The RETEC Group, Inc.

1001 West Scheda Street, Seite (10), Ibrahil, New Sink (14) (10), T-607 277.5716 (F-607 17), 90 (10) www.lenguartem.com

August 16, 2007

Mr. Joshua P. Cook New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau C, 11th Floor 625 Broadway Albany, NY 12233-7014

Subject: Report Addendum

Supplemental Investigation – 28 Pike Street Property

Port Jervis Pike Street Former MGP Site

Site ID No. 3-36-049

Dear Mr. Cook,

This document is an addendum to the report entitled "Supplemental Investigation Report, Pike Street Former Manufactured Gas Plant Site, Port Jervis, New York, NYSDEC Site No. 03-36-049V, Index #D03-001-99-01", dated January 24, 2007. This report was prepared by The RETEC Group, Inc. (RETEC) on behalf of Orange and Rockland Utilities, Inc. (O&R).

In response to comments received from the New York State Department of Environmental Conservation (NYSDEC) in a letter to O&R dated July 3, 2007, ENSR Corporation (dba The RETEC Group, Inc. [RETEC]) has prepared a set of revisions to the report. The pages containing these revisions are gathered together in this addendum, which should be considered as a companion to the original SI report, NYSDEC's comment letter dated July 3, 2007, and RETEC's response letter dated August 6, 2007.

In the comment letter, the NYSDEC indicated that the January 2007 SI Report should be updated to include a discussion of the construction of the temporary monitoring wells that were installed, including details such as the depths to bottom of the wells and the screened interval for each well. As was recently discussed with the Department, pages 2-3 to 2-5 of the report have been revised and are attached for replacement in the previously provided report. In addition, the SI borelogs have been revised to show the construction of the temporary well screens.

Mr. Joshua P. Cook Page 2

If you have any questions regarding the information included in this letter, please do not hesitate to contact me at (607) 277-5716.

Sincerely yours,

James H. Edwards Senior Geologist Bruce Coulombe, P.G. Senior Hydrogeologist

JHE:mlr

Attachments: Report Replacement Pages 2-3 to 2-5

Revised Borelogs

cc: Ms. Maribeth McCormick - O&R

Mr. Mike Wilcken - ConEdison

Mr. Larry Eckhaus - NYSDEC

Ms. Kristin Kulow - NYSDOH

Mr. Joe Crua - NYSDOH

Ms. Kimberlea Shaw Rea, Esquire

Mr. Richard Codichini – Gino's Restaurant

Ms. Phyllis Vail – Port Jervis Public Library

Project File: 05090-012

Supplemental Investigation Report

Pike Street Former Manufactured Gas Plant Site Port Jervis, New York NYSDEC Site No. 03-36-049V Index #D03-0001-99-01

Prepared by:

The RETEC Group, Inc. 1001 W. Seneca St., Suite 204 Ithaca, NY 14850-3342

RETEC Project Number: ORAN2-19643

Prepared for:

Orange and Rockland Utilities, Inc. 390 West Route 59
Spring Valley, New York 10977

January 24, 2007

Supplemental Investigation Report

Pike Street Former Manufactured Gas Plant Site Port Jervis, New York NYSDEC Site No. 03-36-049V Index #D03-0001-99-01

Prepared by:

The RETEC Group, Inc. 1001 W. Seneca St., Suite 204 Ithaca, NY 14850-3342

RETEC Project Number: ORAN2-19643

Prepared for:

Orange and Rockland Utilities, Inc. 390 West Route 59
Spring Valley, New York 10977

Prepared by:

James H. Edwards, Geologist

Reviewed by:

Bruce D. Coulombe, P.G., Hydrogeologist

January 24, 2007

Table of Contents

1	Introd	uction	. 1-1
	1.1	Background	. 1-1
	1.2	Current Conditions	. 1-1
	1.3	SI Objectives	. 1-2
2	SI Fie	ld Activities	. 2-1
	2.1	Subsurface Utility Clearance	. 2-1
	2.2	SVI Evaluation Sampling	
	2.3	Surface Soil Sampling	
	2.4	Soil Borings and Subsurface Soil Sampling	. 2-2
	2.5	Groundwater Sampling	. 2-3
	2.6	Analytical Program	. 2-4
3	SI Res	sults	. 3-1
	3.1	Field Observations	. 3-1
	3.2	Analytical Results	. 3-1
		3.2.1 Surface Soil Results	. 3-2
		3.2.2 Subsurface Soil Results	. 3-3
		3.2.3 Groundwater Results	. 3-4
		3.2.4 SVI Evaluation Results	. 3-5
		3.2.5 DUSR Review	. 3-7
4	Concl	usions	. 4-1
<u>List</u>	of Appe	<u>ndices</u>	
Appe	endix A	NYSDOH Indoor Air Quality Questionnaire and Chemical Product Inventory Form	and
Appe	endix B	Soil Boring Logs	
Appe	endix C	Laboratory Form I Results Sheets and Chain-of-Custody Records	
Appe	endix D	Data Usability Summary Report	
Appe	endix E	Full NYSDEC ASP Category B Laboratory Data Package (CD RC	OM)

ORAN2-19643 iii

Table of Contents

List of Tables

Table 1	Surface Soil VOC Results
Table 2	Surface Soil SVOC Results
Table 3	Surface Soil Metals and Cyanide Results
Table 4	Subsurface Soil VOC Results
Table 5	Subsurface Soil SVOC Results
Table 6	Subsurface Soil Metals and Cyanide Results
Table 7	Groundwater VOC Results
Table 8	Groundwater SVOC Results
Table 9	Groundwater Metals and Cyanide Results
Table 10	Soil Gas, and Indoor and Ambient Air Results
Table 11	Soil Gas, and Indoor and Ambient Air Results

List of Figures

Figure 1 SI Sample Locations

ORAN2-19643 iv

1 Introduction

As required under Order on Consent Index No. D03-0001-99-01 (Consent Order) between the New York State Department of Environmental Conservation (NYSDEC) and Orange & Rockland Utilities, Inc. (O&R), this report presents the results of a Supplemental Investigation (SI) that was conducted during June and July 2006 for the 28 Pike Street section of the Former Pike Street Manufactured Gas Plant (MGP) site in Port Jervis, New York.

1.1 Background

The 28 Pike Street property comprises the northeast corner of the former grounds of the Pike Street MGP, which was operated by O&R's predecessor companies during the late 1800's and early 1900's. As required under the Consent Order, O&R performed a Remedial Investigation (RI) of the Former Pike Street MGP site and the surrounding residential and commercial properties between 2000 and 2005. The fieldwork for the RI included the collection of a surface soil sample and soil vapor intrusion (SVI) evaluation samples on the 28 Pike Street property. The results of the RI were presented in the document entitled "Phase II Remedial Investigation Report, Port Jervis MGP Site, Port Jervis, New York", dated October 25, 2005. The RI Report was approved by the NYSDEC on November 14, 2005. A Feasibility Study (FS) of potential remedial options for the cleanup of the Former Pike Street MGP site has also been prepared and is currently being reviewed by the NYSDEC.

The historical features of the 28 Pike Street property during the time of MGP operations are shown on Figure 1. A coal house was situated in the southwestern portion of the property, within the footprint of the mixed use commercial/residential building currently present on the property. A canal raceway was present along what is now the northwestern boundary of the property (Figure 1). The raceway was filled-in following the cessation of MGP operations, and an underground municipal storm sewer pipe on the adjacent O&R property section of the Former Pike Street MGP site now carries surface water flow from the northern portions of the City of Port Jervis through this area.

1.2 Current Conditions

The current features of the 28 Pike Street property are shown on Figure 1. Most of the property is occupied by a multi-story building that houses a restaurant and tavern on the ground level and apartment units on the floors above. The basement of the building is used to store supplies for the restaurant business in open storage areas in a walk-in cooler. As shown on Figure 1, an enclosed boiler room in the northern area of the basement houses a natural gas-fired furnace for the building. This area has a concrete floor;

however, with the exception of an area immediately to the west of the walk-in cooler, the remaining portions of the basement have an earthen floor.

1.3 SI Objectives

The owners of the 28 Pike Street property requested that a supplemental investigation be performed on their property to evaluate the presence or absence of MGP-related constituents of concern (COCs) before the NYSDEC considers and evaluates potential remedial alternatives for the Former Pike Street MGP site. Specific objectives for the SI sampling included the following:

- To evaluate surface soil quality in the 28 Pike Street property building's basement.
- To determine the presence or absence of impacted subsurface soil and groundwater in the southern area of the building's basement. Impacted soil and groundwater were identified to the southwest of this area at MW15S on the adjoining O&R property during the RI (Figure 1). Hydrocarbon-like odors and low-level concentrations of COCs were identified in soil at DP10.
- To determine the presence or absence of impacted subsurface soil and groundwater in building's basement near a former tar well on the O&R property (Tar Well S Figure 1).
- To determine the presence or absence of impacted subsurface soil and groundwater at two locations between the property building and an area where an underground diesel storage tank (UST N – Figure 1) and impacted soil were removed from the O&R property in 1996.
- To perform a second round of SVI evaluation sampling to obtain additional information regarding whether impacted soil vapor could be migrating towards the property's building and potentially adversely affecting indoor air.

A Work Plan document entitled "Supplemental Investigation, 28 Pike Street, Port Jervis, New York" dated March 21, 2006 was prepared to present a scope-of-work for performing the additional investigation work. The SI Work Plan was approved by the NYSDEC on March 23, 2006. The scope-of-work for the field activities performed during the SI, and the results of the fieldwork and laboratory analyses are presented in the following sections.

2 SI Field Activities

The SI field activities included the following:

- Subsurface utility clearance;
- SVI evaluation sampling;
- Surface soil sampling;
- Subsurface soil borings and soil sampling; and
- Groundwater sampling.

The SI sampling locations are shown in red on Figure 1. The locations previously sampled during the RI are shown in blue on Figure 1. Unless otherwise indicated below, the methods and procedures used to perform the fieldwork and laboratory analyses were consistent with the methods specified in the NYSDEC-approved SI Work Plan.

Representatives of the NYSDEC, Remedial Bureau C, Division of Environmental Remediation of Albany, New York, were on site to observe the SVI evaluation sampling, the completion of the soil borings, and the collection of the groundwater samples.

2.1 Subsurface Utility Clearance

Dig Safely New York was contacted to coordinate and document the location of underground utilities at the property. A utility locating company (Enviroprobe Services, Inc.) was also used to locate utilities in the vicinity of planned soil borings both inside the basement of the building, and outside the building to the northwest. This task was accomplished with a ground penetrating radar (GPR) unit and a magnetometer. Enviroprobe also confirmed the location of the storm sewer pipe in the canal raceway on the O&R property. None of the SI boring locations identified in the SI Work Plan were modified to avoid subsurface utility lines as a result of this task.

2.2 SVI Evaluation Sampling

The SVI evaluation samples collected during the SI were taken at approximately the same locations as the samples collected during the RI in June 2004. The sampling is summarized as follows:

- A pre-screening reconnaissance was completed prior to the SVI sampling, and the observations were documented using the New York State Department of Health (NYSDOH) Indoor Air Quality Questionnaire and Chemical Inventory form prepared. The completed form is included in Appendix A.
- An indoor air sample (GRIA4) was collected in the basement of the building. At the request of the NYSDOH, this sample location

was moved to the west of RI sample location GRIA1, in order for the sample to be collected in the area of the basement that has an earthen floor.

- An indoor air sample (GRIA3) was collected on the first floor of the building in the restaurant at the same location as RI sample GRIA2.
- One duplicate indoor air sample (GRIA3-DUP) was collected at the same location as GRIA3 for quality assurance/quality control (QA/QC) purposes.
- An ambient air sample (GRAMBUP) was collected at the same time as the indoor air samples from the front porch of the building.
- A sub-slab soil vapor sample (GRSG3) was collected from the air space immediately beneath the concrete floor slab in the boiler room of the basement, at the same location of RI sample GRSG1.
- A sub-floor soil vapor sample (GRSG4) was collected from 5 feet below the earthen floor of the basement at the same location as RI sample GRSG2.

Based on discussions with the NYSDOH, helium trace testing was added to the SI work scope for the sub-floor soil vapor samples. The purpose of the helium testing was to use a highly mobile tracer gas to determine if any leakage of ambient air was occurring through the soil vapor sampling equipment or surrounding concrete or soil, and thereby potentially diluting the soil vapor samples. The results of the helium trace testing are discussed with the SVI analytical results below.

2.3 Surface Soil Sampling

At the request of the NYSDOH, two surface soil samples (GRSS1 and GRSS2) were collected from the earthen floor of the basement at the locations shown on Figure 1. The samples were collected from 0-2 inches below ground surface (bgs).

2.4 Soil Borings and Subsurface Soil Sampling

Four subsurface soil borings were completed during the SI.

• **GRSB1 and GRSB2** – Two borings were completed within the footprint of the former canal raceway to the west of the building to obtain soil quality data between the 28 Pike Street property building and former UST N on the O&R property.

- GRSB3 A soil boring was completed in the basement of the 28 Pike Street property building to obtain soil quality data near the location of former Tar Well S on the O&R property.
- GRSB4 A soil boring was completed in the southern area of the building's basement to assess soil conditions at this location.

Direct-push drilling methods were used to complete the borings (GRSB3 and GRSB4) in the basement of the building. RETEC contracted Zebra Environmental Services, of Albany, New York to perform the subsurface soil sampling. Zebra utilized a small Geoprobe™ direct-push drilling rig equipped with a Macro-Core™ sampler which was used to collect continuous soil samples from the ground surface to the bottom of the borings. The borings were advanced until the drilling tools encountered refusal at each location.

The soil borings outside of the 28 Pike Street property building (GRSB1 and GRSB2) were advanced with a hollow-stem auger drilling rig. RETEC contracted Nothnagle Drilling of Scottsdale, New York to perform the subsurface soil sampling. Nothnagle utilized a hollow-stem auger rig equipped with split-spoon samplers to collect soil samples continuously from the ground surface to the bottom of the borings (24 feet bgs).

Soil from each 2-foot depth interval in the cores or split-spoon samplers was placed in plastic bags and screened with a photo-ionization detector (PID) using the "headspace" method of analysis. A subsurface borelog was completed by the geologist which described: 1) the type of soil encountered, 2) the presence of visible evidence of hydrocarbon residuals, 3) the presence of hydrocarbon-like odors, and 4) a description of any subsurface features or materials encountered. The results of the field characterization and PID screening are provided on the borelogs in Appendix B.

Soil samples for laboratory analyses were obtained from targeted intervals, biased to elevated PID readings, visual, and/or olfactory evidence of impact. Where visible evidence of residuals was not observed, and the results of the PID screening of soil samples were not found to be significantly elevated, two laboratory samples were collected to document non-impacted soil conditions. The depth intervals for the laboratory samples collected are shown on the borelogs in Appendix B, and are included on the analytical summary tables discussed below.

2.5 Groundwater Sampling

Groundwater samples were collected at each of the soil boring locations after the borings had been installed to the final depth at each location. The sampling methods for each boring are summarized as follows:

- GRSB1/TW6 After the soil boring was advanced to 24 feet bgs, a 15-foot long PVC well screen was placed inside the augers from 9 feet to 24 feet bgs in the borehole in order to straddle the water table which was encountered at 13 feet bgs. The augers were removed from the borehole and the well screen was developed and sampled using the methods described below.
- GRSB2/TW3 This boring was also advanced to 24 feet bgs. A 15-foot long PVC well screen was placed in the augers from 9 feet to 24 feet bgs in the borehole in order to straddle the water table which was also encountered at 13 feet bgs. The augers were

removed from the borehole and the well screen was then developed and sampled

- **GRSB3/TW4** The soil boring was advanced to 8.5 feet bgs in the basement of the building. A 5-foot long PVC well screen placed from 3.5 to 8.5 bgs to straddle the water table which was encountered at 6 feet bgs. The direct-push drilling tools were removed from the boring and the well screen was then developed and sampled.
- **GRSB4/TW5** The soil boring was advanced to 11 feet bgs in the basement of the building. A 5-long PVC well screen placed from 6 to 11 feet bgs to straddle the water table which was encountered at 7 feet bgs. The direct-push drilling tools were removed from the boring and the well screen was then developed and sampled.

Polyethylene tubing and a peristaltic pump were used to purge the well screens until the groundwater was observed to be visually free of turbidity. Sampling for semi-volatile organic compounds (SVOCs), metals, and total cyanide was accomplished with the pump and tubing. Sampling for volatile organic compounds (VOCs) was accomplished with a mini-bailer. Following the completion of the groundwater sampling, the well screens were removed and the boreholes were filled with a cement/bentonite grout.

Note that it was necessary to modify the work scope presented in the SI Work Plan at several temporary well locations. Temporary well TW4 was sampled as indicated in the Work Plan; however, the bottles for the SVOC analyses from this location were broken during shipment to the laboratory. In order to obtain additional groundwater data in the vicinity of this boring, groundwater sampling was added to the SI work scope at two additional locations (TW5 and TW6).

2.6 Analytical Program

The surface and subsurface soil, and the groundwater samples collected during the SI were analyzed by STL Laboratory of Pittsburgh, Pennsylvania using the most current methods specified in the July 2005 NYSDEC Analytical Services Protocol (ASP). The Form I laboratory results sheets for the analyses and the chain-of-custody records for the sample shipments are included in Appendix C.

The soil and groundwater samples were analyzed for the following constituents using the following methods:

- Target Compound List (TCL) Volatile Organic Compounds (VOCs) by Method OLMO4.2;
- TCL Semi-volatile Organic Compounds (SVOCs) by Method OLMO4.2;
- Metals Target Analyte List (TAL) Metals: aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc by Method ILMO4.1; and
- Total Cyanide Method ILMO4.1.

The ambient air, indoor air, and soil vapor samples collected during the SI were analyzed for VOCs by U.S. EPA Method TO-15 by Air Toxics Laboratory (ATŁ) of Folsom, California. The Form I laboratory results sheets and the chain-of-custody records for the sample shipment are included in Appendix C. The following compounds were added by RETEC and ATL to supplement the typical analyte list for

U.S. EPA Method TO-15: naphthalene, indene, indan, thiophene, 2-methylpentane, isopentane, 2,3-dimethylpentane, and 2,2,4-trimethylpentane. These compounds were added to the analyses to help distinguish between potential MGP-related sources of vapors and vapors from other potential non-MGP-related sources.

For quality control purposes comprehensive data packages were produced by STL for the soil and groundwater samples and by ATL for the SVI samples, in preparation for the results to be reviewed by a qualified chemist. Data Usability Summary Reports (DUSRs) were prepared by RETEC for each soil, water, or air sample delivery group. The DUSRs for this project are included in Appendix D. The full NYSDEC ASP Category B deliverable packages from STL and ATL are included in Appendix E.

3 SI Results

3.1 Field Observations

The field measurements and observations made during the SI are summarized as follows:

- Surface soil (and soil down to a depth of 2 feet bgs) in the earthen floor of the basement of the 28 Pike Street property building contains varying amounts of granular and pebble-sized coal materials. Based on a discussion with the property owner, a coal furnace used for heating purposes was once present in the basement of the building. Considering that the grade of the building's basement is considerably lower than that of the former coal house on the property during the period of MGP operations, the coal fragments observed in the surface soil may be associated with the former use of a coal-fired furnace in this area of the present building.
- Visible or olfactory evidence of hydrocarbon-like impacts, or elevated PID readings, were not observed during the soil and groundwater sampling performed at GRSB2/TW3, GRSB3/TW4, and GRSB4/TW5.
- A hydrocarbon-like odor and a trace amount of hydrocarbon-like sheen were observed in soil samples collected from boring GRSB1 at, or slightly below the elevation of the groundwater table. Hydrocarbon-like odors were observed from 13 to 18 feet bgs. A trace amount of hydrocarbon-like sheen was observed from 13 to 16 feet bgs. Visual or olfactory evidence of hydrocarbon impacts or elevated PID readings were not observed from 18 feet bgs down to the bottom of the boring at 24 feet bgs.
- Based on the two borings completed within the footprint of the former canal raceway, a layer of historic fill material is present in this area in thicknesses ranging up to 6 feet. The fill consists of sand mixed with ash-like material, coal fragments, clinker-like material, glass, metal, wood, gravel, and boulders.

3.2 Analytical Results

The evaluation of the surface and subsurface soil samples collected during the SI is based on a comparison to the recommended soil cleanup objective concentrations listed in the following documents:

- NYSDEC Technical Administrative Guidance Memorandum (TAGM) HWR-94-4046 Determination of Recommended Soil Cleanup Objectives (RSCOs) and Cleanup Levels, NYSDEC, 1994, and
- The document entitled NYSDEC Subpart 375-1, General Remedial Program Requirements, and Subpart 375-6, Remedial Program Soil Cleanup Objectives (SCOs), dated December 14, 2006. Part 375-6 Unrestricted Use, Residential Use, and Restricted-Residential Use SCOs have been included in the data summary tables for this report.

The evaluation of the groundwater results is based on a comparison to either guidance values or standards listed in NYSDEC - Division of Water - TOGS (1.1.1) - 6 NYCRR 703.5, NYSDEC, 1998.

The evaluation of the SVI results is based on a comparison to the results of a study of VOCs in the indoor air of approximately 100 homes heated with fuel oil which was compiled by the NYSDOH in a report dated November 14, 2005.

3.2.1 Surface Soil Results

Surface Soil VOC Results

The results of the surface soil VOC analyses for the samples taken from the earthen floor of the basement are summarized in Table 1. VOCs at concentrations greater than the method reporting limits were not detected in either of the surface soil samples.

Surface Soil SVOC Results

The results of the surface soil SVOC analyses are summarized in Table 2. SVOC compounds were not detected in concentrations greater than the method reporting limits in the sample collected at location GRSS1. Individual SVOC compounds were detected in concentrations above the method reporting limits in the sample collected at location GRSS2; however, the concentrations detected were all less than the Part 375 Unrestricted Use SCOs. It is possible that the SVOCs detected at this location may be attributable to the presence of coal fragments in the soil.

The results of the surface samples collected as part of the SI are summarized in Table 2. For the purpose of completeness, the results of the surface soil sample that was collected during the RI (sample SS1) which was collected outside the western corner of the 28 Pike Street property building has also been included on Table 2. As indicated in the table, sample SS1 contained individual polycyclic aromatic hydrocarbon (PAH) compounds in elevated

concentrations (exceeding Part 375-6 and TAGM RSCO concentrations). As discussed in the RI Report for the Former Pike Street MGP Site, the cleanup of soil in the area of SS1 has been proposed.

Surface Soil Metals Results

The results of the surface soil metals analyses are summarized on Table 3. None of the TAL metals concentrations were greater than the Part 375 Unrestricted Use SCOs for sample GRSS1.

For sample GRSS2, concentrations of arsenic (29.3 mg/Kg), lead (1,210 mg/Kg), mercury (1.5 mg/Kg), and zinc (323 mg/Kg) were found to be greater than the Part 375-6 SCOs, the TAGM RSCOs, or the concentrations detected in background surface soil samples collected in the City of Port Jervis during the RI for the MGP site (summarized on Table 3). It is possible that these metals may be attributable to the coal fragments found in the soil, since all of these trace metals are found in coal in varying concentrations.

As shown on Table 3, RI sample SS1 also had metal concentrations detected that are greater than the TAGM 4046 or Part 375-6 SCOs. As previously discussed, soil cleanup work is proposed for this area.

Surface Soil Total Cyanide

Total cyanide was not detected in concentrations greater than the method reporting limits for samples GRSS1, and RI sample SS1. Total cyanide was detected in a concentration of 0.91 mg/Kg at sample location GRSS2; however, this concentration is less than the Part 375-6 Unrestricted Use SCO of 27 mg/Kg for total cyanide.

3.2.2 Subsurface Soil Results

Subsurface Soil VOC Results

The subsurface soil VOC results are summarized in Table 4. VOC compounds were not detected at concentrations greater than the method reporting limits in any of the subsurface soil samples collected during the SI.

Subsurface Soil SVOC Results

The subsurface soil SVOC results are summarized in Table 5. Only the sample from the approximate depth of the groundwater table at GRSB1 contained SVOCs in concentrations greater than the method reporting limits. All of the compounds detected were PAH compounds. None of the concentrations were greater than the Part 375-6 Unrestricted Use SCO concentrations.

Subsurface Soil Metals

The subsurface soil metals results are summarized on Table 6. None of the subsurface soil samples analyzed during the SI had metal concentrations that were greater than the Part 375-6 Unrestricted Use SCO concentrations.

Subsurface Soil Total Cyanide

The subsurface soil total cyanide results are summarized in Table 6. None of the subsurface soil samples analyzed during the SI had total cyanide concentrations that were greater than the method reporting limits. Samples GRSB1(22-24) and GRSB2(13-14) contained estimated total cyanide J concentrations that were estimated below the method reporting limits by the laboratory; however, each of these estimated concentrations was well below the Part 375-6 Unrestricted Use SCO of 27 mg/Kg.

3.2.3 Groundwater Results

Groundwater VOC Results

The results of the groundwater VOC analyses are summarized on Table 7. None of the groundwater samples collected during the SI contained VOCs in concentrations greater than the method reporting limits. For sample TW6, and the duplicate sample taken from this location (TW60), acetone was identified to be present at a concentration below the method reporting limit by the laboratory. Acetone is a common laboratory contaminant and the presence of this compound is attributed to laboratory contamination.

Groundwater SVOC Results

The groundwater SVOC results are summarized in Table 8. Only the sample collected from TW6 in the western corner of the property contained SVOC compounds in concentrations greater than the method reporting limits. Acenaphthene was detected in sample TW6 in a concentration of 12 ug/L. This concentration is less than the groundwater guidance value of 20 ug/L.

Groundwater Metals Results

The groundwater metals and cyanide results are summarized in Table 9. With the exception of lead in sample TW6, all metals possibly associated with MGP site residuals were found to be absent or present at concentrations less than the groundwater standards. Three common metals (iron, manganese, and sodium) were found to exceed groundwater standards at one or more locations. All of these metals are naturally occurring, and all are commonly found at elevated levels in groundwater in New York State, including the upgradient well (MW6) installed on the O&R property during the RI.

Lead was detected at concentrations of 124 ug/L at TW6, and 120 ug/L in the duplicate sample taken at this location (TW60). The concentrations detected in these samples are greater than the groundwater standard of 25 ug/L. It is important to note that the groundwater samples collected during the SI were obtained from temporary well points instead of monitoring wells. The temporary wells were purged until the groundwater samples were relatively free of turbidity; however, lower turbidity and correspondingly lower concentrations of metals would likely be obtained through the use of properly developed monitoring wells. Lead was not detected in any of the wells sampled during the RI in concentrations greater than the groundwater standard value, and lead in groundwater is not considered a COC for the MGP site.

Groundwater Total Cyanide Results

Total cyanide was not detected in any of the groundwater samples collected during the SI in concentrations greater than the method reporting limits.

3.2.4 SVI Evaluation Results

The results of the SVI evaluation samples collected during the SI are summarized in Table 10. To include the results of all the SVI evaluation sampling performed at the property, the results of the samples collected during the SI and the RI (June 2004) are summarized in Table 11. The VOC results are presented to the left in the tables. The two right-most columns present background indoor air values obtained from the NYSDOH 2005 database. The background values are expressed as the 75th and 90th percentile values derived statistically from the datasets. The 68 VOCs that were analyzed are divided into two categories in the data summary tables:

- 1) Compounds that could possibly be related to MGP sources, but may also be related to non-MGP sources, including: benzene, naphthalene, and indene; and
- 2) Compounds that are certainly not related to MGP sources, including: chlorinated hydrocarbons and methyl tert-butyl ether (MTBE), a gasoline additive.

Soil Vapor Results

For the two soil vapor samples, all of the VOCs that the NYSDEC and NYSDOH consider to be potentially attributable to MGP operations (and other non-MGP sources) were detected at concentrations within the typical range that these compounds are found in indoor air (i.e. lower than the 75th or 90th percentile of NYSDOH background values. For example, benzene was detected at very low concentrations in the samples from below the boiler room and main basement floors (2.6 and $1.4 \,\mu\text{g/m}^3$, respectively). Toluene was detected at concentrations considerably lower than the 75th percentile of the NYSDOH background values, while hexane was detected at a concentration below the 75th percentile of the NYSDOH background values in the soil

vapor sample from beneath the main basement area and at a concentration below the 90th percentile of the NYSDOH background values in the sample from beneath the boiler room floor. The compounds indan, indene, and thiophene, which are considered especially indicative of MGP impacts, were not detected in either of the samples.

The two soil vapor samples did contain non-MGP-related VOCs at concentrations higher than the typical range than these compounds are found in indoor air. Tetrachloroethene (also known as perchloroethene, or PCE, a common dry cleaning agent) was detected in the samples from the boiler room and main basement areas at concentrations of 160 and 110 μ g/m³, respectively. For comparison, the NYSDOH background value (90th percentile) for PCE is 2.9 μ g/m³. Trichlorofluoromethane (also known as Freon 11 – a refrigerant gas) was found at a concentration of 68 μ g/m³ in the sample from beneath the boiler room and a concentration of 250 μ g/m³ in the sample from beneath the main basement area. The NYSDOH 90th percentile background value for this compound is 17 μ g/m³.

The results of the helium analyses for sample GRSG3 was 0.17%. Helium was not detected in sample GRSG4 in concentrations greater than the method reporting limits. The concentration detected in GRSG3 was well below the limit established by the NYSDOH (20% helium) for the laboratory samples. The results indicate that the possible infiltration of ambient air into the subfloor samples was not a concern for the SI sampling.

Indoor Air Results

In the two indoor air samples (and the duplicate indoor air sample), several VOCs were detected at concentrations above the typical range that these compounds are found in indoor air (i.e. higher than the 75th or 90th percentile of NYSDOH background values). Benzene was detected at a lower concentration in the main basement area (14 $\mu g/m^3$), than in the first floor sample and duplicate (49 and 39 $\mu g/m^3$, respectively). The elevated concentration of benzene in the first floor sample appears to be associated with elevated concentrations of 2-methylpentane, heptane, hexane, isopentane, toluene and xylenes, which are likely to be constituents of the petroleum products found to be present within the building during the chemical inventory survey conducted as part of the SVI evaluation. The presence of these compounds does not appear to be caused by vapor intrusion from the soil vapor, because the concentrations of these compounds detected in the soil vapor samples were much lower.

Tetrachloroethene was detected in the basement area at a concentration of $28 \,\mu g/m^3$, which is above the typical range (the 90th percentile value is $2.9 \,\mu g/m^3$). It was not detected in either the indoor air sample or duplicate collected on the first floor.

Ambient Air Results

The ambient air sample contained VOCs detected within the typical range for indoor air.

SVI Evaluation Summary

The most significant results relate to the apparent vapor intrusion of tetrachloroethene (PCE). This dry cleaning agent is not related to former MGP operations. The source of the PCE was not apparent because PCE was not detected at elevated concentrations in the soil and groundwater samples collected as part of the SI effort. PCE is specifically discussed in the NYSDOH document Guidance for Evaluating Soil Vapor Intrusion in the State of New York, New York State Department of Health, October 2006. The NYSDOH Soil Vapor/Indoor Air Decision Matrix 2 indicates that if the soil gas concentration is greater than 100 μ g/m³ (they were 160 and 110 μ g/m³) and the indoor air concentration is less than 30 μ g/m³, (it was 28 μ g/m³ in the basement) then monitoring is indicated. The type and frequency of monitoring is determined on a site-specific and building-specific basis.

The NYSDOH guidance document does not provide action criteria for petroleum hydrocarbons such as benzene. Because these compounds were present in elevated concentrations in samples from the first floor, but in lower concentrations in the samples from the basement, and in still lower concentrations in the soil vapor samples and ambient air sample, it appears that vapor intrusion of these compounds is not occurring, and that the source(s) are likely products or materials within the building. It is likely that a primary source of these petroleum hydrocarbons is the lamp oil present at more than 20 tables in the restaurant area on the ground floor of the 28 Pike Street building.

3.2.5 DUSR Review

The DUSR for the SI samples is included in Appendix D. As part of the data review process, analytical results and data qualifiers were corrected where necessary to reflect quality control issues. The Form I Report Sheets in Appendix C, and the data summary spreadsheets (Tables 1-11) have been modified to reflect the findings of the DUSR.

Organic data quality was evaluated by reviewing the following parameters: holding times, GC/MS tuning and performance, internal standards, initial and continuing calibrations, surrogate recoveries, matrix spike/matrix spike duplicate (MS/MSD) samples, MS/MSD relative percent differences (RPDs), laboratory control standards (LCSs), laboratory blanks, field duplicates, field blanks, compound identification, and compound quantitation.

Due to poor instrument recovery during the VOC analyses, the results for five soil samples for the compound 1,2-dibromo-3-chloropropane were rejected.

This compound is not an MGP indicator compound and the overall impact on the sampling program is not believed to be significant. With this exception, all other volatile organic data were found to be useable, with some qualifications for calibration nonconformance, and holding time exceedances. All semi-volatile organic data were found to be useable with some qualifications for calibration non-conformances.

Inorganic data quality was evaluated by reviewing the following parameters: holding times, initial and continuing calibrations, contract required detection limit (CRDL) standard recoveries, MS/MSD samples, LCSs, laboratory duplicates, ICP interference check sample results, ICP serial dilution results, laboratory blanks, field duplicates, and field blanks. All metals results are useable with some qualification. The total cyanide data were found to be useable and accepted without qualifications.

Air data quality for the VOC analyses was evaluated by reviewing the following parameters: holding times, GC/MS tuning and performance, internal standards, initial and continuing calibrations, continuing calibration verifications, surrogate recoveries, LCS, laboratory blanks, laboratory duplicates, compound identification, and compound quantitation. The VOC air data was determined to be useable with some qualifications for calibration nonconformance.

4 Conclusions

Conclusions for the SI performed at the 28 Pike Street property include the following:

- Surface soil in the basement of the building contains fine-grained and pebble-sized coal materials. SVOCs in low-level concentrations, and metals in concentrations greater than RSCOs, were detected in one of the two surface soil samples collected from the basement. Since these COCs are components of coal it is possible that the presence of these compounds in the detected concentrations is due to the former use of coal in this area.
- The western property boundary of the 28 Pike Street property straddles a former canal raceway that has been filled-in to a depth of 6 feet with historic fill materials. Most of this area of the property has been covered by a concrete walkway that leads to a service entrance for the restaurant; however, a small area of exposed surface soil is present in the western corner of the property that contains SVOCs and metals in concentrations exceeding RSCOs. The removal of soil in this area has been proposed, and a scope-of-work for this action is currently being discussed with the NYSDEC.
- Field screening and the laboratory analyses performed for samples collected in the basement of the property building indicate that subsurface soil and groundwater have not been impacted by MGPrelated, or petroleum-related residuals in this area.
- Hydrocarbon-like odors and a trace amount of sheen were observed in soil samples taken from the approximate depth of the groundwater table during completion of a soil boring located in the western corner of the property. Although this impact was observed during the field screening, laboratory analyses performed for a sample from this interval indicates that soil at this location has not been impacted with COCs in concentrations greater than Part 375-6 Unrestricted Use SCOs. A groundwater sample obtained from the boring indicates that VOCs, SVOCs, or total cyanide are not present in concentrations greater than the groundwater standard values at this location.
- The SVI evaluation sampling performed at the property indicates that the potential for indoor air in the property building to be adversely impacted by MGP-related COCs in soil vapor is low. Similar results were found during a round of sampling performed during the RI in June 2004. The evaluation results did indicate that

the non-MGP related compound PCE is present in the sub-floor vapor and indoor air in the building in concentrations close to, or exceeding regulatory criteria.

• The results of the SI are consistent with information obtained during the RI for the MGP site. The 28 Pike Street property is situated to the northeast of, and outside of, the impacted groundwater plume that is present in the former MGP process area to the west. The SVI evaluation results for the sampling performed at the 28 Pike Street property are similar to the SVI evaluation results from sampling at other properties surrounding the former MGP process area, with low concentrations of COCs that are possibly related to MGP residuals, and low potential that impacted soil vapor could be adversely affecting indoor air quality in buildings on the properties.

Table 1 **Surface Soil VOC Results** 28 Pike Street SI - Port Jervis, New York

EllyNenzee	Sample Designation	NYSDEC Part 375-6	NYSDEC Part 375-6	NYSDEC Part 375-6	NYSDEC TAGM	GRSS1	GRSS2
BIEX Compounds (ring/Ke) Boltzmere 0.06 2.9 4.8 0.06 0.010 U 0.012 Environment 1 30 41 5.5 0.010 U 0.012 U 0.012 U V V V V V V V V V	Laboratory Identification						
Benzese		Cleanup Objectives	Cleanup Objectives	Use Cleanup Objectives	Cleanup Objectives	6/26/2006	6/26/2006
EllyNenzee							
Total presence							
No. No.		•					
Total BTEX (mg/Kg)							
1.1,1-Tichlorochane	Aylenes (total)	0.26	100	100	1.2	0.010 0	0.012 0
1.1.1-Tichbrorethane	Total BTEX (mg/Kg)	NL	NL	NL	NL	U	U
1.1.2.2 Tertachoroethane	Other VOCs (mg/Kg)						
1.1.2-Trichloro-ta-2.2-trifloro-thane	1,1,1-Trichloroethane	0.68	100	100	0.8	0.010 U	0.012 U
1.1.2-Trichloroethane	1,1,2,2-Tetrachloroethane	NL	NL	NL	0.6	0.010 U	0.012 U
1.1-Dichlorochane	1,1,2-Trichloro-1,2,2-trifluoroethane	NL	NL	NL	6.0	0.010 U	0.012 U
1.1-Dichlorochene	1,1,2-Trichloroethane	· · · · · · · · · · · · · · · · · · ·		, and the second			
1.2.4-Trichlorobenzene	1,1-Dichloroethane	0.27			0.2		
1.2-Dishomo-3-chloropropane							
1.2-Dischoroschane		· · · · · · · · · · · · · · · · · · ·		, and the second			
1.2-Dichlorobenzene							
1.2-Dichloroerbane							
1,2-Dichloropropane	7						
1.3-Dichlorobenzene							
1.4 Dichlorobenzene							
2-Butanone		· · · · · · · · · · · · · · · · · · ·					
2-Hexanone	7						
A-Methyl-2-pentanone							
Acetone							
Bromodichloromethane							
Bromomethane		NL		NL			
Carbon disulfide NL NL NL NL 2.7 0.010 U 0.012 I Carbon tetrachloride 0.76 1.4 2.4 0.6 0.010 U 0.012 I Chlorobenzene 1.1 100 100 1.7 0.010 U 0.012 I Chlorobenzene NL NL NL NL NL 1.9 0.010 U 0.012 I Chlorobenzene NL	Bromoform	NL	NL	NL	NL	0.010 U	0.012 U
Carbon tetrachloride 0.76 1.4 2.4 0.6 0.010 U 0.012 U Chlorobenzene 1.1 100 100 1.7 0.010 U 0.012 U 0.012 <t< td=""><td>Bromomethane</td><td>NL</td><td>NL</td><td>NL</td><td>NL</td><td>0.010 U</td><td>0.012 U</td></t<>	Bromomethane	NL	NL	NL	NL	0.010 U	0.012 U
Chlorobenzene	Carbon disulfide	NL	NL		2.7		
NL						0.000	0.0
Chloroform		· · · · · · · · · · · · · · · · · · ·					
Chloromethane							
cis-1,2-Dichloroethene 0.25 59 100 NL 0.010 U 0.012 t cis-1,3-Dichloropropene NL NL NL NL NL NL 0.010 U 0.012 t Cyclohexane NL NL NL NL NL NL NL 0.010 U 0.012 t Dibromochloromethane NL NL NL NL NL NL 0.010 U 0.012 t Dichlorodifluoromethane NL NL NL NL NL NL 0.010 U 0.012 t Dichlorodifluoromethane NL NL NL NL NL NL 0.010 U 0.012 t Bichlorodifluoromethane NL NL NL NL NL NL 0.010 U 0.012 t Methyl acetate NL NL NL NL NL NL NL 0.012 t </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
cis-1,3-Dichloropropene NL NL NL NL NL 0.010 U 0.012 T Cyclohexane NL NL NL NL NL NL 0.010 U 0.012 U Dibromochloromethane NL NL NL NL NL NL 0.010 U 0.012 U Dichlorodifluoromethane NL NL NL NL NL NL 0.010 U 0.012 U Dichlorodifluoromethane NL NL NL NL NL 0.010 U 0.012 U 0.012 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.000</td><td></td></t<>						0.000	
NL	,						
Dibromochloromethane							
Dichlorodifluoromethane	·						
Superpose NL						0.000	0.0
NL							
Methyl tert-butyl ether 0.93 62 100 NL 0.010 U 0.012 I Methylcyclohexane NL NL NL NL NL 0.010 U 0.012 U Methylene chloride 0.05 51 100 0.10 0.010 U 0.012 U Styrene NL NL NL NL NL NL 0.010 U 0.012 U Tetrachloroethene 1.3 5.5 19 1.4 0.010 U 0.012 U trans-1,2-Dichloroethene 0.19 100 100 0.3 0.010 U 0.012 U trans-1,3-Dichloropropene NL NL NL NL NL NL 0.010 U 0.012 U Trichloroethene 0.47 10 21 0.7 0.010 U 0.012 U Trichlorofluoromethane NL NL NL NL NL NL	1 12						
Methylcyclohexane NL NL NL NL 0.010 U 0.012 U Methylene chloride 0.05 51 100 0.10 0.010 U 0.012 U Styrene NL NL NL NL NL 0.010 U 0.012 U Tetrachloroethene 1.3 5.5 19 1.4 0.010 U 0.012 U trans-1,2-Dichloroethene 0.19 100 100 0.3 0.010 U 0.012 U trans-1,3-Dichloropropene NL NL NL NL NL 0.010 U 0.012 U Trichloroethene 0.47 10 21 0.7 0.010 U 0.012 U Trichlorofluoromethane NL NL NL NL 0.010 U 0.012 U Vinyl chloride 0.02 0.21 0.9 0.2 0.010 U 0.012 U	·						
Methylene chloride 0.05 51 100 0.10 0.010 U 0.012 I Styrene NL NL NL NL NL 0.010 U 0.012 I Tetrachloroethene 1.3 5.5 19 1.4 0.010 U 0.012 I trans-1,2-Dichloroethene 0.19 100 100 0.3 0.010 U 0.012 I trans-1,3-Dichloropropene NL NL NL NL 0.010 U 0.012 I Trichloroethene 0.47 10 21 0.7 0.010 U 0.012 I Trichlorofluoromethane NL NL NL NL 0.010 U 0.012 I Vinyl chloride 0.02 0.21 0.9 0.2 0.010 U 0.012 I		****				0.000	
Styrene NL NL NL NL NL 0.010 U 0.012 U Tetrachloroethene 1.3 5.5 19 1.4 0.010 U 0.012 U trans-1,2-Dichloroethene 0.19 100 100 0.3 0.010 U 0.012 U trans-1,3-Dichloropropene NL NL NL NL 0.010 U 0.012 U Trichloroethene 0.47 10 21 0.7 0.010 U 0.012 U Trichlorofluoromethane NL NL NL NL 0.010 U 0.012 U Vinyl chloride 0.02 0.21 0.9 0.2 0.010 U 0.012 U	, ,			100	0.10	0.010 U	0.012 U
Tetrachloroethene 1.3 5.5 19 1.4 0.010 U 0.012 U trans-1,2-Dichloroethene 0.19 100 100 0.3 0.010 U 0.012 U trans-1,3-Dichloropropene NL NL NL NL 0.010 U 0.012 U Trichloroethene 0.47 10 21 0.7 0.010 U 0.012 U Trichlorofluoromethane NL NL NL NL NL NL NL 0.010 U 0.012 U Vinyl chloride 0.02 0.21 0.9 0.2 0.010 U 0.012 U		NL		NL	NL	0.010 U	0.012 U
trans-1,3-Dichloropropene NL NL NL NL NL 0.010 U 0.012 T Trichloroethene 0.47 10 21 0.7 0.010 U 0.012 U Trichlorofluoromethane NL NL NL NL NL 0.010 U 0.012 U Vinyl chloride 0.02 0.21 0.9 0.2 0.010 U 0.012 U	Tetrachloroethene	1.3		19	1.4	0.010 U	0.012 U
Trichloroethene 0.47 10 21 0.7 0.010 U 0.012 T Trichlorofluoromethane NL NL NL NL NL 0.010 U 0.012 U Vinyl chloride 0.02 0.21 0.9 0.2 0.010 U 0.012 U	trans-1,2-Dichloroethene	0.19		100			
Trichlorofluoromethane NL NL NL NL NL 0.010 U 0.012 U Vinyl chloride 0.02 0.21 0.9 0.2 0.010 U 0.012 U Vinyl chloride 0.02 0.01 0.9 0.2 0.010 U 0.012 U	trans-1,3-Dichloropropene		NL				
Vinyl chloride 0.02 0.21 0.9 0.2 0.010 U 0.012 U							
				, and the second		0.000	
Total V/OCs (me/V s) (Note 1) NII NII NII S S 10	Vinyl chloride	0.02	0.21	0.9	0.2	0.010 U	0.012 U
	Total VOCs (mg/Kg) (Note 1)	NL	NL	NL	≤ 10	U	U

Notes:

NL = Not Listed

NL = Not Listed
U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.
J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the reporting limit.

NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994].

NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

(Note 1) - Total VOCs includes all BTEX compounds.

Table 2 Surface Soil SVOC Results 28 Pike Street SI - Port Jervis, New York

Sample Designation	NYSDEC Part 375-6	NYSDEC Part 375-6	NYSDEC Part 375-6	NYSDEC TAGM	SS1	GRSS1	GRSS2
Laboratory Identification	Unrestricted Use	Residential Use	Restricted-Residential	Recommended Soil	C0K080236001	C6F280229001	C6F280229002
Date Sampled	Cleanup Objectives	Cleanup Objectives	Use Cleanup Objectives	Cleanup Objectives	11/6/2000	6/27/2006	6/27/2006
PAH Compounds (mg/Kg)							
2-Methylnaphthalene	NL	NL	NL	36.4	1.8 J	0.34 U	0.074 J
Acenaphthene	20	100	100	50	11	0.34 U	0.38 U
Acenaphthylene	100	100	100	41	1 J	0.34 U	0.25 J
Anthracene	100	100	100	50	16	0.34 U	0.20 J
Benzo(a)anthracene	1	1	1	0.224/MDL	38	0.34 U	0.71
Benzo(a)pyrene	1	1	1	0.061/MDL	27	0.34 U	0.67
Benzo(b)fluoranthene	0.8	1	1	1.1	33	0.34 U	0.92
Benzo(ghi)perylene	100	100	100	50	8.0	0.34 U	0.64
Benzo(k)fluoranthene	1	1	3.9	1.1	14	0.34 U	0.32 J
Chrysene	1	1	3.9	0.4	41	0.34 U	0.85
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.014/MDL	5.5	0.34 U	0.14 J
Fluoranthene	100	100	100	50	89	0.34 U	1.1
Fluorene	30	100	100	50	10	0.34 U	0.040 J
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	3.2	16	0.34 U	0.50
Naphthalene	12	100	100	13	3.5 J	0.34 U	0.11 J
	100	100	100	50	72		0.58
Phenanthrene							
Pyrene	100	100	100	50	61	0.34 U	1.10
Total DAHs (mg/Kg)	Nit	N ¹ T	NII	X ¹ T	448	7.7	0.3
Total PAHs (mg/Kg)	NL	NL	NL	NL	448	U	8.2
Other SVOCs (mg/V-)					+		
Other SVOCs (mg/Kg)	NIT	N''	NIT.	50 (N · 2)	374	0.24 **	0.20 **
1,1'-Biphenyl	NL	NL	NL VI	50 (Note 2)	NA	0.34 U	0.38 U
2,2'-oxybis(1-Chloropropane)	NL	NL	NL VI	50 (Note 2)	4.1 U	0.34 U	0.38 U
2,4,5-Trichlorophenol	NL	NL	NL	0.1	10 U	0.86 U	0.96 U
2,4,6-Trichlorophenol	NL	NL	NL	50 (Note 2)	4.1 U	0.34 U	0.38 U
2,4-Dichlorophenol	NL	NL	NL	0.4	4.1 U	0.34 U	0.38 U
2,4-Dimethylphenol	NL	NL	NL	50 (Note 2)	4.1 U	0.34 U	0.38 U
2,4-Dinitrophenol	NL	NL	NL	0.200/MDL	10 U	0.86 U	0.96 U
2,4-Dinitrotoluene	NL	NL	NL	50 (Note 2)	4.1 U	0.34 U	0.38 U
2,6-Dinitrotoluene	NL	NL	NL	1	4.1 U	0.34 U	0.38 U
2-Chloronaphthalene	NL	NL	NL	50 (Note 2)	4.1 U	0.34 U	0.38 U
2-Chlorophenol	NL	NL	NL	50 (Note 2)	4.1 U	0.34 U	0.38 U
2-Methylphenol	0.33	100	100	0.100/MDL	4.1 U	0.34 U	0.38 U
2-Nitroaniline	NL	NL	NL	0.430/MDL	10 U	0.86 U	0.96 U
2-Nitrophenol				0.330/MDL		0.34 U	
•	NL	NL	NL VI				
3,3'-Dichlorobenzidine	NL	NL	NL	50 (Note 2)	4.1 U	0.34 U	0.38 U
3-Nitroaniline	NL	NL	NL	0.500/MDL	10 U	0.86 U	0.96 U
4,6-Dinitro-2-methylphenol	NL	NL	NL	50 (Note 2)	10 U	0.86 U	0.96 U
4-Bromophenyl phenyl ether	NL	NL	NL	50 (Note 2)	4.1 U	0.34 U	0.38 U
4-Chloro-3-methylphenol	NL	NL	NL	0.240/MDL	4.1 U	0.34 U	0.38 U
4-Chloroaniline	NL	NL	NL	0.220/MDL	4.1 U	0.34 U	0.38 U
4-Chlorophenyl phenyl ether	NL	NL	NL	50 (Note 2)	4.1 U	0.34 U	0.38 U
4-Methylphenol	0.33	34	100	0.9	4.1 U	0.34 U	0.38 U
4-Nitroaniline	NL	NL	NL	50 (Note 2)	10 U	0.86 U	0.96 U
4-Nitrophenol	NL	NL	NL NL	0.100/MDL	10 U	0.86 U	0.96 U
Acetophenone	NL	NL	NL NL	50 (Note 2)	NA NA	0.34 U	0.20 J
Atrazine	NL	NL NL	NL	50 (Note 2)	NA	0.34 U	0.38 U
Benzaldehyde	NL NL	NL NL	NL NL	50 (Note 2)	NA NA	0.34 U	0.055 J
bis(2-Chloroethoxy)methane	NL NL	NL NL	NL NL	50 (Note 2)	4.1 U	0.34 U	0.035 J
bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether	NL NL	NL NL	NL NL	· /			
				50 (Note 2)		0.34 U	
bis(2-Ethylhexyl) phthalate	NL	NL	NL NI	50	1.6 J	0.064 J	2.6
Butyl benzyl phthalate	NL	NL	NL VI	50	4.1 U	0.34 U	0.099 J
Caprolactam	NL	NL	NL	50 (Note 2)	NA	0.34 U	0.38 U
Carbazole	NL	NL	NL	50 (Note 2)	11	0.34 U	0.055 J
Dibenzofuran	7	14	59	6.2	5.9	0.34 U	0.15 J
Diethyl phthalate	NL	NL	NL	7.1	4.1 U	0.34 U	0.38 U
Dimethyl phthalate	NL	NL	NL	2	4.1 U	0.34 U	0.38 U
Di-n-butyl phthalate	NL	NL	NL	8.1	4.1 U	0.34 U	0.38 U
Di-n-octyl phthalate	NL	NL	NL	50	4.1 U	0.34 U	0.38 U
Hexachlorobenzene	NL	NL	NL	0.41	4.1 U	0.34 U	0.38 U
Hexachlorobutadiene	NL	NL	NL	50 (Note 2)	4.1 U	0.34 U	0.38 U
Hexachlorocyclopentadiene	NL	NL	NL	50 (Note 2)	4.1 U	0.34 U	0.38 U
Hexachloroethane	NL	NL	NL NL	50 (Note 2)	4.1 U	0.34 U	0.38 U
Isophorone	NL NL	NL NL	NL NL	4.4	4.1 U	0.34 U	0.38 U
Nitrobenzene	NL NL	NL NL	NL NL	0.200/MDL	4.1 U	0.34 U	0.38 U
N-Nitrosodi-n-propylamine	NL NI	NL NI	NL NI	50 (Note 2)			0.38 U
N-Nitrosodiphenylamine	NL	NL	NL	50 (Note 2)	4.1 U	0.34 U	0.38 U
Pentachlorophenol	0.8	2.4	6.7	1	10 U	0.86 U	0.96 U
Phenol	0.33	100	100	0.03/MDL	4.1 U	0.34 U	0.38 U
Total SVOCs (mg/Kg) (Note 1)	NL	NL	NL	≤ 500	470	0.064	11

Notes:

 $NL = Not \ Listed$

MDL - Minimum Detection Limit

NA = Not Analyzed

 $U = The \ material \ was \ analyzed \ for \ but \ not \ detected \ at \ or \ above \ the \ reporting \ limit. \ The \ associated \ numerical \ value \ is \ the \ sample \ quantitation \ limit.$

 $\boldsymbol{J}=\boldsymbol{The}$ associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the reporting limit.

cPAHs - Carcinogenic PAHs are shown in bold and italics.

 $NYSDEC\ TAGM\ HWR-94-4046\ -\ Determination\ of\ Soil\ Cleanup\ Objectives\ and\ Cleanup\ Levels\ [NYSDEC,\ Jan.\ 1994].$

NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

(Note 1) - Total SVOCs includes all of the PAH and SVOC compounds.

(Note 2) - NYSDEC TAGM 4046 indicates a maximum soil cleanup objective for individual SVOCs of 50 mg/Kg.

Table 3
Surface Soil Metals and Cyanide Results
28 Pike Street SI - Port Jervis, New York

Sample Designation	NYSDEC Part 375-6	NYSDEC Part 375-6	NYSDEC Part 375-6	NYSDEC TAGM	SS1		GRSS1	GRSS2	\neg
Laboratory Identification	Unrestricted Use	Residential Use	Restricted-Residential	Recommended Soil	C0K0802360	01	C6F280229001	C6F2802290	02
Date Sampled	Cleanup Objectives	Cleanup Objectives	Use Cleanup Objectives	Cleanup Objectives	11/6/2000		6/26/2006	6/26/2006	
Metals (mg/Kg)									
Aluminum	NL	NL	NL	SB - (SB=5360)	6090		5450	6850	
Antimony	NL	NL	NL	SB - (Note 1)	10.9	U	12.4 UJ	0.69	J
Arsenic	13	16	16	7.5 or SB - (SB=7.4)	8.8	J	2.9	29.3	
Barium	350	350	400	300 or SB - (SB=85.7)	206	J	22.3 J	190	
Beryllium	7.2	14	72	0.16 or SB - (SB=0.32)	0.53		1.0 U	1.2	U
Cadmium	2.5	2.5	4.3	1 or SB - (SB=0.84)	1.4		0.033 U	1.2	U
Calcium	NL	NL	NL	SB - (SB=3270)	7930	J	1040 U	11400	
Chromium	30	36	180	10 or SB - (SB=9.5)	36.3	J	6.9	11.5	
Cobalt	NL	NL	NL	30 or SB - (SB=7.7)	8.8		5.5 J	6.9	J
Copper	50	270	270	25 or SB - (SB=488)	48.1		10.2 J	71.6	J
Iron	NL	NL	NL	2,000 or SB - (SB=19600)	23400		13000	18400	
Lead	63	400	400	SB - (SB=201)	2020		20.1	1210	
Magnesium	NL	NL	NL	SB - (SB=2190)	4540	J	1970	2820	
Manganese	1600	2000	2000	SB - (SB=761)	460	J	319	553	
Mercury	0.18	0.81	0.81	0.1 - (SB=0.2)	0.8	J	0.10 U	1.5	J
Nickel	30	140	310	13 or SB - (SB=21.7)	14.6		13.5	17.6	
Potassium	NL	NL	NL	SB - (SB=827)	736		1040 U	1620	J
Selenium	3.9	36	180	2 or SB - (SB=0.87)	0.87		0.43 J	2.5	
Silver	2	36	180	SB - (Note 1)	0.74	U	2.1 U	0.38	J
Sodium	NL	NL	NL	SB - (SB=61.2)	121		261 J	2940	
Thallium	NL	NL	NL	SB - (Note 1)	1.7	U	0.62 J	2.3	U
Vanadium	NL	NL	NL	150 or SB - (SB=10.3)	17.8		10.4 U	11.5	U
Zinc	109	2200	10000	20 or SB - (SB=207)	807		42.9	323	
Total Cyanide (mg/Kg)	27	27	27	NL	0.62	U	0.52 U	0.91	

NA = Not Analyzed

NL = Not Listed

U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.

J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the reporting limit.

NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994].

NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

SB - Site Background

SB - (Note 1) - Metal not detected in background samples in concentrations greater than the method reporting limits.

Table 4 **Subsurface Soil VOC Results** 28 Pike Street SI - Port Jervis, New York

Sample Designation	NYSDEC Part 375-6	NYSDEC Part 375-6	NYSDEC Part 375-6	NYSDEC TAGM	GRSB1(13-14)	GRSB1(22-24)	GRSB2(13-14)	GRSB20(13-14)	GRSB2(22-24)	GRSB3(4-5)	GRSB3(6-7)	GRSB4(7-8)	GRSB4(9-11)
Laboratory Identification	Unrestricted Use	Residential Use	Restricted-Residential	Recommended Soil	C6G290164004	C6G290164005	C6G290164001	C6G290164002	C6G290164003	C6F280229005	C6F280229006	C6F280229003	C6F280229004
Date Sampled	Cleanup Objectives	Cleanup Objectives	Use Cleanup Objectives	Cleanup Objectives	7/27/2006	7/27/2006	7/27/2006	Duplicate	7/27/2006	6/26/2006	6/26/2006	6/26/2006	6/26/2006
BTEX Compounds (mg/Kg)													
Benzene	0.06	2.9	4.8	0.06	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Ethylbenzene	1	30	41	5.5	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Toluene	0.7	100	100	1.5	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Xylenes (total)	0.26	100	100	1.2	0.011 U	0.013 U	0.012 U	0.012 U	0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
m . 10000 (2.77										
Total BTEX (mg/Kg)	NL	NL	NL	NL	U	U	U	U	U	U	U	U	U
Other VOCs (mg/Kg)													
1.1.1-Trichloroethane	0.68	100	100	0.8	0.011 U	0.013 U	0.012 U	0.012 U	0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
1,1,2,2-Tetrachloroethane	NL	NL	NL	0.6	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
1,1,2-Trichloro-1,2,2-trifluoroethane	NL	NL	NL	6.0	0.011 U	0.013 U	0.012 U	0.012 U	0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
1,1,2-Trichloroethane	NL	NL	NL	NL	0.011 U	0.013 U	0.012 U	0.012 U	0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
1,1-Dichloroethane	0.27	19	26	0.2	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
1,1-Dichloroethene	0.33	100	100	0.4	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
1,2,4-Trichlorobenzene	NL	NL	NL	3.4	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
1,2-Dibromo-3-chloropropane	NL	NL	NL	NL	R	R	R		R	0.011 U	0.012 U	0.012 U	0.013 U
1,2-Dibromoethane	NL	NL	NL	NL 	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
1,2-Dichlorobenzene	1.1	100	100	7.9	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
1,2-Dichloroethane	0.02	2.3	3.1	0.1	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
1,2-Dichloropropane	NL 2.4	NL	NL 49	0.3 NL	0.011 U	0.013 U 0.013 U	0.012 U 0.012 U		0.011 U	0.011 U	0.012 U 0.012 U	0.012 U	0.013 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	1.8	17 9.8	13	NL NL	0.011 U 0.011 U	0.013 U 0.013 U	0.012 U		0.011 U 0.011 U	0.011 U 0.011 U	0.012 U	0.012 U 0.012 U	0.013 U 0.013 U
2-Butanone	0.12	100	100	0.3	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
2-Hexanone	NL	NL	NL	NL	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
4-Methyl-2-pentanone	NL	NL	NL	1.0	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Acetone	0.05	100	100	0.2	0.020 U	0.013 U	0.043 U		0.020 U	0.011 U	0.012 U	0.012 U	0.013 U
Bromodichloromethane	NL	NL	NL	NL	0.011 U	0.013 U	0.012 U	0.012 U	0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Bromoform	NL	NL	NL	NL	0.011 U	0.013 U	0.012 U	0.012 U	0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Bromomethane	NL	NL	NL	NL	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Carbon disulfide	NL	NL	NL	2.7	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Carbon tetrachloride	0.76	1.4	2.4	0.6	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Chlorobenzene	1.1	100	100	1.7	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Chloroethane	NL 0.27	NL 10	NL 40	1.9	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Chloroform Chloromethane	0.37 NL	10 NL	49 NL	0.3 NL	0.011 U 0.011 U	0.013 U 0.013 U	0.012 U 0.012 U		0.011 U 0.011 U	0.011 U 0.011 U	0.012 U 0.012 U	0.012 U 0.012 U	0.013 U 0.013 U
cis-1,2-Dichloroethene	0.25	59	100	NL NL	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
cis-1,3-Dichloropropene	NL	NL	NL	NL NL	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Cyclohexane	NL	NL	NL NL	NL	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Dibromochloromethane	NL	NL	NL	NL	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Dichlorodifluoromethane	NL	NL	NL	NL	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Isopropylbenzene	NL	NL	NL	NL	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Methyl acetate	NL	NL	NL	NL	0.011 U	0.013 U	0.012 U		0.011 U	0.011 UJ	0.012 UJ	0.012 UJ	0.013 UJ
Methyl tert-butyl ether	0.93	62	100	NL	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Methylcyclohexane	NL	NL	NL	NL	0.011 U	0.013 U	0.012 U			0.011 U	0.012 U	0.012 U	0.013 U
Methylene chloride	0.05	51	100	0.1	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Styrene	NL	NL 5.5	NL	NL 1.4	0.011 U		0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Tetrachloroethene	1.3	5.5	19	1.4	0.011 U		0.012 U			0.011 U	0.012 U	0.012 U	0.013 U
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.19 NL	100	100	0.3	0.011 U 0.011 U	0.013 U 0.013 U	0.012 U 0.012 U		0.011 U 0.011 U	0.011 U 0.011 U	0.012 U 0.012 U	0.012 U 0.012 U	0.013 U 0.013 U
Trichloroethene	NL 0.47	NL 10	NL 21	NL 0.7	0.011 U 0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U 0.012 U	0.012 U 0.012 U	0.013 U 0.013 U
Trichlorofluoromethane	NL	NL	NL	NL	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
Vinyl chloride	0.02	0.21	0.9	0.2	0.011 U	0.013 U	0.012 U		0.011 U	0.011 U	0.012 U	0.012 U	0.013 U
· my · emoride	0.02	0.21	0.7	V.2	0.011	0.013	0.012	0.012	0.011	0.011 0	0.012	0.012 0	0.013
Total VOCs (mg/Kg) (Note 1)	NL	NL	NL	≤ 10	U	U	U	U	U	U	U	U	U

NA = Not Analyzed NL = Not Listed

R = Rejected Value

Bold value - compound detected at concentration greater than the reporting limit.

NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994].

NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

(Note 1) - Total VOCs includes all BTEX compounds.

U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.

J = The associated numerical value is an estimated quantity.

Table 5 Subsurface Soil SVOC Results 28 Pike Street SI - Port Jervis, New York

						ervis,	•							
Sample Designation	NYSDEC Part 375-6	NYSDEC Part 375-6	NYSDEC Part 375-6	NYSDEC TAGM	GRSB1(13-14		GRSB1(22-24)	GRSB2(13-14)	GRSB20(13-14)	GRSB2(22-24)	GRSB3(4-5)	GRSB3(6-7)	GRSB4(7-8)	GRSB4(9-11)
Laboratory Identification	Unrestricted Use	Residential Use	Restricted-Residential	Recommended Soil	C6G290164004		C6G290164005	C6G290164001	C6G290164002	C6G290164003	C6F280229005	C6F280229006	C6F280229003	C6F280229004
Date Sampled	Cleanup Objectives	Cleanup Objectives	Use Cleanup Objectives	Cleanup Objectives	7/27/2006	_	7/27/2006	7/27/2006	7/27/2006	7/27/2006	6/27/2006	6/27/2006	6/27/2006	6/27/2006
PAH Compounds (mg/Kg)														
2-Methylnaphthalene	NL 20	NL 100	NL 100	36.4	0.36		0.44 U	0.41 U	0.39 U	0.36 U 0.36 U	0.37 U	0.39 U	0.40 U	0.42 U 0.42 U
Acenaphthene Acenaphthylene	20 100	100 100	100 100	50 41	0.15 0.21	J	0.44 U 0.44 U	0.41 U 0.41 U	0.39 U 0.39 U	0.36 U	0.37 U 0.37 U	0.39 U 0.39 U	0.40 U 0.40 U	0.42 U 0.049 J
Anthracene	100	100	100	50		J	0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Benzo(a)anthracene	1	1	1	0.224/MDL	0.53	•	0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Benzo(a)pyrene	1	1	1	0.061/MDL	0.54		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Benzo(b)fluoranthene	0.8	1	1	1.1	0.53		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Benzo(ghi)perylene	100	100	100	50	0.22	J	0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.089 J
Benzo(k)fluoranthene	1	1	3.9	1.1	0.18	J	0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Chrysene	1	1	3.9	0.4	0.56		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.014/MDL	0.050	J	0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Fluoranthene	100	100	100	50	0.75		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Fluorene	30	100	100	50	0.12		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	3.2	0.26		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Naphthalene	12 100	100 100	100 100	13 50	0.36 0.11		0.44 U 0.44 U	0.41 U 0.41 U	0.39 U 0.39 U	0.36 U 0.36 U	0.37 U 0.37 U	0.39 U 0.39 U	0.40 U 0.40 U	0.42 U 0.42 U
Phenanthrene Pyrene	100	100	100	50	1.4	J	0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
1 yrene	100	100	100	50	1.4	_	0.44 U	0.41 0	0.35 U	0.30 U	0.57 0	0.35 0	0.40 0	0.42 0
Total PAHs (mg/Kg)	NL	NL	NL	NL	5.98	_	U	11	II	U	11	11	II	0.138
		,,,		- 142	2.50				l l					0.200
Other SVOCs (mg/Kg)														
1,1'-Biphenyl	NL	NL	NL	50 (Note 2)	0.36		0.440 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
2,2'-oxybis(1-Chloropropane)	NL	NL	NL	50 (Note 2)	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
2,4,5-Trichlorophenol	NL	NL	NL NI	0.1		U	1.1 U	1.0 U	0.98 U	0.91 U	0.94 U	0.98 U	1.0 U	1.0 U
2,4,6-Trichlorophenol	NL	NL NI	NL NI	50 (Note 2)	0.36 0.36		0.44 U	0.41 U 0.41 U	0.39 U	0.36 U 0.36 U	0.37 U	0.39 U 0.39 U	0.40 U	0.42 U
2,4-Dichlorophenol 2,4-Dimethylphenol	NL NL	NL NL	NL NL	0.4 50 (Note 2)		U	0.44 U 0.44 U	0.41 U	0.39 U 0.39 U	0.36 U	0.37 U 0.37 U	0.39 U	0.40 U 0.40 U	0.42 U 0.42 U
2,4-Dinitrophenol	NL NL	NL NL	NL NL	0.200/MDL		U	1.1 U	1.0 U	0.98 U	0.30 U	0.94 U	0.98 U	1.0 U	1.0 U
2,4-Dinitrotoluene	NL	NL	NL NL	50 (Note 2)	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
2,6-Dinitrotoluene	NL	NL	NL	1	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
2-Chloronaphthalene	NL	NL	NL	50 (Note 2)	0.36	U	0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
2-Chlorophenol	NL	NL	NL	50 (Note 2)	0.36	U	0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
2-Methylphenol	0.33	100	100	0.100/MDL	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
2-Nitroaniline	NL	NL	NL	0.430/MDL	0.71	U	1.1 U	1.0 U	0.98 U	0.91 U	0.94 U	0.98 U	1.0 U	1.0 U
2-Nitrophenol	NL	NL	NL NI	0.330/MDL	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
3,3'-Dichlorobenzidine 3-Nitroaniline	NL NL	NL NL	NL NL	50 (Note 2) 0.500/MDL	0.36 0.91	U	0.44 U	0.41 U 1.0 U	0.39 U 0.98 U	0.36 U 0.91 U	0.37 U 0.94 U	0.39 U 0.98 U	0.40 U 1.0 U	0.42 U 1.0 U
4,6-Dinitro-2-methylphenol	NL NL	NL NL	NL NL	50 (Note 2)	0.91	_	1.1 U	1.0 U	0.98 U	0.91 U	0.94 U	0.98 U	1.0 U	1.0 U
4-Bromophenyl phenyl ether	NL	NL	NL NL	50 (Note 2)	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
4-Chloro-3-methylphenol	NL	NL	NL	0.240/MDL	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
4-Chloroaniline	NL	NL	NL	0.220/MDL	0.36	U	0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
4-Chlorophenyl phenyl ether	NL	NL	NL	50 (Note 2)	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
4-Methylphenol	0.33	34	100	0.9	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
4-Nitroaniline	NL	NL	NL NI	50 (Note 2)	0.71	U	1.1 U	1.0 U	0.98 U	0.91 U	0.94 U	0.98 U	1.0 U	1.0 U
4-Nitrophenol	NL NI	NL NL	NL NI	0.100/MDL 50 (Note 2)	0.91 0.10		1.1 U 0.045 J	1.0 U 0.41 U	0.98 U 0.39 U	0.91 U 0.36 U	0.94 U 0.083 J	0.98 U 0.083 J	1.0 U 0.088 J	1.0 U 0.085 J
Acetophenone Atrazine	NL NL	NL NL	NL NL	50 (Note 2) 50 (Note 2)	0.10		0.045 J 0.44 U	0.41 U	0.39 U	0.36 U	0.083 J 0.37 U	0.083 J 0.39 U	0.40 U	0.42 U
Benzaldehyde	NL NL	NL NL	NL NL	50 (Note 2)	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
bis(2-Chloroethoxy)methane	NL NL	NL NL	NL NL	50 (Note 2)	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
bis(2-Chloroethyl) ether	NL	NL	NL	50 (Note 2)	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
bis(2-Ethylhexyl) phthalate	NL	NL	NL	50	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.740	0.40 U	0.22 J
Butyl benzyl phthalate	NL	NL	NL	50	0.00	U	0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Caprolactam	NL	NL	NL	50 (Note 2)	0.50	U	0.071 J	0.074 J	0.072 J	0.073 J	0.039 J	0.39 U	0.057 J	0.047 J
Carbazole	NL 7	NL	NL 50	50 (Note 2)	0.00	U	0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Dibenzofuran	/ NI	14 NI	59	6.2	0.36	_	0.44 U		0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Diethyl phthalate Dimethyl phthalate	NL NL	NL NL	NL NL	7.1	0.36 0.36		0.44 U 0.44 U	0.41 U 0.41 U	0.39 U 0.39 U	0.36 U 0.36 U	0.37 U 0.37 U	0.053 J 0.39 U	0.40 U 0.40 U	0.42 U 0.42 U
Di-n-butyl phthalate	NL NL	NL NL	NL NL	8.1	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Di-n-octyl phthalate	NL NL	NL NL	NL NL	50	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Hexachlorobenzene	NL	NL	NL	0.41	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Hexachlorobutadiene	NL	NL	NL	50 (Note 2)	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Hexachlorocyclopentadiene	NL	NL	NL	50 (Note 2)	0.36		0.44 U		0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Hexachloroethane	NL	NL	NL	50 (Note 2)	0.36		0.44 U		0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Isophorone	NL	NL	NL NI	4.4	0.36		0.44 U		0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
Nitrobenzene	NL NI	NL NI	NL NI	0.200/MDL	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	NL NL	NL NL	NL NL	50 (Note 2) 50 (Note 2)	0.36 0.36		0.44 U 0.44 U	0.41 U 0.41 U	0.39 U 0.39 U	0.36 U 0.36 U	0.37 U 0.37 U	0.39 U 0.39 U	0.40 U 0.40 U	0.42 U 0.42 U
N-Nitrosodiphenylamine Pentachlorophenol	0.8	2.4	NL 6.7	1.0	0.36		1.1 U	1.0 U	0.39 U 0.98 U	0.36 U	0.37 U	0.39 U	1.0 U	1.0 U
Phenol	0.33	100	100	0.03/MDL	0.36		0.44 U	0.41 U	0.39 U	0.36 U	0.37 U	0.39 U	0.40 U	0.42 U
						1		1		1			2.1.0	

NL = Not Listed

MDL - Minimum Detection Limit

MDL - Minimum Detection Limit

NA = Not Analyzed

U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.

J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the reporting limit.

cPAHs - Carcinogenic PAHs are shown in bold and italics.

NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994].

NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

(Note 1) - Total SVOCs includes all of the PAH and SVOC compounds.

Table 6 Subsurface Soil Metals and Cyanide Results 28 Pike Street SI - Port Jervis, New York

Sample Designation	NYSDEC Part 375-6	NYSDEC Part 375-6	NYSDEC Part 375-6	NYSDEC TAGM	GRSB1(13-14)	GRSB1(22-24)	GRSB2(13-14)	GRSB20(13-14)	GRSB2(22-24)	GRSB3(4-5)	GRSB3(6-7)	GRSB4(7-8)	GRSB4(9-11)
Laboratory Identification	Unrestricted Use	Residential Use	Restricted-Residential	Recommended Soil	C6G290164004	C6G290164005	C6G290164001	C6G290164002	C6G290164003	C6F280229005	C6F280229006	C6F280229003	3 C6F280229004
Date Sampled	Cleanup Objectives	Cleanup Objectives	Use Cleanup Objectives	Cleanup Objective	7/27/2006	7/27/2006	7/27/2006	7/27/2006	7/27/2006	6/26/2006	6/26/2006	6/26/2006	6/26/2006
Metals (mg/Kg)													1
Aluminum	NL	NL	NL	SB - (SB=5360)	4510	J 7820 J	5030 J	5650 J	8870 J	4670	4470	4460	4990
Antimony	NL	NL	NL	SB - (Note 1)	13.2 U	JJ 30.6 U	J 14.8 UJ	14.2 UJ	13.2 UJ	13.6 UJ	14.2 UJ	14.5 UJ	15.1 UJ
Arsenic	13	16	16	7.5 or SB - (SB=7.4)	2.5	2.8	2.2 J	1.6 J	3.2	1.6 J	1.4 J	1.8 J	1.7 J
Barium	350	350	400	300 or SB - (SB=85.7)	25.3	J 36.8 J	37.8 J	47.7	31 J	30.2 J	39.8 J	30.4 J	32 J
Beryllium	7.2	14	72	0.16 or SB - (SB=0.32)	1.1 U	J 1.3 U	J 1.2 U	1.2 U	1.1 U	1.1 U	1.2 U	1.2 U	1.3 U
Cadmium	2.5	2.5	4.3	1 or SB - (SB=0.84)	1.1 U	J 1.3 U	J 1.2 U	1.2 U	1.1 U	1.1 U	1.2 U	1.2 U	1.3 U
Calcium	NL	NL	NL	SB - (SB=3270)	1100 U	J 1330 U	J 1230 U	1190 U	1100 U	1180 U	1180 U	1210 U	1260 U
Chromium	30	36	180	10 or SB - (SB=9.5)	4.5	J 18.8 J	5.2 J	5.4 J	11.6 J	4.6	4.8	4.6	5.7
Cobalt	NL	NL	NL	30 or SB - (SB=7.7)	4.3	J 8.1 J	4.5 J	4.6 J	5.6 J	4.2 J	4.0 J	4.2 J	4.5 J
Copper	50	270	270	25 or SB - (SB=488)	11.9	20	31.5 J	15.7 J	3.0 J	4.0 J	3.9 J	3.6 J	4.8 J
Iron	NL	NL	NL	2,000 or SB - (SB=19600)	8590	J 20000 J	9880 J	10200 J	18700 J	9320	9070	9410	10100
Lead	63	400	400	SB - (SB=201)	5.2	4.8	6.2	5.6	2.7	3.1 J	8.1 J	2.7 J	4.5 J
Magnesium	NL	NL	NL	SB - (SB=2190)	1650	2960	1800	2040	3690	1710	1650	1640	1760
Manganese	1600	2000	2000	SB - (SB=761)	92.4	J 180 J	143 J	138 J	161 J	266	215	185	245
Mercury	0.18	0.81	0.81	0.1 - (SB=0.2)	0.11 U	U 0.13 U		0.12 U	0.11 U	0.11 U	0.12 U	0.12 U	0.11 U
Nickel	30	140	310	13 or SB - (SB=21.7)	8.9	23.3	9.3 J	10.4	16.6	8.8 J	8.6 J	8.5 J	9.3 J
Potassium	NL	NL	NL	SB - (SB=827)	1100 U	J 1330 U	J 1230 U	1190 U	1100 U	1130 U	1180 U	1210 U	1260 U
Selenium	3.9	36	180	2 or SB - (SB=0.87)	0.87	J 0.79 J	0.63 J	0.51 J	0.6 J	1.1 U	0.41 J	0.59 J	1.3 U
Silver	2	36	180	SB - (Note 1)	2.2 U			2.4 U	2.2 U	0.12 J	2.4 U	0.15 J	2.5 U
Sodium	NL	NL	NL	SB - (SB=61.2)	75			85.8 J	132 J	39.8 J	68 J	53.5 J	121 J
Thallium	NL	NL	NL	SB - (Note 1)	2.2 U	J 2.7 U		2.4 U	2.2 U	2.3 U	2.4 U	2.4 U	2.5 U
Vanadium	NL	NL	NL	150 or SB - (SB=10.3)	4.5		5.2 J	5.5 J	9.5 J	11.3 U	11.8 U	12.6 U	12.6 U
Zinc	109	2200	10000	20 or SB - (SB=207)	57.7	J 70.6 J	63.5 J	53.6 J	42.3 J	28.5	28.7	27.2	29.6
•													
Total Cyanide (mg/Kg)	27	27	27	NL	0.55 U	U 0.39 J	0.14 J	0.59 U	0.55 U	0.56 U	0.59 U	0.61 U	0.63 U

Notes:

NA = Not Analyzed

NL = Not Listed

U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.

J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the reporting limit.

NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994].

NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

SB - Site Background

SB - (Note 1) - Metal not detected in background samples in concentrations greater than the method reporting limits.

Table 7 **Groundwater VOC Results** 28 Pike Street SI, Port Jervis, New York

Sample Designation Laboratory Identification Date Sampled	NYSDEC Groundwater Guidance or Standard Value (Note 1)	TW3 C6G290164009 7/27/2006	TW4 C6F280229007 6/26/2006	TW5 C6F280229008 6/26/2006	TW6 C6FG290164006 7/27/2006	TW60 C6FG290164007 Duplicate	TB(6.26.06) C6F280229009 6/26/2006	TB(7.27.06) C6FG290164008 7/27/2006
BTEX Compounds (ug/L)	544444	.,,,	0,20,200		.,_,,_			.,_,,_
Benzene	1 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Toluene	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Ethylbenzene	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Xylenes (total)	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
regiones (total)	55	10 0	10 0	10 0	10 0	10 0	10 0	10 0
Total BTEX Compounds (ug/L)	NL	U	U	U	U	U	U	U
Other VOCs (ug/L)								
1,1,1-Trichloroethane	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-trifluoroethane	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1.1.2-Trichloroethane	1 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1-Dichloroethane	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1.1-Dichloroethene	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2,4-Trichlorobenzene	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dibromo-3-chloropropane	0.04 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dibromoethane	NL	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Diolonioeniane 1,2-Dichlorobenzene	3 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichloroethane	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	1 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichloropropane								
1,3-Dichlorobenzene	3 s		10 U	10 U	10 U	10 U		10 U
1,4-Dichlorobenzene	3 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Butanone	50 g	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone	50 g	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone	NL	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Acetone	50 g	10 U	10 U	10 U	13 J	6.5 J	10 U	10 U
Bromodichloromethane	50 g	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromoform	50 g	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromomethane	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Carbon disulfide	60 g	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Carbon tetrachloride	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chlorobenzene	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloroethane	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloroform	7 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloromethane	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
cis-1,2-Dichloroethene	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
		10 U	10 U	10 U	10 U	10 U	10 U	10 U
cis-1,3-Dichloropropene Cyclohexane	0.4 s NL	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dibromochloromethane	5 s	10 U		10 U	10 U	10 U	10 U	
Dichlorodifluoromethane	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Isopropylbenzene	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methyl acetate	NL	10 U	10 UJ	10 UJ	10 U	10 U	10 U	10 U
Methyl tert-butyl ether	10 g	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylcyclohexans	NL	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Styrene	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
trans-1,2-Dichloroethene	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
trans-1,3-Dichloropropene	0.4 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Trichloroethene	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Trichlorofluoromethane	5 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Vinyl chloride	2 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Total VOCs (ug/L) (Note 2)	NL	U	U	U	13	6.5	U	U

NL = Not Listed
U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.
J = The associated numerical value is an estimated quantity
R = Rejected Value

Bold value - compound detected at concentration greater than the reporting limitshaded value - compound detected above regulatory guidance value.

(Note 1) - Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) - 6 NYCRR 703.5 [NYSDEC, 1998] (Note 2) - Total VOCs include the BTEX compounds

s = Standard Value

g = Guidance Value

Table 8 **Groundwater SVOC Results** 28 Pike Street SI, Port Jervis, New York

Sample Designation Laboratory Identification Date Sampled	NYSDEC Groundwater Guidance or Standard Value (Note 1)	TW3 C6G290164009 7/27/2006)	TW5 C6F280229008 6/26/2006	TV C6FG29 7/27/	0164006	TW60 C6FG290164007 Duplicate
PAH Compounds (ug/L)							
2-Methylnaphthalene	NL	9.5	U		J	10 U	9.9 U
Acenaphthene	20 g	9.5	U		J	12	12
Acenaphthylene	NL	9.5	U	9.8		10 U	9.9 U
Anthracene	50 g	9.5	U	9.8		1.4 J 10 U	1.5 J 9.9 U
Benzo(a)anthracene	0.002 g	9.5					
Benzo(a)pyrene	ND	9.5	U	9.8	_	10 U	9.9 U
Benzo(b)fluoranthene	0.002 g	9.5	U	9.8		10 U	9.9 U
Benzo(ghi)perylene	NL	9.5	U	9.8		10 U	9.9 U
Benzo(k)fluoranthene	0.002 g	9.5	U	9.8		10 U	9.9 U
Chrysene	0.002 g	9.5	U	9.8	J	10 U	9.9 U
Dibenz(a,h)anthracene	NL	9.5	U	9.8	J	10 U	9.9 U
Fluoranthene	50 g	9.5	U	9.8	J	10 U	1.1 J
Fluorene	50 g	9.5	U	9.8	J	4.5 J	4.6 J
Indeno(1,2,3-cd)pyrene	0.002 g	9.5	U	9.8	J	10 U	9.9 U
Naphthalene	10 g	9.5	U	9.8	J	10 U	9.9 U
Phenanthrene	50 g	9.5	U	9.8	J	10 U	9.9 U
Pyrene	50 g	9.5	U	9.8	J	1.2 J	1.4 J
Total PAHs (ug/L)	NL		U	1	J	17.1	17
Other SVOCs (ug/L)							
1,1'-Biphenyl	5 s	9.5	U	9.8	J	10 U	9.9 U
2,2'-oxybis(1-Chloropropane)	NL	9.5	U	9.8		10 U	9.9 U
2,4,5-Trichlorophenol	NL	24	U	24	_	25 U	25 U
2.4.6-Trichlorophenol	NL	9.5	U		J	10 U	9.9 U
2,4-Dichlorophenol	5 s	9.5	U		J	10 U	9.9 U
2.4-Dimethylphenol	50 g	9.5	U		J	10 U	9.9 U
2,4-Dinitrophenol	10 g	24	U	24		25 U	25 U
2.4-Dinitrotoluene	5 s	9.5	U	9.8		10 U	9.9 U
2,6-Dinitrotoluene	5 s	9.5	U	9.8		10 U	9.9 U
2-Chloronaphthalene	10 g	9.5	U	9.8		10 U	9.9 U
2-Chlorophenol	NL	9.5	U	9.8		10 U	9.9 U
2-Methylphenol	NL NL	9.5	U	9.8		10 U	9.9 U
2-Nitroaniline	5 s	24	U	24		25 U	25 U
2-Nitroannine 2-Nitrophenol	NL	9.5	U	9.8		10 U	9.9 U
3,3'-Dichlorobenzidine	5 s	9.5	U	9.8		10 U	9.9 U
3-Nitroaniline	5 s	24	U	24		25 U	25 U
4,6-Dinitro-2-methylphenol	NL	24	U	24		25 U	25 U
					_		9.9 U
4-Bromophenyl phenyl ether	NL NI	9.5 9.5	U		J	10 U	
4-Chloro-3-methylphenol	NL		U	9.8		10 U	9.9 U
4-Chloroaniline	5 s	9.5	U		J	10 U	9.9 U
4-Chlorophenyl phenyl ether	NL NL	9.5	U	9.8		10 U	9.9 U
4-Methylphenol	NL .	9.5	U	9.8		10 U	9.9 U
4-Nitroaniline	5 s	24	U	24		25 U	25 U
4-Nitrophenol	NL NI	24	U	24		25 U	25 U
Acetophenone	NL	9.5	U	9.8		10 U	9.9 U
Atrazine	7.5 s	9.5	U		J	10 U	9.9 U
Benzaldehyde	NL	9.5	U		J	10 U	9.9 U
bis(2-Chloroethoxy)methane	5 s	9.5	U	9.8	_	10 U	9.9 U
bis(2-Chloroethyl) ether	1 s	9.5	U		J	10 U	9.9 U
bis(2-Ethylhexyl) phthalate	5 s	9.5	U		1	10 U	9.9 U
Butyl benzyl phthalate	50 g	9.5	U		J	10 U	9.9 U
Caprolactam	NL	2.5	J		ſ	3.3 J	5.2 J
Carbazole	NL	9.5	U		J	10 U	9.9 U
Di-n-butyl phthalate	50 s	9.5	U	9.8		10 U	9.9 U
Di-n-octyl phthalate	NL	9.5	U		J	10 U	9.9 U
Dibenzofuran	NL	9.5	U		J	10 U	9.9 U
Diethyl phthalate	50 g	9.5	U		J	10 U	9.9 U
Dimethyl phthalate	50 g	9.5	U		J	10 U	9.9 U
Hexachlorobenzene	0.4 s	9.5	U		J	10 U	9.9 U
Hexachlorobutadiene	0.5 s	9.5	U	9.8		10 U	9.9 U
Hexachlorocyclopentadiene	5 s	9.5	U		J	10 U	9.9 U
Hexachloroethane	5 s	9.5	U		J	10 U	9.9 U
Isophorone	50 g	9.5	U		J	10 U	9.9 U
N-Nitrosodi-n-propylamine	50 g	9.5	U		J	10 U	9.9 U
N-Nitrosodiphenylamine	50 g	9.5	U		J	10 U	9.9 U
Nitrobenzene	0.4	9.5	U	9.8	J	10 U	9.9 L
Pentachlorophenol	1 s	24	U	24	J	25 U	25 U
Phenol	1 s	9.5	U	9.8	J	10 U	9.9 U
Total SVOCs (ug/L) (Note 2)	NL	2.5		5.1		20	23

Notes: NA = Not Analyzed

NL = Not Listed

 $U = The \ material \ was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.$

J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the reporting limit, shaded value - compound detected above regulatory guidance value.

s = Standard Value

g = Guidance Value

(Note 1) - Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) - 6 NYCRR 703.5 [NYSDEC, 1998].

(Note 2) - Total for SVOCs inlcudes PAHs.

cPAHs - Carcinogenic PAHs are shown in bold and italics.

Table 9
Groundwater Metals and Cyanide Results
28 Pike Street SI, Port Jervis, New York

Sample Designation Laboratory Identification Date Sampled	NYSDEC Groundwater Guidance or Standard Value (Note 1)	TW3 C6G290164009 7/27/2006	9	TW4 C6F28022900 6/26/2006	7	TW5 C6F2802290 6/26/2006		TW6 C6FG2901640 7/27/2006	06	TW60 C6FG290164 Duplicate	
Metals (ug/L)											
Aluminum	NL	25500		356	J	2130	J	51100		50000	
Antimony	3 s	60	U	60	U	60	U	60	U	60	U
Arsenic	25 s	9.4	J	1.6	J	10	U	12.3		12	
Barium	1,000 s	282		200	U	200	U	600		620	
Beryllium	3 g	1.3	J	5	U	5	U	2.6	J	2.8	J
Cadmium	5 s	5	U	5	U	5	U	5	U	5	U
Calcium	NL	14600		29300		20400		17300		17400	
Chromium	50 s	19.8		0.95	J	1.9	J	49.1		45.7	
Cobalt	NL	12.4	J	50	U	50	U	33.2	J	32.8	J
Copper	200 s	37.3		25	U	0.92	J	125		122	
Iron	300 s	27500		487		1910		48400		46700	
Lead	25 s	20.2		3	U	3	U	124		120	
Magnesium	35,000 s	5880		1860	J	2490	J	9810		9650	
Manganese	300 s	1360		26.3		77.1		1000		1020	
Mercury	0.7 s	0.062	J	0.2	U	0.2	U	0.65		0.69	
Nickel	100 s	29.4	J	40	U	2.4	J	69.3		66.3	
Potassium	NL	6810		5430		5000	U	9440		9570	
Selenium	10 s	5	U	5	U	1.9	J	6.5	J	5.8	J
Silver	50 s	10	U	10	U	10	U	0.49	J	0.7	J
Sodium	20,000 s	39700		31100		31800		30300		30800	
Thallium	0.5 g	10	U	4.8	J	10	U	10	U	10	U
Vanadium	NL	28.1	J	50	U	50	U	49.5	J	49.4	J
Zinc	2,000 g	133		20	U	20	U	597		642	
Total Cyanide (ug/L)	200 s	10	U	10	U	10	U	10	U	10	U

NL = Not Listed

U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.

Bold value - compound detected at concentration greater than the reporting limit, shaded value - compound detected above regulatory guidance value.

- s = Standard Value
- g = Guidance Value

Note(1) - Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) - 6 NYCRR 703.5 [NYSDEC, 1998].

J = The associated numerical value is an estimated quantity.

Table 10 Soil Gas, and Indoor and Ambient Air Results 28 Pike Street SI, Port Jervis, New York

	Sample Location	28 Pil	ce Street Base	ment	First	Floor	Outdoor	NYSDOH B	ackground
	Type of Sample	Soil Vapor	Soil Vapor	Indoor Air	Indoor Air	Indoor Air	Ambient	Indoor Ai	
	Sampling Date	6/26/2006	6/26/2006	6/26/2006	6/26/2006	6/26/2006	6/26/2006		
	Laboratory ID	0606679B-06A	0606679B-05A	0606679A-01A	0606679A-03A	0606679A-04A	0606679A-02A	75th	90th
Compound	Sample ID	GRSG3	GRSG4	GRIA4	GRIA3	GRIA3DUP	GRAMBUP	Percentile	Percentile
Possibly MGP Related or	Other Sources 1								
1,2,4-Trimethylbenzene		1.0	0.79 U	7.8 U	12 U	14 U	1.2	4.3	9.5
1,3,5-Trimethylbenzene		0.75 U	0.79 U	7.8 U	12 U	14 U	0.75 U	1.7	3.6
2,2,4-Trimethylpentane 2,3-Dimethylpentane		3.6 U 3.1 U	3.8 U 3.3 U	37 U 32 U	56 U 49 U	65 U 57 U	3.6 U 3.1 U	NA 2.2	NA 7.5
2-Methylpentane		15	3.3 0	28 U	71	70	2.7 U	NA	NA
4-Ethyltoluene		3.7 U	4.0 U	39 U	59 U	68 U	3.7 U	NA NA	NA NA
Benzene		2.6	1.4	14	49	39	1.8	5.9	15
Carbon Disulfide		5.8	13	25 U	37 U	43 U	2.4 U	NA	NA
Cyclohexane		2.6 U	2.8 U	27 U	41 U	48 U	2.6 U	2.6	8.1
Ethylbenzene		1.0 3.1 U	0.70 U 3.3 U	6.9 U 32 U	10 U 54	12 U 57 U	0.93 3.1 U	2.8 7.6	7.4 19
Heptane Hexane		9.0	3.3 0	28 U	78	76	2.7 U	6	18
Indan		3.7 U	3.9 U	38 U	58 U	67 U	3.7 U	NA NA	NA
Indene		3.6 U	3.8 U	38 U	57 U	66 U	3.6 U	NA	NA
Isopentane		97 J	21 J	240 J	360 J	370 J	7.8 J	NA	NA
Naphthalene		4.0 U	4.2 U	41 U	63 U	73 U	4.0 U	NA	NA
Styrene		0.65 U	0.68 U	6.7 U	10 U	12 U	0.65 U	0.64	1.3
Thiophene Toluene		2.6 U 9.9	2.8 U 3.6	27 U 14	41 U 34 J	48 U 47 J	2.6 U 5.8	NA 24.8	NA 58
m/p-Xylenes		3.6	1.3	6.9 U	11	13	2.8	4.6	12
o-Xylene		1.1	0.70 U	6.9 U	10 U	12 U	1.1	3.1	7.6
Not MGP Related ²					Ī	-			
1,1,1-Trichloroethane		0.83 U	0.88 U	8.6 U	13 U	15 U	0.83 U	1.4	3.5
1,1,2,2-Tetrachloroethane		1.0 U	1.1 U	11 U	16 U	19 U	1.0 U	<0.25	<0.25
1,1,2-Trichloroethane		0.83 U	0.88 U	8.6 U	13 U	15 U	0.83 U	<0.25	<0.25
1,1-Dichloroethane		0.62 U	0.65 U	6.4 U	9.7 U	11 U	0.62 U	<0.25	<0.25
1,1-Dichloroethene		0.60 U	0.64 U	6.3 U	9.5 U	11 U	0.60 U	<0.25	<0.25
1,2,4-Trichlorobenzene 1,2-Dibromoethane (EDB)		5.6 U 1.2 U	6.0 U 1.2 U	59 U 12 U	89 U 18 U	100 U 21 U	5.6 U 1.2 U	<0.25 <0.25	3.4 <0.25
1,2-Dichlorobenzene		0.91 U	0.97 U	9.5 U	14 U	17 U	0.91 U	<0.25	0.72
1,2-Dichloroethane		0.62 U	0.65 U	6.4 U	9.7 U	11 U	0.62 U	<0.25	<0.25
1,2-Dichloropropane		0.70 U	0.74 U	7.3 U	11 U	13 U	0.70 U	< 0.25	<0.25
1,3-Butadiene		1.7 U	1.9	17 U	26 U	31 U	1.7 U	NA	NA
1.3-Dichlorobenzene		0.91 U	0.97 U	9.5 U	14 U	17 U	0.91 U	<0.25	0.6
1,4-Dichlorobenzene 1,4-Dioxane		0.91 U 2.7 U	0.97 U 2.9 U	9.5 U 28 U	14 U 43 U	17 U 50 U	0.91 U 2.7 U	0.54 NA	1.3 NA
2-Butanone (MEK)		4.7 J	12 J	23 U	35 U	41 U	2.7 U	7.3	16
2-Hexanone		3.1 U	3.3 U	32 U	49 U	57 U	3.1 U	NA	NA
4-Methyl-2-pentanone		3.1 U	3.3 U	32 U	49 U	57 U	3.1 U	0.86	2.2
Acetone		17	54	28	83	68	13	52	110
Benzyl chloride		0.79 U	0.83 U	8.2 U	12 U	14 U	0.79 U	NA	NA
Bromodichloromethane		5.1 U	5.4 U	53 U	80 U	93 U	5.1 U	NA NA	NA NA
Bromoform Bromomethane		7.8 U 0.59 U	8.3 U 0.62 U	82 U 6.1 U	120 U 9.3 U	140 U 11 U	7.8 U 0.59 U	NA <0.25	NA 0.6
Carbon Tetrachloride		0.96 U	1.0 U	9.9 U	15 U	17 U	0.96 U	0.59	0.81
Chlorobenzene		0.70 U	0.74 U	7.3 U	11 U	13 U	0.70 U	<0.25	<0.25
Chloroethane		0.40 UJ	0.42 UJ	4.2 UJ	6.3 UJ	7.3 UJ	0.40 UJ	<0.25	<0.25
Chloroform		0.74 U	1.8	7.7 U	12 U	14 U	0.75	0.54	1.4
Chloromethane cis-1,2-Dichloroethene		0.46	0.33 U	3.3 U	5.0 U	5.7 U	1.5	1.8	3.3
cis-1,2-Dichloroetnene		0.60 U 0.69 U	0.64 U 0.73 U	6.3 U 7.2 U	9.5 U 11 U	11 U 13 U	0.60 U 0.69 U	<0.25 <0.25	<0.25 <0.25
Dibromochloromethane		6.5 U	6.8 U	67 U	100 U	120 U	6.5 U	NA	NA
Ethanol		42	13	900	1600	1500	18	540	1400
Trichlorofluoromethane (Fre		68	250	8.9 U	13 U	16 U	1.6	5.4	17
1,1,2-Trichlorotrifluoroethan		1.2 U	1.2 U	12 U	18 U	21 U	1.2 U	1.1	1.8
1,2-Dichlorotetrafluoroethan		1.1 U	1.1 U	11 U	17 U	19 U	1.1 U	<0.25	0.52
Dichlorodifluoromethane (Fi Hexachlorobutadiene (C-46		5.9 8.1 U	3.4 8.6 U	7.8 U 84 U	12 U 130 U	14 U 150 U	2.9 8.1 U	4.1 <0.25	15 4.6
Methyl tert-Butyl Ether	'	2.7 U	2.9 U	3.4 J	43 U	50 U	2.7 U	5.6	27
Methylene Chloride (Dichlor	omethane)	0.98	0.56 U	5.5 U	8.3 U	9.6 U	0.53 U	6.6	22
2-Propanol	<u>, </u>	2.5	2.0 U	19 U	29 U	34 U	1.9 U	NA	NA
Propene		1.3 U	12	14 U	21 U	24 U	1.3 U	NA	NA
Tetrachloroethene		160	110	28	16 U	19 U	1.0 U	1.1	2.9
Tetrahydrofuran Trans-1,2-Dichloroethene		2.2 U	2.4 U	23 U	35 U	41 U 55 U	2.2 U	0.35	3.3
		3.0 U	3.2 U 0.73 U	31 U 7.2 U	48 U 11 U	13 U	3.0 U 0.69 U	NA <0.25	NA <0.25
Trans-1,3-Dichloropropene Trichloroethene		0.69 U 0.82 U	0.73 U	8.5 U	13 U	15 U	0.82 U	<0.25	0.48

All units in micrograms per cubic meter (µg/m³)

- 1 These compounds may be related to either MGP sources or non-MGP sources, or both. MGP sources include MGP tars and petroleum feedstocks used in MGP processes, such as the carburetted water gas process. Non-MGP sources include cleaning products, floor wax and polish, vehicle exhaust, construction materials, and cigarette smoke.
- 2 These compounds are not related to MGP sources and are present due to non-MGP sources, such as vehicle exhaust, heating and air conditioning
- systems, cleaning agents, art supplies, paints, etc.
 3 New York State Department of Health, November 14, 2005.

Dup - As suffix on Sample ID indicates that the sample is a field duplicate.

NA - Not Available. No data available for background concentrations of these compounds.

- U Not detected at the detection limit indicated.
- J Estimated Concentration.

Bold - Detected

Exceeds NYSDOH Background Indoor Air Values 75th Percentile

Exceeds NYSDOH Background Indoor Air Values 90th Percentile

Table 11 Soil Gas, and Indoor and Ambient Air Results 28 Pike Street RI and SI, Port Jervis, New York

Sample Loca	tion Basem	Basement - Boiler Room Main Basement Area							First Floor Outdoor						NYSDOH B	ackground
Type of Sar			Vapor	Soil Vapor	Soil Vapor	Indoor Air	Duplicate	Indoor Air	Indoor Air	Indoor Air	Duplicate	Ambient	Ambient	Ambient	Indoor Ai	•
Sampling	-		6/2006	6/22/2004	6/26/2006	6/22/2004	6/22/2004	6/26/2006	6/22/2004	6/26/2006	6/26/2006	6/22/2004	6/22/2004	6/26/2006	indoor Ai	Values
Laborato			79B-06A	0406427-07A	0606679B-05A	0406427-03A	0406427-04A	0606679A-01A	0406427-05A	0606679A-03A	0606679A-04A	0406427-01A	0406427-02A	0606679A-02A	75th	90th
Compound Sampl	e ID GRSG	i1 GR	RSG3	GRSG2	GRSG4	GRIA1	GRIA1-FD	GRIA4	GRIA2	GRIA3	GRIA3DUP	GRAMB-1	GRAMB-2	GRAMBUP	Percentile	Percentile
Possibly MGP Related or Other Sources 1 1.2.4-Trimethylbenzene			1.0	8.3	0.79 U	4.5 U	3.6 U	7.8 U	2.5	12 U	14 U	1.8	2.0	1.2	4.3	0.5
1,3,5-Trimethylbenzene	9.3 4.0 L		75 U	2.6	0.79 U	4.5 U	3.6 U	7.8 U	3.5 1.2	12 U	14 U	0.82 U	0.82 U	0.75 U	1.7	9.5 3.6
2,2,4-Trimethylpentane	19 U		.6 U	10 U	3.8 U	21 U	17 U	37 U	4.2 U	56 U	65 U	3.9 U	3.9 U	3.6 U	NA	NA
2,3-Dimethylpentane	17 U		.1 U	8.7 U	3.3 U	19 U	15 U	32 U	3.6 U	49 U	57 U	3.4 U	3.4 U	3.1 U	2.2	7.5
2-Methylpentane	20 U		15 .7 U	16 10 U	3.1 4.0 U	16 U 22 U	13 U 18 U	28 U 39 U	9.5 4.4 U	71 59 U	70 68 U	3.3	3.5	2.7 U 3.7 U	NA NA	NA NA
4-Ethyltoluene Benzene	8.9		2.6	7.3	1.4	7.4	6.9	39 U 14	8.7	49	39	4.1 U 3.2	4.1 U 3.0	3.7 U 1.8	NA 5.9	NA 15
Carbon Disulfide	13 U		5.8	16	13	14 U	11 U	25 U	2.8 U	37 U	43 U	6.8	2.6 U	2.4 U	NA	NA NA
Cyclohexane	14 U		.6 U	7.3 U	2.8 U	16 U	12 U	27 U	3.1 U	41 U	48 U	2.9 U	2.9 U	2.6 U	2.6	8.1
Ethylbenzene	10 17 U		1.0	9.7 8.7 U	0.70 U	3.9 U 19 U	3.2 U	6.9 U 32 U	2.0	10 U	12 U 57 U	1.6 3.4 U	1.8 3.4 U	0.93 3.1 U	2.8 7.6	7.4 19
Heptane Hexane	17 U		.1 U 9.0	8.7 U	3.3 U 3.3	19 U	15 U 13 U	28 U	5.1 7.8	78	76	2.9 U	2.9 U	2.7 U	7.b 6	18
Indan	20 U		.7 U	10 U	3.9 U	22 U	18 U	38 U	4.3 U	58 U	67 U	4.0 U	4.0 U	3.7 U	NA	NA NA
Indene	19 U		.6 U	10 U	3.8 U	22 U	17 U	38 U	4.2 U	57 U	66 U	4.0 U	4.0 U	3.6 U	NA	NA
Isopentane Naphthalene	21 U		7 J .0 U	46 11 U	21 J 4.2 U	390 24 U	350 19 U	240 J 41 U	82 4.7 U	360 J 63 U	370 J 73 U	11 4.4 U	12 4.4 U	7.8 J 4.0 U	NA NA	NA NA
Styrene	3.5 L		65 U	1.8 U	4.2 U 0.68 U	5.1	4.8	6.7 U	4.7 U 2.3	10 U	73 U	0.71 U	0.71 U	0.65 U	0.64	1.3
Thiophene	14 L	2.	.6 U	7.3 U	2.8 U	16 U	12 U	27 U	3.1 U	41 U	48 U	2.9 U	2.9 U	2.6 U	NA	NA
Toluene	69		9.9	60	3.6	10	9.2	14	11	34 J	47 J	8.7	8.9	5.8	24.8	58
m/p-Xylenes o-Xylene	9.2		3.6 1.1	26 8.4	1.3 0.70 U	7.9 4.0 U	5.9 3.2 U	6.9 U 6.9 U	6.6 2.4	11 10 U	13 12 U	5.3 1.8	5.7 1.9	2.8 1.1	4.6 3.1	12 7.6
Not MGP Related ²	9.2			0.4	0.700	4.00	3.2 U	0.9 0	2.4	10.0	12 U	1.0	1.8	1.1	ა.1	7.0
1,1,1-Trichloroethane	4.5 L	0.8	83 U	2.3 U	0.88 U	5.0 U	4.0 U	8.6 U	0.97 U	13 U	15 U	0.91 U	0.91 U	0.83 U	1.4	3.5
1,1,2,2-Tetrachloroethane	5.6 \		.0 U	2.9 U	1.1 U	6.2 U	5.0 U	11 U	1.2 U	16 U	19 U	1.1 U	1.1 U	1.0 U	<0.25	<0.25
1,1,2-Trichloroethane	4.5 L		83 U	2.3 U	0.88 U	5.0 U	4.0 U	8.6 U	0.97 U	13 U	15 U	0.91 U	0.91 U	0.83 U	<0.25	<0.25
1,1-Dichloroethane 1,1-Dichloroethene	3.3 L 3.2 L		62 U 60 U	1.7 U 1.7 U	0.65 U 0.64 U	3.7 U 3.6 U	2.9 U 2.9 U	6.4 U 6.3 U	0.72 U 0.70 U	9.7 U 9.5 U	11 U 11 U	0.67 U 0.66 U	0.67 U 0.66 U	0.62 U	<0.25 <0.25	<0.25 <0.25
1,1-Dichloroethene 1,2,4-Trichlorobenzene	3.2 U		.6 U	1.7 U	6.0 U	3.6 U	2.9 U	59 U	6.6 U	9.5 U 89 U	100 U	6.2 U	6.2 U	0.60 U 5.6 U	<0.25	3.4
1,2-Dibromoethane (EDB)	6.3 L		2 U	3.3 U	1.2 U	7.0 U	5.6 U	12 U	1.4 U	18 U	21 U	1.3 U	1.3 U	1.2 U	<0.25	<0.25
1,2-Dichlorobenzene	4.9 L		91 U	2.6 U	0.97 U	5.5 U	4.4 U	9.5 U	1.1 U	14 U	17 U	1.0 U	1.0 U	0.91 U	<0.25	0.72
1,2-Dichloroethane	3.3 L 3.8 L		62 U 70 U	1.7 U 2.0 U	0.65 U 0.74 U	3.7 U 4.2 U	2.9 U 3.4 U	6.4 U 7.3 U	0.72 U 0.82 U	9.7 U 11 U	11 U 13 U	0.67 U 0.77 U	0.67 U 0.77 U	0.62 U 0.70 U	<0.25 <0.25	<0.25
1,2-Dichloropropane 1,3-Butadiene	9.0 L		70 U	4.7 U	1.9	4.2 U	8.0 U	17 U	3.0	26 U	31 U	1.8 U	1.8 U	1.7 U	<0.25 NA	<0.25 NA
1.3-Dichlorobenzene	4.9 (91 U	2.6 U	0.97 U	5.5 U	4.4 U	9.5 U	1.1 U	14 U	17 U	1.0 U	1.0 U	0.91 U	<0.25	0.6
1,4-Dichlorobenzene	4.9 L		91 U	2.6 U	0.97 U	5.5 U	4.4 U	9.5 U	1.1 U	14 U	17 U	1.0 U	1.0 U	0.91 U	0.54	1.3
1,4-Dioxane 2-Butanone (MEK)	15 U		.7 U . 7 J	7.7 U 19	2.9 U	16 U 13 U	13 U 11 U	28 U 23 U	3.2 U 3.3	43 U 35 U	50 U 41 U	3.0 U 2.5	3.0 U 3.2	2.7 U 2.2 U	NA 7.3	NA 16
2-Hexanone	17 U		.1 U	8.7 U	3.3 U	19 U	15 U	32 U	3.6 U	49 U	57 U	3.4 U	3.4 U	3.1 U	NA	NA
4-Methyl-2-pentanone	17 U		.1 U	8.7 U	3.3 U	19 U	15 U	32 U	3.6 U	49 U	57 U	3.4 U	3.4 U	3.1 U	0.86	2.2
Acetone	120		17	110	54	27	24	28	23	83	68	13	19	13	52	110
Benzyl chloride Bromodichloromethane	4.2 L 27 L		79 U .1 U	2.2 U 14 U	0.83 U 5.4 U	4.7 U 30 U	3.8 U 24 U	8.2 U 53 U	0.92 U 6.0 U	12 U 80 U	14 U 93 U	0.86 U 5.6 U	0.86 U 5.6 U	0.79 U 5.1 U	NA NA	NA NA
Bromoform	42 U		.8 U	22 U	8.3 U	47 U	38 U	82 U	9.2 U	120 U	140 U	8.6 U	8.6 U	7.8 U	NA NA	NA NA
Bromomethane	3.2 L	0.9	59 U	1.6 U	0.62 U	3.5 U	2.8 U	6.1 U	0.69 U	9.3 U	11 U	0.65 U	0.65 U	0.59 U	<0.25	0.6
Carbon Tetrachloride	5.1 L		96 U	2.7 U	1.0 U	5.7 U	4.6 U	9.9 U	1.1 U	15 U	17 U	1.0 U	1.0 U	0.96 U	0.59	0.81
Chlorobenzene Chloroethane	3.8 L 2.2 L		70 U -0 UJ	2.0 U 1.1 U	0.74 U 0.42 UJ	4.2 U 2.4 U	3.4 U 1.9 U	7.3 U 4.2 UJ	0.82 U 0.47 U	11 U 6.3 UJ	13 U 7.3 UJ	0.77 U 0.44 U	0.77 U 0.44 U	0.70 U 0.40 UJ	<0.25 <0.25	<0.25 <0.25
Chloroform	4.0 \		74 U	3.8	1.8	4.4 U	3.6 U	7.7 U	1.3	12 U	14 U	0.44 U	0.44 U	0.75	0.54	1.4
Chloromethane	1.7 L	0	.46	0.88 U	0.33 U	3.5	1.5 U	3.3 U	1.8	5.0 U	5.7 U	1.2	1.4	1.5	1.8	3.3
cis-1,2-Dichloroethene	3.2 \		60 U	1.7 U	0.64 U	3.6 U	2.9 U	6.3 U	0.70 U	9.5 U	11 U	0.66 U	0.66 U	0.60 U	<0.25	<0.25
cis-1,3-Dichloropropene Dibromochloromethane	3.7 L		69 U .5 U	1.9 U 18 U	0.73 U 6.8 U	4.1 U 39 U	3.3 U 31 U	7.2 U 67 U	0.81 U 7.6 U	11 U 100 U	13 U 120 U	0.76 U 7.1 U	0.76 U 7.1 U	0.69 U 6.5 U	<0.25 NA	<0.25 NA
Ethanol	7.7 (42	11	13	740 J	790 J	900	1200 J	1600 1600	1500	6.1	7.10	18	540	1400
Trichlorofluoromethane (Freon 11)	61		68	130	250	6.9	6.8	8.9 U	7.6	13 U	16 U	1.8	1.9	1.6	5.4	17
1,1,2-Trichlorotrifluoroethane (Freon 113)	6.3 L		.2 U	3.3 U	1.2 U	7.0 U	5.6 U	12 U	1.4 U	18 U	21 U	1.3 U	1.3 U	1.2 U	1.1	1.8
1,2-Dichlorotetrafluoroethane Dichlorodifluoromethane (Freon 12)	5.7 L		.1 U 5.9	3.0 U	1.1 U 3.4	6.4 U 13	5.1 U 12	11 U 7.8 U	1.2 U 19	17 U 12 U	19 U 14 U	1.2 U 2.6	1.2 U 4.0	1.1 U 2.9	<0.25 4.1	0.52 15
Hexachlorobutadiene (C-46)	44 U.		.1 U	23 UJ	8.6 U	48 U	39 U	84 U	9.5 U	130 U	150 U	8.9 U	8.9 U	8.1 U	<0.25	4.6
Methyl tert-Butyl Ether	15 U		.7 U	9.0	2.9 U	16 U	13 U	3.4 J	3.2 U	43 U	50 U	3.0 U	3.3	2.7 U	5.6	27
Methylene Chloride (Dichloromethane)	5.3		.98	1.5 U	0.56 U	3.2 U	2.5 U	5.5 U	0.84	8.3 U	9.6 U	0.97	0.81	0.53 U	6.6	22
2-Propanol Propene	7.0 L		2.5 .3 U	13 3.7 U	2.0 U 12	11 U 7.8 U	8.9 U 6.3 U	19 U 14 U	3.1 1.5 U	29 U 21 U	34 U 24 U	2.0 U 1.4 U	2.0 U 1.4 U	1.9 U 1.3 U	NA NA	NA NA
Tetrachloroethene	28		60	24	110	6.2 U	18	28	1.2 U	16 U	19 U	1.1 U	1.1 U	1.0 U	1.1	2.9
Tetrahydrofuran	19		.2 U	13	2.4 U	13 U	11 U	23 U	2.6 U	35 U	41 U	2.4 U	2.4 U	2.2 U	0.35	3.3
Trans-1,2-Dichloroethene	16 U		.0 U	8.5 U	3.2 U	18 U	14 U	31 U	3.5 U	48 U	55 U	3.3 U	3.3 U	3.0 U	NA 0.05	NA 0.05
Trans-1,3-Dichloropropene Trichloroethene	3.7 L 4.4 L		69 U 82 U	1.9 U 2.3 U	0.73 U 0.86 U	4.1 U 4.9 U	3.3 U 3.9 U	7.2 U 8.5 U	0.81 U 0.96 U	11 U 13 U	13 U 15 U	0.76 U 0.90 U	0.76 U 0.90 U	0.69 U 0.82 U	<0.25 <0.25	<0.25 0.48
Vinyl Chloride	2.1 (39 U	1.1 U	0.41 U	2.3 U	1.9 U	4.0 U	0.45 U	6.1 U	7.1 U	0.43 U	0.43 U	0.39 U	<0.25	<0.25
,		0.													-0.20	-0.20

- Notes:

 All units in micrograms per cubic meter (µg/m³)

 1 These compounds may be related to either MGP sources or non-MGP sources, or both. MGP sources include MGP tars and petroleum feedstocks used in MGP processes, such as the carburetted water gas process. Non-MGP sources include cleaning products, floor wax and polish, vehicle exhaust, construction materials, and cigarette smoke.

 2 These compounds are not related to MGP sources and are present due to non-MGP sources, such as vehicle exhaust, heating and air conditioning systems, cleaning agents, art supplies, paints, etc.

 3 New York State Department of Health, November 14, 2005.

 Dup As suffix on Sample ID indicates that the sample is a field duplicate.

 NA Not Available. No data available for background concentrations of these compounds.

 U Not detected at the detection limit indicated.

 J Estimated Concentration.

 Bold Detected

Bold - Detected

ceeds NYSDOH Background Indoor Air Values 75th Percentile
ceeds NYSDOH Background Indoor Air Values 90th Percentile

ORAN2-19643

DRWN: MAW/BIL

DATE: 9/12/06

PORT JERVIS, NEW YORK

FIGURE 1

ROBERT MURRAY PLS: 2004

APPENDIX A

NYSDOH Indoor Air Quality
Questionnaire and
Chemical and Product Inventory Form

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name:	Jesse Lloyd, Scott Hauswirth	Date/Time Prepared: June 26, 2006
Preparer's Affiliat	ion: The RETEC Group	Phone No: 1-607-277-5716
Purpose of Investig	•	ential infiltration of soil gas to the indoor air.
1. OCCUPANT:	Multiple	
Interviewed: (Y)	\mathbf{N}	
Last Name: Codicl	hini	First Name: Rich and Mary
Address: 28 Pike	Street, Port Jervis, New York 1	2771
County: Orange		
Home Phone: (84	45) 856-3905	Office Phone:
Number of Occupa	ants/persons at this location:	Age of Occupants:
2. OWNER OR I	LANDLORD: (Check if same	as occupant X)
Interviewed: Y	' N	
Last Name: Cod	dichini	First Name: Rich
Address: As Abov	ve	
County:		
Home Phone:		Office Phone:
3. BUILDING C	HARACTERISTICS	
Type of Building:	: (Circle appropriate response)	
Residentia		Commercial/Multi-use

If the property is residential, type? (Circle appropriate response)

Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	/ \	al
If multiple units, how many?	•	<u> </u>	ripurinents assite resutant
If the property is commercia	ıl, type?		
Business Type(s): Restau	rant		
Does it include residences	s (i.e., multi-use)? (Y)	N If	yes, how many? 4
Other characteristics:			
Number of floors: 3		Building age:	1880s
Is the building insulated?	Y (N)	How air tight?	Tight / Average / Not Tight
4. AIRFLOW			
Use air current tubes or trac	er smoke to evaluate	airflow pattern	and qualitatively describe:
Airflow between floors:			
No airflow observed at baseme	ent to first or first to so	econd staircases.	
Airflow near source:			
Very slight upward flow in ba	sement.		
Outdoor air infiltration:			
Some infiltration at kitchen do	or vary clight infiltre	tion at front door	
Some minuation at kitchen do	or, very siight illillia	tion at front door	
Infiltration into air ducts:			
None observed.			

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction: wood frame concrete brick stone b. Basement type: full crawlspace slab other: c. Basement floor: concrete dirt stone other: d. Basement floor: uncovered covered covered with: e. Concrete floor: unsealed sealed sealed with: f. Foundation walls: poured block stone other: g. Foundation walls: sealed with: unsealed sealed h. The basement is: wet damp dry moldy unfinished partly finished i. The basement is: finished j. Sump present? (N /)not applicable k. Water in sump?

Basement/Lowest level depth below grade: 7 (feet)

Identify potential soil vapor entry points and approximate size. (e.g., cracks, utility ports, drains)

Large portion of basement floor is dirt, remainder is concrete in boiler room. Foundation walls are laid-up stone.

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Heat pump Hot water baseboard Space Heaters Stream radiation Radiant floor

Wood Stove Electric baseboard Outdoor wood boiler Other:

The primary type of fuel used is:

Fuel Oil Natural Gas Kerosene Electric Propane Solar Wood Coal

Domestic hot water tank fueled by: Natural gas

Boiler/furnace located in: Basement Outdoor Main Floor Other:

Air conditioning: Central Air Window units Open Windows None Are there air distribution ducts present?

Describe the supply and air return ductwork, and its condition where visible, including whether There is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram,

Ducts distribute hot air from natural gas furnace located in basement to upper floors.

7. OCCUPANCY

Is basement /lowest level occupied?

Full-time

Occasionally

Almost Never

<u>Level</u> <u>General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage)</u>

Basement: Storage, heating system

1st Floor: Restaurant, kitchen, tavern

2nd Floor: Apartments

3rd Floor: Apartments

4th Floor: NA

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?

Y/N

b. Does the garage have a separate heating unit?

Y/N/NA

c. Are petroleum-powered machines or vehicles stored in the garage? (e.g., lawnmower, atv, car)

Y / N / NA) Please specify

d. Has the building ever had a fire?

(N)When?

e. Is a kerosene or unvented gas space heater present?

Y/(N) Where

f. Is there a workshop or hobby/craft area?

Y (N) Where & Type?

g. Is there smoking in the building?

Y/(N) How frequently?

h. Have cleaning products been used recently? products (degreasers, glass and surface cleaner)

 $(_{
m Y})_{
m N}$

When & Type? Kitchen cleaning

i. Have cosmetic products been used recently?

Y / N When & Type? Unknown

j. Has painting/staining been done in the last 6 months?	Y/(N)	Where & Wh	en?
k. Is there new carpet, drapes or other textiles?	Y(N)	Where & Wh	en?
l. Have air fresheners been used recently? freshener in bathrooms	Y N	When & Type	e? Automatic air
m. Is there a kitchen exhaust fan? building	Y N	If yes, where	vented? North side of
n. Is there a bathroom exhaust fan?	(Y) N	If yes, where	vented?
o. Is there a clothes dryer?	Y(N)	If yes, is it ver	nted outside? Y/N
p. Has there been a pesticide application?	Y(N)	When & Type	??
Are there odors in the building? If yes, please describe: Food odors in kitchen (cooking o cleaning supply odor (ammonia-like, fragrances) in first floor			
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic o boiler mechanic, pesticide application, cosmetologist)	Y N r auto bo) dy shop, painti	ng, fuel oil delivery,
If yes, what types of solvents are used?			
If yes, are their clothes washed at work?	Y / N		
Do any of the building occupants regularly use or work at response)	a dry-cl	eaning service	e? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service)	No (Unknown)	
Is there a radon mitigation system for the building/structu Is the system active or passive? Active / Pass		N Date of Ir	nstallation:
9. WATER AND SEWAGE			
Water Supply: Public Water Drilled Well Driven	Well	Dug Well	Other:
Sewage Disposal: Public Sewer Septic Tank Leach	Field	Dry Well	Other:
10. RELOCATION INFORMATION (for oil spill residen	ntial eme	ergency)	
a. Provide reasons why relocation is recommended:			
b. Residents choose to: remain in home relocat	e to frien	ds/family	relocate to hotel/motel
c. Responsibility for costs associated with reimburser	nent exp	lained?	Y/N
d. Relocation package provided and explained to resi	dents?		Y/N

28 Pike Street SI Product and Chemical Inventory 6/27/2006

Product	Container Size	Container Condition	VOC Content	PID Reading
First Floor Storage Room				
Old English Oil	16 oz	Good	Not listed	0.0
Bissell Fabric and Upholstery Cleaner	12 oz	Good	Not listed	0.0
Zep Stainless Steel Cleaner	16 oz	Good	Petroleum distillates	0.0
All-in-One Metal Polish	8 oz	Good	Not listed	0.0
Apple Barrel Colors Craft Paint	8 oz	Good	Not listed	0.0
Xtra Pine	28 oz	Good	Pine oil	0.0
Brush It Contact Cement	1.7 oz	Good	Formaldehyde, ethanol, unknown	0.0
Jubilee Kitchen Wax	9 oz	Old can	Not listed	0.0
Future Floor Polish	27 oz	Good	Not listed	0.0
Brite Scuff Lifter	40 oz	Good	Not listed	0.0
Step Saver	27 oz	Good	Not listed	0.0
Mega Glass Floor Finish	1 gal	Good	Ethyl ether	0.0
UniKote Floor Cleaner	1 gal	Good	Acrylic copolymer	0.0
Formula 668 Stripper	1 gal	Good	Butoxy ethanol	0.0
Febreeze fabric refresher	2x 27 oz	Good	Not listed	0.0
Murphy's Oil Soap	32 oz	Good	Not listed	0.0
Maintenance Pro Furniture Polish	2x 16 oz	Good	Liquified Petroleum Gas	0.0
Orange Glow Wood Cleaner	2x 16 oz	Good	Not listed	0.0
Carpet/Textile Stain Digestor	32 oz	Good	Butyl ether	0.0
Comet with Bleach	25 oz	Good	Not listed	0.0
Comet Spray Cleaner with Bleach Squeak'n Clean Red Devil Acrylic Caulk	32 oz 12.5 oz 10.1 oz	Good Good Good	Perfume Not listed Not listed	0.0 0.0 0.0
Dining Room/Bar		3000	, tot noted	
20 Small oil lamps on tables	20, 1-3 oz	Good/ open to air	Petroleum products	0.0
Beer, wine, liquor	Varies	Good	Ethanol	0.0
Basement			•	1
Keystone Grease Terminator	5x 8 oz	Good	Triethylene glycol	0.0
Blue Concentrate Multi-Purpose Cleaner	2x 64 oz	Good	Nonylphenol ethoxyglycol	0.0
A-1 Bleach	6x 1 gal	Good	NaOH, NaOCI	0.0
Crème Cleanser	2x 32 oz	Good	Alkyl-ammonium chloride	0.0
Sysco Green Detergent	1 x 1.25 gal	Good	Surfactants	0.0
Pot and Pan Detergents	4x 1 gal	Good	Surfactants	0.0
Heavy Duty Kitchen Cleaner	4 x 1 gal	Good	KOH	0.0
Super Trump	1 gal	Good	NaOH	0.0
Reliance Hand Soad	3x 1 gal	Good	No VOCs	0.0
Reliance Ammonia	2x 32 oz	Good	Ammonia	0.0
Easy Diamond Shine Floor Finish	2x 1 gal	Good	Not listed	0.0
Ultra Lime-Away	2x 1 gal	Good	Acids	0.0
Reliance Pine Oil Cleaner	8x 1 gal	Good	Pine oil	0.0
Ultra Klene	3x 1 gal	Good	NaOH	0.0
Stairway between Basement and First Floo		L Contain on Coursed in Otto	Detrologies and disete	1 00
MinWax Wood Finish	1/2 Pint	Container Covered in Stain	Petroleum products	0.0
Hot Shot Flying Insect Killer	16 oz	Good	Not listed	0.0
WD-40	2x 10 oz	Good	Toluene	0.0
Unlabelled Spray Bottle	16 oz	No label	No label	0.0
Raid Wasp and Hornet	17.5 oz	Good	Petroleum products	0.0

APPENDIX B
Soil Boring Logs

Boring ID: GRSB1/TW6

Page L of L

Ithaca, NY 14850
Project Name:

28 Pike St. Sl, Port Jervis, New York

Project Number:

ORAN2-19643-200

Date Started:

July 27, 2006

Date Finished:

Drilling Company:

July 27, 2006

Nothnagle Drilling, Inc.

Drilling Method:

Hollow Stem Auger

Sampling Method:

2 ft Split-spoon

Ground Elevation (ft/msl):

NA

Total Depth (ft):

24 ft bgs

Logged By:

Jesse Lloyd

Depth (Feet)	Blow Counts	(Feet)	PID (ppm)	Sample ID	Sample	lithology	USCS	Geologic Description	Remarks	Well Construction
	NA 8 12	NA	4.6 0.0 0.4 2.1 1.4 0.0			00000000000	Fitt	Brown fine-medium SAND, little gravel, trace ash-like material and coal fragments; dry. Dark brown fine-medium-coarse SAND, some coal fragments, few cobble-sized clinkers, little ash-like material. Brown fine-coarse SAND, some boulders and cobbles, little coal fragments and ash-like material. Start sampling with split-spoon sampler at 5 ft bgs.	Temporary 1 inch well screen.	
	21 27 17 16	0.6	0.0				SM	Brown fine-medium SAND, some rock fragments; dry.		
9 10	15 20 11 19	0.6	0.0							
	25 100/ 0.5 29 17 2	0.4	52.9	((PSB)	B8X			Brown fine-medium SAND, trace gravel. Becomes wet at 13 ft bgs Hydrocarbon-like odor from 13-16.4 ft bgs.		
	1 2 10 11	1.4	56.8	GRSB1 (13-14)	***					
	23 12 12	1.4	37.3			85 85	GP	Dark brown GRAVEL and ROCK fragments, little medium- fine sand, wet, hydrocarbon-like odor from 16.4-18.0 ft bgs.		
19 20	10 41 100/ 0 2	1.0	0.0					Dark brown GRAVEL and ROCK fragments, little coarsemedium-fine sand; wet.		
21 22	56 25 22 25	1.5	0.0	Open	100	8		Brown medium-coarse-fine SAND; wet.		
-23	25 46 49 50	1.3	0.0	GRSB1 (22-24)		80 80		Brown GRAVFL and ROCK fragments, trace sand: wet. Boring terminated at 24 ft bgs.		

Remarks: Soil samples GRSB1(13-14) and GRSB1(22-24) analyzed for SVOCs, VOCs, metals and cyanide. A PVC temporary well point was installed inside the boring to collect groundwater sample TW6. The groundwater sample was analyzed for SVOCs, VOCs, metals, and cyanide.

1001 W Seneca St, Suite 204 Ithaca, NY 14850

Boring ID: GRSB2/TW3

Page Lof 1

Project Name: 28 Pike St. SI, Port Jervis, New York

ORAN2-19643-200 Project Number:

Date Started: July 27, 2006

July 27, 2006 Date Finished:

Nothnagle Drilling, Inc. Drilling Company:

Hollow Stem Auger

Drilling Method:

Sampling Method:

2 ft Split-spoon

Ground Elevation (ft/msl):

NA

Total Depth (ft):

24 ft bgs

Logged By:

Jesse Lloyd

Depth (Feet) Blow Counts	Kecovery (Feet)	PID (maa)	Sample ID	Sample Interval	Lithology	USCS	Geologic Description	Remarks	Well Construction
-1 2 3 NA 4	NΛ	0.0 0.0 0.0 0.0 0.0		K	00000000	Fill	Brown fine-medium SAND, little gravel and slag, trace coal fragments; dry Brown fine-coarse SAND, trace gravel, glass and wood fibers and ash-like material, dry. Brown fine-medium SAND, some ash-like material and clinkers, little gravel. Start sampling with split-spoon sampler at 5 ft bgs.	Temporary 1 incb well screen.	
6 WOI	0.6	0.0				SM	Brown fine-medium sand; dry. Brown fine-medium SAND, some gravel.		
8 3 9 4 2 4 10 11 11 11 11 11 11	0.6	0.0					Rock in sampler tip. Brown fine-medium SAND, little gravel; dry		
	0.4	0.0					Brown fine-medium SAND, loose. Becomes wet at 13 ft bgs		
	1.4	0.0	GRSB2 (13-14)				Becoming firmer with depth.		
16 15 17 15 15	1.4	0.0			8 8 8	GP	Dark brown GRAVEL and ROCK fragments, little medium- fine sand; wet. Dark brown GRAVEL and ROCK fragments, little medium- fine sand; wet.		
	1.0	0.0		}			Gray GRAVEL and ROCK fragments, little medium-fine		
		0.0	GRSB2 (22-24)	sand; wet.					
23 18 24 20	1.3	0.0	GRSB2 (22-24)		•		Boring terminated at 24 ft bgs.		

Remarks: Soil samples GRSB2(13-14) and GRSB2(22-24) analyzed for SVOCs, VOCs, metals and cyanide. A PVC temporary well point was installed inside the boring to collect groundwater sample TW3. The groundwater sample was analyzed for SVOCs, VOCs, metals, and cyanide.

Boring ID: GRSB3/TW4

Page Lof I

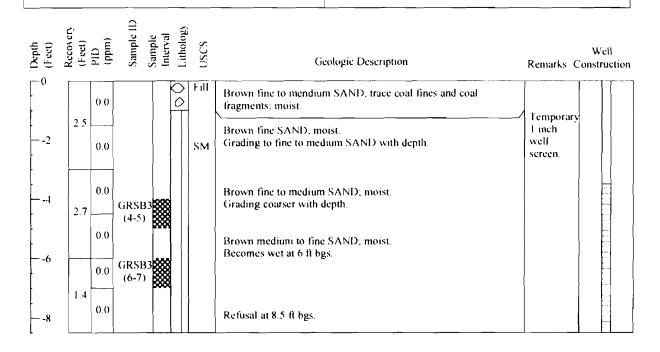
Project Name: 28 Pike St. SI, Port Jervis, New York

Project Number: ORAN2-19643-200

Date Started: June 27, 2006

Date Finished: June 27, 2006

Drilling Company: Zebra


Ithaca, New York, 14850

Drilling Method: Direct-Push

Sampling Method: 3 ft Macro-Core Ground Elevation (ft/msl): NA

Total Depth (ft): 8.5 ft below basement floor

Logged By: Jesse Lloyd

Comments: Soil samples GRSB3(4-5) and GRSB4(6-7) analyzed for SVOCs, VOCs, metals and cyanide. A PVC temporary well point was installed inside the boring to collect groundwater sample TW4. The groundwater sample was analyzed for VOCs, metals, and cyanide.

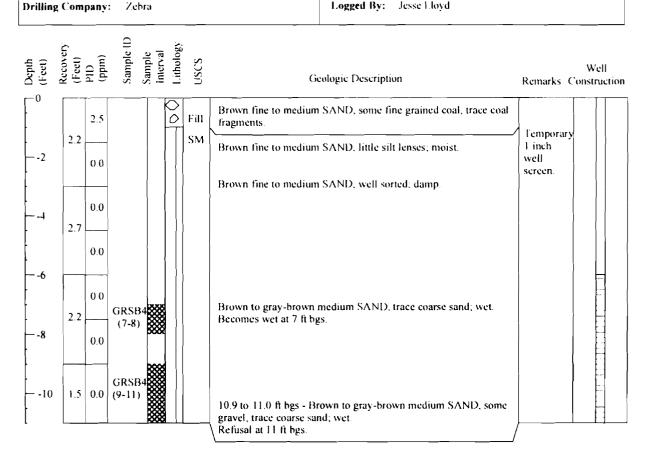
Boring ID: GRSB4/TW5

Page 1 of 1

Project Name: 28 Pike St. Sl. Port Jervis. New York

Project Number: ORAN2-19643-200

Date Started: June 27, 2006 Date Finished: June 27, 2006


Ithaca, New York, 14850

Drilling Method: Direct-Push

Sampling Method: 3 ft Macro-Core Ground Elevation (ft/msl): NA

Total Depth (ft): 11 ft below basement floor

Logged By: Jesse Lloyd

Comments: Soil samples GRSB4(7-8) and GRSB4(9-11) analyzed for SVOCs, VOCs, metals and cyanide. A PVC temporary well point was installed inside the boring to collect groundwater sample TW5. The groundwater sample was analyzed for SVOCs, VOCs, metals, and cyanide

APPENDIX C

Laboratory Form I Results Sheets and Chain-of-Custody Records

Chain of Custody Record

 N_{0}°

0401

The RETEC Group, Inc. 1001 W. Seneca Street, Suite 204 • Ithaca, NY 14850-3342 (607),277-57(6 Phone • (607),277-9057 Fax

Project Name: For Smis SI - 28 / 16 S	Project Numb	er: OLA	Nr-192 off Ha	643				7	/	3	N	7	7			7/7	***	
Send Report To: James Eduards	Sampler (Prin	t Name): 🧲	off the	ewith			//	Ν,		7007						/ / /	Page	of
Address: LETEC	Sampler (Prin	t Name): 🔀	sse U.	1	7	200	13	73	1	1	}	/ ,	/ ,	/ ,	/	/ / /		
1001 W. Senea St Suite Zout	Shipment Met	thod: Fed	EX			C laws Reques	3	\$/	L	4	. /					' / /		
Ithra NY 14850	Airbill Numbe	r.] ;		976	3/3	:/\2	/						Purchase		
Priorie: 607-277 -5716	Laboratory Re	eceiving:	TL PAH	un b] ₹	رک	/			7 /	/ /	/ /	/ /	/ /	/ /	Order #:		
Fax: 607-277-4057					4	5	×.		F	· /								
Field Sample ID	Sample Date	Sample Time	Sample Matrix	Number of Containers	/-	$\forall i$	<u> </u>	-77	<u>ø</u>	\bot	_	\bot		_	\angle	Comments, Special Instructions, etc.	Lab Samp (to be complete	
C RSSI	6/266	1645	5:1	3	Įχ	X	X	X										
GRSSZ	6/26/4	1700	1,2	3	X	X	X	X										
GRSB4(7-8)	6/27/0	1000	Soil	3	X	. 1	X	X										
	6/27/06		5-:1	3	X	X	X	X										
GRSB3(4-5)	6/2706		Se./	3	X	X	X	X										
GR\$63(6-7)	6/17/06	1045	S.7	3	X	X	X	X										
TW4	CITTEG	1100	Ag	7	7	X	X	X	1	 -	1	C.	Ь	44	0.	benglosshter	BUN book	20-0*04
TWS	61 THOS	1150	A	7	X	X	X	X	1		Г	Γ.						
TB(062706)	of tild	-	Ac	Ż	X			1										
						1		-		-								
					L		L		<u> </u>									
									<u> </u>									
Relinquished by: (Signature)	Received by: (Sign	ature)		Date:		Time:		_					·		i By La	aboratory):		
Batte				6/274	æ	13			QA/QC	Leve		Т	urnard	ound		Sample Total # Containers Received?	Receipt	
Relinquished by: (Signature)	Received by: (Sign	ature)		Date:		Time:		Le	vel	^-	L	Rou	tine	X	•	OC Seals Present?		
Delinerished by (Circobus)	Occasional base (5)	-1		Deter		Time				1 1 [_	24 H		-		COC Seals Intact?		
Relinquished by: (Signature)	Received by: (Sign	ature)	L	Date:	1.	Time:		Le				1 We			F	Received Containers Intact?		
	Police Go	HI PMINAIOC	aust	6/28	lck]	092	X	O	her			Othe	F	_		emperature?		

Chain	of	Custody	Record
-------	----	---------	--------

Nº 0402

The RETEC Group, Inc. 1001 W. Seneca Street, Suite 204 • ithaca, NY 14850-3342 (607) 277-5716 Phone • (607) 277-9057 Fax

Ominat Name O 1 To A 75 W.	G+							WW.TGI	ec.com		`د						
Project Name: Part Jenns SD - Zy Milk	Project Numi Sampler (Pri	ber: OKA	NV 196	343	1		/	/ ~ /	77667	37	20		/ /	Γ_{I}	T .	////	1/
Send Report To: James Educads Address: RETE			Coff H	au contil	}		0/200	.	N.	₩,	5 /					/ / /	Pageof
	Sampler (Pri		esse L	الجرم	-	A STAN				/ /	V	<i>[</i>]	/	/		/ / / .	
1001 h. Senera Suite 204	Shipment Me	4100: PE	EX		1	Took Requeste	<u>\</u>	O /		. 1/			/	/	/ /	/ / /	
Itheca, NY 14450	Airbill Numbe		·		į		7/	, k	') \ (} /							
Phone: 607-277-5716	Laboratory R	eceiving:	STEP!	Helmyh	. ,	/ <i>.</i> /	/ .)	6	7. 7	7 /	/ /	/ /	/ ,	/	/	Purchase Order #:	
Fax: 607-277 - 9057					1/	<i>ا</i> ره	, ð /	/v	V	/	1	/	_/		/	' /	
Field Sample (D	Sample Date	Sample Time	Sample Matrix	Number of Containers	1/7	1/0	3/	3/6	9	/	/			/		Comments, Special Instructions, etc.	Lab Sample ID (to be completed by lab)
LRSB2 (13-14)	7/27	915	50.1	3	X	×	×	$\overline{}$		re	1	25	Ъ.	-1	1		(to no conquesso by lab)
6R5820(13-14)	7/27	930	50:1	3	×	×	×	×				1		1			
(gf5B2 (22-24)	7127	1000	Soil	3	X	×	×	×				T		1	1		
6 RSB 1 (13 - 14)	7/27/0	1200	Soil	3	×	v	×	V		re	7	41	5		T		<u> </u>
62581 (22-24)	7127	1300	Soil	3	×	_	¥	1		•		1		\vdash	\vdash		
685B) (22-24) MS /45 D	7127	1300	50:1	40	X	_	1	_	:			 		_	-	Appitions	C
TW6	7127		AQ	7	X		×	-		72		1		,,		Appitional	rov: Ded
TW60	7/27	1230	AO	7	٨		入	K		re						500, 2L	-
TB (7.27.66)	7127	NA	AO	2	χ			•	\Box		_	-	- 1.	-	F+.	500,22	
Tw3	7/27	1200	AO	. 6	χ	K	K	x				24		-			
TW3 MS MSD	7127	1200	AO	6	X	X	1		╃	7	-2 .C		-) -		ł	2.500,3h and 1b	oka L
		<u> </u>	74					 						<u> </u>	151	7/3/	
				·			-	-	+	-		-	-		-		
											_				 		
		•									-	\dashv			<u> </u>		
:					-				\vdash		-						
	<u>`</u>					\dashv											
Reinquished by: (Signature)	ceived by: (Sion	ature)		Date:	 -[imo:		120									
time X. Edward	ceived by: (Sign	X		Date: 7(21	120	مآن	,	Sal	CA/QC		an Rei		(Comp maro		Byta	aboratory):	
Relinquished by: (Signature) Re	ceived by: (Signa	aluşe)		Date: 9	-}{	8.6 ime:	20	┨ `	whac.	rcadi		F	naro	una	-	Sample Rootsi # Containers Received?	eceipt
)	1.1	12	-	07-2 7		100	0	Lev	rel I		j	Routi		X	·	OC Seals Present?	
Relinquished by: (Signature) Re	eived by: (Sign:	ature)		Date:		ime:		Lev		_	- 1	24 H	our -			CC Seals Intact?	
· /								Lev		! □ A:			ek		R	eceived Containers Intact?	
White: Lab Copy Yetlow: PM Copy Pink: Field (Conv GA	d: PM/QA/QC (^onu								\Box	Other			T	emperature?	
	оо ру ОО	u. FAULINUL (~ µ у						NY	} P <	C						

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6F280229 001

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g

Work Order: H8DT91AC

Date Received: 06/28/06

Date Extracted: 07/06/06

Date Analyzed: 07/06/06

Moisture %:3.6
QC Batch: 6187555

Client Sample Id: GRSS1

67-64-1 Acetone 10 71-43-2 Benzene 10 75-27-4 Bromodichloromethane 10 75-25-2 Bromoform 10 74-83-9 Bromomethane 10 78-93-3 2-Butanone 10 75-15-0 Carbon disulfide 10 56-23-5 Carbon tetrachloride 10 108-90-7 Chlorobenzene 10 75-00-3 Chloroethane 10 67-66-3 Chloroform 10	U U U U U U U U U U
75-27-4 Bromodichloromethane 10 75-25-2 Bromoform 10 74-83-9 Bromomethane 10 78-93-3 2-Butanone 10 75-15-0 Carbon disulfide 10 56-23-5 Carbon tetrachloride 10 108-90-7 Chlorobenzene 10 75-00-3 Chloroethane 10 67-66-3 Chloroform 10	0 0 0 0 0
75-25-2 Bromoform 10 74-83-9 Bromomethane 10 78-93-3 2-Butanone 10 75-15-0 Carbon disulfide 10 56-23-5 Carbon tetrachloride 10 108-90-7 Chlorobenzene 10 75-00-3 Chloroethane 10 67-66-3 Chloroform 10	0 0 0 0 0
74-83-9 Bromomethane 10 78-93-3 2-Butanone 10 75-15-0 Carbon disulfide 10 56-23-5 Carbon tetrachloride 10 108-90-7 Chlorobenzene 10 75-00-3 Chloroethane 10 67-66-3 Chloroform 10	ט ט ט
74-83-9 Bromomethane 10 78-93-3 2-Butanone 10 75-15-0 Carbon disulfide 10 56-23-5 Carbon tetrachloride 10 108-90-7 Chlorobenzene 10 75-00-3 Chloroethane 10 67-66-3 Chloroform 10	<u>0</u>
75-15-0 Carbon disulfide 10 56-23-5 Carbon tetrachloride 10 108-90-7 Chlorobenzene 10 75-00-3 Chloroethane 10 67-66-3 Chloroform 10	ט ט
56-23-5 Carbon tetrachloride 10 108-90-7 Chlorobenzene 10 75-00-3 Chloroethane 10 67-66-3 Chloroform 10	U
108-90-7 Chlorobenzene 10	
75-00-3 Chloroethane 10 67-66-3 Chloroform 10	Ū
67-66-3 Chloroform 10	
!	ט
The company of the co	<u>ט</u>
74-87-3 Chloromethane 10	Ū
110-82-7 Cyclohexane 10	Ū
124-48-1 Dibromochloromethane 10	ַ
96-12-8 1,2-Dibromo-3-chloropropane 10	ט
106-93-4 1,2-Dibromoethane 10	U
541-73-1 1,3-Dichlorobenzene 10	Ū
106-46-7 1,4-Dichlorobenzene 10	U
95-50-1 1,2-Dichlorobenzene 10	<u>"</u>
75-71-8 Dichlorodifluoromethane 10	U
75-34-3 1,1-Dichloroethane 10	ט
107-06-2 1,2-Dichloroethane 10	ש
75-35-4 1,1-Dichloroethene 10	U
156-59-2 cis-1,2-Dichloroethene 10	U
156-60-5 trans-1,2-Dichloroethene 10	U
78-87-5 1,2-Dichloropropane 10	U
10061-01-5 cis-1,3-Dichloropropene 10	U
10061-02-6 trans-1,3-Dichloropropene 10	U

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 001

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: H8DT91AC Dilution factor: 1

Date Received: 06/28/06 Date Extracted:07/06/06

Moisture %:3.6

Date Analyzed: 07/06/06

QC Batch: 6187555

Client Sample Id: GRSS1

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q
100-41-4	Ethylbenzene	10	ן ט
591-78-6	2-Hexanone	10	<u>ט</u>
98-82-8	Isopropylbenzene	10	ַן
79-20-9	Methyl acetate	10	UJ
75-09-2	Methylene chloride	3.5	JB 10U
108-87-2	Methylcyclohexane	10	וֹט
108-10-1	4-Methyl-2-pentanone	10	υi
1634-04-4	Methyl tert-butyl ether	10	U
100-42-5	Styrene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	<u>ט</u>
120-82-1	1,2,4-Trichlorobenzene	10	<u>ט</u>
127-18-4	Tetrachloroethene	10	<u>"</u>
71-55-6	1,1,1-Trichloroethane	10	U
79-00-5	1,1,2-Trichloroethane	10	ט
79-01-6	Trichloroethene	10	U
75-69-4	Trichlorofluoromethane	10	ן די
76-13-1	1,1,2-Trichloro-1,2,2-triflu	10	U
108-88-3	Toluene	10	Ü
75-01-4	Vinyl chloride	10	Ū
1330-20-7	Xylenes (total)	10	U

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 001

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DT91AD Dilution factor: 1

Date Received: 06/28/06 Date Extracted:07/06/06 Date Analyzed: 07/10/06

Moisture %:3.6

QC Batch: 6187024

Client Sample Id: GRSS1

CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/kg	Q
83-32-9	Acenaphthene	340	_ <u> </u>
208-96-8	Acenaphthylene	340	_ <u> </u>
98-86-2	Acetophenone	340	<u> </u>
120-12-7	Anthracene	340	ן ט
1912-24-9	Atrazine	340	ן ט
56-55-3	Benzo (a) anthracene	340	_ <u> </u>
50-32-8	Benzo(a) pyrene	340	U
205-99-2	Benzo(b) fluoranthene	340	U
191-24-2	Benzo(ghi)perylene	340	ן די
207-08-9	Benzo(k)fluoranthene	340	_
100-52-7	Benzaldehyde	340	ַן
92-52-4	1,1'-Biphenyl	340	<u>U</u>
111-91-1	bis (2-Chloroethoxy) methane	340	ט ט
111-44-4	bis(2-Chloroethyl) ether	340	<u>"</u>
117-81-7	bis(2-Ethylhexyl) phthalate	64	_[J]
101-55-3	4-Bromophenyl phenyl ether	340	_ <u> </u>
85-68-7	Butyl benzyl phthalate	340	ַ
105-60-2	Caprolactam	340	_ U
86-74-8	Carbazole	340	ַ ט
106-47-8	4-Chloroaniline	340	<u> U</u>
59-50-7	4-Chloro-3-methylphenol	340	_ <u> </u>
91-58-7	2-Chloronaphthalene	340	_
95-57-8	2-Chlorophenol	340	<u> </u>
7005-72-3	4-Chlorophenyl phenyl ether	340	_ U
218-01-9	Chrysene	340	_ U
53-70-3	Dibenz(a,h)anthracene	340	_ <u> </u>
132-64-9	Dibenzofuran	340	ן ע
91-94-1	3,3'-Dichlorobenzidine	340	ן

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 001

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DT91AD

Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/10/06

Moisture %:3.6

QC Batch: 6187024

Client Sample Id: GRSS1

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q
120-83-2	2,4-Dichlorophenol	340	U
84-66-2	Diethyl phthalate	340	_
105-67-9	2,4-Dimethylphenol	340	<u></u> <u></u> <u></u>
131-11-3	Dimethyl phthalate	340	U
84-74-2	Di-n-butyl phthalate	340	<u>ע</u>
534-52-1	4,6-Dinitro-2-methylphenol	860	ַן
51-28-5	2,4-Dinitrophenol	860	U
121-14-2	2,4-Dinitrotoluene	340	U
606-20-2	2,6-Dinitrotoluene	340	ע
117-84-0	Di-n-octyl phthalate	340	ַ ַ ַ ַ
206-44-0	Fluoranthene	340	ប
86-73-7	Fluorene	340	ט
118-74-1	Hexachlorobenzene	340	<u></u>
87-68-3	Hexachlorobutadiene	340	_ ט
77-47-4	Hexachlorocyclopentadiene	340	<u>ט</u>
67-72-1	Hexachloroethane	340	_ <u>U</u>
193-39-5	Indeno(1,2,3-cd)pyreme	340	U
78-59-1	Isophorone	340	ן ט
91-57-6	2-Methylnaphthalene	340	<u>U</u>
95-48-7	2-Methylphenol	340	ט ו
106-44-5	4-Methylphenol	340	اقا
91-20-3	Naphthalene	340	<u>U</u>
88-74-4	2-Nitroaniline	860	ט
99-09-2	3-Nitroaniline	860	<u>ט</u>
100-01-6	4-Nitroaniline	860	<u> </u>
98-95-3	Nitrobenzene	340	ַן ַ
88-75-5	2-Nitrophenol	340	<u>ַ</u> <u></u> <u></u>
100-02-7	4-Nitrophenol	860	U
	· ·		

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO

Lab Sample ID:C6F280229 001

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DT91AD Dilution factor: 1

Date Received: 06/28/06 Date Extracted: 07/06/06

Moisture %:3.6

Date Analyzed: 07/10/06

QC Batch: 6187024

Client Sample Id: GRSS1

CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/kg Q	
621-64-7	N-Nitrosodi-n-propylamine	340	ן ט
86-30-6	N-Nitrosodiphenylamine	340	U
108-60-1	2,2'-oxybis(1-Chloropropane)	340	Ū
87-86-5	Pentachlorophenol	860	U
85-01-8	Phenanthrene	340	ט
108-95-2	Phenol	340	יט
129-00-0	Pyrene	340	ש
95-95-4	2,4,5-Trichlorophenol	860	ט
88-06-2	2,4,6-Trichlorophenol	340	ט

STL-Pittsburgh

Metals Data Reporting Form

Prep Date:

Sample Results

Lab Sample ID: H8DT9 Client ID: GR\$S1

Soil Matrix:

Units: mg/kg 6/29/2006

Prep Batch: 6180029

Weight: ____1.00

Volume: 200

Percent Moisture:	3.595
1	

Element	WL/ Mass	IDL	Report Limit	Сопс	o	DF	Instr	Anal Date	Anal Time
	-				<u> </u>			77	
Aluminum	308.22	1.3	41.5	5450		1	ICPST	7/1/2006	18:41
Antimony	220.35	0.39	12.4	0.39	UN	น51	ICPST	7/1/2006	18:41
Arsenic	189.04	0.21	2.1	2.9		' ا	ICPST	7/1/2006	18:41
Barium	493.41	0.031	41.5	22.3	R	J 1	ICPST	7/1/2006	18:41
Beryllium	313.04	0.037	1,0	/.o 0.40	-B-	Ù 1	ICPST	7/1/2006	18:41
Cadmium	226.50	0.033	1.0	0.033	U	1	ICPST	7/1/2006	18:41
Calcium	317.93	2.3	1040	jow 602	B-	ีย 1 ∶ุ	ICPST	7/1/2006	18:41
Chromium	267.72	0.089	2,1	6.9		1	ICPST	7/1/2006	18:41
Cobalt	228.62	0.10	10.4	5.5	K	J 1	ICPST	7/1/2006	18:41
Copper	324.75	0.068	5.2	10.2	-E -	J 1	ICPST	7/1/2006	18:41
Iron	271.44	3.9	20.7	13000		1	ICPST	7/1/2006	18:41
Lead	220.35	0.23	0.62	20.1		1	ICPST	7/1/2006	18:41
Magnesium	279.08	1.4	1040	1970		1	ICPST	7/1/2006	18:41
Manganese	257.61	0.035	3.1	319		1	ICPST	7/1/2006	18:41
Nickel	231.60	0.20	8.3	13.5		1	ICPST	7/1/2006	18:41
Potassium	766.49	2.0	1040	1040-511	BE.	U 1	ICPST	7/1/2006	18:41
Selenium	220.35	0.33	1.0	0.43	,B	J 1	ICPST	7/1/2006	18:41
Silver	328.07	0.098	2.1	0.098	ับ	1	ICPST	7/1/2006	18:41
Sodium	330.23	36.1	1040	261	K	J 1	ICPST	7/1/2006	18:41
Thallium	190.86	0.54	2.1	0.62	K	J 1	ICPST	7/1/2006	18:41
Vanadium	292.40	0.15	10.4	10.4 -6.9	B-	U 1	ICPST	7/1/2006	18:41
Zinc	213.86	0.16	4.1	42.9		1	ICPST	7/1/2006	18:41

Comments: Lot #: C6F280229 Sample #: 1 Color:pre- brown, post- brwon. Texture:pre- medium, pos-t fine.Artifacts. Stones. organic

5.04.5

U Result is less than the IDL

Result is between IDL and RL

Form 1 Equivalent

STL-Pittsburgh

Metals Data Reporting Form

Sample	Results					
Lab Samp	le ID:	H8DT9	Client ID:	GRSS1		
Matrix:	Soil	Units: mg/kg	Prep Date:	7/13/2006	Prep Batch:_	6194013
Weight:	.2	Volume: 100	Percent Moistur	e: 3.595		

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.012	0.10	0.062	BN	1	CVAA	7/13/2006	8:36

0.10 U

Comments: Lot #: C6F280229 Sample #: 1

5.04.5

U Result is less than the IDL

Form 1 Equivalent

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID:C6F280229 002

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: H8DVA1AK Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/06/06

Moisture %:13

QC Batch: 6187555

Client Sample Id: GRSS2

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg 💢	2
67-64-1	Acetone	12	ט
71-43-2	Benzene	12	U
75-27-4	Bromodichloromethane	12	ט
75-25-2	Bromoform	12	ਧ
74-83-9	Bromomethane	12	<u>"</u>
78-93-3	2-Butanone	12	U
75-15-0	Carbon disulfide	12	U
56-23-5	Carbon tetrachloride	12	U
108-90-7	Chlorobenzene	12	U
75-00-3	Chloroethane	12	U
67-66-3	Chloroform	12	יט
74-87-3	Chloromethane	12	וט
110-82-7	Cyclohexane	12	ַ
124-48-1	Dibromochloromethane	12	ט
96-12-8	1,2-Dibromo-3-chloropropane	12	U
106-93-4	1,2-Dibromoethane	12	Ū
541-73-1	1,3-Dichlorobenzene	12	<u>U</u>
106-46-7	1,4-Dichlorobenzene	12	U
95-50-1	1,2-Dichlorobenzene	12	
75-71-8	Dichlorodifluoromethane	12	ַ
75-34-3	1,1-Dichloroethane	12	
107-06-2	1,2-Dichloroethane	12	U
75-35-4	1,1-Dichloroethene	_ 12	<u>u</u>
156-59-2	cis-1,2-Dichloroethene	12	<u>U</u>
156-60-5	trans-1,2-Dichloroethene	_ 12	<u> </u>
78-87-5	1,2-Dichloropropane	12	<u> </u>
10061-01-5	cis-1,3-Dichloropropene	12	U
10061-02-6	trans-1,3-Dichloropropene	12	ַ ַ ַ ַ ַ

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 002

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: H8DVA1AK Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/06/06

Moisture %:13

Client Sample Id: GRSS2

QC Batch: 6187555

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg Q
100-41-4	Ethylbenzene	12 0
591-78-6	2-Hexanone	12 0
98-82-8	Isopropylbenzene	12 U
79-20-9	Methyl acetate	12 UJ
75-09-2	Methylene chloride	13 JB 12U
108-87-2	Methylcyclohexane	12 0
108-10-1	4-Methyl-2-pentanone	12 U
1634-04-4	Methyl tert-butyl ether	12 U
100-42-5	Styrene	12 U
79-34-5	1,1,2,2-Tetrachloroethane	12 U
120-82-1	1,2,4-Trichlorobenzene	12 0
127-18-4	Tetrachloroethene	12 0
71-55-6	1,1,1-Trichloroethane	12 U
79-00-5	1,1,2-Trichloroethane	12 U
79-01-6	Trichloroethene	12 U
75-69-4	Trichlorofluoromethane	12 0
76-13-1	1,1,2-Trichloro-1,2,2-triflu	12 0
108-88-3	Toluene	12 U
75-01-4	Vinyl chloride	12 U
1330-20-7	Xylenes (total)	12 0

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 002

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DVA1AL

Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/10/06

Moisture %:13

QC Batch: 6187024

Client Sample Id: GRSS2

208-96-8 Acenaphthylene 250	CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	: Q
98-86-2 Acetophenone 200 J 120-12-7 Anthracene 200 J 1912-24-9 Atrazine 380 U 56-55-3 Benzo (a) anthracene 710 Image: Comparison of the compariso	83-32-9	Acenaphthene	380	ן ש
120-12-7	208-96-8	Acenaphthylene	250	<u>J</u>
1912-24-9 Atrazine 380 U 56-55-3 Benzo(a) anthracene 710 50-32-8 Benzo(a) pyrene 670 205-99-2 Benzo(b) fluoranthene 920 191-24-2 Benzo(ghi) perylene 640 207-08-9 Benzo(k) fluoranthene 320 J 100-52-7 Benzaldehyde 55 J 92-52-4 1,1'-Biphenyl 380 U 111-91-1 bis (2-Chloroethoxy) methane 380 U 111-44-4 bis (2-Chloroethyl) ether 380 U 117-81-7 bis (2-Ethylhexyl) phthalate 2600 101-55-3 4-Bromophenyl phenyl ether 380 U 85-68-7 Butyl benzyl phthalate 99 J 105-60-2 Caprolactam 380 U 86-74-8 Carbazole 55 J 106-47-8 4-Chloroaniline 380 U 59-50-7 4-Chloro-3-methylphenol 380 U 91-58-7 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 U 32-64-9 Dibenzofuran 380 U U 32-64-9 Dibenzofuran 380 U U 380 U 380	98-86-2	Acetophenone	200	<u> </u>
56-55-3 Benzo (a) anthracene 71.0 50-32-8 Benzo (a) pyrene 670 205-99-2 Benzo (b) fluoranthene 920 191-24-2 Benzo (ghi) perylene 640 207-08-9 Benzo (k) fluoranthene 320 J 100-52-7 Benzaldehyde 55 J 92-52-4 1,1'-Biphenyl 380 U 111-91-1 bis (2-Chloroethoxy) methane 380 U 111-44-4 bis (2-Chloroethyl) ether 380 U 101-55-3 4-Bromophenyl phthalate 2600 U 101-55-3 4-Bromophenyl phenyl ether 380 U 85-68-7 Butyl benzyl phthalate 99 J 105-60-2 Caprolactam 380 U 86-74-8 Carbazole 55 J 106-47-8 4-Chloroaniline 380 U 59-50-7 4-Chloro-3-methylphenol 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chloro	120-12-7	Anthracene	200	<u>J</u>
50-32-8 Benzo (a) pyrene 670 205-99-2 Benzo (b) fluoranthene 920 191-24-2 Benzo (ghi) perylene 640 207-08-9 Benzo (k) fluoranthene 320 J 100-52-7 Benzaldehyde 55 J 92-52-4 1,1'-Biphenyl 380 U 111-91-1 bis (2-Chloroethoxy) methane 380 U 111-44-4 bis (2-Chloroethyl) ether 380 U 117-81-7 bis (2-Ethylhexyl) phthalate 2600 U 101-55-3 4-Bromophenyl phenyl ether 380 U 85-68-7 Butyl benzyl phthalate 99 J 105-60-2 Caprolactam 380 U 86-74-8 Carbazole 55 J 106-47-8 4-Chloroaniline 380 U 59-50-7 4-Chloro-3-methylphenol 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218	1912-24-9	Atrazine	380	<u> </u>
205-99-2 Benzo (b) fluoranthene 920	56-5 5- 3	Benzo (a) anthracene	710	
191-24-2 Benzo (ghi) perylene 640 207-08-9 Benzo (k) fluoranthene 320 J 100-52-7 Benzaldehyde 55 J 92-52-4 1,1'-Biphenyl 380 U 111-91-1 bis (2-Chloroethoxy) methane 380 U 111-44-4 bis (2-Chloroethyl) ether 380 U 117-81-7 bis (2-Ethylhexyl) phthalate 2600 U 101-55-3 4-Bromophenyl phenyl ether 380 U 85-68-7 Butyl benzyl phthalate 99 J 105-60-2 Caprolactam 380 U 86-74-8 Carbazole 55 J 106-47-8 4-Chloroaniline 380 U 59-50-7 4-Chloro-3-methylpherol 380 U 91-58-7 2-Chloronaphthalene 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	50-32-8	Benzo (a) pyrene	670	<u> </u>
207-08-9 Benzo(k) fluoranthene 320 J	205-99-2	Benzo (b) fluoranthene	920	
100-52-7 Benzaldehyde 55	191-24-2	Benzo (ghi) perylene	640	
92-52-4 1,1'-Biphenyl 380 U 111-91-1 bis (2-Chloroethoxy) methane 380 U 111-44-4 bis (2-Chloroethyl) ether 380 U 117-81-7 bis (2-Ethylhexyl) phthalate 2600 101-55-3 4-Bromophenyl phenyl ether 380 U 85-68-7 Butyl benzyl phthalate 99 J 105-60-2 Caprolactam 380 U 86-74-8 Carbazole 55 J 106-47-8 4-Chloroaniline 380 U 59-50-7 4-Chloro-3-methylphenol 380 U 91-58-7 2-Chlorophenol 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	207-08-9	Benzo (k) fluoranthene	320	J
111-91-1 bis(2-Chloroethoxy)methane 380 U 111-44-4 bis(2-Chloroethyl) ether 380 U 117-81-7 bis(2-Ethylhexyl) phthalate 2600 101-55-3 4-Bromophenyl phenyl ether 380 U 85-68-7 Butyl benzyl phthalate 99 J 105-60-2 Caprolactam 380 U 86-74-8 Carbazole 55 J 106-47-8 4-Chloroaniline 380 U 59-50-7 4-Chloro-3-methylphenol 380 U 91-58-7 2-Chlorophenol 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 53-70-3 Dibenz(a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	100-52-7	Benzaldehyde	55	J
111-44-4 bis(2-Chloroethyl) ether 380 U 117-81-7 bis(2-Ethylhexyl) phthalate 2600 101-55-3 4-Bromophenyl phenyl ether 380 U 85-68-7 Butyl benzyl phthalate 99 J 105-60-2 Caprolactam 380 U 86-74-8 Carbazole 55 J 106-47-8 4-Chloroaniline 380 U 59-50-7 4-Chloro-3-methylphenol 380 U 91-58-7 2-Chloronaphthalene 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 53-70-3 Dibenz(a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	92-52-4	1,1'-Biphenyl	380	<u>. U</u>
117-81-7 bis(2-Ethylhexyl) phthalate 2600 101-55-3 4-Bromophenyl phenyl ether 380 U 85-68-7 Butyl benzyl phthalate 99 J 105-60-2 Caprolactam 380 U 86-74-8 Carbazole 55 J 106-47-8 4-Chloroaniline 380 U 59-50-7 4-Chloro-3-methylphenol 380 U 91-58-7 2-Chloronaphthalene 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	111-91-1	bis(2-Chloroethoxy)methane	380	<u>U</u>
101-55-3 4-Bromophenyl phenyl ether 380 U	111-44-4	bis(2-Chloroethyl) ether	380	ן ט
85-68-7 Butyl benzyl phthalate 99 J 105-60-2 Caprolactam 380 U 86-74-8 Carbazole 55 J 106-47-8 4-Chloroaniline 380 U 59-50-7 4-Chloro-3-methylphenol 380 U 91-58-7 2-Chloronaphthalene 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 U 53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	117-81-7	bis(2-Ethylhexyl) phthalate	2600	
105-60-2 Caprolactam 380 U 86-74-8 Carbazole 55 J 106-47-8 4-Chloroaniline 380 U 59-50-7 4-Chloro-3-methylphenol 380 U 91-58-7 2-Chlorophenol 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	101-55-3	4-Bromophenyl phenyl ether	380	<u> </u>
86-74-8 Carbazole 55 J 106-47-8 4-Chloroaniline 380 U 59-50-7 4-Chloro-3-methylphenol 380 U 91-58-7 2-Chloronaphthalene 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 U 53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	85-68-7	Butyl benzyl phthalate	99	<u> </u>
106-47-8 4-Chloroaniline 380 U 59-50-7 4-Chloro-3-methylphenol 380 U 91-58-7 2-Chloronaphthalene 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	105-60-2	Caprolactam	380	<u> </u>
59-50-7 4-Chloro-3-methylphenol 380 U 91-58-7 2-Chloronaphthalene 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	86-74-8	Carbazole	55	<u> [J]</u>
91-58-7 2-Chloronaphthalene 380 U 95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	106-47-8	4-Chloroaniline	380	<u> </u>
95-57-8 2-Chlorophenol 380 U 7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	59-50-7	4-Chloro-3-methylphenol	380	<u> </u>
7005-72-3 4-Chlorophenyl phenyl ether 380 U 218-01-9 Chrysene 850 53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	91-58-7	2-Chloronaphthalene	380	<u> </u>
218-01-9 Chrysene 850 53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	95-57-8	2-Chlorophenol	380	ַ ט
53-70-3 Dibenz (a, h) anthracene 140 J 132-64-9 Dibenzofuran 380 U	7005-72-3	4-Chlorophenyl phenyl ether	380	<u>"</u>
132-64-9 Dibenzofuran 380 U	218-01-9	Chrysene	850	
· · · · · · · · · · · · · · · · · · ·	53-70-3	Dibenz (a, h) anthracene	140	J .
91-94-1 3,3'-Dichlorobenzidine 380 U	132-64-9	Dibenzofuran	380	ן ט
	91-94-1	3,3'-Dichlorobenzidine	380	ַ ט

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO

Lab Sample ID:C6F280229 002

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DVA1AL

Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/10/06

Moisture %:13

QC Batch: 6187024

Client Sample Id: GRSS2

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q
120-83-2	2,4-Dichlorophenol	380	U
84-66-2	Diethyl phthalate	380	U
105-67-9	2,4-Dimethylphenol	380	<u>י</u>
131-11-3	Dimethyl phthalate	380	ט ו
84-74-2	Di-n-butyl phthalate	150	J
534-52-1	4,6-Dinitro-2-methylphenol	960	ט
51-28-5	2,4-Dinitrophenol	960	U
121-14-2	2,4-Dinitrotoluene	380	_
606-20-2	2,6-Dinitrotoluene	380	<u> </u>
117-84-0	Di-n-octyl phthalate	380	U
206-44-0	Fluoranthene	1100	_
86-73-7	Fluorene	40	J
118-74-1	Hexachlorobenzene	380	الاا_
87-68-3	Hexachlorobutadiene	380	U
77-47-4	Hexachlorocyclopentadiene	380	ע
67-72-1	Hexachloroethane	380	_
193-39-5	Indeno(1,2,3-cd)pyrene	500	
78-59-1	Isophorone	380	ป
91-57-6	2-Methylnaphthalene	74	J
95-48-7	2-Methylphenol	380	_
106-44-5	4-Methylphenol	380	_ <u></u>
91-20-3	Naphthalene	110	<u>J</u>
88-74-4	2-Nitroaniline	960	_ <u> </u>
99-09-2	3-Nitroaniline	960	ן ט
100-01-6	4-Nitroaniline	960	ַן
98-95-3	Nitrobenzene	380	U
88-75-5	2-Nitrophenol	380	ات ا
100-02-7	4-Nitrophenol	960	ן ט

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID:C6F280229 002

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DVA1AL

Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/10/06

Moisture %:13

QC Batch: 6187024

Client Sample Id: GRSS2

CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/kg	· Q
621-64-7	N-Nitrosodi-n-propylamine	380	ן ט
86-30-6	N-Nitrosodiphenylamine	380	ָ ט
108-60-1	2,2'-oxybis(1-Chloropropane)	380	וט
87-86-5	Pentachlorophenol	960	וֹט
85-01-8	Phenanthrene	580	i
108-95-2	Phenol	380	U
129-00-0	Pyrene	1100	i
95-95-4	2,4,5-Trichlorophenol	960	U
88-06-2	2,4,6-Trichlorophenol	380	ט

STL-Pittsburgh

Metals Data Reporting Form

Sample Results

Lab Sample ID: H8DVA Client ID: GRSS2

Matrix: Soil Units: mg/kg Prep Date: 6/29/2006 Prep Batch: 6180029

Weight: 1.00 Volume: 200 Percent Moisture: 13.356

Element	WL/	IDL	Report Limit	Come		7072	T	Anal	Anal
Element	Mass	<u>wr</u>	111111	Conc	0	DF	Instr	Date	Time
Aluminum	308.22	1.5	46.2	6850	1	1	ICPST	7/1/2006	19:03
Antimony	220.35	0.44	13.8	0.69	BN	J 1	ICPST	7/1/2006	19:03
Arsenic	189.04	0.23	2.3	29.3		1	ICPST	7/1/2006	19:03
Barium	493.41	0.035	46.2	190		1	ICPST	7/1/2006	19:03
Beryllium	313.04	0.042	1,2	1.2 -0.58-	_B	U 1	ICPST	7/1/2006	19:03
Cadmium	226.50	0.037	1.2	1.2 -0.59 -	B	U 1	ICPST	7/1/2006	19:03
Calcium	317.93	2.5	1150	11400		1	ICPST	7/1/2006	19:03
Chromium	267.72	0.099	2.3	11.5		1	ICPST	7/1/2006	19:03
Cobalt	228.62	0.11	11.5	6.9	'R.	J 1	ICPST	7/1/2006	19:03
Copper	324.75	0.076	5,8	71.6	₽:	J 1	ICPST	7/1/2006	19:03
Iron	271.44	4.4	23.1	18400	1	1	ICPST	7/1/2006	19:03
Lead	220.35	0.51	1,4	1210	*	2	ICPST	7/5/2006	9:04
Magnesium	279.08	1.5	1150	2820		1	ICPST	7/1/2006	19:03
Manganese	257.61	0.039	3,5	553		1	ICPST	7/1/2006	19:03
Nickel	231.60	0.23	9.2	17.6		1	ICPST	7/1/2006	19:03
Potassium	766.49	2.2	1150	1620	₽	J1	ICPST	7/1/2006	19:03
Selenium	220.35	0.37	1.2	2.5		1	ICPST	7/1/2006	19:03
Silver	328.07	0.11	2.3	0.38	B	J 1	ICPST	7/1/2006	19:03
Sodium	330.23	40.2	1150	2940		1	ICPST	7/1/2006	19:03
Thallium	190.86	0.60	213	0.60	U	1	ICPST	7/1/2006	19:03
Vanadium	292.40	0.17	11,5	11.5 9.2	B- -	V 1	ICPST	7/1/2006	19:03
Zinc	213.86	0.18	4.6	323		1	ICPST	7/1/2006	19:03

Comments: Lot #: C6F280229 Sample #: 2Color:pre- brown, post- brwon. Texture:pre- medium, pos-t fine.Artifacts, Stones, organic Lot #: C6F280229 Sample #: 2

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

Form 1 Equivalent

STL + Pittsburgh

Metals Data Reporting Form

Sample Resul	LS				· · · · · · · · · · · · · · · · · · ·
Lab Sample ID:	H8DVA	Client ID:	GRSS2		
Matrix: So	il Units: mg/kg	Prep Date:	7/13/2006	Prep Batch:_	6194013
Weight:2	Volume: 100	Percent Mois	ture: 13.356		

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.013	0.12	1.5	×	1	CVAA	7/13/2006	8:42

1+

Comments: Lot #: C6F280229 Sample #: 2

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Form 1 Equivalent

Lab Name: Severn Trent Laboratories, Inc. SDG Number: JERVISS

Matrix: (soil/water) SOLID

Lab Sample ID:C0K080236 001

Method: OCLP OLM03.2

Base/Neutrals and Acids (CLP-OLM03.2)

Sample WT/Vol: 30 / g Work Order: DPJDH1AC Dilution factor: 10

Date Received: 11/07/00 Date Extracted:11/16/00

Date Analyzed: 11/30/00

Moisture %:19

QC Batch: 0321498

Client Sample Id: SS1

CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/kg	Q		_
83-32-9	Acenaphthene	11000	.[
208-96-8	Acenaphthylene	1200	J		-
120-12-7	Anthracene	16000	1		
56-55-3	Benzo (a) anthracene	36000 38000	B		- From Reanalysis - From Reanalysis
50-32-8	Benzo (a) pyrene	27000	.		· ·
205-99-2	Benzo (b) fluoranthene	45000 33000	B	i	- trom reanalysis
207-08-9	Benzo (k) fluoranthene	14000	.[,
191-24-2	Benzo (ghi) perylene	8000	1		
111-91-1	bis (2-Chloroethoxy) methane	4100		U	
111-44-4	bis(2-Chloroethyl) ether	4100	1	ַ	
117-81-7	bis(2-Ethylhexyl) phthalate	1600	J		
101-55-3	4-Bromophenyl phenyl ether	4100		U	
85-68-7	Butyl benzyl phthalate	4100	.1	U	
86-74-8	Carbazole	11000	1		
106-47-8	4-Chloroaniline	4100	.1	ū	
59-50-7	4-Chloro-3-methylphenol	4100	.1	Ū	
_91-58-7	2-Chloronaphthalene	4100	.[U	
95-57-8	2-Chlorophenol	4100		<u> </u>	
7005-72-3	4-Chlorophenyl phenyl ether	4100		U	
218-01-9	Chrysene	39000 4/000	B_		- From Reaualysis
53-70-3	Dibenz (a, h) anthracene	5500	.1		
132-64-9	Dibenzofuran	5900	.1		
95-50-1	1,2-Dichlorobenzene	4100		<u> </u>	
541-73-1	1,3-Dichlorobenzene	4100	.1	U	
106-46-7	1,4-Dichlorobenzene	4100	.[ש	
91-94-1	3,3'-Dichlorobenzidine	4100	.1	ប	
120-83-2	2,4-Dichlorophenol	4100		<u> </u>	
84-66-2	Diethyl phthalate	4100		<u> </u>	

Lab Name:Severn Trent Laboratories, Inc.

SDG Number: JERVISS

Matrix: (soil/water) SOLID

Lab Sample ID:COK080236 001

Method: OCLP OLM03.2

Base/Neutrals and Acids (CLP-OLM03.2)

Sample WT/Vol: 30 / g

Date Received: 11/07/00 Date Extracted:11/16/00

Work Order: DPJDH1AC Dilution factor: 10

Date Analyzed: 11/30/00

Moisture %:19

QC Batch: 0321498

Client Sample Id: SS1

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q		_
105-67-9	2,4-Dimethylphenol	4100	_1	U	
131-11-3	Dimethyl phthalate	4100	.1	וט	_
84-74-2	Di-n-butyl phthalate	4100	_i	ט	
117-84-0	Di-n-octyl phthalate	4100		U	
51-28-5	2,4-Dinitrophenol	10000	1	Ū	
534-52-1	4,6-Dinitro-2-methylphenol	10000	_i	U	
121-14-2	2,4-Dinitrotoluene	4100	_	U	
606-20-2	2,6-Dinitrotoluene	4100		U	
206-44-0	Fluoranthene	91000 89000	E		- from Reanalysis
86-73-7	Fluorene	10000	1	i	•
118-74-1	Hexachlorobenzene	4100	.	ט	
87-68-3	Hexachlorobutadiene	4100	.i	<u></u> <u></u> <u></u> <u></u> <u> </u> <u> </u>	
77-47-4	Hexachlorocyclopentadiene	4100	1	U	
67-72-1	Hexachloroethane	4100	1	ש	
193-39-5	Indeno(1,2,3-cd)pyrene	16000	1	1	
78-59-1	Isophorone	4100	_	ט	
91-57-6	2-Methylnaphthalene	1800	J		
95-48-7	2-Methylphenol	4100	1	U	
106-44-5	4-Methylphenol	4100		<u>U</u>	
91-20-3	Naphthalene	3500	10	1	
88-74-4	2-Nitroaniline	10000	.1	ט	
99-09-2	3-Nitroaniline	10000		U	
100-01-6	4-Nitroaniline	10000	.1	ָּט	
98-95-3	Nitrobenzene	4100		U	
88-75-5	2-Nitrophenol	4100		<u>"</u>	•
100-02-7	4-Nitrophenol	10000	1	U	
621-64-7	N-Nitrosodi-n-propylamine	4100	_1	ש	
86-30-6	N-Nitrosodiphenylamine	4100	_		

Lab Name: Severn Trent Laboratories, Inc.

SDG Number: JERVISS

Matrix: (soil/water) SOLID

Lab Sample ID: C0K080236 001

Method: OCLP OLM03.2

Base/Neutrals and Acids (CLP-OLM03.2)

Sample WT/Vol: 30 / g

Date Received: 11/07/00

Work Order: DPJDH1AC

Date Extracted:11/16/00

Dilution factor: 10

Date Analyzed: 11/30/00

Moisture %:19

QC Batch: 0321498

Client Sample Id: SS1

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q	_	
108-60-1	2,2'-oxybis(1-Chloropropane)	4100	U		
87-86-5	Pentachlorophenol	10000	U U		
85-01-8	Phenanthrene	66000 72000	B	man	a
108-95-2	Phenol	4100	U U		
129-00-0	Pyrene	54000 61000	B	from (J
120-82-1	1,2,4-Trichlorobenzene	4100	<u></u> <u></u>		
95-95-4	2,4,5-Trichlorophenol	10000	<u> U</u>		
88-06-2	2,4,6-Trichlorophenol	4100	<u> </u>		

neauclysis

THERMORETEC CORPORATION TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number: JERVIS5

Matrix: (soil/water) SOLID

Lab Sample ID:C0K080236 001

Method: OCLP OLM03.2

Base/Neutrals and Acids (CLP-OLM03.2)

Sample WT/Vol: 30 / g Work Order: DPJDH1AC Date Received: 11/07/00 Date Extracted:11/16/00 Date Analyzed: 11/30/00

Dilution factor: 10 Moisture %:19

QC Batch: 0321498

Client Sample Id: SS1

(ug/L or ug/kg) ug/kg

	(ug/L o	r ug/kg/	ug/kg	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
123-42-2	2-Pentanone, 4-hydroxy-4-met	2.7445	6600	NJA
613-12-7	Anthracene, 2-methyl-	11.714	5800	NJ
	Unknown Hydrocarbon	11.882	12000	J
	Unknown Substituted Naphthal	12.339	5600	J
84-65-1	9,10-Anthracenedione	12.359	5400	NJ
	Unknown Substituted Furan	13.958	3800	J
	Unknown PAH	14.456	14000	J
	Unknown PAH	14.59	7500	J
	Unknown PAH	14.657	3900	J
	Unknown PAH	14.718	4200	J
	Unknown PAH	15.41	3200	J
	Unknown Substituted Thiophen	15.799	3900	J
	Unknown PAH	15.894	8600	J
225-51-4	Benz[c]acridine	15.974	4500	NJ
	Unknown Substituted Thiophen	16.162	2900	J
	Unknown PAH	16.619	5900	J
	Unknown	16.834	5100	J
	Unknown carbazole	16.948	4000	J
	Unknown PAH	17.298	5000	J
	Unknown PAH	17.372	2900	J
	Unknown	17.546	4200	J
	Unknown	17.587	3700	<u>J</u>
	Unknown Ketone	17.976	3900	<u>J</u>
	Unknown PAH	18.85	7500	J
	Unknown PAH	19.058	4200	J
	Unknown PAH	19.179	19000	J

THERMORETEC CORPORATION TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number: JERVIS5

Matrix: (soil/water) SOLID

Lab Sample ID: C0K080236 001

Method: OCLP OLM03.2

Base/Neutrals and Acids (CLP-OLM03.2)

Sample WT/Vol: 30 / g Work Order: DPJDH1AC

Date Received: 11/07/00 Date Extracted:11/16/00

Dilution factor: 10

Date Analyzed: 11/30/00

Moisture %:19

QC Batch: 0321498

Client Sample Id: SS1

(na/L or na/ka) na/ka

	(ug/ii oi	ug/kg/	ug/kg	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	Unknown PAH	19.428	7900	J
	Unknown PAH	19.515	3100	J
	Unknown	19.589	4700	J
	Unknown PAH	19.71	3700	J
	Unknown PAH	19.777	3100	J
	Unknown	20.94	3800	J
	Unknown PAH	21.067	6100	J
	Unknown PAH	21.43	3100	J
	Unknown PAH	23.399	4000	J

Lab Name: Severn Trent Laboratories, Inc. SDG Number: JERVIS5

Matrix: (soil/water) SOLID

Lab Sample ID:COK080236 001 DL

Method: OCLP OLM03.2

Base/Neutrals and Acids (CLP-OLM03.2)

Sample WT/Vol: 30 / g Work Order: DPJDH2AC Dilution factor: 40

Moisture %:19

Date Received: 11/07/00 Date Extracted:11/16/00 Date Analyzed: 12/01/00

QC Batch: 0321498

Client Sample Id: SS1 -RE 1

USE FOR BENZOCO) ANTHRACENE, BENZO(B) FLUORANTHENE, CHRYSENE, FLUORANTHENE, PHENANTHROVE, and PYRENE ONLY. CONCENTRATION UNITS:

	CONCENTRAT	ION UNITS:		
CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q	
83-32-9	Acenaphthene	11000	J	
208-96-8	Acenaphthylene	16000		U
120-12-7	Anthracene	16000		
56-55 -3	Benzo (a) anthracene	38000		
50-32-8	Benzo (a) pyrene	30000		
205-99-2	Benzo (b) fluoranthene	33000		
207-08-9	Benzo(k) fluoranthene	24000		
191-24-2	Benzo (ghi) perylene	14000	J	
111-91-1	bis (2-Chloroethoxy) methane	16000	i	Ū
111-44-4	bis(2-Chloroethyl) ether	16000	i	Ü
117-81-7	bis(2-Ethylhexyl) phthalate	1800	J	
101-55-3	4-Bromophenyl phenyl ether	16000		U
85-68-7	Butyl benzyl phthalate	16000		U
86-74-8	Carbazole	11000	J	
106-47-8	4-Chloroaniline	16000	1	U
59-50-7	4-Chloro-3-methylphenol	16000		U
91-58-7	2-Chloronaphthalene	16000		U
95-57-8	2-Chlorophenol	16000	1	υ
7005-72-3	4-Chlorophenyl phenyl ether	16000		υ
218-01-9	Chrysene	41000	i	
53-70-3	Dibenz (a, h) anthracene	5300	J	
132-64-9	Dibenzofuran	6000	J	
95-50-1	1,2-Dichlorobenzene	16000	1	U
541-73-1	1,3-Dichlorobenzene	16000	i	U
106-46-7	1,4-Dichlorobenzene	16000	i	U
91-94-1	3,3'-Dichlorobenzidine	16000		U
120-83-2	2,4-Dichlorophenol	16000		Ū
84-66-2	Diethyl phthalate	16000		U

THERMORETEC CORPORATION

Lab Name: Severn Trent Laboratories, Inc.

SDG Number: JERVIS5

Matrix: (soil/water) SOLID

Lab Sample ID:C0K080236 001 D L

Method: OCLP OLM03.2

Base/Neutrals and Acids (CLP-OLM03.2)

Sample WT/Vol: 30 / g

Date Received: 11/07/00

Work Order: DPJDH2AC

Date Extracted: 11/16/00

Dilution factor: 40

Date Analyzed: 12/01/00

Moisture %:19

QC Batch: 0321498

Client Sample Id: SS1 -RE 1

USE FOR BONZO (a) ANTHRACENE, BENZO (B) FLUORANTHENE, CHRYSENE, FLUORANTHENE, PHENANTHRENE, and PYROUE ONLY. CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or)	ig/kg) ug/kg	Q
105-67-9	2,4-Dimethylphenol	16000	
131-11-3	Dimethyl phthalate	16000	I
84-74-2	Di-n-butyl phthalate	16000	<u> </u>
117-84-0	Di-n-octyl phthalate	16000	_ _ U
51-28-5	2,4-Dinitrophenol	41000	ប
534-52-1	4,6-Dinitro-2-methylphenol	41000	
121-14-2	2,4-Dinitrotoluene	16000	
606-20-2	2,6-Dinitrotoluene	16000	
206-44-0	Fluoranthene	89000	
86-73-7	Fluorene	11000	<u>J</u>
118-74-1	Hexachlorobenzene	16000	ַן ַ ַ
87-68-3	Hexachlorobutadiene	16000	ប
77-47-4	Hexachlorocyclopentadiene	16000	U
67-72-1	Hexachloroethane	16000	<u>U</u>
193-39-5	Indeno(1,2,3-cd)pyrene	25000	
78-59-1	Isophorone	16000	(
91-57-6	2-Methylnaphthalene	16000	ע
95-48-7	2-Methylphenol	16000	(
106-44-5	4-Methylphenol	16000	
91-20-3	Naphthalene	3500	J
88-74-4	2-Nitroaniline	41000	(
99-09-2	3-Nitroaniline	41000	_ U
100-01-6	4-Nitroaniline	41000	_
98-95- 3	Nitrobenzene	16000	_
88-75-5	2-Nitrophenol	16000	U
100-02-7	4-Nitrophenol	41000	U
621-64-7	N-Nitrosodi-n-propylamine	16000	ט
86-30-6	N-Nitrosodiphenylamine	16000	ט

THERMORETEC CORPORATION

Lab Name: Severn Trent Laboratories, Inc.

SDG Number: JERVIS5

Matrix: (soil/water) SOLID

Lab Sample ID: COK080236 001 0L

Method: OCLP OLM03.2

Base/Neutrals and Acids (CLP-OLM03.2)

Sample WT/Vol: 30 / g

Date Received: 11/07/00

Work Order: DPJDH2AC

Date Extracted:11/16/00

Dilution factor: 40

Date Analyzed: 12/01/00

Moisture %:19

QC Batch: 0321498

Client Sample Id: SS1 -RE 1

USE FOR BENZO (a) ANTHRACENE, BENZO (B) FLUORANTHENE, CHRYSENE, FLUORANTHENE, PHENANTHRONE and PYRENE ONly.

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	/kg/ ug/kg	Q
108-60-1	2,2'-oxybis(1-Chloropropane)	16000	ן ש
87-86-5	Pentachlorophenol	41000	U
85-01-8	Phenanthrene	72000	11
108-95-2	Phenol	16000	ן ט
129-00-0	Pyrene	61000	ll
120-82-1	1,2,4-Trichlorobenzene	16000	U
95-95-4	2,4,5-Trichlorophenol	41000	U U
88-06-2	2,4,6-Trichlorophenol	16000	<u></u> U

THERMORETEC CORPORATION TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number: JERVIS5

Matrix: (soil/water) SOLID

Lab Sample ID: COK080236 001 0 L

Method: OCLP OLM03.2

Base/Neutrals and Acids (CLP-OLM03.2)

Sample WT/Vol: 30 / g Work Order: DPJDH2AC Dilution factor: 40

Date Received: 11/07/00 Date Extracted:11/16/00

Date Analyzed: 12/01/00

Moisture %:19

QC Batch: 0321498

Client Sample Id: SS1 -RE 1

(ug/L or ug/kg) ug/kg

	(ug/II O	L ug/kg/	ug/kg	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
123-42-2	2-Pentanone, 4-hydroxy-4-met	2.7351	6900	NJA
	Unknown PAH	11.698	5700	J
	Unknown Hydrocarbon	11.866	11000	J
84-65-1	9,10-Anthracenedione	12.336	8200	JV
	Unknown	13.66	12000	J
	Unknown Substituted Furan	13.936	4100	J
	Unknown PAH	14.419	13000	J
	Unknown PAH	14.561	7700	J
	Unknown PAH	14.628	3900	J
	Unknown	14.695	5000	J
	Unknown Aromatic	15.387	3900	J
	Unknown Substituted Thiophen	15.77	4100	J
	Unknown PAH	15.864	8000	J
	Unknown PAH	16.57	7600	J
	Unknown	16.805	5500	J
	Unknown PAH	17.255	6300	J
	Unknown PAH	17.342	3600	J
	Unknown	17.43	3400	[<u>J</u>
	Unknown	17.504	4000	J
	Unknown Ketone	17,954	3600	J
	Unknown PAH	18.8	11000	្រ
	Unknown Substituted Furan	19.015	6000	J
	Unknown PAH	19.116	25000	[<u>J</u>
	Unknown PAH	19.365	11000	J
	Unknown PAH	19.66	4300	J
1	Unknown	19.734	3500	J

THERMORETEC CORPORATION TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number: JERVIS5

Matrix: (soil/water) SOLID

Lab Sample ID:COK080236 001 QL

Method: OCLP OLM03.2

Base/Neutrals and Acids (CLP-OLM03.2)

Sample WT/Vol: 30 / g Work Order: DPJDH2AC

Date Received: 11/07/00 Date Extracted:11/16/00

Dilution factor: 40

Date Analyzed: 12/01/00

Moisture %:19

QC Batch: 0321498

Client Sample Id: SS1 -RE 1

(ug/L or ug/kg) ug/kg

	(ug/	H OL ug/kg/	49/129	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	<u> Q</u>
	Unknown PAH	21.031	11000	J
	Unknown PAH	21.394	6400	J
	Unknown PAH	21.454	6400	J
	Unknown PAH	21.79	5000	J
	Unknown	22.274	3500	J
	Unknown PAH	23.376	9000	J
	Unknown PAH	23.511	5700	J
	Unknown PAH	23.591	4900	J
1	Unknown PAH	24.156	3500	J

THERMORETEC CORPORATION

Lab Name: Severn Trent Laboratories, Inc. SDG Number: JERVIS5

Matrix: (soil/water) SOLID

Lab Sample ID:C0K080236 002

Method: OCLP OLM03.2

Base/Neutrals and Acids (CLP-OLM03.2)

Sample WT/Vol: 30 / g Work Order: DPJD51AJ Dilution factor: 2

Date Received: 11/07/00 Date Extracted:11/16/00 Date Analyzed: 12/02/00

Moisture %:6.5

QC Batch: 0321498

Client Sample Id: SS2

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q	
83-32-9	Acenaphthene	710		ַע
208-96-8	Acenaphthylene	390	J	
120-12-7	Anthracene	180	J	
_56-55-3	Benzo (a) anthracene	1400		[
50-32-8	Benzo (a) pyrene	1400		i
205-99-2	Benzo(b) fluoranthene	2100		
207-08-9	Benzo(k) fluoranthene	1200		i
191-24-2	Benzo(ghi)perylene	1200	1	i
111-91-1	bis (2-Chloroethoxy) methane	710		ַט
111-44-4	bis(2-Chloroethyl) ether	710		U
117-81-7	bis(2-Ethylhexyl) phthalate	200	J	\equiv l
101-55-3	4-Bromophenyl phenyl ether	710		ַט
85-68-7	Butyl benzyl phthalate	710		U
86-74-8	Carbazole	76	J	
106-47-8	4-Chloroaniline	710	1	U
59-50-7	4-Chloro-3-methylphenol	710		U
91-58-7	2-Chloronaphthalene	710		ש
95-57-8	2-Chlorophenol	710	1	U
7005-72-3	4-Chlorophenyl phenyl ether	710	<u> </u>	U
218-01-9	Chrysene	1700	.	_
53-70-3	Dibenz (a, h) anthracene	460	J	[
132-64-9	Dibenzofuran	710		U
95-50-1	1,2-Dichlorobenzene	710		וט
541-73-1	1,3-Dichlorobenzene	710		וַש
106-46-7	1,4-Dichlorobenzene	710		ש
91-94-1	3,3'-Dichlorobenzidine	710		σ
120-83-2	2,4-Dichlorophenol	710	.1	U
84-66-2	Diethyl phthalate	710		ש

THERMORETEC CORPORATION

Client Sample ID: SS1

General Chemistry

Lot-Sample #...: C0K080236-001

Work Order #...: DPJDH

Matrix....: SOLID

Date Sampled...: 11/06/00

Date Received..: 11/07/00

% Moisture....: 19

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Percent Solids	80.8		*	MCAWW 160.3 MOD	11/14-11/15/00	0320184
	Dil	ution Facto	or: 1	MS Run #: 032007	9	
Total Cyanide	ND	0.62	mg/kg	ICLP ILM04.0	11/16-11/18/00	0321206
	Dil	ution Facto	or: 1	MS Run #: 032106	5	

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Metals Data Reporting Form

Sample Results

Lab Sample ID:

DPJDH

Client ID:

SSI

Matrix:

Soil

Units: mg/kg

Prep Date: 11/24/00

/00

Prep Batch: 0327420

Weight:

0.2

Volume:

100

Percent Moisture:

19.2

	WL/		Report				T	Anal	Anal
Element	Mass	IDL	Limit	Conc	Q	DF	Instr	Date	Time
Mercury	253.7	0.022	0.12	0.80	N*	1	CVAA	11/24/00	12.26

T

Comments: Lot #: C0K080236 Sample #: 1

Metals Data Reporting Form

Sample Results

Lab Sample ID: **DPJDH** Client ID:

SS1

Matrix: Soil

Units: mg/kg

Prep Date: 11/28/00 Prep Batch: 0333129

Weight:

1.00

Volume: 200

Percent Moisture:

	WL/		Report				T T	Anal	Anal
Element	Mass	IDL	Limit	Conc	Q	DF	Instr	Date	Time
Aluminum	308.22	6.5	49.5	6090		1	ICP	12/4/00	13:33
Antimony	220.35	0.52	14.9	10.9	BN	V 1	ICPST	12/8/00	13:08
Arsenic	189.04	0.52	2.5	8.8	N	J 1	ICPST	12/8/00	13:08
Barium	493.41	0.10	49.5	206	1	J 1	ICP	12/4/00	13:33
Beryllium	313.04	0.025	1.2	0.53	B	1	ICP	12/4/00	13:33
Cadmium	228.80	0.84	1.2	1.4		1	ICP	12/4/00	13:33
Calcium	317.93	2.9	1240	7930	اسمر	J 1	ICP	12/4/00	13:33
Chromium	267.72	0.74	2.5	36.3	NA	T 1	ICP	12/4/00	13:33
Cobalt	228.62	0.97	12.4	8.8	B	1	ICP	12/4/00	13:33
Copper	324.75	0.45	6.2	48.1		1	ICP	12/4/00	13:33
Iron	259.94	0.67	24.8	23400		1	ICP	12/4/00	13:33
Lead	220.35	0.99	1.5	2020	1	2	ICPST	12/8/00	15:24
Magnesium	279.08	3.9	1240	4540	سر	J 1	ICP	12/4/00	13:33
Manganese	257.61	0.17	3.7	460	78	丁 1	ICP	12/4/00	13:33
Nickel	231.60	2.3	9.9	14.6		1	ICP	12/4/00	13:33
Potassium	766,49	171	1240	736	B	1	ICP	12/4/00	13:33
Selenium	220.35	0.74	1.2	0.87	18	1	ICPST	12/8/00	13:08
Silver	328.07	0.74	2.5	0.74	ប	1	ICP	12/4/00	13:33
Sodium -	589	6.8	1240	121	18	1	ICP	12/4/00	13:33
Thallium	190.86	1.7	2.5	1.7	U	1	ICPST	12/8/00	13:08
Vanadium	292.40	0.92	12.4	17.8		1	ICP	12/4/00	13:33
Zinc	213.86	0.57	5.0	807		1	ICP	12/4/00	13:33

Comments: Lot #: C0K080236 Sample #: 1 Color: Pre: Brown - Post: Brown Texture: Pre: Fine - Post: Fine Artifacts:

Organic Material

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6G290164 004

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: JAAFX1AK Dilution factor: 1

Date Received: 07/29/06 Date Extracted: 08/01/06

Moisture %:9.2

Date Analyzed: 08/01/06

QC Batch: 6213037

Client Sample Id: GRSB1(13-14)

CAS NO.	COMPOUND (ug/L or t	ug/kg) ug/kg	Q
67-64-1	Acetone	20	 12- U
71-43-2	Benzene	11	U
75-27-4	Bromodichloromethane	11	
75-25-2	Bromoform	11	U
74-83-9	Bromomethane	11	ט ו
78-93-3	2-Butanone	11	Ü
75-15-0	Carbon disulfide	11	U
56-23-5	Carbon tetrachloride	11	U
108-90-7	Chlorobenzene	11	T.
75-00-3	Chloroethane	11	t
67-66-3	Chloroform	11	T T
74-87-3	Chloromethane	11	Ţ
110-82-7	Cyclohexane	11	Ţ
124-48-1	Dibromochloromethane	11	Ţ
96-12-8	1,2-Dibromo-3-chloropropane	- 11 R	
106-93-4	1,2-Dibromoethane	11	T T
541-73-1	1,3-Dichlorobenzene	11	t
106-46-7	1,4-Dichlorobenzene	11	
95-50-1	1,2-Dichlorobenzene	11	
75-71-8	Dichlorodifluoromethane	11	
75-34-3	1,1-Dichloroethane	11	Ţ
107-06-2	1,2-Dichloroethane	11	
75-35-4	1,1-Dichloroethene	11	Ţ
156-59-2	cis-1,2-Dichloroethene	11	
156-60-5	trans-1,2-Dichloroethene	11	i t
78-87-5	1,2-Dichloropropane	11	τ
10061-01-5	cis-1,3-Dichloropropene	11	Ţ
			T T

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6G290164 004

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLMO4.2)

Sample WT/Vol: 5 / g Work Order: JAAFX1AK Dilution factor: 1

Date Received: 07/29/06 Date Extracted: 08/01/06

Date Analyzed: 08/01/06

Moisture %:9.2

QC Batch: 6213037

Client Sample Id: GRSB1(13-14)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q	
100-41-4	Ethylbenzene	11	U	
591-78-6	2-Hexanone	11	<u>U</u>	
98-82-8	Isopropylbenzene	11	U	
79-20-9	Methyl acetate	11	ן די	
75-09-2	Methylene chloride	6.7	3 B 	U
108-87-2	Methylcyclohexane	11	<u> u</u>	
108-10-1	4-Methyl-2-pentanone	11	ן די די די	
1634-04-4	Methyl tert-butyl ether	11	U	
100-42-5	Styrene	11	ט	
79-34-5	1,1,2,2-Tetrachloroethane	11	U	
120-82-1	1,2,4-Trichlorobenzene	11	U	
127-18-4	Tetrachlorosthens	11	U	
71-55-6	1,1,1-Trichloroethane	11	<u> </u>	
79-00-5	1,1,2-Trichloroethane	11	<u>ט</u>	
79-01-6	Trichloroethene	11	<u>"</u>	
75-69-4	Trichlorofluoromethane	11	וש	
76-13-1	1,1,2-Trichloro-1,2,2-triflu	11	<u> </u>	
108-88-3	Toluene	11	U	
75-01-4	Vinyl chloride	11	<u>u</u>	
1330-20-7	Xylenes (total)	11	<u>U</u>	

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID:C6G290164 004

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: JAAFX1AL Date Received: 07/29/06 Date Extracted: 08/05/06

Dilution factor: 1

Date Analyzed: 08/10/06

Moisture %:9.2

QC Batch: 6217057

Client Sample Id: GRSB1(13-14)

CAS NO. COMPOUND (ug/L or ug/kg) ug/kg Q	CONCENTRATION ONTIS:					
208-96-8 Acetaphthylene	CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/kg	Q		
98-86-2 Acetophenone 100 J	83-32-9	Acenaphthene	150	<u> </u> J		
120-12-7	208-96-8	Acenaphthylene	210	<u>J</u>		
1912-24-9 Atrazine 360 U	98-86-2	Acetophenone	100	J		
56-55-3 Benzo (a) anthracene 530 50-32-8 Benzo (b) fluoranthene 540 205-99-2 Benzo (b) fluoranthene 530 191-24-2 Benzo (ghi) perylene 220 J 207-08-9 Benzo (k) fluoranthene 180 J 100-52-7 Benzaldehyde 360 U 92-52-4 1,1'-Biphenyl 360 U 111-91-1 bis (2-Chloroethoxy) methane 360 U 117-81-7 bis (2-Chloroethyl) ether 360 U 117-81-7 bis (2-Ethylhexyl) phthalate 360 U 85-68-7 Butyl benzyl phenyl ether 360 U 85-68-7 Butyl benzyl phthalate 360 U 105-60-2 Caprolactam 360 U 86-74-8 Carbazole 360 U 106-47-8 4-Chloro-3-methylphenol 360 U 59-50-7 4-Chlorophenyl phenyl ether 360 U 95-57-8 2-Chlorophenyl phenyl ether 360 U	120-12-7	Anthracene	320	J		
50-32-8 Benzo (a) pyrene 540 205-99-2 Benzo (b) fluoranthene 530 191-24-2 Benzo (ghi) perylene 220 J 207-08-9 Benzo (k) fluoranthene 180 J 100-52-7 Benzaldehyde 360 U 92-52-4 1,1'-Biphenyl 360 U 111-91-1 bis (2-Chloroethoxy) methane 360 U 111-44-4 bis (2-Chloroethyl) ether 360 U 117-81-7 bis (2-Ethylhexyl) phthalate 360 U 85-68-7 Butyl benzyl phthalate 360 U 85-68-7 Butyl benzyl phthalate 360 U 105-60-2 Caprolactam 360 U 86-74-8 Carbazole 360 U 106-47-8 4-Chloroaniline 360 U 59-50-7 4-Chloro-3-methylphenol 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U	1912-24-9	Atrazine	360	บ		
205-99-2 Benzo (b) fluoranthene 530 191-24-2 Benzo (ghi) peryleme 220 J 207-08-9 Benzo (k) fluoranthene 180 J 100-52-7 Benzaldehyde 360 U 92-52-4 1,1'-Biphenyl 360 U 111-91-1 bis (2-Chloroethoxy) methane 360 U 111-44-4 bis (2-Chloroethyl) ether 360 U 117-81-7 bis (2-Ethylhexyl) phthalate 360 U 101-55-3 4-Bromophenyl phenyl ether 360 U 85-68-7 Butyl benzyl phthalate 360 U 105-60-2 Caprolactam 360 U 26-74-8 Carbazole 360 U 26-74-8 Carbazole 360 U 29-50-7 4-Chloro-3-methylphenol 360 U 91-58-7 2-Chloronaphthalene 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 U 360 U 312-64-9 Dibenzofuran 360 U U 360 U 360	56-55-3	Benzo (a) anthracene	530			
191-24-2 Benzo (ghi) perylene 220 J	50-32-8	Benzo (a) pyrene	540			
Description	205-99-2	Benzo (b) fluoranthene	530			
100-52-7 Benzaldehyde 360 U 92-52-4 1,1'-Biphenyl 360 U 111-91-1 bis(2-Chloroethoxy)methane 360 U 111-44-4 bis(2-Chloroethyl) ether 360 U 117-81-7 bis(2-Ethylhexyl) phthalate 360 U 101-55-3 4-Bromophenyl phenyl ether 360 U 85-68-7 Butyl benzyl phthalate 360 U 105-60-2 Caprolactam 360 U 86-74-8 Carbazole 360 U 106-47-8 4-Chloroaniline 360 U 105-80-7 4-Chloro-3-methylphenol 360 U 105-80-7 2-Chloronaphthalene 360 U 105-57-8 2-Chlorophenol 360 U 105-57-8 2-Chlorophenol 360 U 105-72-3 4-Chlorophenyl phenyl ether 360 U 105-70-3 Dibenz(a,h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	191-24-2	Benzo(ghi)perylene	220	J		
92-52-4 1,1'-Biphenyl 360 U 111-91-1 bis(2-Chloroethoxy) methane 360 U 111-44-4 bis(2-Chloroethyl) ether 360 U 117-81-7 bis(2-Ethylhexyl) phthalate 360 U 101-55-3 4-Bromophenyl phenyl ether 360 U 85-68-7 Butyl benzyl phthalate 360 U 105-60-2 Caprolactam 360 U 86-74-8 Carbazole 360 U 106-47-8 4-Chloroaniline 360 U 59-50-7 4-Chloro-3-methylphenol 360 U 91-58-7 2-Chlorophenol 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 U 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	207-08-9	Benzo(k) fluoranthene	180	J		
111-91-1 bis(2-Chloroethoxy) methane 360 U 111-44-4 bis(2-Chloroethyl) ether 360 U 117-81-7 bis(2-Ethylhexyl) phthalate 360 U 101-55-3 4-Bromophenyl phenyl ether 360 U 85-68-7 Butyl benzyl phthalate 360 U 105-60-2 Caprolactam 360 U 86-74-8 Carbazole 360 U 106-47-8 4-Chloroaniline 360 U 59-50-7 4-Chloro-3-methylphenol 360 U 91-58-7 2-Chloronaphthalene 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 U 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	100-52-7	Benzaldehyde	360	ט ט		
111-44-4 bis(2-Chloroethyl) ether 360 U 117-81-7 bis(2-Ethylhexyl) phthalate 360 U 101-55-3 4-Bromophenyl phenyl ether 360 U 85-68-7 Butyl benzyl phthalate 360 U 105-60-2 Caprolactam 360 U 86-74-8 Carbazole 360 U 106-47-8 4-Chloroaniline 360 U 59-50-7 4-Chloro-3-methylphenol 360 U 91-58-7 2-Chloronaphthalene 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	92-52-4	1,1'-Biphenyl	360	<u> </u>		
117-81-7 bis(2-Ethylhexyl) phthalate 360 U 101-55-3 4-Bromophenyl phenyl ether 360 U 85-68-7 Butyl benzyl phthalate 360 U 105-60-2 Caprolactam 360 U 86-74-8 Carbazole 360 U 106-47-8 4-Chloroaniline 360 U 59-50-7 4-Chloro-3-methylphenol 360 U 91-58-7 2-Chloronaphthalene 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	111-91-1	bis(2-Chloroethoxy)methane	360	ַ		
101-55-3 4-Bromophenyl phenyl ether 360 U 85-68-7 Butyl benzyl phthalate 360 U 105-60-2 Caprolactam 360 U 86-74-8 Carbazole 360 U 106-47-8 4-Chloroaniline 360 U 59-50-7 4-Chloro-3-methylphenol 360 U 91-58-7 2-Chloronaphthalene 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	111-44-4	bis(2-Chloroethyl) ether	360			
85-68-7 Butyl benzyl phthalate 360 U 105-60-2 Caprolactam 360 U 86-74-8 Carbazole 360 U 106-47-8 4-Chloroaniline 360 U 59-50-7 4-Chloro-3-methylphenol 360 U 91-58-7 2-Chloronaphthalene 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	117-81-7	bis(2-Ethylhexyl) phthalate	360	U		
105-60-2 Caprolactam 360 U 86-74-8 Carbazole 360 U 106-47-8 4-Chloroaniline 360 U 59-50-7 4-Chloro-3-methylphenol 360 U 91-58-7 2-Chlorophenol 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 U 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	101-55-3	4-Bromophenyl phenyl ether	360	<u></u> ן ט		
86-74-8 Carbazole 360 U 106-47-8 4-Chloroaniline 360 U 59-50-7 4-Chloro-3-methylphenol 360 U 91-58-7 2-Chloronaphthalene 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 U 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	85-68-7	Butyl benzyl phthalate	360	ַ "		
106-47-8 4-Chloroaniline 360 U 59-50-7 4-Chloro-3-methylphenol 360 U 91-58-7 2-Chloronaphthalene 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	105-60-2	Caprolactam	360	ן ט		
59-50-7 4-Chloro-3-methylphenol 360 U 91-58-7 2-Chloronaphthalene 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	86-74-8	Carbazole	360	ן ט		
91-58-7 2-Chloronaphthalene 360 U 95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	106-47-8	4-Chloroaniline	360	יט ו		
95-57-8 2-Chlorophenol 360 U 7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 U 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	59-50-7	4-Chloro-3-methylphenol	360	ט		
7005-72-3 4-Chlorophenyl phenyl ether 360 U 218-01-9 Chrysene 560 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	91-58-7	2-Chloronaphthalene	360	lU		
218-01-9 Chrysene 560 53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	95-57-8	2-Chlorophenol	360	U		
53-70-3 Dibenz (a, h) anthracene 98 J 132-64-9 Dibenzofuran 360 U	7005-72-3	4-Chlorophenyl phenyl ether	360	ַן		
132-64-9 Dibenzofuran 360 U	218-01-9	Chrysene	560	(i		
	53-70-3	Dibenz (a, h) anthracene	98	<u>J</u>		
	132-64-9	Dibenzofuran	360	ט ו		
	91-94-1	3,3'-Dichlorobenzidine	360	:		

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6G290164 004

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g

Work Order: JAAFX1AL

Date Received: 07/29/06

Date Received: 07/29/06

Date Extracted: 08/05/06

Date Analyzed: 08/10/06

Moisture %:9.2

QC Batch: 6217057

Client Sample Id: GRSB1(13-14)

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q
120-83-2	2,4-Dichlorophenol	360	<u> </u>
84-66-2	Diethyl phthalate	360	<u> U</u>
105-67-9	2,4-Dimethylphenol	360	ן ש
131-11-3	Dimethyl phthalate	360	<u> </u>
84-74-2	Di-n-butyl phthalate	360	ן ט
534-52-1	4,6-Dinitro-2-methylphenol	910	ַ
51-28-5	2,4-Dinitrophenol	910	U
121-14-2	2,4-Dinitrotoluene	360	ן ט
606-20-2	2,6-Dinitrotoluene	360	ט
117-84-0	Di-n-octyl phthalate	360	ן ט
206-44-0	Fluoranthene	750	. []
86-73-7	Fluorene	120	J
118-74-1	Hexachlorobenzene	360	ן ט
87-68-3	Hexachlorobutadiene	360	ןו
77-47-4	Hexachlorocyclopentadiene	360	ן ט
67-72-1	Hexachloroethane	360	ן די
193-39-5	Indeno(1,2,3-cd)pyrene	260	<u> </u> J
78-59-1	Isophorone	360	ן ט
91-57-6	2-Methylnaphthalene	360	U
95-48-7	2-Methylphenol	360	ט
106-44-5	4-Methylphenol	360	<u> U</u>
91-20-3	Naphthalene	360	U
88-74-4	2-Nitroaniline	910	<u>"</u>
99-09-2	3-Nitroaniline	910	U
100-01-6	4-Nitroaniline	910	ַ
98-95-3	Nitrobenzene	360	U
88-75-5	2-Nitrophenol	360	<u>ט</u>
100-02-7	4-Nitrophenol	910	U

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6G290164 004

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Date Received: 07/29/06 Work Order: JAAFX1AL Date Extracted:08/05/06 Dilution factor: 1 Date Analyzed: 08/10/06

Moisture %:9.2

QC Batch: 6217057

Client Sample Id: GRSB1(13-14)

COMPOUND (ug/L or ug	/kg) ug/kg	Q
N-Nitrosodi-n-propylamine	360	ן די
N-Nitrosodiphenylamine	360	U
2,2'-oxybis(1-Chloropropane)	360	Ū
Pentachlorophenol	910	U
Phenanthrene	110	J
Phenol	360	ן די
Pyrene	1400	
2,4,5-Trichlorophenol	910	ט
2,4,6-Trichlorophenol	360	Ü
	N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine 2,2'-oxybis(1-Chloropropane) Pentachlorophenol Phenanthrene Phenol Pyrene 2,4,5-Trichlorophenol	N-Nitrosodi-n-propylamine 360 N-Nitrosodiphenylamine 360 2,2'-oxybis(1-Chloropropane) 360 Pentachlorophenol 910 Phenanthrene 110 Phenol 360 Pyrene 1400 2,4,5-Trichlorophenol 910

Metals Data Reporting Form

Sample Results

Lab Sample ID: JAAFX Client ID: GRSB1(13-14)

Matrix: Soil Units: mg/kg Prep Date: 8/2/2006 Prep Batch: 6214386

Weight: 1.00 Volume: 200 Percent Moisture: 9.194

	WL/		Report	_	_			Anal	Anal
Element	Mass	DL	Limit	Conc	0	DF	Instr	Date	Time
Aluminum	308.22	1.5	44.0	4510		J 1	ICPST	8/11/2006	15:33
Antimony	206.84	0.51	13.2	0.51	UN	WI	ICPST	8/11/2006	15:33
Arsenic	189.04	0.42	2.2	2.5		1	ICPST	8/11/2006	15:33
Barium	493.41	0.031	44.0	25.3	- B -	J 1	ICPST	8/11/2006	15:33
Beryllium	313.04	0.037	1.1	1.1 -0.26	-10 -	U 1	ICPST	8/11/2006	15:33
Cadmium	226.50	0.068	1.1	0.068	U	1	ICPST	8/11/2006	15:33
Calcium	317.93	0.90	1100	1100 297	B-	U 1	ICPST	8/11/2006	15:33
Chromium	267.72	0.13	2.2	4.5	₩	J 1	ICPST	8/11/2006	15:33
Cobalt	228.62	0.14	11.0	4.3	.B-	J 1	ICPST	8/11/2006	15:33
Copper	324.75	0.20	5.5	11.9	-#-	1	ICPST	8/11/2006	15:33
Iron	271.44	3.0	22.0	8590	-	J1	ICPST	8/11/2006	15:33
Lead	220.35	0.35	0.66	5.2		1	ICPST	8/11/2006	15:33
Magnesium	279.08	1.1	1100	1650		1	ICPST	8/11/2006	15:33
Manganese	257.61	0.033	3.3	92.4	-	J1	ICPST	8/11/2006	15:33
Nickel	231.60	0.16	8.8	8.9		1	ICPST	8/11/2006	15:33
Potassium	766.49	2.3	1100	1100 -574	BE	U 1	ICPST	8/11/2006	15:33
Selenium	220.35	0.44	1.1	0.87	₽₽	J1	ICPST	8/11/2006	15:33
Silver	328.07	0.099	2.2	0.099	U	1	ICPST	8/11/2006	15:33
Sodium	330.23	22.0	1100	75.0	-8-	J 1	ICPST	8/11/2006	15:33
Thallium	190.86	0.62	2.2	0.62	υ		ICPST	8/11/2006	15:33
Vanadium	292.40	0.12	11.0	4.5	₽	_	ICPST	8/11/2006	15:33
Zinc	206.2	0.22	4.4	57.7	-& -	J 1	ICPST	8/11/2006	15:33

Comments: Lot #: C6G290164 Sample #: 4Color:pre- brown, post- brown. Texture:pre- medium, post fine. Artfacts: stones.

5.04.5

U Result is less than the IDL

Form 1 Equivalent

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Metals Data Reporting Form

Sample Results GRSB1(13-14) Lab Sample ID: **JAAFX** Client ID: mg/kg Prep Date: 8/14/2006 Matrix: Soil Units: Prep Batch: 6226062 Weight: Volume: 100 Percent Moisture: 9.194 .2

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.023	0.11	-0.095	†	1	CVAA	8/14/2006	10:12

0.110

Comments: Lot #: C6G290164 Sample #: 4

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Form I Equivalent

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6G290164 005

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Date Received: 07/29/06
Work Order: JAAF11A2 Date Extracted:08/01/06
Dilution factor: 1 Date Analyzed: 08/01/06

Moisture %:25

QC Batch: 6213037

Client Sample Id: GRSB1(22-24)

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q
67-64-1	Acetone	12	13 U
71-43-2	Benzene	13	_
75-27-4	Bromodichloromethane	13	_ <u></u> ʊ
75-25-2	Bromoform	13	ט
74-83-9	Bromomethane	13	ן ט
78-93-3	2-Butanone	13	<u> </u>
75-15-0	Carbon disulfide	13	ט
56-23-5	Carbon tetrachloride	13	_ <u> </u>
108-90-7	Chlorobenzene	13	ات ا
75-00-3	Chloroethane	13	<u>U</u>
67-66-3	Chloroform	13	_ <u></u>
74-87-3	Chloromethane	13	<u> </u>
110-82-7	Cyclohexane	13	<u>U</u>
124-48-1	Dibromochloromethane	13	U
96-12-8	1,2 Dibrome 2 chloropropane	-113	-
106-93-4	1,2-Dibromoethane	13	_lu
541-73-1	1,3-Dichlorobenzene	_ 13	<u> </u>
106-46-7	1,4-Dichlorobenzene	13	<u> U</u>
95-50-1	1,2-Dichlorobenzene	13	<u> u</u>
75-71-8	Dichlorodifluoromethane	13	ן יי
75-34-3	1,1-Dichloroethane	13	<u>U</u>
107-06-2	1,2-Dichloroethane	13	_ <u> </u>
75-35-4	1,1-Dichloroethene	13	_ <u></u>
156-59-2	cis-1,2-Dichloroethene	13	<u> </u> <u> </u>
156-60-5	trans-1,2-Dichloroethene	13	<u> </u>
78-87-5	1,2-Dichloropropane	13	_ <u>_</u>
10061-01-5	cis-1,3-Dichloropropene	13	_ <u>_</u>
10061-02-6	trans-1,3-Dichloropropene	13	_ <u> </u>

FORM I

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6G290164 005

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Date Received: 07/29/06
Work Order: JAAF11A2 Date Extracted:08/01/06
Dilution factor: 1 Date Analyzed: 08/01/06

Moisture %:25

QC Batch: 6213037

Client Sample Id: GRSB1(22-24)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q ·	
100-41-4	Ethylbenzene	13	U	
5 9 1-78-6	2-Hexanone	13	<u> </u>	
98-82-8	Isopropylbenzene	13	ן די די די	
79-20-9	Methyl acetate	13	ן ט	
75-09-2	Methylene chloride	5.7	J B	13 U
108-87-2	Methylcyclohexane	13	ן די	
108-10-1	4-Methyl-2-pentanone	13	ש	
1634-04-4	Methyl tert-butyl ether	13	U	
100-42-5	Styrene	13	<u>U</u>	
79-34-5	1,1,2,2-Tetrachloroethane	13	<u>ט</u>	
120-82-1	1,2,4-Trichlorobenzene	13	U	
127-18-4	Tetrachloroethene	13	ן ט	
71-55-6	1,1,1-Trichloroethane	13	U	
79-00-5	1,1,2-Trichloroethane	13	U	
79-01-6	Trichloroethene	13	ט	
75-69-4	Trichlorofluoromethane	13	<u>ט</u>	
76-13-1	1,1,2-Trichloro-1,2,2-triflu	13	U	
108-88-3	Toluene	13	<u>"</u>	
75-01-4	Vinyl chloride	13	ש	
1330-20-7	Xylenes (total)	13	ַ	

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID: C6G290164 005

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Date Received: 07/29/06 Sample WT/Vol: 30 / g Date Extracted:08/05/06 Work Order: JAAF11A5 Dilution factor: 1 Date Analyzed: 08/11/06

Moisture %:25

QC Batch: 6217057

Client Sample Id: GRSB1(22-24)

CONCENTRAT	ION UNITS:	
COMPOUND (ug/L or u	g/kg) ug/k	g Q
Acenaphthene	440	<u> </u>
Acenaphthylene	440	U
Acetophenone	45	J
Anthracene	440	Ū
Atrazine	440	<u>ע</u>
Benzo (a) anthracene	440	U
Benzo (a) pyrene	440	U
Benzo(b) fluoranthene	440	<u> </u>
Benzo (ghi) perylene	440	ע
Benzo(k) fluoranthene	440	U
Benzaldehyde	440	U
1,1'-Biphenyl	440	U
bis(2-Chloroethoxy)methane	440	U
bis(2-Chloroethyl) ether	440	<u>u</u>
bis(2-Ethylhexyl) phthalate	440	Ū
4-Bromophenyl phenyl ether	440	j u
Butyl benzyl phthalate	440	ט ו
Caprolactam	71	J
Carbazole	440	ט
4-Chloroaniline	440	ט
4-Chloro-3-methylphenol	440	U
2-Chloronaphthalene	440	บ
2-Chlorophenol	440	U
4-Chlorophenyl phenyl ether	440	<u>י</u>
Chrysene	440	וט ו
Dibenz (a, h) anthracene	440	<u>י</u>
Dibenzofuran	440	יט יי
3,3'-Dichlorobenzidine	440	ט
	COMPOUND (ug/L or use Acenaphthene Acenaphthene Acenaphthylene Acetophenome Anthracene Atrazine Benzo(a) anthracene Benzo(a) pyrene Benzo(b) fluoranthene Benzo(ghi) perylene Benzo(k) fluoranthene Benzaldehyde 1,1'-Biphenyl bis(2-Chloroethoxy) methane bis(2-Chloroethoxy) methane bis(2-Ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam Carbazole 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline 2-Chlorophenol 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h) anthracene Dibenzofuran	Acenaphthene 440 Acetophenome 45 Anthracene 440 Atrazine 440 Benzo (a) anthracene 440 Benzo (b) fluoranthene 440 Benzo (ghi) perylene 440 Benzo (k) fluoranthene 440 Benzaldehyde 440 1,1'-Biphenyl 440 bis (2-Chloroethoxy) methane 440 bis (2-Chloroethyl) ether 440 4-Bromophenyl phenyl ether 440 4-Bromophenyl phenyl ether 440 Caprolactam 71 Carbazole 440 4-Chloroaniline 440 4-Chloro-3-methylphenol 440 2-Chlorophenol 440 4-Chlorophenyl phenyl ether 440 4-Chlorophenyl phenyl ether 440 4-Chlorophenyl phenyl ether 440 Dibenz (a, h) anthracene 440 Dibenzofuran 440

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Lab Sample ID: C6G290164 005 Matrix: (soil/water) SO

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Date Received: 07/29/06 Sample WT/Vol: 30 / g Date Extracted: 08/05/06 Work Order: JAAF11A5 Dilution factor: 1 Date Analyzed: 08/11/06

Moisture %:25

C6G290164

OC Batch: 6217057

Client Sample Id: GRSB1(22-24)

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q
120-83-2	2,4-Dichlorophenol	440	U
84-66-2	Diethyl phthalate	440	ַ ַ
105-67-9	2,4-Dimethylphenol	440	U
131-11-3	Dimethyl phthalate	440	UU
84-74-2	Di-n-butyl phthalate	440	U
534-52-1	4,6-Dinitro-2-methylphenol	1100	<u> </u>
51-28-5	2,4-Dinitrophenol	1100	ַ <u> </u>
121-14-2	2,4-Dinitrotoluene	440	_ U
606-20-2	2,6-Dinitrotoluene	440	U
117-84-0	Di-n-octyl phthalate	440	_ <u> </u>
206-44-0	Fluoranthene	440	_ <u> </u>
86-73-7	Fluorene	440	U
118-74-1	Hexachlorobenzene	440	_ U
87-68-3	Hexachlorobutadiene	440	ַן
77-47-4	Hexachlorocyclopentadiene	440	ט
67-72-1	Hexachloroethane	440	
193-39-5	Indeno(1,2,3-cd)pyrene	440	ן ט
78-59-1	Isophorone	440	ן ט
91-57-6	2-Methylnaphthalene	440	U
95-48-7	2-Methylphenol	440	_ ט
106-44-5	4-Methylphenol	440	ן די
91-20-3	Naphthalene	440	<u> U</u>
88-74-4	2-Nitroaniline	1100	U
99-09-2	3-Nitroaniline	1100	U
100-01-6	4-Nitroaniline	1100	ן ט
98-95-3	Nitrobenzene	440	ט
88-75-5	2-Nitrophenol	440	וֹט
100-02-7	4-Nitrophenol	1100	<u> </u>

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6G290164 005

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Date Received: 07/29/06
Work Order: JAAF11A5 Date Extracted:08/05/06
Dilution factor: 1 Date Analyzed: 08/11/06

Moisture %:25

QC Batch: 6217057

Client Sample Id: GRSB1(22-24)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg (2
621-64-7	N-Nitrosodi-n-propylamine	440	ט
86-30-6	N-Nitrosodiphenylamine	440	ט
108-60-1	2,2'-oxybis(1-Chloropropane)	440	ט
87-86-5	Pentachlorophenol	1100	U
85-01-8	Phenanthrene	440	ן ט
108-95-2	Phenol	440	U
129-00-0	Pyrene	440	
95-95-4	2,4,5-Trichlorophenol	1100	U
88-06-2	2,4,6-Trichlorophenol	440	<u> </u>

Metals Data Reporting Form

Sample Results

Lab Sample ID: JAAF1

Client ID: GRSB1(22-24)

Matrix: Soil Units: mg/kg

Prep Date: 8/2/2006 Prep Batch: 6214386

Weight: 1.00 Volume: 200 Percent Moisture: 24.567

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Aluminum	308.22	1.8	53.0	7820	*	J 1	ICPST	8/11/2006	14:38
Antimony	206.84	0.61	15.9	0.61	.UN		ICPST	8/11/2006	14:38
Arsenic	189.04	0.50	2.7	2.8	02.	1	ICPST	8/11/2006	14:38
Barium	493.41	0.037	53.0	36.8	-B-	J 1	ICPST	8/11/2006	
Beryllium	313.04	0.045	1.3	/, 3 -0,46	B	V 1	ICPST	8/11/2006	
Cadmium	226.50	0.082	1.3	0.082	บ	1	ICPST	8/11/2006	
Calcium	317.93	1.1	1330	/330 -453	B	U 1	ICPST	8/11/2006	14:38
Chromium	267.72	0.16	2.7	18.8	**	J 1	ICPST	8/11/2006	•
Cobalt	228.62	0.17	13.3	8.1	Ð	J 1	ICPST	8/11/2006	~ ,,,,,
Copper	324.75	0.24	6.6	20.0		1	ICPST	8/11/2006	14:38
Iron	271.44	3.6	26.5	20000	*	J 1	ICPST	8/11/2006	14:38
Lead	220.35	0.42	0.80	4.8		1	ICPST	8/11/2006	14:38
Magnesium	279.08	1.4	1330	2960		1 1	ICPST	8/11/2006	14:38
Manganese	257.61	0.040	4.0	180		J1	ICPST	8/11/2006	14:38
Nickel	231.60	0.19	18.6	23.3		1	ICPST	8/11/2006	14:38
Potassium	766.49	2.8	1330	/330 -531	BE	1 1	ICPST	8/11/2006	14:38
Selenium	220.35	0.53	1.3	0.79	-₽-	\mathcal{J}_1	ICPST	8/11/2006	14:38
Silver	328.07	0.12	2.7	0.12	บ	1	ICPST	8/11/2006	14:38
Sodium	330.23	26.5	1330	137	J B-	J1	ICPST	8/11/2006	14:38
Thallium	190.86	0.74	2.7	0.74	บ	1	ICPST	8/11/2006	14:38
Vanadium	292.40	0.15	13.3	9.6	-B·	Ji	ICPST	8/11/2006	14:38
Zinc	206.2	0.27	5.3	70.6	*	J1	ICPST	8/11/2006	14:38

Comments: Lot #: C6G290164 Sample #: 5 Color:pre- brown, post- brown. Texture:pre- medium, post fine, Artfacts: stones.

5.04.5

U Result is less than the IDL

Form 1 Equivalent

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Metals Data Reporting Form

Sample Results

Lab Sample ID: JAAF1 Client ID:

GRSB1(22-24)

Matrix:

Soil

Units: mg/kg

100

Prep Date: 8/14/2006

Prep Batch: 6226062

Weight:

Volume:

Percent Moisture:

24.567

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.028	0.13	-0.048	-В-	1	CVAA	8/14/2006	10:13

0.13 U

Comments: Lot #: C6G290164 Sample #: 5

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Form 1 Equivalent

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6G290164 001

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g
Work Order: JAAFM1AC
Dilution factor: 1

Date Received: 07/29/06
Date Extracted:08/01/06
Date Analyzed: 08/01/06

Moisture %:19

· - -

QC Batch: 6213037

Client Sample Id: GRSB2(13-14)

CAS NO.	COMPOUND (ug/L or)	ug/kg) ug/kg	<u> </u>
67-64-1	Acetone	43	 12- U
71-43-2	Benzene	12	lU
75-27-4	Bromodichloromethane	12	U
75-25-2	Bromoform	12	U
74-83-9	Bromomethane	12	ַן
78-93-3	2-Butanone	12	ן ו
75-15-0	Carbon disulfide	12	ט
56-23-5	Carbon tetrachloride	12	U
108-90-7	Chlorobenzene	12	ט
75-00-3	Chloroethane	12	ט
67-66-3	Chloroform	12	ט
74-87-3	Chloromethane	12	וס ו
110-82-7	Cyclohexane	12	ט ו
124-48-1	Dibromochloromethane	12	U
96-12-8	1,2-Dibromo-3-chloropropane	 12 	<u> </u>
106-93-4	1,2-Dibromoethane	12	<u> </u>
541-73-1	1,3-Dichlorobenzene	12	UU
106-46-7	1,4-Dichlorobenzene	12	U
95-50-1	1,2-Dichlorobenzene	12	<u></u> _
75-71-8	Dichlorodifluoromethane	12	lu
75-34-3	1,1-Dichloroethane	12	
107-06-2	1,2-Dichloroethane	12	<u></u>
75-35-4	1,1-Dichloroethene	12	<u> </u>
156-59-2	cis-1,2-Dichloroethene	12	<u> </u>
156-60-5	trans-1,2-Dichloroethene	12	<u> </u>
78-87-5	1,2-Dichloropropane	12	
10061-01-5	cis-1,3-Dichloropropene	12	ן
10061-02-6	trans-1,3-Dichloropropene	12	UU

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6G290164 001

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Date Received: 07/29/06
Work Order: JAAFMIAC Date Extracted:08/01/06
Dilution factor: 1 Date Analyzed: 08/01/06

Moisture %:19

QC Batch: 6213037

Client Sample Id: GRSB2(13-14)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q
100-41-4	Ethylbenzene	12	U
591-78-6	2-Hexanone	12	<u> </u>
98-82-8	Isopropylbenzene	12	<u> </u>
79-20-9	Methyl acetate	12	U
75-09-2	Methylene chloride	6.7	12 U
108-87-2	Methylcyclohexane	12	U
108-10-1	4-Methyl-2-pentanone	12	<u>"</u>
1634-04-4	Methyl tert-butyl ether	12	<u>ט</u>
100-42-5	Styrene	12	U
79-34-5	1,1,2,2-Tetrachloroethane	12	<u> </u>
120-82-1	1,2,4-Trichlorobenzene	12	U
127-18-4	Tetrachloroethene	12	<u> </u>
71-55-6	1,1,1-Trichloroethane	12	. <u> U</u>
79-00-5	1,1,2-Trichloroethane	12	<u> </u>
79-01-6	Trichloroethene	12	U
75-69-4	Trichlorofluoromethane	12	<u>U</u>
76-13-1	1,1,2-Trichloro-1,2,2-triflu	12	<u> </u>
108-88-3	Toluene	12	<u>"</u>
75-01-4	Vinyl chloride	12	U
1330-20-7	Xylenes (total)	12	U

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6G290164 001

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g
Work Order: JAAFM1AD
Date Extracted: 08/05/06
Dilution factor: 1
Date Analyzed: 08/10/06

Moisture %:19

QC Batch: 6217057

Client Sample Id: GRSB2(13-14)

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	I Q
83-32-9	Acenaphthene	410	
208-96-8	Acenaphthylene	410	U
98-86-2	Acetophenone	410	U
120-12-7	Anthracene	410	ע
1912-24-9	Atrazine	410	ט
56-55-3	Benzo (a) anthracene	410	ע
50-32-8	Benzo (a) pyrene	410	ַ
205-99-2	Benzo(b) fluoranthene	410	<u> </u>
191-24-2	Benzo(ghi)perylene	410	ט
207-08-9	Benzo(k) fluoranthene	410	U
100-52-7	Benzaldehyde	410	<u></u>
92-52-4	1,1'-Biphenyl	410	ע
111-91-1	bis(2-Chloroethoxy) methane	410	ט
111-44-4	bis(2-Chloroethyl) ether	410	<u> </u>
117-81-7	bis(2-Ethylhexyl) phthalate	410	ט
101-55-3	4-Bromophenyl phenyl ether	410	<u>ט</u>
85-68-7	Butyl benzyl phthalate	410	U
105-60-2	Caprolactam	74	J
86-74-8	Carbazole	410	<u>ט</u>
106-47-8	4-Chloroaniline	410	U
59-50-7	4-Chloro-3-methylphenol	410	lU
91-58-7	2-Chloronaphthalene	410	ַ
95-57-8	2-Chlorophenol	410	<u> </u>
7005-72-3	4-Chlorophenyl phenyl ether	410	<u>ט</u>
218-01-9	Chrysene	410	U
53-70-3	Dibenz (a, h) anthracene	410	ט
132-64-9	Dibenzofuran	410	ט
91-94-1	3,3'-Dichlorobenzidine	410	ט

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID: C6G290164 001

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g

Work Order: JAAFM1AD

Date Received: 07/29/06

Date Extracted:08/05/06

Dilution factor: 1

Date Analyzed: 08/10/06

Moisture %:19

QC Batch: 6217057

Client Sample Id: GRSB2(13-14)

CAS NO.	COMPOUND (ug/L or u	ig/kg) ug/kg ()
120-83-2	2,4-Dichlorophenol	410	וט
84-66-2	Diethyl phthalate	410	ַ
105-67-9	2,4-Dimethylphenol	410	ַ
131-11-3	Dimethyl phthalate	410	ט
84-74-2	Di-n-butyl phthalate	410	ט
534-52-1	4,6-Dinitro-2-methylphenol	1000	UU
51-28-5	2,4-Dinitrophenol	1000	ט
121-14-2	2,4-Dinitrotoluene	410	ַ
606-20-2	2,6-Dinitrotoluene	410	ַ ַ ַ
117-84-0	Di-n-octyl phthalate	410	ַ
206-44-0	Fluoranthene	410	ַ ַ ַ ַ
86-73-7	Fluorene	410	ַ
118-74-1	Hexachlorobenzene	410	ַ ַ ַ ַ
87-68-3	Hexachlorobutadiene	410	ַ ַ ַ ַ
77-47-4	Hexachlorocyclopentadiene	410	ַ ַ ַ
67-72-1	Hexachloroethane	410	ַ
193-39-5	Indeno(1,2,3-cd)pyrene	410	ַ ַ ַ ַ
78-59-1	Isophorone	410	ַ
91-57-6	2-Methylnaphthalene	410	ַ ַ ַ
95-48-7	2-Methylphenol	410	U
106-44-5	4-Methylphenol	410	
91-20-3	Naphthalene	410	ַ ַ ַ ַ
88-74-4	2-Nitroaniline	1000	
99-09-2	3-Nitroaniline	1000	<u></u>
100-01-6	4-Nitroaniline	1000	ַ ַ ַ ַ
98-95-3	Nitrobenzene	410	U
88~75-5	2-Nitrophenol	410	U
100-02-7	4-Nitrophenol	1000	U

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6G290164 001

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g

Work Order: JAAFM1AD

Date Received: 07/29/06

Date Extracted:08/05/06

Date Analyzed: 08/10/06

Moisture %:19

QC Batch: 6217057

Client Sample Id: GRSB2(13-14)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug $/kg$ (2
621-64-7	N-Nitrosodi-n-propylamine	410	ן ט
86-30-6	N-Nitrosodiphenylamine	410	ט
108-60-1	2,2'-oxybis(1-Chloropropane)	410	ט
87-86-5	Pentachlorophenol	1000	ַ
85-01-8	Phenanthrene	410	ַ ַ ַ ַ
108-95-2	Phenol	410	יט
129-00-0	Pyrene	410	U
95-95-4	2,4,5-Trichlorophenol	1000	U
88-06-2	2,4,6-Trichlorophenol	410	ַ ַ ַ ַ

Metals Data Reporting Form

Sample Results

Lab Sample ID: **JAAFM** Client ID: GRSB2(13-14)

Matrix: Soil

Units: mg/kg

Prep Date: 8/2/2006

Prep Batch: 6214386

Weight: 1.00 Percent Moisture: Volume: 200

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Aluminum	308.22	1.7	49.2	5030	*	J 1	ICPST		
Antimony	206.84	0.57	14.8	0.57	UN.			8/11/2006	
Arsenic	189.04	0.37	2.5	1		451	ICPST	8/11/2006	15:06
Barium	493.41			2.2	B	J 1	ICPST	8/11/2006	
		0.034	49.2	37.8	B	\mathcal{J}_1	ICPST	8/11/2006	15:06
Beryllium	313.04	0.042	1.2	/.2 -0.29	- B -	U 1	ICPST	8/11/2006	15:06
Cadmium	226.50	0.076	1.2	0.076	U	1	ICPST	8/11/2006	15:06
Calcium	317.93	1.0	1230	1230-351	B	U 1	ICPST	8/11/2006	15:06
Chromium	267.72	0.15	2.5	5.2	N	J 1	ICPST	8/11/2006	15:06
Cobalt	228.62	0.16	12.3	4.5	B		ICPST	8/11/2006	15:06
Copper	324.75	0.22	6.2	31.5	*	J_1	ICPST	8/11/2006	15:06
Iron	271.44	3.3	24.6	9880	*	J 1	ICPST	8/11/2006	15:06
Lead	220.35	0.39	0.74	6.2		1	ICPST	8/11/2006	15:06
Magnesium	279.08	1.3	1230	1800		1	ICPST	8/11/2006	15:06
Manganese	257.61	0.037	3.7	143	-	_		8/11/2006	15:06
Nickel	231.60	0.17	9.8	9.3	B		ICPST	8/11/2006	15:06
Potassium	766.49	2.6	1230	1230-617	BE		ICPST	8/11/2006	15:06
Selenium	220.35	0.49	1.2	0.63	B	_	ICPST	8/11/2006	15:06
Silver	328.07	0.11	2.5	0.11	ับ		ICPST	8/11/2006	15:06
Sodium	330.23	24.6	1230	129	JB *	-		8/11/2006	15:06
Thallium	190.86	0.69	2.5	0.69	ับ	•	ICPST	8/11/2006	
Vanadium	292.40	0.14	12.3	5.2	18∕			8/11/2006 8/11/2006	15:06
Zinc	206.2	0.25	4.9	63.5	_	_			15:06
	200.2	0.43	4.5	03.5		<u> </u>	ICPST	8/11/2006	15:06

Comments: Lot #: C6G290164 Sample #: 1Color:pre- brown, post- brown. Texture:pre- medium, post fine. Artfacts: stones.

5.04.5

U Result is less than the IDL

Form 1 Equivalent

B Result is between IDL and RL

Metals Data Reporting Form

Lab Sample ID: JAAFM Client ID: GRSB2(13-14)

Lab Sample ID: VAATM Chefit ID: CRSD2(13-14)

Matrix: Soil Units: mg/kg Prep Date: 8/14/2006 Prep Batch: 6226062

Weight: ____.2 Volume: ____100 Percent Moisture: ____18.766

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.026	0.12	-0.875	—В-	1	CVAA	8/14/2006	10:06

0.12 U

Comments: Lot #; C6G290164 Sample #; 1

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Form 1 Equivalent

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6G290164 002

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: JAAFPIAK Dilution factor: 1

Date Received: 07/29/06 Date Extracted:08/01/06

Date Analyzed: 08/01/06

Moisture %:16

QC Batch: 6213037

Client Sample Id: GRSB20(13-14)

CAS NO.	COMPOUND (ug/L or u	ig/kg) ug/kg	Q
67-64-1	Acetone	40	B U
71-43-2	Benzene	12	ט ו
75-27-4	Bromodichloromethane	12	ן ט
75-25-2	Bromoform	12	ן ט
74-83-9	Bromomethane	12	יט
78-93-3	2-Butanone	12	U
75-15-0	Carbon disulfide	12	<u>"</u>
56-23-5	Carbon tetrachloride	12	ט
108-90-7	Chlorobenzene	12	וט
75-00-3	Chloroethane	12	ן ט
67-66-3	Chloroform	12	ש
74-87-3	Chloromethane	12	Ū
110-82-7	Cyclohexane	12	ט
124-48-1	Dibromochloromethane	12	ט
96-12-8	1,2-Dibromo-3-chloropropane	12 7	U
106-93-4	1,2-Dibromoethane	112	<u>ט</u>
541-73-1	1,3-Dichlorobenzene	12	<u>ט</u>
106-46-7	1,4-Dichlorobenzene	12	ט ט
95-50-1	1,2-Dichlorobenzene	12	ט
75-71-8	Dichlorodifluoromethane	12	ע ע
75-34-3	1,1-Dichloroethane	12	
107-06-2	1,2-Dichloroethane	12	lU
75-35-4	1,1-Dichloroethene	12	<u>U</u>
156-59-2	cis-1,2-Dichloroethene	12	ַ
156-60-5	trans-1,2-Dichloroethene	12	ן ט
78-87-5	1,2-Dichloropropane	12	ן ַ ַ ַ ַ ַ ַ
10061-01-5	cis-1,3-Dichloropropene	12	<u>ט</u>
10061-02-6	trans-1,3-Dichloropropene	12	ַ ַ ַ

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6G290164 002

Method: OCLP OLMO4.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g

Work Order: JAAFPIAK
Dilution factor: 1

Date Received: 07/29/06
Date Extracted:08/01/06
Date Analyzed: 08/01/06

Moisture %:16

QC Batch: 6213037

Client Sample Id: GRSB20(13-14)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q	
100-41-4	Ethylbenzene	12	U	
591-78-6	2-Hexanone	12	ן ש	
98-82-8	Isopropylbenzene	12	ן ט	
79-20-9	Methyl acetate	12	<u>ט</u>	
75-09-2	Methylene chloride	5.3	J-B	-120
108-87-2	Methylcyclohexane	12	ט	,,
108-10-1	4-Methyl-2-pentanone	12	ן ש	
1634-04-4	Methyl tert-butyl ether	12	<u> </u>	
100-42-5	Styrene	12	ט	
79-34-5	1,1,2,2-Tetrachloroethane	12	ן ט	
120-82-1	1,2,4-Trichlorobenzene	12	<u>ט</u>	
127-18-4	Tetrachloroethene	12	ן די	
71-55-6	1,1,1-Trichloroethane	12	U	
79-00-5	1,1,2-Trichloroethane	12	<u> </u>	
79-01-6	Trichloroethene	12	<u> </u>	
75-69-4	Trichlorofluoromethane	12	U	
76-13-1	1,1,2-Trichloro-1,2,2-triflu	12	ן די	
108-88-3	Toluene	12	ט	
75-01-4	Vinyl chloride	12	יט	
1330-20-7	Xylenes (total)	12	U	

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Method: OCLP OLM04.2

Lab Sample ID:C6G290164 002

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: JAAFP1AL Dilution factor: 1 Date Received: 07/29/06 Date Extracted: 08/05/06

Moisture %:16

Date Analyzed: 08/10/06

QC Batch: 6217057

Client Sample Id: GRSB20(13-14)

208-96-8 Acetophenone 390 98-86-2 Acetophenone 390 120-12-7 Anthracene 390 1912-24-9 Atrazine 390 56-55-3 Benzo(a) anthracene 390 50-32-8 Benzo(a) pyrene 390 205-99-2 Benzo(b) fluoranthene 390 191-24-2 Benzo(ghi) perylene 390 207-08-9 Benzo(k) fluoranthene 390 100-52-7 Benzaldehyde 390 92-52-4 1,1'-Biphenyl 390 111-91-1 bis (2-Chloroethoxy) methane 390 117-81-7 bis (2-Ethylhexyl) phthalate 390 101-55-3 4-Bromophenyl phenyl ether 390 85-68-7 Butyl benzyl phthalate 390 105-60-2 Caprolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloroaniline 390 95-57-8 2-Chlorophenol 390 95	CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	<u>Q</u>
98-86-2 Acetophenone 390 120-12-7 Anthracene 390 1912-24-9 Atrazine 390 56-55-3 Benzo(a) anthracene 390 50-32-8 Benzo(a) pyrene 390 205-99-2 Benzo(b) fluoranthene 390 191-24-2 Benzo(ghi) perylene 390 207-08-9 Benzo(k) fluoranthene 390 100-52-7 Benzaldehyde 390 92-52-4 1,1'-Biphenyl 390 111-91-1 bis(2-Chloroethoxy) methane 390 117-81-7 bis(2-Ethylhexyl) phthalate 390 101-55-3 4-Bromophenyl phenyl ether 390 85-68-7 Butyl benzyl phthalate 390 105-60-2 Caprolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chloronaphthalene 390 95-57-8 2-Chlorophenyl phenyl ether 390 <td>83-32-9</td> <td>Acenaphthene</td> <td>390</td> <td>_ <u> </u></td>	83-32-9	Acenaphthene	390	_ <u> </u>
120-12-7	208-96-8	Acenaphthylene	390	<u>_</u>
1912-24-9 Atrazine 390 56-55-3 Benzo(a) anthracene 390 50-32-8 Benzo(b) fluoranthene 390 205-99-2 Benzo(b) fluoranthene 390 191-24-2 Benzo(ghi) perylene 390 207-08-9 Benzo(k) fluoranthene 390 100-52-7 Benzaldehyde 390 92-52-4 1,1'-Biphenyl 390 111-91-1 bis(2-Chloroethoxy) methane 390 111-44-4 bis(2-Chloroethyl) ether 390 117-81-7 bis(2-Ethylhexyl) phthalate 390 101-55-3 4-Bromophenyl phenyl ether 390 85-68-7 Butyl benzyl phthalate 390 105-60-2 Caprolactam 72 86-74-8 Carbazole 390 106-47-8 4-Chloroeniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chloronaphthalene 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 132-64-9 Dibenzofuran 390	98-86-2	Acetophenone	390	lu
56-55-3 Benzo(a) anthracene 390 50-32-8 Benzo(a) pyrene 390 205-99-2 Benzo(b) fluoranthene 390 191-24-2 Benzo(ghi) perylene 390 207-08-9 Benzo(k) fluoranthene 390 100-52-7 Benzaldehyde 390 92-52-4 1,1'-Biphenyl 390 111-91-1 bis (2-Chloroethoxy) methane 390 111-44-4 bis (2-Chloroethyl) ether 390 117-81-7 bis (2-Ethylhexyl) phthalate 390 101-55-3 4-Bromophenyl phenyl ether 390 85-68-7 Butyl benzyl phthalate 390 105-60-2 Caprolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 95-57-8 2-Chlorophenol 390 705-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenzofuran 390 </td <td>120-12-7</td> <td>Anthracene</td> <td>390</td> <td>ט </td>	120-12-7	Anthracene	390	ט
50-32-8 Benzo(a) pyrene 390 205-99-2 Benzo(b) fluoranthene 390 191-24-2 Benzo(ghi) perylene 390 207-08-9 Benzo(k) fluoranthene 390 100-52-7 Benzaldehyde 390 92-52-4 1,1'-Biphenyl 390 111-91-1 bis (2-Chloroethoxy) methane 390 111-44-4 bis (2-Chloroethyl) ether 390 117-81-7 bis (2-Ethylhexyl) phthalate 390 101-55-3 4-Bromophenyl phenyl ether 390 85-68-7 Butyl benzyl phthalate 390 105-60-2 Caprolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran <t< td=""><td>1912-24-9</td><td>Atrazine</td><td>390</td><td> <u></u>U</td></t<>	1912-24-9	Atrazine	390	<u></u> U
205-99-2 Benzo(b) fluoranthene 390 191-24-2 Benzo(ghi) perylene 390 207-08-9 Benzo(k) fluoranthene 390 100-52-7 Benzaldehyde 390 92-52-4 1,1'-Biphenyl 390 111-91-1 bis(2-Chloroethoxy) methane 390 111-44-4 bis(2-Chloroethyl) ether 390 117-81-7 bis(2-Ethylhexyl) phthalate 390 101-55-3 4-Bromophenyl phenyl ether 390 85-68-7 Butyl benzyl phthalate 390 105-60-2 Caprolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chlorophenol 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz(a, h) anthracene 390 132-64-9 Dibenzofuran 390	56-55-3	Benzo(a) anthracene	390	_ <u> </u>
191-24-2 Benzo(ghi) perylene 390 207-08-9 Benzo(k) fluoranthene 390 100-52-7 Benzaldehyde 390 92-52-4 1,1'-Biphenyl 390 111-91-1 bis (2-Chloroethoxy) methane 390 111-44-4 bis (2-Chloroethyl) ether 390 117-81-7 bis (2-Ethylhexyl) phthalate 390 101-55-3 4-Bromophenyl phenyl ether 390 85-68-7 Butyl benzyl phthalate 390 105-60-2 Caprolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chloronaphthalene 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	50-32-8	Benzo(a)pyrene	390	_ <u></u>
207-08-9 Benzo(k) fluoranthene 390	205-99-2	Benzo(b) fluoranthene	390	U
100-52-7 Benzaldehyde 390	191-24-2	Benzo(ghi)perylene	390	U
92-52-4 1,1'-Biphenyl 390 111-91-1 bis(2-Chloroethoxy) methane 390 111-44-4 bis(2-Chloroethyl) ether 390 117-81-7 bis(2-Ethylhexyl) phthalate 390 101-55-3 4-Bromophenyl phenyl ether 390 85-68-7 Butyl benzyl phthalate 390 105-60-2 Caprolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chlorophenol 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	207-08-9	Benzo(k) fluoranthene	390	<u>U</u>
111-91-1 bis(2-Chloroethoxy) methane 390 111-44-4 bis(2-Chloroethyl) ether 390 117-81-7 bis(2-Ethylhexyl) phthalate 390 101-55-3 4-Bromophenyl phenyl ether 390 85-68-7 Butyl benzyl phthalate 390 105-60-2 Caprolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chloronaphthalene 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	100-52-7	Benzaldehyde	390	_ U
111-44-4 bis(2-Chloroethyl) ether 390 117-81-7 bis(2-Ethylhexyl) phthalate 390 101-55-3 4-Bromophenyl phenyl ether 390 85-68-7 Butyl benzyl phthalate 390 105-60-2 Caprolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chloronaphthalene 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	92-52-4	1,1'-Biphenyl	390	<u>U</u>
117-81-7 bis(2-Ethylhexyl) phthalate 390 101-55-3 4-Bromophenyl phenyl ether 390 85-68-7 Butyl benzyl phthalate 390 105-60-2 Capxolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chloronaphthalene 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	111-91-1	bis(2-Chloroethoxy)methane	390	u
101-55-3 4-Bromophenyl phenyl ether 390 85-68-7 Butyl benzyl phthalate 390 105-60-2 Caprolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chloronaphthalene 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	111-44-4	bis(2-Chloroethyl) ether	390	U
85-68-7 Butyl benzyl phthalate 390 105-60-2 Caprolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chloronaphthalene 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	117-81-7	bis(2-Ethylhexyl) phthalate	390	U
105-60-2 Caprolactam 72 J 86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chlorophenol 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	101-55-3	4-Bromophenyl phenyl ether	390	_
86-74-8 Carbazole 390 106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chloronaphthalene 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	85-68-7	Butyl benzyl phthalate	390	_
106-47-8 4-Chloroaniline 390 59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chloronaphthalene 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	105-60-2	Caprolactam	72	<u> </u> J
59-50-7 4-Chloro-3-methylphenol 390 91-58-7 2-Chloronaphthalene 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	86-74-8	Carbazole	390	_ <u></u>
91-58-7 2-Chloronaphthalene 390 95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	106-47-8	4-Chloroaniline	390	<u></u> U
95-57-8 2-Chlorophenol 390 7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	59-50-7	4-Chloro-3-methylphenol	390	<u></u>
7005-72-3 4-Chlorophenyl phenyl ether 390 218-01-9 Chrysene 390 53-70-3 Dibenz(a,h) anthracene 390 132-64-9 Dibenzofuran 390	91-58-7	2-Chloronaphthalene	390	<u> U </u>
218-01-9 Chrysene 390 53-70-3 Dibenz(a,h)anthracene 390 132-64-9 Dibenzofuran 390	95-57-8	2-Chlorophenol	390	_ <u></u> u
53-70-3 Dibenz (a, h) anthracene 390 132-64-9 Dibenzofuran 390	7005-72-3	4-Chlorophenyl phenyl ether	390	<u>U</u>
132-64-9 Dibenzofuran 390	218-01-9	Chrysene	390	U
	53-70-3	Dibenz (a, h) anthracene	390	_ <u> </u>
91-94-1 3.3'-Dichlorobenzidine 390	132-64-9	Dibenzofuran	390	U
	91-94-1	3,3'-Dichlorobenzidine	390	_

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6G290164 002

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: JAAFPIAL

Date Received: 07/29/06 Date Extracted: 08/05/06

Dilution factor: 1

Date Analyzed: 08/10/06

Moisture %:16

OC Batch: 6217057

Client Sample Id: GRSB20(13-14)

G1 G 170		a(ka) va(ka	0
CAS NO.	2.4-Dichlorophenol	<u>lg/kg) ug/kg</u> 390	1 01
	Diethyl phthalate	390	_ <u></u>
84-66-2		_ !	'
105-67-9	2,4-Dimethylphenol	390	<u>u</u>
131-11-3	Dimethyl phthalate	390	_
84-74-2	Di-n-butyl phthalate	390	_ <u></u> !
534-52-1	4,6-Dinitro-2-methylphenol	980	_
51-28-5	2,4-Dinitrophenol	980	_
121-14-2	2,4-Dinitrotoluene	390	<u></u>
606-20-2	2,6-Dinitrotoluene	390	lu
117-84-0	Di-n-octyl phthalate		
206-44-0	Fluoranthene	390	<u>U</u>
86-73-7	Fluorene	390	<u></u>
118-74-1	Hexachlorobenzene	390	ע
87-68-3	Hexachlorobutadiene	390	ע
77-47-4	Hexachlorocyclopentadiene	390	<u>י</u>
67-72-1	Hexachloroethane	390	ַ
193-39-5	Indeno(1,2,3-cd)pyrene	390	ַן
78-59-1	Isophorone	390	ַ ַ ַ ַ ַ ַ ַ
91-57-6	2-Methylnaphthalene	390	ן ט
95-48-7	2-Methylphenol	390	<u>י</u>
106-44-5	4-Methylphenol	390	ַ ַ ַ ַ ַ ַ
91-20-3	Naphthal ene	390	<u>ט</u>
88-74-4	2-Nitroaniline	980	U
99-09-2	3-Nitroaniline	980	U
100-01-6	4-Nitroaniline	980	U
98-95-3	Nitrobenzene	390	יט ו
88-75-5	2-Nitrophenol	390	U
100-02-7	4-Nitrophenol	980	_ <u></u>

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6G290164 002

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: JAAFPlAL Dilution factor: 1

Date Received: 07/29/06 Date Extracted: 08/05/06

Date Analyzed: 08/10/06

Moisture %:16

QC Batch: 6217057

Client Sample Id: GRSB20(13-14)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg (2
621-64-7	N-Nitrosodi-n-propylamine	390	ַ ַ ַ ַ ַ
86-30-6	N-Nitrosodiphenylamine	390	ַ ַ ַ ַ ַ ַ
108-60-1	2,2'-oxybis(1-Chloropropane)	390	U
87-86-5	Pentachlorophenol	980	U
85-01-8	Phenanthrene	390	U
108-95-2	Phenol	390	U
129-00-0	Pyrene	390	ַ ַ ַ ַ
95-95-4	2,4,5-Trichlorophenol	980	U
88-06-2	2,4,6-Trichlorophenol	390	<u> </u>

Metals Data Reporting Form

Sample Results

Lab Sample ID: JAAFP Client ID: GRSB20(13-14)

Matrix: Soil Units: mg/kg Prep Date: 8/2/2006 Prep Batch: 6214386

Weight: 1.00 Volume: 200 Percent Moisture: 15.722

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
					4=	J ₁			
Aluminum	308.22	1.6	47.5	5650		I	ICPST	8/11/2006	15:11
Antimony	206.84	0.55	14.2	0.55	1JN	uJ1	ICPST	8/11/2006	15:11
Arsenic	189.04	0.45	2.4	1.6	B	J1	ICPST	8/11/2006	15:11
Barium	493.41	0.033	47.5	47.7		1	ICPST	8/11/2006	15:11
Beryllium	313.04	0.040	1.2	1.2 -0.31-	-B-	U 1	ICPST	8/11/2006	15:11
Cadmium	226.50	0.074	1.2	0.074	U	1	ICPST	8/11/2006	15:11
Calcium	317.93	0.97	1190	1190 -457-	_B_	U 1	ICPST	8/11/2006	15:11
Chromium	267.72	0.14	2.4	5.4	₩	J 1	ICPST	8/11/2006	15:11
Cobalt	228.62	0.15	11.9	4.6	B	J 1	ICPST	8/11/2006	15:11
Copper	324.75	0.22	5.9	15.7	-44-	J 1	ICPST	8/11/2006	15:11
Iron	271.44	3.2	23.7	10200	**	J 1	ICPST	8/11/2006	15:11
Lead	220.35	0.38	0.71	5.6		1	ICPST	8/11/2006	15:11
Magnesium	279.08	1.2	1190	2040	·	1	ICPST	8/11/2006	15:11
Manganese	257.61	0.036	3.6	138		J1	ICPST	8/11/2006	15:11
Nickel	231.60	0.17	9.5	10.4		1	ICPST	8/11/2006	15:11
Potassium	766.49	2.5	1190	1190 -642	BE-	U 1	ICPST	8/11/2006	15:11
Selenium	220.35	0.47	1.2	0.51	,B	J 1	ICPST	8/11/2006	15:11
Silver	328.07	0.11	2.4	0.11	U	1	ICPST	8/11/2006	15:11
Sodium	330.23	23.7	1190	85.8	B	J1	ICPST	8/11/2006	15:11
Thallium	190.86	0.66	2.4	0.66	U	1	ICPST	8/11/2006	15:11
Vanadium	292.40	0.13	11.9	5.5	B	J 1	ICPST	8/11/2006	15:11
Zinc	206.2	0.24	4.7	53.6	y	T 1_	ICPST	8/11/2006	15:11

Comments: Lot #: C6G290164 Sample #: 2Color:pre-brown, post-brown, Texture:pre-medium, post fine. Artfacts: stones.

5.04.5

U Result is less than the IDL

Form 1 Equivalent

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Metals Data Reporting Form

 Sample Results

 Lab Sample ID:
 JAAFP
 Client ID:
 GRSB20(13-14)

 Matrix:
 Soil
 Units:
 mg/kg
 Prep Date:
 8/14/2006
 Prep Batch:
 6226062

 Weight:
 .2
 Volume:
 100
 Percent Moisture:
 15.722

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.025	0.12	0.048	#	1	CVAA	8/14/2006	10:08

0.12 U

Comments: _Lot #: C6G290164 Sample #: 2

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Form 1 Equivalent

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6G290164 003

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g

Work Order: JAAFRIAK

Dilution factor: 1

Date Received: 07/29/06

Date Extracted:08/01/06

Date Analyzed: 08/01/06

Moisture %:9.3

QC Batch: 6213037

Client Sample Id: GRSB2(22-24)

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	QQ
67-64-1	Acetone	20	 2 U
71-43-2	Benzene	11	. 0
75-27-4	Bromodichloromethane	11	
75-25-2	Bromoform	11	U
74-83-9	Bromomethane	11	U
78-93-3	2-Butanone	11	U
75-15-0	Carbon disulfide	11	<u>י</u>
56-23-5	Carbon tetrachloride	11	ט
108-90-7	Chlorobenzene	11	ט ו
75-00-3	Chloroethane	11	ט
67-66-3	Chloroform	11	U
74-87-3	Chloromethane	11	U
110-82-7	Cyclohexane	11	UU
124-48-1	Dibromochloromethane	11	ט
96-12-0	1,2 Dibromo 3 chloropropane -	- 11 R	U U
106-93-4	1,2-Dibromoethane	11	ע
541-73-1	1,3-Dichlorobenzene	11	ט ן
106-46-7	1,4-Dichlorobenzene	11	U
95-50-1	1,2-Dichlorobenzene	11	U
75-71-8	Dichlorodifluoromethane	11	ָּט
75-34-3	1,1-Dichloroethane	11	U
107-06-2	1,2-Dichlorosthane	11	บ
75-35-4	1,1-Dichloroethene	11	U
156-59-2	cis-1,2-Dichloroethene	111	U
156-60-5	trans-1,2-Dichloroethene	11	ט
78-87-5	1,2-Dichloropropane	11	יט
10061-01-5	cis-1,3-Dichloropropene	11	Ŭ
10061-02-6	trans-1,3-Dichloropropene	11	ט

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID:C6G290164 003

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: JAAFRIAK

Date Received: 07/29/06 Date Extracted:08/01/06

Dilution factor: 1

Date Analyzed: 08/01/06

Moisture %:9.3

QC Batch: 6213037

Client Sample Id: GRSB2(22-24)

108-87-2 Methylcyclohexane 11 U 108-10-1 4-Methyl-2-pentanone 11 U 1634-04-4 Methyl tert-butyl ether 11 U 100-42-5 Styrene 11 U 79-34-5 1,1,2,2-Tetrachloroethane 11 U 120-82-1 1,2,4-Trichlorobenzene 11 U 127-18-4 Tetrachloroethene 11 U 71-55-6 1,1,1-Trichloroethane 11 U 79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethene 11 U	CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q
98-82-8 Isopropylbenzene 11 U 79-20-9 Methyl acetate 11 U 75-09-2 Methylene chloride 5.5 JB 108-87-2 Methylcyclohexane 11 U 108-10-1 4-Methyl-2-pentanone 11 U 1634-04-4 Methyl tert-butyl ether 11 U 100-42-5 Styrene 11 U 79-34-5 1,1,2,2-Tetrachloroethane 11 U 120-82-1 1,2,4-Trichloroethane 11 U 71-55-6 1,1,1-Trichloroethane 11 U 79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethene 11 U	100-41-4	Ethylbenzene	11	U
79-20-9 Methyl acetate 11 U 75-09-2 Methylene chloride 5.5 JB 108-87-2 Methylcyclohexane 11 U 108-10-1 4-Methyl-2-pentanone 11 U 1634-04-4 Methyl tert-butyl ether 11 U 100-42-5 Styrene 11 U 79-34-5 1,1,2,2-Tetrachloroethane 11 U 120-82-1 1,2,4-Trichlorobenzene 11 U 71-55-6 1,1,1-Trichloroethane 11 U 79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethene 11 U	591-78-6	2-Hexanone	11	U
75-09-2 Methylene chloride 5.5 J B 108-87-2 Methylcyclohexane 11 U 108-10-1 4-Methyl-2-pentanone 11 U 1634-04-4 Methyl tert-butyl ether 11 U 100-42-5 Styrene 11 U 79-34-5 1,1,2,2-Tetrachloroethane 11 U 120-82-1 1,2,4-Trichlorobenzene 11 U 127-18-4 Tetrachloroethene 11 U 71-55-6 1,1,1-Trichloroethane 11 U 79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethene 11 U	98-82-8	Isopropylbenzene	11	U
108-87-2 Methylcyclohexane 11 U 108-10-1 4-Methyl-2-pentanone 11 U 1634-04-4 Methyl tert-butyl ether 11 U 100-42-5 Styrene 11 U 79-34-5 1,1,2,2-Tetrachloroethane 11 U 120-82-1 1,2,4-Trichlorobenzene 11 U 127-18-4 Tetrachloroethene 11 U 71-55-6 1,1,1-Trichloroethane 11 U 79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethene 11 U	79-20-9	Methyl acetate	11	
108-10-1 4-Methyl-2-pentanone 11 U 1634-04-4 Methyl tert-butyl ether 11 U 100-42-5 Styrene 11 U 79-34-5 1,1,2,2-Tetrachloroethane 11 U 120-82-1 1,2,4-Trichloroethane 11 U 127-18-4 Tetrachloroethane 11 U 71-55-6 1,1,1-Trichloroethane 11 U 79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethane 11 U	75-09-2	Methylene chloride	5.5	 J B
1634-04-4 Methyl tert-butyl ether 11 U 100-42-5 Styrene 11 U 79-34-5 1,1,2,2-Tetrachloroethane 11 U 120-82-1 1,2,4-Trichlorobenzene 11 U 127-18-4 Tetrachloroethane 11 U 71-55-6 1,1,1-Trichloroethane 11 U 79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethane 11 U	108-87-2	Methylcyclohexane	11	ן ט
100-42-5 Styrene 11 U 79-34-5 1,1,2,2-Tetrachloroethane 11 U 120-82-1 1,2,4-Trichlorobenzene 11 U 127-18-4 Tetrachloroethane 11 U 71-55-6 1,1,1-Trichloroethane 11 U 79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethane 11 U	108-10-1	4-Methyl-2-pentanone	11	U
79-34-5 1,1,2,2-Tetrachloroethane 11 U 120-82-1 1,2,4-Trichlorobenzene 11 U 127-18-4 Tetrachloroethane 11 U 71-55-6 1,1,1-Trichloroethane 11 U 79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethane 11 U	1634-04-4	Methyl tert-butyl ether	11	U
120-82-1 1,2,4-Trichlorobenzene 11 U 127-18-4 Tetrachloroethene 11 U 71-55-6 1,1,1-Trichloroethane 11 U 79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethene 11 U	100-42-5	Styrene	11	<u> </u>
127-18-4 Tetrachloroethene 11 U 71-55-6 1,1,1-Trichloroethane 11 U 79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethene 11 U	79-34-5	1,1,2,2-Tetrachloroethane	11	U
71-55-6 1,1,1-Trichloroethane 11 U 79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethane 11 U	120-82-1	1,2,4-Trichlorobenzene	11	U
79-00-5 1,1,2-Trichloroethane 11 U 79-01-6 Trichloroethene 11 U	127-18-4	Tetrachloroethene	11	<u>"</u>
79-01-6 Trichloroethene 11 U	71-55-6	1,1,1-Trichloroethane	11	U
	79-00-5	1,1,2-Trichloroethane	11	<u> </u>
	79-01-6	Trichloroethene	11	<u> </u>
75-69-4 Trichlorofiuoromethane 11 U	75-69-4	Trichlorofluoromethane	11	<u> </u>
76-13-1 1,1,2-Trichloro-1,2,2-triflu 11 U	76-13-1	1,1,2-Trichloro-1,2,2-triflu	11	U
108-88-3 Toluene 11 U	108-88-3	Toluene	11	U
75-01-4 Vinyl chloride 11 U	75-01-4	Vinyl chloride	11	U
1330-20-7 Xylenes (total) 11 U	1330-20-7	Xylenes (total)	11	U

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6G290164 003

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: JAAFR1AL

Date Received: 07/29/06 Date Extracted: 08/05/06 Date Analyzed: 08/10/06

Dilution factor: 1

Moisture %:9.3

QC Batch: 6217057

Client Sample Id: GRSB2(22-24)

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q
83-32-9	Acenaphthene	360	U
208-96-8	Acenaphthylene	360	ן
98-86-2	Acetophenone	360	<u></u>
120-12-7	Anthracene	360	<u> </u>
1912-24-9	Atrazine	360	יט ו
56-55-3	Benzo (a) anthracene	360	ן ש
50-32-8	Benzo(a)pyrene	360	<u>"</u>
205-99-2	Benzo(b) fluoranthene	360	
191-24-2	Benzo(ghi)perylene	360	u
207-08-9	Benzo(k) fluoranthene	360	<u> </u>
100-52-7	Benzaldehyde	360	ַ
92-52-4	1,1'-Biphenyl	360	ט
111-91-1	bis(2-Chloroethoxy)methane	360	ַ ַ ַ
111-44-4	bis(2-Chloroethyl) ether	360	U
117-81-7	bis(2-Ethylhexyl) phthalate	360	ט
101-55-3	4-Bromophenyl phenyl ether	360	ט
85-68-7	Butyl benzyl phthalate	360	UU
105-60-2	Caprolactam	73	J
86-74-8	Carbazole	360	ַ ן
106-47-8	4-Chloroaniline	360	<u> </u>
59-50-7	4-Chloro-3-methylphenol	360	lu
91-58-7	2-Chloronaphthalene	360	<u> </u>
95-57-8	2-Chlorophenol	360	<u> </u>
7005-72-3	4-Chlorophenyl phenyl ether	360	
218-01-9	Chrysene	360	U
53-70-3	Dibenz (a, h) anthracene	360	<u>ע</u>
132-64-9	Dibenzofuran	360	U
91-94-1	3,3'-Dichlorobenzidine	360	יט

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6G290164 003

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: JAAFR1AL Dilution factor: 1 Date Received: 07/29/06
Date Extracted:08/05/06

Date Analyzed: 08/10/06

Moisture %:9.3

QC Batch: 6217057

Client Sample Id: GRSB2(22-24)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg Q	
120-83-2	2,4-Dichlorophenol	360	U
84-66-2	Diethyl phthalate	360	<u>U</u>
105-67-9	2,4-Dimethylphenol	360	<u>U</u>
131-11-3	Dimethyl phthalate	360	<u>U</u>
84-74-2	Di-n-butyl phthalate	360	ַ
534-52-1	4,6-Dinitro-2-methylphenol	910	U
51-28-5	2,4-Dinitrophenol	910	ַ ַ
121-14-2	2,4-Dinitrotoluene	360	ַ
606-20-2	2,6-Dinitrotoluene	360	U
117-84-0	Di-n-octyl phthalate	360	U
206-44-0	Fluoranthene	360	U
86-73-7	Fluorene	360	U
118-74-1	Hexachlorobenzene	360	ַ ט
87-68-3	Hexachlorobutadiene	360	U
77-47-4	Hexachlorocyclopentadiene	360	U
67-72-1	Hexachloroethane	360	ับ
193-39-5	Indeno(1,2,3-cd)pyrene	360	U
78-59-1	Isophorone	360	U
91-57-6	2-Methylnaphthalene	360	U
95-48-7	2-Methylphenol	360	ט
106-44-5	4-Methylphenol	360	ַ
91-20-3	Naphthalene	360	U
88-74-4	2-Nitroaniline	910	U
99-09-2	3-Nitroaniline	910	ַ
100-01-6	4-Nitroaniline	910	U
98-95-3	Nitrobenzene	360	U
88-75-5	2-Nitrophenol	360	U
100-02-7	4-Nitrophenol	910	U

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6G290164 003

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g

Work Order: JAAFR1AL

Date Received: 07/29/06

Date Extracted:08/05/06

Date Analyzed: 08/10/06

Moisture %:9.3

QC Batch: 6217057

Client Sample Id: GRSB2(22-24)

CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/kg Q	
621-64-7	N-Nitrosodi-n-propylamine	360	ַ ַ ַ ַ ַ
86-30-6	N-Nitrosodiphenylamine	360	ַ ַ ַ ַ
108-60-1	2,2'-oxybis(1-Chloropropane)	360	ַ "
87-86-5	Pentachlorophenol	910	U
85-01-8	Phenanthrene	360	U
108-95-2	Phenol	360	บ
129-00-0	Pyrene	360	U
95-95-4	2,4,5-Trichlorophenol	910	<u></u> ע
88-06-2	2,4,6-Trichlorophenol	360	U

STL-Pittsburgh

Metals Data Reporting Form

Sample Results

Lab Sample ID: JAAFR Client ID: GRSB2(22-24)

Matrix: Soil Units: mg/kg Prep Date: 8/2/2006 Prep Batch: 6214386

Weight: 1.00 Volume: 200 Percent Moisture: 9.256

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Aluminum	308.22	1.5	44.1	8870	*	J 1	ICPST	8/11/2006	15:17
Antimony	206.84	0.51	13.2	0.51	-UN		ICPST	8/11/2006	15:17
Arsenic	189.04	0.42	2,2	3.2			ICPST	8/11/2006	15:17
Barium	493.41	0.031	44.1	31.0	B	l	ICPST	8/11/2006	15:17
Beryllium	313.04	0.037	1.1	1.1 -0.41	-B-	1 .		8/11/2006	15:17
Cadmium	226.50	0.068	1.1	0.068	บ	1	ICPST	8/11/2006	15:17
Calcium	317.93	0.90	1100	1100 -433-	<u>B</u>	U 1	ICPST	8/11/2006	15:17
Chromium	267.72	0.13	2.2	11.6	₩	_	ICPST	8/11/2006	15:17
Cobalt	228.62	0.14	11.0	5.6	B	مدا	ICPST	8/11/2006	15:17
Copper	324.75	0.20	5,5	3.0	₩	J 1	ICPST	8/11/2006	15:17
Iron	271.44	3.0	22.0	18700		J 1	ICPST	8/11/2006	15:17
Lead	220.35	0.35	0.66	2.7		1	ICPST	8/11/2006	15:17
Magnesium	279.08	1.1	1100	3690			ICPST	8/11/2006	15:17
Manganese	257.61	0.033	3.3	161		J 1	ICPST	8/11/2006	15:17
Nickel	231.60	0.16	8.8	16.6		1	ICPST	8/11/2006	15:17
Potassium	766.49	2.3	1100	1100 732	BE	U 1	ICPST	8/11/2006	15:17
Selenium	220.35	0.44	1.1	0.60	B	J 1	ICPST	8/11/2006	15:17
Silver	328.07	0.099	2.2	0.099	U	1	ICPST	8/11/2006	15:17
Sodium	330.23	22.0	1100	132	B	J 1	ICPST	8/11/2006	15:17
Thallium	190.86	0.62	2.2	0.62	ับ	1	ICPST	8/11/2006	15:17
Vanadium	292.40	0.12	11.0	9.5	₽^	J1	ICPST	8/11/2006	15:17
Zinc	206.2	0.22	4.4	42.3	٠ سير	J 1	ICPST	8/11/2006	15:17

Comments: Lot #: C6G290164 Sample #: 3Color:pre- brown, post-brown. Texture:pre- medium, post fine. Artfacts: stones,

5.04.5

U Result is less than the IDL

Form 1 Equivalent

B Result is between IDL and RL

E Serial dilution percent difference not within limits

STL-Pittsburgh

Metals Data Reporting Form

Sample R	esults		····					_
Lab Sample	ID:	JAAFR		Client ID:	GRSB2(22	:-24)		
Matrix:	Soil	Units:	mg/kg	Prep Date:	8/14/2006	Prep Batch:_	6226062	
Weight:	.2	Volume:	100	Percent Moist	ure: 9.256			

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.023	0.11	0.034	†	1	CVAA	8/14/2006	10:10

0.11 U

Comments: Lot #: C6G290164 Sample #: 3

5.04.5

U Result is less than the IDL

Form I Equivalent

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 005

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: H8DVE1AK

Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/06/06

Moisture %:12

QC Batch: 6187555

Client Sample Id: GRSB3(4-5)

CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/kg Q	
67-64-1	Acetone	11	U U
71-43-2	Benzene	11	U
75-27-4	Bromodichloromethane	11	<u> </u>
75-25-2	Bromoform	11	<u> </u>
74-83-9	Bromomethane	11	U
78-93-3	2-Butanone	11	ַ ט
75-15-0	Carbon disulfide	11	ַ ט
56-23-5	Carbon tetrachloride	11	U
108-90-7	Chlorobenzene	11	ט
75-00-3	Chloroethane	11	ט
67-66-3	Chloroform	11	ט
74-87-3	Chloromethane	11	<u>י</u>
110-82-7	Cyclohexane	11	ַ
124-48-1	Dibromochloromethane	11	U
96-12-8	1,2-Dibromo-3-chloropropane	11	U
106-93-4	1,2-Dibromoethane	11	Ū
541-73-1	1,3-Dichlorobenzene	11	ַ
106-46-7	1,4-Dichlorobenzene	11	ט
95-50-1	1,2-Dichlorobenzene	11	<u>ט</u>
75-71-8	Dichlorodifluoromethane	11	ָט
75-34-3	1,1-Dichloroethane	11	Ū
107-06-2	1,2-Dichloroethane	11	ַ ע
75-35-4	1,1-Dichloroethene	11	ַ ט
156-59-2	cis-1,2-Dichloroetheme	11	U
156-60-5	trans-1,2-Dichloroethene	11	U
78-87-5	1,2-Dichloropropane	11	U
10061-01-5	cis-1,3-Dichloropropene	11	ט
10061-02-6	trans-1,3-Dichloropropene	11	<u>ט</u>

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) \$0

Lab Sample ID: C6F280229 005

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: H8DVE1AK

Date Received: 06/28/06 Date Extracted:07/06/06

Dilution factor: 1

Moisture %:12

Date Analyzed: 07/06/06

QC Batch: 6187555

Client Sample Id: GRSB3(4-5)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q	
100-41-4	Ethylbenzene	11	<u>"</u>	
591-78-6	2-Hexanone	11	<u>"</u>	
98-82-8	Isopropylbenzene	11	Ū	
79-20-9	Methyl acetate	11	03	
75-09-2	Methylene chloride	3.8	JB	-110
108-87-2	Methylcyclohexane	11	U	•
108-10-1	4-Methyl-2-pentanone	11	U	
1634-04-4	Methyl tert-butyl ether	11	U	
100-42-5	Styrene	11	U	
79-34-5	1,1,2,2-Tetrachloroethane	11	U	
120-82-1	1,2,4-Trichlorobenzene	11	U	
127-18-4	Tetrachloroethene	11	U	
71-55-6	1,1,1-Trichloroethane	11	Ü	
79-00-5	1,1,2-Trichloroethane	11	<u>ט</u>	
79-01-6	Trichloroethene	11	וט	
75-69-4	Trichlorofluoromethane	11	וט	
76-13-1	1,1,2-Trichloro-1,2,2-triflu	11	ט	
108-88-3	Toluene	11	ט ו	
75-01-4	Vinyl chloride	11	ט	
1330-20-7	Xylenes (total)	11	וט	

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 005

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DVE1AL Dilution factor: 1

Date Received: 06/28/06 Date Extracted: 07/06/06

Moisture %:12

Date Analyzed: 07/10/06

QC Batch: 6187024

Client Sample Id: GRSB3(4-5)

83-32-9 Acenaphthene 370 U 208-96-8 Acenaphthylene 370 U 98-86-2 Acetophenone 83 J	CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q
98-86-2 Acetophenone	83-32-9	Acenaphthene	370	U
120-12-7	208-96-8	Acenaphthylene	370	_ ט
1912-24-9 Atrazine 370 U 56-55-3 Benzo(a) anthracene 370 U 50-32-8 Benzo(a) pyrene 370 U 205-99-2 Benzo(b) fluoranthene 370 U 191-24-2 Benzo(ghi) perylene 370 U 207-08-9 Benzo(k) fluoranthene 370 U 100-52-7 Benzaldehyde 370 U 111-91-1 bis (2-Chloroethoxy) methane 370 U 111-44-4 bis (2-Chloroethoxy) methane 370 U 117-81-7 bis (2-Ethylhexyl) phthalate 370 U 100-55-3 4-Bromophenyl phenyl ether 370 U 105-60-2 Caprolactam 39 J 86-74-8 Carbazole 370 U 105-47-8 4-Chloroeniline 370 U 105-57-8 2-Chlorophenol 370 U 105-72-3 4-Chlorophenol 370 U 105-72-3 105-72-9 105-	98-86-2	Acetophenone	83	
56-55-3 Benzo(a) anthracene 370 U 50-32-8 Benzo(a) pyrene 370 U 205-99-2 Benzo(b) fluoranthene 370 U 191-24-2 Benzo(ghi) perylene 370 U 207-08-9 Benzo(k) fluoranthene 370 U 100-52-7 Benzaldehyde 370 U 92-52-4 1,1'-Biphenyl 370 U 111-91-1 bis (2-Chloroethoxy) methane 370 U 117-81-7 bis (2-Chloroethyl) ether 370 U 101-55-3 4-Bromophenyl phenyl ether 370 U 85-68-7 Butyl benzyl phthalate 370 U 105-60-2 Caprolactam 39 J 86-74-8 Carbazole 370 U 105-60-2 Caprolactam 370 U 59-50-7 4-Chloroaniline 370 U 59-50-7 4-Chloroaniline 370 U 95-57-8 2-Chlorophenol 370 U <t< td=""><td>120-12-7</td><td>Anthracene</td><td>370</td><td></td></t<>	120-12-7	Anthracene	370	
So-32-8 Benzo(a)pyrene 370 U	1912-24-9	Atrazine	370	ן ט
205-99-2 Benzo (b) fluoranthene 370 U 191-24-2 Benzo (ghi) perylene 370 U 207-08-9 Benzo (k) fluoranthene 370 U 100-52-7 Benzaldehyde 370 U 207-08-9	56-55-3	Benzo (a) anthracene	370	U
191-24-2 Benzo (ghi) perylene 370 U 207-08-9 Benzo (k) fluoranthene 370 U 100-52-7 Benzaldehyde 370 U 92-52-4 1,1'-Biphenyl 370 U 111-91-1 bis (2-Chloroethoxy) methane 370 U 111-44-4 bis (2-Chloroethyl) ether 370 U 117-81-7 bis (2-Ethylhexyl) phthalate 370 U 101-55-3 4-Bromophenyl phenyl ether 370 U 85-68-7 Butyl benzyl phthalate 370 U 105-60-2 Caprolactam 39 J S6-74-8 Carbazole 370 U 106-47-8 4-Chloroaniline 370 U 106-47-8 4-Chloroaniline 370 U 91-58-7 2-Chloroaphthalene 370 U 91-58-7 2-Chlorophenol 370 U 91-58-7 2-Chlorophenol 370 U 218-01-9 Chrysene 370 U 218-01-9 Chrysene 370 U 370 U 53-70-3 Dibenz (a, h) anthracene 370 U 370 U 370-70-3 Dibenz (a, h) anthracene 370 U 370 U 370-70-3 Dibenz (a, h) anthracene 370 U 370 U 370-70-3 Dibenz (a, h) anthracene 370 U 370 U 370-70-3 Dibenz (a, h) anthracene 370 U 370-70-70-70-70-70-70-70-70-70-70-70-70-7	50-32-8	Benzo(a)pyrene	370	U
207-08-9 Benzo(k) fluoranthene 370 U 100-52-7 Benzaldehyde 370 U 92-52-4 1,1'-Biphenyl 370 U 111-91-1 bis(2-Chloroethoxy) methane 370 U 111-44-4 bis(2-Chloroethyl) ether 370 U 117-81-7 bis(2-Bthylhexyl) phthalate 370 U 101-55-3 4-Bromophenyl phenyl ether 370 U 85-68-7 Butyl benzyl phthalate 370 U 105-60-2 Caprolactam 39 J S6-74-8 Carbazole 370 U 106-47-8 4-Chloroaniline 370 U 106-47-8 4-Chloroaniline 370 U 59-50-7 4-Chloro-3-methylphenol 370 U 91-58-7 2-Chloronaphthalene 370 U 95-57-8 2-Chlorophenol 370 U 7005-72-3 4-Chlorophenyl phenyl ether 370 U 218-01-9 Chrysene 370 U 53-70-3 Dibenz(a, h) anthracene 370 U 132-64-9 Dibenzofuran 370 U	205-99-2	Benzo(b) fluoranthene	370	ט
100-52-7 Benzaldehyde 370 U 92-52-4 1,1'-Biphenyl 370 U 111-91-1 bis (2-Chloroethoxy) methane 370 U 111-44-4 bis (2-Chloroethyl) ether 370 U 117-81-7 bis (2-Ethylhexyl) phthalate 370 U 101-55-3 4-Bromophenyl phenyl ether 370 U 85-68-7 Butyl benzyl phthalate 370 U 105-60-2 Caprolactam 39 J J S6-74-8 Carbazole 370 U 106-47-8 4-Chloroaniline 370 U 106-47-8 4-Chloro-3-methylphenol 370 U 91-58-7 2-Chloronaphthalene 370 U 95-57-8 2-Chlorophenol 370 U 7005-72-3 4-Chlorophenyl phenyl ether 370 U 1218-01-9 Chrysene 370 U 132-64-9 Dibenzofuran 370 U U U U U U U U U	191-24-2	Benzo(ghi)perylene	370	ן די
92-52-4	207-08-9	Benzo(k) fluoranthene	370	Ü
92-52-4	100-52-7	Benzaldehyde	370	וט
111-44-4 bis (2-Chloroethyl) ether 370 U 117-81-7 bis (2-Ethylhexyl) phthalate 370 U 101-55-3 4-Bromophenyl phenyl ether 370 U 85-68-7 Butyl benzyl phthalate 370 U 105-60-2 Caprolactam 39 J	92-52-4		370	וט
117-81-7 bis(2-Ethylhexyl) phthalate 370 U 101-55-3 4-Bromophenyl phenyl ether 370 U 85-68-7 Butyl benzyl phthalate 370 U 105-60-2 Caprolactam 39 J U 106-47-8 Carbazole 370 U 106-47-8 4-Chloroaniline 370 U 59-50-7 4-Chloro-3-methylphenol 370 U 91-58-7 2-Chloronaphthalene 370 U 95-57-8 2-Chlorophenol 370 U 7005-72-3 4-Chlorophenyl phenyl ether 370 U 218-01-9 Chrysene 370 U 53-70-3 Dibenz(a, h) anthracene 370 U 132-64-9 Dibenzofuran 370 U	111-91-1	bis (2-Chloroethoxy) methane	370	U
117-81-7 bis(2-Ethylhexyl) phthalate 370 U 101-55-3 4-Bromophenyl phenyl ether 370 U 85-68-7 Butyl benzyl phthalate 370 U 105-60-2 Caprolactam 39 J	111-44-4	bis(2-Chloroethyl) ether	370	<u>"</u>
101-55-3	117-81-7	bis(2-Ethylhexyl) phthalate	370	_ ; ;
85-68-7 Butyl benzyl phthalate 370 U 105-60-2 Caprolactam 39 J	101-55-3	4-Bromophenyl phenyl ether	370	
86-74-8 Carbazole 370 U 106-47-8 4-Chloroaniline 370 U 59-50-7 4-Chloro-3-methylphenol 370 U 91-58-7 2-Chloronaphthalene 370 U 95-57-8 2-Chlorophenol 370 U 7005-72-3 4-Chlorophenyl phenyl ether 370 U 218-01-9 Chrysene 370 U 53-70-3 Dibenz(a,h)anthracene 370 U 132-64-9 Dibenzofuran 370 U	85-68-7	· · · · · · · · · · · · · · · · · · ·	370	
106-47-8	105-60-2	Caprolactam	39	J
59-50-7	86-74-8	Carbazole	370	U
91-58-7 2-Chloronaphthalene 370 U 95-57-8 2-Chlorophenol 370 U	106-47-8	4-Chloroaniline	370	ַ ט
95-57-8 2-Chlorophenol 370 U 7005-72-3 4-Chlorophenyl phenyl ether 370 U 218-01-9 Chrysene 370 U 53-70-3 Dibenz(a,h)anthracene 370 U 132-64-9 Dibenzofuran 370 U	59-50-7	4-Chloro-3-methylphenol	370	ַן ַ
7005-72-3 4-Chlorophenyl phenyl ether 370 U 218-01-9 Chrysene 370 U 53-70-3 Dibenz(a,h)anthracene 370 U 132-64-9 Dibenzofuran 370 U	91-58-7	2-Chloronaphthalene	370	ַן ט
7005-72-3 4-Chlorophenyl phenyl ether 370 U 218-01-9 Chrysene 370 U	95-57-8	2-Chlorophenol	370	ָד
53-70-3 Dibenz(a,h)anthracene 370 U 132-64-9 Dibenzofuran 370 U	7005-72-3	4-Chlorophenyl phenyl ether	370	
53-70-3 Dibenz(a,h)anthracene 370 U 132-64-9 Dibenzofuran 370 U	218-01-9	Chrysene	370	ַ
132-64-9 Dibenzofuran 370 U	53-70-3	Dibenz(a,h)anthracene		_ : :
	132-64-9	Dibenzofuran	370	
	91-94-1	3,3'-Dichlorobenzidine	:	_ ;

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6F280229 005

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Date Received: 06/28/06 Work Order: H8DVE1AL Date Extracted:07/06/06 Dilution factor: 1 Date Analyzed: 07/10/06

Moisture %:12

QC Batch: 6187024

Client Sample Id: GRSB3(4-5)

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q
120-83-2	2,4-Dichlorophenol	370	l
84-66-2	Diethyl phthalate	370	U
105-67-9	2,4-Dimethylphenol	370	U
131-11-3	Dimethyl phthalate	370	Ü
84-74-2	Di-n-butyl phthalate	370	ט
534-52-1	4,6-Dinitro-2-methylphenol	940	ט
51-28-5	2,4-Dinitrophenol	940	ט
121-14-2	2,4-Dinitrotoluene	370	ָט
606-20-2	2,6-Dinitrotoluene	370	U
117-84-0	Di-n-octyl phthalate	370	ַ
206-44-0	Fluoranthene	370	ט
86-73-7	Fluorene	370	U
118-74-1	Hexachlorobenzene	370	וט
87-68-3	Hexachlorobutadiene	370	U
77-47-4	Hexachlorocyclopentadiene	370	
67-72-1	Hexachloroethane	370	<u>י</u>
193-39-5	Indeno(1,2,3-cd)pyreme	370	_
78-59-1	Isophorone	370	_
91-57-6	2-Methylnaphthalene	370	U
95-48-7	2-Methylphenol	370	U
106-44-5	4-Methylphenol	370	_
91-20-3	Naphthalene	370	_ U
88-74-4	2-Nitroaniline	940	וט
99-09-2	3-Nitroaniline	940	U
100-01-6	4-Nitroaniline	940	U
98-95-3	Nitrobenzene	370	ן ט
88-75-5	2-Nitrophenol	370	<u>י</u>
100-02-7	4-Nitrophenol	940	U U

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 005

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DVE1AL Date Received: 06/28/06 Date Extracted:07/06/06

Dilution factor: 1

Date Analyzed: 07/10/06

Moisture %:12

QC Batch: 6187024

Client Sample Id: GRSB3(4-5)

COMPOUND (ug/L or ug	g/kg) ug/kg Q	
N-Nitrosodi-n-propylamine	370	ַ ַ ַ ַ ַ ַ
N-Nitrosodiphenylamime	370	U
2,2'-oxybis(1-Chloropropane)	370	ש
Pentachlorophenol	940	บ
Phenanthrene	370	U
Phenol	370	U
Pyrene	370	U
2,4,5-Trichlorophenol	940	יט
2,4,6-Trichlorophenol	370	U
	N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine 2,2'-oxybis(1-Chloropropane) Pentachlorophenol Phenanthrene Phenol Pyrene 2,4,5-Trichlorophenol	N-Nitrosodi-n-propylamine 370 N-Nitrosodiphenylamine 370 2,2'-oxybis(1-Chloropropane) 370 Pentachlorophenol 940 Phenanthrene 370 Phenol 370 Pyrene 370 2,4,5-Trichlorophenol 940

STL-Pittsburgh

Metals Data Reporting Form

Sample Results

Lab Sample ID: H8DVE

Client ID: GRSB3(4-5)

Matrix: S

Soil

Units: mg/kg

Prep Date: 6/29/2006

Prep Batch: 6180029

Weight: 1.00 Volume: 200 Percent Moisture: 11.5

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Element					<u> </u>	Dr			
Aluminum	308.22	1.4	45.2	4670		1	ICPST	7/1/2006	19:30
Antimony	220.35	0.43	13.6	0.43	MN	uJ1	ICPST	7/1/2006	19:30
Arsenic	189.04	0.23	2,3	1.6	₽'	J1	ICPST	7/1/2006	19:30
Barium	493.41	0.034	45.2	30.2	B,	J1	ICPST	7/1/2006	19:30
Beryllium	313.04	0.041	1.1	1.1 0.36	B-	U 1	ICPST	7/1/2006	19:30
Cadmium	226.50	0.036	1,1	0.036	U	1	ICPST	7/1/2006	19:30
Calcium	317.93	2.5	1130	1130 -360-	В	ו ען	ICPST	7/1/2006	19:30
Chromium	267.72	0.097	2,3	4.6		1	ICPST	7/1/2006	19:30
Cobalt	228.62	0.11	11.3	4.2	·B-	J1 :	ICPST	7/1/2006	19:30
Copper	324.75	0.075	5.6	4.0	₽E	J1	ICPST	7/1/2006	19:30
Iron	271.44	4.3	22.6	9320		1	ICPST	7/1/2006	19:30
Lead	220.35	0.25	0.68	3.1		1	ICPST	7/1/2006	19:30
Magnesium	279.08	1.5	1130	1710		1	ICPST	7/1/2006	19:30
Manganese	257.61	0.038	3.4	266		1	ICPST	7/1/2006	19:30
Nickel	231.60	0.22	9.0	8.8	B	\mathcal{J}_1	ICPST	7/1/2006	19:30
Potassium	766.49	2.1	1130	//30 -563-	BE	U 1	ICPST	7/1/2006	19:30
Selenium	220.35	0.36	1.1	0.36	U	1	ICPST	7/1/2006	19:30
Silver	328.07	0.11	2.3	0.12	B	J1	ICPST	7/1/2006	19:30
Sodium	330.23	39.3	1130	39.8	.B	J1	ICPST	7/1/2006	19:30
Thallium	190.86	0.59	2.3	0.59	U	1	ICPST	7/1/2006	19:30
Vanadium	292.40	0.16	11.3	11.3 -4.4	-B-	U 1	ICPST	7/1/2006	19:30
Zinc	213.86	0.18	4.5	28.5		1	ICPST	7/1/2006	19:30

Comments: Lot #: C6F280229 Sample #: 5Color:pre- brown, post- brwon. Texture:pre- medium, post- fine.Artifacts. Stones,

organic

4.5 U Result is less than the IDL

B Result is between IDL and RL

Form 1 Equivalent

STL+Pittsburgh

Metals Data Reporting Form

Sample Results		· · · · · · · · · · · · · · · · · · ·			
Lab Sample ID:	H8DVE_	Client ID:	GRSB3(4	-5)	
Matrix: Soil	Units: mg/kg	Prep Date:	7/13/2006	Prep Batch:_	6194013
Weight:2	Volume: 100	Percent Moist	ture: 11.5		

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.013	0.11	0.027	BN	1	CVAA	7/13/2006	8:47

0.11 V

Comments: Lot #: C6F280229 Sample #: 5

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Form 1 Equivalent

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 006

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: H8DVF1AK Date Received: 06/28/06 Date Extracted:07/06/06

Dilution factor: 1

Date Analyzed: 07/06/06

Moisture %:15

QC Batch: 6187555

Client Sample Id: GRSB3(6-7)

CAS NO.	COMPOUND (u	g/L or ug	/kg) ug/kg	Q
67-64-1	Acetone		12	ַ
71-43-2	Benzene		12	U . U
75-27-4	Bromodichloromethane		12	U
75-25-2	Bromoform		12	ט
74-83-9	Bromomethane		12	ט
78-93-3	2-Butanone		12	ט
75-15-0	Carbon disulfide		12	ם ד
56-23-5	Carbon tetrachloride		12	U
108-90-7	Chlorobenzene		12	ן ס
75-00-3	Chloroethane		12	<u>ס</u>
67-66-3	Chloroform		12	יט יי
74-87-3	Chloromethane		12	U
110-82-7	Cyclohexane		12	U
124-48-1	Dibromochloromethane		12	ט
96-12-8	1,2-Dibromo-3-chloro	propane	12	יט
106-93-4	1,2-Dibromoethane		12	Ū
541-73-1	1,3-Dichlorobenzene		12	ם ו
106-46-7	1,4-Dichlorobenzene		12	ַן
95-50-1	1,2-Dichlorobenzene		12	ט
75-71-8	Dichlorodifluorometh	ane	12	U
75-34-3	1,1-Dichloroethane		12	U
107-06-2	1,2-Dichloroethane		12	ן די די די
75-35-4	1,1-Dichloroethene		12	ן די
156-59-2	cis-1,2-Dichloroethe	ne	12	ַן
156-60-5	trans-1,2-Dichloroet	hene	12	ַן
78-87-5	1,2-Dichloropropane		12	U
10061-01-5	cis-1,3-Dichloroprop	ene	12	ט
10061-02-6	trans-1,3-Dichloropr	opene	12	U

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 006

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: H8DVF1AK

Date Received: 06/28/06 Date Extracted:07/06/06

Dilution factor: 1

Date Analyzed: 07/06/06

Moisture %:15

QC Batch: 6187555

Client Sample Id: GRSB3(6-7)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q
100-41-4	Ethylbenzene	12	U
591-78-6	2-Hexanone	12	U
98-82-8	Isopropylbenzene	12	U
79-20-9	Methyl acetate	12	UJ
75-09-2	Methylene chloride	4.2	13 B 120
108-87-2	Methylcyclohexane	12	ן ט
108-10-1	4-Methyl-2-pentanone	12	U
1634-04-4	Methyl tert-butyl ether	12	וֹט
100-42-5	Styrene	12	<u> </u>
79-34-5	1,1,2,2-Tetrachloroethane	12	וט
120-82-1	1,2,4-Trichlorobenzene	12	<u>ט</u>
127-18-4	Tetrachloroethene	12	ע
71-55-6	1,1,1-Trichloroethane	12	ן ט
79-00-5	1,1,2-Trichloroethane	12	ן ט
79-01-6	Trichloroethene	12	U
75-69-4	Trichlorofluoromethane	12	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	12	U
108-88-3	Toluene	12	U
75-01-4	Vinyl chloride	12	U
1330-20-7	Xylenes (total)	12	U

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6F280229 006

Method: OCLP OLM04.2 Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g

Date Received: 06/28/06

Work Order: H8DVF1AL

Date Extracted: 07/06/06

Dilution factor: 1 Date Analyzed: 07/10/06 Moisture %:15

QC Batch: 6187024

Client Sample Id: GRSB3(6-7)

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q
83-32-9	Acenaphthene	390	ַן ַ
208-96-8	Acenaphthylene	390	<u> </u>
98-86-2	Acetophenone	<u> 83 </u>	<u> </u>
120-12-7	Anthracene	390	ןו
1912-24-9	Atrazine	390	ט
56-55-3	Benzo(a) anthracene	390	<u>U</u>
50-32-8	Benzo(a)pyrene	390	U
205-99-2	Benzo(b) fluoranthene	390	ן ט
191-24-2	Benzo(ghi)perylene	390	ט ט
207-08-9	Benzo(k)fluoranthene	390	ט
100-52-7	Benzaldehyde	390	ט
92-52-4	1,1'-Biphenyl	390	U
111-91-1	bis(2-Chloroethoxy)methane	390	ָ ט
111-44-4	bis(2-Chloroethyl) ether	390	וט
117-81-7	bis(2-Ethylhexyl) phthalate	740	
101-55-3	4-Bromophenyl phenyl ether	390	<u> </u> U
85-68-7	Butyl benzyl phthalate	390	ן ש
105-60-2	Caprolactam	390	ע
86-74-8	Carbazole	390	ט
106-47-8	4-Chloroaniline	390	ט
59-50-7	4-Chloro-3-methylphenol	390	ן ט
91-58-7	2-Chloronaphthalene	390	ן ט
95-57-8	2-Chlorophenol	390	ן ט
7005-72-3	4-Chlorophenyl phenyl ether	390	ן ט
218-01-9	Chrysene	390	ט
53-70-3	Dibenz (a, h) anthracene	390	<u>ט</u>
132-64-9	Dibenzofuran	390	U
91-94-1	3,3'-Dichlorobenzidine	390	ט

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6F280229 006

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g

Work Order: H8DVF1AL

Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/10/06

Moisture %:15

QC Batch: 6187024

Client Sample Id: GRSB3(6-7)

G3 G 310	i i	g/kg) ug/kg	^
CAS NO.			0 771
120-83-2	2,4-Dichlorophenol	390	<u></u>
84-66-2	Diethyl phthalate	390	<u>U</u>
105-67-9	2,4-Dimethylphenol	390	<u>U</u>
131-11-3	Dimethyl phthalate	390	<u> </u>
84-74-2	Di-n-butyl phthalate	390	
534-52-1	4,6-Dinitro-2-methylphenol	980	<u> </u>
51-28-5	2,4-Dinitrophenol	980	<u> </u>
121-14-2	2,4-Dinitrotoluene	390	U
606-20-2	2,6-Dinitrotoluene	390	ַ ַ ַ ַ ַ ַ
117-84-0	Di-n-octyl phthalate	53	<u> </u> J
206-44-0	Fluoranthene	390	ע
86-73-7	Fluorene	390	ט
118-74-1	Hexachlorobenzene	390	<u>U</u>
87-68-3	Hexachlorobutadiene	390	ן ט
77-47-4	Hexachlorocyclopentadiene	390	U
67-72-1	Hexachloroethane	390	ן ט
193-39-5	Indeno(1,2,3-cd)pyrene	390	U
78-59-1	Isophorone	390	U
91-57-6	2-Methylnaphthalene	390	ן ט
95-48-7	2-Methylphenol	390	י ד
106-44-5	4-Methylphenol	390	ן ט
91-20-3	Naphthalene	390	U
88-74-4	2-Nitroaniline	980	ן ט
99-09-2	3-Nitroaniline	980	י די
100-01-6	4-Nitroaniline	980	ן ט
98-95-3	Nitrobenzene	390	ן ט
88-75-5	2-Nitrophenol	390	ן ט
100-02-7	4-Nitrophenol	980	וט

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO

Method: OCLP OLM04.2

Lab Sample ID: C6F280229 006

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DVF1AL Date Received: 06/28/06 Date Extracted:07/06/06

Dilution factor: 1

Date Analyzed: 07/10/06

Moisture %:15

QC Batch: 6187024

Client Sample Id: GRSB3(6-7)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg 🗼 (2
621-64-7	N-Nitrosodi-n-propylamine	390	ַ ַ ַ ַ
86-30-6	N-Nitrosodiphenylamine	390	ט ט
108-60-1	2,2'-oxybis(1-Chloropropane)	390	ן <u>ש</u>
87-86-5	Pentachlorophenol	980	<u></u> U
85-01-8	Phenanthrene	390	<u> </u>
108-95-2	Phenol	390	<u>U</u>
129-00-0	Pyrene	390	<u>"</u>
95-95-4	2,4,5-Trichlorophenol	980	U
88-06-2	2,4,6-Trichlorophenol	390	<u> </u>

STL+Pittsburgh

Metals Data Reporting Form

Sample Results

Lab Sample ID: H8DVF Client ID: GRSB3(6-7)

Matrix: Soil Units: mg/kg Prep Date: 6/29/2006 Prep Batch: 6180029

Weight: 1.00 Volume: 200 Percent Moisture: 15.224

	WL/	· · · · · · · · · · · · · · · · · · ·	Report	l	1	T :		Anal	Anal
Element	Mass	IDL	Limit	Conc	0	DF	Instr	Date	Time
Aluminum	308.22	1.5	47.2	4470		1	ICPST	7/1/2006	19:36
Antimony	220.35	0.45	14.2	0.45	UN	WI1	ICPST	7/1/2006	19:36
Arsenic	189.04	0.24	2.4	1.4	J	J 1	ICPST	7/1/2006	19:36
Barium	493,41	0.035	47.2	39.8) \$	J 1	ICPST	7/1/2006	19:36
Beryllium	313.04	0.042	1.2	/.2 -0.37	B-	V 1	ICPST	7/1/2006	19:36
Cadmium	226.50	0.038	1,2	0.038	U-	1 ;	ICPST	7/1/2006	19:36
Calcium	317.93	2.6	1180	1180 424	-B-	V 1	ICPST	7/1/2006	19:36
Chromium	267.72	0.10	2.4	4.8		1	ICPST	7/1/2006	19:36
Cobalt	228.62	0.12	11,8	4.0	R	J 1	ICPST	7/1/2006	19:36
Copper	324.75	0.078	5,9	3.9	₽ E	J 1	ICPST	7/1/2006	19:36
Iron	271.44	4.5	23.6	9070		1	ICPST	7/1/2006	19:36
Lead	220.35	0.26	0.71	8.1		1	ICPST	7/1/2006	19:36
Magnesium	279.08	1.6	1180	1650		1	ICPST	7/1/2006	19:36
Manganese	257.61	0.040	3.5	215		1	ICPST	7/1/2006	19:36
Nickel	231.60	0.23	9.4	8.6	R	J 1	ICPST	7/1/2006	19:36
Potassium	766.49	2.2	1180	1100 -530-	BE	U 1	ICPST	7/1/2006	19:36
Selenium	220.35	0.38	1.2	0.41	18	J 1	ICPST	7/1/2006	19:36
Silver	328.07	0.11	2.4	0.11	U		ICPST	7/1/2006	19:36
Sodium	330.23	41.0	1180	68.0	B	J 1	ICPST	7/1/2006	19:36
Thallium	190.86	0.61	2.4	0.61	U	1	ICPST .	7/1/2006	19:36
Vanadium	292.40	0.17	11.8	11.8 4.2	₽-	V 1	ICPST	7/1/2006	19:36
Zine	213.86	0.19	4.7	28.7		1	ICPST	7/1/2006	19:36

Comments: Lot #: C6F280229 Sample #: 6Color:pre- brown, post- brwon. Texture:pre- medium, pos-t fine.Artifacts, Stones, organic

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

Form 1 Equivalent

STL-Pittsburgh

Metals Data Reporting Form

Sample	Results			:	 		_
Lab Sam	ple ID:	H8DVF	Client ID:	GRSB3(6	-7)		
Matrix:	Soil	Units: mg/kg	Prep Date:	7/13/2006	Prep Batch:_	6194013	
Weight:	.2	Volume: 100	Percent Mois	ture: 15.224			

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.014	0.12	0.021	BN	1	CVAA	7/13/2006	8:49

0.12 U

Comments: Lot #: C6F280229 Sample #: 6

5.04.5

U Result is less than the IDL

Form 1 Equivalent

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID:C6F280229 003

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: H8DVC1AK

Date Received: 06/28/06 Date Extracted:07/06/06

Dilution factor: 1

Date Analyzed: 07/06/06

Moisture %:17

QC Batch: 6187555 -

Client Sample Id: GRSB4(7-8)

CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/kg	Q
67-64-1	Acetone	12 :	<u></u>
71-43-2	Benzene	12	
75-27-4	Bromodichloromethane	12	_ U
75-25-2	Bromoform	12	U
74-83-9	Bromomethane	12	ן די
78-93-3	2-Butanone	12	<u></u>
75-15-0	Carbon disulfide	12	ן
56-23-5	Carbon tetrachloride	12	<u></u> U
108-90-7	Chlorobenzene	12 :	_ U
75-00-3	Chloroethane	12	ַן
67-66-3	Chloroform	12	ע
74-87-3	Chloromethane	12	_
110-82-7	Cyclohexane	12	U
124-48-1	Dibromochloromethane	12	<u>ט</u>
96-12-8	1,2-Dibromo-3-chloropropane	12	U
106-93-4	1,2-Dibromoethane	12	ן ט
541-73-1	1,3-Dichlorobenzene	12	U
106-46-7	1,4-Dichlorobenzene	12	וט
95-50-1	1,2-Dichlorobenzene	12	ַ
75-71-8	Dichlorodifluoromethane	12	_
75-34-3	1,1-Dichloroethane	12	ן די
107-06-2	1,2-Dichloroethane	12	<u></u>
75-35-4	1,1-Dichloroethene	12	ii_
156-59-2	cis-1,2-Dichloroethene	12	_
156-60-5	trans-1,2-Dichloroethene	12	<u> </u>
78-87-5	1,2-Dichloropropane	12	ا
10061-01-5	cis-1,3-Dichloropropene	12	
10061-02-6	trans-1,3-Dichloropropene	12	_

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID:C6F280229 003

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: H8DVC1AK Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/06/06

Moisture %:17

QC Batch: 6187555

Client Sample Id: GRSB4(7-8)

CAS'NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q
100-41-4	Ethylbenzene	12	ן ט
591-78-6	2-Hexanone	12	U
98-82-8	Isopropylbenzene	12	וֹט
79-20-9	Methyl acetate	12	ロブ
75-09-2	Methylene chloride	3.4	12 U
108-87-2	Methylcyclohexane	12	ט
108-10-1	4-Methyl-2-pentanone	12	<u>י</u>
1634-04-4	Methyl tert-butyl ether	12	Ū
100-42-5	Styrene	12	<u>ט</u>
79-34-5	1,1,2,2-Tetrachloroethane	12	ט
120-82-1	1,2,4-Trichlorobenzene	12	Ū
127-18-4	Tetrachloroethene	12	U
71-55-6	1,1,1-Trichloroethane	12	Ū
79~00-5	1,1,2-Trichloroethane	12	ט
79-01-6	Trichloroethene	12	U
75-69-4	Trichlorofluoromethane	12	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	12	ט
108-88-3	Toluene	12	U
75-01-4	Vinyl chloride	12	U
1330-20-7	Xylenes (total)	12	U

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID:C6F280229 003

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DVC1AL Dilution factor: 1

Date Received: 06/28/06 Date Extracted:07/06/06

Date Analyzed: 07/10/06

Moisture %:17

QC Batch: 6187024

Client Sample Id: GRSB4(7-8)

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	I : Q
83-32-9	Acenaphthene	400	UU
208-96-8	Acenaphthylene	400	יט
98-86-2	Acetophenone	88	J
120-12-7	Anthracene	400	<u>י</u>
1912-24-9	Atrazine	400	יט ו
56-55-3	Benzo(a)anthracene	400	ן ט
50-32-8	Benzo(a)pyrene	400	ט
205-99-2	Benzo(b) fluoranthene	400	י ט
191-24-2	Benzo(ghi)perylene	400	្ង ២
207-08-9	Benzo(k) fluoranthene	400	וט
100-52-7	Benzaldehyde	400	<u>"</u>
92-52-4	1,1'-Biphenyl	400	U
111-91-1	bis (2-Chloroethoxy) methane	400	ט
111-44-4	bis(2-Chloroethyl) ether	400	ַט
117-81-7	bis(2-Ethylhexyl) phthalate	400	U
101-55-3	4-Bromophenyl phenyl ether	400	U
85-68-7	Butyl benzyl phthalate	400	Ü
105-60-2	Caprolactam	57	J
86-74-8	Carbazole	400	U
106-47-8	4-Chloroaniline	400	U
59-50-7	4-Chloro-3-methylphenol	400	Ū
91-58-7	2-Chloronaphthalene	400	ט יי
95-57-8	2-Chlorophenol	400	U
7005-72-3	4-Chlorophenyl phenyl ether	400	יט י
218-01-9	Chrysene	400	<u></u>
53-70-3	Dibenz (a, h) anthracene	400	<u></u>
132-64-9	Dibenzofuran	400	U
91-94-1	3,3'-Dichlorobenzidine	400	U U

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID:C6F280229 003

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DVC1AL

Date Received: 06/28/06 Date Extracted:07/06/06

Dilution factor: 1

Date Analyzed: 07/10/06

Moisture %:17

QC Batch: 6187024

Client Sample Id: GRSB4(7-8)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or u	ig/kg) ug/kg Q	
120-83-2	2,4-Dichlorophenol	400	U
84-66-2	Diethyl phthalate	400	U
105-67-9	2,4-Dimethylphenol	400 :	<u> </u>
131-11-3	Dimethyl phthalate	400	ַ ַ ַ ַ ַ
84-74-2	Di-n-butyl phthalate	400	U
534-52-1	4,6-Dinitro-2-methylphenol	1000	<u>U</u>
51-28-5	2,4-Dinitrophenol	1000	U
121-14-2	2,4-Dinitrotoluene	400	U
606-20-2	2,6-Dinitrotoluene	400	ַט
117-84-0	Di-n-octyl phthalate	400	U
206-44-0	Fluoranthene	400	ַ ט
86-73-7	Fluorene	400	וֹט
118-74-1	Hexachlorobenzene	400	U
87-68-3	Hexachlorobutadiene	400	ַ
77-47-4	Hexachlorocyclopentadiene	400	ַ
67-72-1	Hexachloroethane	400	U
193-39-5	Indeno(1,2,3-cd)pyreme	400	U
78-59-1	Isophorone	400	ַ ַ ַ
91-57-6	2-Methylnaphthalene	400	U
95-48-7	2-Methylphenol	400	ַ ַ ַ ַ
106-44-5	4-Methylphenol	400	ַ ַ ַ ַ ַ
91-20-3	Naphthalene	400	U
88-74-4	2-Nitroaniline	1000	ប
99-09-2	3-Nitroaniline	1000	U
100-01-6	4-Nitroaniline	1000	ַ
98-95-3	Nitrobenzene	400	ט
88-75-5	2-Nitrophenol	400	U
100-02-7	4-Nitrophenol	1000	U
			··· · · · ·

61

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO

Lab Sample ID:C6F280229 003

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DVC1AL Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/10/06

Moisture %:17

QC Batch: 6187024

Client Sample Id: GRSB4(7-8)

COMPOUND (ug/L or ug	g/kg) ug/kg (2
N-Nitrosodi-n-propylamine	400	U
N-Nitrosodiphenylamine	400	ַ ע
2,2'-oxybis(1-Chloropropane)	400	ַ
Pentachlorophenol	1000	U
Phenanthrene	400	U
Phenol	400	ַ ַ ַ ַ ַ
Pyrene	400	U
2,4,5-Trichlorophenol	1000	ַ ַ
2,4,6-Trichlorophenol	400	ַ ַ ַ
	N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine 2,2'-oxybis (1-Chloropropane) Pentachlorophenol Phenanthrene Phenol Pyrene 2,4,5-Trichlorophenol	N-Nitrosodi-n-propylamine 400 N-Nitrosodiphenylamine 400 2,2'-oxybis(1-Chloropropane) 400 Pentachlorophenol 1000 Phenanthrene 400 Phenol 400 Pyrene 400 2,4,5-Trichlorophenol 1000

STL-Pittsburgh

Metals Data Reporting Form

Sample Results

Lab Sample ID: H8DVC Client ID:

Matrix: Soil Units: mg/kg Prep Date: 6/29/2006 Prep Batch: 6180029

GRSB4(7-8)

Weight: 1.00 Volume: 200 Percent Moisture: 17.362

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Aluminum	308.22	1.5	48.4	4460		1	ICPST	7/1/2006	19:19
Antimony	220.35	0.46	14.5	0.46	4UN	uJ1	ICPST	7/1/2006	19:19
Arsenic	189.04	0.10	2.4	1.8	B	J 1	ICPST	7/1/2006	19:19
Barium	493.41	0.036	48.4	30.4	B	J 1	ICPST	7/1/2006	19:19
	313.04	0.030	1.2		L _B	บ 1	ICPST	7/1/2006	19:19
Beryllium			'	1.2 -0.38 - 0.039	U		ICPST	7/1/2006	
Cadmium	226.50	0.039	1.2		_	1			19:19
Calcium	317.93	2.7	1210	1210 -262	В	U 1	ICPST	7/1/2006	19:19
Chromium	267.72	0.10	2.4	4.6	١	1	ICPST	7/1/2006	19:19
Cobalt	228.62	0.12	12.1	4.2	Æ	J 1	ICPST	7/1/2006	19:19
Copper	324.75	0.080	6,1	3.6	BE	J 1	ICPST	7/1/2006	19:19
Iron	271.44	4.6	24.2	9410		1	ICPST	7/1/2006	19:19
Lead	220.35	0.27	0.73	2.7		1	ICPST	7/1/2006	19:19
Magnesium	279.08	1.6	1210	1640		1	ICPST	7/1/2006	19:19
Manganese	257.61	0.041	3.6	185		1	ICPST	7/1/2006	19:19
Nickel	231.60	0.24	9,7	8.5	В	1	ICPST	7/1/2006	19:19
Potassium	766.49	2.3	1210	1210 -550-	BE	ו 1 ע	ICPST	7/1/2006	19:19
Selenium	220.35	0.39	1,2	0.59	₽	51	ICPST	7/1/2006	19:19
Silver	328.07	0.11	2.4	0.15	B	51	ICPST	7/1/2006	19:19
Sodium	330.23	42.1	1210	53.5	₽	J1	ICPST	7/1/2006	19:19
Thallium	190.86	0.63	2,4	0.63	บ	1	ICPST	7/1/2006	19:19
Vanadium	292.40	0.17	12.1	12.1 4.4-	_B	U 1	ICPST	7/1/2006	19:19
Zinc	213.86	0.19	4.8	27.2		1	ICPST	7/1/2006	19:19

Comments: Lot #: C6F280229 Sample #: 3Color;pre- brown, post- brwon. Texture;pre- medium, pos-t fine, Artifacts. Stones, organic

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

Form 1 Equivalent

STL+Pittsburgh

Metals Data Reporting Form

Sample Res	suits					Mary and the second		-
Lab Sample I	D:	H8DVC		Client ID:	GRSB4(7-	8)		
Matrix:	Soil	Units: _	mg/kg	Prep Date:	7/13/2006	Prep Batch:_	6194013	_
Weight:	.2	Volume:	100	Percent Moist	ure: 17.362			

Element	WL/ Mass_	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.014	0.12	-0.022	BN	1	CVAA	7/13/2006	8:43

0.120

Comments: Lot #; C6F280229 Sample #; 3

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Form 1 Equivalent

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 004

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: H8DVD1AK Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/06/06

Moisture %:21

QC Batch: 6187555

Client Sample Id: GRSB4(9-11)

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg Q	
67-64-1	Acetone	13	ןט
71-43-2	Benzene	13	ַ ט
75-27-4	Bromodichloromethane	13	ַט
75-25-2	Bromoform	13	יט
74-83-9	Bromomethane	13	ַ
78-93-3	2-Butanone	13	ַ
75-15-0	Carbon disulfide	13	ט
56-23-5	Carbon tetrachloride	13	ַ ט
108-90-7	Chlorobenzene	13	ט
75-00-3	Chloroethane	13	<u>ט</u>
67-66-3	Chloroform	13	Ū
74-87-3	Chloromethane	13	ט
110-82-7	Cyclohexane	13	Ū
124-48-1	Dibromochloromethane	13	Ū
96-12-8	1,2-Dibromo-3-chloropropane	13	וֹש
106-93-4	1,2-Dibromoethane	13	וש
541-73-1	1,3-Dichlorobenzene	13	Ū
106-46-7	1,4-Dichlorobenzene	13	ซ
95-50-1	1,2-Dichlorobenzene	13	บ
75-71-8	Dichlorodifluoromethane	13	Ũ
75-34-3	1,1-Dichloroethane	13	U
107-06-2	1,2-Dichloroethane	13	U
75-35-4	1,1-Dichloroethene	13	ש
156-59-2	cis-1,2-Dichloroethene	13	U
156-60-5	trans-1,2-Dichloroethene	13	ַ
78-87-5	1,2-Dichloropropane	13	U
10061-01-5	cis-1,3-Dichloropropene	13	ט
10061-02-6	trans-1,3-Dichloropropene	13	Ū

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 004

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: H8DVD1AK

Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/06/06

Moisture %:21

QC Batch: 6187555

Client Sample Id: GRSB4 (9-11)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q	
100-41-4	Ethylbenzene	13	ן די די די	
591-78-6	2-Hexanone	13	<u>י</u>	
98-82-8	Isopropylbenzene	13	<u>י</u>	
79-20-9	Methyl acetate	13	וט	T .
75-09-2	Methylene chloride	4.4	J B	-13V
108-87-2	Methylcyclohexane	13	<u>י</u>	, •
108-10-1	4-Methyl-2-pentanone	13	[ט	
1634-04-4	Methyl tert-butyl ether	13	ט	
100-42-5	Styrene	13	ט .	
79-34-5	1,1,2,2-Tetrachloroethane	13	<u>י</u>	
120-82-1	1,2,4-Trichlorobenzene	13	ט	
127-18-4	Tetrachloroethene	13	<u>ט</u>	
71-55-6	1,1,1-Trichloroethane	13	U	
79-00-5	1,1,2-Trichloroethane	13	<u>י</u>	
79-01-6	Trichloroethene	13	ט	
75-69-4	Trichlorofluoromethane	13	Ū	
76-13-1	1,1,2-Trichloro-1,2,2-triflu	13	Ü	
108-88-3	Toluene	13	ט	
75-01-4	Vinyl chloride	13	יט	
1330-20-7	Xylenes (total)	13	U	

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SO Lab Sample ID:C6F280229 004

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g

Work Order: H8DVDIAL

Dilution factor: 1

Date Received: 06/28/06

Date Extracted: 07/06/06

Date Analyzed: 07/10/06

Moisture %:21

QC Batch: 6187024

Client Sample Id: GRSB4 (9-11)

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	: Q
83-32-9	Acenaphthene	420	U
208-96-8	Acenaphthylene	49	J
98-86-2	Acetophenone	85	J
120-12-7	Anthracene	420	יט ו
1912-24-9	Atrazine	420	ט
56-55-3	Benzo (a) anthracene	420	ט
50-32-8	Benzo(a)pyrene	420	ַ ט
205-99-2	Benzo(b) fluoranthene	420	<u> </u>
191-24-2	Benzo(ghi)perylene	89	J
207-08-9	Benzo(k) fluoranthene	420	ַ ַ ַ ַ ַ ַ ַ
100-52-7	Benzaldehyde	420	ן ט
92-52-4	1,1'-Biphenyl	420	ן ט
111-91-1	bis(2-Chloroethoxy)methane	420	ן ט
111-44-4	bis(2-Chloroethyl) ether	420	ן ט
117-81-7	bis(2-Ethylhexyl) phthalate	220	J
101-55-3	4-Bromophenyl phenyl ether	420	ט ו
85-68-7	Butyl benzyl phthalate	420	ט
105-60-2	Caprolactam	47	J
86-74-8	Carbazole	420	יט ו
106-47-8	4-Chloroaniline	420	ַ
59-50-7	4-Chloro-3-methylphenol	420	<u> </u>
91-58-7	2-Chloronaphthalene	420	<u> </u>
95-57-8	2-Chlorophenol	420	ן ט
7005-72-3	4-Chlorophenyl phenyl ether	420	<u> </u>
218-01-9	Chrysene	420	<u>ט</u>
53-70~3	Dibenz(a,h)anthracene	420	U
132-64-9	Dibenzofuran	420	יט
91-94-1	3,3'-Dichlorobenzidine	420	<u>ט</u>

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Method: OCLP OLM04.2

Lab Sample ID: C6F280229 004

Semi-Volatile Organic Compounds: - CLP (OLMO4.2)

Sample WT/Vol: 30 / g Work Order: H8DVD1AL

Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/10/06

Moisture %:21

QC Batch: 6187024

Client Sample Id: GRSB4(9-11)

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q
120-83-2	2,4-Dichlorophenol	420	<u> u </u>
84-66-2	Diethyl phthalate	420	<u> </u>
105-67-9	2,4-Dimethylphenol	420	<u>U</u>
131-11-3	Dimethyl phthalate	420	<u> U </u>
84-74-2	Di-n-butyl phthalate	_ 420	<u> </u>
534-52-1	4,6-Dinitro-2-methylphenol	1000	<u> </u>
51-28-5	2,4-Dinitrophenol	1000	ַ ַ ַ ַ ַ ַ
121-14-2	2,4-Dinitrotoluene	420	<u>U</u>
606-20-2	2,6-Dinitrotoluene	420	<u></u>
117-84-0	Di-n-octyl phthalate	420	ט
206-44-0	Fluoranthene	420_	<u>"</u>
86-73-7	Fluorene	420	U
118-74-1	Hexachlorobenzene	420	ט
87-68-3	Hexachlorobutadiene	420	<u>"</u>
77-47-4	Hexachlorocyclopentadiene	420	ן די
67-72-1	Hexachloroethane	420	ַן
193-39-5	Indeno(1,2,3-cd)pyrene	420	ַ
78-59-1	Isophorone	420	<u> </u>
91-57-6	2-Methylnaphthalene	420	ן די
95-48-7	2-Methylphenol	420	<u> </u>
106-44-5	4-Methylphenol	420	<u>U</u>
91-20-3	Naphthalene	420	וט
88-74-4	2-Nitroaniline	1000	U
99-09-2	3-Nitroaniline	1000	<u> </u>
100-01-6	4-Nitroaniline	1000	<u> U </u>
98-95-3	Nitrobenzene	420	ן די
88-75-5	2-Nitrophenol	420	ט
100-02-7	4-Nitrophenol	1000	U

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SO

Lab Sample ID: C6F280229 004

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 30 / g Work Order: H8DVD1AL Date Received: 06/28/06 Date Extracted: 07/06/06

Dilution factor: 1

Date Analyzed: 07/10/06

Moisture %:21

QC Batch: 6187024

Client Sample Id: GRSB4(9-11)

COMPOUND (ug/L or ug	g/kg) ug/kg (2
N-Nitrosodi-n-propylamine	420	ַ ט
N-Nitrosodiphenylamine	420	U
2,2'-oxybis(1-Chloropropane)	420	U
Pentachlorophenol	1000	U
Phenanthrene	420	U
Phenol	420	ַ
Pyrene	420	U
2,4,5-Trichlorophenol	1000	U
2,4,6-Trichlorophenol	420	ַט
	N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine 2,2'-oxybis(1-Chloropropane) Pentachlorophenol Phenanthrene Phenol Pyrene 2,4,5-Trichlorophenol	N-Nitrosodi-n-propylamine 420 N-Nitrosodiphenylamine 420 2,2'-oxybis (1-Chloropropane) 420 Pentachlorophenol 1000 Phenanthrene 420 Phenol 420 Pyrene 420 2,4,5-Trichlorophenol 1000

STL-Pittsburgh

Metals Data Reporting Form

Sample Results

Lab Sample ID: H8DVD Client ID: GRSB4(9-11)

Matrix:

Soil

Units: mg/kg **Prep Date:** 6/29/2006

Prep Batch: 6180029

Weight: 1.00 Volume: 200

Percent Moisture: 20.612

	WL/		Report				1	Anal	Anal
Element	Mass	IDL	Limit	Conc	0	DF	Instr	Date	Time
Aluminum	308.22	1.6	50.4	4990		1	ICPST	7/1/2006	19:25
Antimony	220.35	0.48	15.1	0.48	4UN	W1	ICPST	7/1/2006	19:25
Arsenic	189.04	0.25	2.5	1.7	B	J 1	ICPST	7/1/2006	19:25
Barium	493.41	0.038	50,4	32.0	B	J 1	ICPST	7/1/2006	19:25
Beryllium	313.04	0.045	113	/.3 -0.41	-B-	U 1	ICPST	7/1/2006	19:25
Cadmium	226.50	0.040	1,3	0.040	U	1	ICPST	7/1/2006	19:25
Calcium	317.93	2.8	1260	1260 293 -	-13	U 1	ICPST	7/1/2006	19:25
Chromium	267.72	0.11	2,5	5.7		1	ICPST	7/1/2006	19:25
Cobalt	228.62	0.12	12.6	4.5	B	J1	ICPST	7/1/2006	19:25
Copper	324.75	0.083	6,3	4.8	-BE	J 1	ICPST	7/1/2006	19:25
Iron	271.44	4.8	25,2	10100	Ì	1	ICPST	7/1/2006	19:25
Lead	220.35	0.28	0.76	4.5	~~	1	ICPST	7/1/2006	19:25
Magnesium	279.08	1.7	1260	1760		1	ICPST	7/1/2006	19:25
Manganese	257.61	0.043	3.8	245		1	ICPST	7/1/2006	19:25
Nickel	231.60	0.25	10.1	9.3	B	J 1	ICPST	7/1/2006	19:25
Potassium	766.49	2.4	1260	12to-605	BE	U 1	ICPST	7/1/2006	19:25
Selenium	220.35	0.40	1.3	0.40	υ	1	ICPST	7/1/2006	19:25
Silver	328.07	0.12	2.5	0.12	U	1	ICPST	7/1/2006	19:25
Sodium	330.23	43.8	1260	121	B	J1	ICPST	7/1/2006	19:25
Thallium	190.86	0.66	2.5	0.66	U	1	ICPST	7/1/2006	19:25
Vanadium	292.40	0.18	12.6	12.6 -4.8	-13-	U 1	ICPST	7/1/2006	19:25
Zinc	213.86	0.20	5.0	29.6		1	ICPST	7/1/2006	19:25

Comments: Lot #: C6F280229 Sample #: 4Color:pre- brown, post- brwon. Texture:pre- medium, post- fine. Artifacts. Stones, organic

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

Form 1 Equivalent

STL-Pittsburgh

Metals Data Reporting Form

Sample Results

H8DVD

Client ID:

GRSB4(9-11)

Lab Sample ID: Matrix:

Soil

Units:

mg/kg Prep Date:

100

7/13/2006

Prep Batch: 6194013

Weight: .2

Volume:

Percent Moisture:

20.612

Element	WL/ Mass	<u>IDL</u>	Report Limit	Conc	o	DF	Instr	Anal Date	Anai Time
Mercury	253.7	0.014	0.13	0.026	BN-	1	CVAA	7/13/2006	8:45

0.13 U

Comments: Lot #: C6F280229 Sample #: 4

5.04,5

U Result is less than the IDL

Result is between IDL and RL

Serial dilution percent difference not within limits

Form 1 Equivalent

RETEC, Port Jervis MGP

Total Cyanide

Lab Name:

STL PITTSBURGH

Method:

ICLP

ILM04.0/4.1

Client Name:

The RETEC Group, Inc.

Lot Number:

C6G290164

Matrix: SOLID

Client Sample ID	Sample Number	Workorder	Result	Units	Reporting Limit	Dilution Factor	Prep Date - Analysis Date/Time	QC Batch 0 6214288
GRSB2(13-14)	C6G290164 001	JAAFM1A6	0.14 # J	mg/kg	0.62	1	8/2/2006 - 8/7/2006 00:00	
GRSB20(13-14)	C6G290164 002	JAAFP1AH	ND	mg/kg	0.59	1	8/2/2006 - 8/7/2006 00:00	6214288
GRSB2(22-24)	C6G290164 003	JAAFR1AH	ND	mg/kg	0.55	1	8/2/2006 - 8/7/2006 00:00	6214288
GRSB1(13-14)	C6G290164 004	JAAFX1AH	ND	mg/kg	0.55	1	8/2/2006 - 8/7/2006 00:00	6214288
GRSB1(22-24)	C6G290164 005	JAAF11AW	0.39 \$ J	mg/kg	0.66	1	8/2/2006 - 8/7/2006 00:00	6214288
TW6	C6G290164 006	JAAF21A5	ND	ug/L	10.0	1	8/2/2006 - 8/7/2006 00:00	5214290
TW60	C6G290164 007	JAAF61AG	ND	ug/L	10.0	1	8/2/2006 - 8/7/2006 00:00	6214290
TW3	C6G290164 009	JAAGE1DT	ND	ug/L	10.0	1	8/2/2006 - 8/7/2006 00:00	6214290

RETEC, Port Jervis MGP

Total Cyanide

Lab Name:

STL PITTSBURGH

Method:

ICLP

ILM04.0/4.1

Client Name:

The RETEC Group, Inc.

Lot Number:

C6F280229

Matrix:

SOLID

Midi Distillation Procedure

Client Sample ID	Sample Number	Workorder	Result	Units	Reporting Limit	Dilution Factor	Prep Date - Analysis Date/Time	QC Batch
GRSS1	C6F280229 001	H8DT91A6	0.17-8 J 0.52 U	mg/kg	0.52	1	7/7/2006 - 7/10/2006 00:00	6188304
GRSS2	C6F280229 002	H8DVA1AH	0.91	mg/kg	0.58	1	7/7/2006 - 7/10/2006 00:00	6188304
GRSB4(7-8)	C6F280229 003	H8DVC1AH	ND	mg/kg	0.61	1	7/7/2006 - 7/10/2006 00:00	6188304
GRSB4(9-11)	C8F280229 004	H8DVD1AH	ND	mg/kg	0.63	. 1	7/7/2006 - 7/10/2008 00:00	6188304
GRSB3(4-5)	C6F280229 005	H8DVE1AH	0.15 B.J. 0.56 U	mg/kg	0.56	1	7/7/2006 - 7/10/2006 00:00	6188304
GRSB3(6-7)	C6F280229 006	H8DVF1AH	0.18 B J 0.59 U	mg/kg	0.59	1	7/7/2006 - 7/10/2006 00:00	6188304
TW4	C6F280229 007	H8DVG1A4	ND	ug/L	10.0	1	7/7/2006 - 7/10/2006 00:00	6188305
TW5	C6F280229 008	H8DVJ1A5	ND	ug/L	10.0	1	7/7/2006 - 7/10/2006 00:00	6188305

RETEC, Port Jervis MGP

Percent Solids

Lab Name:

STL PITTSBURGH

Method:

MCAWW

160.3 MOD

Client Name:

The RETEC Group, Inc.

Lot Number:

C6F280229

Matrix:

SOLID

Total Residue as Percent Solids

Client Sample ID	Sample Number	Workorder	Result	Units	Reporting Limit	Dilution Factor	Prep Date - Analysis Date/Time	QC Batch
GRSS1	C6F280229 001	H8DT91AA	96.4	%		1	6/29/2006 - 6/30/2006 08:32	6180546
GRSS2	C8F280229 002	H8DVA1AJ	86.6	%		1	8/29/2006 - 6/30/2006 08:32	6180546
GRSB4(7-8)	C6F280229 003	H8DVC1AJ	82.6	%		1	6/29/2006 - 6/30/2006 08:32	8180546
GRSB4(9-11)	C8F280229 004	H8DVD1AJ	79.4	%		1	6/29/2006 - 6/30/2006 08:32	6180546
GR\$B3(4-5)	C6F280229 005	H8DVE1AJ	88.5	%		1	6/29/2008 - 6/30/2006 08:32	6180546
GRSB3(6-7)	C6F280229 006	H8DVF1AJ	84.8	%		1	6/29/2006 - 6/30/2006 08:32	6180546
SSSED-UP(062706)	C8F280229 010	H8DVN1AA	70.2	%		. 1	6/29/2006 - 6/30/2006 08:32	6180546

RETEC, Port Jervis MGP

Percent Solids

Lab Name:

STL PITTSBURGH

Method:

MCAWW 160.3 MOD

Client Name:

The RETEC Group, Inc.

Lot Number:

C6G290164

Matrix:

SOLID

Total Residue as Percent Solids										
Client Sample ID	Sample Number	Workorder	Result	Units	Reporting Limit	Dilution Factor		Date - Analy ate/Time	'sis	QC Batch
GRSB2(13-14)	C6G290164 001	JAAFM1AA	81.2	%		1	8/1/2006	- 8/2/2006	09:00	6213157
GRSB20(13-14)	C6G290164 002	JAAFP1AJ	84.3	%		1	8/1/2006	- 8/2/2006	09:00	6213157
GRSB2(22-24)	C6G290164 003	JAAFR1AJ	90.7	%		1	8/1/2006	- 8/2/2006	09:00	6213157
GRSB1(13-14)	C6G290164 004	JAAFX1AJ	90.8	%		1	8/1/2006	- 8/2/2006	09:00	6213157
GRSB1(22-24)	C6G290164 005	JAAF11A1	75.4	%		1	8/1/2006		09:00	

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6G290164 009

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Work Order: JAAGE1AA Date Extracted: 08/02/06
Dilution factor: 1 Date Analyzed: 08/02/06

Moisture %:

QC Batch: 6214421

Client Sample Id: TW3

CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/L	Q
67-64-1	Acetone	10	U
71-43-2	Benzene	10	U
75-27-4	Bromodichloromethane	10	U
75-25-2	Bromoform	10	U
74-83-9	Bromomethane	10	ט
78-93-3	2-Butanone	10	<u>"</u>
75-15-0	Carbon disulfide	10	
56-23-5	Carbon tetrachloride	10	ט
108-90-7	Chlorobenzene	10	U
75-00-3	Chloroethane	10	ט ט
67-66-3	Chloroform	10	<u>"</u>
74-87-3	Chloromethane	10	<u>"</u>
110-82-7	Cyclohexane	10	U
124-48-1	Dibromochloromethane	10	<u>ט</u>
96-12-8	1,2-Dibromo-3-chloropropane	10	U
106-93-4	1,2-Dibromoethane	10	U
541-73-1	1,3-Dichlorobenzene	10	<u>U</u>
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
75-71-8	Dichlorodifluoromethane	10	ם
75-34-3	1,1-Dichloroethane	10	<u> </u>
107-06-2	1,2-Dichloroethane	10	ן <u>ש</u>
75-35-4	1,1-Dichloroethene	10	<u> </u>
156-59-2	cis-1,2-Dichloroethene	10	<u>U</u>
156-60-5	trans-1,2-Dichloroethene	10	U
78-87-5	1,2-Dichloropropane	10	<u> </u>
10061-01-5	cis-1,3-Dichloropropene	10	<u> </u>
10061-02-6	trans-1,3-Dichloropropene	10	ן די

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6G290164 009

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Date Received: 07/29/06
Work Order: JAAGE1AA Date Extracted:08/02/06
Dilution factor: 1 Date Analyzed: 08/02/06

Moisture %:

QC Batch: 6214421

Client Sample Id: TW3

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L g	}
100-41-4	Ethylbenzene	10	<u>U</u>
591-78-6	2-Hexanone	1.0	ַ "
98-82-8	Isopropylbenzene	10	ט
79-20-9	Methyl acetate	10	ַ
75-09-2	Methylene chloride	10	U
108-87-2	Methylcyclohexane	10	U
108-10-1	4-Methyl-2-pentanone	10	ט
1634-04-4	Methyl tert-butyl ether	10	ַ ט
100-42-5	Styrene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	ַ "
120-82-1	1,2,4-Trichlorobenzene	10	ַ
127-18-4	Tetrachloroethene	10	U
71-55-6	1,1,1-Trichloroethane	10	ט
79-00-5	1,1,2-Trichloroethane	10	U
79-01-6	Trichloroethene	10	ַ ט
75-69-4	Trichlorofluoromethane	10	ַט
76-13-1	1,1,2-Trichloro-1,2,2-triflu	10	ַ
108-88-3	Toluene	10	U
75-01-4	Vinyl chloride	10	ַט
1330-20-7	Xylenes (total)	10	U

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WG

Lab Sample ID: C6G290164 009

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 1050 / mL Work Order: JAAGE1AE

Date Received: 07/29/06 Date Extracted: 08/01/06

Dilution factor: 0.95

Date Analyzed: 08/10/06

Moisture %:

QC Batch: 6213214

Client Sample Id: TW3

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L	Q
83-32-9	Acenaphthene	9.5	ן
208-96-8	Acenaphthylene	9.5	<u> u</u>
98-86-2	Acetophenone	9.5	<u> </u>
120-12-7	Anthracene	9.5	<u> U</u>
1912-24-9	Atrazine	9.5	الاا
56-55-3	Benzo (a) anthracene	9.5	ן
50-32-8	Benzo (a) pyrene	9.5	<u>U</u>
205-99-2	Benzo(b) fluoranthene	9.5	U
191-24-2	Benzo(ghi)perylene	9.5	<u>U</u>
207-08-9	Benzo(k) fluoranthene	9.5	ן
100-52-7	Benzaldehyde	9.5	U
92-52-4	1,1'-Biphenyl	9.5	U
111-91-1	bis(2-Chloroethoxy)methane	9.5	ן ט
111-44-4	bis(2-Chloroethyl) ether	9.5	ן ט
117-81-7	bis(2-Ethylhexyl) phthalate	9.5	<u> </u>
101-55-3	4-Bromophenyl phenyl ether	9.5	ן ט
85-68-7	Butyl benzyl phthalate	9.5	<u> </u>
105-60-2	Caprolactam	2.5	J
86-74-8	Carbazole	9.5	ט
106-47-8	4-Chloroaniline	9.5	ן ט
59-50-7	4-Chloro-3-methylphenol	9.5	<u> U</u>
91-58-7	2-Chloronaphthalene	9.5	ן <u>ט</u>
95-57-8	2-Chlorophenol	9.5	ן ש
7005-72-3	4-Chlorophenyl phenyl ether	9.5	ט
218-01-9	Chrysene	9.5	ן ט
53-70-3	Dibenz (a, h) anthracene	9.5	ן ט
132-64-9	Dibenzofuran	9.5	ן ט
91-94-1	3,3'-Dichlorobenzidine	9.5	<u> U</u>

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6G290164 009

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 1050 / mL Date Received: 07/29/06
Work Order: JAAGE1AE Date Extracted:08/01/06
Dilution factor: 0.95 Date Analyzed: 08/10/06

Moisture %:

QC Batch: 6213214

Client Sample Id: TW3

	COMPOUND (ug/L or u	g/kg) ug/L	Q
120-83-2	2,4-Dichlorophenol	9.5	ן <u>ש</u>
84-66-2	Diethyl phthalate	9.5	<u>U</u>
105-67-9	2,4-Dimethylphenol	9.5	ט
131-11-3	Dimethyl phthalate	9.5	<u></u> <u></u> <u></u>
84-74-2	Di-n-butyl phthalate	9.5	ן ט
534-52-1	4,6-Dinitro-2-methylphenol	24	ן ט
51-28-5	2,4-Dinitrophenol	24	<u>"</u>
121-14-2	2,4-Dinitrotoluene	9.5	U
606-20-2	2,6-Dinitrotoluene	9.5	ן ט
117-84-0	Di-n-octyl phthalate	9.5	U
206-44-0	Fluoranthene	9.5	Ū
86-73-7	Fluorene	9.5	ט
118-74-1	Hexachlorobenzene	9.5	U
87-68-3	Hexachlorobutadiene	9.5	U
77-47-4	Hexachlorocyclopentadiene	9.5	U
67-72-1	Hexachloroethane	9.5	U
193-39-5	Indeno(1,2,3-cd)pyrene	9.5	U
78-59-1	Isophorone	9.5	U
91-57-6	2-Methylnaphthalene	9.5	U
95-48-7	2-Methylphenol	9.5	ַ ַ ַ ַ
106-44-5	4-Methylphenol	9.5	ַ ַ ַ ַ ַ ַ ַ
91-20-3	Naphthalene	9.5	<u> </u>
88-74-4	2-Nitroaniline	24	ַ ַ ַ ַ ַ ַ
99-09-2	3-Nitroaniline	24	וט
100-01-6	4-Nitroaniline	24	ַ ט
98-95-3	Nitrobenzene	9.5	<u> </u>
88-75-5	2-Nitrophenol	9.5	U
100-02-7	4-Nitrophenol	24	U

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6G290164 009

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 1050 / mL Date Received: 07/29/06
Work Order: JAAGE1AE Date Extracted:08/01/06
Dilution factor: 0.95 Date Analyzed: 08/10/06

Moisture %:

QC Batch: 6213214

Client Sample Id: TW3

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L (2
621-64-7	N-Nitrosodi-n-propylamine	9.5	ַ ַ ַ ַ ַ ַ
86-30-6	N-Nitrosodiphenylamine	9.5	U
108-60-1	2,2'-oxybis(1-Chloropropane)	9.5	ַ ט
87-86-5	Pentachlorophenol	24	
85-01-8	Phenanthrene	9.5	U
108-95-2	Phenol	9.5	U
129-00-0	Pyrene	9.5	U
95-95-4	2,4,5-Trichlorophenol	24	ַ ַ ַ
88-06-2	2,4,6-Trichlorophenol	9.5	

Metals Data Reporting Form

Sample Results

Lab Sample ID: JAAGE Client ID: TW3 DEP

Matrix: Water Units: ug/L Prep Date: 8/2/2006 Prep Batch: 6214392

Weight: NA Volume: 50 Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
					Ť				
Aluminum	308.22	6.9	200	25500		1	ICPST	8/11/2006	16:01
Antimony	206.84	2.3	60.0	2.3	U	1	ICPST	8/11/2006	16:01
Arsenic	189.04	1.9	10.0	9.4	-В	J1	ICPST	8/11/2006	16:01
Barium	493.41	0.14	200	282	·	1	ICPST	8/11/2006	16:01
Beryllium	313.04	0.17	5.0	1.3	₽	J1	ICPST	8/11/2006	16:01
Cadmium	226.50	0.31	5.0	0.31	U	1	ICPST	8/11/2006	16:01
Calcium	317.93	4.1	5000	14600		1	ICPST	8/11/2006	16:01
Chromium	267.72	0.60	10.0	19.8		1	ICPST	8/11/2006	16:01
Cobalt	228.62	0.64	50.0	12.4	-₽-	J 1	ICPST	8/11/2006	16:01
Copper	324.75	0.91	25.0	37.3	ĺ	1	ICPST	8/11/2006	16:01
Iron	271.44	13.4	100	27500		1	ICPST	8/11/2006	16:01
Lead	220.35	1.6	3.0	20.2	Ì	1	ICPST	8/11/2006	16:01
Magnesium	279.08	5.2	5000	5880		1	ICPST	8/11/2006	16:01
Manganese	257.61	0.15	15.0	1360		1	ICPST	8/11/2006	16:01
Nickel	231.60	0.71	40.0	29.4	B-	J1	ICPST	8/11/2006	16:01
Potassium	766.49	10.5	5000	6810		1	ICPST	8/11/2006	16:01
Selenium	220.35	2.0	5.0	2.0	UN	U 1	ICPST	8/11/2006	16:01
Silver	328.07	0.45	10.0	0.45	U	1	ICPST	8/11/2006	16:01
Sodium	330.23	99.8	5000	39700	1	1	ICPST	8/11/2006	16:01
Thallium	190.86	2.8	10.0	2.8	บ	1	ICPST	8/11/2006	16:01
Vanadium	292.40	0.56	50.0	28.1	.B -	J 1	ICPST	8/11/2006	16:01
Zinc	206.2	1.0	20.0	133		1	ICPST	8/11/2006	16:01

Comments: Lot #: C6G290164 Sample #: 9Color:pre-brown, post-brown, Clarity:pre cloudy, post-cloudy

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Form I Equivalent

Metals Data Reporting Form

Sample	Results					······		_
Lab Samp	le ID:	JAAGE		Client ID:	TW3 D	ot		
Matrix:	Water	Units:	ug/L	Prep Date:	8/15/2006	Prep Batch:	6227050	
Weight:	NA	Volume:	100	Percent Moist	ure: NA			

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.042	0.20	0.062	B '	1	CVAA	8/15/2006	9:06
					3				

Comments: Lot #: C6G290164 Sample #: 9

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Form 1 Equivalent

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6F280229 007

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Date Received: 06/28/06 Work Order: H8DVG1AA Date Extracted:07/03/06 Dilution factor: 1 Date Analyzed: 07/03/06

Moisture %:

QC Batch: 6184148

Client Sample Id: TW4

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/L Q	
67-64-1	Acetone	10	U
71-43-2	Benzene	10	ָט
75-27-4	Bromodichloromethane	10	U
75-25-2	Bromoform	10	U
74-83-9	Bromomethane	10	ש
78-93-3	2-Butanone	10	U
75-15-0	Carbon disulfide	10	U
56-23-5	Carbon tetrachloride	10	Ū
108-90-7	Chlorobenzene	10	U
75-00-3	Chloroethane	10	וט
67-66-3	Chloroform	10	Ü
74-87-3	Chloromethane	10	Ü
110-82-7	Cyclohexane	10	ָט
124-48-1	Dibromochloromethane	10	יט
96-12-8	1,2-Dibromo-3-chloropropane	10	U
106-93-4	1,2-Dibromoethane	10	Ū
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	יט
95-50-1	1,2-Dichlorobenzene	10	ט
75-71-8	Dichlorodifluoromethane	10	U
75-34-3	1,1-Dichloroethane	10	U
107-06-2	1,2-Dichloroethane	10	ַד
75-35-4	1,1-Dichloroethene	10	ַ ט
156-59-2	cis-1,2-Dichloroethene	10	U
156-60-5	trans-1,2-Dichloroethene	10	U
78-87-5	1,2-Dichloropropane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	ט
10061-02-6	trans-1,3-Dichloropropene	10	U

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WG

Lab Sample ID: C6F280229 007

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Work Order: H8DVG1AA

Date Received: 06/28/06 Date Extracted: 07/03/06

Dilution factor: 1

Date Analyzed: 07/b3/06

Moisture %:

QC Batch: 6184148

Client Sample Id: TW4

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L Q	
100-41-4	Ethylbenzene	10	ַ ַ ַ ַ
591-78-6	2-Hexanone	10	ַ ַ ַ
98-82-8	Isopropylbenzene	10	ט
79-20-9	Methyl acetate	10	<u></u> <u></u> U J
75-09-2	Methylene chloride	10	U
108-87-2	Methylcyclohexane	10	U
108-10-1	4-Methyl-2-pentanone	10	U
1634-04-4	Methyl tert-butyl ether	10	U
100-42-5	Styrene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	שׁ
120-82-1	1,2,4-Trichlorobenzens	10	ט
127-18-4	Tetrachloroethene	10	ט
71-55-6	1,1,1-Trichloroethane	10	יט
79-00-5	1,1,2-Trichloroethane	10	U
79-01-6	Trichloroethene	10	U
75-69-4	Trichlorofluoromethane	10	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	10	U
108-88-3	Toluene	10	U
75-01-4	Vinyl chloride	10	ט
1330-20-7	Xylenes (total)	10	U

Metals Data Reporting Form

Sample Results

Lab Sample ID: H8DVG Client ID: TW4

Matrix: Water Units: ug/L Prep Date: 6/29/2006 Prep Batch: 6180031

Weight: NA Volume: 50 Percent Moisture: NA

	WL/		Report		Τ	 		Anal	Anal
Element	Mass	IDL	Limit	Conc	0	DF	Instr	Date	Time
Aluminum	308.22	6.3	200	356	-E	J1	ICPST	7/1/2006	19:52
Antimony	220.35	1.9	60.0	1.9	U	1 :	ICPST	7/1/2006	19:52
Arsenic	189.04	1.0	10,0	1.6	R	J 1	ICPST	7/1/2006	19:52
Barium	493.41	0.15	200	200 -73.6-	B	U 1	ICPST	7/1/2006	19:52
Beryllium	313.04	0.18	5.0	5.0 -0.51	B-	U 1	ICPST	7/1/2006	19:52
Cadmium	226.50	0.16	5,0	0.16	U	1	ICPST	7/1/2006	19:52
Calcium	317.93	11.0	5000	29300	ĺ	_1	ICPST	7/1/2006	19:52
Chromium	267.72	0.43	10.0	0.95	,B′	J_1	ICPST	7/1/2006	19:52
Cobalt	228.62	0.49	50.0	50 0.62	B	V 1	ICPST	7/1/2006	19:52
Copper	324.75	0.33	25.0	0.33	U	1	ICPST	7/1/2006	19:52
Iron	271.44	19.0	100	487		1	ICPST	7/1/2006	19:52
Lead	220.35	1.1	3.0	1.1	U	1	ICPST	7/1/2006	19:52
Magnesium	279.08	6.7	5000	1860	18	J 1	ICPST	7/1/2006	19:52
Manganese	257.61	0.17	15.0	26.3	1	1	ICPST	7/1/2006	19:52
Nickel	231.60	0.98	40.0	0.98	U	1 :	ICPST	7/1/2006	19:52
Potassium	766.49	9.5	5000	5430		(m.11/2/04)	ICPST	7/1/2006	19:52
Selenium	220.35	1.6	5.0	1.6	· UN	₩51U	ICPST	7/5/2006	9:20
Silver	328.07	0.47	10.0	0.47	U	1	ICPST	7/1/2006	19:52
Sodium	330.23	174	5000	31100	1		ICPST	7/1/2006	19:52
Thallium	190.86	2.6	10.0	4.8	784	J1	ICPST	7/1/2006	19:52
Vanadium	292.40	0.72	50.0	0.72	Ü	1	ICPST	7/1/2006	19:52
Zinc	213.86	0.79	20.0	20 8.3	-B-	U 1	ICPST	7/1/2006	19:52

Comments: Lot #: C6F280229 Sample #: 7Color:pre-colorless, post-colorless. Clarity:pre-clear, post-clear

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

E Serial dilution percent difference not within limits

Form 1 Equivalent

Metals Data Reporting Form

Sample	Results		· · · · · · · · · · · · · · · · · · ·					_
Lab Sam	ple ID:	H8DVG	··	Client ID:	TW4	· · · · · · · · · · · · · · · · · · ·		
Matrix:	Water	Units:	ug/L	Prep Date:	7/12/2006	Prep Batch:_	6193012	_
Weight:	NA	Volume:	100	Percent Moist	ure: <u>NA</u>			

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.023	0.20	0.023	U	1	CVAA	7/12/2006	8:57

Comments: Lot #: C6F280229 Sample #: 7

5.04.5

U Result is less than the IDL

Result is between IDL and RL

E Serial dilution percent difference not within limits

Form 1 Equivalent

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WG

Lab Sample ID: C6F2B0229 008

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Work Order: H8DVJ1AA Dilution factor: 1

Date Received: 06/28/06 Date Extracted: 07/03/06 Date Analyzed: 07/03/06

Moisture %:

QC Batch: 6184148

Client Sample Id: TW5

CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/L	Q
67-64-1	Acetone	10	ן ט
71-43-2	Benzene	10	ַ ט
75-27-4	Bromodichloromethane	10	<u></u> ד
75-25-2	Bromoform	10	U
74-83-9	Bromomethane	10	Ū
78-93-3	2-Butanone	10	ן ט
75-15-0	Carbon disulfide	10	<u>ט</u>
56-23-5	Carbon tetrachloride	10	<u> </u>
108-90-7	Chlorobenzene	10	יט ו
75-00-3	Chloroethane	10	ט
67-66-3	Chloroform	10	ן ט
74-87-3	Chloromethane	10	ן ט
110-82-7	Cyclohexane	10	
124-48-1	Dibromochloromethane	10	U
96-12-8	1,2-Dibromo-3-chloropropane	10	יט
106-93-4	1,2-Dibromoethane	10	i
541-73-1	1,3-Dichlorobenzene	10	ט
106-46-7	1,4-Dichlorobenzene	10	ט
95-50-1	1,2-Dichlorobenzene	10	ַ
75-71-8	Dichlorodifluoromethane	10	U
75-34-3	1,1-Dichloroethane	10	<u> </u>
107-06-2	1,2-Dichloroethane	10	U
75-35-4	1,1-Dichloroethene	10	<u>U</u>
156-59-2	cis-1,2-Dichloroethene	10	U
156-60-5	trans-1,2-Dichloroethene	10	ן ד
78-87-5	1,2-Dichloropropane	10	<u>U</u>
10061-01-5	cis-1,3-Dichloropropene	10	ן ט
10061-02-6	trans-1,3-Dichloropropene	10	<u> </u>

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WG

Lab Sample ID: C6F280229 008

under the a

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Work Order: H8DVJ1AA

Date Received: 06/28/06 Date Extracted:07/03/06

Dilution factor: 1

Date Analyzed: 07/D3/06

Moisture %:

QC Batch: 6184148

Client Sample Id: TW5

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L	Q
100-41-4	Ethylbenzene	10	U
591-78-6	2-Hexanone	10	U
98-82-8	Isopropylbenzene	10	U
79-20-9	Methyl acetate	10	U J
75-09-2	Methylene chloride	10	i טו
108-87-2	Methylcyclohexane	10	U
108-10-1	4-Methyl-2-pentanone	10	Ū
1634-04-4	Methyl tert-butyl ether	10	Ü
100-42-5	Styrene	10	ט
79-34-5	1,1,2,2-Tetrachloroethane	10	<u>י</u>
120-82-1	1,2,4-Trichlorobenzene	10	ט
127-18-4	Tetrachloroethene	10	U
71-55-6	1,1,1-Trichloroethane	10	Ū
79-00-5	1,1,2-Trichloroethane	10	U
79-01-6	Trichloroethene	10	Ü
75-69-4	Trichlorofluoromethane	10	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	10	U
108-88-3	Toluene	10	U
75-01-4	Vinyl chloride	10	U
1330-20-7	Xylenes (total)	10	U

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6F280229 008

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds: - CLP (OLM04.2)

Sample WT/Vol: 1020 / mL Date Received: 06/28/06
Work Order: H8DVJ1AC Date Extracted:06/29/06
Dilution factor: 0.98 Date Analyzed: 07/03/06

Moisture %:

QC Batch: 6180127

Client Sample Id: TW5

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L	Q
83-32-9	Acenaphthene	9.8	ן ע
208-96-8	Acenaphthylene	9.8	<u> </u>
98-86-2	Acetophenone	9.8	<u> </u>
120-12-7	Anthracene	9.8	ן ט
1912-24-9	Atrazine	9.8	U
56-55-3	Benzo(a) anthracene	9.8	<u> </u> <u>U</u>
50-32-8	Benzo(a)pyrene	9.8	_lu
205-99-2	Benzo(b) fluoranthene	9.8	ַן
191-24-2	Benzo(ghi)perylene	9.8	וֹט
207-08-9	Benzo(k) fluoranthene	9.8	ן ט
100-52-7	Benzaldehyde	9.8	l U
92-52-4	1,1'-Biphenyl	9.8	ט ו
111-91-1	bis (2-Chloroethoxy) methane	9.8	ט
111-44-4	bis(2-Chloroethyl) ether	9.8	ן ט
117-81-7	bis(2-Ethylhexyl) phthalate	2.2	J
101-55-3	4-Bromophenyl phenyl ether	9.8	ן ט
85-68-7	Butyl benzyl phthalate	9.8	ן ט
105-60-2	Caprolactam	2.9	J
86-74-8	Carbazole	9.8	U
106-47-8	4-Chloroaniline	9.8	וט
59-50-7	4-Chloro-3-methylphenol	9.8	ן ט
91-58-7	2-Chloronaphthalene	9.8	<u>U</u>
95-57-8	2-Chlorophenol	9.8	U U
7005-72-3	4-Chlorophenyl phenyl ether	9.8	ן ט
218-01-9	Chrysene	9.8	וט
53-70-3	Dibenz (a, h) anthracene	9.8	ט
132-64-9	Dibenzofuran	9.8	U
91-94-1	3,3'-Dichlorobenzidine	9.8	ן ט

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6F280229 008

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 1020 / mL Date Received: 06/28/06
Work Order: H8DVJ1AC Date Extracted: 06/29/06
Dilution factor: 0.98 Date Analyzed: 07/03/06

Moisture %:

QC Batch: 6180127

Client Sample Id: TW5

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/L	Q
120-83-2	2,4-Dichlorophenol	9.8	ַן
84-66-2	Diethyl phthalate	9.8	ַ ַ
105-67-9	2,4-Dimethylphenol	9.8	ַן
131-11-3	Dimethyl phthalate	9.8	ַן
84-74-2	Di-n-butyl phthalate	9.8	ַ ט
534-52-1	4,6-Dinitro-2-methylphenol	24	ַ ט
51-28-5	2,4-Dinitrophenol	24	ַט
121-14-2	2,4-Dinitrotoluene	9.8	ַ
606-20-2	2,6-Dinitrotoluene	9.8	U
117-84-0	Di-n-octyl phthalate	9.8	ַן ט
206-44-0	Fluoranthene	9.8	U
86-73-7	Fluorene	9.8	וֹט
118-74-1	Hexachlorobenzene	9.8	U
87-68-3	Hexachlorobutadiene	9.8	U
77-47-4	Hexachlorocyclopentadiene	9.8	U
67-72-1	Hexachloroethane	9.8	ן ד
193-39-5	Indeno(1,2,3-cd)pyreme	9.8	_ U
78-59-1	Isophorone	9.8	<u>ט</u>
91-57-6	2-Methylnaphthalene	9.8	ַן ַ
95-48-7	2-Methylphenol	9.8	U U
106-44-5	4-Methylphenol	9.8	U
91-20-3	Naphthalene	9.8	_ U
88-74-4	2-Nitroaniline	24	ן ט
99-09-2	3-Nitroaniline	24	ן ט
100-01-6	4-Nitroaniline	24	U
98-95-3	Nitrobenzene	9.8	U
88-75-5	2-Nitrophenol	9.8	U
100-02-7	4-Nitrophenol	24	U

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG

Lab Sample ID: C6F280229 008

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 1020 / mL

Work Order: H8DVJ1AC

Date Received: 06/28/06 Date Extracted:06/29/06

Dilution factor: 0.98

Date Analyzed: 07/03/06

Moisture %:

QC Batch: 6180127

Client Sample Id: TW5

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L	Q
621-64-7	N-Nitrosodi-n-propylamine	9.8	ll
86-30-6	N-Nitrosodiphenylamine	9.8	ן ט
108-60-1	2,2'-oxybis(1-Chloropropane)	9.8	ַ "
87-86-5	Pentachlorophenol	24	ן ט
85-01-8	Phenanthrene	9.8	ַן ט
108-95-2	Phenol	9.8	U
129-00-0	Pyrene	9.8	U
95-95-4	2,4,5-Trichlorophenol	24	_ U
88-06-2	2,4,6-Trichlorophenol	9.8	ט ו

Metals Data Reporting Form

Sample	Resu	lts
--------	------	-----

Lab Sample ID: H8DVJ Client ID: TW5

Matrix: Water Units: ug/L Prep Date: 6/29/2006 Prep Batch: 6180031

Weight: NA Volume: 50 Percent Moisture: NA

	WL/	IDI	Report	Comm		DE	Touris	Anal	Anal
Element	Mass	<u>IDL</u>	Limit	Conc	0	DF	Instr	Date	Time
Aluminum	308.22	6.3	200	2130	₽	J1	ICPST	7/1/2006	20:41
Antimony	220.35	1.9	60.0	1.9	U	1	ICPST	7/1/2006	20:41
Arsenic	189.04	1.0	10,0	1.0	U	1 ,	ICPST	7/1/2006	20:41
Barium	493.41	0.15	200	200 80.0-	-B-	U 1	ICPST	7/1/2006	20:41
Beryllium	313.04	0.18	5.0	5 49.67	B	U 1	ICPST	7/1/2006	20:41
Cadmium	226.50	0.16	5.0	0.16	U	1	ICPST	7/1/2006	20:41
Calcium	317.93	11.0	5000	20400		1	ICPST	7/1/2006	20:41
Chromium	267.72	0.43	10.0	1.9	18	J1	ICPST	7/1/2006	20:41
Cobalt	228.62	0.49	50,0	50 1.5	B	U 1	ICPST	7/1/2006	20:41
Copper	324.75	0.33	25.0	0.92	28	J1	ICPST	7/1/2006	20:41
Iron	271.44	19.0	100	1910	1	1	ICPST	7/1/2006	20:41
Lead	220.35	1.1	3.0	1.1	U	1	ICPST	7/1/2006	20:41
Magnesium	279.08	6.7	5000	2490	B	J_1	ICPST	7/1/2006	20:41
Manganese	257.61	0.17	15.0	77.1		1	ICPST	7/1/2006	20:41
Nickel	231.60	0.98	40.0	2.4	<i>I</i>	J 1	ICPST	7/1/2006	20:41
Potassium	766.49	9.5	5000	500 -3380	-B-	U 1	ICPST	7/1/2006	20:41
Selenium	220.35	1.6	5.0	1.9	BN	J+1	ICPST	7/1/2006	20:41
Silver	328.07	0.47	10,0	0.47	Ü	1	ICPST	7/1/2006	20:41
Sodium	330.23	174	5000	31800		1	ICPST	7/1/2006	20:41
Thallium	190.86	2.6	10.0	2.6	บ	1	ICPST	7/1/2006	20:41
Vanadium	292.40	0.72	50.0	50 -2.7	B-	U 1	ICPST	7/1/2006	20:41
Zinc	213.86	0.79	20.0	20 14.5	_B_	V 1	ICPST	7/1/2006	20:41

Comments: Lot #: C6F280229 Sample #: 8Color:pre- colorless, post- colorless. Clarity:pre- clear, post- clear

5.04.5

U Result is less than the IDL

Form 1 Equivalent

- B Result is between IDL and RL
- E Serial dilution percent difference not within limits

Metals Data Reporting Form

Sample	Results						_
Lab Samp	ole ID:	H8DVJ	Client ID:	TW5			
Matrix:	Water	Units: ug/L	Prep Date:	7/12/2006	Prep Batch:_	6193012	
Weight:	NA	Volume: 100	Percent Mois	ture: NA			

	WL/		Report	-				Anal	Anal
Element	Mass	IDL.	Limit	Conc	0	DF	Instr	Date	Time
Mercury	253.7	0.023	0.20	0.023	U	1	CVAA	7/12/2006	9.02

Comments: Lot #: C6F280229 Sample #: 8

5.04.5

U Result is less than the IDL

Result is between IDL and RL

Serial dilution percent difference not within limits

Form 1 Equivalent

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6G290164 006

Method: OCLP OLMO4.2

Volatile Organic Compounds - CLP (OLM04.2)

Work Order: JAAF21AA Date Extracted: 08/02/06
Dilution factor: 1 Date Analyzed: 08/02/06

Moisture %:

QC Batch: 6214421

Client Sample Id: TW6

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/L	Q
67-64-1	Acetone	13	<u> J </u>
71-43-2	Benzene	10	l U
75-27-4	Bromodichloromethane	10	ן ט
75-25-2	Bromoform	10	ן ט
74-83-9	Bromomethane	10	U
78-93-3	2-Butanone	10	ן ט
75-15-0	Carbon disulfide	10	ן ט
56-23-5	Carbon tetrachloride	10	U
108-90-7	Chlorobenzene	10	ן די
75-00-3	Chloroethane	10	ال ا
67-66-3	Chloroform	10	ן ט
74-87-3	Chloromethane	10	U
110-82-7	Cyclohexane	10	ן די די די
124-48-1	Dibromochloromethane	10	<u>U</u>
96-12-8	1,2-Dibromo-3-chloropropane	10	<u>"</u>
106-93-4	1,2-Dibromoethane	10	<u> </u>
541-73-1	1,3-Dichlorobenzene	10	ן די
106-46-7	1,4-Dichlorobenzene	10	ַ ַ ַ ַ ַ
95-50-1	1,2-Dichlorobenzene	10	ט
75-71-8	Dichlorodifluoromethane	10	<u>"</u>
75-34-3	1,1-Dichloroethane	10	<u>U</u>
107-06-2	1,2-Dichloroethane	_ 10	<u> </u>
75-35-4	1,1-Dichloroethene	10	<u> </u>
156-59-2	cis-1,2-Dichloroethene	10	<u>U</u>
156-60-5	trans-1,2-Dichloroethene	10	<u> </u>
78-87-5	1,2-Dichloropropane	10	<u> </u>
10061-01-5	cis-1,3-Dichloropropene	10	<u> </u>
10061-02-6	trans-1,3-Dichloropropene	10	ן ט

Lab Name:Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WG

Lab Sample ID: C6G290164 006

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Work Order: JAAF21AA Date Received: 07/29/06 Date Extracted: 08/02/06

Dilution factor: 1

Date Analyzed: 08/02/06

Moisture %:

QC Batch: 6214421

Client Sample Id: TW6

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L	Q
100-41-4	Ethylbenzene	10	ע
591-78-6	2-Hexanone	10	U
98-82-8	Isopropylbenzene	10	ט
79-20-9	Methyl acetate	10	ט
75-09-2	Methylene chloride	10	ט
108-87-2	Methylcyclohexane	10	U
108-10-1	4-Methyl-2-pentanone	10	U
1634-04-4	Methyl tert-butyl ether	10	ן ט
100-42-5	Styrene	10	ן ט
79-34-5	1,1,2,2-Tetrachloroethane	10	ן ט
120-82-1	1,2,4-Trichlorobenzene	10	ט
127-18-4	Tetrachloroethene	10	U
71-55-6	1,1,1-Trichloroethane	10	ן ט
79~00-5	1,1,2-Trichloroethane	10	<u>ט</u>
79-01-6	Trichloroethene	10	<u> U</u>
75-69-4	Trichlorofluoromethane	10	<u> U</u>
76-13-1	1,1,2-Trichloro-1,2,2-triflu	10	ַ
108-88-3	Toluene	10	ן ט
75-01-4	Vinyl chloride	10	ט
1330-20-7	Xylenes (total)	10	<u> U</u>

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6G290164 006

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 1000 / mL Date Received: 07/29/06 Work Order: JAAF21AC Date Extracted:08/01/06 Dilution factor: 1 Date Analyzed: 08/10/06

Moisture %:

QC Batch: 6213214

Client Sample Id: TW6

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/L	Q
83-32-9	Aceraphthene	12	
208-96-8	Acenaphthylene	10	ט
98-86-2	Acetophenone	10	<u>ט</u>
120-12-7	Anthracene	1.4	J
1912-24-9	Atrazine	10	ן ט
56-55-3	Benzo (a) anthracene	10	UU
50-32-8	Benzo (a) pyrene	10	ט
205-99-2	Benzo(b) fluoranthene	10	ַט
191-24-2	Benzo(ghi)perylene	10	ַ ע
207-08-9	Benzo(k) fluoranthene	10	יט ו
100-52-7	Benzaldehyde	10	ן ט
92-52-4	1,1'-Biphenyl	10	<u>ט</u>
111-91-1	bis (2-Chloroethoxy) methane	10	ַ <u></u>
111-44-4	bis(2-Chloroethyl) ether	10	U
117-81-7	bis(2-Ethylhexyl) phthalate	10	U
101-55-3	4-Bromophenyl phenyl ether	10	ט
85-68-7	Butyl benzyl phthalate	10	U
105-60-2	Caprolactam	3.3	J
86-74-8	Carbazole	10	U
106-47-8	4-Chloroaniline	10	ע
59-50-7	4-Chloro-3-methylphenol	10	U
91-58-7	2-Chloronaphthalene	10	U
95-57-8	2-Chlorophenol	10	ָ <u>'</u>
7005-72-3	4-Chlorophenyl phenyl ether	10	U
218-01-9	Chrysene	10	ן ט
53-70-3	Dibenz(a,h)anthracene	10	U
132-64-9	Dibenzofuran	10	<u></u>
91-94-1	3,3'-Dichlorobenzidine	10	U

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WG

Lab Sample ID: C6G290164 006

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 1000 / mL Work Order: JAAF21AC Dilution factor: 1 Date Received: 07/29/06
Date Extracted:08/01/06

Date Analyzed: 08/10/06

Moisture %:

QC Batch: 6213214

Client Sample Id: TW6

CAS NO.	COMPOUND (ug/L or u	ıg/kg) ug/L	Q
120-83-2	2,4-Dichlorophenol	10	U
84-66-2	Diethyl phthalate	10	U
105-67-9	2,4-Dimethylphenol	10	<u></u> U
131-11-3	Dimethyl phthalate	10	U
84-74-2	Di-n-butyl phthalate	10	U
534-52-1	4,6-Dinitro-2-methylphenol	25	<u></u>
51-28-5	2,4-Dinitrophenol	25	<u></u>
121-14-2	2,4-Dinitrotoluene	10	U
606-20-2	2,6-Dinitrotoluene	10	U
117-84-0	Di-n-octyl phthalate	10	<u></u>
206-44-0	Fluoranthene	10	<u></u> U
86-73-7	Pluorene	4.5	<u> </u> J
118-74-1	Hexachlorobenzene	10	U
87-68-3	Hexachlorobutadiene	10	บ
77-47-4	Hexachlorocyclopentadiene	10	U
67-72-1	Hexachloroethane	10	U
193-39-5	Indeno (1,2,3-cd) pyrene	10	<u></u>
78-59-1	Isophorone	10	UU
91-57-6	2-Methylnaphthalene	10	U
95-48-7	2-Methylphenol	10	<u>"</u>
106-44-5	4-Methylphenol	10	<u></u>
91-20-3	Naphthalene	10	<u> </u>
88-74-4	2-Nitroaniline	25	
99-09-2	3-Nitroaniline	25	U
100-01-6	4-Nitroaniline	<u> 25 </u>	<u></u> U
98-95-3	Nitrobenzene	10	<u></u> U
88-75-5	2-Nitrophenol	10	<u> </u>
100-02-7	4-Nitrophenol	25	l <u></u> l

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6G290164 006

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 1000 / mL Date Received: 07/29/06
Work Order: JAAF21AC Date Extracted:08/01/06
Dilution factor: 1 Date Analyzed: 08/10/06

Moisture %:

QC Batch: 6213214

Client Sample Id: TW6

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L	Q
621-64-7	N-Nitrosodi-n-propylamine	10	U
86-30-6	N-Nitrosodiphenylamine	10	ַ ַ ַ ַ ַ ַ ַ
108-60-1	2,2'-oxybis(1-Chloropropane)	10	וט וו
87-86-5	Pentachlorophenol	25	וט
85-01-8	Phenanthrene	10	U
108-95-2	Phenol	10	ן ט
129-00-0	Pyrene	1.2	J
95-95-4	2,4,5-Trichlorophenol	25	U
88-06-2	2,4,6-Trichlorophenol	10	U

Metals Data Reporting Form

Sample Results

Lab Sample ID: JAAF2 Client ID: TW6

Matrix: Water Units: ug/L Prep Date: 8/2/2006 Prep Batch: 6214392

Weight: NA Volume: 50 Percent Moisture: NA

Élement	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal	Anal Time
					<u>V</u>	DI.	11127	Date	11me
Aluminum	308.22	6.9	200	51100		1	ICPST	8/11/2006	15:50
Antimony	206.84	2.3	60.0	2.3	U	1	ICPST	8/11/2006	15:50
Arsenic	189.04	1.9	10.0	12.3		1	ICPST	8/11/2006	15:50
Barium	493.41	0.14	200	600		1	ICPST	8/11/2006	15:50
Beryllium	313.04	0.17	5.0	2.6	-B	J 1	ICPST	8/11/2006	15:50
Cadmium	226.50	0.31	5.0	0.31	U	1	ICPST	8/11/2006	15:50
Calcium	317.93	4.1	5000	17300		1	ICPST	8/11/2006	15:50
Chromium	267.72	0.60	10.0	49.1		1	ICPST	8/11/2006	15:50
Cobalt	228.62	0.64	50.0	33.2	Æ	J 1	ICPST	8/11/2006	15:50
Copper	324.75	0.91	25.0	125		1	ICPST	8/11/2006	15:50
Iron	271.44	13.4	100	48400		1	ICPST	8/11/2006	15:50
Lead	220.35	1.6	3.0	124		1	ICPST	8/11/2006	15:50
Magnesium	279.08	5.2	5000	9810		1	ICPST	8/11/2006	15:50
Manganese	257.61	0.15	15.0	1000		1	ICPST	8/11/2006	15:50
Nickel	231.60	0.71	40.0	69.3		1	ICPST	8/11/2006	15:50
Potassium	766.49	10.5	5000	9440		1	ICPST	8/11/2006	15:50
Selenium	220.35	2.0	5.0	6.5	*	J 1	ICPST	8/11/2006	15:50
Silver	328.07	0.45	10.0	0.49	₽∽	J1	ICPST	8/11/2006	15:50
Sodium	330.23	99.8	5000	30300		1	ICPST	8/11/2006	15:50
Thallium	190.86	2.8	10.0	10 -5.4	-18-	U 1	ICPST	8/11/2006	15:50
Vanadium	292.40	0.56	50.0	49.5	-B*	J1	ICPST	8/11/2006	15:50
Zinc	206.2	1.0	20.0	597		1	ICPST	8/11/2006	15:50

Comments: Lot #: C6G290164 Sample #: 6 Color:pre- brown, post- brown. Clarity:pre cloudy, post- cloudy

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

Form 1 Equivalent

Metals Data Reporting Form

Sample Re	sults						
Lab Sample	ID:	JAAF2		Client ID:	TW6		
Matrix:	Water	Units:	ug/L	Prep Date:	8/15/2006	Prep Batch:_	6227050
Weight:	NA	Volume:	100	Percent Moist	ture: NA		

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.042	0.20	0.65		1	CVAA	8/15/2006	9:02

Comments: Lot #: C6G290164 Sample #: 6

5.04.5

U Result is less than the IDL

Form 1 Equivalent

B Result is between IDL and RL

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6G290164 007

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Date Received: 07/29/06 Work Order: JAAF61AH Date Extracted: 08/02/06 Date Analyzed: 08/02/06 Dilution factor: 1

Moisture %:

QC Batch: 6214421

Client Sample Id: TW60

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/L	Q
67-64-1	Acetone	6.5	J
71-43-2	Benzene	10	UU
75-27-4	Bromodichloromethane	10	U
75-25-2	Bromoform	10	ט ט
74-83-9	Bromomethane	10	<u> </u>
78-93-3	2-Butanone	10	<u> </u>
75-15-0	Carbon disulfide	10	U
56-23-5	Carbon tetrachloride	10	U
108-90-7	Chlorobenzene	10	יט ט
75-00-3	Chloroethane	10	U
67-66-3	Chloroform	10	U
74-87-3	Chloromethane	10	ט ט
110-82-7	Cyclohexane	10	ט ט
124-48-1	Dibromochloromethane	10	יס יי
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
106-93-4	1,2-Dibromoethane	10	ט ו
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U U
75-71-8	Dichlorodifluoromethane	10	I
75-34-3	1,1-Dichloroethane	10	יט ו
107-06-2	1,2-Dichloroethane	10	
75-35-4	1,1-Dichloroethene	10	ַ ע
156-59-2	cis-1,2-Dichloroethene	10	U
156-60-5	trans-1,2-Dichloroethene	10	I
78-87-5	1,2-Dichloropropane	10	UU
10061-01-5	cis-1,3-Dichloropropens	10	ים יי
10061-02-6	trans-1,3-Dichloropropene	10	U

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WG

Lab Sample ID: C6G290164 007

.

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Work Order: JAAF61AH

Date Received: 07/29/06 Date Extracted: 08/02/06

Dilution factor: 1

Date Analyzed: 08/02/06

Moisture %:

QC Batch: 6214421

Client Sample Id: TW60

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L (2
100-41-4	Ethylbenzene	10	
591-78-6	2-Hexanone	10	
98-82-8	Isopropylbenzene	10	U
79-20-9	Methyl acetate	10	U
75-09-2	Methylene chloride	10	ַ
108-87-2	Methylcyclohexane	10	U
108-10-1	4-Methyl-2-pentanone	10	U
1634-04-4	Methyl tert-butyl ether	10	<u> </u>
100-42-5	Styrene	10	<u> </u>
79-34-5	1,1,2,2-Tetrachloroethane	10	<u> </u>
120-82-1	1,2,4-Trichlorobenzene	10	
127-18-4	Tetrachloroethene	10	
71-55-6	1,1,1-Trichloroethane	10	
79-00-5	1,1,2-Trichloroethane	10	<u>U</u>
79-01-6	Trichloroethene	10	<u>U</u>
75-69-4	Trichlorofluoromethane	10	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	10	<u>U</u>
108-88-3	Toluene	10	
75-01-4	Vinyl chloride	10	
1330-20-7	Xylenes (total)	10	ַ

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6G290164 007

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 1010 / mL Date Received: 07/29/06
Work Order: JAAF61AJ Date Extracted:08/01/06
Dilution factor: 0.99 Date Analyzed: 08/10/06

Moisture %:

QC Batch: 6213214

Client Sample Id: TW60

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/L	Q
83-32-9	Acenaphthene	12	11
208-96-8	Acenaphthylene	<u> 9.9</u>	ע
98-86-2	Acetophenone	9.9	ט
120-12-7	Anthracene	1.5	J
1912-24-9	Atrazine	9.9	ַ ַ ַ ַ ַ ַ ַ
56-55-3	Benzo (a) anthracene	9.9	<u> </u>
50-32-8	Benzo (a) pyrene	9.9	<u> </u>
205-99-2	Benzo(b) fluoranthene	9.9	<u> </u>
191-24-2	Benzo (ghi) perylene	9.9	ט ו
207-08-9	Benzo (k) fluoranthene	9.9	ן די
100-52-7	Benzaldehyde	9.9	ט
92-52-4	1,1'-Biphenyl	9.9	<u>"</u>
111-91-1	bis(2-Chloroethoxy)methane	9.9	ע
111-44-4	bis(2-Chloroethyl) ether	9.9	ט
117-81-7	bis(2-Ethylhexyl) phthalate	9.9	ט נ
101-55-3	4-Bromophenyl phenyl ether	9.9	ט ו
85-68-7	Butyl benzyl phthalate	9.9	U
105-60-2	Caprolactam	5.2	J
86-74-8	Carbazole	9.9	ן ט
106-47-8	4-Chloroaniline	9.9	ש
59-50-7	4-Chloro-3-methylphenol	9.9	<u></u>
91-58-7	2-Chloronaphthalene	9.9	ע
95-57-8	2-Chlorophenol	9.9	ן די
7005-72-3	4-Chlorophenyl phenyl ether	9.9	ָ <u></u>
218-01-9	Chrysene	9.9	ַ ַ ַ ַ
53-70-3	Dibenz(a,h)anthracene	9.9	ַ
132-64-9	Dibenzofuran	9.9	U
91-94-1	3,3'-Dichlorobenzidine	9.9	U

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG

Lab Sample ID: C6G290164 007

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 1010 / mL Work Order: JAAF61AJ

Date Received: 07/29/06 Date Extracted: 08/01/06

Dilution factor: 0.99

Date Analyzed: 08/10/06

Moisture %:

QC Batch: 6213214

Client Sample Id: TW60

120-83-2 2,4-Dichlorophenol 9.9 84-66-2 Diethyl phthalate 9.9 105-67-9 2,4-Dimethylphenol 9.9 131-11-3 Dimethyl phthalate 9.9 84-74-2 Di-n-butyl phthalate 9.9 534-52-1 4,6-Dinitro-2-methylphenol 25 51-28-5 2,4-Dinitrophenol 25 121-14-2 2,4-Dinitrotoluene 9.9 606-20-2 2,6-Dinitrotoluene 9.9 117-84-0 Di-n-octyl phthalate 9.9 117-84-0 Fluoranthene 1.1 J 86-73-7 Fluorene 4.6 J 118-74-1 Hexachlorobenzene 9.9 87-68-3 Hexachlorobutadiene 9.9 77-47-4 Hexachlorocyclopentadiene 9.9 67-72-1 Hexachlorocthane 9.9 9.9 67-72-1 Hexachlorocthane 9.9	U U U U U U U U U U
105-67-9 2,4-Dimethylphenol 9.9 131-11-3 Dimethyl phthalate 9.9 84-74-2 Di-n-butyl phthalate 9.9 534-52-1 4,6-Dinitro-2-methylphenol 25 51-28-5 2,4-Dinitrophenol 25 121-14-2 2,4-Dinitrotoluene 9.9 606-20-2 2,6-Dinitrotoluene 9.9 117-84-0 Di-n-octyl phthalate 9.9 206-44-0 Fluoranthene 1.1 J 86-73-7 Fluorene 4.6 J 118-74-1 Hexachlorobenzene 9.9 87-68-3 Hexachlorobutadiene 9.9 77-47-4 Hexachlorocyclopentadiene 9.9	U U U
131-11-3 Dimethyl phthalate 9.9 84-74-2 Di-n-butyl phthalate 9.9 534-52-1 4,6-Dinitro-2-methylphenol 25 51-28-5 2,4-Dinitrophenol 25 121-14-2 2,4-Dinitrotoluene 9.9 606-20-2 2,6-Dinitrotoluene 9.9 117-84-0 Di-n-octyl phthalate 9.9 206-44-0 Fluoranthene 1.1 J 86-73-7 Fluorene 4.6 J 118-74-1 Hexachlorobenzene 9.9 87-68-3 Hexachlorobutadiene 9.9 77-47-4 Hexachlorocyclopentadiene 9.9	<u>บ</u> บ
84-74-2 Di-n-butyl phthalate 9.9 534-52-1 4,6-Dinitro-2-methylphenol 25 51-28-5 2,4-Dinitrophenol 25 121-14-2 2,4-Dinitrotoluene 9.9 606-20-2 2,6-Dinitrotoluene 9.9 117-84-0 Di-n-octyl phthalate 9.9 206-44-0 Fluoranthene 1.1 J 86-73-7 Fluorene 4.6 J 118-74-1 Hexachlorobenzene 9.9 87-68-3 Hexachlorobutadiene 9.9 77-47-4 Hexachlorocyclopentadiene 9.9	<u>ט</u> ט
534-52-1 4,6-Dinitro-2-methylphenol 25 51-28-5 2,4-Dinitrophenol 25 121-14-2 2,4-Dinitrotoluene 9.9 606-20-2 2,6-Dinitrotoluene 9.9 117-84-0 Di-n-octyl phthalate 9.9 206-44-0 Fluoranthene 1.1 J 86-73-7 Fluorene 4.6 J 118-74-1 Hexachlorobenzene 9.9 87-68-3 Hexachlorobutadiene 9.9 77-47-4 Hexachlorocyclopentadiene 9.9	ַ
51-28-5 2,4-Dinitrophenol 25 121-14-2 2,4-Dinitrotoluene 9.9 606-20-2 2,6-Dinitrotoluene 9.9 117-84-0 Di-n-octyl phthalate 9.9 206-44-0 Fluoranthene 1.1 J 86-73-7 Fluorene 4.6 J 118-74-1 Hexachlorobenzene 9.9 87-68-3 Hexachlorobutadiene 9.9 77-47-4 Hexachlorocyclopentadiene 9.9	
121-14-2 2,4-Dinitrotoluene 9.9 606-20-2 2,6-Dinitrotoluene 9.9 117-84-0 Di-n-octyl phthalate 9.9 206-44-0 Fluoranthene 1.1 J 86-73-7 Fluorene 4.6 J 118-74-1 Hexachlorobenzene 9.9 87-68-3 Hexachlorobutadiene 9.9 77-47-4 Hexachlorocyclopentadiene 9.9	ַד
606-20-2 2,6-Dinitrotoluene 9.9 117-84-0 Di-n-octyl phthalate 9.9 206-44-0 Fluoranthene 1.1 J 86-73-7 Fluorene 4.6 J 118-74-1 Hexachlorobenzene 9.9 87-68-3 Hexachlorobutadiene 9.9 77-47-4 Hexachlorocyclopentadiene 9.9	
117-84-0 Di-n-octyl phthalate 9.9 206-44-0 Fluoranthene 1.1 J 86-73-7 Fluorene 4.6 J 118-74-1 Hexachlorobenzene 9.9 87-68-3 Hexachlorobutadiene 9.9 77-47-4 Hexachlorocyclopentadiene 9.9	U
206-44-0 Fluoranthene 1.1 J 86-73-7 Fluorene 4.6 J 118-74-1 Hexachlorobenzene 9.9 87-68-3 Hexachlorobutadiene 9.9 77-47-4 Hexachlorocyclopentadiene 9.9	Ŭ
86-73-7 Fluorene 4.6 J 118-74-1 Hexachlorobenzene 9.9 87-68-3 Hexachlorobutadiene 9.9 77-47-4 Hexachlorocyclopentadiene 9.9	U
118-74-1Hexachlorobenzene9.987-68-3Hexachlorobutadiene9.977-47-4Hexachlorocyclopentadiene9.9	i
87-68-3 Hexachlorobutadiene 9.9 77-47-4 Hexachlorocyclopentadiene 9.9	
77-47-4 Hexachlorocyclopentadiene 9.9	<u>u</u>
	U
67-72-1 Hexachloroethane 9 9	ַ ַ ַ
1 teracinologomano	<u> </u>
193-39-5 Indeno (1, 2, 3-cd) pyrene 9.9	U
78-59-1 Isophorone 9.9	U
91-57-6 2-Methylnaphthalene 9.9	U
95-48-7 2-Methylphenol 9.9	U
106-44-5 4-Methylphenol 9.9	U
91-20-3 Naphthalene 9.9	ן ש
88-74-4 2-Nitroaniline 25	U
99-09-2 3-Nitroaniline 25	U
100-01-6 4-Nitroaniline 25	ַ ט
98-95-3 Nitrobenzene 9.9	
88-75-5 2-Nitrophenol 9.9	U
100-02-7 4-Nitrophenol 25	:

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WG Lab Sample ID:C6G290164 007

Method: OCLP OLM04.2

Semi-Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 1010 / mL Date Received: 07/29/06 Work Order: JAAF61AJ Date Extracted: 08/01/06 Dilution factor: 0.99 Date Analyzed: 08/10/06

Moisture %:

QC Batch: 6213214

Client Sample Id: TW60

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L	Q
621-64-7	N-Nitrosodi-n-propylamine	9.9	U
86-30-6	N-Nitrosodiphenylamine	9.9	ע
108-60-1	2,2'-oxybis(1-Chloropropane)	9.9	<u>U</u>
87-86-5	Pentachlorophenol	25	_ <u> </u>
85-01-8	Phenanthrene	9.9	U
108-95-2	Phenol	9.9	_ <u>U</u>
129-00-0	Pyrene	1.4	_ <u>J</u>
95-95-4	2,4,5-Trichlorophenol	25	<u>U</u>
88-06-2	2,4,6-Trichlorophenol	9.9	<u>U</u>

Metals Data Reporting Form

Sample Results

Lab Sample ID: JAAF6

TW60 Client ID:

Matrix:

Water

Units: ug/L

50

Prep Date: 8/2/2006

Prep Batch: 6214392

Weight:

NA

Volume:

Percent Moisture:

	NA
_	

Flores-4	WL/	YDY	Report	6				Anal	Anal
Element	Mass	IDL	Limit	Conc	0	DF	Instr	Date	Time
Aluminum	308.22	6.9	200	50000		1	ICPST	8/11/2006	15:55
Antimony	206.84	2.3	60.0	2.3	U	1	ICPST	8/11/2006	15:55
Arsenic	189.04	1.9	10.0	12.0	1	1	ICPST	8/11/2006	15:55
Barium ·	493.41	0.14	200	620		1	ICPST	8/11/2006	15:55
Beryllium	313.04	0.17	5.0	2.8	133	J 1	ICPST	8/11/2006	15:55
Cadmium	226.50	0.31	5.0	0.31	U	1	ICPST	8/11/2006	15:55
Calcium	317.93	4.1	5000	17400	l	1	ICPST	8/11/2006	15:55
Chromium	267.72	0.60	10.0	45.7		1	ICPST	8/11/2006	15:55
Cobalt	228.62	0.64	50.0	32.8	<i>-</i> ₽•	J1	ICPST	8/11/2006	15:55
Copper	324.75	0.91	25.0	122		1	ICPST	8/11/2006	15:55
Iron	271.44	13.4	100	46700		1	ICPST	8/11/2006	15:55
Lead	220.35	1.6	3.0	120		1	ICPST	8/11/2006	15:55
Magnesium	279.08	5.2	5000	9650		1	ICPST	8/11/2006	15:55
Manganese	257.61	0.15	15.0	1020		1	ICPST	8/11/2006	15:55
Nickel	231.60	0.71	40.0	66.3		1	ICPST	8/11/2006	15:55
Potassium	766.49	10.5	5000	9570	1	1	ICPST	8/11/2006	15:55
Selenium	220.35	2.0	5.0	5.8	₩	J 1	ICPST	8/11/2006	15:55
Silver	328.07	0.45	10.0	0.70	₽∽	J1	ICPST	8/11/2006	15:55
Sodium	330.23	99.8	5000	30800		1	ICPST	8/11/2006	15:55
Thallium	190.86	2.8	10.0	/0 3.0	-В-	U 1	ICPST	8/11/2006	15:55
Vanadium	292.40	0.56	50.0	49.4	- B ⁻	J1	ICPST	8/11/2006	15:55
Zinc	206.2	1.0	20.0	642		1	ICPST	8/11/2006	15:55

Comments: Lot #: C6G290164 Sample #: 7Color:pre- brown, post- brown. Clarity:pre cloudy, post- cloudy

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

Form 1 Equivalent

E Serial dilution percent difference not within limits

Metals Data Reporting Form

 Sample Results

 Lab Sample ID:
 JAAF6
 Client ID:
 TW60

 Matrix:
 Water
 Units:
 ug/L
 Prep Date:
 8/15/2006
 Prep Batch:
 6227050

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.042	0.20	0.69		1	CVAA	8/15/2006	9:04

Comments: Lot #: C6G290164 Sample #: 7

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

E Scrial dilution percent difference not within limits

Form 1 Equivalent

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WQ Lab Sample ID:C6G290164 008

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Date Received: 07/29/06 Work Order: JAAF91AA Date Extracted:08/02/06 Dilution factor: 1 Date Analyzed: 08/02/06

Moisture %:

QC Batch: 6214421

Client Sample Id: TB(7-27-06)

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L	Q
100-41-4	Ethylbenzene	10	<u> </u>
591-78-6	2-Hexanone	10	<u></u>
98-82-8	Isopropylbenzene	10	ן די
79-20-9	Methyl acetate	10	U
75-09-2	Methylene chloride	10	ט
108-87-2	Methylcyclohexane	10	יט
108-10-1	4-Methyl-2-pentanone	10	U
1634-04-4	Methyl tert-butyl ether	10	U
100-42-5	Styrene	10	
79-34-5	1,1,2,2-Tetrachloroethane	10	<u>"</u>
120-82-1	1,2,4-Trichlorobenzene	10	ן ש
127-18-4	Tetrachloroethene	10	
71-55-6	1,1,1-Trichloroethane	10	<u> </u>
79-00-5	1,1,2-Trichloroethane	10	<u>"</u>
79-01-6	Trichloroethene	10	U
75-69-4	Trichlorofluoromethane	10	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	10	U
108-88-3	Toluene	10	<u>"</u>
75-01-4	Vinyl chloride	10	U
1330-20-7	Xylenes (total)	10	<u>"</u>

The RETEC Group, Inc.

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) WQ Lab Sample ID:C6G290164 008

...... Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Date Received: 07/29/06
Work Order: JAAF91AA Date Extracted:08/02/06
Dilution factor: 1 Date Analyzed: 08/02/06

Moisture %:

QC Batch: 6214421

Client Sample Id: TB(7-27-06)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/L	Q
67-64-1	Acetone	10	Uj
71-43-2	Benzene	10	U
75-27-4	Bromodichloromethane	10	U
75-25-2	Bromoform	10	U
74-83-9	Bromomethane	10	U
78-93-3	2-Butanone	10	U
75-15-0	Carbon disulfide	10	U U
56-23-5	Carbon tetrachloride	10	U
108-90-7	Chlorobenzene	10	ָט
75-00-3	Chloroethane	10	ַ
67-66-3	Chloroform	10	ש
74-87-3	Chloromethane	10	U
110-82-7	Cyclohexane	10	ט
124-48-1	Dibromochloromethane	10	ָט
96-12-8	1,2-Dibromo-3-chloropropane	10	U
106-93-4	1,2-Dibromoethane	10	ַ
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	ט ו
75-71-8	Dichlorodifluoromethane	10	<u>"</u>
75-34-3	1,1-Dichloroethane	10	UU
107-06-2	1,2-Dichloroethane	10	U
75-35-4	1,1-Dichloroethene	10	<u>"</u>
156-59-2	cis-1,2-Dichloroethene	10	ט
156-60-5	trans-1,2-Dichloroethene	10	יט ו
78-87-5	1,2-Dichloropropane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	ט
10061-02-6	trans-1,3-Dichloropropene	10	יס יי

The RETEC Group, Inc.

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WQ

Lab Sample ID: C6F280229 009

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Work Order: H8DVL1AA Dilution factor: 1

Date Received: 06/28/06 Date Extracted:07/03/06 Date Analyzed: 07/03/06

Moisture %:

44 - 14 ME

QC Batch: 6184148

Client Sample Id: TB(062706)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L (2
100-41-4	Ethylbenzene	10	ט
591-78-6	2-Hexanone	10	ן ט
98-82-8	Isopropylbenzene	10	ש
79-20-9	Methyl acetate	10	U
75-09-2	· Methylene chloride	10	ַ
108-87-2	Methylcyclohexane	10	ט
108-10-1	4-Methyl-2-pentanone	10	ט
1634-04-4	Methyl tert-butyl ether	10	ט
100-42-5	Styrene	10	ַ ַ ַ ַ
79-34-5	1,1,2,2-Tetrachloroethane	10	ַ
120-82-1	1,2,4-Trichlorobenzene	10	ַ ַ ַ ַ
127-18-4	Tetrachloroethene	10	
71-55-6	1,1,1-Trichloroethane	10	
79-00-5	1,1,2-Trichloroethane	10	ט
79-01-6	Trichloroethene	10	Ŭ
75-69-4	Trichlorofluoromethane	10	ַ ַ ַ ַ
76-13-1	1,1,2-Trichloro-1,2,2-triflu	10	ַ
108-88-3	Toluene	10	
75-01-4	Vinyl chloride	10	U
1330-20-7	Xylenes (total)	10	ַ

The RETEC Group, Inc.

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WQ

Lab Sample ID: C6F280229 009

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Work Order: H8DVL1AA Dilution factor: 1

Date Received: 06/28/06 Date Extracted: 07/03/06

Moisture %:

Date Analyzed: 07/03/06

QC Batch: 6184148

Client Sample Id: TB(062706)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/L Q	
67-64-1	Acetone	10	U
71-43-2	Benzene	10	U
75-27-4	Bromodichloromethane	10	ש
75-25-2	Bromoform	10	ַ
74-83-9	Bromomethane	10	U
78-93-3	2-Butanone	10	יט
75-15-0	Carbon disulfide	10	ט
56-23-5	Carbon tetrachloride	10	יט
108-90-7	Chlorobenzene	10	ש
75-00-3	Chloroethane	10	ש
67-66-3	Chloroform	10	ָט
74-87-3	Chloromethane	10	ש
110-82-7	Cyclohexane	10	ט
124-48-1	Dibromochloromethane	10	U
96-12-8	1,2-Dibromo-3-chloropropane	10	U
106-93-4	1,2-Dibromoethane	10	יט
541-73-1	1,3-Dichlorobenzene	10	ט
106-46-7	1,4-Dichlorobenzene	10	ַ ט
95-50-1	1,2-Dichlorobenzene	10	יט
75-71-8	Dichlorodifluoromethane	10	υ
75-34-3	1,1-Dichloroethane	10	ַט
107-06-2	1,2-Dichloroethane	10	ַ ַ ַ
75-35-4	1,1-Dichloroethene	10	נט
156-59-2	cis-1,2-Dichloroethene	10	ַ
156-60-5	trans-1,2-Dichloroethene	10	U
78-87-5	1,2-Dichloropropane	10	יט
10061-01-5	cis-1,3-Dichloropropene	10	ַ
10061-02-6	trans-1,3-Dichloropropene	10	ָט

Chain of Custody i	Record	$N_{ m c} = 008$	7 391 W	ETEC Group, h Sereta Steet Sc: 7-8718 Phone - (20)	e 204 • Jaca, NY 04850-	0606673 ***	RETEC
Project Yarre. Bot Jennis 5I-289169	Project Number: OL	4N2 19643-800	<u> শুশ্বন্থ</u>	z sz	/ / / /	7777	TA IVE I EC
Send Report In: James Eduards		cott bruserick		% / /	/////	////	Pageof
Address RETEL		1835e Lloyd] _} / * /(•	I/I/I	' / / /	
1001 W. Senero H Some 704	Shipment Method:	J.F.x		I/I	IIII	/// 20	Page Los L occipt Vacuu VBR 7/1
THAM NY 14850	Pirbil' Number		} \S\\\$\\	A/A	1/1/1	///	VW 7/1
Phone: 607-77-5716	Laboratory Receiving:	12 Tambe	૽૽૾ૺૺૺૢૢૢૢૢૢૢૢૢૢૢૢ૽ૺૺૺ૾ૺ	III	IIII	/ / Purchase / / Order # .	
Fax: 607-277-905-7		Elled Cans	# <i>[3] </i>	1/1/1	IIII	State End	
Pield Sampla C	Semple Service Date Trie	Sompo dimits Humber of Combiners	1/2/ /2/	777	J/J/J	Commerte, Sperial Instructions, etc.	Láb Sampel D (to Se complete by ab)
GRIAH	6/26/26/1114	1327 431	X	 	1 1	-300 -45	4.5°Ha
GRAMBUP	1116	1325 3400				-28.5 - 5.0	3-5-74
GRIA3	1117	1340 3389		+		-7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
GRT A3DUP	1117	1343 3526		┼┼╵╌├─			00.0 Ha
GRSGH	140	6.1700 34503		+ 		-30+-5.0	100243
GRSG4 GRSG3	1/52					-3011-50	5.0° Km
	عرب ٧	1 7 7 934	 	+		1-2011-5,0	3.354
<u> </u>	T		- 	+			
	 			+			
		·			 		<u></u>
· -	 		!	+ + +	- -		
•	 ·		 	1			
		•	+	 		-	
			-		- : 	- 	
		· · · · · · · · · · · · · · · · · · ·	-	 	-		
· · · · · · · · · · · · · · · · · · ·	 					 	**************************************
-		<u> </u>					
Relinquished by: (Signature)	edelyad by: (Signetaire)	LO (6 Date:	Time: Le				
6	A. I Bloke			CA/QC Level	Remarks (Completed B	3y La00:::::(). 	
Relincuished by: (Signature)	eceivad by (Siguatore)	7 6/22/00 Date:	Time: 5		. divisa balita	Total # Containers Received?	
			i i	evel I L	Houtire X	COC Seels Present?	
Relinquiered by: (Signature)	occived by: (Signature)	- Dato:	Tips·	evel (; [] evel () []	24 Hour □ 1 Week □	COC Seals imac? Received Containers imac.?	
		! Cuseron	Y STAL INTACT		Cther	Temperature?	

Client Sample ID: GRSG3 Lab ID#: 0606679AR1-06A

File Name: Dil, Factor:	7071322 1.52		Date of Collection: (Date of Analysis: 7/	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	0.15	1.2	0.75	5.9
Freon 114	0.15	Not Detected	1.1	Not Detected
Chloromethane	0.15	0.22	0.31	0.46
Vinyl Chloride	0.15	Not Detected	0.39	Not Detected
Bromomethane	0.15	Not Detected	0.59	Not Detected
Chloroethane	0.15 U J	Not Detected	0.40 UJ	Not Detected
Freon 11	0.15	12	0.85	68
1,1-Dichloroethene	0.15	Not Detected	0.60	Not Detected
Freon 113	0.15	Not Detected	1.2	Not Detected
Methylene Chloride	0.15	0.28	0.53	0.98
1,1-Dichloroethane	0.15	Not Detected	0.62	Not Detected
cis-1,2-Dichloroethene	0.15	Not Detected	0.60	Not Detected
Chloroform	0.15	Not Detected	0.74	Not Detected
1,1,1-Trichloroethane	0.15	Not Detected	0.83	Not Detected
Carbon Tetrachloride	0.15	Not Detected	0.96	Not Detected
Benzene	0.15	0.81	0.48	2.6
1,2-Dichloroethane	0.15	Not Detected	0.62	Not Detected
Trichloroethene	0.15	Not Detected	0.82	Not Detected
1,2-Dichloropropane	0.15	Not Detected	0.70	Not Detected
cis-1,3-Dichloropropene	0.15	Not Detected	0.69	Not Detected
Toluene	0.15	2.6	0.57	9.9
trans-1,3-Dichloropropene	0.15	Not Detected	0.69	Not Detected
1,1,2-Trichloroethane	0.15	Not Detected	0.83	Not Detected
Tetrachloroethene	0.15	24	1.0	160
1,2-Dibromoethane (EDB)	0.15	Not Detected	1.2	Not Detected
Chlorobenzene	0.15	Not Detected	0.70	Not Detected
Ethyl Benzene	0.15	0.23	0.66	1.0
m,p-Xylene	0.15	0.83	0.66	3.6
o-Xylene	0.15	0.26	0.66	1.1
Styrene	0.15	Not Detected	0.65	Not Detected
1,1,2,2-Tetrachloroethane	0.15	Not Detected	1.0	Not Detected
1,3,5-Trimethylbenzene	0.15	Not Detected	0.75	Not Detected
1,2,4-Trimethylbenzene	0.15	0.21	0.75	1.0
1,3-Dichlorobenzene	0.15	Not Detected	0.91	Not Detected
1,4-Dichlorobenzene	0.15	Not Detected	0.91	Not Detected
alpha-Chlorotoluene	0.15	Not Detected	0.79	Not Detected
1,2-Dichlorobenzene	0.15	Not Detected	0.91	Not Detected
1,2,4-Trichlorobenzene	0.76	Not Detected	5.6	Not Detected
Hexachlorobutadiene	0.76	Not Detected	8.1	Not Detected
Propylene	0.76	Not Detected	1.3	Not Detected

Client Sample ID: GRSG3

Lab ID#: 0606679AR1-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1.3-Butadiene	0.76	Not Detected	1.7	Not Detected
Acetone	0.76	7.4	1.8	17
Carbon Disulfide	0.76	1.9	2.4	5.8
trans-1,2-Dichloroethene	0.76	Not Detected	3.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.76	1.6 J	2.2	4.7 J
Hexane	0.76	2.6	2.7	9.0
Tetrahydrofuran	0.76	Not Detected	2.2	Not Detected
Cyclohexane	0.76	Not Detected	2.6	Not Detected
1,4-Dioxane	0.76	Not Detected	2.7	Not Detected
Bromodichloromethane	0.76	Not Detected	5.1	Not Detected
4-Methyl-2-pentanone	0.76	Not Detected	3.1	Not Detected
2-Hexanone	0.76	Not Detected	3.1	Not Detected
Dibromochloromethane	0.76	Not Detected	6.5	Not Detected
Bromoform	0.76	Not Detected	7.8	Not Detected
4-Ethyltoluene	0.76	Not Detected	3.7	Not Detected
Ethanol	0.76	22	1.4	42
Methyl tert-butyl ether	0.76	Not Detected	2.7	Not Detected
Heptane	0.76	Not Detected	3.1	Not Detected
Naphthalene	0.76	Not Detected	4.0	Not Detected
2-Methylpentane	0.76	4.2	2.7	15
Isopentane	0.76	33 J	2.2	97 J
2,3-Dimethylpentane	0.76	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.76	Not Detected	3.6	Not Detected
Indene	0.76	Not Detected	3.6	Not Detected
Indan	0.76	Not Detected	3.7	Not Detected
Thiophene	0.76	Not Detected	2.6	Not Detected
2-Propanol	0.76	1.0	1.9	2.5

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Methane, trifluoro-	75-46-7	3.0%	22 N J
Propane, 2-methyl-	75-28-5	59%	24 N J
Butane	106-97-8	72%	46 N J
Acetaldehyde	75-07-0	86%	7.4 N J
Pentane	109-66-0	90%	21 N J
Pentane, 3-methyl-	96-14-0	90%	5.6 N J
2-Hexene, 5,5-dimethyl-, (Z)-	39761-61-0	80%	13 N J
Decane, 2,2-dimethyl-	17302-37-3	72%	3.7 N J
Dodecane, 2,5-dimethyl-	56292-65-0	72%	5.7 N J
	Page 20 of 36		

4-Bromofluorobenzene

Toluene-d8

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GRSG3

Lab ID#: 0606679AR1-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

美国共享的			· 100 指数数100 全角型线。6016数
File Name:	7071322	Date o	f Collection: 6/26/06
Dil, Factor:	1.52	Date o	f Analysis: 7/14/06 05:25 AM

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Hexane, 2,2,3-trimethyl-	16747-25-4	64%	7.2 N J
Container Type: 6 Liter Summa Special (100% Certified)			Method
Surrogates	%Recovery		Limits
1,2-Dichloroethane-d4	98		70-130

102

99

70-130

70-130

Client Sample ID: GRSG3

Lab ID#: 0606679B-06A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1945

File Name: 907052 Dili Factor: 1.		n: 6/26/06 : 7/5/06 08:16 PM
	Rpt. Limit	Amount
Compound	(%)	(%)

0.015

Container Type: 6 Liter Summa Special (100% Certified)

Helium

Page 1 0012

0.16

Client Sample ID: GRSG4 Lab ID#: 0606679AR1-05A

File Name: Dil. Factor:	7071323r1		Date of Collection: (
DIFFACTOR	Rot. Limit	Amount	Date of Analysis: 7/	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	0.16	0.69	0.80	3.4
Freon 114	0.16	Not Detected	1.1	Not Detected
Chloromethane	0.16	Not Detected	0.33	Not Detected
Vinyl Chloride	0.16	Not Detected	0.41	Not Detected
Bromomethane	0.16	Not Detected	0.62	Not Detected
Chloroethane	0.16 <i>UJ</i>	Not Detected	0.42 ピブ	Not Detected
Freon 11	0.16	45	0.90	250
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Freon 113	0.16	Not Detected	1.2	Not Detected
Methylene Chloride	0.16	Not Detected	0.56	Not Detected
1,1-Dichloroethane	0.16	Not Detected	0.65	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Chloroform	0.16	0.37	0.79	1.8
1,1,1-Trichloroethane	0.16	Not Detected	0.88	Not Detected
Carbon Tetrachloride	0.16	Not Detected	1.0	Not Detected
Benzene	0.16	0.43	0.51	1.4
1,2-Dichloroethane	0.16	Not Detected	0.65	Not Detected
Trichloroethene	0.16	Not Detected	0.86	Not Detected
1,2-Dichloropropane	0.16	Not Detected	0.74	Not Detected
cis-1,3-Dichloropropene	0.16	Not Detected	0.73	Not Detected
Toluene	0.16	0.97	0.61	3.6
trans-1,3-Dichloropropene	0.16	Not Detected	0.73	Not Detected
1,1,2-Trichloroethane	0.16	Not Detected	0.88	Not Detected
Tetrachloroethene	0.16	16	1.1	110
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.2	Not Detected
Chlorobenzene	0.16	Not Detected	0.74	Not Detected
Ethyl Benzene	0.16	Not Detected	0.70	Not Detected
m,p-Xylene	0.16	0.29	0.70	1.3
o-Xylene	0.16	Not Detected	0.70	Not Detected
Styrene	0.16	Not Detected	0.68	Not Detected
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1.1	Not Detected
1,3,5-Trimethylbenzene	0.16	Not Detected	0.79	Not Detected
1,2,4-Trimethylbenzene	0.16	Not Detected	0.79	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
alpha-Chlorotoluene	0.16	Not Detected	0.83	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2,4-Trichlorobenzene	0.80	Not Detected	6.0	Not Detected
Hexachlorobutadiene	0.80	Not Detected	8.6	Not Detected
Propylene	0.80	6.8	1.4	12

Client Sample ID: GRSG4

Lab ID#: 0606679AR1-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

MO	DIFIED EPA METHOL	70-15 GC/MS FUL	L SCAN	271
File Name:	7071323r1 1.61		Date of Collection: 6 Date of Analysis: 7/	14/06 06:04 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	0.80	0.84	1.8	1.9
Acetone	0.80	23	1.9	54
Carbon Disulfide	0.80	4.0	2.5	13
trans-1,2-Dichloroethene	0.80	Not Detected	3.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.80	4.2 J	2.4	12 J
Hexane	0.80	0.94	2.8	3.3
Tetrahydrofuran	0.80	Not Detected	2.4	Not Detected
Cyclohexane	0.80	Not Detected	2.8	Not Detected
1,4-Dioxane	0.80	Not Detected	2.9	Not Detected
Bromodichloromethane	0.80	Not Detected	5.4	Not Detected
4-Methyl-2-pentanone	0.80	Not Detected	3.3	Not Detected
2-Hexanone	0.80	Not Detected	3.3	Not Detected
Dibromochloromethane	0.80	Not Detected	6.8	Not Detected
Bromoform	0.80	Not Detected	8.3	Not Detected
4-Ethyltoluene	0.80	Not Detected	4.0	Not Detected
Ethanol	0.80	7.1	1.5	13
Methyl tert-butyl ether	0.80	Not Detected	2.9	Not Detected
Heptane	0.80	Not Detected	3.3	Not Detected
Naphthalene	0.80	Not Detected	4.2	Not Detected
2-Methylpentane	0.80	0.89	2.8	3.1
Isopentane	0.80	7.1 j	2.4	21 J
2,3-Dimethylpentane	0.80	Not Detected	3.3	Not Detected
2,2,4-Trimethylpentane	0.80	Not Detected	3.8	Not Detected
Indene	0.80	Not Detected	3.8	Not Detected
Indan	0.80	Not Detected	3.9	Not Detected
Thiophene	0.80	Not Detected	2.8	Not Detected
2-Propanol	0.80	Not Detected	2.0	Not Detected
	TENTATIVELY IDEN	TIFIED COMPOUNDS	3	
Compound		CAS Number	Match Quality	Amount (ppbv)
1-Butene		106-98-9	80%	20 N J
Acetaldehyde		75-07-0	90%	18 N J
Pentane		109-66-0	86%	5.4 N J
Unknown		NA	NA	5.2 J
Butanal		123-72-8	64%	12 N J
Pentanal		110-62-3	53%	4.8 N J
Hexanal		66-25-1	90%	4.6 N J
Heptanal		111-71-7	53%	5.0 N J
Unknown		NA	NA	4.6 J
OHKHOWH		INA	1474	4.00

Page 23 of 36

Client Sample ID: GRSG4 Lab ID#: 0606679AR1-05A

TENTATIVELY IDENTIFIED COMPOUNDS				
Compound	CAS Number	Match Quality	(ppbv)	
Octanal	124-13-0	50%	6.2 N J	
Container Type: 6 Liter Summa Special (1	100% Certified)			
			Method	
Surrogates	%Recovery		Limits	
1,2-Dichloroethane-d4	98		70-130	
1,2-Dichloroethane-d4 4-Bromofluorobenzene	98 102		70-130 70-130	

Client Sample ID: GRSG4 Lab ID#: 0606679B-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1945

Compound		(%)	(%)	
		Rpt. Limit	Amount	
Dil. Factor:	1.61	Committee to the committee of the commit	Date of Analysis: 7/5/06 07:42 PM	100000000000000000000000000000000000000
File Name:	9070526b		Date of Collection: 6/26/06	

0.016

Container Type: 6 Liter Summa Special (100% Certified)

Helium

0007

Not Detected

Page 1

Client Sample ID: GRIA3 Lab ID#: 0606679AR1-03A

File Name: Dil, Factor:	7071324r1 24.0		Date of Collection: Date of Analysis: 7	/14/06 09:23 AM
_	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	2.4	Not Detected	12	Not Detected
Freon 114	2.4	Not Detected	17	Not Detected
Chloromethane	2.4	Not Detected	5.0	Not Detected
Vinyl Chloride	2.4	Not Detected	6.1	Not Detected
Bromomethane	2.4	Not Detected	9.3	Not Detected
Chloroethane	2.4 UJ	Not Detected	6.3 UJ	Not Detected
Freon 11	2.4	Not Detected	13	Not Detected
1,1-Dichloroethene	2.4	Not Detected	9.5	Not Detected
Freon 113	2.4	Not Detected	18	Not Detected
Methylene Chloride	2.4	Not Detected	8.3	Not Detected
1,1-Dichloroethane	2.4	Not Detected	9.7	Not Detected
cis-1,2-Dichloroethene	2.4	Not Detected	9.5	Not Detected
Chloroform	2.4	Not Detected	12	Not Detected
1,1,1-Trichloroethane	2.4	Not Detected	13	Not Detected
Carbon Tetrachloride	2.4	Not Detected	15	Not Detected
Benzene	2.4	15	7.7	49
1,2-Dichloroethane	2.4	Not Detected	9.7	Not Detected
Trichloroethene	2.4	Not Detected	13	Not Detected
1,2-Dichloropropane	2.4	Not Detected	11	Not Detected
cis-1,3-Dichloropropene	2.4	Not Detected	11	Not Detected
Toluene	2.4	9.2 J	9.0	34 J
trans-1,3-Dichloropropene	2.4	Not Detected	11	Not Detected
1,1,2-Trichloroethane	2.4	Not Detected	13	Not Detected
Tetrachloroethene	2.4	Not Detected	16	Not Detected
1,2-Dibromoethane (EDB)	2.4	Not Detected	18	Not Detected
Chlorobenzene	2.4	Not Detected	11	Not Detected
Ethyl Benzene	2.4	Not Detected	10	Not Detected
m,p-Xylene	2.4	2.5	10	11
o-Xylene	2.4	Not Detected	10	Not Detected
Styrene	2.4	Not Detected	10	Not Detected
1,1,2,2-Tetrachloroethane	2.4	Not Detected	16	Not Detected
1,3,5-Trimethylbenzene	2.4	Not Detected	12	Not Detected
1,2,4-Trimethylbenzene	2.4	Not Detected	12	Not Detected
1,3-Dichlorobenzene	2.4	Not Detected	14	Not Detected
1,4-Dichlorobenzene	2.4	Not Detected	14	Not Detected
alpha-Chlorotoluene	2.4	Not Detected	12	Not Detected
1,2-Dichlorobenzene	2.4	Not Detected	14	Not Detected
1,2,4-Trichlorobenzene	12	Not Detected	89	Not Detected
Hexachlorobutadiene	12	Not Detected	130	Not Detected
Propylene	12	Not Detected	21	Not Detected

Client Sample ID: GRIA3

Lab ID#: 0606679AR1-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	7071324r1 24.0		Date of Collection; 6/26/06 Date of Analysis: 7/14/06 09:23 AM		
Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
1,3-Butadiene	12	Not Detected	26	Not Detected	
Acetone	12	35	28	83	
Carbon Disulfide	12	Not Detected	37	Not Detected	
trans-1,2-Dichloroethene	12	Not Detected	48	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	12	Not Detected	35	Not Detected	
Hexane	12	22	42	78	
Tetrahydrofuran	12	Not Detected	35	Not Detected	
Cyclohexane	12	Not Detected	41	Not Detected	
1,4-Dioxane	12	Not Detected	43	Not Detected	
Bromodichloromethane	12	Not Detected	80	Not Detected	
4-Methyl-2-pentanone	12	Not Detected	49	Not Detected	
2-Hexanone	12	Not Detected	49	Not Detected	
Dibromochloromethane	12	Not Detected	100	Not Detected	
Bromoform	12	Not Detected	120	Not Detected	
4-Ethyltoluene	12	Not Detected	59	Not Detected	
Ethanol	12	860	23	1600	
Methyl tert-butyl ether	12	Not Detected	43	Not Detected	
Heptane	12	13	49	54	
Naphthalene	12	Not Detected	63	Not Detected	
2-Methylpentane	12	20	42	71	
Isopentane	12	120 J	35	360 J	
2,3-Dimethylpentane	12	Not Detected	49	Not Detected	
2,2,4-Trimethylpentane	12	Not Detected	56	Not Detected	
Indene	12	Not Detected	57	Not Detected	
Indan	12	Not Detected	58	Not Detected	
Thiophene	12	Not Detected	41	Not Detected	
2-Propanol	12	Not Detected	29	Not Detected	

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	31 J
Propane, 2-methyl-	75-28-5	59%	290 N J
Butane	106-97-8	72%	250 N J
Acetaldehyde	75-07-0	90%	34 N J
Pentane	109-66-0	90%	100 N J
Pentane, 3-methyl-	96-14-0	90%	26 N J
Cyclopentane, methyl-	96-37-7	80%	21 N J
Cyclohexane, methyl-	108-87-2	64%	19 N J

Client Sample ID: GRIA3

Lab ID#: 0606679AR1-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Disposation of the Action of the Committee of the Committ	CONTRACTOR OF THE PARTY OF THE	是一个大型的 企 工的。
PEAGED AND AND AND AND AND AND AND AND AND AN		
	· 图 高进 医生产性 医二氏 医二种	
File Name:	7071324r1	Date of Collection: 6/26/06
AND THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF		
DU FLASE	0.10	D. 4 - FA - F - 1 - 7// A/OC 00.22 A 1
Dil. Factor:	24.0	Date of Analysis: 7/14/06 09:23 AM
and the second s	1. 10 10 10 10 10 10 10 10 10 10 10 10 10	A CONTRACTOR OF THE PROPERTY O

Container Type: 6 Liter Summa Special (100% Certified)

	Method
%Recovery	Limits
100	70-130
102	70-130
97	70-130
	100 102

Client Sample ID: GRIA3DUP Lab ID#: 0606679AR1-04A

File Name: Dil. Factor:	7071325r1 27.8		Date of Collection: 6	
	Røt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	2.8	Not Detected	14	Not Detected
Freon 114	2.8	Not Detected	19	Not Detected
Chloromethane	2.8	Not Detected	5.7	Not Detected
Vinyl Chloride	2.8	Not Detected	7.1	Not Detected
Bromomethane	2.8	Not Detected	11	Not Detected
Chloroethane	2.8 UJ	Not Detected	7.3 UJ	Not Detected
Freon 11	2.8	Not Detected	16	Not Detected
1,1-Dichloroethene	2.8	Not Detected	11	Not Detected
Freon 113	2.8	Not Detected	21	Not Detected
Methylene Chloride	2.8	Not Detected	9.6	Not Detected
1,1-Dichloroethane	2.8	Not Detected	11	Not Detected
cis-1,2-Dichloroethene	2.8	Not Detected	11	Not Detected
Chloroform	2.8	Not Detected	14	Not Detected
1,1,1-Trichloroethane	2.8	Not Detected	15	Not Detected
Carbon Tetrachloride	2.8	Not Detected	17	Not Detected
Benzene	2.8	12	8.9	39
1,2-Dichloroethane	2.8	Not Detected	11	Not Detected
Trichloroethene	2.8	Not Detected	15	Not Detected
1,2-Dichloropropane	2.8	Not Detected	13	Not Detected
cis-1,3-Dichloropropene	2.8	Not Detected	13	Not Detected
Toluene	2.8	12 J	10	47 J
trans-1,3-Dichloropropene	2.8	Not Detected	13	Not Detected
1,1,2-Trichloroethane	2.8	Not Detected	15	Not Detected
Tetrachloroethene	2.8	Not Detected	19	Not Detected
1,2-Dibromoethane (EDB)	2.8	Not Detected	21	Not Detected
Chlorobenzene	2.8	Not Detected	13	Not Detected
Ethyl Benzene	2.8	Not Detected	12	Not Detected
m,p-Xylene	2.8	3.0	12	13
o-Xylene	2.8	Not Detected	12	Not Detected
Styrene	2.8	Not Detected	12	Not Detected
1,1,2,2-Tetrachloroethane	2.8	Not Detected	19	Not Detected
1,3,5-Trimethylbenzene	2.8	Not Detected	14	Not Detected
1,2,4-Trimethylbenzene	2.8	Not Detected	14	Not Detected
1,3-Dichlorobenzene	2.8	Not Detected	17	Not Detected
1,4-Dichlorobenzene	2.8	Not Detected	17	Not Detected
alpha-Chiorotoluene	2.8	Not Detected	14	Not Detected
1,2-Dichlorobenzene	2.8	Not Detected	17	Not Detected
1,2,4-Trichlorobenzene	14	Not Detected	100	Not Detected
Hexachlorobutadiene	14	Not Detected	150	Not Detected
Propylene	14	Not Detected	24	Not Detected

Client Sample ID: GRIA3DUP

Lab ID#: 0606679AR1-04A

MO	ODIFIED EPA METHOI	TO-15 GC/MS FUL	L SCAN	
File Name: Dil. Factor:	7071325r1 27.8		Date of Collection: (Date of Analysis: 7/	and the free of the first of th
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	14	Not Detected	31	Not Detected
Acetone	14	29	33	68
Carbon Disulfide	14	Not Detected	43	Not Detected
trans-1,2-Dichloroethene	14	Not Detected	55	Not Detected
2-Butanone (Methyl Ethyl Ketone)	14	Not Detected	41	Not Detected
Hexane	14	22	49	76
Tetrahydrofuran	14	Not Detected	41	Not Detected
Cyclohexane	14	Not Detected	48	Not Detected
1,4-Dioxane	14	Not Detected	50	Not Detected
Bromodichloromethane	14	Not Detected	93	Not Detected
4-Methyl-2-pentanone	14	Not Detected	57	Not Detected
2-Hexanone	14	Not Detected	57	Not Detected
Dibromochloromethane	14	Not Detected	120	Not Detected
Bromoform	14	Not Detected	140	Not Detected
4-Ethyltoluene	14	Not Detected	68	Not Detected
Ethanol	14	800	26	1500
Methyl tert-butyl ether	14	Not Detected	50	Not Detected
Heptane	14	Not Detected	57	Not Detected
Naphthalene	14	Not Detected	73	Not Detected
2-Methylpentane	14	20	49	70
Isopentane	14	130 J	41	370 J
2,3-Dimethylpentane	14	Not Detected	57	Not Detected
2,2,4-Trimethylpentane	14	Not Detected	65	Not Detected
Indene	14	Not Detected	66	Not Detected
Indan	14	Not Detected	67	Not Detected
Thiophene	14	Not Detected	48	Not Detected
2-Propanol	14	Not Detected	34	Not Detected
	TENTATIVELY IDEN	TIFIED COMPOUNDS	3	
Compound		CAS Number	Match Quality	Amount (ppbv)
Propane		74-98-6	9.0%	220 N J
Propane, 2-methyl-		75-28-5	59%	270 N J
Butane		106-97-8	80%	240 N J
Pentane		109-66-0	90%	100 N J
Container Type: 6 Liter Summa S	pecial (100% Certified)			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		100		70-130

Page 20 of 36

Client Sample ID: GRIA3DUP

Lab ID#: 0606679AR1-04A

and the contract of the contra			
			Control of the Contro
		Control and the second of the second of the	
File Name:	7071325r1		llection: 6/26/06
The Maine.	(U/102011	Date of Co	illection, 0/20/00
			A STATE OF THE STA
Dil. Factor:	27.8	Data of Ar	alysis: 7/14/06 10:03 AM 🖖
DIL 1 actor.	41.0	Date Of At	larysis. 1/14/00 IU.US AIN
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ARTER A SECOND A PRODUCT TO RECOVER THE PROPERTY OF THE PROPER	to be the result of the real of the result of the result of the real of the re	896003 CT 7554000 CF000 CE0000 Ph Throw CR 142 CF002 CF047 (0 b 7 b 7 b 10 c 10

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	101	70-130
Toluene-d8	98	70-130

Client Sample ID: GRIA4 Lab ID#: 0606679AR1-01A

File Name: Dil. Factor:	7071320r1 15.8		Date of Collection: Date of Analysis: 7	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	1.6	Not Detected	7.8	Not Detected
Freon 114	1.6	Not Detected	11	Not Detected
Chloromethane	1.6	Not Detected	3.3	Not Detected
Vinyl Chloride	1.6	Not Detected	4.0	Not Detected
Bromomethane	1.6	Not Detected	6.1	Not Detected
Chloroethane	1.6 UJ	Not Detected	4.2 U Ű	Not Detected
Freon 11	1.6	Not Detected	8.9	Not Detected
1,1-Dichloroethene	1.6	Not Detected	6.3	Not Detected
Freon 113	1.6	Not Detected	12	Not Detected
Methylene Chloride	1.6	Not Detected	5.5	Not Detected
1,1-Dichloroethane	1.6	Not Detected	6.4	Not Detected
cis-1,2-Dichloroethene	1.6	Not Detected	6.3	Not Detected
Chloroform	1.6	Not Detected	7.7	Not Detected
1,1,1-Trichloroethane	1.6	Not Detected	8.6	Not Detected
Carbon Tetrachloride	1.6	Not Detected	9.9	Not Detected
Benzene	1.6	4.5	5.0	14
1,2-Dichloroethane	1.6	Not Detected	6.4	Not Detected
Trichloroethene	1.6	Not Detected	8.5	Not Detected
1,2-Dichloropropane	1.6	Not Detected	7.3	Not Detected
cis-1,3-Dichloropropene	1.6	Not Detected	7.2	Not Detected
Toluene	1.6	3.8	6.0	14
trans-1,3-Dichloropropene	1.6	Not Detected	7.2	Not Detected
1,1,2-Trichloroethane	1.6	Not Detected	8.6	Not Detected
Tetrachloroethene	1.6	4.1	11	28
1,2-Dibromoethane (EDB)	1.6	Not Detected	12	Not Detected
Chlorobenzene	1.6	Not Detected	7.3	Not Detected
Ethyl Benzene	1.6	Not Detected	6.9	Not Detected
m,p-Xylene	1.6	Not Detected	6.9	Not Detected
o-Xylene	1.6	Not Detected	6.9	Not Detected
Styrene	1.6	Not Detected	6.7	Not Detected
1,1,2,2-Tetrachloroethane	1.6	Not Detected	11	Not Detected
1,3,5-Trimethylbenzene	1.6	Not Detected	7.8	Not Detected
1,2,4-Trimethylbenzene	1.6	Not Detected	7.8	Not Detected
1,3-Dichlorobenzene	1.6	Not Detected	9.5	Not Detected
1,4-Dichlorobenzene	1.6	Not Detected	9.5	Not Detected
alpha-Chlorotoluene	1.6	Not Detected	8.2	Not Detected
1,2-Dichlorobenzene	1.6	Not Detected	9.5	Not Detected
1,2,4-Trichlorobenzene	7.9	Not Detected	59	Not Detected
Hexachlorobutadiene	7.9	Not Detected	84	Not Detected
Propylene	7.9	Not Detected	14	Not Detected

Client Sample ID: GRIA4

Lab ID#: 0606679AR1-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	7071320r1 15.8		Date of Collection: Date of Analysis: 7	State in the left of the state
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	7.9	Not Detected	17	Not Detected
Acetone	7.9	12	19	28
Carbon Disulfide	7.9	Not Detected	25	Not Detected
rans-1,2-Dichloroethene	7.9	Not Detected	31	Not Detected
2-Butanone (Methyl Ethyl Ketone)	7.9	Not Detected	23	Not Detected
Hexane	7.9	Not Detected	28	Not Detected
Tetrahydrofuran	7.9	Not Detected	23	Not Detected
Cyclohexane	7.9	Not Detected	27	Not Detected
1,4-Dioxane	7.9	Not Detected	28	Not Detected
Bromodichloromethane	7.9	Not Detected	53	Not Detected
1-Methyl-2-pentanone	7.9	Not Detected	32	Not Detected
2-Hexanone	7.9	Not Detected	32	Not Detected
Dibromochloromethane	7.9	Not Detected	67	Not Detected
Bromoform	7.9	Not Detected	82	Not Detected
4-Ethyltoluene	7.9	Not Detected	39	Not Detected
Ethanol	7.9	480	15	900
Methyl tert-butyl ether	7.9	0.93 J	28	3.4 J
Heptane	7.9	Not Detected	32	Not Detected
Naphthalene	7.9	Not Detected	41	Not Detected
2-Methylpentane	7.9	Not Detected	28	Not Detected
sopentane	7.9	81 J	23	240 J
2,3-Dimethylpentane	7.9	Not Detected	32	Not Detected
2,2,4-Trimethylpentane	7.9	Not Detected	37	Not Detected
ndene	7.9	Not Detected	38	Not Detected
ndan	7.9	Not Detected	38	Not Detected
Thiophene	7.9	Not Detected	27	Not Detected
2-Propanol	7.9	Not Detected	19	Not Detected

J = Estimated value.

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	160 J
Propane, 2-methyl-	75-28-5	64%	110 N J
Butane	106-97-8	80%	94 N J
Pentane	109-66-0	86%	37 N J
Pentane, 2-methyl-	107-83-5	90%	20 N J

Container Type: 6 Liter Summa Special (100% Certified)

Client Sample ID: GRIA4

Lab ID#: 0606679AR1-01A

		1949年 - 18 12 42 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dil. Factor: 15.8 Date of Analysis: 7/14/06 04:07 AM	File Name: 7071320r1	Date of Collection: 6/26/06
	Dil. Factor: 15.8	Date of Analysis: 7/14/06 04:07 AM

		wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	98	70-130
Toluene-d8	97	70-130

Client Sample ID: GRAMBUP Lab ID#: 0606679AR1-02A

File Name: Dil. Factor:	7071321 · · · · · · · · · · · · · · · · · · ·		Date of Collection: (Date of Analysis: 7/	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	0.15	0.58	0.75	2.9
Freon 114	0.15	Not Detected	1.1	Not Detected
Chloromethane	0.15	0.72	0.31	1.5
Vinyl Chloride	0.15	Not Detected	0.39	Not Detected
Bromomethane	0.15	Not Detected	0.59	Not Detected
Chloroethane	0.15 U J	Not Detected	0.40 U J	Not Detected
Freon 11	0.15	0.28	0.85	1.6
1,1-Dichloroethene	0.15	Not Detected	0.60	Not Detected
Freon 113	0.15	Not Detected	1.2	Not Detected
Methylene Chloride	0.15	Not Detected	0.53	Not Detected
1,1-Dichloroethane	0.15	Not Detected	0.62	Not Detected
cis-1,2-Dichloroethene	0.15	Not Detected	0.60	Not Detected
Chloroform	0.15	0.15	0.74	0.75
1,1,1-Trichloroethane	0.15	Not Detected	0.83	Not Detected
Carbon Tetrachloride	0.15	Not Detected	0.96	Not Detected
Benzene	0.15	0.57	0.48	1.8
1,2-Dichloroethane	0.15	Not Detected	0.62	Not Detected
Trichloroethene	0.15	Not Detected	0.82	Not Detected
1,2-Dichloropropane	0.15	Not Detected	0.70	Not Detected
cis-1,3-Dichloropropene	0.15	Not Detected	0.69	Not Detected
Toluene	0.15	1.5	0.57	5.8
trans-1,3-Dichloropropene	0.15	Not Detected	0.69	Not Detected
1,1,2-Trichloroethane	0.15	Not Detected	0.83	Not Detected
Tetrachloroethene	0.15	Not Detected	1.0	Not Detected
1,2-Dibromoethane (EDB)	0.15	Not Detected	1.2	Not Detected
Chlorobenzene	0.15	Not Detected	0.70	Not Detected
Ethyl Benzene	0.15	0.21	0.66	0.93
m,p-Xylene	0.15	0.64	0.66	2.8
o-Xylene	0.15	0.25	0.66	1.1
Styrene	0.15	Not Detected	0.65	Not Detected
1,1,2,2-Tetrachloroethane	0.15	Not Detected	1.0	Not Detected
1,3,5-Trimethylbenzene	0.15	Not Detected	0.75	Not Detected
1,2,4-Trimethylbenzene	0.15	0.24	0.75	1.2
1,3-Dichlorobenzene	0.15	Not Detected	0.91	Not Detected
1,4-Dichlorobenzene	0.15	Not Detected	0.91	Not Detected
alpha-Chlorotoluene	0.15	Not Detected	0.79	Not Detected
1,2-Dichlorobenzene	0.15	Not Detected	0.91	Not Detected
1,2,4-Trichlorobenzene	0.76	Not Detected	5.6	Not Detected
Hexachlorobutadiene	0.76	Not Detected	8.1	Not Detected
Propylene	0.76	Not Detected	1.3	Not Detected

Client Sample ID: GRAMBUP

Lab ID#: 0606679AR1-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil, Factor:	7071321 1.52		Date of Collection: 0	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	0.76	Not Detected	1.7	Not Detected
Acetone	0.76	5.4	1.8	13
Carbon Disulfide	0.76	Not Detected	2.4	Not Detected
rans-1,2-Dichloroethene	0.76	Not Detected	3.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.76	Not Detected	2.2	Not Detected
Hexane	0.76	Not Detected	2.7	Not Detected
Tetrahydrofuran	0.76	Not Detected	2.2	Not Detected
Cyclohexane	0.76	Not Detected	2.6	Not Detected
1,4-Dioxane	0.76	Not Detected	2.7	Not Detected
Bromodichloromethane	0.76	Not Detected	5.1	Not Detected
1-Methyl-2-pentanone	0.76	Not Detected	3.1	Not Detected
2-Hexanone	0.76	Not Detected	3.1	Not Detected
Dibromochloromethane	0.76	Not Detected	6.5	Not Detected
Bromoform	0.76	Not Detected	7.8	Not Detected
1-Ethyltoluene	0.76	Not Detected	3.7	Not Detected
Ethanol	0.76	9.3	1.4	18
Methyl tert-butyl ether	0.76	Not Detected	2.7	Not Detected
Heptane	0.76	Not Detected	3.1	Not Detected
Naphthalene	0.76	Not Detected	4.0	Not Detected
2-Methylpentane	0.76	Not Detected	2.7	Not Detected
sopentane	0.76	2.6 J	2.2	7.8 J
2,3-Dimethylpentane	0.76	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.76	Not Detected	3.6	Not Detected
Indene	0.76	Not Detected	3.6	Not Detected
Indan	0.76	Not Detected	3.7	Not Detected
Thiophene	0.76	Not Detected	2.6	Not Detected
2-Propanol	0.76	Not Detected	1.9	Not Detected
	TENTATIVELY IDEN	ITIFIED COMPOUND	s	
O		CAC Number	Matak Ovality	Amount

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	2.0 J
Propane, 2-methyl-	75 - 28-5	9.0%	1.9 N J
Butane	106-97-8	72%	2.8 N J
Acetaldehyde	75-07-0	74%	5.9 N J
Pentane	109-66-0	90%	1.8 N J

Container Type: 6 Liter Summa Special (100% Certified)

Surrogates Method Limits

Client Sample ID: GRAMBUP Lab ID#: 0606679AR1-02A

		ACARD TO MAKE COLD SEE SEASON COLD TO DE		A CANADA SERVICIO DE LA CALLADA DE LA CALLAD	A DECEMBER 1 SHE DESCRIBE	Marine Text Control
朝 · · · · · · · · · · · · · · · · · · ·			Control of the State of the Sta	A STATE OF THE STA		100
alternative and the second second second		ALL DESCRIPTION OF THE PARTY OF	Section 18 House Section 19		A CONTRACTOR CONTRACTOR OF	
Cile Mamor	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1994 F	24.0	Date of Collecti	CIDCING	10.7
File Name:		1321		Pate of Collecti	OH: 0/20/U0	(2)
The state of the s		300	10 (2.5) in 10 (2.5)	Property and the second	E-12 (1981) 19:20 344 254 11 11 14	CAN THE STREET
Dil. Factor:		4 70	600 TE - 250	D-1 2 A	7/44/00 04-4/	~ A B &
DIFFACTOR		1.52	and the second of the second o	Date of Analysi	5:::(114/05/04:41	o Aus
		A SUA SUA SUBSTITUTE OF SUBSTI		CONTRACTOR OF THE PROPERTY AND THE PARTY AND		

	metnoa
%Recovery	Limits
100	70-130
101	70-130
98	70-130
	100 101

APPENDIX D

Data Usability Summary Report

Data Usability Summary Report

DATE: August 24, 2006

TO: Mr. James Edwards

The RETEC Group, Inc.

1001 West Seneca Street, Suite 204

Ithaca, NY 14850

SUBJECT: Port Jervis Site

June 26-27, 2006 and July 27, 2006 Sampling Events

Data Validation:

Severn Trent Laboratories Sample Delivery Groups:

C6F280229, C6G290164

CASE NARRATIVE

The Retec Group Port Jervis

STL Lot # C6F280229

Sample Receiving:

Samples were received at STL Pittsburgh on June 28, 2006. The cooler was received within the proper temperature range.

Both amber 1-liter BNA bottles for sample TW4 were received broken. One amber 1-liter BNA bottle for sample TW5 was received broken. Sample TW4 was not logged in for BNA analysis.

If project specific QC was not required for samples contained in this report, when batch QC was completed on these samples, anomalous results will be discussed below.

GC/MS Volatiles:

The method blank for batch 6187555 had methylene chloride detected below the reporting limit. The result was flagged with a "J" qualifier. Any sample associated with this blank that had methylene chloride detected had the result flagged with a "B" qualifier.

GC/MS Semivolatiles:

The reporting limits for the aqueous sample were adjusted according to the amount of sample volume extracted.

Metals:

The serial dilution percent difference of sample GRSS1 was outside of the control limits for copper and potassium. All associated results were flagged with an "E" qualifier.

The serial dilution percent difference of sample TW4 was outside of the control limits aluminum. All associated results were flagged with an "E" qualifier.

Sample GRSS2 was over the instrument's linear range for lead and required a dilution.

The method blanks had analytes detected at concentrations between the IDL and the reporting limit. The results were flagged with a "B" qualifier.

For the matrix spike of sample GRSS1, aluminum, iron, and lead recoveries were not calculated due to the concentration of analyte in the sample being >4 times the concentration of spike added.

The matrix spike of sample GRSS1 recovered outside of the control limits for antimony and mercury. All associated results are flagged with an "N" qualifier.

CASE NARRATIVE

The Retec Group Port Jervis

STL Lot # C6F280229

The matrix spike of sample TW4 recovered outside of the control limits for selenium. All associated results are flagged with an "N" qualifier.

The relative percent difference between sample GRSS1 and the duplicate digestion of this sample was outside of the control limits for lead. All associated results are flagged with an "*" qualifier.

General Chemistry:

The method blank for batch 6188304 had cyanide detected at concentration between the IDL and the reporting limit. The result was flagged with a "B" qualifier. Any sample associated with a method blank that had cyanide detected had the result flagged with a "J" qualifier.

Cooler Receipt Form STL Pittsburgh

	: The Reter Group		Quote:	5259242
Coole	r Rec'd & Opened for Temp. Check on:	6/28/06		005
Coole	rs Opened and Unpacked on:	668106	By:	PICE
STLI	Pittsburgh Lot Number:	C6F280229		(Signature)
				Yes No
1.	Were custody seals on the outside of the cooler	?		
	If YES, how many and where? Quantity Lo	ocation		i
	Were signatures and date correct?		 	NA_
2.	Were custody papers included inside the cooler	7		<u> </u>
3.	Were custody papers properly filled out (ink, si	gned, match labels)?		
4.	Did you sign the custody papers in the appropri	ate place?	·	4-
5.	Was shippers packing slip attached to this form	?		_/_
6.	Were packing materials used?			
	If YES, what type?	Bubble Wap		
7.	Were the samples chilled? (Record temperatur		<u> </u>	
8.	Were the samples appropriately preserved?			4
9.	Were all bottles sealed in separate plastic bags:	?	·	
10.	Did all bottles arrive in good condition (unbrok	(en)?		_/_
11.	Were all bottle labels complete (sample ID, pre	eservatives, etc.)?		
12.	Did all bottle labels and/or tags agree with cust	ody papers?		4/_
13.	Were correct bottles used for tests indicated? _			4_
14.	Were all VOA vials checked for the presence of	f air bubbles?		_/_
15.	Was a sufficient amount of sample sent in each	bottle?		
16.	Samples received by: FEDEX UPS CL	IENT DROP-OFF OTHER	DHL	
Expl	ain any discrepancies:			
			74,40	
Leve	l 2 Review			
Was	contacted on by		_ to resolve d	iscrepancies.
STL P	F/Apr-05/96-005/COOL.DOC Pa	ge 1 of 2		

Cooler Receipt Form

STL Pittsburgh

P: Preserved UP: Unpreserved

Sample ID	TMET PH<2	DMET PH<2	HG PH<2	NUT(1) PH<2	CN PH≥12	OG TPHC PH<2	PHEN PH⊲2	SULF PH≥12	TOC PH⊲2	TOX PH<2	VOA P/UP	hrdnss PH<2	Cl ₂ RES	
W4	1 3				/2 /2						8			h
W5 3(No)7-do)	7				12						P			
3(16,2706)											P			L
	 								ļi	ļ				 Ļ
	 	ļ			·			<u> </u>	<u> </u>		ļ			 ╀
	 					ļ			! ∔-					 ╀
- 		<u></u>	ļ					<u> </u>	 					 ╁
			 						 					╀
	 									 				 ╁
	 		 					 	 					 H
									-		<u> </u>			 t
	1													 H
														Τ
														 Γ
														L
														L
														 L

Comments:

Cooler Number	Temperature*	Thermometer
1	3.70	8

• /	cceptab	e T	emperat	ture I	Range:	4°C ± 2°	C
-----	---------	-----	---------	--------	--------	----------	---

 Sample	Lot Number**
:	

^{**}Please use an asterisk if bottle lot number was covered by the label

STL PT/Apr-05/96-005/COOL.DOC

Page 2 of 2

Overview

The Port Jervis MGP sample delivery groups included the following samples.

Sample Submittals Port Jervis MGP Site

Matrix	Field ID Number	Lab Sample ID	Collection Date
Soil	GRSS1	C6F280229-001	06/26/06
Soil	GRSS2	C6F280229-002	06/26/06
Soil	GRSB4 (7-8)	C6F280229-003	06/27/06
Soil	GRSB4 (9-11)	C6F280229-004	06/27/06
Soil	GRSB3 (4-5)	C6F280229-005	06/27/06
Soil	GRSB3 (6-7)	C6F280229-006	06/27/06
Aqueous	TW4	C6F280229-007	06/27/06
Aqueous	TW5	C6F280229-008	06/27/06
Aqueous (QC)	TB (06/27/06)	C6F280229-009	06/27/06
Sediment	SSSED-UP (062706) ¹	C6F280229-010	06/27/06
Soil	GRSB2 (13-14)	C6G290164-001	07/27/06
Soil	GRSB20 (13-14) ²	C6G290164-002	07/27/06
Soil	GRSB2 (22-24)	C6G290164-003	07/27/06
Soil	GRSB1 (13-14)	C6G290164-004	07/27/06
Soil	GRSB1 (22-24)	C6G290164-005	07/27/06
Soil (QC)	GRSB1 (22-24)MS	C6G290164-005MS	07/27/06
Soil (QC)	GRSB1 (22-24)MSD	C6G290164-005MSD	07/27/06
Aqueous	TW6	C6G290164-006	07/27/06
Aqueous	TW60 ³	C6G290164-007	07/27/06
Aqueous (QC)	TB (07-27-06)	C6G290164-008	07/27/06
Aqueous	TW3	C6G290164-009	07/27/06
Aqueous (QC)	TW3MS	C6G290164-009MS	07/27/06
Aqueous (QC)	TW3MSD	C6G290164-009MSD	07/27/06

^{1:} Sample SSSED-UP (062706) was submitted for SVOC analysis only.

The samples were analyzed by the following methods as requested on the chain-of-custody records.

- Volatile Organic Compounds (VOCs) by purge and trap GC/MS using CLP SOW OLM4.2
- Semivolatile Organic Compounds (SVOCs) by capillary GC/MS using CLP SOW OLM4.2
- Trace metals by trace ICP and mercury by the cold vapor technique using USEPA CLP 4.0 SOW ILM04.0
- Total cyanide by the USEPA CLP 4.0 SOW ILM04.1
- Percent solids for dry weight calculations (soils only) by USEPA MCAWW Method 160.3 mod.

All analyses were performed by Severn Trent Laboratories, Inc., 301 Alpha Drive, Pittsburgh, PA 15238.

²: Sample GRSB20 (13-14) is the field duplicate sample of GRSB2 (13-14).

³: Sample TW60 is the field duplicate of TW6.

Port Jervis MGP Site Data Usability Summary Report Page 3 of 11

Summary

Organic data quality was evaluated by reviewing the following parameters: holding times, GC/MS tuning and performance, internal standards, initial calibrations, surrogate recoveries, matrix spike/matrix spike duplicate (MS/MSD) results, laboratory control standards (LCS), laboratory and field blanks, compound identification and compound quantitation with respect to USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October, 1999.

Inorganic data quality was evaluated by reviewing the following parameters: holding times, matrix spike results, laboratory duplicates, initial calibrations, continuing calibration verification standard recoveries, laboratory control standards, ICP serial dilutions samples, laboratory and field blanks, and analyte quantitation with respect to *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540-R-04-004, October, 2004.*

A summary of the data quality is provided below.

Data Quality Summary Port Jervis MGP Site

Parameter Data Usability Volatile Organics Several calibrations showed low instrument response for acetone and methyl acetate, causing several acetone and methyl acetate results to be qualified as estimates, "J" or "UJ," because of low instrument bias. Five soil sample results for 1, 2-dibromo-3chloropropane were rejected because of poor instrument sensitivity. Laboratory contamination was noted for acetone and methylene chloride causing the acetone and methylene chloride results for soil samples GRSB2 (13-14), GRSB20 (13-14), GRSB2 (22-24), GRSB1 (13-14), and GRSB1 (22-24), and the methylene chloride results for soil samples GRSS1, GRSS2, GRSB4 (7-8), GRSB4 (9-11), GRSB3 (4-5), and GRSB3 (6-7), to be qualified "U," as undetected. Semivolatile Organics No data points were rejected. Calibration nonconformances were noted for benzaldehyde. caprolactam, atrazine, 4-nitrophenol and 2, 4-dinitrotoluene. However, the nondetect results associated with these calibrations did not require qualifications in response to the high method bias. Both 1-L amber bottles were received broken at the laboratory for aqueous sample TW4. The sixty-five semivolatiles results were lost for sample TW4. Metals No data points were rejected. Laboratory contamination was noted for barium, beryllium, calcium, cadmium, cobalt, mercury, potassium, thallium, vanadium, and zinc. Several barium, beryllium, calcium, cadmium, cobalt, mercury, potassium, thallium, vanadium, and zinc results were qualified as undetected, "U," as a result of laboratory contamination in one or more of the method preparation, initial calibration, or continuing calibration blanks. Matrix effects were evident in the analysis of the soil and aqueous samples. Matrix effects caused low matrix spike recoveries and the qualification of associated results "J" and "UJ," as estimates, for antimony. Matrix effects caused high matrix spike recoveries and the qualification of associated positive results "J," as estimated concentrations, for mercury, selenium, and zinc. Several soil aluminum, iron, manganese, and zinc results were qualified "J" due to imprecision attributable to matrix effects and/or method imprecision. Physical/chemical interferences were evident for soil and aqueous samples. Physical/chemical interferences caused the ICP serial dilution percent differences to exceed the maximum limit and the qualification of associated results "J" and "UJ," as

estimates, for aluminum, copper, and potassium.

Port Jervis MGP Site Data Usability Summary Report Page 4 of 11

Cyanide

No data points were rejected. Laboratory contamination was noted for total cyanide, causing the positive cyanide results for soil samples GRSS1, GRSB3 (4-5), and GRSB (6-7) to be qualified as undetected, "U," as result of laboratory contamination.

Percent Solids

No data points were rejected. The data may be used without qualification.

Each specific issue of concern with respect to data usability is addressed below. A data qualifier glossary is included as Attachment 1 of this report. Qualified sample results are presented in Appendix A of this report. The supporting documentation for data qualifications was included in Appendix B of this report. Specific page references for the supporting documentation were provided in each item header below. The data set was 96.9% complete.

General Sample Custody and Sample Receipt Conditions

Custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt. All samples were received with acceptable cooler temperatures of 2°C to 6°C as noted on the Sample Receipt Forms. Chain-of-custody records from field to laboratory were complete. Samples were received intact with the following exceptions.

Both 1-L amber bottles were received broken for sample TW4. Semivolatiles analysis could not be performed for TW4. One (of two) 1-L amber bottles were received broken for sample TW5. Sufficient sample volume remained for TW5 to complete the semivolatiles analysis.

The laboratory did not receive the entire number of sample containers listed on the chain-of-custody record for the samples collected on July 27, 2006. There was sufficient sample volume to complete all required analyses.

Volatile Organics

C6F280229

- Blank Contamination (pp. 46-48): Methylene chloride was detected in the method blank associated with quality control batch 6187555 at an estimated concentration of 1.8 μg/kg. Methylene chloride is a common laboratory solvent. The methylene chloride results for soil samples GRSS1, GRSS2, GRSB4 (7-8), GRSB4 (9-11), GRSB3 (4-5), and GRSB3 (6-7) were less than ten times the blank concentration and were qualified "U." as undetected, because of laboratory contamination.
- Initial Calibrations and Continuing Calibration Verifications (pp. 1070-1071, 1102-1103, 1131-1132, 1136-1137): The continuing calibration verifications on instrument HP3 on 07/03/06 at 09:29 hours and on instrument HP5 on 07/06/06 at 14:50 had percent differences (%Ds) less than the -25% specification limit for methyl acetate. Soil and aqueous samples GRSS1, GRSS2, GRSB4 (7-8), GRSB4 (9-11), GRSB3 (4-5), GRSB3 (6-7), TW4, and TW5 were affected. The methyl acetate results for these samples were nondetect and were qualified "UJ," as estimates, because of poor instrument sensitivity.

The continuing calibration verification %Ds on instrument HP3 on 07/03/06 at 09:29 hours were greater than the +25% specification limit for bromoform and trichlorofluoromethane. Aqueous samples TW4 and TW5 were affected. The bromoform and trichlorofluoromethane results for these samples were nondetect. No data qualifications were required in response to the high instrument bias.

C6G290164

Blank Contamination (pp. 1114-1115, 1121-1122): Acetone and methylene chloride were detected in the method blank associated with quality control batch 6213037 at estimated concentrations of 7.0 μg/kg and 3.3 μg/kg, respectively. Acetone and methylene chloride are common laboratory solvents. The acetone and methylene chloride results for samples GRSB2 (13-14), GRSB20 (13-14), GRSB2 (22-24), GRSB1 (13-14), and GRSB1 (22-24) were less than ten times the blank concentrations and were qualified "U," as undetected, because of laboratory contamination.

Port Jervis MGP Site Data Usability Summary Report Page 5 of 11

Methylene chloride was detected in the method blank associated with quality control batch 62114421 at an estimated concentration of 1.1 μ g/kg. Methylene chloride was not detected in the associated aqueous samples. No data qualifications were required.

Initial Calibrations and Continuing Calibration Verifications (pp.1076-1077, 1093-1094, 1098-1099): The 07/31/06 initial calibration average relative response factor and the 08/01/06 (03:13 hrs.) continuing calibration response factor (RRF50) on instrument HP3 were less than the minimum specification limit of 0.05 for 1,3-dibromo-3-chloropropane. Soil samples GRSB2 (13-14), GRSB20 (13-14), GRSB2 (22-24), GRSB1 (13-14), and GRSB1 (22-24) were affected. The 1,3-dibromo-3-chloropropane results for these samples were nondetect and were qualified "R," as rejected, because of poor instrument sensitivity.

Semivolatile Organics

C6F280229

Initial Calibrations and Continuing Calibration Verifications (pp. 2169-2170): The continuing calibration verification of instrument 731 on 07/03/06 at 10:53 hours had %Ds greater than the +25% specification limit for benzaldehyde, caprolactam, and atrazine. Aqueous sample TW5 was affected. The positive caprolactam result for TW5 was qualified "J," as an estimated concentration, because of high instrument bias. The benzaldehyde, and atrazine results reported for TW5 were nondetect. No further validation action was required in response to the high instrument bias.

C6G290164

- Surrogate Recoveries (pp. 2003-2004): The percent recoveries (%Rs) for the surrogate terphenyl-d14, were less than the lower quality control limit but greater than 10% for aqueous samples TW6, TW60, and TW3. The USEPA National Functional Guidelines permit one surrogate per fraction to be nonconforming, so long as the recovery is greater than 10%. No data qualifications were required.
- 2. Continuing Calibrations (pp. 2134-2135, 2140-2141): The continuing calibration verification %Ds were greater than the upper specification limit of +25% for 4-nitrophenol and 2,4-dinitrotoluene on 08/10/06 at 10:50 hours, and 4-nitrophenol on 08/11/06 at 07:28 hours on instrument 731. All samples were affected. 4-Nitrophenol and 2,4-dinitrotoluene were not detected in any of the samples. No data qualifications were required in response to the high instrument bias.

Trace Metals

C6F280229

- Blank Contamination (pp. 120, 124-125, 129-132): Several metals were detected in laboratory blanks (initial and continuing calibration and preparation blanks). All samples were affected. The maximum associated blank concentrations were used to apply validation qualifiers. Sample aliquots, dilution factors, and percent solids were taken into consideration. Positive results less than the reporting limit, but greater than the IDL were qualified as undetected, "U," as result of laboratory contamination. See attached data summary forms in Appendix A.
- 2. <u>Matrix Spike Recoveries</u> (pp. 3056-3060): Matrix spike analyses were conducted on sample GRSS1. The original sample concentrations of aluminum, iron, and lead were four times greater than the spike concentrations. Therefore, matrix effects could not be evaluated for these analytes. Validation action was not required.

The GRSS1 MS recovery for antimony was less than the lower advisory limit, but greater than 30%. The post-digestion spike recovery was acceptable. The positive and nondetect antimony results for soil samples GRSS1, GRSS2, GRSB4 (7-8), GRSB4 (9-11), GRSB3 (4-5), and GRSB3 (6-7) were qualified "J" and "UJ," respectively, because of low bias attributable to matrix effects.

Port Jervis MGP Site Data Usability Summary Report Page 6 of 11

The GRSS1 MS recovery for mercury was greater than the upper advisory limit of 125%. The positive mercury result for soil sample GRSS2 was qualified "J+," because of high bias attributable to matrix effects.

The TW4 MS recovery for selenium was greater than the upper advisory limit of 125%. The post-digestion spike recovery was also greater than the upper advisory limit of 125%. The positive selenium result for aqueous sample TW5 was qualified "J+," because of high bias attributable to matrix effects.

- 3. <u>Laboratory Duplicate Precision</u> (p. 3061): Duplicate analyses were conducted on sample GRSS1. The RPD between the original and duplicate result for lead was greater than 20%. The lead results were less than five times the reporting limit. The difference between the original and duplicate results was less than twice the reporting limit. Variation of this magnitude is acceptable. No data qualifications were required.
- 4. ICP Serial Dilution (pp. 3068-3069): An ICP serial dilution analysis was conducted on soil sample GRSS1. The percent differences were greater than the maximum limit of 10% for copper and potassium. The positive copper results for soil samples GRSS1, GRSS2, GRSB4 (7-8), GRSB4 (9-11), GRSB3 (4-5), and GRSB3 (6-7) and the positive potassium results for soil samples GRSS2 and GRSB4 (7-8) were qualified "J," as estimated concentrations, because of physical/chemical interference.

An ICP serial dilution analysis was conducted on aqueous sample TW4. The percent difference was greater than the maximum limit of 10% for aluminum. The positive aluminum results for aqueous samples TW4 and TW5 were qualified "J," as estimated concentrations, because of physical/chemical interference.

C6G290164

- Blank Contamination (pp. 127, 132, 137-140): Several metals were detected in laboratory blanks (initial and continuing calibration and preparation). All samples were affected. The maximum associated blank concentrations were used to apply validation qualifiers. Sample aliquots, dilution factors, and percent solids were taken into consideration. Positive results less than the reporting limit, but greater than the IDL were qualified as undetected, "U," as result of laboratory contamination. See attached data summary forms in Appendix A.
- Matrix Spike Recoveries (pp. 141-142, 145-146): Matrix spike analysis was conducted on soil sample GRSB1 (22-24). The original sample concentrations of aluminum and iron were four times greater than the spike concentrations. Therefore, matrix effects could not be evaluated for these analytes. Validation action was not required.

The GRSB1 (22-24) MS recovery for antimony was less than the lower advisory limit, but greater than 30%. The post-digestion spike recovery was acceptable. The antimony results for soil samples GRSB2 (13-14), GRSB20 (13-14), GRSB2 (22-24), GRSB1 (13-14), and GRSB1 (22-24) were nondetect and were qualified "UJ," as estimates, because of low bias attributable to matrix effects.

The GRSB1 (22-24) MS recovery for chromium was greater than the upper advisory limit of 125%. The post-digestion spike recovery was acceptable. The chromium results for soil samples GRSB2 (13-14), GRSB20 (13-14), GRSB2 (22-24), GRSB1 (13-14), and GRSB1 (22-24) were positive and were qualified "J," as estimated concentrations, because of high bias attributable to matrix effects.

Matrix spike analysis was conducted on aqueous sample TW3. The original sample concentrations of aluminum and iron were four times greater than the spike concentrations. Therefore, matrix effects could not be evaluated for these analytes. Validation action was not required.

The TW3 MS recovery for selenium was greater than the upper advisory limit of 125%. The post-digestion spike recovery was acceptable. The positive selenium result for aqueous sample TW6 and TW60 were qualified "J," because of possible high bias attributable to matrix effects.

- 3. <u>Laboratory Duplicate Precision</u> (p. 147): Duplicate analysis were conducted on soil sample GRSB1 (22-24). Laboratory duplicate imprecision was noted for aluminum, copper, iron, manganese, and zinc. The copper results were less than five times the reporting limit. The difference between the original and duplicate results was less than twice the reporting limit. Variation of this magnitude is acceptable. No data qualifications were required for copper. The aluminum, iron, manganese, and zinc results for soil samples GRSB2 (13-14), GRSB20 (13-14), GRSB2 (22-24), GRSB1 (13-14), and GRSB1 (22-24) were positive and were qualified "J," as estimated concentrations, because of method imprecision and/or matrix effects.
- 4. ICP Serial Dilution (p. 3073): An ICP serial dilution analysis was conducted on soil sample GRSB1 (22-24). The percent differencs was greater than the maximum limit of 10% for potassium. The positive potassium results for soil samples GRSS1, GRSS2, GRSB4 (7-8), GRSB4 (9-11), GRSB3 (4-5), and GRSB3 (6-7) were qualified "U," as undetected because of laboratory contamination. No further data qualifications were required.

Total Cyanide

C6F280229

<u>Blank Contamination</u> (p. 4004): Cyanide was detected in the soil method blank at an estimated concentration of 0.10 mg/kg. All samples were affected. The positive cyanide results for samples GRSS1, GRSB3 (4-5), and GRSB3 (6-7) were estimated below the reporting limit and were qualified as undetected, "U," because of laboratory contamination. The laboratory used a "J" qualifier to indicate a positive result possibly affected by laboratory blank contamination. The data validator removed the laboratory-assigned "J" qualifier on sample GRSS2 as unnecessary.

C6G290164

No data quality issues were noted. No data qualifications were required.

Percent Solids

No data quality issues were noted. No data qualifications were required.

Field Duplicates

Samples GRSB2 (13-14)/GRSB20 (13-14) and TW6/TW60 were the primary and field duplicate samples collected for this sampling event. No data qualifications are required based on the relative percent difference (RPD) of field duplicate sample data alone. However, the positive results are presented in the table below to evaluate precision and sample homogeneity. An RPD greater than the advisory limit of 30% for aqueous samples, and 50% for soil samples, is an indication of sample heterogeneity with respect to that compound, poor field precision, and/or poor laboratory precision. Field sampling and laboratory precision were acceptable except where noted below.

The copper results between the primary sample GRSB2 (13-14) and field duplicate sample GRSB20 (13-14) was greater than the maximum advisory limit of 50%. The positive copper results for samples GRSB2 (13-14) and GRSB20 (13-14) were qualified "J," as estimated concentrations, because of sample heterogeneity, poor field precision, and/or poor laboratory precision.

Field Duplicate Comparison Port Jervis MGP

Parameter	TW-0	5 ·		TW-60		
Acetone	13 J ²	μg/L	6.5 J ^{1, 2}	μg/L	67*	
Acenaphthene	12	μg/L	12	μg/L	0	
Anthracene	1.4 J ¹	μg/L	1.5 J ¹	μg/L	7	
Caprolactam	3.3 J ¹	μg/L	5.2 J ¹	μg/L	45*	
Fluoranthene	10 U	μg/L	1.1 J ¹	μg/L	NC	
Fluorene	4.5 J ¹	μg/L	4.6 J ¹	μg/L	2	
Pyrene	1.2 J ¹	μg/L	1.4 J ¹	μg/L	15	
Aluminum	51100	μg/L	50000	μg/L	2	
Arsenic	12.3	μg/L	12.0	μg/L	2	
Barium	600	μg/L	620	μ g/L	3	
Beryllium	2.6 J ¹	μg/L	2.8 J ¹	μg/L	7	
Calcium	17300	μg/L	17400	μg/L	1	
Chromium	49.1	μg/L	45.7	μg/L	7	
Cobalt	33.2 J ¹	μg/L	32.8 J ¹	μg/L	1	
Copper	125	μg/L	122	μg/L	2	
Iron	48400	μg/L	46700	μg/L	4	
Lead	124	μg/L	120	μg/L	3	
Magnesium	9810	μg/L	9650	μg/L	2	
Manganese	1000	μg/L	1020	μg/L	2	
Mercury	0.65	μg/L	0.69	μg/L	6	
Nickel	69.3	μg/L	66.3	μg/L	4	
Potassium	9440	μg/L	9570	μg/L	1	
Selenium	6.5 J ³	μg/L	5.8 J ³	μg/L	11	
Silver	0.49 J ¹	μg/L	0.70 J ¹	μg/L	35*	
Sodium	30300	μg/L	30800	μg/L	2	
Vanadium	49.5 J ¹	μg/L	49.4 J ¹	μg/L	0	
Zinc	597	μg/L	642	μg/L	7	

Field Duplicate Comparison (Cont'd) Port Jervis MGP

Parameter	GRSB2	(13-14)	GRSB20	(13-14)	RPD (%)
Acetone	13 J ²	μ g/kg	6.5 J ^{1, 2}	μg/kg	67*
Caprolactam	74 J ¹	μg/kg	72 J ¹	μg/kg	3
Aluminum	5030 J⁴	mg/kg	5650 J⁴	mg/kg	12
Arsenic	2.2 J ¹	mg/kg	1.6 J ¹	mg/kg	32*
Barium	37.8 J ¹	mg/kg	47.7	mg/kg	23
Chromium	5.2 J ³	mg/kg	5.4 J ³	mg/kg	4
Cobalt	4.5 J ¹	mg/kg	4.6 J ¹	mg/kg	2
Copper	31.5 J⁵	mg/kg	15.7 J⁵	mg/kg	67
Iron	9880 J ⁴	mg/kg	10200 J⁴	mg/kg	3
Lead	6.2	mg/kg	5.6	mg/kg	10
Magnesium	1800	mg/kg	2040	mg/kg	13
Manganese	143 J⁴	mg/kg	138 J⁴	mg/kg	4
Nickel	9.3 J ¹	mg/kg	10.4	mg/kg	11
Selenium	0.63 J ¹	mg/kg	0.51 J ¹	mg/kg	21
Sodium	129 J ¹	mg/kg	85.8 J ¹	mg/kg	40*
Vanadium	5.2 J ¹	mg/kg	5.5 J ¹	mg/kg	6
Zinc	63.5 J⁴	mg/kg	53.6 J⁴	mg/kg	17

- J¹: Result was qualified as an estimate due to increased uncertainty near the detection limit.
- J²: Result was qualified as an estimate due to poor instrument sensitivity.
- J³: Result was qualified as an estimate because of inaccuracy attributable to matrix effects.
- J⁴: Result was qualified as an estimate because of imprecision attributable to matrix effects.
- J⁵: Result was qualified as an estimate due to field sampling/laboratory imprecision and/or sample heterogeneity.
- *: The difference between the primary and field duplicate results was less than twice the reporting limit for results less than five times the reporting limit. Variation of this magnitude is acceptable.

NC: The RPD could not be calculated.

Notes

Organic sample results less than the reporting limits but greater than the method detection limits (MDLs) were qualified, "J," as estimated concentrations, by the laboratory due to uncertainty near the detection limit.

Positive metals results estimated between the Instrument Detection Limit (IDL) and the reporting limit were qualified "B" by the laboratory. The validator changed the "B" qualifiers to "J" qualifiers, to indicate an estimated concentration, because of the uncertainty near the detection limit.

Port Jervis MGP Site Data Usability Summary Report Page 10 of 11 Client Work Product Private and Confidential

Attachments

Glossary of data qualifier codes.

Appendix A - Data Summary

This may include:

- a) All positive results with qualifier codes, if applicable;
- b) All unusable detection limits qualified with an "R," if applicable;
- c) All estimated detection limits with qualifier codes, if applicable.

Appendix B - Support Documentation

ATTACHMENT 1 DATA QUALIFICATION GLOSSARY

- U Nondetected result. The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ (Inorganics) The result is an estimated quantity, but the result may be biased high.
- J- (Inorganics) The result is an estimated quantity, but the result may be biased low.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet the quality control criteria. The presence of absence of the analyte cannot be verified.
- N (Organics) The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ (Organics) The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

CASE NARRATIVE

The Retec Group Port Jervis

STL Lot # C6G290164

Sample Receiving:

Samples were received at STL Pittsburgh on July 29, 2006. The coolers were received within the proper temperature range.

The laboratory did not receive all of the sample containers listed on the chain of custody. Notation regarding which containers were not received was made to the chain of custody.

If project specific QC was not required for samples contained in this report, when batch QC was completed on these samples, anomalous results will be discussed below.

GC/MS Volatiles:

The method blank for batch 6213037 had acetone and methylene chloride detected below the reporting limit. The results were flagged with a "J" qualifier. Any sample associated with this blank that had acetone or methylene chloride detected had the result flagged with a "B" qualifier.

The method blank for batch 6214421 had methylene chloride detected below the reporting limit. The result was flagged with a "J" qualifier. Any sample associated with this blank that had methylene chloride detected had the result flagged with a "B" qualifier.

GC/MS Semivolatiles:

The reporting limits of the aqueous samples were adjusted according to the amount of sample volume extracted.

Samples TW6, TW60, and TW3 had surrogate terphenyl-d₁₄ recover below the control limits but above 10% recovery. The NYSDEC ASP CLP protocol permits one acid fraction and one base-neutral fraction surrogate recovery outside control limits without the re-extraction of the sample.

Metals:

The serial dilution percent difference was outside of the control limits for potassium. All associated results were flagged with an "E" qualifier.

The method blanks had analytes detected at concentrations between the IDL and the reporting limit. The results were flagged with a "B" qualifier.

For the matrix spike of sample GRSB1(22-24), aluminum and iron recoveries were not calculated due to the concentration of analyte in the sample being >4 times the concentration of spike added.

CASE NARRATIVE

The Retec Group Port Jervis

STL Lot # C6G290164

Metals (cont):

The matrix spike of sample GRSB1(22-24) recovered outside of the control limits for antimony and chromium. All associated results are flagged with an "N" qualifier.

For the matrix spike of sample TW3, aluminum and iron recoveries were not calculated due to the concentration of analyte in the sample being >4 times the concentration of spike added.

The matrix spike of sample TW3 recovered outside of the control limits for selenium. All associated results are flagged with an "N" qualifier.

The relative percent difference between sample GRSB1(22-24) and the duplicate digestion of this sample was outside of the control limits for aluminum, copper, iron, manganese, and zinc. All associated results are flagged with an "*" qualifier.

General Chemistry:

There were no problems associated with the analyses.

APPENDIX B
SUPPORT DOCUMENTATION

Cooler Receipt Form STL Pittsburgh

Clien	t: Retec Project: Quot	e: 59242
Coole	er Rec'd & Opened for Temp. Check on: 07.29.06	-10
Coole	ers Opened and Unpacked on: 07-29-06 By:	
STL	Pittsburgh Lot Number: <u>C66 290164</u>	(Signature)
		Yes No
1.	Were custody seals on the outside of the cooler?	
	If YES, how many and where? Quantity 2 Location Frank	***
	Were signatures and date correct?	
2.	Were custody papers included inside the cooler?	
3.	Were custody papers properly filled out (ink, signed, match labels)?	
4.	Did you sign the custody papers in the appropriate place?	
5.	Was shippers packing slip attached to this form?	
6.	Were packing materials used?	
	Were packing materials used?	
7.	Were the samples chilled? (Record temperatures on reverse side.)	
8.	Were the samples appropriately preserved?	
9.	Were all bottles sealed in separate plastic bags?	
10.	Did all bottles arrive in good condition (unbroken)?	_122 _
11.	Were all bottle labels complete (sample ID, preservatives, etc.)?	
12.	Did all bottle labels and/or tags agree with custody papers?	
13.	Were correct bottles used for tests indicated?	_ <u>~</u> _
14.	Were all VOA vials checked for the presence of air bubbles?	
15.	Was a sufficient amount of sample sent in each bottle?	
16.	Samples received by: FEDEX UPS CLIENT DROP-OFF OTHER DHL	
Expl	ain any discrepancies:	
Leve	1 2 Review	
Was	contacted on by to resolv	e discrepancies.
STLPI	C/Apr-05/96-005/COOL.DOC Page 1 of 2	

Cooler Receipt Form

STL Pittsburgh

P: Preserved UP: Unpreserved

Lot Number**

Sample ID	TMET PH<2	DMET PH<2	HG PH<2	NUT(1) PH<2	CN PH≥12	OG TPHC PH<2	PHEN PH<2	SULF PH ≥12	TOC PH<2	TOX PH<2	VOA P/UP	hrdnss PH<2	Cl _t	
10	42				716						P			
60					9						1			
TB														
TW3	4_				712						Q_			
									ļi					

									-				_	
							7							
														<u></u>
														

Comments:

Sample

Cooler Number	Temperature*	Thermometer	_
1	48	8	
١	5.8	8	
		·	
·			

STL PT/Apr-05/96-005/COOL.DOC

Page 2 of 2

^{*}Acceptable Temperature Range: 4°C ± 2°C

^{**}Please use an asterisk if bottle lot number was covered by the label

	Work Order No.:
Condition Upon Re	eceipt Variance Report
-	rgh Laboratory
Client: Retec	Date: 07-29-06 Initiated by: 7/7/RFA/COC:
Analysis Requested:	RFA/COC:
Client Sample Numbers Affected:	
Condition/Variance (Check all that apply):	
1. Dot enough sample received for proper analysis. Received approx.	8. Custody tape disturbed/broken/missing.
2. Sample received broken/leaking.	9. Sample splits performed by lab.
3. Sample received without proper preservative.	10. U Volatile sample received with approximately mm headspace.
\Box Cooler temperature not within $4^{\circ}C \pm 2^{\circ}C$.	11. Sample ID on container does not match on paperwork. Explain:
Record temperature:	1
□ pH	
Other:	12. All coolers on airbill not received with
 □ Sample received in improper container. 	13. Other (explain below):
5. Sample received without proper paperwork.	15. 2 State (Septam Solow).
6. Paperwork received without sample.	
7. De No sample ID on sample container.	
Notes: ONLY Exceived 2 jans for Any extra jans for the soil TWG; 200 for TWGO, Rec.	GRSB2 (22-24). Did not Received in for for and the fortwo
Corrective Action:	•
	rmed By:
	med in ing on: 7/2/66 By Duly
☐ Sample(s) processed "as is"	
☐ Sample(s) on hold until:	If released:
Sample Control Supervisor Review:	Date:
Project Management Review:SIGNED ORIGINAL MUST BE	RETAINED IN THE PROJECT FILE Date: 73166
	·

STL PT/07-06/96-005/CURVR.DOC

The RETEC Group, Inc. METHOD BLANK COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SOLID

Lab Sample ID: C6H010000 037

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: JADFM1AA Dilution factor: 1

Date Received: 07/29/06 Date Extracted: 08/01/06 Date Analyzed: 08/01/06

Moisture %:NA

QC Batch: 6213037

Client Sample Id: INTRA-LAB BLANK

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q
67-64-1	Acetone	7.0	J
71-43-2	Benzene	10	ט ט
75-27-4	Bromodichloromethane	10	ט
75-25-2	Bromoform	10	ט
74-83-9	Bromomethane	10	ט
78-93-3	2-Butanone	10	ָט
75-15-0	Carbon disulfide	10	יט
56-23-5	Carbon tetrachloride	10	יט
108-90-7	Chlorobenzene	10	ט
75-00-3	Chloroethane	10	ט
67-66-3	Chloroform	10	יט
74-87-3	Chloromethane	10	ט
110-82-7	Cyclohexane	10	<u>ט</u>
124-48-1	Dibromochloromethane	10	ָט
96-12-8	1,2-Dibromo-3-chloropropane	10	יט ו
106-93-4	1,2-Dibromoethane	10	ן ט
541-73-1	1,3-Dichlorobenzene	10	ט ו
106-46-7	1,4-Dichlorobenzene	10	וט
95-50-1	1,2-Dichlorobenzene	10	וט
75-71-8	Dichlorodifluoromethane	10	ן ט
75-34-3	1,1-Dichloroethane	10	ט ו
107-06-2	1,2-Dichloroethane	10	ן ט
75-35-4	1,1-Dichloroethene	10	ַ <u></u>
156-59-2	cis-1,2-Dichloroethene	10	ט ו
156-60-5	trans-1,2-Dichloroethene	10	ש
78-87-5	1,2-Dichloropropane	10	ט
10061-01-5	cis-1,3-Dichloropropene	10	יט
10061-02-6	trans-1,3-Dichloropropene	10	וט

The RETEC Group, Inc. METHOD BLANK COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SOLID

Lab Sample ID:C6H010000 037

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Work Order: JADFM1AA
Dilution factor: 1

Date Received: 07/29/06 Date Extracted:08/01/06 Date Analyzed: 08/01/06

Moisture %:NA

QC Batch: 6213037

Client Sample Id: INTRA-LAB BLANK

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q
100-41-4	Ethylbenzene	10	ן
591-78-6	2-Hexanone	10	ן ט
98-82-8	Isopropylbenzene	10	_iii
79-20-9	Methyl acetate	10	ן די
75-09-2	Methylene chloride	3.3	J
108-87-2	Methylcyclohexane	10	ן ט
108-10-1	4-Methyl-2-pentanone	10	ן ט
1634-04-4	Methyl tert-butyl ether	10	ע
100-42-5	Styrene	10	ן ט
79-34-5	1,1,2,2-Tetrachloroethane	10	ט
120-82-1	1,2,4-Trichlorobenzene	10	_lt
127-18-4	Tetrachloroethene	10	<u> </u>
71-55-6	1,1,1-Trichloroethane	10	<u> </u>
79-00-5	1,1,2-Trichloroethane	10	U
79-01-6	Trichloroethene	10	ال اا
75-69-4	Trichlorofluoromethane	10	ן ש
76-13-1	1,1,2-Trichloro-1,2,2-triflu	10	<u> U </u>
108-88-3	Toluene	10	ן ט
75-01-4	Vinyl chloride	10	ן ט
1330-20-7	Xylenes (total)	10	ן די די די

The RETEC Group, Inc. METHOD BLANK COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WATER

Lab Sample ID: C6H020000 421

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Work Order: JAG541AA Dilution factor: 1

Date Received: 07/29/06 Date Extracted: 08/02/06

Date Analyzed: 08/02/06

Moisture %:NA

QC Batch: 6214421

Client Sample Id: INTRA-LAB BLANK

T1-43-2 Benzene	CAS NO.	COMPOUND (ug/L or ug	g/kg) ug/L Q	
75-27-4 Bromodichloromethane 10	67-64-1	Acetone	10	ַ ט
75-25-2 Bromoform 10	71-43-2	Benzene	10	ַ ַ ַ
74-83-9 Bromomethane 10 U 78-93-3 2-Butanone 10 U 75-15-0 Carbon disulfide 10 U 56-23-5 Carbon tetrachloride 10 U 108-90-7 Chlorobenzene 10 U 67-66-3 Chloroethane 10 U 67-66-3 Chloromethane 10 U 74-87-3 Chloromethane 10 U 10-82-7 Cyclohexane 10 U 124-48-1 Dibromochloromethane 10 U 96-12-8 1,2-Dibromo-3-chloropropane 10 U 106-93-4 1,2-Dibromoethane 10 U 541-73-1 1,3-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorodifluoromethane 10 U 75-71-8 Dichlorodifluoromethane 10 U 107-06-2 1,2-Dichloroethane 10 U 156-59-2 <td>75-27-4</td> <td>Bromodichloromethane</td> <td>10</td> <td>U</td>	75-27-4	Bromodichloromethane	10	U
78-93-3 2-Butanone 10 U 75-15-0 Carbon disulfide 10 U 56-23-5 Carbon tetrachloride 10 U 108-90-7 Chlorobenzene 10 U 75-00-3 Chloroethane 10 U 67-66-3 Chloroform 10 U 74-87-3 Chloromethane 10 U 110-82-7 Cyclohexane 10 U 124-48-1 Dibromochloromethane 10 U 96-12-8 1,2-Dibromo-3-chloropropane 10 U 106-93-4 1,2-Dibromochane 10 U 541-73-1 1,3-Dichlorobenzene 10 U 95-50-1 1,4-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4	75-25-2	Bromoform	10	U
75-15-0 Carbon disulfide 10 U 56-23-5 Carbon tetrachloride 10 U 108-90-7 Chlorobenzene 10 U 75-00-3 Chloroethane 10 U 67-66-3 Chloroform 10 U 74-87-3 Chloromethane 10 U 110-82-7 Cyclohexane 10 U 124-48-1 Dibromochloromethane 10 U 96-12-8 1,2-Dibromo-3-chloropropane 10 U 106-93-4 1,2-Dibromoethane 10 U 541-73-1 1,3-Dichlorobenzene 10 U 95-50-1 1,4-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethene 10 U 156-60-	74-83-9	Bromomethane	10	ַט
56-23-5 Carbon tetrachloride 10 U 108-90-7 Chlorobenzene 10 U 75-00-3 Chloroethane 10 U 67-66-3 Chloroform 10 U 74-87-3 Chloromethane 10 U 110-82-7 Cyclohexane 10 U 124-48-1 Dibromochloromethane 10 U 96-12-8 1,2-Dibromo-3-chloropropane 10 U 106-93-4 1,2-Dibromoethane 10 U 541-73-1 1,3-Dichlorobenzene 10 U 106-46-7 1,4-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U <td< td=""><td>78-93-3</td><td>2-Butanone</td><td>10</td><td>Ŭ</td></td<>	78-93-3	2-Butanone	10	Ŭ
108-90-7 Chlorobenzene 10 U 75-00-3 Chloroethane 10 U 67-66-3 Chloroform 10 U 74-87-3 Chloromethane 10 U 110-82-7 Cyclohexane 10 U 124-48-1 Dibromochloromethane 10 U 96-12-8 1,2-Dibromo-3-chloropropane 10 U 106-93-4 1,2-Dibromoethane 10 U 541-73-1 1,3-Dichlorobenzene 10 U 106-46-7 1,4-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 107-06-2 1,2-Dichloroethane 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 10061-01-5 cis-1,3-Dichloropropane 10 U	75-15-0	Carbon disulfide	10	ש
75-00-3 Chloroethane 10 U 67-66-3 Chloroform 10 U 74-87-3 Chloromethane 10 U 110-82-7 Cyclohexane 10 U 124-48-1 Dibromochloromethane 10 U 96-12-8 1,2-Dibromo-3-chloropropane 10 U 106-93-4 1,2-Dibromoethane 10 U 541-73-1 1,3-Dichlorobenzene 10 U 106-46-7 1,4-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 10661-01-5 cis-1,3-Dichloropropene 10 U <td>56-23-5</td> <td>Carbon tetrachloride</td> <td>10</td> <td>ַ ט</td>	56-23-5	Carbon tetrachloride	10	ַ ט
67-66-3 Chloroform 10 U 74-87-3 Chloromethane 10 U 110-82-7 Cyclohexane 10 U 124-48-1 Dibromochloromethane 10 U 96-12-8 1,2-Dibromo-3-chloropropane 10 U 106-93-4 1,2-Dibromoethane 10 U 541-73-1 1,3-Dichlorobenzene 10 U 106-46-7 1,4-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 107-06-2 1,2-Dichloroethane 10 U 107-06-2 1,2-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropane 10 U	108-90-7	Chlorobenzene	10	ַ ַ
74-87-3 Chloromethane 10 U 110-82-7 Cyclohexane 10 U 124-48-1 Dibromochloromethane 10 U 96-12-8 1,2-Dibromo-3-chloropropane 10 U 106-93-4 1,2-Dibromoethane 10 U 541-73-1 1,3-Dichlorobenzene 10 U 106-46-7 1,4-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	75-00-3	Chloroethane	10	ַ
110-82-7 Cyclohexane 10 U 124-48-1 Dibromochloromethane 10 U 96-12-8 1,2-Dibromo-3-chloropropane 10 U 106-93-4 1,2-Dibromoethane 10 U 541-73-1 1,3-Dichlorobenzene 10 U 106-46-7 1,4-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	67-66-3	Chloroform	10	ש
124-48-1 Dibromochloromethane 10 U 96-12-8 1,2-Dibromo-3-chloropropane 10 U 106-93-4 1,2-Dibromoethane 10 U 541-73-1 1,3-Dichlorobenzene 10 U 106-46-7 1,4-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	74-87-3	Chloromethane	10	ש
96-12-8 1,2-Dibromo-3-chloropropane 10 U 106-93-4 1,2-Dibromoethane 10 U 541-73-1 1,3-Dichlorobenzene 10 U 106-46-7 1,4-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethane 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	110-82-7	Cyclohexane	10	U
106-93-4	124-48-1	Dibromochloromethane	10	ט
541-73-1 1,3-Dichlorobenzene 10 U 106-46-7 1,4-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	96-12-8	1,2-Dibromo-3-chloropropane	10	ש
106-46-7 1,4-Dichlorobenzene 10 U 95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	106-93-4	1,2-Dibromoethane	10	ט
95-50-1 1,2-Dichlorobenzene 10 U 75-71-8 Dichlorodifluoromethane 10 U 75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	541-73-1	1,3-Dichlorobenzene	10	Ū
75-71-8 Dichlorodifluoromethane 10 U 75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	106-46-7	1,4-Dichlorobenzene	10	ָט
75-34-3 1,1-Dichloroethane 10 U 107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	95-50-1	1,2-Dichlorobenzene	10	U
107-06-2 1,2-Dichloroethane 10 U 75-35-4 1,1-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	75-71-8	Dichlorodifluoromethane	10	ט
75-35-4 1,1-Dichloroethene 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	75-34-3	1,1-Dichloroethane	10	U
156-59-2 cis-1,2-Dichloroethene 10 U 156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	107-06-2	1,2-Dichloroethane	10	ַ ט
156-60-5 trans-1,2-Dichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	75-35-4	1,1-Dichloroethene	10	ש
78-87-5 1,2-Dichloropropane 10 U 10061-01-5 cis-1,3-Dichloropropene 10 U	156-59-2	cis-1,2-Dichloroethene	10	ַ ט
10061-01-5 cis-1,3-Dichloropropene 10 U	156-60-5	trans-1,2-Dichloroethene	10	ַ ט
	78-87-5	1,2-Dichloropropane	10	U
	10061-01-5	cis-1,3-Dichloropropene	10	ַ
10001-02-0 Clams-1,3-Dichtoropropene IV	10061-02-6	trans-1,3-Dichloropropene	10	ש

The RETEC Group, Inc. METHOD BLANK COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) WATER

Lab Sample ID:C6H020000 421

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / mL Work Order: JAG541AA Dilution factor: 1

Date Received: 07/29/06 Date Extracted:08/02/06

Moisture %:NA

Date Analyzed: 08/02/06

QC Batch: 6214421

Client Sample Id: INTRA-LAB BLANK

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/L	Q
100-41-4	Ethylbenzene	10	ات
591-78-6	2-Hexanone	10	ַן ַ
98-82-8	Isopropylbenzene	10	ַן ט
79-20-9	Methyl acetate	10	ט .
75-09-2	Methylene chloride	1.1	J
108-87-2	Methylcyclohexane	10	ט
108-10-1	4-Methyl-2-pentanone	10	ן ט
1634-04-4	Methyl tert-butyl ether	10	ן ט
100-42-5	Styrene	10	ָ <u>ט</u>
79-34-5	1,1,2,2-Tetrachloroethane	10	U
120-82-1	1,2,4-Trichlorobenzene	10	ן די
127-18-4	Tetrachloroethene	10	U
71-55-6	1,1,1-Trichloroethane	10	ַ
79-00-5	1,1,2-Trichloroethane	10	ן ט
79-01-6	Trichloroethene	10	ן ט
75-69-4	Trichlorofluoromethane	10	ן די
76-13-1	1,1,2-Trichloro-1,2,2-triflu	10	ט
108-88-3	Toluene	10	U
75-01-4	Vinyl chloride	10	U
1330-20-7	Xylenes (total)	10	ַ

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.: SDG No.: METHODS

Instrument ID: HP3

Calibration Date(s): 08/01/06

08/01/06

Heated Purge: (Y/N) N Calibration Time(s): 0850

1148

GC Column: DB624 ID: 0.53 (mm)

6 -024440000

LAB FILE ID: RRF10 RRF50 =1C30801K RRF10		· · · · ·					90
COMPOUND	1		1	RRF100		RRF	
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane	2 255	2 457	2 077	2 026	2.899		
ontorometrane	_ 3.333	2,45/	0.600	2.930	2.699		
Sromomethane	_^ U.022	0.569	0.000	0.718	0.694	0.702	
vinyi chioride	-1 3.005	2.453	2.713	2.750	2.649 0.651		
Intoroethane	- 0.763	1 004	0.669	2.462	0.651		33.
Methylene Chioride	- 2.613	1.904	2.129	2.100	2.093	2.168	120
Acetone	- 0.581	0.327	0.284	0.263	0.261		39.
Carbon Disulfide	6.690	5.085	6.576	6.733	6,801	6.377	II.
1,1-Dichloroethene	* 2.282	1.657	2.018	2.006	2.008	1.994	11.
1,1-Dichloroethane	* 4.155	3.027	3.657	3.624	3.638	3.620 2.109	11.
1,2-Dichloroethene (total)	2.440	1.775	2.115	2.106	2.111	2.109	11.
Chloroform	* 3.636	2.640	3.177	3.174	3.183	3.162	11.
l,2-Dichloroethane	* 2.839	2.062	2.417	2.408	2.448	2.435 0.520	11.
2-Butanone	0.708	0.418	0.495	0.471	0.510	0.520	21.
1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane 2-Butanone 1,1,1-Trichloroethane 2-Dichloromethane 1,2-Dichloropropane 2,2-Dichloropropane 2,3-Dichloropropene 2,1,3-Dichloropropene 2,1,2-Trichloroethane 1,1,2-Trichloroethane 2,1,2-Trichloroethane 2,1,2-Trichloropropene 2,1,2-Trichloroethane 3-Dichloropropene 3-Dichloropropene 3-Methyl-2-pentanone	_* 0.460	0.354	0.431	0.435	0.443	0.425	9.
Carbon Tetrachloride	* 0.374	0.278	0.365	0.366	0.379	0.352	11.
Bromodichloromethane	* 0.371	0.279	0.360	0.372	0.386	0.354	12.
1,2-Dichloropropane	0.394	0.288	0.347	0.343 0.532	0.351	0.345	11.
cis-1,3-Dichloropropene	* 0.545	0.413	0.524	0.532	0.550	0.513	11.
Trichloroethene	* 0.404	0.297	0.365	0.358	0.363	0.35/	TO.
Dibromochloromethane	* 0.254	0.195	0.265	0.275	0.293	0.256	14.
1,1,2-Trichloroethane	* 0.313	0.230	0.280	0.276	0.284	0.277	10.
Benzene	* 1.605	1.173	1.406	1.388	1.406	1.396	11.
trans-1,3-Dichloropropene	* 0.467	0.353	0.457	0.460			11.
Bromoform	* 0.144	0.116	0.171	0.181	0.194	0.161	19.
4-Methyl-2-pentanone	0.414	0.284	0.359	0.336	0.359	0.350	13.
2-Hexanone	0.195	0.110	0.144	0.130	0.146	0.350 0.145	21.
Bromoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene	* 0.357	0.262	0.327	0.314	0.322	0.316	10.
1 1 2 2-Tetrachloroethane	* 0 467	1 0 348	1 0 423	0.409	0.420	0.413	10.
Toliene	* 1.903	1.399	1.717	1.673	1.692	0.413	10.
Chlorobenzene	* 1.194	0.883	1.067			1.050	10.
Ethylbenzene	* 0.662	0.496	0.604		0.609		10.
Styrene	* 1 309	0.978	1.232	1.214	1.217	1.190	10.
Xvlenes (total)	* 0 800	0.570	0.739	0 723	0.723		
Trital Trichloro Ethane Trichloro (total) Dichloro (total) Trichloro (total)	7 2 115	1 606	0.739 1.983	0.723 1.932	1.926	1.912	9.
Trichlorofluoromethers	- 2 154	2 1/2	2.401	2.726	2.185	2.322	
1 1 2 maighton 1 2 2 maift	2.134	1 427	1.777				
1,1,2 Trichtoro-1,2,2-Trilli	4 1 000	1.42/	1 7.77				
1,3-Dichtoropenzene	_î ⊥.∪09	0./34	0.900	0.870	0.887	0.880	11.

All other compounds must meet a minimim RRF of 0.010.

FORM VI VOA

OLMO3.0

page 1 of 2

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.: SDG No.: METHODS

Instrument ID: HP3

Calibration Date(s): 08/01/06 08/01/06

Heated Purge: (Y/N) N Calibration Time(s): 0850 1148

GC Column: DB624 ID: 0.53 (mm)

mentance back in

	=2A3080 0=1D3080			0 =1B308 00=1E308			
COMPOUND	RRF10	RRF20	RRF50		RRF200	RRF	% RSD
4 4 5 1 1 3 1	1	1	======	t .			=====
	* 1.017	0.740		0.869		0.883	11.2
	* 0.960			0.819			10.4
1,2-Dibromoethane	0.335	0.250		0.293			10.2
1,2-Dibromo-3-chloropropane		0.046		0.058		0.058	13.4
Methyl tert-butyl ether	6.226	4.554		5.485			10.9
Methyl Acetate	2.225			1.692			14.0
Cyclohexane	0.808			0.688			12.2
Methyl Cyclohexane	0.771	0.548					11.9
Isopropylbenzene	1.873	1.401		1.681			10.2
1,2,4 Trichlorobenzene	* 0.695			0.516	0.586	0.578	13.8
trans-1,2-Dichloroethene	2.391	1.726	2.088	2.067	2.066	2.068	11.4
cis-1,2-dichloroethene	2.490	1.824	2.142	2.145	2.157	2.152	10.9
	=====	=====	=====	=====			
Toluene-d8	1.336	1.277	1.334	1.300	1.292	1.308	2.0
Bromofluorobenzene	* 0.508	0.485	0.507	0.500			1.8
1,2-Dichloroethane-d4	1.966	1.816	1.814			1.832	4.2
			l				
	I	l	l	l	l	l	l

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

page 2 of 2

FORM VI VOA

OLMO3.0

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT

Case No.: SAS No.: SDG No.: METHODS

Instrument ID: HP3

Calibration Date: 08/02/06 Time: 1141

Lab File ID: CC30802

Init. Calib. Date(s): 08/01/06 08/01/06

EPA Sample No. (VSTD050##): vstd50 Init. Calib. Times: 0850 1148

Heated Purge: (Y/N) N

GC Column: DB624 ID: 0.53 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
		======	======	=====	EE===
Chloromethane	2.905	2.849		-1.9	
Bromomethane	0.702	0.715	0.100		25.0
Vinyl Chloride	2.674	2.611	0.100		25.0
Chloroethane	0.793	0.676		-14.8	
Methylene Chloride	2.168	2.104		3.0	
Acetone	0.343	0.237		(-30.9)) .
Carbon Disulfide	6.377	6.489		1.8	
1,1-Dichloroethene	1.994	1.970	0.100	-1.2	25.0
1,1-Dichloroethane	3.620	3.604	0.200		25.0
1,2-Dichloroethene (total)	2.109	2.071		-1.8	
Chloroform	3.162	3.084	0.200	-2.5	25.0
1,2-Dichloroethane	2.435	2.375	0.100	-2.5	25.0
2-Butanone	0.520	0.436		-16.2	
1,1,1-Trichloroethane	0.425	0.424	0.100		25.0
Carbon Tetrachloride	0.352	0.359	0.100	2.0	25.0
Bromodichloromethane	0.354	0.354	0.200		25.0
1,2-Dichloropropane	0.345	0.337		-2.3	
cis-1,3-Dichloropropene	0.513	0.516	0.200		25.0
Trichloroethene	0.357	0.356	0.300		25.0
Dibromochloromethane	0.256	0.264	0.100		25.0
1,1,2-Trichloroethane	0.277	0.270	0.100		25.0
Benzene	1.396	1.373	0.500		25.0
trans-1,3-Dichloropropene	0.444	0.448	0.100		25.0
Bromoform	0.161	0.171	0.100		25.0
4-Methyl-2-pentanone	0.350	0.323		-7.7	
					l

All other compounds must meet a minimum RRF of 0.010.

FORM VII VOA-1

7B VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH Contract:

Instrument ID: HP3 Calibration Date: 08/02/06 Time: 1141

EPA Sample No. (VSTD050##): vstd50 Init. Calib. Times: 0850 1148

Heated Purge: (Y/N) N

GC Column: DB624 ID: 0.53 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
		======		=====	=====
2-Hexanone	0.145	0.123		-15.2	
Tetrachloroethene	0.316	0.316	0.200	1	25.0
1,1,2,2-Tetrachloroethane	0.413	0.400	0.300		25.0
Toluene	1.677	1.658	0.400		25.0
Chlorobenzene	1.050	1.038	0.500		25.0
Ethylbenzene	0.593	0.587	0.100		25.0
Styrene	1.190	1.192	0.300		25.0
Xylenes (total)	0.717	0.713	0.300		25.0
Dichlorodifluoromethane	1.912	1.868		-2.3	
Trichlorofluoromethane	2.322	2.731		17.6	
1,1,2 Trichloro-1,2,2-Trifluo	1.746	1.755		0.5	
1,3-Dichlorobenzene	0.880	0.862	0.600	-2.0	25.0
1,4-Dichlorobenzene	0.883	0.862	0.500		25.0
1,2-Dichlorobenzene	0.841	0.820	0.400	-2.5	
1,2-Dibromoethane	0.296	0.288		-2.7	i i
1,2-Dibromo-3-chloropropane	0.058	0.058		0.0	
Methyl tert-butyl ether	5.459	5.359		-1.8	
Methyl Acetate	1.792	1.672		-6.7	
Cyclohexane	0.693	0.689	l	-0.6	
Methyl Cyclohexane	0.668	0.663		~0.7	
Isopropylbenzene	1.674	1.666		-0.5	
1,2,4 Trichlorobenzene	0.578	0.576	0.200	-0.3	25.0
trans-1,2-Dichloroethene	2.068	2.034		-1.6	
cis-1,2-dichloroethene	2.152	2.108		-2.0	
	======	******	======		****
Toluene-d8	1.308	1.317		0.7	
Bromofluorobenzene	0.500	0.502	0.200		25.0
1,2-Dichloroethane-d4	1.832	1.830		-0.1	
		<u></u>			

All other compounds must meet a minimum RRF of 0.010.

FORM VII VOA-2

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.: SDG No.: METHODS

Instrument ID: HP3

Calibration Date(s): 07/31/06 07/31/06

Heated Purge: (Y/N) Y Calibration Time(s): 1141 1400

GC Column: DB624

ID: 0.53 (mm)

LAB FILE ID: RRF10 RRF50 =1C30731K RRF10	=2A307	31K		0 = 1B30			
RRF50 =1C30/31K RRF10	U≡1D3U7.	31K	KRF2	00≃1E30'	/31K		
COMPOUND	RRF10	RRF20	RRF50		RRF200		% RSD
***************************************	1	1			=====		
Chloromethane Bromomethane Vinyl Chloride	3.569	3.562	3.425	3.472			2.3
Bromomethane	* 0.890	0.834	0.816	0.825	0.798	0.833	4.2*
Vinyl Chloride	* 3.292	3.271	3.074	3.160	3.072	3,174	
Chloroethane Methylene Chloride	0.936	1.066	1.339 2.510	1.395	1.139		
Methylene Chloride	3.427	3.038	2.510	2.440		2.754	16.8
Acetone Carbon Disulfide 1,1-Dichloroethene	0.944	0.786	0.344	0.289		0.524	60.5
Carbon Disulfide	7.501	7.628	7.495	7.758	7.724	7.621	1.6
1,1-Dichloroethene	* 2.373	2.321	2.234	2.291			
			4.024			4.148	2.9*
1,2-Dichloroethene (total)	2.459	1 2 474	2.333	2.371		2.401	
1,2-Dichloroethene (total) Chloroform	* 3.721	3.637	3.479	3.520	3.528		2.8*
1.2-Dichloroethane	* 2.474	2.387	2.266	2.316	2.360	2.361	3 3*
2-Butanone	0.495	0.745	0.395	0.395	0.404	0.487	30.9
1,1,1-Trichloroethane	* 0.460	0.472	0.444			0.459	2.2 *
Carbon Tetrachloride	* 0.368	0.381	0.370			0.380	2.9*
Bromodichloromethane	* 0.321	0.346	0.339			0.347	5.3*
1.2-Dichloropropage	0.344	0.356	0.328			0.342	
cis-1.3-Dichloropropene	* 0.457	0.484	0.474	0.492	0.541	0.482	3.7*
2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene	* 0 385	0.394			0.369	0.377	3.4*
Dibromochloromethane	* 0.303	0.331	0.224	0.243		0.229	
1 1 2-Trichloroethane	* 0.235	0.227	0.224	0.231		0.232	
Benzene	* 1.499	1.537	1.408	1.440		1.461	
trans-1,3-Dichloropropene	* 0 364	0 391	0.379	0.395	0.407	1.401 0.207	4.3*
Bromoform	* 0.112	0.331	0.373	0.146	0.407	0.387 0.133	12.1*
Bromoform 4-Methyl-2-pentanone	0.258		0.242		0.152	0.133	12.1
2-Hexanone	0.140		0.128				
D. 6		~ ~==	0.120	0.134		0.140	11.9
1 1 2 2-Tetrachloroethane	* 0.335	0.347	0.322	0.344	0.336	0.345	3.7*
Toluono	+ 1 001	1 000	1 722	1 000		0.336	
Chlorobonzono	* 1.901	1.900	1.732 1.063	1.802	1.768	1.821	
Ethylbonzone	* 1.143	1.161	1.063	1.102	1.080	1.110	
Echylpenzene	* 0.655	0.672		0.639		0.641	
styrene	* 1.253	1.294	1.219	1.271		1.253	
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Xylenes (total) Dichlorodifluoromethane Trichlorofluoromethane	· 0.796	0.812	0.749			0.779	
Dicutorodilino.	2.499	2.314	2.252			2.335	
Trichlorofluoromethane 1,1,2-Trichloro-1,2,2-Triflu	3.240	3.191	3.058	3.146	3.168	3.161	
1,1,2-Trichtoro-1,2,2-Triflu	1.956	2.073	2.005			2.011	
1,3-Dichlorobenzene	* 0.960 	0.971	0.906	0.934	0.898	0.934	3.4*
Compounds with required min	- DDI			TOTO			I

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.:

SDG No.: METHODS

Instrument ID: HP3

Calibration Date(s): 07/31/06

07/31/06

Heated Purge: (Y/N) Y

Calibration Time(s): 1141

1400

GC Column: DB624

ID: 0.53 (mm)

1,2-Dichlorobenzene * 0.876 0.888 0.814 0.848 0.819 0.849 3.9 1,2-Dibromoethane 0.219 0.220 0.208 0.214 0.214 0.215 2.3 1,2-Dibromo-3-chloropropane 0.045 0.044 0.044 0.048 0.047 0.046 4.2 Methyl tert-butyl ether 5.156 5.006 4.759 4.869 4.930 4.945 3.0 Methyl Acetate 1.629 1.373 1.230 1.244 1.222 1.340 12.9 Cyclohexane 0.768 0.769 0.710 0.734 0.718 0.740 3.2 Isopropylbenzene 1.917 1.935 1.775 1.864 1.790 1.856 3.9 1,2,4-Trichlorobenzene * 0.560 0.602 0.563 0.569 0.538 0.566 4.3 trans-1,2-Dichloroethene 2.447 2.468 2.312 2.363 2.343 2.387 2.8 cis-1,2-dichloroethene 2.471 2.480 2.354 2.378 2.393 2.415 2.4 Toluene-d8		=2A307: 0=1D307:			0 =1B30' 00=1E30'			
1,4-Dichlorobenzene * 0.960 0.969 0.887 0.915 0.886 0.923 4.3 1,2-Dichlorobenzene * 0.876 0.888 0.814 0.848 0.819 0.849 3.9 1,2-Dibromoethane 0.219 0.220 0.208 0.214 0.214 0.215 2.3 1,2-Dibromo-3-chloropropane 0.045 0.044 0.044 0.048 0.047 0.046 4.2 Methyl tert-butyl ether 5.156 5.006 4.759 4.869 4.93 4.945 3.0 Methyl Acetate 1.629 1.373 1.230 1.244 1.222 1.340 12.9 Cyclohexane 0.768 0.769 0.710 0.734 0.718 0.740 3.7 Methyl Cyclohexane 0.744 0.731 0.689 0.720 0.697 0.716 3.2 Isopropylbenzene 1.917 1.935 1.775 1.864 1.790 1.856 3.9 1,2,4-Trichlorobenzene 0.560 0.602 0.563 0.569 0.538 0.566 4.3 cis-1,2-d	COMPOUND	RRF10	RRF20	ı				RSD
1,2-Dichlorobenzene * 0.876 0.888 0.814 0.848 0.819 0.849 3.9 1,2-Dibromoethane 0.219 0.220 0.208 0.214 0.214 0.215 2.3 1,2-Dibromo-3-chloropropane 0.045 0.044 0.044 0.048 0.047 0.046 4.2 Methyl tert-butyl ether 5.156 5.006 4.759 4.869 4.930 4.945 3.0 Methyl Acetate 1.629 1.373 1.230 1.244 1.222 1.340 12.9 Cyclohexane 0.768 0.769 0.710 0.734 0.718 0.740 3.2 Isopropylbenzene 1.917 1.935 1.775 1.864 1.790 1.856 3.9 1,2,4-Trichlorobenzene * 0.560 0.602 0.563 0.569 0.538 0.566 4.1 trans-1,2-Dichloroethene 2.447 2.468 2.312 2.363 2.343 2.387 2.8 cis-1,2-dichloroethene 2.471 2.480 2.354 2.378 2.393 2.415 2.4 Toluene-d8		1	1					4.3
1,2-Dibromo-3-chloropropane 0.045 0.044 0.044 0.048 0.047 0.046 4.2 Methyl tert-butyl ether 5.156 5.006 4.759 4.869 4.930 4.945 3.0 Methyl Acetate 1.629 1.373 1.230 1.244 1.222 1.340 12.9 Cyclohexane 0.768 0.769 0.710 0.734 0.718 0.740 3.7 Methyl Cyclohexane 0.744 0.731 0.689 0.720 0.697 0.716 3.2 Isopropylbenzene 1.917 1.935 1.775 1.864 1.790 1.856 3.9 1,2,4-Trichlorobenzene * 0.560 0.602 0.563 0.569 0.538 0.566 4.1 trans-1,2-Dichloroethene 2.447 2.468 2.312 2.363 2.343 2.387 2.8 cis-1,2-dichloroethene 2.471 2.480 2.354 2.378 2.393 2.415 2.4 Toluene-d8 1.344 1.400 1.340 1.362 1.346 1.358 1.8 Bromofluorobenzene	1.2-Dichlorobenzene	* 0.876	0.888					
1,2-Dibromo-3-chloropropane 0.045 0.044 0.044 0.048 0.047 0.046 4.2 Methyl tert-butyl ether 5.156 5.006 4.759 4.869 4.930 4.945 3.0 Methyl Acetate 1.629 1.373 1.230 1.244 1.222 1.340 12.9 Cyclohexane 0.768 0.769 0.710 0.734 0.718 0.740 3.3 Methyl Cyclohexane 0.744 0.731 0.689 0.720 0.697 0.716 3.2 Isopropylbenzene 1.917 1.935 1.775 1.864 1.790 1.856 3.9 1,2,4-Trichlorobenzene * 0.560 0.602 0.563 0.569 0.538 0.566 4.3 trans-1,2-Dichloroethene 2.447 2.468 2.312 2.363 2.343 2.387 2.8 cis-1,2-dichloroethene 2.471 2.480 2.354 2.378 2.393 2.415 2.4 Toluene-d8 1.344 1.400 1.340 1.362 1.346 1.358 1.8 Bromofluorobenzene	1.2-Dibromoethane	0.219	0.220					
Methyl tert-butyl ether 5.156 5.006 4.759 4.869 4.935 4.945 3.0 Methyl Acetate 1.629 1.373 1.230 1.244 1.222 1.340 12.9 Cyclohexane 0.768 0.769 0.710 0.734 0.718 0.740 3.7 Methyl Cyclohexane 0.744 0.731 0.689 0.720 0.697 0.716 3.2 Isopropylbenzene 1.917 1.935 1.775 1.864 1.790 1.856 3.9 1,2,4-Trichlorobenzene * 0.560 0.602 0.563 0.569 0.538 0.566 4.3 trans-1,2-Dichloroethene 2.447 2.468 2.312 2.363 2.343 2.387 2.8 cis-1,2-dichloroethene 2.471 2.480 2.354 2.378 2.393 2.415 2.4 Toluene-d8 1.344 1.400 1.340 1.362 1.346 1.358 1.8 Bromofluorobenzene * 0.508 0.523 0.504 0.502 0.495 0.506 2.0	1.2-Dibromo-3-chloropropane	0.045	0.044					
Cyclohexane 0.768 0.769 0.710 0.734 0.718 0.740 3.7 Methyl Cyclohexane 0.744 0.731 0.689 0.720 0.697 0.716 3.2 Isopropylbenzene 1.917 1.935 1.775 1.864 1.790 1.856 3.9 1,2,4-Trichlorobenzene * 0.560 0.602 0.563 0.569 0.538 0.566 4.3 trans-1,2-Dichloroethene 2.447 2.468 2.312 2.363 2.343 2.387 2.8 cis-1,2-dichloroethene 2.471 2.480 2.354 2.378 2.393 2.415 2.4 Toluene-d8 1.344 1.400 1.340 1.362 1.346 1.358 1.8 Bromofluorobenzene * 0.508 0.523 0.504 0.502 0.495 0.506 2.0	Methyl tert-butyl ether	5.156	5.006					7 3.4
Cyclohexane 0.768 0.769 0.710 0.734 0.718 0.740 3.7 Methyl Cyclohexane 0.744 0.731 0.689 0.720 0.697 0.716 3.2 Isopropylbenzene 1.917 1.935 1.775 1.864 1.790 1.856 3.9 1,2,4-Trichlorobenzene * 0.560 0.602 0.563 0.569 0.538 0.566 4.3 trans-1,2-Dichloroethene 2.447 2.468 2.312 2.363 2.343 2.387 2.8 cis-1,2-dichloroethene 2.471 2.480 2.354 2.378 2.393 2.415 2.4 Toluene-d8 1.344 1.400 1.340 1.362 1.346 1.358 1.8 Bromofluorobenzene * 0.508 0.523 0.504 0.502 0.495 0.506 2.0	Methyl Acetate	1.629	1.373		1.244	1.222		12 9
Methyl Cyclohexane 0.744 0.731 0.689 0.720 0.697 0.716 3.2 Isopropylbenzene 1.917 1.935 1.775 1.864 1.790 1.856 3.3 1,2,4-Trichlorobenzene * 0.560 0.602 0.563 0.569 0.538 0.566 4.1 trans-1,2-Dichloroethene 2.447 2.468 2.312 2.363 2.343 2.387 2.8 cis-1,2-dichloroethene 2.471 2.480 2.354 2.378 2.393 2.415 2.4 Toluene-d8 1.344 1.400 1.340 1.362 1.346 1.358 1.8 Bromofluorobenzene * 0.508 0.523 0.504 0.502 0.495 0.506 2.0	~ 7 1	0.768	0.769		0.734	0 718	0 740	3 7
Isopropylbenzene 1.917 1.935 1.775 1.864 1.790 1.856 3.9 1,2,4-Trichlorobenzene * 0.560 0.602 0.563 0.569 0.538 0.566 4.1 trans-1,2-Dichloroethene 2.447 2.468 2.312 2.363 2.343 2.387 2.8 cis-1,2-dichloroethene 2.471 2.480 2.354 2.378 2.393 2.415 2.4 Toluene-d8 1.344 1.400 1.340 1.362 1.346 1.358 1.8 Bromofluorobenzene * 0.508 0.523 0.504 0.502 0.495 0.506 2.0	Methyl Cyclohexane							
1,2,4-Trichlorobenzene * 0.560 0.602 0.563 0.569 0.538 0.566 4.1 trans-1,2-Dichloroethene 2.447 2.468 2.312 2.363 2.343 2.387 2.8 cis-1,2-dichloroethene 2.471 2.480 2.354 2.378 2.393 2.415 2.4 Toluene-d8 1.344 1.400 1.340 1.362 1.346 1.358 1.8 Bromofluorobenzene * 0.508 0.523 0.504 0.502 0.495 0.506 2.0	Isopropylbenzene							
trans-1,2-Dichloroethene 2.447 2.468 2.312 2.363 2.343 2.387 2.8 cis-1,2-dichloroethene 2.471 2.480 2.354 2.378 2.393 2.415 2.4 Toluene-d8 1.344 1.400 1.340 1.362 1.346 1.358 1.8 Bromofluorobenzene * 0.508 0.523 0.504 0.502 0.495 0.506 2.0	1.2.4-Trichlorobenzene	* 0.560	0.602		0.569			
cis-1,2-dichloroethene 2.471 2.480 2.354 2.378 2.393 2.415 2.4 Toluene-d8 1.344 1.400 1.340 1.362 1.346 1.358 1.8 Bromofluorobenzene * 0.508 0.523 0.504 0.502 0.495 0.506 2.0	trans-1-2-Dichloroethene							
Toluene-d8	cis-1,2-dichloroethene			2.354		2 393		2.4
Toluene-d8								
Bromofluorobenzene * 0.508 0.523 0.504 0.502 0.495 0.506 2.0			1.400					
			0.523					2.0*
			1.755	1.698				2.2
			·					

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.: SAS No.:

SDG No.: METHODS

Instrument ID: HP3

Calibration Date: 08/01/06 Time: 0313

Lab File ID: CC30801

Init. Calib. Date(s): 07/31/06 07/31/06

EPA Sample No. (VSTD050##): vstd50

Init. Calib. Times: 1141

1400

Heated Purge: (Y/N) Y

GC Column: DB624

ID: 0.53 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride	3.483 0.833 3.174 1.175 2.754	3.436 0.882 3.191 1.313 2.737	0.100 0.100		25.0 25.0
Acetone Carbon Disulfide 1,1-Dichloroethene	0.524 7.621 2.295	0.460 7.864 2.338	0.100	-12.2 3.2	25.0
1,1-Dichloroethane 1,2-Dichloroethene (total) Chloroform	4.148 2.401 3.577	4.203 2.410 3.559	0.200	1.3 0.4 -0.5	25.0 25.0
1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride	2.361 0.487 0.459 0.380	2.316 0.396 0.455 0.384	0.100 0.100 0.100	-18.7 -0.9	25.0 25.0 25.0
Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene	0.347 0.342 0.482	0.339 0.330 0.473	0.200	-2.3 -3.5	25.0 25.0
Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane	0.377 0.229 0.232	0.370 0.224 0.220	0.300 0.100 0.100	-1.8 -2.2	25.0 25.0 25.0
Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-pentanone	1.461 0.387 0.133 0.256	1.422 0.375 0.133 0.240	0.500 0.100 0.100	-3.1	25.0 25.0 25.0
711 other remarks		0.210			

All other compounds must meet a minimum RRF of 0.010.

FORM VII VOA-1

7B VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT

Case No.:

SAS No.:

SDG No.: METHODS

Instrument ID: HP3

Calibration Date: 08/01/06 Time: 0313

Lab File ID: CC30801

Init. Calib. Date(s): 07/31/06 07/31/06

EPA Sample No. (VSTD050##): vstd50 Init. Calib. Times: 1141 1400

Heated Purge: (Y/N) Y

GC Column: DB624 ID: 0.53 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
			=======	=====	====
2-Hexanone	0.140	0.120		-14.3	
Tetrachloroethene	0.345	0.347	0.200		25.0
1,1,2,2-Tetrachloroethane	0.336	0.321	0.300		25.0
Toluene	1.821	1.806	0.400		25.0
Chlorobenzene	1.110	1.093	0.500		25.0
Ethylbenzene	0.641	0.640	0.100		25.0
Styrene	1.253	1.249	0.300	-0.3	25.0
Xylenes (total)	0.779	0.780	0.300		25.0
Dichlorodifluoromethane	2.335	2.234		-4.3	
Trichlorofluoromethane	3.161	3.330		5.3	
1,1,2-Trichloro-1,2,2-trifluoroethane	2.011	2.102		4.5	
1,3-Dichlorobenzene	0.934	0.928	0.600	-0.6	25.0
1,4-Dichlorobenzene	0.923	0.910	0.500	-1.4	25.0
1,2-Dichlorobenzene	0.849	0.832	0.400	-2.0	25.0
1,2-Dibromoethane	0.215	0.200		~7.0	
1,2-Dibromo-3-chloropropane	0.046	0.043)	-6.5	
Methyl tert-butyl ether	4.945	4.770		-3.5	
Methyl Acetate	1.340	1.252		-6.6	
Cyclohexane	0.740	0.734		-0.8	
Methyl Cyclohexane	0.716	0.715		-0.1	
Isopropylbenzene	1.856	1.872		0.9	
1,2,4-Trichlorobenzene	0.566	0.569	0.200	0.5	25.0
trans-1,2-Dichloroethene	2.387	2.394		0.3	
cis-1,2-dichloroethene	2.415	2.426		0.4	

Toluene-d8	1.358	1.376		1.3	
Bromofluorobenzene	0.506	0.503	0.200	-0.6	25.0
1,2-Dichloroethane-d4	1.722	1.713		-0.5	
All other compounds must meet a minim	- 555 -				

All other compounds must meet a minimum RRF of 0.010.

FORM VII VOA-2

OCLP OLM04.2 SURROGATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: The RETEC Group, Inc.

Lab Code: STLPIT

SDG No:

Lot #: C6G290164

Extraction: XXA4F0O94

CLIENT ID.	SRG01	SRG02	SRG03	SRG04	SRG05	SRG06	SRG07	SRG08	TOT OUT
		CCTERRS	EEE===			=====	****	=======	2006622
01 GRSB2 (13-14)	53	60	55	53	47	35	50	48	00
02 GRSB20 (13-14)	49	54	48	48	45	33	46	41	00
03 GRSB2 (22-24)		66	58	58	57	50	57	51	_00
04 GRSB1 (13-14)	50	64	59	49	41	43	46	47	00
05 GRSB1 (22-24)	45	51	49	46	42	42	44	39	00
06 METHOD BLK. JAPIMIAA	1 48	52	51	49	47	50	47	44	00
07 LCS JAPIMIAC	53	58	57	56	54	_58	53	49	00
08 GRSB1 (22-24) D	49	55	50	50	49	52	49	43	00
09 GRSB1 (22-24) S	46	52	48	49	48	52	47	41	00

SURROGA'	TES	QC LIMITS
SRG01	= Nitrobenzene-d5	(23-120)
SRG02	= 2-Fluorobiphenyl	(30-115)
SRG03	= Terphenyl-d14	(18-137)
SRG04	= Phenol-d5	(24-113)
SRG05	= 2-Fluorophenol	(25-121)
SRG06	= 2,4,6-Tribromophenol	(19-122)
SRG07	= 2-Chlorophenol-d4	(20-130)
SRG08	= 1,2-Dichlorobenzene-d4	(20-130)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

FORM II

OCLP OLM04.2 SURROGATE RECOVERY

Lab Name: Severn Trent Laboratories, Inc. Client: The RETEC Group, Inc.

Lab Code: STLPIT

SDG No:

Lot #: C6G290164

Extraction: XXI510094

ī	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	SRG05	SRG06	SRG07	SRG08	TOT OUT
1		******	*****			*****	*****		======	
01	TW6	59	56	25 *	58	58	73	59	49	01
02	TW60	51	52	23 *	49	49	71	50	42	01
03	TW3	53	50	30 *	51	49	62	51	44	01
04	METHOD BLK. JADIVIAA	49	51	_53	51	49	47	50	46	.00
05	LCS JAD1V1AC	50	52	53	51	48	50	50	46	00
06	TW3 D	60	_58	40	58	_54	66	59	50	00
07	TW3 S	62	61	41	60	57	68	61	51	00

SURROGA	TES	QC LIMITS
SRG01	= Nitrobenzene-d5	(35-114)
SRG02	= 2-Fluorobiphenyl	(43-116)
SRG03	= Terphenyl-d14	(33-141)
SRG04	= Phenol-d5	(10-110)
SRG05	= 2-Fluorophenol	(21-110)
SRG06	= 2,4,6-Tribromophenol	(10-123)
SRG07	<pre>= 2-Chlorophenol-d4</pre>	(33-110)
SRG08	= 1,2-Dichlorobenzene-d4	(16-110)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

FORM II

7C SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.: SAS No.:

SDG No.: C6G290164

Instrument ID: 731

Calibration Date: 08/11/06 Time: 0728

Lab File ID: V08110CC

Init. Calib. Date(s): 08/02/06 08/02/06

EPA Sample No.(SSTD050##): SSTD050 Init. Calib. Times: 0421 0639

GC Column:

ID: 0.25 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
Phenol	1.419	1.565	0.800	10.3	25.0
Bis(2-chloroethyl)ether	1.094	1.054	0.700		25.0
2-Chlorophenol	1.235	1.277	0.800	3.4	25.0
2-Methylphenol	1.172	1.228	0.700		25.0
2,2'-oxybis(1-Chloropropane)	1.457	1.341		-8.0	
N-Nitroso-di-n-propylamine	0.701	0.836	0.500		25.0
4-Methylphenol	1.016	1.192	0.600		25.0
Hexachloroethane	0.633	0.634	0.300		25.0
Nitrobenzene	0.318	0.349	0.200		25.0
Isophorone	0.576	0.594	0.400		25.0
2-Nitrophenol	0.184	0.180	0.100	-2.2	25.0
2,4-Dimethylphenol	0.300	0.307	0.200	2.3	25.0
Bis (2-chloroethoxy) methane	0.354	0.339	0.300	-4.2	25.0
2,4-Dichlorophenol	0.303	0.305	0.200	0.7	25.0
Naphthalene	0.953	0.975	0.700		25.0
4-Chloroaniline	0.362	0.389		7.4	
Hexachlorobutadiene	0.193	0.214		10.9	l
4-Chloro-3-Methylphenol	0.301	0.300	0.200	-0.3	25.0
2-Methylnaphthalene	0.706	0.680	0.400	-3.7	25.0
Hexachlorocyclopentadiene	0.341	0.322		-5.6	
2,4,6-Trichlorophenol	0.343	0.348	0.200		25.0
2,4,5-Trichlorophenol	0.366	0.382	0.200		25.0
2-Chloronaphthalene	0.973	1.010	0.800	3.8	25.0
2-Nitroaniline	0.267	0.285		6.7	
Dimethylphthalate	1.090	1.178		8.1	
Acenaphthylene	1.622	1.594	0.900		25.0
2,6-Dinitrotoluene	0.253	0.266	0.200	5.1	25.0
3-Nitroaniline	0.296	0.279		-5.7	
Acenaphthene	1.010	1.001	0.900		25.0
2,4-Dinitrophenol	0.139	0.154		10.8	
4-Nitrophenol	0.150	0.198]	32.0	
Dibenzofuran	1.469	1.529	0.800		25.0
2,4-Dinitrotoluene	0.315	0.375	0.200		25.0
Diethylphthalate	1.075	1.208		12.4	
4-Chlorophenyl-phenylether	0.533	0.616	0.400		25.0
Fluorene	1.136	1.253	0.900	10.3	25.0
					ļ

All other compounds must meet a minimum RRF of 0.010.

FORM VII SV-1

7D SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT

Case No.:

SAS No.:

SDG No.: C6G290164

Instrument ID: 731

Calibration Date: 08/11/06 Time: 0728

Lab File ID: V08110CC

Init. Calib. Date(s): 08/02/06 08/02/06

EPA Sample No. (SSTD050##): SSTD050

Init. Calib. Times: 0421

0639

GC Column:

ID: 0.25 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
	0.296	0.289	======	-2.4	=====
4,6-Dinitro-2-methylphenol	0.236	0.122		2.5	
N-Nitrosodiphenylamine(1)	0.559	0.510		-8.8	
4-Bromophenyl-phenylether	0.339	0.310	0.100		25.0
Hexachlorobenzene	0.244	0.217	0.100		25.0
	0.244				
Pentachlorophenol		0.141	0.050		25.0
Phenanthrene Anthracene	1.179	1.082	0.700 0.700	-8.4	25.0 25.0
		1.090	0.700		
Carbazole	1.062	1.026		-3.4	
Di-n-Butylphthalate	1.235	1.262	0.600	2.2	
Fluoranthene	1.319	1.324	0.600		25.0
Pyrene	1.245	1.170	0.600		25.0
Butylbenzylphthalate	0.553	0.510		-7.8	ŀ
3,3'-Dichlorobenzidine	0.483	0.527		9.1	l
Benzo (a) Anthracene	1.181	1.114	0.800		25.0
Chrysene	1.090	1.039	0.700		25.0
bis(2-ethylhexyl)Phthalate	0.729	0.698		~4.2	1
Di-n-octylphthalate	1.254	1.252		-0.2	
Benzo(b)fluoranthene	1.146	1.126	0.700	-1.7	25.0
Benzo(k) fluoranthene	1.134	1.098	0.700	-3.2	25.0
Benzo(a)pyrene	1.065	0.999	0.700	-6.2	25.0
Indeno (1,2,3-cd) pyrene	1.303	1.159	0.500	-11.0	25.0
Dibenz(a,h)anthracene	1.081	0.976	0.400	-9.7	25.0
Benzo(g,h,i)perylene	1.126	0.992	0.500	-11.9	25.0
Benzaldehyde	0.761	0.842		10.6	
Acetophenone	1.679	1.728		2.9	
Caprolactam	0.116	0.092		-20.7	!
1,1'-Biphenyl	1.353	1.240		-8.4	
Atrazine	0.180	0.206		14.4	
	======	=======		=====	=====
Nitrobenzene-d5	0.322	0.346	0.200	7.4	25.0
2-Fluorobiphenyl	1.084	1.126	0.700		25.0
Terphenyl-d14	0.838	0.853	0.500		25.0
Phenol-d5	1.338	1.395	0.800		25.0
2-Fluorophenol	0.945	1.062	0.600	12.4	
2,4,6-Tribromophenol	0.110	0.112	0.000	1.8	25.0
2-Chlorophenol-d4	1.281	1.313	0.800		25.0
1,2-Dichlorobenzene-d4	0.851	0.923	0.400	2.5 g =	25.0
TIM PICHTANGINGING WI	0.031	0.923	0.400	0.5	25.0

(1) Cannot be separated from Diphenylamine All other compounds must meet a minimum RRF of 0.010. FORM VII SV-2

7C SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.: SAS No.: SDG No.: C6G290164

Instrument ID: 731

Calibration Date: 08/10/06 Time: 1050

Lab File ID: V08100CC

Init. Calib. Date(s): 08/02/06 08/02/06

EPA Sample No.(SSTD050##): SSTD050 Init. Calib. Times: 0421 0639

GC Column:

ID: 0.25 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
=======================================	# =====	=======		======	====
Phenol	1.419	1.580	0.800		25.0
Bis(2-chloroethyl)ether	1.094	1.076	0.700		25.0
2-Chlorophenol	1.235	1.277	0.800		25.0
2-Methylphenol	1.172	1.181	0.700		25.0
2,2'-oxybis(1-Chloropropane)	1.457	1.389		-4.7	
N-Nitroso-di-n-propylamine	0.701	0.844	0.500		25.0
4-Methylphenol	1.016	1.246	0.600		25.0
Hexachloroethane	0.633	0.628	0.300		25.0
Nitrobenzene	0.318	0.353	0.200		25.0
Isophorone	0.576	0.611	0.400	6.1	25.0
2-Nitrophenol	0.184	0.186	0.100		25.0
2,4-Dimethylphenol	0.300	0.312	0.200		25.0
Bis(2-chloroethoxy)methane	0.354				25.0
2,4-Dichlorophenol	0.303	0.317			25.0
Naphthalene	0.953	0.983	0.700	3.1	25.0
4-Chloroaniline	0.362	0.407		12.4	
Hexachlorobutadiene	0.193	0.210		8.8	
4-Chloro-3-Methylphenol	0.301	0.311	0.200	3.3	25.0
2-Methylnaphthalene	0.706	0.698	0.400	-1.1	25.0
Hexachlorocyclopentadiene	0.341	0.343		0.6	
2,4,6-Trichlorophenol	0.343	0.357	0.200	4.1	25.0
2,4,5-Trichlorophenol	0.366	0.399	0.200	9.0	25.0
2-Chloronaphthalene	0.973	1.027	0.800		25.0
2-Nitroaniline	0.267	0.295		10.5	
Dimethylphthalate	1.090	1.214		11.4	
Acenaphthylene	1.622	1.620	0.900	-0.1	25.0
2,6-Dinitrotoluene	0.253	0.278	0.200		25.0
3-Nitroaniline	0.296	0.297		0.3	
Acenaphthene	1.010	1.029	0.900		25.0
2,4-Dinitrophenol	0.139	0.170		22.3	
4-Nitrophenol	0.150	0.209		39.3	
Dibenzofuran	1.469	1.579	0.800	7.5	25.0
2,4-Dinitrotoluene	0.315	0.394	0.200		25.0
Diethylphthalate	1.075	1.246		15.9	
4-Chlorophenyl-phenylether	0.533	0.633	0.400		25.0
Fluorene	1.136	1.296	0.900		25.0
					/-

All other compounds must meet a minimum RRF of 0.010.

FORM VII SV-1

7D SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT

Case No.:

SAS No.:

SDG No.: C6G290164

Instrument ID: 731

Calibration Date: 08/10/06 Time: 1050

Lab File ID: V08100CC

Init. Calib. Date(s): 08/02/06 08/02/06

EPA Sample No. (SSTD050##): SSTD050

Init. Calib. Times:

0421 0639

GC Column:

ID: 0.25 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine(1) 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Carbazole Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate 3,3'-Dichlorobenzidine	0.296 0.119 0.559 0.220 0.244 0.142 1.179 1.136 1.062 1.235 1.319 1.245 0.553 0.483	0.309 0.132 0.522 0.223 0.252 0.152 1.104 1.104 1.283 1.350 1.285 0.535 0.544	0.100 0.100 0.050 0.700 0.700	3.3 7.0 -6.4 -2.8 -0.6 3.9 2.4 3.2 -3.2 12.6	25.0 25.0 25.0 25.0 25.0 25.0
Benzo (a) Anthracene Chrysene bis (2-ethylhexyl) Phthalate Di-n-octylphthalate Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenz (a,h) anthracene Benzo (g,h,i) perylene Benzaldehyde Acetophenone Caprolactam 1,1'-Biphenyl Atrazine	1.181 1.090 0.729 1.254 1.146 1.134 1.065 1.303 1.081 1.126 0.761 1.679 0.116 1.353 0.180	1.141 1.042 0.725 1.232 1.180 1.062 1.023 1.230 1.036 1.045 0.778 1.908 0.106 1.349 0.224	0.800 0.700 0.700 0.700 0.500 0.400 0.500	-4.4 -0.5 -1.8 3.0 -6.3 -3.9 -5.6 -4.2	25.0 25.0 25.0 25.0 25.0 25.0 25.0
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4	0.322 1.084 0.838 1.338 0.945 0.110 1.281 0.851	0.349 1.143 0.919 1.425 1.058 0.119 1.336 0.948	0.200 0.700 0.500 0.800 0.600	8.4 5.4 9.7 6.5 12.0 8.2 4.3	25.0 25.0 25.0 25.0 25.0 25.0 25.0

(1) Cannot be separated from Diphenylamine
All other compounds must meet a minimum RRF of 0.010.
FORM VII SV-2

Metals Data Reporting Form

Continuing Calibration Blank Result

instrument:	ICPST	Units:	ug/L

Chart Number: N60811B.ARC

Standard Source: _____ Standard ID: _____

	T		CCB1		CCB2		CCB3		CCB5		CCB6	
			8/11/200	6	8/11/200	6	8/11/200)6	8/11/200)6	8/11/200	
			2:21 PM		3:28 PM		4:34 PM		5:41 PM		6:47 PM	
[WL/	Report	_	_		_		_		_		
Element	Mass	Limit	Found	0	Found	<u> </u>	Found	<u> </u>	Found	<u> </u>	Found	0
Aluminum	308.215	200	6.9	U	6.9	U	6.9	U	-7.2	В	-10.0	В
Antimony	206.838	60	2.3	U	2.3	U	2.3	U	2.3	U	2.3	U
Arsenic	189.042	10	1.9	U	1.9	U	1.9	U	2.1	В	1.9	U
Barium	493.409	200	0.1	U	0.1	Ü	0.1	U	0.1	U	0.1	U
Beryllium	313.042	5	0.4	В	0.2	U	-0.2	В	0.2	U	0.2	U
Cadmium	226.502	5	0.3	U	0.3	U	0.3	U	0.4	В	0.3	U
Calcium	317.933	5000	7.0	B	4.1	U	4.1	U	-8.2	В	162.0	В
Chromium	267.716	10	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Cobalt	228.616	50	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Copper	324.753	25	0.9	U	0.9	U	0.9	U	0.9	U	0.9	U
Iron	271.441	100	17.6	B	17.5	В	13.4	U	26.1	В	13.4	U
Lead	220.353	3	1.6	U	1.6	U	1.6	U	. 1.6	U	1.6	U
Magnesium	279.078	5000	8.7	B	5.2	U	7.0	В	5.2	U	6.6	В
Manganese	257.61	15	0.2	U	0.2	U	0.2	U	0.2	U	0.2	В
Nickel	231.604	40	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Potassium	766.491	5000	119.0	В	122.0	В	119.0	В	118.0	В	120.0	В
Selenium	220.353	5	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Silver	328.068	10	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Sodium	330.232	5000	99.8	U	99.8	U	99.8	U	99.8	U	99.8	U
Thallium	190.864	10	2.8	U	3.3	В	2.8	U	2.8	U	2.8	U
Vanadium	292.402	50	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Zinc	206.2	20	1.6	В	2.2	В	1.2	В				

^{5.04.5}

U Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Initial Calibration Blank Results

Instrument:	<u>ICPST</u>	Units: ug/L	
-------------	--------------	-------------	--

Chart Number: N60811B.ARC

Standard Source: _____ Standard ID: ____

			ICB1 8/11/200 1:54 PM					-				
Element	WL/ Mass	Report Limit	Found	0	Found	0	Found	0	Found	0	Found	0
Aluminum	308.215	200	6.9	U								
Antimony	206.838	60	2.3	U	ľ						i	
Arsenic	189.042	10	1.9	U]							
Barium	493.409	200	0.1	U								
Beryllium	313.042	5	0.2	U			İ					
Cadmium	226.502	5	0.3	U								
Calcium	317.933	5000	4.1	U								
Chromium	267.716	10	0.6	U								
Cobalt	228.616	50	0.6	U								
Copper	324.753	25	0.9	U								
Iron	271.441	100	14.2	В								
Lead	220.353	3	-1.7	В								
Magnesium	279.078	5000	5.6	В								
Manganese	257.61	15	0.2	U								
Nickel	231.604	40	0.7	U			}					
Potassium	766.491	5000	124.0	В								
Selenium	220.353		2.0	U								
Silver	328.068		0.5	U								
Sodium	330.232		99.8	U								
Thallium	190.864		2.8	Ū								
Vanadium	292.402		0.6	U								
Zinc	206.2	20	2.4	В								

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: JAGOGB

Matrix: Soil Units: mg/kg Prep Date: 8/2/2006 Prep Batch: 6214386

Weight: 1.00 Volume: 200 Percent Moisture: NA

	WL/		Report				T	Anal	Anal
Element	Mass	IDL	Limit	Conc	0	DF	Instr	Date	Time
Aluminum	308.215	1.4	40.0	3.3	В	1	ICPST	8/11/2006	14:27
Antimony	206.838	0.46	12.0	0.46	U	1	ICPST	8/11/2006	14:27
Arsenic	189.042	0.38	2.0	0.38	U	1	ICPST	8/11/2006	14:27
Barium	493.409	0.028	40.0	0.028	บ	1	ICPST	8/11/2006	14:27
Beryllium	313.042	0.034	1.0	-0.038	В	1	ICPST	8/11/2006	14:27
Cadmium	226.502	0.062	1.0	0.062	U	1	ICPST	8/11/2006	14:27
Calcium	317.933	0.82	1000	11.6	В	1	ICPST	8/11/2006	14:27
Chromium	267.716	0.12	2.0	0.12	U	1	ICPST	8/11/2006	14:27
Cobalt	228.616	0.13	10.0	0.13	U	1	ICPST	8/11/2006	14:27
Copper	324.753	0.18	5.0	0.18	U	1	ICPST	8/11/2006	14:27
Iron	271.441	2.7	20.0	2.8	В	1	ICPST	8/11/2006	14:27
Lead	220.353	0.32	0.60	0.32	U	1	ICPST	8/11/2006	14:27
Magnesium	279.078	1.0	1000	1.6	В	1	ICPST	8/11/2006	14:27
Manganese	257.61	0.030	3.0	0.030	U	1	ICPST	8/11/2006	14:27
Nickel	231.604	0.14	8.0	0.14	U	I	ICPST	8/11/2006	14:27
Potassium	766.491	2.1	1000	25.8	В	1	ICPST	8/11/2006	14:27
Selenium	220.353	0.40	1.0	0.40	U	1	ICPST	8/11/2006	14:27
Silver	328.068	0.090	2.0	0.090	U	1	ICPST	8/11/2006	14:27
Sodium	330.232	20.0	1000	20.0	Ū	1	ICPST	8/11/2006	14:27
Thallium	190.864	0.56	2.0	0.56	U	1	ICPST	8/11/2006	14:27
Vanadium	292.402	0.11	10.0	0.11	U	1	ICPST	8/11/2006	14:27
Zinc	206.2	0.20	4.0	2.1	В	1	ICPST	8/11/2006	14:27

Comments: Lot #: C6G290164

U Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: JAG03B

Matrix: Water Units: ug/L Prep Date: 8/2/2006 Prep Batch: 6214392

Weight: NA Volume: 50 Percent Moisture: NA

	WL/		Report					Anal	Anal
Element	Mass	IDL	Limit	Conc	0_	DF	Instr	Date	Time
Aluminum	308.215	6.9	200	6.9	U	1	ICPST	8/11/2006	15:39
Antimony	206.838	2.3	60.0	2.3	U	1	ICPST	8/11/2006	15:39
Arsenic	189.042	1.9	10.0	1.9	U	1	ICPST	8/11/2006	15:39
Barium	493.409	0.14	200	0.20	В	1	ICPST	8/11/2006	15:39
Beryllium	313.042	0.17	5.0	0.17	U	1	ICPST	8/11/2006	15:39
Cadmium	226.502	0.31	5.0	0.31	U	1	ICPST	8/11/2006	15:39
Calcium	317.933	4.1	5000	4.1	υ	1	ICPST	8/11/2006	15:39
Chromium	267.716	0.60	10.0	0.60	U	1	ICPST	8/11/2006	15:39
Cobalt	228.616	0.64	50.0	0.64	U	1	ICPST	8/11/2006	15:39
Copper	324.753	0.91	25.0	0.91	U	1	ICPST	8/11/2006	15:39
Iron	271.441	13.4	100	16.7	В	1	ICPST	8/11/2006	15:39
Lead	220.353	1.6	3.0	1.6	U	1	ICPST	8/11/2006	15:39
Magnesium	279.078	5.2	5000	5.2	ប	1	ICPST	8/11/2006	15:39
Manganese	257.61	0.15	15.0	0.15	U	1	ICPST	8/11/2006	15:39
Nickel	231.604	0.71	40.0	0.71	U	1	ICPST	8/11/2006	15:39
Potassium	766.491	10.5	5000	110	В	1	ICPST	8/11/2006	15:39
Selenium	220.353	2.0	5.0	2.0	U	1	ICPST	8/11/2006	15:39
Silver	328.068	0.45	10.0	0.45	U	1	ICPST	8/11/2006	15:39
Sodium	330.232	99.8	5000	99.8	U	1	ICPST	8/11/2006	15:39
Thallium	190.864	2.8	10.0	2.8	Ū	1	ICPST	8/11/2006	15:39
Vanadium	292.402	0.56	50.0	0.56	Ū	1	ICPST	8/11/2006	15:39
Zinc	206.2	1.0	20.0	3.3	В	1	ICPST	8/11/2006	15:39

Comments: Lot #: C6G290164

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: JA9TGB

Matrix: Soil Units: mg/kg Prep Date: 8/14/2006 Prep Batch: 6226062

Weight: .2 Volume: 100 Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.021	0.10	0.026	В	1	CVAA	8/14/2006	10:03

Comments: Lot #: C6G290164

Metals Data Reporting Form

	Pre	paratio	on Bl	ank	Results
--	-----	---------	-------	-----	---------

Lab Sample ID: JCA8KB

Matrix: Water Units: ug/L

Prep Date: 8/15/2006

Prep Batch: 6227050

Weight: NA

Volume:

100

Percent Moisture:

NA

Element	WL/ Mass	IDL	Report Limit	Conc	O	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.042	0.20	0.042	U	1	CVAA	8/15/2006	8:59

Comments: Lot #; C6G290164

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

Form 3 Equivalent

Metals Data Reporting Form

Matrix Spike Sample Results

Spike Sample ID: JAAF1S

Original Sample ID: JAAF1 Client ID: GRSB1(22-24) DUPS

Matrix: Soil Units: mg/kg Prep Date: 8/2/2006 Prep Batch: 6214386

Weight: 1.00 Volume: 200 Percent Moisture: 24.567

	T									Τ	os	OS	MS	MS
1771 and 1	WL/	os		MS	_	Spike	%	os	MS		Anal	Anal	Anal	Anal
Element	Mass	Conc	9	Conc	9	Level	Rec	DF	DF	Instr	Date	Time	Date	Time
Aluminum	308.2	7820		7100	NC	530.27		1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Antimony	206.8	0.61	U	19.1	N	26.514	71.9	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Arsenic	189.0	2.8		13.0		10.605	97.0	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Barium	493.4	36.8	В	538		530.27	94.5	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Beryllium	313.0	0.46	В	13.1		13.257	95.0	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Cadmium	226.5	0.082	U	12.3		13.257	92.8	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Calcium	317.9	453	В	13300		13257	97.3	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Chromium	267.7	18.8		95.1	N	53.027	143.9	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Cobalt	228.6	8.1	В	132		132.57	93.5	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Copper	324.8	20.0		85.5		66.284	98.8	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Iron	271.4	20000		20500	NC	265.14		1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Lead	220.4	4.8		11.2		5.3027	121.6	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Magnesium	279.1	2960		15400	i	13257	93.8	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Manganese	257.6	180		311		132.57	99.3	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Nickel	231.6	23.3		154		132.57	98.7	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Potassium	766.5	531	В	13500		13257	97.5	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Selenium	220.4	0.79	В	3.1		2.6514	86.4	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Silver	328.1	0.12	U	12.8		13.257	96.7	1	1	ICPST	8/11/2006		8/11/2006	14:55
Sodium	330.2	137	В	13100	ļ	13257	97.7	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Thallium	190.9	0.74	U	12.4	İ	13.257	93.5	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Vanadium	292.4	9.6	В	133		132.57	93.4	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:55
Zinc	206.2	70.6		209		132.57	104.6	1	1	ICPST	8/11/2006		8/11/2006	14:55

Comments: Lot #: C6G290164 Sample #: 5Color:pre- brown, post- brown, Texture:pre- medium, post fine. Artfacts; stones.

5.04.5

U Result is less than the IDL

Form 5A Equivalent

B Result is between IDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

Duplicate analysis RPD was not within limits

Metals Data Reporting Form

Matrix Spike Sample Results

Spike Sample ID: JAAGES

Original Sample ID: JAAGE Client ID: TW3 DUPS

Matrix: Water Units: ug/L Prep Date: 8/2/2006 Prep Batch: 6214392

Weight: NA Volume: 50 Percent Moisture: NA

	,									<u> </u>	OS	os	MS	MS
	WL/	os		MS		Spike	%	os	MS		Anal	Anal	Anal	Anal
Element	Mass	Conc	0	Conc	0	Level	Rec	DF	DF	Instr	Date	Time	Date	Time
Aluminum	308.2	25500		24800	NC	2000		1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Antimony	206.8	2.3	U	76.6		100	76.6	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Arsenic	189.0	9.4	В	46.9		40	93.7	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Barium	493.4	282		2150		2000	93.4	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Beryllium	313.0	1.3	В	50.1		50	97.6	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Cadmium	226.5	0.31	U	46.4		50	92.9	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Calcium	317.9	14600		62600		50000	96.0	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Chromium	267.7	19.8		204		200	92.0	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Cobalt	228.6	12.4	В	477		500	92.9	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Copper	324.8	37.3		277		250	95.8	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Iron	271.4	27500		27300	NC	1000		1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Lead	220.4	20.2		39.9		20	98.5	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Magnesium	279.1	5880		54200		50000	96.6	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Manganese	257.6	1360		1780		500	85.6	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Nickel	231.6	29.4	В	488		500	91.7	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Potassium	766.5	6810		54300		50000	95.0	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Selenium	220.4	2.0	U	13.5	N	10	134.9	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Silver	328.1	0.45	U	48.2		50	96.5	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Sodium	330.2	39700		88200		50000	96.9	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Thallium	190.9	2.8	Ü	47.2		50	94.4	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Vanadium	292.4	28.1	В	491		500	92.7	1	1	ICPST	8/11/2006	16:01	8/11/2006	16:45
Zinc	206.2	133		596		500	92.5	1	1	ICPST	8/11/2006	16:01	8/13/2006	11:02

Comments: Lot #: C6G290164 Sample #: 9

5.04.5

Form 5A Equivalent

U Result is less than the IDL

B Result is between IDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

^{*} Duplicate analysis RPD was not within limits

Metals Data Reporting Form

Post Digest Spike Sample Results

Spike Sample ID: JAAF1A

JAAF1 Client ID: GRSB1(22-24) Original Sample ID:

Matrix: Soil Units: mg/kg **Prep Date:** 8/2/2006 **Prep Batch:** 6214386

Weight: 1.00 200 Volume: Percent Moisture:

Element	WL/ Mass	OS Conc	0	PDS Conc	0	Spike Level	% Rec	OS DF	PDS DF	Instr	OS Anal Date	OS Anal Time	PDS Anal Date	PDS Anal Time
Antimony	206.8	0.61	UN	30.6	N	31.816	96.1	1	1	ICPST	8/11/2006	14:38	8/11/2006	15:00
Chromium	267.7	18.8	N	55.9	N	37.119	100.0	1	1	ICPST	8/11/2006	14:38	8/13/2006	10:51

Comments:

5.04.5

U Result is less than the IDL

Form 5B Equivalent B Result is between IDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

Metals Data Reporting Form

P	ost	Digest	Spike	Sample	Results
•	OSt	DIECOL	Spire	Danipio	TODUTE

Spike Sample ID: JAAGEA

Original Sample ID: JAAGE Client ID: TW3 DUP

Matrix: Water Units: ug/L Prep Date: 8/17/2006 Prep Batch: 6214392

Weight: NA Volume: 50 Percent Moisture: NA

Element	WL/ Mass	OS Conc	0	PDS Conc	0	Spike Level	% Rec	OS DF	PDS DF	Instr	OS Anal Date	OS Anal Time	PDS Anal Date	PDS Anal Time
Selenium	220.4	2.0	บ	3.5	BN	3	117.0	1	1	ICPST	8/11/2006	16:01	8/17/2006	8:31

Comments: 5.04.5

U Result is less than the IDL

Form 5B Equivalent

B Result is between IDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

Metals Data Reporting Form

Sample Duplicate RPD Report

JAAF1X Duplicate Sample ID:

Original Sample ID: JAAF1 Client ID: GRSB1(22-24) DUPX

Matrix: Soil Units: mg/kg **Prep Date:** 8/2/2006 **Prep Batch:** 6214386

Weight: 1.00 Volume: 200 Percent Moisture: 24.567

	WL/	os		Dupe			os	Dupe		OS Anal	OS Anal	Dupe Anal	Dupe Anal
Element	Mass	Conc	o	Conc	o	% RPD	DF	Dupe	Instr	Date	Time	Date	Time
Aluminum	308.215	7820		6310	*	21.4	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Antimony	206.838	0.61	UN	0.61	ប		1	1	ICPST	B/11/200d	14:38	8/11/2006	14:49
Arsenic	189.042	2.8		1.8	В	41.3	1	1	ICPST	B/11/200d	14:38	8/11/2006	14:49
Barium	493.409	36.8	В	28.0	В	27.2	1	1	ICPST	8/11/2004	14:38	8/11/2006	14:49
Beryllium	313.042	0.46	В	0.33	В	32.4	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Cadmium	226.502	0.082	U	0.082	บ		1	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Calcium	317.933	453	в	440	В	2.9	1	1	ICPST	B/11/200d	14:38	8/11/2006	14:49
Chromium	267.716	18.8	N	16.7		11.7	1	1	ICPST	B/11/200d	14:38	8/11/2006	14:49
Cobalt	228.616	8.1	В	6.7	В	18.8	1	1	ICPST	8/11/2000	14:38	8/11/2006	14:49
Copper	324.753	20.0		11.0	*	58.0	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Iron	271.441	20000		15100	*	27.8	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Lead	220.353	4.8		4.3		10.4	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Magnesium	279.078	2960		2540		15.1	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Manganese	257.61	180		145	*	21.4	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Nickel	231.604	23.3		17.4		29.1	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Potassium	766.491	531	BE	507	В	4.6	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Selenium	220.353	0.79	В	0.83	В	4.3	1	1	ICPST	B/11/200d	14:38	8/11/2006	14:49
Silver	328.068	0.12	บ	0.12	บ		1	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Sodium	330.232	137	В	121	В	12.5	1	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Thallium	190.864	0.74	ט	0.74	ប		1	1	ICPST	B/11/200¢	14:38	8/11/2006	14:49
Vanadium	292.402	9.6	В	7.1	В	30.6	ĺ	1	ICPST	8/11/2006	14:38	8/11/2006	14:49
Zinc	206.2	70.6		104	*	38.7	1	1	ICPST	B/11/2006	14:38	8/11/2006	14:49

^{5.04.5}

U Result is less than the IDL

B Result is between IDL and RL

Duplicate analysis RPD was not within limits

Metals Data Reporting Form

Serial Dilution RPD Report

Serial Dilution Sample ID: JAAF1P

Original Sample ID: JAAF1 Client ID: GRSB1(22-24)P

Matrix: Soil Units: mg/kg Prep Date: 8/2/2006 Prep Batch: 6214386

Weight: 1.00 Volume: 200 Percent Moisture: 24.567

T71	WL/	os	•	Serial Dilution	0	Percent	OS DF	Ser Dil DF	Tout	OS Anal	OS Anal	Ser Dil Anal	Ser Dil Anal
Element	Mass	Conc	0	Conc		Diff			Instr	Date	Time	Date	_Time
Aluminum	308.215	7820		7930		1.4	1	5	ICPST	8/11/2006		8/11/2006	! !
Antimony	206.838	0.61	UN	3.0	U		1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Arsenic	189.042	2.8		2.6	В	6.0	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Barium	493.409	36.8	В	37.2	В	1.2	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Beryllium	313.042	0.46	В	0.62	В	36.6	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Cadmium	226.502	0.082	U	0.41	U		1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Calcium	317.933	453	В	459	В	1.3	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Chromium	267.716	18.8	N	19.0		0.9	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Cobalt	228.616	8.1	В	7.9	В	2.0	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Copper	324.753	20.0		20.4	В	2.1	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Iron	271.441	20000		20500		2.5	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Lead	220.353	4.8		4.5		6.0	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Magnesium	279.078	2960		3040	В	2.7	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Manganese	257.61	180		183		1.8	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Nickel	231.604	23.3		23.6	В	1.1	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Potassium	766.491	531	В	616	BE	16.0	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Selenium	220.353	0.79	В	2.7	U	100.0	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Silver	328.068	0.12	U	0.60	ប		1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Sodium	330.232	137	В	132	U	100.0	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Thallium	190.864	0.74	U	3.7	U		1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Vanadium	292.402	9.6	В	10.3	В	7.3	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44
Zinc	206.2	70.6		76.1		7.9	1	5	ICPST	8/11/2006	14:38	8/11/2006	14:44

Comments: Lot #; C6G290164 Sample #: 5 Color:pre- brown, post- brown. Texture:pre- medium, post fine. Artfacts; stones.

5.04.5

U Result is less than the IDL

Form 9 Equivalent

B Result is between IDL and RL

OCLP OLMO4.2 METHOD BLANK SUMMARY

BLANK WORKORDER NO. H8RJA1AA

Lab Name: Severn Trent Laboratories, I	Inc.
--	------

Lab Code: STLPIT

Lab File ID: 5070602.D

Date Analyzed: 07/06/06

Matrix: SOLID

GC Column: HP624 ID: .20

Instrument ID: HP5

SDG Number:

Lot Number: C6F280229

Time Analyzed: 17:49

Date Extracted: 07/06/06

Extraction Method:

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

-		SAMPLE		LAB	DATE	
-	CLIENT ID.	WORK ORDER	i i #	FILE ID	ANALYZED	TIME ANALYZED
		=======================================		********	= TEE TEE	ANALIZED
ďт	GRSS1	H8DT91AC		5070603.D	07/06/06	18:27
	GRSS1		S	5070610.D	07/06/06	21:47
03			D	5070611.D	07/06/06	22:18
	GRSS2	H8DVALAK	_	5070604.D	07/06/06	18:55
	GRSB4 (7-8)	H8DVC1AK		5070605.D	07/06/06	19:21
	GRSB4 (9-11)	H8DVDLAK		5070606.D	07/06/06	19:54
	GRSB3 (4-5)	H8DVE1AK		5070607.D	07/06/06	20:21
	GRSB3 (6-7)	H8DVF1AK	-	5070608.D	07/06/06	20:48
09	CHECK SAMPLE	H8RJA1AC	C	5070609.D	07/06/06	21:18
10				-		
11						
12						
13						
14						
15					:	
16						
17						
18						
19						
20					i	
Įψ.	<u> </u>					
22	<u> </u>					
, (23						
4						
.25	<u> </u>		ļ			
26						
27			<u> </u>			
28			<u> </u>			
29						
30					<u> </u>	

Ç	COMMENTS:	į	
į		<u> </u>	
	***	<u> </u>	
:		ORM IV	

The RETEC Group, Inc. METHOD BLANK COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc.

SDG Number:

Matrix: (soil/water) SOLID

Lab Sample ID: C6G060000 555

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: HBRJA1AA Dilution factor: 1

Date Received: 06/28/06 Date Extracted: 07/06/06

Moisture %:NA

Date Analyzed: 07/06/06

Client Sample Id: INTRA-LAB BLANK

QC Batch: 6187555

CONCENTRATION UNITS:

CAS NO.	· · · · · · · · · · · · · · · · · · ·	g/kg) ug/kg Q	
67-64-1	Acetone	10	Ŭ
71-43-2	Benzene	10	ָּט
75-27-4	Bromodichloromethane	10	U
75-25-2	Bromoform	10	U
74-83-9	Bromomethane	10	ט
78-93-3	2-Butanone	10	U
75-15-0	Carbon disulfide	10	Ū
56-23-5	Carbon tetrachloride	10	ַ
108-90-7	Chlorobenzene	10	Ū
75-00-3	Chloroethane	10	Ū
67-66-3	Chloroform	10	Ü
74-87-3	Chloromethane	10	U
110-82-7	Cyclohexane	10	U
124-48-1	Dibromochloromethane	10	Ū
96-12-8	1,2-Dibromo-3-chloropropane	10	U
106-93-4	1,2-Dibromoethane	10	Ū
541-73-1	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
75-71-8	Dichlorodifluoromethane	10	Ü
75-34-3	1,1-Dichloroethane	10	ט
107-06-2	1,2-Dichloroethane	10	Ū
75-35-4	1,1-Dichloroethene	10	Ŭ
156-59-2	cis-1,2-Dichloroethene	10	ט
156-60-5	trans-1,2-Dichloroethene	10	U
78-87-5	1,2-Dichloropropane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
10061-02-6	trans-1,3-Dichloropropene	10	Ū

The RETEC Group, Inc. METHOD BLANK COMPOUNDS

Lab Name: Severn Trent Laboratories, Inc. SDG Number:

Matrix: (soil/water) SOLID

Lab Sample ID: C6G060000 555

Method: OCLP OLM04.2

Volatile Organic Compounds - CLP (OLM04.2)

Sample WT/Vol: 5 / g Work Order: H8RJA1AA

Date Received: 06/28/06 Date Extracted:07/06/06

Dilution factor: 1

Date Analyzed: 07/06/06

Moisture %:NA

QC Batch: 6187555

Client Sample Id: INTRA-LAB BLANK

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	/kg) ug/kg	Q
100-41-4	Ethylbenzene	10	ט
591-78-6	2-Hexanone	10	ט
98-82-8	Isopropylbenzene	10	<u>ט</u>
79-20-9	Methyl acetate	10	U
75-09-2	Methylene chloride	1.8	J
108-87-2	Methylcyclohexane	10	ן ט
108-10-1	4-Methyl-2-pentanone	10	ט
1634-04-4	Methyl tert-butyl ether	10	ן ט
100-42-5	Styrene	10	ן ט
79-34-5	1,1,2,2-Tetrachloroethane	10	U
120-82-1	1,2,4-Trichlorobenzene	10	ן ט
127-18-4	Tetrachloroethene	10	Ü
71-55-6	1,1,1-Trichloroethane	10	ַן
79-00-5	1,1,2-Trichloroethane	10	<u></u> <u></u> <u></u>
79-01-6	Trichloroethene	10	ט
75-69-4	Trichlorofluoromethane	10	ט
76-13-1	1,1,2-Trichloro-1,2,2-triflu	10	ן ט
108-88-3	Toluene	10	ט
75-01-4	Vinyl chloride	10	<u>ט</u>
1330-20-7	Xylenes (total)	10	ן

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: STL-PITTSBURGH Contract:

Lab Code: STLPIT Case No.: SAS No.: SDG No.:

Instrument ID: HP5 Calibration Date(s): 07/06/06 07/06/06

Heated Purge: (Y/N) Y Calibration Time(s): 1450 1651

GC Column: DB624 ID: 0.20 (mm)

LAB FILE ID: RRF10	= 1A5	0706	RRF20	= 1B	50706		
RRF50 = 1D50706 RRF100	= 1E5	0706	RRF20	0 = 1F	50706		
							*
COMPOUND	RRF10	RRF20	RRF50	RRF100	RRF200	RRF	RSD
	=====	=====	=====			-n====	=====
Chloromethane	3.826	3.691	3.732	3.810	3.586	3.729	2.6
Bromomethane*	1.291	1.142	1.030	1.038	1.000	1.100	10.8*
Vinyl Chloride*	2.560	2.619	2.603	2.631	2.510	2.585	1.9*
Chloroethane	0.952	1.020	0.967	0.972	0.953	0.973	2.9
Methylene Chloride	2.693	2.322	2.103	2.067	1.975	2.232	12.9
Acetone	4.200	3.116	2.989	2.966	3.053	3.265	16.1
Carbon Disulfide	6.569	6.299	6.513	6.719	6.657	6.551	2.5
1,1-Dichloroethene*	2.226	2.197	2.111	2.128	2.124	2.157	2.4*
1,1-Dichloroethane*	4.938	4.779	4.721	4.826	4.693	4.791	2.0*
1,2-Dichloroethene (total)	2.334	2.303	2.217	2.251	2.235	2.268	2.2
Chloroform*	3.925	3.750	3.763	3.780	3.709	3.785	2.2*
1,2-Dichloroethane*	3.514	3.482	3.374	3.357	3.334	3.412	2.4*
2-Butanone	4.294	3.524	3.451	3.391	3.524	3.637	10.2
1,1,1-Trichloroethane*	0.478	0.521	0.519	0.534	0.535	0.517	4.5*
Carbon Tetrachloride *	0.357	0.378	0.395	0.417	0.435	0.396	7.7*
Bromodichloromethane*	0.316	0.288	0.306	0.324	0.358	0.318	8.2*
1,2-Dichloropropane	0.350	0.336	0.333	0.332	0.349	0.340	2.6
cis-1,3-Dichloropropene*	0.349	0.381	0.403	0.422	0.446	0.400	9.3*
Trichloroethene *	1 0 1 3 2 3	0.334	0.318	0.321	0.332	0.330	3.1*
Dibromochloromethane*	0.146	0.164	0.192	0.214	0.238	0.191	19.5*
1,1,2-Trichloroethane*	0.210	0.228	0.220	0.222	0.231	0.222	3.7*
	1.239	1.312	1.295	1.292	1.304	1.288	2.2*
Benzene* trans-1,3-Dichloropropene*	0.297	0.337	0.356	0.379	0.406	0.355	11.7*
Bromoform*	0.062	0.075	0.092	0.109	0.131	0.094	29,2*
4-Methyl-2-pentanone	0.845	0.763	0.736	0.753	0.779	0.775	5.4

^{*} Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

6B VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: STL-PITTSBURGH Contract:

Lab Code: STLPIT Case No.: SAS No.: SDG No.: METHODS

Instrument ID: HP5 Calibration Date(s): 07/06/06 07/06/06

Heated Purge: (Y/N) Y Calibration Time(s): 1450 1651

GC Column: DB624 ID: 0.20(mm)

LAB FILE ID: RRF10 =	= 1A50	706	RRF20	= 1B5	0706		
RRF50 = 1D50706 RRF100=	= 1E50	706	RRF200)= 1F9	0706		
			[<u> </u>	8
COMPOUND	RRF10	RRF20	RRF50	RRF100	RRF200	RRF	RSD
****	=====		=====	=====	=====	=====	=====
2-Hexanone*	0.794	0.749	0.744	0.763	0.810	0.772	3.8
Tetrachloroethene*	0.345	0.344	0.334	0.337	0.348	0.342	1.7*
1,1,2,2-Tetrachloroethane*	0.323	0.313	0.323	0.324	0.344	0.325	3.5*
Toluene *	1.717		1.653	1.671	1.727	1.688	1.9*
Toluene* Chlorobenzene*	1.078	1.061	1.052	1.074	1.079	1.069	1.1*
Ethylbenzene*	0.604	0.563	0.570	0.571	0.587	0.579	2.8*
Styrene *	1.027	1.071	1.090	1.134	1.163	1.097	4.8*
		0.653	0.643	0.665	0.675	0.667	3.1*
Dichlorodifluoromethane	1.589	1.565	1.563	1.601	1.523	1.568	1.9
Trichlorofluoromethane	2.430	2.695	2.502	2.520	2.409	2.511	4.5
1,1,2-Trichloro-	ļ)		
1,2,2-trifluoroethane	2.157	2.140	2.072	2.050	1.994	2.083	3.2
1,3-Dichlorobenzene* 1,4-Dichlorobenzene*	0.715		0.728	0.756	0.762	0.739	2.7*
1,4-Dichlorobenzene*	0.747	0.738	0.731	0.758	0.771	0.749	2.1*
1,2-Dichlorobenzene *	0.675	0.684	0.683	0.694	0.704	0.688	1.6*
1,2-Dibromoethane	0.204	0.213	0.217	0.218	0.230	0.216	4.4
1,2-Dibromo-3-chloropropane_	0.047	0.042	0.052	0.052	0.061	0.051	13.3
Methyl tert-butyl ether	6.191		5.715	5.740	5.875	5.871	3.2
Methyl Acetate	3.302	2.492	1.183	1.142	1.188	1.861	53.1
Cyclohexane	0.860	0.905	0.894	0.902	0.909	0.894	2.2
Methyl Cyclohexane	0.584	0.566	0.546	0.550	0.564	0.562	2.7
Isopropylbenzene	1.566	1.586	1.599	1.634	1.646	1.606	2.1
1,2,4-Trichlorobenzene	0.350	0.355	!				5.8
	=====		Į.	1	=====		=====
Toluene-d8	1.428		1.352	1.358	1.362	1.365	2.7
Toluene-d8* Bromofluorobenzene*	0.425		0.434	0.437	0.440	0.433	1.3*
1,2-Dichloroethane-d4	2.772	2.628	2.558	2.474	2.419	2.570	5.4

^{*} Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.:

SDG No.: METHODS

Instrument ID: HP3

Calibration Date(s): 04/26/06

04/26/06

Heated Purge: (Y/N) N Calibration Time(s): 0834

1021

GC Column: DB624 ID: 0.53 (mm)

LAB FILE ID: RRF10 RRF50 =1C30426K RRF10				0 =1B304 00=1E304			
	1	 				· · · · · · · · · · · · · · · · · · ·	- %
COMPOUND	RRF10	RRF20	RRF50	RRF100	RRF200	RRF	RSD
chloromethane	3 008	2 770	2.608				
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone	* 1 169	0.972					
Vinul Chloride	* 3 055	2 867	2.609	2.538			
Chloroethane	1 1 133	0.800					
Methylene Chloride	2 100	1.879					
Acetone	1.345	1 914	1.755	1.819	1.748		
Carbon Digulfide	6 629	7.471			7.082		
1 1 Dichloroethere	* 2 471	2.535		2.184	2.226		
Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane	* 1 699	1 537	4.000				
1,1-Dichloroethane (total)	2.590	2,568					
			2.864	2.811	2.928		
2 Putanone	1 1 525	2.020					
2-Butanone	+ 0 376	0.347					
Carbon Tetrachleride	* 0.376	0.347	0.335	0.338		0.363	
Carbon Tetrachioride	* 0,237	0.300					
1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene	0.339	0.300					
1,2-Dichioropropane	0.460	0.423	0.368	0.388	0.390	0.410 0.488	7.6
Cis-1,3-Dichiolopropene	* 0.407	0.449	0.384	0.385	0.343	0.400	9.4
Trichtoroethene	^ U.4/4	0.427					17.2
Dibromochioromethane	0.228	0.194	0.224			0.242	
1,1,2-Trichloroethane	* 0.377 * 1.777	0.359					
Benzene	* I.///	1.634					
trans-1,3-Dichloropropene	* 0.384	0.368	0.389				11.5
Bromolorm	* 0.134	0.116	0.143	0.183		0.160	
Bromoform 4-Methyl-2-pentanone	0.546	0.549		0.512			
z-nexamone	0.3/2	0.403	0.482	0.513			
retrachioroethene	* 0.417	0.394	0.348			0.369	
1,1,2,2-Tetrachioroethane	* 0.546	0.519					
Toluene	* 2.062	1.930	1.731				
Cnioropenzene_	* 1.418	1.321	1.188				
Ethylbenzene	* 0.795	0.736	0.665	0.648			
styrene	* 1.562	1.497	1.355	1.343	1.438	1.439	
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Xylenes (total) Dichlorodifluoromethane Trichlorofluoromethane 1,1,2 Trichloro-1,2,2-Triflu	* 0.924	0.875	0.797	0.783		0.843	
Dichiorodifiuoromethane	1.929	1.766	1.596 2.105	1.529	1.454		11.6
Trichlorofluoromethane	5.394	1.991	2.105	2.080			
1,1,2 Trichloro-1,2,2-Triflu	2.355	2.472					
1,3-Dichlorobenzene	* 1.110	1.054	0.953	0.936	0.990	1.009	7.2
Compounds with required min	- DD		1	PCD TES	1105		

* Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

page 1 of 2

FORM VI VOA

OLMO3.0

бΑ VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.: SAS No.:

SDG No.: METHODS

Instrument ID: HP3

Calibration Date(s): 04/26/06

04/26/06

Heated Purge: (Y/N) N Calibration Time(s): 0834

GC Column: DB624 ID: 0.53 (mm)

	=1A3042 0=1D3042			0 =1B304 00=1E304			
COMPOUND	RRF10	RRF20	RRF50	RRF100	RRF200	RRF	RSD
	* 1.147	1.073	0.982		1.001	ı	7.7
1,2-Dichlorobenzene	* 1.048						7.1
1,2-Dibromoethane	0.414	0.382					6.6
1,2-Dibromo-3-chloropropane	0.039	0.041	0.048				23.0
Methyl tert-butyl ether	6.300	6.424			5.825		6.5
Methyl Acetate	2.579	2.560			2.146		9.7
	0.864	0.836		0.738	0.741		7.8
Cyclohexane Methyl Cyclohexane	0.824						8.4
Isopropylbenzene	2.161	2.006			1.900		7.5
Isopropylbenzene	* 0.594				0.578		4.0
trans-1,2-Dichloroethene	2.525						8.5
cis-1,2-dichloroethene	2.656	2.609	2.288	2.240	2.306	2.420	8.1
				=====	ł .	======	=====
Toluene-d8	1.531	1.569	1.351		1.353		8.2
	* 0.543	0.549					6.6
1,2-Dichloroethane-d4	2.348	2.400	1.983		1.976	2.138	10.1
				707			

* Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

page 2 of 2

FORM VI VOA

OLMO3.0

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.:

SDG No.: METHODS

Instrument ID: HP3

Calibration Date: 07/03/06 Time: 0929

Lab File ID: 1C30703N

Init. Calib. Date(s): 04/26/06 04/26/06

Heated Purge: (Y/N) N

GC Column: DB624 ID: 0.53 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
	======	****	======	=====	====
Chloromethane	2.688	2.455		-8.7	
Bromomethane	0.963	0.981	0.100	1.9	25.0
Vinyl Chloride	2.736	2.383	0.100	-12.9	25.0
Chloroethane	0.883	0.839		-5.0	
Methylene Chloride	2.117	1.947		-8.0	
Acetone	1.716	1.576		-8.2	
Carbon Disulfide	7.061	6.315		-10.6	
1,1-Dichloroethene	2.295	1.818	0.100	-20.8	25.0
1,1-Dichloroethane	4.214	3.355	0.200	-20.4	25.0
1,2-Dichloroethene (total)	2.366	1.946		-17.8	
Chloroform	3.491	2.898	0.200	-17.0	25.0
1,2-Dichloroethane	3.070	2.484	0.100	-19.1	25.0
2-Butanone	1.938	1.611		-16.9	
1,1,1-Trichloroethane	0.363	0.328	0.100	-9.6	25.0
Carbon Tetrachloride	0.260	0.277	0.100	6.5	25.0
Bromodichloromethane	0.333	0.318	0.200	-4.5	25.0
1,2-Dichloropropane	0.410	0.324		-21.0	
cis-1,3-Dichloropropene	0.488	0.426	0.200	-12.7	25.0
Trichloroethene	0.412	0.346	0.300	-16.0	25.0
Dibromochloromethane	0.242	0.270	0.100	11.6	25.0
1,1,2-Trichloroethane	0.343	0.282	0.100	-17.8	25.0
Benzene	1.551	1.249	0.500	-19.5	25.0
trans-1,3-Dichloropropene	0.412	0.378	0.100		25.0
Bromoform	0.160	0.201	0.100	25.6	
4-Methyl-2-pentanone	0.528	0.442		-16.3	
711 other compounds must meet a minimum	I	<u> </u>			

All other compounds must meet a minimum RRF of 0.010.

FORM VII VOA-1

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.:

SDG No.: METHODS

Instrument ID: HP3

Calibration Date: 07/03/06 Time: 0929

Lab File ID: 1C30703N

Init. Calib. Date(s): 04/26/06 04/26/06

EPA Sample No. (VSTD050##): vstd50

Init. Calib. Times: 0834

Heated Purge: (Y/N) N

GC Column: DB624

ID: 0.53 (mm)

COMPOUND	RRF	RRF50	MIN RRF	% D	MAX %D
=======================================			======	======	=====
2-Hexanone	0.473	0.419		-11.4	
Tetrachloroethene	0.369	0.319	0.200	-13.6	
1,1,2,2-Tetrachloroethane	0.503	0.412	0.300	-18.1	
Toluene	1.826	1.507	0.400	-17.5	
Chlorobenzene	1.254	1.026	0.500	-18.2	
Ethylbenzene	0.704	0.581	0.100	-17.5	
Styrene	1.439	1.176	0.300	-18.3	
Xylenes (total)		0.700	0.300	-17.0	25.0
Dichlorodifluoromethane	1.655	1.706		3.1	
Trichlorofluoromethane	2.927	3.699		26.4	
1,1,2 Trichloro-1,2,2-Trifluo	2.215	1.822		-17.7	
1,3-Dichlorobenzene	1.009	0.855	0.600	-15.3	25.0
1,4-Dichlorobenzene	1.031	0.865	0.500	-16.1	25.0
1,2-Dichlorobenzene	0.956	0.804	0.400	-15.9	25.0
1,2-Dibromoethane	0.375	0.321		-14.4	
1,2-Dibromo-3-chloropropane	0.051	0.049		-3.9	
Methyl tert-butyl ether	5.956	4.476		-24.8	
Methyl Acetate	2.323	1.604		-31.0	
Cyclohexane	0.784	0.618		-21.2	
Methyl Cyclohexane	0.735	0.612		-16.7	
Isopropylbenzene	1.942	1.621		-16.5	
1,2,4 Trichlorobenzene	0.570	0.447	0.200	-21.6	25.0
trans-1,2-Dichloroethene	2.312	1.902		-17.7	
cis-1,2-dichloroethene	2.420	1.991		-17.7	
		======			====
Toluene-d8	1.424	1.158		-18.7	
Bromofluorobenzene	0.511	0.430	0.200	-15.8	25.0
1,2-Dichloroethane-d4	2.138	1.734		-18.9	
All other compounds must meet a minimum	um RRF 01	0.010.			

FORM VII VOA-2

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.:

SDG No.:

Instrument ID: HP5

Calibration Date: 07/06/06 Time: 1551

Lab File ID: 1D50706

Init. Calib. Date(s): 07/06/06 07/06/06

EPA Sample No. (VSTD050##): VSTD50

Init. Calib. Times: 1450 1651

Heated Purge: (Y/N) Y

GC Column: DB624 ID: 0.20 (mm)

			MIN		MAX
COMPOUND	RRF	RRF50	RRF	&D	%D
			*=====	=====	=====
Chloromethane	3.729	3.732		0.1	ı
Bromomethane	1.100	1.030	0.100	-6.4	25.0
Vinyl Chloride	2.585	2.603	0.100		25.0
Chloroethane	0.973	0.967	:	-0.6	
Methylene Chloride	2.232	2.103	-	-5.8	
Acetone	3.265	2.989		-8.4	
Carbon Disulfide	6.551	6.513	:	-0.6	
1,1-Dichloroethene	2.157	2.111	0.100	-2.1	25.0
1,1-Dichloroethane	4.791	4.721	0.200	-1.5	25.0
1,2-Dichloroethene (total)	2.268	2.217	:	-2.2	
Chloroform	3.785	3.763	0.200	-0.6	25.0
1,2-Dichloroethane	3.412	3.374	0.100		25.0
2-Butanone	3.637	3.451	:	-5.1	į
1,1,1-Trichloroethane	0.517	0.519	0.100	0.4	25.0
Carbon Tetrachloride	0.396	0.395	0.100		25.0
Bromodichloromethane	0.318	0.306	0.200	-3.8	25.0
1,2-Dichloropropane	0.340	0.333		-2.0	
cis-1,3-Dichloropropene	0.400	0.403	0.200	0.8	25.0
Trichloroethene	0.330	0.318	0.300	-3.6	25.0
Dibromochloromethane	0.191	0.192	0.100		25.0
1,1,2-Trichloroethane	0.222	0.220	0.100		25.0
Benzene	1.288	1.295	0.500		25.0
trans-1,3-Dichloropropene	0.355	0.356	0.100		25.0
Bromoform	0.094	0.092	0.100	-2.1	
4-Methyl-2-pentanone	0.775	0.736	÷	-5.0	
	li		<u>i</u>		

All other compounds must meet a minimum RRF of 0.010.

FORM VII VOA-1

7B VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.:

SDG No.:

Instrument ID: HP5

Calibration Date: 07/06/06 Time: 1551

Lab File ID: 1D50706

Init. Calib. Date(s): 07/06/06 07/06/06

EPA Sample No. (VSTD050##): VSTD50 Init. Calib. Times: 1450 1651

Heated Purge: (Y/N) Y

GC Column: DB624 ID: 0.20 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
COMPOUND	RKF	RRFSU	+		*D
2-Hexanone	0.772	0.744		-3.6	
Tetrachloroethene	0.342	0.334	0.200		25.0
1,1,2,2-Tetrachloroethane	0.325	0.323	0.300		25.0
Toluene	1.688	1.653	0.400	•	25.0
Chlorobenzene	1.069	1.052	0.500	1	25.0
Ethylbenzene	0.579	0.570	0.100		25.0
Styrene	1.097	1.090	:0.300		25.0
Xylenes (total)	0.667	0.643	0.300	!	25.0
Dichlorodifluoromethane	1.568	1.563	:	-0.3	
Trichlorofluoromethane	2.511	2.502		-0.4	
1,1,2-Trichloro-1,2,2-trifluoroethane	2.083	2.072		-0.5	
1,3-Dichlorobenzene	0.739	0.728	0.600		25.0
1,4-Dichlorobenzene	0.749	0.731	0.500	!	25.0
1,2-Dichlorobenzene	0.688	0.683	0.400	-0.7	25.0
1,2-Dibromoethane	0.216	0.217		0.5	
1,2-Dibromo-3-chloropropane	0.051	0.052	1	2.0	
Methyl tert-butyl ether	5.871	5.715	•	-2.6	
Methyl Acetate	1.861	1.183		-36.4	
Cyclohexane	0.894	0.894		0.0	
Methyl Cyclohexane	0.562	0.546		-2.8	
Isopropylbenzene	1.606	1.599		-0.4	
1,2,4-Trichlorobenzene	0.372	0.367		-1.3	
	======		+		
Toluene-d8	1.365	1.352		-1.0	
Bromofluorobenzene	0.433	0.434	:0.200	0.2	25.0
1,2-Dichloroethane-d4	2.570	2.558		~0.5	

All other compounds must meet a minimum RRF of 0.010.

FORM VII VOA-2

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT Case No.:

SAS No.: SDG No.: C6F280229

Instrument ID: 731

Calibration Date: 07/03/06 Time: 1053

Lab File ID: V07030CC

Init. Calib. Date(s): 06/28/06 06/28/06

EPA Sample No.(SSTD050##): SSTD050 Init. Calib. Times: 1102

GC Column:

ID: 0.25 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
	======	======	======	=====	=====
Phenol	1.514		0.800		25.0
Bis(2-chloroethyl)ether	1.100		0.700		25.0
2-Chlorophenol	1.337		0.800		25.0
2-Methylphenol	1.184		0.700		25.0
2,2'-oxybis(1-Chloropropane)	0.865	0.850	:	-1.7	Į
N-Nitroso-di-n-propylamine	0.961	1.086	0.500	13.0	25.0
4-Methylphenol	1.265	1.344	0.600	6.2	25.0
Hexachloroethane	0.687	0.717	0.300	4.4	25.0
Nitrobenzene	0.381	0.409	0.200	7.3	25.0
Isophorone	0.607	0.651	0.400	7.2	25.0
2-Nitrophenol	0.194	0.196	0.100	1.0	25.0
2,4-Dimethylphenol	0.329	0.354	0.200	7.6	25.0
Bis (2-chloroethoxy) methane	0.344	0.353	0.300	2.6	25.0
2,4-Dichlorophenol	0.307	0.314	0.200	2.3	25.0
Naphthalene	1.021	1.045	0.700	2.4	25.0
4-Chloroaniline	0.409	0.427	i	4.4	
Hexachlorobutadiene	0.219	0.219		0.0	
4-Chloro-3-Methylphenol	0.301	0.335	0.200	11.3	25.0
2-Methylnaphthalene	0.724	0.759	0.400	4.8	25.0
Hexachlorocyclopentadiene	0.457	0.420	İ.	-8.1	
2,4,6-Trichlorophenol	0.386	0.367	0.200	-4.9	25.0
2,4,5-Trichlorophenol	0.410	0.410	0.200	0.0	25.0
2-Chloronaphthalene	1.146	1.145	0.800	-0.1	25.0
2-Nitroaniline	0.308	0.330	•	7.1	
Dimethylphthalate	1.234	1.328		7.6	}
Acenaphthylene	1.775	1.831	0.900	3.2	25.0
2,6-Dinitrotoluene	0.286	0.300	0.200	4.9	25.0
3-Nitroaniline	0.308	0.331	:	7.5	
Acenaphthene	1.122	1.140	0.900	1.6	25.0
2,4-Dinitrophenol	0.148	0.154	:	4.0	
4-Nitrophenol	0.201	0.244	:	21.4	
Dibenzofuran	1.677	1.720	0.800		25.0
2,4-Dinitrotoluene	0.382	0.425	0.200	11.2	25.0
Diethylphthalate	1.213	1.356	į	11.8	
4-Chlorophenyl-phenylether	0.657	0.704	0.400		25.0
Fluorene	1.335	1.427	0.900		25.0
	· ———			1	.

All other compounds must meet a minimum RRF of 0.010.

FORM VII SV-1

7D SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL-PITTSBURGH

Contract:

Lab Code: STLPIT

Case No.:

SAS No.:

SDG No.: C6F280229

Instrument ID: 731

Calibration Date: 07/03/06

Time: 1053

Lab File ID: V07030CC

Init. Calib. Date(s): 06/28/06 06/28/06

EPA Sample No.(SSTD050##): SSTD050 Init. Calib. Times: 1102

1323

GC Column:

ID: 0.25 (mm)

COMPOUND	RRF	DDEEA	MIN RRF	0.5	MAX
COMPOUND	RRF	RRF50	:	%D	%D
4-Nitroaniline	0.324	0.366	======	13.0	
4,6-Dinitro-2-methylphenol	0.324	0.135		1.5	
N-Nitrosodiphenylamine(1)	0.608	0.133		-3.0	
4-Bromophenyl-phenylether	0.268	0.259	0.100		25.0
Hexachlorobenzene	0.273		0.100		25.0
Pentachlorophenol	0.143	0.133	0.050		25.0
Phenanthrene	1.244	1.207	0.700		25.0
Anthracene	1.218	1.230	0.700		25.0
Carbazole	1.093	1.145	. 0.700	4.8	23.0
Di-n-Butylphthalate	1.268	1.374		8.4	
Fluoranthene	1.316	1.405	0.600		25.0
Pyrene	1.211	1.189	0.600		25.0
Butylbenzylphthalate	0.517	0.533		3.1	
3,3'-Dichlorobenzidine	0.501	0.538		7.4	
Benzo (a) Anthracene	1.256	1.265	0.800		25.0
Chrysene	1.184	1.211	0.700	2.3	
bis(2-ethylhexyl)Phthalate	0.761	0.791		3.9	
Di-n-octylphthalate	1.238	1.283	i	3.6	
Benzo (b) fluoranthene	1.353	1.346	0.700	-0.5	25.0
Benzo (k) fluoranthene	1.283	1.318	0.700		25.0
Benzo (a) pyrene	1.153	1.140	0.700	-1.1	25.0
Indeno(1,2,3-cd)pyrene	1.481	1.423	0.500	-3.9	25.0
Dibenz(a,h) anthracene	1.169	1.124	0.400	-3.8	25.0
Benzo(g,h,i)perylene	1,247	1.221	0.500	-2.1	25.0
Benzaldehyde	0.949	1.382		45.6	
Acetophenone	2.302	3.091	:	34.3	
Caprolactam	0.118	0.166		40.7	
1,1'-Biphenyl	1.816	2.205		21.4	
Atrazine	0.255	0.365		43.1	
	======	======			
Nitrobenzene-d5	0.384	0.406	0.200		25.0
2-Fluorobiphenyl	1.275	1.262	0.700	~1.0	
Terphenyl-d14 Phenol-d5	0.933	0.932	0.500	-0.1	
+	1.458	1.530	0.800		25.0
2-Fluorophenol 2,4,6-Tribromophenol	1.189 0.114	1.263	0.600		25.0
2-Chlorophenol-d4	1.413	0.099 1.485	0 800	-13.2	ا م
1,2-Dichlorobenzene-d4	0.958	0.997	0.800		25.0
1,2-Dichiotopenzene-04	0.358	0.337	0.400	4.1	25.0

(1) Cannot be separated from Diphenylamine All other compounds must meet a minimum RRF of 0.010. FORM VII SV-2

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID:

H8E25B

Matrix:

Soil

Units:

mg/kg

Prep Date: 6/29/2006

U

U

U

B

34.8

0.52

0.14

1.8

ICPST

ICPST

ICPST

ICPST

7/1/2006

7/1/2006

7/1/2006

7/1/2006

18:30

18:30

18:30.

18:30

Prep Batch: 6180029

Weight:

1.00

Volume:

330.232

190.864

292.402

213.856

200

Percent Moisture:

NA

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Aluminum	308.215	1.3	40.0	7.3	В	1	ICPST	7/1/2006	18:30
Antimony	220.353	0.38	12,0	0.38	บ	1	ICPST	7/1/2006	18:30
Arsenic	189.042	0.20	2 0	0.20	U	1	ICPST	7/1/2006	18:30
Barium	493,409	0.030	40,0	0.030	U	1	ICPST	7/1/2006	18:30
Beryllium	313.042	0.036	1,0	0.076	В	1	ICPST	7/1/2006	18:30
Cadmium	226.502	0.032	1.0	0.032	U	1	ICPST	7/1/2006	18:30
Calcium	317.933	2.2	1000	42.9	В	1	ICPST	7/1/2006	18:30
Chromium	267.716	0.086	2,0	0.086	U	1 !	ICPST	7/1/2006	18:30
Cobalt	228.616	0.098	10.0	-0.098	В	1	ICPST	7/1/2006	18:30
Copper	324.753	0.066	5,0	-0.13	В	1	ICPST	7/1/2006	18:30
Iron	271.441	3.8	20,0	3.8	บ	1	ICPST	7/1/2006	18:30
Lead	220.353	0.22	0.60	0.22	บ	1	ICPST	7/1/2006	18:30
Magnesium	279.078	1.3	1000	1.3	U	1	ICPST	7/1/2006	18:30
Manganese	257.61	0.034	3,0	0.034	U	1	ICPST	7/1/2006	18:30
Nickel	231.604	0.20	8.0	0.20	U	1 :	ICPST	7/1/2006	18:30
Potassium	766.491	1.9	1000	43.8	В	1	ICPST	7/1/2006	18:30
Selenium	220.353	0.32	1.0	0.32	U	1	ICPST	7/1/2006	18:30
Silver	328.068	0.094	2.0	0.094	U	1	ICPST	7/1/2006	18:30
i			1						

1000

2.b

10.D

4.0

34.8

0.52

0.14

0.16

Comments: Lot #: C6F280229

Sodium

Thallium

Vanadium

Zinc

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: H8E27B

Matrix: Water Units: ug/L Prep Date: 6/29/2006 Prep Batch: 6180031

Weight: NA Volume: 50 Percent Moisture: NA

Flamont	WL/	IDI	Report	G				Anal	Anal
Element	Mass	IDL	Limit	Conc	0	DF	Instr	Date	Time
Aluminum	308.215	6.3	200	35.2	В	1	ICPST	7/1/2006	19:41
Antimony	220.353	1.9	60,0	1.9	U	1	ICPST	7/1/2006	19:41
Arsenic	189.042	1.0	10,0	1.0	U	1	ICPST	7/1/2006	19:41
Barium	493.409	0.15	200	0.20	В	1	ICPST	7/1/2006	19:41
Beryllium	313.042	0.18	5.0	0.57	В	1	ICPST	7/1/2006	19:41
Cadmium	226.502	0.16	5.0	0.16	U	1	ICPST	7/1/2006	19:41
Calcium	317.933	11.0	5000	11.0	U	1	ICPST	7/1/2006	19:41
Chromium	267.716	0.43	10.0	0.43	บ	1	ICPST	7/1/2006	19:41
Cobalt	228.616	0.49	50,0	0.60	В	1	ICPST	7/1/2006	19:41
Copper	324.753	0.33	25,0	-0.81	В	1	ICPST	7/1/2006	19:41
Iron	271.441	19.0	100	19.0	บ	1	ICPST	7/1/2006	19:41
Lead	220.353	1.1	3.0	-1.3	В	1	ICPST	7/1/2006	19:41
Magnesium	279.078	6.7	5000	6.7	U	1	ICPST	7/1/2006	19:41
Manganese	257.61	0.17	15.0	-0.28	В	1	ICPST	7/1/2006	19:41
Nickel	231.604	0.98	40.0	0.98	U	1 ;	ICPST	7/1/2006	19:41
Potassium	766.491	9.5	5000	210	В	1	ICPST	7/1/2006	19:41
Selenium	220.353	1.6	5.0	1.6	U	1	ICPST	7/1/2006	19:41
Silver	328.068	0.47	10.0	0.47	U	1 ;	ICPST	7/1/2006	19:41
Sodium	330.232	174	5000	-690	В	1	ICPST	7/1/2006	19:41
Thallium	190.864	2.6	10.0	2.6	U	1	ICPST	7/1/2006	19:41
Vanadium	292.402	0.72	50.0	0.72	U	1	ICPST	7/1/2006	19:41
Zinc	213.856	0.79	20.0	4.3	В	1	ICPST	7/1/2006	19:41

Comments: Lot #: C6F280229

Metals Data Reporting Form

Prepar	ration Blank	Results									
Lab Sa	mple ID:	H85AG	В	<u> </u>			:				
Matrix	: Soil	Units:	mg/kg	Prep	Date:	7/13/2	006	Pre	p Batch:	6194	4013
Lab Sample ID:											
	Element	1 1	IDL	- : :	Conc	0	DF	Instr		Anal Time	
	Mercury	253.7	0.012	0.10	0.014	B	1	CVAA	7/13/2006	8:33	1

Comments: Lot #: C6F280229

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: H814GB

Matrix: Water Units: ug/L Prep Date: 7/12/2006 Prep Batch: 6193012

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.023	0.20	0.023	U	1	CVAA	7/12/2006	8:42

Comments: Lot #: C6F280229

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

Form 3 Equivalent

Metals Data Reporting Form

Initial Calibration	Blank	Results
---------------------	-------	---------

Instrument:	ICPST	Units:	ug/L

Chart Number: T60701A.ARC

Standard Source: Standard ID:

			ICB1 7/1/2000									
Element	WL/ Mass	Report Limit	11:05 Al Found	м О	Found	0	Found	O	Found	0	Found	o
Aluminum	308.215	200	6.3	U								
Antimony	220.353	60	1.9	U			ļ					
Arsenic	189.042	10	1.0	U			Ì				ĺ	
Barium	493.409	200	0.2	U	1						İ	
Beryllium	313.042	5	0.2	U				:			ļ	
Cadmium	226.502	5	0.2	U							Ì	
Calcium	317.933	5000	11.0	U	! .			:				
Chromium	267.716	10	0.4	U	1			:				
Cobalt	228.616	50	0.5	U				:				
Copper	324.753	25	0.3	U								
Iron	271.441	100	19.0	U	İ			:				
Lead	220.353	3	1.1	U				:				
Magnesium	279.0 7 8	5000	6.7	U								
Manganese	257.61	15	0.2	U				1			ļ	
Nickel	231.604	40	1.0	U	•							
Potassium	766.491	5000	184.0	В			ļ					
Selenium	220.353	5	2.2	В	·		İ	:				
Silver	328.068	10	0.5	U	:			:				
Sodium	330.232		-440.0	В	i			:				
Thallium	190.864	10	2.6	U	,							
Vanadium	292.402		0.7	В	!			į				
Zinc	213.856	20	1.2	В			İ.,					

5.04.5

U Result is less than the IDL

B Result is between IDL and RL

Form 3 Equivalent

Metals Data Reporting Form

$\overline{}$		CY 141	T1 1 T5 14
	Antiniiino	Calibration	Blank Result
$\overline{}$	OTTOTALANTIE	Campianion	DIGITAL ICACATA

Instrument: ICPST Units: ug/L

Chart Number: T60701A.ARC

Standard Source: Standard ID:

							i				
		CCB1	_	CCB2	_	CCB3		CCB4		CCB5	
							- 1		-		
XX/F /	70	11:33 AI	м	12:41 PI	м	1:46 PM	1:46 PM		1	3:57 PM	
		Found	0	Found	0	Found	0	Found	0	Found	0
										-	
			-	Į		ı	:	1			В
1						ı		l .		l .	U
			-	1	_					1	U
493.409	200	0.2	U	0.2	บ	0.4	В	0.2	U	0.2	U
313.042	5	0.2	В	0.2	U	0.2	U :	0.3	В	0.4	В
226.502	5	0.2	U	0.2	U	0.2	\mathbf{U} :	0.2	U	0.2	U
317.933	5000	11.0	U	11.0	U	11.0	U '	11.0	U	11.0	U
267.716	10	0.4	U	0.4	U	0.4	\mathbf{U} .	0.4	U	0.4	U
228.616	50	0.5	U	-0.5	В	0.5	`U ;	0.5	U	0.5	U
324.753	25	-0.5	В	-0.5	В	-0.6	В	-1.0	В	-1.2	В
271.441	100	19.0	U	19.0	U	19.0	U	19.0	U	19.0	U
220.353	3	1.1	U	1.1	U	1.1	U .	1.1	U	1.1	U
279.078	5000	6.7	U	6.7	U	9.4	В	6.7	U	6.7	U
257.61	15	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
231.604	40	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
766.491	5000	178.0	В	199.0	В	204.0	В	203.0	В	211.0	В
220.353	5	1.6	U	2.4	В	2.2	В	1.6	U	1.6	U
328.068	10	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
330.232	5000	-570.0	В	-500.0	В	-450.0	В	-440.0	В	-400.0	В
190.864	10	2.6	U	2.9	В	2.7	В	2.6	U	2.6	U.
292.402	50	0.7	U	0.7	U	0.7	U :	0.8	В	0.8	В
213.856		1.3	В	1.3	В	2.0	В	1.8	В	1.2	В
	220.353 189.042 493.409 313.042 226.502 317.933 267.716 228.616 324.753 271.441 220.353 279.078 257.61 231.604 766.491 220.353 328.068 330.232 190.864 292.402	Mass Limit 308.215 200 220.353 60 189.042 10 493.409 200 313.042 5 226.502 5 317.933 5000 267.716 10 228.616 50 324.753 25 271.441 100 220.353 3 279.078 5000 257.61 15 231.604 40 766.491 5000 220.353 5 328.068 10 330.232 5000 190.864 10 292.402 50	WL/Mass Report Limit Found 308.215 200 6.3 220.353 60 1.9 189.042 10 1.0 493.409 200 0.2 317.933 5000 11.0 226.502 5 0.2 317.933 5000 11.0 228.616 50 0.5 324.753 25 -0.5 271.441 100 19.0 220.353 3 1.1 279.078 5000 6.7 257.61 15 0.2 231.604 40 1.0 766.491 5000 178.0 220.353 5 1.6 330.232 5000 -570.0 190.864 10 2.6 292.402 50 0.7	WL/Mass Report Limit Found O 308.215 200 6.3 U 220.353 60 1.9 U 189.042 10 1.0 U 493.409 200 0.2 U 313.042 5 0.2 B 226.502 5 0.2 U 317.933 5000 11.0 U 228.616 50 0.5 U 324.753 25 -0.5 B 271.441 100 19.0 U 220.353 3 1.1 U 257.61 15 0.2 U 257.61 15 0.2 U 231.604 40 1.0 U 766.491 5000 178.0 B 220.353 5 1.6 U 330.232 5000 -570.0 B 190.864 10 2.6 U 292.402 <td< td=""><td>WL/Mass Report Limit Found O Found 308.215 200 6.3 U 9.9 220.353 60 1.9 U 1.9 189.042 10 1.0 U 1.2 493.409 200 0.2 U 0.2 313.042 5 0.2 B 0.2 226.502 5 0.2 U 0.2 317.933 5000 11.0 U 11.0 267.716 10 0.4 U 0.4 228.616 50 0.5 U -0.5 324.753 25 -0.5 B -0.5 271.441 100 19.0 U 19.0 220.353 3 1.1 U 1.1 279.078 5000 6.7 U 6.7 231.604 40 1.0 U 1.0 766.491 5000 178.0 B 199.0</td><td>WL/Mass Report Limit Found O Found O 308.215 200 6.3 U 9.9 B 220.353 60 1.9 U 1.9 U 189.042 10 1.0 U 1.2 B 493.409 200 0.2 U 0.2 U 313.042 5 0.2 B 0.2 U 226.502 5 0.2 U 0.2 U 317.933 5000 11.0 U 11.0 U 267.716 10 0.4 U 0.4 U 228.616 50 0.5 U -0.5 B 324.753 25 -0.5 B -0.5 B 271.441 100 19.0 U 19.0 U 220.353 3 1.1 U 1.1 U 257.61 15 0.2 U 0.2 U <t< td=""><td>WL/Mass Report Limit Found O D</td><td>WL/Mass Report Limit Found O D<td>WL/Mass Report Limit Found O Found Q Pound Q</td><td>WL/Mass Report Limit 7/1/2006 11:33 AM 7/1/2006 12:41 PM 7/1/2006 2:52 PM 308.215 200 6.3 U 9.9 B 22.8 B 27.7 B 220.353 60 1.9 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0</td><td>WL/Mass Report Limit 7/1/2006 11:33 AM 7/1/2006 12:41 PM 7/1/2006 1:46 PM 7/1/2006 2:52 PM 3:57 PM 308.215 200 6.3 U 9.9 B 22.8 B 27.77 B 26.9 200,353 60 1.9 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0</td></td></t<></td></td<>	WL/Mass Report Limit Found O Found 308.215 200 6.3 U 9.9 220.353 60 1.9 U 1.9 189.042 10 1.0 U 1.2 493.409 200 0.2 U 0.2 313.042 5 0.2 B 0.2 226.502 5 0.2 U 0.2 317.933 5000 11.0 U 11.0 267.716 10 0.4 U 0.4 228.616 50 0.5 U -0.5 324.753 25 -0.5 B -0.5 271.441 100 19.0 U 19.0 220.353 3 1.1 U 1.1 279.078 5000 6.7 U 6.7 231.604 40 1.0 U 1.0 766.491 5000 178.0 B 199.0	WL/Mass Report Limit Found O Found O 308.215 200 6.3 U 9.9 B 220.353 60 1.9 U 1.9 U 189.042 10 1.0 U 1.2 B 493.409 200 0.2 U 0.2 U 313.042 5 0.2 B 0.2 U 226.502 5 0.2 U 0.2 U 317.933 5000 11.0 U 11.0 U 267.716 10 0.4 U 0.4 U 228.616 50 0.5 U -0.5 B 324.753 25 -0.5 B -0.5 B 271.441 100 19.0 U 19.0 U 220.353 3 1.1 U 1.1 U 257.61 15 0.2 U 0.2 U <t< td=""><td>WL/Mass Report Limit Found O D</td><td>WL/Mass Report Limit Found O D<td>WL/Mass Report Limit Found O Found Q Pound Q</td><td>WL/Mass Report Limit 7/1/2006 11:33 AM 7/1/2006 12:41 PM 7/1/2006 2:52 PM 308.215 200 6.3 U 9.9 B 22.8 B 27.7 B 220.353 60 1.9 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0</td><td>WL/Mass Report Limit 7/1/2006 11:33 AM 7/1/2006 12:41 PM 7/1/2006 1:46 PM 7/1/2006 2:52 PM 3:57 PM 308.215 200 6.3 U 9.9 B 22.8 B 27.77 B 26.9 200,353 60 1.9 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0</td></td></t<>	WL/Mass Report Limit Found O D	WL/Mass Report Limit Found O D <td>WL/Mass Report Limit Found O Found Q Pound Q</td> <td>WL/Mass Report Limit 7/1/2006 11:33 AM 7/1/2006 12:41 PM 7/1/2006 2:52 PM 308.215 200 6.3 U 9.9 B 22.8 B 27.7 B 220.353 60 1.9 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0</td> <td>WL/Mass Report Limit 7/1/2006 11:33 AM 7/1/2006 12:41 PM 7/1/2006 1:46 PM 7/1/2006 2:52 PM 3:57 PM 308.215 200 6.3 U 9.9 B 22.8 B 27.77 B 26.9 200,353 60 1.9 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0</td>	WL/Mass Report Limit Found O Found Q Pound Q	WL/Mass Report Limit 7/1/2006 11:33 AM 7/1/2006 12:41 PM 7/1/2006 2:52 PM 308.215 200 6.3 U 9.9 B 22.8 B 27.7 B 220.353 60 1.9 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0	WL/Mass Report Limit 7/1/2006 11:33 AM 7/1/2006 12:41 PM 7/1/2006 1:46 PM 7/1/2006 2:52 PM 3:57 PM 308.215 200 6.3 U 9.9 B 22.8 B 27.77 B 26.9 200,353 60 1.9 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0

^{5.04.5}

U Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Continuing Calibration Blank Result

Instrument:	ICPST	Units: ug/L

Chart Number: T60701A.ARC

Standard Source: _____ Standard ID: _____

			CCB6 7/1/200 5:03 PM		CCB 7/1/20 6:08 F	06	CCB8 7/1/200 7:14 PN		CCB9 7/1/200 8:19 PN	6	7/1/200	CCB10 7/1/2006 9:09 PM	
Element	WL/ Mass	Report Limit	Found	0	Found	0	Found	0	Found	0	Found	Q	
Aluminum	308.215	200	27.5	В	39.0	5 B	34.6	В	36.9	В .	45.0	В	
Antimony	220.353	60	1.9	U	1.9	U	1.9	U	1.9	U	1.9	U	
Arsenic	189.042	10	1.0	U	• 1.0	U	1.0	U ;	1.2	В	1.0	U	
Barium	493.409	200	0.2	U	0.2	U	0.2	U.	0.2	U	0.2	U	
Beryllium	313.042	5	0.4	В	0.4	В	0.5	B :	0.6	В	0.6	В	
Cadmium	226.502	5	0.2	U	0.2	2 B	0.2	U	0.2	U	0.2	В	
Calcium	317.933	5000	11.0	U	11.0	U	-12.0	В	-11.0	В	11.0	U	
Chromium	267.716	10	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	
Cobalt	228.616	50	0.5	U	0.5	5 U	0.5	U	0.5	U	0.5	U	
Copper	324.753	25	-0.9	В	-1.3	B	-1.0	B	-1.1	В	-1.1	В	
Iron	271.441	100	19.0	U	19.0	U	19.0	U	19.0	U	19.0	U	
Lead	220.353	3	1.1	U	1.	U	1.1	U	1.1	U	1.1	U	
Magnesium	279.078	5000	6.7	U	11.	7 B	6.7	U	6.7	U	8.0	В	
Manganese	257.61	15	0.2	U	0.3	2 U	0.2	U	0.2	U	0.2	U	
Nickel	231.604	40	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	
Potassium	766.491	5000	233.0	В	223.0) B	222.0	В	230.0	В	227.0	В	
Selenium	220.353	5	1.6	U	1.0	5 U	1.6	U	1.6	U	1.6	U	
Silver	328.068	10	0.5	U	0.5	U	0.5	U :	0.5	U	0.5	U	
Sodium	330.232	5000	-290.0	В	-460.0) В	-370.0	B ;	-460.0	В	-510.0	В	
Thallium	190.864	10	2.6	U	2.0	5 U	2.6	U	2,6	U	2.6	U	
Vanadium	292.402	50	0.7	U	0.3	7 U	0.7	บ	0.7	U	0.7	U	
Zinc	213.856	20	1.4	В	1.9	B	1.6	В	1.6	В	1.4	В	

^{5.04.5}

U Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Matrix Spike Sample Results

Spike Sample ID: H8DT9S

Original Sample ID: H8DT9 Client ID: GRSS1S

Matrix: Soil Units: mg/kg Prep Date: 6/29/2006 Prep Batch: 6180029

Weight: 1.00 Volume: 200 Percent Moisture: 3.595

	WL/	os		MS		Spike	%	os	MS		OS Anal	OS Anal	MS Anal	MS Anal
Element	Mass	Conc	0	Conc	0	Level	Rec	DF	DF	Instr	Date	Time	Date	Time
Aluminum	308.2	5450		6190	NC	414.92		1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Antimony	220.4	0.39	Ų	10.5	ΒN	20.746	50.5	1	_1_	ICPST	7/1/2006	18:41	7/1/2006	18:58
Arsenic	189.0	2.9		11.1		8.2983	99.2	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Barium	493.4	22.3	В	418		414.92	95.4	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Beryllium	313.0	0.40	В	10.0		10.373	92.4	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Cadmium	226.5	0.033	U	9.6		10.373	92.6	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Calcium	317.9	602	В	10500		10373	95.6	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Chromium	267.7	6.9		47.8		41.492	98.4	1	1	ICP\$T	7/1/2006	18:41	7/1/2006	18:58
Cobalt	228.6	5.5	В	103		103.73	94.4	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Copper	324.8	10.2		62.0		51.865	99.8	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Iron	271.4	13000		13800	NC	207.46		1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Lead	220.4	20.1		27.2	NC	4.1492		1	1	ICP\$T	7/1/2006	18:41	7/1/2006	18:58
Magnesium	279.1	1970		12000		10373	97.0	1	1	ICP\$T	7/1/2006	18:41	7/1/2006	18:58
Manganese	257.6	319		423		103.73	100.2	1	1	ICP\$T	7/1/2006	18:41	7/1/2006	18:58
Nickel	231.6	13.5		111		103.73	94.3	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Potassium	766.5	511	В	10600		10373	97.7	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Selenium	220.4	0.43	В	2.1		2.0746	81.1	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Silver	328.1	0.098	U	10.2		10.373	97.9	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Sodium	330.2	261	В	9950		10373	93.4	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Thallium	190.9	0.62	В	9.6		10.373	86.6	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Vanadium	292.4	6.9	В	105		103.73	94.7	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58
Zinc	213.9	42.9		148		103.73	101.5	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:58

Comments: Lot #: C6F280229 Sample #: 1Color:pre- brown, post- brwon, Texture:pre- medium, pos-t fine Artifacts. Stones, organic

5.04.5

U Result is less than the IDL

Form 5A Equivalent

B Result is between IDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

Duplicate analysis RPD was not within limits

Metals Data Reporting Form

Post Digest Spike S	ample Results	
Spike Sample ID:	H8DT9A	

Original Sample ID:

H8DT9

Client ID:

GRSS1

Matrix:

Soil

Units:

mg/kg

Prep Date: 6/29/2006

Prep Batch:

6180029

Weight:

1.00

Volume:

200

Percent Moisture:

3.595

Element	WL/ Mass	OS Conc	0	PDS Conc	0	Spike Level	% Rec	OS DF	PDS DF	Instr	OS Anal Date	OS Anal Time	PDS Anal Date	PDS Anal Time
Antimony	220.4	0.39	UN	4.0	BN	4.1492	97.4	1	1	ICPST	7/1/2006	18:41	7/5/2006	8:58

Comments: Lot #: C6F280229 Sample #: 1 Color:pre- brown, post- brwon, Texture:pre- medium, pos-t fine. Artifacts. Stones, organic

5.04.5

Result is less than the IDL

Form 5B Equivalent

Result is between IDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

Metals Data Reporting Form

Matrix Spike Sample Results

Spike Sample ID: H8DVGS

Original Sample ID: H8DVG Client ID: TW4\$

Matrix: Water Units: ug/L Prep Date: 6/29/2006 Prep Batch: 6180031

Weight: NA Volume: 50 Percent Moisture: NA

	WL/	os		MS		Spike	%	os	MS		OS Anal	OS Anal	MS Anal	MS Anal
Element	Mass	Conc	0	Conc	0	Level	Rec	DF	DF	Instr	Date	Time	Date	Time
Aluminum	308.2	356		2370		2000	101.0	i	1	ICPST	7/1/2006	19:52	7/1/2006	20:36
Antimony	220.4	1.9	U	107	1	100	106.9	1	1	ICP\$T	7/1/2006	19:52	7/1/2006	20:36
Arsenic	189.0	1.6	В	43.5		40	104.7	1	1	ICPST	7/1/2006	19:52	7/1/2006	20:36
Barium	493.4	73.6	В	2120		2000	102.2	1	1	ICP\$T	7/1/2006	19:52	7/1/2006	20:36
Beryllium	313.0	0.51	В	51.4		50	101.8	1	1	ICP\$T	7/1/2006	19:52	7/1/2006	20:36
Cadmium	226.5	0.16	U	51.2		50	102.4	1	1	ICP\$T	7/1/2006	19:52	7/1/2006	20:36
Calcium	317.9	29300		80600		50000	102.6	1	1	ICP\$T	7/1/2006	19:52	7/1/2006	20:36
Chromium	267.7	0.95	В	205		200	102.1	1	1	ICPST	7/1/2006	19:52	7/1/2006	20:36
Cobalt	228.6	0.62	В	506		500	101.0	1	1	ICPST	7/1/2006	19:52	7/1/2006	20:36
Соррег	324.8	0.33	U	262		250	104.9	1	1	ICPST	7/1/2006	19:52	7/1/2006	20:36
Iron	271.4	487		1390		1000	90.3	1	1	ICP\$T	7/1/2006	19:52	7/1/2006	20:36
Lead	220.4	1.1	U	19.8		20	98.9	1	1	ICP\$T	7/1/2006	19:52	7/1/2006	20:36
Magnesium	279.1	1860	В	53800		50000	103.9	1	1	ICPST	7/1/2006	19:52	7/1/2006	20:36
Manganese	257.6	26.3		543		500	103.3	1	1	ICPST	7/1/2006	19:52	7/1/2006	20:36
Nickel	231.6	0.98	U	501		500	100.3	1	1	ICPST	7/1/2006	19:52	7/1/2006	20:36
Potassium	766.5	5430		57300		50000	103.7	1	1	ICPST	7/1/2006	19:52	7/1/2006	20:36
Selenium	220,4	1.6	U	13.0	N	10	129.5	1	1	ICPST	7/5/2006	9:20	7/1/2006	20:36
Silver	328.1	0.47	Ū	51.4		50	102.8	1	1	ICPST	7/1/2006	19:52	7/1/2006	20:36
Sodium	330.2	31100		81800		50000	101.5	1	1	ICPST	7/1/2006	19:52	7/1/2006	20:36
Thallium	190.9	4.8	В	50.6		50	91.7	1	1	ICP\$T	7/1/2006	19:52	7/1/2006	20:36
Vanadium	292.4	0.72	U	506		500	101.2	1	1	ICPST	7/1/2006	19:52	7/1/2006	20:36
Zinc	213.9	8.3	В	532		500	104.8	1	1	ICPST	7/1/2006	19:52	7/1/2006	20:36

Comments: Lot #: C6F280229 Sample #: 7Color:pre-colorless, post-colorless. Clarity:pre-clear, post-clear

5.04.5

U Result is less than the IDL

Form 5A Equivalent

B Result is between IDL and RL

N Spike recovery failed

NC Percent recovery was not calculated

* Duplicate analysis RPD was not within limits

Metals Data Reporting Form

Post Digest Spike	Sample Results			· · · · · · · · · · · · · · · · · ·
Spike Sample ID:	H8DVGA			
Original Sample ID:	H8DVG	Client ID:	TW4	
Matrix: Water	Units: ug/L	Prep Date: 6/29/2006	Prep Batch:	6180031
Weight: NA	Volume: 50	Percent Moisture: N.	<u>A</u>	
				OS ppg ppg

Element	WL/ Mass	OS Conc	0	PDS Conc	0	Spike Level	% Rec	OS DF	PDS DF	Instr	OS Anal Date	OS Anai Time	PDS Anal Date	PDS Anal Time
Selenium	220.4	1.6	UN	12.6	N	10	125.8	1	1	ICPST	7/5/2006	9:20	7/5/2006	10:23

Comments: Lot #: C6F280229 Sample #: 7Color:pre- colorless, post- colorless. Clarity:pre- clear, post- clear

5.04.5

U Result is less than the IDLB Result is between IDL and RL

Form 5B Equivalent

N Spike recovery failed

NC Percent recovery was not calculated

Metals Data Reporting Form

Matrix Spike Sample Results

Spike Sample ID:

H8DT9S

Original Sample ID:

H8DT9

Client ID:

GRSS1S

Soil Matrix:

Units:

mg/kg

Prep Date: __7/13/2006

Prep Batch: __ 6194013

Weight:

Volume:

100

Percent Moisture:

3.595

Element	WL/ Mass	OS Conc	0	MS Conc	0	Spik Lev	12	% Rec	OS DF	MS DF	Instr	OS Anal Date	OS Anal Time	MS Anal Date	MS Anal Time
Mercury	253.7	0.062	В	1.1	N	0.5	86	203.1	<u>h</u>	1	CVAA	7/13/2006	8:36	7/13/2006	8:40

Comments: Lot #: C6F280229 Sample #: 1

5.04.5

U Result is less than the IDL

Result is between IDL and RL

Spike recovery failed

NC Percent recovery was not calculated

Duplicate analysis RPD was not within limits

3058

Form 5A Equivalent

Metals Data Reporting Form

Sample Duplicate RPD Report

Duplicate Sample ID: H8DT9X

Original Sample ID: H8DT9 Client ID: GRSS1X

Matrix: Soil Units: mg/kg Prep Date: 6/29/2006 Prep Batch: 6180029

Weight: 1.00 Volume: 200 Percent Moisture: 3.595

	WL/	os		Dupe			os	Dupe		OS Anal	OS Anal	Dupe Anal	Dupe Anal
Element	Mass	Conc	o	Conc	o	% RPD	DF	Dupe	Instr	Date	Time	Date	Time
Aluminum	308.215	5450		5900		8.0	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Antimony	220.353	0.39	UN	0.39	υ	:	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Arsenic	189.042	2.9	l i	3.8		27.3	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Barium	493.409	22.3	В	24.0	В	7.0	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Beryllium	313.042	0.40	В	0.42	В	5.0	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Cadmium	226.502	0.033	U	0.033	U	:	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Calcium	317.933	602	В	654	В	8.3	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Chromium	267.716	6.9		8.2		16.1	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Cobalt	228.616	5.5	В	5.8	в	6.1	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Copper	324.753	10.2	Е	10.9		6.3	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Iron	271.441	13000		13600		4.7	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Lead	220.353	20.1		34.0	*	51.6	1	1_	ICPST	7/1/2006	18:41	7/1/2006	18:52
Magnesium	279.078	1970		2100		6.3	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Manganese	257.61	319		323	İ	1.3	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Nickel	231.604	13.5		15.1		11.2	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Potassium	766.491	511	BE	554	В	8.1	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Selenium	220.353	0.43	В	0.33	U	200.0	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Silver	328.068	0.098	บ	0.098	ប		1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Sodium	330.232	261	В	322	В	21.2	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Thallium	190.864	0.62	В	0.54	U	200.0	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Vanadium	292.402	6.9	В	6.8	В	1.2	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52
Zinc	213.856	42.9		49.8		14.9	1	1	ICPST	7/1/2006	18:41	7/1/2006	18:52

U Result is less than the IDL

B Result is between IDL and RL

Duplicate analysis RPD was not within limits 3061.

Metals Data Reporting Form

Serial Dilution RPD Report

Serial Dilution	Sample ID:	H8DT9P

Original Sample ID: H8DT9 Client ID: GRSS1P

Matrix: Soil Units: mg/kg Prep Date: 6/29/2006 Prep Batch: 6180029

Weight: 1.00 Volume: 200 Percent Moisture: 3.595

	1 1			Serial				Ser	T	os	os	Ser Dil	Ser Dil
Element	WL/ Mass	OS Conc	0	Dilution Conc	0	Percent Diff	OS DF	Dil DF	Instr	Anal Date	Anal Time	Anal Date	Anal Time
Aluminum	308.215	5450		5520		1.5	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Antimony	220.353	0.39	UN	2.0	U		1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Arsenic	189.042	2.9		2.0	В	30.3	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Barium	493.409	22.3	В	22.3	В	0.0	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Beryllium	313.042	0.40	В	0.75	В	85.6	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Cadmium	226.502	0.033	ប	0.17	บ	·	1	5	ICPST	/1/2006	18:41	7/1/2006	18:47
Calcium	317.933	602	В	593	В	1.4	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Chromium	267.716	6.9		7.2	В	4.1	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Cobalt	228.616	5.5	В	5.4	В	1.6	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Copper	324.753	10.2		9.2	BE	10.0	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Iron	271.441	13000		13000		0.3	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Lead	220.353	20.1		20.6		2.5	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Magnesium	279.078	1970		1980	В	0.2	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Manganese	257.61	319		319		0.2	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Nickel	231.604	13.5		13.8	В	1.7	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Potassium	766.491	511	В	638	BE	24.9	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Selenium	220.353	0.43	В	1.7	U	100.0	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Silver	328.068	0.098	U	0.49	U		1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Sodium	330.232	261	В	. 180	U	1:00.0	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Thallium	190.864	0.62	В	2.7	U	100.0	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Vanadium	292.402	6.9	В	6.8	В	1.0	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47
Zinc	213.856	42.9		46.2		7.7	1	5	ICPST	7/1/2006	18:41	7/1/2006	18:47

Comments: Lot #: C6F280229 Sample #: 1 Color:pre- brown, post- brwon. Texture:pre- medium, post- fine. Artifacts. Stones, organ

5.04.5

U Result is less than the IDL

Form 9 Equivalent

Metals Data Reporting Form

Serial Dilution RPD Report

Serial Dilution Sample	ID:	H8DVGP

Original Sample ID: H8DVG Client ID: TW4P

Matrix: Water Units: ug/L Prep Date: 6/29/2006 Prep Batch: 6180031

Weight: NA Volume: 50 Percent Moisture: NA

	Element	WL/ Mass	OS Conc	o	Serial Dilution Conc	o	Percent Diff	OS DF	Ser Dil DF	Instr	OS Anal Date	OS Anal Time	Ser Dil Anal Date	Ser Dil Anal Time
_ :	Aluminum	308.215	356		500	ΒE	40.7	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Antimony	220.353	1.9	U	9.5	U		1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Arsenic	189.042	1.6	В	5.0	U	100.0	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Barium	493.409	73.6	В	73.0	В	0.9	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Beryllium	313.042	0.51	В	2.6	В	400.0	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
1	Cadmium	226.502	0.16	U	0.80	U		1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
ì	Calcium	317.933	29300		28800		1.8	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Chromium	267.716	0.95	В	2.2	U	100.0	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Cobalt	228.616	0.62	В	2.4	U	100.0	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Copper	324.753	0.33	U	1.6	U		1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Iron	271.441	487		414	В	15.1	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Lead	220.353	1.1	U	5.5	U		1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Magnesium	279.078	1860	В	1810	В	2.6	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Manganese	257.61	26.3		25.6	В	2.6	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Nickel	231.604	0.98	U	4.9	U		1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Potassium	766.491	5430		5900	В	8.6	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Selenium	220.353	1.6	UN	8.0	U		1	5	ICPST	7/5/2006	9:20	7/1/2006	20:25
1	Silver	328.068	0.47	U	2.4	U		1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
ļ	Sodium	330.232	31100		31700	ļ	1.8	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
1	Thallium	190.864	4.8	В	13.0	U	100.0	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
İ	Vanadium	292.402	0.72	U	3.6	U		1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25
	Zinc	213.856	8.3	В	26.4	В	218.3	1	5	ICPST	7/1/2006	19:52	7/1/2006	20:25

Comments: Lot #: C6F280229 Sample #: 7Color:pre- colorless, post- colorless. Clarity:pre- clear, post- clear

5.04.5

Form 9 Equivalent

U Result is less than the IDL

B Result is between IDL and RL

RETEC, Port Jervis MGP

Total Cyanide

Lab Name:

STL PITTSBURGH

Method:

ICLP

ILM04.0/4.1

Client Name:

The RETEC Group, Inc.

Report ID:

C6F280229

Matrix:

SOLID

Date/Time Received:

6/28/2006 9:10:00AM

Client Sample ID	Sample Number	Workorder	Result	Units	Reporting Limit	Prep/ Analysis Date	QC Batch	RPD / Limit (%)
GRSS1	001 DUP	H8DT91DV	0.20 8	mg/kg	0.52	7/7/2006 - 7/10/2006	6188304	18 / 40
TW5 DUP	008 DUP	H8DVJ1A7	ND	ug/L	10.0	7/7/2006 - 7/10/2008	6188305	1.5 / 20
BLK - C6G070000304B	304 MB	H8TME1AA	0.10 B	mg/kg	0.50	7/7/2006 - 7/10/2006	6188304	
BLK - C6G070000305B	305 MB	H8TMF1AA	ND	ug/L	10.0	7/7/2006 - 7/10/2006	6188305	

C6F280229

Data Usability Summary Report

DATE:

August 10, 2006

TO:

Mr. Scott Hauswirth

The RETEC Group, Inc.

1001 West Seneca Street, Suite 204

Ithaca, NY 14850

FROM:

Gregory A. Malzone

Data Validator

SUBJECT: Orange and Rockland – Port Jervis

June 2006 Air Sampling Event

Data Validation:

Air Toxics Ltd. Work Orders:

0606679AR1

0606679B

Orange and Rockland, Port Jervis Data Validation Report

Overview

The following air and soil gas samples were collected at the Port Jervis (28 Pike Street) site on June 26, 2006 and were analyzed by Air Toxics Ltd., 180 Blue Ravine Road, Suite B, Folsom, CA95630 in work order (WO) 0606679A/B.

Air Toxics LTD., 180 Blue Ravine Road, Suite B, Folsom, CA, 95630 analyzed the air samples for Volatile Organic Compounds (VOCs) using USEPA Compendium Method TO-15 and modified ASTM D1945 for helium as indicated below.

GRIA4 GRAMBUP GRIA3 GRIA3DUP GRSG4¹ GRSG3¹

Sample GRIA3DUP is the field duplicate of GRIA3.

Summary

Data quality for this organic analysis was evaluated by reviewing the following parameters: holding times, GC/MS tuning and performance, internal standards, initial and continuing calibrations, continuing calibration verifications (CCVs), surrogate recoveries, laboratory control standards (LCS), laboratory blanks, field duplicates, compound identification, and compound quantitation.

The Form 1s attached as Appendix A were revised to include the data validation qualifiers. All USEPA-defined data qualifiers and changes made by the data validator were added in red ink. A glossary of data qualifier definitions is included as Attachment 1.

All samples were analyzed successfully and the results are useable with some qualification. Completeness of 100% was achieved for this data set.

Each specific issue of concern with respect to data usability is addressed below. Support documentation for data qualifications was included in Appendix B. Specific page references are provided in each item header for the supporting documentation.

WO 0606679A

Volatile Organic Compounds

- a. Calibrations (pp. 0242-0252, 0259, 0375-0378, 0389): The initial calibration relative standard deviations (RSDs) for chloroethane, isopentane, and 2-butanone were greater than the 30% specification limit on 07-12-06 on instrument msd7.i. All samples were affected. All results for chloroethane were nondetect. Therefore, validation action was not required. All results reported for isopentane and the 2-butanone results for samples GRSG3 and GRSG4 were positive and were qualified "J," as estimated concentrations. The direction of bias cannot be determined.
- b. Laboratory Control Sample Recoveries (pp. 0394-0397): The percent recovery (%R) for chloroethane was less than the lower quality control limit of 70% and the %Rs for 1,2,4-trichlorobenzene and naphthalene were greater than the upper quality control limits of 130% for LCS 0606679A-09A. An LCS %R outside of the quality control limits is an indication of poor laboratory and/or method accuracy. All samples were affected. All chloroethane results were nondetect and were qualified as estimates, "UJ," because of low bias. The results reported for 1,2,4-trichlorobenzene and naphthalene were nondetect. Therefore, validation action was not

Sample was submitted for helium analysis using modified method ASTM D1945.

required in response to the high method bias.

c. Field Duplicates (pp. 0059-0061, 0081-0083): Samples GRIA3 and GRIA3DUP were the primary and field duplicate samples collected for this sampling event. The positive results are presented in the table below to evaluate precision and sample homogeneity. An RPD greater than the advisory limit of 25% is an indication of poor field and/or laboratory precision or sample heterogeneity with respect to that compound.

Field Duplicate Comparison Orange and Rockland, Port Jervis

Analyte	GRIA3 (ppbv)	GRIA3DUP (ppbv)	RPD (%)	Qualifications
Benzene	15	12	22	
Toluene	9.2 J ¹	12 J ¹	26	J/J
m,p-Xylene	2.5	3.0	18	
Acetone	35	29	19	
Hexane	22	22	0	
Ethanol	860	800	7	
Heptane	13	14 U	NC	±RL None
2-Methylpentane	20	20	0	
Isopentane	120 J ²	130 J ²	8	

- J¹: Result was qualified as an estimated concentration because the RPD between the original and field duplicate sample exceeded the maximum advisory limit of 25% RPD.
- J²: Result was qualified as an estimated concentration due to an initial calibration nonconformance.

WO 0606679B

Helium Analysis

No data quality issues were noted. No data qualifications were required.

Notes

The sampler did not sign and date the chain-of-custody record to indicate the samples were relinquished from the field.

The original report was revised to: 1) report estimated concentrations for methyl tert-butyl ether that were below the reporting limit but greater than the method detection limit, 2) remove the incorrectly reported TIC result for cyclohexane for sample GRIA3DUP, and 3) report the correct percent recoveries from the continuing calibration verification standard analysis. The report was reissued as 0606679AR1.

Tentatively Identified Compounds (TICs) were identified by the laboratory and are included on the Form 1s.

The data were reviewed according to USEPA Compendium Method TO-15, Determination of VOCs in Air Collected in Specially Prepared-Canisters and Analyzed by Gas Chromatography / Mass Spectrometry (GC/MS), January 1999, and with reference to USEPA Contract Laboratory Program National Functional

Client Work Product Private and Confidential

Guidelines for Organic Data Review, October 1999, document number EPA540/R-99/008.

Attachments

Glossary of EPA-defined data qualifier codes.

Appendices

- 1. Appendix A Data Summary
- 2. Appendix B Support Documentation

Attachment 1 of 1

Glossary of Data Qualifier Codes

GLOSSARY OF DATA QUALIFIER CODES

- U The analyte was analyzed for, but was not detected above the level of the reported samples quantitation limit.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximated and may be inaccurate or imprecise.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- Tentative identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling events.
- NJ Qualitative identification, questionable due to poor resolution. Presumptively present at approximate quantity.
- R The data are unusable. The sample results are rejected due to serious deficiencies in the ability to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Appendix A

Data Summary Tables

Appendix B

Support Documentation

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 0606679AR1

Work Order Summary

CLIENT: Mr. Scott Hauswirth BILL TO: Mr. Scott Hauswirth

The RETEC Group, Inc.

The RETEC Group, Inc.

1001 W. Seneca St.

1001 W. Seneca St.

Suite 204 Suite 204

Ithaca, NY 14850 Ithaca, NY 14850

PHONE: 607-277-5716 P.O.#

FAX: PROJECT # ORAN2-19643-200 Port Jervis SI-28 Pike

DATE RECEIVED: 06/29/2006

CONTACT: St. Kelly Buettner

O7/14/2006

DATE REISSUED: 08/07/2006

			RECEIPT
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.
01A	GRIA4	Modified TO-15	4.5 "Hg
02A	GRAMBUP	Modified TO-15	3.5 "Hg
03A	GRIA3	Modified TO-15	6.0 "Hg
04A	GRIA3DUP	Modified TO-15	1.0 "Hg
05A	GRSG4	Modified TO-15	5.0 "Hg
05AA	GRSG4 Duplicate	Modified TO-15	5.0 "Hg
06A	GRSG3	Modified TO-15	3.5 "Hg
07A	Lab Blank	Modified TO-15	NA
08A	CCV	Modified TO-15	NA
09A	LCS	Modified TO-15	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: 08/08/06

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004

NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/06, Expiration date: 06/30/07

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 The RETEC Group, Inc. Workorder# 0606679AR1

Six 6 Liter Summa Special (100% Certified) samples were received on June 29, 2006. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 1.0 liter of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

Method modifications taken to run these samples are summarized in the below table. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	+- 30% RSD with 2 compounds allowed out to < 40% RSD	30% RSD with 4 compounds allowed out to < 40% RSD
Daily Calibration	+- 30% Difference	= 30% Difference with four allowed out up to </=40%.;<br flag and narrate outliers
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request

Receiving Notes

The Chain of Custody was not relinquished properly. The discrepancy was noted in the Sample Receipt Confirmation email/fax.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

The reported LCS for each daily batch has been derived from more than one analytical file.

THE WORK ORDER WAS RE-ISSUED ON 8/7/06 FOR THE FOLLOWING:

1) TO REPORT ESTIMATED VALUES FOR METHYL TERT-BUTYL ETHER RESULTS THAT

AIR TOXICS LTD.

AN ENVIRONMENTAL ANALYTICAL LABORATORY

ARE BELOW THE REPORTING LIMIT BUT GREATER THAN THE METHOD DETECTION LIMIT IN SAMPLES GRIA3, GRIA3DUP, GRSG4 AND GRSG4 DUPLICATE. CONCENTRATIONS THAT ARE BELOW THE LEVEL AT WHICH THE CANISTER WAS CERTIFIED MAY BE FALSE POSITIVES.

- 2) TO REMOVE THE INCORRECTLY REPORTED RESULT FOR CYCLOHEXANE AS A TENTATIVELY IDENTIFIED COMPOUND (TIC) IN SAMPLE GRIA3DUP.
- 3) TO REPORT THE CORRECT CCV FILE.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Sample Discrepancy Report If Section III or IV is filled out CSR must be notified within 24 hrs of initiation Initiated By Given To File to folder Sections (:=:II/III/IV must be filled out by person initiating this Sample Discrepancy Report #Popular Control of Control of Control Workorder(s) affected: 0606679 Sample(s) affécted li: Sample Receipt Discrepancies (Documention Cover Page of Sample Receipt Confirmation and in Receiving Notes of Lab Narrative) COC improperly relinduished / received. Flow controller used - canister samples received at ambient or under pressure COC was not filled out in ink No brass cap on canister (do not narrate). Sample tags / labels do not match the OOC VOA vial for RSK-175 analysis received with headspace bubble <5mm (do:notinarrate) ☐ Samples received at wrong temperature (≠ 4±2 ° ⊙); ice / blue ice (oircle one) was present. A temp: blank was / was //oi/present (oircle one). Other (describe below) Sample container (Tube/VOA vial) was received broken *hówever* sample was intact Describe the Discrepancy: Initials: Date! III. Sample Receipt Discrepancies requiring CSR notification (document on Gover Page of Sample Receipt Confirmation and in Receiving Notes of Lab Narrative) COO was not received with samples // Tedlar Bag received leaking //flat (circle one) Sample can /:cannot (circle one) be analyzed Analysis method(s) is not specified / incorrectly specified (circle one) on the COC ☐ Canister leaked to ambient during pressurization Number of samples on the QOC does not match the □ Tedlar/bag:/.canister:received emitting:a:strong.odor humber of samples that were received sample can / cannot (circle one) be analyzed . □ Samples were received expired Canister sample received at >15"Hg (not identified U as a Trip/Field Blank). Sampling date / time is not documented for some / <u>any</u> samples (circle one). ☑ Trip Blank received at low;vacuum (≦:25 Hg) Samples received at wrong temperature Tedlar Bag for Sulfur analysis has metal fitting. no coolant present / coolant melted (circle one) Incorrect sampling media / container for analysis Sample container (Tube/VOA vial/DNPH Bottle, etc. requested. was received broken / leaking (circle one) : Custody Seal on the outside of the container was VOA vial for RSK-175 analysis received with proken / improperly placed (circle one). headspace bubble >5mm Other (describe below) Samples for RSK-175 CO2 analysis received: preserved with HCI Describe the Discrepancy:

Air Toxics Ltd.

Revised 04/02/04

Date:

initials:

INITIAL CALIBRATION DATA

Start Cal Date : 12-JUL-2006 13:27 End Cal Date : 13-JUL-2006 19:24 Quant Method : ISTD

Origin : Disabled Target Version : 3.50

Integrator : HP RTE
Method file : /chem/msd7.i/7-13jul.b/t141712a.m
Cal Date : 14-Jul-2006 10:41 jgray
Curve Type : Average

Calibration File Names:

Level 1: /chem/msd7.i/7-12jul.b/7071203.d Level 2: /chem/msd7.i/7-13jul.b/7071303.d Level 3: /chem/msd7.i/7-13jul.b/7071306.d Level 4: /chem/msd7.i/7-13jul.b/7071307.d Level 5: /chem/msd7.i/7-13jul.b/7071308.d Level 6: /chem/msd7.i/7-13jul.b/7071309.d Level 7: /chem/msd7.i/7-13jul.b/7071310.d

	0.05000 Level 1	Level 2	Level 3	Level 4	Level 5	Level 6		% RSD
	40.000 Level 7	, ! !		i i	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	 	 	
1 Propylene	+++++ 1.93094	+++++ 	2.32272	2.01962	2.06716 	1.92185	2.05246	7.938
	+++++	•	+++++ 	! +++++ !	+++++ 	+++++	+++++	++++
168 1,2-Dibromo-3-chloropropane	+++++	' +++++ 	 +++++ 	 ++++ 	+++++ 	' +++++ 	+++++	
	+++++	+++++ 	+++++ 	+++++ 	+++++ 	+++++	+++++	+++++
2 Freon 152A	+++++	+++++ 	'	' +++++ 	 +++++ 		+++++	
3 Dichlorodifluoromethane/Fr12	1 +++++	5.95838 	5.94297	5.77312	6.05864 6.05864	5.68780 	5.83593¦	3.066
4 Freon 114	1 +++++	3.86061	3.96877		'	3.64847	•	

INITIAL CALIBRATION DATA

Start Cal Date : 12-JUL-2006 13:27 End Cal Date : 13-JUL-2006 19:24

Quant Method : ISTD
Origin : Disabled Target Version : 3.50

Integrator : HP RTE
Method file : /chem/msd7.i/7-13jul.b/t141712a.m
Cal Date : 14-Jul-2006 10:41 jgray

Curve Type : Average

	0.05000	0.10000	0.50000	2.000	10.000	20.000		
Compound	Level 1							% RSD
	40.000		 	 	i		l !	
	Level 7	I	i	i 1	1	ı	·	
5 Chloromethane	+++++					'		=======
•	1.80863	I	ı i		l i	ı	2.11691	
	+++++		·				•	
•	1 2.04134	I	ı		ı i	ı	2.11230	2.86
7 Freon 22	+++++	 +++++	 +++++	 +++++		+++++		
	+++++		i I	1	'	i	+++++	
8 1,3-Butadiene	+++++				•	1.573551		
- 1,- 5	1 1.55156						1.56079	3.33
9 Bromomethane	+++++							
5 Bromome ename	1.19742						1.39582	
10 Chloroethane	+++++			-	•		•	
10 ontolocchane	0.52241		1.11002				0.94815	
11 Isopentane				·			•	
11 13opencane	0.48915			•			1.20851	
12 Vinyl Bromide	 +++++		+++++					
12 VIIIyi Biomide	1 +++++	 	+++++		,	+++++ 	+++++ 1	+++++
12 Trichloroflyeromethers (Full							-	
13 Trichlorofluoromethane/Fr11	1 5.73124					5.77833		2.949
			,		,	·		
14 Acrolein	+++++	+++++ i	•	+++++	+++++	+++++	+++++	++++
	_ll	·		l	1		1	

INITIAL CALIBRATION DATA

Start Cal Date : 12-JUL-2006 13:27

End Cal Date : 13-JUL-2006 19:24
Quant Method : ISTD
Origin : Disabled Target Version : 3.50

	0.05000	0.10000	0.50000	2.000	10.000	20.000 [
Compound	Level 1							% RSD
	40.000	'			ı	ı		
	Level 7		i :	l .	1	1		
15 Ethanol	+++++				•			
	0.83658		[0.73441	
16 Pentane	+++++	+++++	+++++			+++++	1	
	+++++		'		I		+++++ 1	
17 1,1-Dichloroethene								
	1.16712				'		1.192451	
18 Freon 113	+++++		'		'		,	
	2.88302						3.00944	
19 Acetone	+++++					3.30186		
	3.35757						3.36669	
20 Carbon Disulfide	'		'		'	4.867111		
	4.88917		'				4.79415	
21 2-Propanol	+++++							
	3.58268					1		
22 3-Chloropropene								
	1 1.08664						0.93912	
23 Acetonitrile					+++++			
	+++++				l		+++++	
24 2-Methylpentane								
	1.54776				F		1.49787	
						1		

INITIAL CALIBRATION DATA

Start Cal Date : 12-JUL-2006 13:27 End Cal Date : 13-JUL-2006 19:24

Quant Method : ISTD
Origin : Disabled
Target Version : 3.50

	1 0.05000	0 10000 1	0.50000 1	2.000	10.000	20.000 1		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	40.000					I	1	1
	Level 7		I	i	i	i	·	i
**************************************		=======	=======================================		========	+++++	========	=======================================
163 tert-Butyl alcohol	+++++	+++++	+++++	1	1		+++++	+++++
25 Methylene Chloride					·	,		
·	1.67065						1.76923	
26 MTBE	+++++	'	'			,		I
	5.58958					,	5.03571	
27 trans-1,2-Dichloroethene						•	•	
	1.09853						1.07328	
28 Acrylonitrile	+++++		·	· ·	+++++		 	
· · · · · · · · · · · · · · · · · · ·	+++++	l .	'				+++++	·
29 Hexane	1 +++++							
	3.03392						2.87312	
	++++					+++++		
	+++++					•	+++++	
30 l,1-Dichloroethane						,		1
	3.62609			 			3.49454	
31 Vinyl Acetate	+++++	'						
	2.54293			'	 	'	1.33451!	62.850!
32 Chloroprene	+++++	+++++	+++++	++++	++++	'		1
	+++++	 					+++++	+++++
	I	 			 			

Report Date : 14-Jul-2006 10:41

Air Toxics Ltd.

INITIAL CALIBRATION DATA

Start Cal Date : 12-JUL-2006 13:27 End Cal Date : 13-JUL-2006 19:24

Quant Method : ISTD
Origin : Disabled Target Version : 3.50 Integrator : HP RTE
Method file : /chem/msd7.i/7-13jul.b/t141712a.m
Cal Date : 14-Jul-2006 10:41 jgray
Curve Type : Average

	[0.05000 [0.10000	0.50000	2.000 I	10.000	20.000		
Compound	Level l						RRF	% RSD
	1 40.000							
	Level 7		ı	ı I	ŀ	i	ĺ	
	======= +++++	======	+++++	+++++	+++++ [+++++	:: 	
too Benyi-tere-bucyl echel	+++++	11111		1		1	+++++ 1	++++
34 2-Butanone	 ++++	'				0.923721	'	
34 Z-Bucanone	0.94410		0.091031	0.755451	0.000251	· ·	0.74843	32.84
		'	,	'			'	
33 cis-1,2-Dichloroethene	+++++ 1.26878		1.1/163	1.21160	1.286421	•	1.221941	
	()				1	1	1	
162 Ethyl Acetate	+++++		+++++	+++++	+++++ 1		; +++++ (+++++
						i		
35 Tetrahydrofuran		•	•		•	2.29253	1	
	2.33422					·	2.299391	
37 Chloroform			3.91722	3.81539	3.99193	3.93043		
	3.90667			·			3.88389	
40 2,3-Dimethylpentane	+++++				'			
	0.27761		1				0.27554	
38 Cyclohexane	+++++			·	,			
	1 2.37161			'	•	•	2.32900	
39 1,1,1-Trichloroethane	·					•		
05 1/1/1 1120/1201000/min	4.41967					1		4.23
41 Carbon Tetrachloride						•		-
AT CALDON SECTACUTORIDE	+++++				4.393/6	•	3.98824	11.33
								 -

INITIAL CALIBRATION DATA

Start Cal Date : 12-JUL-2006 13:27

End Cal Date : 13-JUL-2006 19:24
Quant Method : ISTD
Origin : Disabled Target Version : 3.50

	0.05000	0.10000	0.50000	2.000 I	10.000	20.000		
Compound	Level 1							% RSD
	40.000		l l					
	Level 7		 	 == ===	 			
43 2,2,4-Trimethylpentane	+++++					3.68456	l	ı
	3.56418			 1	 - 	'	3.54675	
44 Benzene	+++++		1.31230					I
	1.10576 		 		'		1.31243	18.406
166 tert-Amyl methyl ether	1 +++++		+++++	+++++	+++++	+++++		l
	+++++ 		 	 			+++++ 	
45 1,2-Dichloroethane	+++++		0.64268				l I 0.62179	l 5.137
	0.62309		•					
46 Heptane	+++++		0.70803	0.72105			l 1 0.72947	I 2.500
			'	'				
47 Thiophene	+++++						l I 0.78270	i 1 3.766
			'			'		
49 Trichloroethene	1 0.48882		0.50206 				l 0.52227	 5.109
			•					
50 1,2-Dichloropropane	1 0.42009) 0.41257 				 0.40992	l 6.427
	'			'		•		
51 1,4-Dioxane	+++++		0.22203				 0.25038	 19.142
	1	'	'	'	'	'	'	
52 Bromodichloromethane	0.86679		0.77303 				l 0.82445	 10.716
			l					
			'	·		ı	·	·

INITIAL CALIBRATION DATA

Start Cal Date : 12-JUL-2006 13:27 End Cal Date : 13-JUL-2006 19:24

Quant Method : ISTD
Origin : Disabled Target Version : 3.50

						20.000		
Compound	Level 1					Level 6	RRF	% RSD
	1 40.000			ı				
	Level 7		l .	l	. 1	1		
33 cis-1,3-Dichloropropene	+++++ +++++					0.69816		======
	0.69143		l	ı		•	0.61555	
54 4-Methyl-2-pentanone	- +++++					•	,	
	! 1.02245		l	1	1		0.88895	
 66 Toluene	 +++++	'	'			•	'	
	1 1.30677		l	I	1		1.38101	
57 trans-1,3-Dichloropropene	-1	'		•		•	'	
	0.86474		l i	I	I	•	0.72241	
58 1,1,2-Trichloroethane	-i ++++	'				'		
	0.56440	'	l i		•	•	0.55412	
59 Tetrachloroethene	- ++++	'				0.69102		
	0.65110		1 1	'	,		0.68022	
 60 2-Hexanone	•		•			0.62770		
	0.64276			1	,		0.54269	
51 Dibromochloromethane	- +++++		•			•		
	! 0.90848			i	Ī	1	0.82350	15.5
62 1,2-Dibromoethane	-		•		,	0.89287		
	0.87154		I 1		ı	1	0.81819	13.4
 63 Octane	- +++++	+++++	 +++++	+++++ 1	+++++	+++++ }		
	+++++	ı	I I	i	i	1	+++++	+++++

INITIAL CALIBRATION DATA

Start Cal Date : 12-JUL-2006 13:27 End Cal Date : 13-JUL-2006 19:24

Quant Method : ISTD
Origin : Disabled Target Version : 3.50

[Compound	0.05000 Level 1							% RSD
1	40.000		 		I	I	1	l 1
	Level 7			1	. !	ŀ		I
65 Chlorobenzene	1 +++++	1.30115	1.26931 	1.29072 	1.32744	1.29698 1	1.28778	1 2.295
! 66 Ethyl Benzene	1 +++++	0.61469	0.66537	0.69866	0.74090 .	0.71871	0.68796	6.417
67 m,p-Xylene	0.78493	0.76692	0.80579	0.85672 	0.87357¦	0.83140	0.81216	5.297
68 o-Xylene	+++++	0.78997	0.77501	0.81393 	0.85246 	0.81164 	0.80125	1 3.970
69 Styrene	+++++	0.90360	1.04119	1.18643 	1.32477	1.28988 	1.16224	13.826
70 Bromoform	+++++ 0.74030	0.52737	0.55470 	0.66510 	0.78464 	0.76301	0.67252	16.337
71 Cumene	2.78044	2.70538	2.83910 	3.05107	3.15318	2.98754	2.91945	5.897
72 1,3-Dichloropropane	+++++	+++++	+++++ 	+++++	+++++	+++++ 	 	
74 1,1,2,2-Tetrachloroethane	+++++	0.97809 	1.10105 ا ا	1.17416 	1.20148	ĺ	 1.12685	7.098
75 Propylbenzene		3.47882	3.50442	3.75203 	3.86185 	3.63544	3.60268	5.0201
1	[[I	I		I	

INITIAL CALIBRATION DATA

Start Cal Date : 12-JUL-2006 13:27 End Cal Date : 13-JUL-2006 19:24

Quant Method : ISTD
Origin : Disabled Target Version : 3.50

	1 0.05000	0.10000	0.50000	2.000	10.000	20.000	<u> </u>	na _e
Compound	Level 1				Level 5			% RSD
	40.000		l	l	I		 	'
	Level 7		l 	l 	l 		 	
76 1,2,3-Trichloropropane	+++++	+++++	+++++	+++++	+++++	+++++	l ————————————————————————————————————	l
	+++++		l 	l 	! ! 		+++++	+++++
77 4-Ethyltoluene	+++++		•		3.14651		'	l
	1 2.79776			•	l 		2.90452	5.586
78 1,3,5-Trimethylbenzene	+++++		'		2.37509	•	•	1
	2.16847		l	l	!		2.22139	. 5.032
79 Dibromomethane	+++++	+++++	+++++	+++++	+++++	+++++		
	+++++		!	l	l		+++++	+++++
80 tert-Butylbenzene	+++++ ++++	+++++	+++++	+++++	+++++	+++++		
	+++++		l	l	l		+++++	+++++
81 1,2,4-Trimethylbenzene		1.85364	!	2.24348	2.36244	2.27050	•	
	2.16944		I	I	I	'	2.16331	
82 sec-Butylbenzene	 +++++	+++++	+++++		 +++++			
	+++++		I	1	I	:	+++++	+++++
83 p-Cymene	 ++++	+++++				+++++		
to I there	+++++		I	I	I		+++++	+++++
84 1,3-Dichlorobenzene		1.26070	'	'	1.44955	•	'	
J. 175 DIGHTOLONGHEGHO	1.29815				i 1.44555		1.38256	i 6.141
85 1,4-Dichlorobenzene	! +++++		'	'	1.47678		'	-
03 1,4-DICHIOLODSHZEHE	1 1.320661		1.33312	1 1.44407	1.47070	1.40550	1.37134	6.675
	!			i				
			'		'			

INITIAL CALIBRATION DATA

Start Cal Date : 12-JUL-2006 13:27 End Cal Date : 13-JUL-2006 19:24

End Cal Date

Quant Method : ISTD : Disabled 2 50 Target Version : 3.50

Integrator : HP RTE
Method file : /chem/msd7.i/7-13jul.b/t141712a.m

Cal Date : 14-Jul-2006 10:41 jgray Curve Type : Average

	1 0.05000	0.10000	0.50000	2.000	10.000	20.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
								l
	40.000 Level 7		l .]	l :			
			 ========	=======			======	; ========
86 alpha-chlorotoluene	+++++	1.49840	1.94774	2.28375	2.60724	2.57110	· 	
	2.54459		I	l l	i I	'	2.24213	
87 Indan			'		'	2.55442		
	1 2.49989		1	l	l		2.71829	9.2
00 Pubulbanana	1	-			 +++++			
88 Butylbenzene	+++++	!	+++++		++++++		+++++	+++++
			'		'			
89 1,2-Dichlorobenzene	+++++		1.42258	1.44216	1.42373	1.36723	1.33988	9.7
	,		 	 	'	 		
90 Indene	+++++	++++	1.09711	1.38412	1.65401	1.69934	1	
	1.74478		!			 	1.51587	
91 Hexachloroethane	+++++	+++++	 +++++	 +++++	 +++++	+++++		
	+++++		I I	1 1	1	1	+++++ 1	+++++
92 1,3,5-Trichlorobenzene								
92 1, 3, 3-111Chloropenzene	+++++	+++++			++++++	· • • • • • • • • • • • • • • • • • • •	+++++	++++
93 1,2,4-Trichlorobenzene						0.76691		
	0.68567		i		'		0.64527	_
94 Hexachlorobutadiene	+++++					0.58931		
	0.52132			'	•	·	0.549661	
95 Naphthalene		+++++		'	'	2.846721	•	
so naphenatene	1 2.60170		. 2.35501	2.004301			2.37144	23.6

INITIAL CALIBRATION DATA

Start Cal Date : 12-JUL-2006 13:27 End Cal Date : 13-JUL-2006 19:24

Quant Method : ISTD Origin : Disabled Target Version : 3.50

I	0.05000 0.10000 0.50000 2.000 10.000 20.000	- 1
Compound	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 RRF % RS	3D 1
1		- 1
1	40.000	i
1	Level 7	1
		:===[
\$ 42 1,2-Dichloroethane-d4	1.79552 1.77648 1.83520 1.80176 1.84990 1.87570	1
f.	1.94361 1.83974 3.	1071
		·I
\$ 55 Toluene-d8	0.92870 0.94752 0.94850 0.95673 0.97858 0.98245	- 1
L	0.98493 0.96106 2.	224
1		1
\$ 73 Bromofluorobenzene	0.58571 0.54436 0.55663 0.56373 0.56350 0.54662	1
F.	0.53602 0.55665 2.	951
I		
1		1

Initial Calibration Narrative t14l712a

A seven-point initial calibration was analyzed on MSD-7 on 7/12/06 and 7/13/06. As noted on the accompanying analytical run logs, levels 2-4 were re-analyzed with a new standard due to an error in preparing the original standard used for those levels.

A five-point initial calibration was also performed on MSD-7 on 7/13/06 for the Retec specials.

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: CCV Lab ID#: 0606679AR1-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

	and the professional and the contract of the c
	2. 医腹部 1981 1981 1981 1981 1981 1981 1981 198
File Name:	7071315r1 Date of Collection: NA
File Maille.	7071315r1 Date of Collection: NA
Dil Castas	1.00 Date of Analysis: 7/13/06 11:37 PM
Dil. Factor:	1.00 Date of Analysis: 7/13/06 11:37 PM
	Committee of the commit

Compound	%Recovery
Freon 12	102
Freon 114	101
Chloromethane	96
Vinyl Chloride	103
Bromomethane	96
Chloroethane	114
Freon 11	102
1,1-Dichloroethene	102
Freon 113	103
Methylene Chloride	96
1,1-Dichloroethane	102
cis-1,2-Dichloroethene	107
Chloroform	103
1,1,1-Trichloroethane	104
Carbon Tetrachloride	108
Benzene	96
1,2-Dichloroethane	104
Trichloroethene	102
1,2-Dichloropropane	106
cis-1,3-Dichloropropene	113
Toluene	103
trans-1,3-Dichloropropene	116
1,1,2-Trichloroethane	108
Tetrachloroethene	107
1,2-Dibromoethane (EDB)	113
Chlorobenzene	104
Ethyl Benzene	107
m,p-Xylene	108
o-Xylene	106
Styrene	114
1,1,2,2-Tetrachloroethane	107
1,3,5-Trimethylbenzene	107
1,2,4-Trimethylbenzene	110
1,3-Dichlorobenzene	106
1,4-Dichlorobenzene	108
alpha-Chlorotoluene	116
1,2-Dichlorobenzene	107
1,2,4-Trichlorobenzene	126
Hexachlorobutadiene	117
Propylene	100

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: CCV

Lab ID#: 0606679AR1-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

	DESCRIPTION OF THE PROPERTY OF	
File Name: 7071315r	1 HOLES AND THE RESERVE OF THE STREET	Date of Collection: NA
Dil. Factor:	0 148	Date of Analysis: 7/13/06 11:37 PM
Historical Control of the Control of		100 March 1910 March 1

Compound	%Recovery
1,3-Butadiene	102
Acetone	98
Carbon Disulfide	102
trans-1,2-Dichloroethene	106
2-Butanone (Methyl Ethyl Ketone)	121
Hexane	104
Tetrahydrofuran	99
Cyclohexane	105
1,4-Dioxane	117
Bromodichloromethane	111
4-Methyl-2-pentanone	119
2-Hexanone	113
Dibromochloromethane	115
Bromoform	114
4-Ethyltoluene	108
Ethanol	105
Methyl tert-butyl ether	108
Heptane	105
Naphthalene	127
2-Methylpentane	99
Isopentane	116
2,3-Dimethylpentane	100
2,2,4-Trimethylpentane	105
Indene	109
Indan	98
Thiophene	100
2-Propanol	107

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	97	70-130
Toluene-d8	100	70-130

Data File: /chem/msd7.i/7-13jul.b/7071315.d

Report Date: 14-Jul-2006 11:03

Air Toxics Ltd.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: msd7.i Injection Date: 13-JUL-2006 23:37

Lab File ID: 7071315.d Init. Cal. Date(s): 12-JUL-2006 13-JUL-2006

Analysis Type: AIR Init. Cal. Times: 13:27 19:24

Analysis Type: AIR Init. Cal. Times:
Lab Sample ID: CCV Quant Type: ISTD

Method: /chem/msd7.i/7-13jul.b/t141712a.m

		l	1		MIN	1	MAX	l
	COMPOUND	RRF	/ AMOUNT	RF10	RRF 1%D	/ %DRIFT %D	/ %DRIFT	CURVE TYPE
		== ====	======== ==		==== ==	====== ===		
\$	42 1,2-Dichloroethane-d4	ł	1.83974	1.80658	0.010	1.80257	30.00000	Averaged
\$	55 Toluene-d8	1	0.96106	0.96388	[0.010]	-0.29330	30.00000	Averaged
\$	73 Bromofluorobenzene	1	0.55665	0.53988	10.010	3.01292	30.00000	Averaged
	1 Propylene	1	2.05246	2.04592	0.010	0.31851	30.00000	Averaged
	3 Dichlorodifluoromethane/Frl	1	5.83593	5.95574	0.010	-2.05290	30.00000	Average
	4 Freon 114	I	3.78923	3.84107	0.010	-1.36804	30.00000	Average
	5 Chloromethane	1	2.11691	2.03509	0.010	3.86495	30.00000	Average
	6 Vinyl Chloride	1	2.11230!	2.17748	0.010	-3.08554	30.00000	Average
	8 1,3-Butadiene	Į.	1.56079	1.59422	0.010	-2.14168!	30.00000	Averaged
	9 Bromomethane	i	1.39582	1.34601	10.010	3.568261	30.00000	Average
	10 Chloroethane	1	0.94815	1.07987	0.010	-13.89180	30.00000	Average
	13 Trichlorofluoromethane/frl1	1	5.67604	5.79260	10.010	-2.05367	30.00000	Average
	15 Ethanol	1	0.73441	0.77461	10.010	-5.473601	30.00000	Average
	18 Freon 113	1	3.00944	3.09804	10.010	-2.94432	30.00000	Average
	17 1,1-Dichloroethene	1	1.19245	1.22219	10.010	-2.49394	30.00000	Average
	19 Acetone	1	3.36669	3.31825	10.010	1.43872	30.00000	Average
	21 2-Propanol	1	3.08931	3.31733	0.010	-7.38085	30.00000	Average
	20 Carbon Disulfide	I	4.794151	4.90931	0.010	-2.40212	30.00000	Average
	22 3-Chloropropene	1	0.93912	1.03277	0.010	-9.97198	30.00000	Average
	25 Methylene Chloride	1	1.76923	1.69163	0.010	4.38580	30.00000	Average
	26 MTBE	i	5.03571	5.45140	0.010	-8.25485	30.00000	Average
ł	27 trans-1,2-Dichloroethene	í	1.07328	1.14304	0.010	-6.49915	30.00000	Average
ı	29 Hexane	1	2.87312	2.97665	0.010	-3.60340	30.00000	Average
ŧ	30 1,1-Dichloroethane	1	3.49454	3.57788	0.010	-2.38486	30.00000	Average
ı	34 2-Butanone	1	0.74843	0.90502	0.010	-20.92181	30.00000	Average
ı	33 cis-1,2-Dichloroethene	I	1.22194	1.30753	0.010	-7.00511	30.00000	Average
1	35 Tetrahydrofuran	1	2.29939	2.27785	10.0101	0.93660	30.00000	l Average
	37 Chloroform	1	3.88389	3.98800	0.0101	-2.68057	30.00000	Average
	39 1,1,1-Trichloroethane	I	4.33641	4.52992	[0.010]	-4.46250	30.00000	Average
	38 Cyclohexane	I	2.32900	2.44138	[0.010]	-4.82509	30.00000	Average
	41 Carbon Tetrachloride	I	3.98824	4.29420	(0.010)	-7.67151	30.00000	Average
ı	43 2,2,4-Trimethylpentane	I	3.54675	3.72326	0.010	-4.97661	40.00000	Average
ı	44 Benzene	t	1.312431	1.25395	10.010	4.45621	30.00000	_
1	45 1,2-Dichloroethane	1	0.621791	0.64770	0.010	-4.16769	30.00000	Average
1	46 Heptane	ı	0.729471	0.76335		-4.644541	30.00000	
		1	1					1

Page 1

Data File: /chem/msd7.i/7-13jul.b/7071315.d

Report Date: 14-Jul-2006 11:03

Air Toxics Ltd.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: msd7.i Injection Date: 13-JUL-2006 23:37

Lab File ID: 7071315.d Init. Cal. Date(s): 12-JUL-2006 13-JUL-2006

Analysis Type: AIR Init. Cal. Times: 13:27 19:24

Lab Sample ID: CCV Quant Type: ISTD

Method: /chem/msd7.i/7-13jul.b/t141712a.m

	COME						MIN						
===		POUND	RRF	/ AMOUNT	RF10	ì	RRF %	D / %DRIFT	%D /	%DRIF	TIC	URVE I	YPE
	===		====		==========	=	===== =	============	====	===	= =	=====	===
	49	Trichloroethene	I	0.52227	0.5329	5	0.010!	-2.04417	31	0.000	0	Avera	geo
	50	1,2-Dichloropropane	1	0.40992	0.4350	14	0.010	-6.12691	3	0.0000	10	Avera	ged
	51	1,4-Dioxane	1	0.25038	0.2926	3	0.010	-16.87415	3	0.0000	0 į	Avera	ged
	52	Bromodichloromethane	1	0.82445	0.9119	01	0.010	-10.60664	30	0.0000	0	Avera	ige
	53	cis-1,3-Dichloropropene	I	0.61555	0.6963	881	0.010	-13.13128	3	0.0000	0]	Avera	ge
	54	4-Methy1-2-pentanone	1	0.88895	1.0611	61	0.010	-19.37234	30	0.000	۱ 0	Avera	ige
	56	Toluene	I	1.38101	1.4236	2	0.010	-3.08514	30	0.0000	10	Avera	ge
	57	trans-1,3-Dichloropropene	1	0.72241	0.8349	61	0.010	-15.57891	30	0.0000	0	Avera	ige
	58	1,1,2-Trichloroethane	I	0.55412	0.5994	5	0.0101	-8.18105	3	0.0000	0	Avera	ige
	59	Tetrach1oroethene	1	0.68022	0.7288	0	0.010	-7.14142	3	0.0000	0	Avera	ıge
	60	2-Hexanone	I	0.54269	0.6124	81	0.010	-12.86018	3	0.0000	0	Avera	ıge
	61	Dibromochloromethane	I	0.82350	0.9450	8	0.010	-14.76456	3	0.000	0 1	Avera	ıge
	62	1,2-Dibromoethane	1	0.81819	0.9223	881	0.010	-12.733581	3	0.0000	0	Avera	ige
	65	Chlorobenzene	1	1.28778	1.3374	13	0.010	-3.85565	3	0.0000	01	Avera	ıge
	66	Ethyl Benzene	1	0.68796	0.7382	7	0.010	-7.31250	3	0.0000	0	Avera	ıge
	67	m,p-Xylene	1	0.81216	0.8779	61	0.010	-8.10226	30	0.0000	10	Avera	ige
	68	o-Xylene	1	0.80125	0.8478	108	0.0101	-5.80967	3	0.0000	0	Avera	ıge
	69	Styrene	1	1.16224	1.3199	7]	0.010	-13.57143	30	0.0000	0	Avera	ıge
	70	Bromoform	I	0.67252	0.7644	8	0.010	-13.67345	30	0.0000	01	Avera	ıge
	71	Cumene	1	2.91945	3.1494	5	0.010;	-7.87801	30	0.0000	0	Avera	ıge
	74	1,1,2,2-Tetrachloroethane	1	1.12685	1.2096	8 1	0.010	-7.350481	30	0.0000	0	Avera	ige
	75	Propylbenzene	I	3.60268	3.8168	8 [0.010	-5.94557	30	0.0000	01	Avera	ge
	77	4-Ethyltoluene	1	2.90452	3.1532	21	0.010	-8.56254	30	0.0000	0	Avera	ıge
	78	1,3,5-Trimethylbenzene	i	2.22139	2.3717	5	0.010	-6.76883	30	0.0000	10	Avera	ge
	81	1,2,4-Trimethylbenzene	I	2.16331	2.3727	61	0.010/	-9.68198	30	0.0000	01	Avera	ıge
	84	1,3-Dichlorobenzene	1	1.38256	1.4626	4	0.010	-5.79207	30	0.0000	0	Avera	ige
	85	1,4-Dichlorobenzene	I	1.37134	1.4848	0	0.010;	-8.273231	30	0.0000	0	Avera	ge
	86	alpha-chlorotoluene	1	2.24213	2.6027	3	0.010	-16.08254	30	0.0000	01	Avera	ıge
	89	1,2-Dichlorobenzene	I	1.33988	1.4385	3	0.010	-7.36265	30	0.0000	0	Avera	ıge
	93	1,2,4-Trichlorobenzene	1	0.64527	0.8136	21	0.010	-26.090531	30	0.0000	10	Avera	ge
	94	Hexachlorobutadiene	I	0.54966	0.6433	31	0.010	-17.03817	30	0.0000	0	Avera	ıge
	95	Naphthalene	1	2.37144	3.0147	31	0.0101	-27.12623	4 (0.0000	10	Avera	ıge
	31	Vinyl Acetate	I	1.33451	1.1834	2	0.010	11.32185	30	0.0000	0	Avera	ıge

Page 2

Data File: /chem/msd7.i/7-13jul.b/7071308a.d

Report Date: 14-Jul-2006 11:01

Air Toxics Ltd.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: msd7.i Injection Date: 13-JUL-2006 17:49

Lab File ID: 7071308a.d Init. Cal. Date(s): 12-JUL-2006 13-JUL-2006

Analysis Type: AIR Init. Cal. Times: 13:27 19:24

Lab Sample ID: CCV special Quant Type: ISTD

Method: /chem/msd7.i/7-13jul.b/t141712a.m

ı	1	ı	MIN	1	MAX [1
COMPOUND	RRF	/ AMOUNT	RF10 RRF %	D / %DRIFT %D	/ %DRIFT	CURVE TYPE
	===== ====	=======================================	====== ==== =	=======================================	=======================================	=======================================
\$ 42 1,2-Dichloroethane-d4	1	1.83974	1.79119 0.010	2.63920	30.00000	Averaged
\$ 55 Toluene-d8	1	0.96106	0.95814 0.010	0.30391	30.000001	Averaged:
\$ 73 Bromofluorobenzene	1	0.556651	0.55392 0.010	0.49014	30.00000	Averaged
11 Isopentane	1	1.20851	1.40027 0.010	-15.86726	40.00000	Averaged
24 2-Methylpentane	1	1.49787	1.48696 0.010	0.72851	40.000001	Averaged
40 2,3-Dimethylpentane	Į.	0.27554	0.27528 0.010	0.09365	40.00000	Averaged
47 Thiophene	1	0.78270	0.78523 0.010	-0.32271	40.000001	Averaged
87 Indan	1	2.71829	2.65962 0.010	2.15850	40.00000	Averaged
90 Indene	1	1.51587	1.65401 0.010	-9.11275	40.000001	Averagedi
I	1	1	1 1	1	1	1

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: LCS

Lab ID#: 0606679A-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	7071312	1.2.3	e of Göllection; NA
DII: Factor:	1.00		e of Analysis: 7/13/06 09:05 PM
	40 II		

Compound	%Recovery
Freon 12	104
Freon 114	102
Chloromethane	97
Vinyl Chloride	105
Bromomethane	96
Chloroethane	(65 Q)
Freon 11	102
1,1-Dichloroethene	99
Freon 113	103
Methylene Chloride	94
1,1-Dichloroethane	100
cis-1,2-Dichloroethene	106
Chloroform	100
1,1,1-Trichloroethane	102
Carbon Tetrachloride	105
Benzene	94
1,2-Dichloroethane	102
richloroethene	103
1,2-Dichloropropane	103
cis-1,3-Dichloropropene	81
Toluene	101
trans-1,3-Dichloropropene	104
1,1,2-Trichloroethane	107
Tetrachloroethene	107
1,2-Dibromoethane (EDB)	109
Chlorobenzene	104
Ethyl Benzene	113
m,p-Xylene	103
o-Xylene	93
Styrene	117
1,1,2,2-Tetrachloroethane	106
1,3,5-Trimethylbenzene	89
1,2,4-Trimethylbenzene	74
1,3-Dichlorobenzene	104
1,4-Dichlorobenzene	105
alpha-Chlorotoluene	105
1,2-Dichlorobenzene	104
1,2,4-Trichlorobenzene	(138 Q)
Hexachlorobutadiene	120
Propylene	102
Dogo 1	0204

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: LCS Lab ID#: 0606679A-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	7071312	Date of C	collection: NA
Dil. Factor;	1.00	Date of /	Analysis: 7/13/06 09:05 PM

Compound	%Recovery
1,3-Butadiene	116
Acetone	107
Carbon Disulfide	118
trans-1,2-Dichloroethene	115
2-Butanone (Methyl Ethyl Ketone)	130
Hexane	115
Tetrahydrofuran	106
Cyclohexane	116
1,4-Dioxane	127
Bromodichloromethane	115
4-Methyl-2-pentanone	126
2-Hexanone	127
Dibromochloromethane	126
Bromoform	126
4-Ethyltoluene	113
Ethanol	117
Methyl tert-butyl ether	115
Heptane	116
Naphthalene	(136)
2-Methylpentane	Not Spiked
sopentane	Not Spiked
2,3-Dimethylpentane	Not Spiked
2,2,4-Trimethylpentane	106
ndene	Not Spiked
Indan	Not Spiked
Thiophene	Not Spiked
2-Propanol	112

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	99	70-130
4-Bromofluorobenzene	98	70-130
Toluene-d8	100	70-130

Page 2

Report Date: 14-Jul-2006 09:59

Air Toxics Ltd.

RECOVERY REPORT

Client Name: Client SDG: 7-13jul

Sample Matrix: GAS Fraction: VOA

Lab Smp Id: LCS Client Smp ID: LCS

Level: LOW Operator: srs
Data Type: MS DATA SampleType: LCS
SpikeList File: AT-2.spk Quant Type: ISTD

Sublist File: AT-2.sub

Method File: /chem/msd7.i/7-13jul.b/t141712a.m

Misc Info: 50ppbv -> 10ppbv

1 Propylene	 3	SPIKE	COMPOUND	CONC ADDED PPBV	CONC RECOVERED PPBV	% RECOVERED 	 LIMITS
3 Dichlorodifluorome 10.000 10.374 103.74 70-130	!						[
4 Freon 114	ļ			·		•	
5 Chloromethane	!				'		
6 Vinyl Chloride	!				•		
8 1,3-Butadiene	!				•	•	
9 Bromomethane			-				
10 Chloroethane	1	_			'		
13 Trichlorofluoromet 10.000 10.233 102.33 70-130	1						
18 Freon 113	1			·		•	
17 1,1-Dichloroethene 10.000 9.925 99.25 70-130	-						
19 Acetone	!					•	
20 Carbon Disulfide 10.000 11.752 117.52 60-140 25 Methylene Chloride 10.000 9.397 93.97 70-130 26 MTBE 10.000 11.470 114.70 60-140 27 trans-1,2-Dichloro 10.000 11.468 114.68 60-140 29 Hexane 10.000 11.526 115.26 60-140 30 1,1-Dichloroethane 10.000 10.029 100.29 70-130 33 cis-1,2-Dichloroet 10.000 10.558 105.58 70-130 34 2-Butanone 10.000 12.972 129.72 60-140 35 Tetrahydrofuran 10.000 10.614 106.14 60-140 37 Chloroform 10.000 10.020 100.20 70-130 38 Cyclohexane 10.000 11.605 116.05 60-140 39 1,1,1-Trichloroeth 10.000 11.605 116.05 60-140 39 1,1,1-Trichloroeth 10.000 10.187 101.87 70-130 41 Carbon Tetrachlori 10.000 10.512 105.12 70-130 43 2,2,4-Trimethylpen 10.000 10.625 106.25 70-130 44 Benzene 10.000 10.258 102.58 70-130 45 1,2-Dichloroethane 10.000 11.611 116.11 60-140 49 Trichloroethene 10.000 10.290 102.90 70-130 50 1,2-Dichloropropan 10.000 10.313 103.13 70-130 51 1,4-Dioxane 10.000 12.718 127.18 60-140	!				•		
25 Methylene Chloride 10.000 9.397 93.97 70-130 26 MTBE	1					•	
26 MTBE	1						
27 trans-1,2-Dichloro 10.000 11.468 114.68 60-140 29 Hexane 10.000 11.526 115.26 60-140 30 1,1-Dichloroethane 10.000 10.029 100.29 70-130 33 cis-1,2-Dichloroet 10.000 10.558 105.58 70-130 34 2-Butanone 10.000 12.972 129.72 60-140 35 Tetrahydrofuran 10.000 10.614 106.14 60-140 37 Chloroform 10.000 10.020 100.20 70-130 38 Cyclohexane 10.000 11.605 116.05 60-140 39 1,1,1-Trichloroeth 10.000 10.187 101.87 70-130 41 Carbon Tetrachlori 10.000 10.512 105.12 70-130 43 2,2,4-Trimethylpen 10.000 10.625 106.25 70-130 44 Benzene 10.000 9.396 93.96 70-130 45 1,2-Dichloroethane 10.000 10.258 102.58 70-130 46 Heptane 10.000 11.611 116.11 60-140 49 Trichloroethene 10.000 10.313 103.13 70-130 50 1,2-Dichloropropan 10.000 12.718 127.18 60-140	1				'	•	
29 Hexane 10.000 11.526 115.26 60-140 30 1,1-Dichloroethane 10.000 10.029 100.29 70-130 33 cis-1,2-Dichloroet 10.000 10.558 105.58 70-130 34 2-Butanone 10.000 12.972 129.72 60-140 35 Tetrahydrofuran 10.000 10.614 106.14 60-140 37 Chloroform 10.000 10.020 100.20 70-130 38 Cyclohexane 10.000 11.605 116.05 60-140 39 1,1,1-Trichloroeth 10.000 10.187 101.87 70-130 41 Carbon Tetrachlori 10.000 10.512 105.12 70-130 43 2,2,4-Trimethylpen 10.000 10.625 106.25 70-130 44 Benzene 10.000 9.396 93.96 70-130 45 1,2-Dichloroethane 10.000 10.258 102.58 70-130 46 Heptane 10.000 11.611 116.11 60-140 49 Trichloroethene 10.000 10.313 103.13 70-130 50 1,2-Dichloropropan 10.000 10.313 103.13 70-130 51 1,4-Dioxane 10.000 12.718 127.18 60-140	1						
30 1,1-Dichloroethane 10.000 10.029 100.29 70-130 33 cis-1,2-Dichloroet 10.000 10.558 105.58 70-130 34 2-Butanone 10.000 12.972 129.72 60-140 35 Tetrahydrofuran 10.000 10.614 106.14 60-140 37 Chloroform 10.000 10.020 100.20 70-130 38 Cyclohexane 10.000 11.605 116.05 60-140 39 1,1,1-Trichloroeth 10.000 10.187 101.87 70-130 41 Carbon Tetrachlori 10.000 10.512 105.12 70-130 43 2,2,4-Trimethylpen 10.000 10.625 106.25 70-130 44 Benzene 10.000 9.396 93.96 70-130 45 1,2-Dichloroethane 10.000 10.258 102.58 70-130 46 Heptane 10.000 11.611 116.11 60-140 49 Trichloroethene 10.000 10.290 102.90 70-130 50 1,2-Dichloropropan 10.000 10.313 103.13 70-130 51 1,4-Dioxane 10.000 12.718 127.18 60-140	ł				11.468	114.68	60-140
33 cis-1,2-Dichloroet 10.000 10.558 105.58 70-130 34 2-Butanone 10.000 12.972 129.72 60-140 35 Tetrahydrofuran 10.000 10.614 106.14 60-140 37 Chloroform 10.000 10.020 100.20 70-130 38 Cyclohexane 10.000 11.605 116.05 60-140 39 1,1,1-Trichloroeth 10.000 10.187 101.87 70-130 41 Carbon Tetrachlori 10.000 10.512 105.12 70-130 43 2,2,4-Trimethylpen 10.000 10.625 106.25 70-130 44 Benzene 10.000 9.396 93.96 70-130 45 1,2-Dichloroethane 10.000 10.258 102.58 70-130 46 Heptane 10.000 11.611 116.11 60-140 49 Trichloroethene 10.000 10.290 102.90 70-130 50 1,2-Dichloropropan 10.000 10.313 103.13 70-130 51 1,4-Dioxane 10.000 12.718 127.18 60-140	ĺ				11.526	115.26	60-140
34 2-Butanone	i				10.029	100.29	70-130
35 Tetrahydrofuran 10.000 10.614 106.14 60-140 37 Chloroform 10.000 10.020 100.20 70-130 38 Cyclohexane 10.000 11.605 116.05 60-140 39 1,1,1-Trichloroeth 10.000 10.187 101.87 70-130 41 Carbon Tetrachlori 10.000 10.512 105.12 70-130 43 2,2,4-Trimethylpen 10.000 10.625 106.25 70-130 44 Benzene 10.000 9.396 93.96 70-130 45 1,2-Dichloroethane 10.000 10.258 102.58 70-130 46 Heptane 10.000 11.611 116.11 60-140 49 Trichloroethene 10.000 10.290 102.90 70-130 50 1,2-Dichloropropan 10.000 10.313 103.13 70-130 51 1,4-Dioxane 10.000 12.718 127.18 60-140	1	33	cis-1,2-Dichloroet	10.000	10.558	105.58	70-130
37 Chloroform	1	34	2-Butanone	10.000	12.972	129.72	60-140
38 Cyclohexane	İ	35	Tetrahydrofuran	10.000	10.614	106.14	60-140
39 1,1,1-Trichloroeth 10.000 10.187 101.87 70-130 41 Carbon Tetrachlori 10.000 10.512 105.12 70-130 43 2,2,4-Trimethylpen 10.000 10.625 106.25 70-130 44 Benzene 10.000 9.396 93.96 70-130 45 1,2-Dichloroethane 10.000 10.258 102.58 70-130 46 Heptane 10.000 11.611 116.11 60-140 49 Trichloroethene 10.000 10.290 102.90 70-130 50 1,2-Dichloropropan 10.000 10.313 103.13 70-130 51 1,4-Dioxane 10.000 12.718 127.18 60-140	Ì	37	Chloroform	10.000	10.020	100.20	70-130
41 Carbon Tetrachlori 10.000 10.512 105.12 70-130 43 2,2,4-Trimethylpen 10.000 10.625 106.25 70-130 44 Benzene 10.000 9.396 93.96 70-130 45 1,2-Dichloroethane 10.000 10.258 102.58 70-130 46 Heptane 10.000 11.611 116.11 60-140 49 Trichloroethene 10.000 10.290 102.90 70-130 50 1,2-Dichloropropan 10.000 10.313 103.13 70-130 51 1,4-Dioxane 10.000 12.718 127.18 60-140	1	38	Cyclohexane	10.000	11.605	116.05	60-140
43 2,2,4-Trimethylpen 10.000 10.625 106.25 70-130	1	39	1,1,1-Trichloroeth	10.000	10.187	101.87	70-130
43 2,2,4-Trimethylpen 10.000 10.625 106.25 70-130 44 Benzene	ł	41	Carbon Tetrachlori	10.000	10.512	105.12	70-130
45 1,2-Dichloroethane 10.000 10.258 102.58 70-130	1	43	2,2,4-Trimethylpen	10.000	10.625	106.25	70-130
45 1,2-Dichloroethane 10.000 10.258 102.58 70-130		44	Benzene	10.000	9.396	93.96	70-130
49 Trichloroethene	1	45	1,2-Dichloroethane	10.000	10.258		
49 Trichloroethene	1	46	Heptane	10.000	11.611	•	
50 1,2-Dichloropropan 10.000 10.313 103.13 70-130 51 1,4-Dioxane 10.000 12.718 127.18 60-140	1		_	10.000			
51 1,4-Dioxane 10.000 12.718 127.18 60-140	1	50	1,2-Dichloropropan				
, , , , , , , , , , , , , , , , , , , ,							
	i		•				
	1			i			

0396

Data File: /chem/msd7.i/7-13jul.b/7071312.d Report Date: 14-Jul-2006 09:59

1			CONC	CONC	96	
	SPIKE	COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
			PPBV	PPBV	1	1
1						11
-		cis-1,3-Dichloropr		8.121		70-130
1	54	4-Methyl-2-pentano	10.000	12.640	126.40	60-140
1	56	Toluene	10.000	10.080	100.80	70-130
1	58	1,1,2-Trichloroeth	10.000	10.678	106.78	70-130
1	59	Tetrachloroethene	10.000	10.682	106.82	170-1301
1	60	2-Hexanone	10.000	12.672	126.72	160-1401
1		Dibromochlorometha	10.000	12.594	125.94	60-140
1	62	1,2-Dibromoethane	10.000	10.945	109.45	170-1301
1	65	Chlorobenzene	10.000	10.424	104.24	170-1301
1	66	Ethyl Benzene	10.000	11.322	113.22	170-1301
1	67	m,p-Xylene	20.000	20.686	103.43	170-1301
1	68	o-Xylene	10.000	9.320	93.21	170-1301
1	70	Bromoform	10.000	12.594	125.94	60-140
1	74	1,1,2,2-Tetrachlor	10.000	10.581	105.81	70-130
1	77	4-Ethyltoluene	10.000	11.289	112.89	160-1401
1	78	1,3,5-Trimethylben	10.000	8.908	89.08	70-130
1	81	1,2,4-Trimethylben	10.000	7.379	73.79	70-130
1	84	1,3-Dichlorobenzen	10.000	10.429	104.29	170-1301
1	85	1,4-Dichlorobenzen	10.000	10.511	105.11	70-130
1	89	1,2-Dichlorobenzen	10.000	10.385	103.85	70-130
	93	1,2,4-Trichloroben	10.000	13.820	138.20*	70-130
1	94	Hexachlorobutadien	10.000	12.022	120.22	70-130
1	71	Cumene	10.000	10.748	107.48	160-140
1	75	Propylbenzene	10.000	10.975	109.75	60-140
	21	2-Propanol	10.000	11.164	111.64	160-140
1	15	Ethanol	10.000	11.727	117.27	160-1401
1	86	alpha-chlorotoluen	10.000	10.496	104.96	70-130
1	95	Naphthalene	10.000	13.645	136.45	160-1401
	31	Vinyl Acetate	10.000	12.933	129.33	60-140
1						
-						

		CONC	CONC	9
1	SURROGATE COMPOUND	ADDED	RECOVERED	RECOVERED LIMITS
-		PPBV	PPBV	1
1_	I		i	1
İ	\$ 42 1,2-Dichloroethane	10.000	9.865	98.65 70-130
	\$ 55 Toluene-d8	10.000	10.055	100.55 70-130
1	\$ 73 Bromofluorobenzene	10.000	9.752	97.52 70-130
1_			l	I i

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 0606679B

Work Order Summary

CLIENT:

Mr. Scott Hauswirth

BILL TO: Mr. Scott Hauswirth

The RETEC Group, Inc.

The RETEC Group, Inc. 1001 W. Seneca St.

1001 W. Seneca St. Suite 204 Ithaca, NY 14850

Suite 204

Ithaca, NY 14850

PHONE:

607-277-5716

P.O. #

FAX:

PROJECT#

ORAN2-19643-200 Port Jervis SI-28 Pike

DATE RECEIVED: DATE COMPLETED: 06/29/2006 07/14/2006

CONTACT:

St. Kelly Buettner

			RECEIPT
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.
05A	GRSG4	Modified ASTM D-1945	5.0 "Hg
06A	GRSG3	Modified ASTM D-1945	3.5 "Hg
06AA	GRSG3 Duplicate	Modified ASTM D-1945	3.5 "Hg
07A	Lab Blank	Modified ASTM D-1945	NA
08A	LCS	Modified ASTM D-1945	NA

CERTIFIED BY:

Sinda d. Fruman

07/14/06 DATE:

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004

NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/05, Expiration date: 06/30/06

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified ASTM D-1945 The RETEC Group, Inc. Workorder# 0606679B

Two 6 Liter Summa Special (100% Certified) samples were received on June 29, 2006. The laboratory performed analysis via modified ASTM Method D-1945 for Helium using GC/TCD. The method involves direct injection of 1.0 mL of sample. See the data sheets for the reporting limits for each compound.

Method modifications taken to run these samples include:

Requirement	ASTM D-1945	ATL Modifications		
Normalization	Sum of original values should not differ from 100.0% by more than 1.0%.	Sum of original values may range between 75-125%. Normalization of data not performed.		
Sample analysis	Equilibrate samples to 20-50° F. above source temperature at field sampling	No heating of samples is performed.		
Sample calculation	Response factor is calculated using peak height for C5 and lighter compounds.	Peak areas are used for all target analytes to quantitate concentrations.		
Reference Standard	Concentration should not be < half of nor differ by more than 2 X the concentration of the sample. Run 2 consecutive checks; must agree within 1%.	A minimum 3-point linear calibration is performed. The acceptance criterion is %RSD = 25%. All target analytes must be within the linear range of calibration (with the exception of O2, N2, and C6+ Hydrocarbons).</td		
Sample Injection Volume	0.50 mL to achieve Methane linearity.	1.0 mL.		

Receiving Notes

The Chain of Custody was not relinquished properly. The discrepancy was noted in the Sample Receipt Confirmation email/fax.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Six qualifiers may have been used on the data analysis sheets and indicate as follows:

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

AN ENVIRONMENTAL ANALYTICAL LABORATORY

U - Compound analyzed for but not detected above the detection limit.

M - Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Page 2 0003

Project No. <u>ORAN 2-19643-400</u> Client <u>ORANGE</u> ; Rockland Site <u>Port Jeruis</u> Subject <u>fir Sample Calculation</u>	Page of Date 8 / 10 / 06 By A. Melzone / App	43	RETEC	
006679AR1-01A Ben	uzene = 4.5 ppbv	15 1,	t-Diffuoralien	ene
cone. (ppbv) = (lesponse) (15 lespon	(15) (&F) m) (RRF)	· · · · · · · · · · · · · · · · · · ·		

Cone.
$$(\mu/H^3) = \frac{(\rho b V)(HW)}{(24.055)} = \frac{(4.474)(78.11)}{24.055} = 14.53 \mu g/H^3$$

 $= \frac{(36725)(10)(15.8)}{(988168)(1.31243)} = 4.474 \rho b v.$

H. S. Maljon

Data File: /chem/msd7.i/7-13jul.b/7071320.d Page 1

Report Date: 14-Jul-2006 18:17

Air Toxics Ltd.

AMBIENT AIR METHOD TO14/TO15

Data file : /chem/msd7.i/7-13jul.b/7071320.d

Lab Smp Id: 0606679A-01A

Inj Date : 14-JUL-2006 04:07

Operator : wf Inst ID: msd7.i

Smp Info : 50mL #431

Misc Info : 4.5"Hg->5.0psi Retec

Comment :

Method : /chem/msd7.i/7-13jul.b/t141712a.m

Meth Date: 14-Jul-2006 12:40 jgray Quant Type: ISTD Cal Date: 13-JUL-2006 19:24 Cal File: 7071310.d

Als bottle: 1

Dil Factor: 15.80000

Integrator: HP RTE Compound Sublist: Ret9162.sub

Target Version: 3.50 Sample Matrix: AIR

Processing Host: eeyore

Concentration Formula: Amt * DF * CpndVariable

Cpnd Variable Local Compound Variable

CONCENTRATIONS

ON-COL	FINAL

			,	OM-COT	FINAL		
RT	EXP RT (REL RT)	MASS	RESPONSE	(PPBV)	(PPBV)	TARGET RANGE	RATIO
==		====			======		=====
* 36 B	romochloromethane	9			CAS #:	74-97-5	
16.193	16.193 (1.000)	130	216079	10.0000		80.00- 120.00	100.00
16.193	16.193 (1.000)	128	165692			46.11- 106.11	76.68
16.193	16.193 (1.000)	49	361003		:	134.20- 194.20	167.07
* 48 1	,4-Difluorobenzer	ne			CAS #:	540-36-3	
17.659	17.659 (1.000)	114	(988168	2 0.0000		80.00- 120.00	100.00
17.631	17.659 (1.000)	88	166470			0.00- 46.41	16.85
		- -					
* 64 C	hlorobenzene-d5				CAS #:	3114-55-4	
21.972	21.972 (1.000)	117	799342	10.0000		80.00- 120.00	100.00
21.972	21.972 (1.000)	82	461580			26.75- 86.75	57.74
		 -	·				
\$ 42 1	,2-Dichloroethane	e-d4			CAS #:	17060-07-0	
17.050	17.078 (1.053)	65	397177	9.99114	9.991	80.00- 120.00	100.00
17.078	17.078 (1.055)	67	188981			25.85- 85.85	47.58
		- -		-			
\$ 55 1	Coluene-d8				CAS #:	2037-26-5	
19.760	19.760 (1.119)	98	921674	9.70502	9.705	80.00- 120.00	100.00
10 766	19.760 (1.119)	70	107622			0.00- 41.46	

Data File: /chem/msd7.i/7-13jul.b/7071320.d Report Date: 14-Jul-2006 18:17

CONCENTRATIONS

					CONCERT	WITONO		
					ON-COL	FINAL		
RT	EXP RT	(REL RT)	MASS	RESPONSE	(PPBV)	(PPBV)	TARGET RANGE	RATIO
==	=====	======		======	======			====
\$ 55 T	oluene-c	i8 (contir	nued)					
	19.760	(1.119)	100	625089			38.24- 98.24	67.82
		orobenzene				CAS #:	460-00-4	
23.797	23.797	7 (1.083)	174	435094	9.77839	9.778	80.00- 120.00	100.00
23.797	23.79	7 (1.083)	95	672702			125.09- 185.09	154.61
23.797	23.79	7 (1.083)	176	421963			67.21- 127.21	96.98
15 E	thanol					CAS #:	64-17-5	
11.880	11.93	5 (0.734)	45	477604	30.0964	475.52	80.00- 120.00	100.00
11.880	11.93	5 (0.734)	43	106188			0.00- 50.79	22.23
11.880	11.93	5 (0.734)	46	195367			9.82~ 69.82	40.91
19 A	cetone					CAS #:	67-64-1	
12.709	12.70	9 (0.785)	43	53309	0.73280	11.578	80.00- 120.00	100.00
12.709	12.70	9 (0.785)	58	14129			0.00- 59.96	26.50
44 B	enzene					CAS #:	71-43-2	
17.078	17.07	8 (0.967)	78	36725	0)28317	4.474	80.00- 120.00	100.00
17.078	17.07	8 (0.967)	77	9448			0.00- 53.15	25.73
56 T	oluene					CAS #:	108-88-3	
19.870	19.87	0 (1.125)	91	32878	0.24092	3.806	80.00- 120.00	100.00
19.870	19.87	0 (1.125)	92	18429			31.09- 91.09	56.05
59 T	etrachl	oroethene				CAS #:	127-18-4	
		2 (0.941)	166	14152	0.26028		80.00- 120.00	100.00
		2 (0.941)	129				49.00- 109.00	
		2 (0.941)	131	10362			46.17- 106.17	
11 1	sopenta	ne				 CAS #:	78-78-4	
	-	9 (0.633)	57	134662	5.15683		70.00- 130.00	100.00
		9 (0.633)	43	203349			116.42- 176.42	
10.248	3 10.24	9 (0.633)	42	178325			98.78- 158.78	132.42
		(0.000)		2.0020			2001.0	

APPENDIX E

Full NYSDEC ASP Category B Laboratory Data Package