soil	Х	Х										
460-103970-2	ECS-AREA 37-I37-SS	11/3/15	INV	ECS	Soil	Х		Х	Х								
460-103970-3	ECS-AREA 37-I37-SE	11/3/15	INV	ECS	Soil	Х	Х										
460-104045-1	CC-PSL-4g-001	11/4/15	INV	BF	Soil										Х		
460-104045-2	CC-PSL-4g-002	11/4/15	INV	BF	Soil										Х		
460-104045-3	CC-PSL-4c-001	11/4/15	INV	BF	Soil				Х	Х	Х	Х	Х	Х		Х	х
460-104045-3MS	CC-PSL-4c-001	11/4/15	MS	BF	Soil							Х	Х	Х		Х	х
460-104045-3SD	CC-PSL-4c-001	11/4/15	MSD	BF	Soil							Х	Х	Х		Х	х
460-104045-4	CC-PSL-5g-001	11/4/15	INV	BF	Soil										Х		
460-104045-5	CC-PSL-5g-002	11/4/15	INV	BF	Soil										х		
460-104045-6	CC-PSL-5c-001	11/4/15	INV	BF	Soil				Х	Х	Х	Х	х	Х		Х	Х
460-104045-7	TB-11/4/15	11/4/15	TB	TB	Water										Х		
460-104379-1	ECS-AREA 29-G26-F-R4	11/10/15	INV	ECS	Soil	Х	Х										
460-104950-1	DS-AREA 28-I29-SS	11/19/15	INV	ECS	Soil	Х	Х										
460-104950-2	ECS-AREA 35-I35-SE	11/19/15	INV	ECS	Soil	Х	Х										
460-105921-1	ECS-EFA T PAD GRID 57-F	12/8/15	INV	ECS	Soil	Х											
460-105921-1LR	ECS-EFA T PAD GRID 57-F	12/8/15	MD	ECS	Soil	Х											

Lab ID	Field ID	Date	Туре	Media	Matrix	TCLP Pb	Total As and Pb	Total TAL Metals	Hg	Total DER10 Metals	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-105921-1MS	ECS-EFA T PAD GRID 57-F	12/8/15	MS	ECS	Soil	х											
460-105921-2	ECS-EFA T PAD GRID 48-F	12/8/15	INV	ECS	Soil	х											
460-105921-3	ECS-EFA T PAD GRID 49-F	12/8/15	INV	ECS	Soil	х											
460-105921-4	ECS-EFA T PAD GRID 47-F	12/8/15	INV	ECS	Soil	х											
460-105921-5	ECS-EFA T PAD GRID 63-F	12/8/15	INV	ECS	Soil	х											
460-105921-6	ECS-EFA T PAD GRID 53-F	12/8/15	INV	ECS	Soil	х											
460-105921-7	ECS-EFA T PAD GRID 52-F	12/8/15	INV	ECS	Soil	х											
460-105921-8	ECS-EFA T PAD GRID 54-F	12/8/15	INV	ECS	Soil	х											
460-105921-9	ECS-EFA T PAD GRID 59-F	12/8/15	INV	ECS	Soil	х											
460-105921-10	ECS-EFA T PAD GRID 58-F	12/8/15	INV	ECS	Soil	х											
460-105921-11	ECS-EFA T PAD GRID 64-F	12/8/15	INV	ECS	Soil	х											
460-105921-12	ECS-EFA T PAD GRID 65-F	12/8/15	INV	ECS	Soil	Х											
460-108300-1	BF-ORI-WT-2C-01-R1	2/1/16	INV	BF	Soil											х	
460-108300-2	BF-ORI-WT-2C-01-R2	2/1/16	INV	BF	Soil											х	

BF - Backfill Sample MD – Matrix Duplicate Sample (unspiked)

ECS - Excavation Confirmation Sample MS - Matrix Spike Sample

FD - Field Duplicate Sample MSD - Matrix Spike Duplicate Sample

INV - Investigative Sample TB - Trip Blank

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

- TCLP Pb: 1311/3010A/6010C for Lead in leachates of soil samples
- Total As and Pb: 3050B/ 6010C for Arsenic and Lead in soil samples
- Total TAL Metals: 3050B/ 6010C for 22 ICP-AES Target Analyte List (TAL) Metals (Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc) in soil samples
- Hg: 7471B for total Mercury in soil samples
- Total DER10 Metals: 3050B/ 6010C for 12 ICP-AES NYSDEC DER-10 Appendix 5 Metals (Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Lead, Manganese, Nickel, Selenium, Silver, and Zinc) in soil samples
- Cr III/VI: 3060A/7196A for Trivalent Chromium and Hexavalent Chromium in soil samples
- PEST: 3546/3620C/8081B for 15 NYSDEC DER-10 Appendix 5 pesticides plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene in soil samples
- PCB: 3546/ 3665A/ 8082A for 7 Aroclors in soil samples
- HERB: 8151A for Silvex (2,4,5-TP) in soil samples
- VOC: 5035/8260C for 30 NYSDEC DER-10 Appendix 5 volatile organic compounds (VOCs) in soil samples and 5030B/ 8260C for 30 VOCs in aqueous trip blanks
- SVOC: 3546/8270D for 20 NYSDEC DER-10 Appendix 5 semivolatile organic compounds (SVOCs) plus Dibenzofuran and Hexachlorobenzene in soil samples
- CN: 9012B for Cyanide in soil samples

TABLE 2 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements or because the concentration is below the reporting limit. Directional bias cannot be determined
- Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>J/J+ and R>UJ)

TABLE 3 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples September 2015 to February 2016

QC DEFICIENCIES AND DATA QUALIFICATION ACTIONS

				Method		D	ate and Tin	ne	GC			Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
								MATRIX	DUPL	ICAT	E (MD) PRECISION				•		
460-	ECS-WSTREAM-	LR		3050B	6010C		10/17/15	10/18/15	NA	4	CALCIUM				20	Poor matrix duplicate	none (results <5xRL and
102990-	36+50-F-						18:47:00	13:32:00								precision (29 RPD)	absolute difference <2xRL)
3LR	20151016LR																
460-	ECS-WSTREAM-	LR		3050B	6010C		10/29/15	10/30/15	NA	4	ARSENIC	J			20	Poor matrix duplicate	none (results <5xRL and
103552-	41+50-SE-						19:07:00	11:04:00								precision (29 RPD)	absolute difference <2xRL)
2LR	20151027LR																
			•					FIELD I	DUPLI	CAT	E (FD) PRECISION						
460-	DS-AREA 29-	FD	1311	3010A	6010C	10/18/15	10/19/15	10/19/15	NA	5	TCLP LEAD				35	Poor field duplicate	J/UJ to detects/NDs for
102990-	F26-SN-X-					17:00:00	10:59:00	23:12:00								precision (absolute	original and duplicate
2	20151016															difference > 2xRL), use	sample
																higher value from	
																original sample	
460-	ECS-AREA36-	FD		3050B	6010C		10/25/15	10/26/15	NA	4	LEAD				35	Poor field duplicate	J/UJ to detects/NDs for
103393-	H37-F-X-						16:17:00	12:14:00								precision (36 RPD), use	original and duplicate
3	20151023															higher result from field	sample
																duplicate	
	I	ı	1	T	ı						SPIKE (LCS) ACCURAC	CY		ı		T	I
4603311	4603311344A20	BS		METH	9012		10/25/15	10/25/15	NA	20	CYANIDE		3.5	121.4		Extremely low LCS-	L/UJ to detects/NDs for
344A20				OD			11:23:00	13:08:00								SRM recovery (19%) -	samples digested in the
																within vendor limits but	same batch (Note: The low
																<50%	and high level LCS pass at
																	105% and 100%.)
4603338	4603338494A20	BS		METH	9012		11/07/15	11/07/15	NA	20	CYANIDE		3.5	121.4		Extremely low LCS-	L/UJ to detects/NDs for
494A20				OD			09:00:00	10:40:00								SRM recovery (19.6%) -	samples digested in the
																within vendor limits but	same batch (Note: The low
																<50%	and high level LCS pass at
																	108% and 102%.)

Lab ID	Sample Code	Tuma		Method		D	ate and Tin	ne	GC	DF	Amaluta	Lab	Spk	Spk	RPD	QC Issue	DVOs Ameliad
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	ы	Analyte	Qual	LCL	UCL	CL	QC ISSUE	DVQs Applied
								MATE	RIX SF	PIKE	(MS) ACCURACY						
460-	DS-AREA28-J29-	MS		3050B	6010C		09/25/15	09/26/15	NA	4	LEAD		75	125		High matrix spike	None (check waived
101657-	SS-						17:10:00	19:18:00								recovery (131%)	because unspiked sample
4MS	20150923MS-																conc > 4x spike amount),
	20150923																PDS also waived, SD
																	passes at 3.7%
460-	ECS-AREA29-	MS		3050B	6010C		09/25/15	09/26/15	NA	4	ALUMINUM		75	125		High matrix spike	None (check waived
101657-	G26-F-R-						07:28:00	13:32:00								recovery (1374%)	because unspiked sample
1MS	20150923MS																conc > 4x spike amount),
																	PDS also waived, SD
																	passes at 0.37%
460-	ECS-AREA29-	MS		3050B	6010C		09/25/15	09/26/15	NA	4	ANTIMONY	N	75	125		Low matrix spike	L/UJ to detects/NDs for
101657-	G26-F-R-						07:28:00	13:32:00								recovery (51%)	ECS samples digested in
1MS	20150923MS																the same batch (PDS
																	passes at 94%)
460-	ECS-AREA29-	MS		3050B	6010C		09/25/15	09/26/15	NA	4	IRON		75	125		High matrix spike	None (check waived
101657-	G26-F-R-						07:28:00	13:32:00								recovery (3199%)	because unspiked sample
1MS	20150923MS																conc > 4x spike amount),
																	PDS also waived, SD
																	passes at 2.2%
460-	ECS-AREA29-	MS		3050B	6010C		09/25/15	09/26/15	NA	4	MANGANESE		75	125		Low matrix spike	None (check waived
101657-	G26-F-R-						07:28:00	13:32:00								recovery (23%)	because unspiked sample
1MS	20150923MS																conc > 4x spike amount),
																	PDS passes at 110%
460-	ECS-WSTREAM-	MS		3050B	6010C		10/17/15	10/18/15	NA	4	ALUMINUM		75	125		High matrix spike	None (check waived
102990-	36+50-F-						18:47:00	13:28:00								recovery (127%)	because unspiked sample
3MS	20151016MS																conc > 4x spike amount),
																	PDS also waived, SD
																	passes at 1.2%
460-	ECS-WSTREAM-	MS		3050B	6010C		10/17/15	10/18/15	NA	4	ANTIMONY	N	75	125		Low matrix spike	L/UJ to detects/NDs for
102990-	36+50-F-						18:47:00	13:28:00								recovery (62%)	ECS samples digested in
3MS	20151016MS																the same batch (PDS
<u> </u>									<u> </u>								passes at 83%)
460-	ECS-WSTREAM-	MS		3050B	6010C		10/17/15	10/18/15	NA	4	CALCIUM	N	75	125		Low matrix spike	L/UJ to detects/NDs for
102990-	36+50-F-						18:47:00	13:28:00								recovery (63%)	ECS samples digested in
3MS	20151016MS																the same batch (PDS
									1								passes at 89%)

Lab ID	Sample Code	Туре		Method		D	ate and Tin	ne	GC	DF	Analyte	Lab	Spk	Spk	RPD	QC Issue	DVQs Applied
Lab ID	Sample Code	Type	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC ISSUE	DVQS Applied
460-	ECS-WSTREAM-	MS		3050B	6010C		10/17/15	10/18/15	NA	4	IRON		75	125		Low matrix spike	None (check waived
102990-	36+50-F-						18:47:00	13:28:00								recovery (-123%)	because unspiked sample
3MS	20151016MS																conc > 4x spike amount),
																	PDS also waived, SD
																	passes at 2.4%
460-	ECS-WSTREAM-	MS		3050B	6010C		10/17/15	10/18/15	NA	4	MANGANESE		75	125		Low matrix spike	None (check waived
102990-	36+50-F-						18:47:00	13:28:00								recovery (-129%)	because unspiked sample
3MS	20151016MS																conc > 4x spike amount),
																	PDS passes at 81%
460-	ECS-WSTREAM-	MS		3050B	6010C		10/29/15	10/29/15	NA	4	LEAD		75	125		High matrix spike	None (check waived
103533-	40+00-F-						04:50:00	12:06:00								recovery (167%)	because unspiked sample
1MS	20151026MS																conc > 4x spike amount),
																	PDS passes at 87%
460-	BF-5L-GF-8c-01-	SD		3546	8270D		10/28/15	10/29/15	NA	1	2-METHYLPHENOL	Т	56	99	30	Low average MS/MSD	L/UJ to detects/NDs for BF-
103314-	20151022SD						09:40:00	11:30:00			(O-CRESOL)					recovery (55.5%)	5L-GF samples digested in
6SD																	the same batch
460-	BF-5L-GF-8c-01-	SD		3546	8270D		10/28/15	10/29/15	NA	1	BENZO(B)	Т	67	116	30	Low average MS/MSD	L/UJ to detects/NDs for BF-
103314-	20151022SD						09:40:00	11:30:00			FLUORANTHENE					recovery (66.5%)	5L-GF samples digested in
6SD																	the same batch
460-	BF-5L-GF-8c-01-	MS/		3546	8270D		10/28/15	10/29/15	NA	1	BENZO(K)	Т	65	114		Low average MS/MSD	L/UJ to detects/NDs for BF-
103314-	20151022MS/SD	SD					09:40:00	11:06:00			FLUORANTHENE					recovery (61%)	5L-GF samples digested in
6MS																	the same batch
460-	BF-5L-GF-8c-01-	SD		3546	8270D		10/28/15	10/29/15	NA	1	DIBENZOFURAN	Т	62	102	30	Low matrix spike	None (average MS/MSD
103314-	20151022SD						09:40:00	11:30:00								duplicate recovery	recovery (62%) within
6SD																(61%)	laboratory limits)
460-	BF-5L-GF-8c-01-	MS/		3546	8270D		10/28/15	10/29/15	NA	1	FLUORENE	Т	65	108		Low average MS/MSD	L/UJ to detects/NDs for BF-
103314-	20151022MS/SD	SD					09:40:00	11:06:00								recovery (62%)	5L-GF samples digested in
6MS																	the same batch
460-	BF-5L-GF-8c-01-	SD		3546	8270D		10/28/15	10/29/15	NA	1	HEXACHLORO	Т	65	117	30	Low average MS/MSD	L/UJ to detects/NDs for BF-
103314-	20151022SD						09:40:00	11:30:00			BENZENE					recovery (64%)	5L-GF samples digested in
6SD																	the same batch
460-	BF-5L-GF-8c-01-	MS/		3546	8270D		10/28/15	10/29/15	NA	1	PENTACHLORO	Т	47	115		Low average MS/MSD	L/UJ to detects/NDs for BF-
103314-	20151022MS/SD	SD					09:40:00	11:06:00			PHENOL					recovery (21.5%)	5L-GF samples digested in
6MS																	the same batch
460-	BF-5L-GF-8c-01-	SD		3546	8270D		10/28/15	10/29/15	NA	1	PHENOL	Т	55	99	30	Low matrix spike	None (average MS/MSD
103314-	20151022SD						09:40:00	11:30:00								duplicate recovery	recovery (55%) within
6SD																(54%)	laboratory limits)

				Method		D	ate and Tir	ne	GC			Lab	Spk	Spk	RPD		
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460-	CC-PSL-4c-001-	MS/		3546	8270D		11/12/15	11/13/15	NA	1	ACENAPHTHENE	Т	59	102		Low average MS/MSD	L/UJ to detects/NDs for
104045-	20151104MS/SD	SD					14:45:00	07:05:00								recovery (51%)	CC-PSL samples digested
3MS																	in the same batch
460-	CC-PSL-4c-001-	MS/		3546	8270D		11/12/15	11/13/15	NA	1	ACENAPHTHYLENE	Т	63	102		Low average MS/MSD	L/UJ to detects/NDs for
104045-	20151104MS/SD	SD					14:45:00	07:05:00								recovery (59.5%)	CC-PSL samples digested
3MS																	in the same batch
460-	CC-PSL-4c-001-	SD		3546	8270D		11/12/15	11/13/15	NA	1	ANTHRACENE	Т	66	105	30	Low average MS/MSD	L/UJ to detects/NDs for
104045-	20151104SD						14:45:00	07:31:00								recovery (65.5%)	CC-PSL samples digested
3SD																	in the same batch
460-	CC-PSL-4c-001-	MS/		3546	8270D		11/12/15	11/13/15	NA	1	DIBENZOFURAN	Т	62	102		Low average MS/MSD	L/UJ to detects/NDs for
104045-	20151104MS/SD	SD					14:45:00	07:05:00								recovery (57%)	CC-PSL samples digested
3MS																	in the same batch
460-	CC-PSL-4c-001-	MS/		3546	8270D		11/12/15	11/13/15	NA	1	FLUORENE	Т	65	108		Low average MS/MSD	L/UJ to detects/NDs for
104045-	20151104MS/SD	SD					14:45:00	07:05:00								recovery (56%)	CC-PSL samples digested
3MS																	in the same batch
460-	CC-PSL-4c-001-	SD		3546	8270D		11/12/15	11/13/15	NA	1	NAPHTHALENE	Т	64	99	30	Low matrix spike	None (average MS/MSD
104045-	20151104SD						14:45:00	07:31:00								duplicate recovery	recovery (64%) within
3SD	00 001 4- 004	MC/		25.40	0070D		44/40/45	44/40/45	NIA	_	DENITACHII ODO	Т	47	445		(63%)	laboratory limits)
460-	CC-PSL-4c-001-	MS/ SD		3546	8270D		11/12/15	11/13/15	NA	1	PENTACHLORO	ı	47	115		Extremely low average	L/R to detects/NDs for CC
104045- 3MS	20151104MS/SD	20					14:45:00	07:05:00			PHENOL					MS/MSD recovery (18%)	samples digested in the same batch
460-	CC-PSL-4c-001-	SD		3546	8270D		11/12/15	11/13/15	NA	1	PHENANTHRENE	Т	66	105	30	Low average MS/MSD	L/UJ to detects/NDs for
104045-	20151104SD	30		3340	0210D		14:45:00	07:31:00	INA	'	FILIMANTINENE	'	00	103	30	recovery (65%)	CC-PSL samples digested
3SD	201311043D						14.45.00	07.31.00								recovery (0570)	in the same batch
300				I	I			THEO	RFTI	CAL F	RESULT VALUES						in the same baten
460-	ECS-WSTREAM-	N	1311	3010A	6010C	10/21/15	10/22/15	10/23/15	NA	5	TCLP LEAD					Metals leach-to-total	J to this detect
103083-	37+00-F-					17:30:00	22:07:00	13:21:00								balance greater than	
1	20151019															theoretical	
460-	ECS-WSTREAM-	N		3050B	6010C		10/21/15	10/21/15	NA	4	LEAD					Metals leach-to-total	J to this detect
103083-	37+00-F-						07:30:00	16:53:00								balance greater than	
1	20151019															theoretical	
460-	ECS-WSTREAM-	N	1311	3010A	6010C	11/06/15	11/07/15	11/08/15	NA	5	TCLP LEAD					Metals leach-to-total	J to this detect
103967-	45+00-SW-					17:30:00	17:37:00	20:46:00								balance greater than	
6	20151103															theoretical	
460-	ECS-WSTREAM-	N		3050B	6010C		11/05/15	11/05/15	NA	4	LEAD					Metals leach-to-total	J to this detect
103967-	45+00-SW-						07:35:00	23:41:00								balance greater than	
6	20151103															theoretical	

DATA USABILITY SUMMARY REPORT

		_		Method		D	ate and Tin	ne	GC			Lab	Spk	Spk	RPD		51/2 4 11 1
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	Col	DF	Analyte	Qual	LCL	UCL	CL	QC Issue	DVQs Applied
460-	ECS-AREA 37-	N	1311	3010A	6010C	11/05/15	11/09/15	11/09/15	NA	5	TCLP LEAD					Metals leach-to-total	J to this detect
103970-	I37-SE-20151103					17:00:00	09:42:00	22:24:00								balance greater than	
3																theoretical	
460-	ECS-AREA 37-	N		3050B	6010C		11/05/15	11/06/15	NA	4	LEAD					Metals leach-to-total	J to this detect
103970-	I37-SE-20151103						07:39:00	10:16:00								balance greater than	
3																theoretical	
460-	ECS-AREA 35-	N	1311	3010A	6010C	11/22/15	3/4/16	3/4/16	NA	5	TCLP LEAD					Metals leach-to-total	J to this detect
104950-	I35-SE-20151119					17:30:00	08:29:00	20:02:00								balance greater than	
2																theoretical	
460-	ECS-AREA 35-	N		3050B	6010C		11/21/15	11/22/15	NA	4	LEAD					Metals leach-to-total	J to this detect
104950- 2	I35-SE-20151119						13:27:00	13:32:00								balance greater than	
								CAL	IDDAT	TION	VERIFICATION					theoretical	
CCV	CCV 460-	CCV			8151A			10/27/15	2C	1 1011	SILVEX (2,4,5-TP)	*	-15	+15		Calibration drift	H to detects quantitated on
460-	331517/12	CCV			0131A			12:58:00	20	'	SILVEX (2,4,5-1P)		-15	+15		secondary column	this column for samples
331517/	331317/12							12.30.00								(%D= +16.0%)	analyzed after and before
12																(702-110.070)	this CCV (none)
CCV	CCV 460-	CCV			8151A			10/27/15	2C	1	SILVEX (2,4,5-TP)	*	-15	+15		Calibration drift	H to detects quantitated on
460-	331545/12							12:58:00								secondary column	this column for samples
331545/																(%D= +16.0%)	analyzed after and before
12																	this CCV (none)
CCV	CCV 460-	CCV			8151A			10/27/15	2C	1	SILVEX (2,4,5-TP)	*	-15	+15		Calibration drift	H to detects quantitated on
460-	331545/22							15:48:00								secondary column	this column for samples
331545/																(%D= +20.2%)	analyzed after and before
22																	this CCV (none)
CCVIS	CCVIS 460-	CCV			8260C			11/11/15	NA	1	1,4-DIOXANE (P-		-20	+20		Calibration drift (%D=	H to detects only since <
460-	334634/2							09:38:00			DIOXANE)					+21.7%)	+40% for samples analyzed
334634/																	this shift (none)
2	CCVIS 460-	CCV			0070D			40/00/45	NA	1	DENITACHII ODO	*	00	.00		O-111	L to detects, UJ to NDs
CCVIS 460-		CCV			8270D			10/29/15 01:19:00	NA	1	PENTACHLORO PHENOL	-	-20	+20		Calibration drift (%D= -	·
331907/	331907/2							01:19:00			PHENOL					21.3%)	samples analyzed this shift (all ND)
2																	(all IVD)
CCVIS	CCVIS 460-	CCV			8270D			11/13/15	NA	1	INDENO(1,2,3-C,D)	*	-20	+20		Calibration drift (%D=	H to detects only since <
460-	335113/2							03:58:00			PYRENE					+34.0%)	+40% for samples analyzed
335113/								1								,	this shift (none)
2																	, ,

CL - Control Limit

LCL - Lower Control Limit

DF - Dilution Factor

UCL - Upper Control Limit

TABLE 4

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Phase II-B Remedial Design/ Remedial Action
Backfill and Post-Excavation Confirmation Samples
September 2015 to February 2016

QUALIFIED RESULTS FOR FIELD SAMPLES

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
	,	TCLP METALS			
460-101657-1	ECS-AREA29-G26-F-R- 20150923	TCLP LEAD	31.2 J ug/l	J	Result between MDL and RL
460-101657-2	ECS-AREA27-I28-F-20150923	TCLP LEAD	35.5 J ug/l	J	Result between MDL and RL
460-101657-3	ECS-AREA27-I28-F-X-20150923	TCLP LEAD	43.7 J ug/l	J	Result between MDL and RL
460-101657-5	ECS-AREA28-I/J29-F-20150923	TCLP LEAD	26.2 J ug/l	J	Result between MDL and RL
460-102202-4	ECS-AREA 33-F35-SW- 20151002	TCLP LEAD	30.7 J ug/l	J	Result between MDL and RL
460-102319-2	ECS-AREA 33-G35-F-20151006	TCLP LEAD	36.4 J ug/l	J	Result between MDL and RL
460-102383-1	ECS-AREA 33-G36-F-20151007	TCLP LEAD	27.0 J ug/l	J	Result between MDL and RL
460-102383-4	ECS-AREA 33-H35-F-20151007	TCLP LEAD	22.1 J ug/l	J	Result between MDL and RL
460-102383-5	ECS-AREA 33-H36-SS- 20151007	TCLP LEAD	30.9 J ug/l	J	Result between MDL and RL
460-102494-15	ECS-WSTREAM-32+00-SE- 20151008	TCLP LEAD	24.0 J ug/l	J	Result between MDL and RL
460-102494-2	ECS-WSTREAM-30+00-SW- 20151008	TCLP LEAD	47.6 J ug/l	J	Result between MDL and RL
460-102494-7	ECS-WSTREAM-31+00-F- 20151008	TCLP LEAD	41.3 J ug/l	J	Result between MDL and RL
460-102570-7	ECS-WSTREAM-33+50-F- 20151009	TCLP LEAD	35.4 J ug/l	J	Result between MDL and RL
460-102683-15	ECS-WSTREAM-36+00-SE- 20151012	TCLP LEAD	38.4 J ug/l	J	Result between MDL and RL
460-102683-2	ECS-WSTREAM-34+00-F- 20151012	TCLP LEAD	35.5 J ug/l	J	Result between MDL and RL
460-102683-8	ECS-WSTREAM-35+00-F- 20151012	TCLP LEAD	34.3 J ug/l	J	Result between MDL and RL
460-102683-9	ECS-WSTREAM-35+00-SE- 20151012	TCLP LEAD	37.3 J ug/l	J	Result between MDL and RL
460-102990-1	DS-AREA 29-F26-SN-20151016	TCLP LEAD	267 ug/l	J	Poor field duplicate precision (absolute difference > 2xRL), use higher value from original sample
460-102990-2	DS-AREA 29-F26-SN-X- 20151016	TCLP LEAD	62.3 ug/l	٦	Poor field duplicate precision (absolute difference > 2xRL), use higher value from original sample
460-102990-5	ECS-WSTREAM-36+50-SW- 20151016	TCLP LEAD	37.9 J ug/l	J	Result between MDL and RL
460-103083-1	ECS-WSTREAM-37+00-F- 20151019	TCLP LEAD	1940 ug/l	J	Metals leach-to-total balance greater than theoretical
460-103083-3	ECS-WSTREAM-37+00-SW- 20151019	TCLP LEAD	32.2 J ug/l	J	Result between MDL and RL
460-103322-2	ECS-WSTREAM-38+00-SE- 20151022	TCLP LEAD	27.6 J ug/l	J	Result between MDL and RL
460-103322-4	ECS-WSTREAM-38+50-F- 20151022	TCLP LEAD	23.0 J ug/l	J	Result between MDL and RL
460-103322-5	ECS-WSTREAM-38+50-SE- 20151022	TCLP LEAD	23.3 J ug/l	J	Result between MDL and RL

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-103391-4	ECS-WSTREAM-39+50-F- 20151023	TCLP LEAD	27.2 J ug/l	J	Result between MDL and RL
460-103391-6	ECS-WSTREAM-39+50-SW- 20151023	TCLP LEAD	25.2 J ug/l	J	Result between MDL and RL
460-103393-3	ECS-AREA36-H37-F-X- 20151023	TCLP LEAD	25.1 J ug/l	J	Result between MDL and RL
460-103393-5	ECS-AREA36-I38-SS-20151023	TCLP LEAD	28.0 J ug/l	J	Result between MDL and RL
460-103533-3	ECS-WSTREAM-40+00-SW- 20151026	TCLP LEAD	25.7 J ug/l	J	Result between MDL and RL
460-103533-4	ECS-WSTREAM-40+50-F- 20151026	TCLP LEAD	26.6 J ug/l	J	Result between MDL and RL
460-103533-5	ECS-WSTREAM-40+50-SE- 20151026	TCLP LEAD	23.8 J ug/l	J	Result between MDL and RL
460-103533-6	ECS-WSTREAM-40+50-SW- 20151026	TCLP LEAD	25.0 J ug/l	J	Result between MDL and RL
460-103533-7	ECS-WSTREAM-41+00-F- 20151026	TCLP LEAD	48.6 J ug/l	J	Result between MDL and RL
460-103552-14	ECS-AREA35-H36-SS-20151027	TCLP LEAD	35.1 J ug/l	J	Result between MDL and RL
460-103552-15	ECS-AREA35-H35-SN- 20151027	TCLP LEAD	46.8 J ug/l	J	Result between MDL and RL
460-103552-2	ECS-WSTREAM-41+50-SE- 20151027	TCLP LEAD	33.3 J ug/l	J	Result between MDL and RL
460-103552-4	ECS-WSTREAM-42+00-F- 20151027	TCLP LEAD	23.0 J ug/l	J	Result between MDL and RL
460-103552-5	ECS-WSTREAM-42+00-SE- 20151027	TCLP LEAD	38.5 J ug/l	J	Result between MDL and RL
460-103552-6	ECS-WSTREAM-42+00-SW- 20151027	TCLP LEAD	43.7 J ug/l	J	Result between MDL and RL
460-103667-1	ECS-WSTREAM-43+50-F- 20151028	TCLP LEAD	42.2 J ug/l	J	Result between MDL and RL
460-103667-3	ECS-WSTREAM-43+50-SN- 20151028	TCLP LEAD	31.2 J ug/l	J	Result between MDL and RL
460-103667-7	ECS-WSTREAM-44+00-SN- 20151028	TCLP LEAD	36.1 J ug/l	J	Result between MDL and RL
460-103860-1	ECS-WSTREAM-42+00-SW-R- 20151102	TCLP LEAD	31.2 J ug/l	J	Result between MDL and RL
460-103967-16	ECS-WSTREAM-46+50-SW- 20151103	TCLP LEAD	22.9 J ug/l	J	Result between MDL and RL
460-103967-6	ECS-WSTREAM-45+00-SW- 20151103	TCLP LEAD	3220 ug/l	J	Metals leach-to-total balance greater than theoretical
460-103967-7	ECS-WSTREAM-45+50-F- 20151103	TCLP LEAD	28.3 J ug/l	J	Result between MDL and RL
460-103970-1	ECS-AREA 37-I37-F-20151103	TCLP LEAD	31.8 J ug/l	J	Result between MDL and RL
460-103970-3	ECS-AREA 37-I37-SE-20151103	TCLP LEAD	1420 ug/l	J	Metals leach-to-total balance greater than theoretical
460-104950-2	ECS-AREA 35-I35-SE-20151119	TCLP LEAD	648 ug/l	J	Metals leach-to-total balance greater than theoretical
460-105921-10	ECS-EFA T PAD GRID 58-F- 20151208	TCLP LEAD	30.9 J ug/l	J	Result between MDL and RL
460-105921-4	ECS-EFA T PAD GRID 47-F- 20151208	TCLP LEAD	36.0 J ug/l	J	Result between MDL and RL
460-105921-5	ECS-EFA T PAD GRID 63-F- 20151208	TCLP LEAD	27.8 J ug/l	J	Result between MDL and RL
460-105921-6	ECS-EFA T PAD GRID 53-F- 20151208	TCLP LEAD	45.8 J ug/l	J	Result between MDL and RL
460-105921-8	ECS-EFA T PAD GRID 54-F- 20151208	TCLP LEAD	21.4 J ug/l	J	Result between MDL and RL
460-105921-9	ECS-EFA T PAD GRID 59-F- 20151208	TCLP LEAD	34.2 J ug/l	J	Result between MDL and RL
		TOTAL METAL	S		

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-101657-1	ECS-AREA29-G26-F-R- 20150923	ANTIMONY	4.3 U mg/kg	UJ	Low matrix spike recovery (51%)
460-101657-1	ECS-AREA29-G26-F-R- 20150923	CALCIUM	305 J mg/kg	J	Result between MDL and RL
460-101657-1	ECS-AREA29-G26-F-R- 20150923	COBALT	6.9 J mg/kg	J	Result between MDL and RL
460-101657-1	ECS-AREA29-G26-F-R- 20150923	POTASSIUM	736 J mg/kg	J	Result between MDL and RL
460-102383-4	ECS-AREA 33-H35-F-20151007	ARSENIC	2.6 J mg/kg	J	Result between MDL and RL
460-102383-5	ECS-AREA 33-H36-SS- 20151007	POTASSIUM	540 J mg/kg	J	Result between MDL and RL
460-102383-5	ECS-AREA 33-H36-SS- 20151007	SODIUM	109 J mg/kg	J	Result between MDL and RL
460-102494-13	ECS-WSTREAM-32+00-F- 20151008	ARSENIC	2.2 J mg/kg	J	Result between MDL and RL
460-102494-8	ECS-WSTREAM-31+00-SW- 20151008	ARSENIC	2.3 J mg/kg	J	Result between MDL and RL
460-102570-4	ECS-WSTREAM-33+00-F- 20151009	ARSENIC	2.4 J mg/kg	J	Result between MDL and RL
460-102570-5	ECS-WSTREAM-33+00-SW- 20151009	ARSENIC	2.3 J mg/kg	J	Result between MDL and RL
460-102570-7	ECS-WSTREAM-33+50-F- 20151009	ARSENIC	2.2 J mg/kg	J	Result between MDL and RL
460-102570-9	ECS-WSTREAM-33+50-SE- 20151009	ARSENIC	2.2 J mg/kg	J	Result between MDL and RL
460-102683-1	ECS-WSTREAM-34+00-SW- 20151012	ARSENIC	1.5 J mg/kg	J	Result between MDL and RL
460-102683-10	ECS-WSTREAM-35+50-SW- 20151012	ARSENIC	2.7 J mg/kg	J	Result between MDL and RL
460-102683-11	ECS-WSTREAM-35+50-F- 20151012	ARSENIC	2.1 J mg/kg	J	Result between MDL and RL
460-102683-12	ECS-WSTREAM-35+50-SE- 20151012	ARSENIC	2.5 J mg/kg	J	Result between MDL and RL
460-102683-13	ECS-WSTREAM-36+00-SW- 20151012	ARSENIC	2.1 J mg/kg	J	Result between MDL and RL
460-102683-14	ECS-WSTREAM-36+00-F- 20151012	ARSENIC	2.0 J mg/kg	J	Result between MDL and RL
460-102683-15	ECS-WSTREAM-36+00-SE- 20151012	ARSENIC	2.9 J mg/kg	J	Result between MDL and RL
460-102683-3	ECS-WSTREAM-34+00-SE- 20151012	ARSENIC	1.2 J mg/kg	J	Result between MDL and RL
460-102683-4	ECS-WSTREAM-34+50-SW- 20151012	ARSENIC	1.6 J mg/kg	J	Result between MDL and RL
460-102683-5	ECS-WSTREAM-34+50-F- 20151012	ARSENIC	1.3 J mg/kg	J	Result between MDL and RL
460-102683-6	ECS-WSTREAM-34+50-SE- 20151012	ARSENIC	1.3 J mg/kg	J	Result between MDL and RL
460-102683-8	ECS-WSTREAM-35+00-F- 20151012	ARSENIC	1.6 J mg/kg	J	Result between MDL and RL
460-102990-1	DS-AREA 29-F26-SN-20151016	COBALT	5.6 J mg/kg	J	Result between MDL and RL
460-102990-1	DS-AREA 29-F26-SN-20151016	POTASSIUM	731 J mg/kg	J	Result between MDL and RL
460-102990-1	DS-AREA 29-F26-SN-20151016	SELENIUM	2.9 J mg/kg	J	Result between MDL and RL
460-102990-3	ECS-WSTREAM-36+50-F- 20151016	ANTIMONY	3.9 U mg/kg	UJ	Low matrix spike recovery (62%)
460-102990-3	ECS-WSTREAM-36+50-F- 20151016	CALCIUM	2910 mg/kg	L	Low matrix spike recovery (63%)
460-102990-3	ECS-WSTREAM-36+50-F- 20151016	POTASSIUM	905 J mg/kg	J	Result between MDL and RL
460-102990-3	ECS-WSTREAM-36+50-F- 20151016	SODIUM	82.7 J mg/kg	J	Result between MDL and RL

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-102990-5	ECS-WSTREAM-36+50-SW- 20151016	ARSENIC	2.8 J mg/kg	J	Result between MDL and RL
460-103083-1	ECS-WSTREAM-37+00-F- 20151019	LEAD	12.1 mg/kg	J	Metals leach-to-total balance greater than theoretical
460-103083-5	ECS-WSTREAM-37+50-F- 20151019	ARSENIC	3.3 J mg/kg	J	Result between MDL and RL
460-103083-7	ECS-WSTREAM-37+50-SW- 20151019	POTASSIUM	1010 J mg/kg	J	Result between MDL and RL
460-103083-7	ECS-WSTREAM-37+50-SW- 20151019	SELENIUM	2.6 J mg/kg	J	Result between MDL and RL
460-103314-6	BF-5L-GF-8c-01-20151022	BARIUM	41.8 J mg/kg	J	Result between MDL and RL
460-103393-2	ECS-AREA36-H37-F-20151023	LEAD	13.5 mg/kg	J	Poor field duplicate precision (36 RPD), use higher result from field duplicate
460-103393-3	ECS-AREA36-H37-F-X- 20151023	LEAD	19.4 mg/kg	J	Poor field duplicate precision (36 RPD), use higher result from field duplicate
460-103393-5	ECS-AREA36-I38-SS-20151023	ARSENIC	3.0 J mg/kg	J	Result between MDL and RL
460-103393-5	ECS-AREA36-I38-SS-20151023	BARIUM	37.6 J mg/kg	J	Result between MDL and RL
460-103393-5	ECS-AREA36-I38-SS-20151023	BERYLLIUM	0.36 J mg/kg	J	Result between MDL and RL
460-103393-5	ECS-AREA36-I38-SS-20151023	CALCIUM	335 J mg/kg	J	Result between MDL and RL
460-103393-5	ECS-AREA36-I38-SS-20151023	COBALT	3.6 J mg/kg	J	Result between MDL and RL
460-103393-5	ECS-AREA36-I38-SS-20151023	NICKEL	8.3 J mg/kg	J	Result between MDL and RL
460-103393-5	ECS-AREA36-I38-SS-20151023	POTASSIUM	294 J mg/kg	J	Result between MDL and RL
460-103533-4	ECS-WSTREAM-40+50-F- 20151026	BARIUM	35.3 J mg/kg	J	Result between MDL and RL
460-103533-4	ECS-WSTREAM-40+50-F- 20151026	COBALT	8.6 J mg/kg	J	Result between MDL and RL
460-103533-4	ECS-WSTREAM-40+50-F- 20151026	POTASSIUM	939 J mg/kg	J	Result between MDL and RL
460-103533-5	ECS-WSTREAM-40+50-SE- 20151026	ARSENIC	2.3 J mg/kg	J	Result between MDL and RL
460-103533-6	ECS-WSTREAM-40+50-SW- 20151026	ARSENIC	2.0 J mg/kg	J	Result between MDL and RL
460-103533-7	ECS-WSTREAM-41+00-F- 20151026	ARSENIC	1.6 J mg/kg	J	Result between MDL and RL
460-103533-9	ECS-WSTREAM-41+00-SE-X- 20151026	ARSENIC	1.5 J mg/kg	J	Result between MDL and RL
460-103552-12	ECS-WSTREAM-43+00-SW- 20151027	ARSENIC	2.2 J mg/kg	J	Result between MDL and RL
460-103552-13	ECS-AREA35-H35-F-20151027	COBALT	4.8 J mg/kg	J	Result between MDL and RL
460-103552-13	ECS-AREA35-H35-F-20151027	COPPER	4.5 J mg/kg	J	Result between MDL and RL
460-103552-13	ECS-AREA35-H35-F-20151027	POTASSIUM	653 J mg/kg	J	Result between MDL and RL
460-103552-15	ECS-AREA35-H35-SN- 20151027	ARSENIC	2.6 J mg/kg	J	Result between MDL and RL
460-103552-4	ECS-WSTREAM-42+00-F- 20151027	ARSENIC	1.7 J mg/kg	J	Result between MDL and RL
460-103667-1	ECS-WSTREAM-43+50-F- 20151028	ARSENIC	2.7 J mg/kg	J	Result between MDL and RL
460-103667-7	ECS-WSTREAM-44+00-SN- 20151028	ARSENIC	2.8 J mg/kg	J	Result between MDL and RL
460-103967-6	ECS-WSTREAM-45+00-SW- 20151103	LEAD	15.2 mg/kg	J	Metals leach-to-total balance greater than theoretical
460-103970-1	ECS-AREA 37-I37-F-20151103	ARSENIC	3.5 J mg/kg	J	Result between MDL and RL
460-103970-2	ECS-AREA 37-I37-SS-20151103	ARSENIC	2.9 J mg/kg	J	Result between MDL and RL
460-103970-2	ECS-AREA 37-I37-SS-20151103	COBALT	10.4 J mg/kg	J	Result between MDL and RL
460-103970-2	ECS-AREA 37-I37-SS-20151103	POTASSIUM	809 J mg/kg	J	Result between MDL and RL
460-103970-3	ECS-AREA 37-I37-SE-20151103	ARSENIC	2.8 J mg/kg	J	Result between MDL and RL
460-103970-3	ECS-AREA 37-I37-SE-20151103	LEAD	19.4 mg/kg	J	Metals leach-to-total balance
					greater than theoretical

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-104045-6	CC-PSL-5c-001-20151104	BARIUM	38.7 J mg/kg	J	Result between MDL and RL
460-104950-2	ECS-AREA 35-I35-SE-20151119	LEAD	9.3 mg/kg	J	Metals leach-to-total balance
					greater than theoretical
		MERCURY	T		
460-103083-7	ECS-WSTREAM-37+50-SW- 20151019	MERCURY	0.018 J mg/kg	J	Result between MDL and RL
460-104045-3	CC-PSL-4c-001-20151104	MERCURY	0.013 J mg/kg	J	Result between MDL and RL
460-104045-6	CC-PSL-5c-001-20151104	MERCURY	0.013 J mg/kg	J	Result between MDL and RL
		LYCHLORINATED BIPHE			
460-103314-3	BF-5L-WT-10c-01-20151022	PCB-1248 (AROCLOR 1248)	62 J ug/kg	J	Result between MDL and RL
		ATILE ORGANIC COMPO			
460-104045-2	CC-PSL-4g-002-20151104	1,2,4- TRIMETHYLBENZENE	0.85 J ug/kg	J	Result between MDL and RL
460-104045-2	CC-PSL-4g-002-20151104	1,3,5-	0.33 J ug/kg	J	Result between MDL and RL
	G	TRIMETHYLBENZENE			
		(MESITYLENE)			
	SEMIVO	DLATILE ORGANIC COMP	OUNDS (SVOC)		
460-103314-3	BF-5L-WT-10c-01-20151022	BENZO(G,H,I)	38 J ug/kg	J	Result between MDL and RL
		PERYLENE			
460-103314-3	BF-5L-WT-10c-01-20151022	BENZO(K)	37 J ug/kg	J	Result between MDL and RL
		FLUORANTHENE			
460-103314-3	BF-5L-WT-10c-01-20151022	CHRYSENE	54 J ug/kg	J	Result between MDL and RL
460-103314-3	BF-5L-WT-10c-01-20151022	CRESOLS, M & P	16 J ug/kg	J	Result between MDL and RL
460-103314-3	BF-5L-WT-10c-01-20151022	FLUORANTHENE	83 J ug/kg	J	Result between MDL and RL
460-103314-3	BF-5L-WT-10c-01-20151022	INDENO(1,2,3-C,D) PYRENE	39 J ug/kg	J	Result between MDL and RL
460-103314-3	BF-5L-WT-10c-01-20151022	NAPHTHALENE	210 J ug/kg	J	Result between MDL and RL
460-103314-3	BF-5L-WT-10c-01-20151022	PENTACHLORO PHENOL	380 U ug/kg	UJ	Calibration drift (%D= -21.3%)
460-103314-3	BF-5L-WT-10c-01-20151022	PHENANTHRENE	46 J ug/kg	J	Result between MDL and RL
460-103314-3	BF-5L-WT-10c-01-20151022	PYRENE	100 J ug/kg	J	Result between MDL and RL
460-103314-6	BF-5L-GF-8c-01-20151022	2-METHYLPHENOL (O-CRESOL)	370 U ug/kg	UJ	Low average MS/MSD recovery (55.5%)
460-103314-6	BF-5L-GF-8c-01-20151022	ACENAPHTHENE	20 J ug/kg	J	Result between MDL and RL
460-103314-6	BF-5L-GF-8c-01-20151022	ACENAPHTHYLENE	9.9 J ug/kg	J	Result between MDL and RL
460-103314-6	BF-5L-GF-8c-01-20151022	BENZO(B) FLUORANTHENE	82 ug/kg	L	Low average MS/MSD recovery (66.5%)
460-103314-6	BF-5L-GF-8c-01-20151022	BENZO(G,H,I) PERYLENE	42 J ug/kg	J	Result between MDL and RL
460-103314-6	BF-5L-GF-8c-01-20151022	BENZO(K) FLUORANTHENE	28 J ug/kg	J	Low average MS/MSD recovery (61%); Result
460 402244 0	BF-5L-GF-8c-01-20151022	CHRYSENE	00 1~//		between MDL and RL Result between MDL and RL
460-103314-6 460-103314-6	BF-5L-GF-8c-01-20151022 BF-5L-GF-8c-01-20151022	DIBENZOFURAN	90 J ug/kg 15 J ug/kg	J	Result between MDL and RL
460-103314-6	BF-5L-GF-8c-01-20151022	FLUORANTHENE	190 J ug/kg	J	Result between MDL and RL
460-103314-6	BF-5L-GF-8c-01-20151022	FLUORENE	29 J ug/kg	J	Low average MS/MSD
400 103314 0	DI 32 GI 60 01 20101022	LOOKENE	25 5 ug/kg		recovery (62%); Result between MDL and RL
460-103314-6	BF-5L-GF-8c-01-20151022	HEXACHLORO	37 U ug/kg	UJ	Low average MS/MSD
460-103314-6	BF-5L-GF-8c-01-20151022	BENZENE NAPHTHALENE	190 J ug/kg	J	recovery (64%) Result between MDL and RL
460-103314-6	BF-5L-GF-8c-01-20151022 BF-5L-GF-8c-01-20151022	PENTACHLORO	290 U ug/kg	UJ	Calibration drift (%D= -21.3%);
400-103314-0	Br-3L-Gr-60-01-20131022	PHENOL	290 0 ug/kg	03	Low average MS/MSD recovery (21.5%)
460-103314-6	BF-5L-GF-8c-01-20151022	PHENANTHRENE	180 J ug/kg	J	Result between MDL and RL
460-103314-6	BF-5L-GF-8c-01-20151022	PYRENE	150 J ug/kg	J	Result between MDL and RL
460-104045-3	CC-PSL-4c-001-20151104	ACENAPHTHENE	340 U ug/kg	UJ	Low average MS/MSD recovery (51%)

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-104045-3	CC-PSL-4c-001-20151104	ACENAPHTHYLENE	340 U ug/kg	UJ	Low average MS/MSD recovery (59.5%)
460-104045-3	CC-PSL-4c-001-20151104	ANTHRACENE	340 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-104045-3	CC-PSL-4c-001-20151104	DIBENZOFURAN	340 U ug/kg	UJ	Low average MS/MSD recovery (57%)
460-104045-3	CC-PSL-4c-001-20151104	FLUORENE	340 U ug/kg	UJ	Low average MS/MSD recovery (56%)
460-104045-3	CC-PSL-4c-001-20151104	PENTACHLORO PHENOL	280 U ug/kg	R	Extremely low average MS/MSD recovery (18%)
460-104045-3	CC-PSL-4c-001-20151104	PHENANTHRENE	340 U ug/kg	UJ	Low average MS/MSD recovery (65%)
460-104045-6	CC-PSL-5c-001-20151104	ACENAPHTHENE	350 U ug/kg	UJ	Low average MS/MSD recovery (51%)
460-104045-6	CC-PSL-5c-001-20151104	ACENAPHTHYLENE	350 U ug/kg	UJ	Low average MS/MSD recovery (59.5%)
460-104045-6	CC-PSL-5c-001-20151104	ANTHRACENE	350 U ug/kg	UJ	Low average MS/MSD recovery (65.5%)
460-104045-6	CC-PSL-5c-001-20151104	DIBENZOFURAN	350 U ug/kg	UJ	Low average MS/MSD recovery (57%)
460-104045-6	CC-PSL-5c-001-20151104	FLUORENE	350 U ug/kg	UJ	Low average MS/MSD recovery (56%)
460-104045-6	CC-PSL-5c-001-20151104	PENTACHLORO PHENOL	280 U ug/kg	R	Extremely low average MS/MSD recovery (18%)
460-104045-6	CC-PSL-5c-001-20151104	PHENANTHRENE	350 U ug/kg	UJ	Low average MS/MSD recovery (65%)
460-108300-1	BF-ORI-WT-2C-01-R1-20160201	BENZO(G,H,I) PERYLENE	160 J ug/kg	J	Result between MDL and RL
460-108300-1	BF-ORI-WT-2C-01-R1-20160201	CHRYSENE	160 J ug/kg	J	Result between MDL and RL
460-108300-1	BF-ORI-WT-2C-01-R1-20160201	DIBENZ(A,H) ANTHRACENE	48 J ug/kg	J	Result between MDL and RL
460-108300-1	BF-ORI-WT-2C-01-R1-20160201	FLUORANTHENE	73 J ug/kg	J	Result between MDL and RL
460-108300-1	BF-ORI-WT-2C-01-R1-20160201	PHENANTHRENE	20 J ug/kg	J	Result between MDL and RL
460-108300-1	BF-ORI-WT-2C-01-R1-20160201	PYRENE	66 J ug/kg	J	Result between MDL and RL
460-108300-2	BF-ORI-WT-2C-01-R2-20160201	BENZO(G,H,I) PERYLENE	120 J ug/kg	J	Result between MDL and RL
460-108300-2	BF-ORI-WT-2C-01-R2-20160201	CHRYSENE	120 J ug/kg	J	Result between MDL and RL
460-108300-2	BF-ORI-WT-2C-01-R2-20160201	FLUORANTHENE	88 J ug/kg	J	Result between MDL and RL
460-108300-2	BF-ORI-WT-2C-01-R2-20160201	PHENANTHRENE	21 J ug/kg	J	Result between MDL and RL
460-108300-2	BF-ORI-WT-2C-01-R2-20160201	PYRENE	56 J ug/kg	J	Result between MDL and RL
		CYANIDE			
460-103314-3	BF-5L-WT-10c-01-20151022	CYANIDE	0.12 J mg/kg	J	Extremely low LCS-SRM recovery (19%) - within vendor limits but <50%; Result between MDL and RL
460-103314-6	BF-5L-GF-8c-01-20151022	CYANIDE	0.025 J mg/kg	J	Extremely low LCS-SRM recovery (19%) - within vendor
					limits but <50%; Result between MDL and RL
460-104045-3	CC-PSL-4c-001-20151104	CYANIDE	0.097 U mg/kg	UJ	Extremely low LCS-SRM recovery (19.6%) - within vendor limits but <50%
460-104045-6	CC-PSL-5c-001-20151104	CYANIDE	0.027 J mg/kg	J	Extremely low LCS-SRM recovery (19.6%) - within vendor limits but <50%; Result between MDL and RL

TABLE 5 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase II-B Remedial Design/ Remedial Action Backfill and Post-Excavation Confirmation Samples September 2015 to February 2016

FIELD DUPLICATE RESULTS

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-101657-2	460-101657-3	ECS-AREA27-I28-F- 20150923	ARSENIC	9.4 mg/kg	10.6 mg/kg	1.2	5.2	NA	у
460-101657-2	460-101657-3	ECS-AREA27-I28-F- 20150923	LEAD	22.4 mg/kg	24.7 mg/kg	NA	3.4	9.8	у
460-101657-2	460-101657-3	ECS-AREA27-I28-F- 20150923	TCLP LEAD	35.5 J ug/l	43.7 J ug/l	8.2	100	NA	у
460-102383-1	460-102383-2	ECS-AREA 33-G36-F- 20151007	ARSENIC	6.2 mg/kg	4.7 mg/kg	1.5	7	NA	у
460-102383-1	460-102383-2	ECS-AREA 33-G36-F- 20151007	LEAD	14.5 mg/kg	13.5 mg/kg	NA	4.6	7.1	у
460-102383-1	460-102383-2	ECS-AREA 33-G36-F- 20151007	TCLP LEAD	27.0 J ug/l	58.3 ug/l	31.3	100	NA	у
460-102990-1	460-102990-2	DS-AREA 29-F26-SN- 20151016	ARSENIC	24.8 mg/kg	25.3 mg/kg	NA	6.4	2.00	у
460-102990-1	460-102990-2	DS-AREA 29-F26-SN- 20151016	LEAD	797 mg/kg	983 mg/kg	NA	4.4	21	у
460-102990-1	460-102990-2	DS-AREA 29-F26-SN- 20151016	TCLP LEAD	267 ug/l	62.3 ug/l	204.7	100	NA	NO
460-103083-3	460-103083-4	ECS-WSTREAM-37+00-SW- 20151019	ARSENIC	8.6 mg/kg	6.0 mg/kg	2.6	6.2	NA	у
460-103083-3	460-103083-4	ECS-WSTREAM-37+00-SW- 20151019	LEAD	12.6 mg/kg	9.4 mg/kg	3.2	4.2	NA	у
460-103083-3	460-103083-4	ECS-WSTREAM-37+00-SW- 20151019	TCLP LEAD	32.2 J ug/l	50.0 U ug/l	17.8	100	NA	У
460-103393-2	460-103393-3	ECS-AREA36-H37-F- 20151023	ARSENIC	3.9 mg/kg	5.3 mg/kg	1.4	6.2	NA	у
460-103393-2	460-103393-3	ECS-AREA36-H37-F- 20151023	LEAD	13.5 mg/kg	19.4 mg/kg	NA	4	36	NO
460-103393-2	460-103393-3	ECS-AREA36-H37-F- 20151023	TCLP LEAD	50.0 U ug/l	25.1 J ug/l	24.9	100	NA	у
460-103533-8	460-103533-9	ECS-WSTREAM-41+00-SE- 20151026	ARSENIC	3.9 U mg/kg	1.5 J mg/kg	2.4	8	NA	у

Original Sample Lab ID	Field Duplicate Lab ID	Field ID-Date	Analyte	Original Sample Lab Result	Field Duplicate Lab Result	Abs Diff	2xRL	RPD	Pass
460-103533-8	460-103533-9	ECS-WSTREAM-41+00-SE- 20151026	LEAD	7.4 mg/kg	12.5 mg/kg	5.1	5.4	NA	у
460-103533-8	460-103533-9	ECS-WSTREAM-41+00-SE- 20151026	TCLP LEAD	51.2 ug/l	56.8 ug/l	5.6	100	NA	у
460-103667-5	460-103667-6	ECS-WSTREAM-44+00-SS- 20151028	ARSENIC	4.0 mg/kg	4.1 mg/kg	0.1	6.6	NA	у
460-103667-5	460-103667-6	ECS-WSTREAM-44+00-SS- 20151028	LEAD	10.2 mg/kg	10.1 mg/kg	0.1	4.4	NA	у
460-103667-5	460-103667-6	ECS-WSTREAM-44+00-SS- 20151028	TCLP LEAD	50.0 U ug/l	50.0 U ug/l	0	100	NA	у
460-103967-10	460-103967-11	ECS-WSTREAM-46+00-F- 20151103	ARSENIC	6.1 mg/kg	5.6 mg/kg	0.5	7	NA	у
460-103967-10	460-103967-11	ECS-WSTREAM-46+00-F- 20151103	LEAD	11.3 mg/kg	11.4 mg/kg	0.1	4.6	NA	у
460-103967-10	460-103967-11	ECS-WSTREAM-46+00-F- 20151103	TCLP LEAD	50.0 U ug/l	50.0 U ug/l	0	100	NA	у

Note: The RPD test (≤35%) applies if both results are greater than 5x RL. Otherwise, the absolute difference test (≤ 2x RL) applies.

ATTACHMENT A VALIDATOR'S CHECKLISTS

Client Name: Entact		Project	t Numb	er/ Manager: E7976H/ Jenny Self
Site Name: Revere Smelting & Refining (Ph 2B ECS/BF Sept15-F	ah16)	QC Le		er/ Manager. E7970H/ Jenny Sen
Laboratory: TestAmerica (Edison)	CD 10)			b No: see below
Reviewer: Taryn Scholz				d: 1/25/16
Parameters: TCLP Pb, Metals, CrIII/VI, Pesticide, PCB, Herbicide	. VOC.			1/6010C, 6010C/7471B, 7196A, 8081B, 8082A, 8151A, 5035/8260C,
SVOC, CN	, ,		, 9012	
ITEM	YES	NO	N/A	(CRITERIA) COMMENT
Laboratory NELAP/ELAP accredited?	х			#11452 for Edison
Signed Narrative included?	Х			certification signature on cover page
No narrative issues noted by lab?		Х		See Narrative Comments
	of Cust	ody (C0	OC)/ Sa	ample Receipt
Date/time of sample collection included?	Х			
Sample temp upon receipt 2-6 C?	Х			
Proper containers/preservation?	х			(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required) see Comment no. 1
COCs properly executed and seals used?		х		see Comment no. 2
Samples received within 2 days?		х		(DER10 - recommended); see Comment no. 3
	A	nalytica	l Resul	
All requested analyses reported?	Х			see Comment no. 4
Field, Laboratory, and Batch ID included?	Х			see Comment no. 4A
Date of sample collection/receipt included?	Х			
Date of sample preparation/analysis included?	х			
NDs at DL or QL and J-values as needed?	х			Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightly different format than other work orders
Target analyte list complete?	х			(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 5
RLs acceptable?		Х		(ASP Exh C Part III and/or DER-10 App 5) see Comment no. 6
No elevated RLs for NDs?	Х			Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Prep/Analysis method references included and approved?	х			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D); (5035 use for VOC soils this phase) see Comment no. 7
If analytical cleanup used, method ref included and approved?	Х			(ASP Exh D) see Comment no. 8
Sample matrix included?	Х			
Soils on dry weight basis?	х*			
Correct and consistent units?	х			Organics in ug/L (TBs) and ug/kg for rest; Inorganics in mg/kg or ug/l (TCLP)
Holding time to analysis not expired?	X**			(P1 WP Table 2, P2A/B WP Table 1/2 or SW846 for those not in table per ASP Exh I, which gives only aq HTs) Hg 28-d, Extr 14/40-d, Cr V 30/7-d, CN 14-d, VOC 14-d (freeze within 2-d)
Holding time to preparation not expired?	X**			see above
QC Samp	les (Ph	ase 2B	Workpl	an Section 5.4.7)
Rinsate Blank - 1 per day of sampling using non-dedicated, non- disposable sampling equipment			NA	only disposable equipment used
Trip Blank - 1 for every cooler of VOC samples submitted to the laboratory	х			
Filter blank - 1 per week of time-integrated air monitoring		<u> </u>	NA	
Field duplicate samples - 1 for every 20 or fewer samples per sample matrix (excluding air samples)		х	14/1	Total samples = 140/150 confirmation (Total/TCLP) + 4 BF comp + BF grab = 166; Total FD = 8 (8/8 conf + 0 comp + 0 grab) -> low for BI grab for to-date P2B
Field MS/MSD - 1 for every 20 or fewer samples per sample matrix from the same batch as the project samples to the extent possible		х		MS/LR used for metals (ICP, Hg, Cr VI - %R not reported for calc CIII); 6/3 field/lab MS/MSD (7 conf for Total As/Pb with 2 conf for TA and all 9 also TCLP) - with lab MS/MSD still one short for DER Metals Cr6, and VOC each with no MS/MSD
Completeness criteria met?	Х			(P2B WP Section 5.3.3 - 100%) 1189/1191 = 99.8%
		Field I	Notes	,
Agree with custody records?			Х	not included
Field instruments calibrated daily?			Х	
Well conditions constant before sampling?			Х	
Samples filtered? If so, give turbid/size		1	х	

Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification; COI - Compound of Interest; %D - Percent Difference, DL - Detection Limit; DUP Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasma; ICV - Initial Calibration Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Matrix Spike Duplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response Factor; RT - Retention Time; RSD - Relative Standard Deviation; TA - Target Analyte

COMMENTS

Laboratory Job No: 460-101657-1, 460-102202-1, 460-102319-1, 460-102383-1, 460-102494-1, 460-102570-1, 460-102683-1, 460-102990-1, 460-103083-1, 460-103314-1, 460-103322-1, 460-103391-1, 460-103393-1, 460-103533-1, 460-103552-1, 460-103667-1, 460-103796-1, 460-103860-1, 460-103967-1, 460-103970-1, 460-104045-1, 460-104379-1, 460-104950-1, 460-105921-1, 460-108300-1

*For the 7196A analyses, Cr III is shown as not dry-weight corrected. However, Cr III is calculated from the results for Cr VI and Total Cr, which are dry-weight corrected, and thus the Cr III is not directly dry-weight corrected but is on a dry-weight basis.

** The holding time was calculated using dates only without regard to the time of day since all holding times are greater than 24 hours. Also, note that Cr III is a calculated result and the holding time check does not apply for this analyte.

1. Containers/Preservative:

For work order 460-103314-1, one of the VOA vials for BF-5L-GF-8g-02 was leaking when received by the laboratory. Analysis performed using remaining vials per lab email.

For work orders 460-103322-1, 460-103391-1, 460-103552-1, one of the two containers for one or more of the samples was received broken, and the laboratory salvaged the sample volume into a new container. Analyses performed using remaining uncompromised container and/or for metals only, and thus this is not considered to significantly affect data quality and no further action was taken.

For work order 460-103967-1, the sole container for ECS-WSTREAM-45+00-SW was received broken. The laboratory salvaged the sample volume into a new container with minimal or no sample loss. Analyses performed for metals only, and thus this is not considered to significantly affect data quality and no further action was taken.

2. Custody Record

For work orders 460-101657-1, 460-102990-1, the sampler only recorded the sample date for the first sample on the custody record (i.e., there is no down arrow to extend the date to the remaining samples). The laboratory logged in the samples using the date for the first sample, which corresponds with the date on each container

For work order 460-102383-1, the sampler did not sign or enter a time upon sample relinquishment. The custody record includes the samplers' names and a date of relinquishment, and the samples were relinquished to a commercial carrier with custody seals intact and received at the laboratory with no evidence of tampering. No further action was taken.

For work orders 460-460-103796-1, 460-103860-1, and 460-104045-1, the sampler entered a date but no time upon sample relinquishment. The samples were relinquished to a commercial carrier with custody seals intact and received at the laboratory with no evidence of tampering, and thus no further action was taken.

For work orders 460-102990-1, 460-103796-1, the laboratory sample receipt checklist indicates that no custody seal was used for transfer of the samples from the field to the laboratory; however, a custody seal was used as confirmed by the seal number entered by the laboratory on the custody record.

For work order 460-103552-1, the custody record indicates a sample time of 16:35 for ECS-AREA35-H36-SS, while the sample labels indicate a sample time of 16:25. The laboratory logged in the sample using the time on the custody record. The sample date (10/27/15) on the custody record matches that on the sample labels and the holding time pass/fail status is not affected, and thus no further action was taken.

3. Sample Receipt - For work order 460-102202-1, the samples were received three days after collection, which is beyond the recommended period of two days. The samples were received in good condition at proper temperature, and were analyzed within the established holding times, and thus no further action was taken.

Requested Tests

For work order 460-102990-1, sample number 3 is marked for both Total As/Pb and TAL Metals on the custody record. Arsenic and Lead are included in the TAL list, so no additional analysis was needed or performed.

4A. Batch Numbers - Batch numbers are given along with batch date/times on the analytical data sheets (except for 108300) and QA Association Summary in the pdf report, but only the batch date/times are given in the EDD. The prep dates/times are consistent across all samples and can be used to assign batches for most batches but some have varying times for one batch. All samples with unexpected batch time were checked against the prep batch worksheets to verify correct batch assignment.

5. Analyte List:

P1 WP Table 3, P2A/B WP Table 2/4, and DER10 App5 list m-cresol, o-cresol, and p-cresol separately. The laboratory reported m,p-cresol and o-cresol as it is not possible to separate m-cresol and p-cresol using method 8270D. (P1 WP Table 3, which only lists RLs for the DER-10 metals and not the 23 TAL metals, also mistakenly lists Antimony. This metal does not appear in DER10 Appendix 5 and was not reported by the laboratory for the backfill samples.)
For all BF samples (and the associated QC), the laboratory reported technical Chlordane rather than Chlordane (alpha) as listed in the workplan and DER10 Appendix 5.

For all BF samples (and the associated QC), the laboratory reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) instead of just the DER-10 analytes as requested. Note: These extra analytes are all ND in the samples.

For the LB/BS/BD - the lab reported m,p-Xylene and o-Xylene. For the LB, Xylenes (total) is also reported.

Note: The analyte names in the hardcopy report differ from those in the EDD for some analytes.

- 6. The MQL (Unadj) for several DER-10 analytes (metals) is above the CRQL, but in each case, it is below the Allowable Constituent Level in DER10 App 5. Additionally, the MQL (Unadj) for the TAL metal Iron is above the CRQL. There are no action levels for this analyte.
- 7. Update IV methods (6010C, 7471B, 8260C, 8270D) used instead of Update III as in WP. Prep method for 6010C total metals in soils shown as SW3020B in EDD, validator changed all to SW3050B per the pdf report and as confirmed correct by the laboratory.
- 8. Per laboratory, Florisil cleanup (SW3620C) used for Pesticide analyses and sulfuric acid cleanup (SW3665A) used for PCB analyses (not indicated in package exc on prep log nor in EDD). No cleanup used for SVOC or Herbicides.

NOTES:

For work order 460-102494-1, Form III Instrument Blanks includes a CCB for analysis batch 328555 that contains Lead above the RL at 10.75 ug/L. This blank was analyzed on 10/14/15 at 02:37 and does not apply to any of the samples or QC for the site.

For work orders 460-103391-1 and 460-103393-1, Form 5B (PDS) for prep batch 331486 (sample 460-103391-3) is missing the Spike Added and thus %recovery. The MS for this batch passes and thus a PDS is not required. Additionally, using the standard 2500 ppb Spike Added, the %recovery calculates as For work order 460-103552-1, the raw data is missing for TCLP Pb analytical batch 333037 (11/3/15 11:31-22:57). This data is available in 460-103667-1, and thus no further action was taken.

For work order 460-103796-1, the raw data is missing for TCLP Pb analytical batch 333241 from 11/4 19:09-19:54. This time range only includes the TCLP Pb 332779 and subsequent CCV/CCB/CCVL. The LB is non-detect, which means no data was qualified based on this LB, and thus no further action was taken. For work order 460-103967-1, the lab report includes results for the QC samples (LB, BS, MS, MD, SD, and PDS) run under analysis batch 333465 (11/5/15) and also under analysis batch 335675 (11/16/15). The 11/16 PDS results appear to be in error for the Spike Amount, Result and thus %Recovery. All of the associated site samples were analyzed in batch 333465 on 11/5/15, and thus no further action was taken. Note: this report required revision and the original report/EDD only included batch 333465. Since batch 335675 does not apply to the site samples, the EDD was not updated

NarrativeComments

QAA No.	Lab Job No.		Batch/Sample	Issue	Resolution
All	All	TCLP Metals	All samples (not noted for all)	Required 5x dilution prior to analysis; RLs adjusted accordingly	noted in QA report narrative
		Total Metals	All samples	Required 4x dilution prior to analysis; RLs adjusted accordingly	noted in QA report narrative
EN586	460-101657-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	324963/1	MS %R low for Sb and Mn, high for Al and Fe; 4-qualifier indicates	see QC Deficiencies
				unspiked conc >4x spike	
		Total Metals	324963/4	MS %R low for Pb; 4-qualifier indicates unspiked conc >4x spike	see QC Deficiencies
		Mercury	NA	nothing noted	NA
EN587	460-102202-1	TCLP Metals	NA	nothing noted	NA
		Total Metals		nothing noted	NA
EN588	460-102319-1			nothing noted	NA
		Total Metals		nothing noted	NA
EN589	460-102383-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	328019/102421-10	MS %R low for Sb, high for Al and Fe; 4-qualifier indicates	none required (MS is non-project)
		T-4-1 M-4-1-	200040/400404 40	unspiked conc >4x spike	and a series of (MD is a series of)
			328019/102421-10	MD RPD hi for Se	none required (MD is non-project)
		Total Metals	5	sample required 10x dilution prior to analysis	none required (only detects reported
		NA	NIA	mathing material	from dilution)
ENEGO	400 400404 4	Mercury	NA	nothing noted	NA NA
EN590	460-102494-1			nothing noted	NA NA
EN591	460-102570-1	Total Metals		nothing noted nothing noted	NA NA
ENSSI		Total Metals		nothing noted	NA NA
			NA/102560-13	MD RPD hi for %M	none required (MD is non-project)
EN592	460-102683-1			nothing noted	NA
LINGSZ	400-102003-1	Total Metals		nothing noted	NA
EN593	460-102990-1			nothing noted	NA
214000	400 102000 1		329645/102902-2	MS %R low for Sb,Ca,Mn and high for Al and Fe; 4-qualifier	none required (MS is non-project)
		Total Motale	0_00 .0/ .0_00	indicates unspiked conc >4x spike	nene requires (ine is nen project)
		Total Metals	329645/3	3 , 1	see QC Deficiencies
				unspiked conc >4x spike	
		Total Metals	4	sample required 10x dilution prior to analysis	none required (only detects reported
		Moroury	NΙΔ	nothing noted	from dilution) NA
		Mercury %Moisture	NA 329864/102996-24	MD RPD hi for %M	none required (MD is non-project)
EN594	460-103083-1				NA
LNJ94	400-103003-1	Total Metals		nothing noted nothing noted	NA NA
		Mercury	NA	nothing noted	NA NA
EN595	460-103314-1	•	NA	nothing noted	NA
LINGSO	400-100514-1	SVOC	331907	CCV %R out for PCP; CCVLL in control, samples analyzed per	see QC Deficiencies (CCVLL not
		0,00	331307	method, detects should be considered estimated	reported)
		SVOC	331926/6	MS %R low for Bz(k)F, Fluorene, PCP and MSD %R low for	see QC Deficiencies
				several TAs; 4-qualifier indicates unspiked conc >4x spike (none)	
		Pest	NA	nothing noted	NA
		PCB	NA	nothing noted	NA
		. 55		nothing noted	

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
		Herb	331517	CCV %R high for Silvex on secondary column; samples ND, data reported	see QC Deficiencies
		Total Metals	331827/103351-1	MS/D %R high for Mn	none required (MS/D is non-project)
		Mercury	NA	nothing noted	NA
		Cr3/6	NA	nothing noted	NA
		CN	NA	nothing noted	NA
EN596	460-103322-1	-		nothing noted	NA
	.00 .000== .	Total Metals		nothing noted	NA
EN597	460-103391-1			nothing noted	NA
		Total Metals		nothing noted	NA
EN598	460-103393-1			nothing noted	NA
2.1000	100 100000 1		331331/103167-22	MS %R low for Sb,Cd,Fe,Mn and high for Al; 4-qualifier indicates	none required (MS is non-project)
		Total Motalo	001001/100101 22	unspiked conc >4x spike	none requires (inc is non project)
		Mercury	NA	nothing noted	NA
EN599	460-103533-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	332064/1	MS %R high for Pb; 4-qualifier indicates unspiked conc >4x spike	see QC Deficiencies
		Mercury	NA	nothing noted	NA
EN600	460-103552-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	332064/103573-12	MS %R low for Sb and high for Al and Fe; 4-qualifier indicates unspiked conc >4x spike	none required (MS is non-project)
		Total Metals	NA/2	MD RPD high for As	see QC Deficiencies
		Mercury	NA	nothing noted	NA
EN601	460-103667-1	•	NA	nothing noted	NA
		Total Metals		nothing noted	NA
EN602	460-103796-1			nothing noted	NA
		Total Metals	NA	nothing noted	NA
EN603	460-103860-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	NA/103679-10	MD RPD high for Pb	none required (MD is non-project)
EN604	460-103967-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	NA	nothing noted	NA
EN605	460-103970-1			nothing noted	NA
			333703/103862-1	MS %R low for Sb,Mn and high for Al,Ca,Fe,Mg; 4-qualifier	none required (MS is non-project)
				indicates unspiked conc >4x spike	1 (, , , ,
		Total Metals	333703/103862-1	MD RPD high for Ca,Co,Mg,Mn	none required (MD is non-project)
		Mercury	NA	nothing noted	NA
EN606	460-104045-1		NA	nothing noted	NA
		SVOC	335113	CCV %R out for Indeno[1,2,3-cd]pyrene; CCVLL in control,	see QC Deficiencies (CCVLL not
				samples analyzed per method, detects should be considered estimated	reported)
		SVOC	335113/3	MS/D %R low for several TAs	see QC Deficiencies
		Pest	NA	nothing noted	NA
		PCB	NA NA	nothing noted	NA NA
		Herb	NA	nothing noted	NA NA
		Total Metals	335494/104117-7	MS %R high for Mn	none required (MS is non-project)
		Mercury	NA	nothing noted	NA

NarrativeComments

QAA No.	Lab Job No.	Test	Batch/Sample	Issue	Resolution
		Cr3/6	NA	nothing noted	NA
		CN	NA	nothing noted	NA
EN607	460-104379-1	TCLP Metals	335269/104252-1	MS %R low for Pb; 4-qualifier indicates unspiked conc >4x spike	none required (MS is non-project)
		Total Metals	NA	nothing noted	NA
EN608	460-104950-1	TCLP Metals	NA	nothing noted	NA
		Total Metals	NA	nothing noted	NA
EN609	460-105921-1	TCLP Metals	NA	nothing noted	NA
EN610	460-108300-1	SVOC	349064/LCS	2,4,6-TBP SU %R high; SOP allows one acid and one BN out so n	none required (SU >10% (hi), sample
				RE, data flagged and reported	results not significantly affected)
		SVOC	350561/108414-2	2,4,6-TBP and 2-FP SU %R low for MS/D	none required (MS/D is non-project)
		SVOC	350561/108414-2	MS/D %R low for several TAs	none required (MS/D is non-project)
		SVOC	350561/108414-2	MSD out for phenol	none required (MS/D is non-project)

Client Name: Entact			V)/Wet Chem Project Number/ Manager: E7976H/ Jenny Self					
Site Name: Revere Smelting & Refining (Ph 2B ECS/BF Sept15-Feb16)			QC Level: IV					
Laboratory: TestAmerica (Edison) Reviewer: Tarvn Scholz			Laboratory Job No: see DURC Date Checked: 1/25/16					
Parameters: TCLP Pb, Metals, CrIII/VI, CN **PERFORMED/ITEM**				N/A	(CRITERIA) COMMENT			
	Method blank data included in Lab Package? *	YES	NO	IV/A	(CKITEKIA) COMMENT			
100	Criteria met? (< MDL, > -RL)	X						
100	Criteria met for field blanks? (< MDL)	Х		Х				
100	QC check samples/LCS data included in lab package? *	Х		_ ^				
	All project COCs or TAs included? *	X						
100	%R criteria met?	^	v		method (lab** but within 50-200%) see QC Def			
100	Matrix spike data included in lab package? *		Х		method (lab - but within 50-200%) see QC Del			
100	· · ·	Х	.,	-	method (lab*** but within 50-200%) see QC			
100	%R criteria met?		Х					
	Sample duplicate data included in lab package? *	Х			as LR			
					ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2F			
100	RPD criteria met?		Х		sol if either <5RL) see QC Deficiencies			
400	Field due DDD estants med 0 (in 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2F			
100	Field dup RPD criteria met? (individual, mean, and overall)		Х		sol if either ≤5RL) see QC Deficiencies			
	Instrument Tune for ICP-MS included in lab package?			Х				
NA	Instrument Tune method criteria met? (±5 RSD, ±0.1 amu)			Х				
	Initial calibration documentation included in lab package?	X						
400	blank/1 std (ICP), blank/ 5 stds (Hg)	Х						
100	correl coeff criteria met? (r > 0.998 ICP, r > 0.995 AA/Hg)	Х						
	Calibration verification data included in lab package?	Х						
	ICB/CCB criteria met? (<rl, ≥-rl)<br="">ICV %R criteria met? (ICP/Cr 90-110,Hg 80-120,CN 85-115)</rl,>	Х						
		X						
400	CCV %R criteria met? (ICP/Cr 90-110,Hg 80-120,CN 85-115) LLCCV %R criteria met? (50-150% Sb/Pb/Tl,70-130%)	Х			CL nor ACD Fub F			
100	Dilution test data included?	X			CL per ASP Exh E			
100		X						
100	Results within criteria if >50xMDL? (max 10%, qualify 15%) Post digestion spike included?	X						
100	%R criteria met?	X			method (80-120%)****			
100	Interference check sample data included (ICP/MS only)?	X			memod (80-120%)			
100	%R criteria met? (80-120%, unspk <2RL, >2-RL)	X		-	2RL per ASP Exh E			
NA	Internal standard data included in lab package?	Х		· ·	ZNL per AGF EXITE			
NA	Internal standard data included in lab package? Intensities within limits (within > 70% of calib std)?			X				
10	Analyte quantitation/RLs correct?	Х		_ ^				
10	All target analytes included in ICAL?	_		-				
10	QC parameters calculated correctly?	X						
OMME	,	^	<u> </u>					
		!	1 0 -		- VIIII			
No QC	reported for Chromium III, which is calculated from the Total Chro	omium :	and Ch	romiun	n VI result.			
For SR	Ms (solid LCS), the manufacturer's established limits as reported	by the	lab are	used.	For aqueous LCS, method limit is 80-120% for metals			
nd 90-1	10% for CN.	-			•			
**For M	S, the method limits are used for metals (75-125%) and Hg (80-1	20%) aı	nd the r	manufa	acturer's established limits are used for CN			
***PDS	deficiencies not delineated if waived (sample result > 4x spike ad	ded)						
OTAL N	METALS VS LEACHED - all leach results < max possible except to	three (s	ee QC	Deficie	encies)			

_aborator Reviewer	e: Revere Smelting & Refining (Ph 2B ECS/BF Sept15-Feb16) ry: TestAmerica (Edison) r: Taryn Scholz ers: TCLP Pb **PERFORMED/ ITEM** Was a ZHE vessel without leaks used for VOAs?	Labor Date (and DUDC				
Reviewer	: Taryn Scholz ers: TCLP Pb %PERFORMED/ ITEM	Date (Checke		and DUDC				
	ers: TCLP Pb **PERFORMED/ ITEM**	Metho			see DURC				
Paramete	%PERFORMED/ITEM			Date Checked: 1/25/16					
		YFS	Methods: 1311/3010A/6010C						
	Was a ZHE vessel without leaks used for VOAs?		NO	N/A	(CRITERIA) COMMENT				
				Х					
	Was particle size reduced as necessary? (capable of passing			x					
	through a 9.5 mm (0.375 inch) standard sieve)			^					
	Were multi-phasic waste samples properly analyzed? (if <0.5%								
	solids->analyze filtered waste, if >0.5%->leach solids, combine			Х					
	with filtered liquid if compatible or analyze separately								
	Was the correct extraction fluid used? (TCLP - #1 for VOA and				No. 1 for all				
	if pH<5 before or after add 3.5 mL 1N HCl, #2 if pH>5; SPLP -	х							
	#1 for soils E of Mississippi, #2 if west, #1 for wastes, #3 for								
	any with CN-)				all of floid and annual dead in Cl ENGOO had initial				
	Was the pH of the fluid correct? (TCLP #1 4.88-4.98, #2 2.83-	х			pH of fluid not reported until EN568 but initial				
	2.93; SPLP #1 4.15-4.25, #2 4.95-5.05, #3 reagent water)				pH of LB within range				
	Appropriate sample weight? (VOA < 25-g, rest about 100-g) Was the correct weight of fluid used? (20x solid weight)	X							
100	Leaching conditions correct? (30+2 rpm, 18+2 hrs, 23+2 C)	X			_				
100	No preservation for aqueous sample aliquots?	^		Х					
	Proper preservation for leachates?	Х		_^	(method pH <2)				
100	Holding time to leaching not expired?	X			(method 180-days)				
100	Leach blank data included in Lab Package? (1/20)	X			(metrod roo days)				
100	Criteria met? (< MDL)	X							
COMMEN	\ /	_ ^	<u> </u>	<u> </u>					
JOHNE	110								

Site Name: Revere Smelting & Refining (Ph 2B ECS/BF Sept15-Feb16)				Project Number/ Manager: E7976H/ Jenny Self QC Level: IV						
										Reviewer: Taryn Scholz
aramete	rs: Pesticide, PCB, Herbicide			lethods: 3546/8081B, 3546/8082A, 8151A						
	%PERFORM		YES	NO	N/A	(CRITERIA) COMMENT				
	Method blank data included in	n Lab Package?	Х							
100	Criteria met? (<mdl)< td=""><td>(10)</td><td>Х</td><td></td><td></td><td></td></mdl)<>	(10)	Х							
100	Criteria met for field blanks?	()			Х					
	QC check samples/LCS data All project COIs or TAs includ	· · · · · ·	x			With the exception of multi-component pesticides Chlorda (technical) and Toxaphene; only two multi-component Arocle (1016 and 1260) spiked per method recommendations				
	%R criteria met?		х			method (lab but within 50-200%)				
100	RPD criteria met?				Х	,				
	Matrix spike data included in	lab package?	Х							
	%R criteria met?		Х			method (lab but within 50-200%)				
100	RPD criteria met?		Х			method (lab but within 40%)				
	Surrogate data included in lab		Х							
	Required surrogates included	?	Х							
100	%R criteria met?		Х			method (lab but within 10-200%)				
100	Field dup RPD criteria met? (individual, mean, and overall)		х			ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2RL sol if eith ≤5RL)				
	Initial calibration documentation included in lab package?					5 peaks used for all multi-comp Pest/PCB				
100	%RSD criteria met? (\leq 20%RSD or r \geq 0.995 or COD \geq 0.990)									
100	DDT/Endrin %breakdown max 15%?									
	Calibration verification data in		Х			only beg CCV (no end) for 8082/8081 (104045) since IS used				
100	%D criteria met? (<20%,<15%			Х		see QC Deficiencies				
100	Internal standard data include		Х			used for 8082A both work orders and 8081B for 104045				
100	Areas within limits (within -50)		Х			for samples				
100	RTs within limits (+/-0.07 min	ation data incl in lab package?	Х			for samples				
100	%Difference criteria met? (<4	ı ü	X X							
100	Analyte qualitative ID criteria		X			see Comment no. 1				
10	Analyte quantitation/RLs corre		X			See Comment no. 1				
10		ICAL at min 5 levels w low < RL?	_^	х		see Comment no. 2				
10		50/+100% of ICAL midlevel)?	Х			for CCVs				
10		5(Pest)-0.07(PCB) min from ICAL	х			for CCVs				
10	QC parameters calculated correctly?									
	Surrogate	Control Limits								
EST/	Decachlorobiphenyl	55-148/47-150				bold updated from P2B 2013, red updated from P2P Jul-Sept15				
CB	Tetrachloro-m-xylene	55-139				bold updated from P2B 2013, red updated from P2P Jul-Sept15				
IERB	2,4-DCPA	83-150				bold updated from P2B 2013, red updated from P2P Jul-Sept15				
. Chroma n 3/2/16.	ator did not delineate cases whatogram shows potential PCB rows.	near MDL for sample 103314-3. Lab c natograms for all other BF samples an	onfirma	ation of I	ND ree	ogate recoveries for each analysis are evaluated separately quested 2/16 and revised report with Aroclor-1248 J-value submit event, and found no suspect peaks. are ND to the MDL so no further action				

Data Validation Checklist: GC/MS (Update IV) Client Name: Entact					Project Number/ Manager: E7976H/ Jenny Self					
	ning (Ph 2B ECS/BF Sept15-Feb16)	QC Level: IV								
Reviewer: Taryn Scholz					op No.	see DURC				
	ers: VOC, SVOC			Date Checked: 1/25/16 Methods: 5035/8260C, 3546/8270D						
aramet	,	DRMED/ ITEM	YES NO N/A (CRITERIA) COMMENT							
	Method blank data include			NO	IN/A	(CRITERIA) COMMENT				
100	Criteria met? (<mdl)< td=""><td>ed III Lab Fackage:</td><td>X</td><td></td><td></td><td></td></mdl)<>	ed III Lab Fackage:	X							
100	Criteria met for field blank	(\$? (<mdi< td=""><td>X</td><td></td><td>-</td><td></td></mdi<>	X		-					
100	QC check samples/LCS data included in lab package:									
	All project COIs or TAs included?									
100	%R criteria met?					method (lab but within 50-200%)				
100	RPD criteria met?					method (lab but within 40%)				
	Matrix spike data included in lab package									
100	%R criteria met?		Х	Х		method (lab but within 50-200%) see QC Deficiencies				
100	RPD criteria met?		Х			method (lab but within 40%)				
	Surrogate data included in	n lab package1	Х			·				
	Required surrogates inclu		х							
100	%R criteria met?		Х			method (lab but within 10-200% extr, 20-200% purg)				
100	Field dup RPD criteria me	et? (individual, mean, and overall)	Х			20% aq, 35% solid (+/-2RL aq, +/-3RL sol if either <5RL)				
		or GC/MS included in lab package'	Х							
100	Instrument Tune method		Х							
	Initial calibration documentation included in lab package'									
	RRF met (Table 4)? Reject for RRF <table (0.01)="" 4="" from<="" min="" or="" td=""><td></td><td></td><td></td></table>									
	NFG 2014									
100	%RSD criteria met? (\leq 20%RSD or r \geq 0.995 or COD \geq 0.990)									
	Calibration verification data included in lab package									
		ect for RRF <table (0.01)="" 4="" from<="" min="" or="" td=""><td>х</td><td></td><td></td><td></td></table>	х							
	NFG 2014		^							
100	%D criteria met for CCC/TAs? (20% max)			Х		see QC Deficiencies				
100	Internal standard data included in lab package		X							
100		Areas within limits (within -50/+100% of last calib check)? RTs within limits (<10/30(8270) s diff from last calib check)?				for samples				
100			X			for samples				
10 10	Analyte qualitative ID crite Analyte quantitation/RLs		X							
10		ed in ICAL at min 5 levels w low< RL?	X X		-					
10		hin -50/+100% of ICAL midlevel)?	X			for CCVs				
10		30(8270) s diff from ICAL midlevel)?	X		-	for CCVs				
10	QC parameters calculated				-	101 00 73				
	Surrogate	Control Limits								
VOC	1,2-Dichloroethane-d4	70-130 (Sep15 78-135)								
	Toluene-d8	70-130 (Sep15 73-121)								
	Bromofluorobenzene	70-130 (Sep15 67-126)								
	Dibromofluoromethane	70-130 (Sep15 61-149)								
SVOC	2,4,6-Tribromopheno	19-114 (Oct14 10-120, Sep15 10-95)				Bold updated from P2B 2013 (10-120 TALNASH)				
	Terphenyl-d14	41-145 (Oct14 16-151, Sep15 16-114)				(13-120 TALNASH)				
	2-Fluorobipheny	49-112 (Oct14 40-109, Sep15 27-84)				(29-120 TALNASH)				
	Nitrobenzene-d5	40-106 (Oct14 38-105, Sep15 28-92)				(27-120 TALNASH)				
	2-Fluoropheno	39-103 (Oct14 37-125, Sep15 21-84)				(10-120 TALNASH)				
	Phenol-d5	44-104 (Oct14 41-118, Sep15 22-88)				(10-120 TALNASH)				
COMME	NTS									

DATA USABILITY SUMMARY REPORT

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 MIDDLETOWN, NEW YORK

Phase III Remedial Design/ Remedial Action Backfill and Cover Material Samples

May 2016 to June 2016

Prepared by:

Quality Assurance Associates (QAALLC)

1007 Francis Drive College Station, TX 77840 www.qaallc.com 979-694-7199

October 21, 2016

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	1				
2.0	PRO	CEDURI	ES	4				
3.0	DAT	A VALID	ATION RESULTS	6				
0.0	D/ (II	,	711011120210					
	3.1	PRECISION						
		3.1.1	Laboratory Control Spike Duplicate (LCSD) Precision	6				
		3.1.2	Matrix Duplicate (MD) and Matrix Spike Duplicate (MSD) Precision	6				
		3.1.3	Field Duplicate (FD) Precision	6				
	3.2	ACCURACY						
		3.2.1	Laboratory Control Spike (LCS) Accuracy	7				
		3.2.2	Matrix Spike (MS) Accuracy	7				
		3.2.3	Serial Dilution (SD) %Difference	7				
		3.2.4	Surrogate (SU) Recovery	7				
	3.3	REPRESENTATIVENESS						
		3.3.1	Chain-of-Custody and Analysis Requests	8				
		3.3.2	Sample Preservation and Holding Time	8				
		3.3.3	Laboratory and Method Selection	8				
		3.3.4	Blanks (Laboratory and Field)	9				
		3.3.5	Theoretical Result Values	9				
		3.3.6	Analytical Procedures	9				
	3.4	COMPLETENESS						
		3.4.1	Laboratory Deliverables Completeness	10				
		3.4.2	EDD Correctness	11				
		3.4.3	Analytical Completeness	12				
	3.5	COMP	PARABILITY	12				

LIST OF TABLES

Table 1 – Sample Summary

Table 2 – Data Validation Qualifiers (DVQs)

Table 3 – QC Deficiencies and Data Qualification Actions

Table 4 – Qualified Results for Field Samples

ATTACHMENTS

Attachment A - Validator's Checklists

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation of chemical analysis data from the Revere Smelting & Refining Site Operable Unit 1 in Middletown, New York. The independent data review was completed in accord with the *Phase III Remedial Design/ Remedial Action Workplan* (March 2016), hereinafter called the Workplan, using New York State Department of Environmental Conservation (NYSDEC) Category B laboratory data deliverables. The data include 43 investigative soil samples plus the associated field QC samples, which were collected by ENTACT in May 2016 through June 2016 with the intended use of confirming that backfill and cover materials are suitable for use on-site. A complete listing of the samples collected and tests performed is shown in Table 1. QAA performed a full validation of the data and prepared this Data Usability Summary Report (DUSR) per the requirements of Appendix 2B of NYSDEC's DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010) as specified in Section 5.9 of the Workplan. The validation procedures are derived from the U.S. EPA Contract Laboratory Program *National Functional Guidelines for Inorganic Superfund Organic Methods Data Review* (August 2014), hereinafter called the NFG, with adaptations to reflect requirements for the analytical methodology used by the laboratory (SW-846) and the objectives of the Workplan.

PARCC EVALUATION

Section 5.3 of the Workplan presents data quality usability objectives in terms of precision, accuracy, representativeness, completeness, and comparability.

- 1. Precision (P) is a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, without assumption of any prior information as to the true result. Precision is measured through the analysis of replicate or duplicate samples and calculation of the relative percent difference (RPD) between the results. The Workplan stipulates that the precision control limits will be dictated by the analytical method. The validator assessed precision using the laboratory duplicates, and the limits are 30-35 RPD depending upon the test. The laboratory prepared a laboratory control spike duplicate (LCSD) using reagent water or sand for each VOC analytical batch plus at least one matrix spike duplicate (MSD) using a sample from the site for each test except Metals, Chromium VI, VOC and SVOC. All LCSD RPDs are within the limits, which indicates good precision for the analytical technique on a sample free of matrix effects. The MSD RPDs are also within the limits, which indicates good precision for the analytical technique on the given sample matrix.
- Accuracy (A) is the degree of agreement of a measurement with an accepted reference or true value. Accuracy is measured through the analysis of reference samples or the introduction of reference materials (spikes) to field samples and calculation of the percent recovery of the known value. The Workplan stipulates that the accuracy control limits will be dictated by the analytical method. The validator assessed accuracy using the laboratory spikes and matrix spikes, and the limits are the laboratory/manufacturer's established control limit for soils/solid reference materials (which range from 3.5%-150% for this data set). In order to better assess data usability, limits of 50-200% were employed where the method limits for a spiked analyte falls outside these values. The laboratory prepared a laboratory control spike (LCS) using reagent water or sand with each analytical batch and reported the recovery for all spiked compounds, which included every target compound except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result). The laboratory also prepared a laboratory control spike duplicate (LCSD) with each VOC analytical batch. The LCS/LCSD recoveries are within the limits, which indicates good accuracy for the analytical technique on a sample free of matrix effects, with three exceptions for Cyanide. (In each case the recoveries are within the laboratory limits, and thus laboratory corrective action was not required.) As a result, 13 Cyanide results (of the 1,757 total results for field samples for this data set) are qualified as estimated with an unknown or low bias due to laboratory spike recovery. Additionally, the laboratory prepared two matrix spike/matrix

- spike duplicate samples (MS/MSD) for PEST and PCB, three MS/MSD for HERB, and one MS/MSD for Cyanide using a sample from the site. All MS/MSD recoveries are within the laboratory limits, which indicates good accuracy for the analytical technique on the given sample matrix. Additionally, the laboratory utilized one or more surrogate spikes for each organic analysis. The surrogate recoveries are within the laboratory limits for all field samples, which indicates good accuracy for the analytical technique for each individual sample analysis.
- Representativeness (R) expresses the degree to which sample data accurately and precisely represent environmental conditions and parameter variations at a sampling location. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The Workplan states that the representativeness criterion is best satisfied by assuring that sampling locations are properly selected and a sufficient number of investigative samples are collected. Per ENTACT, investigative samples were collected as required in the approved sampling and analysis plans. (Note that sampling has been an on-going process at the site and all samples may not be reflected in this data set.) Representativeness is also ensured by using the proper analytical procedures. Appropriate analytical methods were employed and the laboratory is properly certified. The validator further assessed representativeness by examining sample preservation and holding times, the laboratory and field QC blanks, and analytical instrument setup (i.e., tuning, calibration, interference correction, etc.) For all samples, preservation and holding times met the method requirements, which indicates the results are not affected by sample degradation. The laboratory prepared and analyzed a method blank with each analytical batch and the sampler collected trip blanks with the VOC samples. The laboratory and field QC blanks show no contamination, which indicates the samples were not affected by laboratory or field procedures. Proper analytical procedures were used and calibration results met the method requirements or the validator qualified the affected samples. Twentynine (29) results for Silvex (2,4,5-TP), Carbon Tetrachloride, Benzo(g,h,i)perylene, Dibenz(a,h) anthracene, or Indeno(1,2,3-c,d)pyrene are qualified as estimated with an unknown or high bias due to calibration drift. (Since the %difference was outside the limits for only a small percentage of the total number of target analytes for the given test, laboratory corrective action was not required.) Additionally, one nondetect result for Pentachlorophenol is qualified as estimated due to low instrument sensitivity, as indicated by the relative response factor, near the lower end of the calibration range.
- 4. Completeness (C) is the amount of valid data obtained from a measurement system compared to the amount that was expected and required to meet the project data goals. Completeness is calculated as the ratio of the number of valid sample results to the total number of samples analyzed within a specific matrix. The Workplan states that the intent of this sampling program is to attempt to achieve a goal of 100% completeness. All analyses produced valid analytical measurements for this data set, and thus the completeness is 100%. (Completeness to-date for all backfill, cover material, and post-excavation confirmation samples for all project phases (i.e., Phase I, Phase II-A, Phase II-B, and Phase III) is 99.8%.) Additionally, the validator verified the completeness and correctness of the laboratory data packages and EDD. All necessary analytical documentation is present in the original submissions or revisions were provided by the laboratory upon request.
- 5. Comparability (C) is an expression of the confidence with which one data set can be compared to another. The samples were analyzed using standard EPA protocols from SW-846 as required in the Workplan. The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated. Note that results for all field samples are reported in mg/kg with dry-weight correction for total metals and inorganics, and in µg/kg with dry-weight correction for organics.

DATA USABILITY

No results are rejected for this data set. All results for the samples are acceptable for use with the qualifications shown in Table 4, as follows:

• Fifteen (15) nondetected results for Carbon Tetrachloride, Pentachlorophenol, or Silvex (2,4,5-TP) are qualified as estimated (UJ) due to negative calibration drift or low instrument sensitivity near the lower end of the calibration range. These results can be used for determining the absence of the analyte; however, the reporting limit (RL) given for these non-detects is likely biased low. In each case, the RL is well below (more than ten times) the DER-10 Appendix 5 Allowable Constituent Level for Imported Fill or Soil (ACL), and thus there is negligible effect on data quality, except as follows:

Lab ID	Field ID	Test	Analyte	Result	MDL	ACL	Units	DVQ	QC Issue
460-	BF-ORI-	SVOC	Pentachlorophenol	360 U	54	800	μg/kg	UJ	ICAL RRF < 0.05
114069-1	WT-2C-01-								advisory level (at
	R3								0.0324) for the 4
									μg/ml standard (270
									μg/kg in dry soil)

For this sample, the ICAL RRF is below the 0.05 advisory level (at 0.0324) for the 4 μ g/ml standard but greater than the 0.05 advisory level (at 0.0593 to 0.1426) for the 10 μ g/ml and higher standards. (No standards were analyzed at a concentration between 4 μ g/ml and 10 μ g/ml.) Thus, instrument sensitivity is demonstrated to be sufficient at and above 10 μ g/ml. Taking into account sample weight and %solids, the 10 μ g/ml standard concentration corresponds to 880 μ g/kg in sample BF-ORI-WT-2C-01-R3, which is above the ACL and thus the low bias may produce inconclusiveness. Other considerations such as sample source and evaluation of results for other samples/analytes may produce conclusive results.

- Thirteen (13) results for Cyanide are qualified as biased low (L) or estimated (J or UJ) due to extremely low (less than 40%) laboratory control spike recovery for the vendor-supplied standard reference material (SRM) LCS, with acceptable recovery for the low level and high level LCS. These results can be used for determining the absence or presence of the analyte; however, the concentration reported for these detects or the reporting limit (RL) given for these non-detects is likely biased low. In each case, the laboratory control spike recovery is greater than 15% and the result (which range from 0.020 mg/kg to 0.17 mg/kg) is well below (more than ten times) the ACL (27 mg/kg) and thus the potential low bias has negligible effect on data quality.
- Fifteen (15) detected results for Benzo(g,h,i)perylene, Dibenz(a,h)anthracene, and Indeno(1,2,3-c,d)pyrene are qualified as biased high (H) or estimated (J) due to positive calibration drift. These results can be used for determining the presence of the analyte; however, the concentration reported for these detects is likely biased high. In each case, the concentration is below the ACL (100,000 μg/kg, 330 μg/kg, and 500 μg/kg, respectively), and thus there is no effect on data quality
- The remaining 65 qualified results are considered estimated (J) solely because the concentration is between the
 method detection limit (MDL) and reporting limit (RL). In each case, the actual value is not expected to exceed the
 sample RL.

2.0 PROCEDURES

QAA completed the validation by examining the Category B laboratory data deliverables (which include pdf data packages containing analysis results, QC reports, and raw data such as instrument printouts, extraction logs, and chromatograms) and the EQuIS format electronic data deliverable (EDD). The laboratory data were subjected to a comprehensive, technically oriented review and evaluation by a QAA data validation specialist. QAA examined the data for 100% of the samples to determine if the analyses meet the requirements for:

- · Laboratory Deliverables Completeness,
- EDD Correctness,
- · Chain-of-Custody and Analysis Requests,
- Sample Preservation and Holding Time,
- Laboratory and Method Selection,
- Instrument Tuning and Initial Calibration,
- Calibration Verification,
- Interference Check Standards (ICS),
- Blanks (Laboratory and Field),
- Laboratory Control Spikes (LCS/LCSD),
- Matrix Spikes (MS/MSD),
- Serial Dilutions (SD),
- Matrix Duplicates (MD),
- Field Duplicates (FD),
- Dual Column Confirmation,
- Surrogates (SU), and
- Internal Standards (IS).

Additionally, the validator examined the raw data for 10% of the sample batches (randomly selected by the validator across the various analysis dates and tests) to verify the raw data confirms the results reported for investigative samples and QC samples.

The validator performed the validation using data validation checklists (Attachment A), which include details of the validation procedures, quality control (QC) check outcomes, and a list of the laboratory narrative comments with details on how each narrative issue affects data quality. The following QC criteria were used for the validation:

- Laboratory Accuracy the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are either specific numerical values or the laboratory-derived recovery control limits based on historical performance (but not less than 50% lower limit or greater than 200% upper limit)
- Laboratory Precision the control limits as specified in the analytical methodology and reported on the laboratory QC forms and in the EDD, which are either specific numerical values or the laboratory-derived recovery control limits based on historical performance (but not greater than 40%)

After completing the examination, the validator applied qualifying flags to any data with a QC deficiency. The qualifiers were applied in accord with the NFG and include the expected direction of bias if apparent from the QC outcome. The validator considered each QC deficiency separately and then, for multiple deficiencies, applied the most severe flag. Data rejection limits of 40% and 30% for inorganics laboratory and matrix spikes, and 30%, 20% and 10% for organics laboratory, matrix

Quality Assurance Associates *QAALLC*

DATA USABILITY SUMMARY REPORT

and surrogate spikes were used. The data validation qualifiers (DVQs) are defined in Table 2. Note that the DVQ replaces all qualifiers applied by the laboratory except the U flag for non-detects.

3.0 DATA VALIDATION RESULTS

3.1 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control spike duplicates (LCSD), unspiked matrix duplicates (MD), matrix spike duplicates (MSD), and field duplicates (FD). LCSD are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MD and MSD are prepared by the laboratory using a field sample. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the sampling technique plus the preparation and analysis technique on the given sample matrix.

3.1.1 LABORATORY CONTROL SPIKE DUPLICATE (LCSD) PRECISION

The laboratory analyzed an LCSD and reported RPDs for all target compounds for each VOC batch (maximum 20 samples). All LCSD RPDs are at or below the criteria.

3.1.2 MATRIX DUPLICATE (MD) AND MATRIX SPIKE DUPLICATE (MSD) PRECISION

The laboratory analyzed an MD for every inorganics analytical batch (maximum 20 samples) and an MSD for every organics analytical batch (maximum 20 samples) except VOC batches and reported RPDs for MD and MSD prepared using a sample from the site or another site. MD/MSD prepared with a sample from another site were not evaluated, since they do not reflect data quality for the site. No soil samples were designated by the sampler for MD/MSD for the 43 backfill/cover material samples (29 for VOC and 13-14 for the remaining tests); however, the laboratory selected one or more backfill/cover material samples for batch QC for PEST, PCB, HERB, and Cyanide. The Workplan requirement is one per 20 or fewer samples per sample matrix.

All RPDs for MSD prepared using a sample from the site are at or below the criteria.

3.1.3 FIELD DUPLICATE (FD) PRECISION

No field duplicates were collected for this event. The Workplan requirement is one per 20 or fewer samples per sample matrix. The following shows the breakdown by sample type of the field duplicates for all project phases (i.e., Phase II-A, Phase II-B, and Phase III):

TOTAL NUMBER OF SA	AMPLES
--------------------	--------

Sample Type	Investigative Samples	Field Duplicate Samples
Confirmation Samples (TCLP Metals)	656	36
Confirmation Samples (Total Metals)	803	41
Backfill/Cover Material Composite Samples	140	9
(Metals, Cr III/VI, PEST, PCB, HERB, SVOC, Cyanide)		
Backfill/Cover Material Grab Samples (VOC)	314	12

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the results for the laboratory control spikes (LCS/LCSD), matrix spikes including post digestion spikes (MS/MSD/PDS), serial dilutions (SD), and surrogate (SU) spikes. LCS/LCSD

are prepared using a clean sample matrix (reagent water or sand) and provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD/PDS are prepared using a field sample and provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. SD are prepared using a field sample and indicate whether matrix interferences are affecting the accuracy of the preparation and analysis technique for metals results that are substantially above the reporting limit. Surrogates are added to each sample before preparation and analysis and provide an indication of accuracy for each individual sample analysis.

3.2.1 LABORATORY CONTROL SPIKE (LCS) ACCURACY

The laboratory analyzed a LCS and/or LCSD for every analytical batch (maximum 20 samples) as required and reported recoveries for all target compounds except the multi-component pesticides technical Chlordane and Toxaphene, five of the seven multi-component PCB Aroclors, and Chromium III (which is a calculated rather than measured result).

Three LCS recoveries for Cyanide are within the laboratory limits but outside the data qualification criteria and the validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data from the EDD as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

3.2.2 MATRIX SPIKE (MS) ACCURACY

The laboratory analyzed an MS/PDS for every inorganics analytical batch (maximum 20 samples) and an MS/MSD for every organics analytical batch (maximum 20 samples) and reported recoveries for MS/PDS/MSD prepared using a sample from the site or another site. MS/PDS/MSD prepared with a sample from another site were not evaluated, since they do not reflect data quality for the site. No soil samples were designated by the sampler for MS/PDS/MSD for the 43 backfill/cover material samples (29 for VOC and 13-14 for the remaining tests); however, the laboratory selected one or more backfill/cover material samples for batch QC for PEST, PCB, HERB, and Cyanide. The Workplan requirement is one per 20 or fewer samples per sample matrix.

All recoveries for MS/MSD prepared using a sample from the site are within the criteria.

3.2.3 SERIAL DILUTION (SD) %DIFFERENCE

For each metals MS, the laboratory analyzed a SD and reported the %difference for all target compounds detected above 50x the method detection limit (MDL). None of the SD were prepared using a sample from the site, and thus the %differences were not evaluated.

3.2.4 SURROGATE (SU) RECOVERY

The laboratory spiked each organic sample with one or more surrogates before preparation and analysis. All surrogate recoveries for field samples are within the criteria. Additionally, all surrogate recoveries for QC samples are above the data rejection limit and thus no qualification of field samples is deemed necessary.

3.3 REPRESENTATIVENESS

QAA evaluated representativeness of the sample results by examining the custody procedures, calculating holding times, verifying that the laboratory and method selection meet project objectives, examining blanks for evidence of contamination,

comparing sample results to theoretical values, and comparing the actual analytical procedures to those described in the analysis methods.

3.3.1 CHAIN-OF-CUSTODY AND ANALYSIS REQUESTS

The samples were delivered to the laboratory by an overnight, commercial carrier with properly executed chain-of-custody records, which confirms that sample integrity was maintained, except as follows:

• For work order 460-114318-1, the sampler did not enter a date or time upon sample relinquishment. The sampler signed the custody record, and the samples were relinquished to a commercial carrier with custody seals intact and then received at the laboratory with no evidence of tampering on the day after sample collection. No further action was taken.

Additionally, the information on the custody record is complete and correct, and agrees with that reported in the analytical results; and all samples were analyzed for the tests requested on the chain-of-custody and one result was reported for each target analyte, except as follows:

• For the seven composite samples in laboratory work orders 460-113178-1 and 460-113180-1, the laboratory reported an original result (preparation batch 366530 05/04/2016 18:00:00) and re-extracted/re-analyzed result (preparation batch 366555 05/05/2016 19:00:00) for Chromium (VI). The samples were re-extracted/ re-analyzed due to deficiencies for the MS/MSD, which was prepared using a sample from another site and thus does not reflect on data quality for the site samples. The sample results for both sets are all non-detect and the validator did not find any QC deficiencies for either set. In the EDD, the laboratory reported the original set with a reportable_result of Yes and the second set with a reportable_result of No. The validator confirmed this selection and made no changes.

3.3.2 SAMPLE PRESERVATION AND HOLDING TIME

All samples were properly preserved and analyzed within the holding times listed in Table 3 of the Workplan, and/or SW-846, which confirms that sample results are not affected by sample degradation. Note that the holding time was calculated using dates only without regard to the time of day since all holding times are greater than 24-hours. Also, note that Chromium III is a calculated result and the holding time check does not apply for this analyte.

3.3.3 LABORATORY AND METHOD SELECTION

As required per Section 5.4 of the Workplan, the laboratory is accredited under the National Environmental Laboratory Accreditation Program (NELAP) and pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP) (no. 11452).

As required per Section 5.7.1 of the Workplan, analytical methods presented in NYSDEC's Analytical Services Protocol (ASP) and Table 3 of the Workplan were used for the sample analyses. (In some cases, the method update number used by the laboratory may differ from that in the Workplan. For example, method 8260C was used rather than 8260B for the VOCs.)

The target analyte list includes all DER-10 analytes, except as follows:

 DER-10 Appendix 5 lists m-Cresol(s), o-Cresol(s), and p-Cresol(s). The laboratory reported m & p-Cresols and o-Cresol as it is not possible to separate m-Cresol and p-Cresol using method 8270D.

- DER-10 Appendix 5 lists Chlordane (alpha). The laboratory reported technical Chlordane, which is a commercial mixture that contains alpha-Chlordane and gamma-Chlordane along with other related compounds.
- The laboratory reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) instead of the DER-10 analytes as requested on the custody record.

Additionally, the nominal reporting limits (i.e., without dry-weight correction or sample dilution and based on the standard sample weight and final volume) are at or below the levels of concern (i.e., the Allowable Constituent Levels for Imported Fill or Soil (ACLs) from Appendix 5 of the DER-10), except as follows:

Analyte	Commercial or Industrial Use ACL (mg/kg)	Unrestricted Use ACL (mg/kg)	Nominal RL (mg/kg)	MDL (mg/kg)
Selenium	4	3.9	4	1.4
Chromium VI	19	1	2	0.81
Aldrin	0.19	0.005	0.0067	0.00081
4,4'-DDD	14	0.0033	0.0067	0.00088
4,4'-DDE	17	0.0033	0.0067	0.00097
4,4'-DDT	47	0.0033	0.0067	0.00069

For these six analytes, the nominal RL is at or below the Commercial or Industrial Use ACL but above the Unrestricted Use ACL. In each case, the method detection limit (MDL) is below both the Commercial or Industrial Use ACL and the Unrestricted Use ACL. Though non-detects are reported at the sample reporting limit (RL) as requested, the samples were evaluated to the method detection limit (MDL).

None of the backfill/cover material samples required dilution, and thus none have elevated reporting limits except based on actual sample weight and dry-weight correction.

(Note: The laboratory dilutes all total metals samples 2-4x before analysis as standard practice. All Revere samples were diluted 4x and thus nominal reporting limits were determined at this dilution rate.)

3.3.4 BLANKS (LABORATORY AND FIELD)

The laboratory analyzed a preparation/method blank for every analytical batch (maximum 20 samples) and a calibration blank for every 10 metals analyses as required per the analytical methodology. Additionally, a trip blank was included with each shipment of VOC samples, which meets the Workplan requirement of one for every cooler of VOC samples. (Note that the trip blank for work order 460-113180-1 is reported in work order 460-113179-1 since these two sets were shipped together.) Field rinsate blanks were not collected as only dedicated and/or disposable sampling equipment was used. No detects are reported in the laboratory or trip blanks.

3.3.5 THEORETICAL RESULT VALUES

None of the samples were analyzed for two related values (e.g., TCLP and total metals), and thus no theoretical comparisons were made.

3.3.6 ANALYTICAL PROCEDURES

The analytical procedures (instrument tuning and initial calibration, calibration verification, interference check standards, dual column confirmation, and internal standards), met the requirements in the analytical method with a few exceptions for initial

calibration and calibration verification. The validator qualified the associated data per the NFG as detailed in Table 3, which shows the QC data as reported by the laboratory on the QC summary sheets in the data package. Table 4 lists all qualified results for the field samples.

The data set includes 32 analytical batches and the validator randomly selected three batches (HERB batch 370404, SVOC batch 369453, and Cyanide batch 366670) for a detailed raw data review including re-calculation of sample results and QC check parameters. No issues were found with analyte identification or quantitation of sample results or calculation of QC parameters.

The validator made the following observations from the review of the raw data:

- The laboratory used dual column confirmation for all GC analyses (including PEST, PCB, and HERB). For surrogates and spiked analytes, the laboratory reports the results from both columns in the CLP forms section of the pdf report. For target analytes in blanks and field samples (and as the reportable result in the EDD for surrogates and spiked analytes), the laboratory reports the result from the column with the higher concentration (unless chromatographic performance is better on one column and it is therefore used for all analyses), provided that the RPD between the two columns is less than 40%. If the RPD is greater than 40%, the column with the lower concentration is reported with a note in the narrative and the result is reported with a P flag. The RPD did not exceed 40% for any field or QC samples in this data set. (All field samples are non-detect.)
- For all HERB analyses, the lowest ICAL level used by the laboratory corresponds to 33 μg/kg of Silvex (2,4,5-TP) in dry soil while the reporting limit (RL) is 17 μg/kg. Thus, detects between the MDL and 33 μg/kg should be considered estimates. All field samples are non-detect to the MDL so no further action is required.

3.4 COMPLETENESS

QAA evaluated completeness by examining the laboratory data packages and EDD and determining the amount of valid analytical data obtained for the field samples.

3.4.1 LABORATORY DELIVERABLES COMPLETENESS

The Level 4 data packages and EDD contain all necessary information or the laboratory submitted a revision upon request as detailed in the validator's checklists, except as follows:

For all work orders, the QC Sample Results section in the pdf report does not include the RPDs for the laboratory duplicates for the %solids determination. The validator calculated the RPD using the raw data for each laboratory duplicate prepared using a sample from the site. (RPDs for duplicates prepared using a sample from another site were not evaluated since they do not reflect data quality for the Revere site.) As shown below, the calculated RPDs are within the laboratory criteria (maximum 20 RPD) and thus no further action was taken.

Work Order	Batch	Sample ID	Sample %Solids	Duplicate %Solids	RPD
460-113180-1	366275	CC-PSL-8c-001	99.3	99.3	0
460-114779-1	372396	BF-5L-GF-9c-01	88.6	88.6	0

- For work orders 460-113178-1 and 460-113180-1, Form 2A (Calibration Verifications) in the pdf report for Mercury batch 367324 does not include the results for CCV 460-367324/91 analyzed 5/10/16 19:27. The instrument QC printout in the raw data section shows the %R for this CCV was 100.2%, which is within the 80-120% criteria and thus no further action was taken.
- For work order 460-114069-1, the QC Sample Results section and Form 3 (GC/MS Semi VOA Lab Control Sample Recovery) in the pdf report for SVOC batch 369452 do not include results for LCS 460-369453/2-A analyzed

5/24/16 05:01. The LCS results and recoveries are included in the EDD, and Form 1 (Analysis Data Sheet) and the quantitation report/chromatogram are included in the raw data section of the pdf report. Thus no further action was taken.

• For work order 460-114318-1, there is no secondary column data (DB-608, 2C) or results in the pdf report or EDD for the method blank (MB 460-370404/1-A analyzed 5/29/16 14:29) for HERB batch 370404. The primary column data (DB-5, 1C) and results are reported and show Silvex is non-detect with passing SU recovery, and thus no further action was taken.

3.4.2 EDD CORRECTNESS

The validator examined the EDD to confirm that the cell entries are correct based on the information on the custody records and in the laboratory data packages. (Note that the validator did not verify that the EDD entries conform to the valid values and field formats specified by the NYSDEC, since this is done by the laboratory using the EQuIS software.) The following corrections were made:

Laboratory Work Order(s)	Sample(s)	EDD Field(s)	Action
All	All laboratory QC samples	sampling_technique	The validator changed the entry from null to the default entry (UN) to meet NYSDEC requirements.
All	All composite field samples and MS/MSD samples (*c-0*)	composite_yn	The validator changed the entry from N to Y based on the custody record.
All	All 6010C total metals field samples and laboratory QC samples	prep_method	The validator changed the method reference from SW3020B to SW3050B based on the pdf analytical results and as confirmed by the laboratory.
All	All laboratory QC samples	validation_level	For the target analyte (TRG), surrogate (SUR), and spike compound (SC) records (which have validated_yn set to N), the validator changed the entry from UNKNOWN to blank to meet NYSDEC requirements.
All	All field QC samples	validation_level	For the surrogate (SUR) records (which have validated_yn set to N), the validator changed the entry from UNKNOWN to blank to meet NYSDEC requirements.
460-113178-1	BF-5L-TS-1c-01 BF-5L-TS-1c-02 BF-5L-TS-1g-01 BF-5L-TS-1g-02 BF-5L-TS-1g-03 BF-5L-TS-1g-04 BF-5L-TS-1g-05 BF-5L-TS-1g-06 BF-5L-TS-1g-07	lab_matrix_code	The validator updated the entry from U (Unknown) to SO (Soil Matrix).
460-113178-1 460-114779-1	TB-5/3/16 TB-6/2/16	lab_matrix_code	The validator updated the entry from U (Unknown) to WQ (Water Quality Control Matrix).

Laboratory Work Order(s)	Sample(s)	EDD Field(s)	Action
460-114779-1	BF-5L-GF-9c-01-	reportable_result	For these two QC samples, both results (i.e. from
	20160602MS		the primary and secondary column) for the 8151
	BF-5L-GF-9c-01-		HERB surrogate (2,4-Dichlorophenylacetic Acid)
	20160602SD		had an entry of No. The validator changed the entry
			to Yes for the higher result as per laboratory
			standard procedure.

3.4.3 ANALYTICAL COMPLETENESS

The validator did not reject any of the 1,757 total results for field samples for this event, and thus the completeness is 100%.

3.5 COMPARABILITY

Samples were analyzed using standard EPA protocols as shown in Table 1. The SW-846 methodologies employed by the laboratory are specified for use in the Workplan and/or presented in the NYSDEC's Analytical Services Protocol (ASP) and provide definitive, quantitative data. The sample results are reported with a method detection limit (MDL) and reporting limit (RL), which is a quantitation limit. A detection limit corresponds to the lowest concentration at which a target analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. A quantitation limit reflects the lowest concentration at which a target analyte can be both positively identified and accurately measured.

The MDLs and RLs reported by the laboratory are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size and include dry-weight correction for all soil samples as required per Section 5.7.1 of the Workplan. Non-detects are reported as less than the RL on the analysis reports and detects between the MDL and RL are reported with a laboratory J flag. Since these detects are below the calibration range, the validator qualified each as estimated with an unknown bias (J).

Results for the investigative samples are reported in mg/kg with dry-weight correction for total metals and inorganics, and in µg/kg with dry-weight correction for organics. (For the 7196A analyses, Chromium III is shown as not dry-weight corrected. Chromium III is calculated from the results for Chromium VI and total Chromium, which are dry-weight corrected, and thus the Chromium III is not directly dry-weight corrected but is on a dry-weight basis.)

The analytical results were fully reviewed and validated and are classified as Level 4 data. The analytical results are considered comparable to other results similarly generated.

TABLE 1 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase III Remedial Design/ Remedial Action Backfill and Cover Material Samples

May 2016 to June 2016

SAMPLE SUMMARY

Lab ID	Field ID	Date	Туре	Media	Matrix	Total DER10 Metals	Hg	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-113178-1	BF-5L-TS-1g-01-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113178-2	BF-5L-TS-1g-02-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113178-3	BF-5L-TS-1g-03-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113178-4	BF-5L-TS-1g-04-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113178-5	BF-5L-TS-1g-05-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113178-6	BF-5L-TS-1g-06-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113178-7	BF-5L-TS-1g-07-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113178-8	BF-5L-TS-1c-01-20160503	5/3/2016	INV	BF	Soil	Х	Χ	Х	X	Х	Х		X	Х
460-113178-8MS	BF-5L-TS-1c-01-20160503MS	5/3/2016	MS	BF	Soil				X	Х	Х			
460-113178-8SD	BF-5L-TS-1c-01-20160503SD	5/3/2016	MSD	BF	Soil				Χ	Х	Х			
460-113178-9	BF-5L-TS-1c-02-20160503	5/3/2016	INV	BF	Soil	Х	Χ	Х	X	Х	Х		X	Х
460-113178-10	TB-5/3/16-20160503	5/3/2016	ТВ	TB	Water							Χ		
460-113180-1	CC-PSL-6g-001-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113180-2	CC-PSL-6g-002-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113180-3	CC-PSL-6c-001-20160503	5/3/2016	INV	BF	Soil	X	Χ	Х	X	Х	Х		X	Χ
460-113180-4	CC-PSL-7g-001-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113180-5	CC-PSL-7g-002-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113180-6	CC-PSL-7c-001-20160503	5/3/2016	INV	BF	Soil	Х	Χ	Х	Χ	Х	Х		Х	Χ
460-113180-6MS	CC-PSL-7c-001-20160503MS	5/3/2016	MS	BF	Soil									Χ
460-113180-6SD	CC-PSL-7c-001-20160503SD	5/3/2016	MSD	BF	Soil									Х
460-113180-7	CC-PSL-8g-001-20160503	5/3/2016	INV	BF	Soil							Х		
460-113180-8	CC-PSL-8g-002-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113180-9	CC-PSL-8c-001-20160503	5/3/2016	INV	BF	Soil	X	Х	Х	Χ	Х	Х	-	X	Х
460-113180-10	CC-PSL-9g-001-20160503	5/3/2016	INV	BF	Soil							Χ		
460-113180-11	CC-PSL-9g-002-20160503	5/3/2016	INV	BF	Soil							Χ		

Lab ID	Field ID	Date	Туре	Media	Matrix	Total DER10 Metals	Hg	Cr III/ VI	PEST	РСВ	HERB	voc	svoc	CN
460-113180-12	CC-PSL-9c-001-20160503	5/3/2016	INV	BF	Soil	X	Х	Х	Х	Х	Х		Х	Х
460-113180-13	CC-PSL-10g-001-20160503	5/3/2016	INV	BF	Soil							Х		
460-113180-14	CC-PSL-10g-002-20160503	5/3/2016	INV	BF	Soil							Х		
460-113180-15	CC-PSL-10c-001-20160503	5/3/2016	INV	BF	Soil	X	Х	Х	Х	Х	Х		Х	Х
460-114069-1	BF-ORI-WT-2C-01-R3-20160519	5/19/2016	INV	BF	Soil								Х	
460-114318-1	BF-5L-TS-2g-01-20160524	5/24/2016	INV	BF	Soil							Х		
460-114318-2	BF-5L-TS-2g-02-20160524	5/24/2016	INV	BF	Soil							Х		
460-114318-3	BF-5L-TS-2c-01-20160524	5/24/2016	INV	BF	Soil	X	Х	Х	X	Х	Х		X	Х
460-114318-3MS	BF-5L-TS-2c-01-20160524MS	5/24/2016	MS	BF	Soil				X	Х	Х			
460-114318-3SD	BF-5L-TS-2c-01-20160524SD	5/24/2016	MSD	BF	Soil				Х	Х	Х			
460-114318-4	BF-5L-TS-3g-01-20160524	5/24/2016	INV	BF	Soil							Х		
460-114318-5	BF-5L-TS-3g-02-20160524	5/24/2016	INV	BF	Soil							Х		
460-114318-6	BF-5L-TS-3c-01-20160524	5/24/2016	INV	BF	Soil	X	Х	Х	Х	Х	Х		Х	Х
460-114318-7	BF-5L-TS-4g-01-20160524	5/24/2016	INV	BF	Soil							Х		
460-114318-8	BF-5L-TS-4g-02-20160524	5/24/2016	INV	BF	Soil							Х		
460-114318-9	BF-5L-TS-4c-01-20160524	5/24/2016	INV	BF	Soil	Х	Х	Х	Х	Х	Х		Х	Х
460-114318-10	BF-5L-TS-5g-01-20160524	5/24/2016	INV	BF	Soil							Х		
460-114318-11	BF-5L-TS-5g-02-20160524	5/24/2016	INV	BF	Soil							Х		
460-114318-12	BF-5L-TS-5c-01-20160524	5/24/2016	INV	BF	Soil	Х	Х	Х	Х	Х	Х		Х	Х
460-114318-13	TB-5/24/16-20160524	5/24/2016	ТВ	TB	Water							Х		
460-114779-1	BF-5L-GF-9g-01-20160602	6/2/2016	INV	BF	Soil							Х		
460-114779-2	BF-5L-GF-9g-02-20160602	6/2/2016	INV	BF	Soil							Х		
460-114779-3	BF-5L-GF-9c-01-20160602	6/2/2016	INV	BF	Soil	Х	Х	Х	Х	Х	Х		Х	Х
460-114779-3MS	BF-5L-GF-9c-01-20160602MS	6/2/2016	MS	BF	Soil						Х			
460-114779-3SD	BF-5L-GF-9c-01-20160602SD	6/2/2016	MSD	BF	Soil						Х			1
460-114779-4	BF-5L-GF-10g-01-20160602	6/2/2016	INV	BF	Soil							Х		
460-114779-5	BF-5L-GF-10g-02-20160602	6/2/2016	INV	BF	Soil							Х		
460-114779-6	BF-5L-GF-10c-01-20160602	6/2/2016	INV	BF	Soil	Х	Х	Х	Х	Х	Х		Х	Х
460-114779-7	TB-6/2/16-20160602	6/2/2016	ТВ	TB	Water		_					Х		

BF - Backfill or Cover Material Sample

INV - Investigative Sample

MS - Matrix Spike Sample

MSD - Matrix Spike Duplicate Sample

TB - Trip Blank

DATA USABILITY SUMMARY REPORT

The following analytical methods from EPA SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods were used:

- Total DER10 Metals: 3050B/ 6010C for 12 ICP-AES NYSDEC DER-10 Appendix 5 Metals (Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Lead, Manganese, Nickel, Selenium, Silver, and Zinc) in soil samples
- Hg: 7471B for total Mercury in soil samples
- Cr III/VI: 3060A/7196A for Trivalent Chromium and Hexavalent Chromium in soil samples
- PEST: 3546/ 3620C/ 8081B for 15 NYSDEC DER-10 Appendix 5 pesticides plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene in soil samples
- PCB: 3546/ 3665A/ 8082A for 7 Aroclors in soil samples
- HERB: 8151A for Silvex (2,4,5-TP) in soil samples
- VOC: 5035/8260C for 30 NYSDEC DER-10 Appendix 5 volatile organic compounds (VOCs) in soil samples and 5030B/ 8260C for 30 VOCs in aqueous trip blanks
- SVOC: 3546/8270D for 20 NYSDEC DER-10 Appendix 5 semivolatile organic compounds (SVOCs) plus Dibenzofuran and Hexachlorobenzene in soil samples
- CN: 9012B for Cyanide in soil samples

TABLE 2 REVERE SMELTING & REFINING SITE OPERABLE UNIT 1 Phase III Remedial Design/ Remedial Action

DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory except the U-flag for non-detects.

- U = Potentially contaminated. The analyte was not detected substantially above the level reported in an associated laboratory blank and/or field QC blank and should be considered not detected at the reporting limit.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements
 or because the concentration is below the reporting limit. Directional bias cannot be determined
- Estimated low. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased low.
- Estimated high. The reported sample concentration is approximate due to exceedance of one or more QC requirements and the result may be biased high.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies, the reviewer applied the most severe flag. (R>U>J>L/H and R>UJ)

TABLE 3

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Phase III Remedial Design/ Remedial Action Backfill and Cover Material Samples May 2016 to June 2016

QC DEFICIENCIES AND DATA QUALIFICATION ACTIONS

				Method			Date and Ti	me									
Lab ID	Sample Code	Туре	Leach	Prep	Analy	Leach	Prep	Analy	GC Col	DF	Analyte	Lab Qual	Spk LCL	Spk UCL	RPD CL	QC Issue	DVQs Applied
	LABORATORY CONTROL SPIKE (LCS) ACCURACY																
4603666 704A10	4603666 704A10	BS		Method	9012		5/6/16 8:00:00 AM	5/6/16 12:27:00 PM	NA	10	Cyanide		3.5	121. 4		Extremely low LCS-SRM recovery (18.6%) - within vendor limits but <50%	L/UJ to detects/NDs for samples digested in the same batch (Note: The low and high level LCS pass at 98% and 104%. Additionally, the MS and MSD (prepared with sample CC-PSL-7c-001 from the site) pass at 105% and 100%.)
4603711 904A10	4603711 904A10	BS		Method	9012		6/2/16 9:00:00 AM	6/2/16 2:49:00 PM	NA	10	Cyanide		3.5	121. 4		Extremely low LCS-SRM recovery (22.9%) - within vendor limits but <50%	L/UJ to detects/NDs for samples digested in the same batch (Note: The low and high level LCS pass at 106% and 100%.)
4603723 534A10	4603723 534A10	BS		Method	9012		6/8/16 9:00:00 AM	6/8/16 12:37:00 PM	NA	10	Cyanide		3.5	121. 4		Extremely low LCS-SRM recovery (22.5%) - within vendor limits but <50%	L/UJ to detects/NDs for samples digested in the same batch (Note: The low and high level LCS pass at 104% and 102%.)
								INITIA	AL CAL	IBRATI	ON						
IC 460- 369723 /3-10	IC 460- 369723 /3-10	ICAL			8270D			5/24/16 4:42:00 PM	NA	1	Pentachloro phenol					RRF <0.05 advisory level (at 0.0324) for the 4 ug/ml standard (270 µg/kg in dry soil)	J to detects/UJ to NDs for samples quantitated with this ICAL (data not rejected since RRF >0.05 advisory level at 0.0593 for the 10 ug/ml standard (660 μg/kg in dry soil)

Lab ID	Sample Code	Туре		Method		I	Date and Ti	me	GC Col	DF	Analyte	Lab Qual	Spk LCL	Spk UCL	RPD CL	QC Issue	DVQs Applied
								CALIBRA	TION V	/ERIFIC	CATION						
CCV 460- 370610/1	CCV 460- 370610/1	CCV			8151A			5/29/16 2:15:00 PM	1C	1	Silvex (2,4,5-TP)	*	-20	+20		Calibration drift secondary column (%D= -22.8%)	L to detects quantitated on this column, UJ to NDs for samples analyzed after and before this CCV (all NDs)
CCVIS 460- 366734/2	CCVIS 460- 366734/2	CCV			8260C			5/6/16 7:29:00 PM	NA	1	Carbon Tetrachloride	*	-20	+20		Calibration drift (%D= -39.1%)	L to detects, UJ to NDs samples analyzed this shift (all ND)
CCVIS 460- 366734/2	CCVIS 460- 366734/2	CCV			8260C			5/6/16 7:29:00 PM	NA	1	Vinyl Chloride	*	-20	+20		Calibration drift (%D= +20.3%)	H to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 372544/2	CCVIS 460- 372544/2	CCV			8260C			6/9/16 6:50:00 AM	NA	1	Carbon Tetrachloride	*	-20	+20		Calibration drift (%D= +25.1%)	H to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 366775/2	CCVIS 460- 366775/2	CCV			8270D			5/7/16 4:52:00 AM	NA	1	Benzo(g,h,i) perylene	*	-20	+20		Calibration drift (%D= +23%)	H to detects only since < +40% for samples analyzed this shift
CCVIS 460- 366775/2	CCVIS 4 60- 366775/2	CCV			8270D			5/7/16 4:52:00 AM	NA	1	Indeno(1,2,3- c,d)pyrene	*	-20	+20		Calibration drift (%D= +27.7%)	H to detects only since < +40% for samples analyzed this shift
CCVIS 460- 369533/2	CCVIS 460- 369533/2	CCV			8270D			5/24/16 1:49:00 AM	NA	1	Benzo(g,h,i) perylene	*	-20	+20		Calibration drift (%D= -23.1%)	none (applies for QC samples only)
CCVIS 460- 370565/2	CCVIS 460- 370565/2	CCV			8270D			5/29/16 3:20:00 AM	NA	1	Benzo(g,h,i) perylene	*	-20	+20		Calibration drift (%D= +31.8%)	H to detects only since < +40% for samples analyzed this shift
CCVIS 460- 370565/2	CCVIS 460- 370565/2	CCV			8270D			5/29/16 3:20:00 AM	NA	1	Dibenz(a,h) anthracene	*	-20	+20		Calibration drift (%D= +28.7%)	H to detects only since < +40% for samples analyzed this shift
CCVIS 460- 370565/2	CCVIS 460- 370565/2	CCV			8270D			5/29/16 3:20:00 AM	NA	1	Hexachloro benzene	*	-20	+20		Calibration drift (%D= +33.8%)	H to detects only since < +40% for samples analyzed this shift (none)
CCVIS 460- 370565/2	CCVIS 460- 370565/2	CCV	_		8270D	_		5/29/16 3:20:00 AM	NA	1	Indeno(1,2,3- c,d)pyrene	*	-20	+20		Calibration drift (%D= +36.4%)	H to detects only since < +40% for samples analyzed this shift

CL - Control Limit

DF - Dilution Factor

LCL - Lower Control Limit

UCL - Upper Control Limit

TABLE 4

REVERE SMELTING & REFINING SITE OPERABLE UNIT 1

Phase III Remedial Design/ Remedial Action
Backfill and Cover Material Samples
May 2016 to June 2016

QUALIFIED RESULTS FOR FIELD SAMPLES

Lab ID	Field ID-Date	Analyte	ı	Lab Result			QC Issue
		TOTAL METAI	LS				
460-113180-6	CC-PSL-7c-001-20160503	Barium	36.6	J	mg/kg	J	Result between MDL and RL
460-114318-3	BF-5L-TS-2c-01-20160524	Selenium	1.2	J	mg/kg	J	Result between MDL and RL
460-114318-6	BF-5L-TS-3c-01-20160524	Selenium	1.5	J	mg/kg	J	Result between MDL and RL
460-114318-9	BF-5L-TS-4c-01-20160524	Selenium	1.7	J	mg/kg	J	Result between MDL and RL
460-114318-9	BF-5L-TS-4c-01-20160524	Silver	0.34	J	mg/kg	7	Result between MDL and RL
460-114318-12	BF-5L-TS-5c-01-20160524	Selenium	1.8	J	mg/kg	J	Result between MDL and RL
		HERBICIDES (HI	ERB)				
460-114318-3	BF-5L-TS-2c-01-20160524	Silvex (2,4,5-TP)	21	U	ug/kg	UJ	Calibration drift secondary column (%D= -22.8%)
460-114318-6	BF-5L-TS-3c-01-20160524	Silvex (2,4,5-TP)	21	U	ug/kg	UJ	Calibration drift secondary column (%D= -22.8%)
460-114318-9	BF-5L-TS-4c-01-20160524	Silvex (2,4,5-TP)	21	U	ug/kg	UJ	Calibration drift secondary column (%D= -22.8%)
460-114318-12	BF-5L-TS-5c-01-20160524	Silvex (2,4,5-TP)	21	U	ug/kg	UJ	Calibration drift secondary column (%D= -22.8%)
	V	OLATILE ORGANIC COM	OUND	S (V	OC)		· · · · · · · · · · · · · · · · · · ·
460-113178-5	BF-5L-TS-1g-05-20160503	Methylene Chloride	0.84	J	ug/kg	J	Result between MDL and RL
460-113180-1	CC-PSL-6g-001-20160503	Carbon Tetrachloride	0.86	U	ug/kg	UJ	Calibration drift (%D= -39.1%)
460-113180-2	CC-PSL-6g-002-20160503	Carbon Tetrachloride	0.87	U	ug/kg	UJ	Calibration drift (%D= -39.1%)
460-113180-4	CC-PSL-7g-001-20160503	Carbon Tetrachloride	0.89	U	ug/kg	UJ	Calibration drift (%D= -39.1%)
460-113180-5	CC-PSL-7g-002-20160503	Carbon Tetrachloride	0.86	U	ug/kg	UJ	Calibration drift (%D= -39.1%)
460-113180-7	CC-PSL-8g-001-20160503	Carbon Tetrachloride	0.86	U	ug/kg	UJ	Calibration drift (%D= -39.1%)
460-113180-7	CC-PSL-8g-001-20160503	Methylene Chloride	0.78	J	ug/kg	J	Result between MDL and RL
460-113180-8	CC-PSL-8g-002-20160503	Carbon Tetrachloride	0.86	U	ug/kg	UJ	Calibration drift (%D= -39.1%)
460-113180-10	CC-PSL-9g-001-20160503	Carbon Tetrachloride	0.82	U	ug/kg	UJ	Calibration drift (%D= -39.1%)
460-113180-11	CC-PSL-9g-002-20160503	Carbon Tetrachloride	0.81	U	ug/kg	UJ	Calibration drift (%D= -39.1%)
460-113180-13	CC-PSL-10g-001-20160503	Carbon Tetrachloride	0.84	U	ug/kg	UJ	Calibration drift (%D= -39.1%)
460-113180-14	CC-PSL-10g-002-20160503	Carbon Tetrachloride	0.87	U	ug/kg	UJ	Calibration drift (%D= -39.1%)
460-113180-14	CC-PSL-10g-002-20160503	Methylene Chloride	0.79	J	ug/kg	J	Result between MDL and RL
460-114318-5	BF-5L-TS-3g-02-20160524	Methylene Chloride	0.60	J	ug/kg	J	Result between MDL and RL
460-114318-8	BF-5L-TS-4g-02-20160524	Methylene Chloride	0.55	J	ug/kg	J	Result between MDL and RL
460-114318-11	BF-5L-TS-5g-02-20160524	Methylene Chloride	0.90	J	ug/kg	J	Result between MDL and RL
460-114779-5	BF-5L-GF-10g-02-20160602	Methylene Chloride	0.52	J	ug/kg	J	Result between MDL and RL
	SEM	IVOLATILE ORGANIC CO	MPOUN	IDS	(SVOC)		
460-113178-8	BF-5L-TS-1c-01-20160503	Benzo(g,h,i)perylene	110	J	ug/kg	J	Calibration drift (%D= +23%); Result between MDL and RL
460-113178-8	BF-5L-TS-1c-01-20160503	Chrysene	120	J	ug/kg	J	Result between MDL and RL
460-113178-8	BF-5L-TS-1c-01-20160503	Fluoranthene	150	J	ug/kg	J	Result between MDL and RL
460-113178-8	BF-5L-TS-1c-01-20160503	Indeno(1,2,3-c,d)pyrene	110		ug/kg	Н	Calibration drift (%D= +27.7%)

Lab ID	Field ID-Date	Analyte		Lat Resu		DVQ	QC Issue
460-113178-8	BF-5L-TS-1c-01-20160503	Naphthalene	13	J	ug/kg	J	Result between MDL and RL
460-113178-8	BF-5L-TS-1c-01-20160503	Phenanthrene	76	J	ug/kg	J	Result between MDL and RL
460-113178-8	BF-5L-TS-1c-01-20160503	Pyrene	190	J	ug/kg	J	Result between MDL and RL
460-113178-9	BF-5L-TS-1c-02-20160503	Acenaphthylene	16	J	ug/kg	J	Result between MDL and RL
460-113178-9	BF-5L-TS-1c-02-20160503	Benzo(g,h,i)perylene	100	J	ug/kg	J	Calibration drift (%D= +23%); Result
							between MDL and RL
460-113178-9	BF-5L-TS-1c-02-20160503	Chrysene	120	J	ug/kg	J	Result between MDL and RL
460-113178-9	BF-5L-TS-1c-02-20160503	Cresols, M & P	12	J	ug/kg	J	Result between MDL and RL
460-113178-9	BF-5L-TS-1c-02-20160503	Fluoranthene	140	J	ug/kg	J	Result between MDL and RL
460-113178-9	BF-5L-TS-1c-02-20160503	Fluorene	12	J	ug/kg	J	Result between MDL and RL
460-113178-9	BF-5L-TS-1c-02-20160503	Indeno(1,2,3-c,d)pyrene	99		ug/kg	Н	Calibration drift (%D= +27.7%)
460-113178-9	BF-5L-TS-1c-02-20160503	Naphthalene	14	J	ug/kg	J	Result between MDL and RL
460-113178-9	BF-5L-TS-1c-02-20160503	Phenanthrene	97	J	ug/kg	J	Result between MDL and RL
460-113178-9	BF-5L-TS-1c-02-20160503	Pyrene	210	J	ug/kg	J	Result between MDL and RL
460-114069-1	BF-ORI-WT-2C-01-R3-20160519	Benzo(g,h,i)perylene	99	J	ug/kg	J	Result between MDL and RL
460-114069-1	BF-ORI-WT-2C-01-R3-20160519	Chrysene	130	J	ug/kg	J	Result between MDL and RL
460-114069-1	BF-ORI-WT-2C-01-R3-20160519	Cresols, M & P	13	J	ug/kg	J	Result between MDL and RL
460-114069-1	BF-ORI-WT-2C-01-R3-20160519	Dibenz(a,h)anthracene	31	J	ug/kg	J	Result between MDL and RL
460-114069-1	BF-ORI-WT-2C-01-R3-20160519	Fluoranthene	97	J	ug/kg	J	Result between MDL and RL
460-114069-1	BF-ORI-WT-2C-01-R3-20160519	Pentachlorophenol	360	U	ug/kg	UJ	ICAL RRF <0.05 advisory level (at
							0.0324) for the 4 ug/ml standard
							(270 μg/kg in soil)
460-114069-1	BF-ORI-WT-2C-01-R3-20160519	Phenanthrene	33	J	ug/kg	J	Result between MDL and RL
460-114069-1	BF-ORI-WT-2C-01-R3-20160519	Pyrene	95	J	ug/kg	J	Result between MDL and RL
460-114318-3	BF-5L-TS-2c-01-20160524	Acenaphthene	25	J	ug/kg	J	Result between MDL and RL
460-114318-3	BF-5L-TS-2c-01-20160524	Acenaphthylene	11	J	ug/kg	J	Result between MDL and RL
460-114318-3	BF-5L-TS-2c-01-20160524	Anthracene	73	J	ug/kg	J	Result between MDL and RL
460-114318-3	BF-5L-TS-2c-01-20160524	Benzo(g,h,i)perylene	290	J	ug/kg	J	Calibration drift (%D= +31.8%);
							Result between MDL and RL
460-114318-3	BF-5L-TS-2c-01-20160524	Chrysene	280	J	ug/kg	J	Result between MDL and RL
460-114318-3	BF-5L-TS-2c-01-20160524	Dibenz(a,h)anthracene	55		ug/kg	Н	Calibration drift (%D= +28.7%)
460-114318-3	BF-5L-TS-2c-01-20160524	Dibenzofuran	21		ug/kg	J	Result between MDL and RL
460-114318-3	BF-5L-TS-2c-01-20160524	Fluorene	33	J	ug/kg	J	Result between MDL and RL
460-114318-3	BF-5L-TS-2c-01-20160524	Indeno(1,2,3-c,d)pyrene	300		ug/kg	Н	Calibration drift (%D= +36.4%)
460-114318-3	BF-5L-TS-2c-01-20160524	Naphthalene	18	J	ug/kg	J	Result between MDL and RL
460-114318-6	BF-5L-TS-3c-01-20160524	Benzo(g,h,i)perylene	110	J	ug/kg	J	Calibration drift (%D= +31.8%);
	75 71 77 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						Result between MDL and RL
460-114318-6	BF-5L-TS-3c-01-20160524	Chrysene	130		ug/kg	J	Result between MDL and RL
460-114318-6	BF-5L-TS-3c-01-20160524	Fluoranthene	190	J	ug/kg	J	Result between MDL and RL
460-114318-6	BF-5L-TS-3c-01-20160524	Fluorene	11	J	ug/kg	J	Result between MDL and RL
460-114318-6	BF-5L-TS-3c-01-20160524	Indeno(1,2,3-c,d)pyrene	120		ug/kg	H	Calibration drift (%D= +36.4%)
460-114318-6	BF-5L-TS-3c-01-20160524	Phenanthrene	120	J	ug/kg	J	Result between MDL and RL
460-114318-6	BF-5L-TS-3c-01-20160524	Pyrene	190	J	ug/kg	J	Result between MDL and RL
460-114318-9	BF-5L-TS-4c-01-20160524	Acenaphthylene	11	<u>J</u>	ug/kg	J	Result between MDL and RL
460-114318-9	BF-5L-TS-4c-01-20160524	Benzo(g,h,i)perylene	140	J	ug/kg	J	Calibration drift (%D= +31.8%);
400 44 4040 5	DE 51 TO 4: 04 0040055	Ol	400				Result between MDL and RL
460-114318-9	BF-5L-TS-4c-01-20160524	Chrysene	130	J	ug/kg	J	Result between MDL and RL
460-114318-9	BF-5L-TS-4c-01-20160524	Dibenz(a,h)anthracene	27	J	ug/kg	J	Calibration drift (%D= +28.7%);
			Ì				Result between MDL and RL

Lab ID	Field ID-Date	Analyte		Lal Res		DVQ	QC Issue
460-114318-9	BF-5L-TS-4c-01-20160524	Fluoranthene	160	J	ug/kg	J	Result between MDL and RL
460-114318-9	BF-5L-TS-4c-01-20160524	Indeno(1,2,3-c,d)pyrene	140		ug/kg	Н	Calibration drift (%D= +36.4%)
460-114318-9	BF-5L-TS-4c-01-20160524	Phenanthrene	81	J	ug/kg	J	Result between MDL and RL
460-114318-9	BF-5L-TS-4c-01-20160524	Pyrene	200	J	ug/kg	J	Result between MDL and RL
460-114318-12	BF-5L-TS-5c-01-20160524	Benzo(g,h,i)perylene	120	J	ug/kg	J	Calibration drift (%D= +31.8%);
							Result between MDL and RL
460-114318-12	BF-5L-TS-5c-01-20160524	Chrysene	110	J	ug/kg	J	Result between MDL and RL
460-114318-12	BF-5L-TS-5c-01-20160524	Dibenz(a,h)anthracene	27	J	ug/kg	J	Calibration drift (%D= +28.7%);
							Result between MDL and RL
460-114318-12	BF-5L-TS-5c-01-20160524	Fluoranthene	150	J	ug/kg	J	Result between MDL and RL
460-114318-12	BF-5L-TS-5c-01-20160524	Indeno(1,2,3-c,d)pyrene	110		ug/kg	Н	Calibration drift (%D= +36.4%)
460-114318-12	BF-5L-TS-5c-01-20160524	Phenanthrene	62	J	ug/kg	J	Result between MDL and RL
460-114318-12	BF-5L-TS-5c-01-20160524	Pyrene	160	J	ug/kg	J	Result between MDL and RL
460-114779-3	BF-5L-GF-9c-01-20160602	Naphthalene	13	J	ug/kg	J	Result between MDL and RL
460-114779-6	BF-5L-GF-10c-01-20160602	Acenaphthene	9.6	J	ug/kg	J	Result between MDL and RL
460-114779-6	BF-5L-GF-10c-01-20160602	Benzo(a)pyrene	12	J	ug/kg	J	Result between MDL and RL
460-114779-6	BF-5L-GF-10c-01-20160602	Benzo(b)fluoranthene	14	J	ug/kg	J	Result between MDL and RL
460-114779-6	BF-5L-GF-10c-01-20160602	Chrysene	17	J	ug/kg	J	Result between MDL and RL
460-114779-6	BF-5L-GF-10c-01-20160602	Dibenzofuran	18	J	ug/kg	J	Result between MDL and RL
460-114779-6	BF-5L-GF-10c-01-20160602	Fluoranthene	47	J	ug/kg	J	Result between MDL and RL
460-114779-6	BF-5L-GF-10c-01-20160602	Fluorene	18	J	ug/kg	J	Result between MDL and RL
460-114779-6	BF-5L-GF-10c-01-20160602	Naphthalene	110	J	ug/kg	J	Result between MDL and RL
460-114779-6	BF-5L-GF-10c-01-20160602	Phenanthrene	87	J	ug/kg	J	Result between MDL and RL
460-114779-6	BF-5L-GF-10c-01-20160602	Pyrene	38	J	ug/kg	J	Result between MDL and RL
		CYANIDE			- 3. 3		
460-113178-8	BF-5L-TS-1c-01-20160503	Cyanide	0.11	J	mg/kg	J	Extremely low LCS-SRM recovery
					0 0		(18.6%) - within vendor limits but
							<50%; Result between MDL and RL
460-113178-9	BF-5L-TS-1c-02-20160503	Cyanide	0.12		mg/kg	L	Extremely low LCS-SRM recovery
		·					(18.6%) - within vendor limits but
							<50%
460-113180-12	CC-PSL-9c-001-20160503	Cyanide	0.022	J	mg/kg	J	Extremely low LCS-SRM recovery
							(18.6%) - within vendor limits but
							<50%; Result between MDL and RL
460-113180-15	CC-PSL-10c-001-20160503	Cyanide	0.10	U	mg/kg	UJ	Extremely low LCS-SRM recovery
							(18.6%) - within vendor limits but
							<50%
460-113180-3	CC-PSL-6c-001-20160503	Cyanide	0.10	U	mg/kg	UJ	Extremely low LCS-SRM recovery
							(18.6%) - within vendor limits but
							<50%
460-113180-6	CC-PSL-7c-001-20160503	Cyanide	0.020	J	mg/kg	J	Extremely low LCS-SRM recovery
							(18.6%) - within vendor limits but
							<50%; Result between MDL and RL
460-113180-9	CC-PSL-8c-001-20160503	Cyanide	0.028	J	mg/kg	J	Extremely low LCS-SRM recovery
							(18.6%) - within vendor limits but
							<50%; Result between MDL and RL
460-114318-12	BF-5L-TS-5c-01-20160524	Cyanide	0.13		mg/kg	L	Extremely low LCS-SRM recovery
							(22.9%) - within vendor limits but
			1			1	<50%

Lab ID	Field ID-Date	Analyte	Lab Result	DVQ	QC Issue
460-114318-3	BF-5L-TS-2c-01-20160524	Cyanide	0.17 mg/kg	L	Extremely low LCS-SRM recovery (22.9%) - within vendor limits but <50%
460-114318-6	BF-5L-TS-3c-01-20160524	Cyanide	0.14 mg/kg	L	Extremely low LCS-SRM recovery (22.9%) - within vendor limits but <50%
460-114318-9	BF-5L-TS-4c-01-20160524	Cyanide	0.12 mg/kg	L	Extremely low LCS-SRM recovery (22.9%) - within vendor limits but <50%
460-114779-3	BF-5L-GF-9c-01-20160602	Cyanide	0.023 J mg/kg	J	Extremely low LCS-SRM recovery (22.5%) - within vendor limits but <50%; Result between MDL and RL
460-114779-6	BF-5L-GF-10c-01-20160602	Cyanide	0.020 J mg/kg	J	Extremely low LCS-SRM recovery (22.5%) - within vendor limits but <50%; Result between MDL and RL

ATTACHMENT A
VALIDATOR'S CHECKLISTS

Site Name: Revere Smelting & Refining (P3 BF May-Jun16) Caboratory: TestAmerica (Edison) Reviewer: Taryn Scholz Carameters: TCLP Pb, Metals, CrIII/VI, Pesticide, PCB, Herbicide, VOC, Metalogory BYOC, CN ITEM Aboratory NELAP/ELAP accredited? Caboratory NELAP/ELAP accredited? Can narrative included? Chain of Custor Chain of C	QC Le- abora Date C Method 3270D NO x dy (CC	vel: IV story Jol shecked ds: 131 ² , 9012B	#11452 for Edison certification signature on cover page See Narrative Comments mple Receipt (P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required) see Comment no. 1 (DER10 - recommended) is on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-values reported; EDD - NDs blank with 'method_detection_limit' = 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' = 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightly different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLF TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Aboratory: TestAmerica (Edison) Reviewer: Taryn Scholz Parameters: TCLP Pb, Metals, CrIII/VI, Pesticide, PCB, Herbicide, VOC, Nov Nov Not Not Not Not Not Not Not Not Not Not	abora abora abora abora abora abora abora abora abora abora abora x dy (CC	tory Job checked ds: 131' , 9012B N/A	d: 9/21/16 1/6010C, 6010C/7471B, 7196A, 8081B, 8082A, 8151A, 5035/8260C, 3 (CRITERIA) COMMENT #11452 for Edison certification signature on cover page See Narrative Comments mple Receipt (P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required) see Comment no. 1 (DER10 - recommended) ss on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slight! different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CL TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Reviewer: Taryn Scholz Parameters: TCLP Pb, Metals, CrIll/VI, Pesticide, PCB, Herbicide, VOC, NovOC, CN TEM	Date C Method 3270D NO NO X Add (CC	Checked ds: 131', 9012B N/A	d: 9/21/16 1/6010C, 6010C/7471B, 7196A, 8081B, 8082A, 8151A, 5035/8260C, 3 (CRITERIA) COMMENT #11452 for Edison certification signature on cover page See Narrative Comments mple Receipt (P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required) see Comment no. 1 (DER10 - recommended) ss on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Parameters: TCLP Pb, Metals, CrIII/VI, Pesticide, PCB, Herbicide, VOC, Nov Coc, CN ITEM YES aboratory NELAP/ELAP accredited? Signed Narrative included? Signed Narrative included? Sometime of sample collection included? Sample temp upon receipt 2-6 C? Sometime of sample collection included? Sample seceived within 2 days? Anaul requested analyses reported? Solate of sample collection/receipt included? Solate of sample preparation/analysis included? Anaul of sample preparation/analysis included? Anaul of sample preparation/analysis included? Anaul of sample delevated Preparation/analysis included? Anaul of sample preparation/analysis included?	Method 3270D NO X dy (CC	ds: 131 ⁴ , 9012B	(CRITERIA) COMMENT #11452 for Edison certification signature on cover page See Narrative Comments mple Receipt (P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required) see Comment no. 1 (DER10 - recommended) s on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
ITEM YES aboratory NELAP/ELAP accredited?	NO x dy (CC	, 9012B N/A DC)/ Sa	(CRITERIA) COMMENT #11452 for Edison certification signature on cover page See Narrative Comments imple Receipt (P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required) see Comment no. 1 (DER10 - recommended) is on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' in 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' in 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLF TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Analysis method references included? Araget analyte list complete? Araget analyte list comp	x dy (CCC	N/A DC)/ Sa	#11452 for Edison certification signature on cover page See Narrative Comments mple Receipt (P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required) see Comment no. 1 (DER10 - recommended) is on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' in 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' in 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLF TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Aboratory NELAP/ELAP accredited? Signed Narrative included? No narrative issues noted by lab? Chain of Custor Chain of Sample collection included? Sample temp upon receipt 2-6 C? Proper containers/preservation? COCs properly executed and seals used? Samples received within 2 days? Ana All requested analyses reported? Sample collection/receipt included? Nate of sample preparation/analysis included? Aboratory, and Batch ID included? Aborator of sample preparation/analysis included? Aborator of sample preparation/analysis included? Aborator of sample preparation/analysis included? Aborator of sample preparation/analysis included? Aborator of sample preparation/analysis included? Aborator of sample preparation/analysis included? Aborator of sample preparation/analysis included? Aborator of sample preparation/analysis included? Aborator of sample preparation/analysis included? Aborator of sample preparation/analysis included? Aborator of sample preparation/analysis included? Aborator of sample preparation/analysis included? Aborator of custor Ana Ana All requested analyses reported? Ana Ana Ana Ana Ana Ana Ana An	x dy (CC	DC)/ Sa	#11452 for Edison certification signature on cover page See Narrative Comments mple Receipt (P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required) see Comment no. 1 (DER10 - recommended) s on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' inimimum_detectable_conc' (SDL), 'reporting_detection_limit' iquantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLFTAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Signed Narrative included? No narrative issues noted by lab? Chain of Custor Chain of Sample collection included? Asample temp upon receipt 2-6 C? Asample temp upon receipt 2-6 C? Asamples received within 2 days? COCs properly executed and seals used? Samples received within 2 days? Anall requested analyses reported? Sield, Laboratory, and Batch ID included? Asate of sample collection/receipt included? Asate of sample preparation/analysis included? Asate of sample preparation/analysis included? Asate of sample preparation/analysis included? Asate of sample preparation/analysis included? Asate of sample preparation/analysis included? Asate of sample preparation/analysis included? Asate of sample preparation/analysis included? Asate of sample preparation/analysis included? Asate of sample preparation analysis included? Asample analyte list complete? Asaceptable? Asaceptable? Asaceptable? Asaceptable? Asaceptable delevated RLs for NDs? Asample matrix included. Asample matrix included. Asample matrix included. Asample matrix included. Asample matrix included. Asample matrix included. Asample matrix included. Asampl	x alytica		certification signature on cover page See Narrative Comments mple Receipt (P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required) see Comment no. 1 (DER10 - recommended) s on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Analytical collection/receipt included? Analytical analyte list complete? Analytical cleanup used, method ref included and approved? Analytical cleanup used, method ref included and approved? Analytical cleanup used, method ref included and approved? Analytical cleanup used, method ref included and approved? Analytical consistent units? Alolding time to analysis not expired? Are Chain of Custor Chain of Custor X Chain of Custor X Analytical cleanup used, method ref included? X Analytical cleanup used, method ref included and approved? X Correct and consistent units? Analytical cleanup used, method ref included and approved? X Correct and consistent units? Analytical cleanup used, method ref included and approved? X Correct and consistent units? Analytical cleanup used, method ref included and approved? X Correct and consistent units? Analytical cleanup used, method ref included and approved? X Correct and consistent units? Analytical cleanup used, method ref included and approved? X Correct and consistent units? Analytical cleanup used, method ref included and approved? X Correct and consistent units? Analytical cleanup used, method ref included and approved? X Correct and consistent units? Analytical cleanup used, method ref included and approved? X Correct and consistent units?	x alytica		See Narrative Comments mple Receipt (P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required) see Comment no. 1 (DER10 - recommended) is on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' i'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Chain of Custor Date/time of sample collection included? Sample temp upon receipt 2-6 C? Proper containers/preservation? COCS properly executed and seals used? Samples received within 2 days? Anall requested analyses reported? Sield, Laboratory, and Batch ID included? Date of sample collection/receipt included? Anall Date of sample preparation/analysis included? All Date of sample preparation/analysis included? All Date of sample preparation/analysis included? All Date of sample preparation/analysis included? All Date of sample preparation/analysis included? All Date of sample preparation/analysis included? All Date of sample preparation/analysis included? All Date of sample preparation/analysis included? All Date of sample preparation/analysis included? All Date of sample preparation/analysis included? All Date of sample preparation/analysis included? All Date of sample preparation/analysis included? All Date of sample preparation/analysis included? All Prep/Analysis method references included and approved? All Date of sample matrix included? All Prep/Analysis method references included and approved? All Date of sample matrix included? All requested analyses reported? Analytical cleanup used, method ref included and approved? All Date of sample matrix included? All requested analyses reported? Analytical cleanup used, method ref included and approved? All requested analyses reported? Analytical cleanup used, method ref included and approved? All Report of Sample o	x alytica		Imple Receipt (P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required) see Comment no. 1 ((DER10 - recommended)) ss on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Coate/time of sample collection included? Coample temp upon receipt 2-6 C? Corpoper containers/preservation? CoCs properly executed and seals used? Coamples received within 2 days? Analytical collection/receipt included? Coate of sample preparation/analysis included? Coate analyte list complete? Coate analyte list complete? Corpoper analyte list complete? Coate of sample preparation/analysis included? Coate of sample preparation/analysis included? Coate of sample preparation/analysis included? Coate of sample preparation/analysis included? Coate of sample preparation/analysis included? Coate of sample preparation/analysis included? Coate of sample preparation/analysis included? Coate of sample preparation/analysis included? Coate of sample preparation/analysis included? Coate of sample analyte list complete? Coate of sample analyte list complete? Coale of sample analyte list complete? Coale of sample matrix included. Coale of sample matrix included. Coale of sample matrix included. Coale of sample matrix included. Coale of sample matrix included. Coale of sample matrix included. Coale of sample matrix included. Coale of sample matrix included. Coale of sample matrix included. Coale of sample matrix included. Coal	x		(P1 WP Table 2, P2A/B WP Table 1/2 - all soils, no preserv required) see Comment no. 1 (DER10 - recommended) s on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Sample temp upon receipt 2-6 C? Proper containers/preservation? COCs properly executed and seals used? Samples received within 2 days? Ana All requested analyses reported? Sield, Laboratory, and Batch ID included? Sate of sample collection/receipt included? At a collection analysis included? At a collection analysis included? At a collection analysis included? At a collection analysis included? At a collection analysis included? At a collection analysis included? At a collection analysis included? At a collection analysis included? At a collection analysis included? At a collection analysis included? At a collection analysis included and approved? At a collection analysis method references included and approved? At analytical cleanup used, method ref included and approved? At analytical cleanup used, method ref included and approved? At analytical cleanup used, method refinction and approved? At analytical cleanup used, method refinction and approved? At analytical cleanup used, method refinction and approved? At analytical cleanup used, method refinction and approved? At analytical cleanup used, method refinction and approved? At analytical cleanup used, method refinction and approved? At analytical cleanup used, method refinction and approved? At analytical cleanup used, method refinction and approved? At analytical cleanup used, method refinction and approved? At analytical cleanup used, method refinction and approved? At analytical cleanup used, method refinction and approved? At analytical cleanup used, method refinction and approved? At analytical cleanup used, method refinction and approved? At a collection and approved? At a collection and approved? At a collection and approved? At a collection and approved? At a collection and approved? At a collection and approved? At a collection and approved? At a collection and approved? At a collection and approved? At a collection and approved? At a collection and approved? At a collection and approved? At a collectio	alytica	Result	see Comment no. 1 (DER10 - recommended) s on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Proper containers/preservation? COCs properly executed and seals used? Samples received within 2 days? Analytical cleanup used, method ref included and approved? Tanalytical cleanup used, method ref included and	alytica	l Result	see Comment no. 1 (DER10 - recommended) s on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Ana Mil requested analyses reported? Ana Mil requested analyses reported? Ana Mil requested analyses reported? Ana Mil requested analyses reported? Ana Mil requested analyses reported? Ana Mil requested analyses reported? Ana Mil requested analyses reported? Ana Mil requested analyses reported? Ana Mil requested analyses reported? Analyse of sample collection/receipt included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation of expired? Analyse of sample of sample of sample of sample of sample of sample of sample of sample of sample of sample of sample of sample of sample of sample of sample of sample of sample of samples of	alytica	I Result	see Comment no. 1 (DER10 - recommended) s on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Samples received within 2 days? Ana All requested analyses reported? Sield, Laboratory, and Batch ID included? Sate of sample collection/receipt included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included and approved? Alter of sample preparation/analysis included and approved? Alter of sample preparation/analysis included and approved? Alter of sample preparation/analysis included and approved? Alter of sample preparation/analysis included and approved? Alter of sample preparation/analysis included and approved? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analysis included? Alter of sample preparation/analy	alytica	Result	(DER10 - recommended) s on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Ana All requested analyses reported? X Field, Laboratory, and Batch ID included? Analyse of sample collection/receipt included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation/analysis included? Analyse of sample preparation of expired? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample of sampled? Analyse of sample		I Result	Is on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
All requested analyses reported? All requested analyses reported? All reductions and Batch ID included? All sample collection/receipt included? All sample preparation/analysis included? All sample preparation/analysis included? All sample preparations as needed? All sample analyte list complete? All sacceptable? All sacceptable? All sacceptable? All sacceptable analytes included and approved? All sample matrix included and approved? All sample matrix included? A		Result	on QA Association Summary Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
ield, Laboratory, and Batch ID included? Date of sample collection/receipt included? Date of sample preparation/analysis included? ADDE at DL or QL and J-values as needed? ADDE at DL or QL and J	x		Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slight different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Pate of sample collection/receipt included? A pate of sample preparation/analysis included? A pate of sample preparation/analysis included? A pate of sample preparation/analysis included? A pate of sample preparation/analysis included? A pate of sample preparation/analysis included? A pate of sample preparation and proved? A pate of sample included and approved? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included? A pate of sample matrix included and approved? A pate of sample matrix included? A pate of sampl	X		Hardcopy - NDs at SQL with 'MDL' (SDL) and 'RL' (SQL), J-value reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slight different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
A part of sample preparation/analysis included? A part DL or QL and J-values as needed? A part analyte list complete? A part analyte list complete? A part analyte list complete? A part analyte list complete? A part analyte list complete? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and approved? A part analytical cleanup used, method ref included and app	X		reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
ADS at DL or QL and J-values as needed? X Rarget analyte list complete? X RLs acceptable? Io elevated RLs for NDs? Prep/Analysis method references included and approved? X analytical cleanup used, method ref included and approved? X sample matrix included? X soils on dry weight basis? X correct and consistent units? X dolding time to analysis not expired? X** CC Samples (Phas Rinsate Blank - 1 per day of sampling using non-dedicated, non-	Х		reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Farget analyte list complete? RLs acceptable? Ro elevated RLs for NDs? Prep/Analysis method references included and approved? analytical cleanup used, method ref included and approved? Soils on dry weight basis? Correct and consistent units? Alolding time to analysis not expired? CC Samples (Phas Rinsate Blank - 1 per day of sampling using non-dedicated, non-	Х		reported; EDD - NDs blank with 'method_detection_limit' 'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Farget analyte list complete? RLs acceptable? Ro elevated RLs for NDs? Prep/Analysis method references included and approved? analytical cleanup used, method ref included and approved? Soils on dry weight basis? Correct and consistent units? Alolding time to analysis not expired? CC Samples (Phas Rinsate Blank - 1 per day of sampling using non-dedicated, non-	х		'minimum_detectable_conc' (SDL), 'reporting_detection_limit' 'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLITAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Farget analyte list complete? RLs acceptable? Ro elevated RLs for NDs? Prep/Analysis method references included and approved? analytical cleanup used, method ref included and approved? Soils on dry weight basis? Correct and consistent units? Alolding time to analysis not expired? CC Samples (Phas Rinsate Blank - 1 per day of sampling using non-dedicated, non-	X		'quantitation_limit' (SQL), J-values reported. Note: 108300 in slightl different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
RLs acceptable? Ido elevated RLs for NDs? Prep/Analysis method references included and approved? Ido analytical cleanup used, method ref included and approved? Ido analytical cleanup use	х		different format than other work orders (P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLITAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
RLs acceptable? Ido elevated RLs for NDs? Prep/Analysis method references included and approved? Ido analytical cleanup used, method ref included and approved? Ido analytical cleanup use	Х		(P1 WP Table 3, P2A/B WP Table 2/4 and/or DER-10 App 5 plus CLI TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
RLs acceptable? Ido elevated RLs for NDs? Prep/Analysis method references included and approved? Ido analytical cleanup used, method ref included and approved? Ido analytical cleanup use	х		TAL) see Comment no. 2 (ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
RLs acceptable? Ido elevated RLs for NDs? Prep/Analysis method references included and approved? Ido analytical cleanup used, method ref included and approved? Ido analytical cleanup use	Х		(ASP Exh C Part III and/or DER-10 App 5) see Comment no. 3 Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Report No. 2	Х		Note: 4x std dilution for total metals in soil, 5x std dilution for TCLP
Prep/Analysis method references included and approved? x analytical cleanup used, method ref included and approved? x sample matrix included? x soils on dry weight basis? x* correct and consistent units? x dolding time to analysis not expired? x** Allolding time to preparation not expired? x** QC Samples (Phas Rinsate Blank - 1 per day of sampling using non-dedicated, non-			
analytical cleanup used, method ref included and approved? x Sample matrix included? x Soils on dry weight basis? x * Correct and consistent units? x dolding time to analysis not expired? x** QC Samples (Phas Rinsate Blank - 1 per day of sampling using non-dedicated, non-			
analytical cleanup used, method ref included and approved? x Sample matrix included? x Soils on dry weight basis? x * Correct and consistent units? x dolding time to analysis not expired? x** QC Samples (Phas Rinsate Blank - 1 per day of sampling using non-dedicated, non-			(P1 WP Table 2, P2A/B WP Table 1/2, and/or ASP Exh D); (5035 used
Sample matrix included? Soils on dry weight basis? Correct and consistent units? Holding time to analysis not expired? The soil of the			for VOC soils this phase) on QA Assoc, see Comment no. 4
Sample matrix included? Soils on dry weight basis? Correct and consistent units? Holding time to analysis not expired? Ar* Correct and consistent units? x** Correct and consistent units? x** Correct and consistent units? x** QC Samples (Phas Rinsate Blank - 1 per day of sampling using non-dedicated, non-			(ASP Exh D) see Comment no. 5
Soils on dry weight basis? Correct and consistent units? Holding time to analysis not expired? Av* With the construction of the construction o			
Correct and consistent units? x Holding time to analysis not expired? x** Holding time to preparation not expired? x** QC Samples (Phas Rinsate Blank - 1 per day of sampling using non-dedicated, non-			
Holding time to analysis not expired? ** ** ** ** ** ** ** ** **			Organics in ug/L (TBs) and ug/kg for rest; Inorganics in mg/kg
Holding time to preparation not expired?			(P1 WP Table 2, P2A/B WP Table 1/2 or SW846 for those not in table
Holding time to preparation not expired?			per ASP Exh I, which gives only aq HTs) Hg 28-d, Extr 14/40-d, Cr V
QC Samples (Phas Rinsate Blank - 1 per day of sampling using non-dedicated, non-			30/7-d, CN 14-d, VOC 14-d (freeze within 2-d)
QC Samples (Phas Rinsate Blank - 1 per day of sampling using non-dedicated, non-			see above
Rinsate Blank - 1 per day of sampling using non-dedicated, non-	se 2B	Workpla	
			only disposable equipment used
		NA	aloposable equipment accu
rin Blank - 1 for every cooler of VOC samples submitted to the			Note that the Trip Blank for 113180 is reported in 113179 since these
aboratory			two sets were shipped together
ilter blank - 1 per week of time-integrated air monitoring		NA	two sets were shipped together
Field duplicate samples - 1 for every 20 or fewer samples per		INA	Low for BF grab for to-date P2B (see right), all others approx 1 per 20
	X		Low for Br grab for to-date F2B (see fight), all others approx 1 per 20
ample matrix (excluding air samples)			MC/LD yeard for motals /ICD, Ha, Cr.\/L, I/D, not reported for sole C
Field MS/MSD - 1 for every 20 or fewer samples per sample natrix from the same batch as the project samples to the extent	v		MS/LR used for metals (ICP, Hg, Cr VI - %R not reported for calc CIIII); no field MS/MSD this event - with lab MS/MSD one short for DEI
. ,	Х		
ossible		1	Metals, Cr6, VOC, and SVOC each with no MS/MSD
Completeness criteria met? x	Cial-L*	lote -	(P2B WP Section 5.3.3 - 100%) 1757/1757 = 100%
	Field I	1	Latin
agree with custody records?		Х	not included
Field instruments calibrated daily?	_	Х	
Vell conditions constant before sampling?			
Samples filtered? If so, give turbid/size		Х	

Definitions: AA - Atomic Absorption; CCV - Continuing Calibration Verification; COI - Compound of Interest; %D - Percent Difference, DL - Detection Limit; DUP Duplicate; FDUP - Field Duplicate; ICP - Inductively Coupled Plasma; ICV - Initial Calibration Verification; IDL - Instrument Detection Limit; LCS - Laboratory Control Sample; MDL - Method Detection Limit; MS/MSD - Matrix Spike/Matrix Spike Duplicate; QL - Quantitation Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RRF - Relative Response Factor; RT - Retention Time; RSD - Relative Standard Deviation; TA - Target Analyte

COMMENTS

Laboratory Job No: 460-113178-1, 460-113180-1, 460-114069-1, 460-114318-1, 460-114779-1

*For the 7196A analyses, Cr III is shown as not dry-weight corrected. However, Cr III is calculated from the results for Cr VI and Total Cr, which are dry-weight corrected, and thus the Cr III is not directly dry-weight corrected but is on a dry-weight basis.

** The holding time was calculated using dates only without regard to the time of day since all holding times are greater than 24 hours. Also, note that Cr III is a calculated result and the holding time check does not apply for this analyte.

1. Custody Record

For work order 460-114318-1, the sampler did not enter a date or time upon sample relinquishment. The sampler signed the custody record, and the samples were relinquished to a commercial carrier with custody seals intact and then received at the laboratory with no evidence of tampering on the day after sample collection. No further action was taken.

Batch Numbers - Batch numbers are given along with batch date/times on the analytical data sheets (except for 108300) and QA Association Summary in the pdf report, but only the batch date/times are given in the EDD. The prep dates/times are consistent across all samples and can be used to assign batches for most batches but some have varying times for one batch. All samples with unexpected batch time were checked against the prep batch worksheets to verify correct batch assignment. (doesn't apply this event)

Analyte List:

P1 WP Table 3, P2A/B WP Table 2/4, and DER10 App5 list m-cresol, o-cresol, and p-cresol separately. The laboratory reported m,p-cresol and o-cresol as it is not possible to separate m-cresol and p-cresol using method 8270D. (P1 WP Table 3, which only lists RLs for the DER-10 metals and not the 23 TAL metals, also mistakenly lists Antimony. This metal does not appear in DER10 Appendix 5 and was not reported by the laboratory for the backfill samples.)

For all BF samples (and the associated QC), the laboratory reported technical Chlordane rather than Chlordane (alpha) as listed in the workplan and DER10 Appendix 5.

For all BF samples (and the associated QC), the laboratory reported TAL Pesticides (DER-10 list plus Endrin aldehyde, Endrin ketone, Heptachlor epoxide, Methoxychlor, and Toxaphene) instead of just the DER-10 analytes as requested. Note: These extra analytes are all ND in the samples.

For the LB/BS/BD - the lab reported m,p-Xylene and o-Xylene. For the LB, Xylenes (total) is also reported.

Note: The analyte names in the hardcopy report differ from those in the EDD for some analytes.

- 3. The MQL (Unadj) for several DER-10 analytes (metals) is above the CRQL, but in each case, it is below the Allowable Constituent Level in DER10 App 5 for Indus/Commercial. Additionally, the MQL (Unadj) for the TAL metal Iron is above the CRQL. There are no action levels for this analyte.
- 4. Update IV methods (6010C, 7471B, 8260C, 8270D) used instead of Update III as in WP. Prep method for 6010C total metals in soils shown as SW3020B in EDD, validator changed all to SW3050B per the pdf report and as confirmed correct by the laboratory.
- 5. Per laboratory, Florisil cleanup (SW3620C) used for Pesticide analyses and sulfuric acid cleanup (SW3665A) used for PCB analyses (not indicated in package exc on prep log nor in EDD). No cleanup used for SVOC or Herbicides.

NOTES:

New reporting format used for this event. Second column results for LCS/MS are reported in EDD and CLP forms section of pdf but no longer in front of pdf report.

For all work orders, the QC Sample Results sections in the pdf report do not include the RPDs for the laboratory duplicates for the %Solids determination. The validator calculated the RPD using the raw data for each laboratory duplicate prepared using a sample from the site. (RPDs for duplicates prepared using a sample from another site were not evaluated since they do not reflect data quality for the Revere site.) As shown below, the calculated RPDs are within the laboratory criteria (maximum 20 RPD) and thus no further action was taken.

For work orders 460-113178-1 and 460-113180-1, Form 2A Calibration Verifications in the pdf report for Mercury batch 367324 does not include the results for CCV 460-367324/91 analyzed 5/10/16 19:27. The instrument QC printout in the raw data section shows the %R for this CCV was 100.2%, which is within the 80 120% criteria and thus no further action was taken.

For work order 460-114069-1, the QC Sample Results section and Form 3 GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY in the pdf report for SVOC batch 369452 do not include results for LCS 460-369453/2-A analyzed 5/24/16 05:01. The LCS results and recoveries are included in the EDD, and Form 1 and the quantitation report/chromatogram are included in the raw data section of the pdf report. Thus no further action was taken.

For work order 460-114318-1, there is no secondary column data (DB-608, 2C) or results in the pdf report or EDD for the method blank (MB 460-370404/1-A analyzed 5/29/16 14:29) for HERB batch 370404. The primary column data (DB-5, 1C) and results are reported and show Silvex is non-detect with passing SU recovery, and thus no further action was taken.

NarrativeComments

QAA No. All	Lab Job No. All	Test Total Metals	Batch/Sample All samples	Issue Required 4x dilution prior to analysis; RLs adjusted according	Resolution lynoted in QA report narrative
EN631	460-113178-1	VOC SVOC	NA 366775	nothing noted CCV %R out for Indeno(1,2,3-cd)pyrene and Benzo(g,h,i)perylene; samples analyzed per method, detects should be considered estimated	NA see QC Deficiencies
		SVOC	366682/LCS	2-FBP SU %R high; SOP allows one acid and one BN out so no RE, data flagged and reported	none required (SU >10% (hi), sample results not significantly affected)
		SVOC	366863/112963-10	MS/D %R low for several TAs	none required (MS is non-project)
		Pest	NA	nothing noted	NA
		PCB	NA	nothing noted	NA
		Herb	NA	nothing noted	NA
		Total Metals		nothing noted	NA
		Mercury	367324/113299-16	MS %R high for Hg (with 4 qualifier)	none required (MS is non-project)
		Mercury	367324/113299-16	LR RPD out for Hg	none required (LR is non-project)
		Cr3/6	366530/113155-1	MSS/MSI %R low due to sample matrix; LCSS/LCSI within control	none required (MS is non-project)
		Cr3/6	366569/113155-1	MSS %R out due to sample matrix; LCSS/LCSI within control Reprep of 366530, both data sets reported	; noted in QA report narrative
		CN	NA	nothing noted	NA
EN632	460-113180-1	VOC	366734	CCV %R high for Vinyl chloride and low for Carbon tetrachloride; CCVLL in control; samples analyzed per method detects should be considered estimated	see QC Deficiencies (CCVLL not reported)
		SVOC	366775	CCV %R out for Indeno(1,2,3-cd)pyrene and Benzo(g,h,i)perylene; samples analyzed per method, detects should be considered estimated	see QC Deficiencies
		SVOC	366682/LCS	2-FBP SU %R high; SOP allows one acid and one BN out so no RE, data flagged and reported	none required (SU >10% (hi), sample results not significantly affected)
		SVOC	366863/112963-10	MS/D %R low for several TAs	none required (MS is non-project)
		Pest	NA	nothing noted	NA
		PCB	NA	nothing noted	NA
		Herb	NA	nothing noted	NA
		Total Metals	NA	nothing noted	NA
		Mercury	367324/113299-16	MS %R high for Hg (with 4 qualifier)	none required (MS is non-project)
		Mercury	367324/113299-16	LR RPD out for Hg	none required (LR is non-project)
		Cr3/6	366530/113155-1	MSS/MSI %R low due to sample matrix; LCSS/LCSI within control	none required (MS is non-project)
		Cr3/6	366569/113155-1	MSS %R out due to sample matrix; LCSS/LCSI within control Reprep of 366530, both data sets reported	; noted in QA report narrative
		CN	NA	nothing noted	NA
EN633	460-114069-1	SVOC	369533	CCV %R out for Benzo(g,h,i)perylene; CCVLL in control; samples analyzed per method, detects should be considered estimated	see QC Deficiencies (CCVLL not

NarrativeComments

QAA No.	Lab Job No.	Test SVOC	Batch/Sample 369533	Issue CCV %R out for 2,4,6-TBP (SU); CCVLL in control; samples analyzed per method, detects should be considered estimated	• • •
EN634	460-114318-1	VOC SVOC	NA 370565	nothing noted CCV %R out for Indeno(1,2,3-cd)pyrene, Hexachlorobenzene Benzo(g,h,i)perylene and Dibenz(a,h)anthracene; samples analyzed per method, detects should be considered estimated	
		SVOC SVOC	370565 370391/LCS	CCV %R out for 2,4,6-TBP (SU); samples analyzed per method, detects should be considered estimated 2,4,6-TBP SU %R high; SOP allows one acid and one BN out	none required (SU recovery evaluated and passes for all samples) none required (SU >10% (hi), sample
		SVOC Pest	370565/114219-2 NA	•	results not significantly affected) none required (MS is non-project) NA
		PCB Herb	NA 370610/11	CCV %R low for 2,4-DCPA (SU) on secondary column; samples ND, data reported	NA none required (SU recovery evaluated and passes)
		Total Metals Mercury	113724-25 NA	LR RPD out for Mn nothing noted	none required (LR is non-project) NA
		Cr3/6	NA	nothing noted	NA
		CN	NA	nothing noted	NA
EN635	460-114779-1	-	372544	CCV %R high for Carbon tetrachloride; samples ND, data reported	see QC Deficiencies
		SVOC	372654/LCS	2-FBP SU %R high; SOP allows one acid and one BN out so no RE, data flagged and reported	none required (SU >10% (hi), sample results not significantly affected)
		SVOC	372769/114590-2	MSD RPD out for PCP	none required (MSD is non-project)
		Pest	NA	nothing noted	NA
		PCB	NA	nothing noted	NA
		Herb	NA	nothing noted	NA
		Total Metals	NA	nothing noted	NA
		Mercury	NA	nothing noted	NA
		Cr3/6	NA	nothing noted	NA
		CN	NA	nothing noted	NA

Client Name: Entact			V)/Wet Chem Project Number/ Manager: E7976M/ Jenny Self						
Site Nam	ne: Revere Smelting & Refining (P3 BF May-Jun16)	QC Level: IV							
.aborato	ry: TestAmerica (Edison)	Labor	atory Jo	ob No:	see DURC				
Reviewe	r: Taryn Scholz	Date Checked: 9/21/16							
aramet	ers: Metals, CrIII/VI, CN	Methods: 3050B/6010C, 7471B, 3060A/7196A, 9012B							
	%PERFORMED/ ITEM	YES			(CRITERIA) COMMENT				
	Method blank data included in Lab Package? *	Х							
100	Criteria met? (< MDL, ≥ -RL)	Х							
100	Criteria met for field blanks? (< MDL)			Х					
	QC check samples/LCS data included in lab package? *	Х							
	All project COCs or TAs included? *	Х							
100	%R criteria met?		Х		method (lab** but within 50-200%) see QC Def				
	Matrix spike data included in lab package? *	Х			eval for CN only, rest on non-project				
100	%R criteria met?	Х			method (lab*** but within 50-200%)				
	Sample duplicate data included in lab package? *	х			as LR for metals, eval for CN only, rest on non-project				
					ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2F				
100	RPD criteria met?	Х			sol if either <5RL)				
		1			ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2F				
100	Field dup RPD criteria met? (individual, mean, and overall)			х	sol if either <5RL)				
	Instrument Tune for ICP-MS included in lab package?			Х					
NA	Instrument Tune method criteria met? (±5 RSD, ±0.1 amu)			х					
	Initial calibration documentation included in lab package?	Х							
	blank/1 std (ICP), blank/ 5 stds (Hg)	Х							
100	correl coeff criteria met? (r > 0.998 ICP, r > 0.995 AA/Hg)	Х							
	Calibration verification data included in lab package?	Х							
	ICB/CCB criteria met? (<rl, td="" ≥-rl)<=""><td>Х</td><td></td><td></td><td></td></rl,>	Х							
	ICV %R criteria met? (ICP/Cr 90-110,Hg 80-120,CN 85-115)	Х							
	CCV %R criteria met? (ICP/Cr 90-110,Hg 80-120,CN 85-115)	Х							
100	LLCCV %R criteria met? (50-150% Sb/Pb/Tl,70-130%)	Х			CL per ASP Exh E				
100	Dilution test data included?	Х							
100	Results within criteria if >50xMDL? (max 10%, qualify 15%)			Х	only non-project				
100	Post digestion spike included?	Х							
100	%R criteria met?			Х	method (80-120%)****, only non-project				
100	Interference check sample data included (ICP/MS only)?	Х							
100	%R criteria met? (80-120%, unspk <2RL, <u>></u> 2-RL)	Х			2RL per ASP Exh E				
NA	Internal standard data included in lab package?			Х					
NA	Intensities within limits (within \geq 70% of calib std)?			Х					
10	Analyte quantitation/RLs correct?	Х							
10	All target analytes included in ICAL?	Х							
10	QC parameters calculated correctly?	Х							
OMME									
No QC	reported for Chromium III, which is calculated from the Total Chro	omium	and Ch	romiun	n VI result.				
	reported for Chromium III, which is calculated from the Total Chromium III, which is c	omium	and Ch	romiun	n VI result.				
	Ms (solid LCS), the manufacturer's established limits as reported 10% for CN.	by the	lab are	used.	For aqueous LCS, method limit is 80-120% for metals				
u 90-1	10% 101 CN.								
*Eor M	S, the method limits are used for metals (75-125%) and Hg (80-1	20%) 2	nd the l	ahorat	ony's established limits are used for CN				
I OI W	o, the method limits are used for metals (75-12570) and rig (00-1)	2070) a	iiu tiic i	aborat	ory 3 established lithits are used for Orv				
**PDS	deficiencies not delineated if waived (sample result > 4x spike ad	lded)							
. 20	activities for domination if marrow (partiple reduit > 4x opine du								
OTAL N	METALS VS LEACHED - NA								
J\⊑									

		ist: GC (Update IV)							
	me: Entact		Project Number/ Manager: E7976M/ Jenny Self						
3 (3)			QC Level: IV						
	y: TestAmerica (Edison)					see DURC			
	Taryn Scholz		Date C	Checke	d: 9/21	/16			
Paramete	rs: Pesticide, PCB, Herbicide					<u>1B, 3546/8082A, 8151A</u>			
	%PERFORM		YES	NO	N/A	(CRITERIA) COMMENT			
	Method blank data included i	n Lab Package?	Х						
100	Criteria met? (<mdl)< td=""><td></td><td>Х</td><td></td><td></td><td></td></mdl)<>		Х						
100	Criteria met for field blanks?				Х				
	QC check samples/LCS data	included in lab package?	Х						
	All project COIs or TAs included	ded?	х			With the exception of multi-component pesticides Chlordane (technical) and Toxaphene; only two multi-component Aroclors (1016 and 1260) spiked per method recommendations			
	%R criteria met?		Х			method (lab but within 50-200%)			
100	RPD criteria met?				Х				
	Matrix spike data included in	lab package?	Х						
	%R criteria met?		Х			method (lab but within 50-200%)			
100	RPD criteria met?		х			method (lab but within 40%)			
	Surrogate data included in la		Х						
	Required surrogates included	1?	Х						
100	%R criteria met?		Х			method (lab but within 10-200%)			
100	Field dup RPD criteria met?	(individual, mean, and overall)			х	ASP for lab dup - 20% aq, 35% solid (+/-RL aq, +/-2RL sol if either ≤5RL)			
	Initial calibration documentat	ion included in lab package?	Х			5 peaks used for all multi-comp Pest/PCB			
100	%RSD criteria met? (<20%R	SD or r ≥ 0.995 or COD ≥ 0.990)	Х						
100	DDT/Endrin %breakdown ma	ax 15%?	Х						
	Calibration verification data in	ncluded in lab package?	Х			only beg CCV (no end) for 8082/8081 (104045) since IS used			
100	%D criteria met? (<20%,<159	% for 8151)		Х		see QC Deficiencies			
100	Internal standard data include	ed in lab package?	Х			used for 8082A and 8081B for all work orders			
100	Areas within limits (within -50	/+100% of last calib check)?	Х			for samples			
100	RTs within limits (+/-0.07 min	from last calib check)?	Х			for samples			
100	Dual column/detector confirm	nation data incl in lab package?	х						
100	%Difference criteria met? (<4	10%)	х						
10	Analyte qualitative ID criteria	met?	Х			see Comment no. 1			
10	Analyte quantitation/RLs corr	rect?	х						
10	All target analytes included in ICAL at min 5 levels w low < RL?			х		completed for 100%, see Comment no. 2			
10					Х	for CCVs, not used for Herb			
		05(Pest)-0.07(PCB) min from ICAL							
10	midlevel)?	, , , , , , , , , , , , , , , , , , , ,			х	for CCVs, not used for Herb			
10	QC parameters calculated co	prrectly?	х			,			
	Surrogate	Control Limits		1					
PEST/	Decachlorobiphenyl	55-148/47-150							
			1	i	1				
PCB	Tetrachloro-m-xylene	55-139							

COMMENTS

The validator did not delineate cases where the surrogate has a %D outside the criteria since surrogate recoveries for each analysis are evaluated separately

For work order 460-114779-1, the 8081 Pesticide ICAL Summary in original report includes only 4 levels with no standard at 2.5 ug/L. The lowest ICAL level for the single-component target analytes is 50 ug/L (on-column). This corresponds to 33 ug/kg in soil, which is well below the RLs of 2-6.7 ug/kg and the MDLs of 0.6-1.4 ug/kg. Clarification requested 9/27/16. Revision dated 10/6/16 rec'd 10/13/16 with ICAL Summary showing all 5 levels (same %RSD so this was just reporting issue) and with L1 raw data. Note that the revised report does not include calib stds for Chlordane (Tech) or Toxaphene but these analytes were not detected and they are included in original report, so no further action.

^{1.} Chromatograms show peaks in region of interest but none of the sample have Silvex peak on first column.
2. For all work orders, the lowest ICAL level for Silvex is 101 ug/L (on-column). This corresponds to 33 ug/kg in soil, which is above but near the RL of 17 ug/kg. All samples are ND to the MDL (11 ug/kg) so no further action.

	ame: Entact				er/ Ma	nager: E7976M/ Jenny Self				
	ne: Revere Smelting & Refi	ning (P3 BF May-Jun16)		QC Level: IV Laboratory Job No: see DURC Date Checked: 9/21/16						
	ory: TestAmerica (Edison)									
	er: Taryn Scholz									
Paramet	ters: VOC, SVOC		Metho			OC, 3546/8270D				
		ORMED/ ITEM	YES	NO	N/A	(CRITERIA) COMMENT				
	Method blank data include	ed in Lab Package?	Х							
100	Criteria met? (<mdl)< td=""><td></td><td>Х</td><td></td><td></td><td></td></mdl)<>		Х							
100	Criteria met for field blank	ks? (<mdl)< td=""><td>Х</td><td></td><td></td><td></td></mdl)<>	Х							
	QC check samples/LCS of	data included in lab package?	Х							
	All project COIs or TAs in	cluded?	Х							
100	%R criteria met?		Х			method (lab but within 50-200%)				
100	RPD criteria met?		Х			method (lab but within 40%)				
	Matrix spike data included	d in lab package?	Х							
100	%R criteria met?				Х	method (lab but within 50-200%) only non-project				
100	RPD criteria met?				Х	method (lab but within 40%) only non-project				
	Surrogate data included in	n lab package?	Х							
	Required surrogates inclu	ided'?	Х		-	4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6				
100	%R criteria met?		Х	ļ	1	method (lab but within 10-200% extr, 20-200% purg)				
100		et? (individual, mean, and overall)			Х	20% aq, 35% solid (+/-2RL aq, +/-3RL sol if either ≤5RL)				
400		or GC/MS included in lab package?	Х	ļ						
100	Instrument Tune method		Х		-					
		ntation included in lab package?	Х	ļ						
		ect for RRF <table (0.01)="" 4="" from<="" min="" or="" td=""><td>m</td><td></td><td></td><td></td></table>	m							
	NFG 2014			Х						
100		$\%$ RSD or $r \ge 0.995$ or $COD \ge 0.990$)	X X	ļ						
		Calibration verification data included in lab package? RRF met (Table 4)? Reject for RRF <table (0.01)="" 4="" from<="" min="" or="" td=""><td></td><td></td></table>								
		ect for RRF <table (0.01)="" 4="" from<="" min="" or="" td=""><td>m x</td><td></td><td></td><td></td></table>	m x							
	NFG 2014	T. 0 (000)				000 %				
100	%D criteria met for CCC/	I As? (20% max)		Х		see QC Deficiencies				
100	Internal standard data included in lab package? Areas within limits (within -50/+100% of last calib check)? RTs within limits (<10/30(8270) s diff from last calib check)?		X			for complex				
100 100			X			for samples for samples				
100	K 15 WILLIII IIIIIIS (< 10/30(6270) S ulli Irom last callb check)?	Х			Dibenz(a,h)anthracene potentially not present but conservat				
10	Analyte qualitative ID crite	orio mot?	х			approach so no further action				
10	Analyte quantitation/RLs		х			approach so no further action				
10		ed in ICAL at min 5 levels w low < RL?	X			completed for 100%				
10		hin -50/+100% of ICAL midlevel)?	X			for CCVs				
10	IS RTs within limits (<10/	30(8270) s diff from ICAL midlevel)?	X			for CCVs				
10	QC parameters calculated	d correctly?	X			101 00 10				
	Surrogate	Control Limits								
/OC	1,2-Dichloroethane-d4	70-130 (Sep15 78-135)								
	Toluene-d8	70-130 (Sep15 73-121)								
	Bromofluorobenzene	70-130 (Sep15 67-126)								
	Dibromofluoromethane	70-130 (Sep15 61-149)								
SVOC	2,4,6-Tribromophenol	19-114 (Oct14 10-120, Sep15 10-95)								
	Terphenyl-d14	41-145 (Oct14 16-151, Sep15 16-114								
	2-Fluorobiphenyl	49-112 (Oct14 40-109, Sep15 27-84)								
	Nitrobenzene-d5	40-106 (Oct14 38-105, Sep15 28-92)								
	2-Fluorophenol	39-103 (Oct14 37-125, Sep15 21-84)								
	Phenol-d5	44-104 (Oct14 41-118, Sep15 22-88)								
OMME	NTS									
he valid	dator did not delineate case	es where the surrogate has a %D outsid	e the crit	eria sir	nce sur	rogate recoveries for each analysis are evaluated separately.				